
Software
Tools in
Pascal

Goodprogramming is not learned fromgeneralities, but by
seeinghowsignificantprogramscanbe madeclean,easyto
read,easyto maintainand modify,human-engineered, effi­
cient, and reliable, by the application of commonsenseand
goodprogramming practices. Carefulstudyand imitationof
goodprogramsleadto betterwriting.

Kernighan
Plauger

Software Tools
in Pascal

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey

P. J. Plauger

Whitesmiths, Ltd.
New York, New York

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts

Menlo Park, California . London . Amsterdam . Don Mills, Ontario . Sydney

This book was set in Times Roman and Courier by the authors, using a Mergenthaler Lino­

tron 202 phototypesetter driven by a PDP-J 1170 running the Unix operating system.

Unix is a trademark of Bell Laboratories. DEC, PDP and VAX are trademarks of Digi­

tal Equipment Corporation.

Copyright © 1981 by Bell Telephone Laboratories, Incorporated, and Whitesmiths, Ltd.

Philippines copyright 1981 by Bell Telephone Laboratories, Incorporated, and

Whitesmiths, Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical, photocopy­

ing, recording, or otherwise, without the prior written Permission of the publisher.

Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-10342-7
DEFGH IJ-DO-898765432

PREFACE

This book teaches how to write good programs that make good tools, by
presenting a comprehensive set, each of which provides lessons in design and
implementation. The programs are not artificial, nor are they toys. Instead,
they are tools that have proved valuable in the production of other programs.
We use most of them every working day, and they account for much of our
computer usage. The programs are complete, not just algorithms and outlines,
and they work: all have been tested directly from the text, which is in machine­
readable form. They are readable: all are presented in standard Pascal. They
are documented, so they can be used. Most important, the programs are
designed to work well with people and with each other, and are thus perceived
as tools.

The book is pragmatic. We teach top-down design by walking through
designs. We demonstrate structured programming with structured programs.
We discuss efficiency and reliability in terms of actual tests carried out. We
illustrate documentation by presenting it for each program. We treat portability
by writing in a language that is widely available, and by isolating unavoidable
system dependencies in a handful of small, carefully specified routines that can
be readily built for a particular operating environment. All of the programs
presented here have been run without change on at least three different
machines and several different Pascal compilers and interpreters. The code is
available in machine-readable form as a supplement to the text.

The principles of good programming are presented not as abstract sermons
but as concrete lessons in the context of actual working programs. For example,
there is no chapter on "efficiency." Instead, throughout the book there are
observations on efficiency as it relates to the particular program being
developed. Similarly there is no chapter on "top-down design," nor on "struc­
tured programming," nor on "testing and debugging." Instead, all of these dis­
ciplines are employed as appropriate in every program shown.

The book is suitable for a "software engineering" course or for a second
course in programming - more so, we feel, than the traditional dose of "com­
pilers, assemblers and loaders," for the programs presented here are more of the
size and nature that will be encountered by most programmers. It is also

vii

viii SOFIWARE TOOLS IN PASCAL

suitable as a supplementary text in any programming course; the only prere­
quisite is programming experience in a high-level language. Professional pro­
grammers will find it a guide to good programming techniques and a source of
proven, useful programs. Numerous exercises are provided to test comprehen­
sion and to extend the concepts and the programs presented in the text.

Software Tools was originally published in 1976 with the programs written in
Ratfor, a language based on Fortran. Ratfor was implemented as a preproces­
sor; it provided Fortran with modern control flow statements like if-else and
while, and some cosmetic improvements like symbolic constants and free-form
input. The approach and the tools have proved sufficiently useful that many
copies of them have been distributed, and there is a large, active user group.

Pascal is now the dominant teaching language for computer science courses,
and is becoming widely used outside of universities as well. We feel that the
lessons about the design and implementation of tools from the original book
carry over intact to Pascal. Thus Software Tools in Pascal has a great deal of
overlap with the Ratfor original. The same programs are present, except that
there is no preprocessor chapter, since Pascal provides most of the sensible con­
trol flow and cosmetic improvements that Ratfor adds to Fortran. On those sys­
tems where Pascal needs augmentation, tools such as the macro and file inclu­
sion processors serve as language preprocessors.

The programs here are not just transliterations into Pascal, however. Almost
every program has been improved in some way. Pascal lets us do some things
much better than is possible in Fortran. Recursion in particular is a boon.
Quicksort and regular expression closure are much simpler when done recur­
sively instead of with a stack or linked list; expression evaluation has been
added to the macro processor.

Pascal data types are generally more suitable for the clear expression of algo­
rithms. Records let us deal with a group of related variables as a unit.
Subranges and enumerated types make it easier to constrain the set of legal
values for variables, so that errors are detected sooner and the code is easier to
read. And eight-character variable names are a lot less contorted than six.

Regrettably, though, standard Pascal is far from an ideal language; in many
ways it is less suitable for writing large programs than Fortran is. Since there is
no standard way to specify separate compilation, the growth of libraries to
extend the language is stunted. Since the size of an array is part of its type in
standard Pascal, it is hard to write general-purpose routines that process arrays
of different sizes. The lack of own variables and initialization forces variables
to have global scope where Fortran would make them local to a single routine.
Finally, the operating system interface provided by Pascal is just as unsuitable as
Fortran's, but the language makes it harder to escape to one's own.

There are versions of Pascal that deal with each of these problems, with
some success, but each such extension is non-standard and rarely portable. Our
code adheres to the standard; it will work everywhere. The price we pay is
increased compilation time, sometimes involving the use of one or more

PREFACE ix

preprocessing steps: larger load modules, to provide an extended environment in
the absence of libraries: and slower execution time, because we have consistently
traded efficiency for portability. Each of these areas is readily amenable to
improvement, however, by tuning the system interface to each local environ­
ment.

Building on the work of others is the only way to make substantial progress
in any field. Yet programmers reinvent programs for each new application
instead of using what already exists. We hope that Software Tools in Pascal will
instill a feeling for how to design and write good programs that can be widely
used, how to use existing tools, and how to improve a given environment with
maximum effect for minimum effort.

We arc grateful to many friends for careful reading, perceptive criticism, and
continuous cheerful support. Ron Hardin, John Linderman, Doug McIlroy,
Rob Pike and Dennis Ritchie all spent many hours reading the manuscript and
exercising the programs, and made invaluable suggestions on how to improve
both. We deeply appreciate their efforts. Our thanks also to Al Aho, Doug
Comer, Al Feuer, John Gannon, Peter Grogono, Dave Hanson, Debbie
Scherrer, and Chris Van Wyk for helpful comments at various stages. Bill Joy
and Andy Tanenbaum provided us with rock-solid Pascal compilers; Bill Joy
also made it possible for us to time our programs. Chuck Howerton provided
the impetus that got us started in the first place.

Finally, it is a pleasure to acknowledge our debt to the Unix operating sys­
tem, developed at Bell Labs by Ken Thompson and Dennis Ritchie. We wrote
the text, tested the programs, and typeset the manuscript, all within Unix.
Many of the tools we describe are based on Unix models. Most important, the
ideas and philosophy are based on our experience as Unix users. Of all the
operating systems we have used, Unix is the only one that has been a positive
help in getting a job done instead of an obstacle to be overcome. The world­
wide acceptance of Unix indicates that we are not the only ones who feel this
way.

Brian W. Kernighan

P. J. Plauger

CONTENTS

Preface

Introduction 1

1. Getting Started 7

2. Filters 31

3. Files 63

4. Sorting 109

5. Text Patterns 141

6. Editing 169

7. Formatting 227

8. Macro Processing 265

Epilogue 311

Appendix: Implementation of Primitives 315
Index of First Lines 353
Index 359

All of the programs described in this book are available

in machine-readable form from Addison-Wesley.

INTRODUCTION

We are going to discuss two things in this book - how to write programs
that make good tools, and how to program well in the process.

What do we mean by a tool? Suppose you have a 5000-line Pascal program
and you need to find all references to the variable time, to make sure it can
safely be changed from type integer to type real. How would you do it?

One possibility is to get a listing and mark it up with a red pencil. But it
doesn't take much imagination to see what's wrong with red-penciling a hun­
dred pages of computer paper. It's mindless and boring busy-work, with lots of
opportunities for error. And even after you've found all instances of time, you
still can't do much, because the red marks aren't machine readable.

Another approach is to write a simple program to find lines containing the
identifier time. This is an improvement, for such a program is faster and more
accurate than doing the job by hand. The trouble is that the program is so spe­
cialized that it will be used once by its author, then tucked away and forgotten.
No one else will benefit from the effort that went into writing it, and something
very much like it will have to be reinvented for each new application.

Finding time's in a Pascal program is a special case of a general problem,
finding patterns in text. Whoever wanted references to time today will want
references to some other variable tomorrow, readln and wri teln calls the
day after, and next week an entirely different pattern in some unrelated text.
Red penciling never ends. The way to cope with the general problem is to pro­
vide a general purpose pattern finder that will look for a specified pattern and
print all the lines where it occurs. Then anyone can say

find pattern

and the job is done. find is a tool: it uses the machine; it solves a general
problem, not a special case; and it's so easy to use that people will use it instead
of building their own.

Far too many programmers are red pencillers. Some are literal red pencillers
who do things by hand that should be done by machine. Others are figurative
red pencillers whose use of the machine is so clumsy and awkward that it might
as well be manual. One purpose of this book is to show how to build tools -

2 SOFTWARE TOOLS IN PASCAL

programs to help people to do things by machine instead of by red pencil, and
how to do them well instead of badly. We're going to do this, not by talking in
generalities but by writing real, working programs, programs that we know from
experience are useful tools. Every program in this book has been run and care­
fully tested, directly from the text itself, which is in machine-readable form.
All of them have been run without change on a variety of machines and Pascal
compilers.

The second concern of this book is how to write good programs. As we
proceed, we hope to convey to you principles of: good design, so you write pro­
grams that work and are easy to maintain and modify; human engineering, so
you can use them conveniently; reliability, so you get the right answers; and
efficiency, so you can afford to run them.

We don't think that it is possible to learn to program well by reading plati­
tudes about good programming. Nor is it sufficient to study small examples.
Rather than present ideas like structured programming and top-down design as
abstract principles, we have tried to distill the important contributions of each
and put them into practice in all our code. That way you can see what they
mean, how to use them on real problems, and what benefits they are likely to
produce.

We also try to show how we went about building the programs, rather than
just presenting the finished product, or pretending that we arrived at the final
result by some mechanical process. For each program we discuss its purpose,
how it should be designed to be easy to use, what considerations affect its struc­
ture and implementation, and some of the alternatives that exist. We don't
claim that these are the best possible programs, or that our way is the only way
to design and write them. But even if you would do them differently, studying
the development of a coherent set of well-written and useful programs should
help you better appreciate the significance of some of these ideas, and ulti­
mately to become a better programmer.

We have quite a few tools to show you. Most of these are programs of
manageable size, programs that one person can reasonably write in an hour or a
day or a week. Clearly we can't present giant programs like operating systems
or major compilers; few of us have the time, training or need to delve inside
such creatures anyway. Instead we have concentrated on the kinds of tools you
are likely to become involved with, programs that help you to make the most
effective use of whatever operating system and language you already have.
There is an important lesson in this: well chosen and well designed programs of
modest size can be used to create a comfortable and effective interface to those
that are bigger and less well done.

Whenever possible we will build more complicated programs up from the
simpler; whenever possible we will avoid building at all, by finding new uses for
existing tools, singly or in combinations. Our programs work together; their
cumulative effect is much greater than you could get from a similar collection of

INTRODUcnON 3

programs that you couldn't easily connect. By the end of the book you will
have been introduced to a set of tools that solve many problems you encounter
as a programmer.

What sorts of tools? Computing is a broad field, and we can't begin to
cover every kind of application. Instead we have concentrated on an activity
that is central to programming - programs that help develop other programs.
They are programs which we use regularly, most of them every day; we used
versions of almost all of them while we were writing this book. In fact we
chose them because they account for much of the computer usage on the system
where we work. Although we can hardly claim that our choices will satisfy all
your needs, some should be directly useful to you whatever your interest.
Studying those that are not should provide you with ideas and insights about
how to design and build quality tools for your particular problems. Comparing
our designs with related programs on your system may lead you to improve­
ments in both. And learning to think in terms of tools will encourage you to
write programs that solve only the unique parts of your problem, then interface
to existi ng programs to do the rest.

Whatever your application, your most important tool is a good programming
language. Without this, programs are just too hard to write and understand;
you spend more time fighting your language than being productive. One of the
problems with writing about programming is choosing a language for the pro­
grams. No single language is known to all readers, available on all machines,
and easy to read. We must compromise.

Since Pascal is widely available and well supported, we will use it as our base
in this book. Pascal is now the main language in university computer science
courses. It is available on almost all computers, and is sufficiently standardized
that programs can be written to run without change on a wide variety of sys­
tems.

Most programmers can quickly achieve at least a reading knowledge of Pas­
cal. If you are used to some other language, you should have no difficulty fol­
lowing our programs, for properly structured programs seem to read the same in
most languages. We avoid most idiosyncrasies of Pascal, and hide the unavoid­
able ones in well-defined modules.

Although we are not writing a Pascal manual, we will try to explain new
constructions as they arise. Chapter 1 describes a few simple tools, as a way to
introduce our style of Pascal code and our conventions.

A surprising number of programs have one input, one output, and perform a
useful transformation on data as it passes through. We call such programs
filters. Some filters are so simple that you might hardly think of them as tools,
yet a careful selection of filters that work together can handle quite complicated
processing. Several smaller filters are collected in Chapter 2, including a power­
ful character transliteration program.

Not all programs are filters. Chapter 3 discusses programs that interact with

4 SOFTWARE TOOLS IN PASCAL

their environment in more complicated ways, such as file inclusion, comparison
and printing, and an archive system for managing sets of files. The major prob­
lem in moving programs from one environment to another is precisely this ques­
tion of how a program communicates with its local operating system. We deal
with portability by specifying a small set of primitive operations for accessing
the environment. All of our programs are written in terms of these primitives,
so operating system dependencies are confined to a handful of procedures and
functions. Programs that use them can move to any system where the primi­
tives can be implemented. We have demonstrated this by moving all of the
tools in this book, without change, to several distinct Pascal systems on three
different computers.

Some filters are large enough to warrant separate chapters. The sorting pro­
gram of Chapter 4, the pattern finding and replacement programs of Chapter 5,
and the macro processor of Chapter 8 all fall into this category. The pattern
finder uses most of the code of the transliteration program in Chapter 2 to
recognize character classes, which are just one of a larger set of patterns that
can be specified. (The pattern finder is capable of a lot more than finding
instances of time, by the way.) Although these filters are biased toward pro­
gram development, the filter concept is valuable in any application. It
encourages the view that a program is just a stage in a larger process, and that
stages should be simple and easy to connect. It also encourages the view that all
files and 110 devices should be interchangeable, so that any program can work
with any file or device.

Chapter 6 contains a text editor that is rather more comprehensive than
those normally found in time-sharing systems. The editor incorporates most of
the code of the pattern finder of Chapter 5, so it recognizes the same class of
patterns. When used with some of the other programs presented, it can do jobs
that would otherwise require you to write a special program. Even if you are
not working in an interactive environment, the editor will prove to be useful.

Chapter 7 contains a text formatter that is a (much smaller) version of the
program used to set the type for this book.

Finally, as we have already mentioned, Chapter 8 contains a modest but use­
ful macro processor, which you can use to extend any programming language.

It might appear from this outline that we stress text manipulation too
heavily. Yet a large part of what programmers do every day is text processing
- editing program source, preparing input data, scanning output, writing docu­
mentation. These activities are at the heart of programming; as much as possi­
ble, they should be mechanized. Program development is the place where tools
can have the most impact. And since text processing programs come in all
sizes, they display at least as broad a spectrum of programming techniques as
language processors or numerical programs.

As you can see, the book is organized in terms of applications rather than
different aspects of the programming process. This is not a reference work on

INTRODUCTION S

algorithms or data structures or Pascal. Nor will you find separate chapters on
design, coding, testing, debugging, efficiency, human engineering, documenta­
tion, or any of the other popular themes. We are engaged in the business of
building tools, and of building them properly. All of these aspects of program­
ming arise, in varying degrees, with every program, and can be kept in perspec­
tive only by discussing them as we write the programs. In the process, we will
try to communicate to you our approach to tool building, so you can go on to
design, build, and use tools of your own.

Bibliographic Notes

The programming language Pascal has had considerable impact on comput­
ing practice: it is especially suitable for structured programming and for describ­
ing data structures. Read Systematic Programming: An Introduction (Prentice­
Hall, 1973) by N. Wirth, the designer of Pascal. The special issue of Computing
Surveys on programming (December, 1974) contains several papers well worth
reading, including one by Wirth. Pascal has also influenced the design of newer
languages, most notably Ada ~ you might read "An Overview of Ada," by
J. G. P. Barnes, Soitware Practice and Experience, November, 1980, or Pro­
gramming with Ada oy P. Wegner (Prentice-Hall, 1980).

The Pascal language is defined in Pascal User Manual and Report (2nd Edi­
tion), by K. Jensen and N. Wirth (Springer-Verlag, 1978), and with more detail
and precision in the proposed ISO Standard for Pascal. (See, for example, SIG­
PLAN Notices, April, 1980.)

One of the most influential proponents of good programming is E. W. Dijks­
tra. You should read Structured Programming, by O.-J. Dahl, E. W. Dijkstra
and C. A. R. Hoare (Academic Press, 1972) and Dijkstra's A Discipline of Pro­
gramming (Prentice-Hall, 1976).

An excellent set of essays on programming and an the problems of develop­
ing big systems is found in F. P. Brooks' The M) hical Man-Month (Addison­
Wesley, 1974). The term "egoless programming" was coined by G. M. Wein­
berg in his delightful book The Psychology of Computer Programming (Van Nos­
trand Reinhold, 1971).

The Elements of Programming Style (2nd Edition), by B. W. Kernighan and
P. J. Plauger (McGraw-Hill, 1978), contains an extensive discussion of how to
improve computer programs, with numerous examples taken from published
Fortran and PL/I code.

The original version of this book is Software Tools (Addison-Wesley, 1976).
The programs therein are written in Ratfor, a structured dialect of Fortran
implemented by a preprocessor. They have proved sufficiently popular that a
user group exists, and the tools themselves are used at several thousand sites.
See '-A Virtual Operating System," by D. E. Hall, D. K. Scherrer and J. S.
Sventek , CACM, September, 1980. With the major exception of the Ratfor
preprocessor itself, all of the tools from the original are presented here.

CHAPTER 1: GETTING STARTED

This chapter is an informal introduction to our way of using Pascal, and to
some of the ideas and conventions used throughout the book. It also presents a
handful of small but useful programs, to make the discussion concrete. We can­
not present complete programs without occasionally using concepts before they
are explained, so you will have to take some things on faith as we get started or
we'll get bogged down explaining our explanations. Bear with us.

1.1 File Copying

The first problem we want to tackle is how a program communicates with its
environment. Since many of our programs are concerned with text manipula­
tion, one basic operation is reading characters from some source of input. To
do this we will invent a function called getc, which reads the next input char­
acter, and returns that character as its function value; each time it is called, it
returns a new character. For now we'll ignore where the characters come from,
although you can imagine them originating at an interactive terminal or some
secondary storage device like a disk.

We won't discuss what character set we have in mind, except to say that
getc can return a value, distinguishable from all input character codes, that
indicates that the end of the input has been reached. Similarly, the end of a
text line is indicated by yet another unique value that is returned by getc.
We'll also ignore all questions of efficiency, although we're fully aware that
reading one character at a time at least sounds expensive. Temporarily we want
to sweep as many details as we possibly can under the rug.

Next we invent putc, the complement of getc. putc puts a single charac­
ter somewhere, such as a terminal, a printer, or a disk; one of its acceptable
argument values signals the end of a text line. Again, we won't concern our­
selves with the precise details, nor with the efficiency of the operation. The
main point is that getc and putc work together - the characters that getc
gets can be put somewhere else by putc.

If someone has provided these two basic operations, you can do a surprising
amount of useful computing without ever knowing anything more about how
they're implemented. As the simplest example, if you put the getc/putc pair

7

8 SOFIWARE TOOLS IN PASCAL CHAPTER 1

inside a loop:

while (getc(c) is not at end of input) do
putc(c)

you have a program that copies its input to its output and quits. A simple task,
performed by an equally simple program. Certainly, someone ultimately has to
worry about the choice of character set, detecting end of line and end of input,
efficiency and the like, but most people need not be concerned, because getc
and putc conceal the details. (If you want to know how they might work, we
will show you simple versions in standard Pascal soon, and also explain why we
didn't just use read and wr i te.)

Functions like getc and putc are called primitives - functions that inter­
face to the "outside world." They call in tum whatever input and output rou­
tines must be used with a particular operating system and compiler. To the pro­
gram that uses them, getc and putc define a standard internal representation
for characters and provide an input-output mechanism that can be made uni­
form across many different computers. If we use primitives, we can design and
write programs that will not be overly dependent on the idiosyncrasies of any
one operating system. The primitives insulate a program from its operating sys­
tem environment and ensure that the high level task to be performed is clearly
expressed in a small well-defined set of basic operations.

The program shown above is written in "pseudo-code," that is, a language
that resembles a real programming language but avoids excessive detail by from
time to time resorting to ordinary English. Writing in pseudo-code lets us
specify quite a bit of the program before we have worked out all aspects of it.
On larger programs, it is valuable to begin with pseudo-code and refine it in
stages until it is all executable. You can revise and improve the design at a
high level without writing any executable code, yet remain close to a form that
can be made executable.

The next step is to write copy in standard Pascal, ready to compile and run.

{ copy -- copy input to output }
procedure copy;
var

c : character;
begin

while (getc(c) <> ENDFILE) do
putc(c)

end;

Some explanations: First, and most obvious to people who have used Pascal
before, is that this is not a complete program - it is just a procedure. So it
needs some surrounding context before it can actually do anything for us. We
intend to present all of our programs this way, as procedures that fit into a
larger context, so we can better focus on the essential ideas. To make copy
run, we actually need something like this:

CHAPTER 1 GETIlNG STARTED 9

{ complete copy -- to show one possible implementation }
program copyprog (input, output);
const

ENDFILE -1;
NEWLINE 10; {ASCII value}

type
character = -1 .. 127; { ASCII, plus ENDFILE

{ getc -- get one character from standard input
function getc (var c : character) : character;
var

ch char;
begin

if (eof) then
c := ENDFILE

else if (eoln) then begin
readln;
c := NEWLINE

end
else begin

read(ch);
c := ord(ch)

end;
getc .- c

end;

{putc put one character on standard output }
procedure putc (c : character);
begin

if (c = NEWLINE) then
writeln

else
write(chr(c»

end;

{copy copy input to output }
procedure copy;
var

c : character;
begin

while (getc(c) <> ENDFILE) do
putc(c)

end;

begin main program }
copy

end.

The context shown here defines all the constants, types, and functions needed
by copy. It is presented in standard Pascal to illustrate the behavior of getc

10 SOFIWARE TOOLS IN PASCAL CHAPTER 1

and putc in terms familiar to Pascal programmers, and to demonstrate that the
primitives can be implemented in a fashion that is supported on all Pascal sys­
tems. For most implementations, however, some special treatment would be
given to getc and putc, to make them as efficient as possible.

The advantage of wrapping a program in an outer shell is that we can gradu­
ally add to the surrounding environment as we make the programs more sophis­
ticated, without having to repeat a lot of description every time we present a
new program. The standard context for the programs in the book is much
larger than what we showed here. In particular, we put the definitions of func­
tions and procedures like getc and putc, constants like ENDFILE, and types
like character in the outer block so they are readily available to the whole
program. In Chapter 3 and Chapter 8, we will show some programs that help
to automate collecting the pieces of a program. The appendix shows the
declarations we use. We will assume without further comment that all subse­
quent programs are wrapped up this way.

Now back to copy itself. The first line is just a comment, of course, that
says briefly what the procedure does. This kind of comment will occur on every
function and procedure in the book. We use { and} to delimit comments; you
may have to use (* and *) if your character set does not include braces.

The lines

var
c : character;

declare c to be a variable of type character. Note that character is not
the same as the standard type char, for it must represent values like ENDFILE
that must be different from legitimate values of type char.

The lines

while (getc(c) <> ENDFILE) do
putc(c)

are where all the work of copy gets done. The while statement specifies a
loop; so long as the condition inside parenthesest is true, the body of the loop
(in this case, the single statement putc (c)) is repeatedly executed. Eventually
the condition becomes false, and the loop terminates. copy then returns to its
caller, and the whole program terminates. The condition being tested in the
while loop is

getc(c) <> ENDFILE

The notation <> means "not equal to," so the loop continues while the charac­
ter returned by getc is not ENDFILE.

t Strictly speaking, parentheses aren't needed here, but they are in conditions that involve and and
or. We intend to stick them in everywhere because it's ea~ier than remembering when they're
needed and when they're not.

CHAPTER 1 GETIlNG STARTED 11

getc (C) returns the next character both as its function value and in its
argument c so the value can be both tested and saved for later usc, all in a sin­
gle statement. This is an unconventional Pascal usage, but perfectly legal. It is
so handy that we use it often.

ENDFILE is a symbolic constant that stands for a value that is mutually
agreed upon by getc and the users of getc to signal that the end of the input
has occurred - that there are no more characters. (It is not a character that is
stored on an external medium.) The particular value chosen above is not partic­
ularly magical; it may even be different on different machines. The only restric­
tion is that ENDFILE must be distinguishable from any possible character that
getc might obtain from a file. We will consistently use upper case names for
such constants so they will stand out; all variables and functions will be in lower
case.

There are a fair number of symbolic constants in our programs; they contri­
bute a great deal to the readability of the code. You can see at a glance what
the test

while (getc(c) <> ENDFILE) do

means, because ENDFILE is more meaningful than some magic number like -1

would be.
In Pascal, the const declaration is a convenient way to replace names like

ENDFILE by appropriate values as the program is being compiled. Chapter 8
describes a program that will let you define and translate symbolic constants in a
more general way, so that you can use them in any context and have the actual
defining character strings written into the source code automatically before it is
compiled.

Why is copy useful? Most operating systems permit you to specify what
external files or data sets or physical 110 devices correspond to the internal files
you used when you wrote the program. This correspondence is established after
the code is compiled, at the time it is actually run. (Those systems that don't
support such runtime file specification can be augmented to do so by our stan­
dard interface.) That means you can have programs around, ready to run, and
decide at the last moment what files or devices to use. It also means you can
treat such programs like black boxes, and pretty much forget about their
innards. If you have the primitive getc read from a "standard input" - like
the file input normally associated with a Pascal program - and have putc
write on a "standard output" - like the file output - you can connect them
to the appropriate files or devices when the program is run. In Chapter 3 we
will show a convenient notation for specifying what files to connect.

By the way, the word "file" has different meanings on different computer
systems. For now, we will use it colloquially to mean a place where information
comes from (via getc, for example), or a place where it can be put (perhaps
with putc). This might be a disk organized as a permanent "file system" or

12 SOFTWARE TOOLS IN PASCAL CHAPTER 1

any 110 device.
Our program copies a stream of characters from any such source to any des­

tination. In an environment such as we just described, you can use it to put
keystrokes from a terminal onto a file, list a file on a printer, replicate a file ­
to perform, in short, a host of utility functions.

Although there are other ways of doing many of these things, this method is
general and you can build on it. You can improve it, if necessary, in a number
of ways, to make it fancier or faster. copy is a basic tool. Useful in its own
right, it can also serve as a base for constructing other, more elaborate pro­
grams. If you stick to the principle of pushing details as far down as possible,
by writing in terms of primitives that read from an arbitrary source and write to
an arbitrary destination, your new tools will be compatible with previous ones.
You will be building a whole set that work together.

One more major item remains to be provided before copy can be called fin­
ished - its user documentation. For a program as simple as copy this may
seem silly, for one glance at the code reminds us what it does. Few programs
are this simple, however, and source code is not always available as a ready
reference. So we present a document we call a "manual page:"

PROGRAM
copy copy input to output

USAGE
copy

FUNCTION
copy copies its input to its output unchanged. It is useful for copying from a terminal to a
file, from file to file, or even from terminal to terminal. It may be used for displaying the
contents of a file, without interpretation or formatting, by copying from a file to terminal.

EXAMPLE
To echo lines typed at your terminal:

copy
hello there, are you listening?
hello there, are you listening?
yes, I am.
yes, I am.
<ENDFILE>

The manual page is comprehensive but succinct. It suggests some obvious
uses and gives a concrete example that potential users can try out, (a) to make
sure copy is installed properly and (b) to reinforce their understanding of the
document. (In manual pages, we will print user input in the normal program
typeface, and program responses in italics.)

The example is not frivolous, by the way. When you encounter a new
language, a new operating environment, or just a new way of doing business on
a computer, the first hurdle to clear is learning how to run a program. You
must master, perhaps: logging on to the computer, creating files with the editor,
running the compiler and/or linker, modifying files with the editor, and

CHAPTER I GETIlNG SfARTED 13

invoking the program you've finally built! With all these potential problem
areas, the last thing you need is a complex program to contribute troubles of its
own. Thus, copy is always one of the first programs we bring up in a new
environment.

Exercise 1-1. Make the copy program work on your computer. 0

Exercise 1-2. Can you think of an even simpler prograrn you might use to establish a
beachhead on a new system? 0

1.2 Counting Characters

There are times when all you want to know about a file is how many charac­
ters it contains, or how many lines, or how many words. If the file resides on
permanent storage like a disk, you may be lucky enough to have an operating
system that will tell you at least some of these things. If you are not lucky, or if
the "file" happens to be on a tape or cassette, for instance, then the easiest
thing is to pass the file through a program that counts what you want to know.

If you can't think offhand why anyone would want merely to count the char­
acters in something, don't worry. This is a book on tool building, remember,
and tools work best in combination with others. Applications will occur soon
enough.

Counting characters is the most basic operation:

{ charcount -- count characters in standard input }
procedure charcount;
var

nc : integer;
c : character;

begin
nc := 0;
while (getc(c) <> ENDFILE) do

nc := nc + 1;
putdec(nc, 1);
putc(NEWLINE)

end;

This program is only slightly more complicated than the previous one. It uses
type integer for the counting variable nc, which accumulates the number of
characters read. To print the number it has computed, charcount calls
putdec, which converts a number to a string of characters suitable for printing
and outputs it with putc; this way it does not have to know how output is actu­
ally performed. We will present putdec in Chapter 2. The second argument
in the call to putdec is the minimum field width: the number will be right­
aligned in a field at least this wide.

In no case does putdec force the output device, whatever it might be, to
end the current line, because we might want to put several numbers on one line
with multiple calls to putdec. Thus we have to ask for a new line explicitly,

14 SOFTWARE TOOLS IN PASCAL

with

CHAPTER 1

putc(NEWLINE)

NEWLINE is not necessarily one of the values of the Pascal type char, but it
does exist in the standard ASCII and EBCDIC character sets. When sent to a
terminal it typically causes a carriage return and line feed; when written to a file
it might cause an end of record or it might merely be written as just another
character in the output stream or file. So for many environments, the local ver­
sion of putc may well contain special code for handling the argument value
NEWLINE. We will use NEWLINE as a standard character internally for signal­
ing end of line, regardless of the source or destination of information, so that
our programs can have a uniform way of identifying line boundaries.

You should observe that if the input file contains no characters, the whi 1 e

test fails on the first call to getc, and so charcount produces zero, the right
answer. This is an important observation. One of the best things about the
while statement is that it tests at the top of the loop, before proceeding with
the body. Thus if there is nothing to do, nothing is done, even if this means
that we never go through the loop body. Too many programs fail to act intelli­
gently when handed input like "no characters." We will write ours so they do
reasonable things with extreme cases; one of our basic tools for accomplishing
this is the while.

The manual page for charcount is:

PROGRAM
charcount count characters in input

USAGE
charcount

FUNCTION
charcount counts the characters in its input and writes the total as a single line of text to
the output. Since each line of text is internally delimited by a NEWLINE character, the total
count is the number of lines plus the number of characters within each line.

EXAMPLE
charcount
A single line of input.
<ENDFILE>
24

1.3 Counting Lines

Suppose that instead of counting characters, we want to count the number of
lines in some input. Clearly, this is just a matter of restricting the count to
instances of NEWLINE returned by getc:

CHAPTER 1 GETI1NG STARTED 15

{ linecount -- count lines in standard input }
procedure linecount;
var

nl : integer;
c : character;

begin
nl := 0;
while (getc(c) <> ENDFILE) do

if (c = NEWLINE) then
nl := nl + 1;

putdec(nl, 1);
putc(NEWLINE)

end;

This time the body of the while is a little bigger - it consists of an if, which
in tum controls the assignment statement nl : = nl + 1. The indentation
shows what code is controlled by what, and unobtrusively but clearly draws
attention to the logical structure of the program. Note how the use of a special
value for the newline condition permits linecount to be written as a minor
variation on the structure of charcount.

The idea that text information is just a string of characters, with arbitrary
length lines delimited by explicit NEWLINE characters, seems pretty obvious
when you think about how a typewriter or a terminal works. But for all its
obviousness, it's still an uncommon concept in many computing systems, where
text must often be forced into either fixed length chunks reminiscent of cards or
"records" with inconvenient properties.

As we showed in the full expansion of copy earlier, it is not hard to impose
this simplified form of input/output on an existing system, doing input and out­
put one character at a time. Each call to getc must test whether end of file
has occurred (using the eof built-in function), and if not, whether the end of a
line has happened (with eoln). For putc, we use wri teln to terminate the
line properly. This is not especially efficient, but it is by far the easiest tactic.
The versions of getc and putc that we showed with copy work this way; they
will serve temporarily in most systems.

Localizing input and output in a pair of functions is better than spreading
decisions about ends of lines and files and character sets allover a program. Of
course the input might indeed be a stream of characters from a keyboard and
the output might indeed be driving a typing mechanism, and all disk files might
be maintained in this format, in which case getc and putc become trivial.
But whatever the source or sink, we will stick with our interface and program in
terms of typewriter-like text, performing all necessary translations as early as
possible on input and as late as possible on output, to match up with character
sets, terminals, line printers, and disk formats. Chapter 2 contains some exam­
ples of programs for matching up to special devices. Having a uniform
representation for text solves much of the problem of keeping tools uniform.

16 SOFTWARE TOOLS IN PASCAL CHAPTER 1

How should we test linecount to make sure it really works? When bugs
occur, they usually arise at the "boundaries" or extremes of program operation.
These are the "exceptions that prove the rule." Here the boundaries are fairly
simple: a file with no lines and a file with one line. If the code handles these
cases correctly, and the general case of a file with more than one line, it is
probable that it will handle all inputs properly.

So we feed linecount an empty file. The while test fails the first time
and the body is never obeyed. No lines are counted when none are input.
Fine.

If we feed linecount one line, the while is satisfied for every character
on the line; the if is satisfied when the NEWLINE is seen, and the line is
counted. Then the test is repeated and the while loop exits. Again fine.

A multi-line file. Same behavior as for one line, only now we observe that
after each line, the program ends up at the test part of the while - the proper
place to begin handling the next line or an ENDFILE. The program checks out.

This may seem like excruciating detail for such a simple program, but it's
not. There are common coding blunders which could have caused anyone of
those three tests to fail, sometimes even while the other two tests succeed. You
should learn to think of boundary tests as you code each piece of a program ­
try them mentally as you write and then physically on the finished product. In
practice, the tests go much quicker than we can talk about them and cost little
additional effort. It is effort that is well repaid.

To summarize linecount for future use:

PROGRAM
linecount count lines in input

USAGE
linecount

FUNCTION
1 inecount counts the lines in its input and writes the total as a line of text to the output.

EXAMPLE
linecount
A single line of input.
<ENDFILE>
1

Exercise 1-3. What happens if the last character of input to linecount is not a
NEWLINE? Does the program stay sane? Is its behavior a bug or a natural consequence
of our definition of a "line"? 0

1.4 Counting Words

The next counting program has applications in text processing - it counts
the words in a file. We use it to answer questions like "How many words are
there in this book?" (About 95,000, excluding programs.) For our purposes a
word is a sequence of any characters except blanks, tabs and newlines. Every
time there is a transition from not being in a word to being in a word, that

CHAPTER 1 GETTING SfARTED 17

signals another word to count. The variable inward is used to record which
state the program is in at any given time; initially it is "not in a word."

{ wordcount -- count words in standard input }
procedure wordcount;
var

nw : integer;
c : character;
inword : boolean;

begin
nw := 0;
inword := false;
while (getc(c) <> ENDFILE) do

if (c = BLANK) or (c NEWLINE) or (c
inword := false

else if (not inword) then begin
inword := true;
nw := nw + 1

end;
putdec(nw, 1);
putc(NEWLINE)

end;

TAB) then

BLANK and TAB are further symbolic constants, which must be set to the inter­
nal character codes that getc returns for blank and horizontal tab on your
machine. For example, in the ASCII character set, BLANK is 32 and TAB is 9,
but the purpose of using constants is precisely so that you won't have to know
(or be tempted to use) specific values except in const declarations. It also
helps portability if such values occur only in one easy-to-change place.

inword is declared boolean, i.e., it can take on only the values true and
false. We have quietly made use of boolean expressions already - they
appear in all while and if statements - but this is the first time we found the
need to memorize the result of a test by setting a variable. inword is true
only when the input is "inside" a word.

This example also shows some more control flow statements. First, an if
statement may include an else, to specify an alternate action if the condition
of the if is not met:

if condition then
statement

else
statement

says "if the condition is true then do the statement following the if; else
(otherwise) do the statement following the e 1 s e." One and only one of the two
statements is executed when the if -then-else is encountered. Either state­
ment can in fact be quite complicated; in wardcount the one after the else is
yet another if.

Second, we can replace any single statement by a group of statements

18 SOFIWARE TOOLS IN PASCAL CHAPTER 1

separated by semicolons and enclosed by begin and end, a construction called
a compound statement; the statements within the begin and end are treated as
if they were a single statement. Thus if inword is false in the code

else if (not inword) then begin
inword := true;
nw : = nw + 1

end;

both assignments are done. begin and end may in principle be nested to arbi­
trary depth.

We will consistently position begin and end as shown: begin on the line
that controls the compound statement, and end on a line by itself at the same
level of indentation as the keyword that began the construction.

It is truly remarkable how much heated debate can result from such ques­
tions as where begin and end should be placed, and whether keywords should
be in upper or lower case. Rather than continue such a debate, suffice it to say
that we find our style convenient and readable, but you are free to do as you
like in your own code. We do recommend strongly that you be consistent in
applying whatever formatting standards you settle on.

Although the code that follows the while in wordcount is complicated,
logically it is just a single if-then-else statement, not a compound, so it
needs no surrounding begin and end. You may insert them if they make you
feel more comfortable.

The else if construction occurs frequently in our programs, often as a
longer chain of if ... else if ... else~ to perform at most one of several
alternatives. Chains are made longer by inserting more else if's at the
appropriate places. Three rules make such chains easy to read:

(1) Scan down the tests until you find one that is met - the first one
encountered selects the case to be performed.

(2) If no test succeeds, the statement associated with the trailing e 1 s e (if
any) is performed.

(3) In either situation, execution resumes immediately after the body of the
last else (or the last else if if there is no trailing else.)

We strongly favor this form of writing multi-way decisions, instead of arbitrarily
nested trees of if-then-else's, because it tends to be less confusing. We
keep all the else if's at the same level of indenting, to emphasize that the
structure is really a multi-way decision.

Pascal also provides a "case" statement for expressing some kinds of
multi-way decisions directly. We will use it when it is suitable, but a chain of
else if's is often better because it can handle more situations.

How do we test wordcount? The place to begin is while the program is
being written. The main assurance you have that a program is correct is the
intellectual effort you put into getting it right in the first place. We wrote

CHAPTER 1 GETTING SfARTED 19

wordeount with an algorithm based on two states - being in a word, and not
being in a word. If we make the transitions between states correctly, set up ini­
tial conditions properly, and properly count the transitions for each new word,
we can have confidence in the program. Testing is still necessary, however, to
check that the algorithm is valid and that the program implements it correctly.

For a program of any complexity, you certainly can't test all possible inputs.
As we said, programmers have learned from bitter experience that the boun­
daries of a program are the most fruitful places to examine, for they are where
bugs most often appear. Besides, if you can show that a program works prop­
erly at its extremes of operation, you have a convincing argument that it works
properly everywhere between as well. Thus a small selection of critical tests
directed at boundaries is much superior to a shotgun-blast of random ones.

Although it's hard to give a precise definition, intuitively a "boundary" is a
data value for which the program is forced to react significantly differently from
an adjacent value. For example, the case of "no input at all" is a boundary for
most programs. In testing wordeount, if there is no input, the first call of
gete returns an ENDFILE, the body of the while loop is never executed, and
the wordcount is zero, as expected. The analogous boundary, input but no
words, is also worth checking. If the input consists entirely of blanks, tabs and
newlines, the first if is always satisfied, so we is never incremented; again the
result is zero, as it should be.

You should also verify that wordeount works when there is a single word
of input, regardless of where in the input it appears, and when there are two
input words at various places. If all of these cases are correct, you can be fairly
confident that the program is right.

One final observation. In testing wordeount it was obvious what output
was expected for each input. That is not always so clear in larger programs.
Yet it is a fundamental principle of testing that you must know in advance what
answer each test case is supposed to produce. If you don't, you're not testing;
you're experimenting. So part of the responsibility of writing a program is to
prepare a comprehensive set of test inputs, and outputs against which to com­
pare the results of test runs.

The manual page required for wordeount is somewhat more substantial
than the earlier ones:

20 SOFTWARE TOOLS IN PASCAL

PROGRAM
wordcount count words in input

USAGE

CHAPTER 1

wordcount
FUNCTION

wordcount counts the words in its input and writes the total as a line of text to the output.
A "word' is a maximal sequence of characters not containing a blank or tab or newline.

EXAMPLE
wordcount
A single line of input.
<ENDFILE>
5

BUGS
The definition of "word" is simplistic.

We have introduced an interesting new section on this manual page - a
declaration of known bugs. It permits us to document a program exactly as it
stands the day the manual page is written, without resorting to fictions about
how it ought to work, and it gives the user a warning about problems that might
otherwise be overlooked.

Naturally, we debug a program as thoroughly as possible before releasing it
for public consumption, so conventional coding bugs are rarely documented in
this fashion. Instead, we focus on design shortcomings, things that could be
made better but often aren't worth the bother for a simple program.
wordcount is naive about a construct such as "either/or," which most people
would count as two words, and about a word hyphenated at the end of a text
line, which is universally regarded as one word, except by simplistic programs.

Since wordcount does just what we want in the vast majority of cases, and
since it comes quite close to the right answer even on text prepared without
regard to its shortcomings, we feel little incentive to make it more complex.
Instead, we are content to document it as it is and move on to other things.

Exercise 1-4. Combine the functions of charcount, linecount and wordcount into
one program. In what order should the three counts be printed? Is it better to have one
program that does three things, or three programs that each do one thing? 0

1.5 Removing Tabs

Suppose that you need to print a text file containing horizontal tab charac­
ters on a device that cannot interpret tabs. As a first approximation, you might
be content with fixed tab stops every four columns, as they are in this book. A
tab character is thus replaced by from one to four spaces. Let us write a
manual page for a program detab to do this:

CHAPTER 1 GETI1NG STARTED 21

PROGRAM
detab convert tabs to blanks

USAGE
detab

FUNCTION
detab copies its input to its output, expanding horizontal tabs to blanks along the way, so
that the output is visually the same as the input, but contains no tab characters. Tab stops
are assumed to be set every four columns (i.e., 1, 5, 9, ...), so that each tab character is
replaced by from one to four blanks.

EXAMPLE
Using ... ali a visible tab:

detab
...col 1~2~34~rest

col 1 2 34 rest

BUGS
detab is naive about backspaces, vertical motions, and non-printing characters.

This time we present the manual page before the program, a useful way to
begin any project - it encourages us to focus from the start on how the final
product is going to look to the user. This is important. Many programs grow
haphazardly as the programmer learns what works or thinks of interesting new
capabilities; the result is often a collection of features hard to use and not
clearly related to each other. A program with just a few capabilities that are
easy to specify is almost always more useful than a powerful program that is
hard to invoke.

Another advantage of writing the manual page first is that it gives us a pre­
cise specification of the job to be done. Often it is hard to know when to end a
programming project, since there is always one more feature dear to someone's
heart that might be worth adding. But once the program does what the manual
page says, it is hard to argue that the job is not done. Of all the factors (other
than native ability) known to influence programmer productivity, the single
most important one is the quality of specification given at the outset - the
more precise and unambiguous the better.

This manual page even provides in advance for bugs! Put another way, it is
a declaration in advance that the programmer need not be too ambitious in
dealing with funny characters; a simple program will do.

Not all programs are documented before they are written, of course (we just
presented several that weren't). Sometimes exploration is called for before
specifications can be safely frozen, and sometimes the goal is sufficiently clear
from the outset that there is little fear of going astray. We work both ways,
and will continue to present manual pages at various stages of program develop­
ment.

detab can have the same structure as copy, except that the body of the
while loop is more complicated:

22 SOFIWARE TOOLS IN PASCAL CHAPTER 1

while (getc(c) <> ENDFILE)
if (c = TAB)

print blanks until next tab stop reached
else

print c

How do we know when the next tab position is reached? One possibility is
to build into the main program the knowledge that tabs are set every four
columns; then an arithmetic test suffices to decide if the current column is a tab
stop. The trouble with such an approach comes when we decide to change the
program, perhaps to allow tabs to be set at positions which aren't related by a
simple arithmetic formula. If the "every four columns" decision is firmly wired
into the program, it will be hard to cut it out.

A more flexible organization is an array of tab stops, initialized for now to
every four columns. This will be a lot easier to change; in fact we haven't even
said whether the array contains a list of stops or a true/false indicator at
each column, like a typewriter. Representing the stops in an array, in whatever
manner, leads to a program that will readily upgrade for more general applica­
tions.

However we do it, it is still worthwhile to write a separate function tabpos
which tells the main program whether a particular column is a tab stop or not.
This way we avoid muddying up the basic logic of the control loop with tab cal­
culations, and conceal the representation of tab stops from the main routine.

It is clear that the program must also keep track of what column it is in, and
it must recognize the end of each line of text so it can reset the column counter.
The second cut at the tab remover is thus:

initialize tab stops
col := 1
while (getc(c) <> ENDFILE)

if (c = TAB)

print one or more blanks and update col
until (tabpos(col, tabstops»

else if (c = NEWLINE)
putc(c)
col := 1

else
putc(c)
col := col + 1

This shows an else if chain with a trailing else, which is there to cover the
"anything else" case, that is, neither a TAB nor a NEWLINE. Notice that in our
pseudo-code we tend not to worry about syntactic noise like then and do, or
even begin and end, preferring instead to let the indentation show the struc­
ture.

tabpos returns true if column col is a tab stop, false if it is not. In
principle, this is an easy task. But wait a moment, and think over our

CHAPTER 1 GETI1NG STARTED 23

discussion of boundary conditions. One obvious boundary is the last tab stop.
What happens if the input contains a tab in a column after the last tab stop?

One solution is to outlaw tabs after some maximum column, but it's folly to
write a program that blindly assumes that its input is legal: real users rarely
cooperate. Or detab could abort or produce an error message (or both), but
this is hardly desirable in a general-purpose tool. Why not do something intelli­
gent instead? A program should produce reasonable output for reasonable
input, and there is nothing unreasonable about a lot of tabs. Let us build
detab so that when a tab is encountered after the last tab stop it is converted
to a single blank.

Since the loop

print one or more blanks and update col
until (tabpos(col, tabstops))

will end only when it lands exactly on a tab stop, we must make sure that this
always happens, even when lines extend past the last tab stop setting. A safe
convention is to assume that there are tab stops set in every column after the
last one set explicitly. tabpos must provide this feature.

All that remains is to spell out a few details and write tabpos. We have
chosen a representation where each element of an array tabstops contains
true if there is a tab stop at that column, false if there is not. Here is the
final version:

24 SOFTWARE TOOLS IN PASCAL CHAPTER 1

{ detab -- convert tabs to equivalent number of blanks }
procedure detab;
const

MAXLINE 1000; { or whatever}
type

tabtype array [1 .. MAXLINE] of boolean;
var

c : character;
col : integer;
tabstops : tabtype;

#include "tabpos.p"
#include "settabs.p"
begin

settabs(tabstops); {set initial tab stops}
col : = 1;
while (getc(c) <> ENDFILE) do

if (c = TAB) then
repeat

putc (BLANK) ;
col := col + 1

until (tabpos(col, tabstops»
else if (c = NEWLINE) then begin

putc(NEWLINE);
col := 1

end
else begin

putc(c);
col := col + 1

end
end;

We have introduced another important mechanism that we will be using
heavily. "tabpos. p" and "setpos. p" are the names of files in our file sys­
tem, where by convention Pascal source files have names that end in . p ; the
convention will likely be different on another system. The lines

#include "tabpos.p"
#include "settabs.p"

cause the files containing the function or procedure to be copied into the source
right at that spot, replacing the #include lines. We will use #include
throughout the book to show explicitly what has to go where without cluttering
up presentation of the main routine. Chapter 3 and the appendix discuss how
to interpret #include commands and construct whole Pascal programs suitable
for compilation.

The function tabpos is:

CHAPTER 1 GETI1NG STARTED 25

{ tabpos -- return true if col is a tab stop
function tabpos (col : integer; var tabstops

: boolean;
begin

if (col> MAXLINE) then
tabpos .- true

else
tabpos .- tabstops[col]

end;

tabtype)

detab uses settabs to set up the tabs tops array initially, according to
whatever representation is expected by tabpos.

{ settabs -- set initial tab stops }
procedure settabs (var tabstops : tabtype);
const

TABSPACE = 4; {4 spaces per tab}
var

i : integer;
begin

for i := 1 to MAXLINE do
tabstops[i] := (i mod TABSPACE = 1)

end;

detab introduces two more control structures, which almost completes our
set. The repeat-until is a loop that is repeated one or more times until
the trailing test is met. This is opposite from the while, which tests at the top
whether to loop, before doing anything. The while seems to occur naturally
more often, but each form has its uses. In detab, the repeat is necessary to
ensure that each input tab causes at least one blank to be output.

The for statement does a simple iteration from a lower limit to an upper,
stepping a variable through successive values in between. Like the while, the
f or can be done zero times.

The mod operator yields the remainder produced by dividing its first operand
by its second. In this case, i mod 4 produces the sequence 1, 2, 3, 0, 1, 2, ...
as i increases from 1. Thus a 1 is produced every fourth time, and this is used
to set the tab stop. This is a standard use for mod. (The parameter tabstops
is declared var in settabs so that the changes made in settabs actually
affect the array in detab.)

You might notice, by the way, that even though we spoke of "every four,"
we wrote the code in terms of a constant called TABSPACE that happens to have
the value 4. When "four" becomes "three" or "eight" sometime in the future,
the const declaration will be easy to find and change. (We changed it a cou­
ple of times while writing this chapter!)

It may seem silly to write a two-line function to be called only once, but the
purpose of settabs is to conceal a data representation from a routine that
does not have to know about it. For a program the size of detab, this is not

26 SOFIWARE TOOLS IN PASCAL CHAPTER 1

absolutely necessary, but it is vital to break larger programs into small pieces
that communicate only through well-defined interfaces. The less one part of a
program knows about how another part operates, the more easily each may be
changed.

Most real programs are subjected to a steady flow of changes and improve­
ments over their lifetimes, and many programmers spend most of their time
maintaining and modifying existing programs. This is an expensive process, so
one of the most important design considerations for a program is that it be easy
to change.

The best way we know to achieve this is to write the program so its pieces
are as decoupled as possible, so that a change in one does not affect others. We
try to push down into separate modules those details which would make the pro­
gram less general and commit it to some specific mode of operation. getc and
putc, for instance, conceal all details of character set, lines, records, file assign­
ments and end-of-file handling; that is one reason why we use them instead of
direct calls to read and wr i te. Similarly, detab is organized so the main
routine is not concerned with the representation of tab stops, only with counting
columns.

Factoring the job into pieces also lets us concentrate on one aspect of a
design at a time. We are more likely to get detab right, and make it under­
standable, by restricting it to counting columns. And we are more likely to get
tabpos right by dealing only with tab stops and implementing just one function
whose specification is easily remembered. The best programs are designed in
terms of loosely coupled functions where each one does a simple task.

It is not always clear how to organize a Pascal program so the information is
readily available where it is needed without at the same time being excessively
visible where it isn't needed. For instance, we chose to make the tabstops
array a parameter of the calls to tabpos and settabs; it could just as well
have been passed implicitly because it was declared in an enclosing block. We
also chose to nest the definitions of tabpos and setpos within detab,
although they could have been put in the outer block. In that case, detab
wouldn't even have to know about the array tabpos, so it might be argued
that that would be the best representation.

Exercise 1-5. Test de tab. It must pass all the tests that copy must pass (except that
tabs are replaced by one to four spaces). In addition, there are several other boundaries
involving the tab stops. You might consider testing rows of x's, each with a tab in a dif­
ferent location. What happens if a tab occurs after the last tab stop? 0

Exercise 1-6. What does de tab do if the input contains a backspace character? Modify
it so it does the right thing. 0

Exercise 1-7. There are obviously several other ways to write detab. Implement the
following variations and compare them on the basis of size, complexity and ease of subse­
quent change.

(e) There is no tabs tops array and no settabs; tabpos simply computes the
right answer and returns it.

CHAPTER I GETI1NG STARTED 27

(b) The tabstops array contains a list of the columns which contain tab stops; the
list is terminated by a zero entry.

(c) Each element of the tabstops array contains the number of columns to the next
tab stop; the last entry is a zero.

(d) Repeat (b) and (c) using an explicit count of tabs stops instead of an end-marker.
o

1.6 Pascal Synopsis

You have already been introduced to most of the control flow parts of Pas­
cal; as the need arises, we will introduce more of the language, particularly
things related to data structure.

To assist you, here is a summary of what we've done so far. In the follow­
ing, a statement is any legal Pascal statement, and condition is a boolean expres­
sion. Any Pascal statement or group of these can be enclosed in begin and
end to make it into a compound statement, which is then equivalent to a single
statement, and usable anywhere a single statement can be used. Semicolons
separate the statements within such a group.

The if statement is

if condition then
statement}

else
statement2

If condition is true, do statement}, otherwise do statement2. The else part is
optional. As in many languages, the construction

if condition} then
if conditions then

statement}
else

statement2

is ambiguous - the else could be associated with either if. begin-end can
be used to disambiguate this as desired. Otherwise, each else goes with the
immediately previous un-e 1 s ed if. The example above is indented to agree
with the binding rule, but we will always use begin-end in such cases, to
make our intent perfectly clear.

The case statement is sometimes useful for multi-way decisions:

case expression of
case-list}: statement};
case-list2: statement2;

end

Each case-list is a list of one or more constants. The expression is evaluated
and matched against the list of cases; the statement thus selected is executed.

28 SOFTWARE TOOLS IN PASCAL CHAPTER 1

The case statement is seriously handicapped because it is an error if the
value of expression does not match any of the constants in the case-list's. It is
generally necessary to precede a case with an if that checks this.

The while loop is

while condition do
statement

Test condition. If it is true, do statement once, then test again. If condition is
false, resume with the first statement after the body of the while.

The for statement

for index : = expression} to expressions do
statement

defines a loop in which index goes from expression} to expression2 inclusive,
stepping through all successive values in between. statement is executed once
for each value of index. If downto is used in place of to, the loop counts
down instead of up.

The repeat until loop tests at the bottom instead of the top:

repeat
statement

until condition

The statement is done one or more times until condition becomes true, at which
time the loop is exited.

Pascal also includes a goto statement and a label declaration. Although
these are sometimes useful, we intend not to use them because it is too easy to
create unreadable programs when unrestrained branching is allowed. By res­
tricting ourselves to the control flow structures listed above, we get code that is
better thought out, more readable, and hence less error-prone. In our experi­
ence, readability is the single best criterion of program quality: if a program is
easy to read, it is probably a good program. If it is hard to read, it probably
isn't good.

Pascal source statements may appear anywhere on a line; they may even
bridge multiple lines, provided they are broken only where blanks or tabs may
appear. It is important, however, to indent systematically so you can see what
statements control what; this is another aspect of making programs readable.
We try to be rigorous about this, so that the same form always appears the same
way to the reader and so that we can use our tools to analyze program text.

There are several other components of Pascal just as important as control
flow, such as program structure, data types, and communication with the
operating system. Rather than attempt a summary here, we will introduce these
topics more carefully as we come to them in writing specific programs.

One thing to clarify, however, is what we mean by "Pascal." Pascal is not
"standard," in the sense that everyone uses exactly the same language. The
Pascal Report, by Jensen and Wirth, and the International Standards

CHAPTER 1 GETI1NG STARTED 29

Organization (ISO) proposed standard for Pascal try to define the language pre­
cisely. We intend to stick to these standards, for this is the only way that we
can be reasonably certain that our programs will run on all systems.

Pascal in its pure form has a number of defects that make it hard to write
programs well. The worst problem, at least from our perspective, is that the
size of an array is part of its type, and so it is not possible to write general­
purpose functions and procedures that will process arrays of different sizes at
different times. We cope with this problem as best we can, but it is a serious
impediment. Chapter 2 is the first place where we really have to deal with it.

A second problem is that all variables are discarded on exit from the func­
tion or procedure in which they are declared. This means that if some variable
is to remember a value from one call of a procedure to the next, that variable
must be external to the procedure. Thus variables have much wider scope (that
is, are visible to much more of the program) than they would be if Pascal per­
mitted internal variables to retain values from one call to the next. Similarly,
the only way to share a variable between two routines is to declare it in some
common ancestor.

A related problem is that variables cannot be initialized except by assign­
ment statements. Thus any variable which is to be initialized must be visible to
the initializing routine as well as the places where it is used.

Procedures and functions must all be presented to the compiler at once;
there is no separate compilation or library mechanism. Furthermore, their
definitions must be nested and must occur before their use, which is the
antithesis of the way they would be developed and presented in a top-down
refinement of a design. We use #include to overcome this defect because it
is just another step in compilation, not a change to the language. Since Pascal
also requires separation of canst, type and var declarations, we sometimes
use #include to collect these parts of a program as well.

One remaining major problem area is the interaction of a program with its
operating system. Input-output is one of the least well-defined parts of Pascal,
and is not well designed either. We deal with input-output and related matters
by defining primitives like getc and putc that provide a clean, well-defined
set of operating system functions. All our programs use these primitives, which
must be implemented somehow on each Pascal system. This is discussed more
fully in Chapter 3; some typical implementations appear in the appendix.

Our decision to use standard Pascal rather than some less restricted variant is
made to ensure portability. There are many extensions of Pascal, each over­
coming some of the problem areas we mentioned above. But the extensions are
all different, which destroys any hope of achieving portability. Our programs
avoid the extensions, and hence will run almost anywhere.

30 SOFTWARE TOOLS IN PASCAL CHAPTER 1

1.7 Prospectus

What have we done so far? We wrote several elementary but useful tools.
We tried to structure them so they will be easy to understand, and easy to
change if the need arises. We wrote them in a language that can be run on
almost any computer system without change. We wrote them in terms of primi­
tives that conceal the differences among operating systems. And we docu­
mented them so that people can quickly learn how to use them.

What we're going to do is repeat that process for a number of tools that we
think will be useful, and which should teach various lessons about programming.
Most of these programs are bigger than the ones so far, some a lot bigger. Yet
the basic approach of careful structuring and isolation of program from system
will remain a constant theme. This is the only way to cope with big programs
and real systems.

One thing you will notice is that programs often use code written in earlier
sections or chapters. This is important. One way to achieve greater software
productivity is to build on what has already been done, instead of endlessly rein­
venting the same things with minor variations. In a book, however, this organi­
zation does place a burden on the reader, since everything needed to run a
given program isn't all in one place. We have tried to reduce it by carefully
chosen names, reminders, back-pointers and an extensive index. Still, it will
sometimes be hard to dive into the middle of a chapter and immediately appre­
ciate what the code does.

One of the best ways to learn good programming is to read and think about
actual programs, to ask questions like "Why was it done that way?" or "Why
not write it like this?" We believe that the amount of code in this book is an
asset, not a liability, and we think you will profit from studying it, even if you
would write things differently.

Bibliographic Notes

We assume throughout this book that you have a working knowledge of Pas­
cal. If you need to know more, there are a host of Pascal textbooks.

The (almost) official ISO standard for Pascal is given in A Draft Proposal for
Pascal. It appeared in the April, 1980 issue of SIGPLAN Notices. More arti­
cles about Pascal may be found in "A Categorized Pascal Bibliography," D. V.
Moffat, SIGPLAN Notices, October, 1980.

Our style of documenting programs with manual pages is based on The Unix
Programmer's Manual, Bell Laboratories, 1978.

CHAPTER 2: FILTERS

We are going to continue what we began in the previous chapter - writing
simple programs that read a standard input and write a standard output. By
obvious analogy to electronics (or plumbing) we call such programs filters,
because they make useful changes to a stream of data passing through. You
will find that many tools fall into this category, including most of those in this
book.

2.1 Putting Tabs Back

Let us begin by writing the filter entab, to complement detab. entab
replaces strings of blanks by equivalent tabs and blanks. Remember what we
said earlier about the benefits of having all your files look as much alike as pos­
sible? You might use entab on files of fixed length records and produce
typewriter-like text. That way, you could convert your files to a standard
representation, one that has no wasteful imbedded blank strings. As an added
payoff, your files are smaller and they all look alike; that makes it easier to
write programs that talk and work together.

Another use for entab is to prepare output to be sent to a terminal. You
might have a program that expects to drive a smart printer. You would like to
speed up the printing by tabbing whenever possible. Rather than rewrite a
working program, you are better off with a separate program to filter the output
just before it is typed. Thus entab.

31

32 SOFTWARE TOOLS IN PASCAL CHAPTER 2

PROGRAM
entab convert runs of blanks into tabs

USAGE
entab

FUNCTION
entab copies its input to its output, replacing strings of blanks by tabs so that the output is
visually the same as the input, but contains fewer characters. Tab stops are assumed to be set
every four columns (i.e., 1, 5, 9, ...), so that each sequence of one to four blanks ending on
a tab stop is replaced by a tab character.

EXAMPLE
Using .. as a visible tab:

entab
col 1 2 34 rest

~col~1~2~34~rest

BUGS
entab is naive about backspaces, vertical motions, and non-printing characters.
entab will convert a single blank to a tab if it occurs at a tab stop. Thus entab is not an
exact inverse of detab.

The trick of getting most filters right is to find an orderly way of recognizing
the components of the input stream, so that the order can be reflected in the
flow of control of the program rather than in a collection of switches and flags.
We got away with one flag in wordcount, for that was a small program, but
anything larger quickly becomes confusing. If we think of the input to entab
as a repetition of the pattern: zero or more blanks, followed by a non-blank
character (or ENDFILE), then this determines the control structure of the pro­
gram:

col := 1
repeat

while (getc(c) = BLANK) { collect blanks}
if (at tab stop)

print a tab
while (any blanks left over)

put them out
{ c is now ENDFILE or non-blank
if (c <> ENDFILE)

putc(c)
if (c = NEWLINE)

col .- 1
else

col .- col + 1
until (c = ENDFILE)

col is the current output column. As with detab we will ignore non-printing
characters, backspace, etc.

An easy way for entab to keep track of the blanks is to use another vari­
able newcol that moves away from col as blanks are encountered. Whenever
a tab is output, col is made to catch up to newcol. Then, when a non-blank
character is encountered, if col is less than newcol there are excess blanks

CHAPTER 2 FILTERS 33

accumulated (not enough to be replaced by a tab) which must be output before
the character can be. The design is complete:

{ entab -- replace blanks by tabs and blanks }
procedure entab;
const

MAXLINE 1000; { or whatever}
type

tabtype array [1 .. MAXLINE] of boolean;
var

c : character;
col, newcol : integer;
tabstops : tabtype;

#include "tabpos.p"
#include "settabs.p"
begin

settabs(tabstops);
col := 1;
repeat

newcol := col;
while (getc(c) = BLANK) do begin {collect blanks

newcol := newcol + 1;
if (tabpos(newcol, tabstops» then begin

putc(TAB) ;
col := newcol

end
end;
while (col < newcol) do begin

putc(BLANK); { output leftover blanks}
col := col + 1

end;
if (c <> ENDFILE) then begin

putc(c) ;
if (c = NEWLINE) then

col .- 1
else

col .- col + 1
end

until (c
end;

ENDFILE)

Again the program is organized so the representation of tab stops is hidden
from the main routine; tabpos and settabs are the same routines used by
detab in Chapter 1.

Exercise 2-1. Walk through entab with a file having two characters, one character,
none. Try it with lines containing zero to ten blanks, followed by an x. Try zero to ten
blanks followed by end of file. Under what circumstance will a file be restored to its ori­
ginal form after being filtered by detab and entab in turn? Can you think of any uses
for such an operation? 0

34 SOFTWARE TOOLS IN PASCAL CHAPTER 2

Exercise 2-2. What happens if entab reads a tab character? Make the simplest addi­
tion you can think of to the code to handle tabs in the input. What does entab do with
text containing backspaces? How would you rewrite the code so that it maps an arbitrary
string of spaces, backspaces and tabs into the minimum number required to give the
same appearance? 0

2.2 Overstrikes

You can overstrike characters on a typewriter by backspacing over what is
already typed. This is how you underline words, for one thing; it is also a way
to build additional characters from existing ones. If you send your output to a
line printer, however, the result may be a hash, because a typical printer doesn't
know what to do with backspace characters.

Many printers do, however, provide for overstriking entire lines. The For­
tran convention for controlling this function (often co-opted into other
languages, including some versions of Pascal) is to provide an extra carriage
control character at the beginning of each line: a blank means "space before
printing," and a plus sign (+) means "do not space before printing," i.e., over­
strike what has gone before.

The filter overstrike looks for backspaces in text and generates a
sequence of print lines with carriage control codes to reproduce the effect of the
backspaces. If we adopt a viewpoint similar to that for entab, that the input is
an alternation of zero or more backspaces and non-backspace characters, the
resulting code is very similar. If a string of one or more backspaces is encoun­
tered, the program ends the current line and inserts the appropriate number of
spaces in the overstrike line.

This is not the only way to do it, of course, but it is one of the least compli­
cated. Nasty behavior occurs if the text to be printed contains words underlined
one letter at a time. Each sequence of character, backspace, underline causes a
whole new line to be generated, which can be quite slow. So a better way
would be to have two or more line buffers to build the overstrike images as they
are needed. But that is harder to code and get right. It is often better to get
on with something that does most of the job well enough, then improve and add
things as they prove to be worthwhile.

overstrike is useful even for text that contains no backspaces, for it con­
verts the typewriter text produced by most of the programs in this book into
lines with carriage controls, suitable for driving a line printer. It can serve as a
final filter whenever printer output is desired, again encouraging you to keep as
much as possible to a standard internal form for text for other programs.

BACKSPACE is another constant, like TAB, which we use to make a non­
graphic visible.

CHAPTER 2 FILTERS 35

{ overstrike -- convert backspaces into multiple lines }
procedure overstrike;
const

SKIP = BLANK;
NOSKIP = PLUS;

var
c : character;
col, newcol, i integer;

begin
col : = 1;
repeat

newcol := col;
while (getc(c) = BACKSPACE) do {eat backspaces}

newcol := max(newcol-1, 1);
if (newcol < col) then begin

putc(NEWLINE); {start overstrike line}
putc(NOSKIP);
for i := 1 to newcol-1 do

putc (BLANK) ;
col := newcol

end
else if (col = 1) and (c <> ENDFILE) then

putc(SKIP); { normal line}
{ else middle of line }
if (c <> ENDFILE) then begin

putc(c); { normal character}
if (c = NEWLINE) then

col .- 1
else

col .- col + 1
end

until (c
end;

ENDFILE)

The function max finds the maximum of its integer arguments:

{ max -- compute maximum of two integers
function max (x, y : integer) : integer;
begin

if (x > y) then
max: = x

else
max. - y

end;

This function is used often enough that we will include it in the standard
environment for our programs.

We used the constants NOSKIP and SKIP instead of PLUS and BLANK in
the body of overstrike because the former describe the function to be per­
formed, and the latter are not universal. Besides, it is important to avoid

36 SOFTWARE TOOLS IN PASCAL CHAPTER 2

confusion between a blank being put out to cause a line skip and one used to fill
a line. The purpose of symbolic constants is to retain mnemonic information as
much as possible.

We need no trailing else in the else if sequence in this example, since
the third alternative (in the middle of a line) requires no action. But we stuck
in a comment to make clear what the implied alternative is. We often ter­
minate an else if chain with an else, if only as a comment to spell out all
the possi ble cases.

PROGRAM
overstrike replace overstrikes by multiple lines

USAGE
overstrike

FUNCTION
overstrike copies its input to its output. replacing lines containing backspaces hy multiple
lines that overstrike to print the same as the input, hut contain no backspaces. It is assumed
that the output is to be printed on a device that takes the first character of each line as a car­
riage control; a blank carriage control causes normal space before print, while a plus sign' +'

suppresses space before print and hence causes the remainder of the line to overstrike the pre­
vious line.

EXAMPLE
Using ~ as a visihle backspace:

overstrlke
abc+-+-+-

abc

BUGS
overstrike is naive about vertical motions and non-printing characters.
It produces one overstruck line for each sequence of backspaces.

Exercise 2-3. What are a half-dozen test inputs that exercise critical boundaries of
overstrike? Why did we write

newcol .- rnax(newcol-1, 1)

instead of

newcol := newcol-1

Give a test input and sample outputs that show the difference between the two cases.
Our version of overstrike simulates the behavior of a terminal where backspaces are
ignored once the left margin is reached. Rewrite the code to keep track of where char­
acters should appear but print only those characters that occur in or after column one. 0

Exercise 2-4. As we said earlier, if backspaces come one at a time instead of in long
runs (for example, if each letter in a word is individually backspaced and underlined),
overstrike is inefficient, in that it puts out a fresh line for each one. Modify it to put
out fewer lines. 0

Exercise 2-5. Another standard carriage control is a 1, which causes the next line to be
printed at the top of the next page. Modify overstrike to look for a special
FORMFEED character (ordinal value 12 in ASCII) and map each occurrence into a page

CHAPTER 2 FILTERS 37

eject. You might also consider adapting overstrike to look for long runs of empty
lines and replace them by ejects when possible, since this is often faster on line printers.
o

Exercise 2-6. Still another convention for carriage control is to use the Ascn carriage
return character RETURN (ordinal value 13) at the end of a line to be overstruck, instead
of the normal NEWLINE which causes a linespace. Alter overstrike to deal with this
convention instead. 0

Exercise 2-7. overstrike in series with detab provides a general terminal-to-printer
conversion. Would it be worth combining them into a single program? Can you think
of any other functions worth adding? 0

2.3 Text Compression

Tabs and backspaces can be viewed as a shorthand; certainly typewriter­
encoded files tend to be shorter than card images or printer lines. But they are
a very special form of shorthand. What we are going to consider next is a
scheme suitable for compressing and expanding any text that has runs of
repeated characters. The repeated characters are not necessarily blanks; they
can be anything.

We emphasize that this is not the ultimate compression scheme. A file can
have redundancy that does not appear as repetitions of adjacent characters ­
consider a dictionary, for instance. But card images and print lines tend to
have long strings of blanks, and computer output in general is often repetitious.
So our naive approach should have a reasonable payoff for many of the things
we have to deal with.

Certainly a file with no repetitions will end up no shorter after "compres­
sion"; in fact it might get slightly longer. All compression methods depend on
having some knowledge of the structure of their input - otherwise there would
be no redundant information to squeeze out. And so with every method you
can always find a special case that gets worse when compressed. A file contain­
ing random characters is a good test case, since on the average it has nothing to
squeeze.

One measure of the robustness of a compression scheme is how bad it gets
when it gets bad. We don't want things to blow up in our faces when a file is
ill-suited, but we don't mind if the result gets slightly longer; that is inevitable
and is thus only a little bit bad. Keep these thoughts in mind as we build the
program. We will come back to them later.

The scheme we use is to look continuously for a run of any character. If we
get one, we want to output something that says, "This is a run of this character,
and it is so long." Between runs, we simply output characters.

The important thing, as always, is to find a way of looking at the input data
that makes it easy to layout the program. The main problem is that the output
is one unit delayed from the input - we can't tell if a run has started without
looking at the next character of input. Our first cut is:

38 SOFTWARE T()()LS IN PASCAL CHAPTER 2

lastc := getc(lastc) {start with one character}
n := 1
while (getc(nextc) <> ENDFILE)

if (nextc = lastc)
n := n + 1

else if (n > 1)
print encoding of n lastc's
n := 1

else
putc(lastc)

lastc := nextc
put out any characters left over

We still have to fill in some details. The main one is the actual representa­
tion of a run. Several possibilities come to mind. Most obvious, perhaps, is to
expropriate some infrequently-used character, say -, as an "escape" or "warn­
ing" character, and then say that the sequence

- count character

stands for count repetitions of character. We can even arrange to set a thres­
hold THRESH such that a run of less than THRESH characters is not encoded but
just copied. A natural value for THRESH is four, of course, since the represen­
tation of a run takes three characters.

The character - has to be carefully treated when it appears as itself in the
input. Easiest is to encode it as a run of length 1, which costs two extra charac­
ters.

There is a second, more fundamental concern - how to represent counts as
characters. So far we have avoided saying much about the internal or external
representations of characters. So long as all characters have different codes and
we only make comparisons for equality, just about any scheme will do. In fact,
as we have written them, the programs in this book are independent of the
internal representation of characters.

We have to face the representation problem with compress and with
expand, the inverse of compress, which will be discussed in the next section.
For compress, we could represent the count as a bit pattern that fits in one
character-sized variable. But this means that our output is not guaranteed to
be printable, and we may even get into difficulties with the run-time support
with some Pascal systems. Thus, even though it is slightly wasteful, we intend
to encode the count in printable characters. The simplest way to do that is to
say that the letter 'A' stands for a count of one, the letter 'B' for a count of two,
and so on.

Since runs are printed in two places in the program and since the operation
promises to be at least slightly complicated, it seems wise to write a procedure
to do the job. That leads to a compress like this:

CHAPTER 2

{ compress -- compress standard input }
procedure compress;
const

WARNING = TILDE; - }
var

c, lastc : character;
n : integer;

#include "putrep.p"
begin

n : = 1;
lastc := getc(lastc);
while (lastc <> ENDFILE) do begin

if (getc(c) = ENDFILE) then begin
if (n > 1) or (lastc = WARNING) then

putrep(n, lastc)
else

putc(lastc)

FILTERS 39

end
end;

end
else if (c lastc) then

n := n + 1
else if (n > 1) or (lastc

putrep(n, lastc);
n .- 1

end
else

putc (lastc) ;
lastc := c

WARNING) then begin

{ putrep -- put out representation of run of n 'c's }
procedure putrep (n integer; c : character);
const

MAXREP 26; assuming 'A' .. 'Z' }
THRESH 4;

begin
while (n >= THRESH) or ((c = WARNING) and (n > 0)) do begin

putc (WARNING) ;
putc(min(n, MAXREP) - 1 + ord('A'));
putc(c) ;
n .- n - MAXREP

end;
for n .- n downto do

putc(c)
end;

The standard procedure ord converts a char into an integer. The function
min computes the minimum of two integers:

40 SOFIWARE TOOLS IN PASCAL

{min compute minimum of two integers
function min (x, y : integer) : integer;
begin

if (x < y) then
min : = x

else
min. - y

end;

CHAPTER 2

We will also add min to the standard environment.
There is one potentially dangerous practice here - putrep contains an

implicit presumption that the letters 'A' through 'z' are contiguous, or at least
that there are 26 innocuous printable characters commencing with 'A'. Pascal
does not promise that the letters have contiguous values, just that they sort in
increasing order. Given this weak promise, and that the most used character
set, ASCll, is safe, we will ignore the danger.

To summarize:

PROGRAM
compress compress input by encoding repeated characters

USAGE
compress

FUNCTION
compress copies its input to its output, replacing strings of four or more identical characters
by a code sequence so that the output generally contains fewer characters than the input. A
run of x's is encoded as <nx, where the count n is a character: 4A' calls for a repetition of
one x, 4B' a repetition of two x's, and so on. Runs longer than 26 are broken into several
shorter ones. Runs of -'s of any length are encoded.

EXAMPLE
compress
Item Name Value
Item-D Name-I Value
1 car -$7,000.00
1-G car-J -A-$7,OOO.OO

<ENDFILE>

BUGS
The implementation assumes 26 legal characters beginning with A.

Now let's go back to our earlier discussion of compression methods, to see
what the performance of this program will be. If there are no runs longer than
three characters and no occurrences of the warning character, the output exactly
matches the input: there is no compression or expansion. Single or double
warning characters will be encoded as three characters, a loss of one or two
characters. Runs of length 4 up to 26 will be encoded as three characters, so
we start saving when there are repetitions of length four or more.

Exercise 2-8. What is the worst possible input for compress? What is the maximum
inflation for that input? What is the best possible input and amount of compression? 0

Exercise 2-9. If your system permits lower case letters, modify putrep to encode the

CHAPTER 2 FILTERS 41

length with letters 'a' through 'z' as well, so that runs of length up to 52 require only
three characters. How much further can you take this approach? 0

Exercise 2-10. How would you take advantage of the redundancy in a dictionary (a
sorted word list without definitions) to encode it in minimum space? Test your scheme
by encoding the words on page 73 of your favorite dictionary. 0

2.4 Text Expansion

Now that we have a way to compress text, we need a companion program to
expand it once again so it can be used by other programs. We know what the
input looks like: a sequence of characters with occasional runs interspersed.
Our first impulse is thus to write

while (getc(c) <> ENDFILE)
if (c = WARNING)

n := count implied by next char
c := getc(c)
for i := 1 to n

putc(c)
else

putc(c)

For valid input this works fine, but what happens if an ENDFILE is encoun­
tered while reading into the count value? What happens if the count is out of
range? The program is unprepared for this, and so produces some random
number of repetitions of the next character. It could even make additional calls
to getc and putc after ENDFILE is encountered. We have not defined what
either of these primitives does under such circumstances. Although they should
behave intelligently, it is important to make sure the program that calls them
behaves sanely no matter what the input.

We could interpose another function, to be called in place of getc, which
would remember an ENDFILE and avoid further calls. With this would go a
function that discards ENDFILE'S, to be called in place of putc. Or we could
modify getc and putc directly. Either choice would ensure correct behavior
when reading or writing past end of file. It would permit less careful program­
ming. Such a simple solution is not always possible, however, so we prefer to
face the basic issue of error checking.

We could also have the program stop when it finds something wrong, since
there is nothing else to do by way of wrapup. Sometimes this is the best,
indeed the only, thing to do. But we try to avoid such solutions, convenient as
they may at first appear, because they violate a basic principle of top-down
design: every function should return to where it is called. This way, strategy is
kept visible (and changeable) at the highest level of the code, and execution
proceeds strictly from top to bottom.

So our working version of expand checks for sensible input after every call
on getc. It decompresses if possible, but if not, it prints the input as is.

42 SOFIWARE TOOLS IN PASCAL CHAPTER 2

{ expand -- uncompress standard input }
procedure expand;
const

WARNING = TILDE; {-}
var

character;
integer;

c
n

begin
while (getc(c) <> ENDFILE) do

if (c <> WARNING) then
putc(c)

else if (isupper(getc(c») then begin
n := c - ord('A') + 1;
if (getc(c) <> ENDFILE) then

for n := n downto 1 do
putc(c)

else begin
putc (WARNING) ;
putc(n - 1 + ord('A'»

end
end
else begin

putc (WARNING) ;
if (c <> ENDFILE) then

putc(c)
end

end;

The function isupper tests whether a character is an upper case letter:

{ isupper -- true if c is upper case letter
function isupper (c : character) : boolean;
begin

isupper := c in [ord('A') .. ord('Z')]
end;

The construction

[ord (, A') .. ord (, Z')]

is a set, and the test "c in [... I" determines whether the value of c is one
of the members of the set. We wrote isupper with a set-membership test
because it is cleaner, but set tests are not always as fast as range tests like

isupper := (n >= ord('A'» and (n <= ord('Z'»

Furthermore, there are often limits on how large a set can be, so isupper and
analogous routines may have to be changed. Finally, in a few character sets,
notably EBCDIC, the letters do not have contiguous values. In that case you are
better off to spell out the set as

CHAPTER 2 FILTERS 43

[ord('A'), ord('B'), ord('C'),

{ and so on }
ord (, X'), ord (, y'), ord (, Z')]

Whatever the implementation, isupper and some related functions are so use­
ful that we will put them in the standard environment.

Error checking interferes with readability, no question about it, but it is
necessary. With the best of languages, error checking obscures the main flow of
events because the checks themselves impose a structure on the code which is
different from that which expresses the basic job to be done. Programs written
from the start with well-thought-out error checks, however, prove to be more
reliable and live longer than those where the error checking is pasted on as an
afterthought.

The manual page for expand follows.

PROGRAM
expand expand compressed input

USAGE
expand

FUNCTION
expand copies its input, which has presumably been encoded by compress, to its output,
replacing code sequences <nc by the repeated characters they stand for so that the text out­
put exactly matches that which was originally encoded. The occurrence of the warning char­
acter - in the input means that the next character is a repetition count; 'A' calls for one
instance of the following character, 'B' calls for two, and so on up to 'z.'

EXAMPLE
expand
Item-O Name-I Value
Item Name Value
1-G car-J -A-$7,OOO.OO
1 car -$7,000.00

<ENOFILE>

Exercise 2-11. Delete the error checking from expand. How much smaller is it? Does
it run any faster? 0

Exercise 2-12. Define what getc and putc should do on ENDFILE. so as to simplify
routines that call them. Rewrite expand to take advantage of this improvement. 0

Exercise 2-13. What happens if you send an arbitrary (uncompressed) file to the first
version of expand? To the final version? What happens if one character gets dropped
from a valid compressed file? How long does expand take to resynchronize in the worst
case? 0

Exercise 2-14. Prove that any compression scheme that is reversible, accepts any input,
and makes some files smaller must also make some files longer. 0

44 SOFTWARE TOOLS IN PASCAL CHAPTER 2

2.5 Command Arguments

If you think back to the programs detab and entab, you will recall that
they use the same convention, a tab every four columns. It would be nice,
however, if there were an easy way to pass a list of tab settings as arguments to
either of these programs at the time the program is run, so the normal settings
could be temporarily overridden. Most operating systems make some provision
for a program to access the command line or control card that invoked it, so it
can pick up options, parameters or other information. We will code in terms of
a primitive called getarg, which does whatever is needed to make that argu­
ment information available to a program. Most of the programs we present will
benefit from having some optional arguments. For a few, arguments are man­
datory.

Our specific design for getarg is the following. (Manual pages and sample
implementations for all primitives are in the appendix.)

function getarg(n : integer; var charstr : string;
maxsize : integer) : boolean;

copies the characters of the nth argument into the character string chars tr .
(We will describe the type string in a moment.) maxsize specifies the max­
imum number of characters that we are prepared to deal with; getarg will
truncate the argument if necessary to fit it into the space provided. getarg
returns true if the nth argument exists and false otherwise.

We haven't really said what kind of object the "string" parameter of
getarg is. This raises the thorny problem of how to handle character strings
in Pascal. The primary mechanism for storing a sequence of characters is the
array. But in standard Pascal (which we intend to stick to), two arrays have the
same type only if they have the same element type, and the same limits on their
subscripts. This is a grave defect of Pascal. We want to be able to write
general-purpose routines to handle character strings of widely different sizes, but
it just isn't legal: we would need a different routine for each different size. The
best we can do is to make all strings the same size. This leads to a definition of
a string like:

type
string = array [1 .. MAXSTR] of character;

Of course if MAXSTR is too large, we waste space on short strings; if it is too
small, we can't handle long strings.

Many versions of Pascal, recognizing the difficulty of using the pure
language, provide a special predefined "string" data type that is an array of
char that can have any size; objects of this type can be mixed freely. Regrett­
ably, every system seems to handle this extension differently from every other.
Furthermore, we want to use our extended type character rather than char.
So we will stick to the standard language, plus our portable environment, and
pay the price of wasted storage.

CHAPTER 2 FILTERS 45

Since in general the string stored in a variable of type s tr ing will be
shorter than MAXSTR, we also need a way to keep track of how big the string is.
Two acceptable possibilities spring to mind. One is to make a string a
record, with a length and an array for the actual characters:

type string =
record

length: O.. MAXSTR;
chars: array [1 .. MAXSTR] of character

end;

The ith character of such a string s is s. chars [i], and the length is just
s . length.

The other organization is to mark the end of the array by some special value,
one that is not any valid character. In that case, the i th character is just s [i] ,
but the length has to be computed.

Each of these organizations has good and bad points (which you should
think about for yourself); there is no "right answer." We have decided to use
the mark-at-the-end representation. Every character string in our programs
contains as its last element a special marker, which we call ENDSTR. A string
of one character has array[1] set to the character and array[2] to an
ENDSTR; an empty or null string has array[1] an ENDSTR.

Thus one final thing that getarg must do is to ensure that the string it
returns is properly terminated with an ENDSTR, and this must fit within the lim­
its of maxsize characters.

To illustrate getarg, here is its most simple use, in a program echo that
just echoes its arguments to its output:

PROGRAM
echo echo arguments to output

USAGE
echo [argument ...]

FUNCTION
echo copies its command line arguments to its output as a line of text with one space
between each argument. If there are no arguments, no output is produced.

EXAMPLE
To see if your system is alive:

echo hello worldl
hello worldl

We use square brackets in manual pages to indicate optional arguments, and
ellipses ... for arbitrary repetition.

The code for echo is

46 SOFfWARE TOOLS IN PASCAL

{ echo -- echo command line arguments to output }
procedure echo;
var

i, j : integer;
argstr string;

begin
i : = 1;
while (getarg(i, argstr, MAXSTR» do begin

if (i > 1) then
put.c (BLANK) ;

for j := 1 to length(argstr) do
putc(argstr[j]);

i := i + 1
end;
if (i > 1) then

putc(NEWLINE)
end;

CHAPTER 2

The function length returns the number of characters in a string, excluding
the ENDSTR that terminates it:

{ length -- compute length of string }
function length (var s : string) : integer;
var

n : integer;
begin

n : = 1;
while (s[n] <> ENDSTR) do

n := n + 1;
length .- n - 1

end;

Different systems have very different conventions for how arguments are
specified for programs. Some simply separate arguments by blanks or tabs,
which is our preference; others use slashes, commas, and/or parentheses as argu­
ment separators. We have written our examples as if blanks were the separa­
tors; to provide for an argument with imbedded blanks or tabs, we use optional
quotes, which can be stripped off by getarg if no one else does.

A primitive like getarg helps us to cope with these disparate environments.
Even though each system will have its own conventions about how arguments
are handled, programs that use getarg will work without change once a local
version is written.

Exercise 2-15. A useful companion for getarg is nargs, a function that returns the
number of arguments. nargs should be a primitive just as getarg is, but if it is not,
how would you write it? Rewrite echo using nargs. D

Exercise 2-16. Modify detab and entab to accept a list of tab stops as arguments, so
users can call the program with commands like

CHAPTER 2 FILTERS 47

detab 9 17 25 33 41
entab 10 16 33 73

Of course the code that interprets these arguments and fills the tabs array should be
careful not to overfill the array. Both programs should do something intelligent and use­
ful if there are no arguments. (Later on in this chapter there is a function ctoi for con­
verting character strings to integers.) 0

Exercise 2-17. Extend entab and detab to accept shorthand for tab stops, e.g.,

entab m +n

to mean tab stops every n columns, starting at column m. What is a sensible behavior if
m is specified and n is not? 0

Exercise 2-18. Another possible representation for character strings is a linked list in
which each character (or perhaps group of characters) also has a pointer to the next.
What are some of the strengths and weaknesses of such a representation? 0

2.6 Character Transliteration

One class of filters transliterates certain characters on their way through,
passing all other characters through unmodified. We would like to have a pro­
gram translit so that we can write

translit x y

and have all occurrences of x in the standard input be replaced by y on the
standard output. Multiple translations are also handy:

translit xyz XYZ

would change all lower case x, y and z to the corresponding upper case letter.
It would be nice to have shorthand for alphabets, so

translit a-z A-Z

would translate all lower case letters to upper case, and

translit a-z b-za

would produce a Caesar cipher. Even good typists prefer

translit A-Z a-z

to

translit ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz

Once the arguments have been expanded to eliminate any shorthand, the
translation loop is straightforward:

48 SOFIWARE TOOLS IN PASCAL CHAPTER 2

while (getc(c) <> ENDFILE)
i := index(fromset, c)
if (i > 0) {found a match

putc(toset[i])
else { no match }

putc(c)

fromset holds the set of characters to be translated and toset the
corresponding translations. index returns the index of the character in
fromset that matches c, or zero if c isn't in fromset:

{ index -- find position of character c in string s }
function index (var s : string; c : character) : integer;
var

i : integer;
begin

i : = 1;
while (s[i] <> c) and (s[i] <> ENDSTR) do

i := i + 1;
if (s[i] = ENDSTR) then

index .- 0
else

index .- i
end;

There are times when we would like to translate a whole class of characters
into just one character, and even to squash runs of that translation into just one
instance. For example, translating blanks, tabs, and newlines into newlines and
then squashing multiple newlines leaves each of the words in a document on a
separate line, ready for further processing. Or we might want to convert all
alphabetic symbols in a text into a's and all numbers into n's. We can specify
this squashing operation by giving a second argument that is shorter than the
first:

translit a-zA-Z a
translit 0-9 n

The implication is that the last character in the to argument is to be replicated
as often as necessary to make it as long as the from argument, and that this
replicated character should never appear twice in succession in the output.

The main processing for trans 1 it then becomes:

CHAPTER 2

lastto .- length(toset)
squash .- (length(fromset) > lastto);
repeat

i := index(fromset, getc(c»
if (squash and i >= lastto) { squash}

putc(toset[lastto])
repeat

i := index(fromset, getc(c»
until (i < lastto)

if (c <> ENDFILE)
if (i > 0) { translate

putc(toset[i])
else { copy }

putc(c)
until (c = ENDFILE)

FILTERS 49

Note that the while has become a repeat-until, since there may be some
work to do now even when an ENDFILE is read. We use length to decide
how to set squash, which indicates whether or not squashing is to take place.

transli t leaves open the possibility that some characters can be translated
while others are squashed, not so much because it is likely to be a heavily used
option but so that the program behaves in a sane and predictable fashion no
matter what the arguments. Esoteric cases should do something reasonable.

Only characters corresponding to the last translation character (or beyond)
are subject to squashing, and squashing is operative only if toset is shorter
than fromset.

But there is a bug: if toset is missing or empty, containing only an
ENDSTR, any translation will reference toset [0]. (You might want to verify
this.) We could give an error message when the second argument of translit
is empty, but we could also take this condition as a request to delete all
occurrences of characters in the first string, since that is a useful and sensible
interpretation. The changes to implement this are straightforward if we keep
firmly in mind that the condition lastto=O always calls for the matched char­
acter to be deleted. The matched character is one whose index is greater than
zero.

One final capability is worth adding: sometimes we would like to be able to
translate and compress all but a set of characters. For instance

translit ~a-z -

would replace strings of non-letters with a dash (minus). The leading" in the
fromset string reads as a "not." And

translit ~a-z

would delete all but lower case letters.
The addition is once again easy because of the way the program is parti­

tioned into modules. We need only introduce a flag allbut, set to true

50 SOFTWARE TOOLS IN PASCAL CHAPTER 2

when we wish to deal with all but a specified set of characters, and a new func­
tion xindex that interfaces between index and the rest of the program.

{ xindex -- conditionally invert value from index }
function xindex (var inset : string; c : character;

allbut : boolean; lastto : integer) : integer;
begin

if (c = ENDFILE) then
xindex := 0

else if (not allbut) then
xindex := index(inset, c)

else if (index(inset, c) > 0) then
xindex .- 0

else
xindex .- lastto + 1

end;

When allbut is false, xindex returns the value returned by index. When
allbut is true, however, xindex tells a lie: if index says the character was
found, xindex says it wasn't; if index says it wasn't found, xindex says it
was. Furthermore, we presume that the set of all but a few characters is so
huge that it only makes sense to map them all into one character (or delete
them), so if allbut is true, xindex returns an index that is guaranteed to
be squashed if the character is in the set, zero if it is not, or the normal result
of index if allbut is false. xindex is also careful never to report
ENDFILE as a matched character. Got that?

With this organization, index remains simple, and so does the program that
uses it through xindex. Imagine what the logic would be like if the equivalent
decisions were scattered throughout the main routine instead of localized in
xindex.

By the way, we could have written xindex as

xindex := index(inset, c);
if (c = ENDFILE) or (allbut and (xindex > 0» then

xindex = 0
else if (allbut) and (xindex = 0) then

xindex := lastto + 1

This is shorter but less clear. Logical decisions that intermix and's and or's, or
that require parentheses, seem to be hard to grasp, so we avoid them. The ver­
sion we used shows clearly that exactly one of four cases is to be chosen. When
in doubt, try the "telephone test" - if you can understand a logical expression
when it's read aloud, then it is acceptably clear. Otherwise, it should be rewrit­
ten.

All that remains is to add the argument-interpreting code and we have a
powerful character translator:

CHAPTER 2

{ translit -- map characters
procedure translit;
const

NEGATE = CARET; { ~

var
arg, fromset, toset string;
c : character;
i, lastto : O.. MAXSTR;
allbut, squash : boolean;

#include "makeset.p"
#include "xindex.p"
begin

if (not getarg(1, arg, MAXSTR» then
error('usage: translit from to');

allbut := (arg[1] = NEGATE);
if (allbut) then

i .- 2
else

FILTERS 51

i . - 1;
if (not makeset(arg, i, fromset, MAXSTR» then

error('translit: "from" set too large');
if (not getarg(2, arg, MAXSTR» then

toset[1] := ENDSTR
else if (not makeset(arg, 1, toset, MAXSTR» then

error('translit: "to" set too large')
else if (length(fromset) < length(toset» then

error('translit: "from" shorter than "to"');

lastto .- length(toset);
squash .- (length(fromset) > lastto) or (allbut);
repeat

i := xindex(fromset, getc(c), allbut, lastto);
if (squash) and (i>=lastto) and (lastto>O) then begin

putc(toset[lastto]);
repeat

i .- xindex(fromset, getc(c), allbut, lastto)
until (i < lastto)

end;
if (c <> ENDFILE) then begin

if (i > 0) and (lastto > 0) then {translate}
putc(toset[i])

else if (i = 0) then {copy}
putc(c)

{ else delete
end

until (c = ENDFILE)
end;

The procedure error is another primitive, of a special kind. It prints the
message and then causes the program to terminate. We will use it henceforth to

52 SOFTWARE TOOLS IN PASCAL CHAPTER 2

report fatal errors in programs.
error cannot be written in standard Pascal, since there is no way to declare

an argument that is a variable-length packed array of char's, i.e., a literal
string, nor is there an official way to get early termination of a program. We
will discuss ways of implementing error in Chapter 8; for now you can treat it
as a primitive that provides a nicer way of writing diagnostics than

begin
writeln('the sky has fallen');
goto 9999 {branch to end of program }

end

Notice, by the way, that the message printed out when there are no argu­
ments is not just "no arguments" or "the sky has fallen." Instead, a prompt is
given reminding the user how to use the program properly. Better to tell people
concisely how to do things right than tell them only that they did something
wrong. The error message contains the name of the program too, so that when
it appears out of nowhere, the user knows who said it.

Other than that, we wrote translit so that it produces few error mes­
sages. An unusual argument is given some reasonable interpretation whenever
possible, and a harmless interpretation otherwise. For a general-purpose tool,
this is a good design principle. Otherwise, we might inadvertently head off a
useful application we didn't think of at the start. It also minimizes the confu­
sion introduced by a welter of error checks.

The function make set creates the from and to sets, by calling dodash
and addstr.

{ makeset -- make set from inset[k] in outset }
function makeset (var inset : string; k : integer;

var outset : string; maxset : integer) : boolean;
var

j integer;
#include "dodash.p"
begin

j := 1;
dodash(ENDSTR, inset, k, outset, j, maxset);
makeset := addstr(ENDSTR, outset, j, maxset)

end;

addstr adds a character at a time to a specified position of an array and incre­
ments the index. It also checks that there's enough room to do so. We will use
this function extensively in later programs, so we will add it to our standard
context for all programs.

CHAPTER 2 FILTERS 53

{ addstr -- put c in outset[j] if it fits, increment j
function addstr(c : character; var outset: string;

var j : integer; maxset : integer) : boolean;
begin

if (j > maxset) then
addstr := false

else begin
outset [j] : = c ;
j := j + 1;
addstr := true

end
end;

trans 1 it provides shorthand for consecutive lower case letters, upper case
letters and digits. dodash docs all the work of building a translation set,
expanding shorthand as necessary, with the help of addstr, esc and index.
We wrote dodash in a general fashion, looking for an arbitrary delimiter and
returning updated indices, because it will be used in later dealings with sets of
characters.

{ dodash - expand set at src[i] into dest[j], stop at delim
procedure dodash (delim : character; var src : string;

var i integer; var dest : string;
var j : integer; rnaxset : integer);

var
k : integer;
junk : boolean;

begin
while (src[il <> delirn) and (src[i] <> ENDSTR) do begin

if (src[i] = ESCAPE) then
junk := addstr(esc(src, i), dest, j, maxset)

else if (src[i] <> DASH) then
junk := addstr(src[i], dest, j, maxset)

else if (j <= 1) or (src[i+1] = ENDSTR) then
junk := addstr(DASH,dest,j,maxset) { literal - }

else if (isalphanum(src[i-1]))
and (isalphanum(src[i+1]))
and (src[i-1] <= src[i+1]) then begin

for k := src[i-1]+1 to src[i+1] do
junk .- addstr(k, dest, j, maxset);

i := i +

end
else

junk .- addstr(DASH, dest, j, maxset);
i : = i +

end
end;

Most of the code in dodash is a multi-way branch. If the character under con­
sideration is escaped or not a dash, it is added to the set immediately, as is a

54 SOFIWARE TOOLS IN PASCAL CHAPTER 2

dash that occurs as first or last character, or not preceded by a letter or digit.
Only if a dash appears between letters or digits that could represent shorthand is
it expanded.

dodash introduces a new boolean function called isalphanum, which
returns true if its argument is a letter or number, and false otherwise. One
implementation parallels isupper:

{ isalphanum -- true if c is letter or digit }
function isalphanum (c : character) : boolean;
begin

isalphanum := c in
[ord (, a') .. ord (, z') ,
ord (, A') .. ord (, Z') ,
ord (, 0 ') .. ord (, 9')]

end;

By the way, this set has 62 elements. If your Pascal system requires sets to be
smaller, you can split isalphanum into separate range tests on letters and
digits; it may even run faster. You should also think about the issues of charac­
ter set mentioned in the discussion of isupper a few pages ago.

The other new thing in dodash is the set of calls of the form

junk := addstr(...)

Since dodash has no interest in the value returned by addstr (final checking
is done by makeset), we have to toss it away. We will always assign unwanted
function values to junk to show that they are explicitly discarded.

trans lit also provides a convention for writing tabs and newlines so that
they are visible and cause a minimum of grief for any program that must inspect
the arguments. We use the at-sign @ as an escape character: whatever character
follows the escape character is in some way special. In particular, we define @t

to be a tab and @n to be a newline, so we can write:

translit " @t@n" @n

to change each run of blanks, tabs, and newlines to just one newline and thus
leave one word per line. (Note the use of quotes, which we mentioned earlier,
to include a blank in the first argument string.) Other special codes can be
added easily, if need be. The escape character also turns off the special mean­
ing of any character following, including blanks and quotes and the escape
itself, so that special characters can be used literally. The example above could
also be written

translit @ @t@n @n

provided getarg also knows about escapes.
The escape convention provides a clean and uniform mechanism for altering

the meaning of special characters. Checking for an escape, and returning the
appropriate character and the proper index is done by esc:

CHAPTER 2 FILTERS 55

{ esc -- map sri] into escaped character, increment i }
function esc (var s : string; var i : integer) : character;
begin

if (s[i] <> ESCAPE) then
esc := sri]

else if (s[i+1] = ENDSTR) then {@ not special at end}
esc := ESCAPE

else begin
i := i + 1;
if (s[i] = ord('n'» then

esc := NEWLINE
else if (s[i] = ord('t'» then

esc .- TAB
else

esc .- sri]
end

end;

Like xindex, esc conceals complexity in a simple interface, instead of spread­
ing decisions throughout the code. We will add esc to the standard environ­
ment.

transli t is not an easy program to understand, because it does many
things, yet the functions are worth combining because they all address similar
problems. You learn the most useful formats, like

translit A-Z a-z

for case conversion, and study the formation rules only when you encounter a
new application. The program itself is not complicated, however, because it
was constructed in a modular fashion beginning with the simplest applications.
The added complexity is confined to separate new modules and does not clutter
up the original structure.

Here is where the idea of a manual page really pays off. All the features we
accumulated along the way to a final version of transli t can now be neatly
summarized. (The brackets [...] in the USAGE section indicate optional
material.)

56 SOFTWARE TOOLS IN PASCAL CHAPTER 2

PROGRAM
transli t transliterate characters

USAGE
translit [A]src [dest]

FUNCTION
transli t maps its input, on a character by character basis, and writes the translated version
to its output. In the simplest case, each character in the argument src is translated to the
corresponding character in the argument dest; all other characters are copied as is. Both
src and dest may contain substrings of the form cl -c2 as shorthand for all of the characters
in the range cl ..c2. cl and c2 must both be digits, or both be letters of the same case.
If dest is absent, all characters represented by src are deleted. Otherwise, if dest is
shorter than src, all characters in src that would map to or beyond the last character in
dest are mapped to the last character in dest; moreover adjacent instances of such charac­
ters in the input are represented in the output by a single instance of the last character in
dest. Thus

translit 0-9 9

converts each string of digits to the single digit 9.
Finally, if src is preceded by a A, then all but the characters represented by src are taken
as the source string; i.e., they are all deleted if dest is absent, or they are all collapsed if the
last character in dest is present.

EXAMPLE
To convert upper case to lower:

translit A-Z a-z

To discard punctuation and isolate words by spaces on each line:
translit "a-zA-Z@n " "
This is a simple-minded test, i.e., a test of translit.
This is a simple minded test i e a test of translit

What determines the running time of translit? Somewhat unexpectedly,
it is not all input and output. index, deciding whether an input character is in
fromset, is actually just as important. In our case, translating the translit
program itself into upper case, took 9 seconds for 13,400 characters (608 lines).
index took 50.2 percent of that time.

Naturally, input and output are not free: getc itself took 10.7 percent, and
lower-level routines that it calls took 3.4 percent. putc and its subordinates
took 20.8 percent. Handling characters one at a time with getc and putc is
not nearly as bad as might be thought. Most of the rest was in xindex (5.4
percent) and transli t (7.2 percent).

Clearly, index is the routine to speed up, both because of the fraction of
the time it consumes and because its time varies with both the number of input
characters and the size of fromset. To answer the obvious question raised by
this experiment, we did not use sets for fromset and toset because sets that
are large enough are not always available. The mapping array suggested in one
of the following exercises should make translit run faster, but it does not
mesh well with some other uses we have planned for dodash in Chapters 5 and
6.

Exercise 2-19. Modify transli t so that fromset and toset are true Pascal sets, not
arrays (assuming that sets this large are permitted). Measure the change in run time. 0

CHAPTER 2

Exercise 2-20. Rewrite transli t to use a character map, i.e.,

var map : array [character] of character;

FILTERS 57

which is initialized to map all characters into themselves, then modified once, at the
outset, to provide all translations requested. Compare its run time to the previous ver­
sion. 0

Exercise 2-21. Describe the actions performed by the following commands.

translit a-b-d abcd
translit a-c xyz
translit -ac xyz
translit @@

translit x
translit @~ x
translit @~~ x

How would you convert runs of blanks into single occurrences? 0

Exercise 2-22. One purpose of the escape mechanism is to input characters that are diffi­
cult to type, or hard to read, or that have special meaning. Extend esc to recognize s
for space, b for backspace, and perhaps a string of 2 or 3 octal or hexadecimal digits to
represent an arbitrary character-sized bit pattern. Other useful control characters you
might include are f for formfeed, v for vertical tab, and r for carriage return. 0

2.7 Numbers

transli t is used frequently to filter files before counting things in them,
as with charcount; introduced in the previous chapter. Since we were pri­
marily concerned then with introducing Pascal and simple tools, we postponed
the description of putdec, the procedure that printed the final count. Before
going any further, here it is.

putdec (n, w) puts out the number n as a string of at least w characters,
including a sign if n is negative. If fewer than w characters are needed, blanks
are inserted to the left to make up the count; if more than ware needed, more
are provided. It is this feature that makes putdec more useful than conven­
tional output options in most languages; it is generally equivalent to the Pascal
write (n : w) , except that it works through our standard interface.

58 SOFTWARE TOOLS IN PASCAL CHAPTER 2

{ putdec -- put decimal integer n in field width >= w }
procedure putdec (n, w : integer);
var

i, nd : integer;
s : string;

begin
nd := itoc(n, s, 1);
for i := nd to w do

putc (BLANK) ;
for i := 1 to nd-1 do

putc(s[i])
end;

putdee in turn calls on i toe to do the conversion. i toe converts an
integer to characters in an array provided by the caller, and returns the index of
the ENDSTR that terminates the resulting string.

{ itoc - convert integer n to char string in s[i] ... }
function itoc (n : integer; var s : string; i : integer)

integer; {returns end of s }
begin

if (n < 0) then begin
sri] .- ord('-');
itoc := itoc(-n, s, i+1)

end
else begin

if (n >= 10) then
i := itoc(n div 10, s, i);

s [i] : = n mod 10 + ord (, 0 ') ;
s [i + 1] : = ENDSTR;

itoc := i + 1
end

end;

This is a recursive routine that, on each invocation, if necessary calls itself to
print all but the last digit, then adds the last digit to the end.

The complement of i toe is of course etoi, a routine for converting a char­
acter string to an integer. A useful design is this: the call

n := ctoi(c, i)

starts looking at position i of e. Leading blanks and tabs are ignored; an
optional sign is permitted; any subsequent digits are converted to the correct
numeric value. The first non-digit seen terminates the scan; upon return i
points to this position and n is the value of the integer. Note that, unlike
integer conversions in the standard Pascal read, etoi does not cause an error
condition when an unexpected character is encountered, so the program can
stay in control. We will use etoi regularly throughout the book, so we have
added it (and itoe and putdee) to the standard environment.

CHAPTER 2 FILTERS 59

{ ctoi -- convert string at sri] to integer, increment i }
function ctoi (var s : string; var i : integer) : integer;
var

n, sign : integer;
begin

while (s[i] = BLANK) or (s[i]
i := i + 1;

if (s[i] = MINUS) then
sign .- -1

else

TAB) do

sign .­
if (s[i]

1 ;
PLUS) or (s[i] MINUS) then

i := i + 1;
n := 0;
while (isdigit(s[i]» do begin

n .- 10 * n + sri] - ord('O');
i := i + 1

end;
ctoi := sign * n

end;

Of course isdigit is just like isupper and isalphanum:

{ isdigit -- true if c is a digit }
function isdigit (c : character) : boolean;
begin

isdigit := c in [ord('0') .. ord('9')]
end;

Now for the payoff. We can use charcount in series with translit to
provide all sorts of useful information. Let's invent some job control language:
we say that the notation : indicates a series connection of two programs.

translit A@n : charcount

means "take the output produced by trans 1it and feed it as input to
charcount." We'll call this construction a pipeline. Whether a pipeline is a
direct connection between simultaneously executing processes, or just a prescrip­
tion for what intermediate temporary files to write and read, is not relevant for
most applications. Our concern rests with what we can do with such pipelines.

The example we just gave, for instance, deletes everything but the newlines
in a file, then counts them up. We have a line counting program directly
equivalent to linecount. Counting words is only a little harder:

translit " @t@n" @n : translit A@n : charcount

First we put one word per line by compressing white space, then count lines as
before. We can even count all the decimal digit strings in a program:

60 SOFTWARE TOOLS IN PASCAL

translit 0-9 9 : translit ~9 : charcount

CIIAPTER 2

This converts each string of digits into a single g, deletes all other characters,
then counts the ss.

Writing a program to do what this last pipeline does is a nuisance; it is not
likely that you would want to stockpile such an odd assortment of gadgets
against the likelihood of eventually having a need for them. But having a single
tool as powerful as transli t makes sense. You can use it alone or in con­
junction with other filters like charcount to perform a host of variations.
This is what tool building is all about.

Exercise 2-23. Many computers store integers in two's complement notation, which has
one more negative number than it has positive numbers. Pascal excludes this extra nega­
tive number, but it frequently crops up anyway. Other representations have as many
negative numbers as positive numbers but also have two representations of zero. Rewrite
putdec to handle two's complement arithmetic properly. (Do you know where the
current version fails?) 0

Exercise 2-24. Write ctof, which converts a character string to a floating point number
(type real in Pascal); it should recognize an optional sign, an optional decimal point,
and scientific notation for an exponent, as in

-1.23E-4

flow about ftoc for floating point output conversion? rJ

Exercise 2-25. Design and irnplement a filter calc to simulate a pocket calculator.
calc should deal with at least +, -, and =, so an expression like

1 + 2 - 3 =

can be evaluated. Refinements include more operators, parentheses, memory, and the
like. (See Chapter R for the rudiments of expression evaluation.) flow would you
modify calc to handle numbers too large to fit in one machine word? [J

Exercise 2-26. Write a filter tai 1 that produces only the last n lines of its input as out­
put, where n is an optional argument. That is,

program : tail 10

prints the last ten lines produced by program. Of course there is a limit on how large n
can be in a practical implementation. If no value of n is specified. what is a reasonable
default? [J

Exercise 2-27. There are many useful variations on tail. You might try an option to
print the tail in reverse order; one to start printing at line n ; one to change the units to
characters instead of lines. You could also write head, which prints the first so many
lines or characters of its input. Ll

Exercise 2-28. Write a filter screen that will print its input in small chunks on the
screen of a terminal, waiting after each page for a signal before proceeding. Adapt code
from tail to permits users to move backward in the input as well as forward. o

Exercise 2-29. Write a program that will print every character in a file whether or not it
is a graphic. The notation @nnn is a convenient way to present the octal or hexadecimal

CHAPTER 2 F1LTERS 61

value of non-graphics. []

Exercise 2-30. Write a program to take arbitrary bit patterns and interpret them as octal
or hexadecimal numbers, as characters, and perhaps as machine instructions, as appropri­
ate for your particular computer, and as specified by various optional arguments. Imple­
ment it as a filter. How much of it has to be machine-dependent? [J

2.8 Summary

The filters presented in this chapter are diverse, but most share an important
feature. Each encourages, in its own way, a standard representation for text to
be passed between programs or to he stored in files for later use. By pushing
information about particular devices as far out to the edges of a system as possi­
hie, we expand the range of programs that can freely cooperate. And by writ­
ing filters to interface these devices to standard format files, we isolate and con­
tain device-dependent information. That way, radical changes can be made in
the peripherals attached to a machine without affecting more than a module or
two. It also means that you can have considerable assurance that each new dev­
ice can be put to use with little reprogramming. This is an important considera­
tion in planning for painless growth.

trans 1 it is an even more general tool. Having it around, you can ignore
many of the little character-set dependencies that so often haunt a computer
center and make it difficult to combine software packages. You can use
trans 1 it to take up the slack between two programs that don't quite
cooperate, and thus avoid the messy problem of recoding one (or both). And
besides, it's useful all by itself.

Once you learn that you can isolate and adapt by introducing filters, you
begin to think more freely in terms of combining existing programs instead of
writing new ones. You overcome much of the temptation to build a whole new
package; instead you adapt pieces that already exist. You become, in short,
more of a tool user.

Bibliographic Notes

The idea of pipelines and filters - a uniform mechanism for connecting the
input of one program to the output of another - was conceived by M. D. Mcll­
roy. It was anticipated in a somewhat less general way in the "communication
files" of the Dartmouth Time-sharing System. Pipelines have an especially
clean implementation in the Unix operating system developed at Bell Labs by
K. L. Thompson and D. M. Ritchie. Here the programs in the pipeline run
concurrently, with sufficient interlocks to ensure that the receiving program
never reads information that isn't there, and that the sending program never
creates too much information before the receiver has read some. The vertical
bar is the Unix syntax for a pipeline, and is due to Thompson. See "The Unix
time-sharing system," Communications of the ACM, July, 1974, or "The Unix
Programming Environment," by B. W. Kernighan and J. R. Mashey, Software

62 SOFTWARE TOOLS IN PASCAL CHAPTER 2

Practice and Experience, January, 1979.
Data compression techniques are not often covered in basic textbooks. One

exception is a discussion of Huffman encoding in Data Structures Using Pascal,
by A. M. Tenenbaum and M. J. Augenstein (Prentice-Hall, 1981).

Timing data for translit, and for the other programs as well, was
obtained on a DEC VAX 11/780 using profiling code from W. N. Joy of the
University of California at Berkeley.

CHAPTER 3: FILES

Up to this point we have talked about programs that read one input and
write one output, without really worrying about how to get the input and output
where we want them. Although many useful programs need only one input and
one output, this is hardly adequate in general; and even for them, some provi­
sion must be made for redirecting input or output, or the programs have very
limited utility. In this chapter we will discuss programs that have more compli­
cated interactions with their environment - reading or writing more than one
file, and creating and deleting files as they run. These programs are mainly
intended for an operating system that provides some kind of permanent file sys­
tem where information can be kept for extended periods on secondary storage
and can be easily accessed by running programs.

Sadly, operations like these are hard even to talk about, let alone program.
Each operating system has its own jargon for describing system actions. Each
operating system has its own capabilities and limitations. Some of the things we
want to do can't be done easily on some operating systems. The Pascal stan­
dard itself simply does not address most of the serious issues in communicating
with an operating system.

As we did in the previous chapters, we will try to avoid these difficulties by
organizing our discussion and programs around primitives - operations like
getc, putc, and getarg, which are conceptually simple, each performing a
well-defined task. The mechanics of how a primitive is accomplished will vary
from system to system, but the basic functions will be easy to understand, and
easy to implement, on most systems, in terms of existing functions. Defining
and using primitive functions to localize operating system dependencies is a cru­
cial form of modularization. It is the only way to write portable software for
real systems.

3.1 File Comparison

One tool that illustrates a more complicated relationship with the operating
system is compare, a program that compares two files and lists the places
where they differ. compare has to access two input files to do its job.

compare is used for comparing the output of one program with another, for

63

64 SOFIWARE TOOLS IN PASCAL CHAPTER 3

example, or for comparing two versions of a text. It mechanizes a task all too
often done manually.

The design of compare depends on what is to be compared. We will write
a version that compares two text files; variations are left as exercises. For text
the natural unit of comparison is the line - if two lines differ in length, we can
resynchronize at the next line. Of course a missing line in one of the files will
destroy synchronization for the rest of the input, so this is not the best com­
parison imaginable, but it is a beginning. In outline the program is

repeat
get a line from file 1
get a line from file 2
if (not ENDFILE on either one)

if (line1 <> line2)
print line number and offending lines

until (ENDFILE on either file)
if (only one file is ended)

print message about which file terminated early

First we check the general flow of control by examining some critical boun­
dary cases. As long as the two files are identical, no output will be produced; if
they end together, all is well, even if both are empty. If one file is a prefix of
the other, then a message to that effect is printed. Finally, if the files differ
anywhere in some line, the differing lines will be printed.

Now we can begin to fill in details. Comparing two lines is a self-contained
task that should be isolated in a separate routine. The function equal com­
pares two strings; it returns true if they are identical, false if they differ.
Each string must of course be terminated by an ENDSTR. We compare strings
terminated by ENDSTR, not lines terminated by NEWLINE, because the more
general routine costs nothing extra, yet is much more likely to be useful in other
programs.

{ equal -- test two strings for equality
function equal (var str1, str2 : string)
var

boolean;

i : integer;
begin

i : = 1;
while (str1[i] = str2[i]) and (str1[i] <> ENDSTR) do

i .- i + 1;
equal := (str1[i] = str2[i])

end;

The next problem, and the one which is the principal subject of this chapter,
is how to connect the program to its sources of input - how to arrange for the
operations

CHAPTER 3

get a line from file 1
get a line from file 2

FILES 65

Up to now, we have assumed that a program has some default standard input
and standard output connected to it when it runs, which getc and putc use
implicitly. These are often the user's terminal keyboard and printer in an
interactive environment, or a card reader and line printer in a batch system.
Almost all operating systems provide some way to change these default assign­
ments, and to add other inputs and outputs. For example, most batch systems
have a control card that says (in effect)

Connect Pascal internal file f to external file X

so that I/O statements like

read(f, ...)

and

write(f, ...)

will operate on x. Control card syntax varies wildly from system to system, but
the function is always available. Interactive systems typically perform the same
function on the command line, the line you type to invoke the program and
specify its arguments as well.

In Pascal, the internal file names are often specified in the program line, as
in

program outer (input, output, file1, file2);

perhaps with some further command, outside the program proper, needed to
relate these to external files.

Thus a rudimentary version of compare could read from two input streams,
with internal names by convention file 1 and file2, and require the user to
connect the right external files to these internal names by control card or com­
mand. Such a compare would not take any explicit action to connect itself to
its sources - someone else would have to do the work. Here is a version of
compare that is intentionally vague about how it gets connected; we will deal
with that issue once the basic comparison machinery is presented:

66 SOFIWARE TOOLS IN PASCAL CHAPfER3

{ compare (simple version) -- compare two files for equality}
procedure compare;
var

line1, line2 : string;
lineno : integer;
£1, f2 : boolean;

#include "diffmsg.p"
begin

lineno := 0;
repeat

lineno := lineno + 1;
f1 := getline(line1, infile1, MAXSTR);
f2 := getline(line2, infile2, MAXSTR);
if (f1 and f2) then

if (not equal(line1, line2» then
diffmsg(lineno, line1, line2)

until (f1 = false) or (f2 = false);
if (f2 and not f1) then

message('compare: end of file on file1')
else if (f1 and not f2) then

message('compare: end of file on file2')
end;

message is a general-purpose message printer, identical to error in Chapter
2, except that it returns after printing, instead of stopping. It presents the same
implementation problems as error, and hence will be discussed in detail later
on. Notice that compare produces no message if the files are identical. Gen­
erally a program should say nothing unless and until it has something to say.

If there are any discrepancies between the two files, diffmsg prints the line
number and the differing lines:

{ diffmsg -- print line numbers and differing lines }
procedure diffmsg (n : integer; var line1, line2 : string);
begin

putdec(n, 1);
putc (COLON) ;
putc(NEWLINE);
putstr(line1, STDOUT);
putstr(line2, STDOUT)

end;

The function call

getline(line, infile, MAXSTR)

copies the next line from the file with the "internal name" infile into the
character string line. Copying ends either when a NEWLINE is encountered or
when the string gets to MAXSTR characters, including the terminating ENDSTR,
which will always be provided. getline returns true as long as there is data,
and false when end of file is encountered. Like getc, getline maps

CHAPTER 3 FILES 67

characters into their internal representation as necessary.
It is clear that getline can be written in terms of getc (try it), but for the

sake of efficiency it may well be the lower level primitive that getc calls! Like
certain groups of elementary particles in physics, it is hard to say which is fun­
damental and which is derived from the other. We will call both getc and
getline primitives.

putstr is likewise a primitive, to output a string onto a given file. It per­
forms whatever character translation is needed to match getline and getc.
(We call it putstr instead of putline because there is no implication of
"line"; the string needn't end with a NEWLINE, though it often will. It might
even contain one in the middle.) We require that output produced by inter­
leaved calls to putc and putstr goes out in the proper order.

STDOUT is the internal name for the standard output; as you might expect,
there is a corresponding STDIN for the standard input, and a STDERR for the
output stream used by error and message. Although STDERR might be
synonymous with STDOUT, generally it should be distinct; this way informative
but not disastrous messages can appear without cluttering up the main output of
a program or disappearing down a pipeline. The system must arrange that these
streams are ready when the program begins to run, just as input and output
are in conventional Pascal.

The internal names used by getline and putstr are typically a subrange
of integers. Our Pascal environment (described in the appendix) contains a type
definition for filedesc, for "file descriptor," that can be used to typify all
internal names:

canst
IOERROR 0;
MAXOPEN 10; {for instance

type
filedesc = IOERROR .. MAXOPEN;

IOERROR is the value of type filedesc that will be used to signal error condi­
tions. MAXOPEN is the maximum number of files that may be simultaneously
open; it is very system dependent.

Exercise 3-1. How would you implement getline and putstr in terms of getc and
putc? How would you implement getc and putc using getline and putstr? 0

Exercise 3-2. In a non-interactive environment, compare should not print much output
for files that are very different. Add an optional argument so the comparison terminates
after a specified number of mismatched lines has occurred. An alternate design is to
have compare stop after the first mismatch. In that case, the optional argument would
allow more than one mismatch. 0

Exercise 3-3. Construct a version of compare such that two lines are considered to be
the same if they are the same after each run of blanks and tabs is replaced by a single
blank. Can you achieve the same effect by using trans 1 it? Can you steal any code
from translit? 0

68 SOFTWARE TOOLS IN PASCAL CHAPTER 3

Exercise 3-4. (Hard) Our compare is rudimentary. It is useful for finding out the first
place where two files have become different, but it breaks down quickly after that, pro­
ducing voluminous but uninformative output. Invent a scheme that can cope with miss­
ing and transposed lines. How much space and time does your method take, as a func­
tion of the file sizes? Can it break down completely? (See the bibliographic notes at the
end of this chapter.) 0

3.2 Connecting Files by Name

Let us return to the question of how to connect the external name of a file
to the name used within the program. Normally the external name will be the
name of a file in a file system, or perhaps some temporary file assigned for the
duration of the job. Less frequently it will be an 110 device such as a tape or a
disk. As we said, the traditional batch way to connect the external name and
internal name is by a control card; even in some interactive environments this is
all that is possible. But no one wants to have to say

connect file1 to name1
connect file2 to name2
compare

just because compare can only read the internal streams file 1 and file2.
It's not even the extra work of preparing the connect commands that makes
this bad, although that is nuisance enough; it's that you have to remember the
internal names the program uses. How much more natural to say

compare name1 name2

and let compare worry about accessing the files.
Suppose we pass the actual name of the file to the program and let the pro­

gram itself arrange the correspondence between external name and internal
stream. We will call the primitive that performs this task open. open does
whatever is necessary to access the file, and assigns it an internal file name or
file descriptor, which is returned as the function value:

internal-name : = open (external-name, access-mode)

This internal-name is now used for subsequent calls to getline and putstr.
Depending on the local environment, open may need other information in

addition to the external name -- buffer space, access mode, and so on. We will
summarize all this extra material as access-mode, which in our programs will
always be one of the integer constants rOREAD or rOWRITE, to indicate how
the program intends to use the file. Of course if the system you are using pro­
vides file security in some form, open ITIay have to negotiate for the access you
wish.

open signals any kind of error by returning the value rOERROR instead of a
legal internal name. As shown above, a convenient implementation is to have
the internal names be small positive integers; open simply returns the first

CHAPTER 3 FILES 69

unassigned value. In this case zero is a natural value for IOERROR.

The primitive open is not the same as Pascal's reset. In some systems, the
nonstandard call reset (f , s) in fact opens external file s so that subsequent
read (f , ...) statements operate on it. Since this is not a standard mechan­
ism, it comes in a variety of forms, or may not be present at all. If present, it
provides a perfectly good basis for implementing the primitive open to our
specifications. The appendix contains a manual page for open.

One final point: no restrictions are imposed on external names, as used by
open, other than the limitations of the string data type, which seldom gets in
the way. It is up to the host operating system to interpret these names. Our
practice for Pascal source file names is to use only one case of letters, plus
digits; to begin all file names with a letter; and to end each name with . p. We
have also taken care that all file names are unique in the first six characters; if
your system prefers short names, ours can be chopped without risk.

Given open, compare can now be written as

{ compare -- compare two files for equality }
procedure compare;
var

line1, line2 : string;
arg1, arg2 : string;
lineno : integer;
infile1, infile2 : filedesc;
f1, f2 : boolean;

#include "diffmsg.p"
begin

if (not getarg(1, arg1, MAXSTR»
or (not getarg(2, arg2, MAXSTR» then

error('usage: compare file1 file2');
infile1 := mustopen(arg1, IOREAD);
infile2 := mustopen(arg2, IOREAD);
lineno := 0;
repeat

lineno := lineno + 1;
f1 := getline(line1, infile1, MAXSTR);
f2 := getline(line2, infile2, MAXSTR);
if (f1 and f2) then

if (not equal(line1, line2» then
diffmsg(lineno, line1, line2)

until (f1 = false) or (f2 = false);
if (f2 and not f1) then

message('compare: end of file on file1')
else if (f1 and not f2) then

message('compare: end of file on file2')
end;

compare doesn't call open directly, but through an agent mustopen.
mustopen tries to open the file with the indicated mode. If it succeeds, it

70 SOFTWARE T()()L~ IN PASCAL CHAPTER 3

returns the value returned by open; otherwise it prints a message (with error)
and terminates the program. Even though this is a trifling task, it occurs often
enough to warrant a separate routine.

{ mustopen -- open file or die }
function mustopen (var name : string; mode

: filedesc;
var

fd : filedesc;
begin

fd := open(name, mode);
if (fd = IOERROR) then begin

putstr(name, STDERR);
error(': can"t open file')

end;
mustopen := fd

end;

integer)

Most interactive systems provide the connection ability (with varying degrees
of grace); it is less common in batch environments. Clearly the function must
exist as part of any operating system that provides a way to store files by name,
for how else could the program that interprets the command language operate?
Yet all too often the operation is arbitrarily restricted to "system" programs and
forbidden to ordinary users. This is regrettable, for it is important that a pro­
gram be able to attach input sources dynamically. Programs should be easy to
use, as a matter of good human engineering. You should only have to say
"compare these files," and let the program do all the work. The less setup you
have to do before actually using a program, the more likely you are to think of
it as a tool.

PROGRAM
compare compare files for equality

USAGE
compare file1 file2

FUNCTION
compare performs a line-by-line comparison of file 1 and file2, printing each pair of
differing lines, preceded by a line containing the offending line number and a colon. If the
files are identical, no output is produced. If one file is a prefix of the other, compare
reports end of file on the shorter file.

EXAMPLE
compare old new

BUGS
compare can produce voluminous output for small differences.

Exercise 3-5. Does

compare f f

work on your system? If not, why not? Should it? Why would you want to do such an
operation? 0

CHAPTER 3 FILES 71

Exercise 3-6. Modify compare so that if it is called with a single argument, it assumes
the other file is the standard input. Then you can use compare in pipelines, like this

expand : compare f

Is this design of any value when pipelines must be implemented with temporary files? [J

Exercise 3-7. Extend the syntax and semantics of pipelines so both sources for compare
can be the outputs of programs. 0

3.3 File Inclusion

Once open exists, we can conveniently build tools that access any number of
files. One example is inc I ude, which just copies its standard input to its stan­
dard output, except that any input line that begins

#include "filename"

is replaced by the entire contents of the file filename.
We have used include to assemble most of the programs in this book.

This enables us to keep the source files of the program separate for easy editing,
present them separately for better comprehension, yet collect them together for
compilation. We also pick up definitions of constants with #include. Since
we tend to use symbolic constants wherever possible, most of our programs
include a standard set of things like ENDFILE and ENDSTR, and perhaps
another set peculiar to a given set of routines. That is, to compile a Pascal pro­
gram we actually run include on a small control file that looks like this:

program outer (input, output);
#inc1ude "global definitions"
#include "i/o primitives"
#include "utility functions"

begin
#include "initialize the i/o system"
#include "main program"

end.

include is analogous to a facility found in the PUI preprocessor, where
lines of the form

" include file;

are replaced by the contents of file. Similar capabilities exist in other
languages. Our version can be used for any text files.

The general outline of inc I ude is

while (getline(line, file, MAXSTR»

if (line starts with "#include")
include new file

else
output line

72 SOFTWARE TOOLS IN PASCAL CHAPTER 3

If the included file can contain further inc1ude 's, this is obviously a recursive
procedure, that is, the operation can be defined in terms of itself. As it turns
out, nested include's are useful and not at all difficult to deal with. Since
Pascal procedures may be called recursively, we will use one to provide this ser­
vice.

The other question is how to decide if the line contains #include. This is
best broken into two steps - finding the first word on the line, then comparing
it to "#include." We write a routine getword which isolates the next word
on the input line, a "word" being a string of non-blank characters delimited by
blanks, tabs or newlines. getword skips any leading blanks, tabs and newlines
and copies the word into the string named by the third argument. getword
returns the index of the first character past the end of the word, so if the word
is #include, we can use getword again to find the file name, by starting to
look right after the #include. getword returns zero when ENDSTR is
encountered.

{ getword -- get word from sri] into out}
function getword (var s : string; i : integer;

var out : string) : integer;
var

j integer;
begin

while (s[i] in [BLANK, TAB, NEWLINE]) do
i := i + 1;

j := 1;
while (not (s[i] in [ENDSTR,BLANK,TAB,NEWLINE])) do begin

out [j] : = s [i] ;

i .- i + 1;
j := j + 1

end;
out[j] := ENDSTR;
if (s[i] = ENDSTR) then

getword .- 0
else

getword .- i
end;

The main routine looks like this:

CHAPTER 3 FILES 73

{ include -- replace #include "file" by contents of file }
procedure include;
var

incl : string; value is '#include' }
#include "finclude.p"
begin

{ setstring(incl, '#include');
incl[1] .- ord('#');
incl [2] . - ord (, i') ;
inc I [3] . - ord (, n') ;
inc I [4] . - ord (, c') ;
incl[5] .- ord('l');
incl[6] .- ord('u');
incl[7] . - ord('d');
incI [8] . - ord (, e') ;
incl[9] .- ENDSTR;

finclude(STDIN)
end;

Obviously the real work is done in the recursive procedure finclude:

{ finclude -- include file desc f }
procedure finclude (f : filedesc);
var

line, str : string;
loc, i : integer;
f 1 : filedesc;

#include "getword.p"
begin

while (getline(line, f, MAXSTR» do begin
loc := getword(line, 1, str);
if (not equal(str, incl» then

putstr(line, STDOUT)
else begin

loc := getword(line, loc, str);
str[length(str)] := ENDSTR; { remove quotes}
for i := 1 to length(str) do

str[i] := str[i+1];
£1 := mustopen(str, IOREAD);
finclude(f1);
close(f1)

end
end

end;

equal decides if the word is #include; we wrote it early in this chapter.
Notice that it is used to compare strings, not lines - generality has paid off
already.

We turned the if-else around from our pseudo-code version of include,
because we find it is better to associate shorter segments of code with the if

74 SOFTWARE TOOLS IN PASCAL CHAPTER 3

and save the longer alternative for the else. That way we don't lose track of a
tiny trailing else clause halfway down the page.

By the way, the comment

{ setstring(incl, '#include');

is a shorthand for the tedious sequence of assignments that follow it. What we
would love to say, of course, is

if (str = '#include') then ...

but our type string is incompatible with the type of literal strings. Next best
would be to write

if (equal(str, '#include'» then ...

but once again there is no way to declare equal to accept more than one literal
string length. Nor can we write

incl := '#include';
if (equal(str, incl» then ...

for much the same reasons.
So we need some way to initialize an array of our type string with the

characters of '#include.' Since Pascal doesn't provide for initialization of vari­
ables as the program is compiled, we have to do it with executable code when
it's run.

We have written all of our code in terms of the "procedure" setstring as
if it worked properly. In some Pascal implementations, this can be done by
calling a true procedure; in others, it is possible to expand the setstring
notation as a text macro, the topic of Chapter 8. If neither of these courses is
available to you, then you will have to do what we have done - translate it
into the equivalent shown here. (Naturally we wrote a program to do the
work.)

The primitive operation close is the opposite of open: it breaks the con­
nection between an external name and an internal one, and frees the internal
name and any associated resources for some other use. (c lose is not the
reset operation familiar to Pascal programmers, which repositions without
closing.) The reason for using close here is that we do not know how many
times a particular file will be used nor how many different files there will be.
Since most systems have a limit on the number of simultaneously open files, we
must explicitly close them to avoid running out of internal names.

Although our programs are careful to close files when finished, it is con­
venient if the system closes all open files when a program terminates. This sim­
plifies the handling of abnormal terminations. If necessary, a cleanup operation
can be added to the outer block to close all open files in the list, according to
whatever local rules are appropriate.

include also assumes a property of open that we didn't mention earlier-

CHAPTER 3 FILES 75

when a file is opened, it must be positioned at its beginning, just as with
reset. This behavior is vital for include, since the same file may be
included several times.

PROGRAM
inc 1 ude include copies of subfiles

USAGE
include

FUNCTION
include copies its input to its output unchanged, except that each line beginning

#include "filename"

is replaced by the contents of the file whose name is filename. included files may con­
tain further linclude lines, to arbitrary depth.

EXAMPLE
To piece together a Pascal program such as include:

#include "include.p"

BUGS
A file that includes itself will not be diagnosed, but will eventually cause something to break.

Exercise 3-8. Modify inc1ude for a system or language where files cannot be opened
by name. Describe a systematic way to use it. 0

3.4 File Concatenation

The next program we will write is concat, which concatenates a set of
named input files onto its standard output. A common use for concat is to
combine multiple files into one, for use by another program that can only read
its standard input, like the filters of Chapter 2. It is also the easiest way to
print the contents of a file without reformatting or any other interpretation.

{ concat -- concatenate files onto standard output }
procedure concat;
var

i : integer;
junk : boolean;
fd : filedesc;
s : string;

begin
for i := 1 to nargs do begin

junk := getarg(i, s, MAXSTR);
fd := mustopen(s, IOREAD);
fcopy(fd, STDOUT);
close(fd)

end
end;

We mentioned the pnrrntive nargs in Chapter 2. It returns the number of
arguments that a program was called with.

If there are no input files, concat does the right thing - it produces no
output whatsoever. The actual copying is done by f copy, which is just the

76 SOFlWARE 'rooi s IN PASCAL CHAPTER 3

example we began with in Chapter 1. The only difference is that the program
reads or writes specified files instead of using the standard input and standard
output.

{ fcopy -- copy file fin to file fout }
procedure fcopy (fin, fout : filedesc);
var

c : character;
begin

while (getcf(c, fin) <> ENDFILE) do
putcf(c, fout)

end;

getcf and putcf are versions of getc and putc that access explicit file
descriptors instead of STDIN and STDOUT. Thus getc (c) is identical to
getcf (c , STDIN), and in fact getc might well be implemented as a call to
getcf.

fcopy assumes that its files are all opened, positioned and ready to go; it
simply copies. This way we can use it to copy parts of files. If f copy carefully
opened and closed its files, that would limit its usefulness. You should avoid
putting arbitrary restrictions on programs, particularly by making them try do
too many things. If you want to open and close files, wrap another layer
around fcopy, just as we did.

PROGRAM
conca t concatenate files

IJSAGE
concat file ...

•~UNCTION
concat writes the contents of each of its file arguments in tum to its output, thus con­
catenating them into one larger file. Since concat performs no reformatting or interpreta­
tion of the input files, it is useful for displaying the contents of a file.

EXAMPLE
To examine a file:

concat file

3.5 File Printer

One of the most useful programs that has the form "indeterminate number
of inputs, one output" is a file printer or lister. print is invoked with one or
more files as arguments; it prints the files with top and bottom margins, and .. at
the top of each page, the file name and page number. Each new file begins on
a new page. print is used instead of concat when you want a neat, self­
identifying listing of a set of files.

In outline, the program is

CHAPTER 3

for each file
get name
open(name)
fprint(name, fin)
close(fin)

fprint(name, fin)
initialize
while (getline(line, fin, MAXSTR»

if (at top)
print page header

print line
if (page full)

space to bottom
if (page partially full)

space to bottom

FILES 77

This organization puts all of the code for stepping through the argument list
at one level, and all the details of counting lines for an individual file at a lower
level.

The actual code for print is identical to concat except for calling
fprint instead of fcopy.

{ print -- print files with headings }
procedure print;
var

name : string;
i : integer;
fin : filedesc;
junk : boolean;

#include "fprint.p"
begin

for i := 1 to nargs do begin
junk := getarg(i, name, MAXSTR);
fin := mustopen(name, IOREAD);
fprint(name, fin);
close(fin)

end
end;

fprint has to be carefully thought out so it doesn't botch its boundary con­
ditions. The most ohvious pitfall is that the right number of lines must be
printed on each page, or the output will gradually drift up or down successive
pages. Less obvious, if a file exactly fills the last page, the next file should
begin at the top of the next page, with no intervening blank page (or worse, a
page with just a heading on it).

78 SOFTWARE TOOLS IN PASCAL

{ fprint -- print file "name" from fin }
procedure fprint (var name : string; fin
const

MARGIN 1 = 2;
MARGIN2 = 2;
BOTTOM = 64;
PAGELEN = 66;

var

CHAPTER 3

filedesc);

line : string;
lineno, pageno integer;

#include "skip.p"
#include "head.p"
begin

pageno := 1;
skip(MARGIN1) ;
head(name, pageno);
skip(MARGIN2);
lineno := MARGIN1 + MARGIN2 + 1;
while (getline(line, fin, MAXSTR)) do begin

if (lineno = 0) then begin
skip(MARGIN1) ;
pageno := pageno + 1;
head(name, pageno);
skip(MARGIN2);
lineno := MARGIN1 + MARGIN2 + 1

end;
putstr(line, STDOUT);
lineno := lineno + 1;
if (lineno >= BOTTOM) then begin

skip(PAGELEN-lineno);
lineno := 0

end
end;
if (lineno > 0) then

skip(PAGELEN-lineno)
end;

The constants MARGIN 1 and MARGIN2 are the number of lines before and after
the heading line. BOTTOM is the line number of the last text line on a page;
PAGELEN is the number of lines on a page. For standard 8lhx 11 inch paper
with 6 lines per inch, PAGELEN is 66. The margins will usually be two or three
lines each.

skip produces n blank lines; we use a tiny separate routine rather than
clutter up fprint with six occurrences of the loop.

CHAPTER 3

{ skip -- output n blank lines
procedure skip (n : integer);
var

i : integer;
begin

for i := 1 to n do
putc(NEWLINE)

end;

FILES 79

Since we want the printed listing to identify the files by name, it is natural
and convenient to attach files to the program dynamically by name instead of by
some control card mechanism. At the least, procedure head should print a sin­
gle line with the file name and page number, as ours does. It might also print
the date and time if they are available.

{ head -- print tQP of page header
procedure head (var name : string; pageno
var

page : string; set to ' Page ' }
begin

{ setstring(page, ' Page '); }
page [1] . - ord (' ');
page [2] . - ord (, P') ;
page [3] . - ord (, a') ;
page [4] . - ord (, g') ;
page [5] . - ord (, e') ;
page [6] . - ord (' ');
page[7] .- ENDSTR;

putstr(name, STDOUT);
putstr(page, STDOUT);
putdec(pageno, 1);
putc(NEWLINE)

end;

integer) ;

Since putstr and putdec do not add a newline at the end of the string they
are putting out, you can make several calls to them to build up one output line,
as we did here to get the name and page number on the same line.

Once the basic tool is working, many refinements are possible, and some are
even desirable. You might consider adding the capability to

• convert tabs to spaces
• change default paper length, margins, line spacing, tab stops. etc.
• fold long lines
• number lines
• start and stop on specified pages
• print multiple files in parallel
• print multi-column output

All of these are easy except for the last, multi-column printing. That can be

80 SOFIWARE TOOLS IN PASCAL CHAPTER 3

done, of course, by accumulating a whole page before printing any of it.
When you write a program, there is a great temptation to add more and

more "features" like these, little things that it will do for you. But beware ­
unless the features work together in a uniform way, the result is going to be a
grab-bag of unrelated capabilities, most of which won't get used because nobody
can remember them. If you have to look up how to use a program for even the
simplest applications, you know you've gone too far. When in doubt, treat
"feature" as a pejorative. (Think of a hundred-bladed Swiss army knife.)

We have found the following syntax for optional arguments to be con­
venient. Optional arguments are usually a single letter, or at least a short
string. They are introduced by a character which is unlikely to begin a file
name, so arguments can be distinguished from file names. (We use a minus
sign.) If print provides multi-column output, for example, it might be speci­
fied by the argument -en where n is the number of columns, so

print -c4 file1 file2 ...

calls for printing of the files in 4-column format. By processing the arguments
strictly left to right, the program could set up parameters for a file, print it,
then selectively alter them for the next file.

Once you have options, the question arises of what to do when a particular
option is left unspecified. This should never be considered an error; instead
some default value should be chosen. Selecting the right default behavior of a
program may seem like a trivial concern, but if you do it wrong, everyone
suffers (or your program isn't used). Sometimes the decision is obvious: page
lengths are pretty much standardized, for example. But others are less clear:
should print fold very long lines into several shorter ones by default? If so,
where? Keep in mind that you are building tools, and make them as useful and
as easy to use as possible. Things that are said often should be concise; there­
fore the defaults should reflect the most common usage. Furthermore, defaults
should be set so the user who doesn't know any options gets reasonable
behavior. Try not to surprise your users, and don't limit their options.

Exercise 3-9. Implement some of the enhancements of print, making them accessible
through optional arguments. Before you do, try to predict which will be heavily used
and which not at all. Write the new manual page first to see how easy the new features
are to explain. After your new version has been used for a while, determine how accu­
rate your predictions were. What options should pr int choose by default? 0

3.6 Multi-stage Processing: Pipelines

This book is about tools, so by now it has probably occurred to you that with
a little care you could use print as a tool to print the output from any pro­
gram. If this were easy, then no other program would ever have to contain
code for things like multi-column printing - one version of print could serve
all comers.

CHAPTER 3 FILES 81

Suppose we modify print slightly so that if it has no file name arguments,
it reverts to taking its input from the standard input. This is an easy task
because of the way we organized it in the first place. We need only add a test
for no arguments and an empty file name for the standard input.

{ print (default input STDIN) -- print files with headings
procedure print;
var

name : string;
null: string; {value"}
i : integer;
fin: filedesc;
junk : boolean;

#include "fprint.p"
begin

{ setstring(null, ");
null[1] := ENDSTR;

if (nargs = 0) then
fprint(null, STDIN)

else
for i := 1 to nargs do begin

junk := getarg(i, name, MAXSTR);
fin := mustopen(name, IOREAD);
fprint(name, fin);
close(fin)

end
end;

The manual page for print is thus:

PROGRAM
prin t print files with headings

USAGE
print [file ...]

FUNCTION
print copies each of its argument files in tum to its output, inserting page headers and
footers and filling the last page of each file to full length. A header consists of two blank
lines, a line giving the filename and page number, and two more blank lines; a footer consists
of two blank lines. Pages for each file are numbered starting at one. IT no arguments are
specified, print prints its standard input; the file name is null.
The text of each file is unmodified - no attempt is made to fold long lines or expand tabs to
spaces.

EXAMPLE
pr1nt pr1nt.p fprint.p

Any program which wants to use print as a post-processor need only
arrange that its output be directed to the standard input of print. print
itself should not know or care that it is being used by some other program.
With the pipeline notation introduced in Chapter 2, for instance, we merely say

H2 SOFTWARE TOOLS IN PASCAL

program ... : print

CHAPTER J

This lets any program have formatted output, within the capabilities of print.
And since print will have wide use, some effort can be lavished on enhancing
It~ capabilities and making it efficient.

Just how to arrange a pipeline varies quite a bit from system to system.
Ideally, program and print should be concurrent processes, connected by the
system, neither knowing that the other is running. Less desirable, but more
likely to be feasible, they can communicate via temporary files. Our standard
interface does not provide pipelines.

Even when pipelines are not directly supported, however, the notion of
input-output redirection can be used to obtain the same effect. We usc the nota­
tion

wordcount <paper

to mean that the standard input of wordcount is to be taken from the file
paper rather than the terminal. Similarly,

compress >small

means that the standard output of compress is to be collected on the file
small, which is created or made empty as necessary before the program is run.

Needless to say, the programs presented in Chapters 1 and 2 become much
more useful in an environment that provides input-output redirection. Put
another way, they are largely worthless without it, for how often do you want to
type at compress and watch the compressed text come back to your terminal?
Tools arc useful only if they are easily applied.

(Jive input-output redirection, the pipeline

prog : p r i nt;

can be simulated by the three separate commands

prog >tempfile
print <tempfile
remove tempfile

where remove is a program (which we don't supply in this book) that causes
tempfile to be discarded. Temporaries are clumsier than pipes, but you can
live with them.

Readers who arc sensitive to questions of efficiency may wonder if it is
economical to use two programs when one would serve. The answer depends
on the true costs involved, which are often not properly estimated. Most people
who talk about "efficiency" are concerned primarily with how much machine
resources are used in the final run or in hands-off production, not with how
much "people" and machine time is consumed in all the compilations, debug­
ging and other false starts that prepare for the final run. Throughout this book
we consistently take the view that people cost a great deal more than machines,

CHAPTER 3 FILES 83

and that the disparity will increase in the future. Therefore the most important
consideration is that people get their jobs done with a minimum of fuss and
bother.

One way to help this happen is to provide tools. It is not sufficient, how­
ever, to have a large collection of "utilities," if each is hard to use, deals with
just one special case (even though it has a lot of "features"), and cannot be
connected to other tools in any useful way. Tools must work together. One
advantage of the pipeline is that it encourages people who build programs to
think in terms of how programs can be connected to other programs. This in
turn forces a certain degree of standardization, for a program which will not
interface cleanly to other programs cannot share a pipeline with them.

A second consideration in favor of the pipeline is that it encourages the con­
struction of smaller programs to do simpler functions. These smaller programs
are much easier to write, debug, document, maintain and improve indepen­
dently than they would be if combined into a single monster. Furthermore,
separate programs can be combined in novel ways, something which is rarely
possible if they have already been combined in some "obvious" way.

A final consideration is that many jobs will not get done at all unless they
can be done quickly. Efficiency is hardly of importance for a temporary
hookup meant to be used only a few times. Should a particular combination of
tools prove so useful that it begins to consume significant resources, then you
can consider replacing it with a more efficient version. And you are way ahead
at this point, for you are writing a program that has precise specifications and
that has been shown to be useful. This is the best formula known for ensuring
the success of a programming effort.

Exercise 3-10. Determine if it is possible in your operating system to construct a pro­
gram which reads an input line describing a pipeline and arranges the necessary operating
system commands to make the operation happen. Build it if possible. If not, what facil­
ities are lacking, and how would you provide them most easily? 0

Exercise 3-11. How would you organize the outer block to interpret arguments with <

and >? 0

3.7 Creating Files Dynamically

We come now to an area which is of great importance in programs that
interact with their environment - the ability to create files or information
streams dynamically, that is, while the program runs. Clearly, our standard
interface must have this ability, to implement redirection of the form

prog >file

makecopy further illustrates the problems.

makecopy f 9

copies file f to file g. g is created if necessary; if it already exists, its contents

84 SOFTWARE TOOLS IN PASCAL CHAPTER 3

are overwritten.
How do we create the output file? Since each operating system has a dif­

ferent syntax for this operation, we will assume that the operation of creating a
file is done by a primitive function create, which you will have to provide in
the appropriate form on your machine. Its use is

internal-name : = create (external-name, access-mode)

create and open are very similar: the external name is the name that the file
is to have in the external world, and the internal name is a file descriptor for
use by getline and putstr. As with open, create may well need further
information, such as access permissions; we summarize all this in access-mode.
A create of a file that already exists should first remove the old version or
truncate it to zero length; this ensures that re-using a file is not a special case.
If the file creation fails for any reason, create returns IOERROR.

The create primitive is not the rewri te operation of Pascal. As with
open and reset, however, some non-standard implementations of rewrite
can be used to implement create as defined here.

{ makecopy -- copy one file to another
procedure makecopy;
var

inname, outname : string;
fin, fout : filedesc;

begin
if (not getarg(1, inname, MAXSTR»

or (not getarg(2, outname, MAXSTR» then
error('usage: makecopy old new');

fin := mustopen(inname, IOREAD);
fout := mustcreate(outname, IOWRITE);
fcopy(fin, fout);
close(fin) ;
close(fout)

end;

fcopy is from concat earlier in this chapter; mustcreate is like mustopen:

CHAPTER 3

{ mustcreate -- create file or die }
function mustcreate (var name : string; mode

: filedesc;
var

fd : filedesc;
begin

fd := create(name, mode);
if (fd = IOERROR) then begin

putstr(name, STDERR);
error(': can"t create file')

end;
mustcreate .- fd

end;

FILES 85

integer)

PROGRAM
makecopy copy a file to new file

USAGE
makecopy old new

FUNCTION
makecopy copies the file old to a new instance of the file new, i.e., if new already exists it
is truncated and rewritten, otherwise it is made to exist. The new file is an exact replica of
the old.

EXAMPLE
To make a backup copy of a precious file:

makecopy precious backup

BUGS
Copying a file onto itself is very system dependent and usually disastrous.

Exercise 3-12. Many operating systems offer a "copy" command like makecopy.
Sometimes if the target file already exists, the command either refuses to proceed, or
requests confirmation before destroying the old contents. Is this desirable behavior?
Modify makecopy to deal sensibly with

makecopy f f

o

3.8 Putting it All Together: archive

As the final example of this chapter, let us construct a program which
requires all of the file system primitives we have discussed, and which could
profit from a few others not yet mentioned. archive is a library maintainer
whose purpose is to collect sets of arbitrary files into one big file and to main­
tain that file as an "archive." This often saves storage space and, more impor­
tant, gives you a handle by which you can deal with a whole group of related
files at once. Files can be extracted from the archive, new ones can be added,
old ones can be deleted or replaced by updated versions, and data about the
contents can be listed. There are no restrictions on what kinds of files can be

86 SOFTWARE TOOLS IN PASCAL CHAPTER 3

archived. Thus an archive can provide a library service for other programs like
loaders, compilers, and so on. It's also a convenient way to identify files on
magnetic tape.

archive is invoked by the command line

archive -command archname [filenames}

command is a single letter which specifies what operation we want to perform on
the archive archname. The optional filenames specify individual files that parti­
cipate in the action. The possible commands are

-c create a new archive with named members
-d delete named members from archive
-p print named members on standard output
- t print table of archive contents
-u update named archive members or add at end
-x extract named members from archive

To make archive easy to use, we adopt the rule that if no files are named,
the action is done on all files in the archive:

archive -t arch

lists the entire table of contents. But if any files are explicitly named, they are
the only ones that take part in the action. For instance,

archive -t arch f 9

lists only information about f and g. archive also provides a warning for
each explicitly named file that doesn't exist in the archive. These are services
that cost little to implement but add much to the human engineering of the pro­
gram.

Here is the manual page for archive:

CHAPTER 3 FILES 87

PROGRAM
archive maintain file archive

USAGE
archive -cmd aname [file ...]

FUNCTION
archive manages any number of member files in a single file, aname, with sufficient infor­
mation that members may be selectively added, extracted, replaced, or deleted from the col­
lection. -cmd is a code that determines the operation to be performed:

- c create a new archive with named members
- d delete named members from archive
- p print named members on standard output
- t print table of archive contents
- u update named members or add at end
- x extract named members from archive

In each case, the "named members" are the zero or more filenames given as arguments fol­
lowing aname. If no arguments follow, then the "named members" are taken as all of the
files in the archive, except for the delete command -d, which is not so rash. archive com­
plains if a file is named twice or cannot be accessed.
The -t command writes one line to the output for each named member, consisting of the
member name and a string representation of the file length, separated by a blank.
The create command -c makes a new archive containing the named files. The update com­
mand -u replaces existing named members and adds new files onto the end of an existing
archive. Create and update read from, and extract writes to, files whose names are the same
as the member names in the archive. An intermediate version of the new archive file is first
written to the file artemp; hence this filename should be avoided.
An archive is a concatenation of zero or more entries, each consisting of a header and an
exact copy of the original file. The header format is

-h- name length

EXAMPLE
To replace two files in an existing archive, add a new one, then print the table of contents:

archive -u archfile old1 old2 new1
archive -t archfile

The manual page documents the format of files produced and manipulated
by archive. Often this information is not provided to the user, sometimes
because it is "internal" information that the user need not know, but sometimes
because of a confusion between information hiding and secrecy. A file is very
much an external creature, one that may have to be manipulated by other tools
from time to time. Hence it is important that file formats be clearly docu­
mented, preferably in conjunction with the program that writes the file.

The archive program is a natural for what we like to call "left-comer" con­
struction. The idea is to nibble off a small, manageable comer of the program
- a part that does something useful - and make that work. Once it does,
more and more pieces are added until the whole thing is done. If care is taken
with the original design, later pieces should fit in relatively smoothly. Debug­
ging and testing are easier, for the pieces are only added one at a time. Furth­
ermore, if you decide to scrap the whole thing at some point, you are scrapping
only that fraction built so far.

The beauty of left-comer construction is that the program does some part of
its job very early in the game. By implementing the most useful functions first,

88 SOFIWARE TOOLS IN PASCAL CHAPTER 3

you get an idea of how valuable the program will be before investing any time
in the difficult or esoteric services (which often prove to be unnecessary or
unwanted anyway). You also ensure that the simpler and more common func­
tions are handled simply, which leads to greater efficiency in the end.

The first function to consider is adding files to an archive. (Creating a new
archive is the same job, done on a virgin file.) Until we can create and add to
an archive, no other operation is very interesting anyway. Thus we come natur­
ally to the question of what the format of an archive file should be. There are
at least two possibilities. The first is to have a "directory" at the beginning of
the archive, which lists the files contained, plus other useful information about
them - where they are in the archive, how big they are, when they were
archived, and so on. The second method, which we will use, is to distribute
this directory information throughout the file, one piece per file. Each
approach has its advantages and disadvantages; one of the exercises is concerned
with making a detailed comparison. Before reading further, you might think
about what is likely to be easy and what will be hard for each organization.

As always, the local environment can radically affect the merits of the two
organizations, by helping or hindering various operations. Furthermore, any
conclusions we draw must take into account how the program is actually used,
which often depends on what it does well, which depends in tum on the organi­
zation, and so on.

With the centralized directory, an operation like listing the table of contents
is likely to be faster, because the information is concentrated. This may also
allow better error checking, because all the information is available at one time.
It also simplifies any task in which the members must be accessed in a different
order from the one in which they are stored. On the negative side, however,
you really have to be prepared to deal with the directory all at once, which can
limit the number of members in an archive.

With a distributed directory, operations on the table of contents will in all
probability be slower, unless your system lets you move quickly to any point in a
file without reading the intervening data. Even with this facility the time to
access a particular file will be longer than with the centralized directory, because
you have to at least look at directory entries until you find the one you want.
But this slowdown will be small in comparison to the time required to actually
process the file.

Having built both kinds in the past, we feel that the distributed directory is a
clearer and less complicated organization. And of course you can always make
a copy of the directory in a file, then add that to the archive.

Since we are using a distributed directory, each entry in an archive begins
with a header, containing as a bare minimum the file name and some reliable
way to distinguish a header from the contents of an archive member. The
archive looks like this:

CHAPTER 3

header for file
file 1
header for file 2
file 2

FILES 89

Given this picture, we can see immediately how to implement some operations.
For example, to list the file names, we need merely find the headers and print
the relevant parts. Other operations are harder, and depend on what services
are provided by the local operating system.

The top level of archive is a multi-way branch that gets the command
argument and archive name, then calls the routine appropriate for the com­
mand. We will show it all later; for now, here is the executable body:

begin
initarch;
if (not getarg(1, cmd, MAXSTR»

or (not getarg(2, aname, MAXSTR» then
help;

getfns;
if (length(cmd) <> 2) or (cmd[1] <> ord('-'» then

help
else if (cmd[2] ord('c'» or (cmd[2] = ord('u'» then

update(aname, cmd[2])
else if (cmd[2] = ord('t'» then

table(aname)
else if (cmd[2] = ord('x'» or (cmd[2] ord('p'» then

extract (aname, cmd[2])
else if (cmd[2] = ord('d'» then

delete(aname)
else

help
end;

The create and update operations are combined in one routine because they
differ only in how the archive is accessed. Similarly, extract and print differ
only in what file the output is to be sent to.

help is called when archive has been used incorrectly. For a program
that is easy to describe, the most useful diagnostic is a brief synopsis of how to
use it properly.

{ help -- print diagnostic for archive }
procedure help;
begin

error('usage: archive -[cdptux] archname [files ...]')
end;

This message is usually enough to remind the user of what to say.
The routine getfns fetches the file name arguments from the command

90 SOFTWARE TOOLS IN PASCAL CHAPTER 3

integer;
boolean;

line and collects them in an array fname; nfiles is the number of file argu­
ments. getfns also checks the argument list for duplicates and overflow.

{ getfns -- get filenames into fname, look for duplicates }
procedure getfns;
var

i, j
junk

begin
errcount := 0;
nfiles := nargs - 2;
if (nfiles > MAXFILES) then

error('archive: too many file names');
for i := 1 to nfiles do

junk := getarg(i+2, fname[i], MAXSTR);
for i := 1 to nfiles do

fstat[i] := false;
for i := 1 to nfiles - 1 do

for j := i + 1 to nfiles do
if (equal(fname[i], fname[j]» then begin

putstr(fname[i], STDERR);
error(': duplicate file name')

end
end;

archive is eventually going to print a message about any files which have
been referred to in the argument list but not seen in the archive. fstat is used
to record this information: if fstat[i] is false, the ith file has not yet been
seen in the archive. These variables are needed by several routines, so they are
declared at the beginning of the procedure archive itself; there are too many
to pass around to each routine that needs them.

const
MAXFILES = 100;

var
or whatever

aname : string; { archive name }
cmd : string; { command type }
fname : array [1 .. MAXFILES] of string; {filename args }
fstat : array [1 .. MAXFILES] of boolean; { true=in archive
nfiles : integer: {number of filename arguments
errcount : integer; { number of errors }
archtemp : string; {temp file name 'artemp'
archhdr : string; {header string '-h-' }

errcount is used to count errors; it is used by several routines, and is thus
best kept visible as well. We also put the name for the archive temporary file
and the header string in global variables so they can be initialized.

Notice that the main routine of archive knows about these variables even
though it makes no use of most of them, because some of its subordinates do,
and because initialization is needed. Block structure inheritance is a convenient

CHAPTER 3 FILES 91

way to deal with a group of related variables, but it is also dangerous since it is
less disciplined than passing arguments and can make it hard to determine what
routines are using what variables. An alternative is to put a group of related
variables in a record, and pass that as a single argument to routines that need
access. That doesn't really solve the problem either, if different routines need
different parts of the record. We do try to restrict as much as possible the scope
of variables to those routines that "need to know," but the decision as to
whether to use inheritance or an argument has to be made in each individual
case; there is no automatic way to decide.

Updating an archive breaks cleanly into two stages: replacing existing
members with new versions, and adding to the end any files named as argu­
ments but not present in the archive. We assume that the only way to add data
to the end of a file is to copy the existing information to a new file, add the
new data to the end of that, then copy the whole thing back to the original.
Even though some systems allow you to add at the end or rewrite in the middle
of a file, it is unwise to do so. It is safer not to alter an existing archive until
you're sure that the replacement is complete and correct.

The process of updating can be summarized as

open archive (create if new)
create temporary file
update existing archive contents onto temporary
for each new file

create header and copy it to temporary
copy file to temporary

if no errors
move temporary back to archive

These operations are controlled by update.

92 SOFTWARE TOOLS IN PASCAL CHAPTER 3

{ update -- update existing files, add new ones at end}
procedure update (var aname : string; cmd : character);
var

i : integer;
afd, tfd : filedesc;

begin
tfd := mustcreate(archtemp, IOWRITE);
if (cmd = ord('u')) then begin

afd := mustopen(aname, IOREAD);
replace(afd, tfd, ord('u')); {update existing}
close(afd)

end;
for i := 1 to nfiles do { add new ones}

if (fstat[i] = false) then begin
addfile(fname[i], tfd);
fstat[i] .- true

end;
close(tfd);
if (errcount = 0) then

fmove(archtemp, aname)
else

message('fatal errors - archive not altered');
remove (archtemp)

end;

archive is designed to identify as many errors as possible per run.
update processes all the files in the argument list, even though it may have
encountered an error trying to open one of them. errcount counts the errors;
the archive is updated only if errcount is zero at the end of the run.
replace copies an archive onto the temporary, updating any files specified.
addfile adds a single file to the end of the temporary if it can. (We will
return to replace and addfile shortly.)

remove is the complement of create, a primitive for removing a file for­
ever.

fmove moves the information from the temporary back onto the archive file
if no errors have occurred. In the worst case, this has to be done by physically
removing the old archive, creating a new one, then copying the temporary back
onto it, like this:

CHAPTER 3

{ fmove -- move file name1 to name2 }
procedure fmove (var name1, name2 : string);
var

fd1, fd2 : filedesc;
begin

fd1 := mustopen(name1, IOREAD);
fd2 := mustcreate(name2, IOWRITE);
fcopy(fd 1, fd2);
close(fd1) ;
close(fd2)

end;

FILES 93

In a different environment, you might be able merely to rename the temporary
to be the new archive. This is a useful primitive to have available, for it is
clearly more efficient than physically copying the entire file, and it also minim­
izes the length of time during which the permanent copy of the archive is in an
incomplete state. We use "move" for any file transfer that could be effected by
renaming, and "copy" only when we explicitly want the source to remain where
it is.

Let us deal with addfile next, since it is relatively self-contained.

{ addfile -- add file "name" to archive }
procedure addfile (var name: string; fd : filedesc);
var

head : string;
nfd : filedesc;

#include "makehdr.p"
begin

nfd := open(name, IOREAD);
if (nfd = IOERROR) then begin

putstr(name, STDERR);
message(': can"t add');
errcount := errcount + 1

end;
if (errcount = 0) then begin

makehdr(name, head);
putstr(head, fd);
fcopy(nfd, fd);
close(nfd)

end
end;

makehdr makes the uniquely identifiable header record that precedes each
archived file. For testing, any printable string is quite adequate. We use -h-,

followed by a blank, the filename, another blank, and the file length. For ulti­
mate use, it would be nice to add things like the date and time the file was
archived, if that is available.

Further contents depend on the local system. The main consideration is to
eliminate any possibility of confusing a header with the contents of an archive

94 SOFIWARE TOOLS IN PASCAL CHAPTER 3

member. If it is easy and fast to find out the size of a file in convenient units,
such as the number of characters or the number of records, the header can con­
tain the file size as one of its entries, and there is no difficulty in deciding what
is a header and what is text inside an archive. Our version of makehdr
includes a character count in the header, separated from the file name by a
blank. We put the character count into the file as a character string, not in
binary, because that representation is portable and because the archive can thus
remain a text file (if its members are) and amenable to processing by other
tools.

{ makehdr -- make header line for archive member
procedure makehdr (var name, head: string);
var

i : integer;
#include "fsize.p"
begin

scopy(archhdr, 1, head, 1);
i := length(head) + 1;
head[i] := BLANK;
scopy(name, 1, head, i+1);
i := length(head) + 1;
head[i] := BLANK;
i := itoc(fsize(name), head, i+1);
head[i] := NEWLINE;
head[i+1] := ENDSTR

end;

makehdr uses length and itoc, which we wrote in Chapter 2. scopy is
a basic string copying routine:

scopy(src, i, dest, j)

copies the (sub)string of src that starts at i to dest[j].

{ scopy -- copy string at src[i] to dest[j]
procedure scopy (var src : string; i : integer;

var dest : string; j : integer);
begin

while (src[i] <> ENDSTR) do begin
dest [j] : = src [i] ;
i .- i + 1;
j := j + 1

end;
dest[j] := ENDSTR

end;

The function f s i z e returns the size of a file in characters. Ideally this will
be a primitive, a service of the local file system. The less favorable (but com­
mon) case is that you can only find out how big a file is by reading through it.
Although this is costly, if you extract contents more than you replace them you

CHAPTER 3 FILES 95

can endure the extra overhead even with double reading. Remember,
archive reads and writes the entire archive twice to update it; the incremental
cost of reading a few of the members one more time is small in comparison.

{ fsize -- size of file in characters }
function fsize (var name : string) : integer;
var

c : character;
fd : filedesc;
n : integer;

begin
n := 0;
fd := mustopen(name, IOREAD);
while (getcf(c, fd) <> ENDFILE) do

n := n + 1;
close(fd) ;
fsize := n

end;

Exercise 3-13. How would you test the part of archive built so far? What are some
critical boundaries? 0

Exercise 3-14. fsize opens the file anew, even though it has already been opened by
addfile. Does this work on your system? Should it? If it doesn't, how would you
rewrite fsize to get around the problem? What primitive operations are needed? 0

Exercise 3-15. An alternate approach which eliminates the file size computation is to
end each archive member with a "trailer" analogous to the header. Implement this vari­
ation. 0

Exercise 3-16. The procedure update tries to copy a file that has been created but
which has never had anything written on it. What is a reasonable behavior in this case?
What happens on your system? What primitive should deal with the situation if the sys­
tem does something unreasonable? 0

Exercise 3-17. Modify archive to use a linked list instead of an array to store the
information in fstat. 0

3.9 More Archive Commands

Now that we can create an archive and put files in it (and presumably have
carefully tested that much), can we print the table of contents? That seems to
be the next easiest function to add in a left-comer approach. archive is to list
the files named as arguments, or all the files if there are no file arguments, so
the table of contents operation is basically this:

96 SOFIWARE TOOLS IN PASCAL

open archive
for each file in archive

if (header matches any argument)
print header information

skip over archived file
warn about any that couldn't be found

This is done by table:

{ table -- print table of archive contents
procedure table (var aname : string);
var

head, name : string;
size : integer;
afd : filedesc;

#include "tprint.p"
begin

afd := mustopen(aname, IOREAD);
while (gethdr(afd, head, name, size» do begin

if (filearg(name» then
tprint(head) ;

fskip(afd, size)
end;
notfound

end;

CHAPTER 3

table opens the archive for reading only, so you can read an archive that you
might not have permission to alter.

tprint prints the desired information from the header; our dummy version
prints the member name and size, which is all we need for testing the program.

{ tprint -- print table entry for one member }
procedure tprint (var buf : string);
var

i : integer;
temp : string;

begin
i := getword(buf, 1, temp);
i := getword(buf, i, temp);
putstr(temp, STDOUT);
putc(BLANK) ;
i := getword(buf, i, temp);
putstr(temp, STDOUT);
putc(NEWLINE)

end;

header
name }

size

gethdr tests whether the next input is a header; if so, it returns the header,
the file name and the size. If gethdr fails to see an archive header immedi­
ately, something has gone awry: either the file in question is not an archive or
its contents have been corrupted. In any case, archive can proceed no

CHAPTER 3 FILES 97

further, so gethdr exits with an error message.

{ gethdr -- get header info from fd }
function gethdr (fd : filedesc; var buf, name

var size : integer) : boolean;
string;

var
temp : string;
i : integer;

begin
if (getline(buf, fd, MAXSTR) false) then

gethdr := false
else begin

i := getword(buf, 1, temp);
if (not equal(temp, archhdr» then

error('archive not in proper format');
i := getword(buf, i, name);
size := ctoi(buf, i);
gethdr := true

end
end;

gethdr uses getword, which we wrote for include; equal, which we
wrote for compare; and ctoi, from Chapter 2. Rather than inventing new
routines for the same job each time, we are accumulating a library of useful
functions.

makehdr and gethdr are independent of the specific header chosen; if you
don't care for -h-, one string in initarch is all that need be changed to
install a new one.

fskip uses the size returned by gethdr to skip over the archived file; if all
is consistent, this should leave the file positioned at a new header for the next
call of gethdr. In a congenial system fskip will be a primitive that skips
without reading the intervening data. For use in hostile environments, here is a
version that reads the right number of characters:

{ fskip -- skip n characters on file fd }
procedure fskip (fd : filedesc; n : integer);
var

character;
integer;

c
i

begin
for i := 1 to n do

if (getcf(c, fd) = ENDFILE) then
error('archive: end of file in fskip')

end;

filearg tests whether the file name from the archive matches any of the
file names in the argument list, using equal to do the string comparison. If
there are no file arguments, filearg also considers that to be a match.

98 SOFIWARE TOOLS IN PASCAL

{ filearg -- check if name matches argument list
function filearg (var name : string) : boolean;
var

CHAPTER 3

i : integer;
found : boolean;

begin
if (nfiles <= 0) then

filearg := true
else begin

found := false;
i : = 1;
while (not found) and (i <= nfiles) do begin

if (equal(name, fname[i]» then begin
fstat[i] := true;
found := true

end;
i := i + 1

end;
filearg := found

end
end;

f s tat [i] records whether the i th named file argument has ever been
"found." Initially false for all arguments, the corresponding position is set to
true if filearg finds a match. This list is used by notfound to print names
which were arguments but not in the archive.

{ notfound -- print "not found" warning }
procedure notfound;
var

i : integer;
begin

for i := 1 to nfiles do
if (fstat[i] = false) then begin

putstr(fname[i], STDERR);
message(': not in archive');
errcount := errcount + 1

end
end;

It also sets the error count, but that isn't used by table, since it hardly matters
when we are not attempting to alter the archive.

A point of style: in filearg and other routines, we tested whether nfiles
was equal to or less than zero. But from reading the code, we know that
nfiles can never become negative, so why bother?

This is what is known as "defensive programming." It costs next to nothing
in source text or execution time, yet it reduces the chance of the program going
wild should an important control variable somehow be damaged. You can't
print out error messages everywhere, but you can and should take out insurance

CHAPTER 3 FILES 99

whenever possible.
There is a similar situation in fskip: even though the archive header con­

tains a count that is surely right, the loop tests each character to make sure it
isn't ENDFILE; if it is, the count is wrong.

It is much easier to debug a program if the output is not voluminous and if
storage overwrites do not occur as a side effect of the original bug. The way to
ensure saner behavior is to do as we did. Write your tests so they steer crazy
situations back in a safe direction. Use the last else of a chain of else-if's
to catch conditions that should "never" occur, but just might. Never check for
equality if it doesn't hurt to check for "greater than or equal to" or for "less
than or equal to." Don't let loops repeat when a variable is out of its expected
range. Don't make your program a sucker for bugs.

The next step in the incremental construction is extracting - to get the
information back out of the archive once we put it in. The logic is clear
enough:

open archive
for each file in archive

if (it's to be extracted)
create file
copy from archive to file

warn about any that couldn't be extracted

We also allow archive contents to be collected on the standard output instead of
in files. The -p command lists members, or extracts them with different names
from those they were stored with. For example,

archive -p arch file1 >file2

extracts file1 into file2. Of course to permit this usage, the program must
avoid verbiage like

successful extraction
1 files extracted
contents of file1:

This is good practice for a tool-using environment, where gratuitous comments
interfere with the smooth interconnection of programs, and good design for pe0­

ple, who soon get weary of programs that talk too much.

100 SOFIWARE TOOLS IN PASCAL

{ extract -- extract files from archive }
procedure extract (var aname: string; cmd
var

CHAPTER 3

character);

ename, inline : string;
afd, efd : filedesc;
size : integer;

begin
afd := mustopen(aname, IOREAD);
if (cmd = ord('p'» then

efd .- STDOUT
else { cmd is 'x'

efd .- IOERROR;
while (gethdr(afd, inline, ename, size» do

if (not filearg(ename» then
fskip(afd, size)

else begin
if (efd <> STDOUT) then

efd .- create(ename, IOWRITE);
if (efd = IOERROR) then begin

putstr(ename, STDERR);
message(': can"t create');
errcount := errcount + 1;
fskip(afd, size)

end
else begin

acopy(afd, efd, size);
if (efd <> STDOUT) then

close(efd)
end

end;
notfound

end;

Again, most of the complexity is in error detection and recovery, not in the
operation itself.

acopy copies a member of an archive onto a file, using the size information
from the header, instead of looking for the next header. (The test for
ENDFILE is another safety measure.) That way it can be used to copy any kind
of information at all - it is independent of the content of the archived files.

CHAPTER 3 FILES 101

{ acopy -- copy n characters from fdi to fdo }
procedure acopy (fdi, fdo : filedesc; n : integer);
var

ENDFILE) then
end of file in acopy')

character;
integer;

c
i

begin
for i := 1 to n do

if (getcf(c, fdi)
error('archive:

else
putcf(c, fdo)

end;

Deleting is identical to updating except that no file replaces a deleted file; we
can use replace for both the -u and -d commands.

{ delete -- delete files from archive }
procedure delete (var aname : string);
var

afd, tfd : filedesc;
begin

if (nfiles <= 0) then {protect innocents}
error('archive: -d requires explicit file names');

afd := mustopen(aname, IOREAD);
tfd := mustcreate(archtemp, IOWRITE);
replace(afd, tfd, ord('d'»;
notfound;
close (afd) ;
close (tfd) ;
if (errcount = 0) then

fmove(archtemp, aname)
else

message('fatal errors - archive not altered');
remove (archtemp)

end;

We have made the command

archive -d archname

illegal - it does not delete all the files from the archive. If you really want to
do that, you have to remove them explicitly. It is a small refinement, but it
makes the program safer.

Here is replace.

102 SOFIWARE TOOLS IN PASCAL

{ replace -- replace or delete files }
procedure replace (afd, tfd : filedesc; cmd
var

CHAPTER 3

integer) ;

inline, uname string;
size : integer;

begin
while (gethdr(afd, inline, uname, size» do

if (filearg(uname» then begin
if (cmd = ord('u'» then add new one

addfile(uname, tfd);
fskip(afd, size) {discard old one

end
else begin

putstr(inline, tfd);
acopy(afd, tfd, size)

end
end;

replace uses addfile to copy the new version of a file to the temporary,
fskip to skip over the archived version, and acopy to copy members that are
unchanged.

Finally we can show the entire main procedure for archive:

CHAPTER 3

{ archive -- file maintainer
procedure archive;
const

MAXFILES = 100; or whatever
var

FILES 103

aname : string; { archive name }
cmd : string; { command type }
fname : array [1 .. MAXFILES] of string; {filename args }
fstat : array [1 .. MAXFILES] of boolean; { true=in archive
nfiles : integer; {number of filename arguments
errcount : integer; { number of errors }
archtemp : string; {temp file name 'artemp'
archhdr : string; {header string '-h-' }

#include "archproc.p"
begin

initarch;
if (not getarg(1, cmd, MAXSTR»

or (not getarg(2, aname, MAXSTR» then
help;

getfns;
if (length(cmd) <> 2) or (cmd[1] <> ord('-'» then

help
else if (cmd[2] ord('c'» or (cmd[2] = ord('u'» then

update (aname, cmd[2])
else if (cmd[2] = ord('t'» then

table(aname)
else if (cmd[2] = ord('x'» or (cmd[2] ord('p'» then

extract (aname, cmd[2])
else if (cmd[2] = ord('d'» then

delete(aname)
else

help
end;

Variables are initialized by initarch:

104 SOFTWARE TOOLS IN PASCAL

{ initarch -- initialize variables for archive }
procedure initarch;
begin

{ setstring(archtemp, 'artemp');
archtemp [1] . - ord (, a') ;
archtemp[2] .- ord('r');
archtemp[3] .- ord('t');
archtemp[4] .- ord('e');
archtemp[5] .- ord('m');
archtemp[6] .- ord('p');
archtemp[7] .- ENDSTR;

setstring(archhdr, '-h-');
archhdr [1] . - ord (, -') ;
archhdr[2] .- ord('h');
archhdr[3] .- ord('-');
archhdr[4] .- ENDSTR;

end;

CHAPTER 3

The file archproc. p simply includes all of the procedures and functions used
by archive, in the proper order. It's not very interesting, but here it is:

{ archproc -- include procedures for archive }
#include "getword.p"
#include "gethdr.p"
#include "filearg.p"
#include "fskip.p"
#include "fmove.p"
#include "acopy.p"
#include "notfound.p"
#include "addfile.p"
#include "replace.p"
#include "help.p"
#include "getfns.p"
#include "update.p"
#include "table.p"
#include "extract.p"
#include "delete.p"
#include "initarch.p"

By now it may have struck you that about half the code in archive is con­
cerned with error-checking. Many programs can afford to be somewhat cavalier
about protecting users from the operating system and their own innocence,
because even if the program is badly used, the results aren't likely to be calami­
tous. But error handling is particularly important for a program like archive,
because it changes files rather than simply making new ones. It overwrites
existing files with supposedly correct new contents, so it had better be cautious.
For example, it may seem paranoid to abort an entire updating operation
merely because one of the files couldn't be accessed. But safety first! It's better
to have to run it again than to risk destroying an archive.

CHAPTER 3 FILES 105

3.10 Program Structure

At this point you may well be lost, not because archive is a complicated
program but because there are an awful lot of pieces. Many of the pieces are
old friends, however. These include the file maintenance primitives open,
create, close and remove; the input and output primitives getline,
getarg and putstr; the diagnostic printers error and message; and utili­
ties like ctoi, itoc, length, s copy, equal and getword. You should
learn to think of these low level assistants as language extensions, facilities that
help you express common operations succinctly, and without distracting you
from the real task at hand.

The remaining complexity can be grasped by writing out the hierarchy of
procedures written specifically for archive. This tells you how the program is
organized by showing what routines call on what others to do the job. It turns
out that the hierarchical structure of a program changes much less from its earli­
est design than does the code, so a program hierarchy is a useful document to
supplement the actual program listing - unlike flowcharts, which merely echo
the code and quickly get out of phase with it as changes are made. Some peo­
ple even draw "structure charts" showing the hierarchy of calls and the argu­
ments passed and returned on each call.

For archive we can write the hierarchy as

archive
initarch
help
getfns
update

replace
gethdr, filearg, fskip, addfile, acopy

addfile
makehdr, fcopy

fmove
table

gethdr, filearg, fskip, notfound, tprint
extract

gethdr, filearg, fskip, notfound, acopy
delete

replace, notfound, fmove

This says that archive makes calls on initarch, he lp, getfns,
update, table, extract and delete (in addition to various low level rou­
tines) to do its job. update in tum calls replace, addfile, and fmove;
replace and addfile call still other routines; and so on. We list some of the
sets horizontally, separated by commas, instead of vertically, to save space. We
also don't bother to show an expansion more than once (note the instance of
replace in the last line), for much the same reason that we leave out all the
low level routines: it just adds clutter. We will frequently present hierarchies

106 SOFTWARE TOOLS IN PASCAL CHAPTER 3

for the larger programs, to help you keep track of the organization.
The hierarchy reveals several things. First, the overall structure of archive

is just a multi-way branch, making a call on one of the four cases update,
table, extract or delete. Each case is expanded in terms of a handful of
action routines. gethdr, filearg, etc., play a role similar to open,
getline, and the other primitives - they permit the basic functions that must
be performed to be expressed at a more abstract (and readable) level, as well as
insulating archive from low level implementation decisions. At each level the
lower routines are used as building blocks that perform some function, with
relatively little dependence on how they perform it.

Notice that no routine has more than a handful of immediate subordinates.
It is a good rule of thumb that a person can't properly keep track of more than
half a dozen things at a time, so this hierarchy gives some reassurance that no
part of the design will be too difficult to grasp. Finally, it is worth observing
that operations as diverse as update, table, and delete make use of essen­
tially the same action routines in different sequences. This is the reward of ord­
erly design, that common operations can be identified and singled out as basic
actions. Programs built this way are easier to get right and to maintain, because
the strategy for each case (update, table, etc.) and the details of each action
(gethdr, filearg, etc.) can be dealt with separately.

Exercise 3-18. How do you represent the hierarchy of a program that contains a recur­
sive procedure, i.e., one that calls itself? How about a program with mutual recursion,
e.g. A calls B which in tum calls A? What does each of these practices do to a structure
chart? Can you think of a better way to document the structure of a highly recursive
program with multiply-used low level functions? 0

Exercise 3-19. Now that you have seen archive with a distributed directory, design
and implement a version with the directory at the beginning. Compare the advantages
and disadvantages. Observations about "efficiency" should be supported by empirical
studies of the operations people really perform on an archive. 0

Exercise 3-20. archive could be simpler and faster if the operating system provided
certain primitive operations, such as renaming the temporary instead of copying, knowing
how big a file is without having to read it, moving to an arbitrary point in a file without
reading intervening material, and selectively ovetwriting parts of a file. Consider these
and other primitives that might be useful. Do they exist in the operating system you use?
Could they? How do such primitives affect the directory-at-the-front version? 0

Exercise 3-21. In most systems, an archive program saves space because it collects small
files into one big one; this eliminates the breakage or fragmentation that normally comes
from putting each file into an integral number of blocks or tracks on some secondary
storage device. Theoretically, what is this saving? Measure and see how well the
theoretical prediction is observed in practice. 0

Exercise 3-22. archive makes no comment about

archive -u arch

Should it? If you could find out the date and time a file was last changed, what would

CHAPTER 3 FILES 107

be a useful interpretation for this command? Should there be separate commands for
creating a new archive and updating an existing one? 0

Exercise 3-23. If you work in an interactive environment, add a "verbose" option, so
archive will print out messages about what it is doing as it runs, and perhaps offer you
the choice on each file of having the command operate or not. 0

Exercise 3-24. How can you add a file f to an archive that already contains an £?
Should multiple occurrences be allowed in an archive? If you concatenate two archives
with concat, is the result a valid archive? 0

Exercise 3-25. archive provides no way to specify the position of a file added to an
archive. Does it need one? What syntax would you use? Implement it. 0

Exercise 3-26. Our archive files are always made as small as possible, by recreating them
when they change. Some systems provide programs rather like archive that don't
reclaim space unless explicitly requested. Discuss the merits and demerits of such an
organization. 0

Exercise 3-27. What happens if two people run archive in the same part of a file sys­
tem at the same time? How would you remedy the situation? 0

3.11 Summary

This chapter has discussed how programs interface to their environment, par­
ticularly how they access file information. Few systems are regular and sys­
tematic in the interface they present, and of course there are great differences
between systems. We have tried to write the discussion and the programs in
terms of a handful of primitive operations that are likely to exist or at least be
implementable on most operating systems. Describing system interactions
exclusively with such primitives is the most effective approach we know for cop­
ing with the bewildering complexity of typical operating systems.

The file system primitives we use are:
open Connect the external name of an information stream (a "file") to an

internal name which is then usable by the program. Position the file
at the beginning. Opening a fresh instance of an already open file
should be permissible.

create Create a new file, given its external name, from within a running
program. If the file already exists, the old version should be
removed or truncated and overwritten. create is a crucial primi­
tive, but the least likely to be available. Even some major operating
systems do not provide it.

close Break the connection made by open or create and free the file
descriptor for re-use. Mark the end of the file if necessary, so that
subsequent reads will find an ENDFILE at the proper point.

remove Remove a file from the file system.
We assume that when a program is started by our standard environment it

already has the three files STDIN, STDOUT and STDERR open and ready to go.
We presume that when a program terminates for any reason, any open files are

108 SOFTWARE TOOLS IN PASCAL CHAPTER 3

closed gracefully. We have also assumed that a file is made the right size by the
system - if you write more information on it, it gets bigger automatically. It
seems intuitively obvious that a file should be as big as it is (and no bigger),
and that it should get bigger as you put more into it, but on all too many sys­
tems you have to arrange this yourself, clumsily.

One mark of a good operating system is that all of these operations are
available, uniform, easy to use, and applicable without major exception to all
files from all programs. You might find it an enlightening experience to read
some of the manuals for your system and see how well it does by these criteria.

Bibliographic Notes

The problem of file comparison has not been fully solved, but various forms
of it are attacked by algorithms that compute a minimum set of changes neces­
sary to convert one n-line file into another, in time n210gn worst case, but typi­
cally much better, often linear in the file size. The basic procedure itself is not
too difficult, but it requires considerable help from the local operating system in
order to handle lines of a priori unknown length without wasting great amounts
of storage. For more information, see "A fast algorithm for computing longest
common subsequences," by J. W. Hunt and T. G. Szymanski, CACM, May,
1977. A discussion of pragmatic issues using this algorithm can be found in
M. D. McIlroy and J. W. Hunt, "An algorithm for differential file com­
parison," Bell Labs Computing Science Technical Report 41,1976.

Although there is a substantial literature on the implementation of file sys­
tems, relatively little is concerned with the programmer interface. The model
for most of our 110 primitives has been the Unix operating system, which pro­
vides an exceptionally clean set. See "The Unix time-sharing system," by K. L.
Thompson and D. M. Ritchie, CACM, July, 1974, reprinted with related papers
in The Bell System Technical Journal, July, 1978. The paper "A Portable File
Directory System," by D. R. Hanson, Software Practice and Experience,
August, 1980, discusses how to provide a similar environment on any system.
"A Virtual Operating System," by D. E. Hall, D. K. Scherrer and J. S. Sven­
tek, C'ACM, September, 1980, describes how pipes and file redirection can be
implemented on a variety of systems.

Structure charts are described in W. P. Stevens, G. J. Myers and L. L. Con­
stantine, "Structured design," IBM Systems Journal, April, 1974.

CHAPTER 4: SORTING

Sorting is an everyday programming task, and often a building block in
larger processes. In this chapter we will tackle sorting, but we will be more con­
cerned with the human interface of a sort program than with presenting some
"best possible" sorting algorithm. If a sorting program is so poorly packaged
that people feel compelled to write their own instead of figuring out how to use
it, then the quality of its sorting algorithm is surely irrelevant. But if the pack­
aging is good, if users perceive sorting as a convenient tool, then it will be used,
the algorithm can be improved as needed, and all users will benefit.

4.1 Bubble Sort

Every programmer is familiar with some variant of the interchange sort. For
example the bubble sort sorts the first n elements of an array of integers (of type
intarray) into ascending order like this:

{ bubble -- bubble sort v[1] ... v[n] increasing}
procedure bubble (var v : intarray; n : integer);
var

i, j, k : integer;
begin

for i := n downto 2 do
for j := 1 to i-1 do

if (v[j] > v[j+1]) then begin
k := v[j]; {exchange
v[j] := v[j+1];
v[j+1] := k

end
end;

{ compare }

The inner loop rearranges out-of-order adjacent elements on each pass; by the
end of the pass, the largest element has been "bubbled" to the end, that is, to
v [i]. The outer loop repeats the process, each time decreasing the current
array limit i by one.

The main advantage of the bubble sort is its simplicity. Its drawback, a seri­
ous one, is that it gets very slow very fast as the number of elements to be

109

110 SOFIWARE TOOLS IN PASCAL CHAPTER 4

sorted gets large. The time complexity of bubble sorting (and similar sorts) is n2.

That is, the time required to sort varies as the square of the number of items to
be sorted: twice as big takes four times as long. How large is too large? That
depends on the alternative being considered, and on how often the data is to be
sorted, but something between ten and fifty items might be a reasonable limit,
above which the bubble sort is better replaced by a more sophisticated algo­
rithm.

In real life, by the way, you would certainly name the routine sort, not
bubble, so you could change the algorithm without upsetting users. We use
bubble here because we want a unique name for each program.

4.2 Shell Sort

In a sense, the Shell sort is the next step up in complexity from the bubble
sort; we present it because it is similar in spirit, compact, but much faster for
large arrays. The time complexity of the Shell sort is approximately n1.5.

The basic idea of the Shell sort is that in the early stages far-apart elements
are compared, instead of adjacent ones. This tends to eliminate large amounts
of disorder quickly, so later stages have less work to do. Gradually the interval
between compared elements is decreased, until it reaches one, at which point it
effectively becomes an adjacent interchange method.

{ shell -- Shell sort v[1] ... v[n] increasing}
procedure shell (var v : intarray; n : integer);
var

gap, i, j, jg, k integer;
begin

gap := n div 2;
while (gap> 0) do begin

for i := gap+1 to n do begin
j := i-gap;
while (j > 0) do begin

jg := j + gap;
if (v[j] <= v[jg]) then { compare}

j := 0 {force loop termination}
else begin

k := v[j]; {exchange
v[j] := v[jg];
v[jg] := k

end;
j := j - gap

end
end;
gap := gap div 2

end
end;

The outermost loop controls the gap between compared elements. Initially n/2,

CHAPTER 4 SORTING 111

it shrinks by a factor of two each pass until it becomes zero. The middle loop
compares elements separated by gap; the innermost loop reverses any that are
out of order. Since gap is eventually reduced to one, eventually all elements
are ordered correctly.

A word on modularity. Many sorting procedures have three distinct parts.
A comparison operation decides what the order of two elements is. An
exchange operation interchanges two out-of-order elements. Finally, a sorting
algorithm decides what comparisons and exchanges must be made. Often the
only thing that need change between two sorting procedures is the algorithm, so
a program should be carefully organized to take this into account. If the three
aspects are clearly separated, each may be individually improved without affect­
ing the others.

Exercise 4-1. How would you test a sorting program? What are the obvious boundary
conditions that must be checked to ensure correct operation? What programs would you
write to help in your verification? What programs have we already written that help? 0

Exercise 4-2. Compare the bubble sort and the Shell sort experimentally. Where is the
crossover point at which the Shell sort becomes better on your machine and compiler? 0

Exercise 4-3. In our version of the Shell sort, when two out-of-order elements are found
they are immediately exchanged. If an element is small relative to the other elements at
the current gap, however, several unnecessary exchanges may be performed. Redistri­
bute the exchange so the element moving toward the beginning of the array is held in a
temporary location until its correct position has been found. Measure this version to
decide if the increase in speed outweighs the loss of clarity in the algorithm. 0

Exercise 4-4. The Shell sort has been observed to run somewhat faster when the value of
gap is always odd. Modify shell accordingly and experiment to see how large the
effect is. 0

4.3 Sorting Text

Since many of the tools we discuss in this book are for manipulating text, it
is worth adapting our sorting procedure for this kind of operation too. One
especially useful form is a program that sorts a text file line by line into increas­
ing lexicographic order. As we shall soon see, this operation is useful in its own
right, and also as a part of other processes.

There are two major considerations in the design - convenience and effi­
ciency. sort should be dead easy to use, requiring no setup at all for common
sorting tasks. At the same time it should be reasonably effective (i.e. , cheap)
on both small files and on moderately big ones. sort is not intended to
replace a carefully tailored sort for a repeated production application, but it
should be a tool that is convenient and economical over a wide spectrum of
input file sizes - one which will encourage a casual user to select it as a matter
of course. The first draft will be a program that sorts a set of lines that fits into
memory all at once. Later we will expand it to handle files too big to be stored
completely in memory.

112 SOFIWARE TOOLS IN PASCAL CHAPTER 4

We will write the sorting program to read its standard input and write its
standard output, so it can be used as a filter. Of course sort can't produce
any output until all of the input has been read (why?), so calling it a filter may
seem to be stretching a point, but that is not important. What is important is
that as far as the user is concerned, the program looks like a filter, so it can be
used in a pipeline.

The procedures presented earlier in this chapter sorted arrays of integers;
here we want to treat lines of text. Unfortunately lines are not all of the same
length. Although we have been able so far to get away with a fixed size for all
lines, this is just not realistic for sorting, where running time will be strongly
dependent on how many lines fit in memory at one time. We need a data
representation that will cope efficiently and conveniently with variable length
lines.

One solution is to refer to the lines indirectly, by pointers. It is difficult,
however, to arrange for pointers to arbitrary-length lines; furthermore, there is
no way to detect when we have run out of storage if we use the standard pro­
cedure new to allocate space for lines. Instead we will use indices into an array
as pointer equivalents. A big array linebuf of characters holds the lines to
be sorted, packed end to end. A second array, linepos, contains indices that
tell where the corresponding lines begin in 1 inebuf. That is, 1 inepos [i] is
the position in linebuf of the beginning of the ith line. When an exchange is
called for, the indices are exchanged, not the text lines themselves. This elim­
inates the twin problems of complicated storage management and high overhead
that would be part of moving the lines themselves. The figure below shows how
the positions and text for the sentences of this paragraph would look before sort­
ing.

linepos:

The in-memory sort thus reads lines into a convenient data structure, sorts
them (rearranging only the positions in 1 inepos), then prints them.

CHAPTER 4 SORTING 113

maximum # of text characters
maximum # of lines }

10000;
300;

{ sort -- sort text lines in memory }
procedure inmemsort;
const

MAXCHARS
MAXLINES

type
charbuf = array [1 .. MAXCHARS] of character;
charpos = 1 .. MAXCHARS;
posbuf = array [1 .. MAXLINES] of charpos;
pos = O.. MAXLINES;

var
linebuf : charbuf;
linepos : posbuf;
nlines : pos;

#include "gtext.p"
#include "shell.p"
#include "ptext.p"
begin

if (gtext(linepos, nlines, linebuf, STDIN» then begin
shell(linepos, nlines, linebuf);
ptext(linepos, nlines, linebuf, STDOUT)

end
else

error('sort: input too big to sort')
end;

sort calls a modified version of shell, which we will show in a moment, that
moves the indices in linepos, not the lines themselves. gtext reads the lines
and sets up the indices; ptext uses them to output the lines in sorted order.

gtext stops reading when it cannot guarantee enough space for another
line. It returns true if end of file was encountered during input, which is used
here only to provide some error checking. I inepos [i] is set to the position
in linebuf of the first character of the ith line. MAXSTR is the length of the
longest line we are willing to deal with, MAXCHARS is the maximum space for
characters, and MAXLINES the maximum number of lines.

114 SOFTWARE TOOLS IN PASCAL CHAPTER 4

{ gtext -- get text lines into linebuf }
function gtext (var linepos : posbuf; var nlines : pos;

var linebuf charbuf; infile : filedesc) : boolean;
var

i, len, nextpos integer;
temp string;
done : boolean;

begin
nlines := 0;
nextpos := 1;
repeat

done := (getline(temp, infile, MAXSTR) false);
if (not done) then begin

nlines := nlines + 1;
linepos[nlines] := nextpos;
len := length(temp);
for i := 1 to len do

linebuf[nextpos+i-1] := temp[i];
linebuf[nextpos+len] := ENDSTR;
nextpos := nextpos + len + 1 {1 for ENDSTR }

end
until (done) or (nextpos >= MAXCHARS-MAXSTR)

or (nlines >= MAXLINES);
gtext .- done

end;

{ ptext -- output text lines from linebuf }
procedure ptext (var linepos : posbuf; nlines : integer;

var linebuf : charbuf; outfile : filedesc);
var

i, j : integer;
begin

for i := 1 to nlines do begin
j := linepos[i];
while (linebuf[j] <> ENDSTR) do begin

putcf(linebuf[j], outfile);
j := j + 1

end
end

end;

Of course we can write and test gtext and ptext independently of what­
ever sorting procedure we use. In fact there need not even be a sort during
testing: a dummy shell that returns without doing anything is enough for veri­
fying that gtext indeed builds arrays that ptext can interpret properly. It is
hard to cope with a single routine of tightly interwoven code. Incremental con­
struction and testing make it easy to test a program whose pieces implement
separate functions and interact only through clear, well-defined interfaces.

Our sort must also be modified to treat comparison and exchange as

CHAPTER 4 SORTING 115

integer;

procedures, called cmp and exchange. (We use cmp instead of compare to
avoid a name used in Chapter 3.) Here is the Shell sort.

{ shell -- ascending Shell sort for lines }
procedure shell (var linepos : posbuf; nlines

var linebuf : charbuf);
var

gap, i, j, jg : integer;
#include "cmp.p"
#include "exchange.p"
begin

gap := nlines div 2;
while (gap> 0) do begin

for i := gap+1 to nlines do begin
j := i-gap;
while (j > 0) do begin

jg := j + gap;
if (cmp(linepos[j],linepos[jg],linebuf)<=O) then

j := 0 {force loop termination}
else

exchange(linepos[j], linepos[jg]);
j := j - gap

end
end;
gap := gap div 2

end
end;

The operator div yields the integer quotient of its operands.
The exchange operation is the easier part: exchange only needs to

exchange the two line positions.

{ exchange -- exchange linebuf[lp1] with linebuf[lp2]
procedure exchange (var lp1, lp2 : charpos);
var

temp: charpos;
begin

temp : = lp1;
lp1 . - lp2;
lp2 := temp

end;

cmp returns a negative value if its first argument is less than its second, zero
if its arguments are equal, and a positive value if the first is greater than the
second.

How do we handle comparisons? The main difficulty is the perennial prob­
lem of the character set being used. Pascal guarantees that digits compare
among themselves the way we expect, and that letters do too, but may be inter­
spersed with other funny characters. It says nothing, however, about how digits
compare with letters, or punctuation with anything else. The whole topic is a

116 SOFTWARE TOOLS IN PASCAL CHAPTER 4

can of worms!
One solution is to provide a two-argument routine lexorder, which returns

the lexical ordering that holds between any pair of characters:

function lexorder (c1, c2 : character) : integer;

returns a negative value if c1<c2, zero if c1=c2, and positive if c1>c2. crop

could then call lexorder when it needs to know the relationship between two
characters. Of course it typically only has to call lexorder once per call of
crop (why?), so this organization is not as expensive as you might think at first.

A second solution, which we will adopt, assumes that the character set is
well-behaved, so that letters, digits and punctuation all sort into a sensible
order. This is true of ASCII and EBCDIC, for instance, even though they sort
somewhat differently.

In some circumstances, more effort may be needed. Each character can be
mapped into its correct place in the ordering immediately upon input. Com­
parisons may then be made directly. The characters are mapped back into
external representation before output. This is a compromise between efficiency
and portability, but if the character set is truly disorderly, it's the cheapest
organization. It's better to map the characters once on input and once on out­
put rather than every time they must be compared.

Here is a version of crop which is appropriate if letters and numbers each
sort in increasing order.

{ cmp -- compare linebuf[i] with linebuf[j] }
function cmp (i, j : charpos; var linebuf : charbuf)

integer;
begin

while (linebuf[i] = linebuf[j])
and (linebuf[i] <> ENDSTR) do begin

i .- i + 1;
j := j + 1

end;
if (linebuf[i] = linebuf[j]) then

cmp := 0
else if (linebuf[i] ENDSTR) then 1st is shorter

cmp := -1
else if (linebuf[j] ENDSTR) then 2nd is shorter

cmp := +1
else if (linebuf[i] < linebuf[j]) then

cmp .- -1
else

cmp .- +1
end;

crop makes no assumptions about the value of ENDSTR. It could be shorter and
faster if ENDSTR were guaranteed to be less than any character.

The procedure organization in sort is such that a knowledgeable user can

CHAPTER 4 SORTING 117

readily provide private versions of crop and exchange for special applications,
while still deriving the benefit of whatever sophistication has gone into the sort­
ing algorithm.

Exercise 4-5. The sorting program has a fair amount of overhead in the inner loop.
Experiment with moving the comparison and exchange into shell. How much
improvement does this make? Make some reasonable assumptions about how often
sort will be used and how big the files will be, then decide if it should be changed. 0

Exercise 4-6. Add an option to sort to allow the direction of sorting to be reversed:

sort -r

sorts into decreasing order instead of ascending. Where should the direction-changing
code go - in cmp, in shell, in ptext, or somewhere else? 0

4.4 Quicksort

One of the best sorting algorithms known is quicksort, invented by C. A. R.
Hoare. Although in the worst case its running time can be proportional to n2 ,

quicksort can be arranged so the worst case rarely occurs, and its average run­
ning time is n logn .

Quicksort is best described as a recursive procedure. The essential idea is to
partition the original set to be sorted by rearranging it into two groups - all
those elements less than some arbitrary value chosen from the set, and all those
greater than or equal to the value. Then the same partitioning process is
applied to the two subsets in tum until each subset contains only one element.
When all subsets have been partitioned, the original set is sorted.

procedure quick(v, i, j)
if (i < j)

partition the elements v[i] ... v[j] so that
v[i], v[i+1] ... v[k-1] <= v[k] <= v[k+1] ... v[j]

where i <= k <= j
quick(v, i, k-1)
quick(v, k+1, j)

To sort an array v, just say

quick(v, 1, n)

and stand well back. You should go through a few small test cases by hand to
be sure you understand the basic flow of control, before reading on into the
details.

The heart of the algorithm is "partition the elements so that" The
recursive algorithm does not make any copies of the original array v; all work is
done by passing indices to indicate what range of v is to be rearranged at a par­
ticular step. This means that the only extra storage needed by quicksort is space
for the stack of array limits describing subsets not yet partitioned. It is easy to
show that if at each stage quicksort deals with the shorter subset before the

118 SOFTWARE TOOLS IN PASCAL CHAPTER 4

longer, the stack never gets deeper than lo~n. Even for n equal to a million,
lo~n is only 20, so this extra space requirement is insignificant.

Recursive algorithms are sometimes less efficient than equivalent iterative
ones, often because of procedure call overhead, but for quicksort it's not a signi­
ficant effect - the recursion is not in the innermost loop. Some of the exer­
cises deal with efficiency questions once the basic algorithm is in hand.

Partitioning is the important step. Suppose the current limits in the array
are 10 and hi. We select a "pivot" element pivline arbitrarily - the last
element in the set, v [hi] - and rearrange all lines with respect to the pivot
value. The elements are rearranged entirely within the subset of v between 10
and hi.

i := 10
j := hi
pivline := last line, i.e., line[hi]
repeat

increase i until i >= j or line[i] > pivline
decrease j until j <= i or line[j] < pivline
{ at this point, either i and j have met }
{ or we have an out-of-order pair }
if (i < j) {exchange out-of-order pair

exchange line[i] and line[j]
until (i >= j)
{ move the pivot element pivline to the 'middle' }
exchange line[i] and line[hi]

We can now put the pieces together for the final version of quicksort, pro­
cedure quick:

{ quick -- quicksort for lines }
procedure quick (var linepos : posbuf; nlines pos;

var linebuf : charbuf);
#include "rquick.p"
begin

rquick(1, nlines)
end;

The real work is done in rquick:

CHAPTER 4

{ rquick -- recursive quicksort }
procedure rquick (10, hi: integer);
var

SORTING 119

i, j : integer;
pivline : charpos;

begin
if (10 < hi) then begin

i : = 10;
j : = hi;
pivline := linepos[j]; {pivot line}
repeat

while (i < j)
and (cmp(linepos[i],pivline,linebuf) <= 0) do

i := i + 1;
while (j > i)

and (cmp(linepos[j],pivline,linebuf) >= 0) do
j := j - 1;

if (i < j) then { out of order pair
exchange(linepos[i], linepos[j])

until (i >= j);
exchange(linepos[i], linepos[hi]); { move pivot to i
if (i - 10 < hi - i) then begin

rquick(lo, i-1);
rquick(i+1, hi)

end
else begin

rquick(i+1, hi);
rquick(lo, i-1)

end
end

end;

Like most sorting algorithms, quicksort has many variations. We can only
suggest a few here; the bibliography at the end of the chapter indicates others.

As presented, quick does not use the fact that there may be several ele­
ments all equal to the pivot. If all such elements are brought together at one
partitioning, no further partitions need involve them. The "fat pivot" algorithm
returns two values k 1 and k2 from the partitioning, such that

v[lo] ... v[k1-1] < v[k1] = ... = v[k2] < v[k2+1] ... v[hi]

and successive partitions are done on the subsets

10 ... k1-1 and k2+1 ... hi

This organization is faster for sorting data like word lists, which frequently con­
tain many duplicate entries.

Exercise 4-7. Experiment with a fat pivot algorithm. How much faster is it on files with
significant duplication? How much slower is it than a regular quicksort on files with lit­
tle or no duplication? 0

120 SOFTWARE TOOLS IN PASCAL CHAPTER 4

Exercise 4-8. Write a non-recursive version of quicksort and contrast its speed with the
recursi ve one. 0

Exercise 4-9. If an array is already sorted in either order, pivoting on the end element is
a bad thing to do: it converts the algorithm into an n2 procedure. (Why?) One solution
is to pivot on the middle element of a set instead. More complicated but more effective
is to pivot on the median of three or more elements. Investigate these variations. 0

Exercise 4-10. Our quicksort may make more comparisons and exchanges than are abso­
lutely necessary. Find a version that cuts down on the number of comparisons between
actual lines, even at the expense of doing more of other bookkeeping operations, and see
how much difference this makes. 0

Exercise 4-11. When the number of elements in a partition is small, it may be faster to
sort them with a bubble sort because it has lower overhead. Experiment to see how large
the effect is. 0

4.5 Sorting Big Files

"Big" means more data than will fit in memory all at once; this is where life
gets complicated. This kind of sorting is often called external sorting, because
some of the data has to reside on temporary intermediate files. What we did in
the previous section is by contrast internal sorting.

As with internal sorting, there is an astonishing variety of external sorting
methods to choose from. The central idea of most is simple: chunks of the
input (as big as possible) are sorted internally and copied onto intermediate
files; each chunk is called a run. When the entire input has been split into
sorted runs, the runs are merged, typically onto further intermediate files.
Eventually all the data winds up merged on one file; this final run is the sorted
output.

Not all operating systems let you create an arbitrary number of files, which
is implied by this approach, so it may be necessary to add the complexity of
managing a limited number of intermediates. Even if you can have lots of
intermediate files, however, merging from a large number of sources has to be
properly organized or it becomes too slow. (Consider the extreme case: if each
file contains only one line of the original input, how long would merging take,
as a function of the number of lines?)

One of the clearest sorting procedures is to place each run on a separate file,
until the input is exhausted. Then the first m files are merged onto a new file,
and the m files removed. (m is a parameter, typically between 3 and 7, called
the merge order). This process is repeated with the next m files until there is
only one file left, which is the sorted output. This procedure never has to deal
with more than m merge files plus one output file at a time.

The main routine of the next version of sort implements this strategy.
Most of it is concerned with creating, opening, closing and removing files at the
right times.

CHAPTER 4 SORTING 121

maximum # of text characters
maximum # of lines }

{ sort -- external sort of text lines }
procedure sort;
const

MAXCHARS = 10000;
MAXLINES = 300;
MERGEORDER = 5;

type
charpos = 1 .. MAXCHARS;
charbuf = array [1 .. MAXCHARS] of character;
posbuf = array [1 .. MAXLINES] of charpos;
pos = O.. MAXLINES;
fdbuf = array [1 .. MERGEORDER] of filedesc;

var
linebuf : charbuf;
linepos : posbuf;
nlines : pos;
infile : fdbuf;
outfile : filedesc;
high, low, lim : integer;
done : boolean;
name : string;

#include "sortproc.p"
begin

high := 0;
repeat {initial formation of runs }

done := gtext(linepos, nlines, linebuf, STDIN);
quick(linepos, nlines, linebuf);
high := high + 1;
outfile := makefile(high);
ptext(linepos, nlines, linebuf, outfile);
close(outfile)

until (done);
low := 1;
while (low < high) do begin { merge runs

lim := min(low+MERGEORDER-1, high);
gopen(infile, low, lim);
high := high + 1;
outfile := makefile(high);
merge(infile, lim-low+1, outfile);
close(outfile);
gremove(infile, low, lim);
low := low + MERGEORDER

end;
gname(high, name); {final cleanup
outfile := open(name, IOREAD);
fcopy(outfile, STDOUT);
close(outfile);
remove(name)

end;

122 SOFIWARE TOOLS IN PASCAL CHAPTER 4

The merge phase of sort uses two indices, low and high, to indicate the
range of files still active. high is incremented by 1, MERGEORDER files starting
at low are merged onto file high, then low is incremented by MERGEORDER.
When low catches up to high, the merging is finished, so the single run on the
last file is copied onto the final output.

We have already seen gtext, ptext, and quick earlier in this chapter,
and fcopy, which copies one file to another, is from Chapter 3. sortproc
includes all the procedures needed by sort:

{ sortproc -- procedures for sort }
#include "cmp.p"
#include "exchange.p"
#include "gtext.p"
#include "ptext.p"
#include "quick.p"
#include "gname.p"
#include "makefile.p"
#include "gopen.p"
#include "merge.p"
#include "gremove.p"

Within the main routine, files are referred to by a number corresponding to
their order of creation. makefile creates a new temporary file for a given
number, using gname to convert the number into a unique, systematic name.

{ makefile -- make new file for number n }
function makefile (n : integer) : filedesc;
var

name : string;
begin

gname(n, name);
makefile := mustcreate(name, IOWRITE)

end;

gname copies a standard prefix (stemp) into name, then appends n as a char­
acter string. Thus the temporary files used by sort are called stemp 1,
stemp2, and so on.

CHAfYfER 4 SORTING 123

{ gname -- generate unique name for file id n }
procedure gname (n : integer; var name: string);
var

junk : integer;
begin

{ setstring(name, 'stemp');
name [1] . - ord (, s') ;
name [2] . - ord (, t ') ;
name [3] . - ord (, e') ;
name [4] . - ord (, m') ;
name [5] . - ord (, p') ;
name[6] .- ENDSTR;

junk := itoc(n, name, length(name)+1)
end;

gopen and gremove open and remove consecutively numbered sets of files.
They both regenerate the file names rather than carry them around.

{ gopen -- open group of files f1 ... f2 }
procedure gopen (var infile : fdbuf; f1, f2 : integer);
var

name : string;
i : 1 .. MERGEORDER;

begin
for i := 1 to f2-f1+1 do begin

gname(f1+i-1, name);
infile[i] := mustopen(name, IOREAD)

end
end;

{ gremove -- remove group of files f1 ... f2 }
procedure gremove (var infile : fdbuf; f1, f2 : integer);
var

name : string;
i : 1 .. MERGEORDER;

begin
for i := 1 to f2-f1+1 do begin

close(infile[i]);
gname(f1+i-1, name);
remove(name)

end
end;

At any given time there are no more than MERGEORDER input files and one
output file open, although there may be other temporary files created but not
open. sort assumes that files can be created dynamically and made as large as
necessary while the input is being read, although on some systems you may in
fact have to specify size limits for these files. In any case, it is critically impor­
tant that the files come and go without the knowledge of the user. Few things

124 SOFTWARE TOOLS IN PASCAL CHAPTER 4

put people off so fast as having to provide a collection of scratch files with myst­
ical parameters for what should be a simple process.

merge is now the only unspecified code. In principle its task is easy. Since
the input files are sorted, the first line on each file is the smallest. merge
selects the smallest of these, which is necessarily the smallest line in the entire
group, and copies it to the output. The next line from that file replaces the line
that went out, and a fresh smallest one is identified. When ENDFILE is
encountered on a file, the corresponding run is finished. When the run on each
file is finished, merge is done.

The main question is how to efficiently select the smallest line each time.
The obvious method, linearly searching the MERGEORDER lines currently avail­
able, is acceptable if MERGEORDER is small, but we can do better with a better
algorithm and data structure.

One of the best is to arrange the lines as a heap. A heap has two desirable
properties: its smallest entry can be found immediately, and a new element can
be put into the proper position in a heap in a time that grows only logarithmi­
cally with the heap size. You can imagine a heap as a binary tree (that is, each
element has at most two descendants) in which each element is less than or
equal to its children. From a programming standpoint, it is easier to represent
a heap as an array h such that the children of element k are stored at positions
2k and 2k+ 1. Then h[1] is less than or equal to h[2] and h[3]; h[2] is
less than or equal to h [4] and h [5 I, and in general, h [k] is less than or
equal to h [2k] and h [2k+ 1]. h [1] is the smallest thing in the heap.

With a heap, the merging process is as follows.

read one line from each file
form a heap
while (there's still input)

output smallest line, heap[1]
get a new line into heap[1] from same file
reheap: move new line into its proper place in the heap

The smallest line is in the first position. That element is output, a new one is
read in to take its place from the file whose line was just output (why?), and
the new element is moved to its proper place in the heap ("reheaping"). The
initial heap can be formed by using quick to sort the lines, since a sorted array
is a heap (why?) although the converse is not true (why?). True, sorting does a
bit more work than necessary, but the difference will be imperceptible. Why
write extra code?

CHAPTER 4 SORTING 125

{ merge -- merge infile[1] ... infile[nf] onto outfile
procedure merge (var infile : fdbuf; nf : integer;

outfile : filedesc);
var

i, j : integer;
lbp : charpos;
temp : string;

#include "reheap.p"
#include "sccopy.p"
#include "cscopy.p"
begin

j : = 0;
for i := 1 to nf do { get one line from each file}

if (getline(temp, infile[i], MAXSTR» then begin
lbp := (i-1)*MAXSTR + 1; { room for longest}
sccopy(temp, linebuf, lbp);
linepos[i] .- lbp;
j .- j + 1

end;
nf := j;
quick(linepos, nf, linebuf); { make initial heap}
while (nf > 0) do begin

lbp : = linepos [1] ; {lowest line }
cscopy(linebuf, lbp, temp);
putstr(temp, outfile);
i := lbp div MAXSTR + 1; {compute file index}
if (getline(temp, infile[i], MAXSTR» then

sccopy(temp, linebuf, lbp)
else begin {one less input file

linepos[1] .- linepos[nf];
nf := nf - 1

end;
reheap(linepos, nf, linebuf)

end
end;

To avoid complicated storage management, merge reserves space for the long­
est possible line in each slot. This makes it easy to decide which file is associ­
ated with a particular line, by dividing the line origin by the maximum line size.

merge also calls upon two general-purpose string copying routines that are
useful for manipulating the variable-length lines used in sort. sccopy copies
a string into a charbuf; cscopy does the opposite.

126 SOFTWARE TOOLS IN PASCAL

{ sccopy -- copy string s to cb[i] ... }
procedure sccopy (var s string; var cb

i : charpos);
var

j integer;
begin

j : = 1;
while (s[j] <> ENDSTR) do begin

cb [i] : = s [j] ;

j .- j + 1;
i .- i + 1

end;
cb I i] . - ENDSTR

end;

CHAPTER 4

charbuf;

{ cscopy -- copy cb[i] ... to string s
procedure cscopy (var cb : charbuf; i

var s : string);
var

j integer;
begin

j : = 1;
while (cb[i] <> ENDSTR) do begin

s [j] : = cb [i] ;

i .- i + 1;
j := j + 1

end;
s[j] := ENDSTR

end;

charpos;

Reheaping compares the top element to its children. If the element is less
than or equal to both, it is in its proper position and the job is done. If not,
then the element is exchanged with the smaller of its children, and the process
repeated at the next level of the tree, i.e., by comparing the element with its
children in its new position. Eventually the element percolates through the tree
to the place where it belongs.

It is easy to show that the reheaping time _ is proportional to
10g(MERGEORDER), while a linear search naturally takes time linearly propor­
tional to MERGEORDER. The heap procedure is only a few more lines of code
than the linear version and should be faster for typical values of MERGEORDER.

CHAPTER 4 SORTING 127

{ reheap -- put linebuf[linepos[1]] in proper place in heap}
procedure reheap (var linepos : posbuf; nf : pos;

var linebuf : charbuf);
var

i, j : integer;
begin

i : = 1;
j := 2 * i;
while (j <= nf) do begin

if (j < nf) then {find smaller child}
if (cmp(linepos[j],linepos[j+1],linebuf»O) then

j := j + 1;
if (cmp(linepos[i], linepos[j], linebuf)<=O) then

i := nf { proper position found; terminate loop
else

exchange(linepos[i], linepos[j]); {percolate
i . - j;

j .- 2 * i
end

end;

Notice that quick, merge and reheap all work properly if called with no
data items. This is because all of the loops in the code test at the top instead of
the bottom. It is a good omen for the overall reliability of a program when its
boundaries are reliable without special attention.

You should also glance back over the organization of sort and observe the
way in which it is broken into modules. The sort, the merge, the compare, the
input and the output can each be replaced separately without upsetting the rest
of the program.

We are now in a position to specify the manual page for sort:

PROGRAM
sort sort text lines

USAGE
sort

FUNCTION
sort sorts its input into ascending lexicographic order. Two lines are in order if they are
identical or if the leftmost character position in which they differ contains characters which
are in order, using the internal numeric representation of the characters. U a line is a proper
prefix of another line, it precedes that line in sort order.
sort writes intermediate data to files named stemp#, where # is a small decimal digit
string; these filenames should be avoided.

EXAMPLE
To print the sorted output of a program:

program l sort l print

Exercise 4-12. How much intermediate file space is needed all at once to sort input con­
taining n characters? 0

128 SOFTWARE TOOLS IN PASCAL CHAPTER 4

4.6 Improvements

Once the basic version works, we can make sort faster and we can make it
do more things. Since this is a book about tools, not algorithms, we are more
interested in functional enhancements, but let us first mention some efficiency
considerations.

We measured sort on several different inputs. We set limits of 10,000
characters in linebuf and 300 lines in linepos. For the first three tests, the
merge order was 3.

The first test was 298 lines (6640 characters) of Pascal source code, which all
fits in memory, so only one temporary file was created. This took 4.7 seconds
(on a VAX 11/780), of which input was 39.6 percent, output 30.6 percent, cmp
10.8 percent, rquick 4.9 percent, ptext 3.8 percent, fcopy 3.5 percent, and
gtext 2.1 percent.

The second test was 890 lines (19 ,240 characters) of Pascal. This was sorted
into three initial runs, then merged in a single pass. Run time was 19.3
seconds, with input 36.5 percent, output 34.1 percent, crop 10.1 percent,
rquick 2.6 percent, scopy and cscopy together 4.5 percent, gtext and
ptext 3.7 percent, fcopy 1.8 percent, reheap 1.1 percent, and merge 0.6
percent.

The third test was a text file of 2170 lines and 53,000 characters, which
required 71 seconds to sort. It created eight initial runs, merged these onto
three more, then merged those onto a final one. Again, input dominated, with
42.8 percent, output 32.9 percent, cmp 7.5 percent (smaller this time), sccopy
and cscopy each 3.2 percent, and so on.

The final test was to repeat the third test with the merge order set to 5.
This created eight initial runs, then merged them onto two more which were
merged. This took 63 seconds, somewhat less. Input was 40.4 percent, output
32.9 percent, cmp 9.7 percent. Merging and reheaping was less than 2 percent.

The input times are inflated on this system since input buffer sizes are small,
so these times could be improved somewhat. Nevertheless, for any likely
improvement, 110 will still dominate. Since you can't avoid copying the data in
and out, you have to find an algorithm that reduces intermediate 110.

Exercise 4-13. When there are at most MERGEORDER intermediate files left, one com­
plete pass over the data can be avoided by merging directly onto the final output file
instead of onto an intermediate file. And as a special case, if the original input fits
entirely into memory, there is no need for any merging or any intermediate files.
Modify sort to handle these situations efficiently. According to the measurements
above, how much faster will these changes make sort? 0

The running time of sort is strongly affected by the number of passes made
over the input data, which in turn depends on the length of the runs created in
the initial pass. You can always get longer runs with more memory, but you
can't always get more memory.

A particularly elegant way to create long initial runs is "replacement

CHAPTER 4 SORTING 129

selection." A memory-load is sorted as before. But then, as ptext outputs a
line, a fresh line is immediately read in to replace it. If this fresh line is greater
than or equal to the line that it replaced it can form part of the run that is
currently going out! If it's smaller, it can't go out in this run and must be held
until the next one.

The payoff from this organization is significant. For files with random con­
tents, it turns out that the expected run length is twice the memory size, so we
can save one full pass over the data. And of course the effect is even stronger
on files that are already partly sorted.

Replacement selection needs careful storage management if the lines are not
all the same length. It also requires an algorithm for quickly finding the right
position for a replacement among the already-sorted elements in memory. It is
too slow to search through all the current lines to find the right place. The
solution is to use a data structure like a heap, where the right position can be
found in logarithmic time instead of linear. We will not go into this here; the
topic is discussed in considerable detail in Knuth's The Art of Computer Pro­
gramming; Volume 3: Sorting and Searching.

What can you do if your system won't let you create a lot of files? One
method of getting by with a few files is the "balanced two-way merge." Suppose
you are allowed four intermediates. During the first phase runs are placed
alternately on files 1 and 2 until the input is exhausted. Then the runs on files
1 and 2 are merged, with the output runs (half as many, each twice as big)
going alternately onto files 3 and 4. Then the runs on 3 and 4 are merged back
onto 1 and 2, making runs of length four times the original. The process con­
tinues until all the data is merged onto one completely sorted file which can
then be copied to the output. Since the length of the runs is doubled on each
pass and the number of runs cut by a factor of two, there are flo~r1 passes
made, where r is the number of runs created in the initial phase.

The balanced two-way merge can be generalized to any number (3 or more)
of intermediate files. The available files are divided into two groups as nearly
equally as possible and merging is done back and forth between the two groups.
Exercise 4-14. Implement a balanced two-way merge sort. The main complication you
will have to worry about is keeping track of the end of each run on each file. Compare
the complexity and the running time of the balanced merge program with sort. 0

Exercise 4-15. By default, sort reads from the standard input. Modify sort so that if
it is called with filename arguments, it will instead take its input from the named files:

sort file J file2 ...

will sort the data on the files named. Reading either from a set of named files, or from
the standard input if none are named, is an exceedingly useful design for many programs;
you should always consider it. 0

Exercise 4-16. Add an option to let the output file be specified by name, instead of just
the standard output. Ensure that the output can be the same as one of the inputs. Do
you want the final merge done directly onto it? 0

130 SOFIWARE TOOLS IN PASCAL CHAPTER 4

Exercise 4-17. Add an option -m to merge already-sorted files:

sort -m file J file2 ...

merges the data (presumed sorted) on the files onto the standard output. The command

sort -m

without file names is silly. Does your version do something intelligent anyway? 0

Exercise 4-18. Provide a sort option -r to reverse the direction of sorting. If you did
the earlier exercise on this topic, did you have to change your decision about where to
put the direction-changing code? 0

Exercise 4-19. Add a -d option so sort sorts by dictionary order: upper and lower case
letters should sort together, so that 'a' and 'A' appear together, not separated by an
entire case of the alphabet. Is it sufficient to define a <A<b<B ••• ? Should dictionary
order be the default behavior? What should be done about special characters like
periods, commas, and so on? What about digits? 0

Exercise 4-20. Add the -n option: an initial numeric string with optional sign is sorted
by arithmetic value while the rest of the line is sorted normally. All-numeric lines are a
special case of this kind of input. Does your routine work regardless of the size of the
numbers? Does the -n option work in conjunction with -r? 0

Exercise 4-21. Add options so sorting can be done on fields within lines. You will need
a way to specify the beginning and end of each field, and you will probably also want to
allow fields to be independently numeric, dictionary order, reversed, etc. The challenge
here is not so much the bookkeeping needed to make the program work as it is designing
the options so they are easy for users to specify. Remember that specifying a field by
character position is hard to do, particularly if the input doesn't come in neat columns.
o

By now you are near the complexity provided by some commercial sort pack­
ages, but at least you got there in modest increments, and you always had a
useful tool at each step. By default, though, sort still puts text lines into
order, taking its input from the standard input and writing on the standard out­
put. It is still an easy-to-use service for people who just want to sort text. The
most frequent and easy operations should be easy to remember and to specify;
you shouldn't always need a reference manual.

Exercise 4-22. Some systems provide a powerful but complicated sort generator that
creates efficient sorts for big production jobs. If your system has one of these, design
and implement a language that makes it easier for casual users to create the sorting pro­
cess they want. 0

4.7 Separation of Function: unique

One common reason for sorting is to bring together all occurrences of a par­
ticular item so they can be treated as a group. Sometimes this is done just to
discard all but one occurrence in a group, for instance to make a list of all the
words in a document. It's certainly easy to add an option to sort which dis­
cards multiple occurrences of an input line. (Where should this code be

CHAPfER4 SORTING 131

inserted?) But should this code be part of sort at all?
This question touches on an area of fundamental importance in designing

good tools - proper separation of function. What should be included in a pro­
gram? What should be a separate program? It happens to be more efficient to
put this particular function into the sort program - we can save a pass over the
data. More important, the decision whether two lines are the same depends on
the comparison function being used, which is of course determined by the sort­
ing options specified. If sorting and casting out duplicates are combined, we are
assured that the comparison is done consistently and efficiently.

Why should there be two separate programs when a single slightly more
complicated one will do? One good reason is that someone might want one
function without the other. By separating the function of stripping duplicates
from that of sorting, we can do things that are not possible when they are com­
bined. You might really like to know which lines are not duplicated, or which
lines are duplicated, or you might like to count adjacent duplicates. If sorting,
duplicate-stripping and counting are all combined, the sort program is more
complicated; and of course it's conceivable that you don't want the input sorted
before you strip the duplicates!

Combining functions too early is a mistake. In its early stages, at least, a
program should implement a single function. Sure, it may eventually have lots
of options, but the things it does should be closely related. Then when users
come along with new ways to combine programs, you will not have precluded
some useful operation by your assumptions about what they are likely to do.
Our own experience is instructive here. For years, sorting and duplicate strip­
ping were separate programs. Finally efficiency began to be a major factor, and
they were integrated: an option was added to sort which specifies the stripping
of adjacent duplicates (although of course the old duplicate-stripper remained
available and often used). But no one knew at the start that this was a good
combination. The lesson: keep functions separate until you know how to com­
bine them.

Here is unique, for stripping adjacent duplicates. It is most often used
with sort, but is sufficiently useful in its own right to be worth a separate pro­
gram.

132 SOFTWARE TOOLS IN PASCAL CHAPTER 4

{ unique -- remove adjacent duplicate lines }
procedure unique;
var

do
then begin

array [0 .. 1] of string;
O•• 1;

buf
cur

begin
cur := 1;
buf[1-cur][1] := ENDSTR;
while (getline(buf[cur], STDIN, MAXSTR))

if (not equal(buf[cur], buf[1-cur]))
putstr(buf[cur] , STDOUT);
cur := 1 - cur

end
end;

Note that we use the same sort of trickery, treating indices as pointers, as in
sort.

PROGRAM
unique delete adjacent duplicate lines

USAGE
unique

FUNCTION
unique writes to its output only the first line from each group of adjacent identical input
lines. It is most useful for text that has been sorted to bring identical lines together; in this
case it passes through only unique instances of input lines.

EXAMPLE
To eliminate duplicate lines in the output of a program:

program I sort I unique

Exercise 4-23. What are boundaries that should be tested to be confident that unique
works correctly? 0

Exercise 4-24. Our version of unique uses a variable to distinguish which buffer holds
the current input line. Rewrite it so that the flow of control makes this distinction.
Rewrite it to simply copy a line from one buffer into the other whenever a comparison
fails. Which of the three versions do you prefer? 0

Exercise 4-25. Add the option -n to unique, to prefix each line with the number of
occurrences of the line in the original input. The command

unique -n

with the input

a
a
b

produces

CHAPTER 4

2 a
1 b

SORTING 133

Is it better if the count precedes or follows the line? Add an option to print only one
instance of only the replicated lines. 0

Exercise 4-26. Combine transli t, sort, and unique (with the -n option) into a
pipeline that produces a word frequency list for a document, sorted into order of decreas­
ing frequency. What happens to empty input lines? 0

Exercise 4-27. Combine translit, sort (with the -d option) and unique into a
pipeline that checks a program for occurrences of names in both upper and lower case,
like SIZE and size. 0

Exercise 4-28. Write the program common, for comparing lines in two sorted text files.

common file 1 file2

produces a three-column output: lines which appear only in file 1, lines only in file2, and
lines in both files. common allows the optional arguments - 1, - 2, and - 3, which
specify the printing of only the corresponding column. Thus

common - 3 file 1 file2

prints only the lines common to both files, and

common - 1 file 1 file2

prints lines which are in the first file but not in the second. If there is only one file argu­
ment, file2 refers to the standard input. 0

What good is common? Suppose we have available a dictionary of English.
Then consider this pipeline:

concat file 1 file2 file3 ...
translit A-Z a-z :

translit A a - z @n :

sort :
unique :

common -2 dictionary

This collects a set of files together (concat), converts them to a single case
(translit), discards punctuation and spaces and puts each word on a line by
itself (translit), sorts them (sort), casts out duplicates (unique), and then
selects those words which appear in the original files but not in the dictionary
(common).

What's a word that appears in a document but not in a dictionary? Right­
it's a plausible contender for being a spelling mistake. This pipeline is a first
draft of a program for finding spelling mistakes. It won't do a perfect job by
any means, but on the other hand it can be made out of spare parts in a few
minutes, and it forms an excellent base for a more sophisticated process.
Exercise 4-29. What improvements would you make to the spelling-mistake finder?
What experiments would you perform before undertaking "improvements"? 0

134 SOFIWARE TOOLS IN PASCAL CHAPTER 4

Exercise 4-30. The output from the spelling mistake finder often consists mostly of
technical jargon like byte and t.ransli t, and proper names like Knuth and Wirth.
Once you have eliminated the true errors from this output, you now have a glossary of
special words for a document. How would you modify the pipeline to eliminate glossary
words from subsequent checks for spelling errors? 0

4.8 Permuted Index

Once a flexible sorting program is available, other programs can use it as a
component. In this section we will describe one such application, a program for
creating a permuted index (often called a keyword-in-context or "KWIC" index).
A permuted index lists each word (or some similar useful token) in its original
context, but sorted by word and rearranged so the keywords line up. For exam­
ple, this sentence would produce this output:

output:

this output:

For example, this sentence would produce this

For example, this sentence would produce

sentence would produce this output: For example, this

example, this sentence would produce this output: For

For example, this sentence would produce this output:

this sentence would produce this output: For example,

For example, this sentence would produce this output:

For example. this sentence would produce th1s output:

One program organization is like this.

for each input line
for each token in the line

rotate line so token is at front
output onto temporary file

sort temporary file
for each line in temporary file

re-rotate first token to center
print line

'Ibis process can be viewed as a pipeline of three independent programs:

create rotations : sort : unrotate and print

but how it should be implemented on any particular system depends on what
mechanisms are available. The advantage of a pipeline is that we already have
sort nicely packaged, and the other two pieces are easy.

A second way to write kwic is to invoke sort as a self-contained program
from within a program that does the rotating and unrotating with normal pro­
cedure calls. This method assumes that the operating system provides a way to
run any program from within a running program, and regain control when it is
done. We can indicate the structure as

CHAPTER 4

do rotations onto temp1
run("sort <temp1 >temp2")
unrotate from temp2
remove temp1 and temp2

SORTING 135

sort remains a black box, yet the overall process is effectively confined to one
program.

However the program is eventually organized, it is important to observe that
the original design should always be like this. We want to keep the pieces of
the solution as uncoupled as possible, no matter what, so we pretend from the
start that the most restrictive implementation possible (such as a pipeline) will
be the one chosen. That way, we are less likely to let our guard down and
admit sneak paths for communication between modules. Decisions about actual
packaging should be made as late as possible, to maximize alternatives.

We leave the particular organization up to you, and show the routines for
rotating and unrotating, written for use in a pipeline. Here is the driver for the
rotation part.

{ kwic -- make keyword in context index }
procedure kwic;
const

FOLD = DOLLAR;
var

buf : string;
#include "putrot.p"
begin

while (getline(buf, STDIN, MAXSTR» do
putrot(buf)

end;

The work is done in putrot, which finds the keywords in each line. A
keyword is a string of letters or digits, but excludes punctuation like
parentheses, commas and so on. These must be excluded so that words which
appear adjacent to them will be properly lined up in columns when the output is
printed. putrot finds the beginning of each token, that is, the first
alphanumeric character, and calls rotate to output a line with that character
rotated to the front.

136 SOFTWARE TOOLS IN PASCAL

{ putrot -- create lines with keyword at front }
procedure putrot (var buf : string);
var

CHAPTER 4

i : integer;
#include " r otate.p"
begin

i : = 1;
while (buf[i] <> NEWLINE) and (buf[i] <> ENDSTR) do begin

if (isalphanurn(buf[i])) then begin
rotate(buf, i); { token starts at "i" }
repeat

i := i + 1
until (not isalphanum(buf[i]))

end;
i := i + 1

end
end;

{ rotate -- output rotated line }
procedure rotate (var buf : string; n
var

integer) ;

i : integer;
begin

i : = n;
while (buf[i] <> NEWLINE) and (buf[i] <> ENDSTR) do begin

putc(buf[i]);
i := i + 1

end;
putc(FOLD) ;
for i := 1 to n-1 do

putc(buf[i]);
putc(NEWLINE)

end;

rotate marks the end of the original line (the place where the line has been
folded) by adding a FOLD character - some character unlikely to occur in nor­
mal text. FOLD will be used by the unrotating program to position the per­
muted lines correctly. Thus if we use $ as the fold character, the input line

now is the time

will yield the four output lines

now is the time$
is the time$now
the time$now is
time$now is the

We wrote isalphanum for Chapter 2.

CHAPTER 4 SORTING 137

PROGRAM
kwic produce lines for KWIC index

USAGE
kwic

FUNCTION
kwic writes one or more "folded" versions of each input line to its output. A line is
"folded" at the beginning of each alphanumeric string within the line by writing from that
string through the end of the line, followed by the fold character $, followed by the begin­
ning of the line.
kwic is used with sort and unrotate to produce a KeyWord In Context, or KWIC,
index.

EXAMPLE
ltwic
This is a test.
This is a test.$
is a test.$This

a test.$This is
test.$This is a

Normal usage is
ltwic <document I sort unrotate

The other end of the pipeline is unrotate, which unrotates and prints the
rotated lines, lined up on column MIDDLE. It copies the second half of the line,
beginning at position MIDDLE-1 and working backwards, wrapping around at
the beginning if necessary. It then copies the first half of the line, working for­
ward from MIDDLE+ 1. Finally it deletes trailing blanks.

138 SOFTWARE TOOLS IN PASCAL

{ unrotate -- unrotate lines rotated by kwic }
procedure unrotate;
const

MAXOUT = 80;
MIDDLE = 40;
FOLD = DOLLAR;

var

CHAPTER 4

inbuf, outbuf : string;
i, j, f : integer;

begin
while (getline(inbuf, STDIN, MAXSTR» do begin

for i := 1 to MAXOUT-1 do
outbuf[i] := BLANK;

f := index(inbuf, FOLD);
j := MIDDLE - 1;
for i := length(inbuf)-1 downto f+1 do begin

outbuf[j] := inbuf[i];
j := j - 1;
if (j <= 0) then

j := MAXOUT -
end;
j := MIDDLE + 1;
for i := 1 to f-1 do begin

outbuf[j] := inbuf[i];
j .- j mod (MAXOUT-1) +

end;
for j .- 1 to MAXOUT-1 do

if (outbuf[j] <> BLANK) then
i : = j;

outbuf[i+1] := ENDSTR;
putstr(outbuf, STDOUT);
putc(NEWLINE)

end
end;

index is from Chapter 2; it returns the index of a character in a string.
unrotate stays sane even on input that has no FOLD character, because
index returns zero when it finds no match. This is another example of defen­
sive programming - writing the program so it can cope with small disasters.
Of course disasters come in many sizes, and you should avoid paranoia, but in
this specific instance the insurance is cheap.

CHAPTER 4

PROGRAM
unrotate format lines for KWIC index

USAGE

SORTING 139

unrotate
FUNCTION

unrotate reads its input a line at a time and writes an "unfolded" version to its output. A
line is "folded" if it contains within it an instance of the fold character s: "unfolding"
involves writing from the end of the line down to but not including the fold character, start­
ing in column 39 of the output line, wrapping characters that would thus appear before
column 1 around to the end of the line, then writing the remainder of the line starting at
column 41 and wrapping around at column 80 if necessary.
unrotate is used with kwic and sort to produce a KeyWord In Context, or KWIC,
index.

EXAMPLE
unrotate
a test.$This is
is a test.$This
test.$This is a
This 1S a test.$
<ENDFILE>

This is a test.
This is a test.

This is a test.
test. Th~s is a

Exercise 4-31. kwic and unrotate don't properly handle text containing tabs or back­
spaces. They also ignore the possibility that the text contains FOLD characters. Fix
them. 0

Exercise 4-32. Modify kwic so it will not split a word on output. 0

Exercise 4-33. You will quickly find that you don't want words like a, the, and, oj, and
so on in your index. Conversely you might want lists that contain only certain words.
Add the capability to specify either an "omit" file (words that are not to be indexed) or
an "include" file (words to be indexed). Chapter 8 discusses some table handling pro­
cedures. 0

Exercise 4-34. Modify kwi c to handle multiple files as an alternative to the standard
input, just as print does. In a large document consisting of several input files, it is use­
ful to know precisely where in the input a particular line was found. Add an option -t
to tag output lines with some identification of their source position, like file name and
line number. Should this be the default mode? 0

Exercise 4-35. One use we have made of our kwi c program is as a quick (and dirty)
way to check that all variables in our Pascal programs were used as well as declared.
This still requires manual effort, however, and so is not as good a solution as it could be.
If your compiler doesn't do it for you, build a program that checks your programs to see
that there are no unused variables. 0

Exercise 4-36. Build a program that forms a cross-reference listing of a document (the
document often, though not always, being a program). That is, for each token, list the
numbers of all lines that contain that token. 0

140 SOFIWARE TOOLS IN PASCAL CHAPTER 4

Bibliographic Notes

"[he standard reference on internal and external sorting is D. E. Knuth's The
.4rt of Computer Programming; Volume 3: Sorting and Searching (Addison­
Wesley, 1973). This contains precise descriptions and detailed analyses of a
wide variety of sorting methods. Another source for internal sorting methods is
R. P. Rich, Internal Sorting Methods Illustrated With PL/I Programs (Prentice­
Hall, 1972), which contains actual PUI programs, and extensive run time and
space measurements.

Our quicksort was contributed by M. D. McIlroy. Other variants of quick­
sort are discussed in an article by R. Loeser, "Some performance tests of quick­
sort and descendants," CACM, March, 1974. This article contains Fortran pro­
grams for all of the procedures.

A paper by D. L. Parnas, "On the criteria to be used in decomposing sys­
tems into modules" (CACM, December, 1972), discusses how to modularize a
permuted index program. Compare his organization with ours.

The pipeline for catching spelling mistakes was conceived by S. C. Johnson.
"Computer Programs for Detecting and Correcting Spelling Errors," by J. L.
Peterson (CACM, December, 1980) reviews the subject.

CHAPTER 5: TEXT PATTERNS

Remember the time finder we discussed in the Introduction? That job
needed a program to look for the word time anywhere in an input line and
print all such lines found.

But no one wants a program that will only find a particular Pasca' ~ 'entifier ,
nor one limited to looking at Pascal programs, nor even one restricted to look­
ing at programs. time is a specific text pattern; we want a program find that
accepts the pattern to be looked for as an argument, so we can say

find pattern

to print each input line that contains an occurrence of the specified pattern.
For instance, to find instances of time, we just say

find time

Some people might argue that what is really needed here is a text editor that
can search for text patterns. Indeed we do want such an editor, and in the next
chapter we will build one. But we still want find besides. The reason is that
an editor is too general for some purposes. We have to invoke the editor, tell it
one at a time which files we wish to process, then repeat the search command
for each file. There is simply too much setup. find, on the other hand, does
exactly what is wanted, and it does so with a minimum of fuss.

Hardly a working day goes by that we do not make extensive use of find.
The most obvious application is to answer questions like "When did we first
mention the create primitive?" or "Where are all the references to that vari­
able?" But it is also a filter to select from more voluminous output, as in a pipe­
line like

program : find error

to print only messages containing the word "error." (This is much harder with a
text editor.)

We even use find to improve our writing style. You may have noticed that
the word "simple" and its derivatives occur frequently in the book. This is
understandable, for simplicity in programs is a virtue. But overuse robs the
word of force, so periodically we scanned through the text with

141

142 SOFTWARE TOOLS IN PASCAL

find simpl

CHAPTER 5

(which also catches "simply" and "simplicity"), then replaced some occurrences
by appropriate synonyms. We even counted them a couple of times, with

find simpl : linecount

5.1 Text Patterns

There is no point to making find capable of recognizing all conceivable text
patterns. We could be perverse, for instance, and insist on a program that
could look for all legal ways of writing the identifier time in Pascal - with
mixed upper or lower case, perhaps. We could further insist that only instances
of the identifier time be printed - omitting lines with character strings that
contain the string time in comments or in longer variable names. But by the
time we are able to handle something as tricky as

stime[i] := 'time'; { time recorded}

we have written most of the parser for a Pascal compiler!
Our find program will not handle all these pathological cases, to be sure,

but how often do they occur? So long as all the lines you want to see are
printed, it doesn't hurt much if a few extra also appear. And if you don't plan
to be perfectly precise, you may as well draw the line at a reasonable place. We
accept a few shortcomings in anyone application in trade for a much broader
spectrum of uses. Most users of a tool are willing to meet you halfway; if you
do ninety percent of the job, they will be ecstatic.

We will confine ourselves to a notation that has been used in a number of
conversational text editors and other pattern matching programs. For all its
economy, the notation is surprisingly versatile. We will suggest some useful
extensions as exercises.

A text pattern can be a single character, like the letter t, or a more ela­
borate construct built up from simple things, like the string time. To build
arbitrary text patterns, you need remember only a handful of rules.

Any literal character, like t, is a text pattern that matches that same charac­
ter in the text being scanned. A sequence of literal characters, like 123 or
time, is a pattern that matches any occurrence of that sequence of characters in
a line of input.

A pattern is said to match part of a text line if the text line contains an
occurrence of the pattern. For example, the pattern aa matches the line aabc
once at position 1, the line aabcaabc in two places, and the line aaaaaa in
five (overlapping) places. Matching is done on a line-by-line basis: no pattern
can match across a line boundary. Text patterns may be concatenated: a text
pattern followed by another text pattern forms a new text pattern that matches
anything matched by the first, followed immediately by anything matched by
the second. A sequence of literal characters is an example of concatenated

CHAPTER 5 TEXT PAlTERNS 143

patterns.
Although it is an easy task to write a program that looks only for literal

strings of characters (and it is a useful first step), you will soon find it restric­
tive. Accordingly, we will add some more capabilities to find - the ability to
search for patterns that match classes of characters, that match patterns only at
particular positions on a line, or that match text of indefinite length.

To be able to express these more general patterns, we need to preempt some
characters to represent other types of text patterns, or to delimit them. For
example, we will use the character? as a text pattern that matches any single
character except a newline. The pattern x?y matches X+Y, xay, x?y and simi­
lar strings.

The ? and other reserved characters are often called metacharacters. We try
to choose characters which will not appear with high frequency in normal text,
but still there are occasions when we want to look for a literal occurrence of a
metacharacter. Thus the special meaning of any metacharacter can be turned
off by preceding it with the escape character @, as in the character translator
translit of Chapter 2. Thus @? matches a literal question mark, and ~
matches a literal at-sign.

The metacharacter [signals that the characters following, up to the next],
form a character class, that is, a text pattern that matches any single character
from the bracketed list. Character classes use the same notation that was used
to specify from strings in translit: [aA] matches a or A, [a-z] matches
any lower case letter, ["'a] matches any character except an a, and so forth.
The one difference is that, for convenience, we will say that negated character
classes, such as the last example, will never match a newline. The escape con­
vention can also be used inside character classes if the character class is to con­
tain '" or - or @or].

Two other metacharacters do not match literal characters but rather match
positions on the input line. % matches the beginning of a line: %end is a pattern
that matches end only if it occurs as the first three characters of an input line.
Analogously, $ matches the end of a line: endS matches end only if it is the
last thing on a line, before the newline. Of course these can work together:
%end$ matches a line that contains only end, and %$ matches only empty lines
(lines containing only a newline).

Any of the text patterns above that match a single character (everything but
% and $) can be followed by the character * to make a text pattern which
matches zero or more successive occurrences of the single character pattern.
The resulting pattern is called a closure. For example, x* matches zero or more
x's; xx» matches one or more x's; [a-z]* matches any string of zero or more
lower case letters.

Since a closure matches zero or more instances of the pattern, which do we
pick if there's a choice? find itself only needs to know whether at least one
match occurs in a line, but later we will want to use the matched substring. It
turns out to be convenient if find matches the longest possible string even

144 SOFIWARE TOOLS IN PASCAL CHAPTER 5

when a null-string match would be equally valid. Thus [a-zA-Z] * matches an
entire word (which may be a null string), [a-zA-Z] [a-zA-Z] * matches an
entire word (one or more letters but not a null string), and ? * matches a whole
line (which may be a null string). Any ambiguity in deciding which part of a
line matches a pattern will be resolved by choosing the match beginning with
the leftmost character, then choosing the longest possible match at that point.
So [a-zA-Z] [a-zA-ZO-9]* matches the leftmost Pascal identifier on a line,
(? *) matches anything between parentheses (not necessarily balanced), and
? ? * matches an entire line of one or more characters but not a line containing
only a newline.

Finally, no pattern will match across a line boundary. This is often most
natural and useful, and it prevents an unwise ?* from eating up an entire input.

Technically, our text patterns are a subclass of the class of patterns called
regular expressions, which have been extensively studied. General regular
expressions typically include a way to specify alternates and the ability to
parenthesize patterns, so that for example x (a : be) y matches either xay or
xbey. (The parentheses and bar become metacharacters.) These more general
patterns add power at the price of complexity. For our purposes the complexity
outweighs the power, but we will discuss some of the issues involved as we
proceed.

Exercise 5-1. Write a text pattern that matches only those words that contain the six
vowels aeiouy in order, like abstemiously or facetiously. Write a text pattern that
matches the words that can be made with the letters you can create by holding a pocket
calculator upside down. (The letters are usually BEhILOS, from the digits 8341705.) 0

Exercise 5-2. Write text patterns that match PUI identifiers, Cobol identifiers, Basic
identifiers, identifiers accepted by your local assembly language. How would you use
translit, sort, unique, and find to list all identifiers and keywords used in a pro­
gram? Is there any easy way to eliminate the keywords? (Hint: look at the programs for
checking spelling mistakes, in Chapter 4.) Is it worth it? 0

Exercise 5-3. Most languages actually insist that identifiers have some maximum length;
many implementations of Pascal use only the first eight characters of an identifier.
Given text patterns as defined above, can you write one that matches Pascal identifiers of
at most eight characters? 0

Exercise 5-4. Can you use find to remove all the blank lines from text? To remove all
comment cards from a Fortran program? To remove all comments from a Pascal pro­
gram? 0

Exercise 5-5. Do any of the following patterns make sense, according to the definitions
given above? If not, why not? If so, what do they mean?

CHAPTER 5

a**
aa*
a%b$c
%*a
[~ @t]*[@t]
%$
%

*
@@t

o

TEXT PAlTERNS 145

5.2 Implementation

Now that we know the sort of patterns we want to look for, we can start lay­
ing out the program. Without going into any detail, we can foresee the need
for an array pat to hold the pattern, and a main routine like this:

{ find -- find patterns in text }
procedure find;
#include "findcons.p"
var

arg, lin, pat : string;
#include "getpat.p"
#include "match.p"
begin

if (not getarg(1, arg, MAXSTR» then
error('usage: find pattern');

if (not getpat(arg, pat» then
error('find: illegal pattern');

while (getline(lin, STDIN, MAXSTR» do
if (match(lin, pat» then

putstr(lin, STDOUT)
end;

getpat uses the argument to put the scan pattern into pat. match looks
for an occurrence of the pattern anywhere in the input line 1 in and returns a
true or false answer.

Often it is possible not only to write code without knowing entirely where
you're going, but also to test it. That's what we did with find. By using
dummy versions of getpat and match, we were able to verify that lines of
text are properly read and written - which means that ENDFILE is detected at
the correct time and that the internal representation in 1 in is consistently
treated, at least by getline and putstr. A minor variation of getpat exer­
cised the error message. And a trivial match, which could detect only a lead­
ing 'x', verified that lines could be printed selectively.

All this may seem pretty elementary, but it's surprising how many bugs are
caught early this way. In large software projects the majority of bugs arise

146 SOFfWARE TOOLS IN PASCAL CHAPTER 5

because the pieces of the system do not go together as they were expected to,
despite detailed interface specifications known to everyone from the start. And
many other bugs survive elaborate checks on individual routines, surfacing only
when the routine first interacts with the rest of the code.

It seems only natural, then, to test at the highest, most integrated level first
- since that's where most bugs are detected anyway - and to start testing as
soon as possible, even before most of the actual working code is written. This
approach is referred to as top-down testing, a natural extension of top-down
design and top-down coding. The dummy programs are referred to as program
stubs. We built and tested find that way, a piece at a time, and it paid off.
Despite a number of stupid mistakes (some of which we will admit), the pro­
gram was written and debugged in short order.

Since a match can occur anywhere on a line, it seems easiest to factor the
matching into two pieces. match looks for a match anywhere on a line, by
repeatedly calling amatch to look for a match that begins at position i-an
anchored match. This separates checking for a match from deciding what
match to try next.

{ match -- find match anywhere on line
function match (var lin, pat : string) boolean;
var

i, pos : integer;
#include "amatch.p"
begin

pos := 0;
i : = 1;
while (lin[i] <> ENDSTR) and (pos = 0) do begin

pos := amatch(lin, i, pat, 1);
i .- i + 1

end;
match .- (pos > 0)

end;

amatch will return some indication of where the matched string is, or zero if
there was no match. Although later programs will eventually need to know
what part of the text matched the pattern, all find cares about is whether or
not there was a match. We do pass the position in pat to amatch because it
will be used in later routines. This kind of fine-tuning is rarely done from the
top down!

Leaving aside all metacharacters for the moment, amatch has to compare
the pattern with the input, character by character, until it either finds a
mismatch (in which case it returns zero), or until it gets to the end of the pat­
tern successfully (in which case it can return the next position of the input,
which is guaranteed not to be zero). Then the most basic version of amatch
might be

CHAPTER 5

{ amatch -- with no metacharacters }
function amatch (var lin : string; i

var pat: string; j : integer)

TFXl PATl'l:RNS 147

integer;
integer;

begin
while (pat[j] <> ENDSTR) and (i > 0) do

if (lin[i] <> pat[j]) then
i := 0 {no match}

else begin
i .- i + 1;
j .- j + 1

end;
amatch := i

end;

Here the pattern characters are stored in successive elements of pa t

The metacharacters ?, % and $ add only minor complications. Character
classes, however, bring up a question of representation. Clearly we don't want
to have to interpret shorthand like [a - z] for every character position within
every line of input. It looks as if text patterns are sufficiently complicated to
warrant encoding. That way, we can go over the pattern once, carefully check
it for illegal specifications, expand shorthand, and rewrite it in a more con­
venient form. We anticipate looking through rather large files with find, so
we would like to detect a match or mismatch reasonably quickly. Encoding the
pattern is a specific example of a general principle - the more time you're wil­
ling to spend preprocessing your data, the faster you can use it later.

Each text pattern type will be represented in pat by a special code. Literal
characters are represented by two entries - the indicator LITCHAR in position
j and the character itself in position j + 1. The metacharacters %, $ and ? are
represented by the single entries BOL, EOL and ANY respectively. Character
classes are represented as either CCL (for [...]) or NCCL (for ["' ...]), fol­
lowed by a count of the number of characters in the class and the characters
themselves, after any shorthand has been expanded. We will ignore closures for
a while yet, until the easier part is under control. Thus the pattern

%[A x] ? [0 - 9] x $

is encoded in pat as

BOL
NCCL 1 'x'
ANY

CCL 10 '0' '1' '2' '3' '4' '5' '6' '7' '8' '9'
LITCHAR 'x'
EOL

(The first 1 and the 10 are numbers in the encoding, not characters.) Conver­
sion of an input pattern to this encoded form is done by getpat and its subor­
dinates, to which we shall return.

148 SOFIWARE TOOLS IN PASCAL CHAPTER 5

Given this much complexity in the representation of a pattern, it's also
worthwhile to put the testing and matching of single characters into a separate
routine, to keep amatch down to manageable size. omatch will test whether a
single input character matches the current pattern position, and advance the
input position by the right amount if it does. amatch can then concentrate on
walking through the pattern in proper synchronization with the text to be
matched. Now we can write another version of amatch:

{ amatch -- with some metacharacters }
function amatch (var lin: string; i : integer;

var pat : string; j : integer) : integer;
#include "omatch.p"
begin

while (pat[j] <> ENDSTR) and (i > 0) do
if (omatch(lin, i, pat, j)) then

j .- j + patsize(pat, j)
else

i .- 0; { no match possible
amatch := i

end;

omatch handles everything but closures. patsize returns the length of an
entry in pat, so that it can be skipped over. We will get back to both of these
routines once we deal with closures.

Closures cause all of the difficulty. In the text changing program near the
end of this chapter and in the editor of Chapter 6, we are going to write code
that replaces the matched text by something else. For that purpose, the most
useful behavior is to match the longest possible pattern if there is a choice, so
encountering a * should cause a loop on the pattern to be replicated, eating up
as many occurrences as possible, until the match fails. Scanning then resumes
from the point of failure by trying to match the rest of the pattern against the
rest of the input line.

But what if the rest of the pattern fails? It does not necessarily mean that
there is no match. The pattern b s b, for instance, does match the line bb, but
only if the b* part is confined to the first b (or to the null string before the first
b). What this means is, every time a match fails, we have to go back to the
previous closure, shorten it by one and try matching the rest of the pattern once
more. Only when the pattern fails with the closure matching a null string can
we give up.

And we're still not done, for there may be more than one closure in a pat­
tern. (Remember, we said go back to the previous closure.) So to handle pat­
terns correctly, we must backtrack systematically through all possible closure
matches, until we either find a match or fail utterly.

A powerful method for reducing apparent complexity is recursion. In a
recursive procedure, the method of solution is defined in terms of itself: each
part of the routine handles only a piece of the strategy, then calls other parts (or

CHAPTER 5 TEXT PAITERNS 149

itself) to handle the rest. The trick is to reduce each hard case to one that is
handled simply elsewhere.

Closure matching is a natural for recursion: after a closure is matched, the
entire matching procedure is called to check the rest of the input against the rest
of the pattern. The advantage of recursion is that the compiler generates code
to handle many of the bookkeeping details that complicate a non-recursive pro­
gram. For example, we could sketch amatch like this:

for each pattern element
if it's a closure indicator

n := as many omatches as possible
for i := n downto 0

if amatch(rest of input, rest of pattern) succeeds
return with success

return with failure
else if omatch fails on non-closure

return with failure
return with success if we get here

There are some details to be filled in, of course, and some complications
because Pascal doesn't have a return statement to permit an early exit from a
function. Most of the complication in the real amatch comes from circumvent­
ing that omission.

150 SOFIWARE TOOLS IN PASCAL CHAPTER 5

{ amatch -- look for match of pat[j] ... at lin[offset] ...
function amatch (var lin : string; offset : integer;

var pat : string; j : integer) : integer;
var

i, k : integer;
done : boolean;

#include "omatch.p"
#include "patsize.p"
begin

done := false;
while (not done) and (pat[j] <> ENDSTR) d~

if (pat[j] = CLOSURE) then begin
j := j + patsize(pat, j); {step over CLOSURE}
i := offset;
{ match as many as possible }
while (not done) and (lin[i] <> ENDSTR) do

if (not omatch(lin, i, pat, j» then
done := true;

i points to input character that made us fail
match rest of pattern against rest of input

{ shrink closure by 1 after each failure }
done := false;
while (not done) and (i >= offset) do begin

k := amatch(lin, i, pat, j+patsize(pat,j»;
if (k > 0) then { matched rest of pattern}

done := true
else

i .- i - 1
end;
offset .- k;
done := true

{ if k o failure else success }

end
else if (not omatch(lin, offset, pat, j» then begin

offset := 0; { non-closure}
done := true

end
else

amatch
end;

{ omatch succeeded on this pattern element }
j := j + patsize(pat, j);

.- offset

For a closure, the pattern to be repeated is assumed to follow the closure
entry in pat, so that when pat is scanned the closure indicator will be encoun­
tered before the pattern itself; we will have to arrange this order when we build
the pattern array. The pattern is matched as many times as possible, then
amatch is called recursively to try to match the rest of the pattern. The recur­
sion occurs in the line

CHAPTER 5 TEXT PAlTERNS 151

k := amatch(lin, i, pat, j+patsize(pat,j»;

The recursion stack will get only as deep as the number of closures.
If a pattern entry fails, and if the last closure match can still be made

shorter, amatch shortens it by one match and retries from there. Otherwise, it
goes back to the previous closure (by returning from one level of recursion) and
tries to shorten that one. Only when it exhausts all alternatives does it report
failure. And of course if it fails before the first closure, there are no alterna­
tives.

Recursion represents no saving of time or storage. Somewhere in the com­
puter must be maintained a list of all the places a recursive routine is called, so
the program can eventually find its way back. But the storage for that list is
shared among different uses. More important, it is managed automatically;
many of the burdens of storage management and control flow are placed on the
compiler, not on the programmer. And since bookkeeping details are hidden,
the program will be much easier to understand. Learning to think recursively
takes some effort, but it is repaid with smaller and simpler programs.

Not every problem benefits from a recursive approach, and sornetimes you
cannot use recursion. But if you find yourself administering a last-in first-out
list in any form, however, then your problem is intrinsically recursive. Even if
recursion is not possible, you will find it valuable to do the original design as a
recursive program, then unfold the recursion, simulating the last-in first-out
storage with your own linked lists or indexed data structures. The resulting pro­
gram should be cleaner and easier to understand than if you start from scratch.

The accompanying routines patsize and omatch can now be spelled out:

{ patsize -- returns size of pattern entry at pat[n] }
function patsize (var pat: string; n : integer) : integer;
begin

if (not (pat[n] in
[LITCHAR, BOL, EOL, ANY, eCL, NCCL, CLOSURE]» then

error('in patsize: can"t happen')
else

case pat[n] of
LITCHAR:

patsize .- 2;
BOL, EOL, ANY:

patsize .- 1;
CCL, NCCL:

patsize .- pat[n+1] + 2;
CLOSURE:

patsize .- CLOSIZE
end

end;

152 SOFTWARE TOOLS IN PASCAL CHAPTER 5

{ omatch -- match one pattern element at pat[j] }
function omatch (var lin : string; var i : integer;

var pat : string; j : integer) : boolean;
var

advance: -1 .. 1;
#include "locate.p"
begin

advance := -1;
if (lin[i] = ENDSTR) then

omatch := false
else if (not (pat[j] in

[LITCHAR, BOL, EOL, ANY, CCL, NCCL, CLOSURE]» then
error('in omatch: can"t happen')

else
case pat[j] of

LITCHAR:
if (lin[i] = pat[j+1]) then

advance := 1;
BOL:

if (i = 1) then
advance := 0;

ANY:

if (lin[i] <> NEWLINE) then
advance := 1;

EOL:
if (lin[i] = NEWLINE) then

advance := 0;
CCL:

if (locate(lin[i], pat, j+1» then
advance := 1;

NCCL:
if (lin[i] <> NEWLINE)

and (not locate(lin[i], pat, j+1» then
advance := 1

end;
if (advance >= 0) then begin

i := i + advance;
omatch .- true

end
else

omatch .- false
end;

advance is the amount to advance the input position if omatch finds a match.
This is zero for patterns that match null strings and one otherwise.

locate looks for a character in a character class:

CHAPTER 5 TEXT PAlTERNS 153

{ locate -- look for c in character class at pat[offset]
function locate (c : character; var pat string;

offset : integer) : boolean;
var

i integer;
begin

{ size of class is at pat[offset], characters follow}
locate := false;
i := offset + pat[offset]; {last position}
while (i > offset) do

if (c = pat[i]) then begin
locate := true;
i .- offset { force loop termination}

end
else

i .- i -
end;

The "can't happen" messages in patsize and omatch are interesting.
Since the program builds its own patterns, we know precisely what sorts of
entries can be encountered, and so there is no need to verify that the pattern
entry is one of the labels in the case.

Or is there?
pat is a hodgepodge. The pat array contains a variety of objects in close

proximity:

BOL, EOL, ANY, CLOSURE

LITCHAR

CCL, NCCL

identifying code

identifying code,
character to match

identifying code,
size of class,
list of characters in class

Keeping all of this straight during some complicated processing is not trivial.
We can expect problems, therefore, and should prepare for them. There are
many common coding and design errors that will botch what gets put into pat.
If we blindly assume that all is well, patsize and omatch will treat garbage
as a valid pattern and act on it. (A careful implementation of Pascal will catch
an invalid case for you, but not all implementations are that careful.) Garbage
is bad enough, but garbage that is expected to contain a count to tell you how
long it is can be much worse. So we test explicitly for all the possible conditions
and print "can't happen" when the impossible occurs.

The first time we ran this code, it said "can't happen." We got that message
embarrassingly often in the process of adding the rest of the code and shaking it
down. This experience speaks for itself: if you're going to walk a high-wire, use
a net. You might meditate upon how much harder it would have been to
debug a program that just silently went crazy whenever it was run.

154 SOFTWARE TOOLS IN PASCAL CHAPTER 5

Even after the initial development period, various pieces of find were
modified, sometimes quite dramatically. Whenever a change was made with
more enthusiasm than caution, "can't happen" brought us back on the track
again. We finally decided to leave the messages in for all time instead of pre­
tending to be perfect. Removing the error messages "now that the program is
working" is like wearing a parachute on the ground, but taking it off once
you're in the air.

As an aside, notice that the standard case statement provides no way to
handle a "default" or "none of the above" condition, so we were forced to add
a separate range test before the case. A chain of else if's would serve as
well in this situation, because it eliminates the duplicate test. We could equally
well write patsize as

{ patsize -- returns size of pattern entry at pat[n] }
function patsize (var pat : string; n : integer) : integer;
begin

if (pat[n] = LITCHAR) then
patsize := 2

else if (pat[n] in [BOL, EOL, ANY]) then
patsize := 1

else if (pat[n] = CCL) or (pat[n] NCCL) then
patsize := pat[n+1] + 2

else if (pat[n] = CLOSURE) then
patsize := CLOSIZE

else
error('in patsize: can"t happen')

end;

Similar comments apply to omatch.

Exercise 5-6. Estimate or measure how much execution time is added by leaving the
debugging tests in pats i ze and oma tch. What fraction of the total time spent by the
program does this constitute? How is it affected by how often different patterns occur in
everyday use? How many extra storage locations are added by the extra code? What
fraction of the total size of the program is it? 0

Exercise 5-7. How would you test match and its sub-modules? List, in order of
increasing difficulty, ten text patterns you should try. Try them. (Hint: What kinds of
patterns do you have to write to visit every part of the code?) 0

5.3 Building Patterns

Now that we have most of a working pattern finder, let's concentrate on
reading and encoding the pattern. Although find is always concerned with a
pattern that begins at position one and terminates with an ENDSTR, we would
still prefer a more general pattern builder - one which terminates on an arbi­
trary delimiter and which tells us where to continue scanning if we want. (We
prefer it partly on general principles and partly because we know where we are
going in this chapter and the next.) So getpat is a trivial routine that

CHAPTER 5 1EXT PAITERNS 155

interfaces between find and makepat, which does the real work.

{ getpat -- convert argument into pattern }
function getpat (var arg, pat : string) : boolean;
#include "makepat.p"
begin

getpat := (makepat(arg, 1, ENDSTR, pat) > 0)
end;

As we were writing makepat, it became clear that we could modify it to
make find easier to use. If a " is not at the beginning of a pattern, it loses its
special meaning, as does a $ not at the end, or a * at the very beginning. In
many cases this eliminates the need to escape these characters when we are
looking for literal occurrences of them. (It also eliminates the need for an error
message, which is nice.) A * that does not occur at the beginning of the line is
checked to make sure it never calls for repetition of anything that can match a
null string, since the rest of the program is not prepared to handle that situa­
tion. In this case, however, the * is not taken literally; instead the pattern is
abandoned and a diagnostic is printed. This seems to be the safer course in
practice.

We emphasize that these "features" are ad hoc decisions made as we imple­
mented the pattern builder. A number of curious situations turned out to be
unspecified, as is often the case, and had to be resolved during coding. We
chose to complete the specification in what appeared to be the most convenient
way for the user.

There is no question, however, that too much of this sort of thing is bad.
Our goal is always to write to clear, unambiguous functional specifications that
are easy to remember, as opposed to writing routines any old way and trying to
live with them. Too many exceptions, too much ad hoc-ery, can lead to pro­
grams that are hard to get right and hard to use. It is necessary to strike a care­
ful balance.

Here is makepat, which converts the pattern argument into its encoded
form in the array pat. makepat does the easy cases itself, and leaves the com­
plicated ones to sub-procedures.

156 SOFIWARE TOOLS IN PASCAL CHAPTER 5

{ makepat -- make pattern from arg[i], terminate at delim
function makepat (var arg : string; start : integer;

delim : character; var pat : string) : integer;
var

i, j, lastj, lj : integer;
done, junk : boolean;

#include "getccl.p"
#include "stclose.p"
begin

j := 1; { pat index}
i := start; { arg index
lastj := 1;
done := false;
while (not done) and (arg[i] <> delim)

and (arg[i] <> ENDSTR) do begin
lj : = j;
if (arg[i] = ANY) then

junk := addstr(ANY, pat, j, MAXPAT)
else if (arg[i] = BOL) and (i = start) then

junk := addstr(BOL, pat, j, MAXPAT)
else if (arg[i] = EOL) and (arg[i+1] = delim) then

junk := addstr(EOL, pat, j, MAXPAT)
else if (arg[i] = CCL) then

done := (getccl(arg, i, pat, j) = false)
else if (arg[i] = CLOSURE) and (i > start) then begin

I j : = lastj;
if (pat[lj] in [BOL, EOL, CLOSURE]) then

done := true {force loop termination
else

stclose(pat, j, lastj)
end
else begin

junk .- addstr(LITCHAR, pat, j, MAXPAT);
junk .- addstr(esc(arg, i), pat, j, MAXPAT)

end;
lastj := lj;
if (not done) then

i .- i + 1
end;
if (done) or (arg[i] <> delim) then {finished early

makepat := 0
else if (not addstr(ENDSTR, pat, j, MAXPAT» then

makepat .- 0 { no room}
else

makepat .- i all is well
end;

All entries in the pat array are made via calls to addstr. This is the same
routine used in translit to check for overwrites, store an entry, and update

CHAPTER 5 TEXT PAITERNS 157

the store index. esc was also described with translit; it handles an escape
character if one is present.

Rather than test each call to addstr to see if there was room for the new
character, we ignore the status return (by assigning it to junk, as in Chapter
2), since addstr will never write beyond the specified limit. Normally,
makepat returns the index of the closing delimiter. If there is room for the
ENDSTR that terminates the pattern, all is well; if not, something went wrong
and makepat returns zero, which is never a valid index.

Character classes are encoded by getccl. We have organized getccl so
that it uses dodash (and all its sub-modules) to build character class entries as
in translit. That way, we avoid writing a lot of new code, we have some
assurance that the code is correct, and we know find and transli t will apply
the same rules for specifying character classes.

{ getccl -- expand char class at arg[i] into pat[j] }
function getccl (var arg : string; var i : integer;

var pat: string; var j : integer) : boolean;
var

jstart : integer;
junk : boolean;

#include "dodash.p"
begin

i : = i + 1; { skip over ' [' }
if (arg[i] = NEGATE) then begin

junk := addstr(NCCL, pat, j, MAXPAT);
i .- i + 1

end
else

junk := addstr(CCL, pat, j, MAXPAT);
jstart := j;
junk := addstr(O, pat, j, MAXPAT); {room for count}
dodash(CCLEND, arg, i, pat, j, MAXPAT);
pat[jstart] := j - jstart - 1;
getccl := (arg[i] = CCLEND)

end;

CCLEND is, of course, a].
Since a closure entry must be rearranged so the CLOSURE flag appears

before the object to be repeated, makepat uses a separate routine stclose to
move things around in pat. When a * is encountered, we have to move the
previous pattern over far enough that we can stick in a closure entry, to be seen
first when amatch scans. stclose does this, being careful not to move any­
thing off the end of pat inadvertently.

158 SOFTWARE TOOLS IN PASCAL CHAPTER 5

size of a closure entry }

cannot be the same as NEGATE }
ord (, c') }

{ stclose -- insert closure entry at pat[j] }
procedure stclose (var pat : string; var j : integer;

lastj : integer);
var

jp, jt : integer;
junk : boolean;

begin
for jp := j-1 downto lastj do begin

jt := jp + CLOSIZE;
junk := addstr(pat[jp], pat, jt, MAXPAT)

end;
j := j + CLOSIZE;
pat[lastj] := CLOSURE {where original pattern began}

end;

CLOSIZE is 1, the size of a closure entry. The const declarations for find

are grouped in a separate file:

{ findcons -- const declarations for find }
const

MAXPAT = MAXSTR;
CLOSIZE = 1;
CLOSURE = STAR;
BOL PERCENT;
EOL DOLLAR;
ANY QUESTION;
CCL LBRACK;
CCLEND = RBRACK;
NEGATE = CARET;
NCCL = EXCLAM;
LITCHAR = LETC;

When we built find, the identifying codes stored in pat were the actual
characters from the argument, wherever possible. (This may not have been
entirely obvious because we used symbolic constants like EOL and CLOSURE
instead of DOLLAR and STAR, in case you want to replace them with characters
of your own choosing.) We always try to use printable internal codes, so we can
insert debugging lines like

putstr(pat, STDERR)

and get out something more or less readable. Thus we defined LITCHAR to be
the letter c and CCL to be [. Counts come out funny, but most patterns tend
to be readable.

We only mentioned three testing plateaus in the process of building find,

but actually there were many more. As we designed the mechanism for han­
dling each type of pattern, we stuck it in and tried it out with the existing skele­
ton. Since we are presenting you with a finished design, however, it would be
artificial to go through the several false starts we discarded. When you build

CHAPTER 5 TEXT PAlTERNS 159

your own designs top-down, plan on more than three tests!
Getting closures right was the hardest part, for the logic involved in handling

them constitutes about half the code. Most of the errors were made, as
expected, in the pat array, trying to keep track of where things were during
the recursive search for closures. Either an entry was built wrong or it was not
read as it should have been in amatch and its subordinates. In either event the
program responded by saying "can't happen" when we tried a new feature.
That made it easy to locate and correct mistakes.

find is not a big program, only about 240 lines, excluding the contribution
of translit, but it is big enough to warrant a diagram of the relationship
among the procedures and functions, just as we did with archive in Chapter
3.

find
getpat

makepat
getccl

dodash
stclose

match
amatch

omatch
locate

patsize

This picture excludes primitives like getline and putstr, and of course
dodash calls several routines developed for trans 1 it in Chapter 2.

Notice how both major branches progress from the abstract to the specific as
we get further from the root of the tree. This is a natural result of the way we
wrote find. We took an abstract problem, to find all the occurrences of a pat­
tern in the input, and refined it into two steps:

get the pattern
match input lines against the pattern

Each of these was refined in turn (although we attacked the second one first),
until all of the details were filled in at the lowest levels. At each stage, if the
operation to be performed was simple enough, it was coded directly. If not,
part of it was coded in terms of calls on lower routines, which were expanded
later on.

Starting at the top and working towards the bottom by filling in details is
often called "successive refinement." It is a valuable approach even for pro­
grams of modest size. At no point does the design bog down in details, for they
are deferred to later stages of refinement. Testing can begin early, because the
"unrefined" parts of the design can be replaced by temporary stubs that imple­
ment very limited functions. (We did that in find.) And revisions are easier

160 SOFTWARE TOOLS IN PASCAL CHAPTER 5

because different aspects of the implementation tend to appear at separate lev­
els. The hard thing is to recognize the appropriate level of abstraction at each
stage and to avoid mixing in lower-level details.

not at beginning
not at end
at beginning

A character class consists of zero or more of the following elements, surrounded by [and]:
c literal character c, including [
cJ - c2 range of characters (digits, lower or upper case letters)

negated character class if at beginning
@lc escaped character (e.g., @l" @l- @l@l @ll)

Special meaning of characters in a character class is lost when escaped or for:
" not at beginning

at beginning or end

An escape sequence consists of the character @ followed by a single character:
@n newline
@t tab
@lc c (including @l@l)

EXAMPLE
To print lines ending in a Pascal keyword or identifier:

find [a-zA-Z][a-zA-ZQ-9]*$

PROGRAM
find find patterns in text

USAGE
find pattern

FUNCTION
find reads its input a line at a time and writes to its output those lines that match the speci­
fied text pattern. A text pattern is a concatenation of the following elements:

c literal character c
? any character except newline
" beginning of line
$ end of line (null string before newline)
[...] character class (anyone of these characters)
[" . . .] negated character class (all but these characters)

closure (zero or more occurrences of previous pattern)
@lc escaped character (e.g., @l%, @l[, @l*)

Special meaning of characters in a text pattern is lost when escaped, inside [...] (except
@]), or for:

"$

Exercise 5-8. Add multiple file capabilities to find, so that

find pattern file 1 file2 ...

will read the specified files in order or, if no file arguments are given, read the standard
input. Print the file name before each matched line if there is more than one file argu­
ment. Would you ever want to tum this extra printout off? 0

Exercise 5-9. Modify find so that

find "pattern

will print all those lines that do not match the pattern. To what routine should the test
be added? How do you specify a pattern beginning with a literal "? Modify find to
permit searching for lines that contain all of a set of patterns, or anyone of a set. 0

Exercise 5-10. Add to find the metacharacter +, which stands for "one or more

CHAPTER 5 TEXT PATfERNS 161

occurrences" of a pattern in the same way that * stands for zero or more. 0

Exercise 5-11. Invent a syntax for specifying an arbitrary character-sized bit string in a
pattern so as to be able to match non-graphic characters; modify find to scan for such
patterns. (See the discussion of esc in Chapter 2.) Add a metacharacter to match non­
printing characters. 0

Exercise 5-12. An alternate design for find is to tum all metacharacters off by default,
and require that each must be preceded by @ when its special meaning is desired. Imple­
ment this variation and experiment to see which is easier to explain and use. 0

5.4 Some Measurements

We ran find with a number of patterns on an input of 784 lines and 17,713
characters (the source for find with all its supporting code). Here are some
CPU times as measured on a DEC VAX 11/780.

pattern: " (start 1 character 3-letter ?*x
of line) (not present) word x not present

total time: 4.0 sec 5.7 sec. 6.2 sec. 131.5 sec.

getline 59.2% 38.8% 33.5% 1.9%
putstr 33.8 0.0 4.8 0.0
match 0.0 7.6 6.7 0.4
amatch 1.7 24.8 23.0 34.4
omatch 1.7 25.1 25.4 42.0
patsize 0.4 0.0 0.5 16.6

As is often the case, the CPU time for simple patterns is dominated by 110
processing. (Our getline calls getcf to construct the line, thus incurring all
possible overhead on every input character.) In the same manner, putstr calls
putcf. The pattern ? *x, where x is a character not present in the input, is a
bad case, since find must backtrack through each character position on each
line before deciding that the character doesn't occur. Of course a pattern like
?*?*x would be even worse.

To decide whether find is efficient enough, you have to weight its perfor­
mance on different patterns by the frequency with which they occur and by the
size of the inputs being searched. If the workload consists entirely of nasty pat­
terns and large texts, then clearly find needs a better algorithm. As written,
find cannot be readily improved because it would require a complete back­
track through all matches to guarantee finding the leftmost longest. It is possi­
ble, however, to recognize any regular expression with no backtracking whatso­
ever. The most efficient methods convert the regular expression into a
"machine" that looks for all possible matches in parallel as it reads the input,
and signals whenever one is found. The construction of such a machine is of
course a more time-consuming encoding than the one we used, and can take a
lot more space, but it has a correspondingly greater payoff in running time: once
the machine is built, the running time is independent of the complexity of the

162 SOFTWARE TOOLS IN PASCAL CHAPTER 5

pattern. For more details, see Chapter 3 of Aho and Ullman's Principles of
Compiler Design, referenced at the end of this chapter.

Fortunately the combination of difficult pattern and large input seems to be
infrequent in practice. Much more common is a search for a particular word,
for which find is acceptably efficient.

5.5 Changing Text

Now that we know how to identify patterns in text, let's consider a useful
tool for making selective changes. Change usually implies one of three different
operations. When we discard what we found, we call it a deletion; when we put
something new in its place, we call it a replacement; and when we leave what
we found intact and stick something before or after, we call it an insertion.
Many "update" utilities make quite a thing out of preserving these distinctions,
but the differences are often irrelevant.

There is a simple notation that lets us express all these operations plus a few
additional interesting alternatives. The program change lets us say

change from to

to look for all occurrences of text patterns that match from and replace each
with the substitution string to. The substitution string can be just a string of
replacement characters:

change mispell misspell

Or it can be null, to effect a deletion:

change "very, "
change " *$"

Or it can include the special "ditto" character s, to put back the matched stuff
and thus do an insertion:

change active in&

The last example changes all instances of active to inactive.
The ditto character can appear at either end:

change able &-bodied

in the middle:

change a+b (&)

or more than once:

change very "&, &"

It can also be used literally with the help of an escape:

change and @&

CHAPTER 5 TEXT PAlTERNS 163

For change, it is important to know not only what line matches a pattern
but also what substring of the line caused the match to succeed. The task is to
make the specified changes in that substring, then look for additional matches
on the remainder of the line. Our matching process finds the leftmost longest
match; once that match is located, we can resume scanning the input at the first
character after the matched substring and so pick up all disjoint instances of a
given pattern in a text file. We never rescan replacement text; this avoids any
possibility of looping.

Very little code need be added to what was written for find in order to
implement change. From the start we were careful to specify exactly how text
patterns match pattern strings, so the size of the match string is well defined;
and we wrote amatch so that it returns the index of the first character past the
end of the match. Here is the top level.

{ change -- change "from" into "to" on each line }
procedure change;
#include "findcons.p"

DITTO = -1;
var

lin, pat, sub, arg string;
#include "getpat.p"
#include "getsub.p"
#include "subline.p"
begin

if (not getarg(1, arg, MAXSTR» then
error('usage: change from [to]');

if (not getpat(arg, pat» then
error('change: illegal "from" pattern');

if (not getarg(2, arg, MAXSTR» then
arg[1] := ENDSTR;

if (not getsub(arg, sub» then
error('change: illegal "to" string');

while (getline(lin, STDIN, MAXSTR» do
subline(lin, pat, sub)

end;

Arguments are analyzed and converted into the appropriate forms by
getpat, which we wrote for find, and getsub, to which we will return
shortly. The actual substitution and printing is done by subline:

164 SOFTWARE TOOLS IN PASCAL CHAPTER 5

{ subline -- substitute sub for pat in lin and print
procedure subline (var lin, pat, sub: string);
var

i, lastm, m : integer;
junk : boolean;

#include "amatch.p"
#include "putsub.p"
begin

lastm := 0;
i : = 1;
while (lin[i] <> ENDSTR) do begin

m := amatch(lin, i, pat, 1);
if (m > 0) and (lastm <> m) then begin

{ replace matched text }
putsub(lin, i, m, sub);
lastm := m

end;
if (m = 0) or (m = i) then begin

{ no match or null match }
putc(lin[i]);
i := i + 1

end
else {skip matched text }

i := m
end

end;

amatch is attempted for every starting position on each line. If there is a
match (m>O) and if it is not the same match as the last time (lastm<>m),
putsub outputs the expanded substitution string, and the entire matched string
is skipped over. If there is no match (m=O) or if the match was to a null string
(m=i), one character is copied to the output and skipped over on input.

The main problem is what to do with null string matches, because unless one
is careful, there can be unexpected null strings. We have arranged change so
there are never two adjacent null strings. This ensures that the pattern a*
matches the line xy at three points - before x, between x and y, and after y.
We are also careful that a* matches xay at exactly three places as well; this is
proper behavior even though it may not be immediately obvious.

getsub, like getpat, divides the work of building the substitution string
into two pieces, one specific and one more general.

{ getsub -- get sUbstitution string into sub }
function getsub (var arg, sub : string) : boolean;
#include "makesub.p"
begin

getsub := (makesub(arg, 1, ENDSTR, sub) > 0)
end;

makesub copies the substitution pattern into sub until it finds an

CHAPTERS TEXT PAlTERNS 165

occurrence of the delimiter, in this case an ENDSTR. Any instances of the ditto
character s, are replaced by a special code DITTO, which must be distinct from
all representable characters, just like ENDFILE and ENDSTR.

{ makesub -- make substitution string from arg in sub }
function makesub (var arg : string; from : integer;

delim : character; var sub : string) : integer;
var

missing delimiter }

integer;
boolean;

i, j
junk

begin
j : = 1;
i := from;
while (arg[i] <> delim) and (arg[i] <> ENDSTR) do begin

if (arg[i] = ord('&'» then
junk .- addstr(DITTO, sub, j, MAXPAT)

else
junk .- addstr(esc(arg, i), sub, j, MAXPAT);

i := i +

end;
if (arg[i] <> delim) then

makesub := 0
else if (not addstr(ENDSTR, sub, j, MAXPAT» then

makesub .- 0
else

makesub .- i
end;

All that remains is putsub, which is straightforward:

{ putsub -- output sUbstitution text }
procedure putsub (var lin: string; s1, s2

var sub: string);
integer;

var
integer;
boolean;

i, j
junk

begin
i : = 1;
while (sub[i] <> ENDSTR) do begin

if (sub[i] = DITTO) then
for j := s1 to s2-1 do

putc(lin[j])
else

putc(sub[i]);
i := i + 1

end
end;

166 SOFTWARE TOOLS IN PASCAL CHAPTER 5

PROGRAM
change change patterns in text

USAGE
change pattern [newstuff]

FUNCTION
change copies its input to its output except that each non-overlapping string that matches
pattern is replaced by the string newstuff. A non-existent newstuff implies deletion
of the matched string. The patterns accepted by change are the same as those used by
find.
The replacement string newstuff consists of zero or more of the following elements:

c literal character
6. ditto, i.e., whatever was matched
@lc escaped character c (e. g., @&)

EXAMPLE
To parenthesize all sums and differences of identifiers:

change "[a-zA-Z][a-zA-ZQ-9]*[]*[+-][]*[a-zA-Z][a-zA-ZQ-9]*" (6.)

Exercise 5-13. What does

change active in&

do to inactive, attractive, and radioactive? What procedures would you
establish for verifying that "small" changes to a document actually have the desired
effect? 0

Exercise 5-14. What happens if you try to change something into a newline? What hap­
pens if you try to remove the newline at the end of a line? 0

Exercise 5-15. Is there anything you can do with transli t that you can't do with
change? 0

Exercise 5-16. Extend change to perform multiple changes; for example,

change abc d

changes all a's to b's, then changes all c's to d's on the resulting line. Is this equivalent
to

change a b : change c d

for all possible patterns and substitution strings? 0

Exercise 5-17. Consider a file in which each line consists of two fields separated by a
tab. Write a pipeline to produce a new file with the fields interchanged on each line,
i.e.,

1234 5678

becomes

5678 1234

(Hint: Try duplicating the contents of each line, with a separator between the two
instances.) 0

Often useful is the ability to tag parts of a text pattern so that the pieces of a
matched string can be put back selectively or rearranged. Suppose we invent
two metacharacters { and } in a text pattern to "remember" the substring

CHAPTER 5 TEXT PAITERNS 167

matched by that part of the pattern. For example in the pattern

%{???}{?*}

the first pair of braces will remember the three characters at the beginning of
the line, whatever they are; the second braces remember the rest of the line.
Now we need a notation to recall the saved substrings. Suppose that @n refers
to the string remembered by the nth pair of braces, where n is a single digit.
Then we can move a three-character sequence number from the beginning of a
line to the end like this:

change %{???}{?*} @2@1

As a harder-to-read example,

change {[A@t]*}@t{?*} @2@t@1

reverses two tab-separated fields, as you did by brute force in the previous exer­
cise.

Exercise 5-18. Rewrite the pattern-finding code as cleanly as possible to remember
tagged patterns, then alter change to insert them on demand in the substitution string.
Does your code handle nested braces? You might consider using @ (and @) in place of
{ and l , particularly if your machine has a restricted character set. Why is this a better
convention than making ordinary parentheses into metacharacters? 0

Exercise 5-19. Given pattern tagging, how would you specify that only the leftmost
integer in a line of integers is to be changed to zero? Only the rightmost? The second
one from the left? 0

Exercise 5-20. Add an option -n to find, to print the line number and a space before
each line that matches. This is useful for subsequently identifying the matched lines.
What is the effect of

find -n % : sort -r -n : change "%[0-9]* "

(Recall that sort -r -n calls for a reverse sort with a numeric field at the start of a
line.) How hard would it be to write a special program to do this particular job for all
file sizes? Would it be worth it? 0

Exercise 5-21. A problem suggested by D. E. Knuth is to find the largest set of eight­
letter words that have the same middle four letters. Assuming you have a machine­
readable dictionary (with one word per line), how would you solve this problem with
find, change, sort and unique? Do you need anything else? 0

Bibliographic Notes

For a comprehensive discussion of how to recognize the broader class of text
patterns called regular expressions, see Chapter 3 of A. V. Abo and J. D. Ull­
man, Principles of Compiler Design (Addison-Wesley, 1977). This also
describes a program called LEX for mechanically generating lexical analyzers
specified by regular expressions. You might also read J. F. Gimpel's "A theory
of discrete patterns and their implementation in SnoboI4," CACM, February,

168 SOFTWARE Tex)I,S IN PASCAL CIIAPTER 5

1973). Snobol is of course a widely used pattern-matching language.
An excellent treatise on recursion, when to use it, and how to avoid it, is

D. W. Barron's Recursive Techniques in Programming (American-Elsevier,
1968).

find is modeled after the Unix utility grep (globally look for regular
expressions and print) by K. L. Thompson.

CHAPTER 6: EDITING

Now that we have some pattern matching and changing code handy, we are
ready to tackle the more general problem of text editing - creating and modi­
fying textual information like programs, data, documents, what have you. All
interactive computing systems (and some batch systems) have some form of
editing facility, but it is often rudimentary. The ability to do context searches
with regular expressions, make global changes, or do arbitrary file I/O is often
left out of even "advanced" editors. Those that include these features often
have a command syntax so cumbersome that it is largely unused.

The editor we present here is modeled after the latest in a long family of
conversational text editors that have achieved wide acceptance. Concern for
human engineering dominates the design - edi t tries to be concise, regular
and powerful. Because edi t is primarily intended for interactive use, it is
streamlined and terse, but easy to use. This is especially important for a text
editor: for most users it is the primary interface to the system. (On our Unix
system, the editor accounts for fifteen percent of all commands executed, more
than three times the nearest competitor.) edi t is not confined to conversational
editing, however. It can be driven from prepared scripts and from other pro­
grams. It is frequently used to select results from programs or to prepare input
to still other programs. It is a tool.

Error recovery is a second major influence on the design of the editor. Like
the archive program of Chapter 3, edi t maintains precious files, so it must
be cautious. Not only that, but when it is used interactively it cannot just throw
up its hands and quit when a user enters an erroneous command. It must
recover gracefully, for otherwise some trifling mistake could cause the loss of
valuable information.

Third, since the editor is inherently a big program, its code must be well
organized, or it will get utterly out of hand (and thus probably fail to achieve
the goals of good human engineering and reliability). Accordingly we will
design the editor top-down, and push to the lowest possible level any informa­
tion about how files are handled or how text is represented. As much as possi­
ble, details of implementation will be hidden from routines that don't need to
know about them, so they can be changed or improved without upsetting the

169

170 SOFTWARE TOOLS IN PASCAL CHAPTER 6

bulk of the program.
The editor we present here is not a "screen editor" - it takes no advantage

of the ability of many terminals to add, delete and change characters and lines
on a screen with a cursor. Such editors are often convenient, but they are typi­
cally bigger, slower and harder to make portable than ones that make no
assumptions about terminals. They also make more demands on the underlying
operating system than we are prepared to deal with here. The bibliographic
notes suggest further reading on the topic of screen editors.

6.1 What the User Sees

Although it is generally wise to start small and evolve, an editor, like a pro­
gramming language, is so heavily used that it should be really good, so that you
don't spend all your time fighting its deficiencies. Accordingly, edi t provides
a relatively rich set of facilities, much more than the bare minimum.

This section contains a synopsis of edit, enough to give you a feeling for
what design decisions were made and why, and for what commands are avail­
able. We will expand upon individual commands as we come to them during
implementation.

To get started, you type

edit

or

edi t file

In the latter case, if file already exists, it's assumed you want to access its con­
tents, so they are copied into an internal buffer, whose implementation is left
unspecified for now. In any case, text is modified in the buffer and perhaps
eventually written back to some external file. Files are never modified except
by explicit command. This proves to be a safer procedure than working on a
file in place, for if you botch an edit you can always read in a fresh copy and
start anew.

edi t is basically "line oriented," in that most editing commands operate on
groups of one or more lines in the buffer. This is a natural organization, since
text intrinsically comes in lines. Other units might be selected - characters,
words, sentences, or arbitrary strings - but lines seem to be most suitable for a
wide variety of applications. It is certainly possible to access parts of lines as
well; we'll get to that in a moment.

We should emphasize that the editor imposes no structure on lines. It
doesn't know that columns 7 and 72 are especially significant in a Fortran pro­
gram, for instance, nor does it know about any other special format. In our
experience, editors that presume to know a lot about what you're doing are
more hindrance than help.

As we said, edit tries to be concise and regular. Each editing command

CHAPfER6 EDITING 171

consists of a single letter, which may be optionally preceded by one or two "line
numbers," which specify the inclusive range of lines in the buffer over which
the command is to act. Thus for the print command p,

1p

calls for the printing of the first line, and

1,3p

prints lines 1, 2, and 3. Only one command per line is permitted, since this
reduces the possibility that erroneous input will cause serious damage.

The delete command d is analogous to p; it deletes the lines in the specified
range:

1,3d

deletes the first three lines from the buffer. It is always an error to refer to a
line that doesn't exist; edi t complains when you do.

Line numbers are relative to the beginning of the buffer. After the first
three lines have been deleted, the first remaining line (the old line 4) becomes
the new line 1, and all other lines are renumbered correspondingly. This
behavior may be unfamiliar if you're used to an editor where "line numbers"
have a physical existence as part of text lines themselves. Our line numbers are
not part of the file, and indeed have no physical representation anywhere; they
are just the relative positions of the lines in the buffer. As you will see shortly,
this organization gives invaluable flexibility in specifying and rearranging lines.

Although it is possible to edit entirely in terms of line numbers, be they rela­
tive or absolute, it's often an unwieldy nuisance, so edi t lets you specify the
lines in which you're interested in several other ways. For instance, the editor
always keeps track of the current line, typically the most recent line affected by
the previous command. The current line is specified by the character . (period
or "dot"), which you can use anywhere you would have used an integer line
number. The last line in the buffer is also known; it is called $. So

., $p

would print the current line and any subsequent lines through to the end of the
buffer;

1,$p

prints everything; and

1,$d

deletes everything.
Dot is altered by many commands. In particular, it is set to the last line

printed after a p command and to the next undeleted line after d, except that it
never moves past $. Thus a single

172 SOFfWARE TOOLS IN PASCAL

d

deletes the current line, and leaves dot pointing to the next line, while

CHAPTER 6

. ,$d

P

deletes all lines from here to the end, and prints the new last line.
The purpose of . and $ is to reduce the need for specific line numbers.

This is further helped by the ability to do line number arithmetic. To print the
last few lines of the buffer (perhaps to see how far you got in a previous editing
session) .. say

$-10,$p

Or you can say

.-S,.+Sp

to print a group of lines around where you're working.
Even when augmented by ., $ and arithmetic, line number editing is still

clumsy. When you're editing, you want to be able to say, "Find me an
occurrence of this string," so you can work on it without first having to know
precisely where it occurs. In edi t you can do a context search to find a line,
simply by writing a pattern between slashes.

/abc/

means: Starting with the next line after the current line, scan forward until you
find a line which matches the pattern abc. The pattern is of course anything of
the sort that we described in Chapter 5; we will use the same pattern matching
code to ensure this. The search wraps around from line $ to line 1 if necessary.
Thus

/abc/, $p

would locate the next line (after the current line) that matches abc, and print
from there to the end of the buffer. If a context search proceeds forward
around the ring back to the current line without finding a match, an error is sig­
naled.

Similarly, you can scan backwards by writing a pattern between backslashes.
\def\ means: Starting with the line right before the current line, scan back­
ward until you find a line which matches the specified pattern (def). Again,
the search wraps around from line 1 to line $, and if no line satisfies the search,
an error is signaled. Editing a Pascal program, for instance, you might say

\%begin\,/%end/p

to print the code part of the routine in which the current line is imbedded.
A line number standing by itself (i.e., followed only by a newline) is taken

as a request to print that line, so

CHAPTER 6 EOmNG 173

$

prints the last line, and the common case of "Find me the next line with an
abc" is

/abc/

It finds the line, prints it, and sets dot to that line so you can begin to work
there. As a special case, a newline all by itself is a request to print the next
line, to make it easy to step through the buffer a line at a time.

It is hard to overstate the importance of context searching. Most of the time
you use context searches to get to the next place where you want to do some
editing. Even when you know the source line numbers, it's often better to scan.
If you've used an identifier two different ways, for instance, you might overlook
an instance or two while correcting the listing. A context search, however, will
lead you in turn to every place in the source where the offending identifier is
referred to.

Placing line numbers before the command instead of after it may seem unna­
tural at first, but one adapts rapidly. This choice lets individual commands use
different syntaxes for optional information after the command letter without
destroying the regularity with which a range of lines is specified.

The most important of the commands which take further information is the
substitute command s, used for changing characters within a line.

s/bgein/begin/

changes the first occurrence of bgein to begin on the current line. If there
should be more than one on that line (which is unlikely in this case), you can
say

s/bgein/begin/g

to do it globally (i.e., everywhere) on the line. Of course the left side of an s

command can be any legal pattern, since the same pattern-matching code is
used for context searches and substitutions. The right hand side can include the
ditto character &. as shorthand for whatever was matched by the left hand side,
as in the change program of Chapter 5.

An s command, with or without g, can be followed by a p to print the last
affected line, to verify that the desired substitution was made. Printing is not
automatic for any of the commands, so edi t is only as chatty as you want to
make it. (You can also follow a delete command by a p; the first undeleted
line is printed.) An s command can be preceded by one or two line numbers, to
indicate that the substitution is to be done on a range of lines:

.+1s/bgein/begin/

fixes the mistake on the next line, and

174 SOFTWARE TOOLS IN PASCAL

1,$s/bgein/begin/g

CHAPTER 6

does it everywhere on all lines. (This is handy for consistent misspellers.) Dot is
left pointing to the last line which was changed.

s is probably the most useful command in the editor, since it permits you to
specify changes in a line or lines succinctly. It is frequently used to add text to
the end of a line

s/$/ new end/

or the beginning

s/%/new beginning /

or the middle

s/and/& furthermore/p

The character that delimits the pieces of a substitute command need not be a
slash; any character will do, so

s:/: :g

deletes all slashes in a line. Of course you could achieve the same effect by
"escaping" the slash, as in

s/@///g

but this can be confusing.
The last pattern used in a context search or substitute is remembered, and

can be specified by a null pattern like / / or \ \. If you say /begin/ to find a
begin keyword, and it's not the one you want, you can say / / to get to the
next one, or \ \ to go back to the previous one. The remembered pattern elim­
inates a lot of tedious and error-prone re-typing. A typical use of remembered
patterns while substituting is

/bgein/s//begin/p
//s//begin/p
//s//begin/p

to walk (slowly) through a document, picking up the misspellings one by one.
You know you have them all when a search fails. You can change them all at
once with

1,$s/bgein/begin/gp

but this prints only the last one for verification.

We return now to operations that affect whole lines of text. Most important
is the append command a, to add new lines of text to the buffer. It is the basic
mechanism for adding text to a file, or for making a file to begin with. This

CHAPTER 6 EDITING 175

entire book and all the programs that go with it were at one time or another
appended to the buffer of a text editor very similar to the one we are presenting
here.

Since it is used so much, the append mechanism tries to be as unobtrusive as
possible. Once it encounters the command a, the editor enters a special append
mode where everything following is tucked away in the appropriate part of the
buffer. Escapes and all other characters lose their special meaning, until a line
is encountered that contains only a period. This signal, which is easy to type,
and unlikely to appear in ordinary text, marks the end of append mode and is
not itself copied into the buffer. Subsequent lines are interpreted as commands
once again.

So to add text to the buffer, you specify where you want to put it and do an
append. To tack stuff on to the end, for instance,

$a
anything you want to type
except a line containing only a .
as in the following line:

This adds three lines to the buffer, then resumes looking for commands. It was
not necessary to escape the period at the end of the second line, since that char­
acter is magic only when it stands alone at the beginning of a line. To add
something at the beginning of the buffer, you can use the line number zero, as
in Oa. If no 'ine number is specified, the text is appended after the current line
(dot).

The insert command i is identical to a, except that it inserts lines before the
line named, instead of after it. The change command c replaces one or more
lines with a fresh group of zero or more lines:

line 1, line2 c
stuff

replaces line I through lineZ with whatever lines follow the c. If no line
numbers are given, dot is used by both i and c.

Clearly if you have a and d, you don't need either c or i. The extra flexi­
bility appears to be worthwhile, however, and the amount of additional code
turns out to be insignificant.

Dot is left at the last line of text appended, changed or inserted, so you can
correct errors as you go, as in this sequence. (The annotations in italics are to
clarify what is going on.)

176 SOFTWARE TOOLS IN PASCAL

a
if (i < 3) then bgein

s/bge/beg/
a
000 more text
botched line

c
corrected stuff .. o

CHAPTER 6

append some text
oops!
stop appending
fix it
resume appending right after corrected line

oops again
stop appending
just replace it entirely
and continue typing

The behavior of dot and the default line numbers may seem like a minor con­
cern, but in fact proper choices are crucial for smooth editing. The example
above works naturally, without any explicit line numbers, because dot and the
default line numbers are "right" each time. We have tried to take similar care
with other commands.

The move command m lets you move a block of one or more lines to any
place in the buffer, and thus provides for "cut and paste" editing. The com­
mand

line 1, line2 m line3

moves line} through line2 inclusive to after line3. Thus

0' 0 + 1m$

moves the current line and the one following to the end of the buffer, and

$mO

moves the last line to the beginning ("after line zero"). If no line} or line2 is
present, line dot is moved. Dot is left pointing to the last line moved.

You can add the contents of any file to the buffer with the read command r:

r file

reads file, places its contents right after line dot, and sets dot to the last line
read in. Lines already in the buffer are not altered. If a line number is speci­
fied with the r command, the text is read in after that line.

Any part of the buffer can be written onto any file with the write command
w·,

\procedure\,/%end/w test

writes the current procedure on test, assuming that a line that begins with
end marks the end. If no lines are given, a w command writes out the entire
contents of the buffer, and if you omit the file name (a bare w command), it
writes on the file name used in the original edi t file command. w does not
change dot, nor does it alter the buffer.

The edit command

CHAPTER 6

e file

reinitializes the editor buffer just as if you had quit and typed

edit file

EDITING 177

Finally, the quit command q lets you leave the editor gracefully. The file
you were working on is not saved automatically -- if you want it saved, you
have to issue an appropriate w command before the q.

Any editor command except a, c, i and q can be preceded by a global pre­
fix:

9 Ipatternlcommand

specifies that command is to be performed for each line in the buffer that con­
tains an instance of pattern. g, like w, has a default range of all lines, but a
smaller range can be given. A common use of the global prefix is to print all
lines containing an interesting pattern:

g/interesting/p

(which is what the program find does), or to delete all lines with an undesir­
able pattern:

g/undesirable/d

For example,

g/" *$/d

deletes empty lines and lines that contain only blanks. You could use

g/bgein/sllbegin/gp

to find all bgein's, fix them" and print each corrected line as a check. Since
the command that follows a global prefix can have a range of lines, we can even
print all lines near ones that contain an interesting pattern:

g/interesting/.-1,.+1p

The g prefix is definitely an advanced feature, not the concern of a first-time
user, but it's worth learning.

There is also a x command which is identical to g except that it operates
only on those lines that do not contain the pattern (x is for "exclude"):

xl" *$/p

prints only non-blank lines.

That pretty much covers the commands, hut before we get into the code,
here arc a few more notes on line numbers, since much of editing is concerned
with specifying the lines you want to do things to.

178 SOFTWARE TOOLS IN PASCAL CHAPTER 6

A semicolon may be used to separate line numbers just as a comma does,
but it has the additional effect of setting dot to the latest line number before
evaluating the next argument.

/abc/;.+1p

scans forward to the next line containing abc, then prints that line and the one
following it (. + 1).

A line number expression may be arbitrarily complex, so long as its value
lies between 0 and $, inclusive. And there can be any number of expressions,
so long as the last one or two are legal for the particular command. Thus

\function\;\\

finds the second previous function declaration, and

/begin/;//;//;//p

prints from the third succeeding line containing begin to the fourth, inclusive.
You can do a lot of editing without global prefixes, semicolons and multiple

context searches, and indeed there is seldom call for anything as elaborate as
the last example. But as you gain familiarity with the editor, more and more of
these things become natural. And when you write scripts to perform complex
editing sequences on a series of files, these facilities are invaluable.

Here is the manual page for edi t so you can see where we are going.

PROGRAM
edi t edit text files

USAGE
edit [file]

FUNCTION
edi t is an interactive text editor that reads command lines from its input and writes display
information, upon command, to its output. It works by reading text files on command into
an internal "buffer" (which may be quite large), displaying and modifying the buffer contents
by other commands, then writing all or part of the buffer to text files, also on command.
The buffer is organized as a sequence of lines, numbered from 1; lines are implicitly renum­
bered as text is added or deleted.
Context searches and substitutions are specified by writing text patterns, following the same
rules for building patterns as used by find. Substitutions specify replacement text following
the same rules as used by the program change.

Line numbers are formed from the following components:

n

•
/patternr
<pattern>;

a decimal number
the current line (vdot")
the last line
a forward context search
a backward context search

Components may be combined with + or -, as in, for example,

• +1

$-5
sum of . and I
five lines before $ icotuinued on next page)

CHAPfER6 EDITING 179

Line numbers are separated by commas or semicolons; a semicolon sets the current line to the
most recent line number before proceeding.
Commands may be preceded by an arbitrary number of line numbers (except for e, f and q,
which require that none be present). The last one or two are used as needed. If two line
numbers are needed and only one is specified, it is used for both. If no line numbers are
specified, a default rule is applied:

(.) use the current line
(• + 1) use the next line
(. , .) use the current line for both line numbers
(1 , •) use all lines

In alphabetical order, the commands and their default line numbers are:

(.) a
(.,.) c
(.,.) dp

e file
f file

(.) i
(• , .) m line3 p

(.,.) p

q
(.) r file
(. , .) s/pat/new/gp

(1,.) w file
(.) =p

(• + 1) newline

append text after line (text follows)
change text (text follows)
delete text
edit file after discarding all previous text, remember file name
print file name, remember file name
insert text before line (text follows)
move text to after line3
print text
quit
read file, appending after line
substitute new for occurrence of pat
(g implies for each occurrence across line)
write file (leaves current state unaltered)
print line number
print one line

The trailing p, which is optional, causes the last affected line to be printed. Dot is set to the
last affected line, except for f, W, and =, for which it is unchanged.
Text entered with a, c and i is terminated with a line containing just a ' . '.
The global prefixes cause repeated execution of a command, once for each line that matches
(g) or does not match (x) a specified text pattern:

(1,.) g/pattern/command
(1 , •) x rpatternrcommand

command can be anything but a, c , i or q, and may be preceded by line numbers as usual.
Dot is set to the matched line before command is done.
If the command line argument file is present, then the editor behaves as if its input began
with the command e file. The first filename used is remembered, so that a subsequent e,
f, r, or W command can be written with no filename to refer to the remembered filename.
A filename given with e or f replaces any remembered filename.

EXAMPLE
Don't be silly.

Exercise 6-1. Compare the external characteristics of edi t with the editing facilities
available on your system. 0

6.2 Line Numbers

A warning: edit is a big program; at 950 lines (excluding contributions
from translit, find and change), it is fifty percent bigger than anything
else in this book. Although we have done our best to write it well and to
present it well, it will take study to assimilate fully. Bear with us as you read

180 SOFTWARE TOOLS IN PASCAL CHAPTER 6

{ status returns }

and be willing to take a couple of passes over difficult parts.
Input to the editor is a series of command lines, each of which looks like

line 1, line2 command stuff

where line J , line2 and stuff are all typically optional. Thus the mai n loop of the
editor is

while (getline(lin, STDIN, MAXSTR))
get list of line numbers from lin
if (status is OK)

do command

We observed earlier that edi t is among those programs that must be abso­
lutely reliable and robust. It can't just exit, even when the most ghastly errors
happen, because giving up might cost the user whatever work has been accom­
plished so far. An editor that dies without a struggle will not be used much.

Nearly all parts of edi t pass back status, sometimes as both the value of the
function and in the argument status. We introduce the enumerated type
stcode, with three status values: OK if all is well, ERR if not, and ENDDATA if
any sub-module has consumed the last of the input.

type
stcode = (ENDDATA, ERR, OK);

"Doing the command" is a multi-way decision with one entry for each com­
mand. Most commands validate line numbers, set up defaults if appropriate,
then act, usually by calling further procedures and functions. Underpinning all
of this are routines that maintain the text in the huffer.

Let us begin with the code for obtaining line numbers for a command. This
is an isolated piece that we can understand and get working before doing much
else. That way, when the time comes to start checking editing functions, we
can use it to poke around in the lines of text at will.

The input line is held in the array 1 in, with 1 in [i] the next character to
be examined. The top level for handling line numbers is getlist, which gets
whatever line numbers there are on the input line, updates i so it points one
position beyond the last number, and returns status (OK or ERR) both as the
value of the function and in status.

getlist reads a whole list of line numbers by repeatedly calling on
getone, and remembers the last two in line1 and line2. It ensures that if
no lines were specified, line 1 and line2 are both set to curln, the current
line (dot). If one line is given, line1 and line2 are both set to it. getlist
also records in nlines the number of line numbers actually entered (zero, one,
or two) and updates curln whenever a semicolon is encountered.

There are too many control variables to pass around on each call (although
that is often the preferred way of making data known to sub-modules), so we
will pass things by block structure inheritance. As we mentioned before, it is
also possible to use a record, i.e., an aggregate of related variables, perhaps of

CHAPTER 6 EDITING 181

different types, which can be referenced by one name, but this doesn't really
solve the problems either. All the declarations for global variables are held in a
file which is included in the main procedure. The following variables are
used for line number control:

line 1 : integer;
line2 : integer;
nlines : integer;
curln : integer;
lastln : integer;

first line number }
second line number }
of line numbers specified }
current line -- value of dot
last line -- value of $ }

Here is getlist, which obtains the line numbers that precede a command:

{ getlist -- get list of line nums at lin[i], increment i }
function getlist (var lin: string; var i : integer;

var status : stcode) : stcode;
var

num : integer;
done : boolean;

begin
line2 := 0;
nlines := 0;
done := (getone(lin, i, num, status) <> OK);
while (not done) do begin

line 1 : = line2;
line2 := num;
nlines := nlines + 1;
if (lin[i] = SEMICOL) then

curln := num;
if (lin[i] = COMMA) or (lin[i] SEMICOL) then begin

i := i + 1;
done .- (getone(lin, i, num, status) <> OK)

end
else

done := true
end;
nlines := min(nlines, 2);
if (nlines = 0) then

line2 := curln;
if (nlines <= 1) then

line 1 : = line2;
if (status <> ERR) then

status := OK;
getlist := status

end;

All the arithmetic and general validity checking for line numbers occurs in
getone, which returns a value of type stcode, i.e., OK for a valid number,
ERR for error conditions, and eventually ENDDATA when it sees something that
is not a line number. Note that getlist, like many other functions in the

182 SOFTWARE TOOLS IN PASCAL CHAPTER 6

editor, also returns values of type steode.
Why do we divide up the code this way? For much the same reason we

separated out the functions of mateh in Chapter 5 - each level is preoccupied
with a rather different aspect of control; mixing different aspects in one module
only serves to confuse. Here, getlist has quite enough to do keeping track
of how many line numbers have been seen and whether a semicolon has been
encountered. Reading the code at this level, we couldn't care less how an indi­
vidual line number is obtained, so we defer that to getone.

And it is clear that obtaining a line number is not all that easy either, for
getone in turn passes on some of the work to a subordinate getnum, which
collects a single number in a line number expression. First, here is getone.

{ getone -- get one line number expression }
function getone (var lin: string; var i, num : integer;

var status : steode) : steode;
var

istart, mul, pnum : integer;
begin

istart := i;
num := 0;
if (getnum(lin, i, num, status) OK) then { 1st term}

repeat {+ or - terms }
skipbl (lin, i);
if (lin[i] <> PLUS) and (lin[i] <> MINUS) then

status := ENDDATA
else begin

if (lin[i] = PLUS) then
mul .- +1

else
mul . - -1;

i := i + 1;
if (getnum(lin, i, pnum, status) OK) then

num : = num + mul * pnum;
if (status = ENDDATA) then

status .- ERR
end

until (status <> OK);
if (num < 0) or (num > lastln) then

status := ERR;
if (status <> ERR) then begin

if (i <= istart) then
status .- ENDDATA

else
status .- OK

end;
getone .- status

end;

skipbl merely skips blanks and tabs; it is used in getone to permit spaces

CHAPTER 6 EDITING 183

between terms of a line number expression. We could have used it in ctoi
(Chapter 2) and getword (Chapter 3), for it performs a common operation. It
will be used regularly from now on.

{ skipbl -- skip blanks and tabs at s[i] ... }
procedure skipbl (var s : string; var i : integer);
begin

while (s[i] = BLANK) or (s[i] = TAB) do
i .- i + 1

end;

getnum evaluates one number in a line number expression, where a number
is either an integer, . (dot), s, or a context search.

{ getnum -- get single line nt~ber component }
function getnum (var lin: string; var i, num

var status: stcode) : stcode;
integer;

begin
status := OK;
skipbl(lin, i);
if (isdigit(lin[i])) then begin

num := ctoi(lin, i);
i := i - 1 {move back; to be advanced at end}

end
else if (lin[i] CURLINE) then

num := curln
els~ if (lin[i] = LASTLINE) then

num := lastln
else if (lin[i] = SCAN) or (lin[i] = BACKSCAN) then begin

if (optpat(lin, i) = ERR) then {build pattern}
status .- ERR

else
status .- patscan(lin[i], num)

end
else

status := ENDDATA;
if (status = OK) then

i := i + 1; { next character to be examined}
getnum := status

end;

optpat builds a scan pattern; if the pattern in lin is empty, the previous
pattern will be used. patscan performs the actual context search.

184 SOFTWARE TOOLS IN PASCAL CHAPTER 6

{ optpat -- get optional pattern from lin[i], increment i }
function optpat (var lin: string; var i : integer) : stcode;
#include "makepat.p"
begin

if (lin[i] = ENDSTR) then
i : = 0

else if (lin[i+1] ENDSTR) then
i : = 0

else if (lin[i+1] lin[i]) then {repeated delimiter
i .- i + 1 {leave existing pattern alone}

else
i .- makepat(lin, i+1, lin[i], pat);

if (pat[1] = ENDSTR) then
i : = 0;

if (i = 0) then begin
pat[1] .- ENDSTR;
optpat . - ERR

end
else

optpat .- OK
end;

The chain of else if's ensures that the tests are performed in exactly the
right order. (We don't want to look at lin[i+ 1] if lin[i] is ENDSTR.) A
chain of tests is appropriate when the tests are expressions, not constants, and
the order of evaluation must be controlled.

makepat and its supporting routines were defined in Chapter 5. At that
time we wrote makepat to use an arbitrary delimiter to stop the scan. optpat
is the first place that uses the facility; here the delimiter is the character at
1 in [i] , which is either \ or / for context searches.

patscan starts at . + 1 or . -1, depending on direction, and scans around
the buffer until it either finds a match or gets back to curln. Searching begins
one line away from the current line because presumably we just did something
to the current line and we'd like to get on with the next one. Testing for a pat­
tern match is done by match and its subordinates, also from Chapter 5.

CHAPTER 6 EDITING 185

boolean;
string;

{ patscan -- find next occurrence of pattern after line n }
function patscan (way: character; var n : integer) : stcode;
var

done
line

begin
n .- curln;
patscan := ERR;
done := false;
repeat

if (way = SCAN) then
n .- nextln(n)

else
n . - prevln (n) ;

gettxt (ri , line);
if (match(line, pat)) then begin

patscan := OK;
done := true

end
until (n = curln) or (done)

end;

optpat and patscan must know about the pattern array pat, which is
another global variable:

pat : string; { pattern }

In addition, patscan must be able to obtain actual lines of text for match. It
does so by invoking gettxt, which returns the line in its second argument.
gettxt is part of the interface to the buffer management. Since patscan
needs only the text, gettxt need only be mentioned here; we will discuss
implementation later.

prevln and nextln are functions for walking around the buffer, one line
at a time. It turns out to be convenient to have in the buffer at all times a
"line zero" that contains nothing (so no pattern will match it). Line zero can
serve as a legal line number for commands like a, m and r, which must be able
to put things before the first line. Line zero is an instance of a useful technique
- simplifying a program by adding a dummy element to a data structure, to
make the boundary conditions easier to work with.

{ nextln -- get line after n }
function nextln (n : integer) : integer;
begin

if (n >= lastln) then
nextln .- 0

else
nextln .- n + 1

end;

186 SOFTWARE TOOLS IN PASCAL

{ prevln -- get line before n
function prevln (n : integer)
begin

if (n <= 0) then
prevln .- lastln

else
prevln .- n - 1

end;

integer;

CHAPTER 6

To summarize the line number code, here is the tree of calls for the major
procedures and functions so far.

edit
getlist

getone
getnum

optpat
makepat

patscan
gettxt, match, nextln, prevln

Once again the progression is from the general (getlist) to the specific
(optpat, patscan) in several stages. Each level of the hierarchy handles a
progressively smaller part of the whole problem, eliminating the need to know
many details at any level.

makepat and match in tum call upon additional routines that we wrote in
Chapters 2 and 5. Of course this saves us a fair amount of coding, but much
more important is consistency. translit, find, change and edit all use
the same rules and conventions for patterns; there is no need to learn and
remember separate rules for each. This reduces the burden on users and
encourages those who know one program to try the others.

6.3 Control Program

Let's go back to the top now, and specify command handling in detail.
Basically, the editor is a loop, reading command lines, decoding them and car­
rying them out. We want to ensure that as much as possible each command
line is completely sensible before carrying out any irreversible action, for other­
wise a small slip could destroy a whole file. This means that, like expand in
Chapter 2, the control structure of edi t will mostly reflect error checking.

edi t will accept only one command per line, although that command may
optionally be preceded by a global prefix. We will fill in the details of global
processing later, after learning more about what can be done with the basic
commands. For now, we can write the main processing loop of edi t as

CHAPTER 6 EOmNG 187

OK) then

while (getline(lin, STDIN, MAXSTR»
i : = 1
cursave := curln
if (getlist(lin, i, status) = OK)

if (ckglob(lin, i, status) = OK)
status := doglob(lin, i, cursave, status)

else if (status <> ERR)
status = docmd(lin, i, false, status)

{ else error, do nothing}
if (status = ERR)

message('?')
curln := min(cursave, lastln)

else if (status = ENDDATA)
break out of loop

{ else OK, loop }

ckglob looks for g/ . . . I or xl ... I; if either is found, ckglob marks
the lines for processing by doglob, which does the desired command on each
marked line. We will get back to these later; for now we can assume a dummy
ckglob that returns ENDDATA (no global command seen). If no global prefix
is found, and if there was no error, docmd executes the command for the range
of lines found by getlist. The false argument to docmd says that it is not
being called from within a global prefix.

The main routine must restore curln on an error (unless it goes past
lastln), since it is changed with each semicolon found by getlist and may
be altered by commands done by doglob and docmd.

The editor's response to all errors is a terse ? This brevity is acceptable
only because the error is almost always obvious, usually a slip in typing or a
search that failed. In such cases an error message impedes getting on with the
job. edi t is structured so that wordier error messages could readily be
inserted, however; one of the exercises is concerned with filling in the details.

Most of the code in docmd is in a long if ... else if ... else if to
identify which command is to be performed; each case is followed by a few lines
to perform the task, most often by procedure call.

The entry for print (p), for example, is

if (lin[i] = PCMD) then begin
if (lin[i+1] = NEWLINE) then

if (default(curln, curln, status)
status := doprint(line1, line2)

end

This checks for a valid command format, verifies that the line numbers are rea­
sonable, then performs the appropriate routine. Most of the tests in this pro­
cedure use two or more if's of the form

188 SOFTWARE TOOLS IN PASCAL

if () then
if () then

CHAPTER 6

We emphasize that a sequence of tests must be performed in the given order.
Pascal, like many languages, does not guarantee any particular order for evalua­
tion of logical expressions (or any other expressions, for that matter), nor does
it guarantee that evaluation of a logical expression will terminate as soon as the
truth value is known. We cannot use

if (lin[i] = PCMD) { wrong! }
and (lin[i+1] = NEWLINE)
and (default(eurln, eurln, status) = OK) then ...

because we do not want a call to defaul t to set status to OK after we have
established that lin[i+ 1] is not a NEWLINE. We are also careful to surround
each if ... then if sequence with begin-end so the next else is associ­
ated with the proper if.

The p command expects two line numbers. If only one is given, it is used
for both line numbers (i.e., print only one line). If none are given, the current
line is used for both line numbers. Our notation for this is (.,.) p, the
parentheses indicating that line numbers are optional, and the two dots showing
the default values. default sets defaulted line numbers to the specified
values.

{ default -- set defaulted line numbers
function default (def1, def2 integer;

var status : steode) : steode;
begin

if (nlines = 0) then begin
line1 .- def1;
line2 .- def2

end;
if (line1 > line2) or (line1 <= 0) then

status .- ERR
else

status .- OK;
default := status

end;

In no case is it permissible to print line zero or wrap around the end of the
buffer, so defaul t flags this as an error. (getlist has already ensured that
line2 is not beyond lastln.)

The actual printing is straightforward:

CHAPTER 6

{ doprint -- print lines n1 through n2 }
function doprint (n1, n2 : integer) : steode;
var

i : integer;
line : string;

begin
if (n1 <= 0) then

doprint := ERR
else begin

for i := n1 to n2 do begin
gettxt(i, line);
putstr(line, STDOUT)

end;
eurln := n2;
doprint := OK

end
end;

EDITING 189

doprint is called from several places in docmd, so it is necessary to check for
line zero here as well as in defaul t. We use the same mechanism as in
patscan to locate actual text, by calling on gettxt to get the line we want to
print.

Note that there is no printing of gratuitous noise like "end of file" when line
$ is printed. Indeed edit is quiet in most ways. Just because a program is
used interactively, it does not mean that you should be forced to listen to it
babble. One trouble with chatty programs is that you can't turn them off when
you want to use them with other programs. Thus printing should occur only
when you specify it, so that commands can work silently. But it is called for
often enough to warrant some extra notation and shorthand. s, m and d com­
mands can be followed by a p, to print the (last) line affected. And a com­
mand line containing only line numbers (no command) causes the last line
specified to be printed. Most commonly, this will be a single line, as in 1 or $

or I abel - 2, but it also could be many:

/abe/;//;//;//

will print only the fourth occurrence of abc, not the third through the fourth as
when the trailing p is present. And finally, a completely empty command line
(newline only) is taken as . + 1p, so you can walk through the buffer by typing
newlines.

docmd is the first routine in this book which is longer than one page (when
we show it all). Although it is foolish to set arbitrary limits, it does seem wise
to keep individual routines shorter than a page, for the shorter a program is, the
easier it is to grasp. (And once a page boundary is crossed, it's hard to keep
track of indentation.) The median size of our routines is 15 lines; the mean is
19 lines. Even our bigger-than-a-page procedures are designed to be easy to
understand - each is just a chain of else if's that chooses among a large set

190 SOFfWARE TOOLS IN PASCAL CHAPTER 6

of alternatives; each alternative is readily comprehended. docmd is shown in its
entirety later in this chapter; for now, the part that controls printing is

{ docmd -- handle all commands except globals }
function docmd (var lin: string; var i : integer;

glob boolean; var status : steode) : stcode;
var

fil, sub string;
line3 : integer;
gflag, pflag : boolean;

begin
pflag := false; { may be set by d, m, s }
status := ERR;
if (lin[i] = PCMD) then begin

if (lin[i+1] = NEWLINE) then
if (default(curln, curln, status) OK) then

status := doprint(line1, line2)
end
else if (lin[i] = NEWLINE) then begin

if (nlines = 0) then
line2 := nextln(curln);

status := doprint(line2, line2)
end
else if (lin[i] = QCMD) then begin

if (lin[i+1]=NEWLINE) and (nlines=O) and (not glob) then
status := ENDDATA

end
else if (lin[i] ACMD) then begin

and so on for other commands ... }

else status is ERR

if (status = OK) and (pflag) then
status := doprint(curln, curln);

docmd .- status
end;

This also shows the code for the quit command q, which is called for by a
command line containing only q. It causes the editor to exit, just as if it had
encountered an ENDFILE while reading commands. Nothing is printed, for the
same reasons that most commands are silent.

Furthermore, nothing is written onto any file after a q command. You
might ask whether it would be better to write out the editing buffer automati­
cally, or at least to ask the user for confirmation before exiting. The latter
guards against embarrassing mistakes, but it should only ask for confirmation if
the buffer has been modified since the last write and there should be some way
to suppress the query when the editor is used noninteractively. This is more
mechanism than we want to describe initially, however, so we will leave it as an

CHAPTER 6 EDITING 191

exercise.
It is hard to decide how much to protect users from their own behavior, but

in our experience, it is generally wisest to keep out of people's way: assume they
know what they are doing and let them do it with as few prohibitions and warn­
ings as you can manage. You will hear from them quickly enough when you do
something wrong.

6.4 ButTer Representations

In this section we will deal with how the buffer of lines being edited is actu­
ally represented. We begin by discussing the command append, which adds text
to the buffer. The lines to be appended are placed in the buffer right after the
line specified, or right after the current line if no line number is provided. Our
shorthand for this rule is (.)a. It should be clear why we want to be particular
about what is acceptable as a command. If you forget to enter append mode
before typing text, you don't want arbitrary letters in a word to cause changes
in the text. Instead a ? will bring you up short after just one line of nonsense.

The code in docmd that calls append is

else if (lin[i] = ACMD) then begin
if (lin[i+1] = NEWLINE) then

status := append(line2, glob)
end

and append itself is

192 SOFTWARE TOOLS IN PASCAL

{ append -- append lines after "line"
function append (line: integer; glob
var

boolean)

CHAPTER 6

stcode;

inline : string;
stat stcode;
done : boolean;

begin
if (glob) then

stat := ERR
else begin

curln := line;
stat := OK;
done := false;
while (not done) and (stat = OK) do

if (not getline(inline, STDIN, MAXSTR)) then
stat := ENDDATA

else if (inline[1] = PERIOD)
and (inline[2] = NEWLINE) then

done := true
else if (puttxt(inline) = ERR) then

stat .- ERR
end;
append .- stat

end;

Appending text under control of a global prefix is more code than we want to
handle right now; if necessary, you can achieve the same effect with an r com­
mand. This version of append outlaws global appends, but the possibility of
special treatment for them later is left open.

The work of inserting each new line and updating curln to point at it is
done by the routine puttxt . To see how it works, we must learn a little more
about how the buffer is organized.

We want to be able to rearrange lines freely, and to scan in either direction
efficiently. Several organizations are possible. For instance, we could use a
two-way linked list of text lines where each line entry contains pointers to the
previous line and to the next line. (With links in both directions operations like
scanning backwards do not pay a time penalty.) That way, we could rewrite
pointer information to move lines around as needed. Appending and deleting
entire sections would also be easy. But finding the nth line requires a scan
down a list.

Alternatively, we could keep a single array of positions of text lines, and
rearrange the position values as lines are deleted or moved, as we did for sort
in Chapter 4. Since appending, deleting and reading all change the number of
lines, bookkeeping is needed to keep the active positions in a compact set. But
finding any given line is fast.

As it turns out, the position-array organization is substantially easier to work
with than the linked list (we tried that once before and it was a mess), and for

CHAPTER 6 EDITING 193

most operations is just as efficient. Therefore that is what we will use.
Where should the lines be stored? The easiest thing is to hold everything in

memory, but that can put a severe limit on the size of file we can deal with.
We could compromise and put the text out on some working file, keeping the
positions in memory along with enough information to locate each text line in
the file. That limits the total number of lines we can handle, but allows for
many more characters of text. Or we could keep the position vector on a file,
and access only what we need through a fixed size "window."

However we choose to do it, the important thing is to isolate the implemen­
tation as much as possible from the rest of the program. That way we can
optimize a given implementation, even change the entire strategy, just by alter­
ing a handful of low-level buffer management routines.

In this particular case, we can implement any of the possibilities mentioned
above by writing seven functions:
• setbuf initializes the buffer to contain only a valid line zero, and creates a

scratch file if necessary.
• clrbuf discards the scratch file, if one is used.
• puttxt (lin) copies the text in lin into the buffer immediately after the

current line and sets curln to the last line added.
• gettxt (n , s) copies the contents of line n into the string s.
• blkmove (n 1 ,n2 ,n3) rearranges lines by moving the block of lines n 1

through n2 to after line n3. n3 must not be between n 1 and n2.
• putmark (n, m) places the mark m on line n for global prefix processing.
• getmark (ri) returns the mark on line n.

It is not necessary to know (and there is no way of knowing) whether the
text resides in memory, or the positions do, or anything. So long as one line of
text is available, we can do everything we have to in the way of editing. That
means that the buffer in memory can contain all the data, or it can be a fixed
size window on a much larger world. Once we have a working editor it's easy
to change buffer management, because the interface to the buffer manager is
well specified and the code for it is isolated.

We should stress that we didn't start with these routines right at the begin­
ning. Instead we "discovered" them as we wrote the editor from top to bot­
tom. (And to be honest, we discovered different versions as we re-thought the
program from time to time - the first draft is rarely the best.) By seeing at
each stage what operations we wanted to perform on the text, we were able to
abstract this handful of basic functions. It also helped that we wanted to put off
deciding the actual implementation as long as possible - that goal steered us
away from a number of more restrictive designs. Given this set of basic opera­
tions, and measurements showing where the editor spends its time, we can
improve edit's efficiency as it becomes necessary, without touching the bulk of
the code.

But the first order of business is to get a working editor, so we pick the easi­
est form of buffer management to implement, keeping everything in memory in

194 SOFTWARE TOOLS IN PASCAL CHAPTER 6

an array of strings buf. Since we also have to look ahead to marks, we will use
a record to hold both the text and the mark.

in-memory edit buffer entry
type

buftype
record

txt string;
mark : boolean

end;

text of line }
mark for line }

var
buf : array [O .. MAXLINES] of buftype;

Thus the text for a particular line is accessed as buf [i] . txt and the mark as
buf [i] . mark. Each text line occupies an array position in buf ; no attempt is
made to use space efficiently. Marks are stored as booleans; we will return to
this later.

We can now write in-memory versions of the buffer management routines.
clrbuf is easiest, when there is no scratch file.

{ clrbuf (in memory) -- initialize for new file}
procedure clrbuf;
begin

{ nothing to do
end;

gettxt isn't much harder:

{ gettxt (in memory) -- get text from line n into s }
procedure gettxt (n : integer; var s : string);
begin

scopy(buf(n].txt, 1, s, 1)
end;

blkmove moves lines around; it does most of its work with the help of a
subordinate, reverse, which reverses part of an array. Three well-chosen
reversals cause the desired group of lines to move. We have illustrated one case
here; you should verify the other yourself.

n1 n2 I Lx y z n3 I original positions

n2 n1 I Ix y z ~ first reversal

n2 n1
I E z y xI second reversal

x y z n3JI n 1 ... n2 I third reversal

CHAPTER 6 EDmNG 195

{ blkmove -- move block of lines n1 .. n2 to after n3 }
procedure blkmove (n1, n2, n3 : integer);
begin

if (n3 < n1-1) then begin
reverse(n3+1, n1-1);
reverse (n 1, n2);
reverse(n3+1, n2)

end
else if (n3 > n2) then begin

reverse (n 1, n2);
reverse(n2+1, n3);
reverse(n1, n3)

end
end;

{ reverse -- reverse buf[n1] ... buf[n2]
procedure reverse (n1, n2 : integer);
var

temp: buftype;
begin

while (n1 < n2) do begin
temp : = buf [n 1] ;
buf [n 1] . - buf [n2] ;
buf[n2] .- temp;
n1 .- n1 + 1;
n2 := n2 - 1

end
end;

setbuf sets up the buffer initially, by creating line zero. Line zero regular­
izes the code - appending after line zero is not a special case, for instance. As
currently written, the program never looks at the contents of line zero, but we
have chosen to make it a null string nonetheless. This was originally put in as
insurance, then left in to appease a gnawing sense of insecurity, just in case
someday a programmer modifying edi t inadvertently does look at it. Pro­
grammers have the right to be ignorant of many details of your code and still
make reasonable changes.

{ setbuf (in memory) -- initialize line storage buffer}
procedure setbuf;
var

null: string; {value is " }
begin

null[1] := ENDSTR;
scopy(null, 1, buf[O].txt, 1);
curln := 0;
lastln .- 0

end;

196 SOFTWARE TOOLS IN PASCAL CHAPTER 6

puttxt adds the new line at the end (if it fits), then calls blkmove to
move it into place. puttxt also updates curln and lastln appropriately.

{ puttxt (in memory) -- put text from lin after curln }
function puttxt (var lin: string) : stcode;
begin

puttxt := ERR;
if (lastln < MAXLINES) then begin

lastln := last In + 1;
scopy(lin, 1, buf[lastln].txt, 1);
putmark(lastln, false);
blkmove(lastln, lastln, curln);
curln := curln + 1;
puttxt := OK

end
end;

putmark will appear shortly, when we discuss global prefixes.
We can now show some more of the procedure hierarchy, to help you keep

track of who calls whom.

edit
setbuf
getlist
docmd

append
getline
puttxt

blkmove, putmark
default
doprint

gettxt
clrbuf

Most of the growth will be in docmd as we add more cases.

Exercise 6-2. Change the quit command so it will prompt for reassurance if the buffer
has been changed since the last write. How do you tum prompting off? 0

Exercise 6-3. What happens to the current line when you append nothing, that is, when
you write the command sequence

a

Is this reasonable? 0

Exercise 6-4. Is there any circumstance under which a context search could match line
zero? 0

CHAPTER 6 EDITlNG 197

6.5 More Commands: Delete, Insert, Change, Print line number, Move

Another important capability besides appending is making unwanted text go
away. This is done with the delete command (. , .)d. In docmd we add:

else if (lin[i] = DCMD) then begin
if (ckp(lin, i+1, pflag, status) = OK) then

if (default(curln, curln, status) = OK) then
if (lndelete(line1, line2, status) = OK) then
if (nextln(curln) <> 0) then

curln := nextln(curln)
end

The delete command removes the line or lines specified and leaves curln
pointing at the next line after the stuff removed, unless that would be off the
end of the buffer, in which case curln is set to lastln. The optional p, to
print this line as a check, is checked and recorded in pf lag by ckp:

{ ckp -- check for "p" after command }
function ekp (var lin : string; i : integer;

var pflag : boolean; var status : steode)
begin

skipbl(lin, i);
if (lin[i] = PCMD) then begin

i := i + 1;
pflag .- true

end
else

pflag := false;
if (lin[i] = NEWLINE) then

status .- OK
else

status .- ERR;
ckp := status

end;

stcode;

The actual work is done in the function Indelete, which leaves curln
pointing to the line just before the lines removed, and resets lastln to the new
last line. (We use lndelete to avoid a name conflict with the delete pro­
cedure of archive.)

198 SOFTWARE TOOLS IN PASCAL

{ lndelete -- delete lines n1 through n2
function lndelete (n1, n2 : integer; var status

: steode;
begin

if (n1 <= 0) then
status := ERR

else begin
blkmove(n1, n2, lastln);
lastln := lastln - (n2 - n1 + 1);
eurln := prevln(n1);
status := OK

end;
lndelete .- status

end;

CHAPTER 6

steode)

Note that lines are "deleted" by moving them to the end of the buffer, then
abandoning them by decreasing lastln. This implies that we are not going to
attempt to reclaim text storage while a given file is being edited, no matter what
set of primitives we use.

Three other commands are easily implemented using existing routines.
Insert or (.) i injects text immediately before the specified line number.

else if (lin[i] = ICMD) then begin
if (lin[i+1] = NEWLINE) then begin

if (line2 = 0) then
status .- append(O, glob)

else
status .- append(prevln(line2), glob)

end

Change or (. , .) c deletes the lines in the specified range, then injects text
in their place.

else if (lin[i] = CCMD) then begin
if (lin[i+1] = NEWLINE) then

if (default(eurln, eurln, status) = OK) then
if (lndelete(line1, line2, status) = OK) then

status := append(prevln(line1), glob)
end

And (.) = is used to print the value of a line number expression (or of the
current line number), so you can see where some line is. It is often used as $=

to tell how many lines are in the buffer.

CHAPTER 6 EDITING 199

else if (lin[i] = EQCMD) then begin
if (ckp(lin, i+1, pflag, status)

putdec(line2, 1);
putc(NEWLINE)

end
end

The move command m rearranges lines of text:

(• , •) m line3

OK) then begin

causes the specified line or lines to be taken from wherever they currently reside
and placed immediately after line3. Since getone is used to obtain line.i , any
valid expression can be used, such as

/const/m\function\p

which moves the next line containing const to immediately after the closest
previous line containing function. curln is left pointing at the last line
moved, which would contain const in this case. The optional trailing p prints
this line. The code in docmd is

else if (lin[i] = MCMD) then begin
i := i + 1;
if (getone(lin, i, line3, status) ENDDATA) then

status := ERR;
if (status = OK) then

if (ckp(lin, i, pflag, status) = OK) then
if (default(curln, curln, status) = OK) then

status := move(line3)
end

and the work is done in move:

{ move -- move line1 through line2 after line3
function move (line3 : integer) : stcode;
begin

if (line1<=O) or ((line3>=line1) and (line3<line2)) then
move := ERR

else begin
blkmove(line1, line2, line3);
if (line3 > line1) then

curln .- line3
else

curln .- line3 + (line2 - line1 + 1);
move : = OK

end
end;

Exercise 6-5. How would you test that part of the editor built so far? Pay particular
attention to behavior at the "boundaries," such as 0i, mO, m. -1, m. ~ and 1, $d. 0

200 SOFTWARE TOOLS IN PASCAL CIIAPTER 6

Exercise 6-6. Implement a copy command k

(. , .)kline] p

which makes a copy of a block of lines after line3, instead of moving them. (The
mnemonic k for "copy" is strained but we're running out of letters, and it seems
worthwhile to retain the single-letter convention for command narnes.) LJ

6.6 The Substitute Command

So far we have dealt with entire lines of text. But we have the change pro­
gram of Chapter 5 to draw upon, so we can easily add a substitute command s

that selectively replaces text matched by a text pattern.
The format of a substitute command is

(. , .) s/pattern/new/g

where the delimiter / can actually be any character other than newline. The 9
suffix is used when you want to alter all matching substrings, as in change; if
the 9 is absent only the leftmost match is altered.

The code in docmd that checks for substitute is

else if (lin[i] = SCMD) then begin
i := i + 1;
if (optpat(lin, i) = OK) then

if (getrhs(lin, i, sub, gflag) = OK) then
if (ckp(lin, i+1, pflag, status) = OK) then
if (default(curln, curln, status) = OK) then

status := subst(sub, gflag, glob)
end

It uses optpat, as does getnum, to encode the pattern, then calls on getrhs
("get right hand side") to encode the replacement string and look for a g.
getrhs in turn relies on makesub, which we wrote for change, to do most of
the work. Both makepat and makesub were written so the delimiter can be
any character. This permits substitute commands to be delimited by any con­
venient character, not necessarily the slashes we have used in most of our exam­
ples. (This is handy when you want to substitute instances of / and don't feel
like escaping it every time.) ckp again checks for the optional trailing p that
prints the resulting line, and defaul t sets the default line numbers if neces­
sary.

CHAPTER 6 EDITING 201

{ getrhs -- get right hand side of "s" command }
function getrhs (var lin : string; var i : integer;

var sub: string; var gflag : boolean) : stcode;
begin

getrhs := OK;
if (lin[i] = ENDSTR) then

getrhs := ERR
else if (lin[i+1] = ENDSTR) then

getrhs := ERR
else begin

i := makesub(lin, i+1, lin[i], sub);
if (i = 0) then

getrhs := ERR
else if (lin[i+1] ord('g')) then begin

i := i + 1;
gflag .- true

end
else

gflag .- false
end

end;

All that remains is the code for subst, which is modeled after subline,
from change in Chapter 5.

202 SOFTWARE TOOLS IN PASCAL CHAPTER 6

{ subst -- substitute "sub" for occurrences of pattern }
function subst (var sub : string; gflag, glob : boolean)
var

new, old : string;
j, k, lastm, line, m : integer;
stat : stcode;
done, subbed, junk boolean;

begin
if (glob) then

stat .- OK
else

stat .- ERR;
done := (line1 <= 0);
line := line1;
while (not done) and (line <= line2) do begin

j : = 1;
subbed := false;
gettxt(line, old);
lastm := 0;
k : = 1;
while (old[k] <> ENDSTR) do begin

if (gflag) or (not subbed) then
m .- amatch(old, k, pat, 1)

else
m .- 0;

if (m > 0) and (lastm <> m) then begin
{ replace matched text }
subbed := true;
catsub(old, k, m, sub, new, j, MAXSTR);
lastm := m

end;
if (m = 0) or (m = k) then begin

{ no match or null match }
junk := addstr(old[k], new, j, MAXSTR);
k .- k + 1

end
else {skip matched text }

k : = rn

stcode;

end;
if (subbed) then begin

if (not addstr(ENDSTR, new, j, MAXSTR)) then begin
stat .- ERR;
done .- true

end
else begin

stat := lndelete(line, line, status);
stat := puttxt(new);
line2 := line2+curln-line;
line := curln;

CHAPTER 6 EOmNG 203

if (stat = ERR) then
done .- true

else
stat .- OK

end
end;
line .- line + 1

end;
subst .- stat

end;

It is considered an error for a substitute command to make no substitutions at
all, since that often indicates that you didn't type the right pattern, or that you
applied it to the wrong line. But under the control of a g or x prefix, subst

can be called many times and a failure in one of them does not mean that the
whole thing has failed. The first test in subst checks for the global prefix.

catsub is much the same as putsub in Chapter 5.

{ catsub -- add replacement text to end of new }
procedure catsub (var lin: string; s1, s2 : integer;

var sub : string; var new : string;
var k : integer; maxnew : integer);

var

ENDSTR) do begin
DITTO) then
s1 to s2-1 do
:= addstr(lin[j], new, k, maxnew)

addstr(sub[i], new, k, maxnew);

integer;
boolean;

else
junk .­

i := i +

i, j
junk

begin
i : = 1;
while (sub[i] <>

if (sub[i] =
for j : =

junk

end
end;

Exercise 6-7. How would you get a line containing only a dot into the buffer? 0

Exercise 6-8. What is the meaning of each occurrence of 1 1 in

labc/;II;llslll

What does the command do? 0

Exercise 6-9. What happens when you delete all the characters on a line, as in

s/7*11

What if you then delete the newline, as in

s/@nll

What happens if you delete the newline at the end of a non-empty line? What happens

204 SOFTWARE TOOLS IN PASCAL CHAPTER 6

if you substitute additional newlines into existence? Express desirable behavior in one or
two concise rules, then implement it. 0

Exercise 6-10. Modify the s command so users can specify which substitutions are
wanted; for example, "s3/x/y/" could mean "change the third x into y," and
"s 1-5/x/y/" would change the first 5 instances. How ornate should such a feature
be? LJ

Exercise 6-11. Implement the transliterate command (. , .) t, which maps one character
set Into another, as in the transli t program of Chapter 2. That is

1,$t/a-z/A-Z/

would convert lower case letters to upper case on all lines. Why would you want this
facility in addition to translit? Why would you want translit in addition to this
facility? LJ

Exercise 6-12. How would you implement an undo command u, which would undo the
effect of the last substitute command (that is, replace the new line by the old one)? Can
you extend it to other commands? 0

6.7 Input/Output

We could quit right about now and have a pretty comprehensive text editor.
By adding a little more code, we could have a program we could invoke as

edi t file

which reads file into its internal buffer for processing and, just before exiting,
writes it back.

Instead, we are going to add a few more commands that will let us read and
write files explicitly, so we can selectively merge and split files or make multiple
copies without going outside the editor. These extra commands greatly increase
the ease with which you can do "cut and paste" editing.

The edit command e file clears the internal buffer and copies file into it.
There is also a read command (.) r file, which appends the contents of file
right after the specified line, as if they had been typed after an a command,
without altering text already in the buffer. Files are created or rewritten with
the write command (1, $) w file, which copies the specified range of lines onto
.file , replacing its previous contents. The default for this command is to write
the entire buffer if there are no line numbers, or to write one line if there is
only one line number. Dot is set to the last line read on e and r commands.
The w command does not change dot or the buffer contents, so you can write
intermediate versions of the file without interfering with editing.

A filename is remembered from the argument in edi t file, or from the first
r or w command that specifies one, or from the most recent e command. An
I/O command with no file uses the remembered name, so an unadorned e, r or
w command refers to the file you began with. The filename command f prints
the remembered name for inspection, or sets it if a name is given, as in the
command f file, We introduce another global variable called savefile to

CHAPTER 6

hold the remembered file name.

EDITING 205

savefile : string; {remembered file name }

The code in docmd for filename processing is

else if (lin[i] = ECMD) then begin
if (nlines = 0) then

if (getfn(lin, i, fil) = OK) then begin
scopy(fil, 1, savefile, 1);
clrbuf;
setbuf;
status := doread(O, fil)

end
end
else if (lin[i] = FCMD) then begin

if (nlines = 0) then
if (getfn(lin, i, fil) = OK) then begin

scopy(fil, 1, savefile, 1);
putstr(savefile, STDOUT);
putc(NEWLINE);
status := OK

end
end
else if (lin[i] = RCMD) then begin

if (getfn(lin, i, fil) = OK) then
status := doread(line2, fil)

end
else if (lin[i] = WCMD) then begin

if (getfn(lin, i, fil) = OK) then
if (default(1, lastln, status) = OK) then

status := dowrite(line1, line2, fil)
end;

The (1, s) line number rule for the w command is enforced by defaul t,
described earlier.

Filenames are obtained and checked by getfn, which insists on at least one
space and a filename, or nothing at all.

206 SOFTWARE TOOLS IN PASCAL

{ getfn -- get file name from lin[i] ...
function getfn (var lin : string; var i

var fil : string) : steode;
var

k : integer;
stat : steode;

#inelude "getword.p"
begin

stat := ERR;
if (lin[i+1] = BLANK) then begin

k := getword(lin, i+2, fil);
if (k > 0) then

if (lin[k] = NEWLINE) then
stat := OK

CHAPTER 6

integer;

{ get new filename }

ENDSTR) then
save if no old one }

end
else if (lin[i+1] = NEWLINE)

and (savefile[1] <> ENDSTR) then
seopy(savefile, 1, fil, 1);
stat := OK

end;
if (stat = OK) and (savefile[1]

seopy(fil, 1, savefile, 1);
getfn := stat

end;

begin

doread and dowri te both print the number of lines transmitted, as a
check and to signal completion of the operation. This design is inconsistent
with our earlier lecture about programs that talk too much, but it has been our
experience that users prefer some feedback for operations like rand w which
involve a significant change in the status of either local or external file copy.
The line count provides a rough confirmation that you transmitted what you
really wanted to. It also tells you when the command is done. A design princi­
ple like "avoid excessive chatter" is a guideline to be applied intelligently, not
an absolute rule to be followed blindly. (It's a straightforward but useful exer­
cise to add an option to tum the count off when it isn't wanted.)

CHAPTER 6 EDITING 207

{ doread -- read "fil" after line n }
function doread (n : integer; var fil
var

string) stcode;

count : integer;
t : boolean;
stat : stcode;
fd : filedesc;
inline : string;

begin
fd := open(fil, IOREAD);
if (fd = IOERROR) then

stat := ERR
else begin

curln := n;
stat := OK;
count := 0;
repeat

t := getline(inline, fd, MAXSTR);
if (t) then begin

stat := puttxt(inline);
if (stat <> ERR) then

count := count + 1
end

until (stat <> OK) or (t = false);
close(fd) ;
putdec(count, 1);
putc(NEWLINE)

end;
doread .- stat

end;

208 SOFTWARE TOOLS IN PASCAL

{ dowrite -- write lines n1 .. n2 into file}
function dowrite (n1, n2 : integer; var fil
var

i : integer;
fd : filedesc;
line : string;

begin
fd := create(fil, IOWRITE);
if (fd = IOERROR) then

dowrite := ERR
else begin

for i := n1 to n2 do begin
gettxt(i, line);
putstr(line, fd)

end;
close(fd) ;
putdec(n2-n1+1, 1);
putc(NEWLINE);
dowrite := OK

end
end;

string)

CHAPTER 6

stcode;

Exercise 6-13. Modify the rand w commands so they produce no confirming line count.
Experiment with both versions. Which do you prefer? Add an option to control it.
Modify the w command so that it can optionally append the information to the file
instead of overwriting. 0

6.8 Global Commands

We have now specified everything in the editor except the details of the glo­
bal prefix g, which has the format

(1 , $) g / pattern/command

Default line numbers are the same as for the w command: if none are given the
entire buffer is examined. For every line that matches pattern the command will
be obeyed. But sometimes it is more convenient to specify a pattern that
matches those lines we want to leave alone, so we define the complement of g

to be x:

(1 , $)x/pattern/command

does command on every line that does not contain pattern. (The mnemonic sig­
nificance of x is "exclude." The code is written entirely in terms of symbolic
constants, however, only one of which needs to be changed to alter our selection
if you prefer something else.)

command can be any edi t command except q, and a, c or i, whose opera­
tion in global commands we have left as an exercise. Furthermore, it may be
preceded by line numbers with context searches and so on. For example,

CHAPTER 6

g/%{/p

EDITING 209

prints lines that begin with a {, such as the comment lines that introduce our
procedures and functions, and

g/%{/ .,/%begin/-1p

prints from the comment line to just before the begin that terminates the
declaration part.

Since we allow d, m and r after a global prefix, executing a command can
cause all sorts of rearrangements of the lines in the buffer, so we must be pre­
cise in defining the order in which lines are examined and acted upon. We
must also take care that the editor does not get into infinite loops, yet still does
more or less what we want and expect.

The scheme we settled on may not be perfect, but it is simple and it works.
First we go through the entire range marking lines that match (g) or do not
match (x) the pattern. We also erase any leftover marks on all other lines.
All this is done in ckglob, which picks off the global prefix if it exists.

210 SOFTWARE TOOLS IN PASCAL CHAPTER 6

{ ckglob -- if global prefix, mark lines to be affected
function ckglob (var lin : string; var i : integer;

var status : stcode) : stcode;
var

n : integer;
gflag : boolean;
temp : string;

begin
if (lin[i] <> GCMD) and (lin[i] <> XCMD) then

status .- ENDDATA
else begin

gflag := (lin[i] = GCMD);
i := i + 1;
if (optpat(lin, i) = ERR) then

status := ERR
else if (default(1,lastln,status) <> ERR) then begin

i := i + 1; { mark affected lines
for n := line1 to line2 do begin

gettxt(n, temp);
putmark(n, (match(temp, pat) = gflag))

end;
for n := 1 to line1-1 do erase other marks

putmark(n, false);
for n := line2+1 to lastln do

putmark(n, false);
status := OK

end
end;
ckglob := status

end;

getmark and putmark are trivial:

{ getmark -- get mark from nth line }
function getmark (n : integer) : boolean;
begin

getmark .- buf[n].mark
end;

{ putmark -- put mark m on nth line }
procedure putmark(n : integer; rn : boolean);
begin

buf[n].mark := m
end;

'The rest of the work is done in dog lob, which is called (from the main rou­
tine) if ckglob finds a valid global prefix. doglob begins examining lines for
marks, starting at line 1. If one is found doglob erases it, sets curln, and
obeys the command by calling docmd. Otherwise, it proceeds around the
buffer, keeping careful count of how many lines have been examined since the

CHAPTER 6 EDITING 211

last success. When it makes a complete pass without seeing a mark
(count> lastln) it is done.

{ doglob -- do command at lin[i] on all marked lines}
function doglob (var lin: string; var i, cursave : integer;

var status stcode): stcode;
var

count, istart, n : integer;
begin

status := OK;
count := 0;
n := line1;
istart := i;
repeat

if (getmark(n)) then begin
putmark(n, false);
curln := n;
cursave := curln;
i := istart;
if (getlist(lin, i, status) = OK) then

if (docmd(lin, i, true, status) = OK) then
count .- 0

end
else begin

n := nextln(n);
count := count +

end
until (count> lastln) or (status <> OK);
doglob := status

end;

For each marked line, dot is set to that line, then the command is executed with
docmd. (The true argument indicates that the command is being done under
control of a global prefix. Only a, c , i, sand q worry about this.) The com­
mand itself can modify dot, access multiple lines, and so forth. For example,

g/procedure/. ,/%end$/p

prints all procedures (assuming religious formatting) - each time a line contain­
ing procedure is found, all lines from there to an unindented end are
printed.

As a more difficult example,

g/%/mO

marks every line, then goes back and moves each line to the beginning of the
buffer. The effect is to reverse the order of the lines. Another example, based
on the same operation, is this one which we use from time to time:

212 SOFTWARE TOOLS IN PASCAL CIIAfYfER 6

g/thing/mO
0;\\=

which moves all lines with thing on them to the beginning, then finds the last
one. The net result is to count the thing's, at the expense of scrambling the
buffer. You can also count thing's with

x/thing/d
$=

if you don't mind deleting lines from the buffer.

Exercise 6-14. One operation that does not work properly is this attempt to separate
even and odd numbered lines in the buffer:

g/%/.+1m$

What does it actually do? How would you change move so this works properly (and no
other useful operation gets messed up)? 0

Exercise 6-15. Prove that doglob cannot loop forever. 0

Exercise 6-16. How would you improve the efficiency of 9 processing? (Consider
9 /%/d.) Is it worth it? 0

6.9 The Main Routine

We are now in a position to present the main routine for edi t. Before we
do, however, here is the entire code for docmd, so you can see it all at once
and refresh your memory. As we said, though it is long, it is only a multi-way
branch that selects one of many alternatives.

CHAPTER 6 EDITING 213

{ docmd -- handle all commands except globals }
function docmd (var lin: string; var i : integer;

glob boolean; var status : stcode) : stcode;
var

fil, sub string;
line3 : integer;
gflag, pflag : boolean;

begin
pflag := false; { may be set by d, m, s }
status := ERR;
if (lin[i] = PCMD) then begin

if (lin[i+1] = NEWLINE) then
if (default(curln, curln, status) OK) then

status := doprint(line1, line2)
end
else if (lin[i] = NEWLINE) then begin

if (nlines = 0) then
line2 := nextln(curln);

status := doprint(line2, line2)
end
else if (lin[i] = QCMD) then begin

if (lin[i+1]=NEWLINE) and (nlines=O) and (not glob) then
status := ENDDATA

end
else if (lin[i] = ACMD) then begin

if (lin[i+1] = NEWLINE) then
status := append(line2, glob)

end
else if (lin[i] = CCMD) then begin

if (lin[i+1] = NEWLINE) then
if (default(curln, curln, status) = OK) then
if (Indelete(line1, line2, status) = OK) then

status := append(prevln(line1), glob)
end
else if (lin[i] = DCMD) then begin

if (ckp(lin, i+1, pflag, status) = OK) then
if (default(curln, curln, status) = OK) then
if (Indelete(line1, line2, status) = OK) then
if (nextln(curln) <> 0) then

curln := nextln(curln)
end
else if (lin[i] = ICMD) then begin

if (lin[i+1] = NEWLINE) then begin
if (line2 = 0) then

status .- append(O, glob)
else

status .- append(prevln(line2), glob)
end

end

214 SOFTWARE TOOLS IN PASCAL

else if (lin[i] = EQCMD) then begin
if (ckp(lin, i+1, pflag, status)

putdec(line2, 1);
putc(NEWLINE)

end

CHAPTER 6

OK) then begin

end
else if (lin[i] = MCMD) then begin

i := i + 1;
if (getone(lin, i, line3, status) ENDDATA) then

status := ERR;
if (status = OK) then

if (ckp(lin, i, pflag, status) = OK) then
if (default(curln, curln, status) = OK) then

status := move(line3)
end
else if (lin[i] = SCMD) then begin

i := i + 1;
if (optpat(lin, i) = OK) then

if (getrhs(lin, i, sub, gflag) = OK) then
if (ckp(lin, i+1, pflag, status) = OK) then
if (default(curln, curln, status) = OK) then

status := subst(sub, gflag, glob)
end
else if (lin[i] = ECMD) then begin

if (nlines = 0) then
if (getfn(lin, i, fil) = OK) then begin

scopy(fil, 1, savefile, 1);
clrbuf;
setbuf;
status := doread(O, fil)

end
end
else if (lin[i] = FCMD) then begin

if (nlines = 0) then
if (getfn(lin, i, fil) = OK) then begin

scopy(fil, 1, savefile, 1);
putstr(savefile, STDOUT);
putc(NEWLINE);
status := OK

end
end
else if (lin[i] = RCMD) then begin

if (getfn(lin, i, fil) = OK) then
status := doread(line2, fil)

end
else if (lin[i] = WCMD) then begin

if (getfn(lin, i, fil) = OK) then
if (default(1, lastln, status) = OK) then

status := dowrite(line1, line2, fil)
end;

CHAPTER 6

{ else status is ERR

if (status = OK) and (pflag) then
status := doprint(curln, curln);

docmd .- status
end;

EDmNG 215

This is the main routine for edit, with its complete declarations. This code
also handles the optional file name in edi t file.

{ edit -- main routine for text editor
procedure edit;
#include "editcons.pll
#include "edittype.p"
#include "editvar.p"

cursave, i : integer;
status : stcode;
more : boolean;

#include "editproc.p"
begin

setbuf;
pat[1] := ENDSTR;
savefile[1] := ENDSTR;
if (getarg(1, savefile, MAXSTR)) then

if (doread(O, savefile) = ERR) then
message (, 7 ') ;

more := getline(lin, STDIN, MAXSTR);
while (more) do begin

i : = 1;
cursave := curln;
if (getlist(lin, i, status) = OK) then begin

if (ckglob(lin, i, status) = OK) then
status := doglob(lin, i, cursave, status)

else if (status <> ERR) then
status := docmd(lin, i, false, status)

{ else ERR, do nothing }
end;
if (status = ERR) then begin

message (, 7 ') ;
curln := min(cursave, lastln)

end
else if (status = ENDDATA) then

more := false;
{ else OK }
if (more) then

more := getline(lin, STDIN, MAXSTR)
end;
clrbuf

end;

To refresh your memory, here are the variables from edi tvar:

216 SOFTWARE TOOLS IN PASCAL

{ editvar -- variables for edit }
var

buf : array [0 .. MAXLINES] of buftype;

CHAPTER 6

line 1 : integer;
line2 : integer;
nlines : integer;
curln : integer;
lastln : integer;

pat : string;
lin : string;
savefile : string;

first line number }
second line number }
of line numbers specified }
current line -- value of dot
last line -- value of $ }

pattern }
input line }
remembered file name }

The constants for edi t are in editcons and the procedure inclusions in
editproc:

{ editproc -- procedures for edit }
#include "edprim.p" { editor buffer primitives}
#include "amatch.p"
#include "match.p"
#include "skipbl.p"
#include "optpat.p"
#include "nextln.p"
#include "prevln.p"
#include "patscan.p"
#include "getnum.p"
#include "getone.p"
#include "getlist.pll
#include "append.p"
#include "lndelete.p"
#include "doprint.p"
#include "doread.p"
#include "dowrite.p"
#include "move.p"
#include "makesub.p"
#include "getrhs.p"
#include "catsub.p"
#include lI s u b s t . p "
#include "ckp.p"
#include "default.p"
#include "getfn.p"
#include "docmd.p"
#include "ckglob.p"
#include "doglob.p"

CHAPTER 6

{ editcons -- const declarations for edit }
const

MAXLINES = 100; { set small for testing
MAXPAT = MAXSTR;
CLOSIZE = 1; {size of a closure entry
DITTO = -1;
CLOSURE = STAR;
BOL PERCENT;
EOL DOLLAR;
ANY QUESTION;
CCL LBRACK;
CCLEND = RBRACK;
NEGATE = CARET;
NCCL = EXCLAM;
LITCHAR = LETC;
CURLINE = PERIOD;
LASTLINE = DOLLAR;
SCAN = SLASH;
BACKSCAN = BACKSLASH;

ACMD LETA; {= ord('a')
CCMD LETC;
DCMD LETD;
ECMD LETE;
EQCMD = EQUALS;
FCMD LETF;
GCMD LETG;
ICMD LETI;
MCMD LETM;
PCMD LETP;
QCMD LETQ;
RCMD LETR;
SCMD LETS;
WCMD LETW;
XCMD LETX;

EDITING 217

text of line }
mark for line }

{ edittype -- types for in-memory version of edit }
type

stcode = (ENDDATA, ERR, OK); {status returns
buftype = in-memory edit buffer entry

record
txt string;
mark : boolean

end;

Finally, here is an outline of the procedure hierarchy for edi t. As before,
a number of low level service routines have been omitted to keep it down to
manageable size.

218 SOFTWARE TOOLS IN PASCAL

edit
setbuf
doread
getlist

getone
getnum

optpat
makepat

patscan
gettxt, match

CHAPTER 6

ckglob
optpat, match, gettxt, getmark, putmark, default

doglob
getlist, docmd, getmark, putmark

docmd
append

puttxt
blkmove

default
lndelete

blkmove
ckp
getone
move

blkmove
optpat
getrhs

makesub
subst

gettxt, amatch, lndelete, puttxt, catsub
getfn
doread

puttxt
dowrite, doprint

gettxt
clrbuf

docmd knows about a large number of routines, but this is not as bad as it
seems, for on any call to docmd we need only concern ourselves with one case.
In that light, the hierarchy for edi t is straightforward.

Exercise 6-17. Add a next command (.,.) nk that will print the next k lines starting at
line2. The default value of k is slightly less than one screenful. A negative k should
print the k previous lines. What should happen if there are less than k lines in the speci­
fied direction? 0

Exercise 6-18. Do you think it would be better it edi t told you more about what it is
doing? If so, modify append to print a prompting * before reading each line, and force
a print after every command. Try both versions for a while and see which you prefer.
You might consider an options command 0, that lets you run the editor in verbose mode

CHAPTER 6 EDITING 219

(ov) with prompts or in silent mode (08). In which state should the editor start? 0

Exercise 6-19. Add a command to tum off the significance of metacharacters like ?,
[l , and so on. If the metacharacters are turned off, it should be possible to restore the
special meaning temporarily by preceding the character with an escape character. Should
metacharacters be on or off by default? 0

Exercise 6-20. Implement a list command 1, which is identical to the print command p,
except that it prints some visible representation of otherwise invisible characters like
backspaces, tabs, blanks at the ends of lines, and non-graphics. 0

Exercise 6-21. Some people object (with justification) to a bald? as the sole diagnostic.
Implement a ? command that concisely describes the most recent error. 0

Exercise 6-22. How would you specify a global append so that you only have to enter
the text to be appended (or changed or inserted) once? How would you implement it?
How would you allow an arbitrary number of commands to be controlled by a global
prefix? How would you implement nested global prefixes? Would recursion simplify the
job? 0

Exercise 6-23. If your system requires or strongly encourages line numbers semi­
permanently attached to lines, or if you prefer them on esthetic grounds, modify the edi­
tor to handle them. The "absolute" line numbers need to be usable with any command,
generated somehow by a, c , and i, treated appropriately by 8 and m, and dealt with by
rand w. Should relative line numbers remain? 0

6.10 Scratch Files

Now that we have a working editor, we can concentrate on making it better.
Our first concern is the buffer storage, which is intentionally rudimentary in the
current version. We can gain considerable capacity by keeping only position
information in memory and maintaining the bulkier text on a scratch file.

The main change is to separate the text of the lines from the position infor­
mation, because not all the text will be in memory at once. Most of it is off on
a scratch file, stored in a manner we haven't yet described. What we must do
is organize the in-memory information so that (with the help of another primi­
tive) we can treat the scratch file as an unlimited extension of memory, albeit
with a longer access time.

Consider a substitute command. The text of the line must be accessed,
which means it must be found on the scratch file, unless we're lucky and it's
already in memory. The current version of the line must be deleted from the
scratch file, which can be done by simply forgetting about it - the text remains
on the scratch file, but nothing points to it. Then the replacement line is
added, which is most easily done by adding it to the end of the scratch file.
Clearly to make all of this work we still require position information such as we
had with the in-memory version so we can deduce what line follows what; we
need to know where the current version of a line is on the scratch file so it can
be read; we have to be able to move to that point on the scratch file to access it;
and we have to be able to move to the end to write out a new version.

The organization this time is a bit different.

220 SOFTW ARE TOOLS IN PASCAL CHAPTER 6

text of line }
mark for line }

{ edittype -- types for scratch-file version of edit }
type

stcode = (ENDDATA, ERR, OK);
buftype =

record
txt : integer;
mark : boolean

end;

var
buf : array [O .. MAXLINES] of buftype;
scrout : filedesc; {scratch input fd }
scrin : filedesc; {scratch output fd }
recin : integer; {next record to read from scrin
recout : integer; {next record to write on scrout
edittemp : string; {temp file name 'edtemp' }

This time the buftype record contains a record number where the correspond­
ing text can be found on the scratch file. scrin and scrout are file descrip­
tors for reading and writing the scratch file, and recin and recout are the
numbers of the next input and output records on the file.

Rather than restrict ourselves to some specific storage medium such as tape
or disk for the scratch file, we introduce an additional primitive called seek to
provide a standard interface.

seek ipos, filedesci

positions the specified file for a subsequent read or write beginning at the file
position pos . filedesc is a file descriptor returned by open or create. In our
implementation, we keep track of the record simply by counting how much has
been read or written .

We found it easiest to express pos in terms of records (that is, lines of text),
but in a different environment, you might use the number of characters as the
positioning information. Since seek depends very strongly on peculiarities of
individual systems, we will not present a version here: it must be considered a
primitive.

In any case, seek does whatever is necessary to find its way back to a line
of text written earlier or forward to one further down the file. The program
can thus view a file as a randomly addressable array of lines, leaving it up to
primitives to worry about making it work. This is as it should be.

puttxt is much as before:

CHAPTER 6 EDITING 221

{ puttxt (scratch file) -- put text from lin after curln }
function puttxt (var lin: string) : stcode;
begin

puttxt := ERR;
if (lastln < MAXLINES) then begin

lastIn := lastln + 1;
putstr(lin, scrout);
putmark(lastln, false);
buf[lastln].txt := recout;
recout := recout + 1;
blkmove(lastln, lastln, curln);
curln := curln + 1;
puttxt : = OK

end
end;

All new text is added at the end of the file, at record number recout; scrout
is the file descriptor for writing the scratch file, returned by create.

gettxt again fetches a line of text; in our implementation, it must seek to
the proper place on the scratch file, then read the line into txt.

{ gettxt (scratch file) -- get text from line n into s }
procedure gettxt (n : integer; var s : string);
var

junk : boolean;
begin

if (n = 0) then
s[1] := ENDSTR

else begin
seek(buf[n].txt, scrin);
recin := recin + 1;
junk := getline(s, scrin, MAXSTR)

end
end;

Our scratch file scheme works with just one line of text in memory at any
one time, although this is not very efficient, and we could do much better by
keeping more lines around. One of the exercises is concerned with making
better use of memory.

Now that we know the steady state workings of the scratch file routines, we
can set up the initialization and termination routines. It is usually best to
proceed this way, saving initialization and termination to the last, for it is only
then that you have a proper appreciation for what has to be done.

222 SOFIWARE TOOLS IN PASCAL CHAPTER 6

{ setbuf (scratch file) -- create scratch file, set up line 0 }
procedure setbuf;
begin

{ setstring(edittemp, 'edtemp');
edittemp[1] .- ord('e');
edittemp[2] .- ord('d');
edittemp[3] .- ord('t');
edittemp [4] . - ord (, e') ;
edittemp[5] .- ord('m');
edittemp[6] .- ord('p');
edittemp[7] .- ENDSTR;

scrout := mustcreate(edittemp, IOWRITE);
scrin := mustopen(edittemp, IOREAD);
recout := 1;
recin := 1;
curln := 0;
lastln .- 0

end;

{ clrbuf (scratch file) -- dispose of scratch file}
procedure clrbuf;
begin

close(scrin) ;
close(scrout);
remove(edittemp)

end;

The other buffer routines - blkmove, reverse, getmark and putmark
- are unchanged.

Exercise 6-24. Replace the existing buffer control primitives with the scratch file set
(plus seek). Measure the mean line length of a sample of your files (what tools would
you use to do this?) and use this data to estimate the relative capacities of the two ver­
sions of the editor. 0

Exercise 6-25. Run various editions of the editor against a standard script of commands
and compare response times. Use this information to determine how elaborate your
buffer mechanism should be. 0

Exercise 6-26. On most systems, edit can be made faster by trying to anticipate the
lines that will be used in the immediate future and reading several lines at one time.
Modify gettxt or a subordinate to read a group of lines when gettxt is called, unless
the line is already present in memory. The challenge is to organize things so that for
common editing operations the line is already present with high probability. What are
the common operations that are worth improving? How much code has to be changed?
How much will this speed up various operations? 0

Exercise 6-27. No attempt is made to reclaim space used by deleted lines on the scratch
file. What problems can this cause? How would you implement a garbage collection
scheme, modifying lndelete as little as possible? (lndelete is the only routine
where space is thrown away; it is called for by the c , d and s commands.) Is it better to

CHAPTER 6 EDITING 223

recycle collected garbage as soon as possible, or only when necessary, or never? What
measurements would you make to justify your prejudice? 0

Exercise 6-28. Magnetic tape has the property that you can never read information past
the latest stuff written (i.e., you dare not rewrite patches in the middle). Does our
scratch file maintenance scheme work properly with magnetic tape? Why would you
want to be able to use tape with the text editor? What are its drawbacks? 0

Exercise 6-29. How would you implement an editor that keeps all information on a
scratch file, including line pointers? Can you still use magnetic tape? Is garbage collec­
tion worthwhile? 0

Exercise 6-30. If your system provides a run primitive that lets you execute a command
from within a running program, implement an "escape" command @ that lets you type
an operating system command from within the editor. For instance,

@edit file

would invoke a fresh instance of edi t on file; when that instance is finished, execution
resumes in the current editor. What modifications are necessary in setbuf and
clrbuf if nested editors are to work correctly? 0

One aspect of system environment we have not mentioned is handling signals
from the outside world, primarily interrupts. In an editor it is desirable that the
user be able to stop the current command, for example to terminate a long print
command, without losing any information. In general, interrupts arrive at
unpredictable and probably inconvenient times, so the editor must be prepared
to maintain its integrity as it deals with them. For a print command, this is not
much of a problem, but you can imagine the difficulties when an interrupt
occurs in the middle of a move command done under a global prefix. The
problem is to stop the current action as soon as possible, yet remain sane
enough that subsequent editing proceeds properly.

Exercise 6-31. If your system provides a primitive for catching interrupts, modify edit
so it handles them properly, without losing information or buffer consistency. What can
you do if there is no way to intercept an interrupt? What happens if a user hangs up the
phone? 0

Once a file gets too big, it may be too much trouble to provide some of the
nice features of edit, like global commands and reverse searching with \ \.
But it is still vital to be able to perform most editing tasks on big files. One
possibility is to cannibalize edi t to make a "stream editor." A stream editor
digests a set of commands, then copies its standard input to its standard output,
applying all the commands to each input line in tum. The set of editing
transformations is necessarily limited. For example, any command that implies
backwards or repeated scanning of the file would be disallowed; this includes
\ \, some aspects of the global prefix, the move command, and minus signs in
line number arithmetic (no /begin/ -1).

The command

224 SOFIWARE TOOLS IN PASCAL

lineJ, line2 command

CHAPTER 6

would be taken to mean, "Attempt this command on the first line that matches
the first line number, and on all subsequent lines until you find one that
matches the second; then begin watching for a match of the first line number
again." A single line number would imply doing the command on each line that
matched the pattern; a missing line number would perform the command on
every line. Multiple commands should be allowed after any selection pattern.

If you have a stream editor, find and change are special cases, respec­
tively

sedi t /pattern/p

and

sedi t /pattern/s/ /replacement/gp

Should find and change be retained as separate programs nonetheless?

Exercise 6-32. Design and implement a stream editor based on the suggestions above. 0

6.11 Summary

It is hard to get a proper perspective on the design or code of anything as
large as a text editor, particularly without some experience using it.

One useful approach is to make a list of common editing tasks, then com­
pare how they are expressed in several editors. Here is one example of a task
which we do regularly, yet which is far beyond the capabilities of many editors.
The text and programs for this book are stored in more than four hundred files
in the file system on our computer. From time to time, we need to go through
the entire book making some change wherever it occurs in this set of files.
Doing each file by hand would be intolerably slow and error-prone, so instead
we can use edit, like this.

First we make a script - the set of commands that we want to do on each
file. (And of course we make it with edit!) One of our scripts, for instance,
converted the word EOF to ENDFILE globally, so we could avoid a potential
conflict with the name of the standard procedure eof. The script was

f
g/EOF/s//ENDFILE/gp
w

The f command echoes the name of the file we're editing, in case something
goes wrong; the s command with global prefix makes the change and prints all
affected lines; and the w command writes the new version back on the file it
came from.

Then we run a program listcat ("list catalog") to prepare a list of all our
files, one file name per line:

CHAPTER 6

listcat >filelist

EDITING 225

places the file list in a file called file list. (Recall that we discussed the>
operation in Chapter 3.)

Next we edit filelist. All of the files in our book contain the letters
book as part of their name, so we first delete all file names that are not part of
the book with an x command:

x/book/d

Then we convert each file name to an e command by putting "e " before it:

1,$s/%/e /

This leaves each line in the buffer in the form

e filename

Then we read in a copy of the script after each file name:

g/?/.r script

At this point each of the original book filenames has been converted into a
group of editing commands consisting of e filename followed by whatever the
script specifies.

We write the whole thing into a file called command:

w command
q

Now the single command

edit <command

invokes the editor with its input coming from the set of editor commands in the
file command. Thus edit does the script, whatever it is, on each of the files in
tum.

In practice, this goes faster than we can describe it. And of course, if you
stop to think about it, you will realize that the editing operations to make the
command file can be placed in another file, perhaps commandmaker, and this
process run whenever a new file of commands is needed. It is a good test of an
editing system to see whether it can accomplish the same function with as little
fuss.

Bibliographic Notes

The earliest traceable version of the editor presented here is TECO, written
for the first PDP-1 timesharing system at MIT. It was subsequently imple­
mented on the SDS-940 as the "quick editor" QED by L. P. Deutsch and
B. W. Lampson; see "An online editor," CACM, December, 1967. K. L.
Thompson adapted QED for crss on the IBM 7090 at MIT, and later D. M.

226 SOFTWARE TOOLS IN PASCAL CHAPTER 6

Ritchie wrote a version for the GE-635 (now Honeywell 6070) at Bell Labs.
The latest version is ed, a simplified form of QED for the Unix operating

system, written by Ritchie and Thompson. Our editor closely resembles ed, at
least in outward appearance.

C. W. Fraser, "A Compact, Portable, CRT-based Text Editor," Software
Practice and Experience, February, 1979, describes the construction of a screen
editor that uses edi t for the editing functions, with a moderate amount of
extra code to handle the terminal. Fraser's paper "A generalized text editor"
(CACM, March, 1980) describes some interesting non-text applications of an
editor very much like edit. The proceedings of the SIGPLAN Conference on
Text Manipulation, Portland (June, 1981), contains several papers describing
innovative text editors; it is a good place to start further reading.

CHAPTER 7: FORMATTING

Our next task is to write a text formatter - a program for neatly formatting
a document on a suitable printer. Naturally the precise meanings of "neatly,"
"formatting," and "suitable" will vary according to your aspirations and your
budget. Our formatter provides a bare minimum of formatting controls, those
which we have observed people actually use when preparing documents. It pro­
duces output for devices like terminals and line printers, with automatic right
margin justification, pagination (skipping over the fold in the paper), page
numbering and titling, centering, underlining, indenting, and multiple line spac­
ing.

A formatter is an important tool for anyone who writes (including program­
mers describing their programs), because, once correct, material is never re­
typed. This has some obvious cost benefits, and helps ensure that the number
of errors decreases with time. Machine formatting eases the typing job, since
margin alignment, centering, underlining and similar tedious operations are
handled by the computer, not by the typist. It also permits drastic format
changes in a document without altering any text. But perhaps most important,
it seems to encourage writers to improve their product, since the overhead of
making an improvement is small and there is an esthetic satisfaction in having a
clean copy.

Freedom from errors may sometimes be the primary concern. For instance,
this book was produced on a phototypesetter driven by a (very) sophisticated big
brother of the formatter we are going to write now. The programs are stored in
the same file system as the text is. When a chapter is printed, programs are
included at the point where they are referred to (by a mechanism much like the
include processor of Chapter 3), sometimes using a stream editor like the one
described in Chapter 6 to select a subset of the lines. In this way, the tested
programs are combined with the text, untouched by human hands. We are
fairly confident that what is printed is what was actually tested.

The format program described in this chapter is quite conventional. It
accepts text to be formatted, interspersed with formatting commands telling
format what the output is to look like. A command consists of a period, a
two-letter name, and perhaps some optional information. Each command must

227

228 SOFIWARE TOOLS IN PASCAL CHAPTER 7

appear at the beginning of a line, with nothing on the line but the command
and its arguments. For instance,

.ce

centers the next line of output, and

.sp 3

generates three spaces (blank lines).
Most of the time, however, the format user should have to know little

about commands and arguments - most formatting happens automatically.
This is merely good human engineering. Ideally a document containing no

commands should be printed sensibly. Default parameter settings and format­
ting actions are intended to be reasonable and free of surprises. For instance,
words fill up output lines as much as possible, regardless of the length of input
lines. Blank lines cause fresh paragraphs. Input is correctly spaced across page
boundaries, with top and bottom margins.

At the same time the design has to be sufficiently flexible that it can be aug­
mented with more advanced features for sophisticated use. Knowledgeable
users should of course be able to change parameter settings as desired. Ulti­
mately it should be possible for users to define new formatting operations in
terms of those already provided. We will explore these possibilities in the exer­
cises at the end of the chapter.

7.1 Commands

As we said, all commands consist of a period at the beginning of a line,
which is an unlikely occurrence in ordinary text, and have two-letter names. It
has been our experience that users prefer concise commands in most languages,
so this seems a reasonable compromise between brevity and mnemonic value.
In any case, the code is written so that some other choice could be made with
minimal changes.

By default format fills output lines, by packing as many input words as
possible onto an output line before printing it. The lines are also justified (right
margins made even) by inserting extra blanks into the filled line before output.
People normally want filled text, which is why we choose it as the default
behavior. It can be turned off, however, by the no-fill command

.nf

and thereafter lines will be copied from input to output without any rearrange­
ment. Filling can be turned back on with the fill command

.fi

When an . nf is encountered, there may be a partial line collected but not
yet output. The . nf will force this line out before anything else happens. The
action of forcing out a partially collected line is called a break. The break

CHAPTER 7 FORMAITING 229

concept pervades format; many commands implicitly cause a break. To force
a break explicitly, for example to separate two paragraphs, use

.br

Of course you may want to add an extra blank line between paragraphs.
The space command

.sp

causes a break, then produces a blank line. To get n blank lines, use

.sp n

(A blank is always required between a command and its argument.) If the bot­
tom of a page is reached before all of the blank lines have been printed, the
excess ones are thrown away, so that all pages will normally start at the same
first line.

By default output will be single spaced, but the line spacing can be changed
at any time:

.ls n

sets line spacing to n. (n==2 is double spacing.) The .1s command does not
cause a break.

The begin page command . bp causes a skip to the top of a new page and
also causes a break. If you use

.bp n

the next output page will be numbered n. A . bp that happens to occur at the
bottom of a page has no effect except perhaps to set the page number; no blank
page is generated. The current page length can be changed (without a break)
with

.pl n

To center the next line of output,

.ce
line to be centered

The . ce command causes a break. You can center n lines with

.ce n

and, if you don't like to count lines (or can't count correctly), say

.ce 1000
lots of lines
to be centered

.ce 0

The lines between the . ce commands will be centered. No filling is done on

230 SOFTWARE TOOLS IN PASCAL

centered lines.
Underlining is much the same as centering:

.ul n

CHAPTER 7

causes the text on the next n lines to be underlined upon output. But . ul does
not cause a break, so words in filled text may be underlined by

words and words and
.ul
lots more
words.

to get

words and words and~~ words.

Centering and underlining may be intermixed in any order:

~ce

.ul
This is a Title

gives a centered and underlined title.
The indent command controls the left margin:

.in n

causes all subsequent output lines to be indented n positions. (Normally they
are indented by 0.) The command

.rm n

sets the right margin to n. The line length of filled lines is the difference
between right margin and indent values. . in and . rm do not cause a break.

The traditional paragraph indent is produced with temporary indent com­
mand:

.ti n

breaks and sets the indent to position n for one output line only.
To put running header and footer titles on every page, use . he and. fo:

.he this becomes the top of page (header) title

.fo this becomes the bottom of page (footer) title

The title begins with the first non-blank after the command, but a leading single
or double quote will be discarded if present, so you can produce titles that begin
with blanks. If a title contains the character #, it will be replaced by the
current page number each time the title is actually printed. . he and . fo do
not cause a break.

Since absolute numbers are often awkward, format allows relative values as
command arguments. All commands that allow a numeric argument n also

CHAPTER 7 FORMAlTING 231

allow +n or - n instead, to signify a change in the current value. For instance,

.rm -10

.in +10

shrinks the right margin by 10 from its current value, and moves the indent 10
places further to the right. Thus

.rm 10

and

.rm +10

are quite different.
Relative values are particularly useful with . ti, to temporarily indent rela­

tive to the current indent:

.in +5

.ti +5

produces a left margin indented by 5, with the first line indented by a further 5.
And

.in +5

.ti -5

produces a "hanging indent," as in a numbered paragraph:

(1) There is no warranty of merchantability nor
any warranty of fitness for a particular
purpose nor any other warranty, either
express or implied, as to the accuracy of the
enclosed materials or as to their suitability
for any particular purpose.

A line that begins with blanks is a special case. If there is no text at all, the
line causes a break and produces a number of blank lines equal to the current
line spacing. If a line begins with n blanks followed by text, it causes a break
and a temporary indent of +n. These special actions help ensure that a docu­
ment that contains no formatting commands will still be reasonably formatted.

To summarize, then, here is the manual page for format. This is a reason­
able set of capabilities, but others will undoubtedly have occurred to you. We
will suggest further possibilities as we go along.

232 SOFTWARE TOOLS IN PASCAL CHAPTER 7

PROGRAM
forma t produce formatted output

USAGE
format

FUNCTION
forma t reads its input a line at a time and writes a neatly formatted version of the input
text to the output, with page headers and footers and with output lines filled to a uniform
right margin. Input text lines may have interspersed among them command lines that alter
this default mode of formatting. A command line consists of a leading period, followed by a
two letter code, possibly with optional arguments following the first sequence of blanks and
tabs.
Certain commands cause a "break" in the processing of input text lines, i.e., any partially
filled line is output and a new line is begun. In the following command summary, the letter
n stands for an optional numeric argument. If a numeric argument is preceded by a + or -,
the current value is changed by this amount; otherwise the argument represents the new
value. If no argument is given, the default value is used.

command break? default function

.bp n yes n= + 1 begin page numbered n

.br yes cause break

.ce n yes n=l center next n lines

.fi yes start filling

. fo str no empty footer title

.he str no empty header title

.in n no n=O indent n spaces

.ls n no n=l line spacing is n

.nf yes stop filling

.pl n no n=66 set page length to n

.rm n no n=60 set nght margin to n

.sp n yes n=l space down n lines or to bottom of page

.ti n yes n=O temporary indent of n

.ul n no n=l underhne words from next n lines

A blank input line causes a break and is passed to the output unchanged. Similarly, an input
line that begins with blanks causes a break and is written to the output with the leading
blanks preserved. Thus a document formatted in the conventional manner by hand will
retain its original paragraph breaks and indentation.

Exercise 7-1. Discuss criteria for which commands should cause a break and which
should not. An alternative design is to have two characters that introduce commands,
instead of one, so that, for instance, . sp causes a break as before, while ,sp does not.
Discuss this design. 0

Exercise 7-2. Write a pipeline to count the words but not the format commands in a
document. 0

7.2 Construction

The text formatter is another good candidate, like the editor and file
archiver, for incremental construction - making the minimum amount that will
do something useful, and then, with this part operational, fleshing out the skele­
ton a piece at a time. This divides a big job into smaller, more manageable
pieces. Testing the first part is easier because it is smaller. If the design is
good, later pieces should not interact much with what has gone before, so for

CHAPTER 7 FORMATI1NG 233

the most part they may be tested independently. There is also a morale boost in
having something working early.

On bigger projects, friendly users can try out a partial program with limited
functions. Their reactions provide vital feedback to evaluate what already exists
and what is yet to come. Often you will learn that what the user wants is less
ornate than either of you thought at first, so some of the hard work can be post­
poned indefinitely. Or you may learn that what the user wants is quite dif­
ferent than you thought. It is foolish to build the whole thing in a closet before
revealing any part of it. (Innocent users are also marvelous at stumbling into
bugs, because they exercise programs in ways you never thought of.)

The text formatter is a case in point. Once a certain minimum capability
has been built, additions can be made without affecting previous code very
much (assuming sensible design in the first place). We will sketch out how the
construction might proceed, now that we know what facilities are to be pro­
vided.

There are several choices for program organization, of which two seem
promising. One is to handle the input one word at a time, and assemble lines
out of words for line-oriented tasks like no-fill and centering. Or we could
input a line at a time and break the line into words when filled text is being
processed. Given the number of formatting operations that are based on lines
- no-fill mode, centering, underlining, and commands themselves - the line­
at-a-time structure seems to be easier. It's a good mental exercise to work out
details of the word-at-a-time design, however. You will find that neither organ­
ization is ideal - each has its awkward parts.

7.3 Command Decoding

The main routine reads input a line at a time and separates it into text and
formatting commands. This much we can write before anything else.

begin
initfmt;
while (getline(inbuf, STDIN, MAXSTR» do

if (inbuf[1] = CMD) then
command(inbuf)

else
text(inbuf)

end;

CMD is the character period (.), unless you prefer something else. initfmt

sets all parameters to their default initial values; we will show it later when we
have discussed what the parameters are.

We begin with command, the routine that decides what kind of command
has appeared, since most of the command interpreting code can be written
before anything else is done. Temporarily text can be a stub which does noth­
ing more than copy text lines from inbuf to the standard output with putstr.

234 SOFTWARE TOOLS IN PASCAL

{ command -- perform formatting command
procedure command (var buf : string);
var

cmd : cmdtype;
argtype, spval, val integer;

begin
cmd := getcmd(buf);
if (cmd <> UNKNOWN) then

val := getval(buf, argtype);
case cmd of
FI: begin

break;
fill := true

CHAPTER 7

end;
NF: begin

break;
fill .- false
end;

BR:
break;

LS:
setparam(lsval,

CE: begin
break;
setparam(ceval,
end;

UL:

val, argtype, 1, 1, HUGE);

val, argtype, 1, 0, HUGE)

setparam(ulval, val, argtype, 1, 0, HUGE);
HE:

gettl(buf, header);
FO:

gettl(buf, footer);
BP: begin

page;
setparam(curpage,val,argtype,curpage+1,-HUGE,HUGE);
newpage := curpage
end;

SP: begin
setparam(spval, val, argtype, 1, 0, HUGE);
space(spval)
end;

IND:
setparam(inval, val, argtype, 0, 0, rmval-1);

RM:

setparam(rmval, val, argtype, PAGEWIDTH,
inval+tival+1, HUGE);

TI: begin
break;
setparam(tival, val, argtype, 0, -HUGE, rmval)

CHAPTER 7 FORMATIlNG 235

end;
PL: begin

setparam(plval, val, argtype, PAGELEN,
m1val+m2val+m3val+m4val+1, HUGE);

bottom .- plval - m3val - m4val
end;

UNKNOWN:
{ ignore

end
end;

The structure of command is a multi-way branch on the command type; we
will explain details as we come to them. Most commands just set the new value
of a parameter, perhaps after causing a break. If one is needed, break is
called to flush out partially filled lines. For the moment we can write a dummy
version which returns without doing anything; since we are currently dealing
only with unfilled text, there will never be any partially filled lines anyway.

The type cmdtype is an enumeration of the possible commands:

type
cmdtype = (BP, BR, CE, FI, FO, HE, IND, LS, NF, PL,

RM, SP, TI, UL, UNKNOWN);

We use IND instead of IN to avoid a possible collision with the keyword in.
The majority of the parameters are kept in global variables in the main rou­

tine, since they are needed throughout the program and there are far too many
to pass around as arguments.

fill : boolean;
lsval integer;
spval integer;
inval integer;
rmval integer;
tival integer;
ceval integer;
ulval integer;

fill if true; init=true }
current line spacing; init=1
of lines to space }
current indent; >= 0; init=O }
right margin; init=PAGEWIDTH=60 }
current temporary indent; init=O }
of lines to center; init=O }
of lines to underline; init=O }

command calls getcmd to decode the command name and getval to
evaluate any arguments to the command.

236 SOFTWARE TOOLS IN PASCAL

{ getcmd -- decode command type }
function getcmd (var buf : string) : cmdtype;
var

cmd : packed array [1 .. 2] of char;
begin

cmd [1] : = chr (buf [2]) ;
cmd [2] : = chr (buf [3]) ;
if (cmd = 'fi') then

getcmd := FI
else if (crnd = 'nf') then

getcmd := NF
else if (cmd = 'br') then

getcrnd := BR
else if (crnd = 'Is') then

getcmd := LS
else if (cmd = 'bp') then

getcmd := BP
else if (cmd = 'sp') then

getcrnd := SP
else if (cmd = 'in') then

getcrnd := IND
else if (cmd = 'rm') then

getcmd := RM
else if (crnd = 'ti') then

getcmd := TI
else if (cmd = 'ce') then

getcmd := CE
else if (cmd = 'ul') then

getcmd := UL
else if (crnd = 'he') then

getcmd := HE
else if (cmd = 'fo') then

getcmd := FO
else if (cmd = 'pI') then

getcmd .- PL
else

getcrnd .- UNKNOWN
end;

CHAPTER 7

When there are relatively few commands, a direct search with a series of expli­
cit tests is certainly easiest and entirely adequate. Ultimately it might prove
desirable to replace the tests by a more general table lookup scheme, perhaps
like the one described in Chapter 8.

Notice that getcmd does not check whether a command is exactly two
letters long, only that the first two letters match a known command. This per­
mits users to write . fill, . break, etc., if they prefer. The drawback is that
any new commands introduced must differ in their first two letters from all oth­
ers, which can lead to some strained mnemonics. You might therefore consider

CHAPTER 7 FORMATTING 237

changing getcmd to check entire command names.
Since nearly all commands allow a numeric argument with an optional sign ..

it is best to write a separate routine to get the argument and the sign. getva1
skips over the command, records the presence or absence of a sign and digits in
argtype, and converts a numeric argument to an integer with ctoi.

{ getval -- evaluate optional numeric argument
function getval (var buf : string;

var argtype : integer) : integer;
var

i integer;
begin

i := 1; { skip over command name}
while (not (buf[i] in [BLANK, TAB, NEWLINE])) do

i := i + 1;
skipbl(buf, i); { find argument
argtype := buf[i];
if (argtype = PLUS) or (argtype MINUS) then

i := i + 1;
getval := ctoi(buf, i)

end;

Even though at the moment all commands consist of a period and two
letters, getva1 is written to skip an arbitrary command terminated by a blank,
tab or newline. (Recall that skipb1, written in Chapter 6, skips blanks and
tabs.) Similarly, a separate routine getcmd decodes the command type. These
choices will make it easier to change the program if it becomes necessary later.
Few programs remain static over their lifetime; it is wise to plan ahead so the
inevitable changes are not traumatic.

Furthermore, getva1 is called for all commands, even those like . he and
. fo which never have a numeric argument. It just isn't worth making a special
case out of them: the formatter may do a microscopic amount of extra work in
such cases, but the rest of the time it does less because the program is less com­
plicated.

setparam is a general routine for updating a parameter, relatively or abso­
lutely or to a default value. It also ensures that the resulting value lies within
specified bounds. For instance, the line spacing is set with the code in
command that reads

LS:
setparam(lsval, val, argtype, 1, 1, HUGE);

This call to setparam will set lsva1 to val if there was no sign with the .1s
command, as in .1s 2, or to lsva1±va1 if there was, as in .1s -1,ortol
if there was no argument at all. In any case the result is forced to lie between
the last two arguments, 1 and HUGE (a large number).

238 SOFTWARE TOOLS IN PASCAL CHAPTER 7

{ setparam -- set parameter and check range }
procedure setparam (var param : integer;

val, argtype, defval, minval, maxval : integer);
begin

if (argtype = NEWLINE) then
param := defval

else if (argtype = PLUS) then
param := param + val

else if (argtype = MINUS) then
param := param - val

else {absolute
param := val;

param .- min(param, maxval);
param := max(param, minval)

end;

defaulted }

relative +

relative -

We now have enough code to test command decoding, so we can use it and
not worry about it while working on the rest of the program.

Exercise 7-3. format ignores unknown commands. It could just as well have treated
them as normal text to be printed, or as errors to be reported. Discuss the merits of
these alternatives. 0

Exercise 7-4. Commands begin with a period in column 1, because that occurs infre­
quently in normal text. What are other plausible choices? How would you arrange to
print a line that begins with a period? Suppose you want to mix commands and text on
the same line. Is it a good idea? What is a syntax that is easy to type and edit? 0

7.4 Page Layout

The next step is to subdivide text handling into reasonable increments.
Regardless of whether it fills or not, centers or not, underlines or not, format
has to get the right number of lines per page. So let us work on that, copying
text lines from input to output, but with proper line spacing, titles and page
numbers. This will almost dispose of no-fill mode. The code is similar to
print in Chapter 3, so we can adapt some of the lessons we learned there.
The main one is the importance of the boundaries - getting the right number
of lines at the right places on each page, and preventing unwanted pages.

The parameters that describe the vertical dimensions of a page are: the page
length plval; the top margins before and after the header line, m1val and
m2val (m1val includes the header); the corresponding bottom margins m3val
and m4val; and bottom, the last line upon which text may be placed. The
following relationship holds:

bottom = plval - m3val - m4val

For 11 inch paper and standard six line per inch spacing, p Lval is 66. If each
margin is two lines, there are 58 text lines per page and bottom is 62.

lineno is the next line to be printed on the output page; a value of zero

CHAPTER 7 FO~Tl1NG 239

indicates top of page, and a value greater than bottom indicates the end of a
page. When lineno exceeds bottom, it is time to flush the current page.
curpage is the number of the current page; newpage is the number that will
go on the next page. All these values are kept in more global variables; we also
include the running titles header and footer.

curpage : integer;
newpage : integer;
lineno : integer;
plval integer;
m1val integer;
m2val integer;
m3val integer;
m4val integer;
bottom integer;
header : string;
footer : string;

current output page number; init=O
next output page number; init=1 }
next line to be printed; init=O }
page length in lines; init=PAGELEN=66
margin before and including header }
margin after header }
margin after last text line }
bottom margin, including footer }
last line on page, =plval-m3val-m4val
top of page title; init=NEWLINE }
bottom of page title; init=NEWLINE }

We no longer want to merely copy text lines to the standard output, so we
make a small change in text, so it calls a new routine put instead of putstr:

{ text -- process text lines (interim version 1) }
procedure text (var inbuf : string);
begin

put(inbuf)
end;

Except for header and footer titles, and blank lines produced by . sp and . bp
commands, every line of text that goes out is controlled by put. put and its
subordinates look after top and bottom margins, line spacing, setting the page
number, and indenting, which we will get to shortly. The outline of put is

if (at top or past bottom of page)
do top margins and top title

put out indent, if any
put out line
increment line number
if (past bottom)

do bottom margins and bottom title

and the code becomes

240 SOFTWARE TOOLS IN PASCAL CHAPTER 7

{ put -- put out line with proper spacing and indenting }
procedure put (var buf : string);
var

i : integer;
begin

if (lineno <= 0) or (lineno > bottom) then
puthead;

for i := 1 to inval + tival do indenting
putc (BLANK) ;

tival := 0;
putstr(buf, STDOUT);
skip(min(lsval-1, bottom-lineno));
lineno := lineno + lsval;
if (lineno > bottom) then

putfoot
end;

skip (n) produces n empty lines (NEWLINE only) if n is positive, and does
nothing if n is less than one. We wrote it for print in Chapter 3. We have
also included the code for indenting in put; all it does is put out the right
number of leading blanks and reset any temporary indent, so ignore it for now.

put has to stay sane if handed bizarre parameters. In particular, the line
spacing Isval could conceivably be larger than the bottom margin values, so
after a line is produced, the skip that follows skips at most to bottom+ 1.
(put skips Isval-1 because the previous putstr has already produced one
line.) Since each page starts at the top, there will always be at least one output
line per page regardless of the line spacing, and we are guaranteed that format
will always make some progress through a document no matter how strange the
parameters.

puthead and putfoot print the top and bottom margins. puthead is
responsible for updating the current and new page numbers in curpage and
newpage.

{ puthead -- put out page header }
procedure puthead;
begin

curpage := newpage;
newpage := newpage + 1;
if (m1val > 0) then begin

skip(m1val-1);
puttl(header, curpage)

end;
skip (m2val) ;
lineno .- m1val + m2val + 1

end;

CHAPTER 7

{ putfoot -- put out page footer }
procedure putfoot;
begin

skip(m3val);
if (m4val > 0) then begin

puttl(footer, curpage);
skip(m4val-1)

end
end;

FO~Tl1NG 241

The header title is the last line of the margin m1val and the footer title is the
first line of m4val, so either title, and in fact all pagination, can be turned off
by setting the appropriate margins to zero. This is a minor point, but it elim­
inates what would otherwise be a special case. Adding commands to make the
margin values accessible is an easy exercise.

puthead and putfoot cal1 puttl to produce the top or bottom title as a
single line, inserting the page number with putdec if called for.

{ puttl -- put out title line with optional page number
procedure puttl (var buf : string; pageno : integer);
var

i : integer;
begin

for i := 1 to length(buf) do
if (buf[i] = PAGENUM) then

putdec(pageno, 1)
else

putc(buf[i])
end;

PAGENUM is whatever character is to be replaced by the page number in titles;
we use a #, which has some mnemonic value.

Titles are originally extracted by gettl, called from command with

HE:
gettl(buf, header);

FO:
gettl(buf, footer);

and gettl itself is

242 SOFTWARE TOOLS IN PASCAL

{ gettl -- copy title from buf to ttl }
procedure gettl (var buf, ttl: string);
var

CHAPTER?

i : integer;
begin

i := 1; { skip command name}
while (not (buf[i] in [BLANK, TAB, NEWLINE]» do

i := i + 1;
skipbl(buf, i); { find argument}
if (buf[i] = SQUOTE) or (buf[i] = DQUOTE) then

i := i + 1; { strip leading quote}
scopy(buf, i, ttl, 1)

end;

The title is assumed to begin with the first non-blank character, but a leading
apostrophe or quote is stripped off, to permit a title to begin with blanks, for
example, to right-justify it.

Notice that we wrote the calls to gettl as

gettl(buf, header);
gettl(buf, footer);

instead of passing the command type to gettl and letting it decide where to
put the title. The latter way requires gettl to know more about variables, and
increases the data connections in the program. Whenever possible, hide details
from routines that don't need them.

space is called directly from command when a . sp is seen; if no argument
is provided, a single blank line is produced. . sp 0 is perfectly legal; its only
effect is to cause a break.

SP: begin
setparam(spval, val, argtype, 1, 0, HUGE);
space(spval)
end;

A similar procedure, page, is called for a . bp command, to get to the top of
the next page.

BP: begin
page;
setparam(curpage,val,argtype,curpage+1,-HUGE,HUGE);
newpage := curpage
end;

The code for . bp has to be exceedingly careful or some unpleasant behavior
results. First, we must have . bp equivalent to . bp + 1, since this is part of the
specification. A . bp at the bottom of a page (even the last page) should have
no effect except to cause the normal page number increment. You should also
verify that beginning a document with anyone of . bp, . bp 1, . bp + 1, or
plain text yields a first page numbered 1. Finally, the . bp command allows

CHAPTER 7 FORMATI1NG 243

negative page numbers, not because we think that anyone will ever use them,
but because they can do no conceivable harm. Arbitrary restrictions will some­
day impede someone.

Once put works, space and page are written by analogy. space (ri)

does nothing if it occurs at the bottom of a page (lineno>bottom). Other­
wise it skips n lines, or enough lines to get to the bottom of the page, whichever
is smaller. If the bottom is reached, the bottom margins are produced.

{ space -- space n lines or to bottom of page }
procedure space (n : integer);
begin

break;
if (lineno <= bottom) then begin

if (lineno <= 0) then
puthead;

skip(min(n, bottom+1-lineno»;
lineno := lineno + n;
if (lineno > bottom) then

putfoot
end

end;

page also skips to the bottom, then sets the line number back to the top:

{ page -- get to top of new page }
procedure page;
begin

break;
if (lineno > 0) and (lineno <= bottom) then begin

skip(bottom+1-lineno);
putfoot

end;
lineno := 0

end;

It is quite important to distinguish between "bottom of the page" and "top
of the next page"; they are not the same place. If a . sp occurs at the top of a
page the spaces are produced, but any blank lines left over at the end of a page
are discarded, since this is usually what is wanted. If spaces are actually needed
at the top of a page they can be obtained by the sequence

.bp

.sp

space, page and put are all rather similar. It would be possible to modify
space to call put. This would centralize the output, a desirable goal. The
main problem is how to avoid getting Isval line spaces each time put is called
from the proposed new space. We certainly don't want to change Isval in
space before calling put, then restore it after - this is the worst kind of
pathological data connection because it is the least obvious. We don't want to

244 SOFIWARE TOOLS IN PASCAL CHAPTER 7

burden each call to put with a line-spacing argument, nor do we want leading
blanks on each blank line produced by space when text is indented. In spite
of the apparent repetition of code, it's preferable the way it is. Similarly, page
and space are best kept separate.

We now have enough skeleton to test all the permutations of line spacing,
blank lines, new pages, and so on. The . pI command is particularly useful for
testing, since you can shorten the page down to the point where it's easy to
count output lines by hand. The code in command for . pI is

PL: begin
setparam(plval, val, argtype, PAGELEN,

m1val+m2val+m3val+m4val+1, HUGE);
bottom := plval - m3val - m4val
end;

You might also find it convenient to modify skip temporarily to produce a
visible character on each skipped line; this makes it easier to interpret output.

What are particularly nasty boundary conditions that might go wrong?
There is at least one error - the last page of output is short, because there is
no provision to print the extra lines needed to get to the bottom. To repair it
we ask for a new page in the main routine, after the end of the input has
occurred, in exactly the same way the . bp command does. Here is the revised
version of format:

begin
initfmt;
while (getline(inbuf, STDIN, MAXSTR» do

if (inbuf[1] = CMD) then
command(inbuf)

else
text (inbuf) ;

page {flush last output, if any}
end;

This works (i.e., does nothing) if we are already at the bottom of the last page,
because no further spaces will be produced there. It also works for the less
common case that we are at the top of a page; in particular, if there is no input,
it produces no output.

We could have written special code to handle the end of the last page, but it
is better to use existing mechanisms like this wherever possible. Doing so avoids
having two slightly different ways of doing the same thing (one of which is
going to be overlooked when the other is improved) and ensures that the stan­
dard mechanism is well thought out at an important boundary.

The basic structure of format is now pretty well established, so we can
show the hierarchy as it currently stands:

CHAPTER 7 FORMATI1NG 245

format
initfmt
command

getcmd, getval, break, setparam, gettl, space, page
text

put
puthead, putfoot

skip
puttl

skip
space

break, puthead, putfoot, skip
page

break, putfoot, skip
page

puthead and putfoot call on the same routines; the hierarchy is shown once
for both. Most new routines we are going to add will be called from text.

Exercise 7-5. Is it really necessary to have the two variables curpage and newpage to
keep track of page numbers? Try to rewrite the code with only one. Make sure that
. bp and . bp +1 remain equivalent. 0

7.5 Indenting

The next step is to implement settable left and right margins, which are
required before we can do filled text properly. For each line of output, we
need to know the indent inval, the right margin rmval, and the temporary
indent tival. tival is the number of blanks to precede a line of output.
The code in command that handles the . in, . rm and . ti commands is

IND:
setparam(inval, val, argtype, 0, 0, rmval-1);

RM:

setparam(rmval, val, argtype, PAGEWIDTH,
inval+tival+1, HUGE);

TI: begin
break;
setparam(tival, val, argtype, 0, -HUGE, rmval)
end;

Each line produced by put is preceded by tival blanks; after each line of
output tival must be reset to zero so that only a single line is temporarily
indented. This is done by the code in put that reads

for i := 1 to inval + tival do
putc(BLANK) ;

tival := 0;

{ indenting }

Leading blanks and empty lines are special cases detected In text, where

246 SOFIWARE TOOLS IN PASCAL

we must add the test

CHAPTER 7

if (inbuf[1] = BLANK) or (inbuf[1] = NEWLINE) then
leadbl(inbuf); {move left, set tival }

before the call to put. leadbl handles the leading blanks.

{ leadbl -- delete leading blanks, set tival
procedure leadbl (var buf : string);
var

i, j : integer;
begin

break;
i : = 1;
while (buf[i] = BLANK) do {find 1st non-blank}

i := i + 1;
if (buf[i] <> NEWLINE) then

tival := tival + i - 1;
for j := i to length(buf)+1 do {move line to left}

buf [j - i +1] : = buf [j]
end;

leadbl moves the entire line to the left so the first non-blank character is in
position 1. This ensures that leading blanks in no-fill mode don't get twice as
much indent as they should, once from the temporary indent and once from the
leading blanks themselves.

7.6 Filled Text

Now that unfilled text and margins work, we can do filled text; that is what
will be wanted most of the time. How does it work? Two routines, getword
and putword, work together as coroutines. getword breaks an input line into
words and passes them to putword. putword packs them and periodically
outputs a filled line. Thus text becomes

CHAPTER 7 FORMAlTING 247

{ text -- process text lines (interim version 2) }
procedure text (var inbuf : string);
var

wordbuf : string;
i : integer;

begin
if (inbuf[1] = BLANK) or (inbuf[1] = NEWLINE) then

leadbl(inbuf); {move left, set tival }
if (inbuf[1] = NEWLINE) then {all blank line

put(inbuf)
else if (not fill) then unfilled text

put(inbuf)
else begin {filled text

i : = 1;
repeat

i := getword(inbuf, i, wordbuf);
if (i > 0) then

putword(wordbuf)
until (i = 0)

end
end;

We wrote getword for the include program of Chapter 3. getword iso­
lates words, that is, strings of non-blank characters. It is called with the index
in inbuf where it is to start looking for a word; it returns with that index set
just beyond the word it found, so it is ready for the next call. getword returns
zero at the end of a line, and a positive index in the middle.

The other end of the chain is putword. If the new word does not fit on the
current line, putword flushes the line with a call to break and resets for a
fresh line. In any case the new word is tucked onto the end of the line.
putword also adds a blank after the word, so the next word will be separated
properly.

The call to page after ENDFILE in the main routine now serves a double
function. Since it causes a break, it will force out any partially completed line
collected by putword before skipping to the bottom of the last page. This is a
benefit of using the high-level function page instead of coding an explicit "last
page" routine.

248 SOFTWARE TOOLS IN PASCAL

{ putword -- put word in outbuf }
procedure putword (var wordbuf : string);
var

last, llval, nextra, w : integer;
begin

CHAPTER 7

blank between words }
1 for blank }

w := width(wordbuf);
last := length(wordbuf) + outp + 1; { new end of outbuf }
llval := rmval - tival - inval;
if (outp > 0)

and ((outw+w > llval) or (last >= MAXSTR)) then begin
last := last - outp; {remember end of wordbuf }
break {flush previous line }

end;
scopy(wordbuf, 1, outbuf, outp+1);
outp := last;
outbuf[outp] := BLANK;
outw := outw + w + 1;
outwds := outwds + 1

end;

The output line is collected in outbuf. outp is the last character position,
outw the width of the line, and outwds the word count.

outp : integer;
outw : integer;
outwds : integer;
outbuf : string;

last char pos in outbuf; init=O }
width of text in outbuf; init=O }
number of words in outbuf; init=O
lines to be filled collect here }

The width of the current line, outw, is not the same as outp, which points
to the last character on the line. Why? What happens if a line typed by some
innocent user contains a backspace, perhaps to underline a character by back­
spacing and underscoring? (We haven't built underlining yet, remember.)
Clearly the "width" of

xyz BACKSPACE BACKSPACE BACKSPACE

is 3 by any reasonable definition - it only occupies three columns of output ­
but its "length" in actual storage space is 9 (characters). The two measures are
different.

To handle this (and also looking ahead to underlining with . u L) we have
separated "width" from "number of characters" and isolated the width compu­
tation in a separate function.

CHAPTER 7 FORMAITlNG 249

{ width -- compute width of character string
function width (var buf : string) : integer;
var

i, w : integer;
begin

w := 0;
i : = 1;
while (buf[i] <> ENDSTR) do begin

if (buf[i] = BACKSPACE) then
w := w - 1

else if (buf[i] <> NEWLINE) then
w:=w+1;

i .- i + 1
end;
width : = w

end;

width has two special characters to worry about: BACKSPACE has width -1
and NEWLINE has width zero. Everything else has width + 1 .

We are now in a position to specify break. Actually there isn't much to it
- it outputs any text in out.bu f with put, and resets the output pointer, width
and word count to zero.

{ break -- end current filled line }
procedure break;
begin

if (outp > 0) then begin
outbuf[outp] := NEWLINE;
outbuf[outp+1] .- ENDSTR;
put(outbuf)

end;
outp := 0;
outw : = 0;
outwds .- 0

end;

Exercise 7-6. What characters besides backspaces and newlines have zero width in your
environment? Can you think of any characters whose width is not constant? 0

Exercise 7-7. If your character set doesn't include a backspace, how would you provide
it for format users nonetheless? 0

7.7 Right Margin Justification

The only remaining loose end, so to speak, is justifying output lines, that is,
squaring up the right margin. The best place is in putword, right before the
call to break - at that point we have a full line, we know we're working on
filled text, and we know how many words are in the line and what its width is.
Thus we modify putword by calling a separate routine to spread out the line

250 SOFIWARE TOOLS IN PASCAL

by adding extra spaces.

CHAPTER?

{ flush previous line

blank between words }
1 for blank }

{ putword -- put word in outbuf; does margin justification}
procedure putword (var wordbuf : string);
var

last, llval, nextra, w : integer;
begin

w := width(wordbuf);
last := length(wordbuf) + outp + 1; { new end of outbuf }
llval := rmval - tival - inval;
if (outp > 0)

and ((outw+w > llval) or (last >= MAXSTR» then begin
last := last - outp; {remember end of wordbuf }
nextra := llval - outw + 1;
if (nextra > 0) and (outwds > 1) then begin

spread(outbuf, outp, nextra, outwds);
outp := outp + nextra

end;
break

end;
scopy(wordbuf, 1, outbuf, outp+1);
outp := last;
outbuf[outp] := BLANK;
outw := outw + w + 1;
outwds .- outwds + 1

end;

spread moves the words on the line to the right, starting with the rightmost.
Each time a word is moved, some of the extra blanks are parceled out, as uni­
formly as possible, until none are left. nextra is the number of extra blanks
needed to justify the line. Care is necessary in case nextra should be negative
because of a long input word, or in case there is only one word on the line.

As an esthetic matter, if the extra blanks do not distribute evenly, the
surplus ones are spread alternately from the right and from the left on successive
lines, to avoid "rivers" of white space down one margin or the other. dir
alternates between zero and one, selecting the side which gets the extra blanks.
Since dir has to retain its value from one call of spread to the next, it will
have to be another global variable:

dir : 0 .. 1; { direction for blank padding }

CHAPTER 7 FO~Tl1NG 251

{ spread -- spread words to justify right margin
procedure spread (var buf : string;

outp, nextra, outwds : integer);
var

i, j, nb, nholes : integer;
begin

if (nextra > 0) and (outwds > 1) then begin
dir := 1 - dir; { reverse previous direction
nholes := outwds - 1;
i := outp - 1;
j := min(MAXSTR-2, i+nextra); { room for NEWLINE
while (i < j) do begin and ENDSTR }

buf[j] := buf[i];
if (buf[i] = BLANK) then begin

if (dir = 0) then
nb .- (nextra-1) div nholes + 1

else
nb .- nextra div nholes;

nextra .- nextra - nb;
nholes .- nholes - 1;
while (nb > 0) do begin

j := j - 1;
buf[j] := BLANK;
nb := nb - 1

end
end;
i .- i - 1;
j := j - 1

end
end

end;

This code is tricky (which is not a compliment), but it performs an elaborate
function and performs it correctly. The trickery lies in the computation of nb,
which parcels out the extra blanks as uniformly as possible, while distributing
the extras from one end or the other. There is no chance of division by zero
even though nholes is continually decremented, because the code is executed
only when nextra>O and outwds> 1, and the loop exits after nholes reaches
1.

By the way, we tested the condition

if (nextra > 0) and (outwds > 1) then begin

in putword, then repeated the test in spread. Why not remove the redun­
dant test from spread?

The reason is that this would require the calling program to know about the
constraints on the arguments of the called program. This is another form of
secret dependency or coupling. From the standpoint of maintenance it is a
dangerous practice, because sooner or later someone modifying the caller will

252 SOFTWARE TOOLS IN PASCAL CHAPTER 7

violate the constraints and perhaps introduce bugs. Thus we wrote spread to
check its own arguments instead of relying on putword. Of course this sort of
thing can be carried too far, but here the cost is insignificant, so it's well worth
doing.

Exercise 7-8. Demonstrate that spread works properly, whether placing extra blanks
on the right or on the left. Prove that it does something sane even at the extreme values
of outwds, nextra and outp. How could you organize format differently so as to
make spread easier? 0

Exercise 7-9. Add the commands . ju (justify) and . nj (no justify) so justification can
be turned on and off separately from filling. Should justification be permitted for
unfilled lines? How would you add the ability to adjust lines to the right instead of the
left? 0

7.8 Centering and Underlining

Now that we have most of the formatter formatting, we can start to add
bells and whistles.

Centering is a most useful addition, for it mechanizes a tedious and error­
prone task that no human should ever have to do. Luckily it's dead easy.
When a . ce command is seen, command computes the number of lines and
places it in ceval with the code

CE: begin
break;
setparam(ceval, val, argtype, 1, 0, HUGE)
end;

Each time a centered line is put out, text counts ceval down by one; when it
reaches zero there is no more centering to be done. This code goes into text:

if (ceval > 0) then begin
center(inbuf);
put (inbuf) ;
ceval := ceval - 1

end

{ centering }

Finally, the line itself must be centered before it goes out. This is done by set­
ting a temporary indent that moves the line to the right by the correct amount;
when the line is output it will be positioned properly. We put this in a separate
routine even though it is only a single line of code, because it seems to clutter
up text less that way, but you can make a case for the other placement as
well.

{ center -- center a line by setting tival }
procedure center (var buf : string);
begin

tival .- max((rmval+tival-width(buf)) div 2, 0)
end;

CHAPTER 7 FORMATI1NG 253

Underlining is also tedious to do manually; like centering, it's better
mechanized. The sequence of events for underlining is essentially the same as
for centering. command sets ulval:

UL:
setparam(ulval, val, argtype, 1, 0, HUGE);

text decrements ulval for each underlined input line:

if (ulval > 0) then begin {underlining
underln(inbuf, MAXSTR);
ulval := ulval - 1

end;

A separate routine underln prepares the words to be underlined by converting
each alphanumeric character into

UNDERLINE BACKSPACE character

On many video terminals, underlining a character erases it, so format prints
the underline first. That way you get to see the character even if the underlin­
ing is erased.

{ underln -- underline a line }
procedure underln (var buf : string; size
var

integer) ;

integer;
string;

i, j
tbuf

begin
j := 1; { expand into tbuf }
i : = 1;
while (buf[i] <> NEWLINE) and (j < size-1) do begin

if (isalphanum(buf[i])) then begin
tbuf[j] := UNDERLINE;
tbuf[j+1] := BACKSPACE;
j := j + 2

end;
tbuf [j] : = buf [i] ;
j .- j + 1;
i := i + 1

end;
tbuf[j] := NEWLINE;
tbuf[j+1] := ENDSTR;
scopy(tbuf, 1, buf, 1) {copy it back to buf }

end;

Backspaces and underlines are inserted as the line is copied into a temporary
array, which is then copied back to the original place. You could also do it in
place, but the code would be much less clear.

It is important to do all these functions in the proper order in text.

254 SOFTWARE TOOLS IN PASCAL CHAPTER 7

Underlining and checking for leading blanks must be done first, since all other
cases force output. Centering must precede the test for a NEWLINE, so a cen­
tered blank line will decrement ceval. Putting the pieces together, we get the
final version of text:

{ text -- process text lines (final version)
procedure text (var inbuf : string);
var

wordbuf : string;
i : integer;

begin
if (inbuf[1] = BLANK) or (inbuf[1] = NEWLINE) then

leadbl(inbuf); {move left, set tival }
if (ulval > 0) then begin {underlining}

underln(inbuf, MAXSTR);
ulval := ulval - 1

end;
if (ceval > 0) then begin {centering}

center(inbuf);
put (inbuf) ;
ceval := ceval - 1

end
else if (inbuf[1] = NEWLINE) then {all-blank line}

put(inbuf)
else if (not fill) then { unfilled text}

put(inbuf)
else begin {filled text

i : = 1;
repeat

i := getword(inbuf, i, wordbuf);
if (i > 0) then

putword(wordbuf)
until (i = 0)

end
end;

To be complete, here are format (complete) and initfmt.

CHAPTER 7 FORMATI1NG 255

{ format -- text formatter main program (final version) }
procedure format;
#include "fmtcons.p"
type

cmdtype = (BP, BR, CE, FI, FO, HE, IND, LS, NF, PL,
RM, SP, TI, UL, UNKNOWN);

var
{ page parameters }
curpage : integer;
newpage : integer;
lineno : integer;
plval integer;
m1val integer;
m2val integer;
m3val integer;
m4val integer;
bottom integer;
header string;
footer string;

current output page number; init=O
next output page number; init=1 }
next line to be printed; init=O }
page length in lines; init=PAGELEN=66
margin before and including header }
margin after header }
margin after last text line }
bottom margin, including footer }
last line on page, =plval-m3val-m4val
top of page title; init=NEWLINE }
bottom of page title; init=NEWLINE }

{ global parameters
fill : boolean;
lsval integer;
spval integer;
inval integer;
rmval integer;
tival integer;
ceval integer;
ulval integer;

fill if true; init=true }
current line spacing; init=1
of lines to space }
current indent; >= 0; init=O }
right margin; init=PAGEWIDTH=60 }
current temporary indent; init=O }
of lines to center; init=O }
of lines to underline; init=O }

last char pos in outbuf; init=O }
width of text in outbuf; init=O }
number of words in outbuf; init=O

{ lines to be filled collect here }
direction for blank padding }

{ input line }

page
end;

{ output area }
outp : integer;
outw : integer;
outwds : integer;
outbuf : string;
dir: 0 .. 1; {
inbuf : string;

#include "fmtproc.p"
begin

initfmt;
while (getline(inbuf, STDIN, MAXSTR» do

if (inbuf[1] = CMD) then
command(inbuf)

else
text (inbuf) ;
{ flush last output, if any}

256 SOFTWARE TOOLS IN PASCAL CHAPTER 7

{ initfmt -- set format parameters to default values }
procedure initfmt;
begin

fill := true;
dir := 0;
inval .- 0;
rmval .- PAGEWIDTH;
tival .- 0;
lsval .- 1;
spval .- 0;
ceval .- 0;
ulval .- 0;
lineno := 0;
curpage := 0;
newpage := 1;
plval := PAGELEN;
m1val := 3; m2val := 2; m3val := 2; m4val := 3;
bottom := plval - m3val - m4val;
header[1] .- NEWLINE; {initial titles}
header[2] .- ENDSTR;
footer[1] .- NEWLINE;
footer[2] .- ENDSTR;
outp := 0;
outw : = 0;
outwds .- 0

end;

{ fmtcons -- constants for format }
canst

CMD = PERIOD;
PAGENUM = SHARP;
PAGEWIDTH = 60;
PAGELEN = 66;
HUGE = 10000;

CHAPTER 7

{ fmtproc -- procedures needed for format }
#include "skipbl.p"
#include "skip.p"
#include "getcmd.p"
#include "setparam.p"
#include "getval.p"
#include "gettl.p"
#include "puttl.p"
#include "puthead.p"
#include "putfoot.p"
#include "width.p"
#include "put.p"
#include "break.p"
#include "space.p"
#include "page.p"
#include "leadbl.p"
#include "spread.p"
#include "putword.p"
#include "getword.p"
#include "center.p"
#include "underln.p"
#include "initfmt.p"
#include "command.p"
#include "text.p"

FORMATI1NG 257

The final calling tree of format reflects the additions we made.

258 SOFTWARE TOOLS IN PASCAL

format
initfmt
command

getcmd
getval

setparam
gettl
space
page
break

put
puthead, putfoot

skip
puttl

skip
text

leadbl
break

underln
center

width
put
getword
putword

width, spread, break
space

break, puthead, putfoot, skip
page

break, putfoot, skip
page

CHAPTER?

Exercise 7-10. Investigate the behavior of format if a user underlines by backspacing
and underscoring. What happens with backspacing across a blank in filled text? What
about underlining a word containing backspaces? 0

Exercise 7-11. Add a command to do continuous underlining: everything, spaces and all,
is underlined until turned off. 0

Exercise 7-12. Underlining a character at a time is the worst thing we can do to
overstrike in Chapter 2. (It's also a test to destruction of some terminals.) Should
we make underln more clever, or improve overstrike, or buy sturdier terminals? 0

Exercise 7-13. Our underlining algorithm uses three characters in underln for every
character to be underlined. Another way to do underlining is to surround each string to
be underlined with magic "start underline" and "stop underline" characters of zero
width. Discuss the merits and demerits of these organizations. 0

Exercise 7-14. Add a command analogous to . ul to embolden output by overstriking it.
Make sure it will embolden underlined material. 0

CHAPTER 7

7.9 Some Measurements

FORMAlTlNG 259

We ran format on some documents to measure where it spends its time.
Here are some measurements for formatting Chapter 7, which consisted at that
point of 3280 lines, or about 12,400 words, of which 878 lines were formatting
commands; it produced 31 pages of single-spaced line-printer output.

As always, most of the CPU time (23.6 seconds) on the DEC VAX 11/780
where we did the timing was spent processing 110 requests: 35 percent in
getline and functions below it (mostly in the latter), and 19.8 percent in
putstr and its subordinates, These numbers so dominate the run time that
until they are improved no other part of the program matters much. Let us
assume, however, that they can be cut down to reasonable size by replacing
getline and putc by more efficient routines. Then what parts of the pro­
gram take the time?

The remaining significant routines are

getword
scopy
width
putword
spread
length
text
put
getcmd
getval
min
command

13.0%
5.5
4.2
3.8
3.5
2.9
2.1
1.1
0.8
0.8
0.8
0.6

After the I/O time has been removed, these routines account for most of the
time taken by the formatter. (The numbers don't add up to quite 100 percent
because of overhead in the measurement process.) The lesson is the same as
before, but it is worth repeating. The best procedure for obtaining efficient
code is to choose a good algorithm, write a program that implements it as
cleanly as possible, then measure it. The measurements will lead you directly to
the one or two routines that are worth making as efficient as possible - if they
are clearly written and if they hide their information properly, they will be easy
to change. Sacrificing readability for efficiency earlier than this, while the bulk
of the code is being written, not only results in wasted effort but also leads to
code that is hard to improve because it is hard to understand.

7.10 Extensions

As we said, this is not an elaborate formatter, and there are lots of things
that could be added that would make it better without complicating it for unso­
phisticated users. Extensions to make more parameters settable by users are so
straightforward that they don't even qualify as exercises. More involved, but

260 SOFTWARE TOOLS IN PASCAL

valuable, are these functional enhancements.

CHAPTER 7

Multiple Files
To follow good design principles format should read either from a list of

files or, if none are specified, from its standard input, like the print program
of Chapter 3. It should also be possible to include the contents of a file by a
formatting command.

Exercise 7-15. Implement multiple files as arguments, and a file inclusion command.
Since. in is already taken, you might use the name . so for "source"; the command

. so filename

will interpolate the contents of filename in the input at the point it is encountered. If
you decided that the name would be better as . include, what changes would be
needed in command and getcmd? Once . so is installed, you can use format for the
same kind of formatting as was done by print in Chapter 3. Is it worthwhile to keep
print around nonetheless? 0

Exercise 7-16. Add optional arguments +m and - n to allow output to begin printing at
page m and stop printing after page n. Thus

format +10 -20

prints pages 10 through 20 inclusive. Multiple uses of + and - should be legal. What is
proper behavior if m or n is outside the range of pages in the document? 0

Improved Running Titles
Our top and bottom running titles are sometimes awkward to use. Here is

an alternative design: the syntax

. he / left / center/ right /

means the heading (top of page title) is to consist of the three parts separated
by the (arbitrary) delimiter /. The left part is to be left-justified, the right part
right-justified, and the center part centered. As before, any occurrence of the
character # in the title is to be replaced by the current page number.

Exercise 7-17. Implement the extended . he and . f 0 commands. What right margin
and indent values determine placement of the pieces? What should happen if the pieces
overlap? How would you permit multi-line titles? Add the commands

.eh .ef .oh .of

to allow different titles on even numbered and odd numbered pages. 0

Escape Characters
It is sometimes necessary to force a character to be taken literally rather than

as a command. One example is getting a literal period in the first column;
another is creating a blank that cannot be padded.

Exercise 7-18. Add an escape character mechanism to format, so that the sequence @c
will cause the character c to appear literally in the output. 0

CHAPTER 7 FORMATIlNG 261

'Need' Command
Sometimes it is desirable to force output like a table or a program to appear

all on one page; this was done for the programs in this book. Somehow a
'begin page' command must be simulated at the beginning of the table, but only
if it would actually fall across a page boundary. One way is with a command

.ne n

which says "I need n lines; if there aren't that many on this page, skip to a new
page."

Exercise 7-19. Implement the . ne command. How would you use . ne commands for
"widow" suppression? (A widow is an isolated line at the bottom or top of a page.) 0

Exercise 7-20. Forcing people to count lines for a . ne command is obviously bad
human engineering. Design and implement a mechanism to keep a group of lines
together without requiring the user to count them. 0

Extra Space after Sentence
Most people prefer an extra space after the period that terminates a s .n­

tence; it looks better.

Exercise 7-21. Implement this feature. Make sure it works when the period falls it the
end of a line. What other characters and sequences terminate sentences? Is there a rea­
sonable algorithm that doesn't put extra space after people's initials, abbreviations, and
so on? 0

Automatic Capitalization
Some computer centers have line printers with upper and lower case, but not

upper and lower case terminals or keypunches. This need not discourage some­
one who wants neatly formatted output.

Exercise 7-22. Modify format so it detects plausible forms of end of sentence, like a
period at the end of a line or followed by two or more spaces, and then capitalizes the
next letter. You will also need "escape" characters that override the default action and
force the next character to be explicitly lower or upper case. If you are clever about
recognizing sentences, however, these will probably be little used. What is the width of
these escape characters? 0

7.11 Bigger Things

The suggestions in this closing section are major undertakings if done well,
but they should suggest how the formatter may be increased in power. All of
these facilities were available in some form in the formatter we used to prepare
this book.

Hyphenation
format fills lines by packing as many words onto a line as will fit. Hyphen­

ation increases this number on the average, and thus improves the appearance
of the output. The problem is to design a reasonably accurate scheme for

262 SOFTWARE T(X)LS IN PASCAL CHAPTER 7

hyphenating English words by program.
First make up a list of suffixes that are potentially good hyphenation points,

like -tion, -ness , and so on. (Remember that English hyphenates between syl­
lables, so both suffix and prefix must contain a vowel.) Merely stripping these
should provide a useful capability. Next, certain letter pairs ("digrams") should
never be hyphenated - qu is the most obvious example - while others, like
double letters, are often good bets. Build a 26 x 26 array (single bits are
enough) whose entries show whether or not to hyphenate between particular
pairs of letters. You might also experiment with prefix-stripping; our experience
has been that this is less successful.

Experiment with these possibilities. Can you think of any other approaches?
What programs would you write as tools to help you with this project? What
tools have we already written for you in this book?

This book was hyphenated by a more complicated version of the suggested
scheme. How many hyphenation gaffes can you find? (We did give our hyphe­
nator a couple of hints.)

Macros
Although the next chapter will be devoted to macro processing, we should

mention the possibility of adding macros, even in limited form, to the for­
matter. As the first step, you could allow a user to define shorthands for fre­
quent sequences of commands. For example

.de pp

.sp

.ti +5

.en

would define a new command . pp (for "paragraph"). Thereafter, whenever
the "command"

.pp

occurs, it is replaced by its defining text, everything between the . de and the
. en. In this case, a space and a temporary indent result. And of course it
should be possible to redefine any of the built-in names like . sp.

This much is easy. The next step is to allow macros to have arguments, so
they can produce different results when called with different parameters. For
example, you might define a title macro with

.de tl

.eh /# SOFTWARE TOOLS IN PASCAL//CHAPTER $1/

.oh /CHAPTER $1//$2 #/

.en

The symbol $n means that when the macro is invoked, the nth argument is to
replace the $n. Thus you might say

CHAPTER 7

.tl 7 FORMATTING

FORMAlTING 263

to create running ti ties like those in this chapter.
This syntax limits you to nine arguments, which is probably adequate. As a

matter of good human engineering, missing arguments should be replaced by
null strings; extra arguments should be ignored. We will return to this topic in
Chapter 8.

Conditionals
A truly powerful formatter needs the ability to alter formatting actions

depending on conditions that develop during a run. One possibility is a com­
mand like

. if (condition) things

so you can dynamically test some condition, and take appropriate action if it is
true. There is no limit to how extensive this can be made, but as a bare
minimum, you will want to be able to test parameter values like output page
number, line and page lengths, current position on the page, and whether or not
you are in fill mode. You will also need arithmetic, variables to hold text and
numbers, and string comparison operations. For example, both the section
headings and the exercises in this book were numbered automatically by the for­
matter, using numeric variables and operations.

One of the best tests of whether you have enough tools in your formatter is
whether you can construct with them a general footnote mechanism, where
there can be multiple footnotes per page, and where footnotes are carried for­
ward onto as many pages as are needed. Another test is whether you can do
multi-column output. If you can do these cases well, you have enough power
for most formatting situations.

These suggestions are intended to be vague, so that they will not bias you
too strongly in any particular direction. As always, if you propose to build
something, make sure it has some conceptual integrity -- it should not be
merely a collection of unrelated "features." And build it in increments, not all
at once.

Bibliographic Notes

format is loosely based on J. Saltzer's Runoff program on CTSS. Runoff
has gone through numerous versions; ours is most closely related to Roff, by
M. D. McIlroy. There are many formatting programs available commercially,
often as part of a "word processing system" that combines editing and format­
ting so that the display continuously shows the formatted appearance of the
document. You might find it interesting to compare some of these offerings
with format plus edit.

This book was typeset by a program called Troff, written for the Unix

264 SOFfWARE TOOLS IN PASCAL CHAPTER 7

system by J. F. Ossanna. A typesetter has many more degrees of freedom than
a line printer or terminal - multiple fonts, many sizes of type, and a much
larger character set. A challenging problem is to design a language which per­
mits access to these added facilities without unduly complicating things for naive
users. We made extensive use of Troff's macro capabilities to conceal format­
ting details in macro commands which could be easily changed as necessary
without touching the text itself.

Text formatting has become an active area of computer science research.
Two particularly interesting examples are TEX, designed by D. E. Knuth, and
described in TEX and METAFONT, Digital Press, 1979, and Scribe, by Brian K.
Reid, described in "Scribe, a high-level approach to computer document for­
matting," ACM Symposium on Principles of Programming Languages, January,
1980. Scribe and TEX both have as a main design goal making it easy for users
to separate the logical content of their documents from the formatting details.

Appendix H of the TEX manual cited above describe's TEX's hyphenation
algorithm.

CHAPTER 8: MACRO PROCESSING

Macros are used to extend some underlying language - to perform a trans­
lation from one language to another. For example, many of our programs con­
tain lines like

while (getc(c) <> ENDFILE) do

where ENDFILE is some unspecified constant value that indicates end of file.
"Symbolic constants" like ENDFILE tell you what a number signifies in a way
that the number itself could never do: if we had written some magic value like
-1 you would not know what it meant without understanding the surrounding
context. Besides, the value of ENDFILE may well differ from machine to
machine, and it is much easier and safer to redefine the value of a constant in a
single place than it is to go through an entire program finding all the -1 's that
really mean end of file.

In Pascal, the const declaration lets us define the value of ENDFILE, so
long as it is a number (or a boolean or a quoted string). For most of the pro­
grams that we have written here, that is perfectly adequate. But there are other
situations where this notion of a constant is too limited.

What we want is a program that lets us define symbolic constants like
ENDFILE so that subsequent occurrences of the name are replaced by the defin­
ing string of characters, regardless of the contents of the definition or its con­
text. Such a definition is called a macro, the replacement process is called
macro expansion, and the program for doing it is called a macro processor. A
macro processor copies its input to its output with the macro definitions deleted
and the macro references expanded. This lets us use parameters even in places
where a compiler would insist on numbers, and it permits more ambitious
language extensions such as our error handler.

Our first step in this chapter is a program define for replacement of one
string of text by another - the most elementary form of macro processing.
This lets us say, for instance,

define(ENDFILE, -1)

and thereafter have all occurrences of ENDFILE replaced by -1. Although this

265

266 SOFTWARE TOOLS IN PASCAL CHAPTER 8

is not much of a "language translation," it does make programs easier to read
and change. This is about all the macro processing we would have needed for
the programs in this book if const had not been available.

The second stage, a much bigger job, is to construct a processor that allows
macros to have arguments, so we can say, for example,

define(putc(c), putcf(c, STDOUT»

to have all occurrences of putc (x) replaced by putcf (x, STDOUT) for
whatever value the argument x might take.

The third stage is to add to the macro processor a handful of other built-in
operations that materially assist in writing complicated macro operations. The
most important of these are facilities for conditional testing and for evaluating
arithmetic expressions. These give the macro processor the full capabilities of a
programming language, at least in a formal sense.

The second and third stages are really luxuries: they are convenient to have,
and it is instructive to see how to build them, but you can accomplish a great
deal without them, as is evident from the utility of const.

We should also emphasize that this is not the only way to specify macros.
Our notation is functional, i.e., it resembles the way function references are
written in most programming languages, so macro calls mesh well with such
languages. We could have borrowed syntax from Pascal:

define ENDFILE = -1

but that does not extend as well to multi-line definitions or to macros with argu­
ments or to some of the other built-in operations we want to add. In Chapter 7
we suggested the form

define name
body

endmarker

which is suitable for a language where input is handled a line at a time.
Another possibility is a template macro processor, in which the macros
correspond to operators (like the + and - in arithmetic expressions), and the
arguments are the operands. Processors for template macros are sometimes
easier to use, but are harder to write. The bibliographic notes at the end of the
chapter suggest additional reading.

8.1 Simple Text Replacement

Let us begin with the easiest case. What we want is to copy input to output,
except that when certain input strings appear they are to be replaced by previ­
ously defined replacement text. In a programming language like Pascal, the
natural unit of replacement is the identifier, that is, a string of alphanumeric
characters beginning with a letter and surrounded by non-alphanumerics. In the
text

CHAPTER 8

while (getc(c) <> ENDFILE) do

MACRO PROCESSING 267

ENDFILE is surrounded by non-alphanumerics and is thus a candidate for
replacement. Of course so are while, getc, c, and do, but since they are
presumably not defined to the macro processor, they should be copied unal­
tered.

The unit of replacement is called a token. In other situations, a token might
be anything between "white space" (blanks, tabs, newlines) as it was in
format, or anything between a pair of specified left and right markers. In any
case, one part of the processor is a routine that reads input and divides it up
into tokens according to some rule.

How are definitions provided? The syntax suggested above is convenient:

define (name, replacement text)

defines name to be whatever text follows, up to a balancing right parenthesis;
this allows the replacement text to be longer than one line. We will need
modules to collect the name and replacement text, and to record new names
and definitions as they are encountered.

Some of the implementation details are critical, because the order in which
operations are done can make a big difference in the power and convenience of
a macro processor. One significant decision is what should happen when one
name is defined in terms of another one. For example, after the definitions

define(x, 1)
define(y, x)

does the input y produce x or 1? If the definitions are in reverse order,

define(y, x)
define(x, 1)

then what is y?
We don't want users of define to have to worry too much about the order

in which their definitions appear. Accordingly, define is built so examples
like this one will work in the more useful way - after a macro has been
evaluated, its replacement text is rescanned. If it contains any further macros
they in tum go through the same expansion process. (This introduces the
chance of an infinite loop, of course, so we must be prepared for that eventual­
ity.)

There are also several possibilities for when macro calls are evaluated. If we
have already defined x with

define(x, 1)

then when

define(y, x)

is encountered, we can either replace x by 1 immediately, or we can ignore the

268 SOFTWARE TOOLS IN PASCAL CHAPTER 8

fact that x is a macro and replace it later when y is invoked. In the example
above these two methods produce the same result, but if x should subsequently
be redefined, there would be a difference. Different choices here lead to some­
what different but equally useful processors. In our define processor, defini­
tions are not scanned for macro calls while they are being copied into the table
of definitions; the interpretation of macros is done as late as possible.

But first here is the outline of the no-argument macro processor.

while (gettok(token) <> ENDFILE)
look up token
if (token = 'define')

install new token and value
else if (token was found in table)

switch input to definition of token
else

copy token to output

Since there are nested sources of input, in principle this is a recursive process.
In define we will deal with recursion in a different way from the explicit
recursion that we have used in other programs. We will get back to this
shortly.

gettok is analogous to the getword routine we wrote in Chapter 3, but it
must be made somewhat more complicated to handle non-alphabetic characters
properly. For example, blanks are now significant and can't be ignored. The
call

c := gettok(token, maxtok)

copies the next token from the standard input into token. A token is either a
string of letters and digits, or a single non-alphanumeric character. The func­
tion value returned by gettok is the first character of the token; this deter­
mines whether or not the token is alphabetic.

CHAPTER 8 MACRO PROCESSING 269

{ gettok -- get token for define }
function gettok (var token : string; toksize

: character;
var

i integer;
done : boolean;

begin
i : = 1;
done .- false;
while (not done) and (i < toksize) do

if (isalphanum(getpbc(token[i]») then
i := i + 1

integer)

else
done := true;

if (i >= toksize) then
error('define: token too long');

if (i > 1) then begin {some alpha was seen}
putback(token[i]);
i := i - 1

end;
{ else single non-alphanumeric
token[i+1] := ENDSTR;
gettok := token[1]

end;

Looking for tokens one character at a time, we don't know that we have
seen the end of the token until we have gone one character too far. This is a
classic example of an undesirable side effect, one that can tremendously compli­
cate a program if we let it. Each time we need another character, we must
check whether to read a new character or use the one we already have. Tan­
gling this up with the logic of what to do with each character would make an
unreadable mess.

Instead we hide the complication by introducing a pair of cooperating rou­
tines. getpbc delivers the next input character to be considered, both in its
argument and as its function value. putback puts a character back on the
input, so that the next call to getpbc will return it again. Now, every time
gettok reads one character too many, it promptly pushes it back, so the rest of
the code does not have to know about the problem.

One possibility is to make putback a primitive operation, so getpbc can
be simply getc. We have separated them here to illustrate how the pushback
can be done, since in general you will have to provide your own. putback
puts the pushed-back characters into a buffer. getpbc reads from the buffer if
there is anything there; it calls getc if the buffer is empty.

270 SOFTWARE TOOLS IN PASCAL

{ putback -- push character back onto input }
procedure putback (c : character);
begin

if (bp >= BUFSIZE) then
error('too many characters pushed back');

bp := bp + 1;
buf [bp] : = c

end;

{ getpbc -- get a (possibly pushed back) character
function getpbc (var c : character) : character;
begin

if (bp > 0) then
c := buf[bp]

else begin
bp := 1;
buf[bp] := getc(c)

end;
if (c <> ENDFILE) then

bp . - bp - 1;
getpbc := c

end;

CHAPTER 8

bp is the index of the next character to be returned from buf ; if bp is zero a
fresh character is fetched by a call to getc. (bp must be initialized to zero.)
The buffer and pointer used by getpbc and putback are global variables in
de fine, and initialized by initde f .

buf : array [1 .. BUFSIZE] of character; {for pushback }
bp : O.. BUFSIZE; {next available character; init=O }

As written, gettok never pushes back more than one character between
calls to getpbc, so buf could have been an ordinary scalar variable instead of
an array. But pushback is a useful mechanism, well worth generalizing. We
can even write pbstr, which pushes back an entire string by repeated calls to
putback.

{ pbstr -- push string back onto input
procedure pbstr (var s : string);
var

i : integer;
begin

for i := length(s) downto 1 do
putback(s[i])

end;

It is of course necessary to push a string back in reverse order.
Only getpbc and putback know about the data structure of buf and bp.

pbstr could be faster if it also knew about them and could avoid the overhead
of calling putback for each character, but as much as possible we try to

CHAPTER 8 MACRO PROCESSING 271

type returned by lookup
value is 'define' }
value is " }

minimize data connections between routines. This is one of the most effective
ways we know of to write code that can be easily changed. Certainly if it later
proves true that the overhead in pbstr is a bottleneck, then we can improve it.
The important thing is to start with a good design. It is much easier to relax
the standards for something written well than it is to tighten them for something
done badly.

Since we can push back something different from what was read, it has
probably occurred to you that putback provides an elegant way to implement
the rescanning of macro replacement text. Suppose that after a defined name is
found, we push its replacement text back onto the input. When that is read, if
it in tum contains a defined name, the name will be looked up and translated
just as if it had been in the input originally. This pushback is how we handle
the recursion implicit in nested sources of input.

Now we can write the main program, define:

{ define -- simple string replacement macro processor }
procedure define;
#include "defcons.p"
#include "deftype.p"
#include "defvar.p"

defn : string;
token : string;
toktype : sttype;
defname : string;
null : string;

#include "defproc.p"
begin

null[1] := ENDSTR;
initdef;
install(defname, null, DEFTYPE);
while (gettok(token, MAXTOK) <> ENDFILE) do

if (not isletter(token[1]» then
putstr(token, STDOUT)

else if (not lookup(token, defn, toktype» then
putstr(token, STDOUT) {undefined}

else if (toktype = DEFTYPE) then begin {defn}
getdef(token, MAXTOK, defn, MAXDEF);
install(token, defn, MACTYPE)

end
else

pbstr(defn) { push replacement onto input }
end;

If the token returned by gettok is not a letter (as determined by iSletter)
it cannot be a defined symbol. We test for that right away, to avoid looking up
every non-alphanumeric character. Here is one possible implementation of
isletter for Ascn machines (but recall the discussion of character sets and
isupper in Chapter 2):

272 SOFTWARE TOOLS IN PASCAL CHAPTER 8

{ isletter -- true if c is a letter of either case }
function isletter (c : character) : boolean;
begin

isletter .-
c in [ord (, a') .. ord (, z')] + [ord (, A') .. ord (, Z')]

end;

The token is looked up with lookup, which also returns the defining text
and type if the token was found. If the token wasn't found by lookup, it has
no special significance, and can be output immediately. If it was define, the
name and replacement text are isolated with getdef and installed in the table
by install. If the token was found and was not a define, the replacement
text is pushed back onto the input. The type sttype is an enumeration of the
possible symbol table entry types, which for define are just DEFTYPE for the
built-in "define" and MACTYPE for a macro name:

type
sttype = (DEFTYPE, MACTYPE); symbol table types }

install is used to place the keyword define in the table in the first place,
along with a null string as its replacement and DEFTYPE as its type. This is
better than entering it with a set of assignment statements, because the program
doesn't need to know anything about the format of table entries. lookup
returns the type DEFTYPE when it finds define, so we can quickly check
whether a token is a define. Besides the elements of sttype, lookup and
install are the only visible parts of the table-handling mechanism; they are
the subject of the next section.

Here is getdef:

CHAPTER 8 MACRO PROCESSING 273

{ getdef -- get name and definition }
procedure getdef (var token : string; toksize : integer;

var defn : string; defsize : integer);
var

i, nlpar : integer;
c : character;

begin
token[1] := ENDSTR; { in case of bad input}
defn[1] := ENDSTR;
if (getpbc(c) <> LPAREN) then

message('define: missing left paren')
else if (not isletter(gettok(token, toksize») then

message('define: non-alphanumeric name')
else if (getpbc(c) <> COMMA) then

message('define: missing comma in define')
else begin {got '(name,' so far}

while (getpbc(c) = BLANK) do
{ skip leading blanks }

putback(c); { went one too far}
nlpar := 0;
i : = 1;
while (nlpar >= 0) do begin

if (i >= defsize) then
error('define: definition too long')

else if (getpbc(defn[i]) = ENDFILE) then
error('define: missing right paren')

else if (defn[i] = LPAREN) then
nlpar := nlpar + 1

else if (defn[i] = RPAREN) then
nlpar := nlpar - 1;

else normal character in defn[i]
i := i + 1

end;
defn[i-1] := ENDSTR

end
end;

Most of the task here is coping with balanced parentheses and invalid input.
Where possible, getdef simply notes the error and continues, in an attempt to
give the user as much information as possible per run.

For completeness, here is initdef; we will show inithash after we dis­
cuss table lookup in the next section.

274 SOFTWARE TOOLS IN PASCAL

{ initdef -- initialize variables for define }
procedure initdef;
begin

{ setstring(defname, 'define');
defname [1] . - ord (, d') ;
defname[2] .- ord('e');
defname [3] . - ord (, f') ;
defname [4] . - ord (, i ') ;
defname[5] .- ord('n');
defname[6] .- ord('e');
defname[7] .- ENDSTR;

bp := 0; {pushback buffer pointer}
inithash

end;

CHAPTER 8

Exercise 8-1. What happens if you say

define(d, define)
d(a, b)
a

What happens with

define(define, x)
define(a, b)

o

Exercise 8-2. What happens if you say

define(x, x)

or

define(x, y)
define(y, x)

and then ask for x? What would you like to have happen? 0

Exercise 8-3. If you write

define(x, x x)

sooner or later the pushback buffer will overflow and def ine will exit. This is generally
regarded as better behavior than causing an infinite loop. Can you devise a scheme for
turning all potential infinite loops into stack overflows? 0

Exercise 8-4. getdef deletes any blanks that might appear at the front of the replace­
ment text. Why is this desirable? Would any harm result if they were retained? What
happens to blanks around the macro name? 0

Exercise 8-5. If a line contains nothing but a definition, any trailing blanks and the new­
line are copied to the output, even though it might seem more natural to eliminate them
completely. Modify getdef or some other part of the program so no output is pro­
duced from a line containing only definitions. Is this an appropriate action if the output
is fed to a compiler that uses line numbers for diagnostics? 0

CHAPTER 8 MACRO PROCESSING 275

Exercise 8-6. As an alternate and more general solution to the previous problem, imple­
ment a built-in operation dnl (for "delete newline") which deletes all characters from its
occurrence up to and including the next newline. Thus in the input

define(x, 1)dnl

the dnl deletes all text after the definition, and the line produces no output. 0

8.2 Table Lookup

Let us now design lookup and install, the routines for handling tables
of names and definitions. We have already made one important design decision
- all information about table format, search strategy, and the like is private,
known only by lookup and install. All other routines must access the table
through them. Information hiding is critical to proper program design: routines
that don't need to know about the internal representation of a data structure
should not know about it. Not only does this ensure that data is not inadver­
tently changed, but more important, it breaks the program into independent
pieces, where each can be changed without affecting the others. Each piece is a
black box, presenting only a well-defined interface to the world. In our case, if
we change some aspect of the table - to sort the names for binary search, for
instance - we can do so with impunity, because no other routine knows what
the tables look like. Of course the "need to know" has to be genuine. It's all
too easy to design routines whose users "need" to know about the data, when
with more care the structure could be concealed.

Inside the lookup code, the lookup strategy determines the table structures
needed. The simplest table management is a linear table: add new entries to
the end of a table as they arrive, and search the table from one end to the other
each time a token must be looked up.

In the early stages of a program, fancy search techniques are not worth the
extra complexity. Linear search is not always the best thing, but it is an excel­
lent first choice. It is easy to implement and likely to work right the first time.
If it later proves to be a bottleneck, it can be replaced with a faster algorithm
without affecting the rest of the program. The expected time to find a token in
the table (or determine that it is not present) is proportional to the length of the
table, however, so the bottleneck can appear early.

The next step up in complexity is probably to sort the entries and use binary
search to locate tokens. But if definitions arrive at unpredictable times rather
than all at once, it is necessary to sort each time a definition arrives. The
search time for such a table is proportional to the logarithm of the table size if
the sorting time can be ignored, which is true so long as there are many more
calls to lookup than to install. It runs faster, but it's more complicated.

A third solution, and in real life, usually the best, is to use a hash search. A
token is "hashed" to create an index into a table of lists. Scanning the list at
the hash index determines whether the token is present or not. If the hashing
function does a good job, tokens are spread uniformly through the table and the

276 SOFTWARE TOOLS IN PASCAL CHAPTER 8

search time is constant, that is, independent of the number of entries present,
until the table becomes nearly full. Even then, the search time increases only
linearly as more elements are added.

Clearly efficiency and simplicity are at conflict in the design of table search­
ing strategies, but as it turns out, an efficient solution is not greatly more com­
plicated than a simple one. The hash search is organized like this: One large
table called ndtable contains the names and replacement texts, stored one
after another as

name ENDSTR definition ENDSTR name ENDSTR defn ENDSTR

This is the same idea that we used in sort in Chapter 4, except that since
there is a name and a definition for each entry, we use a record to hold the
ndtable indices. A second array, called hashtab, contains pointers to
name-definition records. An element of hashtab points to the beginning of a
linked list of records describing names that have that hash value; it is set to nil
if no names have hashed to that value. (nil is a Pascal keyword. A pointer
which does not point to an object should have the value ni1.) Each record in
the chain contains the ndtable indices of the name and definition, the type of
the object (DEFTYPE or MACTYPE), and a pointer to the next name-definition
record. This too is nil for the last record in the chain. A picture is worth
about a thousand words:

ndtable:

hashtab:

__ ndblock
<- --

The declarations are as follows:

CHAPTER 8 MACRO PROCESSING 277

{ deftype -- type definitions for define }
type

charpos = 1 .. MAXCHARS;
charbuf = array [1 .. MAXCHARS] of character;
sttype = (DEFTYPE, MACTYPE); {symbol table types
ndptr = Andblock; {pointer to a name-defn block }
ndblock =

record name-defn block }
name charpos;
defn charpos;
kind sttype;
nextptr : ndptr

end;

The notation "ridpt r = "ridbLock" is read as "ridpt r is a pointer to an
ndblock." Some character sets use an up-arrow' t' instead of the circumflex

The corresponding variables are

{ defvar -- var declarations for define }
var

hashtab array [1 .. HASHSIZE] of ndptr;
ndtable charbuf;
nexttab charpos; {first free position in ndtable }
buf : array [1 .. BUFSIZE] of character; {for pushback
bp : O.. BUFSIZE; {next available character; init=O

We have to put all these variahles into global variahles because lookup,
install and any subordinates all have to know about them and there is no
other way to pass the information.

nexttab is the next free position in nd t ab Le ; it must be initialized to 1
and all entries in hashtab made nil. This is done in inithash:

{ inithash -- initialize hash table to nil }
procedure inithash;
var

i : 1 .. HASHSIZE;
begin

next tab := 1; first free slot in table}
for i := 1 to HASHSIZE do

hashtab[i] := nil
end;

lookup returns true and extracts the definition and type if the token was
found; otherwise it returns false.

278 SOFTWARE TOOLS IN PASCAL CHAPTER 8

{ lookup -- locate name, get defn and type from table}
function lookup (var name, defn : string; var t : sttype)

: boolean;
var

p ndptr;
begin

p := hashfind(name);
if (p = nil) then

lookup .- false
else begin

lookup .- true;
cscopy(ndtable, pA.defn, defn);
t := pA.kind

end
end;

A construct like p" . defn accesses the defn component of the record that p
points to. cscopy is the string-copying procedure we wrote in Chapter 4 to
copy a string from a big array of type charbuf to a string.

The real work of finding an occurrence of name is done by hashfind:

{ hashfind -- find name in hash table }
function hashfind (var name : string) : ndptr;
var

p : ndptr;
tempname : string;
found : boolean;

begin
found := false;
p := hashtab[hash(name)];
while (not found) and (p <> nil) do begin

cscopy(ndtable, pA. na me, tempname);
if (equal(name, tempname» then

found := true
else

p := pA.nextptr
end;
hashfind := p

end;

The actual hashing done by hash. Ours is dead simple, though not espe­
cially good: it adds up the characters of the string, each time multiplying the
previous sum by three, then takes the remainder modulo HASHSIZE.

HASHSIZE ought to be prime to get a reasonably uniform distribution of hash
values.

CHAPTER 8 MACRO PROCESSING 279

{ hash -- compute hash function of a name }
function hash (var name : string) : integer;
var

i, h : integer;
begin

h := 0;
for i := 1 to length(name) do

h := (3 * h + name[i]) mod HASHSIZE;
hash .- h + 1

end;

install adds a new name, definition and type to the head of the chain of
records which have that hash value; it is called when a define is encountered.
install does not check whether the name is already in the table, so names
may be redefined just by giving a new definition: since lookup scans the chain
from the front, the new definition supersedes the old.

Space for the pointer blocks is obtained by calling the Pascal storage
management function new. new (p) creates an object of the type that p points
to, then sets p to point to it. The contents of a dynamic object are accessed by
p"; if the object is actually a record, as it is here, then individual components
are selected with p". name.

{ install -- add name, definition and type to table }
procedure install (var name, defn : string; t : sttype);
var

h, dlen, nlen : integer;
p : ndptr;

begin
nlen := length(name) + 1; {1 for ENDSTR
dlen := length(defn) + 1;
if (nexttab + nlen + dlen > MAXCHARS) then begin

putstr(name, STDERR);
error(': too many definitions')

end
else begin {put it at front of chain

h := hash(name);
new(p) ;
pA.nextptr := hashtab[h];
hashtab[h] : = p;
pA. na me := nexttab;
sccopy(name, ndtable, nexttab);
nexttab := nexttab + nlen;
pA.defn := nexttab;
sccopy(defn, ndtable, nexttab);
nexttab .- nexttab + dlen;
pA.kind := t

end
end;

size of pushback buffer
size of name-defn table
max chars in a defn }
max chars in a token }
size of hash table

280 SOFTWARE TOOLS IN PASCAL

The constants and procedures needed by define are as follows:

{ defcons -- const declarations for define
const

BUFSIZE = 500;
MAXCHARS = 5000;
MAXDEF = MAXSTR;
MAXTOK = MAXSTR;
HASHSIZE = 53;

{ defproc -- procedures needed by define }
#include "cscopy.p"
#include "sccopy.p"
#include "putback.p"
#include "g etpbc.p"
#include "pbstr.p"
#include "gettok.p"
#include "getdef.p"
#include "inithash.p"
#include "hash.p"
#include "hashfind.p"
#include "install.p"
#include "lookup.p"
#include "initdef.p"

CHAPTER 8

PROGRAM
def ine expand string definitions

USAGE
define

FUNCTION
def ine reads its input, looking for macro definitions of the form

define(ident, string}

and writes its output with each subsequent instance of the identifier ident replaced by the
sequence of characters string. string must be balanced in parentheses. The text of each
definition proper results in no output text. Each replacement string is rescanned for further
possible replacements, permitting multi-level definitions.

EXAMPLE
define
define(ENDFILE, (-1})
define(DONE, ENDFILE}

if (getit(line) = DONE} then
putit(sumline};

<ENDFILE>

if (getit(line) = (-1)) then
putit(sllmline);

BUGS
A recursive definition such as def ine (x, x) will cause an infinite loop when x is invoked.

Exercise 8-7. Verify that getdef and install work correctly if the definition is
empty, so that

CHAPTER 8 MACRO PROCESSING 281

define(nothing,)

defines a string with no replacement text. Why would you want to define such a thing?
What is the effect of the macro call

nothing(this is a line of text)

o

Exercise 8-8. Redefining names without salvaging the old space is obviously profligate if
done often. Modify install to make better use of the space in ndtable. 0

Exercise 8-9. Add an undefine command

undefine (name)

that removes the most recent definition of name. What should happen if you undefine
a name that wasn't defined? 0

Exercise 8-10. Experiment with different hashing algorithms, to see how randomly they
distribute the hash value between 1 and HASHSIZE, and what effect they have on
define's performance as a function of number of entries in the table. 0

Exercise 8-11. Implement a version of define that does not use pushback in the sense
that we have, but instead maintains a stack of current input sources, and switches those
appropriately. Try another version that uses explicit recursion to select different inputs.
Which version is easiest? Which version is fastest? 0

Exercise 8-12. How does define deal with the comment conventions of common pro­
gramming languages? Should define know about quoted strings? That is, should
defined names appearing within quotes be replaced? 0

Exercise 8-13. It is often useful to have at least a rudimentary conditional test. Suppose
we say that a line like

ifdef (name, text)

means "if name is defined, put text in the input, otherwise skip over it." You could
parameterize a program for different machines by writing definitions like

ifdef(pdp11, define(wordsize, 16) define(charsize, 8»
ifdef(pdp10, define(wordsize, 36) define(charsize, 7»
ifdef(ibm370, define(wordsize, 32) define(charsize, 8»

Then defining pdp 11 with the (empty) definition

define(pdp11,)

sets parameters like words i ze correctly for the PDP-II when the ifde f lines are
encountered. Changing this single definition and reprocessing resets the program for
some other machine. Implement this conditional facility. 0

8.3 Some Measurements

We timed define by replacing all const symbols from the code for edi t
and its supporting routines with define's and running it through define.
Here are some data from one timing study, with HASHSIZE set to 53. Total

282 SOFTWARE TOOLS IN PASCAL

time was 38 seconds on a DEC VAX 11/780.

CHAPTER 8

isalphanum
putcf
isletter
getc
gettok
getpbc
putstr
cscopy
hash
hashfind
define
equal
length
putback
lookup
getdef
install
pbstr

#calls

46997
36884
21830
39917
21831
47763
21182
9915
5890
5781

1
9375
6540
7847
5781

108
109
432

CPU time(%)

21.2
17.4
14.8
10.2
7.7
6.6
4.3
3.1
2.5
2.4
2.1
1.6
1.5
0.9
0.7
0.1
0.1
0.0

Our putstr calls putcf.
Before we consider the run time percentages, irs worth remarking that there

is a lot of information in a measurement as simple as the number of times each
procedure is called, especially if the program is carefully modularized so each
routine does only one thing. For example, this data tells us that the input con­
tains 39916 characters (one call of getc finds an ENDFILE), 36884 output
characters, 108 defined tokens, 432 occurrences of defined tokens out of 5781
that were looked up (which means that most of the time lookup reports
failure), and so on. Some of this data provides consistency checking on the
operation of the program. For example, we expect one more install than
getdef (installing the keyword define in the first place); if that is not so,
something is badly amiss.

The CPU time data tells us checking the types of characters with
isalphanum and isletter is surprisingly expensive, 36 percent, which sug­
gests that a different implementation is called for. 110 time is next, somewhat
over 27 percent. The table lookup mechanism is cheap; all of its components
add up to only about 7 percent. The pushback mechanism is a modest cost on
each character, well worth it for the clarity it brings to the program. Our deci­
sion to write pbstr in terms of putback is also vindicated.

We substituted range-test versions of isalphanum and isletter and
repeated the test. Total time went down to 29 seconds; run-time percentages
for isalphanum and isletter went to H.6 and 4.3 respectively.

It is important to justify decisions made in the name of efficiency for one
very good reason. Most of the time programmers have no real idea where time
is being consumed by a program. Consequently nearly all the effort expended

CHAPTER 8 MACRO PROCESSING 283

(and the clarity sacrificed) for "efficiency" is wasted. We have found that the
best way to avoid too-early optimization is to make a regular practice of instru­
menting code. Only from such first-hand experience can one learn a proper
sense of priorities.

8.4 Macros with Arguments

Macros with arguments add to the power of the macro processor. For exam­
ple, we said that getc and putc are equivalent to getcf (c, STDIN) and
putcf (c , STDOUT) respectively. By defining getc and putc as macros that
expand into references to getcf and putcf, we guarantee equivalence, and
we eliminate a level of procedure call, which may improve efficiency. The
replacement is not possible without an argument capability.

As another example with immediate relevance, we could replace
isalphanum and isletter by macros. The entire body of isletter is just

isletter :=
c in [ord (, a ') .. ord (, z')] + [ord (, A') .. ord (, Z')]

and isalphanum is not much bigger. These are such short routines that they
could readily be macros instead of functions, expanding into in-line code rather
than calling another routine. We could define a macro

isletter(c)

that would expand into the lines above (or into appropriate range tests), with
occurrences of the formal parameter c replaced by the actual argument used
when the macro is invoked. For the user, there would be no difference.

The syntax for specifying macros with arguments is an extension of what we
used before:

define (name, replacement text)

defines name. This time, however, any occurrence in the replacement text of
$n, where n is between 1 and 9, will be replaced by the nth argument when the
macro is actually called. Thus

define(isletter,
($ 1 in [ord (, a') .. ord (, z')] + [ord (, A') .. ord (, Z')]))

defines the isletter macro.
Specifying arguments with $n is not as pleasant as being able to use dummy

names for the parameters, as in

define(isletter(c),
(c in [ord (, a') .. ord (, z')] + [ord (, A') .. ord (, Z')]))

but it is easier to build. Write something clean and acceptable that works, then
polish it later if necessary.

The restriction to nine arguments is another example of the same

284 SOFTWARE TOOLS IN PASCAL CHAPTER 8

philosophy. It is silly to get sidetracked worrying about macros with lots of
arguments until the rest of the processor is working. You will find that in prac­
tice there is rarely any call for more anyway. Hard cases can wait until the easy
ones are well under control.

It's harder to write a macro processor that allows arguments than one that
doesn't. Furthermore, we intend to add a small set of "built-in" operations in
addition to define: a conditional statement, an arithmetic capability, and a cou­
ple of string functions, and we want these to go in without much effort. The
main thing is to ensure that any operation - macro call, definition, other
built-in - can occur in the middle of any other one. If this is possible, then in
principle the macro processor is capable of doing any computation, although it
may well be hard to express.

As long as no macro calls are encountered (or built-ins, since they are
treated identically), the input is copied directly to the output. When a macro is
called, however, its name, its definition, and its arguments (if any) are all col­
lected. Once the argument collection is finished, the macro is evaluated as fol­
lows. If it is a built-in like define, an appropriate routine is called that does
whatever it has to with the arguments. If the macro is not a built-in, the defini­
tion text is pushed back onto the input. As it is being pushed back, any $n's in
it are replaced by the corresponding argument that was just collected.

The fun starts when one of the arguments includes a call of another macro
or built-in. Although there are various ways to deal with this situation, one of
the easiest is to interpret the arguments as they are being collected, then push
them back onto the input.

When a macro invocation is seen, the name and definition are placed in an
evaluation area organized as a stack. Any arguments that follow are copied
into this area as well, except that when an argument contains another macro
invocation (a nested one) a new stack frame is created, and that inner macro is
evaluated completely and its translation pushed back onto the input before the
stack is popped and we resume working on the outer macro. The outer macro
never sees the inner one, just its translation. (Of course the inner macro may in
turn call upon other macros; the process is recursive.)

The thing to keep firmly in mind at all times is that arguments are evaluated
completely as they are being collected. This is different behavior from the
string replacement process we showed earlier in the chapter, but for common
uses like replacing symbolic parameters in programs, the two methods produce
the same result. (We will also provide for deferred evaluation so we can have
the benefits of the earlier method when we need them.) Here are some exam­
ples, before we start on the actual code.

Suppose we have

define(ENDSTR, 0)

When the define is seen, define and its replacement text (which is null) are

CHAPTER 8 MACRO PROCESSING 285

put in the evaluation stack. Now we collect the arguments. ENDSTR at this
point is nothing special, nor is 0, so they are put on the stack at positions 3 and
4 respectively. At the end of the define (when the definition is finished) we
can evaluate, which in this case involves calling a routine to install the name
and definition, which are the arguments at positions 3 and 4. Then the top four
items on the stack are popped.

If we subsequently see ENDSTR in the input, it will be put on the stack with
its definition, and no arguments. The definition 0 is pushed back onto the
input and the stack popped.

More complicated, here is an example with arguments.

define(incr, $1:=$1+1)

defines iner to be a macro that generates code to increment its argument by 1.
Ine input

incr(x)

causes iner and $1 : =$1 + 1 to be copied onto the evaluation stack. x is col­
lected as the argument; if it is not a defined name, we reach the end of the
invocation of iner without incident. The definition is pushed back onto the
input, with each occurrence of $1 replaced by x, to yield x: =x+ 1.

But imagine for a moment that x had earlier been defined to be something
else, say a [i]. Then x is a macro call, so when it is encountered, a new stack
frame is formed, and x and its definition are copied into that frame. Then the
definition a [i] is pushed back onto the input, and the frame popped. When
argument collection resumes for the previous level (iner), the input that used
to be x has become a [i J , and this becomes the actual argument to iner. As
far as iner is concerned, it was called with a [i] as its argument, and the
result is a [i] : =a [i] + 1.

Exercise 8-14. Assuming that getc and putc have been defined in terms of getcf
and putcf, go through the expansion process by hand for the input

putc(getc(c))

including the processing of values for STDIN and STDOUT. 0

8.5 Implementation

The processing can now be spelled out in more detail.

286 SOFIWARE TOOLS IN PASCAL CHAPTERS

while (gettok(token, maxtok) <> ENDFILE)
if (type is letter)

if (not lookup(token»
copy token to current evaluation stack frame

or directly to output
else

make new stack frame
copy name and definition to current stack frame

else if (stack empty) {not saving arguments}
copy directly to output

else if (at end of an argument list)
if (built-in)

do appropriate function
else

push definition back onto input,
replacing $n's by arguments

pop stack frame
else { saving arguments

copy token to current stack frame

Of course this skips over a few details like precisely how we know when we're
at the end of an argument list, and what the stack looks like. We will get to
them in due course.

First the evaluation stack. This is just a long array evalstk. The first free
position in evalstk is kept in ep, which is initially 1. Whenever we are pro­
cessing a macro or built-in, evalstk contains the strings for the name, defini­
tion and arguments. The array argstk contains the locations in evalstk
where these strings begin: argstk[i] is the beginning of the ith string in
evalstk. ap is the first free position in argstk; it is also initially 1.

Since macros and built-ins may be nested, the strings in evalstk that
argstk points to are in general associated with different levels. The array
callstk keeps track of each stack frame: callstk[i] points to the position
in argstk that in tum points to the defining text of the ith macro. A parallel
array typestk records the type of the corresponding macro or built-in. cp is
the current call stack position. If cp is zero, we are not in any macro. Inside a
single level of invocation, cp is one, and so on. Thus to find the first argument
of the third level of invocation, we first set i: =callstk[3]. Then
argstk[i] is the defining text of this macro, argstk[i+ 1] is the name, and
argstk[i+2] is the first argument. Thus, argstk effectively becomes an
array of variable length records, implemented of necessity as a less structured
array of indices.

CHAPTER 8

typestk plev

CP~~
callstk

ap

argstk
evalstk

MACRO PROCESSING 287

Argument collection requires keeping track of balanced parentheses indepen­
dently for each level of macro, so we add another array plev, also parallel to
eallstk, to count parentheses for the corresponding stack frame.

Several routines need to know about ep and the output buffer; eallstk,
typestk, argstk, ap, and plev are used only in the main routine.

callstk : posbuf; {call stack}
cp : pos; { current call stack position
typestk : array[1 .. CALLSIZE] of sttype; { type}
plev: array [1 .. CALLSIZE] of integer; {paren level
argstk : posbuf; {argument stack for this call}
ap : pos; { current argument position}
evalstk : charbuf; {evaluation stack}
ep : charpos; { first character unused in evalstk

There is one last complication. Any macros encountered during argument
collection are expanded immediately. But there are times when we must defer
the evaluation until later. For example, consider this attempt to make a new
macro d synonymous with define:

define(d, define($1,$2))

On cursory inspection it should work, because the replacement text of d appears
to be define ($1 ,$2). But macros and built-ins are evaluated as soon as they
are encountered. The inner define is evaluated before the outer one. Because
a define has no replacement text, the net effect is to define d to be empty,
which is hardly what was wanted. To get around the problem of premature
evaluation, there must be a quoting convention, so input can be treated as
literal text when necessary. In our convention, any input surrounded by " and
, is left absolutely alone, except that one level of " and ' is stripped off. With
this facility we can write the macro d as

define(d, 'define($1,$2)')

The replacement text for d, protected by the quotes, is literally
define ($1 ,$2). Now when we say

d(a, bc)

everything works and a is defined to be be.

288 SOFIWARE TOOLS IN PASCAL CHAPTER 8

Quotes must also be used when it is desired to redefine an identifier:

define(x,y)
define(x,z)

would define y in the second line, instead of redefining x. (The first definition
is still active, however, so x ultimately becomes z.) If you do not want to rede­
fine y, the operation must be expressed as

define(x,y)
define('x' ,z)

which will have the desired effect.
Because the right quote character ' means something in Pascal, sometimes it

is a nuisance to have it pre-empted, so we will also add a built-in to permit the
quote characters to be changed at will.

Putting all of these considerations together creates a long main program, but
it is not really complicated. It follows the outline we gave earlier, except for the
addition of quotes. It is a seven-way branch, with the code for each case in-line
instead of in a separate routine. We have called it macro rather than define,
because that better reflects what it does.

CHAPTER 8

{ macro -- expand macros with arguments }
procedure macro;
#include "maccons.pll
#include "mactype.p"
#include "macvar.p"

defn : string;
token : string;
toktype : sttype;
t : character;
nlpar : integer;

#include "macproc.p"
begin

initmacro;
install(defname, null, DEFTYPE);
install(exprname, null, EXPRTYPE);
install (subname , null, SUBTYPE);
install(ifname, null, IFTYPE);
install(lenname, null, LENTYPE);
install(chqname, null, CHQTYPE);

MACRO PROCESSING 289

cp .- 0;
ap . - 1;
ep . - 1;
while (gettok(token, MAXTOK) <> ENDFILE) do

if (isletter(token[1])) then begin
if (not lookup(token, defn, toktype)) then

puttok(token)
else begin {defined; put it in eval stack

cp := cp + 1;
if (cp > CALLSIZE) then

error('macro: call stack overflow');
callstk[cp] := ap;
typestk[cp] := toktype;
ap := push(ep, argstk, ap);
puttok(defn); {push definition
putchr(ENDSTR);
ap := push(ep, argstk, ap);
puttok(token); {stack name
putchr(ENDSTR);
ap := push(ep, argstk, ap);
t := gettok(token, MAXTOK); peek at next
pbstr (token) ;
if (t <> LPAREN) then begin add () }

putback(RPAREN);
putback(LPAREN)

end;
plev[cp] := 0

end
end

290 SOFTWARE TOOLS IN PASCAL CHAPTER 8

else if (token[1] lquote) then begin {strip quotes}
nlpar := 1;
repeat

t := gettok(token, MAXTOK);
if (t = rquote) then

nlpar := nlpar - 1
else if (t = lquote) then

nlpar := nlpar + 1
else if (t = ENDFILE) then

error('macro: missing right quote');
if (nlpar > 0) then

puttok(token)
until (nlpar = 0)

end
else if (cp = 0) then {not in a macro at all}

puttok(token)
else if (token[1] = LPAREN) then begin

if (plev[cp] > 0) then
puttok(token) ;

plev[cp] := plev[cp] +

end
else if (token[1] = RPAREN) then begin

plev[cp] := plev[cp] - 1;
if (plev[cp] > 0) then

puttok(token)
else begin {end of argument list }

putchr(ENDSTR);
eval(argstk, typestk[cp], callstk[cp], ap-1);
ap .- callstk[cp]; {pop eval stack}
ep .- argstk[ap];
cp .- cp - 1

end
end
else if (token[1]=COMMA) and (plev[cp]=1) then begin

putchr(ENDSTR); { new argument
ap .- push(ep, argstk, ap)

end
else

puttok(token); {just stack it }
if (cp <> 0) then

error('macro: unexpected end of input')
end;

We want to retain the property of define that a macro call without arguments
(like ENDFILE or ENDSTR) does not require parentheses. Thus if a token is a
defined name, and it is not followed immediately by a left parenthesis, we push
back an empty set of balanced parentheses, so that macro calls without argu­
ments are not a special case for the rest of the program. This is another exam­
ple of altering some data representation in a minor way to avoid much greater

CHAPTER 8 MACRO PROCESSING 291

complexity in the code.
You may have noticed that quotes are removed even outside macro defini­

tions. Although this may look like unnecessary meddling on the part of the
macro processor, there are good reasons for doing it that way. As the simplest
example, if you really want a literal occurrence of the word define in your
text, you have to protect it with a layer of quotes or it will be interpreted as a
call to the built-in define. We will see some more substantial instances of this
shortly.

puttok and putchr put strings and characters respectively either into
evalstk (if we are in the middle of a macro), or directly onto the output with
putc (if we are not). The test for what destination to use occurs in a single
place in putchr, not scattered throughout the code.

{ puttok -- put token on output or evaluation stack }
procedure puttok (var s : string);
var

i : integer;
begin

i := 1;
while (s[i] <> ENDSTR) do begin

putchr(s[i]);
i := i + 1

end
end;

{ putchr -- put single char on output or evaluation stack }
procedure putchr (c : character);
begin

if (cp <= 0) then
putc(c)

else begin
if (ep > EVALSIZE) then

error('macro: evaluation stack overflow');
evalstk[ep] := c;
ep := ep + 1

end
end;

When a new argument is to be put into evalstk we have to record the
current value of the position ep and increment ap; this is done by push:

292 SOFTWARE TOOLS IN PASCAL CHAPTER 8

{ push -- push ep onto argstk, return new position ap }
function push (ep : integer; var argstk : posbuf;

ap integer): integer;
begin

if (ap > ARGSIZE) then
error('macro: argument stack overflow');

argstk[ap] := ep;
push := ap + 1

end;

Once a macro has been identified and all its arguments collected in
evalstk (signaled by the parenthesis level becoming zero), eval is called to
process a built-in or to push back a definition with the appropriate arguments.

macro pushes the definition onto evalstk before the name, so when eval
is called, args [i] points to the defining text for the macro and args [i + 1]
points to the name. args [i+2] through args [j] are the arguments, of
which there are j - i - 1 . This organization means that $ 0 is the name of the
macro itself. Although this will probably be little used, the regularity is nice to
have.

CHAPfER 8 MACRO PROCESSING 293

{ eval -- expand args i .. j: do built-in or push back defn }
procedure eval (var argstk : posbuf; td : sttype;

i, j : integer);
var

argno, k, t : integer;
temp string;

begin
t := argstk[i];
if (td = DEFTYPE) then

dodef(argstk, i, j)
else begin

k := t;
while (evalstk[k] <> ENDSTR) do

k := k + 1;
k := k - 1; { last character of defn }
while (k > t) do begin

if (evalstk[k-1] <> ARGFLAG) then
putback(evalstk[k])

else begin
argno := ord(evalstkLk]) - ord('O');
if (argno >= 0) and (argno < j-i) then begin

cscopy(evalstk, argstk[i+argno+1], temp);
pbstr(temp)

end;
k := k - 1 {skip over $ }

end;
k := k -

end;
if (k = t) then { do last character }

putback(evalstk[k])
end

end;

If the type is define, dodef is called; otherwise the definition is pushed
back onto the input, with each $n replaced by the corresponding argument.
The symbolic constant ARGFLAG is a $.

We haven't said what the macro processor should do when a macro defini­
tion asks for an argument that wasn't supplied. The most harmless thing is to
ignore it - in effect to replace the $n by an empty string - and this is what
eval does. This is true even if no arguments are present; that way if x is
defined by

define(x, a$1b)

the inputs

294 SOFTWARE TOOLS IN PASCAL

x(+)
x(-,+)
x()

x

all produce something sensible: a+b, a-b, ab and ab respectively.
dodef is easy: most of the work has already been done for it.

CHAPTER 8

{ dodef -- install definition in table }
procedure dodef (var argstk : posbuf; i, j : integer);
var

temp1, temp2 : string;
begin

if (j - i > 2) then begin
cscopy(evalstk, argstk[i+2], temp1);
cscopy(evalstk, argstk[i+3], temp2);
install(temp1, temp2, MACTYPE)

end
end;

One of the first things to try with the macro processor is extending the syn­
tax of our programming language. Suppose we try to use macros to create the
error primitive that we have been using throughout the book. If we say

define(error, 'begin writeln($1); halt end')

then a "statement" like

error('argument stack overflow');

will be converted into

begin writeln('argument stack overflow'); halt end;

thus avoiding the problem of fixed-length strings.
The hal t statement is not standard Pascal either, by the way, though it is

widely available. If your Pascal has no such mechanism, you can go on to say

define(halt, goto 9999)

where 9999 is a label in the outermost block of your program, just after the call
of your main procedure.

Exercise 8-15. Modify the definition of error given above so that the error message
includes the name of the program being run. You might also arrange that output
appears on a different file than normal, so it does not disappear down a pipeline. Write
a macro for message as well. 0

Exercise 8-16. The definition

define(sqr, $1 * $1)

defines a macro to square an expression. Or does it? What is sqr (x+ 1)? What can

CHAPTER 8 MACRO PROCESSING 295

you do about it? How much should a macro processor know about the language(s) it is
used with? 0

Exercise 8-17. Invent a syntax that allows macros to have more than nine arguments.
Make it compatible with the $n syntax if n< 10. How difficult is it to implement? 0

Exercise 8-18. Improve def ine to allow the parameters in a macro definition to be
specified by dummy names instead of by $n. That is, if m is defined by

define (m (x, y), replacement text containing tokens x and y)

then the invocation m(a , b) should replace all occurrences of the tokens x and y in the
replacement text by a and b respectively. How much existing machinery can you use? 0

8.6 Conditionals, Arithmetic, and Other Built-ins

macro has been designed to make it easy to add new built-in functions as
the need arises. The next step in the evolution is the addition of a conditional
test, with a built-in function ifelse. The input

ifelse(a,b,c,d)

compares a and b as character strings. If they are the same, c is pushed back
onto the input; if they differ, d is pushed back. As a rudimentary example,

define(compare, 'ifelse($1,$2,yes,no)')

defines compare as a two-argument macro returning yes if its arguments are
the same, and no if they're not. As usual, the quotes prevent the ifelse
from being evaluated too soon.

While we are adding built-in functions, we will do four more.

expr (expression)

evaluates the string expression as an arithmetic expression and returns that as its
replacement text (as a string of characters). expression had better be a valid
expression, or the results may be undesirable. "Arithmetic expression" includes
+, -, *, / (integer division only, like div), % for remainder (Pascal's mod),
and parentheses.

Suppose that you need parameters such as

const
SCREENWID = 80;
MAXLINE = SCREENWID + 1;

But the second definition is illegal: a constant cannot be an expression, however
appealing it might seem. The problem with writing two definitions, as in

SCREENWID = 80;
MAXLINE = 81;

is that you must remember to update both if one changes (and recognize that
81 is actually 80+ 1 in disguise). Clearly it is better to define one in terms of
the other. With expr, the job is easy:

296 SOFTWARE TOOLS IN PASCAL

define(SCREENWID, 80)
define (MAXLINE, 'expr(SCREENWID+1)')

CHAPTER 8

expr has much more capability than this example would indicate; we'll show
some more soon.

The next built-in is a function to take substrings of strings.

substr (s,m,n)

produces the substring of 5 which starts at posinon m (with ongm one), of
length n. If n is omitted or too big, the rest of the string is used, while if m is
out of range the result is a null string.

sUbstr(abc, 2, 1)

is b,

substr(abc, 2)

is bc, and

substr(abc, 4)

is empty.
The built-in len returns the length of its argument. Interestingly, len can

be defined in terms of the other built-ins. What is the length of a string 5? If 5

is empty, its length is zero. Otherwise it is one more than the length of the sub­
string of 5 obtained by chopping off one character. This is a recursive defini­
tion, which is a natural form of expression if you happen to have a recursive
language at hand - and we do. Let's say it with macros:

define(len,'ifelse($1,,0,'expr(1+1en(substr($1,2»)')')

This is certainly a mouthful, but not hard to understand in the light of the
recursive definition above. It is permissible, and often necessary, to define mac­
ros in terms of themselves. It works because conditional testing can be used to
prevent an infinite loop. In this case the test is whether all the characters of the
string have been chopped away.

The outer layer of quotes prevents all evaluation as the definition is being
copied into the table. The inner layer prevents the expr construction from
being done as the arguments of the ifelse are collected.

As you can imagine, computing a length this way is expensive, which is our
main reason for including len as a built-in.

The final built-in is changeq, which permits the default quote characters '
and ' to be set to something else. changeq (xy) sets the quotes to x and y;
changeq without an argument resets them to the default.

The changes needed to add ifelse, expr, substr, len and changeq
are minor. We modify macro to install the new keywords and their types
(IFTYPE, EXPRTYPE, SUBTYPE, LENTYPE, CHQTYPE), and change eval to

CHAPTER 8 MACRO PROCESSING 297

look for them as well as for DEFTYPE. In eval we only have to add the extra
tests and procedure calls.

else if (td = EXPRTYPE) then
doexpr(argstk, i, j)

else if (td = SUBTYPE) then
dosub(argstk, i, j)

else if (td = IFTYPE) then
doif(argstk, i, j)

else if (td = LENTYPE) then
dolen(argstk, i, j)

else if (td = CHQTYPE) then
dochq(argstk, i, j)

else begin
{ process normal macro as before }

doif compares the first two arguments, and pushes back the appropriate
one onto the input. If there is no else argument, a null string is returned.

{ doif -- select one of two arguments }
procedure doif (var argstk : posbuf; i, j : integer);
var

temp1, temp2, temp3 : string;
begin

if (j - i >= 4) then begin
cscopy(evalstk, argstk[i+2], temp1);
cscopy(evalstk, argstk[i+3], temp2);
if (equal(temp1, temp2» then

cscopy(evalstk, argstk[i+4], temp3)
else if (j - i >= 5) then

cscopy(evalstk, argstk[i+5], temp3)
else

temp3[1] .- ENDSTR;
pbstr(temp3)

end
end;

doexpr does the arithmetic, converts the number, and pushes the result
back as a character string with pbnum.

298 SOFTWARE TOOLS IN PASCAL

{ doexpr -- evaluate arithmetic expressions
procedure doexpr (var argstk : posbuf; i, j
var

temp string;
junk integer;

begin
cscopy(evalstk, argstk[i+2], temp);
junk := 1;
pbnum(expr(temp, junk»

end;

CHAPTER 8

integer) ;

string;
integer;

term

expr

factor

{ pbnum -- convert number to string, push back on input }
procedure pbnum (n : integer);
var

temp
junk

begin
junk := itoc(n, temp, 1);
pbstr(temp)

end;

Most of the work in evaluating expressions is pushed off into expr, which
uses recursive calls on several sub-functions to evaluate the components of the
expression. The method is quite conventional: the grammar for an arithmetic
expression can be written as

term + term
term - term
factor * factor
factor / factor
factor " factor
number
(expr)

The recursion is in the process of finding the pieces. Each syntactic type (expr,
term, factor) has a corresponding function. expr searches for a pair of term's
separated by + or -, term searches for factor's, and factor looks for either a
plain number or a parenthesized expr.

CHAPTER 8 MACRO PROCESSING 299

{ expr -- recursive expression evaluation }
function expr (var s : string; var i : integer)
var

v : integer;
t : character;

#include "gnbchar.p"
#include "term.p"
begin

v .- term(s, i);
t := gnbchar(s, i);
while (t in [PLUS, MINUS]) do begin

i := i + 1;
if (t = PLUS) then

v .- v + term(s, i)
else

v .- v - term(s, i);
t := gnbchar(s, i)

end;
expr := v

end;

integer;

{ term -- evaluate term of arithmetic expression }
function term (var s : string; var i : integer) : integer;
var

v : integer;
t : character;

#include "factor.p"
begin

v := factor(s, i);
t := gnbchar(s, i);
while (t in [STAR, SLASH, PERCENT]) do begin

i := i + 1;
case t of
STAR:

v := v * factor(s, i);
SLASH:

v := v div factor(s, i);
PERCENT:

v := v mod factor(s, i)
end;
t := gnbchar(s, i)

end;
term : = v

end;

300 SOFTWARE TOOLS IN PASCAL CHAPTER 8

{ factor -- evaluate factor of arithmetic expression
function factor (var s : string; var i : integer)

: integer;
begin

if (gnbchar(s, i) = LPAREN) then begin
i := i + 1;
factor := expr(s, i);
if (gnbchar(s, i) = RPAREN) then

i := i + 1
else

message('macro: missing paren in expr')
end
else

factor .- ctoi(s, i)
end;

The function gnbchar finds the beginning of the next token: it differs from
skipbl only in that it also skips newlines, and returns a character for testing.

{ gnbchar -- get next non-blank character
function gnbchar (var s : string; var i : integer)

character;
begin

while (s[i] in [BLANK, TAB, NEWLINE]) do
i := i + 1;

gnbchar := sri]
end;

dolen is straightforward:

{ dolen -- return length of argument
procedure dolen(var argstk : posbuf; i, j
var

temp : string;
begin

if (j - i > 1) then begin
cscopy(evalstk, argstk[i+2], temp);
pbnum(length(temp»)

end
else

pbnum(O)
end;

integer) ;

dosub does the substr function; it is entirely concerned with getting
indices right, particularly in boundary cases where the substring requested is in
some way outside the string. By calling expr instead of ctoi, dosub causes
the second and third arguments to be evaluated as expressions without a sur­
rounding call to expr.

CHAPTER 8 MACRO PROCESSING 301

{ dosub -- select substring
procedure dosub (var argstk
var

posbuf; i, j integer) ;

ap, fc, k, nc : integer;
temp1, temp2 : string;

begin
if (j - i >= 3) then begin

if (j - i < 4) then
nc : = MAX'l'OK

else begin
cscopy(evalstk, argstk[i+4], temp1);
k : = 1;
nc := expr(ternp1, k)

end;
cscopy(evalstk, argstk[i+3], temp1); origin
ap := argstk[i+2]; {target string}
k : = 1;
fc := ap + expr(temp1, k) - 1; {first char}
cscopy(evalstk, ap, temp2);
if (fc >= ap) and (fc < ap+length(ternp2)) then begin

cscopy(evalstk, fc, temp1);
for k := fc+min(nc,length(temp1))-1 downto fc do

putback(evalstk[k])
end

end
end;

dochq is easy:

302 SOFIWARE TOOLS IN PASCAL

{ dochq -- change quote characters }
procedure dochq (var argstk : posbuf; i, j
var

temp : string;
n : integer;

begin
cscopy(evalstk, argstk[i+2], temp);
n := length(temp);
if (n <= 0) then begin

lquote .- ord(GRAVE);
rquote := ord(ACUTE)

end
else if (n = 1) then begin

lquote .- temp[1];
rquote .- lquote

end
else begin

lquote .- temp[1];
rquote .- temp[2]

end
end;

CHAPTER 8

integer) ;

Finally, here are the other components that make up the program:

{ mactype -- type declarations for macro }
type

charpos = 1 .. MAXCHARS;
charbuf = array [1 .. MAXCHARS] of character;
posbuf = array [1 .. MAXPOS] of charpos;
pos = O.. MAXPOS;
sttype = (DEFTYPE, MACTYPE, IFTYPE, SUBTYPE,

EXPRTYPE, LENTYPE, CHQTYPE); { symbol table types}
ndptr = Andblock;
ndblock =

record
name charpos;
defn charpos;
kind sttype;
nextptr : ndptr

end;

CHAPTER H MACRO PROCESSING 303

{ maccons -- const declarations for macro }
const

BUFSIZE = 1000;
MAXCHARS = 5000;
MAXPOS = 500;
CALLSIZE = MAXPOS;
ARGSIZE = MAXPOS;
EVALSIZE = MAXCHARS;
MAXDEF = MAXSTR; {
MAXTOK = MAXSTR; {
HASHSIZE = 53; {
ARGFLAG = DOLLAR; {

size of pushback buffer
size of name-defn table
size of position arrays

max chars in a defn }
max chars in a token }
size of hash table }
macro invocation character

macvar -- var declarations for macro }
var

buf : array [1 .. BUFSIZE] of character; {for pushback
bp : O.. BUFSIZE; {next available character; init=O

hashtab
ndtable
next tab

array [1 .. HASHSIZE] of ndptr;
charbuf;
charpos; first free position in ndtable }

callstk posbuf; {call stack
cp : pos; { current call stack position}
typestk : array[1 .. CALLSIZE] of sttype; { type}
plev : array [1 .. CALLSIZE] of integer; {paren level
argstk : posbuf; {argument stack for this call}
ap : pos; { current argument position}
evalstk : charbuf; {evaluation stack}
ep : charpos; { first character unused in evalstk

{ built-ins: }
defname : string;
exprname : string;
subname : string;
ifname : string;
lenname string;
chqname string;

value is 'define'
value is 'expr' }

value is 'substr'
value is 'ifelse'
value is 'len' }

value is 'changeq'

null :
lquote
rquote

string;
character;
character;

value is " }
left quote character }
right quote character }

304 SOFTWARE TOOLS IN PASCAL

{ initmacro -- initialize variables for macro }
procedure initmacro;
begin

null[1] := ENDSTR;
{ setstring(defname, 'define');

defname[1] . - ord('d');
defname [2] . - ord (, e') ;
de fname [3] . - ord (, f ') ;
defname[4] .- ord('i');
defname[5] . - ord('n');
defname[6] .- ord('e');
defname[7] .- ENDSTR;

setstring(subname, 'substr');
s ubname [1] . - ord (, s ') ;
subname[2] .- ord('u');
subname[3] .- ord('b');
subname[4] .- ord('s');
subname[5] .- ord('t');
subname[6] .- ord('r');
subname[7] .- ENDSTR;

setstring(exprname, 'expr');
exprname [1] . - ord (, e') ;
exprname[2] .- ord('x');
exprname [3] . - ord (, p') ;
exprname[4] .- ord('r');
exprname[5] .- ENDSTR;

setstring(ifname, 'ifelse');
ifname[1] . - ord(' i') ;
ifname [2] . - ord (, f') ;
ifname [3] . - ord (, e') ;
ifname [4] . - ord (, I ') ;
ifname [5] . - ord (, s ') ;
ifname [6] . - ord (, e') ;
ifname[7] .- ENDSTR;

setstring(lenname, 'len');
I enname [1] . - ord (, I ') ;
lenname[2] .- ord('e');
lenname [3] . - ord (, n ') ;
lenname[4] .- ENDSTR;

setstring(chqname, 'changeq');
chqname [1] . - ord (, c ') ;
chqname[2] .- ord('h');
chqname[3] .- ord('a');
chqname[4] .- ord('n');
chqname[5] .- ord('g');
chqname[6] .- ord('e');
chqname[7] .- ord('q');
chqname[B] .- ENDSTR;

bp := 0; { pushback buffer pointer
inithash;
lquote .- ord(GRAVE);
rquote := ord(ACUTE)

end;

CHAPTER 8

CHAPTER 8

PROGRAM
macro expand string definitions, with arguments

USAGE

MACRO PROCESSING 305

macro
FUNCTION

macro reads its input, looking for macro definitions of the form
define(ident,string}

and writes its output with each subsequent instance of the identifier ident replaced by the
arbitrary sequence of characters str ing.
Within a replacement string, any dollar sign $ followed by a digit is replaced by an argument
corresponding to that digit. Arguments are written as a parenthesized list of strings following
an instance of the identifier, e.g.,

ident(arg1,arg2, ... }

So $1 is replaced in the replacement string by arg 1, $ 2 by arg2, and so on; $ 0 is replaced
by ident. Missing arguments are taken as null strings; extra arguments are ignored.
The replacement string in a definition is expanded before the definition occurs, except that
any sequence of characters between a grave ' and a balancing apostrophe ' is taken literally,
with the grave and apostrophe removed. Thus, it is possible to make an alias for define by
writing

define(def, 'define($1,$2}'}

Additional predefined built-ins are:
ifelse (a, b, c , d) is replaced by the string c if the string a exactly matches the string b;

otherwise it is replaced by the string d.

expr (expression) is replaced by the decimal string representation of the numeric value
of expression. For correct operation, the expression must consist of parentheses, integer
operands written as decimal digit strings, and the operators +, -, *, / (integer division), and
% (remainder). Multiplication and division bind tighter than addition and subtraction, but
parentheses may be used to alter this order.
subs tr (s , m , n) is replaced by the substring of s starting at location m (counting from one)
and continuing at most n characters. If n is omitted, it is taken as a very large number; if m
is outside the string, the replacement string is null. m and n may be expressions suitable for
expr.
len (s) is replaced by the string representing the length of its argument in characters.
changeq (xy) changes the quote characters to x and y. changeq () changes them back to
, and'.
Each replacement string is rescanned for further possible replacements, permitting multi-level
definitions to be expanded to final form.

EXAMPLE
The macro 1 en could be written in terms of the other built-ins as:

define('len', 'ifelse($1"O, 'expr(1+1en(substr($1,2}}}'}'}

BUGS
A recursive definition of the form def ine (x ,x) will cause an infinite loop.
Expression evaluation is fragile. There is no unary minus.
It is unwise to use parentheses as quote characters.

Exercise 8-19. (Frivolous) Define a macro reverse that will reverse a string. 0

Exercise 8-20. The function expr is particularly vulnerable to syntactically invalid
expressions. How would you make it more robust? Is it worth it? 0

Exercise 8-21. Define an assert macro that will cause conditional compilation of
assertions in a program: if assertions are turned on,

306 SOFTWARE TOOLS IN PASCAL

assert(i < j)

should expand into something like

if (not (i < j)) then
error('false assertion: i < j')

CHAPTER 8

Can you invent a way to include either the name of the procedure or the assertion
number as part of the message? You will probably also want to define macros that turn
assertion checking off and on at desired places. 0

Exercise 8-22. Modify doexpr to do arbitrary precision arithmetic, Can you handle
floating point operations? Add an exponentiation operator and a base 2 logarithm opera­
tion. Add relational operators. 0

Exercise 8-23. Modify the storage management facilities in macro so that arrays are
managed by calls to Pascal's new function. Add command-line arguments to permit the
sizes of arrays to be specified when the program is run, with sensible defaults. 0

Exercise 8-24. What changes would you make to macro to adapt it to providing a
macro capability for the format program of Chapter 7? 0

8.7 Applications

Let us write macros to handle the string declaration that we have been using
in our programs. Suppose that

setstring(name,'text')

is a shorthand for

setstring(name,'text');
name [1] . - ord (, t') ;
name [2] . - ord (, e') ;
name [3] . - ord (, x') ;
name [4] . - ord (, t ') ;
name[5] .- ENDSTR;

The task is to convert the setstring declaration into this expanded form.
The solution comes in three parts. First we replicate the call with braces:

{ setstring(name,'text'); }

Then we loop over the characters between quotes, producing lines of the form

name [i] : = ord (, c ') ;

where c is the ith character of text. Finally we end with

name[n+l] := ENDSTR;

where n is the length of text.
setstring itself is

CHAPTER 8 MACRO PROCESSING 307

putchr
putback
gettok
isalphanum
getpbc
macro
puttok
cscopy
length
putc
isletter
getc
eval
equal
pbstr
push

changeq«»
define(setstring,<{ <setstring>($1,$2); }
str($1,substr($2,2),O) $1[len(substr($2,2»] := ENDSTR;
>)

where we have changed the quote characters to < and > to avoid difficulties
with the' used in Pascal. The call1en(substr($2,2)) computes the effec­
tive string length (excluding the quotes but including the ENDSTR). str creates
the intervening ord statements:

define(str,<ifelse($2,'" $1[expr($3+1)]:= ord('substr($2,1,1)');
<str($1,substr($2,2),expr($3+1»»»

It isolates one character, increments the index, generates the line, and calls itself
recursively until it sees the terminating quote.

This is obviously not the most transparent programming language in the
world. It takes some getting used to before you can think of looping in terms of
recursion, although with practice you get the hang of it. But beware of becom­
ing too clever with macros. In principle, macro is capable of performing any
computing task, but it is all too easy to write incomprehensible macros.

It is also the case that complicated recursive macro operations like
setstring can be painfully slow. For example, here are some statistics for
processing two short strings, of three and nine characters in length:

#calls CPU time(%)

4114 18.8
3010 12.9
1694 11.9
3278 9.9
3278 6.9

1 5.9
1357 5.9
534 5.9
520 4.0
366 4.0

1201 2.0
268 1.0
91 1.0

168 1.0
243 1.0
391 1.0

Total time was 1.6 seconds.
This is a lot of procedure calls for such a small input; if you did nothing but

process setstring macros, it would be intolerable. Fortunately the use of
macro as a front end for a language processor tends to involve primarily substi­
tuting one string for another, as in define. This is much less demanding, so
processing an occasional setstring is quite practical. The added complexity

308 SOFfWARE TOOLS IN PASCAL CHAPTER 8

of macro costs very little extra for this kind of application; macro takes about
ten percent longer than define on the same input.

The measurements above do indicate where attention can be most profitably
directed if it is necessary to speed macro up. One possibility is to observe that
some of the calls to gettok could be replaced by calls to getpbc, since only a
single character is involved (for example, while processing bracketed text).
More generally, there are a number of rather small routines which we wrote to
modularize the program properly. Part of the cost of macro is the overhead of
the procedure calling mechanism, which can be very inefficient on some
machines. We can avoid much of this by replacing procedure calls by in-line
code in these places (although we would do it by defining macros to replace the
procedure bodies, not by writing out the code!). Specifically, since virtually all
of the calls to putchr originate in puttok, putchr can be moved into
puttok with only minor rearrangements. If characters are small positive
integers, isalphanum and isletter can be replaced by in-line references to
an array which contains the type of the corresponding character; this will essen­
tially eliminate the cost of finding character types. And if the variables for the
pushback buffer are used more widely, getpbc and putback can also be
made in-line operations.

Although care is necessary to keep the program relatively clean, the payoff
can be substantial. The original version of macro, written in the language C,
was speeded up by a factor of about four by such transformations. Similar
results could be expected in Pascal on many machines. The process should be
as we have described several times here, however: write a clean program that
implements an appropriate algorithm; measure it to identify the hot spots; refine
those as cleanly as possible. Starting from the other end is a sure way to an
unworkable mess.

One thing that can be done to make macros faster and more comprehensible
is to increase the set of built-ins, so computations don't have to be spelled out in
excruciating detail. Here are some suggestions.

Exercise 8-25. Add a tracing facility to dump the name and definition of each macro as
it is encountered. 0

Exercise 8-26. Add a built-in analogous to the index function defined in Chapter 2:
index (s 1 ,s2) should return the position of the string s2 in the string s 1. or zero if
s 2 does not occur in s 1. Can you do index with the existing facilities? Should you? 0

Exercise 8-27. Add a trans 1 it built-in that performs transliterations similar to the
trans 1 it program of Chapter 2. Add a built-in rnatch (s , r) which returns the posi­
tion where the regular expression r begins in the string s , or zero if it doesn't. 0

Exercise 8-28. Write a macro rpt (s ,n) that evaluates s (1), s (2), ... , s (n) , Add a
built-in that does the same job. 0

Exercise 8-29. Add a built-in that will cause the contents of a file to be copied in at the
point where it is encountered, as with the include processor of Chapter 3. Make sure
that the included text is also scanned for macros! 0

CHAPTER 8 MACRO PROCESSING 309

Exercise 8-30. Add a built-in divert (f) to cause the output of macro to be appended
to file f instead of the standard output. Add another built-in incl (f) that will copy
file f to the standard output without macro scanning. These two built-ins make it possi­
ble to do significant rearrangements of the input. For example in a Pascal program you
can collect all canst's, all type's, etc., in an arbitrary order and output them in the
proper order. 0

Bibliographic Notes

There is a lot more to macro processing than we have room for here. An
Introduction to Macros by M. Campbell-Kelly (American-Elsevier, 1973) pro­
vides a brief discussion of several different forms of macro processors. Macro
Processors and Techniques for Portable Software by P. J. Brown (Wiley, 1974)
goes into more detail on the subtle aspects of macro processing.

The PUI macro preprocessor is an attempt to make a macro language that is
essentially the same as a compiler language. This is discussed in various PUI
texts and in reference manuals for particular implementations. For example, see
IBM System/360 PL/I Language Specification, ffiM Form Y33-6003, or Student
Text: An Introduction to the Compile-Time Facilities of PL/I, ffiM Form C20­
1689.

Macros have been valuable in making "portable" software - programs that
move from one machine to another with much less effort than complete re­
writing. The program is written in terms of a modest number of macros; noth­
ing but the macros must be written for a particular environment. Snobol is
probably the best known example of a major language so implemented. See
R. E. Griswold, J. F. Poage and I. P. Polonsky, The Snobol4 Programming
Language, Prentice-Hall, 1969, or R. E. Griswold, The Macro Implementation of
Snobol4, Freeman, 1972. The book by Brown discusses other work in this area.

Any number of books on data structures deal with the problems of maintain­
ing tables of information. As usual, one standard reference is D. E. Knuth's
The Art of Computer Programming (Addison-Wesley). Volume 1 (1968) is con­
cerned with data structures; Volume 3 (1973) discusses searching techniques in
great detail, including the selection of hashing functions.

It is possible to augment Pascal with a macro processor, even more than we
have done, to overcome some of its drawbacks. For a description of one such
effort, see "MAP: A Pascal macro preprocessor for large program develop­
ment," by D. E. Comer, Software Practice and Experience, March, 1979.

The macro processor described in this chapter was originally designed and
implemented in C by D. M. Ritchie; we are grateful to him for letting us steal
it.

EPILOGUE

We have come a long way. Eight chapters stuffed with code is a lot to
negotiate. If you didn't assimilate all of it the first time through, don't worry
- you weren't really expected to. Even the best of code takes time to absorb,
and you seldom grasp all the implications until you try to use and modify a pro­
gram. Much of what you learn about programming comes only from working
with code: reading, revising and rereading.

Reading and revising are the key words. No program comes out a perfect
work of art on its first draft, regardless of the techniques you use to write it.
We rewrote every routine in this book several times, yet we still would not
claim that anyone is flawless. Extensive revision may sound like a costly and
time-consuming luxury, but when the programs are clean and the modules
small, it is not. Moreover you will find that with practice in reading and revis­
ing, your first versions get better and better, since you soon learn what to use
and what to avoid, what is good style and what is not. Even so, rewriting will
always remain an important part of programming.

The purpose of most rewriting is to simplify a program, to make it easier to
understand, to keep its complexity manageable. Controlling complexity is the
essence of computer programming. We will always be limited by the sheer
number of details that we can keep straight in our heads. Much of what we
have tried to teach in this book is how to cope with complexity.

At the lowest level, we were careful in our choice of control structures and
in how we used the ones we chose. We found no need for the goto statement,
for instance, and, somewhat surprisingly, little for the case. if's are seldom
nested more than two levels deep, save in the restricted form of else if's for
multi-way decisions. Loops generally are tested at the top, before it's too late.
Procedures and functions rarely spread over more than one page; most are much
shorter. As a result the code is readable. It is easy to convince yourself that a
module is probably correct, because it is broken up into pieces that you can
grasp one at a time and read in sequence.

Each module is also cohesive: it has good reasons for being a separate entity.
It is not a tangle of multiple functions lumped arbitrarily, nor is it a displaced
fragment of some other module. This means that we can describe the function

311

312 SOFIWARE TOOLS IN PASCAL

of each routine in a line or two. Further, the routine is written to meet this
specification, a discipline far superior to writing a procedure that might be use­
ful, then describing how it does what it does.

Several programs in this book comprise five hundred to a thousand lines of
source code, yet none is conceptually "big." Each can be understood a module
at a time, a section at a time. This is because the hierarchy of procedures was
designed so that no one module has to know about much of the total problem,
nor deal with more than a handful of immediate neighbors. There is little fear
that a change in one part of the hierarchy will cause unexpected repercussions in
another part, because the modules are kept as uncoupled as possible, and the
coupling that exists is kept visible.

We tried to make the programs easy to modify, by hiding design decisions
and data structures so that routines that don't need to know about them don't.
We built checks and firewalls into the code so that errors and inconsistencies are
detected quickly. We expressed details of character set, parameters and flags in
terms of symbolic constants so that only one change is needed to alter a value
throughout a program. We were also careful to isolate as much as possible of
the operating system interface in a small set of primitives, so the bulk of the
code is independent of the local environment.

Finally, at the highest level, we wrote programs so they could work together,
so complex tasks could be implemented by combining existing programs instead
of by writing new ones. Each program so used is just a module, with a particu­
larly simple interface to others.

This is "structured programming" in the best sense of the term. It is clear
that the method works, and works well, for real programs. The rewards are
great. We can write comprehensible, reliable, robust code and remain relatively
unaffected by major changes in implementation strategies and even by changes
from one computer to another. Proper structure, at all levels, is not just nice, it
is vital to the successful control of a complex job.

Besides these considerations of structure, we tried to convey some helpful
guidelines for attacking a programming task. Like all questions of judgment,
they are subject to debate, but we have found that they work well.

Principle 1 is the most important: keep it simple. At all levels, be as clean as
possible, and write the simplest, clearest thing that will do the job. You can't
be utterly naive, of course; common sense is still needed. When you choose an
algorithm, there has to be some hope that it will be economical. But if imple­
mentation details and strategies are concealed, an inadequate algorithm can be
changed without affecting much else. Since you are building tools, you also
have to remember the people who will use your program, and make their task
lighter, even at the expense of complicating your own. Fortunately, a uniform
and regular design is often reflected in a clean interface for users.

Principle 2 is related: build it in stages. Undertake a complex task only in
manageable steps. Concentrate on the central, most important aspects first;

EPILOGUE 313

don't get sidetracked on frills. If your basic plan is good, later additions will fit
in smoothly. In the meantime, people can use what you already have produced,
and their advice and experience should help you decide what comes next. You
may even find that the part already built is adequate by itself. Ninety percent
of the right job done well and available today is a lot more valuable than
ninety-nine percent promised for sometime next month.

Principle 3 is intuitively appealing: let someone else do the hard part. Build
on what you or others have already done, instead of starting from scratch each
time. If you write a routine for something, make it general enough that it can
be used again for a related job. In a larger context, you can often get a great
deal of leverage by interfacing a small program to a large one - putting a
macro or file inclusion processor in front of Pascal is a good example. And of
course, whenever you can, let the machine do the work, for that is the ultimate
purpose of building tools.

One complication you probably have no control over is your local computing
environment. But even if it's horrible, as many are, you don't have to suffer
stoically. Even a modest improvement of frequently used parts, like your pro­
gramming and job control languages, is well worth while, and there's no excuse
for not trying to conceal the worst aspects.

Keep these thoughts in mind as you look back over the book. Although our
suggestions were made during the development of specific programs, the lessons
they contain are applicable in general. The design principles and guidelines
summarized here are an effective way to produce tools that work properly, and
that work well with people and with other programs. That should be your goal
for every program you write.

APPENDIX: IMPLEMENTATION OF PRIMITIVES

To support the programs presented in this book, there must be implemented
a special environment within whatever Pascal environment you currently have
available. In this appendix, we will document the demands made on this special
environment, so that you can appreciate the choices made in the implementa­
tion provided for your use, or so that you can make your own implementation.
We will also show you the details of some versions that we have developed.
Studying these implementations ought to suggest ways to make the primitives
work on your system.

Most of the burden falls on the primitive functions and procedures that were
introduced in earlier chapters. These are best documented with manual pages
like those provided for each of the programs presented in this book. But there
must also be a "wrapper" or standard context of some sort, which provides for
the declaration of various constants and types, possibly some variables, and cer­
tainly the primitives and other useful routines. The wrapper must also include
the definition of the program you are writing, perform any initializations
required by the support routines, call your main routine, and perhaps even tidy
up after that call.

Thus the wrapper must contain:
A program header. The program name is generally irrelevant, but the file

parameters input and output must be named, to support standard input and
output files. The error output file may have to be named as well.

Constant and type definitions. Constants may be provided by using macro
definitions and preprocessing each Pascal program to expand them, or by declar­
ing const identifiers, or by introducing the names as members of an
enumerated type. One constellation of names that is amenable to any of these
treatments includes: IOERROR, STDIN, STDOUT, STDERR, and MAXOPEN.
There are presumably MAXOPEN-3 other members of this group, corresponding
to the file descriptors that are handed out by calls on open or create. How­
ever implemented, these are the values that may be assumed by the type
filedesc.

Similarly, the second argument to open or close is a creature of type
integer called the mode, which may typically take on only the values IOREAD

315

316 SOFTWARE TOOLS IN PASCAL APPENDIX

and IOWRITE, but the door is left open for other file access modes if they
should be needed.

Variables of type character must accept integer values equal to the
ordinal positions of all the printable characters, plus blank and other common
codes such as backspace, tab, and newline. In addition, there must be two dis­
tinct values accepted for end-of-file, ENDFILE, and end-of-string, ENDSTR.

A whole slew of names are provided for values of type character
corresponding to various common keyboard characters. Our list includes a
name for every ASCII graphic (for example, DOLLAR, UNDERLINE, etc.) and
even a couple of synonyms; a complete list occurs later.

Finally, variables of type string are arrays of character with a subscript
ranging from 1 to MAXSTR.

Primitives. These are the dozen or so functions and procedures that perform
all interaction with the operating environment, and hence must be tailored to
suit the circumstances. We're almost ready to discuss them.

Utilities. Certain functions and procedures are used so widely that we made
no attempt to include them selectively in the tools as presented. Thus, they
must be represented by adding #include lines in the tools themselves, or by
adding external declarations in a Pascal implementation that supports
separate compilation, or by including them all in the off chance that they may
be called upon. For either of the latter two approaches, here is the list of utili­
ties that must be declared: addstr, equal, esc, index, isalphanum,
isdigit, isletter, islower, isupper, itoc, length, max, min,
scopy, ctoi, fcopy, mustcreate, mustopen, and putdec. The order of
presentation satisfies any mutual dependencies, if the utilities are declared in
this order following the primitives. Descriptions of the individual routines may
be found throughout the text with the aid of the Index of First Lines.

The target program. This must be included after all the other declarations
so the entire standard environment is available to the program to be run. Note
that most of the programs given here contain further #include lines for sub­
procedures.

Initialization. Before the target program can be invoked, any data structures
needed by the standard environment must be initialized. For instance, the file
descriptors STDIN, STDOUT, and STDERR must be associated with the proper
files, and all other file descriptors must be made available for subsequent open
or create calls. This operation may he nonexistent on a Pascal that supports
static data initialization; it may be trivial on a system that lacks this extension
but provides for file redirection at the command line level; or it may require
prompting for a command line and doing all of the above as part of the system
interface.

Invoking the target program. Since this involves merely calling a procedure
with no arguments, it would appear to require little attention. We have given
each program a different procedure name for the sake of clarity, so the standard
wrapper must be modified for each compilation to call the proper routine, or

APPENDIX IMPLEMENTAnON OF PRIMITIVES 317

each program must be modified to have a standard name. If you are already
using the macro processor to elaborate definitions or procedures such as error,
changing the name of the procedure invoked is a small additional complexity.
Otherwise, circumstances may dictate editing the tools once and for all.

Wrapup. Frequently this involves no extra code, but there may be work to
do if, say, files are not automatically closed and preserved in a satisfactory
fashion upon program termination.

So much for the wrapper!
Here are the manual pages for the pnrruuves that must accompany the

declarations described above. Note that the pages differ from manual pages for
programs in two significant ways: the USAGE section shows how the primitive is
declared, not how it is invoked; and there is a new section, RETURNS, that
documents the values returned by functions, or written in var parameters by
functions or procedures. Any other side effects, such as altering the state of a
file, are also spelled out in the FUNCTION section. We omit the EXAMPLE
sections here, since the book is replete with usage of the primitives.

PRIMITIVE
close close a file descriptor

USAGE
procedure close (fd : filedesc);

FUNCTION
close releases the file descriptor and any associated resources for a file opened by open or
create.

RETURNS
Nothing.

PRIMITIVE
create make a new instance of a file available

USAGE
function create (name : string; mode : integer) : filedesc;

FUNCTION
create makes the file with external name name available for the type of access specified by
mode, by placing it under control of a file descriptor. If the file already exists, it is truncated
to zero length, otherwise it is introduced as a new zero length file. In general, the only sensi­
ble value of mode is IOWRITE, for write access.
The file remains under control of the file descriptor returned until explicitly disconnected by a
close call, or until the program terminates.

RETURNS
create returns IOERROR if the file cannot be accessed as desired, for any reason; otherwise
it returns a value of type filedesc suitable for use with subsequent calls to close, putcf,
putstr, or seek.

318 SOFTWARE TOOLS IN PASCAL APPENDIX

PRIMITIVE
error print a message and exit

USAGE
procedure error ('your message here');

FUNCTION
error writes the literal string specified to a highly visible place, such as the user's terminal,
then performs an abnormal exit.

RETURNS
Nothing. Moreover, error never returns control to its caller.

PRIMITIVE
getarg get a command line argument

USAGE
function getarg (n : integer; var str string; maxsize integer)

: boolean;
FUNCTION

getarg writes up to maxsize characters (including an ENDSTR) of the nth command line
argument into the string str. The first argument on the command line is argument number
one. No error is reported if the argument string is truncated.

RETURNS
getarg returns true if the argument is present, otherwise false.

PRIMITIVE
getc get a character from standard input

USAGE
function getc (var c : character) : character;

FUNCTION
getc reads at most one character from the standard input STDIN. If there are no more
characters available, getc returns ENDFILE; if the input is at end-of-line, it returns
NEWLINE and advances to the beginning of the next line; otherwise it returns the next input
character.

RETURNS
getc returns the value of type character corresponding to the character read from the
standard input, or one of the special values NEWLINE or ENDFILE as specified above. The
return value is also written in the argument c.

APPENDIX IMPLEMENTATION OF PRIMITIVES 319

PRIMITIVE
getcf get a character from a file

USAGE
function getcf (var c : character; fd : filedesc) : character;

FUNCTION
getcf reads at most one character from the file specified by the file descriptor fd. If there
are no more characters available, getcf returns ENDFILE; if the input is at end-of-line, it
returns NEWLINE and advances to the beginning of the next line; otherwise it returns the next
input character and points past it in the file.

RETURNS
getcf returns the value of type character corresponding to the character read from the
file, or one of the special values NEWLINE or ENDFILE as specified above. The return value
is also written in the argument c.

PRIMITIVE
get1 ine get a line of text from a file

USAGE
function getline (var str : string; fd filedesc;

maxsize : integer) : boolean;
FUNCTION

getline reads at most one line of text from the file specified by file descriptor fd. The
characters are written into str up to and including the terminating NEWLINE; an ENDSTR is
then appended to the input text. No more than maxsize-l characters are returned, so a
line of length maxsize-l that does not end with NEWLINE has been truncated.

RETURNS
getline returns true if a line is successfully obtained; false implies end of file.

PRIMITIVE
message print a message and continue

USAGE
procedure message ('your message here');

FUNCTION
message writes the literal string specified to a highly visible place, such as the user's termi­
nal, then continues execution.

RETURNS
Nothing.

PRIMITIVE
nargs get number of command line arguments

USAGE
function nargs : integer;

FUNCTION
nargs determines the number of arguments used on the command line that invoked the pro­
gram, suitable for copying by getarg.

RETURNS
nargs returns the number of arguments found on the command line, i.e., a number greater
than or equal to zero.

320 SOFTWARE TOOLS IN PASCAL APPENDIX

PRIMITIVE
open make a file available for input or output

USAGE
function open (name: string; mode: integer) : filedesc;

FUNCTION
open makes the file with external name name available for the type of access specified by
mode. Legitimate values of mode are IOREAD for read access and IOWRITE for write
access. No other values are currently defined. In either case, the file is not modified by the
open call, and access commences with the first character of the file.
The file remains associated with the file descriptor returned until explicitly disconnected by a
close call, or until the program terminates.

RETURNS
open returns IOERROR if the file cannot be accessed as desired, for any reason; otherwise it
returns a value of type filedesc suitable for use with subsequent calls to close, getcf,
getline, putcf, putstr, or seek.

PRIMITIVE
putc put a character on standard output

USAGE
procedure putc (c : character);

FUNCTION
putc writes the character c to the standard output STDOUT; if the value of the argument c
is NEWLINE, an appropriate end-of-line condition is generated.

RETURNS
Nothing.

PRIMITIVE
putc f put a character in a file

USAGE
procedure putcf (c : character; fd : filedesc);

FUNCTION
putcf writes the character c to the file specified by file descriptor f d; if the value of c is
NEWLINE, an appropriate end-of-line condition is generated.

RETURNS
Nothing.

PRIMITIVE
putstr put string in a file

USAGE
procedure putstr (var str : string; fd : filedesc);

FUNCTION
putstr writes the characters in str, up to but not including the terminating ENDSTR, to
the file specified by file descriptor fd. An unsuccessful write mayor may not cause a warn­
ing message or early termination of the program.

RETURNS
Nothing.

APPENDIX IMPLEMENTATION OF PRIMITIVES 321

PRIMITIVE
remove remove a fiIe

USAGE
procedure remove (name: string);

FUNCTION
remove causes the file with external name name to be discarded, i.e., a subsequent call to
open with the same name will fail and a subsequent create will be obliged to make a new
instance of the file. In general, the file to be removed should not be connected to any file
descriptor at the time of the remove call.

RETURNS
Nothing.

PRIMITIVE
seek position file access pointer

USAGE
procedure seek (recno : integer; fd : filedesc);

FUNCTION
seek positions the file controlled by fd so that a subsequent read or wri te call will access
the record whose ordinal number is recno. Records are presumed to be of type string;
the first record is number one.

RETURNS
Nothing.

BUGS
Our version of this primitive is far from general, having been written just to satisfy the needs
of one form of the program edit. It assumes a system that can support simultaneous read
and write access to the same file.

Note that error and message may have to be implemented as macros,
since they each take an argument that is a variable length string and since
error is obliged to terminate execution early; neither of these operations is
easily encapsulated in a standard Pascal procedure.

The UC Berkeley Interpreter Primitives

Here are the environment and primitives we developed for the Pascal inter­
preter written at the University of California at Berkeley ("UCB") by Bill Joy
and Charles Haley. These run on Unix, the system on which we did the origi­
nal development of the programs.

We wrote these primitives in Pascal, which makes them relatively easy to
understand, but it does mean that sometimes they are not especially efficient.
A knowledgeable and serious user can generally make a substantial improve­
ment in performance by speeding up the 110 primitives by fair means or foul.
Furthermore, the interpreter does not make all Unix capabilities accessible, so
some of the primitives are incomplete, notably in their handling of error
returns.

Although they are far from fast, we used the getc and putc shown at the
beginning of Chapter 1, because they are easy to explain, and because they
really are independent of any particular Pascal system.

322 SOFTWARE TOOLS IN PASCAL APPENDIX

{ getc (UCB) -- get one character from standard input }
function getc (var c : character) : character;
var

ch char;
begin

if eof then
c := ENDFILE

else if eoln then begin
readln;
c := NEWLINE

end
else begin

read(ch);
c := ord(ch)

end;
getc := c

end;

{ putc (UCB) -- put one character on standard output }
procedure putc (c : character);
begin

if c = NEWLINE then
writeln

else
write(chr(c))

end;

Once we get into more complicated situations, we must discuss the outer
block that forms the surrounding context for all of the programs we presented.
Each program was wrapped in an envelope that looks like this:

program outer (input, output);
#define error(s) begin message(s); halt end
#include "globdefs.p"
#include "prims.p"
#include "utility.p"
#include "program. p"
begin

initio;
program

end.

A few words of explanation are in order. program is the name of the outermost
procedure of the program being run, for example, macro or archive. The
program field is actually filled in by the command interpreter, but the details
are not germane here. #include does file inclusion as described in Chapter 3;
#def ine handles macro definitions as described in Chapter 8, though with a
slightly different syntax. The procedure message is identical to writeln
except that its output is guaranteed to appear on a user's terminal, so it is

APPENDIX IMPLEMENTATION OF PRIMmVES 323

exactly our message primitive. hal t causes a clean process termination.
The file prims. p contains #include's for all primitives.

{ prims -- primitive functions and procedures for UCB }
#include "initio.p"
#include "open.p"
#include "create.p"
#include "getc.p"
#include "getcf.p"
#include "getline.p"
#include "putc.p"
#include "putcf.p"
#include "putstr.p"
#include "close.p"
#include "remove.p"
#include "getarg.p"
#include "nargs.p"

Similarly, utility. p contains #include lines for routines like scopy that
may be freely used by any program.

{ utility -- generally useful functions and procedures }
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"addstr.p"
"equal.p"
"esc.p"
"index.p"
isalphanum.p"
isdigit.p"
isletter.p"
iSlower.p"
isupper.p"
itoc.p"
length.p"
max.p"

"min.p"
"scopy.p"
"ctoi.p"
"fcopy.p"
"mu stcreate.p"
"mu stopen.p"
"putdec.p"

The file globdefs. p contains all const and type declarations and some
variables for the 110 system:

324 SOFTWARE TOOLS IN PASCAL APPENDIX

{ globdefs (UCB) -- global constants, types and variables}

const

standard file descriptors. sUbscripts in open, etc.
STDIN = 1; { these are not to be changed }
STDOUT 2;
STDERR = 3;

other io-related
IOERROR = 0;
IOAVAIL = 1;
IOREAD = 2;
IOWRITE 3;
MAXOPEN = 10;

stuff }
{ status values for open files }

maximum number of open files }

null-terminated strings
longest possible string

universal manifest constants }
ENDFILE = -1;
ENDSTR 0;
MAXSTR = 100;

{ }

{ " }

{ # }
{ $ }

{ % }
{ & }
{ , }

ascii character set
BACKSPACE = 8;
TAB = 9;
NEWLINE = 10;
BLANK = 32;
EXCLAM = 33;
DQUOTE = 34;
SHARP = 35;
DOLLAR = 36;
PERCENT = 37;
AMPER = 38;
SQUOTE = 39;
ACUTE = SQUOTE;
LPAREN = 40;
RPAREN = 41;
STAR = 42;
PLUS = 43;
COMMA = 44;
MINUS = 45;
DASH = MINUS;
PERIOD = 46;
SLASH = 47;
COLON = 58;
SEMICOL = 59;
LESS = 60;
EQUALS = 61;
GREATER = 62;
QUESTION = 63;

in decimal }

}

}

* }
+ }
, }

- }

. }

/ }

}

}

< }

}

> }

? }

left brace }
: }

right brace }
- }

APPENDIX IMPLEMENTATION OF PRIMmVES 325

ATSIGN 64; {@
ESCAPE ATSIGN;
LBRACK 9 1 ; {[}
BACKSLASH = 92; { \ }
RBRACK = 93;] }
CARET = 94; ~ }
UNDERLINE = 95; }
GRAVE = 96; , }
LETA 97; lower case ... }
LETB 98;
LETC 99;
LETD 100;
LETE 101 ;
LETF 102;
LETG 103;
LETH 104;
LETI 105;
LETJ 106;
LETK 107;
LETL 108;
LETM 109;
LETN 110;
LETO 111 ;
LETP 112;
LETQ 113;
LETR 114;
LETS 115;
LETT 116;
LETU 117;
LETV 118;
LETW 119;
LETX 120;
LETY 121 ;
LETZ 122;
LBRACE = 123;
BAR = 124;
RBRACE = 125;
TILDE = 126;

type
character = -1 .. 127; {byte-sized. ascii + other stuff}
string = array [1 .. MAXSTR] of character;
filedesc = IOERROR.. MAXOPEN;
ioblock = record {to keep track of open files }

filevar : text;
mode: IOERROR.. IOWRITE;

end;

var
openlist array [1 .. MAXOPEN] of ioblock; { open files}

326 SOFTWARE TOOLS IN PASCAL APPENDIX

This file is actually pretty machine-independent. Our version uses the ASCII
character set and other conventions suitable for a Unix environment.

Each open file has a record that contains the file variable and the mode.
These records are contained in the array openlist, indexed by file descriptor.
The procedure initio sets up the open file environment by initializing
openlist. The only magic is arranging for STDERR to be connected to the
user's terminal.

{ initio (UCB) -- initialize open file list }
procedure initio;
var

i : filedesc;
begin

openlist[STDIN].mode := IOREAD;
openlist[STDOUT].mode .- IOWRITE;
openlist[STDERR].mode := IOWRITE;

{ connect STDERR to user's terminal ... }
rewrite(openlist[STDERR].filevar, '/dev/tty ');

for i := STDERR+1 to MAXOPEN do
openlist[i].mode := IOAVAIL;

end;

With initialization out of the way, we can look at open and create. Both
rely on non-standard forms of reset and rewri te that permit a filename
argument to be given. Regrettably, there is no way to regain control if the file
access fails, so these routines never actually return IOERROR after failure - in
fact they never return at all. Access failures are handled by the run-time
environment before open or create get a chance.

APPENDIX IMPLEMENTATION OF PRIMITIVES 327

open (UCB) -- open a file for reading or writing
non-portable -- uses the Berkeley interface to Unix

{ no status can be returned, unfortunately}
function open (var name : string; mode: integer) : filedesc;
var

i : integer;
intname : array [1 .. MAXSTR] of char;
found : boolean;

begin
i : = 1;
while (name[i] <> ENDSTR) do begin

intname [i] . - chr (name [i]) ;
i .- i + 1

end;
for i .- i to MAXSTR do

intname[i] := "; {pad name with blanks}
{ find a free slot in openlist }
open := IOERROR;
found := false;
i : = 1;
while (i <= MAXOPEN) and (not found) do begin

if (openlist[i].mode = IOAVAIL) then begin
openlist[i].mode := mode;
if (mode = IOREAD) then

reset(openlist[i].filevar, intname)
else

rewrite(openlist[i].filevar, intname);
open : = i;
found := true

end;
i := i + 1

end
end;

328 SOFTWARE TOOLS IN PASCAL APPENDIX

{ create (UCB) -- create a file }
{ non-portable -- uses the Berkeley interface to Unix }
{ no status can be returned, unfortunately }
function create (var name: string; mode: integer) : filedesc;
var

i : integer;
intname : array [1 .. MAXSTR] of char;
found : boolean;

begin
i : = 1;
while (name[i] <> ENDSTR) do begin

intname[i] .- chr(name[i]);
i .- i + 1

end;
for i .- i to MAXSTR do

intname[i] := "; {pad name with blanks}
{ find a free slot in openlist }
create := IOERROR;
found := false;
i : = 1;
while (i <= MAXOPEN) and (not found) do begin

if (openlist[i].mode = IOAVAIL) then begin
openlist[i].mode := mode;
rewrite(openlist[i].filevar, intname);
if (mode = IOREAD) then

reset(openlist[i].filevar, intname);
create := i;
found := true

end;
i := i + 1

end
end;

close calls the UCB procedure flush to force out any remaining buffered
output, then marks the file descriptor available.

{ close (UCB) -- release file descriptor slot for open file }
procedure close (fd : filedesc);
begin

if (fd > STDERR) and (fd <= MAXOPEN) then begin
flush(openlist[fd] .filevar); {in case buffered
openlist[fd].rnode := IOAVAIL

end
end;

Our version of remove does nothing but print a message, since we found it
helpful for debugging to leave the temporary files in place. This would obvi­
ously need fixing in a production implementation.

APPENDIX IMPLEMENTATION OF PRIMmVES 329

integer;
character;

{ remove (UCB) -- remove file s from file system}
{ this version just prints a message }
procedure remove (var s : string);
begin

message('If we had remove, we would be removing ');
putcf(TAB, STDERR);
putstr(s, STDERR);
putcf(NEWLINE, STDERR);
flush(openlist[STDERR].filevar)

end;

getline and putstr are straightforward loops that call getcf and
putcf.

{ getline (UCB) -- get a line from file}
function getline (var s : string; fd : filedesc;

maxsize : integer) : boolean;
var

i
c

begin
i : = 1;
repeat

s [i] : = getcf (c , f d) ;
i .- i + 1

until (c = ENDFILE) or (c = NEWLINE) or (i >= maxsize);
if (c = ENDFILE) then {went one too far

i := i - 1;
sri] := ENDSTR;
getline .- (c <> ENDFILE)

end;

{ putstr (UCB) -- put out string on file }
procedure putstr (var s : string; f : filedesc);
var

i : integer;
begin

i : = 1;
while (s[i] <> ENDSTR) do begin

putcf (s [i], f);
i := i + 1

end
end;

getcf and putcf are essentially the same as getc and putc.

330 SOFTWARE TOOLS IN PASCAL

{ getcf (UCB) -- get one character from file }
function getcf (var c: character; fd : filedesc)
var

ch char;
begin

if (fd = STDIN) then
getcf := getc(c)

else if eof(openlist[fd].filevar) then
c := ENDFILE

else if eoln(openlist[fd].filevar) then begin
read(openlist[fd].filevar, ch);
c := NEWLINE

end
else begin

read(openlist[fd].filevar, ch);
c .- ord(ch)

end;
getcf .- c

end;

APPENDIX

character;

{ putcf (UCB) -- put a single character on file fd }
procedure putcf (c : character; fd : filedesc);
begin

if (fd = STDOUT) then
putc(c)

else if c = NEWLINE then
writeln(openlist[fd].filevar)

else
write(openlist[fd].filevar, chr(c))

end;

Next we come to getarg and nargs. The UCB system provides a func­
tion called argv (n , s) that returns the nth argument as a packed array of
char in s, and a function argc that returns the number of arguments. Both
argv and argc include the command that invoked the program as argument O.
argv can do nothing sensible about trailing blanks, so neither does getarg.

{ nargs (UCB) -- return number of arguments }
{ non-portable. uses Berkeley conventions}
function nargs : integer;
begin

nargs .- argc - 1
end;

APPENDIX IMPLEMENTAnON OF PRIMITIVES 331

boolean;
string;

{ getarg (UCB) -- copy n-th command line argument into s }
{ uses the Berkeley function argv(i,s), }
{ which returns the Oth to argc-1th argument in s. }
function getarg (n : integer; var s : string;

maxs : integer) : boolean;
var

arg: array [1 .. MAXSTR] of char;
i, lnb : integer;

begin
lnb := 0;
if (n >= 0) and (n < argc) then begin {in the list}

argv(n, arg); {get the argument}
for i := 1 to MAXSTR-1 do begin

s [i] : = ord (arg [i]) ;
if arg[i] <> ' , then

lnb := i
end;
getarg .- true

end
else

getarg := false;
s[lnb+1] .- ENDSTR

end;

Our version of seek is just barely adequate to make edi t work; it is in no
way a general implementation. It is grossly inefficient for backwards seeks.

{ seek (UCB) -- special version of primitive for edit
procedure seek (recno : integer; var fd : filedesc);
var

junk
temp

begin
flush(openlist[scrout].filevar); {necessary for UCB }
if (recno < recin) then begin

close(fd) ;
{ cheat: open scratch file by name
fd := mustopen(edittemp, IOREAD);
recin := 1;

end;
while (recin < recno) do begin

junk := getline(temp, fd, MAXSTR);
recin := recin + 1

end
end;

332 SOFTWARE TOOLS IN PASCAL APPENDIX

The Whitesmiths Primitives

The Pascal compiler developed by Whitesmiths, Ltd., uses many of the tech­
niques described in this book to obtain a high degree of portability. All interac­
tion with a host operating system is performed through about a dozen primitive
functions; all input/output is translated to the same uniform internal form as is
used here; all system interfaces support command line file redirection; and a
preprocessor for file inclusion and macro definition is part of the standard
language package. Consequently, most of the work of providing an interface to
the tools in this book is caused by slight differences in naming conventions and
argument types.

The primitives for the interpreter and compiler from the Free University of
Amsterdam (developed by Andy Tanenbaum and Johan Stevenson) and for the
UCB compiler for the DEC VAX are quite similar to the Whitesmiths primitives
hecause these systems all support external procedures.

The Whitesmiths implementation of Pascal is currently available for the
PDP-II (Unix, ldris, RSX-Il, nr.n. lAS), Intel 8080 and Zilog ZJ80 (CP/M
and CDOS), VAX-II (Unix and VMS), and for the Motorola MC68000 (VER­
SAdos). *

A program is assembled by the define/include preprocessor, from three
sources: a standard header that defines the environment, the procedure to be
run, and a simple program body that calls the procedure. Since this implemen­
tation of Pascal permits separate compilation, most of the environment consists
of external function declarations. Thus, the wrapper is:

*Idris is a trademark of Whitesmiths, Ltd. RSX-l L RT-ll, and lAS are trademarks of Digital
Equipment Corporation. CP/M is a trademark of Digital Research. VERSAdos is a trademark of
Motorola, Inc.

APPENDIX IMPLEMENTATION OF PRIMITIVES 333

prims -- external declarations for Whitesmiths primitives }
program xxx (input, output, errout);
#include <tools.h>

{ Environment supplied primitives
procedure close (fd : filedesc);

external;
procedure exit (status: boolean);

external;
function getarg (n : integer; var str

maxsize : integer) : boolean;
external;

function nargs : integer;
external;

procedure remove (name: string);
external;

string;

{ Externally supplied primitive interfaces ...
function getc (var c : character) : character;

external;
function getcf (var c : character; fd : filedesc)

: character;
external;

function getline (var str : string; fd : filedesc) boolean;
external;

function pcreate (var name string; mode integer)
: filedesc;

external;
function popen (var name: string; mode integer) filedesc;

external;
procedure pputstr (var str : string; fd filedesc);

external;
procedure putc (c : character);

external;
procedure putcf (c : character; fd filedesc);

external;

: integer;

: character;

string;
boolean;

integer)

filedesc);

string; var i : integer)

{ Externally supplied utilities
function addstr (c : character; var outset

var j : integer; maxset : integer)
external;

function ctoi (var s : string; var i
external;

function equal (var str1, str2 : string) : boolean;
external;

function esc (var s
external;

procedure fcopy (fin, fout
external;

334 SOFTWARE TOOLS IN PASCAL APPENDIX

function index (var s : string; c : character) integer;
external;

function isalphanum (c : character) : boolean;
external;

function isletter (c : character) boolean;
external;

function islower (c character) boolean;
external;

function isupper (c character) boolean;
external;

function itoc (n : integer; var str string; i integer)
: integer;

external;
function length (var s : string) : integer;

external;
function max (x, y integer) integer;

external;
function min (x, y integer) integer;

external;
procedure putdec (n, w : integer);

external;
procedure scopy (var src string; i : integer;

var dest : string; j : integer);
external;

{ Internally supplied primitives ...
function create (var name : string; mode

: filedesc;
begin

create .- pcreate(name, mode)
end;

function open (var name : string; mode
begin

open .- popen(name, mode)
end;

integer)

integer) filedesc;

procedure putstr (var str
begin

pputstr(str, fd)
end;

#include <mustcreate.p>
#include <mustopen.p>

string; fd filedesc);

{ The body in question }
{ procedure included here

begin
{ procedure called here }

end.

APPENDIX IMPLEMENTATION OF PRIMITIVES 335

Various constants and type declarations are off-loaded to a separate header
file tools. h ; the angle brackets in "#include <tools. h>" signal the
preprocessor to obtain the header from a standard place in the file system. We
chose to #define most constants, to ease the burden on the Pascal translator,
which may have to operate in restricted memory; for the most part, the values
are identical to those shown above for the UCB system, so we show only part of
the file.

{ tools.h -- definitions and types for WS primitives}

#define IOERROR -1
#define STDIN 0
#define STDOUT 1
#define STDERR 2
#define MAXOPEN 8

#define IOREAD 0
#define IOWRITE 1

#define MAXSTR 100

type
character = -128 .. 127;
filedesc = integer;
string = array [1 .. MAXSTR] of character;

#define message(str) writeln(errout, str)
#define error(str) begin message(str); exit(false) end
#define isdigit(c) ((ord('O') <= c) and (c <= ord('9')))

Characters are stored as one-byte integers; message, error, and isdigi t
have been implemented as macros.

The primitives close, getarg, nargs, and remove are implemented by
direct calls to the standard system interface routines provided with this Pascal.
Others require some adaptation, and are provided as a library of separately
compiled modules. Still others, such as create, open, putstr,
mustcreate, and mustopen are provided directly in the header file, to avoid
publishing external names that would collide with standard routines having
slightly different meaning in this environment.

Our primitive create, for instance, ends up calling an externally defined
function pcreate, which in turn calls the underlying operating system routine,
whose name is also create.

336 SOFTWARE TOOLS IN PASCAL

{ pcreate (WS) -- Pascal create primitive
function create (var name : string; mode, rsize

: filedesc;
external;

APPENDIX

integer)

function pcreate (var name
: filedesc;

var

string; mode integer)

fd : filedesc;
begin

fd := create(name, mode, 0);
if (fd < 0) then

fd := IOERROR;
pcreate .- fd

end;

popen, used by open, is very similar, since it has to deal with the same kind of
name conflict.

{ popen (WS) -- Pascal open primitive}
function open (var name : string; mode, rsize

: filedesc;
external;

integer)

function popen (var name
: filedesc;

var

string; mode integer)

fd : filedesc;
begin

fd := open(name, mode, 0);
if (fd < 0) then

fd := IOERROR;
popen .- fd

end;

The current implementation of getc and getcf is to read one character
at a time. This is inefficient under Unix, where read is a system call; other
implementations buffer input more effectively.

APPENDIX IMPLEMENTATION OF PRIMmVES 337

{ getc and getcf (WS) -- get one character of input
function read (fd : filedesc; var c : character;

size: integer) : boolean;
external;

function getc (var c : character) : character;
begin

if (not read(STDIN, c, 1)) then
c := ENDFILE;

getc := c
end;

function getcf(var c : character; fd
begin

if (not read(fd, c, 1)) then
c .- ENDFILE;

getcf .- c
end;

filedesc) character;

getline is a bit more elaborate, but uses the same approach:

{ getline (WS) -- get a line from file}
function read (fd : filedesc; var c : character;

size : integer) : boolean;
external;

function getline (var s : string; fd : filedesc;
maxsize : integer) : boolean;

var
i integer;
c character;
done : boolean;

begin
i : = 1;
done .- false;
repeat

if (read(fd, c, 1)) then
sri] .- c

else
done .- true;

i : = i +
until (done) or
if (done) then

i := i - 1;
sri] := ENDSTR;
getline .- (not

end;

(c = NEWLINE) or (i >= maxsize);
{ went one too far }

done)

putc, putcf and putstr are even simpler than the input routines:

338 SOFTWARE TOOLS IN PASCAL APPENDIX

{ putc and putcf (WS) -- put one character of output
procedure write (fd : filedesc; var c : character;

size: integer);
external;

procedure putc (c : character);
begin

write(STDOUT, c, 1)
end;

procedure putcf(c : character; fd
begin

write(fd, c, 1)
end;

filedesc);

{ pputstr (WS) -- Pascal putstr primitive}
procedure write (fd : filedesc; var c : string;

size: integer);
external;

procedure pputstr (var str
var

string; fd filedesc);

i : integer;
begin

i : = 1;
while (str[i] <> ENDSTR) do

i := i + 1;
if (i > 1) then

write(fd, str, i-1)
end;

Finally, seek is specialized to edi t:

{ seek (WS) -- special version of primitive for edit}
procedure lseek (fd : filedesc; off, hioff, mode: integer);

external; {PDP-11 long format only}

procedure seek (recno : integer; fd : filedesc);
begin

lseek(scrout, 0, MAXSTR * recno, 0)
end;

l'he UCSD Primitives

The University of California at San Diego has developed a stand-alone sys­
tem, under the direction of Ken Bowles, for entering and interpretively execut­
ing Pascal on microcomputers. Now distributed by Softech Microsystems, Inc.,
UCSD Pascal is available for a variety of configurations using: the Zilog ZJ80,
the Intel 8080 and 8085, Signetics 6502, Motorola 6800 and 6809, Texas

APPENDIX IMPLEMENTATION OF PRIMITIVES 339

Instruments 9900, and the DEC LSI-II. t
This implementation is substantially more difficult than the others, because

the UCSD system has no provision for command line entry, much less file
redirection; even the editing of typed input lines is left to the discretion of each
program. And files must be closed properly upon program termination, lest
newly created files be discarded.

We assembled the pieces of each program on a larger computer, using an
existing define/include processor as before, then wrote them to diskettes for
operation under the UCSD system. The same operation can, of course, be per­
formed entirely under UCSD, provided the #defines are changed to the for­
mat expected by macro. Here is the wrapper we used:

{ prims -- external declarations for UCSD primitives
program xxx (input, output);
{ Copyright (c) 1981 by Bell Telephone Laboratories, Inc.

and Whitesmiths, Ltd. }

#include <chars.h>
#define error(str) begin message(str); exit(program) end
#define isdigit(c) ((ord('O') <= c) and (c <= ord('9')))
#define message(str) writeln(str)

const
rOERROR = 0;
STDIN = 1;
STDOUT = 2;
STDERR = 3;
MAXOPEN = 7;

{ filedesc constants }

rOREAD = 0;
IOWRITE = 1;

{ mode constants }

character;
FIL2, FIL3, FIL4);

{ limits }20;
100;

MAXCMD
MAXSTR

type
character = -128 .. 127;
filedesc = IOERROR.. MAXOPEN;
xstring = array [1 .. MAXSTR] of
filtyp = (CLOSED, STDIO, FIL1,

t UCSD Pascal is a trademark of the Regents of the University of California. LSI-II is a trademark
of Digital Equipment Corporation.

340 SOFlWARE TOOLS IN PASCAL

var
crndargs : O.. MAXCMD;
cmdidx array [1 .. MAXCMD] of 1 .. MAXSTR;
cmdlin : xstring;
cmdfil : array [STDIN .. MAXOPEN] of filtyp;
cmdopen : array [filtyp] of boolean;
file1, file2, file3, file4 : text;
kbdline : xstring;
kbdn : integer;
kbdnext : integer;

procedure scopy (var src : xstring; i : integer;
var dest : xstring; j : integer);

begin
while (src[i] <> ENDSTR) do begin

dest[j] := src[i];
i .- i + 1;
j := j + 1

end;
dest[j] .- ENDSTR

end;

{ the primitives }
#include <getkbd.p>
#include <getc.p>
#include <getline.p>
#include <putc.p>
#include <getarg.p>
#include <nargs.p>
#include <close.p>
#include <open.p>
#include <remove.p>

{ alias names that collide
#define close xclose
#define string xstring

{ utilities }
#include <addstr.p>
#include <equal.p>
#include <esc.p>
#include <index.p>
#include <isalphanum.p>
#include <isletter.p>
#include <islower.p>
#include <isupper.p>
#include <itoc.p>
#include <length.p>
#include <rnax.p>

APPENDIX

APPENDIX

#include <min.p>
#include <ctoi.p>
#include <fcopy.p>
#include <mustcreate.p>
#include <rnustopen.p>
#include <putdec.p>

IMPLEMENTATION OF PRIMITIVES 341

{ command line input and file redirection }
#include <initcmd.p>

{ procedure included here }
begin

initcmd;
{ procedure called here }
endcmd

end.

The header file chars. h has the same character constant definitions as the
previously discussed tools. hand globdefs. p files. Other types are also
much the same, except that string must be changed to xstring to avoid col­
lision with the special UCSD type needed to represent file names. Note that
close is similarly redefined, for all files other than those holding the primi­
tives.

At program startup, the interface prompts for a command line by writing
'$ 'to the terminal, then accepts a line of input. This is parsed into command
arguments, which are stored in the buffer cmdlin and pointed at by indices in
the array cmdidx. File redirection of the form <infile or >outfile causes
the array cmdfil to be altered to indicate the opened or created files.

Normally, the elements cmdf i 1 [STDIN] , cmdf i 1 [STDOUT], and
cmdfil[STDERR] contain the code STDIO (the rest are CLOSED); but they
can take on the values FIL 1 through FIL4 to indicate that they control one of
the four text variables file1 through file4. All this machinery is required
because UCSD Pascal doesn't support arrays of files, or pointers to files, or
records containing files. It is administered primarily by the functions packaged
In open. p:

342 SOFTWARE TOOLS IN PASCAL

{ ftalloc -- allocate a file
function ftalloc : filtyp;
var

done : boolean;
ft filtyp;

begin
ft : = FIL1;
repeat

done := (not cmdopen[ft] or (ft
if (not done) then

ft := succ(ft)
until (done);
if (cmdopen[ft]) then

ftalloc .- CLOSED
else

ftalloc .- ft
end;

{ fdalloc -- allocate a file descriptor }
function fdalloc : filedesc;
var

done : boolean;
fd filedesc;

begin
fd := STDIN;
done := false;
while (not done) do

if ((cmdfil[fd] CLOSED) or (fd
done := true

else
fd := succ(fd);

if (cmdfil[fd] <> CLOSED) then
fdalloc := IOERROR

else begin
cmdfil[fd] := ftalloc;
if (cmdfil[fd] = CLOSED) then

fdalloc := IOERROR
else begin

cmdopen[cmdfil[fd]] .- true;
fdalloc := fd

end
end

end;

APPENDIX

FIL4» ;

MAXOPEN» then

APPENDIX IMPLEMENTATION OF PRIMITIVES 343

{ strname -- map to native string filename }
procedure strname (var str : string; var xstr
var

i integer;
begin

str : = '. text' ;
i : = 1;
while (xstr[i] <> ENDSTR) do begin

insert('x', str, i);
str [i] : = chr (xstr [i]) ;
i := i + 1

end
end;

xstring) ;

{ create (UCSD) -- create a file}
(*$I-*)
function create (var name xstring; mode
var

fd : filedesc;
snm : string;

begin
fd .- fdalloc;
if (fd <> IOERROR) then begin

strname(snm, name);
case (cmdfil[fd]) of
FIL1 :

rewrite(file1, snm);
FIL2:

rewrite(file2, snm);
FIL3:

rewrite(file3, snm);
FIL4:

rewrite(file4, snm)
end;
if (ioresult <> 0) then begin

xclose (fd) ;
fd := IOERROR

end
end;
create .- fd

end;
(*$I+*)

integer) filedesc;

344 SOFTWARE TOOLS IN PASCAL APPENDIX

{ open (UCSD) -- open a file for reading or writing }
(*$1-*)
function open (var name: xstring; mode: integer) : filedesc;
var

fd : filedesc;
snm : string;

begin
fd .- fdalloc;
if (fd <> 10ERROR) then begin

strname(snm, name);
case (cmdfil[fd]) of
F1L1 :

reset(file1, snm);
F1L2:

reset(file2, snrn);
F1L3:

reset(file3, snrn);
F1L4:

reset(file4, snrn)
end;
if (ioresult <> 0) then begin

xclose (fd) ;
fd := 10ERROR

end
end;
open .- fd

end;
(*$1+*)

UCSD Pascal provides for opening files by name with the nonstandard func­
tions reset (file, name) and rewri te (file, name). Here, name is of
the special built-in type string, which is not the same as ours, so the pro­
cedure strname is required to translate between forms. Note that we elected
to make all file names end in . text, so they are compatihle with the compiler
and editor with a minimum of fuss.

The peculiar comments (* $ I - *) and (* $ I + *) serve to disable automatic
error checking after a reset or rewri teo Thus, the primitives are able to
retain control after a failure, and can detect the failure by calling the nonstan­
dard function ioresult.

The last of the variables declared in the wrapper are used to keep track of
input lines typed at the terminal keyboard. A whole line must be input before
any of it can be read, to permit deletion of erroneous input by backspacing over
it. Input lines are read and edited by getkbd:

APPENDIX IMPLEMENTATION OF PRIMmVES 345

{ getkbd -- read character from keyboard }
function getkbd (var c : character) : character;
var

done : boolean;
ch char;

begin
if (kbdn <= 0) then begin

kbdnext := 1;
done := false;
if (kbdn = -2) then begin

readln;
kbdn := 0

end
else if (kbdn < 0) then

done := true;
while (not done) do begin

kbdn := kbdn + 1;
done := true;
if (eof) then

kbdn := -1
else if (eoln) then begin

kbdn := kbdn - 1;
kbdline[kbdn] .- NEWLINE

end
else if (MAXSTR-1 <= kbdn) then begin

writeln('line too long');
kbdline[kbdn] .- NEWLINE

end
else begin

read(c h) ;
kbdline[kbdn] := ord(ch);
if (kbdline[kbdn] <> BACKSPACE) then

{ do nothing }
else if (1 < kbdn) then

kbdn . - kbdn - 2
else

kbdn .- kbdn - 1;
done := false

end
end

end;
if (kbdn <= 0) then

c := ENDFILE
else begin

c := kbdline[kbdnext];
kbdnext := kbdnext + 1;
if (c = NEWLINE) then

kbdn .- -2
else

346 SOFTWARE TOOLS IN PASCAL

kbdn .- kbdn - 1
end;
getkbd .- c;

end;

APPENDIX

getkbd is called as needed by getcf, which maps a file descriptor into
either a keyboard read request or a file read:

{ fgetcf -- get character from file }
function fgetcf (var fil : text) : character;
var

ch char;
begin

if (eof(fil)) then
fgetcf := ENDFILE

else if (eoln(fil)) then begin
readln(fil) ;
fgetcf .- NEWLINE

end
else begin

read(fil, ch l ;
fgetcf .- ord(ch)

end;
end;

{ getcf (UCSD) -- get one character from file }
function getcf (var c : character; fd : filedesc)

: character;
begin

case (cmdfil[fd]) of
STDIO:

c .- getkbd(c);
FIL1 :

c := fgetcf(file1);
FIL2:

c := fgetcf(file2);
FIL3:

c .- fgetcf(file3);
FIL4:

c .- fgetcf(file4)
end;
getcf .- c

end;

{ getc (UCSD) -- get one character from standard input }
function getc (var c : character) : character;
begin

getc := getcf(c, STDIN)
end;

getline is implemented in terms of getcf, which causes a noticeable loss of

APPENDIX IMPLEMENTATION OF PRIMITIVES 347

efficiency, but makes for more readable code:

{ getline (UCSD) -- get a line from file }
function getline (var str : xstring; fd : filedesc;

size : integer) boolean;
var

i integer;
done : boolean;
ch : character;

begin
i : = 0;
repeat

done := true;
ch := getcf(ch, fd);
if (ch = ENDFILE) then

i : = 0
else if (ch = NEWLINE) then begin

i := i + 1;
str[i] := NEWLINE

end
else if (size-2 <= i) then begin

message('line too long');
i := i + 1;
str[i] .- NEWLINE

end
else begin

done := false;
i := i + 1;
str[i] .- ch

end
until (done);
str[i + 1] .- ENDSTR;
getline .- (0 < i)

end;

The constellation of output routines is quite similar to those for input, but
much simpler:

{ fputcf -- put a character to file }
procedure fputcf (c : character; var fil
begin

if (c = NEWLINE) then
writeln(fil)

else
write(fil, chr(c))

end;

text) ;

348 SOFTWARE TOOLS IN PASCAL

{ putcf (UCSD) -- put a single character on fd }
procedure putcf (c : character; fd : filedesc);
begin

case (crndfil[fd]) of
STDIO:

fputcf(c, output);
FIL1 :

fputcf(c, file1);
FIL2:

fputcf(c, file2);
FIL3:

fputcf(c, file3);
FIL4:

fputcf(c, file4)
end

end;

APPENDIX

{ putc (UCSD) -- put one character on standard output }
procedure putc (c : character);
begin

putcf(c, STDOUT)
end;

{ putstr (UCSD) -- put out string on file }
procedure putstr (str : xstring; fd : filedesc);
var

i : integer;
begin

i : = 1;
while (str[i] <> ENDSTR) do begin

putcf(str[i], fd);
i := i + 1

end
end;

Before the target program is called, ini tcmd is called to initialize the vari­
ous input/output variables and to read the command line. All of this work can
be done in fairly conventional Pascal, given the other primitives:

APPENDIX IMPLEMENTAnON OF PRIMITIVES 349

{ initcmd (UCSD) -- read command line and redirect files }
procedure initcmd;
var

fd : filedesc;
fname : xstring;
ft : filtyp;
idx: 1 .. MAXSTR;
junk : boolean;

begin
cmdfil[STDIN] := STDIO;
cmdfil[STDOUT] := STDIO;
cmdfil[STDERR] := STDIO;
for fd := succ(STDERR) to MAXOPEN do

cmdfil[fd] .- CLOSED;
wri te (, $ ');

for ft := FIL1 to FIL4 do
cmdopen[ft] := false;

kbdn : = 0;
if (not getline(cmdlin, STDIN, MAXSTR)) then

exi t (program) ;
cmdargs := 0;
idx := 1;
while ((cmdlin[idx] <> ENDSTR)

and (cmdlin[idx] <> NEWLINE)) do begin
while (cmdlin[idx] = BLANK) do

idx := idx + 1;
if (crndlin[idx] <> NEWLINE) then begin

crndargs := crndargs + 1;
cmdidx[cmdargs] := idx;
while ((cmdlin[idx] <> NEWLINE)

and (crndlin[idx] <> BLANK)) do
idx := idx + 1;

cmdlin[idx] := ENDSTR;
idx := idx + 1;
if (cmdlin[cmdidx[crndargs]] = LESS) then begin

xclose(STDIN) ;
cmdidx[cmdargs] := cmdidx[cmdargsl + 1;
junk := getarg(cmdargs, fname, MAXSTR);
fd := mustopen(fname, IOREAD);
crndargs := crndargs - 1;

end
else if (cmdlin[cmdidx[cmdargs]] = GREATER) then begin

xclose (STDOUT) ;
cmdidx[crndargs] := crndidx[cmdargs] + 1;
junk := getarg(cmdargs, fname, MAXSTR);
fd := mustcreate(fname, IOWRITE);
cmdargs := cmdargs - 1;

end
end

350 SOFTWARE TOOLS IN PASCAL APPENDIX

end
end;

The wrapup procedure endcmd is called after the main program has executed;
it ensures that all files are closed and preserved by repeated calls to close.

{ endcmd (UCSD) -- close all files on exit }
procedure endcmd;
var

fd : filedesc;
begin

for fd := STDIN to MAXOPEN do
xclose(fd)

end;

{ xclose (UCSD) -- interface to file close }
procedure xclose (fd : filedesc);
begin

case (cmdfil[fd]) of
CLOSED, STDIO:

{ do nothing
FIL1 :

close(file1, LOCK);
FIL2:

close(file2, LOCK);
FIL3:

close(file3, LOCK);
FIL4:

close(file4, LOCK)
end;
cmdopen[cmdfil[fd]] := false;
cmdfil[fd] .- CLOSED

end;

With the command line parsed into strings by ini tcmd, the primitives getarg
and nargs are straightforward:

{ getarg (UCSD) -- get n-th command line argument into s }
function getarg (n : integer; var s : xstring;

maxsize : integer) : boolean;
begin

if ((n < 1) or (crndargs < n» then
getarg := false

else begin
scopy(cmdlin, cmdidx[n], s, 1);
getarg := true

end
end;

APPENDIX IMPLEMENTATION OF PRIMITIVES 351

{ nargs (UCSD) -- return number of arguments }
function nargs : integer;
begin

nargs := cmdargs
end;

The final primitive of note is remove, which must operate by opening the
file in question, then closing it in a special way:

{ remove -- remove a file }
procedure remove (name: xstring);
var

fd : filedesc;
begin

fd := open(name, IOREAD);
if (fd = IOERROR) then

message('can"t remove file')
else begin

case (cmdfil[fd]) of
FIL1 :

close(file1, PURGE);
FIL2:

close(file2, PURGE);
FIL3:

close(file3, PURGE);
FIL4:

close(file4, PURGE)
end

end;
cmdfil[fd] .- CLOSED

end;

Despite the quantity of code needed to implement the standard tools
environment, the cost in compilation time and program size is not unreasonable.
On a 4MHz Z/SO running UCSD Pascal, the simplest programs in this book
took just over a minute to compile and produced code files of nine disk blocks
(512 bytes per block). Equally important, less than a quarter of the compiler
work area, on a full memory system, is consumed by including all of the utilities
and primitives on each compile.

INDEX OF FIRST LINES

acopy -- copy n characters from fdi to fdo
addfile -- add file "name" to archive
addstr put c in outset[j] if it fits, increment j
amatch look for match of pat[j] ... at lin[offset] ...
amatch with no metacharacters
amatch with some metacharacters
append append lines after "line"
archive -- file maintainer
archproc -- include procedures for archive
blkmove -- move block of lines n1 .. n2 to after n3
break -- end current filled line
bubble bubble sort v[1] ... v[n] increasing
catsub add replacement text to end of new
center center a line by setting tival
change change "from" into "to" on each line
charcount count characters in standard input
ckglob -- if global prefix, mark lines to be affected
ckp -- check for "p" after command
close (UCB) -- release file descriptor slot for open file
clrbuf (in memory) -- initialize for new file
clrbuf (scratch file) -- dispose of scratch file
cmp -- compare linebuf[i] with linebuf[j]
command -- perform formatting command
compare (simple version) -- compare two f1les for equality
compare -- compare two files for equality
compress -- compress standard input
concat -- concatenate files onto standard output
create (UCB) -- create a file
create (UCSD) -- create a file
cscopy -- copy cb[i] ... to string s
ctoi -- convert string at s[i] to integer, increment i
default -- set defaulted line numbers
defcons -- const declarations for define
define -- simple string replacement macro processor
defproc -- procedures needed by define
deftype -- type definitions for define
defvar -- var declarations for define
delete -- delete files from archive
detab -- convert tabs to equivalent number of blanks
diffmsg -- print line numbers and differing lines
dochq -- change quote characters
docmd -- handle all commands except globals
dodash - expand set at src[i] into dest[j], stop at delim

353

101
93
53

150
147
148
192
103
104
195
249
109
203
253
163

13
210
197
328
194
222
116
235

66
69
39
75

328
343
126

59
188
280
271
280
277
277
101

24
66

302
215

53

354 SOFTWARE TOOLS IN PASCAL

dodef -- install definition in table
doexpr -- evaluate arithmetic expressions
doglob -- do command at lin[i] on all marked lines
doif -- select one of two arguments
dolen -- return length of argument
doprint -- print lines n1 through n2
doread -- read IIfil ll after line n
dosub -- select substring
dowrite -- write lines n1 .. n2 into file
echo -- echo command line arguments to output
edit -- main routine for text editor
editcons const declarations for edit
editproc procedures for edit
edittype types for in-memory version of edit
edittype types for scratch-file version of edit
editvar -- variables for edit
endcmd (UCSD) -- close all files on exit
entab -- replace bJanks by tabs and blanks
equal -- test two strings for equality
esc -- map sri] into escaped character, increment i
exchange -- exchange linebuf[lp1] with linebuf[lp2]
expand -- uncompress standard input
expr -- recursive expression evaluation
extract -- extract files from archive
factor -- evaluate factor of arithmetic expression
fcopy -- copy file fin to file fout
filearg -- check if name matches argument list
finclude -- include file desc f
find -- find patterns in text
findcons -- const declarations for find
fmove -- move file name1 to name2
fmtcons -- constants for format
fmtproc -- procedures needed for format
format -- text formatter main program (final version)
fprint -- print file II n a me" from fin
fsize -- size of file in characters
fskip -- skip n characters on file fd
getarg (UCB) -- copy n-th command line argument into s
getarg (UCSD) -- get n-th command line argument into s
getc (UCB) -- get one character from standard input
getc (UCSD) -- get one character from standard input
getc and getcf (WS) -- get one character of input
getccl -- expand char class at arg[i] into pat[j]
getcf (UCB) -- get one character from file
getcf (UCSD) -- get one character from file
getcmd -- decode command type
getdef -- get name and definition
getfn -- get file name from lin[i] ...
getfns get filenames into fname, look for duplicates
gethdr -- get header info from fd
getkbd -- read character from keyboard
getline (UCB) -- get a line from file
getline (UCSD) -- get a line from file
getline (WS) -- get a line from file
getlist -- get list of line nums at lin[i], increment i
getmark -- get mark from nth line
getnum get single line number component
getone get one line number expression
getpat convert argument into pattern

294
298
211
297
300
189
207
301
208

46
215
217
216
217
220
216
350

33
64
55

115
42

299
100
300

76
98
73

145
158

93
256
257
255

78
95
97

331
350
322
346
337
157
330
346
236
273
206

90
97

346
329
347
337
181
210
183
182
155

INDEX OF FIRST LINES 355

getpbc get a (possibly pushed back) character 270
getrhs get right hand side of liS" command 201
getsub get substitution string into sub 164
gettl -- copy title from buf to ttl 242
gettok -- get token for define 269
gettxt (in memory) -- get text from line n into s 194
gettxt (scratch file) -- get text from line n into s 221
getval -- evaluate optional numeric argument 237
getword -- get word from sri] into out 72
globdefs (UCB) -- global constants, types and variables 326
gname -- generate unique name for file id n 123
gnbchar -- get next non-blank character 300
gopen -- open group of files f1 ... f2 123
gremove -- remove group of files f1 ... f2 123
gtext -- get text lines into linebuf 114
hash -- compute hash function of a name 279
hashfind -- find name in hash table 278
head -- print top of page header 79
help -- print diagnostic for archive 89
include -- replace #include "file" by contents of file 73
index -- find position of character c in string s 48
initarch -- initialize variables for archive 104
initcmd (UCSD) -- read command line and redirect files 350
initdef -- initialize variables for define 274
initfmt -- set format parameters to default values 256
inithash -- initialize hash table to nil 277
initio (UCB) -- initialize open file list 326
initmacro -- initialize variables for macro 304
install -- add name, definition and type to table 280
isalphanum -- true if c is letter or digit 54
isdigit -- true if c is a digit 59
isletter -- true if c is a letter of either case 272
isupper -- true if c is upper case letter 42
itoc - convert integer n to char string in s[i]... 58
kwic -- make keyword in context index 135
leadbl -- delete leading blanks, set tival 246
length -- compute length of string 46
linecount -- count lines in standard input 15
lndelete -- delete lines n1 through n2 198
locate -- look for c in character class at pat[offset] 153
lookup -- locate name, get defn and type from table 278
maccons -- const declarations for macro 303
macro -- expand macros with arguments 290
mactype -- type declarations for macro 302
macvar -- var declarations for macro 303
makecopy -- copy one file to another 84
makefile -- make new file for number n 122
makehdr make header line for archive member 94
makepat make pattern from arg[i], terminate at delim 156
makeset make set from inset[k] in outset 52
makesub make substitution string from arg in sub 165
match -- find match anywhere on line 146
max -- compute maximum of two integers 35
merge -- merge infile[1] ... infile[nf] onto outfile 125
min -- compute minimum of two integers 40
move -- move line1 through line2 after line3 199
mustcreate -- create file or die 85
mustopen -- open file or die 70
nargs (UCB) -- return number of arguments 330

356 SOFIWARE TOOLS IN PASCAL

nargs (UCSD) -- return number of arguments
nextln -- get line after n
notfound -- print "not found" warning
omatch -- match one pattern element at pat[j]
open (UCB) -- open a file for reading or writing
open (UCSD) -- open a file for reading or writing
optpat -- get optional pattern from lin[i], increment i
overstrike -- convert backspaces into multiple lines
page -- get to top of new page
patscan -- find next occurrence of pattern after line n
patsize -- returns size of pattern entry at pat[n]
pbnum -- convert number to string, push back on input
pbstr -- push string back onto input
pcreate (WS) -- Pascal create primitive
popen (WS) -- Pascal open primitive
pputstr (WS) -- Pascal putstr primitive
prevln -- get line before n
prims external declarations for UCSD primitives
prims -- external declarations for Whitesmiths primitives
prims -- primitive functions and procedures for UCB
print (default input STDIN) -- print files with headings
print -- print files with headings
ptext -- output text lines from linebuf
push -- push ep onto argstk, return new position ap
put -- put out line with proper spacing and indenting
putback -- push character back onto input
putc (UCB) -- put one character on standard output
putc (UCSD) -- put one character on standard output
putc and putcf (WS) -- put one character of output
putcf (UCB) -- put a single character on file fd
putcf (UCSD) -- put a single character on fd
putchr -- put single char on output or evaluation stack
putdec -- put decimal integer n in field width >= w
putfoot put out page footer
puthead -- put out page header
putmark -- put mark m on nth line
putrep -- put out representation of run of n 'c's
putrot -- create lines with keyword at front
putstr (UCB) -- put out string on file
putstr (UCSD) -- put out string on file
putsub -- output substitution text
puttl -- put out title line with optional page number
puttok -- put token on output or evaluation stack
puttxt (in memory) -- put text from lin after curln
puttxt (scratch file) -- put text from lin after curln
putword -- put word in outbuf
putword -- put word in outbuf; does margin justification
quick -- quicksort for lines
reheap -- put linebuf[linepos[1]] in proper place in heap
remove (UCB) -- remove file s from file system
remove -- remove a file
replace -- replace or delete files
reverse -- reverse buf[n1] ... buf[n2]
rotate output rotated line
rquick -- recursive quicksort
sccopy -- copy string s to cb[i] ...
scopy -- copy string at src[i] to dest[j]
seek (UCB) -- special version of primitive for edit
seek (WS) -- special version of primitive for edit

351
186

98
152
327
344
184

35
243
185
151
298
270
336
336
338
186
339
335
323

81
77

114
292
240
270
322
348
338
330
348
291

58
241
240
210

39
136
329
348
165
241
291
196
221
248
250
118
127
329
351
102
195
136
119
126

94
331
338

INDEX OF FIRSr LINES 357

setbuf (in memory) -- initialize line storage buffer 196
setbuf (scratch file) -- create scratch file, set up line 0 222
setparam -- set parameter and check range 238
settabs -- set initial tab stops 25
shell -- ascending Shell sort for lines 115
shell -- Shell sort v[1] ... v[n] increasing 110
skip -- output n blank lines 79
skipbl -- skip blanks and tabs at s[i]... 183
sort -- external sort of text lines 122
sort -- sort text lines in memory 113
sortproc -- procedures for sort 122
space -- space n lines or to bottom of page 243
spread -- spread words to justify right margin 251
stclose -- insert closure entry at pat[j] 158
subline -- substitute sub for pat in lin and print 164
subst -- substitute "sub" for occurrences of pattern 203
table -- print table of archive contents 96
tabpos -- return true if col is a tab stop 25
term evaluate term of arithmetic expression 299
text process text lines (final version) 254
text process text lines (interim version 1) 239
text process text lines (interim version 2) 247
tprint -- print table entry for one member 96
translit -- map characters 51
underln -- underline a line 253
unique -- remove adjacent duplicate lines 132
unrotate -- unrotate lines rotated by kwic 138
update -- update existing files, add new ones at end 92
utility -- generally useful functions and procedures 323
width -- compute width of character string 249
wordcount -- count words in standard input 17
xclose (UCSD) -- interface to file close 350
xindex -- conditionally invert value from index 50

(* ... *) comment 10
>, < input-output redirection

82
$ last line 171
$ metacharacter 147
% metacharacter 147
7 metacharacter 147
* metacharacter 14H
& metacharacter 162, 165
: notation for pipeline HI
page number character 230
acopy 101
Ada 5
addfile 93
addstr 53
advantages of pipeline H3
Aho, A. V. v, 162, 167
algorithm, choice of 34, 64,

108, 110, 124, 12H, 129.
161, 259, 275, 312

algorithm, file comparison
108

algorithm, hashing 27H
algorithm. hash search 275
algori thm, heap merge 124
algorithm, quicksort 117
algorithm, regular expression

148
algorithm, sorting III
amatch 150
amatchO 147
amatch1 148
ambiguity, if-else 27
append 192
append mode 174, 191
archive IP3
archiv e , design of HH
archive header format 93
archive hierarchy 105
archive manual page 86
archproc 104

arguments. blanks in 46
arguments, command 44
arguments, filename 81, 129
arguments, macro 262, 283
arguments, optional 80
arithmetic expression 295,

29H
arithmetic, line number 172
array size 29
array type 44
ASCII character set 14, 17,

40, 116, 271
Augenstein, M. J. 62
automatic capitalization 261
BACKSPACE 34, 249, 253
backtracking 148, 161
balanced merge 129
Barnes. J. G. P. 5
Barron, D. W. 168
begin-end IH
Berkeley Pascal 321, 332
binary search 275
binary tree 124
BLANK 17
blanks, leading 245, 274
blanks in arguments 46
blkmove 195
block. outer H. 52. 322
block structure 90
bold-face 25H
boolean type 17
boundary condition 14. 16,

19,23,77, 127. 185, 195,
23H, 242. 244. 250, 292

break 228, 235, 247
break 249
Brooks, F. P. 5
Brown. P. J. 309
bubble 109
bubble sort 109
buffer procedures. edi t 193

359

INDEX

buffer representation. edi t
191,219

bugs 20, 21, 145
built-in, changeq 296
built-in, expr 295
built-in, ifelse 295
built-in, len 296
built-in, macro 284
built-in, substr 296
Caesar cipher 47
calc 60
call stack 286
Campbell-Kelly, M. 309
"can't happen" 153
capitalization, automatic 261
carriage control 34, 37
case statement 18, 27, 154,

184,235,311
catsub 203
center 253
centering 252
change 163
change manual page 166
change command, edit 198
changeq built-in 296
changing quote 288
char type 10, 14,44
character, escape 174, 260
character transliteration 47
character type 10, 44
character width 248
character class 47, 143, 157
character class, negated 49
characters, counting 13
characters, counts as 38
character set 38, 115
character set, ASCII 14, 17,

40, 116, 271
character set, EBCDIC 14,

42, 116
charcount 13

360 SOFTWARE TOOLS IN PASCAL

charcount manual page 14
chart, structure 105
checking, error 41,43, 104,

186,282
choice of algorithm 34, 64,

108, 110, 124, 128, 129,
161,259,275,312

choice of data structure 23,
129,132,147,185,195,
290

choice of defaults 80, 228
cipher, Caesar 47
ckglob 210
ckp 197
close 328, 350
close manual page 317
close primitive 74, 107
closure 143
clrbuf 1 194
clrbuf2 222
cmp 116
code, tricky 251
cohesion 311
combining programs 60,61
Comer, D. E. v, 309
command 235
command arguments 44
comment, (* ... *) 10
comment 10, 209, 281
common program 133
compare 69
compare manual page 70
compareO 66
comparison, file 63
complete copy program 9
complexity, time 110, 120,

126, 129
compound statement 18
compound tests 50
compress 39
compress manual page 40
compression, text 37
concat 75
concat manual page 76
concatenation, file 75
conditional compilation 281
conditionals, format 263
connecting files by name 68
const declaration 11, 25,

265
constant, symbolic 11, 25,

35,265, 312
Constantine, L. L. 108
construction, incremental 87,

114, 145, 232. 284, 312
construction, left-corner 87,

95

context search 172, 184
context, standard 52,315
context search, reverse 172
control flow 27
control program, edi t IH6
convention, quoting 287
conversion, hexadecimal 61
conversion, octal 61
copy manual page 12
copy program 8
copying, file 7
copy program, complete 9
coroutine 246
counting characters 13
counting lines 14, 59
counting words 16, 59
counts as characters 38
coupling 251, 312
create 328, 343
create manual page 317
create primitive R4, 107
creating files 83
cross-reference listing 139
cscopy 126
ctof 60
ctoi 59
current line, 171
cut and paste 204
Dahl,O.-J. 5
data representation 147
data connection, pathological

243
data dependence 251
data structure, choice of 23,

129, 132, 147, 185, 195.
290

data structure, directory 88
data structure, heap 124
data structure, line-pointer

112
data type. pointer 277
data type, record 194
declaration, const 11, 25,

265
declaration, label 28
declaration, program 65
default 188
default line numbers 176.

188
defaults. choice of 80. 228
defcons 280
defensive programming 41,

98, 100, 138, 153, 240
deferred evaluation 268, 284,

287.296
deficiency, Pascal iv, 28, 29,

44, 52. 54, 74. 112, 149.
154, 294, 295

define 271
def ine manual page 280
define running time 281
defproc 280
deftype 277
defvar 277
delete 101
delete command, edit 197
description, manual page 12,

20.45,317
descriptor. file 67
design, forma t 233
design, top-down 41, 169,

193
design of archive 88
detab 24
detab manual page 21
Deutsch, L. P. 225
device independence 11, 61
dictionary, machine-readable

133
dictionary order 130
diffmsg 66
Dijkstra, E. W. 5
dimensions, page 78, 238
directory data structure 88
distributed directory 88
divoperator 115. 295
dochq 302
docmd 215
documentation 12, 20. 21, 87
dodash 53, 157
dodef 294
doexpr 298
doglob 211
doif 297
dolen 30n
doprint IH9
doread 207
dosub 301
down to 28
dowrite 208
duplicates, removing 131
EBCDIC character set 14,

42, 116
echo 46
echo manual page 45
edit 215
edi t buffer procedures 193
edi t buffer representation

191, 219
edit change command 198
edi t control program 186
edi t delete command 197
edi t global commands 208
edit hierarchy 186,196,

2lH

edi t insert command 19H
edit line huffer 192
edi t line numher variahles

IHI
edi t hst command 219
edi t manual page 17H
edi t move command 199
edi t print line number 19H
edi t scratch file 219
edi t status code 1HO
edi t suhstitute command

2()()
edit synopsis 170
editcons 217
editor, screen 170, 226
editor script 224
editor. stream 223, 227
editproc 216
edittype 217
editvar 216
edtype 1 217
edtype2 220
edvar 1 216
efficiency 34,54, H2, 95,

110,221, 237, 259, 270,
2R2, 30H

else statement 17
else-if 154, IH4, IH9, 311
else-if statement IH
emboldening 25H
encoding of metacharacters

147
endcmd 350
ENDFILE 10,41
ENDSTR 45,64,66, 116
enhancements, sort 129
entab 33
entab manual page 32
enumeration type 1HO
environment H, 35, 40, 43,

52, 55, 5H, 315, 322
eof standard procedure 15
eoln standard procedure 15
equal 64
error checking 41, 43, 104,

186, 282
error macro 294
error manual page 318
error message 187
error primitive 51, 265
error recovery 92, 169, 1H6,

190,240
esc 55
escape character 174, 260
@ escape character 54
escape character 54
evaluation, deferred 268,

284, 287, 296

evaluation, order of 18H, 267
evaluation stack 286
exchange 115
expand 42
expand manual page 43
expansion, text 41
expr 299
expr huilt-in 295
expression, arithmetic 295,

29H
expression grammar 298
expression, logical IHR
expression, regular iv, 144,

JOH
expression evaluation 29H
extensions, format 259
external sorting 120
extract 100
factor 300
fat pivot quicksort 119
fcopy 76
feature 21, HO, 263
feedback, user 233, J 13
Feuer, A. R. v
file comparison 63
file concatenation 75
file copying 7
file descriptor 67
fift: inclusion 71
file, input 11, 65, 67
file, output 11, 65, 67
file printer 76
file, rename 93
file, temporary 59,71, R2,

91, 92, 122
filearg 98
file comparison algorithm 108
f iledesc type 67
file inclusion 24
filename arguments 81, 129
filename, rememhered 204
files, creating H3
files hy name, connecting 68
fiIe system 11
filled text 22H, 246
filter 3, 31, 61, 141
filter, sort as 112
finclude 73
find 145
find hierarchy 159
find manual page 160
find running time 161
findcons ISH
find example 1
flowchart 105
fmove 93
fmtcons 256

INDEX 361

fmtproc 257
f or statement 25, 28
format 255
format conditionals 263
format design 233
forma t extensions 259
format hierarchy 245,258
forma t macros 262
format manual page 231
format running time 259
formatter, Scrihe 264
formatter, TEX 264
formatting, text 227
FORMFEED 37
Fortran iv
fprint 7R
fragmentation 106
Fraser, C. W. 226
Free University Pa~al 332
fsize 95
fskip 97
function, separation of 130
Gannon, J. D. v
garhage collection 222
generator, lexical analyzer

167
generator, sort 130
getarg 331, 350
getarg manual page 318
getarg primitive 44
getc 322, 337, 346
getc macro 283
getc manual page 318
getc primitive 7, 11, 41
getccl 157
getcf 330, 346
getcf manual page 319
getcf primitive 76
getcmd 236
getdef 273
getfn 206
getfns 90
gethdr 97
getkbd 346
getline 329, 337, 347
getline manual page 319
getline primitive 66
getlist lRI
getmark 210
getnum 183
getone 182
getpat 155
getpbc 270
getrhs 201
getsub 164
gettl 242
gettok 269

362 SOFTWARE TOOLS IN PASCAL

gettxt1 194
gettxt2 221
getval 237
getword 72
Gimpel, J. F. 167
global prefix 177
global commands, edi t 20H
global g suffix 173, 200
globdefs 326
glossary 134
gname 123
gnbchar 300
gopen 123
goto statement 2H, 311
grammar, expression 298
gremove 123
grep 168
Griswold, R. E. 309
Grogono, P. v
gtext 114
Haley, C. B. 321
Hall, D. E. 5, 108
ha 1 t macro 294
ha 1 t statement 52
hanging indent 231
Hanson, D. R. v, 10H
Hardin. R. H. v
hash 279
hash search 275
hashfind 27H
hashing algorithm 278
hash search algorithm 275
HASHSIZE 27H
head 60, 79
header format, archive 93
heap 129
heap data structure 124
heap merge algorithm 124
help 89
hexadecimal conversion 61
hierarchy, archive 105
hierarchy, edit IH6, 196,

21H
hierarchy, find 159
hierarchy, format 245, 25H
hierarchy, program 105
Hoare, C. A. R. 5
Howerton, C. P. v
human engineering 52, 68,

70, 80, 86. 99, 101. 109.
123, 169,176. 186, IH7,
IH9, 190, 206, 228, 312

J-Iunt, J. W. 10H
hyphenation 261, 264
if statement 15, 27
if -e 1 s e ambiguity 27
ifelse built-in 295

#include 24,71
include 73
#include 227
include manual page 75
inclusion, file 71
incremental construction 87,

114, 145,232, 2H4, 312
indent, hanging 231
indentation 15, 18,27.28
indenting 245
independence, device 11. 61
index 48
index, keyword in context

134
index, KWIC 134
infinite loop 209,267.274
information hiding 25, 29.

33.87, 135, 169. 193.
242, 251, 259, 270, 272.
275

initarch 104
initcmd 350
initdef 274
initfmt 256
ini thash 277
initialization 29, 74
ini tio 326
ini tmacro 304
inmemsort 113
input file 11. 65. 67
input, record 15, 31
input, standard 11, 05
input validation 23. 97, 240
input-output redirection. >, <

H2
insert command, edit 198
inserting tabs 31
install 280
internal representation 3H
interrupt 223
IOERROR 67, 68
IOREAD 6H
IOWRITE 6H
isalphanum 54
isalphanum macro 2H3
isdigit 59
isletter 272
isletter macro 283
ISO Pascal Standard 2H. 30
isupper 42
itoc 58
Jensen, K. 5, 28
job control language 59
Johnson, S. C. 140
Joy, W. N. v, 02, 321
junk 54
justification 22H, 249

Kernighan, B. W. 5,61
keyword in context index 134
knife, Swiss army 80
Knuth, D. E. 129. 140. 167,

264, 309
kwic 135
KWIC index 134
kwic manual page 137
label declaration 28
Lampson, B. W. 225
language, job control 59
last line, $ 171
layout, page 238
leadbl 246
leading blanks 245, 274
left-corner construction 87,

95
len built-in 296
length 46
length of routines 189
lexical analyzer generator 167
lexorder 116
Linderman, J. P. v
linear search 236, 275
line buffer, edit 192
linecount 15
linecount manual page 16
line number 171, 176
line number arithmetic 172
Iine number notation 188
line number variables, edit

181
line numbers, default 176,

IHH
line-pointer data structure

112
lines, counting 14. 59
lines, variable length 112,

219,276
linked list 192, 276
list command, edit 219
listing, cross-reference 139
Indelete 19H
locate 153
Loeser, R. 140
logical expression 1HH
lookahead 269
lookup 278
lookup, table 236, 275
loop, infinite 209, 267, 274
loop test at top 14, 127,311
maccons 303
machine-readable dictionary

133
macro 74
macro 290
macro arguments 262, 283

macro built-in 284
macro. error 294
macro. getc 283
macro. ha 1 t 294
macro. isalphanum 283
macro. isletter 2R3
macro manual page 305
macro. message 294
macro. putc 283
macro running time 307
macro. setstr ing 306
macro call. nested 284
macro call. recursive 296.

307
macro definition. nested 267
macro processor. template

266
macros. format 262
macros. redefinition of 279
mactype 302
macvar 303
magic number 265
maintenance 22.26.237.312
make copy 84
make copy manual page 85
makefile 122
makehdr 94
makepat 156
makeset 52
makesub 165
manual page. archive 86
manual page. change 166
manual page. charcount

14
manual page. close 317
manual page. compare 70
manual page. compress 40
manual page. concat 76
manual page. copy 12
manual page. create 317
manual page. def ine 280
manual page description 12.

20,45.317
manual page, detab 21
manual page, echo 45
manual page, edi t 178
manual page. entab 32
manual page, error 318
manual page, expand 43
manual page. find 160
manual page. format 231
manual page, getarg 318
manual page, getc 318
manual page. getcf 319
manual page. get line 319
manual page. include 75
manual page. kwic 137

manual page. 1 inecount
16

manual page, macro 305
manual page. make copy 85
manual page, message 319
manual page. nargs 319
manual page. open 320
manual page. overstrike

36
manual page. print 81
manual page. putc 320
manual page. putcf 320
manual page, putstr 320
manual page, remove 321
manual page. seek 321
manual page. sort 127
manual page. transli t 56
manual page, unique 132
manual page. unrotate

139
manual page. wordcount

20
Mashey, J. R. 61
match 146
match. null string 14R. 152.

155. 164
matching, pattern 143
max 35
MAXOPEN 67
MAXSTR 44. 66
McIlroy, M. D. v, 61, 108,

140.263
membership. set 42
merge 125
merge, two-way 129
merge. heap 124
merge order 120
message. error 1R7
message macro 294
message manual page 319
message primitive 66
metacharacter, $ 147
metacharacter. % 147
metacharactcr, 7 147
metacharacter, * 148
metacharactcr , s, 162. 165
metacharacters 143
metacharacters, encoding of

147
METAFONT 264
min 40
mistake. spelling 133
mod operator 25. 295
mode. append 174. 191
modification, program 22,

26. 237. 312
modularity 26, 70. 76. 83.

Ill. 127. 135, 182.243.
252.275. 2R2. 311

INDEX 363

Moffat. D. V. 30
move 199
move command, edi t 199
multi-column printing 80
mustcreate 85
mustopen 70
Myers. G. J. 108
name, connecting files by 68
nargs 330.351
narg s manual page 319
nargs primitive 46. 75
negated character class 49
nested macro call 284
nested macro definition 267
new standard procedure 112,

279
NEWLINE 14. 64, 66, 249
nextln 186
nil 276
notation, line number 1R8
notation for pipeline, : 81
notfound 98
null pattern 174
null string 45, 144. 293
null string match 14R. 152.

155, 164
number, magic 265
numeric order 130
octal conversion 61
omatch 152
open 327. 344
open manual page 320
open primitive 6R. 107
operating system 29. 63. 107
operator, div 115.295
operator. mod 25, 295
optimization. premature 283,

30R
optional arguments 80
options 79
optpat 184
ord standard procedure 39
order of evaluation 188. 267
Ossanna, J. F. 264
outer block 8, 52, 322
output file 11, 65. 67
output, standard 11. 65
overstrike 35, 258
overstrike manual page

36
page 243
page dimensions 7R. 23R
page layout 238
page number character. #

230
parameter. relative 230
parameter, var 25

364 SOFrWARI... TOOLS IN PASCAL

Parnas, D. L. 140
partitioning 117
Pascal. Berkeley 321, 332
Pascal deficiency iv, 2H, 29.

4..L 52. 54. 74. 112. 149.
154.294, 295

Pascal. Free University 332
Pascal Standard 2H. 30
Pa~al synopsis 27
Pa~aL UCSD 3JH
Pa~aL Whitcsrniths 332
pathological data connection

243
patscan IH5
patsize 151
pa t s i z e , version 2 154
pattern matching 143
pattern. null 174
pattern. remembered 174.

IH3
pattern. text 141. 142
pbnum 29H
pbstr 270
pcreate 336
Peterson. J. L. 140
phototypesetter 227. 2h4
Pike. R. C. v
pipeline 54.61.71.HO.HL

112, 133. 134
pipeline. advantages of H3
Plauger. P . .J. 5
PI jI preprocessor 71. 309
Poage, J. F. 309
pointer 276
pointer data type 277
pomtcr type 277
Polonsk y, I. P. 309
popen 336
portahility iv, H. 29. 63. 94
pputstr 33H
prefix, global 177
premature optimization 2H3.

30H
preprocessor, PL/I 71. 309
preprocessor. Ratfor IV. 5
prevln IH6
primitive 4. H. 29, 63. 312
primitive. close 74. 107
primitive, create H4. 107
prirruuvc, error 51. 265
primitive. getarg 44
primitive. getc 7. 11. 41
primitive. getcf 76
primitive. getl ine 66
primiuve, message 66
primitive. nargs 40, 75
primitive, open 6H, 107

primitive, putc 7.41
pnrninvc, putcf 76
primitive, putstr 67
primitive, remove 92. 107
prirrutivc, run 134. 223
primitive, seek 220
primitives. summary of 107
pr ims 323. 335. 339
print HI
pr int manual page HI
printO 77
printer, file 70
printing, multi-column HO
print line number, edi t 1YH
procedures, edi t buffer 193
program, common 133
program. copy H
program declaration 65
program hierarchy 105
program modification 22. 26.

237.312
program specification 21
program termination 52
programmer productivity 21.

30
programs. combining 60. 61
pseudo-code R. 22
ptext 114
push 292
pushhack 264
put 240
putback 270
putc 322, 33H. 34H
putc macro 2H3
putc manual page 320
putc primitive 7.41
putcf 330, 34H
putc f manual page 320
putcf primitive 76
putchr 291
putdec 5H
putfoot 241
puthead 240
putmark 210
putrep 39
putrot 130
putstr 329, J4H
putstr manual page 320
putstr primitive 67
putsub 105
puttl 241
puttok 291
put txt 1 190
puttxt2 221
putword 250
putwordO 24H
OEI) editor 225

quick I1H
quicksort iv
quicksort algorithm 117
quicksort. fat pivot 119
quote, changing 2HH
quotes 40, 54
quoting convention 2H7
range test 42. 54
Ratfor IV. 5
read 5H
read standard procedure 69
readability 2H. 50. 311
record data type 194
record input 15. 31
record type 91
recovery, error 92. 169, 1H6.

190.240
recursion iv. 5H, 72.117,

14H. 15L 271. 29H. 364
recursive macro call 296, 307
redefinition of macros 279
redirection. ». < input-output

H2
red pencil I
refinement. successive 159
regular expression iv. 144,

30H
regular expression algorithm

14H
regular expression, tagged

160
reheap 127
rchcapi ng 126
ReId. B K. 204
reinvention 1,30.97. IHh
relative parameter 230
remembered filename 204
remembered pattern 174, 1H3
remove 329. 35I
remove manual page 321
remove primitive 92, 107
removing duplicates 131
rcrnovmg tarn, 20
rename file Y3
repeat-until -tatcrncnt

25. 2H
replace 102
replacement selection 129
representation. data 147
rcprcscntanon, edi t huffer

19L 219
rcprcscntanon. Internal 3H
rcprcscntanon, string 45
representation. text 61
rcscanrung 267. 271
reset standard procedure

69,74

RETURN J7
reverse 195
reverse context search 172
rewri te standard procedure

R4
Rich, R. P. 140
Ritchie, D. M. v, 61, IOH.

226, J09
river 250
rotate 136
routines, size of 1H9, 311
rquick 119
run primitive 134, 223
running time. define 2HI
running time, find 161
running time, forma t 2St)
running time, macro 3()7
running time. sort 12H
running time. trans 1 it 56
Sattzer, J. 263
sccopy 126
Scherrer, D. K. v, 5, 10H
scope of variahles 26, 29. 9 I.

277
scopy 94
scratch file, edi t 219
screen 60
screen edi tor 170. 226
Scribe formatter 264
script, editor 224
search, lunary 275
search, context 172, IH4
search, hash 275
search, hncar 236, 275
seek 331, 33H
seek manual page 321
seek primitive 220
semicolon 27, 17H
separation of function 130
set membership 42
set type 42, 54
setbuf1 196
setbuf2 222
setparam 23H
setstring 74
setstring macro 306
settabs 25
shell liS
Shell sort 110
shellO 110
shorthand 47.53. 147
side effect 269
size, array 29
size of routines IH4,311
skip 79
skipbl IH3
Snohol 16H, 309

Software Tools user group 5
sort 122
sort, bubble 109
sort enhancements 129
sort generator 130
sort manual page 127
sort running time 12H
sort, Shell 110
sort as filter 112
sorting algorithm III
sorting, external 120
sorting text III
sortproc 122
source file inclusion 24
space 243
specification. program 21
spelling mistake 133
spread 251
stack, call 2H6
stack, evaluation 2H6
standard context 52, 3 IS
standard input II, 65
standard output II. 65
Standard, Pa~al 2H, 30
standard procedure, eo f 15
standard procedure, eoln

15
standard procedure. new

112,279
standard procedure. ord 34
standard procedure. read

64
standard procedure, reset

64, 74
standard procedure,

rewri te H4
standard procedure. wr i te

57
standard procedure,

writeln 15
statement. case IH.27.

154. IH4. 235. 311
statement. compound 1H
statement. else 17
statement. else-if IH
statement, for 25. 2H
statement. goto 2H. 311
statement, ha 1 t 52
statement. if 15. 27
statement. repeat-until

25.2H
statement, while 10, 14, 2H
status code, edi t 1HO
stclose L';H
STDERR 67. 107
STDIN 67. 107
STDOUT 67, 76, 107

INDEX 365

Stevenson, J. 332
Stevens, W. P. 10H
stream editor 223, 227
string, null 45, 144, 293
s tr ing representation 4S
string type 44,74
stripping duplicates 1J I
structure chart 105
structured programming 2,

2H,312
stub 146, 159, 233
subline 164
subst 2()3
substitute command, edi t

200
substitunon, text 173, 200
subs tr built-in 246
successive refinement 159
suffix, global 9 17J, 200
summary of primitives 107
Svcntek , J. S. 5, lOR
Swis» army knife HO
symholic constant 11, 25, 35,

265, 312
synopsis, edi t 170
synopsis, Pascal 27
Szymanski. T. o. 10H
TAB 17
table 96
tahle lookup 236. 27~

tabpos 25
tabs. inserting 31
tabs, removing 20
tagged regular expression 166
tail 60
Tanenbaum. A. v, 332
TEC() editor 225
telephone test 50
template macro processor 266
temporary file 59, 71, H2, 91,

4/.. 122
Tenenbaum, A. M. 62
term 294
termination. program 52
test, range 42. 54
testing 16, IH. 114. 145, I5H
testing, top-down 146
tests, compound 50
TEX formatter 264
text 254
text compression 37
text expansion 41
text, filled 22H, 246
text formatting 227
text pattern 141, 142
text representation 61
text. sorting III

366 SOFTWARE TOOLS IN PASCAL

text substitution 173, 200
textO 239
text 1 247
Thompson, K. L. 61, 108,

168, 225
time complexity 110, 120,

126, 129
titling 260
token 267
top-down design 41, 169, 193
top-down testing 146
top-down design 2
tprint 96
translit 51
translit manual page 56
trans lit running time 56
transliteration, character 47
tree, binary 124
tricky code 251
Turing equivalence 266, 307
two-way merge 129
type, array 44
type, boolean 17
type. char 10, 14, 44
type, character 10. 44
type, enumeration 180
type, filedesc 67
type, pointer 277
type, record 91
type, set 42, 54
type, string 44, 74
typesetter 227, 264
UCSD Pascal 338
Ullman, J. D. 162, 167
UNDERLINE 253
underlining 252
underln 253
unique 132
unique manual page 132
Unix v, 30, 61, 108, 226,

264, 321
unrotate 138
unrotate manual page 139
update 92
user feedback 233,313
user group, Software Tools 5
user interface 52, 68, 70, 80,

89. 99. 101, 109, 123.
155, 176, 186, 189, 190,
206, 228, 312

utility 323
validation, input 23. 97, 240
Van Wyk. C. J. v
var parameter 25
variable length lines 112,

219,276
variables, edi t line number

181

variables, scope of 26, 29,
91,277

warni ng character 38
Wegner, P. 5
Weinberg, G. M. 5
while statement 10, 14,28
Whitesmiths Pascal 332
width 249
width, character 248
Wirth. N. 5, 28
wordcount 17
wordcount manual page 20
words, counting 16, 59
wri te standard procedure

57
wri teln standard procedure

15
write(n:w) 57
xindex 50

	Software Tools in Pascal (Cover)
	Copyright © 1981 Bell Laboratories
	Preface
	Contents
	Introduction
	Chapter 1: Getting Started
	Chapter 2: Filters
	Chapter 3: Files
	Chapter 4: Sorting
	Chapter 5: Text Patterns
	Chapter 6: Editing
	Chapter 7: Formatting
	Chapter 8: Macro Processing
	Epilogue
	Appendix: Implementation of Primitives
	Index of First Lines
	Index

