: Pocket Guide
Assembly Language

for the 650 2

9
@)
Q
)
=
3.
=
«Q
U
(@]
0
x
®
[l
)
c.
Q
®
"

Pitman Pocket Guides

The complete list of titles in this series is printed on the
stiff board at the back of this Guide.

This series of pocket size reference guides provides you
with reliable descriptions of the salient features of all the
important languages, micros, operating systems and word
processors. You can use them as memory-joggers or
reference tools.

There is an introductory Guide to each category for those
who have no experience of the subject. This provides you
with the lead-in to other related titles.

The Publishers would welcome suggestions for further
improvements to this series. Please write to Alfred Waller
at the address below.

PITMAN PUBLISHING LTD
128 Long Acre, London WC2E 9AN

Associated companies

Pitman Publishing Pty Ltd, Melbourne

Pitman Publishing New Zealand Ltd, Wellington
Copp Clark Pitman, Toronto

Consultant Editor: David Hatter

First edition 1983
Reprinted 1984

© Bob Bright 1983
All rights reserved.
Printed in Great Britain at The Pitman Press, Bath

ISBN 027301990 2

d 4 U UV uduuau

Index

How to use this Pocket
Guide 1
Accumulator 3
Addressing
absolute 6
absolute indexed 8
accumulator 10
immediate 7-8

implied 10
indexed indirect 9
indirect 9

indirect indexed 9
relative 10
zero-page 7
indexed 8
Assembler listing 6
Assembly language 5

BRK command 62

Control line

LAl &2

LAZ 52

Bl &0

B2 53

Control register

auxiliary 53

CPU (6502) 1
programming model 2

Data direction registers 51

Execution times 11-12
Flags 3-4
break command 3
carty 3

decimal mode 3
interrupt disable 3

ii

negative 4
overflow 4
testing 4
zero 3

Index registers 51
Input/output 48
Input/output ports 51
Input registers 51
Instruction set 14—44
Internal registers 50
Interrupt
enable register 59
flag register 58-59
non-maskable 60
operation 59
request 60
return from 61
Interrupts 47, 58-62
and reset 59

Language elements 4-6
Latches 53-57

Listing, assembler 6

Machine code 4-6

Operands 5-6

Operation Codes (see
instruction set) 14—44

Numerical sequence 42-44

Output registers 51

Paging system 12-13

Peripheral control register

Processor status register 3

Program counter 2

Programming model (see
crl) 2

Push and pull operations

»
P

4 B B B U N A U YN U B

Reset 59 Status register 3
Subroutines 45
Saving CPU status 61 nested 46
Shift register 57
Source program 6 Timer counters 54-56
Stack manipulation 47
Stack pointer 2 Versatile Interface Adapter 48
loading 45 internal registers 50

Stack processes 4448

iii

o

4 U B U U Ui D uuR

How to use this Pocket Guide

Each feature of the 6502 assembly language has a section devoted
to it.

Table I contains the complete instruction set and includes details
of operation codes, various addressing modes, execution times and
the required number of bytes of machine code. It also gives details
of the processor status register operation.

Table II is a list of operation codes in numerical order together
with the instruction mnemonic and the mode of addressing. There
are sections on interrupts and stack processes together with a
detailed study of the versatile interface adapter. Examples are
given where necessary in the text and at the end of the guide.

6502 Central processing unit (CPU)

The 6502 is one of the family of the 6500 microprocessor devices.
All the devices are software-compatible but not all are
pin-compatible.

The 6502 is a 40-pin device and provides, among others, the
following facilities:

56 instructions

13 addressing modes

16-bit address bus

8-bit bi-directional parallel data bus

1-MHz and 2-MHz system clock frequency
interrupt facilities—maskable and non-maskable
stack operation

The 6502 includes a number of registers, detailed in the section on
the programming model of the CPU, an arithmetic logic unit,
instruction decoder and register, and interrupt logic. The
manufacturer’s data sheet should be consulted for full details of the
system architecture, electrical characteristics, pin connections,
timing diagrams and clock operation.

Programming Model of the CPU

The programming model of the 6502 microprocessor is shown

below.
Accumulator 7 0
Index register X 7 0
Index register Y 7 0
Stack pointer SP 7 0
Program 0
counter 15 PC

7 0
Processor status register P NIV sipllzic
N negative flag
V overflow flag
unused
B break command flag
D decimal mode ﬂaﬁ
I interrupt disable bit
Z zero flag
C carry flag

Program counter PC

The program counter is a 16-bit register which contains the address
of the next instruction or part instruction in the program sequence.

Stack pointer SP

The stack area is confined to page 01 of memory. The stack pointer
holds the address of a memory location on this page and indicates
the current position of the stack.

2

Z 4 d U g v i ouug

Accumulator

The accumulator is an 8-bit register used in certain arithmetic and
logic operations; the results of such operations are placed in the
accumulator.

Index registers X and Y

The index registers are 8-bit registers and are used in the various
addressing modes involving indexed addressing. The registers can
also be used in certain arithmetic operations and for transferring
data between accumulator and the stack pointer.

Processor status register P

The processor status register is an 8-bit register containing 6 flags,
an interrupt disable bit and an unused bit.

Bit 0 Carry flag (C)
The carry flag acts as a ninth bit in certain arithmetic and
logic operations. Particular care must be used in the
interpretation of this flag when using instructions
involving subtraction. The flag should be cleared before
starting any arithmetic operation using ADC and set
before using SBC.

Bit 1 Zero flag (Z2)
The zero flag is set if the result of arithmetic and logic
operations is zero; if the result is non-zero the flag is
cleared.

Bit 2 Interrupt disable bit (I)
This bit enables or disables TRQ) interrupts:
Hli=1 ITR% interrupt is disabled;
if I = 0 IRQ interrupt is enabled.
It has no effect on interrupts.

Bit 3 Decimal mode flag (D)
If the decimal mode flag is cleared the arithmetic unit
within the CPU performs binary arithmetic; if the flag is
set, binary coded decimal arithmetic is performed. The
programmer should ensure that status of the flag is the one
required.

Bit 4 Break command flag (B)
When a break instruction BRK is executed the CPU will set
the break command flag (see BRK instruction p. 20).

3

e ———

A ddlduiiudguun

Bit 5 Unused bit.

Bit 6 Overflow flag (V)
During signed binary arithmetic operations the overflow
flag will be set if the magnitude of the result exceeds seven
bits; otherwise it is cleared.

Bit 7 Negative flag (N)
The negative flag is set if the most significant bit of the
result of an operation is also set; otherwise it is cleared.

The flags may be set, cleared or unaffected as a result of an
instruction being executed; Table I shows the operation of the flags
for each instruction and addressing mode.

Some of the flags are directly programmable:

CLC clear carry

CLD clear decimal mode

CLI clear interrupt disable bit
CLV clear overflow

SEC set carry

SED set decimal mode

SEI set interrupt disable bit

Testing the flags

Four of the flags namely N, V, Z and C can be tested and a
conditional branch made depending on their status. Listed are the
flags with the appropriate branch instructions:

N BMI and BPL

V BVS and BVC

Z BEQ and BNE

C BCS and BCC

Language elements

Machine code

The machine or object code for each instruction in the 6502 will
consist of one, two or three bytes. The first byte always contains the
operation code for the particular instruction together with the
mode of addressing. For example, A2 is the code for LDX (load the
index register X) using the immediate mode of addressing.

The second and third bytes, termed the operand, will if present,
contain data, an address or a displacement from which an address
can be formed.

g T

Assembly language

The assembly language form for each instruction consists of an
operator and an operand. The operator is represented by a
mnemonic which is expressed by a three letter code which is
meaningful to the user. If an assembler is used this code must be
adhered to.
Example: LDA load accumulator

BEQ branch if equal

Operands

The format for the operand in the assembly language will, in
addition to containing the data, etc, imply the mode of addressing.
The formats are listed with their mode of addressing.

#Operand immediate

Operand zero page, absolute or relative
Operand, X zero page and absolute indexed X
Operand, Y zero page and absolute indexed Y

(Operand, X) indexed indirect
(Operand), Y indirect indexed
(Operand) indirect

A accumulator

If there is no Operand then the mode of addressing is implied.
The term operand in the previous list can be expressed in a
number of ways:

1 Asabinary, decimal, octal or hexadecimal number; it is usual to
distinguish between the various number systems but the means
will vary depending on the assembler used. Typical examples

are:
hexadecimal $80 or 80H
octal @35 or 35Q
binary % 01110001 or 01110001B
decimal 79 or 79D

2 As a symbol which will have to be defined and the assembler
will assign the required numerical value.

3 As a simple arithmetic expression usually containing the
operators +, —, / and *.

4 Asan ASCII code character which is prefixed by a single quote

().

Source program

A source program is divided into four fields which contain
respectively the label, o(ferator, operand and comment. A typical
source program is listed:

ORG $3000

LDY #$FF ; delay routine start
LOOP2 LDX #$FF
LOOP1 DEX

BNE LOOP1

DEY :

BNE LOOP2 ; delay routine end

The first field is occupied by a label and is optional; it is mainly
used in branch and jump instructions. It assists the programmer to
read and write programs and the assembler will calculate the
offsets and numerical addresses. There is generally a restriction
placed on the number and type of characters used to define a label
and this will depend on the assembler used. The last field is
reserved for comments to assist in the good documentation of
programs and is entirely optional. :

Assembler listing

An assembler will convert the source to object or machine code; a
tyqical output from an assembler for the previous source program
is listed below:

Location Machine Label Assembly Comments
code language
3000 A0 FF LDY #$FF ; delay routine start
3002 A2 FE LOOP2 LDX #$FF
3004 CA LOOP1 DEX
3005 Do FD BNE LOOP1
3007 88 DEY
3008 Do F8 BNE LOOP2 ; delay routine end

Addressing modes

Absolute addressing

Absolute addressing requires 3 bytes of machine code. The first
byte contains the operation code; the second and third bytes

6

TITTOOIOOTT

contain the low-order byte and the high-order bytes respectively of
an address.

Example: LDA $2055
This instruction loads the accumulator with the contents of
memory location $2055. Assembled into machine code this
becomes

AD 55 20
The first byte AD is the operation code and the next two form the
address of the memory location. Note that the 16-bit address is
stored with the least significant byte first followed by the most
significant byte.

Further example: JMP $3020 *
This instruction transfer program control to the memory location
$3020. Assembled into machine code this becomes

4C 20 30
All 64k of addressable memory can be accessed with absolute
addressing.

Zero-page addressing

Zero-page addressing requires 2 bytes of machine code. The first
byte contains the operation code; second byte contains an address
on page $00 of memory. The data to be operated on is held at this
address.

Example: LDA $55
This instruction loads the accumulator with the contents of
memory location $0055 or location $55 on page $00 of memory.
Assembled into machine code this becomes

AS5 55
The first byte A5 is the operation code and the second byte is the
address on page $00.

Immediate addressing

Immediate addressing requires 2 bytes of machine code. The first
byte contains the operation code; the second byte contains the data
to be operated on.

Example: LDA #$9A
This instruction loads the accumulator with the data $9A. The #
symbol specifies the immediate mode of addressing. Assembled

into machine code this becomes
: A9 9A

7

The first byte is the operation code and the second byte the data. In
this mode of addressing it is said that the data immediately follows
the operation code.

Absolute indexed addressing

Absolute indexed addressing requires 3 bytes of machine code.
The first byte contains the operation code, the mode of addressing
and the specified index register; the second and third bytes contain
the low-order and high-order bytes of an address to which is added
the contents of one of the index registers to form an effective
address. The data to be operated on is held at this address.

Example: LDA $903A,X
If the index register X holds the value $30, then the accumulator is
loaded with the contents of the memory location $906A
($903A +$30). Assembled into machine code this becomes
BD 3A 90

Further example: LDA $90A5,Y
Ifthe index register Y holds the value $A9, then the accumulator is
loaded with the contents of memory location $914E ($9035 +$A9).
Assembled into machine code this becomes

B9 A5 90
Note (a) that the 16-bit addresses are stored with the least
significant byte first followed by the most significant byte, and (b)
that there is no difficulty in crossing page boundaries but with
some instructions the execution time will differ.

Zero-page indexed addressing

Zero-page indexed addressing requires 2 bytes of machine code.
The first byte contains the operation code, the mode of addressing
and the specified index register; the second byte contains an
address in page $00 of memory to which is added the value held in
the index register to form a zero-page address. The data to be
operated is held at this address.

Example: LDA $20,X
If the index register X holds the value $3A, then the accumulator is
loaded with the contents of the memory location $005A or location
$5A on page $00 of memory. Assembled into machine code this
becomes:

B5 20
Note that if the addition yields a value greater than $FF no carry is
generated when forming the address. If, in the example, the index
register held the value $F4 then the accumulator would be loaded

8

A U U U auuuan

with the contents of the memory location $0014. This is commonly
referred to as wrap-around.

Indirect addressing

Indirect addressing applies only to the Jump (JMP) instruction. It
requires 3 bytes of machine code. The first byte contains the
operation code, the second and third bytes contain the low-order
and high-order bytes of a pointer address. The low-order and
h(iigdh-order bytes of the effective address are found at the pointer
address.

Example: JMP ($2036)
If the contents of the locations $2036 and $2037 are $A9 and $54
respectively the program counter will contain $54A9 after the

execution of the instruction.

2036 | A9
2037 | 54

Indexed indirect addressing

Indexed indirect addressing requires 2 bytes of machine code. The
first byte contains the operation code; the second byte is added to
the value held in the index register to form a zero-page pointer
address. The low-order and high-order bytes of the effective
address are found at the pointer address. The data to be operated on
is held at this effective address.

Example: LDA ($54,X)

If the index register X holds the value $38 and the contents of the
memory locations $009C and $009D are $35 and $7B respectively
then, as a result of this instruction, the contents of $7B35 will be
loaded into the accumulator. Note that in forming the pointer
addé'ess any carry out is ignored. Only the index register X can be
used.

009C | 35
009D | 7B

Indirect indexed addressing

Indirect indexed addressing requires 2 bytes of machine code. The
first byte contains the operation code; the second byte contains an
address on page $00 of memory. The contents of this memory

location are added to the contents of index register Y to form the

9

A lldudduUuddgpoun

low-order byte of an effective address; any carry from this addition
isadded to the contents of the next memory location on page $00 of
memory to form the high-order byte of the effective address. The
data is held at this address.

Example: LDA ($A8),Y

At the pointer address and the pointer address+1, the low-order
byte and the high-order byte of the effective address can be found. If
the index register Y contains the value $30 and the memory
locations $00A8 and $00A9 contains $37 and $15 respectively
then, as a result of this instruction, the contents of $1567
($1537+$30) are loaded into the accumulator.

00A8 | 37

00A9| 15

Implied addressing

Implied addressing requires 1 byte of machine code.

Example: CLC
The carry flag is cleared as a result of this instruction. Assembled
into machine code this becomes 18

Accumulator addressing

Accumulator addressing requires 1 byte of machine code; it applies
to operations on the contents of the accumulator.

Example: ROL A
The contents of the accumulator and the carry flag are rotated 1 bit
to the left. Assembled into machine code this becomes 2A.

Relative addressing

Relative addressing is used exclusively with the branch
instructions and requires 2 bytes of machine code. When the
branch instruction is executed the status of one of the processor
flags is tested and causes a branch or otherwise, depending on the
status of the flag. The first byte contains the instruction and the
second byte contains a two’s complement number which
represents a displacement from the current position of the program
counter.

10

Al dududuUuiauagoun

Example: BEQ $06
In assembly language this becomes

Location = Machine code Assembly language
o B FO 06 BEQ $06
PG+2

If the Z flag is set then the program counter is modified to
(PC+2)+6 = PC+8; if the flag is clear then the program counter
remains at PC+2.

Further example: BPL $FA
In assembly language this becomes

Location = Machine code = Assembly language

PC 10 FA BPL $tA

PC+2
If the N flag is clear the program counter changes to PC+2+(—6) =
PC—4; if the flag is set the program counter remains at PC+2.

Since there is only 1 byte to define the displacement, the range of

the branch is restricted to between —12810 and +12710 from the
current position of the program counter. If a conditional branch is
required beyond this range, then a branch can be made to a location
within the range and the JMP instruction used to jump to the
required location.

Execution times

The execution time for each instruction is expressed in terms of the
number of system clock cycles. Table I shows the number of clock
cycles for each instruction; there are variations depending on the
addressing mode.

The branch instruction in the table shows the execution time for
the no branch condition. If a branch is made to the same page, then
1 cycle should be added to the no branch value and if a branch
occurs to another page, 2 should be added.

Example:
Location Label Assembly language
2090 BPL LOOP
20A0 LOOP

The instruction BPL tests the state of the N flag and causes a branch
if N is clear.

If N = 1 execution time in cycles is 2;

if N = 0 execution time in cycles is 3 (branch to the same page)
However, if the address of the label is $2101 (another page), then if
N=0, the time is 4 cycles.

13

Al dduyaugdguuan

Examination of Table I shows that the execution time for some of
the instructions for certain addressing modes needs to be modified
if a page boundary is crossed.

Example: single loop time delay with no page crossing
Location Label Assembly language = Comment

3000 LDX #$hh ; 2 cycles
3002 LOOP DEX ; 2 cycles
3003 BNE LOOP : 3 cycles for branch,

2 cycles otherwise
If $hh is equal to x10 then total number of clock cycles is
2+ 2x + 3x-1)+2=5x +1

The LDX instruction is executed once, the DEX instruction x times
and the branch occurs x —1 times; 2 cycles must be included for the
no branch condition for BNE.

Further Example: double loop delay with page crossing for outer

loop
Location Machine code Assembly Comment
Label language
2FFC A0 hh LDY #$hh ; cycles 2
2FFE A2 nn LOOP2 LDX #$nn ; cycles 2
3000 873 LOOP1 DEX ; cycles 2
3001 Do FD BNE LOOP 1 ;cycles 3 or 2
3003 88 DEY ; cycles 2
3004 Do F8 BNE LOOP2 ;cycles 4 or 2

If $hh is equal to y10 and $nn equal to x10 then the total number of
cycles is

y [5x+7)

The delay period is the number of cycles times the system clock
period.

Paging system

The 6502 microprocessor can access up to 65536 or 64k memory
locations using its 16-bit address bus; the addresses of the memory
locations are normally expressed in terms of the hexadecimal
number system. The total addressing rage is therefore from $0000
to $FFFF where $ indicates a hexadecimal number. Note that 1k is
normally equivalent to 1024o.

The memory of the 6502 is organized on a paging system; the
most significant byte of the absolute address is the page number
while the least significant indicates the location within that page.

12

U U U U J J3ad U 8 8B

For example, the address of memory location $3022 can be
expressed as location $22 on page $30.

There are 256 pages with 256 bytes of memory per page.
There is very little restriction placed on the microcomputer
designer in interfacing memory and input/output devices to the
address bus. However it should be noted that pages $00, $01 and

$FF are used for specific purposes.

page $00: the various index addressing modes use this page for
storing data and addresses. Since the 6502 does not have a 16-bit
index register, the power of the instruction set should not be
diminished by using this page solely for the main program.

page $01: the stack area is restricted to this page. If the user’s
program involves subroutines and interrupts, it is advisable not
to place the main-line program on this page for fear of the stack
corrupting the program.

page $FF: the last six locations on this page are reserved for the
addresses of the interrupt and reset service routines. In many
microcomputer systems this page will probably contain the
monitor program.

Key to Tables I and II

Accumulator

Index register X

Index register Y
Memory

Processor status register
Stack pointer

Exclusive or

Logical or

Logical and

Add

Subtract

Transfer to

Transfer from

Push on to stack

Pull from stack
Program counter
Program counter high-order byte PChigh
Program counter low-order byte PClow
Operand Operand
Immediate #

Q@ UL TR M >

——)(—Tl | s

0,
@)

Processor status register N|V B 1120

Note: Heavy boxes round individual flags indicate possible
changes.

13

d H i U U W Jd v v b W

Table I Instruction set

ADC: Add memory to accumulator with carry

Operation: A+M+C— A,C

Description: The carry flag bit is added to the contents of the
accumulator and memory; the result is placed in the accumulator.

Process status register: N VI 8.0 IZ CI

N: set if the most significant bit of the result is set; otherwise
cleared.

set if the addition results in a two s complement overflow;
otherwise cleared.

set if the result is zero; otherwise cleared.

set if there is a carry out from the most significant bit of the
result; otherwise cleared.

s

Addressing Assembly Language No. No. OoP

Mode Cycles Bytes Code
Immediate ADC #Operand 2 2 69
Zero Page ADC Operand 3 ’ 65
Zero Page,X ADC Operand,X 4 2 75
Absolute ADC Operand 4 3 6D
Absolute, X ADC Operand,X 4* 3 7D
Absolute,Y ADC Operand,Y 4* 3 79
(Indirect,X) ADC (Operand,X) 6 . 61
(Indirect),Y ADC (Operand),Y ¥ 2 g

*Add 1 if page boundary is crossed.

14

d U U U U W ada uuwualn

AND “And” memory with the accumulator

Operation: AM —A

Description: a logical AND operation is performed between the
corresponding bits of the memory and accumulator; the result is
placed in the accumulator and the contents of the memory remains
unchanged.

Processor status register: lNI Vv Bibj]i IZ | C

N: set if the most significant bit of the result is set; otherwise
cleared.
7. set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Immediate AND #Operand 2 2 29
Zero Page AND Operand 3 2 25
Zero Page,X AND Operand,X 4 2 35
Absolute AND Operand 4 3 2D
Absolute, X AND Operand,X 4* 3 3D
Absolute,Y AND Operand,Y 4" 3 39
(Indirect,X) AND (Operand,X) 6 2 21
(Indirect),Y AND (Operand),Y 5* 2 31

*Add 1 if the page boundary is crossed.

15

ASL Shift left One bit | < ¢

Operation: C<— 76543210+« 0

Description: the contents of memory or the accumulator are shifted
left one bit; bit 0is loaded with a logic 0 and bit 7 is shifted into the
carry flag.

Processor status register: k N1V Bill 1l 14 Cl

N: set if the most significant bit of the memory or accumulator is
set; otherwise cleared.
Z: setif the result of the memory or accumulator is zero; otherwise

cleared.
C: set if as a result of the operation the carry flag is set; otherwise
cleared.
Addressing Assembly Language No. No. OP
Modes Cycles Bytes Code
Accumulator ASL A 2 1 0A
Zero Page ASL Operand 5 2 06
Zero Page,X ASL Operand,X 6 2 16
Absolute ASL Operand 6 3 OE
Absolute, X ASL Operand,X 7 3 1E

BCC Branch if carry is clear

Description: the C flag is tested and a branch occurs if the flag is
clear; otherwise the next instruction is executed.

Processor status register:

not affected N|V HiDIIIZ G

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Relative BCC Operand 2" 2 90

* Add 1 if the branch occurs to the same page; add 2 if the branch
occurs to a different page.

16

d U W UUUNEUEBURLUNDL

BCS Branch if carry is set

Description:the Cflag is tested and a branch occurs if the flag is set;
otherwise the next instruction is executed.

Processor status register:

not affected N|V B D 112G

Addressing Assembly Language No. No. oP
Mode Cycles Bytes Code

Relative BCS Operand a 2 BO

*Add 1 if the branch occurs to the same page; add 2 if the branch
occurs to a different page.

BEQ Branch if equal to zero

Description: The Z flag is tested and a branch occurs if the flag is
set; otherwise the next instruction is executed.

Processor status register:
not affected N|V BiD 1 7~ L

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Relative BEQ Operand 2* 2 FO

*Add 1 if the branch occurs to the same page; add 2 if the branch
occurs to a different page.

17

BIT Bit test

Operation: A.M, M:—N and Ms—V

Description: a logical AND operation is performed on the
corresponding bits of the memory and accumulator; the contents of
the memory and accumulator remain unchanged. Bits 7 and 6 of
memory are transferred to the N and V flags respectively.

Processor status register: II_\I- VI Bl IZ B

N: set if the most significant bit of memory is set; otherwise
cleared.

7. set if the result of the operation is zero; otherwise cleared.

V: set if bit 6 of the memory is set; otherwise cleared.

Addressing Assembly Language No. No. OP

Mode Cycles Bytes Code
Zero Page BIT Operand 3 2 24
Absolute BIT Operand 4 3 2t

BMI Branch if minus

Description: the N flag is tested and a branch occurs if the flag is set;
otherwise the next instruction is executed.

Processor status register:

not affected N|V Bl é &

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Relative BMI Operand 2" 2 30

*Add 1 if the branch occurs to the same page; add 2 if the branch
occurs to a different page.

18

BNE Branch if not equal to zero

Description: the Z flag is tested and a branch occurs if the flag is
clear; otherwise the next instruction is executed.

Processor status register:

not affected N|V B Dbl z 0L

Addressing Assembly Language No. No. Op
Mode Cycles Bytes Code

Relative BNE Operand - 1y 2 DO

*Add 1 if branch occurs to the same page; add 2 if the branch occurs
to a different page.

BPL Branch if positive

Description: the N flag is tested and a branch occurs if the flag is
cleared; otherwise the next instruction is executed.

Processor status register:

not affected N|V B D1 2 L

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Relative BPL Operand 2% 2 10

* Add 1 if branch occurs to the same page; add 2 if the branch occurs
to a different page.

19

BRK Break command

Operation: PC + 2 | P |

Description: The break command flag is set. The program counter
is then incremented by 2; the high-order byte, and the low-order
byte of the program counter and the processor status register are all
pushed onto the stack with the stack pointer being decremented
each time. Program control is transferred to the break command
interrupt service routine.

Processor status register: N|V |B I D | | I Z L

B: set

I: set

Addressing Assembly Language No. No. DP
Mode Cycles Bytes Code

Implied BRK 7 1 00

BVC Branch if overflow is cleared

Description: the V flag is tested and a branch occurs if the flag is
clear; otherwise the next instruction is executed.

Processor status register:

not affected N |V 0oL 0

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Relative BVC Operand ¢l 2 50

* Add 1 if branch occurs to the same page;add 2 if branch occurs to
a different page.

20

| dus

BVS Branch if overflow is set

Description:the V flag is tested and a branch occurs if the flag is set;
otherwise the next instruction is executed.

Processor status register: ;

not affected ol i A

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Relative BVS Operand 2" 2 70

*Add 1 if branch occurs to the same page;add 2 if branch occurs to
a different page.

CLC Clear the carry flag

Operation: 0 — C
Description: the carry flag is cleared.

Processor status register: N |V BiDil &

C: cleared

Addressing Assembly Language No. No. P
Mode Cycle Bytes Code

Implied CLL: o 1 18

CLD Clear decimal mode

Operation: 0 - D
Description: the decimal mode flag is cleared.

Processor status register:
= NIV B l D I L1215
D: cleared
Addressing Assembly Language No. No. oP
Mode Cycles Bytes Code
Implied CLD 2 1 D8
¥

P

CLI Clear interrupt disable bit

Operation: 0 — I
Description: the interrupt disable bit is cleared.

Processor status register: N |V BlD I [l L0

I: cleared

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Implied LI 2 1 58

CLV clear overflow flag

Operation: 0 —» V
Description: the overflow flag is cleared.

Process status register: N IVI Bl LL & L

V: cleared

Addressing Assembly Language No. No. oP
Mode Cycles Bytes Code

Implied CLY 2 1 B8

22

G i v

CMP Compare memory and accumulator

Operation: A - M

Description: Compare by subtraction the contents of the mefnory
with that of the accuniulator; the contents of the accumulator and
memory remain unchanged.

Processor status register: V Bl 1L}

N: set if the most significant bit of the result of the comparison is
set; otherwise cleared.

Z: set if the result of the comparison is zero; otherwise cleared.

C: cleared if the contents of the memory are greater than that of the

accumulator; otherwise set. », , » 2) £ 2 S |
Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Immediate CMP #Operand 2 2 C9
Zero Page CMP Operand 3 2 G5
Zero Page,X CMP Operand,X 4 ;. D5
Absolute CMP Operand 4 3 CD
Absolute,X CMP Operand,X 4* 3 DD
Absolute,Y CMP Operand,Y 4* 3 D9
(Indirect,X) CMP (Operand,X) 6 2 kel
(Indirect),Y CMP (Operand),Y 5 2 D1

*Add 1 if the page boundary is crossed.

23

CPX Compare memory and index register X
Operation: X-M

Description: Compare by subtraction the contents of the memory
with that of the index register X; the contents of the memory and

the index register X are unaffected.

Processor status register: IN I \ B

D

T

N: set if the most significant bit of the comparison is set; otherwise

cleared.

7. set if the result of the comparison is zero; otherwise cleared.
C: cleared if the contents of the memory are greater than the

contents of the index register; otherwise set.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Immediate CPX #Operand 2 2 EO
Zero Page CPX Operand 3 2 E4
Absolute CPX Operand 4 3 EC

CPY Compare memory and index register Y

Operation: Y-M

Description: Compare by subtraction the contents of the memory
with that of the index register Y; the contents of the memory and

the index register Y are unaffected.

Processor status register: |NI \% B

D

IIZ-

N: setifthe most significant bit of the comparison is set; otherwise

cleared.

7. set if the result of the comparison is zero; otherwise cleared.
C: cleared if the contents of the memory are greater than the

contents of the index register; otherwise set.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Immediate CPX #Operand 2 2 Co
Zero Page CPX Operand 3 2 C4
Absolute CPX Operand 4 3 cC

24

DEC Decrement memory

Operation:M -1 > M
Description: the contents of memory are decremented by 1.

Processor status register: NI Vv Bl 1A

N: set if the most significant bit of the memory is set; otherwise
cleared.
Z: set if the contents of the memory are zero; otherwise cleared.

Addressing Assembly Language No. No. OoP
Mode Cycles Bytes Code
Zero Page DEC Operand < 2 C6
Zero Page,X DEC Operand,X 6 2 D6
Absolute DEC Operand 6 3 CE
Absolute, X DEC Operand,X 7 3 DE

DEX Decrement index register X

Operation: X—1—-X

Description: the contents of the index register are decremented by
1

Processor status register: INl \ Bilil IZI C

N: set if the most signiﬁcant bit of the index register is set;
otherwise cleared.
Z: set if the index register is zero; otherwise cleared.

Addressing Assembly Language No. No. opP
Mode Cycles Bytes Code
Implied DEX 2 1 LA

25

DEY Decrement index register Y

Operation: Y—-1-Y

Description: the contents of the index register Y is decremented by
1.

Processor status register: NV BibD|1 |ZI L

N: set if the most significant bit of the index register is set;
otherwise cleared.
Z: set if the index register is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Implied DEY 2 1 88

EOR Exclusive or memory with accumulator

Operation: AOM - A

Description: an exclusive or operation is performed on the
corresponding bits of the memory and accumulator; the result is
placed in the accumulator, the contents of the memory are
unchanged.

Processor status register: INl Vv H!D | IZ I L

N: set if the most significant bit of the result is set; otherwise
cleared.
Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. - No. OP
Mode Cycles Bytes Code
Immediate EOR #Operand 2 2 49
Zero Page EOR Operand 3 2 45
Zero Page,X EOR Operand,X 4 2 55
Absolute EOR Operand 4 3 4D
Absolute, X EOR Operand,X 4* 3 5D
Absolute,Y EOR Operand,Y 4* 3 59
(Indirect,X) EOR (Operand,X) 6 2 41
(Indirect),Y EOR (Operand),Y < 2 81

*Add 1 if the page boundary is crossed.

26

INC Increment memory

Operation: M+1->M
Description: the contents of the memory are incremented by 1.

Processor status register: INI \Y% BiD il 21 C

N: set if the most significant bit of the result is set; otherwise
cleared.
Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Zero Page INC Operand 5 2 E6
Zero Page,X INC Operand,X 6 2 F6
Absolute INC Operand 6 3 EE
Absolute,X INC Operand,X 7 3 FE

INX Increment index register

Operation: X+1—-X

Description: the contents of the index register are incremented by
1.

Processor status register: INIV BiDiI {Z]L

N: set if the most significant bit of the result is set; otherwise
cleared.
Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Implied INX /. 1 E8

27

INY Increment index register

Operation: Y+1-Y

Description: the contents of the index register Y are incremented by
1

Processor status register: |N| Vv Bt ILI &

N: set if the most significant bit of the result is set; otherwise
cleared.
7. set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OoP

Mode Cycles Bytes Code
Implied INY 2 1 C8
JMP Jump

Operation: (PC+1) — PClow, (PC+2)— PChigh

Description: A jump occurs to the absolute address obtained from
the operand.

Processor status register:

not affected NIV BiD|14|C

Addressing Assembly Language No. No. OoP
Mode Cycles Bytes Code

Absolute JMP Operand 3 3 4C

Indirect JMP (Operand) 5 3 6C

28

JSR Jump to subroutine

Operation: PC + 2 | , (PC+1)— PClow (PC+2)—PChigh

Description: The program counter is incremented by 2. The
high-order byte is pushed onto the stack and the stack pointer is
decremented by 1;then the low-order byte is pushed onto the stack
and the stack pointer is decremented once more. A jump occurs to
the absolute address contained in the operand.

Processor Status Register:

not affected NiV BRIP4 2

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Absolute JSR Operand 6 3 20

LDA Load accumulator

Operation: M—A

Description: The contents of memory are loaded into the
accumulator.

. _
Processor status register: NV B i)} 1 ZI G

N: set if the most significant bit of the result is set; otherwise
cleared.
Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. 0P
Mode Cycles Bytes Code
Immediate LDA #Operand 2 2 A9
Zero Page LDA Operand 3 2 A5
Zero page, X LDA Operand,X 4 2 B5
Absolute LDA Operand 4 3 AD
Absolute,X LDA Operand,X 4* 3 BD
Absolute,Y LDA Operand,Y 4* 3 B9
(Indirect,X) LDA (Operand,X) 6 2 A1
(Indirect),Y LDA (Operand),Y 5* 2 B1

*Add 1 if the page boundary is crossed.
29

LDX Load index register

Operation: M—X ‘

Description: the contents of memory are loaded into the index
register.

Process status register:. N l Vv BiD il IZ | G

N: set if the most significant bit of the result is set; otherwise
cleared.
Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Immediate 'LDX #Operand 2 2 A2
Zero Page LDX Operand 3 2 A6
Zero Page,Y LDX Operand,Y 4 2 B6
Absolute LDX Operand 4 3 AE
Absolute,Y LDX Operand,Y 4" 3 BE

*Add 1 when the page boundary is crossed.

LDY Load index register Y

Operation: M—Y

Description: the contents of memory are loaded into the index
register.

Processor status register: NV BiD 11230

N: set if the most significant bit of the result is set; otherwise
cleared.
‘Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OoP
Mode Cycles Bytes Code
Immediate LDY #Operand 2 2 A0
Zero Page LDY Operand 3 2 A4
Zero Page,X LDY Operand,X 4 2 B4
Absolute LDY Operand 4 3 Al
Absolute,X LDY Operand, X 4* 3 BC

*Add 1 when the page boundary is crossed.
30

LSR Logic shift right ASL

Operation: 0 »76543210—C

Description: the contents of the accumulator or memory are shifted
right one bit; logic 0 is shifted into the most significant bit and bit 0
is shifted into the carry bit.

Processor status register: |N| \ BiD|I1 4 C]

N: cleared.

Z: setifthe result in the accumulator or memory is zero; otherwise
cleared. ;

C: set if prior to the operation bit 0 was set; otherwise cleared.

Addressing Assembly Language No. No. OP

Mode Cycles Bytes Code

Accumulator LSR A 2 1 4A

Zero Page LSR Operand 5 2 46

Zero page,X LSR Operand,X 6 2 56

Absolute LSR Operand 6 2 4E

Absolute,X LSR Operand,X 7 3 5E

NOP No operation

Description: no operation for 2 cycles.

Processor status register:

not affected. NIV B|D|IT]Z2|C

" Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Implied NOP 2 1 EA

31

ORA ‘OR’ memory with accumulator

Operation: AorM — A

Description: a logical or operation is performed with the
corresponding bits of the memory and the accumulator; the result
is placed in the accumulator. The contents of the memory remain
unchanged.

Processor status register: INl \Y Rl 1 IZ| L

N: set if the most significant bit of the result is set; otherwise
cleared.
Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. oP
Mode Cycles Bytes Code
Immediate ORA #Operand 2 2 09
Zero Page ORA Operand 3 2 05
Zero Page,X ORA Operand,X + /. 15
Absolute ORA Operand 4 3 oD
Absolute,X ORA Operand,Y 4* 3 1D
Absolute,Y ORA Operand,Y 4* 3 19
(Indirect,X) ORA (Operand,X) 6 2 01
(Indirect),Y ORA (Operand),Y 5" 2 11

*Add 1 if the page boundary is crossed.

PHA Push accumulator on stack

Operation: A |

Description: the contents of the accumulator are pushed onto the
stack at the address contained in the stack pointer; the stack pointer
is decremented by 1.

Processor status register: s

not affected i BiD1Z2]C

Addressing Assembly Language No. No. oP
Mode Cycles Bytes Code

Implied PHA 3 1 48

32

I

PHP Push processor status register on stack

Operation: P |

Description: the contents of the processor status register are
pushed onto the stack at the address contained in the stack pointer;
the stack pointer is decremented by 1.

Processor status register:

not affected NV B|D|I|Z]|C

Addressing Assembly Language No. No. oP
Mode Cycles Bytes Code

Implied PHP 3 1 08

PLA Pull accumulator from stack

Operation: A 1

Description: The stack pointer is incremented by 1; the
accumulator is loaded with the contents of the memory location
whose address is contained in the stack pointer.

Processor status register: V B|D l [IZ | C

N: Set if the most significant bit of the accumulator is set;
otherwise cleared.
7. Set if the contents of the accumulator are zero; otherwise

cleared.
Addressing Assembly Language No. No. OoP
Mode Cycles Bytes Code
Implied PLA 4 1 68

33

Other programming books available from Pitman

BASIC: A Short Self-instructional Course
M J Oatey and C Payne

FORTRAN Reference Manual
P F Ridler

Introduction to BASIC
J B Morton

Methodical Programming in COBOL
R Welland

Pascal (second edition)
W Findlay and D A Watt

Pascal.for Science and Engineering
J McGregor and A Watt

Principles of Programming: An Introduction with
FORTRAN
E B James

Simple Pascal
J McGregor and A Watt

Structured BASIC and Beyond
W Amsbury

Structured Programming: A Self-instruction
Course
R Thurner

B R EEEEREEEER

PLP Pull processor status register from stack

Operation: P 1

Description: The stack pointer is incremented by 1; the processor
status register is loaded with the contents of the memory location
whose address is contained in the stack pointer.

Processor status register: BiDi 117

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Implied PLP 4 1 28

‘ ROL Rotate left

Operation: C 7654310 —>C

; Description: The contents of the memory or accumulator are
rotated one bit left; the carry flag bit is rotated into bit 0 and the
most significant bit is rotated into the carry flag.

Processor status register:
not affected E\I

Vv BDIZCI

N: set if after rotation the most significant bit of the memory or
accumulator is set; otherwise cleared.

Z: setifafterrotation the contents of the memory or accumulator is
zero; otherwise cleared.

C: set if the most significant bit of the memory or accumulator
prior to rotation was set; otherwise cleared.

Addressing Assembly Language No. No. OP

Mode Cycles Bytes Code
Accumulator ROL A - 1 2A
Zero Page ROL Operand 5 2 26
Zero Page,X ROL Operand,X 6 2 36
Absolute ROL Operand 6 3 2E
Absolute,X ROL Operand,X 7 3 3E

34

ROR Rotate right

Operation: C <~ 76543210 «C

Description: The contents of the memory or accumulator are
rotated one bit right; the carry flag bit is rotated into the most
significant bit of the memory or accumulator and bit 0 is rotated
into the carry flag.

Processor status register: h\l \Y B|(D IIZ (ﬂ

N: set if after rotation the most significant bit of the memory or
accumulator is set; otherwise cleared.

Z: setifafterrotation the contents of the memory or accumulator is
zero; otherwise cleared.

C: set if the least significant bit of the memory or accumulator
prior to rotation is set; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Accumulator ROR A 2 1 6A
Zero Page ROR Operand 5 2 66
Zero Page,X ROR Operand,X 6 2 76
Absolute ROR Operand 6 3 6E
Absolute,X ROR Operand,X 7 3 7E

RTI Return from interrupt

Operation: P 1 PC 1

Description: The stack pointer is incremented by 1. The byte stored
at the address contained in the stack pointer is loaded into the
processor status register; the stack pointer is incremented by 1 and
the byte stored at the address contained in the stack pointer is
loaded into the low-order byte of the program counter. The stack is
again incremented and the next byte loaded into the high-order
byte of the program counter.

Processor status register: NV Bl 12 C]

Addressing Assembly Language No. No. (0]
Mode Cycles Bytes Code

Implied RTI 6 1 40

35

r -

RTS Return from subroutine
Operalion: PO 1 . PC + 1 5P

Description: The stack pointer is incremented by 1. The byte stored
at the address contained in the stack pointer is loaded into the
low-order byte of the program counter: the stack pointer is again
incremented by 1 and the byte stored at the address contained in
the stack pointer is loaded into the high-order byte of the program
counter. Then the program counter is incremented by 1.

Processor status register:

not affected e f v B|DjI|Z|C

Addressing Assembly Language No. No. OoP
Mode Cycles Bytes Code

Implied RTS 6 1 60

SBC Subtract memory from accumulator with carry
Operation: A — M - C - A,C

Description: The contents of memory plus the complement of the
carry flag bit are subtracted from the contents of the accumulator:
the result is placed in the accumulator.

Processor status register: N}|V I Bililsx I Cl

N: set if the most significant bit of the result is set: otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

C: cleared if the contents of memory plus the complement of the
carry flag bit are greater than the contents of the accumulator:
otherwise set.

V: set if the subtraction results in a two’s complement overflow:
otherwise cleared.

Addressing Assembly Language No. No. OP

Mode Cycles Bytes Code
Immediate SBC #Operand 2 2 E9
Zero Page SBC Operand 3 2 E5
Zero Page,X SBC Operand,X 4 2 F5
Absolute SBC Operand 4 3 ED
Absolute,X SBC Operand,X 4* 3 FD
Absolute,Y SBC Operand,Y 4* . F9
(Indirect,X) SBC (Operand,X) 6 2 E1
(Indirect),Y SBC (Operand,Y 5" 2 F1
*Add 1 if page boundary is crossed.
36
— ——

SEC Set carry

Operation: 1— C
Description: The carry flag is set.

Processor status register: N|V B 1 7 I L I
C: set

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Implied SEC 2 1 38

SED Set decimal mode

Operation: 1 - D
Description: The decimal mode flag is set

Processor status register: N|V B Ilﬂ Li1Z |G
D: set

Addressing Assembly Language No. No. OP

Mode Cycles Bytes Code
Implied SED 2 1 F8

SEI Set interrupt

Operation: 1 — I
Description: The interrupt disable bit is set.

Processor status register: N|V B|D I I I 215
I set

Addressing Assembly Language No. No. OP

Mode Cycles Bytes Code
Implied SEI 2 1 78

37

STA Store accumulator

+. Operation: A—-M

Processor status register:

Description: The contents of accumulator are stored in memory.

not affected ok o e A
Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Zero Page STA Operand 3 2 85
Zero Page,X STA Operand 4 2 95
Absolute STA Operand 4 3 8D
Absolute, X STA Operand 5 3 9D
Absolute,Y STA Operand 5 3 99
(Indirect,X) STA (Operand,X) 6 2 81
(Indirect),Y STA (Operand),Y 6 2 91

STX Store index X

Operation: X—M

memory.

Description: The contents of the index register X are stored in

Processor status register:

not affected Niv B|D|1]Z2|C
Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Zero Page STX Operand 3 2 86
Zero Page,Y STX Operand,Y 4 2 96
Absolute STX Operand 4 3 8E

38

s g ea b B s B B F o
STY Store index Y

Operation: Y - M

Description: The contents of the index register Y are stored in
memory.

Processor status register:

not affected NV e
Addressing Assembly Language No. No. OF
Mode Cycles Bytes Code
Zero Page STX Operand 3 2 84
Zero Page,X STX Operand,X 4 2 94
Absolute STX Operand 4 3 8C

TAX Transfer accumulator to index register X

Operation: A—X

Description: The contents of the accumulator are transferred to the
index register X; the contents of the accumulator remain
unchanged.

Processor status register: |N| \% BibDi 1 ZlC

N: setifthe most significant bit of the accumulator is set; otherwise
cleared.

Z: set if the contents of the accumulator are zero; otherwise
cleared.

Addressing Assembly Language No. No. OP

Mode Cycles Bytes Code

Implied TAX 2 2 AA

39

TAY Transfer accumulator to index register Y

Operation: A—>Y

Description: The contents of the accumulator are transferred to the
index register Y; the contents of the accumulator remain
unchanged.

Processor status register: EIV BiD. 1 IZ I &

N: setifthe most significant bit of the accumulator is set; otherwise
cleared.

Z: set if the contents of the accumulator are zero; otherwise
cleared.

Addressing Assembly Language No. No. OP

Mode Cycles Bytes Code

Implied TAY g 1 A8

TYA Transfer index register Y to accumulator

Operation: Y—A

Description: The contents of the index register Y are transferred to
the accumulator; the contents of the index register Y remain
unchanged.

Processor status register: -N-[V BB ZI C

N: setifthe most significant bit of the accumulator is set; otherwise

cleared.
Z: set if the contents of the accumulator are zero: otherwise
cleared.
Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Implied TYA 2 1 98

40

TSX Transfer stack pointer to index X

Operation: S—X

Description: The contents of the stack pointer are transferred to the
index register X; the contents of the stack pointer remain
unchanged.

Processor status register: INl \Y Bt | IZI &

N: set if the most significant bit of the stack pointer is set;
otherwise cleared.
Z: setifthecontents of the stack pointer are set; otherwise cleared.

Addressing Assembly Language No. No. oP
Mode Cycles Bytes Code

Implied TSX 2 2 BA

TXA Transfer index X to accumulator

Operation: X—A

Description: The contents of the index register X are transferred to
the accumulator; the contents of the index register remain
unchanged.

Processor status register: N | \Y BiD;l IZ rC

N: set if the most si(%nificant bit of the index register is set;
otherwise cleared.
Z: set if the contents of the index register are zero; otherwise

cleared.
Addressing Assembly Language No. No. OoP
Mode Cycles Bytes Code
Implied TXA 2 1 8A

41

L e o o o & B B

TXS Transfer index X to stack pointer

Operation: X—S

Description: The contents of the index register X are transferred to
the stack pointer; the contents of the index register remain
unchanged.

Processor status register:

not affected N|V BiOIL EL L
Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Implied TXS 2 1 9A

Table II Operation codes listed in numerical sequence

Code Inst. Addressing Code Inst. Addressing
Mode Mode

00 'BRK Implied 28 PLP Implied

01 ORA (Indirect,X) 29 AND Immediate

05 ORA Zero page 2A ROL Accumulator

06 ASL Zero page 2 BIT Absolute

08 PHP Implied 2D AND Absolute

09 ORA Immediate 2E ROL Absolute

0A ASL Accumulator 30 BMI Relative

0D ORA Absolute 31 AND (Indirect),Y

OE ASL Absolute 35 AND Zero page,X

10 BPL Relative 36 ROL Zero page,X

11 ORA (Indirect),Y 38 SEC Implied

15 ORA Zero page,X 39 AND Absolute,Y

16 ASL Zero page,X 3D AND Absolute,X

18 CLC Implied 3E ROL Absolute,X

19 ORA Absolute,Y 40 RTI Implied

1D ORA Absolute,X 41 EOR (Indirect,X)

1E ASL Absolute, X 45 EOR Zero page

20 JSR Absolute 46 LSR Zero page

21 AND (Indirect,X) 48 PHA Implied

24 BIT Zero page 49 EOR Immediate

25 AND Zero page 4A LSR Accumulator

26 ROL Zero page 4C JMP Absolute

42

|

Code Inst. Addressing Code Inst. Addressing
« Mode Mode

4D EOR Absolute 99 STA Absolute,Y

4E LSR Absolute 9A TXS Implied

50 BVC Relative 9D STA Absolute,X

| EOR (Indirect),Y A0 LDY Immediate

55 EOR Zero page,X A1l LDA (Indirect,X)

56 LSR Zero page,X A2 LDX Immediate

58 Gl Implied A4 LDY Zero page

59 EOR Absolute,Y A5 LDA Zero page

5D EOR Absolute,X A6 LDX Zero page

5E LSR Absolute,X A8 TAY Implied

60 RTS Implied A9 LDA Immediate

61 ADC (Indirect,X) AA TAX Implied

65 ADC Zero page AC LDY Absolute

66 ROR Zero page AD LDA Absolute

68 PLA Implied AE LDX Absolute

69 ADC Immediate Bo BCS Relative

6A ROR Accumulator B1 LDA (Indirect),Y

6C JMP Indirect B4 LDY Zero page,X

6D ADC Absolute B5 LDA Zero page,X

6E ROR Absolute B6 LDX Zero page,Y

70 BVS Relative B8 CLV Implied

71 ADC (Indirect),Y B9 LDA Absolute,Y

75 ADC Zero page,X BA TSX Implied

76 ROR Zero page,X BC LDY Absolute,X

78 SEI Implied BD LDA Absolute,X

79 ADC Absolute,Y BE LDX Absolute,Y

7D ADC Absolute,X Co CPY Immediate

7E ROR Absolute,X B) CMP (Indirect,X)

81 STA (Indirect,X) C4 CPY Zero page

84 STY Zero page C5 CMP Zero page

85 STA Zero page C6 DEC Zero page

86 STX Zero page Cs INY Implied

88 DEY Implied C9 CMP Immediate

8A TXA Implied B DEX Implied

8C STY Absolute % CPY Absolute

8D STA Absolute CD CMP Absolute

8E STX Absolute CE DEC Absolute

90 BCC Relative DO BNE Relative

91 STA (Indirect),Y D1 CMP (Indirect),Y

94 STY Zero page,X D5 CMP Zero page,X

95 STA Zero page,X D6 DEC Zero page,X

96 STX Zero page,Y D8 CLD Implied

98 TYA Implied D9 CMP Absolute,Y

Code Inst. Addressing Code Inst. Addressing
Mode Mode

DD CMP Absolute,X ED SBC Absolute

DE DEC Absolute,X EE INC Absolute

EO CPX Immediate Fo BEQ Relative

E1 SBC (Indirect,X) F1 SBC (Indirect),Y

E4 CPX Zero page F5 SBC Zero page,X

E5 SBC Zero page F6 INC Zero page,X

E6 INC Zero page F8 SED Implied

E8 INX Implied F9 SBC Absolute,Y"

E9 SBC Immediate FD SBC Absolute,X

EA NOP Implied FE INC Absolute,X

EC CPX Absolute

-

Stack processes

The stack is an area of random-access memory where data can be
temporarily stored and retrieved by the CPU and the programmer.
In the 6502 system the stack is restricted to page 01 of memory and
since each page contains only 256 memory %ocations, an 8-bit
register is sufficient to identify the current position of the stack.
This register is called the stack pointer.

The stack operates in the following way. Data is pushed onto the
stack one byte at a time at the address contained in the stack
pointer; as each byte is pushed the stack pointer is decremented by
1 thus ensuring that the stack pointer points to the next ‘empty’
location in the stack. In retrieving data the stack pointer is
incremented by 1 before the data is pulled from the stack at the
address contained in the stack pointer.

Figure 1 shows a diagrammatic description
of the operation. Assume initially that the Sp-5
stack pointer contains the value SP. Data is i
stored in the following sequence BYTE1,
BYTE2...BYTES5 with the stack pointer being SP-4 | BYTES
decremented until finally containing the value
SP-5. Data is retrieved in the reverse sequence SP-3 | BYTE4
BYTES ... BYTE1 with the stack pointer

finally containing SP. SP-2 | BYTE3
This stack operation is commonly referred
to as LIFO (last-in-first-out). SP-1 | BYTE2
SP | BYTE1
Fig. 1

44

8 U 4 a4 s a 8 B 3 B
Loading the stack pointer

Durinf1 the initialization sequence of a program it is necessary to
load the stack pointer with the required address. There is no
instruction which loads the stack pointer directly

LDX #8$FF ;loads index register X with $FF
TXS ; transfers the contents of the index register X to the
stack pointer

The current position of the stack is $01FF. Note that the index
register Y cannot be used for this operation.

Push and pull operations

There are four instructions which can be used to store and retrieve
data from the stack. These are PHA, PHP, PLA and PLP.

PHA ; the contents of the accumulator are pushed onto the stack
and the stack pointer is decremented by 1.

PLA ; the stack pointer is incremented by 1 and the data pulled
from the stack is loaded into the accumulator.

PHP ; the contents of the processor status register are pushed onto
the stack and the stack pointer is decremented by 1.

PLP; ; the stack pointer is incremented by 1 and the data pulled
from the stack is loaded into the processor status register.

The contents of the index registers X and Y cannot be saved directly
on the stack and the accumulator must be used.

TXA ; contents of index register X transfered to A
PHA ; and pushed on to the stack.

For retrieval
PLA ; contents of the stack pulled from the stack
TAX ; into A and transferred to X.

By using TYA and TAY the status of index register Y can also be
saved and retrieved.

Subroutines

Program control is transferred to a subroutine by using the
instruction JSR. This re%uires 3 bytes of machine code using the
absolute addressing mode.

Example: 2200 JSR $0300
U] G S i N K

45

When the instruction is executed the program _—
counter is incremented by 2 and its contents are SP-2 |
pushed onto the stack one byte at a time by the

CPU. Note that the stack pointer is decremented by
2 and that the high-order byte is stored first. SP-1 | 02

Program control is then transferred to $0300. e

Subroutines are normally terminated by the instruction RTS
(return from subroutine). This is a 1-byte instruction and when
executed the stack pointer is incremented by 1 and the byte stored
in the stack is loaded into the least significant byte of the program
counter; the stack pointer is incremented again and the byte stored
in the stack is loaded into the most significant byte of the program
counter. Then the program counter is incremented by 1 an
pro%ram control passes to this address.

Thus in the previous example program control would be
transferred to $2203, the next instruction in the program sequence
to be executed.

It should be noted that on entering a subroutine the status of the
CPUis not saved. Therefore it may be necessary to save the contents
of the accumulator, the processor status register and the index
registers on the stack.

Nested subroutines

It is permissible to use nested subroutines.

Example 2033 JSR SUB1 ; main program
2036 ——————
2080 SUB1 ~===--- ; subroutine 1
2090 JSR SUB2
g
3000 SuB2 ------- ; subroutine 2
RTS
46

Immediately prior to the execution of peicied
the RTS instruction in subroutine 2 the stack SP-4
would contain:
SP-3| 92
SP-2| 20
SP-11 35
SP 20

Interrupts

When an interrupt service routine is entered the CPU pushes the
contents of the return address of the main-line program (high-order
byte first) and the contents of the processor status register (P) onto
the stack in that order.

Example: 2050 LDA #MEM < interrupt occurs here

2052
SP-3
SP-2 P
SP-1] 52
Note that at the time of the interrupt the current sp | 20
instruction is completed and the program counter

will contain the address of the next instruction.

Interrupt service routines are normally terminated with the RTI
instruction (return from interrupt). This is a 1-byte instruction and
when executed will increment the stack pointer and pull the
contents of the processor status register and the program counter
contents from tge stack. In the example given, program control is
transferred back to location $2052.

Stack manipulation

Data stored in the stack may be changed by the programmer by
incrementing or decrementing the stack pointer to the required
location and using the push and pull instructions. There are no
instructions which directly increment or decrement the stack
pointer but use is made of the index register X.

47

d i ddidUdUUTNu

15X
DEX or INX
XS

This routine transfers the contents of the stack pointer to the index
register which is then incremented or decremented as required and
is transferred back to the stack pointer.

The stack pointer can also be changed by using the push and pull
instructions; care must be taken not to corrupt the stack or the
accumulator.

Input/Output

There are a number of input/output devices which are compatible
with the 6502 microprocessor. It is beyond the scope of this Guide
either to give details or to list all of these devices. A list of the more
common ones is shown below and full details are given separately
on the aptly named Versatile Interface Adapter (VIA).

(a) PERIPHERAL INTERFACE ADAPTER (PIA) 6520

(b) ASYNCHRONOUS COMMUNICATIONS INTERFACE
ADAPTER (ACIA) 6551

(c) CRT CONTROLLER (CRTC) 6545

(d) ROM-RAM-I/O-COUNTER (RRIOC) 6531

(e) ROM-I/O-COUNTER (RIOC) 6534

(ff/ ROM-RAM-I/O-INTERVAL TIMER (RRIOT) 6530

(g) RAM, I/O,INTERVAL TIMER (RIOT) 6532

(h) VERSATILE INTERFACE ADAPTER (VIA) 6522

The manufacturers’ data sheets should be consulted for the full
specification, pin connections, electrical characteristics and
timing diagrams.

Versatile Interface Adapter (VIA) 6522

The Versatile Interface Adapter contains the following features:

(a) two eight-bit bidirectional input/output ports

(b) two interval timers

(c) serial to parallel and parallel to serial shift register
(d) four peripheral control lines, CA1, CA2, CB1 and CB2
(e) interrupt facilities.

Figure 2 shows the block diagram of the 6522 VIA internal registers
and the relevant pin connections.

48

RS3|RS1ICS2| ©2 |RES
i e

Chip access control

Data bus
A\

N

Data bus buffers |

i

X e } '

O ol F ACR | PCR IER | IFR

T g W | l
gt fos se S] |
e = T f Function Interrupt

e | fl\,_’ = F control control
o] e

Timer 2 Timer 1

Usgae Y

Port B reglsters Handshake Port A registers

8 | SR control 8 | I

@ | O 1 s T o s O 1

Buffers (PB) ,_I Buffers (PA)

O vy v O b
Port B CB2 CB1 CA2 CA1 Port A IRQ
Key
T2C-H Counter ACR Auxiliary
T2C-L Counter PCR Peripheral
T2L-L Latch IER Enable
T1C-L Counter IFR Flags
T1C-L Counter SR Shift register
T1L-H Latch A Port A
T1L-L Latch B Port B
DDRB Data dir. DDRA Data dir.
ORB Output ORA Output
IRB Input latch IRA Input latch
Fig. 2 R6522 Block Diagram
49

Internal registers

The VIA has 16 8-bit memory-mapped programmable internal
registers. The registers are selected by the chip select lines CS1
(active high) and CS2 (active low) with the 4-register select lines,
RS0,RS1, RS2 and RS3. The table below shows the decoding of the

16 registers.

17

o

Z E Description

o g O

kZ 2 £

BO D N - O 80 =

& @ 2 @ & 2 S Write Read

0 0 0 0 0 ORB/IRB Output register B |Input register B

1 0 0 0 1 ORA/IRA Output register A |Input register A

4 0 0 .1-.0 I4IEE Data direction register B

-0 .0 1 DDRA Data direction register A

40 100 TIiCL T1 low-order latch| T1 low-order
counter

g 0-1 49 1 1108 T1 high-order counter

5 0 13 0 1111 T1 low-order latch

: Bl 1T T1 high-order latch

g 1. 00 0 T T2 low-order latch| T2 low-order
counter

8. 1.8 0 1 - T4 T2 high order counter

A1 0 14 BR Shift register

B 1.0 1 .1 ACR Auxiliary control register

L. 1 1 0 80 PCR Peripheral control register

1 10 1 - HR Interrupt flag register

E 1 1 1 0 IER Interrupt enable register

F 1 1 1 1 ORA/IRA No handshake mode

Note: When the VIA isreset, the data direction registers DDRA and
DDRB the control registers PCR and ACR and the interrupt flag
register IFR are all cleared. Interrupts are also disabled.

50

Input/output ports

Each port has 8 peripheral data lines (PA7-PA0, PB7-PB0) which
can be configured individually as either input or output using the
Data Direction Registers DDRA and DDRB.

Data direction registers DDRB and DDRA (Registers $2 and $3)

A peripheral data line is established as an input by writing a logic 0
to the corresponding bit of the data direction register; it is
established as an output by writing a logic 1.

Output registers ORB and ORA (Registers $0 and $1)

Ifa Eeripheral data line is established as an output, a logic 1 written
to the corresponding bit in the output register will cause the data
line to go high; a logic 0 causes the line to go low.

When reading a peripheral data line on port A that has been
established as an output, the voltage level on the line determines
whether it is read as a logic 0 or 1; however for a line on port B, the
bit stored in the output register ORB determines the value read.

Input Registers IRB and IRA (Registers $0 and $1)

Ifaline is established as an input, a CPU read of the corresponding
bit in the input register will be logic 1 if the voltage level on the line
corresponds to a standard TTL logic 1; if the voltage level
corresponds to a TTL logic 0 then a logic 0 is read.

If an input line is left unconnected it will be read as a logic 1.

Example: Configure port A as an input port and port B as an output
port; read the input data on port A and display on port B.

LDA #$00 ; load 0000 0000 into the data direction register side
A

STA DDRA ; all lines on side A configured as input

LDA #$0FF ;load 11111111 into the data direction register side

B
STA DDRB ; all lines on side B configured as output
LDA IRA ; read data on port A
STA ORB ; display data on port B

Further example: Configure PA7 and PA6 on side A as input and
lines PA5 through PAO as output.

LDA #$3F; load 0011 1111 into the data direction register side A
STA DDRA; PA7-PA6 input, PA5-PAO output

51

Peripheral control register (Register $C)

The peripheral control register PCR selects the operating modes for
the control lines, CA1, CA2, CB1 and CB2; its format is shown in

Fig. 3.
7 0151413121110
N —— o~ s
l L CA1 control
CB2 control | CA2 control
Fig. 3 CB1 control

Control line CA1

CA1 can be configured only as an input line; bit 0 of the PCR
defines the active transition of CA1 as follows:

0 high to low transition

1 low to high transition
An active transition on CA1 sets bit 1 of the interrupt flag register
(IFR). The flag can be reset by an CPU read or write of the output
register ORA.

Control line CA2

CA2 isabidirectional line and is configured by bits 1, 2 and 3 in the
PCE.

CA2 established as an input: bit 3=0
bit 1 defines the type of input mode:

0 normal input mode

1 independent interrupt mode

bit 2 defines the active transition of CA2:
0 high to low transition
1 low to high transition

An active transition of CA2 sets bit 0 of the interrupt flag register
(IFR).

For normal input mode, the interrupt flag CA2 of the interrupt
flag register (IFR) is reset by a CPU read or write of the output
re%ister ORA. For the independent interrupt mode the CA2 flag can
only be reset by a write to the interrupt flag register (see Interrupt
facilities p. 58).

52
; ; - — .

CA2 established as an output: bit 3=1

bit

“« 1

0 0 CA2goeslowonanCPUread orwrite of the output register
ORA;itisreturned high by the next active transition of CA1.
This is called the handshake mode.

0 1 CA2goeslowonan CPUread or write of the output register
ORA; it is returned high on the next negative transition of
the system clock pulse. This is referred to as the pulse mode.

1 0 CA2 is reset.

I 1 GA2 s set.

The control lines CB1 and CB2

The control lines CB1 and CB2 are configured almost identically to
CA1 and CA2; bit 4 configures CB1 and bits 5, 6 and 7 configure
CB2 in the same way that bits 0 and 1, 2 and 3 configure CA1 and
CA2.

There are however small differences: (a) CB1 can be used as an
output line (unlike CA1) for use in the shift register mode; (b) when
CB2 is established as an output in the handshake or pulse mode, it
will go low only on a CPU write to the output register ORA.

Auxiliary control register (register $B)

The auxiliary control register configures the two timer counters, 1
and 2 and the shift register; it also provides the facility for enabling
and disabling the latching on ports A and B. its format is shown in

Fig. 4.
Fig. 4.
7101014131 2111 08
v il B
. — Latch enable/
Timer 1 control CB1 disable

Timer 2 control Shift register control

Latching of data

The data on ports A and B can be latched at the time of the last
active transition on control lines CA1 and CB1. In order to
configure the latching mode, bits 0 and 1 of the auxiliary control

53

register must be logic 1 and to disable they must be logic 0. As soon
as there isa CPUread of the appropriate input register ORA or ORB
the latch is disabled.

Example: Configure the VIA to enable data to be latched on port A
but to be disabled on port B.

LDA #$01 ; bit pattern 0000 0001
STA ACR ; port A latching enabled, port B disabled.

When there is an active transition of CA1 (defined by bit 0 of the
peripheral control register) the data appearing at the port A at the
time of the active transition will be latched. The next read of the
register ORA will be the latched data and not the data appearing
currently on the port.

Timer 1

Timer 1 has a 16-bit counter and 8-bit low-order and high-order
latches. There are 4 modes of operation and are configured y bits 6
and 7 of the Auxiliary Control Register ACR.

bits
7 6

0 0 Timed interrupt mode single shot with PB7 disabled:
This mode generates a time interval equal to N clock
pulses where N is the number loaded into the T1 counter.
Following the CPU write to T1C-H the interrupt flag T1 of
the interrupt flag register IFR is reset and the counter is
decremented down to zero at the system clock rate. At this

oint the interrupt flag is set and tKe IRQ line will go low if
H(U interrupts are enabled. The counter will continue to
decrement beyond zero if interrupts have been enabled.
The time interval since the interrupt can be determined by
a CPU read of the counter.

0 1 Continuous interrupts with PB7 disabled:
This mode generates continuous interrupts whose
periods equal N system clock pulses where N is the
number loaded into the T1 counter. Following the CPU
write to T1C-H the interrupt flag T1 of the interrupt flag
register IFR is reset and the counter is decremented down
to zero at the system clock rate. When the count reaches
zero the interrupt flag is set, the contents of the latches are
automatically transferred to the counter and the process is
automatically repeated.

54

|
| W e I —

S dddldUldddds

1 0 Single shot output on PB7:
This mode generates a single negative pulse on the
peripheral data pin PB7 of duration equal to N clock
pulses where N is the number in the T1 counter.
Following a CPU write to T1C-H, PB7 goes low and is
returned high when the counter is decremented to zero.
PB7 must be configured as an output line in the data
direction register DDRB.

1 1 Continuous output on PB7:
This mode generates a continuous wave form on PB7.
Following a CPU write to T1C-H, PB7 goes low and is
returned high when the counter is decremented to zero
the interrupt flag being set. Then the contents of the
latches are automatically transferred to the counter, the
interrupt flag is reset and the counter is decremented to
zero when PB7 is inverted; the process is repeated
continuously.

Note: For precise timing wave forms, see manufacturer’s
data sheet.

CPU read and write of T1 counter

The 16-bit counter is loaded by the following sequence: the
low-order byte is loaded into the T1 low-order %atch by a CPU write
to T1C-L; the high-order byte is loaded into the T1 high-order latch
by a CPU write to T1C-H.

Following the CPU write to T1C-H, the contents of both the low
and high-order latches are transferred into the T1 counter; the
interrupt flag T1 is reset and the counter is automatically
decremented at the system clock rate.

Example: load the timer counter T1 with $8024.

LDA #$%$24 ;

STA T1C-L ;load the low-order latch first with $24

LDA #$80 ; load the high-order latch with $80, the counter is
then loaded and the T1 interrupt flag is reset.

STA T1C-H ; The counter now decrements to zero at the system
clock rate.

The 16-bit counter is read by the following sequence:
The low-order counter is read by a CPU read of T1C-L, T1 interrupt
flag is rset, the high-order counter is read by a CPU read of T1C-H.

Example: read the contents of T1 and store in memory locations
called MEM and MEM+1.

55

-

LDA T1C-L ;low-order byte is transferred to MEM:
STA MEM ; T1 flag is reset

LDA T1C-H ; high-order byte is transferred to MEM+1
STA MEM+1

CPU read and write of latches

ghe low-order and high-order latches may read and be written to
v

LDA T1L-L ; CPU read of low-order latch

STA T1L-L ; CPU write to low-order latch
LDA T1L-H ; CPU read of high-order latch
STA T1L-H ; CPU write to high-order latch

No transfer to the counter takes place and the interrupt flag T1
remains unaffected by these read/writes.

Timer 2

Timer 2 consists ofa 16-bit counter T2 and a low-order latch: there
are two modes of operation configured by bit 5 in the auxiliary
control regi ter ACR.

Bit 5

0 Timed interrupt mode:
This mode generates a time interval equal to N system clock
pulses where N is the number loadeg into the counter T2.
Following a CPU write to T2C-H the counter is decremented
to zerom

1 Pulse counting mode:
In this mode the peripheral data pin PB6 is used to count a
predetermined number of pulses. The number of pulses to be
counted is loaded into the counter T2; the CPU write to
T2C-H clears the interrupt flag T2 and the counter is
decremented every time a pulse appears on PB6. When the
count is zero the interrupt flag is set.
Note: PB6 must be configured as an input.

CPU read and write of T2 counter

The 16-bit counter is loaded by the following sequence:

The low-order byte is loaded into the T2 low-order latch by an CPU
write to T2C-L; the high-order byte is loaded into the T2 high-order
counter by a CPU write to T2C-H.

56

d L ddldJuUuddddades

Following the CPU write to T2C-H the contents of the low-order
latch are automatically transferred to the low-order counter, the
interrupt flag T2 is reset and the counter is decremented.

The counter is read by the following sequence:
The low-order byte is read by a CPU read of T2C-L, the T2 interrupt
flag isreset and the high-order byte is read by a CPU read of T2C-H.

Shift register

The shift register mode is configured by bits 4, 3 and 2 of the
auxiliary control register ($B). There are seven modes of operation
together with a disabling mode. Data is shifted serially in or out of
the shift register (SR) via the peripheral control line CB2 under the
control of internal or external shift pulses on the line CB1. The rate
of data transfer depends on the mode selected.

The modes of operation are summarized as follows:

bit
%3 2 LB1 LUB2
000 ~— - the shift register is disabled and the control
lines CB1 and CB2 are controlled by

peripheral control register PCR; the
interrupt flag is reset.

001 o/p i/p therateofdatatransferisdetermined by the
T2 counter and the system clock period.
Data transfer is initialized by a CPU read or
write of the shift register; the interrupt flag
is set after eight CB1 shift pulses.

010 o/p i/p therateofdatatransferisdetermined by the
system clock period. Data transfer is
initialized by a CPU read or write of the
shift register; the interrupt flag is set after
eight CB1 shift pulses.

011 i/p 1i/p therateofdatatransferisdetermined byan
external device. The interrupt flag is set
after eight CB1 shift pulses.

100 o/p o/p therateofdatatransferisdetermined by the
T2 counter and the system clock period.
Data transfer is initialized by a CPU read or
write of the shift register.

101 o/p o/p therateofdatatransferisdetermined by the
T2 counter and the system clock period.

97

d d d d d U B U U d 8

Data transfer is initialized by a CPU read or
write of the shift register. The interrupt flag
is set after eight CB1 shift pulses.

110 o/p o/p therateofdatatransferisdetermined by the
system clock period. Data transfer is
initialized by a CPU read or write of the
shift register. The interrupt flag is set after
eight shift pulses.

111 i/p o/p therateofdatatransferisdeterminedbyan
external device. Data transfer is initialized
by a CPU read or write of the shift register.
The interrupt flag is set after eight shift
pulses.

Interrupt facilities
The 6522 VIA has a single interrupt request line IRQ which is

active low. This line is enabled or disabled by the state of both the
interrupt flag register IFR and the interrupt enable register IER.

Interrupt flag register (register $D)

The VIA has an interrupt flag register containing 6 interrupt flags
and a bit IRQ which indicates that an IRQ interrupt has been
enabled; the format for the flag register is shown in Fig. 5.

Fig.5.. I8 T1) T2 | CB1) €89 SR| CAL] CAY

IRQ this bit is set following any enabled interrupt (it reflects the
status of the IRQ (active low) interrupt line of the VIA).

T1 this flag is set when the counter T1 has been decremented
down to zero; it is reset by a CPU read of T1C-L or a write to
T1C-H.

T2 this flag is set when the counter T2 has been decremented
down to zero; it is reset by a CPU read of T2C-L or a write to
T2C-H

CB1 thisflagis set following an active transition of CB1; it is reset
by a CPU read or write of ORB

CB2 this flag is set following an active transition on CB2; it is
reset by a CPU read or write of ORB

SR this flag is set on the completion of 8 shifts; it is reset by a
CPU read or write of the shift register.

58

CA1 this flag is set following an active transition on CA1; it is
; reset by a CPU read or write of ORA

CA2 this flag is set following an active transition on CA2; it is
* reset by a CPU read or write of ORA

Note: Individual flags can also be reset by writing a logic 1 in the
appropriate bit in the IFR.

Interrupt enable register
IRQ interrupts can be disabled or enabled by an CPU write to the
interrupt enable register whose format is similar to that of the flag

register with the exception of bit 7 (set/clear). (See Fig. 6.)

F o0 5 4 3 2 1 0

5/G T1] T21 CB1| CB2| SR| CA1] CA2

Fig. 6

Interrupts may be disabled by writing a logic 0 to bit 7 together
with a logic 1 to the appropriate bit.

Example: LDA #$03 ; 0000 0011
STA IER ; disables CA1 and CA2 interrupts.

Interrupts may be enabled by writing a logic 1 to bit 7 with a logic
1 to the appropriate bit

Example: LDA #$92 ; 1001 0010
STA IER ; enables CB1 and CA1 interrupts

Ifa CPUread of the IER is made, bit 7 will always appear as a logic 1
and the other bits will reflect their enabled (logic 1) or disabled
(logic 0) state.

Interrupt operation

An IRQ interrupt will occur if any flag in the IFR is set and the
corresponding bit in the IER has been previously enabled. When bit
7 in the interrupt flag register is high then this is an indication that
the IRQ line has gone low.

Interrupts and reset

The 6502 microprocessor has two hardware interrupt lines: NMI
(non-maskable interrupt) and IRQ (interrupt request). Both lines
are active low but IRQ is level sensitive whilst NMI is edge
sensitive.

29

T

The addresses for the two interrupt service routines are stored in
the following memory locations

FFFA low-order byte T
FFFB ?igh-oaderbbyte } NMI
FFFC ow-order byte 5Ta
B Bt =
FFFE low-order byte ‘

FFFF high-order byte IRQ and BRK

The address for the reset routine is included and is discussed in the
section on Reset; there is a software interrupt instruction BRK
which has the same interrupt service routine address as IRQ.

Interrupt request (IRQ)

This line is normally connected to the interrupt request lines of
input/output devices; in the case of the VIA this is IRQ. The
interrupt can be disabled by setting the interrupt disable bit in the
processor status register to logic 1 and enabled with a logic 0 (see
SEland CLI instructions). When the IRQ line goes low an interrupt
is requested and the following sequence takes place:

1 The current instruction in the main line program is completed.

2 The I bit in the processor status register is polled and if it is
equal to 1 the interrupt is ignored and the next instruction in the

. main line sequence will be executed; an interrupt flag will have
been set as a result of the request and this can later be
interrogated or cleared as appropriate.

3 If the I bit is not set then the CPU pushes the contents of the
program counter on to the stack (high-order byte first) together
with the contents of the processor status register. o

4 The interrupt disable bit is set to 1 to prevent further IRQ
interrupts and break command flag is set.

5 Theaddressofthe interrupt service routine is obtained from the
addresses $FFFE and $FFFF and loaded into the program
counter thus transferring program control to the interrupt
service routine.

Non-maskable interrupt (NMI)

Anegative transition on this line generates an interrupt that cannot
be masked or disabled; the following sequence takes place:

1 The current instruction in the main line program is completed.

2 The CPU pushes the contents of the program counter onto the
stack (high-order byte first) together with the contents of the
processor status register.

60

d & & 4 duE kR JdEESE

3 The interrupt disable bit is set to 1 to prevent IRQ type
interrupts and the break command flag is set to 1.

4 The address of the interrupt service routine is obtained from the
addresses $FFFA and $FFFB and loaded into the program
counter thus transferring program control to the interrupt
service routine.

Note that the NMI interrupt has a higher priority than IRQ.

Saving CPU status

The contents of the accumulator and the index registers are not
saved on entering an interrupt service routine. This can be
accomplished by:

PHA ; push accumulator contents onto the stack
1XA

PHA ; push index register Y onto the stack
TXA ¢

PHA : push index register X onto the stack

The data can be retrieved before leaving the interrupt service
routine by:

PLA ; pull data from stack into accumulator

TAX ; transfer contents of accumulator into the index register X
PLA ; pull data from stack into accumulator

TAY ; transfer contents of accumulator into the index register Y
PLA ; pull contents of accumulator from the stack

Return from interrupt

The interrupt service routines for both IRQ and NMI are normally
terminated Ey the instruction RTI. This instruction increments the
stack pointer by 1 and retrieves the previously stored processor
status register; the stack pointer is incremented again to retrieve
the contents of the program counter and thereby transfers program
control back to the main-line program.

Multiple IRQ interrupts

The majority of input/output devices have more than one source of
IRQ interrupts; the 6522 VIA has 7 interrupt modes and ifany one is
enabled program control will be transferred to the same TRQ
interrupt service routine. The source of the interrupt can be
determined by polling the interrupt flag register immediately on
entering the interrupt service routine. The order in which the flags

bl

are polled depends on the priority decided by the programmer. If
more than one peripheral input/output device is interfaced to the
CPU then the principle is still the same but more time will be used
to poll the flag registers of the different devices.

Reset

This line is used to reset or initialize the microprocessor from a
power down situation. When the line is taken low all CPU
read/writes cease, and when the line is taken high the following
sequence takes place:

1 The interrupt disable bit in the processor status register is set.
2 The address of the reset routine is obtained from the memory
locations $FFFC and $FFFD and loaded into the program

counter thus transferring program control to the reset routine.
This line is often used to retrieve the situation in the event of
system runaway; depression of the reset key will normally bring
the system back to its initialization condition.

BRK

The break command instruction is a software interrupt, and upon
execution the break command flag in the processor status register
is set. Then the CPU pushes the contents of the program counter
(high-order byte first) and the processor status register onto the
stack. The interrupt disable bit is set to 1 to prevent IRQ interrupts.
The address of the interrupt service routine is obtained from the
addresses $FFFE and $FFFF and is loaded into the program
counter thus transferring control to the interrupt service routine. In
order to distinguish between an TRQ and BRK interrupt, the
grocessor status register must be pulled from the stack and the
reak command flag interrogated.

Example: 8-bit binary addition. The two numbers to be added are
stored in locations MEM and MEM +1 and the answer in locations
ANSWRL and ANSWRH.

CLD ; binary arithmetic
cLC ; clear carry
LDA #$00 .
STA ANSWRH ; clear high-order byte MEM
ADC MEM ; first number MEM+1
ADC MEM+1 ; second number
STA ANSWRL ; store low-order byte ANSWRL
BCC CONT ; carry clear ANSWRH
INC ANSWRH ; increment high-order byte

CONT ------ ; continue

62

Note: (a) The 6502 instruction set does not have an ‘add without
carry’ instruction. The carry flag bit must be cleared before the start
of an addition.

(b) The decimal mode flag must be cleared so as to ensure that
binary arithmetic is performed.

Example: 8 bit binary subtraction. The minuend is stored in
location MEM and the subtrahend in MEM+1; the answer is in
locations ANSWRL and ANSWRH.

CLD ; binary arithmetic
SEC ; set carry
LDA #$00 :
STA ANSWRH ; clear high-order byte MEM
LDA MEM ; minuend MEM+1
SBC MEM+1 ; subtrahend
STA ANSWRL ; store low-order byte ANSWRL
BCS CONT ; carry set then branch ANSWRH
DEC ANSWRH ; decrement high-order byte

CONT ------ ; continue

Note: (a) The carry flag has to be set prior to a subtraction. When the
subtrahend is greater than the minuend, and as a consequence
there is a ‘borrow’, then the carry flag is reset and not set.

(b) The decimal mode flag mustr%e cleared to ensure that binary
subtraction is performed.

Example: 16-bit binary addition. The two 16-bit binary numbers to
be added are stored in locations NUMB1H, NUMB1L, NUMB2H,
NUMB2L; the answers are deposited in locations ANSWRL,
ANSWRM and ANSWRH.

CLD ; binary arithmetic

10 ; clear carry

LDA #8$00 . NUMB1L
STA ANSWRH ; clear high-order byte NUMB1H
ADC NUMB1L ;

ADC NUMB2L ; add low-order bytes NUMB2L
STA ANSWRL ; store low-order byte NUMB2H
LDA #8$00 ; clear accumulator
ADC NUMB1H ; ANSWRL

ADC NUMB2H ; add high-order byte ANSWRM
STA ANSWRM ; store middle-order byte ANSWRH

BCC CONT ; carry clear then branch
INC ANSWRH ; increment high-order byte
CONT ------ ; continue

63

Example: 8-bit multiplication using the ‘shift and add’ technique.
The multiplier is stored in location MULP and the multiplicand in
MULT. The answer is stored in ANSWRL and ANSWRH. Count
holds the number of shift and adds.

L) ; binary arithmetic

LDA #$00 ; clear memory locations

STA MULTH

STA ANSWRL ;

STA ANSWRH ;

LDA #$08 .

STA COUNT ; set count to 8 MULP
AGAIN ROR MULP; examine first bit MULTL

BCC SHIFT ; branch for no addition MULTH

CLO ; clear carry ANSWRL

LDA MULTL - ANSWRH

ADC ANSWRL ; add low-order

STA ANSWRL ; store low-order byte COUNT

LDA MULTH :

ADC ANSWRH : add high-order
STA ANSWRH ; store high-order byte
SHIFT ASL MULTL; shift MULT for next addition

ROL MULTH :
DEC COUNT ; count=count—1
BNE AGAIN : next bit

CONT ------ ; continue

Example:on IRQ interrupt: configure port B ofa VIA as output and
port A as input, enable CA1 interrupt and disable all others.

SEI ; set the interrupt mask

LDX #$FF

TXS ; load the stack pointer

LDA #$00 ; clear A

STA PCR ; active transition on CA1 1—0
STA DDRA ; port A configured as input
LDA #$FF

STA DDRB ; port B configured as output
LDA #8$7F ‘
STA IER ; disable all interrupts

LDA #$82 :

STA IER ; enable CA1 interrupts

GLI ; clear interrupt masE

______ ; continue with main line program

64

Interrupt service routine

LDA IRA ; clear CA1 flag in the VIA flag register
------- ; continue with interrupt service routine

RTI ; terminate interrupt service routine

Note the following:

(a) The stack pointer is initialized; failure to do this may cause
program corruption.

(b) The interrupt disabled bit is set during the initialization
procedure to prevent IRQ interrupts; it is cleared prior to the
continuation of the main-line program.

(c) The first instruction in the interrupt service routine could be
replaced by STA ORA in order to clear the CA1 flag.

(d) The memory locations $FFFE and $FFFF must hold either
directly or indirectly the address of the interrupt service routine.
(e) If tls;ere is a likelihood of a BRK instruction being executed to
cause an interrupt, the processor status register should be retrieved
from the stack at the start of the interrupt service routine and the
break command flag interrogated.

Example: Configure Timer 1 for continuous square-wave output on

PB7.
LDA #$7F 0111 1111
STA IER ; disables all interrupts
LDA #$FF ;1111 1111
STA DDRB ; side B configured as output
LDA #$Co0 ; 1100 0000
STA ACR ; mode 11 selected, continuous o/p on PB7
LDA #$mm :
STA T1C-L ; load low-order latch
LDA #$nn ; load counter T1 interrupt flag reset
STA T1C-H ; counter decremented to zero
CONT ------ ; continue

Note: (a) Following CPU write to T1C-H, the peripheral data line
PB7 goes low and is returned high when the counter is
decremented to zero, i.e. after $nnmm system clock pulses; the
latches are then loaded into the counter and the process is repeated.
(b) By modifiring the contents of the ACR to #$80 instead of #$Co,
mode 01 is selected and a single negative pulse is produced on PB7.

Example: Configure Timer 2 to count a predetermined number of
pulses on PB6; disable T2 interrupts.

65

LDA #$7F sUlll 1111

STA IER ; disables all interrupts

LDA #$BF s 10l) 1111

STA DDRB ; bit 6 i/p, other bits o/p

LDA #8$20 ; 0010 0000

STA ACR ; bit 5 = 1 in ACR, mode 1 selected

LDA #$mm ; low-order latch loaded

STA T2C-L :

LDA #$nn ; high-order counter loaded, low order latch
STA T2C-H ; transferred to low-order counter, interrupt

flag is reset
LOOP LDA IFR ;read interrupt flag register

AND #$20 ; isolate bit 5

BEQ LOOP ; repeat if not set
Note: (a) The peripheral data line PB6 must be configured as an
output.
(b) When $nnmm pulses have been counted on PB6, the interrupt
flag is set.

(c) IRQ interrupts are disabled.

Example: Generate on CB2 a pulse waveform whose frequency is
500 Hz and has a mark-space ratio of 1:1.

AGAIN LDA #$EO; 1110 000

STA PCR ; CB2 set to logic 1

JSR DELAY :

LDA #$Co0 ; 1100 0000

STA PCR ; CB2 set to logic 0

JSR DELAY :

JMP AGAIN ; repeat waveform
DELAY ... ; delay routine 1ms

RTS

Example: Analogue to digital conversion

A 10-bit A/D is interfaced to a VIA; it requires a convert pulse (a
1—-0—1 transition) and its status goes low on the completion of the
conversion. CA1 is used to monitor the status and CA2 generates
the start pulse. The 10-bit digital word is stored in memory
locations MEM and MEM +1. See Fig. 7

LDA #$00 ; clear A
STA DDRA ; configure port A input
STA DDRB ; configure port B input

66

STA PCR ; configure 1 — 0 active transition on CA1
LDA #$0E
STA PCR ; 0000 1110 set CA2
LDA #$0C
STA PUR ; 0000 1100 reset CA2
LDA #$0E
STA PCR ; 0000 1110 set CA2
WAIT LDA IFR ; read flag register
AND #$02 ; mask CA1 flag
BNE WAIT ; conversion finished ?
LDA IRA ; yes read 8 least significant bits
STA MEM+1 ; store
LDA IRB ; read port B
AND #$03 ; read bits 9 and 8
STA MEM ; store
VIA A/D
CA1 <+ Status
CA2 - Convert
PAO S DO
Port A
PA7 < D7 —o Analogue
D8 signal
D9
PBO *
PB1 e
Port B
Fig. 7.

Example: Configure a number of VIAs so that all the port As are
output using indexed indirect addressing. The table in page $00 of
memory contains the addresses of the data direction registers.

LDX #$00 ; 0080 |DDRA11
LDA #$0FF ; bit pattern 1111 1111 for output 0081 [DDRA1h
STA ($80,X) ; DDRA1 configured 0082 [DDRA21
STA ($82,X) ; DDRA2 configured 0083 |DDRA2h
STA ($84,X) ; DDRA 3 configured 0084 |DDRA3!I
STA ($86,X) ; DDRA4 configured 0085 |DDRA3h
0086 | DDRAA41

0087 |DDRA4h

67

Td i d ddE B ddaddae

Example: Output through port B of a VIA the contents of a table in
sequence, using indirect indexed addressing.

LDY #$00 0040 |00
NEXT LDA ($40),Y ; start of table 0041 |30
STA ORA ; output state 0042 |08
JSR DELAY ; delay
INY ; increment table pointer 3000 |0C
CPY 842 ; end of table 3001 |04
BNE NEXT ; no next state 3002 (06
3003 |02
DELAY ------- ; delay routine 3004 [03
------- 3005 (01
RTS 3006 |09
3007 (08

Noée $ (a) theaddressofthe table is stored in page $00locations $40
and $41.

(b) the number of elements in the table is stored in $42

(c) the data is stored in the table $3000-$3007

By changing the page $00 data, another table of values can be
accessed without altering the main program.

Example: 8 switches are connected to port A ofa VIA; by using the
various logic instructions determine the state of individual
switches

SW7 | SW6 | SW5 | SW4 | SW3 | SW2| SW1| SWoO

Method 1: use the logical AND instruction to test SW1

LDA IRA : read all the switches
AND #$02 : accumulator contains 0000 00X0, use BNE or
BEQ to test Z flag

Method 2: use the rotate ROR instruction to test SW0

LDA IRA ; read all the switches

ROR A ; rotate right once into the carry flag, use BCC or
BCS to test C flag

Method 3: use the instructions BPL and BMI to test SW7

LDA IRA ; N flag reflects the state of bit 7, test N with BPL or
BMI

Method 4: use of the BIT function to test switch 7, 6 and n

LDA #$08 ; bit pattern 0000 1000

68

BIT IRA ; logical AND performed between IRA and
accumulator, Z flag can be used to test bit n (in
this case 3). N and V flags loaded with bits 7 and

6; use BVS and BVC.

A combination of these techniques can be used, depending on
the particular application.

69

ISBN 0-273-01990-¢2

78027

	Assembly Language for 6502 - Pocket Guide (cover)
	Pitman Pocket Guides
	© Bob Bright 1983
	Index
	How to use this Pocket Guide
	6502 Central Processing Unit (CPU)
	Programming Model of the CPU
	Program Counter PC
	Stack Pointer SP
	Accumulator
	Index Registers X & Y
	Processor Status Register P
	Testing the Flags

	Language Elements
	Machine Code
	Assembly Language
	Operands
	Source Program
	Assembler Listing

	Addressing Modes
	Absolute Addressing
	Zero-Page Addressing
	Immediate Mode
	Absolute Indexed Addressing
	Zero-Page Indexed Addressing
	Indirect Addressing
	Indexed Indirect Addressing
	Indirect Indexed Addressing
	Implied Addressing
	Accumulator Addressing
	Relative Addressing
	Execution Times
	Paging System

	Table I: Instruction Set
	ADC - Add mem to accumulator with carry
	AND - "AND" mem with accumulator
	ASL - Shift left one bit
	BCC - Branch if carry is clear
	BCS - Branch if carry is set
	BEQ - Branch if equal to zero
	BIT - Bit test
	BMI - Branch if minus
	BNE - Branch if not equal to zero
	BPL - Branch if positive
	BRK - Break command
	BVC - Branch if overflow is cleared
	BVS - Branch if overflow is set
	CLC - Clear the carry flag
	CLD - Clear decimal mode
	CLI - Clear interrupt disable bit
	CLV - Clear overflow flag
	CMP - Compare mem & accumulator
	CPX - Compare mem & index reg X
	CPY - Compare mem & index reg Y
	DEC - Decrememt memory
	DEX - Decrement index reg X
	DEY - Decrement index reg Y
	EOR - "EXOR" mem with accumulator
	INC - Increment memory
	INX - Increment index reg X
	INY - Increment index reg Y
	JMP - Jump
	JSR - Jump to subroutine
	LDA - Load accumulator
	LDX - Load index reg X
	LDY - Load index reg Y
	LSR - Logic shift right
	NOP - No operation
	ORA - "OR" mem with accumulator
	PHA - Push accumulator on stack
	PHP - Push processor status reg on stack
	PLA - Pull accumulator from stack
	PLP - Pull processor status reg from stack
	ROL - Rotate left
	ROR - Rotate right
	RTI - Return from interrrupt
	RTS - Return from subroutine
	SBC - Subtract mem from accumulator with carry
	SEC - Set carry
	SED - Set decimal mode
	SEI - Set interrupt
	STA - Store accumulator
	STX - Store index X
	STY - Store index Y
	TAX - Transfer accumulator to index reg X
	TAY - Transfer accumulator to index reg Y
	TYA - Transfer index reg Y to accumulator
	TSX - Transfer stack pointer to index X
	TXA - Transfer index reg X to accumulator
	TXS - Transfer index X to stack pointer

	Table II: Operation codes listed in numerical sequence
	Stack Processes
	Loading the Stack Pointer
	Push & Pull operations
	Subroutines
	Nested Subroutines
	Interrupts
	Stack Manipulation

	Input/Output
	Versatile Interface Adapter (VIA) 6522
	Internal Registers
	Input/Output Ports
	Data Direction Registers DDRB & DDRA (reg $2 & $3)
	Output Registers ORB & ORA (reg $0 & $1)
	Input Registers IRB & IRA (reg $0 & $1)
	Peripheral Control Register (reg $C)
	Control Line CA1
	Control Line CA2
	Control Lines CB1 & CB2
	Auxiliary Control Register (reg $B)
	Latching Data
	Timer 1
	CPU read & write of T1 counter
	CPU read & write of latches
	Timer 2
	CPU read & write of T2 counter
	Shift Register
	Interrupt Facilities
	Interrupt Flag Register (reg $D)
	Interrupt Enable Register
	Interrupt Operation
	Interrupt & Reset
	Interrupt Request (IRQ)
	Non-Maskable Interrupt (NMI)
	Saving CPU Status
	Return from Interrupt
	Multiple IRQ Interrupts
	Reset
	BRK

	Assembly Language for 6502 - Pocket Guide (rear cover)

