

6502

Assembly Language

Subroutines

Lance A. Leventhal

Winthrop Saville

OSBORNE/McGraw-Hill

Berkeley, California

Disclaimer of Warranties

and Limitation of Liabilities

The authors have taken due care in preparing this book and the programs

in it, including research, development, and testing to ascertain their

effectiveness. The authors and the publishers make no expressed or

implied warranty of any kind with regard to these programs nor the sup

plementary documentation in this book. In no event shall the authors or

the publishers be liable for incidental or consequential damages in con

nection with or arising out of the furnishing, performance, or use of any

of these programs.

Apple II is a trademark of Apple Computer, Inc.

Published by

Osborne/ McGraw-Hill

2600 Tenth St.

Berkeley, California 94710

U.S.A.

For information on translations and book distributors outside of the U.S.A., please write OSBORNE/

McGraw-Hill at the above address.

6502 ASSEMBLY LANGUAGE SUBROUTINES

Copyright© 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced

or distributed in any form or by any means, or stored in a data base or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be reproduced for publication.

34567890 DODO 876543

ISBN 0-931988-59-4

Cover art by Jean Frega.

Text design by Paul Butzler.

Contents

Preface v

1 General Programming Methods 1

2 Implementing Additional Instructions and Addressing Modes 73

3 Common Programming Errors 133

Introduction to Program Section 157

4 Code Conversion 163

O Array Manipulation and Indexing 194

6 Arithmetic 230

7 Bit Manipulation and Shifts 306

8 String Manipulation 345

9 Array Operations 382

10 Input/Output 418

11 Interrupts 464

A 6502 Instruction Set Summary 505

B Programming Reference for the 6522 Versatile
Interface Adapter (VIA) 510

C ASCII Character Set 517

Glossary 519

Index 543

Hi

Preface

This book is intended to serve as a source and a reference for the assembly
language programmer. It contains an overview of assembly language program

ming for a particular microprocessor and a collection of useful routines. In writing

the routines, we have used a standard format, documentation package, and

parameter passing techniques. We have followed the rules of the original

manufacturer's assembler and have described the purpose, procedure, param

eters, results, execution time, and memory usage of each routine.

This overview of assembly language programming provides a summary for

those who do not have the time or need for a complete textbook such as is pro

vided already in the Assembly Language Programming series. Chapter 1 contains

an introduction to assembly language programming for the particular processor

and a brief summary of the major features that differentiate this processor from

other microprocessors and minicomputers. Chapter 2 describes how to imple

ment instructions and addressing modes that are not explicitly available. Chapter

3 discusses common errors that the programmer is likely to encounter.

The collection of routines emphasizes common tasks that occur in many

applications such as code conversion, array manipulation, arithmetic, bit

manipulation, shifting functions, string manipulation, summation, sorting, and

searching. We have also provided examples of I/O routines, interrupt service

routines, and initialization routines for common family chips such as parallel

interfaces, serial interfaces, and timers. You should be able to use these routines

as subroutines in actual applications and as guidelines for more complex pro

grams.

We have aimed this book at the person who wants to use assembly language

immediately, rather than just learn about it. The reader could be

•• An engineer, technician, or programmer who must write assembly language

programs for use in a design project.

• A microcomputer user who wants to write an I/O driver, a diagnostic pro

gram, or a utility or systems program in assembly language.

VJ 6502 ASSEMBLY LANGUAGE SUBROUTINES

• A programmer or engineer with experience in assembly language who needs

a quick review of techniques for a particular microprocessor.

• A system designer or programmer who needs a specific routine or technique

for immediate use.

• A programmer who works in high-level languages but who must debug or

optimize programs at the assembly level or must link a program written in a high-

level language to one written in assembly language.

• A system designer or maintenance programmer who must quickly under

stand how specific assembly language programs operate.

• A microcomputer owner who wants to understand how the operating system

works on a particular computer, or who wants to gain complete access to the com

puter's facilities.

• A student, hobbyist, or teacher who wants to see some examples of working

assembly language programs.

This book can also serve as supplementary material for students of the Assem

bly Language Programming series.

This book should save the reader time and effort. There is no need to write,

debug, test, or optimize standard routines, nor should the reader have to search

through material with which he or she is thoroughly familiar. The reader should

• be able to obtain the specific information, routine, or technique that he or she

needs with a minimum amount of effort. We have organized and indexed this

book for rapid use and reference.

Obviously, a book with such an aim demands response from its readers. We

have, of course, tested all the programs thoroughly and documented them

carefully. If you find any errors, please inform the publisher. If you have sugges

tions for additional topics, routines, programming hints, index entries, and so

forth, please tell us about them. We have drawn on our programming experience

to develop this book, but we need your help to improve it. We would greatly

appreciate your comments, criticisms, and suggestions.

NOMENCLATURE

We have used the following nomenclature in this book to describe the

architecture of the 6502 processor, to specify operands, and to represent general

values of numbers and addresses.

6502 Architecture

Byte-length registers include

A (accumulator)

PREFACE VH

F (flags, same as P)

P (status register)

S or SP (stack pointer)

X (index register X)

Y (index register Y)

Of these, the general purpose user registers are A, X, and Y. The stack pointer

always contains the address of the next available stack location on page 1 of

memory (addresses 010016 through 01FF16). The P (status) or F (flag) register

consists of a set of bits with independent functions and meanings, organized as

shown in the following diagram:

7 6 5 4 3 2 10 -* Bit Number

N I V I X I B I d| I Izlcl Processor Status Register P

-Carry

-Zero

-Interrupt disable

-Decimal mode

-Break command

-Not used (Logic 1)

-Overflow

-Negative (Sign)

Word-length registers include

PC (program counter)

Note: Pairs of memory locations on page 0 may also be used as word-length

registers to hold indirect addresses. The lower address holds the less significant

byte and the higher address holds the more significant byte. Since the 6502 pro

vides automatic wraparound, addresses 00FF16 and 0000l6 form a rarely used pair.

Flags include

Break (B)

Carry (C)

Decimal Mode (D)

Interrupt Disable (I)

Negative or Sign (N)

Overflow (V)

Zero (Z)

These flags are arranged in the P or F register as shown previously.

6502 ASSEMBLY LANGUAGE SUBROUTINES

6502 Assembler

Delimiters include

space After a label or an operation code

, Between operands in the operand

(address) field

; Before a comment

: After a label (optional)

(,) Around an indirect address

Pseudo-Operations include

.BLOCK Reserve bytes of memory; reserve the specified number of bytes of
memory for temporary storage

.BYTE Form byte-length data; place the specified 8-bit data in the next

available memory locations

.DBYTE Form double-byte (word) length data with more significant byte
first; place the specified 16-bit data in the next available memory

locations with more significant byte first

.END End of program

.EQU Equate; define the attached label

.TEXT Form string of ASCII characters; place the specified ASCII charac

ters in the next available memory locations

.WORD Form double-byte (word) length data with less significant byte first;
place the specified 16-bit data in the next available memory loca

tions with less significant byte first

* = Set origin; assign the object code generated from the subsequent as

sembly language statements to memory addresses starting with the

one specified

= Equate; define the attached label

Designations include

Number systems:

$ (prefix) or H (suffix) Hexadecimal

@ (prefix) or Q (suffix) Octal

% (prefix) or B (suffix) Binary

The default mode is decimal.

Others:

' (in front of character) ASCII

* Current value of location

(program) counter

PREFACE IX

4 ' or " " (around
a string of characters) - ASCII string

#

,x

,y

Immediate addressing

Indexed addressing with index

register X

Indexed addressing with index

register Y

The default addressing mode is absolute (direct) addressing.

General Nomenclature

ADDR a 16-bit address in data memory

ADDRH the more significant byte of ADDR

ADDRL the less significant byte of ADDR

BASE a constant 16-bit address

BASEH the more significant byte of BASE

BASEL the less signficant byte of BASE

DEST a 16-bit address in program memory, the destination for

a jump or branch instruction

NTIMES an 8-bit data item

NTIMH an 8-bit data item

NTIMHC an 8-bit data item

NTIML an 8-bit data item

NTIMLC an 8-bit data item

OPER a 16-bit address in data memory

OPER1 a 16-bit address in data memory

OPER2 a 16-bit address in data memory

PGZRO an address on page 0 of data memory

PGZRO+1 the address one larger than PGZRO (with no carry to

the more significant byte)

POINTER a 16-bit address in data memory

POINTH the more significant byte of POINTER

POINTL the less significant byte of POINTER

RESLT a 16-bit address in data memory

X 6502 ASSEMBLY LANGUAGE SUBROUTINES

VAL16 a 16-bit data item

VAL16L the less significant byte of VAL16

VAL16M the more significant byte of VAL16

VALUE an 8-bit data item

ZCOUNT a 16-bit address in data memory

Chapter 1 General Programming

Methods

This chapter describes general methods for writing assembly language pro
grams for the 6502 and related microprocessors. It presents techniques for per

forming the following operations:

• Loading and saving registers

• Storing data in memory

• Arithmetic and logical functions

• Bit manipulation

• Bit testing

• Testing for specific values

• Numerical comparisons

• Looping (repeating sequences of operations)

• Array processing and manipulation

• Table lookup

• Character code manipulation

• Code conversion

• Multiple-precision arithmetic

• Multiplication and division

• List processing

• Processing of data structures.

Special sections discuss passing parameters to subroutines, writing I/O drivers

and interrupt service routines, and making programs run faster or use less

memory.

The operations described are required in applications such as instrumentation,

test equipment, computer peripherals, communications equipment, industrial

control, process control, aerospace and military systems, business equipment,

1

6502 ASSEMBLY LANGUAGE SUBROUTINES

and consumer products. Microcomputer users will make use of these operations

in writing I/O drivers, utility programs, diagnostics, and systems software, and in

understanding, debugging, or improving programs written in high-level

languages. This chapter provides a brief guide to 6502 assembly language pro

gramming for those who have an immediate application in mind.

QUICK SUMMARY FOR

EXPERIENCED PROGRAMMERS

For those who are familiar with assembly language programming on other pro

cessors, we provide here a brief review of the peculiarities of the 6502. Being

aware of these unusual features can save you a great deal of time and trouble.

1. The Carry flag acts as an inverted borrow in subtraction. A Subtract (SBC)

or Compare (CMP, CPX, or CPY) instruction clears the Carry if the operation

requires a borrow and sets it if it does not. The SBC instruction accounts for this

inversion by subtracting 1 -Carry from the usual difference. Thus, the Carry has

the opposite meaning after subtraction (or comparison) on the 6502 than it has

on most other computers.

2. The only Addition and Subtraction instructions are ADC (Add with Carry)

and SBC (Subtract with Carry). If you wish to exclude the Carry flag, you must

clear it before addition or set it before subtraction. That is, you can simulate a

normal Add instruction with

CLC

ADC MEMORY

and a normal Subtract instruction with

SEC

SBC MEMORY

3. There are no 16-bit registers and no operations that act on 16-bit quantities.

The lack of 16-bit registers is commonly overcome by using pointers stored on

page 0 and the indirect indexed (postindexed) addressing mode. However, both

initializing and changing those pointers require sequences of 8-bit operations.

4. There is no true indirect addressing except with JMP. For many other

instructions, however, you can simulate indirect addressing by clearing index

register Y and using indirect indexed addressing, or by clearing index register X

and using indexed indirect addressing. Both of these modes are limited to indirect

addresses stored on page 0.

5. The stack is always on page 1 of memory. The stack pointer contains the

less significant byte of the next empty address. Thus, the stack is limited to 256

bytes of memory.

CHAPTER 1: GENERAL PROGRAMMING METHODS

6. The JSR (Jump to Subroutine) instruction saves the address of its own

third byte in the stack, that is, JSR saves the return address minus 1. RTS

(Return from Subroutine) loads the program counter from the top of the stack

and then adds 1 to it. You must remember this offset of 1 in debugging and using

JSR or RTS for purposes other than ordinary calls and returns.

7. The Decimal Mode (D) flag is used to perform decimal arithmetic. When

this flag is set, all additions and subtractions produce decimal results. Increments

and decrements, however, produce binary results regardless of the mode. The

problem with this approach is that you may not be sure of the initial or current

state of the D flag (the processor does not initialize it on Reset). A simple way to

avoid problems in programs that use Addition or Subtraction instructions is to

save the original D flag in the stack, assign D the appropriate value, and restore

the original value before exiting. Interrupt service routines, in particular, should

always either set or clear D before executing any addition or subtraction instruc

tions. The PHP (Store Status Register in Stack) and PLP (Load Status Register

from Stack) instructions can be used to save and restore the D flag, if necessary.

The overall system startup routine must initialize D (usually to 0, indicating bin

ary mode, with CLD). Most 6502-based operating systems assume the binary

mode as a default and always return to that mode as soon as possible.

A minor quirk of the 6502's decimal mode is that the Zero and Negative flags

are no longer universally valid. These flags reflect only the binary result, not the

decimal result; only the Carry flag always reflects the decimal result. Thus, for

example, subtracting 8016 from 5016 in the decimal mode sets the Negative flag

(since the binary result is D016), even though the decimal result (7016) has a most

significant bit of 0. Similarly, adding 50l6 and 5016 in the decimal mode clears the

Zero flag (since the binary result is A016), even though the decimal result is zero.

Note that adding 5016 and 5016 in the decimal mode does set the Carry. Thus when

working in the decimal mode, the programmer should use only branches that

depend on the Carry flag or operations that do not depend on the mode at all

(such as subtractions or comparisons followed by branches on the Zero flag).

8. Ordinary Load (or Pull from the Stack) and Transfer instructions (except

TXS) affect the Negative (Sign) and Zero flags. This is not the case with the 8080,

8085, or Z-80 microprocessors. Storing data in memory does not affect any flags.

9. INC and DEC cannot be applied to the accumulator. To increment A, use

CLC

ADC #1 ;INCREMENT ACCUMULATOR BY 1

To decrement A, use

SEC

SBC #1 ;DECREMENT ACCUMULATOR BY 1

INC

BNE

INC

JMP

COUNTL

LOOP

COUNTH

LOOP

6502 ASSEMBLY LANGUAGE SUBROUTINES

10. The index registers are only 8 bits long. This creates obvious problems in

handling arrays or areas of memory that are longer than 256 bytes. To overcome

this, use the indirect indexed (postindexed) addressing mode. This mode allows

you to store the starting address of the array in two memory locations on page 0.

Whenever the program completes a 256-byte section, it must add 1 to the more

significant byte of the indirect address before proceeding to the next section. The

processor knows that it has completed a section when index register Y returns to

0. A typical sequence is

INY ;PROCEED TO NEXT BYTE

BNE LOOP ;UNLESS A PAGE IS DONE

INC INDR+1 ;IF ONE IS, GO ON TO THE NEXT PAGE

Memory location INDR+1 (on page 0) contains the most significant byte of the

indirect address.

11. 16-bit counters may be maintained in two memory locations. Counting up

is much easier than counting down since you can use the sequence

;COUNT UP LESS SIGNIFICANT BYTE

;CARRYING TO MSB IF NECESSARY

COUNTL contains the less significant byte of a 16-bit counter and COUNTH the

more significant byte. Note that we check the Zero flag rather than the Carry flag

since, as on most computers, Increment and Decrement instructions do not

affect Carry.

12. The BIT instruction (logical AND with no result saved) has several

unusual features. In the first place, it allows only direct addressing (absolute and

zero page). If you want to test bit 3 of memory location ADDR, you must use the

sequence

lda #%ooooiooo

BIT ADDR

BIT also loads the Negative and Overflow flags with the contents of bits 7 and 6 of

the memory location, respectively, regardless of the value in the accumulator.

Thus, you can perform the following operations without loading the accumulator

at all. Branch to DEST if bit 7 of ADDR is 1

BIT ADDR

BM1 DEST

Branch to DEST if bit 6 of ADDR is 0

BIT ADDR

BVC DEST

Of course, you should document the special use of the Overflow flag for later

reference.

CHAPTER 1: GENERAL PROGRAMMING METHODS

13. The processor lacks some common instructions that are available on the

6800, 6809, and similar processors. Most of the missing instructions are easy to

simulate, although the documentation can become awkward. In particular, we

should mention Clear (use load immediate with 0 instead), Complement (use

logical EXCLUSIVE OR with the all Is byte instead), and the previously men

tioned Add (without carry) and Subtract (without borrow). There is also no direct

way to load or store the stack pointer (this can be done through index register X),

load or store the status register (this can be done through the stack), or perform

operations between registers (one must be stored in memory). Other missing

instructions include Unconditional Relative Branch (use jump or assign a value

to a flag and branch on it having that value), Increment and Decrement

Accumulator (use the Addition and Subtraction instructions), Arithmetic Shift

(copy bit 7 into Carry and rotate), and Test zero or minus (use a comparison with

0 or an increment, decrement sequence). Weller1 describes the definition of

macros to replace the missing instructions.

14. The 6502 uses the following common conventions:

• 16-bit addresses are stored with the less significant byte first. The order of

the bytes is the same as in the 8080, Z-80, and 8085 microprocessors, but

opposite the order used in 6800 and 6809.

• The stack pointer contains the address (on page 1) of the next available loca

tion. This convention is also used in the 6800, but the obvious alternative (last

occupied location) is used in the 8080, 8085, Z-80, and 6809 microprocessors.

Instructions store data in the stack using postdecrementing (they subtract 1 from

the stack pointer after storing each byte) and load data from the stack using

preincrementing (they add 1 to the stack pointer before loading each byte).

• The I (Interrupt) flag acts as a disable. Setting the flag (with SEI) disables the

maskable interrupt and clearing the flag (with CLI) enables the maskable inter

rupt. This convention is the same as in the 6800 and 6809 but the opposite of that

used in the 8080, 8085, and Z-80.

THE REGISTER SET

The 6502 assembly language programmer's work is complicated considerably

by the processor's limited register set. In particular, there are no address-length

(16-bit) user registers. Thus, variable addresses must normally be stored in pairs

of memory locations on page 0 and accessed indirectly using either preindexing

(indexed indirect addressing) or postindexing (indirect indexed addressing). The

lack of 16-bit registers also complicates the handling of arrays or blocks that

occupy more than 256 bytes of memory.

6 6502 ASSEMBLY LANGUAGE SUBROUTINES

If we consider memory locations on page 0 as extensions of the register set, we

may characterize the registers as follows:

• The accumulator is the center of data processing and is used as a source and

destination by most arithmetic, logical, and other data processing instructions.

• Index register X is the primary index register for non-indirect uses. It is the

only register that normally has a zero page indexed mode (except for the LDX

STX instructions), and it is the only register that can be used for indexing with

single-operand instructions such as shifts, increment, and decrement. It is also

the only register that can be used for preindexing, although that mode is not com

mon. Finally, it is the only register that can be used to load or store the stack

pointer.

• Index register Y is the primary index register for indirect uses, since it is the

only register that can be used for postindexing.

• Memory locations on page 0 are the only locations that can be accessed with

the zero page (direct), zero page indexed, preindexed, and postindexed address

ing modes.

Tables 1-1 through 1-7 contain lists of instructions having particular features.

Table 1-1 lists instructions that apply only to particular registers and Table 1-2

lists instructions that can be applied directly to memory locations. Tables 1-3

through 1-7 list instructions that allow particular addressing modes: zero page

(Table 1-3), absolute (Table 1-4), zero page indexed (Table 1-5), absolute

indexed (Table 1-6), and preindexing and postindexing (Table 1-7).

We may describe the special features of particular registers as follows:

• Accumulator. Source and destination for all arithmetic and logical instruc

tions except CPX, CPY, DEC, and INC. Only register that can be shifted with a

single instruction. Only register that can be loaded or stored using preindexed or

postindexed addressing.

• Index register X. Can be incremented using INX or decremented using

DEX. Only register that can be used as an index in preindexing. Only register that

can be used to load or store the stack pointer.

• Index register Y. Can be incremented using INY or decremented using

DEY. Only register that can be used as an index in postindexing.

• Memory locations on page 0. Only memory locations that can hold indirect

addresses for use in postindexing or preindexing. Only memory locations that can

be accessed using zero page or zero page indexed addressing.

• Status register. Can only be stored in the stack using PHP or loaded from

the stack using PLP.

CHAPTER 1: GENERAL PROGRAMMING METHODS

Table 1-1: Registers and Applicable Instructions

Register

A

P (processor status)

S (stack pointer)

X

Y

Instructions

ADC, AND, ASL, BIT, CMP, EOR, LDA, LSR, ORA, PHA,

PLA, ROL, ROR, SBC, STA, TAX, TAY, TXA, TYA

PHP, PLP (CLC, CLD, CLV, SEC, and SED affect

particular flags)

JSR, PHA, PHP, PLA, PLP, RTS, TSX, TXS

CPX, DEX, INX, LDX, STX, TAX, TSX, TXA, TXS

CPY, DEY, INY, LDY, STY, TAY, TYA

Table 1-2: Instructions That Can Be Applied Directly to Memory Locations

Instruction

ASL

BIT

DEC

INC

LSR

ROL

ROR

Arithmetic shift left

Bit test (test bits 6 and

Decrement by 1

Increment by 1

Logical shift right

Rotate left

Rotate right

Function

7)

Table 1-3: Instructions That Allow Zero Page Addressing

Instruction

ADC

AND

ASL

BIT

CMP

CPX

CPY

DEC

EOR

INC

LDA

LDX

LDY

LSR

ORA

ROL

ROR

SBC

STA

STX

STY

Function

Add with Carry

Logical AND

Arithmetic shift left

Bit test

Compare memory and accumulator

Compare memory and index register X

Compare memory and index register Y

Decrement by 1

Logical EXCLUSIVE OR

Increment by 1

Load accumulator

Load index register X

Load index register Y

Logical shift right

Logical OR

Rotate left

Rotate right

Subtract with Carry

Store accumulator

Store index register X

Store index register Y

8 6502 ASSEMBLY LANGUAGE SUBROUTINES

Table 1-4: Instructions That Allow Absolute (Direct) Addressing

Instruction

ADC

AND

ASL

BIT

CMP

CPX

CPY

DEC

EOR

INC

JMP

JSR

LDA

LDX

LDY

LSR

ORA

ROL

ROR

SBC

STA

STX

STY

Function

Add with Carry

Logical AND

Arithmetic shift left

Logical bit test

Compare memory and accumulator

Compare memory and index register X

Compare memory and index register Y

Decrement by 1

Logical EXCLUSIVE OR

Increment by 1

Jump unconditional

Jump to subroutine

Load accumulator

Load index register X

Load index register Y

Logical shift right

Logical OR

Rotate left

Rotate right

Subtract with Carry

Store accumulator

Store index register X

Store index register Y

Table 1-5: Instructions That Allow Zero Page Indexed Addressing

Instruction

ADC

AND

ASL

CMP

DEC

EOR

INC

LDA

LDY

LSR

ORA

ROL

ROR

SBC

STA

STY

LDX

STX

Function

Add with Carry

Logical AND

Arithmetic shift left

Compare memory and accumulator

Decrement by 1

Logical EXCLUSIVE OR

Increment by 1

Load accumulator

Load index register Y

Logical shift right

Logical OR

Rotate left

Rotate right

Subtract with Carry

Store accumulator

Store index register Y

Load index register X

Store index register X

CHAPTER 1: GENERAL PROGRAMMING METHODS 9

Table 1-6: Instructions That Allow Absolute Indexed Addressing

Instruction

ADC

AND

ASL

CMP

DEC

EOR

INC

LDA

LDY

LSR

ORA

ROL

ROR

SBC

STA

ADC

AND

CMP

EOR

LDA

LDX

ORA

SBC

STA

Function

Add with Carry

Logical AND

Arithmetic shift left

Compare memory and accumulator

Decrement by 1

Logical EXCLUSIVE OR

Increment by 1

Load accumulator

Load index register Y

Logical shift right

Logical OR

Rotate left

Rotate right

Subtract with Carry

Store accumulator

Add with Carry

Logical AND

Compare memory and accumulator

Logical EXCLUSIVE OR

Load accumulator

Load index register X

Logical OR

Subtract with Carry

Store accumulator

Table 1-7: Instructions That Allow Postindexing and Preindexing

Instruction

ADC

AND

CMP

EOR

LDA

ORA

SBC

STA

Function

Add with Carry

Logical AND

Compare memory and accumulator

Logical EXCLUSIVE OR

Load accumulator

Logical OR

Subtract with Carry

Store accumulator

1 0 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Stack pointer. Always refers to an address on page 1. Can only be loaded

from or stored in index register X using TXS and TSX, respectively.

Note the following:

• Almost all data processing involves the accumulator, since it provides one

operand for arithmetic and logical instructions and the destination for the result.

• Only a limited number of instructions operate directly on the index registers

or on memory locations. An index register can be incremented by 1, decre

mented by 1, or compared to a constant or to the contents of an absolute address.

The data in a memory location can be incremented by 1, decremented by 1,

shifted left or right, or rotated left or right.

• The available set of addressing methods varies greatly from instruction to

instruction. Note in particular the limited sets available with the instructions BIT,

CPX, CPY, LDX, LDY, STX, and STY.

Register Transfers

Only a limited number of direct transfers between registers are provided. A

single instruction can transfer data from an index register to the accumulator,

from the accumulator to an index register, from the stack pointer to index

register X, or from index register X to the stack pointer. The mnemonics for the

transfer instructions have the form TSD, where "S" is the source register and

4'D" is the destination register as in the convention proposed in IEEE Standard

694.2 The status (P) register may only be transferred to or from the stack using

PHP or PLP.

LOADING REGISTERS FROM MEMORY

The 6502 microprocessor offers many methods for loading registers from

memory. The following addressing modes are available: zero page (direct),

absolute (direct), immediate zero page indexed, absolute indexed, postindexed,

and preindexed. Osborne3 describes all these modes in Chapter 6 ofAn Introduc

tion to Microcomputers: Volume 1 — Basic Concepts.

Direct Loading of Registers

The accumulator, index register X, and index register Y can be loaded from

memory using direct addressing. A special zero page mode loads registers from

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 1

addresses on page 0 more rapidly than from addresses on other pages. Ter

minology for 6502 refers to zero page direct addressing as zero page addressing and

to the more general direct addressing as absolute addressing.

Examples

1. LDA $40

This instruction loads the accumulator from memory location 004016. The

special zero page addressing mode requires less time and memory than the more

general absolute (direct) addressing.

2. LDX $C000

This instruction loads index register X from memory location C00016. It uses

absolute (direct) addressing.

Immediate Loading of Registers

This method can be used to load the accumulator, index register X, or index

register Y with a specific value.

Examples

1. LDY #6

This instruction loads index register Y with the number 6. The 6 is an 8-bit

data item, not a 16-bit address; do not confuse the number 6 with the address

0006l6.

2. LDA #$E3

This instruction loads the accumulator with the number E316.

Indexed Loading of Registers

The instructions LDA, LDX, and LDY can be used in the indexed mode. The

limitations are that index register X cannot be loaded using X as an index;

similarly, index register Y cannot be loaded using Y as an index. As with direct

addressing, a special zero page mode is provided. Note, however, that the

accumulator cannot be loaded in the zero page mode using Y as an index.

Examples

1. LDA $0340,X

This instruction loads the accumulator from the address obtained by indexing

with index register X from the base address 034016; that is, the effective address is

034016+(X). This is the typical indexing described in An Introduction to

Microcomputers: Volume 1 — Basic Concepts*

12 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. LDX $40,Y

This instruction loads index register X from the address obtained by indexing

with register Y from the base address 004016. Here the special zero page indexed

mode saves time and memory.

Postindexed Loading of Registers

The instruction LDA can be used in the postindexed mode, in which the base

address is taken from two memory locations on page 0. Otherwise, this mode is

the same as regular indexing.

Example

LDA ($40),Y

This instruction loads the accumulator from the address obtained by indexing

with index register Y from the base address in memory locations 004016 and

004116. This mode is restricted to page 0 and index register Y. It also assumes that

the indirect address is stored with its less significant byte first (at the lower

address) in the usual 6502 manner.

Preindexed Loading of Registers

The instruction LDA can be used in the preindexed mode, in which the

indexed address is itself used indirectly. This mode is restricted to page 0 and

index register X. Note that it also assumes the existence of a table of 2-byte

indirect addresses, so that only even values in X make sense.

Example

LDA ($40,X)

This instruction loads the accumulator from the indirect address obtained by

indexing with register X from the base address 004016. The indirect address is in

the two bytes of memory starting at 004016+ (X). This mode is uncommon; one

of its uses is to select from a table of device addresses for input/output.

Stack Loading of Registers

The instruction PLA loads the accumulator from the top of the stack and

subtracts 1 from the stack pointer. The instruction PLP is similar, except that it

loads the status (P) register. This is the only way to load the status register with a

specific value. The index registers cannot be loaded directly from the stack, but

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 3

they can be loaded via the accumulator. The required sequences are

(for index register X)

PLA ;TOP OF STACK TO A

TAX ;AND ON TO X

(for index register Y)

PLA ;TOP OF STACK TO A

TAY ;AND ON TO Y

The stack has the following special features:

• It is always located on page 1 of memory. The stack pointer contains only the

less significant byte of the next available address.

• Data is stored in the stack using postdecrementing — the instructions decre

ment the stack pointer by 1 after storing each byte. Data is loaded from the stack

using preincrementing — the instructions increment the stack pointer by 1 before

loading each byte.

• As is typical with microprocessors, there are no overflow or underflow

indicators.

STORING REGISTERS

IN MEMORY

The same approaches that we used to load registers from memory can also be

used to store registers in memory. The only differences between loading and stor

ing registers are

• Store instructions do not allow immediate addressing. There is no way to

directly store a number in memory. Instead, it must be transferred through a

register.

• STX and STY allow only zero page indexed addressing. Neither allows

absolute indexed addressing.

• As you might expect, the order of operations in storing index registers in the

stack is the opposite of that used in loading them from the stack. The sequences

are

(for index register X)

TXA ;MOVE X TO A

PHA ;AND THEN TO TOP OF STACK

(for index register Y)

TYA ;MOVE Y TO A

PHA ;AND THEN TO TOP OF STACK

1 4 6502 ASSEMBLY LANGUAGE SUBROUTINES

Other storage operations operate in exactly the same manner as described in

the discussion of loading registers.

Examples

1. STA $50

This instruction stores the accumulator in memory location 005016. The special

zero page mode is both shorter and faster than the absolute mode, since the more

significant byte of the address is assumed to be 0.

2. STX $17E8

This instruction stores index register X in memory location 17E816. It uses the

absolute addressing mode with a full 16-bit address.

3. STA $A000,Y

This instruction stores the accumulator in the effective address obtained by

adding index register Y to the base address A00016. The effective address is

A00016+(Y).

4. STA ($50) ,Y

This instruction stores the accumulator in the effective address obtained by

adding index register Y to the base address in memory locations 005016 and

005116. The instruction obtains the base address indirectly.

5. STA ($43,X)

This instruction stores the accumulator in the effective address obtained

indirectly by adding index register X to the base 004316. The indirect address is ifi

the two bytes ofmemory starting at 004316+ (X).

STORING VALUES IN RAM

The normal way to initialize RAM locations is through the accumulator, one

byte at a time. The programmer can also use index registers X and Y for this pur

pose.

Examples

1. Store an 8-bit item (VALUE) in address ADDR.

LDA #VALUE ;GET THE VALUE

STA ADDR ;INITIALIZE LOCATION ADDR

We could use either LDX, STX or LDY, STY instead of the LDA, STA

sequence. Note that the 6502 treats all values the same; there is no special

CLEAR instruction for generating 0s.

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 5

2. Store a 16-bit item (POINTER) in addresses ADDR and ADDR+1 (MSB
in ADDR+1).

We assume that POINTER consists of POINTH (more significant byte) and

POINTL (less significant byte).

LDA #POINTL ;GET LSB

STA ADDR ;INITIALIZE LOCATION ADDR

LDA #POINTH ;GET MSB

STA ADDR+1 INITIALIZE LOCATION ADDR+1

This method allows us to initialize indirect addresses on page 0 for later use with

postindexing &nd preindexing.

ARITHMETIC AND LOGICAL

OPERATIONS

Most arithmetic and logical operations (addition, subtraction, AND, OR, and

EXCLUSIVE OR) can be performed only between the accumulator and an 8-bit

byte in memory. The result replaces the operand in the accumulator. Arithmetic

and logical operations may use immediate, zero page (direct), absolute (direct),

indexed, zero page indexed, indexed indirect, or indirect indexed addressing.

Examples

1. Add memory location 004016 to the accumulator with carry.

ADC $40

This instruction adds the contents of memory location 004016 and the contents of

the Carry flag to the accumulator.

2. Logically OR the accumulator with the contents of an indexed address

obtained using index register X and the base 17E016.

ORA $17E0,X

The effective address is 17E016+ (X).

3. Logically AND the accumulator with the contents of memory location

B47016.

AND $B470

Note the following special features of the 6502's arithmetic and logical instruc
tions:

• The only addition instruction is ADC (Add with Carry). To exclude the

Caffy, you must clear it explicitly using the sequence

CLC ;MAKE CARRY ZERO

ADC $40 ;ADD WITHOUT CARRY

1 6 6502 ASSEMBLY LANGUAGE SUBROUTINES

• The only subtraction instruction is SBC (Subtract with Borrow). This

instruction subtracts a memory location and the complemented Carry flag from

the accumulator. SBC produces

(A) = (A) - (M) - (1-CARRY)

where M is the contents of the effective address. To exclude the Carry, you must

set it explicitly using the sequence

SEC ;MAKE INVERTED BORROW ONE

SBC $40 :SUBTRACT WITHOUT CARRY

Note that you must set the Carry flag before a subtraction, but clear it before an

addition.

• Comparison instructions perform subtractions without changing registers

(except for the flags in the status register). Here we have not only CMP (Com

pare Memory with Accumulator), but also CPX (Compare Memory with Index

Register X) and CPY (Compare Memory with Index Register Y). Note the

differences between CMP and SBC; CMP does not include the Carry in the

subtraction, change the accumulator, or affect the Overflow flag.

• There is no explicit Complement instruction. However, you can comple

ment the accumulator by EXCLUSIVE ORing it with a byte which contains all Is

(111111112 or FF16). Remember, the EXCLUSIVE OR of two bits is 1 if they are

different and 0 if they are the same. Thus, EXCLUSIVE ORing with a 1 will pro

duce a result of 0 if the other bit is 1 and 1 if the other bit is 0, the same as a logical

complement (NOT instruction).

Thus we have the instruction

EOR #%11111111 ;COMPLEMENT ACCUMULATOR

• The BIT instruction performs a logical AND but does not return a result to

the accumulator. It affects only the flags. You should note that this instruction

allows only direct addressing (zero page or absolute); it does not allow immediate

or indexed addressing. More complex operations require several instructions;

typical examples are the following:

• Add memory locations OPER1 and OPER2, place result in RESLT

LDA

CLC

ADC

STA

OPERl

OPER2

RESLT

;GET

;MAKE

;ADD

;SAVE

FIRST OPERAND

CARRY ZERO

SECOND OPERAND

SUM

Note that we must load the first operand into the accumulator and clear the Carry

before adding the second operand.

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 7

• Add a constant (VALUE) to memory location OPER.

LDA OPER ;GET CURRENT VALUE

CLC ;MAKE CARRY ZERO

ADC #VALUE ;ADD VALUE

STA OPER ;STORE SUM BACK

If VALUE is 1, we can shorten this to

INC OPER ;ADD 1 TO CURRENT VALUE

Similarly, if VALUE is -1, we have

DEC OPER ;SUBTRACT 1 FROM CURRENT VALUE

BIT MANIPULATION

The programmer can set, clear, complement, or test bits by means of logical

operations with appropriate masks. Shift instructions can rotate or shift the

accumulator or a memory location. Chapter 7 contains additional examples of bit

manipulation.

You may operate on individual bits in the accumulator as follows:

• Set them by logically ORing with Is in the appropriate positions.

• Clear them by logically ANDing with Os in the appropriate positions.

• Invert (complement) them by logically EXCLUSIVE ORing with Is in the

appropriate positions.

• Test them by logically ANDing with Is in the appropriate positions.

Examples

1. Set bit 6 of the accumulator.

ORA #%01000000 ;SET BIT 6 BY ORING WITH 1

2. Clear bit 3 of the accumulator.

AND #%11110111 ;CLEAR BIT 3 BY ANDING WITH 0

3. Invert (complement) bit 2 of the accumulator.

EOR #%00000100 ;INVERT BIT 2 BY XORING WITH 1

4. Test bit 5 of the accumulator. Clear the Zero flag if bit 5 is a logic 1 and set

the Zero flag if bit 5 is a logic 0.

AND #%00100000 ;TEST BIT 5 BY ANDING WITH 1

You can change more than one bit at a time by changing the masks.

5. Set bits 4 and 5 of the accumulator.

ORA #%00110Q00 ;SET BITS 4 AND 5 BY ORING WITH 1

1 8 6502 ASSEMBLY LANGUAGE SUBROUTINES

6. Invert (complement) bits 0 and 7 of the accumulator.

EOR #%10000001 ;INVERT BITS 0 AND 7 BY XOR1NG WITH 1

The only general way to manipulate bits in other registers or in memory is by

moving the values to the accumulator.

• Set bit 4 of memory location 004016.

LDA $40

ORA $%00010000 ;SET BIT 4 BY ORING WITH 1

STA $40

• Clear bit 1 of memory location 17E016.

LDA $17E0

AND #%11111101 ;CLEAR BIT 1 BY ANDING WITH 0

STA $17E0

An occasional, handy shortcut to clearing or setting bit 0 of a register or

memory location is using an increment (INC, INX, or INY) to set it (if you know

that it is 0) and a decrement (DEC, DEX, or DEY) to clear it (if you know that it

is 1). If you do not care about the other bit positions, you can also use DEC or

INC. These shortcuts are useful when you are storing a single 1-bit flag in a byte

of memory.

The instruction LSR (ASL) shifts the accumulator or a memory location right

(left) one position, filling the leftmost (rightmost) bit with a 0. Figures 1-1 and 1-

2 describe the effects of these two instructions. The instructions ROL and ROR

provide a circular shift (rotate) of the accumulator or a memory location as shown

in Figures 1-3 and 1-4. Rotates operate as if the accumulator or memory location

and the Carry flag formed a 9-bit circular register. You should note the following:

• Left shifts set the Carry to the value that was in bit position 7 and the Nega

tive flag to the value that was in bit position 6.

• Right shifts set the Carry to the value that was in bit position 0.

• Rotates preserve all the bits, whereas LSR and ASL destroy the old Carry

flag.

• Rotates allow you to move serial data between memory or the accumulator

and the Carry flag. This is useful in performing serial I/O and in handling single

bits of information such as Boolean indicators or parity.

Multibit shifts simply require the appropriate number of single-bit instruc

tions.

Examples

1. Rotate accumulator right three positions.

ROR A

ROR A

ROR A

CHAPTER 1: GENERAL PROGRAMMING METHODS 1 9

Original contents of Carry flag and accumulator or memory location

B7|B6 B5 B4 B3

After ASL (Arithmetic Shift

b6|b5 B4 B3 B2

B2 B,|B0|

Left)

B,|B0|0

Figure 1-1: The ASL (Arithmetic Shift Left) Instruction

Original contents of Carry flag and accumulator or memory location

\c\ |B7lB6|B5lB4|B3|B2lB1

After LSR (Logical Shift Right)

Figure 1-2: The LSR (Logical Shift Right) Instruction

Original contents of Carry flag and accumulator or memory location

Carry Data

[c] |B7 |B6 |BS |B4 |B3 |B2 |Bt |Bp |

After ROL (Rotate Left)
Carry Data

|B7| |B6 JB5 |B4 |B3 |B2|Bi|B0| C |

Figure 1-3: The ROL (Rotate Left) Instruction

Original contents of Carry flag and accumulator or memory location

Carry Data

[c] |B7|B6|B5lB4|B3lB2JB1|B0|

After ROR (Rotate Right)

Carry Data

Figure 1-4: The ROR (Rotate Right) Instruction

20 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. Shift memory location 170016 left logically four positions.

ASL $1700

ASL $1700

ASL $1700

ASL $1700

An alternative approach would be to use the accumulator; that is,

LDA

ASL

ASL

ASL

ASL

STA

$1700

A

A

A

A

$1700

The second approach is shorter (10 bytes rather than 12) and faster (16 clock

cycles rather than 24), but it destroys the previous contents of the accumulator.

You can implement arithmetic shifts by using the Carry flag to preserve the

current value of bit 7. Shifting right arithmetically is called sign extension, since it

copies the sign bit to the right. A shift that operates in this manner preserves the

sign of a two's complement number and can therefore be used to divide or nor

malize signed numbers.

Examples

1. Shift the accumulator right 1 bit arithmetically, preserving the sign (most

significant) bit.

TAX ;SAVE THE ACCUMULATOR

ASL A ;MOVE BIT 7 TO CARRY

TXA ;RESTORE THE ACCUMULATOR

ROR A ;SHIFT THE ACCUMULATOR, COPYING BIT 7

When the processor performs ROR A, it moves the Carry (the old bit 7) to bit 7

and bit 7 to bit 6, thus preserving the sign of the original number.

2. Shift the accumulator left 1 bit arithmetically, preserving the sign (most sig

nificant) bit.

;SHIFT A, MOVING BIT 7 TO CARRY

;SAVE BIT 7 IN POSITION 0

;CHANGE CARRY TO OLD BIT 7

;SHIFT THE ACCUMULATOR, PRESERVING BIT 7

or

;SHIFT A, MOVING BIT 7 TO CARRY

;WAS BIT 7 1?

; YES, THEN KEEP IT 1

; NO, THEN KEEP IT ZERO

BMI EXIT always forces a branch.

CLRSGN

EXIT

ASL

ROL

TAX

LSR

TXA

ROR

ASL

BCC

ORA

BMI

1 AND

NOP

A

A

A

A

A

CLRSGN

#%10000000

EXIT

#%01111111

CHAPTER 1: GENERAL PROGRAMMING METHODS 21

MAKING DECISIONS

We will now discuss procedures for making three types of decisions:

• Branching if a bit is set or cleared (a logic 1 or a logic 0).

• Branching if two values are equal or not equal.

• Branching if one value is greater than another or less than it.

The first type of decision allows the processor to sense the value of a flag,

switch, status line, or other binary (ON/OFF) input. The second type of decision

allows the processor to determine whether an input or a result has a specific value

(e.g., an input is a specific character or terminator or a result is 0). The third type

of decision allows the processor to determine whether a value is above or below a

numerical threshold (e.g., a value is valid or invalid or is above or below a warn

ing level or set point). Assuming that the primary value is in the accumulator and

the secondary value (if needed) is in address ADDR, the procedures are as

follows.

Branching Set or Cleared Bit

• Determine if a bit is set or cleared by logically ANDing the accumulator with

a 1 in the appropriate bit position and 0s in the other bit positions. The Zero flag

then reflects the bit value and can be used for branching (with BEQ or BNE).

Examples

1. Branch to DEST if bit 5 of the accumulator is 1.

AND #%0010000U ;TEST BIT 5 OF A

BNE DEST

The Zero flag is set to 1 if and only if bit 5 of the accumulator is 0. Note the inver

sion here.

If we assume that the data is in address ADDR, we can use the BIT instruction

to produce an equivalent effect. To branch to DEST if bit 5 ofADDR is 1, we can

use either

LDA ADDR

AND #%00100000

BNE DEST

or

LDA #%00100000

BIT ADDR

BNE DEST

We must reverse the order of the operations, since BIT does not allow immediate

addressing. It does, however, leave the accumulator unchanged for later use.

22 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. Branch to DEST if bit 2 of the accumulator is 0.

AND #%00000100 ;TEST BIT 2 OF A

BEQ DEST

There are special short procedures for examining bit positions 0, 6, or 7. Bit 7 is

available readily as the Negative flag after a Load or Transfer instruction; bit 0 can

be moved to the Carry with LSR A or ROR A; bit 6 can be moved to the Negative

flag with ASL A or ROL A.

3. Branch to DEST if bit 7 of memory location ADDR is 1.

LDA ADDR ;IS BIT 7 1?

BMI DEST ;YESf BRANCH

Note that LDA affects the Zero and Negative flags; so do transfer instructions

such as TAX, TYA, TSX (but not TXS), and PLA. Store instructions (including

PHA) do not affect any flags.

4. Branch to DEST if bit 6 of the accumulator is 0.

ASL A ;MOVE BIT 6 TO BIT 7

BPL DEST

5. Branch to DEST if bit 0 of memory location ADDR is 1.

ROR ADDR ;MOVE BIT 0 OF ADDR TO CARRY

BCS DEST ;AND THEN TEST THE CARRY

The BIT instruction has a special feature that allows one to readily test bit 6 or

bit 7 of a memory location. When the processor executes BIT, it sets the Negative

flag to the value of bit 7 of the addressed memory location and the Overflow flag

to the value of bit 6, regardless of the contents of the accumulator.

6. Branch to DEST if bit 7 of memory location ADDR is 0.

BIT ADDR ;TEST BIT 7 OF ADDR

BPL DEST

This sequence does not affect or depend on the accumulator.

7. Branch to DEST if bit 6 of memory location ADDR is 1.

BIT ADDR ;TEST BIT 6 OF ADDR

BVS DEST

This sequence requires careful documentation, since the Overflow flag is being

used in a special way. Here again, the contents of the accumulator do not change

or affect the sequence at all.

Branching Based on Equality

• Determine if the value in the accumulator is equal to another value by

subtraction. The Zero flag will be set to 1 if the values are equal. The Compare

CHAPTER 1: GENERAL PROGRAMMING METHODS 23

instruction (CMP) is more useful than the Subtract instruction (SBC) because

Compare does not change the accumulator or involve the Carry.

Examples

1. Branch to DEST if the accumulator contains the number VALUE.

CMP #VALUE ;IS DATA = VALUE?

BEQ DEST ;YES, BRANCH

We could also use index register X with CPX or index register Y with CPY.

2. Branch to DEST if the contents of the accumulator are not equal to the con

tents of memory location ADDR.

CMP ADDR ;IS DATA = VALUE IN MEMORY?

BNE DEST ;NO, BRANCH

3. Branch to DEST if memory location ADDR contains 0.

LDA ADDR ;IS DATA ZERO?

BEQ DEST ;YES, BRANCH

We can handle some special cases without using the accumulator.

4. Branch to DEST if memory location ADDR contains 0, but do not change

the accumulator or either index register.

INC ADDR ;TEST MEMORY FOR ZERO

DEC ADDR

BEQ DEST :BRANCH IF IT IS FOUND

5. Branch to DEST if memory location ADDR does not contain 1.

DEC ADDR ;SET ZERO FLAG IF ADDR IS 1
BNE DEST

This sequence, of course, changes the memory location.

6. Branch to DEST if memory location ADDR contains FF16.

INC ADDR ;SET ZERO FLAG IF ADDR IS FF

BEQ DEST

INC does not affect the Carry flag, but it does affect the Zero flag. Note that you

cannot increment or decrement the accumulator with INC or DEC.

Branching Based on Magnitude Comparisons

• Determine if the contents of the accumulator are greater than or less than

some other value by subtraction. If, as is typical, the numbers are unsigned, the

Carry flag indicates which one is larger. Note that the 6502's Carry flag is a nega

tive borrow after comparisons or subtractions, unlike the true borrow produced

by such processors as the 8080, Z-80, and 6800. In general,

24 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Carry = 1 if the contents of the accumulator are greater than or equal to the

value subtracted from it. Carry = 1 if the subtraction does not require (generate)

a borrow.

• Carry = 0 if the value subtracted is larger than the contents of the accumula

tor. That is, Carry = 0 if the subtraction does require a borrow.

Note that the Carry is the inverse of a normal borrow. If the two operands are

equal, the Carry is set to 1, just as if the accumulator were larger. If, however, you

want equal values to affect the Carry as if the other value were larger, all that you

must do is reverse the identities of the operands, that is, you must subtract in

reverse, saving the accumulator in memory and loading it with the other value

instead.

Examples

1. Branch to DEST if the contents of the accumulator are greater than or equal

to the number VALUE.

CMP RVALUE ;IS DATA ABOVE VALUE?

BCS DEST ;YESf BRANCH

The Carry is set to 1 if the unsigned subtraction does not require a borrow.

2. Branch to DEST if the contents of memory address OPER1 are less than the

contents of memory address OPER2.

LDA OPERl ;GET FIRST OPERAND

CMP 0PER2 ;IS IT LESS THAN SECOND OPERAND?

BCC DEST ;YESf BRANCH

The Carry will be set to 0 if the subtraction requires a borrow.

3. Branch to DEST if the contents of memory address OPERl are less than or

equal to the contents of memory address OPER2.

LDA 0PER2 ;GET SECOND OPERAND

CMP OPERl ;IS IT GREATER THAN OR EQUAL TO FIRST?

BCS DEST ;YES, BRANCH

If we loaded the accumulator with OPERl and compared to OPER2, we could

branch only on the conditions

• OPERl greater than or equal to OPER2 (Carry set)

• OPERl less than OPER2 (Carry cleared)

Since neither of these is what we want, we must handle the operands in the

opposite order.

If the values are signed, we must allow for the possible occurrence of two's

complement overflow. This is the situation in which the difference between the

numbers cannot be contained in seven bits and, therefore, changes the sign of the

result. For example, if one number is +7 and the other is —125, the difference is

CHAPTER 1: GENERAL PROGRAMMING METHODS 25

-132, which is beyond the capacity of eight bits (it is less than -128, the most

negative number that can be contained in eight bits).

Thus, in the case of signed numbers, we must allow for the following two

possibilities:

• The result has the sign (positive or negative, as shown by the Negative flag)

that we want, and the Overflow flag indicates that the sign is correct.

• The result does not have the sign that we want, but the Overflow flag indi

cates that two's complement overflow has changed the real sign.

We have to look for both a true positive (the sign we want, unaffected by over

flow) or a false negative (the opposite of the sign we want, but inverted by two's

complement overflow).

Examples

1. Branch to DEST if the contents of the accumulator (a signed number) are

greater than or equal to the number VALUE.

;CLEAR INVERTED BORROW

;PERFORM THE SUBTRACTION

;TRUE POSITIVE, NO OVERFLOW

;FALSE NEGATIVE, OVERFLOW

2. Branch to DEST if the contents of the accumulator (a signed number) are

less than the contents of address ADDR.

;CLEAR INVERTED BORROW

;PERFORM THE SUBTRACTION

;TRUE POSITIVE, NO OVERFLOW

;FALSE NEGATIVE, OVERFLOW

Note that we must set the Carry and use SBC, because CMP does not affect the

Overflow flag.

Tables 1-8 and 1-9 summarize the common instruction sequences used to

make decisions with the 6502 microprocessor. Table 1-8 lists the sequences that

depend only on the value in the accumulator; Table 1-9 lists the sequences that

depend on numerical comparisons between the contents of the accumulator and a

specific value or the contents of a memory location. Tables 1-10 and 1-11 contain

the sequences that depend on an index register or on the contents of a memory

location alone.

FNEG

DONE

SEC

SBC

BVS

BPL

BMI

BMI

NOP

#VALUE

FNEG

DEST

DONE

DEST

FNEG

DONE

SEC

SBC

BVS

BMI

BPL

BPL

NOP

ADDR

FNEG

DEST

DONE

DEST

26 6502 ASSEMBLY LANGUAGE SUBROUTINES

Table 1-8: Decision Sequences Depending on the Accumulator Alone

Condition

Any bit of A = 0

Any bit of A = 1

Bit 7 of A = 0

Bit 7 of A = 1

Bit 6 of A = 0

Bit 6 of A = 1

Bit 0 of A = 0

Bit 0 of A = 1

(A) = 0

(A) + 0

(A) positive (MSB = 0)

(A) negative (MSB = 1)

Flag-Setting Instruction

AND #MASK (1 in bit position)

AND #MASK (1 in bit position)

ASL A or ROL A

CMP#0 (preserves A)

ASL A or ROL A

CMP#0 (preserves A)

ASL A or ROL A

ASL A or ROL A

LSR A or ROR A

LSR A or ROR A

LDA, PLA, TAX, TAY, TXA, or TYA

LDA, PLA, TAX, TAY, TXA, or TYA

LDA, PLA, TAX, TAY, TXA, or TYA

LDA, PLA, TAX, TAY, TXA, or TYA

Conditional

Branch

BEQ

BNE

BCC

BPL

BCS

BMI

BPL

BMI

BCC

BCS

BEQ

BNE

BPL

BMI

Table 1-9: Decision Sequences Depending on Numerical Comparisons

Condition

(A) = VALUE

(A) + VALUE

(A) > VALUE (unsigned)

(A) < VALUE (unsigned)

(A) = (ADDR)

(A) * (ADDR)

(A) > (ADDR) (unsigned)

(A) < (ADDR) (unsigned)

Flag-Setting Instruction

CMP #VALUE

CMP #VALUE

CMP #VALUE

CMP #VALUE

CMP ADDR

CMP ADDR

CMP ADDR

CMP ADDR

Conditional

Branch

BEQ

BNE

BCS

BCC

BEQ

BNE

BCS

BCC

CHAPTER 1: GENERAL PROGRAMMING METHODS 27

Table 1-10: Decision Sequences Depending on an Index Register

Condition

(XorY)= VALUE

(XorY) LVALUE

(X or Y) £ VALUE (unsigned)

(X or Y) < VALUE (unsigned)

(XorY) = (ADDR)

(XorY)^(ADDR)

(XorY) ^ (ADDR) (unsigned)

(XorY) < (ADDR) (unsigned)

Flag-Setting Instruction

CPXorCPY#VALUE

CPXorCPY#VALUE

CPXorCPY#VALUE

CPX or CPY #VALUE

CPX or CPY ADDR

CPX or CPY ADDR

CPX or CPY ADDR

CPX or CPY ADDR

Conditional

Branch

BEQ

BNE

BCS

BCC

BEQ

BNE

BCS

BCC

Table 1-11: Decision Sequences Depending on a Memory Location Alone

Condition

Bit 7 = 0

Bit 7 = 1

Bit 6 = 0

Bit 6 = 1

(ADDR) = 0

(ADDR) =£ 0

Bit 0 = 0

Bit 0 = 1

Flag-Setting Instruction (s)

BIT ADDR

ASL ADDR or ROL ADDR

BIT ADDR

ASL ADDR or ROL ADDR

BIT ADDR

ASL ADDR or ROL ADDR

BIT ADDR

ASL ADDR or ROL ADDR

INC ADDR, DEC ADDR

INC ADDR, DEC ADDR

LSR ADDR or ROR ADDR

LSR ADDR or ROR ADDR

Conditional

Branch

BPL

BCC

BMI

BCS

BVC

PBL

BVS

BMI

BEQ

BNE

BCC

BCS

28 6502 ASSEMBLY LANGUAGE SUBROUTINES

LOOPING

The simplest way to implement a loop (that is, repeat a sequence of instruc

tions) with the 6502 microprocessor is as follows:

1. Load an index register or memory location with the number of times the

sequence is to be executed.

2. Execute the sequence.

3. Decrement the index register or memory location by 1.

4. Return to Step 2 if the result of Step 3 is not 0.

Typical programs look like this:

LDX #NTIMES ;COUNT = NUMBER OF REPETITIONS
LOOP

instructions to be repeated

DEX

BNE LOOP

Nothing except clarity stops us from counting up (using INX, INY, or INC); of

course, you must change the initialization appropriately. As we will see later, a

16-bit counter is much easier to increment than it is to decrement. In any case,

the instructions to be repeated must not interfere with the counting of the repeti

tions. You can store the counter in either index register or any memory location.

Index register X's special features are its use in preindexing and the wide

availability of zero page indexed modes. Index register Y's special feature is its

use in postindexing. As usual, memory locations on page 0 are shorter and faster

to use than are memory locations on other pages.

Of course, if you use an index register or a single memory location as a

counter, you are limited to 256 repetitions. You can provide larger numbers of

repetitions by nesting loops that use a single register or memory location or by

using a pair of memory locations as illustrated in the following examples:

• Nested loops

LDX #NTIMM ;START OUTER COUNTER

LOOPO LDY #NTIML ;START INNER COUNTER

LOOPI

•

instructions to be repeated

DEY ;DECREMENT irtNER COUNTER

BNE LOOPI

DEX ;DECREMENT OUTER COUNTER

BNE LOOPO

The outer loop restores the inner counter (index register Y) to its starting value

CHAPTER 1: GENERAL PROGRAMMING METHODS 29

(NTIML) after each decrement of the outer counter (index register X). The nest

ing produces a multiplicative factor — the instructions starting at LOOPI are

repeated NTIMM x NTIML times. Of course, a more general (and more reasona

ble) approach would use two memory locations on page 0 instead of two index

registers.

• 16-bit counter in two memory locations

LDA #NTIMLC ;INITIALIZE LSB OF COUNTER

STA COUNTL

LDA #NTIMHC ?INITIALIZE MSB OF COUNTER

STA COUNTH

LOOP

instructions to be repeated

INC NTIMLC ;INCREMENT LSB OF COUNTER

BNE LOOP

INC NTIMHC ;AND CARRY TO MSB OF COUNTER IF NEEDED

BNE LOOP

The idea here is to increment only the less significant byte unless there is a carry

to the more significant byte. Note that we can recognize a carry only by checking

the Zero flag, since INC does not affect the Carry flag. Counting up is much

simpler than counting down; the comparable sequence for decrementing a 16-bit

counter is

;IS LSB OF COUNTER ZERO?

;YES, BORROW FROM MSB

;DECREMENT LSB OF COUNTER

;CONTINUE IF LSB HAS NOT REACHED ZERO

;OR IF MSB HAS NOT REACHED ZERO

If we count up, however, we must remember to initialize the counter to the

complement of the desired value (indicated by the names NTIMLC and

NTIMHC in the program using INC).

ARRAY MANIPULATION

The simplest way to access a particular element of an array is by using indexed

addressing. One can then

1. Manipulate the element by indexing from the starting address of the array.

2. Access the succeeding element (at the next higher address) by increment

ing the index register using INX or INY, or access the preceding element (at the

next lower address) by decrementing the index register using DEX or DEY. One

CNTLSB

LDA

BNE

DEC

DEC

BNE

LDA

BNE

NTIML

CNTLSB

NTIMH

NTIML

LOOP

NTIMH

LOOP

30 6502 ASSEMBLY LANGUAGE SUBROUTINES

could also change the base; this is simple if the base is an absolute address, but

awkward if it is an indirect address.

3. Access an arbitrary element by loading an index register with its index.

Typical array manipulation procedures are easy to program if the array is one-

dimensional, the elements each occupy 1 byte, and the number of elements is

less than 256. Some examples are

• Add an element of an array to the accumulator. The base address of the array

is a constant BASE. Update index register X so that it refers to the succeeding 8-

bit element.

ADC BASE,X ;ADD CURRENT ELEMENT

INX ;ADDRESS NEXT ELEMENT

• Check to see if an element of an array is 0 and add 1 to memory location

ZCOUNT if it is. Assume that the address of the array is a constant BASE and its

index is in index register X. Update index register X so that it refers to the pre

ceding 8-bit element.

;GET CURRENT ELEMENT

;IS ITS VALUE ZERO?

;YES, ADD 1 TO COUNT OF ZEROS

;ADDRESS PRECEDING ELEMENT

• Load the accumulator with the 35th element of an array. Assume that the

starting address of the array is BASE.

LDX #35 ;GET INDEX OF REQUIRED ELEMENT

LDA BASE,X ;OBTAIN THE ELEMENT

The most efficient way to process an array is to start at the highest address and

work backward. This is the best approach because it allows you to count the index

register down to 0 and exit when the Zero flag is set. You must adjust the

initialization and the indexed operations slightly to account for the fact that the 0

index is never used. The changes are

• Load the index register with the number of elements.

• Use the base address START-1, where START is the lowest address

actually occupied by the array.

If, for example, we want to perform a summation starting at address START

and continuing through LENGTH elements, we use the program

;START AT THE END OF THE ARRAY

;CLEAR THE SUM INITIALLY

;ADD THE NEXT ELEMENT

;COUNT ELEMENTS

UPDDT

LDA

BNE

INC

DEX

BASE,X

UPDDT

ZCOUNT

LDX

LDA

ADBYTE CLC

ADC

DEX

BNE

#LENGTH

#0

START-1,X

ADBYTE

CHAPTER 1: GENERAL PROGRAMMING METHODS 31

Manipulating array elements becomes more difficult if you need more than one

element during each iteration (as in a sort that requires interchanging of ele

ments), if the elements are more than one byte long, or if the elements are them

selves addresses (as in a table of starting addresses). The basic problem is the lack

of 16-bit registers or 16-bit instructions. The processor can never be instructed to

handle more than 8 bits. Some examples of more general array manipulation are

• Load memory locations POINTH and POINTL with a 16-bit element of an

array (stored LSB first). The base address of the array is BASE and the index of

the element is in index register X. Update X so that it points to the next 16-bit

element.

LDA BASE,X ;GET LSB OF ELEMENT

STA POINTL

INX

LDA BASE,X ;GET MSB OF ELEMENT

STA POINTH

INX ;ADDRESS NEXT ELEMENT

The single instruction LDA BASE+1,X loads the accumulator from the same

address as the sequence

INX

LDA BASE,X

assuming that X did not originally contain FF16. If, however, we are using a base

address indirectly, the alternatives are

INC PGZRO ;INCREMENT BASE ADDRESS

SNE INDEX

INC PGZRO+1 ;WITH CARRY IF NECESSARY

INDEX LDA (PGZRO),Y

or

INY

LDA (PGZRO),Y

The second sequence is much shorter, but the first sequence will handle arrays

that are more than 256 bytes long.

• Exchange an element of an array with its successor if the two are not already

in descending order. Assume that the elements are 8-bit unsigned numbers. The

base address of the array is BASE and the index of the first number is in index

register X.

DONE

LDA

CMP

BCS

PHA

LDA

STA

PLA

STA

INX

BASE,X

BASE+1,X

DONE

BASE+lfX

BASE,X

BASE+1,X

;GET ELEMENT

;IS SUCCESSOR SMALLER?

;NO, NO INTERCHANGE NECESSARY

;YES, SAVE ELEMENT

:INTERCHANGE

;ACCESS NEXT ELEMENT

LDX

LDA

STA

INX

LDA

STA

LDY

LDA

#24

BASE,X

PGZRO

BASE,X

PGZRO+1

#0

(PGZRO),Y

32 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Load the accumulator from the 12th indirect address in a table. Assume that

the table starts at the address BASE.

;GET DOUBLED OFFSET FOR INDEX
;GET LSB OF ADDRESS

;SAVE ON PAGE ZERO

;GET MSB OF ADDRESS

;SAVE ON PAGE ZERO

;LOAD INDIRECT BY INDEXING WITH ZERO

Note that you must double the index to handle tables containing addresses, since

each 16-bit address occupies two bytes of memory.

If the entire table is on page 0, we can use the preindexed (indexed indirect)

addressing mode.

LDX #24 ;GET DOUBLED OFFSET FOR INDEX

LDA (BASE,X) ;LOAD FROM INDEXED INDIRECT ADDRESS

You still must remember to double the index. Here we must also initialize the

table of indirect addresses in the RAM on page 0.

We can generalize array processing by storing the base address in two locations

on page 0 and using the postindexed (indirect indexed) addressing mode. Now

the base address can be a variable. This mode assumes the use of page 0 and index

register Y and is available only for a limited set of instructions.

Examples

1. Add an element of an array to the accumulator. The base address of the

array is in memory locations PGZRO and PGZRO+1. The index of the element

is in index register Y. Update index register Y so that it refers to the succeeding 8-

bit element.

CLC ADC (PGZRO),Y ;ADD CURRENT ELEMENT

INY ;ADDRESS NEXT ELEMENT

2. Check to see if an element of an array is 0 and add 1 to memory location

ZCOUNT if it is. Assume that the base address of the array is in memory loca

tions PGZRO and PGZRO+1. The index of the element is in index register Y.

Update index register Y so that it refers to the preceding 8-bit element.

;GET CURRENT ELEMENT

;IS ITS VALUE ZERO?

;YES, ADD 1 TO COUNT OF ZEROS

UPDDT DEY ;ADDRESS PRECEDING ELEMENT

Postindexing also lets us handle arrays that occupy more than 256 bytes. As we

noted earlier, the simplest approach to long counts is to keep a 16-bit comple

mented count in two memory locations. If the array is described by a base address

on page 0, we can update that base whenever we update the more significant byte

of the complemented count. For example, if we want to clear an area of memory

LDA

BNE

INC

DEY

(PGZRO),Y

UPDDT

ZCOUNT

CHAPTER 1: GENERAL PROGRAMMING METHODS 33

described by a complemented count in memory locations COUNTH and

COUNTL and an initial base address in memory locations PGZRO and

PGZRO+1, we can use the following program:

LDA

TAY

CLEAR STA

INY

BNE

INC

CHKCNT INC

BNE

INC

BNE

#0

(PGZRO),Y

CHKCNT

PGZRO + 1

COUNTL

CLEAR

COUNTH

CLEAR

;DATA = ZERO

;INDEX = ZERO

;CLEAR A BYTE

;MOVE TO NEXT BYTE

;AND TO NEXT PAGE IF NEEDED

;COUNT BYTES

;WITH CARRY TO MSB

The idea here is to proceed to the next page by incrementing the more significant

byte of the indirect address when we finish a 256-byte section.

One can also simplify array processing by reducing the multiplications required

in indexing to additions. In particular, one can handle arrays of two-byte elements

by using ASL A to double an index in the accumulator.

Example

Load the accumulator from the indirect address indexed by the contents of

memory location INDEX. Assume that the table starts at address BASE.

LDA INDEX ;GET INDEX

ASL A ;AND DOUBLE IT FOR 2-BYTE ENTRIES

TAX

LDA BASEfX ;GET LSB OF INDIRECT ADDRESS

STA PGZRO ;SAVE ON PAGE ZERO

INX

LDA BASE,X ;GET MSB OF INDIRECT ADDRESS

STA PGZRO + 1 ;SAVE ON PAGE ZERO

LDY #0 ;PREINDEX WITH ZERO

LDA (PGZRO),Y

As before, if the entire table of indirect addresses is on page 0, we can use the

preindexed (indexed indirect) addressing mode.

LDA INDEX ;GET INDEX

ASL A ;DOUBLE INDEX FOR 2-BYTE ENTRIES

TAX

LDA (BASE,X) ;LOAD FROM INDEXED INDIRECT ADDRESS

You can handle indexing into longer arrays by using the postindexed (indirect

indexed) mode. Here we must construct a base address with an explicit addition

before indexing, since the 6502's index registers are only 8 bits long.

Example

Load the accumulator from the element of an array defined by a starting

address BASE (BASEH more significant byte, BASEL less significant byte) and a

16-bit index in memory locations INDEX and INDEX+1 (MSB in INDEX-f 1).

34 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA

STA

LDA

STA

CLC

ADC

STA

LDY

LDA

#BASEL

PGZRO

#BASEH

POINTL

INDEX+1

PGZRO+1

INDEX

(PGZRO),Y

;MOVE LSB OF BASE TO PAGE ZERO

;ADD MSB'S OF BASE AND INDEX

;USE LSB OF INDEX EXPLICITLY

;GET ELEMENT

TABLE LOOKUP

Table lookup can be handled by the same procedures as array manipulation.

Some examples are

• Load the accumulator with an element from a table. Assume that the base

address of the table is BASE (a constant) and the 8-bit index is in memory loca

tion INDEX.

LDX INDEX ;GET INDEX

LDA BASE,X ;GET THE ELEMENT

The problem is more complicated if INDEX is a 16-bit number.

• Load the accumulator with an element from a table. Assume that the base

address of the table is BASE (a constant, made up of bytes BASEH and BASEL)

and the 16-bit index is in memory locations INDEX and INDEX+1 (MSB in

INDEX+ 1).

The procedure is the same one we just showed for an array. You must add the

more significant byte of the index to the more significant byte of the base with an

explicit addition. You can then use postindexing to obtain the element.

• Load memory locations POINTH and POINTL with a 16-bit element from a

table. Assume that the base address of the table is BASE (a constant) and the

index is in memory location INDEX.

;GET THE INDEX

;DOUBLE IT FOR TWO-BYTE ENTRIES

;GET LSB OF ELEMENT

;GET MSB OF ELEMENT

We can also handle the case in which the base address is a variable in two memory

locations on page 0 (PGZRO and PGZRO+1).

LDA

ASL

TAX

LDA

INX

LDA

STA

INDEX

A

BASE,X

BASE,X

POINTH

CHAPTER 1: GENERAL PROGRAMMING METHODS 35

LDA INDEX ;GET THE INDEX

ASL A ;DOUBLE IT FOR TWO-BYTE ENTRIES

TAY

LDA (PGZRO),Y ;GET LSB OF ELEMENT

STA POINTL

INY

LDA (PGZRO),Y ;GET MSB OF ELEMENT

STA POINTH

We can revise the program further to handle an array with more than 128 entries.

LDA INDEX ;GET THE INDEX

ASL A ;DOUBLE IT FOR TWO-BYTE ENTRIES

BCC LDELEM

INC PGZRO+1 ;ADD CARRY TO INDIRECT ADDRESS

LDELEM TAY

LDA (PGZRO),Y ;GET LSB OF ELEMENT

STA POINTL

INY

LDA (PGZRO),Y ;GET MSB OF ELEMENT

STA POINTH

Still another extension handles a 16-bit index.

LDA INDEX ;GET LSB OF INDEX

ASL A ;DOUBLE IT

TAY

LDA INDEX+1 ;GET MSB OF INDEX

ROL A ;DOUBLE IT WITH CARRY

ADC PGZRO+1 ;AND ADD RESULT TO INDIRECT ADDRESS

STA PGZRO+1

LDA (PGZRO),Y ;GET LSB OF ELEMENT

STA POINTL

INY

LDA (PGZRO),Y ;GET MSB OF ELEMENT

STA POINTH

• Transfer control (jump) to a 16-bit address obtained from a table. Assume

that the base address of the table is BASE (a constant) and the index is in

memory location INDEX.

Here there are two options: Store the address obtained from the table in two

memory locations and use an indirect jump, or store the address obtained from

the table in the stack and use the RTS (Return from Subroutine) instruction.

OPTION 1: Indirect Jump

LDA

ASL

TAX

LDA

STA

INX

INDEX

A

BASE,X

TEMP

;GET INDEX

;DOUBLE IT FOR TWO-BYTE ENTRIES

;GET LSB OF DESTINATION ADDRESS

;STORE LSB SOMEWHERE

36 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA BASE,X ;GET MSB OF DESTINATION ADDRESS

STA TEMP+1 ;STORE MSB IN NEXT BYTE

JMP (TEMP) ;INDIRECT JUMP TO DESTINATION

JMP is the only 6502 instruction that has true indirect addressing. Note that

TEMP and TEMP+1 can be anywhere in memory; they need not be on page 0.

OPTION 2: Jump Through the Stack

LDA INDEX ;GET INDEX

ASL A ;DOUBLE IT FOR TWO-BYTE ENTRIES

TAX

INX

LDA BASE,X :GET MSB OF DESTINATION ADDRESS

PHA ;SAVE MSB IN STACK

DEX

LDA BASEfX ;GET LSB OF DESTINATION ADDRESS

PHA ;SAVE LSB IN STACK

RTS ;TRANSFER CONTROL TO DESTINATION

This alternative is awkward for the following reasons:

• RTS adds 1 to the program counter after loading it from the stack. Thus, the

addresses in the table must all be one less than the actual values to which you

wish to transfer control. This offset evidently speeds the processor's execution of

the JSR (Jump to Subroutine) instruction, but it also can confuse the pro

grammer.

• You must remember that the stack is growing down in memory, toward

lower addresses. To have the destination address end up in its normal order (less

significant byte at lower address), we must push the more significant byte first.

This is essentially a double negative; we store the address in the wrong order but

it ends up right because the stack is growing down.

• The use of RTS is confusing. How can one return from a routine that one has

never called? In fact, this approach uses RTS to call a subroutine. You should

remember that RTS is simply a jump instruction that obtains the new value for

the program counter from the top of the stack. While the common use of RTS is

to transfer control from a subroutine back to a main program (hence, the

mnemonic), there is no reason to limit it to that function. The mnemonic may

confuse the programmer, but the microprocessor does exactly what it is supposed

to do. Careful documentation can help calm the nerves if you feel uneasy about

this procedure.

The common uses of jump tables are to implement CASE statements (for

example, multiway branches as used in languages such as FORTRAN, Pascal,

CHAPTER 1: GENERAL PROGRAMMING METHODS 37

and PL/I) to decode commands from a keyboard, and to respond to function keys

on a terminal.

CHARACTER MANIPULATION

The easiest way to manipulate characters is to treat them as unsigned 8-bit

numbers. The letters and digits form ordered subsequences of the ASCII charac

ters; for example, the ASCII representation of the letter A is one less than the

ASCII representation of the letter B. Handling one character at a time is just like

handling normal 8-bit unsigned numbers. Some examples are

• Branch to address DEST if the accumulator contains an ASCII E.

CMP #'E ;IS DATA E?

BEQ DEST ;YES, BRANCH

• Search a string starting at address STRNG until a non-blank character is

found.

LDX #0 ;POINT TO START OF STRING

LDA #■ ;GET A BLANK FOR CHECKING

EXAMC CMP STRNG,X ;IS NEXT CHARACTER A BLANK?

BNE DONE ;NO, DONE

INX ;YES,PROCEED TO NEXT CHARACTER

JMP EXAMC

DONE NOP

or

LDX #$FF ;POINT TO BYTE BEFORE START

LDA #' ;GET A BLANK FOR COMPARISON

EXAMC INX ;PROCEED TO NEXT CHARACTER

CMP STRNG,X ;IS IT A BLANK?

BEQ EXAMC ;YES, KEEP LOOKING

• Branch to address DEST if the accumulator contains a letter between C and

F, inclusive.

CMP #'C ;IS DATA BELOW C?

BCC DONE ;YES, DONE

CMP #'G ;IS DATA BELOW G?

BCC DEST ;YES, MUST BE BETWEEN C AND F

DONE NOP

Chapter 8 contains further examples of string manipulation.

CODE CONVERSION

You can convert data from one code to another using arithmetic or logical

operations (if the relationship is simple) or lookup tables (if the relationship is

complex).

38 6502 ASSEMBLY LANGUAGE SUBROUTINES

Examples

1. Convert an ASCII digit to its binary-coded decimal (BCD) equivalent.

SEC ;CLEAR THE INVERTED BORROW

SBC #'0 ;CONVERT ASCII TO BCD

Since the ASCII digits form an ordered subsequence, all you must do is subtract

the offset (ASCII 0).

You can also clear bit positions 4 and 5 with the single instruction

AND #%11001111 :CONVERT ASCII TO BCD

Either the arithmetic sequence or the logical instruction will, for example, con

vert ASCII 0 (3016) to decimal 0 (0016).

2. Convert a binary-coded decimal (BCD) digit to its ASCII equivalent.

CLC ;CLEAR THE CARRY

ADC #'0 ;CONVERT BCD TO ASCII

The inverse conversion is equally simple. You can also set bit positions 4 and 5

with the single instruction

ORA #%00110000 ;CONVERT BCD TO ASCII

Either the arithmetic sequence or the logical instruction will, for example, con

vert decimal 6 (06i6) to ASCII 6 (3616).

3. Convert one 8-bit code to another using a lookup table. Assume that the

lookup table starts at address NEWCD and is indexed by the value in the original

code (for example, the 27th entry is the value in the new code corresponding to

27 in the original code). Assume that the data is in memory location CODE.

LDX CODE ;GET THE OLD CODE

LDA NEWCD,X ;CONVERT IT TO THE NEW CODE

Chapter 4 contains further examples of code conversion.

MULTIPLE-PRECISION

ARITHMETIC

Multiple-precision arithmetic requires a series of 8-bit operations. One must

• Clear the Carry before starting addition or set the Carry before starting

subtraction, since there is never a carry into or borrow from the least significant

byte.

• Use the Add with Carry (ADC) or Subtract with Borrow (SBC) instruction

to perform an 8-bit operation and include the carry or borrow from the previous

operation.

CHAPTER 1: GENERAL PROGRAMMING METHODS 39

A typical 64-bit addition program is

ADDB:

LDX

CLC

LDA

ADC

STA

DEX

BNE

#8

NUM1-1,X

NUM2-1,X

NUMl-l,X

ADDB

;NUMBER OF BYTES = 8

;CLEAR CARRY TO START

;GET A BYTE OF ONE OPERAND

;ADD A BYTE OF THE OTHER OPERAND

;STORE THE 8-BIT SUM

;COUNT BYTE OPERATIONS

Chapter 6 contains further examples.

MULTIPLICATION AND

DIVISION

Multiplication can be implemented in a variety of ways. One technique is to

convert simple multiplications to additions or left shifts.

Examples

1. Multiply the contents of the accumulator by 2.

ASL A ;DOUBLE A

2. Multiply the contents of the accumulator by 5.

STA

ASL

ASL

ADC

TEMP

A

, A

TEMP

;A

;A

;A

TIMES

TIMES

TIMES

2

4

5

This approach assumes that shifting the accumulator left never produces a

carry. This approach is often handy in determining the locations of elements of

two-dimensional arrays. For example, let us assume that we have a set of tem

perature readings taken at four different positions in each of three different tanks.

We organize the readings as a two-dimensional array T(I,J), where I is the tank

number (1, 2, or 3) and J is the number of the position in the tank (1, 2, 3, or 4).

We store the readings in the linear memory of the computer one after another as

follows, starting with tank 1:

BASE

BASE+1

BASE+2

BASE+3

BASE+4

BASE+5

BASE+6

BASE+7

BASE+8

BASE+9

BASE+10

BASE+11

T(l,l)

T(l,2)

T(l,3)

T(l,4)

T(2,l)

T(2,2)

T(2,3)

T(2,4)

T(3,l)

T(3,2)

T(3,3)

T(3,4)

Reading

Reading

Reading

Reading

Reading

Reading

Reading

Reading

Reading

Reading

Reading

Reading

at

at

at

at

at

at

at

at

at

at

at

at

tank

tank

tank

tank

tank

tank

tank

tank

tank

tank

tank

tank

1,

1,

1,
1,
2,

2,

2,

2,

3,

3,

3,

3,

location

location

location

location

location

location

location

location

location

location

location

location

1

2

3

4

1

2

3

4

1

2

3

4

40 6502 ASSEMBLY LANGUAGE SUBROUTINES

So, generally the reading T(I,J) is located at address BASE+4 x (1-1) +

(J—1). If I is in memory location INDl and J is in memory location IND2, we can

load the accumulator with T(I,J) as follows:

LDA INDl ;GET I

SEC

SBC #1 ;CALCULATE I - 1

ASL A ;2 X (I - 1)

ASL A ;4 X (I - 1)

SEC

SBC #1 ;4 X (I - 1) - 1

CLC

ADC IND2 ;4X(I-1)+J-1

TAX

LDA BASE,X ;GET T(I,J)

We can extend this approach to handle arrays with more dimensions.

Obviously, the program is much simpler if we store I—1 in memory location

INDl and J-l in memory location IND2. We can then load the accumulator

with T(I,J) using

i - l

(i - l)

(i - l)

(i - l) + (J - l)

• Simple divisions can also be implemented as right logical shifts.

Example

Divide the contents of the accumulator by 4.

LSR A ;DIVIDE BY 2

LSR A ;AND BY 2 AGAIN

If you are multiplying or dividing signed numbers, you must be careful to sepa

rate the signs from the magnitudes. You must replace logical shifts with

arithmetic shifts that preserve the value of the sign bit.

• Algorithms involving shifts and additions (multiplication) or shifts and

subtractions (division) can be used as described in Chapter 6.

• Lookup tables can be used as discussed previously in this chapter.

Chapter 6 contains additional examples of arithmetic programs.

LIST PROCESSING5

Lists can be processed like arrays if the elements are stored in consecutive

addresses. If the elements are queued or chained, however, the limitations of the

instruction set are evident in that

LDA

ASL

ASL

CLC

ADC

TAX

LDA

INDl

A

A

1ND2

BASE.X

;GET

;2 x

;4 x

;4 x

;GET

CHAPTER 1: GENERAL PROGRAMMING METHODS 41

• No 16-bit registers or instructions are available.

• Indirect addressing is allowed only through pointers on page 0.

• No true indirect addressing is available except for JMP instructions.

Examples

1. Retrieve an address stored starting at the address in memory locations

PGZRO and PGZRO+1. Place the retrieved address in memory locations

POINTL and POINTH.

LDY

LDA

STA

1NY

LDA

STA

#0

(PGZRO)

POINTL

(PGZRO)

POINTH

,Y

,Y

; INDEX =

;GET

;GET

LSB

MSB

ZERO

OF ADDRESS

OF ADDRESS

This procedure allows you to move from one element to another in a linked list.

2. Retrieve data from the address currently in memory locations PGZRO and

PGZRO-hi and increment that address by 1.

LDY

LDA

INC

BNE

INC

NOP

#0

(PGZRO),Y

PGZRO

DONE

PGZRO+1

;INDEX = ZERO

;GET DATA USING

;UPDATE POINTER

POINTER

BY 1

DONE

This procedure allows you to use the address in memory as a pointer to the next

available location in a buffer. Of course, you can also leave the pointer fixed and

increment a buffer index. If that index is in memory location BUFIND, we have

LDY BUFIND ;GET BUFFER INDEX

LDA (PGZRO),Y ;GET DATA FROM BUFFER

INC BUFIND :UPDATE BUFFER INDEX BY 1

3. Store an address starting at the address currently in memory locations

PGZRO and PGZRO+1. Increment the address in memory locations PGZRO

and PGZRO+1 by 2.

; INDEX = ZERO

;SAVE LSB OF ADDRESS

;SAVE MSB OF ADDRESS

;INCREMENT POINTER BY 2

;WITH CARRY IF NECESSARY

INC PGZRO+1

DONE

LDY

LDA

STA

LDA

INY

STA

CLC

LDA

ADC

STA

BCC

INC

NOP

#0

#ADDRL

(PGZRO),Y

#ADDRH

(PGZRO),Y

PGZRO

#2

PGZRO

DONE

PGZRO+1

42 6502 ASSEMBLY LANGUAGE SUBROUTINES

This procedure lets you build a list of addresses. Such a list could be used, for

example, to write threaded code in which each routine concludes by transferring

control to its successor. The list could also contain the starting addresses of a

series of test procedures or tasks or the addresses of memory locations or I/O

devices assigned by the operator to particular functions. Of course, some lists

may have to be placed on page 0 in order to use the 6502's preindexed or postin-

dexed addressing modes.

GENERAL DATA STRUCTURES 6

More general data structures can be processed using the procedures that we

have described for array manipulation, table lookup, and list processing. The key

limitations in the instruction set are the same ones that we mentioned in the dis

cussion of list processing.

Examples

1. Queues or linked lists. Assume that we have a queue header consisting of

the address of the first element in memory locations HEAD and HEAD +1 (on

page 0). If there are no elements in the queue, HEAD and HEAD+1 both con

tain 0. The first two locations in each element contain the address of the next ele

ment or 0 if there is no next element.

• Add the element in memory locations PGZRO and PGZRO+1 to the head

of the queue.

;REPLACE HEAD, SAVING OLD VALUELDX

LDA

STX

PHA

LDA

LDX

STA

LDY

PLA

STA

TXA

INY

STA

PGZRO

HEAD

HEAD

PGZRO+1

HEAD+1

HEAD+1

#0

(HEAD),Y

(HEAD),Y

;INDEX = ZERO

;NEW HEADfS LINK IS OLD HEAD

• Remove an element from the head of the queue and set the Zero flag if no

element is available.

;GET ADDRESS OF FIRST ELEMENT

;GET LESS SIGNIFICANT BYTE

;GET MORE SIGNIFICANT BYTE

LDY

LDA

STA

INY

LDA

#0

(HEAD),Y

PGZRO

(HEAD),Y

STA

ORA

BEQ

LDA

STA

DEY

LDA

STA

INY

NOP

j can

LDA

ORA

PGZRO+1

PGZRO

DONE

(PGZRO),Y

(HEAD),Y

(PGZRO),Y

(HEAD),Y

use the sequei

ADDR

ADDR+1

CHAPTER 1: GENERAL PROGRAMMING METHODS 43

;ANY ELEMENTS IN QUEUE?

;NO, DONE (LINK = 0000)

;YES, MAKE NEXT ELEMENT NEW HEAD

;CLEAR ZERO FLAG BY MAKING Y 1

DONE

to test the 16-bit number in memory locations ADDR and ADDR+1. The Zero

flag is set only if both bytes are 0.

2. Stacks. Assume that we have a stack structure consisting of 8-bit elements.

The address of the next empty location is in addresses SPTR and SPTR+1 on

page 0. The lowest address that the stack can occupy is LOW and the highest

address is HIGH.

• If the stack overflows, clear the Carry flag and exit. Otherwise, store the

accumulator in the stack and increase the stack pointer by 1. Overflow means that

the stack has exceeded its area.

:STACK POINTER GREATER THAN HIGH?

;YES, CLEAR CARRY AND EXIT (OVERFLOW)

;NO STORE ACCUMULATOR IN STACK

;INCREMENT STACK POINTER

EXIT

• If the stack underflows, set the Carry flag and exit. Otherwise, decrease the

stack pointer by 1 and load the accumulator from the stack. Underflow means

that there is nothing left in the stack.

;STACK POINTER AT OR BELOW LOW?

;YES, SET CARRY AND EXIT (UNDERFLOW)

;NO, DECREMENT STACK POINTER

NOBOR

:LOAD ACCUMULATOR FROM STACK

LDA (SPTR),Y

EXIT

LDA

CMP

LDA

SBC

BCC

LDY

STA

INC

BNE

INC

NOP

#HIGHL

SPTR

#HIGHM

SPTR+1

EXIT

#0

(SPTR),Y

SPTR

EXIT

SPTR+1

LDA

CMP

LDA

SBC

BCS

LDA

BNE

DEC

DEC

LDY

LDA

NOP

#LOWL

SPTR

#LOWM

SPTR+1

EXIT

SPTR

NOBOR

SPTR+1

SPTR

#0

(SPTR),Y

44 6502 ASSEMBLY LANGUAGE SUBROUTINES

PARAMETER PASSING TECHNIQUES

The most common ways to pass parameters on the 6502 microprocessor are

1. In registers. Three 8-bit registers are available (A, X, and Y). This

approach is adequate in simple cases but it lacks generality and can handle only a

limited number of parameters. The programmer must remember the normal uses

of the registers in assigning parameters. In other words,

• The accumulator is the obvious place to put a single 8-bit parameter.

• Index register X is the obvious place to put an index, since it is the most

accessible and has the most instructions that use it for addressing. Index register

X is also used in preindexing (indexed indirect addressing).

• Index register Y is used in postindexing (indirect indexed addressing).

This approach is reentrant as long as the interrupt service routines save and

restore all the registers.

2. In an assigned area of memory. The easiest way to implement this

approach is to place the starting address of the assigned area in two memory loca

tions on page 0. The calling routine must store the parameters in memory and

load the starting address into the two locations on page 0 before transferring con

trol to the subroutine. This approach is general and can handle any number of

parameters, but it requires a large amount of management. If you assign different

areas of memory for each call or each routine, you are essentially creating your

own stack. If you use a common area of memory, you lose reentrancy. In this

method, the programmer is responsible for assigning areas of memory, avoiding

interference between routines, and saving and restoring the pointers required to

resume routines after subroutine calls or interrupts. The extra memory locations

on page 0 must be treated like registers.

3. In program memory immediately following the subroutine call. If you use

this approach, you must remember the following:

• The starting address of the memory area minus 1 is at the top of the stack.

That is, the starting address is the normal return address, which is 1 larger than

the address the 6502's JSR instruction saves in the stack. You can move the start

ing address to memory locations RETADR and RETADR+1 on page 0 with the

following sequence:

;GET LSB OF RETURN ADDRESS

;GET MSB OF RETURN ADDRESS

;ADD 1 TO RETURN ADDRESS

DONE

PLA

STA

PLA

STA

INC

BNE

INC

NOP

RETADR

RETADR+1

RETADR

DONE

RETADR+1

CHAPTER 1: GENERAL PROGRAMMING METHODS 45

Now we can access the parameters through the indirect address. That is, you can

load the accumulator with the first parameter by using the sequence

LDY #0 ;INDEX = ZERO

LDA (RETADR),Y ;LOAD FIRST PARAMETER

An obvious alternative is to leave the return address unchanged and start the

index at 1. That is, we would have
0

PLA ;GET LSB OF RETURN ADDRESS

STA RETADR

PLA ;GET MSB OF RETURN ADDRESS

STA RETADR+1

Now we could load the accumulator with the first parameter by using the

sequence

LDY #1 ;INDEX = 1

LDA (RETADR),Y ;LOAD FIRST PARAMETER

• All parameters must be fixed for a given call, since the program memory is

typically ROM.

• The subroutine must calculate the actual return address (the address of the

last byte in the parameter area) and place it on top of the stack before executing a

Return from Subroutine (RTS) instruction.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit

parameter. Show a main program that calls SUBR and contains the required

parameters. Also show the initial part of the subroutine that retrieves the

parameters, storing the 8-bit item in the accumulator and the 16-bit item in

memory locations PGZRO and PGZRO+1, and places the correct return address

at the top of the stack.

Subroutine call

JSR SUBR ;EXECUTE SUBROUTINE

.BYTE PAR8 ;8-BIT PARAMETER

.WORD PAR16 ;16-BIT PARAMETER

... next instruction ...

;GET LSB OF PARAMETER ADDRESS

;GET MSB OF PARAMETER ADDRESS

;ACCESS FIRST PARAMETER

;ACCESS LSB OF 16-BIT PARAMETER

;GET MSB OF 16-BIT PARAMETER

Subroutine

SUBR PLA

STA

PLA

STA

LDY

LDA

TAX

INY

LDA

STA

INY

LDA

RETADR

RETADR+1

#1

(RETADR)fY

(RETADR),Y

PGZRO

(RETADR).Y

46 6502 ASSEMBLY LANGUAGE SUBROUTINES

STA

LDA

CLC

ADA

TAY

BCC

INC

STRMSB LDA

PHA

TYA

PHA

PGZRO+1

RETADR

#3

STRMSB

RETADR+1

RETADR+1

;CALCULATE ACTUAL RETURN ADDRESS

;PUT RETURN ADDRESS ON TOP OF STACK

The initial sequence pops the return address from the top of the stack (JSR saved

it there) and stores it in memory locations RETADR and RETADR+1. In fact,

the return address does not contain an instruction; instead, it contains the first

parameter. Remember that JSR actually saves the return address minus 1; that is

why we must start the index at 1 rather than at 0. Finally, adding 3 to the return

address and saving the sum in the stack lets a final RTS instruction transfer con

trol back to the instruction following the parameters.

This approach allows parameters lists of any length. However, obtaining the

parameters from memory and adjusting the return address is awkward at best; it

becomes a longer and slower process as the number of parameters increases.

4. In the stack. If you use this approach, you must remember the following:

• JSR stores the return address at the top of the stack. The parameters that the

calling routine placed in the stack begin at address Olss + 3, where ss is the con

tents of the stack pointer. The 16-bit return address occupies the top two loca

tions and the stack pointer itself always refers to the next empty address, not the

last occupied one. Before the subroutine can obtain its parameters, it must

remove the return address from the stack and save it somewhere.

• The only way for the subroutine to determine the value of the stack pointer is

by using the instruction TSX. After TSX has been executed, you can access the

top of the stack by indexing with register X from the base address 010116. The

extra offset of 1 is necessary because the top of the stack is empty.

• The calling program must place the parameters in the stack before calling the

subroutine.

• Dynamically allocating space on the stack is difficult at best. If you wish to

reduce the stack pointer by NRESLT, two general approaches are

TSX ;MOVE STACK POINTER TO A VIA X

TXA

SEC ;SUBTRACT NRESLT FROM POINTER

SBC #NRESLT

TAX ;RETURN DIFFERENCE TO STACK POINTER

TXS

CHAPTER 1: GENERAL PROGRAMMING METHODS 47

or

PUSHB

LDX

PHA

DEX

BNE

#NRESLT

PUSHB

;COUNT = NRESLT

;MOVE STACK POINTER DOWN 1

Either approach leaves NRESLT empty locations at the top of the stack as shown

in Figure 1-5. Of course, if NRESLT is 1 or 2, simply executing PHA the

appropriate number of times will be much faster and shorter. The same

approaches can be used to provide stack locations for temporary storage.

Example

Assume that subroutine SUBR requires an 8-bit parameter and a 16-bit

parameter, and that it produces two 8-bit results. Show a call of SUBR, the

removal of the return address from the stack, and the cleaning of the stack after

the return. Figure 1-6 shows the appearance of the stack initially, after the

subroutine call, and at the end. If you always use the stack for parameters and

results, you will generally keep the parameters at the top of the stack in the proper

order. Then you will not have to save the parameters or assign space in the stack

for the results (they will replace some or all of the original parameters). You will,

however, have to assign space on the stack for temporary storage to maintain

generality and reentrancy.

;LEAVE ROOM ON STACK FOR RESULTS

;A GENERAL WAY TO ADJUST SP

;MOVE 16-BIT PARAMETER TO STACK

;MOVE 8-BIT PARAMETER TO STACK

;EXECUTE SUBROUTINE

;CLEAN PARAMETERS FROM STACK

;RESULT IS NOW AT TOP OF STACK

;REMOVE RETURN ADDRESS FROM STACK

Calling program

TSX

TXA

CLC

ADC

TAX

TXS

LDA

PHA

LDA

PHA

LDA

PHA

JSR

TSX

TXA

CLC

ADC

TAX

TXS

Subroutine

SUBR PLA

STA

PLA

STA

#2

#PAR16H

#PAR16L

#PAR8

SUBR

#3

RETADR

RETADR+1

48 6502 ASSEMBLY LANGUAGE SUBROUTINES

Olss

Stack

Pointer

Empty space

for storing

results in the

stack

Olss -NRESLT

Stack

Pointer

No values are placed in the locations.

The initial contents of the stack pointer are ss.

Figure 1-5: The Stack Before and After Assigning NRESLT

Empty Locations for Results

Initial state of

the stack

I

Olss

Stack

Winter

Stack after

execution of

JSR SUBR

LSB of return

address

MSB of return
address

8-bit parameter

LSB of 16-bit
parameter

MSB of 16-bit
parameter

Empty byte for

result #1

Empty byte for

result #2

Olss -7

Sts

Poii

ick

nter

Final state of

the stack

Result #1

Result #2

Olss

i

St

Poi

-2

i

ick

nter

The initial contents of the stack pointer are ss.

Figure 1-6: The Effect of a Subroutine on the Stack

CHAPTER 1: GENERAL PROGRAMMING METHODS 49

SIMPLE INPUT/OUTPUT

Simple input/output can be performed using any memory addresses and any

instructions that reference memory. The most common instructions are the

following:

• LDA (load accumulator) transfers eight bits of data from an input port to the

accumulator.

• STA (store accumulator) transfers eight bits of data from the accumulator to

an output port.

Other instructions can combine the input operation with arithmetic or logical

operations. Typical examples are the following:

• AND logically ANDs the contents of the accumulator with the data from an

input port.

• BIT logically ANDs the contents of the accumulator with the data from an

input port but does not store the result anywhere. It does, however, load the

Negative flag with bit 7 of the input port and the Overflow flag with bit 6, regard

less of the contents of the accumulator.

• CMP subtracts the data at an input port from the contents of the accumula

tor, setting the flags but leaving the accumulator unchanged.

Instructions that operate on data in memory can also be used for input or out

put. Since these instructions both read and write memory, their effect on input

and output ports may be difficult to determine. Remember, input ports cannot

generally be written, nor can output ports generally be read. The commonly used

instructions are the following:

• ASL shifts its data to the left, thus moving bit 7 to the Carry for possible

serial input.

• DEC decrements its data. Among other effects, this inverts bit 0.

• INC increments its data. Among other effects, this inverts bit 0.

• LSR shifts its data to the right, thus moving bit 0 to the Carry for possible

serial input.

• ROR rotates its data to the right, thus moving the old Carry to bit 7 and mov

ing bit 0 to the Carry.

• ROL rotates its data to the left, thus moving the old Carry to bit 0 and mov

ing bit 7 to the Carry.

The effects of these instructions on an input port are typically similar to their

effects on a ROM location. The microprocessor can read the data, operate on it,

and set the flags, but it cannot store the result back into memory. The effects on

50 6502 ASSEMBLY LANGUAGE SUBROUTINES

an output port are even stranger, unless the port is latched and buffered. If it is

not, the data that the processor reads is system-dependent and typically has no

connection with what was last stored there.

Examples

1. Perform an 8-bit input operation from the input port assigned to memory

address B00016.

LDA $B000 ;INPUT DATA

2. Perform an 8-bit output operation to the output port assigned to memory

address 3A5E16.

STA $3A5E ;OUTPUT DATA

3. Set the Zero flag if bit 5 of the input port assigned to memory address

75D016is0.

LDA #%00100000 ;GET MASK

AND $75D0 ;SET FLAG IF BIT 5 IS ZERO

We can also use the sequence

LDA #%00100000 ;GET MASK

BIT $75D0 ;SET FLAG IF BIT 5 IS ZERO

If the bit position of interest is number 6, we can use the single instruction

BIT $75D0

to set the Overflow flag to its value.

4. Set the Zero flag if the data at the input port assigned to memory address

1700l6islB16.

LDA #$1B

CMP $170U

5. Load the Carry flag with the data from bit 7 of the input port assigned to

memory address 33A5I6.

ASL $33A5

Note that this instruction does not change the data in memory location 33A516

unless that location is latched and buffered. If, for example, there are eight simple

switches attached directly to the port, the instruction will surely have no effect on

whether the switches are open or closed.

6. Place a logic 1 in bit 0 of the output port assigned to memory address B070l6.

LDA $B070

ORA #%00000001

STA $B070

If none of the other bits in address B07016 are connected, we can use the sequence

SEC

ROL $B070

CHAPTER 1: GENERAL PROGRAMMING METHODS 51

LDA

ORA

STA

STA

TEMP

#%00000G01

$B070

TEMP

;GET

;SET

COPY OF

BIT 0

;OUTPUT NEW

;AND SAVE A

OUTPUT

DATA

COPY OF

If we know that bit 0 of address B07016 is currently a logic 0, we can use the single

instruction

INC $B070

All of these alternatives will have strange effects if memory address B070l6 can

not be read. The first two will surely make bit 0 a logic 1, but their effects on the

other bits are uncertain. The outcome of the third alternative would be a total

mystery, since we would have no idea what is being incremented. We can avoid

the uncertainty by saving a copy of the data in RAM location TEMP. Now we can

operate on the copy using

IT

LOGICAL AND

PHYSICAL DEVICES

One way to select I/O devices by number is to use an I/O device table. An I/O

device table assigns the actual I/O addresses (physical devices) to the device num

bers (logical devices) to which a program refers. Using this method, a program

written in a high-level language may refer to device number 2 for input and num

ber 5 for output. For testing purposes, the operator may assign devices numbers 2

and 5 to be the input and output ports, respectively, of his or her terminal. For

normal stand-alone operation, the operator may assign device number 2 to be an

analog input unit and device number 5 the system printer. If the system is to be

operated by remote control, the operator may assign devices numbers 2 and 5 to

be communications units used for input and output.

One way to provide this distinction between logical and physical devices is to

use the 6502's indexed indirect addressing or preindexing. This mode assumes

that the device table is located on page 0 and is accessed via an index in register X.

If we have a device number in memory location DEVNO, the following programs

can be used:

• Load the accumulator from the device number given by the contents of

memory location DEVNO.

LDA DEVNO ;GET DEVICE NUMBER

ASL A ;DOUBLE IT TO HANDLE DEVICE ADDRESSES

TAX

LDA (DEVTAB,X) ;GET DATA FROM DEVICE

• Store the accumulator in the device number given by the contents of

memory location DEVNO.

52 6502 ASSEMBLY LANGUAGE SUBROUTINES

PHA

LDA

ASL

TAX

PLA

STA

DEVNO

A

(DEVTAB.X)

;SAVE THE DATA

;GET DEVICE NUMBER

;DOUBLE IT TO HANDLE DEVICE ADDRESSES

;SEND DATA TO DEVICE

In both cases, we assume that the I/O device table starts at address DEVTAB (on

page 0) and consists of 2-byte addresses. Note that the 6502 provides an appropri

ate addressing method, but does not produce any error messages if the pro

grammer uses that method improperly by accessing odd addresses or by indexing

off the end of page 0 (the processor does provide automatic wraparound). In real

applications (see Chapter 10), the device table will probably contain the starting

addresses of I/O subroutines (drivers) rather than actual device addresses.

STATUS AND CONTROL

You can handle status and control signals like any other data. The only special

problem is that the processor may not be able to read output ports; in that case,

you must retain copies (in RAM) of the data sent to those ports.

Examples

1. Branch to address DEST if bit 3 of the input port assigned to memory

address A100l6 is 1.

LDA

AND

BNE

$A1OO

#%0GU01000

DEST

;GET

;MASK

INPUT

OFF

DATA

BIT 3

2. Branch to address DEST if bits 4, 5, and 6 of the input port assigned to

address STAT are 5 (101 binary).

LDA STAT ;GET STATUS

AND *%0111U000 ;MASK OFF BITS 4, 5, AND 6

CMP #%01010000 ;IS STATUS FIELD 5?

BEQ DEST ;YESf BRANCH

3. Set bit 5 of address CNTL to 1.

LDA CNTL ;GET CURRENT DATA FROM PORT

ORA #%00100000 ;SET BIT 5

STA CNTL ;RESTORE DATA TO PORT

If address CNTL cannot be read properly, we can use a copy in memory address

TEMP.

;GET CURRENT DATA FROM PORT

;SET BIT 5

;RESTORE DATA TO PORT

;UPDATE COPY OF DATA

LDA

ORA

STA

STA

TEMP

#%00100000

CNTL

TEMP

CHAPTER 1: GENERAL PROGRAMMING METHODS 53

You must update the copy every time you change the data.

4. Set bits 2, 3, and 4 of address CNTL to 6 (110 binary).

LDA CNTL ;GET CURRENT DATA FROM PORT

AND #%1110U011 ;CLEAR BITS 2, 3, AND 4

ORA #%00011000 ;SET CONTROL FIELD TO 6

STA CNTL ;RESTORE DATA TO PORT

As in example 3, if address CNTL cannot be read properly, we can use a copy in

memory address TEMP.

LDA TEMP ;GET CURRENT DATA FROM PORT

AND #%11100011 ;CLEAR BITS 2, 3, AND 4

ORA #%00011000 ;SET CONTROL FIELD TO 6

STA CNTL ;UPDATE PORT

STA TEMP ;UPDATE COPY OF DATA

Retaining copies of the data in memory (or using the values stored in a latched,

buffered output port) allows you to change part of the data without affecting other

parts that may have unrelated meanings. For example, you could change the state

of one indicator light (for example, a light that indicated local or remote opera

tion) without affecting other indicator lights attached to the same port. You could

similarly change one control line (for example, a line that determined whether

motion was in the positive or negative X-direction) without affecting other con

trol lines attached to the same port.

PERIPHERAL CHIPS

The major peripheral chips in 6502-based microcomputers are the 6520 and

6522 parallel interfaces (known as the Peripheral Interface Adapter or PIA and

the Versatile Interface Adapter or VIA, respectively), the 6551 and 6850 serial

interfaces (known as Asynchronous Communications Interface Adapters or

ACIAs), and the 6530 and 6532 multifunction devices (known as ROM-I/O-

timers or RAM-I/O-timers or ROM-RAM-I/O-timers, abbreviated RIOT or

RRIOT and sometimes called combo chips). All of these devices can perform a

variety of functions, much like the microprocessor itself. Of course, peripheral

chips perform fewer different functions than processors and the range of func

tions is limited. The idea behind programmable peripheral chips is that each con

tains many useful circuits; the designer selects the ones he or she wants to use by

storing one or more selection codes in control registers, much as one selects a

particular circuit from a Designer's Casebook by turning to a particular page. The

advantages of programmable chips are that a single board containing such devices

can handle many applications and changes, or, corrections can be made by chang

ing selection codes rather than by redesigning circuit boards. The disadvantages

54 6502 ASSEMBLY LANGUAGE SUBROUTINES

of programmable chips are the lack of standards and the difficulty of determining

how specific chips operate.

Chapter 10 contains typical initialization routines for the 6520, 6522, 6551,

6850, 6530, and 6532 devices. These devices are also discussed in detail in the

Osborne 4 and 8-Bit Microprocessor Handbook1. We will provide only a brief over

view of the 6522 device here, since it is the most widely used. 6522 devices are

used, for example, in the Rockwell AIM-65, Synertek SYM-1, Apple, and other

popular microcomputers as well as in add-on I/O boards and other functions

available from many manufacturers.

6522 Parallel Interface

(Versatile Interface Adapter)

A VIA contains two 8-bit parallel I/O ports (A and B), four status and control

lines (CA1, CA2, CB1, and CB2 - two for each of the two ports), two 16-bit

counter/timers (timer 1 and timer 2), an 8-bit shift register, and interrupt logic.

Each VIA occupies 16 memory addresses. The RS (register select) lines choose

the various internal registers as described in Table 1-12. The way that a VIA oper

ates is determined by the values that the program stores in four registers.

• Data Direction Register A (DDRA) determines whether the pins on port A

are inputs (0s) or outputs (Is). A data direction register determines only the

direction in which traffic flows; you may compare it to a directional arrow that

indicates which way traffic can move on a highway lane or railroad track. The data

direction register does not affect what data flows or how often it changes; it only

affects the direction. Each pin in the I/O port has a corresponding bit in the data

direction register, and thus, each pin can be selected individually as either an

input or an output. Of course, the most common choices are to make an entire 8-

bit I/O port input or outport by storing 0s or Is in all eight bits of the data direc

tion register.

• Data Direction Register B (DDRB) similarly determines whether the pins in

port B are inputs or outputs.

• The Peripheral Control Register (PCR) determines how the handshaking

control lines (CA1, CB1, CA2, and CB2) operate. Figure 1-7 contains the bit

assignments for this register. We will discuss briefly the purposes of these bits

and their uses in common applications.

• The Auxiliary Control Register (ACR) determines whether the input data

ports are latched and how the timers and shift register operate. Figure 1-8 con

tains the bit assignments for this register. We will also discuss briefly the purposes

of these bits and their uses in common applications.

CHAPTER 1: GENERAL PROGRAMMING METHODS 55

Table 1-12: Addressing the Internal Registers of the 6522 VIA

Label

DEV

DEV+1

DEV+2

DEV+3

DEV+4

DEV+ 5

DEV+6

DEV+ 7

DEV4-8

DEV+9

DEV+A

DEV+ B

DEV+C

DEV+D

DEV+E

DEV+F

Select

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

Lines

RSI

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

RSO
0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Addressed Location

Output register for I/O Port B

Output register for I/O Port A, with handshaking

I/O Port B Data Direction register

I/O Port A Data Direction register

Read Timer 1 Counter low-order byte

Write to Timer 1 Latch low-order byte

Read Timer 1 Counter high-order byte

Write to Timer 1 Latch high-order byte and

initiate count

Access Timer 1 Latch low-order byte

Access Timer 1 Latch high-order byte

Read low-order byte of Timer 2 and reset

Counter interrupt

Write to low-order byte of Timer 2 but do not

reset interrupt

Access high-order byte of Timer 2, reset

Counter interrupt on write

Serial I/O Shift register

Auxiliary Control register

Peripheral Control register

Interrupt Flag register

Interrupt Enable register

Output register for I/O Port A, without handshaking

56 6502 ASSEMBLY LANGUAGE SUBROUTINES

7 6 5 4 3 2 10-

±1

Bit Number

Peripheral Conlrol register

0 Request interrupt on high-to-low \

transition ol'CAl (On interrupt request set
1 Request interrupt on low-to-high (Interrupt Flag register bil 1

transition ol'CAl

-000 CA2 input mode | Reques, interrupt on
001 CA2 independent input mode) high-to-low CA2 transition

010 CA2 input mode I Request inlerrupl on
011 CA2 independent input mode) |Ow-to-high CA2 transition

100 CA2 output low on CPU read or write

101 CA2 output low pulse on CPU read or write

110 Output CA2 low

111 Output CA2 high

-0 Request interrupt on high-to-low \

transition of CB1 (
1 Request interrupt on low-to-high |

transition ol'CBI)

-000 CB2 input mode)
001 CB2 independent input mode \

010 CB2 input mode |

011 CB2 independent input mode J

100 CB2 output low on CPU write

101 CB2 output low pulse on CPU write

110 Output CB2 low

111 Output CB2 high

\ On interrupt

| request set
(Interrupt Flag

register bit 0

On interrupt request set

Interrupt Flag register bit 4

Request interrupt on

high-to-low CB2 transition

Request interrupt on

low-to-high CB2 transition

On inlerrupl

request set

Interrupt Flag

register bit 3

Figure 1-7: Bit Assignments for the 6522 VIA's Peripheral Control Register

7 6 5 4 3 2 I 0

IJ_L

Bit Number

Auxiliary Control register

0 Disable input latch on Port A

1 Enable input latch on Port A

0 Disable input latch on Port B

1 Enable input latch on Port B

000 Disable Shift register

001 Shift in at Counter 2 rate

010 Shift in at *2 clock rate

011 Shift in at external clock rate

100 Free-running output at Counter 2 rate

101 Shift out at Counter 2 rate

110 Shift out at *2 clock rate

111 Shift out at external clock rate

0 Decrement Counter 2 on <t>2 clock, in one-shot mode

1 Decrement Counter 2 on external pulses input via PB6

0 Disable output via PB7

1 Enable output via PB7

-0 One-shot mode

1 Free-running mode

Counter 1 controls

Figure 1-8: Bit Assignments for the 6522 VIA's Auxiliary Control Register

CHAPTER 1: GENERAL PROGRAMMING METHODS 57

In order to initialize a VIA properly, we must know what its start-up state is.

Reset clears all the VIA registers, thus making all the data and control lines

inputs, disabling all latches, interrupts, and other functions, and clearing all

status bits.

The data direction registers are easy to initialize. Typical routines are

• Make port A input.

LDA #0

STA DDRA

• Make port B output.

LDA #%11111111

STA DDRB

• Make bits 0 through 3 of port A input, bits 4 through 7 output.

LDA #$11110000

STA DDRA

• Make bit 0 of port B input, bits 1 through 7 output.

LDA #$11111110

STA DDRB

Bit 0 could, for example, be a serial input line.

The Peripheral Control Register is more difficult to initialize. We will briefly

discuss the purposes of the control lines before showing some examples.

Control lines CA1, CA2, CB1, and CB2 are basically intended for use as

handshaking signals. In a handshake, the sender indicates the availability of data

by means of a transition on a serial line; the transition tells the receiver that new

data is available to it on the parallel lines. Common names for this serial line are

VALID DATA, DATA READY, and DATA AVAILABLE. In response to this

signal, the receiver must accept the data and indicate its acceptance by means of a

transition on another serial line. This transition tells the sender that the latest

parallel data has been accepted and that another transmission sequence can begin.

Common names for the other serial line are DATA ACCEPTED, PERIPHERAL

READY, BUFFER EMPTY, and DATA ACKNOWLEDGE.

Typical examples of complete sequences are

• Input from a keyboard. When the operator presses a key, the keyboard pro

duces a parallel code corresponding to the key and a transition on the DATA

READY or VALID DATA line. The computer must determine that the transi

tion has occurred, read the data, and produce a transition on the DATA

ACCEPTED line to indicate that the data has been read.

• Output to a printer. The printer indicates to the computer that it is ready by

means of a transition on a BUFFER EMPTY or PERIPHERAL READY line.

Note that PERIPHERAL READY is simply the inverse of DATA ACCEPTED,

since the peripheral obviously cannot be ready as long as it has not accepted the

58 6502 ASSEMBLY LANGUAGE SUBROUTINES

latest data. The computer must determine that the printer is ready, send the data,

and produce a transition on the DATA READY line to indicate that new data is

available. Of course, input and output are in some sense mirror images. In the

input case, the peripheral is the sender and the computer is the receiver; in the

output case, the computer is the sender and the peripheral is the receiver.

Thus, a chip intended for handshaking functions must provide the following

functions:

• It must recognize the appropriate transitions on the DATA READY or PE

RIPHERAL READY lines.

• It must provide an indication that the transition has occurred in a form that is

easy for the computer to handle.

• It must allow for the production of the response — that is, for the computer

to indicate DATA ACCEPTED to an input peripheral or DATA READY to an

output peripheral.

There are some obvious variations that the handshaking chip should allow for,

including the following:

• The active transition may be either a high-to-low edge (a trailing edge) or a

low-to-high edge (a leading edge). If the chip does not allow either one, we will

need extra inverter gates in some situations, since both polarities are common.

• The response may require either a high-to-low edge or a low-to-high edge. In

fact, it may require either a brief pulse or a long signal that lasts until the periph

eral begins its next operation.

Experience has shown that the handshaking chip can provide still more conve

nience, at virtually no cost, in the following ways:

• It can latch the transitions on the DATA READY or PERIPHERAL

READY lines, so that they are held until the computer is ready for them. The

computer need not monitor the status lines continuously to avoid missing a tran

sition.

• It can clear the status latches automatically when an input port is read or an

output port is written, thus preparing them for the next operation.

• It can produce the response automatically when an input port is read or an

output port is written, thus eliminating the need for additional instructions. This

option is known as an automatic mode. The problem with any automatic mode, no

matter how flexible the designers make it, is that it will never satisfy all applica

tions. Thus, most chips also provide a mode in which the program retains control

over the response; this mode is called a manual mode.

• In cases where the peripherals are simple switches or lights and do not need

CHAPTER 1: GENERAL PROGRAMMING METHODS 59

any status or control signals, the chip should allow independent operation of the

status lines. The designer can then use these lines (which would otherwise be

wasted) for such purposes as threshold detection, zero-crossing detection, or

clock inputs. In such cases, the designer wants the status and control signals to be

entirely independent of the operations on the parallel port. We should not have

any automatic clearing of latches or sending of responses. This is known as an

independent mode.

The 6522 peripheral control register allows the programmer to provide any of

these functions. Bits 0 through 3 govern the operation of port B and its control

signals; bits 4 through 7 govern the operation of port A and its control signals.

The status indicators are in the Interrupt flag register (see Figure 1-9). We may

characterize the bits in the control register as follows:

• Bit 0 (for port A) and bit 4 (for port B) determine whether the active transi

tion on control line 1 is high-to-low (0) or low-to-high (1). If control line 2 is an

extra input, bit 2 (for port A) and bit 6 (for port B) has a similar function.

• If control line 2 is an extra input, bit 1 (for port A) and bit 5 (for port B)

determine whether it operates independently of the parallel data port. This bit is 0

for normal handshaking and 1 for independent operation.

• Bit 3 (for port A) and bit 7 (for port B) determine whether control line 2 is an

extra input line (0) or an output response (1).

• If control line 2 is an output response, bit 2 (for port A) and bit 6 (for port B)

determine whether it operates in an automatic mode (0) or a manual mode (1).

• If control line 2 is being operated in the automatic mode, bit 1 (for port A)

and bit 5 (for port B) determine whether the response lasts for one clock cycle (1)

or until the peripheral produces another active transition on control line 1 (0).

• If control line 2 is being operated in the manual mode, bit 1 (for port A) and

bit 5 (for port B) determine its level.

Some typical examples are

• The peripheral indicates DATA READY or PERIPHERAL READY with a

high-to-low transition on control line 1. No response is necessary.

In the 4 bits controlling a particular port, the only requirement is that bit 0

must be 0 to allow recognition of a high-to-low transition on control line 1. The

other bits are arbitrary, although our preference is to clear unused bits as a stan

dard convention. Thus, the bits would be 0000.

• The peripheral indicates DATA READY or PERIPHERAL READY with a

low-to-high transition on control line 1. No response is necessary. Bit 0 must be

set to 1; the other bits are arbitrary. Bit 0 determines which edge the VIA recog-

izes.

60 6502 ASSEMBLY LANGUAGE SUBROUTINES

IRQ Tl T2 CB1 CB2 SR CA1 CA2

-Bit Number

-Interrupt Flag register

Bit

Number

0

1

2

3

4

5

6

7

Set by

Active transition of the signal

on the CA2 pin.

Active transition of the signal

on the CA1 pin.

Completion of eight shifts.

Active transition of the signal

on the CB2 pin.

Active transition of the signal

on the CB1 pin.

Time-out of Timer 2.

Time-out of Timer 1.

Active and enabled interrupt

condition.

Cleared by

Reading or writing the A Port Output

register (ORA) using address 0001.

Reading or writing the A Port Output

register (ORA) using address 0001.

Reading or writing the Shift

register.

Reading or writing the B Port

Output register.

Reading or writing the B Port

Output register.

Reading T2 low-order counter or

writing T2 high-order counter.

Reading Tl low-order counter or

writing Tl high-order latch.

Action which clears interrupt

condition.

Bits 0, 1, 3, and 4 are the I/O handshake signals. Bit 7 (IRQ) is 1 if any of the

interrupts is both active and enabled.

Figure 1-9: The 6522 VIA's Interrupt Flag Register

• The peripheral indicates DATA READY or PERIPHERAL READY with a

high-to-low transition on control line 1. The port must respond by producing a

pulse on control line 2 that lasts one clock cycle after the processor reads the
input or writes the output.

The required 4-bit sequence is

Bit 3 = 1 to make control line 2 an output

Bit 2 = 0 to operate control line 2 in the automatic mode.

The port therefore produces the response without processor intervention.

CHAPTER 1: GENERAL PROGRAMMING METHODS 61

Bit 1 = 1 to make the response last one clock cycle.

Bit 0 = 0 to recognize a high-to-low transition on control line 1.

• The peripheral indicates DATA READY or PERIPHERAL READY with a

low-to-high transition on control line 1. The port must respond by bringing con

trol line 2 low until the peripheral becomes ready again.

The required 4-bit sequence is

Bit 3 = 1 to make control line 2 an output.

Bit 2 = 0 to operate control line 2 in the automatic mode.

Bit 1 = 0 to make the response last until the peripheral becomes ready again.

Bit 0=1 to recognize a low-to-high transition on control line 1 as the ready signal.

. The peripheral indicates DATA READY or PERIPHERAL READY with a

low-to-high transition on control line 1. The processor must respond under pro

gram control.

The required 4-bit sequence is

Bit 3 = 1 to make control line 2 an output.

Bit 2=1 to operate control line 2 in the manual mode.

Bit 1 is the initial state for control line.

Bit 0 = 1 to recognize a low-to-high transition on control line 1 as the ready signal.

The following sequences can be used to produce the response

Make CA2 a logic 1:

LDA VIAPCR ;READ THE PERIPHERAL REGISTER

ORA #%00000010 ;SET CONTROL LINE 2 TO 1

STA VIAPCR

Make CA2 a logic 0:

LDA VIAPCR ;READ THE PERIPHERAL REGISTER

AND #%11111101 ;SET CONTROL LINE 2 TO 0

STA VIAPCR

Make CB2 a logic 1:

LDA VIAPCR ;READ THE PERIPHERAL REGISTER

ORA #%00100000 ;SET CONTROL LINE 2 TO 1

STA VIAPCR

Make CB2 a logic 0:

LDA VIAPCR ;READ THE PERIPHERAL REGISTER

AND #%11011111 ;SET CONTROL LINE 2 TO 0

STA VIAPCR

These sequences do not depend on the contents of the peripheral control register,

since they do not change any of the bits except the one that controls the response.

Tables 1-13 and 1-14 summarize the operating modes for control lines CA2

and CB2. Note that the automatic output modes differ slightly in that port A pro

duces a response after either read or write operations, whereas port B produces a

response only after write operations.

62 6502 ASSEMBLY LANGUAGE SUBROUTINES

Table 1-13: Operating Modes for Control Line CA2 of a 6522 VIA

PCR3

0

0

0

0

1

1

1

1

PCR2

0

0

1

1

0

0

1

1

PCR1

0

1

0

1

0

1

0

1

Mode

Input Mode — Set CA2 Interrupt flag (IFRO) on a negative transition

of the input signal. Clear IFRO on a read or write of the Peripheral A

Output register.

Independent Interrupt Input Mode — Set IFRO on a negative transition

of the CA2 input signal. Reading or writing ORA does not clear the

CA2 Interrupt flag.

Input Mode — Set CA2 Interrupt flag on a positive transition of the

CA2 input signal. Clear IFRO with a read or write of the Peripheral A

Output register.

Independent Interrupt Input Mode — Set IFRO on a positive transition

of the CA2 input signal. Reading or writing ORA does not clear the

CA2 Interrupt flag.

Handshake Output Mode — Set CA2 output low on a read or write

of the Peripheral A Output register. Reset CA2 high with an active

transition on CA1.

Pulse Output Mode — CA2 goes low for one cycle following a read or

write of the Peripheral A Output register.

Manual Output Mode — The CA2 output is held low in this mode.

Manual Output Mode — The CA2 output is held high in this mode.

The auxiliary control register is less important than the peripheral control

register. Its bits have the following functions (see Figure 1-8):

• Bits 0 and 1, if set, cause the VIA to latch the input data on port A (bit 0) or

port B (bit 1) when an active transition occurs on control line 1. This option

allows for the case in which the input peripheral provides valid data only briefly,

and the data must be saved until the processor has time to handle it.

• Bits 2, 3, and 4 control the operations of the seldom-used shift register. This

register provides a simple serial I/O capability, but most designers prefer either to

use the serial I/O chips such as the 6551 or 6850 or to provide the entire serial

interface in software.

• Bit 5 determines whether timer 2 generates a single time interval (the so-

called one-shot mode) or counts pulses on line PB6 (pulse-counting mode).

• Bit 6 determines whether timer 1 generates one time interval (0) or operates

continuously (1), reloading its counters from the latches after each interval

elapses.

CHAPTER 1: GENERAL PROGRAMMING METHODS 63

Table 1-14: Operating Modes for Control Line CB2 of a 6522 VIA

PCR7

0

0

0

0

1

1

1

1

PCR6

0

0

1

1

0

0

1

1

PCR5

0

1

0

1

0

1

0

1

Mode

Interrupt Input Mode — Set CB2 Interrupt flag (IFR3) on a negative

transition of the CB2 input signal. Clear IFR3 on a read or write of the

Peripheral B Output register.

Independent Interrupt Input Mode — Set IFR3 on a negative transition

of the CB2 input signal. Reading or writing ORB does not clear the

Interrupt flag.

Input Mode — Set CB2 Interrupt flag on a positive transition

of the CB2 input signal. Clear the CB2 Interrupt flag on a read or

write of ORB.

Independent Input Mode — Set IFR3 on a positive transition of the

CB2 input signal. Reading or writing ORB does not clear the CB2

Interrupt flag.

Handshake Output Mode — Set CB2 low on a write ORB operation.

Reset CB2 high on an active transition of the

CB1 input signal.

Pulse Output Mode — Set CB2 low for one cycle following a write ORB

operation.

Manual Output Mode — The CB2 output is held low in this mode.

Manual Output Mode — The CB2 output is held high in this mode.

• Bit 7 determines whether timer 1 generates output pulses on PB7 (a logic 1

generates pulses).

The uses of most of these functions are straightforward. They are not as com

mon as the handshaking functions governed by the peripheral control register.

You can also operate a 6522 VIA in an interrupt-driven mode. Interrupts are

enabled or disabled by setting bits in the interrupt enable register (see Figures 1-

10 and 1-11) with bit 7 (the enable/disable flag) set (for enabling) or cleared (for

disabling). Interrupts can be recognized by examining the interrupt flag register

(see Figure 1-9). Table 1-15 summarizes the setting and clearing (resetting) of

interrupt flags on the 6522 VIA.

64 6502 ASSEMBLY LANGUAGE SUBROUTINES

7 6 5 4 3 2 10 -Bit Number

-Interrupt Flag register

-Interrupt Enable register

-Active transition of CA2

-Active transition of CA1

-Shift register eighth shift

-Active transition of CB2

-Active transition of CB1

-Interval Timer 2 timeout

-Interval Timer 1 timeout

-Enable/disable specification (1 = enable, 0 = disable)

-Any active interrupt request

The Interrupt Flag register identifies those interrupts which are active.

A 1 in any bit position indicates an active interrupt, whereas a 0 indicates

an inactive interrupt.

Figure 1-10: The 6522 VIA's Interrupt Flag and Interrupt Enable Registers

1 <3 5 A\ 3 2 1 0 -^

fl | 1 0 | 1 0 0 | 0 | 0 \+
i

Bit Number

Interrupt Enable Register

Bit 4, active transition of CB1

Bit 6, Interval Timer 1 timeout

Enable specified

You can selectively enable or disable individual interrupts via the Interrupt

Enable register. You enable individual interrupts by writing to the Interrupt

Enable register with a 1 in bit 7. Thus you could enable "time out for Timer 1"

and "active transitions of signal CB1" by storing D016 in the Interrupt Enable register:

Figure 1-11: A Typical Enabling Operation on the

6522 VIA's Interrupt Enable Register

CHAPTER 1: GENERAL PROGRAMMING METHODS 65

Table 1-15: A Summary of Conditions for Setting and

Resetting Interrupt Flags in the 6522 VIA

6

5

4

3

2

1

0

Set by

Timeout of Timer 1

Timeout of Timer 2

Active transition of the signal on CB1

Active transition of the

signal on CB2 (input mode)

Completion of eight shifts

Active transition of the signal on CA1

Active transition of the

signal on CA2 (input mode)

Cleared by

Reading Timer 1 Low-Order

Counter or writing Tl High-Order Latch

Reading Timer 2 Low-Order Counter

or writing T2 High-Order Counter

Reading from or writing to I/O Port B

Reading from or writing to

I/O Port B in input mode only

Reading or writing the Shift register

Reading from or writing to

I/O Port A using address 00012

Reading from or writing to I/O Port A

Output register (ORA) using address

00012 in input mode only

WRITING INTERRUPT- DRIVEN CODE

The 6502 microprocessor responds to an interrupt (either a nonmaskable

interrupt, a maskable interrupt that is enabled, or a BRK instruction) as follows:

• By saving the program counter (more significant byte first) and the status

register in the stack in the order shown in Figure 1-12. Note that the status

register ends up on top of the program counter; the sequence PHP, JSR would

produce the opposite order. The program counter value here is the address of the

next instruction; there is no offset of 1 as there is with JSR.

• By disabling the maskable interrupt by setting the I flag in the status register.

• By fetching a destination address from a specified pair of memory addresses

(see Table 1-16) and placing that destination in the program counter.

Thus, the programmer should consider the following guidelines when writing

interrupt-driven code for the 6502:

• The accumulator and index registers must be saved and restored explicitly if

the service routine changes them. Only the status register is saved automatically.

66 6502 ASSEMBLY LANGUAGE SUBROUTINES

Before After

Olss -4

Olss -3

Olss -2

Olss -1

Olss

Olss + 1

Olss + 2

Olss -4

Olss -3

Olss -2

Olss -1

«* Stack Olss

| P0inter Olss + 1

Olss + 2

PP

PCL

PCH

-« Stack

j
runnei

Stack Stack

ss = Original contents of Stack Pointer

pp = Original contents of Status (P) register

PCH = Original contents of 8 higher order bits of Program Counter

PCL = Original contents of 8 lower order bits of Program Counter

Figure 1-12: The 6502 Microprocessor's Response to an Interrupt

The service routine must save the accumulator before it saves the index registers,

since it can only transfer an index register to the stack via the accumulator. Typi

cal saving and restoring sequences are

PHA

TXA

PHA

TYA

PHA

;SAVE ACCUMULATOR IN STACK

;SAVE INDEX REGISTER X

;SAVE INDEX REGISTER Y

PLA

TAY

PLA

TAX

PLA

;RESTORE INDEX REGISTER Y

;RESTORE INDEX REGISTER X

;RESTORE ACCUMULATOR FROM STACK

The order of the index registers does not matter, as long as the saving and restor

ing orders are opposites.

• The interrupt need not be reenabled explicitly, since the RTI (Return from

Interrupt) instruction restores the old status register as part of its execution. This

restores the original state of the Interrupt Disable flag. If you wish to return with

interrupts disabled, you can set the Interrupt Disable flag in the stack with the

sequence

PLA

ORA

;GET STATUS REGISTER

#%00000100 ;DISABLE INTERRUPT IN STACK

;PUT STATUS REGISTER BACK IN STACK

CHAPTER 1: GENERAL PROGRAMMING METHODS 67

Table 1-16: Interrupt Vectors

Source

Interrupt Request (IRQ) and BRK Instruction

Reset (RESET)

Nonmaskable Interrupt (NMI)

for the 6502 Microprocessor

Address Used (Hexadecimal)

FFFE and FFFF

FFFC and FFFD

FFFA and FFFB

The addresses are stored in the usual 6502 fashion with the less significant byte

at the lower address.

Note the convenience here of having the status register at the top, rather than

underneath the return address.

• If you have code that the processor must execute with interrupts disabled,

you can use SEI (Set Interrupt Disable) to disable maskable interrupts and CLI

(Clear Interrupt Disable) to enable them afterward. If the section of code could

be entered with interrupts either disabled or enabled, you must be sure to restore

the original state of the Interrupt Disable flag. That is, you must save and restore

the status register as follows:

PHP ;SAVE OLD INTERRUPT DISABLE

SEI ;DISABLE INTERRUPTS

•

. CODE THAT MUST BE EXECUTED WITH INTERRUPTS DISABLED

PLP ;RESTORE OLD INTERRUPT DISABLE

The alternative (automatically reenabling the interrupts at the end) would cause a

problem if the section were entered with the interrupts already disabled.

• If you want to allow the user to select the actual starting address of the ser

vice routine, place an indirect jump at the vectored address. That is, the routine

starting at the vectored address is simply

JMP (USRINT) ;GO TO USER-SPECIFIED ADDRESS

This procedure increases the interrupt response time by the execution time of an

indirect jump (five clock cycles).

• You must remember to save and restore incidental information that is essen

tial for the proper execution of the interrupted program. Such incidental informa

tion may include memory locations on page 0, priority registers (particularly if

they are write-only), and other status.

• To achieve general reentrancy, you must use the stack for all temporary

storage beyond that provided by the registers. As we noted in the discussion of

68 6502 ASSEMBLY LANGUAGE SUBROUTINES

parameter passing, you can assign space on the stack (NPARAM bytes) with the

sequence

TSX ;MOVE S OVER TO A

TXA

SEC ;ASSIGN NPARAM EMPTY BYTES

SBC #NPARAM ;A GENERAL WAY TO ADJUST SP

TAX

TXS

Later, you can remove the temporary storage area with the sequence

TSX ;MOVE S OVER TO A

TXA

CLC

ADC #NPARAM ;REMOVE NPARAM EMPTY BYTES

TAX

TXS

If NPARAM is only 1 or 2, you can replace these sequences with the appropriate

number of push and pull instructions in which the data is ignored.

• The service routine should initialize the Decimal Mode flag with either CLD

or SED if it uses ADC or SBC instructions. The old value of that flag is saved and

restored automatically as part of the status register, but the service routine should

not assume a particular value on entry.

MAKING PROGRAMS

RUN FASTER

- In general, you can make a program run substantially faster by first determin

ing where it is spending its time. This requires that you determine which loops

(other than delay routines) the processor is executing most often. Reducing the

execution time of a frequently executecUoop will have a major effect because of

the multiplying factor. It is thus critical to determine how often instructions are

being executed and to work on loops in the order of their frequency of execution.

Once you have determined which loops the processor executes most fre

quently, you can reduce their execution time with the following techniques:

• Eliminate redundant operations. These may include a constant that is being

added during each iteration or a special case that is being tested for repeatedly. It

may also include a constant value or a memory address that is being fetched each

time rather than being stored in a register or used indirectly.

• Use page 0 for temporary data storage whenever possible.

• Reorganize the loop to reduce the number of jump instructions. You can

often eliminate branches by changing the initial conditions, reversing the order of

CHAPTER 1: GENERAL PROGRAMMING METHODS 69

operations, or combining operations. In particular, you may find it helpful to start

everything back one step, thus making the first iteration the same as all the

others. Reversing the order of operations can be helpful if numerical comparisons

are involved, since the equality case may not have to be handled separately.

Reorganization may also allow you to combine condition checking inside the loop

with the overall loop control.

• Work backward through arrays rather than forward. This allows you to count

the index register down to 0 and use the setting of the Zero flag as an exit condi

tion. No explicit comparison is then necessary. Note that you will have to subtract

1 from the base addresses, since 1 is the smallest index that is actually used.

• Increment 16-bit counters and indirect addresses rather than decrementing

them. 16-bit numbers are easy to increment, since you can tell if a carry has

occurred by checking the less significant byte for 0 afterward. In the case of a

decrement, you must check for 0 first.

• Use in-line code rather than subroutines. This will save at least a JSR instruc

tion and an RTS instruction.

• Watch the special uses of the index registers to avoid having to move data

between them. The only register that can be used in indirect indexed addressing

is register Y; the only register that can be used in indexed indirect addressing or

in loading and storing the stack pointer is register X.

• Use the instructions ASL, DEC, INC, LSR, ROL, and ROR to operate

directly on data in memory without moving it to a register.

• Use the BIT instruction to test bits 6 or 7 of a memory location without load

ing the accumulator.

• Use the CPX and CPY instructions to perform comparisons without using

the accumulator.

A general way to reduce execution time is to replace long sequences of instruc

tions with tables. A single table lookup can perform the same operation as a

sequence of instructions if there are no special exits or program logic involved.

The cost is extra memory, but that may be justified if the memory is readily

available. If enough memory is available, a lookup table may be a reasonable

approach even if many of its entries are repetitive — even if many inputs produce

the same output. In addition to its speed, table lookup is easy to program, easy to

change, and highly flexible.

70 6502 ASSEMBLY LANGUAGE SUBROUTINES

MAKING PROGRAMS USE

LESS MEMORY8

You can make a program use significantly less memory only by identifying

common sequences of instructions and replacing those sequences with

subroutine calls. The result is a single copy of each sequence. The more instruc

tions you can place in subroutines, the more memory you save. The drawbacks of

this approach are that JSR and RTS themselves require memory and take time to

execute, and that the subroutines are typically not very general and may be

difficult to understand or use. Some sequences of instructions may even be

implemented as subroutines in a monitor or in other systems programs that are

always resident. Then you can replace those sequences with calls to the systems

program as long as the return is handled properly.

Some of the methods that reduce execution time also reduce memory usage.

In particular, using page 0, reorganizing loops, working backward through arrays,

incrementing 16-bit quantities, operating directly on memory, and using special

instructions such as CPX, CPY, and BIT reduce both execution time and

memory usage. Of course, using in-line code rather than loops and subroutines

reduces execution time but increases memory usage.

Lookup tables generally use extra memory but save execution time. Some

ways that you can reduce their memory requirements are by eliminating inter

mediate values and interpolating the results,910 eliminating redundant values

with special tests, and reducing the range of input values. Often you will find that

a few prior tests or restrictions will greatly reduce the size of the required table.

REFERENCES

1. Weller, W.J., Practical Microcomputer Programming: The 6502, Northern

Technology Books, Evanston, 111., 1980.

2. Fischer, W.P., "Microprocessor Assembly Language Draft Standard,"

IEEE Computer, December 1979, pp. 96-109. Further discussions of the standard

appear qp pp. 79-80 of IEEE Computer, April 1980, and on pp. 8-9 of IEEE Com

puter, May 1981. See also Duncan, F.G., "Level-Independent Notation for

Microcomputer Programs," IEEE Micro, May 1981, pp. 47-56.

3. Osborne, A. An Introduction to Microcomputers: Volume 1 — Basic Concepts,

2nd ed., Berkeley: Osborne/McGraw-Hill, 1980.

4. Ibid.

CHAPTER 1: GENERAL PROGRAMMING METHODS 71

5. Shankar, K.S., "Data Structures, Types, and Abstractions," IEEE Com

puter, April 1980, pp. 67-77.

6. Ibid.

7. Osborne, A. and G. Kane, 4 and 8-Bit Microprocessor Handbook, Berkeley:

Osborne/McGraw-Hill, 1981, pp. 9-55 to 9-61 (6850 ACIA), Chapter 10 (6500

processors and associated chips).

8. Schember, K.A. and J.R. Rumsey, "Minimal Storage Sorting and Search

ing Techniques for RAM Applications," Computer, June 1977, pp. 92-100.

9. Seim, T. A., "Numerical Interpolation for Microprocessor-Based Systems,"

Computer Design, February 1978, pp. 111-16.

10. Abramovich, A. and T.R. Crawford, "An Interpolating Algorithm for

Control Applications on Microprocessors," Proceedings of the 1978 Conference

on Industrial Applications of Microprocessors, Philadelphia, Penn., pp. 195-201

(proceedings available from IEEE or IEEE Computer Society).

Two hobby magazines run many articles on 6502 assembly language program

ming; they are Compute (P.O. Box 5406, Greensboro, NC 27403) and Micro

(P.O. Box 6502, Chelmsford, MA 01824).

Chapter 2 Implementing

Additional Instructions

And Addressing Modes

This chapter shows how to implement instructions and addressing modes that
are not included in the 6502's instruction set. Of course, no instruction set can

ever include all possible combinations. Designers must make choices based on

how many operation codes are available, how easily an additional combination

could be implemented, and how often it would be used. A description of addi

tional instructions and addressing modes does not imply that the basic instruction

set is incomplete or poorly designed.

We concentrate our attention on additional instructions and addressing modes

that are

• Obvious parallels to those included in the instruction set

• Described in the draft Microprocessor Assembly Language Standard (IEEE

Task P694)

• Discussed in Volume 1 ofAn Introduction to Microcomputers1

• Implemented on other microprocessors, especially ones that are closely

related or partly compatible.2-3

This chapter should be of particular interest to those who are familiar with the

assembly languages of other computers.

INSTRUCTION SET EXTENSIONS

In describing extensions to the instruction set, we follow the organization sug

gested in the draft standard for IEEE Task P694.4 We divide instructions into the

following groups (listed in the order in which they are discussed): arithmetic,

logical, data transfer, branch, skip, subroutine call, subroutine return, and
miscellaneous. Within each type of instruction, we discuss operand types in the

73

74 6502 ASSEMBLY LANGUAGE SUBROUTINES

following order: byte (8-bit), word (16-bit), decimal, bit, nibble or digit, and

multiple. In describing addressing modes, we use the following order: direct,

indirect, immediate, indexed, register, autopreincrement, autopostincrement,

autopredecrement, autopostdecrement, indirect preindexed (also called prein-

dexed or indexed indirect), and indirect postindexed (also called postindexed or

indirect indexed).

ARITHMETIC INSTRUCTIONS

In this group, we consider addition, addition with carry, subtraction, subtrac

tion in reverse, subtraction with carry (borrow), increment, decrement, multi

plication, division, comparison, two's complement (negate), and extension.

Instructions that do not obviously fall into a particular category are repeated for

convenience.

Addition Instructions

(Without Carry)

1. Add memory location ADDR to accumulator.

CLC ;CLEAR CARRY

ADC ADDR ;(A) = (A) + (ADDR)

The same approach works for all addressing modes.

2. Add VALUE to accumulator.

CLC ;CLEAR CARRY

ADC #VALUE ;(A) = (A) + VALUE

3. Add Carry to accumulator.

ADC #0 ;(A) = (A) + 0 + CARRY

4. Decimal add memory location ADDR to accumulator.

SED ;ENTER DECIMAL MODE

CLC ;CLEAR CARRY

ADC ADDR ;(A) = (A) + (ADDR) IN DECIMAL

CLD ;LEAVE DECIMAL MODE

A more general approach restores the original value of the D flag; that is,

pHP ;SAVE OLD D FLAG
SED ;ENTER DECIMAL MODE
CLC ;CLEAR CARRY

ADC ADDR ;(A) = (A) + (ADDR) IN DECIMAL
PLP ;RESTORE OLD D FLAG

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 75

Note that restoring the status register destroys the carry from the addition.

5. Decimal add VALUE to accumulator.

SED ;ENTER DECIMAL MODE

CLC ;CLEAR CARRY

ADC #VALUE ;(A) = (A) + VALUE IN DECIMAL

CLD ;LEAVE DECIMAL MODE

6. Decimal add Carry to accumulator.

SED ;ENTER DECIMAL MODE

ADC #0 ;(A) = (A) + CARRY IN DECIMAL

CLD ;LEAVE DECIMAL MODE

7. Add index register to accumulator (using memory location ZPAGE).

STX ZPAGE ;SAVE INDEX REGISTER ON PAGE ZERO

CLC ;CLEAR CARRY

ADC ZPAGE ;(A) = (A) + (X)

This approach works for index register Y also.

8. Add the contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+ 1) to memory locations SUM and SUM+1 (MSB in SUM+ 1).

CLC ;CLEAR CARRY

LDA SUM

ADC ADDR ;ADD LSB'S

STA SUM

LDA SUM+1 ;ADD MSB'S WITH CARRY

ADC ADDR+1

STA SUM+1

9. Add 16-bit number VAL16 (VAL16M more significant byte, VAL16L less

significant byte) to memory locations SUM and SUM+ 1 (MSB in SUM+ 1).

CLC

LDA

ADC

STA

LDA

ADC

STA

SUM

#VAL16L

SUM

SUM+1

#VAL16

SUM+1

;CLEAR CARRY

;ADD LSB'S WITHOUT CARRY

;ADD MSB'S WITH CARRY

Addition Instructions

(With Carry)

1. Add Carry to accumulator

ADC #0 ;(A) = (A) + CARRY

76 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. Decimal add VALUE to accumulator with Carry.

SED ;ENTER DECIMAL MODE

ADC #VALUE ;(A) = (A) + VALUE + CARRY IN DECIMAL

CLD ;LEAVE DECIMAL MODE

3. Decimal add memory location ADDR to accumulator with Carry.

SED ;ENTER DECIMAL MODE

ADC ADDR ;(A) = (A) + (ADDR) + CARRY IN DECIMAL

CLD ;LEAVE DECIMAL MODE

4. Add the contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+1) to memory locations SUM and SUM+ 1 (MSB in SUM + 1) with

Carry.

LDA SUM ;ADD LSB'S WITH CARRY

ADC ADDR

STA SUM

LDA SUM+1 ;ADD MSB'S WITH CARRY

ADC ADDR+1

STA SUM+1

5. Add 16-bit number VAL16 (VAL16M more significant byte, VAL16L less

significant byte) to memory locations SUM and SUM+ 1 (MSB in SUM+ 1) with

Carry.

;ADD LSB'S WITH CARRY

;ADD MSB'S WITH CARRY

Subtraction Instructions

(Without Borrow)

1. Subtract memory location ADDR from accumulator.

SEC ;SET INVERTED BORROW

SBC ADDR ;(A) = (A) - (ADDR)

The Carry flag acts as an inverted borrow, so it must be set to 1 if its value is to

have no effect on the subtraction.

2. Subtract VALUE from accumulator.

SEC ;SET INVERTED BORROW

SBC #VALUE ;(A) = (A) - VALUE

3. Subtract inverse of borrow from accumulator.

SBC #0 ; (A) = (A) - (1-CARRY)

LDA

ADC

STA

LDA

ADC

STA

SUM

VAL16L

SUM

SUM+1

ADDR+1

SUM+1

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 77

The result is (A) — 1 if Carry is 0 and (A) if Carry is 1.

4. Decimal subtract memory location ADDR from accumulator.

SED ;ENTER DECIMAL MODE

SEC ;SET INVERTED BORROW

SBC ADDR ;(A) = (A) - (ADDR) IN DECIMAL

CLD ;LEAVE DECIMAL MODE

The Carry flag has the same meaning in the decimal mode as in the binary mode.

5. Decimal subtract VALUE from accumulator.

SED ;ENTER DECIMAL MODE

SEC ;SET INVERTED BORROW

SBC #VALUE ;(A) = (A) - VALUE IN DECIMAL

CLD ;LEAVE DECIMAL MODE

6. Subtract the contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+1) from memory locations DIFF and DIFF+1 (MSB in DIFF+1).

;SUBTRACT LSB'S WITH NO BORROW

;SUBTRACT MSB'S WITH BORROW

7. Subtract 16-bit number VAL16 (VAL16M more significant byte, VAL16L

less significant byte) from memory locations DIFF and DIFF+1 (MSB in

DIFF+1).

;SUBTRACT LSB'S WITH NO BORROW

;SUBTRACT MSB'S WITH BORROW

LDA

SEC

SBC

STA

LDA

SBC

STA

DIFF

ADDR

DIFF

DIFF+1

ADDR+1

DIFF+1

LDA

SEC

SBC

STA

LDA

SBC

STA

DIFF

#VAL16L

DIFF

DIFF+1

#VAL16M

DIFF+1

J. Decimal subtr;

SED

SBC

CLD

#0

;ENTER DECIMAL MODE

;(A) = (A) - (1-CARRY) IN DECIMAL

;LEAVE DECIMAL MODE

78 6502 ASSEMBLY LANGUAGE SUBROUTINES

Subtraction in Reverse

Instructions

1. Subtract accumulator from VALUE and place difference jn accumulator.

;ONE'S COMPLEMENT A

;TWO'S COMPLEMENT A

;FORM -A + VALUE

;SAVE A TEMPORARILY

;FORM VALUE - A

The Carry acts as an inverted borrow in either method; that is, the Carry is set to

1 if no borrow is necessary.

2. Subtract accumulator from the contents of memory location ADDR and

place difference in accumulator.

EOR

CLC

ADC

CLC

ADC

or

STA

LDA

SEC

SBC

#$FF

#1

#VALUE

TEMP

#VALUE

TEMP

EOR

CLC

ADC

CLC

ADC

STA

LDA

SEC

SBC

#$FF

#1

ADDR

TEMP

ADDR

TEMP

;ONE'

;TW0'

; FORM

; SAVE

; FORM

S COMPLEMENT A

S COMPLEMENT A

-A + (ADDR)

A TEMPORARILY

(ADDR) - A

3. Decimal subtract accumulator from VALUE and place difference in

accumulator.

SED ;ENTER DECIMAL MODE

STA TEMP ;FORM VALUE - A

LDA #VALUE

SEC

SBC TEMP

CLD ;LEAVE DECIMAL MODE

4. Decimal subtract accumulator from the contents of memory location

ADDR and place difference in accumulator.

SED ;ENTER DECIMAL MODE

STA TEMP ;FORM (ADDR) - A

LDA ADDR

SEC

SBC TEMP

CLD ;LEAVE DECIMAL MODE

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 79

Subtraction with Borrow

(Carry) Instructions

1. Subtract inverse of borrow from accumulator.

SBC #0 ;(A) = (A) - (1-CARRY)

2. Decimal subtract VALUE from accumulator with borrow.

SED ;ENTER DECIMAL MODE

SBC #VALUE ;(A) = (A) - VALUE - BORROW IN DECIMAL

CLD ;LEAVE DECIMAL MODE

3. Decimal subtract memory location ADDR from accumulator with borrow.

SED ;ENTER DECIMAL MODE

SBC ADDR ;(A) = (A) - VALUE - BORROW IN DECIMAL

CLD ;LEAVE DECIMAL MODE

4. Subtract the contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+1) from memory locations DIFF and DIFF+1 (MSB in DIFF+1) with

borrow.

;SUBTRACT LSB'S WITH BORROW

;SUBTRACT MSB'S WITH BORROW

5. Subtract 16-bit number VAL16 (VAL16M more significant byte, VAL16L

less Significant byte) from memory locations DIFF and DIFF+1 (MSB in

DIFF+1) with borrow.

LDA

SBC

STA

LDA

SBC

STA

DIFF

ADDR

DIFF

DIFF+1

ADDR+1

DIFF+1

DIFF ;SUBTRACT LSB'S WITH BORROW

SBC VAL16L

STA DIFF

LDA DIFF+1 ;SUBTRACT MSB'S WITH BORROW

SBC VAL16M

STA DIFF+1

Increment Instructions

1. Increment accumulator, setting the Carry flag if the result is zero.

CLC ;CLEAR CARRY

ADC #1 ;INCREMENT BY ADDING 1

or

SEC ;SET CARRY

ADC #0 ;INCREMENT BY ADDING 1

80 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. Increment accumulator without affecting the Carry flag.

TAX ;M0VE A TO X

INX INCREMENT X

TXA

INX does not affect the Carry flag; it does, however, affect the Zero flag.

3. Increment stack pointer.

TSX ;MOVE S TO X

INX ;THEN INCREMENT X AND RETURN VALUE

TXS

or

TAX ;SAVE A

PLA ;INCREMENT STACK POINTER

TXA ;RESTORE A

Remember that PLA affects the Zero and Negative flags.

4. Decimal increment accumulator (add 1 to A in decimal).

SED ;ENTER DECIMAL MODE

CLC

ADC #1 ;(A) = (A) + 1 DECIMAL

CLD ;LEAVE DECIMAL MODE

Remember that INC and DEC produce binary results even when the D flag is set.

5. Increment contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+1).

;INCREMENT LSB

;CARRY TO MSB IF LSB GOES TO ZERO

?INCREMENT LSB

;WITH CARRY TO MSB

The first alternative is clearly much shorter.

6. Decimal increment contents of memory locations ADDR and ADDR+1

(MSB in ADDR+1).

DONE

or

INC

BNE

INC

NOP

LDA

CLC

ADC

STA

LDA

ADC

STA

ADDR

DONE

ADDR+1

ADDR

#1
ADDR

ADDR+1

#0

ADDR+1

SED

LDA

CLC

ADC

ADDR

#1

;ENTER

;ADD 1

DECIMAL

TO LSB

MODE

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 81

STA ADDR

BCC DONE

LDA ADDR+1 ;CARRY TO MSB IF NECESSARY

ADC #0

STA ADDR+1

DONE CLD ;LEAVE DECIMAL MODE

INC produces a binary result even when the Decimal Mode flag is set. Note that

we could eliminate the BCC instruction from the program without affecting the

result, but the change would increase the average execution time.

Decrement Instructions

1. Decrement accumulator, clearing the Carry flag if the result is FF16.

SEC ;SET INVERTED BORROW

SBC #1 ;DECREMENT BY SUBTRACTING 1

or

or

CLC ;CLEAR INVERTED BORROW

SBC #0 ;DECREMENT BY SUBTRACTING 1

CLC ;CLEAR CARRY

ADC #$FF ;DECREMENT BY ADDING -1

2. Decrement accumulator without affecting the Carry flag.

TAX ;MOVE A TO X

DEX ;DECREMENT X

TXA

DEX does not affect the Carry flag; it does, however, affect the Zero flag.

3. Decrement stack pointer.

TSX ;MOVE S TO X

DEX ;THEN DECREMENT X AND RETURN VALUE

TXS

You can also decrement the stack pointer with PHA or PHP, neither of which

affects any flags.

4. Decimal decrement accumulator (subtract 1 from A in decimal).

SED ;ENTER DECIMAL MODE

SEC

SBC #1 ;(A) = (A) - 1 DECIMAL

CLD ;LEAVE DECIMAL MODE

5. Decrement contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+1).

82 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA ADDR ;IS LSB ZERO?

BNE DECLSB

DEC ADDR+1 ;YES, BORROW FROM MSB

DECLSB DEC ADDR ;BEFORE DECREMENTING LSB

Decrementing a 16-bit number is significantly more difficult than incrementing

one. In fact, incrementing is not only faster but also leaves the accumulator

unchanged; of course, one could replace LDA with LDX, LDY, or the sequence

INC, DEC. An alternative that uses no registers is

INC ADDR ;IS LSB ZERO?

DEC ADDR

BNE DECLSB

DEC ADDR+1 ;YES, BORROW FROM MSB

DECLSB DEC ADDR ;BEFORE DECREMENTING LSB

6. Decimal decrement contents of memory locations ADDR and ADDR+1

(MSB in ADDR+1).

;ENTER DECIMAL MODE

;SUBTRACT 1 FROM LSB

;BORROW FROM MSB IF NECESSARY

DONE CLD ;LEAVE DECIMAL MODE

DEC produces a binary result even when the Decimal Mode flag is set. Note that

we could eliminate the BCS instruction from the program without affecting the

result, but the change would increase the average execution time.

Multiplication Instructions

1. Multiply accumulator by 2.

ASL A ;MULTIPLY BY SHIFTING LEFT

The following version places the Carry (if any) in Y.

SED

LDA

SEC

SBC

STA

BCS

LDA

SBC

STA

CLD

ADDR

#1
ADDR

DONE

ADDR+1

#0

ADDR+1

LDY

ASL

BCC

INY

NOP

#0

A

DONE

;ASSUME MSB

;MULTIPLY BY

;AND MOVING

= 0

SHIFTING LEFT

CARRY TO Y

DONE

2. Multiply accumulator by 3 (using ADDR for temporary storage).

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 83

STA ADDR ;SAVE A

ASL A ;2 X A

ADC ADDR ;3 X A

3. Multiply accumulator by 4.

ASL A ;2 X A

ASL A ;4 X A

We can easily extend cases 1, 2, and 3 to multiplication by other small integers.

4. Multiply an index register by 2.

TAX ;MOVE TO A

ASL A ;MULTIPLY BY SHIFTING LEFT

TXA ;RETURN RESULT

5. Multiply the contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+1) by 2.

ASL ADDR ;MULTIPLY BY SHIFTING LEFT

ROL ADDR+1 ;AND MOVING CARRY OVER TO MSB

6. Multiply the contents of memory locations ADDR and ADDR+ 1 (MSB in

ADDR+1) by 4.

ASL ADDR ;MULTIPLY BY SHIFTING LEFT

ROL ADDR+1 ;AND MOVING CARRY OVER TO MSB

ASL ADDR ;THEN MULTIPLY AGAIN

ROL ADDR+1

Eventually, of course, moving one byte to the accumulator, shifting the

accumulator, and storing the result back in memory becomes faster than

leaving both bytes in memory.

Division Instructions

1. Divide accumulator by 2 unsigned.

LSR A ;DIVIDE BY SHIFTING RIGHT

2. Divide accumulator by 4 unsigned.

LSR A ;DIVIDE BY SHIFTING RIGHT

LSR A

3. Divide accumulator by 2 signed.

TAX ;SAVE ACCUMULATOR

ASL A ;MOVE SIGN TO CARRY

TXA ;RESTORE ACCUMULATOR

ROR A ;SHIFT RIGHT BUT PRESERVE SIGN

84 6502 ASSEMBLY LANGUAGE SUBROUTINES

The second instruction moves the original sign bit (bit 7) to the Carry flag, so the

final rotate can preserve it. This is known as an arithmetic shift, since it preserves

the sign of the number while reducing its magnitude. The fact that the sign bit is

copied to the right is known as sign extension.

4. Divide the contents of memory locations ADDR and ADDR+ 1 (MSB in

ADDR+1) by 2 unsigned.

LSR ADDR+1 ;DIVIDE BY SHIFTING RIGHT

ROR ADDR ;AND MOVING CARRY OVER TO LSB

5. Divide the contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+1) by 2 signed.

LDA ADDR+1 ;MOVE SIGN TO CARRY

ASL A

ROR ADDR+1 ;DIVIDE BY SHIFTING RIGHT WITH SIGN

ROR ADDR ;AND MOVING CARRY OVER TO LSB

Comparison Instructions

1. Compare VALUE with accumulator bit by bit, setting each bit position that

is different.

EOR #VALUE

Remember, the EXCLUSIVE OR of two bits is 1, if and only if the two bits are

different.

2. Compare memory locations ADR1 and ADR1 +1 (MSB in ADR1 +1) with

memory locations ADR2 and ADR2+1 (MSB in ADR2+1). Set Carry if the

first operand is greater than or equal to the second one (that is, if ADR1 and

ADR1 +1 contain a 16-bit unsigned number greater than or equal to the contents

of ADR2 and ADR2+ 1). Clear Carry otherwise. Set the Zero flag if the two

operands are equal and clear it otherwise,

LDA ADRl+1 ;COMPARE MSB'S

CMP ADR2+1

BCC DONE ;CLEAR CARRY, ZERO IF 2ND IS LARGER

BNE DONE ;SET CARRY, CLEAR ZERO IF 1ST LARGER

LDA ADR1 ;IF MSB'S EQUAL, COMPARE LSB'S

CMP ADR2 ;CLEAR CARRY IF 2ND IS LARGER

DONE NOP

3. Compare memory locations ADR1 and ADR1 +1 (MSB in ADR1 +1) with

the 16-bit number VAL16 (VAL16M more significant byte, VAL16L less signifi

cant byte). Set Carry if the contents of ADR1 and ADRl + 1 are greater than or

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 85

equal to VAL16 in the unsigned sense. Clear Carry otherwise. Set the Zero flag it*

the contents of ADRl and ADRl +1 are equal to VAL16, and clear it otherwise.

LDA ADR1+1 ;COMPARE MSB'S

CMP #VAL16M

BCC DONE ;CLEAR CARRY, ZERO IF VAL16 LARGER

BNE DONE ;SET CARRY, CLEAR ZERO IF DATA LARGER

LDA ADRl ;IF MSBfS EQUAL, COMPARE LSB'S

CMP #VAL16L ;CLEAR CARRY IF VAL16 LARGER

DONE NOP

4. Compare memory locations ADRl and ADRl +1 (MSB in ADRl +1) with

memory locations ADR2 and ADR2+1 (MSB in ADR2+1). Set Carry if the

first operand is greater than or equal to the second one in the unsigned sense.

LDA ADRl ;COMPARE LSB*S

CMP ADR2

LDA ADR1+1 ;SUBTRACT MSB'S WITH BORROW

SBC ADR2+1

We use SBC on the more significant bytes in order to include the borrow from the

less significant bytes. This sequence destroys the value in A and sets the Zero flag

only from the final subtraction.

5. Compare memory locations ADRl and ADRl +1 (MSB in ADRl +1) with

the 16-bit number VAL16 (VAL16M more significant byte, VAL16L less signifi

cant byte). Set Carry if the contents of ADRl and ADRl +1 are greater than or

equal to VAL16 in the unsigned sense.

LDA ADRl ;COMPARE LSB'S

CMP VAL16L

LDA ADRl+1 ;SUBTRACT MSB'S WITH BORROW

SBC VAL16M

If you want to set the Carry if the contents of ADRl and ADRl +1 are greater

than VAL16, perform the comparison with VAL16+1.

6. Compare stack pointer with the contents of memory location ADDR. Set

Carry if the stack pointer is greater than or equal to the contents of the memory

location in the unsigned sense. Clear Carry otherwise. Set the Zero flag if the two

values are equal and clear it otherwise.

TSX ;MOVE STACK POINTER TO X

CPX ADDR ;AND THEN COMPARE

7. Compare stack pointer with the 8-bit number VALUE. Set Carry if the

stack pointer is greater than or equal to VALUE in the unsigned sense. Clear

Carry otherwise. Set the Zero flag if the two values are equal and clear it other

wise.

TSX ;MOVE STACK POINTER TO X

CPX #VALUE ;AND THEN COMPARE

86 6502 ASSEMBLY LANGUAGE SUBROUTINES

8. Block comparison. Compare accumulator with memory bytes starting at

address BASE and continuing until either a match is found (indicated by

Carry=1) or until a byte counter in memory location COUNT reaches zero (indi

cated by Carry=0).

LDY COUNT ;GET COUNT

BEQ NOTFND ;EXIT IF COUNT IS ZERO

LDX #0 ;START INDEX AT ZERO

CMPBYT CMP BASE,X ;CHECK CURRENT BYTE

BEQ DONE ;DONE IF MATCH FOUND (CARRY = 1)

INX ;OTHERWISE, PROCEED TO NEXT BYTE

DEY

BNE CMPBYT ;IF ANY ARE LEFT

NOTFND CLC ;OTHERWISE, EXIT CLEARING CARRY

DONE NOP

Remember, comparing two equal numbers sets the Carry flag.

Two's Complement

(Negate) Instructions

1. Negate accumulator.

EOR #$FF ;ONEfS COMPLEMENT

CLC

ADC #1 ;TWO'S COMPLEMENT

The two's complement is the one's complement plus 1.

STA TEMP ;ALTERNATIVE IS 0 - (A)

LDA #0

SEC

SBC TEMP

2. Negate memory location ADDR.

LDA #0 ;FORM 0 - (ADDR)

SEC

SBC ADDR

STA ADDR

3. Negate memory locations ADDR and ADDR+1 (MSB in ADDR+1).

LDA ADDR ;ONE'S COMPLEMENT LSB

EOR #$FF

CLC ;ADD 1 FOR TWO'S COMPLEMENT

ADC #1

STA ADDR

LDA ADDR+1 ;ONEfS COMPLEMENT MSB

EOR #$FF

ADC #0 ;ADD CARRY FOR TWO'S COMPLEMENT

STA ADDR+1

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 87

or

;FORM 0 - (ADDR+1) (ADDR)

;SUBTRACT LSB'S WITHOUT BORROW

;SUBTRACT MSB'S WITH BORROW

LDA

SEC

SBC

STA

LDA

SBC

STA

i. Nine

STA

LDA

SEC

SBC

#0

ADDR

ADDR

#0

ADDR+1

ADDR+1

's compl

TEMP

#$99

TEMP

4. Nine's complement accumulator (that is, replace A with 99-A).

7FORM 99-A

There is no need to bother with the decimal mode, since 99—A is always a valid

BCD number if A originally contained a valid BCD number.

5. Ten's complement accumulator (that is, replace A with 100-A).

SED ;ENTER DECIMAL MODE

STA TEMP ;FORM 100-A

LDA #0

SEC

SBC TEMP

CLD ;LEAVE DECIMAL MODE

Extend Instructions

1. Extend accumulator to a 16-bit unsigned number in memory locations

ADDR and ADDR+1 (MSB in ADDR+ 1).

STA ADDR ;8-BIT MOVE

LDA #0 ;EXTEND TO 16 BITS WITH 0»S

STA ADDR+1

2. Extend accumulator to a 16-bit signed number in memory locations ADDR

and ADDR+ 1 (MSB in ADDR+ 1).

STA ADDR ;8-BIT MOVE

ASL A ;MOVE SIGN BIT TO CARRY

LDA #$FF ;(A) = -1 + SIGN BIT

ADC #0

EOR #$FF ;(A) = -SIGN BIT

STA ADDR+1 ;SET MSB TO -SIGN BIT

The result of the calculation is -(-1+SIGN BIT)-1 =-SIGN BIT. That is,

(ADDR+1) = 00 if A was positive and FF16 if A was negative. An alternative is

88 6502 ASSEMBLY LANGUAGE SUBROUTINES

STA ADDR ;8-BIT MOVE

LDX #$FF ;(X) = -1

ASL A

BCS STRSGN

INX ; (X) = -1+(1 - SIGN BIT) = -SIGN BIT

STRSGN STX ADDR+1 ;SET MSB TO -SIGN BIT

3. Extend bit 0 of accumulator across entire accumulator; that is, (A) = 00 if

bit 0 = 0 and FF16 if bit 0=1.

LSR A ;CARRY = BIT 0

LDA #$FF ;(A) = -1 + BIT 0

ADC #0

EOR #$FF ;(A) = -BIT 0

As in case 2, the result we want is — 1 if the specified bit is 1 and 0 if the specified

bit is 0. That is, we want the negative of the original bit value. The sequence LDA

#$FF, ADC#0 obviously produces the result -l+Carry. The one's comple

ment then gives us the negative of what we had minus 1 (or 1—Carry—1 =

-Carry).

4. Sign function. Replace the value in the accumulator by 00 if it is positive and

by FF16 if it is negative.

ASL A ;MOVE SIGN BIT TO CARRY

LDA #$FF ;(A) = -1 + SIGN BIT

ADC #0

EOR #$FF ;(A) = -SIGN BIT

5. Sign function of a memory location. Set accumulator to 00 if memory loca

tion ADDR is positive and to FF16 if it is negative.

LDX #$FF ;ASSUME NEGATIVE

LDA ADDR ;IS (ADDR) POSITIVE?

BMI DONE

INX ;YES, SET SIGN TO ZERO

DONE TXA

The approach shown in case 4 can also be used.

LOGICAL INSTRUCTIONS

In this group, we consider logical AND, logical OR, logical EXCLUSIVE OR,

logical NOT (complement), shift, rotate, and test instructions.

Logical AND Instructions

1. Clear bit of accumulator.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 89

AND #MASK ;CLEAR BIT BY MASKING

MASK has 0 bits in the positions to be cleared and 1 bits in the positions that are

to be left unchanged. For example,

AND #%11011011 ;CLEAR BITS 2 AND 5

Remember, logically ANDing a bit with 1 leaves it unchanged.

2. Bit test-set the flags according to the value of a bit of memory location

ADDR.

Bits 0 through 5

LDA #MASK

BIT ADDR ;TEST BIT OF ADDR

MASK should have a 1 in the position to be tested and Os everywhere else. The

Zero flag will be set to 1 if the bit tested is 0 and to 0 if the bit tested is 1.

Bits 6 or 7

BIT ADDR ;TEST BITS 6 AND 7 OF ADDR

This single instruction sets the Negative flag to bit 7 of ADDR and the Overflow

flag to bit 6 of ADDR, regardless of the value in the accumulator. Note that the

flags are not inverted as the Zero flag is in normal masking.

3. Logical AND immediate with condition codes (flags). Logically AND a

byte of immediate data with the contents of the status register, clearing those

flags that are logically ANDed with Os. This instruction is implemented on the

6809 microprocessor.

PHP ;MOVE STATUS TO A

PLA

AND #MASK ;CLEAR FLAGS

PHA ;RETURN RESULT TO STATUS

PLP

Logical OR Instructions

1. Set bit of accumulator.

ORA #MASK ;SET BIT BY MASKING

MASK has 1 bits in the positions to be set and 0 bits in the positions that are to be

left unchanged. For example,

ORA #%00010010 ;SET BITS 1 AND 4

90 6502 ASSEMBLY LANGUAGE SUBROUTINES

Remember, logically ORing a bit with 0 leaves it unchanged.

2. Test memory locations ADDR and ADDR+1 for 0. Set the Zero flag if

both bytes are 0.

LDA ADDR ;TEST 16-BIT NUMBER FOR ZERO

ORA ADDR+1

The Zero flag is set if and only if both bytes of the 16-bit number are 0. The other

flags are also changed.

3. Logical OR immediate with condition codes (flags). Logically OR a byte of

immediate data (MASK) with the contents of the status register, setting those

flags that are logically ORed with Is. This instruction is implemented on the 6809

microprocessor.

PHP ;MOVE STATUS TO A

PLA

ORA #MASK ;SET FLAGS

PHA ;RETURN RESULT TO STATUS

PLP

Logical EXCLUSIVE OR

Instructions

1. Complement bit of accumulator.

EOR #MASK / COMPLEMENT BIT BY MASKING

MASK has 1 bits in the positions to be complemented and 0 bits in the positions

that are to be left unchanged. For example,

EOR #%11000000 COMPLEMENT BITS 6 AND 7

Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

2. Complement accumulator, setting flags.

EOR #%11111111 COMPLEMENT ACCUMULATOR

Logically EXCLUSIVE ORing the accumulator with all Is inverts all the bits.

3. Compare memory location ADDR with accumulator bit by bit, setting each

bit position that is different.

EOR ADDR ;BIT-BY-BIT COMPARISON

The EXCLUSIVE OR function is the same as a "not equal" function. Note that

the Negative (Sign) flag is 1 if the two operands have different values in bit posi

tion 7.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 91

4. Add memory location ADDR to accumulator logically (i.e., without any

carries between bit positions).

EOR ADDR ;LOGICAL ADDITION

The EXCLUSIVE OR function is also the same as a bit by bit sum with no carries.

Logical sums are often used to form checksums and error-detecting or error-cor

recting codes.

Logical NOT instructions

1. Complement accumulator, setting flags.

EOR #$FF COMPLEMENT ACCUMULATOR

Logically EXCLUSIVE ORing with all Is inverts all the bits.

2. Complement bit of accumulator.

EOR #MASK COMPLEMENT BIT BY MASKING

MASK has 1 bits in the positions to be complemented and 0 bits in the positions

that are to be left unchanged. For example,

EOR #%01010001 COMPLEMENT BITS 0f 4, AND 6

Remember, logically EXCLUSIVE ORing a bit with 0 leaves it unchanged.

3. Complement a memory location.

LDA ADDR

EOR #$FF COMPLEMENT

STA ADDR

4. Complement bit 0 of a memory location.

INC ADDR COMPLEMENT BY INCREMENTING

or

DEC ADDR COMPLEMENT BY DECREMENTING

Either of these instructions may, of course, affect the other bits in the memory

location. The final value of bit 0, however, will surely be 0 if it was originally 1

and 1 if it was originally 0.

5. Complement digit of accumulator.

• Less significant digit

EOR #%00001111 COMPLEMENT LESS SIGNIFICANT 4 BITS

• More significant digit

EOR #%11110000 COMPLEMENT MORE SIGNIFICANT 4 BITS

92 6502 ASSEMBLY LANGUAGE SUBROUTINES

These procedures are useful if the accumulator contains a decimal digit in nega

tive logic (e.g., the input from a typical ten-position rotary or thumbwheel

switch).

6. Complement Carry flag.

ROR A ;MOVE CARRY TO BIT 7 OF A

EOR #$FF ^-COMPLEMENT ALL OF A

ROL A ;MOVE COMPLEMENTED CARRY BACK

Other combinations such as ROL, EOR, ROR, or ROR, EOR, ASL will work just

as well. We could leave the accumulator intact by saving it in the stack originally

and restoring it afterward.

An alternative that does not affect the accumulator is

BCC SETCAR

CLC ;CLEAR CARRY IF IT WAS SET

BCC DONE

SETCAR SEC ;SET CARRY IF IT WAS CLEARED

DONE NOP

Shift Instructions

1. Shift accumulator right arithmetically, preserving the sign bit.

TAX ;SAVE ACCUMULATOR

ASL A ;MOVE SIGN BIT TO CARRY

TXA

ROR A ;SHIFT RIGHT, PRESERVING SIGN

We need a copy of the sign bit for an arithmetic shift. Of course, we could use a

memory location for temporary storage instead of the index register.

2. Shift memory locations ADDR and ADDR+ 1 (MSB in ADDR+ 1) left

logically.

ASL ADDR ;SHIFT LSB LEFT LOGICALLY

ROL ADDR+1 ;AND MOVE CARRY OVER TO MSB

The key point here is that we must shift the more significant byte circularly (i.e.,

rotate it). The first 8-bit shift moves one bit (the least significant bit for a right

shift and the most significant bit for a left shift) to the Carry. The 8-bit rotate then

moves that bit from the Carry into the other half of the word.

3. Shift memory locations ADDR and ADDR+ 1 (MSB in ADDR+ 1) right

logically.

LSR ADDR+1 ;SHIFT MSB RIGHT LOGICALLY

ROR ADDR ;AND MOVE CARRY OVER TO LSB

LDA

ASL

ROR

ROR

ADDR+1

A

ADDR+1

ADDR

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 93

4. Shift memory locations ADDR and ADDR+1 (MSB in ADDR+1) right

arithmetically.

;MOVE SIGN BIT TO CARRY

;SHIFT MSB RIGHT ARITHMETICALLY

;AND MOVE CARRY OVER TO LSB

5. Digit shift memory locations ADDR and ADDR+ 1 (MSB in ADDR+1)

left; that is, shift the 16-bit number left 4 bits logically.

LDX #4 ;NUMBER OF SHIFTS = 4

LDA ADDR ;MOVE LSB TO A

SHFTl ASL A ;SHIFT LSB LEFT LOGICALLY

ROL ADDR+1 ;AND MOVE CARRY OVER TO MSB

DEX

BNE SHFTl ;COUNI' BITS

STA ADDR ;RETURN LSB TO ADDR

A shorter but slower version that does not use the accumulator is

LDX #4 ;NUMBER OF SHIFTS = 4

SHFTl ASL ADDR ;SHIFT LSB LEFT LOGICALLY

ROL ADDR+1 ;AND MOVE CARRY OVER TO MSB

DEX

BNE SHFTl ;COUNT SHIFTS

6. Digit shift memory locations ADDR and ADDR+1 (MSB in ADDR+ 1)

right; that is, shift the 16-bit number right 4 bits logically.

LDX #4 ;NUMBER OF SHIFTS = 4

LDA ADDR ;MOVE LSB TO A

SHFTl LSR ADDR+1 ;SHIFT MSB RIGHT LOGICALLY

ROR A ;AND MOVE CARRY OVER TO LSB

DEX

BNE SHFTl ;COUNT SHIFTS

STA ADDR ;RETURN LSB TO ADDR

A shorter but slower version that does not use the accumulator is

LDX #4 ;NUMBER OF SHIFTS = 4

SHFTl LSR ADDR+1 ;SHIFT MSB RIGHT LOGICALLY

ROR ADDR ;AND MOVE CARRY OVER TO LSB

DEX

BNE SHFTl ;COUNT SHIFTS

7. Normalize memory locations ADDR and ADDR+ 1 (MSB in ADDR+1);

that is, shift the 16-bit number left until the most significant bit is 1. Do not shift

at all if the entire number is 0.

LDA ADDR+1 ;EXIT IF NUMBER ALREADY NORMALIZED

BMI DONE

ORA ADDR ;OR IF ENTIRE NUMBER IS ZERO

BEQ DONE

LDA ADDR ;MOVE LSB TO A

94 6502 ASSEMBLY LANGUAGE SUBROUTINES

ASL

ROL

BPL

STA

NOP

A

ADDR+1

SHIFT

ADDR

SHIFT ASL A ;SHIFT LSB LEFT LOGICALLY 1 BIT

;AND MOVE CARRY OVER TO MSB

;CONTINUE UNTIL MSB IS 1

;RETURN LSB TO ADDR

DONE

Rotate Instructions

A rotate through or with Carry acts as if the data were arranged in a circle with

its least significant bit connected to its most significant bit through the Carry flag.

A rotate without Carry differs in that it acts as if the least significant bit of the data

were connected directly to the most significant bit.

1. Rotate memory locations ADDR and ADDR+1 (MSB in ADDR+1) right

1 bit position through Carry.

ROR ADDR+1 ;ROTATE BIT 8 TO CARRY

ROR ADDR ;AND ON IN TO BIT 7

2. Rotate memory locations ADDR and ADDR+1 (MSB in ADDR+1) right

1 bit position without Carry.

;CAPTURE BIT 0 IN CARRY

;ROTATE MSB WITH BIT 0 ENTERING AT LEFT

;ROTATE LSB

3. Rotate memory locations ADDR and ADDR+ 1 (MSB in ADDR+1) left

1 bit position through Carry.

ROL ADDR ;ROTATE BIT 7 TO CARRY

ROL ADDR+1 ;AND ON IN TO BIT 8

4. Rotate memory locations ADDR and ADDR+1 (MSB in ADDR+1) left

1 bit position without Carry.

;CAPTURE BIT 15 IN CARRY

;ROTATE LSB WITH BIT 15 ENTERING AT RIGHT

Test Instructions

1. Test accumulator. Set flags according to the value in the accumulator with

out changing that value.

TAX ;MOVE AND SET FLAGS

or

TAY ;MOVE AND SET FLAGS

LDA

ROR

ROR

ROR

ADDR

A

ADDR+1

ADDR

LDA

ROL

ROL

ROL

ADDR+1

A

ADDR

ADDR+1

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 95

The following alternative does not affect either index register.

CMP #U ;TEST ACCUMULATOR

The instructions AND #$FF or ORA #0 would also do the job without affecting

the Carry (CMP #0 sets the Carry flag).

2. Test index register. Set flags according to the value in an index register

without changing that value.

CPX #0 ;CHECK VALUE IN INDEX REGISTER

3. Test memory location. Set flags according to the value in memory location

ADDR without changing that value.

INC ADDR ;CHECK VALUE IN MEMORY LOCATION

DEC ADDR

4. Test a pair of memory locations. Set the Zero flag according to the value in

memory locations ADDR and ADDR+1.

LDA ADDR ;TEST 16-BIT NUMBER FOR ZERO

ORA ADDR+1

This sequence sets the Zero flag to 1 if and only if both bytes of the 16-bit number

are 0. This procedure can readily be extended to handle numbers of any length.

5. Test bit of accumulator.

AND #MASK ;TEST BIT BY MASKING

MASK has a 1 bit in the position to be tested and 0 bits elsewhere. The instruc

tion sets the Zero flag to 1 if the tested bit position contains 0 and to 0 if the tested

bit position contains 1. For example,

AND #%00001000 ;TEST BIT 3 BY MASKING

The result is 0 if bit 3 of A is 0 and 00001000 (binary) if bit 3 of A is 1. So the Zero

flag ends up containing the logical complement of bit 3.

6. Compare memory location ADDR with accumulator bit by bit. Set each

each bit position that is different.

EOR ADDR ;BIT-BY-BIT COMPARISON

The EXCLUSIVE OR function is the same as a "not equal" function.

DATA TRANSFER INSTRUCTIONS

In this group, we consider load, store, move, exchange, clear, and set instruc

tions.

96 6502 ASSEMBLY LANGUAGE SUBROUTINES

Load Instructions

1. Load accumulator indirect from address in memory locations PGZRO and

PGZRO+1.

LDY #0 ;AVOID INDEXING

LDA (PGZRO),Y ;LOAD INDIRECT INDEXED

The only instruction that has true indirect addressing is JMP. However, you can

produce ordinary indirect addressing by using the postindexed (indirect indexed)

addressing mode with index register Y set to 0.

An alternative approach is to clear index register X and use preindexing.

LDX #0 ;AVOID INDEXING

LDA (PGZRO,X) ;LOAD INDEXED INDIRECT

The advantage of the first approach is that one can index from the indirect

address with Y. For example, we could load addresses POINTL and POINTH

indirectly from the address in memory locations PGZRO and PGZRO+1 as

follows:

LDY #0 ;AVOID INDEXING

LDA (PGZRO),Y ;GET LSB OF ADDRESS INDIRECTLY

STA POINTL

INY ;GET MSB OF ADDRESS INDIRECTLY

LDA (PGZRO),Y

STA POINTH

2. Load index register X indirect from address in memory locations PGZRO

and PGZRO+1.

LDY #0 ;AVOID INDEXING

LDA (PGZRO),Y ;LOAD ACCUMULATOR INDIRECT INDEXED

TAX

Only the accumulator can be loaded using the indirect modes, but its contents can

be transferred easily to an index register.

3. Load index register Y indirect from address in memory locations PGZRO

and PGZRO+1.

LDX #0 ;AVOID INDEXING

LDA (PGZRO,X) ;LOAD ACCUMULATOR INDEXED INDIRECT

TAY

4. Load stack pointer immediate with the 8-bit number VALUE.

LDX #VALUE ;INITIALIZE STACK POINTER

TXS

Only index register X can be transferred to or from the stack pointer.

5. Load stack pointer direct from memory location ADDR.

LDX ADDR ;INITIALIZE STACK POINTER

TXS

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 97

6. Load status register immediate with the 8-bit number VALUE.

LDA #VALUE ;GET THE VALUE

PHA ;TRANSFER IT THROUGH STACK

PLP

This procedure allows the user of a computer system to initialize the status

register for debugging or testing purposes.

7. Load status register direct from memory location ADDR.

LDA ADDR ;GET THE INITIAL VALUE

PHA ;TRANSFER IT THROUGH STACK

PLP

8. Load index register from stack.

PLA ;TRANSFER STACK TO X THROUGH A

TAX

If you are restoring values from the stack, you must restore X and Y before A,

since there is no direct path from the stack to X or Y.

9. Load memory locations PGZRO and PGZRO+1 (a pointer on page 0) with

ADDR (ADDRH more significant byte, ADDRL less significant byte).

LDA #ADDRL ;INITIALIZE LSB

STA PGZRO

LDA #ADDRH INITIALIZE MSB

STA PGZRO+1

There is no simple way to initialize the indirect addresses that must be saved on
page 0.

Store Instructions

1. Store accumulator indirect at address in memory locations PGZRO and
PGZRO+1.

#0 ;AVOID INDEXING
STA (PGZRO),Y ;STORE INDIRECT INDEXED

or

#0 ;AVOID INDEXING
STA (PGZRO,X) ;STORE INDEXED INDIRECT

2, Store index register X indirect at address in memory locations PGZRO and
PGZRO-hi.

LDY #0 ;AVOID INDEXING

TXA ;STORE X INDIRECT INDEXED THROUGH A
STA (PGZRO),Y

3. Store index register Y indirect at address in memory locations PGZRO and
PGZRO+1.

98 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDX #0 ;AVOID INDEXING

TYA ;STORE Y INDEXED INDIRECT THROUGH A

STA (PGZRO,X)

4. Store stack pointer in memory location ADDR.

TSX ;STORE S THROUGH X

STX ADDR

5. Store status register in memory location ADDR.

PHP ;STORE P THROUGH STACK AND A

PLA

STA ADDR

6. Store index register in stack.

TXA ;STORE X (OR Y) IN STACK VIA A

PHA

If you are saving values in the stack, you must save A before X or Y, since there

is no direct path from X or Y to the stack.

Move Instructions

1. Transfer accumulator to status register.

PHA ;TRANSFER THROUGH STACK

PLP

2. Transfer status register to accumulator.

PHP ;TRANSFER THROUGH STACK

PLA

3. Transfer index register X to index register Y.

TXA ;TRANSFER THROUGH ACCUMULATOR

TAY

or without changing the accumulator

STX TEMP ;TRANSFER THROUGH MEMORY

LDY TEMP

4. Transfer accumulator to stack pointer.

TAX ;TRANSFER THROUGH X REGISTER

TXS

5. Transfer stack pointer to accumulator.

TSX ;TRANSFER THROUGH X REGISTER

TXA

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 99

6. Move the contents of memory locations ADDR and ADDR+1 (MSB in

ADDR+1) to the program counter.

JMP (ADDR) ;JUMP INDIRECT

Note that JMP with indirect addressing loads the program counter with the con

tents of memory locations ADDR and ADDR+1; it acts more like LDA with

direct addressing than like LDA with indirect (indexed) addressing.

7. Block move. Transfer data from addresses starting at the one in memory

locations SORCE and SORCE+1 (on page 0) to addresses starting at the one in

memory locations DEST and DEST+1 (on page 0). Register Y contains the

number of bytes to be transferred.

MOVBYT DEY

LDA

STA

TYA

BNE

(SORCE),Y

(DEST),Y

MOVBYT

;TEST NUMBER OF BYTES

;GET A BYTE FROM SOURCE

;MOVE TO DESTINATION

We assume here that the addresses do not overlap and that the initial value ofY is

1 or greater. Chapter 5 contains a more general block move.

The program becomes simpler if we reduce the base addresses by 1. That is, let

memory locations SORCE and SORCE+1 contain an address one less than the

lowest address in the source area, and let memory locations DEST and DEST+1

contain an address one less than the lowest address in the destination area. Now

we can exit when Y is decremented to 0.

MOVBYT LDA (SORCE)fY ;GET A BYTE FROM SOURCE

STA (DEST),Y ;MOVE BYTE TO DESTINATION

DEY

BNE MOVBYT ;COUNT BYTES

The 0 index value is never used.

8. Move multiple (fill). Place the contents of the accumulator in memory

locations starting at the one in memory locations PGZRO and PGZRO+1.

FILBYT DEY

STA

INY

DEY

BNE

(PGZRO),Y

FILBYT

;FILL

;COUNT

A BYTE

BYTES

Chapter 5 contains a more general version.

Here again we can simplify the program by letting memory locations PGZRO and

PGZRO+1 contain an address one less than the lowest address in the area to be

filled. The revised program is

FILBYT STA (PGZRO),Y ;FILLABYTE

DEY

BNE FILBYT ;COUNT BYTES

1 00 6502 ASSEMBLY LANGUAGE SUBROUTINES

Exchange Instructions

or

1. Exchange index

STX

TYA

TAX

LDY

TXA

PHA

TYA

TAX

PLA

TAY

TEMP

TEMP

registers X

;SAVE

;Y TO

;X TO

; SAVE

;Y TO

;X TO

and Y.

X

X

Y

X

X

Y

Both versions take the same number of bytes (assuming TEMP is on page 0). The

second version is slower but reentrant.

2. Exchange memory locations ADDRl and ADDR2.

LDA

LDX

STX

STA

ADDRl

ADDR2

ADDRl

ADDR2

3. Exchange accumulator and top of stack.

TAY

PLA

TAX

TYA

PHA

TXA

;SAVE A

;GET TOP OF STACK

;SAVE TOP OF STACK

;A TO TOP OF STACK

:TOP OF STACK TO A

Clear Instructions

1. Clear the accumulator.

LDA #0

The 6502 treats 0 like any other number. There are no special clear instructions.

2. Clear an index register.

LDX #0

or

LDY

3.

LDA

STA

#0

Clear memory

#0

ADDR

location ADDR.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 101

Obviously, we could use X or Y as easily as A.

4. Clear memory locations ADDR and ADDR+1.

LDA #0

STA ADDR

STA ADDR+1

5. Clear bit of accumulator.

AND #MASK ;CLEAR BIT BY MASKING

MASK has 0 bits in the positions to be cleared and 1 bits in the positions that are

to be left unchanged. For example,

AND #%10111110 ;CLEAR BITS 0 AND 6 OF A

Logically ANDing a bit with 1 leaves it unchanged.

Set Instructions

1. Set the accumulator to FF16 (all ones in binary).

LDA #$FF

2. Set an index register to FF16.

LDX #$FF

or

LDY #$FF

3. Set the stack pointer to FF16.

LDX #$FF

TXS

The next available location in the stack is at address 01FF16.

4. Set a memory location to FFI6.

LDA #$FF

STA ADDR

5. Set bit of accumulator.

ORA #MASK ;SET BIT BY MASKING

MASK has 1 bits in the positions to be set and 0 bits elsewhere. For example,

ORA #%10000000 ;SET BIT 7 (SIGN BIT)

Logically ORing a bit with 0 leaves it unchanged.

1 02 6502 ASSEMBLY LANGUAGE SUBROUTINES

BRANCH (JUMP) INSTRUCTIONS

Unconditional Branch Instructions

1. Unconditional branch relative to DEST.

CLC ;DELIBERATELY CLEAR CARRY

BCC DEST ;FORCE AN UNCONDITIONAL BRANCH

You can always force an unconditional branch by branching conditionally on a

condition that is known to be true. Some obvious alternatives are

or

or

SEC

BCS

LDA

BEQ

LDA

BNE

DEST

#0

DEST

#1

DEST

2. Jump indirect to address at the top of the stack.

RTS

RTS is just an ordinary indirect jump in which the processor obtains the destina

tion from the top of the stack. Be careful, however, of the fact that the processor

adds 1 to the address before proceeding.

3. Jump indexed, assuming that the base of the address table is BASE and the

index is in memory location INDEX. The addresses are arranged in the usual

6502 manner with the less significant byte first.5

• Using indirect addressing:

;DOUBLE INDEX FOR 2-BYTE ENTRIES

;GET LSB OF DESTINATION

;GET MSB OF DESTINATION

;JUMP INDIRECT TO DESTINATION

;DOUBLE INDEX FOR 2-BYTE ENTRIES

;GET MSB OF DESTINATION

LDA

ASL

TAX

LDA

STA

INX

LDA

STA

JMP

• Using

LDA

ASL

TAX

LDA

PHA

INDEX

A

BASE,X

INDIR

BASE,X

INDIR+1

(INDIR)

the stack:

INDEX

A

BASE+1,X

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 03

LDA BASE,X ;GET LSB OF DESTINATION

PHA

RTS ;JUMP INDIRECT TO DESTINATION OFFSET 1

The second approach is faster but less straightforward. Note the following:

1. You must store the more significant byte first since the stack is growing

toward lower addresses. Thus the bytes end up in their usual order.

2. Since RTS adds 1 to the program counter after loading it from the stack, the

table entries must all be 1 less than the actual destination addresses for this

method to work correctly.

3. Documentation is essential, since this method uses RTS for the rather

surprising purpose of transferring control to a subroutine, rather than from it.

The mnemonic may confuse the reader, but it obviously does not bother the

microprocessor.

Conditional Branch Instructions

1. Branch if zero.

• Branch if accumulator contains zero.

;TEST ACCUMULATORTAX

BEQ

or

CMP

BEQ

DEST

#0

DEST

;TEST ACCUMULATOR

Either AND #$FF or ORA #0 will set the Zero flag if (A) =0 without affecting

the Carry flag (CMP#0 sets Carry).

• Branch if an index register contains 0.

CPX #0 ;TEST INDEX REGISTER

BEQ DEST

The instruction TXA or the sequence INX, DEX can be used to test the contents

of index register X without affecting the Carry flag (CPX#0 sets the Carry).

TXA, of course, changes the accumulator.

• Branch if a memory location contains 0.

INC ADDR ;TEST MEMORY LOCATION

DEC ADDR

BEQ DEST

or

LDA ADDR ;TEST MEMORY LOCATION

BEQ DEST

1 04 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Branch if a pair of memory locations (ADDR and ADDR+1) both contain

0.

LDA ADDR ;TEST 16-BIT NUMBER FOR ZERO

ORA ADDR+1

BEQ DEST

• Branch if a bit of the accumulator is zero.

AND #MASK ;TEST BIT OF ACCUMULATOR

BEQ DEST

MASK has a 1 bit in the position to be tested and 0s elsewhere. Note the inver

sion here; if the bit of the accumulator is a 0, the result is 0 and the Zero flag is set

to 1. Special cases are

Bit position 7

ASL A ;MOVE BIT 7 TO CARRY

BCC DEST

Bit position 6

ASL A ;MOVE BIT 6 TO NEGATIVE FLAG

BPL DEST

Bit position 0

LSR A ;MOVE BIT 0 TO CARRY

BCC DEST

• Branch if a bit of a memory location is 0.

LDA #MASK

BIT ADDR ;TEST BIT OF MEMORY

BEQ DEST

MASK has a 1 bit in the position to be tested and 0s elsewhere. Special cases are

Bit position 7

BIT ADDR ;TEST MEMORY

BPL DEST ;BRANCH ON BIT 7

Bit position 6

BIT ADDR ;TEST MEMORY

BVC DEST ;BRANCH ON BIT 6

The BIT instruction sets the Negative flag from bit 7 of the memory location and

the Overflow flag from bit 6, regardless of the contents of the accumulator.

We can also use the shift instructions to test the bits at the ends, as long as we

can tolerate changes in the memory locations.

Bit position 7

ASL ADDR ;TEST BIT 7

BCC DEST

Bit position 6

ASL ADDR ;TEST BIT 6

BPL DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 05

Bit position 0

LSR ADDR ;TEST BIT 0

BCC DEST

• Branch if the Interrupt Disable flag (bit 2 of the status register) is 0.

PHP ;MOVE STATUS TO A

PLA

AND #%0000010U ;TEST INTERRUPT DISABLE

BEQ DEST ;BRANCH IF INTERRUPTS ARE ON

• Branch if the Decimal Mode flag (bit 3 of the status register) is 0.

PHP ;MOVE STATUS TO A

PLA

AND #%00001000 ;TEST DECIMAL MODE FLAG

BEQ DEST ;BRANCH IF MODE IS BINARY

2. Branch if not 0.

• Branch if accumulator does not contain 0.

TAX ;TEST ACCUMULATOR

BNE DEST

or

CMP #0 ;TEST ACCUMULATOR

BNE DEST

• Branch if an index register does not contain 0.

CPX #0 ;TEST INDEX REGISTER

BNE DEST

• Branch if a memory location does not contain 0.

INC ADDR ;TEST MEMORY LOCATION

DEC ADDR

BNE DEST

or

LDA ADDR ;TEST MEMORY LOCATION

BNE DEST

• Branch if a pair of memory locations (ADDR and ADDR+1) do not both

contain 0.

LDA ADDR ;TEST 16-BIT NUMBER FOR ZERO

ORA ADDR+1

BNE DEST

• Branch if a bit of the accumulator is 1.

AND #MASK ;TEST BIT OF ACCUMULATOR

BNE DEST

1 06 6502 ASSEMBLY LANGUAGE SUBROUTINES

MASK has a 1 bit in the position to be tested and Os elsewhere. Note the inver

sion here; if the bit of the accumulator is a 1, the result is not 0 and the Zero flag

is set to 0. Special cases are

Bit position 7

ASL

BCS

A

DEST

Bit position 6

ASL A

BMI DEST

Bit position 0

LSR

BCS

A

DEST

• Branch if a bit

LDA

BIT

BNE

#MASK

ADDR

DEST

;M0VE BIT 7 TO CARRY

;AND TEST CARRY

;MOVE BIT 6 TO SIGN

;AND TEST SIGN

;M0VE BIT 0 TO CARRY

;AND TEST CARRY

of a memory location is 1.

;TEST BIT OF MEMORY

MASK has a 1 bit in the position to be tested and Os elsewhere. Special cases are

Bit position 7

BIT ADDR ;TEST BIT 7 OF MEMORY

BMI DEST

Bit position 6

BIT ADDR ;TEST BIT 6 OF MEMORY

BVS DEST

The BIT instruction sets the Negative flag from bit 7 of the memory location and

the Overflow flag from bit 6, regardless of the contents of the accumulator.

We can also use the shift instructions to test the bits at the ends, as long as we

can tolerate changes in the memory locations.

Bit position 7

ASL ADDR ;TEST BIT 7 OF MEMORY

BCS DEST

This alternative is slower than BIT by 2 clock cycles, since it must write the result

back into memory.

Bit position 6

ASL ADDR ;TEST BIT 6 OF MEMORY

BMI DEST

Bit position 0

LSR ADDR ;TEST BIT 0 OF MEMORY

BCS DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 07

Branch if the Interrupt Disable flag (bit 2 of the status register) is 1.

;MOVE STATUS TO A THROUGH STACK

;TEST INTERRUPT DISABLE

;BRANCH IF INTERRUPTS ARE DISABLED

;M0VE STATUS TO A THROUGH STACK

;TEST DECIMAL MODE FLAG

;BRANCH IF MODE IS DECIMAL

;COMPARE BY SUBTRACTING

?COMPARE BY SUBTRACTING

PHP

PLA

AND

BNE

• Branch if the 1

PHP

PLA

AND

BNE

3. Branch if Equal.

• Branch if (A)

CMP

BEQ

• Branch if (X)

CPX

BEQ

#%00000100

DEST

Decimal Mode

#%00001000

DEST

= VALUE.

#VALUE

DEST

= VALUE.

#VALUE

DEST

Two special cases are

Branch if (X) = 1

DEX

BEQ

Branch if (X) =

INX

BEQ

• Branch if (A)

CMP

BEQ

• Branch if (X)

CPX

BEQ

DEST

FF

DEST

= (ADDR).

ADDR

DEST

= (ADDR).

ADDR

DEST

;COMPARE BY SUBTRACTING

;COMPARE BY SUBTRACTING

. Branch if the contents of memory locations PGZRO and PGZRO + 1 equal

VAL16 (VAL16L less significant byte, VAL16M more significant byte).

DONE

LDA

CMP

BNE

LDA

CMP

BEQ

NOP

PGZRO+1

#VAL16M

DONE

PGZRO

#VAL16L

DEST

; COMPARE

;AND LSB

MSB'S

'S ONL

• Branch if the contents of memory locations PGZRO and PGZRO + 1 equal

those of memory locations LIML and LIMH.

108 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA

CMP

BNE

LDA

CMP

BEQ

NOP

PGZRO+1

LIMH

DONE

PGZRO

LIML

DEST

;COMPARE MSB'S

;AND LSB'S ONL

DONE

Note: Neither of the next two sequences should be used to test for stack over

flow or underflow, since intervening instructions (for example, a single JSR or

RTS) could change the stack pointer by more than 1.

• Branch if (S) = VALUE.

;CHECK IF STACK IS AT LIMIT

;CHECK IF STACK IS AT LIMIT

TSX

CPX

BEQ

• Branch if (S)

TSX

CPX

BEQ

#VALUE

DEST

= (ADDR)

ADDR

DEST

4. Branch if Not Equal.

• Branch if (A)

CMP

BNE

• Branch if (X)

CPX

BNE

* VALUE.

#VALUE

DEST

¥ VALUE.

#VALUE

DEST

Two special cases are

Branch if (X)
DEX

BNE

. Branch if (X) ?

INX

BNE

• Branch if (A)

CMP

BNE

. Branch if (X)

CPX

BNE

¥ 1.

DEST

^ FF

DEST

t (ADDR)

ADDR

DEST

* (ADDR)

ADDR

DEST

;COMPARE BY SUBTRACTING

;COMPARE BY SUBTRACTING

;COMPARE BY SUBTRACTING

;COMPARE BY SUBTRACTING

• Branch if the contents of memory locations PGZRO and PGZRO+1 are not

equal to VAL16 (VAL16L less significant byte, VAL16M more significant byte).

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 09

LDA PGZRO+1 ;COMPARE MSB'S

CMP #VAL16M

BNE DEST

LDA PGZRO ;AND LSB'S ONLY IF NECESSARY

CMP #VAL16L

BNE DEST

• Branch if the contents of memory locations PGZRO and PGZRO + 1 are not

equal to those of memory locations LIML and LIMH.

LDA PGZRO+1 ;C0MPARE MSB'S

CMP LIMH

BNE DEST

LDA PGZRO ;C0MPARE LSB'S ONLY IF NECESSARY

CMP LIML

BNE DEST

Note: Neither of the next two sequences should be used to test for stack over

flow or underflow, since intervening instructions (for example, a single JSR or

RTS) could change the stack pointer by more than 1.

• Branch if (S) ^ VALUE.

TSX ;CHECK IF STACK IS AT LIMIT

CPX #VALUE

BNE DEST

• Branch if (S) ¥ (ADDR).

TSX ;CHECK IF STACK IS AT LIMIT

CPX ADDR

BNE DEST

5. Branch if Positive.

• Branch if contents of accumulator are positive.

TAX ;TEST ACCUMULATOR

BPL DEST

or

CMP #0 ;TEST ACCUMULATOR

BPL DEST

Branch if contents of index register X are positive.

TXA ;TEST REGISTER X

^ DEST

or

CPX #0 ;TEST INDEX REGISTER X

BPL DEST

• Branch if contents of a memory location are positive.

LDA ADDR ;TEST A MEMORY LOCATION

BPL DEST

or

BIT ADDR

BPL DEST

110 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Branch if 16-bit number in memory locations ADDR and ADDR+1 (MSB

in ADDR-I-1) is positive.

BIT ADDR+l ;TEST MSB

BPL DEST

Remember that BIT sets the Negative flag from bit 7 of the memory location,

regardless of the contents of the accumulator.

6. Branch if Negative.

• Branch if contents of accumulator are negative.

TAX ;TEST ACCUMULATOR

BMI DEST
or

CMP #0 ;TEST ACCUMULATOR

BMI DEST

• Branch if contents of index register X are negative.

or

TXA ;TEST REGISTER X

BMI DEST

CPX #0 ;TEST INDEX REGISTER X

BMI DEST

• Branch if contents of a memory location are negative.

BIT ADDR ;TEST A MEMORY LOCATION

BMI DEST

or

LDA ADDR ;TEST A MEMORY LOCATION

BMI DEST

• Branch if 16-bit number in memory locations ADDR and ADDR+1 (MSB

in ADDR+l) is negative.

BIT ADDR+l ;TEST MSB

BMI DEST

Remember that BIT sets the Negative flag from bit 7 of the memory location,

regardless of the contents of the accumulator.

7. Branch if Greater Than (Signed).

•Branch if (A) > VALUE.

;COMPARE BY SUBTRACTING

;NO BRANCH IF EQUAL

;DID OVERFLOW OCCUR?

;NO, THEN BRANCH ON POSITIVE

;YES, THEN BRANCH ON NEGATIVECHKOPP

DONE

CMP

BEQ

BVS

BPL

BMI

BMI

NOP

#VALUE

DONE

CHKOPP

DEST

DONE

DEST

CHKOPP

DONE

CMP

BEG
BVS

BPL

BMI

BMI

NOP

ADDR

DONE

CHKOPP

DEST

DONE

DEST

CHKOPP

DONE

CMP

BVS

BPL

BMI

BMI

NOP

#VALUE

CHKOPP

DEST

DONE

DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 111

The idea here is to branch if the result is greater than zero and overflow did not

occur, or if the result is less than zero and overflow did occur. Overflow makes

the apparent sign the opposite of the real sign.

• Branch if (A) > (ADDR).

;COMPARE BY SUBTRACTING

;NO BRANCH IF EQUAL

;DID OVERFLOW OCCUR?

;NO, THEN BRANCH ON POSITIVE

;YES, THEN BRANCH ON NEGATIVE

8. Branch if Greater Than or Equal To (Signed)

• Branch if (A) > VALUE.

;COMPARE BY SUBTRACTING

;DID OVERFLOW OCCUR?

;NO, THEN BRANCH ON POSITIVE

;YES, THEN BRANCH ON NEGATIVE

The idea here is to branch if the result is greater than or equal to 0 and overflow

did not occur, or if the result is less than 0 and overflow did occur.

• Branch if (A) >(ADDR).

;COMPARE BY SUBTRACTING

;DID OVERFLOW OCCUR?

;NO, THEN BRANCH ON POSITIVE

;YES, THEN BRANCH ON NEGATIVE

9. Branch if Less Than (Signed)

• Branch if (A) < VALUE (signed).

;COMPARE BY SUBTRACTING

;DID OVERFLOW OCCUR?

;NO, THEN BRANCH ON NEGATIVE

;YES, THEN BRANCH ON POSITIVE

The idea here is to branch if the result is negative and overflow did not occur, or if

the result is positive but overflow did occur.

• Branch if (A) < (ADDR) (signed).

;COMPARE BY SUBTRACTING

;DID OVERFLOW OCCUR?

;NO, THEN BRANCH ON NEGATIVE

;YES, THEN BRANCH ON POSITIVE

CHKOPP

DONE

CMP

BVS

BPL

BMI

BMI

NOP

ADDR

CHKOPP

DEST

DONE

DEST

CHKOPP

DONE

CMP

BVS

BMI

BPL

BPL

NOP

fVALUE

CHKOPP

DEST

DONE

DEST

CHKOPP

DONE

CMP

BVS

BMI

BPL

BPL

NOP

ADDR

CHKOPP

DEST

DONE

DEST

CHKOPP

DONE

CMP

BEQ

BVS

BMI

BPL

BPL

NOP

#VALUE

DEST

CHKOPP

DEST

DONE

DEST

CHKOPP

DONE

CMP

BEQ

BVS

BMI

BPL

BPL

NOP

ADDR

DEST

CHKOPP

DEST

DONE

DEST

112 6502 ASSEMBLY LANGUAGE SUBROUTINES

10. Branch if Less Than or Equal (Signed).

• Branch if (A) < VALUE (signed).

;COMPARE BY SUBTRACTING

;BRANCH IF EQUAL

;DID OVERFLOW OCCUR?

;NO, THEN BRANCH ON NEGATIVE

;YES, THEN BRANCH ON POSITIVE

The idea here is to branch if the result is 0, negative without overflow, or positive

with overflow.

• Branch if (A) < (ADDR) (signed).

;COMPARE BY SUBTRACTING

;BRANCH IF EQUAL

;DID OVERFLOW OCCUR?

;NO, THEN BRANCH ON NEGATIVE

;YES, THEN BRANCH ON POSITIVE

11. Branch if Higher (Unsigned). That is, branch if the unsigned comparison

is nonzero and does not require a borrow.

• Branch if (A) > VALUE (unsigned).

CMP #VALUE ;COMPARE BY SUBTRACTING

BEQ DONE ;NO BRANCH IF EQUAL

BCS DEST ;BRANCH IF NO BORROW NEEDED

DONE NOP

or

CMP #VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1

BCS DEST ;BRANCH IF NO BORROW NEEDED

It is shorter and somewhat more efficient to simply compare to a number one

higher than the actual threshold. Then we can use BCS, which causes a branch if

the contents of the accumulator are greater than or equal to VALUEH-1

(unsigned).

• Branch if (A) > (ADDR) (unsigned).

CMP ADDR ;COMPARE BY SUBTRACTING

BEQ DONE ;NO BRANCH IF EQUAL

BCS DEST ;BRANCH IF NO BORROW NEEDED

DONE NOP

• Branch if (X) > VALUE (unsigned).

CPX #VALUE+1 ;COMPARE BY SUBTRACTING VALUE+1

BCS DEST

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 113

LDA

CMP

LDA

SBC

BCC

#VAL16L

PGZRO

#VAL16M

PGZRO+1

DEST

. Branch if (X) > (ADDR) (unsigned).

CPX ADDR ;COMPARE BY SUBTRACTING

BEQ DONE ;NO BRANCH IF EQUAL

BCS DEST ;BRANCH IF NO BORROW NEEDED

DONE NOP

• Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB

in PGZRO+1) are larger (unsigned) than VAL16 (VAL16L less significant byte,

VAL16M more significant byte).

;GENERATE BORROW BY COMPARING LSB'S

;COMPARE MSB'S WITH BORROW

;BRANCH IF BORROW GENERATED

• Branch if the contents of memory locations PGZRO and PGZRO+ 1 (MSB

in PGZRO+1) are larger (unsigned) than the contents of memory locations

LIML and LIMH (MSB in LIMH).

LDA LIML ;GENERATE BORROW BY COMPARING LSBfS

CMP PGZRO

LDA LIMH ;COMPARE MSB'S WITH BORROW

SBC PGZRO+1

BCC DEST ;BRANCH IF BORROW GENERATED

• Branch if (S) > VALUE (unsigned).

TSX ;CHECK IF STACK BEYOND LIMIT

CPX #VALUE

BEQ DONE ;NO BRANCH IF EQUAL

BCS DEST ;BRANCH IF NO BORROW NEEDED

DONE NOP

or

TSX ;CHECK IF STACK BEYOND LIMIT

CPX #VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1

BCS DEST ;BRANCH IF NO BORROW NEEDED

• Branch if (S) > (ADDR) (unsigned).

TSX ;CHECK IF STACK BEYOND LIMIT

BEQ DONE ;NO BRANCH IF EQUAL

BCS DEST ;BRANCH IF NO BORROW NEEDED

DONE NOP

12. Branch if Not Higher (Unsigned). Branch if the unsigned comparison is 0

or requires a borrow.

Branch if (A) < VALUE (unsigned).

CMP #VALUE ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW NEEDED

BEQ DEST ;BRANCH IF EQUAL

114 6502 ASSEMBLY LANGUAGE SUBROUTINES

If the two values are the same, CMP sets the Carry to indicate that no borrow was

necessary.

or

CMP #VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1

BCC DEST ;BRANCH IF BORROW NEEDED

. Branch if (A) < (ADDR) (unsigned).

CMP ADDR ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW NEEDED

BEQ DEST ;BRANCH IF EQUAL

. Branch if (X) < VALUE (unsigned).

CPX #VALUE ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW NEEDED

BEQ DEST ;BRANCH IF EQUAL

or

CPX #VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1

BCC DEST ;BRANCH IF BORROW NEEDED

. Branch if (X) < (ADDR) (unsigned).

CPX ADDR ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW NEEDED

BEQ DEST ;BRANCH IF EQUAL

• Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB

in PGZRO+1) are less than or equal to (unsigned) VAL16 (VAL16M more sig

nificant byte, VAL16L less significant byte).

LDA #VAL16L ;GENERATE BORROW BY COMPARING LSB'S

CMP PGZRO

LDA #VAL16M ;COMPARE MSB'S WITH BORROW

SBC PGZRO+1

BCS DEST ;BRANCH IF NO BORROW GENERATED

• Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB

in PGZRO+1) are less than or equal to (unsigned) the contents of memory loca

tions LIML and LIMH (MSB in LIMH).

LDA LIML ;GENERATE BORROW BY COMPARING LSB'S

CMP PGZRO

LDA LIMH ;COMPARE MSB'S WITH BORROW

SBC PGZRO+1

BCS DEST ;BRANCH IF NO BORROW GENERATED

• Branch if (S) < VALUE (unsigned).

TSX ;CHECK IF STACK AT OR BELOW LIMIT

CPX #VALUE

BCC DEST ;BRANCH IF BORROW NEEDED

BEQ DEST ;BRANCH IF EQUAL

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 115

or

TSX ;CHECK IF STACK AT OR BELOW LIMIT

CPX #VALUE+1 ;COMPARE BY SUBTRACTING VALUE + 1

BCC DEST

• Branch if (S) < (ADDR) (unsigned).

TSX ;CHECK IF STACK AT OR BELOW LIMIT

CPX ADDR

BCC DEST ;BRANCH IF BORROW NEEDED

BEQ DEST ;BRANCH IF EQUAL

13. Branch if Lower (Unsigned). That is, branch if the unsigned comparison

requires a borrow.

• Branch if (A) < (unsigned).

CMP #VALUE ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW GENERATED

The Carry flag is set to 0 if the subtraction generates a borrow.

• Branch if (A) < (ADDR) (unsigned).

CMP ADDR ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW GENERATED

• Branch if (X) < VALUE (unsigned).

CPX #VALUE ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW GENERATED

• Branch if (X) < (ADDR) (unsigned).

CPX ADDR ;COMPARE BY SUBTRACTING

BCC DEST ;BRANCH IF BORROW GENERATED

• Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB

in PGZRO+1) are less than (unsigned) VAL16 (VAL16L less significant byte,

VAL16M more significant byte).

LDA PGZRO ;GENERATE BORROW BY COMPARING LSB'S

CMP #VAL16L

LDA PGZRO+1 ;COMPARE MSB'S WITH BORROW

SBC #VAL16M

BCC DEST ;BRANCH IF BORROW GENERATED

• Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB

in PGZRO+1) are less than (unsigned) the contents of memory locations LIML

andLIMH (MSB in LIMH).

LDA PGZRO ;GENERATE BORROW BY COMPARING LSB'S

CMP LIML

LDA PGZRO+1 ;COMPARE MSB'S WITH BORROW

SBC LIMH

BCC DEST ;BRANCH IF BORROW GENERATED

116 6502 ASSEMBLY LANGUAGE SUBROUTINES

. Branch if (S) < VALUE (unsigned).

TSX ;CHECK IF STACK BELOW LIMIT
CPX #VALUE

BCC DEST ;BRANCH IF BORROW NEEDED

• Branch if (S) < (ADDR) (unsigned).

TSX ;CHECK IF STACK BELOW LIMIT

CPX ADDR

BCC DEST ;BRANCH IF BORROW NEEDED

14. Branch if Not Lower (Unsigned). That is, branch if the unsigned com

parison does not require a borrow.

• Branch if (A) > VALUE (unsigned).

CMP #VALUE ;COMPARE BY SUBTRACTING

BCS DEST ;BRANCH IF NO BORROW GENERATED

The Carry flag is set to one if the subtraction does not generate a borrow.

• Branch if (A) > (ADDR) (unsigned).

CMP ADDR ;COMPARE BY SUBTRACTING

BCS DEST

• Branch if (X) > VALUE (unsigned).

CPX #VALUE ;COMPARE BY SUBTRACTING

BCS DEST ;BRANCH IF NO BORROW GENERATED

• Branch if (X) >(ADDR) (unsigned).

CPX ADDR ;COMPARE BY SUBTRACTING

BCS DEST

• Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB

in PGZRO+ 1) are greater than or equal to (unsigned) VAL16 (VAL16L less sig

nificant byte, VAL16M more significant byte).

LDA PGZRO ;GENERATE BORROW BY COMPARING LSB'S

CMP #VAL16L

LDA PGZRO+1 ;COMPARE MSB'S WITH BORROW

SBC #VAL16M

BCS DEST ;BRANCH IF NO BORROW GENERATED

• Branch if the contents of memory locations PGZRO and PGZRO+1 (MSB

in PGZRO+1) are greater than or equal to (unsigned) the contents of memory

locations LIML and LIMH (MSB in LIMH).

LDA PGZRO ;GENERATE BORROW BY COMPARING LSB'S

CMP LIML

LDA PGZRO+1 ;COMPARE MSB'S WITH BORROW

SBC LIMH

BCS DEST ;BRANCH IF NO BORROW GENERATED

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 117

• Branch if (S) > VALUE (unsigned).

TSX ;CHECK IF STACK AT OR ABOVE LIMIT

CPX #VALUE

BCS DEST ;BRANCH IF NO BORROW NEEDED

• Branch if (S) > (ADDR) (unsigned).

TSX ;CHECK IF STACK AT OR ABOVE LIMIT

CPX ADDR

BCS DEST ;BRANCH IF NO BORROW NEEDED

SKIP INSTRUCTIONS

You can implement skip instructions on the 6502 microprocessor by using

branch or jump instructions with the proper destination. That destination should

be one instruction beyond the one that the processor would execute sequentially

after the branch. Note that skip instructions are awkward to implement on most

microprocessors, because their instructions vary in length and it is difficult to

determine how long a jump is required to skip an instruction.

SUBROUTINE CALL INSTRUCTIONS

Unconditional Call Instructions

You can implement an indirect call on the 6502 microprocessor by calling a

routine that performs an ordinary indirect jump. A RETURN FROM

SUBROUTINE (RTS) instruction at the end of the subroutine will then transfer

control back to the original calling point. The main program performs

JSR TRANS

where TRANS is the subroutine that actually transfers control using a jump

instruction. Note that TRANS ends with a jump, not with a return. Typical

TRANS routines are:

• To address in memory locations INDIR and INDIR +1 (MSB in INDIR +1).

JMP (INDIR)

• To address in table starting at memory location BASE and using index in

memory location INDEX.

118 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA

ASL

TAX

LDA

STA

INX

LDA

STA

JMP

LDA

ASL

TAX

LDA

PHA

LDA

PHA

RTS

INDEX

A

BASE,X

INDIR

BASE,X

INDIR+1

(INDIR)

INDEX

A

BASE+1,X

BASE,X

;DOUBLE INDEX FOR 2-BYTE ENTRIES

;GET LSB OF DESTINATION

;GET MSB OF DESTINATION

;JUMP INDIRECT TO DESTINATION

or

LDA INDEX

;DOUBLE INDEX FOR 2-BYTE ENTRIES

;GET MSB OF DESTINATION

;GET LSB OF DESTINATION

;JUMP TO DESTINATION PLUS 1

In the second approach, the table must contain the actual destination addresses

minus 1, since RTS adds 1 to the program counter after loading it from the stack.

Conditional Call Instructions

You can implement a conditional call on the 6502 microprocessor by branch

ing on the opposite condition around the call. For example, you could provide

CALL ON CARRY CLEAR with the sequence

BCS NEXT ;BRANCH AROUND IF CARRY SET

JSR SUBR ;CALL IF CARRY CLEAR

NEXT NOP

RETURN INSTRUCTIONS

Unconditional Return Instructions

The RTS instruction returns control automatically to the address saved at the

top of the stack (plus 1). If the return address is saved elsewhere (i.e., in two

memory locations), you can return control to it by performing an indirect jump.

Note that you must add 1 to the return address to simulate RTS.

The following sequence pops the return address from the top of the stack, adds

1 to it, and stores the adjusted value in memory locations RETADR and

RETADR+ 1.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 119

PLA

CLC

ADC

STA

PLA

ADC

STA

#1
RETADR

#0

RETADR+1

;POP

;ADD

;POP

;ADD

LSB OF RETURN

1 TO LSB

MSB OF RETURN

CARRY TO MSB

ADDRESS

ADDRESS

A final JMP (RETADR) will now transfer control to the proper place.

Conditional Return Instructions

You can implement conditional returns on the 6502 microprocessor by using

the conditional branches (on the opposite condition) to branch around an RTS

instruction. That is, for example, you could provide RETURN ON NOT ZERO

with the sequence

BEQ NEXT ;BRANCH AROUND IF ZERO

RTS ;RETURN ON NOT ZERO

NEXT NOP

Return with Skip Instructions

• Return control to the address at the top of the stack after it has been incre

mented by an offset NUM. This sequence allows you to transfer control past

parameters, data, or other nonexecutable items.

;POP RETURN ADDRESS

;INCREMENT BY NUM

;WITH CARRY IF NECESSARY

PLA

CLC

ADC

STA

PLA

ADC

STA

JMP

TSX

LDA

CLC

ADC

STA

BCC

INC

RTS

#NUM+1

RETADR

#0

RETADR+1

(RETADR)

$0101,X

#NUM

$0101,X

DONE

$0102,X

or

;MOVE STACK POINTER TO INDEX REGISTER

;INCREMENT RETURN ADDRESS BY NUM

;WITH CARRY IF NECESSARY

DONE

• Change the return address to RETPT. Assume that the return address is

stored currently at the top of the stack. RETPT consists of RETPTH (MSB) and

RETPTL (LSB).

120 6502 ASSEMBLY LANGUAGE SUBROUTINES

TSX

LDA

STA

LDA

STA

RTS

#RETPTL

$0101,X

#RETPT

$0102fX

The actual return point is RETPT + 1.

Return from Interrupt Instructions

If the initial portion of the interrupt service routine saves all the registers with

the sequence.

PHA ;SAVE ACCUMULATOR

TXA ;SAVE INDEX REGISTER X

PHA

TYA ;SAVE INDEX REGISTER Y

PHA

A standard return sequence is

PLA ;RESTORE INDEX REGISTER Y

TAY

PLA ;RESTORE INDEX REGISTER X

TAX

PLA ;RESTORE ACCUMULATOR

MISCELLANEOUS INSTRUCTIONS

In this category, we include push and pop instructions, halt, wait, break,

decimal adjust, enabling and disabling of interrupts, translation (table lookup),

and other instructions that do not fall into any of the earlier categories.

1. Push Instructions.

• Push index register X.

TXA ;SAVE X IN STACK VIA A

PHA

• Push index register Y.

TYA ;SAVE Y IN STACK VIA A

PHA

• Push memory location ADDR.

LDA ADDR ;SAVE MEMORY LOCATION IN STACK

PHA

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 121

ADDR could actually be an external priority register or a copy of it.

• Push memory locations ADDR and ADDR+1 (ADDR+1 most signifi

cant).

LDA ADDR+1 ;SAVE 16-BIT NUMBER IN STACK

PHA

LDA ADDR

PHA

Since the stack is growing toward lower addresses, the 16-bit number ends up

stored in its usual 6502 form.

2. Pop (pull) instructions.

• Pop index register X.

PLA ;RESTORE X FROM STACK VIA A

TAX

• Pop index register Y.

PLA ;RESTORE Y FROM STACK VIA A

TAY

• Pop memory location ADDR.

PLA ;RESTORE MEMORY LOCATION FROM STACK

STA ADDR

ADDR could actually be an external priority register or a copy of it.

• Pop memory locations ADDR and ADDR+1 (ADDR+1 most significant

byte).

PLA ;RESTORE 16-BIT NUMBER FROM STACK

STA ADDR

PLA

STA ADDR+1

We assume that the 16-bit number is stored in the usual 6502 form with the less

significant byte at the lower address.

Wait Instructions

The simplest way to implement a wait on the 6502 microprocessor is to use an

endless loop such as:

HERE JMP HERE

The processor will continue executing the instruction until it is interrupted and

will resume executing it after the interrupt service routine returns control. Of

course, maskable interrupts must have been enabled or the processor will

1 22 6502 ASSEMBLY LANGUAGE SUBROUTINES

execute the loop endlessly. The nonmaskable interrupt can interrupt the pro

cessor at any time.

Another alternative is a sequence that waits for a high-to-low transition on the

Set Overflow input. Such a transition sets the Overflow (V) flag. So the required

sequence is

CLV ; CLEAR THE OVERFLOW FLAG

WAIT BVC WAIT ;AND WAIT FOR A TRANSITION TO SET IT

This sequence is essentially a "Wait for Input Transition" instruction.

Adjust Instructions

1. Branch if accumulator does not contain a valid decimal (BCD) number.

STA TEMP ;SAVE ACCUMULATOR

SED ;ENTER DECIMAL MODE

CLC ;ADD 0 IN DECIMAL MODE

ADC #0

CLD ;LEAVE DECIMAL MODE

2. Decimal increment accumulator (add 1 to A in decimal).

SED ;ENTER DECIMAL MODE

CLC

ADC #1 ;ADD 1 DECIMAL

CLD ;LEAVE DECIMAL MODE

3. Decimal decrement accumulator (subtract 1 from A in decimal).

SED ;ENTER DECIMAL MODE

SEC

SBC #1 ;SUBTRACT 1 DECIMAL

CLD ;LEAVE DECIMAL MODE

4. Enter decimal mode but save the old Decimal Mode flag.

PHP ;SAVE OLD DECIMAL MODE FLAG

SED ;ENTER DECIMAL MODE

A final PLP instruction will restore the old value of the Decimal Mode flag (and

the rest of the status register as well).

5. Enter binary mode but save the old Decimal Mode flag.

PHP ;SAVE OLD DECIMAL MODE FLAG

CLD ;ENTER BINARY MODE

A final PLP instruction will restore the old value of the Decimal Mode flag (and

the rest of the status register as well).

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 23

Enable and Disable Interrupt Instructions

1. Enable interrupts but save previous value of I flag.

PHP ;SAVE OLD I FLAG

CLI ;ENABLE INTERRUPTS

After a sequence that must run with interrupts enabled, a PLP instruction will

restore the previous state of the interrupt system (and the rest of the status

register as well).

2. Disable interrupts but save previous value of I flag.

PHP ;SAVE OLD I FLAG

SEI ;DISABLE INTERRUPTS

After a sequence that must run with interrupts disabled, a PLP instruction will

restore the previous state of the interrupt system (and the rest of the status

register as well).

Translate Instructions

1. Translate the operand in A to a value obtained from the corresponding

entry in a table starting at the address in memory locations PGZRO and

PGZRO+1 (MSB in PGZRO+1).

TAY

LDA (PGZRO),Y ;REPLACE OPERAND WITH TABLE ENTRY

This procedure can be used to convert data from one code to another.

2. Translate the operand in A to a 16-bit value obtained from the correspond

ing entry in a table starting at the address in memory locations PGZRO and

PGZRO+1 (MSB in PGZRO+1). Store the entry in memory locations TEMPL

and TEMPH (MSB in TEMPH).

;DOUBLE INDEX FOR 2-BYTE ENTRIES

;GET LSB OF ENTRY

;GET MSB OF ENTRY

ADDITIONAL ADDRESSING MODES

• Indirect Addressing. You can provide indirect addressing on the 6502 pro

cessor (for addresses on page 0) by using the postindexed (indirect indexed)

ASL

TAY

LDA

STA

INY

LDA

STA

A

(PGZRO)

TEMPL

(PGZRO)

TEMPH

,Y

,Y

1 24 6502 ASSEMBLY LANGUAGE SUBROUTINES

addressing mode with register Y set to 0. A somewhat less powerful alternative

(because you cannot index from the indirect address) is to use preindexing

(indexed indirect addressing) with register X set to 0. Otherwise, indirect

addressing is available only for the JMP instruction. Note that with JMP, the

indirect address may be located anywhere in memory; it is not restricted to

page 0.

Examples

1. Load the accumulator indirectly from the address in memory locations

PGZROandPGZRO+1.

LDY #0 ;SET INDEX TO ZERO

LDA (PGZRO),Y ;LOAD INDIRECT INDEXED

b. Store the accumulator indirectly at the address in memory locations

PGZROandPGZRO+1.

LDY #0 ;SET INDEX TO ZERO

STA (PGZRO),Y ;STORE INDIRECT INDEXED

In the case of instructions that lack the indirect indexed mode (such as ASL,

DEC, INC, LSR, ROL, ROR), you must move the data to the accumulator, oper

ate on it there, and then store it back in memory.

3. Increment the data at the address in memory locations PGZRO and

PGZRO+1.

;SET INDEX TO ZERO

;GET THE DATA

;INCREMENT THE DATA

;STORE THE RESULT BACK

4. Logically shift right the data at the address in memory locations PGZRO

and PGZRO+ 1.

LDY #0 ;SET INDEX TO ZERO

LDA (PGZRO),Y ;GET THE DATA

LSR A ;SHIFT IT RIGHT

STA (PGZRO),Y ;STORE THE RESULT BACK

5. Clear the address in memory locations PGZRO and PGZRO+1.

LDY #0 ;SET INDEX TO ZERO

TYA ;DATA = ZERO

STA (PGZRO),Y ;CLEAR THE INDIRECT ADDRESS

The only way to provide indirect addressing for other pages is to move the

indirect address to page 0 first.

6. Clear the address in memory locations INDIR and INDIR+1 (not on

page 0).

LDY

LDA

CLC

ADC

STA

#0

(PGZRO)

#1
(PGZRO)

,Y

,Y

LDA

STA

LDA

STA

LDY

TYA

STA

INDIR

PGZRO

INDIR+1

PGZRO+1

#0

(PGZRO),Y

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 25

;MOVE INDIRECT ADDRESS TO PAGE ZERO

;SET INDEX TO ZERO

;DATA = ZERO

;CLEAR THE INDIRECT ADDRESS

• Indexed Addressing. Indexed addressing is available for most instructions in

the 6502 set. We will discuss briefly the handling of the few for which it is not

available and we will then discuss the handling of indexes that are larger than 256.

No indexing is available for BIT, CPX, CPY, JMP, and JSR. Only page 0

indexing is available for STX and STY. We can overcome these limitations as

follows:

1. BIT

BIT indexed can be simulated by saving the accumulator, using AND, and

restoring the accumulator. You should note that restoring the accumulator with

LDA, PHA, TXA, or TYA will affect the Zero and Negative flags. A typical

sequence without restoring the accumulator is:

PHA ;SAVE A

AND BASE,X ;LOGICAL AND INDEXED

The Zero flag is set as if an indexed BIT had been executed and the contents of A

are available at the top of the stack.

2. CPX or CPY

CPX or CPY indexed can be simulated by moving the index register to A and

using CMP. That is, CPX indexed with Y can be simulated by the sequence:

TXA ;MOVE X TO A

CMP BASE,Y ;THEN COMPARE INDEXED

3. JMP

JMP indexed can be simulated by calculating the required indexed address,

storing it in memory, and using either JMP indirect or RTS to transfer control.

The sequences are:

;DOUBLE INDEX FOR 2-BYTE ENTRIES

;GET LSB OF DESTINATION

;GET MSB OF DESTINATION

;JUMP INDIRECT TO DESTINATION

LDA

ASL

TAX

LDA

STA

INX

LDA

STA

JMP

INDEX

A

BASE,X

INDIR

BASE,X

INDIR+1

(INDIR)

126 6502 ASSEMBLY LANGUAGE SUBROUTINES

LDA

ASL

TAX

LDA

PHA

LDA

PHA

RTS

INDEX

A

BASE+1,X

BASEfX

or

LDA INDEX

;DOUBLE INDEX FOR 2-BYTE ENTRIES

;GET MSB OF DESTINATION

;GET LSB OF DESTINATION

;JUMP INDIRECT TO DESTINATION OFFSET 1

The second approach requires that the table contain entries that are all 1 less than

the actual destinations, since RTS adds 1 to the program counter after restoring it

from the stack.

4. JSR

JSR indexed can be simulated by calling a transfer program that executes JMP

indexed as shown above. The ultimate return address remains at the top of the

stack and a final RTS instruction will transfer control back to the original calling

program. That is, the main program contains:

JSR TRANS

TRANS performs an indexed jump and thus transfers control to the actual

subroutine.

5. STX or STY

STX or STY indexed can be simulated by moving the index register to A and

using STA. That is, we can simulate STX indexed with Y by using the sequence:

TXA ;MOVE X TO A

STA BASE,Y ;THEN STORE INDEXED

BASE can be anywhere in memory, not just on page 0.

We can handle indexes that are larger than 256 by performing an explicit addi

tion on the more significant bytes and using the indirect indexed addressing

mode. That is, if the base address is in memory locations PGZRO and PGZRO+1

and the index is in memory locations INDEX and INDEX+1, the following

sequence will place the corrected base address in memory locations TEMP and

TEMP+1 (on page 0).

LDA PGZRO ;SIMPLY MOVE LSB

STA TEMP

LDA PGZRO+1 ;ADD MSB'S

CLC

ADC INDEX+1

STA TEMP+1

TEMP and TEMP+1 now contain a base address that can be used (in conjunction

with INDEX) in the indirect indexed mode.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 27

Examples

1. Load accumulator indexed.

LDY INDEX ;GET LSB OF INDEX

LDA (TEMP),Y ;LOAD A INDIRECT INDEXED

2. Store accumulator indexed, assuming that we have saved A at the top of the

stack.

LDY INDEX ;GET LSB OF INDEX

PLA ;RESTORE A

STA (TEMP),Y ;STORE A INDIRECT INDEXED

• Autopreincrementing. Autopreincrementing means that the contents of the

index register are incremented automatically before they are used. You can pro

vide autopreincrementing on the 6502 processor either by using INX or INY on

an index register or by using the 16-bit methods to increment a base address in

memory.

Examples

• Load the accumulator from address BASE using autopreincrementing on

index register X.

INX ;AUTOPREINCREMENT X

LDA BASE,X

We assume that the array contains fewer than 256 elements.

• Load the accumulator from the address in memory locations PGZRO and

PGZRO + 1 using autopreincrementing on the contents of memory locations

INDEX and INDEX + 1.

DONE

INC

BNE

INC

LDA

STA

LDA

CLC

ADC

STA

LDY

LDA

INDEX

DONE

INDEX+1

PGZRO

TEMP

PGZRO+1

INDEX+1

TEMP+1

INDEX

(TEMP),Y

•AUTOPREINCREMENT INDEX

;WITH CARRY IF NECESSARY

;MOVE LSB

;ADD MSB'S

;GET LSB OF INDEX

;LOAD ACCUMULATOR

If you must autoincrement by 2 (as in handling arrays of addresses) use the

sequence

;AUTOINCREMENT INDEX BY 2LDA

CLC

ADC

STA

BCC

INC

NOP

INDEX

#2

INDEX

DONE

INDEX+1 ;CARRY TO MSB IF NECESSARY

DONE

128 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Autopostincrementing. Autopostincrementing means that the contents of

the index register are incremented automatically after they are used. You can pro

vide autopreincrementing on the 6502 processor either by using INX or INY on

an index register or by using the 16-bit methods to increment an index in

memory.

Examples

• Load the accumulator from address BASE using autopostincrementing on

index register Y.

LDA BASE,Y ;AUTOPOSTINCREMENT Y

INY

• Load the accumulator from the address in memory locations PGZRO and

PGZRO + 1 using autopostincrementing on the contents of memory locations

INDEX and INDEX + 1.

;MOVE LSB OF BASE

;ADD MSB'S OF BASE AND INDEX

LDA

STA

LDA

CLC

ADC

STA

LDY

LDA

INC

BNE

INC

NOP

PGZRO

TEMP

PGZRO+1

INDEX+1

TEMP+1

INDEX

(TEMP),Y

INDEX

DONE

INDEX+1

;GET LSB OF INDEX

;LOAD ACCUMULATOR

;AUTOPOSTINCREMENT INDEX

;WITH CARRY IF NECESSARY

DONE

• Aiitopredecrementing. Autopredecrementing means that the contents of the

index register are decremented automatically before they are used. You can pro

vide autopredecrementing on the 6502 processor either by using DEX or DEY on

an index register or by using the 16-bit methods to decrement a base address or

index in memory.

Examples

• Load the accumulator from address BASE using autopredecrementing on

index register X.

DEX ;AUTOPREDECREMENT X

LDA BASE,X

We assume that the array contains fewer than 256 elements.

• Load the accumulator from the address in memory locations PGZRO and

PGZRO + 1 using autopredecrementing on the contents of memory locations

INDEX and INDEX + 1.

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 1 29

DECLSB

;MOVE LSB OF BASE

LDA

BNE

DEC

DEC

LDA

STA

LDA

CLC

ADC

STA

LDY

LDA

INDEX

DECLSB

INDEX+1

INDEX

PGZRO

TEMP

PGZRO+1

INDEX+1

TEMP+1

INDEX

(TEMP),Y

;AUTOPREDECREMENT INDEX

;BORROWING FROM MSB IF NECESSARY

;ADD MSB'S OF BASE AND INDEX

;GET LSB OF INDEX

;LOAD ACCUMULATOR

If you must autodecrement by 2 (as in handling arrays of addresses), use the

sequence:

;AUTODECREMENT INDEX BY 2LDA

SEC

SBC

STA

BCS

DEC

NOP

INDEX

#2

INDEX

DONE

INDEX+1 ;BORROWING FROM MSB IF NECESSARY

DONE

• Autopostdecrementing. Autopostdecrementing means that the contents of

the index register are decremented automatically after they are used. You can

provide autopostdecrementing on the 6502 processor by using either DEX or

DEY on an index register or by using the 16-bit methods to decrement an index

in memory.

Examples

• Load the accumulator from address BASE using autopostdecrementing on

index register Y.

LDA BASE,Y ;AUTOPOSTDECREMENT Y

DEY

• Load the accumulator from the address in memory locations PGZRO and

PGZRO + 1 using autopostdecrementing on the contents of memory locations

INDEX and INDEX 4- 1.

;MOVE LSB OF BASE

;ADD MSB'S OF BASE AND INDEX

;GET LSB OF INDEX

;LOAD ACCUMULATOR

;AUTOPOSTDECREMENT INDEX

;BORROWING FROM MSB IF NECESSARY

LDA

STA

LDA

CLC

ADC

STA

LDY

LDA

CPY

BNE

DEC

DECLSB DEC

PGZRO

TEMP

PGZRO+1

INDEX+1

TEMP+1

INDEX

(TEMP),Y

#0

DECLSB

INDEX+1

INDEX

1 30 6502 ASSEMBLY LANGUAGE SUBROUTINES

* Indexed indirect addressing (preindexing). The 6502 processor provides

preindexing for many instructions. We can simulate preindexing for the instruc

tions that lack it by moving the data to the accumulator using preindexing,

operating on it, and (if necessary) storing the result back into memory using

preindexing.

Examples

1. Rotate right the data at the preindexed address obtained by indexing with X

from base address PGZRO.

LDA (PGZRO,X) ;GET THE DATA

ROR A ;ROTATE DATA RIGHT

STA (PGZROrX) ;STORE RESULT BACK IN MEMORY

2. Clear the preindexed address obtained by indexing with X from base

address PGZRO.

LDA #0 ;DATA = ZERO

STA (PGZRO,X) ;CLEAR PREINDEXED ADDRESS

Note that if the calculation of an effective address in preindexing produces a

result too large for eight bits, the excess is truncated and no error warning occurs.

That is, the processor provides an automatic wraparound on page 0.

• Indirect indexed addressing (postindexing). The 6502 processor provides

postindexing for many instructions. We can simulate postindexing for the

instructions that lack it by moving the data to the accumulator using postindex

ing, operating on it, and (if necessary) storing the result back into memory using

postindexing.

Examples

1. Decrement the data at the address in memory locations PGZRO and

PGZRO+1 using Y as an index.

LDA (PGZRO),Y ;GET THE DATA

SEC

SBC #1 ;DECREMENT DATA BY 1

STA (PGZRO),Y ;STORE RESULT BACK IN MEMORY

2. Rotate left the data at the address in memory locations PGZRO and

PGZRO+1 using Y as an index.

LDA (PGZRO),Y ;GET THE DATA

ROL A ;ROTATE DATA LEFT

STA (PGZRO),Y ;STORE RESULT BACK IN MEMORY

CHAPTER 2: IMPLEMENTING ADDITIONAL INSTRUCTIONS AND ADDRESSING MODES 131

REFERENCES

1. Osborne, A. An Introduction to Microcomputers, Volume 1: Basic Concepts,

2nd ed. Berkeley: Osborne/McGraw-Hill, 1980.

2. Leventhal, L.A. 6800 Assembly Language Programming. Berkeley: Osborne/

McGraw-Hill, 1978.

3. Leventhal, L.A. 6809 Assembly Language Programming. Berkeley: Osborne/

McGraw-Hill, 1981.

4. Fischer, W.P. "Microprocessor Assembly Language Draft Standard,"

IEEE Computer, December 1979, pp. 96-109.

5. Scanlon, L.J. 6502 Software Design, Howard W. Sams, Indianapolis, Ind.,

1980, pp. 111-13.

Chapter 3 Common

Programming Errors

This chapter describes common errors in 6502 assembly language programs.
The final section describes common errors in input/output drivers and interrupt

service routines. Our aims here are the following:

• To warn programmers of potential trouble spots and sources of confusion.

• To indicate likely causes of programming errors.

• To emphasize some of the techniques and warnings presented in Chapters 1
and 2.

• To inform maintenance programmers where to look for errors and misin

terpretations.

• To provide the beginner with a starting point in the difficult process of locat

ing and correcting errors.

Of course, no list of errors can be complete. We have emphasized the most

common ones in our work, but we have not attempted to describe the rare, sub

tle, or occasional errors that frustrate even the experienced programmer.

However, most errors are remarkably simple once you uncover them and this list

should help you debug most programs.

CATEGORIZATION OF

PROGRAMMING ERRORS

We may generally divide common 6502 programming errors into the following

categories:

• Using the Carry improperly. Typical errors include forgetting to clear the

Carry before addition or set it before subtraction, and interpreting it incorrectly

after comparisons (it acts as an inverted borrow).

133

1 34 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Using the other flags improperly. Typical errors include using the wrong flag

(such as Negative instead of Carry), branching after instructions that do not

affect a particular flag, inverting the branch conditions (particularly when the

Zero flag is involved), and changing a flag accidentally before branching.

• Confusing addresses and data. Typical errors include using immediate

instead of direct addressing, or vice versa, and confusing memory locations on

page 0 with the addresses accessed indirectly through those locations.

• Using the wrong formats. Typical errors include using BCD (decimal)

instead of binary, or vice versa, and using binary or hexadecimal instead of

ASCII.

• Handling arrays incorrectly. Typical problems include accidentally overrun

ning the array at one end or the other (often by 1) and ignoring page boundaries

when the array exceeds 256 bytes in length.

• Ignoring implicit effects. Typical errors include using the contents of the

accumulator, index register, stack pointer, flags, or page 0 locations without con

sidering the effects of intermediate instructions on these contents. Most errors

arise from instructions that have unexpected, implicit, or indirect effects.

• Failing to provide proper initial conditions for routines or for the microcom

puter as a whole. Most routines require the initialization of counters, indirect

addresses, indexes, registers, flags, and temporary storage locations. The

microcomputer as a whole requires the initialization of the Interrupt Disable and

Decimal Mode flags and all global RAM addresses (note particularly indirect

addresses and other temporary storage on page 0).

• Organizing the program incorrectly. Typical errors include skipping or

repeating initialization routines, failing to update indexes, counters, or indirect

addresses, and forgetting to save intermediate or final results.

A common source of errors, one that is beyond the scope of our discussion, is

conflict between user programs and systems programs. A simple example is a

user program that saves results in temporary storage locations that operating

systems or utility programs need for their own purposes. The results thus disap

pear mysteriously even though a detailed trace of the user program does not

reveal any errors.

More complex sources of conflict may include the interrupt system, input/out

put ports, the stack, or the flags. After all, the systems programs must employ the

same resources as the user programs. (Systems programs generally attempt to

save and restore the user's environment, but they often have subtle or unex

pected effects.) Making an operating system transparent to the user is a problem

comparable to devising a set of regulations, laws, or tax codes that have no

loopholes or side effects.

CHAPTER 3: COMMON PROGRAMMING ERRORS 135

USING THE CARRY IMPROPERLY

The following instructions and conventions are the most common sources of

errors:

• CMP, CPX, and CPY affect the Carry as if it were an inverted borrow, that

is, they set the Carry if the subtraction of the memory location from the register

did not require a borrow, and they clear the Carry if it did. Thus, Carry = 1 if no

borrow was necessary and Carry = 0 if a borrow was required. This is contrary to

the sense of the Carry in most other microprocessors (the 6800, 6809, 8080,

8085, orZ-80).

• SBC subtracts the inverted Carry flag from the normal subtraction of the

memory location from the accumulator. That is, it produces the result (A) —

(M) — (1 — Carry). If you do not want the Carry flag to affect the result, you

must set it with SEC. Like comparisons, SBC affects the Carry as if it were an

inverted borrow; Carry = 0 if the subtraction requires a borrow and 1 if it does

not.

• ADC always includes the Carry in the addition. This produces the result (A)

= (A) + (M) + Carry. If you do not want the Carry flag to affect the result, you

must clear it with CLC. Note that the Carry has its normal meaning after ADC.

Examples

1. CMP ADDR

This instruction sets the flags as if the contents of memory location ADDR had

been subtracted from the accumulator. The Carry flag is set if the subtraction

does not require a borrow and cleared if it does. Thus

Carry = 1 if (A) > (ADDR)

Carry = 0 if (A) < (ADDR)

We are assuming that both numbers are unsigned. Note that the Carry is set (to

1) if the numbers are equal.

2. SBC #VALUE

This instruction subtracts VALUE and 1 —Carry from the accumulator. It sets

the flags just like a comparison. To subtract VALUE alone from the accumulator,

you must use the sequence

SEC ;SET INVERTED BORROW

SBC #VALUE ;SUBTRACT VALUE

This sequence produces the result (A) = (A) - VALUE. If VALUE = 1, the

sequence is equivalent to a Decrement Accumulator instruction (remember,

DEC cannot be applied to A).

136 6502 ASSEMBLY LANGUAGE SUBROUTINES

3. ADC #VALUE

This instruction adds VALUE and Carry to the accumulator. To add VALUE

alone to the accumulator, you must use the sequence

CLC ;CLEAR CARRY

ADC #VALUE ;ADD VALUE

This sequence produces the result (A) = (A) + VALUE. If VALUE = 1, the

sequence is equivalent to an Increment Accumulator instruction (remember,

INC cannot be applied to A).

USING THE OTHER FLAGS

INCORRECTLY

Instructions for the 6502 generally have expected effects on the flags. The only

special case is BIT. Situations that require some care include the following:

• Store instructions (STA, STX, and STY) do not affect the flags, so the flags

do not necessarily reflect the value that was just stored. You may need to test the

register by transferring it to another register or comparing it with 0. Note that load

instructions (including PHA) and transfer instructions (excluding TXS) affect

the Zero and Negative flags.

• After a comparison (CMP, CPX, or CPY), the Zero flag indicates whether

the operands are equal. The Zero flag is set if the operands are equal and cleared if

they are not. There is some potential confusion here — BEQ means branch if the

result is equal to 0; that is, branch if the Zeroflag is 1. Be careful of the difference

between the result being 0 and the Zero flag being 0. These two conditions are

opposites; the Zero flag is 0 if the result is not 0.

• In comparing unsigned numbers, the Carry flag indicates which number is

larger. CMP, CPX, or CPY clears the Carry if the register's contents are greater

than or equal to the other operand and sets the Carry if the register's contents are

less. Note that comparing equal operands sets the Carry. If these alternatives

(greater than or equal and less than) are not what you need (you want the alterna

tives to be greater than and less than or equal), you can reverse the subtraction,

subtract 1 from the accumulator, or add 1 to the other operand.

• In comparing signed numbers, the Negative flag indicates which operand is

larger unless two's complement overflow has occurred. We must first look at the

Overflow flag. If that flag is 0, the Negative flag indicates which operand is larger;

if that flag is 1, the sense of the Negative flag is inverted.

After a comparison (if ho overflow occurs), the Negative flag is set if the

register's contents are less than the other operand, and cleared if the register's

CHAPTER 3: COMMON PROGRAMMING ERRORS 1 37

contents are greater than or equal to the other operand. Note that comparing

equal operands clears the Negative flag. As with the Carry, you can handle the

equality case in the opposite way by adjusting either operand or by reversing the

subtraction.

• If a condition holds and you wish the computer to do something, a common

procedure is to branch around a section of the program on the opposite condition.

For example, to increment memory location OVFLW if the Carry is 1, use the

sequence

BCC NEXT

INC OVFLW

NEXT NOP

The branch condition is the opposite of the condition under which the section

should be executed.

• Increment and decrement instructions do not affect the Carry flag. This

allows the instructions to be used for counting in loops that perform multiple-

byte arithmetic (the Carry is needed to transfer carries or borrows between

bytes). Increment and decrement instructions do, however, affect the Zero and

Negative flags; you can use the effect on the Zero flag to determine whether an

increment has produced a carry. Note the following typical sequences:

1. 16-bit increment of memory locations INDEX and INDEX+1 (MSB in

INDEX+1)

;INCREMENT LSB

;AND CARRY TO MSB IF NECESSARY

DONE

We determine if a carry has been generated by examining the Zero flag after

incrementing the less significant byte.

2. 16-bit decrement of memory locations INDEX and INDEX+1 (MSB in

INDEX+1)

LDA INDEX ;CHECK LSB

BNE DECLSB

DEC INDEX+1 ;BORROW FROM MSB IF NECESSARY

DECLSB DEC INDEX ;DECREMENT MSB

We determine if a borrow will be generated by examining the less significant byte

before decrementing it.

• The BIT instruction has rather unusual effects on the flags. It places bit 6 of

the memory location in the Overflow flag and bit 7 in the Negative flag, regard

less of the value in the accumulator. Thus, only the Zero flag actually reflects the

logical ANDing of the accumulator and the memory location.

INC

BNE

INC

NOP

INDEX

DONE

INDEX+1

1 38 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Only a few instructions affect the Carry or Overflow flags. The instructions

that affect Carry are arithmetic (ADC, SBC), comparisons (CMP, CPX, and

CPY), and shifts (ASL, LSR, ROL, and ROR), besides the obvious CLC and

SEC. The only instructions that affect Overflow are ADC, BIT, CLV, and SBC;

comparison and shift instructions do not affect the Overflow flag, unlike the

situation in the closely related 6800 and 6809 microprocessors.

Examples

1. The sequence

STA $1700

BEQ DONE

will have unpredictable results, since STA does not affect any flags. Sequences

that will produce a jump if the value stored is 0 are

STA $1700

CMP #0 ;TEST ACCUMULATOR

BEQ DONE

or

STA $1700

TAX ;TEST ACCUMULATOR

BEQ DONE

2. The instruction CMP #$25 sets the Zero flag as follows:

Zero = 1 if the contents of A are 2516

Zero = 0 if the contents of A are not 2516

Thus, if you want to increment memory location COUNT, if (A) = 2516, use the

sequence

CMP

BNE

INC

NOP

#$25

DONE

COUNT

;IS A

;YESf

25?

INCREMENT COUNT

DONE

Note that we use BNE to branch around the increment if the condition (A =

2516) does not hold. It is obviously easy to err by inverting the branch condition.

3. The instruction CPX #$25 sets the Carry flag as follows:

Carry = 0 if the contents of X are between 00 and 2416

Carry = 1 if the contents ofX are between 2516 and FF16

Thus, the Carry flag is cleared if X contains an unsigned number less than the

other operand and set if X contains an unsigned number greater than or equal to

the other operand.

CHAPTER 3: COMMON PROGRAMMING ERRORS 1 39

If you want to clear the Carry if the X register contains 2516, use CPX #$26

instead of CPX #$25. That is, we have

CPX #$25

BCC LESS ;BRANCH IF (X) LESS THAN 25

or

CPX #$26

BCC LESSEQ ;BRANCH IF (X) 25 OR LESS

4. The sequence SEC, SBC #$40 sets the Negative (Sign) flag as follows:

Negative = 0 if A is between 4016 and 7F16 (normal signed arithmetic) or if A

is between 8016 and C016 (because of two's complement overflow)

Negative = 1 if A is between 0016 and 3F16 or between Cl16 and FF16 (normal

signed arithmetic)

Two's complement overflow occurs if A contains a number between 8016

(—12810 in two's complement) and C016 (-64l0 in two's complement). Then

subtracting 4016 (6410) produces a result less than -12810, which is beyond the

range of an 8-bit signed number. The setting of the Overflow flag indicates this

out-of-range condition.

The following sequence will thus produce a branch if A contains a signed num

ber less than 4016.

SEC

SBC

BVS

BMI

#$40

DEST

DEST

;SET INVERTED BORROW

;SUBTRACT 40 HEX

;BRANCH IF OVERFLOW

;OR IF DIFFERENCE IS

IS SET

NEGATIVE

Note that we cannot use CMP here, since it does not affect the Overflow flag. We

could, however, use the sequence

CMP #0 ;BRANCH IF A IS NEGATIVE

BMI DEST

CMP #$40 ;OR IF A IS POSITIVE BUT BELOW 40 HEX

BCC DEST

We eliminate the possibility of overflow by handling negative numbers sepa

rately.

5. The sequence

INC ADDR

BCS NXTPG

will have unpredictable results, since INC does not affect the Carry flag. A

sequence that will produce a jump, if the result of the increment is 00 (thus

implying the production of a carry), is illustrated below.

1 40 6502 ASSEMBLY LANGUAGE SUBROUTINES

INC ADDR

BEQ NXTPG

We can tell when an increment has produced a carry, but we cannot tell when a

decrement has required a borrow since the result then is FFl6, not 0. Thus, it is

much simpler to increment a multibyte number than to decrement it.

6. The sequence

BIT ADDR

BVS DEST

produces a branch if bit 6 of ADDR is 1. The contents of the accumulator do not

affect it. Similarly, the sequence

BIT ADDR

BPL DEST

produces a branch if bit 7 of ADDR is 0. The contents of the accumulator do not

affect it. The only common sequence with BIT in which the accumulator matters

is

LDA #MASK

BIT ADDR

This sequence sets the Zero flag if logically ANDing MASK and the contents of

ADDR produces a result of 0. A typical example using the Zero flag is

LDA #%00010000

BIT ADDR

BNE DEST ;BRANCH IF BIT 4 OF ADDR IS 1

This sequence forces a branch if the result of the logical AND is nonzero, that is,

if bit 4 of ADDR is 1.

The effects of BIT on the Overflow and Negative flags do not generally cause

programming errors since there are no standard, widely used effects that might

cause confusion. These effects do, however, create documentation problems

since the approach is unique and those unfamiliar with the 6502 cannot be

expected to guess what is happening.

7. The sequence

CMP #VALUE

BVS DEST

produces unpredictable results, since CMP does not affect the Overflow flag.

Instead, to produce a branch if the subtraction results in two's complement over

flow, use the sequence

SEC ;SET INVERTED BORROW

SBC #VALUE ;SUBTRACT VALUE

BVS DEST ;BRANCH IF OVERFLOW OCCURS

CHAPTER 3: COMMON PROGRAMMING ERRORS 141

CONFUSING ADDRESSES AND DATA

The rules to remember are

• The immediate addressing mode requires the actual data as an operand. That

is, LDA #$40 loads the accumulator with the number 4016.

. The absolute and zero page (direct) addressing modes require the address of

the data as an operand. That is, LDA $40 loads the accumulator with the contents

ofmemory location 004016.

• The indirect indexed and indexed indirect addressing modes obtain the

indirect address from two memory locations on page 0. The indirect address is in

two memory locations starting at the specified address; it is stored upside-down,

with its less significant byte at the lower address. Fortunately, the indexed

indirect (preindexed) mode is rarely used and is seldom a cause of errors. The

meaning of addressing modes with JMP and JSR can be confusing, since these

instructions use addresses as if they were data. The assumption is that one could

not transfer control to a number, so a jump with immediate addressing would be

meaningless. However, the instruction JMP $1C8O loads 1C8O16 into the program

counter, just like a load with immediate addressing, even though we conven

tionally say that the instruction uses absolute addressing. Similarly, the instruc

tion JMP (ADDR) loads the program counter with the address from memory

locations ADDR and ADDR+1; it thus acts like a load instruction with absolute

(direct) addressing.

Examples

1. LDX#$20 loads the number 2016 into index register X. LDX $20 loads the

contents of memory location 002016 into index register X.

2. LDA ($40) ,Y loads the accumulator from the address obtained by indexing

with Y from the base address in memory locations 004016 and 004116 (MSB in

004116). Note that if LDA ($40),Y makes sense, then LDA ($41),Y generally

does not, since it uses the base address in memory locations 004116 and 004216.

Thus, the indirect addressing modes generally make sense only if the indirect

addresses are aligned properly on word boundaries; however, the 6502 does not

check this alignment in the way that many computers (particularly IBM

machines) do. The programmer must make sure that all memory locations used

indirectly contain addresses with the bytes arranged properly.

Confusing addresses and their contents is a frequent problem in handling data

structures. For example, the queue of tasks to be executed by a piece of test

equipment might consist of a block of information for each task. That block might

contain

• The starting address of the test routine.

1 42 6502 ASSEMBLY LANGUAGE SUBROUTINES

• The number of seconds for which the test is to run.

• The address in which the result is to be saved.

• The upper and lower thresholds against which the result is to be compared.

• The address of the next block in the queue.

Thus, the block contains data, direct addresses, and indirect addresses. Typical

errors that a programmer could make are

• Transferring control to the memory locations containing the starting address

of the test routine, rather than to the actual starting address.

• Storing the result in the block rather than in the address specified in the

block.

• Using a threshold as an address rather than as data.

• Assuming that the next block starts within the current block, rather than at

the address given in the current block.

Jump tables are another common source of errors. The following are alterna

tive implementations:

• Form a table ofjump instructions and transfer control to the correct element

(for example, to the third jump instruction).

• Form a table of destination addresses and transfer control to the contents of

the correct element (for example, to the address in the third element).

You will surely have problems if you try to use the jump instructions as

indirect addresses or if you try to execute the indirect addresses.

FORMAT ERRORS

The rules you should remember are

• A $ in front of a number (or an H at the end) indicates hexadecimal to the as

sembler and a % in front or a B at the end indicates binary. Be careful — some as

semblers use different symbols.

• The default mode of most assemblers is decimal; that is, most assemblers

assume all numbers to be decimal unless they are specifically designated as some

thing else. A few assemblers (such as Apple's miniassembler and the mnemonic

entry mode in Rockwell's AIM-65) assume hexadecimal as a default.

• ADC and SBC instructions produce decimal results if the Decimal Mode flag

is 1 and binary results if the Decimal Mode flag is 0. All other instructions,

including DEC, DEX, DEY, INC, INX, and INY, always produce binary results.

CHAPTER 3: COMMON PROGRAMMING ERRORS 143

You should make special efforts to avoid the following common errors:

• Omitting the hexadecimal designation ($ or H) from a hexadecimal data

item or address. The assembler will assume the item to be a decimal number if it

contains no letter digits. It will treat the item as a name if it is valid (it must start

with a letter in most assemblers). The assembler will indicate an error only if the

item cannot be interpreted as a decimal number or a name.

• Omitting the binary designation (% or B) from a binary data item. The as

sembler will assume it to be a decimal number.

• Confusing decimal (BCD) representations with binary representations.

Remember, ten is not an integral power of two, so the binary and BCD represen

tations are not the same beyond nine. Standard BCD constants must be desig

nated as hexadecimal numbers, not as decimal numbers.

• Confusing binary or decimal representations with ASCII representations. An

ASCII input device produces ASCII characters and an ASCII output device re

sponds to ASCII characters.

Examples

1. LDA 2000

This instruction loads the accumulator from memory address 200010 (07D016),

not address 200016. The assembler will not produce an error message, since 2000

is a valid decimal number.

2. AND #00000011

This instruction logically ANDs the accumulator with the decimal number 11

(10112), not with the binary number 11 (310). The assembler will not produce an

error message, since 00000011 is a valid decimal number despite its unusual

form.

3. ADC #40

This instruction adds 4010 (not 40,6 = 6410) and the Carry to the accumulator.

Note that 4010 is not the same as 40 BCD, which is 4016; 4010 = 2816. The assem

bler will not produce an error message, since 40 is a valid decimal number.

4. LDA #3

This instruction loads the accumulator with the number 3. If this value is now

sent to an ASCII output device, it will respond as if it had received the character

ETX (0316), not the character 3 (3316). The correct version is

LDA #f3 ;GET AN ASCII 3

5. If memory location 004016 contains a single digit, the sequence

LDA $40

STA PORT

1 44 6502 ASSEMBLY LANGUAGE SUBROUTINES

will not print that digit on an ASCII output device. The correct sequence is

LDA $40 ;GET DECIMAL DIGIT

CLC

ADC #'0 ;ADJUST TO ASCII

STA PORT

or

LDA $40 ;GET DECIMAL DIGIT

ORA #%00110000 ;ADJUST TO ASCII

STA PORT

6. If input port IPORT contains a single ASCII decimal digit, the sequence

LDA IPORT

STA $40

will not store the actual digit in memory location 0040l6. Instead, it will store the

ASCII version, which is the actual digit plus 30l6. The correct sequence is

LDA IPORT ;GET ASCII DIGIT

SEC

SBC #'0 ;ADJUST TO DECIMAL

STA $40

or

LDA IPORT ;GET ASCII DIGIT

AND #%11001111 ;ADJUST TO DECIMAL

STA $40

Handling decimal arithmetic on the 6502 microprocessor is simple, since the pro

cessor has a Decimal Mode (D) flag. When that flag is set (by SED), all additions

and subtractions produce decimal results. So, the following sequences implement

decimal addition and subtraction:

• Decimal addition of memory location ADDR to the accumulator

SED :ENTER DECIMAL MODE

CLC

ADC ADDR ;ADD DECIMAL

CLD :LEAVE DECIMAL MODE

• Decimal subtraction of memory location ADDR from the accumulator

SED :ENTER DECIMAL MODE

SEC

SBC ADDR ;SUBTRACT DECIMAL

CLD ;LEAVE DECIMAL MODE

Since increment and decrement instructions always produce binary results, we

must use the following sequences (assuming the D flag is set).

CHAPTER 3: COMMON PROGRAMMING ERRORS 145

Increment memory location 0040I6 in the decimal mode

LDA $40

CLC

ADC #1

STA $40

Decrement memory location 004016 in the decimal mode

LDA $40

SEC

SBC #1

STA $40

The problem with the decimal mode is that it has implicit effects. That is, the

same ADC and SBC instructions with the same data will produce different

results, depending on the state of the Decimal Mode flag. The following pro

cedures will reduce the likelihood of the implicit effects causing unforeseen

errors:

• Initialize the Decimal Mode flag (with CLD) as part of the regular system

initialization. Note that RESET has no effect on the Decimal Mode flag.

• Clear the Decimal Mode flag as soon as you are through performing decimal

arithmetic.

• Initialize the Decimal Mode flag in interrupt service routines that include

ADC or SBC instructions. That is, such service routines should execute CLD

before performing any binary addition or subtraction.

HANDLING ARRAYS INCORRECTLY

The following situations are the most common sources of errors:

• If you are counting an index register down to 0, the zero index value may

never be used. The solution is to reduce the base address or addresses by 1. For

example, if the terminating sequence in a loop is

DEX

BNE LOOP

the processor will fall through as soon as X is decremented to 0. A typical adjusted

loop (clearing NTIMES bytes of memory) is

CLEAR

LDX

LDA

STA

DEX

BNE

#NTIMES

#0

BASE-1,X

CLEAR

146 6502 ASSEMBLY LANGUAGE SUBROUTINES

Note the use of BASE—1 in the indexed store instruction. The program clears

addresses BASE through BASE + NTIMES-1.

• Although working backward through an array is often more efficient than

working forward, programmers generally find it confusing. Remember that the

address BASE+ (X) contains the previous entry in a loop like the example shown

above. Although the processor can work backward just as easily as it can work for

ward, programmers usually find themselves conditioned to thinking ahead.

• Be careful not to execute one extra iteration or stop one short. Remember,

memory locations BASE through BASE+N contain N+1 entries, not N entries.

It is easy to forget the last entry or, as shown above, drop the first one. On the

other hand, if you have N entries, they will occupy memory locations BASE

through BASE+N-1; now it is easy to find yourself working off the end of the

array.

• You cannot extend absolute indexed addressing or zero-page indexed

addressing beyond 256 bytes. If an index register contains FF16, incrementing it

will produce a result of 00. Similarly, if an index register contains 00, decrement

ing it will produce a result of FF16. Thus, you must be careful about incrementing

or decrementing index registers when you might accidentally exceed the capacity

of eight bits. To extend loops beyond 256 bytes, use the indirect indexed (postin-

dexed) addressing mode. Then the following sequence will add 1 to the more sig

nificant byte of the indirect address when index register Y is incremented to 0.

INY ;INCREMENT INDEX REGISTER

BNE DONE

INC INDIR+1

DONE NOP

Here INDIR and INDIR+1 are the locations on page 0 that contain the indirect

address.

Example

1. Let us assume (INDIR) = 8016 and (INDIR+1) = 4C16, so that the initial

base address is 4C8016. If the loop refers to the address (INDIR), Y, the effective

address is (INDIR+1) (INDIR) + Y or 4C8016 + (Y). When Y = FF16, the

effective address is

4C8016 + (Y) = 4C8016 + FF16 = 4D7F16

The sequence shown above for incrementing the index and the indirect address

produces the results

(Y) = (Y) + 1 = 00

(INDIR+1) = (INDIR + 1) = 1 = 4D16

CHAPTER 3: COMMON PROGRAMMING ERRORS 1 47

The effective address for the next iteration will be

4D8016 + (Y) = 4D8016 = 0016 = 4D8016

which is the next higher address in the normal consecutive sequence.

IMPLICIT EFFECTS

Some of the implicit effects you should remember are

• The changing of the Negative and Zero flags by load and transfer instruc

tions, such as LDA, LDX, LDY, PLA, TAX, TAY, TSX, TXA, and TYA.

• The dependence of the results of ADC and SBC instructions on the values of

the Carry and Decimal Mode flags.

• The special use of the Negative and Overflow flags by the BIT instruction.

The use of the memory address one larger than the specified one in the

indirect, indirect indexed, and indexed indirect addressing modes.

• The changing of the stack pointer by PHA, PHP, PLA, PLP, JSR, RTS, RTI,

and BRK. Note that JSR and RTS change the stack pointer by 2, and BRK and

RTI change it by 3.

• The saving of the return address minus 1 by JSR and the addition of 1 to the

restored address by RTS.

• The inclusion of the Carry in the rotate instructions ROL and ROR. The

rotation involves nine bits, not eight bits.

Examples

1. LDX $40

This instruction affects the Negative and Zero flags, so those flags will no

longer reflect the value in the accumulator or the result of the most recent opera

tion.

2. ADC #$20

This instruction adds in the Carry flag as well as the immediate data (2016). The

result will be binary if the Decimal Mode flag is cleared, but BCD if the Decimal

Mode flag is set.

3. BIT $1700

This instruction sets the Overflow flag from the value of bit 6 of memory loca

tion 170016. This is the only instruction that has a completely unexpected effect

on that flag.

1 48 6502 ASSEMBLY LANGUAGE SUBROUTINES

4. JMP ($1COO)

This instruction transfers control to the address in memory locations 1COO16

and 1CO116 (MSB in lC01l6). Note that lC01l6 is involved even though it is not

specified, since indirect addresses always occupy two bytes of memory.

5. PHA

This instruction not only saves the accumulator in memory, but it also decre

ments the stack pointer by 1.

6. RTS

This instruction not only loads the program counter from the top two locations

in the stack, but it also increments the stack pointer by 2 and the program counter

by 1.

7. ROR A

This instruction rotates the accumulator right 1 bit, moving the former con

tents of bit position 0 into the Carry and the former contents of the Carry into bit

position 7.

INITIALIZATION ERRORS

The initialization routines must perform the following tasks, either for the

microcomputer system as a whole or for particular routines:

• Load all RAM locations with initial values. This includes indirect addresses

and other temporary storage on page 0. You cannot assume that a memory loca

tion contains 0 just because you have not used it.

• Load all registers and flags with initial values. Reset initializes only the Inter

rupt Disable flag (to 1). Note, in particular, the need to initialize the Decimal

Mode flag (usually with CLD) and the stack pointer (using the LDX, TXS

sequence).

• Load all counters and indirect addresses with initial values. Be particularly

careful of addresses on page 0 that are used in either the indirect indexed (postin-

dexed) addressing mode or the indexed indirect (preindexed) mode.

ORGANIZING THE PROGRAM INCORRECTLY

The following problems are the most common:

• Failing to initialize a register, flag, or memory location. You cannot assume

CHAPTER 3: COMMON PROGRAMMING ERRORS 149

that a register, flag, or memory location contains zero just because you have not

used it.

• Accidentally reinitializing a register, flag, memory location, index, counter,

or indirect address. Be sure that your branches do not cause some or all of the

initialization instructions to be repeated.

• Failing to update indexes, counters, or indirect addresses. A problem here

may be one path that branches around the updating instructions or changes some

of the conditions before executing those instructions.

• Forgetting to save intermediate or final results. It is remarkably easy to

calculate a result and then load something else into the accumulator. Errors like

this are particularly difficult to locate, since all the instructions that calculate the

result work properly and yet the result itself is being lost. A common problem

here is for a branch to transfer control to an instruction that writes over the result

that was just calculated.

• Forgetting to branch around instructions that should not be executed in a

particular path. Remember, the computer will execute instructions consecutively

unless told specifically to do otherwise. Thus, it is easy for a program to acciden

tally fall through to a section that the programmer expects it to reach only via a

branch. An awkward feature of the 6502 is its lack of an unconditional relative

branch; you must either use JMP with absolute addressing or set a condition and

branch on it holding (SEC, BCS, DEST and CLV, BVC DEST).

ERROR RECOGNITION BY ASSEMBLERS

Most assemblers will immediately recognize the following common errors:

• Undefined operation code (usually a misspelling or an omission)

• Undefined name (often a misspelling or an omitted definition)

• Illegal character (for example, a 2 in a binary number or a B in a decimal

number)

• Illegal format (for example, an incorrect delimiter or the wrong register or

operand)

• Illegal value (usually a number too large for 8 or 16 bits)

• Missing operand

• Double definition (two different values assigned to one name)

• Illegal label (for example, a label attached to a pseudo-operation that does
not allow a label)

• Missing label (for example, on an = pseudo-operation that requires one).

1 50 6502 ASSEMBLY LANGUAGE SUBROUTINES

These errors are generally easy to correct. Often the only problem is an error,

such as omitting the semicolon or other delimiter in front of a comment, that

confuses the assembler and results in a series of meaningless error messages.

There are, however, many common errors that assemblers will not recognize.

The programmer should be aware that his or her program may contain such

errors even if the assembler does not report them. Typical examples are

• Omitted lines. Obviously, the assembler cannot identify a completely omit

ted line unless that line contains a label or definition that is used later in the pro

gram. The easiest lines to omit are repetitions (that is, one or more lines that are

the same or sequences that start the same) or instructions that seem to be

unnecessary. Typical repetitions are series of shifts, branches, increments, or

decrements. Instructions that may appear unnecessary include CLC, SEC, and so

forth.

• Omitted designations. The assembler cannot tell if you omitted a designation

such as #, H, $, B, or % unless the omission results in an illegal character (such as

C in a decimal number). Otherwise, the assembler will assume all addresses to be

direct and all numbers to be decimal. Problems occur with numbers that are valid

as either decimal or hexadecimal values (such as 44 or 2050) and with binary

numbers (such as 00000110).

• Misspellings that are still valid. Typical examples are typing BCC instead of

BCS, LDX instead of LDY, and SEC instead of SED. Unless the misspelling is

invalid, the assembler has no way of knowing what you meant. Valid misspellings

are often a problem if you use similar names or labels such as XXX and XXXX,

L121 and LI 12, or VAR1I and VARII.

• Designating instructions as comments. If you place a semicolon at the start of

an instruction line, the assembler will treat the line as a comment. This can be a

perplexing error, since the line appears in the listing but is not assembled into

object code.

Sometimes you can confuse the assembler by entering invalid instructions. An

assembler may accept a totally illogical entry simply because its developer never

considered such possibilities. The result can be unpredictable, much like the

results of giving someone a completely wrong number (for example, a telephone

number instead of a street address or a driver license number instead of a credit

card number). Some cases in which a 6502 assembler can go wrong are

• If you designate an impossible register or addressing mode. Some assemblers

will accept instructions like INC A, LDA ($40),X, or LDY BASE,Y. They will

produce erroneous object code without any warning.

• If you enter an invalid digit, such as Q in a decimal or hexadecimal number

or 7 in a binary number. Some assemblers will assign values to such erroneous

digits in an aribitrary manner.

CHAPTER 3: COMMON PROGRAMMING ERRORS 151

• If you enter an invalid operand such as LDA #$HX. Some assemblers will

accept this and generate incorrect code.

The assembler will recognize only errors that its developer anticipated. Pro

grammers are often able to make mistakes that the developer never imagined,

much as automobile drivers are often capable of performing maneuvers that

never occurred in the wildest dreams of a highway designer or traffic planner.

Note that only a line-by-line hand checking of the program will find errors that

the assembler does not recognize.

IMPLEMENTATION ERRORS

Occasionally, a microprocessor's instructions simply do not work the way the

designers or anyone else would expect. The 6502 has one implementation error

that is, fortunately, quite rare. The instruction JMP ($XXFF) where the Xs

represent any page number, does not work correctly. One would expect this

instruction to obtain the destination address from memory locations XXFF and

(XX+D00. Instead, it apparently does not increment the more significant byte

of the indirect address; it therefore obtains the destination address from memory

locations XXFF and XX00. For example, JMP ($1CFF) will jump to the address

stored in memory locations 1CFF16 (LSB) and 1COO16 (MSB), surely a curious

outcome. Most assemblers expect the programmer to ensure that no indirect

jumps ever obtain their destination addresses across page boundaries.

COMMON ERRORS IN I/O DRIVERS

Most errors in I/O drivers involve both hardware and software, so they are

often difficult to categorize. Some mistakes you should watch for are

• Confusing input ports and output ports. Many I/O interfaces use the READ/

WRITE line for addressing, so that reading and writing the same memory address

results in operations on different physical registers. Even when this is not done, it

may still be impossible to read back output data unless it is latched and buffered.

• Attempting to perform operations that are physically impossible. Reading

data from an output device (such as a display) or sending data to an input device

(such as a keyboard) makes no physical sense. However, accidentally using the

wrong address will cause no assembly errors; the address, after all, is valid and the

assembler has no way of knowing that certain operations cannot be performed on

it. Similarly, a program may attempt to save data in a nonexistent address or in a

ROM.

152 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Forgetting implicit hardware effects. Sometimes transferring data to or from

a port will change the status lines automatically, particularly if you are using a

6520 or 6522 parallel interface. Even reading or writing a port while debugging a

program will change the status lines. Be particularly careful of instructions like

comparisons and BIT which read a memory address even though they do not

change any registers, and instructions like decrement, increment, and shift which

both read and write a memory address (the actual operation, of course, takes

place inside the processor).

• Reading or writing without checking status. Many devices can accept or pro

vide data only when a status line indicates they are ready. Transferring data to or

from them at other times will have unpredictable effects.

• Ignoring the differences between input and output. Remember that an input

device normally starts out in the not ready state — it has no data available

although the computer is ready to accept data. On the other hand, an output

device normally starts out in the ready state, that is, it could accept data but the

computer usually has none to send it. In many situations, particularly when using

6520, 6522, 6551, or 6850 devices, you may have to disable the outputs initially

or send a null character (something that has no effect) to each output port just to

change its state from ready to not ready initially.

• Failing to keep copies of output data. Remember that you may not be able to

read the data back from the output port. If you need to repeat it later as part of

repeating a transmission that was incorrectly received, change part of it (turn on

or off one of several indicator lights attached to the same port), or save it as part

of the interrupted status (the data is the current priority level). You must save a

copy in memory. The copy must be updated every time the actual data is changed.

• Reading data before it is stable or while it is changing. Be sure that you

understand exactly when the input device is guaranteed to produce stable data. In

the case of switches that may bounce, you may want to sample them twice (more

than a debouncing time apart) before taking any action. In the case of keys that

may bounce, you may want to take action only when they are released rather than

when they are pressed. The action on release also forces the operator to release

the key rather than holding it down. In the case of persistent data (such as in

serial I/O), you should center the reception, that is, read the data near the centers

of the pulses rather than at the edges where the values may be changing.

• Forgetting to reverse the polarity of data being transferred to or from devices

that operate in negative logic. Many simple I/O devices, such as switches and dis

plays, use negative logic. A logic 0 means that a switch is closed or a display is lit.

Common ten-position switches or dials also often produce data in negative logic,

as do many encoders. The solution is simple — complement the data (using EOR

#$FF) after reading it or before sending it.

CHAPTER 3: COMMON PROGRAMMING ERRORS 1 53

• Confusing actual I/O ports with registers that are inside I/O devices. Pro

grammable I/O devices, such as the 6520, 6522, 6551, and 6850, have control or

command registers which determine how the device operates, and status registers

that reflect the current state of the device or the transfer. These registers are

inside the I/O devices; they are not connected to peripherals. Transferring data to

or from status or control registers is not the same as transferring data to or from

actual I/O ports.

• Using bidirectional ports improperly. Many devices, such as the 6520, 6522,

6530, and 6532, have bidirectional I/O ports. The ports (and perhaps even

individual lines) can be used either as inputs or outputs. Normally, resetting the

computer to avoid initial transients makes these ports inputs, so you must

explicitly change them to outputs if necessary. Be cautious when reading bits or

ports that are designated as outputs or writing into bits or ports that are desig

nated as inputs. The only way to determine what will happen is to read the docu

mentation for the specific device.

• Forgetting to clear status after performing an I/O operation. Once the pro

cessor has read data from an input port, that port should revert to the not ready

state. Similarly, once the processor has written data into an output port, that port

should revert to the not ready state. Some I/O devices change the status of their

ports automatically after input or output operations, but others either do not or

(as in the 6520) change status automatically only after input operations. Leaving

the status set can result in an endless loop or highly erratic operation.

COMMON ERRORS IN

INTERRUPT SERVICE ROUTINES

Many interrupt-related errors involve both hardware and software, but some

of the common mistakes include the following:

• Failing to reenable interrupts during the service routine. The 6502 processor

automatically disables interrupts after accepting one. It does reenable interrupts

when RTI is executed, since RTI restores the status register from the stack.

• Failing to save and restore registers. The 6502 does not automatically save

any registers except the program counter and the status register. So the

accumulator, index registers, and scratchpad locations must be saved explicitly in

the stack.

• Saving or restoring registers in the wrong order. Registers must be restored

in the opposite order from that in which they were saved.

154 6502 ASSEMBLY LANGUAGE SUBROUTINES

• Enabling interrupts before establishing priorities and other parameters of the

interrupt system.

• Forgetting that the response to an interrupt includes saving the status

register and the program counter at the top of the stack. The status register is on

top and the program counter value is the actual return address, so the situation

differs from subroutines in which the return address minus 1 is normally at the

top of the stack.

• Not disabling the interrupt during multibyte transfers or instruction

sequences that cannot be interrupted. In particular, you must avoid partial updat

ing of data (such as time) that an interrupt service routine may use. In general,

interrupts should be disabled when the main program is changing memory loca

tions that it shares with interrupt service routines.

• Failing to reenable the interrupt after a sequence that must run with inter

rupts disabled. A corollary problem here is that you do not want to enable inter

rupts if they were not enabled when the sequence was entered. The solution is to

save the previous state of the Interrupt Disable flag (using PHP) before execut

ing the sequence and restore the previous state (using PLP) afterward. Note,

however, that PLP restores the entire status register.

• Failing to initialize or establish the value of the Decimal Mode flag. An inter

rupt service routine should not assume a particular value (0) for the D flag.

Instead, it should initialize that flag with CLD or SED if it executes ADC or SBC

instructions. There is no need to save or restore the old D flag since that is done

automatically as part of the saving and restoring of the status register. Initializing

the D flag avoids problems if the service routine is entered from a program that

runs with the D flag set.

• Failing to clear the signal that caused the interrupt. The service routine must

clear the interrupt even if it does not require an immediate response or any input

or output operations. Even when the processor has, for example, no data to send

to an interrupting output device, it must still either clear the interrrupt or disable

it. Otherwise, the processor will get caught in an endless loop. Similarly, a real

time clock interrupt will typically require no servicing other than an updating of

time, but the service routine still must clear the clock interrupt. This clearing may

involve reading a 6520 or 6522 I/O port or timer.

• Failing to communicate with the main program. The main program will not

realize that the interrupt has been serviced unless it is informed explicitly. The

usual way to inform the main program is to have the interrupt service routine

change a flag that the main program can examine. The main program will then

know that the service routine has been executed. The procedure is comparable to

the practice of a postal patron raising a flag to indicate that he or she has mail to be

picked up. The postman lowers the flag after picking up the mail. Note that this

CHAPTER 3: COMMON PROGRAMMING ERRORS 1 55

simple procedure means that the main program must examine the flag often

enough to avoid missing data or messages. Of course, the programmer can always

provide an intermediate storage area (or buffer) that can hold many data items.

• Failing to save and restore priority. The priority of an interrupt is often held

in a write-only register or in a memory location. That priority must be saved just

like the registers and restored properly at the end of the service routine. If the

priority register is write-only, a copy of its contents must be saved in memory.

Introduction to the

Program Section

The program section contains sets of assembly language subroutines for the

6502 microprocessor. Each subroutine is documented with an introductory sec

tion and comments; each is followed by at least one example of its use. The

introductory material contains the following information:

1. Purpose of the routine

2. Procedure followed

3. Registers used

4. Execution time

5. Program size

6. Data memory required

7. Special cases

8. Entry conditions

9. Exit conditions

10. Examples

We have made each routine as general as possible. This is most difficult in the

case of the input/output (I/O) and interrupt service routines described in Chap

ters 10 and 11, since in practice these routines are always computer-dependent.

In such cases, we have limited the computer dependence to generalized input and

output handlers and interrupt managers. We have drawn specific examples there

from the popular Apple II computer, but the general principles are applicable to

other 6502-based computers as well.

In all routines, we have used the following parameter passing techniques:

1. A single 8-bit parameter is passed in the accumulator. A second 8-bit

parameter is passed in index register Y.

157

158 6502 ASSEMBLY LANGUAGE SUBROUTINES

2. A single 16-bit parameter is passed in the accumulator and index register Y

with the more significant byte in the accumulator. An accompanying 8-bit

parameter is passed in index register X.

3. Larger numbers of parameters are passed in the stack, either directly or

indirectly. We assume that subroutines are entered via a JSR instruction that

places the return address at the top of the stack, and hence on top of the

parameters.

Where there has been a choice between execution time and memory usage, we

have chosen the approach that minimizes execution time. For example, in the

case of arrays that are more than 256 bytes long, it is faster to handle the full

pages, then handle the remaining partial page separately, than to handle the

entire array in a single loop. The reason is that the first approach can use an 8-bit

counter in an index register, whereas the second approach requires a 16-bit

counter in memory.

We have also chosen the approach that minimizes the number of repetitive

calculations. For example, in the case of array indexing, the number of bytes be

tween the starting addresses of elements differing only by one in a particular

subscript (known as the size of that subscript) depends only on the number of

bytes per element and the bounds of the array. Thus, the sizes of the various

subscripts can be calculated as soon as the bounds of the array are known; the

sizes are therefore used as parameters for the indexing routines, so that they need

not be calculated each time a particular array is indexed.

As for execution time, we have specified it for most short routines. For longer

routines, we have given an approximate execution time. The execution time of

programs involving many branches will obviously depend on which path is

followed in a particular case. This is further complicated for the 6502 by the fact

that branch instructions themselves require different numbers of clock cycles

depending on whether the branch is not taken, taken within the current page, or

taken across a page boundary. Thus, a precise execution time is often impossible

to define. The documentation always contains at least one typical example show

ing an approximate or maximum execution time.

Our philosophy on error indications and special cases has been the following:

1. Routines should provide an easily tested indicator (such as the Carry flag)

of whether any errors or exceptions have occurred.

2. Trivial cases, such as no elements in an array or strings of zero length,

should result in immediate exits with minimal effect on the underlying data.

3. Misspecified data (such as a maximum string length of zero or an index

beyond the end of an array) should result in immediate exits with minimal effect

on the underlying data.

INTRODUCTION TO THE PROGRAM SECTION 1 59

4. The documentation should include a summary of errors and exceptions

(under the heading of "Special Cases").

5. Exceptions that may actually be convenient for the user (such as deleting

more characters than could possibly be left in a string rather than counting the

precise number) should be handled in a reasonable way, but should still be indi

cated as errors.

Obviously, no method of handling errors or exceptions can ever be completely

consistent or well suited to all applications. We have taken the approach that a

reasonable set of subroutines must deal with this issue, rather than ignoring it or

assuming that the user will always provide data in the proper form.

The subroutines are listed as follows:

Code Conversion

4A Binary to BCD Conversion 163

4B BCD to Binary Conversion 166

iC Binary to Hexadecimal ASCII Conversion 168

4D Hexadecimal ASCII to Binary Conversion 171

4E Conversion of a Binary Number to a String of ASCII Decimal Digits 174

4F Conversion of a String of ASCII Decimal Digits to a Binary Number 180

4G Lower-Case ASCII to Upper-Case ASCII Conversion 185

4H ASCII to EBCDIC Conversion 187

41 EBCDIC to ASCII Conversion 190

Array Manipulation and Indexing

5A Memory Fill 193

5B Block Move 197

5C One-Dimensional Byte Array Indexing 204

5D One-Dimensional Word Array Indexing 207

5E Two-Dimensional Byte Array Indexing 210

5F Two-Dimensional Word Array Indexing 215

5G N-Dimensional Array Indexing 221

Arithmetic

6A 16-Bit Addition 230

6B 16-Bit Subtraction 233

6C 16-Bit Multiplication 236

6D 16-Bit Division 240

1 60 6502 ASSEMBLY LANGUAGE SUBROUTINES

6E 16-Bit Comparison 249

6F Multiple-Precision Binary Addition 253

6G Multiple-Precision Binary Subtraction 257

6H Multiple-Precision Binary Multiplication 261

61 Multiple-Precision Binary Division 267

6J Multiple-Precision Binary Comparison 275

6K Multiple-Precision Decimal Addition 280

6L Multiple-Precision Decimal Subtraction 285

6M Multiple-Precision Decimal Multiplication 290

6N Multiple-Precision Decimal Division 297

60 Multiple-Precision Decimal Comparison 305

Bit Manipulation and Shifts

7A Bit Set 306

7B Bit Clear 309

7C Bit Test 312

7D Bit Field Extraction 315

7E Bit Field Insertion 320

7F Multiple-Precision Arithmetic Shift Right 325

7G Multiple-Precision Logical Shift Left 329

7H Multiple-Precision Logical Shift Right 333

71 Multiple-Precision Rotate Right 337

7J Multiple-Precision Rotate Left 341

String Manipulation

8A String Comparison 345

8B String Concatenation 349

8C Find the Position of a Substring 355

8D Copy a Substring from a String 361

8E Delete a Substring from a String 368

8F Insert a Substring into a String 374

Array Operations

9A 8-Bit Array Summation 382

9B 16-Bit Array Summation 385

9C Find Maximum Byte-Length Element 389

9D Find Minimum Byte-Length Element 393

9E Binary Search 397

9F Bubble Sort 403

INTRODUCTION TO THE PROGRAM SECTION 161

9G RAM Test 407

9H Jump Table 415

Input/Output

10A Read a Line of Characters from a Terminal 418

1 OB Write a Line of Characters to an Output Device 425

IOC Generate Even Parity 428

10D Check Parity 431

10E CRC-16 Checking and Generation 434

10F I/O Device Table Handler 440

10G Initialize I/O Ports 454

10H Delay Milliseconds 460

Interrupts

11A Unbuffered Interrupt-Driven Input/Output Using a 6850 ACIA 464

11B Unbuffered Interrupt/Driven Input/Output Using a 6522 VIA 472

11C Buffered Interrupt-Driven Input/Output Using a 6850 ACIA 480

11D Real-Time Clock and Calendar 490

Binary to BCD Conversion (BN2BCD) 4A

Converts one byte of binary data to two
bytes of BCD data.

Procedure: The program subtracts 100

repeatedly from the original data to deter

mine the hundreds digit, then subtracts ten

repeatedly from the remainder to determine

the tens digit, and finally shifts the tens digit

left four positions and combines it with the

ones digit.

Registers Used: All

Execution Time: 133 cycles maximum, depends

on the number of subtractions required to deter

mine the tens and hundreds digits.

Program Size: 38 bytes

Data Memory Required: One byte anywhere in

RAM (address TEMP).

Entry Conditions

Binary data in the accumulator.

Exit Conditions

Hundreds digit in the accumulator

Tens and ones digits in index register Y.

Examples

1. Data: (A) *= 6E16 (110 decimal)

Result: (A) = 0116 (hundreds digit)

(Y) = 1016 (tens and ones digits)

2. Data: (A) = B716 (183 decimal)

Result: (A) = 0116 (hundreds digit)

(Y) = 83|6 (tens and ones digits)

Title

Name:

Purpose:

Entry:

Exit:

Binary to BCD conversion

BN2BCD

Convert one byte of binary data to two

bytes of BCD data

Register A = binary data

Register A

Register Y

high byte of BCD data

low byte of BCD data

163

164 CODE CONVERSION

Registers used: All

Time: 133 cycles maximum

Size: Program 38 bytes

Data 1 byte

BN2BCD:

D100LP:

D10LP:

; CALCULATE 100 *S DIGIT

DIVIDE BY 100

; Y = QUOTIENT

; A = REMAINDER

LDY #0FFH ;START QUOTIENT AT -1

SEC ;SET CARRY FOR INITIAL SUBTRACTION

INY ;ADD 1 TO QUOTIENT

SBC #100 ;SUBTRACT 100

BCS D100LP ;BRANCH IF A IS STILL LARGER THAN 100

ADC #100 ;ADD THE LAST 100 BACK

TAX ;SAVE REMAINDER

TYA

PHA ;SAVE 100'S DIGIT ON THE STACK

TXA ;GET REMAINDER

; CALCULATE 10'S AND l'S DIGITS

; DIVIDE REMAINDER OF THE 100 *S DIGIT BY 10

; y

; a

LDY

SEC

INY

SBC

BCS

ADC

10*S DIGIT

l'S DIGIT

#0FFH

#10

D10LP

#10

;START QUOTIENT AT -1

;SET CARRY FOR INITIAL SUBTRACTION

;ADD 1 TO QUOTIENT

;BRANCH IF A IS STILL LARGER THAN 10

;ADD THE LAST 10 BACK

;COMBINE 1'S AND 10'S DIGITS

STA

TYA

ASL

ASL

ASL

ASL

ORA

TEMP

A

A

A

A

TEMP

;RETURN WITH Y

TAY

PLA

RTS

;SAVE l'S DIGIT

;GET 10 »S DIGIT

;MOVE 10'S TO HIGH NIBBLE OF A

;OR IN THE 1'S DIGIT

LOW BYTE A = HIGH BYTE

;PLACE IN REG Y

;GET 100'S DIGIT

;DATA

TEMP: .BLOCK 1 TEMPORARY USED TO COMBINE l'S AND 10'S DIGITS

4A BINARY TO BCD CONVERSION (BN2BCD) 165

SAMPLE EXECUTION:

SC0401:

;CONVERT OA HEXADECIMAL TO 10 BCD

LDA #0AH

JSR BN2BCD

BRK ;A=0, Y=10H

;CONVERT FF HEXADECIMAL TO 255 BCD

LDA #0FFH

JSR BN2BCD

BRK ;A=02H, Y=55H

;CONVERT 0 HEXADECIMAL TO 0 BCD

LDA #0

JSR BN2BCD

BRK ;A=0f Y=0

.END

BCD to Binary Conversion (BCD2BN) 4B

Converts one byte of BCD data to one
byte of binary data.

Procedure: The program masks off the

more significant digit, multiplies it by ten

using shifts (10 = 8 + 2, and multiplying by

eight or by two is equivalent to three or one

left shifts, respectively), and adds the pro

duct to the less significant digit.

Registers Used: A, P, Y

Execution Time: 38 cycles

Program Size: 24 bytes

Data Memory Required: One byte anywhere in

RAM (Address TEMP).

Entry Conditions

BCD data in the accumulator.

Examples

1. Data: (A) = 9916

Result: (A) = 6316 = 9910

Exit Conditions

Binary data in the accumulator.

2. Data: (A) = 2316

Result: (A) = 1716 = 2310

Title

Name:

Purpose:

BCD to binary conversion

BCD2BN

Convert one byte of BCD data to one

byte of binary data

Entry: Register A = BCD data

Exit: Register A = Binary data

Registers used: A,P,Y

Time: 38 cycles

166

4B BCD TO BINARY CONVERSION (BCD2BN) 167

Size: Program 24 bytes

Data 1 byte

BCD2BN:

;MULTIPLY UPPER NIBBLE BY 10 AND SAVE IT

; TEMP := UPPER NIBBLE * 10 WHICH EQUALS UPPER NIBBLE * (8+2)

TAY

AND

LSR

STA

LSR

LSR

CLC

ADC

STA

TYA

AND

CLC

ADC

RTS

; DATA

TEMP:

#0F0H

A

TEMP

A

A

TEMP

TEMP

#0FH

TEMP

UPPER NIBBLE * 8

;SAVE ORIGINAL VALUE

;GET UPPER NIBBLE

;DIVIDE BY 2 WHICH

;SAVE * 8

;DIVIDE BY 4

;DIVIDE BY 8: A = UPPER NIBBLE * 2

;REG A = UPPER NIBBLE * 10

;GET ORIGINAL VALUE

;GET LOWER NIBBLE

;ADD TO UPPER NIBBLE

.BLOCK 1

SAMPLE EXECUTION:

SC0402:

;CONVERT 0 BCD TO 0 HEXADECIMAL

LDA #0

JSR BCD2BN

BRK ;A=0

;CONVERT 99 BCD TO 63 HEXADECIMAL

LDA #099H

JSR BCD2BN

BRK ;A=63H

;CONVERT 23 BCD TO 17 HEXADECIMAL

LDA #23H

JSR BCD2BN

BRK ;A=17H

.END

Binary to Hexadecimal ASCII Conversion

(BN2HEX) 4C

Converts one byte of binary data to two
ASCII characters corresponding to the two

hexadecimal digits.

Procedure: The program masks off each

hexadecimal digit separately and converts it

to its ASCII equivalent. This involves a sim

ple addition of 3016 if the digit is decimal. If

the digit is non-decimal, an additional factor

Registers Used: All

Execution Time: 77 cycles plus three extra cycles

for each non-decimal digit.

Program Size: 31 bytes

Data Memory Required: None

of seven must be added to handle the break

between ASCII 9 (3916) and ASCII A (4116).

Entry Conditions

Binary data in the accumulator.

Exit Conditions

ASCII equivalent of more significant

hexadecimal digit in the accumulator

ASCII equivalent of less significant

hexadecimal digit in index register Y.

Examples

1. Data: (A) = FBI6

Result: (A) - 4616 (ASCII F)

(Y) = 4216 (ASCII B)

2. Data: (A) = 5916

Result: (A) = 3516 (ASCII 5)

(Y) = 39I6(ASCII9)

Title

Name:

Purpose:

Entry:

Exit:

Binary to hex ASCII

BN2HEX

Convert one byte of binary data to

two ASCII characters

Register A = Binary data

Register A = First ASCII digit, high order value;
Register Y = Second ASCII digit, low order value;

168

4C BINARY TO HEXADECIMAL ASCII CONVERSION (BN2HEX) 1 69

Registers used: All

Time: Approximately 77 cycles

Size: Program 31 bytes

BN2HEX:

;CONVERT HIGH NIBBLE

TAX

AND

LSR

LSR

LSR

LSR

JSR

PHA

#0F0H

A

A

A

A

NASCII

;CONVERT LOW NIBBLE

TXA

AND

JSR

TAY

PLA

RTS

#0FH

NASCII

;SAVE ORIGINAL VALUE

;GET HIGH NIBBLE

;MOVE TO LOWER NIBBLE

;CONVERT TO ASCII

;SAVE IT ON THE STACK

;GET LOW NIBBLE

;CONVERT TO ASCII

;LOW NIBBLE TO REG Y

;HIGH NIBBLE TO REG A

.•SUBROUTINE NASCII

;PURPOSE: CONVERT A HEXADECIMAL DIGIT TO ASCII

;ENTRY: A = BINARY DATA IN LOWER NIBBLE

;EXIT: A = ASCII CHARACTER

;REGISTERS USED: A,P

NASCII:

NAS1:

CMP

BCC

CLC

ADC

ADC

RTS

#10

NAS1

#7

#f0'

;BRANCH IF HIGH NIBBLE < 10

;ELSE ADD 7 SO AFTER ADDING '0' THE

; CHARACTER WILL BE IN 'A'.-'F1

;MAKE A CHARACTER

SAMPLE EXECUTION:

170 CODE CONVERSION

SC0403:

;C0NVERT 0 TO 'OO1

LDA #0

JSR BN2HEX

BRK ;A='0l=30H, Y=l0l=30H

;CONVERT FF HEX TO 'FF•

LDA #0FFH

JSR BN2HEX

BRK ;A='F'=46H, Y=IFI=46H

;CONVERT 23 HEX TO '231

LDA #23H

JSR BN2HEX

BRK ;A='2'=32H, Y='3'=33H

.END

Hexadecimal ASCII to Binary Conversion

(HEX2BN) 4D

Converts two ASCII characters (repre
senting two hexadecimal digits) to one byte

of binary data.

Procedure: The program converts each

ASCII character separately to a hexadecimal

digit. This involves a simple subtraction of

301? (ASCII zero) if the digit is decimal. If the

digit is non-decimal, an additional factor of

seven must be subtracted to handle the break

between ASCII 9 (3916) and ASCII A (4116).

The program then shifts the more significant

digit left four bits and combines it with the

Registers Used: A, P, Y

Execution Time: 74 cycles plus three extra cycles

for each non-decimal digit.

Program Size: 30 bytes

Data Memory Required: One byte anywhere in

RAM I (address TEMP).

less significant digit. The program does not

check the validity of the ASCII characters

(i.e., whether they are, in fact, the ASCII

representations of hexadecimal digits).

Entry Conditions

More significant ASCII digit in the

accumulator, less significant ASCII

digit in index register Y.

Exit Conditions

Binary data in the accumulator.

Examples:

1. Data: (A) = 4416 (ASCII D)

(Y) = 3716 (ASCII 7)

Result: (A) = D71(

2. Data: (A) = 3116 (ASCII 1)

(Y) = 4216 (ASCII B)

Result: (A) = 1B16

Title

Name:

Purpose:

Hex ASCII to binary

HEX2BN

Convert two ASCII characters to one

byte of binary data

171

172 CODE CONVERSION

Entry: Register A = First ASCII digit, high order value

Register Y = Second ASCII digitf low order value

Exit: Register A = Binary data

Registers used: ArP,Y

Time: Approximately 74 cycles

Size: Program 30 bytes

Data 1 byte

HEX2BN:

PHA

TYA

JSR

STA

PLA

JSR

ASL

ASL

ASL

ASL

ORA

RTS

A2HEX

TEMP

A2HEX

A

A

A

A

TEMP

;SAVE HIGH CHARACTER

;GET LOW CHARACTER

;CONVERT IT

;SAVE LOW NIBBLE

;GET THE HIGH CHARACTER

;CONVERT IT

;SHIFT HIGH NIBBLE TO THE UPPER 4 BITS

;OR IN THE LOW NIBBLE

;SUBROUTINE: A2HEX

;PURPOSE: CONVERT ASCII TO A HEX NIBBLE

;ENTRY: A = ASCII CHARACTER

;EXIT: A = BINARY VALUE OF THE ASCII CHARACTER

;REGISTERS USED: A,P

A2HEX:

A2HEX1:

;DATA

TEMP:

SEC

SBC

CMP

BCC

SBC

RTS

.BLOCK

#•0'

#10

A2HEX1

#7

1

;SUBTRACT ASCII OFFSET

;BRANCH IF A IS A DECIMAL DIGIT

;ELSE SUBTRACT OFFSET FOR LETTERS

SAMPLE EXECUTION:

4D HEXADECIMAL ASCII TO BINARY CONVERSION (HEX2BN) 173

SC0404:

;CONVERT 'C71 TO C7 HEXADECIMAL

LDA #'C

LDY #'7'

JSR HEX2BN

BRK ;A=C7H

;CONVERT '2F' TO 2F HEXADECIMAL

LDA #'2'

LDY i'F1

JSR HEX2BN ;A=2FH

BRK

;CONVERT "23' TO 23 HEXADECIMAL

LDA #'2'

LDY #'3'

JSR HEX2BN

BRK ;A=23H

.END

Conversion of a Binary Number to Decimal ASCII

(BN2DEC) 4E

Converts a 16-bit signed binary number
to an ASCII string, consisting of the length of

the number (in bytes), an ASCII minus sign

(if necessary), and the ASCII digits.

Procedure: The program takes the absolute

value of the number if it is negative and then

keeps dividing by ten until it produces a quo

tient of zero. It converts each digit ofthe quo

tient to ASCII (by adding ASCII 0) and con

catenates the digits along with an ASCII

minus sign (in front) if the original number

was negative.

Registers Used: All

Execution Time: Approximately 7,000 cycles

Program Size: 174 bytes

Data Memory Required: Seven bytes anywhere

in RAM for the return address (two bytes starting

at address RETADR), the sign of the original

value (address NGFLAG), temporary storage for

the original value (two bytes starting at address

VALUE), and temporary storage for the value

mod 10 (two bytes starting at address MOD 10).

Also, two bytes on page 0 for the buffer pointer

(address BUFPTR, taken as 00D016 and 00Dl16

in the listing). This data memory does not include

the output buffer which should be seven bytes

long.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of output buffer address

More significant byte of output buffer

address

Less significant byte of value to convert

More significant byte of value to convert

Exit Conditions
Order in buffer

Length of the string in bytes

ASCII - (if original number was negative)

ASCII digits (most significant digit first)

Examples

1. Data: Value to convert = 3EB716

Result (in output buffer):

05 (number of bytes in buffer)

31 (ASCII 1)

36 (ASCII 6)

30 (ASCII 0)

35 (ASCII 5)

35 (ASCII 5)

Thatis,3EB716= 1605510.

2. Data: Value to convert = FFC816

Result (in output buffer):

03 (number of bytes in buffer)

2D (ASCII -)

35 (ASCII 5)

36 (ASCII 6)

That is, FFC816 = — 56io, when considered as a

signed two's complement number.

174

4E BINARY NUMBER TO ASCII DECIMAL STRING (BN2DEC) 175

Title

Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

Binary to decimal ASCII

BN2DEC

Convert a 16-bit signed binary number

to ASCII data

TOP OP STACK

Low byte of return address,

High byte of return address,

Low byte of the output buffer address,

High byte of the output buffer address,

Low byte of the value to convert,

High byte of the value to convert

The first byte of the buffer is the length,

followed by the characters.

All

Approximately 7,000 cycles

Program 170 bytes

Data 7 bytes plus

2 bytes in page zero

;PAGE ZERO POINTER

BUFPTR: . EQU 0D0H

;PROGRAM

BN2DEC:

;SAVE

PLA

STA

PLA

STA

PLA

STA

PLA

STA

STA

BPL

LDA

SEC

SBC

STA

PARAMETERS

RETADR

RETADR+1

VALUE

VALUE+1

NGFLAG

GETBP

#0

VALUE

VALUE

;PAGE ZERO BUFFER POINTER

;SAVE LOW BYTE OF RETURN ADDRESS

;SAVE HIGH BYTE

;SAVE LOW BYTE OF VALUE

;SAVE HIGH BYTE OF THE VALUE TO CONVERT

;SAVE MSB OF VALUE AS SIGN OF VALUE

;BRANCH IF VALUE IS POSITIVE

;ELSE TAKE ABSOLUTE VALUE (0 - VALUE)

176 CODE CONVERSION

GETBP:

LDA

SBC

STA

PLA

STA

PLA

STA

#0

VALUE+1

VALUE+1

BUFPTR

BUFPTR+1

;SAVE STARTING ADDRESS OF OUTPUT BUFFER

;SET BUFFER TO EMPTY

LDA #0

LDY #0

STA (BUFPTR),Y

;BUFFER[0]

CNVERT:

DVLOOP:

;CONVERT VALUE TO A STRING

;VALUE := VALUE DIV 10

;MOD10 := VALUE MOD 10

LDA #0

STA MOD10

STA MODI0+1

LDX #16

CLC

ROL VALUE

ROL VALUE+1

ROL MOD10

ROL MODI0+1

;CLEAR CARRY

;SHIFT THE CARRY INTO DIVIDEND BIT 0

;WHICH WILL BE THE QUOTIENT

;AND SHIFT DIVIDEND AT THE SAME TIME

;A,Y

SEC

LDA

SBC

TAY

LDA

SBC

BCC

STY

STA

DIVIDEND - DIVISOR

DECCNT:

DEX

BNE

ROL

ROL

MOD10

#10

MODI0+1

#0

DECCNT

MOD10

MOD10+1

DVLOOP

VALUE

VALUE+1

;SAVE LOW BYTE IN REG Y

;SUBTRACT CARRY

;BRANCH IF DIVIDEND < DIVISOR

;ELSE

; NEXT BIT OF QUOTIENT IS A ONE AND SET

; DIVIDEND := DIVIDEND - DIVISOR

;SHIFT IN THE LAST CARRY FOR THE QUOTIENT

;CONCATENATE THE NEXT CHARACTER

4E BINARY NUMBER TO ASCII DECIMAL STRING (BN2DEC) 1 77

CONCH:

EXIT:

POS:

LDA

CLC

ADC

JSR

;IF

LDA

ORA

BNE

LDA

BPL

LDA

JSR

LDA

PHA

LDA

PHA

RTS

MOD10

#'0-

CONCAT

VALUE <> 0 T

VALUE

VALUE+1

CNVERT

NGFLAG

POS

CONCAT

RETADR+1

RETADR

;CONVERT 0..9 TO ASCII

;BRANCH IF VALUE IS NOT ZERO

;BRANCH IF ORIGINAL VALUE WAS POSITIVE

;ELSE

; PUT A MINUS SIGN IN FRONT

;RETURN

SUBROUTINE: CONCAT

;PURPOSE: CONCATENATE THE CHARACTER IN REGISTER A TO THE

FRONT OF THE STRING ACCESSED THROUGH BUFPTR

;ENTRY: BUFPTR[0] = LENGTH

;EXIT: REGISTER A CONCATENATED (PLACED IMMEDIATELY AFTER THE LENGTH BYTE)

;REGISTERS USED: A,P,Y

;SAVE THE CHARACTER ON THE STACK

)NE CHARACTER

;GET CURRENT LENGTH

;BRANCH IF LENGTH = 0

;GET NEXT CHARACTER

;STORE IT

;CONTINUE UNTIL DONE

;GET THE CHARACTER BACK FROM THE STACK

;STORE THE CHARACTER

;GET LENGTH BYTE

CONCAT:

PHA

;MOVE

LDY

LDA

TAY

BEQ

MVELP:

LDA

INY

STA

DEY

DEY

BNE

EXITMR:

PLA

LDY

STA

LDY

LDA

THE BUFFER R

#0

(BUFPTR),Y

EXITMR

(BUFPTR),Y

(BUFPTR),Y

MVELP

#1
(BUFPTR),Y

#0

(BUFPTR),Y

178 CODE CONVERSION

CLC

ADC

STA

RTS

#1

(BUFPTR),Y

;DATA

RETADR: .BLOCK 2

NGFLAG: .BLOCK 1

VALUE: .BLOCK 2

MOD10: .BLOCK 2

;INCREMENT LENGTH BY 1

;UPDATE LENGTH

;SAVE RETURN ADDRESS

;SIGN OF ORIGINAL VALUE

;VALUE TO CONVERT

;MODULO 10 TEMPORARY

SAMPLE

SC0405:

;CONVERT 0 TO '0■

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

BUFADR+1

BUFADR

VALUE1+1

VALUE1

BN2DEC

;CONVERT 32767 TO

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

BUFADR+1

BUFADR

VALUE2+1

VALUE2

BN2DEC

;CONVERT -32768 TO

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

BUFADR+1

BUFADR

VALUE3+1

VALUE3

;HIGH BYTE OF BUFFER ADDRESS

;LOW BYTE BUFFER ADDRESS

;HIGH BYTE OF VALUE

;LOW BYTE OF VALUE

;CONVERT

;BUFFER SHOULD = "01

'32767'

;HIGH BYTE OF BUFFER ADDRESS

;LOW BYTE BUFFER ADDRESS

;HIGH BYTE OF VALUE

;LOW BYTE OF VALUE

;CONVERT

;BUFFER SHOULD = '32767'

'-32768'

;HIGH BYTE OF BUFFER ADDRESS

;LOW BYTE BUFFER ADDRESS

;HIGH BYTE OF VALUE

;LOW BYTE OF VALUE

4E BINARY NUMBER TO ASCII DECIMAL STRING (BN2DEC) 1 79

VALUE1:

VALUE2:

VALUE3:

BUFADR:

BUFFER:

JSR

BRK

JMP

.WORD

.WORD

.WORD

.WORD

.BLOCK

BN2DEC

SC0405

0

32767

-32768

BUFFER

7

;CONVERT

;BUFFER SHOULD «

;TEST VALUE 1

;TEST VALUE 2

;TEST VALUE 3

;BUFFER ADDRESS

;7 BYTE BUFFER

'-32768

• END

Conversion of ASCII Decimal to Binary

(DEC2BN) 4F

Converts an ASCII string consisting of
the length of the number (in bytes), a possi

ble ASCII — or + sign, and a series of ASCII

digits to two bytes of binary data. Note that

the length is an ordinary binary number, not

an ASCII number.

Procedure: The program sets a flag if the

first ASCII character is a minus sign and skips

over a leading plus sign. It then converts each

subsequent digit to decimal (by subtracting

ASCII zero), multiplies the previous digits by

ten (using the fact that 10=8 + 2, so a

multiplication by ten can be reduced to left

shifts and additions), and adds the new digit

to the product. Finally, the program subtracts

the result from zero if the original number

was negative. The program exits

immediately, setting the Carry flag, if it finds

something other than a leading sign or a

decimal digit in the string.

Registers Used: All

Execution Time: 670 cycles (approximately)

Program Size: 171 bytes

Data Memory Required: Four bytes anywhere in

RAM for an index, a two-byte accumulator

(starting address ACCUM), and a flag indicating

the sign of the number (address NGLAG), two-

bytes on page zero for a pointer to the string

(address BUFPTR, taken as 00F016 and 00F116 in

the listing).

Special Cases:

1. If the string contains something other than a

leading sign or a decimal digit, the program

retuins with the Carry flag set to 1. The result in

registers A and Y is invalid.

2. If the string contains only a leading sign

(ASCII + or ASCII -), the program returns

with the Carry flag set to 1 and a result of zero.

Entry Conditions

(A) = More significant byte of string

address

(Y) = Less significant byte of string

address

Exit Conditions

(A) = More significant byte of binary value

(Y) = Less significant byte of binary value

Carry flag is 0 if the string was valid; Carry

flag is 1 if the string contained an invalid

character. Note that the result is a signed

two's complement 16-bit number.

Examples

1. Data: String consists of

04 (number of bytes in string)

31 (ASCII 1)

32 (ASCII 2)

33 (ASCII 3)

34 (ASCII 4)

That is, the number is +1,23410.

180

Result: (A) = 0416 (more significant byte of

binary data)

(Y) = C2l6 (less significant byte of
binary data)

That is, the number -I- 1234l0 = 04C2!

4F ASCII DECIMAL STRING TO BINARY NUMBER (DEC2BN) 181

2. Data: String consists of Result: (A) = 8016 (more significant byte of binary

06 (number of bytes in string) dfta> .
2D (ASCII —) ™ = ^16 (less significant byte of binary

33 (ASCII 3) data>
32 (ASCII 2) That is, the number —32,75010 = 801216.

37 (ASCII 7)

35 (ASCII 5)
30 (ASCII 0)

That is, the number is -32,75010.

Title Decimal ASCII to binary ;

Name: DEC2BN

;

; Purpose: Convert ASCII characters to two bytes of binary ;

; data. ?

;

; Entry: Register A = high byte of string address ;

; Register Y = low byte of string adddress ;

; The first byte of the string is the length of ;

; the string. ?

;

; Exit: Register A = High byte of the value ;

; Register Y - Low byte of the value ;

IF NO ERRORS TH|EN

CARRY FLAG = 0

. ELSE ;

; CARRY FLAG = 1

;

; Registers used: All ?

;

; Time: Approximately 670 cycles ;

;

; Size: Program 171 bytes ;

; Data 4 bytes plus ;

; 2 bytes in page zero ;

;

?PAGE ZERO LOCATION

BUFPTR: .EQU 0F0H ;PAGE ZERO POINTER TO STRING

;

;PROGRAM

DEC2BN:

STA BUFPTR+1

STY BUFPTR ;SAVE THE STRING ADDRESS

182 CODE CONVERSION

;INITIALIZE

INIT1:

PLUS:

LDY

LDA

TAX

LDA

STA

LDA

STA

STA

STA

;CHECK

TXA

BNE

JMP

LDY

LDA

CMP

BNE

LDA

STA

INC

DEX

BEQ

JMP

CMP

BNE

INC

DEX

BEQ

#0

(BUFPTR),Y

#1
INDEX

#0

ACCUM

ACCUM+1

NGFLAG

;GET LENGTH

; TO REGISTER X

;INDEX := 1

;ACCUM := 0

;SIGN OF NUMBER IS POSITIVE

THAT THE BUFFER IS NOT ZERO

CNVERT:

LDY

LDA

CHKDIG: CMP

BMI

CMP

BPL

PHA

INIT1

EREXIT

INDEX

(BUFPTR),Y

PLUS

#0FFH

NGFLAG

INDEX

EREXIT

CNVERT

#■ + •

CHKDIG

INDEX

EREXIT

INDEX

(BUFPTR),Y

#•0'

EREXIT

#'9'+l

EREXIT

;EXIT WITH ACCUM = 0 IF BUFFER IS EMPTY

;ERROR EXIT IF NOTHING IN BUFFER

;GET FIRST CHARACTER

;IS IT A MINUS ?

;BRANCH IF NOT •-•

;ELSE SIGN OF NUMBER IS NEGATIVE

;SKIP PAST MINUS SIGN

;DECREMENT COUNT

;ERROR EXIT IF ONLY "-" IN BUFFER

;START CONVERSION

;START CONVERSION IF FIRST CHARACTER IS NOT •+•

;DECREMENT COUNT, IGNORE PLUS SIGN

;ERROR EXIT IF ONLY '+• IN BUFFER

;GET NEXT CHARACTER

;ERROR IF < '01 (NOT A DIGIT)

;ERROR IF > '9' (NOT A DIGIT)

;SAVE THE DIGIT ON THE STACK

;VALID DECIMAL DIGIT SO

; ACCUM := ACCUM * 10

■ ACCUM * (8+2)

= (ACCUM * 8) + (ACCUM * 2)
ASL

ROL

LDA

LDY

ASL

ROL

ASL

ROL

CLC

ACCUM

ACCUM+1

ACCUM

ACCUM+1

ACCUM

ACCUM+1

ACCUM

ACCUM+1

;TIMES

;SAVE

;TIMES

2

ACCUM

8

* 2

4F ASCII DECIMAL STRING TO BINARY NUMBER (DEC2BN) 1 83

ADC

STA

TYA

ADC

STA

ACCUM

ACCUM

ACCUM+1

ACCUM+1

;SUM WITH * 2

;ACCUM := ACCUM * 10

D2B1:

;ADD IN THE NEXT DIGIT

; ACCUM := ACCUM + DIGIT

PLA

SEC

SBC

CLC

ADC

STA

BCC

INC

;GET THE DIGIT BACK

INC

DEX

BNE

LDA

BPL

LDA

SEC

SBC

STA

LDA

SBC

STA

t'01

ACCUM

ACCUM

D2B1

ACCUM+1

INDEX

CNVERT

NGFLAG

OKEXIT

#0

ACCUM

ACCUM

#0

ACCUM+1

ACCUM+1

;CONVERT TO BINARY 0..9

;BRANCH IF NO CARRY Tp HIGH BYTE

;ELSE INCREMENT HIGH BYTE

;INCREMENT TO NEXT CHARACTER

;CONTINUE CONVERSION

;BRANCH IF THE VALUE WAS POSITIVE

,-ELSE REPLACE RESULT WITH -RESULT

OKEXIT:

;GET THE BINARY VALUE AND RETURN

CLC

BCC EXIT

EREXIT:

EXIT:

SEC

LDA ACCUM+1

LDY ACCUM

RTS

;DATA

INDEX: .BLOCK 1

ACCUM: .BLOCK 2

NGFLAG: .BLOCK 1

;GET HIGH BYTE OF VALUE

;INDEX INTO THE STRING

;ACCUMULATED VALUE (2 BYTES)

;SIGN OF NUMBER

SAMPLE EXECUTION:

184 CODE CONVERSION

SC0406:

;CONVERT I1234I TO 04D2 HEX

LDA ADRS1+1

LDY ADRS1 ;AY

JSR DEC2BN

BRK ;A =

= ADDRESS OF SI

04, Y = D2 HEX

;CONVERT '-32767' TO 7FFF HEX

LDA ADRS2+1

LDY ADRS2 ;AY = ADDRESS OF S2

JSR DEC2BN

BRK ;A = 7F, Y = FF HEX

;CONVERT '-32768f TO 8000 HEX

;AY = ADDRESS OF S3

;A = 80 HEX, Y = 00 HEX

;ADDRESS OF Si

;ADDRESS OF S2

;ADDRESS OF S3

SIV

S2:

S3;

ADRS1:

ADRS2:

ADRS3:

LDA

LDY

JSR

BRK

.BYTE

.BYTE

.BYTE

• WORD

• WORD

• WORD

ADRS3+1

ADRS3

DEC2BN

4, '1234'

6,'+32767

6,'-32768

SI

S2

S3

• END

Lower-Case to Upper-Case Translation (LC2UC) 4G

Converts an ASCII lower-case letter to its
upper-case equivalent.

Procedure: The program determines from

comparisons whether the data is an ASCII

lower-case letter. If it is, the program

subtracts 2016 from it, thus converting it to its

upper-case equivalent. If it is not, the pro

gram leaves it unchanged.

Registers Used: A, P

Execution Time: 18 cycles if the original

character is valid, fewer cycles otherwise.

Program Size: 12 bytes

Data Memory Required: None

Entry Conditions

Character in the accumulator.

Examples

1. Data: (A) = 6216 (ASCII b)

Result: (A) = 4216 (ASCII B)

Exit Conditions

If the character is an ASCII lower-case

letter, the upper-case equivalent is in

the accumulator. If the character is not

an ASCII lower-case letter, the

accumulator is unchanged.

2. Data: (A) = 74,6 (ASCII t)

Result: (A) = 5416 (ASCII T)

Title

Name:

Purpose:

Entry:

Lower case to upper case translation

LC2UC

Convert one ASCII character to upper case from
lower case if necessary.

Register A = Lower case ASCII character

185

186 CODE CONVERSION

Exit: Register A = Upper case ASCII character if A ;

is lower case, else A is unchanged.;

Registers used: A,P

Time:

Size:

18 cycles if A is lower case, less otherwise

Program 12 bytes

Data none

LC2UC:

EXIT:

CMP

BCC

CMP

BCS

SEC

SBC

fa'

$1
#' z '
EXIT

#20H

RTS

;BRANCH IF < 'a1

;BRANCH IF > 'z'

;CHANGE 'a'.-'z' into 'A'.-'Z

SAMPLE EXECUTION:

SC0407:

;CONVERT LOWER CASE E TO UPPER CASE

LDA #'e'

JSR LC2UC

BRK ;A=IEI=45H

;CONVERT LOWER CASE Z TO UPPER CASE

LDA f'z1

JSR LC2UC

BRK ;A='Z*=5AH

;CONVERT UPPER CASE A TO UPPER CASE A

LDA # 'A'

JSR LC2UC

BRK ;A='A'=41H

.END ;OF PROGRAM

ASCII to EBCDIC Conversion (ASC2EB) 4H

Converts an ASCII character to its
EBCDIC equivalent.

Procedure: The program uses a simple

table lookup with the data as the index and

address EBCDIC as the base. Printable

ASCII characters for which there are no

EBCDIC equivalents are translated to an characters without EBCDIC equivalents are

EBCDIC space (4016); nonprintable ASCII translated to an EBCDIC NUL (0016).

Registers Used: A, P, Y

Execution Time: 14 cycles

Program Size: Seven bytes, plus 128 bytes for the

conversion table.

Data Memory Required: None

Entry Conditions

ASCII character in the accumulator.

Examples

1. Data: (A) = 3516 (ASCII 5)

Result: (A) = F516 (EBCDIC 5)

2. Data: (A) = 7716 (ASCII w)

Result: (A) = A616 (EBCDIC w)

Exit Conditions

EBCDIC equivalent in the accumulator.

3. Data: (A) - 2A16 (ASCII*)

Result: (A) = 5C16 (EBCDIC *)

Title

Name:

Purpose:

Entry:

Exit:

ASCII to EBCDIC conversion
ASC2EB

Convert an ASCII character to its

corresponding EBCDIC character

Register A = ASCII character

Register A = EBCDIC character

187

188 CODE CONVERSION

Registers used: A,P,Y

Time: 14 cycles

Size: Program 7 bytes

Data 128 bytes for the table

ASC2EB:

AND

TAY

LDA

RTS

#7FH

EBCDICfY

;BE SURE BIT 7=0

;USE ASCII AS INDEX INTO EBCDIC TABLE

;GET EBCDIC

;ASCII TO EBCDIC TABLE

; PRINTABLE ASCII CHARACTERS FOR WHICH THERE ARE NO EBCDIC EQUIVALENTS

; ARE TRANSLATED TO AN EBCDIC SPACE (040H), NON PRINTABLE ASCII CHARACTERS

; WITH NO EQUIVALENTS ARE TRANSLATED TO A EBCDIC NUL (00OH)

EBCDIC:

; NUL SOH STX ETX EOT ENG ACK BEL ;ASCII

.BYTE 000H,000H,000H,022H,037H,000Hr000H/000H ;EBCDIC

; BS HT LF VT FF CR SO SI ;ASCII

.BYTE 000H,02BH,025H,000H,000H,02DH,000Hf000H ;EBCDIC

DLE DC1 DC2 DC3 DC4 NAK SYN ETB ;ASCII

.BYTE 000H,000H,000H,000H,037H,000H,000H,000H ;EBCDIC

; CAN EM SUB ESC FS GS RS VS ; ASCI I

.BYTE 000Hr000H,000H,000H,000H,000H,000H,000H ;EBCDIC

SPACE !"#$%&' ;ASCII

.BYTE 040H,05AH,07EH,040Hf05BH,06CH,050H,07CH ;EBCDIC

()*+,-./ ;ASCII
.BYTE 04DHf05DH,05CH/04EH,06BH,060H,04BH,06lH ;EBCDIC

; 01234567 ;ASCII

.BYTE 0F0H, OFlH,0F2H, 0F3H, 0F4H, 0F5H,0F6Hf 0F7H ;EBCDIC

; 8 9 :;< = >? ;ASCII
.BYTE 0F8H,0F9H,07AH,05EH,04CH,07DH,06EH,06FH ;EBCDIC

; @ABCDEFG ;ASCII

.BYTE 07BH,0C1H,0C2H, 0C3H,0C4H,0C5H,0C6H, 0C7H ;EBCDIC

HIJKLMNO ;ASCII

.BYTE 0C8H,0C9H, 0D1H, 0D2H,0D3H,0D4H,0D5H,0D6H ;EBCDIC

. PQRSTUVW ;ASCII

.BYTE 0D7H, 0D8H, 0D9H, 0E2H,0E3H,0E4H,0E5H, 0E6H ;EBCDIC

X Y Z [\] " <- ;ASCII
.BYTE 0E7H,0E8H,0E9H,040H,040H,040H,06AH,040H ;EBCDIC

a b c d e f g ;ASCII

.BYTE 07CH/081Hf082Hf083H/084H#085H,086H#087H ;EBCDIC

; h i j k 1 m n o ;ASCII

.BYTE 088H,089Hf091H/092Hf093H#094Hf095Hf096H ;EBCDIC

; pqrstuvw ;ASCII

.BYTE 097Hr098H,099H,0A2Hr0A3Hr0A4H,0A5Hr0A6H ;EBCDIC

x y z { I } ~ DEL ;ASCII

.BYTE 0A7H,0A8H,0A9H,040H,04FH,040H,05FH,007H ;EBCDIC

4H ASCII TO EBCDIC CONVERSION (ASC2EB) 1 89

SAMPLE EXECUTION:

SC0408:

;CONVERT ASCII 'A1

LDA #'A»

JSR ASC2EB

BRK

;CONVERT ASCII 'I1

LDA t'l1

JSR ASC2EB

BRK

;CONVERT ASCII 'a1

LDA fa1

JSR ASC2EB

BRK

;ASCII 'A1

;EBCDIC 'A1 ■ 0C1H

;ASCII 'I1

;EBCDIC 'I1 « OFlH

.END

;ASCII 'a1

;EBCDIC 'a1 = 081H

;END PROGRAM

EBCDIC to ASCII Conversion (EB2ASC) 41

Converts an EBCDIC character to its
ASCII equivalent.

Procedure: The program uses a simple

table lookup with the data as the index and

address ASCII as the base. Printable

EBCDIC characters for which there are no

ASCII equivalents are translated to an ASCII ters without ASCII equivalents are translated

space (2016); nonprintable EBCDIC charac- to an ASCII NUL (0016).

Registers Used: A, P, Y

Execution Time: 12 cycles

Program Size: Five bytes, plus 256 bytes for the

conversion table.

Data Memory Required: None

Entry Conditions

EBCDIC character in the accumulator.

Examples

1. Data: (A) = 8516 (EBCDIC e)

Result: (A) = 6516 (ASCII e)

Exit Conditions

ASCII equivalent in the accumulator.

2. Data: (A) = 4E16 (EBCDIC +)

Result: (A) = 2B16 (ASCII +)

Title

Name:

Purpose:

EBCDIC to ASCII conversion

EB2ASC

Convert an EBCDIC character to its

corresponding ASCII character

Entry: Register A

Exit: Register A

Registers used: A,P,Y

Time: 12 cycles

EBCDIC character

ASCII character

190

41 EBCDIC TO ASCII CONVERSION (EB2ASC) 191

Size: Program 5 bytes

Data 256 bytes for the table

EB2ASC:

TAY

LDA

RTS

ASCII,Y ;TRANSLATE

;EBCDIC TO ASCII TABLE

; PRINTABLE EBCDIC CHARACTERS FOR WHICH THERE ARE NO ASCII EQUIVALENTS

; ARE TRANSLATED TO AN ASCII SPACE (020H), NON PRINTABLE EBCDIC CHARACTERS

; WITH NO EQUIVALENTS ARE TRANSLATED TO A ASCII NUL (000H)

ASCII:

;

;

;

;

;

}

;

;

;

;

;

r

;

?

;

;

7

r

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

NUL TAB DEL

000H,000H,000H,000H,000H,009H,000H,07FH

OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

NEW LINE

OOOH,OOOH,OOOH,OOOH,OOOH,OODH,OOOH,OOOH

OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH,OOOH

ETX LF

000H,003H,000H,000H,000H,00AH,000H,000H

TAB CR

000H,000H,000H,d09H,000H,00DH,000H,000H

EOT

000H,000H,000H,000H,000H,000H,000H,004h

000H,000H,000H,000H,000H,000H,000H,000H
SPACE

1 ' ,OOOH,00OH,00OH,0O0H,OO0H,00OH,00OH

BRITISH $. < (+ 1

000H,000H,• ' ,'.' ,•<• ,' (• ,' + • , • |•

&

'&' ,000H,000Hf000H,000Hf000H,000H,000H

000Hf000Hr • !• ,'$' ,'*• ,')' ,';' ,«-•

/

'-' ,'/' ,000Hr000H,000H,000H,000Hf000H

, % -.- > ?

000Hf000H,•"• ,',' ,'%• r040Hrl>1 ,'?•

000H,000H,000H,000H,000Hf000H,000H,000H

: e

000Hr000H#■: • ,'§' #lfl ,• = • r ' W ■, 000H

a b c d e £ g

000H,'a' ,'b1 ,'c1 ,'d1 ,'e1 ,'f ,'g1

h i

•h1 ,'i1 ,0O0H,OO0HfOOOHrOO0H#OOOH#000H

j k 1 m n o p

OOOH.'i1 ,'k1 t'l1 ,'m1 .'n1 f'o1 .'d1

q r

;EBCDIC

;ASCH

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC
;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

; EBCDIC

;ASCII

;EBCDIC

192 CODE CONVERSION

.BYTE 'q' ,'r1 ,000H,000H,000H,000H,000H,000H

s t u v w x

.BYTE 000H,000H,'s' ,'t1 ,'u1 ,'v1 ,'W1, 'x1

y z
.BYTE V ,'z1 f000H,000H,000H,000H,000H,000H

.BYTE 000H,000H,000H,000H,000H,000H,000H,000H

.BYTE 000H,000H,000H,000H,000H,000H,000H,000H

A B C D E P G

.BYTE OOOHj'A1 ,'B1 ,'C' ,'D1 ,'E1 ,'P1 ,'G1

H I

.BYTE 'H1 ,'I' ,0OOH,OOOH,OOOH,O0OH,OOOHrOOOH

J K L M N 0 P

.BYTE 000H,'J' ,'K1 ,'L1 ,'M1 ,'N' ,'O« ,'P1

Q R
.BYTE 'Q1 ,'R1 ,000H,000H,000H,000H,000H,000H

S T U V W X

.BYTE 000H,000H, 'S' ,'T1 ,'U1 ,'V1 ,'W, 'X1

Y Z

.BYTE 'Y1 ,'Z1 ^OOOH^OOOH^OOH^OOOH^OOOH.OOOH

01234567

.BYTE '01 j'l1 fI2l .'31 .M1 f'5' ,'6' ,'7'

9

.BYTE '9' ,000H,000Hf000H,00UH,000H,000H,000H

SAMPLE EXECUTION:

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

;EBCDIC

;ASCII

; EBCDIC

;ASCII

;EBCDIC

;ASCII

SC0409:

;CONVERT EBCDIC 'A1

LDA #OC1H

JSR EB2ASC

BRK

;CONVERT EBCDIC 'I1

LDA #OF1H

JSR EB2ASC

BRK

;CONVERT EBCDIC 'a1

LDA #081H

JSR EB2ASC

BRK

;EBCDIC 'A1

;ASCII 'A1 = 041H

;EBCDIC 'I1

;ASCII 'I1 = 031H

• END

;EBCDIC 'a1

;ASCII 'a1 = 061H

;END PROGRAM

Memory Fill (MFILL) 5A

Places a specified value in each byte of a
memory area of known size, starting at a

given address.

Procedure: The program fills all the whole

pages with the specified value first and then

fills the remaining partial page. This approach

is faster than dealing with the entire area in

one loop, since 8-bit counters can be used

instead of a 16-bit counter. The approach

does, however, require somewhat more

memory than a single loop with a 16-bit

counter. A size of 000016 causes an exit with

no memory changed.

Registers Used: All

Execution Time: Approximately 11 cycles per

byte plus 93 cycles overhead.

Program Size: 68 bytes

Data Memory Required: Five bytes anywhere in

RAM for the array size (two bytes starting at

address ARYSZ), the value (one byte at

address VALUE), and the return address (two

bytes starting at address RETADR). Also two

bytes on page 0 for an array pointer (taken as

addresses 00D016 and 00D116 in the listing).

Special Cases:

1. A size of zero causes an immediate exit with

no memory changed.

2. Filling areas occupied or used by the pro

gram itself will cause unpredictable results.

Obviously, filling any part of page 0 requires cau

tion, since both this routine and most systems

programs use that page.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Value to be placed in memory

Less significant byte of area size (in

bytes)

More significant byte of area size (in

bytes)

Less significant byte of starting address

More significant byte of starting address

Exit Conditions

The area from the starting address through

the number of bytes given by the area size is

filled with the specified value. The area filled

thus starts at BASE and continues through

BASE + SIZE - 1 (BASE is the starting

address and SIZE is the area size).

193

194 ARRAY MANIPULATION

Examples

1. Data: Value - FF,
16

Area size (in bytes) = 0380,

Starting address = 1AEO,6

Result: FFJ6 is placed in memory

addresses 1AEOIA through

1ESF,,

2. Data: Value = EA16 (6502 operation

code for NOP)

Area size (in bytes) = 1C6516

Starting address = E34C16

Result: EA16 is placed in memory addresses

E34C16 through FFB016

Title

Name:

Memory fill

MFILL

Purpose:

Entry:

Exit:

Fill an area of memory with a value

TOP OF STACK

Low byte of return address,

High byte of return address,

Value to be placed in memory,

Low byte of area size in bytes,

High byte of area size in bytes,

Low byte of starting address,

High byte of starting address

Area filled with value

Registers used: All

Time:

Size:

Approximately 11 cycles per byte plus

93 cycles overhead.

Program 68 bytes

Data 5 bytes plus

2 bytes in page zero

;PAGE ZERO POINTER

ARYPTR: .EQU 0D0H ;PAGE ZERO POINTER TO THE ARRAY

MFILL:

;POP THE PARAMETERS FROM THE STACK

PLA

5A MEMORY FILL (MFILL) 1 95

STA

PLA

STA

PLA

STA

PLA

STA

PLA

STA

PLA

STA

PLA

STA

LDA

PHA

LDA

PHA

;D0 THE

LDA

LDX

BEQ

LDY

FULLPG:

STA

INY

BNE

INC

DEX

BNE

RETADR

RETADR+1

VALUE

ARYSZ

ARYSZ+1

ARYPTR

ARYPTR+1

RETADR+1

RETADR

FULL PAGES

VALUE

ARYSZ+1

PARTPG

#0

(ARYPTR),Y

FULLPG

ARYPTR+1

FULLPG

;GET THE RETURN ADDRESS

;GET FILL VALUE

;GET SIZE OF AREA

;GET STARTING ADDRESS OF AREA

;RESTORE RETURN ADDRESS

;GET VALUE FOR FILL

;X = NUMBER OF PAGES TO DO

;BRANCH IF THE HIGH BYTE OF SIZE = 0

;STORE VALUE

;INCREMENT TO NEXT BYTE

;BRANCH IF NOT DONE WITH THIS PAGE

;ADVANCE TO THE NEXT PAGE

;BRANCH IF NOT DONE WITH THE FULL PAGES

•DO THE REMAINING PARTIAL PAGE

; REGISTER A STILL CONTAINS VALUE

PARTPG:

;GET THE NUMBER OF BYTES IN THIS FINAL PAGE

;BRANCH IF LOW BYTE OF SIZE ■ 0

;STORE VALUE

;INCREMENT INDEX

;DECREMENT COUNTER

;BRANCH IF PARTIAL PAGE IS NOT DONE

EXIT:

RTS

; DATA

ARYSZ: .BLOCK 2 ;NUMBER OF BYTES TO INITIALIZE

VALUE: .BLOCK 1 ;VALUE TO INITIALIZE ARRAY WITH

LDX

BEQ

LDY

PARTLP:

STA

INY

DEX

BNE

ARYSZ

EXIT

#0

(ARYPTR),Y

PARTLP

196 ARRAY MANIPULATION

RETADR: .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

SAMPLE EXECUTION

SC0501:

SIZE1:

SIZE2:

BF1ADR:

BF2ADR:

BF1SZ:

BF2SZ:

BF1:

BF2:

;FILL A

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

;FILL A

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

JMP

.EQU

.EQU

• WORD

.WORD

.WORD

.WORD

.BLOCK

•BLOCK

SMALL BU

BF1ADR+1

BF1ADR

BF1SZ+1

BF1SZ

#0

MFILL

BIG BUFF

BF2ADR+1

BF2ADR

BF2SZ+1

BF2SZ

#0EAH

MFILL

SC0501

47H

60U0H

BF1

BF2

SIZE1

SIZE2

SIZE1

SIZE2

;PUSH STARTING ADDRESS

;PUSH NUMBER OF BYTES

;PUSH VALUE

;FILL BUFFER

;PUSH STARTING ADDRESS

;PUSH NUMBER OF BYTES

;PUSH VALUE

;FILL BUFFER

.END

Block Move (BLKMOV) 5B

Moves a block of data from a source area
to a destination area.

Procedure: The program determines if the

starting address of the destination area is

within the source area. If it is, then working

up from the starting address would overwrite

some of the source data. To avoid that prob

lem, the program works down from the high

est address (this is sometimes called move

right). If the starting address of the destina

tion area is not within the source area, the

program simply moves the data starting from

the lowest address (this is sometimes called a

move left). In either case, the program moves

the data by handling complete pages sepa

rately from the remaining partial page. This

approach allows the program to use 8-bit

counters rather than a 16-bit counter, thus

reducing execution time (although increas

ing memory usage). An area size (number of

bytes to move) of 000016 causes an exit with

no memory changed.

Important Note: The user should be careful

if either the source or the destination area

includes the temporary storage used by the

program itself. The program provides auto

matic address wraparound (mod 64K), but

the results of any move involving the pro

gram's own temporary storage are unpredic

table.

Registers Used: All

Execution Time: 128 cycles overhead plus the
following:

1. If data can be moved starting from the

lowest address (i.e., left):

20 -I- 4110 * (more significant byte of num

ber of bytes to move) 4-18* (less significant byte

of number of bytes to move).

2. If data must be moved starting from the

highest address (i.e., right) because of overlap:

42 + 4622 ♦ (more significant byte of num

ber of bytes to move) + 18 ♦ (less significant byte

of number of bytes to move).

Program Size: 157 bytes

Data Memory Required: Two bytes anywhere in

RAM for the length of the move (starting at

address MVELEN), four bytes on page 0 for

source and destination pointers (starting at

addresses MVSRCE and MVDEST taken as

addresses 00D016 and 00Dl16 — source

pointer — and addresses 00D216 and 00D316 —

destination pointer — in the listing).

Special Cases:

1. A size (number of bytes to move) of zero

causes an immediate exit with no memory

changed.

2. Moving data to or from areas occupied or

used by the program itself will produce unpredic

table results. Obviously, moving data to or from

page 0 requires caution, since both this routine

and most systems programs use that page. This

routine does provide automatic address wrap

around (mod 64K) for consistency, but the user

must still approach moves involving page 0

carefully.

197

1 98 ARRAY MANIPULATION

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of number of bytes

to move

More significant byte of number of

bytes to move

Less significant byte of lowest address

of destination area

More significant byte of lowest address

of destination area

Less significant byte of lowest address

of source area

More significant byte of lowest address

of source area

Exit Conditions

The block of memory is moved from the

source area to the destination area. If the

number of bytes to be moved is NBYTES,

the lowest address in the destination area is

DEST, and the lowest address in the source

area is SOURCE, then the area from

addresses SOURCE through SOURCE +

NBYTES - 1 is moved to addresses DEST

through DEST + NBYTES - 1.

Examples

1. Data:

Result:

2. Data:

Result:

Number of bytes to move = 020016

Lowest address in destination area

= O5D116

Lowest address in source area

- 035E16

The contents of memory locations

035E16 through 055D16 are moved

to O5D116 through 07D016.

Number of bytes to move

- 1B7A16

Lowest address in destination

area = C94616

Lowest address in source area

- C30016

The contents of memory locations

C30016 through DE7916 are moved

to C94616 through E4BF16

Note that Example 2 presents a more com

plex problem than Example 1 because the

source and destination areas overlap. If, for

instance, the program were simply to move

data to the destination area starting from the

lowest address, it would initially move the

contents of C30016 to C94616. This would

destroy the old contents of C94616, which are

needed later in the move. The solution to this

problem is to move the data starting from the

highest address if the destination area is

above the source area but overlaps it.

5B BLOCK MOVE (BLKMOV) 1 99

Title

Name:

Purpose:

Entry:

Exit:

Time:

Size:

Block Move

BLKMOV

Move data from source to destination

TOP OF STACK

Low byte of

High byte of

Low byte of

High byte of

Low byte of

area,

High byte of

area,

Low byte of

High byte of

return address,

return address,

number of bytes to move,

number of bytes to move,

lowest address in destination

lowest address in destination

lowest address in source area,

lowest address in source area

Data moved from source to.destination

Registers used: All

102 cycles overhead plus move

move left cycles equals

20 +

(high byte of length * 4110)

(low byte of length * 18)

move right cycles equals

42 +

(high byte of length * 4622)

(low byte of length * 18)

Program 146 bytes

Data 2 bytes plus

4 bytes in page zero

;PAGE ZERO POINTERS

MVSRCE .EQU 0D0H

MVDEST .EQU 0D2H

BLKMOV:

;GET RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET NUMBER OF BYTES

PLA

;SOURCE ADDRESS

;DESTINATION ADDRESS

;SAVE LOW BYTE

;SAVE HIGH BYTE

200 ARRAY MANIPULATION

STA MVELEN ;STORE LOW BYTE

PLA

STA MVELEN+1 ;STORE HIGH BYTE

;GET STARTING DESTINATION ADDRESS

PLA

STA MVDEST ;STORE LOW BYTE

PLA

STA MVDEST+1 ;STORE HIGH BYTE

;GET STARTING SOURCE ADDRESS

PLA

STA NVSRCE ;STORE LOW BYTE

PLA

STA MVSRCE+1 ;STORE HIGH BYTE

;RESTORE RETURN ADDRESS

TXA

PHA ;RESTORE HIGH BYTE

TYA

PHA ;RESTORE LOW BYTE

;DETERMINE IP DESTINATION AREA IS ABOVE SOURCE AREA BUT OVERLAPS

; IT. REMEMBER, OVERLAP CAN BE MOD 64K. OVERLAP OCCURS IF

; STARTING DESTINATION ADDRESS MINUS STARTING SOURCE ADDRESS (MOD 64K)

; IS LESS THAN NUMBER OF BYTES TO MOVE

;CALCULATE DESTINATION - SOURCE

;M0D 64K IS AUTOMATIC - DISCARD CARRY

;COMPARE WITH NUMBER OF BYTES TO MOVE

;BRANCH IF NO PROBLEM WITH OVERLAP

DESTINATION AREA IS ABOVE SOURCE AREA BUT OVERLAPS IT

•MOVE FROM HIGHEST ADDRESS TO AVOID DESTROYING DATA

JSR MVERHT

JMP EXIT

;N0 PROBLEM DOING ORDINARY MOVE STARTING AT LOWEST ADDRESS

DOLEFT:

JSR MVELFT

EXIT:

RTS

LDA

SEC

SBC

TAX

LDA

SBC

TAY

TXA

CMP

TYA

SBC

BCS

MVDEST

MVSRCE

MVDEST+1

MVSRCE+1

MVELEN

MVELEN+1

DOLEFT

5B BLOCK MOVE (BLKMOV) 201

SUBROUTINE: MVELFT

;PURPOSE: MOVE SOURCE TO DESTINATION STARTING FROM

; THE LOWEST ADDRESS

;ENTRY: MVSRCE = 2 BYTE LOWEST ADDRESS OF SOURCE AREA

; MVDEST = 2 BYTE LOWEST ADDRESS OF DESTINATION AREA

MVELEN = 2 BYTE NUMBER OF BYTES TO MOVE

;EXIT: SOURCE MOVED TO DESTINATION
**

MVELFT:

MLPAGE:

MLPART:

MLLAST:

MLEXIT:

LDY

LDX

BEQ

LDA

STA

INY

BNE

INC

INC

DEX

BNE

LDX

BEQ

LDA

STA

INY

DEX

BNE

#0

MVELEN+1

MLPART

(MVSRCE),Y

(MVDEST),Y

MLPAGE

MVSRCE+1

MVDEST+1

MLPAGE

MVELEN

MLEXIT

(MVSRCE),Y

(MVDEST),Y

MLLAST

;ZERO INDEX

;X= NUMBER OF FULL PAGES TO MOVE

;IF X = 0 THEN DO PARTIAL PAGE

;MOVE ONE BYTE

;NEXT BYTE

;CONTINUE UNTIL 256 BYTES ARE MOVED

;ADVANCE TO NEXT PAGE OF SOURCE

; AND DESTINATION

;DECREMENT PAGE COUNT

;CONTINUE UNTIL ALL FULL PAGES ARE MOVED

;GET LENGTH OF LAST PAGE

;BRANCH IF LENGTH OF LAST PAGE

;REGISTER Y IS 0

;MOVE BYTE

;NEXT BYTE

/•DECREMENT COUNTER

/•CONTINUE UNTIL LAST PAGE IS DONE

RTS

/•SUBROUTINE: MVERHT

/•PURPOSE: MOVE SOURCE TO DESTINATION STARTING FROM

; THE HIGHEST ADDRESS

;ENTRY: MVSRCE = 2 BYTE LOWEST ADDRESS OF SOURCE AREA

; MVDEST = 2 BYTE LOWEST ADDRESS OF DESTINATION AREA

; MVELEN = 2 BYTE NUMBER OF BYTES TO MOVE

;EXIT: SOURCE MOVED TO DESTINATION
;**

MVERHT:

;MOVE THE PARTIAL PAGE FIRST

LDA MVELEN+1

CLC

ADC MVSRCE+1

STA MVSRCE+1 ,-POINT TO LAST PAGE OF SOURCE

202 ARRAY MANIPULATION

MRO:

LDA

CLC

ADC

STA

;MOVE

LDY

BEQ

DEY

LDA

STA

CPY

BNE

MVELEN+1

MVDEST+1

MVDEST+1 ;POINT TO LAST PAGE OF DESTINATION

MRPAGE:

MR1:

MR2:

LDX

BEQ

DEC

DEC

DEY

LDA

STA

CPY

BNE

DEX

BNE

THE LAST PARTIAL PAGE FIRST

MVELEN ;GET LENGTH OF LAST PAGE

MRPAGE ;IF Y = 0 THEN DO THE FULL PAGES

(MVSRCE),Y

(MVDEST),Y

#0

MRO

MVELEN+1

MREXIT

MVSRCE+1

MVDEST+1

(MVSRCE),Y

(MVDEST) ,Y

#0

MR2

MR1

;BACK UP Y TO THE NEXT BYTE

;MOVE BYTE

7BRANCH IF NOT DONE WITH THE LAST PAGE

;GET HIGH BYTE.OF COUNT AS PAGE COUNTER

;BRANCH IF HIGH BYTE = 0 (NO FULL PAGES)

;BACK UP TO PREVIOUS PAGE OF SOURCE

; AND DESTINATION

;BACK UP Y TO THE NEXT BYTE

;MOVE BYTE

;BRANCH IF NOT DONE WITH THIS PAGE

;DECREMENT PAGE COUNTER

;BRANCH IF NOT ALL PAGES ARE MOVED

MREXIT:

RTS

;DATA SECTION

MVELEN .BLOCK 2 ;LENGTH OF MOVE

SAMPLE EXECUTION: MOVE 0800 THROUGH 097F TO 0900 THROUGH 0A7F

SC0502:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

SRCE+1

SRCE

DEST+1

DEST

;PUSH HIGH BYTE OF SOURCE

;PUSH LOW BYTE OF SOURCE

;PUSH HIGH BYTE OF DESTINATION

;PUSH LOW BYTE OF DESTINATION

5B BLOCK MOVE (BLKMOV) 203

LDA

PHA

LDA

PHA

JSR

BRK

LEN+1

LEN

BLKMOV

JMP SC0502

;PUSH HIGH BYTE OF LENGTH

;PUSH LOW BYTE OF LENGTH

;MOVE DATA FROM SOURCE TO DESTINATION

; FOR THE DEFAULT VALUES MEMORY FROM 800 HEX

; THROUGH 97F HEX IS MOVED TO 900 HEX THROUGH

? A7F HEX.

;TEST DATA, CHANGE TO TEST OTHER VALUES

SRCE

DEST

LEN

.WORD

.WORD

.WORD

0800H

0900H

0180H

;STARTING ADDRESS OF SOURCE AREA

;STARTING ADDRESS OF DESTINATION AREA

;NUMBER OF BYTES TO MOVE

.END ;PROGRAM

One-Dimensional Byte Array Index (D1BYTE) 5C

Calculates the address of an element of a
byte-length array, given the base address and

the subscript (index) of the element.

Procedure: The program simply adds the

base address to the subscript. The sum is the

address of the element.

Registers Used: All

Execution Time: 74 cycles

Program Size: 37 bytes

Data Memory Required: Four bytes anywhere in

RAM to hold the return address (two bytes start

ing at address RETADR) and the subscript (two

bytes starting at address SUBSCR).

Entry Conditions
Order in stack (starting at the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of subscript

More significant byte of subscript

Less significant byte of base address of

array

More significant byte of base address of

array

Exit Conditions

(A) = More significant byte of address of

element

(Y) = Less significant byte of address of

element

Examples

1. Data:

Result:

Base address = 0E0016 2. Data:

Subscript = 012C16

Address of element = 0E0016 Result:

+ 012C16 = 0F2Cl6.

Baseaddress = C4El16

Subscript = 02E416

Address of element = C4E116

+ 02E415 = C7C516.

204

5C ONE-DIMENSIONAL BYTE ARRAY INDEX (D1 BYTE) 205

Title One dimensional byte array indexing
Name: DlBYTE

Purpose: Given the base address of a byte array and a ;

subscript 'I* calculate the address of All] ;

Entry: TOP OF STACK •

Low byte of return address, ;

High byte of return address, ;

Low byte of subscript, ;

High byte of subscript, ;

Low byte of base address of array, ;

High byte of base address of array ;

Exit: Register A = High byte of address ;
Register Y = Low byte of address ;

Registers used: All ;

Time: 74 cycles •

Size: Program 37 bytes •
Data 4 bytes ;

DlBYTE:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

•GET SUBSCRIPT

PLA

STA SS

PLA

STA SS+1

;ADD BASE ADDRESS TO SUBSCRIPT

PLA

CLC

ADC SS

TAY ;REGISTER Y = LOW BYTE
PLA

ADC SS+1

TAX ;SAVE HIGH BYTE IN REGISTER X

;RESTORE RETURN ADDRESS TO STACK

LDA RETADR+1

PHA

206 ARRAY MANIPULATION

LDA

PHA

TXA

RTS

RETADR

;RESTORE RETURN ADDRESS

;GET HIGH BYTE BACK TO REGISTER A

;EXIT

; DATA

RETADR: .BLOCK 2

SS: .BLOCK 2

;TEMPORARY FOR RETURN ADDRESS

;SUBSCRIPT INTO THE ARRAY

SAMPLE EXECUTION:

SC0503:

;PUSH ARRAY ADDRESS

LDA ARYADR+1

PHA

LDA ARYADR

PHA

;PUSH A SUBSCRIPT

LDA SUBSCR+1

PHA

LDA SUBSCR

PHA

JSR D1BYTE

BRK

;HIGH BYTE

;LOW BYTE

;HIGH BYTE

;LOW BYTE

;CALCULATE ADDRESS

;AY « ARY+2

= ADDRESS OF ARY(2), WHICH CONTAINS 3

JMP SC0503

;TEST DATA, CHANGE SUBSCR FOR OTHER VALUES

SUBSCR: .WORD 2 ;TEST SUBSCRIPT INTO THE ARRAY

ARYADR: .WORD ARY ;BASE ADDRESS OF ARRAY

;THE ARRAY (8 ENTRIES)

ARY: .BYTE 1,2,3,4,5,6,7,8

• END ;PROGRAM

One-Dimensional Word Array Index (D1WORD) 5D

Calculates the starting address of an ele
ment of a word-length (16-bit) array, given

the base address of the array and the

subscript (index) of the element. The ele

ment occupies the starting address and the

address one larger; elements may be

organized with either the less significant byte

or the more significant byte in the starting

address.

Procedure: The program multiplies the

subscript by two (using a logical left shift)

before adding it to the base address. The sum

Registers Used: All

Execution Time: 78 cycles

Program Size: 39 bytes

Data Memory Required: Four bytes anywhere in

RAM to hold the return address (two bytes start

ing at address RETADR) and the subscript (two

bytes starting at address SUBSCR).

(BASE + 2*SUBSCRIPT) is then the start

ing address of the element.

Entry Conditions
Order in stack (starting at the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of subscript

More significant byte of subscript

Less significant byte of base address of

array

More significant byte of base address of

array

Exit Conditions

(A) = More significant byte of starting

address of element

(Y) = Less significant byte of starting

address of element

Examples

1. Data: Base address = A14816

Subscript = 01A916

Result: Address of first byte of element

- A14816 + 2 x 01A916

A4

16

A14816 + 0342 16

16

A49A 16.16 16 916

That is, the word-length element

occupies addresses A49A16 and A49B16.

2. Data: Base address = C4E016

Subscript - 015B16

Result: Address of first byte of element

= C4EO16 + 2XO15B16

0 + 02B6 C16 16 16

That is, the word-length element

occupies addresses C79616 and C79716.

207

208 ARRAY MANIPULATION

Title

Name:

One dimensional word array indexing
DlWORD

Purpose:

Entry:

Exit:

Given the base address of a word array and a

subscript 'I1 calculate the address of A[I]

TOP OF STACK

Low byte of return address,

High byte of return address,

Low byte of subscript,

High byte of subscript,

Low byte of base address of array,

High byte of base address of array

Register A = High byte of address

Register Y = Low byte of address

Registers used: All

Time: 78 cycles

Size: Program 39 bytes

Data 4 bytes

DlWORD:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET SUBSCRIPT AND MULTIPLY IT BY 2

PLA

ASL A

STA SS

PLA

ROL A

STA SS+1

;ADD BASE ADDRESS TO DOUBLED SUBSCRIPT

PLA

CLC

ADC SS

TAY ;REGISTER Y = LOW BYTE

PLA

ADC SS+1

TAX ;SAVE HIGH BYTE IN REGISTER X

;RESTORE RETURN ADDRESS TO STACK

5D ONE-DIMENSIONAL WORD ARRAY INDEX (D1 WORD) 209

LDA RETADR+1

PHA

LDA RETADR

PHA ;RESTORE RETURN ADDRESS

TXA ;GET HIGH BYTE BACK TO REGISTER A

RTS ;EXIT

; DATA

RETADR: .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

SS: .BLOCK 2 ;SUBSCRIPT INTO THE ARRAY

SAMPLE EXECUTION: ;

SC0504:

;PUSH ARRAY ADDRESS

LDA ARYADR+1

PHA

LDA ARYADR

PHA

;PUSH A SUBSCRIPT OF 3

LDA SUBSCR+1

PHA

LDA SUBSCR

PHA

JSR D1W0RD ;CALCULATE ADDRESS

BRK ;FOR THE INITIAL TEST DATA

;AY = STARTING ADDRESS OF ARY(3)

= ARY + (3*2)

= ARY + 6

; = ARY(3) CONTAINS 240 HEX

JMP SC0504

;TEST DATA

SUBSCR: .WORD 3 ;TEST SUBSCRIPT INTO ARY

ARYADR: .WORD ARY ;BASE ADDRESS OF ARRAY

;THE ARRAY (8 ENTRIES)

ARY: .WORD 0180H,01C0H,0200H,0240H,0280H,02C0H,03E7H,0A34H

.END ;PROGRAM

Two-Dimensional Byte Array Index (D2BYTE) 5E

Calculates the address of an element of a
two-dimensional byte-length array, given the

base address of the array, the two subscripts

of the element, and the size of a row (that is,

the number of columns). The array is

assumed to be stored in row major order (that

is, by rows) and both subscripts are assumed

to begin at zero.

Procedure: The program multiplies the row

size (number of columns in a row) times the

row subscript (since the elements are stored

by rows) and adds the product to the column

subscript. It then adds the sum to the base

address. The program performs the multi

plication using,a standard shift-and-add

algorithm (see Subroutine 6H).

Registers Used: All

Execution Time: Approximately 1500 cycles,

depending mainly on the amount of time

required to perform the multiplication.

Program Size: 119 bytes

Data Memory Required: Ten bytes anywhere in

memory to hold the return address (two bytes

starting at address RETADR), the row subscript

(two bytes starting at address SSI), the size

(length) of the rows (two bytes starting at address

SS1SZ), the column subscript (two bytes starting

at address SS2), and the product of row size times

row subscript (two bytes starting at address

PROD).

Entry Conditions
Order in stack (starting at the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of column subscript

More significant byte of column subscript

Less significant byte of the size of a row

More significant byte of the size of a row

Less significant byte of row subscript

More significant byte of row subscript

Less significant byte of bass address of array

More significant byte of base address of array

Exit Conditions

(A) = More significant byte of address of

element

(Y) = Less significant byte of address of

element

210

5E TWO-DIMENSIONAL BYTE ARRAY INDEX (D2BYTE) 211

Examples

1. Data: Base address = 3C00

Result:

'16
Column subscript = 0004i6

Size of row (number of columns)

= 001816

Row subscript = 000316

Address of element = 3C0016

+ 000316 x 001816 + 000416

= 3C0016 + 004816 + 000416

= 3C4C16.

Thus the address of ARRAY (3,4)

is 3C4C16.

2. Data: Base address = 6A4A16

Column subscript = 0035,6

Size of row (number of columns)

= 005016

Row subscript = 000216

Result: Address of element = 6A4A16

+ 000216 x 005016

+ 003516 = 6A4A16

+ 00A016 + 003516 = 6B1F16.

Thus the address of ARRAY

(2,35)is6BlF16.

The general formula is

ADDRESS OF ELEMENT - BASE ADDRESS

OF ARRAY + ROW SUBSCRIPT x SIZE OF ROW

+ COLUMN SUBSCRIPT

Note that we refer to the size of the row

subscript; the size is the number of consecu

tive memory addresses for which the

subscript has the same value. This is also the

number of bytes from the starting address of

an element to the starting address of the ele

ment with the same column subscript but a

row subscript one larger.

Title

Name:

Purpose:

Two dimensional byte array indexing
D2BYTE

Given the base address of a byte array, two
subscripts II',IJI, and the size of the first

subscript in bytesf calculate the address of
A[I,J]. The array is assumed to be stored in
row major order (A[0,0], A[0,l],..., A[K,L]),

and both dimensions are assumed to begin at

zero as in the following Pascal declaration:

A:ARRAY[0..2,0,.7] OF BYTE;

Entry: TOP OF STACK

Low byte of return address, ;

High byte of return address, ;

Low byte of second subscript, ;

High byte of second subscript, ;

Low byte of size of first subscript in bytes, ;

212 ARRAY MANIPULATION

Exit:

High byte of size of first subscript in bytes,;
Low byte of first subscript,

High byte of first subscript,

Low byte of base address of array,

High byte of base address of array
NOTE:

The size of the first subscript is the length

of a row

Register A

Register Y

High byte of address

Low byte of address

Registers used: All

Time: Approximately 1500 cycles

Size: Program 119 bytes

Data 10 bytes

D2BYTE:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET SECOND SUBSCRIPT

PLA

STA SS2

PLA

STA SS2+1

;GET SIZE OF FIRST SUBSCRIPT (LENGTH OF A ROW)
PLA

STA SS1SZ

PLA

STA SS1SZ+1

;GET FIRST SUBSCRIPT

PLA

STA SSI

PLA

STA SS1+1

;MULTIPLY FIRST SUBSCRIPT * ROW LENGTH USING THE SHIFT AND ADD

; ALGORITHM. THE RESULT WILL BE IN SSI

LDA #0 ;PARTIAL PRODUCT = ZERO INITIALLY
STA PROD

STA PROD+1

LDX #17 ;NUMBER OF SHIFTS =17

CLC

5E TWO-DIMENSIONAL BYTE ARRAY INDEX (D2BYTE) 213

MULLP:

ROR

ROR

ROR

ROR

BCC

CLC

LDA

ADC

STA

LDA

ADC

STA

DECCNT:

DEX

BNE

PROD+1

PROD

SS1+1

SSI

DECCNT

SS1SZ

PROD

PROD

SS1SZ+1

PROD+1

PROD+1

MULLP

;SHIFT PARTIAL PRODUCT

;SHIFT MULTIPLIER

;ADD MULTIPLICAND TO PARTIAL PRODUCT

; IF NEXT BIT OF MULTIPLIER IS 1

;ADD IN THE SECOND SUBSCRIPT

LDA SSI

CLC

ADC SS2

STA SSI

LDA SS1+1

ADC SS2+1

STA SS1+1

;ADD BASE ADDRESS TO FORM THE FINAL ADDRESS

PLA

CLC

ADC SSI

TAY ;REGISTER Y = LOW BYTE

PLA

ADC SS1+1

TAX ;SAVE HIGH BYTE IN REGISTER X

;RESTORE RETURN ADDRESS TO STACK

LDA RETADR+1

PHA

LDA RETADR

PHA ;RESTORE RETURN ADDRESS

;GET HIGH BYTE BACK TO REGISTER A

;EXIT

;TEMPORARY FOR RETURN ADDRESS

;SUBSCRIPT 1

;SIZE OF SUBSCRIPT 1 IN BYTES

;SUBSCRIPT 2

;TEMPORARY FOR THE MULTIPLY

; DATA

RETADR:

SSI:

SS1SZ:

SS2:

PROD:

TXA

RTS

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

2

2

2

2

2

214 ARRAY MANIPULATION

SAMPLE EXECUTION:

SC0505:

;PUSH ARRAY ADDRESS

LDA ARYADR+1

PHA

LDA ARYADR

PHA

;PUSH FIRST SUBSCRIPT

LDA SUBS1+1

PHA

LDA SUBS1

PHA

;PUSH SIZE OF FIRST SUBSCRIPT

LDA SSUBS1+1

PHA

LDA SSUBS1

PHA

; DATA

SUBS1:

SSUBS1:

SUBS2:

ARYADR:

;PUSH

LDA

PHA

LDA

PHA

JSR

BRK

JMP

.WORD

.WORD

.WORD

-.WORD

SECOND SUBSCRIPT

SUBS2+1

SUBS2

D2BYTE

SC0505

2

8

4

ARY

;CALCULATE ADDRESS

;FOR THE INITIAL TEST DATA

;AY = ADDRESS OF ARY(2,4)

= ARY + (2*8) + 4

; = ARY +20 (CONTENTS ARE 21)

;SUBSCRIPT 1

;SIZE OF SUBSCRIPT 1

;SUBSCRIPT 2

;ADDRESS OF ARRAY

;THE ARRAY (3 ROWS OF & COLUMNS)

ARY: .BYTE 1,2,3,4,5,6,7,8

.BYTE 9 ,10,11,12,13,14,15,16

.BYTE 17,18,19,20,21,22,23,24

• END ;PROGRAM

Two-Dimensional Word Array Index (D2WORD) 5F

Calculates the starting address of an ele
ment of a two-dimensional word-length (16-

bit) array, given the base address of the array,

the two subscripts of the element, and the

size of a row in bytes. The array is assumed to

be stored in row major order (that is, by

rows) and both subscripts are assumed to

begin at zero.

Procedure: The program multiplies the row

size (in bytes) times the row subscript (since

the elements are stored by row), adds the

product to the doubled column subscript

(doubled because each element occupies two

bytes), and adds the sum to the base address.

The program uses a standard shift-and-add

algorithm (see Subroutine 6H) to multiply.

Registers Used: All

Execution Time: Approximately 1500 cycles,

depending mainly on the amount of time

required to perform the multiplication of row size

in bytes times row subscript.

Program Size: 121 bytes

Data Memory Required: Ten bytes anywhere in

memory to hold the return address (two bytes

starting at address RETADR), the row subscript

(two bytes starting at address SSI), the row size
in bytes (two bytes starting at address SS1SZ),

the column subscript (two bytes starting at

address SS2), and the product of row size times

row subscript (two bytes starting at address

PROD).

Entry Conditions
Order in stack (starting at the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of column

subscript

More significant byte of column

subscript

Less significant byte of size of rows (in

bytes)

More significant byte of size of rows (in

bytes)

Less significant byte of row subscript

More significant byte of row subscript

Less significant byte of base address of

array

More significant byte of base address of

array

Exit Conditions

(A) = More significant byte of starting

address of element

(Y) = Less significant byte of starting

address of element

The element occupies the address in AY

and the next higher address.

215

216 ARRAY MANIPULATION

Examples

1. Data: Base address = 5E14i6

Column subscript = 0008l6

Size of a row (in bytes) - 001Ci6

(i.e., each row has 001410 or 000El6

word-length elements)

Row subscript = 000516

Result: Starting address of element

5

2. Data:

Result:

5E1416

4

0005 16

001C16 4- 000816 x 2 = 5E1416

+ 008C16 + 001016 = 5EB016.

Thus, the starting address of

ARRAY (5,8) is 5EB016 and

the element occupies addresses

5EB016and5EBl16.

Base address = B100l6

Column subscript = 000216

Size of a row (in bytes) = 000816

(i.e., each row has 4 word-length

elements)

Row subscript = 000616

Starting address of element

= B10016+ 000616

x 000816 + 000216 x 2 = B1001616 16

003016 + 000416 = B134416.16 16 1

Thus, the starting address of

ARRAY (6,2) is B13416 and

the element occupies

addresses B13416 and B13516.

The general formula is

STARTING ADDRESS OF ELEMENT

- BASE ADDRESS OF ARRAY

+ ROW SUBSCRIPT x SIZE OF ROW

+ COLUMN SUBSCRIPT x 2

Note that one parameter of this routine is

the size of a row in bytes. The size in the case

of word-length elements is the number of

columns (per row) times two (the size of an

element). The reason why we chose this

parameter rather than the number of col

umns or the maximum column index is that

this parameter can be calculated once (when

the array bounds are determined) and used

whenever the array is accessed. The alterna

tive parameters (number of columns or max

imum column index) would require extra

calculations as part of each indexing opera

tion.

Title

Name:

Purpose:

Two dimensional word array indexing

D2WORD

Given the base address of a word array, two

subscripts 'I'^'J', and the size of the first

subscript in bytesf calculate the address of

A[I,J], The array is assumed to be stored in

row major order (A[0,0]f A[0,l],..., A[K,L]),

5F TWO-DIMENSIONAL WORD ARRAY INDEX (D2WORD) 217

; and both dimensions are assumed to begin at ;

; zero as in the following Pascal declaration: ;

A:ARRAY[0..2,0..7] OF WORD;

; Entry: TOP OF STACK

; Low byte of return address,

; High byte of return address,

; Low byte of second subscript,

; High byte of second subscript,

; Low byte of size of first subscript in bytes,

; High byte of size of first subscript in bytes,

; Low byte of first subscript, ;

; High byte of first subscript, ;

; Low byte of base address of array, ;

; High byte of base address of array ;

; Exit: Register A = High byte of address ;

; Register Y = Low byte of address ;

> ;

; Registers used: ALL ;

> ;

; Time: Approximately 1500 cycles ;

J ;
; Size: Program 121 bytes ;

; Data 10 bytes ;

D2WORD:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET SECOND SUBSCRIPT AND MULTIPLY BY 2 FOR WORD-LENGTH ELEMENTS

PLA

ASL A

STA SS2

PLA

ROL A

STA SS2+1

;GET SIZE OF FIRST SUBSCRIPT

PLA

STA SS1SZ

PLA

STA SS1SZ+1

;GET FIRST SUBSCRIPT

PLA

STA SSI

PLA

STA SS1+1

218 ARRAY MANIPULATION

;MULTIPLY FIRST SUBSCRIPT * ROW SIZE (IN BYTES) USING THE SHIFT AND ADD

ALGORITHM. THE RESULT WILL BE IN SSI

;PARTIAL PRODUCT « ZERO INITIALLY

;NUMBER OF SHIFTS =17

;SHIFT PARTIAL PRODUCT

;SHIFT MULTIPLIER

;ADD MULTIPLICAND TO PARTIAL PRODUCT

; IF NEXT BIT OF MULTIPLIER IS 1

LDA

STA

STA

LDX

CLC
MT1T T D •MULLF:

ROR

ROR

ROR

ROR

BCC

CLC

LDA

ADC

STA

LDA

ADC

STA

DECCNT:

DEX

BNE

#0

PROD

PROD+1

#17

PROD+1

PROD

SS1+1

SSI

DECCNT

SS1SZ

PROD

PROD

SS1SZ+1

PROD+1

PROD+1

MULLP

;ADD IN THE SECOND SUBSCRIPT DOUBLED

LDA SSI

CLC

ADC SS2

STA SSI

LDA SS1+1

ADC SS2+1

STA SS1+1

;ADD BASE ADDRESS TO FORM THE FINAL ADDRESS

PLA

CLC

ADC SSI

TAY ;REGISTER Y = LOW BYTE

PLA

ADC SS1+1

TAX ;SAVE HIGH BYTE IN REGISTER X

;RESTORE RETURN ADDRESS TO STACK

LDA RETADR+1

PHA

LDA RETADR

PHA ;RESTORE RETURN ADDRESS

TXA

RTS

;GET HIGH BYTE BACK TO REGISTER A

;EXIT

;

;DATA

5F TWO-DIMENSIONAL WORD ARRAY INDEX (D2WORD) 219

RETADR: .BLOCK 2

SSI: .BLOCK 2

SS1SZ: .BLOCK 2

SS2: .BLOCK 2

PROD: .BLOCK 2

;TEMPORARY FOR RETURN ADDRESS

;SUBSCRIPT 1

;SIZE OF SUBSCRIPT 1 IN BYTES

.•SUBSCRIPT 2

•TEMPORARY FOR THE MULTIPLY

SC0506:

SAMPLE EXECUTION:

;PUSH ARRAY ADDRESS

LDA ARYADR+1

PHA

LDA ARYADR

PHA

;PUSH FIRST SUBSCRIPT

LDA SUBS1+1

PHA

LDA SUBS1

PHA

;PUSH SIZE OF FIRST SUBSCRIPT

LDA SSUBS1+1

PHA

LDA SSUBS1

PHA

;PUSH

LDA

PHA

LDA

PHA

JSR

BRK

SECOND SUBSCRIPT

SUBS2+1

SUBS2

D2WORD

JMP SC0506

;CALCULATE ADDRESS

;FOR THE INITIAL TEST DATA

;AY = STARTING ADDRESS OF ARY(2,4)

; = ARY + (2*16) + (4*2)

; = ARY + 40

= ARY(2,4) CONTAINS 2100 HEX

; DATA

SUBS1:

SSUBS1:

SUBS2:

ARYADR:

.WORD

.WORD

.WORD

.WORD

2

16

4

ARY

;SUBSCRIPT 1

;SIZE OF SUBSCRIPT 1

;SUBSCRIPT 2

;ADDRESS OF ARRAY

;THE ARRAY (3 ROWS OF 8 COLUMNS)

220 ARRAY MANIPULATION

ARY: .WORD 0100H,0200H,0300H,0400H,0500H,0600H,0700Hf0800H
.WORD 0900H,1000H,1100H,1200H,1300H,1400H,1500H,1600H

.WORD 1700H,1800H,1900H,2000H,2100H,2200H,2300H,2400H

.END ;PROGRAM

N-Dimensional Array Index (NDIM) 5G

Calculates the starting address of an ele
ment of an N-dimensional array given the

base address and N pairs of sizes and

subscripts. The size of a dimension is the

number of bytes from the starting address of

an element to the starting address of the ele

ment with an index one larger in the dimen

sion but the same in all other dimensions.

The array is assumed to be stored in row

major order (that is, organized so that

subscripts to the right change before

subscripts to the left).

Note that the size of the rightmost

subscript is simply the size of the elements

(in bytes); the size of the next subscript is the

size of the elements times the maximum

value of the rightmost subscript plus 1, etc.

All subscripts are assumed to begin at zero;

otherwise, the user must normalize the

subscripts (see the second example at the end

of the listing).

Procedure: The program loops on each

dimension, calculating the offset in that

dimension as the subscript times the size. If

the size is an easy case (an integral power of

2), the program reduces the multiplication to

Registers Used: All

Execution Time: Approximately 1100 cycles per

dimension plus 90 cycles overhead. Depends

mainly on the time required to perform the

multiplications.

Program Size: 192 bytes

Data Memory Required: Eleven bytes anywhere

in memory to hold the return address (two bytes

starting at address RETADR), the current

subscript (two bytes starting at address SS), the
current size (two bytes starting at address SIZE),

the accumulated offset (two bytes starting at

address OFFSET), the number of dimensions

(one byte at address NUMDIM), and the product
of size times subscript (two bytes starting at

address PROD).

Special Case: If the number of dimensions is

zero, the program returns with the base address

in registers A (more significant byte) and Y (less
significant byte).

left shifts. Otherwise, it performs each

multiplication using the shift-and-add

algorithm of Subroutine 6H. Once the pro

gram has calculated the overall offset, it adds

that offset to the base address to obtain the

starting address of the element.

221

222 ARRAY MANIPULATION

Entry Conditions
Order in stack (starting at the top)

Less significant byte of return address

More significant byte of return address

Number of dimensions

Less significant byte of size of rightmost

dimension

More significant byte of size of right

most dimension

Less significant byte of rightmost

subscript

More significant byte of rightmost

subscript

Exit Conditions

(A) = More significant byte of address of

element

(Y) = Less significant byte of address of ele

ment

The element occupies memory addresses

from the calculated starting address through

that address plus the rightmost subscript

minus 1. That is, the element occupies

memory addresses START through START

+ SIZE - 1, where START is the calculated

address and SIZE is the size of an element in

bytes.

Less significant byte of size of leftmost

dimension

More significant byte of size of leftmost

dimension

Less significant byte of leftmost

subscript

More significant byte of leftmost

subscript

Less significant byte of base address of

array

More significant byte of base address of

array

5G N-DIMENSIONAL ARRAY INDEX (NDIM) 223

Example

Data: Base address = 3C0016

Number of dimensions == 0316

Rightmost subscript = 000516

Rightmost size = 000316 (3-byte entries)

Middle subscript = 000316

Middle size = 001216 (six 3-byte entries)

Leftmost subscript = 0004i6

Leftmost size = 007E16 (seven sets of six

3-byte entries)

Result: Address of entry = 3C0016 + 000516 x

0003 0003 0012 0004

16

000316 + 000316 x 001216 + 000416

007E 3C00 + 000F + 0

16

000F16

6

003616

16 16

x 007E16 = 3C0016

+ 01F816 = 3E3D16.

That is, the element is ARRAY (4,3,5); it

occupies addresses 3E3D16 through

3E3F16. The maximum values of the

various subscripts are 6 (leftmost) and 5

(middle). Each element consists of three

bytes.

The general formula is

STARTING ADDRESS = BASE ADDRESS

£ SUBSCRIPT; x SIZEj

where:

N is the number of dimensions

SUBSCRIPTj is the /th subscript

SIZE} is the size of the /th dimension

Note that we use the sizes of each dimen

sion as parameters to reduce the number of

repetitive multiplications and to generalize

the procedure. The sizes can be calculated

(and saved) as soon as the bounds of the

array are known. Those sizes can then be

used whenever indexing is performed on that

array. Obviously, the sizes do not change if

the bounds are fixed and they should not be

recalculated as part of each indexing opera

tion. The sizes are also general, since the ele

ments can themselves consist of any number

of bytes.

Title

Name:

Purpose:

Entry:

N dimensional arrayindexing

NDIM

Calculate the address of an element in a

N dimensional array given the base address,

N pairs of size in bytes and subscript, and the

number of dimensions of the array. The array is

assumed to be stored in row major order

(A[0,0,0],A[0,0,1],...,A 10,1,0],A[0,1,1],...

Also it is assumed that all dimensions begin

at 0 as in the following Pascal declaration:

A:ARRAY [0..10,0..3,0..5] OF SOMETHING

TOP OF STACK

Low byte of return address,

High byte of return address,

Number of dimensions,

Low byte of size (dim N-l) in bytes,

High byte of size (dim N-l) in bytes,
Low byte of subscript (dim N-l),

High byte of subscript (dim N-l),

224 ARRAY MANIPULATION

; Low byte of size (dim 0) in bytes,

; High byte of size (dim 0) in bytes,

; Low byte of subscript (dim 0),

High byte of subscript (dim 0),

; Low byte of base address of array,

; High byte of base address of array
;

; Exit: Register A = High byte of address ;
; Register Y = Low byte of address ;

?
; Registers used: All ;

?

; Time: Approximately 1100 cycles per dimension ;
; plus 90 cycles overhead. ;

; Size: Program 192 bytes ;

; Data 11 bytes

NDIM:

;SAVE RETURN ADDRESS

;GET NUMBER OF DIMENSIONS

;POP PARAMETERS

PLA

STA

PLA

STA

PLA

STA

RETADR

RETADR+1

NUMDIM

;OFFSET := 0

LDA

STA

STA

#0

OFFSET

OFFSET+1

;CHECK FOR ZERO DIMENSIONS JUST IN CASE

LDA NUMDIM

BEQ ADBASE ;ASSUME THERE IS A BASE ADDRESS EVEN

; IF THERE ARE NO DIMENSIONS

;LOOP ON EACH DIMENSION

; DOING OFFSET := OFFSET + (SUBSCRIPT * SIZE)

LOOP:

PLA ;POP SIZE

STA SIZE

PLA

STA SIZE+1

PLA ;POP SUBSCRIPT

STA SS

PLA

5G N-DIMENSIONAL ARRAY INDEX (NDIM) 225

STA

JSR

DEC

BNE

SS+1

NXTOFF

NUMOIM

LOOP

;OPFSET := OFFSET + (SUBSCRIPT * SIZE)

;DECREMENT NUMBER OF DIMENSIONS

;CONTINUE THROUGH ALL DIMENSIONS

ADBASE:

;CALCULATE THE STARTING ADDRESS OF THE ELEMENT

;OFFSET = BASE + OFFSET

PLA ;GET LOW BYTE OF BASE

CLC

ADC OFFSET ;ADD LOW BYTE OF OFFSET

STA OFFSET

PLA ;GET HIGH BYTE OF BASE

ADC OFFSET+1 ;A = HIGH BYTE OF BASE + OFFSET
STA OFFSET+1

;RESTORE RETURN ADDRESS AND EXIT

LDA RETADR+1

PHA

LDA RETADR

PHA

LDA OFFSET+1 ;RETURN THE ADDRESS WHICH IS IN OFFSET

LDY OFFSET

RTS

;SUBROUTINE NXTOFF

;PURPOSE: OFFSET := OFFSET + (SUBSCRIPT * SIZE);

;ENTRY: OFFSET = CURRENT OFFSET

; SUBSCRIPT = CURRENT SUBSCRIPT

SIZE = CURRENT SIZE OF THIS DIMENSION

;EXIT: OFFSET = OFFSET + (SUBSCRIPT * SIZE);
jREGISTERS USED: ALL

NXTOFF:

;CHECK IF SIZE IS POWER OF 2 OR 8 (EASY MULTIPLICATIONS - SHIFT ONLY)

LDA SIZE+1 ;HIGH BYTE = 0 ?

BNE BIGSZ ;BRANCH IF SIZE IS LARGE

;Y=INDEX INTO EASY ARRAY

;X=SIZE OF EASY ARRAY

;BRANCH IF SIZE IS AN EASY ELEMENT

;INCREMENT INDEX

;DECREMENT COUNT

;BRANCH IF NOT THROUGH ALL EASY ELEMENTS

BEQ BIGSZ ;BRANCH IF SIZE IS NOT EASY

LDA

LDY

LDX

EASYLP:

CMP

BEQ

INY

DEX

BNE

SIZE

#0

#SZEASY

EASYAY,Y

ISEASY

EASYLP

226 ARRAY MANIPULATION

ISEASY:

CPY

BEQ

#0

ADDOFF

SHL:

;BRANCH IF SHIFT FACTOR = 0

;ELEMENT SIZE * SUBSCRIPT CAN BE PERFORMED WITH A SHIFT LEFT

ASL

ROL

DEY

BNE

BEQ

SS

SS+1

SHL

ADDOFF

;SHIFT LEFT LOW BYTE

;SHIFT LEFT HIGH BYTE

;CONTINUE UNTIL DONE

;DONE SO ADD OFFSET + SUBSCRIPT

BIGSZ:

;SIZE IS NOT AN EASY MULTIPLICATION SO PERFORM MULTIPLICATION OF

; ELEMENT SIZE AND SUBSCRIPT THE HARD WAY

MULLP:

LDA

STA

STA

LDX

CLC

ROR

ROR

ROR

ROR

BCC

CLC

LDA

ADC

STA

LDA

ADC

STA

DECCNT:

DEX

BNE

#0

PROD

PROD+1

#17

PROD+1

PROD

SS+1

SS

DECCNT

SIZE

PROD

PROD

SIZE+1

PROD+1

PROD+1

MULLP

;PARTIAL PRODUCT = ZERO INITIALLY

;NUMBER OF SHIFTS =17

;SHIFT PARTIAL PRODUCT

;SHIFT MULTIPLIER

;ADD MULTIPLICAND TO PARTIAL PRODUCT

; IF NEXT BIT OF MULTIPLIER IS 1

ADDOFF:

LDA

CLC

ADC

STA

LDA

ADC

STA

RTS

EASYAY:

• BYTE

.BYTE

.BYTE

SS

OFFSET

OFFSET

SS+1

OFFSET+1

OFFSET+1

;ADD LOW BYTES

;ADD HIGH BYTES

1

2

4

;SHIFT FACTOR

;0

5G N-DIMENSIONAL ARRAY INDEX (NDIM) 227

SZEASY

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.EQU

8

16.

32.

64.

128.

$-EASYAY

;3

;4

;5

;6

;7

;DATA

RETADR:

SS:

SIZE:

OFFSET:

NUMDIM:

PROD:

.BLOCK 2

.BLOCK 2

.BLOCK

.BLOCK

.BLOCK

.BLOCK

;TEMPORARY FOR RETURN ADDRESS

;SUBSCRIPT INTO THE ARRAY

;SIZE OF AN ARRAY ELEMENT

;TEMPORARY FOR CALCULATING

;NUMBER OF DIMENSIONS

;TEMPORARY FOR MULTIPLICATION IN NXTOFF

SAMPLE EXECUTION:

;PROGRAM SECTION

SC0507:

;

;FIND ADDRESS OF AYl[1,3,0]

; SINCE LOWER BOUNDS OF ARRAY

; NECESSARY TO NORMALIZE THEM

;PUSH BASE ADDRESS OF ARRAY 1

LDA AY1ADR+1

PHA

LDA AYlADR

PHA

1 ARE ALL ZERO IT IS NOT

;PUSH SUBSCRIPT AND SIZE FOR DIMENSION 1

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

#0

#1

#0

#A1SZ1

;PUSH SUBSCRIPT AND SIZE FOR DIMENSION 2

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

#0

#3

#0

#A1SZ2

228 ARRAY MANIPULATION

;PUSH SUBSCRIPT AND SIZE FOR DIMENSION 3

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

#0

#0

#0

#A1SZ3

;PUSH NUMBER OF DIMENSIONS

LDA #A1DIM

PHA

JSR

BRK

NDIM ;CALCULATE ADDRESS

;AY = STARTING ADDRESS OF ARYl (1,3,0)

= ARY + (1*126) + (3*21) + (0*3)

; = ARY + 189

;CALCULATE ADDRESS OF AY2[-1,6]

; SINCE LOWER BOUNDS OF AY 2 DO NOT START AT ZERO THE SUBSCRIPTS

; MUST BE NORMALIZED

;PUSH BASE ADDRESS OF ARRAY 2

LDA AY2ADR+1

PHA

LDA AY2ADR

PHA

;PUSH

LDA

SEC

SBC

TAX

LDA

SBC

PHA

TXA

PHA

LDA

PHA

LDA

PHA

; PUSH

LDA

SEC

SBC

TAX

LDA

SBC

PHA

TXA

PHA

LDA

(SUBSCRIPT

#-1

#A2D1L

#0FFH

#0FFH

#0

#A2SZ1

(SUBSCRIPT

#6

#A2D2L

#0

#0

#0

- LOWER BOUND) AND SIZE FOR DIMENSION 1

;SAVE LOW BYTE

;HIGH BYTE OF -1 SUBSCRIPT

;HIGH BYTE OF A2D1L

;PUSH HIGH BYTE

;PUSH LOW BYTE

- LOWER BOUND) AND SIZE FOR DIMENSION 2

;SAVE LOW BYTE

;PUSH HIGH BYTE

;PUSH LOW BYTE

5G N-DIMENSIONAL ARRAY INDEX (NDIM) 229

PHA

LDA

PHA

#A2SZ2

;PUSK NUMBER OF DIMENSIONS

LDA #A2DIM

PHA

JSR

BRK

JMP

NDIM

SC0507

;CALCULATE ADDRESS

;AY = STARTING ADDRESS OF ARY1(-1,6)

= ARY + (((-1) - (-5))*18) + ((6 - 2)*2)

; = ARY + 80

;DATA

AY1ADR:

AY2ADR:

.WORD

• WORD

AY1

AY2

;ADDRESS

;ADDRESS

OF

OF

ARRAY

ARRAY

1

2

;AY1 :

;

A1DIM:

A1D1L:

A1D1H:

A1D2L:

A1D2H:

A1D3L:

A1D3H:

A1SZ3:

A1SZ2:

A1SZ1:

AY1:

ARRAY[A1D1L..AlDlH,A1D2L..A1D2H,A1D3L..A1D3H] OF THREE BYTE ELEMENTS

[0 .. 3 , 0 .. 5 , 0 .. 6]

3 ;NUMBER OF DIMENSIONS OF ARRAY 1

0 ;LOW BOUND OF ARRAY 1 DIMENSION 1

3 ;HIGH BOUND OF ARRAY 1 DIMENSION 1

0 ;LOW BOUND OF ARRAY 1 DIMENSION 2

5 ;HIGH BOUND OF ARRAY 1 DIMENSION 2

0 ;LOW BOUND OF ARRAY 1 DIMENSION 3

.EQU

• EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.BLOCK

6 ;HIGH BOUND OF ARRAY 1 DIMENSION 3

3 ;SIZE OF AN ELEMENT IN DIMENSION 3

((A1D3H-A1D3L)+1)*A1SZ3 ;SIZE OF AN ELEMENT IN DIMENSION 2

((A1D2H-A1D2L)+1)*A1SZ2 ;SIZE OF AN ELEMENT IN DIMENSION 1

((AlDlH-AlDlL)+l)*AlSZl ;THE ARRAY

;AY2 : ARRAYIA1D1L..AlDlH,A1D2L..A1D2H] OF WORD

t -5 ., -1 , 2 .. 10]

A2DIM: .EQU 2 ;NUMBER OF DIMENSIONS OF ARRAY 2

A2D1L: .EQU -5 ;LOW BOUND OF ARRAY 2 DIMENSION 1

A2D1H: .EQU -1 ;HIGH BOUND OF ARRAY 2 DIMENSION 1

A2D2L: .EQU 2 ;LOW BOUND OF ARRAY 2 DIMENSION 2

A2D2H: .EQU 10 ;HIGH BOUND OF ARRAY 2 DIMENSION 2

A2SZ2: .EQU 2 ;SIZE OF AN ELEMENT IN DIMENSION 2

A2SZ1: .EQU ((A2D2H-A2D2L)+1)*A2SZ2 ;SIZE OF AN ELEMENT IN DIMENSION 1

AY2: .BLOCK ((A2D1H-A2D1L)+1)*A2SZl ;THE ARRAY

.END ;PROGRAM

16-Bit Addition (ADD16) 6A

Adds two 16-bit operands obtained from
the stack and places the sum at the top of the

stack. All 16-bit numbers are stored in the

usual 6502 style with the less significant byte

on top of the more significant byte.

Procedure: The program clears the Carry

flag initially and adds the operands one byte

at a time, starting with the less significant

bytes. It sets the Carry flag from the addition

of the more significant bytes.

Registers Used: A, P, Y

Execution Time: 80 cycles

Program Size: 38 bytes

Data Memory Required: Four bytes anywhere in

memory for the second operand (two bytes start

ing at address ADEND2) and the return address

(two bytes starting at address RETADR).

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of first operand

More significant byte of first operand

Less significant byte of second operand

More significant byte of second operand

Exit Conditions
Order in stack (starting from the top)

Less significant byte of sum

More significant byte of sum

Examples

1. Data: First operand = 03E116

Second operand = 07E416

Result: Sum = 0BC516

Carry = 0

2. Data: First operand = A45D16

Second operand = 97E116

Result: Sum = 3C3E16

Carry = 1

230

6A 16-BIT ADDITION (ADD16) 231

Title

Name:

16 bit addition

ADD16

Purpose:

Entry:

Exit:

Time:

Size:

Add 2 16 bit signed or unsigned words and return
a 16 bit signed or unsigned sum.

TOP OF STACK

Low byte of return address,

High byte of return address,
Low byte of operand 2,

High byte of operand 2,

Low byte of operand 1,

High byte of operand 1

Sum = operand 1 + operand 2

TOP OF STACK

Low byte of sum,

High byte of sum

Registers used: A,P,Y

80 cycles

Program 38 bytes

Data 4 bytes

ADD16:

;SAVE THE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET ADDEND 2

PLA

STA ADEND2

PLA

STA ADEND2+1

;SUM ADDEND 2 WITH ADDEND 1

PLA

CLC

ADC ADEND2

TAY ;SAVE LOW BYTE OF SUM

PLA

ADC ADEND2+1

;PUSH THE SUM

PHA

TYA

;PUSH HIGH BYTE

232 ARITHMETIC

PHA ;PUSH LOW BYTE

;PUSH RETURN ADDRESS AND EXIT

LDA RETADR+1

PHA

LDA RETADR

PHA

RTS

; DATA

ADEND2: .BLOCK 2 ;TEMPORARY FOR ADDEND 2

RETADR: .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

SAMPLE EXECUTION ',

SC0601:

;SUM

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

PLA

TAY

PLA

BRK

JMP

OPRND1 + OPRND2

OPRND1+1

OPRND1

OPRND2+1

OPRND2

ADD16

SC0601

;A ■ HIGH BYTE, Y = LOW BYTE

;TEST DATA, CHANGE FOR DIFFERENT VALUES

OPRND1 .WORD 1023 ;1023 + 123 = 1146 = 047AH

OPRND2 .WORD 123

•END ;PROGRAM

16-Bit Subtraction (SUB16) 6B

Subtracts two 16-bit operands obtained
from the stack and places the difference at

the top of the stack. All 16-bit numbers are

stored in the usual 6502 style with the less

significant byte on top of the more significant

byte. The subtrahend (number to be

subtracted) is stored on top of the minuend

(number from which the subtrahend is

subtracted). The Carry flag acts as an

inverted borrow, its usual role in the 6502.

Procedure: The program sets the Carry flag

(the inverted borrow) initially and subtracts

the subtrahend from the minuend one byte at

Registers Used: A, P, Y

Execution Time: 80 cycles

Program Size: 38 bytes

Data Memory Required: Four bytes anywhere in

memory for the subtrahend (two bytes starting at

address SUBTRA) and the return address (two

bytes starting at address RETADR).

a time, starting with the less significant bytes.

It sets the Carry flag from the subtraction of

the more significant bytes.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of subtrahend

More significant byte of subtrahend

Less significant byte of minuend

More significant byte of minuend

Exit Conditions
Order in stack (starting from the top)

Less significant byte of difference (minuend

— subtrahend)

More significant byte of difference (minuend

— subtrahend)

Examples

1. Data: Minuend = A45D16

Subtrahend = 97E116

Result: Difference = Minuend - Subtrahend

= 0C7C16

Carry = 1 (no borrow)

2. Data: Minuend » 03El16

Subtrahend = 07E416

Result: Difference = Minuend - Subtrahend

= FBFD16

Carry = 0 (borrow generated)

233

234 ARITHMETIC

Title

Name:

16 bit subtraction
SUB16

;

;

;

;

;

;

;

;

;

;

;

;

;

;

,

;

SUB16:

Purpose:

Entry:

Exit:

Time:

Size:

Subtract 2 16 bit signed or unsigned words and

return a 16 bit signed or unsigned difference.

TOP OF STACK

Low byte of return address,

High byte of return address,

Low byte of subtrahend,

High byte of subtrahend,
Low byte of minuend,

High byte of minuend

Difference = minuend - subtrahend
TOP OP STACK

Low byte of difference,

High byte of difference

Registers used: A,P,Y

80 cycles

Program 38 bytes

Data 4 bytes

;SAVE THE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET SUBTRAHEND

PLA

STA SUBTRA

PLA

STA SUBTRA+1

;SUBTRACT SUBTRAHEND FROM MINUEND

PLA

SEC

SBC SUBTRA

TAY ;SAVE LOW BYTE OF THE DIFFERENCE

PLA

SBC SUBTRA+1

;PUSH THE DIFFERENCE

PHA

TYA

PHA

;PUSH HIGH BYTE

;PUSH LOW BYTE

6B 16-BIT SUBTRACTION (SUB16) 235

;PUSH RETURN ADDRESS AND EXIT

LDA RETADR+1

PHA

LDA RETADR

PHA

RTS

; DATA

SUBTRA: .BLOCK 2 ;TEMPORARY FOR SUBTRAHEND

RETADR: .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

;

;

SAMPLE EXECUTION ;

;

;

SC0602:

;SUBTRACT OPRND2 FROM OPRNDl

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

PLA

TAY

PLA

BRK

JMP

OPRND1+1

OPRNDl

OPRND2+1

OPRND2

SUB 16

;A =

SC0602

HIGH BYTE, Y = LOW BYTE

;TEST DATA - CHANGE TO TEST OTHER VALUES

OPRNDl .WORD 123 ;123 - 1023 = -900 = 0FC7CH

OPRND2 .WORD 1023

.END ;PROGRAM

16-Bit Multiplication (MUL16) 6C

Multiplies two 16-bit operands obtained
from the stack and places the less significant

word of the product at the top of the stack.

All 16-bit numbers are stored in the usual

6502 style with the less significant byte on top

of the more significant byte.

Procedure: The program uses an ordinary

add-and-shift algorithm, adding the multipli

cand to the partial product each time it finds a

1 bit in the multiplier. The partial product

and the multiplier are shifted 17 times (the

number of bits in the multiplier plus 1) with

the extra loop being necessary to move the

final Carry into the product. The program

maintains a full 32-bit unsigned partial pro

duct in memory locations (starting with the

most significant byte) HIPROD + 1,

Registers Used: All

Execution Time: Approximately 650 to 1100

cycles, depending largely on the number of 1 bits

in the multiplier.

Program Size: 238 bytes

Data Memory Required: Eight bytes anywhere in

memory for the multiplicand (two bytes starting

at address MCAND), the multiplier and less sig

nificant word of the partial product (two bytes

starting at address MLIER), the more significant

word of the partial product (two bytes starting at

address HIPROD), and the return address (two

bytes starting at address RETADR).

HIPROD, MLIER+ 1, and MLIER. The less

significant word of the product replaces the

multiplier as the multiplier is shifted and

examined for 1 bits.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of multiplier

More significant byte of multiplier

Less significant byte of multiplicand

More significant byte of multiplicand

Exit Conditions
Order in stack (starting from the top)

Less significant byte of less significant word

of product

More significant byte of less significant word

of product

Examples

1. Data: Multiplier = 001216 (1810)

Multiplicand = 03Dl16 (977,0)

Result: Product = 44B216 (17,58610)

236

2. Data: Multiplier = 37D116.(14,2891O)

Multiplicand = A04516 (41,02910)

Result: Product = AB55,6 (43,86110). This is

actually the less significant 16-bit

word of the 32-bit product

22F1AB55I6 (586,264,381,0).

6C 16-BIT MULTIPLICATION (MUL16) 237

Note that MUL16 returns only the less

significant word of the product to maintain

compatibility with other 16-bit arithmetic

operations. The more significant word of the

product is available in memory locations

HIPROD (less significant byte) and

HIPROD+ 1 (more significant byte), but the

user should note that it is correct only if the

operands are unsigned. If the operands are

signed numbers and either one is negative,

the user must determine the sign of the pro

duct and replace negative operands with their

absolute values (two's complements) before

calling MUL16.

Title

Name:

Purpose:

Entry:

Exit:

Time:

Size:

16 bit Multiplication

MUL16

Multiply 2 signed or unsigned 16 bit words and

return a 16 bit signed or unsigned product.

TOP OF STACK

Low byte of return address,

High byte of return address,

Low byte of multiplier,

High byte of multiplier,

Low byte of multiplicand,

High byte of multiplicand

Product = multiplicand * multiplier

TOP OF STACK

Low byte of product,

High byte of product,

Registers used: All

Approximately 650 to 1100 cycles

Program 238 bytes

Data 8 bytes

;

MUL16:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET MULTIPLIER

PLA

STA MLIER

PLA

238 ARITHMETIC

STA MLIER+1

;GET MULTIPLICAND

PLA

STA MCAND

PLA

STA MCAND+1

;PERFORM MULTIPLICATION USING THE SHIFT AND ADD ALGORITHM

; THIS ALGORITHM PRODUCES A UNSIGNED 32 BIT PRODUCT IN

; HIPROD AND MLIER WITH HIPROD BEING THE HIGH WORD.

;ZERO HIGH WORD OF PRODUCT

;NUMBER OF BITS IN MULTIPLIER PLUS 1, THE

; EXTRA LOOP IS TO MOVE THE LAST CARRY INTO

; THE PRODUCT

; CLEAR CARRY FOR FIRST TIME THROUGH LOOP

LDA

STA

STA

LDX

#0

HIPROD

HIPROD+1

#17

MULLP:

CLC

;IF NEXT BIT = 1 THEN

; HIPROD := HIPROD

ROR

ROR

ROR

ROR

BCC

CLC

LDA

ADC

STA

LDA

ADC

STA

DECCNT:

DEX

BNE

HIPROD+1

HIPROD

MLIER+1

MLIER

DECCNT

MCAND

HIPROD

HIPROD

MCAND+1

HIPROD+1

HIPROD+1

MULLP

+ MULTIPLICAND

;BRANCH IF NEXT BIT OF MULTIPLIER IS 0

;NEXT BIT IS 1 SO ADD MULTIPLICAND TO PRODUCT

;CARRY = OVERFLOW FROM ADD

;CONTINUE UNTIL DONE

;PUSH LOW WORD OF PRODUCT ON TO STACK

LDA MLIER+1

PHA

LDA MLIER

PHA

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

RTS

;DATA

MCAND: .BLOCK 2 .-MULTIPLICAND

6C 16-BIT MULTIPLICATION (MUL16) 239

MLIER: .BLOCK 2

HIPROD: .BLOCK 2

RETADR: .BLOCK 2

;MULTIPLIER AND LOW WORD OF PRODUCT

;HIGH WORD OF PRODUCT

;RETURN ADDRESS

SAMPLE EXECUTION:

SC0603:

OPRND1

OPRND2

RESULT:

;MULTIPLY OPRNDl

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

PLA

STA

PLA

STA

BRK

JMP

.WORD

• WORD

.BLOCK

.END

OPRNDl+1

OPRNDl

OPRND2+1

OPRND2

MUL16

kESULT

RESULT+1

SC0603

-2

1023

2

;PROGRAM

* OPRND2 AND STORE THE PRODUCT AT R

;MULTIPLY

;RESULT OF 1023 * -2

; IN MEMORY RESULT

RESULT+1

;2 BYTE RESULT

= -2046

= 02H

= F8H

0F802H

16-Bit Division

(SDIV16, UDIV16, SREM16, UREM16) 6D

Divides two 16-bit operands obtained
from the stack and places either the quotient

or the remainder at the top of the stack.

There are four entry points: SDIV16 returns

a 16-bit signed quotient from dividing two

16-bit signed operands, UDIV16 returns

a 16-bit unsigned quotient from dividing

two 16-bit unsigned operands, SREM16 re

turns a 16-bit remainder (a signed number)

from dividing two 16-bit signed operands,

and UREM16 returns a 16-bit unsigned

remainder from dividing two 16-bit unsigned

operands. All 16-bit numbers are stored in

the usual 6502 style with the less significant

byte on top of the more significant byte. The

divisor is stored on top of the dividend. If the

divisor is zero, the Carry flag is set and a zero

result is returned; otherwise, the Carry flag is

cleared.

Procedure: If the operands are signed, the

program determines the sign of the quotient

and takes the absolute values of any negative

operands. It also must retain the sign of the

dividend, since that determines the sign of

the remainder. The program then performs

the actual unsigned division by the usual

shift-and-subtract algorithm, shifting quo

tient and dividend and placing a 1 bit in the

Registers Used: All

Execution Time: Approximately 1000 to 1160

cycles, depending largely on the number of trial

subtractions that are successful and thus require

the replacement of the previous dividend by the

remainder.

Program Size: 293 bytes

Data Memory Required: Eleven bytes anywhere

in memory. These are utilized as follows: two

bytes for the divisor (starting at address

DVSOR); four bytes for the extended dividend

(starting at address DVEND) and also for the

quotient and remainder; two bytes for the return

address (starting at address RETADR); one byte

for the sign of the quotient (address SQUOT);

one byte for the sign of the remainder (address

SREM); and one byte for an index to the result

(address RSLTIX).

Special Case: If the divisor is zero, the program

returns with the Carry flag set to 1 and a result of

zero. Both the quotient and the remainder are

zero.

quotient each time a trial subtraction is suc

cessful. If the operands are signed, the pro

gram must negate (that is, subtract from

zero) any result (quotient or remainder) that

is negative. The Carry flag is cleared if the

division is proper and set if the divisor is

found to be zero. A zero divisor also results

in a return with the result (quotient or

remainder) set to zero.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of divisor

More significant byte of divisor

Less significant byte of dividend

More significant byte of dividend

Exit Conditions
Order in stack (starting from the top)

Less significant byte of result

More significant byte of result

If the divisor is non-zero, Carry = 0 and the

result is normal. If the divisor is zero, Carry

= 1 and the result is 000016.

240

6D 16-BIT DIVISION (SDIV16. UDIV16, SREM16. UREM16) 241

Examples

1. Data: Dividend = 03E016 = 99210

Result:

Divisor = 00B616 - 182
10

Quotient (from UDIV16) = 000516

Remainder (from UREM16) = 005216

= 008210

Carry = 0 (no divide-by-zero error)

2. Data: Dividend = D73A16 = —10,43810

Divisor = O2F116 = 75310

Result: Quotient (from SDIV16) = FFF316

1310
Remainder (from SREM16) = FD7716

= ~64910

Carry = 0 (no divide-by-zero error)

Note that we have taken the view that the

remainder of a signed division may be either

positive or negative. In our procedure, the

remainder always takes the sign of the divi

dend. The user can easily examine the quo

tient and change the form to obtain a

remainder that is always positive. In that

case, the final result of Example 2 would be

10
Quotient = FFF216 = -14

Remainder (always positive)

= 104lft

0068,

Regardless of the entry point used, the

program always calculates both the quotient

and the remainder. Upon return, the quo

tient is available in addresses DVEND and

DVEND + 1 (more significant byte in

DVEND +1) and the remainder in addresses

DVEND+ 2 and DVEND+ 3 (more signifi

cant byte in DVEND+ 3). Thus, the user can

always obtain the result that is not returned

in the stack.

Title

Name:

16 bit division

SDIVl6f UDIV16, SREM16, UREM16

Purpose:

Entry:

SDIV16

Divide 2 signed 16 bit words and return a

16 bit signed quotient.

UDIV16

Divide 2 unsigned 16 bit words and return a

16 bit unsigned quotient.

SREM16

Divide 2 signed 16 bit words and return a

16 bit signed remainder.

UREM16

Divide 2 unsigned 16 bit words and return a

16 bit unsigned remainder.

TOP OF STACK

242 ARITHMETIC

; Low byte of return address, ;

; High byte of return address, ;

; Low byte of divisor, ;

; High byte of divisor, ;

; Low byte of dividend, ;

; High byte of dividend ;

; '"
; Exit: TOP OF STACK

; Low byte of result, ;

; High byte of result, ;

;

; If no errors then ;

carry := 0 ;

else

divide by zero error

carry := 1

quotient := 0

remainder := 0

Registers used: All

Time: Approximately 1000 to 1160 cycles

Size: Program 293 bytes

• Data 13 bytes

J

;

;UNSIGNED DIVISION

UDIV16:

LDA #0 ;RESULT IS QUOTIENT (INDEX=0)

BEQ UDIVMD

;UNSIGNED REMAINDER

UREM16:
LDA #2 ;RESULT IS REMAINDER (INDEX=2)

UDIVMD:

STA RSLTIX ;RESULT INDEX (0 FOR QUOTIENT,

2 FOR REMAINDER)

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET DIVISOR

PLA

STA DVSOR

PLA

STA DVSOR+1

;GET DIVIDEND

PLA

STA DVEND

PLA

6D 16-BIT DIVISION (SDIV16, UDIV16, SREM16, UREM16) 243

STA DVEND+1

;PERFORM DIVISION

JSR UDIV

BCC DIVOK ;BRANCH IF NO ERRORS

DIVER: JMP EREXIT

DIVOK: JMP OKEXIT

;

;SIGNED DIVISION

SDIV16:
LDA #0 ;RESULT IS QUOTIENT (INDEX=0)

BEQ SDIVMD

;SIGNED REMAINDER

SREM16:

LDA #2 ;RESULT IS REMAINDER (INDEX=2)

BNE SDIVMD

SDIVMD:

STA RSLTIX ;RESULT INDEX (0 FOR QUOTIENT,

; 2 FOR REMAINDER)

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET DIVISOR

PLA

STA DVSOR

PLA

STA DVSOR+1

;GET DIVIDEND

PLA

STA DVEND

PLA

STA DVEND+1

;DETERMINE SIGN OF QUOTIENT BY PERFORMING AN EXCLUSIVE OR OF THE

; HIGH BYTES. IF THE SIGNS ARE THE SAME THEN BIT 7 WILL BE 0 AND THE

; QUOTIENT IS POSITIVE. IF THE SIGNS ARE DIFFERENT THEN THE QUOTIENT

; IS NEGATIVE.

LDA DVEND+1

EOR DVSOR+1

STA SQUOT

;SIGN OF REMAINDER IS THE SIGN OF THE DIVIDEND

LDA DVEND+1

STA SREM

;TAKE THE ABSOLUTE VALUE OF THE DIVISOR

LDA DVSOR+1

BPL CHKDE ;BRANCH IF ALREADY POSITIVE

244

CHKDE:

ARITHMETIC

LDA

SEC

SBC

STA

LDA

SBC

STA

;TAKE

LDA

BPL

LDA

SEC

SBC

STA

LDA

SBC

STA

#0

DVSOR

DVSOR

#0

DVSOR+1

DVSOR+1

THE ABSOL

DVEND+1

DODIV

#0

DVEND

DVEND

#0

DVEND+1

DVEND+1

;SUBTRACT DIVISOR FROM ZERO

;BRANCH IF DIVIDEND IS POSITIVE

;SUBTRACT DIVIDEND FROM ZERO

DODIV:

;DIVIDE ABSOLUTE VALUES

JSR UDIV

BCS EREXIT ;EXIT IF DIVIDE BY ZERO

;NEGATE QUOTIENT IF IT IS NEGATIVE

LDA

BPL

LDA

SEC

SBC

STA

LDA

SBC

STA

SQUOT

DOREM

#0

DVEND

DVEND

#0

DVEND+1

DVEND+1

;BRANCH IF QUOTIENT IS POSITIVE

;SUBTRACT QUOTIENT FROM ZERO

DOREM:

;NEGATE REMAINDER IF IT IS NEGATIVE

LDA

BPL

LDA

SEC

SBC

STA

LDA

SBC

STA

JMP

SREM

OKEXIT

#0

DVEND+2

DVEND+2

#0

DVEND+3

DVEND+3

OKEXIT

;BRANCH IF REMAINDER IS POSITIVE

EREXIT:

;ERROR EXIT (CARRY = 1, RESULTS ARE ZERO)

LDA

STA

STA

STA

STA

SEC

#0

DVEND

DVEND+1

DVEND+2

DVEND+3

;QUOTIENT := 0

;REMAINDER := 0

;CARRY = 1 IF ERROR

6D 16-BIT DIVISION (SDIV16, UDIV16, SREM16. UREM16) 245

OKEXIT:

BCS DVEXIT

;GOOD EXIT (CARRY « 0)

CLC

DVEXIT:

;CARRY = 0, NO ERRORS

,-PUSH RESULT

LDX RSLTIX

LDA DVEND+1,X

PHA

LDA DVEND,X

PHA

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

RTS

;GET INDEX TO RESULT (0=QUOTIENT, 2=REMAINDER)

;ROUTINE: UDIV

;PURPOSE: DIVIDE A 16 BIT DIVIDEND BY A 16 BIT DIVISOR

;ENTRY: DVEND = DIVIDEND

DVSOR « DIVISOR

;EXIT: DVEND « QUOTIENT

; DVEND+2 = REMAINDER

;REGISTERS USED: ALL
* ***********************************

UDIV:

;ZERO UPPER WORD OF DIVIDEND THIS WILL BE CALLED DIVIDEND [1] BELOW

LDA #0

STA DVEND+2

STA DVEND+3

;FIRST CHECK FOR DIVISION BY ZERO

LDA DVSOR

ORA DVSOR+1

BNE OKUDIV ;BRANCH IF DIVISOR IS NOT ZERO

SEC ;ELSE ERROR EXIT

RTS

;PERFORM THE DIVISION BY TRIAL SUBTRACTIONS

;LOOP THROUGH 16 BITS

;SHIFT THE CARRY INTO BIT 0 OF DIVIDEND

;WHICH WILL BE THE QUOTIENT

;AND SHIFT DIVIDEND AT THE SAME TIME

OKUDIV:

DIVLP:

LDX

ROL

ROL

ROL

ROL

#16

DVEND

DVEND+1

DVEND+2

DVEND+3

;

;CHECK IF DIVIDEND[1] IS LESS THAN DIVISOR

246 ARITHMETIC

CHKLT:

DECCNT:

; DATA

DVSOR:

DVEND:

RETADR:

SQUOT:

SREM:

RSLTIX:

SEC

LDA

SBC

TAY

LDA

SBC

BCC

STY

STA

DEX

BNE

ROL

ROL

CLC

RTS

.BLOCK

•BLOCK

.BLOCK

• BLOCK

.BLOCK

.BLOCK

.BLOCK

DVEND+2

DVSOR

DVEND+3

DVSOR+1

DECCNT

DVEND+2

DVEND+3

DIVLP

DVEND

DVEND+1

2

2

2

2

1

1

1

;SAVE LOW BYTE IN REG Y

;SUBTRACT HIGH BYTES WITH RESULT IN REG A

;BRANCH IF DIVIDEND < DIVISOR AND CARRY

;ELSE

; DIVIDEND[1] := DIVIDEND[1] - DIVISOR

;SHIFT IN THE LAST CARRY FOR THE QUOTIENT

;NO ERRORS, CLEAR CARRY

;DIVISOR

;DIVIDEND[O] AND QUOTIENT

;DIVIDEND[1] AND REMAINDER

;RETURN ADDRESS

;SIGN OF QUOTIENT

;SIGN OF REMAINDER

;INDEX TO THE RESULT 0 IS QUOTIENT,

; 2 IS REMAINDER

SAMPLE EXECUTION:

;PROGRAM SECTION

SC0604:

;SIGNED DIVIDE, OPRNDl / OPRND2, STORE THE QUOTIENT AT QUOT

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

PLA

STA

PLA

STA

BRK

OPRNDl+1

OPRNDl

OPRND2+1

OPRND2

SDIV16

QUOT

QUOT+1

;SIGNED DIVIDE

;RESULT OF -1023 / 123 = -8

; IN MEMORY QUOT = F8 HEX

QUOT+1 * FF HEX

6D 16-BIT DIVISION (SDIV16, UDIV16. SREM16. UREM16) 247

;UNSIGNED DIVIDE, OPRND1 / OPRND2, STORE THE QUOTIENT AT QUOT

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

PLA

STA

PLA

STA

BRK

OPRND1+1

OPRND1

OPRND2+1

OPRND2

UDIV16

QUOT

QUOT+1

;UNSIGNED DIVIDE

;RESULT OF 64513 / 123 = 524

; IN MEMORY QUOT = OC HEX

QUOT+1 =02 HEX

;SIGNED REMAINDER, OPRNDl / OPRND2, STORE THE REMAINDER AT REM

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

PLA

STA

PLA

STA

BRK

OPRNDl+1

OPRNDl

OPRND2+1

OPRND2

SREM16

REM

REM+1

;REMAINDER

;THE REMAI R OF -1023 / 123 = -39

; IN MEMORY REM = D9 HEX

REM+1 = FF HEX

;UNSIGNED REMAINDER, OPRNDl / OPRND2, STORE THE REMAINDER AT REM

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

PLA

STA

PLA

STA

PLA

BRK

OPRND1+1

OPRNDl

OPRND2+1

OPRND2

UREM16

REM

REM+1

;REMAINDER

;THE REMAINDER OF 64513 / 123 = 61

; IN MEMORY REM = 3D HEX

; REM+1 = 00

248 ARITHMETIC

JMP

; DATA

OPRNDl .WORD

OPRND2 .WORD

QUOT:

REM:

.BLOCK

SC0604

-1023

123

2

.BLOCK 2

;DIVIDEND (64513 UNSIGNED)

;DIVISOR

;QUOTIENT

?REMAINDER

.END ;PROGRAM

16-Bit Comparison (CMP16) 6E

Compares two 16-bit operands obtained
from the stack and sets the flags accordingly.

All 16-bit numbers are stored in the usual

6502 style with the less significant byte on top

of the more significant byte. The comparison

is performed by subtracting the top operand

(or subtrahend) from the bottom operand (or

minuend). The Zero flag always indicates

whether the numbers are equal. If the num

bers are unsigned, the Carry flag indicates

which one is larger (Carry = 0 if top operand

or subtrahend is larger and 1 otherwise). If

the numbers are signed, the Negative flag

indicates which one is larger (Negative = 1 if

top operand or subtrahend is larger and 0

otherwise); two's complement overflow is

considered and the Negative flag is inverted

if it occurs.

Procedure: The program first compares the

less significant bytes of the subtrahend and

the minuend. It then subtracts the more sig-

Regjsters Used: A, P

Execution Time: Approximately 90 cycles

Program Size: 65 bytes

Data Memory Required: Six bytes anywhere in

memory for the minuend or WORD1 (2 bytes

starting at address MINEND), the subtrahend or

WORD2 (2 bytes starting at address SUBTRA),

and the return address (2 bytes starting at address

RETADR).

nificant byte of the subtrahend from the

more significant byte of the minuend, thus

setting the flags. If the less significant bytes

of the operands are not equal, the program

clears the Zero flag by logically ORing the

accumulator with 0116. If the subtraction

results in two's complement overflow, the

program complements the Negative flag by

logically Exclusive ORing the accumulator

with 8016 (100000002); it also clears the Zero

flag by the method described earlier.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of subtrahend (top

operand or WORD2)

More significant byte of subtrahend

(top operand or W0RD2)

Less significant byte of minuend (bottom

operand or W0RD1)

More significant byte of minuend (bottom

operand or WORD1)

Exit Conditions

Flags set as if subtrahend had been

subtracted from minuend, with a correction if

two's complement overflow occurred.

Zero flag = 1 if subtrahend and minuend are

equal, 0 if they are not equal.

Carry flag = 0 if subtrahend is larger than

minuend in the unsigned sense, 1 if it is less

than or equal to the minuend.

Negative flag = 1 if subtrahend is larger than

minuend in the signed sense, 0 if it is less

than or equal to the minuend. This flag is cor

rected if two's complement overflow occurs.

249

250 ARITHMETIC

Examples

1. Data: Minuend (bottom operand) = O3E1,6

Subtrahend (top operand) = 07E416

Result: Carry = 0, indicating subtrahend is

larger in unsigned sense.

Zero = 0, indicating operands

not equal

Negative = 1, indicating subtrahend is

larger in signed sense

2. Data: Minuend (bottom operand) = C51 A,6

Subtrahend (topoperand) = C51A,6

Result: Carry = 1, indicating subtrahend is not

larger in unsigned sense

Zero = 1, indicating operands are equal

Negative = 0, indicating subtrahend is

not larger in signed sense

3. Data: Minuend (bottom operand) = A45D,6

Subtrahend (top operand) = 77E116

Result: Carry = 1, indicating subtrahend is not

larger in unsigned sense

Zero = 0, indicating operands are

not equal

Negative = 1, indicating subtrahend is

larger in signed sense

In Example 3, the bottom operand is a negative

two's complement number, whereas the top operand is

a positive two's complement number.

Title

Name:

Purpose:

Entry:

Exit:

16 bit compare

CMP16

Compare 2 16 bit signed or unsigned words and

return the CrZ,N flags set or cleared.

TOP OF STACK

Low byte of return address,

High byte of return address,

Low byte of word 2 (subtrahend),

High byte of word 2 (subtrahend),

Low byte of word 1 (minuend),

High byte of word 1 (minuend)

Flags returned based on word 1 - word 2

IF WORD1 AND WORD2 ARE 2 *S COMPLEMENT NUMBERS
THEN

IF WORD1 = W0RD2 THEN

Z=l,N=0

6E 16-COMPARISON (CMP16) 251

; IF WORDl > WORD2 THEN

; Z=O,N=O ;

; IF WORDl < WORD2 THEN ;

Z=O,N=1

; ELSE ;

; IF WORDl = WORD2 THEN ;

Z=1,C=1

; IF WORDl > WORD2 THEN ;

; Z=O,C=1

IF WORDl < WORD2 THEN

Z=O,C=O

; ;

; Registers used: A,P ;

; ;

; Time: Approximately 90 cycles ;

; ?

; Size: Program 65 bytes ;

; Data 6 bytes ;

; ;

; ;

CMP16:

;SAVE THE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET SUBTRAHEND

PLA

STA SUBTRA

PLA

STA SUBTRA+1

;GET MINUEND

PLA

STA MINEND

PLA

STA MINEND+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

LDA MINEND

CMP SUBTRA ;COMPARE LOW BYTES

BEQ EQUAL ;BRANCH IF THEY ARE EQUAL

;LOW BYTES ARE NOT EQUAL - COMPARE HIGH BYTES

LDA MINEND+1

SBC SUBTRA+1 ;COMPARE HIGH BYTES

ORA #1 ;MAKE Z « 0, SINCE LOW BYTES ARE NOT EQUAL
BVS OVFLOW ;MUST HANDLE OVERFLOW FOR SIGNED ARITHMATIC
RTS ;EXIT

252 ARITHMETIC

;LOW BYTES ARE EQUAL - COMPARE HIGH BYTES

EQUAL:

LDA MINEND+1

SBC SUBTRA+1 ;UPPER BYTES

BVS OVFLOW ;MUST HANDLE OVERFLOW FOR SIGNED ARITHMETIC

RTS ;RETURN WITH FLAGS SET

;OVERFLOW WITH SIGNED ARITHMETIC SO COMPLEMENT THE NEGATIVE FLAG

; DO NOT CHANGE THE CARRY FLAG AND MAKE THE ZERO FLAG EQUAL 0.

; COMPLEMENT NEGATIVE FLAG BY EXCLUSIVE-ORING 80H AND ACCUMULATOR.

OVFLOW:

EOR #80H COMPLEMENT NEGATIVE FLAG

ORA #1 ;IF OVERFLOW THEN THE WORDS ARE NOT EQUAL Z=0

;CARRY UNCHANGED

RTS

;DATA

MINEND: .BLOCK 2 ;TEMPORARY FOR THE MINUEND

SUBTRA: .BLOCK 2 ;TEMPORARY FOR THE SUBTRAHEND

RETADR: .BLOCK 2 ;TEMPORARY FOR THE RETURN ADDRESS

;

SAMPLE EXECUTION

SC0605:

;COMPARE OPRND1 AND OPRND2

1LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

0PRND1+1

0PRND1

OPRND2+1

OPRND2

CMP16

;LOOK AT THE FLAGS

; FOR 123 AND 1023

C = 0,Z=0,N

JMP SC0605

OPRND1 .WORD 123 ;MINUEND

OPRND2 .WORD 1023 ;SUBTRAHEND

.END ;PROGRAM

Multiple-Precision Binary Addition (MPBADD) 6F

Adds two multi-byte unsigned binary
numbers. Both numbers are stored with their

least significant bytes first (at the lowest

address). The sum replaces one of the num

bers (the one with the starting address lower

in the stack). The length of the numbers (in

bytes) is 255 or less.

Procedure: The program clears the Carry

flag initially and adds the operands one byte

at a time, starting with the least significant

bytes. The final Carry flag reflects the addi

tion of the most significant bytes. The sum

replaces the operand with the starting address

lower in the stack (array 1 in the listing). A

length of 00 causes an immediate exit with no

addition operations.

Registers Used: All

Execution Time: 23 cycles per byte plus 82 cycles

overhead. For example, adding two 6-byte

operands takes 23 x 6 + 82 or 220 cycles

Program Size: 48 bytes

Data Memory Required: Two bytes anywhere in

RAM plus four bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

return address (starting at address RETADR).

The four bytes on page 0 hold pointers to the two

numbers (starting at addresses AY1PTR and

AY2PTR, respectively). In the listing, AY1PTR

is taken as address 00D016 and AY2PTR as

address 00D216.

Special Case: A length of zero causes an

immediate exit with the sum equal to the bottom

operand (i.e., array 1 is unchanged). The Carry
flag is set to 1.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of

second operand (address containing the

least significant byte of array 2)

More significant byte of starting address of

second operand (address containing the

least significant byte of arraf 2)

Less significant byte of starting address of

first operand and result (address contain

ing the least significant byte of array 1)

More significant byte of starting address of

first operand and result (address contain

ing the least significant byte of array 1)

Exit Conditions

First operand (array 1) replaced by first

operand (array 1) plus second operand (array

2).

253

254 ARITHMETIC

Example

Data: Length of operands (in bytes) = 6

Top operand (array 2) = 19D028A193EA16

Bottom operand (array 1) = 293EABF059C716

Result: Bottom operand (array 1) = Bottom

operand (array 1) + Top operand

(array2)=430ED491EDBl16
Carry = 0

Title Multiple-Precision Binary Addition
Name: MPBADD ;

Purpose: Add 2 arrays of binary bytes

Arrayl := Arrayl + Array2

Entry: TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 address,

High byte of array 2 address,

Low byte of array 1 address,

High byte of array 1 address

The arrays are unsigned binary numbers with a

maximum length of 255 bytes, ARRAY 10] is the

least significant byte, and ARRAY[LENGTH-1]

the most significant byte.

Exit: Arrayl := Arrayl + Array2

Registers used: All

Time: 23 cycles per byte plus 82 cycles

overhead.

Size: Program 48 bytes

Data 2 bytes plus

4 bytes in page zero

EQUATES

AY1PTR: .EQU 0D0H ;PAGE ZERO FOR ARRAY 1 POINTER

AY2PTR: .EQU 0D2H ;PAGE ZERO FOR ARRAY 2 POINTER

MPBADD:

;SAVE RETURN ADDRESS

6F MULTIPLE-PRECISION BINARY ADDITION (MPBADD) 255

PLA

STA RETADR

PLA

STA RETADR+1

;GET LENGTH OF ARRAYS

PLA

TAX

;GET STARTING ADDRESS OP ARRAY 2

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF ARRAY 1

PLA

STA AY1PTR

PLA

STA AY1PTR+1

LOOP:

;RESTORE

LDA

PHA

LDA

PHA

RETURN

RETADR+1

RE^ADR

INITIALIZE

LDY

CPX

BEQ

£LC

LDA

ADC

STA

INY

DEX

BNE

#0

#0

EXIT

(AY1PTR)

(AY2PTR)

(AY1PTR)

LOOP

ADDRESS

,Y
,Y

,Y

;IS LENGTH OF ARRAYS =

;YES, EXIT

;CLEAR CARRY

;GET NEXT BYTE

;ADD BYTES

;STORE SUM

INCREMENT ARRAY INDEX

;DECREMENT COUNTER

;CONTINUE UNTIL COUNTER

EXIT:

0 ?

RTS

; DATA

RETADR .BLOCK 2

SAMPLE EXECUTION:

;TEMPORARY FOR RETURN ADDRESS

SC0606:

256 ARITHMETIC

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AYlADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPBADD

;PUSH AY1 ADDRESS

;PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS

;MULTIPLE-PRECISION

;RESULT OF 1234567H

; IN MEMORY AY1

AY1+1

; AY1+2

AY1+3

AY1+4

BINARY ADDITION

+ 1234567H = 24

= CEH

= 8AH

= 46H

= 02H

= 00H

JMP

AY1+5

AY1+6

00H

00H

SC0606

SZAYS:

AY1ADR:

AY2ADR:

AY1:

AY2:

.EQU

.WORD

.WORD

.BYTE

.BYTE

.BYTE

• BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

. BYTE

.END

7

AY1

AY 2

067H

045H

023H

001H

0

0

0

067H

045H

023H

001H

0

0

0

:PROGRAM

;SIZE OF ARRAYS

;ADDRESS OF ARRAY 1

;ADDRESS OF ARRAY 2

Multiple-Precision Binary Subtraction

(MPBSUB) 6G

Subtracts two multi-byte unsigned binary
numbers. Both numbers are stored with their

least significant byte at the lowest address.

The starting address of the subtrahend (num

ber to be subtracted) is stored on top of the

starting address of the minuend (number

from which the subtrahend is subtracted).

The difference replaces the minuend in

memory. The length of the numbers (in

bytes) is 255 or less.

Procedure: The program sets the Carry flag

(the inverted borrow) initially and subtracts

the subtrahend from the minuend one byte at

a time, starting with the least significant

bytes. The final Carry flag reflects the

subtraction of the most significant bytes. The

difference replaces the minuend (the

operand with the starting address lower in the

stack, array 1 in the listing). A length of 00

Registers Used: All

Execution Time: 23 cycles per byte plus 82 cycles

overhead. For example, subtracting two 6-byte

operands takes 23 x 6 4- 82 or 220 cycles.

Program Size: 48 bytes

Data Memory Required: Two bytes anywhere in

RAM plus four bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

return address (starting at address RETADR).

The four bytes on page 0 hold pointers to the two

numbers (starting at addresses MINPTR and

SUBPTR, respectively). In the listing, MINPTR

is taken as address 00D016 and SUBPTR as

address 00D216.

Special Case: A length of zero causes an

immediate exit with the minuend unchanged

(that is, the difference is equal to the bottom

operand). The Carry flag is set to 1.

causes an immediate exit with no subtraction

operations.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of

subtrahend (address containing the least

significant byte of array 2)

More significant byte of starting address of

subtrahend (address containing the least

significant byte of array 2)

Less significant byte of starting address of

minuend (address containing the least sig

nificant byte of array 1)

More significant byte of starting address of

minuend (address containing the least sig

nificant byte of array 1)

Exit Conditions

Minuend replaced by minuend minus

subtrahend.

257

258 ARITHMETIC

Example

Data: Length of operands (in bytes) = 4

Minuend = 2F5BA7C316

Subtrahend = 14DF35B816

Result: Difference = 1A7C72OB16.

This number replaces the original

minuend in memory. The

Carry flag is set to 1 in accordance

with its usual role (in 6502 program

ming) as an inverted borrow.

Title Multiple-Precision Binary Subtraction

Name: NPBSUB

Purpose:

Entry:

Exit:

Size:

Subtract 2 arrays of binary bytes

Minuend := Minuend - Subtrahend

TOP OF STACK

Low byte of return address.

High byte of return address,

Length of the arrays in bytes,

Low byte of subtrahend address,

High byte of subtrahend address,

Low byte of minuend address,

High byte of minuend address

The arrays are unsigned binary ftumbers with a

maximum length of 255 bytes, ARRAY[0] is the

least significant byte, and ARRAY[LENGTH-1]

the most significant byte.

Minuend := Minuend - Subtrahend

Registers used: All

Time: 23 cycles per byte plus 82 cycles

overhead.

Program 48 bytes

Data 2 bytes plus

4 bytes in page zero

;EQUATES

MINPTR: .EQU 0D0H

SUBPTR: .EQU 0D2H

;PAGE ZERO FOR MINUEND POINTER

;PAGE ZERO FOR SUBTRAHEND POINTER

6G MULTIPLE-PRECISION BINARY SUBTRACTION (MPBSUB) 259

MPBSUB:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET LENGTH OF ARRAYS

PLA

TAX

;GET STARTING ADDRESS OF SUBTRAHEND

PLA

STA SUBPTR

PLA

STA SUBPTR+1

;GET STARTING ADDRESS OF MINUEND

PLA

STA MINPTR

PLA

STA MINPTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

INITIALIZE

LDY #0

CPX #0

BEQ EXIT

SEC

LOOP:

EXIT:

LDA

SBC

STA

INY

DEX

BNE

RTS

(MINPTR),Y

(SUBPTR),Y

(MINPTR),Y

LOOP

;IS LENGTH OF ARRAYS = 0 ?

;YES, EXIT

;SET CARRY

;GET NEXT BYTE

;SUBTRACT BYTES

;STORE DIFFERENCE

;INCREMENT ARRAY INDEX

;DECREMENT COUNTER

;CONTINUE UNTIL COUNTER

;DATA

RETADR .BLOCK 2

;

SAMPLE EXECUTION:

;

;TEMPORARY FOR RETURN ADDRESS

4LOU ARITHMETIC

SC0607:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPBSUB

JMP

SZAYS: .EQU

;PUSH AY1 ADDRESS

;PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS

;MULTIPLE-PRECISION BINARY SUBTRACTION

;RESULT OF 7654321H - 1234567H = 641FDBAH

= OBAH

= OFDH

= 41H

= (X6H

= 00H

= 00H

= 00H

SC0607

IN MEMORY AY1

AY1+1

; AY1+2

; AY1+3

AY1+4

AY1+5

; AY1+6

AY1ADR:

AY2ADR:

AY1:

AY2:

.WORD

.WORD

• BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.END

AY1

AY 2

021H

043H

065H

007H

0

0

0

067H

045H

023H

001H

0

0

0

;PROGRAM

;SIZE OF ARRAYS

;ADDRESS OF ARRAY 1

;ADDRESS OF ARRAY 2

(MINUEND)

(SUBTRAHEND)

Multiple-Precision Binary Multiplication

(MPBMUL) 6H

Multiplies two multi-byte unsigned bi
nary numbers. Both numbers are stored with

their least significant byte at the lowest

address. The product replaces one of the

numbers (the one with the starting address

lower in the stack). The length of the num

bers (in bytes) is 255 or less. Only the least

significant bytes of the product are returned

to retain compatibility with other multiple-

precision binary operations.

Procedure: The program uses an ordinary

add-and-shift algorithm, adding the multipli

cand (array 2) to the partial product each

time it finds a 1 bit in the multiplier (array 1).

The partial product and the multiplier are

shifted through the bit length plus 1 with the

extra loop being necessary to move the final

carry into the product. The program main

tains a full double-length unsigned partial

product in memory locations starting at

HIPROD (more significant bytes) and in

array 1 (less significant bytes). The less sig

nificant bytes of the product replace the

multiplier as the multiplier is shifted and

examined for 1 bits. A length of 00 causes an

exit with no multiplication.

Registers Used: All

Execution Time: Depends on the length of the

operands and on the number of 1 bits in the

multiplier (requiring actual additions). If the

average number of 1 bits in the multiplier is four

per byte, the execution time is approximately

316 x LENGTH2 + 223 x LENGTH + 150

cycles where LENGTH is the number of bytes in

the operands. If, for example, LENGTH = 4, the

approximate execution time is

316 x 42 + 223 x 4 + 150 = 316 x 16 4- 892
+ 150 = 5056 + 1042 - 6,098 cycles.

Program Size: 145 bytes

Data Memory Required: 260 bytes anywhere in

RAM plus four bytes on page 0. The 260 bytes

anywhere in RAM are temporary storage for the

more significant bytes of the product (255 bytes

starting at address HIPROD), the return address

(two bytes starting at address RETADR), the

loop counter (two bytes starting at address

COUNT), and the length of the operands in bytes

(one byte at address LENGTH). The four bytes

on page 0 hold pointers to the two operands (the

pointers start at addresses AY1PTR and

AY2PTR, respectively). In the listing, AY1PTR

is taken as address 00D0l6 and AY2PTR as

address 00D216.

Special Case: A length of zero causes an

immediate exit with the product equal to the orig
inal multiplier (that is, array 1 is unchanged) and

the more significant bytes of the product (starting
at address HIPROD) undefined.

261

262 ARITHMETIC

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of

multiplicand (address containing the least

significant byte of array 2)

More significant byte of starting address of

multiplicand (address containing the least

significant byte of array 2)

Less significant byte of starting address of

multiplier (address containing the least sig

nificant byte of array 1)

More significant byte of starting address of

multiplier (address containing the least sig

nificant byte of array 1)

Exit Conditions

Multiplier (array 1) replaced by multiplier

(array 1) times multiplicand (array 2).

Example

Data: Length of operands (in bytes) = 04

Top operand (array 2 or multiplicand)

= 0005DlF716 = 381>43110

Bottom operand (array 1 or multiplier)

= OOOOOAB116 = 2,737l0

Result: Bottom operand (array 1) = Bottom

operand (array D* Top operand

(array2)<=3E39DlC7l6

= l,043,976,64?10

Note that MPBMUL returns only the less

significant bytes (that is, the number of bytes

in the multiplicand and multiplier) of the

product to maintain compatibility with other

multiple-precision binary arithmetic opera

tions. The more significant bytes of the pro

duct are available starting with their least sig

nificant byte at address HIPROD. The user

may need to check those bytes for a possible

overflow or extend the operands with addi

tional zeros.

6H MULTIPLE-PRECISION BINARY MULTIPLICATION (MPBMUL) 263

Title

Name:

Purpose:

Entry:

Exit:

Multiple-Precision Binary Multiplication

MPBMUL

Multiply 2 arrays of binary bytes

Arrayl := Arrayl * Array2

TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 (multiplicand) address,

High byte of array 2 (multiplicand) address,

Low byte of array 1 (multiplier) address,

High byte of array 1 (multiplier) address

The arrays are unsigned binary numbers with a

maximum length of 255 bytes, ARRAY[0] is the

least significant byte, and ARRAY[LENGTH-1]

the most significant byte.

Arrayl := Arrayl * Array2

Registers used: All

Time:

Size:

EQUATES

AY1PTR: .EQU 0D0H

AY2PTR: .EQU 0D2H

Assuming the average number of 1 bits in array 1;

is 4 * length then the time is approximately ;

(316 * lengt*T2) + (223 * length) + 150 cycles ;

Program 145 bytes

Data 260 bytes plus

4 bytes in page zero

;PAGE ZERO FOR ARRAY 1 POINTER

;PAGE ZERO FOR ARRAY 2 POINTER

MPBMUL:

;SAVE RETURN ADDRESS

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET LENGTH OF ARRAYS

PLA

STA LENGTH

;GET ADDRESS OF ARRAY 2 AND SUBTRACT 1 SO THAT THE ARRAYS MAY

; BE INDEXED FROM 1 TO LENGTH RATHER THAN 0 TO LENGTH-1

PLA

SEC

264 ARITHMETIC

SBC

STA

PLA

SBC

STA

#1

AY2PTR

#0

AY2PTR+1

;SUBTRACT 1 FROM LOW BYTE

;SUBTRACT BORROW IF ANY

;GET ADDRESS OF ARRAY 1 AND SUBTRACT 1

PLA

SEC

SBC #1 ;SUBTRACT 1 FROM LOW BYTE

STA AY1PTR

PLA

SBC #0 ;SUBTRACT BORROW IF ANY

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;EXIT IF LENGTH IS ZERO

LDA LENGTH ;IS LENGTH OF ARRAYS = 0 ?

BEQ EXIT ;YES, EXIT

;SET COUNT TO NUMBER OF BITS IN ARRAY PLUS 1

; COUNT := (LENGTH * 8) + 1
;INITIALIZE COUNTER TO LENGTH

;COUNT * 2

;A WILL BE UPPER BYTE

;COUNT * 4

;COUNT * 8

;STORE UPPER BYTE OF COUNT

;INCREMENT LOW BYTE OF COUNT

;INCREMENT HIGH BYTE IF LOW BYTE BECOMES, 0

STA

LDA

ASL

ROL

ASL

ROL

ASL

ROL

STA

INC

BNE

INC

;ZERO

ZEROPD:

LDX

LDA

ZEROLP:

STA

DEX

BNE

COUNT

#0

COUNT

A

COUNT

A

COUNT

A

COUNT+1

COUNT

ZEROPD

COUNT+1

HIGH PRODUCT

LENGTH

#0

HIPROD-1,X

ZEROLP

;THE MINUS 1 FOR INDEXING FROM 1 TO LENGTH

;MULTIPLY USING THE SHIFT AND ADD ALGORITHM

; ARRAY 1 WILL BE THE MULTIPLIER AND ARRAY 2 THE MULTIPLICAND

CLC ;CLEAR CARRY FIRST TIME THROUGH

LOOP:

;SHIFT CARRY INTO THE UPPER PRODUCT ARRAY AND THE LEAST SIGNIFICANT

. BIT OF THE UPPER PRODUCT ARRAY TO CARRY

LDX LENGTH

6H MULTIPLE-PRECISION BINARY MULTIPLICATION (MPBMUL) 265

SRPLP:

ROR

DEX

BNE

HIPROD-1,X

SRPLP

;MINUS 1 FOR INDEXING FROM 1 TO LENGTH

;CONTINUE UNTIL INDEX = 0

;SHIFT CARRY WHICH IS THE NEXT BIT OF LOWER PRODUCT INTO THE MOST

? SIGNIFICANT BIT OF ARRAY 1. THIS IS THE NEXT BIT OF THE PRODUCT.

; THIS ALSO SHIFTS THE NEXT BIT OF MULTIPLIER TO CARRY.

LDY LENGTH

;ROTATE NEXT BYTE

;CONTINUE UNTIL INDEX = 0

;IF NEXT BIT OF THE MULTIPLIER IS 1 THEN

; ADD ARRAY 2 AND UPPER ARRAY OF PRODUCT

BCC DECCNT ;BRANCH IF NEXT BIT IS ZERO

;ADD ARRAY 2 AND HIPROD

SRA1LP:

LDA

ROR

STA

DEY

BNE

(AY1PTR)

A

(AY1PTR)

SRA1LP

,Y

,Y

ADDLPz

LDY

LDX

CLC

LDA

ADC

STA

INY

DEX

BNE

#1
LENGTH

(AY2PTR),Y

HIPROD-1,Y

HIPROD-1,Y

ADDLP

;ADD BYTES

;INCREMENT INDEX

;DECREMENT COUNTER

;CONTINUE UNTIL COUNT

DECCNT:

;DECREMENT BIT COUNTER AND EXIT IF DONE

;DOES NOT CHANGE CARRY i

EXIT:

DEC

BNE

LDX

BEQ

DEX

STX

JMP

RTS

COUNT

LOOP

COUNT+1

EXIT

COUNT+1

LOOP

;DECREMENT LOW BYTE OF COUNT

;BRANCH IF IT IS NOT ZERO

;GET HIGH BYTE

;EXIT IF COUNT IS ZERO

;ELSE DECREMENT HIGH BYTE OF COUNT

;DATA

RETADR: .BLOCK 2

COUNT: .BLOCK 2

LENGTH: .BLOCK 1

HIPROD: .BLOCK 255

;TEMPORARY FOR RETURN ADDRESS

;TEMPORARY FOR LOOP COUNTER

;LENGTH OF ARRAYS

;HIGH PRODUCT BUFFER

266 ARITHMETIC

SAMPLE EXECUTION:

SC0608:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPBMUL

SZAYS:

AY1ADR:

AY2ADR:

AY1:

AY2:

JMP

.EQU

.WORD

• WORD

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

• END

SC0608

7

AY1

AY 2

045H

023H

001H

0

0

0

0

034H

012H

0

0

0

0

0

;PROGRAM

;PUSH AY1 ADDRESS

;PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS

;MULTIPLE-PRECISION BINARY MULTIPLY

;RESULT OF 12345H * 1234H = 14B60404H

; IN MEMORY AY1 = 04H

AY1+1 = 04H

AY1+2 = B6H

AY1+3 = 14H

; AY1+4 = 00H

? AY1+5 o 00H

AY1+6 ■ 00H

;SIZE OF ARRAYS

;ADDRESS OF ARRAY 1

;ADDRESS OF ARRAY 2

Multiple-Precision Binary Division (MPBDIV) 61

Divides two multi-byte unsigned binary
numbers. Both numbers are stored with their

least significant byte at the lowest address.

The quotient replaces the dividend (the

operand with the starting address lower in the

stack). The length of the numbers (in bytes)

is 255 or less. The remainder is not returned,

but its starting address (least significant byte)

is available in memory locations HDEPTR

and HDEPTR+1. The Carry flag is cleared if

no errors occur; if a divide by zero is

attempted, the Carry flag is set to 1, the divi

dend is left unchanged, and the remainder is

set to zero.

Procedure: The program performs division

by the usual shift-and-subtract algorithm,

shifting quotient and dividend and placing a 1

bit in the quotient each time a trial subtrac

tion is successful. An extra buffer is used to

hold the result of the trial subtraction and

that buffer is simply switched with the buffer

holding the dividend if the trial subtraction is

successful. The program exits immediately,

setting the Carry flag, if it finds the divisor to

be zero. The Carry flag is cleared otherwise.

Registers Used: All

Execution Time: Depends on the length of the

operands and on the number of 1 bits in the quo

tient (requiring a buffer switch). If the average

number of 1 bits in the quotient is four per byte,

the execution time is approximately

480 x LENGTH2 + 438 x LENGTH + 208

cycles where LENGTH is the number of bytes in

the operands. If, for example, LENGTH = 4 (32-

bit division), the approximate execution time is

480 x 42 + 438 x 4 + 208 =

480 x 16 + 1752 + 208 =

7680 + 1960 = 9,640 cycles

Program Size: 206 bytes

Data Memory Required: 519 bytes anywhere in

RAM plus eight bytes on page 0. The 519 bytes

anywhere in RAM are temporary storage for the

high dividend (255 bytes starting at address

HIDED, the result of the trial subtraction (255

bytes starting at address HIDE2), the return

address (two bytes starting at address

RETADR), the loop counter (two bytes starting

at address COUNT), the length of the operands

(one byte at address LENGTH), and the

addresses of the high dividend buffers (two bytes

starting at address AHIDE1 and two bytes start

ing at address AHIDE2). The eight bytes on page

0 hold pointers to the two operands and to the

two temporary buffers for the high dividend. The

pointers start at addresses AY1PTR (00D016 in

the listing), AY2PTR (00D216 in the listing),

HDEPTR (00D416 in the listing), and ODEPTR

(00D616 in the listing). HDEPTR contains the

address of the least significant byte of the

remainder at the conclusion of the program.

Special Cases:

1. A length of zero causes an immediate exit

with the Carry flag cleared, the quotient equal to

the original dividend, and the remainder

undefined.

2. A divisor of zero causes an exit with the

Carry flag set to 1, the quotient equal to the origi

nal dividend, and the remainder equal to zero.

267

268 ARITHMETIC

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of

divisor (address containing the least

significant byte of array 2)

More significant byte of starting address of

divisor (address containing the least

significant byte of array 2)

Less significant byte of starting address of

dividend (address containing the least

significant byte of array 1)

More significant byte of starting address of

dividend (address containing the least

significant byte of array 1)

Exit Conditions

Dividend (array 1) replaced by dividend

(array 1) divided by divisor (array 2).

If the divisor is non-zero, Carry = 0 and the

result is normal.

If the divisor is zero, Carry = 1, the dividend

is unchanged and the remainder is zero.

The remainder is available with its least

significant byte stored at the address in

HDEPTR and HDEPTR+1

Example

Data: Length of operands (in bytes) = 03

Top operand (array 2 or divisor) --= 000F4516 = 3,90910

Bottom operand (array 1 or dividend) = 35A2F716 « 3,515,12710

Result: Bottom operand (array 1) = Bottom

operand (array 1) / Top operand (array 2)

= 00038316 = 89910

Remainder (starting at address in

HDEPTR and HDEPTR+1) = 0003A816

- 936l0

Carry flag is 0 to indicate no

divide by zero error

61 MULTIPLE-PRECISION BINARY DIVISION (MPBDIV) 269

Title

Name:

Purpose:

Entry:

Exit:

Multiple-Precision Binary Division
MPBDIV

Divide 2 arrays of binary bytes
Arrayl := Arrayl / Array2

TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 (divisor) address,

High byte of array 2 (divisor) address,

Low byte of array 1 (dividend) address,

High byte of array 1 (dividend) address

The arrays are unsigned binary numbers with a
maximum length of 255 bytes, ARRAY[0] is the

least significant byte, and ARRAY[LENGTH-1]

the most significant byte.

Arrayl := Arrayl / Array2

If no errors then

carry := 0

ELSE

divide by 0 error

carry := 1

quotient

remainder

Time:

Size:

array 1 unchanged

0

Registers used: All

Assuming there are length/2 1 bits in the

quotient then the time is approximately
(480 * lengttT2) + (438 * length) + 20208 cycles

Program 206 bytes

Data 519 bytes plus

8 bytes in page zero

0D0H

0D2H

0D4H

0D6H

;EQUATES

AY1PTR: .EQU

AY2PTR: .EQU

HDEPTR: .EQU

ODEPTR: .EQU

MPBDIV:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;PAGE ZERO FOR ARRAY 1 POINTER

;PAGE ZERO FOR ARRAY 2 POINTER

;PAGE ZERO FOR HIGH DIVIDEND POINTER

;PAGE ZERO FOR OTHER HIGH DIVIDEND POINTER

270 ARITHMETIC

;GET LENGTH OF ARRAYS

PLA

STA LENGTH

;GET STARTING ADDRESS OF DIVISOR

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF DIVIDEND

PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

LDA LENGTH ;IS LENGTH OF ARRAYS = 0 ?

BNE INIT

JMP OKEXIT ;YES, EXIT

;SET COUNT TO NUMBER OF BITS IN THE ARRAYS

; COUNT := (LENGTH * 8) + 1

INIT:

;INITIALIZE COUNTER TO LENGTH

;COUNT * 2

;A WILL BE UPPER BYTE

;COUNT * 4

;COUNT * 8

;STORE UPPER BYTE OF COUNT

;INCREMENT COUNT

STA

LDA

ASL

ROL

ASL

ROL

ASL

ROL

STA

INC

BNE

INC

;ZERO

ZEROPD:

LDX

LDA

ZEROLP:

STA

STA

DEX

BNE

COUNT

#0

COUNT

A

COUNT

A

COUNT

A

COUNT+1

COUNT

ZEROPD

COUNT+1

BOTH HIGH D

LENGTH

#0

HIDEl-l,X

HIDE2-1,X

ZEROLP

;THE MINUS 1 FOR INDEXING FROM 1 TO LENGTH

;SET HIGH DIVIDEND POINTER TO HIDEl

LDA AHIDE1

61 MULTIPLE-PRECISION BINARY DIVISION (MPBDIV) 271

STA HDEPTR

LDA AHIDE1+1

STA HDEPTR+1

;SET OTHER HIGH DIVIDEND POINTER TO HIDE2

LDA AHIDE2

STA ODEPTR

LDA AHIDE2+I

STA ODEPTR+1

;CHECK IF DIVISOR IS ZERO

;LOGICALLY OR ALL BYTES OF DIVISOR

;INCREMENT INDEX

;CONTINUE UNTIL REGISTER X = 0

;BRANCH IF DIVISOR IS NOT ZERO

; ELSE EXIT INDICATING ERROR

SUBTRACTION ALGORITHM

;CLEAR CARRY FOR THE FIRST TIME THROUGH

LDX

LDY

TYA

CHKOLP:

ORA

INY

DEX

BNE

CMP

BNE

JMP

LENGTH

#0

(AY2PTR),Y

CHKOLP

#0

DIV

EREXIT

;DIVtDE USING THE

DIV:

CLC

LOOP:

;SHIFT CARRY INTO

; AND

LDX

LDY

SLLP1:

LDA

ROL

STA

INY

DEX

BNE

THE MOST SIG

LENGTH

#0

(AY1PTR),Y

A

(AY1PTR),Y

SLLP1

;ROTATE NEXT BYTE

;INCREMENT THE INDEX

;CONTINUE UNTIL REGISTER X = 0

;DECREMENT BIT COUNTER AND EXIT IF DONE

;CARRY IS NOT CHANGED !!

DECCNT:

DEC COUNT ;DECREMENT LOW BYTE OF COUNT

BNE SLUPR ;BRANCH IF IT IS NOT ZERO

LDX COUNT+1 ;GET HIGH BYTE

BEQ OKEXIT ;EXIT IF COUNT IS ZERO

DEX ;ELSE DECREMENT HIGH BYTE OF COUNT

STX COUNT+1

;SHIFT THE CARRY INTO THE LEAST SIGNIFICANT BIT OF THE UPPER DIVIDEND
SLUPR:

LDX LENGTH

LDY #0

SLLP2:

LDA (HDEPTR)', Y
ROL A

272 ARITHMETIC

SUBLP:

STA

INY

DEX

BNE

(HDEPTR),Y

SLLP2

;SUBTRACT ARRAY 2

; OTHER

LDY

LDX

SEC

LDA

SBC

STA

INY

DEX

BNE

HIGH DIVID

#0

LENGTH

(HDEP.TR),Y

(AY2PTR),Y

(ODEPTR),Y

SUBLP

INCREMENT INDEX

;CONTINUE UNTIL REGISTER X = 0

;SUBTRACT THE BYTES

;STORE THE DIFFERENCE

;INCREMENT INDEX

;CONTINUE UNTIL REGISTER X = 0

;IF NO CARRY IS GENERATED FROM THE SUBTRACTION THEN THE HIGH DIVIDEND

; IS LESS THAN ARRAY 2 SO THE NEXT BIT OF THE QUOTIENT IS 0.

; IF THE CARRY IS SET THEN THE NEXT BIT OF THE QUOTIENT IS 1

; AND WE REPLACE DIVIDEND WITH REMAINDER BY SWITCHING POINTERS.

;WAS TRIAL SUBTRACTION SUCCESSFUL ?

;YES, EXCHANGE POINTERS THUS REPLACING

; DIVIDEND WITH REMAINDER

BCC

LDY

LDX

LDA

STA

LDA

STA

STY

STX

LOOP

HDEPTR

HDEPTR+1

ODEPTR

HDEPTR

ODEPTR+1

HDEPTR+1

ODEPTR

ODEPTR+1

;CONTINUE WITH NEXT BIT A 1 (CARRY = 1)

JMP LOOP

OKEXIT:

EREXIT:

EXIT:

;CLEAR CARRY TO INDICATE NO ERRORS

CLC

BCC EXIT

;SET CARRY TO INDICATE A DIVIDE BY ZERO ERROR

SEC

;ARRAY 1 IS THE QUOTIENT

;HDEPTR CONTAINS THE ADDRESS OF THE REMAINDER

RTS

; DATA

RETADR: .BLOCK 2

COUNT: .BLOCK 2

LENGTH: .BLOCK 1

;TEMPORARY FOR RETURN ADDRESS

;TEMPORARY FOR LOOP COUNTER

;LENGTH OF ARRAYS

61 MULTIPLE-PRECISION BINARY DIVISION (MPBDIV) 273

AHIDEl:

AHIDE2:

HIDE1:

HIDE2:

.WORD HIDEI

.WORD HIDE2

.BLOCK 255

.BLOCK 255

;ADDRESS OF HIGH DIVIDEND BUFFER 1

;ADDRESS OF HIGH DIVIDEND BUFFER 2

;HIGH DIVIDEND BUFFER 1

;HIGH DIVIDEND BUFFER 2

SAMPLE EXECUTION:

SC0609:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPBDIV

SZAYS:

AY1ADR:

AY2ADR:

AY1:

&Y2:

JMP

• EQU

.WORD

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

SC0609

7

AY1

AY2

004H

004H

0B6H

014H

0

0

0

034H

012H

0

0

;PUSH AY1 ADDRESS

;PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS

;MULTIPLE-PRECISION BINARY DIVIDE

;RESULT OF 14B60404H / 1234H = 12345H

; IN MEMORY AY1 = 4 5H

AY1+1 = 23H

AY1+2 = 01H

AY1+3 = 00H

AY1+4 = 0 0H

AY1+5 = 00H

7 AY1+6 = 0 0H

;SIZE OF ARRAYS

;ADDRESS OF ARRAY 1

;ADDRESS OF ARRAY 2

(DIVIDEND)

(DIVISOR)

274 ARITHMETIC

.BYTE 0

.BYTE 0

.BYTE 0

.END ;PROGRAM

Multiple-Precision Binary Comparison

(MPBCMP) 6J

Compares two multi-byte unsigned binary
numbers and sets the Carry and Zero flags

appropriately. The Zero flag is set to 1 if the

operands are equal and to 0 if they are not

equal. The Carry flag is set to 0 if the operand

with the address higher in the stack (the

subtrahend) is larger than the other operand

(the minuend); the Carry flag is set to 1

otherwise. Thus, the flags are set as if the

subtrahend had been subtracted from the

minuend.

Procedure: The program compares the

operands one byte at a time, starting with the

most significant bytes and continuing until it

finds corresponding bytes that are not equal.

If all the bytes are equal, it exits with the Zero

flag set to 1. Note that the comparison works

through the operands starting with the most

significant bytes, whereas the subtraction

(Subroutine 6G) starts with the least signifi

cant bytes.

Registers Used: All

Execution Time: 17 cycles per byte that must be

compared plus 90 cycles overhead. That is, the

program continues until it finds corresponding

bytes that are not equal; each pair of bytes it must

examine requires 17 cycles.

Examples:

1. Comparing two 6-byte numbers that are equal

17 x 6 + 90 = 192 cycles

2. Comparing two 8-byte numbers that differ in

the next to most significant bytes

17 x 2 + 90 = 124 cycles

Program Size: 54 bytes

Data Memory Required: Two bytes anywhere in

RAM and four bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

return address (starting at address RETADR).

The four bytes on page 0 hold pointers to the two

numbers; the pointers start at addresses

MINPTR (00D016 in the listing) and SUBPTR
(00D216 in the listing).

Special Case: A length of zero causes an

immediate exit with the Carry flag and the Zero
flag both set to 1.

Entry Conditions
Order in stack (starting from top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of

subtrahend (address containing the least
significant byte)

More significant byte of starting address of

subtrahend (address containing the least
significant byte)

Less significant byte of starting address of

minuend (address containing the least sig-

Exit Conditions

Flags set as if subtrahend had been

subtracted from minuend

Zero flag = 1 if subtrahend and minuend are

equal, 0 if they are not equal

Carry flag = 0 if subtrahend is larger than

minuend in the unsigned sense, 1 if it is less

than or equal to the minuend.

275

276 ARITHMETIC

nificant byte)

More significant byte of starting address of

minuend (address containing the least sig

nificant byte)

Examples

1. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =

19D028A193EA16

Bottom operand (minuend) =

4E67BC15A26616

Result: Zero flag = 0 (operands are

not equal)

Carry flag = 1 (subtrahend is

not larger than minuend)

2. Data: Length of operands (in bytes)

= 6

Top operand (subtrahend) =

19D028A193EA16

Bottom operand (minuend) =

19D028A193EA16

Result: Zero flag = 1 (operands are equal)

Carry flag = 1 (subtrahend is

not larger than minuend)

3. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =

19D028A193EA16

Bottom operand (minuend) =

0F37E5991D7C16

Result: Zero flag = 0 (operands are not equal)

Carry flag = 0 (subtrahend is larger

than minuend)

Title

Name:

Purpose:

Entry:

Multiple-Precision Binary Comparision

MPBCMP

Compare 2 arrays of binary bytes and return

the CARRY and ZERO flags set or cleared

TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 (subtrahend) address,

High byte of array 2 (subtrahend) address,

Low byte of array 1 (minuend) address,

High byte of array 1 (minuend) address

6J MULTIPLE-PRECISION BINARY COMPARISON (MPBCMP) 277

; The arrays are unsigned binary numbers with a ;

; maximum length of 255 bytes, ARRAY[0] is the ;

least significant byte, and ARRAY[LENGTH-1]

; the most significant byte.

• Exit: IF ARRAY 1 = ARRAY 2 THEN

C=1,Z=1

IF ARRAY 1 > ARRAY 2 THEN

C=1,Z=O

IF ARRAY 1 < ARRAY 2 THEN

C=0,Z=0

Registers used: All

Time: 17 cycles per byte that must be examined

plus 90 cycles overhead.

Size: Program 54 bytes

Data 2 bytes plus

4 bytes in page zero

;PAGE ZERO FOR ARRAY 1 POINTER

;PAGE ZERO FOR ARRAY 2 POINTER

;EQUATES

MINPTR:

SUBPTR:

MPBCMP:

.EQU

.EQU

;SAVE

PLA

STA

PLA

STA

;GET

PLA

TAY

0D0H

0D2H

RETURN ADDRESS

RETADR

RETADR+1

LENGTH OF ARRAYS

;SAVE RETURN ADDRESS

;GET ADDRESS OF SUBTRAHEND AND SUBTRACT 1 TO SIMPLIFY INDEXING

PLA

SEC

SBC #1 ;SUBTRACT 1 FROM LOW BYTE
STA SUBPTR

PLA

SBC #0 ;SUBTRACT ANY BORROW FROM HIGH BYTE
STA SUBPTR+1

;GET ADDRESS OF MINUEND AND ALSO SUBTRACT 1
PLA

SEC

SBC #1 ;SUBTRACT 1 FROM LOW BYTE
STA MINPTR

PLA

SBC #0 ;SUBTRACT ANY BORROW FROM HIGH BYTE
STA MINPTR+1

278 ARITHMETIC

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

CPY #0

BEQ EXIT

LOOP:

EXIT:

LDA

CMP

BNE

DEY

BNE

RTS

;IS LENGTH OF ARRAYS = 0 ?

;YES, EXIT WITH C=1,Z=1

(MINPTR),Y ;GET NEXT BYTE

(SUBPTR),Y ;COMPARE BYTES

EXIT ;EXIT IF THEY ARE NOT EQUAL, THE FLAGS ARE SET

;DECREMENT INDEX

LOOP ;CONTINUE UNTIL COUNTER = 0

; IF WE FALL THROUGH THEN THE ARRAYS ARE EQUAL

; AND THE FLAGS ARE SET PROPERLY

; DATA

RETADR .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

SAMPLE EXECUTION:

SC0610:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

JMP

SZAYS: .EQU

AY1ADR: .WORD

AY2ADR: .WORD

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPBCMP

SC0610

7

AY1

AY 2

;PUSH AY1 ADDRESS

;PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS

;MULTIPLE-PRECISION BINARY COMPARISON

;RESULT OF COMPARE(7654321H,1234567H) IS

; C=1,Z=O

;SIZE OF ARRAYS

;ADDRESS OF ARRAY 1 (MINUEND)

;ADDRESS OF ARRAY 2 (SUBTRAHEND)

AY1:

6J MULTIPLE-PRECISION BINARY COMPARISON (MPBCMP) 279

AY2:

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

END

021H

043H

065H
007H

0

0

0

067H

045H

023H

001H

0

0

0

;PROGRAM

Multiple-Precision Decimal Addition

(MPDADD) 6K

Adds two multi-byte unsigned decimal
numbers. Both numbers are stored with their

least significant digits at the lowest address.

The sum replaces one of the numbers (the

one with the starting address lower in the

stack). The length of the numbers (in bytes)

is 255 or less. The program returns with the

Decimal Mode (D) flag cleared (binary

mode).

Procedure: The program first enters the

decimal mode by setting the D flag. It then

clears the Carry flag initially and adds the

operands one byte (two digits) at a time,

starting with the least significant digits. The

sum replaces the operand with the starting

address lower in the stack (array 1 in the list

ing). A length of 00 causes an immediate exit

with no addition operations. The program

clears the D flag (thus placing the processor

in the binary mode) before exiting. The final

Registers Used: All

Execution Time: 23 cycles per byte plus 82 cycles

overhead. For example, adding two 8-byte (16-

digit) operands takes 23 x 8 + 86 or 270 cycles.

Program Size: 50 bytes

Data Memory Required: Two bytes anywhere in

RAM and four bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

return address (starting at address RETADR).

The four bytes on page 0 hold pointers to the two

operands; the pointers start at addresses

AY1PTR (00D016 in the listing) and AY2PTR

(00D216 in the listing).

Special Case: A length of zero causes an

immediate exit with array 1 unchanged (that is,

the sum is equal to bottom operand). The

Decimal Mode flag is cleared (binary mode) and

the Carry flag is set to 1.

Carry flag reflects the addition of the most

significant digits.

Entry Conditions
Order in stack (starting from top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of

second operand (address containing the

least significant byte of array 2)

More significant byte of starting address of

second operand (address containing the

least significant byte of array 2)

Less significant byte of starting address of

first operand and result (address contain

ing the least significant byte of array 1)

Exit Conditions

First operand (array 1) replaced by

first operand (array 1) plus

second operand (array 2).

D flag set to zero (binary mode).

280

6K MULTIPLE-PRECISION DECIMAL ADDITION (MPDADD) 281

More significant byte of starting address of

first operand and result (address contain

ing the least significant byte of array 1)

Example

Data: Length of operands (in bytes) = 6

Top operand (array 2) = 19602881931516

Bottom operand (array 1) =

29347160598716

Result: Bottom operand (array 1) = Bottom

operand (array 1) -I- Top operand

(array 2) = 48950042530216

Carry = 0, Decimal Mode flag =

0 (binary mode)

Title Multiple-Precision Decimal Addition
Name: MPDADD

; Purpose: Add 2 arrays of BCD bytes

; Arrayl := Arrayl + Array2

; Entry: TOP OF STACK

i Low byte of return address,

> High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 address,

High byte of array 2 address,

Low byte of array 1 address,

High byte of array 1 address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY[LENGTH-1]
the most significant byte.

Exit: Arrayl := Arrayl + Array2

Registers used: All

Time: 23 cycles per byte plus 86 cycles
overhead.

282 ARITHMETIC

' Size: Program 50 bytes
Data 2 bytes plus

' 4 bytes in page zero

;

;EQUATES

AY1PTR: .EQU 0D0H ;PAGE ZERO FOR ARRAY 1 POINTER
AY2PTR: .EQU 0D2H ;PAGE ZERO FOR ARRAY 2 POINTER

MPDADD:

;SAVE RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET LENGTH OF ARRAYS

PLA

TAX

;GET STARTING ADDRESS OF ARRAY 2

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF ARRAY 1

PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA .RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE SUM AND DECIMAL MODE, EXIT IF LENGTH = 0

LDY #0

CPX #0 ;IS LENGTH OF ARRAYS = 0 ?

BEQ EXIT ;BRANCH IF LENGTH IS 0

SED ;SET DECIMAL MODE

CLC ;CLEAR CARRY

LOOP:

LDA

ADC

STA

INY

DEX

(AY1PTR)

(AY2PTR)

(AY1PTR)

,Y

,Y

,Y

;GET NEXT

;ADD BYTES

;STORE SUM

;INCREMENT

;DECREMENT

BYTE

ARRAY INDEX

COUNTER

BNE LOOP ;CONTINUE UNTIL COUNTER

EXIT:

CLD ;RETURN IN BINARY MODE

6K MULTIPLE-PRECISION DECIMAL ADDITION (MPDADD) 283

RTS

; DATA

RETADR .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

SAMPLE EXECUTION:

SC0611:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPDADD

SZAYS:

AY1ADR:

AY2ADR:

AY1:

AY2:

JMP

.EQU

.WORD

.WORD

.BYTE

.BYTE

..BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

SC0611

7

AY1

AY 2

067H

045H

023H

001H

0

0

0

067H

045H

023H

;PUSH AY1 ADDRESS

;PUSH AY2 ADDRESS

;PUSH SIZE OF ARRAYS

;MULTIPLE-PRECISION BCD ADDITION

;RESULT OF 1234567 + 1234567 = 2469134

IN MEMORY AY1

AY 1+1

AY1+2

AY1+3

AY1+4

AY1+5

AY1+6

= 34H

= 91H

= 46H

= 02H

= 00H

= 00H

= 00H

;S1ZE OF ARRAYS

;ADDRESS OF ARRAY 1

;ADDRESS OF ARRAY 2

284 ARITHMETIC

.BYTE 001H

.BYTE 0

.BYTE 0

.BYTE 0

.END ;PROGRAM

Multiple-Precision Decimal Subtraction

(MPDSUB) 6L

Subtracts two multi-byte unsigned
decimal numbers. Both numbers are stored

with their least significant digits at the lowest

address. The starting address of the

subtrahend (number to be subtracted) is

stored on top of the starting address of the

minuend (number from which the

subtrahend is subtracted). The difference

replaces the minuend in memory. The length

of the numbers (in bytes) is 255 or less. The

program returns with the Decimal Mode (D)

flag cleared (binary mode).

Procedure: The program first enters the

decimal mode by setting the D flag. It then

sets the Carry flag (the inverted borrow)

initially and subtracts the subtrahend from

the minuend one byte (two digits) at a time,

starting with the least significant digits. The

final Carry flag reflects the subtraction of the

most significant digits. The difference re

places the minuend (the operand with the

starting address lower in the stack, array 1 in

Registers Used: All

Execution Time: 23 cycles per byte plus 86 cycles

overhead. For example, subtracting two 8-byte

(16-digit) operands takes 23 x 8 + 86 or 270

cycles.

Program Size: 50 bytes

Data Memory Required: Two bytes anywhere in

RAM and four bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

return address (starting at address RETADR).

The four bytes on page 0 hold pointers to the two

operands; the pointers start at addresses

AY1PTR (00D016 in the listing) and AY2PTR

(00D216 in the listing).

Special Case: A length of zero causes an

immediate exit with the difference equal to the

original minuend, the Decimal Mode flag cleared

(binary mode), and the Carry flag set to 1.

the listing). A length of 00 causes an immedi

ate exit with no subtraction operations. The

program clears the D flag (thus placing the

processor in the binary mode) before exiting.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of

subtrahend (address containing the least

significant byte of array 2)

More significant byte of starting address of

subtrahend (address containing the least

significant byte of array 2)

Less significant byte of starting address of

Exit Conditions

Minuend (array 1) replaced by minuend

(array 1) minus subtrahend (array 2).

D flag set to zero (binary mode).

285

286 ARITHMETIC

minuend (address containing the least sig

nificant byte of array 1)

More significant byte of starting address of

minuend (address containing the least sig

nificant byte of array 1)

Example

Data: Length of operands (in bytes) = 6

Minuend (array 1) = 29347160598716

Subtrahend (array 2) = 19602881931516

Result: Difference (array 1) = 09744278667216.

This number replaces the original minuend

in memory. The Carry flag is set to 1 in accordance

with its usual role (in 6502 programming)

as an inverted borrow.

Decimal Mode flag = 0 (binary mode)

Title Multiple-Precision Decimal Subtraction ;
Name: MPDSUB •

Purpose: Subtract 2 arrays of BCD bytes

Minuend := Minuend - Subtrahend

Entry: TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of subtrahend address,

High byte of subtrahend address,

Low byte of minuend address,

High byte of minuend address

The arrays are unsigned BCD numbers with a

maximum length of 255 bytes, ARRAY [0] is the

least significant byte, and ARRAY [LENGTH-1]

the most significant byte.

Exit: Arrayl := Arrayl - Array2

Registers used: All

6L MULTIPLE-PRECISION DECIMAL SUBTRACTION (MPDSUB) 287

Time:

Size:

23 cycles per byte plus 86 cycles

overhead.

Program 50 bytes

Data 2 bytes plus

4 bytes in page zero

;EQUATES

MINPTR:

SUBPTR:

MPDSUB:

.EQU

.EQU

;SAVE

PLA

STA

PLA

STA

;GET

PLA

TAX

0D0H

0D2H

RETURN ADDRESS

RETADR

RETADR+1

LENGTH OF ARRAYS

;PAGE ZERO FOR MINUEND POINTER

;PAGE ZERO FOR SUBTRAHEND POINTER

;GET STARTING ADDRESS OF SUBTRAHEND

PLA

STA SUBPTR

PLA

STA SUBPTR+1

;GET STARTING ADDRESS OF MINUEND

PLA

STA MINPTR

PLA

STA MINPTR+1

LOOP:

;RESTORE

LDA

PHA

LDA

PHA

RETURN

RETADR+1

RETADR

;INITIALIZE

LDY

CPX

BEQ

SED

SEC

LDA

SBC

§TA

INY

DEX

BNE

#0

#0

EXIT

(MINPTR)

(SUBPTR)

(MINPTR)

LOOP

ADDRESS

,Y

,Y

,Y

;IS LENGTH OF ARRAYS = 0

;YES, EXIT

;SET DECIMAL MODE

;SET CARRY

;GET NEXT BYTE

;SUBTRACT BYTES

;STORE DIFFERENCE

;INCREMENT ARRAY INDEX

;DECREMENT COUNTER

;CONTINUE UNTIL COUNTER

288 ARITHMETIC

EXIT:

CLD

RTS

;RETURN IN BINARY MODE

; DATA

RETADR .BLOCK 2 ;TEMPORARY FOR RETURN ADDRESS

SAMPLE EXECUTION:

SC0612:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPDSUB

SZAYS:

AYlADR:

AY2ADR:

AY1:

JMP

.EQU

.WORD

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

SC0612

7

AY1

AY 2

034H

091H

04 6H

002H

0

0

0

;PUSH AY1 ADDRESS

;PUSH AY2 ADDRESS

PUSH SIZE OF ARRAYS

MULTIPLE-PRECISION BCD SUBTRACTION

;RESULT OF 2469134 - 1234567 = 1234567

IN MEMORY AY1

AY1+1

AY1+2

AY1+3

AY1+4

AY1+5

AY1+6

= 67H

= 45H

= 23H

= 01H

= 00H

= 00H

= 00H

;SIZE OF ARRAYS

;ADDRESS OF ARRAY

;ADDRESS OF ARRAY

(MINUEND)

(SUBTRAHEND)

AY2:

6L MULTIPLE-PRECISION DECIMAL SUBTRACTION (MPDSUB) 289

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.END

067H

045H

023H

001H

0

0

0

;PROGRAM

Multiple-Precision Decimal Multiplication

(MPDMUL) 6M

Multiplies two multi-byte unsigned
decimal numbers. Both numbers are stored

with their least significant digits at the lowest

address. The product replaces one of the

numbers (the one with the starting address

lower in the stack). The length of the num

bers (in bytes) is 255 or less. Only the least

significant bytes of the product are returned

to retain compatibility with other multiple-

precision decimal operations. The program

returns with the Decimal Mode (D) flag

cleared (binary mode).

Procedure: The program handles each digit

of the multiplicand (array 1) separately. It

masks that digit off, shifts it (if it is in the

upper nibble of a byte), and then uses it as a

counter to determine how many times to add

the multiplier to the partial product. The least

significant digit of the partial product is saved

as the next digit of the full product and the

partial product is shifted right four bits. The

program uses a flag to determine whether it is

currently working with the upper or lower

digit of a byte. A length of 00 causes an exit

with no multiplication.

Registers Used: All

Execution Time: Depends on the length of the

operands and on the size of the digits in the

multiplicand (since those digits determine how

many times the multiplier is added to the partial

product).

If the average digit in the multiplicand has a

value of 5, then the execution time is approx

imately

322 x LENGTH2 + 390 x LENGTH + 100

cycles where LENGTH is the number of bytes in

the operand. If, for example, LENGTH = 6 (12

digits), the approximate execution time is

322 x 62 4- 390 x 6 + 100 = 322 x 36 4- 2340

+ 100 = 11,592 + 2440 = 14,032 cycles.

Program Size: 203 bytes

Data Memory Required: 517 bytes anywhere in

RAM plus four bytes on page 0. The 517 bytes

anywhere in RAM are temporary storage for the

partial product (255 bytes starting at address

PROD), the multiplicand (255 bytes starting at

address MCAND), the return address (two bytes

starting at address RETADR), the length of the

operands in bytes (one byte at address

LENGTH), the next digit in the operand (one

byte at address NDIGIT), the digit counter (one

byte at address DCNT), the byte index into the

operands (one byte at address IDX), and the

overflow byte (1 byte at address OVERFLW).

The four bytes on page 0 hold pointers to the two

operands; the pointers start at addresses

AY1PTR (00D016 in the listing) and AY2PTR

(00D216 in the listing).

Special Case: A length of zero causes an

immediate exit with the product equal to the orig

inal multiplicand (array 1 is unchanged), the

Decimal Mode flag cleared (binary mode), and

the more significant bytes of the product (starting

at address PROD) undefined.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

290

Exit Conditions

Multiplicand (array 1) replaced by multipli

cand (array 1) times multiplier (array 2).

D flag set to zero (binary mode).

6M MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 291

Less significant byte of starting address of

multiplier (address containing the least

significant byte of array 2)

More significant byte of starting address of

multiplier (address containing the least

significant byte of array 2)

Less significant byte of starting address of

multiplicand (address containing the least

significant byte of array 1)

More significant byte of starting address of

multiplicand (address containing the least

significant byte of array 1)

Example

Data: Length of operands (in bytes) = 04

Top operand (array 2 or multiplier)

= OOOO351816

Bottom operand (array 1 or multiplicand)

= 0000629416

Result: Bottom operand (array 1) = Bottom

operand (array 1) * Top operand

(array2) = 2214229216.

Decimal Mode flag = 0 (binary mode)

Note that MPDMUL returns only the less

significant bytes of the product (that is, the

number of bytes in the multiplicand and

multiplier) to maintain compatibility with

other multiple-precision decimal arithmetic

operations. The more significant bytes of the

product are available starting with their least

significant digits at address PROD. The user

may need to check those bytes for a possible

overflow or extend the operands with addi

tional zeros.

Title

Name:

Purpose:

Entry:

Exit:

Multiple-Precision Decimal Multiplication
MPDMUL

Multiply 2 arrays of BCD bytes

Arrayl := Arrayl * Array2

TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 (mulitplicand) address,

High byte of array 2 (multiplicand) address,
Low byte of array 1 (multiplier) address,

High byte of array 1 (multiplier) address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the

least significant byte, and ARRAY[LENGTH-1]
the most significant byte,

Arrayl := Arrayl * Array2

292 ARITHMETIC

Registers used: All ;

Time: Assuming the average digit value of ARRAY 1 is ;

5 then the time is approximately ;

(322 * lengttT2) + (390 * length) + 100 cycles ;

Size: Program 203 bytes ;

Data 517 bytes plus ;

4 bytes in page zero ;

;PAGE ZERO FOR ARRAY 1 POINTER

;PAGE ZERO FOR ARRAY 2 POINTER

;EQUATES

AY1PTR:

AY2PTR:

MPDMUL:

.EQU

.EQU

;SAVE

PLA

STA

PLA

STA

;GET

PLA

STA

0D0H

0D2H

RETURN ADDRESS

RETADR

RETADR+1

LENGTH OF ARRAYS

LENGTH

;GET STARTING ADDRESS OF ARRAY 2

PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF ARRAY 1

PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

SED ;PUT PROCESSOR IN DECIMAL MODE

LDY #0

LDX LENGTH ;IS LENGTH ZERO ?

BNE JNITLP

JMP EXIT ;YES, EXIT

;MOVE ARRAY 1 TO MULTIPLICAND ARRAY, ZERO ARRAY lf AND

; ZERO PRODUCT ARRAY.

INITLP:

LDA (AY1PTR),Y

STA MCAND,Y ;MOVE ARYl[Y] TO MCAND[Y]

LDA

STA

STA

INY

DEX

BNE

#0

(AY1PTR),Y

PROD,Y

INITLP

bM MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 293

;ZERO ARY1[Y]

;ZERO PROD

;DECREMENT LOOP COUNTER

;CONTINUE UNTIL DONE

;INITIALIZE CURRENT INDEX TO ZERO

LDA #0

STA IDX

;LOOP THROUGH ALL THE BYTES OF THE MULTIPLICAND

LOOP:

LDA #0

STA DCNT ;START WITH LOW DIGIT

;LOOP THROUGH 2 DIGITS PER BYTE

; DURING THE FIRST DIGIT DCNT = 0

; DURING THE SECOND DIGIT DCNT = FF HEX (-1)

DLOOP:

LDA #0

STA OVRFLW ;ZERO OVERFLOW

LDY IDX

LDA MCAND,Y ;GET NEXT BYTE

LDX DCNT

BPL DLOOP1 ;BRANCH IF FIRST DIGIT

LSR A ;SHIFT RIGHT 4 BITS
LSR A

LSR A

LSR A

DLOOP1:

AND #0FH ;AND OFF UPPER DIGIT

BEQ SDIGIT ;BRANCH IF NEXT DIGIT IS ZERO
STA NDIGIT ;SAVE

;ADD MULTIPLIER TO PRODUCT NDIGIT TIMES
ADDLP:

LDY #0 ;Y = INDEX INTO ARRAYS
LDX LENGTH ;X = LENGTH IN BYTES

CLC ;CLEAR CARRY INITIALY

INNER:

LDA (AY2PTR),Y ;GET NEXT BYTE
ADC PROD,Y ;ADD TO PRODUCT
STA PROD,Y ;STORE

INY INCREMENT ARRAY INDEX
£EX /DECREMENT LOOP COUNTER
BNE INNER /CONTINUE UNTIL LOOP COUNTER = 0

tmp nfm^?r 7BRANCH IF NO OVERFLOW FROM ADDITION
INC OVRFLW ;ELSE INCREMENT OVERFLOW BYTE

DECND:

DEC NDIGIT

BNE ADDLP /CONTINUE UNTIL NDIGIT = 0

294 ARITHMETIC

SDIGIT:

;STORE THE LEAST SIGNIFICANT DIGIT OF PRODUCT
; AS THE NEXT DIGIT OF ARRAY 1

SD1:

LDA

AND

LDX

BPL

ASL

ASL

ASL

ASL

LDY

ORA

STA

PROD

#0FH

DCNT

SDI

A

A

A

A

IDX

(AY1PTR),Y

(AY1PTR),Y

;CLEAR UPPER DIGIT

;BRANCH IF FIRST DIGIT

;ELSE SHIFT LEFT 4 BITS TO PLACE

; IN THE UPPER DIGIT

;GET CURRENT BYTE INDEX

;OR IN NEXT DIGIT

;STORE NEW VALUE

;SHIFT RIGHT PRODUCT 1 DIGIT (4 BITS)

LDY LENGTH ;SHIFT RIGHT FROM THE FAR END

SHFTLP:

DEY

LDA

PHA

AND

PROD,Y

#0F0H

;DECREMENT Y SO IT POINTS AT THE NEXT BYTE

;SAVE LOW DIGIT OF PROD,Y

;CLEAR LOW DIGIT

;MAKE LOW DIGIT OF OVERFLOW

;MAKE HIGH DIGIT OF PROD,Y

LSR OVRFLW

ORA OVRFLW

ROR

ROR

ROR

ROR

STA

PLA

AND

STA

TYA

BNE

A

A

A

A

PROD,Y

#0FH

OVRFLW

SHFTLP

•• HIGH DIGIT OF PROD,Y

LOW DIGIT OF PROD,Y

;SHIFT OVERFLOW RIGHT

7BIT 0..2 AND CARRY = OVERFLOW

;BITS 4..7 = PROD

;NOW PROD IN BITS 0.

;STORE NEW PRODUCT

;GET OLD PRODfY

;CLEAR UPPER DIGIT

;STORE IN OVERFLOW

;CHECK FOR Y = 0

;BRANCH IF NOT DONE

,3 AND OVERFLOW IN 4..7

;CHECK IF WE ARE DONE WITH BOTH DIGITS OF THIS BYTE

DEC

LDA

CMP

BEQ

DCNT

DCNT

#0FFH

DLOOP

;MAKE 0 GOTO FF HEX TO INDICATE SECOND DIGIT

;HAVE WE ALREADY DONE BOTH DIGITS ?

;BRANCH IF NOT

;INCREMENT TO NEXT BYTE AND SEE IF WE ARE DONE

INC IDX

LDA IDX

CMP LENGTH
BCS EXIT ;BRANCH IF BYTE INDEX >= LENGTH

JMP LOOP ;ELSE CONTINUE

EXIT:

6M MULTIPLE-PRECISION DECIMAL MULTIPLICATION (MPDMUL) 295

CLD

RTS

•DATA

RETADR:

Length:

NDIGIT:

DCNT:

IDX:

OVRFLW:

PROD:

MCAND:

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

2

1

1

1

1

1

255

255

;RETURN IN BINARY MODE

;TEMPORARY FOR RETURN ADDRESS

;LENGTH OF ARRAYS

;NEXT DIGIT IN ARRAY

;DIGIT COUNTER FOR BYTES IN ARRAYS

;BYTE INDEX INTO ARRAYS

;OVERFLOW BYTE

;PRODUCT BUFFER

;MULTIPLICAND BUFFER

SAMPLE EXECUTION:

SC0613:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AY1ADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPDMUL

SZAYS:

AY1ADR:

AY2ADR:

AYl:

JMP

.EQU

.WORD

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

SC0613

7

AYl

AY2

034H

012H

0

0

;PUSH AYl ADDRESS

;PUSH AY2 ADDRESS

;PUSH LENGTH OF ARRAYS

;MULTIPLE-PRECISION BCD MULTIPLICATION

;RESULT OF 1234 * 1234 = 1522756

; IN MEMORY AYl = 56H

AY1+1 = 27H

AYl+2 = 52H

AY1+3 = 01H

AYl+4 = 0 0H

AYl+5 = 00H

; AYl+6 = 0 0H

;LENGTH OF ARRAYS

;ADDRESS OF ARRAY 1

;ADDRESS OF ARRAY 2

296 ARITHMETIC

AY2:

.BYTE 0

.BYTE 0

.BYTE 0

.BYTE

.BYTE

• BYTE

.BYTE

.BYTE

.BYTE

.BYTE

034H

012H

0

0

0

0

0

.END ;PROGRAM

Multiple-Precision Decimal Division

(MPDDIV) 6N

Divides two multi-byte unsigned decimal
numbers. Both numbers are stored with their

least significant byte at the lowest address.

The quotient replaces the dividend (the

operand with the starting address lower in the

stack). The length of the numbers (in bytes)

is 255 or less. The remainder is not returned

but the address of its least significant byte is

available starting at memory location

HDEPTR. The Carry flag is cleared if no

errors occur; if a divide by zero is attempted,

the Carry flag is set to 1, the dividend is left

unchanged, and the remainder is set to zero.

The program returns with the Decimal Mode

(D) flag cleared (binary mode).

Procedure: The program performs division

by trial subtractions, a digit at a time. It deter

mines how many times the divisor can be

subtracted from the dividend and then saves

that number in the quotient and makes the

remainder into the new dividend. It then

rotates the dividend and the quotient left one

digit. The program exits immediately, setting

the Carry flag, if it finds the divisor to be

zero. The Carry flag is cleared otherwise.

Registers Used: All

Execution Time: Depends on the length of the

operands and on the size of the digits in the quo

tient (determining how many trial subtractions

must be performed). If the average digit in the

quotient has a value of 5, then the execution time

is approximately

440 x LENGTH2 + 765 x LENGTH + 228

cycles where LENGTH is the number of bytes in

the operands. If, for example, LENGTH - 6 (12

digits), the approximate execution time is

440 x 62 4- 765 x 6 + 228 = 440 x 36 + 4590

+ 228 = 15,840 + 4818 = 20,658 cycles.

Program Size: 246 bytes

Data Memory Required: 522 bytes anywhere in

RAM plus eight bytes on page 0. The 522 bytes

anywhere in RAM are temporary storage for the

high dividend (255 bytes starting at address

HIDED, the result of the trial subtraction (255
bytes starting at address HIDE2), the return

address (two bytes starting at address

RETADR), a pointer to the dividend (two bytes
starting at address AY1PTR), the length of the

operands (one byte at address LENGTH), the

next digit in the array (one byte at address

NDIGIT), the divide loop counter (one byte at

address COUNT), and the addresses of the high

dividend buffers (two bytes each, starting at

addresses AHIDE1 and AHIDE2). The eight

bytes on page 0 hold pointers to the divisor

(address AY2PTR, 00D016 in the listing), the

current high dividend and remainder (address

HDEPTR, 00D216 in the listing), the other high

dividend (address ODEPTR, 00D416 in the list

ing), and the temporary array used in the left

rotation (address RLPTR, 00D616 in the listing).

Special Cases:

1. A length of zero causes an immediate exit
with the Carry flag cleared, the quotient equal to

the original dividend (array 1 unchanged), the

remainder undefined, and the Decimal Mode flag
cleared (binary mode).

2. A divisor of zero causes an exit with the

Carry flag set to 1, the quotient equal to the origi
nal dividend (array 1 unchanged), the remainder
equal to zero, and the Decimal Mode flag cleared
(binary mode).

297

298 ARITHMETIC

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Length of the operands in bytes

Less significant byte of starting address of

divisor (address containing the least sig

nificant byte of array 2)

More significant byte of starting address of

divisor (address containing the least sig

nificant byte of array 2)

Less significant byte of starting address of

dividend (address containing the least sig

nificant byte of array 1)

More significant byte of starting address of

dividend (address containing the least sig

nificant byte of array 1)

Exit Conditions

Dividend (array 1) replaced by dividend

(array 1) divided by divisor (array 2)

If the divisor is non-zero, Carry = 0 and

the result is normal.

If the divisor is zero, Carry = 1, the divi

dend is unchanged, and the remainder is

zero.

The remainder is available with its least

significant digits stored at the address in

HDEPTR and HDEPTR+ 1

D flag set to zero (binary mode).

Example

Data: Length of operands (in bytes) = 04

Top operand (array 2 or divisor) =

0000629416

Bottom operand (array 1 or dividend)

2214229816

Result: Bottom operand (array 1) = Bottom

operand (array 1)/Top operand

(array 2) = 00003518l6

Remainder (starting at address in

HDEPTR and HDEPTR+1) =

0000000616 = 610

Decimal Mode flag = 0 (binary mode)

Carry flag is 0 to indicate no

divide by zero error.

6N MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIV) 299

Title

Name:

Purpose:

Entry:

Exit:

Time:

Size:

Multiple-Precision Decimal Division

MPDDIV

Divide 2 arrays of BCD bytes

Arrayl := Arrayl / Array2

TOP OF STACK

Low byte of return address,

High byte of return address,

Length of the arrays in bytes,

Low byte of array 2 (divisor) address,

High byte of array 2 (divisor) address,

Low byte of array 1 (dividend) address,

High byte of array 1 (dividend) address

The arrays are unsigned BCD numbers with a
maximum length of 255 bytes, ARRAY[0] is the
least significant byte, and ARRAY[LENGTH-1]

the most significant byte.

Arrayl := Arrayl / Array2

Dvbuf := remainder

If no errors then

carry :- 0

ELSE

divide by 0 error

carry := 1

ARRAY 1 := unchanged

remainder := 0

Registers used: All

Assuming the average digit value in the

quotient is 5 then the time is approximately
(440 * lengt*T2) + (765 * length) + 228 cycles

Program 246 bytes

Data 522 bytes plus

8 bytes in page zero

;EQUATES

AY2PTR: .EQU 0D0H

HDEPTR: .EQU 0D2H

ODEPTR: .EQU 0D4H

RLPTR: .EQU 0D6H

MPDDIV:

;PAGE ZERO FOR ARRAY 2 (DIVISOR) POINTER

;PAGE ZERO WHICH POINTS TO THE CURRENT
; HIGH DIVIDEND POINTER

;PAGE ZERO WHICH POINTS TO THE OTHER
; HIGH DIVIDEND POINTER

;PAGE ZERO FOR ROTATE LEFT ARRAY

300 ARITHMETIC

;GET RETURN ADDRESS

PLA

STA RETADR

PLA

STA RETADR+1

;GET LENGTH OF ARRAYS
PLA

STA LENGTH

;GET STARTING ADDRESS OF DIVISOR
PLA

STA AY2PTR

PLA

STA AY2PTR+1

;GET STARTING ADDRESS OF DIVIDEND
PLA

STA AY1PTR

PLA

STA AY1PTR+1

;RESTORE RETURN ADDRESS

LDA RETADR+1

PHA

LDA RETADR

PHA

;INITIALIZE

CLD ;PUT PROCESSOR INTO BINARY MODE

;CHECK FOR ZERO LENGTH ARRAYS

LDA LENGTH

BNE INIT ;BRANCH IF NOT ZERO

JMP OKEXIT ;ELSE EXIT

;ZERO BOTH DIVIDEND BUFFERS

INIT:

LDA

LDY

INITLP:

STA

STA

DEY

BNE

;SET

LDA

STA

LDA

STA

LDA

STA

LDA

STA

#0 ;A = 0

LENGTH ;X = LENGTH

HIDEl-l,Y

HIDE2-1,Y

INITLP

UP THE HIGH DIVIDEND POINTERS

AHIDE1

HDEPTR

AHIDEl+1

HDEPTR+1

AHIDE2

ODEPTR

AHIDE2+1

ODEPTR+1

6N MULTIPLE-PRECISION DECIMAL DIVISION (MPDDtV) 301

;NDIGIT := 0

LDA #0

STA NDIGIT

;SET COUNT TO NUMBER OF DIGITS PLUS 1

COUNT

LDA

ASL

STA

LDA

ROL

STA

INC

BNE

INC

(LENGTH

LENGTH

A

COUNT

#0

A

COUNT+1

COUNT

CHKDVO

COUNT+1

2) + 1

;LENGTH

;MOVE OVERFLOW FROM * 2 INTO A

;STORE HIGH BYTE OF COUNT

;BRANCH IF NO OVERFLOW

CHKDVO:

;CHECK FOR DIVIDE BY ZERO

DV01:

LDX

LDY

TYA

ORA

INY

DEX

BNE

CMP

BNE

JMP

LENGTH

#0

(AY2PTR),Y

PV01

#0

DVLOOP

EREXIT

;CONTINUE ORING ALL THE BYTES

;BRANCH IF DIVISOR IS NOT 0

;ERROR EXIT

DVLOOP:

;PERFORM DIVISION BY TRIAL SUBTRACTIONS

;ROTATE LEFT THE LOWER DIVIDEND AND THE QUOTIENT (ARRAY 1)

; THE HIGH DIGIT OF NDIGIT BECOMES THE LEAST SIGNIFICANT DIGIT

; OF THE QUOTIENT (ARRAY 1) AND THE MOST SIGNIFICANT DIGIT

; OF ARRAY 1 (DIVIDEND) GOES TO THE HIGH DIGIT OF NDIGIT

LDA AY1PTR+1

LDY AY1PTR

JSR RLARY ;ROTATE ARRAY 1

;IF COUNT = 0 THEN WE ARE DONE

DEC COUNT

BNE ROLDVB ;BRANCH IF LOWER BYTE IS NOT 0

LDA COUNT+1 ;ELSE GET HIGH BYTE

BEQ OKEXIT ;CONTINUE UNTIL COUNT = 0

DEC COUNT+1 ;DECREMENT UPPER BYTE OF COUNT

ROLDVB:

;ROTATE LEFT THE HIGH DIVIDEND WHERE THE LEAST SIGNIFICANT DIGIT

; OF HIGH DIVIDEND BECOMES THE HIGH DIGIT OF NDIGIT

LDA

LDY

JSR

HDEPTR+1

HDEPTR

RLARY

302 ARITHMETIC

SUBLP:

INNER:

;SEE HOW MANY TIMES THE DIVISOR WILL GO INTO THE HIGH DIVIDEND

; WHEN WE EXIT FROM THIS LOOP THE HIGH DIGIT OF NDIGIT IS THE NEXT

; QUOTIENT DIGIT AND HIGH DIVIDEND IS THE REMAINDER

;NDIGIT := 0

;ENTER DECIMAL MODE

;Y = INDEX INTO ARRAYS

;X = LENGTH

;SET INVERTED BORROW

;GET NEXT BYTE OF DIVIDEND

;SUBTRACT BYTE OF DIVISOR

;SAVE DIFFERENCE FOR NEXT SUBTRACTION

;INCREMENT ARRAY INDEX

;DECREMENT LOOP COUNTER

;CONTINUE THROUGH ALL THE BYTES

;BRANCH WHEN BORROW OCCURS AT WHICH TIME

; NDIGIT IS THE NUMBER OF TIMES THE DIVISOR

; GOES INTO THE ORIGINAL HIGH DIVIDEND AND

; HIGH DIVIDEND CONTAINS THE REMAINDER.

;INCREMENT NEXT DIGIT WHICH IS IN THE HIGH DIGIT OF NDIGIT

LDA NDIGIT

CLC

ADC #10H

STA NDIGIT

;EXCHANGE POINTERS, THUS MAKING REMAINDER THE NEW DIVIDEND

LDA

STA

SED

LDY

LDX

SEC

LDA

SBC

STA

INY

DEX

BNE

BCC

#0

NDIGIT

#0

LENGTH

(HDEPTR),Y

(AY2PTR),Y

(ODEPTR),Y

INNER

DVLOOP

LDX

LDY

LDA

STA

LDA

STA

STX

STY

HDEPTR

HDEPTR+1

ODEPTR

HDEPTR

ODEPTR+1

HDEPTR+1

ODEPTR

ODEPTR+1

JMP SUBLP ;CONTINUE UNTIL DIFFERENCE GOES NEGATIVE

OKEXIT:

EREXIT:

;NO ERRORS, CLEAR CARRY

CLC

BCC EXIT

;DIVIDE BY ZERO ERROR, SET CARRY

SEC

EXIT:

;HDEPTR CONTAINS THE ADDRESS OF THE REMAINDER

CLD ;RETURN IN BINARY MODE

RTS

6N MULTIPLE-PRECISION DECIMAL DIVISION (MPDDIV) 303

.a**********************************

;SUBROUTINE: RLARY

;PURPOSE: ROTATE LEFT AN ARRAY ONE DIGIT (4 BITS)

;ENTRY: A = HIGH BYTE OF ARRAY ADDRESS

; Y = LOW BYTE OF ARRAY ADDRESS

; THE HIGH DIGIT OF NDIGIT IS THE DIGIT TO ROTATE THROUGH

;EXIT: ARRAY ROTATED LEFT THROUGH THE HIGH DIGIT OF NDIGIT

;REGISTERS USED: ALL

RLARY:

SHIFT:

;STORE ARRAY ADDRESS

STA RLPTR+1

STY RLPTR

;SHIFT NDIGIT INTO LOW DIGIT OF ARRAY AND

; SHIFT ARRAY LEFT

LDX LENGTH

LDY #0 ;START AT ARYl[0]

;GET NEXT BYTE

;SAVE HIGH DIGIT

;CLEAR HIGH DIGIT

LDA

PHA

AND

ASL

ORA

ROL

ROL

ROL

ROL

STA

PLA

AND

STA

INY

DEX

BNE

(RLPTR),Y

#0FH

NDIGIT

NDIGIT

A

A

A

A

(RLPTR),Y

#0F0H

NDIGIT

SHIFT

;BITS 0..3 = LOW DIGIT OF ARRAY

;BITS 5..7 AND CARRY = NEXT DIGIT

;NOW NDIGIT IN BITS 0..3 AND

; LOW DIGIT IN HIGH DIGIT

;STORE IT

;GET OLD HIGH DIGIT

;CLEAR LOWER DIGIT

;STORE IN NDIGIT

;INCREMENT TO NEXT BYTE

;DECREMENT COUNT

;BRANCH IF NOT DONE

RTS

;DATA

RETADR:

AY1PTR:

LENGTH:

NDIGIT:

COUNT:

AHIDE1:

AHIDE2:

HIDE1:

HIDE2:

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

• WORD

.WORD

.BLOCK

.BLOCK

2

2

1

1

2

HIDE1

HIDE2

255.

255.

;Temporary for return address
;array 1 address

;length of arrays

;next digit in array

;divide loop counter

;address of high dividend buffer 1

;address of high dividend buffer 2

;high dividend buffer 1

;high dividend buffer 2

304 ARITHMETIC

SAMPLE EXECUTION:

SC0614:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AYlADR+1

AY1ADR

AY2ADR+1

AY2ADR

#SZAYS

MPDDIV

;PUSH AY1 ADDRESS

?PUSH AY2 ADDRESS

;PUSH LENGTH OF ARRAYS

;MULTIPLE-PRECISION BCD DIVISION

;RESULT OF 1522756 / 1234 = 1234

IN MEMORY AY1

AY1+1

AY1+2

AY1+3

AY1+4

AY1+5

AY1+6

= 34H

= 12H

= OOH

= OOH

= OOH

= OOH

= OOH

SZAYS:

AY1ADR:

AY2ADR:

AY1:

AY2:

JMP

.EQU

• WORD

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.END

SC0614

7

AY1

AY 2

056H

027H

052H

01H

0

0

0

034H

012H

0

0

0

0

0

;PROGRAM

;LENGTH OF ARRAYS

;ADDRESS OF ARRAY 1

;ADDRESS OF ARRAY 2

(DIVIDEND)

(DIVISOR)

Multiple-Precision Decimal Comparison 60

Compares two multi-byte unsigned
decimal (BCD) numbers and sets the Carry

and Zero flags appropriately. The Zero flag is

set to 1 if the operands are equal and to 0 if

they are not equal. The Carry flag is set to 0 if

the operand with the address higher in the

stack (the subtrahend) is larger then the

other operand (the minuend); the Carry flag

is set to 1 otherwise. Thus the flags are set as

if the subtrahend had been subtracted from

the minuend.

Note: This program is exactly the same as

Subroutine 6J, the multiple-precision binary

comparison, since the CMP instruction oper

ates the same in the decimal mode as in the

binary mode. Hence, see Subroutine 6J for a

listing and other details.

Examples

1. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =

19652871934016

Bottom operand (minuend) =

45678015326616

Result: Zero flag = 0 (operands are not equal)

Carry flag = 1 (subtrahend is not

larger than minuend)

2. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =

19652871934016

Bottom operand (minuend) =

19652871934016

Result: Zero flag = 1 (operands are equal)

Carry flag = 1 (subtrahend is not

larger than minuend)

3. Data: Length of operands (in bytes) = 6

Top operand (subtrahend) =

19652871934016

Bottom operand (minuend) =

073785991074I6

Result: Zero flag = 0 (operands are not equal)

Carry flag = 0 (subtrahend is larger

than minuend)

305

Bit Set (BITSET) 7A

Sets a specified bit in a 16-bit word to 1.
Procedure: The program uses bits 0

through 2 of register X to determine which

bit position to set and bit 3 to select a particu

lar byte of the original word-length data. It

then logically ORs the selected byte with a

mask containing a 1 in the chosen bit position

and Os elsewhere. The masks with one 1 bit

are available in a table.

Registers Used: All

Execution Time: 57 cycles

Program Size: 42 bytes

Data Memory Required: Two bytes anywhere in

RAM (starting at address VALUE).

Special Case: Bit positions above 15 will be

interpreted mod 16. That is, for example, bit

position 16 is equivalent to bit position 0.

Entry Conditions

More significant byte of data in accumulator

Less significant byte of data in register Y

Bit number to set in register X

Exit Conditions

More significant byte of result in accumulator

Less significant byte of result in register Y

Examples

1. Data: (A) = ^ = 011011102

(more significant byte)

(Y)«3916 = 001110012

(less significant byte)

(X) = 0C16 = 1210

(bit position to set)

Result: (A) - 7E1(; - 011111102

(more significant byte,

bit 12 set to 1)

() i6

(less significant byte)

2. Data: (A) = 6E1(| = 011011102

(more significant byte)

(Y) = 3916 = 001110012

(less significant byte)

(X) - 0216 - 2l0

(bit position to set)

Result: (A) = 6Ej6 = 011011102
(more significant byte)

(Y) = 3D16 = 001111012

(less significant byte, bit 2 set to 1)

306

7A (BITSET) BIT SET 307

; Title Bit set

; Name: BITSET

Purpose: Set a bit in a 16 bit word.

Entry: Register A = High byte of word

Register Y = Low byte of word

Register X = Bit number to set

Exit: Register A = High byte of word with bit set

Register Y = Low byte of word with bit set

Registers used: All

Time: 57 cycles

Size: Program 42 bytes

Data 2 bytes

BITSET:

;SAVE THE DATA WORD

STA VALUE+1

STY VALUE

;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15

TXA

AND #0FH

;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE

;SAVE BIT NUMBER IN X

;THE LOWER 3 BITS OF THE BIT NUMBER

; IS THE BIT IN THE BYTE, SAVE IN Y

;RESTORE BIT NUMBER

;DIVIDE BY 8 TO DETERMINE BYTE

;SAVE BYTE NUMBER (0 OR 1) IN X

;GET THE BYTE

;SET THE BIT

TAX

AND

TAY

TXA

LSR

LSR

LSR

TAX

#07H

A

A

A

;SET THE BIT

LDA

ORA

STA

VALUE,X

BITMSK,Y

VALUE,X

;RETURN THE RESU

LDA

LDY

RTS

VALUE+1

VALUE

308 BIT MANIPULATIONS AND SHIFTS

BITMSK:

; DATA

VALUE:

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BLOCK

00000001B

00000010B

00000I00B

00001000B

00010000B

00100000B

01000000B

I0000000B

2

;BIT

;BIT

;BIT

;BIT

;BIT

;BIT

;BIT

;BIT

0

1

2

3

4

5

6

7

= 1

= 1

= 1

= 1

= 1

= 1

= 1

= 1

;TEMPORARY FOR THE DATA WORD

SAMPLE EXECUTION

SC0701:

LDA

LDY

LDX

JSR

BRK

VAL+1

VAL

BITN

BITSET

JMP SC0701

;LOAD DATA WORD INTO A,Y

;GET BIT NUMBER IN X

;SET THE BIT

;RESULT OF VAL « 5555H AND BITN = OF

; REGISTER A = D5H, REGISTER Y = 55H

;TEST DATA, CHANGE FOR DIFFERENT VALUES

VAL: .WORD 5555H

BITN: .BYTE OFH

.END ;PROGRAM

Bit Clear (BITCLR) 7B

Clears a specified bit in a 16-bit word.
Procedure: the program uses bits 0 through

2 of register X to determine which bit posi

tion to clear and bit 3 to select a particular

byte of the original word-length data. It then

logically ANDs the selected byte with a mask

containing a 0 in the chosen bit position and

Is elsewhere. The masks with one 0 bit are

available in a table.

Registers Used: All

Execution Time: 57 cycles

Program Size: 42 bytes

Data Memory Required: Two bytes anywhere in

RAM (starting at address VALUE).

Special Case: Bit positions above 15 will be

interpreted mod 16. That is, for example, bit

position 16 is equivalent to bit position 0.

Entry Conditions

More significant byte of data in accumulator

Less significant byte of data in register Y

Bit number to clear in register X

Exit Conditions

More significant byte of result in accumulator

Less significant byte of result in register Y

Examples

1. Data: (A) - 6E,6 - 011011102 2. Data:
(more significant byte)

(Y) = 3916 = 0011100116

(less significant byte)

(X) = 0E16 = 14IO

(bit position to clear)

Result: (A) = 2E,6 = 011011102 Result:
(more significant byte, bit 14 cleared)

(Y) =3916 = 001110012
(less significant byte)

(A) = 6E,fi«0110111016
(more significant byte)

(Y) = 3916-001110012
(less significant byte)

(X) - 04,6 - 410

(bit position to clear)

16

(more significant byte)

(Y) = 2916 - 001010012
(less significant byte, bit 4 cleared)

309

310 BIT MANIPULATIONS AND SHIFTS

Title Bit clear

Name: BITCLR

; Purpose: Clear a bit in a 16 bit word.

; Entry: Register A = High byte of word

; Register Y = Low byte of word

; Register X = Bit number to clear

;

; Exit: Register A = High byte of word with bit cleared

; Register Y = Low byte of word with bit cleared

; Registers used: All

;

; Time: 57 cycles

;

; Size: Program 42 bytes

; Data 2 bytes

BITCLR:

;SAVE THE DATA WORD

STA VALUE+1

STY VALUE

;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15

TXA

AND #0FH

;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE

TAX ;SAVE BIT NUMBER IN X

AND #07H ;THE LOWER 3 BITS OF THE BIT NUMBER

TAY ; IS THE BIT IN THE BYTE, SAVE IN Y

TXA ;RESTORE BIT NUMBER

LSR A ;DIVIDE BY 8 TO DETERMINE BYTE

LSR A

LSR A

TAX ;SAVE BYTE NUMBER (0 OR 1) IN X

;CLEAR THE BIT

LDA VALUE,X ;GET THE BYTE

AND BITMSK,Y ;CLEAR THE BIT

STA VALUE,X

;RETURN THE RESULT IN REGISTERS A AND Y

LDA VALUE+1

LDY VALUE.

RTS

7B (BITCLR) BIT CLEAR 311

BITMSK:

; DATA

VALUE:

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BLOCK

11111110B

11111101B

11111011B

11110111B

11101111B

11011111B

10111111B

01111111B

2

;BIT

;BIT

;BIT

;BIT

;BIT

;BIT

,*BIT

;BIT

;TEMI

0 = 0

1 = 0

2 = 0

3 = 0

4 = 0

5 = 0

6 = 0

7 = 0

>ORARY

SAMPLE EXECUTION

SC0702:

LDA

LDY

LDX

JSR

BRK

VAL+1

VAL

BITN

BITCLR

JMP SC0702

;LOAD DATA WORD INTO A,Y

;GET BIT NUMBER IN X

;CLEAR THE BIT

;RESULT OF VAL = 5555H AND BITN = 00H IS

; REGISTER A = 55H, REGISTER Y = 54H

;TEST DATA, CHANGE FOR DIFFERENT VALUES

VAL: .WORD 5555H

BITN: .BYTE 0

• END ;PROGRAM

Bit Test (BITTST) 7C

Sets the Carry flag to the value of a
specified bit in a 16-bit word.

Procedure: The program uses bits 0

through 2 of register X to determine which

bit position to test and bit 3 to select a partic

ular byte of the original word-length data. It

then logically ANDs the selected byte with a

mask containing a 1 in the chosen bit position

and Os elsewhere. Since the result is zero if

the tested bit is 0 and non-zero if the tested

bit is 1, the Zero flag is set to the complement

of the tested bit. Finally, the program sets the

Registers Used: All

Execution Time: Approximately 50 cycles

Program Size: 37 bytes

Data Memory Required: Two bytes anywhere in

RAM (starting at address VALUE).

Special Case: Bit positions above 15 will be
interpreted mod 16. That is, for example, bit

position 16 is equivalent to bit position 0.

Carry flag to the complement of the Zero

flag, thus making it the same as the tested bit

through a double inversion.

Entry Conditions

More significant byte of data in accumulator

Less significant byte of data in register Y

Bit position to test in register X

Exit Conditions

Carry set to value of specified bit position in

data.

Examples

1. Data: (A) = 6E16 = 011011102

(more significant byte)

(Y) = 3916 = 001110012

(less significant byte)

(X) = 0B16=ll10
(bit position to test)

Result: Carry = 1 (value of bit 11)

2. Data:

Result:

() 16

(more significant byte)

(Y) = 39l6 = 001110012

(less significant byte)

(X) = 0616 = 610

(bit position to test)

Carry «= 0 (value of bit 6)

312

7C (BITTST) BIT TEST 313

Title

Name:

Bit test

BITTST

Purpose: Test a bit in a 16 bit word.

Entry: Register A = High byte of word
Register Y = Low byte of word

Register X = Bit number to test

Exit: CARRY = value of the tested bit

Registers used: All

Time: Approximately 50 cycles

Size: Program 37 bytes

Data 2 bytes

BITTST:

EXIT:

;SAVE THE DATA WORD

STA VALUE+1

STY VALUE

;BE SURE THAT THE BIT NUMBER IS BETWEEN 0 AND 15

TXA

AND #0FH

;DETERMINE WHICH BYTE AND WHICH BIT IN THAT BYTE

TAX ;SAVE BIT NUMBER IN X

AND #07H ;THE LOWER 3 BITS OF THE BIT NUMBER

TAY ; IS THE BIT IN THE BYTE, SAVE IN Y

TXA ;RESTORE BIT NUMBER

LSR A ;DIVIDE BY 8 TO DETERMINE BYTE

LSR A

LSR A

TAX ;SAVE BYTE NUMBER (0 OR 1) IN X

;SET THE ZERO FLAG TO THE COMPLEMENT OF THE BIT

LDA VALUE,X ;GET THE BYTE

AND BITMSK,Y ;GET THE BIT

;IF THE BIT IS 0 REGISTER A IS 0 AND Z IS 1

;ELSE REGISTER A IS NOT 0 AND Z IS 0

;SET THE CARRY FLAG TO THE COMPLEMENT OF THE ZERO FLAG

CLC

BNE

SEC

RTS

EXIT

;ASSUME THE BIT IS 0

;BRANCH IF THE BIT IS

;ELSE THE BIT WAS 1

314 BIT MANIPULATIONS AND SHIFTS

BITMSK:

; DATA

VALUE:

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BLOCK

00000001B

00000010B

00000100B

00001000B

00010000B

00100000B

01000000B

10000000B

2

;BIT 0=1

;BIT

;BIT

;BIT

;BIT

;BIT

;BIT 6

;BIT 7

.•TEMPORARY FOR THE DATA WORD

SAMPLE EXECUTION

SC0703:

LDA

LDY

LDX

JSR

BRK

VAL+1

VAL

BITN

BITTST

JMP SC0703

;LOAD DATA WORD INTO A,Y

;GET BIT NUMBER IN X

•TEST THE BIT

;RESULT OF VAL = 5555H AND BITN = 01 IS

;CARRY = 0

;TEST DATA, CHANGE FOR DIFFERENT VALUES

VAL: .WORD 5555H

BITN: .BYTE 01H

.END ;PROGRAM

Bit Field Extraction (BFE) 7D

Extracts a field of bits from a word and
returns the field in the least significant bit

positions. The width of the field and its start

ing bit position are specified.

Procedure: The program obtains a mask

with the specified number of 1 bits from a

table, shifts the mask left to align it with the

specified starting bit position, and obtains the

field by logically ANDing the mask and the

data. It then normalizes the bit field by shift

ing it right so that it starts in bit 0.

Registers Used: All

Execution Time: 34 • STARTING BIT POSI

TION plus 138 cycles overhead. The starting bit

position determines the number of times the

mask must be shifted left and the bit field right.

For example, if the field starts in bit 6, the execu

tion time is

34 • 6 4- 138 = 204 + 138 = 342 cycles

Program Size: 134 bytes

Data Memory Required: Six bytes anywhere in

RAM for the index (one byte at address

INDEX), the width of the field (one byte at

address WIDTH), the data value (two bytes start

ing at address VALUE), and the mask (two bytes

starting at address MASK).

Special Cases:

1. Requesting a field that would extend

beyond the end of the word causes the program

to return with only the bits through bit 15. That

is, no wraparound is provided. If, for example,

the user asks for a 10-bit field starting at bit 8, the

program will return only 8 bits (bits 8 through 15).

2. Both the starting bit position and the num

ber of bits in the field are interpreted mod 16.

That is, for example, bit position 17 is equivalent

to bit position 1 and a field of 20 bits is equivalent

to a field of 4 bits.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Starting (lowest) bit position of field

Number of bits in the field

Less significant byte of data value

More significant byte of data value

Exit Conditions

More significant byte of bit field in

accumulator

Less significant byte of bit field in register Y

Examples

1. Data: Value = F67C,6 = 11110110011111002

Starting bit position = 4

Number of bits in the field = 8

Result: Bit field = 006716 = 00000000011001112

We have extracted 8 bits from the original

data, starting with bit 4 (that is, bits

4 through 11).

315

316 BIT MANIPULATIONS AND SHIFTS

2. Data: Value = A2D416 = 10100010110101002 Result: Bit field = 000B16 = 00000000000010112

Starting bit position = 6 We have extracted 5 bits from the

Number of bits in the field = 5 original data, starting with bit 6 (that is,
bits 6 through 10).

BFE:

Title Bit Field Extraction

Name: BFE

;

; Purpose: Extract a field of bits from a 16 bit word and ;

; return the field normalized to bit 0. ;
; NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN ;

? ONLY THE BITS THROUGH BIT 15 WILL BE ;

RETURNED. FOR EXAMPLE IF A 4 BIT FIELD IS ;

; REQUESTED STARTING AT BIT 15 THEN ONLY 1 ;

; BIT (BIT 15) WILL BE RETURNED. ;

; ?
; Entry: TOP OF STACK ;

• Low byte of return address, ;

; High byte of return address, ;

; Starting (lowest) bit position in the field ;

(0..15),

Number of bits in the field (1..16),

; Low byte of data word, ;

. High byte of data word, ;

; '

. Exit: Register A = High byte of field

. Register Y = Low byte of field ?

; Registers used: All

8 cycles overhead plu

(34 * starting bit position) cycles
'. Time: 138 cycles overhead plus

i bit

; Size: Program 134 bytes

Data 6 bytes

;SAVE RETURN ADDRESS IN Y,X

PLA

TAY

PLA

TAX

7D (BFE) BIT FIELD EXTRACTION 317

;GET THE STARTING BIT POSITION OF THE FIELD

PLA

AND #0FH ;MAKE SURE INDEX IS A VALUE BETWEEN 0 AND 15

STA INDEX ;SAVE INDEX

;GET THE NUMBER OF BITS IN THE FIELD (MAP FROM 1..WIDTH TO 0..WIDTH-1)

PLA

SEC

SBC #1 ; SUBTRACT 1

AND #0FH ;MAKE SURE IT IS 0 TO 15

STA WIDTH ;SAVE WIDTH

;GET THE DATA WORD

PLA

STA VALUE

PLA

STA VALUE+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA

;CONSTRUCT THE MASK

; INDEX INTO THE MASK ARRAY USING THE WIDTH PARAMETER

LDA WIDTH

ASL A ;MULTIPLY BY 2 SINCE MASKS ARE WORD-LENGTH

TAY

LDA MSKARY,Y

STA MASK

INY

LDA MSKARY,Y

STA MASK+1

;SHIFT MASK LEFT INDEX TIMES TO ALIGN IT WITH THE BEGINNING

; OF THE FIELD

LDY INDEX

BEQ GETFLD ;BRANCH IF INDEX = 0

SHFTLP:

ASL MASK ;SHIFT LOW BYTE, CARRY := BIT 7

ROL MASK+1 ;ROTATE HIGH BYTE, BIT 0 2= CARRY

DEY

BNE SHFTLP ;CONTINUE UNTIL INDEX = 0

;GET THE FIELD BY ANDING THE MASK AND THE VALUE

GETFLD:

LDA VALUE

AND MASK ;AND LOW BYTE OF VALUE WITH MASK

STA VALUE ;STORE IN VALUE

LDA VALUE+1

AND MASK+1 ;AND HIGH BYTE OF VALUE WITH MASK

STA VALUE+1 ;STORE IT

318 BIT MANIPULATIONS AND SHIFTS

FORMALIZE THE FIELD TO BIT 0 BY SHIFTING RIGHT INDEX TIMES

NORMLP:

LDY

BEQ

LSR

ROR

DEY

BNE

INDEX

EXIT

VALUE+1

VALUE

NORMLP

;BRANCH IF INDEX = 0

;SHIFT HIGH BYTE RIGHT, CARRY := BIT 0

;ROTATE LOW BYTE RIGHT, BIT 7 := CARRY

;CONTINUE UNTIL DONE

EXIT:

LDY

LDA

RTS

VALUE

VALUE+1

MSKARY:

;MASK ARRAY WHICH IS USED TO CREATE THE MASK

•WORD 0000000000000001B

.WORD OOOOOOOOOOOOOOllB

.WORD 0000000000000111B

•WORD OOOOOOOOOOOOllllB

.WORD 0000000000011111B

.WORD 0000000000111111B

.WORD 0000000001111111B

.WORD 0000000011111111B

.WORD 000000U111111111B

.WORD 0000001111111111B

.WORD 0000011111111111B

.WORD 0000111111111111B

.WORD 0001111111111111B

.WORD 0011111111111111B

.WORD 0111111111111111B

.WORD 1111111111111111B

INDEX: .BLOCK 1

WIDTH: .BLOCK 1

VALUE: .BLOCK 2

MASK: .BLOCK 2

;INDEX INTO WORD

;WIDTH OF FIELD (NUMBER OF BITS)

;DATA WORD TO EXTRACT THE FIELD FROM

;TEMPORARY FOR CREATING THE MASK

SAMPLE EXECUTION:

SC0704:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

VAL+1

VAL

NBITS

POS

;PUSH THE DATA WORD

;PUSH FIELD WIDTH (NUMBER OF BITS)

7D (BFE) BIT FIELD EXTRACTION 319

;PUSH INDEX TO FIRST BIT OF THE FIELD

JSR BFE ;EXTRACT

BRK ;RESULT FOR VAL = 1234H, NBITS = 4, POS = 4 IS

; REGISTER A = 0, REGISTER Y = 3

JMP SC0704

;TEST PATA, CHANGE FOR OTHER VALUES

VAL: .WORD 01234H
NBITS: .BYTE 4

POS: .BYTE 4

.END ;PROGRAM

Bit Field Insertion (BFI) 7E

Inserts a field of bits into a word. The width
of the field and its starting (lowest) bit posi

tion are specified.

Procedure: The program obtains a mask

with the specified number of 0 bits from a

table. It then shifts the mask and the bit field

left to align them with the specified starting

bit position. It logically ANDs the mask and

the original data word, thus clearing the

required bit positions, and then logically ORs

the result with the shifted bit field.

Registers Used: All

Execution Time: 31 ♦ STARTING BIT POSI

TION plus 142 cycles overhead. The starting bit

position of the field determines how many times

the mask and the field must be shifted left. For

example, if the field is inserted starting in bit 10,

the execution time is

31 * 10 + 142 = 310 + 142 = 452 cycles.

Program Size: 130 bytes

Data Memory Required: Eight bytes anywhere in

RAM for the index (one byte at address

INDEX), the width of the field (one byte at

address WIDTH), the value to be inserted (two

bytes starting at address INSVAL), the data

value (two bytes starting at address VALUE),

and the mask (two bytes starting at address

MASK).

Special Cases:

1. Attempting to insert a field that would

extend beyond the end of the word causes the

program to insert only the bits through bit 15.

That is, no wraparound is provided. If, for exam

ple, the user attempts to insert a 6-bit field start

ing at bit 14, only 2 bits (bits 14 and 15) are

actually replaced.

2. Both the starting bit position and the length

of the bit field are interpreted mod 16. That is, for

example, bit position 17 is the same as bit posi

tion 1 and a 20-bit field is the same as a 4-bit field.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Lowest bit position (starting position) of field

Number of bits in the field

Less significant byte of bit field (value to

insert)

More significant byte of bit field (value to

insert)

Less significant byte of original data value

More significant byte of original data value

Exit Conditions

More significant byte of result in accumulator

Less significant byte of result in register Y

The result is the original data value with the

bit field inserted, starting at the specified

bit position.

320

7E (BFI) BIT FIELD INSERTION 321

Examples

1. Data: Value = F67C16 = 11110110011111002

Starting bit position = 4

Number of bits in the field = 8

Bitfield = 008B16 = 00000000100010112

Result: Value with bit field inserted = F8BC16

= 11111000101111002

The 8-bit field has been inserted

into the original value starting at bit 4

(that is, into bits 4 through 11).

2. Data: Value = A2D416 = 10100010110101002

Starting bit position = 6

Number of bits in the field = 5

Bitfield = 001516 - 00000000000101012

Result: Value with bit field inserted = A55416

= 10100101010101002

The 5-bit field has been

inserted into the original value starting at

bit 6 (that is, into bits 6 through 10).

Those five bits were 010112 (0B16) and

arenowl01012(1516).

Title

Name:

Bit Field Insertion

BFI

Purpose:

Entry:

Exit:

Insert a field of bits which is normalized to

bit 0 into a 16 bit word.

NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN

ONLY THE BITS THROUGH BIT 15 WILL BE

INSERTED. FOR EXAMPLE IF A 4 BIT FIELD IS

TO BE INSERTED STARTING AT BIT 15 THEN

ONLY THE FIRST BIT WILL BE INSERTED AT

BIT 15.

TOP OF STACK

Low byte of return address,

High byte of return address,

Bit position at which inserted field will
start (0..15),

Number of bits in the field (1..16),

Low byte of value to insert,

High byte of value to insert,
Low byte of value,

High byte of value

Register A = High byte of value with field
inserted

Register Y = Low byte of value with field
inserted

Registers used: All

322 BIT MANIPULATIONS AND SHIFTS

Time: 142 cycles overhead plus

(31 * starting bit position) cycles

Size: Program 130 bytes

Data 8 bytes

BFI:

;SAVE RETURN ADDRESS IN Y,X

PLA

TAY

PLA

TAX

;GET THE LOWEST BIT NUMBER OF THE FIELD

PLA

AND #0FH ;MAKE SURE INDEX IS A VALUE BETWEEN 0 AND 15

STA INDEX ;SAVE INDEX

;GET THE NUMBER OF BITS IN THE FIELD (MAP FROM 1..WIDTH TO 0..WIDTH-1)

PLA

SEC

SBC #1 ;SUBTRACT 1

AND #0FH ;MAKE SURE IT IS 0 TO 15

STA WIDTH ;SAVE WIDTH

;GET THE VALUE TO BE INSERTED (BIT FIELD)

PLA

STA INSVAL

PLA

STA INSVAL+1

;GET THE DATA WORD

PLA

STA VALUE

PLA

STA VALUE+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA

.•CONSTRUCT THE MASK

; INDEX INTO THE MASK ARRAY USING THE WIDTH PARAMETER

LDA WIDTH

ASL A ;MULTIPLY BY 2 SINCE MASKS ARE WORD-LENGTH

TAY

LDA MSKARYfY

STA MASK

INY

LDA MSKARY,Y

STA MASK+1

7E (BFI) BIT FIELD INSERTION 323

;SHIFT MASK AND BIT FIELD LEFT INDEX TIMES TO ALIGN THEM

; WITH THE BEGINING OF THE FIELD

SHFTLP:

LDY

BEQ

SEC

ROL

ROL

ASL

ROL

DEY

BNE

INDEX

INSERT

MASK

MASK+1

INSVAL

INSVAL+1

SHFTLP

;BRANCH IF INDEX = 0

;FILL THE MASK WITH ONES

;ROTATE LOW BYTE SHIFTING A 1 TO BIT 0 AND

; BIT 7 TO CARRY

;ROTATE HIGH BYTE, BIT 0 := CARRY

;SHIFT THE INSERT VALUE SHIFTING IN ZEROS

;CONTINUE UNTIL INDEX

;USE THE MASK TO ZERO THE FIELD AND THEN OR IN THE INSERT VALUE

INSERT:

MSKARY:

LDA

AND

ORA

TAY

LDA

AND

ORA

;RETURN

RTS

VALUE

MASK

INSVAL

VALUE+1

MASK+1

INSVAL+1

;AND LOW BYTE OF VALUE WITH MASK

;REGISTER Y = LOW BYTE OF THE NEW VALUE

;AND HIGH BYTE OF VALUE WITH MASK

;REGISTER A = HIGH BYTE OF THE NEW VALUE

;MASK ARRAY WHICH IS USED TO CREATE THE MASK

.WORD 1111111111111110B

.WORD 1111111111111100B

.WORD 1111111111111000B

.WORD 1111111111110000B

.WORD 1111111111100000B

.WORD 1111111111000000B

.WORD 1111111110000000B

.WORD 1111111100000000B

.WORD 1111111000000000B

.WORD 1111110000000000B

•WORD 1111100000000000B

.WORD 1111000000000000B

.WORD 1110000000000000B

•WORD 1100000000000000B

•WORD 1000000000000000B

.WORD 0000000000000000B

INDEX: .BLOCK 1

WIDTH: .BLOCK 1

INSVAL: .BLOCK 2

VALUE: .BLOCK 2

MASK: .BLOCK 2

;INDEX INTO WORD

;WIDTH OF FIELD

;VALUE TO INSERT

;DATA WORD

;TEMPORARY FOR CREATING THE MASK

324 BIT MANIPULATIONS AND SHIFTS

SAMPLE EXECUTION:

SC0705:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

VAL+1

VAL

VALINS+1

VALINS

NBITS

POS

BFI

;PUSH THE DATA WORD

;PUSH THE VALUE TO INSERT

;PUSH THE FIELD WIDTH

;PUSH THE STARTING POSITION OF THE FIELD

;INSERT

;RESULT FOR VAL = 1234H, VALINS = OEH,

NBITS = 4, POS = OCH IS

; REGISTER A = E2H, REGISTER Y = 34H

JMP SC0705

•TEST DATA, CHANGE FOR OTHER VALUES

VAL: .WORD 01234H

VALINS: .WORD OEH

NBITS: .BYTE 04H

POS: .BYTE OCH

.END ;PROGRAM

Multiple-Precision Arithmetic Shift Right

(MPASR) 7F

Shifts a multi-byte operand right
arithmetically by a specified number of bit

positions. The length of the number (in

bytes) is 255 or less. The Carry flag is set to

the value of the last bit shifted out of the

rightmost bit position. The operand is stored

with its least significant byte at the lowest

address.

Procedure: The program obtains the sign

bit from the most significant byte, shifts that

bit to the Carry, and then rotates the entire

operand right one bit, starting with the most

significant byte. It repeats the operation for

the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS * (18 +

18 * LENGTH OF OPERAND IN BYTES) + 85

cycles.

If, for example, NUMBER OF SHIFTS =

6 and LENGTH OF OPERAND IN BYTES = 8,

the execution time is

6 * (18 + 18 ♦ 8) + 85 = 6 * 162 + 85 = 1057

cycles

Program Size: 69 bytes

Data Memory Required: Three bytes anywhere

in RAM plus two bytes on page 0. The three bytes

anywhere in RAM are temporary storage for the

number of shifts (one byte at address NBITS)

and the length of the operand (one byte at

address LENGTH) and the most significant byte

of the operand (one byte at address MSB). The

two bytes on page 0 hold a pointer to the operand

(starting at address PTR,00D0|16 in the listing).

Special Cases:

1. If the length of the operand is zero, the pro

gram exits immediately with the operand

unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program

exits immediately with the operand unchanged

and the Carry flag cleared.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Number of shifts (bit positions)

Length of the operand in bytes

Less significant byte of starting address of

operand (address of its least significant
byte)

More significant byte of starting address of

operand (address of its least significant
byte)

Exit Conditions

Operand shifted right arithmetically by the

specified number of bit positions. The origi

nal sign bit is extended to the right. The

Carry flag is set according to the last bit

shifted from the rightmost bit position (or

cleared if either the number of shifts or the

length of the operand is zero).

325

326 BIT MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = 08

Operand = 85A4C719FE06741E16

Number of shifts = 04

Result: Shifted operand = F85A4C719FE0674116.

This is the original operand shifted right

four bits arithmetically (the four most

significant bits thus all take on the value

of the original sign bit, which was 1).

Carry = 1, since the last bit shifted from

the rightmost bit position was 1.

2. Data: Length of operand (in bytes) = 04

Operand = 3F6A42D316

Number of shifts = 03

Result: Shifted operand = 07ED485A16.

This is the original operand shifted

right three bits arithmetically (the

three most significant bits thus all

take on the value of the original sign

bit, which was 0).

Garry = 0, since the last bit shifted

from the rightmost bit position was 0.

Title

Name:

Multiple-precision arithmetic shift right

NPASR

Purpose:

Entry:

Exit:

Arithmetic shift right a multi-byte operand

N bits.

TOP OF STACK

Low byte of return address,

High byte of return address,

Number of bits to shift,

Length of the operand in bytes,

Low byte of address of the operand.

High byte of address of the operand

The operand is stored with ARRAY 10] as its

least significant byte and ARRAY ILENGTH-1]

its most significant byte.

Operand shifted right with the most significant

bit propagated.
CARRY := Last bit shifted from least

significant position.

Registers used: All

Time:

Size:

85 cycles overhead plus

((18 * length) + 18) cycles per

Program 69 bytes

Data 3 bytes plus
2 bytes in page zero

shift

7F (MPASR) MULTIPLE-PRECISION ARITHMETIC SHIFT RIGHT 327

;EQUATES
PTR: .EQU ODOH ;PAGE ZERO FOR POINTER TO OPERAND

MPASR:

;SAVE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET NUMBER OF BITS

PLA

STA NBITS

;GET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA ;RESTORE RETURN ADDRESS

INITIALIZE

CLC ;CLEAR CARRY

LDA LENGTH

BEQ EXIT ;EXIT IF LENGTH OF OPERAND IS 0

LDA NBITS

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0

; WITH CARRY CLEAR

;DECREMENT POINTER SO THAT THE LENGTH BYTE MAY BE USED BOTH

; AS A COUNTER AND THE INDEX

LDA PTR

BNE MPASR1

DEC PTR+1 ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED

MPASRl: DEC PTR ;ALWAYS DECREMENT LOW BYTE

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM

LDY LENGTH

LDA (PTR),Y ;GET THE MOST SIGNIFICANT BYTE

STA MSB ;SAVE IT FOR THE SIGN

ASRLP:

LDA MSB ;GET THE MOST SIGNIFICANT BYTE

ASL A ;SHIFT BIT 7 TO CARRY FOR SIGN EXTENSION

LDY LENGTH ;Y = INDEX TO LAST BYTE AND THE COUNTER

;SHIFT RIGHT ONE BIT

328 BIT MANIPULATIONS AND SHIFTS

LOOP:

LDA

ROR

STA

DEY

BNE

(PTR),Y

A

(PTR),Y

LOOP

EXIT:

;GET NEXT BYTE

;ROTATE BIT 7 := CARRY, CARRY :=

•STORE NEW VALUE

;DECREMENT COUNTER

;CONTINUE THROUGH ALL THE BYTES

;DECREMENT NUMBER OF SHIFTS

DEC NBITS ;DECREMENT SHIFT COUNTER

BNE ASRLP ;CONTINUE UNTIL DONE

RTS

BIT 0

;DATA SECTION

NBITS: .BLOCK 1

LENGTH: .BLOCK 1

MSB: .BLOCK 1

;NUMBER OF BITS TO SHIFT

;LENGTH OF OPERAND IN BYTES

;MOST SIGNIFICANT BYTE

SAMPLE EXECUTION:

SC0706:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AYADR+1 ;PUSH STARTING ADDRESS OF OPERAND

AYADR

#SZAY ;PUSH LENGTH OF OPERAND

SHIFTS ;PUSH NUMBER OF SHIFTS

MPASR ;SHIFT

RESULT OF SHIFTING AY ■ EDCBA987654321H, 4 BITS IS

AY « FEDCBA98765432H, C=0

IN MEMORY AY = 032H

AY+1 = 054H

AY+2 = 076H

AY+3 = 098H

AY+4 = OBAH

AY+5 = ODCH

AY+6 = OFEH

JMP SC0706

;DATA SECTION

SZAY: .EQU

SHIFTS: .BYTE

AYADR: .WORD

AY .BYTE

7 ;LENGTH OF OPERAND

4 ;NUMBER OF SHIFTS

AY ;STARTING ADDRESS OF OPERAND

21H/43H,65H,87H,0A9H,0CBH,0EDH

•END ;PROGRAM

Multiple-Precision Logical Shift Left (MPLSL) 7G

Shifts a multi-byte operand left logically
by a specified number of bit positions. The

length of the operand (in bytes) is 255 or less.

The Carry flag is set to the value of the last bit

shifted out of the leftmost bit position. The

operand is stored with its least significant

byte at the lowest address.

Procedure: The program clears the Carry

initially (to fill with a 0 bit) and then rotates

the entire operand left one bit, starting with

the least significant byte. It repeats the opera

tion for the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS ♦ (16 +

20 * LENGTH OF OPERAND IN BYTES) 4- 73

cycles.

If, for example, NUMBER OF SHIFTS = 4

and LENGTH OF OPERAND IN BYTES = 6

(i.e., a 4-bit shift of a byte operand) the execution

time is

4 * (6 + 20 * 6) + 73 - 4 * (136) + 73 =

617 cycles.

Data Memory Required: Two bytes anywhere in

RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

number of shifts (one byte at address NBITS)

and the length of the operand in bytes (one byte

at address LENGTH). The two bytes on page 0

hold a pointer to the operand (starting at address

PTR, 00D016 in the listing).

Special Cases:

1. If the length of the operand is zero, the pro

gram exits immediately with the operand

unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program

exits immediately with the operand unchanged

and the Carry flag cleared.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Number of shifts (bit positions)

Length of the operand in bytes

Less significant byte of starting address of

operand (address of its least significant

byte)

More significant byte of starting address of

operand (address of its least significant

byte)

Exit Conditions

Operand shifted left logically by the specified

number of bit positions (the least significant

bit positions are filled with zeros). The Carry

flag is set according to the last bit shifted

from the leftmost bit position (or cleared if

either the number of shifts or the length of

the operand is zero).

329

330 BIT MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = 08

Operand = 85A4C719FE06741E16

Number of shifts = 04

Result: Shifted operand = 5A4C719FE06741E016.

This is the original operand shifted

left four bits logically; the four least

significant bits are all cleared.

Carry = 0, since the last bit shifted from

the leftmost bit position was 0.

2. Data: Length of operand (in bytes) = 04

Operand - 3F6A42D316

Number of shifts = 03

Result: Shifted operand = FB52169816. This is

the original operand shifted left three

bits logically; the three least significant

bits are all cleared.

Carry = 1, since the last bit

shifted from the leftmost bit position

was 1.

Title

Name:

Multiple-precision logical shift left

MPLSL

Purpose:

Entry:

Exit:

Time:

Size:

Logical shift left a multi-byte operand N bits

TOP OF STACK

Low byte of return address,

High byte of return address,

Number of bits to shift,

Length of the operand in bytes,

Low byte of address of the operand,

High byte of address of the operand

The operand is stored with ARRAY [0] as its

least significant byte and ARRAY[LENGTH-1]

its most significant byte.

Operand shifted left filling the least

significant bits with zeros.

CARRY := Last most significant bit

Registers used: All

73 cycles overhead plus

((20 * length) + 16) cycles per shift

Program 54 bytes

Data 2 bytes plus

2 bytes in page zero

7G (MPLSL) MULTIPLE-PRECISION LOGICAL SHIFT LEFT 331

MPLSL:

LSLLP:

LOOP:

;EQUATES

PTR: . EQU ODOH ;PAGE ZERO FOR POINTER TO OPERAND

;SAVE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET NUMBER OF BITS

PLA

STA NBITS

;GET LENGTH OF OPERAND

LENGTH

PLA

STA

;GET STARTING ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA

.•INITIALIZE

CLC

LDA LENGTH

BEQ EXIT

LDA NBITS

BEQ EXIT

;RESTORE RETURN ADDRESS

;CLEAR CARRY

;EXIT IF LENGTH OF THE OPERAND IS 0

;EXIT IF NUMBER OF BITS TO SHIFT IS 0

; WITH CARRY CLEAR

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM

LDY

LDX

CLC

;SHIFT

LDA

ROL

STA

INY

DEX

BNE

#0

LENGTH

LEFT ONE

(PTR),Y

A

(PTR),Y

LOOP

;Y = INDEX TO LOW BYTE OF THE OPERAND

;X = NUMBER OF BYTES

;CLEAR CARRY TO FILL WITH ZEROS

;GET NEXT BYTE

;ROTATE BIT 0 := CARRY, CARRY := BIT 7

;STORE NEW VALUE

;INCREMENT TO NEXT BYTE

;DECREMENT COUNTER

;CONTINUE THROUGH ALL THE BYTES

;DECREMENT NUMBER OF SHIFTS

DEC NBITS ;DECREMENT SHIFT COUNTER

BNE LSLLP ;CONTINUE UNTIL DONE

332 BIT MANIPULATIONS AND SHIFTS

EXIT:

RTS

;DATA SECTION

NBITS: .BLOCK 1

LENGTH: .BLOCK 1

;NUMBER OF BITS TO SHIFT

;LENGTH OF OPERAND

SAMPLE EXECUTION:

SC0707:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AYADR+1 ;PUSH STARTING ADDRESS OF OPERAND

AYADR

#SZAY ;PUSH LENGTH OF OPERAND

SHIFTS ;PUSH NUMBER OF SHIFTS

MPLSL ;SHIFT

;RESULT OF SHIFTING AY = EDCBA987654321H, 4 BITS IS

AY = DCBA9876543210H, C=0

; IN MEMORY AY = 01 OH

AY+1 = 032H

AY+2 = 054H

AY+3 = 076H

; AY+4 = 098H

; AY+5 = OBAH

; AY+6 = ODCH

JMP SC0707

;DATA SECTION

SZAY: .EQU

SHIFTS: .BYTE

AYADR: .WORD

AY: .BYTE

.END

7 ;LENGTH OF OPERAND

4 ;NUMBER OF SHIFTS

AY ;STARTING ADDRESS OF OPERAND

21H/43H,65H,87H,0A9H,0CBH,0EDH

;PROGRAM

Multiple-Precision Logical Shift Right (MPLSR) 7H

Shifts a multi-byte number right logically
by a specified number of bit positions. The

length ofthe operand (in bytes) is 255 or less.

The Carry flag is set to the value of the last bit

shifted out of the rightmost bit position. The

operand is stored with its least significant

byte at the lowest address.

Procedure: The program clears the Carry

initially (to fill with a 0 bit) and then rotates

the entire operand right one bit, starting with

the most significant byte. It repeats the

operation for the specified number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS * (14 +

18 ♦ LENGTH OF OPERAND IN BYTES) + 80

cycles.

If, for example, NUMBER OF SHIFTS = 4

and LENGTH OF OPERAND IN BYTES = 8

(i.e., a 4-bit shift of an 8-byte operand), the

execution time is

4 * (14 + 18 * 8) + 80 = 4 * (158) + 80 =

712 cycles.

Program Size: 59 bytes

Data Memory Required: Two bytes anywhere in

RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

number of shifts (one byte at address NBITS)

and the length of the operand in bytes (one byte

at address LENGTH). The two bytes on page 0

hold a pointer to the operand (starting at address

PTR, 00D016 in the listing).

Special Cases:

1. If the length of the operand is zero, the pro

gram exits immediately with the operand

unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program

exits immediately with the operand unchanged

and the Carry flag cleared.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Number of shifts (bit positions)

Length of the operand in bytes

Less significant byte of starting address of

operand (address of its least significant
byte)

More significant byte of starting address of

operand (address of its least significant
byte)

Exit Conditions

Operand shifted right logically by the

specified number of bit positions (the most

significant bit positions are filled with zeros).

The Carry flag is set according to the last bit

shifted from the rightmost bit position, (or

cleared if either the the number of shifts or

the length of the operand is zero).

333

334 BIT MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = 08

Operand = 85A4C719FE06741E16

Number of shifts = 04

2. Data: Length of operand (in bytes) = 04

Operand = 3F6A42D316

Number of shifts = 03

Result: Shifted operand = 085A4C719FE0674116.

This is the original operand shifted right

four bits logically; the four most

significant bits are all cleared.

Carry =» 1, since the last bit shifted from

the rightmost position was 1.

Result: Shifted operand = 07ED485A16.

This is the original operand shifted

right three bits logically; the three least

significant bits are all cleared.

Carry = 0, since the last bit shifted

from the rightmost bit position was 0.

Title

Name:

Purpose:

Entry:

Exit:

Multiple-Precision logical shift rig)it
MPLSR

Logical shift right a multi-byte operand N bits

TOP OF STACK

Low byte of return address,

High byte of return address,

Number of bits to shift,

Length of the operand in bytes,

Low byte of address of the operand,

High byte of address of the operand

The operand is stored with ARRAY [0] as its
least significant byte and ARRAY[LENGTH-1]

its most significant byte.

Operand shifted right filling the most

significant bits with zeros

CARRY := Last bit shifted from the least
significant position

Registers used: All

Time:

Size:

85 cycles overhead plus
((18 * length) + 14) cycles per shift

Program 59 bytes

Data 2 bytes plus
2 bytes in page zero

7H (MPLSR) MULTIPLE-PRECISION LOGICAL SHIFT RIGHT 335

? EQUATES

PTR: .EQU ODOH ;PAGE ZERO FOR POINTER TO OPERAND

MPLSR:

;SAVE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET NUMBER OF BITS

PLA

STA NBITS

;GET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING*ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA ;RESTORE RETURN ADDRESS

^•INITIALIZE

CLC ;CLEAR CARRY

LDA LENGTH

BEQ EXIT ;EXIT IF LENGTH OF OPERAND IS 0

LDA NBITS

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0

; WITH CARRY CLEAR

;DECREMENT POINTER SO THAT THE LENGTH BYTE MAY BE USED BOTH

; AS A COUNTER AND THE INDEX

LDA PTR

BNE MPLSR1

DEC PTR+1 ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED

MPLSR1: DEC PTR ;ALWAY DECREMENT HIGH BYTE

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM
LSRLP:

LDY LENGTH ;Y = INDEX TO MSB AND COUNTER

CLC ;CLEAR CARRY TO FILL WITH ZEROS

;SHIFT RIGHT ONE BIT
LOOP:

LDA (PTR),Y JGET NEXT BYTE

R0R A ;ROTATE BIT 7 := CARRY, CARRY := BIT 0
STA (PTR),Y ;STORE NEW VALUE

336 BIT MANIPULATIONS AND SHIFTS

DEY

BNE LOOP

.•DECREMENT COUNTER

;CONTINUE THROUGH ALL THE BYTES

;DECREMENT NUMBER OF SHIFTS

DEC NBITS ;DECREMENT SHIFT COUNTER

BNE LSRLP ;CONTINUE UNTIL DONE

EXIT:

RTS

;DATA SECTION

NBITS: .BLOCK 1

LENGTH: .BLOCK 1

;NUMBER OF BITS TO SHIFT

;LENGTH OF OPERAND

SAMPLE EXECUTION:

SC0708:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

JMP

AYADR+1 ;PUSH STARTING ADDRESS OF OPERAND

AYADR

#SZAY ;PUSH LENGTH OF OPERAND

SHIFTS ;PUSH NUMBER OF SHIFTS

MPLSR ;SH1FT

;RESULT OF SHIFTING AY = EDCBA987654321H, 4 BITS IS

AY = 0EDCBA98765432H, C=0

; IN MEMORY AY = 032H

AY+1 = 054H

AY+2 = 076H

AY+3 = 098H

; AY+4 = OBAH

AY+5 = ODCH

; AY+6 = OOEH

SC0708

;DATA SECTION

SZAY: .EQU

SHIFTS: .BYTE

AYADR: .WORD

AY: .BYTE

7 ;LENGTH OF OPERAND

4 ;NUMBER OF SHIFTS

AY ;STARTING ADDRESS OF OPERAND

21H,43H,65H,87H,0A9H,0CBH,0EDH

.END ;PROGRAM

Multiple-Precision Rotate Right (MPRR) 71

Rotates a multi-byte operand right by a
specified number of bit positions (as if the

most significant bit and least significant bit

were connected directly). The length of the

operand in bytes is 255 or less. The Carry flag

is set to the value of the last bit shifted out of

the rightmost bit position. The operand is

stored with its least significant byte at the

lowest address.

Procedure: The program shifts bit 0 of the

least significant byte of the operand to the

Carry flag and then rotates the entire operand

right one bit, starting with the most signifi

cant byte. It repeats the operation for the

specified number of shifts.

Registers used: All

Execution Time: NUMBER OF SHIFTS ♦ (21

+ 18 * LENGTH OF OPERAND IN BYTES)

+ 85 cycles.

If for example, NUMBER OF SHIFTS = 6 and

LENGTH OF OPERAND IN BYTES = 4 (i.e. a

6-bit shift of a 4-byte operand), the execution

time is

6 * (21 + 18 * 4) + 85 = 6 * (93) + 85

+ 643 cycles.

Program Size: 63 bytes

Data Memory Required: Two bytes anywhere in

RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

number of shifts (one byte at address NBITS)

and the length of the operand in bytes (one byte

at address LENGTH). The two bytes on page 0

hold a pointer to the operand (starting at address

PTR, 00D016 in the listing).

Special Cases:

1. If the length of the operand is zero, the

program exits immediately with the operand

unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the pro

gram exits immediately with the operand

unchanged and the Carry flag cleared.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Number of shifts (bit positions)

Length of the operand in bytes

Less significant byte of starting address of

operand (address of its least significant

byte)

More significant byte of starting address of

operand (address of its least significant
byte)

Exit Conditions

Operand rotated right by the specified num

ber of bit positions (the most significant bit

positions are filled from the least significant

bit positions). The Carry flag is set according

to the last bit shifted from the rightmost bit

position (or cleared if either the number of

shifts or the length of the operand is zero).

337

338 BIT MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = 08

Operand = 85A4C719FE06741E16

Number of shifts = 04

Result: Shifted operand = E85A4C719F30674116.

This is the original operand rotated right

four bits: the four most significant bits

are equivalent to the original four

least significant bits.

Carry = 1, since the last bit shifted from

the rightmost bit position was 1.

2. Data: Length of operand (in bytes) = 04

Operand = 3F6A42D316

Number of shifts = 03

Result: Shifted operand = 67ED485A16. This is

the original operand rotated right 3 bits;

the three most significant bits (Oil) are

equivalent to the original three least

significant bits.

Carry = 0, since the last bit shifted

from the rightmost bit position was 0.

Title

Name:

Multiple-precision rotate right

NPRR

Purpose:

Entry:

Exit:

Time:

Size:

Rotate right a multi-byte operand N bits

TOP OF STACK

Low byte of return address,

High byte of return address,

Number of bits to shift,

Length of the operand in bytes,

Low byte of address of the operand,

High byte of address of the operand

The operand is stored with ARRAY [0] as its

least significant byte and ARRAY[LENGTH-1]

its most significant byte.

Operand rotated right

CARRY := Last bit shifted from the least

significant position

Registers used: All

85 cycles overhead plus

((18 * length) + 21) cycles per shift

Program 63 bytes

Data 2 bytes plus

2 bytes in page zero

;EQUATES

PTR: .EQU 0D0H ;PAGE ZERO FOR POINTER TO OPERAND

71 (MPRR) MULTIPLE-PRECISION ROTATE RIGHT 339

MPRR:

;SAVE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET NUMBER OF BITS

PLA

STA NBITS

;GET LENGTH OF OPERAND

MPRR1:

RRLP:

LOOP:

PLA

STA LENGTH

;GET STARTING ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA

^•INITIALIZE

CLC

LDA LENGTH

BEQ EXIT

LDA NBITS

BEQ EXIT

;RESTORE RETURN ADDRESS

;CLEAR CARRY

;EXIT IF LENGTH OF THE OPERAND IS 0

;EXIT IF NUMBER OF BITS TO SHIFT IS 0

; WITH CARRY CLEAR

;DECREMENT POINTER SO THAT THE LENGTH BYTE MAY BE USED BOTH

; AS A COUNTER AND THE INDEX

LDA PTR

BNE MPRRI

DEC PTR+1 ;DECREMENT HIGH BYTE IF A BORROW IS NEEDED

DEC PTR ;ALWAYS DECREMENT LOW BYTE

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM

LDY

LDA

LSR

LDY

#1
(PTR),Y

A

LENGTH

;GET LOW BYTE OF THE OPERAND

;CARRY := BIT 0 OF LOW BYTE

;Y = INDEX TO HIGH BYTE AND COUNTER

;ROTATE RIGHT ONE BIT

LDA

ROR

(PTR),Y

A

;GET NEXT BYTE

;ROTATE BIT 7 := CARRY, CARRY BIT 0

340 BIT MANIPULATIONS AND SHIFTS

STA

DEY

BNE

(PTR),Y

LOOP

;STORE NEW VALUE

;DECREMENT COUNTER

;CONTINUE THROUGH ALL THE BYTES

EXIT:

;DECREMENT NUMBER OF SHIFTS

DEC NBITS ;DECREMENT SHIFT COUNTER

BNE RRLP ;CONTINUE UNTIL DONE

RTS

;DATA SECTION

NBITS: .BLOCK 1

LENGTH: .BLOCK 1

;NUMBER OF BITS TO SHIFT

;LENGTH OF OPERAND

SAMPLE EXECUTION:

SC0709:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AYADR+1 ;PUSH STARTING ADDRESS OF OPERAND

AYADR

#SZAY ;PUSH LENGTH OF OPERAND

SHIFTS ;PUSH NUMBER OF SHIFTS

MPRR ROTATE

RESULT OF ROTATING AY = EDCBA987654321H 4 BITS IS
AY = 1EDCBA98765432H C=0

IN MEMORY AY = 032H

AY+1 = 054H

AY+2 = 076H

AY+3 = 098H

AY+4 = OBAH

AY+5 = ODCH

AY+6 = U1EH

JMP SC0709

;DATA SECTION

SZAY: .EQU

SHIFTS: .BYTE

AYADR: .WORD

AY: .BYTE

7 ;LENGTH OF OPERAND IN BYTES

4 ;NUMBER OF SHIFTS

AY ;STARTING ADDRESS OF OPERAND
21H,4 3H,65Hf87H,0A9H,0CBH,0EDH

.END ;PROGRAM

Multiple-Precision Rotate Left (MPRL) 7J

Rotates a multi-byte operand left by a
specified number of bit positions (i.e., as if

the most significant bit and least significant

bit were connected directly). The length of

the operand in bytes is 255 or less. The Carry

flag is set to the value of the last bit shifted

out of the leftmost bit position. The operand

is stored with its least significant byte at the

lowest address.

Procedure: The program shifts bit 7 of the

most significant byte of the operand to the

Carry flag. It then rotates the entire operand

left one bit, starting with the least significant

byte. It repeats the operation for the specified

number of shifts.

Registers Used: All

Execution Time: NUMBER OF SHIFTS * (27 +

20 * LENGTH OF OPERAND IN BYTES) + 73

cycles.

If, for example, NUMBER OF SHIFTS = 4

and LENGTH OF OPERAND IN BYTES = 8

(i.e., a 4-bit shift of an 8-byte operand), the

execution time is

4 * (27 + 20 ♦ 8) + 73 = 4 * (187) + 73 -
821 cycles.

Program Size: 60 bytes

Data Memory Required: Two bytes anywhere in

RAM plus two bytes on page 0. The two bytes

anywhere in RAM are temporary storage for the

number of shifts (one byte at address NBITS)

and the length of the operand in bytes (one byte

at address LENGTH). The two bytes on page 0

hold a pointer to the operand (starting at address

PTR, 00D016 in the listing).

Special Cases:

1. If the length of the operand is zero, the

program exits immediately with the operand

unchanged and the Carry flag cleared.

2. If the number of shifts is zero, the program

exits immediately with the operand unchanged

and the Carry flag cleared.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Number of shifts (bit positions)

Length of the operand in bytes

Less significant byte of starting address of

operand (address of its least significant
byte)

More significant byte of starting address of

operand (address of its least significant
byte)

Exit Conditions

Operand rotated left by the specified number

of bit positions (the least significant bit posi

tions are filled from the most significant bit

positions). The Carry flag is set according to

the last bit shifted from the leftmost bit posi

tion (or cleared if either the number of shifts

or the length of the operand is zero).

341

342 BIT MANIPULATIONS AND SHIFTS

Examples

1. Data: Length of operand (in bytes) = 08 2. Data: Length of operand (in bytes)~= 04

Operand = 85A4C719FE06741E16 Operand = 3F6A42D316

Number of shifts = 04 Number of shifts = 03

Result: Shifted operand = 5A4C719FE06741E816. Result: Shifted operand = FB52169916. This is

This is the original operand rotated left the original operand rotated left three bits;

four bits; the four least significant bits the three least significant bits (001)

are equivalent to the original four most are equivalent to the original three most

significant bits. significant bits.

Carry = 0, since the last bit shifted Carry = 1, since the last bit shifted

from the leftmost bit position was 0. from the leftmost bit position was 1.

; Title Multiple-precision rotate left ;

Name: MPRL ;

;

;

; '

; Purpose: Rotate left a multi-byte operand N bits ;

;

; Entry: TOP OF STACK ;

• Low byte of return address, ;

? High byte of return address, ;

. Number of bits to shift, ;

• Length of the operand in bytes, ;

. Low byte of address of the operand, ;

High byte of address of the operand

! The operand is stored with ARRAY [0] as its
'. least significant byte and ARRAY ILENGTH-l] ;
'. its most significant byte. ?

Exit: Number rotated left »
CARRY := Last bit shifted from the most

i iti ?

Last bit shifte

significant position
;

7

• Registers used: All

Time: 73 cycles overhead plus
'. ((20 * length) + 27) cycles per shift

Size: Program 60 bytes
Data 2 bytes plus

' 2 bytes in page zero

0D0H ;PAGE ZERO FOR POINTER TO OPERAND

7J (MPRL) MULTIPLE-PRECISION ROTATE LEFT 343

MPRL:

;SAVE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET NUMBER OF BITS

1PLA

STA NBITS

;GET LENGTH OF OPERAND

PLA

STA LENGTH

;GET STARTING ADDRESS OF THE OPERAND

PLA

STA PTR

PLA

STA PTR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA ;RESTORE RETURN ADDRESS

;INITIALIZE

CLC ;CLEAR CARRY

LDA LENGTH

BEQ EXIT ;EXIT IF THE LENGTH OF THE OPERAND IS 0

LDA NBITS

BEQ EXIT ;EXIT IF NUMBER OF BITS TO SHIFT IS 0

; WITH CARRY CLEAR

;LOOP ON THE NUMBER OF SHIFTS TO PERFORM

RLLP:

;GET HIGH BYTE OF THE OPERAND

;CARRY := BIT 7 OF HIGH BYTE

;Y = INDEX TO LEAST SIGNIFICANT BYTE

;X = NUMBER OF BYTES

;ROTATE LEFT ONE BIT

LOOP:

;GET NEXT BYTE

;ROTATE BIT 7 := CARRY, CARRY := BIT 0

;STORE NEW VALUE

;INCREMENT TO NEXT BYTE

;DECREMENT COUNTER

;CONTINUE THROUGH ALL THE BYTES

;DECREMENT NUMBER OF SHIFTS

DEC NBITS ;DECREMENT SHIFT COUNTER

BNE RLLP ;CONTINUE UNTIL DONE

LDY

DEX

LDA

ASL

LDY

LDX

;ROTATE

LDA

ROL

STA

INY

DEX

BNE

LENGTH

(PTR),Y

A

#0

LENGTH

LEFT ONE BIT

(PTR),Y

A

(PTR),Y

LOOP

344 BIT MANIPULATIONS AND SHIFTS

EXIT:

RTS

;DATA SECTION

NBITS: .BLOCK 1

LENGTH: .BLOCK 1

;NUMBER OF BITS TO SHIFT

;LENGTH OF OPERAND

SAMPLE EXECUTION:

SC0710:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

AYADR+1 ;PUSH STARTING ADDRESS OF OPERAND

AYADR

#SZAY ;PUSH LENGTH OF OPERAND

SHIFTS ;PUSH NUMBER OF SHIFTS

MPRL ;ROTATE

RESULT OF ROTATING AY = EDCBA987654321H, 4 BITS IS

AY = DCBA987654321EH, C=0

IN MEMORY AY = 01EH

AY+1 = 032H

AY+2 = 054H

AY+3 = 07 6H

AY+4 = 098H

AY+5 = OBAH

AY+6 = ODCH

JMP SC0710

;DATA SECTION

SZAY:

SHIFTS:

AYADR:

AY:

.EQU

BYTE

.WORD

.BYTE

7 ;LENGTH OF OPERAND IN BYTES

4 ;NUMBER OF SHIFTS

AY ;ADDRESS OF OPERAND

21H,43H,65H,87H,0A9H,OCBH,OEDH

.END ;PROGRAM

String Compare (STRCMP) 8A

Compares two strings and sets the Carry
and Zero flags appropriately. The Zero flag is

set to 1 if the strings are identical and to 0

otherwise. The Carry flag is set to 0 if the

string with the address higher in the stack

(string 2) is larger than the other string

(string 1); the Carry flag is set to 1 otherwise.

The strings are a maximum of 255 bytes long

and the actual characters are preceded by a

byte containing the length. If the two strings

are identical through the length of the

shorter, then the longer string is considered

to be larger.

Procedure: The program first determines

which string is shorter from the lengths

which precede the actual characters. It then

compares the strings one byte at a time

through the length of the shorter. If the pro

gram finds corresponding bytes that are not

the same through the length of the shorter,

the program sets the flags by comparing the

lengths.

Registers Used: All

Execution Time:

1. If the strings are not identical through the

length of the shorter, the approximate execution

time is

81 + 19*NUMBER OF CHARACTERS

COMPARED.

If, for example, the routine compares five charac

ters before finding a difference, the execution

time is

81 + 19 * 5 = 81 + 95 = 176 cycles.

2. If the strings are identical through the

length of the shorter, the approximate execution

time is

93 + 19 * LENGTH OF SHORTER STRING.

If, for example, the shorter string is eight

bytes long, the execution time is

93 + 19 * 8 = 93 + 152 = 245 cycles.

Program Size: 52 bytes

Data Memory Required: Four bytes on page 0,

two bytes starting at address S1ADR (00D016 in

the listing) for a pointer to string 1 and two bytes

starting at address S2ADR (00D216 in the listing)

for a pointer to string 2.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of starting address of

string 2

More significant byte of starting address of

string 2

Less significant byte of starting address of

string 1

More significant byte of starting address of
string 1

Exit Conditions

Flags set as if string 2 had been subtracted

from string 1 or, if the strings are equal

through the length of the shorter, as if the

length of string 2 had been subtracted from

the length of string 1.

Zero flag = 1 if the strings are identical, 0

if they are not identical.

Carry flag = 0 if string 2 is larger than string

1,1 if they are identical or string 1 is larger.

If the strings are the same through the

length of the shorter, the longer one is con

sidered to be larger.

345

346 STRING MANIPULATIONS

Examples

1. Data: String 1 = 05TRINT' (05 is the length of

the string)

String 2 = 03'END' (03 is the length of

the string)

Result: Zero flag = 0 (strings are not identical)

Carry flag = 1 (string 2 is not larger than

string 1)

2. Data: String 1 = 05TRINT (05 is the length of

the string)

String 2 = 02TR' (02 is the length of the
string)

Result: Zero flag = 0 (strings are not identical)

Carry flag = 1 (string 2 is not larger than

string 1)

The longer string (string 1) is considered

to be larger. If you want to determine

whether string 2 is an abbreviation of string

1, you could use Subroutine 8C (FIND THE

POSITION OF A SUBSTRING) and deter

mine whether string 2 was part of string 1 and

started at the first character.

3. Data: String 1 = 05TRINT (05 is the length of

the string)

String 2 - 06'SYSTEM' (06 is the length

of the string)

Result: Zero flag = 0 (strings are not identical)

Carry flag = 0 (string 2 is larger than

string 1)

We are assuming here that the strings con

sist of ASCII characters. Note that the byte

preceding the actual characters contains a

hexadecimal number (the length of the

string), not a character. We have represented

this byte as two hexadecimal digits in front of

the string; the string itself is surrounded by

single quotation marks.

Note also that this particular routine treats

spaces like any other characters. If for exam

ple, the strings are ASCII, the routine will

find that SPRINGMAID is larger than

SPRING MAID, since an ASCII M (4D16) is

larger than an ASCII space (2016).

Title

Name:

String compare

STRCMP

Purpose:

Entry:

Exit:

Compare 2 strings and return C and Z flags set

or cleared.

TOP OF STACK

Low byte of return address,

High byte of return address,

Low byte of string 2 address,

High byte of string 2 address,

Low byte of string 1 address,

High byte of string 1 address

A string is a maximum of 255 bytes long plus
a length byte which precedes it.

IF string 1 = string 2 THEN

8A STRING COMPARE (STRCMP) 347

; IF string 1 > string 2 THEN ;

Z=O,C=1

IF string 1 < string 2 THEN ;

Z=O,C=O ;

Registers used: All ;

Time: Worst case timing for strings which are equal. ;
93 cycles maximum overhead plus (19 * length) ;

Size: Program 52 bytes ;

Data 4 bytes in page zero ;

;PAGE ZERO POINTER TO STRING 1

;PAGE ZERO POINTER TO STRING 2

;EQUATES

S1ADR

S2ADR

STRCMP:

.EQU

.EQU

;GET

PLA

TAY

PLA

TAX

ODOH

0D2H

RETURN ADDRESS

;GET THE STARTING ADDRESS OF STRING 2

PLA

STA S2ADR

PLA

STA S2ADR+1

;GET THE STARTING ADDRESS OF STRING 1

PLA

STA S1ADR

PLA

STA S1ADR+1

;RESTORE RETURN ADDRESS

TXA

PHA

TYA

PHA

;DETERMINE WHICH STRING IS SHORTER

LDY #0

LDA (S1ADR),Y ;GET LENGTH OF STRING #1

CMP (S2ADR),Y

BCC BEGCMP ;IF STRING #2 IS SHORTER THEN

LDA (S2ADR),Y ; USE ITS LENGTH INSTEAD

;COMPARE THE STRINGS THROUGH THE LENGTH OF THE SHORTER STRING

348 STRING MANIPULATIONS

BEGCMP:

CMPLP:

TAX

BEQ

LDY

LDA

CMP

BNE

INY

DEX

BNE

TSTLEN

#1

(S1ADR),Y

(S2ADR),Y

EXIT

CMPLP

;X IS THE LENGTH OF THE SHORTER STRING

;BRANCH IF LENGTH IS ZERO

;POINT AT FIRST CHARACTER OF STRINGS

;BRANCH IF CHARACTERS ARE NOT EQUAL

; Z,C WILL BE PROPERLY SET OR CLEARED

;ELSE

; NEXT CHARACTER

; DECREMENT COUNTER

; CONTINUE UNTIL ALL BYTES ARE COMPARED

TSTLEN:

;THE 2 STRINGS ARE EQUAL TO THE LENGTH OF THE SHORTER

;SO USE THE LENGTHS AS THE BASIS FOR SETTING THE FLAGS

LDY

LDA

CMP

#0

(S1ADR),Y

(S2ADR) ,Y

;COMPARE LENGTHS

;SET OR CLEAR THE FLAGS

EXIT:

;EXIT FROM STRING COMPARE

RTS

SAMPLE EXECUTION:

SC0801:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

SADR1+1

SADR1

SADR2+1

SADR2

STRCMP

JMP SC0801

;PUSH STARTING ADDRESS OF STRING 1

;PUSH STARTING ADDRESS OF STRING 2

;COMPARE

;RESULT OF COMPARING "STRING 1" AND "STRING 211

;IS STRING 1 LESS THAN STRING 2 SO

; Z=0,C=0

;LOOP FOR ANOTHER TEST

;

;TEST DATA, CHANGE TO TEST OTHER VALUES

SADRl .WORD SI

SADR2 .WORD S2

51 .BYTE 20Hf"STRING 1

52 .BYTE 2OH /'STRING 2

.END ;PROGRAM

String Concatenation (GONCAT) 8B

Combines (concatenates) two strings,
placing the second immediately after the first

in memory. If the concatenation would pro

duce a string longer than a specified max

imum, the program concatenates only

enough of string 2 to give the combined

string its maximum length. The Carry flag is

cleared if all of string 2 can be concatenated

and set to 1 if part of string 2 must be drop

ped. Both strings are a maximum of 255 bytes

long and the actual characters are preceded

by a byte containing the length.

Procedure: The program uses the length of

string 1 to determine where to start adding

characters and the length of string 2 to deter

mine how many characters to add. If the sum

of the lengths exceeds the maximum, the

program indicates an overflow and reduces

the number of characters it must add (the

number is the maximum length minus the

length of string 1). It then moves the

appropriate number of characters from string

2 to the end of string 1, updates the length of

string 1, and sets the Carry flag to indicate

whether any characters had to be discarded.

Registers Used: All

Execution Time: Approximately 40 * NUMBER

OF CHARACTERS CONCATENATED plus

164 cycles overhead. The NUMBER OF

CHARACTERS CONCATENATED is normally

the length of string 2, but will be the maximum

length of string 1 minus its current length if the

combined string would be longer than the max

imum. If, for example, NUMBER OF CHARAC

TERS CONCATENATED is 1416 (2010), the

execution time is

40 * 20 + 161 = 800 -I- 164 = 964 cycles.

Program Size: 141 bytes

Data Memory Required: Seven bytes anywhere

in RAM plus four bytes on page 0. The seven

bytes anywhere in RAM are temporary storage

for the maximum length of string 1 (1 byte at

address MAXLEN), the length of string 1 (1 byte

at address S1LEN), the length of string 2 (1 byte

at address S2LEN), a running index for string 1

(1 byte at address S1IDX), a running index for

string 2 (1 byte at address S2IDX), a concatena

tion counter (1 byte at address COUNT), and a

flag that indicates whether the combined strings

overflowed (1 byte at address STRGOV). The

four bytes on page 0 hold pointers to string 1 (two

bytes starting at address SIADR, address 00D016

in the listing) and to string 2 (two bytes starting at

address SI ADR, address 00D016 in the listing).

Special Cases:

1. If the concatenation would result in a string

longer than the specified maximum length, the

program concatenates only enough of string 2 to

reach the maximum. If any of string 2 must be

truncated, the Carry flag is set to 1.

2. If string 2 has a length of zero, the program

exits with the Carry flag cleared (no errors) and

string 1 unchanged. That is, a length of zero for

either string is interpreted as zero, not 256.

3. If the original length of string 1 exceeds the

specified maximum length, the program exits

with the Carry flag set to 1 (indicating an error)

and string 1 unchanged.

349

350 STRING MANIPULATIONS

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Maximum length of string 1

Less significant byte of starting address of

string 2

More significant byte of starting address of

string 2

Less significant byte of starting address of

string 1

More significant byte of starting address of

string 1

Exit Conditions

String 2 concatenated at the end of string 1

and the length of string 1 increased

appropriately. If the resulting string would

exceed the maximum length, only the part of

string 2 that would give string 1 its maximum

length is concatenated. If any part of string 2

must be dropped, the Carry flag is set to 1.

Otherwise, the Carry flag is cleared.

Examples

1. Data: Maximum length of string 1 = 0E16 = 14l0 2. Data:

String 1 = 074JOHNSON' (07 is the

length of the string)

String 2 = 05\ DON' (05 is the length of

the string)

Result: String 1 = 0CJOHNSON, DON' Result:

(0C16 = 1210 is the length of the
combined string with string 2

placed after string 1).

Carry = 0, since the concatenation did not

produce a string exceeding the

maximum length.

Maximum length of string 1 = 0E16 = 1410

String 1 = 07'JOHNSON' (07 is the

length of the string)

String 2 = 09\ RICHARD' (09 is the

length of the string)

String 1 = OE4JOHNSON, RICHA'

(0E16 = 1410 is the maximum

length allowed, so the last two

characters of string 2 have been

dropped.)

Carry = 1, since the concatenation

produced a string longer than the

maximum length.

Note that we are representing the initial byte (containing the length of the string) as two

hexadecimal digits in both examples.

8B STRING CONCATENATION (CONCAT) 351

Title

Name:

String Concatenation

CONCAT

Purpose:

Entry:

Exit:

Concatenate 2 strings into one string.

TOP OF STACK

Low byte of return address,

High byte of return address,

Maximum length of string 1,

Low byte of string 2 address,

High byte of string 2 address,

Low byte of string 1 address,

High byte of string 1 address

A string is a maximum of 255 bytes long plus ;

a length byte which precedes it. ;

string 1 := string 1 concatenated with string 2 ;

If no errors then ;

CARRY := 0

else

begin ;

CARRY := 1

if the concatenation makes string 1 too ;

long concatenate only the part of string 2 ;
which will result in string 1 having its ;

maximum length ;

if length(stringl) > maximum length then ;

no concatenation is done ;

end; ;

Registers used: All

Time:

Size:

;EQUATES

S1ADR .EQU

S2ADR .EQU

ODOH

0D2H

Approximately 40 * (length of string 2) cycles

plus 161 cycles overhead

Program 141 bytes

Data 7 bytes plus

4 bytes in page zero

;PAGE ZERO POINTER TO STRING 1

;PAGE ZERO POINTER TO STRING 2

CONCAT:

;GET RETURN ADDRESS

PLA

TAY

PLA

TAX

;SAVE LOW BYTE

;SAVE HIGH BYTE

352 STRING MANIPULATIONS

;GET MAXIMUM LENGTH OF STRING 1

PLA

STA MAXLEN

;GET THE STARTING ADDRESS OF STRING 2

PLA

STA S2ADR

PLA

STA S2ADR+1

;GET THE STARTING ADDRESS OF STRING 1

PLA

STA S1ADR

PLA

STA S1ADR+1

;RESTORE HIGH BYTE

;RESTORE LOW BYTE

;RESTORE RETURN ADDRESS

TXA

PHA

TYA

PHA

;DETERMINE WHERE TO STA

LDY

LDA

STA

STA

INC

LDA

STA

LDA

STA

#0

(S1ADR),Y

SlLEN

S1IDX

S1IDX

(S2ADR),Y

S2LEN

#1

S2IDX

;DETERMINE THE NUMBER 0

LDA

CLC

ADC

BCS

CMP

BEQ

BCC

S2LEN

SlLEN

TOOLNG

MAXLEN

LENOK

LENOK

;GET CURRENT LENGTH OF STRING 1

;START CONCATENATING AT THE END OF STRING 1

;GET LENGTH OF STRING 2

;START CONCATENATION AT BEGINNING OF STRING 2

;GET LENGTH OF STRING 2

;ADD TO CURRENT LENGTH OF STRING 1

;BRANCH IF LENGTH WILL EXCEED 255 BYTES

;CHECK AGAINST MAXIMUM LENGTH

;BRANCH IF LENGTH DOES NOT EXCEED MAXIMUM

;RESULTING STRING WILL BE TOO LONG SO

; INDICATE A STRING OVERFLOW, STRGOV := OFFH

; SET NUMBER OF CHARACTERS TO CONCATENATE = MAXLEN - SlLEN

; SET LENGTH OF STRING 1 TO MAXIMUM LENGTH

;INDICATE OVERFLOW

;EXIT IF MAXIMUM LENGTH < STRING 1 LENGTH

TOOLNG:

LDA

STA

LDA

SEC

SBC

BCC

#0FFH

STRGOV

MAXLEN

SlLEN

EXIT

8B STRING CONCATENATION (CONCAT) 353

STA

LDA

STA

JMP

COUNT

MAXLEN

S1LEN

DOCAT

; (THE ORIGINAL STRING WAS TOO LONG i i)

;SET COUNT TO SlLEN - MAXLEN

;SET LENGTH OF STRING 1 TO MAXIMUM

;PERFORM CONCATENATION

LENOK:

;RESULTING LENGTH DOES NOT EXCEED MAXIMUM

; LENGTH OF STRING 1 = SlLEN + S2LEN

; INDICATE NO OVERFLOW, STRGOV := 0

; SET NUMBER OF CHARACTERS TO CONCATENATE TO LENGTH OF STRING

;SAVE THE SUM OF THE 2 LENGTHS

;INDICATE NO OVERFLOW

STA

LDA

STA

LDA

STA

SlLEN

#0

STRGOV

S2LEN

COUNT ;COUNT LENGTH OF STRING 2

DOCAT:

;CONCATENATE THE STRINGS

CATLP:

EXIT:

;

7 DATA

MAXLEN:

SlLEN:

S2LEN:

S1IDX:

S2IDX:

COUNT:

STRGOV:

LDA

BEQ

LDY

LDA

LDY

STA

INC

INC

DEC

BNE

LDA

LDY

STA

LDA

ROR

RTS

•BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

COUNT

EXIT

S2IDX

(S2ADR),Y

S1IDX

(S1ADR),Y

S1IDX

S2IDX

COUNT

CATLP

SlLEN

#0

(S1ADR),Y

STRGOV

A

1

1

1

1

1

1

1

;EXIT IF NO BYTES TO CONCATENATE

;GET NEXT BYTE FROM STRING 2

;MOVE IT TO END OF STRING 1

;INCREMENT STRING 1 INDEX

;INCREMENT STRING 2 INDEX

;DECREMENT COUNTER

;CONTINUE UNTIL COUNT = 0

;UPDATE LENGTH OF STRING 1

;GET OVERFLOW INDICATOR

;CARRY = 1 IF OVERLOW, 0 IF NOT

;MAXIMUM LENGTH OF Si

;LENGTH OF Si

;LENGTH OF S2

;RUNNING INDEX INTO Si

;RUNNING INDEX INTO S2

;CONCATENATION COUNTER

;STRING OVERFLOW FLAG

SAMPLE EXECUTION:

354 STRING MANIPULATIONS

SC0802:

LDA SADR1+1 ;PUSH ADDRESS OF STRING 1

PHA

LDA SADR1

PHA

LDA SADR2+1 ;PUSH ADDRESS OF STRING 2

PHA

LDA SADR2

PHA

LDA #2OH ;PUSH MAXIMUM LENGTH OF STRING I

PHA

JSR CONCAT ;CONCATENATE

BRK ;RESULT OF CONCATENATING "LASTNAME" AND ", FIRSTNAME"

; IS SI = 13H,"LASTNAME, FIRSTNAME11

JMP SCO802 ;LOOP FOR ANOTHER TEST

;

;TEST DATA, CHANGE FOR OTHER VALUES

;STARTING ADDRESS OF STRING 1

;STARTING ADDRESS OF STRING 2

;LENGTH OF SI

" ;32 BYTE MAX LENGTH

;LENGTH OF S2

n ;32 BYTE MAX LENGTH

SADRl

SADR2

SI

S2

.WORD

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

• END

SI

S2

8H

"LASTNAME

OBH

11, FIRSTNAME

:PROGRAM

Find the Position of a Substring (POS) 8C

Searches for the first occurrence of a
substring within a string. Returns the index

at which the substring starts if it is found and

0 if it is not found. The string and the

substring are both a maximum of 255 bytes

long and the actual characters are preceded

by a byte containing the length. Thus, if the

substring is found, its starting index cannot

be less than 1 or more than 255.

Procedure: The program moves through

the string searching for the substring until it

either finds a match or the remaining part of

the string is shorter than the substring and

hence cannot possibly contain it. If the

substring does not appear in the string, the

program clears the accumulator; otherwise,

the program places the starting index of the

substring in the accumulator.

Registers Used: All

Execution Time: Data-dependent, but the over

head is 135 cycles, each successful match of one

character takes 47 cycles, and each unsuccessful

match of one character takes 50 cycles. The worst

case occurs when the string and substring always

match except for the last character in the

substring, such as

String = 'AAAAAAAAB'

Substring = 4AAB'

The execution time in that case is

(STRING LENGTH - SUBSTRING
LENGTH + 1) ♦ (47 • (SUBSTRING

LENGTH - 1) + 50) + 135

If, for example, STRING LENGTH = 9 and

SUBSTRING LENGTH = 3, the execution time
is

(9 - 3 + 1) • (47 • (3 - 1) + 50) + 135
= 7 ♦ 144 + 135 = 1008 + 135 = 1143
cycles.

Program Size: 124 bytes

Data Memory Required: Six bytes anywhere in

RAM plus four bytes on page 0. The six bytes

anywhere in RAM are temporary storage for the

length of the string (one byte at address SLEN),

the length of the substring (one byte at address

SUBLEN), a running index into the string (one

byte at address SIDX), a running index into the

substring (one byte at address SUBIDX), a

search counter (one byte at address COUNT),

and an index into the string (one byte at address

INDEX). The four bytes on page 0 hold pointers

to the substring (two bytes starting at address

SUBSTG, 00D016 in the listing) and to the string

(two bytes starting at address STRING, 00D216
in the listing).

Special Cases:

1. If either the string or the substring has a

length of zero, the program exits with zero in the

accumulator, indicating that it did not find the

substring.

2. If the substring is longer than the string,

the program exits with zero in the accumulator,

indicating that it did not find the substring.

3. If the program returns an index of 1, the

substring may be regarded as an abbreviation of

the string. That is, the substring occurs in the

string, starting at the first character. A typical

example would be a string PRINT and a substring

4. If the substring occurs more than once in
the string, the program will return only the index

to the first occurrence (the occurrence with the
lowest starting index).

355

356 STRING MANIPULATIONS

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of starting address of

substring

More significant byte of starting address of

substring

Less significant byte of starting address of

string

More significant byte of starting address of

string

Exit Conditions

Accumulator contains index at which first

occurrence of substring starts if it is found;

accumulator contains zero if substring is not

found.

Examples

1. Data: String

Result:

ID4 ENTER SPEED IN MILES

PER HOUR' (1D1(; - 2910 is the
length of the string).

Substring = 05'MILES' (05 is the length

of the substring)

Accumulator contains 1016 (1610), the

index at which the substring 'MILES'

starts.

2 Data: String = lB'SALES FIGURES FOR
JUNE 1981'(1B16 = 27IO is the

length of the string)

Substring = 044JUNE' (04 is the length of

the substring)

Result: Accumulator contains 1316 (1910), the
index at which the substring4JUNE'

starts.

3. Data: String = lO'LET Yl = XI + R7' (10l6

= 1610 is the length of the string)

Substring = 02lR4' (02 is the length of

the substring)

Result: Accumulator contains 00, since the

substring WR4' does not appear in the

string LET Yl = XI + R7.

4. Data: String =074RESTORE' (07 is the length

of the string)

Substring = 03'RES' (03 is the length of

the substring)

Result: Accumulator contains 01, the index at

which the substring "RES" starts. An

index of 01 indicates that the substring

could be an abbreviation of the string;

such abbreviations are, for example, often

used in interactive programs (such as
BASIC interpreters) to save on typing and

storage.

8C FIND THE POSITION OF A SUBSTRING (POS) 357

Title

Name:

Purpose:

Entry:

Exit:

Time:

Find the position of a substring in a string

POS

Search for the first occurrence of a substring

within a string and return its starting index.

If the substring is not found a 0 is returned.

TOP OF STACK

Low byte of return address,

High byte of return address,

Low byte of substring address,

High byte of substring address,

Low byte of string address,

High byte of string address

A string is a maximum of 255 bytes long plus

a length byte which precedes it.

If the substring is found then

Register A = its starting index

else

Register A = 0

Registers used: All

Size:

Since the algorithm is so data dependent

a simple formula is impossible but the
following statements are true and a

worst case is given below:

135 cycles overhead.

Each match of 1 character takes 47 cycles

A mismatch takes 50 cycles.

Worst case timing will be when the

string and substring always match

except for the last character of the

substring, Such as:

String = 'AAAAAAAAAB'

substring = 'AAB'

135 cycles overhead plus

(length(string) - length(substring) + 1) *
(((length(substring)-1).* 47) + 50)

Program 124 bytes

Data 6 bytes plus

4 bytes in page zero

;EQUATES

358 STRING MANIPULATIONS

SUBSTG

STRING

POS:

.EQU

.EQU

;GET

PLA

TAY

PLA

TAX

ODOH

QD2H

RETURN ADDRESS

;PAGE ZERO POINTER TO SUBSTRING

;PAGE ZERO POINTER TO STRING

;SAVE LOW BYTE

;SAVE HIGH BYTE

;GET THE STARTING ADDRESS OF SUBSTRING
PLA

STA SUBSTG

PLA

STA SUBSTG+1

;GET THE STARTING ADDRESS OF STRING

PLA

STA STRING

PLA

STA STRING+1

;RESTORE HIGH BYTE

;RESTORE LOW BYTE

;GET LENGTH OF STRING

;EXIT IF LENGTH OF STRING = 0

;GET LENGTH OF SUBSTRING

;EXIT IF LENGTH OF SUBSTRING « 0

;IF THE SUBSTRING IS LONGER THAN THE STRING DECLARE THE

; SUBSTRING NOT FOUND

LDA SUBLEN

CMP SLEN

BEQ LENOK

BCS NOTFND ;CANNOT FIND SUBSTRING IF IT IS LONGER THAN

; STRING

;START SEARCH, CONTINUE UNTIL REMAINING STRING SHORTER THAN SUBSTRING

LENOK:

LDA #JL

;START LOOKING AT FIRST CHARACTER OF STRING

;CONTINUE UNTIL REMAINING STRING TOO SHORT

; COUNT=STRING LENGTH - SUBSTRING LENGTH + 1

;SEARCH FOR SUBSTRING IN STRING

SLP1:

;RESTORE RETURN ADDRESS

TXA

PHA

TYA

PHA

;SET UP TEMPQRARY LENGT

LDY

LDA

BEQ

STA

LDA

BEQ

STA

#0

(STRING),Y

NOTFND

SLEN

(SUBSTG),Y

NOTFND

SUBLEN

LDA

STA

LDA

SEC

SBC

STA

INC

n
INDEX

SLEN

SUBLEN

COUNT

COUNT

8C FIND THE POSITION OF A SUBSTRING (POS) 359

CMPLP:

LDA INDEX

STA SIDX ;START STRING INDEX AT INDEX

LDA #1

STA SUBIDX ;START SUBSTRING INDEX AT 1

;LOOK FOR SUBSTRING BEGINNING AT INDEX

LDY

LDA

LDY

CMP

BNE

LDY

CPY

BEQ

INY

STY

INC

JMP

SLP2:

FOUND:

SIDX

(STRING),Y

SUBIDX

(SUBSTG),Y

SLP2

SUBIDX

SUBLEN

FOUND

SUBIDX

SIDX

CMPLP

;GET NEXT CHARACTER FROM STRING

;COMPARE TO NEXT CHARACTER IN SUBSTRING

;BRANCH IF SUBSTRING IS NOT HERE

;TEST IF WE ARE DONE

;BRANCH IF ALL CHARACTERS WERE EQUAL

;ELSE INCREMENT TO NEXT CHARACTER

;INCREMENT STRING INDEX

;CONTINUE

;ARRIVE HERE IF THE SUBSTRING IS NOT YET FOUND

INC

DEC

BNE

BEQ

LDA

JMP

NOTFND:

EXIT

LDA

RTS

INDEX

COUNT

SLP1

NOTFND

INDEX

EXIT

#0

;INCREMENT INDEX

;DECREMENT COUNT

;BRANCH IF NOT DONE

;ELSE EXIT NOT FOUND

;SUBSTRING FOUND, A = STARTING INDEX

;SUBSTRING NOT FOUND, A = 0

; DATA

SLEN: .BLOCK 1

SUBLEN: .BLOCK 1

SIDX: .BLOCK 1

SUBIDX: .BLOCK 1

COUNT: .BLOCK 1

INDEX: .BLOCK 1

;LENGTH OF STRING

;LENGTH OF SUBSTRING

;RUNNING INDEX INTO STRING

;RUNNING INDEX INTO SUBSTRING

;SEARCH COUNTER

;CURRENT INDEX INTO STRING

SAMPLE EXECUTION:

SC0803:

LDA SADR+1 ;PUSH ADDRESS OF THE STRING

360 STRING MANIPULATIONS

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

SADR

SUBADR+1

SUBADR

POS

;PUSH ADDRESS OF THE SUBSTRING

;FIND POSITION OF SUBSTRING

;RESULT OF SEARCHING "AAAAAAAAAB1* FOR "AAB" IS

; REGISTER A=8

JMP SC0803 ;LOOP FOR ANOTHER TEST

;LENGTH OF STRING

" ;32 BYTE MAX LENGTH

;LENGTH OF SUBSTRING

11 ;32 BYTE MAX LENGTH

;TEST

SADR

SUBADR

STG

SSTG

DATA, CHANGE FOR OTHER VALUES

.WORD

• WORD

.BYTE

.BYTE

.BYTE

.BYTE

• END

STG

SSTG

OAH ?LE

"AAAAAAAAAB

3H ;LE

"AAB

;PROGRAM

Copy a Substring from a String (COPY) 8D

Copies a substring from a string, given a
starting index and the number of bytes to

copy. The strings are a maximum of 255

bytes long and the actual characters are pre

ceded by a byte containing the length. If the

starting index of the substring is zero (i.e.,

the substring would start in the length byte)

or is beyond the end of the string, the

substring is given a length of zero and the

Carry flag is set to 1. If the substring would

exceed its maximum length or would extend

beyond the end of the string, then only the

maximum number or the available number

of characters (up to the end of the string) are

placed in the substring, and the Carry flag is

set to 1. If the substring can be formed as

specified, the Carry flag is cleared.

Procedure: The program exits immediately

if the number of bytes to copy, the maximum

length of the substring, or the starting index

is zero. It also exits immediately if the start

ing index exceeds the length of the string. If

none of these conditions holds, the program

checks if the number of bytes to copy exceeds

either the maximum length of the substring

or the number of characters available in the

string. If either one is exceeded, the program

reduces the number of bytes to copy

appropriately. It then copies the proper num

ber of bytes from the string to the substring.

The program clears the Carry flag if the

substring can be formed as specified and sets

the Carry flag if it cannot.

Registers Used: All

Execution Time: Approximately 36 * NUMBER

OF BYTES COPIES plus 200 cycles overhead.

NUMBER OF BYTES COPIED is the number

specified (if no problems occur) or the number

available or the maximum length of the substring

if the copying would go beyond the end of either

the string or the substring. If, for example,

NUMBER OF BYTES COPIED = 1210 (0C16),

the execution time is

36 * 12 + 200 = 432 +200 = 632 cycles.

Program Size: 173 bytes.

Data Memory Required: Six bytes anywhere in

RAM plus four bytes on page 0. The six bytes

anywhere in RAM hold the length of the string

(one byte at address SLEN), the length of the

substring (one byte at address DLEN), the max

imum length of the substring (one byte at address

MAXLEN), the search counter (one byte at

address COUNT), the current index into the

string (one byte at address INDEX), and an error

flag (one byte at address CPYERR). The four

bytes on page 0 hold pointers to the string (two

bytes starting at address DSTRG, 00D016 in the

listing) and to the substring (two bytes starting at

address SSTRG, 00D216 in the listing).

Special Cases:

1. If the number of bytes to copy is zero, the

program assigns the substring a length of zero

and clears the Carry flag, indicating no error.

2. If the maximum length of the substring is

zero, the program assigns the substring a length

of zero and sets the Carry flag to 1, indicating an

error.

3. If the starting index of the substring is zero,

the program assigns the substring a length of zero

and sets the Carry flag to 1, indicating an error.

4. If the source string does not even reach the

specified starting index, the program assigns the

substring a length of zero and sets the Carry flag

to 1, indicating an error.

5. If the substring would extend beyond the

end of the source string, the program places all

the available characters in the substring and sets

the Carry flag to 1, indicating an error. The

available characters are the ones from the starting

index to the end of the string.

6. If the substring would exceed its specified

maximum length, the program places only the

specified maximum number of characters in the

substring. It sets the Carry flag to 1, indicating an

error.

361

362 STRING MANIPULATIONS

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Maximum length of substring (destination

string)

Less significant byte of starting address of

substring (destination string)

More significant byte of starting address of

substring (destination string)

Number of bytes to copy

Starting index to copy from

Less significant byte of starting address of

string (source string)

More significant byte of starting address of

string (source string)

Exit Conditions

Substring contains characters copied from

string. If the starting index is zero, the max

imum length of the substring is zero, or the

starting index is beyond the length of the

string, the substring will have a length of zero

and the Carry flag will be set to 1. If the

substring would extend beyond the end of

the string or would exceed its specified max

imum length, only the available characters

from the string (up to the maximum length

of the substring) are copied into the

substring; the Carry flag is set in this case

also. If no problems occur in forming the

substring, the Carry flag is cleared.

Examples

1. Data: String = 10'LET Yl = R7 + X4'

(1016 = 161O is the length of the string)

Maximum length of substring = 2

Number of bytes to copy = 2

Starting index = 5

Result: Substring = 024YT (2 is the length of the

substring)

Carry = 0, since no problems occur in

forming the substring

2. Data: String = OE'8657 POWELL ST'

(0E16 = 1410 is the length of the string)

Maximum length of substring = 1016 = 1610

Number of bytes to copy = 0D16 = 1310

Starting index = 06

Result: Substring = 09TOWELL ST' (09 is the

length of the substring)

Carry = 1, since there were not enough

characters available in the string to

provide the specified number of bytes

to copy.

3. Data: String = 16*9414 HEGENBERGER

DRIVE' (1616 = 2210 is the length
of the string)

Maximum length of substring = 1016

= 16,o
Number of bytes to copy = 1116 = 1710

Starting index = 06

Result: Substring = 10lHEGENBERGER DRIV

(1016 - 1610 is the length of the

substring)

Carry = 1, since the number of bytes to

copy exceeded the maximum length of

the substring

8D COPY A SUBSTRING FROM A STRING (COPY) 363

Title

Name:

Copy

Copy

a substring from a string

Purpose:

Entry:

Exit:

Time:

Size:

Copy a substring from a string given a starting

index and the number of bytes.

TOP OF STACK

Low byte of return address,

High byte of return address,

Maximum length of destination string,

Low byte of destination string address,

High byte of destination string address,

Number of bytes to copy,

Starting index to copy from,

Low byte of source string address,

High byte of source string address

A string is a maximum of 255 bytes long plus

a length byte which precedes it.

Destination string := The substring from the

string.

if no errors then

CARRY := 0

else

begin

the following conditions cause an

error and the CARRY flag = 1.

if (index = 0) or (maxlen = 0) or

(index > length(sstrg) then

the destination string will have a zero

length.

if (index + count) > length(sstrg)) then

the destination string becomes everything

from index to the end of source string.

END;

Registers used: All

Approximately (36 * count) cycles plus 200

cycles overhead.

Program 173 bytes

Data 6 bytes plus

4 bytes in page zero

;EQUATES

DSTRG .EQU

SSTRG .EQU

0D0H

0D2H

;PAGE ZERO POINTER TO DESTINATION STRING

;PAGE ZERO POINTER TO SOURCE STRING

364 STRING MANIPULATIONS

COPY:

;GET RETURN ADDRESS

PLA

TAY ;SAVE LOW BYTE

PLA

TAX ;SAVE HIGH BYTE

;GET MAXIMUM LENGTH OF DESTINATION STRING

PLA

STA MAXLEN

;GET STARTING ADDRESS OF DESTINATION STRING

PLA

STA DSTRG ;SAVE LOW BYTE

PLA

STA DSTRG+1 ;SAVE HIGH BYTE

;GET NUMBER OF BYTES TO COPY

PLA

STA COUNT

;GET STARTING INDEX OF SUBSTRING

PLA

STA INDEX

;GET STARTING ADDRESS OF SOURCE STRING

PLA

STA SSTRG ;SAVE LOW BYTE (NOTE SSTRG=SOURCE STRING)
PLA

STA SSTRG+1 ;SAVE HIGH BYTE

;RESTORE RETURN ADDRESS

TXA

PHA ;RESTORE HIGH BYTE

TYA

PHA ;RESTORE LOW BYTE

;INITIALIZE LENGTH OF DESTINATION STRING AND THE ERROR FLAG TO 0

LDA #0

STA DLEN ;LENGTH OF DESTINATION STRING IS ZERO

STA CPYERR ;ASSUME NO ERRORS

;CHECK FOR ZERO BYTES TO COPY OR ZERO MAXIMUM SUBSTRING LENGTH

;BRANCH IF ZERO BYTES TO COPY, NO ERROR

; DSTRG WILL JUST HAVE ZERO LENGTH

;ERROR EXIT IF SUBSTRING HAS ZERO

; MAXIMUM LENGTH.

;ERROR EXIT IF STARTING INDEX IS ZERO

;CHECK IF THE SOURCE STRING REACHES THE STARTING INDEX

;IF NOT, EXIT

LDY #0

LDA

BEQ

LDA

BEQ

LDA

BEQ

COUNT

OKEXIT

MAXLEN

EREXIT

INDEX

EREXIT

8D COPY A SUBSTRING FROM A STRING (COPY) 365

LDA

STA

CMP

BCC

(SSTRG),Y

SLEN

INDEX

EREXIT

;GET LENGTH OF SOURCE STRING

;SAVE SOURCE LENGTH

;COMPARE TO STARTING INDEX

;ERROR EXIT IF INDEX IS TOO LARGE

;CHECK THAT WE DO NOT COPY BEYOND THE END OF THE SOURCE STRING

;IF INDEX + COUNT - 1 > LENGTH(SSTRG) THEN

; COUNT := LENGTH(SSTRG) - INDEX + 1;

+ COUNT > 255

+ COUNT - 1 < LENGTH(SSTRG)

;THE CALLER ASKED FOR TOO MANY CHARACTERS JUST RETURN EVERYTHING

; BETWEEN INDEX AND THE END OF THE SOURCE STRING.

; SO SET COUNT := LENGTH(SSTRG) - INDEX + 1;

;RECALCULATE COUNT

LDA

CLC

ADC

BCS

TAX

DEX

CPX

BCC

BEQ

INDEX

COUNT

RECALC

SLEN

CNT1OK

CNT1OK

;BRANCH

;BRANCH

;BRANCH

IF

IF

IF

INDEX

INDEX

EQUAL

RECALC:

LDA

SEC

SBC

STA

INC

LDA

STA

SLEN

INDEX

COUNT

COUNT

#0FFH

CPYERR

;COUNT := LENGTH(SSTRG) - INDEX + 1

;INDICATE A TRUNCATION OF THE COUNT

;CHECK IF THE COUNT IS LESS THAN OR EQUAL TO THE MAXIMUM LENGTH OF THE

; DESTINATION STRING. IF NOT, THEN SET COUNT TO THE MAXIMUM LENGTH

; IF COUNT > MAXLEN THEN

; COUNT := MAXLEN

;IS COUNT > MAXIMUM SUBSTRING LENGTH ?

CNT1OK:

LDA

CMP

BCC

BEQ

LDA

STA

LDA

STA

COUNT

MAXLEN

CNT2OK

CNT2OK

MAXLEN

COUNT

#0FFH

CPYERR

;EVERYTHING IS SE

LDX

BEQ

LDA

STA

MVLP:

LDY

LDA

LDY

STA

COUNT

EREXIT

#1
DLEN

INDEX

(SSTRG),Y

DLEN

(DSTRG),Y

;BRANCH IF COUNT < MAX

;BRANCH IF COUNT = MAX

LENGTH

LENGTH

;ELSE COUNT MAXLEN

;INDICATE DESTINATION STRING OVERFLOW

;REGISTER X WILL BE THE COUNTER

;ERROR EXIT IF COUNT IS ZERO

;START WITH FIRST CHARACTER OF DESTINATION

;DLEN IS RUNNING INDEX FOR DESTINATION

;INDEX IS RUNNING INDEX FOR SOURCE

;GET NEXT SOURCE CHARACTER

;MOVE NEXT CHARACTER TO DESTINATION

366 STRING MANIPULATIONS

INC

INC

DEX

BNE

DEC

LDA

BNE

;GOOD

OKEXIT:

CLC

BCC

;ERROR

EREXIT:

INDEX

DLEN

MVLP

DLEN

CPYERR

EREXIT

EXIT

EXIT

EXIT

;INCREMENT SOURCE INDEX

;INCREMENT DESTINATION INDEX

;DECREMENT COUNTER

;CONTINUE UNTIL COUNTER » 0

;SUBSTRING LENGTH=FINAL DESTINATION INDEX - 1

;CHECK FOR ANY ERRORS

;BRANCH IF A TRUNCATION OR STRING OVERFLOW

EXIT:

SEC

;STORE LENGTH BYTE IN FRONT OF SUBSTRING

LDA

LDY

STA

RTS

DLEN

#0

(DSTRG),Y ;SET LENGTH OF DESTINATION STRING

;DATA SECTION

SLEN: .BLOCK I

DLEN-: .BLOCK I

MAXLEN: .BLOCK 1

COUNT: .BLOCK 1

INDEX: .BLOCK 1

CPYERR: .BLOCK 1

SAMPLE EXECUTION:

;LENGTH OF SOURCE STRING

;LENGTH OF DESTINATION STRING

;MAXIMUM LENGTH OF DESTINATION STRING

;SEARCH COUNTER

;CURRENT INDEX INTO STRING

;COPY ERROR FLAG

SC0804:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

SADR+I ;PUSH ADDRESS OF SOURCE STRING

SADR

IDX ;PUSH STARTING INDEX FOR COPYING

CNT ;PUSH NUMBER OF CHARACTERS TO COPY

DADR+1 ;PUSH ADDRESS OF DESTINATION STRING

DADR

MXLEN ;PUSH MAXIMUM LENGTH OF DESTINATION STRING

COPY ;COPY

8D COPY A SUBSTRING FROM A STRING (COPY) 367

;

;DATA

IDX

CNT

MXLEN

SADR

DADR

SSTG

DSTG

BRK

JMP

SECTION

.BYTE

.BYTE

.BYTE

.WORD

.WORD

.BYTE

.B^TE

.BYTE

.BYTE

.END

;RE

a l?D;FR

SC0804 ;LC

4

3

2 OH

SSTG

DSTG

OAH

"12.345E+10

0
n

;PROGRAM

;RESULT OF COPYING 3 CHARACTERS STARTING AT INDEX 4

;FROM THE STRING "12.345E+10" IS 3,n345w

;LOOP FOR MORE TESTING

;STARTING INDEX FOR COPYING

;NUMBER OF CHARACTERS TO COPY

;MAXIMUM LENGTH OF DESTINATION STRING

;LENGTH OF STRING

11 ;32 BYTE MAX LENGTH

;LENGTH OF SUBSTRING

n ;32 BYTE MAX LENGTH

Delete a Substring from a String (DELETE) 8E

Deletes a substring from a string, given a
starting index and a length. The string is a

maximum of 255 bytes long and the actual

characters are preceded by a byte containing

the length. The Carry flag is cleared if the

deletion can be performed as specified. The

Carry flag is set if the starting index is zero or

beyond the length of the string; the string is

left unchanged in either case. If the deletion

extends beyond the end of the string, the

Carry flag is set (to 1) and only the characters

from the starting index to the end of the

string are deleted.

Procedure: The program exits immediately

if the starting index or the number of bytes to

delete is zero. It also exits if the starting index

is beyond the length of the string. If none of

these conditions holds, the program checks

to see if the string extends beyond the area to

be deleted. If it does not, the program simply

truncates the string by setting the new length

to the starting index minus 1. If it does, the

program compacts the resulting string by

moving the bytes above the deleted area

down. The program then determines the new

string's length and exits with the Carry

cleared if the specified number of bytes were

deleted and set to 1 if any errors occurred.

Registers Used: All

Execution Time: Approximately

36 * NUMBER OF BYTES MOVED DOWN

+ 165

where NUMBER OF BYTES MOVED DOWN is

zero if the string can be truncated and is STRING

LENGTH - STARTING INDEX - NUMBER

OF BYTES TO DELETE + 1 if the string must

be compacted.

Examples

1. STRING LENGTH = 2016 (3210)

STARTING INDEX = 1916 (2510)

NUMBER OF BYTES TO DELETE = 08

Since there are exactly eight bytes left in the

string starting at index 1916, all the routine must

do is truncate the string. This takes

36 * 0 + 165 = 165 cycles.

2. STRING LENGTH = 4016 (6410)

STARTING LENGTH = 1916 (2510)

NUMBER OF BYTES TO DELETE = 08

Since there are 2016 (3216) bytes above the

truncated area, the routine must move them

down eight positions. The execution time is

36*32+ 165 = 1152+ 165 = 1317 cycles.

Program Size: 139 bytes

Data Memory Required: Five bytes anywhere in

RAM plus two bytes on page 0. The five bytes
anywhere in RAM hold the length of the string

(one byte at address SLEN), the search counter
(one byte at address COUNT), an index into the
string (one byte at address INDEX), the source
index for use during the move (one byte at
address SIDX), and an error flag (one byte at
address DELERR). The two bytes on page 0 hold

a pointer to the string (starting at address STRG,

00D016 in the listing).

Special Cases:

1. If the number of bytes to delete is zero, the

program exits with the Carry flag cleared (no

errors) and the string unchanged.

2. If the string does not even extend to the

specified starting index, the program exits with

the Carry flag set to 1 (error indicated) and the

string unchanged.

3. If the number of bytes to delete exceeds the

number available, the program deletes all bytes

from the starting index to the end of the string

and exits with the Carry flag set to 1 (error indi

cated).

368

8E DELETE A SUBSTRING FROM A STRING (DELETE) 369

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Number of bytes to delete

Starting index to delete from

Less significant byte of starting address of

string

More significant byte of starting address of

string

Exit Conditions

Substring deleted from string. If no errors

occur, the Carry flag is cleared. If the starting

index is zero or beyond the length of the

string, the Carry flag is set and the string is

unchanged. If the number of bytes to delete

would go beyond the end of the string, the

Carry flag is set and the characters from the

starting index to the end of the string are

deleted.

Examples

1. Data: String = lE'SALES FOR MARCH AND 2. Data:

APRIL 1980* (1E16 = 3010 is the

length of the string)

Number of bytes to delete = 0A16 = 10i0

Starting index to delete from = 1016 =

16io

Result: String = 14WSALES FOR MARCH 1980' Result:

(1416 = 2010 is the length of the string
with ten bytes deleted starting with the

16th character — the deleted material is

'AND APRIL').

Carry = 0, since no problems occurred in

the deletion.

String = 28THE PRICE IS $3.00 ($2.00

BEFORE JUNE 1)' (2816 = 4010 is the

length of the string).

Number of bytes to delete = 3016 = 4810

Starting index to delete from = 1316

= 1910

String = 12'THE PRICE IS $3.00' (1216

= 1810 is the length of the string with all

remaining bytes deleted).

Carry = 1, since there were not as many

bytes left in the string as were supposed

to be deleted.

Title

Name:

Purpose:

Entry:

Delete a substring from a string

Delete

Delete a substring from a string given a

starting index and a length,

TOP OF STACK

Low byte of return address,

High byte of return address,

Number of bytes to delete (count),

Starting index to delete from (index),

Low byte of string address,

High byte of string address

370 STRING MANIPULATIONS

?

; A string is a maximum of 255 bytes long plus ;

; a length byte which precedes it. ;

Exit: Substring deleted. ;

if no errors then ;

CARRY := 0

else ;

begin ;
the following conditions cause an ;

error with the CARRY flag = 1.

if (index = 0) or (index > length(string)) ;

then do not change the string ;

if count is too large then ;

delete only the characters from ;

index to the end of the string ;

end; ;

Registers used: All ;

Time: Approximately 36 * (LENGTH(STRG)-INDEX-COUNT+1) ;
plus 165 cycles overhead. ;

Size: Program 139 bytes ;

Data 5 bytes plus ;

2 bytes in page zero ;

;EQUATES

STRG .EQU

DELETE:

;GET

PLA

TAY

PLA

TAX

0D0H

RETURN ADDRESS

; PAGE

;SAVE

;SAVE

ZERO POIN

LOW BYTE

HIGH BYTE

;GET NUMBER OF BYTES TO DELETE

PLA

STA COUNT

;GET STARTING INDEX DELETION

PLA

STA INDEX

;GET STARTING ADDRESS OF STRING

PLA

STA STRG ;SAVE LOW BYTE

PLA

STA STRG+1 ;SAVE HIGH BYTE

;RESTORE RETURN ADDRESS

TXA

8E DELETE A SUBSTRING FROM A STRING (DELETE) 371

PHA ;RESTORE HIGH BYTE

TYA

PHA ;RESTORE LOW BYTE

;INITIALIZE ERROR INDICATOR (DELERR) TO 0

;GET STRING LENGTH

LDY #0

STY DELERR

LDA (STRG),Y ;GET LENGTH OF STRING

STA SLEN ;SAVE STRING LENGTH

;CHECK FOR A NON ZERO COUNT AND INDEX

LDA COUNT

BEQ OKEXIT ;GOOD EXIT IF NOTHING TO DELETE

LDA INDEX

BEQ EREXIT ;ERROR EXIT IF STARTING INDEX = 0

;CHECK FOR STARTING INDEX WITHIN THE STRING

; EXIT IF IT IS NOT

LDA SLEN ;IS INDEX WITHIN THE STRING ?

CMP INDEX

BCC EREXIT ;NO, TAKE ERROR EXIT

;BE SURE THE NUMBER OF CHARACTERS REQUESTED TO BE DELETED ARE PRESENT

; IF NOT THEN ONLY DELETE FROM THE INDEX TO THE END OF THE STRING

;TRUNCATE IF INDEX + COUNT > 255

;SAVE INDEX + COUNT AS THE SOURCE INDEX

;X = INDEX + COUNT

;BRANCH IF INDEX + COUNT - 1 < LENGTH(SSTRG)

;ELSE JUST TRUNCATE THE STRING

;TRUNCATE BUT NO ERROR (EXACTLY ENOUGH

; CHARACTERS)

;INDICATE ERROR - NOT ENOUGH CHARACTERS TO

; DELETE

;TRUNCATE THE STRING - NO COMPACTING NECESSARY

TRUNC:

= STARTING INDEX - 1

LDA

CLC

ADC

BCS

STA

TAX

DEX

CPX

BCC

BEQ

LDA

STA

INDEX

COUNT

TRUNC

SIDX

SLEN

CNTOK

TRUNC

#0FFH

DELERR

LDX

DEX

STX

LDA

BEQ

BNE

INDEX

SLEN

DELERR

OKEXIT

EREXIT

;STRING LEN

;GOOD EXIT

;ERROR EXIT

;DELETE THE SUBSTRING BY COMPACTING

; MOVE ALL CHARACTERS ABOVE THE DELETED AREA DOWN

CNTOK:

;CALCULATE NUMBER OF CHARACTERS TO MOVE (SLEN - SIDX + 1)

372 STRING MANIPULATIONS

MVLP:

OKEXIT:

EREXIT:

EXIT:

; DATA

SLEN:

COUNT:

INDEX:

SIDX:

DELERR:

LDA

SEC

SBC

TAX

INX

BEQ

LDY

LDA

LDY

STA

INC

INC

DEX

BNE

LDX

DEX

STX

;GOOD

CLC

BCC

;ERROR

SEC

LDA

LDY

STA

RTS

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

SLEN

SIDX

OKEXIT

SIDX

(STRG),Y

INDEX

(STRG),Y

INDEX

SIDX

MVLP

INDEX

SLEN

EXIT

EXIT

EXIT

SLEN

#0

(STRG),Y

1

1

1

1

1

;GET STRING LENGTH

;SUBTRACT STARTING INDEX

;ADD 1 TO INCLUDE LAST CHARACTER

;BRANCH IF COUNT = 0

;GET NEXT CHARACTER

;MOVE IT DOWN

;INCREMENT DESTINATION INDEX

;INCREMENT SOURCE INDEX

;DECREMENT COUNTER

;CONTINUE UNTIL COUNTER = 0

;STRING LENGTH = FINAL DESTINATION INDEX - 1

jSET LENGTH OF STRING

;LENGTH OF SOURCE STRING

;SEARCH COUNTER

;CURRENT INDEX INTO STRING

;SOURCE INDEX DURING MOVE

;DELETE ERROR FLAG

SAMPLE EXECUTION:

SC0805:

LDA

PHA

LDA

PHA

LDA

SADR+1 ;PUSH STRING ADDRESS

SADR

IDX ;PUSH STARTING INDEX FOR DELETION

8E DELETE A SUBSTRING FROM A STRING (DELETE) 373

PHA

LDA

PHA

JSR

BRK

JMP

CNT ;PUSH NUMBER OF CHARACTERS TO DELETE

DELETE ;DELETE

;RESULT OF DELETING 4 CHARACTERS STARTING AT INDEX 1
; FROM nJOE HANDOVER" IS "HANDOVER"

SCO805 ;LOOP FOR ANOTHER TEST

;DATA SECTION

IDX

CNT

SADR

SSTG

.BYTE

.BYTE

• WORD

.BYTE

.BYTE

1

4

SSTG

12

"JOE HANDOVER"

;INDEX TO START OF DELETION

;NUMBER OF CHARACTERS TO DELETE

;LENGTH OF STRING

• END ;PROGRAM

Insert a Substring into a String (INSERT) 8F

Inserts a substring into a string, given a
starting index. The string and substring are

both a maximum of 255 bytes long and the

actual characters are preceded by a byte con

taining the length. The Carry flag is cleared if

the insertion can be accomplished with no

problems. The Carry flag is set if the starting

index is zero or beyond the length of the

string. In the second case, the substring is

concatenated to the end of the string. The

Carry flag is also set if the string with the

insertion would exceed a specified maximum

length; in that case, the program inserts only

enough of the substring to give the string its

maximum length.

Procedure: The program exits immediately

if the starting index is zero or if the length of

the substring is zero. If neither of these con

ditions holds, the program checks to see if

the insertion would produce a string longer

than the maximum. If it would, the program

truncates the substring. The program then

checks to see if the starting index is within

the string. If it is not, the program simply

concatenates the substring by moving it to

the memory locations immediately after the

end of the string. If the starting index is

within the string, the program must first open

a space for the insertion by moving the

remaining characters up in memory. This

move must start at the highest address to

avoid writing over any data. Finally, the pro

gram can move the substring into the open

area. The program then determines the new

string length and exits with the Carry flag set

appropriately (to 0 if no problems occurred

and to 1 if the starting index was zero, the

substring had to be truncated, or the starting

index was beyond the length of the string).

Registers Used: All

Execution Time: Approximately 36 ♦ NUMBER

OF BYTES MOVED + 36 * NUMBER OF

BYTES INSERTED + 207

NUMBER OF BYTES MOVED is the number of

bytes that must be moved to open up space for

the insertion. If the starting index is beyond the

end of the string, this is zero since the substring is

simply concatenated to the string. Otherwise, this

is STRING LENGTH - STARTING INDEX +

1, since the bytes at or above the starting index

must be moved.

NUMBER OF BYTES INSERTED is the length

of the substring if no truncation occurs. It is the

maximum length of the string minus its current

length if inserting the substring would produce a

string longer than the maximum.

Examples

1. STRING LENGTH = 20I6 (3210)

STARTING INDEX = 1916 (2510)

MAXIMUM LENGTH = 3016 (4810)

SUBSTRING LENGTH = 06

That is, we want to insert a substring six bytes

long, starting at the 25th character. Since there

are eight bytes that must be moved up (2016 —

19I6 + 1 = NUMBER OF BYTES MOVED) and

six bytes that must be inserted, the execution

time is approximately

36 * 8 + 36 * 6 + 207 = 288 + 216 + 207

= 711 cycles.

2. STRING LENGTH - 2016 (3210)

STARTING INDEX = 1916 (2510)

MAXIMUM LENGTH = 2416 (36I0)

SUBSTRING LENGTH = 06

374

8F INSERT A SUBSTRING INTO A STRING (INSERT) 375

As opposed to Example 1, here only four bytes

of the substring can be inserted without exceed

ing the maximum length of the string. Thus

NUMBER OF BYTES MOVED = 8 and NUM

BER OF BYTES INSERTED = 4. The execution

time is approximately

36 * 8 + 36 * 4 4- 207 = 288 + 144 + 207

= 639 cycles.

Program Size: 212 bytes

Data Memory Required: Seven bytes anywhere

in RAM plus four bytes on page 0. The seven

bytes anywhere in RAM hold the length of the

string (one byte at address SLEN), the length of
the substring (one byte at address SUBLEN), the
maximum length of the string (one byte at
address MAXLEN), the current index into the
string (one byte at address INDEX), running
indexes for use during the move (one byte at
address SIDX and one byte at address DIDX),
and an error flag (one byte at address INSERR).
The four bytes on page 0 hold pointers to the

substring (two bytes starting at address SUBSTG,

00D016 in the listing) and the string (two bytes

starting at address STRG, 00D216 in the listing).

Special Cases:

1. If the length of the substring (the insertion)

is zero, the program exits with the Carry flag

cleared (no error) and the string unchanged.

2. If the starting index for the insertion is zero

(i.e., the insertion begins in the length byte), the

program exits with the Carry flag set to 1 (indicat

ing an error) and the string unchanged.

3. If the string with the substring inserted

exceeds the specified maximum length, the pro

gram inserts only enough characters to reach the

maximum length. The Carry flag is set to 1 to

indicate that the insertion has been truncated.

4. If the starting index of the insertion is

beyond the end of the string, the program con

catenates the insertion at the end of the string

and indicates an error by setting the Carry flag to

1.

5. If the original length of the string exceeds its

specified maximum length, the program exits

with the Carry flag set to 1 (indicating an error)

and the string unchanged.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of starting address of

substring

More significant byte of starting address of

substring

Maximum length of string

Starting index at which to insert the substring

Less significant byte of starting address of

string

More significant byte of starting address of

string

Exit Conditions

Substring inserted into string. If no errors

occur, the Carry flag is cleared. If the starting

index is zero or the length of the substring is

zero, the Carry flag is set and the string is not

changed. If the starting index is beyond the

length of the string, the Carry flag is set and

the substring is concatenated to the end of

the string. If the string with the substring

inserted would exceed the specified max

imum length, the Carry flag is set and only

those characters from the substring which

bring the string to maximum length are

inserted.

376 STRING MANIPULATIONS

Examples

1. Data: String = OA'JOHN SMITH1 (0A16 = 1010

is the length of the string)

Substring = 08'WILLIAM ' (08 is the

length of the substring)

Maximum length of string = 1416 = 2010

Starting index = 06

Data: String = OA'JOHN SMITH' (0A16 = 10I0

is the length of the string)

Substring = 0CROCKEFELLER ' (0C16

= 1210 is the length of the substring)

Maximum length of string = 1416 = 2010

Starting index = 06

Result: String = 12'JOHN WILLIAM SMITH'

(1216 = 1816 is the length of the string

with the substring inserted).

Carry = 0, since no problems occurred in

the insertion.

Result: String = 144JOHN

ROCKEFELLESMITH' (1416 = 2010 is

the length of the string with as much of the

substring inserted as the maximum length

would allow)

Carry = 1, since some of the substring

could not be inserted without exceeding

the maximum length of the string.

Title Insert a substring into a string

Name: Insert

Purpose:

Entry:

Exit:

Insert a substring into a string given a

starting index.

TOP OF STACK

Low byte of return address,

High byte of return address,

Low byte of substring address,

High byte of substring address,

Maximum length of (source) string,

Starting index to insert the substring,

Low byte of (source) string address,

High byte of (source) string address

A string is a maximum of 255 bytes long plus

a length byte which precedes it.

Substring inserted into string,

if no errors then

CARRY = 0

else

begin

the following conditions cause the

CARRY flag to be set.

if index = 0 then

do not insert the substring

if length(strg) > maximum length then

do not insert the substring

8F INSERT A SUBSTRING INTO A STRING (INSERT) 377

; if index > length(strg) then ;

; concatenate substg onto the end of the ;

; source string ;

; if length(strg)+length(substring) > maxlen ;

; then insert only enough of the substring ;

; to reach maximum length ;

; end; ;

;

; Registers used: All ;

; ;

; Time: Approximately ;

; 36 * (LENGTH (STRG) - INDEX + 1) +

; 36 * (LENGTH (SUBSTG)) +

; 207 cycles overhead. ;

?

; Size: Program 214 bytes ;

; Data 7 bytes plus ;

; 4 bytes in page zero ;

;EQUATES

SUBSTG .EQU 0D0H ;PAGE ZERO POINTER TO SUBSTRING

STRG .EQU 0D2H ;PAGE ZERO POINTER TO STRING

INSERT:

;GET RETURN ADDRESS

PLA

TAY ;SAVE LOW BYTE

PLA

TAX ;SAVE HIGH BYTE

;GET STARTING ADDRESS OF SUBSTRING

PLA

STA SUBSTG ;SAVE LOW BYTE

PLA

STA SUBSTG+1 ;SAVE HIGH BYTE

;GET MAXIMUM LENGTH OF STRING

PLA

STA MAXLEN

;GET STARTING INDEX for insertion
PLA

STA INDEX

;.GET STARTING ADDRESS OF SOURCE STRING
PLA

STA STRG ;SAVE LOW BYTE
PLA

STA STRG+1 ;SAVE HIGH BYTE

;RESTORE RETURN ADDRESS

TXA

PHA ;RESTORE HIGH BYTE
TYA

378 STRING MANIPULATIONS

PHA /RESTORE LOW BYTE

;ASSUME NO ERRORS

LDA #0

STA INSERR ;ASSUME NO ERRORS WILL BE FOUND

;GET SUBSTRING AND STRING LENGTHS

; IF LENGTH(SUBSTG) = 0 THEN EXIT BUT NO ERROR

LDY #0

LDA (STRG),Y

STA SLEN ;GET LENGTH OF STRING

LDA (SUBSTG)fY

STA SUBLEN ;GET LENGTH OF SUBSTRING

BNE IDXO

JMP OKEXIT ;EXIT IF NOTHING TO INSERT (NO ERROR)

;IF STARTING INDEX IS ZERO THEN ERROR EXIT

IDXO:

LDA INDEX

BNE CHKLEN ;BRANCH IF INDEX NOT EQUAL 0

JMP EREXIT ;ELSE ERROR EXIT

;CHECK THAT THE RESULTING STRING AFTER THE INSERTION FITS IN THE

; SOURCE STRING. IF NOT THEN TRUNCATE THE SUBSTRING AND SET THE

; TRUNCATION FLAG.

CHKLEN:

LDA SUBLEN ;GET SUBSTRING LENGTH

CLC

ADC SLEN

BCS TRUNC ;TRUNCATE SUBSTRING IF NEW LENGTH > 255

CMP MAXLEN

BCC IDXLEN ;BRANCH IF NEW LENGTH < MAX LENGTH

BEQ IDXLEN ;BRANCH IF NEW LENGTH = MAX LENGTH

;SUBSTRING DOES NOT FIT, SO TRUNCATE IT

TRUNC:

LDA MAXLEN ;SUBSTRING LENGTH = MAXIMUM LENGTH - STRING

; LENGTH

SEC

SBC SLEN

BCC EREXIT ;ERROR EXIT IF MAXIMUM LENGTH < STRING LENGTH

BEQ EREXIT ;ERROR EXIT IF SUBSTRING LENGTH IS ZERO

; (THE ORIGINAL STRING WAS TOO LONG !i)

STA SUBLEN

LDA #0FFH

STA INSERR ;INDICATE SUBSTRING WAS TRUNCATED

;CHECK THAT INDEX IS WITHIN THE STRING. IF NOT CONCATENATE THE

; SUBSTRING ONTO THE END OF THE STRING.

IDXLEN:

LDA SLEN ;GET STRING LENGTH

CMP INDEX ;COMPARE TO INDEX

BCS LENOK ;BRANCH IF STARTING INDEX IS WITHIN STRING

LDX SLEN ;ELSE JUST CONCATENATE (PLACE SUBSTRING AT

; END OF STRING)

INX

STX

LDA

STA

LDA

CLC

ADC

STA

JMP

INDEX

#OFFH

INSERR

SLEN

SUBLEN

SLEN

MVESUB

8F INSERT A SUBSTRING INTO A STRING (INSERT) 379

;START RIGHT AFTER END OF STRING

;INDICATE ERROR IN INSERT

;ADD SUBSTRING LENGTH TO STRING LENGTH

;JUST PERFORM MOVE, NOTHING TO OPEN UP

;OPEN UP A SPACE IN SOURCE STRING FOR THE SUBSTRING BY MOVING THE

; CHARACTERS FROM THE END OF THE SOURCE STRING DOWN TO INDEX, UP BY

; THE SIZE OF THE SUBSTRING.

LENOK:

;CALCULATE NUMBER OF CHARACTERS TO MOVE

; COUNT := STRING LENGTH - STARTING INDEX + 1

LDA SLEN

SEC

SBC INDEX

TAX

INX ;X = NUMBER OF CHARACTERS TO MOVE

;SET THE SOURCE INDEX AND CALCULATE THE DESTINATION INDEX

;SOURCE ENDS AT END OF ORIGINAL STRING

;DESTINATION ENDS FURTHER BY SUBSTRING LENGTH

•SET THE NEW LENGTH TO THIS VALUE ALSO

OPNLP:

LDA

STA

CLC

ADC

STA

STA

LDY

LDA

LDY

STA

DEC

DEC

DEX

BNE

SLEN

SIDX

SUBLEN

DIDX

SLEN

SIDX

(STRG),Y

DIDX

(STRG),Y

SIDX

DIDX

OPNLP

;GET NEXT CHARACTER

;MOVE IT UP IN MEMORY

;DECREMENT SOURCE INDEX

;DECREMENT DESTINATION INDEX

;DECREMENT COUNTER

;CONTINUE UNTIL COUNTER = 0

;MOVE THE SUBSTRING INTO THE OPEN AREA
MVESUB:

LDA #1

STA SIDX ;START AT ONE IN THE SUBSTRING
;START AT INDEX IN THE STRING

LDX SUBLEN ;X = NUMBER OF CHARACTERS TO MOVE

MVELP:

LDY SIDX

LDA (SUBSTG),Y ;GET NEXT CHARACTER
LDY INDEX

STA (STRG),Y ;STORE CHARACTER

INC SIDX ;INCREMENT SUBSTRING INDEX
INC INDEX ;INCREMENT STRING INDEX
DEX ;DECREMENT COUNT
BNE MVELP ;CONTINUE UNTIL COUNTER = 0
LDA INSERR ;GET ERROR FLAG

380 STRING MANIPULATIONS

OKEXIT:

EREXIT:

EXIT:

BNE

CLC

BCC

SEC

LDA

LDY

STA

RTS

;DATA SECTION

SLEN:

SUBLEN:

MAXLEN:

INDEX:

SIDX:

DIDX:

INSERR:

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

EREXIT

EXIT

SLEN

#0

(STRG),Y

1

1

1

1

1

1

1

;BRANCH IF SUBSTRING WAS TRUNCATED

;NO ERROR

;ERROR EXIT

;SET NEW LENGTH OF STRING

;LENGTH OF STRING

;LENGTH OF SUBSTRING

;MAXIMUM LENGTH OF STRING

;CURRENT INDEX INTO STRING

;A RUNNING INDEX

;A RUNNING INDEX

;FLAG USED TO INDICATE IF AN ERROR

SAMPLE EXECUTION:

SC0806:

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

JMP

SADR+1 ;PUSH ADDRESS OF SOURCE STRING

SADR

IDX ;PUSH STARTING INDEX FOR INSERTION

MXLEN ;PUSH MAXIMUM LENGTH OF SOURCE STRING

SUBADR+1 ;PUSH ADDRESS OF THE SUBSTRING

SUBADR

INSERT ;INSERT

;RESULT OF INSERTING "-" INTO "123456" AT

; INDEX 1 IS "-123456"

SC0806 ;LOOP FOR ANOTHER TEST

;DATA SECTION

IDX

MXLEN

SADR

..BYTE

.BYTE

.WORD

SUBADR .WORD

STG .BYTE

1

20H

STG

SSTG

06H

;INDEX TO START INSERTION

;MAXIMUM LENGTH OF DESTINATION

;STARTING ADDRESS OF STRING

;STARTING ADDRESS OF SUBSTRING

;LENGTH OF STRING

8F INSERT A SUBSTRING INTO A STRING (INSERT) 381

.BYTE "123456 « ;32 BYTE MAX LENGTH

SSTG .BYTE 1 ;LENGTH OF SUBSTRING

.BYTE "- « ;32 BYTE MAX LENGTH

.END ;PROGRAM

8-Bit Array Summation (ASUM8) 9A

Adds the elements of a byte-length array,
producing a 16-bit sum. The size of the array

is specified and is a maximum of 255 bytes.

Procedure: The program clears both bytes

of the sum initially. It then adds the elements

successively to the less significant byte of the

sum, starting with the element at the highest

address. Whenever an addition produces a

carry, the program increments the more sig

nificant byte of the sum.

Registers Used: All

Execution Time: Approximately 16 cycles per

byte plus 39 cycles overhead. If, for example, (X)

= 1A16 = 2610, the execution time is approx

imately

16 ♦ 26 + 39 = 416 + 39 = 455 cycles.

Program Size: 30 bytes

Data Memory Required: Two bytes on page 0 to

hold a pointer to the array (starting at address

ARYADR, 00D016 in the listing).

Special Case: An array size of zero causes an

immediate exit with the sum equal to zero.

Entry Conditions

(A) = More significant byte of starting

address of array

(Y) = Less significant byte of starting

address of array

(X) = Size of array in bytes

Exit Conditions

(A) = More significant byte of sum

(Y) = Less significant byte of sum

Example

Data: Size of array (in bytes) = (X) = 08

Array elements

F7,* = 247 10

23,6

31,6

70,6

5A16

16,6

CB,6

El,6

= 35,0

= 4910

= 112,0
= 9O,o

= 22,o

= 203,0

= 225,0

Result: Sum = 03D716 = 98310

(A) = more significant byte of sum

= 0316

(Y) = less significant byte of sum = D7I6

382

9A 8-BIT ARRAY SUMMATION (ASUM8) 383

Title

Name:

Purpose:

Entry:

Exit:

8 BIT ARRAY SUMMATION

ASUM8

SUM the data of an array, yielding a 16 bit

result. Maximum size is 255.

Register A = High byte of starting array address

Register Y = Low byte of starting array address

Register X = Size of array in bytes

Register A = High byte of sum

Register Y = Low byte of sum

Registers used: All

Time:

Size:

EQUATES SECTION

ARYADR: .EQU ODOH

ASUM8:

Approximately 16 cycles per byte plus

39 cycles overhead.

Program 30 bytes

Data 2 bytes in page zero

;PAGE ZERO POINTER TO ARRAY

;STORE STARTING ADDRESS

STY ARYADR

STA ARYADR+1

;DECREMENT STARTING ADDRESS BY 1 FOR EFFICIENT PROCESSING

TYA ;GET LOW BYTE OF STARTING ADDRESS

BNE ASUM81 ;IS LOW BYTE ZERO ?

DEC ARYADR+1 ;YESf BORROW FROM HIGH BYTE

ASUM81: DEC ARYADR ;ALWAYS DECREMENT LOW BYTE

;EXIT IF LENGTH OF ARRAY IS ZERO

TXA

TAY

BEQ EXIT

SUMLP:

;INITIALIZATION

LDA #0

TAX

;SUMMATION LOOP

CLC

ADC

BCC

INX

(ARYADR),Y

DECCNT

;EXIT IF LENGTH IS ZERO

;INITIALIZE SUM TO 0

;ADD NEXT BYTE TO LSB OF SUM

;INCREMENT MSB OF SUM IF A CARRY OCCURS

384 ARRAY OPERATIONS

DECCNT:

EXIT:

DEY

BNE

TAY

TXA

RTS

SUMLP

;DECREMENT COUNT

;CONTINUE UNTIL REGISTER Y EQUALS 0

;REGISTER Y = LOW BYTE OF SUM

;REGISTER A = HIGH BYTE OF SUM

SAMPLE EXECUTION

;

SC09U1:

LDY

LDA

LDX

JSR

BRK

JMP

BUFADR

BUFADR+1

BUFSZ

ASUM8

SC0901

;Y IS LOW BYTE OF BUFFER ADDRESS

;A IS HIGH BYTE OF BUFFER ADDRESS

;X IS SIZE OF BUFFER

;SUM OF THE INITIAL TEST DATA IS 07F8 HEX,

; REGISTER A = 07, REGISTER Y = F8H

;TEST DATA, CHANGE FOR OTHER VALUES

SIZE .EQU 010H ;SIZE OF BUFFER

BUFADR: .WORD BUF ;STARTING ADDRESS OF BUFFER

;SIZE OF BUFFER

;BUFFER

;DECIMAL ELEMENTS ARE 0,17,34,51,68

; 85,102,119,136,153,170,187,204

; 221,238,255

BUFSZ:

BUF:

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

• BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

SIZE

00H

11H

22H

33H

44H

55H

66H

77H

88H

99H

0AAH

0BBH

OCCH

0DDH

UEEH

OFFH

.END

;SUM = 07F8 (2040 DECIMAL)

;PROGRAM

16-Bit Array Summation (ASUM16) 9B

Adds the elements of a word-length array,
producing a 24-bit sum. The size of the array

is specified and is a maximum of 255 16-bit

words. The 16-bit elements are stored in the

usual 6502 style with the less significant byte

first.

Procedure: The program clears a 24-bit

accumulator in three bytes of memory and

then adds the elements to the memory

accumulator, starting at the lowest address.

The most significant byte of the memory

accumulator is incremented each time the

addition of the more significant byte of an

element and the middle byte of the sum pro

duces a carry. If the array occupies more than

one page of memory, the program must

increment the more significant byte of the

Registers Used: All

Execution Time: Approximately 43 cycles per

byte plus 46 cycles overhead. If, for example, (X)

= 12l6 = 1810, the execution time is approx

imately

43 * 18 + 46 = 774 + 46 = 820 cycles.

Program Size: 60 bytes

Data Memory Required: Three bytes anywhere

in RAM plus two bytes on page 0. The three bytes

anywhere in RAM hold the memory accumulator

(starting at address SUM); the two bytes on page

0 hold a pointer to the array (starting at address

ARYADR, 00D016 in the listing).

Special Case: An array size of 0 causes an

immediate exit with the sum equal to zero.

array pointer before proceeding to the second

page.

Entry Conditions

(A) = More significant byte of starting

address of array

(Y) = Less significant byte of starting

address of array

(X) = Size of array in 16-bit words

Exit Conditions

(X) = Most significant byte of sum

(A) = Middle byte of sum

(Y) = Least significant byte of sum

Example

Data: Size of array (in 16-bit words)

Array elements

F7A116 =

239B,6 =

31D5,6 =

70F2l6 =

5A36I6 =

166CI6 =

CBF516 -

E10716 =

63,393,0

9,11510

12,75710

28,914,0

23,094,0

5,74O,o

52,21310

57,60710

(X) = 08 Result: Sum = 03DBAl16 = 252,83310

(X) = most significant byte of sum = 0316

(A) = middle byte of sum = DB16

(Y) = least significant byte of sum = Al16

385

386 ARRAY OPERATIONS

Title

Name:

Purpose:

Entry:

Exit:

Time:

Size:

16 BIT ARRAY SUMMATION

ASUM16

Sum the data of an array, yielding a 24 bit

result. Maximum size is 255 16 bit elements.

Register A = High byte of starting array address;

Register Y = Low byte of starting array address

Register X = size of array in 16 bit elements

Register X = High byte of sum

Register A = Middle byte of sum

Register Y = Low byte of sum

Registers used: All

Approximately 43 cycles per byte plus

46 cycles overhead.

Program 60 bytes

Data 3 bytes plus

2 bytes in page zero

;EQUATES SECTION

ARYADR: .EQU 0D0H

ASUM16:

;PAGE ZERO POINTER TO ARRAY

;STORE STARTING ADDRESS

STY ARYADR

STA ARYADR+1

;ZERO SUM AND INITIALIZE INDEX

LDA #0

STA SUM ;SUM = 0

STA SUM+1

STA SUM+2

TAY ;INDEX = 0

;EXIT IF THE ARRAY LENGTH IS ZERO

TXA

BEQ EXIT

SUMLP:

;SUMMATION LOOP

LDA

CLC

ADC

STA

SUM

(ARYADR),Y

SUM

;ADD LOW BYTE OF ELEMENT TO SUM

9B 16-BIT ARRAY SUMMATION (ASUM16) 387

LDA

INY

ADC

STA

BCC

INC

NXTELM:

INY

BNE

INC

DECCNT:

DEX

BNE

EXIT:

LDY

LDA

LDX

RTS

SUM+1

(ARYADR),Y

SUM+1

NXTELM

SUM+2

DECCNT

ARYADR+1

SUMLP

SUM

SUM+1

SUM+2

DATA SECTION

SUM: .BLOCK

SAMPLE EXECUTION

;INCREMENT INDEX TO HIGH BYTE OF ELEMENT

;ADD HIGH BYTE WITH CARRY TO SUM

;STORE IN MIDDLE BYTE OF SUM

;INCREMENT HIGH BYTE OF SUM IF A CARRY

;INCREMENT INDEX TO NEXT ARRAY ELEMENT

;MOVE POINTER TO SECOND PAGE OF ARRAY

;DECREMENT COUNT

;CONTINUE UNTIL REGISTER X EQUALS 0

;Y=LOW BYTE

;A=MIDDLE BYTE

;X=HIGH BYTE

;TEMPORARY 24 BIT ACCUMULATOR IN MEMORY

SC0902:

LDY

LDA

LDX

JSR

BRK

BUFADR

BUFADR+1

BUFSZ

ASUM16

JMP SC0902

;A,Y = STARTING ADDRES OF BUFFER

;X = BUFFER SIZE IN WORDS

;RESULT OF THE INITIAL TEST DATA IS 12570

; REGISTER X = 0, REGISTER A = 31H,

; REGISTER Y = 1AH

;LOOP FOR MORE TESTING

SIZE

BUFADR:

BUFSZ:

BUF:

.EQU

.WORD

.BYTE

.WORD

.WORD

• WORD

• WORD

• WORD

• WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

010H

BUF

SIZE

0

111

222

333

444

555

666

777

888

999

1010

1111

1212

;SIZE OF BUFFER IN WORDS

;STARTING ADDRESS OF BUFFER

;SIZE OF BUFFER IN WORDS

;BUFFER

388 ARRAY OPERATIONS

.WORD 1313

.WORD 1414

.WORD 1515 ;SUM = 12570 = 311AH

.END ;PROGRAM

Find Maximum Byte-Length Element (MAXELM) 9C

Finds the maximum element in an array
of unsigned byte-length elements. The size of

the array is specified and is a maximum of

255 bytes.

Procedure: The program exits immediately

(setting Carry to 1) if the array size is zero. If

the size is non-zero, the program assumes

that the last byte of the array is the largest and

then proceeds backward through the array,

comparing the supposedly largest element to

the current element and retaining the larger

value and its index. Finally, the program

clears the Carry to indicate a valid result.

Registers Used: All

Execution Time: Approximately 15 to 23 cycles

per byte plus 52 cycles overhead. The extra eight

cycles are used whenever the supposed max

imum and its index must be replaced by the cur

rent element and its index. If, on the average,

that replacement occurs half the time, the execu

tion time is approximately

38 * ARRAY SIZE/2 + 52 cycles.

If, for example, ARRAY SIZE =

the approximate execution time is

38 * 12 + 52 = 456 + 52 = 508 cycles.

Program Size: 45 bytes

18.6 = 2410,

Data Memory Required: One byte anywhere in

RAM plus two bytes on page 0. The one byte any

where in RAM holds the index of the largest ele

ment (at address INDEX). The two bytes on page

0 hold a pointer to the array (starting at address

ARYADR, 00D016 in the listing).

Special Cases:

1. An array size of 0 causes an immediate exit

with the Carry flag set to 1 to indicate an invalid

result.

2. If more than one element has the largest

unsigned value, the program returns with the

smallest possible index. That is, the index desig

nates the occurrence of the maximum value

closest to the starting address.

Entry Conditions

(A) = More significant byte of starting

address of array

(Y) = Less significant byte of starting

address of array

(X) = Size of array in bytes

Exit Conditions

(A) = Largest unsigned element

(Y) = Index to largest unsigned element

Carry = 0 if result is valid, 1 if size of array is

0 and result is meaningless.

Example

Data: Size of array (in bytes)

Array elements

3516 - 53IO

A6,6 = 166,0

D216 = 210,0

1B,6 = 2710

(X) = 08

44 16 ' 68
10

10

122,0

CFI6 = 207,0

591(; = 89

7A 16 :

Result: The largest unsigned element is element

#2(D216 = 21010)

(A) = largest element (D216)

(Y) = index to largest element (02)

Carry flag = 0, indicating that array size is
non-zero and the result is valid

389

390 ARRAY OPERATIONS

Title

Name:

Find the maximum element in an array of unsigned;
bytes. •

MAXELM

Purpose:

Entry:

Exit:

Time:

Size:

;EQUATES

ARYADR: .EQU

MAXELM:

ODOH

Given the starting address of an array and
the size of the array, find the largest element

Register A = High byte of starting address
Register Y = Low byte of starting address
Register X = Size of array in bytes

If size of the array is not zero then ;
CARRY FLAG = 0

Register A = Largest element ;

Register Y = Index to that element ;

if there are duplicate values of the largest ;
element, register Y will have the index

nearest to the first array element

else

CARRY flag = 1

Registers used: All

Approximately 15 to 23 cycles per byte

plus 52 cycles overhead.

Program 45 bytes

Data 1 byte plus

2 bytes in page zero

;PAGE ZERO FOR ARRAY POINTER

;STORE STARTING ARRAY ADDRESS

STA ARYADR+1

STY ARYADR

;SUBTRACT 1 FROM STARTING ADDRESS TO INDEX FROM 1 TO SIZE

TYA

BNE MAX1

DEC ARYADR+1 ;BORROW FROM HIGH BYTE IF LOW BYTE = 0

MAX1: DEC ARYADR ;ALWAYS DECREMENT THE LOW BYTE

;TEST FOR SIZE EQUAL TO ZERO AND INITIALIZE TEMPORARIES

;ERROR EXIT IF SIZE IS ZERO

;REGISTER Y = SIZE AND INDEX

;GET LAST BYTE OF ARRAY

;SAVE ITS INDEX

TXA

BEQ

TAY

LDA

STY

EREXIT

(ARYADR),Y

INDEX

9C FIND MAXIMUM BYTE-LENGTH ELEMENT (MAXELM) 391

DEY

BEQ OKEXIT ;EXIT IF ONLY ONE ELEMENT

MAXLP:

;WORK FROM THE END OF THE ARRAY TOWARDS THE BEGINNING COMPARING

; AGAINST THE CURRENT MAXIMUM WHICH IS IN REGISTER A

;REPLACE INDEX ONLY IF ELEMENT = MAXIMUM

;BRANCH IF CURRENT MAXIMUM > ARY[Y]

;ELSE ARY[Y] >= CURRENT MAXIMUM SO

; NEW CURRENT MAXIMUM AND

; NEW INDEX

;DECREMENT TO NEXT ELEMENT

;CONTINUE

;GET INDEX OF THE MAXIMUM ELEMENT

FORMALIZE INDEX TO (O,SIZE-1)

;NO ERRORS

;ERROR, NO ELEMENTS IN THE ARRAY

;INDEX OF LARGEST ELEMENT

NEWIDX:

NXTBYT:

OKEXIT:

EREXIT:

CMP

BEQ

BCS

LDA

STY

DEY

BNE

;EXIT

LDY

DEY

CLC

RTS

SEC

RTS

;DATA SECTION

INDEX: .BLOCK

(ARYADR),Y

NEWIDX

NXTBYT

(ARYADR),Y

INDEX

MAXLP

INDEX

1

SAMPLE EXECUTION:

SC0903:

LDA

LDY

LDX

JSR

BRK

AADR+1

AADR

#SZARY

MAXELM

JMP SC0903

;A,Y = STARTING ADDRESS OF ARRAY

;X = SIZE OF ARRAY

;RESULT FOR THE INITIAL TEST DATA IS

; A = FF HEX (MAXIMUM), Y=08 (INDEX TO MAXIMUM)

;LOOP FOR MORE TESTING

SZARY:

AADR:

ARY:

.EQU

.WORD

10H

ARY

.BYTE 8

.BYTE 7

.BYTE 6

.BYTE 5

;SIZE OF ARRAY

;STARTING ADDRESS OF ARRAY

392 ARRAY OPERATIONS

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE '

END

4

3

2

1

OFFH

OFEH

OFDH

OFCH

OFBH

OFAH

0F9H

0F8H

;PROGRAM

Find Minimum Byte-Length Element (MINELM) 9D

Finds the minimum element in an array
of unsigned byte-length elements. The size of

the array is specified and is a maximum of

255 bytes.

Procedure: The program exits im

mediately, setting Carry to 1, if the array size

is zero. If the size is non-zero, the program

assumes that the last byte of the array is the

smallest and then proceeds backward through

the array, comparing the supposedly smallest

element to the current element and retaining

the smaller value and its index. Finally, the

program clears the Carry flag to indicate a

valid result.

Registers Used: All

Execution time: Approximately 15 to 23 cycles

per byte plus 52 cycles overhead. The extra eight

cycles are used whenever the supposed minimum

and its index must be replaced by the current ele

ment and its index. If, on the average, that

replacement occurs half the time, the execution

time is approximately

38 * ARRAY SIZE/2 + 52 cycles.

If, for example, ARRAY SIZE = 1416 = 2010,

the approximate execution time is

38 * 10 + 52 = 380 + 52 = 432 cycles.

Program Size: 45 bytes

Data Memory Required: One byte anywhere in

RAM plus two bytes on page 0. The one byte any

where in RAM holds the index of the smallest

element (at address INDEX). The two bytes on

page 0 hold a pointer to the array (starting at

address ARYADR, 00D0,6 in the listing).

Special Cases:

1. An array size of 0 causes an immediate exit

with the Carry flag set to 1 to indicate an invalid

result.

2. If more than one element has the smallest

unsigned value, the program returns with the

smallest possible index. That is, the index desig

nates the occurrence of the minimum value

closest to the starting address.

Entry Conditions

(A) = More significant byte of starting

address of array

(Y) = Less significant byte of starting

address of array

(X) = Size of array in bytes

Exit Conditions

(A) = Smallest unsigned element

(Y) = Index to smallest unsigned element

Carry = 0 if result is valid, 1 if size of array

is zero and result is meaningless.

Example

Data: Size of array (in bytes)

Array elements

3516 = 53,o

A6,6 = 16610

D2,6 = 210,0

1B,6 = 27,o

(X) = 08

7A 16 "

■89I(

• 122

CF,6 = 207

Result: The smallest unsigned element is element

#3(1B,6 = 27,O)

(A) = smallest element (1B,6)

(Y) = index to smallest element (03)

Carry flag = 0, indicating that array size is

non-zero and the result is valid.

393

394 ARRAY OPERATIONS

; Title Find the minimum element in an array of unsigned;
; bytes. ;

Name: MINELM •

<'

; Purpose: Given the STARTING ADDRESS and the size of an ;

; array, find the smallest element. ;

;
; Entry: Register A = High byte of starting address

; Register Y = Low byte of starting address

; Register X = Size of array in bytes

;

; Exit: If size of the array is not zero then

CARRY FLAG = 0

; Register A = Smallest element

; Register Y = Index to that element

; if there are duplicate values of the smallest;

; element Register Y will have the index

; nearest to the first array element

; else

CARRY flag = 1

; Registers used: All

;

; Time: Approximately 15 to 23 cycles per byte

; plus 52 cycles overhead.

;

; Size: Program 45 bytes

; Data 1 bytes plus

; 2 bytes in page zero

;EQUATES

ARYADR: .EQU ODOH ;PAGE ZERO POINTER TO ARRAY

NINELM:

;STORE STARTING ARRAY ADDRESS

STA ARYADR+1

STY ARYADR

;DECREMENT ARRAY ADDRESS BY 1 TO INDEX FROM 1 TO SIZE

TYA

BNE MINI

DEC ARYADR+1 ;BORROW FROM HIGH BYTE IF LOW BYTE

MINI: DEC ARYADR ;ALWAYS DECREMENT THE LOW BYTE

•TEST FOR SIZE EQUAL TO ZERO AND INITIALIZE TEMPORARIES

;ERROR EXIT IF SIZE IS ZERO

;REGISTER Y = SIZE AND INDEX

;GET LAST BYTE OF ARRAY

;SAVE ITS INDEX

TXA

BEQ

TAY

LDA

STY

EREXIT

(ARYADR),Y

INDEX

9D FIND MINIMUM BYTE-LENGTH ELEMENT (MINELM) 395

DEY

BEQ OKEXIT ;EXIT IF ONLY ONE ELEMENT

MINLP:

;WORK FROM THE END OF THE ARRAY TOWARDS THE BEGINNING COMPARING

; AGAINST THE CURRENT MINIMUM WHICH IS IN REGISTER A

;REPLACE INDEX IF MINIMUM = ELEMENT

;BRANCH IF CURRENT MINIMUM < ELEMENT

;ELSE ELEMENT <= CURRENT MINIMUM

; NEW CURRENT MINIMUM AND

; NEW INDEX

DECREMENT TO NEXT BYTE

;GET INDEX OF THE MINIMUM ELEMENT

;NORMALIZE INDEX TO (O,SIZE-1)

;NO ERRORS

;ERROR, NO ELEMENTS IN THE ARRAY

NEWIDX:

NXTBYT:

OKEXIT:

EREXIT:

CMP

BEQ

BCC

LDA

STY

DEY

BNE

;EXIT

LDY

DEY

CLC

RTS

SEC

RTS

;DATA SECTION

INDEX: .BLOCK

(ARYADR)fY

NEWIDX

NXTBYT

(ARYADR),Y

INDEX

MINLP

INDEX

1

SAMPLE EXECUTION:

;INDEX OF SMALLEST ELEMENT

SC0904:

LDA

LDY

LDX

JSR

BRK

AADR+1

AADR

#SZARY

MINELM

JMP SC0904

;A,Y = STARTING ADDRESS OF ARRAY

;X = SIZE OF ARRAY

,-RESULT FOR THE INITIAL TEST DATA IS

; A = 01H (MINIMUM) , Y=07 (INDEX TO MINIMUM)
•LOOP FOR MORE TESTING

SZARY:

AADR:

ARY:

.EQU

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

10H

ARY

8

7

6

5

4

;SIZE OF ARRAY

;STARTING ADDRESS OF ARRAY

396 ARRAY OPERATIONS

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

BYTE

END

3

2

1

OFFH

OFEH

OFDH

OFCH

OFBH

OFAH

0F9H

0F8H

;PROGRAM

Binary Search (BINSCH) 9E

Searches an array of unsigned byte-length
elements for a particular value. The array is

assumed to be ordered with the smallest

element at the starting (lowest) address.

Returns the index to the value and the Carry

flag cleared if it finds the value; returns the

Carry flag set to 1 if it does not find the value.

The size of the array is specified and is a max

imum of 255 bytes. The approach used is a

binary search in which the value is compared

with the middle element in the remaining

part of the array; if the two are not equal, the

part of the array that cannot possibly contain

the value (because of the ordering) is dis

carded and the process is repeated.

Procedure: The program retains upper and

lower bounds (indexes) that specify the part

of the array still being searched. In each itera

tion, the new trial index is the average of the

upper and lower bounds. The program com

pares the value and the element with the trial

index; if the two are not equal, the program

discards the part of the array that could not

possibly contain the element. That is, if the

value is larger than the element with the trial

index, the part at or below the trial index is

discarded. If the value is smaller than the ele

ment with the trial index, the part at or above

the trial index is discarded. The program

exits if it finds a match or if there are no ele

ments left to be searched (that is, if the part

of the array being searched no longer con

tains anything). The program sets the Carry

flag to 1 if it finds the value and to 0 if it does

not.

In the case of Example 1 shown later

(the value is 0D16), the procedure works as
follows:

In the first iteration, the lower bound is

Registers Used: All

Execution Time: Approximately 52 cycles per

iteration plus 80 cycles overhead. A binary search

will require on the order of log2N iterations,

where N is the size of the array (number of ele

ments).

If, for example, N = 32, the binary search will

require approximately Iog232 iterations or 5 itera

tions. The execution time will then be approx

imately

52 • 5 + 80 = 260 + 80 = 340 cycles.

Program Size: 89 bytes

Data Memory Required: Three bytes anywhere

in RAM plus two bytes on page 0. The three bytes

anywhere in RAM hold the value being searched

for (one byte at address VALUE), the lower

bound of the area being searched (one byte at

address LBND), and the upper bound of the area

being searched (one byte at address UBND). The

two bytes on page 0 hold a pointer to the array

(starting at address ARYADR, 00D016 in the list

ing).

Special Case: A size or length of zero causes an

immediate exit with the Carry flag set to 1. That

is, the length is assumed to be zero and the value

surely cannot be found.

zero and the upper bound is the length of the

array minus 1 (since we have started our

indexing at zero). So we have

LOWER BOUND = 0

UPPER BOUND = LENGTH -1 = 0F16 = 1510

GUESS = (UPPER BOUND + LOWER

BOUNDV2 - 07 (the result is truncated)

ARRAY(GUESS) = ARRAY (7) = 1016 = 16I0

Since our value (0D16) is less than

ARRAY(7), there is no use looking at the

elements with indexes of 7 or more, so we

have

LOWER BOUND = 0

UPPER BOUND = GUESS - 1 = 06

397

398 ARRAY OPERATIONS

GUESS - (UPPER BOUND + LOWER

BOUND)/2 = 03

ARRAY(GUESS) = ARRAY(3) = 07

Since our value (0D16) is greater than

ARRAY (3), there is no use looking at the

elements with indexes of 3 or less, so we

have

LOWER BOUND = GUESS + 1 = 04

UPPER BOUND = 06

GUESS = (UPPER BOUND + LOWER

BOUNDV2 - 05

ARRAY (GUESS) = ARRAY(5) = 09

Since our value (0D16) is greater than

ARRAY(5), there is no use looking at the

elements with indexes of 5 or less, so we

have

LOWER BOUND = GUESS + 1 = 06

UPPER BOUND = 06

GUESS = (UPPER BOUND + LOWER

BOUND)/2 = 06

ARRAY(GUESS) = ARRAY(6) - 0D16

Since our value (0D16) is equal to

ARRAY(6), we have found the element. If,

on the other hand, our value were 0E16, the

new lower bound would be 07 and there

would no longer be any elements in the part

of the array left to be searched.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Value to find

Size of the array (in bytes)

Less significant byte of starting address of

array (address of smallest unsigned ele

ment)

More significant byte of starting address of

array (address of smallest unsigned ele

ment)

Exit Conditions

Carry = 0 if the value is found, Carry = 1

if it is not found. If the value is found,

(A) = index to the value in the array.

Examples

Length of array = 1016 = 1610

Elements of array are 0116,0216,0516,07l6> 0916,0916,

0D16,1016, 2E16> 3716, 5D16, 7E16, Al16, B416, D716, E016

1. Data:

Result:

Value to find == 0D16

Carry

(A) =

= 0, indicating

= 06, the index

array

value found

of the value in the

2. Data:

Result:

Value to find = 9B16

Carry = 1, indicating value not found

9E BINARY SEARCH (BINSCH) 399

Title

Name:

Binary Search

BINSCH

Purpose:

Entry:

Exit:

Time:

Size:

Search an ordered array of unsigned bytes,

with a maximum size of 255 elements.

TOP OF STACK

Low byte of return address,

High byte of return address,

Value to find,

Length (size) of array,

Low byte of starting array address,

High byte of starting array address

If the value is found then

CARRY flag = 0

Register A = index to the value in the array

ELSE

CARRY flag « 1

Registers used: All

Approximately 52 cycles for each time through

the search loop plus 80 cycies overhead.

A binary search will take on the order of log

base 2 of N searches, where N is the number of

elements in the array.

Program 89 bytes

Data 3 bytes plus

2 bytes in page zero

;EQUATES SECTION
ARYADR: .EQU 0D0H ;PAGE ZERO POINTER TO ARRAY

BINSCH:

;GET

PLA

TAY

PLA

TAX

;GET

PLA

STA

RETURN ADDRESS

THE VALUE TO SEARCH FOR

VALUE

;GET THE LENGTH OF THE ARRAY

PLA

STA UBND

400 ARRAY OPERATIONS

;GET THE STARTING ADDRESS OF ARRAY

PLA

STA ARYADR

PLA

STA ARYADR+1

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA

;

;CHECK THAT LENGTH IS NOT ZERO

LDX UBND ;GET LENGTH

BEQ NOTFND ;EXIT NOT FOUND IF LENGTH EQUALS ZERO

;SET UPPER AND LOWER SEARCH BOUNDS

DEX

STX UBND ;UPPER BOUND EQUALS LENGTH MINUS 1
LDA #0

STA LBND ;LOWER BOUND EQUALS 0

;SEARCH LOOP

; COMPUTE NEXT INDEX TO BE HALF WAY BETWEEN UPPER BOUND AND

; LOWER BOUND

NXTBYT:

LDA UBND

CLC

ADC LBND ;ADD LOWER AND UPPER BOUNDS

ROR A ;DIVIDE BY 2, TRUNCATING FRACTION

TAY ;REGISTER Y BECOMES INDEX

;IF INDEX IS GREATER THAN UPPER BOUND THEN THE ELEMENT IS NOT HERE

CPY UBND

BEQ TSTLB ;BRANCH IF INDEX EQUALS UPPER BOUND

BCS NOTFND ;BRANCH IF INDEX IS GREATER THAN UPPER BOUND

;IF INDEX IS LESS THAN LOWER BOUND THEN THE ELEMENT IS NOT HERE

TSTLB:

CPY LBND

BCC NOTFND ;BRANCH IF INDEX IS LESS THAN LOWER BOUND

;TEST IF WE HAVE FOUND THE ELEMENT

LDA VALUE

CMP (ARYADR),Y

BCC SMALL ;BRANCH IF VALUE IS SMALLER THAN ARYADR[Y]

BEQ FND ;BRANCH IF FOUND

;VALUE IS LARGER THAN ARYADR[Y] SO SET LOWER BOUND TO BE

; Y + 1 (VALUE CAN ONLY BE FURTHER UP)

INY

STY LBND

BNE NXTBYT .-CONTINUE SEARCHING IF LOWER BOUND DOES NOT

; OVERFLOW

BEQ NOTFND ;BRANCH IF LOWER BOUND OVERFLOWED FROM OFFH

; TO 0

9E BINARY SEARCH (BINSCH) 401

;VALUE IS SMALLER THAN ARYADR[Y] SO SET UPPER BOUND TO BE

; Y - 1 (VALUE CAN ONLY BE FURTHER DOWN)

SMALL:

DEY

STY UBND

CPY #OFFH

BNE NXTBYT ;CONTINUE SEARCHING IF UPPER BOUND DOES NOT

; UNDERFLOW

BEQ NOTFND ;BRANCH IF INDEX UNDERFLOWED

;FOUND THE VALUE

FND:

CLC ;INDICATE VALUE FOUND

TYA ;GET INDEX OF VALUE TO REGISTER A

RTS

;DID NOT FIND THE VALUE

NOTFND:

SEC ;INDICATE VALUE NOT FOUND

RTS

;DATA SECTION

VALUE .BLOCK 1 ;VALUE TO FIND

LBND .BLOCK 1 ;INDEX OF LOWER BOUND

UBND .BLOCK 1 ;INDEX OF UPPER BOUND

SAMPLE EXECUTION

;

SC0905:

;SEARCH FOR A VALUE WHICH IS IN THE ARRAY

LDA BFADR+1

PHA ;PUSH HIGH BYTE OF STARTING ADDRESS

LDA BFADR

PHA ;PUSH LOW BYTE OF STARTING ADDRESS
LDA BFSZ

PHA ;PUSH LENGTH (SIZE OF ARRAY)
LDA #7

PHA ;PUSH VALUE TO FIND
JSR BINSCH ;SEARCH

BRK 7CARRY FLAG SHOULD BE 0 AND REGISTER A = 4

;SEARCH FOR A VALUE WHICH IS NOT IN THE ARRAY
LDA BFADR+1

PHA ;PUSH HIGH BYTE OF STARTING ADDRESS
LDA BFADR

PHA ;PUSH LOW BYTE OF STARTING ADDRESS
LDA BFSZ

PHA ;PUSH LENGTH (SIZE OF ARRAY)
LDA #0

PHA ;PUSH VALUE TO FIND

402 ARRAY OPERATIONS

; DATA

SIZE

BFADR:

BFSZ:

BF:

JSR

BRK

JMP

.EQU

.WORD

.BYTE

• BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.END

BINSCH

SC0905

01 OH

BF

SIZE

1

2

4

5

7

9

10

11

23

50

81

123

191

199

250

255

;PROGRAM

;SEARCH

;CARRY FLAG SHOULD BE 1

;LOOP FOR MORE TESTS

;SIZE OF BUFFER

;STARTING ADDRESS OF BUFFER

;SIZE OF BUFFER

;BUFFER

Bubble Sort (BUBSRT) 9F

Arranges an array of unsigned byte-
length elements into ascending order using a

bubble sort algorithm. An iteration of this

algorithm moves the largest remaining ele

ment to the top by comparisons with all other

elements, performing interchanges if necess

ary along the way. The algorithm continues

until it has either worked its way through all

elements or has completed an iteration with

out interchanging anything. The size of the

array is specified and is a maximum of 255

bytes.

Procedure: The program starts by consider

ing the entire array. It examines pairs of ele

ments, interchanging them if they are out of

order and setting a flag to indicate that the

interchange occurred. At the end of an itera

tion, the program checks the interchange flag

to see if the array is already in order. If it is

not, the program performs another iteration,

reducing the number of elements examined

by one since the largest remaining element

has been bubbled to the top. The program

exits immediately if the length of the array is

less than two, since no ordering is then

Registers Used: All

Execution Time: Approximately

34 * N ♦ N + 25 * N + 70

cycles, where N is the size (length) of the array in

bytes. If, for example, N is 2016 (3210), the execu

tion time is approximately

34 * 32 * 32 + 25 • 32 + 70 = 34 ♦ 1024 + 870

= 34,816 -I- 870 = 35,686 cycles.

Program Size: 79 bytes

Data Memory Required: Two bytes anywhere in

RAM plus four bytes on page 0. The two bytes

anywhere in RAM hold the length of the array

(one byte at address LEN) and the interchange

flag (one byte at address XCHGFG). The four

bytes on page 0 hold pointers to the first and sec

ond elements of the array (two bytes starting at

address A1ADR, 00D016 in the listing, and two

bytes starting at address A2ADR, 00D216 in the

listing).

Special Case: A size (or length) of 00 or 01

causes an immediate exit with no sorting.

necessary. Note that the number of pairs is

always one less than the number of elements

being considered, since the last element has

no successor.

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Length (size) of array in bytes

Less significant byte of starting address of
array

More significant byte of starting address of
array

Exit Conditions

Array sorted into ascending order, con

sidered the elements as unsigned bytes.

Thus, the smallest unsigned byte is now in

the starting address.

403

404 ARRAY OPERATIONS

Example

Data: Length (size) of array = 06

Elements = 3516, 6A16, 2B16, 3E16, D416, 4F16

Result: After the first iteration, we have

35I6,2B16,3E16,6A16,4F16,D416.

The largest element is now at the end of

the array and need not be considered
further.

After the second iteration, we have

2B16,3516,3E16>4F16,6A16,D416.

The next to largest element is now in the correct

position and need not be considered further.

The third iteration leaves the array unchanged,

since the elements are already in ascending order.

Title

Name:

Bubble sort

BUBSRT

Purpose:

Entry:

Exit:

Arrange an array of unsigned bytes into

ascending order using a bubble sort, with a

maximum size of 255 bytes.

TOP OF STACK

Low byte of return address,

High byte of retiirn address,

Length (size) of array,

Low byte of starting array address,

High byte of starting array address

The array is sorted into ascending order.

Registers used: All

Time:

Size:

Approximately (34 * N * N) + (25 * N) cycles

plus 70 cycles overhead, where N is the size of

the array.

Program 79 bytes
Data 2 bytes plus

4 bytes in page zero

;

;EQUATES SECTION

A1ADR: .EQU 0D0H

A2ADR: -EQU 0D2H

;ADDRESS OF FIRST ELEMENT

;ADDRESS OF SECOND ELEMENT

;

BUBSRT:

;GET THE PARAMETERS FROM THE STACK

PLA
TAy ;SAVE LOW BYTE OF RETURN ADDRESS

PLA

TAX

PLA

STA

PLA

STA

CLC

ADC

STA

PLA

STA

ADC

STA

TXA

PHA

TYA

PHA

LEN

A1ADR

#1
A2ADR

A1ADR+1

#0

A2ADR+1

9F BUBBLE SORT (BUBSRT) 405

;SAVE HIGH BYTE OF RETURN ADDRESS

;SAVE THE LENGTH (SIZE)

;SAVE THE LOW BYTE OF THE ARRAY ADDRESS

;SET LOW BYTE OF A2ADR TO AlADR + 1

;SAVE THE HIGH BYTE OF THE ARRAY ADDRESS

;SET HIGH BYTE OF A2ADR

;RESTORE HIGH BYTE OF RETURN ADDRESS

;RESTORE LOW BYTE OF RETURN ADDRESS

;BE SURE THE LENGTH IS GREATER THAN 1

LDA LEN

CMP #2

BCC DONE ;EXIT IF THE LENGTH OF THE ARRAY IS

; LESS THAN 2

;REDUCE LENGTH BY 1 SINCE THE LAST ELEMENT HAS NO SUCCESSOR

DEC LEN

;X BECOMES NUMBER OF TIMES THROUGH INNER LOOP

;Y BECOMES BEGINNING INDEX

;INITIALIZE EXCHANGE FLAG TO 0

;COMPARE 2 ELEMENTS

;BRANCH IF SECOND ELEMENT >= FIRST ELEMENT

;SECOND ELEMENT LESS, SO EXHANGE ELEMENTS

;GET SECOND ELEMENT

;STORE IT INTO THE FIRST ELEMENT

;STORE FIRST ELEMENT INTO SECOND

;SET EXCHANGE FLAG SINCE AN EXCHANGE OCCURRED

;INCREMENT TO NEXT ELEMENT

;BRANCH NOT DONE WITH INNER LOOP

;INNER LOOP IS COMPLETE IF THERE WERE NO EXCHANGES THEN EXIT

LDA XCHGFG ;GET EXCHANGE FLAG

BEQ DONE ;EXIT IF NO EXCHANGE WAS PERFORMED

DEC LEN

BNE SRTLP ;CONTINUE IF LENGTH IS NOT ZERO

;BUBBLE

SRTLP:

LDX

LDY

STY

INLOOP:

LDA

CMP

BCS

PHA

LDA

STA

PLA

STA

LDA

STA

AFTSWP:

INY

DEX

BNE

SORT LOOP

LEN

#0

XCHGFG

(A2ADR),Y

(AlADR)rY

AFTSWP

(AlADR),Y

(A2ADR),Y

(AlADR),Y

#1
XCHGFG

INLOOP

406 ARRAY OPERATIONS

DONE:

RTS

;DATA SECTION

LEN: .BLOCK 1

XCHGFG: .BLOCK 1

;LENGTH OF THE ARRAY

;EXCHANGE FLAG (1=EXCHANGE, 0=NO EXCHANGE)

SAMPLE EXECUTION

;PROGRAM SECTION

SC0906:

;SORT AN ARRAY

LDA BFADR+1

PHA

LDA BFADR

PHA

LDA BFSZ

PHA

JSR BUBSRT

BRK

JMP SC0906

;PUSH HIGH BYTE OF STARTING ADDRESS

;PUSH LOW BYTE OF STARTING ADDRESS

;PUSH LENGTH (SIZE OF ARRAY)

;SORT

;THE RESULT FOR THE INITIAL TEST DATA IS

; 0,1,2,3, ... ,14,15

;LOOP FOR MORE TESTS

; DATA

SIZE

BFADR:

BFSZ:

BF:

SECTION

• EQU

.WORD

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.END

010H

BF

SIZE

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

;PROGRAM

;SIZE OF BUFFER

;STARTING ADDRESS OF BUFFER

;SIZE OF BUFFER

;BUFFER

RAM Test (RAMTST) 9G

Performs a test of an area of RAM
memory specified by a starting address and a

length in bytes. Writes the values 00, FF16,

AA16 (101010102), and 5516 (010101012) into

each byte and checks to see if they can be

read back correctly. Places a single 1 bit in

each position of each byte and sees if that can

be read back correctly. Clears the Carry flag if

all tests can be performed; if it finds an error

it immediately exits, setting the Carry flag

and returning the address in which the error

occurred and the value that was being used in

the test.

Procedure: The program performs the

single value checks (with 00, FF16, AA16, and

5516) by first filling the memory area and then

comparing each byte with the specified value.

Filling the entire area first should provide

enough delay between writing and reading to

detect a failure to retain data (perhaps caused

by improperly designed refresh circuitry).

The program then performs the walking bit

test, starting with bit 7; here it writes the data

into memory and immediately attempts to

read it back for a comparison. In all the tests,

the program handles complete pages first and

then handles the remaining partial page; the

program can thus use 8-bit counters rather

than a 16-bit counter. This approach reduces

execution time but increases memory usage

as compared to handling the entire area with

one loop. Note that the program exits

immediately if it finds an error, setting the

Carry flag to 1 and returning the location and

Registers Used: All

Execution Time: Approximately 245 cycles per

byte tested plus 650 cycles overhead. Thus, for

example, to test an area of size 040016 = 102410

would take

245 * 1024 + 650 = 250,880 -I- 650

= 251,530 cycles.

Program Size: 229 bytes

Data Memory Required: Six bytes anywhere in

RAM plus two bytes on page 0. The six bytes any

where in RAM hold the address of the first ele

ment (two bytes starting at address ADDR), the

length of the tested area (two bytes starting at

address LEN), and the temporary length (two

bytes starting at address TLEN). The two bytes

on page 0 hold a pointer to the tested area (start

ing at address TADDR, 00D016 in the listing).

Special Cases:

1. An area size of 000016 causes an immediate

exit with no memory tested. The Carry flag is

cleared to indicate no errors.

2. Since the routine changes all bytes in the

tested area, using it to test an area that includes

its own temporary storage will produce unpre

dictable results.

Note that Case 1 means you cannot ask this

routine to test the entire memory, but such a

request would be meaningless anyway since it

would require the routine to test its own tempor

ary storage.

3. Attempting to test a ROM area will cause a

return with an error indication as soon as the pro

gram attempts to store a value in a ROM location

that is not already there.

the value being used in the test. If all the tests

can be performed correctly, the program

clears the Carry flag before exiting.

407

408 ARRAY OPERATIONS

Entry Conditions
Order in stack (starting from the top)

Less significant byte of return address

More significant byte of return address

Less significant byte of size (length) of area

in bytes

More significant byte of size (length) of area

in bytes

Less significant byte of starting address of

test area

More significant byte of starting address of

test area

Exit Conditions

1. If an error is found,

Carry = 1

(A) = More significant byte of address

containing error

(Y) = Less significant byte of address

containing error

(X) = Expected value (value being used

in test)

2. If no error is found,

Carry = 0

All bytes in test area contain 00.

Example

16Data: Starting address = 0380

Length (size) of area = 020016

Result: Area tested is the 020016 bytes, starting at

addresses 038016. That is, address 038016

through 057F16. The order of the tests is:

1. Write and read 00

2. Write and read FF16

3. Write and read AA,6(101010102)

4. Write and read 55,6(010101012)

5. Walking bit test, starting with bit 7 and moving

right. That is, starting with 8016 (10000002) and moving

the 1 bit one position right in each subsequent test of a

single byte.

Title

Name:

Purpose:

RAM test

RAMTST

Perform a test of RAM memory

1) Write all 00 hex and test

2) Write all FF hex and test

3) Write all AA hex and test

4) Write all 55 hex and test

5) Shift a single 1 bit thourgh all of memory

If the program finds an error, it exits

immediately with the CARRY flag set and

indicates where the error occurred and

what value it used in the test.

9G RAM TEST (RAMTST)

Entry: TOP OF STACK

; Low byte of return address,

; High byte of return address,

» Low byte of length in bytes,
; High byte of length in bytes,

; Low byte of starting address of test area,

; High byte of starting address of test area

; Exit: If there are no errors then

CARRY flag equals 0

; test area contains 00 in all bytes

; else

; CARRY flag equals 1

; Register A = High byte of the address

; containing the error

; Register Y = Low byte of the address

; containing the error

; Register X = Expected value

;

; Registers used: All

;

; Time: Approximately 245 cycles per byte plus

; 650 cycles overhead.

;

; Size: Program 228 bytes

; Data 6 bytes plus

; 2 bytes in page zero

;EQUATES SECTION

TADDR: .EQU 0D0H ;PAGE ZERO POINTER TO TEST AREA

RAMTST:

;GET THE RETURN ADDRESS

PLA

TAY

PLA

TAX

;GET THE LENGTH OP THE TEST AREA

PLA

STA LEN

PLA

STA LEN+1

;GET THE STARTING ADDRESS OF THE TEST AREA
PLA

STA ADDR

PLA

STA ADDR+1

409

410 ARRAY OPERATIONS

;RESTORE THE RETURN ADDRESS

TXA

PHA

TYA

PHA

;BE SURE THE LENGTH IS NOT ZERO

LDA LEN

ORA LEN+1

BEQ EXITOK ;EXIT WITH NO ERRORS IF LENGTH IS ZERO

;FILL MEMORY WITH FF HEX (ALL l'S) AND COMPARE

LDA #OFFH

JSR FILCMP

BCS EXITER ;EX1T IF AN ERROR

;FILL MEMORY WITH AA HEX (ALTERNATING l'S AND O'S) AND COMPARE
LDA #0AAH

JSR FILCMP

BCS EXITER ;EXIT IF AN ERROR

;FILL MEMORY WITH 55 HEX (ALTERNATING O'S AND l'S) AND COMPARE

LDA #55H

JSR FILCMP

BCS EXITER ;EXIT IF AN ERROR

;FILL MEMORY WITH 0 AND COMPARE

LDA #0

JSR FILCMP

BCS EXITER

;PERFORM WALKING BIT TEST

JSR ITEMPS ;INITIALIZE TEMPORARIES

;WALK THROUGH THE 256 BYTE PAGES

LDX TLEN+1 ;CHECK IF ANY FULL PAGES TO DO

BEQ WLKPRT ;BRANCH IF NONE

LDY #0 ;REGISTER Y IS INDEX

;SET BIT 7 TO 1, ALL OTHER BITS TO ZERO

;STORE TEST PATTERN IN MEMORY

;COMPARE VALUE WITH WHAT IS READ BACK

;EXIT INDICATING ERROR IF NOT THE SAME

;SHIFT TEST PATTERN RIGHT ONE BIT

;BRANCH IF NOT DONE WITH BYTE

;STORE A ZERO BACK INTO THE LAST BYTE

;INCREMENT TO NEXT BYTE IN PAGE

;BRANCH IF NOT DONE WITH PAGE

.•INCREMENT TO NEXT PAGE

;DECREMENT PAGE COUNTER

;BRANCH IF NOT DONE WITH ALL OF THE PAGES

;WALK THROUGH LAST PARTIAL PAGE

WLKLP:

WLKLP1:

LDA

STA

CMP

BNE

LSR

BNE

STA

INY

BNE

INC

DEX

BNE

#80H

(TADDR),Y

(TADDR),Y

EXITER

A

WLKLP1

(TADDR),Y

WLKLP

TADDR+1

WLKLP

9G RAM TEST (RAMTST) 411

WLKPRT:

WLKLP2:

WLKLP3:

EXITOK:

EXITER:

LOX

BEQ

LDY

LDA

STA

CMP

BNE

LSR

BNE

STA

INY

DEX

BNE

CLC

RTS

JSR

RTS

TLEN

EXITOK

#0

#80H

(TADDR),Y

(TADDR),Y

EXITER

A

WLKLP3

(TADDR),Y

WLKLP2

ERROR

;GET NUMBER OF BYTES IN LAST PAGE

;EXIT IF NONE

;INITIALIZE INDEX TO ZERO

;START WITH BIT 7 EQUAL TO 1

;STORE TEST PATTERN IN MEMORY

;COMPARE VALUE WITH WHAT IS READ BACK

;EXIT INDICATING ERROR IF NOT THE SAME

;SHIFT TEST PATTERN RIGHT

;BRANCH IF NOT DONE

;STORE A ZERO BACK INTO THE LAST BYTE

;INCREMENT TO NEXT BYTE

;DECREMENT BYTE COUNTER

;BRANCH IF NOT DONE

;RETURN WITH NO ERROR

;RETURN WITH AN ERROR

;ROUTINE: FILCMP

;PURPOSE: FILL MEMORY WITH A VALUE AND TEST

; THAT MEMORY CONTAINS THAT VALUE

;ENTRY: REGISTER A = VALUE

; ADDR = STARTING ADDRESS

; LEN = LENGTH

;EXIT: IF NO ERRORS THEN

CARRY FLAG EQUALS 0

; ELSE

CARRY FLAG EQUALS 1

; REGISTER A = HIGH BYTE OF ERROR LOCATION

REGISTER Y = LOW BYTE OF ERROR LOCATION

REGISTER X = EXPECTED VALUE

;REGISTERS USED: ALL
.a***********************************

FILCMP:

JSR ITEMPS ;INITIALIZE TEMPORARIES

FILLP:

;FILL MEMORY WITH THE VALUE IN REGISTER A

;FILL FULL PAGES

LDX TLEN+1

BEQ FILPRT

LDY #0 ;START AT INDEX 0

STA (TADDR),Y ;STORE THE VALUE

INY ;INCREMENT TO NEXT LOCATION

BNE FILLP ;BRANCH IF NOT DONE WITH THIS PAGE

412 ARRAY OPERATIONS

FILPRT:

FILLP1:

CMPARE:

INC

DEX

BNE

;FILL

LDX

LDY

STA

INY

DEX

BNE

TADDR+1

FILLP

PARTIAL PAGE

TLEN

#0

(TADDR),Y

FILLP1

;COMPARE MEMORY AG

JSR ITEMPS

;INCREMENT HIGH BYTE OF TEMPORARY ADDRESS

;DECREMENT PAGE COUNT

;BRANCH IF NOT DONE WITH FILL

;REGISTER Y IS SET TO SIZE OF LAST PAGE

;CONTINUE

;INITIALIZE TEMPORARIES

;COMPARE MEMORY WITH THE VALUE IN REGISTER A

; COMPARE FULL PAGES FIRST

;START AT INDEX 0

CMPLP:

CMPPRT:

CMPLP1:

CMPOK:

CMPER:

LDX

BEQ

LDY

CMP

BNE

INY

BNE

INC
DEX

BNE

TLEN+1

CMPPRT

#0

(TADDR),Y

CMPER

CMPLP

TADDR+1

CMPLP

;COMPARE THE LAST

LDX

LDY

CMP

BNE

INY

DEX

BNE

CLC

RTS

JSR

RTS

TLEN

#0

(TADDR),Y

CMPER

CMPLP1

ERROR

;CAN THE STORED VALUE BE READ BACK ?

;NO, EXIT INDICATING ERROR

;INCREMENT TO NEXT LOCATION

;BRANCH IF NOT DONE WITH THIS PAGE

;INCREMENT HIGH BYTE OF TEMPORARY ADDRESS
;DECREMENT PAGE COUNT

;BRANCH IF NOT DONE WITH FILL

;REGISTER Y = SIZE OF PARTIAL PAGE

;CAN THE STORED VALUE BE READ BACK ?

;NO, EXIT INDICATING ERROR

;CONTINUE

;INDICATE NO ERROR

;ROUTINE: ITEMPS

;PURPOSE: INITIALIZE TEMPORARIES

9G RAM TEST (RAMTST) 413

;ENTRY: ADDR IS BEGINNING ADDRESS

LEN IS NUMBER OF BYTES

;EXIT: TADDR IS SET TO ADDR

; TLEN IS SET TO LEN

7REGISTERS USED: Y,P
.a*********************************

ITEMPS:

LDY

STY

LDY

STY

LDY

STY

LDY

STY

RTS

ADDP

TADDR

ADDR+1

TADDR+1

LEN

TLEN

LEN+1

TLEN+1

.••a************************************

;ROUTINE: ERROR

;PURPOSE: SET UP THE REGISTERS FOR AN ERROR EXIT

;ENTRY: REGISTER A IS EXPECTED BYTE

; TADDR IS BASE ADDRESS

REGISTER Y IS INDEX

;EXIT REGISTER X IS SET TO EXPECTED BYTE

; REGISTER A IS SET TO HIGH BYTE OF THE ADDRESS CONTAINING THE ERROR

; REGISTER Y IS SET TO LOW BYTE OF THE ADDRESS CONTAINING THE ERROR

CARRY FLAG IS SET TO 1

;REGISTERS USED: ALL
.•a************************************

ERROR:

; DATA

ADDR:

LEN:

TLEN:

TAX

TYA

CLC

ADC

TAY

LDA

ADC

SEC

RTS

SECTION

.BLOCK

.BLOCK

.BLOCK

TADDR

TADDR+1

#0

2

2

2

;REGISTER X = EXPECTED BYTE

;GET INDEX

;ADDRESS OF ERROR » BASE + INDEX

;REGISTER Y = LOW BYTE OF ERROR LOCATION

;REGISTER A = HIGH BYTE OF ERROR LOCATION

;INDICATE AN ERROR BY SETTING CARRY TO 1

;ADDRESS OF FIRST ELEMENT

;LENGTH

;TEMPORARY LENGTH

SAMPLE EXECUTION

414 ARRAY OPERATIONS

SC0907:

;TEST

LDA

PHA

LDA

PHA

LDA

PHA

LDA

PHA

JSR

BRK

JMP

ADR .WORD

SZ .WORD

• END

MEMORY

ADR+1

ADR

SZ+1

SZ

RAMTST

SC0907

2000H

1010H

;PROGRAM

;PUSH HIGH BYTE OF STARTING ADDRESS

;PUSH LOW BYTE OF STARTING ADDRESS

;PUSH HIGH BYTE OF LENGTH

;PUSH LOW BYTE OF LENGTH

;TEST

;CARRY FLAG SHOULD BE 0

;LOOP FOR MORE TESTING

Jump Table (JTAB) 9H

Transfers control to an address selected
from a table according to an index. The

addresses are stored in the usual 6502 style

(less significant byte first), starting at address

TABLE. The size of the table (number of

addresses) is a constant LENSUB, which

must be less than or equal to 128. If the index

is greater than or equal to LENSUB, the pro

gram returns control immediately with the

Carry flag set to 1.

Procedure: The program first checks if the

index is greater than or equal to the size of

the table (LENSUB). If it is, the program

returns control with the Carry flag set. If it is

not, the program obtains the starting address

Registers Used: A, P

Execution Time: 31 cycles overhead, besides the

time required to execute the subroutine.

Program Size: 23 bytes plus 2*LENSUB bytes for

the table of starting addresses, where LENSUB is

the number of subroutines.

Data Memory Required: Two bytes anywhere in

RAM (starting at address TMP) to hold the

indirect address obtained from the table.

Special Case: Entry with (A) greater than or

equal to LENSUB causes an immediate exit with

Carry flag set to 1.

of the appropriate subroutine from the table,

stores it in memory, and jumps to it

indirectly.

Entry Conditions

(A) = index

Exit Conditions

If (A) is greater than LENSUB, an immedi

ate return with Carry = 1. Otherwise, control

transferred to appropriate subroutine as if an

indexed call had been performed. The return

address remains at the top of the stack.

Example

Data: LENSUB (size of subroutine table) = 03.

Table consists of addresses SUBO, SUB1
and SUB2.

Index = (A) = 02

Result: Control transferred to address SUB2
(PC = SUB2).

415

416 ARRAY OPERATIONS

Title

Name:

Jump table

JTAB

Purpose: Given an index, jump to the subroutine with
that index in a table

Entry: Register A is the subroutine number 0 to

LENSUB-1, the number of subroutines,

LENSUB must be less than or equal to
128.

Exit: If the routine number is valid then
execute the routine

else

CARRY flag equals 1

Registers used: A,P

31 cycles plus execution time of subroutine

Size: Program 23 bytes plus size of table (2*LENSUB)

Data 2 bytes

JTAB:

CMP

BCS

ASL

TAY

LDA

STA

LDA

STA

JMP

JTABER:

SEC

RTS

LENSUB .EQU

TABLE:

.WORD

.WORD

.WORD

tLENSUB

JTABER

A

TABLE,Y

TMP

TABLE+1,Y

TMP+1

(TMP)

3

SUBl

SUB2

SUB 3

?BRANCH IF REGISTER A IS TOO LARGE

;MULTIPLY VALUE BY 2 FOR WORD-LENGTH INDEX

;MOVE STARTING ADDRESS TO TEMPORARY STORAGE

;JUMP INDIRECTLY TO SUBROUTINE

;INDICATE A BAD ROUTINE NUMBER

;ROUTINE 0

;ROUTINE 1

;ROUTINE 2

TMP: .BLOCK 2 ,-TEMPORARY ADDRESS TO JUMP INDIRECT THROUGH

9H JUMP TABLE (JTAB) 417

;THREE

SUB1:

SUB2:

SUB3:

SUBROUTINES WHICH ARE IN THE JUMP TABLE

LDA #1

RTS

LDA

RTS

LDA

RTS

#2

#3

;

SAMPLE EXECUTION ;

;

;

;PROGRAM SECTION

SC0908:

LDA

JSR

BRK

LDA

JSR

BRK

LDA

JSR

BRK

LDA

JSR

BRK

JMP

• END

#0

JTAB

#1

JTAB

#2

JTAB

#3

JTAB

SC0908

;PROGRAM

;EXECUTE ROUTINE 0, REGISTER A EQUALS 1

;EXECUTE ROUTINE 1, REGISTER A EQUALS 2

;EXECUTE ROUTINE 2, REGISTER A EQUALS 3

;ERROR CARRY FLAG EQUALS 1

;LOOP FOR MORE TESTS

Read a Line of Characters from a Terminal

(RDLINE) 10A

Reads ASCII characters from a terminal
and saves them in a buffer until it encounters

a carriage return character. Defines the con

trol characters Control H (08 hex), which

deletes the character most recently entered

into the buffer, and Control X (18 hex),

which deletes all characters in the buffer.

Sends a bell character (07 hex) to the ter

minal if the buffer becomes full. Echoes to

the terminal each character placed in the

buffer. Sends a new line sequence (typically

carriage return, line feed) to the terminal

before exiting.

RDLINE assumes the existence of the

following system-dependent subroutines:

1. RDCHAR reads a single character from

the terminal and places it in the accumulator.

2. WRCHAR sends the character in the

accumulator to the terminal.

3. WRNEWL sends a new line sequence

(typically consisting of carriage return and

line feed characters) to the terminal.

These subroutines are assumed to change

the contents of all the user registers.

RDLINE is intended as an example of a

typical terminal input handler. The specific

control characters and I/O subroutines in a

real system will, of course, be computer-

dependent. A specific example in the listing

describes an Apple II computer with the

following features:

1. The entry point for the routine that

reads a character from the keyboard is

FD0C16. This routine returns with bit 7 set,

so that bit must be cleared for normal ASCII

operations.

Registers Used: All

Execution Time: Approximately 67 cycles to

place an ordinary character in the buffer, not con

sidering the execution time of either RDCHAR

or WRCHAR.

Program Size: 138 bytes

Data Memory Required: Four bytes anywhere in

RAM plus two bytes on page 0. The four bytes

anywhere in RAM hold the buffer index (one

byte at address BUFIDX), the buffer length (one

byte at address BUFLEN), the count for the

backspace routine (one byte at address COUNT),

and the index for the backspace routine (one byte

at address INDEX). The two bytes on page 0 hold

a pointer to the input buffer (starting at address

BUFADR, 00D016 in the listing).

Special Cases:

1. Typing Control H (delete one character) or

Control X (delete the entire line) when there is

nothing in the buffer has no effect on the buffer

and does not cause anything to be sent to the ter

minal.

2. If the program receives an ordinary

character when the buffer is full, it sends a Bell

character to the terminal (ringing the bell), dis

cards the received character, and continues its

normal operations.

2. The entry point for the routine that

sends a character to the monitor is FDED16.

This routine requires bit 7 of the character

(in the accumulator) to be set.

3. The entry point for the routine that

issues the appropriate new line character (a

carriage return) is FD8E16.

4. An 0816 character moves the cursor left

one position.

A standard reference describing the Apple II

computer is L. Poole et al., Apple II User's

Guide, Berkeley: Osborne/McGraw-Hill,

1981.

418

10A READ A LINE OF CHARACTERS (RDLINE) 419

Procedure: The program first reads a

character using the RDCHAR routine and

exits if the character is a carriage return. If

the character is not a carriage return, the pro

gram checks for the special characters Con

trol H and Control X. In response to Control

H, the program decrements the buffer index

and sends a backspace string (consisting of

cursor left, space, cursor left) to the terminal

if there is anything in the buffer. In response

to Control X, the program repeats the

response to Control H until it empties the

buffer. If the character is not special, the pro

gram checks to see if the buffer is full. If the

buffer is full, the program sends a bell

character to the terminal and continues. If

the buffer is not full, the program stores the

character in the buffer, echoes it to the ter

minal, and adds one to the buffer index.

Before exiting, the program sends a new line

sequence to the terminal using the

WRNEWL routine.

Entry Conditions

(A) = More significant byte of starting

address of buffer

(Y) = Less significant byte of starting

address of buffer

(X) = Length (size) of the buffer in bytes.

Exit Conditions

(X) = Number of characters in the buffer.

Examples

1. Data: Line (from keyboard is 'ENTERcr'

Result: Buffer index = 5 (length of line)

Buffer contains 'ENTER'

'ENTER' echoed to terminal, followed by

the new line sequence (typically either car

riage return, line feed or just carriage

return)

Note that the 'cr' (carriage return)

character does not appear in the buffer.

2. Data: Line (from keyboard) is 'DMcontrolkN

controlXENTETcontrol HRcr\

Result: Buffer index = 5 (length of actual line)

Buffer contains 'ENTER'

'ENTER' echoed to terminal, followed by

the new line sequence (typically either car

riage return, line feed or just carriage
return)

The sequence of operations is as follows:

Character

Typed

D

M

control H

N

control X

E

N

T

E

T

control H

R

cr

Initial

Buffer

empty

'D'

'DM'

'D'

'DN'

empty

'E'

'EN'

'ENT'

'ENTE'

'ENTET'

'ENTE'

'ENTER'

Final

Buffer

'D'

'DM'

'D'

'DN'

empty

'E'

'EN'

'ENT'

'ENTE'

'ENTET'

'ENTE'

'ENTER'

'ENTER'

420 INPUT/OUTPUT

What has happened is the following:

a. The operator types 4D\ lM'

b. The operator recognizes that 'NT is incorrect

(should be kN'), types control H to delete it, and types

4N\

c. The operator then recognizes that the initial 4D' is

incorrect also (should be 4E'). Since the character to be

deleted is not the latest one, the operator types control

X to delete the entire line, and then types 'ENTET\

d. The operator recognizes that the second T' is

incorrect (should be WR'), types control H to delete it,
and types 4R\

e. The operator types a carriage return to conclude

the line.

Title

Name:

Purpose:

Entry:

Exit:

Registers used:

Time:

Size:

Read line

RDLINE

Read characters from the input device until

a carriage return is found, RDLINE defines the

following control characters:

Control H — Delete the previous character.

Control X — Delete all characters.

Register A = High byte of buffer address

Register Y = Low byte of buffer address

Register X = Length of the buffer

Register X = Number of characters in the buffer

All

Not applicable.

Program 138 bytes

Data 4 bytes plus

2 bytes in page zero

7PAGE ZERO POINTER

BUFADR .EQU ODOH

;EQUATES

DELKEY .EQU

BSKEY .EQU

018H

08H

;INPUT BUFFER ADDRESS

;DELETE LINE KEYBOARD CHARACTER

;BACKSPACE KEYBOARD CHARACTER

10A READ A LINE OF CHARACTERS (RDLINE) 421

CRKEY

SPACE

BELL

RDLINE:

INIT:

RDLOOP:

.EQU

.EQU

.EQU

;SAVE

STA

STY

STX

ODH

020H

07H

PARAMETERS

BUFADR+1

BUFADR

BUFLEN

INITIALIZE BUFF

LDA

STA

;READ

;READ

JSR

#0

BUFIDX

LOOP

CHARACTERS

RDCHAR

RDLP2:

;CARRIAGE RETURN KEYBOARD CHARACTER

;SPACE CHARACTER

;BELL CHARACTER TO RING THE BELL ON THE TERMINAL

;SAVE HIGH BYTE OF INPUT BUFFER ADDRESS

;SAVE LOW BYTE OF INPUT BUFFER ADDRESS

;SAVE MAXIMUM LENGTH

STRCH:

;READ A CHARACTER FROM TflE KEYBOARD

;DOES NOT ECHO

;CHECK FOR CARRIAGE RETURN AND EXIT IF FOUND

CMP #CRKEY

BEQ EXITRD

;CHECK FOR BACKSPACE AND BACK UP IF FOUND

CMP #BSKEY

BNE RDLP1 ;BRANCH IF NOT BACKSPACE CHARACTER

JSR BACKSP ;IP BACKSPACE, BACK UP ONE CHARACTER

JMP RDLOOP ; THEN START READ LOOP AGAIN

;CHECK FOR DELETE LINE CHARACTER AND DELETE LINE IF FOUND

;BRANCH IF NOT DELETE LINE CHARACTER

;DELETE A CHARACTER

;CONTINUE DELETING UNTIL BUFFER IS EMPTY

;THEN GO READ THE NEXT CHARACTER

;NOT A SPECIAL CHARACTER

; CHECK IF BUFFER IS FULL

; IF NOT FULL STORE CHARACTER AND ECHO

;IS BUFFER FULL?

;BRANCH IF NOT

;YES IT IS FULL, RING THE TERMINAL'S BELL

;THEN CONTINUE THE READ LOOP

;STORE THE CHARACTER

;ECHO CHARACTER TO TERMINAL

RDLP1:

DELI:

CMP

BNE

JSR

LDA

BNE

BEQ

#DELKEY

RDLP2

BACKSP

BUFIDX

DELI

RDLOOP

LDY

CPY

BCC

LDA

JSR

JMP

STA

JSR

BUFIDX

BUFLEN

STRCH

#BELL

WRCHAR

RDLOOP

(BUFADR),Y

WRCHAR

422 INPUT/OUTPUT

INC

JMP

BUFIDX

RDLOOP

;INCREMENT BUFFER INDEX

;THEN CONTINUE THE READ LOOP

EXITRD:

;EXIT SEQUENCE

;ECHO NEW LINE SEQUENCE

;GET LENGTH OF BUFFER

JSR

LDX

RTS

WRNEWL

BUFIDX

(USUALLY CR,LF)

;ECHO THE NEW LINE SEQUENCE

;RETURN THE LENGTH IN X

;RETURN

; THE FOLLOWING SUBROUTINES ARE SYSTEM SPECIFIC,

; THE APPLE II WAS USED IN THESE EXAMPLES,

**

;ROUTINE: RDCHAR

;PURPOSE: READ A CHARACTER BUT DO NOT ECHO TO OUTPUT DEVICE

;ENTRY: NONE

;EXIT: REGISTER A = CHARACTER

;REGISTERS USED: ALL

RDCHAR:

JSR

AND

RTS

OFDOCH ;APPLE MONITOR READ KEYBOARD

#O1111111B ;ZERO BIT 7

**

;ROUTINE: WRCHAR

;PURPOSE: WRITE A CHARACTER TO THE OUTPUT DEVICE

;ENTRY: REGISTER A = CHARACTER

;EXIT: NONE

;REGISTERS USED: ALL

**

WRCHAR:

ORA

JSR

RTS

#10000000B ;SET BIT 7

OFDEDH ;APPLE MONITOR CHARACTER OUTPUT ROUTINE

**

;ROUTINE: WRNEWL

;PURPOSE: ISSUE THE APPROPRIATE NEW LINE CHARACTER OR

CHARACTERS. NORMALLY, THIS ISA CARRIAGE RETURN

; AND LINE FEED, BUT SOME COMPUTERS (SUCH AS APPLE II)

; REQUIRE ONLY A CARRIAGE RETURN.

;ENTRY: NONE

;EXIT: NONE

;REGISTERS USED: ALL
**

10A READ A LINE OF CHARACTERS (RDLINE) 423

WRNEWL:

JSR

RTS

0FD8EH ;ECHO CARRIAGE RETURN AND LINE FEED

•a***************************************

;ROUTINE: BACKSP

;PURPOSE: PERFORM A DESTRUCTIVE BACKSPACE

;ENTRY: BUFIDX = INDEX TO NEXT AVAILABLE LOCATION IN BUFFER

;EXIT: CHARACTER REMOVED FROM BUFFER

;REGISTERS USED: ALL
.a**************************************

BACKSP:

;CHECK FOR EMPTY BUFFER

LDA BUFIDX

BEQ EXITBS ;EXIT IF NO CHARACTERS IN BUFFER

;BUFFER IS NOT EMPTY SO DECREMENT BUFFER INDEX

DEC BUFIDX ;DECREMENT BUFFER INDEX

;OUTPUT BACKSPACE STRING

LDA

STA

LDA

STA

BSLOOP:

LDA

BEQ

LDY

LDA

JSR

INC

DEC

JMP

EXITBS:

#LENBSS

COUNT

#0

INDEX

COUNT

EXITBS

INDEX

BSSTRG,Y

WRCHAR

INDEX

COUNT

BSLOOP

;COUNT = LENGTH OF BACKSPACE STRING

;INDEX = INDEX TO FIRST CHARACTER

;EXIT IF ALL CHARACTERS HAVE BEEN SENT

;GET NEXT CHARACTER

;OUTPUT CHARACTER

RTS

CSRLFT .EQU

LENBSS: .EQU

BSSTRG: .BYTE

U8H ^-CHARACTER WHICH MOVES CURSOR LEFT ONE LOCATION

3 ;LENGTH OF BACKSPACE STRING

CSRLFT,SPACE,CSRLFT

; DATA

BUFIDX:

BUFLEN:

COUNT:

INDEX:

.BLOCK

.BLOCK

.BLOCK

.BLOCK

;INDEX TO NEXT AVAILABLE CHARACTER IN BUFFER

;BUFFER LENGTH

7COUNT FOR BACKSPACE AND RETYPE

;INDEX FOR BACKSPACE AND RETYPE

SAMPLE EXECUTION:

424 INPUT/OUTPUT

SC1001:

TLOOP:

TLOOP1:

;READ

LDA

JSR

LDA

LDY

LOX

JSR

;ECHO

STX

LDA

STA

LDA

BNE

JSR

JMP

LDY

LDA

JSR

INC

DEC

JMP

;DATA SECTION

IDX:

CNT:

ADRBUF:

LINBUF:

.BLOCK

.BLOCK

.WORD

.EQU

LINE

WRCHAR

ADRBUF+1

ADRBUF

#LINBUF

RDLINE

LINE

CNT

#0

IDX

CNT

TLOOP1

WRNEWL

SC1001

IDX

INBUFF,Y

WRCHAR

IDX

CNT

TLOOP

1

1

1NBUFF

10H

INBUFF: .BLOCK LINBUF

;OUTPUT PROMPT (QUESTION MARK)

;GET THE BUFFER ADDRESS

;GET THE BUFFER LENGTH

;READ A LINE

;STORE NUMBER OF CHARACTERS IN THE BUFFER

;BRANCH IF THERE ARE MORE CHARACTERS TO SEND

;IF NOT ISSUE NEW LINE (CR,LF)

;AND START OVER

;GET THE NEXT CHARACTER

;OUTPUT IT

;DECREMENT LOOP COUNTER

;INDEX

; COUNTER

;ADDRESS OF INPUT BUFFER

;LENGTH OF INPUT BUFFER

;DEFINE THE INPUT BUFFER

.END ;PROGRAM

Write a Line of Characters to an Output Device

(WRLINE) 10B

Writes characters to an output device
using the computer-dependent subroutine

WRCHAR, which writes the character in the

accumulator on the output device. Continues

until it empties a buffer with given length and

starting address. This subroutine is intended

as an example of a typical output driver. The

specific I/O subroutines will, of course, be

computer-dependent. The specific example

described is the Apple II computer with the

following features:

1. The entry point for the routine that

sends a character to the monitor is FDED16.

2. The character to be written must be

placed in the accumulator with bit 7 set to 1.

Procedure: The program exits immediately

if the buffer length is zero. Otherwise, the

program sends characters to the output

Registers Used: All

Execution Time: 24 cycles overhead plus 25

cycles per byte (besides the execution time of

subroutine WRCHAR).

Program Size: 37 bytes

Data Memory Required: Two bytes anywhere in

RAM plus two bytes on page 0. The two bytes

anywhere in RAM hold the buffer index (one

byte at address BUFIDX) and the buffer length

(one byte at address BUFLEN). The two bytes on

page 0 hold a pointer to the output buffer (start

ing at address BUFADR, 00D016 in the listing).

Special Case:

A buffer length of zero causes an immediate

exit with no characters sent to the output device.

device one at a time until the buffer is

emptied. The program saves all its temporary

data in memory rather than in registers to

avoid dependence on the WRCHAR routine.

Entry Conditions

(A) = More significant byte of starting

address of buffer

(Y) = Less significant byte of starting

address of buffer

(X) = Length (size) of the buffer in bytes.

Exit Conditions

None

Example

Data: Buffer length = 5

Buffer contains * ENTER'

Result: 'ENTER' sent to the output device.

425

426 INPUT/OUTPUT

Title

Name:

Purpose:

Entry:

Write line

WRLINE

Write characters to the output device

Register A = High byte of buffer address

Register Y = Low byte of buffer address

Register X = Length of the buffer in bytes

Exit: None

Registers used: All

Time:

Size:

24 cycles overhead plus

(25 + execution time of WRCHAR) cycles per byte

Program 37 bytes

Data 2 bytes plus

2 bytes in page zero

;PAGE ZERO POINTER

BUFADR .EQU ODOH

WRLINE:

;SAVE

STA

STY

STX

BEQ

PARAMETERS

BUFADR+1

BUFADR

BUFLEN

EXIT

;INITIALIZE BUFFER

LDA

STA

WRLOOP:

LDY

LDA

JSR

INC

DEC

BNE

#0

BUFIDX

BUFIDX

(BUFADR),Y

WRCHAR

BUFIDX

BUFLEN

WRLOOP

;OUTPUT BUFFER ADDRESS

;SAVE HIGH BYTE OF OUTPUT BUFFER ADDRESS

;SAVE LOW BYTE OF OUTPUT BUFFER ADDRESS

;SAVE LENGTH

;EXIT IF LENGTH = 0

;GET NEXT CHARACTER

;OUTPUT CHARACTER

;INCREMENT BUFFER INDEX

;DECREMENT BUFFER LENGTH

;BRANCH IF NOT DONE

EXIT:

RTS

.••a***

; THE FOLLOWING SUBROUTINES ARE SYSTEM SPECIFIC,

; THE APPLE II WAS USED IN THIS EXAMPLE.

•A**

10B WRITE A LINE OF CHARACTERS (WRLINE) 427

a**

;ROUTINE: WRCHAR

;PURPOSE: WRITE A CHARACTER TO THE OUTPUT DEVICE

;ENTRY: REGISTER A = CHARACTER

;EXIT: NONE

;REGISTERS USED: ALL
.••••A************************************

WRCHAR:

ORA

JSR

RTS

#1000000UB ;SET BIT 7

OFDEDH ;APPLE MONITOR CHARACTER OUTPUT ROUTINE

.••a*****************************

; DATA SECTION

BUFIDX: .BLOCK 1

BUFLEN: .BLOCK 1

;INDEX TO NEXT AVAILABLE CHARACTER IN BUFFER

;BUFFER LENGTH

SAMPLE EXECUTION:

SC1002:

;READ LINE USING THE APPLE MONITOR GETLN ROUTINE AT 0FD6AH

; 33H = ADDRESS CONTAINING APPLE PROMPT CHARACTER

;USE ? FOR PROMPT WITH BIT 7 SET

;SET UP APPLE PROMPT CHARACTER

;CALL APPLE MONITOR GETLN ROUTINE

;RETURN LENGTH IN REGISTER X

;A = HIGH BYTE OF BUFFER ADDRESS

;Y = LOW BYTE OF BUFFER ADDRESS

;X = LENGTH OF BUFFER

;OUTPUT THE BUFFER

;OUTPUT CARRIAGE RETURN VIA APPLE MONITOR

;CONTINUE

; 200H

LDA

STA

JSR

STX

;WRITE

LDA

LDY

LDX

JSR

JSR

JMP

;DATA SECTION

LENGTH: .BLOCK

= BUFFER ADDRESS

#"?" OR 80H

033H

0FD6AH

LENGTH

THE LINE

#02H

#0

LENGTH

WRLINE

0FD8EH

SC1002

1

.END ;PROGRAM

Generate Even Parity (GEPRTY) 10C

Generates even parity for a seven-bit
character and places it in bit 7. Even parity for

a seven-bit character is a bit that makes the

total number of 1 bits in the byte even.

Procedure: The program generates even

parity by counting the number of 1 bits in the

seven least significant bits of the accumula

tor. The counting is accomplished by shifting

the data left logically and incrementing the

count by one if the bit shifted into the Carry

is 1. The least significant bit of the count is an

even parity bit; the program concludes by

Registers Used: A, F

Execution Time: 114 cycles maximum. Depends

on the number of 1 bits in the data and how

rapidly the series of logical shifts makes the data

zero. The program exits as soon as the remaining

bits of data are all zeros, so the execution time is

shorter if the less significant bits are all zeros.

Program Size: 39 bytes

Data Memory Required: One byte anywhere in

RAM (at address VALUE) for the data.

shifting that bit to the Carry and then to bit 7

of the original data.

Entry Conditions Exit Conditions

Data in the accumulator (bit 7 is not used). Data with even parity in bit 7 in the

accumulator.

Examples

1. Data: (A) = 4216 = 010000102 (ASCII B)

Result: (A) = 4216 = 010000102 (ASCII B with bit

7 cleared)

Even parity is 0, since 010000102 has an

even number (2) of 1 bits.

2. Data: (A) = 4316 -

Result: (A) = C3i6

7 set)

- 010000112 (ASCII C)

= 110000112 (ASCII C with bit

Title

Name:

Purpose:

Entry:

Generate even parity

GEPRTY

Generate even parity in bit 7 for a 7-bit

character.

Register A = Character

428

10C GENERATE EVEN PARITY (GEPRTY) 429

Exit: Register A = Character with even parity

Registers used: A,F

Time: 114 cycles maximum

Size: Program 39 bytes

Data 1 byte

GEPRTY:

;SAVE THE DATA

STA VALUE

;SAVE X AND Y REGISTERS

PHA

TXA

PHA

TYA

;COUNT THE NUMBER OF 1 BITS IN BITS 0 THROUGH 6 OF THE DATA

LDY

LDA

ASL

STA

GELOOP: BPL

INY

SHFT: ASL

BNE

TYA

LSR

LDA

ROR

STA

#0

VALUE

A

VALUE

SHFT

;INITIALIZE NUMBER OF 1 BITS TO ZERO

;GET DATA

;DROP BIT 7 OF THE DATA, NEXT BIT TO BIT 7

;BRANCH IF NEXT BIT (BIT 7) IS 0

;ELSE INCREMENT NUMBER OF 1 BITS

GELOOP ;BRANCH IF THERE ARE MORE 1 BITS IN THE BYTE

A

VALUE

A

VALUE

;BIT 0 OF NUMBER OF 1 BITS IS EVEN PARITY

;MOVE PARITY TO CARRY

;ROTATE ONCE TO FORM BYTE WITH PARITY IN BIT 7

;RESTORE X AND Y AND EXIT

PLA

TAY

PLA

TAX

LDA VALUE

RTS

;GET VALUE WITH PARITY

;RETURN

;DATA SECTION

VALUE: .BLOCK 1 ;TEMPORARY DATA STORAGE

SAMPLE EXECUTION:

430 INPUT/OUTPUT

;GENERATE PARITY FOR VALUES FROM 0..127 AND STORE THEM IN BUFFER

SC1003:

LDX #0

SC1LP:

TXA

;GENERATE EVEN PARITY

;STORE THE VALUE WITH EVEN PARITY

JSR

STA

INX

CPX

BNE

BRK

GEPRTY

BUFFER,X

#80H

SC1LP ;BRANCH IF NOT DONE

BUFFER .BLOCK 128

.END ;PROGRAM

Check Parity (CKPRTY) 10D

Sets the Carry flag to 0 if a data byte has
even parity and to 1 if it has odd parity. A

byte has even parity if it has an even number

of 1 bits and odd parity if it has an odd num

ber of 1 bits.

Procedure: The program counts the num

ber of 1 bits in the data by shifting the data

left logically and incrementing a count if the

bit shifted into the Carry is 1. The program

citiits as soon as the shifted data becomes zero

(since zero obviously does not contain any 1

bits). The least significant bit of the count is 0

if the data byte contains an even number of 1

bits and 1 if the data byte contains an odd

number of 1 bits. The program concludes by

Registers Used: A, F

Execution Time: 111 cycles maximum. Depends

on the number of 1 bits in the data and how

rapidly the series of logical shifts makes the data
zero. The program exits as soon as the remaining

bits of data are all zeros, so the execution time is

shorter if the less significant bits are all zeros.

Program Size: 25 bytes

Data Memory Required: One byte anywhere in

RAM (at address VALUE) for the data.

shifting the least significant bit of the count

to the Carry flag.

Entry Conditions Exit Conditions

Data byte in the accumulator (bit 7 is Carry = 0 if the parity of the data byte is

included in the parity generation). even, 1 if the parity is odd.

Examples

1. Data: (A) = 4216 = 010000102 (ASCII B) 2. Data:

Result: Carry = 0, since 42,6 (010000102) has Result:
an even number (2) of 1 bits.

A) = 4316 = 010000112 (ASCII C)

Carry = 1, since 4316 (010000112) has

an odd number (3) of 1 bits.

431

432 INPUT/OUTPUT

; Title Check parity

; Name: CKPRTY

Purpose: Check parity of a byte

Entry: Register A = Byte with parity in bit 7

Exit: Carry = 0 if parity is even.

Carry = 1 if parity is odd.

Registers used: A,P

Time: 111 cycles maximum

Size: Program 25 bytes

Data 1 byte

CKPRTY:

;SAVE DATA VALUE

STA VALUE

;SAVE REGISTERS X AND Y

TXA

PHA

TYA

PHA

;COUNT THE NUMBER OF 1 BITS IN THE VALUE

LDY #0 ;NUMBER OF 1 BITS = 0

LDA VALUE

CKLOOP: BPL SHFT ;BRANCH IF NEXT BIT = 0 (BIT 7)

INY ;ELSE INCREMENT NUMBER OF 1 BITS

SHFT: ASL A ;SHIFT NEXT BIT TO BIT 7

BNE CKLOOP ;CONTINUE UNTIL ALL BITS ARE 0

TYA

LSR A ;CARRY FLAG = LSB OF NUMBER OF 1 BITS

;RESTORE REGISTERS X AND Y AND EXIT

PLA

TAY

PLA

TAX

RTS

10D CHECK PARITY (CKPRTY) 433

VALUE .BLOCK 1 ;DATA BYTE

SAMPLE EXECUTION:

;CHECK

;BUFFER

;BUFFER

SC1004:

SCLP:

PARITY FOR VALUES FROM 0..255 AND STORE THEM IN BUFFER

[VALUE] = 0 FOR EVEN PARITY

[VALUE] = 1 FOR ODD PARITY

LDX

TXA

JSR

LDA

ROL

STA

INX

BNE

BRK

JMP

#0

CKPRTY

#0

A

BUFFER,X

SCLP

SC1004

BUFFER .BLOCK 256

.END ;PROGRAM

;CHECK PARITY

;GET PARITY TO BIT 0

;STORE THE PARITY

;INCREMENT VALUE

;CONTINUE THROUGH ALL THE VALUES

CRC-16 Checking and Generation (ICRC16,CRC16) 10E

Generates a 16-bit cyclic redundancy
check (CRC) based on the IBM Binary Syn

chronous Communications (BSC or Bisync)

protocol. Uses the polynomial X16 + X15 +

X2 + 1 to generate the CRC. The entry point

ICRC16 initializes the CRC to 0 and the

polynomial to the appropriate bit pattern.

The entry point CRC 16 combines the pre

vious CRC with the CRC generated from the

next byte of data. The entry point GCRC16

returns the CRC.

Procedure: Subroutine ICRC16 initializes

the CRC to zero and the polynomial to the

appropriate value (one in each bit position

corresponding to a power of X present in the

polynomial). Subroutine CRC16 updates the

CRC according to a specific byte of data. It

updates the CRC by shifting the data and the

CRC left one bit and exclusive-ORing the

CRC with the polynomial whenever the

exclusive-OR of the data bit and the most sig

nificant bit of the CRC is 1. Subroutine

CRC16 leaves the CRC in memory locations

CRC (less significant byte) and CRC+1

(more significant byte). Subroutine GCRC16

Registers Used:

1. By ICRC16:

2. By CRC16:

3. By GCRC16:

Execution Time:

1. For ICRC16:

2. For CRC16:

A,F

None

A, F, Y

28 cycles

302 cycles minimum if no 1

bits are generated and the polynomial and the

CRC never have to be EXCLUSIVE-ORed. 19

extra cycles for each time the polynomial and the

CRC must be EXCLUSIVE-ORed. Thus, the

maximum execution time is 302 + 19*8 = 454

cycles.

3. ForGCRC16: 14 cycles

Program Size:

1. For ICRC16: 19 bytes

2. For CRC 16: 53 bytes

3. For GCRC16: 7 bytes

Data Memory Required: Five bytes anywhere in

RAM for the CRC (two bytes starting at address

CRC), the polynomial (two bytes starting at

address PLY), and the data byte (one byte at

address VALUE).

loads the CRC into the accumulator (more

significant byte) and index register Y (less

significant byte).

Entry Conditions

1. For ICRC16: none

2. For CRC16: data byte in the accumula

tor, previous CRC in memory locations CRC

(less significant byte) and CRC+1 (more

significant byte), CRC polynomial in memory

locations PLY (less significant byte) and

PLY+1 (more significant byte)

3. For GCRC16: CRC in memory loca

tions CRC (less significant byte), and

CRC+ 1 (more significant byte).

434

10E CRC-16 CHECKING AND GENERATION (ICRC16, CRC16, GCRC16) 435

Exit Conditions

1. For ICRC16: zero (initial CRC value)

in memory locations CRC (less significant

byte) and CRC+1 (more significant byte)

CRC polynomial in memory locations PLY

(less significant byte) and PLY+1 (more sig

nificant byte)

2. For CRC16: CRC with current data

byte included in memory locations CRC (less

significant byte) and CRC+1 (more signifi

cant byte)

3. For GCRC16: CRC in the accumulator

(more significant byte) and index register Y

(less significant byte).

Examples

1. Generating a CRC.

Call ICRC16 to initialize the polynomial and start the

CRC at zero.

Call CRC16 to update the CRC for each byte of data

for which the CRC is to be generated.

Call GCRC16 to obtain the resulting CRC (more sig

nificant byte in A, less significant byte in Y).

2. Checking a CRC.

Call ICRC16 to initialize the polynomial and start the

CRC at zero.

Call CRC16 to update the CRC for each byte of data

(including the stored CRC) for checking.

Call GCRC16 to obtain the resulting CRC (more sig

nificant byte in A, less significant byte in Y). If there

were no errors, both bytes should be zero.

Note that only subroutine ICRC16

depends on the particular CRC polynomial

being used. To change the polynomial

requires only a change of the data that

ICRC16 loads into memory locations PLY

(less significant byte) and PLY 4-1 (more sig

nificant byte).

Reference

J.E. McNamara, Technical Aspects of Data

Communications, Digital Equipment Corp.,

Maynard, Mass., 1977. This book contains

explanations of CRC and the various com

munications protocols.

436 INPUT/OUTPUT

Title

Name:

Generate CRC-16

CRC16

Purpose:

Entry:

Exit:

Generate a 16 bit CRC based on the IBM binary

synchronous communications protocol. The CRC is

based on the following polynomial:

(" indicates "to the power")
X~16 + X~15 + X*2 +1

To generate a CRC:

1) Call ICRC16 to initialize the CRC to 0

and the CRC polynomial.

2) Call CRC16 for each byte of data for

which the CRC is to be generated.

3) Call GCRC16 to get the resulting CRC.

It should then be appended to the data,

high byte first.

To check a CRC:

1) Call ICRC16 to initialize the CRC.

2) Call CRC16 for each byte of data and

the 2 bytes of CRC previously generated.

3) Call GCRC16 to obtain the CRC. It will

be zero if no errors have occurred.

Register A = Data byte

CRCLO and CRCHI updated

Register A = Data byte

Registers used: None

Time:

Size:

302 cycles minimum if no 1 bits are generated.

454 cycles maximum if all 1 bits are generated.

Program 53 bytes

Data 5 bytes

CRC16:

;SAVE THE DATA BYTE

STA VALUE

;SAVE ALL REGISTERS

PHP

PHA

TYA

PHA

TXA

PHA

10E CRC-16 CHECKING AND GENERATION (ICRC16. CRC16. GCRC16) 437

;LOOP THROUGH EACH BIT GENERATING THE CRC

LDX #8

CRCLP:

ASL

ROR

AND

EOR

ASL

ROL

BCC

;BIT

TAY

LDA

EOR

STA

VALUE

A

flOOOOOOOB

CRC+1

CRC

A

CRCLP1

7 IS 1 SO EXC

CRC

PLY

CRC

CRCLP1:

TYA

EOR

STA

OEX

BNE

PLY+1

CRC+1

CRCLP

;8 BITS PER BYTE

;MOVE BIT 7 TO CARRY

;MOVE CARRY TO BIT 7

;MASK OFF ALL OTHER BITS

;EXCLUSIVE OR BIT 7 WITH BIT 16 OF THE CRC

;SHIFT CRC LEFT 1 BIT (FIRST THE LOW BYTE,

; THEN THE HIGH BYTE)

;BRANCH IF THE MSB OF THE CRC IS 1

;SAVE CRC HIGH IN Y

;EXCLUSIVE OR LOW BYTE WITH THE POLYNOMIAL

;DO HIGH BYTE ALSO

;STORE THE HIGH BYTE OF THE CRC

;BRANCH IF NOT DONE WITH ALL 8 BITS

;RESTORE THE REGISTERS AND EXIT

PLA

TAX

PLA

TAY

PLA

PLP

RTS

;ROUTINE: ICRC16

;PURPOSE: INITIALIZE CRCHI, CRCLO, PLYHI, PLYLO

;ENTRY: NONE

;EXIT: CRC AND POLYNOMIAL INITIALIZED

,-REGISTERS USED: A,F

ICRC16:

LDA

STA

STA

LDA

STA

#0

CRC

CRC+1

#5

PLY

LDA

STA

RTS

#80H

PLY+1

;CRC = 0

;PLY = 8005H

;8005H IS FOR

; (1 IN EACH POSITION FOR WHICH A POWER

; APPEARS IN THE FORMULA)

438 INPUT/OUTPUT

**

;ROUTINE: GCRC16

;PURPOSE: GET THE CRC16 VALUE

;ENTRY: NONE

;EXIT: REGISTER A = CRC16 HIGH BYTE

7 REGISTER Y = CRC16 LOW BYTE

;REGISTERS USED: A,F,Y
••••a***************************************

GCRC16:

LDA

LDY

RTS

CRC+1

CRC

VALUE: .BLOCK 1

CRC: .BLOCK 2

PLY: .BLOCK 2

;A

;Y

HIGH BYTE

LOW BYTE

;DATA BYTE

;CRC VALUE

;POLYNOMIAL VALUE USED TO GENERATE THE CRC

SAMPLE EXECUTION:

SC1005:

;GENERATE A CRC FOR A VALUE OF 1 AND CHECK IT

JSR

LDA

JSR

JSR

TAX

JSR

LDA

JSR

TXA

JSR

TYA

JSR

JSR

BRK

ICRC16

#1
CRC 16

GCRC16

ICRC16

#1

CRC 16

CRC 16

CRC 16

GCRC16

;GENERATE CRC

;SAVE CRC HIGH BYTE IN REGISTER X

;INITIALIZE AGAIN

;CHECK CRC BY GENERATING IT FOR DATA

; AND THE STORED CRC ALSO

;THE CRC SHOULD BE ZERO IN REGISTERS A AND Y

;GENERATE A CRC FOR THE VALUES FROM 0..255 AND CHECK IT

JSR ICRC16

LDX

GENLP:

#0

TXA

JSR

INX

BNE

JSR

STA

STY

CRC16

GENLP

GCRC16

CRCVAL+1

CRCVAL

;GET NEXT BYTE

;UPDATE CRC

;BRANCH IF NOT DON

;GET RESULTING CRC

;AND SAVE IT

10E CRC-16 CHECKING AND GENERATION (ICRC16, CRC16. GCRC16) 439

;CHECK

JSR

LDX

CHKLP:

TXA

JSR

INX

BNE

;ALSO

LDA

JSR

LDA

JSR

JSR

BRK

JMP

CRCVAL: BLOCK

• END

THE CRC BY GENERATING IT AGAIN

ICRC16

#0

CRC 16

CHKLP

INCLUDE STORED

CRCVAL+1

CRC 16

CRCVAL

CRC16

GCRC16

SC1005

2

CRC IN CHECK

;HIGH BYTE OF CRC

;THEN LOW BYTE OF

;GET RESULTING CRC

;IT SHOULD BE 0

I/O Device Table Handler (lOHDLR) 10F

Performs input and output in a device-
independent manner using I/O control

blocks and an I/O device table. The I/O

device table consists of a linked list; each

entry contains a link to the next entry, the

device number, and starting addresses for

routines that initialize the device, determine

its input status, read data from it, determine

its output status, and write data to it. An I/O

control block is an array containing the

device number, the operation number,

device status, the starting address of the

device's buffer, and the length of the device's

buffer. The user must provide IOHDLR with

the address of an appropriate I/O control

block and the data if only one byte is to be

written. IOHDLR will return a copy of the

status byte and the data if only one byte is

read.

This subroutine is intended as an example

of how to handle input and output in a

device-independent manner. The I/O device

table must be constructed using subroutines

INITIO, which initializes the device list to

empty, and ADDDL, which adds a device to

the list. A specific example for the Apple II

sets up the Apple II console as device 1 and

the printer as device 2; a test routine reads a

line from the console and echoes it to the

console and the printer.

A general purpose program will perform

input or output by obtaining or constructing

an I/O control block and then calling

IOHDLR. Subroutine IOHDLR will then

determine which device to use and how to

transfer control to its I/O driver by using the

I/O device table.

Procedure: The program first initializes the

status byte to zero, indicating no errors. It

Registers Used

1. By IOHDRL: All

2. By INITL: A, F

3. By ADDDL: All

Execution Time

1. For IOHDLR: 93 cycles overhead plus

59 cycles for each unsuccessful match of a device
number

2. For INITL: 14 cycles

3. For ADDDL: 48 cycles

Program Size

1. For IOHDLR: 101 bytes

2. For INITL: 9 bytes

3. For ADDDL: 21 bytes

Data Memory Required: Three bytes anywhere

in RAM plus six bytes on page 0. The three bytes

anywhere in RAM hold an indirect address used

to vector to an I/O subroutine (two bytes starting

at address OPADR) and the X register (one byte

at address SVXREG). The six bytes on page 0

hold the starting address of the I/O control block

(two bytes starting at address IOCB), the head of

the list of devices (two bytes starting at address

DVLST), and the starting address of the current

device table entry (two bytes starting at address

CURDEV).

then searches the device table, looking for

the device number in the I/O control block. If

it does not find a match in the table, it exits

with an appropriate error number in the

status byte. If the program finds a device with

the proper device number, it checks for a

valid operation and transfers control to the

appropriate routine from the entry in the

device table. That routine must then transfer

control back to the original calling routine. If

the operation is invalid (the operation num

ber is too large or the starting address for the

routine is zero), the program returns with an

error indication in the status byte.

440

Subroutine INITDL initializes the device

list, setting the initial link to zero.

Subroutine ADDDL adds an entry to the

10F I/O DEVICE TABLE HANDLER (IOHDLR) 441

device list, making its address the head of the

list and setting its link field to the old head of

the list.

Entry Conditions

1. For IOHDLR:

(A) = More significant byte of starting

address of input/output control block

(Y) = Less significant byte of starting

address of input/output control blocK

(X) = Byte of data if the operation is to write

one byte.

2. For INITL: None

3. For ADDDL:

(A) = More significant byte of starting

address of a device table entry

(Y) = Less significant byte of starting

address of a device table entry.

Exit Conditions

1. For IOHDLR:

(A) = I/O control block status byte if an

error is found; otherwise, the routine exits to

the appropriate I/O driver.

(X) = Byte of data if the operation is to read

one byte.

2. For INITL:

Device list header (addresses DVLST and

DVLST+1) cleared to indicate empty list.

3. For ADDDL:

Device table entry added to list.

Example

In the example provided, we have the follow

ing structure:

INPUT/OUTPUT OPERATIONS

Operation

Number

0

1

2

3

4

5

6

Operation

Initialize device

Determine input status

Read 1 byte from input device

Read N bytes from input device (normally

one line)

Determine output status

Write one byte to output device

Write N bytes to output device (normally

one line)

INPUT/OUTPUT CONTROL BLOCK

Index Contents

0 Device number

1 Operation number

2 Status

3 Less significant byte of starting address of

buffer

4 More significant byte of starting address of

buffer

5 Less significant byte of buffer length

6 More significant byte of buffer length

442 INPUT/OUTPUT

DEVICE TABLE ENTRY

Index Contents

0 Less significant byte of link field (starting

address of next element)

1 More significant byte of link field (starting

address of next element)

2 Device number

3 Less significant byte of starting address of

device initialization routine

4 More significant byte of starting address of

device initialization routine

5 Less significant byte of starting address of

input status determination routine

6 . More significant byte of starting address of

input status determination routine

7 Less significant byte of starting address of

input driver routine (read 1 byte only)

8 More significant byte of starting address of

input driver routine (read 1 byte only)

9 Less significant byte of starting address of

input driver routine (N bytes or 1 line)

10 More significant byte of starting address of

input driver routine (N bytes or 1 line)

11 Less significant byte of starting address of

output status determination routine

12 More significant byte of starting address of

output status determination routine

13 Less significant byte of starting address of

output driver routine (write 1 byte only)

14 More significant byte of starting address of

output driver routine (write 1 byte only)

15 Less significant byte of starting address of

output driver routine (N bytes or 1 line)

16 More significant byte of starting address of

output driver routine (N bytes or 1 line)

If an operation is irrelevant or undefined

for a particular device (e.g., output status

determination for a keyboard or an input

driver routine for a printer), the correspond

ing starting address in the device table must

be set to zero (i.e., 000016).

Value

0

1

2

3

STATUS VALUES

Description

No errors

Bad device number (no such device)

Data available from input device, no such

operation for I/O

Output device ready

Title

Name:

Purpose:

I/O Device table handler

IOHDLR

Perform I/O in a device independent manner.

This can only be implemented by accessing all

devices in the same way using a I/O Control

Block (IOCB) and a device table. The routines

here will allow the following operations:

10F I/O DEVICE TABLE HANDLER (lOHDLR) 443

Entry:

Exit:

Operation number Description

0 Initialize device

1 Input status

2 Read 1 byte

3 Read N bytes

4 Output status

5 Write 1 byte

6 Write N bytes

Other operations that could be included are
Open, Close, Delete, Rename, and Append which

would support devices such as floppy disks.

A IOCB will be an array of the following form:

IOCB + 0 = Device number

IOCB + 1 = Operation number

IOCB + 2 = Status

IOCB + 3 = Low byte buffer address

IOCB + 4 = High byte of buffer address

IOCB + 5 = Low byte of buffer length

IOCB + 6 = High byte of buffer length

The device table is implemented as a linked

list. Two routines maintain the list: INITIO,

which initializes the device list to empty, and

ADDDL, which adds a device to the list.

A device table entry has the following form:

DVTBL + 0 = Low byte of link field

DVTBL + 1 = High byte of link field

DVTBL + 2 = Device number

DVTBL + 3 = Low byte of initialize device

DVTBL + 4 = High byte of initialize device

DVTBL + 5 = Low byte of input status routine

DVTBL + 6 = High byte of input status routine

DVTBL + 7 = Low byte of input 1 byte routine

DVTBL + 8 = High byte of input 1 byte routine

DVTBL + 9 = Low byte of input N bytes routine

DVTBL + 10= High byte of input N bytes routine

DVTBL + 11= Low byte of output status routine

DVTBL + 12= High byte of output status routine

DVTBL + 13= Low byte of output 1 byte routine

DVTBL + 14= High byte of output 1 byte routine

DVTBL + 15= Low byte of output N bytes routine

DVTBL + 16= High byte of output N bytes routine

Register A = High byte of IOCB

Register Y = Low byte of IOCB

Register X = For write 1 byte contains the byte

to write, a buffer is not used.

Register A = a copy of the IOCB status byte

Register X = For read 1 byte contains the byte

read, a buffer is not used. ;

Status byte of IOCB is 0 if the operation was ;

444 INPUT/OUTPUT

completed successfully; otherwise it contains

the error number.

Status value Description

0 No errors

1 Bad device number

2 Input data available, no such

operation

3 Output ready

Registers used: All

Time:

Size:

93 cycles minimum plus 59 cycles for each

device in the list which is not the requested

device.

Program 131 bytes

Data 3 bytes plus

6 bytes in page zero

;IOCB AND DEVICE TABLE EQUATES

;IOCB DEVICE NUMBER

;IOCB OPERATION NUMBER

;IOCB STATUS

;IOCB BUFFER ADDRESS

;IOCB BUFFER LENGTH

;DEVICE TABLE LINK FIELD

;DEVICE TABLE DEVICE NUMBER

;BEGINNING OF DEVICE TABLE SUBROUTINES

;NUMBER OF OPERATIONS

;INITIALIZATION

;INPUT STATUS

;READ 1 BYTE

;READ N BYTES

;OUTPUT STATUS

;WRITE 1 BYTE

;WRITE N BYTES

;PAGE ZERO DEFINITIONS

IOCBA: .EQU ODOH ;ADDRESS OF THE IOCB

DVLST: .EQU 0D2H ;ADDRESS OF A LIST OF DEVICES

CURDEV: .EQU 0D4H ;STARTING ADDRESS OF THE CURRENT DEVICE TABLE ENTRY

IOCBDN:

IOCBOP:

IOCBST:

IOCBBA:

IOCBBL:

DTLNK:

DTDN:

DTSR:

.EQU

.EQU

.EQU

.EQU

.EQU

-EQU

.EQU

.EQU

;OPERATION NUM

NUMOP:

INIT:

ISTAT:

R1BYTE:

RNBYTE:

OSTAT:

WlBYTE:

WNBYTE:

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

0

1

2

3

5

0

2

3

BER

7

0

1

2

3

4

5

6

IOHDLR:

;SAVE IOCB ADDRESS AND X REGISTER

STA IOCBA+1

STY IOCBA

STX SVXREG

10F I/O DEVICE TABLE HANDLER (lOHDLR) 445

;INITIALIZE STATUS BYTE TO ZERO (NO ERRORS)

LDY #IOCBST

LDA #0

STA (IOCBA),Y ;STATUS := 0

;SEARCH DEVICE LIST FOR THIS DEVICE

LDA DVLST ;START AT THE BEGINNING OF THE DEVICE LIST

STA CURDEV

LDA DVLST+1

STA CURDEV+1

;GET DEVICE NUMBER FROM IOCB TO REGISTER X

LDY #IOCBDN

LDA (IOCBA),Y

TAX

SRCHLP:

;CHECK IF AT END OF DEVICE TABLE LIST (LINK FIELD = 0000)

LDA CURDEV

ORA CURDEV+1

BEQ BADDN ;BRANCH IF NO MORE DEVICES

;CHECK IF THIS IS THE CORRECT DEVICE

TXA

LDY #DTDN

CMP (CURDEV),Y ;COMPARE THIS DEVICE NUMBER WITH THE REQUESTED

; NUMBER

BEQ FOUND ;BRANCH IF THE DEVICE IS FOUND

;ADVANCE TO THE NEXT DEVICE TABLE ENTRY THROUGH THE LINK FIELD

; MAKE CURRENT DEVICE = LINK

;GET LOW BYTE OF LINK FIELD

; SAVE ON STACK

;GET HIGH BYTE OF LINK FIELD

;RECOVER LOW BYTE OF LINK FIELD

;CONTINUE SEARCHING

;FOUND THE DEVICE SO VECTOR TO THE APPROPRIATE ROUTINE IF ANY
FOUND:

;CHECK THAT THE OPERATION IS VALID

LDY #IOCBOP

LDA (IOCBA),Y ;GET OPERATION NUMBER

CMP #NUMOP

BCS BADOP ;BRANCH IF OPERATION NUMBER IS TOO LARGE

;GET OPERATION ADDRESS (ZERO INDICATES INVALID OPERATION)

ASL A ;MULTIPLY OPERATION NUMBER BY 2 TO INDEX
CLC ; ADDRESSES

ADC #DTSR ;ADD TO OFFSET FOR DEVICE TABLE SUBROUTINES
TAY ;USE AS INDEX INTO DEVICE TABLE

LDY

LDA

PHA

INY

LDA

STA

PLA

STA

JMP

#DTLNK

(CURDEV),Y

(CURDEV),Y

CURDEV+1

CURDEV

SRCHLP

446 INPUT/OUTPUT

BADDN:

LDA

STA

INY

LDA

STA

ORA

BEQ

LDX

JMP

LDA

BNE

(CURDEV),Y

OPADR

(CURDEV),Y

OPADR+1

OPADR

BADOP

SVXREG

(OPADR)

#1
EREXIT

;STORE LOW BYTE

;STORE HIGH BYTE

;CHECK FOR NON-ZERO OPERATION ADDRESS

;BRANCH IF OPERATION IS INVALID (ADDRESS = 0)

;RESTORE X REGISTER

;GOTO ROUTINE

;ERROR CODE 1 — NO SUCH DEVICE

BADOP:

LDA

EREXIT:

LDY

STA

RTS

#2

#IOCBST

(IOCBA),Y

;ERROR CODE 2 — NO SUCH OPERATION

;STORE ERROR STATUS

.**

;ROUTINE: INITDL

;PURPOSE: INITIALIZE THE DEVICE LIST TO EMPTY

;ENTRY: NONE

;EXIT: THE DEVICE LIST SET TO NO ITEMS

;REGISTERS USED: A,F

INITDL:

;INITIALIZE DEVICE LIST TO 0 TO INDICATE NO DEVICES

LDA #0

STA DVLST

STA DVLST+1

RTS

;ROUTINE: ADDDL

;PURPOSE: ADD A DEVICE TO THE DEVICE LIST

;ENTRY: REGISTER A = HIGH BYTE OF A DEVICE TABLE ENTRY

; REGISTER Y = LOW BYTE OF A DEVICE TABLE ENTRY

;EXIT: THE DEVICE TABLE ADDED TO THE DEVICE LIST

;REGISTERS USED: ALL
**

ADDDL:

;X,y

TAX

NEW DEVICE TABLE ENTRY

;PUSH CURRENT HEAD OF DEVICE LIST ON TO STACK

LDA DVLST+1

PHA

LDA DVLST

PHA

10F I/O DEVICE TABLE HANDLER (lOHDLR) 447

;PUSH HIGH BYTE OF CURRENT HEAD OF DEVICE LIST

;PUSH LOW BYTE ALSO

;MAKE NEW DEVICE TABLE ENTRY THE HEAD OF THE DEVICE LIST

STY DVLST

STX DVLST+1

;SET LINK FIELD OF THE NEW DEVICE TO THE OLD HEAD OF THE DEVICE LIST

PLA

, LDY #0

STA (DVLST),Y ;STORE THE LOW BYTE

PLA

INY

STA (DVLST),Y ;STORE THE HIGH BYTE

RTS

;DATA SECTION

OPADR: .BLOCK 2

SVXREG: .BLOCK 1

;OPERATION ADDRESS USED TO VECTOR TO

; SUBROUTINE

;TEMPORARY STORAGE FOR X REGISTER

SAMPLE EXECUTION:

This test routine will set up the APPLE II console as

device 1 and an APPLE II printer which is assumed to be

in slot 1 as device 2. The test routine will then read

a line from the console and echo it to the console and

the printer.

;APPLE II CARRIAGE RETURN CHARACTER

;STARTING ADDRESS OF I/O BUFFER

;EQUATE

CR

CBUF

SC1006:

.EQU

.EQU

08DH

0D6H

;INITIALIZE DEVICE LIST

JSR

;SET

LDA

LDY

JSR

LDA

STA

LDA

STA

LDA

LDY

JSR

INITDL

UP APPLE CONSOLE A

CONDVA+1

CONDVA

ADDDL

#INIT

IOCB+IOCBOP

#1
IOCB+IOCBDN

AIOCB+1

AIOCB

IOHDLR

;ADD CONSOLE DEVICE TO DEVICE LIST

;INITIALIZE OPERATION

;DEVICE NUMBER = 1

;PERFORM INITIALIZATION

LDA

LDY

JSR

LDA

STA

LDA

STA

LDA

LDY

JSR

PRTDVA+1

PRTDVA

ADDDL

#INIT

IOCB+IOCBOP

#2

IOCB+IOCBDN

AIOCB+1

AIOCB

IOHDLR

448 INPUT/OUTPUT

;SET UP APPLE PRINTER AS DEVICE 2

;ADD PRINTER DEVICE TO DEVICE LIST

;INITIALIZE OPERATION

;DEVICE NUMBER = 2

;INITIALIZE PRINTER DEVICE

;LOOP READING LINES FROM CONSOLE, AND ECHOING THEM TO

; THE CONSOLE AND PRINTER UNTIL A BLANK LINE IS ENTERED

TSTLP:

;SET DEVICE TO NUMBER 1 (CONSOLE)

;SET OPERATION TO READ N BYTES

;SET BUFFER LENGTH TO LENBUF

;THE HIGH BYTE OF LENBUF IS 0 IN OUR EXAMPLE

;SET REGISTERS AfY TO THE IOCB ADDRESS

;READ A LINE

;ECHO THE LINE TO THE CONSOLE

;DEVICE IS STILL CONSOLE FROM THE READ LINE ABOVE

LDA #WNBYTE ;SET OPERATION TO WRITE N BYTES

STA IOCB+IOCBOP

LDA AIOCB+1 ;SET REGISTERS A,Y TO THE IOCB ADDRESS

LDY AIOCB

JSR IOHDLR ;WRITE N BYTES

;OUTPUT A CARRIAGE RETURN TO CONSOLE

LDX #CR ;SET REGISTER X TO CARRIAGE RETURN CHARACTER

LDA #W1BYTE ;SET OPERATION TO WRITE 1 BYTE

STA IOCB+IOCBOP

LDA AIOCB+1 ;SET REGISTERS A,Y TO THE IOCB ADDRESS

LDY AIOCB

JSR IOHDLR ;WRITE 1 BYTE

;ECHO THE LINE TO THE PRINTER ALSO

LDA #2 ;SET DEVICE TO NUMBER 2 (PRINTER)

STA IOCB+IOCBDN

LDA #WNBYTE ;SET OPERATION TO WRITE N BYTES

STA IOCB+IOCBOP

LDA AIOCB+1 ;SET REGISTERS A,Y TO THE IOCB ADDRESS

LDY AIOCB

JSR IOHDLR ;WRITE N BYTES

;WRITE A CARRIAGE RETURN TO THE PRINTER

LDX #8DH ;SET REGISTER X TO CARRIAGE RETURN CHARACTER

LDA #WlBYTE ;SET OPERATION TO WRITE 1 BYTE

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDA

LDY

JSR

#1
IOCB+IOCBDN

#RNBYTE

IOCB+IOCBOP

#LENBUF

IOCB+IOCBBL

#0

IOCB+IOCBBL+1

AIOCB+1

AIOCB

IOHDLR

10F I/O DEVICE TABLE HANDLER (lOHDLR) 449

STA

LDA

LDY

JSR

LDA

LDY

ORA

BNE

BRK

JMP

IOCB+IOCBOP

AIOCB+1

AIOCB

IOHDLR

IOCB+IOCBBL

#1

IOCB+IOCBBL,Y

TSTLP

SC1006

;IOCB FOR PREFORMING THE 10

AIOCB:

IOCB

;BUFFER

LENBUF

BUFFER

;DEVICE

CONDVA:

CONDV:

PRTDVA:

PRTDV:

.WORD

.BLOCK

.BLOCK

.BLOCK

.WORD

• WORD

.EQU

.BLOCK

IOCB

1

1

1

BUFFER

LENBUF

127

LENBUF

TABLE ENTRIES

.WORD

.WORD

.BYTE

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

• WORD

.WORD

.BYTE

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

.WORD

CONDV

0

1

CINIT

CISTAT

CIN

CINN

COSTAT

COUT

COUTN

PRTDV

0

2

PINIT

0

0

0

POSTAT

POUT

POUTN

;SET REGISTERS A,Y TO THE IOCB ADDRESS

;WRITE 1 BYTE

;GET LOW BYTE

;0R WITH HIGH BYTE

;BRANCH IF BUFFER LENGTH IS NOT ZERO

;ADDRESS OF THE IOCB

;DEVICE NUMBER

;OPERATION NUMBER

;STATUS

;BUFFER ADDRESS

;BUFFER LENGTH

;CONSOLE DEVICE ADDRESS

;LINK FIELD

;DEVICE 1

;CONSOLE INITIALIZE

;CONSOLE INPUT STATUS

;CONSOLE INPUT 1 BYTE

;CONSOLE INPUT N BYTES

;CONSOLE OUTPUT STATUS

;CONSOLE OUTPUT 1 BYTE

;CONSOLE OUTPUT N BYTES

;PRINTER DEVICE ADDRESS

;LINK FIELD

;DEVICE 2

;PRINTER INITIALIZE

;N0 PRINTER INPUT STATUS

;N0 PRINTER INPUT 1 BYTE

;N0 PRINTER INPUT N BYTES

;PRINTER OUTPUT STATUS

;PRINTER OUTPUT 1 BYTE

;PRINTER OUTPUT N BYTES

450 INPUT/OUTPUT

;CONSOLE INITIALIZE

CINIT:

LDA #0 ;A = STATUS NO ERRORS

RTS ;NO INITIALIZATION NECESSARY

;CONSOLE INPUT STATUS (READY IS BIT 7 OF ADDRESS 0C000H)

CISTAT:

LDA OCOOOH ;GET KEYBOARD STATUS BYTE

BPL CNONE ;BRANCH IF CHARACTER IS NOT READY

LDA #2 ;INDICATE CHARACTER IS READY

BNE CIS1 ;BRANCH ALWAYS TAKEN

CNONE:

LDA #0 ;NOT READY

CIS1

LDY #IOCBST

STA (IOCBA),Y ;STORE STATUS AND LEAVE IT IN REGISTER A

RTS

;CONSOLE READ 1 BYTE

CIN:

LDA COOOH

BPL CIN ;WAIT FOR CHARACTER TO BECOME READY

TXA ;MOVE CHARACTER TO REGISTER X

LDA #0 ;STATUS = NO ERRORS

RTS

;CONSOLE READ N BYTES

CINN:

;READ LINE USING THE APPLE MONITOR GETLN ROUTINE AT 0FD6AH

; 33H = PROMPT LOCATION

; 200H = BUFFER ADDRESS

LDA #"?" OR 80H ;SET BIT 7

STA 033H ;SET UP APPLE PROMPT CHARACTER

JSR 0FD6AH ;CALL APPLE MONITOR GETLN ROUTINE

;VERIFY THAT THE NUMBER OF BYTES READ WILL FIT INTO THE CALLERS BUFFER

;GET HIGH BYTE

;BRANCH IF HIGH BYTE IS NOT ZERO

;BRANCH IF THE NUMBER OF CHARACTERS READ IS

; LESS THAN THE BUFFER LENGTH

;BRANCH IF THE LENGTHS ARE EQUAL

;OTHERWISE TRUNCATE THE NUMBER OF CHARACTERS

: READ TO THE BUFFER LENGTH

;SET BUFFER LENGTH TO NUMBER OF CHARACTERS READ

;ZERO UPPER BYTE OF BUFFER LENGTH

CINN1:

LDY

LDA

BNE

DEY

TXA

CMP

BCC

BEQ

LDA

TAX

TXA

STA

LDA

INY

STA

#IOCBBL+1

(IOCBA)fY

CINN1

(IOCBA),Y

CINN1

CINN1

(IOCBA),Y

(IOCBA),Y

#0

(IOCBA),Y

10F I/O DEVICE TABLE HANDLER (lOHDLR) 451

• MOVE THE DATA FROM APPLE BUFFER AT 20OH TO CALLER'S BUFFER

;GET POINTER TO CALLER'S BUFFER FROM IOCB

;SAVE POINTER ON PAGE ZERO

;SET UP MSB OF POINTER ALSO

;EXIT IF NO BYTES TO MOVE

;GET A BYTE FROM APPLE BUFFER

;MOVE BYTE TO CALLER'S BUFFER

;COUNT BYTES

;NO ERRORS

;STATUS IS ALWAYS READY TO OUTPUT

CINN2:

CINN3:

LDY

LDA

STA

INY

LDA

STA

TXA

BEQ

LDY

#IOCBBA

(IOCBA),Y

CBUF

(IOCBA),Y

CBUF+1

CINN3

#0

;NOW MOVE THE DAT

LDA

STA

INY

DEX

BNE

200H,Y

(CBUF),Y

CINN2

;GOOD STATUS (0)

LDA

RTS

;CONSOLE OUTPUT

COSTAT:

LDA

RTS

;CONSOLE OUTPUT

COUT:

COUT1:

TXA

JSR

LDA

RTS

#0

STATUS

#3

1 BYTE

OFDEDH

#0

COUT1A: .WORD COUTl

;APPLE CHARACTER OUTPUT ROUTINE

;STATUS = NO ERRORS

;ADDRESS OF OUTPUT ROUTINE TO BE PLACED IN A,Y

;CONSOLE OUTPUT N BYTES

COUTN:

LDA

LDY

JSR

LDA

RTS

COUT1A+1

COUT1A

OUTN

#0

;A,Y = ADDRESS OF OUTPUT ROUTINE

;CALL OUTPUT N CHARACTERS

;STATUS = NO ERRORS

.a**************************************

;PRINTER ROUTINES

; ASSUME PRINTER CARD IS IN SLOT 1
**

452 INPUT/OUTPUT

;PRINTER INITIALIZE

PINIT:

LDA #0 ;NOTHING TO DO, RETURN NO ERRORS

RTS

;PRINTER OUTPUT STATUS

POSTAT:

LDA #0 ;ASSUME IT IS ALWAYS READY

RTS

;PRINTER OUTPUT 1 BYTE

POUT:

TXA

POUT1:

JSR 0C107H • ;CHARACTER OUTPUT ROUTINE

LDA #0

RTS

POUT1A: .WORD POUTl ;ADDRESS OF CHARACTER OUTPUT ROUTINE TO BE

; PLACED IN AfY

;PRINTER OUTPUT N BYTES

POUTN:

LDA POUT1A+1

LDY POUT1A ;A,Y = ADDRESS OF OUTPUT ROUTINE

JSR OUTN ;CALL OUTPUT N CHARACTERS

LDA #0 ;NO ERRORS

RTS

.•a***************************************

•ROUTINE: OUTN

;PURPOSE: OUTPUT N CHARACTERS

;ENTRY: REGISTER A = HIGH BYTE OF CHARACTER OUTPUT SUBROUTINE ADDRESS

; REGISTER Y = LOW BYTE OF CHARACTER OUTPUT SUBROUTINE ADDRESS

; IOCBA = STARTING ADDRESS OF AN IOCB

;EXIT: DATA OUTPUT

REGISTERS USED: ALL
a**

OUTN:

;STORE ADDRESS OF THE CHARACTER OUTPUT SUBROUTINE

STA COSR+1

STY COSR

;GET OUTPUT BUFFER ADDRESS FROM IOCB, SAVE ON PAGE ZERO

LDY #IOCBBA

LDA (IOCBA),Y

STA CBUF

INY

LDA (IOCBA),Y

STA CBUF+1

10F I/O DEVICE TABLE HANDLER (lOHDLR) 453

;GET BUFFER LENGTH FROM IOCB, EXIT IF IT IS ZERO

OUTLP:

LPO:

LP1:

LP2:

LDY

LDA

STA

INY

LDA

STA

ORA

BEQ

#IOCBBL

(IOCBA),Y

BUFLEN

(IOCBA),Y

BUFLEN+1

BUFLEN

OUT3 ;BRANCH IF BUFFER LENGTH IS ZERO

;START AT BEGINNING OF BUFFER

LDA #0

STA IDX

LDY

LDA

JSR

JMP

JMP

IDX

(CBUF),Y

LPO

LP1

(COSR)

;GET NEXT CHARACTER FROM BUFFER

;WRITE CHARACTER TO OUTPUT DEVICE

;OUTPUT THE CHARACTER VIA THE CURRENT

; OUTPUT SUBROUTINE

OUT 3:

;INCREMENT TO THE NEXT CHARACTER IN THE BUFFER

INC IDX

BNE LP2

INC CBUF+1 ;INCREMENT THE HIGH BYTE IS NECESSARY

;DECREMENT BUFFER LENGTH, CONTINUE LOOPING IF IT IS NOT ZERO

;BORROW FROM HIGH BYTE IF NECESSARY

;ALWAYS DECREMENT LOW BYTE

;CONTINUE UNLESS ALL CHARACTERS SENT

;ADDRESS OF THE CHARACTER OUTPUT SUBROUTINE

;TEMPORARY BUFFER LENGTH

;TEMPORARY INDEX

DECLS:

LDA

BNE

DEC

DEC

BNE

LDA

BNE

BUFLEN

DECLS

BUFLEN+1

BUFLEN

OUTLP

BUFLEN+1

OUTLP

RTS

COSR:

BUFLEN:

IDX:

.WORD

.WORD

.BYTE

0

0

0

.END

Initialize I/O Ports (IOPORTS) 10G

Initializes a set of I/O ports from an array
of port addresses and initial values. Examples

are given of initializing programmable I/O

devices such as the 6520 Peripheral Interface

Device (Adapter), the 6522 Versatile Inter

face Adapter, the 6530 Multifunction

Device, the 6532 Multifunction Device, the

6551 Asychronous Communications Device

Adapter, and the 6850 Asynchronous Com

munications Device Adapter.

This subroutine is intended as a

generalized method for initializing I/O sec

tions. The initialization may involve data

ports, data direction registers that determine

whether bits are inputs or outputs, control or

command registers that determine the

operating modes of programmable devices,

counters (in timers), priority registers, and

other external registers or storage locations.

Some of the tasks the user may perform

with this routine are:

1. Assign bidirectional I/O lines as inputs

or outputs.

2. Initialize output ports to known starting

values.

3. Enable or disable interrupts from pe

ripheral chips.

4. Determine operating modes, such as

whether inputs are latched, whether strobes

are produced, how priorities are assigned,

whether timers operate continuously or only

on demand, etc.

5. Load initial counts into timers.

Registers Used: All

Execution Time: 16 cycles overhead plus 52

cycles per port entry. If, for example, NUMBER

OF PORT ENTRIES = 10, execution time is

52 * 10 + 16 = 520 + 16 = 536 cycles.

Program Size: 40 bytes plus the size of the table

(three bytes per entry)

Data Memory Required: Four bytes on page 0,

two for a pointer to the array (starting at address

ARYADR, 00D016 in the listing) and two for a

pointer to the port (starting at address PRTADR,

00D216 in the listing).

6. Select bit rates for communications.

7. Clear or reset devices that are not tied

to the overall system reset line.

8. Initialize priority registers or assign

initial priorities to interrupts or other opera

tions.

9. Initialize vectors used in servicing

interrupts, DMA requests, and other inputs.

Procedure: The program loops through the

specified number of ports, obtaining the port

address and the initial value from the array

and storing the initial value in the port

address. This procedure does not depend on

the type of devices used in the I/O section or

on the number of devices. Additions and

deletions can be made by means of appropri

ate changes in the array and in the parameters

of the routine, without changing the routine

itself.

454

10G INITIALIZE I/O PORTS (IPORTS) 455

Entry Conditions

(A) = More significant byte of starting

address of array of ports and initial values

(Y) = Less significant byte of starting

address of array of ports and initial values

(X) = Number of entries in array (number

of ports to initialize).

Exit Conditions

All ports initialized.

Example

Data: Number of ports to initialize =

Array elements are:

High byte of port 1 address

Low byte of port 1 address

Initial value for port 1

High byte of port 2 address

Low byte of port 2 address

Initial value for port 2

High byte of port 3 address

Low byte of port 3 address

Initial value for port 3

Result: Initial value for port 1 stored in port 1

address

Initial value for port 2 stored in port 2

address

Initial value for port 3 stored in port 3

address.

Note that each element in the array consists

of 3 bytes containing:

Less significant byte of port address

More significant byte of port address

Initial value for port

Title

Name:

Purpose:

Entry:

Initialize I/O ports
IPORTS

Initialize I/O ports from an array of port
addresses and values.

Register A = High byte of array address

456 INPUT/OUTPUT

Register Y = Low byte of array address

Register X = Number of ports to initialize

The array consists of 3 byte elements.

array+0 « High byte of port 1 address

array+1 = Low byte of port 1 address

array+2 = Value to store in port 1 address
array+3 = High byte of port 2 address

array+4 = &ow byte of port 2 address

array+5 = Value to store in port 2 address

Exit: None

Registers used: All

Time:

Size:

16 cycles overhead plus

52 cycles per port to initialize

Program 40 bytes

Data 2 bytes in page zero

;PAGE ZERO POINTERS

ARYADR .EQU 0D0H

PRTADR .EQU 0D2H

;ARRAY ADDRESS

;PORT ADDRESS

IPORTS:

LOOP:

;SAVE STARTING ADDRESS OF INITIALIZATION ARRAY
STA ARYADR+1

STY ARYADR

;EXIT IF THE NUMBER OF PORTS IS ZERO

TXA ;SET FLAGS

BEQ EXITIP ;EXIT IF NUMBER OF PORTS = 0

;LOOP PICKING UP THE PORT ADDRESS AND

; SENDING THE VALUE UNTIL ALL PORTS ARE INITIALIZED

•GET PORT ADDRESS FROM ARRAY AND SAVE IT

LDY #0

LDA (ARYADR),Y ;GET LOW BYTE OF PORT ADDRESS

STA PRTADR

INY

LDA (ARYADR),Y ;GET HIGH BYTE OF PORT ADDRESS

STA PRTADR+1

;GET THE INITIAL VALUE AND SEND IT TO THE PORT

INY

LDA (ARYADR),Y ;GET INITIAL VALUE

LDY #0
STA (PRTADR)rY ;OUTPUT TO PORT

10G INITIALIZE I/O PORTS (IPORTS) 457

L00P1:

;POINT TO THE NEXT ARRAY ELEMENT

LDA ARYADR

CLC
ADC #3 -ADD 3 TO LOW BYTE OF THE ADDRESS

STA ARYADR

BCC LOOP1
INC ARYADR+1 ;INCREMENT HIGH BYTE IF A CARRY

;DECREMENT NUMBER OF PORTS TO DO,EXIT WHEN ALL PORTS ARE INITIALIZED

DEX

BNE LOOP

EXITIP:

RTS

SAMPLE EXECUTION:

;INITIALIZE

6520 PIA

6522 VIA

6530 ROM/RAM/IO/TIMER

6532 RAM/IO/TIMER

6850 SERIAL INTERFACE(ACIA)

; 6551

SC1007:

SERIAL

LDA

LDY

LDX

JSR

BRK

INTERFACE(ACIA)

ADRARY+1

ADRARY

SZARY

IPORTS ;INITIALIZE THE PORTS

ARRAY:

INITIALIZE 6520, ASSUME BASE ADDRESS FOR REGISTERS AT 2000H

; PORT A = INPUT

; CA1 = DATA AVAILABLE, SET ON LOW TO HIGH TRANSITION, NO INTERRUPTS

; CA2 = DATA ACKNOWLEDGE HANDSHAKE

.WORD 2001H ;6520 CONTROL REGISTER A ADDRESS

.BYTE 00000000B ;INDICATE NEXT ACCESS TO DATA DIRECTION

; REGISTER (SAME ADDRESS AS DATA REGISTER)

.WORD 2000H ;6520 DATA REGISTER A ADDRESS

.BYTE 00000000B ;ALL BITS = INPUT

.WORD 2001H ;6520 CONTROL REGISTER A ADDRESS

.BYTE 00100110B ;SET UP CAl,CA2 AND SET BIT 2 TO DATA REGISTER

; PORT B = OUTPUT

; CBl = DATA ACKNOWLEDGE, SET ON HIGH TO LOW TRANSITION, NO INTERRUPTS

; CB2 = DATA AVAILABLE, CLEARED BY WRITING DATA REGISTER B

SET TO 1 BY HIGH TO LOW TRANSITION ON CBl

458 INPUT/OUTPUT

.WORD

.BYTE

2G03H

00000000B

.WORD 2002H

.BYTE 11111111B

.WORD 2003H

•BYTE 00100100B

;6520 CONTROL REGISTER B ADDRESS

;INDICATE NEXT ACCESS TO DATA DIRECTION

; REGISTER

;6520 DATA REGISTER B ADDRESS

;ALL BITS = OUTPUT

;6520 CONTROL REGISTER B ADDRESS

;SET UP CBl,CB2 AND SET BIT 2 TO DATA REGISTER

^•INITIALIZE 6522, ASSUME BASE ADDRESS FOR REGISTERS AT 2010H

; PORT A = BITS 0..3 = OUTPUT, BITS 4..7 = INPUT

; CA1, CA2 ARE NOT USED.

; PORT B = LATCHED INPUT

; CB1 = DATA AVAILABLE, SET ON LOW TO HIGH TRANSITION

; CB2 = DATA ACKNOWLEDGE HANDSHAKE

.WORD 2013H ;6522 DATA DIRECTION REGISTER A

.BYTE 00001111B ;BITS 0..3 = OUTPUT, 4.. 7 = INPUT

.WORD 2012H ;6522 DATA DIRECTION REGISTER B

.BYTE 00000000B ;ALL BITS = INPUT

.WORD 201CH ;6522 PERIPHERAL CONTROL REGISTER

.BYTE 10010000B ;SET UP CBl, CB2

.WORD 201BH ;6522 AUXILIARY CONTROL REGISTER

.BYTE 0000001OB ;MAKE PORT B LATCH THE INPUT DATA

INITIALIZE 6530, ASSUME BASE ADDRESS FOR REGISTERS AT 2020H

; PORT A = OUTPUT

; PORT B = INPUT

.WORD 2021H ;6530 DATA DIRECTION REGISTER A

;ALL BITS = OUTPUT

;6530 DATA DIRECTION REGISTER B

;ALL BITS = INPUT

.BYTE 11111111B

.WORD 2023H

.BYTE 00000000B

INITIALIZE 6532, ASSUME BASE ADDRESS FOR REGISTERS AT 2030H

; PORT A = BITS 0..6 = OUTPUT

; BIT 7 = INPUT FOR PORT B DATA AVAILABLE.

; PORT B = INPUT

.WORD 2031H ;6532 DATA DIRECTION REGISTER A

;BITS 0..6 = OUTPUT, BIT 7 = INPUT

;6532 DATA DIRECTION REGISTER B

;ALL BITS = INPUT

.BYTE 01111111B

.WORD 2033H

.BYTE 00000000B

INITIALIZE 6551, ASSUME BASE ADDRESS FOR REGISTERS'AT 2040H

; 8 BIT DATA, NO PARITY

; 1 STOP BIT

; 9600 BAUD FROM ON BOARD BAUD RATE GENERATOR

; NO INTERRUPTS

.WORD 2041H ;WRITE TO 6551 STATUS REGISTER TO RESET

.BYTE 0 ;THIS VALUE COULD BE ANYTHING

.WORD 2042H ;6551 CONTROL REGISTER

.BYTE 10011110B ;1 STOP, 8 BIT DATA, INTERNAL 9600 BAUD

.WORD 2043H ;6551 COMMAND REGISTER

.BYTE 00000011B ;NO PARITY, NO ECHO, NO RECEIVER INTERRUPT,

;DTR LOW

;INITIALIZE 6850, ASSUME BASE ADDRESS FOR REGISTERS AT 2050H

; 8 BIT DATA, NO PARITY

10G INITIALIZE I/O PORTS (IPORTS) 459

; 1 STOP BIT

; DIVIDE MASTER CLOCK BY 1

; NO INTERRUPTS

.WORD

.BYTE

.WORD

.BYTE

ENDARY:

ADRARY: .WORD

SZARY: .BYTE

2050H ;WRITE TO 6850 CONTROL REGISTER

00000011B ;PERFORM A MASTER RESET

2050H ;6850 CONTROL REGISTER

00010101B ;NO INTERRUPTS, RTS LOW,

;8 BITS, 1 STOP, DIVIDE BY 1

ARRAY

(ENDARY - ARRAY) / 3

;END OF ARRAY

;ADDRESS OF ARRAY

;NUMBER OF PORTS TO INITIALIZE

• END ;PROGRAM

Delay Milliseconds (DELAY) 10H

Provides a delay of between 1 and 255
milliseconds, depending on the parameter

supplied. The user must calculate the value

MSCNT to fit a particular computer.

MSCENT = (100/CYCLETIME - 10)/5

= 200/CYCLETIME - 2

CYCLETIME is the number of micro

seconds per clock period for a particular com

puter (1 for KIM-1, SYM-1, and AIM-65,

0.9799269 for APPLE II™).

Procedure: The program simply counts

down the index registers for the appropriate

amount of time as determined by the user-

Registers Used: X, Y, P

Execution Time: 1 millisecond * (Y). If (Y) = 0,

the minimum time is 17 cycles including a JSR

instruction.

Program Size: 156 bytes

Data Memory Required: None

Special Case: (Y) = 0 causes an exit with a

minimum execution time of 17 cycles including a

JSR instruction. (Y) = 0 and (X) is unchanged.

supplied constant. A few extra NOPs take

account of the call instruction, the return

instruction, and the routine overhead.

Entry Conditions

(Y) = Number of milliseconds to delay

(1 to 255).

Exit Conditions

Returns after the specified number of milli

seconds with (X) = (Y) = 0.

Example

Data:

Result:

(Y) = number of milliseconds = 2A,6 = 42,0

Software delay of 2A16 (4210) milliseconds,

assuming that user supplies the proper value

of MSCNT.

Title

Name:

Purpose:

Delay milliseconds

Delay

Delay from 1 to 255 milliseconds

460

10H DELAY MILLISECONDS (DELAY) 461

Entry:

Exit:

Time:

Size:

Register Y = number of milliseconds to delay.

Returns to calling routine after the

specified delay.

Registers used: X,Y,P

1 millisecond * Register Y.

If Y = 0 then the minimum time is 17

cycles including the JSR overhead.

Program 29 bytes

Data NONE

; HERE IS THE FORMULA FOR COMPUTING THE DELAY COUNTS MSCNTl AND MSCNT2

MSCNT = 200/CYCLETIME - 2 WHERE CYCLE TIME IS THE LENGTH

OF A PARTICULAR COMPUTER'S CLOCK PERIOD IN MICROSECONDS

EXAMPLES: KIM, SYM, AIM HAVE 1 MHz CLOCKS, SO MSCNT =198,

APPLE HAS A 1.023 MHz CLOCK, SO MSCNT = 202.

IN THE LAST ITERATION, WE REDUCE THE COUNT BY 3 (MSCNT)

TO DELAY 1 MILLISECOND LESS THE OVERHEAD WHERE THE

OVERHEAD IS:

6 CYCLES ==> JSR DELAY

2 CYCLES ==> CPY #0

2 CYCLES ==> BEQ EXIT (ASSUMED NOT TAKEN)

2 CYCLES ==> NOP

2 CYCLES ==> CPY #1

3 CYCLES ==> BNE DELAYA (ASSUMED TAKEN)

2 CYCLES ==> DEY

-1 CYCLE ==> THE LAST BNE DELAYl NOT TAKEN

2 CYCLES ==> LDX #MSCNT2

-1 CYCLE ==> THE LAST BNE DELAY2 NOT TAKEN
6 CYCLES ==> RTS

25 CYCLES OVERHEAD

EQUATES

MSCNT

1 MHZ CLOCK

.EQU 0C6H

MSCNT

DELAY:

;198 TIMES THROUGH DELAYl

APPLE (1.023 MHZ)

.EQU OCAH ;202 TIMES THROUGH DELAYl

CPY

BEQ

NOP

#0 ; 2 CYCLES

EXIT ; 2 CYCLES (EXIT IF DELAY = 0)

; 2 CYCLES (TO MAKE OVERHEAD =25 CYCLES)

462 INPUT/OUTPUT

;IF DELAY IS TO BE 1 MILLISECOND THEN GOTO LASTl

; THIS LOGIC IS DESIGNED TO BE 5 CYCLES THROUGH EITHER PATH

CPY #1 ; 2 CYCLES

BNE DELAYA ; 3 CYCLES (IF TAKEN ELSE 2 CYCLES)

JMP LASTl ; 3 CYCLES

;DELAY 1 MILLISECOND TIMES(Y-l)

DELAYA:

DELAY0:

DELAY1:

DEY

LDX

DEX

BNE

NOP

NOP

DEY

BNE

#MSCNT

DELAY1

DELAY0

; 2

; 2

; 2

; 3

; 2

; 2

; 2

; 3

CYCLES (PREDECREMENT Y)

CYCLES

CYCLES

CYCLES

CYCLES

CYCLES

CYCLES

CYCLES

LASTl:

DELAY2:

EXIT:

;DELAY THE LAST TIME 25 CYCLES LESS TO TAKE THE

; CALL, RETURN, AND ROUTINE OVERHEAD INTO ACCOUNT

LDX #MSCNT-3 ; 2 CYCLES

DEX

BNE

RTS

DELAY2

; 2 CYCLES

; 3 CYCLES

; 6 CYCLES

SAMPLE EXECUTION:

SC1008:

QTRSCD:

;

;DELAY 10 SECONDS

; CALL DELAY 40 TIMES AT 250 MILLISECONDS EACH

LDA #40 ;40 TIMES (28 HEX)

STA COUNT

;DELAY 1/4 SECOND

LDY

JSR

DEC

BNE

BRK

JMP

#250 ;250 MILLISECONDS (FA HEX)

DELAY

COUNT

QTRSCD

SC1008

;STOP AFTER 10 SECONDS

10H DELAY MILLISECONDS (DELAY) 463

;DA0?A SECTION

COUtiT .BYTE 0

.END ;PROGRAM

Unbuffered Interrupt-Driven Input/Output

Using a 6850 ACIA (SINTIO) 11A

Performs interrupt-driven input and out
put using a 6850 ACIA and single-character

input and output buffers. Consists of the

following subroutines:

1. INCH reads a character from the input

buffer.

2. INST determines whether there is a

character available in the input buffer.

3. OUTCH writes a character into the out

put buffer.

4. OUTST determines whether the output

buffer is full.

5. INIT initializes the 6850 ACIA, the

interrupt vectors, and the software flags

(used to transfer data between the main pro

gram and the interrupt service routine).

6. IOSRVC determines which interrupt

occurred and provides the proper input or

output service. In response to the input inter

rupt, it reads a character from the ACIA into

the input buffer. In response to the output

interrupt, it writes a character from the out

put buffer into the ACIA.

Examples describe a 6850 ACIA on an

Apple II serial I/O board in slot 1.

Procedures:

1. INCH waits for a character to become

available, clears the Data Ready flag

(RECDF), and loads the character into the

accumulator.

2. INST sets the Carry flag from the Data

Ready flag (memory location RECDF).

3. OUTCH waits for the character buffer

to empty, places the character in the buffer,

and sets the Character Available flag

(TRNDF).

Registers Used

1. INCH

2. INST

3. OUTCH

4. OUTST

5. INIT

A,F,

A, F

A, F,

A, F

A, F

Y

Y

Execution Time:

1. INCH 33 cycles if a character is available

2. INST 12 cycles

3. OUTCH 92 cycles if the output

buffer is empty and the ACIA is ready to send

data

4. OUTST 12 cycles

5. INIT 73 cycles

6. IOSRVC 39 cycles to service an input

interrupt, 59 cycles to service an output interrupt,

24 cycles to determine interrupt is from another

device

Program Size: 168 bytes

Data Memory Required: Six bytes anywhere in

RAM. One byte for the received data (at address

RECDAT), one byte for the receive data flag (at

address RECDF), one byte for the transmit data

(at address TRNDAT), one byte for the transmit

data flag (at address TRNDF), and two bytes for

the address of the next interrupt service routine

(starting at address NEXTSR).

4. OUTST sets the Carry flag from the

Character Available flag (memory location

TRNDF).

5. INIT clears the software flags, sets up

the interrupt vector, resets the ACIA (a

master reset, since the ACIA has no reset

input), and initializes the ACIA by placing

the appropriate value in its control register

(input interrupts enabled, output interrupts

disabled).

6. IOSRVC determines whether the inter

rupt was an input interrupt (bit 0 of the ACIA

status register = 1), an output interrupt (bit

464

11A UNBUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTIO) 465

1 of the ACIA status register = 1), or the

product of some other device. If the input

interrupt occurred, the program reads the

data, saves it in memory, and sets the Data

Ready flag (RECDF). If the output interrupt

occurred, the program determines whether

data is available. If not, the program simply

disables the output interrupt. If data is availa

ble, the program sends it to the ACIA, clears

the Character Available flag (TRNDF), and

enables both the input and the output inter

rupts.

The only special problem in using these

routines is that an output interrupt may occur

when no data is available. We cannot ignore

the interrupt or it will assert itself

indefinitely, creating an endless loop. The

solution is to disable output interrupts. But

now we create a new problem when data is

ready to be sent. That is, if we have disabled

output interrupts, the system cannot learn

from an interrupt that the ACIA is ready to

transmit. The solution to this is to create an

additional, non-interrupt-driven entry to the

routine that sends a character to the ACIA.

Since this entry is not caused by an interrupt,

we must check the ACIA to see that its out

put register is actually empty before sending

it a character.

The special sequence of operations is the

following:

1. Output interrupt occurs before new

data is available (that is, the ACIA becomes

ready for data). The response is to disable the

output interrupt, since there is no data to be

sent. Note that this sequence will not occur

initially, since INIT disables the output inter

rupt. Otherwise, the output interrupt would

occur immediately, since the ACIA surely

starts out empty and therefore ready to

transmit data.

2. Output data becomes available. That is,

the system now has data to transmit. But

there is no use sitting back and waiting for the

output interrupt, since it has been disabled.

3. The main program calls the routine

(OUTDAT) that sends data to the ACIA.

Checking the ACIA's status shows that it is,

in fact, ready to transmit a character (it told

us it was when the output interrupt occur

red). The routine then sends the character

and reenables the interrupts.

The basic problem here is that output

devices may request service before the com

puter is ready for them. That is, the devices

can accept data but the computer has nothing

to send. In particular, we have an initializa

tion problem caused by output interrupts

asserting themselves and expecting service.

Input devices, on the other hand, request

service only when they have data. They start

out in the not ready state; that is, an input

device has no data to send initially, while the

computer is ready to accept data. Thus output

devices cause more initialization and

sequencing problems in interrupt-driven

systems than do input devices.

Our solution may, however, result in an

odd situation. Let us assume that the system

has some data ready for output but the ACIA

is not yet ready for it. Then the system must

wait with interrupts disabled for the ACIA to

become ready; that is, an interrupt-driven

system must disable its interrupts and wait

idly, polling the output device. We could

eliminate this drawback by keeping a soft

ware flag that would be changed when the

output interrupt occurred at a time when

there was no data. Then the system could

check the software flag and determine

whether the output interrupt had already

occurred. (See Subroutine 11C.)

466 INTERRUPTS

Entry Conditions Exit Conditions

1. INCH:

2. INST:

3. OUTCH:

accumulator

4. OUTST:

5. INIT:

none

none

character to transmit in

none

none

1. INCH: character in accumulator

2. INST: Carry flag = 0 if no character

is available, 1 is a character is available

3. OUTCH: none

4. OUTST: Carry flag = 0 if output

buffer is empty, 1 if it is full.

Title

Name:

Purpose:

Entry:

Exit:

Simple interrupt input and output using a 6850

ACIA and a single character buffer.

SINTIO

This program consists of 5 subroutines which

perform interrupt driven input and output using

a 6850 ACIA.

INCH

Read a character.

INST

Determine input status (whether the input

buffer is empty).

OUTCH

Write a character.

OUTST

Determine output status (whether the output

buffer is full).

INIT

Initialize.

INCH

No parameters.

INST

No parameters.

OUTCH

Register A = character to transmit

OUTST

No parameters.

INIT

No parameters.

INCH

Register A ■ character.

INST

Carry flag equals 0 if input buffer is empty,

1 if character is available.

11A UNBUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTIO) 467

OUTCH

No parameters

OUTST

Carry flag equals 0 if output buffer is

empty, 1 if it is full.

INIT '
No parameters.

Registers used: INCH

A,F,Y

INST

A,F

OUTCH

A,F,Y

OUTST

A,F

INIT

A,F

Time:

Size:

INCH ?

33 cycles if a character is available ;

INST 1

12 cycles ?

OUTCH ;

92 cycles if the output buffer is empty and
the ACIA is ready to transmit ;

OUTST

12 cycles ?

INIT ;

73 cycles ?

IOSRVC ;

24 cycles minimum if the interrupt is not ours;

39 cycles to service a input interrupt ;

59 cycles to service a output interrupt ;

;

Program 168 bytes ;

Data 6 bytes

;EXAMPLE 6850 ACIA PORT DEFINITIONS FOR AN APPLE SERIAL BOARD IN SLOT 1

ACIASR

ACIADR

ACIACR

IRQVEC

.EQU

• EQU

.EQU

.EQU

0C094H

0C095H

0C094H

03FEH

;READ A CHARACTER

INCH:

JSR

BCC

PHP

SEI

LDA

STA

LDA

PLP

INST

INCH

#0

RECDF

RECDAT

;ACIA STATUS REGISTER

;ACIA DATA REGISTER

;ACIA CONTROL REGISTER

;APPLE IRQ VECTOR ADDRESS

;GET INPUT STATUS

;WAIT IF CHARACTER IS NOT AVAILABLE

;SAVE CURRENT STATE OF INTERRUPT SYSTEM

;DISABLE INTERRUPTS

;INDICATE BUFFER IS NOW EMPTY

;GET THE CHARACTER FROM THE BUFFER

;RESTORE FLAGS

468 INTERRUPTS

RTS

;RETURN INPUT STATUS (CARRY = 1 IF DATA IS AVAILABLE)

INST:

LDA RECDF ;GET THE DATA READY FLAG

LSR A ;SET CARRY FROM FLAG

; CARRY = 1 IF CHARACTER IS AVAILABLE

RTS

;WRITE A CHARACTER

OUTCH:

PHP ;SAVE STATE OF INTERRUPT FLAG

PHA ;SAVE CHARACTER TO OUTPUT

;WAIT FOR THE CHARACTER BUFFER TO EMPTY, THEN STORE THE NEXT CHARACTER

WAITOC:

JSR OUTST ;GET THE OUTPUT STATUS

BCS WAITOC ;WAIT IF THE OUTPUT BUFFER IS FULL

SEI ;DISABLE INTERRUPTS WHILE LOOKING AT THE

; SOFTWARE FLAGS

PLA ;GET THE CHARACTER

STA TRNDAT ;STORE THE CHARACTER

LDA #0FFH ;INDICATE CHARACTER AVAILABLE (BUFFER FULL)

STA TRNDF

JSR OUTDAT ;SEND THE DATA TO THE PORT

PLP ;RESTORE FLAGS

RTS

;OUTPUT STATUS (CARRY = 1 IF BUFFER IS FULL)

OUTST:

LDA TRNDF ;CARRY = 1 IF CHARACTER IS IN THE BUFFER

LSR A

RTS

;INITIALIZE

INIT:

PHP ;SAVE CURRENT STATE OF FLAGS

SEI ;DISABLE INTERRUPTS DURING INITIALIZATION

;INITIALIZE THE SOFTWARE FLAGS

LDA #0

STA RECDF ;NO INPUT DATA AVAILABLE

STA TRNDF ;OUTPUT BUFFER EMPTY

;SAVE THE CURRENT IRQ VECTOR IN NEXTSR

LDA IRQVEC

STA NEXTSR

LDA IRQVEC+1

STA NEXTSR+1

;SET THE IRQ VECTOR TO OUR INPUT SERVICE ROUTINE

LDA AIOS

STA IRQVEC

LDA AIOS+1

STA IRQVEC+1

INITIALIZE THE 6850

LDA #O11B

STA ACIACR ;MASTER RESET ACIA

LDA #1001000lB

STA ACIACR INITIALIZE ACIA MODE TO

11A UNBUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTIO) 469

DIVIDE BY 16

8 DATA BITS

2 STOP BITS

OUTPUT INTERRLPTS DISABLED (NOTE THIS)

INPUT INTERRUPTS ENABLED

AIOS:

PLP

RTS

.WORD IOSRVC

;RESTORE CURRENT STATE OF THE FLAGS

;ADDRESS OF INPUT OUTPUT SERVICE ROUTINE

;INPUT OUTPUT INTERRUPT SERVICE ROUTINE

IOSRVC:

PHA ;SAVE REGISTER A

CLD ;BE SURE PROCESSOR IS IN BINARY MODE

;GET THE ACIA STATUS: BIT 0 ■ 1 IF AN INPUT INTERRUPT

;BIT 1 = 1 IF AN OUTPUT INTERRUPT

LDA ACIASR

LSR A ?BIT 0 TO CARRY

BCS IINT ;BRANCH IF AN INPUT INTERRUPT

LSR A ;BIT 1 TO CARRY

BCS OINT ;BRANCH IF AN OUTPUT INTERRUPT

;THE INTERRUPT WAS NOT CAUSED BY THIS ACIA

PLA

JMP (NEXTSR) ;GOTO THE NEXT SERVICE ROUTINE

;SERVICE INPUT INTERRUPTS

IINT:

LDA

STA

LDA

STA

JMP

ACIADR

RECDAT

#0FFH

RECDF

EXIT

;SERVICE OUTPUT INTERRUPTS

OINT:

LDA

BEQ

JSR

JMP

TRNDF

NODATA

OUTDT1

EXIT

;READ THE DATA

;STORE IT AWAY

;INDICATE WE HAVE A CHARACTER IN RECDAT

;EXIT IOSRVC

;GET DATA AVAILABLE FLAG

;BRANCH IF NO DATA TO SEND

; ELSE OUTPUT THE DATA,

; (WE DO NOT NEED TO TEST THE STATUS)

7IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE,

7 WE MUST DISABLE THE INTERRUPT TO AVOID AN ENDLESS LOOP.

? LATER WHEN A CHARACTER BECOMES AVAILABLE, WE CALL THE

? OUTPUT ROUTINE, OUTDAT, WHI£H MUST TEST ACIA STATUS BEFORE

7 SENDING THE DATA. THE OUTPUT ROUTINE MUST ALSO REENABLE THE OUTPUT

7 INTERRUPT AFTER SENDING THE DATA. THIS PROCEDURE OVERCOMES THE

7 PROBLEMS OF AN UNSERVICED OUTPUT INTERRUPT ASSERTING ITSELF

? REPEATEDLY, WHILE STILL ENSURING THAT OUTPUT INTERRUPTS ARE

? RECOGNIZED AND THAT DATA IS NEVER SENT TO AN ACIA THAT IS

7 NOT READY FOR IT. THE BASIC PROBLEM HERE IS THAT AN OUTPUT

? DEVICE MAY REQUEST SERVICE BEFORE THE COMPUTER HAS

7 ANYTHING TO SEND (WHEREAS AN INPUT DEVICE HAS DATA WHEN IT

470 INTERRUPTS

; REQUESTS SERVICE)

NODATA:

EXIT:

LDA

STA

PLA

RTI

#1OO1OOO1B

ACIACR

;DISABLE OUTPUT INTERRUPTS, ENABLE INPUT

; INTERRUPTS, 8 DATA BITS, 2 STOP BITS,^DIVIDE

; BY 16 CLOCK

;TURN OFF OUTPUT INTERRUPTS

;RESTORE REGISTER A

;RETURN FROM INTERRUPT

;ROUTINE: OUTDAT, OUTDTl (OUTDAT IS NON-INTERRUPT DRIVEN ENTRY POINT)

;PURPOSE: SEND A CHARACTER TO THE ACIA

;ENTRY: TRNDAT = CHARACTER TO SEND

;EXIT: NONE

;REGISTERS USED: A,F
**

;NON-INTERRUPT ENTRY. MUST CHECK IF ACIA IS READY OR WAIT FOR IT

OUTDAT:

LDA ACIASR ;CAME HERE WITH INTERRUPTS DISABLED

AND #00000010B ;TEST THE ACIA OUTPUT REGISTER FOR EMPTY

BEQ OUTDAT ;BRANCH IF IT IS NOT EMPTY

•GET THE CHARACTER

;OUTPUT DATA

;INDICATE BUFFER EMPTY

;ENABLE 6850 OUTPUT AND INPUT INTERRUPTS,

; 8 DATA BITS, 2 STOP BITS, DIVIDE BY 16 CLOCK

RTS

OUTDTl: LDA

STA

LDA

STA

LDA

STA

TRNDAT

ACIADR

#0

TRNDF

#1011000lB

ACIACR

;DATA SECTION

RECDAT .BLOCK

RECDF

TRNDAT

TRNDF

BLOCK

BLOCK

BLOCK

NEXTSR .BLOCK 2

;RECEIVE DATA

;RECEIVE DATA FLAG (0 = NO DATA, FF = DATA)

;TRANSMIT DATA

;TRANSMIT DATA FLAG (0 = BUFFER EMPTY,

; FF = BUFFER FULL)

;ADDRESS OF THE NEXT INTERRUPT SERVICE ROUTINE

SAMPLE EXECUTION:

SC1101:

JSR

CLI

INIT INITIALIZE

;ENABLE INTERRUPTS

11A UNBUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTIO) 471

LOOP:

;SIMPLE EXAMPLE

JSR

PHA

JSR

PLA

CMP

BNE

BRK

INCH

OUTCH

#1BH

LOOP

;READ A CHARACTER

;ECHO IT

;IS IT AN ESCAPE CHARACTER ?

;STAY IN LOOP IP NOT

ASYNLP:

;AN ASYNCHRONOUS EXAMPLE

; OUTPUT MA" TO THE CONSOLE CONTINUOUSLY BUT ALSO LOOK AT THE

; INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS.

;OUTPUT AN WAH IF OUTPUT IS NOT BUSY

JSR OUTST ;IS OUTPUT BUSY ?

BCS ASYNLP ;BRANCH IF IT IS

LDA #nAn

JSR OUTCH ;OUTPUT THE CHARACTER

;GET A CHARACTER FROM THE INPUT PORT IF ANY

;IS INPUT DATA AVAILABLE ?

;BRANCH IF NOT (SEND ANOTHER "A")

;GET THE CHARACTER

;IS IT AN ESCAPE CHARACTER ?

;BRANCH IF IT IS

;ELSE ECHO IT

;AND CONTINUE

DONE:

JSR

BCC

JSR

CMP

BEQ

JSR

JMP

BRK

JMP

• END

INST

ASYNLP

INCH

#1BH

DONE

OUTCH

ASYNLP

SC1101

;PROGRAM

Unbuffered Interrupt-Driven Input/Output

Using a 6522 VIA (PINTIO) 11B

Performs interrupt-driven input and out
put using a 6522 VIA and single-character

input and output buffers. Consists of the

following subroutines:

1. INCH reads a character from the input

buffer.

2. INST determines whether there is a

character available in the input buffer.

3. OUTCH writes a character into the out

put buffer.

4. OUTST determines whether the output

buffer is full.

5. INIT initializes the 6522 VIA, the.

interrupt vectors, and the software flags.

6. IOSRVC determines which interrupt

occurred and provides the proper input or

output service (i.e., it reads a character from

the VIA into the input buffer in response to

the input interrupt and it writes a character

from the output buffer into the VIA in

response to the output interrupt).

Examples describe a 6522 VIA attached to

an Apple II computer.

Procedure:

1. INCH waits for a character to be availa

ble in the input buffer, clears the Data Ready

flag (RECDF), and loads the character from

the buffer into the accumulator.

2. INST sets the Carry flag from the Data

Ready flag (memory location RECDF).

3. OUTCH waits for the output buffer to

be emptied, places the character (from the

accumulator) in the buffer, and sets the

character available (buffer full) flag

(TRNDF). If an unserviced output interrupt

Registers Used:

1. INCH:

2. INST:

3. OUTCH:

4. INIT

A, F, Y

A, F

A, F, Y

A, F

Execution Time:

1. INCH: 33 cycles if a character is

available

2. INST: 12 cycles

3. OUTCH: 83 cycles if the output buffer is

empty and the VIA is ready for data

4. OUTST: 12 cycles

5. INIT: 93 cycles

6. IOSRVC: 43 cycles to service an input

interrupt, 81 cycles to service an output interrupt,

24 cycles to determine that interrupt is from

another device

Program Size: 194 bytes

Data Memory Required: Seven bytes anywhere

in RAM. One byte for the received data (at

address RECDAT), one byte for the Receive

Data flag (at address RECDF), one byte for the

transmit data (at address TRNDAT), one byte

for the Transmit Data flag (at address TRNDF),

one byte for the Output Interrupt flag (at address

OIE), and two bytes for the address of the next

interrupt service routine (starting at address

NEXTSR).

has occurred (i.e., the output device has

requested service when no data was availa

ble), OUTCH actually sends the data to the

VIA.

4. OUTST sets the Carry flag from the

Character Available flag (memory location

TRNDF).

5. INIT clears the software flags, sets up

the interrupt vector, and initializes the 6522

VIA. It makes port A an input port, port B an

output port, control lines CA1 and CB1

active low-to-high, control line CA2 a brief

472

11B UNBUFFERED INTERRUPT-DRIVEN I/O USING A 6522 VIA (PINTIO) 473

output pulse indicating input acknowledge

(active-low after the CPU reads the data),

and control line CB2 a write strobe (active-

low after the CPU writes the data and lasting

until the peripheral becomes ready again).

INIT also enables the input interrupt on CA1

and the output interrupt on CB1.

6. IOSRVC determines whether the inter

rupt was an input interrupt (bit 1 of the VIA

interrupt flag register = 1), an output inter

rupt (bit 4 of the VIA interrupt flag register

= 1), or the product of some other device. If

the input interrupt occurred, the program

reads the data, saves it in the input buffer,

and sets the Data Ready flag (RECDF). If the

output interrupt occurred, the program

determines whether any data is available. If

not, the program simply clears the interrupt

and clears the flag (OIE) that indicates the

output device is actually ready (that is, an

output interrupt has occurred at a time when

no data was available). If data is available, the

program sends it from the output buffer to

the VIA, clears the Character Available flag

(TRNDF), sets the Output Interrupt flag

(OIE), and enables both the input and the

output interrupts.

The only special problem in using these

routines is that an output interrupt may occur

when no data is available to send. We cannot

ignore the interrupt or it will assert itself

indefinitely, creating an endless loop. The

solution is to simply clear the interrupt by

reading the data register in port B. But now

we create a new problem when the main pro

gram has data ready to be sent. The interrupt

indicating that the output device is ready has

already occurred (and been cleared), so there

is no use waiting for it. The solution is to es

tablish an extra flag that indicates (with a 0)

that the output interrupt has occurred with

out being serviced. We call this flag OIE, the

Output Interrupt flag. The initialization

routine sets it initially (since the output

device has not requested service), and the

output service routine clears it when an out

put interrupt occurs that cannot be serviced

(no data is available) and sets it after sending

data to the VIA (in case it might have been

cleared). Now the output routine OUTCH

can check OIE to determine whether the out

put interrupt has already occurred (a 0 value

indicates it has, FF hex that it has not).

Note that we can clear a VIA interrupt

without actually sending any data. We cannot

do this with a 6850 ACIA (see Subroutines

11A and 11C), so the procedures there are

somewhat different. This problem of unser-

viced interrupts occurs only with output

devices, since input devices request service

only when they have data ready to transfer.

474 INTERRUPTS

Entry Conditions Exit Conditions

1. INCH: none

2. INST: none

3. OUTCH: character to transmit in

accumulator

4. OUTST: none

5. INIT: none

1. INCH: character in accumulator

2. INST: Carry flag = 0 if no character

is available, 1 if a character is available

3. OUTCH: none

4. OUTST: Carry flag = 0 if output

buffer is empty, 1 if it is full.

5. INIT: none

Title

Name:

Simple interrupt input and output using a 6522 ;

VIA and a single character1 buffer. ;

PINTIO ;

Purpose:

Entry:

Exit:

;

This program consists of 5 subroutines which ;

perform interrupt driven input and output using ;

a 6522 VIA. ;

INCH

Read a character.

INST

Determine input status (whether the input

buffer is empty)•

OUTCH

Write a character.

OUTST

Determine output status (whether the output

buffer is full).

INIT

Initialize.

INCH

No parameters.

INST
No parameters.

OUTCH

Register A ■ character to transmit

OUTST

No parameters.

INIT

No parameters.

INCH

Register A « character.

INST

11B UNBUFFERED INTERRUPT-DRIVEN I/O USING A 6522 VIA (PINTIO) 475

Registers used:

Time:

Size:

Carry flag equals 0 if input buffer is empty, ;

1 if character is available. ;

OUTCH ;

No parameters ;

OUTST ;

Carry flag equals 0 if output buffer is ;

empty, 1 if it is full. ;

INIT ;

No parameters. ;

;

INCH

A,F,Y

INST

A,F ;

OUTCH

A,F,Y

OUTST

A,F ;

INIT

A,F ;

i

INCH

33 cycles if a character is available ;

INST ;

12 cycles ;

OUTCH

83 cycles if the output buffer is empty and ;

the VIA is ready to transmit ;

OUTST ;

12 cycles ;

INIT ;

93 cycles ;

iosrvc ;

24 cycles minimum if the interrupt is not ours;

43 cycles to service a input interrupt ;

81 cycles to service a output interrupt ;

}

Program 194 bytes ;

Data 7 bytes ;

;EXAMPLE 6522 VIA PORT DEFINITIONS

VIA

VIABDR

VIAADR

VIABDD

VIAADD

VIAACR

VIAPCR

VIAIFR

VIAIER

IRQVEC

• EQU

.EQU

.EQU

.EQU

• EQU

.EQU

.EQU

.EQU

.EQU

.EQU

0C090H

VIA .

VIA+1

VIA+2

VIA+3

VIA+11

VIA+12

VIA+13

VIA+14

03FEH

;VIA BASE ADDRESS

;VIA PORT B DATA REGISTER

;VIA PORT A DATA REGISTER, WITH HANDSHAKING

;VIA PORT B DATA DIRECTION REGISTER

;VIA PORT A DATA DIRECTION REGISTER

;VIA AUXILIARY CONTROL REGISTER

;VIA PERIPHERAL CONTROL REGISTER

;VIA INTERRUPT FLAG REGISTER

;VIA INTERRUPT ENABLE REGISTER

;APPLE IRQ VECTOR ADDRESS

;READ A CHARACTER

476 INTERRUPTS

INCH:

JSR

BCC

PHP

SEI

LDA

LDA

STA

LDA

PLP

RTS

INST

INCH

RECDAT

#0

RECDF

RECDAT

;GET INPUT STATUS

;WAIT IF CHARACTER IS NOT AVAILABLE

;SAVE CURRENT STATE OF INTERRUPT SYSTEM

;DISABLE INTERRUPTS

;GET THE CHARACTER FROM THE BUFFER

;INDICATE BUFFER IS NOW EMPTY

;GET THE CHARACTER FROM THE BUFFER

;RESTORE FLAGS

;RETURN INPUT STATUS (CARRY

INST:

LDA RECDF

LSR A

RTS

;WRITE A CHARACTER

OUTCH:

PHP

PHA

1 IF DATA IS AVAILABLE)

;GET THE DATA READY FLAG

;SET CARRY FROM FLAG

; CARRY = 1 IF CHARACTER IS AVAILABLE

;SAVE STATE OF INTERRUPT FLAG

;SAVE CHARACTER TO OUTPUT

WAITOC:

;WAIT FOR THE CHARACTER BUFFER TO EMPTY, THEN STORE THE NEXT CHARACTER

JSR

BCS

SEI

PLA

STA

LDA

STA

LDA

BNE

JSR

OUTCH1: PLP

RTS

OUTST

WAITOC

TRNDAT

#0FFH

TRNDF

OIE

OUTCH1

OUTDAT

;GET THE OUTPUT STATUS

;WAIT IF THE OUTPUT BUFFER IS FULL

;DISABLE INTERRUPTS WHILE LOOKING AT THE

; SOFTWARE FLAGS

;GET THE CHARACTER

;STORE THE CHARACTER

;INDICATE CHARACTER AVAILABLE (BUFFER FULL)

;HAS THE OUTPUT DEVICE ALREADY REQUESTED

; SERVICE?

; NO, BRANCH AND WAIT FOR AN INTERRUPT

; YES, SEND THE DATA TO THE PORT NOW

;RESTORE FLAGS

;OUTPUT STATUS (CARRY

OUTST:

LDA TRNDF

LSR A

RTS

1 IF BUFFER IS FULL)

;CARRY = 1 IF CHARACTER IS IN THE BUFFER

;INITIALIZE

INIT:

PHP

SEI

;SAVE CURRENT STATE OF FLAGS

;DISABLE INTERRUPTS

INITIALIZE THE SOFTWARE FLAGS

11B UNBUFFERED INTERRUPT-DRIVEN I/O USING A 6522 VIA (PINTIO) 477

LDA

STA

STA

LDA

STA

;SAVE

LDA

STA

LDA

STA

#0

RECDF

TRNDF

#0FFH

OIE

THE CURREN

IRQVEC

NEXTSR

IRQVEC+1

NEXTSR+1

;NO INPUT DATA AVAILABLE

;OUTPUT BUFFER EMPTY

;OUTPUT DEVICE HAS NOT REQUESTED SERVICE

;SET THE IRQ VECTOR TO OUR INPUT SERVICE ROUTINE

LDA AIOS

STA IRQVEC

LDA AIOS+1

STA IRQVEC+1

INITIALIZE THE 6522

LDA #O0O0OOOOB

STA VIAADD

LDA #11111111B

STA VIABDD

LDA #10001010B

STA VIAPCR

VIA

LDA

STA

LDA

STA

PLP

RTS

#0000000lB

VIAACR

#00010010B

VIAIER

;SET PORT A TO INPUT

;SET PORT B TO OUTPUT

;SET PORT A TO

; INTERRUPT ON A LOW TO HIGH OF CAl

; OUTPUT A LOW PULSE ON CA2 (BITS 1.

;SET PORT B TO

; INTERRUPT ON A LOW TO HIGH OF CBl

; HANDSHAKE OUTPUT MODE (BITS 5.,7 =

(BIT 0=1)

.3 = 101)

(BIT 4

001)

1)

;SET. AUXILIARY CONTROL TO ENABLE INPUT LATCHING

; FOR PORT A

;SET INTERRUPT ENABLE REGISTER TO ALLOW

; INTERRUPTS ON CAl (BIT 1) AND CBl (BIT 4)

;RESTORE CURRENT STATE OF THE FLAGS

AIOS: .WORD IOSRVC ;ADDRESS OF INPUT OUTPUT SERVICE ROUTINE

;INPUT OUTPUT INTERRUPT SERVICE ROUTINE

IOSRVC:

PHA ;SAVE REGISTER A

CLD ;BE SURE PROCESSOR IS IN BINARY MODE

;GET THE VIA STATUS: BIT 1 = 1 IF AN INPUT INTERRUPT
;BIT 4 = 1 IF AN OUTPUT INTERRUPT
LDA VIAIFR

AND #10B ;TEST BIT 1

BNE IINT ;GOTO INPUT INTERRUPT IF BIT 1=1
LDA VIAIFR

AND #1000B ;TEST BIT 4

BNE OINT ;GOTO OUTPUT INTERRUPT IF BIT 4=1

478 INTERRUPTS

;THE INTERRUPT WAS NOT CAUSED BY THIS VIA

PLA

JMP (NEXTSR) ;GOTO THE NEXT SERVICE ROUTINE

;SERVICE INPUT INTERRUPTS

IINT:

LDA

STA

LDA

STA

JMP

VIAADR

RECDAT

#0FFH

RECDF

EXIT

;READ THE DATA

; (WHICH PULSES CA2 FOR THE HANDSHAKE AND

; CLEARS THE INTERRUPT FLAG)

;STORE DATA

;INDICATE WE HAVE A CHARACTER IN RECDAT

;EXIT IOSRVC

;SERVICE OUTPUT INTERRUPTS

;NOTE THAT WE CAN CLEAR A 6522 INTERRUPT BY READING THE DATA

; REGISTER. THUS WE CAN CLEAR AN OUTPUT INTERRUPT WITHOUT

; SERVICING IT OR DISABLING IT. HOWEVER, IF WE DO THIS, WE

; MUST HAVE A FLAG (OIE) THAT INDICATES THE OUTPUT INTERRUPT

; HAS OCCURRED BUT HAS NOT BEEN SERVICED. OUTCH CAN THEN USE

; THE OIE FLAG TO DETERMINE WHETHER TO SEND THE DATA IMMEDIATELY

; OR WAIT FOR AN OUTPUT INTERRUPT TO SEND IT.

OINT:

LDA TRNDF ;GET DATA AVAILABLE FLAG

BNE NODATA ;BRANCH IF THERE IS NO DATA TO SEND

JSR OUTDAT ; ELSE OUTPUT THE DATA

JMP EXIT

NODATA:

EXIT:

LDA

LDA

STA

PLA

RTI

VIABDR

#0

OIE

;READ THE PORT B DATA REGISTER TO CLEAR THE

; INTERRUPT.

;INDICATE OUTPUT INTERRUPT HAS OCCURRED

; BUT HAS NOT BEEN SERVICED

;RESTORE REGISTER A

;RETURN FROM INTERRUPT

**

;ROUTINE: OUTDAT

;PURPOSE: SEND A CHARACTER TO THE VIA

;ENTRY: TRNDAT = CHARACTER TO SEND

;EXIT: NONE

REGISTERS USED: A,F

OUTDAT:

LDA

STA

LDA

STA

LDA

STA

RTS

TRNDAT

VIABDR

#0

TRNDF

#0FFH

OIE

;GET THE CHARACTER

;OUTPUT DATA TO PORT B

;INDICATE BUFFER EMPTY

;INDICATE NO UNSERVICED OUTPUT INTERRUPT

11B UNBUFFERED INTERRUPT-DRIVEN I/O USING A 6522 VIA (PINTIO) 479

;DATA SECTION

RECDAT .BLOCK

BLOCK

BLOCK

RECDF

TRNDAT

TRNDF

OIE

.BLOCK

.BLOCK 1

NEXTSR .BLOCK 2

;RECEIVE DATA

;RECEIVE DATA FLAG

;TRANSMIT DATA

;TRANSMIT DATA FLAG (0

FF

;OUTPUT INTERRUPT FLAG

; (0 = INTERRUPT OCCURRED WITHOUT SERVICE

; FF = INTERRUPT SERVICED)

;ADDRESS OF THE NEXT INTERRUPT SERVICE ROUTINE

(0 = NO DATA, FF = DATA)

BUFFER EMPTY

BUFFER FULL)

SAMPLE EXECUTION:

SC1102:

JSR

CLI

; SIMPLE

LOOP:

JSR

PHA

JSR

PLA

CMP

BNE

BRK

INIT

EXAMP

INCH

OUTCH

#1BH

LOOP

INITIALIZE

;ENABLE INTERRUPTS

;READ A CHARACTER

;ECHO IT

;IS IT AN ESCAPE CHARACTER ?

;STAY IN LOOP IF NOT

;AN ASYNCHRONOUS EXAMPLE

; OUTPUT "A" TO THE CONSOLE CONTINUOUSLY BUT ALSO LOOK AT THE

; INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS.

IF OUTPUT IS NOT BUSY

;IS OUTPUT BUSY ?

;BRANCH IF IT IS

;OUTPUT THE CHARACTER

;IS INPUT DATA AVAILABLE ?

;BRANCH IF NOT (SEND ANOTHER "A"

;GET THE CHARACTER

;IS IT AN ESCAPE CHARACTER ?

;BRANCH IF IT IS

;ELSE ECHO IT

;AND CONTINUE

ASYNLP:

;OUTPUT

JSR

BCS

LDA

JSR

;GET A C

JSR

BCC

JSR

CMP

BEQ

JSR

JMP

DONE:

BRK

JMP

.END

AN "A" I

OUTST

ASYNLP

#"AW

OUTCH

:haracter

INST

ASYNLP

INCH

#1BH

DONE

OUTCH

ASYNLP

SC1102

;PROGRAM

Buffered Interrupt-Driven Input/Output

Using a 6850 ACIA (SINTB) 11C

Performs interrupt-driven input and out
put using a 6850 ACIA and multiple-

character buffers. Consists of the following

subroutines:

1. INCH reads a character from the input

buffer.

2. INST determines whether there are any

characters in the input buffer.

3. OUTCH writes a character into the out

put buffer.

4. OUTST determines whether the output

buffer is full.

5. INIT initializes the buffers and the

6850 device.

6. IOSRVC determines which interrupt

occurred and provides the proper input or

output service.

Procedures:

1. INCH waits for a character to become

available, gets the character from the head of

the input buffer, moves the head of the

buffer up one position, and decreases the

input buffer counter by 1.

2. INST sets the Carry to 0 if the input

buffer counter is zero and to 1 if the counter

is non-zero.

3. OUTCH waits until there is empty

space in the output buffer (that is, until the

output buffer is not full), stores the character

at the tail of the output buffer, moves the tail

of the buffer up one position, and increases

the output buffer counter by 1.

4. OUTST sets the Carry flag to 1 if the

output buffer counter is equal to the buffer's

length and to 0 if it is not.

Registers Used:

1. INCH: A, F, Y

2. INST: A, F

3. OUTCHA, F, Y

4. OUTST:A, F

5. INIT: A, F

Execution Time:

1. INCH: 70 cycles if a character is available

2. INST: 18 cycles

3. OUTCH: 75 cycles minimum, 105 cycles

maximum if the output buffer is not full and the

ACIA is ready to transmit

4. OUTST: 12 cycles

5. INIT: 89 cycles

6. IOSRVC: 73 cycles to service an input

interrupt, 102 cycles to service an output inter

rupt, 27 cycles to determine the interrupt is from

another device.

Program Size: 258 bytes

Data Memory Required: Seven bytes anywhere

in RAM plus the input and output buffers. The

seven bytes anywhere in RAM hold the input

buffer counter (one byte at address ICNT), the
index to the head of the input buffer (one byte at

address IHEAD), the index to the tail of the

input buffer (one byte at address ITAIL), the

output buffer counter (one byte at address

OCNT), the index to the head of the output

buffer (one byte at address OHEAD), the index

to the tail of the output buffer (one byte at

address OIE), and an Output Interrupt Enable

flag (one byte at address OIE). The input buffer

starts at address IBUF and its size is IBSZ; the

output buffer starts at address OBUF and its size

is OBSZ.

5. INIT clears the buffer counters, sets

both the heads and the tails of the buffers to

zero, sets up the interrupt vector, resets the

ACIA by performing a master reset on its

control register (the ACIA has no reset

input), and places the ACIA in its required

operating mode by storing the appropriate

480

11C BUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTB) 481

value in its control register. INIT enables the

input interrupt and disables the output inter

rupt. It does, however, clear the output inter

rupt enable flag, thus indicating that the

ACIA is ready to transmit data, although it

cannot cause an output interrupt.

6. IOSRVC determines whether the inter

rupt was an input interrupt (bit 0 of the ACIA

status register = 1), an output interrupt (bit

1 of the ACIA status register = 1), or the

product of some other device. If the input

interrupt occurred, the program reads the

data and determines if there is room for it in

the buffer. If there is room, the processor

stores the character at the tail of the input

buffer, moves the tail of the buffer up one

position, and increases the input buffer

counter by 1. If the output interrupt oc

curred, the program determines whether

there is any data in the output buffer. If there

is none, the program disables the output

interrupt (so it will not interrupt repeatedly)

and clears an Output Interrupt flag that indi

cates the ACIA is actually ready. The flag lets

the main program know that the ACIA is

ready even through it cannot declare its

readiness by forcing an interrupt. If there is

data in the output buffer, the program

obtains a character from the head of the

buffer, sends it to the ACIA, moves the head

of the buffer up one position, and decreases

the output buffer counter by 1. It then ena

bles both input and output interrupts and sets

the Output Interrupt flag (in case that flag

had been cleared earlier).

The new problem that occurs in using

multiple-character buffers is the manage

ment of queues. The main program must

read the data in the same order in which the

input interrupt service routine receives it.

Similarly, the output interrupt service

routine must send the data in the same order

that the main program stores it. Thus we

have the following requirements for handling

input:

1. The main program must know whether

there is anything in the input buffer.

2. If the input buffer is not empty, the

main program must know where the oldest

character is (that is, the one that was received

first).

3. The input interrupt service routine

must know whether the input buffer is full.

4. If the input buffer is not full, the input

interrupt service routine must know where

the next empty place is (that is, it must know

where it should store the new character).

The output interrupt service routine and

the main program have a similar set of

requirements for the output buffer, although

the roles of sender and receiver are reversed.

We meet requirements 1 and 3 by main

taining a counter ICNT. INIT initializes

ICNJ to zero, the interrupt service routine

adds 1 to it whenever it receives a character

(assuming the buffer is not full), and the

main program subtracts 1 from it whenever it

removes a character from the buffer (assum

ing the buffer is not empty). Thus the main

program can determine whether the input

buffer is empty by checking if ICNT is zero.

Similarly, the interrupt service routine can

determine whether the input buffer is full by

checking if ICNT is equal to the size of the

buffer.

We meet requirements 2 and 4 by main

taining two indexes, IHEAD and ITAIL,

defined as follows:

1. ITAIL is the index of the next empty

location in the buffer.

482 INTERRUPTS

2. IHEAD is the index of the oldest

character in the buffer.

INIT initializes IHEAD and ITAIL to

zero. Whenever the interrupt service routine

receives a character, it places it in the buffer

at index ITAIL and increments ITAIL by 1

(assuming that the buffer is not full).

Whenever the main program reads a

character, it removes it from the buffer at

index IHEAD and increments IHEAD by 1

(assuming that the buffer is not empty).

Thus IHEAD "chases" ITAIL across the

buffer with the service routine entering

characters at one end (the tail) while the

main program removes them from the other

end (the head). The occupied part of the

buffer thus could start and end anywhere. If

either IHEAD or ITAIL reaches the physical

end of the buffer, we simply set it back to

zero. Thus we allow wraparound on the

buffer; that is, the occupied part of the buffer

could start near the end (say, at byte #195 of

a 200-byte buffer) and continue back to the

beginning (say, to byte #10). Thus IHEAD

would be 195, ITAIL would be 10, and the

buffer would contain 15 characters occupying

bytes #195 through 199 and 0 through 9.

Entry Conditions

1. INCH:

2. INST:

3. OUTCH:

accumulator

4. OUTST:

5. INIT:

none

none

character to transmit in

none

none

Exit Conditions

1. INCH: character in accumulator

2. INST: Carry flag = 0 if no

characters are available, 1 if a character

is available

3. OUTCH: none

4. OUTST: Carry Hag = 0 if output

buffer is not full, 1 if it is full

5. INIT: none

Title

Name:

Interrupt input and output using a 6850

ACIA and a multiple character buffer.

SINTB

Purpose: This program consists of 5 subroutines which ;

perform interrupt driven input and output using ;

a 6850 ACIA.

INCH

Read a character.

11C BUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTB) 483

Entry:

Exit:

Registers used:

Registers used:

INST

Determine input status (whether a character

is available).

OUTCH

Write a character.

OUTST

Determine output status (whether the output

buffer is full).

INIT

Initialize.

INCH

No parameters.

INST

No parameters.

OUTCH

Register A = character to transmit
OUTST

No parameters.

INIT

No parameters.

INCH

Register A = character.

INST

Carry flag equals 0 if no characters are

available, 1 if character is available.

OUTCH

No parameters

OUTST

Carry flag equals 0 if output buffer is

empty, 1 if it is full.

INIT

No parameters.

INCH

A,F,Y

INST

A,F

OUTCH

A,F,Y

OUTST

A,F

INIT

AfF

INCH

A,F,Y

INST

A,F

OUTCH

A,F,Y

OUTST

A,F

INIT

484 INTERRUPTS

Time:

Size:

Buffers:

Note:

A,F

INCH

70 cycles if a character is available
INST

18 cycles

OUTCH

75 cycles minimum, if the output buffer is

not full and the ACIA is ready to transmit
OUTST

12 cycles

INIT

89 cycles

IOSRVC

27 cycles minimum if the interrupt is not ours;

73 cycles to service a input interrupt

102 cycles to service a output interrupt

Program 258 bytes

Data 7 bytes plus size of buffers

The routines assume two buffers starting at

addresses IBUF and OBUF. The lengths of the
buffers in bytes are IBSZ and OBSZ. For the

input buffer, IHEAD is the index of the oldest

character (the next one the main program should

read), ITAIL is the index of the next empty

element (the next one the service routine

should fill), and ICNT is the number of bytes

currently filled with characters. For the

output buffer, OHEAD is the index of the oldest

character (the next one the service routine

should send), OTAIL is the index of the next

empty element (the next one the main program

should fill), and OCNT is the number of bytes

currently filled with characters.

Wraparound is provided on both buffers, so that

the currently filled area may start anywhere

and extend through the end of the buffer and

back to the beginning. For example, if the

output buffer is 40 hex bytes long, the section

filled with characters could exetend from

OBUF+32H (OHEAD=32H) toOBUF+lOH (OTAIL=11H).

That is, there are 19H filled bytes occupying

addresses OBUF+32H through OBUF+39H and

continuing to OBUF through OBUF+10H. The buffer

thus looks like a television picture with the

vertical hold skewed, so that the frame starts

above the bottom of the screen, leaves off at

the top, and continues at the bottom.

;EXAMPLE 6850 ACIA PORT DEFINITIONS FOR AN APPLE SERIAL BOARD IN SLOT 1

11C BUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTB) 485

ACIASR

AC1ADR

ACIACR

IRQVEC

;READ A

INCH:

INCH1:

.EQU

.EQU

.EQU

.EQU

0C094H

0C095H

0C094H

03PEH

CHARACTER

JSR

BCC

PHP

SEI

LDY

LDA

INY

CPY

BCC

LDY

STY

DEC

PLP

RTS

INST

INCH

I HEAD

IBUF,Y

#IBSZ

INCH1

#0

IHEAD

ICNT

;ACIA STATUS REGISTER

;ACIA DATA REGISTER

;ACIA CONTROL REGISTER

;APPLE IRQ VECTOR ADDRESS

;IS A CHARACTER AVAILABLE ?

;BRANCH IF NOT

;SAVE CURRENT STATE OF INTERRUPTS

;DISABLE INTERRUPTS

;GET CHARACTER AT HEAD OF BUFFER

;DO WE NEED WRAPAROUND IN BUFFER ?

;BRANCH IF NOT

;ELSE SET HEAD BACK TO ZERO

;DECREMENT CHARACTER COUNT

;RESTORE FLAGS

;RETURN INPUT STATUS (CARRY = 1 IF CHARACTERS ARE AVAILABLE, 0 IF NOT)

INST:

CLC ;CLEAR CARRY (ASSUME NO CHARACTERS AVAILABLE)

LDA ICNT

BEQ INST1 ;BRANCH IF THERE ARE NONE

SEC ;CARRY = 1 (CHARACTERS ARE AVAILABLE)

INST1:

RTS

;SAVE STATE OF INTERRUPT FLAG

;SAVE CHARACTER TO OUTPUT

;IS THE OUTPUT BUFFER FULL ?

;BRANCH IF IT IS FULL

;DISABLE INTERRUPTS WHILE LOOKING AT THE

; SOFTWARE FLAGS

;GET THE CHARACTER

;STORE CHARACTER IN THE BUFFER

;DO WE NEED WRAPAROUND ON THE BUFFER ?

;BRANCH IF NOT

;ELSE SET TAIL BACK TO ZERO

;INCREMENT BUFFER COUNTER

;ARE INTERRUPTS DISABLED BUT THE ACIA IS

; ACTUALLY READY ?

BNE OUTCH2 ;EXIT IF ACIA INTERRUPTS NOT READY AND ENABLED

;WRITE

OUTCH:

WAITOC

OUTCH1

A CHARACTER

PHP

PHA

;WAIT

:

JSR

BCS

SEI

PLA

LDY

STA

INY

CPY

BCC

LDY
•

STY

INC

LDA

UNTIL TH

OUTST

WAITOC

OTAIL

OBUF,Y

#OBSZ

OUTCH1

#0

OTAIL

OCNT

OIE

486 INTERRUPTS

0UTCH2:

; OUTPUT

OUTST:

JSR

PLP

RTS

STATUS

LDA

CMP

OUTDAT

OCNT

#OBSZ

;ELSE SEND THE DATA TO THE PORT AND ENABLE

; INTERRUPTS

;RESTORE FLAGS

;IS OUTPUT BUFFER FULL ?

; IF OCNT >= OBSZ THEN

CARRY

ELSE

CARRY =

1 INDICATING THAT THE OUTPUT

BUFFER IS FULL

INDICATING THAT THE CHARACTER

CAN BE PLACED IN THE BUFFER

•RTS

; INITIALIZE

INIT:

PHP

SEI

;INITIALIZE T

LDA

STA

STA

STA

STA

STA

STA

STA

#0

ICNT

IHEAD

ITAIL

OCNT

OHEAD

OTAIL

OIE

;SAVE CURRENT STATE OF FLAGS

;DISABLE INTERRUPTS

;NO INPUT DATA

;NO OUTPUT DATA

;ACIA IS READY TO TRANSMIT (NOTE THIS M)

;SAVE THE CURRENT IRQ VECTOR IN NEXTSR

LDA IRQVEC

STA NEXTSR

LDA IRQVEC+1

STA NEXTSR+1

•SET THE IRQ VECTOR TO OUR INPUT SERVICE ROUTINE

LDA AIOS

STA IRQVEC

LDA AIOS+1

STA IRQVEJC+1

;INITIALIZE THE 6850 ACIA

LDA

STA

LDA

STA

#0llB

ACIACR

H0010001B

ACIACR

;MASTER RESET ACIA

;INITIALIZE ACIA MODE TO

; DIVIDE BY 16

; 8 DATA BITS

; 2 STOP BITS

11C BUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTB) 487

; OUTPUT INTERRUPTS DISABLED (NOTE THIS !!)

; INPUT INTERRUPTS ENABLED

PLP ;RESTORE CURRENT STATE OF THE FLAGS

RTS

AIOS: .WORD IOSRVC ;ADDRESS OF INPUT OUTPUT SERVICE ROUTINE

;INPUT OUTPUT INTERRUPT SERVICE ROUTINE

IOSRVC:

PHA ;SAVE REGISTER A

CLD ;BE SURE PROCESSOR IS IN BINARY MODE

;GET THE ACIA STATUS: BIT 0 = 1 IF AN INPUT INTERRUPT

;BIT 1 = 1 IF AN OUTPUT INTERRUPT

LDA ACIASR

LSR A ;BIT 0 TO CARRY

BCS IINT ;BRANCH IF AN INPUT INTERRUPT

LSR A ;BIT 1 TO CARRY

BCS OINT ;BRANCH IF AN OUTPUT INTERRUPT

;THE INTERRUPT WAS NOT OURS

PLA

JMP (NEXTSR) ;GOTO THE NEXT SERVICE ROUTINE

;SAVE REGISTER Y

;READ THE DATA

;IS THERE ROOM IN THE BUFFER ?

;EXIT, NO ROOM IN THE BUFFER

;ELSE STORE THE DATA IN THE BUFFER

;INCREMENT TAIL INDEX

;DO WE NEED WRAPAROUND 0{J THE BUFFER ?

;BRANCH IF NOT

;ELSE SET TAIL BACK TO ZERO

;STORE NEW TAIL INDEX

;INCREMENT INPUT BUFFER COUNTER

;EXIT IOSRVC

;SAVE REGISTER Y

?IS THERE ANY DATA IN THE OUTPUT BUFFER ?

;BRANCH IF NOT (DISABLE THE INTERRUPTS)
;ELSE SEND A CHARACTER

;SERVICE INPUT

I INT:

TYA

PHA

INTERRUPTS

;GET THE DATA AND

LDA

LDY

CPY

BCS

LDY

STA

INY

CPY

BCC

LDY

IINT1:

STY

INC

JMP

;SERVICE OUTPUT

OINT:

TYA

PHA

LDA

BEQ

JSR

JMP

ACIADR

ICNT

#IBSZ

EXIT

ITAIL

IBUF,Y

#IBSZ

IINT1

#0

ITAIL

ICNT

EXIT

INTERRUPTS

OCNT

NODATA

OUTDAT

EXIT

488 INTERRUPTS

NODATA:

LDA

EXIT:

STA

LDA

STA

PLA

TAY

PLA

RTI

#1001000lB

ACIACR

#0

OIE

;DISABLE OUTPUT INTERRUPTS, ENABLE INPUT

; INTERRUPTS, 8 DATA BITS, 2 STOP BITS, DIVIDE

; BY 16 CLOCK

;TURN OFF INTERRUPTS

;INDICATE OUTPUT INTERRUPTS ARE DISABLED

; BUT ACIA IS ACTUALLY READY

;RESTORE REGISTER Y

;RESTORE REGISTER A

;RETURN FROM INTERRUPT

.•••A*********************************

;ROUTINE: OUTDAT

;PURPOSE: SEND A CHARACTER TO THE ACIA FROM THE OUTPUT BUFFER

;ENTRY: OHEAD IS THE INDEX INTO OBUF OF THE CHARACTER TO SEND

;EXIT: NONE

;REGISTERS USED: A,F

OUTDAT:

LDA

AND

BEQ

LDY

LDA

STA

INY

CPY

BCC

LDY

OUTD1:

STY

DEC

LDA

STA

LDA

STA

ACIASR

#00000010B

OUTDAT

OHEAD

OBUF,Y

ACIADR

#OBSZ

OUTD1

#0

OHEAD

OCNT

#1011000lB

ACIACR

#0FFH

OIE

;IS ACIA OUTPUT REGISTER EMPTY ?

;BRANCH IF NOT EMPTY (BIT X = 0)

;GET THE CHARACTER FROM THE BUFFER

;SEND THE DATA

;DO WE NEED WRAPAROUND ON THE BUFFER ?

;BRANCH IF NOT

;ELSE SET HEAD BACK TO ZERO

;SAVE NEW HEAD INDEX

;DECREMENT OUTPUT BUFFER COUNTER

;ENABLE 6850 OUTPUT AND INPUT INTERRUPTS,

; 8 DATA BITS, 2 STOP BITS, DIVIDE BY 16 CLOCK

;INDICATE THE OUTPUT INTERRUPTS ARE ENABLED

RTS

; DATA

ICNT

IHEAD

ITAIL

OCNT

OHEAD

OTAIL

OIE

IBSZ

IBUF

SECTION

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

• EQU

.BLOCK

1

1

1

1

1

1

1

80

IBSZ

;INPUT BUFFER COUNTER

;INDEX TO HEAD OF INPUT BUFFER

;INDEX TO TAIL OF INPUT BUFFER

;OUTPUT BUFFER COUNTER

;INDEX TO HEAD OF OUTPUT BUFFER

;INDEX TO TAIL OF OUTPUT BUFFER

;OUTPUT INTERRUPT ENABLE FLAG

;INPUT BUFFER SIZE

;INPUT BUFFER

11C BUFFERED INTERRUPT-DRIVEN I/O USING A 6850 ACIA (SINTB) 489

OBSZ .EQU 80

OBUF .BLOCK OBSZ

NEXTSR .BLOCK 2

;OUTPUT BUFFER SIZE

?OUTPUT BUFFER

;ADDRESS OF THE NEXT INTERRUPT SERVICE ROUTINE

SAMPLE EXECUTION:

SC1103:

LOOP:

JSR INIT

CLI

;SIMPLE EXAMPLE

JSR INCH

PHA

JSR OUTCH

PLA

CMP #1BH

BNE LOOP

BRK

INITIALIZE

;ENABLE INTERRUPTS

;READ A CHARACTER

;ECHO IT

;IS CHARACTER AN ESCAPE ?

;BRANCH IF NOT, CONTINUE LOOPING

ASYNLP:

;AN ASYNCHRONOUS EXAMPLE

; OUTPUT "A" TO THE CONSOLE CONTINUOUSLY BUT ALSO LOOK AT THE

; INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS.

;OUTPUT AN "A" IF OUTPUT IS NOT BUSY

JSR OUTST

BCS ASYNLP

LDA #"A"

JSR OUTCH

;IS OUTPUT BUSY ?

;BRANCH IF IT IS

;OUTPUT THE CHARACTER

;GET A CHARACTER FROM THE INPUT PORT IF ANY

JSR

BCC

JSR

CMP

BEQ

JSR

JMP

INST

ASYNLP

INCH

#1BH

DONE

OUTCH

ASYNLP

;IS INPUT AVAILABLE ?

;BRANCH IF NOT (SEND ANOTHER ffAM)

;GET THE CHARACTER

;IS CHARACTER AN ESCAPE ?

;BRANCH IF IT IS

;ELSE ECHO IT

; AND CONTINUE

DONE:

BRK

.END ;PROGRAM

Real-Time Clock and Calendar (CLOCK) 11D

Maintains a time-of-day 24-hour clock
and a calendar based on a real-time clock

interrupt. Consists of the following sub

routines:

1. CLOCK returns the starting address of

the clock variables.

2. ICLK initializes the clock interrupt and

initializes the clock variables to their default

values.

3. CLKINT updates the clock after each

interrupt (assumed to be spaced one tick

apart).

A long example in the listing describes a

time display routine for the Apple II com

puter. The routine prompts the operator for

an initial date and time. It then continuously

displays the date and time in the center of the

monitor screen. The routine assumes an

interrupt board in slot 2.

Procedure:

1. CLOCK loads the starting address of

the clock variables into the accumulator

(more significant byte) and index register Y

(less significant byte). The clock variables are

stored in the following order (lowest address

first): ticks, seconds, minutes, hours, days,

months, less significant byte of year, more

significant byte of year.

2. ICLK loads the clock variables with

their default values (8 bytes starting at

address DFLTS) and initializes the clock

interrupt (this would be mostly system-

dependent).

3. CLKINT decrements the remaining

tick count by one and updates the rest of the

clock if necessary. Of course, the number of

seconds and minutes must be less than 60

and the number of hours must be less than

Registers Used:

1. CLOCK:

2. ICLK:

3. CLKINT:

Execution Time:

1. CLOCK:

2. ICLK:

3. CLKINT:

be decremented,

new year.

Program Size:

1. CLOCK:

2. ICLK:

3. CLKINT:

A, F, Y

A, Y

none

14 cycles

166 cycles

33 cycles if only TICK must

184 maximum if changing to a

7 bytes

39 bytes

145 bytes

Data Memory Required: 18 bytes anywhere in

RAM. These include eight bytes for the clock

variables (starting at address ACVAR), eight

bytes for the defaults (starting at address

DFLTS), and two bytes for the address of the

next service routine (starting at address NEX-

TSR).

24. The day of the month must be less than or

equal to the last day for the current month;

an array of the last days of each month begins

at address LASTDY. If the month is Febru

ary (that is, month 2), the program must

check to see if the current year is a leap year.

This requires a determination of whether the

two least significant bits of memory location

YEAR are both zeros. If the current year is a

leap year, the last day of February is the 29th,

not the 28th. The month number may not

exceed 12 (December) or a carry to the year

number is necessary. The program must

reinitialize the variables properly when car

ries occur; that is, TICK to DTICK; seconds,

minutes, and hours to zero; day and month

to 1 (meaning the first day and January,

respectively).

490

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 491

Entry Conditions

1. CLOCK: none

2. ICLK: none

3. CLKINT: none

Exit Conditions

1. CLOCK: more significant byte of

starting address of clock variables in

accumulator, less significant byte in register Y

2. ICLK: none

3. CLKINT: none

Examples

These examples assume that the tick rate

is DTICK Hz (less than 256 Hz - typical

values would be 60 Hz or 100 Hz) and that

the clock and calendar are saved in memory

locations

TICK number of ticks remaining before a

carry occurs, counted down from

DTICK

SEC seconds (0 to 59)

MIN minutes (0 to 59)

HOUR hour of day (0 to 23)

DAY day of month (1 to 28, 30, or 31,

depending on month)

MONTH month of year (1 through 12 for

January through December)

YEAR&

YEAR+1 current year

1. Starting values are March 7, 1982.

11:59.59 and 1 tick left.

That is,

(TICK) = 1

(SEC) = 59

(MIN) = 59

(HOUR) = 23

(DAY) = 07

(MONTH) = 03

(YEAR) = 1982

Result (after the tick): March 8, 1982

12:00.00 and DTICK ticks

That is,

(TICK) = DTICK

(SEC) = 0
(MIN) = 0

(HOUR) = 0

(DAY) = 08
(MONTH) - 03

(YEAR) = 1982

2. Starting values are Dec. 31, 1982.

11:59.59 p.m. and 1 tick left

That is,

(TICK) = l

(SEC) = 59

(MIN) = 59

(HOUR) = 23

(DAY) = 31

(MONTH) - 12

(YEAR) = 1982

Result (after the tick): Jan. 1, 1983.

12:00.00 a.m. and DTICK ticks

That is,

(TICK) = DTICK

(SEC) =0

(MIN) = 0

(HOUR) = 0

(DAY) = 1

(MONTH) = 1

(YEAR) = 1983

492 INTERRUPTS

Title

Name:

Purpose:

Entry:

Exit:

Real time clock and calendar

CLOCK

This program maintains a time of day 24 hour

clock and a calendar based on a real time clock

interrupt.

CLOCK

Returns the address of the clock variables

ICLK

Initialize the clock interrupt

CLOCK

None

ICLK

None

CLOCK

Register A

Register Y

ICLK

None

Time:

Size:

High byte of the address of the

time variables.

Low byte of the address of the

time variables.

Registers used: All

CLOCK

14 cycles

ICLCK

166 cycles

CLKINT

22 cycles minimum if the interrupt is not ours;

33 cycles normally if decrementing tick

184 cycles maximum if changing to a new year

Program 191 bytes

Data 18 bytes

IRQVEC:

CLKPRT:

CLKIM:

TRUE:

FALSE:

.EQU

.EQU

.EQU

.EQU

.EQU

03FEH

OCOAOH

01H

OFFH

0

;APPLE IRQ VECTOR

;SLOT 2 10 LOCATION OF AN INTERRUPT BOARD

•BIT 0 = INTERRUPT REQUEST BIT

;NOT ZERO = TRUE

;ZERO = FALSE

;RETURN ADDRESS OF THE CLOCK VARIABLES

CLOCK:

LDA ACVAR+1

LDY ACVAR ;GET ADDRESS OF CLOCK VARIABLES

RTS

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 493

;INITIALIZE CLOCK INTERRUPT

ICLK:

PHP ;SAVE FLAGS

SEI ;DISABLE INTERRUPTS

;INITIALIZE CLOCK VARIABLES TO THE DEFAULT VALUES

LDY #8

ICLK1:

LDA

STA

DEY

BNE

DFLTS-lfY

CLKVAR-1,Y

ICLK1

;SAVE CURRENT IRQ VECTOR

LDA IRQVEC

STA NEXTSR

LDA IRQVEC+1

STA NEXTSR

;SET IRQ VECTOR TO CLKINT

LDA ACINT

STA IRQVEC

LDA ACINT+1

STA IRQVEC+1

;HERE SHOULD BE CODE TO INITIALIZE INTERRUPT HARDWARE

;EXIT

PLP ;RESTORE FLAGS

RTS

;HANDLE THE CLOCK INTERRUPT

CLKINT:

PHA ;SAVE REGISTER A

CLD ;BE SURE PROCESSOR IS IN BINARY MODE

;CHECK IF THIS IS OUR INTERRUPT

; THIS IS AN EXAMPLE ONLY

LDA CLKPRT

AND #CLKIM ;LOOK AT THE INTERRUPT REQUEST BIT

BNE OURINT ;BRANCH IF IS OUR INTERRUPT

PLA ;RESTORE REGISTER A

JMP (NEXTSR) ;WAS NOT OUR INTERRUPT,

; TRY NEXT SERVICE ROUTINE

;PROCESS OUR INTERRUPT

OURINT:

DEC TICK

BNE EXIT1 ;BRANCH IF TICK DOES NOT EQUAL ZERO YET

; EXIT1 RESTORES ONLY REGISTER A

LDA DTICK

STA TICK ;RESET TICK TO DEFAULT VALUE

;SAVE X AND Y NOW ALSO

TYA

PHA

494 INTERRUPTS

TXA

PHA

;INCREMENT SECONDS

INC

LOA

CMP

BCC

LDY

STY

SEC

SEC

#60

EXIT

#0

SEC

;INCREMENT MINUTES

INC

LDA

CMP

BCC

STY

MIN

MIN

#60

EXIT

MIN

;INCREMENT HOURS

INC

LDA

CMP

BCC

STY

HOUR

HOUR

#24

EXIT

HOUR

;INCREMENT DAYS

INC

LDA

LDX

CMP

BCC

DAY

DAY

MONTH

LASTDY-1,X

EXIT

;SECONDS = 60 ?

;EXIT IF LESS THAN 60 SECONDS

;ELSE

; ZERO SECONDS, GO TO NEXT MINLjTE

;MINUTES = 60 ?

;EXIT IF LESS THAN 60 MINUTES

;ELSE

; ZERO MINUTES, GO TO NEXT HOUR

;HOURS = 24 ?

;EXIT IF LESS THAN 24 HOURS

;ELSE

; ZERO HOURS, GO TO NEXT DAY

;GET CURRENT MONTH

;DAY = LAST DAY OF THE MONTH ?

;EXIT IF LESS THAN LAST DAY

;INCREMENT MONTH (HANDLE 29TH OF FEBRUARY)

CPX #2 ;IS THIS FEBRUARY ?

BNE INCMTH ;BRANCH IF NOT FEBRUARY

LDA YEAR ;IS IT A LEAP YEAR?

AND #0000001lB

BNE INCMTH ;BRANCH IF YEAR IS NOT LEAP

;THIS IS A FEBRUARY AND A LEAP YEAR SO 29 DAYS NOT 28 DAYS

;EXIT IF NOT 29TH OF FEBRUARY

;CHANGE DAY TO 1, INCREMENT MONTH

;DONE WITH DECEMBER ?

;EXIT IF NOT

;ELSE

; CHANGE MONTH TO 1 (JANUARY)

LDA

CMP

BEQ

INCMTH:

LDY

STY

INC

LDA

CMP

BCC

STY

DAY

#29

EXIT

#1
DAY

MONTH

MONTH

#13

EXIT

MONTH

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 495

;INCREMENT YEAR

INC YEAR

BNE EXIT

INC YEAR+1

;INCREMENT LOW BYTE

;INCREMENT HIGH BYTE

EXIT:

EXIT1:

;ARRAY

LASTDY:

; CLOCK

ACVAR:

CLKVAR:

TICK:

SEC:

MIN:

HOUR:

DAY:

MONTH:

YEAR:

;RESTORE

PLA

TAX

PLA

TAY

PLA

RTI

REGISTERS

OF THE LAST DAYS OF

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

VARIABLES

.WORD

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.WORD

;DEFAULTS

DFLTS:

DTICK:

DSEC:

DMIN:

DHR:

DDAY:

DMTH:

DYEAR:

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.BYTE

.WORD

31

28

31

30

31

30

31

31

30

31

30

31

CLKVAR

1

1

1

1

1

1

0

60

0

0

0

1

1

1981

;RETURN FROM INTERRUPT

EACH MONTH

;JANUARY

;FEBRUARY (EXCEPT LEAP YEARS)

;MARCH

;APRIL

;MAY

;JUNE

;JULY

;AUGUST

;SEPTEMBER

;OCTOBER

;NOVEMBER

;DECEMBER

;BASE ADDRESS OF CLOCK VARIABLES

;TICKS LEFT IN CURRENT SECOND

;SECONDS

;MINUTES

;HOURS

;DAY = 1 THROUGH NUMBER OF DAYS IN A MONTH

;MONTH 1=JANUARY .. 12=DECEMBER

;YEAR

;DEFAULT TICK (60HZ INTERRUPT)

;DEFAULT SECONDS

;DEFAULT MINUTES

;DEFAULT HOURS

;DEFAULT DAY

•DEFAULT MONTH

.•DEFAULT YEAR

NEXTSR: .BLOCK 2

ACINT: .WORD CLKINT

;ADDRESS OF THE NEXT INTERRUPT SERVICE ROUTINE

;ADDRESS OF THE CLOCK INTERRUPT ROUTINE

496 INTERRUPTS

SAMPLE EXECUTION:

This routine prompts the operator for an initial date and time,

it then continuously displays the date and time in the center of

the screen.

The operator may use the escape key to abort the routine. Any

other key will reprompt for another initial date and time.

;CLK VARIABLE OFFSETS

OTICK:

OSEC:

OMIN:

OHR:

ODAY:

OMTH:

OYEAR:

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

0

1

2

3

4

5

6

;PAGE ZERO TEMPORARY

CVARS: .EQU ODOH

;APPLE EQUATES FOR THE EXAMPLE

ESC:

CH

CV

HOME:

VTAB:

RCHAR:

COUT:

GETLN1:

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

.EQU

1BH

24H

25H

0FC58H

0FC22H

OFDOCH

OFDEDH

0FD6FH

;OFFSET

;OFFSET

;OFFSET

;OFFSET

;OFFSET

;OFFSET

.•OFFSET

TO

TO

TO

TO

TO

TO

TO

TICK

SECONDS

MINUTES

HOURS

DAY

MONTH

YEAR

;PAGE ZERO TEMPORARY FOR THE CLOCK VARIABLES

; ADDRESS

;ESCAPE CHARACTER

;APPLE MONITOR CURSOR HORIZONTAL POSITION

;APPLE MONITOR CURSOR VERTICAL POSITION

;APPLE MONITOR HOME ROUTINE

;APPLE MONITOR VTAB ROUTINE

;APPLE MONITOR CHARACTER INPUT ROUTINE

;APPLE MONITOR CHARACTER OUTPUT ROUTINE

;APPLE MONITOR GET LINE WITH OUR PROMPT ROUTINE

SC1104:

JSR ICLK INITIALIZE

;GET TODAYS DATE AND TIME MM/DD/YY HR:MIN:SEC

;HOME AND CLEAR SCREEN

PROMPT:

PMTLP:

; PRINT

JSR

LDA

STA

LDY

LDA

BEQ

INC

JSR

JMP

PROMPT

HOME

#0

MSGIDX

MSGIDX

MSG,Y

RDTIME

MSGIDX

WRCHAR

PMTLP

;BRANCH IF END OF MESSAGE

;INCREMENT TO NEXT CHARACTER

;OUTPUT CHARACTER THROUGH APPLE MONITOR

;CONTINUE

;READ THE TIME STRING

11D REAL-TIME CLOCK AND CALENQAR (CLOCK) 497

RDTIME:

JSR RDLINE ;READ A LINE INTO THE APPLE LINE BUFFER AT

; 200H. RETURNS WITH LENGTH IN X

;GET THE ADDRESS OF THE CLOCK VARIABLES

JSR CLOCK ;GET CLOCK VARIABLES

STA CVARS+1

STY CVARS ;STORE ADDRESS

;INITIALIZE VARIABLES FOR READING NUMBERS

STX LLEN

LDA #0

STA LIDX

;GET MONTH

JSR NXTNUM

LDY #OMTH

STA (CVARS),Y

;GET

JSR

LDY

STA

;GET

JSR

LDY

STA

CLC

ADC

STA

LDA

ADC

INY

STA

DAY

NXTNUM

#ODAY

(CVARS),Y

YEAR

NXTNUM

#OYEAR

(CVARS),Y

CEN20

(CVARS),Y

CEN20+1

#0

(CVARS),Y

;GET HOUR

JSR NXTNUM

LDY #OHR

STA (CVARS),Y

;GET MINUTES

JSR NXTNUM

LDY #OMIN

STA (CVARS),Y

;GET SECONDS

JSR NXTNUM

LDY #OSEC

STA (CVARS),Y

;ENABLE INTERRUPTS

CLI

;SAVE LENGTH OF LINE

;INITIALIZE LINE INDEX TO ZERO

;GET NEXT NUMBER FROM INPUT LINE

;SET MONTH

;ADD 1900 TO ENTRY

;SET LOW BYTE OF YEAR

;SET HIGH BYTE OF YEAR

;ENABLE INTERRUPTS

;HOME AND CLEAR THE SCREEN

498 INTERRUPTS

JSR HOME

;LOOP PRINTING THE TIME EVERY SECOND

;MOVE CURSOR TO LINE 12 CHARACTER 12

LOOP:

LDA

STA

STA

JSR

;PRINT

LDY

LDA

JSR

LDA

JSR

;PRINT

LDY

LDA

JSR

LDA

JSR

;PRINT

LDY

LDA

SEC

SBC

JSR

;PRINT

LDA

JSR

#11

CV

CH

VTAB

MONTH

#OMTH

(CVARS),Y

PRTNUM

WRCHAR

DAY

#ODAY

(CVARS),Y

PRTNUM

WRCHAR

YEAR

#OYEAR

(CVARS),Y

CEN20

PRTNUM

SPACE AS D

WRCHAR

;SET CURSOR VERTICAL POSITION

;SET CURSOR HORIZONTAL POSITION

;POSITION CURSOR

;PRINT THE NUMBER

;PRINT A SLASH

;PRINT THE NUMBER

;PRINT A SLASH

;NORMALIZE YEAR TO 20TH CENTURY

;PRINT THE NUMBER

;PRINT A SPACE BETWEEN DATE AND TIME

;PRINT HOURS

LDY #OHR

LDA (CVARS),Y

JSR PRTNUM ;PRINT THE NUMBER

LDA #":"
JSR WRCHAR ;PRINT A COLON

;PRINT MINUTES

LDY #OMIN

LDA (CVARS),Y

JSR PRTNUM ;PRINT THE NUMBER

LDA #":"
JSR WRCHAR ;PRINT A COLON

;PRINT SECONDS

LDY #OSEC

LDA (CVARS),Y

JSR PRTNUM ;PRINT THE NUMBER

;WAIT UNTIL SECONDS CHANGE THEN PRINT AGAIN

;EXIT IF OPERATOR PRESSES A KEY

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 499

WAIT:

RDKEY:

DONE:

LDY

LDA

STA

#OSEC

(CVARS),Y

CURSEC

;CHECK KEYBOARD

JSR

BCS

LDA

CMP

BEQ

JMP

KEYPRS

RDKEY

(CVARS) ,Y

CURSEC

WAIT

LOOP

;OPERATOR PRESSED

JSR

CMP

BEQ

JMP

LDA

STA

LDA

STA

JSR

BRK

JMP

RDCHAR

#ESC

DONE

PROMPT

#0

CH

#12

CV

VTAB

SC1104

;SAVE IN CURRENT SECOND

;BRANCH IF OPERATOR PRESSES A KEY

;GET SECONDS

;WAIT UNTIL SECONDS CHANGE

;CONTINUE

;GET CHARACTER

;IS IT AN ESCAPE?

;BRANCH IF IT IS, ROUTINE IS FINISHED

;ELSE PROMPT OPERATOR FOR NEW STARTING TIME

;CURSOR TO HORIZONTAL POSITION 0

;MOVE CURSOR TO LINE 13 BELOW DISPLAY

;CONTINUE AGAIN

;ROUTINE: KEYPRS

;PURPOSE: DETERMINE IF OPERATOR HAS PRESSED A KEY

;ENTRY: NONE

;EXIT: IF OPERATOR HAS PRESSED A KEY THEN

CARRY = 1

; ELSE

CARRY = 0

;REGISTERS USED: P

KEYPRS:

PHA

LDA

ASL

PLA

RTS

0C000H

A

;READ APPLE KEYBOARD PORT

;MOVE BIT 7 TO CARRY

; CARRY = 1 IF CHARACTER IS READY ELSE 0

;ROUTINE: RDCHAR

;PURPOSE: READ A CHARACTER

;ENTRY: NONE

;EXIT: REGISTER A = CHARACTER

,'REGISTERS USED: A,P
;***************************•***

500 INTERRUPTS

RDCHAR:

PHA ;SAVE A,X,Y

TYA

PHA

TXA

PHA

JSR RCHAR ;APPLE MONITOR RDCHAR

TSX

AND #O1111111B ;ZERO BIT 7

STA 103H,X ;STORE CHARACTER IN STACK SO IT WILL BE

; RESTORED TO REGISTER A

PLA 7RESTORE A,X,Y
TAX

PLA

TAY

PLA

RTS

•A******************************

;ROUTINE: WRCHAR

;PURPOSE: WRITE A CHARACTER

;ENTRY: REGISTER A = CHARACTER

;EXIT: NONE

REGISTERS USED: P
••A*****************************

WRCHAR:

PHA ;SAVE A,X,Y

TYA

PHA

TXA

PHA

TSX

LDA 103HfX ;GET REGISTER A BACK FROM STACK

ORA #10000000B ;SET BIT 7

JSR COUT ;OUTPUT VIA APPLE MONITOR

PLA ;RESTORE A,X,Y

TAX

PLA

TAY

PLA

RTS

•ROUTINE: RDLINE

;PURPOSE: READ A LINE TO 200H USING THE APPLE MONITOR

;ENTRY: NONE

;EXIT: REGISTER X = LENGTH OF LINE

;REGISTERS USED: ALL

.********************************

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 501

RDLINE:

JSR

RTS

GETLN1 ;CALL THE APPLE MONITOR GETLNl

•ROUTINE: NXTNUM

;PURPOSE: GET A NUMBER FROM THE INPUT LINE IF ANY

IF NONE RETURN A 0

;ENTRY: LLEN = LENGTH OF THE LINE

; LIDX = INDEX INTO THE LINE OF NEXT CHARACTER

;EXIT: REGISTER A = LOW BYTE OF NUMBER

REGISTER Y = HIGH BYTE OF NUMBER

LIDX = INDEX OF THE FIRST NON NUMERICAL CHARACTER

;REGISTERS USED: ALL

NXTNUM:

LDA

STA

STA

#0

NUM

NUM+1 INITIALIZE NUMBER TO 0

;WAIT UNTIL A DECIMAL DIGIT IS FOUND (A CHARACTER BETWEEN 30H AND 39H)

JSR

BCS

CMP

BCC

CMP

BCS

GETCHR

EXITNN

#"0"

NXTNUM

#"9"+l

NXTNUM

GETNUM:

;FOUND A NUMBER

PHA

;MULTIPLY NUM BY TEN

LDA

ASL

ROL

STA

LDX

ASL

ROL

ASL

ROL

CLC

ADC

STA

TXA

ADC

STA

NUM

A

NUM+1

NUM

NUM+1

A

NUM+1

A

NUM+1

NUM

NUM

NUM+1

NUM+1

;GET NEXT CHARACTER

;EXIT IF END OF LINE

;WAIT IF LESS THAN "0"

;WAIT IF GREATER THAN "9"

;SAVE CHARACTER ON STACK

;NUM = LOW BYTE OF NUM * 2

;REGISTER X = HIGH BYTE OF NUM * 2

;REGISTER A = LOW BYTE OF NUM * 8

;NUM + 1 = HIGH BYTE OF NUM * 8

; (NUM * 8) + (NUM * 2) = NUM * 10

;ADD THE CHARACTER TO NUM

PLA

AND

CLC

ADC

STA

#0000111lB

NUM

NUM

;GET NEXT CHARACTER

FORMALIZE THE CHARACTER TO 0..9

502 INTERRUPTS

BCC GETNMl

INC NUM+1

GETNMl:

;GET THE NEXT CHARACTER

JSR GETCHR

BCS EXITNN ;EXIT IF END OF LINE

CMP #"0"

BCC EXITNN ;EXIT IF LESS THAN "0"

CMP #"9M+1

BCC GETNUM ;STAY IN LOOP IF DIGIT (BETWEEN "0" AND "9")

EXITNN:

LDA NUM ;RETURN THE NUMBER

LDY NUM+1

RTS

;ROUTINE: GETCHR

;PURPOSE: GET A CHARACTER FOR THE LINE

;ENTRY: LIDX = NEXT CHARACTER TO GET

; LLEN = LENGTH OF LINE

;EXIT: IF NO MORE CHARACTERS THEN

; CARRY = 1

ELSE

CARRY = 0

REGISTER A = CHARACTER

;REGISTERS USED: ALL

;EXIT CHARACTER GET WITH CARRY = 1 TO

; INDICATE END OF LINE (LIDX >= LLEN)

; OTHERWISE, CARRY IS CLEARED

;GET CHARACTER

;CLEAR BIT 7

;INCREMENT TO NEXT CHARACTER

; CARRY IS STILL CLEARED

RTS

•ROUTINE: PRTNUM

;PURPOSE: PRINT A NUMBER BETWEEN 0..99

;ENTRY: A = NUMBER TO PRINT

;EXIT: NONE

^•REGISTERS USED: ALL

GETCHR:

EXITGC:

LDA

CMP

BCS

TAY

LDA

AND

INY

STY

LIDX

LLEN

EXITGC

200H,Y

tOlllllllB

LIDX

11D REAL-TIME CLOCK AND CALENDAR (CLOCK) 503

PRTNUM

DIV10:

;.DATA

CR

MSG

MSGIDX

NUM:

LLEN:

LIDX:

CEN20:

CURSEC

:

LDY

SEC

INY

SBC

BCS

ADC

;REG A

;REG Y

TAX

TYA

JSR

TXA

JSR

RTS

SECTION

.EQU

.BYTE

.BLOCK

.BLOCK

.BLOCK

.BLOCK

.WORD

: .BLOCK

.END

#"0"-l

#10

DIV10

#10+fI0"

= l'S PLACE

= 10'S PLACE

WRCHAR

WRCHAR

ODH

"ENTER DATE

1

2

1

1

1900

1

;PROGRAM

; INITIALIZE Y TO "O11 - 1

; Y WILL BE THE 10'S PLACE

;INCREMENT 10'S

;MAKE REGISTER A AN ASCII DIGIT

;SAVE l'S

;OUTPUT 10'S PLACE

;OUTPUT l'S PLACE

;ASCII CARRIAGE RETURN

"ENTER DATE AND TIME ",CR,"(MM/DD/YR HR:MN:SC)?

;INDEX INTO MESSAGE

;NUMBER

;LENGTH OF INPUT LINE

;INDEX OF INPUT LINE

;20TH CENTURY

;CURRENT SECOND

\0

Appendix A 6502 Instruction Set

Summary

Copyright ® 1982 Synertek, Inc.

Reprinted by permission.

Table A-1. 6502 Instructions in Alphabetical Order

tatlRUCTIORS

MNEMONIC

AND

ASL

BCC

BCS

BEQ

BIT

8MI

BNE

BPL

BRK

BVC

BVS

CLC

CLD

CLI

CLV

CMP

CPX

CPY

DEC

DEX

DE Y

EOR

INC

INX

IN Y

JMP

JSR

LDA

OPERATION

AAM-A (1)

BRANCH ON C-0 (2)

BRANCH ON O1 (2)

BRANCH ON Z-1 (2)

A AM

BRANCH ON N-1 (2)

BRANCH ON Z-0 (2)

BRANCH ON N-0 (2)

(SaeFis. A-1)

BRANCH ON V-0 (2)

BRANCH ON V-1 (2)

0-C

0-D

0-1

0-V

A-M (1)

X-M

Y-M

M-

X-

Y-

A^

M

X^

JU

(S«

M

1 -M

1 -X

1 - Y

,M-A 11)

n -m

1 - x

H-Y

MP TO NEW LOC

e Fig. A-2) JUMP SUB

~A (1)

■Mtouri

OP

29

C9

EO

CO

49

A9

N

2

2

2

2

2

2

tt

2

2

2

2

2

2

AttOlUII

OP

2D

0E

2C

CD

EC

CC

CE

4D

EE

4C

20

AD

N

4

6

4

4

4

4

6

4

6

3

6

4

*

3

3

3

3

3

3

3

3

3

3

3

3

IIROPACI

OP

25

06

24

C5

E4

C4

C6

45

E6

A5

N

3

5

3

3

3

3

5

3

5

3

2

2

2

2

2

2

2

2

2

2

ACCUM

OP

0A

N

2 ■

MPUIO

OP

00

18

D8

58

B8

CA

88

E8

C8

N

7

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

UNO II

OP

61

21

C1

41

A1

N

6

6

6

6

2

2

2

2

itaoi. y

OP

31

D1

51

B1

N

5

5

5

5

2

2

2

2

I.PACI.I

OP

35

16

D5

D6

55

F6

B5

N

4

6

4

6

4

6

4

#

2

2

2

2

2

2

2

AM. X

OP

3D

IE

DD

DE

SD

FE

BD

N

4

7

4

7

4

7

4

0

3

3

3

3

3

3

3

AM.Y

OP

39

09

59

B9

N

4

4

4

4

3

3

3

3

RIIATIVI

OP

90

BO

FO

30

DO

10

50

70

N

2

2

2

2

2

2

2

2

•

2

2

2

2

2

2

2

2

INDIRECT

OP

6C

N

5 3

OP N «

coaoiTioa toon

N Z C I 0 V

j J J - - J

4 4 _ _ . _

J J J - - -

m, y m.

0 _

0

M

v v y - - -

y v

7 y

y y

y y

/ V

y y _ _ _ _

505

506 6502 ASSEMBLY LANGUAGE SUBROUTINES

Table A-1. 6502 Instructions in Alphabetical Order (Continued)

■Mtaoaic

LDX

LDY

NOP

OR A

P H A

PHP

PLA

PLP

RQL

ROR

RTI

R TS

SBC

SEC

SEO

SEI

STA

S T X

STY

TAX

TAY

TSX

TXA

T X S

T Y A

OKRATIO!

M-X (1)

M-»Y (1)

NO OPERATION

AVM-A

A -♦ Ms S-1 -»S

P -* Ms S-1 -* S

S + 1 - S Ms - A

S + 1-»S Mj-P

L^Z Ol-Hcl-^

"♦-[cMt 3*^
(Sea Fig. A-1) RTRN INT.

(Sefl Fig A-2) RTRN SUB

A-M-C-A (1)

1 -• C

1-D

1-1

A-M

X -• M

Y — M

A-X

A-Y

S-X

X-A

X -• S

Y-A

MMfDUTI

OP

A2

AO

09

E9

N

2

2

2

2

#

2

2

2

2

MSOlUTf

OP

AE

AC

OD

2E

6E

ED

80

RF

RC

N

4

4

4

6

6

4

4

4

4

#

3

3

3

3

3

3

3

momm

OP

A6

A4

6

05

26

66

E5

85

66

R4

N

3

3

3

5

5

3

3

■j

#

2

2

2

2

2

2

2

7

7

ttCMI.

OP

2A

6A

N

2

2

(1 i ADD 1 TO "N" IF PAGE BOUNDARY IS CROSSED

12) ADD 1 TO "N" IF BRANCH OCCURS TO SAME PAGE

ADD 2 TO "N" IF BRANCH OCCURS TO DIFFERENT PAGE

(3) CARRY NOT ■ BORROW

(4) IF IN DECIMAL MODE Z FLAG IS INVALID

ACCUMULATOR MUST BE CHECKED FOR ZERO RESULT

#

1

1

MPlltOi

OP

EA

<10

08

68

28

40

60

30

F8

^78

AA

A8

BA

8A

OA

98

N

2

g

4

4

6

g

2

2

2

2

2

2

2

2

2

X

Y

A

M

#

j

1

1

1

1

1

1

1

1

1

1

<»0. X)

OP

01

El

81

N

6

6

6

#

2

2

2

0MI.Y

OP

11

F1

91

N

5

6

6

INDEX X

INDEX Y

ACCUMULATOR

#

2

2

2

Z.PMM!

OP

B4

jC

15

36

76

F5

95

94

N

4

6

4

6

6

4

4

#

2

2

2

2

2

2

2

2

AM. I

OP

BC

SE

1D

3E

7E

FD

9D

N

4

7

4

7

7

4

5

MEMORY PER EFFECTIVE ADDRESS

Ms MEMORY PER STACK POINTER

#

3

3

3

3

3

3

3

a».t

OP

BE

19

F9

99

N

4

4

4

5

#

3

3

3

3

RUATIVf

OP N #

WMMCT

OP N

4- ADD

- SUBTRACT

A AND

V OR

V EXCLUSIVE OR

/ MODIFIED

#

I.MII.V

OP

B6

96

N

4

#

2

2

coaomoa coots

N Z C 1 0 V

j ,/ _ _ _ _

V ^

0 V V

V ,/----

V V — - - -

(RESTORED)

V V •

J J J - - -

RESTORED)

V V (3) V

_ _ _ _ 1 _

_ _ _ 1 _ _

_ _ _

J V

y ^ _ _ _ _

,/,/____

</ V - - - -

^ V - - - -

- NOT MODIFIED

M7 MEMORY BIT 7

Mt MEMORY BIT 6

N NUMBER OF CLOCK

CYCLES

NUMBER OF BYTES

Table A-2. 6502 Operation Codes in Numerical Order

0

BHK

WL

JSR

BMI

RTI

SVC

RTS

avs

sec

LOY IMM

acs

CPYIMM

8NE

CPX-IMM

8EQ

1

ORAINO.

ORAINO.

AND INO.

AND INO,

EOR INO.

6QHIND.

ADC INO.

ADCINO.

STAINO. >

STA-IMO. 1

LDAINO.

LOAINO.

CMPIND.

CMP-IND.

SBC INO. >

S8C-IN.0.1

f

r

2

LOXIMM

3 4

BIT-Z. P*gt

STYZ.Pigt

STY-Z.paaM(

LOYZPio.

LOY-Z.P»aX

CPYZ.P»gt

CPXZ.Pigt

5

ORAZ.Ptg*

ORA«N»X

AND Z. P«gt

ANOZPm^X

EORZ.P*ge

EOR-Z.P«gi.X

ADCZ.P»9t

ADC-Z.PWUC

STAZ.P^t

STAtP»#kX

LOAZ.P«fl«

LOA-KPIKX

CMPZ.Ptg*

CMP-Z,PaajiX

SBCZ.PK*

SSCZ,NgftX

6

ASL Z. PAGE

ASL-2.Pagt.X

ROLZ. P*o*

ROLZI>k*X

LSRZ.P«gt

L8R-Z,PapiX

ROR Z. P*gt

STXZ.P.9.

STXZNqaV

LOX-Z.P«gi

DECZ.P«gt

DEC4E,P«»X

INCZ.Pi9t

INC-Z.P1QKX

7 8

PHP

cue

PLP

sec

PHA

CLI

PLA

SEI

DEY

TYA

TAY

CIV

INV

ClO

INX

SEO

9

ORAIMM

OWAABS. V

ANOIMM

ANO-ABS.Y

eonimm

6OR-ABS.Y

ADC IMM

ADC-ABS. V

6TAVMB.Y

LOAIMM

LOA'AM.Y

CMPIMM

CMP4BS.Y

SBCIMM

UC4B9.V

A

ASIA

ROL A

LSRA

ROR A

TXA

TXS

TAX

TSK

OEX

NOP

8 C

BIT ABS

JMPABS

JMPIND

STY ABS

LOY ABS

u>v«ass.x*

CPYABS

CPXABS

D

ORAABS

ORA-ABS. X

ANOABS

ANOABS.X

eon abs

E0R-A8S.X

ADCABS

AOC-AB3.X

STA ABS

STA-ABS.X

LOAABS

LOA-AW. X

CMPABS

CI*»,A8S.X

SBC ABS

8SCA8S.X

E

ASL ABS

ASLABS.X

ROL ABS

ROL ABS. X

LSRABS

LSR-ASS, X

RORABS

STXA8S

LDX ABS

LDX-ABS. Y

DEC ABS

OECABS.X

INCABS

tfM^ABS.X

F

LSD/

z

APPENDIX A. 6502 INSTRUCTION SET SUMMARY 507

Table A-3. Summary of 6502 Addressing Modes

IMM ■ IMMEDIATE ADDRESSING - THE OPERAND IS CONTAINED IN THE SECOND BYTE OF THE

INSTRUCTION.

ABS • ABSOLUTE ADDRESSING - THE SECOND BYTE OF THE INSTRUCTION CONTAINS THE 8

LOW ORDER BITS OF THE EFFECTIVE ADDRESS. THE THIRD BYTE CONTAINS THE 8

HIGH ORDER BITS OF THE EFFECTIVE ADDRESS.

Z. PAGE ZERO PAGE ADDRESSING - SECOND BYTE CONTAINS THE 8 LOW ORDER BITS OF

THE EFFECTIVE ADDRESS. THE 8 HIGH ORDER BITS ARE ZERO.

A. ■ ACCUMULATOR - ONE BYTE INSTRUCTION OPERATING ON THE ACCUMULATOR.

Z. PAGE. X • Z PAGE, Y ■ ZERO PAGE INDEXED - THE SECOND BYTE OF THE INSTRUCTION IS

ADDED TO THE INDEX (CARRY IS DROPPED) TO FORM THE LOW ORDER BYTE OF THE

EA. THE HIGH ORDER BYTE OF THE EA IS ZERO

ABS. X ABS. Y ABSOLUTE INDEXED _ THE EFFECTIVE ADDRESS IS FORMED BY ADDING THE

INDEX TO THE SECOND AND THIRD BYTE OF THE INSTRUCTION.

(IND. XI INDEXED INDIRECT - THE SECOND BYTE OF THE INSTRUCTION IS ADOED TO THE X

INDEX. DISCARDING THE CARRY. THE RESULTS POINTS TO A LOCATION ON PAGE

ZERO WHICH CONTAINS THE 8 LOW ORDER BITS OF THE EA. THE NEXT BYTE CON

TAINS THE 8 HIGH ORDER BITS.

(IND). Y • INDIRECT INDEXED - THE SECOND BYTE OF THE INSTRUCTION POINTS TO A LOCA

TION IN PAGE ZERO. THE CONTENTS OF THIS MEMORY LOCATION IS ADDED TO THE Y

INDEX. THE RESULT BEING THE LOW ORDER EIGHT BITS OF THE EA. THE CARRY

FROM THIS OPERATION IS ADDED TO THE CONTENTS OF THE NEXT PAGE ZERO LOCA

TION. THE RESULTS BEING THE 8 HIGH ORDER BITS OF THE EA.

Table A-4. 6502 Assembler Directives, Labels, and Special Characters

ASSEMBLER DIRECTIVES

• OPT - SPECIFIES OPTIONS FOR ASSEMBLY

OPTIONS ARE: (OPTIONS LISTED FIRST ARE THE DEFAULT VALUES).

NOC (COU OR CNT) - DO NOT LIST ALL INSTRUCTIONS AND THEIR USAGE.

NOG (GEN) - DO NOT GENERATE MORE THAN ONE LINE OF CODE FOR ASCII STRINGS.

XRE (NOX) - PRODUCE A CROSS-REFERENCE LIST IN THE SYMBOL TABLE.

ERR (NOE) - CREATE AN ERROR FILE.

MEM (NOM) - CREATE AN ASSEMBLER OBJECT OUTPUT FILE.

LIS (NOD - PRODUCE A FULL ASSEMBLY LISTING.

• BYTE - PRODUCES A SINGLE BYTE IN MEMORY EQUAL TO EACH OPERAND SPECIFIED.

• WORD -r PRODUCES AN ADDRESS (2 BYTES) IN MEMORY EQUAL TO EACH OPERAND SPECIFIED.

• DBYTE - PRODUCES TWO BYTES IN MEMORY EQUAL TO EACH OPERAND SPECIFIED.

• SKIP - GENERATE THE NUMBER OF BLANK LINES SPECIFIED BY THE OPERAND.

• PAGE - ADVANCE THE LISTING TO THE TOP OF A NEW PAGE AND CHANGE TITLE

• END - DEFINES THE END OF A SOURCE PROGRAM.

• - - DEFINES THE BEGINNING OF A NEW PROGRAM COUNTER SEQUENCE.

LABELS

LABELS ARE THE FIRST FIELD AND MUST BE FOLLOWED BY AT LEAST ONE SPACE OR A COLON <:)

LABELS CAN BE UP TO 6 ALPHANUMERIC CHARACTERS LONG AND MUST BEGIN WITH AN ALPHA
CHARACTER.

A.X.Y.S.P AND THE 56 OPCODES ARE RESERVED AND CANNOT BE USED AS LABELS.

LABEL " EXPRESSION CAN BE USED TO EQUATE LABELS TO VALUES.

LABEL •«• +N CAN BE USED TO RESERVE AREAS IN MEMORY.

CHARACTERS USED AS SPECIAL PREFIXES:

• INDICATES AN ASSEMBLER DIRECTIVE

» SPECIFIES THE IMMEDIATE MODE OF ADDRESSING

$ SPECIFIES A HEXADECIMAL NUMBER

@ SPECIFIES AN OCTAL NUMBER

% SPECIFIES A BINARY NUMBER

' SPECIFIES AN ASCII LITERAL CHARACTER

() INDICATES INDIRECT ADDRESSING
; INDICATES FOLLOWING TEXT ARE COMMENTS

< SPECIFIES LOWER HALF OF A 16 BIT VALUE

> SPECIFIES UPPER HALF OF A 16 BIT VALUE

508 6502 ASSEMBLY LANGUAGE SUBROUTINES

0 5

0 6

MNEMONIC OP CODE

AOL

AOH

AOL

ADH

AOL

AOH

LOW MEMORY

• PC AT TIME OF IRQ OR

NMI THIS INSTRUCTION
WILL COMPLETE BEFORE
INTERRUPT IS SERVICED

• PC AFTER RTI

IRQ VECTOR

• HIGH MEMORY

Figure A-1. Response to IRQ and NMI Inputs and

Operation of the RTI and BRK Instructions

LOW MEMORY

SP BEFORE JSR AND AFTER

RETURN (RTS) FROM
SUBROUTINE

JUMP TO SUBROUTINE

RETURN FROM SUBROUTINE TO

THIS LOCATION

RETURN FROM SUBROUTINE

HIGH MEMORY

Figure A-2. Operation of the JSR and RTS Instructions

APPENDIX A. 6502 INSTRUCTION SET SUMMARY 509

15

PCH

1
7

|

X

PCL

I
0

|

J

INIVIXIBIDI IZICI

L

ACCUMULATOR

INDEX REGISTER

INDEX REGISTER

PROGRAM COUNTER

STACK POINTER

PROCESSOR STATUS

CARRY

ZERO

IRQ DISABLE

DECIMAL MODE

BRK COMMAND

NOT USED

OVERFLOW

NEGATIVE

1

1

1

1

1

1

1

A

Y

X

"PC" OR "P"

"S"

i "P" OR "F"

= CARRY OR NO BORROW

= RESULT ZERO

= DISABLE

a DECIMAL. 0 » BINARY

ALWAYS

= TRUE

= NEGATIVE

Figure A-3. Programming Model of the 6502 Microprocessor

Appendix B Programming Reference

for the 6522 Versatile

Interface Adapter (VIA)
Copyright ® 1982 Synertek, Inc.

Reprinted by permission.

VSS£

PAO [-

PA1 £

PA2 Q

PA3 Q

PA4 E

PA5 £

PA6 E

PA7 C

PBO C

PB1 C

PB2 C

PB3C

PB4 C

PB5 £

PB6C

PB7C

CB1 C

CB2C

vcc C

1

2

3

4

5

6

7

8

9

10 SY6522

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

2 CA1

2 CA2

RSO

RS1

3 RS2

3 RES

Udo

Ddi

HD2

DD3

UD4

UD5

I)D6

Dcsi

IICS2

3 r/w

Figure B-1. 6522 Pin Assignments

510

APPENDIX B. PROGRAMMING REFERENCE FOR THE 6522 VIA 511

DATA/1 N.
BUS VV

DATA

BUS

BUFFERS

RES •

R/W ■>

02

CS1 »

CS2 *

RSO "

RSI ►

RS2 ►

RS3 ■■

CHIP

ACCESS

CONTROL

INTERRUPT

CONTROL

FLAGS

(IFR)

ENABLE

HER)

PERIPHERAL

(PCR)

AUXILIARY

(ACR)

FUNCTION

CONTROL

LATCH

(T1LH)

COUNTER

(T1C-H)

COUNTER

(T2C-H)

LATCH

(TILL)

COUNTER

<T1CL)

LATCH

(T2L-U

COUNTER

(T2C-L)

INPUT LATCH

(IRA)

OUTPUT

(ORA)

DATADIR.

(DDRA)

PORT A REGISTERS

HANDSHAKE

CONTROL

^ SHIFT REG.

(SR)

PORT B REGISTERS

INPUT LATCH

(IRB)

OUTPUT

(ORB)

DATA DIR.

(DDRB)

• TWT

BUFFERS

(PA)

• CB1

- CB2

BUFFERS

(PB) <=>

Figure B-2. Block Diagram of the 6522 Versatile Interface Adapter (VIA)

Table B-1. 6522 Internal Registers

Register

Number

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

RS Coding

RS3

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

RS2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

RS1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

RSO

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Register

Desig.

ORB/IRB

ORA/IRA

DDRB

DDRA

T1C-L

T1C-H

T1L-L

T1L-H

T2C-L

T2C-H

SR

ACR

PCR

IFR

IER

ORA/IRA

Description

Write

Output Register "B"

Output Register "A"

Read

Input Register "B"

Input Register "A"

Data Direction Register "B"

Data Direction Register "A"

T1 Low-Order Latches T1 Low-Order Counter

T1 High-Order Counter

T1 Low-Order Latches

T1 High-Order Latches

T2 Low-Order Latches | T2 Low-Order Counter

T2 High-Order Counter

Shift Register

Auxiliary Control Register

Peripheral Control Register

Interrupt Flag Register

Interrupt Enable Register

Same as Reg 1 Except No "Handshake"

512 6502 ASSEMBLY LANGUAGE SUBROUTINES

7 6 5 4 3 2 B
• PBO

• PB1

■ PB2

• PB3

• PB4

• PB5

• PB6

. PB7

OUTPUT REGISTER "B" (ORB)

OR

INPUT REGISTER "B" (ORB)

Pin

Data Direction

Selection

DDRB = "1" (OUTPUT)

DDRB = "0" (INPUT)

(Input latching disabled)

DDRB = "0" (INPUT)

(Input latching enabled)

WRITE

MPU writes Output Level

(ORB)

MPU writes into ORB, but

no effect on pin level, until

DDRB changed.

READ

MPU reads output register bit

in ORB. Pin level has no affect.

MPU reads input level on PB

pin.

MPU reads IRB bit. which is

the level of the PB pin at the

time of the last CB1 active

transition.

Figure B-3. Output Register B and Input Register B (Register 0)

6 5 4 3 B
-PAO

• PA1

"PA2

-PA3

-PA4

-PAS

-PA6

-PA7,

OUTPUT REGISTER "A" (ORA)

OR

INPUT REGISTER "A" (IRA)

Pin

Data Direction

Selection

DDRA = "1" (OUTPUT)

(Input latching disabled)

DDRA ='1" (OUTPUT)

(Input latching enabled)

DDRA = "0" (INPUT)

(Input latching d-sabled)

DDRA = "0" (INPUT)

(Input latching enabled)

WRITE

MPU writes Output Level

(ORA).

MPU writes into ORA. but

no effect on pin level, until

DDRA changed.

READ

MPU reads level on PA pin.

MPU reads IRA bit which is

the level of the PA pin at the

time of the last CA1 active

transition.

MPU reads level on PA pin.

MPU reads IRA bit which is

the level of the PA pin at the

time of the last CA1 active

transition.

Figure B-4. Output Register A and Input Register A (Register 1)

APPENDIX B. PROGRAMMING REFERENCE FOR THE 6522 VIA 513

7 6 5 4 3 2 1

-PBO/PAOl

-PB1/PA1

- PB2/PA2

- PB3/PA3

- PB4/PA4

_ PB5/PA5

. PB6/PA6

_ PB7/PA7

DATA DIRECTION REGISTER

"B"OR "A" (DDRB/DDRA)

7 6 5 4 3 2 10

-256

-512

-1024

-2048

-4096

-8192

-16384

- 32768

COUNT

VALUE

"0" ASSOCIATED PB/PA PIN IS AN INPUT

(HIGH-IMPEDANCE)

"1" ASSOCIATED PB/PA PIN IS AN OUTPUT,

WHOSE LEVEL IS DETERMINED BY

ORB/ORA REGISTER BIT.

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER

LATCHES. ALSO, AT THIS TIME BOTH

HIGH AND LOW-ORDER LATCHES

TRANSFERRED INTO T1 COUNTER.

T1 INTERRUPT FLAG ALSO IS RESET.

READ - 8 BITS FROM T1 HIGH-ORDER COUNTER

TRANSFERRED TO MPU.

Figure B-5. Data Direction Registers B

(Register 2) and A (Register 3)

Figure B-7. Timer 1 High-Order Counter

(Register 5)

7 6 5 4 3 2 1

-2

-4

-8

-16

-32

-64

-128

COUNT

VALUE

7 6 5 4 3 2 10

-1

-2

-4

-8

-16

-32

-64

-128

_ COUNT

VALUE

WRITE -8 BITS LOADED INTO T1 LOW-ORDER

LATCHES. LATCH CONTENTS ARE

TRANSFERRED INTO LOW-ORDER

COUNTER AT THE TIME THE HIGH-

ORDER COUNTER IS LOADED (REG 5).

READ - 8 BITS FROM T1 LOW-ORDER COUNTER

TRANSFERRED TO MPU. IN ADDITION,

T1 INTERRUPT FLAG IS RESET (BIT 6

IN INTERRUPT FLAG REGISTER).

WRITE - 8 BITS LOADED INTO T1 LOW-ORDER

LATCHES. THIS OPERATION IS THE
SAME AS WRITING INTO

REGISTER 4.

READ - 8 BITS FROM T1 LOW-ORDER LATCHES

TRANSFERRED TO MPU. UNLIKE REG 4

OPERATION, THIS DOES NOT CAUSE

RESET OF T1 INTERRUPT FLAG.

Figure B-6. Timer 1 Low-Order Counter

(Register 4)
Figure B-8. Timer 1 Low-Order Latches

(Register 6)

514 6502 ASSEMBLY LANGUAGE SUBROUTINES

7 6 5 4 3 2 10

- 256

-512

- 1024

-2048

-4096

-8192

- 16384

-32768

_ COUNT

VALUE

WRITE - 8 BITS LOADED INTO T1 HIGH-ORDER
LATCHES. UNLIKE REG 4 OPERATION

NO LATCH-TO-COUNTER TRANSFERS
TAKE PLACE.

READ - 8 BITS FROM T1 HIGH-ORDER LATCHES
TRANSFERRED TO MPU.

I i'M'i'n»i

-256

-512

-1024

-2048

-4096

-8192

- 16384

-32768

_ COUNT

VALUE

WRITE - 8 BITS LOADED INTO T2 HIGH-ORDER
COUNTER. ALSO, LOW-ORDER LATCHES
TRANSFERRED TO LOW-ORDER
COUNTER. IN ADDITION. T2 INTERRUPT
FLAG IS RESET.

READ - 8 BITS FROM T2 HIGHORDER COUNTER
TRANSFERRED TO MPU.

Figure B-9. Timer 1 High-Order Latches

(Register 7)
Figure B-11. Timer 2 High-Order Counter

(Register 9)

7 6 5 4 3 2 1 0

1

-2

-4

-8

-16

-32

-64

-128

COUNT

VALUE

7 6 5 4 3 2 1 0

SHIFT

- REGISTER

BITS

WRITE - 8 BITS LOADED INTO T2 LOW-ORDER

LATCHES.

READ - 8 BITS FROM T2 LOWORDER COUNTER

TRANSFERRED TO MPU. T2 INTERRUPT

FLAG IS RESET.

NOTES:

1. WHEN SHIFTING OUT. BIT 7 IS THE FIRST BIT

OUT AND SIMULTANEOUSLY IS ROTATED BACK
INTO BIT 0.

2. WHEN SHIFTING IN, BITS INITIALLY ENTER

BIT 0 AND ARE SHIFTED TOWARDS BIT 7.

Figure B-10. Timer 2 Low-Order Counter

(Register 8)

Figure B-12. Shift Register

(Register 10)

APPENDIX B. PROGRAMMING REFERENCE FOR THE 6522 VIA 515

T1 TIMER CONTROL-

7

0

0

1

1

6

0

1

0

1

OPERATION

TIMED INTERRUPT

EACH TIME T1 IS

LOADED

CONTINUOUS

INTERRUPTS

TIMED INTERRUPT

EACH TIME T1 IS

LOADED

CONTINUOUS

INTERRUPTS

PB7

DISABLED

ONE-SHOT

OUTPUT

SQUARE

WAVE

OUTPUT

T2 TIMER CONTROL -

3 2 1 M
■ PA

• PB

LATCH ENABLE/DISABLE

0 = DISABLE

1 = ENABLE LATCHING

- SHIFT REGISTER CONTROL

5

0

1

OPERATION

TIMED INTERRUPT

COUNT DOWN WITH

PULSES ON PB6

4

0

0

0

0

1

1

1

1

3

0

0

1

1

0

0

1

1

2

0

1

0

1

0

1

0

1

OPERATION

DISABLED

SHIFT IN UNDER CONTROL OF T2

SHIFT IN UNDER CONTROL OF4>2

SHIFT IN UNDER CONTROL OF EXT. CLK

SHIFT OUT FREE-RUNNING AT T2 RATE

SHIFT OUT UNDER CONTROL OF T2

SHIFT OUT UNDER CONTROL OF 4>2

SHIFT OUT UNDER CONTROL OF EXT. CLK.

Figure B-13. Auxiliary Control Register (Register 11)

CB2CONTROL-

7

0

0

0

0

1

1

1

1

6

0

0

1

1

0

0

1

1

5

0

1

0

1

0

1

0

1

OPERATION

INPUT NEGATIVE ACTIVE EDGE

INDEPENDENT INTERRUPT

INPUT NEG EDGE

INPUT POSITIVE ACTIVE EDGE

INDEPENDENT INTERRUPT

INPUT POS EDGE

HANDSHAKE OUTPUT

PULSE OUTPUT

LOW OUTPUT

HIGH OUTPUT

CB1 INTERRUPT CONTROL -

10 = NEGATIVE ACTIVE EDGE

1 = POSITIVE ACTIVE EDGE

- CA1 INTERRUPT CONTROL

I 0 = NEGATIVE ACTIVE EDGE I

| 1 - POSITIVE ACTIVE EDGE

CA2CONTROL

3

0

0

0

0

1

1

1

1

2

0

0

1

1

0

0

1

1

1

0

1

0

1

0

1

0

1

OPERATION

INPUT-NEGATIVE ACTIVE EDGE

INDEPENDENT INTERRUPT

INPUTNEG EDGE

INPUT-POSITIVE ACTIVE EDGE

INDEPENDENT INTERRUPT

INPUTPOS EDGE

HANDSHAKE OUTPUT

PULSE OUTPUT

LOW OUTPUT

HIGH OUTPUT

Figure B-14. Peripheral Control Register (Register 12)

516 6502 ASSEMBLY LANGUAGE SUBROUTINES

VH

TIME

T MER 1

0

LCA2-

CA1

•-SHIFT REG-

LCB2
B1-

R2-

SETBY

CA2 ACTIVE EDGE

CA1 ACTIVE EDGE

COMPLETE 8 SHIFTS

CB2 ACTIVE EDGE

DB1 ACTIVE EDGE

TIME-OUT OF T2

TIME OUT OF T1

ANY ENABLED

INTERRUPT

CLEARED BY

READ OR WRITE

REG 1 (ORA)

READ OR WRITE

REG 1 (ORA)

READ OR WRITE

SHIFT REG

READ OR WRITE ORB

READ T2 LOW OR

WRITE T2 HIGH

READT1 LOW OR

WRITE T1 HIGH

CLEAR ALL

INTERRUPTS

Figure B-15. Interrupt Flag Register (Register 13)

0 = INTERRUPT DISABLED

1 = INTERRUPT ENABLED

NOTES:
1. IF BIT 7 IS A "0", THEN EACH "1" IN BITS 0 - 6 DISABLES THE
CORRESPONDING INTERRUPT. FOTLJC

2. IF BIT 7 IS A "1", THEN EACH "1" IN BITS 0 - 6 ENABLES THE

CORRESPONDING INTERRUPT.

3 IF A READ OF THIS REGISTER IS DONE. BIT 7 WILL BE "1" AND
ALL OTHER BITS WILL REFLECT THEIR ENABLE/DISABLE STATE.

Figure B-16. Interrupt Enable Register (Register 14)

Appendix C ASCII Character Set

Copyright ® 1982 Synertek, Inc.

Reprinted by permission.

\
LSD

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

MSD

\
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

000

NUL

SOH

STX

ETX

EOT

ENG

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

1

001

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

VS

2

010

SP

I

"

&

$

%

&

t

(

)

•

+

t

-

•

/

3

011

0

1

2

3

4

5

6

7

8

9

\

<

>

?

4

100

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0

5

101

~~P

Q

R

S

T

U

V

w

X

Y

z

C

\

3
A

6

110

%

a

b

c

d

e

f

9

h

i

j

k

I

m

n

0

7

111

P

q

r

s

t

u

V

w

X

V

z

}

1

{

DEL

517

Glossary

Absolute address. An address that identifies a storage location or a device without

the use of a base, offset, or other factor. See also Effective address, Relative

offset.

Absolute addressing. An addressing mode in which the instruction contains the

actual address required for its execution. In 6502 terminology, absolute

addressing refers to a type of direct addressing in which the instruction con

tains a full 16-bit address as opposed to zero page addressing in which the

instruction contains only an 8-bit address on page 0.

Absolute indexed addressing. A form of indexed addressing in which the instruc

tion contains a full 16-bit base address.

Accumulator. A register that is the implied source of one operand and the destina

tion of the result for most arithmetic and logic operations.

ACIA (Asynchronous Communications Interface Adapter). A serial interface

device. Common ACIAs in 6502-based computers are the 6551 and 6850

devices. See also UART.

Active transition (in a PIA or VIA). The edge on the control line that sets an Inter

rupt flag. The alternatives are a negative edge (1 to 0 transition) or a positive
edge (0 to 1 transition).

Address. The identification code that distinguishes one memory location or input/

output port from another and that can be used to select a specific one.

Addressing modes. The methods for specifying the addresses to be used in execut

ing an instruction. Common addressing modes are direct, immediate, indexed,

indirect, and relative.

519

520 6502 ASSEMBLY LANGUAGE SUBROUTINES

Address register, A register that contains a memory address.

Address space. The total range of addresses to which a particular computer may

refer.

ALU. See Arithmetic-logic unit.

Arithmetic-logic unit (ALU). A device that can perform any of a variety of

arithmetic or logical functions; function inputs select which function is per

formed during a particular cycle.

Arithmetic shift A shift operation that preserves the value of the sign bit (most

significant bit). In a right shift, this results in the sign bit being copied into the

succeeding bit positions (called sign extension).

Arm. See Enable, but most often applied to interrupts.

Array. A collection of related data items, usually stored in consecutive memory

addresses.

ASCII (American Standard Code for Information Interchange). A 7-bit character

code widely used in computers and communications.

Assembler. A computer program that converts assembly language programs into a

form (machine language) that the computer can execute directly. The assem

bler translates mnemonic operation codes and names into their numerical

equivalents and assigns locations in memory to data and instructions.

Assembly language. A computer language in which the programmer can use

mnemonic operation codes, labels, and names to refer to their numerical

equivalents.

Asynchronous. Operating without reference to an overall timing source, that is, at

irregular intervals.

Autodecrementing. The automatic decrementing of an address register as part of

the execution of an instruction that uses it.

Autoincrementing. The automatic incrementing of an address register as part of the

execution of an instruction that uses it.

Automatic mode (of a peripheral chip). An operating mode in which the peripheral

chip produces control signals automatically without specific program interven

tion.

B

Base address. The address in memory at which an array or table starts. Also called

starting address or base.

GLOSSARY 521

Baud. A measure of the rate at which serial data is transmitted, bits per second,

but including both data bits and bits used for synchronization, error checking,

and other purposes. Common baud rates are 110, 300, 1200, 2400, 4800, and

9600.

Baud rate generator. A device that generates the proper time intervals between

bits for serial data transmission.

BCD (Binary-Coded Decimal). A representation of decimal numbers in which

each decimal digit is coded separately into a binary number.

Bidirectional. Capable of transporting signals in either direction.

Binary-coded decimal. See BCD.

Binary search. A search in which the set of items to be searched is divided into two

equal (or nearly equal) parts during each iteration. The part containing the

item being sought is then determined and used as the set in the next iteration.

A binary search thus halves the size of the set being searched with each itera

tion. This method obviously assumes the set of items is ordered.

Bit test. An operation that determines whether a bit is 0 or 1. Usually refers to a

logical AND operation with an appropriate mask.

Block. An entire group or section, such as a set of registers or a section of

memory.

Block comparison (or block compare). A search that extends through a block of

memory until either the item being sought is found or the entire block is

examined.

Block move. Moving an entire set of data from one area of memory to another.

Boolean variable. A variable that has only two possible values, which may be

represented as true and false or as 1 and 0. See also Flag.

Borrow. A bit which is set to 1 if a subtraction produces a negative result and to 0

if it produces a positive or zero result. The borrow is used commonly to

subtract numbers that are too long to be handled in a single operation.

Bounce. To move back and forth between states before reaching a final state.

Branch instruction. See Jump instruction.

Break instruction. See Trap.

Breakpoint. A condition specified by the user under which program execution is

to end temporarily. Breakpoints are used as an aid in debugging. The specifica

tion of the conditions under which execution will end is referred to as setting

522 6502 ASSEMBLY LANGUAGE SUBROUTINES

breakpoints and the deactivation of those conditions is referred to as clearing

breakpoints.

BSC (Binary Synchronous Communications or BISYNC). An older line protocol

often used by IBM computers and terminals.

Bubble sort A sorting technique which goes through an array exchanging each

pair of elements that are out of order.

Buffer. Temporary storage area generally used to hold data before it is transferred

to its final destination.

Buffer empty. A signal that is active when any data entered into a buffer or register

has been transferred to its final destination.

Bufferfull. A signal that is active when a buffer or register is completely occupied

with data that has not been transferred to its final destination.

Buffer index. The index of the next available address in a buffer.

Buffer pointer. A storage location that contains the next available address in a

buffer.

Bug. An error or flaw.

Byte. A unit of eight bits. May be described as consisting of a high nibble or digit

(the four most significant bits) and a low nibble or digit (the four least signifi

cant bits).

Byte-length. A length of eight bits per item.

C

Call (a subroutine). Transfers control to the subroutine while retaining the infor

mation required to resume the current program. A call differs from a jump or

branch in that a call retains information concerning its origin, whereas a jump

or branch does not.

Carry. A bit that is 1 if an addition overflows into the succeeding digit position.

Carryflag. A flag that is 1 if the last operation generated a carry from the most sig

nificant bit and 0 if it did not.

CASE statement. A statement in a high-level computer language that directs the

computer to perform one of several subprograms, depending on the value of a

variable. That is, the computer performs the first subprogram if the variable

has the first value specified, etc. The computed GO TO statement serves a

similar function in FORTRAN.

GLOSSARY 523

Centralprocessing unit (CPU). The control section of the computer which controls

its operations, fetches and executes instructions, and performs arithmetic and

logical functions.

Checksum. A logical sum that is included in a block of data to guard against

recording or transmission errors. Also referred to as longitudinal parity or

longitudinal redundancy check (LRC).

Circular shift See Rotate.

Cleaning the stack. Removing unwanted items from the stack, usually by adjust

ing the stack pointer.

Clear. Set to zero.

Clock. A regular timing signal that governs transitions in a system.

Close (a file). To make a file inactive. The final contents of the file are the last

information the user stored in it. The user must generally close a file after

working with it.

Coding. Writing instructions in a computer language.

Combo chip. See Multifunction device.

Command register. See Control register.

Comment. A section of a program that has no function other than documentation.

Comments are neither translated nor executed, but are simply copied into the

program listing.

Complement. Invert; see also one's complement, two's complement.

Concatenation. Linking together, chaining, or uniting in a series. In string opera

tions, placing of one string after another.

Condition code. See Flag.

Control (command) register. A register whose contents determine the state of a

transfer or the operating mode of a device.

Control signal. A signal that directs an I/O transfer or changes the operating mode

of a peripheral.

Cyclic redundancy check (CRC). An error-detecting code generated from a

polynomial that can be added to a block of data or a storage area.

524 6502 ASSEMBLY LANGUAGE SUBROUTINES

Data accepted. A signal that is active when the most recent data has been trans

ferred successfully.

Data direction register. A register that determines whether bidirectional I/O lines

are being used as inputs or outputs. Abbreviated as DDR in some diagrams.

Data-link control. A set of conventions governing the format and timing of data

exchange between communicating systems. Also called a protocol.

Data ready. A signal that is active when new data is available to the receiver. Same

as valid data.

Data register. In a PIA or VIA, the actual input/output port. Also called an output

register or a peripheral register.

DDCMP (Digital Data Communications Message Protocol). A widely used pro

tocol that supports any method of physical data transfer (synchronous or

asynchronous, serial or parallel).

Debounce. Convert the output from a contact with bounce into a single, clean

transition between states. Debouncing is most commonly applied to outputs

from mechanical keys or switches which bounce back and forth before settling

into their final positions.

Debounce time. The amount of time required to debounce a change of state.

Debugger. A program that helps in locating and correcting errors in a user pro

gram. Some versions are referred to as dynamic debugging tools or DDT after

the famous insecticide.

Debugging. The process of locating and correcting errors in a program.

Device address. The address of a port associated with an input or output device.

Diagnostic. A program that checks the operation of a device and reports its find

ings.

Digit shift. A shift of one BCD digit position or four bit positions.

Direct addressing. An addressing mode in which the instruction contains the

address required for its execution. The 6502 microprocessor has two types of

direct addressing: zero page addressing (requiring only an 8-bit address on

page 0) and absolute addressing (requiring a full 16-bit address in two bytes of

memory).

Disarm. See Disable, but most often applied to interrupts.

GLOSSARY 525

Disable (or disarm). Prohibit an activity from proceeding or a signal (such as an

interrupt) from being recognized.

Double word, A unit of 32 bits.

Driver. See I/O driver.

Dump. A facility that displays the contents of an entire section of memory or

group of registers on an output device.

Dynamic allocation (of memory). The allocation of memory for a subprogram

from whatever is available when the subprogram is called. This is as opposed to

the static allocation of a fixed area of storage to each subprogram. Dynamic

allocation often reduces memory usage because subprograms can share areas;

it does, however, generally require additional execution time and overhead

spent in memory management.

EBCDIC (Expanded Binary-Coded Decimal Interchange Code). An 8-bit

character code often used in large computers.

Echo, Reflects transmitted information back to the transmitter; sends back to a

terminal the information received from it.

Editor, A program that manipulates text material and allows the user to make cor

rections, additions, deletions, and other changes.

Effective address. The actual address used by an instruction to fetch or store data.

EIA RS-232, See RS-232.

Enable (or arm). Allows an activity to proceed or a signal (such as an interrupt) to

be recognized.

Endless loop or jump-to-self instruction. An instruction that transfers control to

itself, thus executing indefinitely (or until a hardware signal interrupts it).

Error-correcting code. A code that the receiver can use to correct errors in

messages; the code itself does not contain any additional message.

Error-detecting code, A code that the receiver can use to detect errors in messages;

the code itself does not contain any additional message.

Even parity, A 1-bit error-detecting code that makes the total number of 1 bits in a

unit of data (including the parity bit) even.

526 6502 ASSEMBLY LANGUAGE SUBROUTINES

EXCLUSIVE OR function. A logical function that is true if either of its inputs is

true but not both. It is thus true if its inputs are not equal (that is, if one of

them is a logic 1 and the other is a logic 0).

External reference. The use in a program of a name that is defined in another pro

gram.

F

F (flag) register. See Processor status register.

File. A collection of related information that is treated as a unit for purposes of

storage or retrieval.

Fill. Placing values in storage areas not previously in use, initializing memory or

storage.

Flag (or condition code or status bit). A single bit that indicates a condition within

the computer, often used to choose between alternative instruction sequences.

Flag (software). An indicator that is either on (1) or off (0) and can be used to

select between two alternative courses of action. Boolean variable and

semaphore are other terms with the same meaning.

Flag register. See Processor status register.

Free-running mode. An operating mode for a timer in which it indicates the end of

a time interval and then starts another of the same length. Also referred to as a

continuous mode.

Function key. A key that causes a system to perform a function (such as clearing

the screen of a video terminal) or execute a procedure.

Global. This is a universal variable. Defined in more than one section of a com

puter program, rather than used only locally.

H

Handshake. An asynchronous transfer in which sender and receiver exchange

predetermined signals to establish synchronization and to indicate the status of

the data transfer. Typically, the sender indicates that new data is available and

the receiver reads the data and indicates that it is ready for more.

GLOSSARY 527

Hardware stack. A stack that the computer automatically manages when execut

ing instructions that use it.

Head (of a queue). The location of the item most recently entered into the queue.

Header, queue. See Queue header.

Hexadecimal (or hex). Number system with base 16. The digits are the decimal

numbers 0 through 9, followed by the letters A through F.

Hex cocfc. See Object code.

High-level language. A programming language that is aimed toward the solution of

problems, rather than being designed for convenient conversion into com

puter instructions.A compiler or interpreter translates a program written in a

hjgh-level language into a form that the computer can execute. Common high-

level languages include BASIC, COBOL, FORTRAN, and Pascal.

I

Immediate addressing. An addressing mode in which the data required by an

instruction is part of the instruction. The data immediately follows the opera

tion code in memory.

Independent mode (of a parallel interface). An operating mode in which the status

and control signals associated with a parallel I/O port can be used indepen

dently of data transfers through the port.

Index. A data item used to identify a particular element of an array or table.

Indexed addressing. An addressing mode in which the address is modified by the

contents of an index register to determine the effective address (the actual

address used).

Indexed indirect addressing. An addressing mode in which the effective address is

determined by indexing from the base address and then using the indexed

address indirectly. This is also known as preindexing, since the indexing is per

formed before the indirection. Of course, the array starting at the given base

address must consist of addresses that can be used indirectly.

Index register. A register that can be used to modify memory addresses.

Indirect addressing. An addressing mode in which the effective address is the con

tents of the address included in the instruction, rather than the address itself.

Indirect indexed addressing. An addressing mode in which the effective address is

determined by first obtaining the base address indirectly and then indexing

from that base address. Also known as postindexing, since the indexing is per

formed after the indirection.

528 6502 ASSEMBLY LANGUAGE SUBROUTINES

Indirectjump. A jump instruction that transfers control to the address stored in a

register or memory location, rather than to a fixed address.

Input/output control block (IOCB). A group of storage locations that contain the

information required to control the operation of an I/O device. Typically

included in the information are the addresses of routines that perform opera

tions such as transferring a single unit of data or determining device status.

Input/output control system (IOCS). A set of computer routines that control the

performance of I/O operations.

Instruction. A group of bits that defines a computer operation and is part of the

instruction set.

Instruction cycle. The process of fetching, decoding, and executing an instruction.

Instruction execution time. The time required to fetch, decode, and execute an

instruction.

Instruction fetch. The process of addressing memory and reading an instruction

into the CPU for decoding and execution.

Instruction length. The amount of memory needed to store a complete instruction.

Instruction set. The set of general-purpose instructions available on a given com

puter. The set of inputs to which the CPU will produce a known response when

they are fetched, decoded, and executed.

Interpolation. Estimating values of a function at points between those at which the

values are already known.

Interrupt. A signal that temporarily suspends the computer's normal sequence of

operations and transfers control to a special routine.

Interrupt-driven. Dependent on interrupts for its operation, may idle until it

receives an interrupt.

Interrupt flag. A bit in the input/output section that is set when an event occurs

that requires servicing by the CPU. Typical events include an active transition

on a control line and the exhaustion of a count by a timer.

Interrupt mask (or interrupt enable). A bit that determines whether interrupts will

be recognized. A mask or disable bit must be cleared to allow interrupts,

whereas an enable bit must be set.

Interrupt request. A signal that is active when a peripheral is requesting service,

often used to cause a CPU interrupt. See also Interrupt flag.

Interrupt service routine. A program that performs the actions required to respond

to an interrupt.

GLOSSARY 529

Inverted borrow. A bit which is set to 0 if a subtraction produces a negative result

and to 1 if it produces a positive or 0 result. An inverted borrow can be used

like a true borrow, except that the complement of its value (i.e., 1 minus its

value) must be used in the extension to longer numbers.

IOCB. See Input/output control block.

IOCS. See Input/output control system.

I/O device table. A table that establishes the correspondence between the logical

devices to which programs refer and the physical devices that are actually used

in data transfers. An I/O device table must be placed in memory in order to run

a program that refers to logical devices on a computer with a particular set of

actual (physical) devices. The I/O device table may, for example, contain the

starting addresses of the I/O drivers that handle the various devices.

I/O driver. A computer program that transfers data to or from an I/O device, also

called a driver or I/O utility. The driver must perform initialization functions

and handle status and control, as well as physically transfer the actual data.

Jump instruction (or Branch instruction). An instruction that places a new value in

the program counter, thus departing from the normal one-step incrementing.

Jump instructions may be conditional; that is, the new value may be placed in

the program counter only if a condition holds.

Jump table. A table consisting of the starting addresses of executable routines,

used to transfer control to one of them.

Label. A name attached to an instruction or statement in a program that identifies

the location in memory of the machine language code or assignment produced

from that instruction or statement.

Latch. A device that retains its contents until new data is specifically entered into

it.

Leading edge (of a binary pulse). The edge that marks the beginning of a pulse.

Least significant bit. The rightmost bit in a group of bits, that is, bit 0 of a byte or a

16-bit word.

Library program. A program that is part of a collection of programs and is written

and documented according to a standard format.

530 6502 ASSEMBLY LANGUAGE SUBROUTINES

LIFO (last-in, first-out) memory. A memory that is organized according to the

order in which elements are entered and from which elements can be retrieved

only in the order opposite from that in which they were entered. See also Stack.

Linearization. The mathematical approximation of a function by a straight line

between two points at which its values are known.

Linked list A list in which each item contains a pointer (or link) to the next item.

Also called a chain or chained list.

List. An ordered set of items.

Logical device. The input or output device to which a program refers. The actual

or physical device is determined by looking up the logical device in an I/O

device table — a table containing actual I/O addresses (or starting addresses

for I/O drivers) corresponding to the logical device numbers.

Logical shift. A shift operation that moves zeros in at the end as the original data is

shifted.

Longitudinal parity. See Checksum.

Logical sum. A binary sum with no carries between bit positions. See also

Checksum, EXCLUSIVE OR function.

Longitudinal redundancy check (LRC). See Checksum.

Lookup table. An array of data organized so that the answer to a problem may be

determined merely by selecting the correct entry (without any calculations).

Low-level language. A computer language in which each statement is translated

directly into a single machine language instruction.

M

Machine language. The programming language that the computer can execute

directly with no translation other than numeric conversions.

Maintenance (of programs). Updating and correcting computer programs that are

in use.

Majority logic. A combinational logic function that is true when more than half the

inputs are true.

Manual mode (of a peripheral chip). An operating mode in which the chip pro

duces control signals only when specifically directed to do so by a program.

Mark. The 1 state on a serial data communications line.

Mask. A bit pattern that isolates one or more bits from a group of bits.

GLOSSARY 531

Maskable interrupt. An interrupt that the system can disable.

Memory capacity. The total number of different memory addresses (usually

specified in terms of bytes) that can be attached to a particular computer.

Microcomputer. A computer that has a microprocessor as its central processing

unit.

Microprocessor. A complete central processing unit for a computer constructed

from one or a few integrated circuits.

Mnemonic. A memory jogger, a name that suggests the actual meaning or purpose

of the object to which it refers.

Modem (Modulator/demodulator). A device that adds or removes a carrier fre

quency, thereby allowing data to be transmitted on a high-frequency channel

or received from such a channel.

Modular programming. A programming method whereby the overall program is

divided into logically separate sections or modules.

Module. A part or section of a program.

Monitor. A program that allows the computer user to enter programs and data,

run programs, examine the contents of the computer's memory and registers,

and utilize the computer's peripherals. See also Operating system.

Most significant bit. The leftmost bit in a group of bits, that is, bit 7 of a byte or bit

15 of a 16-bit word.

Multifunction device. A device that performs more than one function in a com

puter system; the term commonly refers to devices containing memory, input/

output ports, timers, etc., such as the 6530, 6531, and 6532 devices.

Multitasking. Used to execute many tasks during a single period of time, usually

by working on each one for a specified part of the period and suspending tasks

that must wait for input, output, the completion of other tasks, or external

events.

Murphy's Law. The famous maxim that "whatever can go wrong, will."

N

Negate. Finds the two's complement (negative) of a number.

Negative edge (of a binary pulse). A l-to-0 transition.

Negative flag. See Sign flag.

532 6502 ASSEMBLY LANGUAGE SUBROUTINES

Negative logic. Circuitry in which a logic zero is the active or ON state.

Nesting. Constructing programs in a hierarchical manner with one level contained

within another, and so forth. The nesting level is the number of transfers of

control required to reach a particular part of a program without ever returning

to a higher level.

Nibble (or nybble). A unit of four bits. A byte (eight bits) may be described as

consisting of a high nibble (four most significant bits) and a low nibble (four

least significant bits).

Nine's complement. The result of subtracting a decimal number from a number

having nines in each digit position.

Nonmaskable interrupt. An interrupt that cannot be disabled within the CPU.

Nonvolatile memory. A memory that retains its contents when power is removed.

No-op (or no operation). An instruction that does nothing other than increment

the program counter.

Normalization (of numbers). Adjusting a number into a regular or standard for

mat. A typical example is the scaling of a binary fraction so that its most signifi

cant bit is 1.

Object code (or object program). The program that is the output of a translator

program, such as an assembler. Usually it is a machine language program ready

for execution.

Oddparity. A 1-bit error-detecting code that makes the total number of 1 bits in a

unit of data (including the parity bit) odd.

Offset. Distance from a starting point or base address.

One's complement. A bit-by-bit logical complement of a number, obtained by re

placing each 0 bit with a 1 and each 1 bit with a 0.

One-shot. A device that produces a pulse output of known duration in response to

a pulse input. A timer operates in a one-shot mode when it indicates the end of a

single interval of known duration.

Open (a file). Make a file ready for use. The user generally must open a file before

working with it.

Operating system (OS). A computer program that controls the overall operations

of a computer and performs such functions as assigning places in memory to

GLOSSARY 533

programs and data, scheduling the execution of programs, processing inter

rupts, and controlling the overall input/output system. Also known as a moni

tor, executive, or master-control program, although the term monitor is

usually reserved for a simple operating system with limited functions.

Operation code (op code). The part of an instruction that specifies the operation to

be performed.

OS. See Operating system.

Output register. In a PIA or VIA, the actual input/output port. Also called a data

register or a peripheral register.

Overflow (of a stack). Exceeding the amount of memory allocated to a stack.

Overflow, two's complement. See Two's complement overflow.

P register. See Processor status register, Program counter. Most 6502 reference

material abbreviates program counter as PC and processor status register as P,

but some refer to the program counter as P and the processor status (flag)

register as F.

Packed decimal. A binary-coded decimal format in which each 8-bit byte contains

two decimal digits.

Page. A subdivision of the memory. In 6502 terminology, a page is a 256-byte

section of memory in which all addresses have the same eight most significant

bits (or page number). For example, page C6 consists of memory addresses

C600 through C6FF.

Paged address. The identifier that characterizes a particular memory address on a

known page. In 6502 terminology, this is the eight least significant bits of a

memory address.

Page number. The identifier that characterizes a particular page of memory. In

6502 terminology, this is the eight most significant bits of a memory address.

Page 0. In 6502 terminology, the lowest 256 addresses in memory (addresses

0000 through 00FF).

Parallel interface. An interface between a CPU and input or output devices that

handle data in parallel (more than one bit at a time).

Parameter. An item that must be provided to a subroutine or program in order for
it to be executed.

534 6502 ASSEMBLY LANGUAGE SUBROUTINES

Parity. A 1-bit error-detecting code that makes the total number of 1 bits in a unit

of data, including the parity bit, odd (odd parity) or even (even parity). Also

called vertical parity or vertical redundancy check (VRC).

Passing parameters. Making the required parameters available to a subroutine.

Peripheral Interface. One of the 6500 family versions of a parallel interface; exam

ples are the 6520, 6522, 6530, and 6532 devices.

Peripheral ready. A signal that is active when a peripheral can accept more data.

Peripheral register. In a PIA or VIA, the actual input or output port. Also called a

data register or an output register.

Physical device. An actual input or output device, as opposed to a logical device.

PIA. (Peripheral Interface Adapter). The common name for the 6520 or 6820

device which consists of two bidirectional 8-bit I/O ports, two status lines, and

two bidirectional status or control lines. The 6821 is a similar device.

Pointer. A storage place that contains the address of a data item rather than the

item itself. A pointer tells where the item is located.

Polling. Determining which I/O devices are ready by examining the status of one

device at a time.

Polling interrupt system. An interrupt system in which a program determines the

source of a particular interrupt by examining the status of potential sources

one at a time,

Pop. Removes an operand from a stack.

Port. The basic addressable unit of the computer's input/output section.

Positive edge (of a binary pulse). A 0-to-l transition.

Postdecrementing. Decrementing an address register after using it.

Postincrementing. Incrementing an address register after using it.

Postindexing. See Indirect indexed addressing.

Power fail interrupt. An interrupt that informs the CPU of an impending loss of

power.

Predecrementing. Decrements an address register before using it.

Preincrementing. Increments an address register before using it.

Preindexing. See Indexed indirect addressing.

GLOSSARY 535

Priority interrupt system. An interrupt system in which some interrupts have prece

dence over others, that is, they will be serviced first or cam interrupt the

others' service routines.

Processor status (P or F) register. A register that defines the current state of a com

puter, often containing various bits indicating internal conditions. Other

names for this register include condition code register, flag (F) register, status

register, and status word.

Program counter (PC or P register). A register that contains the address of the

next instruction to be fetched from memory.

Programmable I/O device. An I/O device that can have its mode of operation

determined by loading registers under program control.

Programmable peripheral chip. A chip that can operate in a variety of modes; its

current operating mode is determined by loading control registers under pro

gram control.

Programmable timer. A device that can handle a variety of timing tasks, including

the generation of delays, under program control.

Program relative addressing. A form of relative addressing in which the base

address is the program counter. Use of this form of addressing makes it easy to

move programs from one place in memory to another.

Programmed input/output. Input or output performed under program control with

out using interrupts or other special hardware techniques.

Protocol. See Data-link control.

Pseudo-operation (or pseudo-op or pseudo-instruction). An assembly language

operation code that directs the assembler to perform some action but does not

result in the generation of a machine language instruction.

Pull. Removes an operand from a stack, same as pop.

Push. Stores an operand in a stack.

Queue. A set of tasks, storage addresses, or other items that are used in a first-in,

first-out manner; that is, the first item entered in the queue is the first to be

removed.

Queue header. A set of storage locations describing the current location and status

of a queue.

536 6502 ASSEMBLY LANGUAGE SUBROUTINES

R

RAM. See Random-access memory.

Random-access memory (RAM). A memory that can be both read and altered

(written) in normal operation.

Read-only memory (ROM). A memory that can be read but not altered in normal

operation.

Ready for data. A signal that is active when the receiver can accept more data.

Real-time. In synchronization with the actual occurrence of events.

Real-time clock. A device that interrupts a CPU at regular time intervals.

Real-time operating system. An operating system that can act as a supervisor for

programs that have real-time requirements. May also be referred to as a real

time executive or real-time monitor.

Reentrant. A program or routine that can be executed concurrently while the

same routine is being interrupted or otherwise held in abeyance.

Register. A storage location inside the CPU.

Relative addressing. An addressing mode in which the address specified in the

instruction is the offset from a base address.

Relative offset. The difference between the actual address to be used in an instruc

tion and the current value of the program counter.

Relocatable. Can be placed anywhere in memory without changes; that is, a pro

gram that can occupy any set of consecutive memory addresses.

Return (from a subroutine). Transfers control back to the program that originally

called the subroutine and resumes its execution.

RIOT. (ROM/I/O/timer or RAM/I/O/timer). A device containing memory

(ROM or RAM), I/O ports, and timers.

ROM. See Read-only memory.

Rotate. A shift operation that treats the data as if it were arranged in a circle, that

is, as if the most significant and least significant bits were connected either

directly or through a Carry bit.

Row major order. Storing elements of a multidimensional array in a linear

memory by changing the indexes starting with the rightmost first. That is, if

the elements are A(I,J,K) and begin with A(0,0,0), the order is A(0,0,0),

A(0,0,l), ...,A(0,l,0), A((U,l),... The opposite technique (change leftmost

index first) is called column major order.

GLOSSARY 537

RRIOT. ROM/RAM/I/O/timer, a device containing read-only memory, read/

write memory, I/O ports, and timers. iwrite memory, I/O ports, and timers

RS-232 (or EIA RS-232). A standard interface for the transmission of serial

digital data, sponsored by the Electronic Industries Association of Washing

ton, D.C. It has been partially superseded by RS-449.

Scheduler. A program that determines when other programs should be started and

terminated.

Scratchpad. An area of memory that is especially easy and quick to use for storing

variable data or intermediate results. Page 0 is generally used as a scratchpad in

6502-based computers.

SDLC (Synchronous Data Link Control). The successor protocol to BSC for IBM

computers and terminals.

Semaphore. See Flag.

Serial. One bit at a time.

Serial interface. An interface between a CPU and input or output devices that han

dle data serially. Serial interfaces commonly used in 6502-based computers are

the 6551 and 6850 devices. See also UART.

Shift instruction. An instruction that moves all the bits of the data by a certain

number of bit positions, just as in a shift register.

Signed number. A number in which one or more bits represent whether the num

ber is positive or negative. A common format is for the most significant bit to

represent the sign (0 = positive, 1 = negative).

Sign extension. The process of copying the sign (most significant) bit to the right

as in an arithmetic shift. Sign extension preserves the sign when two's comple

ment numbers are being divided or normalized.

Signflag. A flag that contains the most significant bit of the result of the previous

operation. It is sometimes called a negative flag, since a value of 1 indicates a

negative signed number.

Signfunction. A function that is 0 if its parameter is positive and 1 if its parameter
is negative.

Software delay. A program that has no function other than to waste time.

Software interrupt. See Trap.

538 6502 ASSEMBLY LANGUAGE SUBROUTINES

Software stack. A stack that is managed by means of specific instructions, as

opposed to a hardware stack which the computer manages automatically.

Source code (or source program). A computer program written in assembly

language or in a high-level language.

Space. The zero state on a serial data communications line.

Stack. A section of memory that can be accessed only in a last-in, first-out man

ner. That is, data can be added to or removed from the stack only through its

top; new data is placed above the old data and the removal of a data item makes

the item below it the new top.

Stack pointer. A register that contains the address of the top of a stack.The 6502's

stack pointer contains the address on page 1 of the next available (empty)

stack location.

Standard (or 8,4,2,1) BCD. A BCD representation in which the bit positions have

the same weights as in ordinary binary numbers.

Standard teletypewriter. A teletypewriter that operates asynchronously at a rate of

ten characters per second.

Start bit. A 1-bit signal that indicates the start of data transmission by an

asynchronous device.

Static allocation (of memory). Assignment of fixed storage areas for data and pro

grams, as opposed to dynamic allocation in which storage areas are assigned at

the time when they are needed.

Status register. A register whose contents indicate the current state or operating

mode of a device. See also Processor status register.

Status signal. A signal that describes the current state of a transfer or the operating

mode of a device.

Stop bit. A 1-bit signal that indicates the end of data transmission by an

asynchronous device.

String. An array (set of data) consisting of characters.

Stringfunctions. Procedures that allow the programmer to operate on data consist

ing of characters rather than numbers. Typical functions are insertion, dele

tion, concatenation, search, and replacement.

Strobe. A signal that identifies or describes another set of signals and that can be

used to control a buffer, latch, or register.

GLOSSARY 539

Subroutine. A subprogram that can be executed (called) from more than one

place in a main program.

Subroutine call. The process whereby a computer transfers control from its current

program to a subroutine while retaining the information required to resume

the current program.

Subroutine linkage. The mechanism whereby a computer retains the information

required to resume its current program after it completes the execution of a

subroutine.

Suspend (a task). Halts execution and preserves the status of the task until some

future time.

Synchronization (or sync) character. A character that is used only to synchronize

the transmitter and the receiver.

Synchronous. Operating according to an overall timing source or clock, that is, at

regular intervals.

Systems software. Programs that perform administrative functions or aid in the

development of other programs but do not actually perform any of the com

puter's ultimate workload.

Tail (of a queue). The location of the oldest item in the queue, that is, the earliest

entry.

Task. A self-contained program that can serve as part of an overall system under

the control of a supervisor.

Task status. The set of parameters that specify the current state of a task. A task

can be suspended and resumed as long as its status is saved and restored.

Teletypewriter. A device containing a keyboard and a serial printer that is often

used in communications and with computers. Also referred to as a Teletype (a

registered trademark of Teletype Corporation of Skokie, Illinois) or TTY.

Ten's complement. The result of subtracting a decimal number from zero (ignoring

the negative sign), the nine's complement plus one.

Terminator. A data item that has no function other than to signify the end of an

array.

Threaded code. A program consisting of subroutines, each of which automatically

transfers control to the next one upon its completion.

540 6502 ASSEMBLY LANGUAGE SUBROUTINES

Timeout. A period during which no activity is allowed to proceed, an inactive

period.

Top of the stack. The address containing the item most recently entered into the

stack.

Trace. A debugging aid that provides information about a program while the pro

gram is being executed. The trace usually prints all or some of the intermediate

results.

Trailing edge (of a binary pulse). The edge that masks the end of a pulse.

Translate instruction. An instruction that converts its operand into the corres

ponding entry in a table.

Transparent routine. A routine that operates without interfering with the opera

tions of other routines.

Trap (or software interrupt). An instruction that forces a jump to a specific (CPU-

dependent) address, often used to produce breakpoints or to indicate hardware

or software errors.

True borrow. See Borrow.

Two's complement. A binary number that, when added to the original number in a

binary adder, produces a zero result. The two's complement of a number may

be obtained by subtracting the number from zero or by adding 1 to the one's

complement.

Two's complement overflow. A situation in which a signed arithmetic operation

produces a result that cannot be represented correctly — that is, the magnitude

overflows into the sign bit.

U

UART (Universal Asynchronous Receiver/Transmitter). An LSI device that acts

as an interface between systems that handle data in parallel and devices that

handle data in asynchronous serial form.

Underflow (of a stack). Attempting to remove more data from a stack than has

been entered into it.

Unsigned number. A number in which all the bits are used to represent magnitude.

Utility. A general-purpose program, usually supplied by the computer manufac

turer or part of an operating system, that executes a standard or common

operation such as sorting, converting data from one format to another, or

copying a file.

GLOSSARY 541

V

Valid data. A signal that is active when new data is available to the receiver.

Vectored interrupt. An interrupt that produces an identification code (or vector)

that the CPU can use to transfer control to the appropriate service routine. The

process whereby control is transferred to the service routine is called vectoring.

Versatile Interface Adapter (VIA). The name commonly given to the 6522 parallel

interface device; it consists of two 8-bit bidirectional I/O ports, four status and

control lines, two 16-bit timers, and a shift register.

VIA. See Versatile Interface Adapter.

Volatile memory. A memory that loses its contents when power is removed.

W

Walking bit test. A procedure whereby a single 1 bit is moved through each bit

position in an area of memory and a check is made as to whether it can be read

back correctly.

Word. The basic grouping of bits that a computer can process at one time. In deal

ing with microprocessors, the term often refers to a 16-bit unit of data.

Word boundary. A boundary between 16-bit storage units containing two bytes of

information. If information is being stored in word-length units, only pairs of

bytes conforming to (aligned with) word boundaries contain valid information.

Misaligned pairs of bytes contain one byte from one word and one byte from

another.

Word-length. A length of 16 bits per item.

Wraparound. Organization in a circular manner as if the ends were connected. A

storage area exhibits wraparound if operations on it act as if the boundary loca

tions were contiguous.

Write-only register. A register that the CPU can change but cannot read. If a pro

gram must determine the contents of such a register, it must save a copy of the

data placed there.

Zero flag. A flag that is 1 if the last operation produced a result of zero and 0 if it

did not.

542 6502 ASSEMBLY LANGUAGE SUBROUTINES

Zero page. In 6502 terminology, the lowest 256 memory addresses (addresses

0000 through 00FF).

Zero page addressing. In 6502 terminology, a form of direct addressing in which

the instruction contains only an 8-bit address on page 0. That is, zero is implied

as the more significant byte of the direct address and need not be included

specifically in the instruction.

Zero-page indexed addressing. A form of indexed addressing in which the instruc

tion contains a base address on page 0. That is, zero is implied as the more sig

nificant byte of the base address and need not be included explicitly in the

instruction.

Zoned decimal. A binary-coded decimal format in which each 8-bit byte contains

only one decimal digit.

Index

A register. See Accumulator

Abbreviations, recognition of, 346,355, 356

Absolute (direct) addressing, 10-11,14,141

instructions, 8

order ofaddress bytes, 5

Absolute indexed addressing, 11-12,13,14

instructions, 9

limitation (to 256-byte arrays) ,146

order of address bytes, 5

Absolute value (16-bit), 86-87, 175-76, 243-44

Accepting an interrupt, 65—68, 508

Accumulator (register A), 6, 7,10

decimal operations, 74—82

decision sequences, 26

decrement by 1, 3, 81

exchange with top of stack, 100

functions, 6

increment by 1, 3,79—80

instructions, 7

testing, 94-95

Active transition in a 6522 VIA, 56, 59

ADC, 2, 15, 16,17,135, 136

Carry flag, exclusion of, 2,15,16, 136

decimal mode, 3,144-45

flags, 3, 135

increment by 1,3

result, 135

Addition

BCD, 3,74-76,79,80-81, 280-84

binary, 2,15-17,38-39, 74-76, 253-56

decimal, 3, 74-76, 79, 80-81, 280-84

8-bit, 2, 15-17,74-76,79

multiple-precision, 38-39,253-56, 280-84

16-bit, 75, 76, 80,230-32

Addition instructions, 74-76

with Carry, 75-76

without Carry, 74-75

Address arrays, 32,35-37,415-17

Address format in memory (upside-down), 5,141

Addressing modes

absolute (direct), 10-11,14,141

absolute indexed, 11-12, 13,14, 146

autoindexing, 127—29

default (absolute direct), ix, 8,150

direct, 7,8,10-11,14,141

immediate, 11,13,141

indexed, 8, 11-12,13,14,125-27

indexed indirect (preindexed), 2, 9,12, 32, 51-52, 130,141
indirect, 2,35-36,123-25

indirect indexed (postindexed), 2,4, 9,12,31 -34,41 -43
postindexed, 2,4, 9,12, 31-34,41-43

preindexed, 2,9, 12,32, 51-52,130, 141
6502 terminology, 11

summary, 507

zero page (direct), 7,10-11,14

zero page indexed,8,11 -12

Adjust instructions, 122

AND, 88-89

clearing bits, 17-18

input instruction, 49

masking, 52-53,339-40,345-46

testing bits, 21-22

Apostrophe indicating ASCII character, viii

Arithmetic, 230-305

BCD, 3, 280-305

binary, 2,15-17,38-39,230-79

decimal, 3,280-305

8-bit, 2,15-17

multiple-precision, 38-39, 253—305

16-bit, 230-52

Arithmetic instructions, 74—88

Arithmetic shift, 20,83-84,92,325-28

Arrays, 29-34,127-29,193-229,382-417

addresses, 32,35-37,415-17

initialization, 193—96

long (exceeding 256 bytes), 32-34,385

manipulation, 29—34

variable base addresses, 31-34

ASCII, 517

assembler notation, viii—ix

conversions, 168-92

table, 517

ASCII to EBCDIC conversion, 187-89

ASL, 22, 33,49

Assembler

defaults, 142-43,150

error recognition, 149—51

format, viii—ix, 507

pseudo-operations, 507

Asynchronous Communications Interface Adapter (ACIA), 53,

458-59,464-71,480-89

Autoindexing, 127—29

Autopostdecrementing, 129

Autopostincrementing, 128

Autopredecremeniing, 128-29
Autopreincrementing, 127-28

B

B (indicating binary number), viii
B (Break) flag, vii

Base address ofan array or table, 11,12,29,30
Baud rates, common, 521

BCC, 23-24,26,27

BCD (decimal) arithmetic, 3, 74-81,144-45, 280-305
BCD to binary conversion, 166-67

BCS, 23-25, 26, 27
BEQ, 22, 23, 138

Bidirectional ports, 153,457-58

Binary-coded-decimal (BCD), 3,143

Binary search, 397-402
Binary to BCD conversion, 163-65
Bit Held extraction, 315-19

Bit field insertion, 320-24

BIT, 22,137,140

addressing modes, 4,16, 125

543

544 6502 ASSEMBLY LANGUAGE SUBROUTINES

BIT (continued)

flags, 4,137

input instruction, 49,152

Bit manipulation, 17-20, 88-92, 306-24

Block compare, 86, 345-48

Block move, 99,197-203

.BLOCK pseudo-operation, viii

BMI,4,25,139

BNE, 4, 21, 23, 28, 29

Boolean algebra, 17

Borrow, 2, 23-24

BPL,22,25,140

Branch instructions, 26-27, 102-17

conditional branches, 103 — 17

decision sequences, 26-27

indexed branches, 102-03

signed branches, 110-12

unconditional branches, 102-03,149

unsigned branches, 112—17

Break (B) flag, vii

BRK, 508

BSC protocol, 434

Bubble sort, 403-06

Buffered interrupts, 480-89

BVC,4,122

BVS,22,25, 139,140

.BYTE pseudo-operation, viii, 188,191-92

Calendar, 490-503

Call instructions, 117 -18. See also JSR

Carry (C) flag

adding to accumulator, 74, 75

arithmetic applications, 2, 38—39

branches, 26-27

CLC,2,38-39

comparison instructions, 2, 22—23, 135

complementing, 92

decimal arithmetic, 3

decrement instructions (no effect), 137

increment instructions (no effect), 137

instructions affecting, 138

inverted borrow, 2,135

meaning, 2

multiple-precision arithmetic, 38—39

position in status register, vii, 509

SBC, 2

SEC, 2, 76

shifts, 18

subtracting from accumulator, 76, 77

subtraction, 2

Case statements, 36

Character manipulation, 37. See also String manipulation

Checksum, 91. See also Parity

Circular shift (rotation), 18-19,94,337-44

CLC,2,38-39

CLD, 3,68, 74. See also Decimal Mode flag

Clear instructions, 5, 100-01

Clearing an array, 32-33,196

Clearing bits, 17,18,101, 329-32

Clearing nags, 89

Clearing peripheral status, 58,60,153,154,465,481

CLI,5,123

CLV, 122

CMP, 135

Carry flag, 2, 22-23,135

input instruction, 49

Overflow flag (no effect), 25,138

SBC, differences from, 16

use of, 22-24

Zero flag, 22-23

Code conversion, 37-38,163-92

Colon (optional delimiter after label), viii

Combo chips, 53

Command register, 153. See also Control register

Comment, viii

Common programming errors, 133-55

interrupt service routines, 153-55

I/O drivers, 151-53

Communications between main program and interrupt service

routines, 154-55,464-65,472-73,480-82

Compacting a string, 396-97

Comparison instructions, 84—86

bit-by-bit (logical Exclusive OR), 91

Carry flag, 2, 22-23, 135

decimal, 3, 305

multiple-precision, 275-79

operation, 16

16-bit, 249-52

string, 345-48

Zero flag, 22-23

Complementing (inverting) bits, 17,18, 91

Complementing Carry flag, 92

Complementing the accumulator (EOR #$FF), 16,91

Complement (logical NOT) instructions, 91-92

Concatenation of strings, 177—78,349-54

Condition code. See Flags; Status register

Conditional branch instructions, 26-27, 103-17

execution time (variable), 505, 506

page boundary, 505,506

Conditional call instructions, 118

Conditional return instructions, 119

Control lines on 6522 VIA, 57-61

Control register, 53, 153

6522 VIA, 55-61

Control signal, 52—53

Copying a substring, 361—67

CPX, 27, 70, 135

CPY,27,70,135

CRC (cyclic redundancy check), 434-39

D (Decimal Mode) flag, vii, 3,68, 509

Data direction register (DDR), 54, 57

6520 PIA, 457-58

6522 VIA, 54,47,458,513

Data transfer instructions, 95-101

.DBYTE pseudo-operation, viii

Debugging, 133-55

interrupt service routines, 153—55

I/O drivers, 151-53

Decimal (BCD) arithmetic

addition, 280-84

binary conversions, 163-67

comparison, 305

decrement by 1,81, 82,122,145

division, 297-304

8-bit, 74-81

flags, 3

increment by 1,80,122,145

multibyte, 280-305

multiplication, 290-96

subtraction, 285—89

validity check, 122

Decimal Mode (D) flag

CLD, 3,68, 74

default value in most computers, 3,145

initialization, 3,145

interrupt service routines, 68,145,154

meaning, 3

position in status register, vii, 509

INDEX 545

Decimal Mode (D) flag (continued)

reset (noeffect), 3

saving and restoring, 3, 74-75

SED,68, 144

testing, 105, 107

use, 3

DEC

Carry flag (no effect), 137

clearing bit 0,18

complementing bit 0, 18, 91

decimal mode, 3

decision sequences, 23, 27,95

output instruction, 49

Decision sequences, 26—27

Decrement instructions, 81-82

accumulator, 3, 81

16-bit number, 29, 81-82,137

Defaults in assembler, 142-43, 150

Delay program, 460-63

Deletion of a substring, 368-73

Device numbers, 51-52, 440

Digit (4-bit) shift, 93, 303

Direct addressing

absolute version, 10-11,14,141

immediate addressing, difference from, 141

6502 terminology, 11

use of, f0-ll

zero page version, 7, 10-11,14

Direction of stack growth, 5, 12 - 13, 508

Disassembly of numerical operation codes, 506

Division, 83-84

by 2, 83-84

by 4,40, 83

by 10, 164

by 100,164

decimal, 297-304

multiple-precision binary, 267 — 74

simple cases, 40, 83 - 84

16-bit, 240-48

Documentation of programs, 22, 36

Dollar sign in front of hexadecimal numbers, viii, 142

Doubling an element number, 33,34—36

Dynamic allocation of memory, 46—47,67-68

EBCDIC to ASCII conversion, 190-92

8080/8085 microprocessors, differences from 6502,3,5,135

Enabling and disabling interrupts

accepting an interrupt, 65-68

CLI,5,123

interrupt status, saving and restoring, 67,123

interrupt status, testing, 105,107

RTI, 66, 508

SEI,5,67, 123

6522 VIA, 63-65

stack, 66-67

when required, 67

.END pseudo-operation, viii

Endless loop instruction, 121-22

EOR, 90-91

comparison (bit-by-bit), 90

complementing accumulator (EOR#$FF), 16,91

inverting bits, 91

logical sum, 91

EQU pseudo-operation, viii

Equal values, comparison of, 24, 136

Error-correcting codes. See CRC

Error-detecting codes. See Parity

Error handling, 158-59

Errors in programs, 133-55

Even parity, 428-33

Exchange instructions, 100

Exchanging elements, 31,100,405

Exchanging pointers, 272,302

Exclusive OR function, 16. See also EOR

Execution time, reducing, 68-69

Execution times for instructions, 505-06

Extend instructions, 87-88

F (flag) register, 533. See also Flags; Status register

FIFO buffer (queue), 42-43,481-82

Fill memory, 99,193-96

Flag registers. See Status register

Flags

decimal mode, 3

instructions, effects of, 505-06

loading, 97

organization in status register, vii, 509

storing, 98

use of, 26-27

Format errors, 142—45

Format of storing 16-bit addresses, 5

H

H (indicating hexadecimal number), viii, 142

Handshake, 57-62

Head of a queue, 42-43,481 -82

Hexadecimal ASCII to binary conversion, 171-73

Hexadecimal to ASCII conversion, 168-70

I

I flag. See Interrupt Disable flag

Immediate addressing

assembler notation, ix

direct addressing, difference from, 141

store instructions (lack of), 13

use of, 11

Implementation error (indirect jump on page boundary), 151

Implicit effects of instructions, 147—48

INC

Carry flag (no effect), 137

complementing bit 0, 18,91

decimal version, 80

output instruction, 49

setting bit 0,18

16-bit increment, 80, 81

Increment instructions, 79-81

accumulator, 3, 79, 80

16-bit number, 4, 29, 80, 81, 137

Independent mode of 6522 VIA control lines, 58-59,62, 63

Indexed addressing

absolute version, 11-12,13,14

errors in use, 134

indexed indirect (preindexed) version, 12, 32, 51-52,130

indirect indexed (postindexed) version, 12,32-33,130

offset of 1 in base address, 30

16-bit index, 33-34, 35

subroutine calls, 35-37,415-17

table lookup, 34

use of, 29-30, 35-36

zero page version, 8,11 -12

Indexed jump, 35-37,102-03,415-17

Indexing of arrays, 29-37,39-40, 204-29

byte arrays, 204-06, 210-14

multidimensional arrays, 221-29

one-dimensional byte array, 204—06

one-dimensional word array, 207—09

546 6502 ASSEMBLY LANGUAGE SUBROUTINES

Indexing of arrays (continued)

two-dimensional byte array, 39-40, 210-14

two-dimensional word array, 215 — 20

word arrays, 207 - 209, 215 - 20

Index registers

CPX, CPY, 27, 70, 135

decision sequences, 27

differences between X and Y, 6,10

exchanging, 100

instructions, 7

LDX,LDY, 10, 11

length, 4

loading from stack, 12-13

saving in stack, 13

special features, 6

STX,STY, 13

table lookup, 34-37

testing, 95

transfers, 98

use of, 6,10

Indirect addressing, 41,96,102,123-25

absolute version (JMPonly), 2,141

indexed indirect version (preindexing), 12,32,51-52,130

indirect indexed version (postindexing), 12, 32-33, 130

JMP,2,141

simulating with zero in an index register, 2, 96, 123-25

subroutine calls, 35-36, 102, 117-18

Indexed indirect addressing (preindexing), 12, 32, 51-52,

130,141

errors, 52, 141

even indexes only, 12

extending, 130

instructions, 9

restrictions, 12

use, 32, 51, 124

word alignment, 141, 542

wraparound on page 0, 52, 130

Indirect call, 117-18

Indirect indexed addressing (postindexing), 2,4, 12,31 -34,

41-43,141

extending, 130

instructions, 9

long arrays, 32-33

restrictions, 12

variable base addresses, 34-35,41-43

Indirect jump, 35-36, 102, 117-18,445-46

error on page boundary, 151

Initialization

arrays, 193-96

Decimal Mode nag, 3, 148,154

indirect addresses, 15,97

interrupt system, 464,468-69 472-73,476-77

I/O devices, 454-59

pointer on page 0,15,97

RAMr 14-15, 193-96

6522 VIA, 54-63,458,477

6850 ACIA, 458-59,468-69,486-87

stack pointer, 96

status register, 97

Initialization errors, 148

Input/Output (I/O)

control block (IOCB), 440-53

device-independent, 440-59

device table, 51-52,440-53

differences between input and output, 152,465,473,481

errors, 151-53

initialization, 454-59

instructions, 49—51

interrupt-driven, 464-89

logical devices, 51

output, generalized, 425-27

Input/Output (I/O) (continued)

peripheral chips, 53-65

physical devices, 51

read-only ports, 49-51

6522 VIA, 54-65,472-79

6850 ACIA, 458-59,464-71,480-89

status and control, 52 - 53

terminal handler, 418-24

Insertion into a string, 374-81

Instruction execution times, 505-06

Instruction set

alphabetical list, 505-06

numerical list, 506

Interpolation in tables, 70

Interrupt Disable (I) flag

accepting an interrupt, 65

changing in stack, 66-67

CLI, 5,123

meaning, 5

position in status register, vii, 105, 509

RTI, 66, 508

saving and restoring, 57, 123

SEI,5,67,123

setting in stack, 66-67

testing, 105,107

Interrupt enable register (in 6522 VIA), 63-64,477, 516

Interrupt flag registers (in 6522 VIA), 59,60,63-65,477, 516

Interrupt response, 65-66, 508

Interrupt status

changing in stack, 66-67

saving and restoring, 67,123

6502 CPU, 65-66, 123

6522 VIA, 63-65,477, 516

Interrupts. See also Enabling and disabling interrupts

accepting, 65-68, 508

buffered, 480-89

elapsed time, 490-503

Hags (6522 VIA), 63-65,477, 516

handshake, 464-89

order in stack, 66

programming guidelines, 65—68,153-55

real-time clock, 490-503

reenabling, 66-67,123

response, 65-66

service routines, 464-503

6522 VIA, 63-^5,472-79
6850 ACIA, 464-71,480-89

Interrupt service routines, 464-65,472-73,480—81,490

errors, 153—55

examples, 464-503

main program, communicating with, 154-55,464-65,

472-73,480-82

programming guidelines, 65-68

real-time clock, 490-503

6522 VIA, 472-79

6850 ACIA, 464-71,480-89

Inverted borrow in subtraction, 2, 23-24,135

Inverting bits, 17,18,91

Inverting decision logic, 134,136,137

I/O control block (IOCB), 440-53

I/O device table, 51-52,440-53

JMP,2,5,141

absolute addressing, 141

addressing modes, meaning of, 141

indirect addressing, 35-36

page boundary, error on (indirect), 1512

JSR, 3

addressing modes, meaning of, 141

INDEX 547

JSR (continued)
offset of 1 in return address, 3,44-45

operation, 508

return address, 3

variable addresses, 415-17

Jump table, 35-37,152,415-17

implementations, 142

LDA, 3,11,12,22

LDX (LDY), 10,11

Limit checking, 23-25,37,186

Linked list, 40-43,441,442,447-48

List processing, 40-42,446-47

Load instructions, 96-97

addressing limitations, 11

flags, 3, 22

Logical I/O device, 51-52,440,441

Logical instructions, 88-95

Logical shift, 18,19, 20,49,92-93,329-36

Logical sum, 90. See also Parity

Long arrays (more than 256 bytes), 4, 32-34,146

full pages separately, 193,195

Lookup tables, 34-37,69,70,187-92

Loops, 28-29

reorganizing to save time, 68—69

Lower-case ASCII letters, 185-86

LSR, 19,20,49

M

Magazines specializing in 6502 microprocessor, 71

Manual output mode of 6522 VIA, 58-62

Masking bits, 52-53, 339-40, 345-46

Maximum, 389-92

Memory fill, 99,193-96

Memory test, 407-14

Memory usage, reduction of, 70

Millisecond delay program, 460-63

Minimum byte length element, 393-96

Missing instructions, 5, 73 — 123

Move instructions, 98-99

Move left (bottom-up), 197, 201

Move multiple, 99

Move right (top-down), 197, 201-02

Multibit shifts, 18,19

Multibyte entries in arrays or tables, 31, 34-37, 207-09,

205-29

Multidimensional arrays, 221 — 29

Multiple-precision arithmetic, 38-39, 253-305

Multiple-precision shifts, 325-44

arithmetic right, 325-28

digit (4-bit) shift left, 303

logical left, 329-32

logical right, 333-36

rotate left, 341-44

rotate right, 337-40

Multiplication, 39-40, 82-83

by a small integer, 39, 82-83

by 10,167,182-83

decimal, 290-96

multiple-precision, 261-66, 290—96

16-bit, 236-39

Multi-way branches (jump table) ,34-37,415-17

N flag. See Negative flag

Negative, calculation of, 86-87,244

Negative (N) flag

BIT, 4, 22,137

branches, 24-27

comparisons, 136-37

decimal mode, 3

instructions, effect of, 505-06

load instructions, 3

position in status register, vii, 509

SBC, 139

store instructions (no effect), 3

Negative logic, 152

Nested loops, 28-29

Nibble (4bits), 164,167

Nine's complement, 87

NOP, filling with, 196

Normalization, 93-94

NOT instructions, 91-92

Number sign (indicating immediate addressing), ix

Numerical comparisons, 23-25

Odd parity, 431

One-dimensional arrays, 204-09

One's complement, 91-92. See also EOR

Operation (op) codes
alphabetical order, 505-06

numerical order, 506

ORA, 17,18,89-90,307,323. See also Setting bits to 1

Ordering elements, 31,403-06

.ORG (♦=) pseudo-operation, viii

Output line routine, 425 - 27

Overflow (V) flag

BIT, 4, 22,140

branches, 27

CLV, 122

instructions affecting, 138

position in status register, vii, 509

Set Overflow input, 122

uses of, 22, 24-25

Overflow of a stack, 43,107-08,109
Overflow, two's complement, 24-25,110-12,136-37,139

P (processor status) register, vii, 509, 533. See also Flags; Status

register

Page boundary, crossing, 4,32-33

error in indirect jump, 151

example, 145-47

Parallel/serial conversion, 18,49, 50

Parameters, passing, 44-48,157-58

Parentheses around addresses (indicating indirection), viii

Parity, 428-33

checking, 428-30

even, 428,431

generation, 431-33

odd,431

Passing parameters, 44-48,157-58

memory, 44—46

registers, 44

stack, 46-48

PC register, 509. See also Program counter

Percentage sign (indicating binary number), viii, 142

Peripheral Interface Adapter (6520 PIA), 53,153,457-58

Peripheral Ready signal, 58-61

PHA, 13,46,47,66,97,120

PHP, 67,98,122,123

Physical I/O device, 51-52,440

PIA (6520 Peripheral Interface Adapter), 53,153,457-58

PLA, 12-13,44,45,47,66,98,121

548 6502 ASSEMBLY LANGUAGE SUBROUTINES

PLP, 12,67,97

Pointer, 2,4,15,41

exchanging, 272,302

loading, 97

Polling

6522 VIA,60,477

6850 ACIA, 569,487

Pop instructions, 121

Position of a substring, 355-60

Postdecrement, 129

stack pointer, 5,13

Postincrement, 128

Postindexing (indirect indexed addressing), 2,4, 9,12, 32-34,
130,141

Predecrement, 128-29

Preincrement, 127-28

stack pointer, 5,13

Preindexing (indexed indirect addressing), 9,12,33,51-52,
130,141

Progam counter, 509

JSR, 3,141,508

RTS, 3,36-37, 508

Programmable I/O devices, 53 - 54

advantages of, 53

initialization, 454-59

operating modes, 53

6522 VIA, 54-65,472-479

6850 ACIA, 464-71,480-89

Programming model of 6502 microprocessor, 509

Pseudo-operations, viii—ix, 507

Push instructions, 120-21

Queue, 42-43,481-82

Quotation marks around ASCII string, ix

RAM

filling, 193-96

initialization, 14-15,148

saving data, 13-14

testing, 407-14

Read-only ports, 49-51

Ready flag (for use with interrupts), 464,472

Real-time clock, 490-503

Reenabling interrupts, 66-67,123

Reentrancy, 44,46-48,67-68

Registers, vi-vii, 6—14, 509

functions, 6

instructions, 7

length, vi-vii

order in stack, 65-66,120

passing parameters, 44

programming model, 509

saving and restoring, 120—21

special features, 6,10

transfers, 10

Register transfers, 10,98,100

flags,3

Reset

Decimal Mode flag (no effect), 3

6522 VIA, 57

Return instructions, 118-19. See also RTS

Return with skip instructions, 119

RIOT, 53

ROL,19,20,49

ROM (read-only memory), 49,407

ROR, 18,19,20,49

Rotation (circularshift), 18,19,20,94,337-44

Row major order (for storing arrays), 221,537
RTI, 66, 508

RTS, 3,102

addition of 1 to stored address, 3, 36

indexed jump, 36

operation, 508

s

S register. See Stack pointer

Saving and restoring interrupt status, 67,123

Saving and restoring registers, 66,120—21

Saving and restoring D flag, 3, 74-75

SBC, 2,16,135

Carry flag, 2,135

CMP, difference from, 16

decimal mode, 3,81

decrementing accumulator by 1,3, 81

operation, 2,135

Scratchpad (page 0), 6

Searching, 37, 397-402
SEC, 2, 76

SEI, 5,67,123

Semicolon indicating comment, viii

Serial input/output, 18, 53,464-71,480-89

Serial/parallel conversion, 18, 53

Set instructions, 101

Set Origin (.ORG or •=) pseudo-operation, viii
Set Overflow input, 122

Setting bits to 1,17,18, 89-90,306-08

Setting directions

initialization, 457-58

6522 VIA, 54, 57

Setting flags, 90

Shift instructions, 18-20,92-94

diagrams, 19

1/0,49-51

multibit, 18,20

multibyte, 325-44

Sign extension, 20, 84, 87-88, 325-28

Sign flag. See Negative flag

Sign function, 88

Signed branches, 110-12

Signed numbers, 24—25

16-bit operations, 2,41

absolute value, 86—87

addition, 75, 76, 230-32

comparison, 84-85,249—52

counter, 4

decrement by 1,29,81-82,137

division, 240—48

increment by 1,4, 29, 80, 81,137

indexing, 33—35

multiplication, 236-39

pop,121

push,121

registers, lack of, 2,41

shifts, 92-94

subtraction, 77, 79,233-35

test for zero, 43,95, 245

6520 Peripheral Interface Adapter (PIA), 153,457-58

6522 Versatile Interface Adapter (VIA), 54-65,458,472-79,

510-16

active transition in, 56, 59

addressing, 54,55,511

auxiliary control register, 56,62—63,515

automatic modes, 58—62

block diagram, 511

control lines, 57-61

control registers, 54-56,515

data direction registers, 54, 57, 513

INDEX 549

6S22 Versatile Interface Adapter (VIA) (continued)

differences between port A and port B, 61

independent mode, 58-59, 62, 63

initialization examples, 57-63,458

input control lines, 57-59

input/output control lines, 57-61

input port, 512

internal addressing, 54, 55, 511

interrupt enable registers, 63—64, 516

interrupt flag registers, 59, 60, 63-65, 516

interrupts, 63-65,472-79

I/O ports, 512

manual mode, 58-62

operating modes (summary), 62,63

output registers, 512

peripheral control register, 56, 59-62, 515

pin assignments, 510

read strobe, 59-61

registers, 511

reset, 57

shift register, 62, 514

timers, 62, 513-14

write strobe, 59-61

6530 Multifunction Device (RRIOT), 458

6532 Multifunction Device (RIOT), 458

6551 ACIA, 458

6800 microprocessor, differences from 6502, 5,135,138

6809 microprocessor, differences from 6502, 5, 89, 90, 135, 138

6850 ACIA, 458-59,464-71,480-89

Skip instructions, 117

Software delay, 460-63

Software stack, 43

Sorting, 403-06

SP register. See Stack pointer

Special features of 6502, summary of, 2—6

Stack, 2, 3, 5, 12-13

accessing through indexing, 46

changing values, 66-67

data transfers, 5,13

downward growth, 36

limitation to 256 bytes, 2

overflow, 43

page 1, location on, 2, 13

passing parameters, 46-48

PHA, 13,46,47,66,97, 120

PHP, 67,98, 122, 123

PLA, 12-13,44, 45,47, 66, 98, 121

PLP, 12,67,97

pointer, 5

saving registers, 13

software, 43

underflow, 43

Stack pointer

automatic change when used, 5, 13

comparison, 85

contents, 5

decrementing, 81

definition, 5

dynamic allocation of memory, 46-47

incrementing, 80

loading, 10,96

next available address, 5

page number (1),2

reduction, 46—47

size of change, 147

storing, 10, 98

transfers, 98

Stack transfers, 5, 13

Status bit. See Flags; Status register

Status register

changing, 97

Status Register (continued)

changing in stack, 66—67

definition, vii, 509

loading, 6, 97

organization, vii, 509

storing, 6,98

transfers to or from accumulator, 98

unused bit, vii

Status signals, 52-53

Store instructions, effect on flags (none), 3,136

String operations, 37, 345-81

abbreviations, recognition of, 346, 355,356

compacting, 396-97

comparison, 345—48

concatenation, 349-54

copying a substring, 361-67

deletion, 368-73

insertion, 374-81

position of substring, 355 — 60

search, 37

Strobe from 6522 VIA, 59,61

Subroutine call, 3, 117-18. See also JSR

variable addresses, 117-18

Subroutine linkage, 3,507

Subscript, size of, 158,211, 216,221

Subtraction

BCD, 3, 77-79, 285-89

binary, 2,16,76-79

Carry flag, 2,135

decimal, 3, 77-79, 285-89

8-bit, 2,16,77-79

inverted borrow in, 2, 23-24,135

multiple-precision, 38, 257-60

reverse, 78

setting Carry first, 2,16,38

16-bit, 77-79, 233-35

Subtraction instructions

in reverse, 78

with borrow, 79

without borrow, 76-77

Summation

binary, 30,382-88

8-bit, 30,382-84

lT-bit, 385-88
Systems programs, conflict with, 134

Table, 34-37,69, 70,187-92

Table lookup, 34-37,69, 70

Tail of a queue, 481 -82

Ten's complement, 87

Terminal I/O, 418-27

Testing, 94-95

bits, 17,21-22,26-27,95

bytes, 22-27,94-95

multiple-precision number, 271,301

16-bit number, 43,90,95

.TEXT pseudo-operation, viii

Threaded code, 42

Threshold checking, 21,23 - 25

Timeout, 460-63

Timing for instructions, 505-06

Top of stack, 5

Transfer instructions, effect on flags, 3, 22

Translate instructions, 123

Trivial cases, 158

TSX, 10, 22,46, 98

Two-byte entries, 31, 32,34-35,123

Two-dimensional arrays, 39-40, 210-20

Two's complement, 86—87

550 6502 ASSEMBLY LANGUAGE SUBROUTINES

Two's complement overflow, 24-25,139,140

TXS,10,96

flags, effect on (none), 3, 22
Y register. See Index registers

u

UART. See 6551 ACIA; 6850 ACIA

Unconditional branch instructions, 102-03

Underflow of stack, 43, 85

Upside-down addresses, 5

V (Overflow) flag, 22, 24-25, 27,122,136,138,139

Variable base addresses, 32-33

W

Wait instructions, 121-22

Word alignment, 141

Word boundary, 141

.WORD pseudo-operation, viii, 45

Wraparound on page 0, vii, 52,130

Write-only ports, 49-53,152,153,155

X register. See Index registers

Z flag. See Zero flag

Z-80 microprocessor, differences from 6502, 3, 5,135

Zero flag

branches, 26—27

CMP, 22-23,136

decimal mode, 3

INC, 29,137

inversion in masking, 21, 89

load instructions, 3,22

masking, 21

meaning, 136

position in status register, vii, 509

transfer instructions, 3, 22

uses of, 21, 26—27

Zero page, special features, 6

Zero page addressing modes

direct, 7,10-11,14

indexed, 8,11-12

instructions, 7

If you want to use a specific assembly lan

guage routine, learn assembly language

quickly, or improve your programme ig skills,

6502 ASSEMBLY LANGUAGE SUBROU

TINES is for you. It provides code for more

than 40 common 6502 subroutines, includ

ing code conversion, array manipulation,

arithmetic, bit manipulation, string pro

cessing, input/output, and interrupts. It

describes general 6502 programming

methods (including a quick summary for

experienced programmers), and tells how

to add instructions and addressing modes.

It even discusses common 6502 assembly

language programming errors.

This book identifies strengths and weak

nesses of the 6502 instruction set, and

allows you to make instant use of 6502 as

sembly language. You can use these sub

routines to

• Run a specific routine.

• Speed up a BASIC program.

• Assist in programming an I/O driver, a

diagnostic, a utility, or a systems

program.

• Quickly learn 6502 assembly lan

guage programming (based on your

knowledge of another micropro

cessor).

• Improve your programming skills by

seeing examples of working routines

and the shortcuts used.

• Debug, maintain, or revise an existing

program.

ISBN 0-931988-59-4

