

ON MANUALS AND IMPLEMENTATIONS 207

UM and to the UM the notion of a liberal pre-condition is therefore not
applicable. But we do introduce the notion with respect to the HSLM, by
requiring the latter to refuse would-be continuation when its capacity is
exceeded. In other words, we accept an HSLM that is only able to simulate
properly a subset of the computations that are guaranteed to terminate prop
erly when executed by the UM.

Note 4. The notion of the liberal pre-condition is introduced here in
recognition of the fact that the HSLM is so bounded. This is in sharp
contrast to the very similar notion of "partial correctness", which has
been introduced in connection with unbounded machines (such as Turing
machines) because of the undecidability of the Halting Problem.

(End of note 4.)
One may raise the question -but I shall not answer it- of what the UM

will do when started at an initial state for which we don't know whether it
satisfies wp(S, T) or not. I take the position (from a philosophical point of
view probably very shaky) that as long as we have not proved that the initial
state satisfies wp(S, T), the UM may do as it likes, in the sense that we have
no right to complain. (We can imagine the following setup. In order to start
the UM, the user must push the start button, but in order to be able to do so,
he must be in the computer room. For reasons of protection of the air condi
tioning, the UM can only be started provided that all doors of the computer
room are closed and for safety's sake, the UM (which has no stop button!)
will keep the doors locked while in operation. This environment shows how
deadly dangerous it can be to start a machine without having proved termi
nation!)

This refusal to commit the UM to a well-defined behaviour if it has not
been proved that wp(S, T) is initially satisfied, has the consequence that we
cannot draw any conclusion from the fact of termination itself. We could try
to use a machine to search for a refutation of Goldbach's Conjecture that
each natural number n > 2 is the average of two primes, but would the fol
lowing program do?

begin privar n, refuted;
n vir int:= I; refuted vir boo/:= false;
do non refuted-->

begin glovar n, refuted; privar x, y;
n:=n+I;
x vir int, y vir int:= 2, 2 * n;
do x < y and x + y < 2 * n -->

x:= smallest prime larger than (x)
a x < y and x + y > 2 * n -->

y:= largest prime smaller than (y)
od;
refuted:= (x + y =F 2 * n)

end

208 ON MANUALS AND IMPLEMENTATIONS

od;
printboo/(refuted)

end

Because I have not proved that Goldbach's Conjecture is false, I have not
proved that wp(S, T) is initially true; therefore, the UM may act as it pleases
and I am, therefore, not allowed to conclude that Goldbach's Conjecture is
wrong when it prints "true" and stops. I would be allowed to draw that
surprising conclusion, however, if the third line had been changed into

"do non refuted and n < 1 000 000 -->"

and, at second thought, I even prefer the modified program, because it is
more honest than the original version: no one starts with a computation with
out an upper bound for the time he is willing to wait for the answer.

27 IN RETROSPECT

Once the automatic computer was there, it was not only a new tool, it
was also a new challenge and, if the tool was without precedent, so was the
challenge. The challenge was -and still is- a two-fold one.

Firstly we are faced with the challenge of discovering new (desirable)
applications, and this is not easy, because the applications could be as revo
lutionary as the tool itself. Ask the average computing scientist: "If I were
to put a ten-megabuck machine at your disposal, to be installed for the benefit
of mankind, how and to what problem would you apply it?", and you will
discover that it will take him a long time to come up with a sensible answer.
This is a serious problem that puts great demands on our fantasy and on our
powers of imagination. This challenge is mentioned for the sake of complete
ness; this monograph does not address it.

Secondly, once an (hopefully desirable!) application has been discovered,
we are faced with the programming task, i.e. with the problem of bending the
general tool to our specific purpose. For the relatively small and slow mach
ines of the earlier days the programming problem was not too serious, but
when machines at least a thousand times as powerful became generally
available, society's ambition in applying them grew in proportion and the
programming task emerged as an intellectual challenge without precedent.
The latter challenge was the incentive to write this monograph.

On the one hand the mathematical basis of programming is very simple.
Only a finite number of zeros and ones are to be subjected to a finite number
of simple operations, and in a certain sense programming should be trivial.
On the other hand, stores with a capacity of many millions of bits are so
unimaginably huge and processing these bits can now occur at so unimagin
ably high speeds that the computational processes that may take place -and

209

210 IN RETROSPECT

that, therefore, we are invited to invent- have outgrown the level of triviality
by several orders of magnitude. It is the unique combination of basic sim
plicity and ultimate sophistication which is characteristic for the programm
ing task.

We realize what this combination implies when we compare the program
mer with, say, a surgeon who does an advanced operation. Both should
exercise the utmost care, but the surgeon has fulfilled his obligations in this
respect when he has taken the known precautions and is then allowed to
hope that circumstances outside his control will not ruin his work. Nor is
the surgeon blamed for the incompleteness of his control: the unfathomed
complexity of the human body is an accepted fact of life. But the programmer
can hardly exonerate himself by appealing to the unfathomed complexity
of his program, for the latter is his own construction! With the possibility
of complete control, he also gets the obligation: it is the consequence of the
basic simplicity.

One consequence of the power of modern computers must be mentioned
here. In hierarchical systems, something considered as an undivided, unana
lyzed entity at one level is considered as something composite at the next
lower level of greater detail; as a result the natural grain of time or space
that is appropriate for each level decreases by an order of magnitude each
time we shift our attention from one level to the next lower one. As a con
sequence, the maximum number of levels that can be distinguished meaning
fully in a hierarchical system is more or less proportional to the logarithm
of the ratio between the largest and the smallest grain, and, therefore, we
cannot expect many levels unless this ratio is very large. In computer pro
gramming our basic building block, the instruction, takes less than a micro
second, but our program may require hours of computation time. I do not
know of any other technology than programming that is invited to cover a
grain ratio of 1010 or more. The automatic computer, by virtue of its fan
tastic speed, was the first to provide an environment with enough "room"
for highly hierarchical artifacts. And in this respect the challenge of the
programming task seems indeed without precedent. For anyone interested
in the human ability to think difficult thoughts (by avoiding unmastered
complexity) the programming task provides an ideal proving ground.

When asked to explain to the layman what computing scientists call
"modularization'', the easiest analogy to use is probably the way in which
the scientific world has parcelled out its combined knowledge and skills
over the various scientific disciplines. Scientific disciplines have a certain
"size" that is determined by human constants: the amount of knowledge
needed must fit into a human head, the number of skills needed may not be
more than a person can learn and maintain. On the other hand, a scientific
discipline may not be too small, too narrow either, for it should last a lifetime

IN RETROSPECT 211

at least without becoming barren. But not any odd collection of scraps of
knowledge and an equally odd collection of skills, even of the right size,
constitute a viable scientific discipline! There are two other requirements.
The internal requirement is one of coherence: the skills must be able to
improve the knowledge and the knowledge must be able to refine the skills.
And finally there is the external requirement -we would call it "a narrow
interface"- that the subject matter can be studied in a reasonably high degree
of isolation, not at any moment critically dependent on developments in other
areas.

The analogy is not only useful to explain "modularization" to the layman,
conversely it gives us a clue as to how we should try to arrange our thoughts
when programming. When programming we are faced with similar problems
of size and diversity. (Even when programming at the best of our ability, we
can sometimes not avoid that program texts become so long that their sheer
length causes (for instance, clerical) problems. The possible computations
may be so long or so varied that we have difficulty in imagining them. We
may have conflicting goals such as high throughput and short reaction times,
etc.) But we cannot solve them by just splitting the program to be made into
"modules".

To my taste the main characteristic of intelligent thinking is that one
is willing and able to study in depth an aspect of one's subject matter in
isolation, for the sake of its own consistency, all the time knowing that one
is occupying oneself with only one of the aspects. The other aspects have to
wait their turn, because our heads are so small that we cannot deal with
them simultaneously without getting confused. This is what I mean by
"focussing one's attention upon a certain aspect"; it does not mean com
pletely ignoring the other ones, but temporarily forgetting them to the extent
that they are irrelevant for the current topic. Such separation, even if not
perfectly possible, is yet the only available technique for effective ordering
of one's thoughts that I know of.

I usually refer to it as "a separation of concerns", because one tries to
deal with the difficulties, the obligations, the desires, and the constraints
one by one. When this can be achieved successfully, we have more or less
partitioned the reasoning that had to be done -and this partitioning may
find its reflection in the resulting partitioning of the program into "modules"
- but I would like to point out that this partitioning of the reasoning to be
done is only the result, and not the purpose. The purpose of thinking is to
reduce the detailed reasoning needed to a doable amount, and a separation
of concerns is the way in which we hope to achieve this reduction.

The crucial choice is, of course, what aspects to study "in isolation",
how to disentangle the original amorphous knot of obligations, constraints,
and goals into a set of "concerns" that admit a reasonably effective separa
tion. To arrive at a successful separation of concerns for a new, difficult

212 IN RETROSPECT

problem area will nearly always take a long time of hard work; it seems
unrealistic to expect it to be otherwise. But even without five rules of thumb
for doing so (after all, we are not writing a brochure on "How to Think Big
Thoughts in Ten Easy Lessons"), the knowledge of the goal of "separation
of concerns" is a useful one: we are at least beginning to understand what
we are aiming at.

Not that we don't have a rule of thumb! It says: don't lump concerns
together that were perfectly separated to start with! This rule was applied
before we started this monograph. The original worry was that we would
end up with unreliable systems that either would produce the wrong result
that could be taken for the correct one, or would even fail to function at all.
If such a system consists of a combination of hardware and software, then,
ideally, the software would be correct and the hardware would function
flawlessly and the system's performance would be perfect. If it does not,
either the software is wrong or the hardware has malfunctioned, or both.
These two different sources of errors may have nearly identical effects: if,
due to a transient error, an instruction in store 'has been corrupted or if,
due to a permanent malfunctioning, a certain instruction is permanently
misinterpreted, the net effect is very similar to that of a program bug. Yet
the origins of these two failures are very different. Even a perfect piece of
hardware, because it is subject to wear and tear, needs maintenance; software
either needs correction, but then it has been wrong from the beginning, or
modification because, at second thought, we want a different program. Our
rule of thumb tells us not to mix the two concerns. On the one hand we may
ponder about increasing the confidence level of our programs (as it were,
under the assumption of execution by a perfect machine). On the other hand
we may think about execution by not fully reliable machines, but during that
stage of our investigations we had better assume our programs to be perfect.
This monograph deals with the first of the two concerns.

In this case, our rule of thumb seems to have been valid: without the
separation of hardware and software concerns, we would have been forced
to a statistical approach, probably using the concept MTBF (= "Mean Time
Between Failures", where "Mean Time Between Manifested Errors" would
have been more truthful), and the theory described in this monograph could
never have been developed.

Before embarking upon this monograph, a further separation of concerns
was carried through. I quote from a letter from one of my colleagues:

"There is a third concern in programming: after the preparation of "the pro
gram text as a static, rather formal, mathematical object'', and after the
engineering considerations of the computational processes intended to be
evoked by it under a specific implementation, I personally find hardest actually
achieving this execution: converting the human-readable text, with its slips
which are not seen by the eye which "sees what it wishes to see", into machine-

IN RETROSPECT 213

readable text, and then achieving the elusive confidence that nothing has been
lost during this conversion."

(From the fact that my colleague calls the third concern the "hardest" we
may conclude that he is a very competent programmer; also an honest one!
I can add the perhaps irrelevant information that his handwriting is, however,
rather poor.) This third concern is not dealt with in this monograph, not
because it is of no importance, but because it can (and, therefore, should)
be separated from the others, and is dealt with by very different, specific
precautions (proof reading, duplication, triplication, or other forms of
redundancy). I mentioned this third concern because I found another col
league -he is an engineer by training- so utterly obsessed by it that he
could not bring himself to consider the other two concerns in isolation from
it and, consequently, dismissed the whole idea of proving a program to be
correct as irrelevant. We should be aware of the fact, independent of whether
we try to explain or understand the phenomenon, that the act of separating
concerns tends to evoke resistance, often voiced by the remark that "one is
not solving the real problems". This resistance is by no means confined to
pragmatic engineers, as is shown by Bertrand Russell's verdict: "The advan
tages of the method of postulation are great; they are the same as the advan
tages of theft over honest toil.".

The next separations of concerns are carried through in the book itself:
it is the separation between the mathematical concerns about correctness
and the engineering concerns about execution. And we have carried this
separation through to the extent that we have given an axiomatic definition
of the semantics of our programming languages which allows us, if we so
desire, to ignore the possibility of execution. This is done in the book itself
for the simple reason that, historically speaking, this separation has not been
suggested by our rule of thumb; the operational approach, characterized by
"The semantics itself is given by an interpreter that describes how the state
vector changes as the computation progresses." (John McCarthy, 1965) was
the predominant one during most of the sixties, from which R.W. Floyd
(1967) and C.A.R. Hoare (1969) were among the first to depart.

Such a separation takes much more time, for even after having the inkling
that it might be possible and desirable, there are many ways in which one
can go. Depending on one's temperament, one's capacities, and one's evalu
ation of the difficulties ahead, one can either be very ambitious and tackle the
problem for as universal a programming language as possible, or one can
be cautious and search consciously for the most effective constraints. I have
clearly opted for the second alternative, and not including procedures (sec,
or also as parameters or even as results) seemed an effective simplification,
so drastic, as a matter of fact, that some of my readers may lose interest
in the "trivial" stuff that remains.

214 IN RETROSPECT

The remaining main questions to decide were the following ones:

1. whether to derive a weakest pre-condition from a desired post-condition
or to derive a strongest post-condition from a given pre-condition;

2. whether to focus on weakest pre-conditions -as we have done- or on
weakest liberal pre-conditions;

3. whether or not to include nondeterminacy;
4. whether the "daemon" should be erratic or in some sense "fair".

How does one settle them? The fact that the derivation of the weakest
pre-conditions instead of strongest post-conditions seemed to give a smoother
formalism may be obvious to others, I had to discover it by trying both.
When starting from the desired post-condition seemed more convenient,
that settled the matter in my mind, as it also seemed to do more justice to
the fact that programming is a goal-directed activity.

The decision to concentrate on just pre-conditions rather than liberal
pre-conditions took longer. I wished to do so, because as long as predicate
transformers deriving weakest liberal pre-conditions are the only carrier for
our definition of the semantics, we shall never be able to guarantee termina
tion: such a system seemed too weak to be attractive. The matter was settled
by the possibility of defining the wp(DO, R) in terms of the wp(IF, R).

The decision to incorporate nondeterminacy was only taken gradually.
After the analogy between synchronizing conditions in multiprogramming
and the sequencing conditions in sequential programming had suggested the
guarded command sets and had prepared me for the inclusion of nondeter
minacy in sequential programs as well, my growing dislike for the asymme
tric "if B then SJ else S2 fi", which treats S2 as the default -and defaults I
have learned to mistrust- did the rest. The symmetry and elegance of

if x > y --> m: = x a y > x - m: = y fi

and the fact that I could derive this program systematically settled this
question.

For one day -and this was a direct consequence of my experience with
multiprogramming, where "individual starvation" is usually to be avoided
! thought it wise to postulate that the daemon should select "in fair random
order", i.e. without permanent neglect of one of the permissible alternatives.
This fair random order was postulated at the stage when I had only given an
operational description of how I thought to implement the repetitive con
struct. The next day, when I considered a formal definition of its semantics,
I saw my mistake and the daemon was declared to be totally erratic.

In short, of course after the necessary exploratory experiments, ques
tions (J) through (4) have mainly been settled by the same yardstick: formal
simplicity.

IN RETROSPECT 215

My interest in formal correctness proofs was, and mainly still is, a derived
one. I had witnessed many discussions about programming languages and
programming style that were depressingly inconclusive. The cause of the
difficulty to come to a consensus was the absence of a few effective yardsticks
in whose relevance we could all believe. (Too much we tried to settle in the
name of convenience for the user, but too often we confused "convenient"
with "conventional", and that latter criterion is too much dependent on each
person's own past.) During that muddle, the suggestion that what we called
"elegant" was nearly always what admitted a nice, short proof came as a
gift from heaven; it was immediately accepted as a reasonable hypothesis
and its effectiveness made it into a cherished criterion. And, above all, length
of a formal proof i~ an objective criterion: this objectivity has probably been
more effective in reaching a comfortable consensus than anything else, cer
tainly more effective than eloquence could ever have been. The primary
interest was not in formal correctness proofs, but in a discipline that would
assist us in keeping our programs intelligible, understandable, and intellec
tually manageable.

I have dealt with the examples in different degrees of formality. This
variation was intended, as I would not like to give my readers the impression
that a certain, fixed degree of formality is "the right one". I prefer to view
formal methods as tools, the use of which might be helpful.

I have tried to present programming rather as a discipline than as a
craft. Since centuries we know two main techniques for transmitting knowl
edge and skills to the next generation. The one technique is characteristic for
the guilds: the young apprentice works for seven years with a master, all
knowledge is transferred implicitly, the apprentice absorbs, by osmosis so
to speak, until he may call himself a master too. (This implicit transfer makes
the knowledge vulnerable: old crafts have been lost!) The other technique
has been promoted by the universities, whose rise coincided (not accidentally!)
with the rise of the printing press; here we try to formulate our knowledge
and, by doing so, try to bring it into the public domain. (Our actual teaching
at the universities often occupies an in-between position: in mathematics,
for instance, mathematical results are published and taught quite explicitly,
the teaching of how to do mathematics is often largely left to the osmosis,
not necessarily because we are unwilling to be more explicit, but because we
feel ourselves unable to teach the "how" above the level of motherhood
statements.)

While dealing with the examples I have been as explicit as I could
(although, of course, I have not always been able to buffer the shock of
invention); the examples were no more than a vehicle for that goal of explicit
ness.

We have formulated a number of theorems about alternative and repeti
tive constructs. That was the easy part, as it concerns knowledge. With the

216 IN RETROSPECT

aid of examples we have tried to show how a conscious effort to apply this
knowledge can assist the programming process, and that was the hard part,
for it concerns skill. (I am thinking, for instance, of the way in which the
knowledge of the Linear Search Theorem assisted us in solving the problem
of the next permutation.) We have tried to make a few strategies explicit,
such as the Search for the Small Superset, and a few techniques for "massag
ing" programs, such as bringing a relation outside a repetitive construct. But
these are techniques that are rather closely tied to (our form of) programming.

Between the lines the reader may have caught a few more general mes
sages. The first message is that it does not suffice to design a mechanism of
which we hope that it will meet its requirements, but that we must design it
in such a form that we can convince ourselves -and anyone else for that
matter- that it will, indeed, meet its requirements. And, therefore, instead
of first designing the program and then trying to prove its correctness, we
develop correctness proof and program hand in hand. (In actual fact, the
correctness proof is developed slightly ahead of the program: after having
chosen the form of the correctness proof we make the program so that it
satisfies the proof's requirements.) This, when carried out successfully,
implies that the design remains "intellectually manageable". The second
message is that, if this constructive approach to the problem of program
correctness is to be our plan, we had better see to it that the intellectual
labour involved does not exceed our limited powers, and quite a few design
decisions fell under that heading. In the problem of the Dutch national flag,
for instance, we have been warned for the case analysis in which the number
of cases to be distinguished between is built up multiplicatively: as soon as
we admit that, we are quickly faced with a case analysis exceeding our abilities.
In the problem of the shortest subspanning tree, we have seen how a restric
tion of the class of admissible intermediate states (here, the "red" branches
always forming a tree) could simplify the analysis considerably. But most
helpful of all -it can be regarded as a separation of concerns- has been the
stepwise approach, in which we try to deal with our various objectives one
after the other. In the problem of the shortest subspanning tree, we found by
the time that we started to worry about computation time, the N 2-algorithm
as an improvement of the N 3-algorithm. In the problem of the maximal
strong components, we first found an algorithm linear in the number of edges,
and only the next refinement guaranteed a fixed maximum amount of process
ing per vertex as well. In the problem of the most isolated villages, our crude
solution was independently subjected to two very different optimizations,
and, after they had been established, it was not difficult to combine them.

As remarked above, the purpose of thinking is to reduce the detailed
reasoning needed to a doable amount. The burning question is: can "think
ing" in this sense be taught? If I answer "No" to this question, one may well

IN RETROSPECT 217

ask why I have written this book in the first place; ifl answer "Yes" to this
question, I would make a fool of myself, and the only answer left to me is
"Up to a point ... ". It seems vain to hope -to put it mildly- that a book
could be written that we could give to young people, saying "Read this, and
afterwards you will be able to think effectively", and replacing the book by
a beautiful, interactive system for Computer-Aided Instruction ("CAI" for
the intimi) will not make this hope less vain.

But insofar as people try to understand (at first subconsciously), strive
after clarity, and attempt to avoid unmastered complexity, I believe in the
possibility of assisting them significantly by making them aware of the
human inability "to talk of many things" (at any one moment, at least), by
making them alert to how complexity is introduced. To the extent that a
professor of music at a conservatoire can assist his students in becoming
familiar with the patterns of harmony and rhythm, and with how they
combine, it must be possible to assist students in becoming sensitive to
patterns of reasoning and to how they combine. The analogy is not far-fetched
at all: a clear argument can make one catch one's breath, like a Mozart
adagio can.

	Discipline of Programming (Cover)
	Copyright 1976 Prentice-Hall
	Contents
	Foreword
	Preface
	0 - Executional Abstraction
	1 - Role of Programming Languages
	2 - States & Their Characterization
	3 - Characterization of Semantics
	4 - Semantic Characterization of a Programming Language
	5 - Two Theorems
	6 - On the Design of Properly Terminating Constructs
	7 - Euclid's Algorithm Revisited
	8 - Formal Treatment of Some Small Examples
	9 - On Nondeterminacy Being Bounded
	10 - An Essay on the Notion: "Scope of Variables"
	11 - Array Variables
	12 - Linear Search Theorem
	13 - Problem of the Next Permutation
	14 - Problem of the Dutch National Flag
	15 - Updating a Sequential File
	16 - Mergin Problems Revisited
	17 - An Exercise Attributed to R.W. Hamming
	18 - Pattern Matching Problem
	19 - Writing a Number as the Sum of Two Squares
	20 - Problem of the Smallest Prime Factor of a Large Number
	21 - Problem of the Most Isolated Villages
	22 - Problem of the Shortes Subspanning Tree
	23 - REM's Algorithm for the Recording of Equivalence Classes
	24 - Problem of the Convex Hull in Three Dimensions
	25 - Finding the Maximal Strong Components in a Directed Graph
	26 - On Manuals & Implementations
	27 - In Retrospect

