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Chapter 1 
INTRODUCTION TO ASSEMBLY 

LANGUAGE PROGRAMMING 

This book describes assembly language programming. It assumes that you are 
familiar with An Introduction To Microcomputers: Volume 1 - Basic Concepts 1 
(particularly Chapters 6 and 7). This book does not discuss the general features of 
computers, microcomputers, addressing methods, or instruction sets; you should 
refer to An Introduction To Microcomputers: Volume 1 for that information. 

HOW THIS BOOK HAS BEEN PRINTED 
Notice that text in this book has been printed in boldface type and lightface type. 
This has been done to help you skip those parts of the book that cover subject 
matter with which you are familiar. You can be sure that lightface type only ex
pands on information presented in the previous boldface type. Therefore. only read 
boldface type until you reach a subject about which you want to know more. at which 
poi~t start reading the lightface type. 

THE MEANING OIF ~NSTRUCTIONS 

The instruction set of a microprocessor is the set of binary inputs that produce 
defined actions during an instruction cycle. An instruction set is to a microprocessor 
what a function table is to a logic device. such as a gate. adder. or shift register. Of 
course. the actions that the microprocessor performs in response to its instruction in
puts are far more complex than the actions that logic devices perform in response to 
their inputs. 

An instruction is a binary bit pattern - it must be available at BINARY 
the data inputs to the microprocessor at the proper time in INSTRUCTIONS 
order to be interpreted as an instruction. For example. when the 
6502 microprocessor receives the 8-bit binary pattern 11101000 as the input during an 
instruction fetch operation. the pattern means: 

"Increment (add 1 to) the contents of Register X". 

Similarly. the pattern 10101001 means: 

"Load the Accumulator with the contents of the next word of program memory". 

The microprocessor (like any other computer) recognizes only binary patterns as in
structions or data: it does not recognize words or octal. decimal. or hexadecimal num
bers. 
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A COMPUTER PROGRAM 
A program is a series of instructions that causes a computer to perform a particular 
task. 

Actually. a computer program includes more than instructions; it 
also contains the data and memory addresses that the 
microprocessor needs to accomplish the tasks defined by the in
structions. Clearly. if the microprocessor is to perform an addition. it must have two 
numbers to add and a place to put the result. The computer program must determine 
the sou rces of the data and the destination of the resu It as well as the operation to be 
performed. 

All microprocessors execute instructions sequentially unless one of the instructions 
changes the execution sequence or halts the computer. i.e .. the processor gets the next 
instruction from the next consecutive memory address unless the current instruction 
specifically directs it to do otherwise. 

Ultimately every program is translated into a set of binary numbers. For example, 
this is a 6502 program that adds the contents of memory locations 006016 and 
006116 and places the result in memory location 006216: 

10100101 
01100000 
01100101 
01100001 
10000101 
01100010 

This is a machine language, or object, program. If this program 
were entered into the memory of a 6502-based microcomputer. 
the microcomputer would be able to execute it directly. 

THE PROGRAMMING PROBLEM 
There are many difficulties associated with creating programs 
as object, or binary machine language, programs. These are 
some of the problems: 

OBJECT 
PROGRAM 

MACHINE 
LANGUAGE 
PROGRAM 

1) The programs are difficult to understand or debug (binary numbers all look the 
same. particularly after you have looked at them for a few hours). 

2) The programs are slow to enter since you nust determine each bit individually. 

3) The programs do not describe the task whlciJ you want the computer to perform in 
anything resembling a human readable fOlmat. 

4) The programs are long and tiresome to write. 

5) The programmer often makes careless errors that are very difficult to locate and 
correct. 

For example. the following version of the addition object program contains a single 
bit error. Try to find it: 

10100101 
01100000 
01110101 
01100001 
10000101 
01100010 

Although the computer handles binary numbers with ease. people do not. People find 
binary programs long. tiresome. confusing. and meaningless. Eventually. a programmer 
may start remembering some of the binary codes. but such effort should be spent more 
productively. 
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USING OCTAL OR HEXADECIMAL 
We can improve the situation somewhat by writing instruc- OCTAL OR 
tions using octal or hexadecimal, rather than binary numbers. HEXADECIMAL 
We will use hexadecimal numbers in this book because they are 
shorter. and because they are the standard for the microprocessor industry. Table 1-1 
defines the hexadecimal digits and their binary equivalents. The 6502 program to add 
two numbers now becomes: 

A5 
60 
65 
61 
85 
62 

At the very least. the hexadecimal version is shorter to write and not quite so tiring to 
examine. 

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er
roneous version of the addition program, in hexadecimal form, becomes: 

The mistake is far more obvious. 

A5 
60 
75 
61 
85 
62 

What do we do with this hexadecimal program? The microprocessor understands 
only binary instruction codes. The answer is that we must convert the hexadecimal 
numbers to binary numbers. This conversion is a repetitive. tiresome task. People who 
attempt it make all sorts of petty mistakes. such as looking at the wrong line. dropping a 
bit. or transposing a bit or a digit. 

This repetitive. grueling task is. however. a perfect job for a com
puter. The computer never gets tired or bored and never makes 
silly mistakes. The idea then is to write a program that accepts 

HEXADECIMAL 
LOADER 

hexadecimal numbers and converts them into binary numbers. This is a standard 
program provided with many microcomputers; it is called a hexadecimal loader. 

Is a hexadecimal loader worth having? If you are willing to write a program using binary 
numbers. and you are prepared to enter the program in its binary form into the com
puter. then you will not need the hexadecimal loader. 

If you choose the hexadecimal loader. you will have to pay a price for it The hex
adecimal loader is itself a program that you must load into memory. Furthermore. the 
hexadecimal loader will occupy memory - memory that you may want to use in some 
other way. 

The basic tradeoff. therefore. is the cost and memory requirements of the hexadecimal 
loader versus the savings in programmer time. 

A hexadecimal loader is well worth its small cost. 

A hexadecimal loader certainly does not solve every programming problem. The hex
adecimal version of the program is still difficult to read or understand: for example. it 
does not distinguish instructions from data or addresses. nor does the program listing 
provide any suggestion as to what the program does. What does 85 or DO mean? 
Memorizing a card full of codes is hardly an appetizing proposition. Furthermore. the 
codes will be entirely different for a different microprocessor. and the program will re
quire a large amount of documentation. 
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Table 1-1. Hexadecimal Conversion Table 

Hexadecimal Binary Decimal 
Digit Equivalent Equivalent 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 
A 1010 10 
8 1011 11 
C 1100 12 
D 1101 13 
E 1110 14 
F 1111 15 

INSTRUCTION CODE MNEMONICS 
An obvious programming improvement is to assign a name to each instruction 
code. The instruction code name is called a "mnemonic" or memory jogger. The 
instruction mnemonic should describe in some way what the instruction does. 

In fact. every microprocessor manufacturer (they can't remember 
hexadecimal codes either) provides a set of mnemonics for the 
microprocessor instruction set. You do not have to abide by the 
manufacturer's mnemonics; there is nothing sacred about them. 

PROBLEM 
WITH 
MNEMONICS 

However. they are standard for a given microprocessor and therefore understood by all 
users. These are the instruction codes that you will find in manuals. cards. books. ar
ticles. and programs. The problem with selecting instruction mnemonics is that not all 
instructions have "obvious" names. Some instructions do (e.g .. ADD. AND. OR). others 
have obvious contractions (e.g .. SUB for subtraction. XOR for exclusive-OR). while still 
others have neither. The result is such mnemonics as WMP. PCHL. and even SOB 
(guess what that means!). Most manufacturers come up with some reasonable names 
and some hopeless ones. However. users who devise their own mnemonics rarely do 
much better than the manufacturer. 

Along with the instruction mnemonics. the manufacturer will usually assign names to 
the CPU registers. As with the instruction names. some register names are obvious (e.g .. 
A for Accumulator) while others may have only historical significance. Again. we will 
use the manufacturer's suggestions simply to promote standardization. 

If we use standard 6502 instruction and register mnemonics, 
as defined by MOS Technology, Inc., our 6502 addition pro
gram becomes: 

LDA $60 
ADC $61 
STA $62 

r-A-S--S--E--M"'B--L-Y"" 

LANGUAGE 
PROGRAM 

The program is still far from obvious. but at least some parts are comprehensible. ADC 
is a considerable improvement over 65; LDA and STA suggest loading and storing the 
contents of the Accumulator. We now know which lines are instructions and which are 
data or addresses. Such a program is an assembly language program. 
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THE ASSEMBLER PROGRAM 
How do we get the assembly language program into the com
puter? We have to translate it. either into hexadecimal or into bi
nary numbers. You can translate an assembly language pro
gram by hand, instruction by instruction. This is called hand assembly. 

Hand assembly of the addition program may be illustrated as follows: 

Instruction Mnemonic 

LDA 

Addressing Method 

Zero Page (direct) 
Zero Page (direct) 
Zero Page (direct) 

Hexadecimal Equivalent 

A5 
ADC 65 
STA 85 

As with hexadecimal to binary conversion. hand assembly is a rote task which is unin
teresting. repetitive. and subject to numerous minor errors. Picking the wrong line. 
transposing digits. omitting instructions. and misreading the codes are only a few of the 
mistakes that you may make. Most microprocessors complicate the task even further by 
having instructions with different word lengths. Some instructions are one word long 
while others are two or three words long. Some instructions require data in the second 
and third words. others require memory addresses. register numbers. or who knows 
what? 

Assembly is another rote task that we can assign to the 
microcomputer. The microcomputer never makes any 
mistakes when translating codes; it always knows how many 
words and what format each instruction requires. The program 
that does this job is an "assembler." The assembler program 
translates a user program, or "source" program written with 
mnemonics, into a machine language program, or "object" 
program, which the microcomputer can execute. The assem-

ASSEMBLER 

SOURCE 
PROGRAM 

OBJECT 
PROGRAM 

bler's input is a source program and its output is an object program. 

The tradeoffs that we discussed in connection with the hexadecimal loader are 
magnified in the case of the assembler. Assemblers are more expensive. occupy 
more memory. and require more peripherals and execution time than do hexadecimal 
loaders. While users may (and often do) write their own loaders. few care to write their 
own assemblers. 

Assemblers have their own rules that you must learn. These include the use of cer
tain markers (such as spaces. commas. semicololls. or colons) in appropriate places. 
correct spelling. the proper control information. and perhaps even the correct place
ment of names and numbers. These rules are usually simple and can be learned quickly. 
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ADDITIONAL FEATURES OF ASSEMBLERS 
Early assemblers did little more than translate the mnemonic names of instructions and 
registers into their binary equivalents. However. most assemblers now provide such ad
d itiona I featu res as: 

1) Allowing the user to assign names to memory locations. input and output devices. 
and even sequences of instructions. 

2) Converting data or addresses from various number systems (e.g .. decimal or hex
adecimal) to binary and converting characters into their ASCII or EBCDIC binary 
codes. 

3) Performing some arithmetic as part of the assembly process. 

4) Telling the loader program where in memory parts of the program or data should be 
placed. 

5) Allowing the user to assign areas of memory as temporary data storage and to 
place fixed data in areas of program memory. 

6) Providing the information required to include standard programs from program li
braries. or programs written at some other time. in the current program. 

7) Allowing the user to control the format of the program listing and the input and 
output devices employed. 

All of these features. of course. involve additional cost and memo
ry. Microcomputers generally have much simpler assemblers than 
do larger computers. but the tendency always is for the size of as
semblers to increase. You will often have a choice of assemblers. 

CHOOSING 
AN 
ASSEMBLER 

The important criterion is not how many offbeat features the assembler has. but rather 
how convenient it is to work with in normal practice. 

DISADVANTAGES OF ASSEMBLY LANGUAGE 
The assembler. like the hexadecimal loader. does not solve all the problems of 
programming. One problem is the tremendous gap between the microcomputer in
struction set and the tasks which the microcomputer is to perform. Computer in
structions tend to do things like add the contents of two registers. shift the contents of 
the Accumulator one bit. or place a new value in the Program Counter. On the other 
hand. a user generally wants a microcomputer to do something like check if an analog 
reading has exceeded a threshold. look for and react to a particular command from a 
teletypewriter. or activate a relay at the proper time. An assembly language program
mer must translate such tasks into a sequence of simple computer instructions. The 
translation can be a difficult. time-consuming job. 

Fu rthermore. if you are programming in assembly language. you must have detailed 
knowledge of the particular microcomputer that you are using. You must know 
what registers and instructions the microcomputer has. precisely how the instructions 
affect the various registers. what addressing methods the computer uses. and a myriad 
of other information. None of this information is relevant to the task which the 
microcomputer must ultimately perform. 

In addition. assembly language programs are not portable. I PORTABILITY I 
Each microcomputer has its own assembly language. which 
reflects its own architecture. An assembly language program written for the 6502 will 
not run on a 6800. Z80. 8080. or 3870 microprocessor. For example. the addition pro
gram written for the 8080 would be: 

LOA 60H 
MOV B.A 
LOA 61H 
ADD B 
STA 62H 
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The lack of portability not only means that you won't be able to use your assembly 
language program on another microcomputer. but it also means that you won't be able 
to use any programs that weren't specifically written for the microcomputer you are 
using, This is a particular drawback for microcomputers, since these devices are new 
and few assembly language programs exist for them. The result. too frequently, is that 
you are on your own. If you need a program to perform a particular task, you are not 
likely to find it in the small program libraries that most manufacturers provide. Nor are 
you likely to find it in an archive, journal article. or someone's old program file. You will 
probably have to write it yourself. 

HIGH-LEVEL LANGUAGES 
The solution to many of the difficulties associated with as ICOMPILERI 
sembly language programs is to use. instead. "high-level" or 
"procedure-oriented" languages, Such languages allow you to describe tasks in 
forms that are problem oriented rather than computer oriented. Each statement in 
a high-level language performs a recognizable function; it will generally corres
pond to many assembly language instructions. A program called a compiler trans
lates the high-level language source program into object code or machine 
language instructions. 

Many different high· level languages exist for different types of 
tasks. If, for example, you can express what you want the com

I FORTRAN I 
puter to do in algebraic notation, you can write your program in FORTRAN (Formula 
Translation Language). the oldest and most widely used of the high-level languages. 
Now, if you want to add two numbers, you just tell the computer: 

SUM = NUMBl + NUMB2 

That is a lot simpler (and a lot shorter) than either the equivalent machine language pro
gram or the equivalent assembly language program. Other high-level languages in
clude COBOL (for business applications). PASCAL (another algebraic language). PL/l (a 
combination of FORTRAN, ALGOL. and COBOL), and APL and BASIC (languages that 
are popular for time-sharing systems). 

ADVANTAGES OF HIGH-LEVEL LANGUAGES 
Clearly. high-level languages make programs easier and faster to write, A common 
estimate is that a programmer can write a program about ten times as fast in a 
high-level language as compared to assembly language.1-3 That is just writing the 
program; it does not include problem definition, program design, debugging, testing, or 
documentation, all of which become simpler and faster. The high-level language pro
gram is, for instance, partly self-documenting. Even if you do not know FORTRAN. you 
probably could tell what the statement illustrated above does. 

High-level languages solve many other problems associ
ated with assembly language programming. The high-level 
language has its own syntax (usually defined by a national or 
international standard). The language does not mention the in
struction set. registers, or other features of a particular com

MACHINE 
INDEPENDENCE 
OF HIGH-LEVEL 
LANGUAGES 

puter. The compiler takes care of all such details. Programmers (;an concentrate on their 
own tasks; they do not need a detailed understanding of the underlying CPU architec
ture - for that matter, they do not need to know anything about the computer they are 
programming. 

Programs written in a high-level language are portable
at least. in theory. They will run on any computer that has a 
standard compiler for that language. 
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At the same time. all previous programs written in a high-level language for prior com
puters are available to you when programming a new computer. This can mean thou
sands of programs in the case of a common language like FORTRAN or BASIC. 

DISADVANTAGES OF HIGH-lEVEL lANGUAGES 
Well, if all the good things we have said about high-level languages are true, if you 
can write programs faster and make them portable besides, why bother with as
sembly languages? Who wants to worry about registers, instruction codes, 
mnemonics, and all that garbage! As usual, there are disadvantages that balance 
the advantages. 

One obvious problem is that you have to learn the "rules" or 
"syntax" of any high-level language you want to use. A high
level language has a fairly complicated set of rules. You will find 
that it takes a lot of time just to get a program that is syntactically 

SYNTAX OF 
HIGH-LEVEL 
LANGUAGES 

correct (and even then it probably will not do what you want!' A high-level computer 
language is like a foreign language. If you have a little talent. you will get used to the 
rules and be able to turn out programs that the compiler will accept. Still. learning the 
rules and trying to get the program accepted by the compiler does not contribute 
directly to doing your job. 

Here. for example. are some FORTRAN rules: 

• Labels must be numbers placed in the first five card columns 

• Statements must start in column seven 

• Integer variables must start with the letters I. J. K. L. M. or N 

Another obvious problem is that you need a compiler to translate 
programs written in a high-level language. Compilers are expen
sive and use a large amount of memory. While most assemblers 

....... ------, 

occupy 2K to 16K bytes of memory (1 K = 1024). compilers occupy 4K to 64K bytes. So 
the amount of overhead involved in using the compiler is rather large. 

Fu rthermore. only some compilers will make the implementa-
tion of your task simpler. FORTRAN, for example, is well-suited 
to problems that can be expressed as algebraic formulas. If, 

~~=~~ 

however, your problem is controlling a printer, editing a string of characters. or monitor
ing an alarm system, your problem cannot be easily expressed in algebraic notation. In 
fact. formulating the solution in algebraic notation may be more awkward and more 
difficult than formulating it in assembly language. One answer is to use a more suitable 
high-level language. Some such languages exist. but they are far less widely used and 
standardized than FORTRAN. You will not get many of the advantages of high-level 
languages if you use these so-called system implementation languages. 

~=-------..., High-level languages do not produce very efficient INEFFICIENCY 
machine language programs. The basic reason for this is that OF HIGH-LEVEL 
compilation is an automatic process which is riddled with com- LANGUAGES 
promises to allow for many ranges of possibilities. The com- OPTIMIZING 
piler works much like a computerized language translator - COMPILER 
sometimes the words are right but the sounds and sentence 
structures are awkward, A Simple compiler cannot know when a variable is no longer 
being used and can be discarded, when a register should be used rather than a memory 
location, or when variables have simple relationships. The experienced programmer can 
take advantage of shortcuts to shorten execution time or reduce memory usage. A few 
compilers (known as optimizing compilers) can also do this. but such compilers are 
much larger and slower than regular compilers. 
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The general advantages and disadvantages of high-level languages are: 

Advantages: 

• More convenient descriptions of tasks 

• Less time spent writing programs 

• Easier documentation 

• Standard syntax 

• Independence of the structure of a particular computer 

• Portability 

• Availability of library and other programs 

Disadvantages: 

• Special rules 

• Extensive hardware and software support required 

• Orientation of common languages to algebraic or 
business problems 

• I nefficient programs 

..... ---...... 
ADVANTAGES 
OF 
HIGH-LEVEL 
LANGUAGES 

DISADVANTAGES 
OF 
HIGH-LEVEL 
LANGUAGES 

• Difficulty of optimizing code to meet time and memory requirements 
• Inability to use special features of a computer conveniently 

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS 
Microprocessor users will encounter several special difficulties when using high
level languages. Among these are: 

• Few high-level languages exist for microprocessors 
• Few standard languages are widely available 
• Compilers usually require a large amount of memory or even a com

pletely different computer 
• Most microprocessor applications are not well-suited to high-level 

languages 
• Memory costs are often critical in microprocessor applications 

The lack of high-level languages is partly a result of the fact that microprocessors are 
quite new and are the products of semiconductor manufacturers rather than computer 
manufacturers. Very few high-level languages exist for microprocessors. The most com
mon are BASIC.5 PASCAL.6 FORTRAN. and the PL/I-type languages such as PL/M.7 
MPL. and PL/LS. 

Many of the high-level languages that exist do not conform to recognized standards. so 
that the microprocessor user cannot expect to gain much program portability. access to 
program libraries. or use of previous experience or programs. The main advantages re
maining are the reduction in programming effort and the smaller amount of detailed 
understanding of the computer architecture that is necessary. 

The overhead involved in using a high-level language with 
microprocessors is considerable. Microprocessors themselves are 
better suited to control and slow interactive applications than they 
are to the character manipulation and language analysis involved 
in compilation. Therefore. some compilers for microprocessors will 

OVERHEAD 
FOR 
HIGH-LEVEL 
LANGUAGES 

not run on a microprocessor-based system. Instead. they require a much larger com
puter; i.e .. they are cross-compilers rather than self-compilers. A user must not only 
bear the expense of the larger computer but must also physically transfer the program 
from the larger computer to the micro. 
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Some self-compilers are available. These compilers run on the microcomputer for which 
they produce object code. Unfortu nately. they require large amounts of memory (16K or 
morel. plus special supporting hardware and software. 

High-level languages also are not generally well-suited to 
microprocessor applications. Most of the common languages 
were devised either to help solve scientific problems or to 
handle large-scale business data processing. Few 

UNSUITABILITY 
OF HIGH-LEVEL 
LANGUAGES 

microprocessor applications fall in either of these areas. Most microprocessor 
applications involve sending data and control information to output devices and 
receiving data and status information from input devices. Often the control and status 
information consists of a few binary digits with very precise hardware-related 
meanings. If you try to write a typical control program in a high-level language. you 
often feel like someone who is trying to eat soup with chopsticks. For tasks in such 
areas as test equipment. terminals. navigation systems. signal processing. and business 
equipment. the high-level languages work much better than they do in 
instrumentation. communications. peripherals. and automotive applications. 

Applications better suited to high-level languages are those which 
require large memories. If, as in a valve controller, electronic game, 
appliance controller, or small instrument. the cost of a single 
memory chip is important. then the inefficiency of high-level 
languages is intolerable. If, on the other hand, as in a terminal or 
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AREAS FOR 
LANGUAGE 
LEVELS 

test equipment. the system has many thousands of bytes of memory anyway, the ineffi
ciency of high-level languages is not as important. Clearly the size of the program and 
the volume of the product are important factors as well. A large program will greatly in
crease the advantages of high-level languages. On the other hand, a high-volume ap
plication will mean that fixed software development costs are not as important as 
memory costs that are part of each system. 

WHICH LEVEL SHOULD YOU USE? 
That depends on your particular application. Let us briefly note some of the factors 
which may favor particular levels: 

Machine Language: 

• Virtually no one programs in machine language 
because it is inefficient and difficult to document. 
An assembler costs very little and greatly reduces 
programming time. 

Assembly Language: 

• Short to moderate-sized programs 

• Applications where memory cost is a factor 

• Real-time control applications 

• Limited data processing 

• High-volume applications 

APPLICATIONS 
FOR MACHINE 
LANGUAGE 

APPLICATIONS 
FOR ASSEMBLY 
LANGUAGE 

• Applications involving more input/output or control than computation 
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High Level Languages: 

Long programs 

Low-volume applications requiring long pro
grams 

APPLICATIONS 
FOR HIGH-LEVEL 
LANGUAGE 

• Applications where the amount of memory required is already very large 

• Applications involving more computation than input/output or control 

• Compatibility with similar applications using larger computers 

• Availability of specific programs in a high-level language which can be 
used in the application 

Many other factors are also important. such as the availability of a larger computer for 
use in development. experience with particular languages. and compatibility with other 
applications. 

If hardware will ultimately be the largest cost in your application. or if speed is critical. 
you should favor assembly language. But be prepared to spend extra time in software 
development in exchange for lower memory costs and higher execution speeds. If soft
ware will be the largest cost in your application. you should favor a high-level language. 
But be prepared to spend the extra money required for the supporting hardware and 
software. 

Of course. no one except some theorists will object if you use both assembly and high
level languages. You can write the program originally in a high-level language and then 
patch some sections in assembly language. 7 However. most users prefer not to do this 
because of the havoc it creates in debugging. testing. and documentation 

HOW ABOUT THE FUTURE? 
We expect that the future will favor high-Ievellaiiguages for the following reasons: 

• Programs always seem to add extra features and 
grow larger 

• Hardware and memory are becoming less expensive 

• Software and programmers are becoming more ex
pensive 

FUTURE TRENDS 
IN LANGUAGE 
LEVELS 

• Memory chips are becoming available in larger sizes. at lower "per bit" cost. 
so actual savings in chips are less likely 

• More suitable and more efficient high-level languages are being developed 

• More standardization of high-level languages will occur 

Assembly language programming of microprocessors will not be a dying art any more 
than it is now for large computers. But longer programs. cheaper memory. and more ex
pensive programmers will make software costs a larger part of most applications. The 
edge in many applications will therefore go to high-level languages. 
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WHY THIS BOOK? 
If the future would seem to favor high-level languages, why have a book on as
sembly language programming? The reasons are: 

1) Most current microcomputer users program in assembly language (almost two 
thirds. according to one recent survey). 

2) Many microcomputer users will continue to program in assembly language since 
they need the detailed control that it provides. 

3) No suitable high-level language has yet become widely available or standardized. 

4) Many applications require the efficiency of assembly language. 

5) An understanding of assembly language can help in evaluating high-level 
languages. 

The rest of this book will deal exclusively with assemblers and assembly language pro
gramming. However. we do want readers to know that assembly language is not the 
only alternative. You should watch for new developments that may significantly reduce 
programming costs if such costs are a major factor in your application. 

1-12 



REFERENCES 

1. A. Osborne, An Introduction to Microcomputers: Volume 1 - Basic Concepts, 
Osborne/McGraw-HilI. Berkeley, CA., 1976. 

2. M. H. Halstead, Elements of Software Science, American Elsevier, New York, 1977. 

3. V. Schneider, "Prediction of Software Effort and Project Duration," SIGPLAN 
Notices, June 1978, pp. 49-55. 

4. M. Phister Jr .. Data Processing Technology and Economics, Santa Monica Publish
ing Co., Santa Monica, CA. 1976. 

5. Albrecht. Finkel. and Brown, BASIC for Home Computers, Wiley, New York, 1978. 

6. K. L. Bowles, Microcomputer Problem Solving Using PASCAL. Springer-Verlag. New 
York, 1977. 

7. D. D. McCracken, A Guide to PL'M Programming for Microcomputer Applications. 
Addison-Wesley, Reading, Mass .. 1978. 

8. P. Caudill. "Using Assembly Coding to Optimize High-Level Language Programs," 
Electronics, February 1. 1979, pp. 121-124. 

1-13 





Chapter 2 
ASSEMBLERS 

This chapter discusses the functions performed by assemblers. beginning with features 
common to most assemblers and proceeding through more elaborate capabilities such 
as macros and conditional assembly. You may wish to skim this chapter for the present 
and return to it when you feel more comfortable with the material. 

FEATURES OF ASSEMBLERS 

As we mentioned previously. today's assemblers do much more than translate as
sembly language mnemonics into binary codes. But we will describe how an as
sembler handles the translation of mnemonics before describing additional assem
bler features. Finally. we will explain how assemblers are used. 

ASSEMBLER INSTRUCTIONS 
Assembly language instructions (or "statements'" are divided 
into a number of fields. as shown in Table 2-1. 

The operation code field is the only field that can never be 
empty; it always contains either an instruction mnemonic or a 

ASSEMBLY 
LANGUAGE 
FIELDS 

directive to the assembler. called a pseudo-instruction. pseudo-operation. or 
pseudo-op. 

The operand or address field may contain an address or data. or it may be blank. 

The comment and label fields are optional. A programmer will assign a label to a 
statement or add a comment as a personal convenience: namely. to make the pro
gram easier to read and use. 

Table 2-1. The Fields of an Assembly Language Instruction 

Label Operation Code Operand or 

Field or Mnemonic Address Comment Field 
Field Field 

START LOA VALl ;LOAD FIRST NUMBER INTO A 
ADC VAL2 ;ADD SECOND NUMBER TO A 
STA SUM ;STORE SUM 

NEXT ;NEXT INSTRUCTION 

VALl "="+1 
VAL2 "="+1 
SUM "="+1 
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Table 2-2. Standard 6502 Assembler Delimiters 

'space' between label and operation code and between operation 
code and address 

, between operands in the address field 
; or I before a comment 

Note that 6502 assemblers vary greatly and some may not use these delimiters. 

Of course, the assembler must have some way of telling 
where one field ends and another begins. Assemblers that use 
punched card input often require that each field start in a specific card column. This is 
a fixed format. However. fixed formats are inconvenient when the input medium is 
paper tape; fixed formats are also a nuisance to programmers. The alternative is a free 
format where the fields may appear anywhere on the line. 

If the assembler cannot use the position on the line to tell the 
fields apart. it must use something else. Most assemblers use a 

I DELIMITERS I 
special symbol or delimiter at the beginning or end of each field. The most common 
delimiter is the space character. Commas. periods. semicolons. colons. slashes. ques
tion marks. and other characters that would not otherwise be used in assembly 
language programs may also serve as delimiters. Table 2-2 lists standard 6502 assem
bler delimiters. 

You will have to exercise a little care with delimiters. Some assemblers are fussy 
about extra spaces or the appearance of delimiters in comments or labels. A well
written assembler will handle these minor problems, but many assemblers are not 
well-written. Our recommendation is simple: avoid potential problems if you can. 
The following rules will help: 

1) Do not use extra spaces. particularly after commas that separate operands. 

2) Do not use delimiter characters in names or labels. 

3) Include standard delimiters even if your assembler does not require them. Your pro
grams will then run on any assembler. 

LABELS 
The label field is the first field in an assembly language in
struction; it may be blank. If a label is present. the assembler 
defines the label as equivalent to the address into which the first 
byte of the object program resulting from that instruction is loaded. You may subse
quently use the label as an address or as data in another instruction's address field. The 
assembler will replace the label with the assigned value when creating an object pro
gram. 

Labels are most frequently used in Jump, Call, or Branch in
structions. These instructions place a new value in the Program 
Counter and so alter the normal sequential execution of instruc
tions. JUMP 15016 means "place the value 15016 in the Program 

LABELS 
IN JUMP 
INSTRUCTIONS 

Counter". The next instruction to be executed will be the one in memory location 
15016. The instruction JUMP START means ··place the value assigned to the label 
START in the Program Counter". The next instruction to be executed will be the one at 
the address corresponding to the label START. Table 2-3 contains an example. 
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Table 2-3. Assigning and Using a Label 

ASSEMBLY LANGUAGE PROGRAM 

START LOAD ACCUMULATOR 100 

• (MAIN PROGRAM) 

JUMP START 

When the machine language version of this program is executed. the instruction 
JUMP START causes the address of the instruction labeled START to be placed 
in the Program Counter. That instruction will then be executed. 

Why use a label? Here are some reasons: 

1) A label makes a program location easier to find and remember. 
2) A label can easily be moved. if required. to change or correct a program. The as

sembler will automatically change all instructions that use that label when the pro
gram is reassembled. 

3) The assembler or loader can relocate the whole program by 
adding a constant (a relocation constant) to each address for 
which a label was used. Thus we can move the program to 
allow for the insertion of other programs or simply to rearrange memory. 

4) The program is easier to use as a library program: i.e .. it is easier for someone else 
to take your program and add it to some totally different program. 

5) You do not have to figure out memory addresses. Figuring out memory addresses is 
particularly difficult with microprocessors which have instructions that vary in 
length. 

You should assign a label to any instruction that you might want to refer to later. 

The next question is how to choose a label. The assembler 
often places some restrictions on the number of characters 
(usually 5 or 6). the leading character (often must be a letter). and 
the trailing characters (often must be letters. numbers. or one of a few special charac
ters). Beyond these restrictions. the choice is up to you. 

Our own preference is to use labels that suggest their purpose, i.e .. mnemonic labels. 
Typical examples are ADDW in a routine that adds one word into a sum. SRETX in a 
routine that searches for the ASCII character ETX. or NKEYS for a location in data 
memory that contains the number of key entries. Meaningful labels are easier to 
remember and contribute to program documentation. Some programmers use a stan
dard format for labels. such as starting with LOOOO. These labels are self-sequencing 
(you can skip a few numbers to permit insertions). but they do not help document the 
program. 
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Some label selection rules will keep you out of trouble. We 
recommend the following: 

1) Do not use labels that are the same as operation codes or 
other mnemonics. Most assemblers will not allow this usage; others will. but it is 
very confusing. 

2) Do not use labels that are longer than the assembler permits. Assemblers have 
various truncation rules. 

3) Avoid special characters (non-alphabetic and non-numeric) and lower-case letters. 
Some assemblers will not permit them; others allow only certain ones. The simplest 
practice is to stick to capital letters and numbers. 

4) Start each label with a letter. Such labels are always acceptable. 

5) Do not use labels that could be confused with each other. Avoid the letters I. 0 and 
Z. and the numbers O. 1. and 2. Also avoid things like XXXX and XXXXX. There's 
no sense tempting fate and Murphy's laws. 

6) When you are not sure if a label is legal. do not use it. You will not get any real 
benefit from discovering exactly what the assembler will accept. 

These are recommendations. not rules. You do not have to follow them. but don't blame 
us if you waste time on silly problems. 

ASSEMBLER OPERATION CODES (MNEMONICS) 
The main task of the assembler is the translation of mnemonic operation codes 
into their binary equivalents. The assembler performs this task using a fixed table 
much as you would if you were doing the assembly by hand. 

The assembler must. however. do more than just translate the operation codes. It must 
also somehow determine how many operands the instruction requires and what 
type they are. This may be rather complex - some instructions (like a Halt) have no 
operands. others (like an Addition or a Jump instruction) have one. while still others 
(like a transfer between registers or a multiple-bit shift) require two. Some instructions 
may even allow alternatives; e.g .. some computers have instructions (like Shift or Clear) 
that can apply either to the Accumulator or to a memory location. We will not discuss 
how the assembler makes these distinctions; we will just note that it must do so. 

PSEUDO-OPERATIONS 
Some assembly language instructions are not directly trans
lated into machine language instructions. These instructions 
are directives to the assembler; they assign the program to cer
tain areas in memory. define symbols. designate areas of RAM for temporary data 
storage. place tables or other fixed data in memory. allow references to other programs. 
and perform minor housekeeping functions. 

To use these assembler directives or pseudo-operations a programmer places the 
pseudo-operation's mnemonic in the operation code field. and. if the specified pseudo
operation requires it. an address or data in the address field. 

The most common pseudo-operations are: 

DATA 
EQUATE (=) or DEFINE 
ORIGIN 
RESERVE 

Linking pseudo-operations (used to connect separate programs) are: 
ENTRY 
EXTERNAL 
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Different assemblers use different names for these operations, but their functions are 
the same. Housekeeping pseudo-operations include: 

END 
LIST 
NAME 
PAGE 
SPACE 
TITLE 
PUNCH 

We will discuss these pseudo-operations briefly, although their functions are usually 
obvious. 

THE DATA PSEUDO-OPERATION 
The DATA pseudo-operation allows the programmer to enter fixed data into pro
gram memory. This data may include: 

• Lookup tables 
• Code conversion tables 
• Messages 
• Synchronization patterns 
• Thresholds 
• Names 
• Coefficients for equations 
• Commands 
• Conversion factors 
• Weighting factors 
• Characteristic times or frequencies 
• Subroutine addresses 
• Key identifications 
• Test patterns 
• Character generation patterns 
• Identification patterns 
• Tax tables 
• Standard forms 
• Masking patterns 
• State transition tables 

The DATA pseudo-operation treats the data as a permanent part of the program. 

The format of a DATA pseudo-operation is usually quite simple. An instruction 
like: 

DleON DATA 12 

will place the number 12 in the next available memory location and assign that 
location the name DleON. Usually every DATA pseudo-operation has a label. unless it 
is one of a series of DATA pseudo-operations. The data and label may take any form 
that the assembler permits. 

Most assemblers allow more elaborate DATA instructions that handle a large amount of 
data at one time, e. g.: 

EMESS 
SQRS 

DATA 
DATA 

2-5 

'ERROR' 
1.4,9,16,25 



A single instruction may fill many words of program memory. limited only by the length 
of a line. Note that if you cannot get all the data on one line. you can always follow one 
DATA instruction with another. e.g .. 

MESSG DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

'NOW IS THE' 
'TIME FOR ALL' 
'GOOD MEN' 
'TO COME TO THE' 
'AID OF THEIR' 
'COUNTRY' 

Microprocessor assemblers typically have some variations of standard DATA 
pseudo-operations. DEFINE BYTE or FORM CONSTANT BYTE handles 8-bit numbers: 
DEFINE WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses. 
Other special pseudo-operations may handle character-coded data. 

THE EQUATE (or DEFINE) PSEUDO-OPERATION 
The EQUATE pseudo-operation allows the programmer to 
equate names with addresses or data. This pseudo-operation 
is almost always given the mnemonic EQU or =. The names 
may refer to device addresses. numeric data. starting addresses. fixed addresses. etc. 

The EQUATE pseudo-operation assigns the numeric value in its operand field to 
the label in its label field. Here are two examples: 

TTY 
LAST 

EQU 
EQU 

5 
5000 

Most assemblers will allow you to define one label in terms of another. e.g .. 

LAST 
ST1 

EOU 
EOU 

FINAL 
START+1 

The label in the operand field must. of course. have been previously defined. Often. the 
operand field may contain more complex expressions. as we shall see later. Double 
name assignments (two names for the same data or address) may be useful in patching 
together programs that use different names for the same variable (or different spellings 
of what was supposed to be the same name). 

Note that an EQU pseudo-operation does not cause the as
sembler to place anything in memory. The assembler simply 
enters an additional name into a table (called a symbol table) 
which the assembler maintains. This table. unlike the mnemonic table. must be in 
RAM since it varies with each program. The assembler always needs some RAM to hold 
the symbol table: the more RAM it has. the more symbols it can accept. This RAM is in 
addition to any which the assembler needs as temporary storage. 

When do you use a name? The answer is: whenever you have a 
parameter that has some meaning besides its ordinary numeric 
value or the numeric value of the parameter might be changed. 
We typically assign names to time constants. device addresses. masking patterns. con
version factors. and the like. A name like DELAY. TTY. KBD. KROW. or OPEN not only 
makes the parameter easier to change. but it also adds to program documentation. We 
also assign names to memory locations that have special purposes: they may hold data. 
mark the start of the program. or be available for intermediate storage. 

What name do you use? The best rules are much the same as 
in the case of labels, except that here meaningful names really 
count. Why not call the teletypewriter TTY instead of X15. a bit 
time delay BTIME or BTDL Y rather than WW. the number of the 
"GO" key on a keyboard GOKEY rather than HORSE? This advice seems straightfor
ward. but a surprising number of programmers do not follow it. 
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Where do you place the EQUATE pseudo-operations? The 
best place is at the start of the program, under appropriate 
comment headings such as 1/0 ADDRESSES. TEMPORARY 
STORAGE. TIME CONSTANTS. or PROGRAM LOCATIONS. This 

PLACEMENT 
OF 
DEFINITIONS 

makes the definitions easy to find if you want to change them. Furthermore. another 
user will be able to look up all the definitions in one centralized place. Clearly this prac
tice improves documentation and makes the program easier to use. 

Definitions used only in a specific subroutine should appear at the start of the 
subroutine. 

THE ORIGIN PSEUDO-OPERATION 
The ORIGIN pseudo-operation (almost always abbreviated ORG) allows the pro
grammer to locate programs, subroutines, or data anywhere in memory. Programs 
and data may be located in different areas of memory depending on the memory con
figuration. Startup routines. interrupt service routines. and other required programs 
may be scattered around memory at fixed or convenient addresses. 

The assembler maintains a Location Counter (comparable to 
the computer's Program Counter) which contains the location 
in memory of the next instruction or data item being pro
cessed. An ORG pseudo-operation causes the assembler to place a new value in the 
Location Counter. much as a Jump instruction causes the CPU to place a new value in 
the Program Counter. The output from the assembler must not only contain instructions 
and data. but must also indicate to the loader program where in memory it should place 
the instructions and data. 

Microprocessor programs often contain several ORIGIN statements for the following 
purposes: 

Reset (startup) address 
Interrupt service addresses 
Trap addresses 
RAM storage 
Memory stack 
Subroutines 
Memory addresses for inputloutput devices or 

special functions 

Still other ORIGIN statements may allow room for later insertions. place tables or data in 
memory. or assign vacant RAM space for data buffers. Program and data memory in 
microcomputers may occupy widely scattered addresses to simplify the hardware. 

Typical ORIGIN statements are: 

ORG RESET 
ORG 1000 
ORG INT3 

Some assemblers assume an origin of zero if the programmer does not put an ORG 
statement at the start of the program. The convenience is slight; we recommend the in
clusion of an ORG statement to avoid confusion. 

THE RESERVE PSEUDO-OPERATION 
The RESERVE pseudo-operation allows the programmer to 
allocate RAM for various purposes such as data tables, tem
porary storage, indirect addresses, a Stack, etc. 
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Using the RESERVE pseudo-operation. you assign a name to the memory area and 
declare the number of locations to be assigned. Here are some examples: 

NOKEY 
TEMP 
VOLTG 
BUFR 

RESERVE 
RESERVE 
RESERVE 
RESERVE 

1 
50 
80 
100 

You can use the RESERVE pseudo-operation to reserve memory locations in program 
memory or in data memory: however. the RESERVE pseudo-operation is more 
meaningful when applied to data memory. 

In reality. all the RESERVE pseudo-operation does is increase the assembler's Location 
Counter by the amount declared in the operand field. The assembler does not actually 
produce any object code. 

Note the following features of RESERVE: 

1) The label of the RESERVE pseudo-operation is assigned the value of the first ad
dress reserved. For example. the pseudo-operation: 

TEMP RESERVE 20 

reserves 20 bytes of RAM and assigns the name TEMP to the address of the first 
byte. 

2) You must specify the number of locations to be reserved. There is no default case. 

3) No data is placed in the reserved locations. Any data that. by chance. may be in 
these locations will be left there. 

Some assemblers allow the programmer to place initial 
values in RAM. We strongly recommend that you do not 
use this feature - it assumes that the program (along with 
the initial values) will be loaded from an external device (e.g .. paper tape or floppy disk) 
each time it is run. Most microprocessor programs. on the other hand. reside in non
volatile ROM and start when power comes on. The RAM in such situations does not re
tain its contents. nor is it reloaded. Always include instructions to initialize the RAM in 
your program. 

LINKING PSEUDO-OPERATIONS 

We often want statements in one program or subroutine to 
use names that are defined elsewhere. Such names are called 
external references; a special linking program is necessary to ac
tually fill in the values and determine if any names are undefined or doubly defined. 

The pseudo~operation EXTERNAL. usually abbreviated EXT. signifies that the 
name is defined elsewhere. 

The pseudo-operation ENTRY. usually abbreviated ENT. signifies that the name is 
available for use elsewhere; i.e .. it is defined in this program. I 

The precise way in which linking pseudo-operations are implemented varies greatly 
from assembler to assembler. We will not refer to such pseudo-operations again. but 
they are very useful in actual applications. 
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HOUSEKEEPING PSEUDO-OPERATIONS 
There are various housekeeping pseudo-operations that affect the operation of 
the assembler and its program listing rather than the output program itself. Com
mon housekeeping pseudo-operations include: 

• END, which marks the end of the assembly language source program. 

• LIST, which tells the assembler to print the source program. Some assemblers allow 
such variations as NO LIST or LIST SYMBOL TABLE to avoid long, repetitive listings. 

• NAME or TITLE, which prints a name at the top of each page of the listing. 

• PAGE or SPACE, which skips to the next page or next line, respectively, and im
proves the appearance of the listing, making it easier to read. 

• PUNCH. which transfers subsequent object code to the paper tape punch. This 
pseudo-operation may in some cases be the default option and therefore unneces
sary. 

LABELS WITH PSEUDO-OPERATIONS 
Users often wonder if or when they can assign a label to a pseudo-operation. 
These are our recommendations: 

• All EQUATE pseudo-operations must have labels; they are useless otherwise, since 
the purpose of an EQUATE is to define its label. 

• DATA and RESERVE pseudo-operations usually have labels. The label identifies the 
first memory location used or assigned. 

• Other pseudo-operations should not have labels. Some assemblers allow such 
labels, but we recommend against their use because there is no standard way to in
terpret them. 
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ADDRESSES AND THE OPERAND FIELD 

Most assemblers allow the programmer a lot of freedom In describing the con
tents of the Operand or Address field. But remember that the assembler has built
in names for registers and instructions and may have other built-in names. 

Some common options for the operand field are: DECIMAL 

11 Decimal numbers 

Most assemblers assume all numbers to be decimal unless they 
are marked otherwise. So: 

ADD 100 

DATA OR 
ADDRESSES 

means "add the contents of memory location 10010 to the contents of the Ac
cumulator." 

21 Other number systems 

Most assemblers will also accept binary. octal. or hexadecimal 
entries. But you must identify these number systems in some 
way. e.g .. by preceding or following the number with an iden-
tifying character or letter. Here are some common identifiers: 

B or % for binary 

NON-DECIMAL 
NUMBER 
SYSTEMS 

O. @. O. or C for octal (the letter 0 should be avoided because of the confu
sion with zero). 

H or $ for hexadecimal (or standard BCD). 
D for decimal. D may be omitted; it is the default case. 

Assemblers generally require hexadecimal numbers to start with a digit (e.g .. OA36 
instead of A36) in order to distinguish between numbers and names or labels. It is 
good practice to enter numbers in the base in which their meaning is the 
clearest: i.e .. decimal constants in decimal; addresses and BCD numbers in hex
adecimal; masking patterns or bit outputs in binary if they are short and in hex
adecimal if they are long. 

31 Names 

Names can appear in the operand field; they will be treated as the data that they 
represent. But remember. there is a difference between data and addresses. The 
sequence: 

FIVE EOU 
ADD 

5 
FIVE 

will add the contents of memory location 0005 (not necessarily the number 5) to the 
contents of the Accumulator. 
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4) The current value of the location counter (usually referred to as * or $). 

This is useful mainly in Jump instructions: for example: 

JUMP *+6 

causes a Jump to the memory location six words beyond the word that contains the 
first byte of the JUMP instruction: 

Memory 

} JUMP' +6 code stored here 

4-- Jump here 

Most microprocessors have many two- and three-word instructions. Thus. you will 
have difficulty determining exactly how far apart two assembly language statements 
are. Therefore. using offsets from the Location Counter frequently results in errors 
that you can avoid if you use labels. 

5) Character codes 

Most assemblers allow text to be entered as ASCII strings. Such 
strings may be surrounded either with Single or double quota
tion marks: strings may also use a beginning or ending symbol 
such as A or C. A few assemblers also permit EBCDIC strings. 

ASCII 
CHARACTERS 

We recommend that you use character strings for all text. It improves the clarity and 
readability of the program. 

6) Combinations of 1) through 5) with arithmetic. logical. or special operators. 

Almost all assemblers allow simple arithmetic combinations 
such as START+l. Some assemblers also permit multiplication. 
division. logical functions. shifts. etc. These are referred to as 
expressions. Note that the assembler evaluates expressions at 

ARITHMETIC 
AND LOGICAL 
EXPRESSIONS 

assembly time. Even though an expression in the operand field may involve 
multiplication, you may not be able to use multiplication in the logic of your own pro
gram - unless you write a subroutine for that specific purpose. 

Assemblers vary in what expressions they accept and how they interpret them. Com
plex expressions make a program difficult to read and understand. 

We have made some recommendations during this section but will repeat them and 
add others here. In general. the user should strive for clarity and simplicity. There is 
no payoff for being an expert in the intricacies of an assembler or in having the most 
complex expression on the block. We suggest the following approach: 

1) Use the clearest number system or character code for data. 

Masks and BCD numbers in decimal. ASCII characters in octal. or ordinary numeri
cal constants in hexadecimal serve no purpose and therefore should not be used. 

2) Remember to distinguish data from addresses. 

3) Don't use offsets from the Location Counter. 

4) Keep expressions simple and obvious. Don't rely on obscure features of the assem
bler. 
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CONDITIONAL ASSEMBLY 

Some assemblers allow you to include or exclude parts of the source program. de
pending on conditions existing at assembly time. This is called conditional assem
bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer 
assemblers have limited capabilities for conditional assembly. A typical form is: 

IF COND 

.(CONDITIONAL PROGRAM) 

ENDIF 

If the expression COND is true at assembly time. the instructions between IF and ENDIF 
(two pseudo-operations) are included in the program. 

Typical uses of conditional assembly are: 

1) To include or exclude extra variables. 

2) To place diagnostics or special conditions in test runs. 

3) To allow data of various bit lengths. 

4) To create specialized versions of a common program. 

Unfortunately. conditional assembly tends to clutter programs and make them difficult 
to read. Use conditional assembly only if it is necessary. 

2-12 



MACROS 

You will often find that particu lar sequences of instructions oc
cur many times in a source program. Repeated instruction se
quences may reflect the needs of your program logic. or they 
may be compensating for deficiencies in your microprocessor's 

DEFINING A 
SEQUENCE OF 
INSTRUCTIONS 

instruction set. You can avoid repeatedly writing out the same instruction sequence by 
using a macro. 

Macros allow you to assign a name to an instruction sequence. You then use the 
macro name in your source program instead of the repeated instruction sequence. 
The assembler will replace the macro nl!me with the appropriate sequence of in
structions. This may be illustrated as follows: 

Source Program Object Program 

MAC1 MACRO (macro definition) 

instruction M2 --------------__. 

instruction M 1 } 

instruction M3 

ENDM 

instruction P 1 

instruction P2 
instruction P3 

MAC1 

(end .of macro definition) 

.. Imain program) } _______ -+ ___ ~ 

.. 
{ 
t 

instruction P4 } ---------------4---~ instruction P5 
instruction P6 
instruction P7 

{ 
--MAC1 -------------------------------i~--_4 .. 

instruction PB 

instruction P9 

MAC1 ------------------------------~~--~ .. 

{ 
~ 

{ 
.{ instruction PlO } __________________ • 

instruction P 11 

instruction Pl 

instruction P2 

instruction P3 

instruction M 1 
instruction M2 

instruction M3 

instruction P4 

instruction P5 
instruction P6 
instruction P7 

instruction M 1 
instruction M2 
instructKM1 M3 

instruction P8 
instruction P9 

instruction M 1 
instruction M2 
instruction M3 

instruction P10 

instruction Pl1 

Macros are not the same as subroutines. A subroutine occurs once in a program. and 
program execution branches to the subroutine. A macro is expanded to an actual in
struction sequence each time the macro occurs: thus a macro does not cause any 
branching. 
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Macros have the following advantages: 

Shorter source programs. 

Better program documentation. 

ADVANTAGES 
OF MACROS 1 ) 

2) 

3) Use of debugged instruction sequences - once the macro has been debugged. 
you are sure of an error-free instruction sequence every time you use the macro. 

4) Easier changes. Change the macro definition and the assembler makes the change 
for you every time the macro is used. 

5) Inclusion of commands. keywords. or other computer instructions in the basic in
struction set. You can use macros to extend or clarify the instruction set. 

The disadvantages of macros are: 

1) Repetition of the same instruction sequences since 
macro is expanded every time it is used. 

A single macro may create a lot of instructions. 

the 

DISADVANTAGES 
OF MACROS 

2) 

3) Lack of standardization makes programs difficult to read and understand. 

4) Possible effects on registers and flags that may not be clearly described. 

One problem is that variables used in a macro are only known 
within it (i.e .. they are local rather than global). This can often 
create a great deal of confusion without any gain in return. You 
should be aware of this problem when using macros. 1 
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COMMENTS 

All assemblers allow you to place comments in a source program. Comments have 
no effect on the object code, but they help you to read, understand, and document 
the program. Good commenting is an essential part of writing assembly language 
programs; programs without comments are very difficult to understand. 

We will discuss commenting along with documentation in a later chapter. but here 
are some guidelines.: 

1) Use comments to tell what application task the program is 
performing. not how the microcomputer executes the in
structions. 

COMMENTING 
TECHNIQUES 

Comments should say things like "IS TEMPERATURE ABOVE LlMln". "LINE FEED 
TO TTY". or "EXAMINE LOAD SWITCH". 

Comments should not say things like "ADD 1 TO ACCUMULATOR". "JUMP TO 
START". or "LOOK AT CARRY". You should describe how the program is affecting 
the system: internal effects on the CPU are seldom of any interest. 

2) Keep comments brief and to the point. Details should be available elsewhere in 
the documentation. 

3) Comment all key points. 

4) Do not comment standard instructions or sequences that change counters or 
pointers: pay special attention to instructions that may not have an obvious mean
ing. 

5) Do not use obscure abbreviations. 

6) Make the comments neat and readable. 

7) Comment all definitions. describing their purposes. Also mark all tables and data 
storage areas. 

8) Comment sections of the program as well as individual instructions. 

9) Be consistent in your terminology. You can and should be repetitive: you need not 
consult a thesaurus. 

1 0) Leave yourself notes at points which you find confusing: e.g .. "REMEMBER CAR
RY WAS SET BY LAST INSTRUCTION". You may drop these in the final documen
tation. 

A well-commented program is easy to use. You will recover the time spent in comment
ing many times over. We will try to show good commenting style in the programming 
examples. although we often over-comment for instructional purposes. 
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TYPES OF ASSEMBLERS 

Although all assemblers perform the same tasks, their implementations vary 
greatly. We will not try to describe all the existing types of assemblers; we will 
merely define the terms and indicate some of the choices. 

A cross-assembler is an assembler that runs on a computer 
other than the one for which it assembles object programs. 

The computer on which the cross-assembler runs is typically a 
large computer with extensive software support and fast peripherals - such as an IBM 
360 or 370. a Univac 1108. or a Burroughs 6700. The computer for which the cross-as
sembler assembles programs is typically a micro like the 6502 or 8080. Most cross-as
semblers are written in FORTRAN so that they are portable. 

A self-assembler or resident assembler is an assembler that 
runs on the computer for which it assembles programs. The 
self-assembler will require some memory and peripherals. and it 
may run quite slowly. 

A macro assembler is an assembler that allows you to define 
sequences of instructions as macros. 

A microassembler is an assembler used to write the 
microprograms that define the instruction set of a computer. 
Microprogramming has nothing specifically to do with 
microcomputers.2,3 

A meta-assembler is an assembler that can handle many 
different instruction sets. The user must define the particular in
struction set being used. 

A one-pass assembler is an assembler that goes through the 
assembly language program only once. Such an assembler must 
have some way of resolving forward references. e.g .. Jump in
structions which use labels that have not yet been defined. 

A two-pass assembler is an assembler that goes through the 
assembly language source program twice. The first time the 
assembler simply collects and defines all the symbols; the 

MACRO 
ASSEMBLER 

MICRO
ASSEMBLER 

second time it replaces the references with the actual definitions. A two-pass as
sembler has no problems with forward references but may be quite slow if no 
backup storage llike a floppy disk) is available; then the assembler must 
physically read the program twice from a slow input medium llike a teletypewriter 
paper tape reader). Most microprocessor-based assemblers require two passes. 
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ERRORS 

Assemblers normally provide error messages, often consisting of a single coded 
letter. Some typical errors are: 

• Undefined name (often a misspelling or an omitted definition) 

• Illegal character (e.g., a 2 in a binary number) 

• Illegal format (wrong delimiter or incorrect operands) 

• Invalid expression (e.g .. two operators in a row) 

• Illegal value (usually too large) 

• Missing operand 
• Double definition (i.e .. two different values assigned to one name) 

• Illegal label (e.g .. a label on a pseudo-operation that cannot have one) 

• Missing label 
• Undefined operation code 

In interpreting assembler errors, you must remember that the assembler may get on the 
wrong track if it finds a stray letter, an extra space, or incorrect punctuation. Many as
semblers will then proceed to misinterpret the succeeding instructions and produce 
meaningless error messages. Always look at the first error very carefully: subsequent 
ones may depend on it. Caution and consistent adherence to standard formats will 
eliminate many annoying mistakes. 

LOADERS 

The loader is the program which actually takes the output (object code) from the as
sembler and places it in memory. Loaders range from the very simple to the very com
plex. We will describe a few different types. 

A bootstrap loader is a program that uses its own first few in
structions to load the rest of itself or another loader program 
into memory. The bootstrap loader may be in ROM, or you may 
have to enter it into the computer memory using front panel switches. The assembler 
may place a bootstrap loader at the start of the object program that it produces. 

A relocating loader can load programs anywhere in memory. It 
typically loads each program into the memory space immediately 
following that used by the previous program. The programs, 
however, must themselves be capable of being moved around in this way: i.e .. they 
must be relocatable. An absolute loader, in contrast, will always place the pro
grams in the same area of memory. 

A linking loader loads programs and subroutines that have 
been assembled separately; it resolves cross references
that is, instructions in one program that refer to a label in another 
program. Object programs loaded by a linking Jpader must be created by an assembler 
that allows external references. 

An alternative approach is to separate the linking and loading 
functions and have the linking performed by a program called a 
link editor. 
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Chapter 3 
THE 6502 ASSEMBLY LANGUAGE 

INSTRUCTION SET 

We are now ready to start writing assembly language programs. We begin in this 
chapter by defining the individual instructions of the 6502 assembly language in
struction set, plus the syntax rules of the MOS Technology assembler. 

We do not discuss any aspects of microcomputer hardware, signals. interfaces. or 
CPU architecture in this book. This information is described in detail in An Introduction 
to Microcomputers: Volume 2-Some Real Microprocessors and Volume 3-Some 
Real Support Devices. 

In this book. we look at programming techniques from the assembly language pro
grammer's viewpoint, where pins and signals are irrelevant and there are no im
portant differences between a minicomputer and a microcomputer. 

Interrupts. direct memory access. and the Stack architecture for the 6502 will be de
scribed in later chapters of this book. in conjunction with assembly language program
ming discussions of the same subjects. 

This chapter contains a detailed definition of each assembly language instruction. 

The detailed description of individual instructions is preceded by a general discussion 
of the 6502 instruction set that divides instructions into those which are frequently 
used (Table 3-1l. occasionally used (Table 3-2l. and seldom used (Table 3-3). If you are 
an experienced assembly language programmer. this categorization is not particularly 
important - and. depending on your own programming prejudices, it may not even be 
accurate. If you are a novice assembly language programmer, we recommend that you 
begin by writing programs using only instructions in the "frequently used" category. 
Once you have mastered the concepts of assembly language programming, you may 
examine other instructions and use them where appropriate. 
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Table 3-1. Frequently Used Instructions of the 6502 

Instruction Meaning 
Code 

ADC Add with Carry 
AND Logical AND 
ASL Arithmetic Shift Left 
BCC Branch if Carry Clear 
BCS Branch if Carry Set 
BEQ Branch if Equal to Zero (Z = 1) 
BMI Branch if Minus (S = 1) 
BNE Branch if Not Equal to Zero (Z = 0) 
BPL Branch if Plus (S = 0) 
CMP Compare Accumulator to Memory 
DEC Decrement (by 1) 
DEX (DEY) Decrement Index Register X (y) by 1 
INC Increment (by 1) 
INX (lNY) Increment Index Register X (Y) by 1 
JMP Jump to New Location 
JSR Jump to Subroutine 
LOA Load Accumulator 
LOX (LOY) Load Index Register X (Y) 
LSR Logical Shift Right 
PHA Push Accumulator onto Stack 
PLA Pull Accumulator from Stack 
ROL Rotate Left through Carry 
ROR Rotate Right through Carry 
RTS Return from Subroutine 
SBC Subtract with Borrow 
STA Store Accumulator 
STX (STY) Store Index Register X (Y) 

Table 3-2. Occasionally Used Instructions of the 6502 

Instruction 
Meaning 

Code 

BIT Bit Test 
BRK Break 
CLC Clear Carry 
CLD Clear Decimal Mode 
CLI Clear Interrupt Mask (Enable Interrupts) 
CPX (CPY) Compare with Index Register X (Y) 
EOR Logical Exclusive-OR 
NOP No Operation 
ORA Logical (inclusive) OR 
RTI Return from Interrupt 
SEC Set Carry 
SED Set Decimal Mode 
SEI Set Interrupt Mask (Disable Interrupts) 
TAX (TAY) Transfer Accumulator to Index Register X (Y) 
TXA (TYA) Transfer Index Register X (Y) to Accumulator 

3-2 



Table 3-3. Seldom Used Instructions of the 6502 

Instruction Meaning 
Code 

BVC Branch if Overflow Clear 
BVS Branch if Overflow Set 
CLV Clear Overflow 
PHP Push Status Register onto Stack 
PLP Pull Status Register from Stack 
TSX Transfer Stack Pointer to Index Register X 
TXS Transfer Index Register X to Stack Pointer 

CPU REGISTERS AND STATUS FLAGS 
The 6602 microprocessor has an Accumulator, a Status (or PI register, two index 
registers, a Stack Pointer, and a Program Counter. These registers may be illustrated 
as follows: 15 B 7 o 

I Accumulator A 
1-_____ --1lnd.x.R.gist.r X 

r-_____ ..... ______ --1lnd.x R.gist.r Y 

'------_-------f Program Counter PC 
I-_____ ~- Stack Point.r SP 
L.. _____ ...... Status R.gist.r P 

The 6602's Status register contains six status flags and an interrupt control bit. 
These are the six status flags: 

Carry (C) 
Zero (2) 
Overflow (V) 
Sign (S) 
Decimal Mode (D) 
Break (B) 

Flags are assigned bit positions within the Status register as follows: 

7 6 5 4 3 2 1 0 -4---Bit Numb.r 
Islvj<IBlol qZlci4-6502 Status (PI r.gister 

The Accumulator (AI is a primary accumulator as described in An Introduction to 
Microcomputers: Volume 1. 

The Index Registers (X and YI are only eight bits long, unlike the typical microcom
puter index registers described in An Introduction to Microcomputers: Volume 1. They 
are more like classical computer index registers that are used to hold indexes. short 
offsets. or cou nters. 
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The 6502 has a Stack implemented in memory and indexed by the Stack Pointer as de
scribed in Volume 1. The only difference from that description is that the 6502 Stack 
Pointer is only eight bits wide, which means that maximum Stack length is 256 
bytes. The CPU always inserts 0116 as the high-order byte of any Stack address. which 
means that memory locations 010016 through 01 FF16 are permanently assigned 
to the Stack: 

01 

+ + ... 

,-__ .;.;Xr;.X __ ......t1 SP 

) 

+ 01 xx is the Stack address 

There is nothing very significant about the shorter 6502 Stack Pointer if you are 
using this CPU as a stand-alone product. A 256-byte Stack is usually sufficient for 
any typical microcomputer application; and its location in early memory simply means 
that low memory addresses must be implemented as read/write memory. 6502 
literature represents the Stack Pointer .by the letter S; we use the letters SP to prevent 
confusion with the Sign status. 

The 6502 Program Counter is a typical program counter as described in Volume 1. 

The Carry status flag holds carries out of the most significant bit in any arithmetic 
operation. The Carry flag is also included in Shift and Rotate instructions. The only 
unusual feature of the 6502 Carry flag is that it has an inverted meaning in subtrac
tion operations. After an SSC instruction. the Carry is cleared if a borrow was required 
and set if no borrow was required. Note also that the SSC (Subtract with Carry) instruc
tion results in (A) = (A) - (M) - (1 - C) where M is the other operand. This usage is 
different from most microprocessors or other computers of recent vintage and the user 
shou Id take heed of it. 

The Zero status flag is standard. It is set to 1 when any arithmetic or logical operation 
produces a zero result. It ;s set to 0 when any arithmetic or logical operation produces a 
non-zero resu It. 

The Sign status flag is standard. It will acquire the value of the high-order (Sign) bit of 
any arithmetic or logical result. Thus. a Sign status value of 1 identifies a negative result 
and a Sign value of 0 identifies a positive result. The Sign status will be set or reset on 
the assumption that you are using signed binary arithmetic. If you are not using signed 
binary arithmetic. you can ignore the Sign status. or you can use it to identify the value 
of the high-order bit of the result. 

The Decimal Mode status, when set. causes the Add-with-Carry and Subtract
with-Carry instructions to perform BCD operations. Thus. when the Decimal Mode 
status is set and an Add-with-Carry or Subtract-with-Carry instruction is executed. CPU 
logic assumes that both source 8-bit values are valid SCD numbers - and the result 
generated will also be a valid BCD number. Because the 6502 CPU performs decimal 
addition and subtraction. there is no need for an intermediate or Half-Carry status. This 
status is described in Volume 1. One problem with the 6502 approach is that the same 
instruction sequence will produce different results. depending on whether the Decimal 
Mode status has been set or cleared. Thus. confusion and errors can occur if the 
Decimal Mode status has accidentally been given the wrong value. 

The Break status pertains to software interrupts. When a software interrupt (BRK in
struction) is executed. 6502 CPU logic will set the Break status flag. 

I is a standard master interrupt enable/disable or interrupt mask flag. When 
equals 1, interrupts are disabled; when I equals 0, interrupts are enabled. 
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The Overflow status is a typical overflow. except that it can be used as a control 
input on the 6502 microprocessor. Recall that. during signed binary arithmetic. Over
flow status flags a result of magnitude too great to be represented in the given word 
size. The Overflow status has been discussed in detail in Volume 1 of An Introduction to 
Microcomputers: it equals the exclusive-OR of carries out of bits 6 and 7 during 
arithmetic operations. The 6502 microprocessor allows external logic to set the Over
flow status. in which case it can be used subsequently as a general logic indicator: you 
must be very carefu I when using the Overflow status in this way. since the same status 
flag will be modified by arithmetic instructions. It is up to you. as a programmer. to 
make sure that an instruction which modifies the Overflow status is not executed in 
between the time external logic sets this status and subsequent program logic tests it. 

6502 literature refers to the Sign bit as a negative bit. given the 
symbol N. Statuses (except for Carry) are nevertheless set and 
reset as described for our hypothetical microcomputer in An In

DIFFERENCES 
IN NOTATION 

troduction to Microcomputers: Volume 1. Henceforth. we will use the standard sym
bols S for Sign bit. as well as SP for the Stack Pointer: you should remember these 
minor differences when using the 6502 literature and instruction set summary cards. 

6502 MEMORY ADDRESSING MODES 
The 6502 offers eleven basic addressing methods: 

~ 

1) Memory - immediate 

2) Memory - absolute or direct. non-zero-page 

3) Memory - zero page (direct) 

4) Implied or inherent 

5) Accumulator 

6) Pre-indexed indirect 

7) Post-indexed indirect 

8) Zero page. indexed (also called base page. indexed) 

9) Absolute indexed 

10) Relative 

11) Indirect 

There are tremendous variations in terms of which methods are allowed with which in
structions. See Table 3-4 for the addressing options available with each instruction. 
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Memory -Immediate 
In this form of addressing. one of the operands is present in the byte immediately 
following the first byte of object code. An immediate operand is specified by prefacing 
the operand with the # symbol. For example. 

AND #$08 

requests the Assembler to generate the instruction that will logically AND the value 
0816 with the contents of the Accumulator. 

SVBDIZC 

Plxl I I I Ixl I 

A xx 
X 
yt----t 

sP~~~+-~~~~7 
pc~ __ m_m __ ~ __ m_m __ ~ .. 

AND #$08 

Data 

Program 
Memory 

29 mmmm 
08 mmmm + 1 

1----1 mmmm + 2 

~:/~--.. 
76543210 76543210' 

1st Byte 10 I 01110 11101 oj, , 2nd Byte 1010101011101010 I 
'-v-__.-

These bits These bits select 
select the AND 

operation 
immediate addressing 
with one operand in A 
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Memory - Direct 
This form of addressing uses the second - or second and third (if not on zero. or base. 
page) - bytes of the instruction to identify the address of an operand in memory. The 
zero page version is specified when the expression used as the operand in the instruc
tion reduces to a value between 0016 and FF16. For example. 

AND $30 

requests the Assembler to generate an AND instruction which will logically AND the 
value in memory location 003016 with the contents of the Accumulator. 

Data 

5 v 8 0 I Z C Memory 

pix I I I I Ixl I 
vv 0030 

A xx 
X 
y Program 

SP Memory 

PC 
25 mmmm 
30 mmmm + 1 

mmmm + 2 

The non-zero-page (absolute) version is similar except that the address of the operand 
occupies two bytes. For example. 

AND $31F6 

requests the Assembler to generate an AND instruction that will logically AND the 
value in memory location 31 F616 with the contents of the Accumulator. 

S V B 0 I Z C 

P Ixl I I I Ixl I 

A xx 

X 
y 

SP 
PC mm 

You should note that 16-bit addresses are stored with the eight 
least significant bits first (at the lower address) followed by the 
eight most significant bits (at the higher address)' This is the same 

Data 
Memory 

vv 31F6 

Program 

Memory 

20 mmmm 
F6 mmmm+ 1 

31 mmmm + 2 
mmmm +3 

technique that is used in the 8080. 8085. and Z80 microprocessors. but the opposite of 
that used in the 6800 microprocessor. 
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Implied or Inherent Addressing 
This mode means that no addresses are required to execute the instruction. Typical ex
amples of inherent addressing are CLC (Clear Carry) and TAX (Transfer Register A to 
Register X). 

Accumulator Addressing 
This mode means that the instruction operates on the data in the Accumulator. On the 
6502 microprocessor, the only Accumulator instructions are the shifts ASL (Arithmetic 
Shift Left!' LSR (Logical Shift Right!. ROL (Rotate Left through Carry!. and ROR (Rotate 
Right through Carry). 
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Pre-Indexed Indirect Addressing 
This mode means that the second byte of the instruction is added to the contents of the 
X Index register to access a memory location in the first 256 bytes of memory. where 
the indirect address will be found. Wraparound addition is used. which means that any 
carry formed in address addition will be discarded. For example. 

AND ($20.X) 

requests the Assembler to generate the instruction which will logically AND the con
tents of the Accumulator with the contents of the byte addressed by the zero-page 
memory location given by the sum of 2016 and the contents of the X Index register. 
Note the use of parentheses in the address field to indicate indirection or "contents of' 

Data 
SVBDIZC 

Plxl I I I Ixl I OOrr+20 
OOrr+21 

ppqq 

A xx 
X rr 
y 

SP Memory 

PC mm 

21 mmmm 
20 mmmm + 1 

mmmm -4-2 

Remember that the carry from the address addition is ignored. i.e .. the address of the 
first address byte is a number in mod 256. Note that the indirect address is stored with 
its least significant bits first (at the lower address); note also that an address occupies 
two bytes of memory. 

Only the X Index register can be used for pre-indexed indirect addressing. 
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Post-Indexed Indirect Addressing 
This mode means that the second byte of the instruction contains an address in the first 
256 bytes of memory. That address and the next location contain an address which is 
added to the contents of the Y Index register to obtain the effective address. 

Note the differences between this method and pre-indexed indirect addressing: 

1) In pre-indexed indirect addressing the indexing is performed before the indirec
tion.while in post-indexed indirect addressing the indirection is performed before 
the indexing. 

2) Pre-indexed indirect addressing uses the X Index register. while post-indexed in
direct addressing uses the Y Index register. 

3) Pre-indexed indirect addreSSing is useful for choosing one of a set of indirect ad
dresses to use. while post-indexed indirect addressing is useful for accessing ele
ments in an array or table for which the base address has been obtained indirectly. 

An example of post-indexed indirect addressing is 

AND ($20).Y 

which requests the Assembler to generate the instruction which will logically AND the 
contents of the Accumulator with the contents of the byte addressed by adding the Y 
Index register to the address at memory location 002016. Note that here only the $20 is 
inside the parentheses. since only that part of the address is used indirectly. 

Data 

S V B 0 1 Z C Memorv 

pIx! I I I Ix I , qq 0020 
pp 0021 

yy ppqq+rr 

A xx 

X 
y rr 

Program 

SP 
Memory 

PC mm mm 
31 mmmm 

20 mmmm+ 1 
mrnmm + 2 

Here again the indirect address is stored with its least significant byte first (at the lower 
address). Unlike that in pre-indexed indirection. this address addition is a full 16-bit ad
dition: however. it is wraparound so any carry from bit 15 is ignored. Only the Y Index 
register can be used with post-indexed indirect addressing. 
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Indexed Addressing 
This form of addressing uses the second - or second and third (if not on zero page) -
bytes of the instruction to specify the base address. That base address is then added to 
the contents of Index Register X or Y to get the effective address. X and Yare not in
terchangeable since no instructions have both forms of simple indexing with both X 
and Y. In fact. the only instructions which allow zero-page indexing with Yare LDX 
(Load Index Register X) and STX (Store Index Register X). You should consult Table 3-4 
to determine which addressing options are available with each instruction. 

A typical example of zero-page indexed addressing is 

AND $20.X 

which requests the Assembler to generate the instruction that will logically AND the 
contents of the Accumulator with the contents of the byte at the address given by the 
sum of 2016 and the contents of the X Index register. This is a two-byte instruction 
because the address is within the first 256 bytes of memory. Note that there is no two
byte form of AND $20,Y although there is a more general three-byte form of this in
struction. 

SVBDIZC 

P Ixl I I I I xl I 

A xx 
X rr 

y 

SP 
PC mm 

A typical example of absolute indexed addressing is 

AND $31FE,Y 

Data 
Memory 

"'l---:,VV:""'---4 0020+rr 

Program 

Memory 

35 mmmm 

20 mmmm+ 1 
mmmm + 2 

which requests the Assembler to generate the instruction that will logically AND the 
contents of the Accumulator with the contents of the byte at the address given by the 
sum of 31 FE16 and the contents of the Y Index register. This is a 3-byte instruction 
since the base address is not within the first 256 bytes of memory. 
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Data 

S V B D I Z C Memory 

Plxl i I I Ixl I 
yy 31FE+rr 

A xx 

X 
y rr Program 

SP Memory 

PC mm 
39 mmmm 

FE mmmm ... 1 

31 mmmm + 2 

mmmm + 3 

Either Index Register X or Index Register Y could be used here However. some instruc
tions (such as ASL. DEC. INC. LSR. ROL. and ROR) only allow Index Register X in this 
mode. This is also the case (more logically) with the instructions LDY (Load Index 
Register Y) and STY (Store Index Register Yl. 
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Indirect Addressing 
Indirect addressing only applies to the JMP (Jump to New Location) instruction In this 
mode. the second and third bytes of the instruction contain the address at which the 
effective address is located. Note that the indirect address can have any value and can 
be located anywhere in memory. Obviously. this mode can be regarded as a special 
case of either post-indexed indirect addressing or pre-indexed indirect addressing in 
which the Index register contains zero. A typical example is: 

JMP ($31FE) 

which requests the Assembler to generate a JMP instruction that will load the Program 
Counter from the memory locations addressed by the contents of memory locations 
31 FE16 and 31 FF16. Remember that absolute addresses are 16 bits long and occupy 
two memory bytes; however. the data located at an address is eight bits long. This con
fusion applies to all8-bit processors. but is a particular problem with the 6502 because 
of its numerous indirect and indexed addressing modes. Indirect addressing is de
scribed more fully in Volume 1 of An Introduction to Microcomputers. Chapter 6. 
Remember that all addresses are stored with their least significant byte first (at the 
lower address)' 

The final value of the Program Counter is ppqq. 

Never let an indirect address cross a page boundary. as in JMP ($31 FF) Although the 
high-order byte of the indirect address is in the first location of the next page (in this 
example. memory location 320016). the CPU will fetch the high-order byte from the 
first location of the same page (location 310016 in our example). 

3-13 



Relative Addressing 
Branch-on-Condition instructions use program relative addressing; a single byte dis
placement is treated as a signed binary number which is added to the Program Counter. 
after the Program Counter contents have been incremented to address the next se
quential instruction. This allows displacements in the range +12910 to -12610 bytes. 

A typical example is 

BCC "+5 

which requests the Assembler to generate a BCC (Branch on Carry Clear; i.e .. branch if 
Carry = 0) instruction that will load the Program Counter with its current value plus five 
if the Carry is. in fact. zero. If the Carry is one. the instruction does nothing. Note that 
the instruction itself occupies two bytes of memory and the offset is measured from the 
end of the instruction. Thus the offset should be 3 to generate a branch to the location 
five beyond the one in which the first byte of the instruction is located. Note that the 
symbol" is used for the current value of the Program Counter (actually. the Assembler's 
Location Counter as described in Chapter 2). 

The execution of the BCC "+5 instruction may be described as shown below. Note that 
the entire instruction is fetched from memory before the destination address is calcu
lated. Note also that there are no other addressing modes available with Branch-on
Condition instructions. 

s V B 0 I Z C 

P I I I I I I I I 

A 

X 
Y 

SP 

PC mm mm 
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Memory 

90 mmmm 

03 mmmm +' 
II-~'---Immmm + 2 



6502 INSTRUCTION SET 

Instructions often frighten microcomputer users who are new to programming. 
Taken in isolation. the operations involved in the execution of a single instruction 
are usually easy to follow. The purpose of this chapter is to isolate and explain 
those operations. 

Why are the instructions of a microcomputer referred to as an instruction "set"? 
Because the microcomputer designer selects (or at least should select) the instructions 
with great care: it must be easy to execute complex operations as a sequence of simple 
events. each of which is represented by one instruction from a well-designed instruc
tion "set". 

Remaining consistent with An Introduction to Microcomputers: Volume 2. Table 
3-4 summarizes the 6502 microcomputer instruction set. with similar instructions 
grouped together. Individual instructions are listed numerically by object code in 
Table 3-5 and in alphabetical order by instruction mnemonic in Table 3-6. Table 3-6 
also compares the 6800 instruction set with that of the 6502. We will discuss the 6800 
and 6502 much later in this chapter. after detailing the 6502 instruction set. 

In addition to simply stating what each instruction does. the individual instruction 
descriptions discuss the purpose of the instruction within normal programming logic. 

ABBREVIATIONS 
These are the abbreviations used in this chapter: 

The registers: 

A 
X 
Y 
PC 
SP 
P 

Statuses: 

S 
V 
B 
D 
I 
Z 
C 

Accumulator 
Index Register X 
Index Register Y 
Program Counter 
Stack Pointer 
Status register. with bits assigned as follows: 

7 6 5 4 3 2 1 0 ......-8;t Numbe' 

I s I vi 181 Dill z I c l4--Status ,egiste, (PI 

t '--------Reserved for expanSion 

Sign or Negative status 
Overflow status 
Break status 
Decimal Mode status 
Interrupt Disable status 
Zero status 
Carry status 
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Symbols in the column labeled STATUS: 

(blank) Operation does not affect status 
X Operation affects status 
o Operation clears status 
1 Operation sets status 
6 Operation reflects bit 6 of memory location 
7 Operation reflects bit 7 of memory location 
addr a bits of absolute or base address 
[addr+1,addr] The address constructed from the contents of memory locations 

addr and addr+1. This address is used in post-indexed indirect ad
dressing. 

addr16 16 bits of absolute or base address 
data a bits of immediate data 
disp 
label 

PC(HI) 
PC (lO) 
pp 
qq 
[] 

[[]] 

+ 

A 
V 
¥ 

An a-bit. signed address displacement 
16-bit absolute address, destination of Jump or Jump-to
Subroutine 
The high-order a bits of the Program Counter 
The low-order a bits of the Program Counter 
The second byte of a two- or three-byte instruction object code 
The third byte of a three-byte object code 
Contents of the memory location designated inside the brackets. 
For example, [FFFE] represents the contents of memory location 
FFFE16: [addr16+X] represents the contents of the location ad
dressed by adding the contents of register X to addr16: [SP] repre
sents the value at the top of the Stack (contents of the memory 
location addressed by the Stack Pointed. 
Indirect addressing: the contents of the memory byte addressed 
by the contents of the memory location designated within the in
ner brackets. For example, [[addr+X]] represents the contents of a 
memory location addressed via pre-indexed indirect addressing. 
Addition - either unsigned binary addition or BCD addition, de
pending on the condition of the Decimal Mode status. 
Binary or BCD subtraction, performed by adding the twos comple
ment of the subtrahend to the minuend. 
The ones complement of the quantity denoted beneath the bar: 
for example, A represents the complement of the contents of the 
Accumulator: C represents the complement of the value of the 
Carry status. 
logical AND 
logical OR 
logical Exclusive-OR 
Data is transferred in the direction of the arrow. 
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INSTRUCTION MNEMONICS 
Table 3-4 summarizes the 6602 instruction set. The INSTRUCTION column shows 
the instruction mnemonic (LOA, STA, CLC) and the operands, if any, used with the 
instruction mnemonic. 

The fixed part of an assembly language instruction is shown in UPPER CASE. The 
variable part {immediate data, address, or labell is shown in lower case. 

If a mnemonic has more than one type of operand, each type is listed separately with
out repeating the mnemonic. For instance, some examples of the format entry 

STX 
addr 
addr,Y 
addr16 

are: STX $75 
STX $60,Y 
STX $4276 

INSTRUCTION OBJECT CODES 
For instruction bytes without variations, object codes are represented as two 
hexadecimal digits (e.g., SA). For instruction bytes with variations, the object 
code is shown as eight binary digits (e.g., 101aaa01). 

The object code and instruction length in bytes is shown in Table 3-4 for each in
struction variation. Table 3-5 lists the object codes in numerical order, and Table 
3-6 shows the corresponding object codes for the mnemonics, listed in alphabeti
cal order. 

INSTRUCTION EXECUTION TIMES 
Table 3-4 lists the instruction execution times in numbers of clock periods. Actual 
execution time can be derived by dividing the given number of clock periods by the 
clock speed. For example, for an instruction that requires 5 clock periods, a 2 MHz clock 
will result in a 2.5 microsecond execution time. 

STATUS 
The status flags are stored in the Status register (P) as follows: 

3 2 
Status register 

Carry status (carry out of bit 7) 

'----Zero status (1 for zero, 0 for nonzero) 
'-----Interrupt disable status 

(1 means interrupts are disabled) 

'------Decimal Mode status (1 for decimal mode) 
'-------Break status (1 means a Break instruction 

has been executed) 
'-------This bit is not used 

'---------Overflow status 
'---------Sign status (value of bit 7) 
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In the individual instruction descriptions. the effect of instruction execution on 
status is illustrated as follows: 

Modified to reflect results of execution 
1.-___ Unchanged 

1.-____ Unconditionally reset to 0 

L-_____ Unconditionally set to 1 

1.-______ Bit 6 of tested byte 

L--------Bit 7 of tested byte 

An X identifies a status that is set or reset. A 0 identifies a 
status that is always cleared. A 1 identifies a status that is 
always set. A blank means the status does not change. The 
numbers 7 and 6 show that the flag contains the value of 
bit 7 or bit 6 of the byte tested by the instruction. 
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Table 3-5. 6502 Instruction Object Codes in Numerical Order 

Object Code Instruction Object Code Instruction 

00 BRK 68 PLA 
01 pp ORA (addr.XI 69 pp AOC data 
05 pp ORA addr 6A ROR A 
06 pp ASL addr 6C ppqq JMP Oabell 
08 PHP 60 ppqq AOC addr16 
09 pp ORA data 6E ppqq ROR addr16 
OA ASL A 70 pp BVS disp 
00 ppqq ORA addr16 71 pp AOC (addrl.Y 
OE ppqq ASL addr16 75 pp AOC addr.X 
10 pp BPL disp 76 pp ROR addr.X 
11 pp ORA (addrl.Y 78 SEI 
15 pp ORA addr.X 79 ppqq AOC addr16.Y 
16 pp ASL addr.X 70 ppqq AOC addr16.X 
18 CLC 7E ppqq ROR addr16.X 
19 ppqq ORA addr16.Y 81 pp STA (addr.XI 
10 ppqq ORA addr16.X 84 pp STY addr 
1E ppqq ASL addr16.X 85 pp STA addr 
20 ppqq JSR label 86 pp STX addr 
21 pp AND (addr.XI 88 DEY 
24 pp BIT addr 8A TXA 
25 pp AND addr 8C ppqq STY addr16 
26 pp ROL addr 80 ppqq STA addr16 
28 PLP 8E ppqq STX addr16 
29 pp AND data 90 pp BCC disp 
2A ROL A 91 pp STA (addrl.Y 
2C ppqq BIT addr16 94 pp STY addr.X 
20 ppqq AND addr16 95 pp STA addr.X 
2E ppqq ROL addr16 96 pp STX addr.Y 
30 pp BMI disp 98 TYA 
31 pp AND (addrl.Y 99 ppqq STA addr16.Y 
35 pp AND addr.X 9A TXS 
36 pp ROL addr.X 90 ppqq STA addr16.X 
38 SEC AO pp LOY data 
39 ppqq AND addr16.Y A1 pp LOA (addr.XI 
3D ppqq AND addr16.X A2 pp LOX data 
3E ppqq ROL addr16.X A4 pp LOY addr 
40 RTI A5 pp LOA addr 
41 pp EOR (addr.XI A6 pp LOX addr 
45 pp EOR addr A8 TAY 
46 pp LSR addr A9 pp LOA data 
48 PHA AA TAX 
49 pp EOR data AC ppqq LOY addr16 
4A LSR A AD ppqq LOA addr16 
4C ppqq JMP label AE ppqq LOX addr16 
40 ppqq EOR addr16 BO pp BCS disp 
4E ppqq LSR addr16 B1 pp LOA (addrl.Y 
50 pp BVC disp B4 pp LOY addr.X 
51 pp EOR (addrl.Y B5 pp LOA addr.X 
55 pp EOR addr.X B6 pp LOX addr.Y 
56 pp LSR addr.X B8 CLV 
58 Cli B9 ppqq LOA addr16.Y 
59 ppqq EOR addr16.Y BA TSX 
50 ppqq EOR addr16.X BC ppqq LOY addr16.X 
5E ppqq LSR .ddr16.X BO ppqq LOA addr16.X 
60 RTS BE ppqq LOX addr16.Y 
61 pp AOC (addr.XI CO pp CPY data 
65 pp AOC addr Cl pp CMP (addr.XI 
66 pp ROR addr C4 pp CPY addr 

3-31 



Table 3-5. 6502 Instruction Object Codes in Numerical Order (Continued) 

Object Code Instruction Object Code Instruction 

C5 pp CMP addr E4 pp CPX addr 

C6 pp DEC addr E5 pp SSC addr 
C8 INY E6 pp INC addr 

C9 pp CMP data E8 INX 
CA DEX E9 pp SSC data 

CC ppqq CPY addr16 EA NOP 
CD ppqq CMP addr16 EC ppqq CPX addr16 

CE ppqq DEC addr16 ED ppqq SSC addr16 

DO pp SNE disp EE ppqq INC addr16 
01 pp CMP (addrl.Y FO pp SEQ disp 
05 pp CMP addr.X F1 pp SSC (addrl.Y 
06 pp DEC addr.X F5 pp SSC addr.X 
08 CLD F6 pp INC addr.X 
09 ppqq CMP addr16.Y F8 SED 
DO ppqq CMP addr16.X F9 ppqq S8C addr16.Y 
DE ppqq DEC addr16.X FD ppqq SSC addr16.X 
EO pp CPX data FE ppqq INC addr16.X 
E1 pp SSC (addr.XI 
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The following symbols are used in the object codes in Table 3-6. 

Address-mode Selection: 

aaa 

bb 

bbb 

cc 

ddd 

pp 

qq 

x 

y 

000 pre-indexed indirect - (addr.X) 
001 direct - addr 
010 immediate - data 
011 extended direct - addr16 
100 post-indexed indirect - (addrl.Y 
101 base page indexed - addr.X 
110 absolute indexed - addr16.Y 
111 absolute indexed - addr16.X 

00 direct - addr 
01 extended direct - addr16 
10 base page indexed - addr.X 
11 absolute indexed - addr16.X 

001 direct - addr 
010 accumulator - A 
011 extended direct - addr16 
101 base page indexed - addr.X; addr.Y in STX 
111 absolute indexed - addr16.X; addr16.Y in STX 

00 immediate - data 
01 direct - addr 
11 extended direct - addr16 

000 immediate - data 
001 direct - addr 
011 extended direct - addr16 
101 base page indexed - addr.Y in LOX; addr.X in LOY 
111 absolute indexed - addr16.Y in LOX: addr16.X in LOY 

the second byte of a two- or three-byte instruction 

the third byte of a three-byte instruction 

one bit choosing the address mode: 
o direct - addr 
1 extended direct - addr16 

one bit choosing the JMP address mode: 
o extended direct - label 
1 indirect - (label) 
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Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics 

Mnemonic Operend Object Code Bytes 
Clock MCIIOO 

Periods Instruction 

ADC 011aaaOl ADCA 
data pp 2 2 data8 
addr pp 2 3 addr8 
addr,X pp 2 4 index 
(addr,X) pp 2 6 
(addr),Y pp 2 5' 
addr16 ppqq 3 4 addr16 
addr16,X ppqq 3 4' 
addr16,Y ppqq 3 4' 

AND 001aaaOl ANDA 
data pp 2 2 data8 
addr pp 2 3 addr8 
addr,X pp 2 4 index 
(addr,X) pp 2 6 
(addr),Y pp 2 S' 
addr16 ppqq 3 4 addr16 
addr16,X ppqq 3 4' 
addr16,Y ppqq 3 4' 

ASl A 000bbbl0 1 2 ASlA 
addr pp 1 S 
addr,X pp 2 6 ASl index 
addr16 ppqq 3 6 ASl addr16 
addr16,X ppqq 3 7 

BeC disp 90 pp 2 2" BCC disp 

BCS disp BO pp 2 2" 8CS disp 

BEQ disp FO pp 2 2" BEQ disp 

BIT 0010.100 BITA 
addr pp 2 3 addr8 
addr16 ppqq 3 4 addr16 

BMI disp 30 pp 2 2" BMI disp 

BNE disp DO pp 2 2" BNE disp 

BPl disp 10 pp 2 2" 8Pl disp 

BRK 00 1 7 (SWil 

BVC disp SO pp 2 2" 8VC disp 

BVS disp 70 pp 2 2" BVS disp 

ClC 18 1 2 ClC 

ClD 08 1 2 

Cli 58 1 2 Cli 

ClV B8 1 2 ClV 

-Add one clock period if page boundary is crossed. 

··Add one clock period if branch occurs to location in same page; add two clock periods if branch to another 
page occurs. 
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Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics (Continued) 

Mnemonic Operand Object Code Bytes 
Clock MC6800 

Periods Instruction 

CMP II0aaaOI CMPA 

data pp 2 2 data8 
addr pp 2 3 addr8 

addr,X pp 2 4 index ! laddr,XI pp 2 6 
laddrl.Y pp 2 5' I 
addr16 ppqq 3 4 addr16 I 
addr16,X ppqq 3 4' 
addr16,Y ppqq 3 4' 

CPX I I 10ccOO CPX I 
data pp 2 2 data8 

addr pp 2 3 addr8 

addr16 ppqq 3 4 addr16 

CPY 1100ccOO 

data pp 2 2 
addr pp 2 3 
addr16 ppqq 3 4 ! 

I 

DEC I 10bbl 10 DEC 

addr pp 2 5 
addr,X pp 2 6 index 

I 
addr16 ppqq 3 6 addr16 

addr16,X ppqq 3 7 

DE>' CA I 2 DEX 

DEY SS I 2 

EOR 01OaaaOI EORA 
data pp 2 2 dataS 

addr pp 2 3 addrS 

addr,X pp 2 4 index 

laddr,XI pp 2 6 

laddrl.Y pp 2 5' 
addr16 ppqq 3 4 addr16 
addr16,X ppqq 3 4' 
addr16,Y ppqq 3 4' 

INC I I lbbl 10 INC 

addr pp 2 5 
addr,X pp 2 6 index 

addr16 ppqq 3 6 addr16 
addr16,X ppqq 3 7 

INX ES I 2 INX 

INY CS I 2 

JMP 01 yOI 100 JMP 
label ppqq 3 3 addr16 

lIabell ppqq 3 5 

JSR label 20 ppqq 3 6 JSR addrl 6 

-Add one clock period if page boundary is crossed. 

·-Add one clock period if branch occurs to location in same page; add two clock periods if branch to another 

page occurs. 
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Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics (Continued) 

Mnemonic Operand Object Code Byte. 
Clock MC6800 

Periods Instruction 

LOA 101aaaOl LOAA 

data pp 2 2 dataS 
addr pp 2 3 addrS 

addr,X pp 2 4 index 
(addr,X) pp 2 6 
(addrl,Y pp 2 5" 
addr16 ppqq 3 4 addr16 

addr16.X ppqq 3 4" 
addr16,Y ppqq 3 4" 

LOX 101dddl0 LOX 

data pp 2 2 (dataS) 

addr pp 2 3 addrS 

addr,Y pp 2 4 (index) 

addr16 ppqq 3 4 addr16 

addr16,Y ppqq 3 4" 

LOY 101dddOO 

data pp 2 2 
addr pp 2 3 
addr,X pp 2 4 
addr16 ppqq 3 4 
addr16,X ppqq 3 4" 

LSR A 010bbbl0 1 2 LSRA 
addr pp 2 5 
addr,X pp 2 6 LSR index 
addr16 ppqq 3 6 LSR addr16 
addr16,X ppqq 3 7 

Nap EA 1 2 Nap 

ORA OOOaaaOl ORAA 

data pp 2 2 dataS 

addr pp 2 3 addrS 

addr,X pp 2 4 index 
(addr,X) pp 2 6 
(addrl.Y pp 2 5" 
addr16 ppqq 3 4 addr16 

addr16,X ppqq 3 4" 
addr16,Y ppqq 3 4" 

PHA 4S 1 3 PSHA 

PHP OS 1 3 

PLA 6S 1 4 PULA 

PLP 2S 1 4 

ROL A 001bbbl0 1 2 ROLA 

addr pp 2 5 
addr,X pp 2 6 ROL index 

addr16 ppqq 3 6 ROL addr16 

addr16,X ppqq 3 7 

-Add one clock period if page boundary is crossed . 

•• Add one clock period if branch occurs to location in same page; add two clock periods if branch to another 

page occurs. 
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Table 3-6 Summary of 6502 Object Codes with 6800 Mnemonics (Continued) 

Clock MC6BOO 
Mnemonic Operand Object Code Bytes 

Periods Instruction 

ROR A 011bbb10 1 2 RORA 

addr pp 2 5 
addr.X pp 2 6 ROR index 

addr16 ppqq 3 6 ROR addr16 

addr16.X ppqq 3 7 

RTI 40 1 6 RTI 

RTS 60 1 6 RTS 

SBC 111aaa01 SBCA 

data pp 2 2 dataS 

addr pp 2 3 addr8 

addr.X pp 2 4 index 

laddr.X) pp 2 6 

laddr).Y pp 2 5" 
addr16 ppqq 3 4 addr16 

addr16.X ppqq 3 4" 

addr16.Y ppqq 3 4" 

SEC 38 1 2 SEC 

SEO FS 1 2 

SEI 78 1 2 SEI 

STA 100aaaOl STAA 

addr pp 2 3 addrS 

addr.X pp 2 4 index 

laddr.X) pp 2 6 

laddr).Y pp 2 6 

addr16 ppqq 3 4 addr16 

addr16.X ppqq 3 5 
addr16.Y ppqq 3 5 

STX 100bb110 STX 

addr pp 2 3 addr8 

addr.Y pp 2 4 lindex) 

addr16 ppqq 3 4 addr16 

STY 1 00bb1 00 

addr pp 2 3 

addr.X pp 2 4 

addr16 ppqq 3 4 

TAX AA 1 2 

TAY A8 1 2 

TSX 8A 1 2 TSX 

TXA SA 1 2 

TXS 9A 1 2 TXS 

TYA 98 1 2 

-Add one clock period if page boundary is crossed, 

··Add one clock period if branch occurs to location in same page; add two clock periods if branch to another 

page occurs. 
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AIDe-ADD MEMORY, W~TH CARRY, TO ACCUMULATOR 
This instruction uses eight methods of addressing data memory and allows the con
tents of data memory and the carry status to be added to the Accumulator. The eight 
methods of addressing memory are: 

11 Immediate - AOC data 

21 Absolute {directl - AOC addr16 

31 Zero page {direct} - AOC addr 

41 Pre-indexed with Index Register X - AOC {addr.XI 

51 Post-indexed with Index Register Y - AOC {addrl.Y 

61 Zero-page indexed with Index Register X - AOC addr.X 

71 Absolute indexed with Index Register X - AOC addr16.X 

81 Absolute indexed with Index Register Y - AOC addr16.Y 

The first byte of object code determines which addressing mode is selected as follows: 

Bit Value 
for aaa 

000 
001 
010 
011 
100 
101 
110 
111 

7 6 5 4 3 2 1 0 ~8il Number 

iOl1111 al al alOll ~obleCI Code 

Hexadecimal 
Addressing Mode 

Object Code 

61 Indirect. pre-indexed with X 
65 Zero page {directl 
69 Immediate 
60 Absolute {direct} 
71 Indirect. post-indexed with Y 
75 Zero page indexed with X 
79 Absolute indexed with Y 
70 Absolute indexed with X 

Number 
of bytes 

2 
2 
2 
3 
2 
2 
3 
3 

We may illustrate the AOC instruction with immediate addressing as shown below. For 
other addressing modes. consult either the discussion of addressing modes or the 
description of other arithmetic or logical instructions since other illustrations show 
different addressing modes. 

s v z C 

~ 
A 

X 

Y 
Program 

SP Memory 

PC 
69 mmmm 
yy mmmm + 1 

mmmm ... 2 
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Add the contents of the next program memory byte (addressing mode selected by bits 
2.3. and 4 of the byte in the instruction register) and the Carry status to the Accumula
tor. Suppose xx = 3A 16. yy = 7C 16. C = 1. After the instruction 

ADC #$7C 

has been executed. the Accumulator will contain B716. 

3A 001 11010 
7C 01 1 1 1 1 00 

Carry 1 

No carry. set C to 0 
1 sets S to 1 

o -¥- 1 = 1. Set V to 1 

101 1011 1 

LNonzero result sets Z to 0 

ADC is the only 6502 addition instruction. To use it in single-byte operations or to add 
the low-order bytes of two multibyte numbers. a previous instruction must explicitly set 
Carry to zero so that it does not affect the operation. Note that the 6502 microprocessor 
has no addition instruction that does not include the Carry. ADC will perform either bi
nary or decimal (BCD) addition. depending on whether the Decimal Mode status is 0 or 
1. 
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AND - AND MEMORY WITH ACCUMULATOR 
This instruction logically ANDs the contents of a memory location with the contents of 
the Accumulator. This instruction offers the same memory addressing options as the 
ADC instruction. The first byte of object code selects the' addressing mode as follows: 

Bit Value 
for aaa 

000 
001 
010 
011 

7 6 5 4 3 2 1 0 ........--B;( Number' 

10 10 (1 I a I a I a I 011 14--Object Code 

Hexadecimal Addressing Mode 
Object Code 

21 Indirect. pre-indexed with X 
25 Zero page (directl 
29 Immediate 
20 Absolute (directl 

Number 
of Bytes 

2 
2 
2 
3 

100 31 Indirect. post-indexed with Y 2 
101 35 Zero page indexed with X 2 
110 39 Absolute indexed with Y 3 
111 3D Absolute indexed with X 3 

We will illustrate the AND instruction with zero page (directl addressing. See the dis
cussion of addressing methods and other arithmetic and logical instructions for exam
ples of the other addressing modes. 

Data 
SVBDIZC Memory 

PiX! I I I Ixl I 
VV OOqq 

A xx 
X 
y Program 

SP Memory 

PC mm 

25 mmmm 
qq mmmm+ 1 

mmmm + 2 

Logically AND the contents of the selected memory byte with the Accumulator and 
store the result in the Accumulator. Suppose xx = FC16 and yy = 1316. After the in
struction 

AND $40 

(assuming that yy is in memory location 0040). the Accumulator will contain 1016: 

FC 1 1 11 1 100 
13 = 00010011 

00010000 

o in bit 7 sets S to O~ LNonzero result sets Z to 0 

AND is a frequently used logical instruction. 
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ASL - SHIFT ACCUMULATOR OR MEMORY BYTE LEFT 
Perform a one-bit arithmetic left shift of the contents of the Accumulator or the con
tents of the selected memory byte. 

First. consider shifting the Accumulator: 

0 

y 

SP 
PC 

Suppose that the Accumulator contains 7A16. Performing an 

ASL A 

Data 

~ 
Program 

Memory 

OA mmmm 
mmmm + 1 

instruction will set the Carry status to 0, the Sign status to 1, the Zero status to 0, and 
will store F416 in the Accumulator. 

Carry Accumulator 

X-01111010-0 
o 1 11 10100 

Sets S to 1 ~ LNonzero result sets Z to 0 

The ASL instruction uses four data memory addressing options: 

1) Zero page (direct) - ASL addr 

2) Absolute (direct) - ASL addr16 

3) Zero page indexed with Index Register X - ASL addr,X 

4) Absolute indexed with Index Register X - ASL addr16,X 

The first byte of object code determines which addressing mode is selected as follows: 

7 6 5 4 3 2 1 0'--8" Numbe' 
\010101 blblll110~ObjeC' Code 
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Bit Value Hexadecimal 
Addressing Mode 

Number 
for bb Object Code of Bytes 

00 06 Zero page (direct! 2 
01 OE Absolute (directl 3 
10 16 Zero page indexed with X 2 
11 1E Absolute indexed with X 3 

We will show the ASL instruction with absolute (direct! addressing. The other addres
sing modes are shown in other instruction descriptions. 

Data 

pix! ! ! ! !xIx~ __ 
. --------_____ - HffFF! ppqq 

s V B D I Z C 1 Memory fO 

Program 

Memory 

DE mmmm 

qq mmmm + 1 

pp mmmm + 2 

1-__ -1 mmmm + 3 

Suppose ppqq = 3F8616 and the contents of ppqq are CB16. After executing an 

ASL $3F86 

instruction. the contents of location 3F8616 will be altered to 9616 and Carry will be 
set to 1: 

Carry (3F8616) 

X-11001011-0 
1 100101 10 

Sets S to 1.-J LNonzero result sets Z to 0 

The ASL instruction is often used in multiplication routines and as a standard logical in
struction. Note that a single ASL instruction multiplies its operand by 2. 
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BCC - BRANCH IF CARRY CLEAR IC = 0) 
This instruction is a branch with relative addressing in which the branch is only ex
ecuted if the Carry status equals 0; otherwise. the next instruction is executed. 

In the following instruction sequence: 

BCC 
'-v-' 

90 

~---~C NEXT 
C = 1 

A D #$7F 

~-E*'F---ADC $40 

the ADC $40 instruction is executed right after the BCC instruction if the Carry status 
equals O. The AND #$7F instruction is executed if the Carry status equals 1. The rela
tive addressing operates as shown in the next illustration and as shown in the discus
sion of addressing methods presented earlier. No statuses and no registers - except 
the Program Counter - are affected. 

SVBDIZC 

P I I I I I I I I 

At----i 
xt----t 
yt----I 

PScP~-m-m-~~m~m~~ 
~----~------~ 

Data 

Program 

Memory 

90 mmmm 
- __ ...t-':;---1 mmmm + 1 

t---; mmmm + 2 

Hmmmm+ro 

If the Carry is zero. this instruction adds the contents of the second object code byte 
(taken as a signed 8-bit displacementl to the contents of the Program Counter plus 2; 
this becomes the memory address for the next instruction to be executed. The previous 
contents of the Program Counter are lost. 
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BCS - BRANCH IF CARRY SET (C = 1) 
This instruction operates like the BCC instruction except that the branch is only ex
ecuted if the Carry status equals 1: otherwise. the next instruction is executed. 

BCS 
-.,-" 

BO 
In the following instruction sequence: 

C =1 
~----!;~S NEXT 

C =0 
A D #$7F 

I. 

""'Mf*F-~ADC $40 

the ADC $40 instruction is executed right after the BCS instruction if the Carry status 
equals 1. The AND #$7F instruction is executed if the Carry status equals O. 

BEQ - BRANCH IF EQUAL TO ZERO (Z = 1) 
This instruction is just like the BCC instruction except that the branch is executed if the 
Zero status equals 1: otherwise. the next instruction is executed. 

In the following sequence: 

Z = 1 

BEQ 
-.,-" 

FO 

___ ---eaQ NEXT 
Z =0 

A D #$7F 

"""I\i!3H'--"ADC $40 

the ADC $40 instruction is executed right after the BEQ instruction if the Zero status 
equals 1. The AND #$7F instruction is executed if the Zero status equals O. 
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BIT - BIT TEST 
This instruction logically ANDs the contents of the Accumulator with the contents of a 
selected memory location. sets the condition flags accordingly. but does not alter the 
contents of the Accumulator or memory byte. The only addressing modes allowed are 
absolute (directl and zero page (directl. The first byte of object code determines the ad
dressing mode as follows: 

Bit Value 
for x 

0 
1 

7 6 54 32 1 0 ~BitNo. 

,01011 I olx I 1 I OIOJ:.-Obiect Code 

Hexadecimal 
Addressing Mode 

Object Code 

24 Zero page (directl 
2C Absolute (direct) 

Number 
of Bytes 

2 
3 

We will illustrate the BIT instruction using absolute (direct) addressing. For the zero 
page mode. see the AND instruction and the discussion of addressing modes. We 
should note that BIT has a rather unusual effect on the status flags. since it sets the Z 
flag according to the result of the logical AND operation but sets the S and V flags ac
cording to bits 7 and 6 of the contents of the memory location being tested; that is. 

Z = 1 if A A (M) = 0; Z = 0 if A A (M) ;1:0 

S = bit 7 of (M) 

V = bit 6 of (M) 

SVBDIZC 

PI?!s1 I I Ixl I 

A xx 

X 
y 

SP 

PC mm mm 
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Data 
Memory 

yy ppqq 

Program 

Memory 

2C mmmm 
qq mmmm + 1 

pp mmmm + 2 
mmmm + 3 



Logically AND the contents of the Accumulator with the contents of the specified 
memory location and set the Zero condition flag accordingly. Set the Sign and Overflow 
condition flags according to bits 7 and 6. respectively. of the selected memory location. 
Suppose xx = A616. yy = E016. and ppqq = 164116. After the instruction 

BIT $1641 

has executed. the Accumulator will still contain A616. and location 164116 will still 
contain E016. but the statuses will be modified as follows: 

A6 = 1 0 1 0 0 1 1 0 

EOJ-1 1 1 0 0 0 0 0 
10100000 

Sets S to 1 L Set V to 1 

Nonzero resu It sets Z to 0 

BIT instructions frequently precede conditional Branch instructions. BIT instructions are 
also used to perform masking functions on data. 
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BMI- BRANCH IF MINUS (S = 1) 
BMI 

'-v-' 
30 

This instruction works like the BCC instruction except that the branch is executed only 
if the Sign status is 1; otherwise. the next instruction is executed. 

In the following instruction sequence: 

S = 1 
_---~I NEXT 

S =0 
A D #$7F 

","-'I'---ADC $40 

the ADC $40 instruction is executed right after the BMI instruction if the Sign status is 
1. The AND #$7F instruction is executed if the Sign status is O. 

BNE - BRANCH IF NOT EQUAL TO ZERO (Z = 0) 
BNE 

'-v-' 
DO 

This instruction is identical to the BCC instruction except that the branch is executed 
only if the Zero status is 0; otherwise. the next instruction in sequence is executed. 

In the following instruction sequence: 

Z=O 
_----BlE NEXT 

Z = 1 
A D #$7F 

.........,~T--ADC $40 

the ADC $40 instruction is executed right after the BNE instruction if the Zero status is 
O. The AND #$7F instruction is executed if the Zero status is 1. 
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BPL - BRANCH IF PLUS (S = 0) 
BPL 

'--r-' 
10 

This instruction operates like the BCC instruction except that the branch is executed 
only if the Sign status is 0; otherwise, the next instruction in sequence is executed. 

In the following instruction sequence: 

S =0 
._-----f'HfL NEXT 

S = 1 
A D #$7F 

--N~'----ADC $40 

the ADC $40 instruction is executed right after the BPL instruction if the Sign status is 
O. The AND #$7F instruction is executed if the Sign status is 1. 
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BRK - FORCE BREAK (TRAP OR SOFTWARE INTERRUPT) 
BRK 

'-v-' 
00 

The Program Counter is incremented by two and the Break status is set to 1, then the 
Program Counter and Status (P) register are pushed onto the Stack, The registers and 
the corresponding memory locations into which they are pushed are as follows: 

Me m 0 ry Location Register 
(Stack Pointer contains ss at start of instruction execution.) 

01 ss High byte of Program Counter 
01 ss - 1 Low byte of Program Counter 
01 ss - 2 Status (P) register with B = 1 

(Stack Pointer contains ss - 3 at end of instruction execution.) 

The Interrupt Mask bit is then set to 1. This disables the 6502's interrupt service ability, 
i.e., the processor will not respond to an interrupt from a peripheral device. The con
tents of the Interrupt Pointer (memory addresses FFFE16 and FFFF16) are then loaded 
into the Program Counter 

The BRK instruction can be used for a variety of functions. It can provide a breakpoint 
facility for debugging purposes or it can transfer control to a particularly important soft
ware system such as a disk operating system or a monitor. Note that the programmer 
must insert the code required to tell a BRK instruction from a regular interrupt response, 
The coding to do this checks the value of the B status flag in the Stack as follows: 

PLA ;GET STATUS REGISTER 
PHA ;BUT ALSO LEAVE IT ON STACK 
AND #$10 ;IS BREAK STATUS SET? 
BNE BRKP ;YES, GO PROCESS BREAK 

Note that the operation code for BRK is 00, This choice of operation code means that 
BRK can 'be used to patch programs in fusible-link PROMs since blowing all the fuses 
makes the contents of the word 00. Thus an erroneous instruction can be corrected by 
changing the first object code byte to 00 and inserting a patch via the interrupt vector 
routine. Remember that a bit in a fusible-link PROM can be set tei zero (by blowing the 
fuse) but cannot be reset to one after the fuse has been blown, Such PROMs are not 
erasable, 

The operation of the BRK instruction may be illustrated as follows: 

;~---t 

y t---:---t.~ 
sPt-~ss~-f~ ____ ~ 
pc~ ____ ~ ____ ~~ 

Islvl Iqplllzlcl 
Data 
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Memory 

01 ss - 2 
~--~ll--m--m-+~2-t01SS - 1 

mm 0155 

Program 

Memory 

00 mmmm 

t-----I 
mmmm + 1 

qq FFFE 

PP FFFF 



The final contents of the Program Counter are ppqq where pp represents the contents 
of the memory location FFFF16 and qq the contents of memory location FFFE16. Note 
that the Stack is always on page 1 of memory; i.e .. the eight most significant bits of the 
Stack address are always 0116. 
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BVC - BRANCH IF OVERFLOW CLEAR (V = 0) 
BVC 

'-v-' 
50 

This instruction operates like the BCC instruction except that the branch is executed 
only if the Overflow status is 0; otherwise, the next instruction in sequence is executed. 

I n the following instruction sequence: 

V =0 
._-----IlI'VC NEXT 

V = 1 
A D #$7F 

'""Nl,,;q:~ ... ADC $40 

the ADC $40 instruction is executed right after the BVC instruction if the Overflow 
status is O. The AND #$7F instruction is executed if the Overflow status is 1. 

BVS - BRANCH IF OVERFLOW SET (V = 1) 
BVS 

'-v-' 
70 

This instruction is just like the BCC instruction except that the branch is executed only 
if the Overflow status is 1; otherwise. the next instruction in sequence is executed. 

In the following instruction sequence: 

V = 1 
_---w.rS NEXT 

V =0 
A D #$7F 

~IH--ADC $40 

the ADC $40 instruction is executed right after the BVS instruction if the Overflow 
status equals 1. The AND #$7F instruction is executed if the Overflow status equals O. 
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CLC - CLEAR CARRY 
CLC 
-v-' 

18 

Clear the Carry status. No other status or register's contents are affected. Note that this 
instruction is required as part of a normal addition operation since the only addition in
struction available on the 6502 microprocessor is ADC, which also adds in the Carry 
status. This instruction is also required at the start of a multi-byte addition since there is 
never a carry into the least significant byte. 

5 V B 0 I Z C 

pi I I I I I '01 

J:I==m=m=: __ m_m __ ~~mmm+~ 
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Data 

Program 

Memory 

18 mmmm 
mmmm+ 1 

t----t 



CLD - CLEAR DECIMAL MODE 
CLD 

-.,..-' 

08 

Clear the Decimal Mode status. No other status or register's contents are affected. This 
instruction is used to return the 6502 processor to the binary mode in which ADC and 
SBC instructions produce binary rather than BCD results. This instruction may be used 
to ensure that the mode is binary in situations where it may be uncertain whether the 
Decimal Mode status has been set or cleared most recently. 

SVBDIZC 

P I I I 101 I I I 

mm 
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Data 

Program 

Memory 

08 mmmm 

1----4 mmmm + 1 



CLI - CLEAR INTERRUPT MASK (ENABLE INTERRUPTS) 
CLI 

'-v-' 

58 

Clear the interrupt mask bit in the Status (P) register. This instruction enables the 
6502's interrupt service ability, i.e., the 6502 will respond to the Interrupt Request con
trolline. No other registers or statuses are affected. Note that the I bit is a mask or disa
ble bit. It must be cleared to enable interrupts and set to disable them. 

SVBDIZC 

pi , I I 101 I I 

mm ~mmm+~ 
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Data 

Program 

Memory 

58 mmmm 

~ __ -I mmmm + 1 



CL V - CLEAR OVERFLOW 
CLV 

"'-v-' 
88 

Clear the overflow bit in the Status register. No other registers or statuses are affected. 
Note that the 6502 has no SET OVERFLOW instruction. 

SVBDIZC 

P I 101 I I I I I 
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Data 

Program 

Memory 

B8 mmmm 

..-----f mmmm + 1 



CMP - COMPARE MEMORY WITH ACCUMULATOR 
This instruction subtracts the contents of a selected memory byte from the Accumula
tor. sets the condition flags accordingly. but does not alter the contents of the Ac
cumulator or memory byte. This instruction offers the same memory addressing options 
as the AOC instruction. The first byte of object code selects the addressing mode as 
follows: 

Bit Value 
for aaa 

000 
001 
010 
011 
100 
101 
110 
111 

7 6 5 4 3 2 1 0...-8;1 Number 

11 I 1 1 01 _I _ 1 -1011 J,.-obJeCI Code 

Hexadecimal 
Addressing Mode 

Object Code 

C1 Indirect. pre-indexed with X 
C5 Zero page (directl 
C9 Immediate 
CO Absolute (directl 
01 Indirect. post-indexed with Y 
05 Zero page indexed with X 
09 Absolute indexed with Y 
00 Absolute indexed with X 

Number 
of Bytes 

2 
2 
2 
3 
2 
2 
3 
3 

We will illustrate the CMP instruction with pre-indexed indirect addressing (using Index 
Register X). See the discussions of addressing methods and other instructions for exam
ples of the other addressing modes 

Data 

S V 8 0 J Z C Memory 

P I xl I I I IXlx! qq OOrr + cc 
pp OOrr + cc + 1 

yy ppqq 

A xx 
X rr 
y Program 

SP Memory 

PC mm 
Cl mmmm 

cc mmmm+ 1 

mmmm + 2 

Subtract the contents of the selected memory byte from the contents of the Accumula
tor and set the Sign. Zero. and Carry statuses to reflect the result of the subtraction. 
Suppose xx=FF16. yy=1816. rr=2016. cc=2316. (004316)=6016. and 
(004416) = 1516. Note that 0043 = rr + cc and we have assumed that 
(156016) =yy= 1816· 
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After the instruction 

CMP ($23.X) 

has been executed. the Accumulator will still contain F616. and memory location 
156016 will still contain 1816. but the statuses will be modified as follows: 

F6 111 101 10 
Twos complement of 18 = 1 1 101000 

1 101 1 1 10 

s,,' C " ': II LN""" ffiW" >ow Z ,,0 

Sets S to 1 

Note that C is equal to the resulting carry. not to its complement as is true on many 
other microprocessors. Thus C = 0 if a borrow is required and C = 1 if no borrow is 
necessary. 

Compare instructions are most frequently used to set statuses before the execution of 
Branch-on-Condition instructions 
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CPX - COMPARE INDEX REGISTER X WITH MEMORY .. 
This instruction is the same as CMP except that the memory byte is subtracted from In-
dex Register X instead of the Accumulator. The only addressing modes allowed are im
mediate. zero page (direct). and absolute (direct}. The first byte of object code selects 
the addressing mode as follows: 

7 6 5 4 3 2 1 0 "'-8.1 Number 

11 11 1110 I c I c I 0 I 0 t.--0biecI Code 

Bit Value Hexadecimal 
Addressing Mode 

Number 
for cc Object Code of Bytes 

00 EO Immediate 2 
01 E4 Zero page (direct) 2 
10 Used for INX instruction 
11 EC Absolute (direct) 3 

We will illustrate the CPX instruction with immediate addressing. See the discussion of 
addressing methods and other arithmetic and logical instructions for examples of the 
other addressing modes. 

SV8DIZC 

Pixi I I I I xix 1 

~l===l-~""------
yJ-----f 
sP~ ____ ~ ______ ~~7 
Pc~_m_m __ ~ ______ ~~ 

Data 

Program 

Memory 

-.......JI-_E::..:O:.-~ mmmm 
YV mmmm + 1 

I-__ -tmmmm + 2 

Subtract the contents of the selected memory byte from the contents of Index Register 
X. The Sign. Zero. and Carry statuses reflect the result of the subtraction in the same 
way as shown for the CMP instruction. 
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CPY - COMPARE INDEX REGISTER Y WITH MEMORY 
This instruction is the same as CMP except that the memory byte is subtracted from In
dex Register Y instead of the Accumulator. The only addressing modes allowed are im
mediate. zero page (direct). and absolute (direct). The first byte of object code selects 
the addressing mode as follows: 

Bit Value 
for cc 

00 
01 

7 6 5 4 3 2 1 0 ",,-Bit Number 

I 1 I 1 10101 c I c I 010 (.-object Code 

Hexadecimal 
Addressing Mode 

Object Code 

CO Immediate 
C4 Zero page (direct) 

Number 
of Bytes 

2 
2 

10 Used for INY instruction 
11 CC Absolute (direct) 3 

We will illustrate the CPY instruction with zero page (direct) addressing. See the discus
sion of addressing methods and other arithmetic and logical instructions for examples 
of the other addressing modes. 

SVBOIZC 

p Ix! ! ! ! !X!X! 

At----I 
x 
yt--rr--L-

spt-____ ~----~~~ 
PC mm mm 

Data 
Memory 

vv OOqq 

Program 

Memory 

C4 mmmm 

qq mmmm + 1 

t-------t mmmm + 2 

Su btract the contents of the selected memory byte from the contents of I ndex Register 
Y. The Sign. Zero. and Carry statuses reflect the result of the subtraction in the same 
way as shown for the CMP instruction. 
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DEC - DECREMENT MEMORY (BY 1) 
This instruction decrements by 1 the contents of a selected memory location. The DEC 
instruction uses four data memory addressing options: 

1) Zero page (direct)- DEC addr 

2) Absolute (direct) - DEC addr16 

3) Zero page indexed with Index Register X - DEC addr.X 

4) Absolute indexed with Index Register X - DEC addr16.X 

The first byte of object code determines which addressing mode is selected as follows: 

7 6 5 4 3 2 1 0 ...-B,I Number 'I 11 I 0 I bib 11 11 I 0 !..-objeCI Code 

Bit Value Hexadecimal Addressing Mode 
Number 

for bb Object Code of Bytes 

00 C6 Zero page (direct) 2 
01 CE Absolute (direct) 3 
10 D6 Zero page indexed with X 2 
11 DE Absolute indexed with X 3 

We will illustrate the DEC instruction with absolute indexed addressing. The other ad
dressing modes are shown elsewhere. 

Data 
S V B D 1 Z C Memory 

plxl I I I Ixl I 
vv ppqq + rr 

A 

X rr 
y Program 

SP Memorv 

PC mm 

DE mmmm 
qq mmmm+ 1 
pp mmmm + 2 

mmmm + 3 

Decrement the contents of the specified memory byte. 

If yy = A516. ppqq = 010016. and rr = OA 16. then after execution of the instruction 

DEC $0100.X 

the contents of memory location 010A16 will be altered to A416. 

A5 10100101 
Ones complement of 1 = 1 1 1 1 1 1 1 1 

10100100 

Carry is not alteredJ L Nonzero result sets Z to 0 

Sets S to 1 Overflow (V) is not altered 
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DEX - DECREMENT INDEX REGISTER X (BY 1) 
This instruction decrements by 1 the contents of Index Register X. The Zero and Sign 
statuses are affected. 

DEX 
'-v-' 

CA 

The effects of this instruction are the same as those of DEC except that the contents of 
Index Register X are decremented rather than the contents of a memory location. 

SVBDIZC 

pI xl I I I Ixl I 

:t=~r~r::~~~~----~ 
y -------~ sP~ ____ ~ ______ ~ 

PCL-_m __ m __ ~_m~m __ ~1L 
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Data 

Program 

Memory 

CA mmmm 

J-----~ mmmm + 1 



DEY - DECREMENT INDEX REGISTER Y (BY 1) 
This instruction decrements by 1 the contents of Index Register Y. The Zero and Sign 
statuses are affected just as they are by DEC and DEX. 

SVBOIZC 

plxl I I I Ixl I 

A 
xt----I 

Y rr 
spt----"--r-

pcL-____ ~ __ m_m __ ~ __ ~ 

DEY ---88 
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Data 

Program 

Memory 

88 mmmm 

~ __ -Immmm + 1 



EOR - EXCLUSIVE-OR ACCUMULATOR WITH MEMORY 
Exclusive-OR the contents of the Accumulator with the contents of a selected memory 
byte. This instruction offers the same memory addressing options as the AOC instruc
tion. The first byte of object code selects the addressing mode as follows: 

Bit Value 
for aaa 

000 
001 
010 
011 
100 
101 
110 
111 

7 6 5 4 3 2 1 0 ~B" Number 

1011 101 a I a I a I 011 t.-ObleCI Code 

Hexadecimal 
Addressing Mode 

Object Code 

41 Indirect. pre-indexed with X 
45 Zero page (direct) 
49 Immediate 
40 Absolute (direct) 
51 Indirect. post-indexed with Y 
55 Zero page indexed with X 
59 Absolute indexed with Y 
50 Absolute indexed with X 

Number 
of Bytes 

2 
2 
2 
3 
2 
2 
3 
3 

We will illustrate the EOR instruction with post-indexed indirect addressing (using In
dex Register V). See the discussion of addressing methods and other arithmetic and 
logical instructions for examples of the other addressing modes. 

Data 
SV8DIZC 

p Ixl I I I I xl I OOcc 
aGce + 1 

PPQQ + rr 

A 

X 
Y Program 

SP Memory 

PC mm mm 

51 mmmm 

cc mmmm + 1 

mmmm + 2 
mmmm + 3 
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Logically Exclusive-OR the contents of the Accumulator with the contents of the 
selected memory location. treating both operands as simple binary data. Suppose that 
xx = E316 and yy = A016. After the instruction 

EOR ($40.Y) 

has executed. the Accumulator will contain 4316. We assume also that rr = 1016, 
qq = (4016) = 1E16, pp = (4116) = 2516, and (251E16) = yy = A016 

E3 1 1 10001 1 
AO = 1 0 1 0 0 0 0 0 

01000011 

o sets S to 0 ~ LNonzero result sets Z to 0 

EOR is used to test for changes in bit status. Note also that the instruction EOR #$FF 
complements the contents of the Accumulator. changing each '1' bit to a '0' and each 
'0' bit to a T. 
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INC -INCREMENT MEMORY (BY 1) 
This instruction increments by 1 the contents of a selected memory location. The INC 
instruction uses four data memory addressing options: 

1) Zero page (direct) -INC addr 

2) Absolute (direct) -INC addr16 

3) Zero page indexed with Index Register X -INC addr.X 

4) Absolute indexed with I ndex Register X -INC addr16.X 

The first byte of object code determines which addressing mode is selected as follows: 

Bit Value 
for bb 

00 
01 
10 
11 

7 6 5 4 3 2 1 0 ...--811 Number 

1111111 bi bi 11 qot.--Oblect Code 

Hexadecimal 
Addressing Mode Object Code 

E6 Zero page (direct) 
EE Absolute (direct) 
F6 Zero page indexed with X 
FE Absolute indexed with X 

Number 
of Bytes 

2 
3 
2 
3 

We will illustrate the INC instruction with absolute (direct) addressing. The other ad
dressing modes are shown elsewhere. 

SVBDIZC 

p Ixl I I I Ix I ! 
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Data 
Memory 

yy ppqq 

Program 

Memory 

EE 
Qq mmmm + , 

pp mmmm + 2 
mmmm + 3 .----4 



Increment the selected memory byte. 

If pp = 0116. qq = A216. and yy = C016. then after executing an: 

INC $01A2 

instruction. the contents of memory location 01A216 will be incremented to C116. 

CO 1 1000000 
1 = 00000001 

11000001 

Sets S to 1 .-J LNonzero result sets Z to 0 

Carry and Overflow are not 
altered 

The INC instruction can be used to provide a counter in a variety of applications such as 
counting the occurrences of an event or specifying the number of times a task is to be 
performed. 
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INX -INCREMENT INDEX REGISTER X (BY 1) 

This instruction increments by 1 the contents of Index Register X. The Zero and Sign 
statuses are affected just as by the INC instruction. 

SVBDIZC 

P I xl I I I I xl I 

A 

xr-~-1~~~-----' 
y 

spl---~ 

PC ""--_-""' __ ...Jt« ... 

INC --....
E8 

Data 

Program 

Memory 

E8 mmmm 

II-__ ~ mrnmm + 1 

Add 1 to the contents of Index Register X and set the Zero and Sign flags according to 
the result. Suppose that Index Register X contains 7A16. After the instruction 

INX 

has executed. Index Register X will contain 7816. the Zero status will be cleared since 
the result is nonzero. and the Sign status will be cleared since the result has 0 in its 
most Significant bit. 
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INY - INCREMENT INDEX REGISTER Y (BY 1) 
This instruction increments by 1 the contents of Index Register Y. The Zero and Sign 
statuses are affected just as by the INC instruction. 

SVBDIZC 

p [xl I I I I X I I 

A"-__ -i 

INY 
"-v-' 

C8 

x~ ____ L-~~----~ 

y --------~ sP..-__ -+ ______ ~~ 
PcL-____ ~ ____ ~~ 

Data 

Program 

Memory 

C8 mmmm 

t----t 
mmmm + 1 

Add 1 to the contents of Index Register Y and set the Zero and Sign flags according to 
the result. Suppose that Index Register Y contains OC16. After the instruction INY has 
executed. Index Register Y will contain 0016. the Zero status will be cleared since the 
result is nonzero. and the Sign status will be cleared since the result has 0 in its most 
significant bit. 
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JMP - JUMP VIA ABSOLUTE OR INDIRECT ADDRESSING 
This instruction will be illustrated using indirect addressing. Note that it is the only in
struction that has the true indirect addressing mode. The first byte of object code deter
mines the addressing mode as follows: 

7 6 5 4 3 2 I 0 .....--B,t Number 

101 I I y 101 I I I 1010 t.--0biect Code 

Bit Value Hexadecimal 
for y Object Code 

0 4C 
1 6C 

s V B 0 1 Z C 

pi I I I I I I I 

A,-__ ~ 
x~ __ ~ 
Y,---~ 
SP~ __ ~ ____ -, 
PC mm mm 

Addressing Mode 

Absolute (direct) 
Indirect 

Number 
of Bytes 

Data 

~
emory 

qq ccdd 
pp ccdd+l 

Program 

Memory 

6C mmmm 

3 
3 

dd mmmm + 1 

cc mmmm + 2 

Jump to the instruction specified by the operand by loading the address from the 
selected memory bytes into the Program Counter. 

In the following instruction sequence: 

CLC 
LDA 
ADC 
STA 
LDA 
ADC 
STA 
JMP 

#BASEL 
INDXL 
JADDR 
#BASEU 
INDXU 
JADDR+1 

:CALCULATE LSB'S OF DESTINATION ADDRESS 

:CALCULATE MSB'S OF DESTINATION ADDRESS 

(JADDR) :TRANSFER CONTROL TO DESTINATION 

The JMP instruction will perform an indexed jump relative to the 16-bit address con
sisting of BASEU (8 MSBs) and BASEL (8 LSBs). The index here is assumed to be 16 bits 
long and to be initially stored at addresses INDXL (8 LSBs) and INDXU (8 MSBs). The ad
dresses following the start of the table could then contain absolute JMP instructions 
that transfer control to the proper routines. 

JMP will not work properly if the indirect address crosses a page boundary - that is, if 
dd = FF16 in the illustration above. The discussion of indirect addressing earlier in this 
chapter discusses this peculiarity in more detail. 

The JMP instruction can also use the absolute (direct) addressing mode. In this case, 
the second byte of the instruction is loaded into the low byte of the Program Counter, 
and the third byte of the instruction is loaded into the high byte of the Program 
Counter. Instruction execution continues from this address. 
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JSR - JUMP TO SUBROUTINE 
This instruction pushes the Program Counter onto the Stack and then transfers control 
to the specified instruction. Only absolute (direct) addressing is allowed. Note that the 
Stack Pointer is decremented after the storage of each data byte and that the Program 
Counter value that is saved is the address of the last (third) byte of the JSR instruc
tion: i.e .. the initial program counter value plus 2. Remember also that the Stack grows 
down in memory and that the most significant half of the Program Counter is stored 
first and thus ends up at the higher address (in the usual 6502 address form!' 

Data 
5 v B 0 1 Z C Memory 

PI I I I I I I i 01ss - 2 
mm + 2 01ss - 1 

mm O1ss 

A 

X 

Y 
Program 

SP ss Memory 

PC mm 
20 mmmm 

qq mmmm + 1 
pp mmmm + 2 

The Program Counter is incremented by 2 and then is pushed onto the Stack. The Stack 
Pointer is adjusted to point to the next empty location in the Stack. The address part of 
the instruction is then stored in the Program Counter and execution continues from that 
point. 

Assume that mmmm = E34F16 and that ss = E316. Then after the execution of the in
struction 

JSR $El00 

the Program Counter will contain El 0016. the Stack Pointer will contain El16. and the 
Stack locations will be as follows: 

(Olss) = (01E3) = PC(HI) = E3 

(01 ss - 1) = (01 E2) = PC(lO) = 5116 

The next instruction to be executed will be the one at memory address E10016. 
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LOA - LOAD ACCUMULATOR FROM MEMORY 
Load the contents of the selected memory byte into the Accumulator. This instruction 
offers the same memory addressing options as the AOC instruction and will be illus
trated using zero-page indexed addressing with Index Register X. See the discussion of 
addressing methods and other arithmetic and logical instructions for examples of the 
other addressing modes. The first byte of object code selects the addressing mode as 
follows: 

Bit Value 
for aaa 

000 
001 
010 
011 
100 
101 
110 
111 

7 6 5 4 J 2 1 a -4--6,\ Number 

111011 IaI a I a loll ~ObleC\ Code 

Hexadecimal 
Addressing Mode 

Object Code 

A1 Indirect. pre-indexed with X 
A5 Zero page (direct) 
A9 Immediate 
AO Absolute (direct) 
B1 Indirect. post-indexed with Y 
B5 Zero page indexed with X 
B9 Absolute indexed with Y 
BO Absolute indexed with X 

SVBDllC 

Data 
Memory 

Number 
of Bytes 

2 
2 
2 
3 
2 
2 
3 
3 

pi xl I I I Ixl I 
--~ft=~YY~joorr + cc 

A yy 

X rr 
Program 

SP Memory 

PC mm mm 
65 mmmm 

cc mmmm +' 

Load the contents of the selected memory byte into the Accumulator. 

Suppose that Index Register X contains 1016 and cc =4316. If memory location 
005316 contains AA 16. then after 

LOA $43.X 

has executed. the Accumulator will contain AA16. 

AA = 1 0 1 0 1 0 1 0 

1 sets S to 1 ~ LNonzero result sets Z to 0 
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LDX - LOAD INDEX REGISTER X FROM MEMORY 
Load the contents of the selected memory byte into Index Register X. The addressing 
modes allowed are: 

1) Immediate - LOX data 

2) Absolute (direct) - LOX addr16 

3) Zero page (direct) - LOX addr 

4) Absolute indexed with Y - LOX addr16.Y 

5) Zero page indexed with Y - LOX addr.Y 

Note that there are no indexing modes with Index Register X. and there is no post-in
dexing. The first byte of object code selects the addressing mode as follows: 

Bit Value 
for ddd 

000 
001 
010 
011 
100 
101 
110 
111 

7 6 5 4 3 2 1 0 "'--6.1 Number 

11 I 011 I did I d 11 10 t.--ObleCl Code 

Hexadecimal 
Addressing Mode 

Object Code 

A2 Immediate 
A6 Zero page (direct) 
AA Used for TAX instruction 
AE Absolute (direct) 
B2 Not used 
B6 Zero page indexed with Y 
BA Used for TSX instruction 
BE Absolute indexed with Y 

Number 
of Bytes 

2 
2 

3 

2 

3 

We will illustrate the LOX instruction with absolute indexed addressing using Index 
Register Y. See the discussion of addressing methods and other arithmetic and logical 
instructions for examples of the other addressing modes. 

Data 

S V 6 0 I Z C Memory 

P 1 xl I I I Ixl I 
vv ppqq + rr 

A 

X VV 
Y rr Program 

SP Memory 

PC 
BE mmmm 

qq mmmm +' 
pp mmmm + 2 

mmmm + 3 
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Load the contents of the selected memory byte into Index Register X. Suppose that In
dex Register Y contains 2816, ppqq = 2E1A16, and yy = (2E4216) = 4F16, then after 
the execution of the instruction 

LDX $2E1A,Y 

Index Register X will contain 4F16· 

4F = 0 1 0 0 1 1 1 1 

o sets S to 0 ~ LNonzero result sets Z to 0 
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LDY - LOAD INDEX REGISTER Y FROM MEMORY 
Load the contents of the selected memory byte into Index Register Y. The addressing 
modes allowed are: 

1) Immediate - LOY data 

2) Absolute {direct} - LOY addr16 

3) Zero page {direct} - LOY addr 

4) Absolute indexed with X - LOY addr16.X 

5) Zero page indexed with X - LOY addr.X 

Note that there are no indexing modes with Index Register Y nor is there any pre-index
ing. 

The first byte of object code selects the addressing mode as follows: 

7 6 5 4 3 2 1 0 ~Bit Number 

11 I 011 I did I d I 0 I 0 t.--0bject Code 

Bit Value Hexadecimal Addressing Mode 
for ddd Object Code 

000 AO Immediate 
001 A4 Zero page (direct} 
010 A8 Used for TAY instruction 
011 AC Absolute (direct} 
100 BO Used for BCS instruction 
101 B4 Zero page indexed with X 
110 B8 Used for CLV instruction 
111 BC Absolute indexed with X 

Number 
of Bytes 

2 
2 

3 

2 

3 

We will illustrate the LOY instruction with immediate addressing. See the discussion of 
addressing methods and other arithmetic and logical instructions for examples of the 
other addressing modes. 

SVBDIZC 

pi xl I I I I xl I 

At----t 
xt-___ L_-

yy 

SPt-__ ~----~r-~ 
pc~ ____ ~ ____ _J~ 
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Data 

Program 

Memory 

AO 
yy 



Load the contents of the selected memory byte into Index Register Y. Suppose that 
yy = 0016. then after the execution of the instruction 

LDY #0 

Index Register Y will contain zero. 

00 = 0 0 0 0 0 0 0 0 

o sets S to O~ L zero result sets Z to 1 
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lSR -LOGICAL SHIFT RIGHT OF ACCUMULATOR OR MEMORY 
This instruction performs a one-bit logical right shift of the Accumulator or the selected 
memory byte. 

First. consider shifting the Accumulator. 

o 

y 

5pl----I 

pc~ ____ ~ ____ ~. 

LSR A 
"-v-' 

4A 
Data 

Program 

Memory 

4A mmmm 

t----I 
mmmm + 1 

Shift the contents of the Accumulator right one bit. Shift the low-order bit into the Car
ry status. Shift a zero into the high-order bit. 

Suppose the Accumulator contains 7A16 After the 

LSR A 

instruction is executed. the Accumulator will contain 3D16 and the Carry status will be 
set to zero. 

Accumulator Carry 

0-01111010-X 
001 1 1 101 0 

LSR always sets S to 0 ~ L Nonzero result sets Z to 0 

Four methods of addressing data memory are available with the LSR instruction: they 
are: 

1) Zero page (direct) - LSR addr 

2) Absolute (direct) - LSR addr16 

3) Zero page indexed with Index Register X - LSR addr.X 

4) Absolute indexed with Index Register X - LSR addr16.X 

The first byte of object code determines which addressing mode is selected as follows: 

7 6 5 4 3 2 1 0 ...--8,t Number 

I 0 I q 0 I bib I t! t! 0 t.----0bject Code 
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Bit Value Hexadecimal 
Addressing Mode 

Number 
for bb Object Code of Bytes 

00 46 Zero page (direct) 2 
01 4E Absolute (direct) 3 
10 56 Zero page indexed with X 2 
11 5E Absolute indexed with X 3 

We will illustrate the LSR instruction with absolute (direct) addressing. The other ad
dressing modes are shown elsewhere. 

SV8DIZC 

PS~C;~----~ ~ 
... ___ ...... _m_m--'~ 

Program 

Memory 

4E mmmm 

qq rnmmm + 1 

pp mmmm + 2 
mmmm + 3 

~-----t 

Logically shift the contents of the selected memory location right one bit. 

Suppose that ppqq = 04FA16 and the contents of memory location 04FA16 are 0016. 
After the instruction 

LSR $04FA 

has been executed. the Carry status will be 1 and the contents of memory location 
04FA16 will be 0616. 

(04FA 16) Carry 

0-00001101-X 
00000110 1 

LSR always sets S to o--.J L Nonzero result sets Z to 0 
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NOP - NO OPERATION 
NOP --EA 

This is a one-byte instruction which does nothing except increment the Program 
Counter. This instruction allows you to give a label to an object program byte. to fine 
tune a delay (each NOP instruction adds two clock cycles). and to replace instruction 
bytes that are no longer needed because of corrections or changes. Naps can also be 
used to replace instructions (such as JSRs) which you may not want to include in 
debugging runs. Nap is not very frequently used in finished programs. but it is often 
useful in debugging and testing. 

5 V B D I Z C 

p I I I I I I I I 

mm ~mmm+:> 
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Data 

Program 

Memory 

EA mmmm 

~ __ -fmmmm + , 



ORA-LOGICALLY OR MEMORY WITH ACCUMULATOR 
This instruction logically ORs the contents of a memory location with the contents of 
the Accumulator. This instruction offers the same memory addressing options as the 
ADC instruction. The first byte of object code selects the addressing mode as follows: 

Bit Value 
for aaa 

000 
001 
010 
011 
100 
101 
110 
111 

7 6 5 4 3 2 1 0 .-8;t Number 

10 I 0 I 0 I a I a I a I 0 1'l4----0bject Code 

Hexadecimal 
Addressing Mode Object Code 

01 Indirect. pre-indexed with X 
05 Zero page (direct) 
09 Immediate 
00 Absolute (direct) 
11 Indirect. post-indexed with Y 
15 Zero page indexed with X 
19 Absolute indexed with Y 
10 Absolute indexed with X 

Number 
of Bytes 

2 
2 
2 
3 
2 
2 
3 
3 

We will illustrate the ORA instruction using absolute indexed addressing with Index 
Register Y. See the discussion of addressing methods and other arithmetic and logical 
instructions for examples of the other addressing modes. 

Data 
S V 8 D I Z C Memory 

plxl I I I I xl I 
yy ppqq + rr 

A xx 

X 
y rr Program 

SP Memory 

PC mm 
19 mmmm 

{ qq mmmm + 1 
pp mmmm + 2 

Logically OR the contents of the Accumulator with the contents of the selected memory 
byte. treating both operands as simple binary data. 
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Suppose that ppqq = 162316, rr = 1016, xx = E316, and yy = AB16. After the execu
tion of the instruction 

the Accumulator will contain EB16. 

E3 
AB = 

ORA $1623,Y 

11100011 
10101011 

1 1 1 01 01 1 

Sets S to 1 ~ LNonzero result sets Z to 0 

This is a logical instruction; it is often used to turn bits "on", i.e .. make them '1's. For 
example, the instruction 

ORA #$80 

will unconditionally set the high-order bit in the Accumulator to 1. 
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PHA - PUSH ACCUMULATOR ONTO STACK 
This instruction stores the contents of the Accumulator on the top of the Stack. The 
Stack Pointer is then decremented by 1. No other registers or statuses are affected. 
Note that the Accumulator is stored in the Stack before the Stack Pointer is decre
mented. 

SVBDIZC 

P I I I I I I I I 

A xx 
X 
y 

sp 55 

PC 

PHA ---48 

Data 
Memory 

_------... J----::::--I 0155 - 1 
xx 01 ss 

Program 

Memory 

48 mmmm 

mmmm + 1 

Suppose that the Accumulator contains 3A16 and the Stack Pointer contains F716· 
After the instruction PHA has been executed. 3A16 will have been stored in memory 
location 01 F716 and the Stack Pointer will be altered to F616. 

The PHA instruction is most frequently used to save Accumulator contents before ser
vicing an interrupt or calling a subroutine. 
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PHP - PUSH STATUS REGISTER (PI ONTO STACK 
This instruction stores the contents of the Status (P) register on the top of the Stack. 
The Stack Pointer is then decremented by 1. No other registers or statuses are affected. 
Note that the Status register is stored in the Stack before the Stack Pointer is decre
mented. 

The organization of the status in memory is as follows: 

7 6 5 4 3 2 1 ° ..-B,t Number 

Islvl IBIDlllzlc~Registerp 

Bit 5 is not used and its value is arbitrary. 

SVBOIZC 

d I I III 

A 
xt----t 
y 

SP I---;:'ss:---t-~/ 

PC~ ____ ~ ______ ~~ 

PHP 
'-v-' 

08 
Data 

Memory 

1
°155 - 1 

~:::::~_ 0155 

I------t 

Program 

Memory 

08 mmmm 

t----t mmmm + 1 

The PHP instruction is generally used to save the contents of the Status register before 
calling a subroutine. Note that PHP is not necessary before servicing an interrupt since 
the interrupt response (to IRQ or NMI) and the BRK instruction automatically save the 
contents of the Status register at the top of the Stack. 
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PLA- PULL CONTENTS OF ACCUMULATOR FROM STACK 
This instruction increments the Stack Pointer by 1 and then loads the Accumulator 
from the top of the Stack. Note that the Stack Pointer is incremented before the Ac
cumu lator is loaded. 

SVBOIZC 

P Ix! I ! I I x I I 

A yy 
X 

Y 
SP ss 
PC 

PLA -.,-
68 

Data 

Memory 

01 ss 
-J--""'yy--I 01ss + 1 

Program 

Memory 

66 mmmm 

mmmm + 1 

Suppose the Stack Pointer contains F616 and memory location 01F716 contains CE16. 
After the instruction PLA has executed. the Accumulator will contain CE 16 and the 
Stack Pointer will contain F716. 

F7 = 1 1 1 1 0 1 1 1 

Set S to 1.-J LNonzero result sets Z to 0 

The PLA instruction is most frequently used to restore Accumulator contents that have 
been saved on the Stack: e.g .. after servicing an interrupt. or after completing a 
subroutine. 
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PLP - PULL CONTENTS OF STATUS REGISTER (P) FROM STACK 
This instruction increments the Stack Poinier by 1 and then loads the Status (P) register 
from the top of the Stack. No other registers are affected but all the statuses may be 
changed. Note that the Stack Pointer is incremented before the Status register is 
loaded. 

PLP 

-----28 

The organization of the status in memory is as follows: 

Bit 5 is not used. 

s V B 0 I Z C 

7 6 5 4 3 2 1 0 "",,-B., Number 

Islvl IB I OII!zlcl4-Regi5,er P 

Plxlxlxlxlxlxlx", 

A 

X 
Y 

SP 55 

PC mm mm 

Data 

Memory I 
I---i:::., 

Program 

Memory 

28 mmmm 
I-__ -Immmm + 1 

The PLP instruction is generally used to restore the contents of the Status register after 
completing a subroutine. Thus. it serves to balance the PHP instruction mentioned 
earlier. Note that PLP is not necessary after servicing an interrupt since the RTI instruc
tion automatically restores the contents of the Status register from the top of the Stack. 
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ROL - ROTATE ACCUMULATOR OR MEMORY LEFT THROUGH 
CARRY 

This instruction rotates the Accumulator or the selected memory byte one bit to the left 
through the Carry. 

First. consider rotating the Accumulator. 

X 
Y 

SP 
PC mm mm 

ROL A 
'-v-" 

2A 

Data 

~ 
Program 

Memory 

2A 

Rotate the Accumulator's contents left one bit through the Carry status. 

mmmm 

mmmm + 1 

Suppose the Accumulator contains 7A16 and the Carry status is set to 1. After the 

ROL A 

instruction is executed. the Accumulator will contain F516 and the Carry status will be 
reset to zero. 

Accumulator Carry 

01111010 1 
1 1 1 1 01 01 0 

Set S to 1 ~ L Nonzero result sets Z to zero 

The ROL instruction allows four methods of addressing data memory; they are: 

1) Zero page (direct) - ROL addr 

2) Absolute (direct) - ROL addr16 

3) Zero page indexed with Index Register X - ROL addr.X 

4) Absolute indexed with Index Register X - ROL addr16.X 

The first byte of object code determines which addressing mode is selected as follows: 

7 6 5 4 J 2 1 0 ~Bit Number 

1010111 bib 11111(J~obiect Code 
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Bit Value Hexadecimal 
Addressing Mode 

Number 
for bb Object Code of Bytes 

00 26 Zero page (direct) 2 
01 2E Absolute (direct) 3 
10 36 Zero page indexed with X 2 
11 3E Absolute indexed with X 3 

We will illustrate the ROL instruction with zero page indexed addressing (using Index 
Register X). The other addressing modes are shown elsewhere. 

SVBDIZC 

A~ __ ~~ __ ----__________ ~ 

X 
Y ~--~ Program 

SP Memory 

PC mm 

36 mmmm 

cc rnmmm + 1 

mmmm + 2 
~---f 

Rotate the selected memory byte left one bit through the Carry status. Suppose that 
cc = 3416, rr = 1616, the contents of memory location 004A16 are 2E16, and the Carry 
status is zero. After executing a 

ROL $34,X 

instruction, memory location 004A16 will contain 5C16. 

(004A16) Carry 

00101110 0 
01011100 0 

Set S to O~ LNonzero result sets Z to 0 
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ROR- ROTATE ACCUMULATOR OR MEMORY RIGHT, 
THROUGH CARRY 

This instruction rotates the Accumulator or the selected memory byte one bit to the 
right through the Carry. 

First consider rotating the Accumulator. 

5 V 9 D I 

x 
yt----i 

SP~~~~~~~~~ 
PC mm ...... _ ...... _--.. 

ROR A 
----.,-' 

6A 

Data 

Program 

Memory 

6A mmmm 

~---f mmmm + 1 

Rotate the Accumulator's contents right one bit through the Carry status. Suppose that 
the Accumu lator contains 7 A 16 and the Carry status is set to 1. Execution of the 

ROR A 

instruction will produce these results: the Accumulator will contain BD16 and the Car
ry status will be O. 

Accumulator Carry 

01111010 1 
101 1 1 101 0 

Set S to 1 ~ LNonzero result sets Z to 0 

The ROR instruction allows four methods of addressing data memory; they are: 

1) Zero page (direct) - ROR addr 

2) Absolute (direct) - ROL addr16 

3) Zero page indexed with Index Register X - ROR addr.X 

4) Absolute indexed with Index Register X - ROR addr16.X 

The first byte of object code determines which addressing mode is selected as follows: 

7 6 5 4 3 2 1 0 ....-9,t Number 

I 011 11 1 bib 11 11 lot.--Object Code 
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Bit Value Hexadecimal 
Addressing Mode 

Number 
for bb Object Code of Bytes 

00 66 Zero page (direct) 2 
01 6E Absolute (direct) 3 
10 76 Zero page indexed with X 2 
11 7E Absolute indexed with X 3 

We will illustrate the ROR instruction with absolute indexed addressing (using Index 
Register Xl. The other addressing modes are shown elsewhere. 

Data 
5 V B 0 I Z C Memory 

P X X X 

ppqq + rr 

A 
X rr 

V Program 

SP Memory 

PC mm mm 

7E mmmm 
qq mmmm+ 1 
pp mmmm + 2 

mmmm+3 

Suppose that rr = 1416. ppqq = 010016. the contents of memory location 011416 are 
ED16. and the Carry status is 1. After executing a: 

ROR $0100.X 

instruction. the Carry status will be 1 and memory location 011416 will contain F616. 

(011416) Carry 
11101101 1 
1 1 1 101 1 0 1 

Set S to 1--' LNonzero result sets Z to 0 
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RTI- RETURN FROM INTERRUPT 
Pull the Status (P) register and the Program Counter off the top of the Stack. The 
registers and the corresponding memory locations from which they are loaded are as 
follows. assuming that the Stack Pointer contains ss at the start of instruction execu
tion: 

Memory Location 

01ss+1 
01ss+2 
01ss+3 

Register 

Status (P) register 
Low byte of Program Counter 
High byte of Program Counter 

The final value of the Stack Pointer is its initial value plus 3. The old values of the Status 
register and Program Counter are lost. 

s V B 0 I Z e 
pxxxxxxx 

A 

X 
Y 

SP 55 
pe mm mm 

RTI ---40 

ISlvl 
Data 

IBlolllzlel Memory 

0155 

Olss + 1 
qq 0155 + 2 
pp 0155 + 3 

Program 

Memory 

40 mmmm 

Suppose that the Stack Pointer contains E816. memory location 01 E916 contains Cl16. 
memory location 01 EA16 contains 3E16. and memory location 01 EB16 contains D516· 
After the instruction RTI has been executed. the Status register will contain C 116. the 
Stack Pointer will contain EB 16. and the Program Counter will contain D53E 16 (this is 
the address from which instruction execution will proceed). The statuses will be as 
follows: 

sv BOlze 
Cl = Iq qololololollj 

Note that the Interrupt Mask bit will be set or reset depending on its value at the time 
the Status register was stored. assuming that the interrupt service routine did not 
change it while it was on the Stack. 
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RTS - RETURN FROM SUBROUTINE 
This instruction fetches a new Program Counter value from the top of the Stack and in
crements it before using it to fetch an instruction. Note that the Stack Pointer is incre
mented before the loading of each data byte and its final value is thus two greater than 
its initial value. RTS is normally used at the end of a subroutine to restore the return ad
dress that was saved in the Stack by a JSR instruction. Remember that the return ad
dress saved by JSR is actually the address of the third byte of the JSR instruction itself: 
hence. RTS must increment that address before using it to resume the main program. 
The previous contents of the Program Counter are lost. Every subroutine must contain 
at least one RTS instruction. 

5 V B 

pI I I I 

A 

X 

Y 

SP ss 
PC 

0 1 Z 

I I 
C 

I I 

RTS 
~ 

60 

No statuses are altered by an RTS instruction. 

Data 
Memory 

01 S5 

qq 01ss + 1 
pp 01ss + 2 

Program 

Memory 

.60 mmmm 

Suppose that the Stack Pointer contains DF16. memory location 01 E016 contains 
0816. and memory location 01 E116 contains 7C16. After the instruction RTS has been 
executed. the Stack Pointer will contain E116 and the Program Counter will contain 
7C0916 (this is the address from which instruction execution will proceedl. 
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SBC - SUBTRACT MEMORY FROM ACCUMULATOR WITH 
BORROW 

Subtract the contents of the selected memory byte and the complement of the Carry 
status (i.e .. 1 - C) from the contents of the Accumulator. This instruction offers the 
same memory addressing options as does the ADC instruction. The first byte of object 
code selects the addressing mode as follows: 

7 6 5 4 3 2 1 0 ~Bit Number 

11 11 11 I .1 .1.1011 J..-0bject Code 

Bit Value Hexadecimal Addressing Mode 
Number 

for aaa Object Code of Bytes 

000 El Indirect. pre-indexed with X 2 
001 E5 Zero page (direct) 2 
010 E9 Immediate 2 
all ED Absolute (direct} 3 
100 Fl Indirect. post-indexed with Y 2 
101 F5 Zero page indexed with X 2 
110 F9 Absolute indexed with Y 3 
111 FD Absolute indexed with X 3 

We will illustrate the SBC instruction using pre-indexed indirect addressing (via Index 
Register Xl. See the discussion of addressing methods and other arithmetic and logical 
instructions for examples of the other addressing modes. 

Data 

OOrr + cc 
...... ....:..::...--1 00" + cc + 1 

-..+----t--'-'----I ppqq 

A J-"::::'-f"'IIII'"--~ x ~ ________ ----~~~ 
y 
sp~---I 

pc~ ____ ~ __ ~~~_ 
mmmm 

...... --=-'---1 mmmm + 1 

mmmm + 2 
~---I 

Subtract the contents of the selected memory byte and the complement of the Carry 
status (1 - Cl. from the Accumulator. treating all register contents as Simple binary 
data. Note. however. that all data will be treated as decimal (BCD) if the D status is set. 
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Suppose that xx = 1416. cc = 1516. rr = 3716. ppqq = 07E216. yy = (07E216)= 3416. 
and C = 0, After executing a 

SBC ($15.X) 

instruction. the contents of the Accumulator would be altered to DF16, 

14=00010100 

Twos complement of 35 = 1 1 0 0 1 0 1 1 (see note below) 

1,1 0 1 1 1 1 1 

s:t Carry to O~' LNonzero result sets Z to 0 
Set S to 1· .... 

o -¥-O - O. set V to 0 

Note: xx - yy - (1 - C) = xx - (yy+C); 
hence. 1416 - 3416 - (1 - 0) = 1416 - (341E(+ 1) = 1416 - 3516 

Note that the resulting Carry is not a borrow, It is. rather. the inverse of a borrow since it 
is set to 1 if no borrow is required and cleared if a borrow is required. You should be 
careful of this usage since it differs from that of most other microprocessors. which 
complement the Carry before it is stored following a subtraction 

SBC is the only binary subtraction instruction, To use it in single-byte operations or to 
subtract the low-order bytes of two multibyte numbers. a previous instruction (SEC) 
must explicitly set C to 1 so that it does not affect the operation. Remember that C must 
be set (not cleared) before a subtraction since its meaning is inverted from the usual 
borrow, Note also that the 6502 microprocessor. unlike most others. has no subtraction 
instruction that does not include the Carry, 
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SEC - SET CARRY 
SEC --.--
38 

Set the Carry status to 1. No other status or register's contents are affected. Note that 
this instruction is required as part of a normal subtraction operation since the only 
subtraction instruction available on the 6502 microprocessor is SBC. which also 
subtracts the complemented Carry status. This instruction is also required at the start of 
a multi-byte subtraction since there is never a borrow from the least significant byte. 

SVBDIZC 

P( I I I I I In 

JI .... .-_-_-m=m=: __ .... ~mm +~ 

3-93 

Data 

Program 

Memory 

38 mmmm 

t-__ ~mmmm + 1 



SED - SET DECIMAL MODE 
SED --Fa 

Set the Decimal Mode status to 1. No other status or register's contents are affected. 
This instruction is used to place the 6502 processor in the decimal mode in which ADC 
and SBC instructions produce BCD rather than binary results. The programmer should 
be careful of the fact that the same program will produce different results, depending 
on the state of the Decimal Mode status. This can lead to puzzling and seemingly ran
dom errors if the state of the Decimal Mode status is not carefully monitored. 

SVBDIZC 

pi I I 11 I I I I 

mm 

3-94 

Data 

Program 
Memory 

FB mmmm 

t---t 
mmmm+ 1 



SEI - SET INTERRUPT MASK (DISABLE INTERRUPTS) 
SEI 

'-v-' 
78 

Set the interrupt mask in the Status register. This instruction disables the 6502's inter
rupt service ability, i.e" the 6502 will not respond to the Interrupt Request control line. 
No other registers or statuses are affected. The Interrupt Mask is bit 2 of the Status (P) 
register. 

s V B D I Z C 

pi I I I I q I I 

mm ~mmm+~ 
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Data 

Program 

Memory 

78 mmmm 

mmmm +' t----i 



STA - STORE ACCUMULATOR IN MEMORY 
Store the contents of the Accumulator into the specified memory location. This instruc
tion offers the same memory addressing modes as the AOC instruction. with the excep
tion that an immediate addressing mode is not available. The first byte of object code 
selects the addressing mode as follows: 

Bit Value 
for aaa 

000 
001 
010 
011 
100 
101 
110 
111 

7 6 5 4 3 2 1 0..-6;1 Number 

! 1 1010 I a I a I a I 0 11 r---0bjeCl Code 

Hexadecimal 
Addressing Mode 

Object Code 

81 Indirect. pre-indexed with X 
B5 Zero page (direct) 
89 Not used 
80 Absolute (direct) 
91 Indirect. post-indexed with Y 
95 Zero page indexed with X 
99 Absolute indexed with Y 
90 Absolute indexed with X 

Number 
of Bytes 

2 
2 

3 
2 
2 
3 
3 

We will illustrate the STA instruction with zero page direct addressing. See the discus
sion of addressing methods and other arithmetic and logical instructions for examples 
of the other addressing modes. No statuses are affected. 

Data 
5 V 6 D I Z C Memory 

P I I I I I I I i 
xx OOqq 

A 

X 

Y Program 

SP Memory 

PC 

65 mmmm 
qq mmmm +' 

mmmm + 2 

Store the contents of the Accumulator in memory. Suppose that xx = 6316 and 
qq = 3A16. After the instruction 

STA $3A 

has been executed. the contents of memory location 003A16 will be 6316. No registers 
or statuses are affected. 
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STX - STORE INDEX REGISTER X IN MEMORY 
Store the contents of I ndex Register X in the selected memory location. The addressing 
modes allowed are: 

1) Zero page (direct) - STX addr 

2) Absolute (direct) - STX addr16 

3) Zero page indexed with Y - STX addr.Y 

Note that there are no indexed modes using Index Register X. There is also no absolute 
indexed mode. STX and LOX are the only instructions that use the zero page indexed 
mode with Index Register Y. No statuses are affected. 

The first byte of object code selects the addressing mode as follows: 

7 6 5 4 3 2 1 0 ...-61t Number 

I 1 10 101 bib I 1 I 1 I 0 14--0biect Code 

Bit Value Hexadecimal 
Addressing Mode 

for bb Object Code 

00 B6 Zero page (direct) 
01 8E Absolute (direct) 
10 96 Zero page indexed with Y 
11 9E Not used 

Number 
of Bytes 

2 
3 
2 

We will illustrate the STX instruction USing zero page indexed addressing with Index 
Register Y. See the discussion of addressing methods and other arithmetic and logical 
instructions for examples of the other addressing modes. 

Data 
S V 6 0 I Z C Memory 

P I I I I I I I I 
vv OOrr + cc 

A 

X VV 

Y rr Program 

SP Memory 

PC mm 

96 
cc mmmm + 1 

mmmm + 2 

Store the contents of I ndex Register X in the selected memory byte. Su ppose that 
cc = 2816. rr = 2016. and yy = E916. After executing the 

STX $28.Y 

instruction. memory location 004816 will contain E916. No registers or statuses are 
affected. 
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STY - STORE INDEX REGISTER Y IN MEMORY 
Store the contents of Index Register Y in the selected memory location. The addressing 
modes allowed are: 

1) Zero page (direct) - STY addr 

2) Absolute (direct) - STY addr16 

3) Zero page indexed with X - STY addr.X 

Note that there are no indexed modes using Index Register Y. There is also no absolute 
indexed mode. No statuses or registers are affected. 

The first byte of object code selects the addressing mode as follows: 

7 6 5 4 3 2 1 0 ...-8il Number 

1110101 bl bill olot.--ObjeCI Code 

Bit Value Hexadecimal 
Addressing Mode for bb Object Code 

00 84 Zero page (direct) 
01 8C Absolute (direct) 
10 94 Zero page indexed with X 
11 9C Not used 

Number 
of Bytes 

2 
3 
2 

We will illustrate the STY instruction with absolute direct addressing. See the discus
sion of addressing methods and other arithmetic and logical instructions for examples 
of the other addressing modes. 

SVBDIZC 

pi I I I I I I I 

A 

X 
Y yy 

SP 

PC mm 

Data 

Memory 

yy ppqq 

Program 

Memory 

BC mmmm 
qq mmmm + 1 
pp mmmm + 2 

mmmm + 3 

Store the contents of Index Register Y in the selected memory byte. Suppose that 
yy = 0116 and ppqq = 08F316. After the 

STY $08F3 

instruction has executed. memory location 08F316 will contain 0116. No registers or 
statuses are affected. 
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TAX - MOVE FROM ACCUMULATOR TO INDEX REGISTER X 
TAX 

--.r-' 
AA 

Move the contents of the Accumulator to Index Register X. Set the Sign and Zero 
statuses accordingly. 

5 V B 0 I Z C 

pix! I I I pq I 

At-"";;;;'---f 

xl----f 
yt----t 
sP~ ____ -+ ______ ~ 
pc~_m_m __ ~ __ m_m __ ~. 

Data 

Program 

Memory 

AA mmmm 

I----f mmmm + 1 

Suppose that xx = 0016. After executing the TAX instruction. both the Accumulator 
and Index Register X will contain 0016. 

00000000 

Set S to o.-J L zero result sets Z to 1 

The following instruction sequence will restore the contents of Index Register X from 
the Stack after completion of a subroutine or interrupt service routine: 

PLA ;GET OLD X REGISTER FROM STACK 
TAX ;RESTORE TO X REGISTER 
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TAY - MOVE FROM ACCUMULATOR TO INDEX REGISTER Y 
TAY 

'-...-' 

AS 

Move the contents of the Accumulator to Index Register Y. Set the Sign and Zero 
statuses accordingly. 

Data 

SVBOIZC 

p[xl I I I I xl I 

A xx 

X 
y t----I ..... ...- Program 

SP Memorv 

Pc~_m_m __ ~ __ m_m __ ~~ 
AS mmmrn 

t-__ -tmmmm + 1 

Suppose that xx = F116· After executing the TAY instruction, both the Accumulator 
and Index Register Y will contain F116. 

11110001 

Set S to 1--.J LNonzero result sets Z to 0 

The following instruction sequence will restore the contents of Index Register Y from 
the Stack after completion of a subroutine or interrupt service routine: 

PLA ;GET OLD Y REGISTER FROM STACK 
TAY :RESTORE TO Y REGISTER 
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TSX - MOVE FROM STACK POINTER TO INDEX REGISTER X 
TSX 

'-.t-' 
BA 

Move the contents of the Stack Pointer to Index Register X. Set the Sign and Zero 
statuses accordingly. Note that TSX is the only 6502 instruction that allows you to ac
cess the value in the Stack Pointer. A typical instruction sequence that saves the value 
of the Stack Pointer in memory location TEMP is: 

TSX 
STX TEMP 

SVBDIZC 

plxl I I I Ixl I 

At-__ -I 
xl-__ -r ...... 
y 

SP I--ss--i-..-' 
PC mm 

:MOVE STACK POINTER TO X 
:SAVE STACK POINTER IN MEMORY 

Data 

Program 

Memory 

SA mmmm 

~---I 
mmmm +' 

If. for example. the Stack Pointer contains ED16. after executing the TSX instruction. 
both the Stack Pointer and Index Register X will contain ED16. 

1 1 1 01 1 01 

Set S to 1~ LNonzero result sets Z to 0 
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TXA - MOVE FROM INDEX REGISTER X TO ACCUMULATOR 
TXA 

SA 

Move the contents of Index Register X to the Accumulator and set the Sign and Zero 
statuses accordingly. The following instruction sequence will save the contents of In
dex Register X in the Stack before execution of a subroutine or interrupt service routine: 

TXA ;MOVE X REGISTER TO ACCUMULATOR 
PHA ;SAVE X REGISTER IN STACK 

Data 
SV8DIZC 

plxl I I I Ix I I 

A..-__ -f 
X rr 
y Program 

SP Memory 
PC 
~-..... -.....". .... 

SA mmmm 

ir----t mmmm + 1 

Suppose that rr = 3816. After executing the TXA instruction. both Index Register X and 
the Accumulator will contain 3816. 

001 1 101 1 

Set S to o.-J LNonzero result sets Z to 0 
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TXS - MOVE FROM INDEX REGISTER X TO STACK POINTER 
TXS ----9A 

Move the contents of Index Register X to the Stack Pointer. No other registers or 
statuses are affected. Note that TXS is the only 6502 instruction that allows you to 
determine the value in the Stack Pointer. A typical instruction sequence that loads the 
Stack Pointer with the value LAST is: 

LOX #LAST ;GET LOCATION OF STACK ON PAGE 1 
TXS ;PLACE STARTING LOCATION IN STACK POINTER 

Note that TXS does not affect any statuses. unlike TSX which affects the Zero and Sign 
statuses. 

Data 
SVBDIZC 

P I I I I I I I I 

A 

X rr 
y ~~~ 

SP Memory 

PC 
'--_ ....... _...J~ 

SA 

t-----i mmmm + 1 

Suppose that rr = F216. After executing the TXS instruction. both Index Register X and 
the Stack Pointer will contain F216. making 01F216 the current Stack location. No 
statuses or other registers are affected. 
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TVA-MOVE FROM INDEX REGISTER V TO ACCUMULATOR 
TYA --98 

Move the contents of Index Register Y to the Accumulator and set the Sign and Zero 
statuses accordingly. The following instruction sequence will save the contents of In
dex Register Y in the Stack before execution of a subroutine or interrupt service routine: 

TYA ;MOVE Y REGISTER TO ACCUMULATOR 
PHA ;SAVE Y REGISTER IN STACK 

SVBDIZC 

plxl I I I I XI I 

A 

X 

Y rr 
SP 
PC mm mm 

Data 

Program 

Memorv 

98 mmmm 

...----1 mmmm + 1 

Suppose that rr = AF16. After executing the TYA instruction. both Index Register Y and 
the Accumulator will contain AF16. 

10101 11 1 

Set S to 1~ LNonzero result sets Z to 0 
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Although the 6502 microprocessor can certainly be used on its 
own merits, one of its important characteristics is its 
similarity to the widely used 6800 microprocessor. This 
similarity is not sufficient to allow programs written for one of these processors at 
the machine or assembly level to be run on the other, but it is sufficient so that pro
grammers can easily move from one CPU to the other. Most of the external support 
devices designed for one of these processors can also be used with the other. Chapters 
9 and 10 of An Introduction to Microcomputers: Volume 2 -Some Real 
Microprocessors discuss this hardware compatibility in more detail. 

We will briefly describe and compare the 6800 and 6502 microprocessors with regard 
to their registers. statuses. addressing modes. and instruction sets. You should note 
that the two processors are far from mirror images. but they are much closer to each 
other than either is to an 8080. Z80. F8. or 2650 microprocessor. This description 
should give you some idea as to what problems you would encounter in going from one 
CPU to the other. 

As for registers, both the 6800 and the 6502 have an 8-bit pri
mary Accumulator (A register) and a l6-bit Program Counter 
(or PC register). The other registers, however. are slightly 
different. The 6800 has a second 8-bit Accumulator (B register!. a 

6800/6502 
REGISTER 
COMPARISON 

16-bit Index register. and a 16-bit Stack Pointer. The 6502. on the other hand. has two 
8-bit Index registers and an 8-bit Stack Pointer. Thus the 6502 Index registers cannot 
hold a complete 16-bit memory address while the 6800 Index register can. Furthermore 
the 6800's RAM Stack can be located anywhere in memory because of its 16-bit Stack 
Pointer while the 6502's RAM Stack is always located on page 1. 

As for statuses. the 6800 and 6502 have identical Zero, Over
flow. Sign. and Interrupt Mask statuses. The difference in the 
Carry status is that the 6800 and 6502 version of this flag 
have opposite meanings after subtraction operations. The 

6800/6502 
STATUS 
COMPARISON 

6800 Carry is set to 1 if a borrow is necessary and to 0 otherwise: the 6502 Carry is set 
to 0 if a borrow is necessary and to 1 otherwise. This difference means that. before a 
multi-byte subtraction operation. the programmer must clear the Carryon the 6800 and 
set the Carryon the 6502. The 6800 and 6502 also differ in how they perform 
decimal arithmetic; the 6800 has a Half-Carry flag (or carry from bit 3) while the 6502 
has a Decimal Mode flag. The 6502 also has a Break flag which is not present in the 
6800; it is not necessary in the 6800 because the 6800 Trap or Software Interrupt in
struction is automatically vectored separately from the regular interrupt response. 

The 6502 microprocessor has many more addressing modes 
than does the 6800. This is partly necessitated by the fact that 
the 6502 index registers are only 8 bits long. Table 3-7 compares 
the addreSSing modes available on the two processors. The 6800 
microprocessor has no indirect modes. no combinations of index

6800/6502 
ADDRESSING 
MODE 
COMPARISON 

ing and indirection. and no absolute indexed modes. There are also some other 
differences in terms of which modes are available with particular instructions: we will 
not discuss those differences. but they are enumerated in Table 3-6. 
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Table 3-7. Memory Addressing Modes Available on the 6800 and 6502 
Microprocessors 

6800 6602 

Immediate Immediate 
Direct (zero-page) Zero Page (direct) 
Extended {absolute direct} Absolute {direct} 
Indexed (absolute) Absolute Indexed 

Zero Page Indexed 
Post-Indexed Indirect 
Pre-Indexed Indirect 
Indirect 

Relative (branches only) Relative (branches only) 

Note that many different variations of indexed addressing are available on the 
6502 microprocessor. but remember that the 6502 index registers are only 8 bits 
long while the 6800 Index register is 16 bits long. 

The 6800 and 6602 instruction sets are similar but not identi
cal (see Table 3-6). Table 3-8 compares the two sets. listing first 
the instructions which are present in both. then the 6800 instruc
tions which have no 6502 equivalent. and finally the 6502 instruc

6800/6602 
INSTRUCTION 
COMPARISON 

tions which have no 6800 equivalent. Obviously some of these differences are a direct 
result of the differences in the statuses and registers. Most of the differences are minor. 
and involve instructions that are a small part of common applications programs. One 
noticeable difference is that the 6800 has Add and Subtract instructions that do not in
volve the Carry status (ADD and SUB) while the 6502 does not. This means that the 
6502 assembly language programmer must explicitly clear or set the Carry status when 
its value shou Id not affect an addition or subtraction operation. Note that this similarity 
in the instruction sets does not extend to the object code level; the actual machine 
codes are entirely different on the two microprocessors. 
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Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets 

I. Common Instructions 

Instruction Meaning 

ADC Add with Carry 
AND Logical AND 
ASL Arithmetic Shift Left 
BCC Branch if Carry Clear 
BCS Branch if Carry Set 
BEQ Branch if Equal to Zero (Z = 1) 
BIT Bit Test 
BMI Branch if Minus (S = 1) 
BNE Branch if Not Equal to Zero (Z = 0) 
BPL Branch if Plus (S = 0) 
BVC Branch if Overflow Clear 
BVS Branch if Overflow Set 
CLC Clear Carry 
CLI Clear Interrupt Mask (Enable Interrupt} 
CLV Clear Overflow 
CMP Compare Accumulator with Memory 
CPX 1 (also CPY on 6502) Compare Index Register with Memory 
DEC Decrement (by 1) 
DEX1 (also DEY on 6502) Decrement Index Register (by 1) 
EOR Logical Exclusive-OR 
INC Increment (by 1) 
INX1 (also INY on 6502) Increment Index Register (by 1) 
JMP Jump to New Location 
JSR Jump to Subroutine 
LOA Load Accumulator 
LOX1 (also LOY on 6502) Load Index Register 
LSR Logical Shift Right 
NOP No Operation 
ORA Logical (Inclusive) OR 
PHA (PSH on 6800) Push Accumulator onto Stack 
PLA (PUL on 6800) Pull Accumulator from Stack 
ROL Rotate Left through Carry 
ROR Rotate Right through Carry 
RTI Return from Interrupt 
RTS Return from Subroutine 
SBC2 Subtract with Carry 
SEC Set Carry 
SEI Set Interrupt Mask 
STA Store Accumulator 
STX1 (also STY on 6502) Store Index Register 
TSX Transfer Stack Pointer to Index Register (X) 
TXS Transfer Index Register (X) to Stack Pointer 

11ndex Register X is 16 bits long on 6800. 8 bits long on 6502 which has Index 
Register Y as well. 

2Note that SBC has a different meaning on the 6502 than on the 6800 since. 
for su btraction operations. the 6800 Carry is the inverse of the 6502 Carry. 
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II. 

III. 

Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets 
(Continued) 

Instruction 

ABA 
ADD 
ASR 
BGE 
BGT 
BHI 
BLE 
BLS 
BLT 
BRA 
BSR 
CBA 
CLR 
COM 
DAA 
DES 
INS 
LDS 
NEG 
SBA 
SEV 
STS 
SUB 
SWI 
TAB 
TAP 
TBA 
TPA 
TST 
WAI 

Instruction 

BRK 
CLD 
PHP 
PLP 
SED 
TAX (TAV) 
TXA (TVA) 

Unique 6800 Instructions 

Meaning 

Add Accumulators 
Add (without Carry) 
Arithmetic Shift Right 
Branch if Greater than or Equal to Zero 
Branch if Greater than Zero 
Branch if Higher 
Branch if Less than or Equal to Zero 
Branch if Lower or Same 
Branch if Less than Zero 
Branch Unconditionally 
Branch to Subroutine 
Compare Accumulators 
Clear 
Logical Complement 
Decimal Adjust Accumulator 
Decrement Stack Pointer (by 1) 
Increment Stack Pointer (by 1) 
Load Stack Pointer 
Negate {Twos Complement} 
Subtract Accumulators 
Set Overflow 
Store Stack Pointer 
Subtract (without Carry) 
Software Interrupt (like 6502 BRK) 
Move from Accumulator A to Accumulator B 
Move from Accumulator A to CCR 
Move from Accumulator B to Accumulator A 
Move CCR to Accumulator A 
Test Zero or Minus 
Wait for Interrupt 

Unique 6502 Instructions 

Meaning 

Break (like 6800 SWI) 
Clear Decimal Mode 
Push Status Register onto Stack 
Pull Status Register from Stack 
Set Decimal Mode 
Transfer Accumulator to Index Register X (V) 
Transfer Index Register X (V) to Accumulator 
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MOS TECHNOLOGY 6502 ASSEMBLER 
CONVENTIONS 

The standard 6502 assembler is available from 6502 manufacturers and on many 
major time-sharing networks; it is also included in most development systems. 
Cross-assembler versions are available for most large computers and many 
minicomputers. 

ASSEMBLER FIELD STRUCTURE 
The assembly language instructions have the standard field structure (see Table 
2-11. The required delimiters are: 

11 A space after a label. Note that all labels must start in column 1. 

21 A space after the operation code. 

31 A comma between operands in the address field, i.e., between the offset ad
dress and X or Y to indicate indexing with Index Register X or Y respectively. 

41 Parentheses around addresses that are to be used indirectly. 

51 A semicolon or exclamation point (we will use the semicolonl before a com
ment. 

Typical 6502 assembly language instructions are: 

START LDA 
ADC 

LAST BRK 

LABELS 

(1000,X) 
NEXT 

;GET LENGTH 

:END OF SECTION 

The Assembler often allows only six characters in labels and truncates longer 
ones. The first character must be a letter while subsequent characters must be 
letters or numbers. The single characters A, X, and Yare reserved for the Ac
cumulator and the two index registers. The use of operation codes as labels is 
often not allowed and is not good programming practice anyway. 

PSEUDO-OPERATIONS 
The Assembler has the following explicit pseudo-operations: 

.BYTE - Form Byte-Length Data 

.DBYTE - Form Double-Byte-Length Data with MSBs First 

.END - End of Program 

.TEXT - Form String of ASCII Characters 

.WORD - Form Double-Byte-Length Data with LSBs First 
- Equate 

Other pseudo-operations may be implemented by setting the assembler's location 
counter (denoted by ., to a new or updated value. Examples are: 

• = ADDR - Set Program Origin to ADDR 
• = '+N - Reserve N Bytes for Data Storage 

.BYTE. .DBYTE, .TEXT, and .WORD are the Data 
pseudo-operations used to place data in ROM. ,BYTE is 
used for a-bit data, .TEXT for 7-bit ASCII characters 
(MSB is zero!' .DBYTE for 16-bit data with the most Sig

.BYTE, .DBYTE, 
,TEXT, .WORD 
PSEU DO-OPERATIONS 

nificant bits first. and .WORD for 16-bit addresses or data with the least significant bits 
first. Note particularly the difference between .DBYTE and .WORD. 
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Examples: 
ADDR .WORD $3165 

results in (ADDR) = 65 and (ADDR+l) = 31 (hex). 

TCONV .BYTE 32 

This pseudo-operation places the number 32 (2016) in the next byte of ROM and 
assigns the name TCONV to the address of that byte. 

ERROR .TEXT /ERROR/ 

This pseudo-operation places the 7-bit ASCII characters E. R. R. O. and R into the next 
five bytes of ROM and assigns the name ERROR to the address of the first byte. Any 
single character (not just /) may be used to surround the ASCII text. but we will always 
use / for the sake of consistency. 

MASK .DBYTE $1000 

results in (MASK) = 10 and (MASK+l) = 00. 

OPERS .WORD FADD. FSUB. FMUL.FDIV 

This pseudo-operation places the addresses FADD. FSUB. FMUL. and FDIV in the next 
eight bytes of memory (least significant bits first) and assigns the name OPERS to the 
address of the first byte. 

The operation • = '+N is the Reserve pseudo-operation 
used to assign locations in RAM: it allocates a specified 
number of bytes. = is the Equate or Define pseudo-opera

SET ORIGIN 
PSEUDO-OPERATION 

tion used to define names .• = ADDR is the standard Origin pseudo-operation. 

6502 programs usually have several origins which are used as follows: 

1) To specify the Reset and interrupt service addresses. These addresses must be 
placed in the highest memory addresses in the system (usually FFFA16 through 
FFFF16). 

2) To specify the starting addresses of the actual Reset and interrupt service routines. 
The routines themselves may be placed anywhere in memory. 

3) To specify the starting address of the main program. 

4) To specify the starting addresses of subroutines. 

5) To define areas for RAM storage. 

6) To define an area (always on page 1) for the RAM Stack. 

7) To specify addresses used for I/O ports and special functions. 

Examples: 
RESET =$3BOO 

'=$FFFC 
.WORD RESET 
'=RESET 

Note: $ means "hexadecimal". 

This sequence places the Reset instruction sequence in memory beginning at address 
3B0016. an~ places that address in the memory locations (addresses FFFC16 and 
FFFD16) frqm which the 6502 CPU retrieves the Reset address. 

The instruction sequence which follows is stored in memory beginning at location 
C00016· 

MAIN =$COOO 
'=MAIN 

.END simply marks the end of the assembly language program. 
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LABELS WITH PSEUDO-OPERATIONS 
The rules and recommendations for labels with 6502 pseudo-operations are as 
follows: 

1) Simple equates. such as MAIN =$COOO. require labels since their purpose is to 
define the meanings of those labels. 

2) .BYTE. .DBYTE .. TEXT .. WORD. and "="+N pseudo-operations usually have labels. 

3) .END should not have a label. since the meaning of such a label is unclear. 

ADDRESSES 
The 6502 Assembler allows entries in the address field in any 
of the following forms: 

1) Decimal (the default case) 
Example: 1247 

2) Hexadecimal (must start with $) 
Example: $CEOO 

3) Octal (must start with @) 
Example: @1247 

4) Binary (must start with %) 
Example: %11100011 

5) ASCII (single character preceded by an apostrophe) 
Example: 'H 

6) As an offset from the Program Counter (") 

Example: "+7 

The various 6502 addressing modes are distinguished as 
follows: 

Absolute or Zero Page (direct) are the default modes 

NUMBERS AND 
CHARACTERS IN 
ADDRESS FIELD 

ADDRESSING 
MODES 

(the Assembler chooses Zero Page if the address is less than 256. and Ab
solute otherwise). 

# for immediate mode (precedes the data) 

.X or .Y for indexing (follows the offset address) 

Parentheses around addresses that are used indirectly so that 

(addr.X) indicates pre-indexing (indexed address used indirectly) 

(addr).Y indicates post-indexing (indirect address is indexed) 

(addrl indicates indirection with JMP instruction only 

In the indexed modes. as in the direct modes. the Assembler automatically chooses the 
Zero Page version if it is permitted and if the address is less than 256. 

The Assembler also allows expressions in the address field. These 
expressions consist of numbers and names separated by the 
arithmetic operators +. -. " (multiplication). or / (integer division) 
The Assembler evaluates expressions from left to right: no 

"A~S~S~E~M~B~L~E"""R--w 

ARITHMETIC 
EXPRESSIONS 

parentheses are allowed to group operations. nor is there any hierarchy of operations. 
Fractional results are truncated. 

We recommend that you avoid expressions within address fields whenever possi
ble. If you must compute an address. comment any unclear expressions and be sure 
that the evaluation of the expressions never produces a result which is too large for its 
ultimate use. 
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OTHER ASSEMBLER FEATURIES 
The standard 6502 Assembler has neither a conditional assembly capability nor a 
macro capability. Some 6502 assemblers have one or both of these capabilities. and 
you should consult your manual for a description. We witt not use or refer to either 
capability again. although both can be quite convenient in actual applications. 
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Chapter 4 
SIMPLE PROGRAMS 

The only way to learn assembly language programming is through experience. The 
next six chapters of this book contain examples of simple programs that perform 
actual microprocessor tasks. You should read each example carefully and try to 
execute the program on a 6502-based microcomputer. Finally. you should work 
the problems at the end of each chapter and run the resulting programs to insure 
that you understand the material. 

This chapter contains some very elementary programs. 

GENERAL FORMAT OF EXAMPLES 
Each program example contains the following parts: 

1) A title that describes the general problem. 

2) A statement of purpose that describes the specific task that the program performs 
and the memory locations that it uses. 

3) A sample problem with data and results. 

4) A flowchart if the program logic is complex. 

5) The source program or assembly language listing. 

6) The object program or hexadecimal machine language listing. 

7) Explanatory notes that discuss the instructions and methods used in the program. 

You should use the examples as guidelines for solving the problems at the end of 
each chapter. Be sure to run your solutions on a 6502-based microcomputer to in
sure that they are correct. 

The source programs in the examples have been constructed as follows: 

1) Standard 6502 assembler notation is used. as summarized in 
Chapter 3. 

2) The forms in which data and addresses appear are selected for 
clarity rather than for consistency. We use hexadecimal num-

.-----.... 
GUIDELINES 
FOR 
EXAMPLES 

bers for memory addresses. instruction codes. and BCD data; decimal for numeric 
constants; binary for logical masks; and ASCII for characters. 

3) Frequently used instructions and programming techniques are emphasized. 

4) Examples illustrate tasks that microprocessors perform in communications. instru
mentation. computers. business equipment. industrial. and military applications. 

5) Detailed comments are included. 

6) Simple and clear structures are emphasized. but programs are as efficient as possi
ble within this guideline. The notes often describe more efficient procedures. 

7) Programs use consistent memory allocations. Each program starts in memory loca
tion 0000 and ends with the Break (BRK) instruction. If your microcomputer has no 
monitor and no interrupts. you may prefer to end programs with an endless loop in
struction. e.g .. 

HERE JMP 
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Some 6502-based microcomputers may require a JMP or JSR instruction with a 
specific destination address to return control to the monitor. Other microcomputers 
may require you to specify the monitor address to be used by the BRK instruction. For 
example. if you are using the popular KIM-1. you will have to load 1 COO into addresses 
17FE and 17FF. Be careful- the 00 must be loaded into address 17FE and the 1 C into 
address 17FF. We will explain later how the 6502 stores addresses and how it imple
ments the BRK instruction (see Chapter 12). 

Consult the User's Manual for your microcomputer to determine the required memory 
allocations and terminating instruction for your particular system. 

GUIDELINES FOR SOLVING PROBLEMS 
Use the following guidelines in solving the problems at the end of each chapter: 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

Comment each program so that others can understand it. 
The comments can be brief and ungrammatical: they 
should explain the purpose of a section or instruction in 
the program. Comments should not describe the operation 

PROGRAMMING 
GUIDELINES 

of instructions; that description is available in manuals. You do not have to com
ment each statement or explain the obvious. You may follow the format of the ex
amples but provide less detail. 

Emphasize clarity. simplicity. and good structure in programs. While programs 
should be reasonably efficient. do not worry about saving a single byte of program 
memory or a few microseconds. 

Make programs reasonably general. Do not confuse parameters (such as the num
ber of elements in an array) with fixed constants (such as 7T or ASCII C). 

Never assume fixed initial values for parameters; i.e .. assume that the parameters 
are already in RAM. 

Use assembler notation as shown in the examples and defined in Chapter 3. 

Use hexadecimal notation for addresses. Use the clearest possible form for data. 

If your microcomputer allows it. start all programs in memory location 0000 and 
use memory locations starting with 004016 for data and temporary storage. Other
wise. establish equivalent addresses for your microcomputer and use them consis
tently. Again. consult the user's manual. 

Use meaningful names for labels and variables: e.g .. SUM or CHECK rather than X. 
Y. or Z. 

Execute each program on your microcomputer. There is no other way of ensuring 
that your program is correct. We have provided sample data with each problem. Be 
sure that the program works for special cases. 

We now summarize some useful information that you should keep in mind when 
writing .programs. 

Almost all processing instructions (e.g .. Add. Subtract. AND. 
OR) use the contents of the Accumulator as one operand and 
place the result back in the Accumulator. In most cases. you 

USING THE 
ACCUMULATOR 

will load the initial data into the Accumulator with LOA. You will store the result from 
the Accumulator into memory with STA. 
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Frequently accessed data and frequently used base addresses or 
pointers should be placed on page zero of memory. This data can 
then be accessed with zero-page (direct). pre-indexed. post
indexed. and zero-page indexed addressing. Note in particular that 

USING 
PAGE ZERO 
OF MEMORY 

pre-indexing and post-indexing both assume that an address is stored on page zero. 
The zero-page dire.ct and indexed modes both require less time and memory than the 
corresponding absolute addressing modes. 

Some instructions. such as shifts. increment (add 1). and decrement (subtract 1) can act 
directly on data in memory. Such instructions allow you to bypass the user registers but 
they require extra execution time since the data must actually be loaded into the CPU 
and the result must be stored back into memory. 
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PROGRAM EXAMPLES 

8-Bit Data Transfer 

Plirpose: Move the contents of memory location 0040 to memory location 0041. 

Sample Problem: 

(0040) 6A 

Result: (0041) 6A 

Source Program: 

LOA 
STA 
BRK 

Object Program: 

$40 
$41 

;GET OATA 
;TRANSFER TO NEW LOCATION 

Memory Location 
(Hex) 

Memory Contents Instruction 

0000 
0001 
0002 
0003 
0004 

(Hex) 

A5 
40 
85 
41 
00 

(Mnemonic) 

LOA $40 

STA $41 

BRK 

The LOA (Load Accumulator) and STA (Store Accumulator) need an address to deter
mine the source or destination of the data. Since the addresses used in the example are 
on page zero (that is, the eight most significant bits are all zero), the zero page (direct) 
form of the instructions can be used with the address in the next word. The leading 
zeros can be omitted. The addresses are really 0040 and 0041, but the shorthand form 
can be used just as in everyday conversation (e.g., we say "sixty cents" rather than 
"zero dollars and sixty cents")' 

BRK (Force Break) is used to end all the examples and return control to the monitor. 
Remember that you may have to replace this instruction with whatever your microcom
puter requires. 
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8-Bit Addition 
Purpose: Add the contents of memory locations 0040 and 0041. and place the result 

in memory location 0042. 

Sample Problem: 

(0040) 38 
(0041) 2B 

Resu It: (0042) 63 

Source Program: 

CLC ;CLEAR CARRY TO START 
LDA $40 ;GET FIRST OPERAND 
ADC $41 ;ADD SECOND OPERAND 
STA $42 ;STORE RESULT 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonicl 

0000 18 CLC 
0001 A5 LDA $40 
0002 40 
0003 65 ADC $41 
0004 41 
0005 85 STA $42 
0006 42 
0007 00 BRK 

The only addition instruction on the 6502 microprocessor is ADC (Add with Carry). 
which results in (A) = (A) + (M) + (Carry) where M is the addressed memory location 
Thus. we need the initial CLC (Clear Carry) instruction if the value of Carry is not to 
affect the addition. Remember that the Carry will be included in all additions and 
subtractions. 

The zero-page (direct) forms of all instructions are used. since all the addresses are in 
the first 256 bytes of memory. 

ADC affects the Carry bit. but LDA and STA do not. Only arithmetic and shift instruc
tions affect the Carry; logical and transfer instructions do not. 

LDA and ADC do not affect the contents of memory. STA changes the contents of the 
addressed memory location but does not affect the contents of the Accumulator. 

Be sure that the Decimal Mode (D) flag is cleared when you execute this program. To be 
absolutely certain of the D flag's state. you could add a CLD instruction (D816) to the 
start of the program. If you are using the KIM-1 microcomputer. you should clear 
memory location 00F1 to ensure that the Decimal Mode flag does not interfere with 
your programs or with the monitor. 
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Shift Left One Bit 
Purpose: Shift the contents of memory location 0040 left one bit and place the result 

into memory location 0041. C lear the empty bit position. 

Sample Problem: 

(0040) 6F 

Resu It: (0041) DE 

Source Program: 

LOA 
ASL 
STA 
BRK 

Object Program: 

$40 
A 
$41 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 

;GET DATA 
;SHIFT LEFT 
;STORE RESULT 

Memory Contents 
(Hex) 

A5 
40 
OA 
85 
41 
00 

Instruction 
(Mnemonic) 

LOA $40 

ASL A 
STA $41 

BRK 

The instruction ASL A shifts the contents of the Accumulator left one bit and clears the 
least significant bit. The most significant bit is moved into the Carry. The result is twice 
the original data (why?). 

Note that we could also shift the contents of memory location 0040 one bit with the in
struction ASL $40 and then move the result to memory location 0041. This method 
would. however. change the contents of memory location 0040 as well as the contents 
of memory location 0041. 
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Mask Off Most Significant Four Bits 
Purpose: Place the least significant four bits of memory location 0040 in the least sig

nificant four bits of memory location 0041. Clear the most significant four 
bits of memory location 0041. 

Sample Problem: 

(0040) 3D 

Resu It: (0041) OD 

Source Program: 

LDA 
AND 
STA 
BRK 

$40 
#%00001111 
$41 

;GET DATA 
;MASK 4 MSB'S 
;STORE RESULT 

Note: # means immediate addressing and % means binary constant in standard 6502 
Assembler notation. 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A5 LDA $40 
0001 40 
0002 29 AND #%00001111 
0003 OF 
0004 85 STA $41 
0005 41 
0006 00 BRK 

AND #%00001111 logically ANDs the contents of the Accumulator with the number 
OF16 - not the contents of memory location OOOF. Immediate addressing (indicated by 
#) means that the actual data. not the address of the data. is included in the instruc
tion. 

The mask (00001111) is written in binary to make its purpose clearer to the reader Bi
nary notation for masks is clearer than hexadecimal notation since logical operations 
are performed bit-by-bit rather than digits or bytes at a time. The result. of course. does 
not depend on the programming notation. Hexadecimal notation should be used for 
masks longer than eight bits because the binary versions become long and cumber
some. The comments should explain the masking operation. 

A logical AND instruction may be used to clear bits that are not in use. For example. the 
four least significant bits of the data could be an input from a ten-position switch or an 
output to a numeric display. 
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Clear a Memory Location 
Purpose: Clear memory location 0040. 

Source Program: 

LOA 
STA 
BRK 

Object Program: 

#0 
$40 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 

;CLEAR LOCATION 40 

Memory Contents 
(Hex) 

A9 
00 
85 
40 
00 

Instruction 
{Mnemonic} 

LOA #0 

STA $40 

BRK 

Zero is handled no differently than any other number - the 6502 has no explicit Clear 
instruction. However. remember that LOA #0 does set the Zero flag to one. Always 
watch this logic - the Z (Zero) flag is set to one if the last result was zero. 

STA does not affect any status flags. 
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Word Disassembly 
Purpose: Divide the contents of memory location 0040 into two 4-bit sections and 

store them in memory locations 0041 and 0042. Place the four most signifi
cant bits of memory location 0040 into the four least significant bit positions 
of memory location 0041: place the four least significant bits of memory 
location 0040 into the four least significant bit positiona of memory location 
0042. Clear the four most significant bit positions of memory locations 0041 
and 0042. 

Sample Problem: 

(0040) 3F 

Result: (0041) 03 

Source Program: 

LOA 
AND 
STA 
LOA 
LSR 
LSR 
LSR 
LSR 
STA 
BRK 

Object Program: 

(0042) OF 

$40 
#%00001111 
$42 
$40 
A 
A 
A 
A 
$41 

:GET DATA 
:MASK OFF MSB'S 
:STORE LSB'S 
: RESTORE DATA 
:LOGICALL Y SHIFT DATA RIGHT 4 TIMES 

:STORE MSB'S 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A5 LOA $40 
0001 40 
0002 29 AND #%00001111 
0003 OF 
0004 85 STA $42 
0005 42 
0006 A5 LOA $40 
0007 40 
0008 4A LSR A 
0009 4A LSR A 
OOOA 4A LSR A 
OOOB 4A LSR A 
OOOC 85 STA $41 
0000 41 
OOOE 00 BRK 

A logical shift right of four positions requires four executions of the LSR A instruction. 

Each LSR instruction clears the most significant bit of the result. Thus, the four most 
significant bits of the Accumulator are all cleared after LSR A has been executed four 
times. 

You might wish to try rewriting the program so that it saves a copy of the data in Index 
Register X rather than loading the same data twice. Which version do you prefer and 
why? 
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Find Larger of Two Numbers 
Purpose: Place the larger of the contents of memory locations 0040 and 0041 into 

memory location 0042. Assume that the contents of memory locations 0040 
and 0041 are unsigned binary numbers. 

Sample Problems: 

a. (0040) 3F 
(0041) 2B 

Result: (0042) 3F 

b. (0040) 75 
(0041) A8 

Result: (0042) A8 

Source Program: 

LDA $40 ;GET FIRST OPERAND 
CMP $41 ;IS SECOND OPERAND LARGER? 
BCS STRES 
LDA $41 ;YES. GET SECOND OPERAND INSTEAD 

STRES STA $42 ;STORE LARGER OPERAND 
8RK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A5 LDA $40 
0001 40 
0002 C5 CMP $41 
0003 41 
0004 BO BCS STRES 
0005 02 
0006 A5 LDA $41 
0007 41 
0008 85 STRES STA $42 
0009 42 
OOOA 00 BRK 

CMP $41 subtracts the contents of memory location 0041 from the contents of the Ac
cumulator but does not store the result anywhere. The instruction is used merely to set 
the flags for a subsequent conditional branch. 

CMP affects the flags as follows: 

1) N takes the value of the most significant bit of the result of the subtraction. 

2) Z is set to 1 if the result of the subtraction is zero and to 0 otherwise. 

3) C is set to 1 if the subtraction does not require a borrow and to 0 if it does. Note 
that C is an inverted borrow. not the actual borrow as it is on many other 
m ic rop rocessors. 

4) V is not affected. 
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Note the following cases: 

1) If the operands are equal. Z = 1; if they are not equal. Z = O. 

2) If the contents of the Accumulator are greater than or equal to the contents of the 
other address (considering both as unsigned binary numbers). C = 1. since no bor
row would then be needed. Otherwise. C = O. 

All 6502 conditional branch instructions use relative addressing. in which the second 
word of the instruction is an 8-bit twos complement number which the CPU adds to the 
address of the next instruction to calculate the destination address. In the example. the 
relative offset is 0008 (destination address) - 0006 (address immediately following the 
branch) or 02. Obviously. calculating relative offsets is error-prone. particularly if the 
result is negative; however. if you label all target instructions. the assembler will per
form the calculations for you. 

BCS causes a branch if the Carry is one. If the Carry is zero. the processor continues ex
ecuting instructions in their normal sequence as if the Branch instruction did not exist. 

STRES is a label. a name that the programmer assigns to a memory address so that it is 
easier to remember and locate Note that labels are followed by a space on the line 
where they are defined. The label makes the destination of the branch clear. particularly 
when relative addressing is being used. Using a label is preferable to just specifying the 
offset O.e .. BCS*+4) since the 6502's instructions vary in length. You or another user of 
the program could easily make an error in determining the offset or the destination. 
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16-Bit Addition 
Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit 

number in memory locations 0042 and 0043. The most significant eight bits 
are in memory locations 0041 and 0043. Store the result in memory loca
tions 0044 and 0045. with the most significant bits in 0045. 

Sample Problem: 

(0040) 2A 
(0041) 67 
(0042) F8 
(0043) 14 

Result=672A + 14F8 = 7C22 

(0044) 22 
(0045) = 7C 

Source Program: 

CLC 
LDA 
ADC 
STA 
LDA 
ADC 
STA 
BRK 

$40 
$42 
$44 
$41 
$43 
$45 

;CLEAR CARRY TO START 
;ADD LEAST SIGNIFICANT BITS 

Object Program: 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 
OOOD 

;ADD MOST SIGNIFICANT BITS WITH CARRY 

Memory Contents Instruction 
(Hex) (Mnemonic) 

18 CLC 
A5 LDA $40 
40 
65 ADC $42 
42 
85 STA $44 
44 
A5 LDA $41 
41 
65 ADC $43 
43 
85 STA $45 
45 
00 BRK 

You must clear the Carry before the first addition since there is never a carry into the 
least significant bits. 

ADC then automatically includes the Carry from the least significant bits in the addition 
of the most significant bits. Thus the microprocessor can add data of any length: it adds 
numbers eight bits at a time with the Carry transferring information from one 8-bit sec
tion to the next. Note. however. that each 8-bit addition requires the execution of three 
instructions (LDA. ADC. STA) since there is only one accumulator. 
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Table of Squares 
Purpose: Calculate the square of the contents of memory location 0041 from a table 

and place the result in memory location 0042. Assume that memory location 
0041 contains a number between 0 and 7 inclusive - 0 :::; (0041) :::; 7. 

The table occupies memory locations 0050 to 0057. 

Memory Address Entry 

(Hex) (Hex) (Decimal! 

0050 00 0 (02) 
0051 01 1 (12) 
0052 04 4 (22) 
0053 09 9 (32) 
0054 10 16 (42) 
0055 19 25 (52) 
0056 24 36 (62) 
0057 31 49 (72) 

Sample Problems: 

a. (0041) 03 

Result: (0042) 09 

b. (0041) 06 

Result: (0042) 24 

Remember that the answer is a hexadecimal number. 

Source Program: 

LDX 
LDA 
STA 
BRK 
·=$50 

SQTAB .BYTE 

$41 
$50,X 
$42 

0,1.4,9,16,25,36.49 
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;GET DATA 
:GET SQUARE OF DATA 
;STORE SQUARE 

;SQUARES TABLE 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A6 LOX $41 
0001 41 
0002 B5 LOA $50,X 
0003 50 
0004 85 STA $42 
0005 42 
0006 00 BRK 

0050 00 SOTAB .BYTE 0 
0051 01 1 
0052 04 4 
0053 09 9 
0054 10 16 
0055 19 25 
0056 24 36 
0057 31 49 

Note that you must also enter the table of squares into memory (the assembler pseudo
operation .BYTE will handle thisl. The table of squares is constant data, not parameters 
that may change: that is why you can initialize the table using the .BYTE pseudo-opera
tion, rather than by executing instructions to load values into the table. Remember that. 
in an actual application, the table would be part of the read-only program memory. The 
.BYTE pseudo-operation places the specified data in memory in the order in which it ap
pears in the operand field. 

The pseudo-operation *= simply determines where the loader (or assemblerl will place 
the next section of code when it is finally entered into the microcomputer's memory for 
execution. Note that the pseudo-operation does not actually result in any object code 
being generated. 

Indexed addressing (or indexing) means that the actual address used by the instruction 
(often referred to as the effective address) is the sum of the address included in the in
struction and the contents of the Index register. Thus LOA $50,X ex or ,Y indicates in
dexed addressing with the specified Index register in 6502 assembly language) is 
equivalent to LOA $50+(X) or LOA $53 if (X) = 03. In the example program, Index 
Register X contains the number to be squared and the address included in the instruc
tion is the starting address of the table of squares. Note that there is a special zero-page 
indexed mode using I ndex Register X. 

Indexing always takes extra time since the microcomputer must perform an addition to 
calculate the effective address. Thus LOA $50,X requires four clock cycles while LOA 
$50 requires only three. However. it would clearly take a great deal more time to access 
the table entry if the microcomputer lacked indexing and the address calculation had to 
be performed with a series of instructions. 

Remember that the Index registers are only 8 bits long so the maximum offset from the 
base address is 255 (FF16l. Note also that the offset is an unsigned number (unlike the 
offset in relative addressing) so that it can never be negative. However, we do get wrap
around. That is, if the sum of the base address and the contents of the index register 
exceed the maximum allowed value, the most significant bits of the sum are simply 
dropped. In the case of zero page indexing, the maximum allowed value is FF16. If, for 
example, the base address on the zero page is F016 and the index register contains 
1 B16, the effective address for zero page indexing is OOOB 16: there is no carry to the 
more significant byte. Thus we can get the effect of a negative offset. 
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There are a few special instructions that operate on one of the Index registers rather 
than on the Accumulator. These are: 

CPX. CPY - Compare Memory and Index Register 
DEX. DEY - Decrement I ndex Register (by 1) 

INX. INY - Increment Index Register (by 1) 
LDX. LDY - Load Index Register from Memory 
STX. STY - Store Index Register into Memory 
TAX. TAY - Transfer Accumulator to Index Register 
TXA. TYA - Transfer Index Register to Accumulator 

Remember that there are only a few addressing modes available with CPX. CPY. LDX. 
LDY. STX. and STY. Consult Table 3-4 for more details. 

Arithmetic that a microprocessor cannot do directly in a few 
instructions is often best performed with lookup tables. Lookup 
tables Simply contain all the possible answers to the problem: 
they are organized so that the answer to a particular problem 

ARITHMETIC 
WITH 
TABLES 

can be found easily. The arithmetic problem now becomes an accessing problem
how do we get the correct answer from the table? We must know two things: the 
position of the answer in the table (called the index) and the base. or starting. address 
of the table. The address of the answer is then the base address plus the index. 

The base address. of course. is a fixed number for a particular table. How can we deter
mine the index 7 1n simple cases. where a single piece of data is involved. we can organ
ize the table so that the data is the index. In the table of squares. the Oth entry in the ta
ble contains zero squared. the first entry one squared. etc. In more complex cases. 
where the spread of input values is very large or there are several data items involved 
(e.g .. roots of a quadratic equation or number of permutations). we must use more com
plicated methods to determine indexes. 

The basic tradeoff in using a table is time vs. memory. Tables are faster. since no com
putations are required. and simpler. since no mathematical methods must be devised 
and tested. However. tables can occupy a large amount of memory if the range of the 
input data is large. We can often reduce the size of a table by limiting the accuracy of 
the results. scaling the input data. or organizing the table cleverly. Tables are often 
used to compute transcendental and trigonometric functions. linearize inputs. convert 
codes. and perform other mathematical tasks 
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Ones Complement 
Purpose: Logically complement the contents of memory location 0040 and place the 

result in memory location 0041. 

Sample Problem: 

(0040) = 6A 

Result=(0041) = 95 

Source Program: 

;GET DATA LDA 
EOR 
STA 
BRK 

$40 
#%11111111 
$41 

;LOGICALL Y COMPLEMENT DATA 
;STORE RESULT 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A5 LDA $40 
0001 40 
0002 49 EOR #%11111111 
0003 FF 
0004 85 STA $41 
0005 41 
0006 00 BRK 

The 6502 microprocessor lacks some simple instructions. such as Clear or Complement. 
that are available in most other sets. However, the required operations are easily ac
complished with the existing instructions if the programmer simply gives the matter a 
little thought. 

Exclusive-ORing a bit with '1' complements the bit since 

1 -V-O = 1 
and 1-V-1 =0 

So the Exclusive-OR function turns each '0' bit into a '1' and each '1' bit into a '0', just 
like a logical complement or inverse. Note, however, that the instruction EOR 
#%11111111 occupies two bytes of memory, one for the operation code and one for 
the mask An explicit Complement instruction would require only one byte. 

One problem with this approach is that the purpose of the instructions may not be im
mediately obvious. A reader would probably have to think about exactly what an Ex
clusive-OR function with an all-ones word actually does. Adequate documentation is 
essential here, and the use of macros can also help clarify the situation. 
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PROBLEMS 
1) 16-Bit Data Transfer 
Purpose: Move the contents of memory location 0040 to memory location 0042 and 

the contents of memory location 0041 to memory location 0043. 

Sample Problem: 

(0040) 3E 
(0041) 87 

Result: (0042) 3E 
(0043) 87 

2) 8-Bit Subtraction 
Purpose: Subtract the contents of memory location 0041 from the contents of memory 

location 0040. Place the result into memory location 0042. 

Sample Problem: 

(0040) 77 
(0041) 39 

Resu It: (0042) 3E 

3) Shift Left Two Bits 
Purpose: Shift the contents of memory location 0040 left two bits and place the result 

into memory location 0041. Clear the two least significant bit pOSitions. 

Sample Problem: 

(0040) 50 

Result: (0041) 74 

4) Mask Off Least Significant Four Bits 
Purpose: Place the four most significant bits of the contents of memory location 0040 

into memory location 0041. Clear the four least significant bits of memory 
location 0041. 

Sample Problem: 

(0040) C4 

Result: (0041) CO 

5) Set a Memory Location to All Ones 
Purpose: Memory location 0040 is set to all ones (FF16) 

6) Word Assembly 
Purpose: Combine the four least significant bits of memory locations 0040 and 0041 

into a word and store them in memory location 0042. Place the four least sig
nificant bits of memory location 0040 into the four most significant bit posi
tions of memory location 0042: place the four least significant bits of memo
ry location 0041 into the four least significant bit positions of memory loca
tion 0042. 

Sample Problem: 

(0040) 6A 
(0041) 83 

Result: (0042) A3 
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7) Find Smaller of Two Numbers 
Purpose: Place the smaller of the contents of memory locations 0040 and 0041 in 

memory location 0042. Assume that memory locations 0040 and 0041 con
tain unsigned binary numbers. 

Sample Problems: 

a. (0040) 3F 
(0041) 2B 

Result: (0042) 2B 

b (0040) 75 
(0041) AB 

Result: (0042) 75 

8) 24-Bit Addition 
Purpose: Add the 24-bit number in memory locations 0040.0041. and 0042 to the 24-

bit number in memory locations 0043. 0044. and 0045. The most significant 
eight bits are in memory locations 0042 and 0045. the least significant eight 
bits in memory locations 0040 and 0043. Store the result in memory loca
tions 0046. 0047. and 0048 with the most significant bits in 0048 and the 
least significant bits in 0046. 

Sample Problem: 

(0040) 2A 
(0041) 67 
(0042) 35 
(0043) F8 
(0044) A4 
(0045) 51 

Result: (0046) 22 
(0047) OC 
(0048) 87 

that is. 35672A 
+51A4F8 

870C22 

9) Sum of Squares 
Purpose: Calculate the squares of the conten-ts of memory locations 0040 and 0041 

and add them together. Place the result in memory location 0042. Assume 
that memory locations 0040 and 0041 both contain numbers between 0 and 
7 inclusive: i.e .. O < (0040) < 7 and 0 < (0041) < 7. Use the table of 
squares from the e;8mple entitled Table Of Squares-:-

Sample Problem: 

(0040) = 03 
(0041) = 06 

Result = (0042) = 20 

that is. 32 +62 = 9+36=45=2016 

4-18 



10) TWQs CQmplement 
Purpose: Place the twos complement of the contents of memory location 0040 in 

memory location 0041. The twos complement is the ones complement plus 
one. 

Sample Problem: 

(0040) 3E 

Resu It: (0041) C2 

The sum of the original number and its twos complement is zero. So the twos comple
ment of X is O-X. Which approach (calculating the ones complement and adding one, or 
subtracting from zero) results in a shorter and faster program? 
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Chapter 5 
SIMPLE PROGRAM LOOPS 

The program loop is the basic structure that forces the CPU to repeat a sequence 
of instructions. Loops have four sections: 

1) The initialization section that establishes the starting values of counters. point
ers. indexes. and other variables. 

2) The processing section where the actual data manipulation occurs. This is the 
section that does the work. 

3) The loop control section that updates counters and indexes for the next iteration. 

4) The concluding section that analyzes and stores the results. 

Note that the computer performs Sections 1 and 4 only once while it may perform Sec· 
tions 2 and 3 many times. Thus. the execution time of the loop will mainly depend on 
the execution time of Sections 2 and 3. You will want Sections 2 and 3 to execute as 
quickly as possible; do not worry about the execution time of Sections 1 and 4. A typi
cal program loop can be flowcharted as shown in Figure 5-1. or the positions of the pro
cessing and loop control sections may be reversed as shown in Figure 5-2. The process
ing section in Figure 5-1 is always executed at least once. while the processing section 
in Figure 5-2 may not be executed at all. Figure 5-1 seems more natural. but Figure 5-2 
is often more efficient and avoids the problem of what to do when there is no data (a 
bugaboo for computers and the frequent cause of silly situations like the computer dun
ning someone for a bill of $0.00) 

The loop structure can be used to process entire blocks of data. To accomplish this. the 
program must increment an Index register after each iteration so that the effective ad
dress of an indexed instruction is the next element in the data block. The next iteration 
will then perform the same operations on the data in the next memory location. The 
computer can handle blocks of any length (up to 256. since the Index registers are 8 
bits long) with the same set of instructions. Indexed addressing is the key to processing 
blocks of data with the 6502 microprocessor. since it allows you to vary the actual (or 
effective) memory address by changing the contents of Index registers. Note that in the 
direct and immediate addressing modes. the address used is completely determined by 
the instruction and is therefore fixed if the program memory is read-only. 
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Initialization 

Section 

Processing 
Section 

loop Control 
Section 

Concluding 

Section 

Figure 5-1. Flowchart of a Program Loop 
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Initialization 

Section 

Loop Control 

Section 

Processing 

Section 

Concluding 

Section 

Figure 5-2. A Program Loop that Allows Zero Iterations 
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EXAMPLES 
Sum of Data 
Purpose: Calculate the sum of a series of numbers. The length of 

the series is in memory location 0041, and the series 
begins in memory location 0042. Store the sum in 
memory location 0040. Assume that the sum is an 8-bit number so that you 
can ignore carries. 

Sample Problem: 

(0041) 03 
(0042) 28 
(0043) 55 
(0044) 26 

Resu It: (0040) (0042) + (0043) + (0044) 
28+55+26 
A3 

There are three entries in the sum, since (0041)=03. 

Flowchart: 

Sum = 0 

Index = 0 

Sum = Sum + 
(0042+lndex) 

Index = 1ndex + , 

(0040) = Sum 

Note: (0042 + Index) is the contents of the memory location whose address is the sum 
of 0042 and Index. Remember that on the 6502 microprocessor. 0042 is a 16-bit 
address. Index is an 8-bit offset. and (0042 + Index) is an 8-bit byte of data. 
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Source Program: 

LDA #0 ;SUM = ZERO 
TAX ;INDEX = ZERO 

SUMD CLC ;DO NOT INCLUDE CARRY 
ADC $42.X ;SUM = SUM + DATA 
INX ;INCREMENT INDEX 
CPX $41 ;HAVE ALL ELEMENTS BEEN SUMMED' 
BNE SUMD ;NO. CONTINUE SUMMATION 
STA $40 ;YES. STORE SUM 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LDA #0 
0001 00 
0002 AA TAX 
0003 1S SUMD CLC 
0004 75 ADC $42.X 
0005 42 
0006 ES INX 
0007 E4 CPX $41 
OOOS 41 
0009 DO BNE SUMD 
OOOA FS 
OOOB S5 STA $40 
OOOC 40 
OOOD 00 BRK 

The initialization section of the program is the first two instructions. which set the sum 
and index to their starting values. Note that TAX transfers the contents of the Ac
cumulator to Index Register X but leaves the Accumulator as it was The base address 
of the array and the location of the counter are fixed within the program and need not 
be initialized. 

The processing section of the program consists of the single instruction ADC $42.X. 
which adds the contents of the effective address (base address plus Index Register X) to 
the contents of the Accumulator. This instruction does the real work of the program. 
The CLC instruction simply clears the Carry flag so that it does not affect the summa
tion. Note that each iteration of the loop adds in the contents of a new effective address 
even though the instructions do not change 

The loop control section of the program consists of the instruction INX. This instruction 
updates the Index register (by 1) so that the next iteration adds the next number to the 
sum. Note that (0041)- X tells you how many iterations are left to be done. 

The instruction BNE causes a branch if the Zero flag is O. CPX sets the Zero flag to 1 if 
Index Register X and the contents of memory location 0041 are the same and to 0 if 
they are not. The offset is a twos complement number and the count begins from the 
memory location immediately following the BNE instruction. In this case. the required 
jump is from memory location OOOB to memory location 0003. So the offset is: 

0003 03 
-OOOB = +F5 

FS 
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If the Zero flag is one. the CPU executes the next instruction in sequence (STA $40). 
Since CPX $41 was the ';CIst instruction before BNE to affect the Zero flag. BNE SUMO 
causes a branch to suMo if CPX $41 does not produce a zero result; that is. 

" {SUMO if (X) - (0041) ~O 
(PC) = 

(PC)+2 if (X) - (0041) = 0 

The 2 is caused by the two-word BNE instruction. A single instruction combining the 
Decrement and the Jump would be a useful addition to the 6502 instruction set. 

The order in which instructions are executed is often very important. INX must come 
after AOC $42.X or else the first number to be added to the sum will be the contents of 
memory location 0043 instead of the contents of memory location 0042. CPX $41 must 
come right before BNE SUMO. since otherwise the Zero status setting produced by CPX 
cou Id be changed by another instruction. 

CPX and CPY are the same as CMP except that the contents of memory are subtracted 
from an Index register rather than from the Accumulator. Note. however. that CPX and 
CPY offer limited addressing options (see Table 3-4). 

Most computer loops count down rather than up so that the Zero flag can serve as an 
exit condition. thus eliminating the need for a Compare instruction. This method is a bit 
awkward for people although it is used occasionally in launch countdowns and in a few 
other situations. Remember that the Zero flag is set to 1 if the resu It of an instruction is 
zero and to 0 if the result is not zero. 

We could easily revise the loop so that it works backward through the array (see the 
next flowchart). The following programs are revised versions. 

Source Program: 

SUMO 

LOA 
LOX 
CLC 
ACD 
DEX 
BNE 
STA 
BRK 

#0 
$41 

$41.X 

SUMO 
$40 

;SUM = ZERO 
;INOEX = MAXIMUM COUNT 
;00 NOT INCLUDE CARRY 
;SUM = SUM + DATA 
;OECREMENT INDEX 
;BRANCH BACK IF ALL ELEMENTS NOT SUMMED 
;STORE SUM 
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Note that the addition instruction is now AOC $41.X instead of AOC $42.X; the number 
in the Index register is one larger than before. Clearly. the net result of subtracting one 
from the base address and adding one to the index is zero. The reorganized object pro-
gram is: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 A6 LOX $41 
0003 41 
0004 18 SUMO CLC 
0005 75 AOC $41.X 
0006 41 
0007 CA OEX 
0008 00 BNE SUMO 
0009 FA 
OOOA 85 STA $40 
OOOB 40 
OOOC 00 BRK 

In most applications. the slight time and memory differences between one implementa
tion of a loop and another do not matter very much. You should therefore select the ap
proach that is the clearest and easiest for you to use. We will discuss program design 
and efficiency later in Chapters 13 and 15. 

You may wish to verify the hexadecimal values for the relative offsets in the last two 
programs. The final test of any calculations that you make is whether the program runs 
correctly. If. for whatever reason. you must perform hexadecimal calculations fre
quently. we suggest that you consider a calculator (like the Texas Instruments Program
med or one of the numerous manual aids that are available. 
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Flowchart (of reorganized summation program): 

Sum =0 

Index = (0041 1 

Sum = Sum + 
(0041 +Indexl 

Index = Index -1 

(00401 = Sum 
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16-Bit Sum of Data 
Purpose: Calculate the sum of a series of numbers. The length of the series is in 

memory location 0042 and the series itself begins in memory location 0043. 
Store the sum in memory locations 0040 and 0041 (eight least significant 
bits in 0040). 

Sample Problem: 

(0042) 03 
(0043) C8 
(0044) FA 
(0045) 96 

Result = C8 + FA + 96 = 025816 
(0040) 58 
(0041) = 02 

Flowchart: 

SumL = SumL + 
IBase + Index) 

SumU = SumU 
+ 1 

Index = Index + 1 

(0040) = SumL 

(0041) = SumU 
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Source Program: 

LDA #0 ;SUM = ZERO 
TAX ;INDEX = ZERO 
TAY ;MSB'S OF SUM = ZERO 

SUMD CLC ;DO NOT INCLUDE CARRY 
ADC $43,X ;SUM = SUM + DATA 
BCC COUNT 
INY ;ADD CARRY TO MSB'S OF SUM 

COUNT INX 
CPX $42 
BNE SUMD ;CONTINUE UNTIL ALL ELEMENTS SUMMED 
STA $40 ;STORE LSB'S OF SUM 
STY $41 ;STORE MSB'S OF SUM 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LDA #0 
0001 00 
0002 AA TAX 
0003 A8 TAY 
0004 18 SUMD CLC 
0005 75 ADC $43,X 
0006 43 
0007 90 BCC COUNT 
0008 01 
0009 C8 INY 
OOOA E8 COUNT INX 
0008 E4 CPX $42 
OOOC 42 
OOOD DO BNE SUMD 
OOOE F5 
OOOF 85 STA $40 
0010 40 
0011 84 STY $41 
0012 41 
0013 00 BRK 

The structure of this program is the same as the structure of the last example. The most 
significant bits of the sum must now be initialized and stored. The processing section 
consists of four instructions (CLC; ADC $43,X; BCC COUNT; and INY). including a con
dition jump. 

BCC COUNT causes a jump to memory location COUNT if Carry = O. Thus, if there is no 
carry from the 8-bit addition, the program jumps around the statement that increments 
the most significant bits of the sum. The relative offset is 

OOOA 
-0009 

The relative offset for BNE SUMD is 

0004 
-OOOF 

-aT 

0004 
+FFF1 
~ 

5-10 



INY adds 1 to the contents of Index Register Y. which is used here as a temporary 
register to save the carries from the addition. We could also use a memory location to 
hold the carries. since the INC instruction can be used to directly increment the con
tents of a memory location. 

You might wish to try reorganizing this program so that it decrements the index down 
to zero rather than incrementing it. Which version is faster and shorter? 

~=---. Relative branches are limited to short distances (7F16 or +127 LONG 
forward. 8016 or -128 backward from the end of the branch in- CONDITIONAL 
structionl. This limitation is seldom important. since most pro- BRANCHES 
gram branches are short. However. if you need a conditional 
branch with a greater range. you can always invert the condition logic and branch 
around a JMP instruction. For example. to branch to location FAR if Carry = O. use the 
sequence 

BCS NEXT 
JMP FAR 

NEXT 

NEXT is the address immediately following the last byte of the JMP instruction. JMP 
allows only absolute (direct) and indirect addressing. 
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Number of Negative Elements 
Purpose: Determine the number of negative elements (most significant bit 1) in a 

block. The length of the block is in memory location 0041 and the block itself 
starts in memory location 0042. Place the number of negative elements in 
memory location 0040. 

Sample Problem: 

(0041) 06 
(0042) 68 
(0043) F2 
(0044) 87 
(0045) 30 
(0046) 59 
(0047) 2A 

Resu It: (0040) 02. since 0043 and 0044 contain 
numbers with an MSB of 1. 

Flowchart: 

Nne9 ~ 0 
Base ~ 0042 

Index == 0 

Nne9 ~ Nne9 + , 

Index = Index + , 

(0040) ~ Nne9 
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Source Program: 

LDX #0 ;INDEX = ZERO 
LDY #0 ;NUMBER OF NEGATIVES = ZERO 

SRNEG LDA $42.X ;IS NEXT ELEMENT NEGATIVE? 
BPL CHCNT 
INY ;YES. ADD 1 TO NUMBER OF NEGATIVES 

CHCNT INX 
CPX $41 
BNE SRNEG ;CONTINUE UNTIL ALL ELEMENTS EXAMINED 
STY $40 ;SAVE NUMBER OF NEGATIVES 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A2 LDX #0 
0001 00 
0002 AO LDY #0 
0003 00 
0004 B5 SRNEG LDA $42.X 
0005 42 
0006 10 BPL CHCNT 
0007 01 
0008 C8 INY 
0009 E8 CHCNT INX 
OOOA E4 CPX $41 
OOOB 41 
OOOC DO BNE SRNEG 
OOOD F6 
OOOE 84 STY $40 
OOOF 40 
0010 00 BRK 

LDA affects the Sign (S) and Zero (Z) status flags. Therefore. we can immediately check 
to see if a number that has been loaded is negative or zero. 

BPL. Branch-on-Plus. causes a branch over the specified number of locations if the Sign 
(or Negative) bit is zero. A sign bit of zero may indicate a positive number or may just in
dicate the value of the most significant bit position; the interpretation depends on what 
the numbers mean. 

The offset for BPL is calculated from the first memory location following the two-byte 
instruction. Here the offset is simply from 0008 to 0009. or one location (i.e .. the INY in
struction is skipped if the Negative bit is zero). The Negative bit will be zero if the most 
significant bit of the data loaded from memory by the LDA $42.X instruction is zero. 

Remember that negative-signed numbers all have a most significant bit (bit 7) of 1. All 
negative numbers are actually larger. in the unsigned sense. than positive numbers. 
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Maximum Value 
Purpose: Find the largest element in a block of data. The length of the block is in 

memory location 0041 and the block itself begins in memory location 0042. 
Store the maximum in memory location 0040. Assume that the numbers in 
the block are all a-bit unsigned binary numbers. 

Sample Problem: 

(0041) 05 
(0042) 67 
(0043) 79 
(0044) 15 
(0045) E3 
(0046) 72 

Result: (0040) E3. since this is the largest of 
the five unsigned numbers. 

Flowchart: 

Base = 0041 

Index = 10041) 

Max = 0 

Mex = IBBse+lndex) 

Index = Index -1 

100401 = Max 
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Source Program: 

LOX 
LOA 

MAXM CMP 
BCS 
LOA 

NOCHG OEX 
BNE 
STA 
BRK 

Object Program: 

$41 
#0 
$41.X 
NOCHG 
$41.X 

MAXM 
$40 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
OOOB 
0009 
OOOA 
OOOB 
OOOC 
0000 
OOOE 
OOOF 

;GET ELEMENT COUNT 
;MAXIMUM = ZERO (MINIMUM POSSIBLE VALUE) 
;IS NEXT ELEMENT ABOVE MAXIMUM? 
;NO. KEEP MAXIMUM 
;YES. REPLACE .MAXIMUM WITH ELEMENT 

;CONTINUE UNTIL ALL ELEMENTS EXAMINEO 
;SAVE MAXIMUM 

Memory Contents Instruction 
(Hex) (Mnemonic) 

A6 LOX $41 
41 
A9 LOA #0 
00 
05 MAXM CMP $41.X 
41 
BO BCS NOCHG 
02 
B5 LOA $41.X 
41 
CA NOCHG OEX 
00 BNE MAXM 
F7 
85 STA $40 
40 
00 BRK 

The relative offset for BCS NOCHG is: 

OOOA 
-0008 

02 

The relative offset for BNE MAXM is: 

0004 04 
-0000 +F3 

F7 
The first two instructions of this program form the initialization section. 

This program takes advantage of the fact that zero is the smallest 8-bit unsigned binary 
number. When you set the register that contains the maximum value - in this case. 
the Accumulator - to the minimum possible value before you enter the loop. then the 
program will set the Accumulator to a larger value unless all the elements in the array 
are zeros. The program works properly if there are two elements in the array. bu t not if 
there is only one or none at all. Why? How could you solve this problem? 

The instruction CMP $41.X sets the Carry flag as follows where ELEMENT is the con
tents of the effective address and MAX is the contents of the Accumulator: 

Carry = 0 if ELEMENT > MAX 
Carry = 1 if ELEMENT .-::;MAX 
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Remember that the carry is an inverted borrow. If Carry = 1. the program proceeds to 
address NOCHG and does not change the maximum. If Carry = O. the program replaces 
the old maximum with the current element by executing the instruction LOA $41.X. 

The program does not work if the numbers are signed. because negative numbers will 
appear to be larger than positive niJmbers. This problem is somewhat tricky because a 
twos complement overflow could make the sign of the result incorrect. A further prob
lem is that the CMP instruction does not affect the Overflow flag. A program for signed 
numbers would therefore have to use the SBC instruction and check both the Sign and 
the Overflow flags. The Carry flag would have to be set to 1 before the subtraction 
(remember that Carry is an inverted borrow and the SBC instruction inverts it before 
subtracting iV. and an addition would be required to restore the original value of the 
maximum. Note how convenient it is in the example that CMP does not actually change 
the contents of the Accumulator. 
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Justify a Binary Fraction 
Purpose: Shift the contents of memory location 0040 left until the most significant bit 

of the number is 1. Store the result in memory location 0041 and the nu mber 
of left shifts required in memory location 0042. If the contents of memory 
location 0040 are zero. clear both 0041 and 0042. 

Note: The process is just like converting a number to a scientific notation: for example: 

0.0057 = 5.7 x 10-3 

Sample Problems: 

a. (0040) 

Result: (0041) 
(0042) 

b (0040) 

Result: (0041) 
(0042) 

c. (0040) 

Result: (0041) 
(0042) 

d (0040) 

Result: (0041) 
(0042) 

Flowchart: 

22 

88 
02 

01 

80 
07 

CB 

CB 
00 

00 

00 
00 

Nshft = 0 
Numb = (0040) 

Shift Numb 

left 1 bit 
Nohfl = Nshfl + 1 
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Source Program: 

LDY 
LDA 
BEG 

CHKMS BMI 
INY 
ASL 
JMP 

DONE STA 
STY 
BRK 

Object Program: 

#0 
$40 
DONE 
DONE 

A 
CHKMS 
$41 
$42 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
OOOB 
0009 
000 A 
OOOB 
OOOC 
DODD 
OOOE 
OOOF 
0010 
0011 

;NUMBER OF SHIFTS =0 
;GET DATA 
;DONE IF DATA IS ZERO 
;DONE IF MSB IS ONE 
;ADD 1 TO NUMBER OF SHIFTS 
;SHIFT LEFT ONE BIT 

;SAVE JUSTIFIED DATA 
;SAVE NUMBER OF SHIFTS 

Memory Contents Instruction 
(Hex) (Mnemonic) 

AD LDY #0 
00 
A5 LDA $40 
40 
FO BEQ DONE 
07 
30 CHKMS BMI DONE 
05 
C8 INY 
OA ASL A 
4C JMP CHKMS 
06 
00 
85 DONE STA $41 
41 
84 STY $42 
42 
00 BRK 

BMI DONE causes a branch to location DONE if the Sign bit is 1. This condition may 
mean that the last result was a negative number. or it may just mean that its most sig
nificant bit was 1 - the computer only supplies the results; the programmer must pro
vide the interpretation. 

ASL A shifts the contents of the Accumulator left one bit and clears the least significant 
bit. 

JMP is an unconditional branch instruction that always places a new value in the Pro
gram Counter. It only allows absolute (directl or indirect addressing. The indirect mode 
provides flexibility since the actual destination address can be stored in RAM. Note that 
there is no relative addressing and no special page-zero modes. 

The address in the JMP instruction is stored in two successive memory locations with 
the least significant bits first (at the lower address). This is the standard way in which 
the 6502 microprocessor expects to find addresses. regardless of whether they are part 
of instructions or are used indirectly. The same upside-down method is used in the 
8080.8085. and Z80 microprocessors. but the opposite approach (most significant bits 
first) is used on the 6800 microprocessor. Note that an address occupies two bytes of 
memory. although there is a single byte of data located at that address. 
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We could reorganize this program so as to eliminate the extraneous JMP instruction. 
O.ne reorganized version would be: 

LDY 
LDA 
BEQ 

CHKMS INY 
ASL 
BCC 
RO.R 
DEY 

Do'NE STA 
STY 
BRK 

#0 
$40 
Do'NE 

A 
CHKMS 
A 

$41 
$42 

;NUMBER O.F SHIFTS = 0 
;GET DATA 
;DO.NE IF DATA IS ZERO. 
;ADD 1 TO. NUMBER OF SHIFTS 
;SHIFT LEFT O.NE BIT 
;CO.NTINUE IF MSB NO.T O.NE 
;O.THERWISE. SHIFT BACK O.NCE 
;AND IGNO.RE EXTRA SHIFT 
;SAVE JUSTIFIED DATA 
;SAVE NUMBER O.F SHIFTS 

This version shifts the data until the Carry becomes 1. Then it adjusts the data and the 
number of shifts back one since the last shift was not really necessary. Show that this 
version is also correct. What are its advantages and disadvantages as compared to the 
previous program? You might wish to try some other organizations to see how they 
compare in execution time and memory usage. 
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Post-Indexed (Indirect) Addressing 
We have already noted the additional flexibility provided by 
the indexed addressing mode. The same instructions can be 
used to process each element in an array or table. But even 
more flexibility is provided by the post-indexed addressing 
mode in which the instruction only specifies the address on 

POST-INDEXED 
(INDIRECT) 
ADDRESSING 
MODE 

page zero that contains the base address of the table or array. Now the same program 
can handle an array or table located anywhere in memory. All that we have to do is 
place the starting address in the appropriate locations on page zero. Note that the start
ing address occupies two bytes of memory. with the least significant byte first (at the 
lower address). Post-indexing requires extra clock cycles (six as compared to four for 
the zero-page indexed mode) but provides tremendous additional flexibility. Entire ar
rays need not be moved. nor are repeated versions of the same program required. 

Post-indexed (indirect) addressing can only be used with Index Register Y. So the max
imum value program with post-indexed addressing is as follows. assuming that the 
length of the array is in memory location 0041 and its starting address is in memory 
locations 0042 and 0043. 

For example. 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 
(0047) 
(0048) 

05 
43 (LSBs of starting address minus one) 
00 (MSBs of starting address minus one) 
67 (first element in array) 
79 
15 
E3 
72 

Result = (40) = E3 since this is the largest 
of the 5 unsigned numbers. 

Source Program: 

LOY 
LOA 

MAXM CMP 
BCS 
LOA 

NOCHG DEY 
BNE 
STA 
BRK 

$41 
#0 
($421.Y 
NOCHG 
($421.Y 

MAXM 
$40 

;GET ELEMENT COUNT 
;MAXIMUM = ZERO (MINIMUM POSSIBLE VALUE) 
;IS NEXT ELEMENT ABOVE MAXIMUM? 
;NO. KEEP MAXIMUM 
;YES. REPLACE MAXIMUM WITH ELEMENT 

;CONTINUE UNTIL ALL ELEMENTS EXAMINED 
;SAVE MAXIMUM 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A4 LOY $41 
0001 41 
0002 A9 LOA #0 
0003 00 
0004 01 MAXM CMP ($421.Y 
0005 42 
0006 BO BCS NOCHG 
0007 02 
0008 Bl LOA ($421.Y 
0009 42 
OOOA 88 NOCHG DEY 
OOOB DO BNE MAXM 
OOOC F7 
0000 85 STA $40 
OOOE 40 
OOOF 00 BRK 

The indirect address (in memory locations 0042 and 0043) is stored in the usual 6502 
fashion. with the least significant bits first (at the lower address). 

We could use the same program to find the maximum element in an array of 5 entries 
starting in memory address 25El. All that we would have to do is change the indirect 
address to 25EO before executing the program. that is. 

(0042) = EO (LSBs of starting address minus one) 
(0043) = 25 (MSBs of starting address minus one) 

How would you handle the array starting in memory address 25El if the program used 
ordinary indexed addressing (as in the earlier example)? Assume that the program is in 
ROM so that you cannot change the addresses in the instructions. 
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Pre-Indexed (Indirect) Addressing 
The pre-indexed addressing mode gives you a different kind of 
flexibility. This method allows you to choose one address from 
a table of addresses. rather than being limited to a particular 
memory address. For example. rather than having memory 
location 0041 contain the length of the array in the maximum 

PRE-INDEXED 
(INDIRECT) 
ADDRESSING 
MODE 

problem. we cou Id let it contain the index of the address that contains the length of the 
array. The table of addresses must be located somewhere on page zero. perhaps start
ing at memory address 0060. that is 

(0060) = 2F} dd . h· h #0· d (0061) = 00 a ress In w IC cou nter IS store 

:~~~~~ : g~} address in which counter #1 is stored 

(0064) = A5} dd . h· h #2 . (0065) = 00 a ress In w IC cou nter IS stored 

One problem is that addresses occupy two bytes of memory so that you must multiply 
the counter number by two before applying the pre-indexed addressing mode. Note 
that all addresses are stored in the usual 6502 manner. with the least significant bits 
first. Pre-indexed addressing is not as useful as post-indexed addressing. but it does 
come in handy occasionally. 
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PROBLEMS 
1) Checksum of Data 
Purpose: Calculate the checksum of a series of numbers. The length of the series is in 

memory location 0041 and the series itself begins in memory location 0042. 
Store the checksum in memory location 0040. The checksum is formed by 
Exclusive-ORing all the numbers in the series together. 

Note: Such checksums are often used in paper tape and cassette systems to ensure 
that the data has been read correctly. The calculated checksum is compared to 
the one stored with the data - if the two checksums do not agree. the system 
will usually either indicate an error to the operator or automatically read the data 
again. 

Sample Problem: 

(0041) 03 
(0042) 28 
(0043) 55 
(0044) 26 

Result: (0040) (0042) EB (0043) EB (0044) 
28 EB 55 Ell 26 
00101000 

EB 01010101 
01111101 

El100100ll0 
01011011 
58 

2) Sum of 16-Bit Data 
Purpose: Calculate the sum of a series of 16-bit numbers The length of the series is in 

memory location 0042 and the series itself begins in memory location 0043. 
Store the sum in memory locations 0040 and 0041 (eight most significant 
bits in 0041). Each 16-bit number occupies two memory locations. with the 
eight most significant bits in the higher address Assume that the sum can 
be contained in 16 bits. 

Sample Problem: 

(0042) 03 
(0043) Fl 
(0044) 28 
(0045) lA 
(0046) 30 
(0047) 89 
(0048) 48 

Result: 28Fl + 301A + 4889 =A494 
(0040) 94 
(0041) = A4 
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3) Number of Zero, Positive, and Negative Numbers 
Purpose: Determine the number of zero, positive (most significant bit zero but entire 

number not zero), and negative (most significant bit 1) elements in a block. 
The length of the block is in memory location 0043 and the block itself starts 
in memory location 0044. Place the number of negative elements in memory 
location 0040, the number of zero elements in memory location 0041, and 
the number of positive elements in memory location 0042. 

Sample Problem: 

(0043) 06 
(0044) 68 
(0045) F2 
(0046) 87 
(0047) 00 
(0048) 59 
(0049) 2A 

Resu It: 2 negative, 1 zero, and 3 positive, so 
(0040) 02 
(0041) 01 
(0042) 03 

4) Find Minimum 
Purpose: Find the smallest element in a block of data. The length of the block is in 

memory location 0041 and the block itself begins in memory location 0042. 
Store the minimum in memory location 0040. Assume that the numbers in 
the block are 8-bit unsigned binary numbers. 

Sample Problem: 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 

Result: (0040) 

5) Count 1 Bits 

05 
67 
79 
15 
E3 
72 

15, since this is the smallest of the 
five unsigned numbers. 

Purpose: Determine how many bits in memory location 0040 are ones and place the 
result in memory location 0041. 

Sample Problem: 

(0040) 

Result: (0041) 

38 = 00111011 

05 
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Chapter 6 
CHARACTER-CODED DATA 

Microprocessors often handle character-coded data. Not only do keyboards. 
teletypewriters. communications devices, displays. and computer terminals ex
pect or provide character-coded data, but many instruments. test systems. and 
controllers also require data in this form. The most commonly used code is ASCII. 
Baudot and EBCDIC are found less frequently. We will assume all of our character
coded data to be 7-bit ASCII with the most significant bit zero (see Table 6-11. 

Some principles to remember in handling ASCII-coded data HANDLING 
DATA IN 
ASCII 

are: 

1) The codes for the numbers and letters form ordered sub
sequences. The codes for the decimal numbers are 3016 
through 3916 so that you can convert between decimal and ASCII with a simple 
additive factor. The codes for the upper case letters are 4116 through 5A 16 so that 
you can do alphabetic ordering by sorting the data in increasing numerical order. 

2) The computer draws no distinction between printing and non-printing charac
ters. Only the I/O devices make that distinction. 

3) An ASCII device will handle only ASCII data. To print a 7 on an ASCII printer, 
the microprocessor must send 3716 to the printer: 0716 is the 'bell' character. 
Similarly, the microprocessor will receive the character 9 from an ASCII keyboard 
as 3916: 0916 is the' tab' cha racter. 

4) Some ASCII devices do not use the full character set. For example. control 
characters and lower case letters may be ignored or printed as spaces or question 
marks. 

5) Some widely used ASCII characters are: 

OA16 - line feed (LF) 

0016 - carriage return (CR) 

2016 - space 

3F 16 - ? (question mark) 

7F16 - rubout or delete character 

6) Each ASCII character occupies eight bits. This allows a large character set but is 
wasteful when the data is limited to a small subset such as the decimal numbers. 
An 8-bit byte, for example, can hold only one ASCII-coded decimal digit. while it 
can hold two BCD-coded digits. 
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Table 6-1. Hex-ASCII Table 

~ 0 1 2 3 4 6 6 7 
Hex LSD 

0 NUL OLE SP 0 @ P , 
P 

1 SOH DCl ! 1 A 0 a q 
2 STX DC2 .. 2 B R b r 
3 ETX DC3 # 3 C S c s 
4 EOT DC4 $ 4 0 T d t 
6 ENO NAK % 5 E U e u 
6 ACK SYN & 6 F V f v 
7 BEL ETB 7 G W 9 w 
8 BS CAN ( B H X h x 
9 HT EM ) 9 I Y i Y 
A LF SUB . J Z j z 
B VT ESC + K [ k ( 
C FF FS < L \ I I 
D CR GS - = M ] m I 
E SO RS > N ,. 

n -
F SI US / ? 0 - 0 DEL 
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EXAMPLES 
Length of a String of Characters 
Purpose: Determine the length of a string of ASCII characters (seven bits with most 

significant bit zero). The string starts in memory location 0041; the end of 
the string is marked by a carriage ret~n GflafaGter ('CR', 0016). Place the 
length of the string (excluding the carriage return) into memory location 
0040. 

Sample Problems: 

a. (0041) 

Result: (0040) 

b (0041) 
(0042) 
(0043) 
(0044) 
(0045) 
(0046) 
(0047) 

Result: (0040) 

Flowchart: 

00 

00 since the first character is a carriage return. 

52 'R' 
41 'A' 
54 T 
48 'H' 
45 T 
52 'R' 
00 CR 

06 

Base ~ 0041 
Length ~ 0 

Length ~ Length 

+ 1 

Yes 

10040) ~ Length 
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Source Program: 

LOX #0 ;STRING LENGTH = ZERO 
LOA #$00 ;GET ASCII CARRIAGE RETURN TO COMPARE 

CHKCR CMP $41,X ;IS CHARACTER A CARRIAGE RETURN? 
BEQ DONE ;YES, DONE 
INX ;NO, ADD 1 TO STRING LENGTH 
JMP CHKCR 

DONE STX $40 ;SAVE STRING LENGTH 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A2 LOX #0 
0001 00 
0002 A9 LOA #$00 
0003 00 
0004 05 CHKCR CMP $41,X 
0005 41 
0006 FO BEQ DONE 
0007 04 
0008 E8 INX 
0009 4C JMP CHKCR 
OOOA 04 
OOOB 00 
OOOC 86 DONE STX $40 
0000 40 
OOOE 00 BRK 

The carriage return character, 'CR', is just another ASCII code (0016) as far as the com
puter is concerned. The fact that this character causes an output device to perform a 
control function rather than print a symbol does not affect the computer. 

The Compare instruction, CMP. sets the flags as if a subtraction had been performed 
but leaves the carriage return character in the Accumulator for later comparisons. The 
Zero (Z) flag is affected as follows: 

Z = 1 if the character in the string is a carriage return 

Z = 0 if it is not a carriage return 

The instruction INX adds 1 to the string length counter in Index Register X. LOX #0 in
itializes this counter to zero before the loop begins. Remember to initialize variables 
before using them in a loop. 

This loop does not terminate because a counter is decremented to zero or reaches a 
maximum value. The computer will simply continue examining characters until it finds 
a carriage return. It is good programming practice to place a maximum count in a loop 
like this to avoid problems with erroneous strings that do not contain a carriage return. 
What would happen if the example program were used with such a string? 
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Note that by rearranging the logic and changing the initial conditions. you can shorten 
the program and decrease its execution time. If we adjust the flowchart so that the pro
gram increments the string length before it checks for the carriage return. only one 
Jump instruction is necessary instead of two. The new flowchart and program are as 
follows: 

Source Program: 

LDX 
LDA 

CHKCR INX 
CMP 
BNE 
STX 
BRK 

#$FF 
#$OD 

$41.X 
CHKCR 
$40 

Base ~ 0041 
Length ~ -1 

Length ~ Length 

+ 1 

(0040) ~ Length 

STRING LENGTH = -1 
GET ASCII CARRIAGE RETURN TO COMPARE 
ADD 1 TO STRING LENGTH 

;IS CHARACTER A CARRIAGE RETURN? 
;NO. CHECK NEXT CHARACTER 
;YES. SAVE STRING LENGTH 

This version is not only shorter and faster. but it also contains no absolute destination 
addresses; thus it can easily be placed anywhere in memory. The earlier version con
tains a JMP instruction with a specific absolute address. while this version has only 
branch instructions with relative addresses. 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A2 LOX #$FF 
0001 FF 
0002 A9 LOA #$00 
0003 00 
0004 E8 CHKCR INX 
0005 05 CMP $41.X 
0006 41 
0007 00 8NE CHKCR 
0008 F8 
0009 86 STX $40 
OOOA 40 
OOOB 00 BRK 
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Find First Non-Blank Character 
Purpose: Search a string of ASCII characters (seven bits with most significant bit zero) 

for a non-blank character. The string starts in memory location 0042. Place 
the index of the first non-blank character in memory location 0040. A blank 
character is 2016 in ASCII. 

Sample Problems: 

a. (0042) 

Resu It: (0040) 

b. (0042) 
(0043) 
(0044) 
(0045) 
(0046) 

Resu It: (0040) 

Flowchart: 

37 ASCII 7 

00. since memory location 0042 contains a 
non-blank character. 

20 SP 
20 SP 
20 SP 
46 'F' 
20 SP 

03. since the three previous memory locations 
all contain blanks. 

Base ~ 0042 

Index =: 0 

Index = Index + 1 

No 

(0040) ~ Index 
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Source Program: 

lDX 
lDA 

CHBlK CMP 
BNE 
INX 
JMP 

DONE STX 

BRK 

#0 
#' 
$42.X 
DO~E 

CHBlK 
$40 

;START WITH INDEX = ZERO 
;GET ASCII SPACE FOR COMPARISON 
;IS CHARACTER AN ASCII SPACE? 
;NO. DONE 
;YES. EXAMINE NEXT CHARACTER 

;SAVE INDEX OF FIRST NON-BLANK 
; CHARACTER 

Note the use of an apostrophe n or single quotation mark before an ASCII character. 

Object Program: 

Memory Address Memory Contents Ins tru cti on 
(Hex) (Hex) (Mnemonic) 

0000 A2 lDX #0 
0001 00 
0002 A9 lDA #' 
0003 20 
0004 D5 CHBlK CMP $42.X 
0005 42 
0006 DO BNE DONE 
0007 04 
0008 E8 INX 
0009 4C JMP CHBlK 
OOOA 04 
OOOB 00 
OOOC 86 DONE STX $40 
OOOD 40 
OOOE 00 BRK 

looking for spaces in strings is a common task. Spaces often are eliminated from 
strings when they are used simply to increase readability or to fit particular formats. It is 
obviously wasteful to store and transmit beginning. ending. or extra spaces. particularly 
if you are paying for the communications capability and memory required. Data and 
program entry. however. are much simpler if extra spaces are tolerated. Microcom
puters are often used in situations like this to convert data between forms that are easy 
for humans to use and forms that are efficiently handled on computers and com
munications lines. 
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Again. if we alter the initial conditions so that the loop control section precedes the pre
cessing section. we can reduce the number of bytes in the program and decrease the 
loop's execution time. The rearranged flowchart is: 

Source Program: 

lDX 
lDA 

CHBlK INX 
CMP 
BEQ 
STX 

BRK 

Object Program: 

#$FF 
#' 

$42.X 
CHBlK 
$40 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 

Base = 0042 
Index =-1 

Index = Index + 1 

(0040) = Index 

:START WITH INDEX =-1 
:GET ASCII SPACE FOR COMPARISON 
;INCREMENT INDEX 
;IS CHARACTER AN ASCII SPACE? 
:YES. EXAMINE NEXT CHARACTER 
;NO. SAVE INDEX OF FIRST NON-BLANK 
; CHARACTER 

Memory Contents Instruction 
(Hex) (Mnemonic) 

A2 lDX #$FF 
FF 
A9 lDA #' 
20 
E8 CHBlK INX 
D5 CMP $42,X 
42 
FO BEQ CHBlK 
FB 
86 STX $40 
40 
00 BRK 
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Replace Leading Zeros with Blanks 
Purpose: Edit a string of ASCII decimal characters by replacing all leading zeros with 

blanks. The string starts in memory location 0041; assume that it consists 
entirely of ASCII-coded decimal digits. The length of the string is in memory 
location 0040. 

Sample Problems: 

a. (0040) = 02 
(0041) = 36 ASCII 6 

The program leaves the string unchanged. since the leading digit is not zero. 

b. (0040) 08 
(0041) 30 ASCII 0 
(0042) 30 ASCII 0 
(0043) 38 ASCII 8 

Result: (0041) 20 SP 
(0042) 20 SP 

The two leading ASCII zeros have been replaced by ASCII blanks. 

Flowchart: 

Count = 10040) 

Index = 0 

Base = 0041 

IBase+lndex) = 

ASCII Space 12016) 

Index = Index + 1 
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Source Program: 

CHKZ 

DONE 

LOX 
LOY 
LOA 
CMP 
BNE 
STY 
INX 
CPX 
BNE 
BRK 

#0 
#' 
#'0 
$41.X 
DONE 
$41.X 

$40 
CHKZ 

;INDEX = ZERO TO START 
;GET ASCII SPACE FOR REPLACEMENT 
;GET ASCII ZERO FOR COMPARISON 
;IS LEADING DIGIT ZERO? 
;NO. END REPLACEMENT PROCESS 
;IS LEADING DIGIT ZERO? 

;EXAMINE NEXT DIGIT IF ANY 

Single quotation mark in front of a character indicates that the operand is an ASCII 
code. 

Object Program: 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 
0000 
OOOE 
OOOF 
0010 
0011 

Memory Contents 
(Hex) 

A2 
00 
AO 
20 
A9 
30 
05 CHKZ 
41 
DO 
07 
94 
41 
E8 
E4 
40 
DO 
F5 
00 DONE 

Instruction 
(Mnemonic) 

LOX #0 

LOY #' 

LOA #'0 

CMP $41.X 

BNE DONE 

STY $41.X 

INX 
CPX $40 

BNE CHKZ 

BRK 

You will frequently want to edit decimal strings before they are printed or displayed to 
improve their appearance. Common editing tasks include eliminating leading zeros. 
justifying numbers. adding signs or other identifying markers. and rounding. Clearly. 
printed numbers like 0006 or $27.34382 can be confusing and annoying. 

Here the loop has two exits - one if the processor finds a nonzero digit and the other if 
it has examined the entire string. 

The instruction STY $41.X places an ASCII space character (20 hex) in a memory loca
tion that previously contained an ASCII zero. Note that STY has only a limited number 
of addressing modes (see Table 3-4); there are no indexing modes with Register Y. no 
pre-indexing. and no absolute indexing. The only indexed addressing mode is the zero
page mode with Index Register X. 

All digits in the string are assumed to be ASCII: that is. the digits are 3016 through 
3916 rather than the ordinary decimal 0 to 9. The conversion from decimal to ASCII is 
simply a matter of adding 3016 to the decimal digit. 
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You can place a single ASCII character in a 6502 assembly language program by pre
ceding it with an apostrophe ('). You can place a string of ASCII characters in program 
memory by using the .TEXT (Store ASCII Text) pseudo-operation on the 6502 assem
bler. A delimiter character (usually f) must surround the text: the usual form is: 

Label 

EMSG 

Operation 
Code 

.TEXT 

Operand 

/ERROR/ 

You may have to be careful. when blanking zeros. to leave one zero in the event that all 
the digits are zero How would you do this? 

Note that each ASCII digit requires eight oits. as compared to four for a BCD digit. 
Therefore. ASCII is an expensive format in which to store or transmit numerical data. 
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Add Even Parity to ASCII Characters 
Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string 

is in memory location 0040 and the string itself begins in memory location 
0041. Place even parity in the most significant bit of each character by set
ting the most significant bit to 1 if that makes the total number of 1 bits in 
the word an even number. 

Sample Problem: 

(0040) 06 
(0041) 31 
(0042) 32 
(0043) 33 
(0044) 34 
(0045) 35 
(0046) 36 

Result: (0041) 81 
(0042) 82 
(0043) 33 
(0044) 84 
(0045) 35 
(0046) 36 
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Flowchart: 

Base = 0040 

Index = (0040) 

Bit Count = 0 

Data = (Base + 
Index) 

Bit Count = 

Bit Count + 1 

Shift Data Left One 

Bit Arithmetically 

(LSB = Ol 

Set MSB of 

(Base+lndex) 

to 1 
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Source Program: 

LDX $40 ;INDEX = MAXIMUM COUNT 
GTDATA LDY #0 ;BIT COUNT = ZERO FOR DATA 

LDA $40.X ;GET DATA FROM BLOCK 
CHBIT BPL CHKZ ;IS NEXT DATA BIT 1? 

INY ;YES. ADD 1 TO BIT COUNT 
CHKZ ASL A ;EXAMINE NEXT BIT POSITION 

BNE CHBIT ;UNLESS ALL BITS ARE ZEROS 
TYA 
LSR A ;DID DATA HAVE EVEN NUMBER OF .,. BITS? 
BCC NEXTE 
LDA $40.X ;NO. SET PARITY BIT 
ORA #%10000000 
STA $40.X 

NEXTE DEX 
BNE GTDATA ;CONTINUE THROUGH DATA BLOCK 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A6 LDX $40 
0001 40 
0002 AO GTDATA LDY #0 
0003 00 
0004 B5 LDA $40.X 
0005 40 
0006 10 CHBIT BPL CHKZ 
0007 01 
0008 C8 INY 
0009 OA CHKZ ASL A 
OOOA DO BNE CHBIT 
OOOB FA 
OOOC 98 TYA 
OOOD 4A LSR A 
OOOE 90 BCC NEXTE 
OOOF 06 
0010 B5 LDA $40.X 
0011 40 
0012 09 ORA #%10000000 
0013 80 
0014 95 STA $40.X 
0015 40 
0016 CA NEXTE DEX 
0017 DO BNE GTDATA 
0018 E9 
0019 00 BRK 

Parity is often added to ASCII characters before they are transmitted on noisy com
munications lines; this provides a simple error-checking facility. Parity detects all 
single-bit errors but does not allow for error correction; that is. you can tell by checking 
the parity of the data that an error has occurred. but you cannot tell which bit was 
received incorrectly. All that the receiver can do is request retransmission. 
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The procedure for calculating parity is to count the number of '1' bits in the data words. 
If that number is odd. the MSB of the data word is set to 1 to make the parity even. 

ASL clears the least significant bit of the number being shifted. Therefore. the result of 
a series of ASL instructions will eventually be zero. regardless of the original value of 
the data (try it!). The bit counting section of the example program not only does not 
need a counter. but also stops examining the data as soon as all remaining bits are 
zeros. This procedlJre saves execution time in many cases. 

The MSB of the data is set to T by logically ~Ring it with a pattern that has a T in its 
most significant bit and zeros elsewhere. Logically ~Ring a bit with one produces a 
result of one regardless of the original value. while logically ~Ring a bit with zero does 
not change the original value. 
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Pattern Match 
Purpose: Compare two strings of ASCII characters to see if they are the same. The 

length of the strings is in memory location 0041; one string starts in memory 
location 0042 and the other in memory location 0052. If the two strings 
match, clear memory location 0040; otherwise, set memory location 0040 to 
FF16 (all ones). 

Sample Problems: 

a, 

b. 

(0041) 03 

(0042) 43 'C' 
(0043) 41 'A' 
(0044) 54 T 

(0052) 43 'C' 
(0053) 41 'A' 
(0054) 54 T 

Resu It: (0040) 00, since the two strings are the same. 

(0041) 03 

(0042) 52 'R' 
(0043) 41 'A' 
(0044) 54 'r' 

(0052) 43 'C' 
(0053) 41 'A' 
(0054) 54 T 

Result: (0040) FF, since the first characters in the 
strings differ. 

Note: The matching process ends as soon as the CPU finds a difference - the rest of 
the strings need not be examined, 
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Flowchart: 

Source Program: 

LOX #0 
LOY #$FF 

CHCAR LOA $42.X 
CMP $52.X 
BNE DONE 
INX 
CPX $41 
BNE CHCAR 
LOY #0 

DONE STY $40 
BRK 

Index = 0 

Mark = FF16 

Index = Index + 1 

Mark = 0 

100401 = Mark 

;START WITH FIRST ELEMENT IN STRINGS 
;MARKER FOR NO MATCH 
;GET CHARACTER FROM STRING 1 
;IS THERE A MATCH WITH STRING 27 
;NO. DONE 

;CHECK NEXT PAIR IF ANY LEFT 
;IF NONE LEFT. MARK MATCH 
;SAVE MATCH MARKER 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A2 LOX #0 
0001 00 
0002 AO LDY #$FF 
0003 FF 
0004 B5 CHCAR LDA $42.X 
0005 42 
0006 D5 CMP $52.X 
0007 52 
0008 DO BNE DONE 
0009 07 
OOOA E8 INX 
OOOB E4 CPX $41 
OOOC 41 
OOOD DO BNE CHCAR 
OOOE F5 
OOOF AO LDY #0 
0010 00 
0011 84 DONE STY $40 
0012 40 
0013 00 BRK 

Matching strings of ASCII characters is an essential part of recognizing names or com
mands. identifying variables or operation codes in assemblers and compilers. finding 
files. and many other tasks. 

Index Register X is used to access both strings - only the base addresses are different. 
This method allows the strings to be located anywhere in memory. although we would 
have to use the absolute indexed addressing modes if the strings were not on page 
zero. We could also use the post-indexed mode (with Index Register Y) if we had two 
different base addresses stored somewhere on page zero. 

The instruction CMP $52.X compares the Accumulator to the contents of the indexed 
memory location. We could replace the LDY #0 instruction with INY. Why? Compare 
the time and memory requirements of the two alternatives. Which version do you think 
is clearer? The replacement would also allow you to use a memory I'ocation for the 
marker rather than a register (why?). 
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PROBLEMS 
1) Length of a Teletypewriter Message 
Purpose: Determine the length of an ASCII message. All characters are 7-bit ASCII 

with MSB = O. The string of characters in which the message is embedded 
starts in memory location 0041. The message itself starts with an ASCII STX 
character (0216) and ends with ETX (0316). Place the length of the message 
(the number of characters between the STX and the ETX but including 
neither) into memory location 0040. 

Sample Problem: 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

Resu It: (0040) 

40 
02 STX 
47 'G' 
4F '0' 
03 ETX 

02, since there are two characters between the STX 
in location 0042 and ETX in location 0045. 

2) Find Last Non-Blank Character 
Purpose: Search a string of ASCII characters for the last non-blank character. The 

string starts in memory location 0042 and ends with a carriage return 
character (0016). Place the index of the last non-blank character in memory 
location 0040. 

Sample Problems: 

a. (0042) 37 ASCII 7 
(0043) 00 CR 

Result: (0040) 00, since the last (and only) non-blank character 
is in memory location 0042. 

b. (0042) 41 'A' 
(0043) 20 SP 
(0044) 48 'H' 
(0045) 41 'A' 
(0046) 54 T 
(0047) 20 SP 
(0048) 20 SP 
(0049) 00 CR 

Result: (0040) 04 
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3) Truncate Decimal String to Integer Form 
Purpose: Edit a string of ASCII decimal characters by replacing all digits to the right of 

the decimal point with ASCII blanks (2016). The string starts in memory loca
tion 0041 and is assumed to consist entirely of ASCII-coded decimal digits 
and a possible decimal point (2E16). The length of the string is in memory 
location 0040. If no decimal point appears in the string, assume that the 
decimal point is implicitly at the far right. 

Sample Problems: 

a. (0040) 04 

(0041) 37 ASCII 7 
(0042) 2E ASCII. 
(0043) 38 ASCII 8 
(0044) 31 ASCII 1 

Result: (0041) 37 ASCII 7 
(0042) 2E ASCII. 
(0043) 20 SP 
(0044) 20 SP 

b (0040) 03 

(0041) 36 ASCII 6 
(0042) 37 ASCII 7 
(0043) 31 ASCII 1 

Result: Unchanged, as number is assumed to be 671. 

4) Check Even Parity in ASCII Characters 
Purpose: Check even parity in a string of ASCII characters. The length of the string is 

in memory location 0041, and the string itself begins in memory location 
0042. If the parity of all the characters in the string is correct. clear memory 
location 0040; otherwise, place FF16 (all ones) into memory location 0040. 

Sample Problems: 

a. (0041) 03 

(0042) 
(0043) 
(0044) 

Result: (0040) 

b. (0041) 

(0042) 
(0043) 
(0044) 

Resu It: (0040) 

81 
82 
33 

00, since all the characters have even parity. 

03 

B1 
B6 
33 

FF, since the character in memory location 0043 
does not have even parity. 
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5) String Comparison 
Purpose: Compare two strings of ASCII characters to see which is larger (i.e .. which 

follows the other in alphabetical ordering). The length of the strings is in 
memory location 0041; one string starts in memory location 0042 and the 
other in memory location 0052. If the string starting in memory location 
0042 is greater than or equal to the other string, clear memory location 
0040; otherwise, set memory location 0040 to FF16 (all ones). 

Sample Problems: 

a. (0041) 03 

(0042) 43 'C' 
(0043) 41 'A' 
(0044) 54 T 

(0052) 42 'B' 
(0053) 51 'A' 
(0054) 54 T 

Result: (0040) 00, since CAT is 'larger' than BAT. 

b. (0041) 03 

(0042) 43 'C' 
(0043) 41 'A' 
(0044) 54 'r' 

(0052) 43 'C' 
(0053) 41 'A' 
(0054) 54 'r' 

Result: (0040) 00, since the two strings are equal. 

c. (0041) 03 

(0042) 43 'C' 
(0043) 41 'A' 
(0044) 54 T 
(0052) 43 'C' 
(0053) 55 'U' 
(0054) 54 T 

Result: (0040) FF, since CUT is 'larger' than CAT. 
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Chapter 7 
CODE CONVERSION 

Code conversion is a continual problem in most microcomputer applications. Pe
ripherals provide data in ASCII, BCD, or various special codes. The system must 
convert the data into some standard form for processing. Output devices may re
quire data in ASCII, BCD, seven-segment, or other codes. Therefore, the system 
must convert the results to a suitable form after the processing is completed. 

There are several ways to approach code conversion: 

1) Some conversions can easily be handled by algorithms involving arithmetic or 
logical functions. The program may, however, have to handle some special cases 
separately. 

2) More complex conversions can be handled with lookup tables. The lookup ta
ble method requires little programming and is easy to apply. However. the table 
may occupy a large amount of memory if the range of input values is large. 

3) Hardware is readily available for some conversion tasks. Typical examples are 
decoders for BCD to seven-segment conversion and Universal Asynchronous 
Receiver/Transmitters (UARTs) for conversion between parallel (ASCII) and serial 
(teletypewriter) formats. 

In most applications, the program should do as much as possible of the code conversion 
work. This results in a savings in parts and board space as well as in increased 
reliability. Furthermore, most code conversions are easy to program and require little 
execution time. 
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EXAMPLES 
Hex to ASCII 
Purpose: Convert the contents of memory location 0040 to an ASCII character. 

Memory location 0040 contains a single hexadecimal digit (the four most 
significant bits are zero). Store the ASCII character in memory location 
0041. 

Sample Problems: 

a. 

Result: 

b. 

Result: 

Flowchart: 

Source Program: 

ASCZ 

LDA 
CMP 
BCC 
ADC 
ADC 
STA 
BRK 

(0040) 

(0041) 

(0040) 

(0041) 

$40 
#10 
ASCZ 
#'A-'9-2 
#'0 
$41 

OC 

43 

06 

36 

'C' 

'6' 

Data = (0040) 

Data = 

Data + ASCII A

ASCII 9- 1 

Result = 

Data + ASCII Zero 

(00411 = Result 

;GET DATA 
;IS DATA LESS THAN 10? 

NO, ADD OFFSET FOR LETTERS (CARRY = 1) 
ADD OFFSET FOR ASCII 
STORE ASCII DIGIT 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A5 LDA $40 
0001 40 
0002 C9 CMP #10 
0003 OA 
0004 90 BCC ASCZ 
0005 02 
0006 69 ADC #'A-'9-2 
0007 06 
0008 69 ASCZ ADC #'0 
0009 30 
OOOA 85 STA $41 
OOOB 41 
QOOC 00 BRK 

The basic idea of this program is to add ASCII zero (3016) to all the hexadecimal digits. 
This addition converts the decimal digits to ASCII correctly; however, there is a break 
between ASCII 9 (3916) and ASCII A (4116) which must be considered. This break must 
be added to the non-decimal digits A. B, C, D, E. and F. The first ADC instruction ac
complishes this by adding the offset 'A-'9-2 to the contents of the Accumulator. Can 
you explain why the offset is 'A-'9-2? 

The problem here is that the letters do not follow immediately after the decimal digits in 
ASCII. There is a gap occupied by the ASCII codes for such characters as: (3A 16). = 

(3D 16). and @ (4016). To bridge this gap, we must add a constant factor determined by 
the distance between the actual value of ASCII A (4116) and the value it would have if 
there were no gap (3A 16). There is also an extra factor of 1 provided by the Carry flag. 
You can compare this situation to the problem of walking from one aqdress to another 
on a street that is divided into two discontinuous sections by a canyon or a river. 

Remember that the ADC instruction always adds in the Carry bit. After the BCC instruc
tion, we know that the Carry contains one (otherwise a branch would have occurred). 
So we simply reduce the additive factor by 1 to account for the Carry. As for the second 
ADC instruction, the Carry will be zero if the program branched after the CMP instruc
tion (since the BCC instruction was used) or if the Accumulator contained a valid hex
adecimal digit (10 through 1(5) since the additive factor is only 7. Therefore, we do not 
have to worry about the Carry in any reasonable case. 

This routine could be used in a variety of programs; for example, monitor programs 
must convert hexadecimal digits to ASCII in order to display the contents of memory 
locations in hexadecimal on an ASCII printer or CRT display. 

Another (quicker) conversion method that requires no conditional jumps at all is the 
following program, described by Allison. 1 

SED 
CLC 
LDA 
ADC 
ADC 
STA 
CLD 
BRK 

$40 
#$90 
#$40 
$41 

;MAKE ADDITIONS DECIMAL 
;CLEAR CARRY TO START 
;GET HEXADECIMAL DIGIT 
;DEVELOP EXTRA 6 AND CARRY 
;ADD IN CARRY, ASCII OFFSET 
;STORE ASCII DIGIT 
;CLEAR DECIMAL MODE BEFORE ENDING 
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Try this program on some digits. Can you explain why it works? Note that you must be 
careful to clear the decimal mode flag when you have completed all decimal arithmetic. 
Otherwise. you will get decimal results in programs (including the monitor! where they 
are not wanted. 

Decimal to Seven-Segment 
Purpose: Convert the contents of memory location 0041 to a seven-segment code in 

memory location 0042. If memory location 0041 does not contain a single 
decimal digit. clear memory location 0042. 

Seven-segment table: The following table can be used to convert decimal numbers to 
seven-segment code. The seven-segment code is organized with the most significant 
bit always zero followed by the code (1 = on. 0 = off) for segments g. f. e. d. c. b. and a 
(see Figure 7-1 for the positions of the segments). The segment names are standard but 
the organization that we have chosen is arbitrary. In actual applications. the hardware 
determines the assignment of data bits to segments. 

Note that the table uses 70 for 6 rather than the alternative 7C (top bar off) to avoid 
confusion with lower case b. and 6F for 9 rather than 67 (bottom bar off). for no particu
lar reason. 

Digit Code 

0 3F 
1 06 b 

2 58 
3 4F 
4 66 
5 60 
6 70 
7 07 
8 7F 

_' I, 
9 6F d 

Figure 7-1. Seven-segment Arrangement 

Sample Problems: 

a. (0041) 03 

Result: (0042) 4F 

b. (0041) 28 

Result: (0042) 00 
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Flowchart: 

Data ~ 100411 

Yes 

Result = 
ISSEG + Datal 

Result ~ 0 

100421" Result 

Note that the addition of base address (SSEG) and index (DATA) produces the address 
that contains the answer 

Source Program: 

DONE 

SSEG 

LDA 
LDX 
CPX 
BCS 
LDA 

STA 

BRK 
'=$20 
.BYTE 
.BYTE 

#0 
$41 
#10 
DONE 
SSEG.X 

$42 

;GET ERROR CODE TO BLANK DISPLAy 
;GET DATA 
;IS DATA A DECIMAL DIGIT? 
;NO. KEEP ERROR CODE 
;YES. GET SEVEN-SEGMENT CODE FROM 
; TABLE 
;SAVE SEVEN-SEGMENT CODE OR ERROR 
; CODE 

;SEVEN-SEGMENT CODE TABLE 
$3F.$06.$5B.$4F.$66 
$6D.$7D.$07.$7F.$6F 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 A6 LOX $41 
0003 41 
0004 EO CPX #10 
0005 OA 
0006 BO BCS OONE 
0007 02 
0008 B5 LOA SSEG.X 
0009 20 
OOOA 85 OONE STA $42 
OOOB 42 
OOOC 00 BRK 

0020 3F SSEG .BYTE $3F 
0021 06 $06 
0022 5B $5B 
0023 4F $4F 
0024 66 $66 
0025 60 .8YTE $60 
0026 70 $70 
0027 07 $07 
0028 7F $7F 
0029 6F $6F 

The program calculates the memory address of the desired code by adding the index 
(i.e .. the digit to be displayed) to the base address of the seven-segment code table. 
This procedure is known as a table lookup. No explicit instructions are required for the 
addition. since it is performed automatically in the indexed addressing modes 

The assembly language pseudo-operation .BYTE (define byte-length data) places con
stant data in program memory. Such data may include tables. headings. error 
messages. priming messages. format characters. thresholds. etc. The label attached to 
a .BYTE pseudo-operation is assigned the value of the address into which the first byte 
of data is placed. 

Tables are often used to perform code conversions that are more complex than the pre
vious example. Such tables typically contain all the results organized according to the 
input data: e.g .. the first entry is the code corresponding to the number zero. 

Seven-segment displays provide recognizable forms of the decimal digits and a few let
ters and other characters. Calculator-type seven-segment displays are inexpensive. 
easy to multiplex. and use little power. However. the seven-segment coded digits are 
somewhat difficult to read. 

The assembler simply places the data for the table in memory. Note that one .BYTE 
pseudo-operation can fill many memory locations. We have left some memory space 
between the program and the table to allow for later additions or corrections. 

The table can be placed anywhere in memory. although the absolute indexed address
ing mode would have to be used if it was not on page zero. We could also use post-in
dexing (with Index Register Y) and have the base address saved in two memory loca
tions on page zero. The same program could then be used with any table since the base 
address would be specified in RAM rather than in ROM. 
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ASCII to Decimal 
Purpose: Convert the contents of memory location 0040 from an ASCII character to a 

decimal digit and store the result in memory location 0041. If the contents of 
memory location 0040 are not the ASCII representation of a decimal digit. 
set the contents of memory location 0041 to FF16 

Sample Problems: 

a. 

b 

(00401 

Result: (00411 

(00401 

37 (ASCII 71 

07 

55 (an invalid code, since it is not an 
ASCII decimal digiti 

Resu It: (00411 FF 

Flowchart: 

Data ~ 100401 

Yes 

Yes 

Result = 
Data - ASCII 0 Result ~ FF 16 

100411 ~ Result 
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Source Program: 

LDX #$FF ;GET ERROR MESSAGE 
LDA $40 ;GET DATA 
SEC ;IGNORE CARRY IN SUBTRACTION 
SBC #'0 ;IS DATA BELOW ASCII ZERO? 
BCC DONE ;YES, NOT A DIGIT 
CMP #10 ;IS DATA ABOVE ASCII NINE? 
BCS DONE ;YES, NOT A DIGIT 
TAX ;SAVE DIGIT IF VALID 

DONE STX $41 ;SAVE DIGIT OR ERROR MARKER 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonicl 

0000 A2 LDX #$FF 
0001 FF 
0002 A5 LDA $40 
0003 40 
0004 38 SEC 
0005 E9 SBC #'0 
0006 30 
0007 90 BCC DONE 
0008 05 
0009 C9 CMP #10 
OOOA OA 
OOOB BO BCS DONE 
OOOC 01 
OOOD AA TAX 
OOOE 86 DONE STX $41 
OOOF 41 
0010 00 BRK 

This program handles ASCII-coded characters just like ordinary numbers. Note that the 
decimal digits and the letters form groups of consecutive codes. Strings of letters (like 
names) can be alphabetized by placing their ASCII representations in increasing 
numerical order (ASCII B = ASCII A + 1 for example). 

Subtracting ASCII zero (3016) from any ASCII decimal digit gives the BCD representa
tion of that digit. 

The Carry must be set before a subtraction if it is not to affect the result since SBC pro
duces (A) = (A) - (M) - (1 - Carry) where M is the contents of the addressed memory 
location. Compare instructions, on the other hand, do not include the Carry in their im
plied subtractions. 

ASCII-to-decimal conversion is necessary when decimal numbers are being entered 
from an ASCII device like a teletypewriter or CRT terminal. 

The basic idea of the program is to determine if the character is between ASCII 0 and 
ASCII 9, inclusive. If so, the character is an ASCII decimal digit since the digits form a 
sequence. It may then be converted to decimal simply by subtracting 3016 (ASCII 0): 
e.g., ASCII 7 - ASCII 0 = 37 - 30 = 7. 

Note that one comparison is done with an actual subtraction (SBC #'0) since the 
subraction is necessary to convert ASCII to decimal. The other comparison is done with 
an implied subtraction (CMP #10) since the final result is now in the Accumulator if the 
original number was valid. 
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BCD to Binary 
Purpose: Convert two BCD digits in memory locations 0040 and 0041 to a binary 

number in memory location 0042. The most significant BCD digit is in 
memory location 0040. 

Sample Problems: 

a. (0040) 02 
(0041) 09 

Result: (0042) 1016 = 29 10 

b (0040) 07 
(0041) 01 

Result: (0042) 4716= 71 10 

Note: We include no flowchart because the program multiplies the most significant 
digit by 10 simply by using the formula 10x = 8x + 2x. Multiplying by 2 requires 
one arithmetic left shift and multiplying by 8 requires three such shifts 

Source Program: 

LDA 
ASL 
STA 
ASL 
ASL 
CLC 
ADC 
ADC 
STA 
BRK 

Object Program: 

$40 
A 
$42 
A 
A 

$42 
$41 
$42 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
oooe 
OOOD 
OOOE 

:GET MOST SIGNIFICANT DIGIT (MSD) 
;MSD TIMES TWO 
;SAVE MSD TIMES TWO 
;MSD TIMES FOUR 
;MSD TIMES EIGHT 

;MSD TIMES TEN (NO CARRY) 
;ADD LEAST SIGNIFICANT DIGIT 
;STORE ~INARY EQUIVALENT 

Memory Contents Instruction 
(Hex) (Mnemonic) 

A5 LDA $40 
40 
OA ASL A 
85 STA $42 
42 
OA ASL A 
OA ASL A 
18 CLC 
65 ADC $42 
42 
65 ADC $41 
41 
85 STA $42 
42 
00 BRK 
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BCD entries are converted to binary in order to save on storage and to simplify calcula
tions. However, the need for conversion may offset some of the advantages of binary 
storage and arithmetic. 

This program multiplies the BCD digit in memory location 0040 by 10 using left shifts 
and additions2 Note that ASL A multiplies the contents of the Accumulator by 2. This 
allows you to mUltiply the contents of the Accumulator by small decimal numbers in a 
few instructions. How would you use this procedure to multiply by 16? by 12? by 7? 

BCD numbers require about 20% more storage than do binary numbers. Representing 0 
to 999 requires 3 BCD digits (12 bits) and 10 bits in binary (since 210 = 1024 "'1000). 
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Convert Binary Number to ASCII String 
Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCII 

characters (either ASCII 0 or ASCII 1) in memory locations 0042 through 
0049 (the most significant bit is in 0042). 

Sample Problem: 

(0041) 

Result: (0042) 
(0043) 
(0044) 
(0045) 
(0046) 
(0047) 
(0048) 
(0049) 

Flowchart: 

D2 = 11010010 

31 
31 
30 
31 
30 
30 
31 
30 

ASCII 1 
ASCII 1 
ASCII 0 
ASCII 1 
ASCII 0 
ASCII 0 
ASCII 1 
ASCII 0 

Base = 0041 

Index = 8 

(Base + Index! = 
ASCII Zero 

Shift Data Right 
One Bit 

(Base + Index! = 
ASCllOne 

Ii.e., IBase + Index! 
+ 1! 

Index = Index - 1 

7-11 



Source Program: 

LDA 
LDX 
LDY 

CONY STY 
LSR 
BCC 
INC 

COUNT DEX 
BNE 
BRK 

Object Program: 

$41 
#8 
#'0 
$41.X 
A 
COUNT 
$41.X 

CONY 

;GET DATA 
;NUMBER OF BITS = 8 
;GET ASCII ZERO TO STORE IN STRING 
;STORE ASCII ZERO IN STRING 
;IS NEXT BIT OF DATA ZERO? 

;NO. MAKE STRING ELEMENT ASCII ONE 
;COUNT BITS 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A5 LDA $41 
0001 41 
0002 A2 LDX #8 
0003 08 
0004 AD LDY #'0 
0005 30 
0006 94 CON V STY $41.X 
0007 41 
0008 4A LSR A 
0009 90 BCC COUNT 
000 A 02 
OOOB F6 INC $41.X 
OOOC 41 
DODD CA COUNT DEX 
OOOE DO BNE CONY 
OOOF F6 
0010 00 BRK 

The ASCII digits form a sequence so ASCII 1 = ASCII 0 + 1. The INX instruction can be 
used to directly increment the contents of a memory location. The savings here are that 
no explicit instructions are required to load the data from memory or to store the result 
back into memory. Nor are any of the user registers (A. X. and Y) disturbed. However. 
the CPU must actually load the data from memory. save it in a temporary register. incre
ment it. and store the result back into memory. All data processing actually takes place 
inside the CPU. 

Be careful of the difference between INX and an instruction like INC $41.X. The INC in
struction adds one to the contents of Index Register X; INC $41.X adds one to the con
tents of the indexeq memory location - it has no effect on Index Register X. 

Binary-to-ASCII conversion is necessary when numbers are printed in binary form on an 
ASCII device. 

The conversion to ASCII simply involves adding ASCII zero (3016). 
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PROBLEMS 
1) ASCII to Hex 
Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and 

store the result in memory location 0041. Assume that memory location 
0040 contains the ASCII representation of a hexadecimal digit (7 bits with 
MSB 0). 

Sample Problems: 

a. (0040) 43 ASCII C 

Result: (0041) OC 

b. (0040) 36 ASCII 6 

Result: (0041i 06 

2) Seven-Segment to Decimal 
Purpose: Convert the contents of memory location 0040 from a seven-segment code 

to a decimal number in memory location 0041. If memory location 0040 does 
not contain a valid seven-segment code, set memory location 0041 to FF 16. 
Use the seven-segment table given under the Decimal to Seven-Segment ex-
ample and try to match codes. I 

Sample Problems: 

a. (0040) 4F 

Resu It: (0041) 03 

b (0040) 28 

Resu It: (0041) FF 

3) Decimal to ASCII 
Purpose: Convert the contents of memory location 0040 from a decimal digit to an 

ASCII character and store the result in memory location 0041. If the number 
in memory location 0040 is not a decimal digit. set the contents of memory 
location 0041 to an ASCII blank character (2016). 

Sample Problems: 

a. (0040) 07 

Result: (0041) 37 ASCII 7 

b. (0040) 55 

Result: (0041) 20 ASCII SPACE 

4) Binary to BCD 
Purpose: Convert the contents of memory location 0040 to two BCD digits in memory 

locations 0041 and 0042 (most significant digit'in 0041): The number in 
memory location 0040 is unsigned and less than 100. 

Sample Problems: 

a. (0040) 10 (29 decimal! 

Result: (0041) 02 
(0042) 09 

b. (0040) 47 (71 decimal) 

Result: (0041) 07 
(0042) 01 
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5) ASCII String to Binary Number 
Purpose: Convert the eight ASCII characters in memory locations 0042 through 0049 

to an 8-bit binary number in memory location 0041 (the most significant bit 
is in 0042). Clear memory location 0040 if all the ASCII characters are either 
ASCII 1 or ASCII 0 and set it to FF16 otherwise 

Sample Problems: 

a. (0042) 31 ASCII 1 
(0043) 31 ASCII 1 
(0044) 30 ASCII 0 
(0045) 31 ASCII 1 
(0046) 30 ASCII 0 
(0047) 30 ASCII 0 
(0048) 31 ASCII 1 
(0049) 30 ASCII 0 

Result: (0041) D2 
(0040) 00 

b. same as 'a' except: 
(0045) 37 ASCII 7 

Result: (0040) FF 
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Chapter 8 
ARITHMETIC PROBLEMS 

Most arithmetic in microprocessor applications consists of multiple-word binary 
or decimal manipulations. A decimal correction (decimal adjust) or some other 
means for performing decimal arithmetic is frequently the only arithmetic instruc
tion provided besides basic addition and subtraction. You must implement other 
arithmetic operations with sequences of instructions. 

Multiple-precision binary arithmetic requires simple repetitions of the basic 
single-word instructions. The Carry bit transfers Information between words. Add 
with Carry and Subtract with Carry use the information from the previous arithmetic 
operations. You must be careful to clear the Carry before operating on the fir~t words 
(obviously there is no carry into or borrow from the least significant bits). , 

Decimal arithmetic is a common enough task for microprocessors that most have 
special instructions for this purpose. These instructions may either perform decimal 
operations directly or correct the results of binary operations to the proper decimal 
form. Decimal arithmetic is essential in such applications as point-of-sale terminals. 
calculators. check processors. order entry systems. and banking terminals. 

You can implement multiplication and division as series of additions and subtractions 
respectively. much as they are done by hand. Double-word operations are necessary 
since a multiplication produces a result twice as long as the operands. while a division 
similarly contracts the length of the result. Multiplications and divisions are time-con
suming when done in software because of the repeated arithmetic and shift operations 
that are necessary. Of course. mUltiplying or diViding by a power of 2 is simple because 
such operations can be implemented with an appropriate number of left or right 
arithmetic shifts. 
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EXAMPLES 
Multiple-Precision Binary Addition 
Purpose: Add two multiple-word binary numbers. The length of the numbers (in bytes) 

is in memory location 0040. the numbers themselves start (most significant 
bits first) in memory locations 0041 and 0051. respectively. and the sum 
replaces the number starting in memory location 0041. 

Sample Problem: 

(0040) 

(0041) 
(0042) 
(0043) 
(0044) 

(0051) 
(0052) 
(0053) 
(0054) 

Result: (0041) 
(0042) 
(0043) 
(0044) 

that is. 
+ 

Flowchart: 

04 

2F 
5B 
A7 
C3 

14 
DF 
35 
BB 

44 
3A 
DD 
7B 

2F5BA7C3 
14DF35B8 

443ADD7B 

Index ~ (0040) 
Carry ~ 0 

(0040+lndex) ~ 
(0040+lndex) + 
(0050+lndex) + 
(Carry) (This step also produces new Carry) 

Index = Index - 1 
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Source Program: 

ADDW 

LDX~' $40 
CLC 
LOA $40.X 
ADC $50.X 
STA $40.X 
DEX 
BNE 
BRK 

ADDW 

Object Program: 

:INDEX = LENGTH OF STRINGS 
:CLEAR CARRY TO START 
:GET BYTE FROM STRING 1 
:ADD BYTE FROM STRING 2 
:STORE RESULT IN STRING 1 

:CONTINUE UNTIL ALL BYTES ADDED 

Memory Address 
(Hex) 

Memory Contents Instruction 
(Hex) (Mnemonic) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 

A6 
40 
18 
B5 
40 
75 
50 
95 
40 
CA 
DO 
F7 
00 

ADDW 

The relative address for BNE ADDW is: 

0003 03 
-OOOC +F4 

---;:-r 

LOX $40 

CLC 
LOA $40.X 

ADC $50.X 

STA $40.X 

DEX 
BNE ADDW 

BRK 

The instruction CLC is used to clear the Carry bit since there is no carry involved in the 
addition of the least significant bytes. 

The instruction ADC. Add with Carry. includes the Carry from the previous words in the 
addition. ADC is the only instruction in the loop that affects the Carry. In particular. 
note that increment and decrement instructions (DEC. DEX. DEY. INC. INX. INY) do not 
affect the Carry. 

This program uses the same index with two different base ad
dresses to handle the two strings. The strings can be located any
where in memory. Furthermore. there would be no difficulty in 
storing the result in a third string. 

DECIMAL 
ACCURACY 
IN BINARY 

This procedure can add binary numbers of any length. Note that ten binary bits corres
pond to three decimal digits since 210 = 1024 ::::: 1000. So. you can calculate the num
ber of bits required to give a certain accuracy in decimal digits. For example. twelve 
decimal digit accuracy requires: 

12 x 1~ =40 bits 
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Decimal Addition 
Purpose: Add two multi-byte decimal (BCD) numbers. The length of the numbers (in 

bytes) is in memory location 0040. the numbers themselves start (most sig
nificant bits first) in memory locations 0041 and 0051. respectively. and the 
sum replaces the number starting in memory location 0041. 

Sample Problem: 

(0040) 

(0041) 
(0042) 
(0043) 
(0044) 

(0051) 
(0052) 
(0053) 
(0054) 

Result: (0041) 
(0042) 
(0043) 
(0044) 

that is. 

Flowchart: 

04 

36 
70 
19 
85 

12 
66 
34 
59 

49 
36 
54 
44 

36701985 
+12663459 

49365444 

Set Decimal Mode 

Index ~ (0040) 

Carry = 0 

10040+lndex) ~ 
10040+lndex) + 
10050+lndex) + 

__ I_ca_r..;,rvT) __ ..... IThis step also produces new Carry) 

Index = Index - 1 

Clear Decimal Mode 
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Source Program: 

SED 
LDX 
CLC 

ADDW LDA 
ADC 
STA 
DEX 
BNE 
CLD 
BRK 

Object Program: 

$40 

$40,X 
$50,X 
$40,X 

ADDW 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 

;MAKE ALL ARITHMETIC DECIMAL 
;INDEX = LENGTH OF STRINGS 
;CLEAR CARRY TO START 
;GET TWO DIGITS FROM STRING 1 
;ADD TWO DIGITS FROM STRING 2 
;STORE RESULT IN STRING 1 

;CONTINUE UNTIL ALL DIGITS ADDED 
;RETURN TO BINARY MODE 

Memory Contents Instruction 
(Hex) (Mnemonic) 

F8 SED 
A6 LDX $40 
40 
18 CLC 

0004 B5 ADDW LDA $40,X 
0005 40 
0006 75 ADC 
0007 50 
0008 95 STA 
0009 40 
OOOA CA DEX 
OOOB DO BNE 
OOOC F7 
OOOD D8 CLD 
OOOE 00 BRK 

The Decimal mode automatically takes care of the following 
situations in which binary and BCD addition differ: 

1) The sum of two digits is between 10 and 15 inclusive In this 
case, six must be added to the sum to give the right result. ie, 

0101 (5) 
+ 1000 (8) 

1101 (D) 
+ 0110 

$50,X 

$40,X 

ADDW 

6502 
DECIMAL 
MODE 

0001 0011 (BCD 13, which is correct) 

2) The sum of two digits is 16 or more. In this case, the result is a proper BCD digit but 
six less than it should be, I.e., 

1000 (8) 
+ 1001 (9) 

0001 0001 (BCD 11) 
+ 0110 

0001 0111 (BCD 17, which is correct) 

Six must be added in both situations. However, case 1 can be recognized by the fact 
that the sum is not a BCD digit. i.e., it is between 10 and 15 (or A and F hexadecimal). 
Case 2 can only be recognized by the fact that the carry from the digit addition is one 
since the result is a valid BCD number. 
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When the Decimal Mode flag is set, all arithemtic is carried out in the decimal 
form. This includes subtractions as well as additions, regardless of which address
ing mode is employed. 

However, the Increment and Decrement instructions pro
duce binary results even when the Decimal Mode flag is 
set. Thus DEC. DEX. DEY. INC. INX. and INY can only be used 
to maintain binary counters. For example. to increment a 

DECIMAL 
MODE 
LIMITATIONS 

decimal counter in memory location 0040. you must use the sequence: 

SED 
LDA 
CLC 
ADC 
STA 
CLD 

$40 

#1 
$40 

;MAKE ARITHMETIC DECIMAL 
;GET COUNTER 
;KEEP CARRY FROM AFFECTING ADDITION 
;INCREMENT COUNTER (DECIMAL) 

;RETURN TO BINARY MODE 

The SED. CLC. and CLD instructions may not be necessary if other parts of the program 
set the status flags appropriately. 

Subtractions in the decimal mode produce correct BCD results with the Carry being an 
inverted borrow. For example. if the Accumulator contains 03. the addressed memory 
location contains 27. and the Carry contains 1. after the execution of an SBC instruction 
the Accumulator will contain 76 and the Carry will be O. As in the binary mode. a Carry 
of zero means that a borrow has been generated. 

The Sign bit is not meaningful after additions and subtractions when the Decimal 
Mode flag is set. It reflects the result of the binary operation. not of the decimal opera
tion. In the most recently mentioned situation (03-271. the Sign bit will be set (as it 
would be if the numbers were binary) even though the decimal result (76) has a most 
significant bit of zero. 

This procedure can add decimal (BCD) numbers of any length. ACCURACY IN 
Here four binary bits are required for each decimal digit. so BINARY AND BCD 
twelve-digit accuracy requires 

12 x 4 = 48 bits 

as opposed to 40 bits in the binary case. This is six 8-bit words instead of five. 

The program for decimal addition is the same as that for binary addition except for the 
surrounding CLD and SED instructions. Thus a single sequence of instructions can pro
duce two entirely different results depending on the value of a flag that is not even 
mentioned explicitly. Can you suggest some problems this might create in connecting 
programs written at different times or by different people? 
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8-Bit Binary Multiplication 
Purpose: Multiply the 8-bit unsigned number in memory location 0040 by the 8-bit 

unsigned number in memory location 0041. Place the eight least significant 
bits of the result into memory location 0042 and the eight most significant 
bits into memory location 0043. 

Sample Problems: 

a. (0040) 03 
(0041) 05 

Result: (0042) OF 
(0043) 00 

or in decimal 3 x 5 = 15 

b. (0040) 6F 
(0041) 61 

Result: (0042) OF 
(0043) 2A 

or 111 x 97 = 10.767 

You can perform multiplication on a computer in the same way that you do long 
multiplication by hand. Since the numbers are binary. the only problem is whether to 
multiply by 0 or 1; multiplying by zero obviously gives zero as a result. while multiply
ing by one produces the same number that you started with (the multiplicand). So. each 
step in a binary multiplication can be reduced to the following operation . 

If the current bit in the multiplier is 1. add the multiplicand 
to the partial product. 

...------.., 
MUL TIPLICATION 
ALGORITHM 

The only remaining problem is to ensure that you line everything up correctly each 
time. The following operations perform this task 

1) Shift the multiplier left one bit so that the bit to be examined IS placed in the Carry 

2) Shift the product left one bit so that the next addition IS lined up correctly. 

The complete process for binary mUltiplication is as follows: 

Step 1 - Initialization 

Product = 0 
Counter = 8 

Step 2 - Shift Product so as to line up properly 
Product = 2 x Product (LSB = 0) 

Step 3 - Shift Multiplier so bit goes to Carry 
Multiplier = 2 x Multiplier 

Step 4 - Add Multiplicand to Product if Carry IS 1 
If Carry = 1. Product = Product + Multiplicand 

Step 5 - Decrement Counter and check for zero 

Counter = Counter - 1 
If Counter FO go to Step 2 
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In the case of Sample Problem b. where the multiplier is 6116 and the multiplicand is 
6F16 the process works as follows: 

Initialization: 

Product 0000 
Multiplier 61 

Multiplicand 6F 
Counter 08 

After first iteration of steps 2-5: 

Product 0000 
Multiplier C2 

Mu Itiplicand 6F 
Counter 07 

Carry from Multiplier 0 

After second iteration: 

Product 006F 
Multiplier 84 

Multiplicand 6F 
Counter 06 

Carry from Multiplier 1 

After third iteration: 

Product 014D 
Multiplier 08 

Multiplicand 6F 
Counter 05 

Carry from Multiplier 1 

After fourth iteration: 

Product 029A 
Multiplier 10 

Multiplicand 6F 
Counter 04 

Carry from Multiplier 0 

After fifth iteration: 

Product 0534 
Multiplier 20 

Multiplicand 6F 
Counter 03 

Carry from Multiplier 0 

After sixth iteration: 

Product OA68 
Multiplier 40 

Multiplicand 6F 
Counter 02 

Carry from Multiplier 0 

After seventh iteration: 

Product 14DO 
Multiplier 80 

Multiplicand 6F 
Counter 01 

Carry from Multiplier 0 
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After eighth iteration: 

Flowchart: 

Product 
Multiplier 

Multiplicand 
Counter 

Carry from Multiplier 

2AOF 
00 
6F 
00 

Product = 0 
Count = 8 
Multiplicand=(0040) 
Multiplier = (0041) 

Product= 2 x Product 
(Shift left 1 bit) 

Multiolier = 2 x 
Multiplier 
(Shift left 1 bill 

Product = Product 
+ Multiplicand 

Count = Count - 1 

(0042 and 0043) = 

Product 
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Source Program: 

LDA #0 ;LSB'S OF PRODUCT = ZERO 
STA $43 ;MSB'S OF PRODUCT = ZERO 
LDX #8 ;NUMBER OF BITS IN MULTIPLIER = 8 

SHIFT ASL A ;SHIFT PRODUCT LEFT ONE BIT 
ROL $43 
ASL $41 ;SHIFT MULTIPLIER LEFT 
BCC CHCNT ;NO ADDITION IF NEXT BIT IS ZERO 
CLC ;ADD MULTIPLICAND TO PRODUCT 
ADC $40 
BCC CHCNT 
INC $43 ;WITH CARRY IF NECESSARY 

CHCNT DEX ;LOOP UNTIL 8 BITS ARE MULTIPLIED 
BNE SHIFT 
STA $42 STbRE LSB'S OF PRODUCT 
8RK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LDA #0 
0001 00 
0002 85 STA $43 
0003 43 
0004 A2 LDX #8 
0005 08 
0006 OA SHIFT ASL A 
0007 26 ROL $43 
0008 43 
0009 06 ASL $41 
OOOA 41 
OOOB 90 BCC CHCNT 
OOOC 07 
OOOD 18 CLC 
OOOE 65 ADC $40 
OOOF 40 
0010 90 BCC CHCNT 
0011 02 
0012 E6 INC $43 
0013 43 
0014 CA CHCNT DEX 
0015 DO BNE SHIFT 
0016 EF 
0017 85 STA $42 
0018 42 
Q019 00 BRK 
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Besides its obvious use in calculators and point-of-sale terminals. multiplication is a key 
part of almost all signal processing and control algorithms. The speed at which 
multiplications can be performed determines the usefulness of a CPU in process con
trol. signal detection. and Signal analysis. 

This algorithm takes between 170 and 280 clock cycles to multiply on a 6502 
microprocessor. The precise time depends on the number of 1 bits in the multiplier. 
Other algorithms may be able to reduce the average execution time somewhat. but 250 
clock cycles will still be a typical execution time for a software multiplication. Some 
microprocessors (such as the 9900.8086. and Z8000) have hardware multiplication in
structions that are somewhat faster but maximum speed requires the addition of exter
nal hardware. 
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8-Bit Binary Division 
Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041 

(most significant bits in 0041) by the 8-bit unsigned number in memory loca
tion 0042. The numbers are normalized so that 1) the most significant bits of 
both the dividend and the divisor are zero and 2) the number in memory 
location 0042 is greater than the number in memory location 0041.Thus. the 
quotient is an 8-bit number. Store the quotient in memory location 0043 and 
the remainder in location 0044. 

Sample Problems: 

a. (0040) 
(0041) 
(0042) 

b. 

Result 

(0040) 
(0041) 
(0042) 

Result 

40 (64 decimal! 
00 
08 

(0043) = 08 
(0044) = 00 
i.e .. 64/8 = 8 

6D (12.909 decimal! 
32 
47 (71 decimal! 

(0043) = B5 (181 decimal! 
(0044) = 3A (58 decimal! 
i.e .. 12.909/71 = 181 with a remainder of 58 

You can perform division on the computer just like you would per
form division with pen and paper. i.e .. using trial subtractions. 
Since the numbers are binary. the only question is whether the bit 

r----__ 

in the quotient is 0 or 1. i.e .. whether the divisor can be subtracted from what is left of 
the dividend. Each step in a binary division can be reduced to the following operation: 

If the divisor can be subtracted from the eight 
most significant bits of the dividend without 
a borrow. the corresponding bit in the quo
tient is 1; otherwise it is O. 

The only remaining problem is to line up the dividend and quotient properly. You can 
do this by shifting the dividend and quotient logically left one bit before each trial 
subtraction. The dividend and quotient can share a 16-bit register. since the procedure 
clears one bit of the dividend at the same time as it determines one bit of the quotient. 

The complete process for binary division is: 

Step 1 - Initialization: 
Quotient = 0 
Counter = 8 

Step 2 - Shift Dividend and Quotient so as to line up properly: 
Dividend = 2 x Dividend 
Quotient = 2 x Quotient 

Step 3 - Perform trial Subtraction. If no Borrow add 1 to Quotient: 
If 8 MSBs of Dividend > Divisor then 
MSBs of Dividend = MSBs of Dividend - Divisor 
Quotient = Quotient + 1 

Step 4 - Decrement counter and check for zero: 
Counter = Counter - 1 
if Counter '!'o. go to Step 2 
Remainder = 8 MSBs of Dividend 
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In the case of sample problem b. where the dividend is 326016 and the divisor is 4716. 
the process works as follows: 

Initialization: 
Dividend 3260 

Divisor 47 
Quotient 00 
Counter 00 

After first iteration of Steps 2 - 4: 
(Note that the dividend is shifted prior to the trial subtraction) 

Dividend 1DDA 
Divisor 47 

Quotient 01 
Counter 07 

After second iteration of Steps 2 - 4: 

After third iteration: 

After fourth iteration: 

After fifth iteration: 

After sixth iteration: 

After seventh iteration: 

After eighth iteration: 

Dividend 3BB4 
Divisor 47 

Quotient 02 
Counter 06 

Dividend 3068 
Divisor 47 

Quotient 05 
Counter 05 

Dividend 1900 
Divisor 47 

Quotient OB 
Counter 04 

Dividend 33AO 
Divisor 47 

Quotient 16 
Counter 03 

Dividend 2040 
Divisor 47 

Quotient 20 
Counter 02 

Dividend 4080 
Divisor 47 

Quotient 5A 
Counter 01 

Dividend 
Divisor 

Quotient 
Counter 

3AOO 
47 
B5 
00 

So the quotient is B5 and the remainder is 3A. 

8-13 



The MSBs of dividend and divisor are assumed to be zero: this simplifies calculations 
(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in 
the Carry). Problems that are not in this form must be simplified by removing parts of 
the quotient that would overflow an a-bit word. For example: 

1024 = 400 (Hex) = 100 + 100 (Hex) 
333 

The last problem is now in the proper form. An extra division may be necessary. 

Flowchart: 

Dividend = (0040 
and 0041) 

Divisor = (0042) 
Count = 8 
Quotient = 0 

Dividend = 2 x 
Dividend 

Quotient = 2 x 
Quotient 

(Shift both left 1 bit I 

8 MS8s of 
Dividend = 8 MSBs 
of Dividend - Divisor 
Quotient = ~ 

Quotient + 1 

Count = Count - 1 

(0043) = Quotient 
(00441 = 8 MSBs of 

Dividend 

8-14 



Source Program: 

LDX #8 ;NUMBER OF BITS IN DIVISOR = 8 
LDA $40 ;START WITH LSB'S OF DIVIDEND 
STA $43 
LDA $41 ;GET MSB'S OF DIVIDEND 

DIVID ASL $43 ;SHIFT DIVIDEND. QUOTIENT LEFT 1 BIT 
ROL A 
CMP $42 ;CAN DIVISOR BE SUBTRACTED? 
BCC CHCNT ;NO. GO TO NEXT STEP 
SBC $42 ;YES. SUBTRACT DIVISOR (CARRY = 1) 
INC $43 ;AND INCREMENT QUOTIENT BY 1 

CHCNT DEX ;LOOP UNTIL ALL 8 BITS HANDLED 
BNE DIVID 
STA $44 ;STORE REMAINDER 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A2 LDX #8 
0001 08 
0002 A5 LDA $40 
0003 40 
0004 85 STA $43 
0005 43 
0006 A5 LDA $41 
0007 41 
0008 06 DIVID ASL $43 
0009 43 
OOOA 2A ROL A 
OOOB C5 CMP $42 
OOOC 42 
DODD 90 BCC CHCNT 
OOOE 04 
OOOF E5 SBC $42 
0010 42 
0011 E6 INC $43 
0012 43 
0013 CA CHCNT DEX 
0014 DO BNE DIVID 
0015 F2 
0016 85 STA $44 
0017 44 
0018 00 BRK 

Division is used in ca Icu la tors. termi na Is. communications error checking. control 
algorithms. and many other applications. 

The algorithm takes between 150 and 230 microseconds to divide on a 6502 with a 1 
MHz clock. The precise time depends on the number of 1 bits in the quotient. Other 
algorithms can reduce the average time somewhat. but 200 microseconds will still be 
typical for a software division. 

The instructions ASL $43 and ROL A together provide a 16-bit arithmetic left shift of 
the dividend (MSBs in A). The ROL instruction picks up the bit which the ASL instruc
tion left in the Carry. 
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An 8-bit subtraction is necessary, since there is no simple way to perform a 16-bit 
subtraction or comparison. 

Memory location 0043 and the Accumulator hold both the dividend and the quotient 
(MSBs in Accumulator!. The quotient simply replaces the dividend in memory location 
0043 as the dividend is shifted left arithmetically. 

We do not have to worry about the Carry in the S8C instruction. It must be '1' since 
otherwise BCC would have caused a branch. Remember that a Carry value of '1' has no 
effect on the result of an SBe instruction since the Carry is an inverted borrow 

The following routine offers an improvement in timing over the previous example 
without Increasing memory usage. It also performs error checking. 

DIV 

DIVID 

CHCNT 

DONE 

LDX 
LDA 
STA 
LDA 
CMP 
BCS 
ROL 
ROL 
CMP 
BCC 
SBC 
DEX 
BNE 
ROL 
STA 
RTS 

#B 
$40 
$43 
$41 
$42 
DONE 
$43 
A 
$42 
CHCNT 
$42 

DIVID 
$43 
$44 

;NUMBER OF BITS IN DIVISOR = 8 
;STARTWITH LSB'S OF DIVIDEND 

;GET MSB'S OF DIVIDEND 
;SHOULD BE LESS THAN DIVISOR 
;IF NOT, ERROR EXIT (CARRY = 1) 
;SHIFTDIVIDEND, QUOTIENT LEFT 1 BIT 
;(AND NEW ANSWER BIT - SEE DEX BELOW) 
;CAN DIVISOR BE SUBTRACTED? 
;NO, GO TO NEXT STEP (CARRY = 0) 
;YES, SUBTRACT DIVISOR (CARRY = 1) 
;NOTE CARRY' NEW ANSWER BIT 
;LOOP UNTIL ALL 8 BITS HANDLED 
;SHIFT IN THE LAST ANSWER BIT 
;STORE REMAINDER (CARRY = 0 HERE) 
;QUIT (CARRY 0, NORMAL, CARRY 1, ERROR) 
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Self-Checking Numbers 
Double Add Double Mod 10 
Purpose: Calculate a checksum digit from a string of BCD digits. The length of the 

string of digits (number of words) is in memory location 0041; the string of 
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the 
checksum digit by the Double Add Double Mod 10 technique 1 and store it in 
memory location 0040. 

The Double Add Double Mod 10 technique works as follows: SELF-CHECKING 
NUMBERS 1) 

2) 

3) 

Clear the checksum to start. 

Multiply the leading digit by two and add the result to the 
checksum. 

Add the next digit to the checksum. 

4) Continue the alternating process until you have used all the digits. 

5) The least significant digit of the checksum is the self-checking digit. 

Self-checking digits are commonly added to identification numbers on credit cards. in
ventory tags. luggage. parcels. etc .. when they are handled by computerized systems. 
They may also be used in routing messages. identifying files. and other applications. 
The purpose of the digits is to minimize entry errors such as transposing digits (69 in
stead of 96), shifting digits (7260 instead of 3726). missing digits by one (65 instead of 
64). etc. You can check the self-checking number automatically for correctness upon 
entry and can eliminate many errors immediately. 

The analysis of self-checking methods is quite complex. For example. a plain checksum 
will not find transposition errors (4 + 9 = 9 + 4) The Double Add Double algorithm will 
find Simple transposition errors (2 x 4 + 9 = 17 f= 2 x 9 + 4); but will miss some errors. 
such as transpositions across even numbers of digits (367 Instead of 763) However. 
this method will find many common errors! The value of a method depends on what er
rors it will detect and on the probability of particular errors in an application. 

For example. if the string of digits is 

549321 

the result will be: 

C hecksu m = 5 x 2 + 4 + 9 x 2 + 3 + 2 x 2 + 1 = 40 
Self-checking digit = 0 (least significant digit of a checksum) 

Note that an erroneous entry like 543921 would produce a different self-checking digit 
(4). but erroneous entries like 049321 or 945321 would not be detected. 

Sample Problems: 

a. 

b. 

(0041) 
(0042) 
(0043) 
(0044) 

03 
36 
68 
51 

Result: Checksum = 3 x 2 + 6 + 6 x 2 + 8 + 5 x 2 + 1 = 43 
(0040) 03 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

04 
50 
29 
16 
83 

Result: Checksum = 5 x 2 + 0 + 2 x 2 + 9 + 1 x 2 + 6 + 8 x 2 + 3 = 50 
(0040) = 00 
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Flowchart: 

Checksum = 0 

Base = 0041 
Index = (0041) 

MSD CO (Base 
+lndex)/16 

LSD = (Base+lndex) 
AND 00001111 
(binary) 

Checksum = 
Checksum + 
2 x MSD + LSD 

Index = Index -1 

(0040) = Checksum 

AND 00001111 
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Source Program: 

SED ;MAKE ALL ARITHIMETIC DECIMAL 
LOX $41 ;INDEX = LENGTH OF STRING 
LDY #0 ;CHECKSUM = ZERO 

CHKDG LDA $41.X ;GET NEXT 2 DIGITS OF DATA 
LSR A ;SHIFT OFF LEAST SIGNIFICANT DIGIT 
LSR A 
LSR A 
LSR A 
STA $40 
CLC ;CLEAR CARRY FROM SHIFTING 
ADC $40 ;DOUBLE MOST SIGNIFICANT DIGIT 
STY $40 ;DOUBLING A DIGIT NEVER PRODUCES A 

CARRY 
ADC $40 ;ADD DOUBLED MSD TO CHECKSUM 
STA $40 
LDA $41.X ;GET LEAST SIGNIFICANT DIGIT 
AND #%00001111 ; (MASK OFF MSD) 
CLC ;ADD LSD TO CHECKSUM 
ADC $40 
TAY 
DEX 
BNE CHKDG ;CONTINUE UNTIL ALL DIGITS SUMMED 
AND #%00001111 ;SAVE LSD OF SELF-CHECKING DIGIT 
STA $40 
CLD ;RETURN TO BINARY MODE 
BRK 

8-19 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 F8 SED 
0001 A6 LOX $41 
0002 41 
0003 AO LOY #0 
0004 00 
0005 85 CHKDG LOA $41.X 
0006 41 
0007 4A lSR A 
0008 4A LSR A 
0009 4A LSR A 
OOOA 4A LSR A 
0008 85 STA $40 
OOOC 40 
0000 18 CLC 
OOOE 65 ADC $40 
OOOF 40 
0010 84 STY $40 
0011 40 
0012 65 ADC $40 
0013 40 
0014 85 STA $40 
0015 40 
0016 85 LOA $41.X 
0017 41 
0018 29 AND #%00001111 
0019 OF 
001A 18 CLC 
0018 65 ADC $40 
001C 40 
0010 A8 lAY 
001E CA DEX 
001F DO BNE CHKDG 
0020 E4 
0021 29 AND #%00001111 
0022 OF 
0023 85 STA $40 
0024 40 
0025 08 CLD 
0026 00 BRK 

The digits are removed by shifting and masking. Four logical right shifts are needed to 
separate out the most significant digit. 

All arithmetic is performed in the decimal mode. Remember. however. that DEX still 
produces a binary result. 

There is no problem with the Carry from doubling a decimal digit since the result can 
never be larger than 18. You may be able to eliminate the final CLC instruction if the 
numbers to be summed are known to be too small to ever produce a Carry. 
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You can double a decimal number in the Accumulator by 
adding it to itself in the decimal mode. A typical sequence is as 
follows (using memory location 0040 for temporary storage): 

DOUBLING AND 
HALVING 
DECIMAL 
NUMBERS SED 

STA 
CLC 
ADC 
CLD 

$40 

$40 

;MAKE ARITHMETIC DECIMAL 

;KEEP CARRY FROM AFFECTING ADDITION 
;DOUBLE NUMBER 
;RETURN TO BINARY MODE 

You may not need the SED. CLC. and CLD instructions if other parts of the program set 
the Carry and Decimal Mode flags appropriately. Note that you cannot use ASL A to 
double a decimal number because that instruction produces a binary result even if the 
Decimal Mode flag is set. 

You divide a decimal number by 2 simply by shifting it right logically and then 
subtracting 3 from any digit that is B or larger (since 10 BCD is 16 binary). The following 
program divides a decimal number in memory location 0040 by 2 and places the result 
in memory location 0041. 

LOA $40 ;GET DECIMAL NUMBER 
LSR A ;DIVIDE BY 2 IN BINARY 
TAX 
AND #%00001111 ;IS LEAST SIGNIFICANT DIGIT 8 OR MORE? 
CMP #8 
BCC DONE 
TXA 
SBC #3 ;YES. SUBTRACT 3 FOR DECIMAL 

CORRECTION 
TAX 

DONE STX $41 ;STORE NUMBER DIVIDED BY 2 
BRK 

There is no problem with the Carry in the SBC instruction since that instruction is only 
executed if the Carry is set. Remember that SBC subtracts off the complemented Carry 
(1 - C) so a Carry of 1 does not affect the result. 

Try the division method by hand on the decimal numbers 28. 30. and 37. Do you under
stand why it works? You may also wish to try the program on the same data. 

Rounding is simple regardless of whether the numbers are binary 
or decimal. A binary number can be rounded as follows: 

If the most significant bit to be dropped is 1. 
add 1 to the remaining bits. Otherwise. leave 
the remaining bits alone. 

~~---.., 

This rule works because 1 is halfway between 0 and 10 in binary. much as 5 is halfway 
in decimal (note that 0.5 decimal = 0.1 binary). 

So. the following program will round a 16-bit number in memory locations 0040 and 
0041 (MSBs in 0041) to an 8-bit number in memory location 0041. 

DONE 

LOA 
BPL 
INC 
BRK 

$40 
DONE 
$41 

;IS MSB OF EXTRA BYTE 1? 

;YES. ROUND MSB'S UP 
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If the number is longer than 16 bits. the rounding must ripple through all the bytes as 
needed. Note that we could use BIT $40 instead of LDA $40 since the BIT instruction 
sets the Sign flag according to the most significant bit of the addressed memory loca
tion. This approach leaves the Accumulator as it was although it does change the 
status flags. 

Decimal rounding is a bit more difficult because the crossover 
point is now BCD 50 and the rounding must produce a decimal 
result. The rule is: 

If the most significant digit is to be dropped 
is 5 or more. add 1 to the remaining digits. 

The following program will round a 4-digit BCD number in memory locations 0040 and 
0041 (MSDs in 0041) to a two-digit BCD number in memory location 0041. 

LDA $40 ;IS BYTE TO BE DROPPED 50 OR MORE? 
CMP #$50 
BCC DONE 
SED ;YES. ROUND MSD'S UP BY 1 IN DECIMAL 
LDA $41 
ADC #0 ;ADD IN CARRY (KNOWN TO BE SET) 
STA $41 
CLD ;RETURN TO BINARY MODE 

DONE BRK 

Remember that you cannot use the INC instruction to add 1 because that instruction al
ways produces a binary result The instruction ADC#O will add 1 to the Accumulator 
since the Carry must be 1 for the instruction to be executed (otherwise the BCC instruc
tion would have forced a branch!. As usual. we must be careful to set and clear the 
Decimal Mode flag appropriately. For longer numbers. the rounding must ripple 
through more significant digits as needed. 
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PROBLEMS 
1) Multiple-Precision Binary Subtraction 
Purpose: Subtract one multiple-word number from another The length of the num

bers is in memory location 0040. the numbers themselves start (most signifi
cant bits first) in memory locations 0041 and 0051. respectively. and the 
difference replaces the number starting in memory location 0041. Subtract 
the number starting in 0051 from the one starting in 0041. 

Sample Problem: 

(0040) 04 

(0041) 2F 
(0042) 5B 
(0043) A7 
(0044) C3 

(0051) 14 
(0052) OF 
(0053) 35 
(0054) B8 

Result: (0041) 1A 
(0042) 7C 
(0043) 72 
(0044) OB 

that is. 2F5BA7C3 
14DF35B8 

1A7C720B 

2) Decimal Subtraction 
Purpose: Subtract one multiple-word decimal (BCD) number from another. The length 

of the numbers is in memory location 0040. the numbers themselves start 
(most significant digits first) in memory locations 0041 and 0051. respec
tively. and the difference replaces the number starting in memory location 
0041. Subtract the number starting in 0051 from the one starting in 0041 

Sample Problem: 

(0040) 04 

(0041) 36 
(0042) 70 
(0043) 19 
(0044) 85 

(0051) 12 
(0052) 66 
(0053) 34 
(0054) 59 

Result: (0041) 24 
(0042) 03 
(0043) 85 
(0044) 26 

that is. 36701985 
12663459 

24038526 
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3) 8-Bit by 16-Bit Binary Multiplication 
Purpose: Multiply the 16-bit unsigned number in memory locations 0040 and 0041 

(most significant bits in 0041) by the 8-bit unsigned number in memory loca
tion 0042. Store the result in memory locations 0043 through 0045. with the 
most significant bits in memory location 0045. 

Sample Problems: 

a. (0040) 03 
(0041) 00 
(0042) 05 

Result: (0043) OF 
(0044) 00 
(0045) 00 

that is. 3x5=15 

b. (0040) 6F 
(0041) 72 (29.295 decimal! 
(0042) 61 (97 decimal! 

Result: (0043) OF 
(0044) 5C 
(0045) 28 

that is. 29.295 x 97 = 2.841.615 

4) Signed Binary Division 
Purpose: Divide the 16-bit signed number in memory locations 0040 and 0041 (most 

significant bits in 0041) by the 8-bit signed number in memory location 
0042. The numbers are normalized so that the magnitude of memory loca
tion 0042 is greater than the magnitude of memory location 0041. Store the 
quotient (signed) in memory location 0043 and the remainder (always posi
tive) in memory location 0044. 

Sample Problems: 

a. 

b. 

(0040) CO 
(0041) FF (-64) 
(0042) 08 

Resu It: (0043) F8 (-8) quotient 
(0044) 00 (0) remainder 

(0040) 93 
(0041) ED (-4717) 
(0042) 47 (71 decimal! 

Result: (0043) so (-67 decimal! 
(0044) 28 (+40 decimal! 

Hint: Determine the sign of the result. perform an unsigned division. and ad
just the quotient and remainder properly. 
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5) Self-Checking Numbers Aligned 1, 3, 7 Mod 10 
Purpose: Calculate a checksum digit from a string of BCD digits. The length of the 

s.tring of digits (number of words) is in memory location 0041; the string of 
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the 
checksum digit by the Aligned 1, 3. 7 Mod 10 method and store it in memory 
location 0040. 

The Aligned 1, 3, 7 Mod 10 technique works as follows: 

1) Clear the checksum to start. 

2) Add the leading digit to the checksum 

3) Multiply the next digit by 3 and add the result to the checksum. 

4) Multiply the next digit by 7 and add the result to the checksum. 

5) Continue the process (Steps 2-4) until you have used all the digits. 

6) The self-checking digit is the least significant digit of the checksum 

For example, if the string of digits is: 

549321 

the result will be: 

Checksum 

Self-checking digit 

Sample Problems: 

5 + 3 x 4 + 7 x 9 + 3 + 3 x 2 + 7 x 1 = 96 

6 

a. 

b 

(0041) 
(0042) 
(0043) 
(0044) 

03 
36 
68 
51 

Result: Checksum = 3 + 3 x 6 + 7 x 6 + 8 + 3 x 5 + 7 x 1 = 93 
(0040) 03 

(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

04 
50 
29 
16 
83 

Result: Checksum = 5 + 3 x 0 + 7 x 2 + 9 + 3 x 1 + 7 x 6 + 8 
+ 3 x 3 = 90 

(0040) = 00 

Hint: Note that 7 = 2 x 3 + 1 and 3 = 2 x 1 + 1, so the formula 
Mi = 2 x Mi-1 + 1 can be used to calculate the next multiplying factor 
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Chapter 9 
TABLES AND LISTS 

Tables and lists are two of the basic data structures used with all computers. We 
have already seen tables used to perform code conversions and arithmetic. Tables 
may also be used to identify or respond to commands and instructions. linearize 
data. provide access to files or records. define the meaning of keys or switches. 
and choose among alternate programs. Lists are usul!lIy less structured than ta
bles. Lists may record tasks that the processor must perform. messages or data 
that the processor must record. or conditions that have changed or should be 
monitored. Tables are a simple way of making deci~ions or solving problems. since 
no computations or logical functions are necessary. The task. then. reduces to 
organizing the table so that the proper entry is easy to find. Lists allow the execu
tion of sequences of tasks. the preparation of sets of results. and the construction 
of interrelated data files (or data bases). Problems include how to add elements to 
a list and remove elements from it. 
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EXAMPLES 
Add Entry to List 
Purpose: Add the contents of memory location 0040 to a list if it is not already pres

ent in the list. The length of the list is in memory location 0041 and the list 
itself begins in memory location 0042. 

Sample Problems: 

a. (0040) 6B 
(0041) 04 
(0042) 37 
(0043) 61 
(0044) 38 
(0045) 10 

Result: (0041) 05 
(0046) 6B 

The entry (6B) is added to the list. since it is not already present. The length of the list is 
incremented by 1. 

b. (0040) 
(0041) 
(0042) 
(0043) 
(0044) 
(0045) 

6B 
04 
37 
6B 
38 
10 

Result: No change. since the entry (6B) is already in the list (in memory loca
tion 0043) 
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Flowchart: 

Source Program: 

LDA 
LDX 

SRLST CMP 
BEQ 
DEX 
BNE 
INC 
LDX 
STA 

DONE BRK 

$40 
$41 
$41.X 
DONE 

SRLST 
$41 
$41 
$41.X 

Entry = 10040) 

Length = 10041) 

Index = Length 

Index = Index -1 

Length = Length + 1 
10041 + Length) = 

Entry 

;GET ENTRY 
;INDEX = LENGTH OF LIST 
;IS ENTRY = ELEMENT IN LIST? 
;YES. DONE 
;NO. GO ON TO NEXT ELEMENT 

;ADD 1 TO LIST LENGTH 

;ADD ENTRY TO LIST 
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Object Program: 

Memory Address 
(Hex) 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
OOOC 
OOOD 
OOOE 
OOOF 
0010 
0011 

Memory Contents 
(Hex) 

A5 
40 
A6 
41 
D5 
41 
FO 
09 
CA 
DO 
F9 
E6 
41 
A6 
41 
95 
41 
00 

SRLST 

DONE 

Instruction 
(Mnemonic) 

LDA $40 

LDX $41 

CMP $41.X 

BEQ DONE 

DEX 
BNE SRLST 

INC $41 

LDX $41 

STA $41.X 

BRK 

Clearly. this method of adding elements is very inefficient if the list 
is long. We could improve the procedure by limiting the search to 

I HASHING I 
part of the list or by ordering the list. We could limit the search by using the entry to 
get a starting point in the list. This method is called "hashing". and is much like 
selecting a starting page in a dictionary or directory on the basis of the first letter in an 
entry. We could order the list by numerical value. The search could then end when the 
list values went beyond the entry (larger or smaller. depending on the ordering tech
nique used!. A new entry would have to be inserted properly. and all the other entries 
would have to be moved down in the list. 

The program could be restructured to use two tables. One table could provide a starting 
point in the other table; for example. the search point could be based on the most or 
least significant 4-bit digit in the entry. 

The program does not work if the length of the list is zero (what happens?). We could 
avoid this problem by checking the length initially. The initialization procedure would 
then be: 

LDX 
BEQ 

ADELM INC 

$41 
ADELM 

$41 

;INDEX = LENGTH OF LIST 
;ADD ENTRY TO LIST IF LENGTH IS ZERO 

;ADD 1 TO LIST LENGTH 

Unlike many other processors. the 6502's Zero flag is affected by Load instructions. 

If each entry were longer than one word. a pattern-matching program would be neces
sary. The program would have to proceed to the next entry if a match failed; that is. 
skip over the last part of the current entry once a mismatch was fou nd. 
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Check an Ordered List 
Purpose: Check the contents of memory location 0041 to see if that value is in an or

dered list. The length of the list is in memory location 0042; the list itself 
begins in memory location 0043 and consists of unsigned binary numbers 
in increasing order. If the contents of location 0041 are in the list. clear 
memory location 0040; otherwise. set memory location 0040 to FF16. 

Sample Problems: 

a. (0041) 68 
(0042) 04 
(0043) 37 
(0044) 55 
(0045) 7D 
(0046) A1 

Result: (0040) FF. since 6B is not in the list. 

b. (0041) 68 
(0042) 04 
(0043) 37 
(0044) 55 
(0045) 68 
(0046) A1 

Result: (0040) 00. since 68 is in the list. 
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Flowchart: 

Entrv = (00411 
Length = (00421 

Mark = 0 
Index = Length 

Index = Index -1 

Mark = FF 16 

(00401 = Mark 

The searching process is a bit different here since the elements are ordered. Once we 
find an element smaller than the entry {remember that we are moving backward 
through the list in the usual 6502 fashion}, the search is over. since subsequent ele
ments will be even smaller. You may want to try an example to convince yourself that 
the procedure works. Note that an element smaller than the entry is indicated by a com
parison that does not produce a borrow (that is. Carry = 1). 

As in the previous problem. a table or other method that could 
choose a good starting point would speed up the search. One 
method would be to start in the middle and determine which 
half of the list the entry was in, then divide the half into halves, etc. This method 
is called a binary search, since it divides the remaining part of the list in half each 
time.1 
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Source Program: 

LDA $41 ;GET ENTRY 
LDX $42 ;INDEX = LENGTH OF LIST 
LDY #0 ;MARK = ZERO FOR ELEMENT IN LIST 

SRLST CMP $42.X ;IS ENTRY EQUAL TO ELEMENT? 
BEQ DONE ;YES. SEARCH COMPLETED 
BCS NOTIN ;ENTRY NOT IN LIST IF GREATER THAN ELEMENT 
DEX 
BNE SRLST 

NOTIN LDY #$FF ;MARK = FF FOR NOT IN LIST 
DONE STY $40 ;SAVE MARK 

BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A5 LDA $41 
0001 41 
0002 A6 LDX $42 
0003 42 
0004 AO LDY #0 
0005 00 
0006 D5 SRLST CMP $42:X 
0007 42 
0008 FO BEQ DONE 
0009 07 
OOOA BO BCS NOTIN 
OOOB 03 
OOOC CA DEX 
OOOD DO BNE SRLST 
OOOE F7 
OOOF AO NOTIN LDY #$FF 
0010 FF 
0011 84 DONE STY $40 
0012 40 
0013 00 BRK 

This algorithm is a bit slower than the one in the example given under "Add Entry to 
List" because of the extra conditional jump (BCS NOTIN) The average execution time 
for this simple search technique increases linearly with the length of the list while the 
average execution time for a binary search increases logarithmically. For example. if the 
length of the list is doubled. the simple technique takes twice as long on the average 
while the binary search method only requires one extra iteration. 
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Remove Element from Queue 
Purpose: Memory locations 0042 and 0043 contain the address of the head of the 

queue (MSBs in 0043). Place the address of the first element (head) of a 
queue into memory locations 0040 and 0041 (MSBs in 0041) and update 
the queue to remove the element. Each t;llement in the queue is two bytes 
long and contains the address of the next two-byte element in the queue. 
The last element in the queue contains zero to indicate that there is no next 
element. 

Queues are used to store data in the order in which it will be used, or tasks in the 
order in which they will be executed. The queue is a first. in, first-out data struc
ture; i.e., elements are removed from the queue in the same order in which they 
were entered. Operating systems place tasks in queues so that they will be executed 
in the proper order. I/O drivers transfer data to or from queues so that it will be transmit
ted or handled in the proper order. Buffers may be queued so that the next available 
one can easily be found and those that are released can easily be added to the available 
storage. Queues may also be used to link requests for storage. timing. or I/O so that 
they can be satisfied in the correct order. 

In real applications. each element in the queue will typically contain a large amount of 
information or storage space besides the address required to link the element to the 
next one. 

Sample Problems: 

a. (0042) ~~} address of first element in queue 
(0043) 
(0046) ~~} address of second element in queue 
(0047) 
(004D) gg} end of queue 
(004E) 

Resu It: (0040) ~~} address of element removed from queue 
(0041) 
(0042) ~~} address of new first element in queue 
(0043) 

b. (0042) 'gg} empty queue 
(0043) 

Result: (0040) gg} no element available from queue 
(0041) 
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Flowchart: 

Source Program: 

DONE 

LDA 
STA 
LDA 
STA 
ORA 
BEQ 
LDY 
LDA 
STA 
INY 
LDA 
STA 
BRK 

$42 
$40 
$13 
$41 
$42 
DONE 
#0 
($401.Y 
$42 

($401.Y 
$43 

Pointer = (0042 
and 00431 

(0040 and 00411 = 
Pointer 

(0042) = (Pointerl 
(00431 = (Pointer+ 1) 

;REMOVE HEAD OF QUEUE 

IS QUEUE EMPTY? 
YES. DONE 
NO. MOVE NEXT ELEMENT TO HEAD OF QUEUE 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic! 

0000 A5 LOA $42 
0001 42 
0002 85 STA $40 
0003 40 
0004 A5 LOA $43 
0005 43 
0006 85 STA $41 
0007 41 
0008 05 ORA $42 
0009 42 
OOOA FO BEQ DONE 
OOOB OB 
OOOC AO LOY #0 
0000 00 
OOOE B1 LOA ($401.Y 
OOOF 40 
0010 85 STA $42 
0011 42 
0012 C8 INY 
0013 B1 LOA ($401.Y 
0014 40 
0015 85 STA $43 
0016 43 
0017 00 DONE BRK 

Queuing can handle lists that are not in sequential memory locations. Each element in 
the queue must contain the address of the next element. Such lists allow you to handle 
data or tasks in the proper order. change variables, or fill in definitions in a program. Ex
tra storage is required but elements can easily be added to the queue or deleted from it. 

Post-indexing, or indirect indexed addressing, is very handy here since it allows us to 
use the contents of memory locations 0040 and 0041 as a pointer. Those locations con
tain the address of the head of the queue which, in turn, contains the address of the 
next element. The memory locations in which the address of the element is stored must 
be on page zero, since they are used with the post-indexed addressing mode. All other 
addresses can be anywhere in memory. The post-indexed mode could also be used later 
to transfer data to or from the element that has just been removed from the queue. 

Remember that post-indexing is only available for addresses on page zero. Furthermore, 
only Index Register Y can be used in this mode. 

Note the use of the sequence 

LOA $43 
ORA $42 

to determine if the 16-bit number in memory locations 0042 and 0043 is zero. Try to 
devise some other sequences that could handle this problem - it obviously occurs 
whenever you use a 16-bit counter rather than the 8-bit counter that we have used in 
most of the examples. 

One problem with the 6502 instruction set is that there are no instructions that 
specifically move 16-bit addresses (or data) from one place to another or that perform 
other 16-bit operations. Of course, such instructions would have to operate eight bits at 
a time, but some instruction fetch and decode cycles could be saved. Most other 
microprocessors have such instructions. 
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It may be useful to maintain pointers to both ends of the queue rather than just to 
its head.2,3 The data structure may then be used in either a first-in, first-out man
ner or in a last-in, first-out manner, depending on whether new elements are ad
ded to the head or to the tail. How would you change the example program so that 
memory locations 0044 and 0045 contain the address of the last element (tail) of the 
queue? 

If there are no elements in the queue, the program clears memory locations 0040 and 
0041. A program that requested an element from the queue would have to check those 
memory locations to see if its request had been satisfied. Can you suggest other ways 
to provide this information? 

9-11 



a-Bit Sort 
Purpose: Sort an array of unsigned binary numbers into descending order. The length 

of the array is in memory location 0040 and the array itself begins in memo
ry location 0041. 

Sample Problem: 

(0040) 06 
(0041) 2A 
(0042) 95 
(0043) 60 
(0044) 3F 
(0045) 01 
(0046) 19 

Result: (0041) 01 
(0042) 95 
(0043) 60 
(0044) 3F 
(0045) 2A 
(0046) 19 

A simple sorting technique works as follows: 

Step 1) Clear a flag INTER. 

Step 2) Examine each consecutive pair of numbers in the array. If 
any are out of order. exchange them and set INTER. 

SIMPLE 
SORTING 
ALGORITHM 

Step 3) If INTER = 1 after the entire array has been examined. return to Step 1. 

INTER will be set if any consecutive pair of numbers is out of order. Therefore. if IN
TER = 0 at the end of a pass through the entire array. the array is in proper order. 

The technique operates as shown in the following simple case. Let us assume that we 
want to sort an array into descending order: the array has four elements - 12. 03. 15. 
08. We will work backwards through the array in normal 6502 processing style. 

1 st Iteration: 

Step 1) INTER = 0 

Step 2) Final order of the array is: 
15 
12 
03 
08 
since the second pair (03.15) is exchanged and so is the third pair (12.15). 
INTER = 1. 

2nd Iteration: 

Step 1) INTER = 0 

Step 2) Final order of the array is: 
15 
12 
08 
03 
since the first pair (08.03) is exchanged. INTER = 1. 
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3rd Iteration: 

Step 1) INTER = 0 

Step 2) The elements are already in order: no exchanges are necessary. and 
INTER remains zero. 

Note that one extra iteration is always performed to ensure that the elements are in the 
proper order. Clearly. there is a large potential for improvement in this method and new 
sorting techniques are an important area of current research. 6 

Flowchart: 

No 

No 

Inter ~ 0 

Index ~ (0040)-1 
Base ~ 0041 

Temp~ (Base+ 
Index -11 

(Base+lndex -11 ~ 
(Base+lndex) 

(Base+lndex) ~ 
Temp 

Inter = 1 

Index -= Index-1 
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Source Program: 

SORT LDY #0 ;INTERCHANGE FLAG = ZERO 
LDX $40 ;GET LENGTH OF ARRAY 
DEX ;ADJUST ARRAY LENGTH TO NUMBER OF PAIRS 

PASS LDA $40.X ;IS PAIR OF ELEMENTS IN ORDER? 
CMP $41.X 
BCS COUNT ;YES. TRY NEXT PAIR 
LDY #1 ;NO. SET INTERCHANGE FLAG 
PHA ;INTERCHANGE ELEMENTS USING THE STACK 
LDA $41.X 
STA $40.X 
PLA 
STA $41.X 

COUNT DEX ;CHECK FOR COMPLETED PASS 
BNE PASS 
DEY ;WERE ALL ELEMENTS IN ORDER? 
BEQ SORT ;NO. GO THROUGH ARRAY AGAIN 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 AO SORT LDY #0 
0001 00 
0002 A6 LDX $40 
0003 40 
0004 CA DEX 
0005 B5 PASS LDA $40.X 
0006 40 
0007 D5 CMP $41.X 
0008 41 
0009 BO BCS COUNT 
OOOA OA 
OOOB AO LDY #1 
OOOC 01 
OOOD 4B PHA 
OOOE B5 LDA $41.X 
OOOF 41 
0010 95 STA $40.X 
0011 40 
0012 68 PLA 
0013 95 STA $41.X 
0014 41 
0015 CA COUNT DEX 
0016 DO BNE PASS 
0017 ED 
0018 88 DEY 
0019 FO BEQ SORT 
001A E5 
001B 00 BRK 
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The case where two elements in the array are equal is very important. The pro
gram should not perform an interchange in that case since that interchange would 
be performed in every pass. The result would be that every pass would set the In
terchange flag. thus producing an endless loop. The program compares the elements 
in the specified order so that the Carry flag is set if the elements are already arranged 
correctly. Remember that comparing two equal values sets the Carry flag since that flag 
is an inverted borrow after subtractions or comparisons. 

The 6502 Conditional Branch instructions can be limiting, and are particularly limiting 
in this program. Following an instruction like CMP, we have only BCC - branch if 
(M) > (A) - and BCS - branch if (M):-=;; (A). The 6502 has no Branch instructions for the 
cases where the equality condition is on the other side, that is, (M) z (A) and (M):-=;; (A). 
Therefore, we must be careful of the order of operations. 

Before starting each sorting pass, we must be careful to reinitialize the Index and the In
terchange flag. 

The program must reduce the Counter by 1 initially, since the number of consecutive 
pairs is one less than the number of elements (the last element has no successor). 

This program does not work properly if there are fewer than two elements in the array. 
How could you handle this degenerate case? 

There are many sorting algorithms that vary widely in efficien
cy. References 1, 4, and 5 describe some of these. 

OTHER SORTING 
METHODS 

The Stack is easy to use for temporary storage in this program since the PHA (Push Ac
cumulator or Store Accumulator in Stack) and PLA (Pull Accumulator or Load Ac
cumulator from Stack) instructions are each only one byte long. The address is in the 
Stack Pointer (extended with 01 as its page number). If you wish, you can substitute a 
fixed memory location, such as 003F. The interchange then is: 

STA $3F 

LDA $41,X 
STA $40,X 
LDA $3F 
STA $41.X 

;INTERCHANGE ELEMENTS USING TEMPORARY 
STORAGE 

See Chapter 10 for a further discussion of the 6502 RAM Stack 
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Using an Ordered Jump Table 
Purpose: Use the contents of memory location 0042 as an index to a jump table start

ing in memory location 0043, Each entry in the jump table contains a 16-bit 
address with LSBs in the first byte, The program should transfer control to 
the address with the appropriate index; that is, if the index is 6, the pro
gram should jump to address entry #6 in the table, Assume that the table 
has fewer than 128 entries, 

Sample Problem: 

(0042) 

(0043) 
(0044) 
(0045) 
(0046) 
(0047) 
(0048) 
(0049) 
(004A) 

Result: (PC) 

Flowchart: 

02 index for jump table 

~g} zeroth element in jump table 

~~ } first element in jump table 

~~ t second element in jump table 

~~ } third element in jump table 

0054, since that is entry #2 (starting from zero) in the 
jump table. The next instruction to be executed will be 
the one located at that address 

Index = (0042) x 2 

(0040) = (0043 
+Index) 

(0041) = (0044 
+Index) 

(PC) = 
(0041)(0040) 

The last box results in a transfer of control to the address obtained from the table. 

Source Program: 

LOA 
ASL 
TAX 
LOA 
STA 
LOA 
STA 
JMP 

$42 
A 

$43,X 
$40 
$44,X 
$41 
($40) 

;GET INDEX 
;DOUBLE INDEX FOR 2-BYTE TABLE 

;GET LSB'S OF JUMP ADDRESS 

;GET MSB'S OF JUMP ADDRESS 

;TRANSFER CONTROL TO DESTINATION 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A5 LOA $42 
0001 42 
0002 OA ASL A 
0003 AA TAX 
0004 B5 LOA $43.X 
0005 43 
0006 85 STA $40 
0007 40 
0008 B5 LOA $44.X 
0009 44 
OOOA 85 STA $41 
OOOB 41 
OOOC 6C JMP ($40) 
0000 40 
OOOE 00 

Jump tables are very useful in situations where one of several routines must be 
selected for execution. Such situations arise in decoding commands (entered, for 
example, from a control keyboard). selecting test programs, choosing alternative 
methods, or selecting an I/O configuration. 

The jump table replaces a series of conditional jump operations. The program that 
accesses the jump table could be used to access several different tables merely by 
using the post-indexed. or indirect indexed. addressing mode. in which the starting ad
dress of the table is placed in RAM on page zero. 

The data must be multiplied by 2 to give the correct index since each entry in the jump 
table occupies two bytes. 

The instruction JMP ($40) uses indirect addressing: the destination is the address 
stored at the specified location rather than the specified location itself. JMP is the only 
6502 instruction that uses indirect addressing. Note that there is no page-zero mode 
and that the address is stored in the usual 6502 fashion with the least significant bits 
first. 

The terminology used in describing Jump or Branch instructions is 
often quite confusing. A Jump instruction that is described as 
using direct addressing actually loads the specified address into 
the Program Counter: this works more like immediate addressing 

JUMP AND 
BRANCH 
TERMINOLOGY 

than like direct addreSSing as applied to other instructions such as Load or Store. A 
Jump instruction using indirect addressing works like other instructions using direct 
addreSSing. 

No ending operation (such as a BRK instruction) is necessary since JMP ($40) transfers 
control to the address obtained from the jump table. 

References 7 and 8 contain additional examples of the use of jump tables. The program 
assumes that the jump table contains fewer than 128 entries (why?!. How could you 
change the program to allow longer tables? 
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PROBLEMS 
1) Remove an Entry From a List 
Purpose: Remove the contents of memory location 0040 from a list if it is present. 

The length of the list is in memory location 0041 and the list itself begins in 
memory location 0042. Move the entries below the one removed up one 
position and reduce the length of the list by 1. 

Sample Problems: 

a. (0040) 

(0041) 

(0042) 
(0043) 
(0044) 
(0045) 

68 entry to be removed from list 

04 length of list 

37 first element in list 
61 
28 
10 

Result: No change. since the entry is not in the list. 

b. (0040) 

(0041) 

(0042) 
(0043) 
(0044) 
(0045) 

Result: (0041) 

(0042) 
(0043) 
(0044) 

68 

04 

37 
68 
28 
10 

03 

37 
28 
10 

entry to be removed from list 

length of list 

first element in list 

length of list reduced by 1 

other elements in list moved up one position 

The entry is removed from the list and the ones below it are moved up one position. The 
length of the list is reduced by 1. 
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2) Add an Entry to an Ordered List 
Purpose: Place the contents of memory location 0040 into an ordered list if they are 

not already there. The length of the list is in memory location 0041. The list 
itself begins in memory location 0042 and consists of unsigned binary num
bers in increasing order. Place the new entry in the correct position in the 
list. adjust the elements below it down. and increase the length of the list by 
1. 

Sample Problems: 

a. (0040) 68 entry to be added to list 

(0041) 04 length of list 

(0042) 37 first element in list 
(0043) 55 
(0044) 70 
(0045) A1 

Result: (0041) 05 length of list increased by 1 

(0044) 68 entry placed in list 
(0045) 70 other elements in the list moved down one 

position 
(0046) A1 

b. (0040) 68 entry to be added to list 

(0041) 04 length of list 

(0042) 37 first element in list 
(0043) 55 
(0044) 68 
(0045) A1 

Result: No change. since the entry is already in the list. 

3) Add an Element to a Queue 
Purpose: Add the address in memory locations 0040 and 0041 (MSBs in 0041) to a 

queue. The address of the first element of the queue is in memory locations 
0042 and 0043 (MS8s in 0043). Each element in the queue contains either 
the address of the next element in the queue or zero if there is no next ele
ment: all addresses are 16 bits long with the least significant bits in the first 
byte of the element. The new element goes at the end (tail) of the queue; its 
address will be in the element that was at the end of the queue and it will 
contain zero to indicate that it is now the end of the queue. 

Sample Problem: 

(0040) 
(0041) 
(0042) 
(0043) 

(0046) 
(0047) 

Resu It: (0046) 
(0047) 

(0040) 
(004E) 

40} 00 new element to be added to queue 

6~ } pointer to head of queue 

~~ } last element in queue 

40 I old last element points to 
00 f new last element 

~~ } new last element in queue 

How would you add an element to the queue if memory locations 0044 and 0045 con
tained the address of the tail of the queue (the last element)? 
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4) 16-Bit Sort 
Purpose: Sort an array of unsigned 16-bit binary numbers into descending order. The 

length of the array is in memory location 0040 and the array itself begins in 
memory location 0041. Each 16-bit number is stored with the least signifi
cant bits in the first byte. 

Sample Problem: 

(0040) 

(0041) 
(0042) 

(0043) 
(0044) 

(0045) 
(0046) 

Resu It: (0041) 
(0042) 

(0043) 
(0044) 

(0045) 
(0046) 

03 

D1 
19 

60 
3F 

2A 
B5 

2A 
B5 

60 
3F 

D1 
19 

length of list 

LSBs of first element in list 
MSBs of first element in list 

LSBs of first element in sorted list 
MSBs of first element in sorted list 

The numbers are B52A. 3F60. and 19D1. 

5) Using a Jump Table with a Key 
Purpose: Use the contents of memory location 0040 as the key to a jump table start

ing in memory location 0041. Each entry in the jump table contains an 8-bit 
key value followed by a 16-bit address (MSBs in second byte) to which the 
program should transfer control if the key is equal to that key value. 

Sample Problem: 

(0040) 38 key value for search 

(0041) 32 key value for first entry 
(0042) 4A LSBs of jump address for first entry 
(0043) 00 MSBs of jump address for first entry 

(0044) 35 
(0045) 4E 
(0046) 00 

(0047) 38 
(0048) 52 
(0049) 00 

Result: (PC) 0052. since that address corresponds 
to key value 38. 
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Chapter 10 
SUBROUTINES 

None of the examples that we have shown so far is typically a program all by it
self. Most real programs perform a series of tasks, many of which may be the 
same or may be common to several different programs. We need a way to formu
late these tasks once and make the formulations conveniently available both in 
different parts of the current program and in other programs. 

The standard method is to write subroutines that perform par
ticular tasks. The resulting sequences of instructions can be 
written once, tested once, and then used repeatedly. They can 

SUBROUTINE 
LIBRARY 

form a subroutine library that provides documented solutions to common prob
lems. 

Most microprocessors have special instructions for 
transferring control to subroutines and restoring control to 
the main program. We often refer to the special instruction 

SUBROUTINE 
INSTRUCTIONS 

that transfers control to a subroutine as Call. Jump-to-Subroutine. Jump and Mark 
Place. or Jump and Link. The special instruction that restores control to the main pro
gram is usually called Return. On the 6502 microprocessor. the Jump-to-Subroutine 
(JSR) instruction saves the old value of the Program Counter in the RAM Stack before 
placing the starting address of the subroutine into the Program Counter: the Return
from-Subroutine (RTS) instruction gets the old value from the Stack and puts it back in 
the Program Counter. The effect is to transfer program control. first to the subroutine 
and then back to the main program. Clearly the subroutine may itself transfer control to 
a subroutine. and so on. 

In order to be really useful. a subroutine must be general. A routine that can perform 
only a specialized task. such as looking for a particular letter in an input string of fixed 
length. will not be very useful. If. on the other hand. the subroutine can look for any let
ter in strings of any length. it will be far more helpful. We call the data or addresses 
that the subroutine allows to vary "parameters." An important part of writing 
subroutines is deciding which variables should be parameters. 

One problem is transferring the parameters to the subroutine: this 
process is called passing parameters. The simplest method is for 
the main program to place the parameters into registers. Then the 

PASSING 
PARAMETERS 

subroutine can simply assume that the parameters are there. Of course. this technique 
is limited by the number of registers that are available. The parameters may. however. 
be addresses as well as data. For example. a sorting routine could begin with Index 
Register X containing the address on page zero at which the length of the array is lo
cated. 

The 6502 microprocessor is limited by the fact that it has no address-length (16-
bitl registers in which to pass address-length parameters. However. such 
parameters can easily be passed by reserving locations on page zero; these loca
tions effectively act as additional registers. A further advantage of this approach 
is that addresses on page zero can be accessed using the post-indexed (indirect 
indexed) and pre-indexed (indexed indirectl addressing modes. as well as the 
short page-zero forms of direct and indexed addressing. 
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Another approach is to use the Stack. The main program can place the parameters in 
the Stack arid the subroutine can retrieve them. The advantages of this method are that 
the Stack is usually fairly large (up to one page) and that data in the Stack is not lost 
even if the Stack is used again. The disadvantages are that few 6502 instructions use 
the Stack. and the Jump-to-Subroutine instruction stores the return address at the top 
of the Stack. 

Still another approach is to assign an area of memory for parameters. The main program 
can place the address of the area on page zero and the subroutine can retrieve the data 
using the post-indexed addressing mode. However. this approach is awkward if the 
parameters are themselves addresses. 

Sometimes a subroutine must have special characteristics. A 
subroutine is relocatable if it can be placed anywhere in 

I RELOCATION I 
memory. You can use such a subroutine easiiy. regardless of the placement of other 
programs or the arrangement of the memory. A strictly relocatable program can use 
no absolute addresses; all addresses must be relative to the start of the program. 
A relocating loader is necessary to place the program in memory properly; the loader 
will start the program after other programs and will add the starting address or reloca
tion constant to all addresses in the program. 

A subroutine is reentrant if it can be interrupted and called by 
the interrupting program and still give the correct results for 
both the interrupting and interrupted programs. Reentrancy is 

REENTRANT 
SUBROUTINE 

important for standard subroutines in an interrupt-based system. Otherwise the inter
rupt service routines cannot use the standard subroutines without causing errors. 
Microprocessor subroutines are easy to make reentrant. since the Call instruction uses 
the Stack and that procedure is automatically reentrant. The only remaining require
ment is that the subroutine use the registers and Stack rather than fixed memory loca
tions for temporary storage. This is a bit awkward. but usually can be done if necessary. 

A subroutine is recursive if it calls itself. Such a subroutine clearly musi also be re
entrant. However. recursive subroutines are uncommon in microprocessor applications. 

Most programs consist of a main program and several subroutines. This is advan
tageous because you can use proven routines and debug and test the other 
subroutines separately. You must, however, be careful to use the subroutines pro
perly and remember their exact effects on registers, memory locations, and flags. 

SUBROUTINE DOCUMENTATION 
Subroutine listings must provide enough information so 
that users need not examine the subroutine's internal 
structure. Among the necessary specifications are: 

• A description of the purpose of the subroutine 

• A list of input and output parameters 

• Registers and memory locations used 

• A sample case 

If these guidelines are followed. the subroutine will be easy to use. 

10-2 

DOCUMENTING 
SUBROUTINES 



EXAMPLES 
It is important to note that the following examples all reserve an area of memory for the 
RAM Stack. If the monitor in your microcomputer establishes such an area, you may use 
it instead. If you wish to try establishing your own Stack area, remember to save and 
restore the monitor's Stack Pointer in order to produce a proper return at the end of 
your main program. 

To save the monitor Stack Pointer, use the instruction sequence 

TSX 
STX TEMP 

To restore the monitor Stack Pointer, use the sequence 

LOX TEMP 
TXS 

Note that the Stack Pointer can only be loaded or stored via Register X. Remember that 
the 6502 always keeps its Stack on page 1 of memory so that the real Stack address is 
01 ss, where ss is the contents of the B-bit Stack Pointer register. 

We have used address 01 FF16 as the starting point for the Stack. You may have to con
sistently replace that address with one more suitable for your configuration. You should 
consult your microcomputer's User's Manual to determine the required changes. 

The basic sequence for initializing the Stack Pointer is thus 

LOX 
TXS 

#$FF ;PLACE STACK AT TOP OF PAGE 1 
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Hex to ASCII 
Purpose: Convert the contents of the Accumulator from a hexadecimal digit to an 

ASCII character. Assume that the original contents of the Accumulator form 
a valid hex digit. 

Sample Problems: 

a. (A) 

Result: (A) 

b. (A) 

Result: (A) 

Flowchart: 

OC 

43 

06 

36 

ASCII C 

ASCII 6 

(Al= (AI + ASCII A
ASCII 9 - 1 

(AI=(AI + ASCII 0 

The calling program starts the Stack at memory location 01 FF, gets the data from 
memory location 0040, calls the conversion subroutine, and stores the result in memory 
location 0041. 

*=0 
LOX 
TXS 
LOA 
JSR 
STA 
BRK 

#$FF 

$40 
ASDEC 
$41 

;PLACE STACK AT END OF PAGE 1 

;GET HEXADECIMAL DATA 
;CONVERT DATA TO ASCII 
;STORE RESULT 

The subroutine converts the hexadecimal data to ASCII. 

*=$20 
ASDEC CMP 

BCC 
ADC 

ASCZ ADC 
RTS 

#10 
ASCZ 
#'A-'9-2 
#'0 

;IS DATA A DECIMAL DIGIT? 

;NO, ADD OFFSET FOR LETTERS 
;CONVERT TO ASCII BY ADDING ASCII ZERO 
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Subroutine Documentation: 

;SUBROUTINE ASDEC 

;PURPOSE: ASDEC CONVERTS A HEXADECIMAL 
DIGIT IN THE ACCUMULATOR TO AN 

; ASCII DIGIT IN THE ACCUMULATOR 

;INITIAL CONDITIONS: HEX DIGIT IN A 

;FINAL CONDITIONS: ASCII CHARACTER IN A 

;REGISTERS USED: A 

;SAMPLE CASE 
INITIAL CONDITIONS: 6 IN ACCUMULATOR 
FINAL CONDITIONS: ASCII 6 (HEX 36) 

IN ACCUMULATOR 

Object Program: 

Memory Address 
(Hex) 

1) Calling program 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
OOOA 

2) Subroutine 

0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 

Memory Contents 
(Hex) 

A2 
FF 
9A 
A5 
40 
20 
20 
00 
85 
41 
00 

C9 
OA 
90 
02 
69 
06 
69 
30 
60 

ASDEC 

ASCZ 

Instruction 
(Mnemonic) 

LOX #$FF 

TXS 
LOA $40 

JSR ASDEC 

STA $41 

BRK 

CMP #10 

BCC ASCZ 

ADC #'A-'9-2 

ADC #'0 

RTS 

The instructions LOX #$FF and TXS start the Stack at memory location 01 FF. Remem
ber that the Stack grows downward (toward lower addresses) and that the 6502 Stack 
Pointer always contains the address on page one of the next empty location (rather than 
the last filled one as on some other microprocessors). 

10-5 



The Jump-to-Subroutine instruction places the subroutine starting address (0020) in 
the Program Counter and saves the old Program Counter (the address of the last byte of 
the JSR instruction) in the Stack. The procedure is: 

STEP 1 - Save MSBs of old Program Counter in Stack, decrement Stack Pointer. 

STEP 2 - Save LSBs of old Program Counter in Stack, decrement Stack Pointer. 

Note that the Stack Pointer is decremented after the data is stored. 

The MSBs of the Program Counter are stored first. but those bits end up at the higher 
address (in the usual 6502 fashion) since the Stack is growing down. 

The result in the example is: 

(01 FF) 00 
(01 FE) 07 

(S) FD 

The value which the Jump-to-Subroutine instruction saves is the Program Counter 
before the last byte of the JSR instruction has been fetched. This value is therefore one 
less than the proper return address. The Return-from-Subroutine (RTS) instruction 
retrieves the top two entries from the Stack, adds one (because of the odd 6502 offset 
just mentioned), and places the result back in the Program Counter. The procedure is: 

STEP 1 -Increment Stack Pointer. load eight bits from Stack, place result into LSBs of 
Program Counter. 

STEP 2 -Increment Stack Pointer. load eight bits from Stack, place result into MSBs of 
Program Counter. 

STEP 3 -Increment Program Counter before actually fetching an instruction. 

Here the Stack Pointer is incremented before the data is loaded. 

The resu It in the example is: 

(PC) (OOFF)(OOFE) + 1 
0008 

(S) FF 

This subroutine has a single parameter and produces a single result. The Accumulator 
is the obvious place to put both. 

The calling program consists of three steps: placing the data in the Accumulator, call
ing the subroutine, and storing the result in memory. The overall initialization must also 
place the Stack in the appropriate area of memory. 

The subroutine is reentrant since it uses no data memory: it is relocatable since the ad
dress ASCZ is only used in a Conditional Branch instruction with relative addressing. 

Note that the Jump-to-Subroutine instruction results in the execution of four or five in
structions taking 13 or 14 clock cycles. A subroutine call can take a long time even 
though it appears to be a single instruction in the program. 

If you plan to use the Stack for passing parameters, remember that Jump-to-Subroutine 
saves the return address at the top of the Stack. You can move the Stack Pointer to In
dex Register X to get access to the data, but you must remember to provide the proper 
offsets. You can also gain access to the data by using two extra PLA instructions to 
move the Stack Pointer past the return address, but you must then remember to adjust 
the Stack Pointer back to its original value before returning. 
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length of a String of Characters 
Purpose: Determine the length of a string of ASCII characters. The starting address of 

the string is in memory locations 0040 and 0041. The end of the string is 
marked by a carriage return character (CR. 0016). Place the length of the 
string (excluding carriage return) in the Accumulator. 

Sample Problems: 

a. (0040) 43 
(0041) 00 

(0043) 52 
(0044) 41 
(0045) 54 
(0046) 48 
(0047) 45 
(0048) 52 
(0049) 00 

Result: (A) 06 

b (0040) 43 
(0041) 00 

(0043) 00 

Result: (A) 00 

Flowchart: 

starting address of string 

'R' 
'A' 
T 
'H' 
'F 
'R' 
CR 

starting address of string 

Base ~ (0040 and 
00411 

Index::: -1 

Index = Index + 1 
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Source Program: 

The calling program starts the Stack at memory location 01 FF. stores the starting ad
dress of the string in memory locations 0040 and 0041. calls the string length 
subroutine. and stores the result in memory location 0042. Memory locations 0040 and 
0041 are used as if they were extra registers. 

'=0 
LDX 
TXS 
LDA 
STA 
LDA 
STA 
JSR 
STA 
BRK 

#$FF 

#$43 
$40 
#0 
$41 
STLEN 
$42 

;PLACE STACK AT END OF PAGE 1 

;SAVE STARTING ADDRESS OF STRING 

;DETERMINE LENGTH OF STRING 
;STORE STRING LENGTH 

The subroutine determines the length of the string of ASCII characters and places the 
length in the Accumulator. 

'=$20 
STLEN LDY 

LDA 
CHKCR INY 

CMP 
BNE 
TYA 
RTS 

#$FF 
#$OD 

($40).Y 
CHKCR 

Subroutine Documentation: 

;SUBROUTINE STLEN 

;STRING LENGTH = -1 
;GET ASCII CARRIAGE RETURN TO COMPARE 
;ADD 1 TO STRING LENGTH 
;IS NEXT CHARACTER A CARRIAGE RETURN? 
;NO. KEEP LOOKING 
;SAVE STRING LENGTH IN ACCUMULATOR 

;PURPOSE: STLEN DETERMINES THE LENGTH OF AN ASCII STRING 
; (NUMBER OF CHARACTERS BEFORE A CARRIAGE RETURN) 

;INITIAL CONDITIONS: STARTING ADDRESS OF STRING IN MEMORY 
; LOCATIONS 0040 AND 0041 

;FINAL CONDITIONS: NUMBER OF CHARACTERS IN A 

;REGISTERS USED: A. Y. ALL FLAGS EXCEPT OVERFLOW 
;MEMORY LOCATIONS USED: 0040.0041 

;SAMPLE CASE: 
INITIAL CONDITIONS: 0043 IN MEMORY LOCATIONS 0040 AND 0041 

(0043) = 35. (0044) = 46. (0045) = OD 
FINAL CONDITIONS: (A) = 02 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

1) Calling program 
0000 A2 LOX #$FF 
0001 FF 
0002 9A TXS 
0003 A9 LOA #$43 
0004 43 
0005 85 STA $40 
0006 40 
0007 A9 LOA #0 
0008 00 
0009 85 STA $41 
OOOA 41 
0008 20 JSR STLEN 
OOOC 20 
0000 00 
OOOE 85 STA $42 
OOOF 42 
0010 00 8RK 

2) Subroutine 

0020 AO STLEN LOY #$FF 
0021 FF 
0022 A9 LOA #$00 
0023 00 
0024 C8 CHKCR INY 
0025 01 CMP ($40)'Y 
0026 40 
0027 00 8NE CHKCR 
0028 F8 
0029 98 TYA 
002A 60 RTS 

The calling program consists of four steps: initializing the Stack Pointer. placing the 
starting address of the string in memory locations 0040 and 0041. calling the 
subroutine. and storing the result. 

The subroutine is not reentrant. since it uses fixed memory addresses 0040 and 0041. 
However. if these locations are considered as extra registers and their contents are au
tomatically saved and restored with the user registers. the subroutine can be used in a 
reentrant manner. Many computers of all sizes use registers that are actually located in 
memory; this approach makes memory management more complex but does not 
change the basic procedures. 

The subroutine changes Index Register Y as well as the Accumulator. The programmer 
must be aware that data stored in Index Register Y will be lost: the subroutine docu
mentation must describe what registers are used. 
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One way to preserve register contents during a subroutine is to save them in the Stack 
and then restore them before returning. This approach makes life easier for the user of 
the routine. but costs extra time and memory (in the program and in the Stack). To save 
and restore Index Register Y. you would have to add the sequence 

TYA :SAVE OLD CONTENTS OF Y 
PHA 

to the beginning of the program and 

PLA :RESTORE OLD CONTENTS OF Y 
TAY 

to the end of the program. 

This subroutine has a single input parameter. which is an address. The easiest way to 
pass this parameter is through two memory locations on page zero. The 6502 has no 
address-length registers in which this parameter could be passed. 

If the terminating character were not always an ASCII carriage return. we could make 
that character into another parameter. Now the calling program would have to place 
the terminating character in the Accumulator and the starting address of the string in 
memory locations 0040 and 0041 before calling the subroutine. 

One way to pass parameters that are fixed for a particular call is to place their values in 
program memory immediately after the Jump-to-Subroutine instruction.1 You can use 
the old Program Counter (saved at the top of the Stack) to access the data. but you 
must adjust the return address (increase it by the number of bytes used for parameters) 
before transferring control back to the main program. For example. we could pass the 
value of the terminating character this way. The main program would contain the 
pseudo-operation .BYTE'. immediately after the JSR instruction. The subroutine could 
place the return address in memory locations 0050 and 0051 and access the various 
parameters using post-indexing. The following sequence could save the return address. 
remembering that the Stack is always on page 1 of memory and that the Stack Pointer 
always contains the address of the next available location. 

TSX 
LDA 
STA 
LDA 
STA 

$0101.X 
$50 
$0102.X 
$51 

:GET STACK POINTER 
:GET MSB'S OF RETURN ADDRESS 

:GET LSB'S OF RETURN ADDRESS 

Be careful of the fact that the return address is actually the address of the last (third) 
byte of the JSR instruction. not the address immediately after the JSR instruction as it 
is on most other microprocessors. The actual return address must also be offset by 1. 
since RTS will automatically add 1 to it. 

The instructions PHA (Store Accumulator in Stack) and PLA (Load Accumulator from 
Stack) transfer eight bits of data between the Accumulator and th!l RAM Stack. Index 
Registers X and Y can only be saved and restored via the Accumulator. As in the Jump
to-Subroutine instruction. the Stack Pointer is decremented after data is stored in the 
Stack and incremented before data is loaded from it. Remember that the RAM Stack 
grows downward (to lower addresses). 

10-10 



Maximum Value 
Purpose: Find the largest element in a block of unsigned binary numbers. The length 

of the block is in Index Register Y and the starting address of the block is in 
memory locations 0040 and 0041. The maximum value is returned in the Ac
cumulator. 

Sample Problem: 

(Y) 
(0040) 
(0041) 

(0043) 
(0044) 
(0045) 
(0046) 
(0047) 

Result: (A) 

Flowchart: 

05 length of block 
43 starting address of block 
00 

67 
79 
15 
E3 
72 
E3, since this is the largest of five unsigned numbers 

Index = IV) 
Max = 0 

Index = Index -1 

Max = IBase + Index) 
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Source Program: 

The calling program starts the Stack at memory location 01 FF. sets the starting address 
of the block to 0043. gets the block length from memory location 0030. calls the max
imum subroutine. and stores the maximum in memory location 0042. 

"=0 
LDX 
TXS 
LDA 
STA 
LDA 
STA 
LDY 
JSR 
STA 
BRK 

#$FF 

#$43 
$40 
#0 
$41 
$30 
MAXM 
$42 

;PLACE STACK AT END OF PAGE 1 

;SAVE STARTING ADDRESS OF BLOCK 

;GET LENGTH OF BLOCK 
;FIND MAXIMUM VALUE 
;SAVE MAXIMUM VALUE 

The subroutine determines the maximum value in the block. 

·=$20 
MAXM LDA 
CMPE DEY 

PHP 
CMP 
BCS 
LDA 

NOCHG PLP 
BNE 
RTS 

#0 

($401.Y 
NOCHG 
($401.Y 

CMPE 

Subroutine Documentation: 

;SUBROUTINE MAXM 

;MAXIMUM = ZERO (MINIMUM POSSIBLE VALUE) 
;DECREMENT INDEX 
;SAVE STATUS 
;IS NEXT ELEMENT ABOVE MAXIMUM? 
;NO. KEEP MAXIMUM 
;YES. REPLACE MAXIMUM WITH ELEMENT 
;RESTORE STATUS 
;CONTINUE UNTIL ALL ELEMENTS EXAMINED 

;PURPOSE: MAXM DETERMINES THE MAXIMUM VALUE IN A BLOCK 
; OF UNSIGNED BINARY NUMBERS 

;INITIAL CONDITIONS: STARTING ADDRESS OF BLOCK IN MEMORY 
; LOCATIONS 0040 AND 0041. LENGTH OF BLOCK IN Y 

;FINAL CONDITIONS: MAXIMUM VALUE IN A 

;REGISTERS USED: A. Y. ALL FLAGS EXCEPT OVERFLOW 
;MEMORY LOCATIONS USED: 0040.0041 

;SAMPLE CASE: 
INITIAL CONDITIONS: 0043 IN MEMORY LOCATIONS 0040 AND 0041 

; (Y) = 03. (0043) = 35. (0044) = 46. (0045) = OD 
; FINAL CONDITIONS: (A) = 46 

This subroutine has two parameters - an address and a number. Memory locations 
0040 and 0041 are used to pass the address. and Index Register Y is used to pass the 
number. The result is a single number that is returned in the Accumulator. 

The calling program must place the starting address of the block in memory locations 
0040 and 0041 and the length of the block in Index Register Y before transferring con
trol to the subroutine. 
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7 6 5 4 3 2 1 0 ~BitNo. 

'-rISI.jV~.a.:Br.a.:;Di-LTI.a.:Zi.L:jCi-'}4-- Processor Status 

I Lcarry ,. ,4 ,. 

'----- Zero Result 
'------Interrupt Disable 

L-_____ Decimal Mode 
L-______ Break Command 

L-______ (Not used) 

L--------Overflow 
L-________ Negative Result (Sign) 

Figure 10-1. The 6502 Status Register 

The subroutine returns control with zero in Index Register Y. It is not reentrant unless 
memory locations 0040 and 0041 are treated as extra registers. It is relocatable since 
the addresses are relative and the Stack is 'used for temporary storage. 

Note the use of the instructions PHP and PLP which save and restore the Status 
register. This register is organized as shown in Figure 10-1. We could reorganize the 
program and change the initial conditions so as to eliminate the need for these instruc
tions (see Chapter 5). The key here would be to provide the address one before the start 
of the array as a parameter. This is easy to do with most assemblers since they allow 
simple arithmetic expressions (such as START-1) in the operand field (see Chapter 3). 
However. the user of the subroutine must be warned that this offset is necessary. 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

1) Calling Program 

0000 A2 LOX #$FF 
0001 FF 
0002 9A TXS 
0003 A9 LOA #$43 
0004 43 
0005 85 STA $40 
0006 40 
0007 A9 LOA #0 
0008 00 
0009 85 STA $41 
OOOA 41 
OOOB A4 LOY $30 
OOOC 30 
0000 20 JSR MAXM 
OOOE 20 
OOOF 00 
0010 85 STA $42 
0011 42 
0012 00 BRK 

2) Subroutine 

0020 A9 MAXM LOA #0 
0021 00 
0022 88 CMPE OEY 
0023 08 PHP 
0024 01 CMP ($401.Y 
0025 40 
0026 BO BCS NOCHG 
0027 02 
0028 Bl LOA ($401.Y 
0029 40 
002A 28 NOCHG PLP 
002B 00 BNE CMPE 
002C F5 
0020 60 RTS 
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Pattern Match2 

Purpose: Compare two strings of ASCII characters to see if they are the same. The 
length of the strings is in Index Register Y. The starting address of one string 
is in memory locations 0042 and 0043; the starting address of the other is in 
memory locations 0044 and 0045. If the two strings match, clear the Ac
cumulator; otherwise, set the Accumulator to FF16. 

Sample Problems: 

a. (Y) 03 length of strings 

(0042) 46} starting address of string #1 
(0043) 00 

(0044) 50} starting address of string #2 
(0045) 00 

(0046) 43 'C' 
(0047) 41 'A' 
(0048) 54 T 

(0050) 43 'C' 
(0051) 41 'A' 
(0052) 54 T 

Result: (A) 00, since the strings are the same 

b. (Y) 03 length of strings 

(0042) ~~} starting address of string #1 (0043) 

(0044) ~g} starting address of string #2 
(0045) 

(0046) 52 'R' 
(0047) 41 'A' 
(0048) 54 T 

(0050) 43 'C' 
(0051) 41 'A' 
(0052) 54 T 

Result: (A) FF, since the first characters differ 
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Flowchart: 

Basel = 
(0042 and 0043) 

Base2 = 
(0044 and 0045) 

Index = (V) 
Mark = FF 

Index = Indox -1 

Mark = Zero 
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Source Program: 

The calling program starts the Stack at memory location 01 FF. sets the two starting ad
dresses to 0046 and 0050 respectively. gets the string length from memory location 
0041. calls the pattern match subroutine. and places the result in memory location 
0040. 

'=0 
LDX #$FF ;PLACE STACK AT END OF PAGE 1 
TXS 
LDA #$46 ;SAVE STARTING ADDRESS OF STRING 1 
STA $42 
LDA #0 
STA $43 
LDA #$50 ;SAVE STARTING ADDRESS OF STRING 2 
STA $44 
LDA #0 
STA $45 
LDY $41 ;GET LENGTH OF STRINGS 
JSR PMTCH ;CHECK FOR MATCH 
STA $40 ;SAVE MATCH INDICATOR 
BRK 

The subroutine determines if the two strings are the same. 

'=$20 
PMTCH LDX #$FF ;MARK = FF (HEX) FOR NO MATCH 
CMPE DEY 

LDA ($421.Y ;GET CHARACTER FROM STRING 1 
CMP ($441.Y ;IS THERE A MATCH WITH STRING 27 
BNE DONE ; NO. DONE - STRINGS DO NOT MATCH 
TYA ;RESTORE STATUS FROM INDEX 
BNE CMPE 
LDX #0 ;MARK = ZERO. STRINGS MATCH 

DONE TXA 
RTS 
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Subroutine Documentation: 

;SUBROUTINE PMTCH 

;PURPOSE: PMTCH DETERMINES IF TWO STRINGS MATCH 

;INITIAL CONDITIONS: STARTING ADDRESSES OF STRINGS 
; IN MEMORY LOCATIONS 0042 AND 0043. 0044 AND 0045 
; LENGTH OF STRINGS IN INDEX REGISTER Y 

;FINAL CONDITIONS: ZERO IN A IF STRINGS MATCH. 
; FF IN A OTHERWISE 

;REGISTERS USED: A. X. Y. ALL FLAGS EXCEPT OVERFLOW 
;MEMORY LOCATIONS USED: 0042.0043.0044. Q045 

;SAMPLE CASE: 
INITIAL CONDITIONS: 0046 IN 0042 AND 0043. 0050 

IN 0044 AND 0045. (Y) = 02 
(0046) = 36. (0047) = 39 
(0050) = 36. (0051) = 39 

FINAL CONDITIONS: (A) = 0 SINCE THE STRINGS MATCH 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

1) Calling program 

0000 A2 LOX #$FF 
0001 FF 
0002 9A TXS 
0003 A9 LOA #$46 
0004 46 
0005 85 STA $42 
0006 42 
0007 A9 LOA #0 
0008 00 
0009 85 STA $43 
OOOA 43 
OOOB A9 LOA #$50 
OOOC 50 
0000 85 STA $44 
OOOE 44 
OOOF A9 LOA #0 
0010 00 
0011 85 STA $45 
0012 45 
0013 A4 LOY $41 
0014 41 
0015 20 JSR PMTCH 
0016 20 
0017 00 
0018 85 STA $40 
0019 40 
001A 00 BRK 

2) Subroutine 

0020 A2 PMTCH LOX #$FF 
0021 FF 
0022 BB CMPE OEY 
0023 B1 LOA ($421.Y 
0024 42 
0025 01 CMP ($441.Y 
0026 44 
0027 00 BNE OONE 
0028 05 
0029 98 TYA 
002A DO BNE CMPE 
002B F6 
002C A2 LOX #0 
0020 00 
002E 8A OONE TXA 
002F 60 RTS 
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This subroutine. like the preceding ones. changes all the flags except Overflow. You 
should generally assume that a subroutine call changes the flags unless it is specifically 
stated otherwise. If the main program needs the old flag values (for later checking). it 
must save them in the Stack before calling the subroutine. This is accomplished with 
the PHP instruction. 

This subroutine uses all the registers allu rour memory locations on page zero. There are 
three parameters - two starting addresses and the length of the strings. 

The instruction TYA has no purpose other than to set the Zero flag according to the 
contents of Index Register Y. We could eliminate the need for that instruction by 
reorganizing the subroutine. One alternative would be to change the parameters so that 
the addresses were both offset by 1 (that is. both string addresses would actually refer 
to the byte immediately preceding the character string). Remember. however. that the 
user should be able to supply parameters to the subroutine in the simplest and most ob
vious form possible. The user should not have to offset addresses by one or make other 
adjustments for the convenience of the subroutine: such practices result in numerous. 
annoying programming errors. The program should make such rote adjustments unless 
time or memory constraints are critical. 

Another alternative would be to decrement the index by 1 initially to avoid the problem 
of accessing beyond the end of the string. The end of the loop would then decrement 
the index and branch back as long as the result was positive. Le .. 

DEY 
BPL CMPE 

This approach would work as long as the string was less than 130 bytes long. The 
limitation occurs because the 6502 Sign flag is set if the result is an unsigned number 
greater than 127 (decimal). 
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Multiple-Precision Addition 
Purpose: Add two multiple-byte binary numbers. The length of the numbers (in bytes) 

is in Index Register Y. the starting addresses of the numbers are in memory 
locations 0042 and 0043 and in 0044 and 0045. and the starting address of 
the result is in memory locations 0046 and 0047. All the numbers begin with 
the most significant bits. 

Sample Problem: 

(Y) 04 length of numbers in bytes 

(0042) 6~} starting address of first number (0043) 

(0044) cig} starting address of second number (0045) 

(0046) ~~} starting address of result (0047) 

(0048) 2F MSBs of first number 
(0049) 5B 
(004A) A7 
(004B) C3 LSBs of first number 

(004C) 14 MSBs of second number 
(004D) DF 
(004E) 35 
(004F) B8 LSBs of second number 

Result: (0050) 44 MSBs of result 
(0051) 3A 
(0052) DD 
(0053) 7B LSBs of resu It 

that is. 2F5BA7C3 
+ 14DF35B8 

443ADD7B 
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Flowchart: 

Index ~ (y) 
Basel = 

(0042 and 0043) 
Base2 = 

(0044 and 00451 
Base3 = 

(0046 and 00471 
Carry = 0 

Index = Index -1 

(Base3+lndex) = 
(Base 1+lndex) + 
(Base2+lndex) + 
(Carry) This step also produces new Carry 
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Source Program: 

The calling program starts the Stack at memory location 01 FF. sets the starting ad
dresses of the various numbers to 0048. 004C. and 0050. respectively. gets the length 
of the numbers from memory location 0040. and calls the multiple-precision addition 
subroutine. 

*=0 
LDX #$FF ;PLACE STACK AT END OF PAGE 1 
TXS 
LDA #$48 ;SAVE STARTING ADDRESS OF FIRST NUMBER 
STA $42 
LDA #$4C ;SAVE STARTING ADDRESS OF SECOND NUMBER 
STA $44 
LDA #$50 ;SAVE STARTING ADDRESS OF RESULT 
STA $46 
LDA #0 ;SAVE PAGE NUMBER FOR ALL ADDRESSES 
STA $43 
STA $45 
STA $47 
LDY $40 ;GET LENGTH OF NUMBERS IN BYTES 
JSR MPADD ;MUL TIPLE-PRECISION ADDITION 
BRK 

The subroutine performs multiple-precision binary addition 

*=$20 
MPADD CLC 
ADDB DEY 

LDA 
ADC 
STA 
TYA 
BNE 
RTS 

($421.Y 
($441.Y 
($461.Y 

ADDB 

Subroutine Documentation: 

;SUBROUTINE MPADD 

;CLEAR CARRY TO START 

;GET BYTE FROM FIRST NUMBER 
;ADD BYTE FROM SECOND NUMBER 
;STORE RESULT 
;ALL BYTES ADDED? 
;NO. CONTINUE 

;PURPOSE: MPADD ADDS TWO MULTI-BYTE BINARY NUMBERS 

;INITIAL CONDITIONS: STARTING ADDRESSES OF NUMBERS (MSB'S) 
IN MEMORY LOCATIONS 0042 AND 0043. 0044 AND 0045 
STARTING ADDRESS OF RESULT IN MEMORY LOCATIONS 0046 AND 0047 

; LENGTH OF NUMBERS IN INDEX REGISTER Y 

;REGISTERS USED: A. Y. ALL FLAGS 
;MEMORY LOCATIONS USED: 0042.0043.0044.0045.0046.0047 

;SAMPLE CASE: 
INITIAL CONDITIONS: 0048 IN 0042 AND 0043. 

004C IN 0044 AND 0045. 0050 IN 0046 AND 0047. 
(Y) = 02. (0048) = A7. (0049) = C3. (004C) = 35. (004D) = B8 

FINAL CONDITIONS: (0050) = DD. (0051) = 7B 
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Object Program: 

Memory Address Memory Contents I nstru ction 
(Hex) (Hex) (Mnemonic) 

1) Calling program 

0000 A2 LOX #$FF 
0001 FF 
0002 9A TXS 
0003 A9 LOA #$48 
0004 48 
0005 85 STA $42 
0006 42 
0007 A9 LOA #$4C 
0008 4C 
0009 85 STA $44 
OOOA 44 
0008 A9 LOA #$50 
OOOC 50 
0000 85 STA $46 
OOOE 46 
OOOF A9 LOA #0 
0010 00 
0011 85 STA $43 
0012 43 
0013 85 STA $45 
0014 45 
0015 85 STA $47 
0016 47 
0017 A4 LOY $40 
0018 40 
0019 20 JSR MPADD 
001A 20 
001B 00 
001C 00 BRK 

2) Subroutine 

0020 18 MPADD CLC 
0021 88 ADDB DEY 
0022 Bl LOA ($42)'Y 
0023 42 
0024 71 ADC ($44).Y 
0025 44 
0026 91 STA ($46)'Y 
0027 46 
0028 98 TYA 
0029 DO BNE ADDB 
002A F6 
002B 60 RTS 

This subroutine has four parameters - three addresses and the length of the numbers. 
Six memory locations on page zero and Index Register Yare used for passing 
parameters. 

As with the previous example. we could eliminate the need for the TYA instruction by 
reorganizing the program or by offsetting the address parameters by 1. 
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PROBLEMS 
Note that you are to write both a calling program for the sample problem and a properly 
documented subroutine. 

1) ASCII to Hex 
Purpose: Convert the contents of the Accumulator from the ASCII representation of a 

hexadecimal digit to the actual digit. Place the result in the Accumulator. 

Sample Problems: 

a. (A) 43 ASCII C 

Result: (A) OC 

b. (A) 36 ASCII 6 

Result: (A) 06 

2) Length of a Teletypewriter Message 
Purpose: Determine the length of an ASCII-coded teletypewriter message. The start

ing address of the string of characters in which the message is embedded is 
in memory locations 0042 and 0043. The message itself starts with an ASCII 
STX character (0216) and ends with ASCII ETX (0316). Place the length of 
the message (the number of characters between the STX and the ETX) in the 
Accumulator. 

Sample Problem: 

Result: 

(0042) 
(0043) 
(0044) 
(0045) 
(0046) 
(0047) 
(0048) 

(A) 

3) Minimum Value 

~~ } starting address of string 

49 
02 STX 
47 'G' 
4F '0' 
03 ETX 

02 

Purpose: Find the smallest element in a block of unsigned binary numbers. The length 
of the block is in Index Register Y and the starting address of the block is in 
memory locations 0040 and 0041. The minimum value is returned in the Ac
cumulator. 

Sample Problem: 

(Y) 05 length of block 

(0040) 
(0041) 

(0043) 
(0044) 
(0045) 
(0046) 
(0047) 

Result: (A) 

~~} starting address of block 

67 
79 
15 
E3 
73 

15, since this is the smallest of the five 
unsigned numbers 
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4) String Comparison 
Purpose: Compare two strings of ASCII characters to see which is larger (i.e., which 

follows the other in "alphabetical" ordering). The length of the strings is in 
Index Register y, the starting address of string 1 is in memory locations 0042 
and 0043, and the starting address of string 2 is in memory locations 0044 
and 0045. If string 1 is larger than or equal to string 2, clear the Accumula
tor: oiherwise, set the Accumulator to FF16. 

Sample Problems: 

a. (Y) 03 length of strings 

(0042) ~~ } starting address of string #1 (0043) 

(0044) ~~ } starting address of string #2 (0045) 

(0046) 43 'C' 
(0047) 41 'A' 
(0048) 54 'T 

(004A) 42 'B' 
(004B) 41 'A' 
(004C) 54 IT 

Result: (A) 00, since 'CAT is "larger" than 'BAT 

b. (Y) 03 length of strings 

(0042) ~~ } starting address of string #1 (0043) 

(0044) ~~} starting address of string #2 (0045) 

(0046) 43 'C' 
(0047) 41 'A' 
(0048) 54 T 

(004A) 43 'C' 
(004B) 41 'A' 
(004C) 54 T 

Result: (A) 00, since the two strings are the same 

c. (Y) 03 length of strings 

(0042) ~~ } starting address of string #1 (0043) 

(0044) 6~ } starting address of string #2 (0045) -
(0046) 43 'C' 
(0047) 41 'A' 
(0048) 54 'T 

(004A) 43 'C' 
(004B) 55 'U' 
(004C) 54 T 

Result: (A) FF, since 'CUT is "larger" than 'CAT 
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5) Decimal Subtraction 
Purpose: Subtract one multiple-digit decimal (BCD) number from another. The length 

of the numbers (in bytes) is in Index Register Y and the starting addresses of 
the numbers are in memory locations 0042 and 0043 and 0044 and 0045. 
Subtract the number with the starting address in 0044 and 0045 from the 
one with the starting address in 0042 and 0043. The starting address of the 
result is in memory locations 0046 and 0047. All the numbers begin with the 
most significant digits. The sign of the result is returned in the Accumula
tor - zero if the result is positive. FF16 if it is negative. 

Sample Problem: 

(Y) 04 length of numbers in bytes 

(0042) ci~ } starting address of minuend (0043) 

(0044) cig} starting address of subtrahend (0045) 

(0046) ~~ } starting address of difference (0047) 

(0048) 36 most significant digits of minuend 
(0049) 70 
(004A) 19 
(004B) 85 least significant digits of minuend 

(004C) 12 most significant digits of subtrahend 
(004D) 66 
(004E) 34 
(004F) 59 least significant digits of subtrahend 

Result: (A) 00 positive result 

(0050) 24 most significant digits of difference 
(0051) 03 
(0052) 85 
(0053) 26 least significant digits of difference 

that is. 36701985 
- 12663459 

+ 24038526 
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Chapter 11 
INPUT/OUTPUT 

There are two problems in the design of input/output sections: one is how to in
terface peripherals to the computer and transfer data, status, and control sig
nals; the other is how to address I/O devices so that the CPU can select a particu
lar one for a data transfer. Clearly. the first problem is both more complex and more in
teresting. We will therefore discuss the interfacing of peripherals here and leave ad
dressing to a more hardware-oriented book. 

I n theory. the transfer of data to or from an I/O device is similar 
to the transfer of data to or from memory. In fact. we can con
sider the memory as just another I/O device. The memory is, 
however. special for the following reasons: 

1) It operates at almost the same speed as the processor. 
2) It uses the same type of signals as the CPU. The only circuits usually needed 

to interface the memory to the CPU are drivers, receivers, and level transla
tors. 

3) It requires no special formats or any control signals besides a Read/Write 
pulse. 

4) It automatically latches data sent to it. 
S) Its word length is the same as the computer's. 

Most I/O devices do not have such convenient features. They may operate at 
speeds much slower than the processor: for example. a teletypewriter can transfer only 
10 characters per second. while a slow processor can transfer 10.000 characters per 
second. The range of speeds is also very wide - sensors may provide one reading 
per minute. while video displays or floppy disks may transfer 250.000 bits per second. 
Furthermore. I/O devices may require continuous signals (motors or thermometers), 
currents rather than voltages (teletypewriters), or voltages at far different levels 
than the signals used by the processor (gas-discharge displays). I/O devices may also 
require special formats. protocols. or control signals. Their word lengths may be much 
shorter or much longer than the word length of the computer. These variations make 
the design of I/O sections difficult and mean that each peripheral presents its own 
special interfacing problem. 

We may, however, provide a general description of devices 
and interfacing methods. We may roughly separate devices 
into three categories, based on their data rates: 

I/O 
CATEGORIES 

1) Slow devices that change state no more than once per second. Changing their 
states typically requires milliseconds or longer. Such devices include lighted dis
plays. switches. relays. and many mechanical sensors and actuators. 

2) Medium-speed devices that transfer data at rates of 1 to 10,000 bits per sec
ond. Such devices include keyboards. printers. card readers. paper tape readers 
and punches. cassettes. ordinary communications lines. and many analog data ac
quisition systems. 

3) High-speed devices that transfer data at rates of over 10,000 bits per second. 
Such devices include magnetic tapes. magnetic disks. high-speed line printers. 
high-speed communications lines. and video displays. 
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The interfacing of slow devices is simple. Few control sig
nals are necessary unless the devices are multiplexed. i.e .. 
several are handled from one port. as shown in Figures 11-1 to 

INTERFACING 
SLOW DEVICES 

11-4. Input data from slow devices need not be latched. since it remains stable for a 
long time interval. Output data must. of course. be latched. The only problems with 
input are transitions that occur while the computer is reading the data. One-shots. 
cross-coupled latches. or software delay routines can smooth the transitions. 

A single port can handle several slow devices. Figu re 11-1 shows a demu Itiplexer 
that automatically directs the next output data to the next device by counting output 
operations. Figure 11-2 shows a control port that provides select inputs to a 
demultiplexer. The data outputs here can come in any order. but an additional output 
instruction is necessary to change the state of the control port. Output demultiplexers 
are commonly used to drive several displays from the same output port. Figures 11-3 
and 11-4 show the same alternatives for an input multiplexer. 

Note the differences between input and output with slow devices: 

1) Input data need not be latched. since the input device holds the data for an enor
mous length of time by computer standards. Output data must be latched. since 
the output device will not respond to data that is present for only a few CPU clock 
cycles. 

2) Input transitions cause problems because of their duration; brief output tran
sitions cause no problems because the output devices (or the observers) 
react slowly. 

3) The major constraints on input are reaction time and responsiveness. the ma
jor constraints on output are response time and observability. ,....;..----..... 

Medium-speed devices must be synchronized in some way 
to the processor clock. The CPU cannot simply treat these 
devices as if they held their data forever or could receive data 
at any time Instead. the CPU must be able to determine when 

INTERFACING 
MEDIUM-SPEED 
DEVICES 

a device has new input data or is ready to receive output data. It must also have a way 
of telling a device that new output data is available or that the previous input data has 
been accepted. Note that the peripheral may be or contain another processor. 

The standard un clocked procedure is the handshake. Here the I HANDSHAKE I 
sender indicates the availability of data to the receiver and 
transfers the data: the receiver completes the handshake by acknowledging the recep
tion of the data The receiver may control the situation by initially requesting the data or 
by indicating its readiness to accept data: the sender then sends the data and com
pletes the handshake by indicating that data is available. In either case. the sender 
knows that the transfer has been completed successfully and the receiver knows when 
new data is available 
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Figure 11-1. An Output Demultiplexer Controlled by a Counter 
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Figure 11-2. An Output Demultiplexer Controlled by a Port 
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The Counter controls which input the Multiplexer gates to the Input Port. 

Figure 11-3. An Input Multiplexer Controlled by a Counter 
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determines which input the Multiplexer routes to the Data Port. 

Figure 11-4. An Input Multiplexer Controlled by a Port 
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Figures 11-5 and 11-6 show typical input and output operations using tile handshake 
method. The procedure whereby the CPU checks the readiness of the peripheral 
before transferring data is called "polling". Clearly. polling can occupy a large 
amount of processor time if there are many I/O devices. There are several ways of 
providing the handshake signals. Among these are: 

Separate dedicated 1/0 Jines. The processor may handle these as additional I/O 
ports or through special lines or interrupts. The 6502 microprocessor does not have 
special serial I/O lines. but such lines are available on the 6520 Peripheral Interface 
Adapter (or PIA). the 6522 Versatile Interface Adapter (or VIAl. and the 6532 Pe
ripherallnteriace/Memory (or Multifunction) device. 

Special patterns on the 1/0 lines. These may be single start and stop bits or entire 
characters or groups of characters. The patterns must be easy to distinguish from 
background noise or inactive states. 

We often call a separate 1/0 line that indicates the availability ISTROBE I 
of data or the occurrence of a transfer a "strobe". A strobe 
may. for example. clock data into a latch or fetch data from a buffer. 

Many peripherals transfer data at regular intervals: i.e .. synchronously. Here the only 
problem is starting the process by lining up to the first input or marking the first output. 
In some cases. the peripheral provides a clock input from which the processor can ob
tain timing information 

Transmission errors are a problem with medium-speed 
devices. Several methods can lessen the likelihood of such 
errors; they include: 

Sampling input data at the center of the transmission 

REDUCING 
TRANSMISSION 
ERRORS 

interval in order to avoid edge effects; that is. keep away from the edges where 
the data is changing. 

Sampling each input several times and using majority logic such as best three 
out of five.' 

Generating and checking parity; an extra bit is used that makes the number of 1 
bits in the correct data even or odd 

Using other error detecting and correcting codes such as checksums. LRC 
(longitudinal redundancy check). and CRC (cyclic redundancy check)2 

,..-----... 
INTERFACING 
HIGH-SPEED 
DEVICES 

DIRECT 
MEMORY 
ACCESS 

High-speed devices that transfer more than 10.000 bits per 
second require special methods. The usual technique is to 
construct a special-purpose controller that transfers data 
directly between the memory and the I/O deVice This process 
is called direct memory access (DMA) The DMA controller 
must force the CPU off the busses. provide addresses and con
trol signals to the memory. and transfer the data Such a con
troller will be fairly complex. typically consisting of 50 to 100 
chips. although LSI devices are now available3 The CPU must initially load the Address 
and Data Counters in the controller so that the controller will know where to start and 
how much to transfer. 
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Figure 11-5. An Input Handshake 
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Figure 11-6. An Output Handshake 
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TIMING INTERVALS (DELAYS) 
One problem that we will face throughout the discussion of in
put/output is the generation of timing intervals with specific 
lengths. Such intervals are necessary to debounce mechanical 
switches (i.e .. to smooth their irregular transitions!. to provide 

USES OF 
TIMING 
INTERVALS 

pulses with specified lengths and frequencies for displays. and to provide timing for 
devices that transfer data regularly (e.g .. a teletypewriter that sends or receives one bit 
every 9.1 ms). 

We can produce timing intervals in several ways: METHODS FOR 
PRODUCING 
TIMING 
INTERVALS 

1) 

2) 

In hardware with one-shots or monostable multivibra
tors. These devices produce a single pulse of fixed dura
tion in response to a pulse input. 

In a combination of hardware and software with a flex-
ible programmable timer such as those that are included in the 6522 Versatile In
terface Adapter (to be described later in this chapter!. The 6522 timers can provide 
timing intervals of various lengths with a variety of starting and ending conditions. 

3) In software with delay routines. These routines use the processor as a counter. 
This use is possible since the processor has a stable clock reference. but it clearly 
underutilizes the processor. However. delay routines require no additional hard
ware and often use processor time that would otherwise be wasted. 

The choice among these three methods depends on your ap
plication. The software method is inexpensive but may over
burden the processor. The programmable timers are relatively ex
pensive but are easy to interface and may be able to handle many 

,...---....... 
CHOOSING 
A TIMING 
METHOD 

complex timing tasks. The timers that are included in the 6522 Versatile Interface 
Adapter and in the 6530 and 6532 Multifunction Devices are available at no additional 
cost as long as those parts are being used. These parts may be somewhat more expen
sive than simpler devices. but may be justifiable as complete packages. Such parts with 
integral timers are used in many board-level microcomputers. Including the KIM. SYM. 
VIM. and AIM-65. The use of one-shots should be avoided whenever possible. 
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DELAY ROUTINES 
A simple delay routine works as follows: 

Step 1 - Load a register with a specified value. 

Step 2 - Decrement the register. 

Step 3 - If the result of Step 2 is not zero. repeat Step 2. 

BASIC 
SOFTWARE 
DELAY 

This routine does nothing except use time. The amount of time used depends upon 
the execution time of the various instructions. The maximum length of the delay is 
limited by the size of the register; however. the entire routine can be placed inside a 
similar routine that uses another register. and so on. 

Be careful - the actual time used depends on the clock rate at which the pro
cessor is running, the speed of memory accesses, and operating conditions such 
as temperature, power supply voltage, and circuit loading which may affect the 
speed at which the processor executes instructions. 

The following example uses Index Registers X and Y to 
provide delays as long as 255 ms. The choice of registers is 
arbitrary. You may find the use of the Accumulator or of 
memory locations more convenient. Remember. however. that 

TRANSPARENT 
DELAY 
ROUTINE 

the 6502 has no explicit Decrement Accumulator instruction. We could produce a 
routine that does not change the contents of any user registers. The sequence 

PHP ;SAVE STATUS REGISTER 
PHA ;SAVE ACCUMULATOR 
TXA ;SAVE INDEX REGISTER X 
PHA 
TYA :SAVE INDEX REGISTER Y 
PHA 

would save the contents of all the registers initially and the sequence 

PLA ;RESTORE INDEX REGISTER Y 
TAY 
PLA ;RESTORE INDEX REGISTER X 
TAX 
PLA ;RESTORE ACCUMULATOR 
PLP ; RESTORE STATUS REGISTER 

would restore the registers at the end of the routine. A subroutine that does not affect 
any registers or flags is said to be "transparent" to the calling program. The in
struction sequences that save and restore the registers must. of course. be included in 
the time budget. 
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DELAY PROGRAM 
Purpose: The program provides a delay of 1 ms times the contents of Index Register Y. 

Flowchart: 

Count = MSCNT 

Count = Count - 1 

(VI = IVI-1 ' 

No 

The value of MSCNT depends on the speed of the CPU and the memory cvcle 

Source Program: 

DELAY LDX 
DLYl DEX 

BNE 
DEY 
BNE 
RTS 

#MSCNT 

DLYl 

DELAY 

;GET COUNT FOR 1 MS DELAY 
;COUNT = COUNT - 1 
;CONTINUE UNTIL COUNT = ZERO 
;DECREMENT NUMBER OF REMAINING MS 
;CONTINUE UNTIL NUMBER OF MS = ZERO 
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Object Program: (starting in location 0030) 

Memory Location 
(Hex) 

0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 

Time Budget: 

Memory Contents 
(Hex) 

A2 
MSCNT 
CA 
DO 
FD 
88 
DO 
F8 
60 

Instruction 

LDX 
DEX 
BNE 
DEY 
BNE 
RTS 

#MSCNT 

DLY1 

DELAY 

Instruction 
(Mnemonic) 

DELAY LDX #MSCNT 

DLY1 DEX 
BNE DLY1 

DEY 
BNE DELAY 

RTS 

Number of Times Executed 

(Y) 
(Y) x MSCNT 
(Y) x MSCNT 
(Y) 
(Y) 
1 

The total time used should be (Y) l( 1 ms.lf the memory is operating at full speed. the 
instructions require the following numbers of clock cycles. 

LDX #MSCNT 
DEX or DEY 
BNE 
RTS 

2or3 
2 
2.3. or 4 
6 

Ignoring Page Boundaries 
2 
2 
2 or 3 
6 

The alternative times for LDX #MSCNT depend on whether a page boundary is 
crossed The alternative times for BNE depend on whether the branch does not occur 
(21. occurs to an address on the same page (31. or occurs to an address on a different 
page (4). A page is a set of 256 contiguous memory locations which have the same 
eight most significant bits (or page numbed in their addresses. We will assume that the 
routine is located so that no page boundaries are crossed. and we can use the rightmost 
column of the last table for timing purposes. 

Ignoring the Jump-to-Subroutine (JSR) and Return from Subroutine (RTS) instructions 
(which occu r only oncel. the program takes: 

(Y) x (2 + 5 x MSCNT - 1 + 5) - 1 clock cycles 

The -1's are caused by the fact that the BNE instruction requires less time during the 
final iteration when the Counter has reached zero and no branch occurs. 

So. to mqke the delay 1 ms. 

5 + 5 x MSCNT = Nc 

where Nc is the number of clock cycles per millisecond. At the standard 1 MHz 6502 
clock rate. Nc = 1000 so 

5 x MSCNT = 995 

MSCNT = 199 (C716) at a 6502 clock rate of 1 MHz 
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6502 INPUT/OUTPUT CHIPS 
Most 6502 input/output sections are based on LSI interface chips. These devices 
combine latches, buffers, flip-flops. and other logic circuits needed for handshak
ing and other simple interfacing techniques. They contain many logic connections. 
certain sets of which can be selected according to the contents of programmable 
registers. Thus the designer has the equivalent of a Circuit Designer's Casebook 
under his or her control. The initialization phase of the program places the ap
propriate values in registers to select the required logic connections. An in
put/output section based on programmable LSI interface chips can handle many 
different applications and changes or corrections can be made in software rather 
than by rewiring. 

We will discuss the following LSI interface chips that can be used with the 6502 
microprocessor: 

1) The 6520 Peripheral Interface Adapter. This device contains two 8-bit 110 ports 
and four individual control lines: it is exactly the same as the 6820 device used 
with 6800-based microcomputers4 

2) The 6522 Versatile Interface Adapter. This device contains two 8-bit I/O ports. 
four individual control lines. two 16-bit counterltimers. and an 8-bit shift register. 

3) The 6530 Peripheral Interface/Memory or Multifunction (Support) Device. 
This device contains two 8-bit I/O ports. an 8-bit counterltimer with a prescaler. 
1024 bytes of ROM. and 64 bytes of RAM. 

4) The 6532 Peripheral Interface/Memory or Multifunction (Support) Device. 
This device contains two 8-bit 110 ports. an 8-bit counterltimer with a prescaler. 
and 128 bytes 'of RAM. 

The following acronyms are often used in describing these devices: the 6520 PIA. the 
6522 VIA. and the 6530 or 6532 RIOT (for ,BOM or RAM. J/Q. and Timer combination). 
Our 110 examples later in this chapter will all use the 6522 Versatile Interface Adapter. 
Examples of the use of the 6520 device can be found in 6800 Assembly Language Pro
gramming: 5 those examples can easily be adapted to the 6502 microprocessor 
(remember the comparisons of the instruction sets in Tables 3-6 and 3-7). 
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THE 6520 PERIPHERAL INTERFACE ADAPTER 
Figure 11-7 is the block diagram of a PIA. The device contains two nearly identical 8-
bit ports - A. which is usually an input port. and B. which is usually an output port. 
Each port contains: 

. A Data or Peripheral register that holds either input or 
output data. This register is latched when used for output 
but unlatched when used for input. 

A Data Direction register. The bits in this register deter
mine whether the corresponding data register bits (and 
pins) are inputs (0) or outputs (1) 

PIA 
REGISTERS 
AND CONTROL 
LINES 

A Control register that holds the status signals required for handshaking. and 
other bits that select logic connections within the PIA. 

Two control lines that are configured by the control registers. These lines can 
be used for the handshaking signals shown in Figures 11-5 and 11-6. 

The meanings of the bits in the Data Direction and Control registers are related to the 
underlying hardware and are entirely arbitrary as far as the assembly language pro
grammer is concerned. You must either memorize them or look them up in the ap
propriate tables (Tables 11-2 through 11-6) 

Each PIA occupies four memory addresses. The RS (register 
select) lines choose one of the four registers. as described in Table 
11-1. Since there are six registers (two peripheral. two data direc
tion. and two control) in each PIA. one further bit is needed for addressing. Bit 2 of each 
control register determines whether the other address on that side refers to the Data 
Direction register (0) or to the Peripheral register (1). This sharing of an external address 
means that: 

1) A program must change the bit in the Control register in order to use the register 
that is not currently being addressed. 

2) The programmer must know the contents of the Control register in order to know 
which register is being addressed. RESET clears the Control register and thus ad
dresses the Data Direction register. 

Table 11-1. Addressing 6520 PIA Internal Registers 

Address Lines Control Register Bit 
Register Select 

RSl RSO CRA-2 CRB-2 

0 0 1 X Peripheral Register A 
0 0 0 X Data Direction Register A 
0 1 X X Control Register A 
1 0 X 1 Peripheral Register B 
1 0 X 0 Data Direction Register B 
1 1 X X Control Register B 

X = Either 0 or 1 

11-13 



IRDA 

DO 

01 

02 

03 

04 

05 

06 

07 

Bus Input 

Register 

(BIR) 

CSO 

CSl 

CS2 
Chip 

RSO Select 
and 

RSl R/W 
Control 

R/W 

Enable 

Reset 

Input Bus 

Data 
Direction 

Register A 

(DORA) 

Peripheral 

Interface 

A 

Peripheral 

B 

Data 
Direction 

Register B 
(OORB) 

IROB ~~------------------------------------~ 

Interrupt 

Status 
Control B 

'-----' 

Figure 1l-7. Block Diagram of the 6520 Peripheral Interface Adapter 

11-14 

CAl 

CA2 

PAO 

PAl· 

PA2 

PA3 

PA4 

PA5 

PA6 

PA7 

PBO 

PBl 

PB2 

PB3 

PB4 

PB5 

PB6 

PB7 

CBl 

CB2 



PIA CONTROL REGISTER 
Table 11-2 shows the organization of the PIA Control registers. We 
may describe the general purpose of each bit as follows: 

Bit 7: status bit set by transitions on control line 1 and cleared by 
reading the Peripheral (Data) register 

Bit 6: same as bit 7 except set by transitions on control line 2 

Bit 5: determines whether control line 2 is an input (0) or output (1) 

PIA 
CONTROL 
REGISTER 
BITS 

Bit 4 Control line 2 input: determines whether bit 6 is set by high-to-Iow transitions 
(0) or low-to-high transitions (1) on control line 2 
Control line 2 output: determines whether control line 2 is a pulse (0) or a level 
(1) 

Bit 3: Control line 2 input: if 1. enables interrupt output from bit 6 
Control line 2 output: determines ending condition for pulse (0 = handshake 
acknowledgement lasting until next transition on control line 1. 1 = brief strobe 
lasting one clock cycle) or value of level 

Bit 2: selects Data Direction register (0) or Data register (1) 

Bit 1: determines whether bit 7 IS set by high-to-Iow transitions (0) or low-to-high tran-
SitIOns (1) on control line 1 

Bit 0: if 1, enables interrupt output from bit 7 of Control register. 

Tables 11-3 through 11-6 describe the bits in more detail. Since E is normally tied to the 
<1>2 clock, you can interpret "E" pulse as "clock pwlse." 

Table 11-2. Organization of the PIA Control Registers 

7 6 5 I 4 I 3 2 1 I 0 

CAA DDAA 
IAOA1 IAOA2 CA2 Control Access CA 1 Control 

7 6 5 I 4 I 3 2 1 I 0 

CAB DDAB 
IAOB1 IROB2 CB2 Control Access CB 1 Control 
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Table 11-3. Control of 6520 PIA Interrupt Inputs CA 1 and CB1 

CRA-1 CRA-O Interrupt Input Interrupt Flag 
MPU Interrupt 

ICRB-1) ICRB-O) CA1ICB1) CRA-? ICRB-?) Request 
IROA (lROB) 

0 0 J Active Set high on J of CA 1 Disabled - IRO re-
ICB1) mains high 

0 1 J Active Set high on J Of CA 1 Goes low when the 
ICB1) Interrupt flag bit CRA-? 

ICRB-?) goes high 

t 0 , Active Set high on , of CA 1 Disabled -IRO re-
ICB1) mains high 

1 1 , Active Set high on , of CA 1 Goes low when the 
ICB1) Interrupt flag bit CRA-? 

ICRB·?) goes hlqh 

Notes· 
1 , ,nd,cates positive tranSition Ilow to high) 

2 J ,nd,cates negative transition Ihigh to low) 

3 The Interrupt flag bit CRA-? is cleared by an MPU Read of the A Data Register. and 
CRB-? IS cleared by an MPU Read of the B Data Register 

4 If CRA-O ICR~s low when an Interrupt occurs (Interrupt rilsabled) and IS later brought 
high. IROA OROB) occurs after CRA-O ICRB·O) IS written to a ··one·· 

Table 11-4. Control of 6520 PIA Interrupt Inputs CA2 and CB2 

CRA-5 CRA-4 CRA-3 Interrupt Input Interrupt Flag 
MPU Interrupt 

ICRS-5) ICRB-4) ICRB-3) CA2 ICB2) CRA-6 ICRB-6) Request 
IROA (lROBI 

0 0 0 1 Active Set high on 1 01 CA2 Disabled - IRO 
(CB21 remains high 

0 0 1 1 Active Set high on 1 of CA2 Goes low when the 
ICB2) Interrupt flag bit CRA-6 

ICRB-6) goes high 

0 1 0 , Active Set high on , of CA2 Disabled - IRO 
ICB2) remains high 

0 1 1 , Active Set high on r of CA2 Goes low when the 
(CB2) interrupt flag bit CRA-6 

ICRB-61 goes high 

Notes 
1 r indicates positive transition Oow to high) 

2 1 indicates negative transition Ihlgh to lowl 

3 The Interrupt flag bit CRA-6 IS cleared by an MPU Read of the A Data Register and CRB-6 
IS cleared by an MPU Read of the B Data Register 

4 If CRA-3 ICRB-31 IS low when an Interrupt occurs Onterrupt disabled) and IS later brought 
high. IROA OROBI occurs after CRA-3 ICRB-3) IS written to a "one" 
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Table 11-5, Control of 6520 PIA CB2 Output Line 

CB2 
CRB-5 CRB-4 CRB-3 

Cleared Set 

1 0 0 Low on the positive transition of High when the Interrupt flag bit 
the first E pulse following an CRB- 7 IS set by an active transl-
MPU Write --B-- Data Register tlon of the CB 1 signal 
operation 

1 0 1 Low on the posItive tranSition 01 High on the posillve edge of the 
the first E pulse after an MPU first 'E' pulse following an 'E' 
Write "B" Data Register opera- pulse which occurred while the 
tlon part was deselected 

1 1 0 Low when CRB-3 goes low as a Always low as long as CRB-3 IS 
result of an MPU Write In Con- low Will go high on an MPU 
trol Register --B" Write In Control Register --B" 

that changes CRB-3 to "one 

1 1 1 Always high as long as CRB-3 IS High when CRB-3 goes high as 
high Will be cleared when an a result of an MPU Write Into 
MPU Write Control Register "B-- Control Register "B" 
results In clearing CRB-3 to 
-- --zero 

Table 11-6, Control of 6520 PIA CA2 Output Line 

CA2 
CRA-5 CRA-4 CRA-3 

Cleared Set 

1 0 0 Low on negative transition of E High when the Interrupt flag bit 
after an MPU Read "A-- Data CRA-7 IS set by an active transl-
operation tlon of the CA 1 signal 

1 0 1 Low on negative tranSItion of E High on the negative edge of 
after an MPU Read --A" Data the first 'E' pulse which occurs 
operatIon dUring a deselect 

1 1 0 Low when CRA-3 goes low as a Always low as long as CRA-3 IS 
result of an MPU Write to Can- low Will go high on an MPU 
trol Register --A" Write to Control Register --A--

that changes CRA-3 to "one 

1 1 1 Always high as long as CRA-3 IS High when CRA-3 goes high as 
high, Will be cleared on an MPU a result of an MPU Write to Can-
Write to Control Register '"A" trol Register -- A--
that clears CRA-3 to a "zero 
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CONFIGURING THE PIA 
The program must select the logic connections in the PIA 
before using it. This selection (or configuration) is usually 
part of the startup routine. The steps in the configuration are: 

1) Address the Data Direction register by clearing bit 2 of the 

STEPS IN 
CONFIGURING 
A PIA 

Control register. Since the Reset signal clears all the internal registers. this step is 
unnecessary in the overall startup routine. 

2) Establish the directions of the I/O pins by loading the Data Direction register. 

3) Select the required logic connections in the PIA by loading the Control register. Set 
bit 2 of the Control register so as to address the Data register. 

Step 1 can be performed as follows: 

LDA #0 :CLEAR PIA CONTROL REGISTER 
STA PIACR 

or 
LDA PIACR 
AND #%11111011 :SELECT DATA DIRECTION REGISTER 
STA PIACR 

Once the program has performed Step 1. Step 2 is simply a matter of clearing each in
put bit position and setting each output bit position in the Data Direction Register. 
Some simple examples are: 

1) LDA #0 ;ALL LINES INPUTS 
STA PIADDR 

2) LDA #$FF ;ALL LINES OUTPUTS 
STA PIADDR 

3) LDA #$FO ;MAKE LINES 4-7 OUTPUTS. 0-3 INPUTS 
STA PIADDR 

Step 3 is clearly the difficult part of the configuration. since it involves selecting the 
logic connections in the PIA. Some points to remember are: 

1) Bits 6 and 7 of the Control register are set by transitions on the control lines and are 
cleared by reading the Data register. You cannot change these bits by writing data 
into the Control register. ---

2) Bit 2 of the Control register must be set to address the Data register. 

3) Bit 1 determines which pulse edge will set bit 7. Bit 1 is 0 for a high-to-Iow transi
tion; bit 1 is 1 for a low-to-high transition. 

4) Bit 0 is the interrupt enable for control line 1. Remember that it must be set to ena
ble interrupts. unlike the 6502 interrupt bit. which must be cleared to enable inter
rupts. Chapter 12 describes interrupts in more detail. 

5) Bit 5 must be set if control line 2 is to be output. Bits 3 and 4 then determine how 
control line 2 works. Remember that sides A and B differ. since side A can only pro
duce a read strobe while side B can only produce a write strobe. Once the strobe 
option has been selected. the strobes automatically follow each reading of Data 
Register A or writing of Data Register B. You must configure each side of each PIA 
in the startup program. 
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EXAMPLES OF PIA CONFIGURATION 
1) A simple input port with no control lines (as needed for a 

set of switches): 
PIA 
CONFIGURATION 
EXAMPLES 

LDA 
STA 
STA 
LDA 
STA 

#0 
PIACR 
PI AD DR 
#%00000100 
PIACR 

:CLEAR OUT CONTROL REGISTER 

:MAKE ALL LINES INPUTS 
:SELECT DATA REGISTER 

Bit 2 of the Control regisler must be set to address the Data register. The same se
quence can be used if a high-to-Iow transition (negative transition) on control line 1 
indicates Data Ready or Peripheral Ready 

2) A simple output port with no control lines (as needed for a set of single LED dis-
plays): 

LDA 
STA 
LDA 
STA 
LDA 
STA 

#0 
PIACR 
#$FF 
PIADDR 
#%00000100 
PIACR 

:CLEAR OUT CONTROL REGISTER 

:MAKE ALL LINES OUTPUTS 

:SELECT DATA REGISTER 

3) An input port with a control input that indicates DATA READY with a low-to-hlgh 
transition (positive transition): 

LDA #0 :CLEAR OUT CONTROL REGISTER 
STA PIACR 
STA PIADDR :MAKE ALL LINES INPUTS 
LDA #%00000110 :MAKE DATA READY ACTIVE LOW-TO-HIGH 
STA PIACR 

The DATA READY or DATA AVAILABLE line is tied to control line CA 1 or CB 1. Bit 1 of 
the Control register is set so as to recognize low-to-high transitions on control line 1. 
This configuration is suitable for most encoded keyboards. 

4) An output port that produces a brief strobe to indicate DATA READY or OUTPUT 
READY (this could be used for multiplexing displays or for providing a DATA 
AVAILABLE signal to a printer): 

LDA #0 :CLEAR OUT CONTROL REGISTER 
STA PIACR 
LDA #$FF :MAKE ALL LINES OUTPUTS 
STA PIADDR 
LDA #%00101100 :MAKE CONTROL LINE 2 A BRIEF STROBE 
STA PIACR 

Bit 5 = 1 to make control line 2 an output. bit 4 = 0 to make it a pulse, and bit 3 = 1 to 
make it a brief active-low strobe (one clock period in duration) The strobe will automat
ically follow each instruction that writes data into the B side of the PIA: for example, the 
instruction 

STA PIADRB 

will both transfer data and cause a strobe. However, the A side will produce a strobe 
only after a read operation. The sequence 

STA 
LDA 

PIADRA 
PIADRA 

:WRITE DATA 
:PRODUCE AN OUTPUT STROBE 

will both transfer data and cause a strobe. The LDA instruction is a "dummy read": it 
has no effect other than to cause the strobe (and waste some time). Other instructions 
besides LDA could also be used - you should try to name some of them. 
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5) An input port with a handshake Input Acknowledge strobe that can be used to tell 
a peripheral that the previous data has been accepted (and the computer is ready 
for more): 

LDA 
STA 
STA 
LDA 

#0 
PIACR 
PIADDR 
#%00100100 

STA PIACR 

;CLEAR OUT CONTROL REGISTER 

;MAKE ALL LINES INPUTS 
;CONTROL LINE 2 = HANDSHAKE 
; ACKNOWLEDGE 

Bit 5 = 1 to make control line 2 an output. bit 4 = 0 to make it a pulse. and bit 3 = 0 to 
make it an active-low acknowledgment that remains low until the next active transition 
on control line 1. The acknowledgment will automatically follow a read operation on the 
A side of the PIA; for example. the instruction 

LDA PIADRA 

will both read data and cause the acknowledgment. However. the B side will produce 
an acknowledgment only after a write operation. The sequence 

LDA 
STA 

PIADRB 
PIADRB 

;READ DATA 
;PRODUCE ACKNOWLEDGMENT 

will both read data and produce an acknowledgment. The STA instruction is a "dummy 
write"; it has no other effect than to cause the acknowledgment (and waste some time). 
Note that the order of the sequence is reversed from the previous example. This con
figuration is suitable for many CRT terminals that require a complete handshake. 

6) An output port with a latched zero control bit (latched individual output or level 
output). Such an output can be used to turn the peripheral on or off or to control its 
mode of operation. 

LDA #0 ;CLEAR OUT CONTROL REGISTER 
STA PIACR 
LDA #$FF ;MAKE ALL LINES OUTPUTS 
STA PIADDR 
LDA #%00110100 ;CONTROL LINE 2 = LATCHED ZERO LEVEL 
STA PIACR 

Bit 5 = 1 to make control line 2 an output. bit 4 = 1 to make it a level or latched bit. and 
bit 3 = 0 to make the level zero. This output is not affected by operations on the Data 
register; its value can be changed by changing the value of bit 3 of the PIA Control 
register. i.e .. 

LDA PIACR 
ORA #%00001000 ;MAKE LEVEL ONE 
STA PIACR 

LDA PIACR 
AND #%11110111 ;MAKE LEVEL ZERO 
STA PIACR 

You can use this configuration to produce active-high strobes or to provide pulses with 
software-controlled lengths. 
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USING THE PIA TO TRANSFER DATA 
Once the PIA has been configured, you may use its data 
registers like any other memory locations. The simplest in
structions for data transfer are: 

load Accumulator, which transfers eight bits of data from the specified input pins to 
the Accumulator. and 

Store Accumulator, which transfers eight bits of data from the Accumulator to the 
specified output pins. 

You must be careful in situations where input and output ports do not behave like 
memory locations. For example. it often makes no sense to write data into input ports or 
read data from output ports. Be particularly careful if the input port is not latched or if 
the output port is not buffered. 

Other instructions that transfer data to or from memory can also serve as I/O in
structions. Typical examples are: 

Bit Test, which sets the Zero flag as if the values of a set of input pins had been 
logically ANDed with the contents of the Accumulator. The Sign (Negative) flag is set to 
the value of bit 7 of the input port and the Overflow flag is set to the value of bit 6 of the 
input port. This instruction provides a simple way to test the PIA status flags; that 
is. the instruction 

BIT PIACR 

sets the Sign flag to the value of Control register bit 7 (the status latch for control line 1) 
and the Overflow flag to the value of Control register bit 6 (the status latch for control 
line 2). 

Compare, which sets the flags as if the values of a set of input pins had been 
subtracted from the contents of the Accumulator. 

Here also you must be aware of the physical limitations of the I/O ports. Be particularly 
careful of instructions like shifts. Increment. and Decrement. which involve both read 
and write cycles. 

We cannot overemphasize the importance of careful documentation. Often. com
plex I/O transfers can be concealed in instructions with no obvious functions. You must 
describe the purposes of such instructions carefully. For example. one could easily be 
tempted to remove the dummy read and write operations mentioned earlier since they 
do not appear to accomplish anything. 

Bit 7 of the PIA Control register often serves as a status bit, 
such as Data Ready or Peripheral Ready. You can check its value 
with either of the following sequences: 

LOA 
BMI 

BIT 
BMI 

PIACR 
DEVRDY 

PIACR 
DEVRDY 

:IS READY FLAG 17 
:YES. DEVICE READY 

:IS READY FLAG 1? 
:YES. DEVICE READY 

Note that you should not use the shift instructions. since they will change the contents 
of the Control register (why?). The follQ'i'Jing program will wait for the Ready flag to go 
high: 

WAITR BIT 
BPL 

PIACR 
WAITR 

:IS READY FLAG 1? 
:NO. WAIT 

How would you change these programs so that they examine bit 6 instead of bit 7? 
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The only way to clear bit 7 (or bit 6) is to read the Data register. A dummy read will 
be necessary if a read operation is not normally part of the response to the bit being set. 
If the port is used for output. the sequence 

STA 
LOA 

PIADR 
PIADR 

;SEND DATA 
;CLEAR READ FLAG 

will do the job. Note that here the dummy read is necessary on either side of the PIA. 
The Bit Test instruction can also clear the strobe without changing anything except the 
flags. Be particularly careful in cases where the CPU is not ready for input data or has 
no output data to send. 
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THE 6522 VERSATILE INTERFACE ADAPTER (VIA) 
The 6622 Versatile Interface Adapter is an enhanced version of the 6620 Periph
erallnterface Adapter.6•7•8 

The 6522 VIA contains the following (see the block diagram In 
Figu re 11-8): 

1) Two 8-bit I/O ports (A and B). Each pin can be individually 
selected to be either an input or an output. 

2) Four status and control iines (two associated with eachportl. 

3) Two 16-bit counter/timers which can be used to generaie or count pulses. These 
timers can produce single pulses or a continuous series of pulses. 

4) An 8-bit Shift register which can convert data between serial and parallel forms. 

5) Interrupt logic (to be described in Chapter 12) so that I/O can proceed on an inter-
rupt-driven basis. 

Thus the Versatile Interface Adapter provides the functions of the PIA plus two 16-bit 
cdunterltimers and an 8-bit Shift register. We will describe the use of the 
counterltimers later in this chapter. The Shift register provides a simple serial liD 
capability that is only occasionally useful; we will not discuss it any further. 

Each VIA occupies sixteen memory addresses. The RS (register 
selectl lines choose the various internal registers. as described in 
Table 11-7 The way that a VIA operates is determined by the 
contents of four registers. 

r-----.., 

1) Data Direction Register A (DORA) determines whether the pins on Port A are in
pu ts (Os) or ou tpu ts (1 s). 

2) Data Direction Register B (DDRB) determines whether the 
pins on Port B are inputs (Os) or outputs (1 s). 

3) The Peripheral Control register (PCR) determines which 
polarity of transition (rising edge or falling edge) is recognized 
on the input status lines (CA 1 and CB 1) and how the other 

VIA 
REGISTERS 
AND CONTROL 
.LiNES 

status lines (CA2 and CB2) operate. Figure 11-9 describes the bit assignments in 
the Peripheral Control register; as usual. the functions and bit positions are ar
bitrarily selected by the manufacturer. Note that the 6522 Peripheral Control 
register does not contain status bits (latches) like the 6520 Control register; these 
bits are located in the separate Interrupt Flag register (see Figure 11-11). 

4) The Auxiliary Control register (ACR) determines whether the data ports are 
latched and how the timers and Shift register operate. These functions are not pre
sent in the 6520 PIA. Figure 11-10 describes the bit assignments in Auxiliary Con
trol register. 

Note that there is a data direction register for each side but only one control register 
(unlike the 6520. which has a separate control register for each side). Ports A and Bare 
virtually identical. One important difference is that Port B can handle Darlington tran
sistors. which are used to drive solenoids and relays. We will use Port A for input and 
Port B for output in our examples later in this chapter. 
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Table 11-7. Addressing 6522 VIA Internal Registers 

Select Lines 

Label C') N ... 0 Addressed Location 
C/) C/) C/) C/) 
a: a: a: a: 

DEV 0 0 0 0 Output register for I/O Port B 
DEV+1 0 0 0 1 Output register for I/O Port A. with handshaking 
DEV+2 0 0 1 0 I/O Port B Data Direction register 
DEV+3 0 0 1 1 I/O Port A Data Direction register 
DEV+4 0 1 0 0 Read Timer 1 Counter low-order byte 

Write to Timer 1 Latch low-order byte 
DEV+5 0 1 0 1 Read Timer 1 Counter high-order byte 

Write to Timer 1 Latch high-order byte and 
initiate count 

DEV+6 0 1 1 0 Access Timer 1 Latch low-order byte 
DEV+7 0 1 1 1 Access Timer 1 Latch high-order byte 
DEV+8 1 0 0 0 Read low-order byte of Timer 2 and reset 

Counter interrupt 
Write to low-order byte of Timer 2 but do not 
reset interrupt 

DEV+9 1 0 0 1 Access high-order byte of Timer 2; reset 
Counter interrupt on write 

DEV+A 1 0 1 0 Serial I/O Shift register 
DEV+B 1 0 1 1 Auxiliary Control register 
DEV+C 1 1 0 0 Peripheral Control register 
DEV+D 1 1 0 1 Interrupt Flag register 
DEV+E 1 1 1 0 Interrupt Enable register 
DEV+F 1 1 1 1 Output register for I/O Port A, without handshaking 
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Peripheral Control register 

transition of CA 1 On interrupt request set 

1 Request interrupt on low-to-high Interrupt Rag register bit 1 
transition of CA 1 

o Request interrupt on high_ta_IOW} 

000 CA2 input mode l Request interrupt on } On interrupt 
001 CA2 independent input mode f high-to-Iow CA2 transition request set 

010 CA2 input mode Request interrupt on Interrupt Flag 

011 CA2 independent input mode } low-to-high CA2 transition register bit 0 

100 CA2 output Iowan CPU read or write 

101 CA2 output low pulse on CPU read or write 

110 Output CA2 low 

111 Output CA2. high 

o Request interrupt on high-to-Iow } 
transition of CB 1 On interrupt request set 

1 Request interrupt on low-to-high Interrupt Rag register bit 4 
transition of CB 1 

1-_______ 000 CB2 input mode 

00 1 CB2 independent input mode 

010 CB2 input mode 

011 CB2 independent input mode 

100 CB2 output Iowan CPU write 

l Request interrupt on 

f high-to-Iow CB2 transition 

} 
Request interrupt on 

low-to-high CB2 transition 

101 CB2 output low pulse on CPU write 
110 Output CB2 low 

111 Output CB2 high 

} 

On interrupt 

request set 
Interrupt Rag 

register bit 3 

Figure 11-9. 6522 VIA Peripheral Control Register Bit Assignments 

7 6 5 4 3 2 1 0 -4----Blt Number 

I I I I I I I I Auxiliary Control register 

~o Disable inpul lalch on Port A 

1 Enable input latch on Port A 

o Disable input latch on Port B 

1 Enable input lalch on Port B 

000 Disable Shift register 
00 1 Shift in at Counter 2 rate 

010 Shift in al <1>2 clock rale 

all Shift in at external clock rate 

100 Free-running output at Counter 2 rate 
101 Shift out at Counter 2 rate 

110 Shift out at (1J2 clock rate 

111 Shift out at external clock rate 

1-------__ 0 Decrement Counter 2 on 4>2 clock. in one-shot mode 

1 Decrement Counter 2 on external pulses input via PB6 

o Disable output via PB7} 
1 Enable outpul vIa PB7 

Counter 1 controls 
1-__________ 0 One-shol mode 

1 Free-running mode 

Figure 11-10. 6522 VIA Auxiliary Control Register Bit Assignments 
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CONFIGURING THE VIA 
The program must select the logic connections in the VIA 
before using it. This selection (or configuration) is usually 
part of the startup routine. The steps are to establish the 
directions of the 1/0 pins by loading the Data Direction register 

STEPS IN 
CONFIGURING 
A VIA 

and to select the required logic connections in the VIA by loading the Peripheral Con
trol register and. if necessary. the Auxiliary Control register. 

You can establish the directions of the I/O pins as follows: 

1) A '0' in a bit in the Data Direction register makes the 
corresponding pin an input. For example. a '0' in bit 5 of 
Data Direction Register A makes pin PA5 an input. 

2) A '1' in a bit in the Data Direction register makes the 

ESTABLISHING 
VIA PIN 
DIRECTIONS 

corresponding pin an output. For example. a T In bit 3 of Data Direction Register 
B makes pin PB3 an output. 

The directions of almost aliliO pins are fixed after the initialization since most input and 
output lines transfer data in only one direction (i.e. the microprocessor will never fetch 
data from a printer or send data to a keyboard) 

Some simple examples of setting directions are: 

1) 

2) 

LDA 
STA 

LDA 
STA 

#0 ;ALL LINES INPUTS 
VIADDRA 

#$FF ;ALL LINES OUTPUTS 
VIADDRB 

3) LDA 
STA 

#$FO ;MAKE LINES 4-7 OUTPUTS. 0-3 INPUTS 
VIADDRB 

You can mix Inputs and outputs on a single port by establishing the directions of in
dividual pinS appropriately. Port B is buffered so that ItS contents can be read correctly 
even when it IS being used for output: Port A is not buffered so that its contents can be 
read correctly only if it IS lightly loaded (or designated as Inputs) 

Configuring the VIA is difficult because of its many func· 
tions. Most of the I/O port functions are controlled by the 
Peripheral Control register, and we shall discuss these first 
Some points to remember are: 

r------, 
VIA PERIPHERAL 
CONTROL 
REGISTER 

1) Reset clears all the VIA registers, making all lines Inputs and disabling all inter
rupts. All edge detection facilities are set to trigger on falling edges (hlgh-to-Iow 
transitions) 

2) Bits 0-3 of the Peripheral Control register are used to establish the logic con
nections for control lines CA 1 and CA2; bits 4-7 have the same purposes for 
control lines CB1 and CB2. 

3) Control lines CA 1 and CB1 are always inputs. The only choice is whether the 
corresponding status latches (Interrupt Flag register bits 1 and 4 - see Figure 
11-11) are set on falling edges (high-to-Iow. or negative. transitions) or on rising 
edges (Iow-to-high. or positive. transitions). For CA 1. bit 0 = 0 for falling edges and 
1 for rising edges; for CB 1. bit 4 = 0 for failing edges and 1 for riSing edges 

4) Control lines CA2 and CB2 can be either inputs or outputs (see Tables 11-8 and 
11-91. For CA2. bit 3 = 1 to make It an output and 0 to make it an input. 
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Table 11-8. Configurations for 6522 VIA Control Line C82 

PCR7 PCR6 PCR5 Mode 

0 0 0 Interrupt Input Mode - Set CB2 Interrupt flag 
(iFR3) on a negative transition of the CB2 input 
signaL Clear IFR3 on a read or write of the Pe-
ripheral B Output register. 

0 0 1 Independent Interrupt Input Mode -Set IFR3 on 
a negative transition of the CB2 input signaL 
Reading or writing ORB does not clear the Inter-
rupt flag. 

0 1 0 Input Mode -Set CB2 Interrupt flag on a posi-
tive transition of the CB2 input signaL Clear the 
CB2 Interrupt flag on a read or write of ORB. 

0 1 1 Independent Input Mode-Set IFR3 on a posi-
tive transition of the CB2 input signaL Reading or 
writing ORB does not clear the CB2 Interrupt 
flag. 

1 0 0 Handshake Output Mode - Set CB2 low on a 
write ORB operation. Reset CB2 high with an ac-
tive transition of the CB 1 input signaL 

1 0 1 Pulse Output Mode - Set CB2 low for one cycle 
following a write ORB operation. 

1 1 0 Manual Output Mode - The CB2 output is held 
low in this mode. 

1 1 1 Manual Output Mode - The CB2 output is held 
high in this mode. 
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Table 11-9. Configurations for 6522 VIA Control Line CA2 

peR3 peR2 peR1 Mode 

0 0 0 Input Mode - Set CA2 Interrupt flag (IFRO) on a 
negative transition of the input signal. Clear IFRO 
on a read or write of the Peripheral A Output 
register. 

0 0 1 Independent Interrupt Input Mode - Set IFRO on 
a negative transition of the CA2 input signal. 
Reading or writing ORA does not clear the CA2 
Interrupt flag. 

0 1 0 Input Mode - Set CA2 Interrupt flag on a posi-
tive transition of the CA2 input signal. Clear IFRO 
with a read or write of the Peripheral A Output 
register. 

0 1 1 Independent Interrupt Input Mode - Set IFRO on 
a positive transition of the CA2 input signal. 
Reading or writing ORA does not clear the CA2 
Interrupt flag. 

1 0 0 Handshake Output Mode - Set CA2 output low 
on a read or write of the Peripheral A Output 
register. Reset CA2 high with an active transition 
on CAl. 

1 0 1 Pulse Oufput Mode-CA2 goes low for one cy-
cle following a read or write of the Peripheral A 
Output register. 

1 1 0 Manual Output Mode - The CA2 output is held 
low in this mode. 

1 1 1 Manual Output Mode - The CA2 output is held 
high in this mode. 

11-29 



a .-Bit Number 

""-IR-Q-,r-T-,-T""-T-2-""C-B-' -r-C-B-2-r-S-R-""C-A-'''''''''C-A-2"'''tj.-- Interrupt Flag register 

7 3 2 6 5 4 

BitNa. Set By Cleared By 

0 
Active transition of the signal Reading or writing the A Port Output 
on the CA2 pin. register (ORAl using address 0001. 

Active transition of the signal Reading or writing the A Port Output 
1 on the CA 1 pin. register (ORAl. using address 000 1. 

Completion of eight shifts. Reading or writing the Shift 
2 register. 

3 
Active transition of the signal Reading or writing the B Port 
on the CB2 pin. Output register. 

4 
Active transition of the signal Reading or writing the B Port 
on the CB 1 pin. Output register. 

5 
Time-out of Timer 2. Reading T2 low-order counter or 

writing T2 high-order counter. 

Time-out of Timer 1. Reading T1 low-order counter or 
6 writing T1 high-order latch 

7 
Active and enabled interrupt Action which clear interrupt 

condition. condition. 

Jilts o. " 3, and 4 are the 1/0 handshake signals. Bit 7 URQI is 1 if any of the interrupts is both active 
and enabled (see Chapter '21. 

Figure 11-11 The 6522 VIA Interrupt Flag Register 
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Further functions are as follows: 

CA2 Input 
Bit 2 = 1 to trigger on a rising edge. 0 to trigger on a falling edge. 

Bit 1 = 1 to make Interrupt Flag register bit 0 (the CA2 input status latch) independent 
of operations on I/O Port A. 0 to have that bit cleared by operations on I/O Port 
A. 

The independent mode is useful when CA2 is being used for purposes (such as a real
time clock) that are completely unrelated to the data transfers through the I/O port. The 
regular mode is useful when CA2 is being used as a handshaking signal which must be 
cleared to prepare for the next I/O operation (see Figures 11-5 and 11-6). 

CA2 Output 
Bit 2 = 1 to make CA2 a level. 0 to make it a pulse 

If CA2 is a level. bit 1 is its value 

If CA2 is a pulse. bit 1 is 0 to have CA2 go low when the CPU transfers data to or from 
Port A and remain low until an active transition occurs on CA 1; bit 1 is 1 to have 
CA2 go low for one clock cycle after the CPU transfers data to or from Port A 

CB2 is handled exactly the same (using bits 7.6. and 5 of the Peripheral Control register 
and bit 3 of the Interrupt Flag register) except that pulses are produced on CB2 only 
after data is written into Port B. To produce a pulse after reading data. you must use a 
"dummy write". that is: 

LDA 
STA 

VIAORB 
VIAORB 

;GET DATA FROM PORT B 
;PRODUCE STROBE FROM PORT B 

The only I/O port function governed by the Auxiliary Control 
register (Figure 11-10) is input latching. Bit 0 (for Port A) or bit 1 
(for port B) must be set to latch the input data on the active transi
tion on control line 1 (as determined by the Peripheral Control registerl. Note the 
following features of the latching function: 

1) RESET disables the input latches. The 6522 VIA then operates like the 6520 PIA. 
which has no input latches. 

2) For Port A. the data that is latched will always be the data on the peripheral pins. 
Since Port A is not buffered. that data may not be the same as the data in the Out
put register when the port is being used for output. 

3) For Port B. the data that is latched is either the data on the peripheral pins (for those 
pins defined as inputs) or the contents of the Output register (for those pins defined 
as outputs). 

Some simple examples of activating the input latches are: 

LDA #%00000001 
STA VIAACR ;ACTIVATE LATCH ON PORT A 

LDA #%00000010 
STA VIAACR ;ACTIVATE LATCH ON PORT B 

LDA #%00000011 
STA VIAACR ;ACTIVATE LATCHES ON PORTS A AND B 

Note that 6522 output ports are automatically latched. just like 6520 output ports. 
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EXAMPLES OF VIA CONFIGURATION 
1) A simple input port with no control lines (as needed for 

a set of switches): 
VIA 
CONFIGURATION 
EXAMPLES 

LDA 
STA 
STA 

#0 
VIAPCR 
VIADDRA 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 

Remember that Reset clears all the internal registers so that this sequence may not 
even be necessary. The same sequence can be used if a high-to-Iow edge (falling 
edge) on control line CA 1 indicates Data Ready or Peripheral Ready. 

2) A simple output port with no control iines (as needed for a set of single LED dis
plays): 

LDA 
STA 
LDA 
STA 

#0 
VIAPCR 
#$FF 
VIADDRB 

;MAKE ALL CONTROL LINES INPUTS 

;MAKE PORT B LINES OUTPUTS 

3) An input port with an active low-to-high DATA READY signal attached to CA 1 
(as needed for an encoded keyboard): 

LDA 
STA 
LDA 
STA 

#0 
VIADDRA 
#1 
VIAPCR 

;MAKE PORT A LINES INPUTS 
;MAKE RISING EDGE ACTIVE 

Bit 1 of the Peripheral Control register is set so as to recognize low-to-high transitions 
on control line CA 1. Such a transition will set bit 1 of the Interrupt Flag register (see 
Figure 11-10); reading the data from the port will clear that bit (see the table associated 
with Figure 11-111. Input latching can be provided by setting bit 0 of the Auxiliary Con
trol register. 

4) An output port that produces a brief strobe to indicate DATA READY or OUT
PUT READY (this could be used for multiplexing displays or for prOViding a DATA 
AVAILABLE Signal to a printer): 

LDA #$FF 
STA VIADDRB :MAKE PORT B LINES OUTPUTS 
LDA #%10100000 
STA VIAPCR 

The brief strobe on control line CB2 will occur after every output operation. Bit 7 of the 
Peripheral Control register is 1 to make CB2 an output. bit 6 is 0 to make CB2 a pulse. 
and bit 5 is 1 to make CB2 a brief (one clock cycle) pulse following each output. 

5) An input port with a handshake Input Acknowledge strobe that can be used to 
tell a peripheral that the previous data has been accepted (and that the com
puter is ready for more): 

LDA 
STA 
LDA 

#0 
VIADDRA 
#%00001000 

;MAKE PORT A LINES INPUTS 
;CONTROL LINE 2 = HANDSHAKE 
: ACKNOWLEDGE 

The strobe on control line CA2 will occur after every input or output operation. It will re
main low until the next active transition on control line CA 1 Bit 3 of the Peripheral Con
trol register is 1 to make CA2 an output. bit 2 is 0 to make CA2 a pulse. and bit 1 is 0 to 
make CA2 an active-low acknowledgment that lasts until the next active transition on 
CA 1. Note that the active transition on CA 1 is a falling edge since bit 0 of the Peripheral 
Control register is O. This configuration is SUitable for many CRT terminals that require a 
complete handshake. 
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6) An output port with a latched active-low control bit (latched output or level 
output). Such an output bit can be used to turn a peripheral on or off or to control 
its mode of operation. 

LOA 
STA 
LOA 
STA 

#$FF 
VIAOORB 
#%11000000 
VIAPCR 

:MAKE PORT B LINES OUTPUTS 

:CONTROL LINE 2 = LATCHED ZERO LEVEL 

Bit 7 = 1 to make control line CB2 an output. bit 6 = 1 to make it a level or latched bit. 
and bit 5 = 0 to make the active level zero. This bit is not affected by operations on the 
I/O port or Output register; its value can be changed by changing bit 5 of the Peripheral 
Control register, i.e., 

LOA 
ORA 
STA 
LOA 
ANO 
STA 

VIAPCR 
#%00100000 
VIAPCR 
VIAPCR 
#%11011111 
VIAPCR 

;MAKE LEVEL ONE 

;MAKE LEVEL ZERO 

You can use this configuration to produce an active-high or active-low strobe or to pro
vide pulses with software-controlled lengths. 
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USING THE VIA TO TRANSFER DATA 
Once the VIA has been configured. you may use its data registers 
like any other memory location (just as with the PIA). The common 
ways to transfer data. status. and control are with the instructions 
Load Accumulator. Store Accumulator. Bit Test. and Compare. Note that Output 
Register A can be addressed in two ways - one with handshaking (address 1) and one 
without handshaking (address F). The address without handshaking allows you to use 
CA 1 independently of the peripheral attached to I/O Port A. That control line could be 
used for an alarm. clock input. control panel interface. or extra control input from 
another peripheral. The Interrupt flag for that input can be cleared directly by clearing 
the appropriate bits in the Interrupt Flag register (see Figure 11-11). The alternate ad
dress for Output Register A and the independent modes for control lines CA2 and CB2 
allow use of control lines without having to worry about the automatic handshaking 
features of the VIA. 
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VIA INTERRUPT FLAG REGISTER 
We have mentioned the VIA Interrupt Flag register (see Figure 
11-11) on several occasions. The table in Figure 11-11 ex
plains the meanings of the various bits (bit 7 is a general in

VIA INTERRUPT 
FLAG REGISTER 

terrupt request bit that is 1 if any interrupt is both active and enabled). 

Any of the flags in the Interrupt Flag register may be explicitly cleared by writing 
a logic 1 into the corresponding bit position. This procedure is useful when the con
trol lines are being used independently of the data ports (as in the independent input 
mode described in Tables 11-8 and 11-9) or when no data transfers are actually re
quired in response to the flag being set. Some examples of explicitly clearing the flags 
are: 

LOA #%00000010 
STA VIAIFR ;CLEAR CA 1 INTERRUPT FLAG 

LOA #%00001000 
STA VIAIFR ;CLEAR C82 INTERRUPT FLAG 

LOA #%11111111 
STA VIAIFR ;CLEAR ALL INTERRUPT FLAGS 

The value written into bit 7 does not matter. since that flag cannot be explicitly set or 
cleared from the CPU. 

8its O. 1.3. and 4 of the VIA Interrupt Flag register often serve as handshake status bits 
such as Data Ready or Peripheral Ready. You can check their values with appropriate 
masking or shifting operations. 

LOA VIAIFR 
AND #%00000010 ;IS CAl FLAG SET? 
8NE DEVRDY ;YES. DEVICE READY 

LOA VIAIFR 
AND #%00010000 ;IS C81 FLAG SET? 
8NE DEVRDY ;YES. DEVICE READY 

The flag is then automatically cleared by reading or writing the appropriate port or by 
eXjJlicitly clearing the bit in the Interrupt Flag register. The following program will wait 
for a Ready flag attached to input CA 1 to go high: 

WAITR LOA VIAIFR 
AND #%00000010 
BEQ WAITR 

;IS CAl FLAG SET? 
;NO. WAIT 

How would you change these programs to handle Ready lines attached to CA2. CB 1. or 
CB2? 

Note that the flag will remain set unless some operation clears it. If no operation is 
actually required. some dummy operation (such as reading the port and discarding the 
data) will be necessary simply to clear the flag. Be particularly careful in cases where 
the CPU is not ready for data or has no output data to send. Obviously. careful docu
mentation is essential in cases where the purposes of operations may be far from ob
vious. 
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VIA TIMERS9. 10 

As we noted earlier. the VIA contains two 16-bit counterltimers. 
These timers are handled as follows: 

I VIA TIMERS I 
1) They may be read or written as six memory locations. four for timer 1 and two 

for timer 2 (see Table 11-7). 

2) Their modes of operation are controlled by bits 6. 6. and 7 of the Auxiliary 
Control register (see Figure 11-10). 

3) Their status may be determined by examining bits 6 and 6 of the Interrupt 
Flag register (see Figure 11-11). 

The timers can be used as follows: 

1) To generate a single time interval. The timer must be loaded with the number of 
clock pulses that are required. 

2) To count pulses on pin PB6 (timer 2 only). The timer must be loaded with the 
number of pulses to be counted. This use of PB6 takes precedence over its normal 
use as an I/O pin. 

3) To generate continuous time intervals (timer 1 only) for use in real-time ap
plications. The timer must be loaded with the number of clock pulses per interval. 

4) To produce a single pulse or a continuous series of pulses on pin PB7 (timer 1 
only). The timer must be loaded with the number of clock pulses per interval. This 
use of PB7 takes precedence over its normal use as an I/O pin. 
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OPERATION OF 6522 VIA TIMER 2 
Timer 2 is simpler than timer 1 and can be used only to generate a single time in
terval (the one-shot mode) or to count pulses on pin PB6. Bit 5 of the Auxiliary Con
trol register selects the mode: 

Bit 5 = 0 for one-shot mode. 1 for pulse-counting mode. 

The 16-bit timer occupies two memory locations (see Table 11-7). The first address is 
used to read or write the 8 least significant bits; reading this address also clears the 
timer 2 interrupt flag (Figure 11-11). The second address is used to read or write the 8 
most significant bits; writing into this address loads the counters. clears the timer 2 in
terrupt flag. and starts the timing operation. The completion of the operation sets the 
timer 2 interrupt flag (bit 5 of the Interrupt Flag register as shown in Figure 11-11). 

Examples of timer 2 operation are as follows: 

1) Wait for 1024 (040016) clock pulses to elapse. 

LOA #0 ;PUT TIMER 2 IN ONE-SHOT MOOE (BIT 
; 5 =0) 

STA 
STA 
LOA 
STA 
LOA 

WAITD BIT 
BEQ 
LOA 
BRK 

VIAACR 
VIAT2L 
#4 
VIAT2H 
#%00100000 
VIAIFR 
WAITD 
VIAT2L 

;MAKE PULSE LENGTH 0400 HEX 

;START TIMING INTERVAL 
;GET MASK FOR TIMER 2 INTERRUPT FLAG 
;IS TIMER 2 FLAG SET? 
;NO. INTERVAL NOT COMPLETED 
;YES. CLEAR INTERRUPT FLAG 

Note the following steps in the program: 

a) Putting the timer in the one-shot mode by clearing bit 5 of the Auxiliary Control 
register. 

b) Loading the timer with the initial count (040016) required to give the correct inter
val. Loading the MSBs of the timer also starts the timing operation. 

c) Waiting for the interval to be completed. A timeout sets bit 5 of the Interrupt Flag 
register. 

d) Clearing the interrupt flag so that it does not interfere with other operations. The in
struction LOA VIAT2L performs this function. 

2) Generate a delay of length given by 10 pulses on pin PB6. 

LOA 
STA 
LOA 

STA 
LOA 
STA 
LOA 
STA 
LOA 

WAITC BIT 
BEQ 
LOA 
BRK 

#0 
VIAOORB 
#%00100000 

VIAACR 
#10 
VIAT2L 
#0 
VIAT2H 
#%00100000 
VIAIFR 
WAITC 
VIAT2L 

;MAKE PORT B INPUTS 
;PUT TIMER 2 IN PULSE-COUNTING MOOE 

(BIT 5 = 1) 

;MAKE PULSE COUNT 10 

;START PULSE COUNTING 
;GET MASK FOR TIMER 2 INTERRUPT FLAG 
;IS TIMER 2 FLAG SET? 
;NO. COUNT NOT COMPLETE 
;YES. CLEAR INTERRUPT FLAG 

This program is the same as the previous example. except that the mode of timer 2 
is different. Here the input on pin PB6 could be a periodic clock line or a line that is 
simply pulsed with each occurrence of some external operation. 
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OPERATION OF 6522 VIA TIMER 1 
Timer 1 has four operating modes (see Figure 11-10) which allow It to generate a 
single time-interval (one-shot mode) or a continuous series of intervals (free-run
ning model. Furthermore. each loading operation can generate an output pulse on PB7 
which can be used to control external hardware. Bits 6 and 7 of the Auxiliary Control 
register determine the mode of timer 2 as follows: 

Bit 7 = 1 to generate output pulses on pin PB7. 0 to disable such pulses (in the free-run
ning mode. PB7 is inverted each time the counter reaches zerol. 

Bit 6 = 1 for free-running mode. 0 for one-shot mode. 

Timer 1 occupies four memory addresses (see Table 11-7). The first two addresses 
are used to read or write the counters. Writing into the second address loads the coun
ters. clears the timer 1 Interrupt flag. and starts the timing operation. The next two ad
dresses are used to read from or write into the latches without affecting the counters. 
This allows the generation of complex waveforms in the free-running mode. Writing 
into the most significant bits of the latches also clears the timer 1 interrupt flag. 

Examples of timer 1 operation are as follows: 

1) Wait for 4096 (100016) clock pulses to elapse before producing an output on pin 
PB7. 

LOA #0 :PUT TIMER 1 IN SINGLE PULSE. NO OUTPUT 
MOOE 

STA VIAACR 
STA VIAT1L ;PULSE LENGTH = 1000 HEX 
LOA #$10 
STA VIAT1CH :START TIMING INTERVAL 
LOA #%01000000 :GET MASK FOR TIMER 1 INTERRUPT FLAG 

WAITO BIT VIAIFR :IS TIMER 1 FLAG SET? 
BEQ WAITD :NO. INTERVAL NOT COMPLETED 
LOA VIAT1L :YES. CLEAR TIMER 1 INTERRUPT FLAG 
BRK 

The only changes from the program for timer 2 are the different addresses used to load 
the pulse length and the different bit pOSition (bit 6 instead of bit 5) that is examined for 
the interrupt flag. 

2) Produce an interrupt every 2048 (080016) clOCk pulses and produce a continuous 
series of cycles on pin PB7 with a half-width of 2048 clock pulses. 

LOA 
STA 
LOA 

STA 
LOA 
STA 
LOA 
STA 
BRK 

#$FF 
VIAOORB 
#%11000000 

VIAACR 
#0 
VIAT1L 
#8 
VIAT1CH 

:MAKE PORT B LINES OUTPUTS 

:PUT TIMER 1 IN CONTINUOUS MOOE WITH 
: OUTPUT TO PB7 

:MAKE PULSE LENGTH 0800 HEX 

:START TIMING INTERVALS 

This routine will produce a continuous series of intervals that will be marked by the set
ting of the timer 1 Interrupt flag (bit 6 of the Interrupt Flag register). The main program 
can look for the occurrence of each interval (with the waiting routine from Example 1). 
or (more sensibly) the end of each interval can produce an interrupt (see Chapter 12). 
The level on PB7 will be inverted at the end of each timer interval (it will go low when 
the first interval starts). Timer 1 will run continuously with the values in the latches au
tomatically being reloaded into the counters each time the counters reach zero. 
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THE 6530 AND 6532 MULTIFUNCTION SUPPORT DEVICES 
The 6530 and 6532 devices contain memory as well as I/O 
ports. They are sometimes referred to as combination 
chips, multifunction support devices, or ROM 
(RAMI/IO/TIMER chips (RIOTs). The 6530 device has: 

1024 bytes of ROM 
• 64 bytes of RAM 

6530 AND 6532 
MULTIFUNCTION 
DEVICES 

two 8-bit I/O ports (A and 8). although pins 5 through 7 of Port B are often used for 
chip selects and an interrupt output 
One 8-bit timer 

Figure 11-12 is a block diagram of the 6530 device and Table 11-10 describes its inter
nal addressing. The 6532 device has: 

128 bytes of RAM 
Two 8-bit I/O ports (A and Bl. although pin 7 of Port A is often used as a strobe input 
comparable to pins CA 1 or CB 1 of a 6520 or 6522 device. 
One 8-bit timer 

Figure 11-13 is a block diagram of the 6532 device and Table 11-11 describes its inter
nal addressing. Note that 6532 devices contain no ROM. 

The following features of 6530 and 6532 devices should be noted: 

1) Neither contains any dedicated I/O control lines. although pin 7 of Port A on a 6532 
device can be used for this purpose. 

2) Both contain a single 8-bit timer with a prescaler that allows timing intervals with 
multiplying factors of 1. 8. 64. or 1024 clock pulses. The timer can thus be used to 
provide intervals far longer than the pasic 256 clock counts. 

3) The end of the timing interval either causes an interrupt or sets a flag which can be 
read. 

The 6530 and 6532 devices are used in such popular single-board microcomputers as 
the KIM. VIM. SYM. and AIM-65. 11 -14 
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Figure 11-12. Block Diagram of the 6530 Multifunction Device 
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Table ,,-, O. Internal Addressing for the 6530 Multifunction Device 

Pimary Select 

RAM I/O Timer Accessed Locations 
RSO 

Select· Select· 

1 X X AO - A9 directly address one of 1024 ROM bytes 
0 1 0 AO - AS directly address one of 64 RAM bytes 

Secondary 

Select Interpretation 

A3 A2 A1 AO 

0 0 1 X 0 0 0 Access I/O Port A 
0 0 1 X 0 0 1 Access I/O Port A Data Direction register 

0 0 1 X 0 1 0 Access 1/ 0 Port B 
0 0 1 X 0 1 1 Access 1/0 Port B.Oata Direction register 

0 0 lW 0 1 X X Oisable iRQ 
0 0 lW 1 1 X X Enable IRQ 
0 0 lW X 1 0 0 Write to timer, then decrement every 4'2 pulse 

0 0 lW X 1 0 1 Write to timer, then decrement every 8 ~2 pulses 

0 0 lW X 1 1 0 Write to timer, then decrement every 64 «1»2 pulses 

0 0 lW X 1 1 1 Write to timer, then decrement every 1024 «P2 pulses 

0 0 lR X 1 X 0 Read timer 
0 0 lR X 1 X 1 Read interrupt flag 

• RAM select and I/O select are "true" if 1, or "false" if 0; true and false are functions of your 
specification. You specify the combination of address lines that create a "true" line condition. 

X represents "don't care". Bits may be 0 or 1. 
1R represents Select during a read. 
1W represents Select during a write. 
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Figure 11-13. Block Diagram of the 6532 Multifunction Device 

Table 11-11. Internal Addressing for the 6532 Multifunction Device 

Primary Select Secondary Select 

RAM I/O Timer 
Interpretation 

A4 A3 A2 
Select Select 

A1 AO 

1 0 X X X X X AO - A6 directly addresses one of 128 RAM bytes 

0 1 X X 0 0 0 Access I/O Pan A 

0 1 X X 0 0 1 Access 110 Port A Dat8 Direction register 

0 1 X X 0 1 0 Acce.s I/O Port B 

0 1 X X 0 1 1 Access I/O Port B Data Direction register 

0 IW 1 0 1 X X Disable iRci 
0 lW 1 1 1 X X Enable iRQ 
0 lW 1 X 1 0 0 Write to timer, then decrement every <1>2 pulse 

0 lW 1 X 1 0 1 Write to timer, then decrement every 8 tP2 pulses 

0 lW 1 X 1 1 0 Write to timer, then decrement every 64 <1>2 pulses 

0 lW 1 X 1 1 1 Write to timer. then decrement every 1024 ct>2 pulses 

0 lR X X 1 X 0 Read timer 

0 lR X X 1 X 1 Read interrupt flags 

0 lW 0 X 1 X 0 Request interrupt on high-la-low PA7 transition 

0 lW 0 X 1 X 1 Request interrupt on low-ta-high PA7 transition 

0 lW 0 X 1 0 X Enable PA 7 interrupt request 

0 lW 0 X 1 1 X Disable PA7 interrupt request 

X represents "don't care" Bits may be 0 or 1, 

lR represents Read access. lW represents Write access. 
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EXAMPLES 
A Pushbutton Switch 
Purpose: To interface a single pushbutton switch to a 6502 microprocessor by means 

of a 6522 Versatile Interface Adapter The pushbutton IS a single mechanI
cal switch that provides a contact closure (logic level '0') while pressed 

Figure 11-14 shows the circuitry required to interface the pushbutton. It uses one bit of 
a 6522 VIA. which acts as a buffer; no latch is needed since the pushbutton remains 
closed for many CPU clock cycles. Pressing the button grounds the VIA Input bit The 
pullup resistor ensures that the input bit is '1' if the button IS not being pressed 

+5V 

( 

• 
To CPU 

6522 ... 
VIA -~ 

Pushbutton -1 
1 

Figure 11-14. A Pushbutton Circuit 

11-43 



Programming Examples: 

We will perform two tasks with this circuit. They are: 

a) Set a memory location based on the state of the button. 

b) Count the number of times that the button is pressed. 

Task 1: Determine Switch Closure 

Purpose: Set memory location 0040 to one if the button is not being pressed. and to 
zero if it is being pressed. 

Sample Cases: 

1) Button open (i.e .. not pressed) 
Result = (0040) = 01 

2) Button closed (i.e .. pressed) 
Result = (0040) = 00 

Flowchart: 

Source Program: 

DONE 

LDA 
STA 
STA 
STA 
LDA 
AND 
BEQ 
INC 
BRK 

#0 
VIAPCR 
VIADDRA 
$40 
VIAORA 
#MASK 
DONE 
$40 

100401 = 0 

Input and mask 
pushbutton 

data 

100401 = 1 

:MAKE ALL CONTROL LINES INPUTS 
:MAKE PORT A LINES INPUTS 
:MARKER = ZERO 
:READ BUTTON POSITION 
:IS BUTTON CLOSED (LOGIC ZERO)? 
:YES. DONE 
:NO. MARKER =1 
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Object Program: 

Memory Location Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 
0003} 
0004 

VIAPCR 

0005 80 STA VIADDRA 
0006} 
0007 

VIADDRA 

0008 85 STA $40 
0009 40 
OOOA AD LOA VIAORA 
0008} 
OOOC 

VIAORA 

0000 29 AND #MASK 
OOOE MASK 
OOOF FO 8EQ DONE 
0010 02 
0011 E6 INC $40 
0012 40 
0013 00 DONE 8RK 

The addresses VIAPCR (Peripheral Control register). VIADDRA (Data Direction Register 
A). and VIAORA (Output Register A) depend on how the VIA is connected in your 
microcomputer. The VIA control lines are not used in this example: the contents of the 
Peripheral Control register are thus irrelevant but we have cleared that register as a pre
caution against spurious operations. We have assumed (as is usually the case) that the 
VIA addresses are not on page zero. 

MASK depends on the bit to which the pushbutton is connected: it has a one in the 
button position and zeros elsewhere. 

Button Position Mask 

(Bit Number) Binary Hex 

0 00000001 01 
1 00000010 02 
2 00000100 04 
3 00001000 08 
4 00010000 10 
5 00100000 20 
6 01000000 40 
7 10000000 80 
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If the button is attached to bit 6 or bit 7 of the VIA input port. the program can use a Bit 
Test instruction to set the Overflow or Sign bits and thereby determine the button's 
state. For example, 

Bit 7 

BIT 
BPL 

Bit 6 

BIT 
BVC 

VIAORA 
DONE 

VIAORA 
DONE 

;IS BUTTON CLOSED (LOGIC ZERO)? 
;YES, DONE 

;IS BUTTON CLOSED (LOGIC ZERO)? 
;YES, DONE 

Note the use of BVC or BVS to check the value of bit 6. 

We could also use shift instructions if the button is attached to bits 0, 6, or 7. The se
quence for bit 0 is; 

LSR 
BCC 

VIAORA 
DONE 

;IS BUTTON CLOSED (LOGIC ZERO)? 
;YES. DONE 

The instructions ASL or ROL can be used with bits 6 or 7. Do the contents of the VIA 
Data register actually change? Explain your answer. 
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Task 2: Count Switch Closures 

Purpose: Count the number of button closures by incrementing memory location 0040 
after each closure. 

Sample Case: 

Pressing the button ten times after the start of the program should give 

(0040) = OA 

Note: In order to count the Ilumber of times that the button has 
been pressed. we must be sure that each closure causes a single 
transition. However. a mechanical pushbutton does not produce a 
single transition for each closure. because the mechanical contacts bounce back and 
forth before settling into their final positions. We can use hardware to eliminate the 
bounce or we can handle it in software. 

The program can debounce the pushbutton by waiting after it 
finds a closure. The required delay is called the debouncing 
time and is part of the specifications of the pushbutton. It is 

DEBOUNCING 
IN SOFTWARE 

typically a few milliseconds long. The program should not examine the pushbutton dur
ing this period because it might mistake the bounces for new closures. The program 
may either enter a delay routine like the one described previously or may simply per
form other tasks for the specified amount of time. 

Even after debouncing. the program must still wait for the present closure to end before 
looking for a new closure. This procedure avoids double counting. The following pro
gram uses a software delay of 10 ms to debounce the pushbutton. You may want to try 
varying the delay or eliminating it entirely to see what happens. To run this program. 
you must also enter the delay subroutine into memory starting at location 0030.' 

Flowchart: 

Count = 0 

Count = Count + 1 

Oebounce button 

with 10 ms 

wait 
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Source Program: 

LDA #0 
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS 
STA VIADDRA ;MAKE PORT A LINES INPUTS 
STA $40 ;COUNT = ZERO INITIALLY 

CHKCL LDA VIAORA 
AND #MASK ;IS BUTTON BEING PRESSED? 
BNE CHKCL ;NO. WAIT UNTIL IT IS 
INC $40 ;YES. ADD 1 TO CLOSURE COUNT 
LDY #10 ;WAIT 10 MS TO DEBOUNCE BUTTON 
JSR DELAY 

':HKOP LDA VIAORA 
AND #MASK ;IS BUTTON STILL BEING PRESSED? 
BEQ CHKOP ;YES. WAIT FOR RELEASE 
BNE CHKCL ;NO. LOOK FOR NEXT CLOSURE 
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Object Program: 

Memory Location Memory Contents Instruction 
(Hex) (Hex) (Mnemonic! 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 80 STA VIADDRA 

0006} 
0007 

VIADDRA 

0008 85 STA $40 
0009 40 
OOOA AD CHKCL LOA VIAORA 

OOOB} 
OOOC 

VIAORA 

0000 29 AND #MASK 
OOOE MASK 
OOOF DO BNE CHKCL 
0010 F9 
0011 E6 INC $40 
0012 40 
0013 AO LOY #10 
0014 OA 
0015 20 JSR DELAY 
0016 30 
0017 00 
0018 AD CHKOP LOA VIAORA 

0019} 
001A 

VIAORA 

001B 29 AND #MASK 
001C MASK 
0010 FO BEQ CHKOP 
001E F9 
001F DO BNE CHKCL 
0020 E9 

The three instructions beginning with the label CHKOP are used to determine when the 
switch reopens. 

Clearly we do not really need a VIA for this simple interface. An addressable tri-state 
buffer would do the Job at far lower cost. 
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A Toggle Switch 
Purpose: To interface a single-pole. double-throw (SPOT) toggle switch to a 6502 

microprocessor. The toggle is a mechanical device that is either in the nor
mally closed (NC) position or the normally open (NO) position. 

Circuit Diagram: 

Figure 11-15 shows the circuitry required to interface the 
switch. Like the pushbutton. the switch uses one bit of a 6522 
VIA that serves as an addressable buffer. Unlike the bullon. the 
switch may be left in either position Typical program tasks are 
to determine the switch position and to see if the position has 

DEBOUNCING 
WITH 
CROSS-COU PLED 
NAND GATES 

changed. Either a one-shot with a pulse length of a few milliseconds or a pair of cross
coupled NAND gates (see Figure 11-16) can debounce a mechanical switch. 

Switch 

Switch 

+ 5 V 

NC 

NO 

Oebounce 

Clrcu1t 

6522 
VIA 

To CPU 

Figure 11-15. An Interface for a Toggle Switch 

+5V 

To 1'0 port (VIAl 

Figure 11-16. A Debounce Circuit Based on Cross-coupled NAND Gates 
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The circuits will produce a single step or pulse In response to a change in sWitch posi
tion even If the switch bounces before settling Into ItS new position. 

Programming Examples: 

We will perform two tasks involving this CirculI. They are: 

1) Set a memory location to one when the switch is closed. 

2) Set a memory location to one when the state of the sWl!ch changes. 

Task 1: Wait for Switch to Close 

Purpose: Memory location 0040 is zero until the sWitch is closed and then IS set to 
one; that is, the processor clears memory location 0040, waits for the switch 
to be closed, and then sets memory location 0040 to one 

The sWitch could be marked Run/HaTi, since the processor will not proceed until the 
sWitch is closed. 

Flowchart: 

Source Program: 

LDA 
STA 
STA 
STA 

WAITC LDA 
AND 
BNE 
INC 
BRK 

#0 
V1APCR 
VIADDRA 
$40 
VIAORA 
#MASK 
WAITC 
$40 

100401: 0 

100401 - 1 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 
;MARKER = ZERO 
;READ SWITCH POSITION 
;IS SWITCH CLOSED ('0')7 
;NO, WAIT 
;YES, MARKER = ONE 
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Object Program: 

Memory Location Memory Contents Instruction 
(Hex) (Hex) {Mnemonic} 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 80 STA VIAOORA 

0006} 
0007 

VIAOORA 

0008 85 STA $40 
0009 40 
OOOA AD WAITC LOA VIAORA 

OOOB} 
OOOC 

VIAORA 

0000 29 AND #MASK 
OOOE MASK 
OOOF DO BNE WAITC 
0010 F9 
0011 E6 INC $40 
0012 40 
0013 00 BRK 
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Task 2: Wait for Switch to Change 

Purpose: Memory location 0040 remains zero until the switch position changes and is 
then set to 1; ie .. the processor waits until the switch changes position. then 
sets memory location 0040 to 1. 

Flowchart: 

Source Program: 

LDA 
STA 
STA 
STA 
LDA 
AND 
STA 

WAITCH LDA 
AND 
CMP 
BEQ 
INC 
BRK 

#0 
VIAPCR 
VIADDRA 
$40 
VIAORA 
#MASK 
$41 
VIAORA 
#MASK 
$41 
WAITCH 
$40 

(00401 = 0 

Old data = 
SWitch position 

New data = 

Switch pOSition 

(00401 = 1 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 
;MARKER = ZERO 
;GET OLD SWITCH POSITION 

;GET NEW SWITCH POSITION 

;ARE NEW AND OLD POSITIONS THE SAME? 
;YES. WAIT 
;NO. MARKER = ONE 
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Object Program: 

Memory Location Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 80 STA VIADDRA 

0006} 
0007 

VIADDRA 

0008 85 STA $40 
0009 40 
OOOA AD LOA VIAORA 

OOOB} 
OOOC 

VIAORA 

0000 29 AND #MASK 
OOOE MASK 
OOOF 85 STA $41 
0010 41 
0011 AD WAITCH lOA VIAORA 
0012} 
0013 

VIAORA 

0014 29 AND #MASK 
0015 MASK 
0016 C5 CMP $41 
0017 41 
0018 FO BEG WAITCH 
0019 F7 
001A E6 INC $40 
001B 40 
001C 00 BRK 

A Subtract or Exclusive OR could replace the Compare instruction in the program. Either 
of these instructions would. however. change the contents of the Accumulator. The 
Exclusive OR would be useful if several switches were attached to the same VIA. since 
it would produce a one bit for each switch that changed state. How would you rewrite 
this program so that it debounces the switch in software? 
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A Multiple-Position (Rotary, Selector, or Thumbwheel) Switch 
Purpose: To interface a multiple-position switch to a 6502 microprocessor. The lead 

corresponding to the switch position is grounded. while the other leads are 
high (logic ones). 

Circuit Diagram: 

Figure 11-17 shows the circuitry required to interface an 8-position switch. The switch 
uses all eight data bits of one port of a VIA. Typical tasks are to determine the position 
of the switch and to check whether or not that position has changed. Two special situa
tions must be handled: 

1) The switch is temporarily between positions so that no leads are grounded. 

2) The switch has not yet reached its final position. 

The first of these situations can be handled by waiting until the input is not all '1's. i.e .. 
until a switch lead is grounded. We can handle the second situation by examining the 
switch again after a delay (such as 1 or 2 seconds) and only accepting the input when it 
remains the same. This delay will not affect the responsiveness of the system to the 
switch. We can also use another switch (i.e .. a Load switch) to tell the processor when 
the selector switch should be read. 

Programming Examples: 

We will perform two tasks involving the circuit of Figure 11-17. These are: 

a) Monitor the switch until it is in a definite position. then determine the position and 
store its binary value in a memory location. 

b) Wait for the position of the switch to change. then store the new position in a 
memory location. 

If the switch is in a position. the lead from that position is grounded through the com
mon line. Pullup resistors on the input lines avoid problems caused by noise. 

,..7 
PA7 

~6 
;:::s PAS 

tn 4 
PAS 

To CPU 
~3 PA4 

6522 -" 
'~2 

PA3 
PA2 VIA "'V 

1 
~O PAl 

PAO 

Common 

.. .. --
Figure 11-17. An Interface for a Multi-Position Switch 
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Task 1: Determine Switch Position 

Purpose: The program waits for the switch to be in a specific position and then stores 
the position number in memory location 0040. 

Table 11-12 contains the data inputs corresponding to the various switch positions. 

Table 11-12. Data Input vs. Switch Position 

Data Input 
Switch Position 

Binary Hex 

0 11111110 FE 
1 11111101 FD 
2 11111011 FB 
3 11110111 F7 
4 11101111 EF 
5 11011111 OF 
6 10111111 BF 
7 01111111 7F 

This scheme is inefficient. since it requires eight bits to distinguish among 
eight different positions. 

A TTL or MOS encoder could reduce the number of input bits 
needed Figure 11-18 shows a circuit using the 74LS148 TTL 8-
to-3 encoder. 15 We attach the switch outputs in inverse order. 
since the 74LS148 device has active-low inputs and outputs. The 

USING 
A TTL 
ENCODER 

output of the encoder circuit is a 3-bit representation of the switch position. Many 
switches include encoders so that their outputs are coded. usually as a BCD digit (in 
negative logic). 

,...7 10 
::::6 11 
,...5 ..... 12 

F4 13 
~3 _ ... . ° 2 

To cpu 

~;:::: 2 
14 74LS148 PA2 6522 

~ IS 8-10-3 °1 
I : 

PAl VIA ~1 00 ;::::0 ': 16 Encoder PAO 
~ 

17 

Common 

--
Figure 11-18. A Multiple-Position Switch with an Encoder 
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The encoder produces active-low outputs. so. for example. switch position 5. which is 
attached to input 2. produces an output of 2 in negative logic (or 5 in positive logic). 
You may want to verify the double negative for yourself. 

Flowchart: 

Source Program: 

LDA 
STA 
STA 

CHKSW LDA 
CMP 
BEQ 
LDX 

CHKPOS ROR 
BCC 
INX 
JMP 

DONE STX 
BRK 

Data = 
Switch position 

#0 

Positton =: 0 

Shift data 
right 1 bit 

Position = 

PoSitKln + 1 

VIAPCR 
VIADDRA 
VIAORA 
#$FF 
CHKSW 
#0 
A 
DONE 

CHKPOS 
$40 

Yes 

(0040) = Position 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 

;IS SWITCH IN A POSITION? 
;NO. WAIT UNTIL IT IS 
;SWITCH POSITION = ZERO 
;IS NEXT BIT GROUNDED POSITION? 
;YES. SWITCH POSITION FOUND 
;NO. INCREMENT SWITCH POSITION 

;SAVE SWITCH POSITION 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 80 STA VIADDRA 

0006} 
0007 

VIADDRA 

0008 AD CHKSW LOA VIAORA 
0009} 
OOOA VIAORA 

OOOB C9 CMP #$FF 
OOOC FF 

-- 0000 FO BEG CHKSW 
OOOE F9 
OOOF A2 LOX #0 
0010 00 
0011 6A CHKPOS ROR A 
0012 90 BCC DONE 
0013 04 
0014 E8 INX 
0015 4C JMP CHKPOS 
0016 11 
0017 00 
0018 86 DONE STX $40 
0019 40 
001A 00 BRK 

Suppose that a faulty switch or defective VIA results in the input always being FF16. 
How could you change the program so that it would detect this error? 

This program could easily be restructured to make it shorter and faster - and relocat
able as well. One option would be to replace JMP CHKPOS with BCS CHKPOS; why is 
this possible and what improvements result? Another OPtion would be to change the 
initial conditions so that only one jump instruction was required. How would you 
accomplish that? Hint: start with FF16 in Index Register X and increment X before 
shifting the Accumulator. 

This example assumes that the switch is debounced in hardware. How would you 
change the program to debounce the switch in software? 
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Task 2: Wait For Switch Position To Change 

Purpose: The program waits for the switch position to change and places the new 
position (decoded) into memory location 0040. The program waits until the 
switch reaches its new position. 

Flowchart: 

Source Program: 

LDA 
STA 
STA 

CHKFST LDA 
CMP 
BEG 
TAX 

CHKSEC LDA 
CMP 
BEG 
CPX 
BEG 
LDX 

CHKPOS INX 
ROR 
BCS 
STX 
BRK 

Old data ~ 

Switch position 

New data = 

SWitch position 

#0 
VIAPCR 
VIADDRA 
VIAORA 
#$FF 
CHKFST 

VIAORA 
#$FF 
CHKSEC 
VIAORA 
CHKSEC 
#$FF 

A 
CHKPOS 
$40 

Position == • 1 

Shift data right 1 bit 

Position :0: 

Position + 1 

(0040) == POSition 

:MAKE ALL CONTROL LINES INPUTS 
:MAKE PORT A LINES INPUTS 

:IS SWITCH IN A POSITION? 
:NO, WAIT UNTIL IT IS 
:SAVE OLD POSITION 

:IS SWITCH IN A POSITION? 
:NO, WAIT UNTIL IT IS 
:IS POSITION SAME AS BEFORE? 
:YES, WAIT FOR IT TO CHANGE 
:NO, START SWITCH POSITION AT -1 
:SWITCH POSITION = SWITCH POSITION + 1 
:IS NEXT BIT GROUNDED? 
:NO, KEEP LOOKING 
:STORE SWITCH POSITION 
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Object Program: ",'",' 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 80 STA VIAOORA 

0006} 
0007 

VIAOORA 

0008 AO CHKFST LOA VIAORA 

0009} 
OOOA 

VIAORA 

OOOB C9 CMP #$FF 
OOOC FF 
0000 FO BEQ CHKFST 
OOOE F9 
OOOF AA TAX 
0010 AO CHKSEC LOA VIAORA 
0011 } 
0012 

VIAORA 

0013 C9 CMP #$FF 
0014 FF 
0015 FO BEQ CHKSEC 
0016 F9 
0017 EC CPX VIAORA 

0018} 
0019 

VIAORA 

001A FO BEQ CHKSEC 
001B F4 
001C A2 LOX #$FF 
0010 FF 
001E E8 CHKPOS INX 
001F 6A ROR A 
0020 BO BCS CHKPOS 
0021 FC 
0022 86 STX $40 
0023 40 
0024 00 BRK 

An alternative method for determining if the switch is in a position is: 

CHKSW INC VIAORA 
BEG CHKSW 

Why does this work? What happens to the input data? Rewrite the program to use the 
alternative method: how much less memory is required? 
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A Single LED 
Purpose: To interface a single light-emitting diode to a 6502 microprocessor. The LED 

can be attached so that either a logic zero or a logic one turns it on. 

Circuit Diagram: 

Figure 11-19 shows the circuitry required to interface an LED. The 
LED lights when its anode is positive with respect to its cathode 
(Figure 11-19a). Therefore. you can either light the LED by ground
ing the cathode and having the computer supply a one to the anode (Figure 11-19b) or 
by connecting the anode to +5 volts and having the computer supply a zero to the 
cathode (Figure 11-19d. Controlling the cathode is the most common approach. The 
LED is brightest when it operates from pulsed currents of about 10 or 50 mA applied a 
few hundred times per second. LEOs have a very short turn-on time (in the microsecond 
range) so they are well suited to multiplexing (operating several from a single port). LED 
circuits usually need peripheral or transistor drivers and current-limiting resistors. MOS 
devices normally cannot drive LEOs directly and make them bright enough for easy 
viewing. 

Note: The VIA has an output latch on each port. However. the B port is normally used 
for output. since it has somewhat more drive capability. In particular. the B port outputs 
are capable of driving Darlington transistors (providing 3.0 mA minimum at 1.5 V). 
Darlington transistors are high-gain transistors capable of switching large amounts of 
current at high speed: they are useful in driving solenoids. relays. and other devices. 

11-61 



+5VO 

R Anode8Calhode 

1 a) Basic LED circuitry. The resistor R should limit the maximum current to 50 rnA and 

From CPU 

the average current to 10 rnA. 

6522 
VIA 

MO 

+5V 

R 
Driver 

bl Interfacing an LEO with positive logic. A logic '" from the CPU turns the LEO on. 

From CPU 
6522 
VIA 

MO 

Driver 

R 

cl Interfacing an LED with negative logic. A logic '0' from the CPU turns the LED on. The driver or the 

CPU may invert the logic levels. 

Figure 11-19. Interfacing an LED 
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Task: Turn the Light On or Off 

Purpose: The program turns a single LED either on or off. 

A. Send a Logic One to the LED (turn a positive display on or a negative display off). 

Source Program: 

(form data initially) 

LOA 
STA 
LOA 
STA 
LOA 
STA 
BRK 

#0 
VIAPCR 
#$FF 
VIADDRB 
#MASKP 
VIAORB 

:MAKE ALL CONTROL LINES INPUTS 

:MAKE PORT B LINES OUTPUTS 
:GET DATA FOR LED 
:SEND DATA TO LED 

The B side of the VIA is used because of the buffering. The CPU can therefore read the 
data from the output port. 

(update data) 

LOA 
ORA 
STA 
BRK 

VIAORB 
#MASKP 
VIAORB 

:GET OLD DATA 
:TURN ON LED BIT 
:SEND DATA TO LED 

MASKP has a one bit in the LED position and zeros elsewhere. Logically ORing with 
MASKP does not affect the other bit positions. which may contain values for other 
LEOs. Note that we can read the VIA Output (Data) Register even when the pins are 
assigned as outputs. 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

(form data initially) 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 A9 LOA #$FF 
0006 FF 
0007 80 STA VIAOOR8 
0008} 
0009 

VIAOORB 

OOOA A9 LOA #MASKP 
OOOB MASKP 
OOOC 80 STA VIAORB 
~ODD} 
OOOE 

VIAORB 

OOOF 00 BRK 

(update data) 

0010 AD LOA VIAORB 
0011} 
0012 

VIAORB 

0013 09 ORA #MASKP 
0014 MASKP 
0015 80 STA VIAORB 
0016} 
0017 

VIAORB 

0018 00 8RK 

B. Send a Logic Zero to the LED (turn a positive display off or a negative display on). 

The differences are that MASKP must be replaced by iis logical complement MASKN 
and ORA #MASKP must be replaced by AND #MASKN. MASKN has a zero bit in the 
LED position and ones elsewhere. Logically ANDing with MASKN does not affect the 
other bit positions. 
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Seven-Segment LED Display 
Purpose: To interface a seven-segment LED display to a 6502 microprocessor. The dis

play may be either common-anode (negative logic) or common-cathode 
(positive logic). 

Circuit Diagram: 

Figure 11-20 shows the circuitry required to interface a 
seven-segment display. Each segment may have one. two. 
or more LEOs .attached in the same way. There are two 
ways of connecting the displays. One is tying all the 
cathodes together to ground (see Figure 11-21 a): this is a 

COMMON-ANODE 
OR 
COMMON-CATHODE 
DISPLAYS 

"common-cathode" display. and a logic one at an anode lights a segment. The other is 
tying all the anodes together to a positive voltage supply (see Figure 11-21 b): this is a 
"common-anode" display. and a logic zero at a cathode lights a segment. So the com
mon-cathode display uses positive logiC and the common-anode display negative logic. 
Either display requires appropriate drivers and resistors. 

The Common line from the display is tied either to ground or to +5 volts. The display 
segments are customarily labelled: 

a 

--::---1, 
9 

e 

d 

Note: The seven-segment display is widely used because it contains the smallest num
ber of separately controlled segments that can provide recognizable representations of 
all the decimal digits (see Figure 11-22 and Table 11-13). Seven-segment displays can 
also produce some letters and other characters (see Table 11-14). Better representa
tions require a substantially larger number of segments and more circuitry.16 Since 
seven-segment displays are so popular. low-cost seven-segment decoder/drivers have 
become widely available. The most popular devices are the 7447 common-anode driver 
and the 7448 common-cathode driver: 17 these devices have Lamp Test inputs (that 
turn all the segments on) and blanking inputs and outputs (for blanking leading or trail
ing zeros) 
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Os 9 

Os - - f 

From CPU °4 - e 

r-::> 6522 <lJ Driwrs d Display 
VIA 

~ c 

0, b 

00 - a MD Common 

) 
..r-Ll 

5V 

+5V 

PB7 may be used for a decimal point LED. 

(Common

Cathodel 

ICommon

Anodal 

Figure 11-20. Interfacing a Seven-Segment Display 

Table 11-13. Seven-Segment Representations of Decimal Numbers 

Hexadecimal Representation 
Number 

Common-cathode Common-anode 

0 3F 40 
1 06 79 
2 5B 24 
3 4F 30 
4 66 19 
5 60 12 
6 70 02 
7 07 78 
8 7F 00 
9 67 18 

Bit 7 is always zero and the others are g. f. e. d. c. b. and a in decreasing order of 
significance. 
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a) Common-cathode 

g~--------~~----~~H---------~ 

e ~----------~~~----Hl"J_----------_' 

do---------~~----~~----------. 

bo---------~~--~~H---------_t 

a ~----------~~~----Hl .. J_----------_. 

b) Common-anode 

g~--------~~----~"+-----------' 

e~--------~~~----~"H------------t 

do---------~~----~~----------. 

bo-------~¥V~--~~~--------~ 

acr----------~~~----~~~-------------J 

Figure 11-21. Seven-Segment Display Organization 
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0: Segments f. e. d. c. b .• ~ 3: Segments g. d. c. b .• '!!! 

a a 

f b b 

9 

I' 
e c 

d d 

1: Segments C, b 2!! 4: Segments g. f. c. b '!!! 

b f b 

9 

c c 

2: Segments 9, e, d. b. a ~ 5: Segments g. f. d, c, a 2!' 

a a 

Ib f 

9 9 

e c 

d d 

Figure 11-22. Seven-Segment Representations of Decimal Digits 
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6: Segments g. f, e. d. c. a ~ 

a 

8: Segments g. f. e, d, c, b, 8 2r' 
a 

9 9 

e e 

d d 
Note that the alternate representation with a off may This is the same as lamp Test. 
be reserved for the lower case let1er ·b'. -

1: Segments c, b, a ~ 9: Segments g, f, c, b, a ~ 
a a 

b 

b b 

9 

An alternate has segment d on also. 

Figure 11-22. Seven-Segment Representations of Decimal Digits (Continued) 

Table 11-14. Seven-Segment Representations of Letters and Symbols 

Upper-case Letters 
Lower-case Letters 

and Special Characters 

Hexadecimal Hexadecimal 

Letter 
Representation 

Character 
Representation 

Common- Common- Common- Common-
cathode anode cathode anode 

A 77 08 b 7C 03 
C 39 46 c 58 27 
E 79 06 d 5E 21 
F 71 OE h 74 OB 
H 76 09 n 54 2B 
I 06 79 0 5C 23 
J 1E 61 r 50 2F 
L 38 47 u 1C 63 
0 3F 40 - 40 3F 
P 73 OC ? 53 2C 
U 3E 41 
Y 66 19 
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Task 1: Display a Decimal Digit 

Purpose: Display the contents of memory location 0040 on a seven-segment display if 
it contains a decimal digit. Otherwise. blank the display. 

Sample Problems: 

a. (0040) = 05 

Result is 5 on display 
b. (0040) = 66 

Result is a blank display 

Flowchart: 

Code = Blank 
Data = (0040) 

Code = (SSEG + 
Data) 

Send code 

to diaplay 
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Source Program: 

LDA 
STA 
LDA 
STA 
LDA 
LDX 
CPX 
BCS 
LDA 

DISPLY STA 
BRK 

#0 
VIAPCR 
#$FF 
VIADDRB 
#BLANK 
$40 
#10 
DSPLY 
SSEG.X 

VIAORB 

;MAKE ALL CONTROL LINES INPUTS 

;MAKE PORT B LINES OUTPUTS 
;GET BLANK CODE 
;GET DATA 
;IS DATA 10 OR MORE? 
;YES. DISPLAY BLANKS 
;NO. CONVERT DATA TO SEVEN-SEGMENT 
; CODE 
;SEND CODE TO DISPLAY 

BLANK is 00 for a common-cathode display. FF for a common-anode display. An alter
native procedure would'be to put the blank code at the end of the table and replace all 
improper data values with 10. i.e .. the instructions after STA VIADDRB are: 

LDX 
CPX 
BCC 
LDX 

CNVRT LDA 

$40 
#10 
CNVRT 
#10 
SSEG.X 

;GET DATA 
;IS DATA 10 OR MORE? 

;YES. REPLACE IT WITH 10 
;CONVERT DATA TO SEVEN-SEGMENT CODE 

Table SSEG is either the common-cathode or common-anode representation of the 
decimal digits from Table 11-13. 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 A9 LOA #$FF 
0006 FF 
0007 80 STA VIAOORB 

0008} 
0009 

VIAOORB 

OOOA A9 LOA #BLANK 
OOOB BLANK 
OOOC A6 LOX $40 
0000 40 
OOOE EO CPX #10 
OOOF OA 
0010 BO BCS OSPLY 
0011 02 
0012 B5 LOA SSEG.X 
0013 20 
0014 80 OSPLY STA VIAORB 

0015} 
0016 VIAORB 

0017 00 BRK 

0020-0029 SSEG (seven-segment 
code table) 

Several displays may be multiplexed. as shown in Figure 11-23. A brief strobe on con
trol line CB2 clocks the counter and directs data to the next display. RESET starts the 
decimal counter at 9 so that the first output operation clears the counter and directs 
data to the first display. 

The following program uses the delay routine to pulse each of ten common-cathode 
displays for 1 ms. 
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Task 2: Display Ten Decimal Digits 

Purpose: Display the contents of memory locations 0040 through 0049 on ten 7-seg
ment displays that are multiplexed with a counter and a decoder. The most 
significant digit is in 0049. 

Sample Problem: 

(0040) 66 
(0041) 3F 
(0042) 7F 
(0043) 7F 
(0044) 06 
(0045) 5B 
(0046) 07 
(0047) 4F 
(0048) 6D 
(0049) 7D 
The displays read 6537218804 

The circuit in Figure 11-23 uses the VIA handshake signal CB2 as a brief output strobe 
to indicate the occurrence of a data transfer. 

Source Program: 

SCAN 
DSPLY 

LDA 
STA 
LDA 
STA 
LDX 
LDA 
STA 
JSR 
DEX 
BNE 
BEQ 

#$FF 
VIADDRB 
#%10100000 
VIAPCR 
#10 
$3F.X 
VIAORB 
DELAY 

DSPLY 
SCAN 

;MAKE PORT B LINES OUTPUTS 

;PROVIDE DATA READY STROBE 
;NUMBER OF DISPLAYS = 10 
;GET DATA FOR DISPLAY 
;SEND DATA TO DISPLAY 
;WAIT 1 MS 

;COUNT DISPLAYS 
;START ANOTHER SCAN 

Peripheral Control register bit 7 = 1 to make CB2 an output. bit 6 = 1 to make it a pulse. 
and bit 3 = 1 to make it a brief strobe. We have assumed here that subroutine DELAY 
has been modified to provide a transparent 1 ms wait. 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LDA #$FF 
0001 FF 
0002 8D STA VIADDR8 

0003} 
0004 

VIADDR8 

0005 A9 LDA #%10100000 
0006 AO 
0007 8D STA VIAPCR 
0008} 
0009 

VIAPCR 

OOOA A2 SCAN LDX #10 
0008 OA 
OOOC 85 DSPLY LDA $3F.X 
OOOD 3F 
OOOE ·8D STA VIAOR8 
OOOF} 
0010 

VIAORB 

0011 20 JSR DELAY 
0012 30 
0013 00 
0014 CA DEX 
0015 DO BNE DSPLY 
0016 F5 
0017 FO BEQ SCAN 
0018 F1 
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D. C. B. and A (0 most significant, A 

least significant) are the 4-bit output 

from the counter. These 4 bits activate 

the correspondingly numbered output 

from the decoder. and hence the cor

respondingly numbered display. 

From CPU 

6522 PB7 

VIA ~ 

Oock 
74S0 

Decade 

Counter 

RS 

Reset 

0 6 5 4 3 210 

C 
7442 

4 to 10 

B Decoder/Driver 

A 

Figure 11-23. Interfacing Multiplexed Seven-Segment Displays 
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PROBLEMS 
1) An On-Off Pushbutton 
Purpose: Each closure of the pushbutton complements (inverts) all the bits in memory 

location 0040. The location initially contains zero. The program should con
tinuously examine the pushbutton and complement location 0040 with each 
closure. You may wish to complement a display output port instead. thus 
making the results easier to see. 

Sample Case: 

Location 0040 initially contains zero. 

The first pushbutton closure changes location 0040 to FF16. the second changes it 
back to zero. the third back to FF16. etc. Assume that the pushbutton is debounced in 
hardware. How would you include debouncing in your program? 

2) Debouncing a Switch in Software 
Purpose: Debounce a mechanical switch by waiting until two readings. taken a de

bounce time apart. give the same result. Assume that the debounce time (in 
ms) is in memory location 0040 and store the switch position in memory 
location 0041. 

Sample Problem: 

(0040) = 03 causes the program to wait 3 ms between readings. 

3) Control for a Rotary Switch 
Purpose: Another switch serves as a Load switch for a four-position unencoded rotary 

switch. The CPU waits for the Load switch to close (be zero), and then reads 
the position of the rotary switch. This procedure allows the operator to move 
the rotary switch to its final position before the CPU tries to read it. The pro
gram should place the position of the rotary switch into memory location 
0040. Debounce the Load switch in software. 

Sample Problem: 

Place rotary switch in position 2. Close Load switch. 

Result: (0040) = 02 
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4) Record Switch Positions on Lights 
Purpose: A set of eight switches should have their positions reflected on eight LEDs. 

That is to say. if the switch is closed (zero), the LED should be on. otherwise 
the LED should be off. Assume that the CPU output port is connected to the 
cathodes of the LEDs. 

Sample Problem: 

SWITCH 0 CLOSED 
SWITCH 1 OPEN 
SWITCH 2 CLOSED 
SWITCH 3 OPEN 
SWITCH 4 OPEN 
SWITCH 5 CLOSED 
SWITCH 6 CLOSED 
SWITCH 7 OPEN 

Result: 

LED 0 ON 
LED 1 OFF 
LED 2 ON 
LED 3 OFF 
LED 4 OFF 
LED 5 ON 
LED 6 ON 
LED 7 OFF 

How would you change the program so that a switch attached to bit 7 of Port A of VIA 
#2 determines whether the displays are active (i.e .. if the control switch is closed. the 
displays attached to Port B reflect the switches attached to Port A; if the control switch 
is open. the displays are always off)? A control switch is useful when the displays may 
distract the operator. as in an airplane. 

How would you change the program so that it makes the control switch an on-off 
pushbutton; that is. each closure inverts the previous state of the displays? Assume 
that the displays start in the active state and that the program examines and debounces 
the pushbutton before sending data to the displays. 

5) Count on a Seven-Segment Display 
Purpose: The program should count from 0 to 9 c;ontinuously on a seven-segment dis

play. starting with zero. 

Hint: Try different timing lengths for the displays and see what happens. When does 
the count become visible? What happens if the display is blanked part of the time? 
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MORE COMPLEX I/O DEVICES 

More complex I/O devices differ from simple keyboards. switches. and displays in that: 

1} They transfer data at higher rates. 

2} They may have their own internal clocks and timing. 

3} They produce status information and require control information. as well as 
transferring data. 

Because of their high data rates. you cannot handle these I/O devices casually. If the 
processor does not provide the appropriate service. the system may miss input data or 
produce erroneous output data. You are therefore working under much more exacting 
constraints than in dealing with simpler devices. Interrupts are a convenient method for 
handling complex I/O devices. as we shall see in Chapter 12. 

Peripherals such as keyboards. teletypewriters. cassettes. 
and floppy disks produce their own internal timing. These 
devices provide streams of data. separated by specific tim
ing intervals. The computer must synchronize the initial in

SYNCHRONIZING 
WITH 1/0 
DEVICES 

put or output operation with the peripheral clock and then provide the proper interval 
between subsequent operations. A simple delay loop like the one shown previously can 
produce the liming interval. The synchronization may require one or more of the follow
ing procedures: . 

1} Looking for a transition on a clock or strobe line provided by the peripheral for tim
ing purposes. The simplest method is to tie the strobe to a VIA control line and wait 
until the appropriate bit of the VIA Interrupt Flag register is set. 

2} Finding the center of the time interval during which the data is stable. We would 
prefer to determine the value of the data at the center of the pulse rather than at 
the edges. where the data may be changing. Finding the center requires a delay of 
one-half of a transmission interval (bit time) after the edge. Sampling the data at 
the center also means that small timing errors have little effect on the accuracy of 
the reception. 

3} Recognizing a special starting code. This is easy if the code is a single bit or if we 
have some timing information. The procedure is more complex if the code is long 
and could start at any time. Shifting will be necessary to determine where the 
transmitter is starting its bits. characters. or messages (this is often called a search 
for the correct "framing"). 

4} Sampling the data several times. This reduces the probability of receiving data in
correctly from noisy lines. Majority logic (such as best 3 out of 5 or 5 out of 8) can 
be used to decide on the actual data value. 

Reception is. of course. much more difficult than transmission. since the peripheral con
trols the reception and the computer must interpret timing information generated by 
the peripheral. In transmission. the computer provides the proper timing and formatting 
for a specific peripheral. 

Peripherals may require or provide other information besides 
data and timing. We refer to other information transmitted by 
the computer as "control information"; it may select modes of 
operation. start or stop processes. clock registers. enable 

CONTROL 
AND STATUS 
INFORMATION 

buffers. choose formats or protocols. provide operator displays. count operations. or 
identify the type and priority of the operation. We refer to other information transmitted 
by the peripheral as "status information"; it may indicate the mode of operation. the 
readiness of devices. the presence of error conditions. the format of protocol in use. and 
other states or conditions. 
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The computer handles control and status information just like data. This information 
seldom changes. even though actual data may be transferred at a high rate. The control 
or status information may be single bits. digits. words. or multiple words. Often single 
bits or short fields are combined and handled by a single input or output port. 

Combining status and control information into bytes reduces the total number of I/O 
port addresses required by the peripherals. However. the combination does mean that 
individual status input bits must be separately interpreted and control output bits must 
be separately determined. The procedures for isolating status bits and setting or reset
ting control bits are as follows: 

Separating Out Status Bits 

Step 1) 

Step 2) 

Read status data from the peripheral 

Logical AND with a mask (the mask has ones in bit 
positions that must be examined and zeros 
elsewhere) 

SEPARATING 
STATUS 
INFORMATION 

Step 3) Shift the separated bits to the least significant bit positions 

Step 3 is unnecessary if the field is a single bit. since the Zero 
flag will contain the complement of that bit after Step 2 (try itll. 
A Shift or Load instruction can replace Step 2 if the field is a 

r:B:"::IT=-=TE==S==T:----' 

INSTRUCTION 

single bit and occupies the least significant. most significant. or next to most significant 
bit position (positions O. 7. or 6). These positions are often reserved for the most fre
quently used status information. You should try to write the required instruction se
quences for the 6502 processor. Note. in particular. the use of the Bit Test instruction. 
This instruction performs a logical AND between the contents of the Accumulator and 
the contents of a memory location but does not save the result; the flags are set as 
follows: 

Zero flag = 1 if the logical AND produces a zero result. 0 if it does not. 

Sign flag = bit 7 of the contents of the memory location (independent of the value In 
the Accumu latod. 

Overflow flag = bit 6 of the contents of the memory location (independent of the value 
in the Accumulatod 

Setting and Clearing Control Bits 

Step 1) 

Step 2) 

Read prior control information 

Logical AND with mask to clear bits (mask has zeros 
in bit positions to be cleared. ones elsewhere) 

COMBINING 
CONTROL 
INFORMATION 

Step 3) Logical OR with mask to set bits (mask has ones in bit positions to be set. zeros 
elsewhere) 

Step 4) Send new control information to peripheral 

Here again the procedure is simpler if the field is a single bit and occupies a position at 
either end of the byte. 
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Some examples of separating and combining status bits are: 

1) A 3-bit field in bit positions 2 through 4 of a VIA Ouput (Data) register is a scaling 
factor. Place that factor into the Accumulator. 

; READ STATUS DATA FROM INPUT PORT 

LDA VIAOR ;READ STATUS DATA 

; MASK OFF UNWANTED BITS AND SHIFT RESULT 

AND 
LSR 
LSR 

*%00011100 
A 

;MASK SCALING FACTOR 
;SHIFT TWICE TO NORMALIZE 

A 

2) The Accumulator contains a 2-bit field that must be placed in bit positions 3 and 4 
of a VIA Output (Data) register. I 

TEMP = $0040 
MASK = %11100111 

; MOVE DATA TO FIELD POSITIONS 

ASL A ;SHIFT DATA TO BIT POSITIONS 3 AND 4 
ASL A 
ASL A 
AND *%00011000 ;CLEAR OUT OTHER BITS 
STA TEMP 

COMBINE NEW FIELD VALUE WITH OTHER DATA 

LDA 
AND 
ORA 
STA 

VIOADR 
HMASK 
TEMP 
VIOAR 

;CLEAR FIELD TO BE CHANGED 
;COMI3INED NEW DATA WITH OLD 
;OUTPUT COMBINED DATA 

Documentation is a serious problem in handling control and 
status information. The meanings of status inputs or control 
outputs are seldom obvious. The programmer should clearly in
dicate the purposes of input and output operations in the com
ments, e.g.. "CHECK IF READER IS ON," "CHOOSE EVEN 

DOCUMENTING 
STATUS AND 
CONTROL 
TRANSFERS 

PARITY OPTION," or "ACTIVATE BIT RATE COUNTER." The Logical and Shift instruc
tions will otherwise be very difficult to remember, understand, or debug. 
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EXAMPLES 
An Unencoded Keyboard 
Purpose: Recognize a key closure from an unencoded 3 x 3 keyboard and place the 

number of the key that was pressed into the Accumulator. 

Keyboards are just collections of switches (see Figure 11-24). Small numbers of keys are 
easiest to handle if each key is attached separately to a bit of an input port. Interfacing 
the keyboard is then the same as interfacing a set of switches. 

Keyboards with more than eight keys require more than one input 
port and therefore multibyte operations. This is particularly 
wasteful if the keys are logically separate. as in a calculator or ter
minal keyboard where the user will only strike one at a time The number of input lines 
required may be reduced by connecting the keys into a matrix. as shown in Figure 
11-25. Now each key represents a potential connection between a row and a column. 
The keyboard matrix requires n + m external lines. where n is the number of rows and 
m is the number of columns. This compares to n x m external lines if each key is sepa
rate. Table 11-15 compares the number of keys required by typical configurations. 

A program can determine which key has been pressed by using 
the external lines from the matrix. The usual procedure is a 
"keyboard scan." We ground Row 0 and examine the column 
lines. If any lines are grounded. a key in that row has been pressed. causing a row-to
column connection. We can determine which key was pressed by determining which 
column line is grounded: that is. which bit of the input port is zero. If no column line IS 

grounded. we proceed to Row 1 and repeat the scan. Note that we can check to see if 
any keys at all have been pressed by grounding all the rows at once and examining the 
columns. 

The keyboard scan requires that the row lines be tied to an output port and the column 
lines to an input port. Figure 11-26 shows the arrangement. The CPU can ground a par
ticular row by placing a zero in the appropriate bit of the output port and ones in the 
other bits 

The CPU can determine the state of a particular column by examining the appropriate 
bit of the inpu t port. 

Table 11-15. Comparison Between Independent Connections 
and Matrix Connections for Keyboards 

Keyboard Size 
Number of lines with Number of lines with 

Independent Connections Matrix Connections 

3 x 3 9 6 
4x4 16 8 
4x6 24 10 
5 x 5 25 10 
6 x 6 36 12 
6 x 8 48 14 
8x8 64 16 
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I +5V 

Key 1 

J... 
--------~~-------O 

r 
----------I~--------o 

Key 2 

.1. 

r 
----------.l~-------o 

Key3 

Each key is a switch just like a pushbutton and grounds an input bit if it is pressed. -=~ 

Figure 11-24. A Small Keyboard 

Column 0 Column 1 Column 2 

Row 0 

Row 1 

Row 2 

Each key now serves to connect a row to a column. For instance. key 4 connects row 1 to column 1. 

Figure 11-25. A Keyboard Matrix 
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Data Bus 
(ImmCPU) 

Column 0 Column 1 Column 2 

00 t---F---+--.... ----t--~.__--t--Row 0 

VIA 
Output 011---.... ---+--_F---+---4II'---t--Row 1 

Port 

021---... ---+--~rf---+---4I~--+--Row 2 

VIA 

Input 

Port 

Data Bus Ito CPU) 

Figure 11-26. I/O Arrangement for a Keyboard Scan 
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Task 1: Determine Key Closure 

Purpose: Wait for a Key to be Pressed. 

The procedu re is as follows: WAITING 
FOR A 1) Ground all the rows by clearing all the output bits. 
KEY CLOSURE 

2) Fetch the column inputs by reading the input port 

3) Return to Step 1 if all the column inputs are ones. 

Flowchart: 

Source Program: 

LDA 
STA 
LDA 
STA 
STA 
STA 

WAITK LDA 
AND 
CMP 
BEQ 
BRK 

#$FF 
VIADDRB 
#0 
VIAPCR 
VIADDRA 
VIAORB 
VIAORA 
#%00000111 
#%00000111 
WAITK 

Ground all 

keyboard rows 

;MAKE PORT B LINES OUTPUTS 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 
;GROUND ALL KEYBOARD ROWS 
;GET KEYBOARD COLUMN DATA 
;MASK COLUMN BITS 
;ARE ANY COLUMNS GROUNDED? 
;NO. WAIT UNTIL ONE IS 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LDA #$FF 
0001 FF 
0002 8D STA VIADDRB 

0003} 
0004 

VIADDRB 

0005 A9 LDA #0 
0006 00 
0007 8D STA VIAPCR 

0008} 
0009 

VIAPCR 

OOOA 8D STA VIADDRA 

OOOS} 
OOOC 

VIADDRA 

OOOD 8D STA VIAORB 

OOOE} 
OOOF VIAORB 

0010 AD WAITK LDA VIAORA 

0011} 
0012 

VIAORA 

0013 29 AND #%00000111 
0014 07 
0015 C9 CMP #%00000111 
0016 07 
0017 FO BEG WAITK 
0018 F7 
0019 00 BRK 

VIA Port B is the keyboard output port and Port A is the input port. 

Masking off all but the column bits eliminates any problems that could be caused by 
the states of the unused input lines. 

We could generalize the routine by naming the output and masking patterns: 

ALLG =%11111000 
OPEN =%00000111 

These names could then be used in the actual program: a different keyboard would re
quire only a change in the definitions and are-assembly. 

Of course, one port of a VIA is all that is really necessary for a 3 x 3 or 4 x 4 keyboard. 
Try rewriting the proqram so that it Iises only Port A 
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Task 2: Identify Key 

Purpose: Identify a key closure by placing the number of the key into the Accumulator. 

The procedure is as follows: 

1) Set key number to -1. keyboard output port to all ones except for a zero in bit O. 
and row counter to number of rows. 

2) Fetch the column inputs by reading the input port. 

3) If any column inputs are zero. proceed to Step 7. 

4) Add the number of columns to the key number to reach next row. 

5) Update the contents of the output port by shifting the zero bit left one position. 

6) Decrement row counter. Go to Step 2 if any rows have not been scanned. other-
wise go to Step 9. 

7) Add 1 to key number. Shift column inputs right one bit. 

8) If Carry = 1. return to Step 7. 

9) End of program. 

Flowchart: 

Key Number = - 1 
Counter = Number 

of roWS 
Keyboard output· port 
~1 1 1 1 1 1 10 (binary) 

Update keyboard 
output port by 

shifting contents 
left arithmetically 

~ey Number = 
," Key Number + 
Number of Columns 
Counter=Counter -1 
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Shift column inputs 
right 1 bit 
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Source Program: 

LDA #0 
STA VIAPCR :MAKE ALL CONTROL LINES INPUTS 
STA VIADDRA :MAKE PORT A LINES INPUTS 
LDA #$FF 
STA VIADDRB :MAKE PORT B LINES OUTPUTS 
TAX :KEY NUMBER =-1 
LDA #%11111110 :STAin BY GROUNDING ROW ZERO 
STA VIAORB 
LDY #3 :COUNTER = NUMBER OF ROWS 

FROW LDA VIAORA :GET COLUMN INPUTS 
AND #%00000111 :ISOLATE COLUMN BITS 
CMP #%00000111 :ARE ANY COLUMNS GROUNDED? 
BNE FCOL ;YES. GO DETERMINE WHICH ONE 
TXA ;NO. MOVE KEY NUMBER TO NEXT ROW 
CLC 
ADC #3 ;BY ADDING NUMBER OF COLUMNS 
TAX 
ASL VIAORB ;UPDATE SCAN PATTEN FOR NEXT ROW 
DEY ;HAVE ALL ROWS BEEN SCANNED? 
BNE FROW ;NO. SCAN NEXT ONE 
BRK 

FCOL INX ;KEY NUMBER = KEY NUMBER + 1 
LSR A ;IS THIS THE COLUMN GROUNDED? 
BCS FCOL ;NO. EXAMINE NEXT ONE 
BRK 
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Object Program: 

Memory Address Memory Cohtents InStruction 
(Hex) (Hex) (Mnemonic! 

0000 A9 lOA #0 
0001 00 
0002 80 STA VIAPCR 
0003} 
0004 VIAPCR lO A.00001111 B 
0005 80 STA VIAOORA 
0006} 
0007 VIAOORA 

0008 A9 lOA #$FF 
0009 FF 
OOOA 80 STA VIAOORB 
OOOB} 
OOOC VIAOOR8 

0000 AA TAX 
OOOE A9 lOA #%11111110 
OOOF FE 
0010 80 STA VIAOR8 
0011} 
0012 VIAORB 

0013 AD lOY #3 
0014 03 
0015 AD FROW lOA VIAORA 
0016} 
0017 VIAORA 

0018 29 AND #%00000111 
0019 07 
001A C9 CMP #%00000111 
001B 07 
001C DO BNE FCOl 
0010 DC 
001E 8A TXA 
001F 18 ClC 
0020 69 AOC #3 
0021 03 
0022 AA TAX 
0023 DE ASl VIAOR8 
0024} 
0025 VIAORB 

0026 88 DEY 
0027 DO 8NE FROW 
0028 EC 
0029 00 8RK 
002A E8 FCOl INX 
002B 4A lSR A 
002C BO BCS FCOl 
0020 FC 
002E 00 BRK 
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We have included a CLC instruction for clarity. but it is not actually necessary. The only 
case in which the BNE instruction does not cause a branch is the one in which the two 
operands used in CMP are equal. In that case. the Carry flag is always set to indicate 
that no borrow has been generated. So we cou Id replace the sequence 

CLC 
ADC #3 

with the single instruction 

ADC #2 

;BY ADDING NUMBER OF COLUMNS 

;BY ADDING NUMBER OF COLUMNS (NOTE 
CARRY = 1) 

Each time a row scan fails. we must add the number of columns to the key number to 
move past the current row (try the procedure on the keyboard in Figun> 11-26). 

What is the result of the program if no keys are being pressed? Change the program so 
that it starts the scan over again in that case. We could insert an extra INX instruction 
before the first BRK. What would the final value be in Index Register X if no keys were 
being pressed? Would it be different from the case in which the highest numbered key 
was being pressed? Note that the Zero flag could also be used to distinguish the case 
where no keys were pressed. Can you explain how? 

An alternative is to use the bidirectional capability of the VIA. The procedure would be: 

1) Ground all the columns and save the row inputs. 

2) Ground all the rows and save the column inputs. 

3) Use the row and column inputs together to determine the key number from a table. 

Try to write a program to implement this procedure. 

This program can be generalized by making the number of rows. the number of col
umns. and the masking pattern into named parameters with EQUATE (=) pseudo
opera tions. 
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An Encoded Keyboard18 

Purpose: Fetch data. when it is available. from an encoded keyboard that provides a 
strobe along with each data transfer. 

An encoded keyboard provides a unique code for each key. It has internal electronics 
that perform the scanning and identification procedure of the previous example. The 
tradeoff is between the simpler software required by the encoded keyboard and the 
lower cost of the unencoded keyboard. 

Encoded keyboards may use diode matrices. TTL encoders. or MOS encoders. The 
codes may be ASCII. EBCDIC. or a custom code. PROMs are often part of the encoding 
circuitry. 

The encoding circuitry may do more than Just encode key 
closures. It may also debounce the keys and handle "rollover." the 

IROLLOVERI 

problem of more than one key being struck at the same time. Common ways of 
handling rollover are: "2-key rollover." whereby two keys (but not more) struck at the 
same time are resolved into separate closures. and "n-key rollover." whereby any 
number of keys struck at the same time are resolved into separate closures. 

The encoded keyboard also provides a strobe with each data transfer. The strobe sig
nals that a new closure has occurred. Figure 11-27 shows the interface between an en
coded keyboard and the 6502 microprocessor. The 6522 Versatile Interface Adapter 
provides input latching on both Ports A and B; these latches are enabled by setting bit 
1 (for Port B) or bit 0 (for Port A) of the Auxiliary Control register (see Figure 11-10). In 
this mode. the data on the input pins is latched when the Interrupt flag is set and wil 
not change until the Interrupt flag is cleared. Note that the latching works somewhat 
differently on the B side. where the contents of the Output register are latched if the pin 
is programmed as an output. 

The keyboard strobe is tied to input CA 1. A transition on the strobe line causes Inter
rupt Flag Register bit 1 to go high. Bit 0 of the Peripheral Control register (see Figure 
11-9) determines whether the VIA recognizes high-to-Iow transitions on CA 1 (bit 0 = 0) 
or low-to-high transitions (bit 0 = 1) Thus the VIA contains an edge-sensitive latched 
status port as well as a data port. It also contains an inverter that can be used to handle 
strobes of either polarity. A VIA can replace many Simple circuit elements: you can 
make corrections in circuit logic by changing the contents of the Control registers (in 
software) rather than by rewiring a breadboard. For example. changing the active edge 
requires the changing of a single program bit. whereas it might require additional parts 
and rewiring on a breadboard. 

Data Bus 

to CPU < 

P~ 
. ~ Kevboard Data Inputs 

PA7 

6522 
VIA 

CAl Keyboard Strobe 

( ----1L or ---v- ) 

Figure 11-27. I/O Interface for an Encoded Keyboard 
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Task: Input from Keyboard 

Purpose: Wait for an active-low strobe on VIA control line CA 1 and then place the 
data from Port A into the Accumulator. Note that reading the data from the 
Output (Data) register clears the status bit in the Interrupt Flag register (this 
circuitry is part of the 6522 VIA). 

Flowchart: 

Read Interrupt Flag 

Register 

Read Output 

(Data) Register 

The hardware must hold the control lines in a logic '1' state during reset to prevent the 
accidental setting of status flags. An initial read of the Data (Output) registers in the 
startup routine may be used to clear the status flags. As noted earlier, you can also clear 
bits in the 6522 Interrupt Flag register by Writing logic '1's into them 

Source Program: 

LDA 
STA 
STA 
LDA 
STA 
LDA 

KBWAIT BIT 
BEQ 
LDA 
BRK 

#0 
VIAPCR 
VIADDRA 
#%00000001 
VIAACR 
#%00000010 
VIAIFR 
KBWAIT 
VIAORA 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 

;ENABLE LATCHING ON PORT A 
;GET PATTERN FOR EXAMINING CA 1 FLAG 
;IS THERE NEW KEYBOARD DATA? 
;NO, WAIT UNTIL THERE IS 
;YES, FETCH DATA 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LDA #0 
0001 00 
0002 8D STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 8D STA VIADDRA 

0006} 
0007 

VIADDRA 

0008 A9 LDA #%00000001 
0009 01 
OOOA 8D STA VIAACR 

OOOB} 
OOOC 

VIAACR 

OOOD A9 LDA #%00000010 
OOOE 02 
OOOF 2C KBWAIT BIT VIAIFR 

0010} 
0011 

VIAIFR 

0012 FO BEG KBWAIT 
0013 FB 
0014 AD LDA VIAORA 

0015} 
0016 

VIAORA 

0017 00 BRK 

To make the status bit respond to low-to-high transitions on CA 1. you must set bit U of 
the Peripheral Control register. 

The other handshake status flags are bits 0 (for CA21. 3 (for CB21. and 4 (for CB1) of the 
Interrupt Flag register. 

Show that reading the Output (Data) register clears the status flag. Hint: save the con
tents of the I nterrupt Flag register in memory before the instruction LDA VIAORA is ex
ecuted. What happens if you replace LDA with STA? How about CMP. INC. ROL? Note 
that either reading or writing the Output (Data) register clears the status bit. What hap
pens if you read Port A from the non-handshaking address (see Table 11-7}7 What hap
pens if you replace LDA VIAORA with LDA VIAORB7 
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A Digital-to-Analog Converter19-22 

Purpose: Send data to an 8-bit digital-to-analog converter. which has an active-low 
latch enable. 

Digital-to-analog converters produce the continuous signals required by motors. 
heaters. actuators. and other electrical and mechanical output devices. Typical conver
ters consist of switches and resistor ladders with the appropriate resistance values You 
must generally provide a reference voltage and some other digital and analog circuitry. 
although complete units are becoming available at low cost. 

Figure 11-28 describes the 8-bit Signetics NE5018 D/A converter. which contains an 
on-chip 8-bit parallel data input latch. A low level on the LE (Latch Enable) input gates 
the input data into the latches. where it remains after LE goes high. 

Figure 11-29 illustrates the interfacing of the device to a 
6502 system. Note that the B side of the VIA automatically 
produces the active-low strobe required to latch the data 

~D~/~A-C~O~N~V~E~R~T~E~R~ 

INTERFACE 

into the converter; CB2 acts as an Output Ready signal. Remember that CB2 automat
ically goes low for one cycle following a write operation on the B port Output (Data) 
register if CB2 is in the pulse output mode (see Table 11-9). The Peripheral Control 
register bits are: 

Bit 7 = 1 to make CB2 an output 
Bit 6 = 0 to make CB2 a pulse 
Bit 5 = 1 to make CB2 a brief Output Ready strobe (one clock cycle 

in du ration)' 

Note that the VIA contains an output latch The data therefore remains stable during 
and after the conversion. The converter typically requires only a few microseconds to 
produce an analog output. Thus. the converter latch could be left enabled if the port 
were not used for any other purpose. 

I n applications where eight bits of resolu tion are not enough. 10- to 16-bi t converters 
can be used. Additional port logic is required to pass all the data bits; some converters 
provide part of this logic. 

The VIA here serves both as a parallel data port and as a control port. CB2 is a pulse 
that lasts one clock cycle after the data is latched into the VIA. This pulse is long 
enough to meet the requirements (typically 400 ns) of the NE5018 converter 
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Data Bus Analog 

from CPU .. PB7 NE5018 Output 

2 
6522 

VIA PBO DIA 

Convener 

CB2 IE 

I • 
Figure 11-29 Interface for an 8-bit Digital-to-Analog Converter 
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Task: Output to Converter 

Purpose: Send data from memory location 0040 to the converter. 

Flowchart: 

Source Program: 

LOA 
STA 
LOA 
STA 
LOA 
STA 
BRK 

#$FF 
VIADDRB 
#%10100000 
VIAPCR 
$40 
VIAORB 

Data = (0040) 

Send da1a to 
_and 

latch it 

;MAKE PORT B LINES OUTPUTS 

;PROVIDE BRIEF LATCH ENABLE STROBE 
;GET DATA 
;SEND DATA TO DAC AND LATCH 

11-96 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemopicl 

0000 A9 LOA #$FF 
0001 FF 
0002 80 STA VIAOORB 
0003} 
0004 

VIAOORB 

0005 A9 LOA #%10100000 
0006 AD 
0007 80 STA VIAPCR 

0008} 
0009 

VIAPCR 

OOOA A5 LOA $40 
OOOB 40 
OOOC 80 STA VIAORB 

~ODD} 
OOOE 

VIAORB 

OOOF 00 BRK 

The pulse for the Latch Enable input is produced automatically when data is stored in 
Output (Data) Register B. Note. however. that the pulse is a fairly brief one. lasting only 
one clock cycle; this may be insufficient for some applications. 

We could use the level (manual) output from CB2 if the Latch Enable Signal were ac
tive-high or if the required length were greater. The program would then be.: 

LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 
LOA 
STA 
BRK 

#$FF 
VIADDRB 
#%11000000 
VIAPCR 
$40 
VIAORB 
#%11100000 
VIAPCR 
#%11000000 
VIAPCR 

;MAKE PORT BE LINES OUTPUTS 

;MAKE LATCH ENABLE A LEVEL (LOW) 
;GET DATA 
;SEND DATA TO DAC OUTPUT PORT 

;OPEN DAC LATCH (ENABLE HIGH) 

;LATCH DATA (ENABLE LOW) 

Here bit 6 of the Peripheral Control register is set to make CB2 a level with a value given 
by bit 5 of the Peripheral Control register. This is referred to as the Manual Output mode 
in 6522 literature. Note how many more instructions are required to pulse the Latch 
Enable than in the previous example. since no automatic pulse is provided. An inverter 
gate could also be used to invert the polarity of the strobe. 

In the Manual mode. CB2 is completely independent of the parallel data port. It is 
simply a control output that is available for any purpose. The only problem involved in 
using it is that you must not accidentally change any of the other bits in the Peripheral 
Control register. since they may have unrelated functions. 
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Analog-to-Digital Converter19-23 

Purpose: Fetch data from an 8-bit analog-to-digital converter that requires a Start 
Conversion pu Ise to start the conversion process and provides an End of 
Conversion output to indicate the completion of the process and the 
availability of valid data. 

Analog-to-digital converters handle the continuous signals produced by various types 
of sensors and transducers. The converter produces the digital input which the com
puter requires. 

One form of analog-to-digital converter is the successive approximation device. which 
makes a direct 1-bit comparison during each clock cycle. Such converters are fast but 
have little noise immunity. Dual slope integrating converters are another form of 
analog-to-digital converter. These devices take longer but are more resistant to noise. 
Other techniques. such as the incremental charge balancing technique. are also used. 

Analog-to-digital converters usually require some external analog and digital circuitry. 
although complete units are becoming available at low cost. 

Figure 11-30 contains a general description and a timing diagram for the National 
MM5357 8-bit AID converter. The device contains output latches and tristate data out
puts. A pulse on the Start Conversion (STRT CONV) line starts conversion of the analog 
input; after about 40 clock cycles (the converter requires a TTL level clock with a 
minimum pulse width of 400 nsl. the result will go to the output latches and the End of 
Conversion (EO C) output will indicate this by going high. Data is read from the latches 
by applying a T to the Output Enable input. Figure 11-31 shows the connections for 
the device and some typical applications circuits. 

Figure 11-32 shows the interface for the 6502 processor 
and the 5357 AID converter. Control line CA2 is used in the 
Manual (Levell Output mode to provide a Start Conversion 

AID CONVERTER 
INTERFACE 

pulse (active-high) of sufficient length. The End of Conversion signal is tied to control 
line CA 1 so that EOC going high will set bit 1 of the Interrupt Flag register. The impor
tant edge on the End of Conversion line is the low-to-high edge. which indicates the 
completion of the conversion. Note that we are using the 6522 device to handle both 
control input and control output. since the converter interface involves a complete 
handshake The Output Enable pin on the converter is tied high. since we are not plac
ing the data directly on the processor's tri-state data bus. Note (see Figure 11-301 that 
the converter data outputs are complementary binary (all zeros is full-scale)' 
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NATIONAL 
MM5357 8-blt J 

General Description 

The MM5357 is an B-bit monolithic AID converter using P-channel ion-implanted MaS technology. It contains 
a high input impedance comparator, 256 series resistors and analog switches, control logic and output latches. 

Conversion is performed uSing a successive approximation technique where the unknown analog voltage is 
compared to the resistor tie points using analog switches. When the appropriate tie point voltage matches the 

unknown Yoltage, conversion is complete and the digital outputs contain an aMbit complementary binary word 

corresponding to the unknown. The binary output is tri-state to permit bussing on common data lines. 

Features 

• low cost 
• ± 5 V. '0 V input ranges 

• No missing codes 
• High input impedance 
• Ratiometric conversion 

• Tri-state outputs 
• Contains output latches 

• TTL compatible 

Key Specs 

• Resolution 

• Linearity 
• Conversion speed 

• Input impedance 
• Supply voltages 
• Clock range 

Timing Diagram: 

Clock +5 V-n n n jl 
Input ovJ U U U 

B bits 
±1/2 LSB 

40,.s 
> 100 Mil 

+5 V, -12 V. GND 
5.0 kHz to 2.0 MHz 

Start+5V~ 
Conversion 

OV '~----------------------------------~ 
EOC +5 V '\-r.-------44'0 X (111),-----+1 

OV - l 
OutPUt +5 V --------------,.-----------"""\1 
Enable 

OV--------------~'~---JI 

+5 V (Tri-state) -.J .... __ -+-4 
Data ---- - -- -~l"" 

OV 
Enable 
Delay 

Data is complementary binary (full scale is "as" output!. 

Disable 
Delay 

Figure 11-30. General Description and Timing Diagram for the National 5357 AID 
Converter 
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Connection Diagram 

2-4 
2-3 
2-2 

(MSB) 2- 1 

R Network 

STRT CONY 

Output Enable 

VGG 
EOC 

Typical Application 

+5 V 
+5 V 
GNO 
-5 V 

-12 V 
Analog Input 

Clock 

Start Conversion 

Output Enable 

1 

2 

3 

4 

5 

6 

8 
9 

MM5357 

AID 
Converter 

18 

17 

16 

15 
14 

13 
12 

11 

10 

2- 1 

2-2 

2-3 
2-4 

2-5 

2-6 

Converter 2-7 

2-8 

EOC 

+5 V .$: VIN 5 -5 V 

VDD 
2-5 

2-6 

+VREF 
2-7 

2-8 (LS81 

VIN 
Clock 

VSS 

LS8 

Digital 

Output 

End of Conversion 

Figure 11-31. Connection Diagram and Typical Application for the National 5357 
AID Converter 

Data Bus Analo 

to CPU National 
Input 

( 6522 P~7 5357 

VIA PAO AID -
Converter 

STRT 
CA 1 CA2 EOC CONY 

I • I f 
Figure 11-32. Interface for an 8-bit Analog-to-Digital Converter 
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Task: Input from Converter 

Purpose: Start the conversion process. Wait for End of Conversion to go low and then 
high. and then read the data and store it in memory location 0040. 

Flowchart: 

Pulse Start 
Conversion 

line 

Data Input port 

100401 ~ Data 

Note ihai here the VIA serves as a parallel data port. a status port. and a control port. 

Source Program: 

LDA #0 
STA VIADDRA ;MAKE PORT A LINES INPUTS 
LDA #%00001101 
STA VIAPCR ;BRING START CONV LOW. ENABLE EOC 

LOW TO HIGH 
LDA #%00001111 
STA VIAPCR ;PULSE START CONVERSION HIGH 
LDA #%00001101 
STA VIAPCR ;PULSE START CONVERSION LOW 

WTEOC LDA VIAIFR 
AND #%00000010 ;IS CONVERSION COMPLETE? 
BNE WTEOC ;NO. WAIT 
LDA VIAORA YES. FETCH DATA FROM CONVERTER 
EOR #%11111111 COMPLEMENT DATA FOR TRUE VALUE 
STA $40 SAVE CONVERTER DATA 
BRK 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAOORA 

0003} 
0004 

VIAOORA 

0005 A9 LOA #%00001101 
0006 00 
0007 80 STA VIAPCR 

0008} 
0009 

VIAPCR 

OOOA A9 LOA #%00001111 
OOOB OF 
OOOC 80 STA VIAPCR 
OOOO} 
OOOE 

VIAPCR 

OOOF A9 LOA #%00001101 
0010 00 
0011 80 STA VIAPCR 

0012} 
0013 

VIAPCR 

0014 AD WTEOC LOA VIA:FR 

0015} 
0016 

VIAIFR 

0017 29 AND #%00000010 
0018 02 
0019 DO BNE WTEOC 
001A F9 
001B AD LOA VIAORA 
001C} 
0010 

VIAORA 

001E 49 EOR #% 11111111 
001F FF 
0020 85 STA $40 
0021 40 
0022 00 BRK 

The VIA Peripheral Control register bits are: 

Bit 3 = 1 to make CA2 an output 
Bit 2 = 1 to make CA2 a level (Manual Output mode) 
Bit 1 = value of level on CA2 
Bit 0 = 1 to set Status flag on a low-to-high transition on CA 1 

Note that VIAs can be addressed using the Postindexed mode. The starting address of 
the VIA (VIAORB) is placed in two memory locations on page zero; all VIA registers can 
then be reached with appropriate offsets in Index Register Y. 
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A Teletypewriter (TTY) 
Purpose: Transfer data to and from a standard 10-character-per-

second serial teleypewriter. 

The common teletypewriter transfers data in an asynchronous 
serial mode. The procedure is as follows: 

1) The line is normally in the one state. 

2) A Start bit (zero bid precedes each character. 

3) The character is usually 7-bit ASCII with the least significant 
bit trClnsmitted first. 

4) The most significant bit is a Parity bit. which may be even. 
odd. or fixed at zero or one. 

5) Two stop bits (logic one) follow each character. 

STANDARD 
TTY 

CHARACTER 
FORMAT 

Figure 11-33 shows the format. Note that each character requires the transmission of 
eleven bits. of which only seven contain information. Since the data rate is ten charac
ters per second. the bit rate is 10 x 11. or 110 Baud. Each bit therefore has a width of 
1/110 of a second. or 9.1 milliseconds. This width is an average: the teletypewriter 
does not maintain it to any high level of accuracy. 

One 5181: __ """, 

Zero stat, .,. '0' .. ,. '0' '0' '0' '1' '0' 

----:- ...... 
Start V ,. .......... -~~ ~ Parity SlOP SlOP 
Bit 

a..ract .. is ASCII 'E' with odd parily (45 hex). 

R_ that the tranomission order is Stan bit 

('0'). bit O. bit 1. bit 2. bit 3. bit 4. bit 5. bit 6. Parity 

bit. Slllp bit ('1'1. $tap bit ('1'). 

7 Data Bits 

Figure 11-33. Teletypewriter Data Format 

Bil Bil Bil 

For a teletypewriter to communicate properly with a computer, the following pro
cedures are necessary. 

Receive (flowcharted in Figure 11-34): 

Step 1) Look for a Start bit (a logic zero) on the data line. 

Step 2) Center the reception by waiting one-half bit time. or 4.55 
milliseconds. 

TTY 
RECEIVE 
MODE 

Step 3) Fetch the data bits. waiting one bit time before each one. Assemble the data 
bits into a word by first shifting the bit to the Carry and then circularly shifting 
the data with the Carry. Remember that the least significant bit is received 
first. 

Step 4) Generate the received Parity and check it against the transmitted Parity. If 
they do not match. indicate a "Parity error." 

Step 5) Fetch the Stop bits (waiting one bit time between inputs). If they are not cor
rect (if both Stop bits are not onel. indicate a "framing error." 
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Get input data 

Wait one-half 

bit~me 

Count 

Data 
8 
o 

Wait one bit time 

Get input data 
Carry = Input data 

Shift data right 
with Carry 

Coun, = Count-l 

Generate 
received parity 

Parity 

error 

Count =2 

Wait one bit time 

Get input data 

Framing 
error 

Count = Count - 1 

Figure 11-34. Flowchart for Receive Procedure 
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Task 1. Read Data 

Purpose: Fetch data from a teletypewriter through bit 7 of a VIA data port and place 
the data into memory location 0060. For procedure. see Figure 11-34. 

Source Program: 

(Assume that the serial port is bit 7 of the VIA and that no parity or framing check is 
necessary) 

LOA 
STA 
STA 

WAITS LOA 
BMI 
JSR 
LOA 

TTYRCV JSR 
ROL 
ROR 
BCC 
STA 
BRK 

(Delay program) 

DLY2 LDY 

DELAY 
DLY1 
DLY 

BNE 
LDY 
LDX 
DEX 
BNE 
DEY 
BNE 
RTS 

#0 
VIAPCR 
VIADDRA 
VIAORA 
WAITS 
DLY2 
#%10000000 
DELAY 
PIADRA 
A 
TTYRCV 
$60 

#5 
DLY1 
#10 
#$B4 

DLY 

DLY1 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 
;IS THERE A START BI17 
;NO, WAIT 
;YES, DELAY HALF BIT TIME TO CENTER 
;COUNT WITH BIT IN MSB 
;WAIT 1 BIT TIME 
;GET DATA BIT 
;ADD DATA BIT TO DATA WORD 
;CONTINUE IF COUNT BIT NOT IN CARRY 

;COUNT FOR 455 MS 

;COUNT FOR 9.1 MS 
;GET COUNT FOR 0.91 MS 

Remember that bit 0 of the data is received first 

11-105 



Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LDA #0 
0001 00 
0002 8D STA VIAPCR 
0003} 
0004 

VIAPCR 

0005 8D STA VIADDRA 
0006} 
0007 

VIADDRA 

0008 AD WAITS LDA VIAORA 
0009 } 
OOOA VIAORA 

0008 30 BMI WAITS 
OOOC FB 
OOOD 20 JSR DLY2 
OOOE 30 
OOOF 00 
0010 A9 LDA #%10000000 
0011 80 
0012 20 TTYRCV JSR DELAY 
0013 34 
0014 00 
0015 2E ROL VIAORA 
0016 } 
0017 

VIAORA 

0018 6A ROR A 
0019 90 BCC TTYRCV 
001A F7 
001B 85 STA $60 
001C 60 
001D 00 BRK 

0030 AO DLY2 LDY #5 
0031 05 
0032 DO BNE DLYl 
0033 02 
0034 AO DELAY LDY #10 
0035 OA 
0036 A2 DLYl LDX #$B4 
0037 B4 
0038 CA DLY DEX 
0039 DO BNE DLY 
003A FD 
003B 88 DEY 
003C DO BNE DLYl 
003D F8 
003E 60 RTS 
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This program assumes that the Stack can be used for subroutine calls. i.e .. that the 
monitor has already initialized the Stack Pointer. Otherwise you will have to initialize 
the Stack Pointer as shown in Chapter 10. 

The constants for the delay routine were calculated just as shown earlier in this chapter. 
You might try determining them for yourself. The delays do not have to be highly accu
rate because the reception is centered. the messages are short. the bit rate is low. and 
the teletypewriter is not highly accurate itself. 

How would you extend this program to check parity? 
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Task 2: Write Data 

Purpose: Transmit data to a teletypewriter through bit 0 of 
register. The data is in memory location 0060. 

Transmit (flowcharted in Figure 11-35) 

Step 1) Transmit a Start bit (i.e .. a logic zero). 

Step 2) Transmit the seven data bits. starting with the least 
significant bit. 

Step 3) Generate and transmit the Parity bit. 

Step 4) Transmit two Stop bits (i.e .. logic ones). 

a VIA Output (Data) 

TTY 
TRANSMIT 
MODE 

The transmission routine must wait one bit time between each operation. 

rrv = start t 
Gat ou\llUt doto 
Shift data left 
circularty with Carry 
Count = 11 

Send data to 
Output Port 

Shift data right 
circularly with Carry 
Carry = 1 (stop bit! 
Wait 1 bit time 

Count = Count - 1 

Figure 11-35. Flowchart for Transmit Procedure 
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Source Program 

(Assume that parity need not be generated) 

LOA #0 
STA VIAPCR ;MAKE ALL CONTROL LINES INPUTS 
STA VIAORB ;FORM START BIT 
LOA #$FF 
STA VIADDRB ;MAKE PORT B LINES OUTPUTS 
LOA $60 ;GET DATA 
LOX #11 ;COUNT = 11 BITS IN CHARACTER 

TBIT JSR DELAY ;WAIT 1 BIT TIME 
SEC ;SET CARRY TO FORM STOP BIT 
ROR A ;GET NEXT BIT OF CHARACTER 
ROL VIAORB ;SEND NEXT BIT TO TTY 
DEX 
BNE TBIT 
BRK 

The DELAY subroutine used here must preserve the Accumulator and Index Register X 
Remember that bit 0 of the data must be transmitted first. 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #0 
0001 00 
0002 80 STA VIAPCR 

0003} 
0004 

VIAPCR 

0005 80 STA VIAORB 

0006} 
0007 

VIAORB 

0008 A9 LOA #$FF 
0009 FF 
OOOA 80 STA VIADDRB 

OOOB} 
OOOC 

VIADDRB 

0000 A5 LOA $60 
OOOE 60 
OOOF A2 LOX #11 
0010 OB 
0011 20 TBIT JSR DELAY 
0012 30 
0013 00 
0014 38 SEC 
0015 6A ROR A 
0016 2E ROL VIAORB 

0017} 
OQ18 

VIAORB 

0019 CA DEX 
001A DO BNE TBIT 
001B F5 
001C 00 BRK 
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In actual applications. you will find it necessary to place a one on the teletypewriter line 
after configuration. since that line should normally be in the mark (one) state. 

Each character consists of 11 bits. with a Start bit (zero) and ending with two Stop bits 
(ones). 

Note that you can generate parity by counting bits as shown in Chapter 6. The program 
is: 

CHBIT 

CHKZ 

LOY 
LOA 
BPL 
INY 
ASL 
BNE 
BRK 

#0 
$60 
CHKZ 

A 
CHBIT 

;BIT COUNT = ZERO 
;GET DATA 
;IS NEXT DATA BIT 1? 
;YES. ADD 1 TO BIT COUNT 
;EXAMINE NEXT BIT POSITION 
;UNLESS ALL BITS ARE ZEROS 

Index Register Y contains the number of '1' bits in the data. The least significant bit of 
Index Register Y is therefore an even Parity bit. 

These procedures are sufficiently common and complex to merit a I UART I 
special LSI device: the UART. or Universal Asynchronous 
Receiver/Transmitter24 The UART will perform the reception procedure and provide 
the data in parallel form and a Data Ready signal. It will also accept data in parallel 
form. perform the transmission procedure. and provide a Peripheral Ready signal when 
it can handle more data. UARTs may have many other features. including: 

1) Ability to handle various bit lengths (usually 5 to 8). parity options. and numbers of 
Stop bits (usually 1. 1-112. and 2). 

2) Indicators for framing errors. parity errors. and "overrun errors" (failure to read a 
character before another one is received!. 

3) RS-232 25 compatibility: ie .. a Request-to-Send (RTS) output signal that indicates 
the presence of data to communications equipment and a Clear-to-Send (CTS) in
put signal that indicates. in response to RTS. the readiness of the communications 
equipment. There may be provisions for other RS-232 signals. such as Received 
Signal Quality. Data Set Ready. or Data Terminal Ready. 

4) Tristate outputs and control compatibility with a microprocessor. 

5) Clock options that allow the UART to sample incoming data several times in order 
to detect false Start bits and other errors. 

6) I nterrupt facilities and controls. 

UARTs act as four parallel ports: an input data port. an output data port. an input 
status port. and an output control port. The status bits include error indicators as well 
as Ready flags. The control bits select various options. UARTs are inexpensive ($5 to 
$50. depending on features) and easy to use. 
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THE 6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE 
ADAPTER (ACIA)26. 27 
The 6850 ACIA. or Asynchronous Communications Inter
face Adapter (see Figure 11-36) is a UART specifically 
designed for use in 6800- and 6502-based microcom
puters. It occupies two memory addresses and contains two read-only registers 
(received data and status) and two write-only registers (transmitted data and con
trol). Tables 11-16 and 11-17 describe the contents of these registers. ------. 
Note the following special features of the 6850 ACIA: SPECIAL 

1) Read and write cyclesaadress physically distinct registers. ~~A;~5~E!CIA 
Therefore. you cannot use the ACIA registers as addresses 
for instructions like Increment. Decrement. or Shift. which 
involve both read and write cycles. 

2) The ACIA Control register cannot be read by the CPU. You will have to save a copy 
of the Control register in memory if the program needs its value. 

3) TheACIA has no Reset input. It can be reset only by placing ones in Control register 
bits 0 and 1. This procedure (called MASTER RESET) is necessary before the ACIA 
is used. in order to avoid having a random sta·rting character. 

4) The RS-232 signals are all active-low. Request-to-Send (RTSl. in particular. should 
be brought high to make it inactive if it is not in use. 

5) The ACIA requires an external clock. Typically 1760 Hz is supplied and the 7 16 
mode (Control register bit 1 = O. bit 0 = 1) is used. The ACIA will use the clock to 
center the reception in order to avoid false Start bits caused by noise on the lines. 

6) The Data Ready (Receive Data Register FUll. or RDRFi flag is bit 0 of the Status 
register. The Peripheral Ready (Transmit Data Register Empty. or TDRE) flag is bit 1 
of the Status register. 
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Table 11-16. Definition of 6850 ACIA Register Contents 

Buffer Address 

Data RS.ji/W RS·RIW RS·jilW iiS'RIW 
Bus Transmit Receive 
line Data Data Control Status 

Number Register Register Register Register 

(Write Only) (Read Only) (Write Only) (Read Only) 
"i .,< 

0 Data Bit O' Data Bit 0 Counter Divide Receive Data Register 
Select 1 (CRO) Full (RDRF) 

1 Data Bit 1 Data Bit 1 Counter Divide Transmit Data Register 
Select 2 (CR1) Empty (TORE) 

2 Data Bit 2 Data Bit 2 Word Select 1 Data Carrier Detect 
(CR2) (DCO) , 

.. -
3 Data Bit 3 Data Bit 3 Word Select 2 Clear-to-Send 

(CR3) (CTS) 

4 Data Bit 4 Data Bit 4 Word Select 3 Framing Error 
(CR4) (FE) 

--
5 Data Bit 5 Data Bit 5 Transmit Cantrall Receiver Overrun 

(CR5) (OVRN) 

6 Data Bit 6 Data Bit 6 Transmit Control 2 Parity Error (PE) 
(CR6) 

7 Data Bit r" Data Bit 7" Receive Interrupt Interrupt Request 
Enable (CR7) (IRQ) 

• Leading bit = LSB = Bit 0 
•• Data bit will be zero in 7-bit plus parity modes 

••• Data bit is "'don't care '" in 7-bit plus parity modes 
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Table 11-17. Meaning of the 6850 ACIA Control Register Bits 

CR6 CR5 Function 

0 0 RTS = low. Transmitting Interrupt Disabled 
0 1 RTS = low. Transmitting Interrupt Enabled 
1 0 RTS = high. Transmitting Interrupt Disabled 
1 1 RTS = low. Transmits a Break level on the 

Transmit Data Output Transmitting 
lnterrupt Disabled 

CR4 CR3 CR2 Function 

0 0 0 7 Bits + Even Parity + 2 Slap Bits 
0 0 1 7 Bits + Odd Parity + 2 Stop Bits 
0 1 0 7 Bits + Even Parity + 1 Stop Bit 
0 1 1 7 Bits + Odd Parity + 1 Stop Bit 
1 0 0 8 Bits + 2 Stop Bits 
1 0 1 B Bits + 1 Stop Bit 
1 1 0 8 Bits + Even Parity + 1 Stop Bit 
1 1 1 8 Bits + Odd Parity + 1 Stop Bit 

CR1 CRO Function 

0 0 -;- 1 
0 1 -;- 16 
1 0 -;- 64 
1 1 Master Reset 
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Task: Receive data from a teletypewriter through a 6850 ACIA and store the data 
in memory location 0060 

Source Program: 

LDA #%00000011 ;MASTER RESET ACIA 

STA ACIACR 
LDA #%01000101 ;CONFIGURE ACIA FOR TTY WITH ODD 

PARITY 
STA ACIACR 

WAITD LDA ACIASR ;GET ACIA STATUS 

LSR A ;HAS DATA BEEN RECEIVED? 

BCC WAITD ;NO. WAIT 

LDA ACIADR ;YES. FETCH DATA FROM ACIA 

STA $60 ;SAVE DATA 

BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonicl 

0000 A9 LDA #%00000011 
0001 03 
0002 8D STA ACIACR 

0003} 
0004 

ACIACR 

0005 A9 LDA #%01000101 
0006 45 
0007 8D STA ACIACR 

0008} 
0009 

ACIACR 

OOOA AD WAITD LDA ACIASR 

OOOB} 
OOOC 

ACIASR 

OOOD 4A LSR A 
OOOE 90 BCC WAITD 
OOOF FA 
0010 AD LDA ACIADR 

0011} 
0012 

ACIADR 

0013 85 STA $60 
0014 60 
0015 00 BRK 

The program must reset the ACIA originally by placing ones in Control register bits 0 
and 1. The ACIA does have an internal power-on reset which holds the ACIA in the 
reset state until Master Reset is applied. 

The program configures the ACIA Control Register as 
follows: 

Bit 7 = 0 to disable the receiver interrupt 

Bit 6 = 1 to make Request-to-Send (RTS) high (Inactive) 

Bit 5 = 0 to disable the transmitter interrupt 

Bit 4 = 0 for 7-bit words 

Bit 3 = O. Bit 2 = 1 for odd parity with 2 Stop bits 

EXAMPLE 
OF 6850 ACIA 
CONFIGURATION 

Bit 1 = O. Bit 0 = 1 for -;- 16 clock (1760 Hz must be supplied) 
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The Received Data Status flag is Status register bit O. Suppose we tried to replace 

LDA ACIASR 
LSR A 

with the single instruction 

LSR ACIASR 

What would happen? 

Remember that the Status and Control registers share an address but are physically dis
tinct. 

Try adding an error-checking routine to the program. Set. 

(0061) = 0 if no errors occu rred 
= 1 if a parity error occurred 

(Status register bit 6 = 1) 
= 2 if an overrun error occurred 

(Status register bit 5 = 1) 
= 3 if a framing error occurred 

(Status register bit 4 = 1) 

Assume that the priority of the errors is from MSB to LSB in the ACIA Status register 
(ie .. parity errors have priority over overrun errors which. in turn. have priority over 
framing errors if more than one error has occurred!. 
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Task: Send data from memory location 0060 to a teletypewriter through a 6850 
ACIA 

Source Program: . 

LOA #%00000011 ;MASTER RESET ACIA 
STA ACIACR 
LOA #%01000101 ;CONFIGURE ACIA FOR TTY WITH ODD 

PARITY 
STA ACIACR 
LOA #%00000010 

WAITR BIT ACIASR ;IS ACIA READY FOR DATA? 
BEG WAITR ;NO. WAIT UNTIL IT IS 
LOA $60 ;YES. GET DATA 
STA ACIAOR ;ANO TRANSMIT IT 
BRK 

Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

0000 A9 LOA #%00000011 
0001 03 
0002 80 STA ACIACR 

0003} 
0004 

ACIACR 

0005 A9 LOA #%01000101 
0006 45 
0007 80 STA ACIACR 

0008} 
0009 

ACIACR 

OOOA A9 LOA #%00000010 
OOOB 02 
OOOC 2C WAITR BIT ACIASR 

OOOOf 
OOOE 

ACIASR 

OOOF FO BEQ WAITR 
0010 FB 
0011 A5 LOA $60 
0012 60 
0013 80 STA ACIAOR 

0014} 
0015 

ACIAOR 

0016 00 BRK 

The Transmitter Status flag i~ Status register bit 1. How could you modify the receive 
program to use the Bit Test Instruction? 
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THE 6551 ASYNCHRONOUS COMMUNICATIONS INTERFACE 
ADAPTER (ACIA) 
The 6551 ACIA is a variation of the 6850 device that can also 
lie used in 6800- or 6502-based systems. Figure 11-37 is a 
block diagram of this device. It has most of the features of the 
6850 ACIA and also has an on-chip baud rate generator that can provide 15 
programmable baud rates derived from a standard 1.8432 Mtiz external crystal. 
Thus the 6551 ACIA can provide virtually any of the common baud rates without 
an external timer or baud rate generator. The device has four internal registers 
addressed as described by Table 11-18. Its operation is controlled by two registers: 

1) The Control register (see Figure 11-38) controls the baud rate generator. the word 
length. the number of stop bits. and the receiver clock source. 

~-------. 
2) The Command register (see Figure 11-39) controls parity EXAMPLE OF 

checking and generation. interrupt enabling. and the 6551 ACIA 
RS-232 handshake signals. Note that the program may CONFIGURATION 
reset the 6551 ACIA at any time by writing any data into 
the address of the Status register (see Figure 11-40). For example. the following 
program resets a 6551 ACIA and configures it for a 10 character per second 
teletypewriter with odd parity and two stop bits: 

LOA 
STA 
STA 

LOA 
STA 

#%10110011 
ACIASR 
ACIAMR 

#%00100011 
ACIACR 

;RESET 6551 ACIA 
;CONFIGURE MODE FOR TTY (7 BITS. 2 STOP 
; BITS) 

;CONFIGURE FOR ODD PARITY. NO 
; INTERRUPTS 

We have given the name ACIAMR to the Control (Mode) Register. 

The program configures the 6551 ACIA Control (Mode) register as follows: 

Bit 7 = 1 for 2 stop bits 
Bit 6 = O. bit 5 = 1 for 7-bit words 
Bit 4 = 1 to generate receiver clock from the on-board baud rate generator 
Bits 0-3 = 0011 for 109.92 Baud (10 characters per second) from the internal 

baud rate generator 

The program configures the 6551 ACIA Command register as follows: 

Bit 7 = O.bit 6 = O. bit 5 = 1 for odd parity on both receiver and transmitter 
Bit 4 = 0 so characters are not automatically echoed back through the 

transmitter 

Bit 3 = O. bit 2 = 0 to disable the transmitter interrupt and bring RTS high 
!inactive) 

Bit 1 = 1 to disable the receiver interrupt (this is a mask pit) 
Bit 0 = 1 to enable the Receiver/Transmitter 
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Figure 11-37. Block Diagram of the 6551 ACIA 

Table 11-18. Addressing 6551 ACIA Internal Registers 

RS, RSo Write Read 

0 0 Transmit Data Register Receiver Data Register 

0 , Programmed Reset (Data is "Don't Care'" Status Register 

1 0 Command Register 

1 0 Control Register 

The table shows that only the Command and Control registers are read/write. The Programmed Reset operation 

does not cause any data transfer, but is used to clear the SY6551 registers. The Programmed Reset is slightly 
different from the Hardware Reset (RES) and these differences are described in the individual register defini-

tions. 
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765432 1 o 4--Bit Number 

L II I I I I I Control Register 

I -r-. -. Baud Rate Generator 

0 0 0 o 16x External Clock Baud 
0 0 0 1 50 
0 0 0 75 
0 0 1 1 109.92 
0 0 0 134.58 
0 0 150 
0 0 300 
0 I 600 

0 0 0 1200 
0 0 I 1800 
0 0 2400 
0 I I 3600 

0 0 4800 
0 I 7200 

0 9600 
19.200 

'--------Receiver Clock Source 
0= External Receiver Clock 

1 = Baud Rate Generator 
L-________ Word Length 

Bit Data Word 
6 5 . Length 

00 8 
01 7 
10 6 
I I 

'-----------Stop 8its 

• Allows for 9-bit transmission 
(8 data bits plus parity). 

0=1 Stop Bit 
I = 2 Stop Bits 

I Stop Bit if Word Length 
= B Bits and Parity-

I 'I, Stop Bits if Word Length 
::::: 5 Bits and No Parity. 

7 6 5 4 3 2 I 0 ",-Bit Number 

10 10 I 01
0 10 10 10 1°1:=~~~:::eR::::t 

Figure 11-38. Definition of 6551 ACIA Control Register Contents 
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7 6 5 4 3 2 1 0 ""'-Bit Number 

I I I I I I I Command register -- --- -~ 
~ 

Data Terminal Ready 

o = Disable Receiver/Transmitter (DTR high) 
1 = Enable ReceiverlTransmitter (DTR low) 

'-----Receiver Interrupt Enable 

o = IRQ Interrupt Enabled from Bit 7 
of Status Register 

1 = IRQ Interrupt Disabled 

'------Transmitter Controls 

Bit Transmit RTS 

L.2 Interrupt level 

0 0 Disabled High 

0 1 Enabled Low 

1 0 Disabled Low 

Other --
-
-
-

1 1 Disabled Low Transmit BRK 

'-------- Normal/Echo Mode for Receiver 

0= Normal 

1 = Echo 

'----------Parity Check Controls 
Bit 

L....L.2... 
o 

0 0 1 

0 1 1 

1 0 1 

1 1 1 

7 6 5 4 3 2 1 0 "",,-Bit Number 

10 10 10 I~ I~I~I ~ 1~1:=~::::eR:::~t 

Operation 
Parity Disabled - No Parity Bit 
Generated - No Parity Bit Received 

Odd Parity Receiver and Transmitter 

Even Parity Receiver and 
Transmitter 

Mark Parity Bit Transmitted. 
Parity Check Disabled 

Space Panty Bit Transmitted. 
Parity Check Disabled 

Figure 11-39. Definition of 6551 ACIA Command Register Contents 
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7 6 5 4 3 2 1 0 ",-Bit Number 

I I I I I I I I 
, . j 

°No interrupt occurs for these conditions. 

Status Register 

Parity Error" 
o = No Parity Error 

1 = Parity Error Detected 

Framing Error" 
o ::: No Framing Error 

1 ::: Framing Error Detected 

Overrun-

o ::: No Overrun 

1 = Overrun Has Occurred 

Receiver Data Register Full 

o ~ Not Full 
1 ~ Full 

Transmitter Data Register Empty 

o ~ Not Empty 

1 ~ Empty 

Data Carrier Detect (OCD) 

o ~ DCD low (Detecti 

1 ~ DCD high (Not Detectedl 

Data Ready (DSR) 

o ~ DSR low (Ready) 

1 ~ DSR high (Not Ready) 

I nterrupt (IRQ) 
o = No Interrupt 

1 = Interrupt Has Occurred 

Figure 11-40. Definition of 6551 ACIA Status Register Contents 
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LOGICAL AND PHYSICAL DEVICES28 
An important goal in writing I/O routines is to make them I LOGICAL DEVICES I 
independent of particular physical hardware. The routines 
can then transfer data to or from I/O devices, with the actual addresses being sup
plied as parameters. The I/O device that can actually be accessed through a partic
ular interface is referred to as a physical device. The I/O device to which the pro
gram transfers data is referred to as a logical device. The operating system or 
supervisor program must provide a mapping of logical devices on to physical 
devices, that is, assign actual physical I/O addresses and characteristics to be 
used by the I/O routines. 

Note the advantages of this approach: 

1) The operating system can vary the assignments under user control. Now the user 
can easily substitute a test panel or a development system interface for the actual 
I/O devices. This is useful in field maintenance as well as in debugging and testing. 
Furthermore. the user can change the I/O devices for different situations: typical 
examples are directing intermediate output to a video display and final output to a 
printer or obtaining some input from a remote communications line rather than 
from a local keyboard. 

2) The same I/O routines can handle several identical or similar devices. The operating 
system or user only has to supply the address of a particular teletypewriter. RS-232 
terminal. or printer. for example. 

3) Changes. corrections. or additions to the I/O configuration are easy to make since 
only the assignments (or mapping) must be changed. 

On the 6502 microprocessor. either the Preindexed !Indexed Indirect) or Postindexed 
!Indirect Indexed) addressing mode can be used in the I/O routines to provide indepen
dence of specific physical addresses. Preindexing is convenient since it allows the 
choice of a physical device address from a table. 

If a table of I/O addresses is maintained on page zero. all that 
an I/O routine needs is an index into that table. It can then ac
cess the I/O device by using the Preindexed (or Indexed In
direct) addressing mode. If. for example. the device number is in memory location DEV. 
the program to calculate the index would be: 

LDA 
ASL 
TAX 

DEV 
A 

:GET DEVICE NUMBER 
:MULTIPLY BY 2 FOR 2-BYTE ADDRESS TABLE 

Data may now be transferred to or from the appropriate I/O device with the instructions 

or 

LDA DATA :GET DATA 
STA !lOTBL.X) :SEND TO LOGICAL liD DEVICE 

LDA 
STA 

!lOTBL.X) 
DATA 

:GET DATA FROM LOGICAL I/O DEVICE 
:SAVE DATA 

The same I/O routine can transfer data to or from many different I/O devices merely by 
being supplied with different indexes. Compare the flexibility of this approach with the 
inflexibility of I/O routines that use direct addressing and are therefore tied to specific 
physical addresses. 
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STANDARD INTERFACES 
Other standard interfaces besides the TTY current-loop and 
RS-232 can also be used to connect peripherals to the microcom
puter. Popu lar ones include: 

1) The serial RS-449. RS-422. and RS-423 interfaces29 

2) The 8-bit parallel General Purpose Interface Bus. also known as IEEE-488 or 
Hewlett-Packard Interface Bus (HPIB)30 

3) The S-100 or Altair/lmsai hobbyist bus. 31 This is also an 8-bit bus. 

4) The Intel Multibus32 This is another 8-bit bus that can. however. be expanded to 
handle 16 bits in parallel. 
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PROBLEMS 
1) Separating Closures from an Unencoded Keyboard 
Purpose: The program should read entries from an unencoded 3 x 3 keyboard and 

save them in an array. The number of entries is in memory location 0040 and 
the array starts in memory location 0041. 

Separate one closure from the next by waiting for the current closure to end. Remember 
to debounce the keyboard (this can be simply a 1 ms wait). 

Sample Problem: 

(0040) = 04 
Entries are 7. 2. 2. 4 

Result: (0041) 07 
(0042) 02 
(0043) 02 
(0044) 04 

~) Read a Sentence from an Encoded Keyboard 
Purpose: The program should read entries from an ASCII keyboard (7 bits with a zero 

Parity bid and place them in an array until it receives an ASCII period 2E16· 
The array starts in memory location 0040. Each entry is marked by a strobe 
as in the example given under An Encoded Keyboard. 

Sample Problem: 

Entries are H. E. L. L. O. 

Result: (0040) 48 H 
(0041) 45 E 
(0042) 4C L 
(0043) 4C L 
(0044) 4F 0 
(0045) 2E 
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3) A Variable Amplitude Square Wave Generator 
Purpose: The program should generate a square wave. as shown in the next figure. 

using a DIA converter. Memory location 0040 contains the scaled amplitude 
of the wave. memory location 0041 the length of a half cycle in milliseconds. 
and memory location 0042 the number of cycles. 

Assume that a digital output of 8016 to the converter results in an analog output of zero 
volts. In general. a digital output of D results in an analog output of (D-80)/80 X -VREF 
volts. 

Sample Problem: 

Output 
Voltage 

Result: 

+VREF I 

(0040) 
(0041) 
(0042) 

AO (hex) 
04 
03 

I 
iVREF I 

40 r----F--- -\- ~ ---f----\- -- --/- ----\-----f 
-VREF I I 

4 I 
-VREFR I 4 ms Time _________ _ 

I 
The base voltage is S016 = 0 volts Full scale is 100,6 = -VREF volts. 

So A016 = (AO-SOI/SO X -VREF = -VREF/4 

The program produces 3 pulses of amplitude VREF/4 with a half cycle length of 4 ms. 

4) Averaging Analog Readings 
Purpose: The program should take four readings from an AID converter 10 milli

seconds apart and place the average in memory location 0040. Assume that 
the AID conversion time can be ignored. 

Sample Problem: 

Readings are (hex) 86. 89. 81. 84 
Resu It: (0040) = 85 

5) A 30 Character-per-Second Terminal 
Purpose: Modify the transmit and receive routines of the example given under A 

Teletypewriter to handle a 30 cps terminal that transfers ASCII data with one 
stop bit and even parity. How could you write the routines to handle either 
terminal depending on a flag bit in memory location 0060; e.g .. (0060) = 0 
for the 30 cps terminal. (0060) = 1 for the 10 cps terminal? 
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Chapter 12 
INTERRUPTS 

Interrupts are Inputs that the CPU examines as part of each instruction cycle. 
These Inputs allow the CPU to react to asynchronous events in a more efficient 
manner than polling each device. The use of interrupts generally involves more 
hardware than does ordinary (programmed) I/O. but interrupts provide a faster and 
more direct response.1 

Why use interrupts? Interrupts allow events such as alarms. 
power failure. the passage of a certain amount of time. and periph
erals having data or being ready to accept data to get the 
immediate attention of the CPU. The program does not have to 

REASONING 
BEHIND 
INTERRUPTS 

examine (poll) every potential source. nor need the programmer worry about the 
system completely missing events. An interrupt system is like the bell on a 
telephone - it rings when a call is received so that you don't have to pick up the 
receiver occasionally to see if someone is on the line. The CPU can go about its normal 
business (and get a lot more donel. When something happens. the interrupt rouses the 
CPU and forces it to service the input before resuming normal operations. Of course. 
this simple description becomes more complicated (just like a telephone switchboard) 
when there are many interrupts of varying importance and there are tasks that cannot 
be interrupted. 

The implementation of interrupt systems varies greatly. 
Among the questions that must be answered to character
ize a particular system are: 

1) How many interrupt inputs are there? 

2) How does the CPU respond to an interrupt? 

CHARACTERISTICS 
OF INTERRUPT 
SYSTEMS 

3) How does the CPU determine the source of an interrupt if the number of sources 
exceeds the number of inputs? 

4) Can the CPU differentiate between important and unimportant interrupts? 

5) How and when is the interrupt system enabled and disabled? 

There are many different answers to these questions. The aim of all the implementa
tions. however. is to have the CPU respond rapidly to interrupts and resume normal 
activity afterwards. 

The number of interrupt inputs on the CPU chip determines the number of 
different responses that the CPU can produce without any additional hardware or 
software. Each input can produce a different internal response. Unfortunately. most 
microprocessors have a very small number (one or two. typically) of separate interrupt 
inputs. 
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The ultimate response of the CPU to an interrupt must be to transfer control to the 
correct interrupt service routine and to save the current value of the Program 
Counter. The CPU must therefore execute a Jump-to-Subroutine or Call instruction 
with the beginning of the interrupt service routine as its address. This action will save 
the return address in the Stack and transfer control to the interrupt service routine. The 
amount of external hardware required to produce this response varies greatly. Some 
CPUs internally generate the instruction and the address; others require external hard
ware to form them. The CPU can only generate a different instruction or address for 
each separate input. 

If the number of interrupting devices exceeds the number of 
inputs. the CPU will need extra hardware or software to iden
tify the source of the interrupt. In the simplest case. the soft
ware can be a polling routine which checks the status of the 
devices that may be interrupting. The only advantage of such a system over nor
mal polling is that the CPU knows that at least one device is active. The alterna
tive solution is for additional hardware to provide a unique data input (or "vec
tor'" for each source. The two alternatives can be mixed; the vectors can identify 
groups of inputs from which the CPU can identify a particular one by polling. 

An interrupt system that can differentiate between important I PRIORITY I 
and unimportant interrupts is called a "priority interrupt 
system." Internal hardware can provide as many priority levels as there are in
puts. External hardware can provide additional levels through the use of a Priority 
register and comparator. The external hardware does not allow the interrupt to 
reach the CPU unless its priority is higher than the contents of the Priority 
register. A priority interrupt system may need a special way to handle low-priority 
interrupts that may be ignored for long periods of time. 

Most interrupt systems can be enabled or disabled. In fact. 
most CPUs automatically disable interrupts w'hen a RESET is 
performed (so that the programmer can configure the interrupt 
system) and on accepting an interrupt (so that the interrupt will 
not interrupt its own service routine). The programmer may wish 

ENABLING 
AND 
DISABLING 
INTERRUPTS 

to disable interrupts while preparing or processing data. performing a timing loop. or 
executing a multi-byte operation. 

An interrupt that cannot be disabled (sometimes called a 
"non-maskable interrupt'" may be useful to warn of power 
failure. an event that obviously must take precedence over all 
other activities. 

The advantages of interrupts are obvious. but there are also 
disadvantages: 

1) Interrupt systems may require a large amount of extra 
hardware. 

NON-MASKABLE 
INTERRUPT 

DISADVANTAGES 
OF INTERRUPTS 

2) Interrupts still require data transfers under program control through the CPU. There 
is no speed advantage as there is with DMA. 

3) Interrupts are random inputs. which makes debugging and testing difficult. Errors 
may occur sporadically. and therefore may be very hard to find 2 

4) Interrupts may involve a large amount of overhead if many registers must be saved 
and the source must be determined by polling. 
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6502 iNTERRUPT SYSTEM 
The 6502 microprocessor's internal response to an interrupt is moderately com
plex. The interrupt system consists of: 

1) An active-low maskable interrupt input (IRQ) and an ac
tive-low nonmaskable interrupt input (NMI). 

2) An interrupt disable (or mask) bit which disables the 
maskable interrupt. If the Interrupt Disable bit is 1. no 

6502 
INTERRUPT 
INPUTS 

maskable interrupts are allowed: the I bit is stored in bit 2 of the Processor Status 
(or P) reg ister. 

The 6502 checks the current status of the interrupt system at 
the end of each instruction. If an interrupt is active and 
enabled, the response is as follows: 

6502 
INTERRUPT 
RESPONSE 

1) The CPU saves the Program Counter (most significant bits 
first! and the Status register in the Stack. Figure 12-1 shows the order in which 
these registers are saved. Note that the Accumulator and Index registers are not 
saved automatically. 

2) The CPU disables the maskable interrupt (IRQ); that is. it sets bit 2 of the 
Status register. 

3) The CPU fetches an address from a specified pair of memory addresses and 
puts that address in the Program Counter. Table 12-1 contains the pairs of ad
dresses assigned to the various inputs and to the Break instruction . 

Note the following special features of the 6502 interrupt 
system: 

1) The 6502 automatically saves the Program Counter 
and the Status register in the Stack. Remember that 

.-------~9 
SPECIAL FEATURES 
OF 6502 INTERRUPT 
SYSTEM 

the Status register includes the Interrupt Disable flag and the Break Command flag. 

2) The 6502 provides no external signals to indicate that it has accepted an interrupt 
other than the address that it places on the Address Bus. 

3) The 6502 has no special internal provisions for determining the source of an inter
rupt when there are several sources tied to the same input. 

The 6502 has the following special instructions to manipulate its interrupt 
system: 

1) Cli (Clear Interrupt Disable Bit! clears bit 2 of the Status register and thus ena
bles the maskable interrupt. 

2) SEI (Set Interrupt Disable Bit) sets bit 2 of the Status register and thus disables 
the maskable interrupt. 

3) BRK (Force Break) sets the Break Command flag. saves the Program Counter and 
Status register in the Stack. disables the maskable interrupt. and places the con
tents of addresses FFFE and FFFF in the Program Counter. 

4) RTI (Return from Interrupt) restores the Status register and the Program 
Counter from the Stack. The result is that the old values are returned to the Pro
gram Counter and the Status register (including the Interrupt bitl. RTI differs from 
RTS (Return from Subroutine) in that RTI restores the Status register as well as the 
Program Counter and RTI does not add 1 to the return address as RTS does 
(see Chapter 11 for a discussion clRTSl. 
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Figure 12-1. Saving the Status of the Microprocessor in the Stack 

Table 12-1. Memory Map for 6502 Addresses Used in 
Response to Interrupts and Reset 

Source Address Used IHexedecimail 

Interrupt Request (IRQ) and BRK Instruction FFFE and FFFF 

Reset (RESET) FFFC and FFFO 

Nonmaskable Interrupt (NMII FFFA and FFFB 

The addresses are stored in the usual 6502 fashion with the least significant bits at the lower address. 

The BRK (Force Break) instruction produces almost exactly 
the same response as an interrupt input (iRQ). The only 
difference is that the Break Command flag (bit 4 of the Status 

BRK 
INSTRUCTION 

register) is set. Thus a service routine can differentiate between a BRK instruction 
and an IRQ input by examining bit 4 of the top byte in the Stack !remember Figure 
12-1). A typical program would be: 

PLA 
AND 
BNE 

#%00010000 
BREAK 

;GET STATUS REGISTER FROM STACK 
;IS BREAK COMMAND FLAG SET? 
;YES. GO TO BREAK ROUTINE 

The BRK instruction is useful for debugging (see Chapter 14) and for returning control 
to a monitor or operating system. See Chapter 3 for more information about the BRK in
struction. 

The non-maskable interrupt is an edge-sensitive in
put. The processor therefore reacts only to the edge of a 
pulse on this line. and the pulse will not interrupt its 

NON-MASKABLE 
INTERRUPT 

own service routine. Non-maskable interrupts are useful for applications that must res
pond to loss of power (i.e .. must save data in a low-power memory or switch to a back
up battery). Typical applications are communications equipment that must retain codes 
and partial messages. and test equipment that must keep track of partially completed 
tests. We will not discuss the non-maskable interrupt any further. We will assume that 
all interrupt inputs are tied to IRQ. 
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6520 PIA Interrupts3 

Most 6502 interrupt systems involve programmable interface 
chips or multifunction devices such as the 6520 Peripheral Inter
face Adapter, the 6522 Versatile Interface Adapter, or the 6530 
and 6532 Multifunction Devices. Each side of the 6620 PIA has the following 
features for use with interrupts: 

1) An active-low interrupt output, 

2) Interrupt enable bits (bit 0 of the Control register for control line 1, bit 3 for con
trol line 2), 

3) Interrupt status bits (bit 7 of the Control register for control line 1, bit 6 for control 
line 2). 

Bits 1 and 4 of the Control register determine whether a rising edge 1I0w-to-high 
transition) or falling edge (high-to-Iow transition) on the control line causes an in
terrupt. 

Note that: 

1) The PIA interrupt enable bits have the opposite polarity from the 65021 (or In
terrupt Disable) flag; that is, they must be '1' to enable an interrupt 

2) RESET clears the PIA Control registers and thus disables all the interrupts, 

3) The CPU can check bits 6 and 7 of the Control register to see if a PIA has an 
interrupt pending. Once set. these bits will remain set until the CPU reads the 
PIA Data register. 

4) The PIA will remember an interrupt that occurs while PIA interrupts are dis
abled and will output an interrupt request as soon as the PIA interrupt is 
enabled. 
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6522 VIA INTERRUPTS 
The 6522 Versatile Interface Adapter may also be used as a 
source of interrupts. This device has an Interrupt Enable 
register (lER) which can be used to enable the various interrupt 
sources and an Interrupt Flag register (lFR) which contains the status of the various 
sources. Figure 12-2 shows the positions of the various enabling bits in the Interrupt 
Enable register and Figure 12-3 describes the Interrupt Flag register. 

~:-:-:~:-=-~~ 
An interrupt source can be enabled by setting the corres- ENABLING AND 
ponding enable bit. Note that the most significant bit con- DISABLING 
trois how the other enable bits are affected: 6522 VIA 

1) If IER7 = 0, each '1' in a bit position clears an enable bit 
and thus disables that interrupt. 

INTERRUPTS 

2) If IER7 = 1, each '1' in a bit position sets an interrupt bit and thus enables that 
interrupt. 

Zeros in the enabling bit positions leave the enable bits unchanged. 

Some examples of enabling and disabling 6522 VIA interrupts are: 

1) Enable CAl interrupt. disable all others. 

LOA #%01111101 :OISABLE ALL OTHER INTERRUPTS 
STA VIAIER 
LOA #%10000010 :ENABLE CAl INTERRUPT 
STA VIAIER 

The first operation sets IER7 to zero, so that the '1's in bit positions 0,2,3,4,5, and 6 
clear the corresponding enable bits and thus disable those interrupts. The second 
operation sets IER7 to one, so that the '1' in bit position 1 sets the corresponding enable 
bit (CA 1 interrupt) and thus enables that interrupt. 

2) Enable CBl and CB2 interrupts, disable all others. 

LOA #%01100111 :OISABLE ALL OTHER INTERRUPTS 
STA VIAIER 
LOA #%10011000 :ENABLE CB 1, CB2 INTERRUPTS 
STA VIAIER 

The first operation sets IER7 to zero, so that the '1' s in bit positions 0, 1, 2, 5, and 6 clear 
the corresponding enable bits and thus disable those interrupts. The second operation 
sets IER7 to one, so that the '1's in bit positions 3 and 4 set the corresponding enable 
bits (bit 3 for CB2, bit 4 for CB1) and thus enable those interrupts. 

Besides the conditions described in Figure 12-3, the bits in the Interrupt Flag register 
can also be cleared by writing' l' s into the required bit positions in that address. 
This procedure is useful for clearing flags that are being used in the independent modes 
and for eliminating undesired interrupts that may have been caused accidentally during 
reset or startup. Note that the Interrupt Flag register bit positions are the same as the 
Interrupt Enable register bit positions so that we can easily extend the previous 
examples to eliminate stray interrupts. This can be done with either enabling or disab
ling operations, since the value of bit 7 does not matter, The extended examples are: 

1) Enable CA 1 interrupt. disable all others, clear CA 1 interrupt flag. 

LOA #%01111101 :OISABLE ALL OTHER INTERRUPTS 
STA VIAIER 
LOA #%10000010 
ST A VIAIFR :CLEAR CA 1 INTERRUPT FLAG 
STA VIAIER :ENABLE CA 1 INTERRUPT 
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6 4 3 

Interrupt Enable register 

L---4~--4~-"'-_"'-~""--4""'--__ Designated interrupt enable 

1 - Interrupt enabled 

o - Interrupt disabled 

L..------------------------Set or clear bits 0 - 6 

See Figure 12-3 for meaning of interrupt names. 

Bit 7 is explained further in the main text. 

1 - Writing 1 sets bit to 1 
o - Writing 1 sets bit to 0 

Writing 0 to any of 

bits 0 - 6 has no effect 

Figure 12-2. Description of the 6522 VIA Interrupt Enable Register 

o ..--Bit Number 

r--IR-Q-r-T-, """'-T-2-r--C-B-' "T-C-B-2--r-S-R-..... C-A-'~r-C-A-2..,~ Interrupt Flag register 

4 6 5 3 

Bit 7 indicates the status of the IRQ output. This bit corresponds to the following logic function: 

IRQ = ilFR6 I\. IER6! V ilFR5 I\. IER5! V ilFR4 I\. IER4! V ilFR3 I\. IER3! V ilFR2 I\.IER2! V ilFRl I\. IER1! V 

ilFRO I\. IERO) 

Bits 0 - 6 are latches which are set and cleared as follows: 

Bit No. Set by Cleared by 

0 
Active transition of the signal Reading or writing the A Port Output 

on the CA2 pin register (ORAl using address 0001 

1 
Active transition of the signal Reading or writing the A Port Output 

on the CA 1 pin. register (ORAl. using address 0001 

2 
Completion of eight shifts. Reading or writing the Shift 

register. 

3 
Active transition of the signal Reading or writing the B Port 

on the CB2 pin Output register. 

4 
Active transition of the signal Reading or writing the B Port 

on the CB 1 pin Output register. 

Time-out of Timer 2. Reading T2 low-order counter or 
5 

writing T2 high-order counter. 

Time-out of Timer 1. Reading Tl low-order counter or 
6 

~writing Tl high-order latch. 

Figure 12-3. Description of the 6522 VIA Interrupt Flag Register 
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2) Enable CB1 and CB2 interrupts. disable all others. clear CB1 and CB2 flags. 

LOA #%01100111 ;OISABLE ALL OTHER INTERRUPTS 
STA VIAIER 
LOA #%10011000 
STA VIAIFR ;CLEAR CB1. CB2 INTERRUPT FLAGS 
STA VIAIER ;ENABLE CB1. CB2 INTERRUPTS 

Note that bit 7 of the Interrupt Flag register and bit 7 of the Interrupt Enable 
register are both special. Bit 7 of the Interrupt Flag register indicates the status of 
the IRQ output - that is. it is 1 if any of the interrupts are both active and enabled. Bit 
7 of the Interrupt Enable register is the Set/Clear control mentioned earlier. Note 
that bit 7 of the Interrupt Flag register cannot be cleared directly; it can only be cleared 
by either clearing all the active interrupt flags or by disabling all the active interrupts. 

Note the following about VIA interrupts: 

1) The VIA interrupt enable bits have the opposite polarity from the 6602 I (or 
Interrupt Disable) flag; that is. they must be '1' to enable an interrupt. 

2) RESET disables all the interrupts. 

3) The CPU can check bit 7 of the Interrupt Flag register to see if any interrupts 
are both active and enabled. That bit will remain set until no interrupt is both ac
tive and enabled. 

4) The VIA will remember an interrupt that occurs when VIA interrupts are dis
abled and will output a request via IRQ as the VIA is enabled. 

There are several examples of VIA interrupts later in this chapter. 
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6530 and 6532 Multifunction Device Interrupts 
The 6630 device can provide an interrupt from its inter
val timer. The IRQ output is also pin PB7 from Port Band 
should be set up as an input if it is to be used to cause an 
interrupt. The interrupt can be enabled by writing to the 

"'6'""6""3""0""'A'""N"""O""""'66""3""'2'--
MULTIFUNCTION 
OEVICE INTERRUPTS 

timer with address line A3 high. The interrupt can be disabled by writing to the timer 
with address line A3 low. It can be cleared by reading or writing the timer after an inter
ru pt has occu rred. 

The 6632 device can provide a timer interrupt like the 6530 device. It can also 
provide an interrupt based on the occurrence of an edge on PA7; PA7 thus operates 
much like CA 1 or CB1 on a 6520 PIA or a 6522 VIA. The interrupt can occur either on a 
low-to-high transition (positive edge! or on a high-to-Iow transition (negative edge!. 

6532 interrupts are controlled and examined by writing to and reading from 
specific addresses (see Table 12-2 for a description of the addresses in a 6532 device!. 
Note the following: 

1! To control the PA7 interrupt you simply write any data whatsoever into the ad
dress in the 6532 liD section given by: 

AS = 1 to activate liD rather than the on-board RAM 

A2 = 1. A4 = 0 

The two least significant address bits (not the data! then control the PA7 mode as 
follows: 

A 1 = 1 to enable PA7 interrupt 0 to disable it 

AO = 1 for a positive (Iow-to-high! edge detect. 0 for a negative (high-to-Iow! edge 
detect. 

2! To read and clear the Interrupt flags. read from the address in the 6532 liD section 
given by: 

RS = 1 to activate liD rather than the on-board RAM 

A2 = 1. AO = 1 

Bit 7 is the Timer Interrupt flag and bit 6 is the PA7 Interrupt flag. These can easily be 
read by means of the Bit Test instruction (Bit 7 is transferred to the Sign flag and bit 6 to 
the Overflow flag!. 

ACIA Interrupts 
The 6850 ACIA can also serve as a source for interrupts. You 
should note the following features of the ACIA in interrupt
based systems: 

1) The transmitter interrupt (ACIA is ready for data) is enabled only if Control 
register bit 6 = 0 and Control register bit 5 = 1. 

2) The receiver interrupt (ACIA has received new data) is enabled only if Control 
register bit 7 = 1. 

3) Master reset does not affect the interrupt enable bits. 

4) Bit 7 of the Status register is set if an interrupt has occurred. This bit can be 
cleared either by reading data from the ACIA or by writing data into the ACIA. 
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Table 12-2. Addressing the 6532 Multifunction Device 

Selection Lines 
Address Mode 

~ RIW A4 A3 A2 Al AO 

RAM Addressing 

0 1(0) X X X X X Read (Write) RAM. AO - A6 select RAM address. 

I/O Addressing , 1(0) X X 0 0 0 Read (Write) Port A data , 1(0) X X 0 0 , Read (Write) Port A Data Oirection Register , 1(0) X X 0 , 0 Read (Write) Port B data , '(0) X X 0 , , Read (Write) Port B Data Direction Register 

Edge-Detection Control , 0 0 X , 0 X Disable interrupt from PA 7 , 0 0 X , , X Enable interrupt from PA 7 , 0 0 X , X 0 Negative edge detect , 0 0 X , X , Positive edge detect 

, , X X , X , Read and Cisar Interrupt Flags 

Bit 7 is the Timer Flag 

Bit 6 is the PA 7 Flag 

Write Count to Interval Timer , 0 , 0 , X X and disable timer interrupt , 0 , , , X X and enable timer interrupt , 0 , X , 0 0 and decrement every 4>2 pulse , 0 , X , 0 , and decrement every 8 CP2 pulses , 0 , X , , 0 and decrement every 64 4>2 pulses , 0 , X , , , and decrement every 1024 <1>2 pulses 

For all operations CS, ::= 1. CS2 ::: 0 
Logic levels: o means low level 

1 means high level 

X means level of that signal does not matter (either 0 or 1) 
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6502 Polling interrupt Systems 
Most 6502 interrupt systems must poll each PIA, VIA, ACIA, 
or other device to determine which one caused an interrupt. 
The polling method is: 

1) Check each PIA by examining Control register bits Sand 7: 

:CHECK PIA STATUS BITS BIT 
BMI 
BVS 

PIACR 
INT1 
INT2 

:BRANCH TO INTERRUPT 1 IF BIT 7 SET 
:BRANCH TO INTERRUPT 2 IF BIT 6 SET 

2) Check each VIA by examining Interrupt Flag register bit 7: 

BIT 
BMI 

VIAIFR 
INTV 

:ARE ANY INTERRUPTS ACTIVE ON THIS VIA? 
:YES. GO EXAMINE ALL OF FLAG REGISTER 

You must still examine the Interrupt Flag register if there is more than one potential in
terrupt source from a particular VIA. All that bit 7 tells you is that at least one source is 
both active and enabled. 

3) Check each ACIA by examining Status register bit 7: 

BIT 
BMI 

ACIASR 
INTA 

:ARE ANY INTERRUPTS ACTIVE ON THIS ACIA 7 

:YES. GO DETERMINE WHICH ONE IF NECESSARY 

The interrupt could still be either a receiver or a transmitter interrupt 

The important features of a 6502 polling system are: 

1) The first interrupt examined has the highest priority, since the remaining in
terrupts will not be examined if the first one is active. The second interrupt has 
the next highest priority. and so on. 

2) The service routine must clear the interrupt flags from PIAs, VIAs, ACIAs, or 
other devices if the clearing is not performed automatically. 

The programmer should be particularly careful of: 

PI As being used as interrupting output ports. 

A dummy read of the port is necessary. since the Interrupt flag is not cleared auto
matically when data is written into the port PIA Status (Interrupt) flags are cleared 
only when the Data registers are read. 

VIAs being used in the independent input mode or through addresses that do 
not affect the Interrupt flags. 

The Interrupt flag must then be explicitly cleared by writing a logic '1' into the appropri
ate bit of the Interrupt Flag register. 

Polling routines are adequate if there are only a few inputs. 
However, if there are many inputs, polling routines are 
slow and awkward because: 

1) The average number of polling operations increases 

DISADVANTAGES 
OF POLLING 
INTERRUPTS 

linearly with the number of inputs. On the average. of course. you'II have to poll 
half of the inputs before finding the correct one. You can reduce the average num
ber of polling operations somewhat by checking the most frequent inputs first. 

2) PIA. VIA. and ACIA addresses are rarely consecutive or evenly spaced: therefore. 
separate instructions are necessary to examine each input. Polling routines are 
therefore difficult to expand. Tables of I/O addresses could be used by placing the 
base address on page zero and using the post-indexed addressing mode or by plac
ing the entire table on page zero and using the pre-indexed addressing mode. 

3) Interrupts that are polled first may shut out those that are polled later unless the 
order of polling is varied. However. the lack of consecutive addresses makes vary
ing the order of polling difficult. 
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6602 Vectored Interrupt Systems 
The problem of polling in 6502-based systems has typically been 
solved by special methods. unique to a particular application or 
microcomputer. Note that tl)ere is no way to know that the 
6602 has accepted an interrupt other than by recognizing the 

6602 
VECTORED 
INTERRUPTS 

addresses FFFE and FFFF wilen they appear on the Address Bus. Special hardware 
can then substitute the vector provided by the actualsource.4 We will not discuss 
6502 vectored interrupt systems any further. 
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EXAMPLES 
A Startup Interrupt 
Purpose: The computer waits for a VIA interrupt to occur before starting actual opera-

tions. 

Many systems remain inactive until the operator actually starts them or until a Data 
Ready signal is received. On RESET. such systems must initialize the Stack Pointer. ena
ble the startup interrupt. and execute an endless loop or jump-to-self instruction. 
Remember that RESET disables the processor interrupt (by setting I to 1) as well as all 
the VIA interrupts (by clearing all the VIA interrupt enable bits). I n the flowchart. the 
decision as to whether startup is active is made in hardware (i.e .. by the CPU examining 
the interrupt input internally) rather than in software. 

Flowchart: 

Source Program: 

Main Program: 

HERE 

LDX 
TXS 
LOA 
STA 
LDA 
STA 
STA 
CLI 
JMP 

#$FF 

#0 
VIAPCR 
#%10000010 
VIAIFR 
VIAIER 

HERE 

Interrupt Service Routine: 

·=INTRP 
LDA 
STA 
LDX 
TXS 
JMP 

#%10000010 
VIAIFR 
#$FF 

START 

Initialize Stack 
Pointer 

Enable startup 
interrupt on VIA 

Enable CPU interrupt 

:PUT STACK AT END OF PAGE 1 

:MAKE ALL CONTROL LINES INPUTS 

:CLEAR CA 1 INTERRUPT FLAG 
:ENABLE CA 1 INTERRUPT 
:ENABLE CPU INTERRUPT 
:WAIT FOREVER 

:CLEAR CA 1 INTERRUPT FLAG 
:REINITIALIZE STACK POINTER 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

Main Program: 

0000 A2 LOX #$FF 
0001 FF 
0002 9A TXS 
0003 A9 LOA #0 
0004 00 
0005 80 STA VIAPCR 

0006} 
0007 VIAPCR 

0008 A9 LOA #%10000010 
0009 82 
OOOA 80 STA VIAIFR 

OOOS} 
OOOC VIAIFR 

0000 80 STA VIAIER 
OOOE} 
OOOF VIAIER 

0010 58 CLI 
0011 4C HERE JMP HERE 
0012 11 
0013 00 

Interrupt Service Routine: 

INTRP A9 LOA #%10000010 
INTRP+1 82 
INTRP+2 80 STA VIAIFR 
INTRP+3} 
INTRP+4 VIAIFR 

INTRP+5 A2 LOX #$FF 
INTRP+6 FF 
INTRP+7 9A TXS 
INTRP+8 4C JMP START 
INTRP+9 } 
INTRP+A START 
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The exact location of the interrupt service routine varies 
with the microcomputer. If your microcomputer has no 
monitor. you can simply place whatever address you want 
in memory locations FFFE and FFFF (or whatever locations 

INTERRUPTS ON 
PARTICULAR 
MICROCOMPUTERS 

respond to those addresses). You must then start the interrupt service routine at the ad
dress you chose. Of course. you should place the routine so that it does not interfere 
with fixed addresses or with other programs. 

If your microcomputer has a monitor. the monitor will occupy ad
dresses FFFE and FFFF. Those addresses will either contain a start
ing address at which you must place your interrupt service 
routine. or will contain the starting address of a routine that allows 

INTERRUPT 
HANDLING 
BY MONI'TORS 

you to choose the starting address of the interrupt service routine. A typical monitor 
routine would be: /' 

MONINT JMP (USRINT) ;JUMP TO USER SUPPLIED INTERRUPT ADDRESS 

You must then place the address of your service routine in memory locations USRINT 
and USRINT + 1. Remember that MONINT is an address in the monitor program and its 
value is in addresses FFFE and FFFF. 

You can include the loading of memory locations USRINT and USRINT + 1 in your main 
program. 

LDA #USRL ;LOAD LSB'S OF USER INTERRUPT ADDRESS 
STA USRINT 
LDA #USRM ;LOAD MSB'S OF USER INTERRUPT ADDRESS 
STA USRINT+1 

These instructions must precede the enabling of the interrupts. 

The main program only enables the interrupt from the startup VIA. We have assumed 
that the startup line is attached to VIA input CA 1 and that the active edge is the trailing 
one (i.e .. a high-to-Iow transition)' Other configurations would merely require different 
values in the VIA Peripheral Control register. 

Note that the VIA interrupt is enabled and the Stack Pointer is loaded before the CPU 
interrupt is enabled (by clearing the I bid. What would happen if you cleared the I bit 
before loading the Stack Pointer? This will not be a potential problem if the monitor 
already places a value in the Stack Pointer. 

In this example. the return address and Status register that the 6502 stores in the Stack 
on accepting an interrupt are not useful. Thus the service routine simply reinitializes the 
Stack Pointer. 

Note that we could replace the JMP HERE instruction with a conditional branch that 
provided a guaranteed jump. such as BNE HERE. The Zero flag is not zero since the last 
operation was the one that enabled the CA 1 interrupt. This shortcut is often helpful to 
make up for the fact that the 6502 has no unconditional branch with relative address
ing. 

Remember that RESET and accepting an interrupt automatically disable the inter
rupt system. This allows the real startup routine to configure all ·the VIAs and 
other interrupt sources without being interrupted. Note that you must explicitly 
clear the CA 1 Interrupt flag or else it will interrupt again as soon as the interrupt system 
is re-enabled. You could also clear the flag by reading the VIA's Output Register A from 
the handshaking address (see Table 11-7). 
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A Keyboard Interrupt 
Purpose: The computer waits for a keyboard interrupt and places 

the data from the keyboard into memory locaton 0040. 

Sample Problem: 

Keyboard data 06 
Result: (0040) 06 

Flowchart: 

Source Program: 

Main Program: 

HERE 

LOX 
TXS 
LOA 
STA 
STA 
LOA 
STA 
STA 
CLI 
JMP 

#$FF 

#0 
VIAPCR 
VIADDRA 
#%10000010 
VIAIFR 
VIAIER 

HERE 

Interrupt Service Routine: 

*=INTRP 
PHA 
LOA 
STA 
PLA 
RTI 

VIAORA 
$40 

Initialize Stack 
Pointer 

Enable keyboard 
interrupt on VIA 

Enable CPU interrupt 

100401 = data 

;PUT STACK AT END OF PAGE 1 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 

;CLEAR KEYBOARD INTERRUPT FLAG 
;ENABLE KEYBOARD INTERRUPT FROM VIA 
;ENABLE CPU INTERRUPT 
;DUMMY MAIN PROGRAM 

;SAVE ACCUMULATOR IN STACK 
;GET KEYBOARD DATA 
;SAVE KEYBOARD DATA 
;RESTORE ACCUMULATOR FROM STACK 
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Object Program: 

Memory Address Memory Contents 
(Hex) (Hex) 

Main Program: 

OOOU A2 
0001 FF 
0002 9A 
0003 A9 
0004 00 
0005 80 

0006} 
0007 VIAPCR 

0008 80 

0009} 
OOOA VIAOORA 

0008 A9 
OOOC 82 
0000 80 

OOOE} 
OOOF VIAIFR 

0010 80 

0011} 
0012 

VIAIER 

0013 58 
0014 4C 
0015 14 
0016 00 

Interrupt Service Routine: 

INTRP 48 
INTRP+1 AO 
INTRP+2} 
INTRP+3 

VIAORA 

INTRP+4 85 
INTRP+5 40 
INTRP+6 68 
INTRP+7 40 

HERE 

Instruction 
(Mnemonic) 

LOX #$FF 

TXS 
LOA #0 

STA VIAPCR 

STA VIAOORA 

LOA #%10000010 

STA VIAIFR 

STA VIAIER 

CLI 
JMP HERE 

PHA 
LOA VIAORA 

STA $40 

PLA 
RTI 

You must configure the VIA completely before enabling the interrupts. This includes 
establishing the directions of ports. determining the transitions to be recognized on 
strobe lines. and enabling latches (remember that setting bit 0 of the Auxiliary Control 
register enables the Port A latch). 

The JMP HERE is an endless loop (jump-to-self) instruction that is used to represent the 
main program. After interrupts are enabled in a working system. the main program goes 
about its business until an interrupt occurs and then resumes execution after the inter
rupt service routine is completed. 
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The RTI instruction at the end of the service routine transfers 
control back to the JMP instruction in the main program. If you 
want to avoid this. you can simply change the Program 
Counter in the Stack. Remember that the Stack is always lo
cated on page 1 (addresses 0100 - 01 FFl. the Stack Pointer 

CHANGING THE 
INTERRUPT 
RETURN 
ADDRESS 

contains the address of the next empty location. and the interrupt response places the 
Program Counter in the Stack underneath the Status register. Thus the following pro
gram will increment the Program Counter in the Stack without removing it. 

TXS 
INC $0102.X 
BNE DONE 
INC $0103.X 

DONE (next instruction) 

;MAKE STACK POINTER INTO INDEX 
;INCREMENT LSB'S OF RETURN ADDRESS 

;AND CARRY TO MSB'S IF NECESSARY 

Since the 6502 does not automatically save its registers (other than the Status registerl. 
you can use them to pass parameters and results between the main program and the in
terrupt service routine. So. you could leave the data in the Accumulator instead of in 
memory location 0040. This is. however. a dangerous practice that should be avoided 
in all but the most trivial systems. In most applications. the processor is using its 
registers during normal program execution; having the interrupt service routines ran
domly change the contents of those registers would surely cause havoc. In general, no 
interrupt service routine should ever alter any register unless that register's con
tents have been saved prior to its alteration and will be restored at the completion 
of the routine. 

Note that you need not explicitly re-enable the interrupts at the end of the service 
routine. The reason is that the RTI instruction automatically restores the old Status 
(P) register with the Interrupt Disable bit in its original state. In fact. you will have 
to alter the Interrupt Disable bit in the Stack (bit 2 of the top location) if you do not want 
the interrupts to be re-enabled. 

Using the Stack is the most general approach to saving and restoring registers. 
The instruction PHA saves the contents of the Accumulator in the Stack and the 
instruction PLA restores the contents of the Accumulator from the Stack. This 
method can be expanded indefinitely (as long as there is room in the Stack) since 
nested service routines will not destroy the data saved by the earlier routines. 

You can save all the registers in the Stack (remember that Status is automatically 
saved) after an interrupt with the sequence: 

PHA 
TXA 
PHA 
TYA 
PHA 

;SAVE ACCUMULATOR 
;SAVE INDEX REGISTER X 

;SAVE INDEX REGISTER Y 

Note that there is no direct way to transfer data between the Stack and the Index 
registers. The contents of the Accumulator must be saved first (why?). 

You can restore the registers from the Stack (remember that RTI automatically restores 
Status) after an interrupt service routine by removing the data from the Stack in the op
posite order from which it was entered: 

PLA 
TAY 
PLA 
TAX 
PLA 

;RESTORE INDEX REGISTER Y 

;RESTORE INDEX REGISTER X 

;RESTORE ACCUMULATOR 
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Note that the Accumulator is saved first and restored last. 

An alternatiove approach would be for the interrupt routine to 
maintain control until it received an entire line of text (e.g .. a string 
of characters ending with a carriage return). The main program 
would be: 

FILLING A 
BUFFER VIA 
INTERRUPTS 

Main Program: 

HERE 

LOX 
TXS 
LOA 
STA 
STA 
STA 
LOA 
STA 
STA 
CLI 
JMP 

#$FF 

#0 
VIAPCR 
VIADDRA 
$40 
#%10000010 
VIAIFR 
VIAIER 

HERE 

Interrupt Service Routine: 

*=INTRP 

ENOL 

PHA 
TXA 
PHA 
LOX 
LOA 
STA 
CMP 
BEQ 
INC 
PLA 
TAX 
PLA 
RTI 
JMP 

$40 
VIAORA 
$41.X 
#CR 
ENOL 
$40 

LPROC 

;PUT STACK AT END OF PAGE 1 

;MAKE ALL CONTROL LINES INPUTS 
;MAKE PORT A LINES INPUTS 
;CLEAR BUFFER INDEX TO START 

;CLEAR KEYBOARD INTERRUPT FLAG 
;ENABLE KEYBOARD INTERRUPT FROM VIA 
;ENABLE CPU INTERRUPT 
;DUMMY MAIN PROGRAM 

;SAVE ACCUMUL-ATOR IN STACK 
;SAVE INDEX REGISTER X IN STACK 

;GET BUFFER INDEX 
;GET KEYBOARD DATA 
;SAVE DATA IN BUFFER 
;IS DATA A CARRIAGE RETURN? 
;YES. END OF LINE 
;NO. INCREMENT BUFFER POINTER 
;RESTORE INDEX REGISTER X FROM STACK 

;RESTORE ACCUMULATOR FROM STACK 

;PROCESS LINE WITHOUT INTERRUPTS 

This program fills a buffer starting at memory location 0041 until it receives a carriage 
return character (CR). Memory location 0040 holds the current buffer index. 

When the processor receives a carriage return. it leaves the interrupt system disabled 
while it handles the line. 

An alternative approach would be to fill another buffer while han
dling the first one; this approach is called double buffering. 

The line processing routine is begun at address LPROC with interrupts disabled. and 
with the original register contents (P. A. and X) and the return address in the Stack. 

In a real application. the CPU could perform other tasks between interrupts. It could. for 
instance. edit. move. or transmit a line from one buffer while the interrupt was filling 
another buffer. 
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A Printer Interrupt 
Purpose: The computer waits for a printer interrupt and sends the data from memory 

location 0040 to the printer. 

Sample Problem: 

(0040) 51 16 
Result: Printer receives a 5116 (ASCII Q) when it is ready. 

Flowchart: 

Source Program: 

Main Program: 

HERE 

LOX 
TXS 
STX 
LOA 
STA 
LOA 
STA 
STA 
CLI 
JMP 

#$FF 

VIADDRB 
#0 
VIAPCR 
#%10000010 
VIAIFR 
VIAIER 

HERE 

Interrupt Service Routine: 

*=INTRP 
PHA 
LOA 
STA 
PLA 
RTI 

$40 
VIAORB 

Initialize Stack Pointer 
Enable printer 

interrupt on VIA 
Data = (0040) 

Enable CPU interrupt 

Send data \0 printer 

;PUT STACK AT END OF PAGE 1 

;MAKE PORT B LINES OUTPUTS 

;MAKE ALL CONTROL LINES INPUTS 

;CLEAR PRINTER INTERRUPT FLAG 
;ENABLE PRINTER INTERRUPT FROM VIA 
;ENABLE CPU INTERRUPTS 
;DUMMY MAIN PROGRAM 

;SAVE ACCUMULATOR IN STACK 
;GET DATA 
;SEND DATA TO PRINTER 
;RESTORE ACCUMULATOR FROM STACK 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) {Mnemonic} 

Main Program: 

0000 A2 LDX #$FF 
0001 FF 
0002 9A TXS 
0003 8E STX VIADDR8 

0004} 
0005 VIADDRB 

0006 A9 LDA #0 
0007 00 
0008 8D STA VIAPCR 

0009} 
OOOA VIAPCR 

OOOB A9 LDA #%10000010 
OOOC 82 
OOOD 8D STA VIAIFR 

OOOE} 
OOOF VIAIFR 

0010 8D STA VIAIER 

0011} 
0012 

VIAIER 

0013 58 Cli 
0014 4C HERE JMP HERE 
0015 14 
0016 00 

Interrupt Service Routine: 

INTRP 48 PHA 
INTRP+l A5 LDA $40 
INTRP+2 40 
INTRP+3 8D STA VIAORB 
INTRP+4} 
INTRP+5 

VIAORB 

INTRP+6 68 PLA 
INTRP+7 40 RTI 
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Here. as with the keyboard. you could have the printer continue to 
interrupt until it transferred an entire line of text. The main pro
gram and the service routine would be: 

EMPTYING A 
BUFFER WITH 
INTERRUPTS 

Main Program: 

LOX #$FF 
TXS 
STX VIADDRB 
LOA #0 
STA VIAPCR 
STA $40 
LOA #%10000010 
STA VIAIFR 
STA VIAIER 
CLI 

HERE JMP HERE 

Interrupt Service Routine: 

·=INTRP 

ENDL 

PHA 
TXA 
PHA 
LOX 
LOA 
STA 
CMP 
BEQ 
INC 
PLA 
TAX 
PLA 
RTI 
JMP 

$40 
$41.X 
VIAORB 
#CR 
ENOL 
$40 

LCOMP 

:PUT STACK AT END OF PAGE 1 
;MAKE PORT B LINES OUTPUTS 

;MAKE ALL CONTROL LINES INPUTS 
;INITIALIZE BUFFER INDEX TO ZERO 

;CLEAR PRINTER INTERRUPT FLAG 
;ENABLE PRINTER INTERRUPT FROM VIA 
;ENABLE CPU INTERRUPT 
;DUMMY MAIN PROGRAM 

;SAVE ACCUMULATOR IN STACK 
;SAVE INDEX REGISTER X IN STACK 

;GET BUFFER INDEX 
;GET A BYTE OF DATA FROM BUFFER 
;SEND DATA TO PRINTER 
;IS DATA A CARRIAGE RETURN? 
;YES. END OF LINE 
;NO. INCREMENT BUFFER POINTER 
;RESTORE INDEX REGISTER X FROM STACK 

;RESTORE ACCUMULATOR FROM STACK 

;HANDLE COMPLETED LINE 

Again. double buffering could be used to allow I/O and processing to occur at the same 
time without ever halting the CPU. 
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A Real-Time Clock InterruptS.6 

Purpose: The computer waits for an interrupt from a real-time 
clock. 

A real-time clock simply provides a regular series of pulses. The interval between 
the pulses can be used as a time reference. Real-time clock interrupts can be 
counted to give any multiple of the basic time interval. A real-time clock can be pro
duced by dividing down the CPU clock. by using a separate timer or a programmable 
timer like the ones available in the 6522 VIA or in the 6530 or 6532 Multifunction 
devices (see Chapter 11). or by using external sources such as the AC line frequency. 

Note the tradeoffs involved in determining the frequency of FREQUENCY 
the real-time clock. A high frequency (say 10 kHz) allows the OF REAL-TIME 
creation of a wide range of time intervals of high accuracy. On the .. C.,L;;,O=C.;,;K;.... __ ... 
other hand. the overhead involved in counting real-time clock 
interrupts may be considerable. and the counts will quickly exceed the capacity of a 
single a-bit register or memory location. The choice of frequency depends on the preci
sion and timing requirements of your application. The clock may. of course. consist 
partly of hardware: a counter may count high frequency pulses and interrupt the pro
cessor only occasionally. A program will have to read the counter to measure time to 
high accuracy. 

One problem is synchronizing operations with the real
time clock. Clearly. there will be some effect on the preci
sion of the timing interval if the CPU starts the measure
ment randomly during a clock period. rather than exactly at 
the beginning. Some ways to synchronize operations are: 

SYNCHRONIZATION 
WITH REAL-TIME 
CLOCK 

1) Start the CPU and clock together. RESET or a startup interrupt can start the clock as 
well as the CPU. 

2) Allow the CPU to start and stop the clock under program control. 

3) Use a high-frequency clock so that an error of less than one clock period will be 
small. 

4) Line up the clock (by waiting for an edge or interrupt) before starting the measure-
ment. 

A real-time clock interrupt should have very high priority. 
since the precision of the timing intervals will be affected by 
any delay in servicing the interrupt. The usual practice is to 
make the real-time clock the highest priority interrupt except for 

PRIORITY 
OF REAL-TIME 
CLOCK 

power failure. The clock interrupt service routine is generally kept extremely short 
so that it does not interfere with other CPU activities. 
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al Wait for Real-Time Clock 

Source Program: 

Main Program: 

HERE 

LOX 
TXS 
LOA 
STA 
LOA 
STA 
STA 
CLI 
JMP 

#$FF 

#0 
VIAPCR 
#%10000010 
VIAIFR 
VIAIER 

HERE 

Interrupt Service Routine: 

*=INTRP 

:PUT STACK AT END OF PAGE 1 

:MAKE ALL CONTROL LINES INPUTS 

:CLEAR CLOCK INTERRUPT FLAG 
:ENABLE CLOCK INTERRUPT FROM VIA 
:ENABLE CPU INTERRUPT 
:OUMMY MAIN PROGRAM 

PHA :SAVE ACCUMULATOR IN STACK 
LOA #%10000010 
STA VIAIFR :CLEAR CLOCK INTERRUPT FLAG 
PLA :RESTORE ACCUMULATOR FROM STACK 
BRK 
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Object Program: 

Memory Address Memory Contents 
(Hex) (Hex) 

Main Program: 

0000 A2 
0001 FF 
0002 9A 
0003 A9 
0004 00 
0005 80 

0006} 
0007 VIAPCR 

0008 A9 
0009 82 
OOOA 80 

OOOS} 
OOOC 

VIAIFR 

0000 80 

OOOE} 
OOOF 

VIAIER 

0010 58 
0011 4C 
0012 11 
0013 00 

Interrupt Service Routine: 

INTRP 48 
INTRP+l A9 
INTRP+2 82 
INTRP+3 80 
INTRP+4} 
INTRP+5 

VIAIFR 

INTRP+6 68 
INTRp+7 00 

HERE 

Instruction 
(Mnemonic) 

LOX #$FF 

TXS 
LOA #0 

STA VIAPCR 

LOA #%10000010 

STA VIAIFR 

STA VIAIER 

CLI 
JMP HERE 

PHA 
LOA #%10000010 

STA VIAIFR 

PLA 
SRK 

If bit 0 of the VIA Peripheral Control register is O. the interrupt will occur on the high-to
low (falling) clock edge. If that bit is 1. the interrupt will occur on the low-to-high (ris
ing) clock edge. 

The Clock Interrupt flag must be explicitly cleared in the interrupt service routine since 
no I/O transfer is required. Note that Port A could still be used for data as long as that 
data was transferred using the address that does not affect the interrupt flags (see Ta
ble 11-7). 
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We could. of course. generate the pulse itself using one of the 6522 timers. The follow
ing example uses timer 1 to produce a single pulse 5000 (138816) clock cycles in 
length. Remember the following: 

1) The timer 1 counters are loaded from two memory locations (VIAT1L and 
VIAT1 CH); loading the most significant bits of the timer count into VIAT1 CH starts 
the timer and clears the T1 Interrupt flag (bit 6 of the Interrupt Flag register!. 

2) The mode of operation of timer 1 is controlled by bits 6 and 7 of the Auxiliary Con
trol reg ister: 

bit 6 = 0 for a single pulse and 1 for continuous operation 

bit 7 = 0 to disable output pulses on PB7 and 1 to generate such pulses. 

3) The conclusion of the timing interval sets the timer 1 Interrupt flag (bit 6 of the In
terrupt Flag register). 

Table 11-7 describes the addressing of the VIA. Figure 11-10 describes the Auxiliary 
Control register. and Figure 12-3 describes the Interrupt Flag register. 

Main Program: 

LOX #$FF 
TXS 
LOA #0 
STA VIAACR 
LOA #%11000000 
STA VIAIFR 
STA VIAIER 
LOA #$88 
STA VIAT1L 
LOA #$13 
STA VIAT1CH 
CLI 

HERE JMP HERE 

Interrupt Service Routine: 

'=INTRP 
PHA 
LOA #% 11000000 
STA VIAIFR 
PLA 
BRK 

;PUT STACK AT ENO OF PAGE 1 

;GENERATE ONE PULSE FROM TIMER 1 

;CLEAR TIMER 1 INTERRUPT 
;ENABLE TIMER 1 INTERRUPT 
;PULSE LENGTH = 5000 (1388 HEX) 

;START TIMING INTERVAL 
;ENABLE CPU INTERRUPT 
:OUMMY MAIN PROGRAM 

;SAVE ACCUMULATOR IN STACK 

;CLEAR CLOCK INTERRUPT FLAG 
;RESTORE ACCUMULATOR FROM STACK 

The only change in the service routine is the position of the C lock I nterrupt flag in the 
Interrupt Flag register. 
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b) Wait for 10 Real-Time Clock Interrupts 

Source Program: 

Main Program: 

LOX #$FF 
TXS 
LOA #0 
STA VIAPCR 
STA $40 
LOA #%10000010 
STA VIAIFR 
STA VIAIER 
LOA #10 
CLI 

WHEN CMP $40 
BNE WHEN 
SEI 
BRK 

Interrupt Service Routine; 

·=INTRP 
PHA 
INC 
LOA 
STA 
PLA 
RTI 

$40 
#%10000010 
VIAIFR 

;PUT STACK AT END OF PAGE 1 

;MAKE ALL CONTROL LINES INPUTS 
;CLEAR CLOCK COUNTER 

;CLEAR CLOCK INTERRUPT FLAG 
;ENABLE CLOCK INTERRUPT FROM VIA 
;NUMBER OF COUNTS = 10 
;ENABLE CPU INTERRUPT 
;HAVE TEN COUNTS ELAPSED? 
;NO. WAIT 
;YES. DISABLE CPU INTERRUPT 

;SAVE ACCUMULATOR IN STACK 
;INCREMENT CLOCK COUNTER 

;CLEAR CLOCK INTERRUPT FLAG 
;RESTORE ACCUMULATOR FROM STACK 

Clearly we could generate the pulses from the 6522 timer - for example. we could use 
timer 1 in its continuous mode (bit 6 of the Auxiliary Control register = 1). The only 
other change would be the bit position of the Interrupt flag. 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

Main Program: 

0000 A2 LOX #$FF 
0001 FF 
0002 9A TXS 
0003 A9 LOA #0 
0004 00 
0005 80 STA VIAPCR 

0006} 
0007 

VIAPCR 

0008 85 STA $40 
0009 40 
OOOA A9 LOA #%10000010 
OOOB 82 
OOOC 80 STA VIAIFR 

OOOO} 
OOOE VIAIFR 

OOOF 80 STA VIAIER 
0010} 
0011 VIAIER 

0012 A9 LOA #10 
0013 OA 
0014 58 CLI 
0015 C5 WTTEN CMP $40 
0016 40 
0017 DO BNE WTTEN 
0018 FC 
0019 78 SEI 
001A 00 BRK 

Interrupt Service Routine: 

INTRP 48 PHA 
INTRP+1 E6 INC $40 
INTRP+2 40 
INTRP+3 A9 LOA #%10000010 
INTRP+4 82 
INTRP+5 80 STA VIAIFR 
INTRP+6} 
INTRP+7 VIAIFR 

INTRP+8 68 PLA 
INTRP+9 40 RTI 
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This interrupt service routine merely updates the counter in memory location 0040. It is 
transparent to the main program. 

A more realistic real-time clock interrupt routine could main
tain real time in several memory locations. For example. the 
following routine uses addresses 0040 through 0043 as follows: 

0040 - hundredths of seconds 
0041 - seconds 
0042 - minutes 
0043 - hours 

We assume that the routine is triggered by a 100 Hz clock. 

Flowchart: 

Clear clock interrupt 

Hundredths = 
Hundredths + 1 

Hundredths = 0 

Seconds = 
Seconds + , 

Seconds = 0 
Minutes 

Minutes + 1 

Minutes 0 
Hours 

Hours + 1 
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Source Program: 

*=INTRP 
PHA ;SAVE ACCUMULATOR IN STACK 
LOA #%10000010 
STA VIAIFR ;CLEAR CLOCK INTERRUPT FLAG 
INC $40 ;UPDATE HUNDREDTHS OF SECONDS 
LOA $40 
SEC ;IS THERE A CARRY TO SECONDS? 
SBC #100 
BNE ENDINT ;NO. DONE 
STA $40 ;YES. MAKE HUNDREDTHS ZERO 
INC $41 ;UPDATE SECONDS 
LOA $41 
SBC #60 ;IS THERE A CARRY TO MINUTES? 
BNE ENDINT ;NO. DONE 
STA $41 ;YES. MAKE SECONDS ZERO 
INC $42 ;UPDATE MINUTES 
LOA $42 
SBC #60 ;IS THERE A CARRY TO HOURS? 
BNE ENDINT ;NO. DONE 
STA $42 ;YES. MAKE MINUTES ZERO 
INC $43 ;UPDATE HOURS 

ENDINT PLA ;RESTORE ACCUMULATOR FROM STACK 
RTI 

Now a wait of 300 ms could be produced in the main program with the routine: 

LOA $40 ;GET CURRENT REAL TIME 
CLC 
ADC #30 ;DESIRED TIME IS 30 COUNTS LATER 
CMP #100 ;MOD 100 
BCC WAIT30 
SBC #100 

WAIT30 CMP $40 ;WAIT UNTIL DESIRED TIME 
BNE WAIT30 

We do not need explicit SET CARRY (SEC) instructions except in the first operation in 
the interrupt service routine. The other operations in the interrupt service routine are 
only performed if the previous subtraction produced a zero result (and hence also pro
duced a Carry of 1 indicating no borrow)' In the wait program. the subtraction is only 
performed at all if the Carry is 1 (otherwise a branch occurs). 

Of course. the program could perform other tasks and check the elapsed time only oc
casionally. How would you produce a delay of seven seconds? Of three minutes? 

Sometimes you may want to keep time either as BCD digits or as ASCII characters. How 
would you revise the last program to handle these alternatives? 
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When it is no longer needed. you can disable the clock interrupt 
(or any other interrupt) in any of the following ways: 

1) By executing an SEI instruction in the main program. This dis
ables the entire interrupt system. An SEI instruction in the service routine has no 
effect. since RTI restores the old I flag: anyway. the 6502 automatically disables in
terrupts during the service routine. 

2) By clearing the appropriate bit in the Interrupt Enable register (see Figure 12-2) 
either during the service routine or during the main program. This disables only the 
single interrupt source from one VIA. 

3) By setting the Interrupt Disable flag in the Stack during the service routine. The 
following program will do the job (remember that the Interrupt Disable flag is bit 2 
of the Status register and that the Status register is the top entry in the Stack -
see Figure 12-1): 

PLA :GET STATUS REGISTER 
ORA #%00000010 :SET INTERRUPT DISABLE FLAG 
PHA :RETURN STATUS REGISTER TO STACK 

RTI will then cause a return to the main program with the entire interrupt system 
disabled. 

Note. however. that you must be very careful about not re-enabling the interrupts 
automatically. since the main program would be completely unaware that inter
rupts were no longer allowed. In general, all interrupt service routines should re
enable the interrupts before returning; any other policy means that the ser
vice routines are not transparent to the main program. 
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A Teletypewriter Interrupt 
Purpose: The computer waits for data to be received from a teletypewriter and stores 

the data in memory location 0040. 

a) Using a 6860 ACIA 

(7-bit characters with odd parity and two stop bits). 

Source Program: 

Main Program: 

LDX #$FF 
TXS 
LDA #%00000011 
STA ACIACR 
LDA #%11000101 
STA ACIACR 
CLI 

HERE JMP HERE 

Interrupt Service Routine: 

*=INTRP 
PHA 
LDA ACIADR 
STA $40 

;PUT STACK AT END OF PAGE 1 

;MASTER RESET ACIA 

;ENABLE ACIA INTERRUPT 

;ENABLE CPU INTERRUPT 
;DUMMY MAIN PROGRAM 

;SAVE ACCUMULATOR IN STACK 
;GET DATA FROM ACIA 
;SAVE DATA 

ACIA 
INTERRUPT 
ROUTINE 

PLA ;RESTORE ACCUMULATOR FROM STACK 
RTI 
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Object Program: 

Memory Address 
(Hex) 

Main Program: 

0000 
0001 
0002 
0003 
0004 
0005 
0006} 
0007 
0008 
0009 
OOOA 
OOOB} 
OOOC 
DODD 
OOOE 
OOOF 
0010 

Interrupt Service Routine: 

INTRP 
INTRP+l 
INTRP+2} 
INTRP+3 
INTRP+4 
INTRP+5 
INTRP+6 
INTRP+7 

Memory Contents 
(Hex) 

A2 
FF 
9A 
A9 
03 
8D 

ACIACR 

A9 
C5 
8D 

ACIACR 

58 
4C HERE 
DE 
00 

48 
AD 

ACIADR 

85 
40 
68 
40 

Instruction 
(Mnemonic) 

LDX #$FF 

TXS 
LDA #%00000011 

STA ACIACR 

LDA #%11000101 

STA ACIACR 

CLI 
JMP HERE 

PHA 
LDA ACIADR 

STA $40 

PLA 
RTI 

Remember that the ACIA has no RESET input. so a Master Reset (making Control 
register bits 0 and 1 both '1') is necessary before the ACIA is used. The ACIA Control 
register configuration is: 

Bit 7 = 1 to enable the receive interrupt 

Bit 6 = 1. Bit 5 = 0 to disable the transmitter interrupt and make RTS high 
(inactive) 

Bit 4 = O. Bit 3 = O. Bit 2 = 1 to select 7-bit data with odd parity and two 
stop bits 

Bit 1 = O. Bit 0 = 1 for + 16 clock (1760 Hz) 

To determine if a particular ACIA is the source of an interrupt. the CPU must examine 
the Interrupt Request bit. bit 7 of the Status register. The program must examine the 
Receive Data Register Full bit (Status register bit 0) and the Transmit Data Register 
Empty bit (Status register bit 1) to differentiate between receive and transmit interrupts. 

Either reading the Receive Data register or writing into the Transmit Data register clears 
the ACIA Interrupt Request bit. 
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b) Using a 6622 VIA 

(Received data tied to both data bit 7 and to control line 1 of 
the VIA.) 

Source Program: 

Main Program: 

LOX #$FF 
TXS 
LOA #0 
STA VIAPCR 
STA VIAOORA 
LOA #%10000010 
STA VIAIFR 
STA VIAIER 
CLI 

HERE JUMP HERE 

Interrupt Service Routine: 

*=INTRP 
PHA 
LOA 
STA 
STA 
JSR 
LOA 
STA 
PLA 
RTI 

#%00000010 
VIAIFR 
VIAIER 
TTYRCV 
#%10000010 
VIAIER 

;PUT STACK AT END OF PAGE 1 

;MAKE ALL CONTROL LINES INPUTS 

;CLEAR START BIT INTERRUPT FLAG 
;ENABLE START BIT INTERRUPT FROM VIA 
;ENABLE CPU INTERRUPT 
;OUMMY MAIN PROGRAM 

;SAVE ACCUMULATOR IN STACK 

;CLEAR START BIT INTERRUPT FLAG 
;OISABLE START BIT INTERRUPT 
;FETCH DATA FROM TTY 

;RE-ENABLE START BIT INTERRUPT 
;RESTORE ACCUMULATOR FROM STACK 
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Object Program: 

Memory Address Memory Contents Instruction 
(Hex) (Hex) (Mnemonic) 

Main Program: 

0000 A2 LOX #$FF 
0001 FF 
0002 9A TXS 
0003 A9 LOA #0 
0004 00 
0005 80 STA VIAPCR 

0006} 
0007 

VIAPCR 

0008 80 STA VIAOORA 

0009} 
OOOA 

VIAOORA 

OOOB A9 LOA #%10000010 
OOOC 82 
0000 80 STA VIAIFR 
OOOE 

VIAIFR 
OOOF 
0010 BO STA VIAIER 

0011} 
0012 

VIAIER 

0013 58 CLI 
0014 4C HERE JMP HERE 
0015 14 
0016 00 

Interrupt Service Routine: 

INTRP 48 PHA 
INTRP+1 A9 LOA #%00000010 
INTRP+2 02 
INTRP+3 80 STA VIAIFR 

INTRP+4} 
INTRP+5 

VIAIFR 

INTRP+6 80 STA VIAIER 
INTRP+7} 
INTRP+8 

VIAIER 

INTRP+9 20 JSR TTYRCV 
INTRP+10} 
INTRP+11 

TTYRCV 

INTRP+12 A9 LOA #%10000010 
INTRP+13 82 
INTRP+14 80 STA VIAIER 
INTRP+15} 
INTRP+16 

VIAIER 

INTRP+17 68 PLA 
INTRP+18 40 RTI 
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Subroutine TTYRCV is the teletypewriter receive routine shown in the previous chapter. 

The edge used to cause the interrupt is very important here. The transition from the 
normal '1' (MARK) state to the '0' (SPACE) state must cause the interrupt. since this 
transition identifies the start of the transmission. No '0' to '1' transition will occur until a 
nonzero data bit is received. 

The service routine must disable the VIA interrupt. since otherwise each '1' to '0' transi
tion in the character will cause an interrupt. Of course, you must re-enable the VIA in
terrupt after the entire character has been read. 

Note how VIA interrupts are enabled or disabled. Bit 7 of the Interrupt Enable register is 
a "Set/Clear Control" bit. If that bit is 0, subsequent '1' bits clear interrupt enable bits 
and hence disable the corresponding interrupts; if that bit is 1, subsequent '1' bits set 
interrupt enable bits and hence enable the corresponding interrupts. The processor 
cannot actually write into bit 7 of the Interrupt Flag register, so either an enabling or a 
disabling pattern can be used to clear the interrupt flags. Remember the descriptions of 
the Interrupt Enable register and Interrupt Flag register in Figures 12-2 and 12-3. 
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MORE GENERAL SERVICE ROUTINES 
More general service routines that are part of a complete 
interrupt-driven system must handle the following tasks: 

TASKS FOR 
GENERAL SERVICE 
ROUTINES 1) Saving all registers that are used in the interrupt ser

vice routine in the Stack so that the interrupted pro-
gram can be correctly resumed. 

Remember that the 6502 only has Push instructions for the Accumulator and for 
the Status (P) register. Pushing the Status register is unnecessary after an interrupt 
since the interrupt response does this automatically. A routine to save all the 
registers in the Stack would be (as shown earlier): 

PHA 
TXA 
PHA 
TYA 
PHA 

;SAVE ACCUMULATOR IN STACK 
:SAVE INDEX REGISTER X IN STACK 

;SAVE INDEX REGISTER Y IN STACK 

In some 6602 programs. certain memory locations on page zero are treated as 
extra registers. Such locations may have to be saved and restored during in
terrupt service routines. The procedure to save the contents of memory location 
0040 would be, for example: 

LOA $40 ;SAVE MEMORY LOCATION 0040 IN STACK 
PHA 

Of course, only those registers that are used by the interrupt service routine must 
be saved. 

2) Restoring all registers from the Stack after completing the interrupt service 
ro~tine, Remember that registers must be restored in the opposite order from that 
in which they were saved. 

3) Enabling a",d disabling interrupts appropriately, Remember that the CPU auto-
matically disables its interrupts upon accepting one. 

The service routines should be transparent as far as the interrupt program is con
cerned (i.e .. they Should have no incidental effects)' 

Any standard subroutines that lire used by an interrupt service routine must be 
reentrant. If some subroutines cannot be made reentrant. the interrupt service 
routine must have separate versions to use.7 
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PROBLEMS 
1) A Test Interrupt 
Purpose: The computer waits for a VIA interrupt to occur. then executes the endless 

loop instruction: 

HERE JMP HERE 

until the next interrupt occurs. 

2) A Keyboard Interrupt 
Purpose: The computer waits for a 4-digit entry from a keyboard and places the digits 

into memory locations 0040 through 0043 (first one received in 0040). Each 
digit entry causes an interrupt. The fourth entry should also result in the dis
abling of the keyboard interrupt. 

Sample Problem: 

Keyboard data 04.06.01.07 

Resu It: (0040) 04 
(0041) 06 
(0042) 01 
(0043) 07 

3) A Printer Interrupt 
Purpose: The computer sends four characters from memory locations 0040 to 0043 

(starting with 0040) to the printer. Each character is requested by an inter
rupt. The fourth transfer also disables the printer interrupt. 

4) A Real-Time Clock Interrupt 
Purpose: The computer clears memory location 0040 initially and then complements 

memory location 0040 each time the real-time clock interrupt occurs. 

How would you change the program so that it complements memory loca
tion 0040 after every ten interrupts? How would you change the program so 
that it leaves memory location 0040 at zero for ten clock periods. FF16. for 
five clock periods. and so on continuously7 You may want to use a display 
rather than memory location 0040 so that it will be easier to see. 

5) A Teletypewriter Interrupt 
Purpose: The computer receives TTY data from an interrupting 6850 ACIA and stores 

the characters in a buffer starting in memory location 0040. The process 
continues until the computer receives a carriage return (OD16). Assume that 
the characters are 7-bit ASCII with odd parity. How would you change your 
program to use a VIA? Assume that subroutine TTYRCV is available. as in 
the example. Include the carriage return as the final character in the buffer. 
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Chapter 13 
PROBLEM DEFINITION AND 

PROGRAM DESIGN 

THE TASKS OF SOFTWARE DEVELOPMENT 
In the previous chapters. we have concentrated on the writing of short programs in as
sembly language. While this is an important topic. it is only a small part of software 
development. Although writing assembly language programs is a major task for the 
beginner. it soon becomes simple. By now. you should be familiar with standard 
methods for programming in assembly language on the 6502 microprocessor. The 
next four chapters will describe how to formulate tasks as programs and how to 
combine short programs to form a working system. 

Software development consists of many stages. Figure 
13-1 is a flowchart of the software development process. Its 
stages are: 

• Problem definition 

• Program design 

• Coding 

• Debugging 

• Testing 

• Documentation 

• Maintenance and redesign 

STAGES OF 
SOFTWARE 
DEVELOPMENT 

Each of these stages is important in the construction of a working system. Note that 
coding. the writing of programs in a form that the computer understands. is only one of 
seven stages. 

In fact. coding is usually the easiest stage to define and per
form. The ru les for writing computer programs are easy to learn. 
They vary somewhat from computer to computer. but the basic 
techniques remain the same. Few software projects run into trou

RELATIVE 
IMPORTANCE 
OF CODING 

ble because of coding: indeed. coding is not the most time-consuming part of software 
development. Experts estimate that a programmer can write one to ten fully debugged 
and documented statements per day. Clearly. the mere coding of one to ten statements 
is hardly a full day's effort. On most software projects. coding occupies less than 25% of 
the programmer's time. 

Measuring progress in the other stages is difficult. You can say 
that half of the program has been written. but you can hardly say 
that half of the errors have been removed or half of the problem 
has been defined. Timetables for such stages as program design. 

MEASURING 
PROGRESS 
IN STAGES 

debugging. and testing are difficult to produce. Many days or weeks of effort may result 
in no clear progress. Furthermore. an incomplete job in one stage may result in tremen
dous problems later. For example. poor problem definition or program design can make 
debugging and testing very difficult. Time saved in one stage may be spent many times 
over in later stages. 
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Figure 13-1. Flowchart of Software Development 

13-2 



DEfiNITION Of THIE STAGIES 
Problem definition is the formulation of the task in terms of 
the requirements that it places on the computer. For example. 
what is necessary to make a computer control a tool. run a series 
of electrical tests. or handle communications between a cllntral controller and a remote 
instrument? Problem definition requires that you determine the forms and rates of in
puts and outputs. the amount and speed of processing that is needed. and the types of 
possible errors and their handling. Problem definition takes a vague idea of building a 
computer-controlled system and defines the tasks and requirements for the computer. 

Program design is the outline of the computer program which 
will perform the tasks that have been defined. In the design 
stage. the tasks are described in a way that can easily be con
verted into a program. Among the useful techniques in this stage are flowcharting. 
structured programming. modular programming. and top-down design. 

Coding is the writing of the program in a form that the com
puter can either directly understand or translate. The form may 
be machine language. assembly language. or a high-level language. 

Debugging. also called program verification. is making the pro
gram do what the design specified that it would do. In this 

ICODINGI 

I DEBUGGING I 
stage. you use such tools as breakpoints. traces. simulators. logic analyzers. and in-cir
cuit emulators. The end of the debugging stage is hard to define. since you never know 
when you have found the last error. 

Testing. also referred to as program validation. is ensuring that 
the program performs the overall system tasks correctly. The 

I TESTING I 
designer uses simulators. exercisers. and various statistical techniques to measure the 
program's performance. This stage is like quality control for hardware. 

Documentation is the description of the program in the I"D-O-C-U-M~E=N-T-A-T-I-O-N=il 
proper form for users and maintenance personnel. Docu-
mentation also allows the designer to develop a program library so that subsequent 
tasks will be far simpler. Flowcharts. comments. memory maps. and library forms are 
some of the tools used in documentation. 

Maintenance and redesign are the servicing. improvement. 
and extension of the program. Clearly. the designer must be 
ready to handle field problems in computer-based equipment. 
Special diagnostic modes or programs and other maintenance 

MAINTENANCE 
AND 
REDESIGN 

tools may be required. Upgrading or extension of the program may be necessary to 
meet new requirements or handle new tasks. 

The rest of this chapter will consider only the problem definition and program 
design stages. Chapter 14 will discuss debugging and testing. and Chapter 15 will dis
cuss documentation. extension. and redesign. We will bring all the stages together in 
some simple systems examples in Chapter 16. 

PROBllEM DlEflNITION 
Typical microprocessor tasks require a lot of definition. For example. what must a pro
gram do to control a scale. a cash register. or a signal generator? Clearly. we have a 
long way to go just to define the tasks involved. 
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DEFINING THE INPUTS 
How do we start the definition? The obvious place to begin is with the inputs. We 
should begin by listing all the inputs that the computer may receive in this applica
tion. 

Examples of inputs are: 

• Data blocks from transmission lines 

• Status words from peripherals 

• Data from AID converters 

Then. we may ask the following questions about each input: 

1) What is its form: i.e .. what signals will the computer actually 
receive? 

2) When is the input available and how does the processor know it is available? Does 
the processor have to request the input with a strobe signal?Does the input provide 
its own clock? 

3) How long is it available? 

4) How often does it change. and how does the processor know that it has changed? 

5) Does the input consist of a sequence or block of data? Is the order important? 

6) What should be done if the data contains errors? These may include transmission 
errors. incorrect data. sequencing errors. extra data. etc. 

7) Is the input related to other inputs or outputs? 

DEFINING THE OUTPUTS 
The next step to define is the output. We must list all the outputs that the computer 
must produce. Examples of outputs include: 

• Data blocks to transmission lines 

• Control words to peripherals 

• Data to DI A converters 

Then. we may ask the following questions about each output: 

1) What is its form: i.e .• what signals must the computer produce? 

2) When must it be available. and how does the peripheral know it is available? 
3) How long must it be available? 

4) How often must it change. and how does the peripheral know that it has changed? 
5) Is there a sequence of outputs? 

6) What should be done to avoid transmission errors or to sense and recover from pe
ripheral failures? 

7) How is the output related to other inputs and outputs? 
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PROCESSING SECTION 
Between the reading of input data and the sending of output results is the processing 
section. Here we must determine exactly how the computer must process the in
put data. The questions are: 

1) What is the basic procedure (algorithm) for transforming input 
data into output results? 

2) What time constraints exist? These may include data rates. 
delay times. the time constants of input and output devices. etc. 

3) What memory constraints exist? Do we have limits on the amount of program 
memory or data memory. or on the size of buffers? 

4) What standard programs or tables must be used? What are their requirements? 

5) What special cases exist. and how should the program handle them? 

6) How accurate must the results be? 

7) How should the program handle processing errors or special conditions such as 
overflow. underflow. or loss of significance? 

ERROR HANDLING 
An important factor in many applications is the hanliling of errors. Clearly. the 
designer must make provisions for recovering from common errors and for diagnosing 
malfunctions. Among the questions that the designer must ask at the definition 
stage are: 

1) What errors could occur? 

2) Which errors are most likely? If a person operates the 
system. human error is the most common. Following 
human errors. communications or transmission errors are 
mechanical. electrical. mathematical. or processor errors. 

ERROR 
CONSIDERATIONS 

more common than 

3) Which errors will not be immediately obvious to the system? A special problem is 
the occurrence of errors that the system or operator may not recognize as incorrect. 

4) How can the system recover from errors with a minimum loss of time and data and 
yet be aware that an error has occurred? 

5) Which errors or malfunctions cause the same system behavior? How can these er
rors or malfunctions be distinguished for diagnostic purposes? 

6) Which errors involve special system procedures? For example. do parity errors re-
quire retransmission of data? 

Another question is: How can the field technician systematically find the source of 
malfunctions without being an expert? Built-in test programs. special diagnostics. or 
signature analysis can help.1 
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HUMAN FACTORS 
Many microprocessor-based systems involve human interaction. 
Human factors must be considered throughout the develop
ment process for such systems. Among the questions that the 
designer must ask are: 

OPERATOR 
INTERACTION 

1) What input procedures are most natural for the human operator? 

2) Can the operator easily determine how to begin, continue and end the input 
operations? 

3) How is the operator informed Of procedural errors and equipment malfunctions? 

4) What errors is the operator most likely to make 7 

5) How does the operator know that data has been entered correctly? 

6) Are displays in a form that the operator can easily read and understand? 

7) Is the response of the system adequate for the operator? 

8) Is the system easy for the operator to use? 

9) Are there guiding features for an inexperienced operator? 

10) Are there shortcuts and reasonable options for the experienced operator? 

11) Can the operator always determine or reset the state of the system after interrup
tions or distractions? 

Building a system for people to use is difficult. The microprocessor can make the 
system more powerful. more flexible, and more responsive. However, the designer still 
must add the human touches that can greatly increase the usefulness and attractive
ness of the system and the productivity of the human operator2 
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EXAMPLES 
Response to a Switch 
Figure 13-2 shows a simple system in which the input.is 
from a single SPST switch and the output is to a single LED 
display. In response to a switch closure. the processor 
turns the display on for one second. This system should be 
easy to define. 

Let us first examine the input and answer each of the questions 
previously presented: 

DEFINING 
SWITCH AND 
LIGHT SYSTEM 

SWITCH AND 
LIGHT INPUT 

1) The input is a single bit. which may be either '0' (switch closed) or T (switch 
open). 

2) The input is always available and need not be requested. 

3) The input is available for at least several milliseconds after the closure. 

4) The input will seldom change more than once every few seconds. The processor 
has to handle only the bounce in the switch. The processor must monitor the 
switch to determine when it is closed. 

5) There is no sequence of inputs. 

6) The obvious input errors are switch failure. failure in the input circuitry. and the 
operator attempting to close the switch again before a sufficieni amount of time 
has elapsed. We will discuss the handling of these errors later. 

7) The input does not depend on any other inputs or outputs. 

The next requirement in defining the system is to examine the 
output. The answers to our questions are: 

1) The output is a single bit. which is '0' to turn the display on. 
T to tu rn it off. 

SWITCH 
AND LIGHT 
OUTPUTS 

2) There are no time constraints on the output. The peripheral does not need to be in
formed of the availability of data. 

3) If the display is an LED. the data need be available for only a few milliseconds at a 
pulse rate of about 100 times per second. The observer will see a continuously lit 
display. 

4) The data must change (go ott) after one second. 

5) There is no sequence of outputs. 

6) The possible output errors are display failure and failure in the output circuitry. 

7) The output depends only on the switch input and time. 

The processing section is extremely simple. As soon as the switch input becomes 
a logic '0'. the CPU turns the light on (a logic '0') for one second. No time or memo
ry constraints exist. 

Let us now look at the possible errors and malfunctions. These 
are: 

• Another switch closure before one second has elapsed 

• Switch failure 

• Display failure 

• Computer failure 

SWITCH AND 
LIGHT ERROR 
HANDLING 

Surely the first error is the most likely. The simplest solution is for the processor to ig
nore switch closures until one second has elapsed. This brief unresponsive period will 
hardly be noticeable to the human operator. Furthermore. ignoring the switch during 
this period means that no debouncing circuitry or software is necessary. since the 
system will not react to the bounce anyway. 
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CPU 

The switch input is a '" if the switch is open, '0' if the 

switch is closed. The CPU applies the output to the 
cathode of the LED: a '0' lights the display. 

Input 

Port 

Output 

Port 

Figure 13-2. The Switch and Light System 

+5V 

+5V 

Clearly. the last three failures can produce unpredictable results. The display may stay 
on. stay off. or change state randomly. Some possible ways to isolate the failures would 
be: 

• Lamp-test hardware to check the display: i.e .. a button that turns the light on in
dependently of the processor 

• A direct connection to the switch to check its operation 

• A diagnostic program that exercises the input and output circuits 

If both the display and switch are working. the computer is at fault. A field technician 
with proper equipment can determine the cause of the failure. 
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A Switch-Based Memory loader 
Figure 13-3 shows a system that allows the user to enter 
data into any memory location in a microcomputer. One in
put port, DPORT, reads data from eight toggle switches. 
The other input port, CPORT, is used to read control infor

DEFINING A 
SWITCH-BASED 
MEMORY LOADER 

mation. There are three momentary switches: High Address, Low Address and 
Data. The output is the value of the last completed entry from the data switches; 
eight LEDs are used for the display. 

The system will also. of course, require various resistors, buffers, and drivers. 

We shall first examine the inputs. The characteristics of the switches are the same as 
in the previous example; however. here there is a distinct sequence of inputs, as 
follows: 

11 The operator must set the data switches according to the eight most significant 
bits of an address, then 

21 press the High Address button. The high address bits will appear on the lights, and 
the program will interpret the data as the high byte of the address. 

31 Then the operator must set the data switches with the value of the least significant 
byte of the address and 

41 press the Low Address button The low address bits will appear on the lights. and 
the program will consider the data to be the low byte of the address 

5} Finally, the operator must set the desired data into the data switches and 

61 press the Data button The display will now show the data, and the program stores 
the data in memory at the previously entered address. 

The operator may repeat the process to enter an entire program. Clearly, even in this 
simplified situation, we will have many possible sequences to consider. How do we 
cope with erroneous sequences and make the system easy to use? 

Output is no problem, After each input, the program sends to the displays the 
complement (since the displays are active-low) of the input bits, The output data 
remains the same until the next input operation. 

The processing section remains quite simple. There are no time or memory con
straints. The program can debounce the switches by waiting for a few milliseconds, and 
must provide complemented data to the displays. 

The most likely errors are operator mistakes, These include: 

• I ncorrect entries 

• I ncorrect order 

• I ncomplete entries; for example, forgetting the data 

MEMORY 
LOADER 
ERROR 
HANDLING 

The system must be able to handle these problems in a reasonable way, since they are 
certain to occur in actual operation. 

The designer must also consider the effects of equipment failure. Just as before, 
the possible difficulties are: 

• Switch failure 

• Display failure 

• Computer failure 
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In this system. however. we must pay more attention to how these failures affect the 
system. A computer failure will presumably cause very unusual behavior by the system. 
and will be easy to detect. A display failure may not be immediately noticeable: here a 
Lamp Test feature will allow the operator to check the operation. Note that we would 
like to test each LED separately. in order to diagnose the case in which output lines are 
shorted together. In addition. the operator may not immediately detect switch failure: 
however. the operator should soon notice it and establish which switch is faulty by a 
process of elimination. 

Let us look at some of the possible operator errors. Typical errors 
will be: 

• Erroneous data 

• Wrong order of entries or switches 

• Trying to go on to the next entry without completing the current 
one 

OPERATOR 
ERROR 
CORRECTION 
IN MEMORY 
LOADER 

The operator will presumably notice erroneous data as soon as it appears on the dis
plays. What is a viable recovery procedure for the operator? Some of the options are: 

1) The operator must complete the entry procedure: Le .. enter Low Address and Data 
if the error occurs in the High Address. Clearly. this procedure is wasteful and 
would only serve to annoy the operator. 

2) The operator may restart the entry process by returning to the high address entry 
steps. This solution is useful if the error was in the High Address. but forces the 
operator to re-enter earlier data if the error was in the Low Address or Data stage. 

3) The operator may enter any part of the sequence at any time simply by setting the 
Data switches with the desired data and pressing the corresponding button. This 
procedure allows the operator to make corrections at any point in the sequence. 

This type of procedure should always be preferred over one that does not allow immedi
ate error correction. has a variety of concluding steps. or enters data into the system 
without allowing the operator a final check. Any added complication in hardware or 
software will be justified in increased operator efficiency. You shou Id always prefer to 
let the microcomputer do the tedious work and recognize arbitrary sequences: it never 
gets tired and never forgets what was in the operating manual. 

A further helpful feature would be status lights that would define the meaning of the 
display. Three status lights. marked "High Address". "Low Address". and "Data". 
would let the operator ~now what had been entered without having to remember which 
button was pressed. The processor would have to monitor the sequence. but the added 
complication in software woulil simplify the operator's task. Clearly. three separate sets 
of displays plus the ability to examine a memory location would be even more helpful to 
the operator. 

We should note that, although we have emphasized human interaction, machine 
or system interaction has many of the same characteristics. The microprocessor 
should do the work. If complicating the microprocessor's task makes error recov
ery simple and the causes of failure obvious, the entire system will work better 
and be easier to maintain. Note that you should not wait until after the software has 
been completed to consider system use and maintenance: instead. you should include 
these factors in the problem definition stage. 
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A Verification Terminal 
Figure 13-4 is a block diagram of a simple credit-verification 
terminal. One input port derives data from a keyboard (see 
Figure 13-5): the other input port accepts verification data 
from a transmission line. One output port sends data to a set of 

DEFINING A 
VERIFICATION 
TERMINAL 

displays (see Figure 13-6): another sends the credit card number to the central 
computer. A third output port turns on one light whenever the terminal is ready to 
accept an inquiry. and another light when the operator sends the information. The 
"Busy" light turns off when the response returns. Clearly. the input and output of 
data will be more complex than in the previous case. although the processing is still 
simple. 

Additional displays may be useful to emphasize the meaning of the response. Many ter
minals use a green light for "Yes". a red light for "No". and a yellow light for "Consult 
Store Manager." Note that these lights will still have to be clearly marked with their 
meanings to allow for a color-blind operator. 

Let us first look at the keyboard input. This is. of course. 
different from the switch input. since the CPU must have some 
way of distinguishing new data. We will assume that each key 
closure provides a unique hexadecimal code (we can code 

VERIFICATION 
TERMINAL 
INPUTS 

each of the 12 keys into one digit! and a strobe. The program will have to recogn
ize the strobe and fetch the hexadecimal number that identifies the key. There is a 
time constraint. since the program cannot miss any data or strobes. The constraint is 
not serious. since keyboard entries will be at least several milliseconds apart. 

The transmission input similarly consists of a series of characters. each identified 
by a strobe (perhaps from a UART). The program will have to recognize each 
strobe and fetch the character. The data being sent across the transmission lines 
is usually organized into messages. A possible message format is: 

• Introductory characters. or header 

• Terminal destination address 

• Coded yes or no 

• Ending characters. or trailer 

The terminal will check the header. read the destination address. and see if the 
message is intended for it. If the message is for the terminal. the terminal accepts the 
data. The address could be (and often is) hard-wired into the terminal so that the ter
minal receives only messages intended for it. This approach simplifies the software at 
the cost of some flexibility. 

The output is also more complex than in the earlier examples. 
If the displays are mUltiplexed. the processor must not only 
send the data to the display port but must also direct the data 
to a particular display. We will need either a separate control port 

VERIFICATION 
TERMINAL 
OUTPUTS 

or a counter and decoder to handle this. Note that hardware blanking controls can 
blank leading zeros as long as the first digit in a multi-digit number is never zero. Soft
ware can also handle this task. Time constraints include the pulse length and frequency 
required to produce a continuous display for the operator. 

The communications output will consist of a series of characters with a particular 
format. The program will also have to consider the time required between charac
ters. A possible format for the output message is: 

• Header 
• Terminal address 

• Credit card number 

• Trailer 

13-12 



..-----I Keyboard 

r---i Input Port k';==J 
Keyboard Strobe 

Keyboard Data 

:=) Display ~ Output Pords) -V 

~ - XMIT 
CPU 

Output Port H -
Penpheral Ready Strobe 

To Central Computer 

'--- RCV 
Data Strobe 

r-- Input Port .... 
~ 

V 
From Central Comput8r 

L:) Status light 
Output Port 

BUSY Display 

READY D,splay 

Figure 13-4. Block Diagram of a Verification Terminal 

The digit keys allow digit entries. 

CLEAR deletes the entire entry. 

SEND transmits the entry to the central computer. 

Figure 13-5. Verification Terminal Keyboard 
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The display consists of ten 7-segment displays, which may be multiplexed, controlled by a shift 

register, or addressed separately. Two additional lights. READY and BUSY, are also present. 

Figure 13-6. Verification Terminal Display 

A central communications computer may poll the terminals. checking for data 
ready to be sent. 

The processing in this system involves many new tasks. such as: 

• Identifying the control keys by number and performing the proper actions 

• Adding the header. terminal address. and trailer to the outgoing message 

• Recognizing the header and trailer in the returning message 

• Checking the incoming terminal address 

Note that none of the tasks involve any complex arithmetic or any 
serious time or memory constraints. 

The number of possible errors in this system is. of course. 
much larger than in the earlier examples. Let us first consider 
the possible operator errors. These include: 

• Entering the credit card number incorrectly 

• Trying to send an incomplete credit card number 

VERIFICATION 
TERMINAL 
ERROR 
HANDLING 

• Trying to send another number while the central computer is processing one 

• Clearing non-existent entries 

Some of these errors can be easily handled by correctly structuring the program. For ex
ample. the program should not accept the Send key until the credit card number has 
been completely entered. and it should ignore any additional keyboard entries until the 
response comes back from the central computer. Note that the operator will know that 
the entry has not been sent. since the Busy light will not go on. The operator will also 
know when the keyboard has been locked out (the program is ignoring keyboard en
tries). since entries will not appear on the display and the Ready light will be off. 
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Incorrect entries are an obvious problem. If the operator recog
nizes an error. he can use the Clear key to make corrections. The 
operator would probably find it more convenient to have two Clear 
keys. one that cleared the most recent key and one that cleared 

CORRECTING 
KEYBOARD 
ERRORS 

the entire entry. This would allow both for the situation in which the operator recog
nizes the error immediately and for the situation in which the operator recognizes the 
error late in the procedure. The operator should be able to correct errors immediately 
and have to repeat as few keys as possible. The operator will. however. make a certain 
number of errors without recognizing them. Most credit card numbers include a self
checking digit: the terminal could check the number before permitting it to be sent to 
the central computer. This step would save the central computer from wasting precious 
processing time checking the number. 

This requires. however. that the terminal have some way of informing the operator of 
the error. perhaps by flashing one of the disp·lays or by providing some other special in
dicator that the operator is sure to notice. 

Still another problem is how the operator knows that an entry has been lost or pro
cessed incorrectly. Some terminals simply unlock after a maximum time delay. The 
operator notes that the Busy light has gone off without an answer being received. The 
operator is then expected to try the entry again. After one or two retries. the operator 
should report the failure to supervisory personnel. 

Many equipment failures are also possible. Besides the displays. keyboard. and 
processor. there now exist the problems of communications errors or failures and 
central computer failures. 

The data transmission will probably have to include error checking and correcting pro
cedures. Some possibilities are: 

1) Parity provides an error detection facility but no correction 
mechanism. The receiver will need some way of request
ing retransmission. and the sender will have to save a copy 
of the data until proper reception is acknowledged. Parity 
is. however. very simple to implement. 

CORRECTING 
TRANSMISSION 
ERRORS 

2) Short messages may use more elaborate schemes. For example. the yes/no 
response to the terminal could be coded so as to provide error detection and cor
rection capability. 

3) An acknowledgement and a limited number of retries could trigger an indicator 
that would inform the operator of a communications failure (inability to transfer a 
message without errors) or central computer failure (no response at all to the 
message wi.thin a certain period of time!. Such a scheme. along with the Lamp 
Test. would allow simple failure diagnosis. 

A communications or central computer failure indicator should also "unlock" the ter
minal. i.e .. allow it to accept another entry. This is necessary if the terminal will not ac
cept entries while a verification is in progress. The terminal may also unlock after a cer
tain maximum time delay. Certain entries could be reserved for diagnostics; i.e .. certain 
credit card numbers could be used to check the internal operation of the terminal and 
test the displays. 
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REVIEW OF PROBLEM DEFINITION 
Problem definition is as important a part of software development as it is of any 
other engineering task. Note that it does not require any programming or 
knowledge of the computer; rather, it is based on an understanding of the system 
and sound engineering judgment. Microprocessors can offer flexibility that the 
designer can use to provide a range of features which were not previously availa
ble. 

Problem definition is independent of any particular computer, computer language, 
or development system. It should, however, provide guidelines as to what type or 
speed of computer the application will require and what kind of hard
ware/software trade-offs the designer can make. The problem definition stage is 
in fact independent of whether or not a computer is used at all, although a 
knowledge of the capabilities of the computer can help the designer in suggesting 
possible implementations of procedures. 
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PROGRAM DESIGN 

Program design is the stage in which the problem definition is formulated as a pro
gram. If the program is small and simple. this stage may involve little more than 
the writing of a one-page flowchart. If the program is larger or more complex. the 
designer should consider more elaborate methods 

We will discuss flowcharting. modular programming. structured programming. and 
top-down design. We will try to indicate the reasoning behind these methods. and 
their advantages and disadvantages. We will not. however, advocate any particular 
method since there is no evidence that one method is always superior to all others. You 
should remember that the goal is to produce a good working system, not to follow 
religiously the tenets of one methodology or another. 

All the methodologies do, however. have some obvious princi
ples in common. Many of these are the same principles that apply 
to any kind of design, such as: 

1) Proceed in small steps. Do not try to do too much at one 
time. 

BASIC 
PRINCIPLES 
OF PROGRAM 
DESIGN 

2) Divide large jobs into small. logically separate tasks. Make the sub-tasks as inde
pendent of one another as possible, so that they can be tested separately and so 
that changes can be made in one without affecting the others. 

3) Keep the flow of control as simple as possible so as to make it easier to find errors. 

4) Use pictorial or graphic descriptions as much as possible. They are easier to 
visualize than word descriptions. This is the great advantage of flowcharts. 

5) Emphasize clarity and simplicity at first. You can improve performance (if neces
sary) once the system is working. 

6) Proceed in a thorough and systematic manner. Use checklists and standard pro
cedures. 

7) Do not tempt fate. Either do not use methods that you are not sure of. or use them 
very carefully. Watch for situations that might cause confusion. and clarify them 
as soon as possible. 

8) Keep in mind that the system must be debugged, tested and maintained. Plan for 
these later stages. 

9) Use simple and consistent terminology and methods. Repetitiveness is no fault in 
program design. nor is complexity a virtue. 

10) Have your design completely formulated before you start coding. Resist the 
temptation to start writing down instructions: it makes no more sense than mak
ing parts lists or laying out circuit boards before you know exactly what will be in 
the system. 

11) Be particularly careful of factors that may change. Make the implementation of 
likely changes as simple as possible. 
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FLOWCHARTING 
Flowcharting is certainly the best-known of all program design methods. Programming 
textbooks describe how programmers first write complete flowcharts and then start 
writing the actual program. In fact. few programmers have ever worked this way. and 
flowcharting has often been more of a joke or a nuisance to programmers than a design 
method. We will try to describe both the advantages and disadvantages of flowcharts. 
and show the place of this technique in program design. 

The basic advantage of the flowchart is that it is a pictorial ADVANTAGES OF 
representation. People find such representations much more FLOWCHARTING 
meaningful than written descriptions. The designer can visual-
ize the whole system and see the relationships of the various parts. Logical errors and 
inconsistencies often stand out instead of being hidden in a printed page. At its best. 
the flowchart is a picture 'of the entire system. 

Some of the more specific advantages of flowcharts are: 

1) Standard symbols exist (see Figure 13-7) so that flowcharting forms are widely 
recognized. 

2) Flowcharts can be understood by someone without a programming background. 

3) Flowcharts can be used to divide the entire project into sub-tasks. The flowchart 
can then be examined to measure overall progress. 

4) Flowcharts show the sequence of operations and can therefore aid in locating the 
sou rce of errors. 

5) Flowcharting is widely used in other areas besides programming. 

6) There are many tools available to aid in flowcharting. including programmer's 
templates and automated drawing packages. 

These advantages are all important. There is no question that 
flowcharting will continue to be widely used. But we should 
note some of the disadvantages of flowcharting as a pro
gram design method. e.g.: 

DISADVANTAGES 
OF 
FLOWCHARTING 

1) Flowcharts are difficult to design. draw. or change in all except the simplest situa-
tions. 

2) There is no easy way to debug or test a flowchart. 

3) Flowcharts tend to become cluttered. Designers find it difficult to balance between 
the amount of detail needed to make the flowchart useful and the amount that 
makes the flowchart little better than a program listing. 

4) Flowcharts show only the program organization. They do not show the organization 
of the data or the structure of the input/output modu les. 

5) Flowcharts do not help with hardware or timing problems or give hints as to where 
these problems might occur. 

6) Flowcharts allow for highly unstructured design. Lines and arrows backtracking 
and looping all over the chart are the antithesis of good structured design princi
ples. 

Thus. flowcharting is a helpful technique that you should not try to extend too far. 
Flowcharts are useful as program documentation. since they have standard forms 
and are comprehensible to non-programmers. As a design tool. however. flowcharts 
cannot provide much more than a starting outline: the programmer cannot debug a 
detailed flowchart and the flowchart is often more difficult to design than the program 
itself. 
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EXAMPLES 
Response to a Switch 
This simple task. in which a single switch turns on a light 
for one second. is easy to flowchart. In fact. such tasks are 
typical examples for flowcharting books. although they form a 
small part of most systems. The data structure here is so simple 
that it can be safely ignored. 

FLOWCHARTING 
SWITCH AND 
LIGHT SYSTEM 

Figure 13-8 is the flowchart. There is little difficulty in deciding on the amount of 
detail required. The flowchart gives a straightforward picture of the procedure. which 
anyone could understand. 

Note that the most useful flowcharts may ignore program variables and ask questions 
directly. Of course. compromises are often necessary here. Two versions of the 
flowchart are sometimes helpful- one general version in layman's language. 
which will be useful to non-programmers. and one programmer's version in terms 
of the program variables. which will be useful to other programmers. 

A third type of flowchart. a data flowchart. may also be 
helpful. This flowchart serves as a cross-reference for the other 
flowcharts. since it shows how the program handles a particular 

DATA 
FLOWCHARTS 

type of data. Ordinary flowcharts show how the program proceeds. handling different 
types of data at different points. Data flowcharts. on the other hand. show how particu
lar types of data move through the system. passing from one part of the program to 
another. Such flowcharts are very useful in debugging and maintenance. since errors 
most often show up as a particular type of data being handled incorrectly. 
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Figure 13-8. Flowchart of One-Second Response to a Switch 
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The Switch-Based Memory Loader 
This system (see Figure 13-3) is considerably more complex 
than the previous example'. and involves many more decisions. 
The flowchart (see Figure 13-9) is more difficult to write 
and is not as straightforward as the previous example. In 
this example. we face the problem that there is no way to 
debug or test the flowchart. 

FLOWCHARTING 
THE 
SWITCH-BASED 
MEMORY LOADER 

The flowchart in Figure 13-9 includes the improvements we suggested as part of the 
problem definition. Clearly. this flowchart is beginning to get cluttered and lose its 
advantages over a written description. Adding other features that define the mean
ing of the entry with status lights and allow the operator to check entries after comple
tion would make the flowchart even more complex. Writing the complete flowchart 
from scratch cou Id qu ickly become a formidable task. However. once the program has 
been written. the flowchart is useful as documentation. 

13-22 



High byte of 
Address = 

Switches 

Lights = Switches 

Wait 

debounce 
time 

No 

Low byte of 

Address = 
Switches 

lights = Switches 

Wait 
debounce 

time 

No 

Data = SW'itches 

Lights ~ Switches 

Store Data 

at Address 

Wait 

debounce 
time 

Woo 
debounce 

time 

Figure 13-9. Flowchart of Switch-Based Memory Loader 
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The Credit-Verification Terminal 
In this application (see Figures 13-4 through 13-6), the 
flowchart will be even more complex than in the switch-based 
memory loader case. Here, the best idea is to flowchart sec
tions separately so that the flowcharts remain manageable. 
However, the presence of data structures (as in the mUlti-digit 
display and the messages) will make the gap between 
flowchart and program much wider. 

FLOWCHARTING 
THE CREDIT 
VERIFICATION 

FLOWCHARTING 
SECTIONS 

Let us look at some of the sections. Figure 13-10 shows the keyboard entry process 
for the digit keys. The program must fetch the data after each strobe and place the 
digit into the display array if there is room for it. If there are already ten digits in the ar
ray, the program simply ignores the entry. 

The actual program will have to handle the displays at the same time. Note that either 
software or hardware must de-activate the keyboard strobe after the processor reads a 
digit. 

Clear Entry Array 
Key Pointer -- Start 

of Entry Array 
Key Counter - 0 

Key 0;0; Keyboard 

Input Data 

(Key Pointer) '"" Key 

Key POinter = 
Key POinter + 1 

Key Counter "-' 
Key Counter + 1 

Figure 13-10. Flowchart of Keyboard Entry Process 
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Key = Keyboard 

Input Data 

Figure 13-11. Flowchart of Keyboard Entry Process with Send Key 

Figure 13-11 adds the Send key. This key. of course. is optional. The terminal could 
just send the data as soon as the operator enters a complete number. However. that 
procedure would not give the operator a chance to check the entire entry. The 
flowchart with the Send key is more complex because there are two alternatives. 

1) If the operator has not entered ten digits. the program must ignore the Send key 
and place any other key into the entry. 

2) If the operator has entered ten digits. the program must respond to the Send key by 
transferring control to the Send routine. and ignore all other keys. 

Note that the flowchart has become much more difficult to organize and to follow. 
There is also no obvious way to check the flowchart. 
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Figure 13-12. Flowchart of Keyboard Entry Process with Function Keys 

Figure 13-12 shows the flowchart of the keyboard entry process with all the func
tion keys. In this example. the flow of control is not simple. Clearly. some written 
description is necessary. The organization and layout of complex flowcharts requires 
careful planning. We have followed the process of adding features to the flowchart one 
at a time. but this still results in a large amount of redrawing. Again we should remem
ber that throughout the keyboard entry process. the program must also refresh the dis
plays if they are multiplexed and not controlled by shift registers or other hardware. 
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Figure 13-13. Flowchart of Receive Routine 
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Figure 13-13 is the flowchart of a receive routine. We assume that the serial/parallel 
conversion and error checking are done in hardWare (e.g .. by a UART). The processor 
must: 

1) Look for the header (we assume that it is a single character). 

2) Read the destination address (we assume that it is three characters long) and see if 
the message is meant for this terminal: i.e .. if the three characters agree with the 
terminal address. 

3) Wait for the trailer character. 

4) If the message is meant for the terminal. turn off the Busy light and go to Display 
Answer routine. 

5) In the event of any errors. request retransmission by going to RTRANS routine. 

This routine involves a large number of decisions. and the flowchart is neither simple 
nor obvious. 

Clearly. we have come a long way from the simple flowchart (Figure 13-8) of the 
first example. A complete set of flowcharts for the transaction terminal would be 
a major task. It would consist of several interrelated charts with complex logic. and 
would require a large amount of effort. Such an effort would be just as difficult as writ
ing a preliminary program. and not as useful. since you could not check it on the com
puter. 
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MODULAR PROGRAMMING 
Once programs become large and complex. flowcharting is no longer a satisfactory 
design tool. However. the problem definition and the flowchart can give you some idea 
as to how to divide the program into reasonable sub-tasks. The division of the entire 
program into sub-tasks or modules is called "modular programming." Clearly. most 
of the programs we presented in earlier chapters would typically be modules in a large 
system program. The problems that the designer faces in modular programming are 
how to divide the program into modules and how to put the modules together. 

The advantages of modular programming are obvious: 

1) A single module is easier to write. debug. and test than an 
entire program. 

ADVANTAGES 
OF MODULAR 
PROGRAMMING 

2) A module is likely to be useful in many places and in other programs. particularly if 
it is reasonably general and performs a common task. You can build up a library of 
standard modules. 

3) Modular programming allows the programmer to divide tasks and use previously 
written programs. 

4) Changes can be incorporated into one module rather than into the entire system. 

5) Errors can often be isolated and then attributed to a single module. 

6) Modular programming gives an idea of how much progress has been made and 
how much of the work is left. 

The idea of modular programming is such an obvious one 
that its disadvantages are often ignored. These include: 

1) Fitting the modules together can be a major problem. par
ticularly if different people write the modules. 

DISADVANTAGES 
OF MODULAR 
PROGRAMMING 

2) Modules require very careful documentation. since they may affect other parts of 
the program. such as data structures used by all the modules. 

3) Testing and debugging modules separately is difficult. since other modules may 
produce the data used by the module being debugged and still other modules may 
use the results. You may have to write special programs (called "drivers") just to 
produce sample data and test the programs. These drivers require extra program
ming effort that adds nothing to the system. 

4) Programs may be very difficult to modularize. If you modularize the program poorly. 
integration will be very difficult. since almost all errors and changes will involve 
several modules. 

5) Modular programs often require extra time and memory. since the separate 
modules may repeat functions. 

Therefore. while modular programming is certainly an improvement over trying to write 
the entire program from scratch. it does have some disadvantages as well. 

Important considerations include restricting the amount of information shared by 
modules, limiting design decisions that are subject to change to a single module 
and restricting the access of one module to another.3 

13-29 



An obvious problem is that there are no proven, 
systematic methods for modularizing programs. We 
should mention the following principles:4 

PRINCIPLES OF 
MODULARIZATION 

1) Modules that reference common data should be parts of the same overall module. 

2) Two modules in which the first uses or depends on the second. but not the reverse. 
shou Id be separate. 

3) A module that is used by more than one other module should be part of a different 
overall module than the others. 

4) Two modules in which the first is used by many other modules and the second is 
used by only a few other modules should be separate. 

5) Two modules whose frequencies of usage are significantly different should be part 
of different modules. 

6) The structure or organization of related data should be hidden within a single 
module. 

If a program is difficult to modularize, you may need to redefine the tasks that are 
involved. Too many special cases or too many variables that require special han
dling are typical signs of inadequate problem definition. 
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EXAMPLES 
Response to a Switch 
This simple program can be divided into two modules: 

Module 1 waits for the switch to be turned on and turns 
the light on in response. 

Module 2 provides the one-second delay. 

MOOULARIZING 
THE SWITCH 
AND LIGHT 
SYSTEM 

Module 1 is likely to be specific to the system. since it will depend on how the switch 
and light are attached. Module 2 will be generally useful. since many tasks require 
delays. Clearly. it would be advantageous to have a standard delay module that could 
provide delays of varying lengths. The module will require careful documentation so 
that you will know how to specify the length of the delay. how to call the module. and 
what registers and memory locations the module affects. 

A general version of Module 1 would be far less useful. since it would have to deal with 
different types and connections of switches and lights. 

You would probably find it simpler to write a module for a particular configuration of 
switches and lights rather than try to use a standard routine. Note the difference be
tween this situation and Module 2. 

The Switch-Based Memory Loader 
The switch-based memory loader is difficult to modularize, 
since all the programming tasks depend on the hardware 
configuration and the tasks are so simple that modules 
hardly seem worthwhile. The flowchart in Figure 13-9 sug
gests that one module might be the one that waits for the 
operator to press one of the three pushbuttons. 

Some other modules might be: 

MODULARIZING 
THE 
SWITCH- BASED 
MEMORY LOADER 

• A delay module that provides the delay required to debounce the switches 

• A switch and display module that reads the data from the switches and sends it to 
the displays 

• A Lamp Test module 

Highly system-dependent modules such as the last two are unlikely to be generally 
useful. This example is not one in which modular programming offers great advantages. 
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The Verification Terminal 
The verification terminal. on the other hand. lends itself very 
well to modular programming. The entire system can easily be 
divided into three main modules: 

• Keyboard and display module 

• Data transmission module 

• Data reception module 

MODULARIZING 
THE 
VERIFICATION 
TERMINAL 

A general keyboard and display module could handle many keyboard- and display
based systems. The sub-modules would perform such tasks as: 

• Recognizing a new keyboard entry and fetching the data 

• Clearing the array in response to a Clear key 

• Entering digits into storage 

• Looking for the terminator or Send key 

• Displaying the digits 

Although the key interpretations and the number of digits will vary. the basic entry. 
data storage. and data display processes will be the same for many programs. Such 
function keys as Clear would also be standard. Clearly. the designer must consider 
which modules will be useful in other applications. and pay careful attention to 
those modules. 

The data transmission module could also be divided into such sub-modules as: 

1) Adding the header character. 

2) Transmitting characters as the output line can handle them. 

3) Generating delay times between bits or characters. 

4) Adding the trailer character. 

5) Checking for transmission failures: i.e .. no acknowledgement or inability to 
transmit without errors. 

The data reception module could include sub-modules which: 

1) Look for the header character. 

2) Check the message destination address against the terminal address. 

3) Store and interpret the message. 

4) Look for the trailer character. 

5) Generate bit or character delays. 

Note here how important it is that each design decision (such as 
the bit rate. message format. or error-checking procedure) be im
plemented in only one module. A change in any of these decisions 
will then require changes only to that single module. The other 

INFORMATION 
HIDING 
PRINCIPLE 

modules should be written so that they are totally unaware of the values chosen or the 
methods used in the implementing module. An important concept here is the "infor
mation-hiding principle:'5 whereby modules share only information that is ab
solutely essential to getting the task done. Other information is hidden within a 
single module. 
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Error handling is a typical context in which this principle should be employed. When a 
module detects a lethal error. it should not try to recover: instead. it should inform the 
calling module of the error status and allow that module to decide how to proceed. The 
reason is that the lower level modu Ie often lacks sufficient information to establish 
recovery procedures. For example. suppose that the lower level module is one that ac
cepts numeric input from a user. This module expects a string of numeric digits termi
nated by a carriage return. Entry of a non-numeric character causes the module to ter
minate abnormally. Since the module does not know the context (i.e .. is the numeric 
string an operand. a line nurnber. an I/O unit number. or the length of a file?). it cannot 
decide how to handle an error. If the module always followed a single error recovery 
procedure. it would lose its generality and only be usable in those situations where that 
procedure was required. 
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REVIEW OF MODULAR PROGRAMMING 
Modular programming can be very helpful if you abide by 
the following rules: 

1) Use modules of 20 to 50 lines. Shorter modu les are 

RULES FOR 
MODULAR 
PROGRAMMING 

usually a waste of time, while longer modules are seldom general and may be dif
ficu It to integrate. 

2) Try to make modules reasonably general. Differentiate between common 
features like ASCII code or asynchronous transmission formats, which will be the 
same for many applications, and key identifications, number of displays, or number 
of characters in a message, which are likely to be unique to a particular application. 
Make the changing of the latter parameters simple. Major changes like different 
character codes should be handled by separate modules. 

3) Take extra time on modules like delays, display handlers, keyboard handlers, etc. 
that will be useful in other projects or in many different places in the present 
program. 

4) Try to keep modules as distinct and logically separate as possible. Restrict the 
flow of information between modules and implement each design decision in a 
single module. 

5) Do not try to modularize simple tasks where rewriting the entire task may be 
easier than assembling or modifying the module. 
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STRUCTURED PROGRAMMING 
How do you keep modules distinct and stop them from interacting? How do you 
write a program that has a clear sequence of operations so that you can isolate 
and correct errors? One answer is to use the methods known as "structured pro
gramming". whereby each part of the program consists of elements from a limited 
set of structures and each structure has a single entry and a single exit. 

Figure 13-14 shows a flowchart of an unstructured program. If an error occurs in 
Module 8. we have five possible sources for that error. Not only must we check each se
quence, but we also have to make sure that any changes made to correct the error do 
not affect any of the other sequences. The usual result is that debugging becomes like 
wrestling an octopus. Every time you think the situation is under control. there is 
another loose tentacle somewhere. 

The solution is to establish a clear sequence of operations so 
that you can isolate errors. 5uch a sequence uses single-entry, 
single-exit modules. The basic modules that are needed are: 

1) An ordinary sequence; i.e .. a linear structure in which 
statements or structures are executed consecutively. In 
the sequence: 

51 

52 

53 

BASIC 
STRUCTURES OF 
STRUCTURED 
PROGRAMMING 

the computer executes 51 first. 52 second, and 53 third. 51. 52, and 53 may be 
single instructions or entire programs. 

2) A conditional structure. 

The common one is "if C then 51 else 52." where C is a condition and 51 and 52 
are statements or sequences of statements. The computer executes 51 if C is true, 
and 52 if C is false. Figure 13-15 shows the logic of this structure. Note that the 
structure has a single entry and a single exit: there is no way to enter or leave 51 or 
52 other than through the structure. 

3) A loop structure. 

The common loop structure is "while C do 5," where C is a condition and 5 is a 
statement or sequence of statements. The computer checks C and executes 5 if C 
is true. This structure (see Figure 13-16) also has a single entry and a single exit. 
Note that the computer will not execute 5 at all if C is originally false. since the 
value of C is checked before 5 is executed. 

In most structured programming languages, an alternative looping construct is pro
vided. This construct is known as the do-until clause. Its basic structure is "do 5 until 
C", where C is a condition and 5 is a statement or sequence of statements. It is similar 
to the do-while construct except that the test of the looping condition C is performed at 
the end of the loop. This has the effect of guaranteeing that the loop is always executed 
at least once. This is illustrated by the flowchart in Figure 13-17. The common index
controlled or DO loop can be implemented as a special case of either of these two basic 
looping constructs. 
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Figure 13-14. Flowchart of an Unstructured Program 

S1 S2 

Figu re 13-15. Flowchart of the If-Then-Else Structu re 

13-36 



s 

Figure 13-16. Flowchart of the Do-While Structure 

s 

Figure 13-17. Flowchart of the Do-Until Structure 

4) A case structure. 

Although not a primitive structure like sequential. if-then-else. and do-while. the 
case structure is so commonly used that we include it here as an adjunct to the 
basic structure descriptions. The case structure is "case I of 50.51 .... Sn". where I 
is an index and SO. 51. ... Sn are statements or sequences of statements. If I is 
equal to zero then statement SO is executed. if I is equal to 1 then statement 51 is 
executed. etc. Only one of the n statements is executed. After its execution. control 
passes to the next sequential statement following the case statement group. If I is 
greater than n (j.e .. the number of statements in the case statement). then none of 
the statements in the case statement is executed. and control is passed directly to 
the next sequential statement following the case statement. This is illustrated by 
the flowchart in Figure 13-18. 
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Figure 13-18. Flowchart of the Case Structure 

Note the following features of structured programming: 

1) Only the three basic structures, and possibly a small 
number of auxiliary structures, are permitted. 

2) Structures may be nested to any level of complexity so that any structure 
can, in turn, contain any of the structures. 

3) Each structure has a single entry and a single exit. 

Some examples of the conditional structure illustrated in 
Figure 13-15 are: 

1) S2 included: 

if X ~ 0 then NPOS = NPOS + 1 
else NNEG = NNEG + 1 

Both S1 and S2 are single statements. 

2) S2 omitted: 

if X i=O then Y = 1/X 

EXAMPLES 
OF 
STRUCTURES 

Here no action is taken if C (X i=O) is false. S2 and "else" can be omitted in this case. 

13-38 



Some examples of the loop structure illustrated in Figure 13-16 are: 

1) Form the sum of integers from 1 to N. 

1=0 
SUM =0 
do while 1< N 

1=1+ 1 
SUM = SUM + I 

end 

The computer executes the loop as long as I < N. If N = O. the program within the "do
while" is not executed at all. 

2) Count characters in an array SENTENCE until you find an ASCII period. 

NCHAR = 0 
do while SENTENCE (NCHAR) f- PERIOD 

NCHAR = NCHAR + 1 
end 

The computer executes the loop as long as the character in SENTENCE is not an ASCII 
period. The cou nt is zero if the first character is a period. 

The advantages of structured programming are: 

1) The sequence of operations is simple to trace. This allows 
you to test and debug easily. 

2) The number of structures is limited and the terminology is 
standardized. 

3) The structures can easily be made into modules. 

ADVANTAGES OF 
STRUCTURED 
PROGRAMMING 

4) Theoreticians have proved that the given set of structures is complete; that is. all 
programs can be written in terms of the three structures. 

5) The structured version of a program is partly self-documenting and fairly easy to 
read. 

6) Structured programs are easy to describe with program outlines. 

7) Structured programming has been shown in practice to increase programmer pro-
ductivity. 

Structured programming basically forces much more discipline on the programmer 
than does modular programming. The result is more systematic and better
organized programs. 

The disadvantages of structured programming are: 

1) Only a few high-level languages (e.g .. PL/M. PASCAL) will 
directly accept the structures. The programmer therefore 
has to go through an extra translation stage to convert the 
structures to assembly language code. The structured ver-

DISADVANTAGES 
OF 
STRUCTURED 
PROGRAMMING 

sion of the program. however. is often useful as documentation. 

2) Structured programs often execute more slowly and use more memory than 
unstructured programs. 

3) Limiting the structures to the three basic forms makes some tasks very awkward to 
perform. The completeness of the structures only means that all programs can be 
implemented with them; it does not mean that a given program can be imple
mented efficiently or conveniently. 

4) The standard structures are often quite confusing. e.g .. nested "if-then-else" struc
tures may be very difficult to read. since there may be no clear indication of where 
inner structures end. A series of nested "do-while" loops can also be difficult to read. 
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5) Structured programs consider only the sequence of program operations, not the 
flow of data. Therefore, the structures may handle data awkwardly. 

6) Few programmers are accustomed to structured programming. Many find the stan-
dard structures awkward and restrictive. 

We are neither advocating nor discouraging the use of structured programming. It 
is one way of systematizing program design. In general. structured programming 
is most useful in the following situations: 

• Larger programs, perhaps exceeding 1000 instructions. 

• Applications in which memory usage is not critical. 

• Low-volume applications where software development costs, 
particularly testing and debugging, are important factors. 

WHEN TO USE 
STRUCTURED 
PROGRAMMING 

• Applications involving string manipulation, process control. or other algorithms ra
ther than simple bit manipulations. 

In the future. we expect the cost of memory to decrease. the average size of 
microprocessor programs to increase. and the cost of software development to in
crease. Therefore. methods like structured programming. which decrease soft
ware development costs for larger programs but use more memory. will become 
more valuable, 

Just because structured programming concepts are usually expressed in high-level 
languages does not mean that structured programming is not applicable to assembly 
language programming. To the contrary, the assembly language programmer, with 
the total freedom of expression that assembly level programming allows, needs 
the structuring concepts provided by structured programming. Creating modules 
with single entry and exit points, using simple control structures and keeping the 
complexity of each module minimal makes assembly language coding more effi
cient, 
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EXAMPLES 
Response to a Switch 
The structured version of this example is: 

SWITCH = OFF 
do while SWITCH = OFF 

READ SWITCH 
end 

LIGHT = ON 
DELAY 1 
LIGHT = OFF 

STRUCTURED 
PROGRAMMING 
IN THE 
SWITCH AND 
LIGHT SYSTEM 

ON and OFF must have the proper definitions for the switch and light. We assume that 
DELAY is a module that provides a delay given by its parameter in seconds. 

A statement in a structured program may actually be a subroutine. However. in order to 
conform to the rules of structured programming. the subroutine cannot have any exits 
other than the one that returns control to the main program. 

Since "do-while" checks the condition before executing the loop. we set the variable 
SWITCH to OFF before starting. The structured program is straightforward. readable. 
and easy to check by hand. However. it would probably require somewhat more memo
ry than an unstructured program. which would not have to initialize SWITCH and could 
combine the reading and checking procedures. . 
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The Switch-Based Memory Loader 
The switch-based memory loader is a more complex struc
tured programming problem. We may implement the 
flowchart of Figure 13-9 as follows (a • indicates a com
ment): 

• INITIALIZE VARIABLES 

HIADDRESS = 0 
LOADDRESS = 0 

STRUCTURED 
PROGRAMMING 
FOR THE 
SWITCH-BASED 
MEMORY LOADER 

• THIS PROGRAM USES A DO-WHILE CONSTRUCT WITH NO CONDITION 
• (CALLED SIMPLY DO-FOREVER!' THEREFORE. THE SYSTEM CONTINUALLY 
• EXECUTES THE PROGRAM CONTAINED IN THIS DO-WHILE LOOP 

do forever 

• TEST FOR HIADDRESS BUTTON; PERFORM THE REOUIRED PROCESSING 
• IF IT IS ON. 

if HIADDRBUTTON = 1 then 
begin 

HIADDRESS = SWITCHES 
LIGHTS = SWITCHES 
do 

DELAY (DEBOUNCE TIME) 
until HIADDRBUTTON ~ 1 

end 

• TEST FOR LOADDRESS BUTTON; PERFORM LOW ADDRESS PROCESSING 
• IF IT IS ON. 

if LOADDRBUTTON = 1 then 
begin 

LOADDRESS = SWITCHES 
LIGHTS = SWITCHES 
do 

DELAY (DEBOUNCE TIME) 
until LOADDRBUTTON ~ 1 

end 

• TEST FOR DATABUTTON. AND STORE DATA INTO MEMORY 
• IF IT IS ON. 

end 

if DATABUTTON = 1 then 
begin 

DATA = SWITCHES 
LIGHTS = SWITCHES 
(HIADDRESS. LOADDRESS) = DATA 
do 

DELAY (DEBOUNCE TIME) 
until DATABUTTON ~ 1 

end 
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• THE LAST END ABOVE TERMINATES THE 
do forever LOOP 

Structured programs are not easy to write. but they can give a great deal of insight into 
the overall program logic. You can check the logic of the structured program by hand 
before writing any actual code. 
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The Credit-Verification Terminal 
Let us look at the keyboard entry for the transaction terminal. 
We will assume that the display array is ENTRY, the keyboard 
strobe is KEYSTROBE, and the keyboard data is KEYIN. The struc
tured program without the function keys is: 

NKEYS = 10 

• CLEAR ENTRY TO START 

do while NKEYS > 0 
NKEYS = NKEYS - 1 
ENTRY(NKEYS) = 0 

end 

• FETCH A COMPLETE ENTRY FROM KEYBOARD 

do while NKEYS < 10 
if KEYSTROBE = ACTIVE then 

begin 

end 
end 

KEYSTROBE = INACTIVE 
ENTRY(NKEYS) = KEYIN 
NKEYS = NKEYS + 1 

STRUCTURED 
PROGRAM FOR 
THE CREDIT
VERI FICA nON 
TERMINAL 

STRUCTURED 
KEYBOARD 
ROUTINE 

Adding the SEND key means that the program must ignore extra digits after it has 
a complete entry. and must ignore the SEND key until it has a complete entry. The 
structured program is: 

NKEYS = 10 

• CLEAR ENTRY TO START 

do while NKEYS > 0 
NKEYS = NKEYS - 1 
ENTRY(NKEYS) = 0 

end 

• WAIT FOR COMPLETE ENTRY FOLLOWED BY SEND KEY 

do while KEY #oSEND OR NKEYS #0 10 
if KEYSTROBE = ACTIVE then 

end 

begin 
KEYSTROBE = INACTIVE 
KEY = KEYIN 
if NKEYS #0 10 AND KEY #0 SEND then 

begin 

end 

ENTRY(NKEYS) = KEY 
NKEYS = NKEYS + 1 

end 
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Note the following features of this structured program. 

1) The second if-then is nested within the first one. since keys are only entered after a 
strobe is recognized. If the second if-then were on the same level as the first. a 
single key could fill the entry. since its value would be entered into the array during 
each iteration of the do-while loop. 

2) KEY need not be defined initially. since NKEYS is set to zero as part of the clearing 
of the entry. 

Adding the CLEAR key allows the program to clear the entry originally by simulat
ing the pressing of CLEAR; i.e .. by setting NKEYS to 10 and KEY to CLEAR before 
starting. The structured program must also only clear digits that have previously been 
filled. The new structured program is: 

• SIMULATE COMPLETE CLEARING 

NKEYS = 10 
KEY = CLEAR 

• WAIT FOR COMPLETE ENTRY AND SEND KEY 

do while KEY -fo SEND OR NKEYS -fo 10 

• CLEAR WHOLE ENTRY IF CLEAR KEY STRUCK 

if KEY = CLEAR then 
begin 

KEY =0 
do while NKEYS > 0 

NKEYS = NKEYS - 1 
ENTRY(NKEYS) = 0 

end 
end 

• GET DIGIT IF ENTRY INCOMPLETE 

end 

if KEYSTROBE = INACTIVE then 
begin 

KEYSTROBE = INACTIVE 
KEY = KEYIN 
if KEY < 10 AND NKEYS ~ 10 then 

begin 

end 

ENTRY(NKEYS) = KEY 
NKEYS = NKEYS + 1 

end 

Note that the program resets KEY to zero after clearing the array. so that the operation is 
not repeated. 
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We can similarly build a structured program for the receive 
routine. An initial program could just look for the header and 
trailer characters. We will assume that RSTB is the indicator that a 
character is ready. The structured program is: 

• CLEAR HEADER FLAG TO START 

HFLAG = 0 

• WAIT FOR HEADER AND TRAILER 

do while HFLAG = 0 OR CHAR ofoTRAILER 

• GET CHARACTER IF READY. LOOK FOR HEADER 

if RSTB = ACTIVE then 
begin 

RSTB = INACTIVE 
CHAR = INPUT 
if CHAR = HEADER then HFLAG = 1 

end 

STRUCTURED 
RECEIVE 
ROUTINE 

Now we can add the section that checks the message address against the three 
digits in TERMINAL ADDRESS (TERMADDR). If any of the corresponding digits 
are not equal. the ADDRESS MATCH flag (ADDRMATCH) is set to 1. 

• CLEAR HEADER FLAG. ADDRESS MATCH FLAG. ADDRESS COUNTER TO START 

HFLAG = 0 
ADDRMATCH = 0 
ADDRCTR = 0 

• WAIT FOR HEADER. DESTINATION ADDRESS AND TRAILER 

do while HFLAG = 0 OR CHAR ofoTRAILER OR ADDRCTR 0f03 

• GET CHARACTER IF READY 

if RSTB = ACTIVE then 
begin 

RSTB = INACTIVE 
CHAR = INPUT 

end 

• CHECK FOR TERMINAL ADDRESS AND HEADER 

end 

if HFLAG = 1 AND ADDRCTR 0f03 then 
begin 

ADDRMATCH = 1 
ADDRCTR = ADDRCTR + 1 

end 
if CHAR = HEADER then HFLAG = 1 
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The program must now wait for a header. a three-digit identification code. and a trailer. 
You must be careful of what happens during the iteration when the program finds the 
header. and of what happens if an erroneous identification code character is the same 
as the trailer. 

A further addition can store the message in MESSG. NMESS is the number of 
characters in the message; if it is not zero at the end. the program knows that the 
terminal has received a valid message. We have not tried to minimize the logic ex
pressions in this program. 

• CLEAR FLAGS. COUNTERS TO START 

HFLAG = 0 
ADDRMATCH = 0 
ADDRCTR = 0 
NMESS = 0 

• WAIT FOR HEADER. DESTINATION ADDRESS AND TRAILER 

do while HFLAG = 0 OR CHAR foTRAILER or ADDRCTR fo3 

·GETCHARACTER IF READY 

if RSTB = ACTIVE then 
begin 

RSTB = INACTIVE 
CHAR = INPUT 

end 

• READ MESSAGE IF DESTINATION ADDRESS = TERMINAL ADDRESS 

if HFLAG = 1 AND ADDRCTR = 3 then 
if ADDRMATCH = 0 and CHAR fo TRAILER then 

begin 
MESSG(NMESS) = CHAR 
NMESS = NMESS + 1 

end 

• CHECK FOR TERMINAL ADDRESS 

if HFLAG = 1 AND ADDRCTR f. 3 then 
if CHAR fo TERMADDR(ADDRCTR) then 

begin 
ADDRMA TCH = 1 
ADDRCTR = ADDRCTR + 1 

end 

• LOOK FOR HEADER 

if CHAR = HEADER then HFLAG = 1 
end 
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The program checks for the identification code only if it found a header during a pre
vious iteration. It accepts the message only if it has previously found a header and a 
complete. matching destination address. The program must work properly during the 
iterations when it finds the header. the trailer and the last digit of !he destination ad
dress. It must not try to match the header with the terminal address or place the trailer 
or the final digit of the destination address in the message. You might try adding the 
rest of the logic from the flowchart (Figure 13-13) to the structured program. Note 
that the order of operations is often critical. You must be sure that the program 
does not complete one phase and start the next one during the same iteration. 
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REVIEW OF STHUCTURED PROGRAMMING 
Structured programming brings discipline to program design. It forces you to limit 
the types of structures you use and the sequence of operations. It provides single
entry, single-exit structures, which you can check for logical accuracy. Structured 
programming often makes the designer aware of inconsistencies or possible com
binations of inputs. Structured programming is not a cure-all, but it does bring 
some order into a process that can be chaotic. The structured program should also 
aid in debugging, testing, and documentation. 

Structured programming is not simple. The programmer must not only define the 
problem adequately, but must also work through the logic carefully. This is 
tedious and difficult, but it results in a clearly written, working program. 

The particular structures we have presented are not ideal and 
are often awkward. In addition, it can be difficult to dis
tinguish where one structure ends and another begins, partic
ularly if they are nested. Theorists may provide better struc

TERMINATORS 
FOR 
STRUCTURES 

tures in the future, or designers may wish to add some of their own. Some kind of 
terminator for each structure seems necessary. since indenting does not always clarify 
the situation. "End" is a logical terminator for the "do-while" loop. There is no obvious 
terminator. however. for the "if-then-else" statement; some theorists have suggested 
"endif" or "fi" ("if" backwardsl. but these are both awkward and detract from the 
readability of the program. 

We suggest the following rules for applying structured pro
gramming: 

1) Begin by writing a basic flowchart to help define the 
logic of the program. 

RULES FOR 
STRUCTURED 
PROGRAMMING 

2) Start with the "sequential," "if-then-else," and "do-while" constructs. They 
are known to be a complete set. i.e .. any program can be written in terms of these 
structures. 

3) Indent each level a few spaces from the previous level. so that you will know 
which statements belong where. 

4) Use terminators for each structure: e.g .. "end" for the "do-while" and "end if" or 
"fi" for the "if-then-else". The terminators plus the indentation should make the 
program reasonably clear. 

5) Emphasize simplicity and readability. Leave lots of spaces. use meaningful 
names. and make expressions as clear as possible. Do not try to minimize the logic 
at the cost of clarity. 

6) Comment the program in an organized manner 

7) Check the logic. Try all the extreme cases or special conditions and a few sample 
cases. Any logical errors you find at this level will not plague you later 
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TOP-DOWN DESIGN 
The remaining problem is how to check and integrate modules 
or structures. Certainly we want to divide a large task into 
sub-tasks. But how do we check the sub-tasks in isolation and 
put them together? The standard procedure, called "bottom-up design," requires 
extra work in testing and debugging and leaves the entire integration task to the 
end. What we need is a method that allows testing and debugging in the actual 
program environment and modularizes system integration. 

This method is "top-down design." Here we start by writing 
the overall supervisor program. We replace the undefined sub
programs by program "stubs," temporary programs that may 
either record the entry, provide the answer to a selected test 
problem, or do nothing. We then test the supervisor program 
to see that its logic is correct. 

We proceed by expanding the stubs. Each stub will often con
tain sub-tasks, which we will temporarily represent as stubs. 
This process of expansion, debugging, and testing continues 
until all the stubs are replaced by working programs. Note that 
testing and integration occur at each level. rather than all at the 
end. No special driver or data generation programs are necessary. 
We get a clear idea of exactly where we are in the design. Top-
down design assumes modular programming, and is compati-
ble with structured programming as well. 

The disadvantages of top-down design are: 

1) The overall design may not mesh well with system hard-

2) 

3) 

ware. 

It may not take good advantage of existing software. 

Stubs may be difficult to write. particularly if they must 
work correctly in several different places. 

TOP-DOWN 
DESIGN 
METHODS 

STUBS 

EXPANDING 
STUBS 

ADVANTAGES 
OF 
TOP-DOWN 
DESIGN 

DISADVANTAGES 
OF 
TOP-DOWN 
DESIGN 

4) Top-down design may not result in generally useful modules. 
5) Errors at the top level can have catastrophic effects. whereas errors in bottom-up 

design are usually limited to a particular module 

In large programming projects, top-down design has been shown to greatly im
prove programmer productivity. However, almost all of these projects have used 
some bottom-up design in cases where the top-down method would have 
resulted in a large amount of extra work. 

Top-down design is a useful tool that should not be followed to extremes. It pro
vides the same discipline for system testing and integration that structured pro
gramming provides for module design. The method, however, has more general 
applicability, since it does not assume the use of programmed logic. However, 
top-down design may not result in the most efficient implementation. 
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EXAMPLES 
Response to a Switch 
The first structured programming example actually demon
strates top-down design as well. The program was: 

SWITCH = OFF 
do while SWITCH = OFF 

READ SWITCH 
end 
LIGHT = ON 
DELAY 1 
LIGHT = OFF 

TOP-DOWN 
DESIGN 
OF SWITCH 
AND LIGHT 
SYSTEM 

These statements are really stubs, since none of them is fully defined. For exam
ple. what does READ SWITCH mean? If the switch were one bit of input port SPORT. it 
really means: 

SWITCH = SPORT AND SMASK 

where SMASK has a '1' bit in the appropriate position. The masking may. of course. be 
implemented with a Bit Test instruction. 

Similarly. DELAY 1 actually means (if the processor itself provides the delay): 

REG = COUNT 
do while REG ;b 0 

REG = REG - 1 
end 

COUNT is the appropriate number to provide a one-second delay. The expanded ver
sion of the program is: 

SWITCH =0 
do while SWITCH = 0 

SWITCH = SPORT AND MASK 
end 
LIGHT = ON 
REG = COUNT 
do while REG ;b 0 

REG = REG - 1 
end 
LIGHT = NOT (LIGHT) 

Certainly this program is more explicit, and could more easily be translated into 
actual instructions or statements. 
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The Switch-Based Memory Loader 
This example is more complex than the first example. so we 
must proceed systematically. Here again. the structured pro
gram contains stubs. 

For example. if the HIGH ADDRESS button is one bit of input 
port CPORT. "if HIADDRBUTTON =," really means: 

,) I nput from CPORT 

2) Complement 

3) Logical AND with HAM ASK 

TOP-DOWN 
DESIGN OF 
SWITCH-BASED 
MEMORY 
LOADER 

where HAMASK has a '1' in the appropriate bit pOSition and 'Os' elsewhere. Similarly 
the condition "if DATABUTTON =," really means: 

1) Input from CPORT 

2) Complement 

3) Logical AND with DAMASK 

So. the initial stubs could just assign values to the buttons. e.g .. 

HIADDRBUTTON = 0 
LOADDRBUTTON = 0 
DATA BUTTON = 0 

A run of the supervisor program should show that it takes the implied "else" path 
through the "if-then-else" structures. and never reads the switches. Similarly. if the 
stub were: 

HIADDRBUTTON = , 

the supervisor program should stay in the "do while HIADDRBUTTON =," loop wait
ing for the button to be released. These simple runs check the overall logic. 

Now we can expand each stub and see if the expansion produces a reasonable 
overall result. Note how debugging and testing proceed in a straightforward and 
modular manner. We expand the HIADDRBUTTON = , stub to: 

READ CPORT 
HIADDRBUTTON = NOT (CPORT) AND HAMASK 

The program Should wait for the HIGH ADDRESS button to be closed. The program 
should then display the values of the switches on the lights. This run checks for the 
proper response to the HIGH ADDRESS button. 

We then expand the LOW ADDRESS button module to: 

READ CPORT 
LOADDRBUTTON = NOT (CPORT) AND LAMASK 

With the LOW ADDRESS button in the closed position. the program should display the 
values of the switches on the lights. This run checks for the proper response to the LOW 
ADDRESS button. 

Similarly. we can expand the DATA button module and check for the proper response 
to that button. The entire program will then have been tested. 

When all the stubs have been expanded. the coding. debugging. and testing 
stages will all be complete. Of course. we must know exactly what results each 
stub should produce. However. many logical errors will become obvious at each 
level without any further expansion. 
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The Transaction Terminal 
This example, of course, will have more levels of detail. We 
could start with the following program (see Figure 13-19 for 
a flowchart): 

KEYBOARD 
ACK=O 
do while ACK = 0 

TRANSMIT 
RECEIVE 

end 
DISPLAY 

TOP-DOWN 
DESIGN OF 
VERIFICATION 
TERMINAL 

Here KEYBOARD, TRANSMIT, RECEIVE, and DISPLAY are program stubs that will 
be expanded later, KEYBOARD, for example, could simply place a ten-digit verified 
number into the appropriate buffer. 

Keyboard 

ACK ~O 

Transmit 

Receive 

No 

Display 

Figure 13-19. Initial Flowchart for Transaction Terminal 
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VEA ~O 

Complete ~ 0 

Verify 

No 

Yes 

KEVIN 

KEVDS 

Figure 13-20. FIDwchart for Expanded KEYBOARD Routine 

The next stage of expansion could produce the following pro
gram for KEYBOARD (see Figure 13-201: 

VER = 0 
do while VER = 0 

COMPLETE = 0 
do while COMPLETE = 0 

KEYIN 
KEYDS 

end 
VERIFY 

end 

EXPANDING 
THE 
KEYBOARD 
ROUTINE 

Here VER = 0 means that an entry has not been verified: COMPLETE = 0 means that 
the entry is incomplete. KEYIN and KEYDS are the keyboard input and display routines 
respectively. VERIFY checks the entry. A stub for KEYIN would Simply place a random 
entry (from a random number table or generator) into the buffer and set COMPLETE to 
1. 

We would continue by similarly expanding. debugging. and testing TRANSMIT. 
RECEIVE. and DISPLAY. Note that you should expand each program by one level 
so that you do not perform the integration of an entire program at anyone time. 
You must use your judgment in defining levels. Too small a step wastes time. 
while too large a step gets you back to the problems of system integration that 
top-down design is supposed to solve. 
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REVIEW OF TOP-DOWN DESIGN 
Top-down design brings discipline to the testing and integration stages of pro
gram design. It provides a systematic method for expanding a flowchart or prob
lem definition to the level required to actually write a program. Together with 
structured programming, it forms a complete set of design techniques. 

Like structured programming, top-down design is not simple. The designer must 
have defined the problem carefully and must work systematically through each 
level. Here again the methodology may seem tedious, but the payoff can be sub
stantial if you follow the rules. 

We recommend the following approach to top-down 
design: 

1) Start with a basic flowchart. 

2) Make the stubs as complete and as separate as possi-
ble. 

FORMAT FOR 
TOP-DOWN 
DESIGN 

3) Define precisely all the possible outcomes from each stub and select a test set. 

4) Check each level carefully and systematically. 

5)' Use the structures from structured programming. 

6) Expand each stub by one level. Do not try to do too much in one step. 

7) Watch carefully for common tasks and data structures. 

8) Test and debug after each stub expansion. Do not try to do an entire level at a 
time. 

9) Be aware of what the hardware can do. Do not hesitate to stop and do a little 
bottom-up design where that seems necessary. 
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REVIEW OF PROBLEM DEFINITION AND PROGRAM DESIGN 
You should note that we have spent an entire chapter without mentioning any 
specific microprocessor or assembly language. and without writing a single line of 
actual code. Hopefully. though. you now know a lot more about the examples than 
you would have if we had just asked you to write the programs at the start. 
Although we often think of the writing of computer instructions as a key part of 
software development. it is actually one of the easiest stages. 

Once you have written a few programs. coding will become simple. You will soon 
learn the instruction set. recognize which instructions are really useful. and 
remember the common sequences that make up the largest part of most pro
grams. You will then find that many of the other stages of software development 
remain difficult and have few clear rules. 

We have suggested here some ways to systematize the important early stages. In 
the problem definition stage. you must define all the characteristics of the 
system - its inputs. outputs. processing. time and memory constraints. and error 
handling. You must particularly consider how the system will interact with the 
larger system of which it is a part. and whether that larger system includes 
electrical equipment. mechanical equipment. or a human operator. You must start 
at this stage to make the system easy to use and maintain. 

In the program design stage. several techniques can help you to systematically 
specify and document the logic of your program. Modular programming forces you 
to divide the total program into small. distinct modules. Structured programming 
provides a systematic way of defining the logic of those modules. while top-down 
design is a systematic method for integrating and testing them. Of course. no one 
can compel you to follow alt'of these techniques; they are. in fact. guidelines more 
than anything else. But they do provide a unified approach to design. and you 
should consider them a basis on which to develop your own approach. 
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Chapter 14 
DEBUGGING AND TESTING 

As we noted at the beginning of the previous chapter. debugging and testing are 
among the most time-consuming stages of software development. Even though such 
methods as modular programming. structured programming. and top-down design 
can simplify programs and reduce the frequency of errors. debugging and testing 
still are difficult because they are so poorly defined. The selection of an adequate set 
of test data is seldom a clear or scientific process. Finding errors sometimes seems like a 
game of "pin the tail on the donkey." except that the donkey is moving and the pro
grammer must position the tail by remote control. Surely. few tasks are as frustrating as 
debugging programs. 

This chapter will first describe the tools available to aid in debugging. It will then 
discuss basic debugging procedures. describe the common types of errors. and 
present some examples of program debugging. The last sections will describe 
how to select test data and test programs. 

We will not do much more than describe the purposes of most of the debugging tools. 
There is very little standardization in this area. and not enough space to discuss all the 
devices and programs that are currently available. The examples should give you some 
idea of the uses. advantages. and limitations of particular hardware or software aids. 

SIMPLE DEBUGGING TOOLS 
The simplest debugging tools available are: 

A single-step facility 
A breakpoint facility 
A Register Dump program (or utilityl 
A Memory Dump program 

The single-step facility allows you to execute the program one 
step at a time. Most 6502-based microcomputers have this 
facility. since the circuitry is fairly simple. Of course. the only 
things that you will be able to see when the computer executes a single-step are 
the states of the output lines that you are monitoring. The most important lines are: 

Data Bus 

• Address Bus 

• Control lines 
• SYNC (synchronization) and READIWRITE 

If you monitor these lines (either in hardware or in softwarel. you will be able to 
see the progression of addresses. instructions. and data as the program executes. 
You will be able to tell what kind of operations the CPU is performing. This infor
mation will inform you of such errors as incorrect Jump instructions. omitted or incor
rect addresses. erroneous operation codes. or incorrect data values. However. you can
not see the contents of registers and flags without some additional debugging facility 
or a special sequence of instructions. Many of the operations of the program cannot be 
checked in real time. 

14-1 



There are many errors that a single-step mode cannot help you 
to find. These include timing errors and errors in the interrupt 
or DMA systems. Furthermore. the single-step mode is very 
slow. typically executing a program at less than one millionth 

LIMITATIONS 
OF SINGLE
STEP MODE 

of the speed of the processor itself. To single-step through one second of real processor 
time would take more than ten days. The single-step mode is useful only to check the 
logic of short instruction sequences. 

A breakpoint is a place at which the program wili automat
ically halt or wait so that the user can examine the current 

I BREA~POINT I 
status of the system. The program will usually riot start again until the operator re
quests a resumption of execution. Breakpoints allow you to check or pass through an 
entire section of a program. Thus. to see if an initialization routine is correct you can 
place a breakpoint at the ehd of it and ru n the program. You can then check memory 
locations and registers to see if the entire section is correct However. note that if the 
section is not correct you' II still have to pin down the error. either with earlier break
points or with a single-step mode. 

Breakpoints complement the single-step mode. You can use breakpoints either to 
localize the error or to pass through sections that you know are correct. You can 
then do the detailed debugging in the single-step mode. In some cases. breakpoints 
do not affect program timing; they can then be used to check input/output and inter-
rupts. 

Breakpoints often use part or all of the microprocessor interrupt 
system. Some microprocessors have a special Software Interrupt 
or Trap facility that can act as a breakpoint The 6502 BRK (Force 
Break) instruction can be used in this way. If you are not already using the maskable in
terrupt (lRO) and the non-maskable interrupt (NMI) in your system. you can use those 
vectors as externally controlled breakpoints. Table 14-1 gives the address locations of 
the 6502 interrupt vectors. Chapter 12 describes the vectors in more detail. The break
point routine can print register and memory contents. or just wait (by executing a con
dition jump dependent on a switch input} until the user allows the computer to pro
ceed. But remember that the interrupts (including BRK) use the Stack and Stack Pointer 
to store the return address and the Status Register. Figure 14-1 shows a routine in 
which BRK results in an endless loop. The programmer would hEive to clear this break
point with a RESET or interrupt signal. 

Table 14-1. 6502 Interrupt Vectors 

Input Vector Addresses (Hexadecimal) 

NMI FFFA. FFFB 
RESET FFFC. FFFD 
IRO or BRK FFFE. FFFF 

'=BREAK 
JMP BREAK 

;ADDRESS FOR BREAK ROUTINE 
;WAIT IN PLACE 

The interrupt service routine must force a jump to address BREAK when it finds 
the Break Command flag set (this differentiates between BRK and an IRQ input). 

Figure 14-1. A Simple Breakpoint Routine 
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The simplest method for inserting breakpoints is to replace the first byte of the instruc
tion with a BRK instruction or to replace the instruction with a JMP or JSR instruction. 
The BRK instruction is preferable since only a single byte must be replaced and the 
breakpoint will not overrun the subsequent instructions. 

Many monitors have facilities for inserting and removing 
breakpoints implemented via some type of Jump instruction. 
Such breakpoints do not affect the timing of the program until 

INSERTING 
BREAKPOINTS 

the breakpoint is executed. However. note that this procedure will not work if part or all 
of the program is in ROM or PROM. Other monitors implement breakpoints by actually 
checking the address lines or the Program Counter in hardware or in software. This 
method allows breakpoints on addresses in ROM pr PROM. but it may affect the timing 
if the address must be checked in software. A more powerful facility would allow the 
user to enter an address to which the processor would transfer control. Another 
possibility would be a return dependent on a switch: 

'=BRKPT 
BIT VIAORA 
BPL BRKPT 
RTI 

:ADDRESS FOR BREAKPOINT ROUTINE 
:WAIT FOR SWITCH TO CLOSE 

Of course. other VIA data or control lines could also be used. Remember that RTI auto
matically restores the Status register and re-enables the interrupt. If the interrupt comes 
from a VIA control line. the routine would also have to clear the corresponding bit in the 
Interrupt Flag register. 

14-3 



A Register Dump utility on a microcomputer is a program that 
lists the contents of all the CPU registers. This information is 
usually not directly obtainable. The following routine will print 
the contents of all the registers on the system printer. if we assume that PRTHEX 
prints the contents of the Accumulator as two hexadecimal digits. Figure 14-2 is a 
flowchart of the program and Figure 14-3 shows a typical result. We assume that the 
routine is entered with a JUMP TO SUBROUTINE instruction that stores the old Program 
Counter at the top of the Stack. An interrupt or BRK instruction will store both the Pro
gram Counter and the Status register at the top of the Stack. 

; PLACE ALL CPU REGISTER CONTENTS IN STACK (PC ALREADY ON STACK) 

PHP 
PHA 
TXA 
PHA 
TYA 
PHA 
TSX 
TXA 
CLC 
ADC 
PHA 

#6 

; PRINT CONTENTS OF REGISTERS 

;SAVE STATUS IF NECESSARY (NOT AFTER IRQ) 
;SAVE CONTENTS OF ACCUMULATOR 
;SAVE INDEX REGISTER X 

;SAVE INDEX REGISTER Y 

;SAVE ORIGINAL STACK POINTER 

;OFFSET BACK TO ORIGINAL VALUE 

; ORDER IS S. Y. X. A. P. PC(LOW). PC(HIGH) 

LOY #7 ;NUMBER OF BYTES = 7 
PRNT1 LOA $0100.X ;GET A BYTE FROM STACK 

JSR PRTHEX ;AND PRINT IT 
INX 
DEY 
BNE PRNT1 

; RESTORE REGISTERS FROM STACK 

PLA 
PLA 
TAY 
PLA 
TAX 
PLA 
PLP 
RTS 

;PULL AND DISCARD STACK POINTER 
;RESTORE INDEX REGISTER Y 

;RESTORE INDEX REGISTER X 

RESTORE CONTENTS OF ACCUMULATOR 
RESTORE STATUS REGISTER IF NECESSARY 
RESTORE PC AND SP 
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Store all registers 
in Stack 
Count:::; 7 (number 
of bytes in registers) 
Base = 010016 
Index:::; Stack 

Pointer + 1 

Print (Base+lndex) 

as 2 hexadecimal 

digits 

Index:::; Index + 1 
Count:::: Count - 1 

Restore all registers 

from Stack 

Figure 14-2. Flowchart of Register Dump Program 

A6 
05 
08 
3E 
24 
15 
A2 

(5) 
(y) 
(X) 
(A) 
(P) 

(PCL) 
(PCH) 

Figure 14-3. Results of a Typical 6502 Register Dump 
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A MeMory DUMP is a prograM that lists the contents of MeMO
ry on an output device (such as a printer). This is a much more 
efficient way to examine data arrays or entire programs than just 
looking at single locations. However, very large memory dumps are not useful (except 
to supply scrap paper) because of the sheer mass of information that they produce. 
They may also take a long time to execute on a slow printer. SMail dUMPS May, 
however, provide the prograMMer with a reasonable aMount of inforMation that 
can be exaMined as a unit. Relationships such as regular repetitions of data pat
terns or offsets of entire arrays May becoMe obvious. 

A general dump is often rather difficult to write. The programmer should be careful of 
the following situations: 

1) The size of the memory area exceeds 256 bytes, so that an B-bit counter will not 
suffice. 

2) The ending location is an address smaller than the starting location. This can be 
treated as an error, or simply cause no output. since the user would seldom want to 
print the entire memory contents in an unusual order. 

Since the speed of the Memory Dump depends on the speed of the output device, the 
efficiency of the routine seldom matters. The following prograM will ignore cases 
where the starting address is larger thari the ending address, and will handle 
blocks of any length. We assume that the starting address is in memory addresses 
START and START + 1 and the ending address is in memory addresses LAST and 
LAST +1. We have assumed that addresses START and START +1 are on page zero, so 
tht their contents can be used indirectly. 

; PRINT CONTENTS OF SPECIFIED MEMORY LOCATIONS 

DUMP 
DBYTE 

DONE 

LDY 
LDA 
CMP 
LDA 
SBC 
BCC 
LDA 
JSR 
INC 
BNE 
INC 
JMP 
RTS 

*0 
LAST 
START 
LAST+1 
START+1 
DONE 
(START).Y 
PRTHEX 
START 
DBYTE 
START+1 
DBYTE 

;KEEP OFFSET AT ZERO ALWAYS 
;ARE WE BEYOND FINAL ADDRESS? 

; YES, DUMP COMPLETED 
;NO, GET CONTENTS OF NEXT LOCATION 
;PRINT CONTENTS AS 2 HEX DIGITS 
;INCREMENT MEMORY POINTER 

There is no direct way to perform the 16-bit comparison and increment that this routine 
requires. 

Figure 14-4 shows the output froM a dUMP of MeMory locations 1000 to 101F. 

23 1F 60 54 37 28 3E 00 
6E 42 38 17 59 44 98 37 
47 36 23 81 E1 FF FF 5A 
34 ED 8e AF FE FF 27 02 

Figure 14-4. Results of a Typical Memory Dump 
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This routine correctly handles the case in which the starting and ending locations are 
the same (try it!). You will have to interpret the results carefully if the dump area in
cludes the Stack. since the dump subroutine itself uses the Stack. PRTHEX may also 
change memory and Stack locations. 

In a memory dump. the data can be displayed in a number of different ways. Common 
forms are ASCII characters or pairs of hexadecimal digits for 8-bit values and four hex
adecimal digits for 16-bit values. The format should be chosen based on the intended 
use of the dump. [t is almost always easier to interpret an object code dump if it is dis
played in hexadecimal form rather than ASCI[ form. 

A common and useful dump format is illustrated here: 

1000 5468652064756070 The dump 

Each line consists of three parts. The line starts with the hexadecimal address of the 
first byte displayed on the line. Following the address are eight or sixteen bytes dis
played in hexadecimal form. Last is the ASCII representation of the same eight or six
teen bytes. Try rewriting the memory dump program so that it will print the address and 
the ASCII characters as well as the hexadecimal form of the memory contents. 

14-7 



MORE ADVANCED DEBUGGING TOOLS 
The more advanced debugging tools that are most widely used are: 

. Simulator programs to check program logic 
• Logic analyzers to check signals and timing 

Many variations of both these tools exist. and we shall discuss only the standard 
features. 

The simulator is the computerized equivalent of the pencil-and
paper computer. It is a computer program that goes through the 
operating cycle of another computer, keeping track of the con
tents of all the registers, flags, and memory locations. We could. of course. do this 
by hand. but it would require a large amount of effort and close attention to the exact 
effects of each instruction. The simu lator program never gets tired or confused. forgets 
an instruction or register. or runs out of paper. 

Most simulators are large FORTRAN programs. They can be purchased or used on the 
time-sharing services. The 6502 simulator is available in several versions from different 
sources. 

Typical simulator features are: 

1) A breakpoint facility. Usually. breakpoints can be set after a particular number of 
cycles have been executed. when a memory location or one of a set of memory 
locations is referenced. when the contents of a location or one of a set of locations 
are altered. or on other conditions. 

2) Register and memory dump facilities that can display the values of memory loca
tions. reg isters. and 1/0 ports. 

3) A trace facility that will print the contents of particular registers or memory loca
tions whenever the program changes or uses fhem. 

4) A load facility that allows you to set values initially or change them during the 
simulation. 

Some simulators can also simulate input/output. interrupts. and even DMA. 

The simulator has many advantages: 

11 It can provide a complete description of the status of the computer. since the 
simulator program is not restricted by pin limitations or other characteristics of the 
underlying circuitry. 

2) It can provide breakpoints. dumps. traces. and other facilities. without using any of 
the processor's memory space or control system. These facilities will therefore not 
interfere with the user program. 

3) Programs. starting points. and other conditions are easy to change. 

4) All the facilities of a large computer. including peripherals and software. are availa-
ble to the microprocessor designer. 

On the other hand, the simulator is limited by its software base and its separation 
from the real microcomputer. The major limitations are: 

1) The simulator cannot help with timing problems. since it operates far more slowly 
than real time and does not model actual hardware or interfaces. 

2) The simulator cannot fully model the input/output section. 

3) The simulator is usually quite slow. Reproducing one second of actual processor 
time may require hours of computer time. Using the simulator can be quite expen
sive. 
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The simulator represents the software side of debugging; it has the typical advan
tages and limitations of a wholly software-based approach. The simulator can pro
vide insight into program logic and other software problems. but cannot help with 
timing. I/O. and other hardware problems. 

The logic or microprocessor analyzer is the hardware solution 
to debugging. Basically. the analyzer is the parallel digital ver
sion of the standard oscilloscope. The analyzer displays informa
tion in binary. hexadecimal or mnemonic form on a CRT. and has a variety of triggering 
events. thresholds. and inputs. Most analyzers also have a memory so that they can dis
play the past contents of the busses. 

The standard procedu re is to set a triggering event. such as the occurrence of a particu
lar address on the Address Bus or instruction on the Data Bus. For example. one might 
trigger the analyzer if the microcomputer tries to store data in a particular address or ex
ecute an input or output instruction. One may then look at the sequence of events that 
preceded the breakpoint. Common problems you can find in this way include short 
noise spikes (or glitches). incorrect signal sequences. overlapping wave-forms. 
and other timing or signaling errors. Of course. a software simulator could not be 
used to diagnose those errors any more than a logic analyzer could conveniently 
be used to find errors in program logic. 

Logic analyzers vary in many respects. Some of these are: 

1) Number of input lines. At least 24 are necessary to monitor 
an 8-bit Data Bus and a 16-bit Address Bus. Still more are 
necessary for control signals. clocks. and other important in
puts. 

IMPORTANT 
FEATURES 
OF LOGIC 
ANALYZERS 

2) Amount of memory. Each previous state that is saved will occupy several bytes. 

3) Maximum frequency. It must be several MHz to handle the fastest processors. 

4) Minimum signal width (important for catching glitches). 

5) Type and number of triggering events allowed. Important features are pre- and 
post-trigger delays; these allow the user to display events occurring before or 
after the trigger event. 

6) Methods of connecting to the microcomputer. This may require a rather complex 
interface. 

7) Number of display channels. 

8) Bir,ary. hexadecimal or mnemonic displays. 

9) Display formats. 

10) Signal hold time requirements. 

11) Probe capacitance. 

12) Single or dual thresholds 

All of these factors are important in comparing different logic and microprocessor 
analyzers. since these instruments are new and unstandardized. A tremendous variety 
of products is already available and this variety will become even greater in the future. 

Logic analyzers. of course. are necessary only for systems with complex timing. 
Simple applications with low-speed peripherals have few hardware problems that 
a designer cannot handle with a standard oscilloscope. 
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DEBUGGING WITH CHECKLISTS 
The designer cannot possibly check an entire program by hand: however. there are 
certain trouble spots that the designer can easily check. You can use systematic hand 
checking to find a large number of errors without resorting to any debugging tools. 

The question is where to place the effort. The answer is on WHAT TO 
points that can be hand I,d with either a yes-no anwer or with INCLUDE IN 
a simple arithmetic calculation. Do not try to do complex CHECKLIST 
arithmetic. follow all the flags. or try every conceivable case. Limit 
your hand checking to matters that can be settled easily. Leave the complex problems 
to be solved with the aid of debugging tools. But proceed systematically: build your 
checklist. and make sure that the program performs the basic operations correctly. 

The first step is to compare the flowchart or other program documentation with 
the actual code. Make sure that everything that appears in one also appears in the 
other. A simple checklist will do the job. It is easy to completely omit a branch or a pro
cessing section. 

Next concentrate on the program loops. Make sure that all registers and memory 
locations used inside the loops are initialized correctly. This is a common source of er
rors: once again. a simple checklist will suffice. 

Now look at each conditional branch. Select a sample case that should produce a 
branch and one that should not: try both of them. Is the branch correct or reversed? If 
the branch involves checking whether a number is above or below a threshold. try the 
equality case. Does the correct branch occur? Make sure that your choice is consistent 
with the problem definition. 

Look at the loops as a whole. Try the first and last iterations by hand. these are often 
troublesome special cases. What happens if the number of iterations is zero: Le .. there 
is no data or the table has no elements? Does the program fall through correctly? Pro
grams often will perform one iteration unnecessarily. or. even worse. decrement coun
ters past zero before checking them. 

Check off everything down to the last statement. Don't assume (hopefully) that 
the first error is the only one in the program. Hand checking will allow you to get 
the maximum benefit from debugging runs, since you will get rid of many simple 
errors ahead of time. 

A quick review of the hand checking questions: 

1) Is every element of the program design in the program (and 
vice versa for documentation purposes)? 

HAND 
CHECKING 
QUESTIONS 

2) Are all registers and memory locations used inside loops initialized before they 
are used? 

3) Are all conditional branches logically correct? 

4) Do all loops start and end properly? 
5) Are equality cases handled correctly? 
6) Are trivial cases handled correctly? 
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LOOKING FOR ERRORS 
Of course, despite all these precautions (or if you skip over 
some of them!. programs often still don't work. The designer 
is left with the problem of how to find the mistakes. The hand 
checklist provides a starting place if you didn't use it earlier; some of the errors 
that you may not have eliminated are: 

1) Failure to initialize variables such as counters, pointers, sums, indexes, etc. 
Do not assume that the registers. memory locations. or flags necessarily contain 
zero before they are used. 

2) Inverting the logic of a conditional jump, such as using Branch on Carry Set 
when you mean Branch on Carry Clear. Be particularly careful of the fact that the 
6502 (unlike most other microprocessors) uses the Carry as an inverted borrow 
after a subtraction or comparison. So the effects of a comparison or subtraction are 
as follows (A is the contents of the Accumulator. M the contents of the memory 
location): 

Zero flag = 1 if A = M 
Zero flag = 0 if A I=M 
Carry flag = 1 if A ? M 
Carry flag = 0 if A < M 

Note particularly that Carry = 1 if A = M (the equality case). So Branch on Carry 
Set means jump if A ? M and Branch on Carry Clear means jump if A < M. If you 
want the equality case on the other side. try either reversing the roles of A and M or 
adding 1 to M. For example. if you want a jump if A ? 10 use 

CMP #10 
BCS ADDR 

If. on the other hand. you want a jump if A > 10 use 

CMP #11 
BCS ADDR 

3) Updating counters, pointers, and indexes in the wrong place or not at all. Be 
sure that there are no paths through a loop that either skip or repeat the updating 
instructions. 

4) Failure to fall through correctly in trivial cases such as no data in a buffer. no 
tests to be run. or no entries in a transaction. Do not assume that such cases will 
never occur unless the program specifically eliminates them. 

Other problems to watch for are: 

5) Reversing the order of operands. Remember that instructions like TAX move the 
contents of A to X. not the other way around. 

6) Changing condition flags before you use them. 

Almost all instructions except stores and branches affect the Sign and Zero flags. 
Note especially that PLP and RTI may change all the flags. 

7) Confusing the Index registers and the indexed memory location. 

Note that INX and INY increment the Index registers while INC ADDR.X and other 
similar instructions increment the contents of an indexed memory location 

8) Confusing data and addresses. 

Remember that LDA #$40 loads A with the number 4016. while LDA $40 loads A 
with the contents of memory location 004016. Be particularly careful when using 
the pre-indexed and post-indexed addressing modes in which a pair of addresses 
on page zero contains the actual or base address of the data. 
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9) Accidentally reinitializing a register or memory location. 

Make sure that no ~ump instructions transfer control back to initialization state-
ments. ' 

10) Confusing numbers and characters. 

Remember that the ASCII and EBCDIC representations of digits differ from the 
digits themselves. For example. ASCII 7 is 3716. whereas hex 0716 is the ASCII 
BELL character. 

11) Confusing binary and decimal numbers. 

Remember that the BCD representation of a number differs from its binary repre
sentation. For example. BCD 36. when treated as a simple hexadecimal constant. 
is equivalent to 54 decimal (try it). 

12) Reversing the order in subtraction. Be careful also with other operations llike 
division) that do not commute. Remember that SBC. CMP. CPX. and CPY all 
subtract the contents of the addressed memory location from the contents of the 
Accumulator or Index register. --

13) Ignoring the effects of subroutines and macros. 

Don't assume that calls to subroutines or invocations of macros will not change 
flags. registers. or memory locations. Be sure of exactly what effects subroutines 
or macros have. Note that it is very important t({document these effects so that 
the user can det!lrmine them without going through the entire listing. 

14) Using the Shift instructions improperly. 

Remember the precise effects of ASL. LSR. ROL and ROR. They are l-bit shifts 
that affect the Carry. Sign. and Zero flags. ASL and LSR both clear the empty bit: 
ROR and ROL are circular shifts that include the Carry in the circular register. 
Remember that the Carry. Sign. and Zero flags are affected even if these instruc
tions are applied to the data in a memory location. 

15) Counting the length of an array incorrectly. 

Remember that there are five (not fourl memory locations included in addresses 
0300 through 0304. inclusive. 

16) Confusing 8- and 16-bit quantities. 

Addresses are actually 16 bits long. The only 6502 register that can hold a com
plete address is the Program Counter. 

17) Forgetting that addresses or 16-bit data occupy two· memory locations. 

Absolute direct or absolute indexed addresses occupy two memory locations. as 
do the addresses that are stored on page zero for use in post-indexing or pre-in
dexing. The Program Counter also occupies two memory locations when it is 
stored in the Stack. Note thlH in the pre-indexed and post-indexed addressing 
modes. two memory locations are used even though only one is specified. The ad
dress immediately fqllowing the one specified is also needed to hold the indirect 
address. 
JMP indirect will not work properly if the indirect address crosses a page 
boundary. See the discussion of indirect addressing in Chapter 3 for a description 
of this peculiarity. 

18) Confusing the Stack and the Stack Pointer. 

The instruction TXS affects the Stack Pointer. not the contents of the Stack. PHA. 
PLA. PHP. and PLP transfer data to or from the Stack. Remember that JSR. RTS. 
RTI. and BRK also use the Stack. Remember also that you must initialize the Stack 
Pointer before calling any subroutines or allowing any interrupts. The 6502 Stack 
is always on page one; only the eight least significant bits of the Stack address are 
actually in the Stack Pointer. 
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19) Changing a register or memory location before using it. 

Remember that LOA. STA. LOX. STX. LOY. STY. TAX. TXA. etc. all change the 
contents of the destination (but not the source). 

20) Forgetting to transfer control past sections of the program that should not be 
executed in particular situations. 

Remember that the computer will proceed sequentially through the program 
memory unless specifically ordered not to do so. 

21) Forgetting that the Carry is always included in addition and subtraction 
operations. 

The 6502 only has Add·with-Carry and Subtract-with Borrow instructions. unlike 
many other processors which have regular Add and Subtract instructions that do 
not include the Carry. The Carry must be explicitly cleared before an addition and 
set before a subtraction if its value is not to affect the operation. Note. however. 
the comparison instructions (CMP. CPX. CPY) do not include the Carry. 

22) Inverting the significance of the Carry in subtraction. 

In subtraction and comparison instructions. the resulting Carry is an inverted bor
row - that is. the Carry is set if no borrow is required. Accordingly. the subtract
with-Borrow instruction subtracts the inverted Carry (1 - Carry) along with the 
contents of the specified memory location. 

23) Using the decimal mode improperly. 

When the Decimal Mode flag is set. all arithmetic results are decimal. thus the 
flag must be explicitly cleared after the decimal operations are completed; other
wise it will change the results of operations which were not intended to be 
decimal. Note that all paths that include a Set Decimal Mode instruction must also 
include a Clear Decimal Mode instruction; be particularly careful of fall-through 
cases and error exits. 

24) Using the Bit Test instruction improperly. 

Note that the BitTest instruction sets the sign and overflow flags according to bits 
7 and 6 of the tested memory location. without regard to the contents of the Ac
cumulator. This instruction is convenient for testing status bits in 6520 PIAs and 
for other bit checking operations. but it requires careful documentation since its 
results are often unclear to a reader. 

Interrupt-driven programs are particularly difficult to debug, 
since errors may occur randomly. If. for example. the program 
enables the interrupts a few instructions too early. an error will oc
cur only if an interrupt is received while the program is executing 
those few instructions. In fact you can usually assume that ran

DEBUGGING 
INTERRUPT
DRIVEN 
PROGRAMS 

domly occurring errors are caused by the interrupt system.2 Typical errors in inter
rupt-driven programs are: 

1) Forgetting to re-enable interrupts after accepting one and servicing it. 

The processor disables the interrupt system automatically on RESET or on accept
ing an interrupt Be sure that no possible sequences fail to re-enable the interrupt 
system. Remember that. in addition to re-enabling interrupts. the program often 
has to perform some action to cause the interrupting signal to be reset If this is not 
done. it will appear as if the interrupting device is constantly requesting service. 

2) Using the Accumulator before saving it; i.e. PHA must precede any operations 
that change the Accumulator. 

3) Forgetting to save and restore the Accumulator. 
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4) Restoring registers in the wrong order. 

If the order in which they were saved was: 

PHA ;SAVE ACCUMULATOR CONTENTS 
TXA ;SAVE INDEX REGISTER X 
PHA 
TYA ;SAVE INDEX REGISTER Y 
PHA 

the order of restoration should be: 

PLA ;RESTORE INDEX REGISTER Y 
TAY 
PLA ;RESTORE INDEX REGISTER X 
TAX 
PLA ;RESTORE ACCUMULATOR CONTENTS 

5) Enabling interrupts before establishing all the necessary conditions such as 
priority. flags. PIA and VIA configurations. pointers. counters. etc. 

A checklist can aid here. 

6) Leaving results in registers and destroying them in the restoration process. 

As noted earlier. registers should not be used to pass information between the pro
gram and the interrupt service routines. 

7i Forgetting that the interrupts (including BRK) leave the old Program Counter 
and Status Register in the Stack whether you use them or not. 

You may have to re-initialize or update the Stack Pointer. 

8) Ignoring the possibility that the service routine may be entered with the 
Decimal Mode flag set. 

You may have to include a CLD instruction in the service routine if this possibility 
exists. Note that RTI will automatically restore the original state of the flag at the 
end of the service routine 

9) Not disabling the interrupt during multi-word transfers or instruction se
quences. 

Watch particularly for situations where the interrupt service routine may use the 
same memory locations that the program is uSing. 

Hopefully. these lists will at least give you some ideas as to where to look for er
rors. Unfortunately. even the most systematic debugging can still leave some 
truly puzzling problems. particularly when interrupts are involved.3 
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Data = 100401 

Result = ISSEG 

+ Datal 

100411 = Result 

Ves 

Result = 0 

Figure 14-5. Flowchart of Decimal to Seven-Segment Conversion 

Debugging Example 1: Decimal to Seven-Segment Conversion 
The program converts a decimal number in memory location 
0040 to a seven-segment code in memory location 0041. It 
blanks the display if memory location 0040 does not contain a 
decimal number. 

Initial Program (from flowchart in Figure 14-5): 

#$40 ;GET DATA 

DEBUGGING 
A CODE 
CONVERSION 
PROGRAM 

LDX 
CPX 
BCC 
LDA 
STX 
BRK 
.BYTE 
.BYTE 

#9 
DONE 

;IS DATA GREATER THAN 9f 
;YES. DONE 

DONE 
SSEG 

(SSEG.X) 
$41 

$3F.$06.$5B.$4F.$66 
$6D.$7D.$07.$7D.$6F 

;GET ELEMENT FROM TABLE 
;SAVE SEVEN-SEGMENT CODE 

Using the checklist procedure. we were able to find the following errors: 

1) The block that cleared Result had been omitted. 

2) The Conditional Branch was incorrect. 

For example. if the data is zero. CPX #9 clears the Carry. since 0 < 9 and a borrow is 
required. However. the Jump utilizing the inverted condition (j.e .. BCS DONE) still did 
not produce the correct result. Now the program handles the equality case incorrectly 
since. if the data is 9. CPX #9 sets the Carry and causes a jump. The correct version is: 

CPX 
BCS 

#10 
DONE 

;IS DATA A DECIMAL DIGIT? 
;NO. KEEP ERROR CODE 
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Second Program: 

DONE 
SSEG 

LDA 
LDX 
CPX 
BCS 
LDA 
STX 

BRK 
.BYTE 
.BYTE 

#0 
#$40 
#10 
DONE 
(SSEG.X) 
$41 

;GET BLANK CODE FOR DISPLAY 
;GET DATA 
;IS DATA A DECIMAL DIGIT? 
;NO. KEEP ERROR CODE 
;GET ELEMENT FROM TABLE 
;SAVE SEVEN-SEGMENT CODE OR ERROR 

CODE 

$3F.$06.$5B.$4F.$66 
$6D.$7D.$07.$7D.$6F 

This version was hand checked successfully. 

Since the program was simple. the next stage was to single-step through it with real 
data. The data selected for the trials was: 

o (the smallest number) 
9 (the largest number) 

10 (a bou ndary case) 
6B 16 (a randomly selected case) 

The first trial was with zero in location 0040. The first error was obvious - LDX#$40 
loaded the number 40 into X. not the contents of memory location 0040. The correct 
instruction was LDX $40 (direct rather than immediate addressing). After this 
correction was made. the program moved along with no apparent errors until it tried to 
execute the LDA (SSEG.X) instruction. 

The contents of the Address Bus during the data fetch was 063F. an address that was 
not even being used. Clearly. something had gone wrong. 

It was now time for some more hand-checking. Since we knew that BCS DONE was cor
rect. the error was clearly in the LDA instruction. A hand check showed: 

LDA (SSEG.X) adds the contents of Index Register X to the page-zero address SSEG and 
uses the sum to fetch the address that contains the actual data. In the present case. 
since Register X contains zero. the indirect address is in memory locations SSEG and 
SSEG+1 - that is. it is 063F. The instruction is therefore getting an address from a 
table that consists of data. The correct instruction is LDA SSEG.X - we want to get 
data from the table. not the address of the data. 

Even with this correction. the program still produced a result of zero. rather than the 
expected 3F. The error was obviously in the last instruction - it should be STA $41. 
not STX $41. Note the importance of following through to the very end of the program. 
rather than quitting after what might seem to be the last error. 

The revised program now was: 

Third Program: 

DONE 
SSEG 

LDA 
LDX 
CPX 
BCS 
LDA 
STA 

BRK 
.BYTE 
.BYTE 

#0 
$40 
#10 
DONE 
SSEG.X 
$41 

$3F.$06.$5B.$4F.$66 
$6D.$7D.$07.$7D.$6F 

14-16 

;GET ERROR CODE FOR DISPLAY 
;GET DATA 
;IS DATA A DECIMAL DIGIT? 
; NO. KEEP ERROR CODE 
;GET ELEMENT FROM TABLE 
;SAVE SEVEN-SEGMENT CODE OR ER
; ROR CODE 



The results now were: 

Data Result 

00 3F 
09 6F 
OA 6F 
6B 6F 

The program was not clearing the result if the data was invalid. i.e .. greater than 9. The 
program never stored the blank code since the destination address DONE was 
misplaced - it should have been attached to the STA $41 instruction. After these cor
rections were made. the program produced the correct results for all the test cases. 

Since the program was simple. it could be tested for all the decimal digits. The results 
were: 

Data /Resu It --'--o 3F 
1 06 
2 5B 
3 4F 
4 66 
5 60 
6 70 
7 07 
8 70 
9 6F 

Note that the result for number 8 is wrong - it should be 7F. Since everything else is 
correct. the error is almost surely in the table. In fact. entry 8 in the table had been 
miscopied. 

The final program is: 

; DECIMAL TO SEVEN-SEGMENT CONVERSION 

LOA #0 ;GET BLANK CODE FOR DISPLAY 
LOX $40 ;GET DATA 
CPX #10 ;IS DATA A DECIMAL DIGIT? 
BCS DONE ;NO. KEEP ERROR CODE 
LDA SSEG.X ;GET SEVEN-SEGMENT CODE FROM 

TABLE 
DONE STA $41 ;SAVE SEVEN-SEGMENT CODE OR 

ERROR CODE 
BRK 

SSEG .BYTE $3F.$06.$5B.$4F.$66 
.BYTE $60. $7D.$07.$7F.$6F 
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The errors encountered in this program are typical of the ones that 6502 assembly 
language programmers should anticipate. They include: 

1) Failing to initialize registers or memory locations. 
2) Inverting the logic on conditional branches. 

3) Branching incorrectly in the case in which the operands are equal. 

4) Confusing immediate and direct addressing. i.e .. data and addresses. 
5) Failing to keep track of the cu rrent contents of registers. 

6) Branching to the wrong place so that one path through the program is incorrect. 
7) Copying lists of numbers (or instructions) incorrectly. 

8) Using the indirect addressing modes incorrectly. 

Note that straightforward instructions (like AND. DEC. INC) and simple addressing 
modes seldom cause any problems. Among the particularly annoying errors that are 
frequent in 6502 assembly language programming are using the Carry improperly after 
subtraction or comparison !the Carry is set if no borrow is required) and forgetting to 
clear the Decimal Mode flag. 
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Debugging Example 2: Sort into Decreasing Order 
The program sorts an array of unsigned a-bit binary numbers into 
decreasing order. The array begins in memory locatiori 0041 and 
its iength is in memory location 0040. 

Initial Program (from flowchart in Figure 14-6): 

DEBUGGING 
A SORT 
PROGRAM 

LDY #0 ;CLEAR INTERCHANGE FLAG BEFORE PASS 
LDX $40 ;GET LENGTH OF ARRAY 

PASS LDA $41.X ;IS NEXT PAIR OF ELEMENTS IN ORDER? 
CMP $42.X 
BCC COUNT ;YES. NO INTERCHANGE NECESSARY 
STA $42.X ;NO. INTERCHANGE PAIR 

COUNT DEX ;CHECK FOR COMPLETED PASS 
BNE PASS 
DEY ;WERE ALL ELEMENTS IN ORDER? 
BNE PASS ;NO. MAKE ANOTHER PASS 
BRK 

The hand che,ck shows that all the blocks in the flowchart have been implemented in 
the program and that all the registers have been initialized. The conditional branches 
must be examined carefully. The instruction BCC COUNT must force a branch if the 
value in A is greater than or equal to the next element in the array. Remember that we 
are sorting elements into decreasing order and we are moving backward through the 
array in the usual 6502 mahner. The equality case must not result in an interchange. 
since such an interchange would create an endless loop. with the two equal elements 
always being swapped. 

Try an example: 
(0041) = 30 
(0042) = 37 

CMP $42.X results in the calculation of 30 - 37. The Carry is cleared since a borrow is 
required. This example should result in an interchange but does not. 

BCS COUNT will provide the proper branch in this case. If the two numbers are equal. 
the comparison will set the Carry and BCS COUNT is again correct. 

How about BNE PASS at the end of the program? If there are any elements out of order. 
the interchange flag will be one. so the branch is wrong. It should be BEQ PASS. 

Now let's hand check the first iteration of the program. The initialization results in the 
following values: 

X = LENGTH (2) 
Y = 0 

The effects of the loop instructions are: 

LDA $41. X ;A = (0043) 
CMP $42. X ; (00431-(0044) 
BCS COUNT 
STA $42. X ; (0044) = (0043) 

COUNT DEX ;X = LENGTH -1 (1) 
BNE PASS 

The indexed addresses are clearly incorrect since they are both beyond the end of the 
array. We will change them by subtracting two from the addresses included in the 
indexed instructions. This offset is a common problem in 6502 assembly language 
programs. because arrays and tables have a zeroth element. Thus an array with five 
elements occupies memory addresses BASE through BASE+4. not BASE+1 through 
BASE+5. When using indexed addressing on the 6502 microprocessor. be careful that 
your addresses are not in error at one end of the array or the other. 
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Interchange Flag = 0 
Ind •• = Length of 

B ••• = Stail otrray 
Array 

Inde. = Inde. - 1 

Figure 14-6. Flowchart of Sort Program 
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The initialization now results in the values: 

x = LENGTH (2) 
Y = 0 

The effects of the loop instructions are: 

LDA $3F.X ;A = (0041) 
CMP $40.X ; (0041 )-(0042) 
BCS COUNT 
STA $40. X ; (0042) = (0041) 

COUNT DEX ;X = LENGTH - 1 (1) 
BNE PASS 

Note that we have already checked the Conditional Branch instructions. Clearly the 
logic is incorrect. If the first two elements are out of order. the results after the first 
iteration shou Id be: 

(0041) 
(0042) 

X 

OLD (0042) 
OLD (0041) 
LENGTH - 1 

Instead. they are: 

~041) UNCHANGED 
(0042) OLD (0041) 

X LENGTH - 1 

The interchange requires a bit more care and the use of the Stack: 

PHA 
LDA $40.X 
STA $3F.X 
PLA 
STA $40.X 

An interchange always requires a temporary storage place in which one number can be 
saved while the other one is being transferred. 

All these changes require·a new copy of the program. i.e .. 

LDY #0 ;CLEAR INTERCHANGE FLAG BEFORE PASS 
LDX $40 ;GET LENGTH OF ARRAY 

PASS LDA $3F.X ;IS NEXT PAIR OF ELEMENTS IN ORDER? 
CMP $40.X 
BCS COUNT ;YES. NO INTERCHANGE NECESSARY 
PHA ;NO. INTERCHANGE ELEMENTS USING THE STACK 
LDA $40.X 
STA $3F.X 
PLA 
STA $40.X 

COUNT DEX ;CHECK FOR COMPLETED PASS 
BNE PASS 
DEY ;WERE ALL ELEMENTS IN ORDER? 
BEQ PASS ;NO. MAKE ANOTHER PASS 
BRK 

How about the last iteration? Let's say that there are three elements: 

(0040) 03 (number of elements) 
(0041) 02 
(0042) 04 
(0043) 06 
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cdch time through. the program decrements X by 1. So. during the third iteration. 
(X) = 1. The effects of the loop instructions are: 

LDA $3F.X ; (A) = (0040) 
CMP $40.X ; (0040) - (0041) 

This is incorrect: the program has tried to move beyond the starting address of the data. 
The previous iteration should. in fact. have been the last one. since the number of pairs 
is one less than the number of elements. The first element in the array has no pre
decessor to which it can be compared. The correction is to reduce the number of itera
tions by one; this can be accomplished by placing DEX after LDX $40. We must also 
add 1 to all the addresses in the indexed instructions. 

How about the trivial cases? What happens if the array contains no elements at 
all. or only one element? The answer is that the program does not work correctly 
and may change a whole block of data improperly and without any warning (try 
it!). The corrections to handle the trivial cases are simple but essential; the cost 
is only a few bytes of memory to avoid problems that could be very difficult to 
solve later. 

The new program is: 

LDY 
LDX 
CPX 
BCC 
DEX 

PASS LDA 
CMP 
BCS 
PHA 
LDA 
STA 
PLA 
STA 

COUNT DEX 
BNE 
DEY 
BEQ 

DONE BRK 

#0 
$40 
#2 
DONE 

$40.X 
$41.X 
COUNT 

$41.X 
$40.X 

$41.X 

PASS 

PASS 

;CLEAR INTERCHANGE FLAG BEFORE PASS 
;GET LENGTH OF ARRAY 
;DOES ARRAY HAVE 2 OR MORE ELEMENTS? 
;NO. NO ACTION NECESSARY 
;NUMBER OF PAIRS = LENGTH - 1 
;IS NEXT PAIR OF ELEMENTS IN ORDER? 

;YES. NO INTERCHANGE NECESSARY 
;NO. INTERCHANGE ELEMENTS USING THE STACK 

;CHECK FOR COMPLETED PASS 

;WERE ALL ELEMENTS IN ORDER? 
;NO. MAKE ANOTHER PASS 

Now it's time to check the program on the computer or on the simulator. A Simple set of 
data is: 

(0040) 
(0041) 
(0042) 

02 
00 
01 

length of array 
array to be sorted 

This set consists of two elements in the wrong order. The program should require two 
passes. The first pass should reorder the elements. producing: 

(0041) 01 
(0042) = 00 

Y = 01 

reordered array 

I nterchange flag 

The second pass should find the elements in the proper (descending) order and pro
duce: 

Y = 00 I nterchange flag 
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This program is rather long for single stepping. so we will use breakpoints instead. Each 
breakpoint will halt the computer and print the contents of all the registers. The break
points will come: 

1) After DEX to check the initialization. 

2) After CMP $41.X to check the comparison. 

3) After STA $41.X to check the interchange. 

4) After DEY to check the completion of a pass through the array 

The contents of the registers after the first breakpoint were: 

Register 

X 
Y 
P (status) 

Contents 

01 
00 

25 (35 if you use BRK to create 
the breakpoint since the Break 
Command flag will be set) 

These are all correct. so the program is performing the initialization correctly in this 
case. 

The results at the second breakpoint were: 

These results are also correct. 

Register 

A 
X 
Y 
P (status) 

The results at the third breakpoint were: 

Checking memory showed: 

Register 

A 
X 
Y 
P (status) 

(0041) 01 
(0042) 00 

The results at the fourth breakpoint were: 

Register 

A 
X 
Y 
P (status) 

Contents 

00 
01 
00 
A4 (B4 if you use BRK) 

Contents 

00 
01 
00 
26 (36 if you use BRK) 

Contents 

00 
00 
FF 
A4 (B4 if you use BRK) 

The Zero flag (bit 1 of the Status Register) is incorrect. indicating that no interchange 
occurred. Register Y does not contain the correct value - it should have been set to 
one after the interchange. In fact. a look at the program shows that no instruction ever 
changes Index Register Y to mark the interchange. The correction is to place the in
struction LDY #1 after BCS COUNT. 
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Now the procedure is to load Index Register Y with the correct value (zero!' set the Zero 
flag to 1. and continue. The second iteration of the second breakpoint gives: 

Register Contents 

A 02 
X 00 
Y 00 
P (status) 25 (35 if you use BRK) 

Clearly the program has proceeded incorrectly without reinitializing the registers (par
ticularly Index Register X). The Conditional Branch that depends on the interchange 
should transfer control back to a point that reinitializes X; note that we do not need to 
reinitialize Y (it will be zero anyway - why?) nor do we need to check the length of the 
array again. 

The final version of the program is: 

SORT LDY 
LDX 
CPX 
BCC 

ITER LDX 
DEX 

PASS LDA 
CMP 
BCS 
LDY 
PHA 
LDA 
STA 
PLA 
STA 

COUNT DEX 
BNE 
DEY 
BEQ 

DONE BRK 

#0 
$40 
#2 
DONE 
$40 

$40.X 
$41.X 
COUNT 
#1 

$41.X 
$40.X 

$41.X 

PASS 

ITER 

;CLEAR INTERCHANGE FLAG TO START 
;DOES ARRAY HAVE 2 OR MORE ELEMENTS? 

;NO. NO ACTION NECESSARY 
;YES. NUMBER OF PAIRS = LENGTH - 1 

;IS NEXT PAIR OF ELEMENTS IN ORDER? 

;YES. NO INTERCHANGE NECESSARY 
;NO. SET INTERCHANGE FLAG 
;INTERCHANGE ELEMENTS USING THE STACK 

;CHECK FOR COMPLETED PASS 

;WERE ALL ELEMENTS IN ORDER? 
;NO. MAKE ANOTHER PASS 

Clearly we cannot check all the possible input values for this program. Two other simple 
sets of data for debugging purposes are: 

1) Two equal elements 

(0040) 02 
(0041) 00 
(0042) 00 

2) Two elements already in decreasing order 

(0040) 02 
(0041) 01 
(0042) 00 
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INTRODUCTION TO TESTING 
Program testing is closely related to program debugging. 
Surely some of the test cases will be the same as the test 
data used for debugging, such as: 

Trivial cases such as no data or a single element 
• Special cases that the program singles out for some reason 

USING TEST 
CASES FROM 
DEBUGGING 

• Simple examples that exercise particular parts of the program 

In the case of the decimal to seven-segment conversion program. these cases 
cover all the possible situations. The test data consists of: 

The numbers 0 through 9 

• The boundary case 10 

• The random case 68 

The program does not distinguish any other cases. Here debugging and testing are 
virtually the same. 

In the sorting program. the problem is more difficult. The number of elements could 
range from 0 to 255. and each of the elements could lie anywhere in that range. The 
number of possible cases is therefore enormous. Furthermore. the program is 
moderately complex. How do we select test data that will give u§ a degree of confi
dence in that program? Here testing requires some design decisions. The testing 
problem is particularly difficult if the program depends on sequences of real-time data. 
How do we select the data. generate it. and present it to the microcomputer in a 
realistic manner? 

Most of the tools mentioned earlier for debugging are helpful 
in testing also. Logic or microprocessor analyzers can help 
check the hardware; simulators can help check the software. 
Other tools can also be of assistance. e.g., 

1) I/O simulations that can simulate a variety of devices from a single input and a 
single output device. 

2) In-circuit emulators that allow you to attach the prototype to a development 
system or control panel and test it. 

3) ROM simulators that have the flexibility of a RAM but the timing of the particular 
ROM or PROM that will be used in the final system. 

4) Real-time operating systems that can provide inputs or interrupts at specific 
times (or perhaps randomly) and mark the occurrence of outputs. Real-time break
points and traces may also be included. 

5) Emulations (often on microprogrammable computers) that may provide real-time 
execution speed and programmable 1/0.4 

6) Interfaces that allow another computer to control the I/O system and test the 
microcomputer program. 

7) Testing programii that check each branch in a program for logical errors. 

8) Test generation programs that can generate random data or other distributions. 

Formal testing theorems exist. but they are usually applicable only to very short 
programs. 

You must be careful that the test equipment does not invalidate the test by 
modifying the environment. Often. test equipment may buffer. latch. or condition 
input and output signals. The actual system may not do this. and may therefore 
behave quite differently. 
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Furthermore, extra software in the test environment may use some of the memo
ry space or part of the interrupt system. It may also provide error recovery and 
other features that will not exist in the final system. A software test bed must be 
just as realistic as a hardware test bed. since software failure can be just as critical as 
hardware failure. 

Emulations and simulations are, of course, never precise. They are usually ade
quate for checking logic, but can seldom help test the interface or the timing. On 
the other hand, real-time test equipment does not provide much of an overview of 
the program logic and may affect the interfacing and timing. 
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SELECTING TEST DATA 
Very few real programs can be checked for all cases. The designer must choose a 
sample set that in some sense describes the entire range of possibilities. 

Testing should. of course. be part of the total development pro
cedure. Top-down design and structured programming provide for 
testing as part of the design. This is called structured testing. 5 

STRUCTURED 
TESTING 

Each module within a structured program should be checked separately. 
well as design, should be modular, structured, and top-down. 

Testing, as 

But that leaves the question of selecting test data for a 
module. The designer must first list all special cases that a 
program recognizes. These may include: 

Trivial cases 

Equality cases 

Special situations 

The test data should include all of these. 

You must next identify each class of data that statements 
within the program may distinguish. These may include: 

Positive or negative numbers 

Numbers above or below a particular threshold 

TESTING 
SPECIAL 
CASES 

FORMING 
CLASSES 
OF DATA 

Data that does or does not include a particular sequence or character 

Data that is or is not present at a particular time 

If the modules are short. the total number of classes should still be small even though 
each division is multiplicative; i.e .. three two-way divisions result in 2 x 2 x 2 = 8 
classes of data. 

You must now separate the classes according to whether the 
program produces a different result for each entry in the class 
(as in a table) or produces the same result for each entry (such 
as a warning that a parameter is above a threshold). In the dis

SELECTING 
DATA FROM 
CLASSES 

crete case. one may include each element if the total number is small or sample if the 
number is large. The sample should include all boundary cases and at least one case 
selected randomly. Random number tables are available in books. and random number 
generators are part of most computer facilities. 

You must be careful of distinctions that may not be obvious. For example, an 8-bit 
microprocessor will regard an 8-bit unsigned number greater than 127 as nega
tive. The programmer must consider this when using conditional branches that 
depend on the Sign flag. You must also watch for instructions that do not affect 
flags, overflow in signed arithmetic, and the distinctions between address-length 
(16-bitl quantities and data-length (8-bitl quantities. 
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Testing Example 1: Sort Program 
The special cases here are obvious: 

• No elements in the array 

• One element. magnitude may be selected randomly 

TESTING 
A SORT 
PROGRAM 

The other special case to be considered is one in which elements are equal. 

There may be some problem here with signs and data length. Note that the array itself 
must contain fewer than 256 elements. The use of the instruction LDY #1 rather than 
INY to set the Interchange flag means that there will be no problems if the number of 
elements or interchanges exceeds 128. We could check the effects of sign by picking 
half the regular test cases with numbers of elements between 128 and 255 and half 
between 2 and 127. All magnitudes should be chosen randomly so as to avoid un
conscious bias as much as possible. 

Testing Example 2: Self-Checking Numbers (see Chapter 8) 

Here we will presume that a prior validity check has ensured that 
the number has the right length and consists of valid digits. Since 
the program makes no other distinctions. test data should be 
selected randomly. Here a random number table or random num

r"'T ... E-ST-I-N .... G-A-N ... 

ARITHMETIC 
PROGRAM 

ber generator will prove ideal: the range of the random numbers is 0 to 9. 
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TESTING PRECAUTIONS 
The designer can simplify the testing stage by designing pro
grams sensibly. You should use the following rules: 

1) Try to eliminate trivial cases as early as possible without 
introducing unnecessary distinctions. 

2) Minimize the number of special cases. Each special case means additional testing 
and debugging time. 

3) Consider performing validity or error checks on the data prior to processing. 

4) Be careful of inadvertent and unnecessary distinctions. particularly in handling 
signed numbers or using operations that refer to signed numbers. 

5) Check boundary cases by hand. These are often a source of errors. Be sure that the 
problem definition specifies what is to happen in these cases. 

6) Make the program as general as reasonably possible. Each distinction and separate 
routine increases the required testing. 

7) Divide the program and design the modules so that the testing can proceed in 
steps in conjunction with the other stages of software development.6 

CONCLUSIONS 
Debugging and testing are the stepchildren of the software development process. 
Most projects leave far too little time for them and most textbooks neglect them. 
But designers and managers often find that these stages are the most expensive 
and time-consuming. Progress may be very difficult to measure or produce. 
Debugging and testing microprocessor software is particularly difficult because 
the powerful hardware and software tools that can be used on larger computers 
are seldom available for microcomputers. 

The designer should plan debugging and testing carefully. We recommend the 
following procedure: 

1) Try to write programs that can easily be debugged and tested. Modular pro
gramming. structured programming. and top-down design are useful techni
ques. 

2) Prepare a debugging and testing plan as part of the program design. Decide 
early what data you must generate and what equipment you will need. 

3) Debug and test each module as part of the top-down design process. 

4) Debug each module's logic systematically. Use checklists. breakpoints. and 
the single-step mode. If the program logic is complex. consider using the soft
ware simulator. 

5) Check each module's timing systematically if this is a problem. An 
oscilloscope can solve many problems if you plan the test properly. If the 
timing is complex. consider using a logic or microprocessor analyzer. 

6) Be sure that the test data is a representative sample. Watch for any classes of 
data that the program may distinguish. Include all special and trivial cases. 

7) If the program handles each element differently or the number of cases is 
large. select the test data randomly.? 

8) Record all test results as part of the documentation. If problems occur. you 
will not have to repeat test cases that have already been checked. 
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Chapter 15 
DOCUMENTATION AND REDESIGN 

The working progrem is not the only requirement of software development. Ade
quate documentation is also an important part of a software product. Not only 
does documentation help the designer In the testing and debugging stages. it is 
also essential for later use and extension of the program. A poorly documented 
program will be difficult to maintain. use. or extend. 

Occasionally. a program uses too much memory or executes too slowly. The 
designer must then improve it. This stage Is called redesign. and requires that you 
concentrate on the parts of the program that can yield the most improvement. 

SELF-DOCUMENTING PROGRAMS 
Although no program Is ever completely self-document
ing. some of the rules that we mentioned earlier can help. 
These include: 

• Clear. simple structure with as few transfers of control 
(jumps) as possible 

• Use of meaningful names and labels 

RULES FOR 
SELF-DOCUMENTING 
PROGRAMS 

• Use of names for I/O devices. parameters. numerical factors. etc. 

• Emphasis on simplicity rather than on minor savings in memory usage. execution 
time. or typing 

For example. the following program sends a string of characters to a teletypewriter: 

LOX $40 
W LOA $OFFF.X 

STA $AOOO 
JSR XXX 
OEX 
BNE W 
BRK 

Even without comments we can improve the program. as follows: 

MESSG =$1000 
COUNT =$40 
TTYVIA =$AOOO 

LOX COUNT 
DUTCH LOA MESSG-1.X 

STA TTYVIA 
JSR BITOLY 
OEX 
BNE DUTCH 
BRK 

Surely this program is easier to understand than the earlier version. Even without 
further documentation. you could probably guess at the function of the program and 
the meanings of most of the variables. Other documentation techniques cannot 
substitute for self-documentation. 
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Some further notes on choosing names: 

1) Use the obvious name when it is available. like TTY or CRT 
for output devices. START or RESET for addresses. DELAY or 
SORT for subroutines. COUNT or LENGTH for data. 

CHOOSING 
USEFUL 
NAMES 

2) Avoid acronyms like S16BA for SORT 16-BIT ARRAY. These seldom mean 
anything to anybody. - - - -

3) Use full words or close to full words when possible. like DONE. PRINT. SEND. etc. 

4) Keep the names as distinct as possible. 
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COMMIENTS 
The most obvious form of additional documentation is the comment. However, 
few programs (even those used as examples in books) have effective comments. 
You should consider the following guidelines for good comments. 

1) Don't repeat the meaning of the instruction code. Rather. 
explain the purpose of the instruction in the program. Com
ments like 

DEX ;X=X-1 

add nothing to documentation. Rather. use 

DEX ;LlNE NUMBER=LlNE NUMBER-1 

COMMENTING 
GUIDELINES 

Remember that you know what the operation codes mean and anyone else can 
look them up in the manual. The important point is to explain what task the 
program is performing. 

2) Make the comments as clear as possible. Do not use abbreviations or acronyms 
unless they are well-known Oike ASCII. VIA. or UART) or standard Oike no for num
ber. ms for millisecond. etc.). Avoid comments like 

DEX ;LN=LN-1 
or 

DEX ;DEC LN BY 1 

The extra typing simply is not all that expensive. 

3) Comment every important or obscure point. Be particularly careful to mark 
operations that may not have obvious functions. such as 

AND #%00100000 ;TURN TAPE READER BIT OFF 
or 

LOA GCODL.X ;CONVERT TO GRAY CODE USING TABLE 

Clearly. I/O operations often require extensive comments. If you're not exactly 
sure of what an instruction does. or if you have to think about it. add a clarifying 
comment. The comment will save you time later and will be helpful in documenta
tion 

4) Don't comment the obvious. A comment on each line simply makes it difficult to 
find the important points. Standard sequences like 

DEX 
BNE SEARCH 

need not be marked unless you're doing something special. One comment will 
often suffice for several lines. as in 

LSR 
LSR 
LSR 
LSR 

LDA 
LOX 
STA 
STX 

A 
A 
A 
A 

$40 
$41 
$41 
$40 

;GET MOST SIGNIFICANT DIGIT 

;EXCHANGE MOST SIGNIFICANT. LEAST 
SIGNIFICANT BYTES 

5) Place comments on the lines to which they refer or at the start of a se
quence. 

6) Keep your comments up-to-date. If you change the program. change the com
ments. 
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7) Use standard forms and terms in commenting. Don't worry about repetitiveness. 
Varied names for the same things are confusing, even if the variations are just 
COUNT and COUNTER, START and BEGIN, DISPLAY and LEOS, or PANEL and 
SWITCHES. 

There's no real gain in not being consistent. The variations may seem obvious to 
you now, but may not be clear later: others will get confused from the very begin
ning. 

8) Make comments mingled with Instructions brief. Leave a complete explanation 
to header comments and other documentation. Otherwise, the program gets lost 
in the comments and you may have a hard time even finding it. 

9) Keep improving your comments. If you come to one that you cannot read or un
derstand, take the time to change it. If you find that the listing is getting crowded, 
add some blank lines. The comments won't improve themselves: in fact. they will 
just become worse as you leave the task behind and forget exactly what you did. 

10) Before every major section. subsection. or subroutine. Insert a number of 
comments describing the functions of the code that follows. Care should be 
taken to describe all inputs, outputs, and side effects, as well as the algorithm 
employed. 

11) It is good practice when modifying working programs to use comments to in
dicate the date. author. and type of modification mede. 

Remember. comments are important. Good ones will save you time and effort. Put 
some work into comments and try to make them as effective as possible. 
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Commenting Ex.mple 1: Multiple-Precision 
Addition 

The basic program is: 

ADDWD 

LOX 
CLC 
LOA 
ADC 
STA 
DEX 
BNE 
BRK 

$40 

$40.X 
$50.X 
$40.X 

ADDWD 

COMMENTING 
EXAMPLES 

First. comment the important points. These are typically initializations. data fetches. 
and processing operations. Don't bother with standard sequences like updating poin
ters and counters. Remember that names are clearer than numbers. so use them freely. 

The new version of the program is: 

;MUL TIPLE-PRECISION ADDITION 

;THIS PROGRAM PERFORMS MULTI-BYTE BINARY ADDITION 

INPUTS: LOCATION 0040 (HEX) = LENGTH OF NUMBERS (IN BYTES) 
LOCATIONS 0041 THROUGH 0050 (HEX) = FIRST NUMBER STARTING 
WITH MSB'S 
LOCATIONS 0051 THROUGH 0060 (HEX) = SECOND NUMBER STARTING 
WITH MSB'S 

OUTPUTS: I.OCATIONS 0041 THROUGH 0050 (HEX) = SUM STARTING WITH 
MSB'S 

LENGTH 
NUMB1 
NUMB2 

ADDWD 

=$40 
=$41 
=$51 
LOX 
CLC 
LOA 
ADC 
STA 
DEX 
BNE 
BRK 

LENGTH ;COUNT = LENGTH OF NUMBERS (IN BYTES) 

NUMB1-1.X ;GET BYTE FROM STRING 1 
NUMB2-1.X ;ADD BYTE FROM STRING 2 
NUMB1-1.X ;STORE RESULT IN STRING 1 

ADDWD ;CONTINUE UNTIL ALL BYTES ADDED 
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Second, look for any instructions that might not have obvious 
functions and mark them. Here, the purpose of CLC is to clear the 
Carry the first time through. 

QUESTIONS 
FOR 
COMMENTING 

Third, ask yourself whether the comments tell you what you would need to know if you 
wanted to use the program, e.g.: 

1) Where is the program entered? Are there alternative entry points? 

2) What parameters are necessary? How and in what form must they be supplied? 

3) What operations does the program perform? 

4) From where does it get the data? 

5) Where does it store the results? 

6) What special cases does it consider? 

7) What does the program do about errors? 

8) How does it exit? 

Some of the questions may not be relevant to a particular program and some of the 
answers may be obvious. Make sure that you won't have to sit down and dissect the 
program to figure out what the answers are. Remember that too much explanation is 
just dead wood that you will have to clear out of the way. Is there anything that you 
would add to or subtract from this listing? If so, go ahead - you are the one who has to 
feel that the commenting is adequate and reasonable. 

;MUL TIPLE-PRECISION ADDITION 

;THIS PROGRAM PERFORMS MUL TI-8YTE BINARY ADDITION 

INPUTS: LOCATION 0040 (HEX) = LENGTH OF NUMBERS (IN BYTES) 
LOCATIONS 0041 THROUGH 0050 (HEX) = FIRST NUMBER STARTING 
WITH MSB'S 
LOCATIONS 0051 THROUGH 0060 (HEX) = SECOND NUMBER STARTING 
WITH MSB'S 

OUTPUTS: LOCATIONS 0041 THROUGH 0050 (HEX) = SUM STARTING WITH 
MSB'S 

LENGTH 
NUMB1 
NUMB2 

ADDWD 

=$40 
=$41 
=$51 
LOX 
CLC 
LOA 
ADC 
STA 
DEX 
BNE 
BRK 

;LENGTH OF NUMBERS (IN BYTES) 
;MSB'S OF 1ST NUMBER AND RESULT 
;MSB'S OF SECOND NUMBER 

LENGTH ;COUNT = LENGTH OF NUMBERS (IN BYTES) 
;CLEAR CARRY TO START 

NUMB1-1,X ;GET BYTE FROM STRING 1 
NUMB2-1,X ;ADD BYTE FROM STRING 2 
NUMB1-1,X ;STORE RESULT IN STRING 1 

ADDWD ;CONTINUE UNTIL ALL BYTES ADDED 
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Commenting Example 2: Teletypewriter Output 
The basic program is: 

LDA $60 
ASL A 
LDX #11 

TBIT STA $AOOO 
JSR BITDLY 
ROR A 
SEC 
DEX 
BNE TBIT 
BRK 

Commenting the important points and adding names gives: 

:TELETYPEWRITER OUTPUT PROGRAM 

:THIS PROGRAM PRINTS THE CONTENTS OF MEMORY LOCATION 0060 (HEX) TO THE 
TELETYPEWRITER 

INPUTS: CHARACTER TO BE TRANSMITTED IN MEMORY LOCATION 0060 
OUTPUTS: NONE 

NBITS =11 ;NUMBER OF BITS PER CHARACTER 
TDATA =$60 ;ADDRESS OF CHARACTER TO BE 

TRANSMITTED 
TTYVIA =$AOOO ;TELETYPEWRITER OUTPUT DATA PORT 

LDA TDATA :GET DATA 
ASL A ;SHIFT LEFT AND FORM START BIT 
LDX #NBITS ;COUNT = NUMBER OF BITS IN CHARACTER 

TBIT STA TTYVIA ;SEND NEXT BIT TO TELETYPEWRITER 
JSR BITDLY ;WAIT 1 BIT TIME 
ROR A ;GET NEXT BIT 
SEC ;SET CARRY TO FORM STOP BITS 
DEX 
BNE TBIT ;COUNT BITS 
BRK 
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Note how easily we could change this program so that it would transfer a whole string 
of data. starting at the address in page-zero locations DPTR and DPTR + 1 and ending 
with an "03" character (ASCII ETX). Furthermore. let us make the terminal a 30 
character per second device with one stop bit (we will have to change subroutine 
BITDL Y). Try making the changes before looking at the listing. 

;STRING OUTPUT PROGRAM 

;THIS PROGRAM TRANSMITS A STRING OF CHARACTERS TO A 30 CPS TERMINAL. 
TRANSMISSION CEASES WHEN AN ASCII ETX (03 HEX) IS ENCOUNTERED 

INPUTS: LOCATIONS 0060 AND 0061 (HEX) CONTAIN ADDRESS OF 
STRING TO BE TRANSMITIED 

OUTPUTS: NONE 

DPTR 
ENDCH 
NBITS 
TRMVIA 

TCHAR 

TBIT 

DONE 

=$60 
=$03 
=10 
=$AOOO 
LDY 
LDA 
CMP 
BEQ 
ASL 
LDX 
STA 
JSR 
ROR 
SEC 
DEX 
BNE 
INY 
JMP 
BRK 

#0 
(DPTRI.Y 
#ENDCH 
DONE 
A 
#NBITS 
TRMVIA 
BITDLY 
A 

TBIT 

TCHAR 

;POINTER TO OUTPUT DATA BUFFER 
;ENDING CHARACTER = ASCII ETX 
;NUMBER OF BITS PER CHARACTER 
;TERMINAL OUTPUT DATA PORT 
;POINT TO START OF OUTPUT DATA BUFFER 
;GET A CHARACTER FROM BUFFER 
;IS IT ENDING CHARACTER? 
;YES. DONE 
;NO. SHIFT LEFT AND FORM START BIT 
;COUNT = NUMBER OF BITS PER CHARACTER 
;SEND NEXT BIT TO TERMINAL 
;WAIT 1 BIT TIME 
;GET NEXT BIT 
;SET CARRY TO FORM STOP BIT 

;COUNT BITS 
;PROCEED TO NEXT CHARACTER 

Good comments can make it easy for you to change a program to meet new require
ments. For example. try changing the last program so that it: 

• Starts each message with ASCII STX (0216) followed by a three-digit identification 
code stored in memory locations IDCODE through IDCODE+2 

• Adds no start or stop bits 

• Waits 1 ms between bits 

• Transmits 40 characters. starting with the one located at the address in DPTR and 
DPTR+1 

• Ends each message with two consecutive ASCII ETXs (0316) 
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FLOWCHARTS AS DOCUMENTATION 
We have already described the use of flowcharts as a design tool 
in Chapter 13. Flowcharts are also usefu I in documentation. partic
ularly if: 

• They are not so detailed as to be unreadable 

• Their decision points are clearly explained and marked 

• They include all branches 

• They correspond to the actual program listings 

HINTS FOR 
USING 
FLOWCHARTS 

Flowcharts are helpful if they give you an overall picture of the program. They are not 
helpful if they are just as difficult to read as an ordinary listing. 

STRUCTURED PROGRAMS AS DOCUMENTATION 
A structured program can serve as documentation for an assembly language program 
if: 

• You describe the purpose of each section in the comments 

• You make it clear which statements are included in each conditional or loop structure 
by using indentation and ending markers 

• You make the total structure as simple as possible 

• You use a consistent. well-defined language 

The structured program can help you to check the logic or improve it. Furthermore. 
since the structured program is machine-independent. it can also aid you in implement
ing the same task on another computer. 
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MEMORY MAPS 
A memory map is simply a list of all the memory assignments in a program. The 
map allows you to determine the amount of memory needed. the locations of data 
or subroutines. and the parts of memory not allocated. The map is a handy reference 
for finding storage locations and entry points and for dividing memory between 
different routines or programmers. The map will also give you easy access to data and 
subroutines if you need them in later extensions or in maintenance. Sometimes a 
graphical map is more helpful than a listing. 

A typical map would be: TYPICAL 

Address Routine 

EOOO-E1 FF INTRPT 
E200-E240 BRKPT 
E241-E250 DELAY 
E251-E270 DSPLY 
E271-E3F9 MAIN 
E3FA-E3FF 

0000 NKEYS 
0001-0002 KPTR 
0003-0041 KBFR 
0042-0051 DBFR 
0051-006F TEMP 
0100-01 FF STACK 

Program Memory 

Purpose 

MEMORY 
MAP 

Interrupt Service Routine for Keyboard 
Service Routine for Break Instruction 
Delay Program 
Display Control Program 
Main Program 
Interrupt and Reset Vectors 

Data Memory 

Number of Keys 
Keyboard Buffer Pointer 
Keyboard Buffer 
Display Buffer 
Temporary Storage 
RAM Stack 

Remember that the 6502 RAM Stack is always on page 1 of memory. 

15-10 



PARAMETER AND DEFINITION LISTS 
Parameter and definition lists at the start of the program and each subroutine 
make understanding and changing the program far simpler. The following rules can 
help: 

1) Separate RAM locations. I/O units. parameters. defini
tions. and memory system constants. 

RULES FOR 
DEFINITION 
LISTS 2) Arrange lists alphabetically when possible. with a descrip

tion of each entry. 

3) Give each parameter that might change a name and include it in the lists. Such 
parameters may include timing constants. inputs or codes corresponding to partic
ular keys or functions. control or masking patterns. starting or ending characters. 
thresholds. etc. 

4) Make the memory system constants into a separate list. These constants will 
include Reset and interrupt service addresses. the starting address of the program. 
RAM areas. Stack areas. etc. 

5) Give each port used by an I/O device a name. even though devices may share 
ports in the current system. The separation will make expansion or reconfiguration 
much simpler. 

A typical list of definitions will be: 

;MEMORY SYSTEM CONSTANTS 

INTRP 
RAMST 
RESET 
STPTR 

; I/O UNITS 

DSPLY 
KBDIN 
KBDOT 
TTYVIA 

=$E200 
=$0 
=$E300 
=$01FF 

=$AOOO 
=$A001 
=$AOOO 
=$A800 

;RAM LOCATIONS 

NKEYS 
KPTR 
KBFR 
DBFR 
TEMP 

·=RAMST 
·=·+1 
·=·+2 
·=·+$40 
·=·+$10 
·=·+$14 

;PARAMETERS 

BOUNCE 
GOKEY 
MSCNT 
OPEN 
TPULS 

=2 
=10 
=$C7 
=$OF 
=1 

;INTERRUPT ENTRY POINT 

TYPICAL 
DEFINITION 
LIST 

;START OF DATA STORAGE AREA 
;RESET ADDRESS 
;TOP ADDRESS IN RAM STACK (ON PAGE 1) 

;OUTPUT VIA FOR DISPLAYS 
;INPUT VIA FOR KEYBOARD 
;OUTPUT VIA FOR KEYBOARD 
;TTY DATA PORT 

;NUMBER OF KEYS 
;KEYBOARD BUFFER POINTER 
;KEYBOARD INPUT BUFFER 
;DISPLAY DATA BUFFER 
;TEMPORARY STORAGE 

.DEBOUNCING TIME IN MS 
;IDENTIFICATION OF 'GO' KEY 
;COUNT FOR 1 MS DELAY 
;PATTERN FOR OPEN KEYS 
;PULSE LENGTH FOR DISPLAYS IN MS 
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;DEFINITIONS 

ALLHI 
STCON 

=$FF 
=$80 

;ALL ONES PATIERN 
;PATIERN FOR START CONVERSION PULSE 

Of course. the RAM entries will usually not be in alphabetical order. since the designer 
must order these so as to minimize the number of address changes required in the pro
gram. 
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LIBRARY ROUTINES 
Standard documentation of subroutines will allow you to build up a library of 
useful programs. The idea is to make these programs easily accessible. A standardfor
mat will allow you or anyone else to see at a glance what the program does. The/best 
procedure is to make up a standard form and use it con~ently. Save these programs 
in a well-organized manner (for example. according to processor. language. and type of 
program). and you will soon have a useful set. BLJt remember that. without organiza
tion and proper documentation. using the library may be more difficult than rewrit
ing the program from scratch. Debugging a system requires a precise understanding 
of all the effects of each subroutine. 

Among the information that you will need in the standard form is: 

• Purpose of the program 

• Processor used 

• Language used 
• Parameters required and how they are passed to the subroutine 

• Results produced and how they are passed to the main program 

• Number of bytes of memory used 

STANDARD 
PROGRAM 
LIBRARY 
FORMS 

• Number of clock cycles required. This number may be an average or a typical figure. 
or it may vary widely. Actual execution time will. of course. depend on the processor 
clock rate and the memory cycle time . 

• Registers affected 

.Flags affected 

·A typical example 

·Error handling 
.Special cases 

·Documented program listing 

If the program is complex. the standard library form should also include a general 
flowchart or a structured program. As we have mentioned before. a library program is 
most likely to be useful if it performs a single distinct function in a reasonably general 
manner. 
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LIBRARY EXAMPLES 

Library Example 1: Sum of Data 
Purpose: The program SUM8 computes the sum of a set of 8-bit unsigned binary num

bers. 

Language: 6502 Assembler. 

Initial Conditions: Address one less than the starting address of the set of numbers in 
memory locations 0040 and 0041. length of set in Index Register Y. 

Final Conditions: Sum in Accumulator. 

Requirements: 

Memory 
Time 

Registers 
RAM 

All flags affected. 

9 bytes. 
7+12n clock cycles. where n is the length of the set of, 
numbers. May be longer if page boundaries are crossed. 
A.Y 
locations 0040 and 0041. 

Typical Case: (all data in hexadecimal) 

Start: 
(0040 and 0041) 004F 

Y 03 
(0050) 27 
(0051) 3E 
(0052) 26 

End: 
A 8B 

Error Handling: Program ignores all carries. Carry bit reflects only the last operation. 

Listing: 

Initial contents of Index register Y must be 1 or more. Decimal Mode 
flag should be cleared. 

;SUM OF 8-BIT DATA 

SUM8 
ADD8 

LDA 
CLC 
ADC 
DEY 
BNE 
RTS 

#0 

($40).Y 

ADD8 

SUM =ZERO 
CLEAR CARRY EACH TIME 
SUM = SUM + DATA ENTRY 
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Library Example 2: Decimal-to-Seven Segment Conversion 
Purpose: The program SEVEN converts a decimal number to a seven-segment display 

code. 

Language: 6502 Assembler. 

Initial Conditions: Data in Index Register X. 

Final conditions: Seven-segment code in Accumulator. 

Requirements: 

Memory 

Time 

Registers 
All flags affected. 

19 bytes. including the seven-segment code table (10 
entries). 
16 clock cycles if the data is valid. 13 if it is not. 
May be longer if page boundaries are crossed. 
A.X 

Input data in Index Register X is unchanged. 

Typical Case: (data in hexadecimal! 

Start: 
X 05 

End: 
A 6D 

Error Handling: Program returns zero in the Accumulator if the data is not a decimal 
digit. 

Listing: 

;DECIMAL TO SEVEN-SEGMENT CONVERSION 

SEVEN 

DONE 
SSEG 

LDA 
CPX 
BCS 
LDA 

RTS 
. BYTE 
. BYTE 

#0 
#10 
DONE 
SSEG.X 

;GET ERROR CODE TO BLANK DISPLAY 
;IS DATA A DECIMAL DIGIT? 
; NO. KEEP ERROR CODE 
;YES. GET SEVEN-SEGMENT CODE FROM 
. TABLE 

$3F.$06.$5B.$4F.$66 
$6D.$7D.$07.$7F.$6F 
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library Example 3: Decimal Sum 
Purpose: The program DECSUM adds two multi-word decimal numbers. 

Language: 6502 Assembler. 

Initial Conditions: Address of MSBs of one number in memory locations 0040 and 
0041. address of MSBs of other number in memory locations 0042 
and 0043. Length of numbers (in bytes) in Index Register Y. Num
bers arranged starting with most significant digits. 

Final Conditions: Sum replaces number with starting address in memory locations 
0040 and 0041. 

Requirements: 

Memory 
Time 

Registers 
RAM 

All flags affected 

14 bytes. 
11 + 22n clock cycles. where n is the number of 
bytes. May be longer if page boundaries are crossed. 
A. Y 
memory locations 0040 through 0043. 
Carry shows if sum produced a carry. Decimal Mode 
flag is cleared. 

Typical Case: (all data in hexadecimal) 

Start: 
(0040 and 0041) 0060 
(0042 and 0043) 0050 

(Y) 02 

(0060) 55 
(0061) 34 

(0050) 15 
(0051) 88 

End: 
(0060) 71 
(0061) 22 
Carry 0 

Error Handling: Program does not check the validity of decimal inputs. The contents of 
Index Register Y must be 1 or more. 

Listing: 

;MULTI-DIGIT DECIMAL (BCD) ADDITION 

DECSUM 

DECADD 

SED 
CLC 
DEY 
LDA 
ADC 
STA 
TYA 
BNE 
CLD 
RTS 

($401.Y 
($42).Y 
($40I.Y 

DECADD 

;MAKE ALL ARITHMETIC DECIMAL 
;CLEAR CARRY TO START 

;GET 2 DECIMAL DIGITS FROM STRING 1 
;ADD PAIR OF DIGITS FROM STRING 2 
;STORE RESULT IN STRING 1 

;RETURN TO BINARY ARITHEMETIC MODE 
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TOTAL DOCUMENTATION 
Complete documentation of microprocessor software will in
clude all or most of the elements that we have mentioned. So, 
the total documentation package may involve: 

• General flowcharts 
• A written description of the program 

• A list of all parameters and definitions 

• A memory map 

• A documented listing of the program 

• A description of the test plan and test results 

The documentation may also include: 

• Programmers' flowcharts 

• Data flowcharts 

• Structured programs 

DOCUMENTATION 
PACKAGE 

The documentation procedures outlined above are the minimal acceptable set of 
documents for non-production software, Production software demands even 
greater documentation efforts, The following documents should also be produced: 

• Program Logic Manual 

• User's Guide 

• Maintenance Manual 

The program logic manual expands on the written explanation produced with the 
software. It should be written for a technically competent individual who may not 
possess the detailed knowledge assumed in the written explanation in the software. 
The program logic manual should explain the system's design goals, the algorithms 
used, and what tradeoffs were necessary. 

It should then explain in great detail what data structures were employed and how they 
are manipulated. It should provide a step-by-step guide to the operations of the pro
gram. Finally, it should contain any special tables or graphs that help explain the pro
gram. Code conversion charts, state diagrams, translation matrices, and flowcharts 
should be included. 

The User's guide is probably the most important and most overlooked piece of 
documentation. No matter how well a system is designed, it is useless if no one 
can take advantage of its features. The User's guide should introduce the system to 
all users, sophisticated and unsophisticated. It should then provide detailed explana
tions of system features and their use. Frequent examples will help to clarify the points 
in the text. Step-by-step directions should be provided (and tested!). Programmers with 
detailed knowledge of a system often take shortcuts that the general reader cannot 
follow. Further discussion of the writing of User's guides is beyond the scope of this 
book. However, remember that you can never spend too much effort in preparing a 
User's guide, since it will be the most frequently referenced system document. 

The maintenance manual is designed for the programmer who has to modify the 
system. It should outline step-by-step procedures for those reconfigurations designed 
into the system. In addition, it should describe any provisions built into the program for 
future expansion. 

Documentation should not be taken lightly or postponed until the end of the soft
ware development. Proper documentation, combined with proper programming 
practices, is not only an important part of the final product but can also make 
development simpler, faster, and more productive. The designer should make con
sistent and thorough documentation part of every stage of software development, 
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REDESIGN 
Sometimes the designer may have to squeeze the last microsecond of speed or 
the last byte of extra memory out of a program. As larger single-chip memories have 
become available, the memory problem has become less serious. The time problem, of 
course, is serious only if the application is time-critical: in many applications the 
microprocessor spends most of its time waiting for external devices, and program speed 
is not a major factor. 

Squeezing the last bit of performance out of a program is 
seldom as important as some writers would have you believe. 
In the first place, the practice is expensive for the following 
reasons: 

1) It requires extra programmer time, which is often the single largest cost in software 
development 

2) It sacrifices structure and simplicity with a resulting increase in debugging and 
testing time. 

3) The programs require extra documentation. 

4) The resulting programs will be difficult to extend, maintain, or re-use. 

In the second place, the lower per-unit cost and higher performance may not really 
be important. Will the lower cost and higher performance really sell more units? Or 
would you do better with more user-oriented features? The only applications that 
would seem to justify the extra effort and time are very high-volume, low-cost 
and low-performance applications where the cost of an extra memory chip will far 
outweigh the cost of the extra software development. For other applications, you 
will find that you are playing an expensive game for no reason. 

However, if you must redesign a program, the following 
hints will help. First, determine how much more perfor
mance or how much less memory usage is necessary. If 
the required improvement is 25% or less, you may be 

r-M-"'A-J-O""'R-O--R---" 

MINOR 
REORGANIZATION 

able to achieve it by reorganizing the program. If it is more than 25%, you have 
made a basic design error; you will need to consider drastic changes in hardware 
or software. We will deal first with reorganization and later with drastic changes. 

Note particularly that saving memory can be critical if it allows a program to fit into the 
limited amount of ROM and RAM available in a simple one-chip or two-chip microcom
puter. The hardware cost for small systems can thus be substantially reduced, if their 
requirements can be limited to the memory size and I/O limitations of that particular 
one-chip or two-chip system. 
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RIEORGANIZING 1"0 USIE llESS MEMORY 

The following procedures will reduce memory usage for 6502 
assembly language programs: 

11 Replace repetitious in-line code with subroutines. Be 
sure. however. that ti,e Call alld l'letulll instrLlctions do not offset most of the gain. 
~Iote that this rerlacernent usually results in sl(Jwer progral1ls because of the time 
spent in transferring control back and forth. 

21 Place the most frequently lIsed data 011 Pdge zero and access it with one
byte addresses. You r','lay even want i(J place a few I/O addresses there 

31 Use the Stack when possible. The Stack 1"(Jlnier IS dutumatically updated after 
each use sn tll(-lt Ill) 8:.<pllcit UpcJcltlllg Instrur.tlcrlS are flecessary. Renleinber 
however. that the 6502 Stack can never be lunger ti,an une page. 

41 Eliminate Jump instructions. Try to reorganize the prugram instead 

51 Take advantage of addresses that you can manipulate as 8-bit quantities. 
These include page zero and addresses that are multiples of 10016 For example, 
you might try to place all ROM tables in one 1 0016-byte sectron of memory, ancl 
all RAM variables Into another 1 0016-byte section. 

61 Organize data and tables so that you can address them without worrying 
about address calculation carries or without any actual indelting. This will 
again allow you to manipulate 16-bit addresses as B-brt quantities. 

71 Use the Bit Test or Shift instructions to operate on bit positions at either end 
of a word. 

BI Use leftover results from previous sections of the program. 

91 Take advantage of such instructions as ASl, DEC, INC, lSR, ROl, and ROR, 
which operate directly on memory locations without using registers. 

101 Use INC or DEC to set or reset flag bits. 

111 Use relative jumps rather than jumps with direct addressing. 

121 Use BRK, RTS, and RTI to perform jumps and reach subroutines, if they are 
not already being used. These Instructions can act as one-byte CALL instructions 
if the required data and addresses are already In the Stack 

131 Watch for special short forms of instructions such as the Accumulator shifts 
(ASL A. LSR A, ROL A, and ROR AI and BIT 

141 Use algorithms rather than tables to calculate arithmetic or logical expressions 
and to perform code conversions. Note that thiS replacement may result in slower 
programs. 

151 Reduce the size of mathematical tables by interpolating between entries Here 
again. we are saving memory at the cost of executron time 

161 Take advantage of the CPX and CPY instructions to perform comparisons 
without involving the Accumulator. 

Although some of the methods that reduce memory usage also 
save time, you can generally save an appreciable amount of 
time only by concentrating on frequently 6ltecuted loops. Even 
completely eliminating an instruction that is executed only once 
can save at most a few microseconds. But a savings in a loop that 
quently will be multiplied many times over 
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So. if you must reduce execution time. proceed as follows: 

1) Determine how frequently each program loop is executed. You can do this by 
hand or by using the software simulator or another testing method. 

2) Examine the loops in the order determined by their frequency of execution. 
starting with the most frequent. Continue through the list until you achieve the re
quired reduction. 

3) First. see if there are any operations that can be moved outside the loop. i.e .• 
repetitive calculations. data that can be stored in a register or on the Stack. data or 
addresses that can be stored on page zero. special cases or errors that can be 
handled elsewhere. etc. Note that this will require extra initialization and memory 
but will save time. 

4) Try to eliminate Jump statements. These are very time-consuming. 

5) Replace subroutines with in-line code. This will save at least a Call and a Return 
instruction. 

6) Use page zero for temporary data storage. 

7) Use any of the hints mentioned in saving memory that also decrease execu
tion time. These include the use of 8-bit addresses. BRK. RTI. special short forms 
of instructions. etc. 

8) Do not even look at instructions that are executed only once. Any changes 
that you make in such instructions only invite errors for no appreciable gain. 

9) Avoid indexed and indirect addressing whenever possible because they take 
extra time. 

10) Use tables rather than algorithms; make the tables handle as much of the tasks 
as possible even if many entries must be repeated. 
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MAJOR REORGANIZATIONS 
If you need more than a 2&% increase in speed or decrease in memory usage. do 
not try reorganizing the code. Your chances of getting that much of an improve
ment are small unless you call in an outside expert. You are generally better off 
making a major change. 

The most obvious change is a better algorithm. Particularly if 
you are doing sorts. searches. or mathematical calculations. you 
may be able to find a faster or shorter method in the literature. 

BETTER 
ALGORITHMS 

Libraries of algorithms are available in some journals and from professional groups. See. 
for example. the references at the end of this chapter. 

More hardware can replace some of the software. Counters. shift registers. 
arithmetic units. hardware multipliers. and other fast add-ons can save both time and 
memory. Calculators. UARTs. keyboards. encoders. and other slower add-ons may save 
memory even though they operate slowly. Compatible parallel and serial interfaces. and 
other devices specially designed for use with the 6502 or 6800. may save time by tak
ing some of the burden off the CPU. 

Other changes may help as well: 

1) A CPU with a longer word will be faster if the data is long 
enough. Such a CPU will use less total memory. 16-bit pro
cessors. for example. use memory more efficiently than 8-bit 
processors. since more of their instructions are one word long. 

OTHER 
MAJOR 
CHANGES 

2) Versions of the CPU may exist that operate at higher clock rates. But remem
ber that you will need faster memory and I/O ports. and you will have to adjust any 
delay loops. 

3) Two CPUs may be able to do the job in parallel or separately if you can divide 
the job and solve the communications problem. 

4) A specially microprogrammed processor may be able to execute the same pro
gram much faster. The cost. however. will be much higher even if you use an off
the-shelf emu lation. 

5) You can make tradeoffs between time and memory. Lookup tables and function 
ROMs will be faster than algorithms. but will occupy more memory. 

This kind of problem. in which a large Improvement is neces
sary. usually results from lack of adequate planning In the 
definition and design stages. In the problem definition stage 
you should determine which processor and methods will be 

r-D~E~C~ID~I"'N~G-'" 

ON A MAJOR 
CHANGE 

adequate to handle the problem. If you misjudge. the cost later will be high. A 
cheap solution may result in an unwarranted expenditure of expensive develop
ment time. Do not try to just get by; the best solution Is usually to do the proper 
design and chalk a failure up to experience. If you have followed such methods as 
flowcharting. modular programming. structured programming. top-down design. 
and proper documentation. you will be able to salvage a lot of your effort even if 
you have to make a major change. 
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Chapter 16 
SAMPLE PROJECTS 

PROJECT #1: A Digital Stopwatch 
Purpose: This project is a digital stopwatch. The operator enters STOPWATCH 

two digits (minutes and tenths of minutes) from a INPUT 
calculator-like keyboard and then presses the GO key. PROCEDURE 
The system counts down the remaining time on two 
seven-segment LED displays (see Chapter 11 for a description of unencoded 
keyboards and LED displays). 

Hardware: The project uses one input port and one output port (one 6522 Versatile In
terface Adapter or VIA). two seven-segment displays. a 12-key keyboard. a 7404 in
verter. and either a 7400 NAND gate or a 7408 AND gate. depending on the polarity of 
the seven-segment displays. The displays may require drivers. inverters. and resistors. 
depending on their polarity and configuration. 

The hardware is organized as shown in Figure 16-1. Output lines O. 1. and 2 are used to 
scan the keyboard. Input lines O. 1. 2. and 3 are used to determine whether any keys 
have been pressed. Output lines O. 1.2. and 3 are used to send BCD digits to the seven
segment decoder/drivers. Output line 4 is used to activate the LED displays (if line 4 is 
T. the displays are lit). Output line 5 is used to select the left or right display. output 
line 5 is '1' if the left display is being used. '0' if the right display is being used. Thus. 
the common line on the left display should be active if line 4 is '1' and line 5 is T. while 
the common line on the right display should be active if line 4 is '1' and line 5 is '0'. 
Output line 6 controls the right hand decimal point on the left display. It may be driven 
with an inverter or simply left on. 

Keyboard Connections: The keyboard is a simple calculator keyboard available for 
50¢ from a local source. It consists of 12 unencoded key-switches arranged in four rows 
of three columns each. Since the wiring of the keyboard does not coincide with the ob
served rows and columns. the program uses a table to identify the keys. Tables 16-1 
and 16-2 contain the input and output connections for the keyboard. The decimal point 
key is present for operator convenience and for future expansion; the current program 
does not actually use the key. 

In an actual application. the keyboard would require pullup resistors to ensure that the 
inputs would actually be read as logic Ts when the keys were not being pressed. It 
would also require current-limiting resistors or open-collector drivers on the output port 
to avoid damaging the VIA drivers in the case where two outputs were driving against 
each other. This could occur if two keys in the same row were pressed at the same time. 
thus connecting two different column outputs. 
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PB7 I--(not used) 
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Output PB5 
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• 

L:::Q ITo 
Figure 16-1. I/O Configuration for a Digital Stopwatch 

Table 16-1. Input Connections for Stopwatch Keyboard 

Input Bit Keys Connected 

0 '3', '5', 'S' 
1 '2', '6', '9' 
2 '0', '1', '7' 
3 4', ':, 'GO' 

Table 16-2. Output Connections for Stopwatch Keyboard 

Output Bit Keys Connected 

0 '0', '2', '3', '4' 
1 '1', 'S', '9', 'GO' 
2 '5', '6', '7', ': 
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General Program Flowchart: 

Initialization 

Identify 

key closure 

Save key value Count time on LEOs 

Display Connections: The displays are standard seven-segment displays with their 
own integral decoders. Clearly. undecoded seven-segment displays would be cheaper 
but would require some additional software {the seven-segment conversion routine 
shown in Chapter 7l. Data is entered into the display as a single binary coded decimal 
digit; the digits are represented as shown in Figure 11-22. The decimal point is a single 
LED that is turned on when the decimal point input is a logic T. You can find more in
formation about displays in References 12 and 13 at the end of this chapter. 

16-3 



Program Description: 

The program is modular and uses several subroutines. The emphasis is on clarity and 
generality rather than efficiency: obviously. the program does not utilize the full 
capabilities of the 6502 processor. Each section of the listing will now be described in 
detail. 

1) Introductory Comments 

The introductory comments fully describe the program: these comments are a 
reference so that other users can easily apply. extend. and understand the pro
gram. Standard formats. indentations. and spacings increase the readability of the 
program. 

2) Variable Definitions 

All variable definitions are placed at the start of the program so that they can easily 
be checked and changed. Each variable is placed in a list alphabetically with other 
variables of the same type: comments describe the meaning of each variable. The 
categories are: 

a) Memory system constants that may vary from system to system depending on 
the memory space allocated to different programs or types of memories 

b) Temporary storage (RAM) used for variables 

e) I/O (VIA) addresses 

d) Definitions 

The memory system constants are placed in the definitions so that the user may 
relocate the program. temporary storage. and memory stack without making any 
other changes. The memory constants can be changed to accommodate other 
programs or to coincide with a particular system's allocation of ROM and RAM ad
dresses. 

Temporary storage is allocated by advancing the location counter as shown in 
Chapter 3. An = (Equate) pseudo-operation names the temporary storage 
locations. An ORG (origin) pseudo-operation places the temporary storage 
locations in a particular part of memory. No values are placed in these locations so 
that the program could eventually be placed in ROM or PROM and the system 
could be operated from power-on reset without reloading. 

Each memory address occupied by a VIA is named so that the addresses can 
easily be changed to handle varied configurations. The naming also serves to 
clearly distinguish control registers from data registers. 

The definitions clarify the meaning of certain constants and allow parameters to 
be changed easily. Each definition is given in the form (binary. hex. octal. ASCII. or 
decimal) in which its meaning is the clearest. Parameters (such as debounce time) 
are placed here so that they can be varied with system needs. 

3) Initialization 
Memory locations FFFC and FFFD (the 6502 RESET locations) contain the starting 
address of the main program. The main program can thus be placed anywhere in 
memory and reached via a "RESET" signal. 

The initialization consists of three steps: 

a) Place a starting value in the Stack Pointer. The Stack is used only to store 
subroutine return addresses. Note that the Stack Pointer is only 8 bits long 
since the 6502 Stack is always on page one of memory. 

b) Configure the VIA. 

e) Start the number of digit keys pressed at zero. 
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4) Look for Key Closure 

Flowchart: 

Ground .11 keyboard 

columns 

Key closures are identified by grounding all the keyboard columns and then 
checking for grounded rows (i.e .. column-to-row switch closures). Note that the 
program does not assume that the unused input bits are all high: instead. the bits 
attached to the keyboard are isolated with a logical AND instruction. 

5) Debounce Key 

The program debounces the key closure in software by waiting for two millise
conds. This is usually long enough for a clean contact to be made. Subroutine 
DELAY counts with Index Register X for one millisecond. The number of milli
seconds is in Index Register Y. DELAY would have to be adjusted if a slower clock 
or slower memories were being used. You could make the change simply by 
redefining the constant MSCNT. 

16-5 



6) Identify Key Closure 

Flowchart: 

Key Table Index = -1 
Keyboard Output = 

FE 16 = 11111102 

Key 10 = Error code 

Ves 

Key Table Index = 
Key Table Index + 1 

Shift keyboard input 

Key ID = (KTAB + 
Key Table Index) 

The particular key closed is identified by grounding single columns and observing 
whether a closure is found. Once a closure is found (so the key column is deter
mined). the key row can be determined by shifting the input until a grounded bit 
is found. 

The output patterns required to ground single keyboard columns are obtained by 
shifting the original pattern left one bit after each column is examined. The high
est numbered key in the keyboard is used as a marker to indicate that all the col
umns have been grounded without a closure being found. When this value is 
reached. the error code FF is placed in the Accumulator to indicate to the main 
program that the closure could not be identified (i.e .. the key closure ended or a 
hardware error occurred). 

The key identifications are in table KTAB in memory. The 
keys in the first column (attached to the least significant out
put bit) are followed by those in the second column. etc. 

rKEYl 
~ 

Within a colu mn. the key in the row attached to the least significant input bit is 
first. etc. Thus. each time a column is scanned without finding a closure. the num
ber of keys in a column (NROWS) must be added to the key table index in order to 
move to the next column. The key table index is also incremented before each bit 
in the row inputs is examined: this process stops when a zero input is found. Note 
that the key table index is initialized to -1. since it is always incremented once in 
the search for the proper row. 

If we cannot identify the key closure. we simply ignore it and look for another 
closure. 
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7) Act on Key Identification 
If the program has enough digits {two in this simple easel. it looks only for the GO 
key and ignores all other keys. If it finds a digit key. it saves the value in the key ar
ray. increments the number of digit keys pressed. and increments the key array 
pointer. 

If the entry is not complete. the program must wait for the key closure to end so 
that the system will not read the same closure again. The user must wait between 
key closures (i.e .. release one key before pressing another one). Note that the pro
gram will identify double key closures as one key or the other. depending on 
which closure the identification routine finds first. An improved version of this 
program would display digits as they were entered and would allow the user to 
omit a leading or trailing zero. (i.e .. key in ...... "1". "GO" to get a count of seven
tenths of a minute). 

8) Set Up Display Output 

The digits are placed in memory locations with bit 4 set so that the output is sent 
to the displays. Bits 5 and 6 are set for the most significant digit to direct the out
put to the left display and to light the decimal point LED. 

9) Pulse the LED Displays 
Each display is turned on for two milliseconds. This process is repeated 1500 
times in order to get a total delay of 0.1 minutes. or 6 seconds. The pulses are fre
quent enough so that the LED displays appear to be lit continuously. 
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10) Decrement Display Count 

Flowchart: 

RighI Display = RighI 

Display - 1 

Left Display = 

Left Display - 1 

RighI Display = 9 

Yes 

End of timer 
program 

The value of the less significant digit is reduced by one. If this affects bit 4 
(LEDON - used to turn the displays on), the digit has become negative. A borrow 
must then be obtained from the more significant digit. If the borrow from the more 
significant digit affects bit 4. the count has gone past zero and the countdown is 
finished. Otherwise. the program sets the value of the less significant digit to 9 
and continues. 

Note that comments describe both sections of the program and individual statements. 
The comments explain what the program is doing. not what specific instruction codes 
do. Spacing and indentation have been used to improve readability. 
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;PROGRAM NAME: STOPWATCH 
;DATE OF PROGRAM:4/28/79 
;PROGRAMMER: LANCE A. LEVENTHAL 
;PROGRAM REQUIREMENTS: DD(221) BYTES 
;RAM REQUIREMENTS: 5 BYTES 
;1/0 REQUIREMENTS: 1 INPUT PORT, 1 OUTPUT PORT (1 6522 VIA) 

;THIS PROGRAM IS A DIGITAL STOPWATCH THAT ACCEPTS INPUTS FROM A 
CALCULATOR-LIKE KEYBOARD AND THEN PROVIDES A COUNTDOWN 

; ON TWO 7-SEGMENT LED DISPLAYS IN MINUTES AND TENTHS 
; OF MINUTES 

;KEYBOARD 

;A 12-KEY KEYBOARD IS ASSUMED 
;THREE COLUMN CONNECTIONS ARE OUTPUTS FROM THE PROCESSOR 
; SO THAT A COLUMN OF KEYS CAN BE GROUNDED 
;FOUR ROW CONNECTIONS ARE INPUTS TO THE PROCESSOR SO THAT 
; COMPLETED CIRCUITS CAN BE IDENTIFIED 
;THE KEYBOARD IS DEBOUNCED BY WAITING FOR TWO MILLISECONDS 
; AFTER A KEY CLOSURE IS RECOGNIZED 
;A NEW KEY CLOSURE IS IDENTIFIED BY WAITING FOR THE OLD ONE 
; TO END SINCE NO STROBE IS USED 
;THE KEYBOARD COLUMNS ARE CONNECTED TO BITS 0 
; TO 2 OF THE VIA B PORT 
;THE KEYBOARD ROWS ARE CONNECTED TO BITS 0 
; TO 3 OF THE VIA A PORT 

;DISPLAYS 

;TWO 7-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS 
; (7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY) 
;THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3 
; OF THE VIA B PORT 
;BIT 4 OF THE VIA B PORT IS USED TO ACTIVATE THE LED 
; DISPLAYS (BIT 4 IS 1 TO SEND DATA TO LEDS) 
;BIT 5 OF THE VIA B PORT IS USED TO SELECT WHICH 
; LED IS BEING USED (BIT 5 IS 1 IF THE LEADING DISPLAY 
; IS BEING USED, 0 IF THE TRAILING DISPLAY IS BEING USED) 
;BIT 6 OF THE VIA B PORT IS USED TO LIGHT THE DECIMAL 
; POINT LED ON THE LEADING DISPLAY (BIT 6 IS 1 IF 
; THE DISPLAY IS TO BE LIT) 

;METHOD 

;STEP 1 -INITIALIZATION 
; THE MEMORY STACK POINTER (USED FOR SUBROUTINE RETURN 
; ADDRESSES) IS INITIALIZED. THE NUMBER OF DIGIT KEYS PRESSED IS SET 
; TO ZERO 

;STEP 2 - LOOK FOR KEY CLOSURE 
ALL KEYBOARD COLUMNS ARE GROUNDED AND THE KEYBOARD ROWS 
ARE EXAMINED UNTIL A CLOSED CIRCUIT IS FOUND 
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;STEP 3 - DEBOUNCE KEY CLOSURE 
; A WAIT OF 2 MS IS INTRODUCED TO ELIMINATE KEY BOUNCE 
;STEP 4 - IDENTIFY KEY CLOSURES 
; THE KEY CLOSURE IS IDENTIFIED BY GROUNDING SINGLE KEYBOARD 

COLUMNS AND DETERMINING THE ROW AND COLUMN OF THE KEY 
CLOSURE. A TABLE IS USED TO ENCODE THE KEYS ACCORDING TO THEIR 

; ROW AND COLUMN NUMBER 
; IN THE KEY TABLE. THE DIGITS ARE IDENTIFIED BY THEIR VALUES. 
; THE DECIMAL POINT KEY IS NO.1 O. THE "GO" KEY IS NO. 11 
;STEP 5 - SAVE KEY CLOSURE 

DIGIT KEY CLOSURES ARE SAVED IN THE DIGIT KEY ARRAY UNTIL 
TWO DIGITS HAVE BEEN IDENTIFIED. DECIMAL POINTS. FURTHER DIGITS. 
AND CLOSURES OF THE "GO" KEY BEFORE TWO DIGITS HAVE BEEN 
IDENTIFIED ARE IGNORED 
AFTER TWO DIGITS HAVE BEEN FOUND. THE "GO" KEY IS USED TO 
START THE COUNTDOWN PROCESS 

;STEP 6 - COUNT DOWN TIMER INTERVAL ON LEDS 
A COUNTDOWN IS PERFORMED ON THE LEDS WITH THE LEADING DIGIT 
REPRESENTING THE REMAINING NUMBER OF MINUTES AND THE TRAILING 

; DIGIT REPRESENTING THE REMAINING NUMBER OF TENTHS OF MINUTES 

;STOPWATCH VARIABLE DEFINITIONS 

;MEMORY SYSTEM CONSTANTS 

BEGIN =$0400 
STKBGN =$FF 
TEMP =0 

;RAM TEMPORARY STORAGE 

*=TEMP 
DCTR *=*+2 
KEYNO *=*+2 

NKEYS *=*+1 

;1/0 UNITS AND VIA ADDRESSES 

VIAORB =$AOOO 
VIAORA =$A001 
VIADDRB =$A002 
VIADDRA =$A003 
VIAPCR =$AOOC 

;DEFINITIONS 

DECPT =%01000000 
ECODE =$FF 

GOKEY =11 
KLAST =11 

;STARTING ADDRESS FOR PROGRAM 
;STARTING STACK ADDRESS ON PAGE 1 
;STARTING ADDRESS FOR RAM STORAGE 

;16-BIT COUNTER FOR TIMING LOOP 
;DIGIT KEY ARRAY - HOLDS IDENTIFICA-
; TIONS OF DIGIT KEYS THAT HA' 'E BEEN 
; PRESSED 
;NUMBER OF DIGIT KEYS PRESSED 

;OUTPUT PORT FOR KEYBOARD AND DISPLAY 
;INPUT PORT FOR KEYBOARD 
;DATA DIRECTION REGISTER FOR PORT B 
;DATA DIRECTION REGISTER FOR PORT A 
;VIA PERIPHERAL CONTROL REGISTER 

;CODE TO LIGHT DECIMAL POINT LED 
;ERROR CODE IF ID ROUTINE DOES NOT FIND 
; KEY 
;IDENTIFICATION NUMBER FOR "GO" KEY 
;HIGHEST NUMBERED KEY 
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LEDON 
LEDSL 
MSCNT 
MXKEY 

NROWS 
OPEN 
TPULS 
TWAIT 

=%00010000 
=%00100000 
=$C7 
=2 

=4 
=%00001111 
=2 
=2 

'=$FFFC 

;CODE TO SEND OUTPUT TO LEOS 
;CODE TO SELECT LEADING DISPLAY 
;COUNT NEEDED TO GIVE 1 MS DELAY TIME 
;MAXIMUM NUMBER OF DIGIT KEY 
; CLOSURES USED 
;NUMBER OF ROWS IN KEYBOARD 
;INPUT FROM KEYBOARD IF NO KEY CLOSED 
;NUMBER OF MS BETWEEN DIGIT DISPLAYS 
;NUMBER OF MS TO DEBOUNCE KEYS 

;RESET ADDRESS TO REACH STOPWATCH PROGRAM 

WORD BEGIN ;VECTOR TO START OF STOPWATCH 
; PROGRAM 

;INITIALIZATION OF STOPWATCH PROGRAM 

'=BEGIN 
LOA 
STA 
STA 
LOA 
STA 
LOX 
TXS 

#0 
VIADDRA 
VIAPCR 
#$FF 
VIADDRB 
#STKBGN 

;INITIALIZE DIGIT KEY COUNTER 

INITL LOA 
STA 

#0 
NKEYS 

;MAKE PORT A LINES INPUTS 
;MAKE ALL CONTROL LINES INPUTS 

;MAKE PORT B LINES OUTPUTS 
;INITIALIZE STACK POINTER 

;NUMBER OF DIGIT KEYS = ZERO 

;SCAN KEYBOARD LOOKING FOR KEY CLOSURE 

SRCHK JSR SCANC 

WAIT FOR KEY TO BE DEBOUNCED 

LOY 
JSR 

#TWAIT 
DELAY 

IDENTIFY WHICH KEY WAS PRESSED 

JSR 
CMP 
BEQ 

IDKEY 
#ECODE 
SRCHK 

;WAIT FOR KEY CLOSURE 

;GET DEBOUNCE TIME IN MS 
;WAIT FOR KEY TO STOP BOUNCING 

IDENTIFY KEY CLOSURE 
WAS KEY CLOSURE IDENTIFIED? 
NO. WAIT FOR NEXT CLOSURE 

16-11 



START TIMING IF "GO" KEY PRESSED AND ENOUGH DIGITS ENTERED 

LDX 

CPX 
BNE 
CMP 
BEQ 
BNE 

NKEYS 

#MXKEY 
ENTDG 
#GOKEY 
SHIM 
WAITK 

;HAS MAXIMUM NUMBER OF DIGIT KEYS 
; BEEN ENTERED? 

;NO, GO ENTER DIGIT KEY 
;YES, IS KEY "GO"? 
;YES, START TIMING 
;NO, IGNORE KEY 

;ENTER DIGIT KEY INTO ARRAY, IGNORE DECIMAL POINT OR "GO" KEY 

ENTDG CMP 
BCS 
INC 

STA 

#10 
WAITK 
NKEYS 

KEYNO,X 

;IS KEY A DIGIT? 
;NO •. IGNORE IT 
;YES, INCREMENT NUMBER OF DIGIT KEYS 
; ENTERED 
;SAVE DIGIT KEY IN ARRAY 

;WAIT FOR CURRENT KEY CLOSURE TO END 

WAITK JSR SCANO 
BEQ SRCHK 

;PROCESS DIGITS FOR DISPLAY 

SHIM LDA KEYNO 
ORA #DECPT 

ORA #LEDON 
ORA #LEDSL 
STA KEYNO 
LDA KEYNO+1 
ORA #LEDON 
STA KEYNO+1 

;PULSE THE LED DISPLAYS 

LEDLP LDA #6 
STA DCTR+1 

TLOOP LDA #250 
STA DCTR 

DSPLY LDA KEYNO 
STA VIAORB 
LDY #TPULS 
JSR DELAY 
LDA KEYNO+1 
STA VIAORB 
LDY #TPULS 
JSR DELAY 
DEC DCTR 
BNE DSPLY 
DEC DCTR+1 
BNE TLOOP 

;WAIT FOR ALL KEYS TO BE RELEASED 
;LOOK FOR NEXT CLOSURE (SCANO ALWAYS 
; SETS Z) 

;GET LEADING DIGITS 
;TURN ON DECIMAL POINT FOR LEADING 
; DIGIT 
;SET OUTPUT TO LEDS 
;SELECT LEADING DISPLAY 

;GET TRAILING DIGIT 
;SET OUTPUT TO LEDS 

;SET COUNTERS FOR 1500 PULSES 

;SEND LEADING DIGIT TO LED 1 

;DELAY BETWEEN DIGITS 

;SEND TRAILING DIGIT TO LED 2 

;DELAY BETWEEN DIGITS 
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;DECREMENT COUNT ON LED DISPLAYS 

LDA 
DEC 
BIT 
BNE 
DEC 
BIT 
BEQ 
LDA 
ORA 
STA 
BNE 

#LEDON 
KEYNO+1 
KEYNO+1 
LEDLP 
KEYNO 
KEYNO 
INITL 
#9 
#LEDON 
KEYNO+1 
LEDLP 

;GET BIT PATTERN TO LOOK FOR CARRIES 
;COUNT DOWN TRAILING DIGIT 
;IS TRAILING DIGIT PAST ZERO? 
;NO, DISPLAY NEW TIME 
;YES, COUNT DOWN LEADING DIGIT 
;IS LEADING DIGIT PAST ZERO? 
;YES, WAIT FOR NEXT TIMING TASK 
;NO, MAKE TRAILING DIGIT 9 
;SET OUTPUT TO LEDS 

;RETURN TO PULSING DISPLAYS 

;SUBROUTINE SCANC SCANS THE KEYBOARD WAITING FOR A KEY CLOSURE 
; ALL KEYBOARD INPUTS ARE GROUNDED 

SCANC LDA 
STA 

KEYCLS LDA 
AND 
CMP 
BEQ 
RTS 

#0 
VIAORB 
VIAORA 
#OPEN 
#OPEN 
KEYCLS 

;GROUND ALL KEYBOARD COLUMNS 

;GET KEYBOARD ROW DATA 
;IGNORE UNUSED INPUTS 
;ARE ANY INPUTS GROUNDED? 
;NO, WAIT 

;SUBROUTINE DELAY WAITS FOR THE NUMBER OF MS SPECIFIED 
; IN INDEX REGISTER Y BY COUNTING WITH INDEX REGISTER X 

DELAY LDX #MSCNT ;COUNT FOR 1 MS DELAY 
WTLP DEX ;WAIT 1 MS 

BNE WTLP 
DEY ;COUNT MS 
BNE DELAY 
RTS 

;SUBROUTINE IDKEY DETERMINES THE ROW AND COLUMN NUMBER OF 
; THE KEY CLOSURE AND IDENTIFIES THE KEY FROM A TABLE 

IDKEY LDA #%11111110 ;GET PATTERN TO GROUND COLUMN ZERO 
STA VIAORB ;GROUND COLUMN ZERO 
LDX #$FF ;KEY TABLE INDEX = -1 

FCOL LDA VIAORA ;FETCH KEYBOARD ROW DATA 
AND #OPEN ;IGNORE UNUSED INPUTS 
CMP #OPEN ;ARE ANY INPUTS GROUNDED? 
BNE FROW ;YES, DETERMINE WHICH ONE 
ROL VIAORB ;NO, GROUND NEXT COLUMN 
TXA ;MOVE KEY TABLE INDEX TO NEXT COLUMN 
ADC #NROWS-1 
TAX 
CMP #KLAST ;HAVE ALL COLUMNS BEEN EXAMINED? 
BNE FCOL ;NO, EXAMINE NEXT COLUMN 
LDA #ECODE ;YES, RETURN WITH ERROR CODE IN A 
RTS 
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;DETERMINE ROW NUMBER OF CLOSURE 

FROW INX 
LSR A 

BCS FROW 

;IDENTIFY KEY FROM TABLE 

LDA 
RTS 

;KEYBOARD TABLE 

KTAB.X 

;INCREMENT KEY TABLE INDEX 
;SHIFT INPUTS LOOKING FOR GROUNDED 
; ROW 

;GET KEY NUMBER FROM TABLE 

;COLUMNS ARE PRIMARY INDEX. ROWS SECONDARY INDEX. 
;THE KEYS IN THE COLUMN ATTACHED TO OUTPUT BIT 0 ARE FOLLOWED 

BY THOSE IN THE COLUMN ATTACHED TO OUTPUT BIT 1 ETC. WITHIN 
; A COLUMN. THE KEY ATTACHED TO INPUT BIT 0 IS FIRST. FOLLOWED 
; BY THE ONE ATTACHED TO INPUT BIT 1. ETC. 

;THE DIGIT KEYS ARE 0 TO 9. THE DECIMAL POINT IS 10. AND "GO" IS 11 

KTAB .BYTE 3.2.0.4.8.9.1.11.5.6.7.10 

;SUBROUTINE SCANO WAITS FOR ALL KEYS TO BE RELEASED SO THAT THE 
; NEXT CLOSURE CAN BE FOUND 

SCANO LDA 
STA 

KEYOPN LDA 
AND 
CMP 
BNE 
RTS 
.END 

#0 
VIAORB 
VIAORA 
#OPEN 
#OPEN 
KEYOPN 

;GROUND ALL KEYBOARD COLUMNS 

;GET KEYBOARD ROW INPUTS 
;IGNORE UNUSED INPUTS 
;ARE ANY KEYS BEING PRESSED? 
;YES. WAIT UNTIL ALL RELEASED 
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PROJECT #2: A Digital Thermometer 
Purpose: This project is a digital thermometer which shows the temperature in 

degrees Celsius on two seven-segment displays. 

Hardware: The project uses one input port and one output port. two seven-segment 
displays. a 74LS04 inverter. a 74LSOO NAND gate or a 74LS08 AND gate depending on 
the polarity of the displays. an Analog Devices AD7570J 8-bit monolithic A/D con
verter. an LM311 comparator. and various peripheral drivers. resistors. and capacitors 
as required by the displays and the converter. (See Chapter 11 and Reference 1 at the 
end of this chapter for discussions of AID converters.) 

Figure 16-2 shows the organization of the hardware. Control line CB2 from the VIA is 
used to send a Start Conversion signal to the A/D converter. Input lines 0 through 7 are 
attached directly to the eight digital data lines from the converter. Output lines 0 
through 3 are used to send BCD digits to the seven-segment decoder/drivers. Output 
line 4 activates the displays and output line 5 selects the left or right display (line 5 is '1' 
for the left display). Control line CA 1 is used to determine when the conversion is com
plete (BUSY becomes one). 

The analog part of the hardware is shown in Figure 16-3. The 
thermistor simply provides a resistance that depends on tem
perature. Figure 16-4 is a plot of the resistance and Figure 16-5 
shows the range of current villues over which the resistance is 

THERMOMETER 
ANALOG 
HARDWARE 

constant. The conversion to degrees Celsius in the program is performed with a calibra
tion table. The two potentiometers can be adjusted to scale the data properly. A clock 
for the A/D converter is generated from an RC network. as shown in Figure 16-3. The 
values are R7=33 kG and C1 =1000 pF. so that the clock frequency is about 75 kHz. At 
this frequency. the maximum conversion time for eight bits is about 50 microseconds. 
When BUSY goes high. it sets bit 1 of the VIA Interrupt Flag register. The 8-bit version 
of the converter requires the following special connections. The eight data lines are 
DB2 through DB9 (DB1 is always high during conversion and DBO low). The Short Cycle 
8-bit input (pin 26-SC8) is tied low so that only an 8-bit conversion is performed. In the 
present case. High Byte Enable (pin 20-HBEN) and Low Byte Enable (pin 21-LBENl were 
both tied high so that the data outputs were always enabled. 

The A/D converter uses the successive approximation method to perform a conversion. 
The ADC's data register is connected to the inputs of an internal D/A converter whose 
output (available at OUT1 and OUT2) is compared to the analog input. When a conver
sion is initiated. the ADC logic sets the data register to all zeroes with the exception of 
the most significant bit (MSB). which is set to one. If the analog input is less than the 
resulting internally generated analog value. then the MSB is reset to zero; otherwise it 
remains a one. The next most significant bit is then set to one and the process repeated 
until all eight bits have been "tested" in this way. After the eighth cycle. the value in the 
register is the value which most closely corresponds to the analog input. 

This method is fast. but it requires that the input be stable during the conversion 
process. Rapidly changing or noisy inputs would require additional signal conditioning. 
The references at the end of this chapter describe more accurate methods for handling 
analog I/O. 
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Figure 16-2. I/O Configuration for a Digital Thermometer 
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Figure 16-3. Digital Thermometer Analog Hardware 
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General Program Flowchart: 

Initialization 

Send Start 
Conversion signal 

to AID converter 

Read data from 

AID converter 

Convert data to 

degrees Celsius 

Display 

temperature on 

LEOs for six seconds 
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Program Description: 

1) Initialization 
Memory locations FFFC and FFFD (the 6502 Reset locations) contain the starting 
address of the program. The initialization configures the VIA and places a value in 
the Stack Pointer. The Stack is used only to store subroutine return addresses. 
Remember that Chapter 11 contains numerous examples of how to configure VIAs. 

2) Send Start Conversion Signal to A'D Converter 
The CPU pulses the Start Conversion line by first placing a one and then a zero on 
output line CB2. Each input from the converter requires a starting pulse. 

3) Wait for Conversion to be Completed. 
A '0' to '1' transition on the BUSY line sets bit 1 of the VIA Interrupt Flag Register. 
Actually, the converter only requires a maximum of 50 microseconds for an B-bit 
conversion, so a short delay would also be adequate, Note that reading the 
converter data clears bit 1 of the VIA Interrupt Flag Register so that the next 
operation can proceed correctly. 

4) Read Data from A'D Converter 
Reading the data involves a single input operation. We should note that the Analog 
Devices AD7570J has an enable input and tristate outputs, so that it could be tied 
directly to the Microprocessor Data Bus, The 7570 converter is, of course, 
underutilized in this particular application, particularly since we are interfacing it to 
the 6502 processor through a VIA. A simpler B-bit converter such as the National 
5357 described in Chapter 11 would do the job at lower cost. 
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5) Convert Data to Degrees Celsius 

Flowchart: 

received from 
AID converter 

Index =-1 

Index = Index + 1 

Temperature = Index 

The conversion uses a table that contains the largest in
put value corresponding to a given temperature. The pro
gram searches the table. looking for a value greater than 
or equal to the value received from the converter. The first 

USING A 
CALIBRATION 
TABLE 

such value it finds corresponds to the required temperature: that is. if the tenth 
entry is the first value larger than or equal to the data. the temperature is ten 
degrees. This .search method is inefficient but adequate for the present applica-
tion. 

The conversion subroutine returns a binary value which is then converted to BCD 
by repeatedly subtracting ten and counting operations until the remainder 
becomes negative. The final ten is then added back to produce the least signifi
cant digit. 

The table could be obtained by calibration or by a mathematical approximation. 
The calibration method is simple. since the thermometer must be calibrated any
way. The table occupies one memory location for each temperature value to be 
displayed.' Reference 2 describes a method that uses far less memory. To cali
brate the thermometer. you must first adjust the potentiometers to produce the 
proper overall range and then determine the converter output values correspond
ing to specific temperatures. 
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6) Prepare Data for Display 

Flowchart: 

Get least significant 

digit and set 

output to LEOs 

Get most 

significant digit 

Set output to LEOs 

For the least significant digit. we simply set the bit that turns 
on the displays. The result is saved in page zero address 
LSTEMP. 

The only difference for the most significant digit is that a lead-

BLANKING 
A LEADING 
ZERO 

ing zero is blanked (j.e .. the displays show "blank T' rather than "OT' for 7°C). This 
simply involves not setting the bit that turns on the displays if the digit is zero. The 
result is saved in page zero address MSTEMP. 
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7) Display Temperature for Six Seconds 

Flowchart: 

Count = TSAMP 

Send most 

significant digit 
to left display 

Wait 2 ms 

Send least 
significant digit 
to right display 

Wait 2 ms 

Count = Count - 1 

Each display is pulsed often enough so that it appears to be lit continuously. If 
TPULS were made longer (say 50 msl. the displays would appear to flash on and 
off. 

The program uses a 16-bit counter in two page-zero memory locations to count the 
time between temperature samples. 
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;PROGRAM NAME: THERMOMETER 
;DATE OF PROGRAM: 5/1/79 
;PROGRAMMER; LANCE A. LEVENTHAL 
;PROGRAM MEMORY REOUIREMENTS: 173 BYTES 
;RAM REQUIREMENTS: 5 BYTES 
;1/0 REQUIREMENTS: 1 INPUT PORT, 1 OUTPUT PORT (1 6522 VIA) 

;THIS PROGRAM IS A DIGITAL THERMOMETER THAT ACCEPTS INPUTS FROM 
AN AID CONVERTER ATTACHED TO A THERMISTOR, CONVERTS THE INPUT 

; TO DEGREES CELSIUS, AND DISPLAYS THE RESULTS ON TWO 
; SEVEN-SEGMENT LED DISPLAYS 

;A/D CONVERTER 

;THE AID CONVERTER IS AN ANALOG DEVICES 7570J MONOLITHIC CONVERTER 
; WHICH PRODUCES AN 8-BIT OUTPUT 
;THE CONVERSION PROCESS IS STARTED BY A PULSE ON THE START 
; CONVERSION LINE (CONTROL LINE 2 ON VIA PORT B) 
;THE CONVERSION IS COMPLETED IN 50 MICROSECONDS AND THE 
; DIGITAL DATA IS LATCHED 

;DISPLAYS 

;TWO SEVEN-SEGMENT LED DISPLAYS ARE USED WITH SEPARATE DECODERS 
; (7447 OR 7448 DEPENDING ON THE TYPE OF DISPLAY) 
;THE DECODER DATA INPUTS ARE CONNECTED TO BITS 0 TO 3 OF 
; VIA PORT B 
;BIT 4 OF VIA PORT B IS USED TO ACTIVATE THE LED DISPLAYS 
; (BIT 4 IS 1 TO SEND DATA TO LEDS) 
;BIT 5 OF VIA PORT B IS USED TO SELECT WHICH LED IS BEING 
; USED (BIT 5 IS 1 IF THE LEADING DISPLAY IS BEING USED, 
; 0 IF THE TRAILING DISPLAY IS BEING USED) 

;METHOD 

;STEP 1 - INITIALIZATION 
; THE MEMORY STACK (USED FOR SUBROUTINE RETURN ADDRESSES) IS 
; INITIALIZED 
;STEP 2 - PULSE START CONVERSION LINE 
; THE AID CONVERTER'S START C0" '<:qSION LINE (CONTROL LINE 2 OF VIA 
; PORT B) IS PULSED 
;STEP 3 - WAIT FOR AID OUTPUT TO SETTLE 

THE BUSY LINE FROM THE CONVERTER IS ATTACHED TO CONTROL 
; LINE 1 ON PORT A OF THE VIA. WHEN BUSY GOES HIGH TO SIGNAL 
; CONVERSION COMPLETED, IT SETS BIT 1 OF THE VIA INTERRUPT 
; FLAG REGISTER 
;STEP 4 - READ AID VALUE, CONVERT TO DEGREES CELSIUS 
; A TABLE IS USED FOR CONVERSION. IT CONTAINS THE MAXIMUM 
; INPUT VALUE FOR EACH TEMPERATURE READING 
;STEP 5 - DISPLAY TEMPERATURE ON LEDS 

THE TEMPERATURE IS DISPLAYED ON THE LEDS FOR SIX SECONDS 
BEFORE ANOTHER CONVERSION IS PERFORMED 
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;THERMOMETER VARIABLE DEFINITIONS 

;MEMORY SYSTEM CONSTANTS 

BEGIN =$0400 
STKBGN =$FF 
TEMP =0 

1/0 UNITS AND VIA ADDRESSES 

VIAORB =$AOOO 
VIAORA =$A001 
VIADDRB =$A002 
VIADDRA =$A003 
VIAPCR =$AOOC 
VIAIFR =$AOOD 

RAM TEMPORARY STORAGE 

'=TEMP 
DCTRC '='+2 
INPUT '='+1 

LSTEMP '='+1 

MSTEMP '='+1 

DEFINITIONS 

BUSYF 

LEDON 
LEDSL 
MSCNT 
TSAMPH 

=%00000010 

=%00010000 
=%00100000 
=$C7 
=6 

TSAMPL =250 

TPULS =2 

'=$FFFC 

;ST ARTING ADDRESS FOR PROGRAM 
;STARTING STACK ADDRESS ON PAGE 1 
;ST ARTING ADDRESS FOR RAM STORAGE 

;,'OUTPUT PORT DISPLAYS 
;INPUT PORT FOR CONVERTER 
;DATA DIRECTION REGISTER FOR PORT B 
;DATA DIRECTION REGISTER FOR PORT A 
;VIA PERIPHERAL CONTROL REGISTER 
;VIA INTERRUPT FLAG REGISTER 

;DISPLAY PULSE COUNTER 
;TEMPORARY STORAGE FOR CONVERTER 
; INPUT 
;LEAST SIGNIFICANT DIGIT OF 
; TEMPERATURE 
;MOST SIGNIFICANT DIGIT OF 
; TEMPERATURE 

;PATTERN FOR EXAMINING BUSY 
; STATUS 
;CODE TO SEND OUTPUT TO LEDS 
;CODE TO SELECT LEADING DISPLAY 
;COUNT NEEDED TO GIVE 1 MS DELAY 
;TSAMPH X TSAMPL IS THE NUMBER OF 
;TIMES THE DISPLAYS ARE PULSED IN A 

TEMPERATURE SAMPLING PERIOD. 
THE LENGTH OF A SAMPLING PERIOD 
IS THUS 2'TPULS'TSAMPWTSAMPL 
MILLISECONDS THE FACTOR OF 2'TPULS 
IS INTRODUCED BY THE FACT THAT 
EACH OF 2 DISPLAYS IS PULSED FOR 
TPULS MS 

;DISPLAY PULSE LENGTH IN MS 

RESET ADDRESS TO REACH THERMOMETER PROGRAM 

WORD BEGIN 
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INITIALIZATION OF THERMOMETER PROGRAM 

*=BEGIN 
LOX 
TXS 
LOA 
STA 
LOA 
STA 
LOA 

STA 
LOA 
STA 

#STKBGN 

#0 
VIADDRA 
#$FF 
VIADDRB 
#%11000001 

VIAPCR 
#BUSYF 
VIAIFR 

;INITIALIZE STACK POINTER 

;MAKE PORT A LINES INPUTS 

;MAKE PORT B LINES OUTPUTS 

;START CONVERSION LOW. BUSY 
; ACTIVE LOW-TO-HIGH 
;CONFIGURE VIA PERIPHERAL CONTROL 
;CLEAR BUSY FLAG INITIALLY 

;PULSE START CONVERSION LINE 

START LOA 
STA 
LOA 
STA 

#%11100001 ;SEND START CONVERSION HIGH 
VIAPCR 
#%11000001 ;SEND START CONVERSION LOW 
VIAPCR 

;WAIT FOR BUSY TO GO HIGH AND READ DATA 

LOA 
WTBSY BIT 

BEQ 
LOA 

#BUSYF 
VIAIFR 
WTBSY 
VIAORA 

;HAS CONVERSION BEEN COMPLETED? 
;NO. WAIT 
;YES. READ DATA FROM CONVERTER 

;CONVERT DATA TO TEMPERATURE IN DECIMAL 

JSR CONVR 

JSR BINBCD 

;CONFIGURE DIGITS FOR DISPLAY 

ORA 
STA 
TXA 
BEQ 
ORA 
ORA 

SVMSD STA 

#LEDON 
LSTEMP 

SVMSD 
#LEDON 
#LEDSL 
MSTEMP 

;PULSE THE LED DISPLAYS 

PULSE LOA 
STA 

TLOOP LOA 
STA 

#TSAMPH 
DCTR+1 
#TSAMPL 
DCTR 

;CONVERT DATA TO TEMPERATURE 
; IN BINARY 
;CONVERT BINARY TO BCD 

;SET OUTPUT TO LEOS (LSD IN A) 
;SAVE LEAST SIGNIFICANT DIGIT 
;GET MOST SIGNIFICANT DIGIT 
;LEAVE DISPLAY OFF IF MSD IS ZERO 
;SET OUTPUT TO LEOS 
;SELECT LEADING DISPLAY 
;SAVE MOST SIGNIFICANT DIGIT 

; 16-BIT COUNTER FOR DISPLAY PULSES 
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DSPLY LOA MSTEMP ;OUTPUT TO LEADING DISPLAY 
STA VIAORB 
LOY #TPULS ;DELAY DISPLAY PULSE LENGTH 
JSR DELAY 
LOA LSTEMP ;OUTPUT TO TRAILING DISPLAY 
STA VIAORB 
LOY #TPULS ;DELAY DISPLAY PULSE LENGTH 
JSR DELAY 
DEC DCTR 
BNE DSPLY 
DEC DCTR+1 ;HAS COUNT REACHED ZERO? 
BNE TLOOP ;NO. KEEP PULSING DISPLAYS 
BEQ START ;YES. GO SAMPLE TEMPERATURE AGAIN 

;SUBROUTINE DELAY WAITS FOR THE NUMBER OF MS SPECIFIED IN 
; INDEX REGISTER Y BY COUNTING WITH INDEX REGISTER X 

DELAY LDX #MSCNT ;COUNT FOR 1 MS DELAY 
WTLP DEX ;WAIT 1 MS 

BNE WTLP 
DEY 
BNE DELAY ;COUNT MS 
RTS 

;SUBROUTINE CONVR CONVERTS INPUT FROM AID CONVERTER TO 
DEGREES CELSIUS BY USING A TABLE. INPUT DATA IS IN 

; THE ACCUMULATOR AND THE RESULT IS A BINARY NUMBER IN 
; THE ACCUMULATOR 

;REGISTERS USED: A.X 
;MEMORY LOCATION USED: INPUT 

CONVR STA 
LOX 

CHVAL INX 
LDA 
CMP 
BCC 
TXA 
RTS 

INPUT 
#$FF 

DEGTB.X 
INPUT 
CHVAL 

;SAVE INPUT READING 
;START TABLE INDEX AT-1 
;INCREMENT TABLE INDEX 
;GET ENTRY FROM TABLE 
;IS AID INPUT BELOW ENTRY? 
;NO. KEEP LOOKING 
;YES. RETURN WITH T IN ACCUMULATOR 

;TABLE DEGTB WAS FOUND BY CALIBRATION. 
;DEGTB CONTAINS THE LARGEST INPUT VALUE WHICH CORRESPONDS 

TO A PARTICULAR TEMPERATURE READING !I.E .. THE FIRST ENTRY 
IS DECIMAL 58 SO AN INPUT VALUE OF 58 IS THE LARGEST 

; VALUE GIVING A ZERO TEMPERATURE READING - VALUES 
; BELOW ZERO ARE NOT ALLOWED 

DEGTB .BYTE 
.BYTE 
.BYTE 
.BYTE 
.BYTE 
.BYTE 
.BYTE 

58.61.63.66.69.71.74.77.80.84 
87.90.93.97.101.104.108 
112.116.120.124.128.132.136 
141.145.149.154.158.163.167 
172.177.181.186.191.195.200 
204.209.214.218.223.227.232 
236.241.245.249.253.255 
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;SUBROUTINE BIN BCD CONVERTS A BINARY NUMBER LESS THAN 100 INTO 
TWO BCD DIGITS. THE INPUT DATA IS IN THE ACCUMULATOR AND THE 

; RESULT IS IN INDEX REGISTER X (MOST SIGNIFICANT DIGIT) AND THE 
; ACCUMULATOR (LEAST SIGNIFICANT DIGIT) 

;REGISTERS USED: A.X 

BINBCD LOX 
SEC 

SUBTEN INX 
SBC 
BCS 
ADC 
RTS 
.END 

#$FF 

#10 
SUBTEN 
#10 

;TENS COUNT = -1 
;SET CARRY INITIALLY 
;INCREMENT TENS COUNT 
;CAN TEN STILL BE SUBTRACTED? 
;YES. CONTINUE 
;NO. ADD BACK LAST TEN 
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Chapter 17 
65C02 PROGRAMMING 

The 65C02 microprocessor is an advanced version of the 6502 processor. In addition 
to the hardware advantages of low-power CMOS technology. it has the following 
major software enhancements: 

1) Bit manipulation instructions. The 65C02 has instructions that set and clear 
(reset) single bits or several bits at once and branch on bit conditions. 

2) True indirect addressing for arithmetic. logical. and Accumulator/memory 
transfer instructions. This is in addition to the indexed indirect (preindexed) and 
indirect indexed (postindexed) modes available on the 6502. 

3) Jump instruction with indexed absolute indirect addressing. This simplifies the 
implementation of jump tables. 

Minor enhancements include 

1) Specific instructions for unconditional relative branch. transferring index regis
ters to and from the Stack. clearing memory locations. and incrementing and 
decrementing the Accumulator (by 1). All these operations require sequences of 
instructions on the 6502. 

2) Valid Negative (N or S). Overflow (V or 0). and Zero flags after decimal opera
tions. Furthermore. reset and interrupts now clear the 0 (Decimal Mode) flag. 
giving it a known initial state (binary). 

3) Correction of the erroneous indirect jump on ·a page boundary. 

4) Indexed and immediate addressing with the BIT (Bit Test) instruction. 

The 65COO microprocessor (used in industrial applications) also has an B-bit by B-bit 
multiplication instruction. 

Because of all these enhancements and corrections. the 65C02 has largely super
seded the 6502. It is. for example. the CPU in the Apple IIc computer. the enhanced 
Apple lie computer (as well as the enhancement kit for older lie models!. and many 
other recent prod ucts. 

This chapter describes the new 65C02 addressing modes and instructions. discusses 
the minor enhancements. and presents a series of programming examples. The pro
cessor's fundamental architecture (e.g .. registers. flags. common addressing modes. 
and basic instruction set). as well as the notation used in describing it and its software. 
is the same as described in Chapter 3 for the 6502. 

NEW 65C02 MEMORY ADDRESSING MODES 

The 65C02 has the following addressing modes besides those described in Chapter 3: 

1. True indirect addressing with arithmetic. logical. and Accumulator/memory 
transfer (e.g .. LOA and STA) instructions. 
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2. Indexed absolute Indirect addressing with JMP. 

As In the 6502. different instructions have different sets of modes. Table 17-1 lists the 
addressing options available with each Instruction. 

INDIRECT ADDRESSING 
Indirect addressing is now available for all logical. arithmetic. and Accumulator/mem
ory transfer instructions (see Table 17 -1). In this mode. the second byte of the instruc
tion contains an Indirect address on page zero. The effective address IS then the con
tents of that address and the next higher address. Note that JMP is stili the only 
instruction with absolute indirect addressing. 

A tYPical example is: 

AND ($40) 

This instruction ANDs the Accumulator with the data from the address in locations 
004016 and 004116 (more significant byte in 004116) If. for example. (A) = 6716 
(011001112). (0040) = 1C16. (0041) = 0716. and (07C1) = F316 (111100112). then 

(A) = (A) A ((0041 )(0040)) 
= (A) A (07C 1) 
= 6716 ' F316 
= 6316 = 01100011 16 

As usual. addresses are 16 bits long but the data located at them IS 8 bits long. Note 
that address 004016 contains part of the data's address. not the data itself. This mode 
allows programmers to use all pairs of memory locations on page zero as address 
registers. 

SVBDIZC 

piX! I I I IX! i 

A xx 

X 
y 

SP 

PC mm mm 

Data 

Memory 

qq 0040 
pp 0041 

YY ppqq 

Program 

Memory 

32 mmmm 

40 mmmm + 1 

iNDEXED ABSOLUTE INDIRECT ADDRESSING 
Indexed absolute indirect addressing applies only to the JMP (Jump to New Location) 
instruction. In this mode. the second and third bytes of the instruction contain a base 
address. The processor adds the base address to the X register to obtain the Indirect 
address. The effective address IS. in turn. the contents of the Indirect address (and the 
next higher address). Indexed absolute indirect addressing is thus a special case of 
indexed Indirect addressing (prelndexing) that allows the base address to be anywhere 
in memory. not just on page zero. 
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A typical example is: 

JMP ($1 C80.X) 

This instruction loads the Program Counter from the address obtained by adding Index 
Register X to 1 C8016. If. for example. Index Register X contains 5E16. it loads the 
Program Counter from addresses 1 CDEl6 and 1 CDFl6 (more significant byte in 
1CDF I6). 

s V B 0 I Z C 
Data 

p, I I I I ,.( , Memory 

qq FE31 +rr 
pp FE31 +rr+1 

A 

X rr 
y Program 

SP Memory 

PC mm mm 

7C mmmm 
31 mmmm+ 1 

FE mmmm + 2 

The final value of the program counter is ppqq. 

For example. the following program transfers control to an entry obtained from a jump 
table starting at address JT8L. We assume that the index (less than 128) is originally in 
the Accumulator. 

ASLA 

TAX 
JMP (JTBL.X) 

;DOUBLE INDEX TO HANDLE 
; 2-BYTE ADDRESS ENTRIES 

;TRANSFER CONTROL TO ADDRESS 
; FROM JUMP TABLE 

This routine is much shorter and simpler than the comparable routine using indirect 
addressing (see the description of the JMP instruction in Chapter 3). 

NEW 65C02 INSTRUCTIONS 

Tables 17-1 and 17-2 summarize the 65C02 instruction set. The alphabetic listing in 
Table 17-2 is annotated to indicate changes from the 6502. Tables 17-3 and 17-4 
single out the changes. dividing them into new instructions and instructions with new 
addressing modes. Table 17-5 contains an operation code matrix with an emphasis on 
the new instructions. 

Note the following additions to the notation introduced in Chapter 3: 

1) ((ND) to indicate a true indirect address. This address is always on page zero 
except when used with JMP. 

2) The use of a bit number as the first operand in the bit manipulation instructions 
BBR. BBS. RMB. and 5MB. These can operate on any bit position (0 through 7). 
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Table 17-2 Alphabetic Listing of 65C02 Instruction Set 
(Reprinted courtesy of Rockwell International. 

Semiconductor Products D,v,s,on. Newport Beach. California) 

MnemonIc FuncUon Mnemonic Function 

(2) 

(2) 

(1) 
(1) 

(2) 

(1) 

(2) 

(2) 

(2) 

(2) 

(2) 

(2) 

ADC 
AND 
ASl 

BBR 
BBS 
BCC 
BCS 
BEQ 
BIT 
BMI 
BNE 
BPl 
BRA 
BRK 
BVC 
BVS 

ClC 
CLD 
CLI 
ClV 
CMP 
CPX 
CPY 

DEC 
DEX 
DEY 

EOA 

INC 
INX 
INY 

JMP 
JSR 

lDA 
lDX 
lDY 
LSR 

Add Memory to Accumulator with Carry NOP I No OperallOn 
HAND" Memory with Accumulator 
Shift Left One Bit (Memory or Accumulator) (2) ORA i 'OR" Memory with Accumlator 

Branch on Bit Reset PHA I Push Accumulalor on Slack 
Branch on Bit Sel PHP Push Processor Status on Stack 
Branch on Carry Clear (1) PHX I Push X Register on Stack 
Branch on CarrY Set (1) PHY ! Push Y Register on Stack 
Branch on Result Zero PLA I Pull Accumulator from Stack 
Test Bits in Memory with Accumulator PLP Pull Processor S:atus from Stack 
Branch on Resull Mmus (1) PLX Pull X Register from Stack 
Branch on Result nol Zero (11 PLY Pull Y Register from Stack 
Branch on Result Plus 
Branch Always (II RMB Reset Memory Bit 
Force Break ROl Rotate One Bit Left (Memory or Accumulator) 
Branch on Overflow Clear ROA Rotate One Bit Righi (Memory or Accumulator) 
Branch on Overflow Set RTI Return from Interrupt 

RTS I Relurn I,om Sub'ouline , 
Clear Carry Flag 
Clear Decimal Mode SBC Subtract Memory from ACCumulalor with Borrow 
Clear Interrupt Disable Bit SEC Set Carry Flag 
Clear Overflow Flag SED Set DeCimal Mode 
Compare Memory and Accumulator SEI Set Interrupt Disable Status 
Compare Memory and Index X (1) 5MB Set Memory BII 
Compare Memory and Index Y (2) STA Store Accumulator In Memory 

STX Store Index X in Memory 
Decrement Memory by One STY Store Index Y in Memory 
Decrement Index X by One (I) STZ Store Zero 
Decrement Index Y by One 

TAX Transfer Accumulator to Index X 
"Exclusive·OR" Memory with Accumulator TAY Transfer Accumulator to Index Y 

(1) TRB : Test and Reset Bits 
Incremenl Memory by One (1) TSB I Test and Set Bits 
Increment Index X by One TSX Transfer Stack POlnler 10 Index X 
Increment Index Y by One TXA Transfer Index X to Accumulator 

TXS Transfer Index X 10 Stack Register 
Jump to New Location TYA Transfer index Y to Accumulator 
Jump to New Location Saving Return Address 

Load Accumulator with Memory 
Load Index X with Memory 
Load Index Y with Memory 
Shift One Bil Right (Memory or ACClJmulator) 

Notes: 
(1) Instruction not available on the NMOS family. 
(2) R6502 instruclion with additional addressing mode(s) 

------- ----

Table 17-3. New 65C02 Instructions 
(Reprinted courtesy of Rockwell International. 

Selniconductor Products D,v,s,on. Newport Beach. California) 

He> Mnemonic 

80 BAA 
3A DEC 
1A INC 
DA PHX 
5A PHY 
FA PLX 
7A PLY 
9C STl 
9E STl 
64 STl 
74 STl 
1C TAB 
14 TAB 
OC TSB 
04 TSB 
89 BIT 
OF-7F' BBA 
8F-FF' BBS 
07-77" AMB 
B7-F7 ' 5MB 

Nole: 
1. Most significant digit change only 
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Description 

Branch relative always [Relative] 
Decrement accumulator [Accum] 
Increment accumulator [Accum] 
Push X on stack [Implied] 
Push Y on stack [Imphed] 
Pull X from slack [Implied] 
Pull Y from stack [Imphed] 
Store zero [Absolute] 
Store zero lABS. X) 
Siore zero [ZP] 
Store zero [ZP, X] 
Test and reset memory bits with accumulator (ABS) 
Test and reset memory bits with accumulator (ZP) 
Test and set memory bits with accumulator lABS) 
Test and set memory bits with accumulator [ZPJ 
Test Immediate with accumulator JIMM] 
Branch on bit reset (Bit Manipulation, ZP, RELJ 
Branch on bit sel (Bit Manipulation, ZP, RElJ 
Reset memory bit [Bit Manipulation, ZPj 
Sel memory bit (Bi! Manipulation, ZPj 



a , 

Table 17 -4, 65C02 Instructions With New AddreSSing Modes 
(Reprinted courtesy of Rockwell International, 

Semiconductor Products DivIsion, Newport Beach. California) 

He. 

72 
32 
3C 

3' 
02 
52 
7C 
B2 
12 
F2 
92 

Mnemonic Descrtptlon 

ADC Add memory to accumulator with carry j(lNOli 
AND AND memory with aceumulator (IND») 
BIT Test memory bits with accumulator lABS. XI 
BIT Test memory bits with accumulator IZP, Xl 
CMP Compare memory and accumulator ((INDlJ 
EOR Exclusive Or memory with accumulator «IND)J 
JMP Jump (New addressing mode) (ABS, Xli 
LOA Load accumulator with memory (IND» 
ORA OR memory with accumulator (INO» 
SBC Subtract Memory from accumulator with borrow (INO») 
STA Store accumulator in memory (INOll 

Table 17-5, 65C02 Operation Code MatriX 
(Reprinted courtesy of Rockwell International. 

Semiconductor Products DIVISion. Newport Beach. California) 

LSD 

BRK 'ORA I r--rss ORA-r ASl RMBO PHP • -ORA .-~-- . """'Ts"B"" OR~"""B"8"H"O 

(~plt~ '(I~D'6xl 2lPS 2lP3 i 2ZPS 2lPS I~PI'~d I ~M~ A~cu; ~B; ~B~ ~B; 3 Z~ •• 

I 
BPL lORA ORA -~ ORA -ACCS:--L+R-M-B-' 1-"C-CLCc-T1 -CO~RA~r=aNC - - --I--;:'R'B ORA I ASL BBRI 

Rolat,veljlNOJ.Y (INO) ZP ZP.X ZP.X ZP Implied ASS Y Accum ASS A,BS"XIA,BS,X ZP 

,-I_'.,-':--"-+!_'---:-"-+_'_'--l~_~_~ 2 4 2 6 2 5 , 2 ~ 1 2 ) 6 ) 5"" 
,-

1
-1 'w.~ __ ~I __ , wl_,_ ~ 

ASS I (IND. X) , I ZP ZP ZP ZP Implied 1 IMM I Accum I 1 ASS ;S~ I ;S~ ZP 

--:-M~:~'~:~N~:-+I_AN-o-"--Jr1' , '~':~'-r=~O~:-r~:M~~~~~~EC~'~:~N~;-r~~E~~-+~---r~:~IT~'~A~N~O-r=RO~L-r'=BB~~~"~ 
Aelatove (IND). Y (IND) Z~1TX ~N~ ZP. X ZP Implied ASS Y Aceum ASS X ASS. X I ASS. X ZP 
22"" 25" 25 24 201 26 25 , 2 34" 12 ) 4" ) 4" ) 7 ) 5"" 

I EOA LSA AMS4 PHA EOR LSR! JMP EOR LSR ~ 
i ImplIed . liND. X) ZP ZP ZP Implied IMM Accum I ASS I ASS i ASS ZP 

'--:-Vc-' --':~O~:-r-EO-R--r--~~ ;O~ : :S: :M:S ~L~ ;O~ ~H~ 3 ) I. :0: ~S: :B;~ 

RT! EOA 

Aelat've liND). Y (IND) I ZP X I ZP.X ZP Implied lABS. Y Impl,ed I' !: A,BS,'"X A,BS,X ,zp, .. 
r--'=":--' __ '-::5.,-'-+-_' _'-,-~~ --::-::-' 2 4 i 2 6 Z 5 t 2 3 4" t) 

I RTS ADC I STl ADC I ROR RMBO PLA ADC I ROR 
: Impll6d ! (IND. X) ZP ZP 1 ZP ZP Implied IMM Accum 

, 6"i 2 6t 2) Z)1 Z 5 25 t 4 Z Zt 12 

8VS I ADC ADC STZ ADC ROA AMB7 SEI ADC PLY 
Aelal<vel (IND). Y (IND) ZP. X ZP. x ZP. X ZP Implied ABS. Y Implied 
22"' 2S"t 251 Z 4 241 26 25 , 2 ) 4"t '4 

BAA STA 5MBO DEY BIT TXA 
ZP Implied IMM ImplIed 

JMP ADC 
(ASS) lABS 
) 6 ) 4t 

ROA BBR6 
ABS ZP 
) 6 ) 5"" 

JMP ADC ROA BBR7 
ABS, X ASS, X ASS. X ZP 

3 6 3 4"t ) 7 ) 5"" 

STY STA STX 
ASS ABS ABS AeJal"'e (IND. Xl 

2)' 2 6 

STA ! STX 

ZP i ZP 
Z) 23 

STA I STX 
ZPX ZP,Y 
24 ,24 

Z 5 , Z Z 2 

5MB! TYA SrA 
ZP Implied ABS. Y 

Z 5 12 ) 5 

:X: I Implied , , 
) 4 ) 4 ) 4 

STZ STA STl 
ASS ABS. X ASS. X 
) 4 ) 5 ) 5 

BBSO 
ZP 

) 5"" 

BBSI 
ZP 

) 5"" 

! BeS LOA 
Aelatove (IND). Y 

122" Z 5" 

CPY CMP 
IMM (IND. Xl 
2 2 2 6 

BNE CMP 
Relabv6 (IND). Y 
22'" 25" 

CPX SBC 
IMM (IND, X) 
22 26t 

LOA 
(IND) , , 

eMP 
(IND) 
, 5 

SEQ SSC SBC 
RelatIve (IND). Y (IND) 
22" 2 S·t 2 St 

: lOY 

I 
ZP. X , , 
epy 

I ,ZP, 

CPX 

'P , , 

LOA LOX 
ZP ZP 
2) 2) 

LOA 'I LOX 
ZP. X ZP. Y 
Z 4 24 

CMP I DEC 

ZZP) I zZPs 

;:~ I ~:,~ 
24 i z 6 

SBe 
ZP 

, 3t 

INC 
ZP , , 

5MB2 TAY LOA TAX 
ZP Implied IMM Imphed 
25 , 2 22 12 

5MB3 
ZP , , 

CLV LOA I TSX.! 

'~Ph~d ~BS/ '~pll~: 

5MBA INY CMP DEX 
ZP ImphlKl IMM Imphed 

Z 5 12 22 12 

SMSS CLD CMP PHX 
ZP Implied ASS. Y Implied 
25 12 34" 13 

5MBO INX SBC NOP 
ZP Impl",d IMM Implied 

2 5 1 2 22t 12 

SBC INC 5MB7 SED SSC PLX 
ZP, X ZP, X ZP Implied ASS. Y Implloo 
24t 26 25 12 34"t 14 

BRK -OP Code 
o Imphed -Addressing Mode 

1 7 -Instruction Bytes. Machine CyCles 
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LOY LOA lOX 6BS2 
ASS ABS ASS ZP 
) 4 ) 4 ) 4 ) 5" 

A~~~ X' A~~\ i A~~~ Y 8;~ 
) 4'1 3 4"; 34' ) 5" 

epy I CMP DEC ~ 
ASS ASS: ASS ZP 
) 41) 4 I) 6 ) 5" 

epx 
ABS , , 

CMP DEC SSSS 
ASS. X ASS. X ZP 
) 4" ) 7 ) 5" 

SBC 
ABS 

3 " 

INC 
ABS , , 

BB56 
'P 

35" 

SSC INC BBS7 
ASS, X ABS. X . ZP 
34"t 37 35'" 

tAdd 1 to N If In doomsl mode 

• Add 1 to N If page brundary IS crossed 
'"Add I to N If brsnch 0CClIr5 to same page. 

Add 2 to N d branch oc:c:urs to dlftClfltllt page 



The bit number IS separated from the address on page zero by a comma. BBR 
and BBS thus require three operands separated by commas: bit number. 
memory address. and branch destination. 

BBR - BRANCH ON BIT RESET (BIT = 0) 
BBR is a relative branch conditional on whether a specified bit in a memory location 
on page zero IS O. If the bit IS O. the branch occurs; If It IS 1. the processor continues 
its usual consecutive sequence. 

BBR O-BBR 7 --....--
OF-7F 

The first digit of the operation code IS the specified bit position. 

A BBR instruction occupies three memory bytes containing: 

1) Operation code 

2) Memory address on page zero 

3) Relative offset for branching If the condition holds 

The assembly form requires three operands in the following order: bit number. 
address on page zero. and relative offset or destination. 

In the following instruction sequence: 

._------!'HIlR 5.$50.NEXT 
It 5 of location 005016 = 
D #$7F 

Bit 5 of location 005 16 = 0 

--~OO'--I>ADC $40 

the processor executes ADC $40 after BBR If bit 5 of memory location 005016 IS 0 It 
executes AND #$ 7F next If bit 5 of memory location 005016 IS 1 The relative address
ing works exactly as shown In Chapter 3 for BCC and other branches. BBR does not 
affect any flags or any registers other than the Program Counter. 

BBS-BRANCIH ON BIT SET (BIll" = 1) 
BBS IS a relative branch conditional on whether a specified bit In a memory location 
on page zero IS 1 If the bit IS 1. the branch occurs; If it IS O. the processor continues 
ItS usual consecutive sequence. 

BBS O-BBS 7 
~ 

SF-FF 

The first digit of the operation code IS the specified bit POSition plus S. 

A BBS instruction occupies three memory bytes containing: 

1) Operation code 

2) Memory address on page zero 

3) Relative offset for branching if the condition holds 
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The assembly form requires three operands in the following order: bit number (0 to 7). 

address on page zero, and relative offset or destination. 

In the following instruction sequence: 

._----fmS ;3,$50,NEXT 
it 3 of location 005016 = 0 

D #$7F 

the processor executes ADC $40 after BBS if bit 3 of memory location 005016 is 1. It 
executes AND #$7F next if bit 3 of memory location 005016 is O. The relative address
ing works exactly as shown in Chapter 3 for BCC and other branches. BBS does not 
affect any flags or any registers other than the Program Counter. 

BRA-BRANCH ALWAYS 
BRA 

"'-v-" 

80 

BRA IS a relative branch that is always taken. In the following instruction sequence: 

C BRANEXT 
AND #$7F 

ADC $40 

the processor always executes ADC $40 after BRA. It will never reach the AND #$7F 
Instruction unless there is another path to it. The relative addressing works exactly as 
shown in Chapter 3 for BCC and other branches. BRA does not affect any flags or any 
registers other than the Program Counter. It has exactly the same effect as JMP; the 
only difference is the addressing mode. 

MUL- MULTIPLY (65COO ONLY) 
This Instruction multiplies the Accumulator times Index Register Y to compute a 16-bit 
product. The more Significant byte of the product ends up in the Accumulator, and the 
less significant byte in register Y. All numbers are assumed to be unsigned binary. 
MUL does not affect any flags. 

MUL 
"'-v-" 

02 
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Da'a 

S V B 0 I Z C 

~ PI I I I I I I I 

A xx Program 
X Memory 
y VV 

SP 
PC mm mm 02 mmmm 

mmmm+ 1 

Multiply the Accumulator times Index Register Y and place the product in A (more 
significant byte) and Y (less significant byte). Suppose that the Accumulator contains 
3C16 (6010) and that Index Register Y contains A 116 (16110). After the instruction 

MUL 

has executed. the Accumulator will contain 25,6 and Index Register Y will contain 
BC,6. That is. the product is 25BC'6 (966010). No flags are affected. 

PHX-PUSH INDEX REGISTER X ONTO STACK 
This instruction stores the contents of Index Register X at the top of the Stack. The 
Stack Pointer is then reduced by 1. No other registers or flags are affected. Note that 
PHX stores Index Register X in the Stack before decrementing the Stack Pointer. 

SVBDIZC 

pi I I I I I I I 

A 
X xx 
y 

SP ss 
PC 

PHX 
~ 

DA 
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Data 

Memory 

""1----::::--1 01 ss-1 
t---",xx'---I 01 ss 

Program 

Memorv 

DA 
mmmm+ 1 



Suppose that Index Register X contains 6016 and the Stack Pointer contains E016. 
After the processor executes PHX. memory location 01 E016 will contain 6016 and the 
Stack Pointer will contain EC16. 

The most common use of PHX is to save Index Register X's contents before servicing 
an interrupt or calling a subroutine. PHX replaces the 6502 sequence 

TXA 

PHA 

It allows register X to be saved before or after the Accumulator. whereas it had to be 
saved after the Accumulator on the 6502 (since saving X destroyed the Accumulator's 
previous contents). As a friendly hint to teachers of 65C02 programming. we suggest 
you not pronounce the operation code in class. 

PHY - PUSH INDEX REGISTER Y ONTO STACK 
This Instruction stores the contents of Index Register Y at the top of the Stack. The 
Stack Pointer is then reduced by 1. No other registers or flags are affected. Note that 
PHY stores Index Register Y in the Stack before decrementing the Stack POinter. 

SVBDIZC 

P I I I I I I I I 

A 

X 
y YV 

SP Ss 
PC mm 

PHY -...--
5A 

Data 
Memory 

...... J--:-:.,--i 01 55·1 
..... -'-YV'---i Olss 

Program 

MemQry 

5A mrnmm 

mmmm + 1 

Suppose that Index Register Y contains F 116 and the Stack Pointer contains 7 B16 
After the processor executes PHX. memory location 017B16 will contain F116 and the 
Stack Pointer will contain 7 A16. 

The most common use of PHY is to save Index Register Y's contents before servIcing 
an interrupt or calling a subroutine. PHY replaces the 6502 sequence 

TYA 

PHA 

It allows register Y to be saved before or after the Accumulator. whereas it had to be 
saved after the Accumulator on the 6502 (since saving Y destroyed the Accumulator's 
previous contents). 
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PLX-PULL CONTENTS OF INDEX REGISTER X 
FROM STACK 
This instruction increments the Stack Pointer by 1 and then loads Index Register X 
from the top of the stack. Note that PLX increments the Stack Pointer before loading 
Index Register X. 

SVBDIZC 

P rxI I I I Ixl I 

A 

xx 
y 

SP ss 
PC mm 

PLX 
-..-' 

FA 

Data 
Memory 

01ss 
-...J!---x-x-~ 01 ss+l 

Program 

MemQry 

FA 
mmmm + 1 

Suppose that the Stack Pointer contains Ee16 and that memory location 01 ED16 con
tains 6A16. After the processor executes PLX. Index Register X will contain 6A16 and 
the Stack Pointer will contain ED16. 

6A = 0 1 1 0 1 0 1 0 
Sets S to 0 Nonzero result sets Z to 0 

The most common use of PLX is to restore Index Register X's contents after servicing 
an Interrupt or completing a subroutine. PLX replaces the 6502 sequence 

PLA 

TAX 

It allows register X to be restored before or after the Accumulator. whereas it had to be 
restored before the Accumulator on the 6502 (since restoring X destroyed the 
Accumulator's previous contents). 

PLY - PULL CONTENTS OF INDEX REGISTER Y 
FROM STACK 
This instruction increments the Stack Pointer by 1 and then loads Index Register Y 
from the top of the Stack. Note that PLY increments the Stack Pointer before loading 
Index Register Y. 

PLY ---7A 
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Data 

S V B 0 I Z C Memory 

pix! ! ! ! Ixl I 

Dis. 
yy Olso + 1 

" Ie 

Y yy Program 
SP ss Memory 
PC mm 

7A mmmm 

mmmm+ 1 

Suppose that the Stack Pointer contains E5l6 and memory location 01 E6l6 contains 
FC16. After the processor executes PLY. Index Register X will contain FC16 and the 
Stack Pointer will contain E6l6. 

FC = 1 1 1 1 1 1 0 0 
Sets S to 1 Nonzero result sets Z to 0 

The most common use of PLY is to restore Index Register Y's contents after servicing 
an interrupt or completing a subroutine. This instruction replaces the 6502 sequence 

PLA 
TAY 

It allows register Y to be restored before or after the Accumulator. whereas it had to be 
restored before the Accumulator on the 6502 (since restoring Y destroyed the 
Accumulator's previous contents). 

RMB-RESET (CLEAR) MEMORY BIT 
RMB resets (clears) a specified bit position of a memory location on page zero. 

RMB O-RMB 7 ---07-77 

The first digit of the operation code is the specified bit position. The assembly version 
requires two operands: bit position (0 through 7), followed by an address on page 
zero. 

RMB allows only zero page (direct) addressing. It does not affect any flags. 
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SVBDIZC 

P I I I I I I I I 

Data 
Memory 

xx 0063 

Program 
Memory 

67 mmmm 
63 mmmm + 1 

Suppose memory location 006316 contains F116 (11110002). After the processor 
executes 

RMB 6,$63 

bit 6 of memory location 006316 will be O. That location will therefore contain Bl 16 
(101100012). 

RMB is useful for clearing flags saved in memory. It can clear any bit on page zero in a 
single instruction cycle without affecting any registers. This enables the programmer 
to readily use all bit positions for flags, thus eliminating the previous preference for bit 
o (which could be complemented with INC or DEC). 

5MB-SET MEMORY BIT 
5MB sets a specified bit position of a memory location on page zero. 

5MB O-SMB 7 
-.,.-

87-F7 

The first digit of the operation code is the specified bit position plus 8. The assembly 
version requires two operands: bit position (0 through 7). followed by an address on 
page zero. 

SM8 allows only zero page (direct) addressing. It does not affect any flags. 

SVBDIZC 

pi I I I I I I I 

JI:==mm==: __ m_m~~mmm+~ 
17-13 

Data 

Memorv 

xx 0084 

Program 

Memor .. 

97 mmmm 
84 mmmm + 1 



Suppose memory location 00B416 contains 3C16 (001111002). After the processor 
executes 

5MB l.$B4 

bit 1 of location 00B414 will be 1. That location will therefore contain 3E16 
(0011111 02). 

5MB is useful for setting flags saved in memory. It can set any bit on page zero in a 
single instruction cycle without affecting any registers. This enables the programmer 
to readily use all bit po'sitions for flags, thus eliminating the previous preference for bit 
o (which could be complemented with INC or DEC). 

STZ-STORE ZERO IN MEMORY (CLEAR MEMORY) 
Store zero in the selected memory location (that is, clear it). The addressing modes 
allowed are: 

1) Zero page (direct) - STZ addr 

2) Absolute (direct) - STZ addr16 

3) Zero page indexed with X - STZ addr,X 

4) Absolute indexed with X - STZ addr16,X 

STZ has no indexed modes using Index Register Y and no indirect modes. It does not 
affect any registers or flags. In particular, note that it does not affect the Zero flag even 
though it stores zero in a memory location. 

The first byte of object code selects the addressing mode as follows: 

Hexadecimal 
Object Code 

64 
9C 
74 
9E 

Addressing Mode 

Zero page (direct) 
Absolute (direct) 
Zero page indexed with X 
Absolute indexed with X 

Number 
of Bytes 

2 
3 
2 
3 

We will illustrate the STZ instruction using absolute direct addressing. See Chapter 3's 
discussions of addressing methods and other arithmetic and logical instructions for 
examples of the other addressing modes. 

SVBDllC 

p I I I I I I I I 

A 

X 
y 

SP 
PC 
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Dala 
Memory 

Program 

Memory 

9C 
qq 
pp 

ppqq 

mmmm 
mmmm+ 1 
minmm + 2 
mmmm+3 



Store zero in the selected memory byte. Suppose that ppqq = 8A5416. After the pro
cessor executes the instruction 

STZ $8A54 

memory location 8A5416 will contain 0016. No registers or flags are affected. 

TRB-TEST AND RESET (MEMORY) BITS 
TRB resets (clears) all bit positions in a memory location that are set (1) in the Accu
mulator. This operation is sometimes called reset (clear) under mask. since the 
Accumulator contains a mask that specifies which bits are affected. TRB does not 
affect the Accumulator. any flags except the Zero flag. or any bits in the memory loca
tion that are cleared (0) in the Accumulator. We can describe this operation mathema
tically by saying that the memory location ends up containing the logical AND of its 
old contents with the complemented contents of the Accumulator. that is. 

(M) = (M) A (A) 

The first byte of object code determines the addressing mode as follows: 

7 6 5 4 3 2 1 0 Bit Number 
0 0 0 1 X 1 0 0 Object Code 

Bit Value Hexadecimal Addressing Mode Numbe 
for X Object Code of Bytes 

0 14 Zero page (direct) 2 
1 lC Absolute (direct) 3 

We will illustrate TRB using absolute (direct) addressing. For the zero page mode. see 
the AND instruction and the discussion of addressing modes in Chapter 3. 

SVBO'ZC 

p I I I I I I x I I 

A xx 
X 
y 

SP 

PC mm mm 

Data 
Memory 

vy ppqq 

Program 

Memory 

lC mmmm 
qq mmmm+ 1 

pp mmmm + 2 
mmmm + 3 

Reset (clear) the bit positions in the specified memory location that contain 1 s in the 
ACCumulator. Suppose xx = 8C16 (100011002). yy = FE16 (111111102). and ppqq = 
81 E 116. After the processor executes the instruction 

TRB$81El 

bits 2. 3. and 7 of memory location 81 E 116 will all contain O. That is. memory location 
81 E116 will contain 7216 (011100102). 
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8C = 10001100 

8C= 01110011 
FE = 11 i 11110 

72 = 01110010 
Nonzero result sets Z to 0 

TRB allows the programmer to clear several bit positions in a memory location at 
once. For example. to clear bits O. 5. and 6 of memory location 1 E07,6 simultane
ously. use 

LDA #%01100001 

TRB$lE07 

This approach can be used to clear a bit field or to bring several output bits to 0 logic 
levels simultaneously. 

TSB-TEST AND SET (MEMORY) BITS 
TSB sets (to 1) all bit positions in a memory location that are set (1) in the Accumulator. 
This operation is sometimes called set under mask. since the Accumulator contains a 
mask that specifies which bits are affected. TSB does not affect the Accumulator. any 
flags except the Zero flag. Of any bits in the memory location that are cleared (0) in the 
Accumulator. We can describe this operation logically by saying that the memory loca
tion ends up containing the logical OR of its old contents with the contents of the 
Accumulator. that is. 

(M) = (M) V (A) 

The first byte of object code determines the addressing mode as follows: 

7 6 5 4 3 2 1 0 Bit Number 
0 0 0 0 X 0 0 Object Code 

Bit Value Hexadecimal Addressing Mode Number 
for X Object Code of Bytes 

0 04 Zero page (direct) 2 
OC Absolute (direct) 3 

We will illustrate TSB using absolute (direct) addressing. For the zero page mode. see 
the AND instruction and the discussion of addressing modes in Chapter 3. 

SVBDllC 
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Set (to 1) the bit positions in the specified memory location that contain 1 s in the 
Accumulator. Suppose xx = 38,6 (001110002). yy = 82,6 (100000102). and ppqq = 
C3 50 16. After the processor executes the instruction 

TSB $C350 

bits 3. 4. and 5 of memory location C350'6 will all contain 1. That is. memory location 
C350'6 will contain BA16 (101110102). 

38 00111000 
82 10000010 

BA 10111010 
Nonzero result sets Z to 0 

TSB allows the programmer to set several bit positions in a memory location at once. 
For example. to set bits 1. 4. and 7 of memory location 359F16 simultaneously. use 

LOA #%100100105 

TSB S359F 

This approach can be used to set all the bits in a field or to bring several output bits to 
1 logic levels simultaneously. 

OTHER 65C02 ENHANCEMENTS 
Other enhancements of the 65C02 include the following: 

1) Invalid operation codes are treated as Naps. 

2) Indirect jumps work correctly on page boundaries. 

3) The 0 (Decimal Mode) flag is initialized to 0 (binary mode) by reset and inter-
rupts. 

4) The N. V. and Z flags are val;d after decimal operations. 

5) The BIT instruction allows irnmediate and indexed addressing. 

6) An interrupt recognized aft3r the fetching of a BRK instruction is executed cor
rectly. That is. the processor executes BRK and then responds to the mterrupt. 
The 6502 simply ignores ':le BRK vector. 

Invalid Operation Codes 
The 65C02 treates all invalid operation codes as Naps. This is not the case on the 
6502. where some invalid codes not only produce undefined results. but may not 
terminate without a reset. This treatment avoids debugging and system operation 
problems caused by execution of incorrect memory locations. memory read errors. or 
erroneous signals or noise on the address or data buses. 

Indirect Jump Correction 
The 65C02's JMP indirect instruction works correctly on page boundaries. For exam
ple. the instruction JMP ($1 CFF) correctly obtains its address from memory locations 
1 CFF16 and 100016. By contrast. the 6502 obtains its address from memory locations 
1 CFF16 and 1 C0016: that is. it does not increment the high byte of the memory 
address when incrementing the low byte produces a carry. 

D (Decimal Mode) Flag Initialization 
The 65C02 initializes the 0 (Decimal Mode) flag to 0 (binary mode) on reset and on 
accepting an interrupt. This makes it unnecessary to establish this flag's value in either 
a startup routine or in an interrupt service routine. 
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It is still necessary to preserve the D flag's value in many subroutines. The sequence 

PHP 
CLD 

preserves the entire Status register before clearing the D flag. The instruction 

PLP 
at the end of the subroutine then restores the original values of all fla?s. 

V.lid Flags After Decimal Operations 
On the 65C02, the Negative. Zero. and Overflow flags all reflect the decimal result. not 
the binary result. after arithmetic operations in the Decimal Mode. These flags reflect 
only the binary result on the 6502. For example: 

1) Adding 50,6 and 50,6 produces a binary result of AO'6 and a decimal result of 
00,6. Whenexecuted in the Decimal Mode. this operation clears the Negative (N 
or S) flag and sets the Zero flag on the 65C02, renecting the decimal result. On 
the 6502. it sets the Negative flag and clears the Zero flag. reflecting the binary 
result. 

2) Subtracting 50,6 from 10,6 produces a binary result of CO,s and a decimal 
result of 60,6. When executed in the Decimal Mode. this operation clears the 
Negative flag on the 65C02: reflecting the decimal result. On the 6502. it sets 
the Negative flag, reflecting the binary result. 

Additional Addressing Modes For BIT 
On the 65C02. the BIT (Bit Test) instruction allows immediate. zero page indexed (with 
X). and absolute indexed (with X) addressing, in addition to the absolute and zero page 
direct modes allowed on the 6502. This results in more situations in which the pro
grammer can use BIT instead of AND. thus performing the logical operation and set-
ting the flags without affecting the Accumulator. • 

For example. to test whether bit 5 of address A400'6 is 1. we can now use 

instead of 

LDA $A400 
BIT #%00100000 

LDA 
·SIT· . 

#%00100000 
, $A400 . 

This is advantageous when the program needs the data in the Accumulator for later 
tests or other processing. The following sequence forces a branch to address SERV5 if 
bit 5 of location A400,s is 0 and to SERV2 if bit 2 of A400'6 is O. 

LDA 
BIT 
BEQ 
BIT 
BEQ 

$A400 
#"A,00100000 
SERV5 
#%00000100 
SERV2 

;GET DATA 
;TEST BIT 5 
;BRANCH IF BIT 5 IS 0 
;TEST BIT 2 
;BRANCf-!, IF BIT 2 IS 0 

Note. however. that only the Zero flag is meaningful after BIT with immediate address
ing. The Negative (N or S) and Overflow (0 or V) flags are undefined. 
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65C02 PROGRAMMING EXAMPLES 

The following programs illustrate important new 65C02 instructions and addressing 
modes. 

CLEAR A MEMORY LOCATION 
Purpose: Clear memory location 004016. 

Source Program: 

STZ 
BRK 

$40 ;CLEAR LOCATION 40 

STZ replaces the two instruction sequence 

LDA #0 
STA $40 

required on the 6502. Furthermore. it does not affect any registers or flags. 

CLEAR A BLOCK OF MEMORY 
Purpose: Clear memory locations 030016 through 030716. 

Source Program: 

CLR1 
LDX 
STZ 
DEX 

#B ;NUMBER OF BYTES = 8 
$02FF.X ;CLEAR A BYTE 

;COUNT BYTES 
BNE CLR1 

This routine does not use the Accumulator at all. 

Purpose: Clear memory locations starting at the address in 004016 and 
004116 and ending just before the address in 004216 and 004316. 

Source Program: 

LDX 
LDY 
LDA 

CLR1 STA 
INC 
BNE 
INC 

CHLST CPX 
BNE 
CPY 
BNE 
BRK 

$42 
$43 
#0 
($40) 
$40 
CHLST 
$41 
$40 
CLR1 
$41 
CLR1 

;GET ENDING ADDRESS 

;GET ZERO TO FILL 
;CLEAR A BYTE 
;INCREMENT INDIRECT ADDRESS 

;CARRY TO MORE SIGNIFICANT BYTE 
;CHECK IF ENDING ADDRESS REACHED 

Indirect addressing allows the programmer to treat pairs of memory locations on page 
zero as 16-bit registers. This simplifies operations extending over several pages. 

PATTERN MATCH (STRING COMPARE) 
Purpose: Compare two strings of ASCII characters to see if they are the same. 

The length of the strings is in location 0041. one string starts in 
location 0042. and the other starts in location 0052. If the two 
strings match. clear bit 0 of location 0040; otherwise. set bit 0 of 
location 0040. 
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Source Program: 

5MB 
LDX 

CHCAR LDA 
CMP 
BNE 
INX 
CPX 
BNE 
RMB 

DONE BRK 

0.$40 
#0 
$42.X 
$52.X 
DONE 

$41 
CHCAR 
0.$40 

;ASSUME NO MATCH BY DEFAULT 
;START WITH FIRST ELEMENT 
;GET CHARACTER FROM STRING 1 
;IS THERE A MATCH WITH STRING 2? 

;CHECK NEXT PAIR IF ANY LEFT 
;IF NONE LEFT. MARK MATCH 

RMB and 5MB allow us to clear and set any bit on page zero without using a register. 

BUBBLE SORT 
Purpose: Sort an array of unsigned binary numbers into descending order. The 

length of the array is in location 0041. and the array itself begins in 
location 0042. Use bit 0 of location 0040 to indicate whether the 
array has been sorted (0 means sorted; 1 means not sorted). 

Source Program: 

SORT RMB 0.$40 ;ASSUME ARRAY SORTED 
LDX $41 ;GET LENGTH OF ARRAY 
DEX ;ADJUST ARRAY LENGTH TO NUMBER 

; OF PAIRS 
PASS LDA $41.X ;IS PAIR OF ELEMENTS IN ORDER? 

CMP $42.X 
BCS COUNT ;YES. TRY NEXT PAIR 
5MB 0.$40 ;NO. SET SORTED FLAG 
LDY $42.X ;INTERCHANGE ELEMENTS 
STA $42.X 
STY $41.X 

COUNT DEX ;CHECK FOR COMPLETED PASS 
BNE PASS 
BBS 0.$40.S0RT ;TRY AGAIN IF ELEMENTS NOT SORTED 
BRK 

BBR and BBS allow us to test any bit on page 0 without using any registers or per
forming any arithmetic or logical operations. Note that these are the only instructions 
that require three operands. 

INPUT FROM LOGICAL DEVICE 
Purpose: Given a logical device number (less than 128) in the Accumulator. 

read the data at the address obtained from a device table. The device 
table starts at address DEVTBL and consists of 16-bit physical 
addresses. 
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Source Program: 

INLOG ASL 

TAX 
LDA 
STA 
LDA 
STA 
LOA 
BRK 

A 

DEVTBLX 
$40 
DEVTBL+1.X 
$41 
($40) 

:DOUBLE INDEX TO HANDLE TWO-BYTE 
: ADDRESS ENTRIES 

:GET LSB OF DEVICE ADDRESS 
:SAVE LSB ON PAGE ZERO 
:GET MSB OF DEVICE ADDRESS 
:SAVE MSB ON PAGE ZERO 
;READ DATA FROM PHYSICAL DEVICE 

This approach allows the device table to be anywhere in memory. We could use prein
dexing to access a device table if it were entirely on page zero. 

QUEUE STORAGE 
Purpose: Given a data byte in the Accumulator. store it in a queue. The queue 

header (in locations 0040 through 0049) contains the following 
information: 

1) Head pointer (address of oldest element in queue) 

2) Tail pointer (address at which next data item will be placed) 

3) Queue length (number of elements currently in the queue) 

4) Length of data area in bytes (maximum number of elements queue can hold) 

5) Base pointer (lowest address in data area) 

6) End pointer (address just beyond the end of the data area) 

The queue has fewer than 256 elements. so the lengths are single bytes. The occupied 
part of the data buffer can lie anywhere. When either the head pointer or the tail 
pointer reaches the end pointer. it is set back to the base pointer. thus permitting 
wraparound. The queue could. for example. occupy the last few bytes of the buffer 
area as well as the first few bytes. The Carry flag indicates whether there was room in 
the queue for the new element; it is cleared if there was and set if there was not. 

Source Program: 

QST 

CHEND 

EXCC 
EXQS 

LOX 
CPX 
SEC 
BEQ 
STA 

INC 
INC 
BNE 
INC 
LOA 
CMP 
BNE 
LOA 
CMP 
BNE 
LOA 
STA 
LDA 
STA 
CLC 
BRK 

$44 
$45 

EXQS 
($42) 

$44 
$42 
CHEND 
$43 
$42 
$48 
EXCC 
$43 
$49 
EXCC 
$46 
$42 
$47 
$43 

;GET QUEUE LENGTH 
:COMPARE TO SIZE OF DATA AREA 
:INDICATE DATA AREA FULL 
:EXIT IF DATA AREA IS FULL 
:DATA AREA NOT FULL. SO INSERT ELEMENT 
: AT TAIL 
;ADD 1 TO QUEUE LENGTH 
;ADD 1 TO TAIL POINTER 

;WITH CARRY TO MORE SIGNIFICANT BYTE 
;COMPARE TAIL POINTER. END POINTER 

:EXIT IF NOT THE SAME 

: IN BOTH BYTES 
;TAIL POINTER AT END POINTER. SO SET 
: IT BACK TO BASE POINTER 

;INDICATE DATA AREA NOT FULL 
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CHANGE FILE SECURITY BITS 
Purpose: Given a file security level in 0040. set bits in it according to a mask in 

0041. Bits 0-5 of 0040 control access to a file as follows (1 means 
access is permitted): 

Bit 5 - read access for file creator 
Bit 4-execute access for file creator 
Bit 3 -write access for file creator 
Bit 2 - read access for other users 
Bit 1 -execute access for other users 
Bit O-write access for other users 

A file with a security level of 3F,e is open to anyone for any purpose. whereas a file 
with a security level of 00 is completely closed (even its creator cannot read it!). 

Source Program: 

LOA $41 ;GET MASK 
TSB $40 ;SET SECURITY LEVEL 
BRK 

Note that TSB and TRB return their results directly to memory. We can also specify the 
mask directly. For example. to ensure read access to a file for everyone. use 

LDA #%00100100 ;ALLOW READING BY ALL 
TSB $40 
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17-19 
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CMP. 3-56 to 3-57 

flags. effect on. 4-10 to 4-11 
input instruction. 11-21 
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debugging. 14-15 to 14-18 
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examples. 15-5 to 15-8 
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Complementing bits. 4-16 
Computer program. 1-2 
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11-79 
Converter interfaces. 11-93 to 11-102 

A/D converter. 11-98 to 11-102 
D/A converter. 11-93 to 11-97 

CPX.3-58 
CPY.3-59 
Cross-assembler. 2 -16 

D 

D (decimal mode) flag. 3-3. 3-4 
initialization on 65C02. 17-17 to 17-18 

D/A converter interface. 11-93 to 11-97 
Darlington transistor. 11- 61 
Data/address distinction. 2-10. 14-11 
DATA pseUdo-operation. 2-5 to 2-6 
Data structures. 9-1 to 9-21 
DBYTE pseudo-operation. 3 -1 09 to 3 -11 0 
Debouncing (switches). 11-47. 11-50 
Debugging. 13-3. 14-1 to 14-24 

checkl ists. 14 -1 0 
common errors. 14-11 to 14-13 
examples. 14-15 to 14-24 
interrupt-driven programs. 14-13 to 

14-14 
NOP. use of. 3 -78 
tools. 14-1 to 14-9 

DEC. 3-60 
decimal mode. 8-6 

Decimal accuracy in binary. 8-3 
Decimal addition. 8-4 to 8-6 



Decimal default, 2-10 
Decimal division by 2, 8-21 
Decimal increment by 1, 8-6 
Decimal mode, 8-5 to 8-6 

example cases, 8-5 
flags, 17-18 
limitations, 8-6 

Decimal mode (D) flag, 3-3, 3-4, 3-53, 
3-94,17-17 to 17-18 

Decimal multiplication by 2, 8-21 
Decimal numbers, 2-11 
Decimal rounding, 8-22 
Decimal strings, editing of, 6-10 to 6-12 
Decimal to seven-segment conversion, 7-4 

to 7-6, 14-15 to 14-17 
DEFINE pseudo-operation, 2-6 to 2-7 
Definition lists, 15-11 to 15-12 
Definitions, placement of, 2-7, 16-4 
Delay routines, 11-8 to 11-11 
Demultiplexer, 11-2, 11-3 
Device-independent 1/0, 11-123 
DEX, 3-61 
DEY, 3-63 
Direct addressing, 3-7 
Directives. See pseudo-operations 
Direct memory access, 11- 5 
DISABLE INTERRUPTS instruction, 3-95 
Disabling interrupts, 12-31 
Division, 8-12 to 8-16 

by 2,8-1,8-21 
DMA. 11-5 
Documentation, 10-2, 13-3, 15-1 to 

15-17 
comments, 15-3 to 15-8 
definition lists, 15-11 to 15-12 
flowcharts, 15-9 
library forms, 15-13 to 15-16 
memory maps, 15-10 
names, 15-2 
package, 15-17 
parameter lists, 15-11 to 15-12 
self-documenting programs, 15-1 
structured programs, 15-9 
subroutines, 10-8, 10-12, 10-18, 

10-23 
Double Add Double Mod 10 algorithm, 

8-17 
Double buffering, 12 -19 
Doubling a binary number, 8-21 
Dummy read of PIA, 11-22 
Dump, 14-4 to 14-7 

E 

Effective address, 4 -14 
ENABLE INTERRUPTS instruction, 3-54 

Encoded switch, 11-56 to 11-60 
Encoder, 11-56 
END pseudo-operation, 3-109, 3-111 
Endless loop instruction, 12-17 
ENTRY pseudo-operation, 2-8 
EOR, 3-63 to 3-64, 4-16 

switches, 11-54 
EQUATE pseudo-operation, 2 - 6 to 2 -7 
Error detection, 6 -15, 11-5 
Error handling, 13-5, 13-7 to 13-8,13-9, 

13-11, 13-14 to 13-15 
Error messages, 2 -17 
Errors, common programming, 14-11 to 

14-14 
Even parity, 6-13 
Exa mple format, 4-1 
Example guidelines, 4-1 
Execution time, saving, 15-19 to 15-20 
Expressions (in operand field), 2-11, 3-111 
External references, 2-8 
EXTERNAL pseudo-operation, 2-9 

F 

FIFO. See Queue 
File security bits, 17-22 
Fixed format, 2 -2 
Flowcharting, 13-18 to 13-28 

advantages, 13-18 
disadvantages, 13 -18 
documentation, 15-9 
examples, 13-20 to 13-28 
symbols, 13-19 . 

FORTRAN, 1-7, 1-8 
Framing, 11-78 
Framing error, 11-103 
Free format, 2 -2 
Fusible-link PROMs, 3-49 

G 

Global variables, 2-14 

H 

Halving a decimal number, 8-21 
Hand assembly, 1-5 
Handshake, 11-2 to 11-7 

diagrams, 11-6 to 11-7 
6522 VIA. 11-34 

Hashing, 9-4 
Hexadecimal conversion table, 1-4 
Hexadecimal instructions, 1- 3 
Hexadecimal loader, 1-3 
Hexadecimal numbers, 2-10 

initial digit, 2-10 
Hexadecimal to ASCII subroutine, 10-4 to 
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High-level languages, 1-7 to 1-11 
advantages, 1-7 to 1-8 
applications, 1-11 
disadvantages, 1-8 to 1-9 
inefficiency, 1-8 
microprocessor versions, 1-9 to 1-11 
trends, 1 -11 

Human factors, 13-6, 13-11, 13-14 to 
13-15 

I (interrupt disable) flag, 3-3, 3-4 
Immediate addressing, 3-6, 4-7 

symbol (#), 3 -111 
Implied addressing, 3-8 
INC, 3-65 to 3-66 

decimal mode, 8-6, 8-22 
Indexed absolute indirect addressing 

(65C02), 17-2 to 17-4 
Indexed addressing, 3 -11 to 3 -12, 4-14 

loops, 5-1 
Indexed indirect (preindexed) addressing, 

3-9, 5-22 
Indexed jump, 3-69, 9-16 to 9-17 

65C02, 17-2 to 17-4 
Index registers, 3-3 

differences, 3 -1 0, 3 -11 
instructions, 4-15 
stack transfers, 10-10, 12-18, 17-9 

to 17-12 
Indirect addressing, 3-13, 9-17, 17-2 to 

17-4 
65C02, 17-2 to 17-4, 17-17, 17-19, 

17-21 
Indirect indexed (postindexed) addressing, 

3-10, 5-20 to 5-21, 9-
10 

Indirect jump, 3-13, 3-69, 9-16 
page boundary error, 3-13, 17-17 
65C02 implementation, 17-17 

Information-hiding principle, 13-32 
Inherent addressing, 3-8 
Input/Output, 11-1 to 11-129 

categories, 11-1 
handshake, 11-2 
high-speed devices, 11-5 
instructions, 11-21 
medium-speed devices, 11-2 
memory, differences from, 11-1 
slow devices, 11-2 

Instruction set, 1-1,3-1 to 3-104 
binary form, 1-1 
C02 version, 17-3, 17-5, 17-6 
frequently used, 3-2 

notation, 3-15 to 3-18 
numerical order, 3-31 to 3-32, 17-6 
occasiona lIy used, 3 -2 
operation code matrix, 17-6 
seldom used, 3-3 
65C02, 17-3, 17-5, 17-6 
summary, 3-19 to 3-30, 17-3 

Interchanging elements, 9-15 
Interface chips, 11-12 
Interfaces, standard, 11-124 
Interrupt disable flag, 3-3, 3-4, 3-54, 

3-95 
RTI instruction, 3-89, 12-18 
sense, 3-4 

INTERRUPT MASK flag. See Interrupt 
disable flag 

Interrupt response, 12-3, 17-1 
Interrupt return address, changing of, 

12-18 
Interrupts, 12 -1 to 12 -40 

ACIA. 12-9 
buffering, 12-18, 12-22 
characteristics, 12-1 
debugging, 14-13 to 14-14 
decimal mode (0) flag, effect on 

65C02, 17-1 
disabling, 12-31 
enabling, 3-54, 12-2 
general service routines, 12-37 
keyboard, 12-16 to 12-19 
memory map, 12-4 
monitor handling, 12-15 
PIA, 12-5 
polling, 12-2, 12-11 
printer, 12-20 to 12-22 
real-time clock, 12-23 to 12-31 
reasoning, 12-1 
reenabling, 12 -18 
response, 12 -3 
return address, changing of, 12-18 
RIOT, 12-9 
6502 system, 12-3 to 12-4 
startup, 12-13 to 12-15 
teletypewriter, 12-32 to 12-36 
types, 12-2 
vectored, 12 -12 
VIA. 12-6 to 12-8 

Interrupt vectors, 12-4 
Invalid operation codes, 17-17 
Inverted borrow, 3-4, 3-57 
Inverting bits, 4-16 
INX, 3-67 
INY, 3-68 
I/O device table, 11-123, 17-20 to 17-21 
IRQ input, 12-3 



J 

JMP, 3-69, 5-11, 5-18 
long branches, 5 -11 

JSR, 3 -70, 10-1 
address saved (third byte of instruc

tion), 3-70, 10-6 
example, 10-6 

Jump and branch terminology, 9-17 
Jump table, 3-69, 9-16 to 9-17 

65C02, 17-4 
Jump-to-self instruction, 4-1 
Justifying a fraction, 5-17 to 5-19 

K 

Keyboard interrupts, 12 -16 to 12 -19 
Keyboard interface, 11-81 to 11-92 

encoded keyboard, 11-90 to 11-92 
unencoded keyboard, 11-81 to 11-89 

Keyboard scan, 11- 81 
KIM microcomputer, 4-2, 4-5 

L 

Label, 2-2 to 2-4, 4-11 
choice, 2-3 
delimiter (space), 3-109 
jump instructions, 2 -2 

MOS Technology assembler rules, 3-109, 
3-111 

pseudo-operations, 2 -9 
reasons for use, 2-3, 4-11 
rules, 2-4 

Label field, 2-1, 2-2 
Language levels, 1-3 to 1-11 
Language trends, 1-11 
Larger number, 4-10 
Latching of 1/0 data, 11-2 
LOA, 3-71, 4-4 
LOX, 3-72 to 3-73 
LOY, 3-74 to 3-75 
LEO interface, 11- 61 to 11-75 

seven-segment displays, 11-64 to 
11-75 

single devices, 11-61 to 11-64 
Left shift, 4-6 
Library forms, 15-13 to 15-16 

examples, 15-14 to 15-16 
Library routines, 15 -13 to 15 -16 
Lightface type, 1-1 
Line feed character, 6-1 
Link editor, 2 -17 
Linking loader, 2-17 
Linking pseudo-operations, 2-8 
Lists, 9-1 to 9-7 

adding an entry, 9-2 to 9-4 
searching, 9-5 to 9-7 

Loader, hexadecimal, 1-3 
Loaders, 2 -17 
Local variables, 2-14 
Location counter, 2-7 

current value, 2-11, 3-111 
Logical devices, 11-123, 17-20 to 17-21 
Logical shift, 4-9 
Logical sum, 5-23 
Logic analyzer, 14-9 
Long branches, 5 -11 
Lookup tables, 4-13 to 4-15,7-1,7-4 to 

7-6 
Loops, 5-1 to 5-24 

flowcharts, 5 -2, 5 -3 
sections, 5-1 

LSI interface chips, 11-12 
LSR, 3-76 to 3-77, 4-9 

M 

Machine-independent programming, 1-7 
Machine language, 1-2 
Macroassembler, 2 -16 
Macros, 2-13 to 2-14 
Maintenance, 13-3 
Maintenance manual, 15 -17 
Majority logic, 11-5 
Manual output mode (of 6522 VIA), 11-97 
Masking, 4-7 
Matrix keyboard, 11-81, 11-82 
Maximum value, 5-14 to 5-16, 10-11 to 

10-14 
Memory dump, 14-6 to 14-7 
Memory maps, 15-10 
Memory, saving of, 15-19 
Memoryltime tradeoffs, 4-15, 15 -19 to 

15-20 
Meta-assembler, 2 -16 
Microassembler, 2 -16 
Mnemonic field, 2-1 
Mnemonic labels, 2-3 
Mnemonic names, 2-6 
Mnemonics, 1-4, 2-4 
Modular programming, 13-29 to 13-34 

advantages, 13-29 
disadvantages, 13-29 
examples, 13-31 to 13-33 
information-hiding principle, 13 -32 
principles, 13-30 
review, 13-34 

Monitor, interrupt handling by, 12 -15 
Monitor, returning control to, 4-1,4-2,4-4 
Motorola 6800, differences from, 3 -1 05 

to 3-108 
object code summary, 3-34 to 3-37 

MUL (65COO only), 17-8 to 17-9 



Multiple-position switch interface, 11-55 
to 11-60 

Multiplication, 8-7 to 8-11 
by 10, 7-9, 7-10 

N 

by 2, 3-42, 4-6, 8-21 
execution time, 8 -11 

N (negative) flag. See Sign flag 
Names, 2-6 

choice, 2-6, 15-2 
use, 2-6, 2-10 

Negative flag. See Sign flag 
Negative signed numbers, 5-13 
NMI input, 12-3, 12-4 
Nonmaskable interrupt, 12-2, 12-4 
NOP, 3-78 
Notation, differences from 6502 literature, 

3-5 

o 
o (overflow) flag. See Overflow flag 
Object code, 1-2 
Object codes in numerical order, 3-31 to 

3-32 
Object program, 1-5 
Offsets, calculation of, 3-14, 4-11, 5-5 

to 5-6, 5-10 
One-pass assembler, 2-16 
Ones complement. 4-16 
Operand field, 2-1 

form, choice of, 2 -1 0, 2 -11 
options, 2-10 to 2-11,3-111 

Operation code field, 2-1 
Operation code matrix, 17-6 
ORA, 3-79 to 3-80,11-33 
ORIGIN (ORG) pseudo-operation, 2 -7, 

3-110 
Origins, multiple, 3-110 
Overflow (V or 0) flag, 3-3, 3-5 

BIT instruction, 3-45 
control input, 3 - 5 

Overrun error, 11-110 

P 

P (status) register, 3-3, 3-4 to 3-5 
organization, 3-17 

Page boundary error (in indirect jump), 
3-11,17-17 

Page 1, assignment to stack, 3-4 
Page zero, use of, 4-3 
Parameter lists, 15-11 to 15-12 
Parameter passing, 10-1 to 10-2,10-10 

via program memory, 10-10 
Parameters, 10-1 

Parentheses in operand field, 3-9, 3-10, 
3-111 

Parity, 6-13 to 6-16,11-103 
Pattern match, 6-17 to 6-19, 10-15 to 

10-20 
65C02 version, 17-19 to 17-20 

PHA, 3-81 
PHP, 3-82 
PHX, 17-9 to 17-10 
PHY, 17-10 
Physical devices, 11-123 
PIA (6520 Peripheral Interface Adapter), 

11-12 to 11-22 
addresses, 11-13 
BIT instruction, 11-21 
block diagram, 11-14 
clearing status bits, 11-22 
configuration, 11-18 to 11-20 
control lines, 11-13 
control register, 11-15 to 11-18 
data direction register, 11-13 
data transfers, 11-21 
interrupts, 12 -5 
registers, 11-13 
reset, 11-13 
status bits, 11-21 to 11-22 

PLA, 3-83 
PLP, 3-84 
PLX, 17-11 
PLY, 17-11 to 17-12 
Polling, 11-5 
Polling interrupts, 12-2, 12-11 
Portability of programs, 1-6, 1-7 
Postindexed (indirect) addressing, 3-10, 

5-20 to 5-21,9-10 
Power fail interrupt, 12-4 
Preindexed (indirect) addressing, 3-9, 5-22 
Printer interrupt, 12-20 to 12-22 
Priority interrupts, 12 -2 
Problem definition, 13-3 to 13-16 

error handling, 13-5 
examples, 13-7 to 13-15 
human factors, 13-6 
inputs, 13-4 
outputs, 13-4 
processing, 13-4 
review, 13-16 

Procedure-oriented languages, 1-7 
Program, 1-2 
Program counter, 3-3, 3-4 
Program design, 13-3, 13-17 to 13-58 

flowcharting, 13-18 to 13-28 
modular programming, 13-29 to 

13-34 
principles, 13-17 



structured programming, 13-35 to 
13-49 

top-down design, 13-50 to 13-55 
Program logic manual, 15-17 
Programmable interface chips, 11-12 
Programmable timer, 11-8 
Programming guidelines, 4-2 
Program stubs, 13-50 
Projects, sample, 16-1 to 16-29 
Pseudo-operations, 2-1,2-4 to 2-9, 3-109 

to 3-111 
DATA, 2-5 to 2-6 
EQUATE, 2-6 to 2-7 
housekeeping, 2-9 
labels, 2-9 
linking, 2-8 
MOS Technology assembler, 3-109 to 

3-111 
ORIGIN,2-7 
RESERVE, 2-7 to 2-8 

Pushbutton interface, 11-43 to 11-49 

Q 

Queue, 9-8 to 9-10, 17-21 

R 

RAM, initialization of, 2-8 
Recursive subroutine, 10-2 
Real-time clock interrupt, 12-23 to 12-31 

definition, 12-23 
priority, 12 -23 
synchronization, 12 -23 

Redesign, 13-3, 15-18 to 15-21 
cost, 15-18 
major changes, 15-21 
saving time, 15-19 to 15-20 
saving memory, 15-19 

Reenabling interrupts, 12-18 
Reentrant subroutine, 10-2 
Register dump, 14-4 to 14-5 
Registers, 3-3 

stack transfers, 10-10, 10-13, 17-9 to 
17-12 

Relative addressing, 3-14, 4-11 
Relative offsets, 3 -14, 5 -5 

distance limitation, 5-11 
Relocatability, 6-5, 10-2 
Relocating loader, 2-17 
Relocation constant, 2-3 
Reorganizing programs, 15-21 
RESERVE pseudo-operation, 2-7 to 2-8, 

3-110 
Reset's effect on D flag (65C02 only), 17-1 
Resetting (clearing) bits, 4-7, 17-12 to 

17-13, 17-15 to 17-16 

Reset under mask, 17-15 
Reset vector, 12 -4 
Resident assembler, 2-16 
RIOTs (ROM/RAM/IOltimer chips), 11-39 

to 11-42 
RMB, 17-12 to 17-13, 17-20 
ROL, 3-85 to 3-86, 8-15 
Rollover, 11 -90 
ROR, 3-87 to 3-88 
Rounding, 8-21 to 8-22 
RTI, 3-89,12-3,12-18 
RTS, 3-90, 10-1 

example, 10-6 

s 
S (sign) flag, 3-3, 3-4, 3-5 
S (stack pointer) register, 3-3, 3-4. See 

also Stack pointer. 
SBC, 3-4, 3-91 to 3-92 

decimal mode, 3-4 
without carry, 3-92 

Searching, 9-5 to 9-7 
SEC, 3-93 
Security bits, 17 -22 
SED, 3-94 
SEI, 3-95, 12-3 
Self-assembler, 2-16 
Self-checking numbers, 8-17 to 8-20 
Self-documenting programs, 15-1 
Semicolon before comments, 3-109 
Sequential execution of instructions, 1-2 
Service routines, 12-37 
SET ORIGIN pseudo-operation, 2-7, 3-110 
SET OVERFLOW instruction, lack of, 3-55 
Setting bits (to 1), 3-80, 17-13 to 17-14, 

17-16 to 17-17 
Set under mask, 17-16 
Seven-segment conversion, 7-4 to 7-6 
Seven-segment display interface, 11-65 

to 11-75 
Seven-segment displays, 7-4, 11-65 
Seven-segment representations, 11-68 to 

11-69 
Shift, 16-bit, 8-15 
Sign flag, 3-3, 3-4, 3-5, 5-13 

BIT instruction, 3-45 
decimal mode, 8-6, 17-18 

Signed numbers, 5-13, 5-16 
Simulator, 14-8 
Single-step mode, 14-1 to 14-2 
16-bit addresses, storage of, 3-7 
16-bit left shift, 8-15 
65C02 programming, 17-1 to 17-22 
6520 Peripheral Interface tldapter, 11-12 

to 11-22, 12-5 



6522 Versatile Interface Adapter, 11-23 
to 11-38, 12-6 to 12-8 

6530 Multifunction Device (RIOT), 11-39 
to 11-41, 12-9 

6532 Multifunction Device (RIOT), 11-39, 
11-42,12-9 

6551 Asynchronous Communications 
Interface Adapter, 11-118 to 11-122 

addresses, 11 -119 
block dia9ram, 11-119 
command re9ister, 11-121 
configuration examples, 11-118 
control register, 11-120 
registers, 11-118 
status register, 11-122 

6800 comparison, 3-105 to 3-108 
6800 mnemonics, 3-34 to 3-37 
6850 Asynchronous Communications 

Interface Adapter, 11-111 to 11-117 
block diagram, 11-114 
control reg ister, 11 -113 
features, 11-111 
interrupts, 12-9, 12-32 to 12-33 
receive routine, 11-115 to 11-116 
registers, 11-111, 11-112 
reset. 11-111, 11-115 
transmit routine, 11-117 

5MB, 17-13 to 17-14, 17-20 
Software delay, 11-8 to 11-11 
Software development stages, 13 -1 to 

13-2 
Software interrupt. See BRK 
Software simulator, 14-8 
Sorting, 9-12 to 9-15 

debugging, 14-19 to 14-24 
65C02 program, 17-20 

Source program, 1-5 
Space character, 6 -7 
Spaces in strings, 6-8 
SP (stack pointer) register, 3-3, 3-5 
Square table, 4-13 
STA, 3-96, 4-4, 11-21 
Stack, 3-4 

assignment to page 1,3-4 
register transfers, 10-10, 10-13, 17-9 

to 17-12 
subroutine use, 10-2 

Stack pointer, 3-3, 3-4 
loading, 3-103, 10-3 
next empty location, 10 -5 
storing, 3-101,10-3 

Standard interfaces, 11-124 
Start bit, 11-103 
Start bit interrupt, 12-34 
Startup interrupt, 12-13 to 12-15 

Status information, 11-78 to 11-80 
Status (P) register, 3-3, 3-4 

BRK instruction, 3-49 
interrupt response, 12-3 
organization, 3-17 
RTI instruction, 3-89 

Stop bit, 11-103 
Stopwatch project, 16-1 to 16-14 
String comparison, 6-17 to 6-19, 17-19 

to 17-20 
String length, 6-3 to 6-5 
String manipulation, 6-1 to 6-22, 10-7 

to 10-10 
Strobe, 11-5 
Structured programming, 13-35 to 

13-49 
advantages, 13-39 
basic structures, 13-35 to 13-38 
disadvantages, 13-39 to 13-40 
documentation, 15-9 
examples, 13-41 to 13-48 
review, 13-49 
rules, 13-49 
terminators for structures, 13-49 
use, 13-40 

Structured testing, 14-27 
Stubs, 13-50 
STX, 3-97 
STY, 3-98, 6-11 
STZ, 17-14 to 17-15, 17-19 
Subroutine instructions, 10-1 
Subroutine library, 10-1, 15-13 to 15-16 
Subroutines, 10-1 to 10-28 

documentation, 10-2 
execution time, 10-6 

Subtraction, 3-92 
Summation, 54 
Switch bounce, 11-47 
Switch interface, 11-43 to 11-60 

multiple-position, 11-55 to 11-60 
pushbutton, 11-43 to 11-49 
toggle, 11-50 to 11-54 

Symbol table, 2-6 
Synchronous 1/0, 11-5 
Syntax, 1-8 

T 

Table lookup, 3-69, 4-13 to 4-15, 7-1, 
7-4 to 7-6 

TAX, 3-99 
TAY, 3-100 
Teletypewriter data format, 11-103 
Teletypewriter interrupt, 12-32 to 12-36 
Teletypewriter interface, 11-103 to 11-117 

character format, 11-103 



receive mode, 11-103 to 11-107 
6522 VIA, 11-103 to 11-110 
6850 ACIA, 11-111 to 11-117 
transmit mode, 11-108 to 11-110 

Testing, 14-25 to 14-29 
aids, 14-25 
examples, 14-28 
rules, 14-29 
selecting data, 14-27 

TEXT pseudo-operation, 3-109 to 3-110, 
6-12 

Thermometer project, 16-15 to 16-28 
Three-operand instructions (88R, 88S), 

17-7 
Time budget for delay program, 11-11 
Time/memory tradeoffs, 4-1~, 15-19 to 

15-20 
Time intervals, production of, 11-8 to 

11-11 L' 

methods, 11-8 
6522 timers. 11-36 to 11-38 

Timers. 11-8, 11-36 to 11-38 
Toggle switch interface. 11-50 to 11-54 
Top-down design, 13-50 to 13-55 

advantages, 13-50 
disadvantages, 13-50 
examples. 13-51 to 13-54 
format, 13 -55 
methods, 13-50 
review. 13 - 55 

Transfer, 8-bit, 4-4 
Transmission errors, 11-5, 13 -15 
Transparent delay routine. 11-9 
Trap. See 8RK 
TRB, 17-15 to 17-16 
TSB, 17-16 to 17-17. 17-22 
TSX, 3-101 
Two-pass assembler. 2 -16 
TXA,3-102 
TXS,3-103 
TVA,3-104 

U 

UART. 11-10, See elsa ACIA 
Unconditional relative branch, 17-8 
User's guide, 15-17 

V 

VIA, 11-23 to 11-38 

W 

addresses. 11-23, 11-25 
auxiliary control register, 11-26 
block diagram, 11-24 
configuration, 11-26 to 11-33 
control lines, 11-23. 11-28 to 11-29 
control registers, 11-26 
data direction registers, 11-27 
data transfers, 11-35 
dummy operations, 11-31, 11-35 
functions, 11-23 
input latches, 11-31 
interrupt enable register, 12-7 
interrupt flag register, 11-30, 11-35, 

12-7 
interrupts, 12-6 to 12-8. 12-13 to 

12-31, 12-34 to 12-36 
peripheral control register. 11-26, 

11-27 
port differences. 11-23, 11-27 
registers. 11-23, 11-25 
reset, 11-27 
timers, 11-36 to 11-38 

IMlrd disassembly, 4-9 
WORD pseudo-operation. 3-109 to 3-110 
Wraparound on page zero, 3-9, 4-14 

x 
X index register, 3-3, 3-9, 3-11 

y 

Y index register, 3-3,3-10, 3-11 

Z 

Z (zero) flag, 3-3. 3-4 
Zero flag, 3-3, 3-4 

CMP. effect of, 4-10. 6-4 
load instructions. 9-4 
logic. 4-8 

Zero operation code. 3-49 
Zero page, 4-3 
Zero page (direct) addressing, 3-7, 4-4 
Zero page indexed addressing. 3-11 
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