
Pocket Guide

Assembly Language
forthe6502

i:J a
cc
iiJ
3
3 -· :::s
cc
i:J
0
(')

~ ,..
C)
c -· Q.
(I)
tn

Pitman Pocket Guides

The complete list of titles in this series is printed on the
stiff board at the back of this Guide.

This series of pocket size reference guides provides you
with reliable descriptions of the salient features of all the
important languages, micros, operating systems and word
processors. You can use them as memory-joggers or
reference tools.

There is an introductory Guide to each category for those
who have no experience of the subject. This provides you
with the lead-in to other related titles.

The Publishers would welcome suggestions for further
improvements to this series. Please write to Alfred Waller
at the address below.

PITMAN PUBLISHING LTD
128 Long Acre , London WC2E 9AN

Associated companies
Pitman Publishing Pty Ltd , Melbourne
Pitman Publishing New Zealand Ltd , Wellington
Copp Clark Pitman, Toronto

Consultant Editor: David Hatter

First edition 1983
Reprinted 1984

©Bob Bright 1983

All rights reserved.

Printed in Great Britain at The Pitman Press , Bath

ISBN 0 273 01990 2

i

Index

How to use this Pocket
Guide 1

Accumulator 3
Addressing

absolute 6
absolute indexed 8
accumulator 1 O
immediate 7-8
implied 10
indexed indirect 9
indirect 9
indirect indexed 9
relative 10
zero-page 7

indexed 8
Assembler listing 6
Assembly language 5

BRK command 62

Control line
CAl 52
CA2 52
CBl 53
CB2 53

Control register
auxiliary 53

CPU (6502) 1
programming model 2

Data direction registers 51

Execution times 11-12

Flags 3-4
break command 3
carry 3
decimal mode 3
interrupt disable 3

11

negative 4
overflow 4
testing 4
zero 3

Index registers 51
Input/output 48
Input/output ports 51
Input registers 51
Instruction set 14-44
Internal registers 50
Interrupt

enable register 59
flag register 5 8-59
non-maskable 60
operation 59
request 60
return from 61

Interrupts 47, 58-62
and reset 59

Language elements 4-6
Latches 5 3-5 7
Listing, assembler 6

Machine code 4-6

Operands 5-6
Operation Codes (see

instruction set) 14-44
Numerical sequence 42-44

Output registers 51

Paging system 12-13
Peripheral control register 52
Processor status register 3
Program counter 2
Programming model (see

CPU) 2
Push and pull operations 45

Reset 59

Saving CPU status 61
Shift register 5 7
Source program 6
Stack manipulati9n 47
Stack pointer 2

loading 45
Stack processes 44-48

111

Status register 3
Subroutines 45

nested 46

Timer counters 54-56

Versatile Interface Adapter 48
internal registers 50

How to use this Pocket Guide

Each feature of the 6502 assembly language has a section devoted
to it.

Table I contains the complete instruction set and includes details
of operation codes, various addressing modes, execution times and
the required number of bytes of machine code. It also gives details
of the processor status register operation.

Table II is a list of operation codes in numerical order together
with the instruction mnemonic and the mode of addressing. There
are sections on interrupts and stack processes together with a
detailed study of the versatile interface adapter. Examples are
given where necessary in the text and at the end of the guide.

6502 Central processing unit (CPU)

The 6502 is one of the family of the 6500 microprocessor devices.
All the devices are software-compatible but not all are
pin-compatible.

The 6502 is a 40-pin device and provides, among others, the
following facilities:

5 6 instructions
13 addressing modes
16-bit address bus
8-bit bi-directional parallel data bus
1-MHz and 2-MHz system clock frequency
interrupt facilities-maskable and non-maskable
stack operation

The 65 0 2 includes an umber of registers, detailed in the section on
the programming model of the CPU, an arithmetic logic unit,
instruction decoder and register, and interrupt logic. The
manufacturer's data sheet should be consulted for full details of the
system architecture, electrical characteristics, pin connections,
timing diagrams and clock operation.

1

Programming Model of the CPU

The programming model of the 6502 microprocessor is shown
below.
Accumulator

Index register X

Index register Y

Stack pointer SP

Program
counter 15 PC

Processor status register P

N
v
unused
B
D
I
z
c

negative flag
overflow flag

break command flag
decimal mode flag
interrupt disable bit
zero flag
carry flag

Program counter PC

7

7

7

7

7

0

0

0

0

0

0

The program counter is a 16-bit register which contains the address
of the next instruction or part instruction ih the program sequence.

Stack pointer SP

The stack area is confined to page 01 of memory. The stack pointer
holds the address of a memory location on this page and indicates
the current position of the stack.

2

Accumulator

The accumulator is an 8-bit register used in certain arithmetic and
logic operations; the results of such operations are placed in the
accumulator.

Index registers X and Y

The index registers are 8-bit registers and are used in the various
addressing modes involving indexed addressing. The registers can
also be used in certain arithmetic operations and for transferring
data between accumulator and the stack pointer.

Processor status register P

The processor status register is an 8-bit register containing 6 flags ,
an interrupt disable bit and an unused bit.

Bit 0 Carry flag (C)
The carry flag acts as a ninth bit in certain arithmetic and
logic operations. Particular care must be used in the
interpretation of this flag when using instructions
involving subtraction. The flag should be cleared before
starting any arithmetic operation using ADC and set
before using SBC .

. Bit 1 Zero flag (Z)
The zero flag is set if the result of arithmetic and logic
operations is zero; if the result is non-zero the flag is
cleared.

Bit 2 Interrupt disable bit (I) __
This bit enables or disables IRQ interrupts:
if I = 1 I~ interrupt is disabled;
if I = O I interru~klf enabled.
It has no effect on interrupts.

Bit 3 Decimal mode flag (D)
If the decimal mode flag is cleared the arithmetic unit
within the CPU performs binary arithmetic; if the flag is
set, binary coded decimal arithmetic is performed. The
programmer should ensure that status of the flag is the one
required.

Bit 4 Break command flag (B)
When a break instruction BRK is executed the CPU will set
the break command flag (see BRK instruction p. 20).

3

Bit 5

Bit 6

Bit 7

Unused bit.

Overflow flag (V)
During signed binary arithmetic operations the overflow
flag will be set if the magnitude of the result exceeds seven
bits; otherwise it is cleared.

Negative flag (N)
The negative flag is set if the most significant bit of the
result of an operation is also set; otherwise it is cleared.

The flags may be set, cleared or unaffected as a result of an
instruction being executed; Table I shows the operation of the flags
for each instruction and addressing mode.

Some of the flags are directly programmable:
CLC clear carry
CLD clear decimal mode
CLI clear interrupt disable bit
CL V clear overflow
SEC set carry
SED set decimal mode
SEI set interrupt disable bit

Testing the flags

Four of the flags namely N, V, Zand C can be tested and a
conditional branch made depending on their status. Listed are the
flags with the appropriate branch instructions:

N BMI and BPL
V BVS and BVC
Z BEQ and BNE
C BCS and BCC

Language elements

Machine code

The machine or object code for each instruction in the 6502 will
consist of one, two or three bytes. The first byte always contains the
operation code for the particular instruction together with the
mode of addressing. For example, A2 is the code for LDX (load the
index register X) using the immediate mode of addressing.

The second and third bytes, termed the operand, will if present,
contain data, an address or a displacement from which an address
can be formed.

4

Assembly language

The assembly language form for each instruction consists of an
operator and an operand. The operator is represented by a
mnemonic which is expressed by a three letter code which is
meaningful to the user. If an assembler is used this code must be
adhered to.
Example: LDA load accumulator

BEQ branch if equal

Operands

The format for the operand in the assembly language will, in
addition to containing the data, etc, imply the mode of addressing.
The formats are listed with their mode of addressing.

#Operand immediate
Operand zero page, absolute or relative
Operand, X zero page and absolute indexed X
Operand, Y zero page and absolute indexed Y
(Operand, X) indexed indirect
(Operand), Y indirect indexed
(Operand) indirect
A accumulator

If there is no Operand then the mode of addressing is implied.
The term operand in the previous list can be expressed in a

number of ways:

1 As a binary, decimal, octal or hexadecimal number; it is usual to
distinguish between the various number systems but the means
will vary depending on the assembler used. Typical examples
are:

hexadecimal $80 or BOH
octal @ 35 or 35Q
binary % 01110001 or 01110001B
decimal 79 or 79D

2 As a symbol which will have to be defined and the assembler
will assign the required numerical value.

3 As a simple arithmetic expression usually containing the
operators +, - , I and *.

4 As an ASCII code character which is prefixed by a single quote
(').

5

Source program

A source program is divided into four fields which contain
respectively the label, operator, operand and comment. A typical
source program is listed:

ORG $3000
LDY #$FF ; delay routine start

LOOP2 LDX #$FF
LOOP1 DEX

BNE LOOP1
DEY
BNE LOOP2 ; delay routine end

The first field is occupied by a label and is optional; it is mainly
used in branch and jump instructions. It assists the programmer to
read and write programs and the assembler will calculate the
offsets and numerical addresses. There is generally a restriction
placed on the number and type of characters used to define a label
and this will depend on the assembler used. The last field is
reserved for comments to assist in the good documentation of
programs and is entirely optional.

Assembler listing

An assembler will convert the source to object or machine code; a
typical output from an assembler for the previous source program
is listed below:

Location Machine Label Assembly Comments
code language

AO FF LDY #$FF ; delay routine start
A2 FF LOOP2 LDX #$FF
CA LOOP1 DEX
DO FD BNE LOOP1
88 DEY

3000
3002
3004
3005
3007
3008 DO FB BNE LOOP2 ; delay routine end

Addressing modes

Absolute addressing

Absolute addressing requires 3 bytes of machine code. The first
byte contains the operation code; the second and third bytes

6

contain the low-order byte and the high-order bytes respectively of
an address.

Example: LDA $2055
This instruction loads the accumulator with the contents of
memory location $2055. Assembled into machine code this
becomes

AD 55 20
The first byte AD is the operation code and the next two form the
address of the memory location. Note that the 16-bit address is
stored with the least significant byte first followed by the most
significant byte.

Further example: JMP $3020
This instruction transfer program control to the memory location
$3020. Assembled into machine code this becomes

4C 20 30
All 64k of addressable memory can be accessed with absolute
addressing.

Zero-page addressing

Zero-page addressing requires 2 bytes of machine code. The first
byte contains the operation code; second byte contains an address
on page $00 of memory. The data to be operated on is held at this
address.

Example: LDA $55
This instruction loads the accumulator with the contents of
memory location $0055 or location $55 on page $00 of memory.
Assembled into machine code this becomes

A5 55
The first byte A5 is the operation code and the second byte is the
address on page $00.

Immediate addressing

Immediate addressing requires 2 bytes of machine code. The fH-st
byte contains the operation code; the second byte contains the data
to be operated on.

Example: LDA #$9A
This instruction loads the accumulator with the data $9A. The#
symbol specifies the immediate mode of addressing. Assembled
into machine code this becomes

A99A

7

- - -
The first byte is the operation code and the second byte the data. In
this mode of addressing it is said that the data immediately follows
the operation code.

Absolute indexed addressing

Absolute indexed addressing requires 3 bytes of machine code.
The first byte contains the operation code, the mode of addressing
and the specified index register; the second and third bytes contain
the low-order and high-order bytes of an address to which is added
the contents of one of the index registers to form an effective
address. The data to be operated on is held at this address.

Example: LDA $903A,X
If the index register X holds the value $30, then the accumulator is
loaded with the contents of the memory location $906A
($903A +$30). Assembled into machine code this becomes

BD 3A 90

Further example: LDA $90AS,Y
If the index register Y holds the value $A9, then the accumulator is
loaded with the contents of memory location $914E ($903S+$A9).
Assembled into machine code this becomes

B9 AS 90
Note (a) that the 16-bit addresses are stored with the least
significant byte first followed by the most significant byte, and (b)
that there is no difficulty in crossing page boundaries but with
some instructions the execution time will differ. ·

Zero-page indexed addressing

Zero-page indexed addressing requires 2 bytes of machine code.
The first byte contains the operation code, the mode of addressing
and the specified index register; the second byte contains an
address in page $00 of memory to which is added the value held in
the index register to form a zero-page address. The data to be
operated is held at this address.

Example: LDA $20,X
If the index register X holds the value $3A, then the accumulator is
loaded with the contents of the memory location $OOSA or location
$SA on page $00 of memory. Assembled into machine code this
becomes:

BS 20
Note that if the addition yields a value greater than $FF no carry is
generated when forming the address. If, in the example, the index
register held the value $F 4 then the accumulator would be loaded

8

with the contents of the memory location $0014. This is commonly
referred to as wrap-around.

Indirect addressing

Indirect addressing applies only to the Jump UMP) instruction. It
requires 3 bytes of machine code. The first byte contains the
operation code, the second and third bytes contain the low-order
and high-order bytes of a pointer address. The low-order and
high-order bytes of the effective address are found at the pointer
address.

Example: JMP ($2036)
If the contents of the locations $2036 and $2037 are $A9 and $54
respectively the program counter will contain $54A9 after the
execution of the instruction. ~

2036 A9

2037 54

Indexed indirect addressing

Indexed indirect addressing requires 2 bytes of machine code. The
first byte contains the operation code; the second byte is added to
the value held in the index register to form a zero-page pointer
address. The low-order and high-order bytes of the effective
address are found at the pointer address. The data to be operated on
is held at this effective address.

Example: LDA ($54,X)
If the index register X holds the value $38 and the contents of the
memory locations $009C and $009D are $35 and $7B respectively
then, as a result of this instruction, the contents of $7B35 will be
loaded into the accumulator. Note that in forming the pointer
address any carry out is ignored. Only the index register X can be
used.

009C J35i
009D ~

Indirect indexed addressing

Indirect indexed addressing requires 2 bytes of machine code. The
first byte contains the operation code; the second byte contains an
address on page $00 of memory. The contents of this memory
location are added to the contents of index register Y to form the

9

low-order byte of an effective address; any carry from this addition
is added to the contents of the next memory location on page $00 of
memory to form the high-order byte of the effective address. The
data is held at this address.

Example: LDA ($A8),Y
At the pointer address and the pointer address+ 1, the low-order
byte and the high-order byte of the effective address can be found. If
the index register Y contains the value $30 and the memory
locations $OOA8 and $OOA9 contains $37 and $15 respectively
then, as a result of this instruction, the contents of $1567
($1537 +$30) are loaded into the accumulator.

Implied addressing

Implied addressing requires 1 byte of machine code.

Example: CLC

OOAB 37

OOA9 15

The carry flag is cleared as a result of this instruction. Assembled
into machine code this becomes 18

Accumulator addressing

Accumulator addressing requires 1 byte of machine code; it applies
to operations on the contents of the accumulator.

Example: ROL A
The contents of the accumulator and the carry flag are rotated 1 bit
to the left. Assembled into machine code this becomes 2A.

Relative addressing

Relative addressing is used exclusively with the branch
instructions and requires 2 bytes of machine code. When the
branch instruction is executed the status 9f one of the processor
flags is tested and causes a branch or otherwise, depending on the
status of the flag. The first byte contains the instruction and the
second byte contains a two's complement number which
represents a displacement from the current position of the program
counter.

10

Example: BEQ $06
In assembly language this becomes

Location
PC
PC+2

Machine code
FO 06

Assembly language
BEQ $06

If the Z flag is set then the program counter is modified to
(PC+2)+6 = PC+B; if the flag is clear then the program counter
remains at PC+ 2.

Further example: BPL $FA
In assembly language this becomes

Location
PC
PC+2

Machine code
10 FA

Assembly language
BPL $FA

If the N flag is clear the program counter changes to PC+ 2 + (- 6) =

PC-4; if the flag is set the program counter remains at PC+2.
Since there is only 1 byte to define the displacement, the range of

the branch is restricted to between -12 810 and + 12 710 from the
current position of the program counter. If a conditional branch is
required beyond this range, then a branch can be made to a location
within the range and the JMP instruction used to jump to the
required location.

Execution times

The execution time for each instruction is expressed in terms of the
number of system clock cycles. Table I shows the number of clock
cycles for each instruction; there are variations depending on the
addressing mode.

The branch instruction in the table shows the execution time for
the no branch condition. If a branch is made to the same page, then
1 cycle should be added to the no branch value and if a branch
occurs to another page, 2 should be added.

Example:
Location

2090
20AO

Label

LOOP

Assembly language
BPL LOOP

The instruction BPL tests the state of the N flag and causes a branch
if N is clear.
If N = 1 execution time in cycles is 2;
if N = 0 execution time in cycles is 3 (branch to the same page)
However, ifthe address of the label is $2101 (another page), then if
N =O, the time is 4 cycles.

11

Examination of Table I shows that the execution time for some of
the instructions for certain addressing modes needs to be modified
if a page boundary is crossed.

Example: single loop time delay with no page crossing

Location Label Assembly language Comment
3000 LDX #$hh ; 2 cycles
3002 LOOP DEX ; 2 cycles
3003 BNE LOOP ; 3 cycles for branch,

2 cycles otherwise

If $hh is equal to x10 then total number of clock cycles is

2 + 2x + 3 (x -1) + 2 = 5x + 1

The LDX instruction is executed once, the DEX instructionx times
and the branch occurs x -1 times; 2 cycles must be included for the
no branch condition for BNE.

Further Example: double loop delay with page crossing for outer
loop

Location Machine code Assembly Comment
Label language

2FFC AO hh LDY #$hh ; cycles 2
2FFE AZ nn LOOP2 LDX #$nn ; cycles 2
3000 CA LOOP1 DEX ; cycles 2
3001 DO FD BNE LOOP 1 ; cycles 3 or 2
3003 88 DEY ; cycles 2
3004 DO F8 BNE LOOP2 ; cycles 4 or 2

If $hh is equal to y10 and $nn equal to x10 then the total number of
cycles is

y (5x+7)

The delay period is the number of cycles times the system clock
period.

Paging system

The 6502 microprocessor can access up to 65536 or 64k memory
locations using its 16-bit address bus; the addresses of the memory
locations are normally expressed in terms of the hexadecimal
number system. The total addressing rage is therefore from $0000
to $FFFF where$ indicates a hexadecimal number. Note that lk is
normally equivalent to 102410.

The memory of the 6502 is organized on a paging system; the
most significant byte of the absolute address is the page number
while the least significant indicates the location within that page.

12

For example, the address of memory location $3022 can be
expressed as location $22 on page $30.

There are 256 pages with 256 bytes of memory per page.
There is very little restriction placed on the microcomputer

designer in interfacing memory and input/output devices to the
address bus. However it should be noted that pages $00, $01 and
$FF are used for specific purposes.

page $00: the various index addressing modes use this page for
storing data and addresses. Since the 6502 does not have a 16-bit
index register, the power of the instruction set should not be
diminished by using this page solely for the main program.

page $01: the stack area is restricted to this page. If the user's
program involves subroutines and interrupts, it is advisable not
to place the main-line program on this page for fear of the stack
corrupting the program.

page $FF: the last six locations on this page are reserved for the
addresses of the interrupt and reset service routines. In many
microcomputer systems this page will probably contain the
monitor program.

Key to Tables I and II

Accumulator
Index register X
Index register Y
Memory
Processor status register
Stack pointer
Exel usi ve or
Logical or
Logical and
Add
Subtract
Transfer to
Transfer from
Push on to stack
Pull from stack
Program counter
Program counter high-order byte
Program counter low-order byte
Operand
Immediate

Processor status register

A
x
y
M
p
s
®
or

+

~

~

i
i
PC
PC high
PC low
Operand

Note: Heavy boxes round individual flags indicate possible
changes.

13

Table I Instruction set

ADC: Add memory to accumulator with carry

Operation: A+M+c~ A,C

Description: The carry flag bit is added to the contents of the
accumulator and memory; the result is placed in the accumulator.

Process status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

V: set if the addition results in a two s complement overflow;
otherwise cleared.

Z: set if the result is zero; otherwise cleared.
C: set if there is a carry out from the most significant bit of the

result; otherwise cleared.

Addressing Assembly Language
Mode

Immediate
Zero Page
Zero Page,X
Absolute
Absolute,X
Absolute,Y
(lndirect,X)
(Indirect), Y

ADC #Operand
ADC Operand
ADC Operand,X
ADC Operand
ADC Operand,X
ADC Operand,Y
ADC (Operand,X)
ADC (Operand),Y

*Add 1 if page boundary is crossed.

14

No.
Cycles

2
3
4
4
4*
4*
6
5*

No.
Bytes

2
2
2
3
3
3
2
2

OP
Code

69
65
75
6D
7D
79
61
71

AND "And" memory with the accumulator

Operation: A.M ~A

Description: a logical AND operation is performed between the
corresponding bits of the memory and accumulator; the result is
placed in the accumulator and the contents of the memory remains
unchanged.

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Immediate AND #Operand 2 2 29
Zero Page AND Operand 3 2 25
Zero Page,X AND Operand,X 4 2 35
Absolute AND Operand 4 3 2D
Absolute,X AND Operand,X 4* 3 3D
Absolute,Y AND Operand,Y 4* 3 39
(lndirect,X) AND (Operand,X) 6 2 21
(Indirect),Y AND (Operand),Y 5 * · 2 31

*Add 1 if the page boundary is crossed.

15

ASL Shift left One bit $" ~

Operation: C ~ 7 6 5 4 3 2 1 0 ~ 0

Description: the contents of memory or the accumulator are shifted
left one bit; bit 0 is loaded with a logic O and bit 7 is shifted into the
carry flag.

Processor status register:

N: set if the most significant bit of the memory or accumulator is
set; otherwise cleared.

Z: set if the result of the memory or accumulator is zero; otherwise
cleared.

C: set if as a result of the operation the carry flag is set; otherwise
cleared.

Addressing Assembly Language No. No. OP
Modes Cycles Bytes Code

Accumulator ASLA 2 1 OA
Zero Page ASL Operand 5 2 06
Zero Page,X ASL Operand,X 6 2 16
Absolute ASL Operand 6 3 OE
Absolute,X ASL Operand,X 7 3 1E

BCC Branch if carry is clear

Description: the C flag is tested and a branch occurs if the flag is
clear; otherwise the next instruction is executed.

Processor status register:
not affected

Addressing
Mode

Relative

Assembly Language

BCC Operand

No. No. OP
Cycles Bytes Code

2* 2 90

* Add 1 if the branch occurs to the same page; add 2 if the branch
occurs to a different page.

16

BCS Branch if carry is set

Description: the C flag is tested and a branch occurs if the flag is set;
otherwise the next instruction is executed.

Processor status register:
not affected

Addressing
Mode

Relative

Assembly Language

BCS Operand

No.
Cycles

2*

No.
Bytes

2

OP
Code

BO

*Add 1 if the branch occurs to the same page; add 2 if the branch
occurs to a different page.

BEQ Branch if equal to zero

Description: The Z flag is tested and a branch occurs if the flag is
set; otherwise the next instruction is executed.

Processor status register:
not affected

Addressing
Mode

Relative

Assembly Language

BEQ Operand

No. No. OP
Cycles Bytes Code

2* 2 FO

*Add 1 if the branch occurs to the same page; add 2 if the branch
occurs to a different page.

17

BIT Bit test

Operation: A.M, M1~N and Ms~V

Description: a logical AND operation is performed on the
corresponding bits of the memory and accumulator; the contents of
the memory and accumulator remain unchanged. Bits 7 and 6 of
memory are transferred to the N and V flags respectively.

Processor status register:

N: set if the most significant bit of memory is set; otherwise
cleared.

Z: set if the result of the operation is zero; otherwise cleared.
V: set if bit 6 of the memory is set; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Zero Page BIT Operand 3 2 24
Absolute BIT Operand 4 3 2C

BMI Branch if minus

Description: the N flag is tested and a branch occurs if the flag is set;
otherwise the next instruction is executed.

Processor status register:
not affected

Addressing
Mode

Assembly Language No. No. OP
Cycles Bytes Code

Relative BMI Operand 2 * 2 30

*Add 1 if the branch occurs to the same page; add 2 if the branch
occurs to a different page.

18

BNE Branch if not equal to zero

Description: the Z flag is tested and a branch occurs if the flag is
clear; otherwise the next instruction is executed.

Processor status register:
not affected

Addressing
Mode

Relative

Assembly Language

BNE Operand

No. No. Op
Cycles Bytes Code

2* 2 DO

*Add 1 if branch occurs to the same page; add 2 if the branch occurs
to a different page.

BPL Branch if positive

Description: the N flag is tested and a branch occurs if the flag is
cleared; otherwise the next instruction is executed.

Processor status register:
not affected

Addressing
Mode

Relative

Assembly Language

BPL Operand

No. No. OP
Cycles Bytes Code

2* 2 10

*Add 1 if branch occurs to the same page; add 2 if the branch occurs
to a different page.

19

BRK Break command

Operation: PC + 2 i , P t
Description: The break command flag is set. The program counter
is then incremented by 2; the high-order byte, and the low-order
byte of the program counter and the processor status register are all
pushed onto the stack with the stack pointer being decremented
each time. Program control is transferred to the break command
interrupt service routine.

Processor status register:

B: set
I: set

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Implied BRK 7 1 00

BVC Branch if overflow is cleared

Description: the V flag is tested and a branch occurs if the flag is
clear; otherwise the next instruction is executed.

Processor status register:
not affected

Addressing
Mode

Relative

Assembly Language

BVC Operand

No.
Cycles

2*

No.
Bytes

2

OP
Code

50

*Add 1 if branch occurs to the same page; add 2 if branch occurs to
a different page.

20

BVS Branch if overflow is set

Description: the V flag is tested and a branch occurs if the flag is set;
otherwise the next instruction is executed.

Processor status register:
not affected

Addressing
Mode

Relative

Assembly Language

BVS Operand

No. No. OP
Cycles Bytes Code

2* 2 70

*Add 1 if branch occurs to the same page; add 2 if branch occurs to
a different page.

CLC Clear the carry flag

Operation: 0 ~ C

Description: the carry flag is cleared.

Processor status register:

C: cleared

Addressing
Mode

Implied

Assembly Language

CLC

CLD. Clear decimal mode

Operation: 0 ~ D

No.
Cycle

2

Description: the decimal mode flag is cleared.

Processor status register:

D: cleared

Addressing
Mode

Implied

Assembly Language

CLD

21

No.
Cycles

2

No. OP
Bytes Code

1 18

No.
Bytes

1

OP
Code

DB

CLI Clear interrupt disable bit

Operation: 0 ~ I

Description: the interrupt disable bit is cleared.

Processor status register:

I: cleared

Addressing
Mode

Implied

Assembly Language

CLI

CL V clear overflow flag

Operation: 0 ~ V

No.
Cycles

2

Description: the overflow flag is cleared.

Process status register:

V: cleared

Addressing
Mode

Implied

Assembly Language

CLV

22

No.
Cycles

2

No. OP
Bytes Code

1 58

No.
Bytes

1

OP
Code

BB

CMP Compare memory and accumulator

Operation: A - M
I

Description: Compare by subtraction the contents of the memory
with that of the accunlulator; the contents of the accumulator and
memory remain unchanged.

Processor status register:

N: set if the most significant bit of the result of the comparison is
set; otherwise cleared.

Z: set if the result of the comparison is zero; otherwise cleared.
C: cleared if the contents of the memory are greater than that of the

accumulator; otherwise set.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Immediate CMP #Operand 2 2 C9
Zero Page CMP Operand 3 2 C5
Zero Page,X CMP Operand,X 4 2 D5
Absolute CMP Operand 4 3 CD
Absolute,X CMP Operand,X 4* 3 DD
Absolute,Y CMP Operand,Y 4* 3 D9
(Indirect,X) CMP (Operand,X) 6 2 Cl
(Indirect),Y CMP (Operand),Y 5* 2 Dl

*Add 1 if the page boundary is crossed.

23

CPX Compare memory and index register X

Operation: X-M

Description: Compare by subtraction the contents of the memory
with that of the index register X; the contents of the memory and
the index register X are unaffected.

Processor status register:

N: set if the most significant bit of the comparison is set; otherwise
cleared.

Z: set if the result of the comparison is zero; otherwise cleared.
C: cleared if the contents of the memory are greater than the

contents of the index register; otherwise set.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Immediate CPX #Operand 2 2 EO
Zero Page CPX Operand 3 2 E4
Absolute CPX Operand 4 3 EC

CPY Compare memory and index register Y

Operation: Y-M

Description: Compare by subtraction the contents of the memory
with that of the index register Y; the contents of the memory and
the index register Y are unaffected.

Processor status register:

N: set ifthe most significant bit of the comparison is set; otherwise
cleared.

Z: set if the result of the comparison is zero; otherwise cleared.
C: cleared if the contents of the memory are greater than the

contents of the index register; otherwise set.

Addressing Assembly Language No.
Mode Cycles

Immediate CPX #Operand 2

Zero Page CPX Operand 3
Absolute CPX Operand 4

24

No.
Bytes

2
2
3

OP
Code

co
C4
cc

DEC Decrement memory

Operation: M - 1 ~ M

Description: the contents of memory are decremented by 1.

Processor status register:

N: set if the most significant bit of the memory is set; otherwise
cleared.

Z: set if the contents of the memory are zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Zero Page DEC Operand 5 2 C6
Zero Page,X DEC Operand,X 6 2 D6
Absolute DEC Operand 6 3 CE
Absolute,X DEC Operand,X 7 3 DE

DEX Decrement index register X

Operation: X-1~x

Description: the contents of the index register are decremented by
1.

Processor status register:

N: set if the most significant bit of the index register is set;
otherwise cleared.

Z: set if the index register is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Implied DEX 2 1 CA

25

DEY Decrement index register Y

Operation: Y -1 ~ Y

Description: the contents of the index register Y is decremented by
1.

Processor status register:

N: set if the most significant bit of the index register is set;
otherwise cleared.

Z: set if the index register is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Im plied DEY 2 1 88

EOR Exclusive or memory with accumulator

Operation: A(±) M ~ A

Description: an exclusive or operation is performed on the
corresponding bits of the memory and accumulator; the result is
placed in the accumulator, the contents of the memory are
unchanged.

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Immediate · EOR #Operand 2 2 49
Zero Page EOR Operand 3 2 45
Zero Page,X EOR Operand,X 4 2 55
Absolute EOR Operand 4 3 4D
Absolute,X EOR Operand,X 4* 3 SD
Absolute,Y EOR Operand,Y 4* 3 59
(Indirect,X) EOR (Operand,X) 6 2 41
(Indirect),Y EOR (Operand),Y 5 * 2 51

*Add 1 if the page boundary is crossed.

26

INC Increment memory

Operation: M+l~M

Description: the contents of the memory are incremented by 1.

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No.
Mode Cycles

Zero Page INC Operand 5
Zero Page,X INC Operand,X 6
Absolute INC Operand 6
Absolute,X INC Operand,X 7

INX Increment index register

Operation : X+1~x

No.
Bytes

2
2
3
3

OP
Code

E6
F6
EE
FE

Description: the contents of the index register are incremented by
1.

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No.
Mode Cycles

Im plied INX 2

27

No.
Bytes

1

OP
Code

EB

INY Increment index register

Operation: Y + 1 ~ Y

Description: the contents of the index register Y are incremented by
1

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Implied INY 2 1 CB

JMP Jump

Operation: (PC+ 1) ~ PCiow, (PC+ 2 J~ PChigh

Description: A jump occurs to the absolute address obtained from
the operand.

Processor status register:
not affected

Addressing
Mode

Assembly Language

Absolute
Indirect

JMP Operand
JMP (Operand)

28

No.
Cycles

3
5

No. OP
Bytes Code

3 4C
3 6C

JSR Jump to subroutine

Operation: PC + 2 i , (PC+1)~ PClow (PC+2)~PChigh

Description: The program counter is incremented by 2. The
high-order byte is pushed onto the stack and the stack pointer is
decremented by 1; then the low-order byte is pushed onto the stack
and the stack pointer is decremented once more. A jump occurs to
the absolute address contained in the operand.

Processor Status Register:
not affected

Addressing
Mode

Absolute

Assembly Language

JSR Operand

LDA Load accumulator

Operation: M~A

No. No. OP
Cycles Bytes Code

6 3 20

Description: The contents of memory are loaded into the
accumulator.

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Immediate LDA #Operand 2
Zero Page LDA Operand 3
Zero page, X LDA Operand,X 4
Absolute LDA Operand 4
Absolute,X LDA Operand,X 4*
Absolute,Y LDA Operand,Y 4*
(Indirect,X) LDA (Operand,X) 6
(Indirect),Y LDA (Operand),Y 5 *

*Add 1 if the page boundary is crossed.

29

2
2
2
3
3
3
2
2

A9
A5
B5
AD
BD
B9
Al
Bl

1-,
LDX Load index register

Operation: M~x

Description: the contents of memory are loaded into the index
register.

Process status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No. No.
Mode Cycles Bytes

Immediate . LDX #Operand 2
Zero Page LDX Operand 3
Zero Page,Y LDX Operand,Y 4
Absolute LDX Operand 4
Absolute,Y LDX Operand,Y 4*

*Add 1 when the page boundary is crossed.

LDY Load index register Y

Operation: M~Y

2
2
2
3
3

OP
Code

A2
A6
B6
AE
BE

Description: the contents of memory are loaded into the index
register.

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

'Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No.
Mode Cycles

Immediate LDY #Operand 2
Zero Page LDY Operand 3
Zero Page,X LDY Operand,X 4
Absolute LDY Operand 4
Absolute,X LDY Operand, X 4 *

*Add 1 when the page boundary is crossed.

30

No.
Bytes

2
2
2
3
3

OP
Code

AO
A4
B4
AC
BC

LSR Logic shift right f4, 5 L

Operation: O ~ 7 6 5 4 3 2 1 O ~ C

Description: the contents of the accumulator or memory are shifted
right one bit; logic O is shifted into the most significant bit and bit O
is shifted into the carry bit.

Processor status register:

N: cleared.
Z: set if the result in the accumulator or memory is zero; otherwise

cleared. .
C: set if prior to the operation bit 0 was set; .otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Accumulator LSR A 2 1 4A
Zero Page LSR Operand 5 2 46
Zero page ,X LSR Operand,X 6 2 56
Absolute LSR Operand 6 2 4E
Absolute,X LSR Operand,X 7 3 5E

NOP No operation

Description: no operation for 2 cycles.

Processor status register:
not affected.

· Addressing
Mode

Assembly Language

Implied NOP

31

No. No. OP
Cycles Bytes Code

2 1 EA

ORA 'OR' memory with accumulator

Operation: A or M ~ A

Description: a logical or operation is performed with the
corresponding bits of the memory and the accumulator; the result
is placed in the accumulator. The contents of the memory remain
unchanged.

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.

Addressing Assembly Language No.
Mode Cycles

Immediate ORA #Operand 2
Zero Page ORA Operand 3
Zero Page,X ORA Operand,X 4
Absolute ORA Operand 4
Absolute,X ORA Operand,Y 4*
Absolute,Y ORA Operand,Y 4*
(Indirect,X) ORA (Operand,X) 6
(lndirect),Y ORA (Operand),Y 5 *

*Add 1 if the page boundary is crossed.

PHA Push accumulator on stack

Operation: A i

No.
Bytes

2
2
2
3
3
3
2
2

OP
Code

09
05
15
OD
lD
19
01
11

Description: the contents of the accumulator are pushed onto the
stack at the address contained in the stack pointer; the stack pointer
is decremented by 1.

Processor status register:
not affected

Addressing
Mode

Assembly Language

Implied PHA

32

No.
Cycles

3

No.
Bytes

1

OP
Code

48

PHP Push processor status register on stack

Operation: P i
Description: the contents of the processor status register are
pushed onto the stack at the address contained in the stack pointer;
the stack pointer is decremented by 1.

Processor status register:
not affected

Addressing
Mode

Implied

Assembly Language

PHP

PLA Pull accumulator from stack

Operation: A i

No.
Cycles

3

No.
Bytes

1

OP
Code

08

Description: The stack pointer is incremented by 1; the
accumulator is loaded with the contents of the memory location
whose address is contained in the stack pointer.

Processor status register:

N: Set if the most significant bit of the accumulator is set;
otherwise cleared.

Z: Set if the contents of the accumulator are zero; otherwise
cleared.

Addressing
Mode

Implied

Assembly Language

PLA

33

No.
Cycles

4

No.
Bytes

1

OP
Code

68

Other programming books available from Pitman

BASIC: A Short Self-instructional Course
M J Oatey and C Payne

FORTRAN Reference Manual
P F Ridler

Introduction to BASIC
J B Morton

Methodical Programming in COBOL
R Welland

Pascal (second edition)
W Findlay and D A Watt

Pascal -for Science and Engineering
J McGregor and A Watt

Principles of Programming: An Introduction with
FORTRAN
EB James

Simple Pascal
J McGregor and A Watt

Structured BASIC and Beyond
W Amsbury

Structured Programming: A Self-instruction
Course
R Thurner

'

PLP Pull processor status register from stack

Operation: Pi
Description: The stack pointer is incremented by 1; the processor
status register is loaded with the contents of the memory location
whose address is contained in the stack pointer.

Processor status register:

Addressing
Mode

Implied

ROL Rotate left

Assembly Language

PLP

Operation: C ~ 7 6 5 4 3 1 0 ~ C

No. No. OP
Cycles Bytes Code

4 1 28

Description: The contents of the memory or accumulator are
rotated one bit left; the carry flag bit is rotated into bit 0 and the
most significant bit is rotated into the carry flag.

Processor status register:
not affected

N: set if after rotation the most significant bit of the memory or
accumulator is set; otherwise cleared.

Z: set if after rotation the contents of the memory or accumulator is
zero; otherwise cleared.

C: set if the most significant bit of the memory or accumulator ·
prior to rotation was set; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Accumulator ROL A 2 1 2A
Zero Page ROL Operand 5 2 26
Zero Page,X ROL Operand,X 6 2 36
Absolute ROL Operand 6 3 2E
Absolute,X ROL Operand,X 7 3 3E

34

ROR Rotate right

Operation: C ~ 7 6 5 4 3 2 1 O ~ C
Description: The contents of the memory or accumulator are
rotated one bit right; the carry flag bit is rotated into the most
significant bit of the memory or accumulator and bit O is rotated
into the carry flag.

Processor status register:

N: set if after rotation the most significant bit of the memory or
accumulator is set; otherwise cleared.

Z: set if after rotation the contents of the memory or accumulator is
zero; otherwise cleared.

C: set if the least significant bit of the memory or accumulator
prior to rotation is set; otherwise cleared.

Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code

Accumulator ROR A 2 1 6A
Zero Page ROR Operand 5 2 66
Zero Page,X ROR Operand,X 6 2 76
Absolute ROR Operand 6 3 6E
Absolute,X ROR Operand,X 7 3 7E

RTI Return from interrupt

Operation: P j PC i
Description: The stack pointer is incremented by 1. The byte stored
at the address contained in the stack pointer is loaded into the
processor status register; the stack pointer is incremented by 1 and
the byte stored at the address contained in the stack pointer is
loaded into the low-order byte of the program counter. The stack is
again incremented and the next byte loaded into the high-order
byte of the program counter.

Processor status register:

Addressing
Mode

Implied

Assembly Language

RTI

35

No.
Cycles

6

No.
Bytes

1

OP
Code

40

RTS Return from subroutine
Operation: PC i , PC + 1 ~ PC
Description: The stack pointer is incremented by 1. The byte stored
at the address contained in the stack pointer is loaded into the
low-order byte of the program counter; the stack pointer is again
incremented by 1 and the byte stored at the address contained in
the stack pointer is loaded into the high-order byte of the program
counter. Then the program counter is incremented by 1.
Processor status register:
not affected

Addressing
Mode

Implied

Assembly Language

RTS

No. No. OP
Cycles Bytes Code

6 1 60

SBC Subtract memory from accumulator with carry
Operation: A - M - C ~ A,C
Description: The contents of memory plus the complement of the
carry flag bit are subtracted from the contents of the accumulator;
the result is placed in the accumulator.

Processor status register:

N: set if the most significant bit of the result is set; otherwise
cleared.

Z: set if the result is zero; otherwise cleared.
C: cleared if the contents of memory plus the complement of the

carry flag bit are greater than the contents of the accumulator;
otherwise set.

V: set if the subtraction results in a two's complement overflow;
otherwise cleared.

Addressing Assembly Language
Mode

Immediate SBC #Operand
Zero Page SBC Operand
Zero Page,X SBC Operand,X
Absolute SBC Operand
Absolute,X SBC Operand,X
Absolute,Y SBC Operand,Y
(Indirect,X) SBC (Operand,X)
(Indirect),Y SBC (Operand,Y
*Add 1 if page boundary is crossed.

36

No. No. OP
Cycles Bytes Code

2 2 E9
3 2 E5
4 2 F5
4 3 ED
4* 3 FD
4* 2 F9
6 2 E1
5* 2 Fl

SEC Set carry

Operation: 1 ~ C
Description : The carry flag is set.

Processor status register:

C: set

Addressing
Mode

Implied

Assembly Language

SEC

SED Set decimal mode

Operation: 1 ~ D

No.
Cycles

2

Description: The decimal mode flag is set

Processor status register:

D: set

Addressing
Mode

Implied

Assembly Language

SED

SEI Set interrupt

Operation: 1 ~ I

No.
Cycles

2

Description: The interrupt disable bit is set.

Processor status register:

I: set

Addressing
Mode

Implied

Assembly Language

SEI

37

No.
Cycles

2

No. OP
Bytes Code

1 38

No.
Bytes

1

OP
Code

F8

No. OP
Bytes Code

1 78

s

,. Operation: A---')M
Description: The contents of accumulator are stored in memory.

Processor status register:
not affected IN Iv I IBIDlilzlcl
Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Zero Page STA Operand 3 2 85
Zero Page,X STA Operand 4 2 95
Absolute STA Operand 4 3 BD
Absolute,X STA Operand 5 3 9D
Absolute,Y STA Operand 5 3 99
(Indirect,X) ST A (Operand,X) 6 2 81
(Indirect),Y STA (Operand),Y 6 2 91

STX Store index X

Operation: x~M
Description: The contents of the index register X are stored in
memory.

Processor status register:
not affected

Addressing Assembly Language
Mode

Zero Page STX Operand
Zero Page,Y STX Operand,Y
Absolute STX Operand

38

No. No. OP
Cycles Bytes Code

3 2 86
4 2 96
4 3 BE

STY Store index Y

Operation: Y ~ M
Description: The contents of the index register Y are stored in
memory.

Processor status register:
not affected

Addressing Assembly Language
Mode

Zero Page STX Operand
Zero Page,X STX Operand,X
Absolute STX Operand

No.
Cycles

3
4
4

TAX Transfer accumulator to index register X

Operation: A~x

No. OP
Bytes Code

2 84
2 94
3 BC

Description: The contents of the accumulator are transferred to the
index register X; the contents of the accumulator remain
unchanged.

Processor status register:

N: set if the most significant bit of the accumulator is set; otherwise
cleared.

Z: set if the contents of the accumulator are zero; otherwise
cleared.

Addressing
Mode

Implied

Assembly Language

TAX

39

No.
Cycles

2

No.
Bytes

2

OP
Code

AA

TAY Transfer accumulator to index register Y

Operation: A~Y
Description: The contents of the accumulator are transferred to the
index register Y; the contents of the accumulator remain
unchanged.

Processor status register:

N: set if the most significant bit of the accumulator is set; otherwise
cleared.

Z: set if the contents of the accumulator are zero; otherwise
cleared.

Addressing
Mode

Implied

Assembly Language

TAY

No.
Cycles

2

TY A Transfer index register Y to accumulator

Operation: Y ~A

No.
Bytes

1

OP
Code

AB

Description: The contents of the index register Y are transferred to
the accumulator; the contents of the index register Y remain
unchanged.

Processor status register:

N: set if the most significant bit of the accumulator is set; otherwise
cleared.

Z: set if the contents of the accumulator are zero; otherwise
cleared.

Addressing
Mode

Implied

Assembly Language

TYA

40

No.
Cycles

2

No.
Bytes

1

OP
Code

98

TSX Transfer stack pointer to index X

Operation: s~x
Description: The contents of the stack pointer are transferred to the
index register X; the contents of the stack pointer remain
unchanged.

Processor status register:

N: set if the most significant bit of the stack pointer is set;
otherwise cleared.

Z: set if the-contents of the stack pointer are set; otherwise cleared.
Addressing Assembly Language No. No. OP
Mode Cycles Bytes Code
Implied TSX 2 2 BA

TX.A Transfer index X to accumulator

Operation: x~A
Description: The contents of the index register X are transferred to
the accumulator; the contents of the index register remain
unchanged.

Processor status register:

N: set if the most significant bit of the index register is set;
otherwise cleared.

Z: set if the contents of the index register are zero; otherwise
cleared.

Addressing
Mode

Implied

Assembly Language

TXA

41

No.
Cycles

2

No.
Bytes

1

OP
Code

BA

TXS Transfer index X to stack pointer

Operation: x~s
Description: The contents of the index register X are transferred to
the stack pointer; the contents of the index register remain
unchanged.

Processor status register:
not affected

Addressing
Mode

Implied

Assembly Language

TXS

No.
Cycles

2

No.
Bytes

1

OP
Code

9A

Table II Operation codes listed in numerical sequence

Code Inst. Addressing Code Inst. Addressing
Mode Mode

00 BRK Implied 28 PLP Implied
01 ORA (Indirect,X) 29 AND Immediate
05 ORA Zero page 2A ROL Accumulator
06 ASL Zero page 2C BIT Absolute
08 PHP Implied 2D AND Absolute
09 ORA Immediate 2E ROL Absolute
OA ASL Accumulator 30 BMI Relative
OD ORA Absolute 31 AND (Indirect), Y
OE ASL Absolute 35 AND Zero page,X
10 BPL Relative 36 ROL Zero page,X
11 ORA (Indirect),Y 38 SEC Implied
15 ORA Zero page,X 39 AND Absolute,Y
16 ASL Zero page,X 3D AND Absolute,X
18 CLC Implied 3E ROL Absolute,X
19 ORA Absolute,Y 40 RTI Implied
1D ORA Absolute,X 41 EOR (Indirect,X)
1E ASL Absolute,X 45 EOR Zero page
20 JSR Absolute 46 LSR Zero page
21 AND (lndirect,X) 48 PHA Implied
24 BIT Zero page 49 EOR Immediate
25 AND Zero page 4A LSR Accumulator
26 ROL Zero page 4C JMP Absolute

42

Code Inst. Addressing Code Inst. Addressing
Mode Mode

4D EOR Absolute 99 STA Absolute,Y 4E LSR Absolute 9A TXS Implied 50 BVC Relative 9D STA Absolute,X 51 EOR (Indirect),Y AO LDY Immediate 55 EOR Zero page,X Al LDA (Indirect,X) 56 LSR Zero page,X A2 LDX Immediate 5B CLI Implied A4 LDY Zero page 59 EOR Absolute,Y A5 LDA Zero page 5D EOR Absolute,X A6 LDX Zero page 5E LSR Absolute,X AB TAY Implied 60 RTS Implied A9 LDA Immediate 61 ADC (Indirect,X) AA TAX Implied 65 ADC Zero page AC LDY Absolute 66 ROR Zero page AD LDA Absolute 6B PLA Implied AE LDX Absolute 69 ADC Immediate BO BCS Relative 6A ROR Accumulator Bl LDA (Indirect),Y 6C JMP Indirect B4 LDY Zero page,X 6D ADC Absolute B5 LDA Zero page,X 6E ROR Absolute B6 LDX Zero page,Y 70 BVS Relative BB CLV Implied 71 ADC (Indirect),Y B9 LDA Absolute,Y 75 ADC Zero page,X BA TSX Implied 76 ROR Zero page,X BC LDY Absolute,X 7B SEI Implied BD LDA Absolute,X 79 ADC Absolute,Y BE LDX Absolute,Y 7D ADC Absolute,X co CPY Immediate 7E ROR Absolute,X Cl CMP (Indirect,X) Bl STA (Indirect,X) C4 CPY Zero page B4 STY Zero page C5 CMP Zero page B5 STA Zero page C6 DEC Zero page B6 STX Zero page CB INY Implied BB DEY Implied C9 CMP Immediate BA TXA Implied CA DEX Implied BC STY Absolute cc CPY Absolute BD STA Absolute CD CMP Absolute BE STX Absolute CE DEC Absolute 90 BCC Relative DO BNE Relative 91 STA (Indirect),Y D1 CMP (Indirect), Y 94 STY Zero page,X D5 CMP Zero page,X 95 STA Zero page,X D6 DEC Zero page,X 96 STX Zero page,Y DB CLD Implied 9B TYA Implied D9 CMP Absolute,Y

43

Code Inst. Addressing Code Inst. Addressing
Mode Mode

DD CMP Absolute,X ED SBC Absolute
DE DEC Absolute,X EE INC Absolute
EO CPX Immediate FO BEQ Relative
El SBC (lndirect,X) Fl SBC (Indirect), Y
E4 CPX Zero page FS SBC Zero page,X
Es SBC Zero page F6 INC Zero page,X
E6 INC Zero page FB SED Implied
EB INX Implied F9 SBC Absolute,Y ·
E9 SBC Immediate FD SBC Absolute,X
EA NOP Implied FE INC Absolute,X
EC CPX Absolute

Stack processes

The stack is an area of random-access memory where data can be
temporarily stored and retrieved by the CPU and the programmer.
In the 6S02 system the stack is restricted to page 01 of memory and
since each page contains only 2S6 memory locations, an 8-bit
register is sufficient to identify the current position of the stack.
This register is called the stack pointer.

The stack operates in the following way. Data is pushed onto the
stack one byte at a time at the address contained in the stack
pointer; as each byte is pushed the stack pointer is decremented by
1 thus ensuring that the stack pointer points to the next 'empty'
location in the stack. In retrieving data the stack pointer is
incremented by 1 before the data is pulled from the stack at the
address contained in the stack pointer.

Figure 1 shows a diagrammatic description

SP-S
of the operation. Assume initially that the
stack pointer contains the value SP. Data is
stored in the following sequence BYTEl,
BYTE2 ... BYTES with the stack pointer being SP-4 BYTES
decremented until finally containing the value
SP-S. Data is retrieved in the reverse sequence SP-3 BYTE4
BYTES ... BYTEl with the stack pointer
finally containing SP.

This stack operation is commonly referred
to as LIFO (last-in-first-out).

Fig. 1

44

SP-2 BYTE3

SP-1 BYTE2

SP BYTEl

Loading the stack pointer

During the initialization sequence of a program it is necessary to
load the stack pointer with the required address. There is no
instruction which loads the stack pointer directly
LDX #$FF ; loads index register X with $FF
TXS ; transfers the contents of the index register X to the

stack pointer
The current position of the stack is $01FF. Note that the index
register Y cannot be used for this operation.

Push and pull operations

There are four instructions which can be used to store and retrieve
data from the stack. These are PHA, PHP, PLA and PLP.
PHA ; the contents of the accumulator are pushed onto the stack

and the stack pointer is decremented by 1.
PLA ; the stack pointer is incremented by 1 and the data pulled

from the stack is loaded into the accumulator.
PHP ; the contents of the processor status register are pushed onto

the stack and the stack pointer is decremented by 1.
PLP; ; the stack pointer is incremented by 1 and the data pulled

from the stack is loaded into the processor status register.
The contents of the index registers X and Y cannot be saved directly
on the stack and the accumulator must be used.

TXA ; contents of index register X transfered to A
PHA ; and pushed on to the stack.

For retrieval
PLA ; contents of the stack pulled from the stack
TAX ; into A and transferred to X.

By using TY A and TAY the status of index register Y can also be
saved and retrieved.

Subroutines

Program control is transferred to a subroutine by using the
instruction JSR. This requires 3 bytes of machine code using the
absolute addressing mode.

Example: 2200
2203

JSR $0300

45

When the instruction is execu ed e proa
counter is incremented by 2 and its contents are
pushed onto the stack one byte at a time by the
CPU. Note that the stack pointer is decremented by
2 and that the high-order byte is stored first.

Program control is then transferred to $0300.

SP-2

SP-1 02

SP 22

Subroutines are normally terminated by the instruction RTS
(return from subroutine). This is a 1-byte instruction and when
executed the stack pointer is incremented by 1 and the byte stored
in the stack is loaded into the least significant byte of the program
counter; the stack pointer is incremented again and the byte stored
in the stack is loaded into the most significant byte of the program
counter. Then the program counter is incremented by 1 and
program control passes to this address.

Thus in the previous example program control would be
transferred to $2203, the next instruction in the program sequence
to be executed.

It should be noted that on entering a subroutine the status of the
CPU is not saved. Therefore it may be necessary to save the contents
of the accumulator, the processor status register and the index
registers on the stack.

Nested subroutines

It is permissible to use nested subroutines.

Example 2033 JSR SUBl ; main program
2036 -------

2080 SUBl ------- ; subroutine 1
-- ---- -

2090 JSR SUB2
-- - - - --
RTS

3000 SUB2 ------- ; subroutine 2
RTS

46

Immediately prior to the execution of
the RTS instruction in subroutine 2 the stack
would contain:

Interrupts

SP-4

SP-3 92

SP-2 20

SP-1 35

SP 20

When an interrupt service routine is entered the CPU pushes the
contents of the return address of the main-line program (high-order
byte first) and the contents of the processor status register (P) onto
the stack in that order.
Example: 2050 LDA #MEM +---interrupt occurs here

2052

SP-3

SP-2 P

SP-1 52

Note that at the time of the interrupt the current SP 20
instruction is completed and the program counter
will contain the address of the next instruction.

Interrupt service routines are normally terminated with the RTI
instruction (return from interrupt). This is a 1-byte instruction and
when executed will increment the stack pointer and pull the
contents of the processor status register and the program counter
contents from the stack. In the example given, program control is
transferred back to location $2052.

Stack manipulation

Data stored in the stack may be changed by the programmer by
incrementing or decrementing the stack pointer to the required
location and using the push and pull instructions. There are no
instructions which directly increment or decrement the stack
pointer but use is made of the index register X.

47

TSX
DEX or INX
TXS

This routine transfers the contents of the stack pointer to the index
register which is then incremented or decremented as required and
is transferred back to the stack pointer.

The stack pointer can also be changed by using the push and pull
instructions; care must be taken not to corrupt the stack or the
accumulator.

Input/Output

There are a number of input/output devices which are compatible
with the 6502 microprocessor. It is beyond th~ scope of this Guide
either to give details or to list all of these devices. A list of the more
common ones is shown below and full details are given separately
on the aptly named Versatile Interface Adapter (VIA).
(a) PERIPHERAL INTERFACE ADAPTER (PIA) 6520
(b) ASYNCHRONOUS COMMUNICATIONS INTERFACE

ADAPTER (ACIA) 6551
(c) CRT CONTROLLER (CRTC) 6545
(d) ROM-RAM-I/0-COUNTER (RRIOC) 6531
(e) ROM-l/0-COUNTER (RIOC) 6534
(f) ROM-RAM-l/0-INTERVAL TIMER (RRIOT) 6530
(g) RAM, I/0,INTERVAL TIMER (RIOT) 6532
(h) VERSATILE INTERFACE ADAPTER (VIA) 6522
The manufacturers' data sheets should be consulted for the full
specification, pin connections, electrical characteristics and
timing diagrams.

Versatile Interface Adapter (VIA) 6522

The Versatile Interface Adapter contains the following features:
(a) two eight-bit bidirectional input/output ports
(b) two interval timers
(c) serial to parallel and parallel to serial shift register
(d) four peripheral control lines, CA1, CAZ, CB1 and CB2
(e) interrupt facilities.
Figure 2 shows the block diagram of the 6522 VIA internal registers
and the relevant pin connections.

48

Chip access control

~ ~ ~
NIiiIii

() () r
I I

I
I

I I I

~ ~ ~r~
N NIii

I
....Iii

() r () r
I I I I

r r r r

Timer 1

Port B registers
0 I I
~ I ORB I IRB

SR

a:J

Buffers (PB)

Port B CB2 CB1

Key
T2C-H Counter
T2C-L Counter
T2L-L Latch
T1C-L Counter
T1C-L Counter
T1 L-H Latch
T1 L-L Latch
DDRB Data dir.
ORB Out~ut
IRB Input latch

a a
/°'\,

Data bus butters

ACRIPCR IER I IFR
I I

Function Interrupt
control

Handshake
control

A I B

CA2 CA1

control

Port A registers
o I I

ACR
PCR
IER
IFR
SR
A
B

~ 10RA1 IRA
>

Buffers (PA)

Port A

Auxiliary
Perieheral
Enable
Fla9s
Shift register
Port A
Port B

DORA Data dir.
ORA Output
IRA Input latch

Fig. 2 R6522 Block Diagram

49

IRQ

Internal registers

The VIA has 16 8-bit memory-mapped programmable internal
registers. The registers are selected by the chip select lines CSl
(active high) and CS2 (active low) with the 4-register select lines,
RSO, RSl, RS2 and RS3. The table below shows the decoding of the
16 registers.

fT.!r

0 u z •.-4 Description ~ ~ ~
Q.) Q.) 0

+J +J s Cf.) Cf.)
•.-4

0
• .-4 Q.) 00 C"":) N ~ 00 ~ Q.) U"J U"J U"J U"J
&~ Write Read ~~ ~ ~ ~

0 0 0 0 0 ORB/IRB Output register B Input register B
1 0 0 0 1 ORA/IRA Output register A In put register A

2 0 0 1 0 DDRB Data direction register B
3 0 0 1 1 DDRA Data direction register A

4 0 1 0 0 TlC-L Tl low-order latch Tl low-order
counter

5 0 1 0 1 TlC-H Tl high-order counter
6 0 1 1 0 T1L-L Tl low-order latch
7 0 1 1 1 TlL-H Tl high-order latch

8 1 0 0 0 T2C-L T2 low-order latch T2 low-order
counter

9 1 0 0 1 T2C-H T2 high order counter
A 1 0 1 0 SR Shift register
B 1 0 1 1 ACR Auxiliary control register
c 1 1 0 0 PCR Peripheral control register
D 1 1 0 1 IFR Interrupt flag register
E 1 1 1 0 IER Interrupt enable register
F 1 1 1 1 ORA/IRA No handshake mode

Note: When the VIA is reset, the data direction registers DDRA and
DDRB the control registers PCR and ACR and the interrupt flag
register IFR are all cleared. Interrupts are also disabled.

50

Input/output ports

Each port has B peripheral data lines (PA7-PAO, PB7-PBOJ ·hie
can be configured individually as either input or output using e
Data Direction Registers DDRA and DDRB.

Data direction registers DDRB and DDRA (Registers $2 and $3)

A peripheral data line is established as an input by writing a logic O
to the corresponding bit of the data direction register; it is
established as an output by writing a logic 1.

Output registers ORB and ORA (Registers $0 and $1)

If a peripheral data line is established as an output, a logic 1 written
to the corresponding bit in the output register will cause the data
line to go high; a logic O causes the line to go low.

When reading a peripheral data line on port A that has been
established as an output, the voltage level on the line determines
whether it is read as a logic 0 or 1; however for a line on port B, the
bit stored in the output register ORB determines the value read.

Input Registers IRB and IRA (Registers $0 and $1)

If a line is established as an input, a CPU read of the corresponding
bit in the input register will be logic 1 if the voltage level on the line
corresponds to a standard TTL logic 1; if the voltage level
corresponds to a TTL logic 0 then a logic O is read.

If an in put line is left unconnected it will be read as a logic 1.
Example: Configure port A as an input port and port Bas an output
port; read the input data on port A and display on port B.
LDA #$00 ; load 0000 0000 into the data direction register side

A
STA DDRA ; all lines on side A configured as input
LDA #$OFF ; load 1111 1111 into the data direction register side

B
ST A DDRB ; all lines on side B configured as output
LDA IRA ; read data on port A
ST A ORB ; display data on port B
Further example: Configure PA7 and PA6 on side A as input and
lines P A5 through PAO as output.
LDA #$3F; load 0011 1111 into the data direction register side A
STA DDRA; PA7-PA6 input, PA5-PAO output

51

Peripheral control register {Register C)

The peripheral control register PCR selects the operating modes for
the control lines, CA1, CAZ, CB1 and CBZ; its format is sho\ -n in
Fig. 3.

.._.......,_. ~__...._,... .-..-
I I L_ CA1 control

CBZ control CAZ control
Fig. 3 CB1 control

Control line CA 1

CA1 can be configured only as an input line; bit O of the PCR
defines the active transition of CA 1 as follows:

0 high to low transition
1 low to high transition

An active transition on CA1 sets bit 1 of the interrupt flag register
(IFR). The flag can be reset by an CPU read or write of the output
register ORA.

Control line CA2

CAZ is a bidirectional line and is configured by bits 1, Z and 3 in the
PCR.

CAZ established as an input: bit 3=0
bit 1 defines the type of input mode:

0 normal input niode
1 independent interrupt mode

bit Z defines the active transition of CAZ:
0 high to low transition
1 low to high transition

An active transition of CAZ sets bit 0 of the interrupt flag register
(IFR).

For normal input mode, the interrupt flag CAZ of the interrupt
flag register (IFR) is reset by a CPU read or write of the output
register ORA. For the independent interrupt mode the CAZ flag can
only be reset by a write to the interrupt flag register (see Interrupt
facilities p. 58).

5Z

CAZ established as an output: bit 3=1
bit

2 1
0 0 CA2 goes low on an CPU read or write of the output register

ORA; it is returned high by the next active transition of CA 1.
This is called the handshake mode.

0 1 CA2 goes low on an CPU read or write of the output register
ORA; it is returned high on the next negative transition of
the system clock pulse. This is referred to as the pulse mode.

1 0 CA2 is reset.
1 1 CAZ is set.

The control lines CB1 and CB2

The control lines CB1 and CBZ are configured almost identically to
CA 1 and CAZ; bit 4 configures CB 1 and bits 5, 6 and 7 configure
CBZ in the same way that bits 0 and 1, Zand 3 configure CAl and
CA2.

There are however small differences: (a) CB1 can be used as an
output line (unlike CAl) for use in the shift register mode; (b) when
CBZ is established as an output in the handshake or pulse mode, it
will go low only on a CPU write to the output register ORA.

Auxiliary control register (register $B)

The auxiliary control register configures the two timer counters, 1
and 2 and the shift register; it also provides the facility for enabling
and disabling the latching on ports A and B. its format is shown in
Fig. 4.

Fig. 4. I 7 I 6 I 5 I 4 I 31 2 I 11 ol
TT - y\-1 -LcA1 }

Timer 1 controy CB1

Timer z control Shift register control

Latching of data

Latch enable/
disable

The data on ports A and B can be latched at the time of the last
active transition on control lines CAl and CB1. In order to
configure the latching mode, bits O and 1 of the auxiliary control

53

register must be logic 1 and to disable they must be log · c . .. s o
as there is a CPU read of the appropriate input register ORA o ORB
the latch is disabled.
Example: Configure the VIA to enable data to be latched on port A
but to be disabled on port B.
LDA #$01 ; bit pattern 0000 0001
STA ACR ; port A latching enabled, port B disabled.
When there is an active transition of CAl (defined by bit O of the
peripheral control register) the data appearing at the port A at the
time of the active transition will be latched. The next read of the
register ORA will be the latched data and not the data appearing
currently on the port.

Timer 1

Timer 1 has a 16-bit counter and 8-bit low-order and high-order
latches. There are 4 modes of operation and are configured by bits 6
and 7 of the Auxiliary Control Register ACR.

bits

7 6

O O Timed interrupt mode single shot with PB7 disabled:
This mode generates a time interval equal to N clock
pulses where N is the number loaded into the Tl counter.
Following the CPU write to TlC-H the interrupt flag Tl of
the interrupt flag register IFR is reset and the counter is
decremented down to zero at the system clock rate. At this
P.£!!it the interrupt flag is set and the IRQ line will go low if
lRQ interrupts are enabled. The counter will continue to
decrement beyond zero if interrupts have been enabled.
The time interval since the interrupt can be determined by
a CPU read of the counter.

0 1 Continuous interrupts with PB7 disabled:
This mode generates continuous interrupts whose
periods equal N system clock pulses where N is the
number loaded into the Tl counter. Following the CPU
write to TlC-H the interrupt flag Tl of the interrupt flag
register IFR is reset and the counter is decremented down
to zero at the system clock rate. When the count reaches
zero the interrupt flag is set, the contents of the latches are
automatically transferred to the counter and the process is
automatically repeated.

54

1 0 Single shot output on PB 7:
This mode generates a single negative pulse on the
peripheral data pin PB7 of duration equal to N clock
pulses where N is the number in the Tl counter.
Following a CPU write to T1C-H, PB7 goes low and is
returned high when the counter is decremented to zero.
PB 7 must be configured as an output line in the data
direction register DDRB.

1 1 Continuous output on PB7:
This mode generates a continuous wave form on PB 7.
Following a CPU write to T1C-H, PB7 goes low and is
returned high when the counter is decremented to zero
the interrupt flag being set. Then the contents of the
latches are automatically transferred to the counter, the
interrupt flag is reset and the counter is decremented to
zero when PB7 is inverted; the process is repeated
continuously.

Note: For precise timing wave forms, see manufacturer's
data sheet.

CPU read and write of Tt counter

The 16-bit counter is loaded by the following sequence: the
low-order byte is loaded into the Tl low-order latch by a CPU write
to T1C-L; the high-order byte is loaded into the Tl high-order latch
by a CPU write to T1C-H.

Following the CPU write to T1C-H, the contents of both the low
and high-order latches are transferred into the Tl counter; the
interrupt flag Tl is reset and the counter is automatically
decremented at the system clock rate.
Example: load the timer counter Tl with $8024.

LDA #$24 ;
STA T1C-L ; load the low-order latch first with $24
LDA #$80 ; load the high-order latch with $80, the counter is

then loaded and the Tl interrupt flag is reset.
STA T1C-H ; The counter now decrements to zero at the system

clock rate.
The 16-bit counter is read by the following sequence:
The low-order counter is read by a CPU read of T1C-L, Tl interrupt
flag is rset, the high-order counter is read by a CPU read of T1C-H.
Example: read the contents of Tl and store in memory locations
called MEM and MEM + 1.

55

LDA TlC-L
STAMEM
LDA TlC-H
STA MEM+l

; low-order byte is transferred to ME 1·
; Tl flag is reset
; high-order byte is transferred to MEM 1

CPU read and write of latches

The low-order and high-order latches may read and be written to
by;
LDA TlL-L
STA TlL-L
LDA TlL-H
STA TlL-H

; CPU read of low-order latch
; CPU write to low-order latch
; CPU read of high-order latch
; CPU write to high-order latch

No transfer to the counter takes place and the interrupt flag Tl
remains unaffected by these read/writes.

Timer 2

Timer 2 consists of a 16-bit counter T2 and a low-order latch; there
are two modes of operation configured by bit 5 in the auxiliary
control regi ter ACR.

Bit 5

O Timed interrupt mode:
This mode generates a time interval equal to N system clock
pulses where N is the number loaded into the counter T2.
Following a CPU write to TZC-H the counter is decremented
to zerom

1 Pulse counting mode:
In this mode the peripheral data pin PB6 is used to count a
predetermined number of pulses. The number of pulses to be
counted is loaded into the counter T2; the CPU write to
TZC-H clears the interrupt flag T2 and the counter is
decremented every time a pulse appears on PB6. When the
count is zero the interrupt flag is set.
Note: PB6 must be configured as an input.

CPU read and write of T2 counter

The 16-bit counter is loaded by the following sequence:
The low-order byte is loaded into the T2 low-order latch by an CPU
write to TZC-L; the high-order byte is loaded into the T2 high-order
counter by a CPU write to TZC-H.

56

Following the CPU write to T2C-H the contents of the low-order
latch are automatically transferred to the low-order counter, the
int~rrupt flag T2 is reset and the counter is decremented.
The counter is read by the following sequence:
The low-order byte is read by a CPU read of T2C-L, the T2 interrupt
flag is reset and the high-order byte is read by a CPU read ofT2C-H.

Shift register

The shift register mode is configured by bits 4, 3 and 2 of the
auxiliary control register ($B). There are seven modes of operation
together with a disabling mode. Data is shifted serially in or out of
the shift register (SR) via the yeripheral control line CB2 under the
control of internal or externa shift pulses on the line CB 1. The rate
of data transfer depends on the mode selected.

The modes of operation are summarized as follows:

bit
4 3 2

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

CB1

o/p

o/p

i/p

o/p

o/p

CB2

i/p

i/p

i/p

o/p

o/p

the shift register is disabled and the control
lines CB1 and CB2 are controlled by
peripheral control register PCR; the
interrupt flag is reset.
the rate of data transfer is determined by the
T2 counter and the system clock period.
Data transfer is initialized by a CPU read or
write of the shift register; the interrupt flag
is set after eight CB1 shift pulses.
the rate of data tr an sf er is determined by the
system clock period. Data transfer is
initialized by a CPU read or write of the
shift register; the interrupt flag is set after
eight CB 1 shift pulses.
the rate of data transfer is determined by an
external device. The interrupt flag is set
after eight CB1 shift pulses.
the rate of data transfer is determined by the
T2 counter and the system clock period.
Data transfer is initialized by a CPU read or
write of the shift register.
the rate of data transfer is determined by the
T2 counter and the system clock period.

57

1 1 0

1 1 1

Data transfer is initialized by a CPU read or
write of the shift register. The interrupt flag
is set after eight CB 1 shift pulses .

o/p o/p the rate of data transfer is determined by the
system clock period. Data transfer is
initialized by a CPU read or write of the
shift register. The interrupt flag is set after
eight shift pulses.

i/p o /p the rate of data tr an sf er is determined by an
external device. Data transfer is initialized
by a CPU read or write of the shift register.
The interrupt flag is set after eight shift
pulses.

Interrupt facilities

The 6522 VIA has a single interrupt request line IRQ which is
active low. This line is enabled or disabled by the state of both the
interrupt flag register IFR and the interrupt enable register IER.

Interrupt flag register (register $D)

The VIA has an interrupt flag register containing 6 interrupt flags
and a bit IRQ which indicates that an IRQ interrupt has been
enabled; the format for the flag register is shown in Fig. 5.

Fig. s. I IRQ 1.n I Tz I CB1 I cB2 I sRI cA1I cA2 I
IRQ

Tl

T2

CBl

CB2

SR

this bit is set following any enabled interrupt (it reflects the
status of the IRQ (active low) interrupt line of the VIA).
this flag is set when the counter Tl has been decremented
down to zero; it is reset by a CPU read of TlC-L or a write to
TlC-H.
this flag is set when the counter T2 has been decremented
down to zero; it is reset by a CPU read of T2C-L or a write to
T2C-H
this flag is set following an active transition of CB 1; it is reset
by a CPU read or write of ORB
this flag is set following an active transition on CBZ; it is
reset by a CPU read or write of ORB
this flag is set on the completion of 8 shifts; it is reset by a
CPU read or write of the shift register.

58

CA1 this flag is set following an active transition on CA1 · i is
reset by a CPU read or write of ORA

CA2 this flag is set following an active transition on CAZ; it is
reset by a CPU read or write of ORA

Note: Individual flags can also be reset by writing a logic 1 in the
appropriate bit in the IFR.

Interrupt enable register

IRQ interrupts can be disabled or enabled by an CPU write to the
interrupt enable register whose format is similar to that of the flag
register with the exception of bit 7 (set/clear). (See Fig. 6.)

7 6 5 4 3 2 1 0

Fig. 6 I S/C I T1 I T2 I CB1 I CB2 I SR I CA1 I CA2 I
Interrupts may be disabled by writing a logic 0 to bit 7 together

with a logic 1 to the appropriate bit.
Example: LDA #$03 ; 0000 0011

STA IER ; disables CA1 and CA2 interrupts.
Interrupts may be enabled by writing a logic 1 to bit 7 with a logic

1 to the appropriate bit
Example: LDA #$92 ; 1001 0010

STA IER ; enables CB1 and CA1 interrupts
If a CPU read of the IER is made, bit 7 will always appear as a logic 1
and the other bits will reflect their enabled (logic 1) or disabled
(logic O) state.

Interrupt operation

An IRQ interrupt will occur if any flag in the IFR is set and the
corresponding bit in the IER has been previously enabled. When bit
7 in the interrupt flag register is high then this is an indication that
the IRQ line has gone low.

Interrupts and reset

The 6502 microprocessor has two hardware interrupt lines: NMI
(non-maskable intefrupt) and IRQ (interrupt request). Both lines
are active low but RQ is level sensitive whilst NMI is edge
sensitive.

59

The addresses for the two interrupt service routines are sto ed in
the following memory locations

FFFA low-order byte } NMI
FFFB high-order byte
FFFC low-order byte } RES
FFFD high-order byte
FFFE low-order byte ~
FFFF high-order byte f IRQ and BRK

The address for the reset routine is included and is discussed in the
section on Reset; there is a software interrupt instruction BRK
which has the same interrupt service routine address as IRQ.

Interrupt request (IRQ)

This line is normally connected to the interrupt request lines of
input/output devices; in the case of the VIA this is IRQ. The
interrupt can be disabled by setting the interrupt disable bit in the
processor status register to logic 1 and enabled with a logic O (see
SEI and CLI instructions). When the IRQ line goes low an interrupt
is requested and the following sequence takes place:
1 The current instruction in the main line program is completed.
2 The I bit in the processor status register is polled and if it is

equal to 1 the interrupt is ignored and the next instruction in the
' main line sequence will be executed; an interrupt flag will have

been set as a result of the request and this can later be
interrogated or cleared as appropriate.

3 If the I bit is not set then the CPU pushes the contents of the
program counter on to the stack (high-order byte first) together
with the contents of the processor status register. __

4 The interrupt disable bit is set to 1 to prevent further IRQ
interrupts and break command flag is set.

5 The address of the interrupt service routine is obtained from the
addresses $FFFE and $FFFF and loaded into the program
counter thus transferring program control to the interrupt
service routine.

Non-maskable interrupt (NMI)

A negative transition on this line generates an interrupt that cannot
be masked or disabled; the following sequence takes place:
1 The current instruction in the main line program is completed.
2 The CPU pushes the contents of the program counter onto the

stack (high-order byte first) together with the contents of the
processor status register.

60

.3 The interrupt disaole bit is set to 1 to prevent IRQ type
interrupts and the break command flag is set to 1.

4 The address of the interrupt service routine is obtained from the
addresses $FFF A and $FFFB and loaded into the program
counter thus transferring program control to the interrupt
service routine.

Note that the NMI interrupt has a higher priority than IRQ.

Saving CPU status

The contents of the accumulator and the index registers are not
saved on entering an interrupt service routine. This can be
accomplished by:
PHA ; push accumulator contents onto the stack
TYA;
PHA ; push index register Y onto the stack
TXA;
PHA ; push index register X onto the stack
The data can be retrieved before leaving the interrupt service
routine by:
PLA ; pull data from stack into accumulator
TAX ; transfer contents of accumulator into the index register X
PLA ; pull data from stack into accumulator
TAY ; transfer contents of accumulator into the index register Y
PLA ; pull contents of accumulator from the stack

Return from interrupt

The interrupt service routines for both IRQ and NMI are normally
terminated by the instruction RTL This insiruction increments the
stack pointer by 1 and retrieves the previously stored processor
status register; the stack pointer is incremented again to retrieve
the contents of the program counter and thereby transfers program
control back to the main-line program.

Multiple IRQ interrupts

The majority of input/output devices have more than one source of
IRQ interrupts; the 6522 VIA has 7 interrupt modes and if any one is
enabled program control will be transferred to the same IRQ
interrupt service routine. The source of the interrupt can be
determined by polling the interrupt flag register immediately on
entering the interrupt service routine. The order in which the flags

61

are polled depends on the priority decided by the programmer. If
more than one peripheral input/output device is interfaced to the
CPU then the principle is still the same but more time will be used
to poll the flag registers of the different devices.

Reset

This line is used to reset or initialize the microprocessor from a
power down situation. When the line is taken low all CPU
read/writes cease, and when the line is taken high the following
sequence takes place:
1 The interrupt disable bit in the processor status register is set.
2 The address of the reset routine is obtained from the memory

locations $FFFC and $FFFD and loaded into the program
counter thus transferring program control to the reset routine.

This line is often used to retrieve the situation in the event of
system runaway; depression of the reset key will normally bring
the system back to its initialization condition.

BRK

The break command instruction is a software interrupt, and upon
execution the break command flag in the processor status register
is set. Then the CPU pushes the contents of the program counter
(high-order byte first) and the processor status reftister onto the
stack. The interrupt disable bit is set to 1 to prevent RQ interrupts.
The address of the interrupt service routine is obtained from the
addresses $FFFE and $FFFF and is loaded into the program
counter thus transferring control to the interrupt service routine. In
order to distinguish between an IRQ and BRK interrupt, the
processor status register must be pulled from the stack and the
break command flag interrogated.
Example: 8-bit binary addition. The two numbers to be added are
stored in locations MEM and MEM + 1 and the answer in locations
ANSWRL and ANSWRH.

CLD ; binary arithmetic
CLC ; clear carry
LDA #$00 ;
STA ANSWRH ; clear high-order byte
ADC MEM ; first number
ADC MEM + 1 ; second number
STA ANSWRL ; store low-order byte
BCC CONT ; carry clear
INC ANSWRH ; increment high-order byte

CONT ------ ; continue
62

MEM H
MEM+1 D
ANSWRL H
ANSWRHQ

Note: (a) The 6502 instruction set does not have an 'add without
carry' instruction. The carry flag bit must be cleared before the start
of an addition.
(b) The decimal mode flag must be cleared so as to ensure that
binary arithmetic is performed.

Example: 8 bit binary subtraction. The minuend is stored in
location MEM and the subtrahend in MEM + 1; the answer is in
locations ANSWRL and ANSWRH.

CLD ; binary arithmetic
SEC ; set carry

~?~ t~~~RH ; clear high-order byte MEM H
LDA MEM ; minuend MEM + 1 D
SBC MEM + 1 ; subtrahend a
STA ANSWRL ; store low-order byte ANSWRL
BCS CONT ; carry set then branch ANSWRH
DEC ANSWRH ; decrement high-order byte

CONT ------ ; continue
Note: (a) The carry flag has to be set prior to a subtraction. When the
subtrahend is greater than the minuend, and as a consequence
there is a 'borrow', then the carry flag is reset and not set.
(b) The decimal mode flag must be cleared to ensure that binary
subtraction is performed.

Example: 16-bit binary addition. The two 16-bit binary numbers to
be added are stored in locations NUMB1H, NUMB1L, NUMB2H,
NUMB2L; the answers are deposited in locations ANSWRL,
ANSWRM and ANSWRH.

CLD
CLC
LDA #$00
STAANSWRH
ADCNUMB1L
ADC NUMB2L
STAANSWRL
LDA #$00
ADC NUMB1H
ADC NUMB2H
STAANSWRM
BCC CONT
INC ANSWRH

CONT------

; binary arithmetic
; clear carry

' ; clear high-order byte .
' ; add low-order bytes
; store low-order byte
; clear accumulator

NUMB1L
NUMB1H

NUMB2L
NUMB2H

, ANSWRL
; add high-order byte ANSWRM
; store middle-order byte ANSWRH
; carry clear then branch
; increment high-order byte
; continue

63

Example: 8-bit multiplication using the 'shift and add' technique.
The multiplier is stored in location MULP and the multiplicand in
MULT. The answer is stored in ANSWRL and ANSWRH. Count
holds the number of shift and adds.

CLD
LDA #$00
STA MULTH
STAANSWRL
STAANSWRH

; binary arithmetic
; clear memory locations

LDA #$08 ;
STA COUNT ; set count to 8

AGAIN ROR MULP; examine first bit
BCC SHIFT ; branch for no addition
CLC ; clear carry
LDA MULTL ;
ADC ANSWRL ; add low-order
STA ANSWRL ; store low-order byte
LDA MULTH ,
ADC ANSWRH ; add high-order
STA ANSWRH ; store high-order byte

MULP
MULTL
MULTH
ANSWRL .______.
ANSWRH .______.

COUNT

SHIFT ASLMULTL; shift MULT for next addition
ROL MULTH
DEC COUNT
BNE AGAIN

CONT------

' ; count=count-1
; next bit
; continue

Example: on IRQ interrupt: configure port B of a VIA as output and
port A as input, enable CA1 interrupt and disable all others.

SEI
LDX #$FF
TXS
LDA #$00
STA PCR
STA DDRA
LDA #$FF
STA DDRB
LDA #$7F
STA IER
LDA #$82
STA IER
CLI

; set the interrupt mask

; load the stack pointer
; clear A
; active transition on CA1 1~0
; port A configured as input

; port B configured as output

; disable all interrupts
' ; enable CA 1 interrupts
; clear interrupt mask
; continue with main line program

64

Interrupt service routine

LDA IRA ; clear CA 1 flag in the VIA flag register
------- ; continue with interrupt service routine

RTI ; terminate interrupt service routine

Note the following:
(a) The stack pointer is initialized; failure to do this may cause
program corruption.
(b) The interrupt disabled bit is set during the initialization
procedure to prevent IRQ interrupts; it is cleared prior to the
continuation of the main-line program.
(c) The first instruction in the interrupt service routine could be
replaced by STA ORA in order to clear the CA1 flag.
(d) The memory locations $FFFE and $FFFF must hold either
directly or indirectly the address of the interrupt service routine.
(e) If there is a likelihood of a BRK instruction being executed to
cause an interrupt, the processor status register should be retrieved
from the stack at the start of the interrupt service routine and the
break command flag interrogated.

Example: Configure Timer 1 for continuous square-wave output on
PB7.

LDA #$7F
STA IER
LDA #$FF
STA DDRB
LDA #$CO
STAACR
LDA #$mm
STA T1C-L
LDA #$nn
STA T1C-H

CONT------

; 01111111
; disables all interrupts
; 11111111
; side B configured as output
; 1100 0000
; mode 11 selected, continuous o/p on PB7
' ; load low-order latch
; load counter Tl interrupt flag reset
; counter decremented to zero
; continue

Note: (a) Following CPU write to T1C-H, the peripheral data line
PB 7 goes low and is returned high when the counter is
decremented to zero, i.e. after $nnmm system clock pulses; the
latches are then loaded into the counter and the process is repeated.
(b) By modifying the contents of the ACR to #$80 instead of #$CO,
mode 01 is selected and a single negative pulse is produced on PB7.

Example: Configure Timer 2 to count a predetermined number of
pulses on PB6; disable T2 interrupts.

65

LDA #$7F
STA IER
LDA #$BF
STA DDRB
LDA #$20
STAACR
LDA #$mm
STA T2C-L
LDA #$nn
STA T2C-H

LOOP LDA IFR
AND #$20
BEQ LOOP

; 01111111
; disables all interrupts
; 1011 1111
; bit 6 i/p, other bits o/p
; 0010 0000
; bit 5 = 1 in ACR, mode 1 selected
; low-order latch loaded .
' ; high-order counter loaded, low order latch
; transferred to low-order counter, interrupt
flag is reset

; read interrupt flag register
; isolate bit 5
; repeat if not set

Note: (a) The peripheral data line PB6 must be configured as an
output.
(b) When $nnmm pulses have been counted on PB6, the interrupt
flag is set.
(c) IRQ interrupts are disabled.

Example: Generate on CB2 a pulse waveform whose frequency is
500 Hz and has a mark-space ratio of 1:1.

AGAIN LDA #$EO; 1110 000
ST A PCR ; CB2 set to logic 1
JSR DELAY
LDA #$CO
STA PCR
JSR DELAY
JMP AGAIN

DELAY ...

RTS

; 1100 0000
; CB2 set to logic 0 .
' ; repeat waveform
; delay routine lms

Example: Analogue to digital conversion
A 10-bit AID is interfaced to a VIA; it requires a convert pulse (a
1 ~0~1 transition) and its status goes low on the completion of the
conversion. CA1 is used to monitor the status and CA2 generates
the start pulse. The 10-bit digital word is stored in memory
locations MEM and MEM+l. See Fig. 7

LDA #$00
STA DDRA
STA DDRB

; clear A
; configure port A input
; configure port B in put

66

STA PCR
LDA #$OE
STA PCR
LDA #$0C
STA PCR
LDA #$OE
STA PCR

; configure 1 ~ 0 active transition on CA 1

WAIT LDA IFR
AND #$02
BNE WAIT
LDAIRA
STA MEM+1
LDA IRB
AND #$03
STAMEM

VIA

CA1
CA2
PAO

Port A

; 0000 1110 set CA2

; 0000 1100 reset CA2

; 0000 1110 set CA2
; read flag register
; mask CA 1 flag
; conversion finished ?
; yes read 8 least significant bits
; store
; read port B
; read bits 9 and 8
; store

~
....
~

.... ,

AID
Status
Convert
DO

PA7 , D7 r-o Analogue
signal D8

D9

PBO ,

PB1
....

Port B

Fig. 7.

Example: Configure a number of VIAs so that all the port As are
output using indexed indirect addressing. The table in page $00 of
memory contains the addresses of the data direction registers.

LDX #$00 ; 0080
LDA #$OFF ; bit pattern 1111 1111 for output 0081
STA ($80,X) ; DDRA1 configured 0082
ST A ($82 ,X) ; DDRA2 configured 0083

STA ($84,X) ; DDRA 3 configured 0084
STA ($86,X) ; DDRA4 configured 0085

67

0086
0087

DDRA11
DDRA1h
DDRA21
DDRA2h
DDRA3I
DDRA3h
DDRA41
DDRA4h

Example: Output through port B of a VIA the contents of a table in
sequence, using indirect indexed addressing.

LDY #$00
NEXT LDA ($40),Y

STA ORA
JSR DELAY
INY
CPY $42
BNE NEXT

DELAY -------

RTS

; start of table
; output state
; delay
; increment table pointer
; end of table
; no next state

; delay routine

0040 la 0041
0042

3000 oc
3001 04
3002 06
3003 02
3004 03
3005 01
3006 09
3007 08

Note: (a) the address of the table is stored in page $00 locations $40
and $41.
(b) the number of elements in the table is stored in $42
(c) the data is stored in the table $3000-$3007

By changing the page $00 data, another table of values can be
accessed without altering the main program.

Example: 8 switches are connected to port A of a VIA; by using the
various logic instructions determine the state of individual
switches

I sw7 I sw6 I sws I sw4 I sw3 I sw2 I sw1 I swol

Method 1: use the logical AND instruction to test SW1
LDA IRA ; read all the switches
AND #$02 ; accumulator contains 0000 OOXO, use BNE or

BEQ to test Z flag
Method 2: use the rotate ROR instruction to test SWO
LDA IRA ; read all the switches
RORA ; rotate right once into the carry flag, use BCC or

BCS to test C flag
Method 3: use the instructions BPL and BMI to test SW7
LDA IRA ; N flag reflects the state of bit 7, test N with BPL or

BMI
Method 4: use of the BIT function to test switch 7, 6 and n
LDA #$08 ; bit pattern 0000 1000

68

BIT IRA ; logical AND performed between IRA and
accumulator, Z flag can be used to test bit n (in
this case 3). N and V flags loaded with bits 7 and
6; use BVS and BVC.

A combination of these techniques can be used, depending on
the particular application.

69

•

ISBN 0-273-01990-2

9 780273 019909

	Assembly Language for 6502 - Pocket Guide (cover)
	Pitman Pocket Guides
	© Bob Bright 1983
	Index
	How to use this Pocket Guide
	6502 Central Processing Unit (CPU)
	Programming Model of the CPU
	Program Counter PC
	Stack Pointer SP
	Accumulator
	Index Registers X & Y
	Processor Status Register P
	Testing the Flags

	Language Elements
	Machine Code
	Assembly Language
	Operands
	Source Program
	Assembler Listing

	Addressing Modes
	Absolute Addressing
	Zero-Page Addressing
	Immediate Mode
	Absolute Indexed Addressing
	Zero-Page Indexed Addressing
	Indirect Addressing
	Indexed Indirect Addressing
	Indirect Indexed Addressing
	Implied Addressing
	Accumulator Addressing
	Relative Addressing
	Execution Times
	Paging System

	Table I: Instruction Set
	ADC - Add mem to accumulator with carry
	AND - "AND" mem with accumulator
	ASL - Shift left one bit
	BCC - Branch if carry is clear
	BCS - Branch if carry is set
	BEQ - Branch if equal to zero
	BIT - Bit test
	BMI - Branch if minus
	BNE - Branch if not equal to zero
	BPL - Branch if positive
	BRK - Break command
	BVC - Branch if overflow is cleared
	BVS - Branch if overflow is set
	CLC - Clear the carry flag
	CLD - Clear decimal mode
	CLI - Clear interrupt disable bit
	CLV - Clear overflow flag
	CMP - Compare mem & accumulator
	CPX - Compare mem & index reg X
	CPY - Compare mem & index reg Y
	DEC - Decrememt memory
	DEX - Decrement index reg X
	DEY - Decrement index reg Y
	EOR - "EXOR" mem with accumulator
	INC - Increment memory
	INX - Increment index reg X
	INY - Increment index reg Y
	JMP - Jump
	JSR - Jump to subroutine
	LDA - Load accumulator
	LDX - Load index reg X
	LDY - Load index reg Y
	LSR - Logic shift right
	NOP - No operation
	ORA - "OR" mem with accumulator
	PHA - Push accumulator on stack
	PHP - Push processor status reg on stack
	PLA - Pull accumulator from stack
	PLP - Pull processor status reg from stack
	ROL - Rotate left
	ROR - Rotate right
	RTI - Return from interrrupt
	RTS - Return from subroutine
	SBC - Subtract mem from accumulator with carry
	SEC - Set carry
	SED - Set decimal mode
	SEI - Set interrupt
	STA - Store accumulator
	STX - Store index X
	STY - Store index Y
	TAX - Transfer accumulator to index reg X
	TAY - Transfer accumulator to index reg Y
	TYA - Transfer index reg Y to accumulator
	TSX - Transfer stack pointer to index X
	TXA - Transfer index reg X to accumulator
	TXS - Transfer index X to stack pointer

	Table II: Operation codes listed in numerical sequence
	Stack Processes
	Loading the Stack Pointer
	Push & Pull operations
	Subroutines
	Nested Subroutines
	Interrupts
	Stack Manipulation

	Input/Output
	Versatile Interface Adapter (VIA) 6522
	Internal Registers
	Input/Output Ports
	Data Direction Registers DDRB & DDRA (reg $2 & $3)
	Output Registers ORB & ORA (reg $0 & $1)
	Input Registers IRB & IRA (reg $0 & $1)
	Peripheral Control Register (reg $C)
	Control Line CA1
	Control Line CA2
	Control Lines CB1 & CB2
	Auxiliary Control Register (reg $B)
	Latching Data
	Timer 1
	CPU read & write of T1 counter
	CPU read & write of latches
	Timer 2
	CPU read & write of T2 counter
	Shift Register
	Interrupt Facilities
	Interrupt Flag Register (reg $D)
	Interrupt Enable Register
	Interrupt Operation
	Interrupt & Reset
	Interrupt Request (IRQ)
	Non-Maskable Interrupt (NMI)
	Saving CPU Status
	Return from Interrupt
	Multiple IRQ Interrupts
	Reset
	BRK

	Assembly Language for 6502 - Pocket Guide (rear cover)

