

Error Code

Explanation

12
13
14

15
16

17

18
19

20

21

22

23
24

25

26
27
28

61

128

Missing THEN
Missing FI

Out of code space. See Part V; section
4.4, for more information.

Missing DO
Missing TO

Bad Expression. You have used an
illegal expression format.

Unmatched parentheses.

Missing OD

Can't allocate memory. You have impared
the ACTION! system, and it is unable to
allocate any more memory.

Illegal array reference

The input file is too large. You need
to break it into smaller pieces.

Illegal Conditional Expression
Illegal FOR statement syntax

Illegal EXIT. There is no DO - OD loop
for the EXIT to exit out of.

Nesting too deep (16 levels maximum).
Illegal TYPE syntax.
Illegal RETURN.

Out of Symbol Table space. See Part IV
for more information.

<BREAK> key was used to stop program ex-
ecution.

--199--

Appendix D: Bibiography and References

ATARI Personal Computer System Operating System
User's Manual and Hardware Manual

ATARI 818 Disk Drice Operator's Manual

ATARI 400/800 Disk Utility

ATARI 400/800 Operating Systems

ATARI 40@0/800 Disk Operating Systems II Reference
Manual

Other Atari References:

Poole, McNiff, Cook. Your Atari Computer

D.2 Optimized Systems Software References

0SS 0S/A+ reference manual

0SS DOS XL reference manual

-=200-~

Appendix E: Editor Commands Summary

E.1 I/0 Commands

Read a File position cursor, <CTRL»<SHIFT*> R,
enter filespec
Disk Directory <CTRL><SHIFT> R ?n:*.* (n = device num)
Write a File <CTRL><SHIFT> W, enter filespec
List to Printer <CTRL><SHIFT> W, enter P:

E.2 Cursor Movement within Window

Up <CTRL> <up arrow>
Down <CTRL><down arrow>
Right <CTRL><right arrow>
Left <CTRL><left arrow>
Start of Line <CTRL>» <SHIFT> <

End of Line <CTRL» <SHIFT> »
Next Line <RETURN>

Tab <TAB>

E.3 Tab Handling

Set Tab © <SHIFT><SET TAB>
Clear Tab <CTRL>»<CLR TAB?>»

E.4 Window Movement

Start of File <CTRL><SHIFT> H

Up one Screen <CTRL> <SHIFT> <up arrow>
Down one Screen <CTRL><SHIFT> <down arrow>
Left 1 Char. <CTRL?* <SHIFT>]

Right 1 Char. <CTRL><SHIFT> [

E.5 Text Entry

Enter Program enter text
Next Line <RETURN>
Control Chars. precede each character with <ESC»

E.6 Delete Text

Back 1 Char. <BACK S»

Cursor <CTRL»<DELETE>»

Delete Line position cursor on line,
<SHIFT> <DELETE>

—201-~

E.7 Insert / Replace Text

Toggle Modes <CTRL>»<SHIFT> I
Insert Line <SHIFT> <INSERT>

E.B Restore Altered Line

Restore Line don't move cursor, <CTRL><SHIFT> U
Recall Line don't move cursor, <CTRL><SHIFT*» P

E.9 Text Blocks

Load Block position cursor, <SHIFT><DELETE>
until done
Paste Block position cursor, <CTRL><SHIFT> P

E.18 Searches / Substitutions

Find String <CTRL><SHIFT> F, enter string
Substitute <CTRL> <SHIFT> §, enter new string,
<RETURN>, enter old string

E.1l Breaking & Combining Lines

Break Line position cursor, <CTRL><SHIFT> <RETURN>
Combine Line put cursor at front of second line,
<CTRL><SHIFT> <BACK 5>

E.12 Leaving the Editor

Leave Editor <CTRL><SHIFT> M

--202--

Appendix F: Summary of ACTION! Monitor Commands

B restart ACTION! system

€ ({"<filespec>") compile an ACTION! program

D call DOS

E go to the ACTION! Editor

(o] go to the ACTION! Options Menu
P proceed from program halt

R {"<filespec>"] run an ACTION! program

SET <address> = <value>
sets a value in a specified

memory location
W ({"<filespec>"} save a compiled program to disk
X <statement>|:, <statement>:|

execute ACTION! language state-

ment(s)

? <address> display value of an address (or
compiler constant)

* <address> display values of all addresses,

starting at an address (or
compiler constant)

-=203--

Appendix G: Options Menu Summary

prompt default range

Display on? Y Y or N
Controls the screen during compile & device I/O

Bell off? N Y or N
Controls bell response.

Case insensitive? N Y or N
Controls the compiler check for upper case key
words in the language and the case distinction in
variable names.

Trace on? N Y or N
Controls compiler setup of programs so that the
program, during execution, notes entry into any
PROCedure or FUNCtion.

List on? N Y or N
Controls compiler 1listing of program 1lines to
screen during compile process.

Window size? 18 5 to 18
Controls window 1 size. Window 1 and window 2,
combined, use 23 lines.

Line size? 120 1 to 240
Controls line length.

Left margin? 2 @ to 39
Controls left margin in window; set as low as you
find comfortable.

EOL character? $9B any ATASCII character

Change the End-0f-Line character to aid
visualization of program.

--204--

Appendix H: "PRIMES" Benchmark

This is the benchmark test from September, 1981 BYTE
Magazine, pp. 188-198, as implemented in ACTION! Here
is a table of our times to compare with those in the

magazine:
Mode Time
Compilation =.25 sec.
Display off 12.2 sec.
Display on 17.9 sec.
DEFINE size = "8198",
ON = "1",
OFF = "@g"

BYTE ARRAY flags(size+l)

CARD count, i, k, prime

BYTE DISPLAY=$22F,
iter,
tick=20,
tock=19

PROC Primes()
DISPLAY = @ ;comment this line to leave display on

tick = @
tock=0

FOR iter=1 TO 10

rle}
count

: turn flags on (non-zero)
SetBlock(flags, size, ON)

FOR i
DO
IF

FI
oD
oD

= @ TO size

flags(i) THEN
prime = i+i+3
sPrintCE(prime) ;Uncomment to print primes
k = prime + i
WHILE k <= size
DO
flags(k) = OFF
k ==+ prime
oD
count ==+ 1

i=tick+256*tock
DISPLAY = $22 ;turn display back on
PrintF("$U Primes done in $U ticks %E", count, i)

RETURN

--205--

Appendix I: Converting BASIC Concepts to ACTION! Programs

This appendix presents several BASIC functions,
routines, statements, etc. For each BASIC example
given, a corresponding ACTION! example is also given.

In the BASIC examples given, no line numbers are shown
unless necessary for illustration purposes. You should
assume the existence of appropriate 1line numbers in
most cases.

In the ACTION! examples shown, assume the following
variable declarations:

INT i,3.k

CARD c,d,e

BYTE a,b

BYTE ARRAY s,t,aa,ba
CARD ARRAY ca,da,ea
INT ARRAY 1ia,ja,ka

BASIC statements ACTION! equivalents

C = D+I*A . c=d+i*a

IF A<>@ THEN B=1 IF a<>@ THEN b=1 FI

10 IF A=@ THEN 30 IF a<>@ THEN

20 B=1 : C=A*2 b=1 c=a*2

38 REM FI

18 IF A=0 THEN B=1 GOTO 30 IF a=@ THEN b=1

20 B=7 ELSE b=7

3@ REM FI

FOR I=1 TO 106 ... FOR i = 1 TO 108 DO ...
NEXT I oD

PRINT "HELLO" PrintE("HELLO")

PRINT "HELLO"; Print("HELLO")

PRINT #5;"“HELLO" PrintDE(5, "HELLO")

PRINT #5;"HELLO"; PrintD(5, "HELLO")

PRINT I PrintIE(i)

--206--

PRINT "I=";I PrintF("I=%I%E", i)
Print["I:E) PrintIE(i)
PRINT #3; B*3; PrintBD(3, b*3)
INPUT I Put('?) : i=InputI()
Note the use of the optional colon (:) in the

ACTION| example. Colons are ignored by ACTIOMI
and so may used as statement separators.

INPUT BS Put('?) : InputS(ba)
PUT #0,65 Put('A)
or
Put(65)

or
Put($§41)

GET #C,B b = GetD(c)

OPEN #1,4,0,"K:" Open(1l, "K:*, 4, @)
CLOSE #3 Close(3)

NOTE #1,C,B Note (1, @c, @b)
POINT #1,C,B Point(l, ¢, b)

XIO 18,46,0,0,"S:" X10(6,0,18,0,8,"5:")

or see also the Fill
library routine

B=PEEK(C) b = Peekl(c)
or, in better ACTION! form,
ba=c¢ : b =ha"

POKE C,B Poke(c,b)
or, in better ACTIONI form,
ba=c : ba"~ =0b

GRAPHICS 8 Graphics(8)

COLOR 3 color = 3
Note: color is a system
library variable and is
predefined by ACTIONI

DRAWTO C,D DrawTo(c,d)
LOCATE C,D,B b = Locate(c,d)
PLOT C,D Plot(e,d)

=207 =

POSITION C,D Position(c,d)

SETCOLOR #,1,C SetColor(@,1,c)

GRAPHICS 24 : COLOR C : Graphics(24) : color = c
PLOT 208,150 : Plot(208,158)
DRAWTO 120,20 : DrawTo(128, 20
POSITION 40,150 : Fill(40,150)

POKE 765,C :
XIOo 18,%6,0,0,"S:"

SOUND #,121,10,6 Sound(@,121,18,6)

C = PADDLE(B) c = Paddle(b)

C = PTRIG(B) ¢ = Ptrig(b)

C = STICK(B) c = Stick(b)

C = STRIG(B) c = Strig(b)

B$ = S§ SCopy(ba, s)

B$ = §$(3,5) sCopyS(ba, s, 3, 5)

B$(3,5) = s$§ SAssign(ba, s, 3, 5)

B=INT(6*RND(@)) + 1 b = Rand(6) + 1

FOR C = 4000 TO 5000 : Zero(4000, 1001)
POKE C,@ : NEXT C

STOP Break()

BS = STRS(I) strIi(i, ba)

I = VAL(S$) "4 = vall(s)

--208--

ACTION!
The Best Complete
Software Development System

The Fastest, High Level Language Available for
the Atari®: A versatile, structured language that runs at al-
most assembly language speeds (100 + times faster than BASIC)
Best Strucivred Language: Incorporates features found
in PASCAL, C, ALGOL, and ADA, yet has many of the same

commands famiiiar tc Atari BASIC programmers.

Has Everything You Need:
THE EDITOR: Many advanced features for easily creating and
Mudii yuiy Source text...two separate program windows, each al-

lowing up to 240 characters per line...fast horizontal and vertical
scroliing...move and copy text...string find and replace...and
much more

THE MONITOR: Selects ccmpilation options, saves compiled
programs, examines variable values and memory locations...and
even traces the execution of your programs.

THE COMPILER: Super fast compilation into machine code
accepting source from the Editcr or from tape or disk.

THE LIBRARY: A built in collection of useful subroutines for you
to use in your programs including: string manipulation...print
procedures and formatting...I/O routines...and, graphics and
game controller routines.

