Osborne McGraw-Hill

ASSEMBLY LANGUAGE PROGRAMMING

| SECOND EDITION
| INCLUDES 65C02

| LANCE A. LEVENTHAL
N | [|

6502

ASSEMBLY LANGUAGE
PROGRAMMING

6502

ASSEMBLY LANGUAGE
PROGRAMMING

Lance A. Leventhal

OSBORNE/McGraw-Hill
Berkeley, California

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A., please write to
Osborne McGraw-Hill at the above address

6502 Assembly Language Programming, Second Edition

Copyright © 1979, 1986 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1975, no part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not
be reproduced for publication.

1234567890 DODO 89876

ISBN 0-07-881216-X

ACKNOWLEDGMENTS

The author would like to acknowledge the following people: Mr. Curt In-
graham and Ms. Janice Enger of OSBORNE/McGraw-Hill, who made many
corrections, improvements, and suggestions; Mr. Gary Hankins, Mr. Michael
Lehman, Mr. Winthrop Saville, and Mr. Stanley St. John of Sorrento Valley
Associates, who provided assistance and examples; Mr. Leo Scanion of
Rockwell International, who provided constant encouragement and reference
materials; Mr. Charles Peddle of Commodore International, who provided
some reference material; Ms. Marielle Carter of Sorrento Valley Associates,
who typed some of the material; Mr. Stanley Rogers of the Society for Com-
puter Simulation, who has continually encouraged clear and concise techni-
cal writing; and his wife Donna, for her patience and understanding
throughout the writing of this book.

Others who provided assistance and suggestions were Mr. Colin Walsh, Mr.
Romeo Favreau, Mr. Richard Deisher, Mr. Karl Amatneek, Mr. Robert Stow,
and Mr. Irv Stafford. Other students and colleagues also helped to keep the
author on the right track.

The author, of course, bears responsibility for any remaining errors, miscon-
ceptions, and misinterpretations.

A special note of acknowledgment should go to the magazine MICRO, which
is entirely dedicated to 6502-based personal computers. Besides numerous
articles, MICRO also contains resource and reference lists related to the
6502. MICRO is published monthly by Dr. Robert Tripp, The Computerist
Inc., P.O. Box 3, South Chelmsford, MA 01824.

This book is dedicated on behalf of Amanda Catherine (Elizabeth Bramble) to
some very special people — Catherine Greenlee, Max and Peggy Leventhal,
Al and Rose Rosen, and Julius and Jeanette Ross.

The author would like to thank Karl Amatneek, Mel Evans, and particularly
Philip Hooper for their lists of corrections to earlier printings of this book.

Chapter
1

Contents

Introduction to Assembly Language Programming
How This Book Has Been Printed

The Meaning of Instructions
A Computer Program
The Programming Problem
Using Octal or Hexadecimal
Instruction Code Mnemonics
The Assembler Program
Additional Features of Assemblers
Disadvantages of Assembly Language
High-Level Languages
Advantages of High-Level Languages
Disadvantages of High-Level Languages
High-Level Languages for Microprocessors
Which Level Should You Use?
How About the Future?
Why This Book?

References

Assemblers

Features of Assemblers
Assembler Instructions
Labels
Assembler Operation Codes (Mnemonics)
Pseudo-Operations
The Data Pseudo-Operation
The Equate (or Define) Pseudo-Operation
The Origin Pseudo-Operation
The Reserve Pseudo-Operation
Linking Pseudo-Operations
Housekeeping Pseudo-Operations
Labels with Pseudo-Operations

Addresses and the Operation Field

Conditional Assembly

Macros

Comments

Types of Assemblers

Errors

Loaders

References

vii

Page

oo

e 3 e e e D e e 3 e
|
== a0 OCOOONNOOOOAPDWNN = = =

ONNOGOTWNO

DO

NNNNMNNMNNI})MNNNMNNNNM

Contents (Continued)

The 6502 Assembly Language Instruction Set
CPU Registers and Status Flags
6502 Memory Addressing Modes
Memory — Immediate
Memory — Direct
Implied or Inherent Addressing
Accumulator Addressing
Pre-Indexed Indirect Addressing
Post-Indexed Indirect Addressing
Indexed Addressing
Indirect Addressing
Relative Addressing

6502 Instruction Set

Abbreviations

Instruction Mnemonics

Instruction Object Codes

Instruction Execution Times

Status

ADC — Add Memory, with Carry, to Accumulator
AND — AND Memory with Accumulator

ASL — Shift Accumulator or Memory Byte Left
BCC — Branch if Carry Clear (C =0)

BCS — Branch if Carry Set (C =1)

BEQ — Branch if Equal to Zero (Z = 1)

BIT — Bit Test

BMI — Branch if Minus (S = 1)

BNE — Branch if Not Equal to Zero (Z = 0)

BPL — Branch if Plus (S = 0)

BRK — Force Break (Trap or Software Interrupt)
BVC — Branch if Overflow Clear (V = 0)

BVS — Branch if Overflow Set {V = 1)

CLC — Clear Carry

CLD — Clear Decimal Mode

CLI — Clear Interrupt Mask (Enable Interrupts)
CLV — Clear Overflow

CMP — Compare Memory with Accumulator
CPX — Compare Index Register with Memory
CPY — Compare Index Register Y with Memory
DEC — Decrement Memory (by 1)

DEX — Decrement Index Register X (by 1)

DEY — Decrement Index Register Y (by 1)

EOR — Exclusive-OR Accumulator with Memory
INC — Increment Memory (by 1)

INX — Increment Index Register X (by 1)

INY — Increment Index Register Y (by 1)

JMP — Jump via Absolute or Indirect Addressing
JSR — Jump to Subroutine

LDA — Load Accumulator from Memory

LDX — Load Index Register X from Memory
LDY — Load Index Register Y from Memory

LSR — Logical Shift Right of Accumulator or Memory

viii

Chapter
3 (Cont.)

Contents (Continued)

NOP — No Operation

ORA — Logically OR Memory with Accumulator

PHA — Push Accumulator onto Stack

PHP — Push Status Register (P) onto Stack

PLA — Pull Contents of Accumulator from Stack

PLP — Pull Contents of Status Register (P) from Stack
ROL — Rotate Accumulator or Memory Left through Carry
ROR — Rotate Accumulator or Memory Right. through Carry
RTI — Return from Interrupt

RTS — Return from Subroutine

SBC — Subtract Memory from Accumulator with Borrow
SEC — Set Carry

SED — Set Decimal Mode

SEl — Set Interrupt Mask (Disable Interrupts)

STA — Store Accumulator in Memory

STX — Store Index Register X in Memory

STY — Store Index Register Y in Memory

TAX — Move from Accumulator to Index Register X
TAY — Move from Accumulator to Index Register Y

TSX — Move from Stack Pointer to Index Register X
TXA — Move from Index Register X to Accumulator
TXS — Move from Index Register X to Stack Pointer
TYA — Move from Index Register Y to Accumulator

6800/6502 Compatibility
MOS Technology 6502 Assembler Conventions

Assembler Field Structure
Labels
Pseudo-Operations

Examples

Examples
Labels with Pseudo-Operations
Addresses
Other Assembler Features

Page
3-78

3-81
3-82

3-87

3-94
3-95

3-97

3-98

3-99

3-100
3-101
3-102
3-103
3-104
3-105
3-109
3-109
3-109
3-109
3-110
3-110
3-111
3-111
3-112

Contents (Continued)

Chapter

4 Simple Programs
General Format of Examples
Guidelines for Solving Problems
Program Examples
8-Bit Data Transfer
8-Bit Addition
Shift Left One Bit
Mask Off Most Significant Four Bits
Clear a Memory Location
Word Disassembly
Find Larger of Two Numbers
16-Bit Addition
Table of Squares
Ones Complement
Problems
16-Bit Data Transfer
8-Bit Subtraction
Shift Left Two Bits
Mask Off Least Significant Four Bits
Set a Memory Location to All Ones
Word Assembly
Find Smaller of Two Numbers
24-Bit Addition
Sum of Squares
Twos Complement

5 Simple Program Loops

Examples
Sum of Data
16-Bit Sum of Data
Number of Negative Elements
Maximum Value

Justify a Binary Fraction
Post-Indexed (Indirect) Addressing
Pre-Indexed (indirect) Addressing

Problems
Checksum of Data
Sum of 16-Bit Data
Number of Zero, Positive, and Negative Numbers
Find Minimum
Count 1 Bits

Page

4-1
4-1

4-4
44
4-5
46
4-7
48

4-10
4-12
4-13
4-16
4-17
4-17
4-17
4-17
4-17
4-17
4-17
4-18
4-18
4-18
4-19

5-4
5-4

5-12
5-14
5-17
5-20
5-22

5-24
5-24
5-24

Contents (Continued)

Character-Coded Data

Examples
Length of a String of Characters
Find First Non-Blank Character
Replace Leading Zeros with Blanks
Add Even Parity to ASCIl Characters
Pattern Match

Problems
Length of a Teletypewriter Message
Find Last Non-Blank Character
Truncate Decimal String to Integer Form
Check Even Parity in ASCIlI Characters
String Comparison

Code Conversion

Examples
Hex to ASCII
Decimal to Seven-Segment
ASCII to Decimal
BCD to Binary
Convert Binary Number to ASCIl String
Probiems
ASCII to Hex
Seven-Segment to Decimal
Decimal to ASCII
Binary to BCD
ASCII String to Binary Number

References

Arithmetic Problems

Examples
Multiple-Precision Binary Addition
Decimal Addition
8-Bit Binary Multiplication
8-Bit Binary Division

Self-Checking Numbers Double Add Double Mod 10

Problems
Multiple-Precision Binary Subtraction
Decimal Subtraction
8-Bit by 16-Bit Binary Multiplication
Signed Binary Division

Self-Checking Numbers Aligned 1. 3, 7 Mod 10
References

xi

NN N N U T O LN

P WWWWW =

@OO®OPWOPOPOOOPO NNNNNINIIIIIYY

NN = =Y
SOARPEDWOIN

Contents (Continued)

Chapter

9 Tables and Lists
Examples
Add Entry to List
Check an Ordered List
Remove Element from Queue
8-Bit Sort
Using an Ordered Jump Table
Problems
Remove an Entry From a List
Add an Entry to an Ordered List
Add an Element to a Queue
16-Bit Sort
Using a Jump Table with a Key
References

10 Subroutines
Subroutine Documentation
Examples
Hex to ASCII
Length of a String of Characters
Maximum Value
Pattern Match
Multiple-Precision Addition
Problems
ASCI! to Hex
Length of a Teletypewriter Message
Minimum Value
String Comparison
Decimal Subtraction
References

Xii

Contents (Continued)

Chapter Page
1" Input/Output 11-1
Timing Intervals (Delays) 11-8
Delay Routines 11-9
Delay Program 11-10
6502 Input/Output Chips 11-12
The 6520 Peripheral Interface Adapter 11-13
PIA Control Register 11-15
Configuring the PIA 11-18
Examples of PIA Configuration 11-19
Using the PIA to Transfer Data 11-21
The 6522 Versatile Interface Adapter (VIA) 11-23
Configuring the VIA 11-27
CA2 Input 11-31
CA2 Output 11-31
Examples of VIA Configuration 11-32
Using the VIA to Transfer Data 11-34
VIA Interrupt Flag Register 11-35
VIA Timers 11-36
Operation of 6522 VIA Timer 2 11-37
Operation of 6522 VIA Timer 1 11-38
The 6530 and 6532 Multifunction Support Devices 11-39
Examples 11-43
A Pushbutton Switch 11-43
A Toggle Switch 11-50
A Single LED 11-61
Seven-Segment LED Display 11-65
Problems 11-76
An On-Off Pushbutton 11-76
Debouncing a Switch in Software 11-76
Control for a Rotary Switch 11-76
Record Switch Positions on Lights 11-77
Count on a Seven-Segment Display 11-77
More Complex 1/0 Devices 11-78
Examples 11-81
An Unencoded Keyboard 11-81
An Encoded Keyboard 11-90
A Digital-to-Analog Converter 11-93
Analog-to-Digital Converter 11-98
A Teletypewriter (TTY) 11-103
The 6850 Asynchronous Communications Interfface
Adapter (ACIA) 11-111
The 6551 Asynchronous Communications Interface
Adapter (ACIA) 11-118
Logical and Physical Devices 11-123
Standard Interfaces" 11-124
Problems 11-125
Separating Closures from an Unencoded Keyboard 11-125
Read a Sentence from an Encoded Keyboard 11-1256
A Variable Amplitude Square Wave Generator 11-126
Averaging Analog Readings 11-126
A 30 Character-per-Second Terminal 11-126
References 11-127

xiii

Chapter
12

Contents (Continued)

Interrupts

6502 Interrupt System

6520 PIA Interrupts

6522 VIA Interrupts

6530 and 6532 Multifunction Device Interrupts

ACIA Interrupts

6502 Polling Interrupt Systems

6502 Vectored Interrupt Systems
Examples

A Startup Interrupt

A Keyboard Interrupt

A Printer Interrupt

A Real-Time Clock Interrupt

A Teletypewriter Interrupt
More General Service Routines
Problems

A Test Interrupt

A Keyboard Interrupt

A Printer Interrupt

A Real-Time Clock Interrupt

A Teletypewriter Interrupt

References

xiv

Contents (Continued)

Chapter

13 Problem Definition and Program Design
The Tasks of Software Development
Definition of the Stages
Problem Definition
Defining the Inputs
Defining the Outputs
Processing Section
Error Handling
Human Factors
Examples

Response to a Switch
A Switch-Based Memory Loader
A Verification Terminal
Review of Problem Definition
Program Design
Flowcharting
Examples
Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal
Modular Programming
Examples
Response to a Switch
The Switch-Based Memory Loader
The Verification Terminal
Review of Modular Programming
Structured Programming
Examples
Response to a Switch
The Switch-Based Memory Loader
The Credit-Verification Terminal
Review of Structured Programming
Top-Down Design
Examples
Response to a Switch
The Switch-Based Memory Loader
The Transaction Terminal
Review of Top-Down Design
Review of Problem Definition and Program Design
References

XV

Page

13-1

13-1

13-3

13-3

13-4

13-4

13-6

13-6

13-6

13-7

13-7

13-9

13-12
13-16
13-17
13-18
13-20
13-20
13-22
13-24
13-29
13-31
13-31
13-31
13-32
13-34
13-35
13-41
13-41
13-42
13-44
13-49
13-50
13-51
13-561
13-52
13-63
13-65
13-566
13-57

Chapter
14

15

16

17

Contents (Continued)

Debugging and Testing
Simple Debugging Tools
More Advanced Debugging Tools
Debugging With Checklists
Looking for Errors
Debugging Example 1: Decimal to Seven-Segment
Conversion
Debugging Example 2: Sort into Decreasing Order
Introduction to Testing
Selecting Test Data
Testing Example 1: Sort Program
Testing Example 2: Self-Checking Numbers
Testing Precautions
Conclusions
References

Documentation and Redesign
Self-Documenting Programs
Comments
Commenting Example 1: Multiple-Precision Addition
Commenting Example 2: Teletypewriter Output
Flowcharts as Documentation
Structured Programs as Documentation
Memory Maps
Parameter and Definition Lists
Library Routines
Library Examples
Library Example 1: Sum of Data
Library Example 2: Decimal to Seven-Segment Conversion
Library Example 3: Decimal Sum
Total Documentation
Redesign
Peorganizing to Use Less Memory
Major Reorganizations
References

Sample Projects
Project #1: A Digital Stopwatch
Project #2: A Digital Thermometer
References

65C02 Programming
New 65C02 Memory Addressing Modes
New 65C02 Instructions

xvi

Page
14-1
14-1
14-8
14-10
14-11

14-15
14-19
14-25
14-27
14-28
14-28
14-29
14-29
14-30

15-1
15-1
15-3
15-5
15-7
15-9
15-9
16-10
15-11
15-13
15-14
15-14
156-15
15-16
15-17
15-18
15-19
15-21
15-22

16-1
16-1
16-15
16-29

17-1
17-1
17-4

Figure

5-1
5-2

11-1

11-2

11-3

11-4

11-6

11-6

11-7

11-8

11-9

11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11-24
11-25
11-26
11-27
11-28
11-29
11-30

11-31

11-32
11-33
11-34
11-35
11-36
11-37
11-38
11-39
11-40

12-1
12-2
12-3

Figures

Flowchart of a Program Loop
A Program Loop that Allows Zero lterations

An Output Demultiplexer Controlled by a Counter

An Output Demultiplexer Controlled by a Port

An Input Multiplexer Controlled by a Counter

An Input Multiplexer Controlled by a Port

An Input Handshake

An Output Handshake

Block Diagram of the 6520 Peripheral Interface Adapter

Block Diagram of the 6522 Versatile Interface Adapter

6522 VIA Peripheral Control Register Bit Assignments

6522 VIA Auxiliary Control Register Bit Assignments

The 6522 VIA Interrupt Flag Register

Block Diagram of the 6530 Multifunction Device

Block Diagram of the 65632 Multifunction Device

A Pushbutton Circuit

An Interface for a Toggle Switch

A Debounce Circuit Based on Cross-coupled NAND Gates

An Interface for a Multi-Position Switch

A Multiple-Position Switch with an Encoder

Interfacing an LED

Interfacing a Seven-Segment Display

Seven-Segment Display Organization

Seven-Segment Representations of Decimal Digits

Interfacing Multiplexed Seven-Segment Displays

A Small Keyboard

A Keyboard Matrix

1/0 Arrangement for a Keyboard Scan

1/0 Interface for an Encoded Keyboard

Signetics NES018 D/A Converter

Interface for an 8-bit Digital-to-Analog Converter

General Description and Timing Diagram for the National
5357 A/D Converter

Connection Diagram and Typical Application for the
National 5357 A/D Converter

Interface for an 8-bit Analog-to-Digital Converter

Teletypewriter Data Format

Flowchart for Receive Procedure

Flowchart for Transmit Procedure

Block Diagram of the 6850 ACIA

Block Diagram of the 6551 ACIA

Definition of 6551 ACIA Control Register Contents

Definition of 65651 ACIA Command Register Contents

Definition of 65651 ACIA Status Register Contents

Saving the Status of the Microprocessor in the Stack
Description of the 6522 VIA Interrupt Enable Register
Description of the 6522 VIA Interrupt Flag Register

Xvii

Page

5-2
5-3

11-3

11-3

11-4

11-4

11-6

11-7

11-14
11-24
11-26
11-26
11-30
11-40
11-42
11-43
11-50
11-50
1155
11-56
11-62
11-66
11-67
11-68
11-75
11-82
11-82
11-83
11-90
11-94
11-95

11-99

11-100
11-100
11-103
11-104
11-108
11-114
11-119
11-120
11-121
11-122

12-4
12-7
12-7

Figure
1341
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-1
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20

14-1
14-2
14-3
14-4
14-5
14-6

16-1
16-2
16-3
16-4
16-5

Figures (Continued)

Flowchart of Software Development

The Switch and Light System

The Switch-Based Memory Loader

Block Diagram of a Verification Terminal
Verification Terminal Keyboard

Verification Terminal Display

Standard Flowchart Symbols

Flowchart of One-Second Response to a Switch
Flowchart of Switch-Based Memory Loader
Flowchart of Keyboard Entry

Flowchart of Keyboard Entry Process with Send Key

Flowchart of Keyboard Entry Process with Function Keys

Flowchart of Receive Routine

Flowchart of an Unstructured Program
Flowchart of the If-Then-Else Structure
Flowchart of the Do-While Structure
Flowchart of the Do-Until Structure
Flowchart of the Case Structure

Initial Flowchart for Transaction Terminal
Flowchart for Expanded KEYBOARD Routine

A Simple Breakpoint Routine

Flowchart of Register Dump Program

Results of a Typical 65602 Register Dump

Results of a Typical Memory Dump

Flowchart of Decimal to Seven-Segment Conversion
Flowchart of Sort Program

1/0 Configuration for a Digital Stopwatch

1/0 Configuration for a Digital Thermometer
Digital Thermometer Analog Hardware
Thermistor Characteristics (Fenwal GA51J1 Bead)
Typical E-I Curve for Thermistor (25°C)

xviii

Page
13-2

13-8

13-10
13-13
13-13
13-14
13-19
13-21
13-23
13-24
13-25
13-26
13-27
13-36
13-36
13-37
13-37
13-38
13-563
13-54

14-2
14-5
14-5
14-6
14-15
14-20

16-2

16-16
16-17
16-18
16-18

Table

[SR

NodhdbN -

@
&

6-1

1141
11-2
11-3
11-4
115
11-6
11-7
11-8
11-9
11-10
1-1
11-12
1113
11-14
11-15

11-16
11-17
11-18

12-1
12-2
14-1

16-1
16-2

17-1
17-2
17-3
17-4
17-5

Tables

Hexadecimal Conversion Table

The Fields of an Assembly Language Instruction
Standard 6502 Assembler Delimiters
Assigning and Using a Label

Frequently Used Instructions f the 6502

Occasionally Used Instructions of the 6602

Seldom Used Instructions of the 6502

A Summary of the 6502 Instruction Set

6502 Instruction Object Codes in Numerical Order

Summary of 6602 Object Codes with 6800 Mnemonics

Memory Addressing Modes Available on the 6800 and
6502 Microprocessors

Comparison of 6800 and 6502 Assembly Languz:je
Instruction Sets

Hex-ASCII Table

Addressing 6520 PIA Internal Registers

Organization of the PIA Control Registers

Control of 65620 PIA Interrupt Inputs CA1 and CB1

Control of 6520 PIA Interrupt Inputs CA2 and CB2

Control of 6620 PIA CB2 Output Line

Control of 6520 PIA CA2 Output Line

Addressing 6622 VIA Internal Registers

Configurations for 6522 VIA Control Line CA2

Configurations for 65622 VIA Control Line CB2

Internal Addressing for the 65630 Multifunction Device

Internal Addressing for the 65632 Multifunction Device

Data Input vs. Switch Position

Seven-Segment Representations of Decimal Numbers

Seven-Segment Representations of Letters and Symbols

Comparison Between Independent Connections and
Matrix Connections for Keyboards

Definition of 6850 ACIA Register Contents

Meaning of the 6850 ACIA Control Register Bits

Addressing 6551 ACIA Internal Registers

Memory Map for 6502 Addresses Used in Response to
Interrupts and Reset
Addressing the 6532 Multifunction Device

6502 Interrupt Vectors

Input Connections for Stopwatch Keyboard
Output Connections for Stopwatch Keyboard

65C02 Instruction Set Summary

Alphabetic Listing of 65C02 Instruction Set

New 65C02 Instructions

65C02 Instructions With New Addressing Modes
Operation Code Matrix

Xix

Page

_.
A

Do ORON W

H - 0©

3-106

3-107
6-2

11-13
11-16
11-16
11-16
11-17
11-17
11-25
11-28
11-29
11-41
11-42
11-56
11-66
11-69

11-81

11-112
11-113
11-119

12-4
12-10

14-2

16-2
16-2

17-3
17-5
17-5
17-6
17-6

Chapter 1
INTRODUCTION TO ASSEMBLY
LANGUAGE PROGRAMMING

This book describes assembly language programming. It assumes that you are
familiar with An Introduction To Microcomputers: Volume 1 — Basic Concepts
(particularly Chapters 6 and 7). This book does not discuss the general features of
computers, microcomputers, addressing methods, or instruction sets; you should
refer to An Introduction To Microcomputers: Volume 1 for that information.

HOW THIS BOOK HAS BEEN PRINTED

Notice that text in this book has been printed in boldface type and lightface type.
This has been done to help you skip those parts of the book that cover subject
matter with which you are familiar. You can be sure that lightface type only ex-
pands on information presented in the previous boldface type. Therefore, only read
boldface type until you reach a subject about which you want to know more. at which
point start reading the lightface type.

THE MEANING OF INSTRUCTIONS

The instruction set of a microprocessor is the set of binary inputs that produce
defined actions during an instruction cycle. An instruction set is to a microprocessor
what a function table is to a logic device. such as a gate. adder. or shift register. Of
course, the actions that the microprocessor performs in response to its instruction in-
puts are far more complex than the actions that logic devices perform in response to
their inputs.

An instruction is a binary bit pattern — it must be available at | BINARY

the data inputs to the microprocessor at the proper time in |INSTRUCTIONS
order to be interpreted as an instruction. For example, when the

6502 microprocessor receives the 8-bit binary pattern 11101000 as the input during an
instruction fetch operation, the pattern means:

“Increment {add 1 to) the contents of Register X"
Similarly, the pattern 10101001 means:
“Load the Accumulator with the contents of the next word of program memory”".

The microprocessor (like any other computer) recognizes only binary patterns as in-
structions or data; it does not recognize words or octal, decimal, or hexadecimal num-
bers.

1-1

A COMPUTER PROGRAM

A program is a series of instructions that causes a computer to perform a particular
task.

Actually, a computer program includes more than instructions; it COMPUTER
also contains the data and memory addresses that the PROGRAM
microprocessor needs to accomplish the tasks defined by the in-

structions. Clearly, if the microprocessor is to perform an addition, it must have two
numbers to add and a place to put the result. The computer program must determine
the sources of the data and the destination of the result as well as the operation to be
performed.

All microprocessors execute instructions sequentially unless one of the instructions
changes the execution sequence or halts the computer, i.e.. the processor gets the next
instruction from the next consecutive memory address unless the current instruction
specifically directs it to do otherwise.

Ultimately every program is translated into a set of binary numbers. For example,
this is a 6502 program that adds the contents of memory locations 00604¢g and
00611¢ and places the result in memory location 00624¢:

10100101

01100000

01100101

01100001

10000101

01100010
This is a machine language, or object, program. If this program OBJECT
were entered into the memory of a 6502-based microcomputer. PROGRAM
the microcomputer would be able to execute it directly. MACHINE
THE PROGRAMMING PROBLEM 'I;:NgUAGE
There are many difficulties associated with creating programs OGRAM

as object, or binary machine language, programs. These are
some of the problems:

1} The programs are difficult to understand or debug (binary numbers all look the
same, particularly after you have looked at them for a few hours).

2) The programs are slow to enter since you nust determine each bit individually.

3) The programs do not describe the task whici you want the computer to perform in
anything resembling a human readable forinat.

4) The programs are long and tiresome to write.

5) The programmer often makes careless errors that are very difficult to locate and
correct.

For example, the following version of the addition object program contains a single
bit error. Try to find it:

10100101
01100000
01110101
01100001
10000101
01100010

Although the computer handles binary numbers with ease, people do not. People find
binary programs long, tiresome, confusing. and meaningless. Eventually, a programmer
may start remembering some of the binary codes, but such effort should be spent more
productively.

1-Z

USING OCTAL OR HEXADEC!MAL

We can improve the situation somewhat by writing instruc- jOCTAL OR
tions using octal or hexadecimal, rather than binary numbers. jHEXADECIMAL
We will use hexadecimal numbers in this book because they are
shorter, and because they are the standard for the microprocessor industry. Table 1-1
defines the hexadecimal digits and their binary equivalents. The 6502 program to add
two numbers now becomes:

At the very least, the hexadecimal version is shorter to write and not quite so tiring to
examine.

Errors are somewhat easier to find in a sequence of hexadecimal digits. The er-
roneous version of the addition program, in hexadecimal form, becomes:

The mistake is far more obvious.

What do we do with this hexadecimal program? The microprocessor understands
only binary instruction codes. The answer is that we must convert the hexadecimal
numbers to binary numbers. This conversion is a repetitive, tiresome task. People who
attempt it make all sorts of petty mistakes. such as looking at the wrong line. dropping a
bit, or transposing a bit or a digit.

This repetitive, grueling task is. however, a perfect job for a com- |HEXADECIMAL
puter. The computer never gets tired or bored and never makes JLOADER

silly mistakes. The idea then is to write a program that accepts
hexadecimal numbers and converts them into binary numbers. This is a standard
program provided with many microcomputers; it is called a hexadecimal loader.

Is a hexadecimal loader worth having? If you are willing to write a program using binary
numbers, and you are prepared to enter the program in its binary form into the com-
puter. then you will not need the hexadecimal loader.

If you choose the hexadecimal loader. you will have to pay a price for it. The hex-
adecimal loader is itself a program that you must load into memory. Furthermore. the
hexadecimal loader will occupy memory — memory that you may want to use in some
other way.

The basic tradeoff, therefore, is the cost and memory requirements of the hexadecimal
loader versus the savings in programmer time.

A hexadecimal loader is well worth its small cost.

A hexadecimal loader certainly does not solve every programming problem. The hex-
adecimal version of the program is still difficult to read or understand; for example, it
does not distinguish instructions from data or addresses, nor does the program listing
provide any suggestion as to what the program does. What does 85 or DO mean?
Memorizing a card full of codes is hardly an appetizing proposition. Furthermore. the
codes will be entirely different for a different microprocessor, and the program will re-
quire a large amount of documentation.

1-3

Table 1-1. Hexadecimal Conversion Table

Hexadecimal Binary Decimal
Digit Equivalent Equivalent
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
A 1010 10
B 1011 1
C 1100 12
D 1101 13
E 1110 14
F 1"Mn 15

INSTRUCTION CODE MNEMONICS

An obvious programming improvement is to assign a name to each instruction
code. The instruction code name is called a ““‘mnemonic’’ or memory jogger. The
instruction mnemonic should describe in some way what the instruction does.

In fact, every microprocessor manufacturer {they can’t remember PROBLEM
hexadecimal codes either) provides a set of mnemonics for the WITH
microprocessor instruction set. You do not have to abide by the MNEMONICS
manufacturer’'s mnemonics; there is nothing sacred about them.

However, they are standard for a given microprocessor and therefore understood by all
users. These are the instruction codes that you will find in manuals, cards, books, ar-
ticles, and programs. The problem with selecting instruction mnemonics is that not all
instructions have “obvious names. Some instructions do (e.g., ADD, AND, OR), others
have obvious contractions (e.g., SUB for subtraction. XOR for exclusive-OR), while still
others have neither. The result is such mnemonics as WMP, PCHL, and even SOB
(guess what that means!). Most manufacturers come up with some reasonable names
and some hopeless ones. However, users who devise their own mnemonics rarely do
much better than the manufacturer.

Along with the instruction mnemonics. the manufacturer will usually assign names to
the CPU registers. As with the instruction names, some register names are obvious (e.g.,
A for Accumulator) while others may have only historical significance. Again, we will
use the manufacturer's suggestions simply to promote standardization.

If we use standard 6502 instruction and register mnemonics, ASSEMBLY
as defined by MOS Technology, Inc., our 6502 addition pro- LANGUAGE
gram becomes: PROGRAM

LDA $60

ADC $61

STA $62

The program is still far from obvious, but at least some parts are comprehensible. ADC
is a considerable improvement over 65; LDA and STA suggest loading and storing the
contents of the Accumulator. We now know which lines are instructions and which are
data or addresses. Such a program is an assembly language program.

1-4

THE ASSEMBLER PROGRAM

How do we get the assembly language program into the com- HAND

puter? We have to translate it. either into hexadecimal or into bi- ASSEMBLY
nary numbers. You can translate an assembly language pro-
gram by hand, instruction by instruction. This is called hand assembly.

Hand assembly of the addition program may be illustrated as follows:

Instruction Mnemonic Addressing Method Hexadecimal Equivalent
LDA Zero Page (direct) A5
ADC Zero Page (direct) 65
STA Zero Page (direct) 85

As with hexadecimal to binary conversion, hand assembly is a rote task which is unin-
teresting. repetitive, and subject to numerous minor errors. Picking the wrong line,
transposing digits, omitting instructions, and misreading the codes are only a few of the
mistakes that you may make. Most microprocessors complicate the task even further by
having instructions with different word lengths. Some instructions are one word long
while others are two or three words long. Some instructions require data in the second
and third words, others require memory addresses, register numbers, or who knows
what?

Assembly is another rote task that we can assign to the ASSEMBLER
microcomputer. The microcomputer never makes any SOURCE
mistakes when translating codes; it always knows how many PROGRAM
words and what format each instruction requires. The program

that does this job is an ‘‘assembler.”” The assembler program OBJECT
translates a user program, or ‘‘source’’ program written with PROGRAM

mnemonics, into a machine language program, or ‘‘object’’
program, which the microcomputer can execute. The assem-
bler’s input is a source program and its output is an object program.

The tradeoffs that we discussed in connection with the hexadecimal loader are
magnified in the case of the assembler. Assemblers are more expensive, occupy
more memory, and require more peripherals and execution time than do hexadecimal
loaders. While users may (and often do) write their own loaders, few care to write their
own assemblers.

Assemblers have their own rules that you must learn. These include the use of cer-
tain markers (such as spaces. commas. semicolons. or colons) in appropriate places.
correct spelling. the proper control information. and perhaps even the correct place-
ment of names and numbers. These rules are usually simple and can be learned quickly.

1-6

ADDITIONAL FEATURES OF ASSEMBLERS

Early assemblers did little more than translate the mnemonic names of instructions and
registers into their binary equivalents. However, most assemblers now provide such ad-
ditional features as:

1) Allowing the user to assign names to memory locations, input and output devices,
and even sequences of instructions.

2) Converting data or addresses from various number systems (e.g.. decimal or hex-
adecimal) to binary and converting characters into their ASCIl or EBCDIC binary
codes.

3) Performing some arithmetic as part of the assembly process.

4) Telling the loader program where in memory parts of the program or data should be
placed.

5) Allowing the user to assign areas of memory as temporary data storage and to
place fixed data in areas of program memory.

6) Providing the information required to include standard programs from program li-
braries, or programs written at some other time, in the current program.

7) Allowing the user to control the format of the program listing and the input and
output devices employed.

All of these features, of course. involve additional cost and memo- CHOOSING
ry. Microcomputers generally have much simpler assemblers than AN
do larger computers, but the tendency always is for the size of as- ASSEMBLER

semblers to increase. You will often have a choice of assemblers.
The important criterion is not how many offbeat features the assembler has, but rather
how convenient it is to work with in normal practice.

DISADVANTAGES OF ASSEMBLY LANGUAGE

The assembler, like the hexadecimal loader, does not solve all the problems of
programming. One problem is the tremendous gap between the microcomputer in-
struction set and the tasks which the microcomputer is to perform. Computer in-
structions tend to do things like add the contents of two registers. shift the contents of
the Accumulator one bit, or place a new value in the Program Counter. On the other
hand. a user generally wants a microcomputer to do something like check if an analog
reading has exceeded a threshold. look for and react to a particular command from a
teletypewriter, or activate a relay at the proper time. An assembly language program-
mer must translate such tasks into a sequence of simple computer instructions. The
translation can be a difficult, time-consuming job.

Furthermore, if you are programming in assembly language, you must have detailed
knowledge of the particular microcomputer that you are using. You must know
what registers and instructions the microcomputer has, precisely how the instructions
affect the various registers, what addressing methods the computer uses. and a myriad
of other information. None of this information is relevant to the task which the
microcomputer must ultimately perform.

In addition, assembly language programs are not portable. PORTABILITY

Each microcomputer has its own assembly language. which

reflects its own architecture. An assembly language program written for the 6502 will
not run on a 6800, Z80, 8080, or 3870 microprocessor. For example, the addition pro-
gram written for the 8080 would be:

LDA 60H
MOV B.A
LDA 61H
ADD B

STA 62H

1-6

The lack of portability not only means that you won't be able to use your assembly
language program on another microcomputer. but it also means that you won’t be able
to use any programs that weren't specifically written for the microcomputer you are
using. This is a particular drawback for microcomputers, since these devices are new
and few assembly language programs exist for them. The result, too frequently. is that
you are on your own. If you need a program to perform a particular task, you are not
likely to find it in the small program libraries that most manufacturers provide. Nor are
you likely to find it in an archive, journal article, or someone’s old program file. You will
probably have to write it yourself.

HIGH-LEVEL LANGUAGES
The solution to many of the difficulties associated with as-

sembly language programs is to use, instead, ‘’high-level’’ or
“‘procedure-oriented’’ languages. Such languages allow you to describe tasks in
forms that are problem oriented rather than computer oriented. Each statement in
a high-level language performs a recognizable function; it will generally corres-
pond to many assembly language instructions. A program called a compiler trans-
lates the high-level language source program into object code or machine
language instructions.

Many different high-level languages exist for different types of FORTRAN

tasks. If, for example, you can express what you want the com-

puter to do in algebraic notation, you can write your program in FORTRAN (Formula
Translation Language), the oldest and most widely used of the high-level languages.
Now, if you want to add two numbers, you just tell the computer:

SUM = NUMB1 + NUMB2

That is a lot simpler (and a lot shorter) than either the equivalent machine language pro-
gram or the equivalent assembly language program. Other high-level languages in-
clude COBOL (for business applications), PASCAL (another algebraic language). PL/1 (a
combination of FORTRAN, ALGOL, and COBOL), and APL and BASIC (languages that
are popular for time-sharing systems).

ADVANTAGES OF HIGH-LEVEL LANGUAGES

Clearly, high-level languages make programs easier and faster to write. A common
estimate is that a programmer can write a program about ten times as fast in a
high-level language as compared to assembly Ianguage.1'3 That is just writing the
program:; it does not include problem definition, program design. debugging. testing. or
documentation, all of which become simpler and faster. The high-level language pro-
gram is, for instance, partly self-documenting. Even if you do not know FORTRAN, you
probably could tell what the statement illustrated above does.

High-level languages solve many other problems associ- MACHINE

ated with assembly language programming. The high-level INDEPENDENCE
language has its own syntax (usually defined by a national or OF HIGH-LEVEL
international standard). The language does not mention the in- LANGUAGES
struction set. registers, or other features of a particular com-

puter. The compiler takes care of all such details. Programmers can concentrate on their
own tasks; they do not need a detailed understanding of the underlying CPU architec-
ture — for that matter. they do not need to know anything about the computer they are
programming.

Programs written in a high-level language are portable — PORTABILITY
at least, in theory. They will run on any computer that has a OF HIGH-LEVEL
standard compiler for that language. LANGUAGES

1-7

At the same time, all previous programs written in a high-level language for prior com-
puters are available to you when programming a new computer. This can mean thou-
sands of programs in the case of a common language like FORTRAN or BASIC.

DISADVANTAGES OF HIGH-LEVEL LANGUAGES

Well, if all the good things we have said about high-level languages are true, if you
can write programs faster and make them portable besides, why bother with as-
sembly languages? Who wants to worry about registers, instruction codes,
mnemonics, and all that garbage! As usual, there are disadvantages that balance
the advantages.

One obvious problem is that you have to learn the ‘‘rules’’ or SYNTAX OF
‘“syntax’’ of any high-level language you want to use. A high- HIGH-LEVEL
level language has a fairly complicated set of rules. You will find LANGUAGES
that it takes a lot of time just to get a program that is syntactically

correct (and even then it probably will not do what you want). A high-level computer
language is like a foreign language. If you have a little talent. you will get used to the
rules and be able to turn out programs that the compiler will accept. Still. learning the
rules and trying to get the program accepted by the compiler does not contribute
directly to doing your job.

Here. for example, are some FORTRAN rules:

- Labels must be numbers placed in the first five card columns
- Statements must start in column seven
« Integer variables must start with the letters |, J. K, L, M, or N

Another obvious problem is that you need a compiler to translate COST OF

programs written in a high-level language. Compilers are expen- COMPILERS
sive and use a large amount of memory. While most assemblers
occupy 2K to 16K bytes of memory (1K = 1024), compilers occupy 4K to 64K bytes. So
the amount of overhead involved in using the compiler is rather large.

Furthermore. only some compilers will make the implementa- ALGEBRAIC
tion of your task simpler. FORTRAN, for example. is well-suited NOTATION

to problems that can be expressed as algebraic formulas. If,

however, your problem is controlling a printer, editing a string of characters, or monitor-
ing an alarm system. your problem cannot be easily expressed in algebraic notation. In
fact, formulating the solution in algebraic notation may be more awkward and more
difficult than formulating it in assembly language. One answer is to use a more suitable
high-level language. Some such languages exist, but they are far less widely used and
standardized than FORTRAN. You will not get many of the advantages of high-level
languages if you use these so-called system implementation languages.

High-level languages do not produce very efficient INEFFICIENCY
machine language programs. The basic reason for this is that OF HIGH-LEVEL
compilation is an automatic process which is riddled with com- LANGUAGES
promises to allow for many ranges of possibilities. The com- OPTIMIZING
piler works much like a computerized language translator — COMPILER

sometimes the words are right but the sounds and sentence
structures are awkward. A simple compiler cannot know when a variable is no longer
being used and can be discarded. when a register should be used rather than a memory
location, or when variables have simple relationships. The experienced programmer can
take advantage of shortcuts to shorten execution time or reduce memory usage. A few
compilers (known as optimizing compilers) can also do this, but such compilers are
much larger and slower than regular compilers.

1-8

The general advantages and disadvantages of high-level languages are:

Advantages: ADVANTAGES

; it OF
- M
ore convenient descriptions of tasks HIGH-LEVEL

+ Less time spent writing programs LANGUAGES
« Easier documentation

« Standard syntax

- Independence of the structure of a particular computer

« Portability
+ Availability of library and other programs
Disadvantages: DISADVANTAGES
; OF
Spema! rules _ HIGH-LEVEL
« Extensive hardware and software support required LANGUAGES

« Orientation of common languages to algebraic or
business problems

« Inefficient programs
« Difficulty of optimizing code to meet time and memory requirements
- Inability to use special features of a computer conveniently

HIGH-LEVEL LANGUAGES FOR MICROPROCESSORS

Microprocessor users will encounter several special difficulties when using high-
level languages. Among these are:

- Few high-level languages exist for microprocessors
- Few standard languages are widely available

« Compilers usually require a large amount of memory or even a com-
pletely different computer

- Most microprocessor applications are not well-suited to high-level
languages

« Memory costs are often critical in microprocessor applications

The lack of high-level languages is partly a result of the fact that microprocessors are
quite new and are the products of semiconductor manufacturers rather than computer
manufacturers. Very few high-level languages exist for microprocessors. The most com-
mon are BASIC.5 PASCAL.S FORTRAN, and the PL/I-type languages such as PL/M.7
MPL, and PLuS.

Many of the high-level languages that exist do not conform to recognized standards, so
that the microprocessor user cannot expect to gain much program portability, access to
program libraries. or use of previous experience or programs. The main advantages re-
maining are the reduction in programming effort and the smaller amount of detailed
understanding of the computer architecture that is necessary.

The overhead involved in using a high-level language with OVERHEAD
microprocessors is considerable. Microprocessors themselves are FOR

better suited to control and slow interactive applications than they HIGH-LEVEL
are to the character manipulation and language analysis involved LANGUAGES

in compilation. Therefore, some compilers for microprocessors will
not run on a microprocessor-based system. Instead. they require a much larger com-
puter: i.e.. they are cross-compilers rather than self-compilers. A user must not only
bear the expense of the larger computer but must also physically transfer the program
from the larger computer to the micro.

1-9

Some self-compilers are available. These compilers run on the microcomputer for which
they produce object code. Unfortunately, they require large amounts of memory (16K or
more), plus special supporting hardware and software.

High-level languages also are not generally well-suited to UNSUITABILITY
microprocessor applications. Most of the common languages OF HIGH-LEVEL
were devised either to help solve scientific problems or to LANGUAGES
handle large-scale business data processing. Few

microprocessor applications fall in either of these areas. Most microprocessor
applications involve sending data and control information to output devices and
receiving data and status information from input devices. Often the control and status
information consists of a few binary digits with very precise hardware-related
meanings. If you try to write a typical control program in a high-level language. you
often feel like someone who is trying to eat soup with chopsticks. For tasks in such
areas as test equipment, terminals, navigation systems, signal processing. and business
equipment, the high-level languages work much better than they do in
instrumentation, communications, peripherals, and automotive applications.

Applications better suited to high-level languages are those which APPLICATION
require large memories. If, as in a valve controller, electronic game, AREAS FOR
appliance controller, or small instrument, the cost of a single LANGUAGE
memory chip is important, then the inefficiency of high-level LEVELS
languages is intolerable. If, on the other hand. as in a terminal or

test equipment, the system has many thousands of bytes of memory anyway. the ineffi-
ciency of high-level languages is not as important. Clearly the size of the program and
the volume of the product are important factors as well. A large program will greatly in-
crease the advantages of high-level languages. On the other hand. a high-volume ap-
plication will mean that fixed software development costs are not as important as
memory costs that are part of each system.

WHICH LEVEL SHOULD YOU USE?

That depends on your particular application. Let us briefly note some of the factors
which may favor particular levels:

Machine Language: APPLICATIONS
- Virtually no one programs in machine language tg:gﬁ&:‘;"e
because it is inefficient and difficult to document.
An assembler costs very little and greatly reduces
programming time.
Assembly Language: APPLICATIONS
. FOR ASSEMBLY
« Short to moderate-sized programs LANGUAGE

- Applications where memory cost is a factor
- Real-time control applications

- Limited data processing

- High-volume applications

- Applications involving more input/output or control than computation

High Level Languages: APPLICATIONS
FOR HIGH-LEVEL

- Long programs LANGUAGE

- Low-volume applications requiring long pro-
grams

- Applications where the amount of memory required is already very large
- Applications involving more computation than input/output or control
- Compatibility with similar applications using larger computers

- Availability of specific programs in a high-level language which can be
used in the application

Many other factors are also important. such as the availability of a larger computer for
use in development, experience with particular languages, and compatibility with other
applications.

If hardware will ultimately be the largest cost in your application, or if speed is critical,
you should favor assembly language. But be prepared to spend extra time in software
development in exchange for lower memory costs and higher execution speeds. If soft-
ware will be the largest cost in your application. you should favor a high-level language.
But be prepared to spend the extra money required for the supporting hardware and
software.

Of course, no one except some theorists will object if you use both assembly and high-
level languages. You can write the program originally in a high-level language and then
patch some sections in assembly language.” However, most users prefer not to do this
because of the havoc it creates in debugging. testing. and documentation.

HOW ABOUT THE FUTURE?

We expect that the future will favor high-level languages for the following reasons:

» Programs always seem to add extra features and FUTURE TRENDS
grow larger IN LANGUAGE

- Hardware and memory are becoming less expensive LEVELS

+ Software and programmers are becoming more ex-
pensive

« Memory chips are becoming available in larger sizes, at lower “per bit" cost,
so actual savings in chips are less likely

+ More suitable and more efficient high-level languages are being developed

+ More standardization of high-level languages will occur

Assembly language programming of microprocessors will not be a dying art any more
than it is now for large computers. But longer programs, cheaper memory. and more ex-
pensive programmers will make software costs a larger part of most applications. The
edge in many applications will therefore go to high-level languages.

WHY THIS BOOK?

If the future would seem to favor high-level languages, why have a book on as-
sembly language programming? The reasons are:

1)
2)

3)
4)
5)

Most current microcomputer users program in assembly language (almost two
thirds, according to one recent survey).

Many microcomputer users will continue to program in assembly language since
they need the detailed control that it provides.

No suitable high-level language has yet become widely available or standardized.
Many applications require the efficiency of assembly language.

An understanding of assembly language can help in evaluating high-level
languages.

The rest of this book will deal exclusively with assemblers and assembly language pro-
gramming. However, we do want readers to know that assembly language is not the
only alternative. You should watch for new developments that may significantly reduce
programming costs if such costs are a major factor in your application.

REFERENCES

A. Osborne, An Introduction to Microcomputers: Volume 1 — Basic Concepts,
Osborne/McGraw-Hill, Berkeley, CA., 1976.

M. H. Halstead, Elements of Software Science, American Elsevier, New York, 1977.

V. Schneider, “Prediction of Software Effort and Project Duration,” SIGPLAN
Notices, June 1978, pp. 49-55.

M. Phister Jr., Data Processing Technology and Economics, Santa Monica Publish-
ing Co., Santa Monica, CA, 1976.

Albrecht, Finkel, and Brown, BASIC for Home Computers, Wiley, New York, 1978.
K. L. Bowles, Microcomputer Problem Solving Using PASCAL, Springer-Verlag. New
York, 1977.

D. D. McCracken, A Guide to PL'M Programming for Microcomputer Applications,
Addison-Wesley, Reading. Mass., 1978.

P. Caudill, “Using Assembly Coding to Optimize High-Level Language Programs,”
Electronics, February 1, 1979, pp. 121-124.

Chapter 2
ASSEMBLERS

This chapter discusses the functions performed by assemblers, beginning with features
common to most assemblers and proceeding through more elaborate capabilities such
as macros and conditional assembly. You may wish to skim this chapter for the present
and return to it when you feel more comfortable with the material.

FEATURES OF ASSEMBLERS

As we mentioned previously, today’s assemblers do much more than translate as-
sembly language mnemonics into binary codes. But we will describe how an as-
sembler handles the translation of mnemonics before describing additional assem-
bler features. Finally, we will explain how assemblers are used.

ASSEMBLER INSTRUCTIONS

Assembly language instructions (or ‘‘statements’’) are divided ASSEMBLY
into a number of fields, as shown in Table 2-1. LANGUAGE
FIELDS

The operation code field is the only field that can never be
empty; it always contains either an instruction mnemonic or a
directive to the assembler, called a pseudo-instruction, pseudo-operation, or
pseudo-op.

The operand or address field may contain an address or data, or it may be blank.

The comment and label fields are optional. A programmer will assign a label to a
statement or add a comment as a personal convenience: namely, to make the pro-
gram easier to read and use.

Table 2-1. The Fields of an Assembly Language Instruction

Label Operation Code Operand or

Field ©°F Mnemonic Address Comment Field
Field Field

START LDA VAL1 ;LOAD FIRST NUMBER INTO A
ADC VAL2 ;ADD SECOND NUMBER TO A
STA SUM ;STORE SUM

NEXT ? ? ;NEXT INSTRUCTION

VAL1 f="+1

VAL2 f="+1

SUM t="+1

Table 2-2. Standard 6502 Assembler Delimiters

‘space’ between label and operation code and between operation
code and address
, between operands in the address field
; or ! before a comment

Note that 6502 assemblers vary greatly and some may not use these delimiters.

Of course, the assembler must have some way of telling FORMAT

where one field ends and another begins. Assemblers that use

punched card input often require that each field start in a specific card column. This is
a fixed format. However, fixed formats are inconvenient when the input medium is
paper tape; fixed formats are also a nuisance to programmers. The alternative is a free
format where the fields may appear anywhere on the line.

If the assembler cannot use the position on the line to tell the DELIMITERS

fields apart. it must use something else. Most assemblers use a

special symbol or delimiter at the beginning or end of each field. The most common
delimiter is the space character. Commas, periods. semicolons, colons, slashes, ques-
tion marks, and other characters that would not otherwise be used in assembly
language programs may also serve as delimiters. Table 2-2 lists standard 6502 assem-
bler delimiters.

You will have to exercise a little care with delimiters. Some assemblers are fussy
about extra spaces or the appearance of delimiters in comments or labels. A well-
written assembler will handle these minor problems, but many assemblers are not
well-written. Our recommendation is simple: avoid potential problems if you can.
The following rules will help:

1) Do not use extra spaces. particularly after commas that separate operands.
2) Do not use delimiter characters in names or labels.

3) Include standard delimiters even if your assembler does not require them. Your pro-
grams will then run on any assembler.

LABELS
The label field is the first field in an assembly language in- LABEL
struction; it may be blank. If a label is present. the assembler FIELD

defines the label as equivalent to the address into which the first

byte of the object program resulting from that instruction is loaded. You may subse-
quently use the label as an address or as data in another instruction’s address field. The
assembler will replace the label with the assigned value when creating an object pro-
gram.

Labels are most frequently used in Jump, Call, or Branch in- JLABELS
structions. These instructions place a new value in the Program |IN JUMP
Counter and so alter the normal sequential execution of instruc- |INSTRUCTIONS
tions. JUMP 156015 means “place the value 15016 in the Program
Counter”. The next instruction to be executed will be the one in memory location
16016. The instruction JUMP START means “place the value assigned to the label
START in the Program Counter”. The next instruction to be executed will be the one at
the address corresponding to the label START. Table 2-3 contains an example.

2-2

Table 2-3. Assigning and Using a Label

ASSEMBLY LANGUAGE PROGRAM
START LOAD ACCUMULATOR 100

+ (MAIN PROGRAM)

JUMP START

When the machine language version of this program is executed, the instruction
JUMP START causes the address of the instruction labeled START to be placed
in the Program Counter. That instruction will then be executed.

Why use a label? Here are some reasons:

1)
2)

3)

4)

5)

A label makes a program location easier to find and remember.

A label can easily be moved, if required, to change or correct a program. The as-
sembler will automatically change all instructions that use that label when the pro-
gram is reassembled.

The assembler or loader can relocate the whole program by RELOCATION
adding a constant (a relocation constant) to each address for CONSTANT
which a label was used. Thus we can move the program to

allow for the insertion of other programs or simply to rearrange memory.

The program is easier to use as a library program; i.e., it is easier for someone else
to take your program and add it to some totally different program.

You do not have to figure out memory addresses. Figuring out memory addresses is
particularly difficult with microprocessors which have instructions that vary in
length.

You should assign a label to any instruction that you might want to refer to later.

The next question is how to choose a label. The assembler CHOOSING
often places some restrictions on the number of characters LABELS

(usually 5 or 6), the leading character (often must be a letter), and

the trailing characters {often must be letters, numbers, or one of a few special charac-
ters). Beyond these restrictions, the choice is up to you.

Our own preference is to use labels that suggest their purpose, i.e.. mnemonic labels.
Typical examples are ADDW in a routine that adds one word into a sum, SRETX in a
routine that searches for the ASCIl character ETX. or NKEYS for a location in data
memory that contains the number of key entries. Meaningful labels are easier to
remember and contribute to program documentation. Some programmers use a stan-
dard format for labels, such as starting with LO00O. These labels are self-sequencing
(you can skip a few numbers to permit insertions). but they do not help document the
program.

2-3

Some label selection rules will keep you out of trouble. We RULES OF
recommend the following: LABELING

1) Do not use labels that are the same as operation codes or
other mnemonics. Most assemblers will not allow this usage: others will, but it is
very confusing.

2) Do not use labels that are longer than the assembler permits. Assemblers have
various truncation rules.

3) Avoid special characters (non-alphabetic and non-numeric) and lower-case letters.
Some assemblers will not permit them; others allow only certain ones. The simplest
practice is to stick to capital letters and numbers.

4) Start each label with a letter. Such labels are always acceptable.

5) Do not use labels that could be confused with each other. Avoid the letters |, O and
Z, and the numbers 0, 1, and 2. Also avoid things like XXXX and XXXXX. There's
no sense tempting fate and Murphy’s laws.

6) When you are not sure if a label is legal. do not use it. You will not get any real
benefit from discovering exactly what the assembler will accept.

These are recommendations, not rules. You do not have to follow them, but don’t blame
us if you waste time on silly problems.

ASSEMBLER OPERATION CODES (MNEMONICS)

The main task of the assembler is the translation of mnemonic operation codes
into their binary equivalents. The assembler performs this task using a fixed table
much as you would if you were doing the assembly by hand.

The assembler must, however, do more than just translate the operation codes. It must
also somehow determine how many operands the instruction requires and what
type they are. This may be rather complex — some instructions (like a Halt) have no
operands, others (like an Addition or a Jump instruction) have one. while still others
(like a transfer between registers or a multiple-bit shift) require two. Some instructions
may even allow alternatives; e.g.. some computers have instructions (like Shift or Clear)
that can apply either to the Accumulator or to a memory location. We will not discuss
how the assembler makes these distinctions; we will just note that it must do so.

PSEUDO-OPERATIONS

Some assembly language instructions are not directly trans- PSEUDO-
lated into machine language instructions. These instructions OPERATIONS
are directives to the assembler; they assign the program to cer-
tain areas in memory. define symbols, designate areas of RAM for temporary data
storage. place tables or other fixed data in memory. allow references to other programs,
and perform minor housekeeping functions.

To use these assembler directives or pseudo-operations a programmer places the
pseudo-operation’s mnemonic in the operation code field. and. if the specified pseudo-
operation requires it, an address or data in the address field.

The most common pseudo-operations are:

DATA

EQUATE (=) or DEFINE
ORIGIN

RESERVE

Linking pseudo-operations (used to connect separate programs) are:
ENTRY
EXTERNAL

2-4

Different assemblers use different names for these operations, but their functions are
the same. Housekeeping pseudo-operations include:

END
LIST
NAME
PAGE
SPACE
TITLE
PUNCH

We will discuss these pseudo-operations briefly, although their functions are usually
obvious.

THE DATA PSEUDO-OPERATION

The DATA pseudo-operation allows the programmer to enter fixed data into pro-
gram memory. This data may include:

« Lookup tables

« Code conversion tables

- Messages

« Synchronization patterns

» Thresholds

« Names

« Coefficients for equations

» Commands

«» Conversion factors

« Weighting factors

« Characteristic times or frequencies
« Subroutine addresses

« Key identifications

« Test patterns

« Character generation patterns
« ldentification patterns

« Tax tables

- Standard forms

» Masking patterns

« State transition tables

The DATA pseudo-operation treats the data as a permanent part of the program.

The format of a DATA pseudo-operation is usually quite simple. An instruction
like:

DZCON DATA 12

will place the number 12 in the next available memory location and assign that
location the name DZCON. Usually every DATA pseudo-operation has a label, unless it
is one of a series of DATA pseudo-operations. The data and label may take any form
that the assembler permits.

Most assemblers allow more elaborate DATA instructions that handle a large amount of
data at one time, e.g.:

EMESS DATA 'ERROR’
SQRS DATA 1,49.16.25

A single instruction may fill many words of program memory, limited only by the length
of a line. Note that if you cannot get all the data on one line, you can always follow one
DATA instruction with another, e.g.,

MESSG DATA 'NOW IS THE*
DATA 'TIME FOR ALL*
DATA 'GOOD MEN’
DATA 'TO COME TO THE’
DATA 'AID OF THEIR "
DATA 'COUNTRY’

Microprocessor assemblers typically have some variations of standard DATA
pseudo-operations. DEFINE BYTE or FORM CONSTANT BYTE handles 8-bit numbers;
DEFINE WORD or FORM CONSTANT WORD handles 16-bit numbers or addresses.
Other special pseudo-operations may handle character-coded data.

THE EQUATE (or DEFINE) PSEUDO-OPERATION

The EQUATE pseudo-operation allows the programmer to DEFINING
equate names with addresses or data. This pseudo-operation NAMES
is almost always given the mnemonic EQU or =. The names

may refer to device addresses, numeric data, starting addresses, fixed addresses, etc.

The EQUATE pseudo-operation assigns the numeric value in its operand field to
the label in its label field. Here are two examples:

TTY EQU 5
LAST EQU 5000

Most assemblers will allow you to define one label in terms of another. e.g..

LAST EQU FINAL
ST1 EQU START+1

The label in the operand field must, of course, have been previously defined. Often, the
operand field may contain more complex expressions, as we shall see later. Double
name assignments (two names for the same data or address) may be useful in patching
together programs that use different names for the same variable (or different spellings
of what was supposed to be the same name).

Note that an EQU pseudo-operation does not cause the as- SYMBOL
sembler to place anything in memory. The assembler simply TABLE
enters an additional name into a table (called a symbol table)
which the assembler maintains. This table, unlike the mnemonic table, must be in
RAM since it varies with each program. The assembler always needs some RAM to hold
the symbol table; the more RAM it has, the more symbols it can accept. This RAM is in
addition to any which the assembler needs as temporary storage.

When do you use a name? The answer is: whenever you have a USE OF
parameter that has some meaning besides its ordinary numeric NAMES
value or the numeric value of the parameter might be changed.

We typically assign names to time constants, device addresses, masking patterns, con-
version factors, and the like. A name like DELAY, TTY. KBD, KROW, or OPEN not only
makes the parameter easier to change. but it also adds to program documentation. We
also assign names to memory locations that have special purposes. they may hold data.
mark the start of the program. or be available for intermediate storage.

What name do you use? The best rules are much the same as
in the case of labels, except that here meaningful names really
count. Why not call the teletypewriter TTY instead of X15, a bit
time delay BTIME or BTDLY rather than WW, the number of the
“GO" key on a keyboard GOKEY rather than HORSE? This advice seems straightfor-
ward, but a surprising number of programmers do not follow it.

2-6

Where do you place the EQUATE pseudo-operations? The PLACEMENT
best place is at the start of the program, under appropriate OF

comment headings such as I/0 ADDRESSES, TEMPORARY DEFINITIONS
STORAGE. TIME CONSTANTS, or PROGRAM LOCATIONS. This

makes the definitions easy to find if you want to change them. Furthermore, another
user will be able to look up all the definitions in one centralized place. Clearly this prac-
tice improves documentation and makes the program easier to use.

Definitions used only in a specific subroutine should appear at the start of the
subroutine.

THE ORIGIN PSEUDO-OPERATION

The ORIGIN pseudo-operation (almost always abbreviated ORG) allows the pro-
grammer to locate programs, subroutines, or data anywhere in memory. Programs
and data may be located in different areas of memory depending on the memory con-
figuration. Startup routines, interrupt service routines, and other required programs
may be scattered around memory at fixed or convenient addresses.

The assembler maintains a Location Counter (comparable to LOCATION
the computer’s Program Counter) which contains the location COUNTER
in memory of the next instruction or data item being pro-
cessed. An ORG pseudo-operation causes the assembler to place a new value in the
Location Counter, much as a Jump instruction causes the CPU to place a new value in
the Program Counter. The output from the assembler must not only contain instructions
and data, but must also indicate to the loader program where in memory it should place
the instructions and data.

Microprocessor programs often contain several ORIGIN statements for the following
purposes:

Reset (startup) address

Interrupt service addresses

Trap addresses

RAM storage

Memory stack

Subroutines

Memory addresses for input/output devices or
special functions

Still other ORIGIN statements may allow room for later insertions, place tables or data in
memory. or assign vacant RAM space for data buffers. Program and data memory in
microcomputers may occupy widely scattered addresses to simplify the hardware.

Typical ORIGIN statements are:

ORG RESET
ORG 1000
ORG INT3

Some assemblers assume an origin of zero if the programmer does not put an ORG
statement at the start of the program. The convenience is slight; we recommend the in-
clusion of an ORG statement to avoid confusion.

THE RESERVE PSEUDO-OPERATION

The RESERVE pseudo-operation allows the programmer to ALLOCATING
allocate RAM for various purposes such as data tables, tem- RAM
porary storage, indirect addresses, a Stack, etc.

2-7

Using the RESERVE pseudo-operation, you assign a name to the memory area and
declare the number of locations to be assigned. Here are some examples:

NOKEY RESERVE 1
TEMP RESERVE 50
VOLTG RESERVE 80
BUFR RESERVE 100

You can use the RESERVE pseudo-operation to reserve memory locations in program
memory or in data memory; however, the RESERVE pseudo-operation is more
meaningful when applied to data memory.

In reality, all the RESERVE pseudo-operation does is increase the assembler’s Location
Counter by the amount declared in the operand field. The assembler does not actually
produce any object code.

Note the following features of RESERVE:

1) The label of the RESERVE pseudo-operation is assigned the value of the first ad-
dress reserved. For example, the pseudo-operation:

TEMP RESERVE 20
reserves 20 bytes of RAM and assigns the name TEMP to the address of the first
byte.
2) You must specify the number of locations to be reserved. There is no default case.

3) No data is placed in the reserved locations. Any data that, by chance. may be in
these locations will be left there.

Some assemblers allow the programmer to place initial INITIALIZING
values in RAM. We strongly recommend that you do not RAM

use this feature — it assumes that the program (along with
the initial values) will be loaded from an external device (e.g.. paper tape or floppy disk)
each time it is run. Most microprocessor programs, on the other hand. reside in non-
volatile ROM and start when power comes on. The RAM in such situations does not re-
tain its contents, nor is it reloaded. Always include instructions to initialize the RAM in
your program.

LINKING PSEUDO-OPERATIONS

We often want statements in one program or subroutine to EXTERNAL
use names that are defined elsewhere. Such names are called REFERENCES
external references; a special linking program is necessary to ac- :
tually fill in the values and determine if any names are undefined or doubly defined.

The pseudo-operation EXTERNAL, usually abbreviated EXT, signifies that the
name is defined elsewhere.

The pseudo-operation ENTRY, usually abbreviated ENT, signifies that the name is
available for use elsewhere; i.e.. it is defined in this program. i

The precise way in which linking pseudo-operations are implemented varies greatly
from assembler to assembler. We will not refer to such pseudo-operations again. but
they are very useful in actual applications.

2-8

HOUSEKEEPING PSEUDO-OPERATIONS

There are various housekeeping pseudo-operations that affect the operation of
the assembler and its program listing rather than the output program itself. Com-
mon housekeeping pseudo-operations include:

« END, which marks the end of the assembly language source program.

« LIST, which tells the assembler to print the source program. Some assemblers allow
such variations as NO LIST or LIST SYMBOL TABLE to avoid long. repetitive listings.

« NAME or TITLE, which prints a name at the top of each page of the listing.

« PAGE or SPACE, which skips to the next page or next line, respectively, and im-
proves the appearance of the listing. making it easier to read.
« PUNCH, which transfers subsequent object code to the paper tape punch. This

pseudo-operation may in some cases be the default option and therefore unneces-
sary.

LABELS WITH PSEUDO-OPERATIONS

Users often wonder if or when they can assign a label to a pseudo-operation.
These are our recommendations:

- All EQUATE pseudo-operations must have labels; they are useless otherwise, since
the purpose of an EQUATE is to define its label.

- DATA and RESERVE pseudo-operations usually have labels. The label identifies the
first memory location used or assigned.

- Other pseudo-operations should not have labels. Some assemblers allow such
labels, but we recommend against their use because there is no standard way to in-
terpret them.

2-9

ADDRESSES AND THE OPERAND FIELD

Most assemblers allow the programmer a lot of freedom in describing the con-
tents of the Operand or Address field. But remember that the assembler has built-

in names for registers and instructions and may have other built-in names.
Some common options for the operand field are: DECIMAL

. DATA OR
1) Decimal numbers ADDRESSES

2)

3)

Most assemblers assume all numbers to be decimal unless they
are marked otherwise. So:

ADD 100

means “add the contents of memory location 10010 to the contents of the Ac-
cumulator.”

Other number systems NON-DECIMAL

NUMBER
SYSTEMS

Most assemblers will also accept binary, octal, or hexadecimal
entries. But you must identify these number systems in some
way, e.g.. by preceding or following the number with an iden-
tifying character or letter. Here are some common identifiers:

B or % for binary

0. @. Q. or C for octal (the letter O should be avoided because of the confu-
sion with zero).

H or $ for hexadecimal (or standard BCD).

D for decimal. D may be omitted: it is the default case.

Assemblers generally require hexadecimal numbers to start with a digit (e.g.. 0A36
instead of A36) in order to distinguish between numbers and names or labels. It is
good practice to enter numbers in the base in which their meaning is the
clearest: i.e., decimal constants in decimal; addresses and BCD numbers in hex-
adecimal; masking patterns or bit outputs in binary if they are short and in hex-
adecimal if they are long.

Names

Names can appear in the operand field; they will be treated as the data that they
represent. But remember, there is a difference between data and addresses. The
sequence:
FIVE EQU 5
ADD FIVE

will add the contents of memory location 0005 (not necessarily the number 5) to the
contents of the Accumulator.

2-10

4) The current value of the location counter (usually referred to as * or $).
This is useful mainly in Jump instructions; for example:
JUMP *+6
causes a Jump to the memory location six words beyond the word that contains the
first byte of the JUMP instruction:

Memory

} JUMP °+6 code stored here

Jump here

Most microprocessors have many two- and three-word instructions. Thus, you will
have difficulty determining exactly how far apart two assembly language statements
are. Therefore. using offsets from the Location Counter frequently results in errors
that you can avoid if you use labels.

5) Character codes

Most assemblers allow text to be entered as ASCII strings. Such ASCII

strings may be surrounded either with single or double quota- CHARACTERS
tion marks; strings may also use a beginning or ending symbol
such as A or C. A few assemblers also permit EBCDIC strings.

We recommend that you use character strings for all text. It improves the clarity and
readability of the program.

6) Combinations of 1) through 5) with arithmetic, logical, or special operators.

Almost all assemblers allow simple arithmetic combinations ARITHMETIC
such as START+1. Some assemblers also permit multiplication, AND LOGICAL
division, logical functions, shifts. etc. These are referred to as |EXPRESSIONS
expressions. Note that the assembler evaluates expressions at
assembly time. Even though an expression in the operand field may involve
multiplication, you may not be able to use multiplication in the logic of your own pro-
gram — unless you write a subroutine for that specific purpose.

Assemblers vary in what expressions they accept and how they interpret them. Com-
plex expressions make a program difficult to read and understand.

We have made some recommendations during this section but will repeat them and
add others here. In general, the user should strive for clarity and simplicity. There is
no payoff for being an expert in the intricacies of an assembler or in having the most
complex expression on the block. We suggest the following approach:

1) Use the clearest number system or character code for data.

Masks and BCD numbers in decimal, ASCIl characters in octal, or ordinary numeri-
cal constants in hexadecimal serve no purpose and therefore should not be used.

2) Remember to distinguish data from addresses.
3) Don't use offsets from the Location Counter.

4) Keep expressions simple and obvious. Don’t rely on obscure features of the assem-
bler.

2-11

CONDITIONAL ASSEMBLY

Some assemblers allow you to include or exclude parts of the source program, de-
pending on conditions existing at assembly time. This is called conditional assem-
bly; it gives the assembler some of the flexibility of a compiler. Most microcomputer
assemblers have limited capabilities for conditional assembly. A typical form is:

IF COND

:(CONDITIONAL PROGRAM)

ENDIF

If the expression COND is true at assembly time, the instructions between IF and ENDIF
(two pseudo-operations) are included in the program.
Typical uses of conditional assembly are:

1) To include or exclude extra variables.

2) To place diagnostics or special conditions in test runs.
3) To allow data of various bit lengths.

4) To create specialized versions of a common program.

Unfortunately. conditional assembly tends to clutter programs and make them difficult
to read. Use conditional assembly only if it is necessary.

MACROS

You will often find that particular sequences of instructions oc-
cur many times in a source program. Repeated instruction se-
quences may reflect the needs of your program logic. or they
may be compensating for deficiencies in your microprocessor’s
instruction set. You can avoid repeatedly writing out the same instruction sequence by
using a macro.

DEFINING A
SEQUENCE OF
INSTRUCTIONS

Macros allow you to assign a name to an instruction sequence. You then use the
macro name in your source program instead of the repeated instruction sequence.
The assembler will replace the macro name with the appropriate sequence of in-
structions. This may be illustrated as follows:

Source Program Object Program
MAC1 MACRO {macro definition)
instruction M1
i ion M2 —
instruction M3

ENDM (end of macro definition)

instruction P1 (main program) l instruction P1
instruction P2 —< i ion P2
instruction P3 I instruction P3

instruction M1
i ion M2
instruction M3

MAC1

instruction P4
instruction P§

instruction P4
instruction P5

instruction P6 > instruction P6
instruction P7 instruction P7
-{
’{
»{
>{

instruction M1
i ion M2
instruction M3

MAC1 .

instruction P8
instruction P9

instruction P8 }
instruction P9

instruction M1
i ion M2
instruction M3

MAC1 _

instruction P10
instruction P11

instruction P10 }
instruction P11

.
.
.

Macros are not the same as subroutines. A subroutine occurs once in a program, and
program execution branches to the subroutine. A macro is expanded to an actual in-
struction sequence each time the macro occurs; thus a macro does not cause any
branching.

2-13

Macros have the following advantages: ADVANTAGES

1)

OF MACROS

Shorter source programs.

2) Better program documentation.

3) Use of debugged instruction sequences — once the macro has been debugged.
you are sure of an error-free instruction sequence every time you use the macro.

4) Easier changes. Change the macro definition and the assembler makes the change
for you every time the macro is used.

5) Inclusion of commands, keywords, or other computer instructions in the basic in-
struction set. You can use macros to extend or clarify the instruction set.

The disadvantages of macros are: DISADVANTAGES

1) Repetition of the same instruction sequences since the OF MACROS
macro is expanded every time it is used.

2) A single macro may create a lot of instructions.

3) Lack of standardization makes programs difficult to read and understand.

4) Possible effects on registers and flags that may not be clearly described.

One problem is that variables used in a macro are only known LOCAL OR

within it {i.e., they are local rather than global). This can often GLOBAL

create a great deal of confusion without any gain in return. You VARIABLES

should be aware of this problem when using macros. !

COMMENTS

All assemblers allow you to place comments in a source program. Comments have
no effect on the object code, but they help you to read, understand, and document
the program. Good commenting is an essential part of writing assembly language
programs; programs without comments are very difficult to understand.

We will discuss commenting along with documentation in a later chapter, but here
are some guidelines.:

1)

2)
3)
4)

5)
6)
7)

8)
9)

10)

Use comments to tell what application task the program is |COMMENTING
performing. not how the microcomputer executes the in- TECHNIQUES
structions.
Comments should say things like “IS TEMPERATURE ABOVE LIMIT?", “'LINE FEED
TO TTY", or “"EXAMINE LOAD SWITCH".

Comments should not say things like “ADD 1 TO ACCUMULATOR", “JUMP TO
START", or “LOOK AT CARRY"". You should describe how the program is affecting
the system; internal effects on the CPU are seldom of any interest.

Keep comments brief and to the point. Details should be available elsewhere in
the documentation.

Comment all key points.

Do not comment standard instructions or sequences that change counters or
pointers; pay special attention to instructions that may not have an obvious mean-
ing.

Do not use obscure abbreviations.

Make the comments neat and readable.

Comment all definitions, describing their purposes. Also mark all tables and data
storage areas.

Comment sections of the program as well as individual instructions.

Be consistent in your terminology. You can and should be repetitive: you need not
consult a thesaurus.

Leave yourself notes at points which you find confusing: e.g.. "REMEMBER CAR-
RY WAS SET BY LAST INSTRUCTION". You may drop these in the final documen-
tation.

A well-commented program is easy to use. You will recover the time spent in comment-
ing many times over. We will try to show good commenting style in the programming
examples, although we often over-comment for instructional purposes.

2-15

TYPES OF ASSEMBLERS

Although all assemblers perform the same tasks, their implementations vary
greatly. We will not try to describe all the existing types of assemblers; we will
merely define the terms and indicate some of the choices.

A cross-assembler is an assembler that runs on a computer CROSS-
other than the one for which it assembles object programs. ASSEMBLER]
The computer on which the cross-assembler runs is typically a

large computer with extensive software support and fast peripherals — such as an IBM
360 or 370, a Univac 1108, or a Burroughs 6700. The computer for which the cross-as-

sembler assembles programs is typically a micro like the 6502 or 8080. Most cross-as-
semblers are written in FORTRAN so that they are portable.

A self-assembler or resident assembler is an assembler that RESIDENT
runs on the computer for which it assembles programs. The ASSEMBLER
self-assembler will require some memory and peripherals, and it
may run quite slowly.

A macro assembler is an assembler that allows you to define MACRO
sequences of instructions as macros. ASSEMBLER
A microassembler is an assembler used to write the MICRO-
microprograms that define the instruction set of a computer. ASSEMBLER

Microprogrammin% has nothing specifically to do with
microcomputers.z'

A meta-assembler is an assembler that can handle many META-
different instruction sets. The user must define the particular in- ASSEMBLER
struction set being used.

A one-pass assembler is an assembler that goes through the ONE-PASS
assembly language program only once. Such an assembler must ASSEMBLER

have some way of resolving forward references, e.g.. Jump in-
structions which use labels that have not yet been defined.

A two-pass assembler is an assembler that goes through the TWO-PASS
assembly language source program twice. The first time the ASSEMBLER
assembler simply collects and defines all the symbols; the

second time it replaces the references with the actual definitions. A two-pass as-
sembler has no problems with forward references but may be quite slow if no
backup storage (like a floppy disk) is available; then the assembler must
physically read the program twice from a slow input medium (like a teletypewriter
paper tape reader). Most microprocessor-based assemblers require two passes.

2-16

ERRORS

Assemblers normally provide error messages, often consisting of a single coded
letter. Some typical errors are:

« Undefined name (often a misspelling or an omitted definition)

« lllegal character (e.g.. a 2 in a binary number)

« lllegal format (wrong delimiter or incorrect operands)

« Invalid expression (e.g.. two operators in a row)

- lllegal value (usually too large)

» Missing operand

+ Double definition (i.e.. two different values assigned to one name)

« lllegal label (e.g.. a label on a pseudo-operation that cannot have one)

« Missing label

« Undefined operation code ,

i

In interpreting assembler errors, you must remember that the assembler may get on the
wrong track if it finds a stray letter, an extra space. or incorrect punctuation. Many as-
semblers will then proceed to misinterpret the succeeding instructions and produce
meaningless error messages. Always look at the first error very carefully: subsequent
ones may depend on it. Caution and consistent adherence to standard formats will
eliminate many annoying mistakes.

LOADERS

The loader is the program which actually takes the output (object code) from the as-
sembler and places it in memory. Loaders range from the very simple to the very com-
plex. We will describe a few different types.

A bootstrap loader is a program that uses its own first few in- BOOTSTRAP
structions to load the rest of itself or another loader program LOADER

into memory. The bootstrap loader may be in ROM, or you may
have to enter it into the computer memory using front panel switches. The assembler
may place a bootstrap loader at the start of the object program that it produces.

A relocating loader can load programs anywhere in memory. It RELOCATING
typically loads each program into the memory space immediately LOADER
following that used by the previous program. The programs.
however, must themselves be capable of being moved around in this way: i.e.. they
must be relocatable. An absolute loader, in contrast, will always place the pro-
grams in the same area of memory.

A linking loader loads programs and subroutines that have LINKING
been assembled separately; it resolves cross references — LOADERS

that is. instructions in one program that refer to a label in another
program. Object programs loaded by a linking loader must be created by an assembler
that allows external references.

An alternative approach is to separate the linking and loading LINK
functions and have the linking performed by a program called a EDITOR
link editor.

—_

REFERENCES

A complete monograph on macros is M. Campbell-Kelly. “An Introduction to
Macros,” American Elsevier, New York, 1973.

A. Osborne, An Introduction to Microcomputers: Volume 1 - Basic Concepts,
OSBORNE/McGraw-Hill, Berkeley, CA, 1977.

A. K. Agrawala and T. G. Rauscher, Foundations of Microprogramming. Academic
Press. New York, 1976.

D. W. Barron, “Assemblers and Loaders,” American Elsevier, New York, 1972

C.W. Gear. Computer Organization and Programming. McGraw-Hill. New York,
1974.

2-18

Chapter 3
THE 6502 ASSEMBLY LANGUAGE
INSTRUCTION SET

We are now ready to start writing assembly language programs. We begin in this
chapter by defining the individual instructions of the 6502 assembly language in-
struction set, plus the syntax rules of the MOS Technology assembler.

We do not discuss any aspects of microcomputer hardware, signals, interfaces. or
CPU architecture in this book. This information is described in detail in An Introduction
to Microcomputers: Volume 2 — Some Real Microprocessors and Volume 3 — Some
Real Support Devices.

In this book, we look at programming techniques from the assembly language pro-
grammer’s viewpoint, where pins and signals are irrelevant and there are no im-
portant differences between a minicomputer and a microcomputer.

Interrupts, direct memory access. and the Stack architecture for the 6502 will be de-
scribed in later chapters of this book. in conjunction with assembly language program-
ming discussions of the same subjects.

This chapter contains a detailed definition of each assembly language instruction.

The detailed description of individual instructions is preceded by a general discussion
of the 6502 instruction set that divides instructions into those which are frequently
used (Table 3-1). occasionally used (Table 3-2), and seldom used (Table 3-3). If you are
an experienced assembly language programmer, this categorization is not particularly
important — and, depending on your own programming prejudices. it may not even be
accurate. If you are a novice assembly language programmer, we recommend that you
begin by writing programs using only instructions in the “frequently used” category.
Once you have mastered the concepts of assembly language programming. you may
examine other instructions and use them where appropriate.

3-1

Table 3-1. Frequently Used Instructions of the 6502

Instruction

Code Meaning
ADC Add with Carry
AND Logical AND
ASL Arithmetic Shift Left
BCC Branch if Carry Clear
BCS Branch if Carry Set
BEQ Branch if Equal to Zero (Z = 1)
BMI Branch if Minus (S =1)
BNE Branch if Not Equal to Zero (Z =0)
BPL Branch if Plus (S = 0)
CMP Compare Accumulator to Memory
DEC Decrement (by 1)
DEX (DEY) Decrement Index Register X (Y) by 1
INC Increment (by 1)
INX (INY) Increment Index Register X (Y) by 1
JMP Jump to New Location
JSR Jump to Subroutine
LDA Load Accumulator
LDX (LDY) Load Index Register X (Y)
LSR Logical Shift Right
PHA Push Accumulator onto Stack
PLA Pull Accumulator from Stack
ROL Rotate Left through Carry
ROR Rotate Right through Carry
RTS Return from Subroutine
SBC Subtract with Borrow
STA Store Accumulator
STX (STY) Store Index Register X (Y)

Table 3-2. Occasionally Used Instructions of the 6602

Instruction

Code Meaning
BIT Bit Test
BRK Break
CLC Clear Carry
CLD Clear Decimal Mode
CLI Clear Interrupt Mask (Enable Interrupts)
CPX (CPY) Compare with Index Register X (Y)
EOR Logical Exclusive-OR
NOP No Operation
ORA Logical (Inclusive) OR
RTI Return from Interrupt
SEC Set Carry
SED Set Decimal Mode
SEI Set Interrupt Mask (Disable Interrupts)
TAX (TAY) Transfer Accumulator to Index Register X (Y)
TXA (TYA) Transfer Index Register X (Y) to Accumulator

3-2

Table 3-3. Seldom Used Instructions of the 6502

Instruction .
Code Meaning
BVC Branch if Overflow Clear
BVS Branch if Overflow Set
CLv Clear Overflow
PHP Push Status Register onto Stack
PLP Pull Status Register from Stack
TSX Transfer Stack Pointer to Index Register X
TXS Transfer Index Register X to Stack Pointer

CPU REGISTERS AND STATUS FLAGS

The 6502 microprocessor has an Accumulator, a Status (or P) register, two index
registers, a Stack Pointer, and a Program Counter. These registers may be illustrated
as follows: 15 s 7 °

A | A
Index .Register X
index Register Y

l Program Counter PC
Stack Pointer SP
Status Register P

The 6502's Status register contains six status flags and an interrupt control bit.
These are the six status flags:

Carry (C)

Zero (2)

Overflow (V)

Sign (S)

Decimal Mode (D)
Break (B)

Flags are assigned bit positions within the Status register as follows:
7654321 0<—B8it Number

BNERDDAOG 6502 Status (P) register

The Accumulator (A) is a primary accumulator as described in An Introduction to
Microcomputers: Volume 1.

The Index Registers (X and Y) are only eight bits long, unlike the typical microcom-
puter index registers described in An Introduction to Microcomputers: Volume 1. They
are more like classical computer index registers that are used to hold indexes, short
offsets. or counters.

The 6502 has a Stack implemented in memory and indexed by the Stack Pointer as de-
scribed in Volume 1. The only difference from that description is that the 6502 Stack
Pointer is only eight bits wide, which means that maximum Stack length is 256
bytes. The CPU always inserts 011g as the high-order byte of any Stack address, which
means that memory locations 01009¢ through 01FF4¢g are permanently assigned
to the Stack:

o [

+

'

01XX is the Stack address

There is nothing very significant about the shorter 6502 Stack Pointer if you are
using this CPU as a stand-alone product. A 256-byte Stack is usually sufficient for
any typical microcomputer application; and its location in early memory simply means
that low memory addresses must be implemented as read/write memory. 6502
literature represents the Stack Pointer by the letter S; we use the letters SP to prevent
confusion with the Sign status.

The 6502 Program Counter is a typical program counter as described in Volume 1.

The Carry status flag holds carries out of the most significant bit in any arithmetic
operation. The Carry flag is also included in Shift and Rotate instructions. The only
unusual feature of the 6502 Carry flag is that it has an inverted meaning in subtrac-
tion operations. After an SBC instruction, the Carry is cleared if a borrow was required
and set if no borrow was required. Note also that the SBC (Subtract with Carry) instruc-
tion results in (A) = (A) - (M) - (1 - C) where M is the other operand. This usage is
different from most microprocessors or other computers of recent vintage and the user
should take heed of it.

The Zero status flag is standard. It is set to.1 when any arithmetic or logical operation
produces a zero result. It 's set to O when any arithmetic or logical operation produces a
non-zero result.

The Sign status flag is standard. It will acquire the value of the high-order (Sign) bit of
any arithmetic or logical result. Thus, a Sign status value of 1 identifies a negative result
and a Sign value of O identifies a positive result. The Sign status will be set or reset on
the assumption that you are using signed binary arithmetic. |f you are not using signed
binary arithmetic, you can ignore the Sign status, or you can use it to identify the value
of the high-order bit of the result.

The Decimal Mode status, when set, causes the Add-with-Carry and Subtract-
with-Carry instructions to perform BCD operations. Thus, when the Decimal Mode
status is set and an Add-with-Carry or Subtract-with-Carry instruction is executed, CPU
logic assumes that both source 8-bit values are valid BCD numbers — and the result
generated will also be a valid BCD number. Because the 6502 CPU performs decimal
addition and subtraction, there is no need for an intermediate or Half-Carry status. This
status is described in Volume 1. One problem with the 6502 approach is that the same
instruction sequence will produce different results, depending on whether the Decimal
Mode status has been set or cleared. Thus, confusion and errors can occur if the
Decimal Mode status has accidentally been given the wrong value.

The Break status pertains to software interrupts. When a software interrupt (BRK in-
struction) is executed, 6502 CPU logic will set the Break status flag.

| is a standard master interrupt enable/disable or interrupt mask flag. When |
equals 1, interrupts are disabled; when | equals O, interrupts are enabled.

3-4

The Overflow status is a typical overflow, except that it can be used as a control
input on the 6502 microprocessor. Recall that, during signed binary arithmetic. Over-
flow status flags a result of magnitude too great to be represented in the given word
size. The Overflow status has been discussed in detail in Volume 1 of An Introduction to
Microcomputers; it equals the exclusive-OR of carries out of bits 6 and 7 during
arithmetic operations. The 6502 microprocessor allows external logic to set the Over-
flow status, in which case it can be used subsequently as a general logic indicator; you
must be very careful when using the Overflow status in this way, since the same status
flag will be modified by arithmetic instructions. It is up to you, as a programmer. to
make sure that an instruction which modifies the Overflow status is not executed in
between the time external logic sets this status and subsequent program logic tests it.

6502 literature refers to the Sign bit as a negative bit, given the DIFFERENCES
symbol N. Statuses (except for Carry) are nevertheless set and IN NOTATION
reset as described for our hypothetical microcomputer in An In-
troduction to Microcomputers: Volume 1. Henceforth, we will use the standard sym-
bols S for Sign bit. as well as SP for the Stack Pointer; you should remember these
minor differences when using the 6502 literature and instruction set summary cards.

6502 MEMORY ADDRESSING MODES

The 6502 offers eleven basic addressing methods:

1) Memory — immediate

2) Memory — absolute or direct, non-zero-page
3) Memory — zero page (direct)

4) Implied or inherent

5) Accumulator

6) Pre-indexed indirect

7) Post-indexed indirect

8) Zero page. indexed (also called base page. indexed)
9) Absolute indexed
10) Relative
11) Indirect

There are tremendous variations in terms of which methods are allowed with which in-
structions. See Table 3-4 for the addressing options available with each instruction.

Memory — Immediate

In this form of addressing. one of the operands is present in the byte immediately
following the first byte of object code. An immediate operand is specified by prefacing
the operand with the # symbol. For example,

AND #$08

requests the Assembler to generate the instruction that will logically AND the value
0816 with the contents of the Accumulator.

Data
sSsveDl!lI zZC Memory
PO L LI IX]]
A XX xx A 08
X
v Program
SP Memory
PC mm mm [
29 mmmm
08 mmmm + 1
mmmm + 2
AND #3508
£ / ——
76543210 76543210
tst Byte foJo]1Jo1 JoToT1] 2nd Byte [ofofofof 1 fofo]o]
e —
These bits These bits select
select the AND immediate addressing
operation with one operand in A

Memory — Direct
This form of addressing uses the second — or second and third (if not on zero, or base,
page) — bytes of the instruction to identify the address of an operand in memory. The
zero page version is specified when the expression used as the operand in the instruc-
tion reduces to a value between 001 and FF1g. For example,

AND $30

requests the Assembler to generate an AND instruction which will logically AND the
value in memory location 00301g with the contents of the Accumulator.

Data
svBDIZC Memory
el L[IX]]
Yy 0030
A XX
X
v Program
sp Memory
PC mm mm
25 mmmm
30 mmmm + 1
mmmm + 2

The non-zero-page (absolute) version is similar except that the address of the operand
occupies two bytes. For example,

AND $31F6

requests the Assembler to generate an AND instruction that will logically AND the

value in memory location 31F61g with the contents of the Accumulator.
Data

svsebD12ZC Memory

PO L T IX]]

Yy 31F6
A XX
X
Y Program

spP Memory
PC mm mm
20 mmmm

F6 mmmm + 1
31 mmmm + 2
mmmm + 3
You should note that 16-bit addresses are stored with the eight STORING
least significant bits first (at the lower address) followed by the ADDRESSES

eight most significant bits (at the higher address). This is the same
technique that is used in the 8080. 8085, and Z80 microprocessors, but the opposite of
that used in the 6800 microprocessor.

3-7

Implied or Inherent Addressing

This mode means that no addresses are required to execute the instruction. Typical ex-
amples of inherent addressing are CLC (Clear Carry) and TAX (Transfer Register A to
Register X).

Accumulator Addressing

This mode means that the instruction operates on the data in the Accumulator. On the
6502 microprocessor, the only Accumulator instructions are the shifts ASL (Arithmetic
Shift Left), LSR (Logical Shift Right), ROL (Rotate Left through Carry), and ROR (Rotate
Right through Carry).

3-8

Pre-Indexed Indirect Addressing

This mode means that the second byte of the instruction is added to the contents of the
X Index register to access a memory location in the first 266 bytes of memory. where
the indirect address will be found. Wraparound addition is used, which means that any
carry formed in address addition will be discarded. For example,

AND ($20.X)

requests the Assembler to generate the instruction which will logically AND the con-

tents of the Accumulator with the contents of the byte addressed by the zero-page

memory location given by the sum of 201g and the contents of the X Index register.
Note the use of parentheses in the address field to indicate indirection or “‘contents of
Data

svebDil zZCcC Memory

eix] [1 1 Ix]] aq 00rr+20

PP 00rr+21

)44 ppaq
A XX xx A yy +
X r
Y Program
SP Memory
PC mm mm
21 mmmm
20 mmmm + 1
mmmm - 2

Remember that the carry from the address addition is ignored. i.e., the address of the
first address byte is a number in mod 256. Note that the indirect address is stored with
its least significant bits first (at the lower address); note also that an address occupies
two bytes of memory.

Only the X Index register can be used for pre-indexed indirect addressing.

3-9

Post-Indexed Indirect Addressing

This mode means that the second byte of the instruction contains an address in the first
256 bytes of memory. That address and the next location contain an address which is
added to the contents of the Y Index register to obtain the effective address.

Note the differences between this method and pre-indexed indirect addressing:

1) In pre-indexed indirect addressing the indexing is performed before the indirec-
tion.while in post-indexed indirect addressing the indirection is performed before
the indexing.

2) Pre-indexed indirect addressing uses the X Index register, while post-indexed in-
direct addressing uses the Y Index register.

3) Pre-indexed indirect addressing is useful for choosing one of a set of indirect ad-
dresses to use, while post-indexed indirect addressing is useful for accessing ele-
ments in an array or table for which the base address has been obtained indirectly.

An example of post-indexed indirect addressing is
AND ($20).Y

which requests the Assembler to generate the instruction which will logically AND the
contents of the Accumulator with the contents of the byte addressed by adding the Y
Index register to the address at memory location 002016. Note that here only the $20 is
inside the parentheses, since only that part of the address is used indirectly.

Data
svebD1 zC Memory
P T { w_Joozo

vy PPaq+rr

A XX xx \yy
X
v = Program
sp Memory
PC mm mm @
31 mmmm
20 mmmm + 1

mmmm + 2

Here again the indirect address is stored with its least significant byte first (at the lower
address). Unlike that in pre-indexed indirection, this address addition is a full 16-bit ad-
dition; however, it is wraparound so any carry from bit 15 is ignored. Only the Y Index
register can be used with post-indexed indirect addressing.

Indexed Addressing

This form of addressing uses the second — or second and third (if not on zero page) —

bytes of the instruction to specify the base address. That base address is then added to
the contents of Index Register X or Y to get the effective address. X and Y are not in-
terchangeable since no instructions have both forms of simple indexing with both X
and Y. In fact, the only instructions which allow zero-page indexing with Y are LDX
(Load Index Register X) and STX (Store Index Register X). You should consult Table 3-4
to determine which addressing options are available with each instruction.

A typical example of zero-page indexed addressing is
AND $20.X

which requests the Assembler to generate the instruction that will logically AND the
contents of the Accumulator with the contents of the byte at the address given by the
sum of 2015 and the contents of the X Index register. This is a two-byte instruction
because the address is within the first 256 bytes of memory. Note that there is no two-
byte form of AND $20.Y although there is a more general three-byte form of this in-
struction.
Data
sSsvseDI ZC Memory

JOEEEREGE

Yy 0020+rr

A XX
X r
v Program
SpP Memory
PC mm
35 mmmm
20 mmmm + 1
mmmm + 2

A typical example of absolute indexed addressing is
AND $31FEY

which requests the Assembler to generate the instruction that will logically AND the
contents of the Accumulator with the contents of the byte at the address given by the
sum of 31FE1g and the contents of the Y Index register. This is a 3-byte instruction
since the base address is not within the first 256 bytes of memory.

Data
SvBD1I ZC Memory

P T T IxT]

Yy 31FE+rr

A XX
X
v m Program
SP Memory
PC mm
39 mmmm
FE mmmm + 1
31 mmmm + 2
mmmm + 3

Either Index Register X or Index Register Y could be used here. However, some instruc-
tions (such as ASL, DEC. INC, LSR, ROL, and ROR) only allow Index Register X in this
mode. This is also the case (more logically) with the instructions LDY (Load Index
Register Y) and STY (Store Index Register Y).

Indirect Addressing

Indirect addressing only applies to the JMP (Jump to New Location) instruction. In this
mode. the second and third bytes of the instruction contain the address at which the
effective address is located. Note that the indirect address can have any value and can
be located anywhere in memory. Obviously. this mode can be regarded as a special
case of either post-indexed indirect addressing or pre-indexed indirect addressing in
which the Index register contains zero. A typical example is:

JMP ($31FE)

which requests the Assembler to generate a JMP instruction that will load the Program
Counter from the memory locations addressed by the contents of memory locations
31FE1g and 31FF15. Remember that absolute addresses are 16 bits long and occupy
two memory bytes; however, the data located at an address is eight bits long. This con-
fusion applies to all 8-bit processors. but is a particular problem with the 6502 because
of its numerous indirect and indexed addressing modes. Indirect addressing is de-
scribed more fully in Volume 1 of An Introduction to Microcomputers, Chapter 6.
Remember that all addresses are stored with their least significant byte first (at the
lower address).

Data
svebDI ZC Memory

{ aq |31k
pp__ | 31FF

A
X
Y Program
SP Memory
PC mm mm
6C mmmm
FE mmmm + 1
31 mmmm -+ 2

The final value of the Program Counter is ppqq.

Never let an indirect address cross a page boundary, as in JMP ($31FF). Although the
high-order byte of the indirect address is in the first location of the next page (in this
example, memory location 32001¢g). the CPU will fetch the high-order byte from the
first location of the same page (location 31001 in our example).

Relative Addressing

Branch-on-Condition instructions use program relative addressing; a single byte dis-
placement is treated as a signed binary number which is added to the Program Counter,
after the Program Counter contents have been incremented to address the next se-
quential instruction. This allows displacements in the range +1291(to —1261(bytes.

A typical example is
BCC *+5

which requests the Assembler to generate a BCC (Branch on Carry Clear; i.e.. branch if
Carry = 0) instruction that will load the Program Counter with its current value plus five
if the Carry is, in fact, zero. If the Carry is one, the instruction does nothing. Note that
the instruction itself occupies two bytes of memory and the offset is measured from the
end of the instruction. Thus the offset should be 3 to generate a branch to the location
five beyond the one in which the first byte of the instruction is located. Note that the
symbol * is used for the current value of the Program Counter (actually, the Assembler’s
Location Counter as described in Chapter 2).

The execution of the BCC *+5 instruction may be described as shown below. Note that
the entire instruction is fetched from memory before the destination address is calcu-
lated. Note also that there are no other addressing modes available with Branch-on-
Condition instructions.

Data
svsebD12ZC Memory
P
A
X
Y Program
sp Memory
PC mm mm
90 mmmm
03 mmmm + 1
mmmm + 2

6502 INSTRUCTION SET

Instructions often frighten microcomputer users who are new to programming.
Taken in isolation, the operations involved in the execution of a single instruction
are usually easy to follow. The purpose of this chapter is to isolate and explain
those operations.

Why are the instructions of a microcomputer referred to as an instruction “set”?
Because the microcomputer designer selects (or at least should select) the instructions
with great care: it must be easy to execute complex operations as a sequence of simple
events, each of which is represented by one instruction from a well-designed instruc-
tion “set”.

Remaining consistent with An Introduction to Microcomputers: Volume 2, Table
3-4 summarizes the 65602 microcomputer instruction set, with similar instructions
grouped together. Individual instructions are listed numerically by object code in
Table 3-5 and in alphabetical order by instruction mnemonic in Table 3-6. Table 3-6
also compares the 6800 instruction set with that of the 6502. We will discuss the 6800
and 6502 much later in this chapter, after detailing the 6502 instruction set.

In addition to simply stating what each instruction does. the individual instruction
descriptions discuss the purpose of the instruction within normal programming logic.

ABBREVIATIONS
These are the abbreviations used in this chapter:
The registers:

A Accumulator

X Index Register X

Y Index Register Y

PC Program Counter

SP Stack Pointer

P Status register, with bits assigned as follows:

7 65 43 2 1 0 <@——B8it Number
Status register (P)

Reserved for expansion
(unused at this time)

Statuses:

Sign or Negative status
Overflow status

Break status

Decimal Mode status
Interrupt Disable status
Zero status

Carry status

ONTODO<W®W

3-15

Symbols in the column labeled STATUS:

(blank)

X

0

1

6

7

addr
[addr+1,addr]

addr16
data
disp
label

PC(HI)
PC(LO)
PP

ag

(]

(n

Lg<>

Operation does not affect status

Operation affects status

Operation clears status

Operation sets status

Operation reflects bit 6 of memory location

Operation reflects bit 7 of memory location

8 bits of absolute or base address

The address constructed from the contents of memory locations
addr and addr+1. This address is used in post-indexed indirect ad-
dressing.

16 bits of absolute or base address

8 bits of immediate data

An 8-bit, signed address displacement

16-bit absolute address, destination of Jump or Jump-to-
Subroutine

The high-order 8 bits of the Program Counter

The low-order 8 bits of the Program Counter

The second byte of a two- or three-byte instruction object code
The third byte of a three-byte object code

Contents of the memory location designated inside the brackets.
For example. [FFFE] represents the contents of memory location
FFFE16: [addr16+X] represents the contents of the location ad-
dressed by adding the contents of register X to addr16:; [SP] repre-
sents the value at the top of the Stack {contents of the memory
location addressed by the Stack Pointer).

Indirect addressing: the contents of the memory byte addressed
by the contents of the memory location designated within the in-
ner brackets. For example, [[addr+X]] represents the contents of a
memory location addressed via pre-indexed indirect addressing.
Addition — either unsigned binary addition or BCD addition, de-
pending on the condition of the Decimal Mode status.

Binary or BCD subtraction, performed by adding the twos comple-
ment of the subtrahend to the minuend.

The ones complement of the quantity denoted beneath the bar;
for example. A represents the complement of the contents of the
Accumulator; C represents the complement of the value of the
Carry status.

Logical AND

Logical OR

Logical Exclusive-OR

Data is transferred in the direction of the arrow.

3-16

INSTRUCTION MNEMONICS

Table 3-4 summarizes the 6502 instruction set. The INSTRUCTION column shows
the instruction mnemonic (LDA, STA, CLC) and the operands, if any, used with the
instruction mnemonic.

The fixed part of an assembly language instruction is shown in UPPER CASE. The
variable part (immediate data, address, or label) is shown in lower case.

If a mnemonic has more than one type of operand, each type is listed separately with-
out repeating the mnemonic. For instance. some examples of the format entry

STX
addr
addr.Y
addr16

are: STX $756
STX $60.Y
STX $4276

INSTRUCTION OBJECT CODES

For instruction bytes without variations, object codes are represented as two
hexadecimal digits (e.g., 8A). For instruction bytes with variations, the object
code is shown as eight binary digits (e.g., 101aaa01).

The object code and instruction length in bytes is shown in Table 3-4 for each in-
struction variation. Table 3-5 lists the object codes in numerical order, and Table
3-6 shows the corresponding object codes for the mnemonics, listed in alphabeti-
cal order.

INSTRUCTION EXECUTION TIMES

Table 3-4 lists the instruction execution times in numbers of clock periods. Actual
execution time can be derived by dividing the given number of clock periods by the
clock speed. For example. for an instruction that requires 5 clock periods. a 2 MHz clock
will result in a 2.5 microsecond execution time.

STATUS
The status flags are stored in the Status register (P) as follows:

7 65 43 2 1 0«ag——Bit Number
Status register

Carry status (carry out of bit 7)
Zero status (1 for zero, O for nonzero)
Interrupt disable status
(1 means interrupts are disabled)
Decimal Mode status (1 for decimal mode)
Break status (1 means a Break instruction
has been executed)
This bit is not used
Overflow status
Sign status (value of bit 7)

In the individual instruction descriptions, the effect of instruction execution on
status is illustrated as follows:

Modified to reflect results of execution
Unchanged

Unconditionally reset to O
Unconditionally set to 1

Bit 6 of tested byte

Bit 7 of tested byte

An X identifies a status that is set or reset. A O identifies a
status that is always cleared. A 1 identifies a status that is
always set. A blank means the status does not change. The
numbers 7 and 6 show that the flag contains the value of
bit 7 or bit 6 of the byte tested by the instruction.

STATUS CHANGES
WITH INSTRUCTION
EXECUTION

X d8)s1Bay 103 | = X ‘A JeisiBey
104 0 = x ueysiBes xepu) 8y sejeubisep |, x,, '9pod 308[qo 8y} u| "pessold st Azepunoq eBed j poued %200 Buo ppy ,

paxapul 8ynjosqy [X+9LippE]—A X X v € bbdd 5g X'9Lippe
10841p pepusix3 (914pPE]—A X X 14 € bbdd oy 91.ppe
pexepu) eBed oiez [X+4IpPE]—A X X v 4 dd g X'1ppe
10011p eBed osez [1ppe]— A X X € Z dd py ippe
‘Ajuo x JeysiBey yBnouayy xepu| "Asowew woiy A J8ysibay xepuj peo AQT
100.1p pepueix3 X—[914ppe] 14 € bbdd 38 9l4ppe
pexepu! ebed oiez X—[A+ippe] v 4 dd gg A'ippe
10041p oBed oiez X—[4ppe] € z dd 98 ippe
‘Ajuo A JeysiBey ybnosys xepu| "Asowsw 0} X J9siBay xapuj 81015 X1s
<
o
paxapul 8in|osqy [A+9L4pPE]—X X X B4 € bbdd 3g A'9Lippe [
198J1p pepusix3 [914ppE]—X X X v € bbdd 3y 9lippe n
pexepu) ebed oiez [A+ippe]—X X X 1 z dd og A'dppe m
08.1p ebed clez [4PPR]—X X X € 4 dd gv ippe H]
‘Ajuo A Jeis1Bay ybnousyy xepu| "AJowsw wouy X J81siBay xapu| peo xXa1 .W
]
pexapul ejnjosqy V—[A+914Ppe] 10 Y—[X+9PPE] S € bbdd 10x1 1001 A 40 X' Lippe m
108.1p pepuaix3 v—[9 L4Ppe] v € bbdd gg 91ippe w
108.1p pexepul-1s0d V—[A+[4PPE’L +1pPE]] 9 z dd 16 A'(4Ppe) e
108.1pu) paxapul-aid v—[[X+Ppe]) 9 4 dd 18 (X"1ppe) m
pexepul ebed oiez v—[X+1ppe] ¥ z dd 6g X'1ppe H
100u41p ebed osaz v—[ippe) £ z dd gg Jppe °
‘AJowaw 0} 10}E[NWINDJY 310}S V1S
paxsput 8njosqy [A+9LipPE]—Y 10 [X+9 L.PPE]—Y X X B4 € bbdd 1oxL10L1 A 40 X'gLippe
10841p pepueIx3 [9L4ppEl—Yy X X 12 € bbdd gy gLippe
10811pUI PaX8puUI-}SOd [A+[4PPE’ | +1ppE]]—V X X .5 z dd 19 A'(4PPER)
108.1pul paxepul-aid [[X+ppe]]—V X X 9 4 dd v (X'ippe)
paxepul ebed osez [X+ippe]—V X X v z dd gg X'ippe
10011p ebed osez [appe)—y X X € z dd gy ippe
"AJOWBW WOJ} JOIBJNWNIDY Peoy val
z|l1|a S | spoueq
pewiopieg uonesedo %9019 solAg 8po)d 32e8iq0 uononiIsu| odA |
smes

185 UOIIONIISU| ZOGY 8Yl JO AlBWWING v “H-€ d|ge]

3-19

X Jeis1Bey oy | = x ‘A ie)siBey

1040=X: 1BaJ xepu| oy P ,.X,, ‘9p02 320[q0 8y} uj ‘passoid si Asepunoq eBed J1 poued %209 8uo ppy .
108.41p papuaixy [9LiPPEIVY X 9| L 14 € bbdd oz 91.ppe
10811p 06ed osez [pPE]VY X 9|t € 4 dd pz ippe N
‘pajoeye ele sjq
SNIEJS By} AJUQ "UOHED0| AIOWBW JO BSOY} YIAM JOIB|NWNIDY 4O SIUBIUOD ANV 118 4
paxapul ainjosqy [A+914PPR]VV—V 10 [X+9PPR]VYV—V X X R4 € bbdd 0xi 1100 A 10 X'9Lippe A"
10euIp pepueix3 [9LiPPE]VV—V X X v € bbdd az gtippe
10841pu) pexaput-isod [A+(spPe ‘L +1ppe]]VV—V X X S (4 dd g A'tsppe)
19811put paxapul-aid [[X+2PPE]]V V—V X X 9 z dd 1z (X'1pPpe) A.
pexepu ebed olez [X+ipPE]lVYV—V X X v [4 dd gg X'ippe
10041p 8B6ed oi87 [4PPE]VV—V X X € k4 dd gz ippe
‘UO)EDO0| AJOWBLW JO BSOY} UM J0JB|NWNIDY JO SIUBIUOI NV anv
>
‘(8pOW jew1oaq ui pijea jou si Bejy oiez) 3
pexapul 8Injosqy J+[A+91IPPe]+V—V 10 J+[X+91IPPe]+V—V X | X X | X B4 € bbdd 10xL1110 A 10 X'gLippe
10811p papusIx3y J+[914pPPE}+Y—Y X | X X1 X 14 € bbdd gg 914ppe AJ
108.1pul pexepul-1sod O+[A+[4ppe 'L +ippe]]+V—VY X | X X | X] [4 dd £ A'taPPE) k
108.1pul pexaput-aid J+[[X+ppPe]]+V—V X | x X | x 9 (4 dd (g9 (X"1pPE)
pexapu! abed oiez J+([X+ipPE]+V—VY X | x X | X 14 4 dd 67 X'ippe -
10011p 8Bed 0187 O+[IppPEl+V—Y X | x X | X € (4 dd 69 ippe
*10}8|NWINDDY 4O BSOY) O} “ALIED UM ‘UOIIEIO| AJIOWBW JO SIUBUOD PPy 2av
235
e 3
o &
I
e =
52
108.1p pepueix3 A—[914PPE] 14 € bbdd 28 9lippe S <
pexapu; e6ed 0107 A—[X+1ppe] v z dd pg X'ippe 3
10041p abed o197 A—[iPPE] € z dd ¢8 ippe m w
*Ajuo X ieisiBey ybnosyy xapu| "AJowsw 0} A 1a)siBay xapu| 3101S ALS =3
o012 I1{a]A]|s spoued
peuwojied uoneiedo - so)Ag epo) 128iq0 uonoNnisy| edAL
smerg ¥201D

(PeNUIIUOD) 185 UONONIISU| ZOGY BY} JO AJBWWNG v “H-€ d|qe

3-20

‘X JeysiBey 404 | = X ‘A s0)siBoy
103 0 = x :eysiBes xepu) ey} sejeubisep ,,x,, ‘@pod 328(qo 8y} U ‘pess0IO si Azepunoq ebed ji poued %20(2 8uo ppy ,

3
8
2
pex8pul 83n|osqy [A+91PPRIAY—Y 10 [X+9 LIPPRIAV—Y X X B4 € bbdd 10x11000 A 10 X‘9Lippe m
1081ip papudix3 [914PPEIAY—V X X 14 € bbdd @o 9lippe 2
198J1pu! pexepul-1sod [A+[4PPE ‘L +1PPEJIAV—V X X .S 4 dd || A'(4PPE) m
108.1pul pexepul-aid {[X+PPE)JAV—Y X X 9 z dd L0 (Xx"1ppe) e
pexepui abed 0182 [X+4PPEIAV—V X X 14 4 dd gi X"ippe .M
1eu1p ebed o8z [4PPEIAV—Y X X € [4 dd g0 ippe m
‘U0NEOO0| AJOWBLW JO BSOY} YIIM JOJBINWINDJY JO SIUBIUOD YO VHO H
2
[x]
pexapul 8injosqy [A+91IPPRIAY—Y 10 [X+9 LIPPEIAY—YV X X B4 € bbdd L0x110L0 A 10 X'gLippe ou
108J1p pepueix3y (9 LiPPEIAY—Y X X 14 € bbdd gy 9lippe 3
10811pUI PeXepul-1sod [A+[4PPe ‘| +PPE]IAY—V X X .5 z dd g A'(4PPR)
108.1pul paxspul-a.d [[X+iPPEJIAV—V X X 9 4 dd 1y (X'4PPE) AJ
pexepui abed 0187 [X+PPEIAY—V X X v z dd gg X'ippe X
108.41p abed osez [fPPEIAV—V X X € 4 dd Gp ippe
'U0I}820| AJOWBW JO BSOY} YIIM JOJR|NWNDDY JO SIUBIUOD HO-BAISN|IX] ¥o3 3
0
pexepul ain|osqy [A+914pPE]—Y 10 [X+9 LIpPE]—Y x | x X R% € bbdd 10xLLOLL A 10 X'9Lippe 3
1%841p papusIx3 [914PPE]-Y X | X X 14 € bbdd @9 9Lippe
10841pul pexspul-1sod [A+[4PPE ‘| +ippE]]-V X | X X .S [4 dd 1a A'(4Ppe) 3
108u1pul paxepui-aid [[X+1pPE])-V X | x X 9 4 dd 1o (X"1ppe)
pexapui ebed o087 [X +ippE]-V X | X X v [4 dd ga X'ippe
108up ebed 0187 [sppE)—-V X | x X € z dd g ippe
‘pajoeye aie siiq snieis
8Yy) AjuQ "UOIIEO0| AJOWBW JO B8SOY} YiIM JOJBINWNOJY O Sjusjuod asedwo) dWD
2]z 1]la S | spoueg
pewioped uonesedQ %0012 selAg epo) 39e(q0 uondNysu| odAL
smeg

(PONUNUOD) 185 UOHONIISU| ZOGY 8} JO ABWWINS V/ "p-E BIqeL

3-21

X ieysiBey 10§ | = X ‘A seysiBey
103 0 = x :e)siBes xapu| eyy sejeuBisep |, x,, ‘0pod 308lqo 8y; uj 'pess0.d si Aiepunoq ebed y1 poued %200 8uo PPY .

108.1p pepuaix3 [9L4PPE]=A X | X X 14 € bbdd 39 glippe
yo011p abed oiaz [4pPE]—A X | x X € 4 dd $9 ippe
‘pejoeyje ase sbejy
sNeys 8y} AjuQ "UOEI0| AJOWBW JO 8SOY} YIM 181siBal A 40 sjuauod aredwo) AdD
308.1p papueix3 (9L4PPE)~X X | X X 14 € bbdd 93 91.ppe n
10e.1p abed olaz [4ppeE]—X X X X € z dd ¢3 lppe
‘paioayye ase sbeyy 1
snie}s 8y} AjuQ "uOiEI0| AIOWBW 4O B8SOY} YIM Ja)siBal X 40 sjusjuod asedwo) Xdd E
»
>
paxapul 81njosqy L=[X+9liPpe]—[X+9LIPPe] X X L € bbdd 30 X'gLippe
10811p papudix3 L—[{91ippe]—[g.PPe] X X 9 € bbdd 30 9lippe S
pexapui 8bed 0187 L —[X+4PPe]—[X+1PPE] X X 9 4 dd ga X'ippe
10u1p ebed oiez L~({Ppe)—[1ppeE] X X] z dd 9o ippe]
“Ajuo X 1e3siBay ybnoiy} xapuj "UONEJO| AJOWBW JO SIUBIUOD JuBWBI8Q 23Q
pexapul ainjosqy L+[X+9LJppe]—[X+9.ppe] X X L € bbdd 34 X'9Lippe 3
10841p papueix3 L+([911ppe]—[9 LPPE] X X 9 € bbdd 33 9lippe
pexapul ebed oiez L+(X+.PPe]—[X+1PPE] X X 9 4 dd 94 X'ippe
100.1p 86ed 0107 L +[1ppe]—[ippe] X X S z dd 93 ippe AJ
‘Ajuo X J8isiBay ybnoayy xepuj "UOHEOO] AJOWBW JO SIUBIUOD JUBLIBIOU| ONI T
(‘MO110q 8y} 3O Juswajdwod ay} S anjeA Aued jeyy B10N) ~
pexapul 83n|osqy O-[A+91L4ppE]-VY — V¥ 3
40 J—[X+9L.PPE]-V — ¥V X X X | X R4 € bbdd LOXxLLLLL A 40 X'glippe s
1%8.1p pepueixy o-l[9lippe]-V — V X X X | X v € bbdd Q3 gLippe
10841pul paxapul-}sod O—[A+[ippe’L +1pPE]J-Y — ¥ X | X X | X .S z dd |4 A't4ppE) 3
1084ipul paxapul-aid O-I([X+ippeEj]—-V¥ — ¥V X | X X | X 9 z dd 13 (X'4ppe)
pexepul ebed oiez 2—[X+ipPpe)-V — V X | X X | X v z dd g4 X'ippe
100u1p abed osez Q-lppe]-¥ — ¥V X | X X | X € 4 dd g3 ippe
*10}|NWINd
-0y }O SJUBJUOD WO ‘MOJIOQ UM ‘UOIIED0| AIOWSW 4O SHUBUO0D JoeNgng o8gs
oz v|a]|A|S]spoueg
pewuoyied uoneiedQ se)Ag epoo 30elq0 uopdNAsuY| odA)
smeis 32010

(PeNUNUOY) 185 UONONIISU| ZOGY @Yl JO AlBWWINg v “p-g 9|qe L

3-22

oo —» ¢ _.V.

[X+9 Lippe] X | X X L € bbdd 3} X'9Lippe
[91ippe) X | X X 9 € bbdd 30 914ppe p

[X+1ippe] X | X X 9 4 dd g| X'ippe
[4PpeE] X | X X S 4 dd g0 ippe 3
‘Aluo A.
X JoysiBay ybnosyl xepu| ‘uo1E20| AJOWSBW JO SIUBIUOD 13| HIYS dlBWYILY asv 3
<
cw—— (J=|5] .

(X+91i.ppe] X | X X L € bbdd 37 X'91ippe
1914ppe] X | X X 9 € dd 39 gLippe 3

[x+4ppe] X | X X 9 (4 dd g9/ X“ppe
[4ppe] X | X X S z dd g9 ippe S
-Ajuo X 183s1bay 8
yBnouyy xapuj ‘Aue)d ybnoayy ‘1yBu 31q 3uo UOIIEIO| AJOWBW 40 SIUBIUOD 3110y HOoHd m
&
p— Ny 5
-]
2
H
[X+9 Lippe] X | X X L € bbdd 3¢ X'9Lippe M

[9L1ppe] X | X X 9 € bbdd 3z 9Lippe

[X+4ppe] X | X X 9 4 dd gg¢ X'ippe

[4ppe] X | X X S [4 dd gz ' ippe

"Ajuo X eysibey
ybBnouy) xapuj "Auied ybnouy) 348} 311q BUO LUONEIO] AJOWBW 4O SIUBIUOD BlBI0Y 104
F N I 4 I]la S spoued
pewuiojied uonesedQ - sejAg 8pod 3108iq0 uononnsu| edA)
smes 01D

(PaNUNUOD) 18 UONONIISU| ZOGY BYl JO AlBwWNS v “p-¢ d|gel

3-23

ejeipawiw|

elep—A
"elep ejeipaww! Yum A JeisiBoy xepu| peoq X X 4 4 dd ov elep AQY
ejep—x
‘elep ejeipaww! Yim X 183siBay xepu) peo X X z 4 dd zv elep Xal
elep—y
"2lEp @leIpaLIWI Y}iM JOJEINWNDDY peoT X X z 4 dd v elep val
-
.‘.— 0 --——— NT) 3s
<8
o<
[X'91Jppe] X | X 0 L € bbdd 39 X'914ppe Tz
[912PpE) x | x 0 9 € bbdd 3¢ 91.ppe 8 g
[X+1PPE) x | x 0 9 z dd gg X'1ppe 2 E
[+pPE] X | X 0 S 4 dd ot ippe [
‘Ajuo ¥ J83s1Bey ybnoiyy xepuy uones0| AJowaw Jo sUBU09 Jybu 1ys |ea1Boy ¥s1 W 2
] a
powiopied uonesedQ il i s spolied sejAg 8po9 3108(q0 uononAsu| odA)
J— *¥0019

(PANUNIUOD) 189S UONONIISU| ZOGQ dY} JO AlBWWNG ¥ “p-€ 8|qeL

3-24

dwnp

(1egel}—d 40 jeqei—Jd [€ bbdd 99 (12gey)
‘Buissasppe 10841pul JO papusixa Buisn ‘uoneo0] Mau 03 dwnp € € bbdd o¢ 13qe| dWr
elep—A
‘pajoaye ase sbejy sniels ayy AjuQ “A 1815168y xapu| Yim ajeipswuil asedwo) z z dd 0D elep AdD
elep—x
‘payoaye ase sbeyy snieys ayy AjuQ "X Jeistbay xapu| yim ajelpaww diedwo)d z z dd 03 ejep Xdd
(‘M0110q 8y} j0 JuaWBd|dwOod 8Y) S! anjeA Ale) jey) 3I0N)
o-elep—y—vy -
*1018|NWNJDY WOJ4) ‘MO01I0Q Y3IM ‘Bjeipawiwl J0BIQNS z 4 dd g3 ejep DgS m
elep A V—v 2
*101R|NWNDDY YIM ajeipawiwl 4O z z dd 60 ejep YHO m
eiep A Y—v o
*101B|NWNJOY Y}M 3leIpawwl HO-AISN[OX] z z dd g¢ eep yo3i M
ejep-vy m
‘pajoayye ase sBejy smeys ay) AjuQ "JOIBINWNDIOY YIIM djeipawl dsedwo) z z dd g2 elep 4o
elepvy—v
"101BINWINODY YUM dieIpawWw! ONY z z dd 62 elep aNy
O+elep+vy—y
‘apoyy [ewtoaq
ul piea jou si Beyy o187 8y] "101e|NWNIOY O} ‘ALED YlM B)BIPBWIWI PPY z z dd 69 ejep DAV
'la spoued
pewioyied uonesedg selAg epo) 198(q0 uoponAsU| odAl
smeg %9010

(PaNUNUOY) 185 UONINIISU| ZOGY BY} JO AJBWWNS v “p-€ d[ge]

3-25

‘'$JN220

ebed Jayioue 0} youeiq j1 spoued ¥0|2 oM} ppe ‘eBed ewes ul UOHEDO| 0} SIND00 YIURIq Ji poied %¥00j0 BUO PPV,

dsip+0d—0d Uaui ‘L=A 4| @
"18s s1 Beyy Mo|peAQ J1 8Anee) Youelg Z T dd oL dsip SA8 m
dsIp+0d—0d Usyl ‘0 = A Jl g
‘pases|o si Bejy mojpeAQ J 8Aneja) Youesg ol [4 dd 0§ dsip OAG]
dsip+2d—0d Uayl ‘'0=S }l [
‘@A1lISOd S| 3NSal JI dAe|as youelg z dd o1 dsip 148 2
dsip+03d—0d Usuyl ‘'0=2 Ji g
0482 J0U S! }NSa1 JI 8ANR|8) youe.g I dd 0Q dsip 3NG 3
dsip+2d—0d uay ‘L=S jI
‘aAnebau si }nsal j1 aAnejel youelg 4 dd og dsip |Ng
dsip+0d—0d Ueyl ‘L=Z §|
‘0482z 0} |enbe S| }nsal yi 8Ane|es youelg 4 dd 04 dsip D38
dsip+0d—0d uayi ‘1=2 ji
s s| Bejy Aued j1 aAne|as youeig "z z dd og dsip 508
dsip+9d—0d Uy ‘0=2 #
‘pases|d si Bejy Aue) y aanejes youeig o [4 dd 06 dsip 908
‘uonoNISUl youesg ey Buimo|joy uononss
-ui 8y} 0} Julod 0} pejusweIdul UBeq sey Jejuno) weiboid eyy Jelje Jejuno)
weiBoig By} 0} peppe si juswade|dsip 8y} ‘pelysnes SI UOIIPUOD By} §|
1SUONONIISUI UOKIPUOD-UO-youelg ||e 104 Buimojjo) 8y} 8loN
t]a spolied
peuuopied uopieiedg Ho010 solAg epo) 198(q0 uoylonysu| edA}
smeg

(PaNUNUOD) 185 UONONIISU| ZOGY 8Y} JO Alewwng v ‘p-¢ dlge]

3-26

F]
a
X—dS @
‘183ul0d }OBIS 0} X JeisiBey xapu| JO S}usjuod BAOW z I V6 SX1 m
dS—X F4
"X 1015168y X8pu| 0} J8jUI0g ¥IBIS JO SJUBJUOD BAOKY z L ve XS1 ,m.
A=V g
*10}B|NWNDDY O} A J8isiBay xapu| JO S}usU0D aAopy 2z L 86 VAL 2
V—A e
*A 1815168y x8puj 0} SIUBJUOD 10}RINWINDIY BAOW z l 8v AVL °
X—v
*10}8|NWNJY 0} X J8)siBay Xapu| 40 SJUBUOD BAOW Y4 I v8 XL
V—X
X 1815168y xapuj 0} S}UBIUOD 10JB|MINIDY BAOW 4 L v XvLl
L +3d—0d
Z+dS—dS %
[2+dS]—(IH)2d g
[L+dS]—(07)0d 2
‘8UNIN04 By} Pa|ED YDIYM HSI 8y} 1a3je uoy m.
-oNnysul 8y} 03 Julod 0} Jajuno) weiboid Buizuawalour ‘aunnNoIgNs WO} UINBY 9 l 09 S1H o
18qe|—2d 2
Z-dS—dS 3
(0NOd—[L—dS] F]
(IH)9d—1ds] g
‘uonons 3
-ul YS9y} 30 83Aq ise| 8y} 0} sjutod Jsjuno weiboid paiois 8yl jey) 80N ‘uony
-ONJIsul 8y} JO € Pue Z S8IAQ Ul uealb ssesppe je BuiuuiBeq suinoigns o3 dwnp 9 € bbdd oz |eqe| ysr
! a spoueqd
pewiojied uoneiedQ w0015 selAg epo) 19e8lq0 [[LITEL VL] edAyL
smes

(PaNUIIUOD) 185 UONONIISU| ZOGY Y} JO AJIBWWNS Y 'p-g d|qeL

3-27

v

.‘n—o‘lh—‘lo

*1018|NWNDY JO SIUBIUOD JyBis 11ys [edibon z i Vb v s
v
) Lo — = —.'.
“10}8|NWNJJY JO SJIUBJUOD 148 HIYS WYY] L Yo v sy
v =
-3
Q
o t—— . | 0|
g
‘Aused ybnoays Y61 101INWINDDY 4O SIUBIUOD BlejoY 4 L v9 V HOH m
\ g
p—— Ny
‘Au1ed ybnouyy 148] J01RINWNDDY JO SIUBIUOD 3)ej0Yy z L ve Vv 104
L+A—A
‘A 4835160y X8pu| 40 SIUBIUOD JUBWBIOU| 4 l 80 ANiI
L+X—X
X 18)s168Y X8pu| 4O SJUBIUOD JUBWBIOUY| k4 l 83 XNi
L=A—A
‘A J8)s1Bay x8puj JO SUBU0D Juswaldeq z L 88 A3a
L=X—X
‘X 1815169y X8pu| JO SJUSIUOD JUBWAINEQ 4 3 v X3a
'|a spoued
pewiopey uopeiedo i sejAg epo) 39elq0 uoponisu| edA)
snes w001y

(PANUIIUOD) 185 UONONIISU| ZOGY 89U} JO Alewwng v “p-€ dlgel

3-28

1—8
L=l
[3444)—(00d
(4444]—(IH)2d
€-dS—dS
d—[Z~dS]
(0Nod—([1-dS]
(IH)2d—I[dS]
'3O8} BY} UO PBAES SI }I 81043G 3IM) PajuBW
-a10ul st 123un0) weiboig ayy ‘pajqesip aq jouued HHE 1dnusjul pawwesboly L L L 00 NHE
L+0d—02d
€+dS—dS
[€E+dS]—(IH)Od
[2+dS]—(07)0d
[L+dS]—d
snje}g 210358, [3dNIIBUI WO UINIBY X X X X X X 9 1 oty 114
L=l
sydnusju a|qesiq L z L 8L 13s
0—I
*19)s16a1 snjeyg 4o 11q a|gesip idnueiul Buues|d Aq sydnuaiur a|jqeul 0 z 1 8S (o]

1dnueju)

L+dS—dS

[L+dS]—d

‘(..1INd,,) ¥0lS j0 do} wouy aisibas snjeyg peo X | X | X [X |X]|X 14 L :14 did
L-dS—dS

d—[dS]

*}OB1S OJUO SIUBUO0D 18)sIBas smeyg ysng € l 80 dHd
L +dS—dS

[L+dS]—V

1ind,.) %9e1S j0 dO} WO} 10je|NWNIJY PeoT X X v i 89 vid
L=dS—dS

v—[dS]

}OB}S OJUO SJUBJUOD 10}BINWINDIDY Ysng € L 234 VHd

RS

2 4 | a A S s
polied

pew.ojied uoneiedo - solAg epoy 19elq0 uononnsuj CLIYY

smeis #2010

(PaNUNUOY) 185 UONONIISU| ZOGY BY) JO AlBWWNS v “H-€ d|qe

3-29

uonessdQ oN [4 i v3 dON
0—A
Bejy mojpienQ Jes|) 0 4 L 88 AD
l1—a
BPOW |ewtda(189S l 4 l 84 ass »
0—a 1
Spo [ew19aQ Jes|) 0 4 1 8d an m
1—2
Bey Auegies | L 4 L 8¢ 03s
0—2J
beyy Aue) sea)) o]} 4 l :13 o710
pew.ioped uoneiedg ° z : ajn s a”MMMu se)Ag epo) 120(q0 uononAsy| edA)
smeig

(PBNUIUOY) 185 UONONIISU| ZOGY Y} JO AlBWWINS v "p-g 8jqel

3-30

Table 3-5. 6502 Instruction Object Codes in Numerical Order

Object Code Instruction Object Code Instruction
00 BRK 68 PLA
01 pp ORA (addr,X) 69 pp ADC data
05 pp ORA addr B6A ROR A
06 pp ASL addr 6C ppaq JMP (1abel)
08 PHP 6D ppaq ADC addr16
09 pp ORA data 6E ppaq ROR addr16
0A ASL A 70 pp BVS disp
0D ppaq ORA addr16 71 pp ADC (addr).Y
OE ppaq ASL addr16 75 pp ADC addr,X
10 pp BPL disp 76 pp ROR addr,X
11 pp ORA (addr),Y 78 SEI
15 pp ORA addr,X 79 ppaq ADC addr16,Y
16 pp ASL addr,X 7D ppaq ADC addr16,X
18 cLe 7E ppaq ROR addr16,X
19 ppaq ORA addr16,Y 81 pp STA (addr.X)
1D ppaq ORA addr16.X 84 pp STY addr
1E ppaq ASL addr16.X 85 pp STA addr
20 ppaq JSR label 86 pp STX addr
21 pp AND (addr,X) 88 DEY
24 pp BIT addr 8A TXA
25 pp AND addr 8C ppaq STY addr16
26 pp ROL addr 8D ppaq STA addr16
28 PLP 8E ppaq STX addr16
29 pp AND data 90 pp BCC disp
2A ROL A 91 pp STA (addr),Y
2C ppaq BIT addr16 94 pp STY addr,X
2D ppaq AND addr16 95 pp STA addr,X
2E ppaq ROL addr16 96 pp STX addr,Y
30 pp BMI disp 98 TYA
31 pp AND (addr),Y 99 ppaq STA addr16,Y
35 pp AND addr,X 9A TXS
36 pp ROL addr,X 9D ppaq STA addr16,X
38 SEC AO pp LDY data
39 ppaq AND addr16.Y Al pp LDA (addr,X)
3D ppaq AND addr16,X A2 pp LDX data
3E ppaq ROL addr16,X A4 pp LDY addr
40 RTI A5 pp LDA addr
41 pp EOR (addr,X) A6 pp LDX addr
45 pp EOR addr A8 TAY
46 pp LSR addr A9 pp LDA data
48 PHA AA TAX
49 pp EOR data AC ppaq LDY addr16
4A LSR A AD ppaq LDA addr16
4C ppaq JMP label AE ppaq LDX addr16
4D ppaq EOR addr16 BO pp BCS disp
4E ppaq LSR addr16 B1 pp LDA (addr),Y
50 pp BVC disp B4 pp LDY addr,X
51 pp EOR (addr),Y 85 pp LDA addr,X
55 pp EOR addr, X B6 pp LDX addr,Y
56 pp LSR addr,X B8 [{RY]
58 cul B9 ppaq LDA addr16,Y
59 ppaq EOR addr16,Y BA TSX
5D ppaq EOR addr16,X BC ppaq LDY addr16,X
5E ppaq LSR addr16,X BD ppaq LDA addr16.X
60 RTS BE ppaq LDX addr16,Y
61 pp ADC (addr,X) CO pp cPY data
65 pp ADC addr C1 pp CMP (addr.X)
66 pp ROR addr C4 pp cPY addr

3-31

Table 3-6. 6602 Instruction Object Codes in Numerical Order (Continued)

Object Code Instruction Object Code Instruction
C5 pp CMP addr E4 pp CPX addr
C6 pp DEC addr ES pp SBC addr
cs INY E6 pp INC addr
C9 pp CMP data E8 INX
CA DEX E9 pp SBC data
CC ppaq CPY addr16 EA NOP
CD ppaq CMP addr16 EC ppaq CPX addr16
CE ppaq DEC addr16 ED ppqq SBC addr16
DO pp BNE disp EE ppqq INC addr16
D1 pp CMP (addr),Y FO pp BEQ disp
D5 pp CMP addr,X F1 pp SBC (addr),Y
D6 pp DEC addr,X F5 pp SBC addr,X
D8 CLD F6 pp INC addr,X
D9 ppaq CMP addr16,Y F8 SED
DD ppqq CMP addr16.X F9 ppaq SBC addr16.Y
DE ppaq DEC addr16,X FD ppaq SBC addr16,X
EO pp CPX data FE ppaq INC addr16,X
E1 pp SBC (addr,X)

3-32

The following symbols are used in the object codes in Table 3-6.

Address-mode Selection:

aaa

bb

bbb

cc

ddd

pp
aq

000
001
010
011
100
101
110
11

001
010
011
101
111

00
01
1

000
001
011
101
111

pre-indexed indirect - {addr.X)
direct - addr

immediate - data

extended direct - addr16
post-indexed indirect - (addr).Y
base page indexed - addr.X
absolute indexed - addr16.Y
absolute indexed - addr16,X

direct - addr

extended direct - addr16
base page indexed - addr.X
absolute indexed - addr16.X

direct - addr

accumulator - A

extended direct - addr16

base page indexed - addr.X; addr.Y in STX
absolute indexed - addr16.X; addr16,Y in STX

immediate - data
direct - addr
extended direct - addr16

immediate - data

direct - addr

extended direct - addr16

base page indexed - addr.Y in LDX: addr.X in LDY
absolute indexed - addr16.Y in LDX; addr16.X in LDY

the second byte of a two- or three-byte instruction

the third byte of a three-byte instruction

one bit choosing the address mode:

0
1

direct - addr
extended direct - addr16

one bit choosing the JMP address mode:

0
1

extended direct - label
indirect - (label)

3-33

Table 3-6. Summary ot 6502 Object Codes with 6800 Mnemonics

Clock MC6800
i ject
Mnemonic Operand Object Code Bytes Periods Instruction

ADC 011aaa01 ADCA
data PP 2 2 data8
addr pp 2 3 addr8
addr,X pp 2 4 index
(addr,X) PP 2 6
(addr),Y PP 2 5°
addr16 pPQq 3 4 addr16
addr16,X ppaq 3 4
addr16,Y pPQQ 3 4"

AND 001a3aa01 ANDA
data pp 2 2 data8
addr PP 2 3 addr8
addr,X pp 2 4 index
(addr,X) pp 2 6
(addr),Y pp 2 5°
addr16 ppaq 3 4 addr16
addr16,X pPQq 3 4°
addr16,Y ppaq 3 4°

ASL A 000bbb10 1 2 ASLA
addr PP 1 5
addr,X PP 2 6 ASL index
addr16 PPQQ 3 6 ASL addr16
addr16,X ppaq 3 7

BCC disp 90 pp 2 2° BCC disp

BCS disp BO pp 2 2 BCS disp

BEQ disp FO pp 2 2 BEQ disp

BIT 0010x100 BITA
addr op 2 3 addr8
addr16 ppPaq 3 4 addr16

BMI disp 30 pp 2 2 BMI disp

BNE disp DO pp 2 2° BNE disp

BPL disp 10 pp 2 2 BPL disp

BRK 00 1 7 (SWi)

BvC disp 50 pp 2 2 BVC disp

BVS disp 70 pp 2 2* BVS disp

cLc 18 1 2 cLC

CcLD D8 1 2

CLI 58 1 2 CLl

CLv B8 1 2 CLv

*Add one clock period if page boundary is crossed.
**Add one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.

3-34

Table 3-6. Summary of 65602 Object Codes with 6800 Mnemonics (Continued)

R . Clock MC6800
Mnemonic Operand Object Code Bytes Periods Instruction

CMmP 11023301 CMPA
data pp 2 2 data8
addr pp 2 3 addr8
addr, X pp 2 4 index
(addr,X) pp 2 6
(addr),Y pp 2 5°
addr16 ppaq 3 4 addr16
addr16,X ppaq 3 4
addr16,Y ppaq 3 4*

CPX 1110cc00 CPX
data pp 2 2 data8
addr pp 2 3 addr8
addr16 ppaq 3 4 addr16

CcPY 1100cc00
data PP 2 2
addr pp 2 3
addr16 ppag 3 4

DEC 110bb110 DEC
addr pp 2 5
addr, X pp 2 6 index
addr16 ppaqQ 3 6 addr16
addr16.X ppaq 3 7

DEX CA 1 2 DEX

DEY 88 1 2

EOR 010a2a01 EORA
data pp 2 2 data8
addr pp 2 3 addr8
addr, X pp 2 4 index
(addr,X) pp 2 6
(addr),Y pp 2 5°
addr16 ppaq 3 4 addr16
addr16,X ppaq 3 4°
addr16,Y ppaq 3 4

INC 111bb110 INC
addr [s]¢] 2 5
addr,X PP 2 6 index
addr16 ppaq 3 6 addr16
addr16,X ppaq 3 7

INX E8 1 2 INX

INY c8 1 2

JMP 01y01100 JMP
label ppaq 3 3 addr16
(label) ppaq 3 5

JSR label 20 ppqq 3 6 JSR addr16

*Add one clock period if page boundary is crossed.
**Add one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.

3-35

Table 3-6. Summary of 6502 Object Codes with 6800 Mnemonics (Continued)

a B N Clock MC6800

op Object Cade Bytes Periods Instruction

LDA 101aaa01 LDAA
data pp 2 2 data8
addr pp 2 3 addr8
addr,X pp 2 4 index
(addr,X) pp 2 6
{addr),Y pp 2 5°
addr16 ppaq 3 4 addr16
addr16.X ppaq 3 4°
addr16,Y pPAq 3 4°

LDX 101ddd10 LDX
data pp 2 2 {data8)
addr pp 2 3 addr8
addr,Y pp 2 4 (index)
addr16 pPaq 3 4 addr16
addr16.Y ppaq 3 4°

Loy 101ddd00
data [s]¢] 2 2
addr pp 2 3
addr,X pp 2 4
addr16 ppaq 3 4
addr16,X ppaq 3 4°

LSR A 010bbb10 1 2 LSRA
addr pp 2 5
addr,X pp 2 6 LSR index
addr16 ppaq 3 6 LSR addr16
addr16.X pPaq 3 7

NOP EA 1 2 NOP

ORA 000aaa01 ORAA
data pp 2 2 data8
addr pp 2 3 addr8
addr,X pp 2 4 index
(addr,X) pp 2 6
(addr),Y pp 2 5°
addr16 ppaq 3 4 addr16
addr16,X ppaq 3 4°
addr16.Y pPQq 3 4

PHA 48 1 3 PSHA

PHP 08 1 3

PLA 68 1 4 PULA

pPLP 28 1 4

ROL A 001bbb10 1 2 ROLA
addr pp 2 5
addr,X pp 2 6 ROL index
addr16 pPQq 3 6 ROL addr16
addr16,X ppaq 3 7

*Add one clock period if page boundary is crossed.
**Add one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.

3-36

Table 3-6. Summary of 6602 Object Codes with 6800 Mnemonics (Continued)

M . o d Object Clock MC6800
nemonic peran ject Code Bytes Periods Instruction
ROR A 011bbb10 1 2 RORA
addr PP 2 5
addr,X pp 2 6 ROR index
addr16 pPaq 3 6 ROR addr16
addr16,X PPqaq 3 7
RTI 40 1 6 RTI
RTS 60 1 6 RTS
SBC 111aaa01 SBCA
data pp 2 2 data8
addr pp 2 3 addr8
addr,X pp 2 4 index
(addr,X) pp 2 6
(addr),Y pp 2 5°
addr16 ppaq 3 4 addr16
addr16,X pPQaq 3 4°
addr16,Y ppaq 3 4°
SEC 38 1 2 SEC
SED F8 1 2
SEI 78 1 2 SEl
STA 100aaa01 STAA
addr PP 2 3 addr8
addr,X pp 2 4 index
{addr,X) pp 2 6
(addr),Y pp 2 6
addr16 pPaq 3 a4 addr16
addr16,X pPaq 3 5
addr16,Y ppPAq 3 5
STX 100bb110 STX
addr pp 2 3 addr8
addr,Y pp 2 4 (index)
addr16 ppaq 3 4 addr16
STY 100bb100
addr pp 2 3
addr,X pp 2 4
addr16 ppag 3 4
TAX AA 1 2
TAY A8 1 2
TSX BA 1 2 TSX
TXA 8A 1 2
TXS 9A 1 2 TXS
TYA 98 1 2

*Add one clock period if page boundary is crossed.
**Add one clock period if branch occurs to location in same page; add two clock periods if branch to another

page occurs.

3-37

ADC — ADD MEMORY, WITH CARRY, TO ACCUMULATOR

This instruction uses eight methods of addressing data memory and allows the con-
tents of data memory and the carry status to be added to the Accumulator. The eight
methods of addressing memory are:

1) Immediate - ADC data

2) Absolute (direct) - ADC addr16

3) Zero page (direct) - ADC addr

4) Pre-indexed with Index Register X - ADC (addr.X)

5) Post-indexed with Index Register Y - ADC (addr).Y

6) Zero-page indexed with Index Register X - ADC addr.X

7) Absolute indexed with Index Register X - ADC addr16.X

8) Absolute indexed with Index Register Y - ADC addr16.Y

The first byte of object code determines which addressing mode is selected as foliows:

0 <@——Bit Number
%, Object Code

Bit Value Hexadecimal . Number

for aaa Object Code Addressing Mode of bytes
000 61 Indirect. pre-indexed with X 2
001 65 Zero page (direct) 2
010 69 Immediate 2
011 6D Absolute (direct) 3
100 71 Indirect. post-indexed with Y 2
101 75 Zero page indexed with X 2
110 79 Absolute indexed with Y 3
111 7D Absolute indexed with X 3

We may illustrate the ADC instruction with immediate addressing as shown below. For
other addressing modes, consult either the discussion of addressing modes or the
description of other arithmetic or logical instructions since other illustrations show
different addressing modes.

Memory

Program
Memory

69 mmmm

Yy mmmm + 1
mmmm + 2

3-38

Add the contents of the next program memory byte (addressing mode selected by bits
2, 3, and 4 of the byte in the instruction register) and the Carry status to the Accumula-
tor. Suppose xx =3A1g, yy =7C16, C = 1. After the instruction

ADC #$7C
has been executed. the Accumulator will contain B71g.

3A 00111010
7C 01111100
Carry 1

10110111

No carry. set C to O=+— Nonzero result sets Z to O
1 sets S to 1+—

’
OM1=1 SetVtol

ADC is the only 6502 addition instruction. To use it in single-byte operations or to add
the low-order bytes of two multibyte numbers, a previous instruction must explicitly set
Carry to zero so that it does not affect the operation. Note that the 6502 microprocessor
has no addition instruction that does not include the Carry. ADC will perform either bi-

nary or decimal (BCD) addition, depending on whether the Decimal Mode status is O or
1.

3-39

AND — AND MEMORY WITH ACCUMULATOR

This instruction logically ANDs the contents of a memory location with the contents of
the Accumulator. This instruction offers the same memory addressing options as the
ADC instruction. The first byte of object code selects the'addressing mode as follows:

7654 3 21 0<s——Bit Number

EJEIIEIEIHEII § Object Code

Bit Value Hexadecimal . Number

for aaa Object Code Addressing Mode of Bytes
000 21 Indirect, pre-indexed with X 2
001 25 Zero page (direct) 2
010 29 Immediate 2
011 2D Absolute (direct) 3
100 31 Indirect, post-indexed with Y 2
101 35 Zero page indexed with X 2
110 39 Absolute indexed with Y 3
111 3D Absolute indexed with X 3

We will illustrate the AND instruction with zero page (direct) addressing. See the dis-
cussion of addressing methods and other arithmetic and logical instructions for exam-
ples of the other addressing modes.

Data

SveBDI ZC Memory
PO L 1 T IX]]
Yy 00qq
A XX xx A yy
X
Y Program
SP — Memory
PC mm mm
25 mmmm
qq mmmm + 1
mmmm + 2

Logically AND the contents of the selected memory byte with the Accumulator and
store the result in the Accumulator. Suppose xx =FC1g and yy = 131g. After the in-
struction

AND $40
(assuming that yy is in memory location 0040), the Accumulator will contain 1014:

FC = 11111100
= 00010011

00010000

Oinbit7 setsS to0 Nonzero result sets Z to O

AND is a frequently used logical instruction.

3-40

ASL — SHIFT ACCUMULATOR OR MEMORY BYTE LEFT

Perform a one-bit arithmetic left shift of the contents of the Accumulator or the con-
tents of the selected memory byte.

First. consider shifting the Accumulator:

Data
svebDi12zZC Memory
PIX X|X
A [0
X
Y Program
sp = Memory
PC mm mm
0A mmmm
mmmm + 1

Suppose that the Accumulator contains 7A1g. Performing an
ASL A

instruction will set the Carry status to O, the Sign status to 1. the Zero status to 0, and
will store F41g in the Accumulator.

Carry Accumulator

X<+—01111010=—0
0 11110100

Sets S to 1 Nonzero result sets Z to O

The ASL instruction uses four data memory addressing options:

1) Zero page (direct) - ASL addr

2) Absolute (direct) - ASL addr16

3) Zero page indexed with Index Register X - ASL addr.X
4) Absolute indexed with Index Register X - ASL addr16,X

The first byte of object code determines which addressing mode is selected as follows:

7 6543 2 1 0<e——8it Number

ﬂﬂﬂﬂﬂnnﬂ ; Object Code

3-41

Bit Value Hexadecimal . Number
forbb | Object Code Addressing Mode of Bytes
00 06 Zero page (direct 2
01 OE Absolute (direct) 3
10 16 Zero page indexed with X 2
1 1E Absolute indexed with X 3

We will show the ASL instruction with absolute (direct) addressing. The other addres-
sing modes are shown in other instruction descriptions.

Data
sveBD12ZC Memory

[¢]
Pl LI T Ix]X]

A+ Peeaa

A
X
Y Program
sp ! Memory
OE mmmm
qq mmmm + 1
pp mmmm + 2
mmmm + 3

Suppose ppag = 3F8616 and the contents of ppag are CB1g. After executing an
ASL $3F86

instruction. the contents of location 3F861¢ will be altered to 961g and Carry will be
set to 1:

Carry (3F8616)

X<+—11001011-+—0
1 10010110

Sets S to 1 Nonzero result sets Z to O

The ASL instruction is often used in multiplication routines and as a standard logical in-
struction. Note that a single ASL instruction multiplies its operand by 2.

3-42

BCC — BRANCH IF CARRY CLEAR (C = 0)

This instruction is a branch with relative addressing in which the branch is only ex-
ecuted if the Carry status equals O; otherwise. the next instruction is executed.

BCC
S —
90

In the following instruction sequence:

$40

the ADC $40 instruction is executed right after the BCC instruction if the Carry status
equals 0. The AND #8$7F instruction is executed if the Carry status equals 1. The rela-
tive addressing operates as shown in the next illustration and as shown in the discus-
sion of addressing methods presented earlier. No statuses and no registers — except
the Program Counter — are affected.

Data
sveD1ZC Memory
P
A
X
v Program
SP Memory
PC mm mm
90 mmmm
" mmmm + 1
mmmm + 2
]
[]
1]
mmmm + 1

If the Carry is zero. this instruction adds the contents of the second object code byte
(taken as a signed 8-bit displacement) to the contents of the Program Counter plus 2;
this becomes the memory address for the next instruction to be executed. The previous
contents of the Program Counter are lost.

3-43

BCS — BRANCH IF CARRY SET (C = 1)

This instruction operates like the BCC instruction except that the branch is only ex-
ecuted if the Carry status equals 1; otherwise. the next instruction is executed.
BCS

- -
BO

In the following instruction sequence:
C=1

$40

the ADC $40 instruction is executed right after the BCS instruction if the Carry status
equals 1. The AND #$7F instruction is executed if the Carry status equals O.

BEQ — BRANCH IF EQUAL TO ZERO (Z = 1)

This instruction is just like the BCC instruction except that the branch is executed if the
Zero status equals 1; otherwise, the next instruction is executed.

BEQ

FO

In the following sequence:

$40

the ADC $40 instruction is executed right after the BEQ instruction if the Zero status
equals 1. The AND #$7F instruction is executed if the Zero status equals O.

3-44

BIT — BIT TEST

This instruction logically ANDs the contents of the Accumulator with the contents of a
selected memory location, sets the condition flags accordingly. but does not alter the
contents of the Accumulator or memory byte. The only addressing modes allowed are
absolute (direct) and zero page (direct). The first byte of object code determines the ad-
dressing mode as follows:

7654321 O <@——Bit No.

lofof1fofxf1]o]o] Object Code

Bit Value Hexadecimal . Number
for x Object Code Addressing Mode of Bytes

0 24 Zero page (direct) 2

1 2C Absolute (direct) 3

We will illustrate the BIT instruction using absolute (direct) addressing. For the zero
page mode, see the AND instruction and the discussion of addressing modes. We
should note that BIT has a rather unusual effect on the status flags. since it sets the Z
flag according to the result of the logical AND operation but sets the S and V flags ac-
cording to bits 7 and 6 of the contents of the memory location being tested: that is,

Z=1ifAAM=0:Z=0ifA A M £0

S =bit 7 of (M)
V =bit 6 of (M)
Data
svsebpD1l1 zZC Memory
plzlsl L [x|
\A4 pPaq
A XX o
X Program
v Memory
SP
PC mm mm
2C mmmm
qq mmmm + 1
pp mmmm + 2

mmmm + 3

3-45

Logically AND the contents of the Accumulator with the contents of the specified
memory location and set the Zero condition flag accordingly. Set the Sign and Overflow
condition flags according to bits 7 and 6. respectively. of the selected memory location.
Suppose xx = AB1g. yy =E016. and ppaq = 164116. After the instruction

BIT $1641

has executed. the Accumulator will still contain A61g. and location 16411g will still
contain EO1g, but the statuses will be modified as follows:

A6 = 10100110
EO = 117100000
10100000

Sets Sto 1 SetVto1

Nonzero result sets Z to O

BIT instructions frequently precede conditional Branch instructions. BIT instructions are
also used to perform masking functions on data.

3-46

BMI — BRANCH IF MINUS (S = 1)

BMI
- —

30

This instruction works like the BCC instruction except that the branch is executed only
if the Sign status is 1; otherwise. the next instruction is executed.

In the following instruction sequence:
S=1

$40

the ADC $40 instruction is executed right after the BMI instruction if the Sign status is
1. The AND #$7F instruction is executed if the Sign status is 0.

BNE — BRANCH IF NOT EQUAL TO ZERO (zZ = 0)

BNE
-

DO

This instruction is identical to the BCC instruction except that the branch is executed
only if the Zero status is O; otherwise. the next instruction in sequence is executed.

In the following instruction sequence:
Z=0

$40

the ADC $40 instruction is executed right after the BNE instruction if the Zero status is
0. The AND #8$7F instruction is executed if the Zero status is 1.

3.47

BPL — BRANCH IF PLUS (S = 0)

BPL
-

10

This instruction operates like the BCC instruction except that the branch is executed
only if the Sign status is O; otherwise. the next instruction in sequence is executed.

In the following instruction sequence:
S=0

$40

the ADC $40 instruction is executed right after the BPL instruction if the Sign status is
0. The AND #$7F instruction is executed if the Sign status is 1.

3-48

BRK — FORCE BREAK (TRAP OR SOFTWARE INTERRUPT)

BRK
~——~

00

The Program Counter is incremented by two and the Break status is set to 1. then the
Program Counter and Status (P) register are pushed onto the Stack. The registers and
the corresponding memory locations into which they are pushed are as follows:

Memory Location Register
(Stack Pointer contains ss at start of instruction execution.)
01ss High byte of Program Counter

Olss — 1 Low byte of Program Counter
O1ss —2 Status (P) register with B =1
(Stack Pointer contains ss — 3 at end of instruction execution.)

The Interrupt Mask bit is then set to 1. This disables the 6502's interrupt service ability.
i.e.. the processor will not respond to an interrupt from a peripheral device. The con-
tents of the Interrupt Pointer (memory addresses FFFE1g and FFFF1g) are then loaded
into the Program Counter.

The BRK instruction can be used for a variety of functions. It can provide a breakpoint
facility for debugging purposes or it can transfer control to a particularly important soft-
ware system such as a disk operating system or a monitor. Note that the programmer
must insert the code required to tell a BRK instruction from a regular interrupt response.
The coding to do this checks the value of the B status flag in the Stack as follows:

PLA :GET STATUS REGISTER

PHA :BUT ALSO LEAVE IT ON STACK
AND #3$10 ;IS BREAK STATUS SET?

BNE BRKP :YES. GO PROCESS BREAK

Note that the operation code for BRK is 00. This choice of operation code means that
BRK can be used to patch programs in fusible-link PROMSs since blowing all the fuses
makes the contents of the word 00. Thus an erroneous instruction can be corrected by
changing the first object code byte to 00 and inserting a patch via the interrupt vector
routine. Remember that a bit in a fusible-link PROM can be set t6 zero (by blowing the
fuse) but cannot be reset to one after the fuse has been blown. Such PROMs are not
erasable.

The operation of the BRK instruction may be illustrated as follows:

(sIv] [tjo]rjz]c]

Data
Memory
P
Olss — 2
mm + 2 JOl1ss — 1
1 mm Oilss
A ss -3
X
Y Program
SP SS Memory
PC mm mm
@ 00 mmmm
mmmm + 1
aq FFFE
pp FFFF

3-49

The final contents of the Program Counter are ppaq where pp represents the contents
of the memory location FFFF1g and qq the contents of memory location FFFEqg. Note

that the Stack is always on page 1 of memory; i.e., the eight most significant bits of the
Stack address are always 011g.

3-50

BVC — BRANCH IF OVERFLOW CLEAR (V = 0)

BVC
-~

50

This instruction operates like the BCC instruction except that the branch is executed
only if the Overflow status is O; otherwise, the next instruction in sequence is executed.

In the following instruction sequence:
V=0

$40

the ADC $40 instruction is executed right after the BVC instruction if the Overflow
status is 0. The AND #$7F instruction is executed if the Overflow status is 1.

BVS — BRANCH IF OVERFLOW SET (V = 1)

BVS
o -
70

This instruction is just like the BCC instruction except that the branch is executed only
if the Overflow status is 1. otherwise, the next instruction in sequence is executed.

In the following instruction sequence:
V=1

$40

the ADC $40 instruction is executed right after the BVS instruction if the Overflow
status equals 1. The AND #$7F instruction is executed if the Overflow status equals O.

3-51

CLC — CLEAR CARRY
CLC
-
18

Clear the Carry status. No other status or register's contents are affected. Note that this
instruction is required as part of a normal addition operation since the only addition in-
struction available on the 6502 microprocessor is ADC. which also adds in the Carry
status. This instruction is also required at the start of a multi-byte addition since there is
never a carry into the least significant byte.

Data
SvBDI 2 C Memory
PLLLL L1 Jof
A
X
Y Program
SP Memory
PC mm mm
18 mmmm
mmmm + 1

3-52

CLD — CLEAR DECIMAL MODE

CLD
——
D8

Clear the Decimal Mode status. No other status or register's contents are affected. This
instruction is used to return the 6502 processor to the binary mode in which ADC and
SBC instructions produce binary rather than BCD results. This instruction may be used
to ensure that the mode is binary in situations where it may be uncertain whether the
Decimal Mode status has been set or cleared most recently.

Data
SsvBaDIl1ZC Memory
pLL L [of 1§]
A
X
Y Program
sP Memory
PC mm mm L @
D8 mmmm
mmmm + 1

3-53

CLI — CLEAR INTERRUPT MASK (ENABLE INTERRUPTS)

CLl
N

58

Clear the interrupt mask bit in the Status (P) register. This instruction enables the
6502's interrupt service ability. i.e., the 6602 will respond to the Interrupt Request con-
trol line. No other registers or statuses are affected. Note that the | bit is a mask or disa-
ble bit. It must be cleared to enable interrupts and set to disable them.

Data
svsDI ZC Memory
P fo] f]
A
X
Y Program
SP Memory
PC mm mm F
58 mmmm

mmmm + 1

354

CLV — CLEAR OVERFLOW

CLv
-
B8

Clear the overflow bit in the Status register. No other registers or statuses are affected.

Note that the 65602 has no SET OVERFLOW instruction.

sSsvseaDI1ZC

JEORERER

SP

PC mm mm

3-55

Data
Memory

Program
Memory

B8

mmmm
mmmm + 1

CMP — COMPARE MEMORY WITH ACCUMULATOR

This instruction subtracts the contents of a selected memory byte from the Accumula-
tor, sets the condition flags accordingly. but does not alter the contents of the Ac-
cumulator or memory byte. This instruction offers the same memory addressing options
as the ADC instruction. The first byte of object code selects the addressing mode as
follows:

7654 3 21 0<a@§—Bit Number

IIEHHEE Object Code

Bit Value Hexadecimal . Number
for aaa Object Code Addressing Mode of Bytes
000 Cc1 Indirect, pre-indexed with X 2
001 C5 Zero page (direct) 2
010 Cc9 Immediate 2
011 cD Absolute (direct) 3
100 D1 Indirect, post-indexed with Y 2
101 D5 Zero page indexed with X 2
110 D9 Absolute indexed with Y 3
11 DD Absolute indexed with X 3

We will illustrate the CMP instruction with pre-indexed indirect addressing (using Index
Register X). See the discussions of addressing methods and other instructions for exam-
ples of the other addressing modes.

Data
svseD1l1zCcC Memory

P --.. qaa 00rr + cc

PP 00rr + cc + 1

vy ppaq
XX = yy
A XX +
X lig
Y Program
sp Memory
PC mm mm
(%] mmmm
cc mmmm + 1
mmmm + 2

Subtract the contents of the selected memory byte from the contents of the Accumula-
tor and set the Sign. Zero, and Carry statuses to reflect the result of the subtraction.
Suppose xx =FF1g, yy =181, rr=2016. cc =231, (00431g) =6D16. and
(004416) =1516. Note that 0043 =rr 4+ cc and we have assumed that
(156D16) =yy = 1816.

3-56

After the instruction
CMP ($23.X)

has been executed. the Accumulator will still contain F615. and memory location
156D 16 will still contain 1816. but the statuses will be modified as follows:

F6 11110110
Twos complement of 18 11101000

11011110
Sets C to 1‘—| l—»Nonzero result sets Z to 0

Sets S to 1

It

Note that C is equal to the resulting carry. not to its complement as is true on many
other microprocessors. Thus C =0 if a borrow is required and C =1 if no borrow is
necessary.

Compare instructions are most frequently used to set statuses before the execution of
Branch-on-Condition instructions.

3-57

CPX — COMPARE INDEX REGISTER X WITH MEMORY

This instruction is the same as CMP except that the memory byte is subtracted from In-
dex Register X instead of the Accumulator. The only addressing modes allowed are im-
mediate. zero page (direct), and absolute (direct). The first byte of object code selects
the addressing mode as follows:

7 654 3 2 1 0 <-ag§g——Bit Number

U1t ffofc]c]o]o] Object Code

Bit Value Hexadecimal . Number
for cc Object Code Addressing Mode of Bytes
00 EO Immediate 2
01 E4 Zero page (direct) 2
10 Used for INX instruction
11 EC Absolute (direct) 3

We will illustrate the CPX instruction with immediate addressing. See the discussion of
addressing methods and other arithmetic and logical instructions for examples of the
other addressing modes.

Data
sSsveDi ZC Memory
PIXLL [[IX]X]
A (D
X
v Program

sp Memory
PC mm mm (
EO mmmm

Yy mmmm + 1
mmmm + 2

Subtract the contents of the selected memory byte from the contents of Index Register
X. The Sign, Zero, and Carry statuses reflect the result of the subtraction in the same
way as shown for the CMP instruction.

3-58

CPY — COMPARE INDEX REGISTER Y WITH MEMORY

This instruction is the same as CMP except that the memory byte is subtracted from In-
dex Register Y instead of the Accumulator. The only addressing modes allowed are im-
mediate. zero page (direct), and absolute (direct). The first byte of object code selects
the addressing mode as follows:

7 6 543 21 0 qg——8it Number

[1[r]ofofcfc]o]o] Object Code

Bit Value Hexadecimal y . Number
for cc Object Code Addressing Mode of Bytes
00 co Immediate 2
01 c4 Zero page (direct) 2
10 Used for INY instruction
1M cc Absolute (direct) 3

We will illustrate the CPY instruction with zero page (direct) addressing. See the discus-
sion of addressing methods and other arithmetic and logical instructions for examples
of the other addressing modes.

Data
sSsvBDI!I ZC Memory

P L T T IX]X]
Yy 00qq

X

v " Program

SpP Memory

PC mm mm (
C4 mmmm
qQq mmmm + 1

mmmm + 2

Subtract the contents of the selected memory byte from the contents of Index Register
Y. The Sign. Zero. and Carry statuses reflect the result of the subtraction in the same
way as shown for the CMP instruction.

DEC — DECREMENT MEMORY (BY 1)

This instruction decrements by 1 the contents of a selected memory location.The DEC

instruction uses four data memory addressing options:

1) Zero page (direct) — DEC addr

2) Absolute (direct) — DEC addr16

3) Zero page indexed with Index Register X — DEC addr,X

4) Absolute indexed with Index Register X —DEC addr16.X

The first byte of object code determines which addressing mode is selected as follows:
7 654 321 0 <«a—8it Number

(11 fo]b]b]1]1]0] Object Code

Bit Value Hexadecimal . Number
forbb | Object Code Addressing Mode of Bytes
00 (ofd] Zero page (direct) 2
01 CE Absolute (direct) 3
10 D6 Zero page indexed with X 2
" DE Absolute indexed with X 3

We will illustrate the DEC instruction with absolute indexed addressing. The other ad-
dressing modes are shown elsewhere.

Data
SveBDi12zcC Memory

PO L T IX]]

vy pPAq + rr

yy =1
A
X rr
Y Program
SP Memory
PC mm mm
DE mmmm
qq mmmm + 1
pp mmmm + 2
mmmm + 3

Decrement the contents of the specified memory byte.
If yy = AB16. ppaag =010016. and rr = 0A16. then after execution of the instruction

DEC $0100.X
the contents of memory location 010A1g will be altered to A416.
A5 = 10100101
Ones complementof 1 = 11111111
10100100
Carry is not altered Nonzero result sets Z to O
Sets S to 1 Overflow (V) is not altered

3-60

DEX — DECREMENT INDEX REGISTER X (BY 1)

This instruction decrements by 1 the contents of Index Register X. The Zero and Sign
statuses are affected.
DEX

e~
CA

The effects of this instruction are the same as those of DEC except that the contents of
Index Register X are decremented rather than the contents of a memory location.

Data
SvebDI zZC Memory
exL LI T IX] |
A
X "
¥ Program
SP Memory
PC mm
CA mmmm

mmmm + 1

3-61

DEY — DECREMENT INDEX REGISTER Y (BY 1)

This instruction decrements by 1 the contents of Index Register Y. The Zero and Sign
statuses are affected just as they are by DEC and DEX.

DEY
- -
88
Data
svebDlzCcC Memory
exL L LI IX] |
A =1
X
Y T Program
SP Memory
PC mm mm
88 mmmm

mmmm + 1

3-62

EOR — EXCLUSIVE-OR ACCUMULATOR WITH MEMORY

Exclusive-OR the contents of the Accumulator with the contents of a selected memory
byte. This instruction offers the same memory addressing options as the ADC instruc-
tion. The first byte of object code selects the addressing mode as follows:

76 54 32 1 0 «ag——Bit Number

(of1]ofa]alajo]1] Object Code

Bit Value Hexadecimal . Number

for aaa Object Code Addressing Mode of Bytes
000 41 Indirect, pre-indexed with X 2
001 45 Zero page (direct) 2
010 49 Immediate 2
011 4D Absolute (direct) 3
100 51 Indirect, post-indexed with Y 2
101 55 Zero page indexed with X 2
110 59 Absolute indexed with Y 3
111 5D Absolute indexed with X 3

We will illustrate the EOR instruction with post-indexed indirect addressing (using In-
dex Register Y). See the discussion of addressing methods and
logical instructions for examples of the other addressing modes.

SvBDI ZC

PO LT Ix]]

A XX
X
Y [l
SP
PC mm

mm

other arithmetic and

Data
Memory
aq 00cc
pp 00cc + 1
. .
. '
)]
yy ppPaq + rr
Program
Memory
51 mmmm
cc mmmm + 1

mmmm + 2

mmmm + 3

3-63

Logically Exclusive-OR the contents of the Accumulator with the contents of the
selected memory location, treating both operands as simple binary data. Suppose that
xx = E31g and yy = AO1g. After the instruction

EOR ($40.Y)

has executed. the Accumulator will contain 4316. We assume also that rr = 101,
qq = 401g) = 1E16. pp = 4116) = 2516, and (251E1g) = yy = AD16.

E3 = 11100011

AO 10100000
01000011
OsetsSto0 Nonzero result sets Z to 0

EOR is used to test for changes in bit status. Note also that the instruction EOR #$FF
complements the contents of the Accumulator, changing each ‘1" bit to a ‘0" and each
‘0" bittoa 1.

3-64

INC — INCREMENT MEMORY (BY 1)

This instruction increments by 1 the contents of a selected memory location. The INC
instruction uses four data memory addressing options:

1) Zero page (direct) — INC addr
2) Absolute (direct)t —INC addr16

3) Zero page indexed with Index Register X — INC addr.X
4) Absolute indexed with Index Register X — INC addr16.X

The first byte of object code determines which addressing mode is selected as follows:

76 54 3 2 1 O <aff——B8it Number

IIIIIIIHEIIIIE Object Code

Bit Value Hexadecimal) Number
for bb Object Code Addressing Mode of Bytes
00 E6 Zero page (direct) 2
01 EE Absolute (direct) 3
10 F6 Zero page indexed with X 2
11 FE Absolute indexed with X 3

We will illustrate the INC instruction with absolute (direct) addressing

dressing modes are shown elsewhere.

sSsvBDI ZC

P Ix]]

SP

pcl_ mm

=D

Data
Memory

. The other ad-

Yy

ppaq

Coxs

Program
Memory

EE

mmmm

aq

mmmm + 1

pp

mmmm + 2

mmmm + 3

3-65

Increment the selected memory byte.

If pp =0116. qg = A216, and yy = CO16. then after executing an:

INC $01A2
instruction. the contents of memory location 01A21g will be incremented to C116.
CO = 11000000
1 = 00000001
11000001
Sets S to 1 ‘—I Nonzero result sets Z to 0

Carry and Overflow are not
altered

The INC instruction can be used to provide a counter in a variety of applications such as

counting the occurrences of an event or specifying the number of times a task is to be
performed.

3-66

INX — INCREMENT INDEX REGISTER X (BY 1)

This instruction increments by 1 the contents of Index Register X. The Zero and Sign
statuses are affected just as by the INC instruction.

INC
e
E8
Data
SvebDl1 zCcC Memory
m+ 1
A
X "
Y Program
SP - B Memory
PC mm mm
E8 mmmm
mmmm + 1

Add 1 to the contents of Index Register X and set the Zero and Sign flags according to
the result. Suppose that Index Register X contains 7A1g. After the instruction

INX

has executed. Index Register X will contain 7B1g. the Zero status will be cleared since
the result is nonzero. and the Sign status will be cleared since the result has O in its
most significant bit.

3-67

INY — INCREMENT INDEX REGISTER Y (BY 1)

This instruction increments by 1 the contents of Index Register Y. The Zero and Sign
statuses are affected just as by the INC instruction.

INY
N -
c8
Data
sSsvBDI12ZC Memory
e LI 1 Ix]]
A o+ 1
X
v p Program
sp Memory
PC mm mm
C8 mmmm

mmmm + 1

Add 1 to the contents of Index Register Y and set the Zero and Sign flags according to
the result. Suppose that Index Register Y contains 0C1g. After the instruction INY has
executed. Index Register Y will contain 0D1g. the Zero status will be cleared since the
result is nonzero. and the Sign status will be cleared since the result has 0 in its most
significant bit.

3-68

JMP — JUMP VIA ABSOLUTE OR INDIRECT ADDRESSING

This instruction will be illustrated using indirect addressing. Note that it is the only in-
struction that has the true indirect addressing mode. The first byte of object code deter-
mines the addressing mode as follows:

76 54321 0 <ag——Bit Number

[o]1]v]o]1]1]o]o] Object Code

Bit Value Hexadecimal . Number
fory Object Code Addressing Mode of Bytes
0 4C Absolute (direct) 3
1 6C Indirect 3
Data
sSsvBDI ZC Memory
P
qq ccdd
pp ccdd+1
A
X
Y Program

Memory

SP
PC mm mm |
6C

mmmm
dd mmmm + 1
cc mmmm + 2

Jump to the instruction specified by the operand by loading the address from the
selected memory bytes into the Program Counter.

In the following instruction sequence:

CcLC
LDA #BASEL CALCULATE LSB'S OF DESTINATION ADDRESS
ADC INDXL

STA JADDR

LDA #BASEU ;CALCULATE MSB'S OF DESTINATION ADDRESS
ADC INDXU

STA JADDR+1

JMP (JADDR) :TRANSFER CONTROL TO DESTINATION

The JMP instruction will perform an indexed jump relative to the 16-bit address con-
sisting of BASEU (8 MSBs) and BASEL (8 LSBs). The index here is assumed to be 16 bits
long and to be initially stored at addresses INDXL (8 LSBs) and INDXU (8 MSBs). The ad-
dresses following the start of the table could then contain absolute JMP instructions
that transfer control to the proper routines.

JMP will not work properly if the indirect address crosses a page boundary — that is, if
dd = FFqg in the illustration above. The discussion of indirect addressing earlier in this
chapter discusses this peculiarity in more detail.

The JMP instruction can also use the absolute (direct) addressing mode. In this case,
the second byte of the instruction is loaded into the low byte of the Program Counter,
and the third byte of the instruction is loaded into the high byte of the Program
Counter. Instruction execution continues from this address.

3-69

JSR — JUMP TO SUBROUTINE

This instruction pushes the Program Counter onto the Stack and then transfers control
to the specified instruction. Only absolute (direct) addressing is allowed. Note that the
Stack Pointer is decremented after the storage of each data byte and that the Program
Counter value that is saved is the address of the last (third) byte of the JSR instruc-
tion: i.e.. the initial program counter value plus 2. Remember also that the Stack grows
down in memory and that the most significant half of the Program Counter is stored
first and thus ends up at the higher address (in the usual 65602 address form).

Data
Memory
O1ss — 2
mm + 2 JO01ss — 1
mm Oilss
Program
Memory
20 mmmm
qq mmmm + 1
PP mmmm + 2

The Program Counter is incremented by 2 and then is pushed onto the Stack. The Stack
Pointer is adjusted to point to the next empty location in the Stack. The address part of
the instruction is then stored in the Program Counter and execution continues from that
point.

Assume that mmmm = E34F1g and that ss = E31g. Then after the execution of the in-
struction

JSR $E100

the Program Counter will contain E10016, the Stack Pointer will contain E11g, and the
Stack locations will be as follows:

(01ss) = (01E3) = PC(HI) =E3
(01ss - 1) = (01E2) =PC(LO} =511¢

The next instruction to be executed will be the one at memory address E1001g.

3-70

LDA — LOAD ACCUMULATOR FROM MEMORY

Load the contents of the selected memory byte into the Accumulator. This instruction
offers the same memory addressing options as the ADC instruction and will be illus-
trated using zero-page indexed addressing with Index Register X. See the discussion of
addressing methods and other arithmetic and logical instructions for examples of the
other addressing modes. The first byte of object code selects the addressing mode as
follows:

7654 3 21 0-a@§——Bit Number

IIEIIIEBEEII Object Code

Bit Value Hexadecimal . Number
for aaa Object Code Addressing Mode of Bytes
000 A1l Indirect, pre-indexed with X 2
001 Ab Zero page (direct) 2
010 A9 Immediate 2
011 AD Absolute (direct) 3
100 B1 Indirect, post-indexed with Y 2
101 B5 Zero page indexed with X 2
110 B9 Absolute indexed with Y 3
11 BD Absolute indexed with X 3

Data
SvBepl1zCcC Memory

P [T IX]]

Yy 00rr + cc

A Yy
x rr
Y Program
sp Memory
pC mm mm
B5 mmmm

cC mmmm + 1

Load the contents of the selected memory byte into the Accumulator.

Suppose that Index Register X contains 101 and cc =431¢. If memory location
00531 contains AA1g. then after

LDA $43X
has executed. the Accumulator will contain AA1g.
AA = 1010101 (l)

1 sets S to 1‘—J l——Nonzero result sets Z to O

3-71

LDX — LOAD INDEX REGISTER X FROM MEMORY

Load the contents of the selected memory byte into Index Register X. The addressing
modes allowed are:

1) Immediate — LDX data

2) Absolute (direct) — LDX addr16

3) Zero page (direct) — LDX addr

4) Absolute indexed with Y — LDX addr16.Y

5) Zero page indexed with Y — LDX addr.Y

Note that there are no indexing modes with Index Register X, and there is no post-in-
dexing. The first byte of object code selects the addressing mode as follows:

7 654 32 1 0 <a@——Bit Number

Lo 1]dfd]d]1]o] Object Code

Bit Value Hexadecimal . Number
forddd | Object Code Addressing Mode of Bytes
000 A2 Immediate 2
001 A6 Zero page (direct) 2

010 AA Used for TAX instruction

011 AE Absolute (direct) 3
100 B2 Not used

101 B6 Zero page indexed with Y 2
110 BA Used for TSX instruction

11 BE Absolute indexed with Y 3

We will illustrate the LDX instruction with absolute indexed addressing using Index
Register Y. See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

Data
svebDIlI zC Memory

XL T T IX]]

Yy ppQaq + rr

A
X Yy
Y " Program
sp S Memory
BE mmmm
qq mmmm + 1
pp mmmm + 2
mmmm + 3

Load the contents of the selected memory byte into Index Register X. Suppose that In-
dex Register Y contains 2816, ppaq = 2E1A16. and yy = (2E421g) = 4F1 g, then after
the execution of the instruction

LDX $2E1AY
Index Register X will contain 4F1g.
4F = 01001111

OsetsSto0 Nonzero result sets Z to O

3-73

LDY — LOAD INDEX REGISTER Y FROM MEMORY

Load the contents of the selected memory byte into Index Register Y. The addressing

modes allowed are:

1)
2)
3)
4)
5)

Note that there are no indexing modes with Index Register Y nor is there any pre-index-

Immediate — LDY data

Absolute (direct) — LDY addr16
Zero page (direct) — LDY addr

Absolute indexed with X — LDY addr16.X
Zero page indexed with X — LDY addr.X

ing.
The first byte of object code selects the addressing mode as follows:

7 654321 0 qg——ait Number

IIEIIEIHEEE Object Code

Bit Value Hexadecimal . Number
for ddd Object Code Addressing Mode of Bytes
000 A0 Immediate 2
001 A4 Zero page (direct) 2

010 A8 Used for TAY instruction
011 AC Absolute (direct) 3
100 BO Used for BCS instruction
101 B4 Zero page indexed with X 2
110 B8 Used for CLV instruction
111 BC Absolute indexed with X 3

We will illustrate the LDY instruction with immediate addressing. See the discussion of
addressing methods and other arithmetic and logical instructions for examples of the

other addressing modes.

SvaeaDpi1zc

PIXL L [T DX

sp
PC m nm

Data
Memory

Program
Memory

AO

Yy

3-74

Load the contents of the selected memory byte into Index Register Y. Suppose that
yy = 001g. then after the execution of the instruction

LDY #0
Index Register Y will contain zero.
00 = 00000000

OsetsSto0 Zero result sets Z to 1

3-75

1.SR — LOGICAL SHIFT RIGHT OF ACCUMULATOR OR MEMORY

This instruction performs a one-bit logical right shift of the Accumulator or the selected
memory byte.

First, consider shifting the Accumulator.

LSR A
N~
4A
Data
sSsvseab1i1zc Memory
PLO X|X
0
A1l
X
Y Program
SP Memory
PC min
4A mmmm
mmmm + 1

Shift the contents of the Accumulator right one bit. Shift the low-order bit into the Car-
ry status. Shift a zero into the high-order bit.

Suppose the Accumulator contains 7A1g. After the
LSR A

instruction is executed. the Accumulator will contain 3D1g and the Carry status will be
set to zero.

Accumulator Carry
0—=01111010—=X
00111101 0

LSR always sets S to O Nonzero result sets Z to O
Four methods of addressing data mehow are available with the LSR instruction; they
are:
1) Zero page (direct) — LSR addr
2) Absolute (direct) — LSR addr16
3) Zero page indexed with Index Register X — LSR addr.X
4) Absolute indexed with Index Register X — LSR addr16,X
The first byte of object code determines which addressing mode is selected as follows:

7 654 32 1 0 <agg——Bit Number

EIIEIBEIIIIEI Object Code

3-76

Bit Value Hexadecimal . Number
for bb Object Code Addressing Mode of Bytes
00 46 Zero page (direct) 2
01 4E Absolute (direct) 3
10 56 Zero page indexed with X 2
11 BE Absolute indexed with X 3

We will illustrate the LSR instruction with absolute (direct) addressing. The other ad-
dressing modes are shown elsewhere.

Data

sveoDlI ZC Memory

PLol L T 1 [X[X]

o —p I+ Ioraa

A
X
Y Program
SP Memory
Pc mm mm (
4E mmmm
qq mmmm + 1
pp mmmm + 2
mmmm + 3

Logically shift the contents of the selected memory location right one bit.

Suppose that ppag = 04FA1g and the contents of memory location 04FA1g are 0D1g.
After the instruction

LSR $04FA

has been executed. the Carry status will be 1 and the contents of memory location
04FA 16 will be 0616.

(04FA16) Carry
0——00001101—=X
00000110 1

LSR always sets S to 0<——-I Nonzero result sets Z to 0

3-77

NOP — NO OPERATION

This is a one-byte instruction which does nothing except increment the Program
Counter. This instruction allows you to give a label to an object program byte, to fine
tune a delay (each NOP instruction -adds two clock cycles), and to replace instruction
bytes that are no longer needed because of corrections or changes. NOPs can also be
used to replace instructions (such as JSRs) which you may not want to include in
debugging runs. NOP is not very frequently used in finished programs, but it is often

NOP
——

EA

useful in debugging and testing.

< X >

PC

SsvBbD1!12ZC

mm

3-78

Data
Memory

Program
Memory

EA

mmmm
mmmm + 1

ORA — LOGICALLY OR MEMORY WITH ACCUMULATOR

This instruction logically ORs the contents of a memory location with the contents of
the Accumulator. This instruction offers the same memory addressing options as the
ADC instruction. The first byte of object code selects the addressing mode as follows:

765 43 2 1 0«tg—Bit Number

mmmunamn Object Code

Bit Value Hexadecimal . Number

for aaa Object Code Addressing Mode of Bytes
000 01 Indirect, pre-indexed with X 2
001 05 Zero page (direct) 2
010 09 Immediate 2
01 0D Absolute (direct) 3
100 11 Indirect, post-indexed with Y 2
101 15 Zero page indexed with X 2
110 19 Absolute indexed with Y 3
111 1D Absolute indexed with X 3

We will illustrate the ORA instruction using absolute indexed addressing with Index
Register Y. See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

Data
sSsvebDIlzZCcC Memory

XL T T Ix[]

vy ppaq +

A XX xx V yy
X +
Y " Program

SP Memory
PC mm mm
19 mmmm

qq mmmm + 1
pp mmmm + 2

Logically OR the contents of the Accumulator with the contents of the selected memory
byte, treating both operands as simple binary data.

3-79

Suppose that ppgq = 162316, rr = 1016, xx = E316, and yy = AB16. After the execu-
tion of the instruction

ORA $1623.Y
the Accumulator will contain EB1g.
E3 = 11100011
AB = 10101011
11101011
Sets S to 1 Nonzero result sets Z to O

This is a logical instruction; it is often used to turn bits “on", i.e., make them "1's. For
example, the instruction

ORA #$80
will unconditionally set the high-order bit in the Accumulator to 1.

3-80

PHA — PUSH ACCUMULATOR ONTO STACK

This instruction stores the contents of the Accumulator on the top of the Stack. The
Stack Pointer is then decremented by 1. No other registers or statuses are affected.
Note that the Accumulator is stored in the Stack before the Stack Pointer is decre-
mented.

PHA
-
48
Data
svebDl12zZC Memory
P
O1ss — 1
XX Olss

A XX
=g D
Y Program
SP SS Memory
PC mm = mm ‘
48 mmmm

mmmm + 1

Suppose that the Accumulator contains 3A1g and the Stack Pointer contains F71g.
After the instruction PHA has been executed, 3A1g will have been stored in memory
location 01F71g and the Stack Pointer will be altered to F616.

The PHA instruction is most frequently used to save Accumulator contents before ser-
vicing an interrupt or calling a subroutine.

3-81

PHP — PUSH STATUS REGISTER (P) ONTO STACK

This instruction stores the contents of the Status (P) register on the top of the Stack.
The Stack Pointer is then decremented by 1. No other registers or statuses are affected.
Note that the Status register is stored in the Stack before the Stack Pointer is decre-
mented.

The organization of the status in memory is as follows:

7 6543 2 1 O -ag——8it Number

ST Te[o] Tzcla—nresister

Bit 5 is not used and its value is arbitrary.

PHP
e
08
Data
sveoblzc [s{v] [sfo]ifz]C] Memory
3
O1ss — 1
Olss
A ss — 1
X
Y Program
SP sS Memory
PC mm mm [
08 mmmm
mmmm + 1

The PHP instruction is generally used to save the contents of the Status register before
calling a subroutine. Note that PHP is not necessary before servicing an interrupt since
the interrupt response (to IRQ or NMI) and the BRK instruction automatically save the
contents of the Status register at the top of the Stack.

3-82

PLA — PULL CONTENTS OF ACCUMULATOR FROM STACK

This instruction increments the Stack Pointer by 1 and then loads the Accumulator
from the top of the Stack. Note that the Stack Pointer is incremented before the Ac-
cumulator is loaded.

PLA
-
68
Data
svBBDIl12ZC Memory
eixl I 1 1 Ix] |
Olss
Yy Otss + 1
A vy ss + 1
X
Y Program
SP ss Memory
PC mm mm mmmm + 1
68 mmmm
mmmm + 1

Suppose the Stack Pointer contains F61g and memory location 01F71g contains CE1g.
After the instruction PLA has executed. the Accumulator will contain CE1g and the
Stack Pointer will contain F71g.

F7 = 11110111
SetSto 1l Nonzero result sets Z to O
The PLA instruction is most frequently used to restore Accumulator contents that have

been saved on the Stack: e.g.. after servicing an interrupt, or after completing a
subroutine.

3-83

PLP — PULL CONTENTS OF STATUS REGISTER (P) FROM STACK
This instruction increments the Stack Pointer by 1 and then loads the Status (P) register
from the top of the Stack. No other registers are affected but all the statuses may be
changed. Note that the Stack Pointer is incremented before the Status register is
loaded.

PLP
-

28
The organization of the status in memory is as follows:

7654 3 21 0<«a—Bit Number
[S]v] |s]of1]z]c] Register P

Bit 5 is not used.
Data
sveBDI1I1 ZC Memory

P

O1ss
O1ss + 1
A sv] Isjoftjz]c]
X
v . Program
sp s Memory
PC mm mm [X
28 mmmm
mmmm + 1

The PLP instruction is generally used to restore the contents of the Status register after
completing a subroutine. Thus. it serves to balance the PHP instruction mentioned
earlier. Note that PLP is not necessary after servicing an interrupt since the RTl instruc-
tion automatically restores the contents of the Status register from the top of the Stack.

3-84

ROL — ROTATE ACCUMULATOR OR MEMORY LEFT THROUGH
CARRY

This instruction rotates the Accumulator or the selected memory byte one bit to the left
through the Carry.

First, consider rotating the Accumulator.

ROL A
N
2A
Data
svsebDIl1ZC Memory
Y Program
SP Memory
PC mm mm l
2A mmmm
mmmm + 1

Rotate the Accumulator’s contents left one bit through the Carry status.
Suppose the Accumulator contains 7A1g and the Carry status is set to 1. After the
ROL A

instruction is executed. the Accumulator will contain F51g and the Carry status will be
reset to zero.

Accumulator Carry

01111010 1
11110101 0

SetS to1 Nonzero result sets Z to zero

The ROL instruction allows four methods of addressing data memory; they are:

1) Zero page (direct) — ROL addr

2) Absolute (direct) — ROL addr16

3) Zero page indexed with Index Register X — ROL addr.X

4) Absolute indexed with Index Register X — ROL addr16.X

The first byte of object code determines which addressing mode is selected as follows:
7654 321 0<a—Bit Number

EEIIIEIEIIIIIE Object Code

3-85

Bit Value Hexadecimal . Number
for bb Object Code Addressing Mode of Bytes
00 26 Zero page (direct) 2
01 2E Absolute (direct) 3
10 36 Zero page indexed with X 2
1 3E Absolute indexed with X 3

We will illustrate the ROL instruction with zero page indexed addressing (using Index
Register X). The other addressing modes are shown elsewhere.

Data
Memory

SvBDIZC

XL 1 1 [X]X]

[

HHHT

1 00rr + cc

A
X "
Y Program
SP Memory
pPC mm mm
36 mmmm
cc mmmm + 1
mmmm + 2

Rotate the selected memory byte left one bit through the Carry status. Suppose that

cc = 341g. rr = 1616, the contents of memory location 004A1g are 2E1g. and the Carry
status is zero. After executing a

ROL $34.X
instruction, memory location 004A1g will contain 5C1g.
(004A16) Carry

00101110 O
01011100 O

SetSto0 Nonzero result sets Z to O

3-86

ROR — ROTATE ACCUMULATOR OR MEMORY RIGHT,
THROUGH CARRY

This instruction rotates the Accumulator or the selected memory byte one bit to the
right through the Carry.

First consider rotating the Accumulator.

ROR A
N
6A
Data
svebDI1!I2ZC Memory
Y Program
SP Memory
PC mm mm [@
6A mmmm
mmmm + 1

Rotate the Accumulator's contents right one bit through the Carry status. Suppose that
the Accumulator contains 7A1g and the Carry status is set to 1. Execution of the

ROR A

instruction will produce these results: the Accumulator will contain BD1g and the Car-
ry status will be O.

Accumulator Carry

01111010 1
10111101 0

SetSto1 <——I Nonzero result sets Z to 0

The ROR instruction allows four methods of addressing data memory: they are:

1) Zero page (direct) — ROR addr

2) Absolute (direct) — ROL addr16

3) Zero page indexed with Index Register X — ROR addr.X
4) Absolute indexed with Index Register X — ROR addr16.X

The first byte of object code determines which addressing mode is selected as follows:

7 65432 1 O<«ag—8it Number

EIIIIBI!IIE Object Code

3-87

Bit Value Hexadecimal . Number
for bb Object Code Addressing Mode of Bytes
00 66 Zero page (direct) 2
01 6E Absolute (direct) 3
10 76 Zero page indexed with X 2
1 7€ Absolute indexed with X 3

We will illustrate the ROR instruction with absolute indexed addressing (using Index
Register X). The other addressing modes are shown elsewhere.

P

ppaq + rr
A
X [id
Y Program
sp Memory
PC mm mm
7E mmmm
qq mmmm + 1
[19 mmmm + 2
mmmm + 3

Suppose that rr = 1416, ppag = 010016. the contents of memory location 011416 are
ED1g. and the Carry status is 1. After executing a:

ROR $0100.X
instruction, the Carry status will be 1 and memory location 01141 will contain F61.
01141¢) Carry

11101101 1
11110110 1

SetSto1 Nonzero result sets Z to 0

3-88

RTI — RETURN FROM INTERRUPT

Pull the Status (P) register and the Program Counter off the top of the Stack. The
registers and the corresponding memory locations from which they are loaded are as
follows, assuming that the Stack Pointer contains ss at the start of instruction execu-
tion:

Memory Location Register
01ss+1 Status (P) register
01ss+2 Low byte of Program Counter
01ss+3 High byte of Program Counter

The final value of the Stack Pointer is its initial value plus 3. The old values of the Status
register and Program Counter are lost.

RTI
\W-/
40
Data
SsvBD1!12ZC s|v| iB|pfi]z]cC Memory
P o1ss
R, Olss + 1
qq O1ss + 2
pp Olss + 3
ss + 3
A
X
Y Program
SP | SS Memory
PC mm mm

40 mmmm

Suppose that the Stack Pointer contains E81g. memory location 01E91g contains C116.
memory location 01EA1g contains 3E1g. and memory location 01EB1g contains D516.
After the instruction RTI has been executed. the Status register will contain C116. the
Stack Pointer will contain EB1g. and the Program Counter will contain D53E1¢ (this is
the address from which instruction execution will proceed). The statuses will be as
follows:

sV BDlZC

c1= []1fofo]oJojo]1]

Note that the Interrupt Mask bit will be set or reset depending on its value at the time
the Status register was stored. assuming that the interrupt service routine did not
change it while it was on the Stack.

3-89

RTS — RETURN FROM SUBROUTINE

This instruction fetches a new Program Counter value from the top of the Stack and in-
crements it before using it to fetch an instruction. Note that the Stack Pointer is incre-
mented before the loading of each data byte and its final value is thus two greater than
its initial value. RTS is normally used at the end of a subroutine to restore the return ad-
dress that was saved in the Stack by a JSR instruction. Remember that the return ad-
dress saved by JSR is actually the address of the third byte of the JSR instruction itself;
hence. RTS must increment that address before using it to resume the main program.
The previous contents of the Program Counter are lost. Every subroutine must contain
at least one RTS instruction.

Data
svebDI ZC Memory
aq O1ss + 1
[} O1ss + 2

A ss + 2

Y Program

SP ss Memory
PC mm mm | ppaq + 1
60 mmmm

RTS
-

60
No statuses are altered by an RTS instruction.

Suppose that the Stack Pointer contains DF1g. memory location 01E01g contains
0816. and memory location 01E11g contains 7C1g. After the instruction RTS has been
executed, the Stack Pointer will contain E11g and the Program Counter will contain
7C091¢ (this is the address from which instruction execution will proceed).

3-90

SBC — SUBTRACT MEMORY FROM ACCUMULATOR WITH
BORROW

Subtract the contents of the selected memory byte and the complement of the Carry
status (i.e.. 1 — C) from the contents of the Accumulator. This instruction offers the
same memory addressing options as does the ADC instruction. The first byte of object
code selects the addressing mode as follows:

7 6 54 3 2 1 O <-agg——38it Number

1 f1]alafa]o] 1] Object Code

Bit Value Hexadecimal) Number
for aaa Object Code Addressing Mode of Bytes
000 E1 Indirect, pre-indexed with X 2
001 E5 Zero page (direct) 2
010 E9 Immediate 2
011 ED Absolute (direct) 3
100 F1 Indirect, post-indexed with Y 2
101 F5 Zero page indexed with X 2
110 F9 Absolute indexed with Y 3
111 FD Absolute indexed with X 3

We will illustrate the SBC instruction using pre-indexed indirect addressing (via Index
Register X). See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

Data
svBDI12zZC Memory
PIXIX XX qQq 00rr + cc

pp 00rr + cc + 1

/-> xx—yy~C vy ppaq

A XX
X 44
Y + Program
SP Memory
PC mm mm @
S E1 mmmm
cc mmmm + 1
mmmm + 2

Subtract the contents of the selected memory byte and the complement of the Carry
status (1 — C), from the Accumulator, treating all register contents as simple binary
data. Note, however, that all data will be treated as decimal (BCD) if the D status is set.

3-91

Suppose that xx = 1416, cc = 1516, 11 = 3716, ppaq = 07E216.yy = (07E21¢)= 3414,
and C = 0. After executing a

SBC ($15.X)
instruction, the contents of the Accumulator would be altered to DF1g.
14=00010100

Twos complement of 36=11001011 (see note below)
1,1011111
Set Carry to O Nonzero result sets Z to O
SetSto1

O-\LO—O, setVtoO

Note: xx — yy — (1 = C) = xx — (yy+C); -
hence. 1415 — 3416 — (1 — 0) =144 — (3416~+ 1) = 1416 — 3514

Note that the resulting Carry is not a borrow. It is, rather, the inverse of a borrow since it
is set to 1 if no borrow is required and cleared if a borrow is required. You should be
careful of this usage since it differs from that of most other microprocessors, which
complement the Carry before it is stored following a subtraction.

SBC is the only binary subtraction instruction. To use it in single-byte operations or to
subtract the low-order bytes of two multibyte numbers, a previous instruction (SEC)
must explicitly set C to 1 so that it does not affect the operation. Remember that C must
be set (not cleared) before a subtraction since its meaning is inverted from the usual
borrow. Note also that the 6502 microprocessor, unlike most others, has no subtraction
instruction that does not include the Carry.

3-92

SEC — SET CARRY
SEC
o
38

Set the Carry status to 1. No other status or register's contents are affected. Note that
this instruction is required as part of a normal subtraction operation since the only
subtraction instruction available on the 6502 microprocessor is SBC, which also
subtracts the complemented Carry status. This instruction is also required at the start of
a multi-byte subtraction since there is never a borrow from the least significant byte.

Data
SsvseD1!2zZC Memory
P
A
X
Y Program
sp - Memory
PC mm
38 mmmm
mmmm + 1

3-93

SED — SET DECIMAL MODE

Set the Decimal Mode status to 1. No other status or register's contents are affected.
This instruction is used to place the 6502 processor in the decimal mode in which ADC
and SBC instructions produce BCD rather than binary results. The programmer should
be careful of the fact that the same program will produce different results, depending
on the state of the Decimal Mode status. This can lead to puzzling and seemingly ran-

SED
-
F8

dom errors if the state of the Decimal Mode status is not carefully monitored.

SP
PC

svebDl1 ZC

mm

= >

3-94

Data
Memory

Program
Memory

F8

mmmm
mmmm + 1

SEl — SET INTERRUPT MASK (DISABLE INTERRUPTS)

SEI

~——

78

Set the interrupt mask in the Status register. This instruction disables the 6502's inter-
rupt service ability, i.e., the 6502 will not respond to the Interrupt Request control line.
No other registers or statuses are affected. The Interrupt Mask is bit 2 of the Status (P)

register.

svebD1zC

spP

pcl__mm

mm

3-95

Data
Memory

Program
Memory

78

mmmm
mmmm + 1

STA — STORE ACCUMULATOR IN MEMORY

Store the contents of the Accumulator into the specified memory location. This instruc-
tion offers the same memory addressing modes as the ADC instruction, with the excep-
tion that an immediate addressing mode is not available. The first byte of object code
selects the addressing mode as follows:

65 4 3 2 1 0 «g@—Bit Number

Object Code
Bit Value Hexadecimal) Number
for aaa Object Code Addressing Mode of Bytes
000 81 Indirect, pre-indexed with X 2
001 85 Zero page (direct) 2
010 89 Not used
011 8D Absolute (direct) 3
100 9 Indirect, post-indexed with Y 2
101 95 Zero page indexed with X 2
110 99 Absolute indexed with Y 3
11 9D Absolute indexed with X 3

We will illustrate the STA instruction with zero page direct addressing. See the discus-
sion of addressing methods and other arithmetic and logical instructions for examples
of the other addressing modes. No statuses are affected.

sveBDi12zcC

SP

PC mm

mm

Data
Memory
XX 00qq
Program
Memory
85 mmmm
qq mmmm + 1

mmmm + 2

Store the contents of the Accumulator in memory. Suppose that xx = 6315 and

aq = 3A1g. After the instruction

STA $3A

has been executed, the contents of memory location 003A1g will be 6316. No registers
or statuses are affected.

3-96

STX — STORE INDEX REGISTER X IN MEMORY

Store the contents of Index Register X in the selected memory location. The addressing
modes allowed are:

1) Zero page (direct) — STX addr

2) Absolute (direct) — STX addr16

3) Zero page indexed with Y — STX addr.Y

Note that there are no indexed modes using Index Register X. There is also no absolute
indexed mode. STX and LDX are the only instructions that use the zero page indexed
mode with Index Register Y. No statuses are affected.

The first byte of object code selects the addressing mode as follows:

7 654 321 0 «g——it Number

nﬂﬂﬂﬂnnﬂ Object Code

Bit Value Hexadecimal . Number
for bb Object Code Addressing Mode of Bytes
00 86 Zero page (direct) 2
01 8E Absolute (direct) 3
10 96 Zero page indexed with Y 2
11 9E Not used

We will illustrate the STX instruction using zero page indexed addressing with Index
Register Y. See the discussion of addressing methods and other arithmetic and logical
instructions for examples of the other addressing modes.

Data
svBbDI ZC Memory
P
Yy 00rr + cc
A
X Yy
v r Program
sp Memory
PC mm mm
’ 96 mmmm

cc mmmm + 1
mmmm + 2

Store the contents of Index Register X in the selected memory byte. Suppose that
cc = 2814, rr =201, and yy = E91g. After executing the

STX $28Y

instruction, memory location 00481g will contain E91g. No registers or statuses are
affected.

3-97

STY — STORE INDEX REGISTER Y IN MEMORY

Store the contents of Index Register Y in the selected memory location. The addressing
modes allowed are:

1) Zero page (direct) — STY addr
2) Absolute (direct) — STY addr16
3) Zero page indexed with X — STY addr.X

Note that there are no indexed modes using Index Register Y. There is also no absolute
indexed mode. No statuses or registers are affected.

The first byte of object code selects the addressing mode as follows:
76 54321 0 <gg—Bit Number

[1]oJolb]bf1]o]o] Object Code

Bit Value Hexadecimal . Number
forbb | Object Code Addressing Mode of Bytes
00 84 Zero page (direct) 2
01 8C Absolute (direct) 3
10 94 Zero page indexed with X 2
11 9C Not used

We will illustrate the STY instruction with absolute direct addressing. See the discus-
sion of addressing methods and other arithmetic and logical instructions for examples
of the other addressing modes.

Data
svebDl!1 zZCcC Memory
P
Yy pPpaq
A
X
Y vy Program
sp Memory
PC mm mm [
8C mmmm
qaq mmmm + 1
pp mmmm + 2
mmmm + 3

Store the contents of Index Register Y in the selected memory byte. Suppose that
yy =0116 and ppaq = 08F31g. After the

STY $08F3

instruction has executed, memory location 08F31¢ will contain 011g. No registers or
statuses are affected.

3-98

TAX — MOVE FROM ACCUMULATOR TO INDEX REGISTER X

TAX
~—
AA

Move the contents of the Accumulator to Index Register X. Set the Sign and Zero
statuses accordingly.

Data
Memory

A
X
Y

XX P
Program

SP Memory
PC mm mm
AA mmmm

mmmm + 1

Suppose that xx = 001g. After executing the TAX instruction. both the Accumulator
and Index Register X will contain 0014.

00000000
SetSto0 Zero result sets Z to 1

The following instruction sequence will restore the contents of Index Register X from
the Stack after completion of a subroutine or interrupt service routine:

PLA ;GET OLD X REGISTER FROM STACK
TAX :RESTORE TO X REGISTER

3-99

TAY — MOVE FROM ACCUMULATOR TO INDEX REGISTER Y

TAY
-

A8

Move the contents of the Accumulator to Index Register Y. Set the Sign and Zero
statuses accordingly.

Data
svseD1!2ZC Memory

el L 11 Ix]]

A XX
X
Y Program
Sp Memory
PC mm mm
A8 mmmm

mmmm + 1

Suppose that xx = F11g. After executing the TAY instruction. both the Accumulator
and Index Register Y will contain F116.

11110001
SetSto 1 Nonzero result sets Z to O

The following instruction sequence will restore the contents of Index Register Y from
the Stack after completion of a subroutine or interrupt service routine:

PLA ;GET OLD Y REGISTER FROM STACK
TAY ;RESTORE TO Y REGISTER

3-100

TSX — MOVE FROM STACK POINTER TO INDEX REGISTER X

TSX
- -
BA

Move the contents of the Stack Pointer to Index Register X. Set the Sign and Zero
statuses accordingly. Note that TSX is the only 6502 instruction that allows you to ac-
cess the value in the Stack Pointer. A typical instruction sequence that saves the value
of the Stack Pointer in memory location TEMP is:

TSX :MOVE STACK POINTER TO X
STX TEMP :SAVE STACK POINTER IN MEMORY

Data
svebDlzZCcC Memory

P T T T IXT]

) Program
Memory

SS
mm mm
BA mmmm

mmmm + 1

0O T < X >

o wn

If, for example. the Stack Pointer contains ED1g. after executing the TSX instruction,
both the Stack Pointer and Index Register X will contain ED1g.

11101101

SetS to1 Nonzero result sets Z to O

3-101

TXA — MOVE FROM INDEX REGISTER X TO ACCUMULATOR
TXA

- -

8A

Move the contents of Index Register X to the Accumulator and set the Sign and Zero
statuses accordingly. The following instruction sequence will save the contents of In-
dex Register X in the Stack before execution of a subroutine or interrupt service routine:

TXA :MOVE X REGISTER TO ACCUMULATOR
PHA ;SAVE X REGISTER IN STACK
Data
SvseDI12ZC Memory
e LT T IX]]
A
X "
Y 7 Program
Sp Memory
PC mm mm
8A mmmm
mmmm + 1

Suppose that rr = 3B1g. After executing the TXA instruction, both Index Register X and
the Accumulator will contain 3B16.

00111011

SetSto0 Nonzero result sets Z to 0

3-102

TXS — MOVE FROM INDEX REGISTER X TO STACK POINTER

TXS
- —
9A

Move the contents of Index Register X to the Stack Pointer. No other registers or
statuses are affected. Note that TXS is the only 6502 instruction that allows you to
determine the value in the Stack Pointer. A typical instruction sequence that loads the
Stack Pointer with the value LAST is:

LDX #LAST ;GET LOCATION OF STACK ON PAGE 1
TXS :PLACE STARTING LOCATION IN STACK POINTER

Note that TXS does not affect any statuses, unlike TSX which affects the Zero and Sign
statuses.

Data
SsvsebDI ZC Memory

Program

SP) Memory
PC mm mm l
9A mmmm

mmmm + 1

Suppose that rr = F21g. After executing the TXS instruction, both Index Register X and
the Stack Pointer will contain F21g. making 01F21g the current Stack location. No
statuses or other registers are affected.

3-103

TYA — MOVE FROM INDEX REGISTER Y TO ACCUMULATOR

TYA
-~

98

Move the contents of Index Register Y to the Accumulator and set the Sign and Zero
statuses accordingly. The following instruction sequence will save the contents of In-
dex Register Y in the Stack before execution of a subroutine or interrupt service routine:

TYA ;MOVE Y REGISTER TO ACCUMULATOR
PHA ;SAVE Y REGISTER IN STACK
Data
SsvBDI1ZC Memory
exL L 1 [Ix]]
A
X
Y v Program
sp = Memory
PC mm mm
98 mmmm
mmmm + 1|

Suppose that rr = AF1g. After executing the TYA instruction, both Index Register Y and
the Accumulator will contain AFqg.

10101111

SetSto1 Nonzero result sets Z to 0

3-104

6800/6502 COMPATIBILITY

Although the 6502 microprocessor can certainly be used on its 6800/6502
own merits, one of its important characteristics is its SIMILARITY
similarity to the widely used 6800 microprocessor. This
similarity is not sufficient to allow programs written for one of these processors at
the machine or assembly level to be run on the other, but it is sufficient so that pro-
grammers can easily move from one CPU to the other. Most of the external support
devices designed for one of these processors can also be used with the other. Chapters
9 and 10 of An Introduction to Microcomputers: Volume 2 —Some Real
Microprocessors discuss this hardware compatibility in more detail.

We will briefly describe and compare the 6800 and 6502 microprocessors with regard
to their registers, statuses, addressing modes, and instruction sets. You should note
that the two processors are far from mirror images. but they are much closer to each
other than either is to an 8080, Z80, F8, or 2650 microprocessor. This description
should give you some idea as to what problems you would encounter in going from one
CPU to the other.

As for registers, both the 6800 and the 6502 have an 8-bit pri- 6800/6502
mary Accumulator (A register) and a 16-bit Program Counter REGISTER

(or PC register). The other registers, however, are slightly COMPARISON
different. The 6800 has a second 8-bit Accumulator (B register), a
16-bit Index register. and a 16-bit Stack Pointer. The 65602, on the other hand. has two
8-bit Index registers and an 8-bit Stack Pointer. Thus the 6502 Index registers cannot
hold a complete 16-bit memory address while the 6800 Index register can. Furthermore
the 6800's RAM Stack can be located anywhere in memory because of its 16-bit Stack
Pointer while the 6502's RAM Stack is always located on page 1.

As for statuses, the 6800 and 6502 have identical Zero, Over- 6800/6502
flow, Sign, and Interrupt Mask statuses. The difference in the STATUS

Carry status is that the 6800 and 6502 version of this flag COMPARISON
have opposite meanings after subtraction operations. The
6800 Carry is set to 1 if a borrow is necessary and to O otherwise; the 6602 Carry is set
to O if a borrow is necessary and to 1 otherwise. This difference means that, before a
multi-byte subtraction operation, the programmer must clear the Carry on the 6800 and
set the Carry on the 6502. The 6800 and 6502 also differ in how they perform
decimal arithmetic; the 6800 has a Half-Carry flag (or carry from bit 3) while the 6502
has a Decimal Mode flag. The 6502 also has a Break flag which is not present in the
6800; it is not necessary in the 6800 because the 6800 Trap or Software Interrupt in-
struction is automatically vectored separately from the regular interrupt response.

The 6502 microprocessor has many more addressing modes 6800/6502
than does the 6800. This is partly necessitated by the fact that ADDRESSING
the 6502 index registers are only 8 bits long. Table 3-7 compares MODE

the addressing modes available on the two processors. The 6800 COMPARISON
microprocessor has no indirect modes, no combinations of index-
ing and indirection, and no absolute indexed modes. There are also some other
differences in terms of which modes are available with particular instructions; we will
not discuss those differences, but they are enumerated in Table 3-6.

3-105

Table 3-7. Memory Addressing Modes Available on the 6800 and 6502
Microprocessors

6800 6502
Immediate Immediate
Direct (zero-page) Zero Page (direct)
Extended (absolute direct) Absolute (direct)
Indexed (absolute) Absolute Indexed

Zero Page Indexed
Post-Indexed Indirect
Pre-Indexed Indirect
Indirect

Relative (branches only) Relative (branches only)

Note that many different variations of indexed addressing are available on the
6502 microprocessor, but remember that the 6602 index registers are only 8 bits
long while the 6800 Index register is 16 bits long.

The 6800 and 6502 instruction sets are similar but not identi- 6800/6502

cal (see Table 3-6). Table 3-8 compares the two sets, listing first INSTRUCTION

the instructions which are present in both, then the 6800 instruc- COMPARISON

tions which have no 6502 equivalent, and finally the 65602 instruc-

tions which have no 6800 equivalent. Obviously some of these differences are a direct
result of the differences in the statuses and registers. Most of the differences are minor,
and involve instructions that are a small part of common applications programs. One
noticeable difference is that the 6800 has Add and Subtract instructions that do not in-
volve the Carry status (ADD and SUB) while the 6502 does not. This means that the
6502 assembly language programmer must explicitly clear or set the Carry status when
its value should not affect an addition or subtraction operation. Note that this similarity
in the instruction sets does not extend to the object code level; the actual machine
codes are entirely different on the two microprocessors.

3-106

Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets

Common Instructions

Instruction

Meaning

cpPx ! (also CPY on 6502)
DEC

DEX ' (also DEY on 6502)
EOR

INC

INX1 (also INY on 6502)

JMP

JSR

LDA

LDX1 (also LDY on 6502)
LSR

NOP

ORA

PHA (PSH on 6800)

PLA (PUL on 6800)

ROL

ROR

RTI

RTS

sBC?

SEC

SEl

STA

STX1 (also STY on 6502)
TSX

TXS

Add with Carry

Logical AND

Arithmetic Shift Left

Branch if Carry Clear

Branch if Carry Set

Branch if Equal to Zero (Z = 1)

Bit Test

Branch if Minus (S = 1)

Branch if Not Equal to Zero {Z =0)
Branch if Plus (S = 0)

Branch if Overflow Clear

Branch if Overflow Set

Clear Carry

Clear Interrupt Mask (Enable Interrupt)
Clear Overflow

Compare Accumulator with Memory
Compare Index Register with Memory
Decrement (by 1)

Decrement Index Register (by 1)
Logical Exclusive-OR

Increment (by 1)

Increment Index Register (by 1)
Jump to New Location

Jump to Subroutine

Load Accumulator

Load Index Register

Logical Shift Right

No Operation

Logical (Inclusive) OR

Push Accumulator onto Stack

Pull Accumulator from Stack

Rotate Left through Carry

Rotate Right through Carry

Return from Interrupt

Return from Subroutine

Subtract with Carry

Set Carry

Set Interrupt Mask

Store Accumulator

Store Index Register

Transfer Stack Pointer to Index Register (X)
Transfer Index Register (X) to Stack Pointer

Tindex Register X is 16 bits long on 6800, 8 bits long on 6502 which has Index

Register Y as well.

2Note that SBC has a different meaning on the 6502 than on the 6800 since,
for subtraction operations, the 6800 Carry is the inverse of the 65602 Carry.

3-107

Table 3-8. Comparison of 6800 and 6502 Assembly Language Instruction Sets

(Continued)

Unique 6800 Instructions

Instruction Meaning

ABA Add Accumulators

ADD Add (without Carry)

ASR Arithmetic Shift Right

BGE Branch if Greater than or Equal to Zero

BGT Branch if Greater than Zero

BHI Branch if Higher

BLE Branch if Less than or Equal to Zero

BLS Branch if Lower or Same

BLT Branch if Less than Zero

BRA Branch Unconditionally

BSR Branch to Subroutine

CBA Compare Accumulators

CLR Clear

COM Logical Complement

DAA Decimal Adjust Accumulator

DES Decrement Stack Pointer (by 1)

INS Increment Stack Pointer {(by 1)

LDS Load Stack Pointer

NEG Negate {Twos Complement)

SBA Subtract Accumulators

SEV Set Overflow

STS Store Stack Pointer

SUB Subtract (without Carry)

SWI Software Interrupt (like 6502 BRK)

TAB Move from Accumulator A to Accumulator B
TAP Move from Accumulator A to CCR

TBA Move from Accumulator B to Accumulator A
TPA Move CCR to Accumulator A

TST Test Zero or Minus

WAI Wait for Interrupt

1. Unique 6502 Instructions

Instruction Meaning

BRK Break (like 6800 SWI)

CLD Clear Decimal Mode

PHP Push Status Register onto Stack

PLP Pull Status Register from Stack

SED Set Decimal Mode

TAX (TAY) Transfer Accumulator to Index Register X (Y)
TXA (TYA) Transfer Index Register X (Y) to Accumulator

3-108

MOS TECHNOLOGY 6502 ASSEMBLER
CONVENTIONS

The standard 6502 assembler is available from 6502 manufacturers and on many
major time-sharing networks; it is also included in most development systems.
Cross-assembler versions are available for most large computers and many
minicomputers.

ASSEMBLER FIELD STRUCTURE

The assembly language instructions have the standard field structure (see Table
2-1). The required delimiters are:

1) A space after a label. Note that all labels must start in column 1.

2) A space after the operation code.

3) A comma between operands in the address field, i.e., between the offset ad-
dress and X or Y to indicate indexing with Index Register X or Y respectively.

4) Parentheses around addresses that are to be used indirectly.
5) A semicolon or exclamation point (we will use the semicolon) before a com-
ment.

Typical 6502 assembly language instructions are:

START LDA (1000.X) ~ :GET LENGTH
ADC NEXT

LAST BRK :END OF SECTION

LABELS

The Assembler often allows only six characters in labels and truncates longer
ones. The first character must be a letter while subsequent characters must be
letters or numbers. The single characters A, X, and Y are reserved for the Ac-
cumulator and the two index registers. The use of operation codes as labels is
often not allowed and is not good programming practice anyway.

PSEUDO-OPERATIONS

The Assembler has the following explicit pseudo-operations:

.BYTE — Form Byte-Length Data

.DBYTE — Form Double-Byte-Length Data with MSBs First
.END — End of Program

.TEXT — Form String of ASCIl Characters

.WORD — Form Double-Byte-Length Data with LSBs First
= — Equate

Other pseudo-operations may be implemented by setting the assembler’s location
counter (denoted by *) to a new or updated value. Examples are:

¢ = ADDR — Set Program Origin to ADDR
*="+N — Reserve N Bytes for Data Storage
.BYTE. .DBYTE, .TEXT. and .WORD are the Data .BYTE, .DBYTE,

pseudo-operations used to place data in ROM. .BYTE is .TEXT, WORD

used for 8-bit data, .TEXT for 7-bit ASCIl characters PSEUDO-OPERATIONS
(MSB is zero). .DBYTE for 16-bit data with the most sig-
nificant bits first, and .WORD for 16-bit addresses or data with the least significant bits
first. Note particularly the difference between .DBYTE and .WORD.

3-109

Examples:

ADDR .WORD $3165
results in (ADDR) = 65 and (ADDR+1) = 31 (hex).
TCONV .BYTE 32

This pseudo-operation places the number 32 (201¢) in the next byte of ROM and
assigns the name TCONV to the address of that byte.

ERROR TEXT /ERROR/

This pseudo-operation places the 7-bit ASCIl characters E. R, R, O. and R into the next
five bytes of ROM and assigns the name ERROR to the address of the first byte. Any
single character (not just /) may be used to surround the ASCII text. but we will always
use / for the sake of consistency.

MASK .DBYTE $1000
results in (MASK) = 10 and (MASK+1) = 00.
OPERS .WORD FADD, FSUB, FMUL.FDIV

This pseudo-operation places the addresses FADD, FSUB, FMUL, and FDIV in the next
eight bytes of memory (least significant bits first) and assigns the name OPERS to the
address of the first byte.

-

The operation * ="+N is the Reserve pseudo-operation SET ORIGIN
used to assign locations in RAM:; it allocates a specified PSEUDO-OPERATION

number of bytes. = is the Equate or Define pseudo-opera-
tion used to define names. * = ADDR is the standard Origin pseudo-operation.

6502 programs usually have several origins which are used as follows:

1) To specify the Reset and interrupt service addresses. These addresses must be
placed in the highest memory addresses in the system (usually FFFA1g through
FFFF16).

2) To specify the starting addresses of the actual Reset and interrupt service routines.
The routines themselves may be placed anywhere in memory.

3) To specify the starting address of the main program.

4) To specify the starting addresses of subroutines.

5) To define areas for RAM storage.

6) To define an area (always on page 1) for the RAM Stack.

7) To specify addresses used for 1/O ports and special functions.

Examples:

RESET =$3800
*=$FFFC
.\WORD RESET
*=RESET

Note: $ means “hexadecimal”.

This sequence places the Reset instruction sequence in memory beginning at address
380016. and places that address in the memory locations (addresses FFFC1g and
FFFD16) from which the 6502 CPU retrieves the Reset address.

The instruction sequence which follows is stored in memory beginning at location
C00016.

MAIN =$C000
*=MAIN
.END simply marks the end of the assembly language program.

3-110

LABELS WITH PSEUDO-OPERATIONS

The rules and recommendations for labels with 6502 pseudo-operations are as

follows:

1) Simple equates, such as MAIN =$C000, require labels since their purpose is to
define the meanings of those labels.

2) .BYTE, .DBYTE. .TEXT, .WORD, and *="+N pseudo-operations usually have labels.

3) .END should not have a label, since the meaning of such a label is unclear.

ADDRESSES

The 6602 Assembler allows entries in the address field in any NUMBERS AND

of the following forms: CHARACTERS IN
1) Decimal (the default case) ADDRESS FIELD

Example: 1247

2) Hexadecimal (must start with $)
Example: $CE00

3) Octal (must start with @)
Example: @1247

4) Binary (must start with %)
Example: %11100011

5) ASCIl (single character preceded by an apostrophe)

Example: 'H
6) As an offset from the Program Counter (*)

Example: *+7
The various 6502 addressing modes are distinguished as ADDRESSING
follows: MODES

+ Absolute or Zero Page (direct) are the default modes
(the Assembler chooses Zero Page if the address is less than 256, and Ab-
solute otherwise).

- # for immediate mode (precedes the data)

« X or.Y for indexing (follows the offset address)

+ Parentheses around addresses that are used indirectly so that
(addr.X) indicates pre-indexing (indexed address used indirectly)
(addr).Y indicates post-indexing (indirect address is indexed)
(addr) indicates indirection with JMP instruction only

In the indexed modes. as in the direct modes, the Assembler automatically chooses the
Zero Page version if it is permitted and if the address is less than 256.

The Assembler also allows expressions in the address field. These |ASSEMBLER
expressions consist of numbers and names separated by the JARITHMETIC
arithmetic operators +, —, * (multiplication), or / (integer division). |EXPRESSIONS
The Assembler evaluates expressions from left to right; no

parentheses are allowed to group operations, nor is there any hierarchy of operations.
Fractional results are truncated.

We recommend that you avoid expressions within address fields whenever possi-
ble. If you must compute an address, comment any unclear expressions and be sure
that the evaluation of the expressions never produces a result which is too large for its
ultimate use.

3-11

OTHER ASSEMBLER FEATURES

The standard 6502 Assembler has neither a conditional assembly capability nor a
macro capability. Some 6502 assemblers have one or both of these capabilities, and
you should consult your manual for a description. We will not use or refer to either
capability again, although both can be quite convenient in actual applications.

3-112

Chapter 4
SIMPLE PROGRAMS

The only way to learn assembly language programming is through experience. The
next six chapters of this book contain examples of simple programs that perform
actual microprocessor tasks. You should read each example carefully and try to
execute the program on a 6502-based microcomputer. Finally, you should work
the problems at the end of each chapter and run the resulting programs to insure
that you understand the material.

This chapter contains some very elementary programs.
GENERAL FORMAT OF EXAMPLES

Each program example contains the following parts: EXAMPLE
FORMAT

1) A title that describes the general problem.

2) A statement of purpose that describes the specific task that the program performs
and the memory locations that it uses.

3) A sample problem with data and results.

4) A flowchart if the program logic is complex.

5) The source program or assembly language listing.

6) The object program or hexadecimal machine language listing.

7) Explanatory notes that discuss the instructions and methods used in the program.

You should use the examples as guidelines for solving the problems at the end of
each chapter. Be sure to run your solutions on a 6502-based microcomputer to in-
sure that they are correct.

The source programs in the examples have been constructed as follows:

1) Standard 6502 assembler notation is used, as summarized in GUIDELINES
Chapter 3. FOR
2) The forms in which data and addresses appear are selected for EXAMPLES

clarity rather than for consistency. We use hexadecimal num-
bers for memory addresses, instruction codes, and BCD data; decimal for numeric
constants; binary for logical masks; and ASCII for characters.

3) Frequently used instructions and programming techniques are emphasized.

4) Examples illustrate tasks that microprocessors perform in communications, instru-
mentation, computers, business equipment, industrial. and military applications.

5) Detailed comments are included.

6) Simple and clear structures are emphasized, but programs are as efficient as possi-
ble within this guideline. The notes often describe more efficient procedures.

7) Programs use consistent memory allocations. Each program starts in memory loca-
tion 0000 and ends with the Break (BRK) instruction. If your microcomputer has no
monitor and no interrupts, you may prefer to end programs with an endless loop in-
struction, e.g..

HERE JMP HERE
4-1

Some 6502-based microcomputers may require a JMP or JSR instruction with a
specific destination address to return control to the monitor. Other microcomputers
may require you to specify the monitor address to be used by the BRK instruction. For
example, if you are using the popular KIM-1, you will have to load 1C00 into addresses
17FE and 17FF. Be careful — the 00 must be loaded into address 17FE and the 1C into
address 17FF. We will explain later how the 6502 stores addresses and how it imple-
ments the BRK instruction (see Chapter 12).

Consult the User's Manual for your microcomputer to determine the required memory
allocations and terminating instruction for your particular system.

GUIDELINES FOR SOLVING PROBLEMS

Use the following guidelines in solving the problems at the end of each chapter:

1) Comment each program so that others can understand it.
The comments can be brief and ungrammatical; they
should explain the purpose of a section or instruction in
the program. Comments should not describe the operation
of instructions; that description is available in manuals. You do not have to com-
ment each statement or explain the obvious. You may follow the format of the ex-
amples but provide less detail.

PROGRAMMING
GUIDELINES

2) Emphasize clarity. simplicity. and good structure in programs. While programs
should be reasonably efficient. do not worry about saving a single byte of program
memory or a few microseconds.

3) Make programs reasonably general. Do not confuse parameters (such as the num-
ber of elements in an array) with fixed constants (such as 7 or ASCII C).

4) Never assume fixed initial values for parameters; i.e., assume that the parameters
are already in RAM.

5) Use assembler notation as shown in the examples and defined in Chapter 3.
6) Use hexadecimal notation for addresses. Use the clearest possible form for data.

7) If your microcomputer allows it start all programs in memory location 0000 and
use memory locations starting with 00401 ¢ for data and temporary storage. Other-
wise, establish equivalent addresses for your microcomputer and use them consis-
tently. Again, consult the user's manual.

8) Use meaningful names for labels and variables: e.g.. SUM or CHECK rather than X.
Y. or Z.

9) Execute each program on your microcomputer. There is no other way of ensuring
that your program is correct. We have provided sample data with each problem. Be
sure that the program works for special cases.

We now summarize some useful information that you should keep in mind when
writing programs.

Almost all processing instructions (e.g.. Add. Subtract, AND, USING THE

OR) use the contents of the Accumulator as one operand and ACCUMULATOR
place the result back in the Accumulator. In most cases, you
will load the initial data into the Accumulator with LDA. You will store the result from
the Accumulator into memory with STA.

Frequently accessed data and frequently used base addresses or USING
pointers should be placed on page zero of memory. This data can PAGE ZERO
then be accessed with zero-page (direct). pre-indexed. post- OF MEMORY
indexed, and zero-page indexed addressing. Note in particular that
pre-indexing and post-indexing both assume that an address is stored on page zero.
The zero-page direct and indexed modes both require less time and memory than the
corresponding absolute addressing modes.

Some instructions, such as shifts, increment (add 1), and decrement (subtract 1) can act
directly on data in memory. Such instructions allow you to bypass the user registers but
they require extra execution time since the data must actually be loaded into the CPU
and the result must be stored back into memory.

4-3

PROGRAM EXAMPLES
8-Bit Data Transfer

Purpose: Move the contents of memory location 0040 to memory location 0041.
Sample Problem:

(0040) = 6A
Result: (0041) = 6A
Source Program:
LDA $40 :GET DATA
STA $41 :TRANSFER TO NEW LOCATION
BRK
Object Program:
Memory Location Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 85 STA $41
0003 41
0004 00 BRK

The LDA (Load Accumulator) and STA (Store Accumulator) need an address to deter-
mine the source or destination of the data. Since the addresses used in the example are
on page zero (that is, the eight most significant bits are all zero), the zero page (direct)
form of the instructions can be used with the address in the next word. The leading
zeros can be omitted. The addresses are really 0040 and 0041, but the shorthand form
can be used just as in everyday conversation (e.g.. we say “sixty cents’” rather than
“zero dollars and sixty cents”).

BRK (Force Break) is used to end all the examples and return control to the monitor.
Remember that you may have to replace this instruction with whatever your microcom-
puter requires.

4-4

8-Bit Addition

Purpose: Add the contents of memory locations 0040 and 0041, and place the result
in memory location 0042.

Sample Problem:

(0040) = 38
(0041) = 2B
Result: (0042) = 63
Source Program:

CLC ;CLEAR CARRY TO START

LDA $40 :GET FIRST OPERAND

ADC $41 ;ADD SECOND OPERAND

STA $42 ;STORE RESULT

BRK

Object Program:
Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)
0000 18 CLC
0001 A5 LDA $40
0002 40
0003 65 ADC $41
0004 41
0005 85 STA $42
0006 42
0007 00 BRK

The only addition instruction on the 65602 microprocessor is ADC (Add with Carry).
which results in (A) = (A) + (M) + (Carry) where M is the addressed memory location.
Thus, we need the initial CLC (Clear Carry) instruction if the value of Carry is not to
affect the addition. Remember that the Carry will be included in all additions and
subtractions.

The zero-page (direct) forms of all instructions are used, since all the addresses are in
the first 256 bytes of memory.

ADC affects the Carry bit, but LDA and STA do not. Only arithmetic and shift instruc-
tions affect the Carry: logical and transfer instructions do not.

LDA and ADC do not affect the contents of memory. STA changes the contents of the
addressed memory location but does not affect the contents of the Accumulator.

Be sure that the Decimal Mode (D) flag is cleared when you execute this program. To be
absolutely certain of the D flag's state, you could add a CLD instruction (D81g) to the
start of the program. If you are using the KIM-1 microcomputer, you should clear
memory location O0OF1 to ensure that the Decimal Mode flag does not interfere with
your programs or with the monitor.

Shift Left One Bit

Purpose: Shift the contents of memory location 0040 left one bit and place the result
into memory location 0041. Clear the empty bit position.

Sample Problem:

(0040) = 6F
Result: (0041) = DE
Source Program:
LDA $40 :GET DATA
ASL A JSHIFT LEFT
STA $41 ;STORE RESULT
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 Ab LDA $40
0001 40
0002 0A ASL A
0003 85 STA $41
0004 41
0005 00 BRK

The instruction ASL A shifts the contents of the Accumulator left one bit and clears the
least significant bit. The most significant bit is moved into the Carry. The result is twice
the original data (why?).

Note that we could also shift the contents of memory location 0040 one bit with the in-
struction ASL $40 and then move the result to memory location 0041. This method
would, however, change the contents of memory location 0040 as well as the contents
of memory location 0041.

4-6

Mask Off Most Significant Four Bits

Purpose: Place the least significant four bits of memory location 0040 in the least sig-
nificant four bits of memory location 0041. Clear the most significant four
bits of memory location 0041.

Sample Problem:

(0040) = 3D
Result: (0041) = 0D
Source Program:
LDA $40 :GET DATA
AND #%00001111 ;MASK 4 MSB'S
STA $41 :STORE RESULT

BRK

Note: # means immediate addressing and % means binary constant in standard 6502
Assembler notation.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 Ab LDA $40
0001 40
0002 29 AND #%00001111
0003 OF
0004 85 STA $41
0005 41
0006 00 BRK

AND #%00001111 logically ANDs the contents of the Accumulator with the number
0F16 — not the contents of memory location 000F. Immediate addressing (indicated by
#) means that the actual data. not the address of the data, is included in the instruc-
tion.

The mask (00001111) is written in binary to make its purpose clearer to the reader. Bi-
nary notation for masks is clearer than hexadecimal notation since logical operations
are performed bit-by-bit rather than digits or bytes at a time. The result, of course, does
not depend on the programming notation. Hexadecimal notation should be used for
masks longer than eight bits because the binary versions become long and cumber-
some. The comments should explain the masking operation.

A logical AND instruction may be used to clear bits that are not in use. For example, the
four least significant bits of the data could be an input from a ten-position switch or an
output to a numeric display.

Clear a Memory Location
Purpose: Clear memory location 0040.

Source Program:

LDA #0

STA $40 :CLEAR LOCATION 40

BRK

Object Program:
Memory Address Memory Contents Instruction

(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 85 STA $40
0003 40
0004 00 BRK

Zero is handled no differently than any other number — the 6502 has no explicit Clear
instruction. However, remember that LDA #0 does set the Zero flag to one. Always
watch this logic — the Z (Zero) flag is set to one if the last result was zero.

STA does not affect any status flags.

4-8

Word Disassembly

Purpose: Divide the contents of memory location 0040 into two 4-bit sections and
store them in memory locations 0041 and 0042. Place the four most signifi-
cant bits of memory location 0040 into the four least significant bit positions
of memory location 0041; place the four least significant bits of memory
location 0040 into the four least significant bit positions of memory location
0042. Clear the four most significant bit positions of memory locations 0041

and 0042.
Sample Problem:
(0040) = 3F
Result: (0041) = 083
(0042) = OF
Source Program:
LDA $40
AND #%00001111
STA $42
LDA $40
LSR A
LSR A
LSR A
LSR A
STA $41
BRK

Object Program:

:GET DATA
:MASK OFF MSB'S
:STORE LSB'S
:RESTORE DATA
:LOGICALLY SHIFT DATA RIGHT 4 TIMES

:STORE MSB'S

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 29 AND #%00001111
0003 OF
0004 85 STA $42
0005 42
0006 Ab LDA $40
0007 40
0008 4A LSR A
0009 4A LSR A
000A 4A LSR A
0008B 4A LSR A
000C 85 STA $41
000D 41
000E 00 BRK

A logical shift right of four positions requires four executions of the LSR A instruction.

Each LSR instruction clears the most significant bit of the result. Thus. the four most
significant bits of the Accumulator are all cleared after LSR A has been executed four

times.

You might wish to try rewriting the program so that it saves a copy of the data in Index
Register X rather than loading the same data twice. Which version do you prefer and

why?

4-9

Find Larger of Two Numbers

Purpose: Place the larger of the contents of memory locations 0040 and 0041 into
memory location 0042. Assume that the contents of memory locations 0040
and 0041 are unsigned binary numbers.

Sample Problems:

a. (0040) = 3F
(0041) = 28B
Result: (0042) = 3F
b. (0040) = 75
(0041) = A8
Result: (0042) = A8
Source Program:
LDA $40 :GET FIRST OPERAND
CMP $41 :IS SECOND OPERAND LARGER?
BCS STRES
LDA $41 :YES, GET SECOND OPERAND INSTEAD
STRES STA $42 :STORE LARGER OPERAND
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 C5 CMP $41
0003 41
0004 BO BCS STRES
0005 02
0006 Ab LDA $41
0007 41
0008 85 STRES STA $42
0009 42
000A 00 BRK

CMP $41 subtracts the contents of memory location 0041 from the contents of the Ac-
cumulator but does not store the result anywhere. The instruction is used merely to set
the flags for a subsequent conditional branch.

CMP affects the flags as follows:
1) N takes the value of the most significant bit of the result of the subtraction.
2) Zissetto 1 if the result of the subtraction is zero and to O otherwise.

3) Cis set to 1 if the subtraction does not require a borrow and to O if it does. Note
that C is an inverted borrow, not the actual borrow as it is on many other
microprocessors.

4) V is not affected.

Note the following cases:
1) If the operands are equal. Z = 1; if they are not equal. Z =0.

2) If the contents of the Accumulator are greater than or equal to the contents of the
other address (considering both as unsigned binary numbers), C = 1, since no bor-
row would then be needed. Otherwise, C = 0.

All 6502 conditional branch instructions use relative addressing. in which the second
word of the instruction is an 8-bit twos complement number which the CPU adds to the
address of the next instruction to calculate the destination address. In the example, the
relative offset is 0008 (destination address) - 0006 (address immediately following the
branch) or 02. Obviously. calculating relative offsets is error-prone. particularly if the
result is negative; however, if you label all target instructions, the assembler will per-
form the calculations for you.

BCS causes a branch if the Carry is one. If the Carry is zero. the processor continues ex-
ecuting instructions in their normal sequence as if the Branch instruction did not exist.

STRES is a label, a name that the programmer assigns to a memory address so that it is
easier to remember and locate. Note that labels are followed by a space on the line
where they are defined. The label makes the destination of the branch clear, particularly
when relative addressing is being used. Using a label is preferable to just specifying the
offset (i.e., BCS*+4) since the 6502's instructions vary in length. You or another user of
the program could easily make an error in determining the offset or the destination.

16-Bit Addition

Purpose: Add the 16-bit number in memory locations 0040 and 0041 to the 16-bit
number in memory locations 0042 and 0043. The most significant eight bits
are in memory locations 0041 and 0043. Store the result in memory loca-
tions 0044 and 0045, with the most significant bits in 0045.

Sample Problem:

(0040) = 2A
(0041) = 67
(0042) = F8
(0043) = 14
Result=672A + 14F8 =7C22
(0044) = 22
(0045) = 7C
Source Program:
CLC :CLEAR CARRY TO START
LDA $40 ;ADD LEAST SIGNIFICANT BITS
ADC $42
STA $44
LDA $41 ;ADD MOST SIGNIFICANT BITS WITH CARRY
ADC $43
STA $45
BRK
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 18 CLC
0001 Ab5 LDA $40
0002 40
0003 65 ADC $42
0004 42
0005 85 STA $44
0006 44
0007 AB LDA $41
0008 a1
0009 65 ADC $43
000A 43
0008B 85 STA $45
000C 45
000D 00 BRK

You must clear the Carry before the first addition since there is never a carry into the
least significant bits.

ADC then automatically includes the Carry from the least significant bits in the addition
of the most significant bits. Thus the microprocessor can add data of any length; it adds
numbers eight bits at a time with the Carry transferring information from one 8-bit sec-
tion to the next. Note. however. that each 8-bit addition requires the execution of three
instructions (LDA, ADC. STA) since there is only one accumulator.

4-12

Table of Squares

Purpose: Calculate the square of the contents of memory location 0041 from a table
and place the result in memory location 0042. Assume that memory location
0041 contains a number between 0 and 7 inclusive — 0 < (0041) < 7.

The table occupies memory locations 0050 to 0057.

Memory Address Entry
(Hex) (Hex) (Decimal)
0050 00 o (0
0051 01 1 (1 2)
0052 04 4 (22)
0053 09 9 (3 2)
0054 10 16 (42)
0055 19 25 (52)
0056 24 36 (62)
0057 31 49 (79
Sample Problems:
a. (0041) = 03
Result: (0042) = 09
b. (0041) = 06
Result: (0042) = 24
Remember that the answer is a hexadecimal number.
Source Program:
LDX $41 :GET DATA
LDA $50.X :GET SQUARE OF DATA
STA $42 :STORE SQUARE
BRK
*=$50 ;SQUARES TABLE

SQTAB .BYTE 0.1.4.9.16.25,36.49

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A6 LDX $41
0001 41
0002 B5 LDA $50.X
0003 50
0004 85 STA $42
0005 42
0006 00 BRK
0050 00 SQTAB .BYTE 0
0051 01 1
0052 04 4
0053 09 9
0054 10 16
0055 19 25
0056 24 36
0057 31 49

Note that you must also enter the table of squares into memory (the assembler pseudo-
operation .BYTE will handle this). The table of squares is constant data, not parameters
that may change: that is why you can initialize the table using the .BYTE pseudo-opera-
tion, rather than by executing instructions to load values into the table. Remember that.
in an actual application, the table would be part of the read-only program memory. The
.BYTE pseudo-operation places the specified data in memory in the order in which it ap-
pears in the operand field.

The pseudo-operation *= simply determines where the loader (or assembler) will place
the next section of code when it is finally entered into the microcomputer’'s memory for
execution. Note that the pseudo-operation does not actually result in any object code
being generated.

Indexed addressing (or indexing) means that the actual address used by the instruction
(often referred to as the effective address) is the sum of the address included in the in-
struction and the contents of the Index register. Thus LDA $50.X (X or .Y indicates in-
dexed addressing with the specified Index register in 6502 assembly language) is
equivalent to LDA $50+(X) or LDA $563 if (X) = 03. In the example program, Index
Register X contains the number to be squared and the address included in the instruc-
tion is the starting address of the table of squares. Note that there is a special zero-page
indexed mode using Index Register X.

Indexing always takes extra time since the microcomputer must perform an addition to
calculate the effective address. Thus LDA $560.X requires four clock cycles while LDA
$50 requires only three. However, it would clearly take a great deal more time to access
the table entry if the microcomputer lacked indexing and the address calculation had to
be performed with a series of instructions.

Remember that the Index registers are only 8 bits long so the maximum offset from the
base address is 255 (FF1g). Note also that the offset is an unsigned number (unlike the
offset in relative addressing) so that it can never be negative. However, we do get wrap-
around. That is, if the sum of the base address and the contents of the index register
exceed the maximum allowed value, the most significant bits of the sum are simply
dropped. In the case of zero page indexing. the maximum allowed value is FFqg. If, for
example, the base address on the zero page is FO1g and the index register contains
1B16. the effective address for zero page indexing is 000B1g: there is no carry to the
more significant byte. Thus we can get the effect of a negative offset.

4-14

There are a few special instructions that operate on one of the Index registers rather
than on the Accumulator. These are:

CPX, CPY - Compare Memory and Index Register
DEX. DEY - Decrement Index Register (by 1)

INX, INY - Increment Index Register (by 1)

LDX, LDY - Load Index Register from Memory

STX, STY - Store Index Register into Memory

TAX, TAY - Transfer Accumulator to Index Register
TXA, TYA - Transfer Index Register to Accumulator

Remember that there are only a few addressing modes available with CPX, CPY, LDX,
LDY. STX. and STY. Consult Table 3-4 for more details.

Arithmetic that a microprocessor cannot do directly in a few ARITHMETIC
instructions is often best performed with lookup tables. Lookup WITH
tables simply contain all the possible answers to the problem:; TABLES

they are organized so that the answer to a particular problem
can be found easily. The arithmetic problem now becomes an accessing problem —
how do we get the correct answer from the table? We must know two things: the
position of the answer in the table (called the index) and the base. or starting. address
of the table. The address of the answer is then the base address plus the index.

The base address. of course, is a fixed number for a particular table. How can we deter-
mine the index? In simple cases, where a single piece of data is involved, we can organ-
ize the table so that the data is the index. In the table of squares, the Oth entry in the ta-
ble contains zero squared. the first entry one squared, etc. In more complex cases.
where the spread of input values is very large or there are several data items involved
(e.g.. roots of a quadratic equation or number of permutations), we must use more com-
plicated methods to determine indexes.

The basic tradeoff in using a table is time vs. memory. Tables are faster, since no com-
putations are required, and simpler, since no mathematical methods must be devised
and tested. However, tables can occupy a large amount of memory if the range of the
input data is large. We can often reduce the size of a table by limiting the accuracy of
the results, scaling the input data. or organizing the table cleverly. Tables are often
used to compute transcendental and trigonometric functions. linearize inputs, convert
codes, and perform other mathematical tasks.

4-15

Ones Complement

Purpose: Logically complement the contents of memory location 0040 and place the
result in memory location 0041.

Sample Problem:
(0040) =6A
Result=(0041) = 95

Source Program:

LDA $40 :GET DATA
EOR #%11111111 LOGICALLY COMPLEMENT DATA
STA $41 :STORE RESULT
BRK
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 49 EOR #%11111111
0003 FF
0004 85 STA $41
0005 41
0006 00 BRK

The 6502 microprocessor lacks some simple instructions, such as Clear or Complement,
that are available in most other sets. However, the required operations are easily ac-
complished with the existing instructions if the programmer simply gives the matter a
little thought.

Exclusive-ORing a bit with ‘1" complements the bit since
1M0=1
and 1¥1=0
So the Exclusive-OR function turns each ‘0" bit into a ‘1" and each "1" bit into a ‘0", just
like a logical complement or inverse. Note, however, that the instruction EOR
#%11111111 occupies two bytes of memory. one for the operation code and one for
the mask. An explicit Complement instruction would require only one byte.

One problem with this approach is that the purpose of the instructions may not be im-
mediately obvious. A reader would probably have to think about exactly what an Ex-
clusive-OR function with an all-ones word actually does. Adequate documentation is
essential here, and the use of macros can also help clarify the situation.

4-16

PROBLEMS
1) 16-Bit Data Transfer

Purpose: Move the contents of memory location 0040 to memory location 0042 and
the contents of memory location 0041 to memory location 0043.

Sample Problem:

(0040) = 3E
(0041) = B7
Result: (0042) = 3E
(0043) = B7

2) 8-Bit Subtraction

Purpose: Subtract the contents of memory location 0041 from the contents of memory
location 0040. Place the result into memory location 0042.

Sample Problem:

(0040) = 77
(0041) = 39
Result: (0042) = 3E

3) Shift Left Two Bits

Purpose: Shift the contents of memory location 0040 left two bits and place the result
into memory location 0041. Clear the two least significant bit positions.

Sample Problem:
(0040) = 5D

Result: (0041) 74
4) Mask Off Least Significant Four Bits

Purpose: Place the four most significant bits of the contents of memory location 0040
into memory location 0041. Clear the four least significant bits of memory
location 0041.

Sample Problem:
(0040) ca

Result: (0041) = CO

5) Set a Memory Location to All Ones
Purpose: Memory location 0040 is set to all ones (FF1g).

6) Word Assembly

Purpose: Combine the four least significant bits of memory locations 0040 and 0041
into a word and store them in memory location 0042. Place the four least sig-
nificant bits of memory location 0040 into the four most significant bit posi-
tions of memory location 0042; place the four least significant bits of memo-
ry location 0041 into the four least significant bit positions of memory loca-

tion 0042.
Sample Problem:
(0040) = 6A
(0041) = B3
Result: (0042) = A3

4-17

7) Find Smaller of Two Numbers

Purpose: Place the smaller of the contents of memory locations 0040 and 0041 in
memory location 0042. Assume that memory locations 0040 and 0041 con-
tain unsigned binary numbers.

Sample Problems:

a. (0040) = 3F
(0041) = 2B

Result: (0042) = 2B

b. (0040) = 75
(0041) = A8

Result: (0042) = 75

8) 24-Bit Addition

Purpose: Add the 24-bit number in memory locations 0040, 0041, and 0042 to the 24-
bit number in memory locations 0043, 0044, and 0045. The most significant
eight bits are in memory locations 0042 and 0045, the least significant eight
bits in memory locations 0040 and 0043. Store the result in memory loca-
tions 0046, 0047, and 0048 with the most significant bits in 0048 and the
least significant bits in 0046.

Sample Problem:

(0040) = 2A

(0041) = 67

(0042) = 35

(0043) = F8

(0044) = A4

(0045) = 51

Result: (0046) = 22

(0047) = OC

(0048) = 87
that is, 35672A
+51A4F8
870C22

9) Sum of Squares

Purpose: Calculate the squares of the contents of memory locations 0040 and 0041
and add them together. Place the result in memory location 0042. Assume
that memory locations 0040 and 0041 both contain numbers between O and
7 inclusive: i.e.0 < (0040) <7 and 0 < (0041) < 7. Use the table of
squares from the example entitled Table of Squares.

Sample Problem:

(0040) 0
(0041) 0

Result =(0042) = 2D
thatis. 32+62= 9+ 36 =45=2D1g

3
6

nn

4-18

10) Twos Complement

Purpose: Place the twos complement of the contents of memory location 0040 in
memory location 0041. The twos complement is the ones complement plus

one.
=]

Sample Problem:
(0040) 3E
Result: (0041) C2

The sum of the original number and its twos complement is zero. So the twos comple-
ment of X is 0-X. Which approach (calculating the ones complement and adding one, or
subtracting from zero) results in a shorter and faster program?

Chapter 5
SIMPLE PROGRAM LOOPS

The program loop is the basic structure that forces the CPU to repeat a sequence
of instructions. Loops have four sections:

1) The initialization section that establishes the starting values of counters, point-
ers, indexes. and other variables.

2) The processing section where the actual data manipulation occurs. This is the
section that does the work.

3) The loop control section that updates counters and indexes for the next iteration.
4) The concluding section that analyzes and stores the results.

Note that the computer performs Sections 1 and 4 only once while it may perform Sec-
tions 2 and 3 many times. Thus. the execution time of the loop will mainly depend on
the execution time of Sections 2 and 3. You will want Sections 2 and 3 to execute as
quickly as possible; do not worry about the execution time of Sections 1 and 4. A typi-
cal program loop can be flowcharted as shown in Figure 5-1, or the positions of the pro-
cessing and loop control sections may be reversed as shown in Figure 5-2. The process-
ing section in Figure 5-1 is always executed at least once, while the processing section
in Figure 5-2 may not be executed at all. Figure 5-1 seems more natural. but Figure 5-2
is often more efficient and avoids the problem of what to do when there is no data (a
bugaboo for computers and the frequent cause of silly situations like the computer dun-
ning someone for a bill of $0.00).

The loop structure can be used to process entire blocks of data. To accomplish this. the
program must increment an Index register after each iteration so that the effective ad-
dress of an indexed instruction is the next element in the data block. The next iteration
will then perform the same operations on the data in the next memory location. The
computer can handle blocks of any length (up to 256, since the Index registers are 8
bits long) with the same set of instructions. Indexed addressing is the key to processing
blocks of data with the 6502 microprocessor. since it allows you to vary the actual (or
effective) memory address by changing the contents of Index registers. Note that in the
direct and immediate addressing modes, the address used is completely determined by
the instruction and is therefore fixed if the program memory is read-only.

5-1

Initialization
Section

———

Processing
Section

(]

Loop Control
Section

Has
the task been
completed

Concluding
Section

Figure 5-1. Flowchart of a Program Loop

Initialization
Section

r———F'

Loop Control
Section

Processing
Section

Concluding
Section

L

Figure 5-2. A Program Loop that Allows Zero Iterations

EXAMPLES
Sum of Data

Purpose: Calculate the sum of a series of numbers. The length of 8-BIT
the series is in memory location 0041, and the series SUMMATION

begins in memory location 0042. Store the sum in

memory location 0040. Assume that the sum is an 8-bit number so that vou
can ignore carries.

Sample Problem:

Result:

(0041)
(0042)
(0043)
(0044)

(0040)

o

[T

(0042) + (0043) + (0044)
28+55+26
A3

There are three entries in the sum, since (0041)=03.

Flowchart:

Sum =0
Index = 0

—

Sum = Sum +
(0042 +Index)

[

Index = Index + 1

(0040) = Sum

Note: (0042 + Index) is the contents of the memory location whose address is the sum
of 0042 and Index. Remember that on the 6502 microprocessor, 0042 is a 16-bit
address, Index is an 8-bit offset, and (0042 + Index) is an 8-bit byte of data.

5-4

Source Program:

LDA #0 :SUM = ZERO
TAX INDEX = ZERO
SUMD CLC :DO NOT INCLUDE CARRY
ADC $42.X ;SUM = SUM + DATA
INX ;INCREMENT INDEX
CPX $41 ;HAVE ALL ELEMENTS BEEN SUMMED?
BNE SUMD ;NO, CONTINUE SUMMATION
STA $40 :YES. STORE SUM
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 AA TAX
0003 18 SumMD CLC
0004 75 ADC $42.X
0005 42
0006 E8 INX
0007 E4 CPX $41
0008 41
0009 DO BNE SUMD
000A F8
000B 85 STA $40
000C 40
000D 00 BRK

The initialization section of the program is the first two instructions, which set the sum
and index to their starting values. Note that TAX transfers the contents of the Ac-
cumulator to Index Register X but leaves the Accumulator as it was. The base address
of the array and the location of the counter are fixed within the program and need not
be initialized.

The processing section of the program consists of the single instruction ADC $42.X,
which adds the contents of the effective address (base address plus Index Register X) to
the contents of the Accumulator. This instruction does the real work of the program.
The CLC instruction simply clears the Carry flag so that it does not affect the summa-
tion. Note that each iteration of the loop adds in the contents of a new effective address
even though the instructions do not change.

The loop control section of the program consists of the instruction INX. This instruction
updates the Index register (by 1) so that the next iteration adds the next number to the
sum. Note that (0041) - X tells you how many iterations are left to be done.

The instruction BNE causes a branch if the Zero flag is 0. CPX sets the Zero flag to 1 if
Index Register X and the contents of memory location 0041 are the same and to O if
they are not. The offset is a twos complement number and the count begins from the
memory location immediately following the BNE instruction. In this case, the required
jump is from memory location 000B to memory location 0003. So the offset is:

0003 = 03
-000B = +F5
F8

5-5

If the Zero flag is one, the CPU executes the next instruction in sequence (STA $40).
Since CPX $41 was the last instruction before BNE to affect the Zero flag, BNE SUMD
causes a branch to SUMD if CPX $41 does not produce a zero result; that is,

SUMD if (X) - (0041) #£0
o -f

(PC)+2 if (X) - (0041) =0

The 2 is caused by the two-word BNE instruction. A single instruction combining the
Decrement and the Jump would be a useful addition to the 6502 instruction set.

The order in which instructions are executed is often very important. INX must come
after ADC $42.X or else the first number to be added to the sum will be the contents of
memory location 0043 instead of the contents of memory location 0042. CPX $41 must
come right before BNE SUMD., since otherwise the Zero status setting produced by CPX
could be changed by another instruction.

CPX and CPY are the same as CMP except that the contents of memory are subtracted
from an Index register rather than from the Accumulator. Note, however, that CPX and
CPY offer limited addressing options (see Table 3-4).

Most computer loops count down rather than up so that the Zero flag can serve as an
exit condition, thus eliminating the need for a Compare instruction. This method is a bit
awkward for people although it is used occasionally in launch countdowns and in a few
other situations. Remember that the Zero flag is set to 1 if the result of an instruction is
zero and to O if the result is not zero.

We could easily revise the loop so that it works backward through the array (see the
next flowchart). The following programs are revised versions.

Source Program:

LDA #0 :SUM = ZERO
LDX $41 [INDEX = MAXIMUM COUNT
SUMD CLC :DO NOT INCLUDE CARRY
ACD $41.X ;SUM = SUM + DATA
DEX ;DECREMENT INDEX
BNE SUMD :BRANCH BACK IF ALL ELEMENTS NOT SUMMED
STA $40 ;STORE SUM
BRK

5-6

Note that the addition instruction is now ADC $41,X instead of ADC $42.X; the number
in the Index register is one larger than before. Clearly, the net result of subtracting one
from the base address and adding one to the index is zero. The reorganized object pro-
gram is:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 A6 LDX $41
0003 41
0004 18 SUMD CLC
0005 75 ADC $41.X
0006 41
0007 CA DEX
0008 DO BNE SUMD
0009 FA
000A 85 STA $40
0008 40
000C 00 BRK

In most applications. the slight time and memory differences between one implementa-
tion of a loop and another do not matter very much. You should therefore select the ap-
proach that is the clearest and easiest for you to use. We will discuss program design
and efficiency later in Chapters 13 and 15.

You may wish to verify the hexadecimal values for the relative offsets in the last two
programs. The final test of any calculations that you make is whether the program runs
correctly. If, for whatever reason, you must perform hexadecimal calculations fre-
quently, we suggest that you consider a calculator (like the Texas Instruments Program-
mer) or one of the numerous manual aids that are available.

5-7

Flowchart (of reorganized summation program):

Sum =0
Index = (0041)

—=

Sum = Sum +
(0041 +Index)

Y

Index = Index -1

(0040) = Sum

16-Bit Sum of Data

Purpose: Calculate the sum of a series of numbers. The length of the series is in
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight least significant

bits in 0040).
Sample Problem:

(0042) = 03
(0043) = C8
(0044) = FA
(0045) = 96

Result = C8 + FA + 96 = 02581¢
(0040) = 58
(0041) = 02

Flowchart:

Start

i

Base = 0043
Index =0
SumL =0
SumU =0

:

SumL = SumL +
(Base + Index)

SumU = SumU

Index = Index + 1

(0040) = SumL
(0041) = SumU

Source Program:

LDA #0 :SUM = ZERO
TAX JINDEX = ZERO
TAY :MSB'S OF SUM = ZERO
SUMD CLC ;DO NOT INCLUDE CARRY
ADC $43.X ;SUM = SUM + DATA
BCC COUNT
INY :ADD CARRY TO MSB'S OF SUM
COUNT INX
CPX $42
BNE SUMD ;CONTINUE UNTIL ALL ELEMENTS SUMMED
STA $40 ;STORE LSB'S OF SUM
STY $41 ;STORE MSB'S OF SUM
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) {Hex) {(Mnemonic)
0000 A9 LDA #0
0001 00
0002 AA TAX
0003 A8 TAY
0004 18 SUMD CLC
0005 75 ADC $43.X
0006 43
0007 90 BCC COUNT
0008 01
0009 c8 INY
000A E8 COUNT INX
0008B E4 CPX $42
000C 42
000D DO BNE SUMD
000E F5
000F 85 STA $40
0010 40
0011 84 STY $41
0012 41
0013 00 BRK

The structure of this program is the same as the structure of the last example. The most
significant bits of the sum must now be initialized and stored. The processing section
consists of four instructions (CLC; ADC $43,X; BCC COUNT: and INY), including a con-

dition jump.

BCC COUNT causes a jump to memory location COUNT if Carry = 0. Thus, if there is no
carry from the 8-bit addition. the program jumps around the statement that increments

the most significant bits of the sum. The relative offset is

000A
-0009
01

The relative offset for BNE SUMD is

0004 _ 0004
-000F ~ +FFF1
F5

INY adds 1 to the contents of Index Register Y, which is used here as a temporary
register to save the carries from the addition. We could also use a memory location to
hold the carries, since the INC instruction can be used to directly increment the con-
tents of a memory location.

You might wish to try reorganizing this program so that it decrements the index down
to zero rather than incrementing it. Which version is faster and shorter?

Relative branches are limited to short distances (7F1g or +127 LONG
forward, 8016 or -128 backward from the end of the branch in- CONDITIONAL
struction). This limitation is seldom important, since most pro- BRANCHES

gram branches are short. However, if you need a conditional
branch with a greater range. you can always invert the condition logic and branch
around a JMP instruction. For example. to branch to location FAR if Carry = 0, use the
sequence

BCS NEXT
JMP FAR
NEXT

NEXT is the address immediately following the last byte of the JMP instruction. JMP
allows only absolute (direct) and indirect addressing.

Number of Negative Elements

Purpose: Determine the number of negative elements {most significant bit 1) in a
block. The length of the block is in memory location 0041 and the block itself
starts in memory location 0042. Place the number of negative elements in
memory location 0040.

Sample Problem:

(0041) = 06
(0042) = 68
(0043) = F2
(0044) = 87
(0045) = 30
(0046) = 59
0047) = 2A

Result: (0040) 02, since 0043 and 0044 contain

numbers with an MSB of 1.

Nneg =0
Base = 0042
Index = O

Is
(Base + Index)
<0?
Yes
Nneg = Nneg + 1

S——

Flowchart:

Index = Index + 1

{0040) = Nneg

Source Program:

LDX #0 INDEX = ZERO
LDY #0 :NUMBER OF NEGATIVES = ZERO
SRNEG LDA $42.X ;IS NEXT ELEMENT NEGATIVE?
BPL CHCNT
INY :YES, ADD 1 TO NUMBER OF NEGATIVES
CHCNT INX
CPX $41
BNE SRNEG ;CONTINUE UNTIL ALL ELEMENTS EXAMINED
STY $40 :SAVE NUMBER OF NEGATIVES
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #0
0001 00
0002 AO LDY #0
0003 00
0004 B5 SRNEG LDA $42.X
0005 42
0006 10 BPL CHCNT
0007 01
0008 c8 INY
0009 E8 CHCNT INX
000A E4 CPX $41
000B 41
000C DO BNE SRNEG
000D F6
000E 84 STY $40
000F 40
0010 00 BRK

LDA affects the Sign (S) and Zero (Z) status flags. Therefore. we can immediately check
to see if a number that has been loaded is negative or zero.

BPL. Branch-on-Plus. causes a branch over the specified number of locations if the Sign
(or Negative) bit is zero. A sign bit of zero may indicate a positive number or may just in-
dicate the value of the most significant bit position; the interpretation depends on what
the numbers mean.

The offset for BPL is calculated from the first memory location following the two-byte
instruction. Here the offset is simply from 0008 to 0009, or one location (i.e.. the INY in-
struction is skipped if the Negative bit is zero). The Negative bit will be zero if the most
significant bit of the data loaded from memory by the LDA $42.X instruction is zero.

Remember that negative-signed numbers all have a most significant bit (bit 7) of 1. All
negative numbers are actually larger, in the unsigned sense, than positive numbers.

Maximum Value

Purpose: Find the largest element in a block of data. The length of the block is in
memory location 0041 and the block itself begins in memory location 0042.
Store the maximum in memory location 0040. Assume that the numbers in
the block are all 8-bit unsigned binary numbers.

Sample Problem:

(0041) = 05
(0042) = 67
(0043) = 79
(0044) = 15
(0045) = E3
(0046) = 72
Result: (0040) = E3, since this is the largest of

the five unsigned numbers.

Base = 0041
Index = (0041)
Max =0

Is
Max >
(Base+Index)
?
No

Max = (Base+Index)

F__ ‘

Flowchart:

Index = Index -1

(0040) = Max

Source Program:

LDX $41 :GET ELEMENT COUNT

LDA #0 :MAXIMUM = ZERO (MINIMUM POSSIBLE VALUE)
MAXM CMP $41.X :IS NEXT ELEMENT ABOVE MAXIMUM?

BCS NOCHG :NO. KEEP MAXIMUM

LDA $41.X :YES. REPLACE .MAXIMUM WITH ELEMENT
NOCHG DEX

BNE MAXM :CONTINUE UNTIL ALL ELEMENTS EXAMINED

STA $40 ;SAVE MAXIMUM

BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A6 LDX $41
0001 41
0002 A9 LDA #0
0003 00
0004 D5 MAXM CMP $41.X
0005 41
0006 BO BCS NOCHG
0007 02
0008 B5 LDA $41.X
0009 41
000A CA NOCHG DEX
000B DO BNE MAXM
000C F7
000D 85 STA $40
000E 40
000F 00 BRK

The relative offset for BCS NOCHG is:
000A
-0008
02
The relative offset for BNE MAXM is:
0004 _ 04
-000D = +F3
“F7

The first two instructions of this program form the initialization section.

This program takes advantage of the fact that zero is the smallest 8-bit unsigned binary
number. When you set the register that contains the maximum value — in this case,
the Accumulator — to the minimum possible value before you enter the loop. then the
program will set the Accumulator to a larger value unless all the elements in the array
are zeros. The program works properly if there are two elements in the array, but not if
there is only one or none at all. Why? How could you solve this problem?

The instruction CMP $41.X sets the Carry flag as follows where ELEMENT is the con-
tents of the effective address and MAX is the contents of the Accumulator:

Carry =0 if ELEMENT > MAX
Carry =1 if ELEMENT <MAX

Remember that the carry is an inverted borrow. If Carry = 1, the program proceeds to
address NOCHG and does not change the maximum. If Carry = 0, the program replaces
the old maximum with the current element by executing the instruction LDA $41,X.

The program does not work if the numbers are signed. because negative numbers will
appear to be larger than positive numbers. This problem is somewhat tricky because a
twos complement overflow could make the sign of the result incorrect. A further prob-
lem is that the CMP instruction does not affect the Overflow flag. A program for signed
numbers would therefore have to use the SBC instruction and check both the Sign and
the Overflow flags. The Carry flag would have to be set to 1 before the subtraction
(remember that Carry is an inverted borrow and the SBC instruction inverts it before
subtracting it). and an addition would be required to restore the original value of the
maximum. Note how convenient it is in the example that CMP does not actually change
the contents of the Accumulator.

Justify a Binary Fraction

Purpose: Shift the contents of memory location 0040 left until the most significant bit
of the number is 1. Store the result in memory location 0041 and the number
of left shifts required in memory location 0042. If the contents of memory
location 0040 are zero. clear both 0041 and 0042.

Note: The process is just like converting a number to a scientific notation; for example:
00057 =5.7x 10"
Sample Problems:

a. (0040) = 22
Result: (0041) = 88
(0042) = 02
b. (0040) = 01
Result: (0041) = 80
(0042) = 07
c. (0040) = CB
Result: (0041) = CB
(0042) = 00
d. (0040) = 00
Result: (0041) = 00
(0042) = 00
Flowchart:
Nshft =0
Numb = (0040)

@ Yes
1Is
ignificant bit o
3 Numb 1
> ’
No

Shift Numb

left 1 bit
Nshft = Nshft + 1

L]

(0041) = Numb
(0042) = Nshft

Source Program:

LDY #0 :NUMBER OF SHIFTS =0
LDA $40 :GET DATA
BEQ DONE :DONE IF DATA IS ZERO
CHKMS BMI DONE :DONE IF MSB IS ONE
INY :ADD 1 TO NUMBER OF SHIFTS
ASL A :SHIFT LEFT ONE BIT
JMP CHKMS
DONE STA $41 :SAVE JUSTIFIED DATA
STY $42 :SAVE NUMBER OF SHIFTS
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 AO LDY #0
0001 00
0002 Ab LDA $40
0003 40
0004 FO BEQ DONE
0005 07
0006 30 CHKMS BMI DONE
0007 05
0008 c8 INY
0009 0A ASL A
000A 4C JMP CHKMS
000B 06
000C 00
000D 85 DONE STA $41
000E 41
000F 84 STY $42
0010 42
0011 00 BRK

BMI DONE causes a branch to location DONE if the Sign bit is 1. This condition may
mean that the last result was a negative number, or it may just mean that its most sig-
nificant bit was 1 — the computer only supplies the results; the programmer must pro-
vide the interpretation.

ASL A shifts the contents of the Accumulator left one bit and clears the least significant
bit.

JMP is an unconditional branch instruction that always places a new value in the Pro-
gram Counter. It only allows absolute (direct) or indirect addressing. The indirect mode
provides flexibility since the actual destination address can be stored in RAM. Note that
there is no relative addressing and no special page-zero modes.

The address in the JMP instruction is stored in two successive memory locations with
the least significant bits first (at the lower address). This is the standard way in which
the 6502 microprocessor expects to find addresses, regardless of whether they are part
of instructions or are used indirectly. The same upside-down method is used in the
8080, 8085, and Z80 microprocessors, but the opposite approach (most significant bits
first) is used on the 6800 microprocessor. Note that an address occupies two bytes of
memory. although there is a single byte of data located at that address.

5-18

We could reorganize this program so as to eliminate the extraneous JMP instruction.

One reorganized version would be:

:NUMBER OF SHIFTS =0

:GET DATA

.DONE IF DATA IS ZERO

:ADD 1 TO NUMBER OF SHIFTS
;SHIFT LEFT ONE BIT
:CONTINUE IF MSB NOT ONE
:OTHERWISE. SHIFT BACK ONCE
:AND IGNORE EXTRA SHIFT
;SAVE JUSTIFIED DATA

:SAVE NUMBER OF SHIFTS

LDY
LDA
BEQ
CHKMS INY
ASL
BCC
ROR
DEY
DONE STA
STY
BRK

#0
$40
DONE

A
CHKMS
A

$41
$42

This version shifts the data until the Carry becomes 1. Then it adjusts the data and the
number of shifts back one since the last shift was not really necessary. Show that this
version is also correct. What are its advantages and disadvantages as compared to the
previous program? You might wish to try some other organizations to see how they
compare in execution time and memory usage.

Post-Indexed (Indirect) Addressing

We have already noted the additional flexibility provided by POST-INDEXED
the indexed addressing mode. The same instructions can be (INDIRECT)
used to process each element in an array or table. But even ADDRESSING
more flexibility is provided by the post-indexed addressing MODE

mode in which the instruction only specifies the address on

page zero that contains the base address of the table or array. Now the same program
can handle an array or table located anywhere in memory. All that we have to do is
place the starting address in the appropriate locations on page zero. Note that the start-
ing address occupies two bytes of memory, with the least significant byte first (at the
lower address). Post-indexing requires extra clock cycles (six as compared to four for
the zero-page indexed mode) but provides tremendous additional flexibility. Entire ar-
rays need not be moved. nor are repeated versions of the same program required.

Post-indexed (indirect) addressing can only be used with Index Register Y. So the max-
imum value program with post-indexed addressing is as follows., assuming that the
length of the array is in memory location 0041 and its starting address is in memory
locations 0042 and 0043.

For example,

(0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)

LI T 1 T [

05

43 (LSBs of starting address minus one)
00 (MSBs of starting address minus one)
67 (first element in array)

79

15

E3

72

Result = (40) = E3 since this is the largest
of the 6 unsigned numbers.

Source Program:

LDY
LDA
MAXM CMP
BCS
LDA
NOCHG DEY
BNE
STA
BRK

$41
#0
($42).Y
NOCHG
($42).Y

MAXM
$40

:GET ELEMENT COUNT

:MAXIMUM = ZERO (MINIMUM POSSIBLE VALUE)
;IS NEXT ELEMENT ABOVE MAXIMUM?

:NO. KEEP MAXIMUM

:YES. REPLACE MAXIMUM WITH ELEMENT

;CONTINUE UNTIL ALL ELEMENTS EXAMINED
:SAVE MAXIMUM

5-20

Object Program:

Memory Address ~ Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A4 LDY $41
0001 41
0002 A9 LDA #0
0003 00
0004 D1 MAXM CMP ($42).Y
0005 42
0006 BO BCS NOCHG
0007 02
0008 B1 LDA ($42).Y
0009 42
000A 88 NOCHG DEY
000B DO BNE MAXM
000C F7
000D 85 STA $40
000E 40
000F 00 BRK

The indirect address (in memory locations 0042 and 0043) is stored in the usual 6502
fashion, with the least significant bits first (at the lower address).

We could use the same program to find the maximum element in an array of 5 entries
starting in memory address 25E1. All that we would have to do is change the indirect
address to 25E0 before executing the program, that is,

(0042) = EO (LSBs of starting address minus one)
(0043) = 25 (MSBs of starting address minus one)

How would you handle the array starting in memory address 25E1 if the program used
ordinary indexed addressing (as in the earlier example)? Assume that the program is in
ROM so that you cannot change the addresses in the instructions.

5-21

Pre-Indexed (Indirect) Addressing

The pre-indexed addressing mode gives you a different kind of
flexibility. This method allows you to choose one address from
a table of addresses, rather than being limited to a particular
memory address. For example. rather than having memory
location 0041 contain the length of the array in the maximum

PRE-INDEXED
(INDIRECT)
ADDRESSING
MODE

problem, we could let it contain the index of the address that contains the length of the
array. The table of addresses must be located somewhere on page zero, perhaps start-

ing at memory address 0060, that is

(0060) = 2F
(0061) = 00

(0062) = 80
(0063) = 00

(0064) = A5

(0065) = 00} address in which counter #2 is stored

} address in which counter #0 is stored

} address in which counter #1 is stored

One problem is that addresses occupy two bytes of memory so that you must multiply
the counter number by two before applying the pre-indexed addressing mode. Note
that all addresses are stored in the usual 6502 manner, with the least significant bits
first. Pre-indexed addressing is not as useful as post-indexed addressing. but it does

come in handy occasionally.

5-22

PROBLEMS

1) Checksum of Data

Purpose: Calculate the checksum of a series of numbers. The length of the series is in
memory location 0041 and the series itself begins in memory location 0042.
Store the checksum in memory location 0040. The checksum is formed by
Exclusive-ORing all the numbers in the series together.

Note: Such checksums are often used in paper tape and cassette systems to ensure
that the data has been read correctly. The calculated checksum is compared to
the one stored with the data — if the two checksums do not agree, the system
will usually either indicate an error to the operator or automatically read the data

again.
Sample Problem:

(0041)
(0042)
(0043)
(0044)

Result: (0040)

nnn

® @n o

(0042) & (0043) & (0044)
28 @ 55 D 26
00101000

01010101

0111

2) Sum of 16-Bit Data

Purpose: Calculate the sum of a series of 16-bit numbers. The length of the series is in
memory location 0042 and the series itself begins in memory location 0043.
Store the sum in memory locations 0040 and 0041 (eight most significant
bits in 0041). Each 16-bit number occupies two memory locations, with the
eight most significant bits in the higher address. Assume that the sum can
be contained in 16 bits.

Sample Problem:

(0042) = 03
(0043) = F1
(0044) = 28
(0045) = 1A
(0046) = 30
(0047) = 89
(0048) = 4B
Result: 28F1 + 301A + 4B89 =A494
(0040) = 94
(0041) = A4

5-23

3) Number of Zero, Positive, and Negative Numbers

Purpose: Determine the number of zero, positive (most significant bit zero but entire
number not zero), and negative (most significant bit 1) elements in a block.
The length of the block is in memory location 0043 and the block itself starts
in memory location 0044. Place the number of negative elements in memory
location 0040, the number of zero elements in memory location 0041, and
the number of positive elements in memory location 0042.

Sample Problem:

(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)

Result: 2 negative.

(0040)
(0041)
(0042)

4) Find Minimum

1 zero, and 3 positive, so
02
01
03

Purpose: Find the smallest element in a block of data. The length of the block is in
memory location 0041 and the block itself begins in memory location 0042.
Store the minimum in memory location 0040. Assume that the numbers in
the block are 8-bit unsigned binary numbers.

Sample Problem:

(0041)
(0042)
(0043)
(0044)
(0045)
(0046)

Result: (0040)

5) Count 1 Bits

05
67
79
15
E3
72

= 15, since this is the smallest of the

five unsigned numbers.

Purpose: Determine how many bits in memory location 0040 are ones and place the
result in memory location 0041.

Sample Problem:
(0040)
Result: (Q041)

3B =00111011
05

5-24

Chapter 6
CHARACTER-CODED DATA

Microprocessors often handle character-coded data. Not only do keyboards,
teletypewriters, communications devices, displays, and computer terminals ex-
pect or provide character-coded data, but many instruments, test systems, and
controllers also require data in this form. The most commonly used code is ASCI|I.
Baudot and EBCDIC are found less frequently, We will assume all of our character-
coded data to be 7-bit ASCIl with the most significant bit zero (see Table 6-1).

Some principles to remember in handling ASCll-coded data HANDLING
are: DATA IN
1) The codes for the numbers and letters form ordered sub- Asci

2)

3)

4

5)

6)

sequences. The codes for the decimal numbers are 301g

through 3916 so that you can convert between decimal and ASCII with a simple
additive factor. The codes for the upper case letters are 4116 through 5A16 so that
you can do alphabetic ordering by sorting the data in increasing numerical order.

The computer draws no djstinction between printing and non-printing charac-
ters. Only the I/O devices make that distinction.

An ASCII device will handle only ASCII data. To print a 7 on an ASCII printer,
the microprocessor must send 3716 to the printer; 071g is the ‘bell’ character.
Similarly, the microprocessor will receive the character 9 from an ASCII keyboard
as 3916: 0916 is the tab’ character.

Some ASCII devices do not use the full character set. For example. control
characters and lower case letters may be ignored or printed as spaces or question
marks.

Some widely used ASCII characters are:
0A16 - line feed (LF)

0D1¢ - carriage return (CR)

2016 - space

3F16 - ? (question mark)

7F16 - rubout or delete character

Each ASCII character occupies eight bits. This allows a large character set but is
wasteful when the data is limited to a small subset such as the decimal numbers.
An 8-bit byte, for example. can hold only one ASCll-coded decimal digit. while it
can hold two BCD-coded digits. ~

Table 6-1. Hex-ASCIl Table

Hex MSD
0 1 2 3 4 5 6 7
Hex LSD
0 NUL | DLE SP 0 @ P N p
1 SOH | DC1 ! 1 A Q a q
2 STX DC2 " 2 B R b r
3 ETX | DC3 # 3 C S c S
4 EOT DC4 $ 4 D T d t
5 ENQ | NAK % 5 E U e u
6 ACK | SYN & 6 F \% f v
7 BEL | ETB : 7 G w g w
8 BS CAN (8 H X h X
] HT EM) 9 | Y i y
A LF suB ¢ : J Z j z
B VT ESC + : K [k {
c FF FS < L \ 1 |
D CR GS = M 1 m }
E SO RS . > N n n ~
F Sl us / ? 0 _ o DEL

6-2

EXAMPLES

Length of a String of Characters

Purpose: Determine the length of a string of ASCIl characters (seven bits with most
significant bit zero). The string starts in memory location 0041; the end of
the string is marked by a carriage return character (CR’, 0D1g). Place the
length of the string (excluding the carriage return) into memory location

0040.
Sample Problems:
a (0041)
Result: (0040)
b. (0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
Result: (0040)
Flowchart:

o
o O
o O

52 'R’

1 | T |
ey
[oe]

IS
]
OxmMI—»

]
o
(=)

Base = 0041
Length =0

Is
(Base+
Length) =
Carriage Return

10D g)
?

since the first character is a carriage return.

Length = Length
+1

(0040) = Length

L]

6-3

Source Program:

LDX #0 :STRING LENGTH = ZERO

LDA #$0D :GET ASCII CARRIAGE RETURN TO COMPARE
CHKCR CMP $41.X ;IS CHARACTER A CARRIAGE RETURN?

BEQ DONE :YES. DONE

INX :NO. ADD 1 TO STRING LENGTH

JMP CHKCR
DONE STX $40 :SAVE STRING LENGTH

BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #0
0001 00
0002 A9 LDA #3$0D
0003 0D
0004 D5 CHKCR CMP $41.X
0005 41
0006 FO BEQ DONE
0007 04
0008 E8 INX
0009 4C JMP CHKCR
000A 04
0008 00
000C 86 DONE STX $40
000D 40
000E 00 BRK

The carriage return character, 'CR’, is just another ASCIl code (0D 1¢) as far as the com-
puter is concerned. The fact that this character causes an output device to perform a
control function rather than print a symbol does not affect the computer.

The Compare instruction, CMP, sets the flags as if a subtraction had been performed
but leaves the carriage return character in the Accumulator for later comparisons. The
Zero (Z) flag is affected as follows:

Z =1 if the character in the string is a carriage return
Z =0 ifitis not a carriage return

The instruction INX adds 1 to the string length counter in Index Register X. LDX #0 in-
itializes this counter to zero before the loop begins. Remember to initialize variables
before using them in a loop.

This loop does not terminate because a counter is decremented to zero or reaches a
maximum value. The computer will simply continue examining characters until it finds
a carriage return. It is good programming practice to place a maximum count in a loop
like this to avoid problems with erroneous strings that do not contain a carriage return.
What would happen if the example program were used with such a string?

6-4

Note that by rearranging the logic and changing the initial conditions, you can shorten
the program and decrease its execution time. |f we adjust the flowchart so that the pro-
gram increments the string length before it checks for the carriage return. only one
Jump instruction is necessary instead of two. The new flowchart and program are as

follows:

Base = 0041
Length = -1

Length = Length
+ 1

Is
Base+Length)

<CR(0Ds6)
?

(0040) = Length

Source Program:

LDX #SFF :STRING LENGTH = -1

LDA #3$0D :GET ASCIl CARRIAGE RETURN TO COMPARE
CHKCR INX ;ADD 1 TO STRING LENGTH

CMP $41.X ;IS CHARACTER A CARRIAGE RETURN?

BNE CHKCR :NO. CHECK NEXT CHARACTER

STX $40 ;YES. SAVE STRING LENGTH

BRK

This version is not only shorter and faster, but it also contains no absolute destination
addresses; thus it can easily be placed anywhere in memory. The earlier version con-
tains a JMP instruction with a specific absolute address. while this version has only
branch instructions with relative addresses.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #3FF
0001 FF
0002 A9 LDA #3$0D
0003 oD
0004 E8 CHKCR INX
0005 D5 CMP $41.X
0006 41
0007 DO BNE CHKCR
0008 FB
0009 86 STX $40
000A 40
0008 00 BRK

6-6

Find First Non-Blank Character

Purpose: Search a string of ASCII characters (seven bits with most significant bit zero)
for a non-blank character. The string starts in memory location 0042. Place
the index of the first non-blank character in memory location 0040. A blank
character is 201g in ASCIL.

Sample Problems:
a. (0042)
Result: (0040)

37 ASCli 7

00. since memory location 0042 contains a
non-blank character.

b. (0042) = 20 sP
(0043) = 20 sP
(0044) = 20 sP
(0045) = 46 °F
(0046) = 20 SP

Result: (0040) 03. since the three previous memory locations

all contain blanks.

Flowchart:

Base = 0042
Index =0

Is

(Base+Index)

= ASCII Blank

(204¢)
?

Index = Index + 1 (0040) = Index

L
(=)

6-7

Source Program:

LDX #0 :START WITH INDEX = ZERO
LDA # :GET ASCIl SPACE FOR COMPARISON
CHBLK CMP $42.X :IS CHARACTER AN ASCIl SPACE?
BNE DONE :NO. DONE
INX o :YES., EXAMINE NEXT CHARACTER
JMP CHBLK
DONE STX $40 :SAVE INDEX OF FIRST NON-BLANK
. CHARACTER
BRK

Note the use of an apostrophe () or single quotation mark before an ASCIl character.
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) {Mnemonic)
0000 A2 LDX #0
0001 00
0002 A9 LDA #
0003 20
0004 D5 CHBLK CMP $42.X
0005 42
0006 DO BNE DONE
0007 04
0008 E8 INX
0009 4C JMP CHBLK
000A 04
0008 00
000C 86 DONE STX $40
000D 40
000E 00 BRK

Looking for spaces in strings is a common task. Spaces often are eliminated from
strings when they are used simply to increase readability or to fit particular formats. It is
obviously wasteful to store and transmit beginning. ending. or extra spaces, particularly
if you are paying for the communications capability and memory required. Data and
program entry, however, are much simpler if extra spaces are tolerated. Microcom-
puters are often used in situations like this to convert data between forms that are easy
for humans to use and forms that are efficiently handled on computers and com-
munications lines.

6-8

Again. if we alter the initial conditions so that the loop control section precedes the pro-
cessing section, we can reduce the number of bytes in the program and decrease the

loop’s execution time. The rearranged flowchart is:

Source Program:

LDX #3FF

LDA #
CHBLK INX

CMP $42.X

BEQ CHBLK

STX $40

BRK

Object Program:

Base = 0042
Index = -1

—

Index = Index + 1

Is
(Base+Index)
=ASCIl Blank
(204¢)

(0040) = Index

:START WITH INDEX = -1

GET ASCII SPACE FOR COMPARISON

;INCREMENT INDEX

;IS CHARACTER AN ASCII SPACE?
:YES, EXAMINE NEXT CHARACTER
;NO, SAVE INDEX OF FIRST NON-BLANK

CHARACTER

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX H#IFF
0001 FF
0002 A9 LDA #'
0003 20 :

0004 E8 CHBLK INX

0005 D5 CMP $42.X
0006 42

0007 FO BEQ CHBLK
0008 FB

0009 86 STX $40
000A 40

0008 00 BRK .

Replace Leading Zeros with Blanks

Purpose: Edit a string of ASCIl decimal characters by replacing all leading zeros with
blanks. The string starts in memory location 0041; assume that it consists
entirely of ASCIl-coded decimal digits. The length of the string is in memory
location 0040.

Sample Problems:

a. (0040) = 02

(0041) = 36 ASCII 6
The program leaves the string unchanged. since the leading digit is not zero.
b. (0040) = 08

(0041) = 30 ASCIO

(0042) = 30 ASCIO

(0043) = 38 ASCII 8

Result: (0041) = 20 SP
(0042) = 20 SP

The two leading ASCII zeros have been replaced by ASCII blanks.

Flowchart:

Count = (0040)
Index = 0
Base = 0041

Is
(Base+Index)
= ASCll Zero
(3046)

?

Yes

(Base+Index) =
ASCII Space (204¢)
Index = Index + 1

Source Program:

LDX #0 :INDEX = ZERO TO START
LDY # ;GET ASCIl SPACE FOR REPLACEMENT
LDA #0 :GET ASCIl ZERO FOR COMPARISON
CHKZ CMP $41.X ;IS LEADING DIGIT ZERO?
BNE DONE :NO., END REPLACEMENT PROCESS
STY $41.X :IS LEADING DIGIT ZERO?
INX
CPX $40
BNE CHKZ :EXAMINE NEXT DIGIT IF ANY
DONE BRK

Single quotation mark in front of a character indicates that the operand is an ASCII
code.

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #0
0001 00
0002 AO LDY #
0003 20
0004 A9 LDA #0
0005 30
0006 D5 CHKZ CMP $41.X
0007 41
0008 DO BNE DONE
0009 07
000A 94 STY $41.X
0008 41
000C E8 INX
000D E4 CPX $40
000E 40
000F DO BNE CHKZ
0010 F5
0011 00 DONE BRK

You will frequently want to edit decimal strings before they are printed or displayed to
improve their appearance. Common editing tasks include eliminating leading zeros.
justifying numbers, adding signs or other identifying markers. and rounding. Clearly.
printed numbers like 0006 or $27.34382 can be confusing and annoying.

Here the loop has two exits — one if the processor finds a nonzero digit and the other if
it has examined the entire string.

The instruction STY $41.X places an ASCIl space character (20 hex) in a memory loca-
tion that previously contained an ASCIl zero. Note that STY has only a limited number
of addressing modes (see Table 3-4); there are no indexing modes with Register Y. no
pre-indexing. and no absolute indexing. The only indexed addressing mode is the zero-
page mode with Index Register X.

All digits in the string are assumed to be ASCII; that is. the digits are 301 through
3916 rather than the ordinary decimal 0 to 9. The conversion from decimal to ASCII is
simply a matter of adding 301g to the decimal digit.

You can place a single ASCII character in a 6602 assembly language program by pre-
ceding it with an apostrophe (). You can place a string of ASCIl characters in program
memory by using the .TEXT (Store ASCII Text) pseudo-operation on the 6502 assem-
bler. A delimiter character (usually /) must surround the text; the usual form is:

Operation
Label Code Operand
EMSG TEXT /ERROR/

You may have to be careful, when blanking zeros. to leave one zero in the event that all
the digits are zero. How would you do this?

Note that each ASCII digit requires eight pits, as compared to four for a BCD digit.
Therefore, ASCII is an expensive format in which to store or transmit numerical data.

Add Even Parity to ASCII Characters

Purpose: Add even parity to a string of 7-bit ASCII characters. The length of the string
is in memory location 0040 and the string itself begins in memory location
0041. Place even parity in the most significant bit of each character by set-
ting the most significant bit to 1 if that makes the total number of 1 bits in
the word an even number.

Sample Problem:

(0040) = 06
(0041) = 31
(0042) = 32
(0043) = 33
(0044) = 34
(0045) = 35
(0046) = 36
Result: (0041) = B1
(0042) = B2
(0043) = 33
(0044) = B4
(0045) = 35
(0046) = 36

Flowchart:

Base = 0040
Index = (0040)

e

Bit Count =0
Data = (Base +
Index)

Bit Count =
Bit Count + 1

Shift Data Left One
Bit Arithmetically

(LSB =0)

Is Bit
Count Even
(LSB7= o)

Set MSB of
(Base+Index)
to 1

Index = Index - 1

Source Program:

LDX $40 INDEX = MAXIMUM COUNT
GTDATA LDY #0 :BIT COUNT = ZERO FOR DATA
LDA $40.X :GET DATA FROM BLOCK
CHBIT BPL CHKZ ;IS NEXT DATA BIT 1?
INY :YES, ADD 1 TO BIT COUNT
CHKZ ASL A :EXAMINE NEXT BIT POSITION
BNE CHBIT ;UNLESS ALL BITS ARE ZEROS
TYA
LSR A :DID DATA HAVE EVEN NUMBER OF ‘1" BITS?
BCC NEXTE
LDA $40.X :NO. SET PARITY BIT
ORA #%10000000
STA $40.X
NEXTE DEX
BNE GTDATA ;:CONTINUE THROUGH DATA BLOCK
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A6 LDX $40
0001 40
0002 AO GTDATA LDY #0
0003 00
0004 B5 LDA $40.X
0005 40
0006 10 CHBIT BPL CHKZ
0007 01
0008 c8 INY
0009 0A CHKZ ASL A
000A DO BNE CHBIT
000B FA
000C 98 TYA
000D 4A LSR A
000E 90 BCC NEXTE
000F 06
0010 B5 LDA $40.X
0011 40
0012 09 ORA #%10000000
0013 80
0014 95 STA $40.X
0015 40
0016 CA NEXTE DEX
0017 DO BNE GTDATA
0018 E9
0019 00 BRK

Parity is often added to ASCII characters before they are transmitted on noisy com-
munications lines; this provides a simple error-checking facility. Parity detects all
single-bit errors but does not allow for error correction; that is, you can tell by checking
the parity of the data that an error has occurred. but you cannot tell which bit was
received incorrectly. All that the receiver can do is request retransmission.

The procedure for calculating parity is to count the number of "1” bits in the data words.
If that number is odd. the MSB of the data word is set to 1 to make the parity even.

ASL clears the least significant bit of the number being shifted. Therefore, the result of
a series of ASL instructions will eventually be zero. regardless of the original value of
the data (try it!). The bit counting section of the example program not only does not
need a counter, but also stops examining the data as soon as all remaining bits are
zeros. This procedure saves execution time in many cases.

The MSB of the data is set to ‘1" by logically ORing it with a pattern that has a ‘1" in its
most significant bit and zeros elsewhere. Logically ORing a bit with one produces a
result of one regardless of the original value, while logically ORing a bit with zero does
not change the original value.

Pattern Match

Purpose: Compare two strings of ASCIl characters to see if they are the same. The
length of the strings is in memory location 0041; one string starts in memory
location 0042 and the other in memory location 0052. If the two strings
match. clear memory location 0040; otherwise, set memory location 0040 to

FF16 (all ones).
Sample Problems:
a. (0041)

(0042)
(0043)
(0044)

(0052)
(0053)
(0054)

Result: (0040)
b. (0041)

(0042)
(0043)
(0044)

{0052)
(0053)
(0054)

Result: (0040)

Note: The matching process ends as soon as the CPU finds a difference — the rest of
the strings need not be examined.

nwn

03

43
4
54

43
41
54

00,

03

52
4
54

43
41
54

FF,

4xa0 dxa

dAra A=3

since the two strings are the same.

since the first characters in the

strings differ.

Flowchart:

Source Program:

LDX
LDY
CHCAR LDA
CMP
BNE
INX
CPX
BNE
LDY
DONE STY
BRK

#0

#S$FF
$42.X
$52.X
DONE

$41
CHCAR
#0
$40

Index = 0
Mark = FFqg

S

0042+
Index) = {0052
+Ingex

Index = Index + 1

Is
Index = (0041)
?
Yes

Mark =0

——

(0040) = Mark

;START WITH FIRST ELEMENT IN STRINGS
;MARKER FOR NO MATCH
:GET CHARACTER FROM STRING 1

;IS THERE A MATCH WITH STRING 2?
:NO. DONE

;CHECK NEXT PAIR IF ANY LEFT
;IF NONE LEFT, MARK MATCH
;SAVE MATCH MARKER

6-18

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #0
0001 00
0002 AO LDY #SFF
0003 FF
0004 B5 CHCAR LDA $42.X
0005 42
0006 D5 CMP $52.X
0007 52
0008 DO BNE DONE
0009 07
000A E8 INX
000B E4 CPX $41
000C 41
000D DO BNE CHCAR
000E F5
000F AO LDY #0
0010 00
0011 84 DONE STY $40
0012 40
0013 00 BRK

Matching strings of ASCII characters is an essential part of recognizing names or com-
mands, identifying variables or operation codes in assemblers and compilers. finding
files, and many other tasks.

Index Register X is used to access both strings — only the base addresses are different.
This method allows the strings to be located anywhere in memory. although we would
have to use the absolute indexed addressing modes if the strings were not on page
zero. We could also use the post-indexed mode (with Index Register Y) if we had two
different base addresses stored somewhere on page zero.

The instruction CMP $52,X compares the Accumulator to the contents of the indexed
memory location. We could replace the LDY #0 instruction with INY. Why? Compare
the time and memory requirements of the two alternatives. Which version do you think
is clearer? The replacement would also allow you to use a memory location for the
marker rather than a register (why?).

PROBLEMS

1) Length of a Teletypewriter Message

Purpose: Determine the length of an ASCIl message. All characters are 7-bit ASCII
with MSB = 0. The string of characters in which the message is embedded
starts in memory location 0041. The message itself starts with an ASCII STX
character (021g) and ends with ETX (031g). Place the length of the message
(the number of characters between the STX and the ETX but including
neither) into memory location 0040.

Sample Problem:

(0041)
(0042)
(0043)
(0044)
(0045)

Result: (0040)

LI | R

02 STX
47 G
4F O
03 ETX

02, since there are two characters between the STX
in location 0042 and ETX in location 0045.

2) Find Last Non-Blank Character

Purpose: Search a string of ASCII characters for the last non-blank character. The
string starts in memory location 0042 and ends with a carriage return
character (0D1g). Place the index of the last non-blank character in memory

location 0040.
Sample Problems:

a. (0042)
(0043)

Result: (0040)

b. (0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)

Result: (0040)

I

37 ASCIl 7
0D CR

00. since the last {and only) non-blank character
is in memory location 0042.

41 A
20 sp

48 'H

41 A
54 T

20 sp
20 sp
0D CR
04

6-20

3) Truncate Decimal String to Integer Form

Purpose: Edit a string of ASCIl decimal characters by replacing all digits to the right of
the decimal point with ASCII blanks (2016). The string starts in memory loca-
tion 0041 and is assumed to consist entirely of ASCll-coded decimal digits
and a possible decimal point (2Eqg). The length of the string is in memory
location 0040. If no decimal point appears in the string. assume that the
decimal point is implicitly at the far right.

Sample Problems:

a. (0040) = 04
(0041) = 37 ASCl7
(0042) = 2E ASCIl.
(0043) = 38 ASCI8
(0044) = 31 ASCl 1
Result: (0041) = 37 ASCH7
(0042) = 2E ASCIl.
(0043) = 20 SP
(0044) = 20 SP
b. (0040) = 03
(0041) = 36 ASClI 6
(0042) = 37 ASCl7
(0043) = 31 ASCIl 1

Result: Unchanged. as number is assumed to be 671.
4) Check Even Parity in ASCII Characters

Purpose: Check even parity in a string of ASCIl characters. The length of the string is
in memory location 0041, and the string itself begins in memory location
0042. If the parity of all the characters in the string is correct, clear memory
location 0040; otherwise. place FF1g (all ones) into memory location 0040.

Sample Problems:

a. (0041) = 03
(0042) = B1
(0043) = B2
(0044) = 33
Result: (0040) = 00, since all the characters have even parity.
b. (0041) = 03
(0042) = B1
(0043) = B6
(0044) = 33
Result: (0040) = FF, since the character in memory location 0043

does not have even parity.

6-21

5) String Comparison

Purpose: Compare two strings of ASCIl characters to see which is larger (i.e., which
follows the other in alphabetical ordering). The length of the strings is in
memory location 0041; one string starts in memory location 0042 and the
other in memory location 0052. If the string starting in memory location
0042 is greater than or equal to the other string, clear memory location
0040: otherwise. set memory location 0040 to FFqg (all ones).

Sample Problems:

a. (0041) = 03
(0042) = 43 C
(0043) = 41 ‘A
(0044) = 54 'T
(0052) = 42 B
(0053) = 51 ‘A
(0054) = 54 T
Result: (0040) = 00, since CAT is ‘larger than BAT.
b. (0041) = 03
(0042) = 43 C
(0043) = 41 ‘A
(0044) = 54 T
(0052) = 43 C
(0063) = 41 ‘A
(0054) = 54 ‘T
Result: (0040) = 00, since the two strings are equal.
c. (0041) = 03
(0042) = 43 C
(0043) = 41 'A
(0044) = 54 ‘T
(0052) = 43 C
(0053) = 65 ‘U
(0054) = 54 ‘T
Result: (0040) = FF, since CUT is 'larger than CAT.

6-22

Chapter 7
CODE CONVERSION

Code conversion is a continual problem in most microcomputer applications. Pe-
ripherals provide data in ASCII, BCD, or various special codes. The system must
convert the data into some standard form for processing. Output devices may re-
quire data in ASCII, BCD, seven-segment, or other codes. Therefore, the system
must convert the results to a suitable form after the processing is completed.

There are several ways to approach code conversion:

1) Some conversions can easily be handled by algorithms involving arithmetic or
logical functions. The program may. however, have to handle some special cases
separately.

2) More complex conversions can be handled with lookup tables. The lookup ta-
ble method requires little programming and is easy to apply. However. the table
may occupy a large amount of memory if the range of input values is large.

3) Hardware is readily available for some conversion tasks. Typical examples are
decoders for BCD to seven-segment conversion and Universal Asynchronous
Receiver/Transmitters (UARTs) for conversion between parallel (ASCIl) and serial
(teletypewriter) formats.

In most applications, the program should do as much as possible of the code conversion
work. This results in a savings in parts and board space as well as in increased
reliability. Furthermore, most code conversions are easy to program and require little
execution time.

7-1

EXAMPLES
Hex to ASCII

Purpose: Convert the contents of memory location 0040 to an ASCII character.
Memory location 0040 contains a single hexadecimal digit {the four most
significant bits are zero). Store the ASCIl character in memory location

0041.
Sample Problems:
a.

Result:

Result:
Flowchart:

Source Program:

LDA
CcmpP
BCC
ADC
ASCZ ADC
STA
BRK

(0040)
(0041)
(0040)
(0041)

$40

#10
ASCZ
#'A-'9-2

$41

oc
43
06
36

Data = (0040}

Is
Data < 10
?

Yes

Data =
Data + ASCIl A -
ASCII 9 -1

f——

Result =
Data + ASCIil Zero

[}

(0041) = Result

:GET DATA
;IS DATA LESS THAN 107

;NO, ADD OFFSET FOR LETTERS (CARRY = 1)
:ADD OFFSET FOR ASClI
:STORE ASCII DIGIT

7-2

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 Cc9 CMmP #10
0003 0A
0004 90 BCC ASCZ
0005 02
0006 69 ADC #'A-'9-2
0007 06
0008 69 ASCZ ADC #0
0009 30
000A 85 STA $41
0008 41
QoocC 00 BRK

The basic idea of this program is to add ASCIl zero (301g) to all the hexadecimal digits.
This addition converts the decimal digits to ASCIl correctly; however, there is a break
between ASCII 9 (391g) and ASCII A (411g) which must be considered. This break must
be added to the non-decimal digits A, B. C, D, E, and F. The first ADC instruction ac-
complishes this by adding the offset ‘A-'9-2 to the contents of the Accumulator. Can
you explain why the offset is ‘A-"9-2?

The problem here is that the letters do not follow immediately after the decimal digits in
ASCIL. There is a gap occupied by the ASCIl codes for such characters as: (3A1g). =
(3D16). and @ (401p). To bridge this gap. we must add a constant factor determined by
the distance between the actual value of ASCII A (411g) and the value it would have if
there were no gap (3A1g). There is also an extra factor of 1 provided by the Carry flag.
You can compare this situation to the problem of walking from one address to another
on a street that is divided into two discontinuous sections by a canyon or a river.

Remember that the ADC instruction always adds in the Carry bit. After the BCC instruc-
tion, we know that the Carry contains one (otherwise a branch would have occurred).
So we simply reduce the additive factor by 1 to account for the Carry. As for the second
ADC instruction, the Carry will be zero if the program branched after the CMP instruc-
tion (since the BCC instruction was used) or if the Accumulator contained a valid hex-
adecimal digit (10 through 15) since the additive factor is only 7. Therefore, we do not
have to worry about the Carry in any reasonable case.

This routine could be used in a variety of programs: for example. monitor programs
must convert hexadecimal digits to ASCIl in order to display the contents of memory
locations in hexadecimal on an ASCII printer or CRT display.

Another (quicker) conversion method that requires no conditional jumps at all is the
following program, described by Allison.

SED :MAKE ADDITIONS. DECIMAL

CLC :CLEAR CARRY TO START

LDA $40 :GET HEXADECIMAL DIGIT

ADC #$90 :DEVELOP EXTRA 6 AND CARRY

ADC #3$40 :ADD IN CARRY, ASCIlI OFFSET

STA $41 :STORE ASCII DIGIT

CLD :CLEAR DECIMAL MODE BEFORE ENDING
BRK

7-3

Try this program on some digits. Can you explain why it works? Note that you must be
careful to clear the decimal mode flag when you have completed all decimal arithmetic.
Otherwise, you will get decimal results in programs (including the monitor) where they
are not wanted.

Decimal to Seven-Segment

Purpose: Convert the contents of memory location 0041 to a seven-segment code in
memory location 0042. If memory location 0041 does not contain a single
decimal digit, clear memory location 0042.

Seven-segment table: The following table can be used to convert decimal numbers to
seven-segment code. The seven-segment code is organized with the most significant
bit always zero followed by the code (1 = on, 0 = off) for segments g. f. e. d. c. b, and a
(see Figure 7-1 for the positions of the segments). The segment names are standard but
the organization that we have chosen is arbitrary. In actual applications. the hardware
determines the assignment of data bits to segments.

Note that the table uses 7D for 6 rather than the alternative 7C (top bar off) to avoid
confusion with lower case b, and 6F for 9 rather than 67 (bottom bar off), for no particu-
lar reason.

Digit Code a

OCONOOHWN=0O
[=2]
o

Figure 7-1. Seven-segment Arrangement
Sample Problems:

a. (0041) = 03
Result: (0042) = 4F
b. (0041) = 28
Result: {0042) = 00

7-4

Flowchart:

Data = (0041)

Data > 9
?

Result = Result = 0
(SSEG + Data) esult =
(0042) = Result

Note that the addition of base address (SSEG) and index (DATA) produces the address
that contains the answer.

Source Program:

LDA #0 :GET ERROR CODE TO BLANK DISPLAY

LDX $41 :GET DATA

CPX #10 :IS DATA A DECIMAL DIGIT?

BCS DONE :NO. KEEP ERROR CODE

LDA SSEG.X :YES., GET SEVEN-SEGMENT CODE FROM
. TABLE

DONE STA $42 :SAVE SEVEN-SEGMENT CODE OR ERROR

. CODE

BRK

*=$20 :SEVEN-SEGMENT CODE TABLE

SSEG .BYTE $3F.$06.$5B.$4F.$66
.BYTE $60D.$7D.$07.$7F. $6F

7-5

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A9 LDA #0
0001 00
0002 AB LDX $41
0003 41
0004 EO CPX #10
0005 0A
0006 BO BCS DONE
0007 02
0008 B5 LDA SSEG.X
0009 20
000A 85 DONE STA $42
0008B 42
000C 00 BRK
0020 3F SSEG .BYTE $3F
0021 06 $06
0022 58 $58
0023 4F $4F
0024 66 -~ $66
0025 6D .BYTE $6D
0026 7D $7D
0027 07 $07
0028 7F $7F
0029 6F $6F

The program calculates the memory address of the desired code by adding the index
li.e.. the digit to be displayed) to the base address of the seven-segment code table.
This procedure is known as a table lookup. No explicit instructions are required for the
addition. since it is performed automatically in the indexed addressing modes.

The assembly language pseudo-operation .BYTE (define byte-length data) places con-
stant data in program memory. Such data may include tables, headings. error
messages. priming messages. format characters, thresholds, etc. The label attached to
a.BYTE pseudo-operation is assigned the value of the address into which the first byte
of data is placed.

Tables are often used to perform code conversions that are more complex than the pre-
vious example. Such tables typically contain all the results organized according to the
input data; e.g.. the first entry is the code corresponding to the number zero.

Seven-segment displays provide recognizable forms of the decimal digits and a few let-
ters and other characters. Calculator-type seven-segment displays are inexpensive,
easy to multiplex. and use little power. However, the seven-segment coded digits are
somewhat difficult to read.

The assembler simply places the data for the table in memory. Note that one .BYTE
pseudo-operation can fill many memory locations. We have left some memory space
between the program and the table to allow for later additions or corrections.

The table can be placed anywhere in memory, although the absolute indexed address-
ing mode would have to be used if it was not on page zero. We could also use post-in-
dexing (with Index Register Y) and have the base address saved in two memory loca-
tions on page zero. The same program could then be used with any table since the base
address would be specified in RAM rather than in ROM.

7-6

ASCII to Decimal

Purpose: Convert the contents of memory location 0040 from an ASCII character to a
decimal digit and store the result in memory location 004 1. If the contents of
memory location 0040 are not the ASCII representation of a decimal digit.
set the contents of memory location 0041 to FFqg.

Sample Problems:

a. (0040) = 37 (ASCH 7)
Result: (0041) = 07
b. (0040) = 55 (an invalid code. since it is not an
ASCII decimal digit)
Result: (0041) = FF
Flowchart:

Data = (0040)

Is

Data

< ASCII O
?

Yes

Is

Data

> ASCII 9
?

Result =
Data - ASCII O Result = FF1g
(0041) = Result

7-7

Source Program:

LDX H#IFF :GET ERROR MESSAGE
LDA $40 ;GET DATA
SEC :IGNORE CARRY IN SUBTRACTION
SBC #0 ;IS DATA BELOW ASCII ZERO?
BCC DONE .YES. NOT A DIGIT
CMP #10 ;IS DATA ABOVE ASCII NINE?
BCS DONE 'YES. NOT A DIGIT
TAX :SAVE DIGIT IF VALID

DONE STX $41 ;SAVE DIGIT OR ERROR MARKER
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #SFF
0001 FF
0002 Ab LDA $40
0003 40
0004 38 SEC
0005 E9 SBC #0
0006 30
0007 90 BCC DONE
0008 05
0009 C9 CMmP #10
000A 0A
0008 BO BCS DONE
000C 01
000D AA TAX
000E 86 DONE STX $41
000F 41
0010 00 BRK

This program handles ASCll-coded characters just like ordinary numbers. Note that the
decimal digits and the letters form groups of consecutive codes. Strings of letters (like
names) can be alphabetized by placing their ASCIl representations in increasing
numerical order (ASCII B = ASCIl A + 1 for example).

Subtracting ASCII zero (301g) from any ASCII decimal digit gives the BCD representa-
tion of that digit.

The Carry must be set before a subtraction if it is not to affect the result since SBC pro-
duces (A) = (A) - (M) - (1 - Carry) where M is the contents of the addressed memory
location. Compare instructions, on the other hand. do not include the Carry in their im-
plied subtractions.

ASClI-to-decimal conversion is necessary when decimal numbers are being entered
from an ASCIl device like a teletypewriter or CRT terminal.

The basic idea of the program is to determine if the character is between ASCIH O and
ASCII 9, inclusive. If so. the character is an ASCHl decimal digit since the digits form a
sequence. It may then be converted to decimal simply by subtracting 301¢g (ASCII 0):
e.g. ASCII 7 - ASCI0=37-30=7.

Note that one comparison is done with an actual subtraction (SBC #'0) since the
subraction is necessary to convert ASCIl to decimal. The other comparison is done with
an implied subtraction (CMP #10) since the final result is now in the Accumulator if the
original number was valid.

7-8

BCD to Binary

Purpose: Convert two BCD digits in memory locations 0040 and 0041 to a binary
number in memory location 0042. The most significant BCD digit is in

memory location 0040.

Sample Problems:

a.

Result:

Result:

Note: We include no flowchart because the program multiplies the most significant
digit by 10 simply by using the formula 10x = 8x + 2x. Multiplying by 2 requires
one arithmetic left shift and multiplying by 8 requires three such shifts.

Source Program:

(0040)
(0041)

(0042)

(0040)
(0041)

(0042)

02
09

1D16 = 2910

07
01

4716 =7110

LDA $40 :GET MOST SIGNIFICANT DIGIT (MSD)
ASL A :MSD TIMES TWO
STA $42 ;SAVE MSD TIMES TWO
ASL A :MSD TIMES FOUR
ASL A :MSD TIMES EIGHT
CLC
ADC $42 :MSD TIMES TEN (NO CARRY)
ADC $41 ;ADD LEAST SIGNIFICANT DIGIT
STA $42 :STORE BINARY EQUIVALENT
BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A5 LDA $40
0001 40
0002 0A ASL A
0003 85 STA $42
0004 42
0005 0A ASL A
0006 0A ASL A
0007 18 CLC
0008 65 ADC $42
0009 42
000A 65 ADC $41
0008B 41
000C 85 STA $42
000D 42
00O0E 00 BRK

7-9

BCD entries are converted to binary in order to save on storage and to simplify calcula-
tions. However, the need for conversion may offset some of the advantages of binary
storage and arithmetic.

This program multiplies the BCD digit in memory location 0040 by 10 using left shifts
and additions.Z Note that ASL A multiplies the contents of the Accumulator by 2. This
allows you to multiply the contents of the Accumulator by small decimal numbers in a
few instructions. How would you use this procedure to multiply by 16? by 12? by 7?

BCD numbers require about 20% more storage than do binary numbers. Representing O
to 999 requires 3 BCD digits (12 bits) and 10 bits in binary (since 210 = 1024 =1000).

7-10

Convert Binary Number to ASCII String

Purpose: Convert the 8-bit binary number in memory location 0041 to eight ASCII
characters (either ASCII 0 or ASCII 1) in memory locations 0042 through
0049 (the most significant bit is in 0042).

Sample Problem:

(0041) = D2 =11010010
Result: (0042) = 31 ASCI1
(0043) = 31 ASCH1
(0044) = 30 ASCHO
(0045) = 31 ASCH 1
(0046) = 30 ASCIO
(0047) = 30 ASCIO
(0048) = 31 ASCH 1
(0049) = 30 ASCHIO

Flowchart:

Base = 0041
Index = 8

;

(Base + Index) =
ASCIl Zero

Shift Data Right
One Bit

@ Yes

No

(Base + Index) =
ASCII One
(i.e., (Base + Index)

i

Index = Index - 1

Is
Index O

7-11

Source Program:

LDA $41 ;GET DATA

LDX #8 :NUMBER OF BITS =8

LDY #0 ;GET ASCII ZERO TO STORE IN STRING
CONV STY $41.X ;STORE ASCII ZERO IN STRING

LSR A ;IS NEXT BIT OF DATA ZERO?

BCC COUNT

INC $41.X :NO. MAKE STRING ELEMENT ASCII ONE
COUNT DEX :COUNT BITS

BNE CONV

BRK

Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 Ab LDA $41
0001 41
0002 A2 LDX #8
0003 _ 08
0004 AO LDY #0
0005 30
0006 94 CONV STY $41.X
0007 41
0008 4A LSR A
0009 90 BCC COUNT
000A 02
0008 F6 INC $41.X
000C 41
000D CA COUNT DEX
000E DO BNE CONV
000F F6
0010 00 BRK

The ASCII digits form a sequence so ASCIl 1 = ASCII 0 + 1. The INX instruction can be
used to directly increment the contents of a memory location. The savings here are that
no explicit instructions are required to load the data from memory or to store the result
back into memory. Nor are any of the user registers (A, X, and Y) disturbed. However.
the CPU must actually load the data from memory. save it in a temporary register, incre-
ment it, and store the result back into memory. All data processing actually takes place
inside the CPU.

Be careful of the difference between INX and an instruction like INC $41.X. The INC in-
struction adds one to the contents of Index Register X; INC $41.X adds one to the con-
tents of the indexed memory location — it has no effect on Index Register X.

Binary-to-ASCII conversion is necessary when numbers are printed in binary form on an
ASCII device.

The conversion to ASCIl simply involves adding ASCII zero (301g).

PROBLEMS
1) ASCII to Hex

Purpose: Convert the contents of memory location 0040 to a hexadecimal digit and
store the result in memory location 0041. Assume that memory location
0040 contains the ASCII representation of a hexadecimal digit (7 bits with

MSB 0).

Sample Problems:

a. (0040) = 43 ASCIC
Result: (0041) = 0C

b. (0040) = 36 ASCH 6

Result: {0041) = 06
2) Seven-Segment to Decimal

Purpose: Convert the contents of memory location 0040 from a seven-segment code
to a decimal number in memory location 004 1. If memory location 0040 does
not contain a valid seven-segment code. set memory location 0041 to FFqg.
Use the seven-segment table given under the Decimal to Seven-Segment ex-

ample and try to match codes. !

Sample Problems:

a. (0040) = 4F
Result: (0041) = 03
b. (0040) = 28

Result: (0041) = FF
3) Decimal to ASCII

Purpose: Convert the contents of memory location 0040 from a decimal digit to an
ASCII character and store the result in memory location 004 1. If the number
in memory location 0040 is not a decimal digit. set the contents of memory
location 0041 to an ASCII blank character (201g).

Sample Problems:

a. (0040) = 07
Result: (0041) = 37 ASCH7
b. (0040) = 55
Result: (0041) = 20 ASCll SPACE

4) Binary to BCD

Purpose: Convert the contents of memory location 0040 to two BCD digits in memory
locations 0041 and 0042 (most significant digit in 0041)." The number in
memory location 0040 is unsigned and less than 100.

Sample Problems:

a (0040) = 1D (29 decimal)
Result: (0041) = 02
(0042) = 09

b. (0040) = 47 (71 decimal)
Result: (0041) = 07
(0042) = 01

5) ASCII String to Binary Number

Purpose: Convert the eight ASCII characters in memory locations 0042 through 0049
to an 8-bit binary number in memory location 0041 (the most significant bit
is in 0042). Clear memory location 0040 if all the ASCII characters are either
ASCIl 1 or ASCII 0 and set it to FF1g otherwise.

Sample Problems:

a. (0042) = 31 ASCIl 1
(0043) = 31 ASCIl 1
(0044) = 30 ASCHO
(0045) = 31 ASCH1
(0046) = 30 ASCIO
(0047) = 30 ASCHO
(0048) = 31 ASCli1
(0049) = 30 ASCIIO
Result: (0041) = D2
(0040) = 00
b. same as 'a’ except:
(0045) = 37 ASCIl 7

Result: (0040) = FF

7-14

REFERENCES

1. D. R. Allison, "A Design Philosophy for Microcomputer Architectures.” Computer.
February 1977, pp. 35-41. This is an excellent article which we recommend highly.

2. Other BCD-to-binary conversion methods are discussed in J.A. Tabb and M.L.
Roginsky. “Microprocessor Algorithms Make BCD-Binary Conversions Super-fast,”
EDN. January 5. 1977, pp. 46-60 and in J.B. Peatman. Microcomputer-based
Design. (New York: McGraw-Hill, 1977, pp. 400-406.

7-15

Chapter 8
ARITHMETIC PROBLEMS

Most arithmetic in microprocessor applications consists of multiple-word binary
or decimal manipulations. A decimal correction (decimal adjust) or some other
means for performing decimal arithmetic is frequently the only arithmetic instruc-
tion provided besides basic addition and subtraction. You must implement other
arithmetic operations with sequences of instructions.

Multiple-precision binary arithmetic requires simple repetitions of the basic
single-word instructions. The Carry bit transfers information between words. Add
with Carry and Subtract with Carry use the information from the previous arithmetic
operations. You must be careful to clear the Carry before operating on the fir§t words
(obviously there is no carry into or borrow from the least significant bits).

Decimal arithmetic is a common enough task for microprocessors that most have
special instructions for this purpose. These instructions may either perform decimal
operations directly or correct the results of binary operations to the proper decimal
form. Decimal arithmetic is essential in such applications as point-of-sale terminals,
calculators, check processors, order entry systems, and banking terminals.

You can implement multiplication and division as series of additions and subtractions
respectively. much as they are done by hand. Double-word operations are necessary
since a multiplication produces a result twice as long as the operands. while a division
similarly contracts the length of the result. Multiplications and divisions are time-con-
suming when done in software because of the repeated arithmetic and shift operations
that are necessary. Of course, multiplying or dividing by a power of 2 is simple because
such operations can be implemented with an appropriate number of left or right
arithmetic shifts.

8-1

EXAMPLES
Muitiple-Precision Binary Addition

Purpose: Add two multiple-word binary numbers. The length of the numbers (in bytes)
is in memory location 0040, the numbers themselves start {(most significant
bits first) in memory locations 0041 and 0051, respectively. and the sum
replaces the number starting in memory location 0041.

Sample Problem:

(0040) = 04
(0041) = 2F
(0042) = 5B
(0043) = A7
(0044) = C3
(0051) = 14
(0052) = DF
(0053) = 35
(0054) = B8
Result: (0041) = 44
(0042) = 3A
(0043) = DD
(0044) = 7B
that is, 2F6BA7C3
14DF35B8
443ADD78B

Flowchart:

Index = (0040)
Carry =0

(0040+Index) =
(0040+Index) +
(0050+Index) +
(Carry)

Y

(This step also produces new Carry)

Index = Index - 1

8-2

Source Program:

LDX ™ $40 :INDEX = LENGTH OF STRINGS
CLC ;CLEAR CARRY TO START
ADDW LDA $40.X :GET BYTE FROM STRING 1
ADC $50.X ;:ADD BYTE FROM STRING 2
STA $40.X :STORE RESULT IN STRING 1

DEX
BNE ADDW ;CONTINUE UNTIL ALL BYTES ADDED
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A6 LDX $40
0001 40
0002 18 CLC
0003 B5 ADDW LDA $40.X
0004 40
0005 75 ADC $50.X
0006 50
0007 95 STA $40.X
0008 40
0009 CA DEX
000A DO BNE ADDW
0008 F7
000C 00 BRK
The relative address for BNE ADDW is:
0003 = 03
-000C +F4
“F7

The instruction CLC is used to clear the Carry bit since there is no carry involved in the
addition of the least significant bytes.

The instruction ADC. Add with Carry, includes the Carry from the previous words in the
addition. ADC is the only instruction in the loop that affects the Carry. In particular,
note that increment and decrement instructions (DEC, DEX, DEY. INC, INX, INY) do not
affect the Carry.

This program uses the same index with two different base ad- DECIMAL
dresses to handle the two strings. The strings can be located any- ACCURACY
where in memory. Furthermore, there would be no difficulty in IN BINARY

storing the result in a third string.

This procedure can add binary numbers of any length. Note that ten binary bits corres-
pond to three decimal digits since 210 = 1024 = 1000. So. you can calculate the num-
ber of bits required to give a certain accuracy in decimal digits. For example. twelve
decimal digit accuracy requires:

12 x %:40 bits

8-3

Decimal Addition

Purpose: Add two multi-byte decimal (BCD) numbers. The length of the numbers (in
bytes) is in memory location 0040, the numbers themselves start (most sig-
nificant bits first) in memory locations 0041 and 0051, respectively, and the
sum replaces the number starting in memory location 0041.

Sample Problem:

Result:

that is,

Flowchart:

(0040)

(0041)
(0042)
(0043)
(0044)

(0051)
(0052)
(0053)
(0054)

(0041)
(0042)
(0043)
(0044)

1l

[[1

o

o nn

36701985
+12663459

49365444

Set Decimal Mode
Index = (0040)
Carry =0
(0040+Index) =
(0040+Index) +

(0050+Index) +
(Carry)

[

Index = Index - 1

(This step also produces new Carry)

Clear Decimal Mode

Source Program:

SED :MAKE ALL ARITHMETIC DECIMAL
LDX $40 JINDEX = LENGTH OF STRINGS
CLC :.CLEAR CARRY TO START
ADDW LDA $40.X :GET TWO DIGITS FROM STRING 1
ADC $50.X ;ADD TWO DIGITS FROM STRING 2
STA $40.X ;STORE RESULT IN STRING 1
DEX
BNE ADDW ;CONTINUE UNTIL ALL DIGITS ADDED
CLD ;RETURN TO BINARY MODE
BRK
Object Program:
Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 F8 SED
0001 A6 LDX $40
0002 40
0003 18 cLC
0004 B5 ADDW LDA $40.X
0005 40
0006 75 ADC $50.X
0007 50
0008 95 STA $40.X
0009 40
000A CA DEX
0008 DO BNE ADDW
000C F7
000D D8 CLD
000E 00 BRK
The Decimal mode automatically takes care of the following 6502
situations in which binary and BCD addition differ: DECIMAL
1) The sum of two digits is between 10 and 15 inclusive. In this MODE

case, six must be added to the sum to give the right result, i.e..

0101 (5)
+ 1000 (8)

1101 (D)
+ 0110

0001 0011 (BCD 13. which is correct)
2) The sum of two digits is 16 or more. In this case. the result is a proper BCD digit but
six less than it should be, i.e..

1000 (8)
+ 1001 (9)
0001 0001 (BCD 11)
+ 0110

0001 0111 (BCD 17. which is correct)
Six must be added in both situations. However. case 1 can be recognized by the fact
that the sum is not a BCD digit, i.e., it is between 10 and 15 (or A and F hexadecimal).

Case 2 can only be recognized by the fact that the carry from the digit addition is one
since the result is a valid BCD number.

8-5

When the Decimal Mode flag is set, all arithemtic is carried out in the decimal
form. This includes subtractions as well as additions, regardliess of which address-
ing mode is employed.

However, the Increment and Decrement instructions pro- DECIMAL
duce binary results even when the Decimal Mode flag is MODE
set. Thus DEC, DEX, DEY, INC, INX, and INY can only be used LIMITATIONS

to maintain binary counters. For example. to increment a
decimal counter in memory location 0040, you must use the sequence:

SED :MAKE ARITHMETIC DECIMAL

LDA $40 :GET COUNTER

CLC :KEEP CARRY FROM AFFECTING ADDITION
ADC #1 :INCREMENT COUNTER (DECIMAL)

STA $40

CLD ;RETURN TO BINARY MODE

The SED. CLC, and CLD instructions may not be necessary if other parts of the program
set the status flags appropriately.

Subtractions in the decimal mode produce correct BCD results with the Carry being an
inverted borrow. For example, if the Accumulator contains 03, the addressed memory
location contains 27. and the Carry contains 1, after the execution of an SBC instruction
the Accumulator will contain 76 and the Carry will be 0. As in the binary mode, a Carry
of zero means that a borrow has been generated.

The Sign bit is not meaningful after additions and subtractions when the Decimal
Mode flag is set. It reflects the result of the binary operation. not of the decimal opera-
tion. In the most recently mentioned situation (03-27), the Sign bit will be set (as it
would be if the numbers were binary) even though the decimal result {76) has a most
significant bit of zero.

This procedure can add decimal (BCD) numbers of any length. JACCURACY IN
Here four binary bits are required for each decimal digit. so |BINARY AND BCD
twelve-digit accuracy requires

12 x 4 =48 bits
as opposed to 40 bits in the binary case. This is six 8-bit words instead of five.

The program for decimal addition is the same as that for binary addition except for the
surrounding CLD and SED instructions. Thus a single sequence of instructions can pro-
duce two entirely different results depending on the value of a flag that is not even
mentioned explicitly. Can you suggest some problems this might create in connecting
programs written at different times or by different people?

8-6

8-Bit Binary Multiplication

Purpose: Multiply the 8-bit unsigned number in memory location 0040 by the 8-bit
unsigned number in memory location 0041. Place the eight least significant
bits of the result into memory location 0042 and the eight most significant
bits into memory location 0043.

Sample Problems:

a. (0040) = 03
(0041) = 05
Result: (0042) = OF
(0043) = 00
or in decimal 3x5 =15
b. (0040) = 6F
(0041) = 61
Result: (0042) = OF
(0043) = 2A

or 111 x97 = 10,767

You can perform multiplication on a computer in the same way that you do long
multiplication by hand. Since the numbers are binary. the only problem is whether to
multiply by O or 1; multiplying by zero obviously gives zero as a result, while multiply-
ing by one produces the same number that you started with (the multiplicand). So. each
step in a binary multiplication can be reduced to the following operation.

If the current bit in the multiplier is 1, add the multiplicand MULTIPLICATION
to the partial product. ALGORITHM

The only remaining problem is to ensure that you line everything up correctly each
time. The following operations perform this task.

1) Shift the multiplier left one bit so that the bit to be examined is placed in the Carry.
2) Shift the product left one bit so that the next addition is lined up correctly.
The complete process for binary multiplication is as follows:
Step 1 - Initialization
Product =0
Counter =8

Step 2 - Shift Product so as to line up properly
Product = 2 x Product (LSB = 0)

Step 3 - Shift Multiplier so bit goes to Carry

Multiplier = 2 x Multiplier
Step 4 - Add Multiplicand to Product if Carry is 1

If Carry = 1, Product = Product + Multiplicand
Step 5 - Decrement Counter and check for zero

Counter = Counter - 1
If Counter #0 go to Step 2

8-7

In the case of Sample Problem b, where the multiplier is 611g and the multiplicand is
6F 16 the process works as follows:

Initialization:

Product 0000
Multiplier 61
Multiplicand 6F
Counter 08

After first iteration of steps 2-5:

Product 0000

Multiplier Cc2
Multiplicand 6F
Counter 07

Carry from Multiplier 0

After second iteration:

Product 006F

Multiplier 84
Multiplicand 6F
Counter 06

Carry from Multiplier 1

After third iteration:

Product 014D

Multiplier 08
Multiplicand 6F
Counter 05

Carry from Multiplier 1

After fourth iteration:

Product 029A

Multiplier 10
Multiplicand 6F
Counter 04

Carry from Multiplier 0

After fifth iteration:

Product 0534

Multiplier 20
Multiplicand 6F
Counter 03

Carry from Multiplier 0

After sixth iteration:

Product O0A68

Multiplier 40
Multiplicand 6F
Counter 02

Carry from Multiplier 0

After seventh iteration:

Product 14D0

Multiplier 80
Multiplicand 6F
Counter 01

Carry from Multiplier 0

After eighth iteration:

Product

Multiplier
Multiplicand
Counter

Carry from Multiplier

Flowchart:

Product=2 x Product
_(Shift left 1 bit)
Multiplier = 2 x
Multiplier
(Shift left 1 bit)

Carry from
Muiltiplier 1
?

Product = Product
+ Multiplicand

Count = Count - 1

(0042 and 0043) =
Product

8-9

[——

Source Program:

LDA
STA
LDX
SHIFT ASL
ROL
ASL
BCC
CLC
ADC
BCC
INC
CHCNT DEX
BNE
STA
BRK

Object Program:

#0
$43
#8

$43
$41
CHCNT

$40
CHCNT
$43

SHIFT
$42

;LSB’S OF PRODUCT = ZERO
;MSB’'S OF PRODUCT = ZERO

:NUMBER OF BITS IN MULTIPLIER =8

;SHIFT PRODUCT LEFT ONE BIT

:SHIFT MULTIPLIER LEFT

:NO ADDITION IF NEXT BIT IS ZERO
:ADD MULTIPLICAND TO PRODUCT

:WITH CARRY IF NECESSARY

;LOOP UNTIL 8 BITS ARE MULTIPLIED

STORE LSB'S OF PRODUCT

Memory Address

Memory Contents

Instruction

(Hex) (Hex) (Mnemionic)
0000 A9 LDA #0
0001 00

0002 85 STA $43
0003 43

0004 A2 LDX #8
0005 08

0006 0A SHIFT ASL A
0007 26 ROL $43
0008 43

0009 06 ASL $41
000A 41

000B 90 BCC CHCNT
000C 07

000D 18 CLC

000E 65 ADC $40
000F 40

0010 90 BCC CHCNT
0011 02

0012 E6 INC $43
0013 43

0014 CA CHCNT DEX

0015 DO BNE SHIFT
0016 EF

0017 85 STA $42
0018 42

0019 00 BRK

Besides its obvious use in calculators and point-of-sale terminals, multiplication is a key
part of almost all signal processing and control algorithms. The speed at which
multiplications can be performed determines the usefulness of a CPU in process con-
trol. signal detection, and signal analysis.

This algorithm takes between 170 and 280 clock cycles to multiply on a 6502
microprocessor. The precise time depends on the number of 1 bits in the multiplier.
Other algorithms may be able to reduce the average execution time somewhat, but 250
clock cycles will still be a typical execution time for a software multiplication. Some
microprocessors (such as the 9900, 8086, and Z8000) have hardware multiplication in-
structions that are somewhat faster but maximum speed requires the addition of exter-
nal hardware.

8-Bit Binary Division

Purpose: Divide the 16-bit unsigned number in memory locations 0040 and 0041
(most significant bits in 0041) by the 8-bit unsigned number in memory loca-
tion 0042. The numbers are normalized so that 1) the most significant bits of
both the dividend and the divisor are zero and 2) the number in memory
location 0042 is greater than the number in memory location 0041.Thus, the
quotient is an 8-bit number. Store the quotient in memory location 0043 and
the remainder in location 0044.

Sample Problems:

a. (0040) = 40 (64 decimal)
(0041) = 00
(0042) = 08
Result = (0043) =08
(0044) =00
ie., 64/8=8
b. (0040) = 6D (12,909 decimal)
(0041) = 32
(0042) = 47 (71 decimal)
Result = (0043) =B5 (181 decimal)
(0044) = 3A (68 decimal)
i.e., 12,909/71 =181 with a remainder of 58
You can perform division on the computer just like you would per- DIVISION
form division with pen and paper, i.e., using trial subtractions. ALGORITHM

Since the numbers are binary. the only question is whether the bit
in the quotient is O or 1, i.e., whether the divisor can be subtracted from what is left of
the dividend. Each step in a binary division can be reduced to the following operation:

If the divisor can be subtracted from the eight
most significant bits of the dividend without
a borrow. the corresponding bit in the quo-
tient is 1; otherwise it is O.

The only remaining problem is to line up the dividend and quotient properly. You can
do this by shifting the dividend and quotient logically left one bit before each trial
subtraction. The dividend and quotient can share a 16-bit register. since the procedure
clears one bit of the dividend at the same time as it determines one bit of the quotient.

The complete process for binary division is:

Step 1 - Initialization:
Quotient =0
Counter =8

Step 2 - Shift Dividend and Quotient so as to line up properly:
Dividend = 2 X Dividend
Quotient = 2 X Quotient

Step 3 - Perform trial Subtraction. If no Borrow add 1 to Quotient:
If 8 MSBs of Dividend > Divisor then
MSBs of Dividend = MSBs of Dividend - Divisor
Quotient = Quotient + 1

Step 4 - Decrement counter and check for zero:
Counter = Counter — 1
if Counter =0, go to Step 2
Remainder = 8 MSBs of Dividend

8-12

In the case of sample problem b. where the dividend is 326D 1g and the divisor is 47 16.
the process works as follows:

Initialization:
Dividend 326D
Divisor 47
Quotient 00
Counter 00

After first iteration of Steps 2 - 4:
(Note that the dividend is shifted prior to the trial subtraction)
Dividend 1DDA
Divisor 47
Quotient 01
Counter 07

After second iteration of Steps 2 - 4:
Dividend 3BB4
Divisor 47
Quotient 02
Counter 06

After third iteration:
Dividend 3068
Divisor 47
Quotient 05
Counter 05

After fourth iteration:
Dividend 19D0
Divisor 47
Quotient 0B
Counter 04

After fifth iteration:
Dividend 33A0
Divisor 47
Quotient 16
Counter 03

After sixth iteration:
Dividend 2040
Divisor 47
Quotient 2D
Counter 02

After seventh iteration:
Dividend 4080
Divisor 47
Quotient 5A
Counter 01

After eighth iteration:
Dividend 3A00
Divisor 47
Quotient B5
Counter 00

So the quotient is BS and the remainder is 3A.

8-13

The MSBs of dividend and divisor are assumed to be zero; this simplifies calculations
(the shift prior to the trial subtraction would otherwise place the MSB of the dividend in
the Carry). Problems that are not in this form must be simplified by removing parts of
the quotient that would overflow an 8-bit word. For example:

1024 _ 400 (Hex) _ 100 (Hex)
3 3 3

The last problem is now in the proper form. An extra division may be necessary.

Flowchart:

Dividend = (0040
and 0041)

Divisor = (0042)

Count =8

Quotient = 0

Dividend = 2 x
Dividend

Quotient = 2 x
Quotient

i(Shift both left 1 bit)

100 +

Is
Divisor
> 8 MSBs of
Divig’lend

8 MSBs of
Dividend = 8 MSBs
of Dividend - Divisor.
Quotient =

Quotient + 1

Count = Count - 1

No

Yes

(0043) = Quotient
(0044) = 8 MSBs of
Dividend

Source Program:

LDX #8 :NUMBER OF BITS IN DIVISOR =8
LDA $40 ;START WITH LSB’S OF DIVIDEND
STA $43
LDA $41 :GET MSB’S OF DIVIDEND
DIVID ASL $43 ;SHIFT DIVIDEND, QUOTIENT LEFT 1 BIT
ROL A
CMP $42 :CAN DIVISOR BE SUBTRACTED?
BCC CHCNT :NO. GO TO NEXT STEP
SBC $42 YES. SUBTRACT DIVISOR (CARRY = 1)
INC $43 ;AND INCREMENT QUOTIENT BY 1
CHCNT DEX ;LOOP UNTIL ALL 8 BITS HANDLED
BNE DIVID
STA $44 :STORE REMAINDER
BRK
Object Program:

Memory Address Memory Contents Instruction
(Hex) (Hex) (Mnemonic)
0000 A2 LDX #8
0001 08
0002 A5 LDA $40
0003 40
0004 85 STA $43
0005 43
0006 A5 LDA $41
0007 41
0008 06 DIVID ASL $43
0009 43
000A 2A ROL A
0008B (¢3) CMmP $42
000C 42
000D 90 BCC CHCNT
000E 04
000F E5 SBC $42
0010 42
0011 E6 INC $43
0012 43
0013 CA CHCNT DEX
0014 DO BNE DIVID
0015 F2
0016 85 STA $44
0017 44
0018 00 BRK

Division is used in calculators. terminals. communications error checking. control
algorithms, and many other applications.

The algorithm takes between 150 and 230 microseconds to divide on a 6502 with a 1
MHz clock. The precise time depends on the number of 1 bits in the quotient. Other
algorithms can reduce the average time somewhat. but 200 microseconds will still be
typical for a software division.

The instructions ASL $43 and ROL A together provide a 16-bit arithmetic left shift of
the dividend (MSBs in A). The ROL instruction picks up the bit which the ASL instruc-
tion left in the Carry.

An 8-bit subtraction is necessary, since there is no simple way to perform a 16-bit
subtraction or comparison.

Memory location 0043 and the Accumulator hold both the dividend and the quotient
(MSBs in Accumulator). The quotient simply replaces the dividend in memory location
0043 as the dividend is shifted left arithmetically.

We do not have to worry about the Carry in the SBC instruction. It must be “1" since
otherwise BCC would have caused a branch. Remember that a Carry value of ‘1" has no
effect on the result of an SBC instruction since the Carry is an inverted borrow.

The following routine offers an improvementin timing over the previous example
without increasing memory usage. It also performs error checking.

DIV LDX
LDA
STA
LDA
CMP
BCS
DIVID ROL
ROL
CMP
BCC
SBC
CHCNT DEX
BNE
ROL
STA
DONE RTS

#8
$40
$43
$41
$42
DONE
$43
A

$42
CHCNT
$42

DIVID
$43
$44

:NUMBER OF BITS IN DIVISOR = 8
;START WITH LSB'S OF DIVIDEND

;GET MSB'S OF DIVIDEND

:SHOULD BE LESS THAN DIVISOR

;IF NOT, ERROR EXIT (CARRY = 1)
;SHIFTDIVIDEND. QUOTIENT LEFT 1 BIT
:(AND NEW ANSWER BIT — SEE DEX BELOW)
;CAN DIVISOR BE SUBTRACTED?

:NO, GO TO NEXT STEP (CARRY = 0)

;YES. SUBTRACT DIVISOR (CARRY = 1)
:NOTE CARRY * NEW ANSWER BIT

;LOOP UNTIL ALL 8 BITS HANDLED

;SHIFT IN THE LAST ANSWER BIT

;STORE REMAINDER (CARRY = 0 HERE)
:QUIT (CARRY 0. NORMAL. CARRY 1, ERROR)

Self-Checking Numbers
Double Add Double Mod 10

Purpose: Calculate a checksum digit from a string of BCD digits. The length of the
string of digits (number of words) is in memory location 0041; the string of
digits (2 BCD digits to a word) starts in memory location 0042. Calculate the
checksum digit by the Double Add Double Mod 10 technique! and store it in
memory location 0040.

The Double Add Double Mod 10 technique works as follows: SELF-CHECKING
NUMBERS

1) Clear the checksum to start.

2) Multiply the leading digit by two and add the result to the
checksum.

3) Add the next digit to the checksum.
4) Continue the alternating process until you have used all the digits.
5) The least significant digit of the checksum is the self-checking digit.

Self-checking digits are commonly added to identification numbers on credit cards. in-
ventory tags. luggage. parcels. etc.. when they are handled by computerized systems.
They may also be used in routing messages. identifying files, and other applications.
The purpose of the digits is to minimize entry errors such as transposing digits (69 in-
stead of 96). shifting digits (7260 instead of 3726), missing digits by one (65 instead of
64). etc. You can check the self-checking number automatically for correctness upon
entry and can eliminate many errors immediately.

The analysis of self-checking methods is quite complex. For example. a plain checksum
will not find transposition errors (4 + 9 =9 + 4). The Double Add Double algorithm will
find simple transposition errors 2 x4 + 9 =17 #2 x 9 + 4); but will miss some errors.
such as transpositions across even numbers of digits (367 instead of 763). However.
this method will find many common errors! The value of a method depends on what er-
rors it will detect and on the probability of particular errors in an application.

For example. if the string of digits is
549321
the result will be:

5x24+4+9x2+3+2x2+1=40
0 (least significant digit of a check<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>