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PREFACE 

Students are finding that after they have been through the intro
ductory texts presenting BASIC they are pretty much on their own. 
They may get additional bits and pieces of assistance from other texts, 
finding that each adds something to their repertoire, but there is still 
all that introductory material to sort through. The present text is in
tended for those who have been introduced to the BASIC language and 
want to go further with the language. It is also intended for those who 
have already learned another language (such as FORTRAN or COBOL) 
and need only a brief introduction to what is for them a second or 
third programming language. 

A review chapter is placed at the beginning of the book for those 
whose coverage of BASIC may have been somewhat limited or distant 
in time, and for those who come to it with competence in one or more 
other programming languages. In fact, this text can even be used by 
students with no former programming experience, if tutorial assistance 
is available, by a more extensive use of the review chapter. 

Some extended features of BASIC are presented so that students 
working on systems providing extensions will have an opportunity to 
experiment with or master new techniques. Strings and files are intro
duced in Chapters 3 and 4. Due to the variety of implementations for 
use of both strings and files, two systems are presented in each area: 
General Electric and Hewlett Packard. 

In addition to other topics, the applications chapters cover 
coordinate geometry, area, sequences and series, polynomials, graphing, 
simulation, and games. These chapters may be studied independently 
and in any order, although, where appropriate, the student may occa
sionally be referred to another section in the text. Generally these 
topics evolve from dr build on the ground of a second course in algebra 
and beyond. 

'.Vhe topic of efficiency is treated explicitly on several occasions, 
though not necessarily to the point of optimizing execution time. The 
topic of structured programming is treated implicitly in that all exam
ple programs incorporate a clear programming style with minimal un-



conditional branching and maximal use of appropriate data and control 

structures. These two topics provide good stepping-off points in a 

computer science course. 
Appendix A presents an abbreviation of the ASCII character 

codes. Appendices B and C summarize flowchart shapes and program 

statements in BASIC. Appendix Dis an index of the nearly 100 demon, 

strati on programs in the text. Some solution programs for selected 

problems in the text follow these appendices. 
I wish to thank Community Computer Corporation for computer 

time, General Electric Information Services for assistance, and those 

who commented on the first draft for invaluable suggestions. 

JAMES s. COAN 

Philadelphia 
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1-1 Introduction 

1 
REVIEW OF 

BASIC 

This chapter is intended to serve several purposes. The student who is al
ready competent in BASIC will move quickly through the chapter and perhaps 
write a few programs. The student who has studied BASIC, but not recently or 
not extensively, will want to move more slowly and write more programs. The 
student who comes to BASIC with competence in another language will be 
mainly interested in the differences between the language with which he or she is 
familiar and BASIC. 

There are numerous implementations of BASIC available in schools, col
leges, and businesses today. These implementations have many common fea
tures and some differences. This chapter will concentrate primarily on those 
features which are almost universally available. We will mention some of the 
more common variations (you can usually determine which features are part of 
your system by writing very short programs to see what works), but beyond that 
the student should obtain the specific features for his system from the BASIC 
reference manuals supplied by the computer center or the vendor. 

It is also true that the specifications sometimes change as the people 
responsible for maintaining the computer update its language capabilities. Since 
these changes tend to be additions, however, programs previously tested will 
usually still run. 

1-2 Some Simple Programs 

We can demonstrate many features of BASIC by writing a program that 
will compare two numbers to determine whether the first is greater than, less 
than, or equal to the second. See program C</>MP AR. 
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CI ST 
CGMPAR 

Advanced BASIC 

94 RF:M * THIS IS A SAMPLF PRCrHAM TC 
95 REM CC MPARE. J',JC N'JM'1E ~ S FC: I< 0 HO:O: I< 

100 READ A,fl 
I I 0 IF A = • 0 l TYFN 220 
l?.O JF A = '1 T4FN 140 
130 IF A < g THFN !RO 
1'•0 PRINT A; "IS r·ffl'TF:R T4A'J"; 9 

150 GOTO lCJO 
140 PRINT A; "IS 'IJ'IAL TC"; ~ 

170 GOTC 100 
!RO PRINT A; "IS L'SS T4AN"; R 
190 GOTO 100 
192 

194 R'" 
~00 DATA 3,4, 1.7,1.1, J1,11, -J,~, o,o 
?.10 DATA .01,0 
220 F:ND 
RIJN 
r.OMPAR 

3 IS LESS THAN 4 
J .7 JS GRF:ATF:K THA~J J. J 
31 IS EOIJAL. TC 31 

-3 IS LESS THAN ?. 
0 JS FO'IAL TC 0 

The first item shown is LIST. This is a system command rather than a 
program statement, and we type it to instruct the computer to print out the 
program exactly as it stands. Next the computer automatically prints C<t'>MPAR, 
which is the program name. Some computers also print the time of day and date 
along with the program name. On some systems we assign program names with 
the system command NAME-C<t'>MPAR. On others, to name a new program, 
NEW Cq.>MP AR is typed before the program itself is. Having typed the pro
gram name, the computer goes on to list the program itself. Let us examine the 
program statements. 

Read-Data 

Line 100 is a READ statement. In this case we want the computer to 
READ two numbers into two variables A and B. Those numbers must come 
from one or more DATA statements. We provide data in lines 200 and 210. 

Conditional Transfer 

Lines 110, 120, and 130 are all examples of the conditional transfer in 
BASIC. Line 110 is used to terminate the execution of the program itself. We 
send the computer to the END statement only if the value of A is .01. This is an 
example of the use of dummy data to control program execution. Lines 120 
and 130 direct the computer to the appropriate PRINT statement according to 
the relation between the values of A and B. BASIC also allows "greater than" 
(>), "greater than or equal to" (>=) and "less than or equal to" (<=). To test 
for "not equal to" use (< >). Some systems also allow"#" for "not equal to." 

In place of the algebraic symbols just mentioned, some systems require 
special symbols as relational operators. They are (\LT) or (LT) for "less than," 
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(\LE) or (LE) for "less than or equal to," (\GT) or (GT) for "greater than," 
(\GE) or (GE) for "greater than or equal to," (\EQ) or (EQ) for "equal to" 
and (\NE) or (NE) for "not equal to." The paired relational operators listed 
above are not generally interchangable. The first is for certain systems, and the 
second is for others. So there are three sets of possible relational operators. 
You can quickly tell which works on your computer by consulting the vendor
supplied manual or by trial and error. 

Another conditional transfer is available on many systems. It is called the 
computed G</JT</J. It takes the form, 

100 </JN K G</JT</J niln2 ,n3 , etc. 

or 

or 

100 G</JT</J n 1,n2 ,n3 , etc, </JN K 

At line 100 computer control passes to line n 1 if K = 1, 12 if K = 2, etc. If K 
is not in the range from one to the number of line numbers named, some sys
tems terminate with an error message, while others simply pass control to the 
line after 100. 

Print 

Lines 140, 160, and 180 result in printed output to the terminal for the 
operator to see. We may mix literal output with numeric results by enclosing 
literal messages in quotation marks. Replacing semicolons in the PRINT state
ment with commas would result in wider spacing of printed output. On many 
systems, using commas to separate printed results causes the page to be divided 
into five columns of 15 characters each. For terminals with only 72 character 
spaces, the fifth column is 12 characters wide. Generally speaking, use of a semi
colon to separate printed output results in closer spacing than with a comma. 

Unconditional Transfer 

Lines 150, 170, and 190 are examples of unconditional transfer. The 
G</JT</J statement in BASIC serves to name the number of the next line to be 
executed. When the computer gets to line 150, the next line the computer exe
cutes is 100. The same is true for lines 170 and 190. Generally speaking, good 
programs try to minimize the number of G</JT</J statements. We shall see ways 
to do this later. 

End 

The final statement in our example is the END statement. On most sys
tems the highest numbered statement must be an END statement. After the 
END statement we see the system command RUN, which is typed by us to cause 
the computer to actually carry out the instructions of the program. In response 
to the RUN command, the computer has printed the program name, C</JMPAR 
(some systems will also print the date and time), followed by the printed output 
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specified by the instructions of our program. (Some systems will follow pro
gram results with information about the computer resources used by this RUN 
of the program.) 

Variables 
In program C</>MP AR we used A and B as variables to name stored nu

meric values. BASIC allows us to use every letter of the alphabet and also every 
letter of the alphabet followed by a single digit. (Some systems also provide ad
ditional symbols as variables.) Every letter or letter plus digit allows us to store 
a single number at any one time in a program. However, variables may be used 
over and over again to store new values as long as we have no further need for a 
particular old value. In C</>MPAR, the variables A and B were each used for six 
different numbers. 

Prettyprinting 
Note the overall appearance of program Cl/.>MPAR. An attempt has been 

made to provide spacing within the program statements to facilitate readability 
and therefore clarity of thought. The practice of indenting and spacing to 
achieve this goal is called "prettyprinting." In program C</>MP AR, the IF state· 
men ts have been indented three spaces. Spaces have been inserted in the PRINT 
statements to avoid a crowded appearance. The blank REM in line 194 is used 
to offset the DATA portion of the program, and the data has been grouped in 
the DATA statements to show just how the values will be read in the READ 
statement. Some systems do not allow prettyprinting. However, if your system 
does allow prettyprinting, you should work on developing a style of spacing to 
enhance program readability. Prettyprinting becomes more and more worth
while as programs become longer and more complex. 

Arithmetic Operations 
The computer is often used to perform arithmetic opera.!;ions on numbers. 

The operations allowed are exponentiation (**) or (t), multiplication (*), 
division (/), addition ( +) and subtraction (- ). The priorities assigned these opera
tors are the same as those assigned in conventional algebra, that is, first exponen
tiation followed by multiplication and division followed by addition and sub
traction. Program </>PRATN shows a use of each of the arithmetic operators. 

CPRATN 

94 RFM * T41S IS A SAMPLF P~OrRAM TO DEMONSTRATF. 
95 l'F.M 'ISF: Cl' ARITHMF:TIC flpf:;,ATCRS IN RASJr; 
100 PRINT "AtR", "A*R", "A/B", 0 A+R", "A-A" 
110 l'EAD A,8 
120 JI' A <> 0 THEN 150 
130 JI' Fl <> 0 T4f:N l~O 

140 STOP 
150 PRINT " A ="; A; "''l ="; 8 
l~O PRINT Atfl, A•'l, A/'l, A+B, A-8 
170 PRINT 
lf!O GOTO 110 
1R2 
184 REM 
190 DATA 1,2, 3,~ .. 2 .. ~o .. 1.~,~s.2 

200 DATA O,O 
210 END 
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RIJN 
OPRATN 

AtB A*B A/R A+B A-9 
A = l A = 2 

2 o.s 3 - l 

A 3 8 = 4 
81 12 0.75 -1 

A 2 8 = 40 
l. 0995 l E. + 12 BO o.os 42 - 38 

A = l. 4 B = 65.2 
3.36936E+9 91·2R 2.14724E-2 66.6 -63. R 

The RUN of <l>PRATN produces three examples of what is called E-format. 
For A 2 and B = 40, A**B results in l.09951E+12. That means 1.09951 
times 10 to the twelfth power, or 1.09951 X 1012

• Systems vary, but many 
provide from six to nine significant digits of numeric output. 

In <l>PRATN, line 140 is equivalent to G<l>T<l> 210. The ST<l>P statement 
in BASIC is used to terminate execution of a program at some point other than 
the highest numbered line. This line of the program is called a "logical end" to 
differentiate it from the physical end. 

Assignment 
Thus far, the way that we have gotten numeric values to be stored in vari

ables has been to READ values from DATA. We can also assign values directly 
as follows: 

100 x 
200 y 

3 

3*X+5 

or 

or 

100 LET X 

200 LETT 

3 

3*X+5 

These are examples of the assignment statement in BASIC. (On some sys. 
terns the LET is required. On others it is optional.) Used in this way, the equals 
sign is called the assignment operator. The assignment capability greatly en
hances the power of any programming language since it permits us to retain 
values for later use. For example, we can sum up any number of data items as in 
program ADD. 

.ADD 

9L.! REM * T4IS PRcc:~Atv! ADOS f\JIJ·\11f:\i:"~S r;'f~:J',1 DATA 

- 100 LFT S = () 
11 n 1<0-on A 

120 IF A = - .()I TY"'J 16() 
140 L"T S = S+o 
150 GCTC 110 
160 PRINT "S'IM IS"; S 
172 
174 RF.M 
!RO DATA 21, 39, 11.3, 24.6, 91.J 
190 DATA -.01 
~00 END 
R!JN 

ADD 

SIJM IS 1R7.2 
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In line 100 of ADD the summing variable S is initialized at zero. (Some 
implementations of BASIC automatically initialize all variables to zero when the 
program is run.) We now generalize program ADD to count the number of num
bers in the previous program. See lines 100, 130, and 140 of ADDI. 

ADDI 

94 ~C:M * T41 S PRCG~l\M AOOS ANO f;C'l'ITS 
95 R<oM N'IM'lFRS l'RQ'l DATA 

-100 u:T s = r; = o 
I I 0 RF:AD A 
120 IF A = - .01 THF:'-1 160 

-130 u:T c = c+1 
-140 Ll'T S = S+A 

150 GOTO 110 
160 PRINT "S'l" IS"; S 

I72 
17 4 REM 
!RO DATA 21, 39, 11.J, :'!4.~, 91·3 
190 DATA -.QI 
200 END 
RIJC) 
ADDI 

S'J'l IS I 8 7 • ?. 
THERE ARE 5 CJJ'1Rl'riS 

Line 100 of ADDl is an example of a multiple assignment statement. It 
allows us to assign the rightmost value to all of the variables separated by equals 
signs. (Some systems require commas instead of equals signs for all but the 
rightmost equals signs. Our statement 100 would be 100 LET S,C = 0 on such 
a system. You may be able to assign different values to different variables on 
one line, for example, 100 LETH = 4, Y = 9*K, B = 81, or even 100 LET 
H,I,J 3, T = -32.) 

Input 

The final statement of this review section which results in variables con
taining numeric values is the INPUT statement. It is this statement which allows 
the operator to interact with a program during execution. When the computer 
executes an input statement, it prints a question mark at the terminal and awaits 
information from the keyboard. If we replace READ A with INPUT A in pro
gram ADD and remove the DATA statement, we have a program that behaves a 
little like an adding machine. By printing a marker such as # followed by a 
semicolon in line 130 we can type our selected numbers on the same line as 
the marker, as in program ADD2. 

ADD2 

94 REM * THIS PROGRAM WORKS A LI TTL~ 

95 REM LIKE AN ADDING MACHINE 
I 00 PRINT "IN P'JT q = - • 0 I TC 0 fl TA IN TC TAL" 

I IO PRINT 
120 LET S = O 

-130 PRINT "#"; 

140 INPUT A 
150 IF A = -.QI THEN 180 

160 LET S = S+A 
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170 GOTO 130 
180 PRINT "SUM IS"; S 
190 END 
RUN 
ADD2 

INPIJT H -.01 TC C'lTAIN TCTAL 

#?45 
#?7 g 
#? 34 
#?98-12 
#?43 
#? - • 0 I 
S'JM IS 29~·12 

7 

Note that input statements may be used to call for several values. 100 IN
PUT X,Y,B9 calls for three numbers to be typed, separated by commas at the 
keyboard. 

Summary of Sec. 1-2 

We have looked at three system commands to give a program a name, in
struct the computer to RUN a program, and to LIST a program. We have used 
the following eight statements in programs; READ, DATA, IF-THEN, PRINT, 
END, ST</>P, LET, and INPUT. With just these statements we are able to write 
substantial programs (nevertheless, the language does contain tremendous ad
ditional power in other statements to come in the next sections). The concepts 
of variable and program control have been discussed. We have looked at three 
kinds of operators: arithmetic, relational, and assignment. 

Problems for Sec. 1-2 

1) Write a program to average numbers entered as DATA or on INPUT. 
2) Write a program to find the largest and/or smallest number of a set of 

DATA. 
3) Write a program to repeatedly average groups of numbers. 
4) Write a program to add all positive integers from 1 ton, where n is an 

item of DATA. 
5) Write a program to calculate n factorial. Be sure to make the value of 

O! equal 1. 
6) Write a program to solve equations of the form, ax + b = ex + d. 
7) Write a program to solve quadratic equations, ax2 + bx + c = 0. 
8) Write a program to find the sum of the reciprocals of the first n positive 

integers. 

1-3 Functions, Loops and Lists 

BASIC provides computer functions or subroutines for special purposes. 
INT(X), SGN(X), ABS(X), and SQR(X) are among them. On some systems the 
INT(X) function takes the greatest integer not greater than X, such as 4 for 4.3 
and - 2 for -1.6. Other systems simply give the integral part of X, such as 4 for 
4.3 and -1 for -1.6, by removing the decimal part. For non-negative numbers, 
the two are equivalent. SGN(X) becomes +l if Xis positive, zero if Xis zero, 
and -1 if Xis negative. ABS(X) becomes X if Xis non-negative and becomes - X 
if X is negative. SQR(X) becomes the principle square root of X so long as Xis 
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non·negative. Each of these functions is useful. However, it is likely that of 
the four, INT(X) is most frequently used. 

One use of INT(X) is to round off numeric results. For example, to round 
to the nearest integer, use INT(X+.5). To round to the nearest hundredth, use 
INT(lOO*X+.5)/100, etc. See line 150 of program R</HJND. 

HO'JND 

94 REM * THIS PHOGRAM DF.MONSTRATF.S A USE CF THF. 
95 REM INT< l FIJNCTICN JN BASH; FC·{ HC'J'.'JDING 
96 REM NUMRERS 
100 LET E = 0 
110 LET X = t.R2564 
120 PRINT "RO'JND"; ~ 

130 PRINT 
140 PRINT "POWER CF TENTHS", " ROUNDS TC" 

-150 LET R = INT< ~•IOtF.+.5 )/!OtE 
160 PRINT E, R 
162 
164 REM * LINF. 170 JNCRFMF.NTS TYE EXPONUIT OF 10 
170 LET E E+l 
!RO JF F. <= 5 THF.N 150 
190 $ND 
RIJN 
RO'JND 

ROU'JD J. R25~4 

POWER OF TENTHS R0 1 l•'JDS TO 
0 ?. 
1 t.'l 
2 t.R3 
3 l·R'26 
4 t.R251\ 
5 t.R2564 

INT(X) is also used frequently to test numbers for divisibility by other 
numbers. For example: 

100 IF X/10 = INT(X/10) THEN 200 

transfers the computer to line 200 if Xis divisible by 10, but the computer goes 
to the line immediately following 100 if X is not divisible by 10. One problem 
solution that uses this is that of finding all factors of a certain number. We 
simply try all integers from 2 to the number and test for divisibility. If the divi
sor goes evenly, we print it; if not, we go to the next divisor. This is left as an 
exercise. 

Random Numbers 

BASIC provides a routine to generate pseudo-random numbers. These are 
very useful as a source of data for simulating random events. The procedure 
varies somewhat from system to system. All systems provide decimal numbers 
in the range, 0 to 1. One procedure introduces random numbers by using 
RND(X) in a statement such as 100 LET A = RND(X). The particular ran
dom numbers are duplicated or different from one run to the next according 
to the value of X. If X is negative, then you get a different set of random num
bers from run to run. If Xis 0, then each run of the program produces the same 
succession of random numbers. And if X is positive, then the set of random 
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numbers is based on the value of X. A second procedure does not require an 
argument for RND. The statement 100 LET A = RND selects a random num
ber and assigns it to A. However, used alone it generates the same set of random 
numbers from one run to the next. To obtain a different set of random num
bers from run to run, simply introduce the companion statement 10 RAND<l>
MIZE into the program. The ability to reproduce the same set of random 
numbers is useful for finding errors in the program debugging process. Once the 
program has been perfected, it can then be modified to produce different results 
for each run. 

Most of the uses for random numbers are for numbers in some range other 
than 0 to 1. So we have to do the appropriate calculations to change the range. 
For example, to "roll a die" we would use 100 LET R = INT(6*RND(-l)+l) 
or 100 LET R = INT(6*RND+l). This would give integers in the range 1 to 6 
inclusive. In the statement, 200 LET N = INT(A*RND+B), A specifies the 
possible number of random integers and B specifies the smallest possible random 
integer. 

Loops 

Suppose we place ten slips of paper numbered 1 to 10 into a hat and have 
five people draw one slip of paper, note the number on it, and return the slip to 
the hat. This we can easily do with a program, as in program DRAW. 

Program DRAW and several other programs we have looked at contain 
examples of repetitive steps. This is a computer loop, and BASIC provides the 
F<l>R-NEXT statement pair to set up loops. Program DRAWOl uses F<l>R-NEXT 
to accomplish the same purpose as program DRAW. Note that both programs 
simulate returning the slips to the hat. 

DRAW 

94 REM * THIS PROGRAM SIMULATES RANDCM DRAWING 
95 REM FIVE NUMBERS FROM AMONG 10 WITH REPLACEMENT 
100 RANDOMIZE 
110 LET x = 1 
120 LET R = INT< RND*lO+l ) 

130 PRINT Rl 
140 LET x X+l 
150 IF x <= 5 THEN 120 
160 END 
RUN 
DRAW 

6 9 6 10 B 

DRAWOI 

94 
95 
100 

REM * THIS PROGRAM DIFFERS FHOM DRAW 
REM IN THAT FOR-NEXT IS NOW INTRCDUCED 
RANDIJMIZE 

-110 
120 
130 
140 
142 
150 

FOR X = 1 TO 5 
LET R = INT< RND•lO+l l 
PRINT RI 

NEXT X 

END 
RIJN 
DRAWOl 

2 9 5 2 10 
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Lists 
Now suppose that the five people who drew slips of paper from the hat 

did not replace them. We must make sure that no number is drawn twice. In 

order to achieve this goal we need to be able to keep track of what numbers have 

been drawn and what numbers are left. This can be done rather nicely using a 

subscripted variable called a "list." A list, designated by a single letter, reserves 

space for more than one number. At the time that we first designate a list 

variable, the computer automatically reserves 10 locations (some computers re· 

serve 11 by allowing zero as a subscript). We can simulate the numbered slips 

of paper in the hat by establishing a 10-item list with the integers 1 through 10 

stored in locations 1through10. This is done by the following routine: 

100 FOR I = I TO 10 
110 LETL<Il=l 
120 NEXT I 

Line 110 sets up the subscripted variable L( ) so that L(l) = 1, L(2) = 2, etc., 

through L(lO) = 10. If we need more than 10, we can get them by using the 

DIMension statement. This is usually placed at the very beginning of the pro

gram. For example, if we want 25 slips of paper in our hat, we would begin with 

10 DIM L(25), and 25 locations would be available. Note that we could dimen

sion for 25 and then use only 10 of them, but we cannot use more than the 

DIM statement specifies. Any number of lists may be dimensioned on the same 

line as: 10 DIM A(36), B(43). Systems allow a maximum number of storage 

locations from a few thousand to many thousands. 
Now we can develop a procedure to select five numbers at random without 

replacement. For the first draw there will be 10 numbers from which to draw; 
for the second draw one has been removed, leaving nine. The process is re

peated until there remain only six from which to draw for the last draw. This 

can be done with another FG)R-NEXT pair. We can step backwards with FG)R 

J = 10 TG) 6 STEP -1. We may specify all three numbers on the right of the 

equals sign by variable or formula. 
If we design a program that merely checks to see if the latest number has 

already been drawn, then we get into a trial and error situation. And if we try 

to draw 10 numbers from among 10, or worse yet, 100 from 100, the drawing 

gets slower and slower as we get nearer and nearer to the last draw (adding sus

pense and expense). For efficiency's sake we should avoid this pure trial and 

error scheme. Thus consider the following procedure for eliminating trial and 

error entirely. 
For the first draw we may select a number R at random from one to 10. 

We may use the value of L(R) as the number on our randomly selected slip of 

paper. If we draw the same value of R later on, we need a method that does not 

require testing to see if L(R) has been used. We can acheive this by simply re
placing the value of L(R) with the value of L(J) where J is the number of slips 

from which the drawing is being made after each drawn number has been 

printed. The important consideration here is that this scheme allows us to use 

every number that is drawn. We have taken care here to develop an efficient 

algorithm to solve the problem submitted to us. See in particular line 160 in 

program DRA W02. 
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94 REM * THIS PROGRAM SIMULATES HANDOM DHAWING WITHOUT 
9S REM REPLACEMENT AND WITHCIJT TRIAL AND E.RRCR 
96 
97 REM* l!NFS 100-120 SIM'ILATE 10 SLIPS 
98 REM OF PAPER IN A HAT 
99 RANDOMIZE 
100 HJ R I = 1 TO 1 O 
110 LET Lill = I 
120 NEXT I 
122 
124 REM * NOW DRAW FIVE NUMAERS AT RANDOM 
130 FOR J = 10 TO 6 STEP -1 
140 LET R = INTI RND•J+l I 
!SO PRINT LIRll 
!S2 
154 REM * NOW REPLACE THE NIJMBER JUST PRINTED 
!SS REM WITH THE LAST NUMBER IN THE LIST 

~160 LET LIRI = LIJI 
170 NEXT J 
172 
180 END 
RUN 
DRAW02 

9 7 3 4 s 
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We can see from a run of DRA W02 that no number has been drawn more 
than once, but one run is not a certainty. A further check can be made by draw
ing all ~O. We leave this as an exercise. 

More Functions 

In addition to the functions already described, the following are univer
sally available: SIN, C</JS, ATN, L</JG, and EXP. SIN(X), C</JS(X) and TAN(X) 
give the sine, cosine, and tangent of X, where X is taken as an abstract dimen
sionless number or the measure of an angle in radians. ATN(X) gives the princi
ple arctangent in radians, where X is the tangent of the required number. 
L</JG(X) gives the natural logarithm of a non-negative X and EXP(X) gives ex. 
Besides these there are other functions which may or may not be available on a 
particular system. Among these will be log base 10, secant, cosecant, etc. On 
some systems CLK(X) gives the present time using a 24-hour clock, and TIM(X} 
gives the elapsed time of program run in seconds. It is best to consult the 
manual for your system to determine the full extent of function capabilities. 

Summary of Sec. 1-3 

BASIC generally provides INT, SQR, SGN, ABS, SIN, C</JS, TAN, ATN, 
EXP, and L</JG as standard functions, where trigonometric functions are based 
on radian measure and exponentials use e as the base. The routine RND is avail
able to provide random numbers. The language created loop is F</JR A = B 
T</J C STEP D, where the loop variable A first takes on the value of B and 
increments by D until A passes C and control passes to the next line following 
NEXT A which closes the BASIC loop. The default STEP value is always 1. 
The list is available as a subscripted variable to allow block storage of several 
numbers attached to a single letter. The DIM statement is required for sub
scripts exceeding 10. 
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Problems for Sec. 1-3 
1) Write a program to find the absolute value without using any of the 

functions introduced in this section. 
2) Write a program to find the greatest integer in X without using the 

INT function. Be certain it works for negative numbers. 
3) Write a program to roll two dice. 
4) Write an efficient program to deal four 13 card hands from a standard 

52 card bridge deck. 
5) Write a program to store 25 random numbers in a list, print them all, 

and print the largest and the smallest along with their respective 
positions in the list. 

6) Write a program to print all factors of an integer entered on INPUT. 
7) Write a program to print prime integers in the range 2001 to 2501. 
8) Find the greatest common factor for pairs of integers. 
9) Find the least common multiple for pairs of integers. 

10) Generate 100 integers at random from one to 10. Use a list to tabu
late their frequency of occurrence. 

11) Write a program to print a table of trigonometric values in a 10 degree 
range by intervals of 20 minutes. Pick any one function. 

12) Modify DRAW02 to draw all 10 slips of paper. 
13) Write a program to produce the results of C</JMPAR using 

SGN(A B) and the computed G</JT</J statement. 

1-4 User Defined Functions, Subroutines, and Arrays 

User Defined Functions 

Another kind of computer function is available in BASIC. It is called the 
"user defined function" and has the following form: 

100 DEF FNA(X) = [formula] 

If the A is positioned in FNA(X), you may use instead any letter of the alphabet 
as the identifier, thus designating up to 26 functions in any one program. For 
example, we might want to round off results to the nearest hundredth in several 
places in a program. We would then use 

100 DEF FNH(X) = INT( X*l00+.5)/100 

and then use FNH( ), placing whatever variable we want rounded off in the 
parentheses. Generally speaking, programmers place DEF statements near the 
beginning of the program, and some systems require that this be done. Some 
systems allow only a single argument; some allow two or more; some allow none. 
We may use any variable or legal BASIC expression, including a defined func
tion, as an argument. 

Suppose we define a polynomial function, select a few values of X 
between -10 and 10 at random and round the results to the nearest tenth. See 
program PRT. 

Defined functions are useful whenever we wish the computer to return a 
single value. 
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PRT 

94 REM * T41S PROGRAM D~MONSTRATES T4E SINGLE 
95 REM LINE DEFINED FIJNCTION IN BASIC 
99 RANDOMIZE 

-·100 DEF FNPCl<l = 3.41*K•3 + 4.32•K•2 - 11·2•K + 16.73 
-110 DEF FNRCKl = INT< K•RND+l l 
-120 DEF FNTCKl = INT< '<*10+.5 l/10 

130 PRINT "X", "FNP<Xl", "f"NTCFNP<Xl )" 
140 f"OR C = I TO 5 
150 LET X = f"NRC21l-11 
160 PRINT x, FNPCX>. f"NT<FNPCXll 
170 NEXT C 
172 
lflO END 
RUN 
PRT 

x 
B 
6 

-5 
10 

-R 

Subroutines 

f"NPCXl 
1949.53 
841 .61 

-245.52 
3746.73 

- 136 3. 11 

f"NT<f"NPCXl l 
1949.5 
841. 6 

-245.S 
37116.7 

-1363.t 
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If we want the computer to return with two or more values, we cannot 
use a defined function. Also, in the unlikely case that we want more than 26 
functions, we need a new capability. In such cases we use a subroutine. A sub
routine amounts to a detour in the program that returns to the statement im
mediately following the one that caused the detour in the first place. 'I'his 
capability permits a set of program statements to be accessed from more than 
one point in a program. The statement pair G</>SUB-RETURN accomplishes 
this. 

One significant use of the subroutine is to improve the flow of control 
through a program. A subroutine may be used to eliminate the proliferation of 
G</>T<l> statements by replacing them with RETURN statements where appropri
ate. This technique often simplifies the writing of programs. Programs written 
in this way are also easier to read and thus easier to correct or modify later (see, 
for example, programs GRAPH2 and GRAPH3 of Chap. 5). 

Suppose that we want the product and the sum of two numbers modulo 
M. We can write a subroutine that calculates and prints both values. Then we 
can "call" the subroutine from anywhere in the program with G</>SUB n where 
n is the first line of the subroutine. See lines 140 and 210 in program M</>D. 

M0D 

94 
95 
99 
100 
110 
120 
130 

-140 
150 
160 
170 
180 

REM * THIS PROGRAM DEMONSTRATES GOSUB 
REM WITH MODULAR ARITHMETIC 
RANDOMIZE 
D~F FNRCXl = INT< RND•X+l l 
PRINT "f"IND A•B AND A+B MOD M" 
PRINT "A, s,, M" J 

INPUT A, 8, M 
GOSIJB 500 

PRINT 
PRINT "NOW DQ f"0UR .v1NDOM CALCULATIONS" 
f"O R I = 1 TO 4 

LET M = FNRC9l+l 
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190 
200 

LET A= FNR<M-IJ 
LET B = FNR<M-ll 

GOSLJA 500 
NEXT I 

-210 
220 
222 
224 
225 
230 
492 

REM * THE STOP STATEMENT PREVENTS 
REM ILLEGAL SUBROUTINE l':NTRY 
STOP 

494 REM * MODULAR ARITHMETIC SUBROUTINE 
500 LET P = A•B 
510 IF P < M THEN 540 
520 LET P = P-M 
530 GOTO 510 
540 LET S = A+B 
550 IF S < M THEN 580 
560 LET S = S-M 
570 GOTO 550 
580 PRINT A; "*"; 8; "="; P; A; "+"; B; "="J S; "MOD"; M 
590 RETURN 
592 
999 ENO 
RUN 
MOD 

FIND A•B AND A+B MOD M 
A,9,M? 2,5,6 

2 * 5 = 4 2 + 5 = I MC D 6 

NOW 00 FOUR RANDOM r.ALCIJLAT ICN S 
3 * 2 2 3 + 2 I MOD 4 
2 * I 2 2 + I 3 MCD 5 
I * 3 3 I + 3 4 MOD Fl 
2 * 4 Fl 2 + 4 6 MCD 9 

Subroutines may in turn call other subroutines as in both lines 510 and 
550 of MQ>Dl. One thing to avoid in subroutines is inadvertent use of variables 
that have been used elsewhere in the program. Subroutines called from other 
subroutines are called "nested subroutines." (What else?) In our example 
Ml,l>Dl we have nested them two deep. Systems vary, but many have a limit on 
how deep subroutines may be nested. 

M0DI 

94 REM * THIS PROGRAM INTR0DUCES A NESTED 
95 REM GOSUB INT0 PR0GRAM MOD 
99 RAND0M I ZE 
100 DEF' FNR<XJ = INT< RND•X+I J 
110 PRINT "FINO A•B AND A+B MOD M" 
120 PRINT "A,B,M"J 
130 INPUT A, 8, M 
140 GOSUB 500 
150 PRINT 
160 PRINT "NQl,1 DO FOUR RANDOM CALCULATIClNS" 
170 F'ClR I = I TO 4 
180 LET M = FNRC9J+I 
190 LET A= FNRCM-ll 
200 LET 8 = FNR<M-IJ 
210 GOSIJB 500 
220 NEXT I 
222 
224 REM * THE STOP STATEMENT PREVENTS 
225 REM ILLEGAL SUB ROUT !NE ENTRY 
230 STOP 
492 
494 REM * MODULAR ARITHMETIC SIJARCUT!NE 
500 LET N = A•B 
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-510 
520 
540 

GO SUB 700 
LET P = N 
LET N = A•B 

GOSUfl 700 
LET S = N 

- 550 
560 
580 
590 
592 

PRINT A; "*"J BJ "="J Pl A; "+"; BJ "="J SJ "MOD"J ~ 
RETURN 

694 REM * REM REDUCES N TO A NIJMBER MOD M 
700 IF N < M THEN 730 
710 LET N = N-M 
720 GOTO 700 
730 RETIJRN 
732 
999 END 
RUN 
MOD I 

FIND A*fl ANO A+B MOD M 
A,8,M? 3,4,5 

3 * 4 = 2 3 + 4 = 2 MOD 5 

NOW DO FOUR RANDOM CALCl/LATICNS 
2 * 3 6 2 + 3 5 MCD 8 
4 * I 4 4 + I 5 MCD 9 
2 * 2 4 ?. + 2 4 MCD 6 
6 * 8 8 6 + R 4 MOD I 0 
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Some systems have a computed G<,1>SUB statement similar in format to 
the computed G<,1>T<,1>. The format is: 

100 qlN K GqlSUB n 1,n2,n3 , etc. 

or 

or 

Arrays 

An array is simply a two dimensional list. For this we use two subscripts 
separated by a comma and enclosed in parentheses. The first subscript desig
nates the row and the second subscript designates the column. As with lists, 
we can use a subscript as high as 10 without the need for a DIM statement. 

Suppose you recorded the temperature at 6AM, 12NOON and 6PM for 
one week. This data could easily be stored in an array to enable a program to 
carry out various calculations, for example, see program WETHR. 

•,JET HR 

94 RF.M * THIS PROGRAM FINDS AVF.HAGE TEMPERATURE 
95 RE.M TO DEMONSTf~ATE A IJSE OF ARRAYS 
100 DIM AC6,4l 
102 
104 REM * READ DATA 
I I 0 FDR D = I TO 5 
120 FOR I = I TO 3 
130 READ ACD,Jl 
140 Nt.XT I 
150 NF:XT D 
152 
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154 
160 
170 
180 
190 
200 
210 
220 
222 
224 
230 
240 
250 
260 
270 
?.80 
290 
292 
300 
310 
320 
322 
324 
,125 
326 
330 
340 
350 
360 
370 
380 
382 
390 
400 
410 
420 
422 
430 
440 
450 
460 
470 
472 
474 
4RO 
490 
500 
RIJN 
1•.!F:THR 

DAY\ TIME 

DAY 1 
DAY 2 
DAY 3 
DAY 4 
DAY 5 

AVERAGES 
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REM * C:ALC11LATF: AV<:RAGF: F:ACH DAY 
FOR D = 1 TO 5 

LET T = 0 
FOR I = 1 TO 3 

LET T = T+A<D, I) 
NEXT I 
LET A<D, 4) T/3 

NEXT D 

REM * CALCULATE AVERAGF EACH READING 
FOR I = 1 TO 3 

LET T = O 
FOR D = I TO 5 

LETT= T+ACD,I> 
NEXT D 
LET AC6, I> = T/5 

NEXT I 

PRINT "DAY\TIME", "6AM", "12NOCN", "6PM", "DAILY AVG" 
PRINT 
FOR D = 1 TC 5 

REM * ~EEP TFRMINAL ON THIS LINE 
REM FCR THE NEXT PRINTED RESULT 
REM WITH TRAILING COMMA IN LINE 330 
PRINT "DAY"; Q, 

FOR I = 1 TO 3 
PRINT A<D, I), 

NEXT I 
PRINT A<D,4l 

NEXT D 

l'Q R I = I TO 5 0 
PRINT "-"; 

NEXT I 
PRINT 

PRINT "AVE'<AGF:S", 
FOR I = 1 TO 3 

PRINT AC6, I), 
NEXT I 
PRINT 

RF:M 
DATA ?.7,J6,J4 .. 40,50,55, so,s?.,4~ 

DATA 43,L!l,37, JO,J3,~R 

END 

6AM 12NOON 6PM 

27 36 34 
40 50 55 
so S2 48 
43 41 37 
30 33 28 

38 

DAILY AVG 

32. 3333 
48.3333 
so 
,,o. 3333 
30.3333 

Even though the computer permits a subscript as high as 10 for rows and 
for columns, it does not require that we use them all. In WETHR we used only 
six rows and four columns. 

Note that we used loops within loops, or nested loops, several times in 
WETHR. The requirement here is that the loops must be nested entirely within 
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other loops. If a program contains Ffl>R X = A T</J B followed by F</JR Y 
= C T'l> D, the NEXT Y statement must appear before the NEXT X statement. 

Once the data is stored, it is a simple matter to obtain other information. 
For example, we can find the highest temperature reading for the week as in 
WETHRl. 

WETHRl 

94 
95 
100 
102 
104 
110 
120 
130 
140 
150 
152 
154 
160 
170 
180 
190 
200 
202 
204 
205 
210 
220 
230 
240 
250 
252 
260 
262 
264 
265 
270 

REM * THIS PR0GRAM FINDS HIGHEST TEMPERATURE 
REM IN A FIVE DAY PERI0D USING ARRAYS 
DIM AC6,4l 

REM * READ DATA 
FOR D = 1 TO 5 

FOR I = 1 TO 3 
READ ACO, I> 

NEXT I 
NEXT D 

REM * THE FIRST ENTRY IS THE HIG4EST SO FAR 
LETH= AC1,l> 
LET R = C = 1 
FOR D = 1 TO 5 

r0R I = 1 T0 3 

REM 
REM 
LET 
LET 
LET 

NEXT I 
NEXT D 

IF ACD•I> <= H THEN 240 

* IF THE CU~RENT ENTRY IS HIGHER THEN 
SAVE DATA IN H, R, AND C 

H ACD,J) 
R D 
C = I 

PRINT "HIGHEST TEMPERATURE ="I H 

REM * USE Or 24-HOIJR CLOCK SIMPLIFIES 
REM PRINTING THE TIME 
PRINT "OCCURS AT"J C*600; "HOURS ON DAY"; R 

474 REM 
480 DATA 27.36.34. 40,50,55, so,s2,4g 
490 DATA 43,41,37, 30,33,28 
500 END 
RUN 
WETHRl 

HIGHEST TEMPERATURE = 55 
OCCURS AT 1800 HOURS ON DAY 2 

Summary of Sec. 1-4 

BASIC allows tremendous flexibility in the user defined functions. We 
may have up to 26 functions defined with DEF FNA(X) followed by an equals 
sign and any legal BASIC formula. 

For calculations that don't lend themselves to function definition, such 
as calculations requiring more than one value in the result, the subroutine 
entered with G</JSUB is available. The end of a subroutine is indicated by the 
RETURN statement. 

Two dimensional variables are available in BASIC. A(I,J) designates the 
Ith row and the Jth column of A. For subscripts greater than 10, a DIM state
ment is required. 
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Problems for Sec. 1-4 

1) Write a program to read six test scores for each of five students into an 
array, one student to a row. Find the test average by student and by 
test, and print the scores and the results in easily readable form. 

2) Write a program to locate the maximum and the minimum point of 
any function in a domain specified as input. Also specify the incre
ments as input. 

3) Write a program to set up a tic-tac-toe board and keep track of the 
play of two external players. 

4) Write a program to fill a square array with zeros except along the 
diagonal from the upper left to the lower right corners, which should 
contain ones. Print this array (called the "identity array"). 

5) Write a program to produce the results of program C<l>MPAR in Sec. 
1-1 using a simple Gq>SUB and only one G<l>T<l>. 

6) Write a program to produce the results of program C<l>MP AR in Sec. 
1-1 using SGN(A - B) and the computed Gq>SUB. 

7) If your system allows two arguments in user defined functions, write 
a single function to allow rounding off numbers to any desired pre
cision. Try the same thing with a single argument function. Write 
a program to verify your functions. 

1~5 MAT Statements in BASIC 

Arrays and lists are used so routinely in programming and in mathematics 
applications that most implementations of BASIC include a group of special 

statements to handle them. Note that since BASIC treats lists as special arrays, 
we may not use the same letter for a one-dimensional list that we use for a two
dimensional array. Instead of reading values into the elements of an array entry 
by entry with loops, we may simply use MAT READ A or MAT READ A, 
B,C as long as the array or the arrays are dimensioned to be compatible with the 
data. BASIC also allows us to alter the dimensions of arrays in the MAT READ 
statement. MAT READ A,B(3,7),C(N,M) reads mat A according to previously 
set dimensions; dimensions B to three rows and seven columns; reads the array 
and dimensions C to N rows and M columns, N and M having been previously 
defined; and reads that array. 

MAT PRINT A prints the complete array with comma format. To get 
semicolon format, MAT PRINT A; must be used. A single statement may 
specify printing of more than one array, as in MAT PRINT A,B;C, which will 
result in A being printed with comma spacing, followed by B printed with 
semicolon spacing, followed by C printed with comma spacing (see program 
MATOl). 

MAT INPUT allows us to type entries from the keyboard of our ter
minal with all of the dimensioning options of MAT READ. MAT INPUT 
A has one additional option in some implementations of BASIC. If A is a 
list, you may not know the number of entries required when the program is 
written. In some systems, the function NUM takes on the number of elements 
entered in the most recent MAT INPUT statement in the program. 



Review of BASIC 

MATO! 

94 REM * THIS PROGRAM DEMONSTRATES 
95 REM MAT READ AND MAT PRINT 
100 DIM A(3,4i, 8(6, IOJ, C<8,9l 
110 READ R,c 

-120 MAT READ A. 8(2,5), cm.Cl 
-130 MAT PRINT A, BJ C 

132 REM 
140 DATA 4,3 
150 DATA 1.,2,3,4,5,6,7,g,9,10,11,12 
160 DATA 13, 14, IS, 16, 17, IR, 19,20,21,22 
170 DATA 23,24,25,26,27,28,29,30,31,32,33,34 
180 END 
RUN 
MATO! 

2 3 

5 6 

9 10 11 

13 14 15 16 17 

18 19 20 21 ~~ 

23 24 25 

26 27 2!l 

29 30 31 

32 33 34 

19 

4 
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Other statements that may be used to assign values to the elements of 
arrays are as follows: 

MATA 

MATA 
MATA 
MATA 
MATA 

ZER 

ZER(2,3) 
ZER (B,C) 
ZER(5) 
ZER(X) 

Fills array A with zeros according to 
previously specified dimensions. 

Redimensions A and fills it with zeros. 
Redimensions A and fills it with zeros. 
Redimensions A and fills it with zeros. 
Redimensions A and fills it with zeros. 

MAT A = C</>N fills the array A with ones. As shown, the dimensions must 
have been previously determined. C</>N has all of the redimensioning options 
shown for ZER. 

MAT A = IDN is used only for a square array (where the number of rows 
is equal to the number of columns). A is filled with ones where the row num
ber and the column number are equal and all other locations are set equal to 
zero. IDN may be redimensioned with IDN(X,X) or IDN(5,5). This is called 
the "identity matrix" in matrix algebra. 

In matrix algebra, addition and subtraction are defined for like-dimen
sioned arrays as the sum or difference, respectively, of elements having the same 
location. That is, if array X is the sum or difference of Y and Z, then for all 
I,J we have X(I,J) = Y(I,J) ± Z(I,J). This could be done with nested loops; 
in BASIC, however, we merely type: 
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100 
100 
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MAT X 
MAT X 

y + z 
y - z 

for addition 
for subtraction 

Matrix multiplication has a more complicated definition. For arrays Y 
and Z, the number of columns in Y must equal the number of rows in Z. The 
(R,C)th entry of X is the sum of the products Y(R,T)*Z(T,C), where T goes 
from one to the number of columns in Y, which is also the number of rows in Z. 
The product matrix will have the same number of columns as X and the same 
number of rows as Y. A BASIC program for matrix multiplication requires 
triple nested loops. 

The following statement accomplishes the same result: 

100 MAT X = Y*Z 

Note that if multiplication works for Y*Z, it will work for Z*Y only if the 
arrays are square. In any case, the product has the number of rows of the left 
multiplier and the number of columns of the right multiplier (see program 
MAT02). 

In matrix algebra, instead of dividing Y by Z, we first find the inverse of 
Z. The inverse of Z, written z-1

, is the matrix such that Z*z-1 equals the 

MAT02 

100 DIM xc10.1oi. YClO,!Q), zc10.10>. P<10,10> 
102 
104 REM * READ MATRIX DIMENSIONS 
110 READ I,J, K,L 
120 IF J = K THEN 150 
130 PRINT "PRODUCT UNDEFINED" 
140 SHJP 
142 
144 REM * READ MATRIX ELEMENTS 
150 MAT READ YCioJl, Z<K,Ll 
152 
154 REM * INITIALIZE PRODUCT MATRIX 
160 MAT X = ZER<I,L> 
162 
164 REM * MULTIPLY USING NESTED LOOPS 
170 FOR T = 1 TO J 
180 FOR R = l TO I 
190 FOR C = l TO L 
200 LET X<R,C> = X<R,Cl+YCR,Tl*Z<T,C> 
210 NEXT C 
220 NEXT R 
230 NEXT T 
232 
240 PRINT "USING TRIPLE NESTED LOOPS" 
250 MAT PRINT Xl 
260 PRINT 
262 
264 REM * DEMONSTRATE MAT PRODUCT IN BASIC 
270 MAT P = ZERCl,L> 
280 MAT P = Y*Z 
290 PRINT "USING MAT MULTIPLY STATEMENT" 
300 MAT PRINT Pl 
302 
304 REM 
310 DATA 2,3, 3,4 
320 DATA 1,2,3,405,6 
330 DATA 1,2,3,4o5o6o7o8o9o 10, l lo 12 
340 END 
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RUN 
MAT02 

USING TRIPLE NESTED LOO PS 
38 44 50 56 

83 98 113 128 

USING MAT MIJLTJPLY STATEMENT 
38 44 50 56 

83 98 113 128 

identity matrix. Having found the inverse of Z, we multiply Y by it. The in
verse (if it exists) is obtained with the following statement: 

100 MAT X = INV(Z) 

BASIC allows us to find the transpose of a matrix with the following 
statement: 

100 MAT X = TRN(Z) 

The transpose consists of an array X such that the columns of X are the rows of 
Z and the rows of X are the columns of Z. Note that if the dimensions of Z are 
(R,C), then the dimensions of X must be (C,R). 

We can duplicate an array with 

.100 MAT X = Z 

and can multiply every entry of an array by the same number with 

100 MAT X = (C)*Z 

where C is any legal BASIC formula. 
In the last seven cases just presented, some systems use the statement 

itself to dimension or redimension X, whereas others require that the program 
make the dimensions of X compatible in advance. 

Summary 

BASIC provides a number of MAT statements that greatly simplify pro
grams which deal with arrays. They are as follows: 

MAT READ 
MAT INPUT 

MATX = ZER 
MATX = Cq'.>N 
MATX = IDN 

MAT PRINT 
MATX = Y 

MATX = Y + Z 
MAT X = Y - Z 

MAT X = Y*Z 
MAT X = (C)*Y 

Reads data into a variable list. 
Enters data from the keyboard into a variable list. 
Fills X with zeros. 
Fills X with ones. 
Creates the identity matrix. 
Prints the contents of a variable list to the terminal. 
Copies the contents of Y into X. 
Enters the sum of Y and Z into X. 
Enters the difference of Y and Z into X. 
Enters the product of Y and Z into X. 
Multiplies each entry of Y by C and enters result in X. 
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MAT X = INV(Y) 
MAT X TRN(Y) 

Enters the inverse of Y into X. 
Enters the transpose of Y into X. 

The first five statements above have optional redimensioning capabilities. 

Problems For 1-5 

1) Write a program to add or subtract two arrays without using matrix 
statements from this section. 

2) Write a program to enter 25 random integers into a five by five array 
and print it. Now find the largest number in each row and its column 
number, and find the largest number in each column and its row 
number. 

3) Write a program to print a times table modulo six. 
4) Write a program to print a times table modulo five. 
5) MAT READ the integers one through nine into a three by three array. 

Copy this into the upper left corner of a four by four array. Use the 
fourth row to enter the column sums, and use the fourth column to 
enter the row sums. Print the resulting array. 

6) Write a program to create the transpose of a given matrix without using 
the TRN function. 



2 
SOME EXTENDED 

FEATURES OF BASIC 

2-1 Introduction 
None of the features to be discussed in this chapter is absolutely necessary 

to writing programs in BASIC. Other language statements may be assembled to 
achieve the same effect of each one. Some of them may not even be available on 
the computer you are using. However, if your system does provide any of the 
features presented here, you are encouraged to experiment since they save 
programming effort and storage space and make programs more readable. 

(Note about problems: The author has not attempted to contrive problems 
which would require the reader to use the various features presented in this 
chapter. Rather it is recommended that you be alert to possibilities for using 
the material of this chapter in programs you will be writing throughout the rest 
of the book.) 

2-2 TAB 

The T AB(X) function is available on many BASIC systems. T AB(X) 
placed in a PRINT statement causes the printing mechanism of the terminal to 
be located in the xth space of the current line, provided it has not already passed 
that point. Note that on most systems the leftmost space is numbered zero and 
the counting is modular, with the mod being typically 72 or 75, but sometimes 
more. Some systems are not modular but start on a new line when the TAB 
argument exceeds the system line length. An explicit number or BASIC formula 
may be entered as the argument of the TAB function. If the value of the argu
ment is not an integer, most systems use only the integer part. See program 
TABOl. 
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TABOl 

94 
100 
110 
120 
130 
140 
150 
160 
162 
164 
170 
180 
190 
200 
210 
212 
214 
215 
220 

-·230 
234 
240 
250 
260 
RUN 
TABOl 

Advanced BASIC 

REM * PRINT SCALE TC AID COUNTING SPACES 
FOR I = 1 TO 5 

FOR J = 1 TO 9 
PRINT "-"; 

NEXT J 
PRINT "!"; 

NEXT I 
PRINT 

HEM * PRINT IN LOCATIONS READ FROM DATA 
FCR K = 1 TO 5 

READ T 
PRINT TAflCTlJ "X"; 

NEXT K 
PRINT 

REM * SHOW TAfl MORE THAN ONCE IN 
REM THE SAME PRINT STATEMENT 
READ A, 9, C 
PRINT TABCAJ; "A"; TAB<Bll "fl"J TA8CCll "C" 
REM 
DATA 3, s, 12, 28, 48 
DATA 2, 7, 15 
F.:ND 

---------!---------!---------!---------!---------! 
x 

A 
x 

B 
x x x 

c 

Examining the output of program TABOl and counting the leftmost space 
as zero, we see that the X's are printed in the spaces numbered 3, 8, 12, 28, and 
48, as designated in the DATA ofline 240. 

The uses of the TAB function are not limited to literal output. We may 
also format numeric output or a mixture of numeric and literal output. See 
program TAB02. 

TAB02 

94 REM * TAfl DEMONST~ATION PROGRAM 
100 DIM AC4l 
102 
104 REM * HEAD FOUR ITEM A LIST 
1 1 0 F 0 R I = 1 TC 4 
120 READ AC!l 
130 NEXT I 
132 
140 PRINT TABC15lJ "CO'IMA SPACING" 
150 FOR I = 1 Tr. 4 
160 PRINT A<IJ, 
170 NEXT I 
l'lO PRINT 
182 
190 PRINT TAAClOll "IJS!NG TAB FOR 10 CHARACTER PRINT ZCNE 
200 FDR I = 1 TO 4 
210 PRINT TAR< 10•(!-l l ll AC!); 
220 NF.XT I 
23D PR INT 
232 
24D PRINT TA'lC6lJ "SF:'11COLCN SPACI'JG" 
25 0 FDR I = 1 Tn ,, 
260 PR!'JT A<Ill 
?.70 ~l".XT I 
280 PRINT 
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2fl2 
~90 Rf'M 
300 DATA -3, 11,0,406 
310 END 
RllN 

COM"IA SPACING 
-3 I I CJ 40~ 

llSING TAR FCR 10 r.HARAC:FR PRICIT ZCNES 

-3 11 0 406 
SEMICOLON SPACING 

- 3 1 I 0 406 

Note that systems differ in the number of spaces generated by the comma 
and semicolon delimiters. 

2-3 Print Using 
While it is possible with the string facilities available in BASIC (see Chap

ter 3) to print output in any desired form, formatting can require tedious pro
gramming. It is for this reason that many systems provide PRINT USING and 
image statements. 

PRINT USING permits the format for printing output for the current line 
to be specified in yet another line. The specifications for printing are called the 
image. The image can be defined in an image statement, which begins with a 
colon. Very simply, a pound sign is used to specify where we want digits printed. 
For pound signs placed to the right of the decimal point, zeros to the right of 
the last nonzero digit are printed. For pound signs placed to the left of the 
decimal point, zeros to the left of the leading nonzero digit are not printed. 

One of the common uses of PRINT USING is to obtain zeros to the right 
of the decimal point in printed output, since as a numeric the trailing zero is 
dropped in BASIC. If we want $3.10 printed, we may use an image to force the 
printing of the zero, as shown in our first demonstration program, IMAGEOl. 

!MAGED I 

94 REM * DF"IONSTRATFS ELEMENTARY 

95 REM EXAMPLF FC~ PRINT USING 
100 LE'T D = 3.1 

II 0 PR INT "TH IS IS '1l ITHO'JT I MAl-E" 
120 PRINT "THE. AMO' INT IS S"; D 
130 PRINT 
140 PR!NT "THIS IS '.;ITH IMAFF:" 

150 :THE AMCllNT IS S##.## 

160 PRINT 'lo!NG ISO, D 
170 END 
R•JN 
IMAG~O I 

THIS IS WITHO'IT !MAG~ 

THF AMOUNT IS S 3.1 

THIS IS WITH IMAGE 
THE AMOUNT IS S 3.IQ 

Next we present program IMAGE02 to show a variety of numbers printed in a 
variety of images. 
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IMAGF:02 

9LJ 
JOO 
102 

REM * DEMONSTRATES A VARIETY CF IMAGF:S 
: 5$$##.### ###.## ####. #### 

110 FOR I = 1 TO 5 
120 READ X 
130 PRINT "THE NUMRF:R IS"; X 
lLJO PRINT USING 100, X, X, x, x, x, X 
150 PRINT 
160 NEXT I 
162 
16LJ REM 
170 DATA J, 12, 12.3, 123LJ.56, .01 
180 END 
RUN 
!MAGE02 

THE NUMBER rs I 
$ I. 000 1.00 1. 

THE NUMBER rs 12 
$12.000 12.00 12. 12 12 

THE NUMBER rs 12.J 
$12.300 12.30 12. 12 12 

THE NUMBER rs I 23LJ. 56 
$123LJ.560 •123LJ.56 1235. I 23LJ •123LJ 

THE NUMBER rs 0.01 
$ .010 .01 o. 0 0 

## 

•12 

•12 

•1234 

0 

Note that where several dollar signs appear only one of them gets printed. 
The one that is printed is as far right as possible in a space that has a dollar sign 
in the image. When there is not room to the right of the decimal point in the 
image to print all of the digits, the excess is dropped. No rounding off is done. 
Where there is not room to the left, all digits get printed anyway, and an asterisk 
is printed to call attention to the fact that the number did not fit the image. 

The image can be a string. In this case, the line number which calls the 
image in the PRINT USING statement is replaced by the string variable that con
tains the image, as in program IMAGE03. 

!MAGE03 

9LJ REM * DEMONSTRATES IMAGf: STORED 
95 REM IN A STRING VARIA8LE 
100 LET IS 
110 LET N 
120 PRINT 
130 PRINT 
140 PRINT 
150 END 
RUN 
IMAGE03 

= 
= ""###. ## 

23.4 
NJ .. IS THF: 
I SJ .. IS THE 
USING rs, N, 

23.4 rs THE NUMBER 

S$S#. ##" 

NIJMRE:R" 
IMAGE" 
N 

#UH.## $5$#.## JS THF: IMAGE 
23.40 $23.40 

We can force the computer to print numeric output using E-format. Four 
up arrows are used for this, as shown in program IMAGE04. 
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IMAGE04 

94 REM * PRINTS E-FORMAT 
100 : ##,##tttt 
110 LET N = 24.3 
120 PRINT USING 100, N 
130 PRINT NJ "IS THE NUMBER" 
140 END 
RUN 
IMAGE04 

2.43E+OI 
24·3 IS THE NUMBER 

27 

Strings may be formatted with images also. An apostrophe must be used 
to begin the printing for a string image. Then control letters E, L, R, and C may 
be used to indicate fields of specific characteristics. Control character E calls for 
left justification and allows the string to overflow, whereas L calls for left justifi· 
cation but truncates on the right. Control character R calls for right justification 
and truncates any excess, and C calls for centering the string output and truncates 
on the right if there is an excess. The apostrophe is needed to delimit the con
trol characters because any other alphabetic characters will be printed just as 
they appear in the image. See program IMAGE05 for a demonstration of for. 
matting string output in the image. 

IMAGE05 

94 REM * DEMONSTRATES PRINTING STRINGS 
95 REM USING AN IMAGE STRING 
100 LET 1$ = " 'LLLL 'RRRRR 'CCCCC 'EE" 
110 PRINT IS 
120 FOR I = I TO 5 
130 READ SS 
140 PRINT USING 1$, S$, S$, S$, SS 
150 NEXT I 
152 
154 REM 
160 DATA THIS, IS, A, SAMPLE, PROGRAM 
170 END 
RUN 
IMAGE05 

'LLLL 
THIS 
IS 
A 
SAM PL 
PRO GR 

'RRRRR 
THIS 

IS 
A 

SAMPLE 
PROGRA 

•ccccc 
THIS 

IS 
A 

SAMPLE 
PROGRA 

2-4 Logical Operations, MAX and MIN 

Truth Values 

'EE 
THIS 
IS 
A 
SAMPLE 
PROGRAM 

Some BASIC implementations include a set of logical operations. Let's 
look at the already familiar IF-THEN statement. The statement IF X=l THEN 
200 transfers control to line 200 only if X=l is true. If X=l is true, BASIC 
assigns the statement X=l a value of 1 to designate 'true.' If X=l is false, then 
BASIC assigns it a value of 0 to designate 'false.' So we could replace our pro-
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gram statement with IF X THEN 200, and when X=l the computer goes to 200; 
otherwise control passes to the next line in sequence, provided X can be only 0 or 1. 

We may even print the logical value of statements. If we print the value of 
N/X=INT(N/X), we should get a one when Xis a factor of Nanda zero when X 
is not a factor of N (see line 150 of program L<!>GICl). 

UJGICI 

94 REM * THIS PROGRAM DEMONSTRATES THE TRUTH VALUE 
95 REM 0F THE STATEMENT N/X = INTCN/Xl 
100 PRINT "INPUT N"l 
110 INPUT N 
114 REM* PRINT HEADINGS 
120 PRINT "X"."'N/X","INTCN/Xl","TRUTH VALUE ClF" 
130 PRINT TABC45ll"N/X = INT<N/Xl" 
140 FDR X=I TO N 

--150 PRINT X1N/X1INTCN/X),N/X=INTCN/Xl 
160 NEXT X 
170 END 
RUN 
LOGIC! 

INPUT 
x 

N?6 
N/X INT<N/Xl TRUTH VALUE OF 

N/X INT<N/Xl 
I 6 6 I 
2 3 3 I 
3 2 2 I 
4 1. 5 0 
5 1.2 0 
6 

The fourth column prints the logical value of N/X=INT(N/X). As we ex
pected, that value is one whenever X is a factor of N and zero whenever X is not a 
factor of N. This gives us a novel approach for counting factors of N. See line 
140 of program L<!>GIC2. Where available, all of the relational operators may be 
used in a similar manner. 

LOG I C2 

94 REM * THIS PROGRAM COUNTS FACTORS CF INTEGERS 
95 REM USING THE TRUTH VALUE OF N/X = INTCN/Xl 
100 PRINT "INPUT AN INTEGER"! 
110 INPUT N 
120 LET T=O 
130 FCRX=ITON 

-140 LET T=T+CN/X=INTCN/Xll 
150 NEXT X 
160 PRINT Tl"FACTORS" 
170 END 
RIJN 
LOGIC2 

INPIJT AN INTEGER? 240 
20 FACTO RS 

RUN 
LOGIC2 

INPIJT AN INTEGER? 1949 
2 FACTORS 
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Logical Operators 

The logical operators AND, fl>R, and Nfl>T are available on some BASIC 

systems and may be used in a wide variety of applications. One rather straight

forward application is an extension of IF-THEN statements. We may often com

bine several IF-THEN's into one statement. For example, the pair, 

100 IF X= 3 THEN 200 

110 IF Y<2 THEN 200 

becomes 
100 IF X=3 OR Y<2 THEN 200 

Or the four statements, 

100 IF X <> 3 THEN 130 
110 !FY>=2THENl30 
120 G0T0 510 
130 PRINT "MESSAGE" 

become 
100 IF X=3 AND Y<2 THEN 510 
110 PRINT "MESSAGE" 

We can negate a statement with Nfl>T. That is, X<>3 and NIPT(X=3) are 

equivalent. (When you are unsure of the order of operations, it may be best to 

use parentheses if only to make the statement easier to read.) What about X and 

Nfl>T X'? In this case, Xis either equal to zero or it isn't. So in the case IF Nfl>T 

X THEN 200, control passes to line 200 for X=O (because Nfl>T 0 equals 1) and 

passes to the next statement in sequence for all other values. 

MAX and MIN 

For a system which provides MAX and MIN functions, the value of A 

MAX B becomes the larger of the two numbers. The value of A MIN B becomes 

the smaller of the two numbers. If you don't have these functions, then you 

may use 

.5*(A+B-ABS(A-B)) for A MIN Band .5*(A+B+ABS(A-B)) for A MAX B 

2-5 Multiple Line Defined Function 

Some versions of BASIC provide multiple line user-defined functions that 

permit defining of functions that require two or more program statements to 

define. The first line must be DEF FN followed by the function identifying 

letter and the function argument or arguments in parentheses. The last state

ment must be FNEND, and in between there must be at least one assignment 

statement with FN and the same letter specified in the DEF statement on the 

left of the equals sign. 
For example, we may write a multiple line function that will do modular 

multiplication. The function of lines 100 through 160 in program FUNC'I'Ifl>N 

does just that. 
As with other user defined functions, the multiple line function may be 
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accessed at any point of the program. In this way we may often save program 

space, just as G(j>SUB is often used to avoid repeating a set of program state

ments. However, the defined function is accessed directly whenever its name is 

used and thus it does not require a special statement to transfer control to it. 

The defined function may be used in all situations where a single value is re

quired for each parameter or set of parameters, whereas a subroutine is more 

appropriate if two or more variables must be returned. 

FIJNCT ION 

94 
95 
96 
97 

-{m 140 
150 
160 
192 

REM * THIS PROG'lAM IJFMONSTRATES A USE OF THE 

REM MIJLTIPLE LINE 'JSER DEFINED FIJNCTIQN 

REM * THE F'JNCTION IS DEF INF.D IN L.INES 100 THiW'JGH 160 

DEF F NM C X, Y, 7l 

LET P = X*Y 
IF P < Z TH~N 150 

LET P = P-Z 
GOTC 120 
LET FNM = P 
FNEND 

200 PRINT "MULTIPLY A TINIES 8 MOD M TC C:ET" 

210 READ A, 8, M 

220 IF M = 0 THEN 260 

230 PRINT TABC8l; Al TASC16ll 8; TA8C22); M; TA8C27l; FNM(A, 

240 GOTO 210 

242 
244 REM 
250 DATA 1,2,3, 3,2,4, 3,3,4, Q,O,Q 

260 END 
R•JN 
FIJNCT ION 

MULTIPLY A TIMES B MCD M TO GET 

1 2 3 2 

3 '-? It ?. 

3 3 4 



3-1 Introduction 

3 
S INGS 

A string is simply any set of characters that is not to be treated as a number 
but is to be otherwise manipulated by the computer. The characters are referred 
to as alphameric or alphanumeric, since both alphabetic and numeric symbols 
may be used, as are most other symbols permitted by your terminal, even includ
ing the nonprinting characters. It is the purpose of this chapter to outline a few 
of the possible uses of strings and string variables in BASIC even though the 
specifications are not uniform from system to system. The user should deter
mine the capabilities of his or her own system before planning extensive pro
gramming activity. 

3-2 The String Simple Variable 
To distinguish the string variable from the numeric variable, virtually all 

systems use a trailing dollar sign ($) in the variable name for a string. Legal sim
ple string variable names are A$, K$, B3$, and C8$. Some systems are restricted 
to the 26 letters of the alphabet, not permitting such variables as B3$. Others 
allow additional variables such as &$. The number of characters you are allowed 
to store in one simple string varies typically from 18 to thousands. Most of the 
manipulations allowed for numeric variables are allowed for string variables ex
cept for arithmetic operations. String variables can be READ, INPUT, assigned, 
printed, and compared for order. Order comparison is accomplished according 
to ASCII (American Standard Code for Information Interchange) specifications, 
which place the digits in order 0 through 9 ahead of the letters of the alphabet 
in alphabetical order. (See Appendix A for relevant parts of the code.) 

One of the uses of strings is to permit person-computer "conversation." 
We do not need to numerically code our answers to questions put to the pro
gram user. If we wish to give the program operator options, the answers can be 
words which the computer processes directly. If for example, we write a pro
gram that will require a lot of yes-no answers from the keyboard, we may write 

31 
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a subroutine that prints the question, checks the answer to be sure that it is 
either a "YES" or a "N't)," and rerequests the answer for all other responses. 

Program DECIDE uses such a subroutine repeatedly as the computer as
sembles the information fed into it by the user. The subroutine outlined above 
begins in line 800. 

DECIDE 

94 REM * DEMONSTRATICM PROGRAM INTRODIJCING srnINGS 
95 REM SHO',JS ASSIGNMENT, INPUT, COMPARISIO"J AND 
96 REM PRINTING CF STRINGS 
I 00 GO SIJFl 200 
110 LET X$ =OS 
120 GO SUB 400 
130 LET YS = OS 
140 
150 
160 

PRINT "PROGRAM 

-170 
180 
192 

INPUT 
PRINT 
PRINT 
STOP 

N$ 

XS; YSJ 

NAME"l 

.. - tt; NS 

194 REM * LANGUAGE DECISION SUBRCUTINE 
200 LET OS = "FORTRAN" 
210 GOSIJB BOO 
22 0 IF AS = "YES" THEN 3 I 0 
230 LET 0$ = "COBOL" 
240 GO SUB 800 
250 IF AS = ••yES" THEN 310 
260 LET OS = "BASIC" 
270 GO SUB 800 
280 IF AS = "YES" THEN 310 
?.90 PRINT "FORTRAN, COBOL OR BASIC ONLY" 
300 GOTO 200 
310 RETURN 
392 
394 
400 
410 
420 
430 
440 
450 
460 
470 
480 
7B2 
784 
785 
790 

REM *MAKE 'OLD - NEW' DECISION HERE 
LET 0$ = " OLD" 
GOSIJB 800 

IF' AS = "YES" THEN 480 
LET OS = " NEW" 
GO SUR 800 

IF As = "YES" THEN 480 
PRINT "OLD OR NEW ONLY" 
GO T!l 400 
RETURN 

REM * YES-NO DECISION SUBROUTINE 
REM ENTER WITH GOSUB 800 
PRINT "YES OR NO" 

-soo 
BIO 

PRINT OS; 
INPUT A$ 

820 IF AS 
830 IF A$ 
840 GO TCl 790 
850 RETURN 
999 END 
RUN 
DEC !DE 

FORTRAN?NO 
COBOL? NO 
BASIC? YES 

OLD? YES 

"YES" THEN 850 
"NO" THEN 850 

PROGRAM NAME?DEC!DE 

BASIC OLD - DECIDE 
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Strings are read from data in exactly the same manner that numerics are 
read from data. String and numeric data may be intermixed. Some systems re· 
quire that string data be enclosed in quotes. On systems that do not require 
quotes, any expression that contains a comma will have to be enclosed in quotes 
anyway, since the comma will otherwise be interpreted as the end of the string. 

Look at line 170 of program DECIDE. Note that the string variables are 
separated by semicolon delimiters in that PRINT statement. You should see 
that the printed output has no spaces other than those actually placed in string 
Y$ and the literal expression" - "by the program itself. When printing numeric 
values, the computer always provides some space automatically when using semi
colons as delimiters. When printing strings, the computer does not provide any 
space automatically. We can print string characters right next to each other by 
using semicolons. We can print strings in 15-character columns using commas, or 
we can use the TAB function for other spacing. Some systems also provide 
PRINT USING for yet another formatting capability. 

We can easily construct a program to do for two strings exactly what pro
gram C</.>MPAR in Sec. 1-2 did for two numerics, as shown in program C</.>MPR$. 
All we want is to determine if A$ is less than, greater than, or equal to B$. Look 
carefully to see what happens to the leading and trailing blanks in the strings. In 
this case, the leading blank makes" ALPHA" less than "ALPHA", but the trail
ing blank in "BETA " has no effect. Some systems will not ignore trailing 
blanks. Also note that the string 0123456789 is placed in quotes. When calling 
for a string read, some computers will ignore such a string unless it is in quotes 
because it 'looks like' a numeric. 

COM PR$ 

94 REM * THIS PROGRAM COMPARES mo 
95 REM STRINGS F'OR ORDER 
100 READ A$, B$ 
110 IF' A$ = "STOP" THEN 260 
120 IF A$ = B$ THF:.N 160 
130 IF' A$ < B$ THEN 180 
140 PRINT ASJ .. IS GREATER THAN "J 
ISO GOTO 100 
160 PRINT A$J .. IS l"QIJAL TO B$ 
170 GOTO JOO 
!RO PRINT AS; .. IS LESS THAN "; 8$ 
190 t;crc 100 
192 
194 REM 
200 DATA NUMERIC, ALPHABE'TIC 
210 DATA "0123456789", ABCDFF' GH I JK 

-220 DATA .. ALPHA", "ALPHA" 
-230 DATA "Bl!TA .. , "'BETA" 

240 DATA ENO, END 
250 DATA STOP, STOP 
260 END 
RUN 
CCMPRS 

NUMl!RIC IS GREATER THAN ALPHABETIC 
0123456789 IS LESS THAN ABCDEFGHIJK 

- ALPHA IS Ll!SS THAN ALPHA 
-BETA IS EQUAL TO 8ETA 

END IS EOIJAL TO END 

BS 
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Summary of Sec. 3-2 
We have seen that the simple string variable can be used in BASIC programs 

in many of the same ways that simple numeric variables can. We may use simple 
string variables in READ, DATA, INPUT, PRINT, and IF-THEN statements. In 
DATA and INPUT statements, some systems require quotes to delimit strings 
under certain conditions. 

Problems for Sec. 3-2 
1) Write a program to find the highest and lowest ranking strings in a set 

of data. 
2) Write a program that reads two strings and then prints them in ascend

ing order. 
3) Write a program that will read three strings from data and print them in 

ascending order (more on ordering strings later). 
4) How many print statements would be required to print n strings in 

alphabetical order using only the methods of this section? 
5) Write a program to request two peoples' names in two strings for each 

person, first name first. Then have the names printed in alphabetical 
order. Be sure to handle William Smith and George Smith properly. 

3-3 The String Subscripted Variable 
It is at this point that we must distinguish the ways in which various systems 

treat subscripted string variables. There are two fundamentally distinct ways to 
deal with A$(1,J) and B$(I). (Some systems don't even permit the double sub
script.) 

One concept, as shown in demonstration program ARRAY$, considers 
A$(1,J) as an element of a string array just as A(I,J) is an element of a numeric 

ARRAYS 

94 REM * THIS PRCGNAM IS A DE~SNST~ATICN CF 
95 REM A STRING ARRAY 
96 
97 REM * HERE THF: D!MF:NSION SPF.CIFif.S THF: N'lt>IRF.R 
98 REM OF STRINGS THAT MAY A~ ST~RED IN A LIST 
100 DIM A$C3l 
102 
104 REM * READ THE STRING LIST FRCM D~TA 
1 1 0 FDR I = 1 TO 3 
120 READ ASCll 
130 NEXT I 
132 
134 REM *NO~ PRINT THE STRING LIST 
140 FC R I = 1 TC 3 
150 PRINT "AS<"; I; ") = "; AH!l 
160 NEXT I 
172 
17 4 REM 
180 DATA F lilST, SECOND, THlilD 
190 END 
RUN 
ARRAY$ 

AS C 1 l = F IR ST 
A$( 2 l = SECOND 
AS< 3 l THIRD 
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array. This makes B$(I) the Ith element of a string list called B$ which may con
tain up to 11 strings before the DIMension statement is required. 

The other concept, as shown in program SUBSTR, considers A$(I,J) as a 
substring having J- I+l characters going from the Ith to the Jth character inclu
sive. So A$(I,I) is the single Ith character. Using this concept, B$(I) is the sub
string beginning with the Ith character and continuing to the end of the string. 

The next two sections will treat these two concepts separately. 

SiJ8STR 

94 RE~ * TYIS P~SGRAV IS A D~~O~ST~ATI~N 
95 REM CF AS(J,Jl AS .4 S•l.'JSTRING 

97 REM * IN T4IS CASE TH~ OI~ENSION SPECI~IES TYE 
98 REM NUMBER Q" CHARACTERS IN THE STRING VARIA~lf A! 
100 DIM AS( l4J 
110 LET AS="THIS IS A TEST" 
120 PRINT "AS = ";AS 
130 FOR !=I TO 14 ST1'P 4 
140 LET J=I+I~TCRNDC-1l*4+ll 
150 PRINT "AS<"; I;",";J;") '";ASl J,JJ;"'" 
160 NEXT I 
16 4 REM 
170 E'"D 
RUN 
S'JflSTR 

AS = T!1IS 
ASC I 
ASC 5 
AS( 9 
ASC 13 

IS . 4 

' 6 
12 . 17 

A TS:ST 
) 'THIS' 

I• 
'A T"., 
'ST 

3-4 The Substring Scheme* 
One advantage in the substring concept is that we can deal with any part or 

parts of the string directly. One disadvantage is that we cannot deal with 
hundreds or thousands of strings without the use of files. Strings may be read 
from data. When placed in data, strings must be enclosed in quotes. The same is 
true if we type more than one string to the keyboard in response to an INPUT 
statement. 

Generally speaking, the DIMension statement is required for string variables 
to permit the computer to allocate space. For example, 100 DIM A$(10), 
B$(58),A(l5} provides for 10 characters in A$, 58 characters in B$, and 15 
numerics in the A list, the latter showing that string and numeric dimensioning 
may be intermixed. 

A program to arrange the letters of a string in alphabetical order is shown 
in program ALPHA. Line 100 provides for up to 72 characters in the string vari
able A$. Line 120 uses the LEN() function. This function measures the actual 
number of characters in the string. Note that lines 160, 170, and 180 exchange 
two characters which are not in the proper order. Since B$ is used for only a 
single character, it need not appear in the DIMension statement. Note that 
spaces have a lower ASCII code than the letter A and so appear first in the result 
of program ALPHA. 

*The programs of Sec. 3-4 were run on a Hewlett Packard Computer. 
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ALPHA 

94 
9S 

-· 100 
110 

-120 
122 
124 
12S 
130 
140 
150 
!S2 
!S4 
!SS 

-160 
·-170 
-180 

190 
200 
204 
210 
220 
RUN 

REM * THIS PROGRAM ALPHABETIZES THE 
REM CHARACTERS OF A STRING 

DIM ASl72J 
INPUT AS 
LET L=LENCASl 
REM 
REM * LINE lSO TESTS ALL PCSSIFlLE PAIRS CF 
REM CHARACTERS TO SFE IF THEY ARF IN ORDER 
FOR I=! TO L-1 
FOR J= I+ 1 TO L 
IF AS(!,!J <= AS[J,JJ THEN 190 
REM 
REM* IF ASC!,Il IS NOT LESS THAN ASCJ,Jl THEN 
REM WE EXCHANGE THOSE CHARACTERS 
LET BS=AS[ I, I l 
LET ASC I, ll=AS(J,JJ 
LET AS[J,Jl=FlS 
NEXT J 
NEXT l 

REM 
PRINT AS 
END 

ALPHA 

?THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG 
ABCDEEEFGHHIJKLMNOOOOPORRSTTUUVWXYZ 

Program REVRS simply prints the characters of a string in reverse order 
but keeps the string intact. Program END shows the printing of A$(I) for a 
sample string. 

REV RS 

94 REM * THIS PROGRAM DEMONSTRATES PRINTING THE 
9S REM CHARACTERS OF A STRING JN REVERSE ORDER 
96 REM WITHOUT MODIFYING THE CONTENTS OF 
97 REM THE STRING 
100 DIM ASC72J 
110 INPUT AS 
120 PRINT 
130 PRINT " THE STRING CONTENTS JN REVERSE ORDER:" 
134 REM 
140 FOR I=LENCASl TO 1 STEP -1 
ISO PRINT AS(I,Ill 
160 NEXT I 
164 REM 
170 PRINT 
180 PRINT 
190 PRINT " THE CONTENTS PRINTED IN TACT:" 
200 PRINT AS 
210 END 
RUN 
REV RS 

?THIS PROGRAM PRINTS IN REVERSE 

THE STRING CONTENTS IN REVERSE ORDER: 
ESREVER NI STNIRP MARGORP SIHT 

THE CONTENTS PRINTED IN TACT: 
THIS PROGRAM PRINTS JN REVERSE 
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END 

94 REM * THIS PROGRAM DEMONSTRATES THE USE OF 
95 REM PRINT A$CI> IN THE SUBSTRING SCHEME 
100 DIM AS(72l 
110 INPUT A$ 
120 FOR I=LENCA$> TO I STEP ·I 
130 PRINT "ASC"Jll"> "JA$(!J 
140 NEXT I 
142 REM 
150 END 
RUN 
END 

?THIS IS IT 
A$( 10 ) T 
A$( 9 ) IT 
A$( 8 IT 
AS< 7 s IT 
A$< 6 IS IT 
A$( 5 ) = IS IT 
AS< 4 ) = s JS IT 
AS< 3 JS IS IT 
AS< 2 HIS IS IT 
AS< I THIS IS IT 

The ability to compare strings and substrings allows us to pack several 
items of information into a single string. For example, we might want to work 
with the days of the week. As shown in program WEEKA, we could use 

110 LET A$ = "SUNM$NTUEWED'l'HUFRISAT" 

\!EEKA 

94 
95 

-100 
110 
120 
130 

-140 
150 

-·160 
170 
180 
190 
194 
200 
210 
RIJN 

REM * THIS PROGRAM DEMONSTRATES CCMPARING A 
REM STRING AGAINST A SUBSTRING 

DIM D S ( I 5 J , AS ( 2 I J 
LE.T AS="S!JNMONTUE\JEDTHUFRI SAT" 
INPUT 0$ 
LET D=O 
FOR I= I TO 19 STEP 3 
LET D=D+I 
IF DS <> A$(J,J+2J THEN 190 
PRINT "DAY #"D 
STOP 
NEXT I 
REM 
PRINT "DAY NOT FCIJND" 
END 

''IEEKA 

?TUE 
DAY # 3 

Then we could step through the string with 

140 F$R I = 1 T$ 19 S'I'EP 3 

comparing some test string with A$(1,1+2) to see if the test string matches those 
three characters of A$. 
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We can even test parts of two strings. We could test the first three charac
ters of D$ successively against groups of three characters in A$ looking for a 
match by changing line 160 to 

160 IF D$(1,3) <> A$(I,I+2) THEN 190 

This is left for the reader to try. 
It should be clear that by the use of strings we can control what is printed 

in every space of the paper on our terminal. If we convert numeric values to 
string variables, then we gain some added flexibility for the printing of numeric 
results since these can be printed imbedded in strings to avoid extra spaces. If 
you have PRINT USING, this step is not necessary. 

We shall develop here the beginnings of a routine to convert a numeric to 
a string. The fundamental idea is simply to pick off the digits one at a time as 
numbers and use the numbers to store string equivalents in the correct positions 
of a string variable. The way to get the string equivalent is to use what is called 
a dummy string. In this case the dummy string to use contains all the digits. 
As shown in program C(/>NVRT, it is D$="0123456789". The string A$ in pro
gram WEEKA is another example of a dummy string. If we want a "3" stored 
in the sixth position of string 8$, we use the following statement: 

100 LET 8$(6,6) = D$(4,4) 

since the "3" is really in the fourth position of D$. To get the digit "I" in the 
Jth position of 8$, we use: 

200 LET S$(J,J) = D$(1+1,I+l) 

as shown in line 200 of program C(/>NVRT. 

CCNIJRT 

94 REM * THIS PRr.GRAM CGNVO:RTS A NIJMFR!r: 
95 REM TO A STRING 
100 DIM SSC6J,DS( !OJ 
110 LET DS="Ol?.34567q9" 
120 INP•.JT N 
130 IF N=INTCNl THEN 160 
140 PRl'IT "INTSGF:RS CNLY" 
150 GOTG 120 
160 P~INT "*"lNl"*" 
170 FOR E=5 TO 0 STEP -I 
180 LFT ,J=6-E 
190 L~T l=INTCN/!OtEl 

-200 U:T S$[.J,Jl=D$[l+ld+ll 
210 LET N=N-l*IOtF. 
220 NICXT E 
:::!30 PRINT "$ 11

; SS; 0 S" 
240 ENO 
R•JN 
CONVRT 

?975310 
* 975310. * 
$975310$ 

To append a string onto thP. end of another string, use the technique of 
program C(/>NCAT. 
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C0NCAT 

94 REM * THIS PROGRAM DEMONSTRATES CONCATFNATION 
100 DIM A$(5QJ,B$!50l 
110 INPUT AS, B$ 
120 PRINT "BEFORE CONCATENATION''. 
130 PRINT A$,B$ 
140 LET ASCLEN<ASl+ll=BS 
150 PRINT 
160 PRINT "AFTER CONCATENATION", 
170 PRINT AS.BS 
180 END 
RUN 
CON CAT 

? "CON CAT", "ENAT ION" 
BEFORE CONCATENATION 

AFTER CONCATENATION 

Summary of Sec. 3-4 

CONCAT EN AT ION 

CONCATENATION ENATION 
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The substring scheme permits us to look at string variables in one of the 
following four ways: 

A$ 
A$(1,J) 
A$(1,I) 
A$(1) 

The whole string. 
The substring from the Ith to the Jth characters inclusive. 
The single Ith character of the string A$. 
The substring beginning at the Ith character and continu
ing to the end. To obtain the beginning of the string, use 
A$(1,I). 

We can build up new strings from parts of old ones. We can compare 
strings and substrings for equality and for order. 

Problems for Sec. 3-4 

1) Modify ALPHA to eliminate duplicates. 
2) Write a program to accept abbreviations for the days of the week and 

respond with the full correct spelling. 
3) As written, C<j')NVRT will print $000001$ if we input 1 for N. Elimi

nate these leading zeros and end up with a string only as long as needed. 
4) Modify C<j')NVRT to accept negative numbers and insert the minus sign 

in the string. 
5) Modify C<j')NVRT to accept decimal numbers representing dollars and 

cents. 
6) Write a program to convert a numeric string to a true numeric stored in 

a numeric variable. 
7) Write a program to multiply two six-digit integers and print the answer 

exactly. 
8) Write a program like that for problem 7, but not limited to six-digit 

integers. (Allow 10- or 20-digit integers). 
9) Write a program to encode and decode messages using a keyword. 

10) Modify program WEEKA to test the first three characters of the input 
string from line 120 against successive sets of three characters from A$. 

11) In comparing strings for order, BASIC compares the two strings one 
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character at a time. So for nonequal strings, the first nonequal charac
ters determine order. Therefore when comparing such strings as '60' 
and '100', BASIC will evaluate '60' as greater than '100'. Write a pro
gram to overcome this flaw. Be sure to also provide for proper order
ing of strings like 'A6' and 'AlO.' 

3-5 The String Array Scheme* 
Even where systems use the same general scheme, we will find differences. 

Therefore we present programs here which use features found on many time
sharing systems. Strings and string arrays may be manipulated in many of the 
same ways that numerics and numeric arrays may be. That is, we may use 
INPUT, READ, PRINT, assignment, and comparison for order. We generally 
may not use arithmetic operations with the possible exception of addition since 
some computers allow LET A$ "ABC" + "DEF" to assign "ABCDEF" to 
string variable A$. Generally speaking, we find the same dimensioning require
ments for string arrays as for numeric arrays. So 10 DIM A$(15),B$(3,4 7), 
C(3,8) provides for up to 16 strings in A$ (generally zero subscripts are allowed), 
up to 192 strings in B$, and up to 36 numerics in C. Note that we may intermix 
strings and numerics in the dimension statement. Some systems allow only one
dimensional string arrays. The number of characters allowed in each string will 
vary from system to system. The LEN() function, if available; evaluates the 
number of characters actually stored in a string. An alternative approach uses 
the CHANGE statement. CHANGE A$ T</J A places the ASCII numeric code for 
the characters in the string in the list positions of A. So if A$ = "XYZ," then 
list A carries in position 1 the ASCII code for X, in position 2 the code for Y, 
and in position 3 the code for Z. Moreover, A(O) will contain the number of 
characters in the string A$. CHANGE also works in the other direction. Change 
A T</J A$ takes the codes stored in list A and enters the equivalent string charac
ter in A$. With this information, we can write some sample programs. 

To arrange the letters of a string in alphabetical order we may first store 
the coded values in a list. We then arrange the coded values in numeric order 
and convert the numeric list back to a string for printing, as shown in program 
ALPHAl. 

Similarly, we can reverse the order of the letters in a string with the proce
dure of program REVRSl. Look particularly at line 150 to see that the B list is 
filled in the reverse order from the contents of the A list. 

We can compare strings as a means of coding information. For instance, 
we can number the days of the week by storing their names as the elements of a 
list-the first day stored in the first element, the second day in the second 
element, and so on. We then know which number belongs to a particular string 
by which subscript we use to obtain a match, as shown in program WEEKAl. 

We ran romp2re p~rts 0f sttl!!gs by p!ope! l!se ~f the CH~t\~!GE statement 
and a list for each string being compared. Program WEEKBl looks at only the 
first three letters of two strings in lines 190, 200, and 210. 

*The programs of Sec. 3-5 were run on the General Electric Information 
Services time sharing system. 



Strings 

ALPHA I 

94 REM * THIS PROGRAM ORDERS TH~ CHARACTERS 
95 HEM OF A STHING 
100 DIM A<75l 
110 INP'JT A$ 
120 CHANG~ AS TO A 
122 
130 LET L = A<Ol 
140 FOR I = I TO L-1 
15 0 FOR J = I+ I TO L 
160 IF A< I l <= .A<Jl THEN 200 
162 
164 RFM * IF O'JT CF C'IDFR THF'N FXCHA\JGE 
170 LFT X = A<Il 
!RO LET A<Il ACJl 
190 LET ALJl = X 
200 NEXT J 
210 NEXT I 
212 
220 CHANCiE A TC AS 
230 PRINT AS 
240 END 
RIJN 
ALPHA I 

? THE ~JICK AHOWN FOX JUMPED OVFH THF LAZY DOGS 
ABCDDEEEEFGHH J .JKLMNCOCC PORR STTI llJV\·!XYZ 

HEVRSI 

94 REM * THIS PROGRA"1 1<F.IJFl{S!"S THC: 
95 REM CHAHACTERS CF A STRING 
100 DIM A(75l,AC75l 
110 
120 
122 
124 
130 
140 

-150 
160 
162 

INP1JT AS 
CHANGE AS TO A 

REM * STClff THF: N'IMAEi{ '1' C4A"<ACTF.ilS IN L AND 'HO> 
LET L = A<Ol = A<Ol 
FOR I = I TO L 

LET BCL-l+ll = A<Il 
NEXT I 

170 CHANGE B TC AS 
!RO PRINT AS 
190 E:ND 
RIJN 
REV HS I 

? GOCD THINGS COMF IN SMALL PACKAGFS 
SEGAKCAP LLAMS NI EMOC SGN!4T DCCG 

\•!EEKA I 

94 REM * THIS PHOG~AM FINDS THE DAY NUMOER 
95 REM FHCM THE DAY NAME 
100 DIM ASC7l 
I I 0 FQ R D = TC 7 
l~O HEAD ASCOi 
130 NF:XT D 
ltiO PRINT "DAY"; 
150 INPIJT BS 
16 0 FO .~ D = I TC 7 
170 IF RS <• AS<Dl T4EN ?00 
!RO PRINT "DAY # "; D 
190 STCP 
200 NEXT D 
210 PRINT BS; "NOT FOIJND" 

41 
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212 
214 REM 
220 DATA SUNDAY, ·'10NflAY, T 11ESDAY, ''!EDNESOAY 

230 DATA TH•JRSDAY, Fl<JDAY, SAT•JRDAY 

240 END 
RIJN 
WEEKAI 

DAY? T•JESDAY 
DAY # 3 

94 i"~M * T4IS P1'0GRA"l fJIFF>!~S F"CI·~ '·~FKAl RECl'.\IJ~;o: 

95 HEM IT CHECKS ONLY THF FIRST T4~FF CHAHACTO:HS 

9~ REM OF TWO STH!NGS. SFF LINFS 190 TO 210 
100 DIM ASC7J,AC9),R(9) 

102 
104 HEM * READ DAYS CF T4F WFFK INTC AS LIST 

I 1 0 FDR D = I Tr 7 
120 "EAD AS<Dl 
130 NEXT D 
132 

-140 PRI'JT "DAY"J 
150 INPIJT RS 
160 CHANGF RS TC g 
17 0 FDR l = 1 TO 7 
180 CHANGE ASl!l TO A 
lfl2 
184 REM * TEST FIRST THRFF CHARACTERS 

190 
-200 
-·210 

220 
230 

FDR K = I TO 3 
IF ACKl <> 91KI THFN 240 

NEXT K 
PRINT ASCilJ " IS LJAY #"; 

STCP 
240 N~XT I 
250 PRINT 3SJ " NGT FCIJN!l" 

?54 ilFM 
260 DATA SIJNDAY, MONDAY, T 1JFSOAY, 1•TDNESO.l\Y 

270 D.l\TA THl!RSDAY, FRIDAY, SAT•J!WAY 

2fl0 END 
RllN 

DAY? SIJNDAF 
SUNDAY IS DAY # 1 

We can easily construct a program to alphabetize strings by using exactly 
the same approach that we use for sorting numbers except that we use sub· 
scripted string arrays instead of subscripted numeric arrays, as shown in program 
'l>RDER$. (For more about sorting see Sec. 11-3). Note that this program stops 
comparing as soon as the list is in order, an optimizing feature which obviously 
leads to shorter execution time. 

94 REM * THIS PRC GRA'! ALPHAflF:TIZF:S 

95 '<EM A LI ST OF STRINGS 
96 RFM THE Cl IRRFMT Ll'!IT IS 200 STil!NGS 

100 DIM LS<2001 
102 
104 llEM * Rl':AD DATA 
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110 FOR I = 1 TO 200 
120 READ LSl!I 
130 IF LSl!I = "STOP" THEN 150 
140 NEXT I 
142 
150 LFT N = I = I-1 
152 
154 REM * T'IRN S'.·!!TC4 OFF, INCRFMF.MT N ANO SORT 
160 LET S = 0 
170 LET N = N -1 
1 RO FOR J = 1 TO N 
190 IF l$1JI LSIJ+ll THEN 240 
192 
19/i ~F'1 * EXCHANGF: Fl'':t~FNTS AND TllRN r.N S'-'ITC4 
200 LFT SS = LSI JI 
210 LET LSIJI = LSIJ+l I 
220 !_FT LT.IJ+ll =SS 
2~0 LFT S = 1 
240 NFXT .J 

244 REM * CH1'CI{ s·,11 rr:y ll="FF. l=ON 
250 IF S = 1 THEN 160 
252 
254 RF:M * THF SWITCH IS OFF - LIST JS CRDFRFD 
26 0 FC R X = 1 TC l 
270 PRINT LllXI 
280 NEXT X 
~R~ 

8R4 REM 
290 DATA WILLIAMS, JCN~S. SMIT'-! 
300 DATA YOUNGMAN, STOP 
:310 END 
RUN 
ORDER$ 

JONES 
SMITH 
WILLIAMS 
Y0UNGMAN 
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Since strings in the scheme we are now considering may be treated as array 
variables, we should realize that we may MAT READ and MAT PRINT string 
arrays with all of the same options that these two statements allow for numerics. 
That is, we may MAT READ A$(M,N) to redimension the array in the MAT 
READ statement. And we may MAT PRINT with semicolon or comma spacing. 
Use semicolon spacing with care, however, as this will result in strings being 
printed with no spaces. For most systems, quotes are not required when placing 
strings in DATA statements unless the string contains a comma or is a numeral. 

MAT$ 

94 REM * THIS PROGRAM D•MONSTHATFS NAT RFAD 
95 REM AND MAT PRINT FCR STHING A~RAYS 
100 DIM ASl5, IOI 
110 READ R,C 
120 MAT READ ASCH.Cl 
130 MAT PRINT AS; 
140 PRINT 
150 MAT PRINT A$, 
152 
15 4 REM 
160 DATA 2,5 
170 DATA THIS. rs, A. SAMPLE. PROGRAV 
180 DATA WITH, STRING, MAT RFAD, AND, MAT PRINT 
190 END 
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RUN 
MAT$ 

THISISASAMPLFPHOGRAM 
WITHSTHINGMAT READANDMAT P~INT 

THIS IS 

WITH STRING 

A 

MAT HEAD 

SAl"PLE: PliCGRAM 

.l\:>JD 

Generally speaking, you need not be intimately familiar with the ASCII 
code because the ASC( ) function gives the numeric code for the character in 
parentheses. Alternatively, we may write a program to print the ASCII code for 
alphanumeric characters stored in a string variable, as shown in program ASC. 
Note that lines 130, 150, and 160 are used to store single characters from A$ in 
the string variable B$. Some time sharing systems provide the EXT$ function. 
The statement B$ = EXT$(A$,I,I) would result in the Ith character of A$ being 
stored in B$. Some systems use SEG$ for this. You may find numerous other 
functions for working with string data available in your system. 

ASC 

94 REM * THIS PROGRAM PRINTS SAMPLE 
95 REM ASCII CODE VALUES 
100 DIM A(9) 
110 LET A$= "6 :/C[ABZ" 
120 CHANGE AS TO A 

-130 LET BCO> = l 
140 FOR X = l TO ACO> 

-150 LET B<l> =ACX> 
-160 CHANGE 8 TO 8$ 

170 PRINT ""'; 8$; ""'; 8(1) 
180 NEXT X 
190 END 
RUN 
ASC 

'6. 54 
32 

••• 58 
• /. 47 
• (. 40 
'(. 91 
'A' 65 
'A 1 66 
'Z' 90 

Summary of Sec. 3-5 

row I, column J of a string array. We may consider individual characters of the 
string by using CHANGE, which places equivalent numeric codes for the charac
ters of the string in the positions of a numeric list corresponding to the position 
of the character in the string. In addition, the zero position of the list contains 
the number of characters in the string. 
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Problems for Sec. 3-5 

1) Modify program ALPHAl to eliminate duplications. 
2) Suppose you have typed a large quantity of data consisting of peoples 

names, first name first, and you suddenly find that you should have 
typed them last name first and in alphabetical order. Write a program 
to make the change. Your program should work whether or not you 
used middle initials. 

3) Write a program to convert a string to a numeric (even though your 
computer may provide a function for this). 

4) Write a program to accept two six-digit integers, multiply them digit 
by digit, and print the exact product. 

5) Write a program to accept two numbers as strings not limited to six 
digits, find the exact product, and print it. 

6) Write a program to generate license plate number and letter combina
tions. Establish a pattern, such as six characters with the first three 
alphabetic and the last three numeric. Select a few at random to print. 

7) Write a program to generate 'words' where vowels and consonants 
alternate. Print a few at random. 

8) In comparing strings for order, BASIC compares the two strings one 
character at a time. So for nonequal strings, the first nonequal charac
ters determine order. Therefore, when comparing such strings as '60' 
and '100,' BASIC will evaluate '60' as greater then '100.' Write a pro
gram to overcome this flaw. Be sure to also provide for proper order
ing of strings like 'A6' and 'AlO.' 
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4 
FILES 

There are tremendous differences in file handling from system to system. 
Files give a tremendous extension of power to the BASIC language in two sig
nificant ways. First, the use of files allows us to handle far more data than we 
could ever store in DATA statements of a single program because of computer 
space limitations. Second, the use of files allows us to process the same data 
using several different programs. We might use one program only to enter data 
into a file. Another program might be used to make corrections. Another might 
be used to extract a particular piece of information, and yet another might be 
used to modify the data in the files. And so on and so on. There is no limit to 
the number of programs which may work on the data in a single file or group of 
files. 

We have chosen to present here file programs on two different systems. 
You will want to determine which one resembles your system before attempting 
to write programs. The systems chosen here are Hewlett Packard and General 
Electric since both are in common use and differ in many ways. 

4-2 Hewlett Packard Files 

Serial Data Files 

Serial files have the advantage that they are quite efficient in the use of 
computer storage space. We simply print entry after entry until all desired 
entries are in the file or files. Serial files have the disadvantage that we cannot 
easily go into the file to change an existing entry or insert a new entry. To do 
this to a serial file, we must copy the entire contents into another file making 
the changes on the way and then copy the corrected data back into the original 
file. Naturally, this is a serious problem only if we are working with a large 
amount of data. 

Let us construct an inventory file and work on it. Suppose that for each 
item of inventory we have a part name, a part number, a price, and a quantity. 

46 
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Program ENTERl will enter an initial set of inventory data into a file called 
INVOl. 

!':.NTF:"ll 

94 REM * THIS P~OGRAM "NT~RS DATA IN AN EMPTY FILE 
JOO FIL>'.S I"JVOI 
110 DIM PSPSl 
120 READ PS,"J,P,Q 
130 IF N=O TH~N 240 
134 R<:M * LIN~ 140 Ptl!NTS IT""1 AFTE'l IT~"1 CLOSE PACKED 
135 llFM IN THE: FILE MAKIN(; IT si;:RJAL IN STR'JCT'JR'C 
140 P~INT #t;PS1N1P10 
ISO GOTO 120 
194 Rr:M 
~00 D!\TC\ "F~AMIS'',10r)t,~.J,l80()," 1·llDGi::T'',t00?.1L!.1i,tlOO 

210 DATA "RFG'ILATO;<", IOOJ,J.4R,9QQ,"5LIC"JEP", I0r)4,.r)4,9QQO 
220 DATA "F-lASMALATO-l". I QOS. I q. 49, qoo. ""'HATS IT". I -Jf)~. I 0. 9R. 1000 
230 DATA "STOP",Q,t),O 
240 END 
'l'IN 
"NTF..Rl 

DCNE 

Line 100 is necessary to make file INVOl available to the present program. 
The file must be in existence at the time the program is run. (Some HP systems 
provide for ASSIGNing files during program execution.) In this case, we typed 
the executive command <tJPEN-INVOl,50 to create the file. That command 
specified 50 discrete storage blocks referred to as "sectors" or "records." Each 
of our 50 records will hold as many as 32 numerics, where one numeric occu
pies the same space as 4 string characters. We must add one string character each 
for delimiters at the beginning and end of a string and add one if the number of 
characters in the string is odd. The record size varies from computer to com
puter, and some computers allow the user to specify its length. The maximum 
number of records allowed varies also. 

Line 120 reads from program data statements in the usual way. 
Line 130 checks for dummy data. 
Line 140 prints the data as read in line 120 but to the external file instead 

of to the paper on the terminal in front of us. The #1 is used because the file we 
use is the first named in the files statement. If we want to print to the second 
file named in a files statement, then we use PRINT #2. We can also use PRINT 
#F where F is the file number. File names are separated by commas in the 
FILES statement. For example, 

100 FILES FILE1,FILE2,FILE3 

makes three files available to the program in which this statement appears. Sys
tems vary as to the number of files that may be named in a files statement. Most 
allow at least 8. 

This is the very first time that we have run a program which failed to print 
anything and yet did something useful. Generally speaking, we should print 
something to the terminal. To prove that the data really is in that file, we pre
sent program READ to read the data out of file INVOl. 
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94 

rJ IM PS("" l 
I 00 
110 
l~O 

l".:!Ll 
P<I\JT "P.'\n \J'\M:O:","P!\H #","Pnc1c","JJANTITY" 

~C:"'i * RO:AD DA fl\ '"<8'1 TY" F !IJ 
RF.A[) H};P·~ .. ~,;.i,J -130 

134 
140 
1~0 

·<F.'1 * Pn\JT T'l'" l)l\TA TC Fl~ TF. <MP.J!\L 
P ·~ T r,J T PS, ~, P, ') 
f;'.JTC 111 

-140 C::N!J 
'J\J 

PD.f~T \Jt:\"11'..: PA ~l " t) ~Ir;::: 

F' <'I'; IS I 011 ~. '1 

'.• rnr-r. T I IJO~ I~ • ll 

·~>-: r: 11_ C\ TG i~ lrJ<)J J •I~~ 

SL! CNEP 1004 .04 
l"~ASMAL.A TOR I 005 18.49 

WHATS IT 1006 10.98 

END-OF-FILE/END OF ~ECORD IN LINE 1:30 

11<\IJT!TY 
I "JCJ 
111 11 
91)0 

9000 
~00 

3000 

We get all of the information from the file and an error message to boot. 
We may avoid the error message by inserting an IF END statement. We will use 
105 IF END #1 THEN 160. This statement, executed just once, sets a flag so 
that if line 130 tries to read nonexistent data or tries to read past the physical 
end of the file, the computer will next execute line 160. Alternatively, of 
course, we could have placed our own flag in the file by printing dummy data 
into the file at the end of the real data. 

-105 IF END #I THEN 160 
RIJN 
READ I 

PA~T NAM<: 
FRAM IS 
'#!DGET 
"EG'll.ATOR 
SL! CNEP 
"RASMAL.ATOR 
',IHAT SIT 

PART H 
1001 
1002 
1003 
1004 
1005 
100~ 

PRICE 
2.3 
4.4 
3.4~ 

·04 
I fl. 49 
Io. 9fl 

0 1JANTITY 
11300 
1100 
900 
9000 
800 
3000 

We can now sit down and dream up little programs to process the data in 
file INVOl. We might want to know the number of parts in inventory. You can 
easily verify that program READ2 does that. 

READ2 

94 REM* THIS PROGRAM FINDS THE TOTAL. 
?S REM ~~M3ER CF ~A~TS IN FILE !NVO! 
100 FILES !NVOI 
110 DIM P$[25J 
120 LET T=O 
130 IF END HI THEN 170 
140 READ #IJP$,N,P,Q 
144 REM * RUNNING TOTAL CALCULATED IN LINE 150 
150 LET T=T+O 
160 GOTO 140 



170 PRINT T1"PARTS" 
180 END 
RIJN 
READ2 

16600 PARTS 
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It is left as an exercise for the reader to find the total value of inventory 
with a program. 

Now suppose we want to add inventory to INVOl. Using ENTERl again 
with different data will simply replace what is in INVOl with new data. (Actu
ally, the new data might replace only part of what is already in there, and this 
result has other complications.) What we must do is read out to the end of the 
data already in the file and then begin printing new data to the file at that point, 
as shown in program ENTER2. 

Note that program ENTER2 may also be used to enter data into an empty 

file. We do not need a different program for this purpose. It is a good practice 
to provide for printed output to the terminal in a program of this kind. We run 
READl again to make sure that the new data was properly added to the end of 
the file. 

ENTER2 

94 REM * THIS PROGRAM ENTERS DATA INTO AN EMPTY OR 
95 REM PARTIALLY FILLED SERIAL FILE 
100 FILES INVOI 
110 DIM PS[25J,Q$[25J 
114 REM* READ TO THE END OF EXISTING DATA 

--120 IF END #1 THEN 150 
130 READ #1JP$,N,p,Q 
1-.0 GOTO 130 
144 REM * ENTER NEW DATA INTO THE FILE 

-· 150 READ P$,N,P,Q 
160 IF N=O THEN 200 
170 LET OS=P$ 
180 PRINT #lJPS,N,P,Q 
190 GOTO 150 
200 PR INT "LAST ITEM IS "J Q$ 

204 REM 
210 DATA "LIFTER".1007 •• 29, 10000."DRCJPPER"· l008. ,g9, 1500 
220 DATA "WHDSIT", 1009.16, 12,"HOLOER", 1010• ,47, 1141 
230 DATA "STOP".D.o.o 
240 END 
R'JN 
ENTER2 

LAST ITEM IS HOLDER 

RIJN 
READ! 

PART NAME PART 
FRAM IS IDOi 
WIDGET 1002 
REGULATOR 1003 
SLICNEP 1004 
FRASMALATOR 1005 
WHATS IT 1006 
LIFTER 1007 
DROPPER 1008 
WHOSI T 1009 
HOLDER 1010 

# PRICE 
2.3 
4,4 
3,4g 
.04 
IR· 49 
10098 
.29 
• 89 
16 
,47 

D'JANTITY 
1800 
1100 
900 
9000 
800 
3000 
10000 
1500 
12 
1141 
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The next area we might get into is that of making changes in file INVOl 

according to business activity. We can do this with the procedures mentioned 

earlier, that is, by copying the entire contents of the file into another file, 

making changes on the way. However, if the amount of data becomes very 

great, the time lost by this method tends to be more important than the space 

saved by using serial files. Furthermore, there are many devices for utilizing ran

dom access files more efficiently. So let's talk about random access files. 

Random Access Files 

Files are serial or random access according to the structure the program

mer creates for them. In fact, the same file may be treated as serial by one 

program and random access by another. File INVOl was serial because we 

printed the data in serially. We may instead use the discrete records of the file 

for specifically arranged data. 
In our inventory example we might consider placing one inventory item on 

one record. Since most of our sample data are equivalent to about 5 numerics, 

this would be wasteful of computer space. However, in practice, an item of in

ventory will contain more data, and thus it is often wise to allow more file space 

than is needed at first. Then we will not have to restructure the entire storage 

plan as we might if we had placed several inventory items on a single record. 

In fact, if programmers anticipate that additional data may be required, they 

go one step further. They incorporate the extra variables into all programs, 

using zeros for numbers and empty or null strings for anticipated alphameric 

data. Then the existing programs will carry all of the variables needed and will 

not have to be rewritten to accommodate the new data structure. Of course, 

changes will have to be made to actually utilize the newly activated variables 

later. Moreover, in some situations we can use space more efficiently by storing 

numerics in one file and strings in another with a scheme to link the data from 

the two files to each other. That way numeric data may be MAT READ out 

of the file for very easy processing. 

ENTER3 

94 
95 
100 
110 

-120 
130 
140 

-·150 
-160 
-170 

!BO 
190 
194 

REM * THIS PROGRAM ENTERS DATA INTO AN EMPTY 

REM rILE IN RANDOM ACCESS rORMAT 
PILES INV02 
DIM P$C25l 
LET R=O 
READ P$,N,P,O 
IF N=O THEN 190 
LET R=R+I 
READ #1,R 
PRINT #IJP$,N,p,Q 
GOTO 130 
PRINT R1"RECIJRDS USED" 
REM 

2CC !).l'l.,'f!'. "F'P.!'.M!S": !00!.-?.-:':l· '800·"WTf'1f;FT".100?"4·4~ 1100 

210 DATA "REGULATOR", 1003,3.46,900,"SLICNEP''. 1004, .04,9000 

220 DATA "rRASMALATIJR"· 1005. 1B.49,soo,"WHATSIT"• 1006.10.96, 3000 

230 DATA "STOP",o,o.o 
240 ENO 
RUN 
ENTER3 

6 RECORDS USED 
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To keep things simple, suppose that we look at a program to place one 
inventory item per record, such as program EN'fER3, which PRINTs inventory 
data into file INV02. 

Note that we have the computer print the number of records used to 
assure us that the program has performed as expected. Lines 120 and 150 keep 
track of the record to which we are going to print. Statement 160 sets a pointer 
in the file to the beginning of record R. Statement 170 prints data to the file 
beginning at the pointer. The pair of statements 160 and 170 may be replaced 
with the single statement, PRINT #1,R;P$,N,P,Q, the difference between the 
two being that if 170 attempts to print more than will fit on the record, the 
excess goes on the next record, whereas PRINT #1,R;P$,N,P,Q will result in an 
error message if the data to be printed will not fit on record R. 

Now program READl may still be used to read the contents of INV02 
by changing line 100 to FILES INV02. 

In order to add data to the end of file INV02, we have several techniques 
available to us. One is exactly analogous to that for serial files. Another uses 
the TYP() function. The TYP() function 'looks' at the next item of informa
tion in a file and identifies it as follows: 

TYP(N) 
TYP(N) 
TYP(N) 
TYP(N) 

1 
2 
3 
4 

Next item is a numeric 
Next item is a string 
Next item is end of file 
Next item is end of record 

where N is the position that the file name occupies in the FILES statement. If 
N is positive, the value 4 is never returned; to detect end of record, N must be 
negative. 

The TYP( ) function is used in line 150 of program ENTER4 to determine 

ENTER4 

94 REM * THIS PROGRAM ENTERS DATA IN A PARTIALLY FILLED 
9S REM FILE IN RANDOM ACCESS FORM 
100 FILES INV02 
110 DIM P$(2SJ 
120 LET R=O 
130 LET R=R+l 
140 
144 
l4S 

-ISO 
160 
170 
180 
190 
200 
210 
220 
230 
234 
240 
2SO 
260 
270 

READ N!,R 
REM * LINE !SO DIRECTS THE COMPUTER TO LINE 
REM 130 IF WE ARE NOT AT THE END OF DATA 
IF TYP< I> <> 3 THEN 130 
LET R=R-1 
READ P$,N,p,Q 
IF N=O THEN 230 
LET R=R+I 
READ #!,R 
PRINT NlJP$,N,P,Q 
GOTO 170 
PRINT Rl "RECORDS IJSED" 
REM 
DATA "LIFTER''. 1007, .29, !0000,"DROPPER", 1008, .89, 1500 
DATA "WHOSIT", !009, 16, !2,"HOLDER", !OI0,.47, 1141 
DATA "STOP",o,o.o 
END 

RUN 
ENTER4 

10 RECORDS USED 
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the first record that has an end of file (sometimes referred to as EOF) marker 

and begin printing the new data on that record. Here again, as a check on the 

program, we have the computer tell us how many records have been used. 
Now we are in a position to explore some possibilities for editing the ran

dom access file. Note that we selected part numbers, so that if we subtract 

1000, we get the number of the record on which that part will be found. Often 
in data processing it is helpful to organize data so that something about the data 

tells us where to find it. This method is sometimes called "content addressing." 

It could consist of an extra item of data for file management purposes only. 
Let's write a program that allows us to go into the inventory file and 

change anything but the part number. We do this with program UPDATE. The 

part number is requested in line 150, and the part is found in line 200. Line 
210 prints the part name and offers to make a change possible. The same is 

done for the price in line 260 and for the quantity in line 310. When all infor
mation is correct, it is re,entered into the file in line 360. The IF END state

ment in line 130 provides for attempting to access a nonexistent record or for 

attempting to access a record that has no data on it. 

IJPDATE 

94 
100 
110 
120 

-130 
140 

-150 
160 
170 
180 
184 
190 

-200 
210 
220 
230 
240 
250 

-·260 
270 
2fl0 
290 
300 

-310 
320 
330 
340 
350 
354 

-360 
370 
380 
390 

REM * THIS PROGRAM EDITS AN INVENTORY FILE 

FILES INV02 
DIM P$l25J,A$[ 31 
PRINT "INPUT PART NIJMBER ZERO TO 0'JIT" 

IF END #I THEN 380 
PRINT 
PRINT "PART #"J 
INP'JT NI 
IF NI <> INTCNI l THEN 150 
IF Nl=O THEN 860 
REM * CALCIJLATE RECORD FROM PART NIJMBER 

LET R=Nl·IOOO 
READ #l,RJP$,N,p,Q 
PRINT P$1 
GO SIJB 800 
IF A$="YES" THEN 260 
PRINT "CHANGE TCJ"l 
INP'JT P$ 
PRINT "PRICE = $"!Pl 
GO SUB 800 
IF A$="YES" THEN 310 
PRINT "CHANGE TCJ $"J 
INPUT P 
PRINT "QTY ="I OJ 
GOSUB 800 
IF A$= "YES" THEN 36 0 
PRINT "CHANGE TO"J 
!NPIJT Q 

REM * PRINT CORRECTED INFORMATION BACK TO THE FILE 
PRINT #1,RJPS,N,p,Q 
Gorn 140 
PRINT "NO SUCH PART #" 

GOTO 140 

790 PRINT "YES OR NO" 
800 PRINT " OK"l 
810 INPUT A$ 
820 IF A$="YES" THEN 850 
830 IF A$="N(J" THEN 850 
840 GOTO 790 
850 RETURN 
860 END 



RUN 
IJPDATE 

Files 

INPIJT PART NIJMBER ZERO TO OIJIT 

PART #?1001 
F'RAMIS OK?YES 
PRICE = $ 2.3 OK?NO 
CHANGE T0 $? 3, 24 
QTY = 1800 OK?YES 

PART #?I 003 
REGIJLATOR OK? YES 
PRICE = $ 3.48 OK?YES 
QTY = 900 OK?NO 
CHANGE HJ? 87 B 

PART #?0 

53 

A run of READl confirms that the proper changes were indeed made in 
the file. 

100 F'IL1'S INV02 
RIJN 
READ! 

PART NAME 
F'RAMIS 
WIDGET 
REG'JLATOR 
SLI CNE:P 
F'RASMALATOR 
WHAT SIT 
LIF'TER 
DROPPER 
WHl'JSIT 
H3LDER 

Summary of Sec. 4-2 

PART H 
I rJO I 
1002 
1003 
1004 
I 005 
I 006 
1007 
I 003 
1009 
1010 

PRICE 
3.24 
4.4 
3,4g 
.04 
tB.49 
10.98 
.29 
.g9 
16 
.47 

OIJANTI TY 
1800 
1100 
878 
9000 
800 
3000 
10000 
1500 
12 
1141 

We have seen that files are serial or random access depending only on the 
approach that a program takes in printing data to or reading data from the file. 
In order to treat a file as random access, the data must be placed so that its lo
cation within a record is known. Files are made available to a program with the 
FILES statement. We can detect the end of data or physical end of file with the 
IF END statement. Data is entered into a file with the PRINT# statement and 
read from a file with the READ# statement. In addition, we may determine the 
nature of the next information in the file through use of the TYP( ) function. 
A file pointer can be set to the beginning of record R of file F with READ #F,R 
without reading any data. 

Problems for Sec. 4-2 

1) Arrange 10 or more strings in alphabetical order by placing them one 
to a record in a file. 

2) Write a program to print the contents of a file without knowing the 
structure of the file. 

3) Write a program to copy the contents of one file into another. See if 
you can provide for copying 'holes' too. 
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4) Write a program to find the first empty record and determine the num
ber of records in the file. 

4-3 General Electric Files 
We actually are going to talk about external data files in this section, for 

in fact, programs are files too, and the data contained in DATA statements of a 
program are referred to as "internal files." The creation and use of data files can 
be a very complex business indeed. It is the purpose of this section to present 
some of the data file concepts and provide sufficient examples so that the reader 
will be able to use the power of files in future programming. (Our examples will 
of necessity handle only small amounts of data, as it would not be practical to 
print the entire contents of very large files.) 

Files of two types are available to BASIC programs. They are called 
"ASCII files" and "BINARY files." ASCII files are also referred to as "Teletype 
files." This term reflects the fact that they may be created by typing data 
directly at the terminal using line numbers exactly as a program is typed at the 
terminal and that they may be listed directly to the terminal just as a program 
may be listed to the terminal. ASCII files may also be used by programs. Binary 
files may be used only under program control and may not be written to or read 
from the terminal. 

ASCII Files 

Data may be typed directly to the terminal. All we have to do is create a 
file with the command NEW and begin typing our data as if it were a program. 
Each line must have a line number followed by a space followed by our data 
separated by commas. String and numeric data may be intermixed. Lines may 
be corrected by retyping them. Lines may be deleted by typing the line number 
followed by return. For an ASCII file to be usable at some later time, it must be 
saved by typing the command SA VE. 

To demonstrate some of the uses of ASCII files, we have selected the 
names of the ten largest cities in the UB. according to the 1960 census, their 
rank, and the percentage change in population from 1960 to 1970. File CITY 
has been created, the data typed to the terminal, and the file saved as described 
above. Since this is a listable file, we do so below. 

LIST CITY 
CITY 

100 BALTIM0RE MD>6•-4•7 
110 CHICAG0 ILL•2•-6•3 
120 CLEVELAND 0HJ0,B,-IS.7 
130 DETR01T MICH.S,-10·6 
140 H0UST0N TEXAs,7,29.3 
150 L0S ANGELES CALJF,3,12.2 
160 NEW Y0RK N,y,,J,-,1 
170 PHILADELPHIA PA.,4,-3.B 
160 ST L0UIS M0>10·-19 
190 WASHINGTON o.c •• 9.-4.B 

We may now write programs to access the data in file CITY. Probably the 
simplest useful task we could perform would be to print the contents of the file 
under program control. 
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In order to make the file available to the program we use the FILES state· 
ment in line 100 of program READCITY. We may read data from the external 
file in a manner similar to that with which we read data from internal files. To 
read from the file named in the files statement, we use READ #1 followed by 
the list of variables we want. This is done in line 120 of the program. Every 
time such a statement is executed, a pointer is moved in the file so that the next 
read statement begins to read at the pointer. Initially, all file pointers are at the 
very beginning of the file. Note that we could use READ #0 to read from the 
data statement of the program. Since it is possible to attempt to read past the 
end of the data in the file, we use the IF MIJ)RE statement in line 140. As long 
as there is more data in the file, line 140 in our program will direct the computer 
to 120. When the data has all been read, line 140 will test false and control 
passes to line 150 in this case. 

RE ADC I TY 

94 
-100 

110 
-120 

130 

REM * THIS PROGRAM READS THE CONTENTS Or rlLE CITY 
rlLES CITY 
PRINT "CITY"l TABC20)J "RANK"J TABC25)J "% GROWTH" 
READ Nt, C$,R,G 
PRINT C$J TABC20)J Rl TABC25ll G 

-140 Ir MORE NI THEN 120 
t 50 END 
RUN 
READC!TY 

CITY 
BAL T !M0RE MD 
CHICAG0 ILL 
CLEVELAND 0Hl0 
DETRO IT MI CH 
HOUSTON TEXAS 
L0S ANGELES CAL!r 
NEW YORK N.y. 
PHILADELPHIA PA. 
ST LOIJI S MO 
WASHINGTON D. c. 

RANK % GROWTH 
6 -4.7 
2 -6. 3 
8 -15.7 
5 -10.6 
7 29.3 
3 12.2 
I -o. I 
4 -3.8 
10 -19 
9 -4.8 

It turns out that ASCII files are always sequential (serial) in format. This 
means that data must be accessed by reading from the first set of data step by 
step until the desired information is obtained. There is no way to begin at some 
intermediate point of the file. We can, however, add data to the end of the file 
with an append statement. APPEND #1 sets the file pointer to the end of data in 
the file and prepares the file for writing. For any data processing that requires 
tabulating information from each line of data, the sequential nature of ASCII 
files is ideal. Furthermore, ASCII files are very easy to edit from the keyboard, 
as described earlier. Having seen how to read an ASCII file, we will next see how 
to write to such a file with a program. 

Let's write a program to transfer the data from file CITY to file CITYl, 
rearranging the data so that the order in which the cities appear in the new file 
will be according to decreasing percentage growth. One way to create the new 
file is with the NEW command. Once you have named the file, type 100, press 
the space bar, then the return key, and save the file. Now we have to provide 
access to two files in one program. This is done with the FILES statement. Up 
to eight files may be named in a FILES statement as long as they are separated 
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with semicolons. These files may then be designated by number according to 
the order in which they are named in the FILES statement, as shown by line 100 
of program GR'{>WTH. 

Since it is easy to sort numbers in a one-dimensional list, the strategy we 
will use here is to pass through the file once, entering the percentage growth for 
each city in the array A as we go. Thus A(l) becomes the percentage growth of 

GROWTH 

94 REM * THIS PROGRAM ARRANGES TEN CITIES ACCORDING TO 
95 REM GROWTH RATE USING TWO SEQUENTIAL FILES 
IDO FILES CITYJ CITY! 
110 DIM ACIQ), BCIO> 
112 
114 REM* ENTER GROWTH DATA IN ARRAY A AND ORIGINAL 
115 REM POSITION IN FILE CITY IN ARRAY B 
120 FOR I = I TO 10 
130 READ Nt, N$,R,G 
140 LET AC!> G 
150 LET BCI> = I 
160 NEXT I 
162 
164 
170 
180 
190 
200 
202 

REM 
LET 
LET 
FOR 

* 
N 
s 
I 

BEGINNING 
= I 0 
= 0 
= I TO N-1 
IF AC!> >= 

OF SORT 

AC!+ I> THEN 280 

204 REM * EXCHANGE OUT OF ORDER DATA 
205 REM AND TURN SWITCH ON 
210 LET SI = AC!> 
220 LET AC!>= ACI+I> 
230 LET AC!+I) = SI 
240 LET SI = BC!> 
250 LET BC!>= BCI+I> 
260 LET BC!+I> = SI 
270 LET S = I 
280 NEXT I 
282 
290 LET N = N-1 
300 IF S = I THEN 180 
302 
304 REM * GROWTH RATE IS IN ORDER NOW PRINT 
305 REM DATA IN FILE CITY! 
31 0 SCRATCH H2 
320 FOR I = I TO I 0 
330 RESTORE #I 
340 FOR J = I TO BC!> 
350 READ Nt, N$,R,G 
360 NEXT J 
362 
370 WRITE #2, N$,R,G 
380 PRINT N$ 
390 NEXT I 
392 
400 END 
RIJN 
GROWTH 

HOUSHlN tEXAS 
LOS ANGELES CALIF 
NEW YORK N.Y. 
PHILADELPHIA PA. 
BALTIMORE MD 
WASHINGTON D· c. 
CHICAGO ILL 
DETRO IT MICH 
CLEVELAND OHIO 
ST LOUIS MO 
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the first city in the file and A(lO) becomes the percentage growth of the tenth 
city in the file. Entering is done in lines 120 through 160. We store the original 
position in a B array. 

Now that the list is in order we know that whatever city has the percentage 
growth stored in A(l) goes first in our second file and whatever city has the 
growth rate in A(I) goes in the Ith position of file CITYl. However, in order to 
prepare a file for printing, we must use the SCRATCH statement. That state
ment erases whatever is in a file, prepares it for write mode, and sets the file 
pointer at the beginning of the file. Since we want to write to the second file 
in our FILES statement, we use SCRATCH #2 in line 310. The next complica
tion we face is that the pointer in file CITY is now at the end of the data. We 
move the pointer to the beginning of the file and keep the file in read mode with 
the REST</)RE statement in line 330. REST</)RE #N acts on the Nth file in the 
FILES statement. The REST</)RE statement must be executed every time we 
want to reread the file. The actual entry of the data to file CITYl takes place 
in line 370 of program GR</)WTH when we have found the city with the growth 
rate in the Ith location of the arranged list A by reading to that city's position 
in the original file as determined by list B. 

We now run READCITY on file CITYl to confirm the contents of that 
file. 

Binary Files 

100 rILES CITY! 
RUN 
REAOCITY 

CITY 
HOUSTON TEXAS 
LOS ANGELES CALIF" 
NEW YORK N•Y• 
PHILADELPHIA PA. 
BAL TI MORE MD 
WASHINGTON D.c. 
CHICAGO ILL 
DETRO IT MI CH 
CLEVELAND OH'IO 
ST LOIJ IS MO 

RANK 
7 
3 
I 
4 
6 

% GROWTH 
29.3 
12.2 

-o. I 
-3.8 
-4.7 

9 -4. 8 
2 -6.3 
5 -10.6 
8 -15.7 
10 -19 

Binary files are available only under program control. Whereas ASCII files 
may be only sequential, binary files may be either sequential or random access. 
Random access means that any data item may be accessed without reading all 
data from the beginning of the file up to that data item and that data may be 
written to any point in the file directly in the same manner. 

An ASCII file or a binary file may be used as a sequential file as deter
mined by the first WRITE statement which applies to that file after the file is 
made available for write mode by the SCRATCH statement. To work with a 
file as a sequential binary file simply use a colon (:) where the pound sign ( #) 
occurs in the READ, REST</>RE, SCRATCH, IF M</>RE and WRITE statements. 
The distinction between ASCII and binary files, regardless of sequentiality or 
randomness, has to do with the code that is used to store the data on some 
device peripheral to the computer, and does not generally effect the programmer 
at the level of programming in BASIC. 
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Random Access Files 
Thus far we have not been concerned with how much space our data has 

occupied because our files simply expanded to fit whatever we had written to 
the file. We are not likely to exceed the maximum space available in a single file 
for some time. However, since random access files must have a structure allow
ing data to be placed in physical locations that will be known to us for future 
access, space requirements for data storage become important. The structure of 
a random access file is a little like that of a two-dimensional array except that in 
a file we may intermix numeric and string data. In some situations, however, we 
may choose to place numeric data in one file or group of files and related string 
data in another file or group of files, with a scheme for relating the two 
structures. 

Random access files may be segmented into components called "records." 
We may assign the amount of storage space in each record at the time we create 
the file. Storage space is measured in computer words, and storage is required 
for data as follows: 

1 word per numeric 
1 word per 4 string characters or fraction thereof 
1 word for control per string for internal computer purposes. 

For example we could store 120 numerics in any file in which the product of the 
number of records and the number of words per record is at least 120. Since we 
are going to have control over the space in each record, we generally select some 
record size that is appropriate to our data structure, just as we usually dimension 
an array to fit the structure of the data we intend to store in it. 

Let us begin by writing 10 random numbers to a random access file, proving 
that the numbers are really there and then arranging them in increasing order by 
using the random accessibility of the file to do the sorting. 

First, the file must exist. The system command CREATE is required here. 
Let's provide two records which will handle 10 words each. Then our ten num
bers will all fit on the first record. The executive command, 

CRE RAND,(RAN(l0,2)) 

accomplishes this. The numbers in parentheses specify the number of words per 
record first and the number of records second. Program RNDENTER is identi
cal to a program that would write ten random numbers to an ASCII file except 
that a colon appears where a pound sign would appear in a program writing to a 
sequential file and no SCRATCH statement is required. 

RNDENTER 

94 RF:M * THIS PROGRA"l WRITES 10 RANDOM N1JMBERS 
95 REM TO A RANDO"l ACCESS FILE 
100 FILES RAND 
110 RANDOMIZE 
120 FOR I = I TO 10 
130 WRITE : I, RND 
140 NEXT I 
142 
150 END 
RUN 
RNDENTER 
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Note that the program generates no printed output. (It is not good general 
procedure to write programs with no visible output except to prove, as with pro
gram RNDENTER, that the program did in fact do something invisible.) We 
now need a program to read file RAND. Program RNDREAD does that. 

RN DREAD 

94 
95 
100 
110 

-120 
130 
140 
ISO 
RUN 

REM * THIS PROGRAM READS NUMERICS FROM A 
REM RANDOM ACCESS FILE SEQ•JO:•'JTIALLY 
F"IU::S RAND 
READ : l, A 

IF" A=O THEN 150 
PRINT A 
GOTO 110 
END 

o.~~0239 

0.257207 
0.705748 
0.717468 
0.143835 
o. 349935 
0.704994 
0.649726 
0.974231 
0.852828 

RNDREAD is like a program to read a sequential file, with one important 
difference. Look at line 120. Since we didn't put any zero values into the file, 
why test for zero? We would have used the IF M<tlRE statement in an ASCII 
file. IF M<tlRE does not determine an end of data condition in a random access 
file effectively because the CREATE command filled the file with binary zeros. 
The SCRATCH statement will have the same effect. Thus we are able to termi
nate our little program by reading values of A until we come up with zero. 
IF M<tlRE does determine whether or not we have reached the physical end of 
the file, however. Thus in our file RAND, if we had read 20 numerics, then IF 
MC/>RE :1 would test false. A companion statement IF END :1 would test true 
in this condition. We should be beginning to see, and will soon see even more 
clearly, that the total structure of the data storage is the complete responsibility 
of the programmer. We must know when we have reached the end of our real 
data. We may want to count the number of data items or we may want to place 
dummy data at the end of the file just as we often do for data statements of a 
program. 

Now let us arrange the numbers of file RAND in ascending order by 
operating on the data within the file as we go. The basic sorting scheme is ex
actly like that we just used for sorting cities and that we will use again in chapter 
eleven. The only difference is that we are now comparing numbers that have 
addresses in a file instead of in a list. In order to set the file pointer to the 
proper location of our file, we use the SETW statement. SETW N T<t> X moves 
the pointer in file N to the beginning of the Xth word of storage counting from 
the beginning of the file. This operation is totally independent of the number of 
words per record. Thus if a file has nine words per record, then SE'l'W N T</J 12 
moves the pointer to the beginning of the third word on the second record of 
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file number N. Once the pointer is set, the next read or write statement begins 
reading or writing from that point. In our problem we will be reading a single 
numeric value. 

In program RNDS'l>RT, line 130 sets the pointer to the Ith word of the 
file so that the Ith number may be read by line 140. Line 150 sets the pointer 
to the I+ 1st word so that the I+ 1st number may be read out. If they are in the 
desired order, line 170 directs the computer to line 230, which causes the next 
pair of adjacent numbers to be tested. Should the test in line 170 fail lines 180 

RNDSORT 

94 
95 
100 
110 
120 

-130 
-140 
-150 

160 
-110 

172 
174 

{

160 
190 

-- 200 
210 
220 

-230 
232 

REM * THIS PROGRAM ARRANGES 10 NUMBERS IN 
REM ORDER IN A RANDOM ACCESS FILE 
FIL.ES RAND 
LET S = 0 
F0R I = I TCl 9 

SETW I TO I 
READ : 1, A 
SETW I TO l+I 
READ : 1, B 

IF A <= B THEN 230 

REM * EXCHANGE OUT OF ORDER DATA 
SETW I TO I 
WRITE : 1, B 
SETW I TCl !+I 
WRITE : 1, A 
LET S = I 

NEXT I 

-240 IFS= I THEN 110 
250 PRINT "DONE" 
260 END 
RUN 
RNDSORT 

DCJNE 

through 210, exchange the positions that the two values occupied in the file. 
Then a switch is turned on by setting S equal to one. When the computer has 
passed through the list, we test in line 240 to see if any exchanges have been 
made. If there have been no exchanges, then the numbers are in order and we 
have the computer print "D'l>NE". In the present situation, we rerun 
RNDREAD to verify that the program did in fact sort the file. 

RUN 
RNDREAD 

a. 143835 
a. 220289 
0.251201 
Q.349935 
Q.649726 
0.704994 
Q.705748 
Q.717468 
0.852828 
Q.974231 

For our final example, let us take the data in the ASCII file CITY and 
enter it into a random access file. To do this we must plan very carefully, as we 
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must be able to specify the position of all data in the file exactly. It is usually 
convenient to group the data that belongs together on a single record. In our 
problem we have three variables: the city name, its rank, and its percentage 
growth. The rank and percentage growth are both numerics and so occupy one 
word of computer storage each. The city names are strings of different lengths 
and so require different amounts of space. A reasonable approach is to allow 
space for the largest string and dimension our file accordingly. Clearly L(,t)S 
ANGELES CALIF is the longest string we use. The string has four groups of 
four characters and one character left over. That requires five words. We must 
add one word for internal control plus the two for the numerics. That puts the 
required space at eight words of storage per city. So we must CREATE a file 
with at least 10 records at eight words per record. We do this with 

CRE CITY2,(RAN(8,10)) 

In order to set the file pointer to the beginning of the Ith record where the 
records contain eight words each, all we have to do is point 8(I-1)+1 words from 
the beginning of the file, as shown in line 140 of program XFER. This program 
transfers the data from ASCII file CITY to random access file CITY2. Notice 
that there is no difficulty whatever in accessing two different kinds of file with 
the same program. 

XFER 

94 REM * THIS PROGRAM COPIES DATA FROM ASCII FILE CITY 
95 REM TO RANDOM ACCESS FILE CITY2 
100 FILES CITYJ CITY2 
110 LET I = 0 
120 READ #I, cs.R.G 
130 LET I = I+I 
132 
134 REM * THE FORMULA IN LINE 140 SETS THE 
135 REM POINTER TO THE ITH RECORD IN THE FILE 
140 SETW 2 TO 8*CI-l>+I 
150 WRITE 12, C$,R,G 
160 IF MORE #I THEN 120 
170 PRINT IJ "ENTRIES" 
180 END 
RUN 
XFER 

10 ENTRIES 

Our final task is to arrange the cities according to rank without using a 
second file and without using the technique of saving the numbers to be sorted 
in an array. This program, program RANK, is very similar to RNDS(,t)RT except 
that the pointer is a formula and the read and write statements work with three 
variables instead of one. 

RANK 

94 REM * THIS PROGRAM ORDERS CITIES ACCORDING TO RANK 
95 REM IN A RANDOM ACCESS FILE 
100 FILES CITY2 
110 LET NI = 0 
120 LET N = 10 
130 LET S = 0 
140 FOR I = I TO N-1 
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ISO SEHi I TO 8*<1-1)+1 
160 READ : 1, cs,R,G 
170 SETW I TO 8*I+I 
180 READ I I, c1:1;,R1,G1 
190 IF R <= RI THEN 250 
192 
194 REM * EXCHANGE OUT OF 
200 SETW I Hl 8*< I- I>+ I 
210 WRITE 11, Cl$,Rl,GI 
220 SETW I TO B*l+I 
230 WRITE : t, C$, R, G 

240 LET s = I 
250 NEXT I 
252 
260 LET N = N-1 
270 LET NI = NI+ I 
280 IF s = I THEN 130 
282 
290 PRINT "CITIES ORDERED ON 
300 PRINT "IN"J Nil "PASSES" 
310 END 
RUN 
RANK 

CITIES ORDERED ON RANK 
IN 7 PASSES 

ORDER DATA 

RANK" 

Program REDCITY2 tabulates the results directly from the file. 

REDCITY2 

94 
95 
100 
110 
120 
130 

REM * THIS PROGRAM READS THE CONTENTS OF FILE CITY2 

REM AND PRINTS TO THE TERMINAL 
Fil.ES CITY2 
PRINT "CITY"; TABC20)J "RANK"J TABC25)J "% GROWTH" 
FOR I = I TO I 0 

-140 
SETW I TO 8*CI-l)+I 
READ 11, C$,R,G 

--150 
160 
162 

PRINT CSJ TABC20JJ RJ TABC26J; G 
NEXT I 

170 END 
RUN 
REDC!TY2 

CITY 
NEW YORK N.y, 
CHICAGO ILL 
LOS ANGELES CALIF 
PHILADELPHIA PA. 
DETR01T MICH 
BAL T IM0RE MD 
HOUST0N TEXAS 
CLEVELAND 0Hl0 
WASHINGT0N D. C. 
ST L0UIS M0 

RANK 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

% GROWTH 
-0.J 
-6.3 

12.2 
-3.8 
-10.6 
-4,7 
29.3 

- 15· 7 
-4.8 
-19 

Summarv of Sec. 4-3 

ASCII and binary files are used to store and to arrange both string and 

numeric data. We have seen that ASCII files can be accessed either by the ter

minal directly or by a program, whereas binary files are available only under pro· 

gram control. Binary files may be either sequential or random access, but ASCII 

files are only sequential. In order to make any file available to a program, the 
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FILES statement must name the files we want, separated by semicolons. The 
files are numbered according to the order of appearance in the files statement. 
As many as eight files may be accessed by a single program simultaneously. 

(Provision may be made for substituting new files for previously named old ones 
within a program.) 

The following special statements apply to ASCII files: REST</>RE #N 
moves the file pointer to the beginning of file N and places the file in read mode. 

READ #N,A,B,C$ reads values from file N for variables A,B,C$. WRITE 
#N,X,B$ enters the contents of X and B$ into file N. SCRATCH #N erases 

the contents of file N and places the file in write mode at its beginning. IF 
M</>RE #N tests for more data in file N. IF END #N tests for the end of data 

condition in file N. All the above statements can be used for binary files by 
changing the pound sign (#)to a colon(:). There are some differences when it 

comes to random access files, however. SCRATCH :N, when applied to a 
random file, fills the file with zeros, sets the pointer to the beginning of the file, 

and places it in write mode. IF END and IF M</>RE work only at the physical 
end of the file. In addition, there is a special statement for random files to place 

the file pointer under program control. SETW N TC/> I may be used to place the 

file pointer of file N at the beginning of the Ith word of the file. 

Problems for Sec. 4-3 

1) Enter student names followed by a fixed number of test scores in a 
sequential file. Arrange the students by test average and write the re
sults to another file. 

2) Suppose you have entered a large number of names in a file, last name 
first, one name to a string for alphabetizing. Write a program to print 
a list of names in alphabetical order but first name first. 

3) Write a program to read numerics from two ordered files and print a 
single merged and ordered list to the terminal. 

4) Write a program that will insert an item of data into an already ordered 
random access file so that the new item is in order. 

5) You have a random access file with unknown contents. Write a pro
gram to determine the number of words the file contains. 

6) Write a program to enter inventory data into a random access file. The 
data should include, for every part, a number, name, price, quantity, 
low order point, and reorder quantity. The low order point is the 
quantity that should trigger reordering for that part, and the reorder 
quantity is the quantity that should be ordered. Write a program or 
programs to do any or all of the following: modify quantity and or 
price according to business activity, edit the low order point and re
order quantities, process the file to find the total dollar value of the 
inventory, and process the file to determine what parts must be re
ordered and the quantities to be ordered. 
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E INAL 

5-1 Introduction 
There are many sophisticated mechanical plotters on the market offered 

by a number of manufacturers. These generally use a pen which draws very 
short (0.01 inch is typical) straight line segments as determined by a program. 
The smaller the segments, the smoother the curve. However, this chapter is 
limited to using the terminal itself as a plotter. There are a number of disad
vantages to using the terminal for this purpose. Plotting is slow and may there
fore be expensive. The graphs we get are imprecise, and we can't easily use 
graph paper. Be all that as it may, if we have no other plotter, we can get very 
helpful plots from the terminal. The terminal has the advantage that it is con
veniently available. 

5-2 Plotting a Function 
We can greatly simplify plotting by choosing a function, since functions 

have the feature that for any value of x there is exactly one value for y. So, if 
we think of y as increasing across the page from left to right and x increasing 
down the page from top to bottom, when the plot is completed, we just turn 
the paper ninety degrees counterclockwise to obtain the conventional orienta
tion. 

To plot a single function, we first locate the origin and then concern our
selves with having the terminal mark the axes. Let's plot y = t x + 3. The 
b2s!c p!ctt!~g !::; VC"tj" ::;:rnp!c. All that is i1Ccessary is to use Lile T AB(I~) printing 
function to get the printing mechanism out to the proper location on the paper 
and then print some symbol. Since the TAB function begins counting at the 
left margin and we would like to have negative values available for y on the 
graph, it will be necessary to move the x axis to the right. How far we move it 

64 
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will depend on the particular graph. We simply add some constant value to 
all TAB arguments. This value is set in line 110 of program GRAPHl. If your 
version of BASIC does not have a TAB(N) function, then you may put 
PRINT" ";in a loop to get the printing head to the proper spot on the paper. 
We print a plus sign to indicate the origin. We will therefore have to check to 
see if we are at x = 0 and then determine whether the point of the graph is to 
the left or the right of zero. 

GRAPH I 

94 
100 
102 
104 

-110 
120 
130 

-140 
150 
152 
154 
160 
170 
180 
190 
200 
210 
220 
230 
232 

REM * THIS IS A RUDIMENTARY Pl.0TTING PR0GRAM 
DEr rNrCX> = ·5•X+3 

REM * K M0VES THE 0RIGIN 
LET K = 10 
r0R X = •7 T0 7 

LET y = rNr c x) 
Ir X <> 0 THEN 210 
Ir Y < .,5 THEN 180 

K SPACES T0 THE RIGHT 

REM * X = 0 AND Y >= ··5 50 PRINT 0RIGIN 
PRINT TABCK)J "+"J 

Ir Y < ,5 THEN 220 
PRINT TABC INTCY+o5>+K )J "*"J 

Ir Y < -.s THEN 160 
G0T0 220 
PRINT TABC INTCY+.S)+K )J "*"J 
PRINT 

NEXT X 

240 END 
RUN 
GRAPH I 

* 
* 
* 
* 
* 
* * 

+ * 
* * 
* 
* 
* 
* 
* 

GRAPHl seems to do the job we set out to do. (Be sure to tum the re
sults ninety degrees counterclockwise to view the graph.) However, there are 
many improvements that we can make. Let's put in a set of axes. Since the 
y-axis is the line where x = 0, the y-axis provision can go after line 140 of 
GRAPHl. In order to put the x-axis in, we have to check for each value of x 
whether or not the plotted point is below the x-axis. This is done in line 200 of 
GRAPH2. As long as we are working on the program, let's add a little flexibility 
by putting the position of the x-axis and the domain in as data. See lines 110, 
130, and 600 of GRAPH2. Note that a distinguishing character is used to mark 
every tenth location in each of the axes. This greatly improves the readability of 
the plot. Lines 210 and 420 determine where those marks are printed. 
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GRAPH2 

94 
95 
100 
102 
104 
105 
106 
107 

-110 
120 

-130 
140 
150 
152 
154 
160 
170 
180 
190 
192 
194 
195 

-200 
-210 

220 
230 
240 
250 
260 
270 
280 
290 
292 
300 
310 
392 
394 
400 
410 

-420 
430 
440 
450 
460 
470 
460 
490 
500 
502 
594 

-600 
610 

REM * THIS PR0GRAM PL0TS GRAPHS 0F FUNCTI0NS 
REM WITH AXES PRINTED 
DEF FNFCX> = •5*X+3 

REM * THE VALUE 0F N DETERMINES LENGTH 0F Y-AXIS 
REM K M0VES THE GRAPH K SPACES T0 THE RIGHT 
REM F IS THE FIRST VALUE 0F X F0R THE PL0T 
REM L IS THE LAST VALUE 0F X F0R THE PL0T 
READ N, K• F, L 
PRINT TABCK-l>J "X•"J F 
F0R X • F T0 L 

LET Y = FNFCX> 
IF X <> 0 THEN 200 

REM * X • 0 S0 THIS IS THE Y-AXIS 
F0R YI • -K T0 N-K 

G0SlJB 400 
NEXT YI 
G0T0 280 

REM * P0INTS 0FF Y-AXIS ARE PRINTED 
REM IN LINES 200 T0 260 

IF Y < ,5 THEN 260 
IF X/10 <> INTCX/IO> THEN 240 

PRHIT TABCK>J "-"J 
GlilT0 250 
PRINT TABCK>J "!"J 

IF Y < ,5 THEN 260 
PRINT TABC INTCY+.Sl+K ll "*"I 

IF Y < -·5 THEN 210 
PRINT 

NEXT X 

PRINT TABCK-l)J "X •"I L 
ST0P 

REM * SUBR0UTINE 10 PRINT Y-AXIS 
IF YI • 0 THEN 490 
IF ABSCY-Yll < ,5 THEN 470 
IF Yl/10 • INTCYl/IO> THEN 450 

PRINT "-"J 
RETURN 
PRINT "l"J 
RETURN 
PRINT "*"J 
RETURN 
PRINT "+"J 
RETURN 

REM 
DATA 25, 10, -11, 12 
END 

Three runs of G RAPH2 show a variety of results. For the first RUN of 
GRAPH2, we present the line y = 1- x + 3 from program GRAPHl. For the 
second RUN, we re-define the function in line 100 to plot the parabola, y = 

-.4x 2 
- x + 8. For the third RUN, we again re-define the function in line 

100 to get the graph of y = .2x3 
- 2x 2 + x + 5. 

We have in GRAPH2 a sat!sfacto:ry bas!c graph!?!g p!og!~!!!, =.!!d. the !e
sults may be enhanced by sketching a curve through the plotted points by hand. 
We can still improve on the program itself, though. Consider what the sine 
graph would look like using the program as it stands. The graph would show us 
little. Clearly we could do better by putting a scale capability in for both axes. 
This is left as an exercise. 
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GRAPH2 

X=-11 

* I 
* -
*' *' * 
* 
'* '* I * 
I * 
I * 
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100 DEf FNFCX> = -·4*X•2-X+8 
600 DATA 55, 40, -12, 9 
RUN 
GRAPH2 

• 
* • • 

* * 

X=-12 
I 
I 

* * 

67 

• 
1---------+--*------1----- * 

* ! * 
* * 
* --------1---------1---------1---------·-------•-1---
* * 
* 
* 
* 
* 
* 
* 
* x = 12 

100 DEF FNFCXl = .2*X•3-2*Xt2+X+5 
600 DATA 69, 30, -3, 11 
RUN 
GRAPH2 

X=-3 

* * 
I * 

I * 
! * 
'* * I 

* I 

* 
* 

* 
x = 9 

1---------1---------1---------+----·----1---------1---------1---------
! * 
'* * 

* 
* 

* 
* * 

* ! 

* * x = 11 

Summary of Sec. 5-2 

We have developed a program to use the terminal as a plotter. This ap

pears to give us rough but satisfactory graphs for a variety of functions. 

Problems for Sec. 5-2 

1) Modify GRAPH2 to allow a change of scale. Allow for two different 

scales for the two axes. Use the new program to plot any of the 

following: 
a) y sin x 
b) y = cos x 
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c) y = x - INT(x) 
d) y = x + INT(x) 
e) Y = Vx 

2) You may have noticed that the mechanics of your terminal are such 
that the vertical and horizontal scales are different. On many termi
nals there are 10 characters per inch on the horizontal line and six 
lines per inch on the vertical page. Use the scaling ability of problem 
1 to provide equal scale for both axes relative to the graph. 

3) Modify GRAPH2 to handle more than one function. 

5-3 Plotting Using Data Stored in an Array 
There are some other things we can do with plotting. For instance, we 

can plot a graph that does not have to be rotated to achieve standard orienta
tion. And we might want to plot some nonfunction relation. 

One way to achieve such a capability is to set up a computer array in such 
a way that each storage location of the array corresponds to a coordinate point 
of the graph. We will have some adjustment problems, however, because for an 
array the "starting point" is the upper left corner and for a graph the "starting 
point" is generally nearer the center of things. This difficulty can be handled 
by shifting the "starting point" of the graph to the left and up. Also for an 
array, row numbers increase from top to bottom, and the reverse is true for a 
graph. This problem can be handled by putting the graph into the array "up
side down". 

We can scan through the array inserting numbers which will later be inter
preted to print specific characters. Let us make the graph cover an odd number 
of coordinate points in each direction and make the middle element of the array 
correspond to the origin of the graph. We c,an begin by setting every entry of 
the array to zero, to be ignored when the printing takes place. Then we use a 
'1' to signify the origin, a '2' to signify the horizontal axis, a '3' to signify the 
vertical axis, and a '4' to signify the plotted point. This scheme will allow more 
relations to be handled by using numbers greater than 4 for the additional 
graphs. 

All these features are incorporated in program GRAPH3. The axes are 
shifted, and the y-axis is turned upside down by line 230. The y-axis is entered 
in line 160. The x-axis is entered in line 170. The origin is entered at line 190. 
The use of the variable Ll is to save program storage. It takes less computer 
storage to set Ll equal to L + 1 and then use Ll (rather than L + 1) as long 
as we need this value several times, and moreover it saves typing. On some sys
tems, storage will not be a limitation for a program like this, but if it is, then 
such a procedure is worth using. Line 220 tests to see if the coordinate position 
of the array is on the graph. This depends on our choice for the value oft. If 

However, by increasing the value oft, we can have more points plotted. This 
tends to "fill in" the graph. Lines 110 and all other references to D are 
employed to limit the actual use to only that part of the array that seems neces· 
sary for the graph requested. This will save printing time. As written, the pro
gram causes the printing mechanism to scan the entire line. Considerable print-
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GRAPH3 

94 
100 
102 
104 
105 
106 
107 
110 
120 
130 
140 
142 
144 
150 

- 160 
-170 

!BO 
-190 

192 
194 
200 
210 

-220 
-230 

300 
310 
312 
314 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
492 
494 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
692 
700 

REM * GRAPH F'RDM DATA ENTERED IN AN ARRAY 
DIM AC4B,4Bl 

REM * 0 SPECIF'IES WIDTH AND HEIGHT OF' GRAPH 
REM L IS THE NUMBER OF' SPACES EACH SIDE OF' ZERO 
REM T DETERMINES GRAPH RESOLUTION 
REM LI IS USED TO SAVE TYPING L+I REPEATEDLY 
LET D = 21 
LET L = <D-1 l/2 
LET T = • 4 
LET LI = L+I 

REM * ENTER AXES AND ORIGIN IN THE ARRAY 
F'0R I = I TD D 

LET A<Ll• I> 3 
LET A(!, Lt> 2 

NEXT I 
LET ACLl•LI> =I 

REM * NOW INSERT 4' S TD DESIGNATE PLOTTED POINTS 
F'OR Y = -L TD L 

F'0R X = -L TO L 
IF' ABS< •5*X+3-Y > > T THEN 300 

LET AC X+LI , D-CY+Ll > = 4 
NEXT X 

NEXT Y 

REM * THE VALUES ARE STORED NOW PRINT 
PRINT TABCLllJ "Y" 
F'DR Y = I TO D 

F'OR X = I T0 D 
PRINT TAB<X>J 

IF' ACX,Y> 0 THEN 380 
G0SUB 500 

NEXT X 
PRINT 

NEXT Y 
PRINT TAB<L>J "-Y" 
ST0P 

REM * PRINTING SUBROUTINE 
IF' ACX,Y> 2 THEN 550 
IF' A<X•Y> 3 THEN 580 
IF' ACX,Y> = 4 THEN 610 

PRINT "+"J 
RETURN 

IF' <X-Lll/10 INT< CX-Lll/10 >THEN 590 
PRINT "-''J 
RETURN 

IF' <Y-Lll/10 INT< <Y-Lll/10 > THEN 560 
PRINT "!"; 
RETURN 
PRINT "*"J 
RETURN 

END 

69 

ing time could be saved by sending the printing head back to the beginning of 
the new line as soon as the last point is printed. This is left as an exercise. 

Three runs of GRAPH3 are presented. The first RUN is the straight line of 
the first RUN of program GRAPH2; the second RUN is the parabola of the 
second RUN of GRAPH2; and the third RUN is a circle with radius 10 and 
center at the point (2,- 3). Note that as with the graphs of Sec. 5-2, these graphs 
are distorted by the fact that the space occupied by a single character on the 
printed page is higher than it is wide. 
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RIJN 
GRAPH3 

* 

y 

! * 
* * ! 

* 
* 

* 

* 
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130 LET T = • 6 
~>o IF ABSC -.4*Xt2-X+8-Y l > T THEN 300 
RIJN 
GRAPH3 

* 

* 

y 

! * 
! * 

!---*-----+---------! 
* 

* 

-Y 

* !-~~*-----+---~-----! 

110 LET D = 29 
130 LET T = 5 

* 
* 

* 
* 

* 

* 

-Y 

220 IF ABSC CX-2lt2+CY+3lt2-IOO l > T THEN 300 
RUN 
GRAPH3 

* 
* 

* 
* 

y 

***** * ! * 
* 
* * 

* 
-~~-!---------+---~-----!----

* ! * 
* 
* 
* 
* 

* 
* 
* * ! * 

***** 
-Y 

* 
* 

* 

* 
* 
* 
* 
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Summary of Sec. 5-3 

GRAPH3 gives us the ability to deal with many kinds of graphs fairly 
easily. The graph can be oriented in the conventional manner, and we can see 
that the ability to graph more than one relation on one set of axes is a direct 
extension of the current program. 

Problems for Sec. 5-3 

1) Modify GRAPH3 to stop printing when the last character of the cur
rent line has been printed. 

2) Modify GRAPH3 to permit two relations to be plotted. Use your pro
gram to find the approximate points of intersection of y = 2x 2 

+ x - 1 and y = 3x + 4. 
3) Use the ideas of GRAPH3 to write your name. That is, store points 

to be printed in an array. If you have a long name, maybe you'd 
rather use the word BASIC. This exercise may be a little tedious, but 
fun. 

4) Rewrite GRAPH3 so that the origin does not have to be the center 
point of the array. 

5) We get an interesting effect if instead of plotting points, we plot spaces. 
That is, where there is no point on the graph, print an asterisk, and 
where there is a point, leave the location on the paper blank. Try this. 

6) Modify GRAPH3 to allow different scales for the two axes. Then plot 
a large circle to see how well you can d.o. 

7) On some systems, the array size allowed is limited enough to make 
some plots not practical if we use the methods of this section. One 
way to program around this is to notice that there is a tremendous 
amount of wasted storage in each element of the array itself. Note 
that for up to six relations GRAPH3 requires only a one digit number 
to store the information required for graphing. Since most computers 
provide at least six digits, by using each of those digits we can increase 
the storage by a factor of six. Write a graphing program to use this 
additional storage space. 

8) One method for obtaining larger graphs is described in problem 7. 
Another procedure would be simply to analyze the graph one line at a 
time. Try this. 
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6-1 Introduction 

EA 
A 

UN 
c 

Let us consider a moving object. At constant speed, the distance traveled 
is simply its speed multiplied by time. If an object travels 15 feet per second for 
5 seconds, it will travel 75 feet. However, it is often true that the speed of an 
object is not constant. Suppose the graph of Fig. 6-1 represents an object in 
nonconstant motion. The distance the object has traveled at time t is the area 
under the graph from the origin to t. For Fig. 6-1 that area is a convenient 
geometric shape. We get Area = A = t*60*3 = 90 ft. 

70 
60 

~ 50 .,, 
::: 40 

30 

20 
10 

2 3 4 5 

Figure 6-1 

Now suppose a graph does not provide such a convenient geometric shape, 
as in Fig. 6-2. 

72 
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Area Under a Curve 

seconds 

Figure 6-2 
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To find the total area of such a shape, we can subdivide the area into many 
smaller segments, find the area of each segment, and sum up the individual areas. 
All we have to do is decide what kind of smaller segments to use and how large 
they should be. Consider Fig. 6-3. 

Figure 6-3 

Figure 6-3 subdivides the area into rectangles so constructed that each one 
falls completely within the desired area. Thus we know that the sum of these 
areas will be less than the actual area. We could alternatively place the rectangles 
as shown in Fig. 6-4. But that would have the opposite effect on the accuracy. 
Another possibility is to construct the rectangles so that the midpoint of the top 

Figure 6-4 
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side is a point of the curve, as shown in Fig. 6-5. Now we have some area in
cluded by the rectangles that is not included by the actual curve and some area 
included by the curve but excluded by the rectangles. Thus we expect some 
cancelling-out effect. 

Figure 6-5 

Let us begin by writing a program to sum up the area shown in Fig. 6-5. 
In order to test the program, we can make our first function contain a known 
area. We choose a semicircle derived from the circle (x - 5)2 + y 2 = 25. 

This circle has a radius of 5 and its center at the point (5,0), as shown in 
Fig. 6-6A, and so the area we expect is f n r 2 or (rr*52 )/2. 

y 

(0,0) (10,0) 

Figure 6·6A 

The curve we are considering is in fact a function from 0 to 10 for x. 
Solving (x - 5)2 + y 2 = 25 for y 2

, we get 

y 2 = 25 - (x -5)2 

and 

y -./25 - (x - 5)2 
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For the shaded area of Fig. 6-6A, the function is 

y = f(x) = y25 - (x - 5)2 

Thus we can easily define a computer function as follows: 

100 DEF FNS(X) = SQR(25 - (X-5)t2)) 

For this problem we can begin by taking 10 intervals one unit wide. Then the 
midpoint of an interval will be x - .5, and the height of the rectangle will be 
FNS(X - .5). See Fig. 6-6B and program AREAl. 

AREAi 

94 
95 
96 

-100 
110 
120 
130 
132 
134 
140 
!'so 
152 
154 
160 
162 
164 
170 
180 
182 
190 
200 
RUN 
AREAi 

y 

Figure 6-68 

REM * THIS PROGRAM COMPARES THE AREA OF A 
REM SEMICIRCLE FOUND BY FORMULA AND BY 
REM SUMMING AREAS 0F RECTANGLES. 
DEF FNSCXl = SQRC 25-CX-5lt2 l 
LET A= 3.14159*25*•5 
PRINT "AREA OF SEMICIRCLE BY FORMULA ="J A 
LET A = 0 

REM * THE LENGTH OF THE BASE IS B 
LET B = I 
F0R X = I T0 I 0 

REM * THE HEIGHT IS H 
LET H = FNSCX-.S> 

REM * THE AREA OF CURRENT RECTANGLE IS B*H 
LET A = A + B*H 

NEXT X 

PRINT TABC3lJ "AREA BY SUMMING RECTANGLES ="I A 
END 

AREA OF SEMICIRCLE BY FORMULA = 39.2699 
AREA BY SUMMING RECTANGLES = 39.6499 

The relative error is about .38 in 39 or about 1%. We can improve on this 
by taking smaller intervals within the accuracy of the computer. 

Let's rewrite program AREAl to allow varying widths of intervals. We can 
take the b = 1 out of the x loop and allow the value of b to be read from data. 
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Now since the width of interval will change according to the value of b, the mid

point of the interval will be x - b/2, and the value of x must be successively 

incremented by b, the interval width. While we are at it, let us allow the value of 

x to have a variable range read as data. This is done in lines 140 and 160 of 

AREA2. 

AREA2 

94 
95 
96 
97 
100 
110 
120 
130 

-140 
ISO 

-160 
170 
180 
190 
192 
200 
210 
212 
214 
220 
230 
240 
250 
RUN 
AREA2 

rR0M 
0 
0 
0 
0 

REM * THIS PR0GRAM SUMS RECTANGLES T0 
REM APPR0XIMATE AN AREA ALL0WING THE 
REM WIDTH 0r THE RECTANGLES T0 BE READ 
REM AS DATA. 
DEr rNS<X> = SQR< 25-<X-5>•2 ) 
PRINT "F'R0M"• "IN'TERVAL"• "T0 .. ,, "AREA" 
READ 8 

Ir 8 = 0 THEN 250 
READ P-.T 
LET A = 0 
r0R x = r+B T0 T STEP 8 

LET H • rNS< X-812 > 
LET A = A + B*H 

NEXT X 

PRINT r, 9, T. A 
G0T0 120 

REM 
DATA 1,0,10. o5o0ol0 
DATA .1.o, 10, .01.0, 10 
DATA 0 
END 

INTERVAL 
I 
,5 
.1 
.01 

T0 
10 
10 
10 
10 

AREA 
39.6499 
39.4051 
39.2115 
39. 26 74 

The results of AREA2 do indeed give successively more accurate approxi

mations of the area. 
Now we run AREA2 for the function, 

f~) = 2x3 - 2x2 + x + 5 

from -3 to 11 for x. For a graph of this function, see Sec. 5·2. 

100 DEr rNS<X> = 2*X•3 - 2*X•2 + x + 5 
220 DATA 1,-3, 11, .5.-3.11 
230 DATA .05.-3.11 
RUN 

rR0M 
-3 
-3 
-3 

INTERVAL 
I 
.5 
.05 

Tl1J 
II 
II 
II 

AREA 
6475 
6494.25 
6500.62 
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Summary of Chapter 6 

We have developed a routine that approximates the area under a curve for 
functions. The method used is to sum up areas of rectangles whose heights are 
determined by the midpoint of the intervals. (There are several other methods, 
which are left as exercises.) 

Problems for Chapter 6 

1) Find the area enclosed by y = x + 3 and y = x 2 
- 8x + 17. 

2) Find the area enclosed by y = - 3x2 + 4x + 2 and the line y = - 3. 
3) Another procedure for finding area under a curve is called the trapezoid 

method. This is done by inscribing trapezoids instead of rectangles 
under the curve. Write a program to use the trapezoid method. 

4) Write a program that begins with a specified width and automatically 
makes the subdivisions smaller until the new approximation does not 
differ from the old approximation by more than some percentage error, 
say .01%. 

5) Write a program to approximate area by making the first interval the 
whole domain and each subsequent interval one half the previous 
interval. Have the computer stop when the percentage change is less 
than, say, .01%. 

6) A method always as accurate and usually more accurate than the trape
zoid method is Simpson's rule. Simpson's rule requires an even number 
of intervals and is given by the following (see Fig. 6-7): 

w 
A = g (f1 + 4f2 + 2{3 + 4{4 + · · · + 2fn-2 + 4fn-1 + fn) 

Write a program to use Simpson's rule. 

Figure 6·7 

7) Use the ideas of this section to find the length of the graphed line of a 
continuous function instead of the area. 
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7-1 Points in a Plane 

In the Cartesian coordinate system, points in a plane are named by ordered 

pairs of real numbers. A point is labeled p(x,y), where the first number is called 

the x-coordinate and the second is called they-coordinate. As we consider the 

ordered pairs of numbers associated with a point or set of points, many geo

metric relationships unfold. For two points in a plane, we can look at the dis

tance between them or consider the straight line they determine. For three 

points in a plane, we may be interested in whether or not they fall on a straight 

line, that is, are collinear. If not collinear, then three points determine a tri

angle which has many properties of interest. We may examine many other com

mon geometric figures such as quadrilaterals, circles, parabolas, etc. It is the 

purpose of this chapter to study some of these topics, using the computer to 

assist us. 

7-2 Pairs of Points 

Consider the two points A(3,5) and B(3, -1), as shown in Fig. 7-1. Clearly 

the distance AB from A to B is six units, usually stated simply as 6. We define 

the distance between two points with the same x-coordinate as the absolute 

value of the difference in Y-coordinates. (For two points with the same y

coordinate, the distance is defined as the absolute value of the difference in 

x-r.oordinates.) Thus in Fig. 7-1. 

AB = 15 - (-l)J = 15 + 11 = 6. 

Left only with this definition we would have a very limited ability to determine 

distance. We should, however, be interested in determining distance for any 

two points whatever their coordinates. 
78 
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e 
A(3,5) 

• 8(3, -1) 

Figure 7-1 

For the points A(3,5) and B(-1,2), we may find the distance by plotting 
the points and constructing a right triangle, as shown in Fig. 7-2. 

8(-1,2) 

A(3, 5) 

I 
1 Ac= J s- 21=3 
I 

___ ..de 
BC= I 3 - (-1) I= 4 

Figure 7-2 

Using the Pythagorean Theorem, 

or 

so that 

AB2 
= BC2 + AC2 

AB = VBC2 + AC2 

AB = V4 2 + 32 

AB = y'25 

AB= 5 

It is evident that for any two points A(x 1 ,yi) and B(x 2 ,y2 ) we have the 
relationships shown in Fig. 7-3. 
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Using AB 

Advanced BASIC 

I 
I AC= I Y2 - y ii 
I 

______ .de 
BC=lxz-xd 

Figure 7~3 

VBC2 + AC2
, we get 

AB = Vlx2 - X11
2 + IY2 - Y11 2 

but since the square of a number equals the square of its absolute value, we get 

This is known as the distance formula. 
We shall now find distances for pairs of points. The distance formula 

translates readily into the BASIC statement: 

200 LET D = SQR ( (X2 - Xl) t2) + (Y2 - Yl) t2) 

All that remains is to get coordinate pairs read into the computer and results 
printed out. This is done in program DISTl. 

DIST! 

94 
95 
100 
150 
160 
170 
160 
190 
192 
194 

-200 
210 
222 
230 
RUN 
DIST! 

REM * THIS PR0GRAM FINDS THE DISTANCE AB 
REM r0R THE C00RDINATES CXJ,Yl> AND CX2,Y2) 
PRINT "T0 rIND THE DISTANCE BETWEEN TW0 POINTS" 
PRINT 
PRINT "P01NT A"J 
INPUT XI.YI 
PRINT "POINT B"J 
INPUT X2.Y2 

REM * CALCULATE DISTANCE AND PRINT IT 
LET D = SQRC CX2-Xll•2 + CY2-Yll•2 > 
PRINT "DISTANCE AB ="J D 

END 

T0 r!ND THE DISTANCE BETWEEN TW0 P01NTS 

P01NT A?J,5 
P01NT B?-1,2 
DISTANCE AB = 5 
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Program DISTl works fine for a single pair of points. But suppose we 
had several pairs of points. We may simply request the number of calculations 
desired and use FIJ}R-NEX'l', as shown in DIST2. 

DIST2 

94 
95 
100 
110 
120 
130 
132 
140 
ISO 
160 
170 
IBO 
190 
192 
194 

-200 
210 
220 
222 
230 
RUN 
DIST2 

REM * FINDS DISTANCE r0R PAIRS 0F P0INTS 
REM PERMITS M0RE THAN 0NE SET 0r DATA 
PRINT "T0 FIND THE DI STANCE BETWEEN TW0 
PRINT 
PRINT "N0W MANY PAIRS"J 
INPUT N 

F0R I = I T0 N 
PRINT 
PRINT "P0 INT A"J 
INPUT XI.YI 
PRINT "P0 INT B"J 
INPUT x2,y2 

REM * CALCULATE DISTANCE AND PRINT IT 
LET D = SQRC CX2-Xl)t2 + CY2-YJ>t2 > 
PRINT "DISTANCE AB ="J D 

NEXT I 

END 

T0 rIND THE DISTANCE BETWEEN TW0 P0INTS 

N0W MANY PAIRS?2 

P0 INT A? 3, 4 
P01NT B?o.o 
DI STANCE AB = 5 

P01NT A?-3.4, 5.75 
P0 INT B? 3. 1251 2 
DISTANCE AB = 7.52583 

P0 INTS" 

For any two points A and B, it can be shown that the coordinates of the 
midpoint of segment AB are found by taking the average of the corresponding 
coordinates of A and B. 'l'hus the midpoint of AB for A(x 1 ,yi) and B(x2 ,y2 ) is 

It is left as an exercise for the reader to write a program to give coordinates of 
midpoints. 

Where coordinates of two points are known, another property of interest 
is the slope of the line they determine. 'l'he slope is the ratio of the change in 
y-coordinates to the change in x-coordinates, or 

Y2 - Y1 Slope = m = ----

Thus for A(l,3) and B(5,6), 
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6 - 3 3 
m 

5 - 1 4 

and for A(3, -4) and B(l,6), 

m = 
6 - (-4) 

1 - 3 

10 

-2 
-5 

Note that slopes up and to the right are positive and slopes up and to the 
left are negative. A short program can easily be written to make the above cal
culation, as shown by program SLQ}PE. 

SLOPE 

100 
110 
120 
130 
140 
142 
150 
160 
170 
180 
190 
192 
194 

PRINT "THIS PROGRAM FINDS THE SLOPE OF AB" 
PRINT 
PRINT "H0W MANY PR0BLF.:MS"J 
INPUT N 
F0R I = I T0 N 

PRINT 
PRINT "P0 INT A"J 
INPUT XI, YI 
PRINT "PO INT B"J 
INPUT X2,Y2 

-- 230 
240 
250 
252 
260 
RIJN 
SUJPE 

REM * CALCULATE SL.OPE AND PRINT IT 
LET M = CY2·Yll/CX2·XI> 
PRINT "SLOPE ="J M 

NEXT I 

END 

THIS PROGRAM FINDS THE SL0PE OF AB 

H0W MANY PROBLEMS?2 

POINT A?O,O 
POINT 8?4,5 
SUJPE = 1.25 

POINT A?3,6 
POINT 8?5,-3 
SL.OPE =-4.5 

Look at line 230 in program SLl;1>PE. Note that we instruct the computer 
to perform division. When two points have the same x-coordinate, division by 
zero is required, which is a mathematically, and thus computationally, unde
fined condition. The program should be modified to test the value of x 2 - x 1 

before allowing division to take place. This is left as an exercise for the reader. 
The idea that two points determine a line has been referred to several 

times. It can be shown that any line in a plane can be described by an equation 
of the form ax + by + c = 0, where a, b, and c are constants. This is called 
the general form of the equation. It can also be shown that all nonvertical lines 
can be described by an equation of the form y = mx + k, where m is the slope 
as defined earlier and k is the value of y when x = 0, that is, the value of y 
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Figure 7-4 

where the line crosses the y-axis, called the y-intercept, as shown in Fig. 7-4. 
'I'he form y = mx + k is called the slope-intercept form. 

If we are given two points, we can find m in y = mx + k. Then we can 
get a value for k by solving y = mx + k for k to get k = y - mx. With a 
value for m and a value for k, we can write the equation of the line in slope
intercept form by using program LINEl. 

LINEI 

94 
95 
96 
97 
100 
110 
120 
130 
140 
150 
152 
154 

-160 
170 
ISO 
182 
184 
185 
190 
200 
210 
220 
222 
224 
230 
240 
250 
RUN 
LINEI 

REM * THIS PROGRAM PR0DUCES THE EQUATI0N 0F A LINE 
REM IN SL0PE-INTERCEPT FORM GIVEN COORDINATES FOR 
REM TWO P0INTS 0N THE LINE· THE PR0GRAM USES X 
REM A CONSTANT F0R VERTICAL LINES 
PRINT "EOUATHJN OF A STRAIGHT LINE IN" 
PRINT "SL0PE-INTERCEPT FORM GIVEN TWO POINTS" 
READ Xl1Yl1 X2,Y2 

IF XI = .QOI THEN 250 
PRINT 
PRINT "C"J XIJ ","; YlJ ">, C"J X2J ","J Y2J ">" 

REM * TEST FOR DEFINED SLOPE 
IF X2-XI <> 0 THEN 190 

PRINT "EQUATHJN IS: X ="J XI 
G0T0 120 

REM * CALCULATE SLOPE AND INTERCEPT 
REM THEN PRINT SOLUTI0N EGUATI0N 
LET M = CY2-Yll/CX2-XI> 
LET K = YI - M*XI 
PRINT "EQUATION IS: Y ="J MJ "*X+C"J KJ ">" 
G0T0 120 

REM 
DATA 
DATA 
END 

3,4, S,6, -1,6, 
.001.0, o .. o 

EQUATI0N 0F A STRAIGHT LINE IN 
SL0PE-INTERCEPT FORM GIVEN TWO P0 INTS 

C3 ,4 ),(5 
EQUATI0N IS: Y = I 

C-1 • 6 >.C-1 
EQUATI0N IS: X =-I 

' 6 
*X+C I 

• 3 
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Summary of Sec. 7-2 
For two points we have found the coordinates of the midpoint of the seg

ment they determine. We have found the distance, the slope, and the equation 
of the line in slope-intercept form. 

Problems for Sec. 7-2 
1) Modify program SLC/:>PE to accommodate data for which the slope is 

undefined. 
2) Write a program to calculate the coordinates of the midpoint for pairs 

of points. 
3) Modify program LINEl to treat a horizontal line as a special case. 
4) Modify program DISTl or DIST2 to give the distance in simplified 

radical form. 
5) Modify LINEl to give the slope as a decimal, integer, or fraction 

reduced to lowest terms as appropriate. 
6) For an equation in slope-intercept form, have the computer give a 

table of (x,y) values suitable for graphing. 
7) For an equation in general form, have the computer give a table of 

(x,y) values suitable for graphing. 
8) For a set of n points, write a program to give equations for all pos· 

sible pairs of points. Enter the n points as DATA and store them in 
a 2 by n array or in a pair of lists. 

9) For problem 8, have the computer eliminate duplicate points and 
therefore duplicate lines in the output. 

10) Write a program to write the equation of a line, given two points, in 
ax + by + c = 0 form. Treat vertical and horizontal lines as special 
cases. 

11) Modify program LINEl to find the slope and y-intercept as fractions 
reduced to lowest terms, if appropriate. 

7-3 Parallel and Perpendicular Lines 

What happens when we begin to think about more than one line in a plane? 
Lines either intersect or they don't. If they don't, then the lines are parallel, 
in which case their slopes are equal unless the lines are vertical, making both 
the slopes undefined. If the lines intersect, then they might be perpendicular. 
What about the situation for perpendicular lines? Consider Fig. 7 -5. 

and 

Note that the slope of 11 is positive and the slope of 12 is negative. Thus, 

d1 

t 

dz 
m2 = --

t 

(7-1) 

(7-2) 

Since 11 and 1z are perpendicular, right triangles ABC and AB
1
C are similar and 

(7-3) 
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y 

Figure 7-5 

because ratios of lengths of corresponding sides of similar triangles are equal. 
Since 

= - !!:2 
t 

we get 

t 1 

Substituting from (7-1) and (7-5) above into (7-3), we get 

1 

which gives 

m1 =-
m2 

(7-4) 

(7-5) 

(7-6) 

(7-7) 

That is, for perpendicular lines having slopes m 1 and m2 , the product of 
the slopes is -1, or the slopes are negative reciprocals of each other. 

We can use the parallel and perpendicular properties for a variety of prob· 
!ems. We can test lines to see if they are either parallel or perpendicular. We can 
find the equation of a line through a fixed point parallel or perpendicular to 
another line. We can write the equation of a line which is the perpendicular 
bisector of a segment. 

We shall now present a program to give an equation for the line through a 
given point perpendicular to the line determined by a pair of given points. There 
are many conditions that we must account for. Suppose the given points deter
mine a vertical or a horizontal line? We might even be given the same point 
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Begin 
equation 
subroutine 

Yes 

Yes 

Advanced BASIC 

Start 
PERP 

READ X1, Y1, X2, Y2 
The points are ( X1, Y1) 
and(X2,Y2) 

PRINT 
"x="; XO 
Solution line 
is vertical 

(_EN_D ) 

G¢sus 
equation 
subroutine 

No 

PRINT 
''y=";YO 
Solution line 
is horizontal 

Yes 

Calculate slope 
and y-intercept 
of solution line 

Print the 
equation in 
slope- intercept 
form 

Figure 7-6 Flowchart for finding the equation of a line given one point on 
the line and two points determining a line perpendicular to it. 
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twice. A flowchart should be helpful in organizing these conditions. See Fig. 
7-6 and program PERP. 

PERP 

94 
95 
96 
97 
98 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
492 
494 
500 
510 
520 
530 
532 
534 
540 
550 
560 
562 
564 
570 
580 
582 
584 
590 
600 
602 
604 
610 
620 
630 
640 
650 
652 

REM * THIS PROGRAM ATTEMPTS T0 WRITE AN EQUATION 
REM r0R A STRAIGHT LINE CONTAINING THE GIVEN POINT 
REM cxo.YO) AND PERPENDICULAR TO THE LINE 
REM DETERMINED BY THE GIVEN POINTS ext.YI) 
REM AND CX2,Y2). 
READ xo,yo 

Ir XO = .001 THEN 800 
READ x1,y1, x2,y2 
PRINT 
PRINT "LINE THROUGH C"1 XD1 "•"1 YD1 ">" 
PRINT "PERPENDICULAR HJ THE LINE THR0UGH POINTS" 
PRINT "<"J XlJ ","J YlJ ")11 C"J X2J ","J Y2J ")" 
PRINT EQUATION IS: "1 
GD SUB 500 
GDT0 I DO 

REM * 
LET V 
LET H 

SUBROUTINE T0 DETERMINE AND PRINT EQUATION 
Y2-YI 

IF" 
ff 

X2-XI 
V <> 0 THEN 560 
H <> 0 THEN 590 

REM * THE TW0 GIVEN POINTS COINCIDE 
PRINT "N0T UN I QUE" 
RETURN 

Ir H <> 0 THEN 610 

REM * SOLUTION LINE IS H0RIZ0NTAL 
PRINT "Y ="1 YO 
RETURN 

REM * SOLUTION LINE IS VERTICAL 
PRINT "X ="1 XO 
RETURN 

REM * DEFINED NON-ZERO SLOPE 
LET M = V/H 
LET MO= -1/M 
LET K = YO - MO*XD 
PRINT "Y ="J MOJ "*X+C"J KJ ")" 
RETURN 

704 REM 
710 DATA 
720 DATA 
730 DATA 
800 END 

RUN 
PERP 

1,2, 41111141?11 
5, ~2, 6,4,6,-8 .. 
.001, 0 

LINE THROUGH C I , 2 > 

4, 3, 
3, g, 

-1.9,4,5 
18,5,-11,5 

PERPENDICULAR TO THE LINE THROUGH POINTS 
(4 ,7 ),(4 ,7) 

EQUATION IS: NOT IJNIOIJE 

LINE THROUGH C 4 
PERPEND I CUL AR Tel 
C-1 ,9 ),( 

EQUATION IS: Y 

, 3 
THE LINE THROUGH POINTS 

4 , 5 
1.25 *X+C-2 

LINE THROUGH C 5 ,-2 ) 
PERPENDICULAR TO THE LINE THROUGH POINTS 

6 ,4 ),(6 ,-8) 
EQUATION IS: Y =-2 
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LINE THROUGH < 3 , B > 
PERPENDICULAR TD THE LINE THROUGH POINTS 
(18 ,5 ),(-11 ,5) 

EQUATION IS: X = 3 

Summary of Sec. 7-3 
We have examined pairs of lines in a plane. If they are parallel and non

vertical, their slopes are equal. If two lines are perpendicular and neither is 
ve1ticai, the piu<luct or their slopes is -1. 

Problems for Sec. 7-3 
1) Change program PERP to write the equation of the new line parallel 

to the line determined by the given pair of points. 
2) Write a program to give the equation of the perpendicular bisector of a 

segment, given its endpoints. 
3) For two pairs of points entered as DATA, have the computer deter

mine if the specified lines are parallel or perpendicular. Be sure to 
permit vertical lines. 

4) For two lines given in ax + by + c = 0 form, have the computer 
determine whether the lines are parallel, perpendicular, or neither. 

7-4 Point of Intersection of Two Lines 
We can define two lines to work with in several ways. One is to give a pair 

of points to define each line. Another is to give an equation in the form y = 

mx + k by specifying m and k for each line. Yet another is to give equations in 
the form ax + by + c = 0 by specifying (a,b,c) for each line. We may become 
more familiar with the general form by working with data for equations in the 
form (a,b,c). 

Given two lines, 

0 (7-8) 

and 
(7-9) 

and the need to find the point of intersection, we must find a coordinate pair 
(x,y) that fits both equations. That is, we have to solve the equations simultan
eously. Since the computer does not "do algebra," we will have to. 

Rearranging the above equations, we get 

Multiplying Eq. (7-10) through by-a?. and Eq. (7-11) by a, gives 

Adding Eqs. (7-12) and (7-13) produces 

(7-10) 

(7-11) 

(7-12) 

(7 -13) 
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Factoring, we get 

y(a 1 b 2 - a 2 b 1 ) = a 2 c 1 - a 1c 2 

Dividing both sides by a 1 b 2 - a2 b 1 leaves 

ll2C1 - ll1C2 
y = 

a1 b2 - a2 b 1 

Following a similar procedure to solve for x, we get 

b1C2 - b2CJ 
x = 

b2 a1 - b 1a2 

89 

(7-14) 

(7-16) 

(7-17) 

Let's write a program to use the above results to find the point of inter
section, if it exists. Note that in Eqs. (7-16) and (7-17) the denominators are 
equal. So we may use the BASIC statement, 

180 LET D = Al*B2 - A2*Bl 

This will allow us to divide the numerators from Eqs. (7-16) and (7-17) by D to 
obtain the values for y and x, respectively, unless D happens to equal zero. This 
situation would require division by zero, which means that the value is either 
indeterminant or undefined depending on whether the numerator is zero or not. 
Thus, if the value of D is not zero, we have a unique intersection, which we may 
calculate using Eqs. (7 ·16) and (7-17). If D equals zero, we may obtain more 
information about the two lines as outlined in the following discussion. 

D = 0 means the following: 

and therefore 

which may be written 

~ = ll2 

b1 b2 

(7 -18) 

(7-19) 

(7-20) 

To see the significance of this, let's look at the original equations, (7-8) 
and (7-9). They are a 1x + b 1y + c 1 = 0 and a 2 x + b 2y + c 2 = 0. Solving 
each for y we get: 

ll1X C1 
y -- -

b1 b1 
(7-21) 

and 

ll2X C2 
y 

bz b2 
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Now the equations are in y mx + k form. Notice that the slope of line 1 in 
Eq. (7-21) is -a 1 /b 1 and of line 2 in Eq (7-22) is -a2 /b2 unless bi or b2 is zero. 
Clearly by multiplying both sides of Eq. (7--20) by -1 we get 

- !:.!._. = - ~ 
b1 b2 

(7-23) 

Since the two sides of Eq. (7-23) are the slopes of the lines in Eqs. (7-21) and 
(7 -22), that makes line 1 parallel to line 2. To sum up, if D = 0, then the lines 
are paraiiei and there is no soiution uniess bi or b2 is zero. 

T'Jov~' :;uppose that either b1 or b2 is zero when D ~ 0. Looking at Eq. 
(7-19), if bi = 0 then either a i or b2 is also zero. Now, if Eq. (7-8) is not 
meaningless, that means that b2 must also be zero. If bi and b2 are both zero, 
we get 

aix + = 0 or x = 
C1 

(7 -24) Ci 
ai 

ll2X + C2 = 0 or x = 
C2 

a2 
(7-25) 

in which case both lines are vertical because x is constant. If what we are look
ing for is the point of intersection, there won't be any unless the two equations 
define the same line, in which case all points on one line will also lie on the other. 

We really have three levels of information to test for. First we want to 
know if the lines intersect in a single point. If they do intersect in a single point, 
then we want the coordinates of that point. If they don't intersect in a single 
point, then it is useful to know whether or not they are vertical, because if one 
is, they both are. And finally, we can determine whether or not they coincide. 
If they coincide, the solution is indeterminant. If they do not coincide and 
are parallel, we say the equations are inconsistent. A flowchart should help to 
sort out all of the above considerations. See Fig. 7-7 and program Pq'.>INT. 

Start 
P0JNT 

END~ 

Figure 7-7 Flowchart for program POINT (cont'd on next page) 



D = Al*B2-A2*81 
Calculate the value of 
the denominator to be 
used later 

N1 =A2*C1 -A1*C2 
N2= Bl H2 - B2*C1 
X =N2/D 
Y =Ni/D 
calculate solution 

PRINT "S0LUTION IS: 
( 111 xi II' II; Y; 11)11 
output coordinates 
of solution point 
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POINT 

94 REM * THIS PR0GRAM rINDS THE P0INT 0r INTERSECTION 
95 REM r0R TW0 LINES GIVEN IN AX+BY+C=O r0RM· HANDLES 
96 REM INDETERMINANT AND INC0NSI STENT CASES. 
100 READ T 
110 Ir T = 0 THEN 500 
I 12 
114 REM * READ C0Err!CIENTS r0R B0Tll LINES 
120 READ AJ,Bl,CI• A2,B2.C2 
130 PRINT 
132 

140 
i50 

PRINT TABCIO>J "LINES" 
?R!rrr 
PRINT 
PRINT 

TABCIO>J "AND" 
A2J "*X+C"J B2J ">*Y+C"J C2J 0

) 

REM * IF Al*B2-A2*BI <> 0 THEN THERE IS 
REM A UNIQUE S0LUTI0N 
LET D Al*B2 - A2*BI 

Ir D <> 0 THEN 300 

O" 
160 
170 
172 
174 
175 
180 
190 
192 
194 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
292 
294 
300 
310 
320 
330 
340 
350 
352 
394 
400 
410 
420 
430 
440 
500 

REM* WE C0ULD TEST F0R B2 0 WITH THE SAME RESULT 
Ir Bl = 0 THEN 240 

RUN 
PO INT 

PRINT "N0N-VERTICAL "J 
Ir Cl/Bl = C21B2 THEN 280 

G0T0 260 
PRINT "VERTICAL "J 

Ir Cl/Al = C21A2 THEN 280 
PRINT "PARALLEL" 
G0T0 100 
PRINT "C0INCIDENT" 
G0T0 JOO 

REM * S0LUTION EXISTS - CALCULATE AND PRINT IT 
LET NI = A2*CI - Al*C2 
LET N2 = Bl*C2 - B2*CI 
LET X = N21D 
LET Y = NllD 
PRINT "S0LUTI0N ISr C"J XJ "•"J YJ ")" 
G0T0 I 00 

REM 
DATA J, 1 .. l 1 1 .. 2,2,2 
DATA J, 1 .. 2 .. 3, 4,5,6 
DATA 1. 3,, o .. 4,, 7,, o .. -8 
DATA 1, S.11 3, to, 10,6,-3 
DATA 0 
END 

LINES 
*X+( l l*Y+( 0 

AND 
2 *X+( 2 l*Y+( 2 0 

NUN-VERT!~AL ~O!N~!UENT 

LINES 
*X+ ( 2 

AND 
l*Y+ < 3 

4 *X+( 5 l*Y+< 6 
S0LUTI0N IS: C I ,-2 

0 

0 
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LINES 
3 *X+C 0 l*Y+< 4 0 

AND 
7 *X+C 0 l*Y+C-8 0 

VERTICAL PARALLEL 

LINES 
5 *X+C 3 l*Y+C 10 0 

AND 
10 *X+C 6 >*Y+C-3 0 

N0N-VERT!CAL PARALLEL 
; 

Summary of Sec. 7-4 

We have found the intersection of two lines for which the equations are 
given in standard form. Consideration has been given to the special cases of 
parallel and coincident lines. 

Problems for Sec. 7-4 

1) Write a program to find the intersection of two lines with equations 
given in slope-intercept form. 

2) Write a program to find the intersection of two lines given two points 
on each line. 

3) Write a program to find the distance from a point to a line, given the 
equation of the line in ax + by + c = 0 form. You may use 

lax + by + cl 
va2 + b2 

d = 

4) Write a program to find the distance from a point to a line, given two 
points on the line. 

7-5 Three Points in a Plane 

If we are given two points, we know that they lie on a straight line, but if 
we are given three points, they may or may not lie on a straight line, that is, they 
may or may not be collinear. If they are not collinear, there are many questions 
we may ask. 

Let us look at three points, A(x 1 , y 1 ), B(x2 , y 2 ) and C(x3 , y 3 ), to deter
mine if they are collinear. Suppose for the moment that if they are, the line 
containing them is not vertical. One way to see if they are collinear is to look 
at the slope of AB and the slope of BC. If the two slopes are equal, then the 
points are on a single line. 

Now suppose that we select points (1, 2), (1, 4) and (2, 3) as DATA. 
Clearly the slope ciµculation will produce an undefined condition due to an 
attempt to divide by zero. We need to check for equal x-coordinates. We need 
onlycheckx 1 = x 2 andx2 = x 3 • lfx 1 = x2 ,whataboutx1 - x 2 ? Notice 
that x 1 - x 2 would be zero. Now we see that if (x 1 - x 2 )(x 2 - x 3 ) = 0, 
then either AB or BC, or both, are vertical segments. Or, to put it another way, 
if (x 1 - x 2 )(x2 - x 3 ) is not zero, then neither AB nor BC is vertical, and it is 
safe to instruct the computer to calculate the slopes of both segments. See 
especially line 190 in program C(,t)LIN. 
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C0LIN 

94 REM * THIS PR0GRAM DETERMINES WHETHER 0R N0T 
95 REM THREE P0INTS IN A PLANE ARE C0LLINEAR. 
96 REM IT ALL0WS F0R P0INTS IN A VERTICAL LINE. 
100 READ T 
110 Ir T = 0 THEN 900 
120 PRINT 
130 READ x1.v1. x2.v2. X3.Y3 
140 PRINT "C"J XIJ "• 1'J YIJ ">•"J 
150 PRINT "C"J X2J "• .. , Y2J "> AND 11 J 
160 PRINT ''C''J X3J ''•''J YJJ ''>'' 
t llJ i.F.i IJ'I 

IBO LET D2 = X2•X3 

184 
185 

REM * Ir Dl*D2 N0N·ZER0 THEN NEITHER 
REM SEGMENT IS VERTICAL 

Ir Dl*D2 <> 0 THEN 300 
Ir DI <> 0 THEN 400 
Ir D2 <> 0 THEN 400 

-·190 
200 
210 
212 
214 
220 
230 
292 
294 
300 
310 
312 
314 
320 
330 
340 
400 
410 
492 
494 
500 
510 
520 
530 
540 
900 
RUN 
CeJLIN 

REM * AT THIS P0INT B0TH SEGMENTS ARE VERTICAL 
PRINT "VERTICALLY C0LLINEAR" 
G0T0 I 00 

REM * CALCULATE 80TH SL0PES 
LET Ml = <Yl-Y2)/DI 
LET M2 = <Y2-Y3)/D2 

REM * Ir SL0PES N0T EQUAL THEN P0INTS N0N-C0LLINEAR 
Ir Ml <> M2 THEN 400 

PRINT "C0LLINEAR" 
G0T0 JOO 
PRINT "N0N-C01.LINEAR" 
G0T0 100 

REM 
DATA 1. 6 .. s .. 0,1, 
DATA 1. 1,,2 .. 3,4,, 
DATA 1. 1 .. 2. 1 .. 4 .. 
DATA 1. 5, 2. 5, -3, 
DATA 0 
END 

( 6 ' 5 ), ( 0 ' 7 
C0LL !NEAR 

( I , 2 ), ( 3 , 4 
N0N-C0LLINEAR 

( I , 2 ) . ( . 4 
N0N-C0LLINEAR 

( 5 , 2 ), ( 5 .-3 
VERTICALLY C0LLINEAR 

-9.10 
5,7 
2,3 
5,50 

J AND (-9 ' 10 

> AND ( 5 , 7 

AND ( 2 , 3 

) AND ( 5 , 50 

Triangles (The Noncol!inear Case) 

It should be clear that if three points in a plane are noncollinear, they are 

properties to consider. To name only a few possibilities, we can calculate the 
area using Hero's formula; we can test to see if the triangle is acute, right, or 
obtuse; we can find the centroid where the medians intersect; we can find the 
orthocenter where the altitudes intersect; and we can find the lengths of the 
altitudes. 
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Suppose we first look for a right triangle. There are at least two proce
dures we might use. One is to test the lengths of the three sides using the 
Pythagorean Theorem, c2 

= a2 + b2
• Another is to test the slope of each pair 

of sides to see if their product is -1 or if one side is vertical and another is hori
zontal. Either procedure will be instructive. Let's first investigate Pythagoras 
with the aid of Fig. 7-8. 

Figure 7-8 

When we consider c2 
= a2 + b2 we assume that the hypotenuse has 

length c. Suppose we find that a is the length of the hypotenuse or that b is. 
The only safe bet is to test them all. This could be done by putting the follow
ing in an IF-THEN statement to test if AB is the hypotenuse for points A(x1, 
y1 ), B(x2 , Y2) and C(x3 , y3 ): 

(Xl - X2)t2 + (Yl - Y2)t2 = ((X2 X3)t2 + (Y2 - Y3)t2) 

+ ((X3 - Xl)t2 + (Y3 - Yl)t2) 

and by then putting in two similar statements to see if BC or CA might be the 
hypotenuse. Such a procedure ought to work, but this statement is excessively 
long and cumbersome and we aren't really using the power of the computer to 
do repeated operations. It seems worthwhile to devise a way of storing the co
ordinates so that we can use computer loops to move around the triangle instead 
of writing new statements for each side being considered. That seems to suggest 
subscripts and lists. So instead of Xl, X2, and X3 we are going to use X(l), 
X(2), and X(3). And for Yl, Y2, and Y3 we use Y(l), Y(2), and Y(3), as shown 
in Fig. 7-9. 

Often when trying a new procedure on a new program, it is a good idea to 
do the work piecemeal. If we put a lot of new things into a program simulta
neously, errors are harder to find than if we go in steps. Consider program 
PYTHl for simply reading coordinates in and printing them out. 
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PYTHI 

94 
95 
96 
97 
98 
100 
110 
120 
130 
132 
134 

(
140 

- 150 
160 
162 
164 
170 
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y 

A(X(I), Y(1)) 

'""' \ ~ C(X(3), Y(3)) 

Figure 7·9 

REM * THIS IS A TRIAL PR0GRAM T0 SIMPLY READ 
REM C00RDINATES r0R THE VERTICES 0r A TRIANGLE 
REM AND PRINT THEM 0UT AGAIN USING AN X l.I ST 
REM r0R X C00RDINATES AND A Y LIST r0R Y 
REM C00RDINATES 
DIM XC3), YC3) 
READ T 

Ir T = 0 THEN 900 
PRINT 

REM * READ C00RDINATES IN LINES 140 T0 160 
r0R P I T0 3 

READ XCP>. YCP> 
NEXT P 

REM * PRINT C00RDINATE:S IN LINES 170 T0 190 
PRINT .. ("J XC 1 >1 ", "J YC 1 >J ">, "J 
PRINT fl ("J X<2>J ". "J Y<2>J ") AND .. , 
PRINT Jt (II J X< 3)J "• .. J y ( 3) J ")" 
G0T0 110 

REM 
DATA 1. 1 .. 2, 5.--111 6. 15 
DATA 1. o .. o .. o .. 3.o 4,0 
DATA 0 

-{180 
190 
200 
792 
794 
800 
810 
820 
900 
RUN 
PYTHI 

END 

< 1 , 2 ), ( 5 ' - I > AND C 6 , 15 

( 0 , 0 ), ( 0 , 3 > AND < 4 , 0 

To consider each side in turn as a possible hypotenuse, we want to work 
our way around the triangle. First we will use the distance from point 1 to point 
2, then the distance from point 2 to point 3, and finally the distance from point 
3 to point 1. See the columns labeled "Hypotenuse" in Table 7-1. 



Hypotenuse 

Segment 

AB 
BC 
CA 

Points 

1,2 
2,3 
3,1 
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TABLE 7-1 

Segment 

BC 
CA 
AB 

1st Leg 

Points 

2,3 
3,1 
1,2 

2nd Leg 

Segment 

CA 
AB 
BC 

97 

Points 

3,1 
1,2 
2,3 

Looking at Table 7-1, we see a progression across, from points 1 and 2 to 
points 2 and 3 and then to points 3 and 1 for hypotenuse AB. For hypotenuse 
BC, we go from points 2 and 3 to points 3 and 1 and then to points 1 and 2. 
This pattern is completed by considering CA as the hypotenuse. If we can sim
ply go 1-2-3-1-2-3, we can get all of the pairs we need using loops and subscripts. 

Consider the following four lines of BASIC code: 

200 F"0 R P " I T0 3 
210 LET X(P+3l X<P> 
220 LET Y<P+3l = Y<P> 
230 NEXT P 

These four lines have the effect of copying the three points 1, 2, and 3 
into locations 4, 5, and 6, respectively, of the X and Y lists. This will enable us 
to organize the testing of each side in turn for being the hypotenuse of triangle 
ABC, as shown in TABLE 7-1. See lines 200 to 230 in PYTH2. 

PYTH2 

94 
95 
96 
97 
98 
99 
100 
110 
120 
130 
132 
134 
140 
150 
160 
162 
164 
170 
IBO 
190 
192 
194 

{

200 
210 

- 220 
230 
232 
234 
235 

REM * THIS PR0GRAM STORES THE C0RDINATES 0F THE 
REM VERTICES 0F A TRIANGLE IN THE FIRST THREE 
REM ELEMENTS 0F X AND Y LISTS AND DUPLICATED 
REM IN THE NEXT THREE ELEMENTS 0F THOSE LISTS 
REM T0 FACILITATE USE OF SUBSCRIPTS AND L00PS 
REM T0 TEST PR0PERTIES OF THE TRIANGLES. 
DIM X<6» YC6l 
READ T 

IF T = 0 THEN 900 
PRINT 

REM * READ COORDINATES IN LINES 140 TO 160 
FOR P 1 T0 3 

READ XCP» Y<P> 
NEXT P 

REM * PRINT C00RDINATES IN LINES 170 TO 190 
PRINT "( 0 J X(J)J ",,"; YCl)J "),,"J 

PRINT "C"J XC2)J "•"J YC2)J "> AND "J 
PRINT "C"J XC3)J ",,"; YC3)J 0

)" 

REM * DUPLICATI0N TAKES PLACE IN LINES 200 TO 230 
F0R P = 1 TO 3 

LET XCP+3> XCP> 
LET Y<P+3> = YCP> 

NEXT P 

REM * WE PRINT THE C0NTENTS 0F THE X AND Y LISTS 
REM F0R DEMONSTRATION PURP0SES ONLY 
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240 PRINT "VALUES OF X L00K LIKE THIS IN THE X LI ST" 
250 F0R P = I TO 6 
260 PRINT X<P>J 
270 NEXT P 
2BO PRINT 
2B2 
290 PRINT "VALUES 0F Y L00K LIKE THIS IN THE Y LIST" 
300 F0R P = I T0 6 
310 PRINT YCP>J 
320 NEXT P 
330 PRINT 
332 
J~V 

,...,..'T" .... 
UU IV • •v 

792 
l';JLJ, Kt.M 
BOO DATA 1. 1, 2 .. SJI' -1, 6. 15 
BIO DATA 1. o, o, o, 3, 4, 0 
B20 DATA 0 
900 END 
RUN 
PYTH2 

( I . 2 » ( 5 > - I ) AND ( 6 . 15 
VALUES OF x L00K LIKE THIS IN THE x LIST 

I 5 6 I 5 6 
VALUES 0F Y L00K LIKE THIS IN THE Y LIST 

2 -1 15 2 -1 15 

( 0 . 0 » ( 0 . 3 ) AND ( 4 . 0 
VALUES 0F X L00K LIKE THIS IN THE x LIST 

0 0 4 0 0 4 
VALUES 0F Y L00K LIKE THIS IN THE y LI ST 

0 3 0 0 3 0 

Now all that remains is to calculate the lengths of the sides of the triangle 
and to store them in such a way that we may test in sequence around the tri
angle, trying each side as possible hypotenuse. This is accomplished by lines 300 
to 350 in PYTH3. Note that line 340 does for the lengths of sides what 210 and 
220 do for the coordinates of the vertices. 

PYTH3 

94 REM * THIS PROGRAM DETERMINES FROM THE COORDINATES 
95 REM 0F THE VERTICES OF A TRIANGLE WHETHER OR 
96 REM NOT IT IS A RIGHT TRIANGLE 
100 DIM XC6), YC6), DC6) 
110 READ T 
120 IF T = 0 THEN 900 
130 PRINT 
132 
134 REM * READ COORDINATES IN LINES 140 TO 160 
140 FOR P I TO 3 
150 READ X<P>, YCPl 
160 NEXT P 
162 
164 COORDINATES IN LINES 170 TO 190 REM * PRINT 
170 X< 1 )J .. , .. ,; YC 1 ); "),"J PRINT "("J 
18'0 'x:('?)! ": .. ! Y'(2~! ") /\MD "! PR!~IT "("_l 

190 XC3>J "•"J YC3lJ ")" PRINT ·•c"1 
192 
194 REM * DUPLICAT!0N TAKES PLACE IN LINES 200 T0 230 
200 F0R P = I TO 3 
210 LET XCP+3) XCP> 
220 LET YCP+3> = YCP) 
230 NEXT P 
232 
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REM * ENTER LENGTHS IN THE D LIST IN THE 294 
295 
296 

{

300 

REM SAME F'CiJRMAT AS USED F0R COORDINATES IN 
REM THE X AND Y LISTSJ THAT IS - DUPLICATED 
F0R J = I TO 3 

310 
320 

- 330 
340 
350 
352 

LET A = X<Jl·XCJ+ll 
LET B = YCJl-YCJ+ll 
LET DCJl = SQRC At2+Bt2 l 
LET DCJ+3l = DCJl 

NEXT J 

394 REM * N0W TEST EACH SIDE FOR BEING A HYPOTENUSE 
400 FOR P = I TO 3 
410 IF DCPlt2 DCP+llt2 + DCP+2l•2 THEN 500 
420 NEXT P 
422 
424 REM * IF THE TEST FAILS FOR ALL THREE SIDES THEN 
425 REM WE HAVE A NON-RIGHT TRIANGLE 
430 PRINT "N0T A RIGHT TRIANGLE" 
440 GOTO 110 
492 
500 PRINT "RIGHT TRIANGLE WITH HYPOTENUSE DETERMINED BY" 
510 PRINT "P01NTS: ("J XCP)J ","; YCPlJ ") AND "J 
520 PRINT "C"J XCP+l)J ","J Y<P+llJ ")" 
530 GOTO 110 
'792 
794 REM 
BOO DATA 1, 1, 2, 5,-1, 6, 15 
BIO DATA 1, o, Q, o, 3, 4,0 
B20 DATA 0 
900 END 
RUN 
PYTH3 

( I . 2 ), ( 5 , - I ) AND ( 6 . 15 
N0T A RIGHT TRIANGLE 

( 0 • 0 ), < 0 , 3 ) AND < 4 , 0 
RIGHT TRIANGLE WITH HYPOTENUSE DETERMINED BY 
POINTS: < 0 , 3 ) AND < 4 , 0 

Summary of Sec. 7-5 
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We have examined sets of three points for collinearity. We have looked at 

the triangle formed by noncollinear points to determine whether or not it is a 

right triangle. In order to do this, we have devised a technique of storing co

ordinates in lists to take advantage of repeatable program statements using 

loops. 

Problems for Sec. 7-5 

1) In program C(,l>LIN, provide for treating points on a horizontal line as 

a special case. 
2) Write a program to find the intersection of two altitudes of a triangle. 

3) Write a program to find the intersection of two medians of a triangle. 

4) Modify program PYTH3 to classify triangles as acute, equiangular, 

right, or obtuse. 
5) Have the computer print all Pythagorean Triples for a hypotenuse less 

than 101. Pay particular attention to efficiency here. 
6) Write a program to determine if four points are collinear. 
7) Write a program to determine if n points are collinear. 
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8) Write a program to compute the area of a triangle given the co
ordinates of the three vertices and using Hero's formula: 

A = Vs(s - a)(s - b)(s - c) where s = (a + b + c)/2 

9) Write a program to calculate the area of a triangle by finding the 
length of an altitude using the methods of Sec. 7-4. 

10) Write a program to test triangles for right triangles by determining the 
slope of all three sides to see if tht: pre.duct is -1 for any pail". You 
will have to treat vertical lines as a special case. 

11) Given three noncollinear points, find the center and radius of the 
circle they determine. 



8-1 Introduction 

8 
POLYNOMIALS 

A real polynomial in x can be defined as any expression that can be 
written in the following form: 

anxn + an_1xn-l + · · · + a2x 2 + a1X + ao 

For a given value of x, n is a non-negative integer and the a's are constant 
values. Examples of polynomials are 

2x; 3x2 + 2; 4; 5x11 + 3x3 
- 2 

The highest exponent of x, called n, is the degree of the polynomial. 
Polynomials are of interest to the mathematician and scientist alike. 

The distance an object travels in a gravitational field is described by a second 
degree polynomial, for example. We will now explore some ways in which 
the computer may be programmed to evaluate polynomials and make some 
comparisons. 

Regardless of the final procedure to be used to evaluate a polynomial, 
we will probably want to store the coefficients in a list. If you have zero sub
scripts available, this is a perfect fit because the subscript of the coefficient is 
equal to the exponent on x in each term. If you don't use zero subscripts, 
simply adjust the variable used for exponents. We arbitrarily select 3x4 + 
2x 3 

- x 2 + 5x + 3 for our first example. The degree of the example is 
four, and hence there are five coefficients. The coefficients and the degree of 
the polynomial may be entered as data. 

One procedure for evaluating a polynomial is to use a BASIC language 
function such as 

100 DEF FNPCXl = PCSl*Xt4+PC4l*Xt3+PC3l*Xt2+PC2l*X+PCI> 

This defined function will work fine for any fourth degree polynomial. For a 

101 
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degree less than four we could fill in with zeros, but for degrees more than 
four, we would have to retype the line. We are l!lso limited by line length 
when DEFining a function on some computer systems. Others allow multiple 
line DEFinitions. So while the DEF capability is very useful in some situa
tions, we might give some thought to developing another procedure for evalu
ating a polynomial. 

Note that the exponent of x is one less than the subscript of the list co
efficient in each term of the DEF statement. (They are the same if you use 
zero subscripts.) Even p(2)*x can be vvTitte11 p(2)~.xtl and p(l) ca11 he writ
hm .n(l)*x to (unless x = 0). This suggests the fd!c~·!l!!g !ccp: 

300 LET P2 = PC!> 
310 FOR I = N+I TO 2 STEP -I 
320 LET P2 = P2 + PCil•XtCI·l> 
330 NEXT I 

This four line routine has the desirable feature that it requires no change for 
handling polynomials of differing degree. 

Suppose we give some thought to the number of operations we are in
structing the computer to perform. Look at line 320. There we can see an 
addition and a multiplication and an exponentiation. For positive integers as 
exponents, exponentiation amounts to successive multiplication. That means 
for an exponent of I - 1 there will be I - 2 multiplications plus the multi
plication of the coefficient. That makes I - 1 multiplications for that line. 
If we take another look at 3x4 + 2x3 - x 2 + 4x + 3 and count the number 
of operations, we get four additions and 10 multiplications for our fourth de
gree polynomial (not accounting for how the computer might handle the ex
ponent one as a special case). For a 10th degree polynomial there would be 
10 additions and 55 multiplications. 

Programmers often try to improve the efficiency of their programs because 
of the limitations of the computer and the size of the job to be done or purely 
for the challenge involved. Notice that in any polynomial, beginning with the 
second term, each term has x as a factor one less time than the previous term. 
This suggests some sort of successive factoring, as shown by the following: 

3x4 + 2x3 (3x + 2)x3 

(3x + 2)x 3 - x2 ((3x + 2)x - l)x 2 

((3x + 2)x - l)x 2 + 4x (((3x + 2)x - l)x + 4)x 

(((3x + 2)x - l)x + 4)x + 3 (((3x + 2)x - l)x + 4)x + 3 

Thus our original polynomial 3x4 + 2x3 - x 2 + 4x + 3 can be written in the 
following form: 

(((3x + 2)x - l)x + 4)x + 3 

This is called nested form. 
Now there are only four multiplications and four additions called for in a 

fourth degree polynomial. Of course, a saving of six multiplications is not much 
to a computer, but the saving accumulates as the degree of the polynomial in-
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creases and as the number of times we evaluate the polynomial increases. Con

sider the following routine: 

400 LET P3 = PCN+ l l 
410 rOR I = N TO l STEP -1 
420 LET P3 = P3*X + PC!l 
430 NEXT I 

We have another four-line routine that is more efficient than the first one. 

We now have three procedures for evaluating polynomials. The first is a 

defined function, the second is a loop which evaluates the polynomial using ex

ponents term by term, and the third is a loop which uses nested form. Let's 

assemble these three procedures into a program so that we can compare some 

values. As we expected, we see that all values do check out by looking at the 

output of program PCJ>LYOl. 

POL YO l 

94 REM * THIS PROGRAM EVALUATES POLYNOMIALS BY THREE 

95 REM METHODS! DEr• TERM BY TERM AND NESTING 
96 
97 REM * SET UP DEr!NED rUNCT!ON 
100 DEr rNPCX) = PC5l*Xt4+PC4l*Xt3+PC3l*X•2+PC2l•X•PCll 

102 
104 REM * READ DATA 
110 READ N 
120 rOR I = N+I TO I STEP -I 
130 READ PC!> 
140 NEXT I 
142 
144 REM * PRINT HEADINGS 
150 PRINT "X",, "F'NPCX)", "EXP L00P11

1 "NESTING" 

160 rOR X = I TO 10 
192 
194 REM * CALCULATE BY DEr 
200 LET Pl = rNPCX> 
292 
294 REM * CALCULATE USING EXPONENTS IN A LOOP 
295 REM TERM BY TERM. 
300 LET P2 = PC l l 
310 rOR I = N+I TO 2 STEP -I 
320 LET P2 = P2 + PCil*XtCl-ll 
330 NEXT I 
392 
394 REM * CALCULATE USING NESTING 
400 LET P3 = PCN+ll 
410 rOR I = N TO l STEP -I 
420 LET P3 = P3•X + PC!> 
430 NEXT I 
492 

REM * PRINT RESULTS 
PRINT X, Pl, P2, P3 

NEXT X 

494 
500 
510 
512 
514 
520 
530 
RUN 
POL YO l 

x 
l 
2 
3 
4 

REM 
DATA 
END 

3,, 2 .. -1, 5,, 3 

fNPCXl 
12 
73 
306 
903 

EXP LOOP 
12 
73 
306 
903 

NESTING 
12 
73 
306 
903 
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5 2128 2128 2128 
6 4317 4317 4317 
7 7878 7878 7878 
8 13291 13291 13291 
9 21108 21108 21108 
10 31953 31953 31953 

Problems for Sec. 8-1 
1) Write a program to tabulate the number of additions and multiplica-

with a one line DEF or with a loop which uses exponents. 
2) Write a program to multiply two polynomials. 
3) Write a program to add polynomials. Be sure to avoid leading zero co

efficients. 
4) Do problem 3 for subtraction. 
5) Write a program to give ordered pairs (x,p(x)) suitable for graphing the 

polynomial p(x ). 
6) Write a program to find zeros of a second-degree polynomial using the 

quadratic formula. 

8-2 Finding a Real Zero of a Polynomial 
Now that we are set up to evaluate a polynomial, we can explore some ap

plications. One important consideration where polynomials are concerned is to 
find values of x for which the value of the polynomial is equal to zero. If we 
designate a polynomial as p(x) (read p of x) and set y equal to p(x), then we 
may think in terms of polynomial equations and their graphs. The zeros of a 
polynomial are the values of x where p(x) = 0. For real zeros they are the val
ues of x where the graph of the polynomial equation crosses the x-axis. How
ever, in the case of nonreal zeros, while the value of p(x) will be zero, the graph 
of the polynomial equation in the x-y plane will not cross the x-axis. Of course, 
we are familiar with special mathematical procedures for solving certain poly· 
nomials. For instance, all second.degree polynomials may be solved by the 
quadratic formula. We will look here at more general solutions. 

It can be shown that every nth degree polynomial has exactly n complex 
zeros. So one approach to finding zeros is to simply try values of x until n are 
found which give p(x) = 0. Such a procedure is feasible only with the aid of a 
computer because of the tedious calculations required. Even so, the approach 
can be very complicated indeed. We will simplify our job for now if we begin by 
looking only for real zeros. A most valuable aid to finding zeros of any contin
uous function y = f(x) is the principle that if f(xi) and f(x 2 ) are of different 
sign, then there are an odd number of zeros in the interval from x 1 to x 2 • For 
real values of x it should be clear that if f(xi) > 0, the point (x 1 ,f(xi)) on the 
graph is above the x-axis, whereas f(x 1 ) < 0 makes (x 2 , f(x 2 )) below the x-axis, 
2.nd the g~r:.ph of u. couthiU.VU.S f;;.uctiVii iiiU.St CLOSS th& x~axis SUH!tfWht::it: i.u 
between. 

There is a variety of ways to isolate increments in which real zeros may be 
found. Let us set up a procedure whereby we have control over where the com
puter searches for intervals within which zeros may be found. We can store co
efficients in a list, select limits within which to search, and have the computer 



Polynomials 105 

step through the specified region, trying pairs of values for x to see if f (x 1 )*f (x2 ) 

is positive. If it is not, then we have a zero between x 1 and x 2 or either x 1 or x 2 

is a zero. If we always find f (x i)*f (x2 ) positive, there are numerous possible 
reasons. We may not have included the zeros in our limits, or we may have had 
the computer search such large increments that the graph crosses the x-axis an 
even number of times, or the graph may just touch the x~axis at a minimum or 
maximum point and never cross the x-axis (the point at which it touches, how
ever, is still a zero of the polynomial), or there are no real zeros. We must bear 
all of these problems in mind as we construct and operate a program. 

In program ZER<,l>Ol, line 120 reads the degree of the polynomial and line 
140 reads the coefficients. Line 280 tests for sign change. The subroutine 
which starts at line 800 evaluates the polynomial by nesting. Line 840 checks 
for exact zeros. The general procedure here is just as valid for any continuous 
function as it is for polynomial functions. Note that we could use the graphing 
of Chapter 5 to assist us in finding regions where we might expect to find zeros. 

ZEROOI 

94 
95 
100 
11p 

--120 
130 

-140 
150 
160 
162 
170 
180 
190 
200 
210 
220 
230 
240 
242 
244 
245 
250 
260 
270 

-280 
290 
300 
310 
320 
322 
330 
340 
h2 
'794 

-800 
810 
R::!O 
830 
832 
834 

-840 
850 
860 
870 
880 
882 

REM * THIS PROGRAM SEARCHES FOR A SIGN CHANGE 
REM IN THE VALUE OF A POLYNOMIAL FUNCTION 
DIM P< IS> 
PRINT "POLYNOMIAL IS"J 
READ N 
F0R I = N+I T0 I STEP -I 

READ P<I> 
PRINT P<Ill 

NEXT I 

PRINT 
PRINT 
PRINT "FIRST, LAST, STEP"J 
INPUT F, L• S 
PRINT 
LET XO = F 
GOSUB 800 
FOR X = F+S TO L STEP S 

REM * SAVE THE VALUE OF THE FUNCTI0N AT THE 
REM BEGINNING OF THE INTERVAL 

LET YI = P3 
LET XO = X 
G0SUB 800 

IF Yl*P3 > 0 THEN 320 
PRINT "SIGN CHANGE!" 
PRINT "PC"J X-SJ tr)="J YIJ "AND PC"J XJ ")="J P3 
STOP 

NEXT X 

PRINT "NO SIGN CHANGE F'CUND" 
STOP 

REM * LINES 800 TO 830 EVALUATE BY NESTING 
LET P3 = P<N+ I l 
FOR I = N TO I STEP -I 

LET P3 = P3*XO + P<Il 
NFXT I 

REM * CHECK FOR EXACT ZERO 
IF P3 <> 0 THEN 880 

PRINT 
PRINT XOJ "IS A ZERC" 
STOP 
RETURN 
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884 REM 
890 DATA 3, 1,2,3,4 
900 END 
RUN 
ZE.ROOI 

POLYNOMIAL IS I 2 3 4 

FIRST, LAST, STEP? -IQ, IQ, I 

SIGN CHANGE: 
P(-2 l=-2 AMO P(-1 l= 2 

Interval Halving 

Now we have an interval in which we expect to find a zero. We would like 
to make that interval smaller and smaller to get successively better approxima
tions of a zero. We can simply evaluate the polynomial at the midpoint of the 
interval found in program ZER</)01 and check for a change of sign against one 
endpoint. If a change in sign is found, we bisect and repeat. If a change in sign 
is not found, then the change must occur between the midpoint and the end
point not tested above; therefore we bisect that interval and repeat. After each 
bisection the interval is smaller and the midpoint is a better approximation of 
the zero. This process is accomplished in lines 400 to 550 of program ZER</>02. 

The process needs a stopping place. We need a test of the accuracy of the 
current approximation that works for roots very close to zero and far away from 
zero, a test, moreover, that is compatible with the precision of the computer. 
We would like to get six significant digits in our results. We label the endpoints 
of the interval x 1 and x2 • If we test lx 1 - x2 I against 10-6

, we will not get six 
significant digits for x 1 and x2 when they are very close to zero. For x 1 and x2 
large in magnitude, say 100,000, we would require a machine with 12-digit pre
cision. These problems are avoided by using relative error and testing lx 1 - x2 I/ 
(lx 1 I + lx2 I) against 10-6

• See line 450 in program ZER</>02. 

ZER002 

9~ REM * THIS PROGRAM SEARCHES FCR APPROXIMATE ZEROS 
95 RE.M IN THE INTERVALS FOUND IN PROGRAM ZEROOI 
100 DIM PC15) 
110 PRINT "POLYNOMIAL IS"J 
120 READ N 
130 FOR I = N+I TO I STEP -I 
140 READ PC!) 
150 PRINT PC!)J 
160 NE.XT I 
162 
170 PRINT 
180 PRINT 
190 PRINT "FIRST, LAST, STEP"J 
200 INPUT F, L• S 
210 PRINT 
220 LET XO = F 
230 GO SUB 800 
240 FOR X = F+S TO L STEP S 
250 LET YI = P3 
260 LE.T XO = X 
270 GOSUB 800 
280 IF Yl*P3 > O THEN 320 



Polynomials 

290 PRINT "SIGN CHANGE:" 
300 PRINT "P("J X-SJ ">="J YIJ "AND P<"J XJ ">="J P3 
310 GOT0 400 
320 NEXT X 
322 
330 PRINT "NO SIGN CHANGE FOUND" 
340 ST0P 
392 
394 REM * LINES 400 THROUGH 550 CARRY OUT INTERVAL 
395 REM HALVING. INTERVAL BOUNDARIES ARE XI AND X2 
396 REM EXACT ZEROS ARE FOUND IN LINE 840 
400 LET XI X-S 
410 LET X2 = X 
420 LET Y2 = P3 
422 
424 REM * HALVING TAKES PLACE IN LINE 430 
430 LET XO = <Xl+X2l/2 
440 GOSUB 800 
450 IF ABS<Xl-X2l/<ABS<Xll+ABS<X2>> > IE-6 THEN 500 
460 PRINT 
470 PRINT "APPROXIMATE ZERO:" 
480 PRINT "PC"J XOJ ">="J P3 
490 ST0P 
500 IF Yl*P3 > 0 THEN 530 
510 LET X2 = XO 
520 G0T0 420 
5 30 LET XI = XO 
540 LET YI = P3 
550 G0T0 430 
792 
794 
800 
810 
820 
830 
832 
840 
850 
860 
870 
880 
882 
884 
890 
900 
RUN 
ZER002 

REM * EVALUATE BY NESTING 
LET P3 = P<N+ I> 
F0R I = N TO I STEP -I 

LET P3 = P3*XO + P<I> 
NEXT I 

IF P3 <> 0 THEN 880 
PRINT 
PRINT XOJ "IS A ZERO" 
ST0P 
RETURN 

REM 
DATA 
END 

POLYNOMIAL IS I 2 3 4 

FIRST, LAST, STEP? -2,-1,.1 

SIGN CHANGE: 
PC-1.7 >=-0.233 AND PC-lo6 >= Q.224 

APPR0XIMATE ZERO: 
PC-1.65063 >=-4o7632E-6 

Summary of Sec. 8-2 
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We have used the principle that if f(xi) and f(x 2 ) are of opposite signs, 
there must be a value of x between x 1 and x 2 such that f(x) = 0 if we are to 
find intervals within which zeros exist for polynomial functions. We have fur
ther reduced interval size by successive halving to obtain approximate zeros. All 
of the methods used here can easily be applied to other finite continuous func
tions as well. 
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Problems for Sec. 8-2 
1) Find a zero for any or all of the following: 

a) x 3 + 6x 2 
- 49x + 66 

b) x4 + 2x 3 
- 13x 2 

- l4x + 24 
c) x 3 + llx2 

- 68x - 672 
d) 2x 3 + 3x2 + 4x - 5 
e) xs + 13x4 

- 37x3 
- 457x 2 + 492.x + 2340 

f) x 3 + 2x 2 
- 11x 12 

g) XS + 4.8x4 
- 4.2x 3 

- 29.6x 2 + 7.2.x + 28.8 
2) Modify ZERQ)02 to search for aii reai zeros automatically after the val

ues of F, L, and Shave been specified. Be sure to stop if all zeros have 
been found without further testing values of x. 

3) Modify ZER<,t>02 to use linear interpolation instead of interval halving 
to obtain approximate zeros. 

4) Modify ZER<,tl02 to find zeros for any continuous function rather than 
just a polynomial function. 

8-3 Synthetic Division to Get Further Zeros 
We present the Remainder Theorem, Factor Theorem, and synthetic divi

sion as aids to finding zeros after a first zero is known. 

The Remainder Theorem 
If p(x) is divided by (x - z), the remainder is the value of the polynomial 

when z is substituted for x. 

p(x) r 
--'---'--- = q(x) + --
(x - z) (x - z) 

That is, p (x) divided by (x - z) yields a quotient polynomial plus a remainder. 
Multiplying through by (x - z) we get: 

p(x) = (x - z)q(x) + r 

and when z is substituted for x that produces: 

p(z) = (z - z)q(z) + r 

or simply 

p(z) r 

Factor Theorem 
We note that when the value of r is zero, we have p (z) = 0, and that makes 

z a solution of the equation p (x) = 0 or a zero of the polynomial Rin~f! t.he rf!
mainder is zero after dividing by (x - z), it follows that (x - z) must be a 
factor ofp(x), or 

p(x) = (x - z)q(x) 

Having found the first zero using the procedure of Sec. 8-2, we need only find 
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q(x) and then use the procedure of 8-2 on it, repeating until all real zeros are 
found. 

Synthetic Division 

We now develop the synthetic division algorithm using x4 + 5x3 + 
9x2 

+ 8x + 4 divided by x + 2 as an example. It is this division that will 
enable us to find q (x) above. We begin by performing the division "long hand": 

x 3 + 3x2 + 3x + 2 
+ 5x3 

+ 2x3 

3x3 

3x 3 

+ 9x2 + 8x + 4 

+ 9x 2 

+ 6x 2 

3x2 + 
3x2 + 

8x 
6x 

2x + 4 
2x + 4 

Notice that a great many things will always be written twice. We will always 
"bring down" 9x 2 and 8x and 4. For division by x + 2, we will always get x4 

and 3x3 and 3x2 and 2x repeated. So let us eliminate these repetitions and 
compress the problem vertically: 

x3 + 3x2 + 3x + 2 
x + 2)x4 + 5x3 + 9x2 + 8x + 4 

2x3 + 6x 2 + 6x + 4 

3x3 + 3x2 + 2x 

Now if we line things up properly, there is no need to write the x's and their 
exponents. And there will always be an x in the divisor, so we don't need that. 
Let's condense again: 

1 + 3 + 3 + 2 
+ 2)1 + 5 + 9 + 8 + 4 

2 + 6 + 6 + 4 

3 + 3 + 2 

Since the coefficient of the first term of the quotient is always the same as the 
coefficient of the first term of the original polynomial, we can make the bottom 
line of figures exactly agree with the top line by simply bringing down the first 
figure. Now we eliminate the top line to get: 

+ 2)1 + 5 + 9 + 8 + 4 
2 + 6 + 6 + 4 

1 + 3 + 3 + 2 
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Recognizing that subtraction is the same as "changing the sign and adding," we 

can change the 2 to a -2 and add instead of subtracting. That leaves us with: 

- 2 )1 + 5 + 9 + 8 + 4 
-2-6-6-4 

---··--· ----
1 + 3 + 3 + 2 

The sequence of operations is as folknvs: Bring d{nvn the 1, !!!U1t!p1y the 1 by 

- 2, and '.'!rlte it under the 5. Adrl fi anrl - 2 to get 3. Multiply the 3 by - 2 and 

write it down under the 9. Add 9 and -6 to get 3. Multiply 3 by -2 and write it 

down under the 8. Add 8 and - 6 to get 2. Multiply 2 by - 2 and write it down 

under the 4. Add 4 and -4 to get a remainder of 0. Division done by this 

algorithm is called "synthetic division." 
Since synthetic division is an iterative process, it is especially suited to the 

computer. Notice that most of the process consists of multiplying and adding. 

Not only is that an iterative process, but it is the same iterative process used for 

evaluating polynomials by the nesting method. All that is required to adapt the 

subroutine 800 in program ZER'l>02 to synthetic division is to store the sub· 

totals along the way in an appropriate list element. This is done in line 820 of 

program DIVIDE. Look at program DIVIDE and compare subroutine 800 in 

it with the subroutine 800 in ZER'l>02. 

DIV IDE 

94 REM * THIS PROGRAM USES SYNTHETIC DIVISION 
100 DIM PCIS), QCl5> 
I I 0 READ N 
120 PRINT "PCX)•"J 
130 FDR I • N+I TO I STEP -I 
140 READ PC!> 
150 PRINT PCl)J 
160 NEXT I 
162 
170 PRINT 
l!lO PRINT "DIVIDE BY X-"I 
190 INPIJT XO 
200 PRINT "QUOTIENT "J 

210 GOSUB 800 
220 ST0P 
792 
794 
795 
800 
810 

-·820 
830 
832 
834 
840 
850 
860 
862 
870 
880 
882 
884 
890 
900 

REM * THE DIVISION TAKES PLACE IN LINES 800 TO 830 
REM * NOTE THE SIMILARITY TD NESTING 
LET P3 • QCN+I) • P<N+ll 
FOR I • N TO I STEP - I 

LET OC!l • P3 • P3•XO + PC!) 
NEXT I 

REM * PRINT RESULTS 
FOR I • N+I TO 2 STEP -I 

PRINT OC!ll 
NEXT I 

PRINT "REMAINDER •"J QC I> 
RETURN 

REM 
DATA 4, 1,5,9,3,4 
END 
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DIVIDE 

PCXl= I 5 9 8 4 
DIVIDE BY X-? -2 
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QUOTIENT I 3 3 2 REMAINDER = 0 
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Program DIVIDE works well, but why use a program to perform division 
in the first place? Why not simply use program ZERQ)02 to look for zeros until 
we find all of them? It is true that program ZER</)02 would easily find - 2 as a 
zero of f(x) = x 4 + 5x3 + 9x2 + 8x + 4, but then what? Program ZERQ)02 
will find no further zeros. We may use the results of a run of program DIVIDE 
to see why. 

The output of program DIVIDE above tells us that 

x 4 + 5x3 + 9x 2 + 8x + 4 = (x + 2)(x3 + 3x2 + 3x + 2) 

So -2 is a zero of our function f(x) = x 4 + 5x3 + 9x2 + 8x + 4. Next we 
want a zero of q (x) = x 3 + 3x2 + 3x + 2. Let's use program ZER</)02 to find 
that zero. 

890 DATA 3, 1,3,3,2 
RUN 
ZER002 

POLYNOMIAL JS I 3 3 2 

F'JRST. LAST. STEP? -s.s.1 

-2 IS A ZERO 

A run of ZER</)02 with the new data reveals why we could not have found one 
of the other zeros. We now see that - 2 is a zero of the function f twice and our 
program had no way of determining that fact. Values that occur more than once 
as zeros are called multiple zeros. Why wouldn't ZER</)02 find the other two 
zeros? Let's divide q(x) by (x + 2) and find out. 

890 DATA 3, 1,3,3,2 
RUN 
DIVIDE 

PCXl= I 3 3 2 
DIV IDE BY X-? -2 
QUOTIENT I I I REMAINDER 0 

Thus one factored form of our original polynomial is 

(x + 2)(x + 2)(x 2 + x + 1) 

The first two factors tell us that - 2 is a zero twice and analyzing the third factor 
using the quadratic formula tells us that the final two zeros are nonreal numbers. 
They are -t + trJ3 and -t - trJ3. 
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Thus we see that the ability to divide polynomials by (x - z) where z is a 
zero of the polynomial function makes more information available to us than we 
would have if we limited ourselves to the procedures of program ZER'1>02. The 
ability to divide enables us to find multiple zeros and, where we are able to 
divide so that the quotient polynomial is a quadratic, we are able to determine 
nonreal zeros. We note that caution must be exercised when dividing by ap· 

proximate zeros. Each succeeding division will be susceptible to additional error. 

Tht: Fa(;tf;::: Tht:t":re111 teHs us that \;;;hen ·\Ive fh:.d a zero z, ;ve may divide the 
polynomial by (x - z) to obtain a new polynomial with one less zero. Synthetic 
division has been shown to duplicate the steps of evaluating a polynomial by the 
nesting method and so enables us to easily perform the division indicated by the 
results of the factor theorem. This enables us to find multiple zeros and, in 
some cases, nonreal zeros. 

Problems for Sec. 8-3 
1) Write a program to find the zeros of third-degree polynomials by find· 

ing the first zero and then finding the remaining zeros by using the 
quadratic formula. 

2) Incorporate synthetic division into program ZER'1>02 so that when· 
ever a zero is found, the division is performed and a search is begun for 
the next zero. 

3) Use the methods of this section to find as many zeros as possible for 
the problems of problem 1 in Sec. 8-2. 

8-4 Miscellaneous Aids 
Integral Zeros 

It can be shown that for an nth degree polynomial with zeros Zn, 

Zn-I, ••• , z2, Z1 that the following is true: 

(x - Zn )(x - Zn-d ... (x - Z2 )(x - zi) 

= anxn + an-1Xn-l + ... + a1X + ao 

Considering the product of n binomials on the left we can see that (-zn) · 

(-zn-d ... (-z2 )(-zi) is the constant term in the product which must equal the 
constant term on the right, or a0 • If there is at least one integral zero and a0 is 
an integer, that means that all integral zeros of a polynomial must be factors of 
a0 • So we could write a program somewhat simpler than ZER<l>Ol that would 
search only for integral zeros by first determining all integral factors of a0 • In 
program ZER<!>Ol we used p (1) for a0 . 

Descartes' Ruie of Signs 
Consider the polynomial x 2 + 8x + 1. It should be clear that no matter 

what positive value we might try for x, we can never make x 2 + 8x + 1 equal 
zero because x 2 and 8x are both positive for x positive. Thus in searching for 
real zeros we need not consider any positive numbers. The same is true for 
-2x2 

- 5x - 1. Now, what about x 2 + 3x - 1? Can there be more than one 
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positive value of x for which x 2 + 3x - 1 = O? No! Consider as another 
example x 2 + 1. There is no positive replacement for x to make x 2 + 1 equal 
to zero, and likewise there is no negative replacement for x that makes x 2 + 1 
equal to zero since x 2 would have to equal -1. That tells us that since x 2 + 1 
is a second-degree polynomial and has two complex zeros, they must both be 
nonreal. Descartes observed all this and more and left us with Descartes' Rule 
of Signs. 

We may define the variation v in a sequence of numbers as the number of 
changes in sign found by comparing successive pairs of adjacent numbers. For 
example, for the sequence 1, 3, 4, -8, 2, the value of vis 2. There is no change 
for 1 to 3 or 3 to 4. There is one change for 4 to - 8 and for -8 to 2. If zeros 
appear in the sequence, we drop them. The sequence - 2, 8, 0, 5, - 3, 6 becomes 
- 2, 8, 5, - 3, 6 in order to determine the number of variations, which is 3. 

Descartes' Rule of Signs says that for 

the number of positive zeros depends on the number of variations in the se
quence, an, an-I, ... , a1 , a0, in the following manner. If v is the number of 
variations, then the number of positive zeros is either v or v - 2 or v - 4, etc., 
but not less than zero. This may be written v - 2i where i is a positive integer. 

It turns out that we may find a corresponding number for negative zeros 
by finding positive zeros for p (-x). Substituting - x for x will change the sign of 
all terms which have an odd exponent for x. Thus if p(x) = -4x 5 

- 3x4 + 
5x3 - 2x2 + x 3, the value of v is 4 and there must be 4 or 2 or 0 positive 
zeros. Now we find that p(-x) = +4x5 

- 3x4 
- 5x3 - 2x2 

- x - 3 and 
that v is 1. Thus there must be exactly one negative zero. For example, in 
3x6 

- 2x5 + x4 
- 2x3 + 5x2 

- x + 1, we might expect to find as many as 
six positive zeros, but under no conditions would we look for negative zeros 
since p(-x) = 3x6 + 2x 5 + x 4 + 2x 3 + 5x2 + 1, which gives zero varia
tions. All of this gives us a great deal of information. Sometimes the informa
tion is exact, as when we get 0 or 1 as the number of variations. At other times 
we get only a guide, as with x 3 + 2x 2 + 2x + 1, which has no positive real 
zeros and three variations for p(-x), which gives 3 or 1 negative real zeros. A 
solution of the problem will yield one negative zero and two nonreal zeros in 
this particular example. 

Problems for Sec. 8-4 

1) Write a program to produce polynomials of random degree when zeros 
are all random integral values. 

2) Write a program to produce an nth degree polynomial given n integral 
zeros. 

3) Modify program ZER<JlOl to find all integral zeros by having x go from 
-a0 to a0 STEP SGN (ao ). 

4) In problem 3, how many additions and multiplications would be re
quired in a0 = 100 for nesting compared to the use of exponents, not 
counting the loop operations? 

5) Modify program ZER<JlOl to find all integral zeros by having x take on 
only values which are factors of a0 • 
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6) Analyze the number of operations called for in problem 5 as compared 
to problem 3 for selected values of a0 • 

7) Write a routine to use Descartes' Rule of Signs which merely prints the 
number of possible zeros in each of the following categories: complex, 
positive, negative, and zero. Be careful about zero coefficients. 

8) Incorporate the routines of problem 7 in ZERCj>02 so that the com
puter stops searching if it has found enough positive zeros and if it has 
found enough negative zeros. Be sure to have the program check for 
both positive and negative possibilities. 

9) An upper bound may be piaced on zeros by finding a non,negative 
value of z such that after dividing by (x - z), all nonzero terms in the 
third line of the synthetic division are of the same sign, provided the 
leading coefficient ofp(x) is positive. A lower bound may be found by 
taking the negative of the upper bound for p (-x). Write a program to 
find upper and lower bounds. 



9-1 Sequences 

9 
SEQUENCES AN 

SERIES 

A sequence is simply a list of numbers. It is, of course, a natural for use in 
computers, although a computer list may not be essential for a particular 
application. 

Sequences come in two kinds, finite and infinite. Obviously we will only 
be able to evaluate a finite number of terms for any sequence used in a computer. 

We routinely work with sequences. The set of counting numbers is a 
sequence, as is the set of odd integers and the set of even integers. If we were to 
consider 10 random numbers, they could constitute a sequence. It is more usual 
that the numbers in a sequence follow some relatively simple pattern. One such 
sequence you've probably seen goes 1, 1, 2, 3, 5, 8, where every number from 
the third on is the sum of the previous two. This is called the Fibonacci sequence. 
The numbers in this sequence have widespread significance in mathematics, art, 
and nature. We can easily write a program to compute elements of this sequence, 
store them in a list, and print them, as shown in Program FIBOl. One can 
generate a Fibonacci type sequence by selecting any two integers for F(l) 
and F(2). 

F'l BO 1 

94 REM * THIS PR0GRAM PRINTS THE ,IRST 
95 REM 30 ,IB0NACCI NUMBERS 
100 DIM ,<JO> 
102 
104 REM * ST0RE THE NUMBERS IN A LIST 
110 LET ,<ll = ,<2l = 1 
120 '0R X = 3 T0 30 
130 LET ,<Xl = ,CX-ll + ,CX·2l 
140 NEXT X 
142 

115 
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144 
150 
160 
170 
172 
IBO 
RUN 
F'lBO I 

I 
B 
B9 
00, 

REM * N0W PRINT THE LIST 
F'0R X = I T0 30 

PRINT F"CX» 
NEXT X 

END 

I 
IJ 
144 
t c;a"T 

10946 17711 
:.:: : .,,;.-.,, : 96 .!~ i 6 

2 
21 
233 
2584 
26657 
.:; i 75 ii 

3 5 
34 55 
377 610 
~!8! L "1'£ C: 

46J6tl 75025 
5i~22~ 032(:40 

Probably one of the simplest sequences is the set of counting numbers. It 
begins 1, 2, 3, .... This is an example of an "arithmetic sequence." An arith
metic sequence is one in which we get from one term to the next by adding a 
constant, called the common difference. The general form for the nth term of 
such a sequence is tn = t 1 + (n - l)d, and we will discuss this later. For the 
counting sequence, d = 1. 

Some sequences are motivated by physical problems. Suppose you are 
200 feet from a fixed point. How long will it take to reach that point if you 
cover half the remaining distance every minute? It should be clear that you can
not ever reach that point, because at every minute along the way there is still a 
distance separating you from the point and half of that is still a nonzero distance. 
So there is always a distance remaining, and you can only cover half of it in the 
next minute. However, it is also clear that at some point you can reach out and 
touch the point. So we might ask how long it will take to be within six inches. 
Consider program HALF. 

HALF" 

94 REM * THIS PROGRAM HALVES DISTANCE 
95 
96 REM * INITIAL CONDITIONS - 200 FEET AT TIME ZERO 
100 LET D = ?.flO 
110 LET T = O 
112 
114 REM* N0W COVER HALF THE REMAINING DISTANCE 
115 REM EVERY MINUTE 
120 LET T = T+I 
130 LET D = D*Cl/2J 
140 IF" D > 6112 THEN 120 
150 PRINT "'DISTANCE ="'J DJ "'FEET" 
160 PRINT "'IN"'J TJ "'MINUTES"' 
17D END 
RUN 
HALF" 

DISTANCE = 0.390625 F"EET 
IN 9 MINIJTES 

If we change HALF to look at the intermediate values of D, we get an 
example of another common type of sequence. Consider program HALFl. 

135 PRINT Tl D 
RUN 
HALF"! 



100 
2 50 
3 25 
4 12.5 
5 6.25 
6 3. 125 
7 1.5625 
8 o.78125 
9 o.390625 
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DISTANCE = 0.390625 rEET 
IN 9 MINUTES 
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Each term in the sequence is calculated by multiplying the previous term 
by a constant. In our problem the constant is t. Such sequences are called 
"geometric sequences." The constant term is called the "common ratio." The 
nth term of a geometric sequence can be found by the formula t n = t 1 r<n - 1 ), 

where r is the common ratio. 
A common situation described by a geometric sequence is compound 

interest. If you put money in a savings account, the bank adds interest to the 
account at regular intervals, and the amount becomes the principle for the 
next interest period. If the interest rate per interest period is r, we get the 
amount at the end of that period asp + pr, which equals p(l + r), and at the 
end of n periods we get p(l + rt. If you put $100 in a bank for one year at 
5% interest compounded monthly, the rate for each interest period would be 
.05/12, and the number of interest periods would be 12. Consider Program INT. 

INT 

94 REM * THIS PR0GRAM CALCULATES C0MP0UND 
95 REM INTEREST BY r0RMULA 
100 READ N 
110 r0R I = I T0 N 
120 READ p, RI> NI> Y 
130 LET R = RI/NI 
140 LET N = Nl*Y 
150 LET A= P•Ct+R/IOO>tN 
160 PRINT "$"J PJ "AT"J RU "% F'0R"J YJ "YEARS" 
170 PRINT "C0MP0UNDED"J Nil "TIMES ANNUALLY BEC0MES $"J A 
180 PRINT 
190 NEXT I 
192 
194 
200 
210 
220 
230 
240 
RUN 
INT 

REM 
DATA 
DATA 
DATA 
DATA 
END 

3 
100. 
100. 
IQO, 

5, 4, 2 
5, 12. 2 
5, 365. 

$ 100 AT 5 % r0R 2 YEARS 

2 

C0MP0UNDED 4 TIMES ANNUALLY BECOMES$ 110.449 

$ 100 AT 5 % r0R 2 YEARS 
C0MP0UNDED 12 TIMES ANNUALLY BEC0MES $ lt0.494 

$ 100 AT 5 % r0R 2 YEARS 
C0MP0UNDED 365 TIMES ANNUALLY BECOMES$ 110·516 

For some sequences we are merely given a formula. For example, consider 
the sequence for which the nth term is (2n - 1)/(2n + 1). We see the first 20 
terms in program SEQOl. 
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SEQOI 

94 REM * THIS PROGRAM PRINTS 20 TERMS 0F THE 
95 REM SEQUENCE C2•N-l>/C2*N+I) 
100 DEF FNSCN> = C2•N-t> / C2•N+I> 
110 F0R I = I TO 20 
120 PRINT FNSCI » 2•I- IJ "/"J 2*I+ I 
130 NEXT I 
132 
140 END 
RUN 
SEQO! 

0.333333 
U.(; 
0.714286 
o. 777778 
0.818182 
0.846154 
0.866667 
0.882353 
0.894737 
0.904762 
0.913043 
0.92 
0.925926 
0.931034 
0.935484 
o. 939394 
o.942857 
0.945946 
0.948718 
0.95122 

I / 
3 .i 
5 / 
7 / 
9 / 
II / 
13 / 
15 / 
17 / 
19 / 
21 / 
23 / 
25 / 
27 / 
29 / 
31 / 
33 / 
35 / 
37 / 
39 / 

3 
~ 

7 
9 
II 

13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 

Summary of Sec. 9-1 

Sequences are defined as lists of numbers. Sequences may be motivated 
by a study of some natural phenomenon or simply an interest in the relation
ships of numbers. 

Problems for Sec. 9-1 

1) Beginning with the second Fibonacci number, and continuing to the 
eighteenth term of the sequence find (a) the square of the term, 
(b) the product of the immediately preceding and the immediately 
following terms, and ( c) the difference of the numbers obtained in (a) 
and (b). 

2) For at least 25 Fibonacci numbers, find, for all possible pairs, the 
greatest common factor. 

3) For at least 15 Fibonacci numbers, print the ratios of adjacent terms. 
4) Have the computer print at least 20 elements of a general Fibonacci 

sequence making f(l) = 1 and f(2) = 3, or any f(l) and f(2) you 
prefer. 

5) For a general Fibonacci sequence like that in problem 4, print the 
:r:atio uf at.lj<it;talt tt:rHiS. 

6) For a general Fibonacci sequence like that in problem 4, print the 
square of each term from the second to the next to last, the product 
of the one just before and the one just after, and the difference of 
these results. 

7) Find the accrual to $1000 after seven years at 6% interest compounded 
monthly and also compounded daily. 
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8) Find how many minutes it will take for you to get to within six 
inches of a point if you start 200 feet away and every minute you 
cover one-third of the remaining distance. 

9) Suppose that a rubber ball is known to bounce to three-fourths of the 
height from which it is dropped. If the ball is dropped from 10 feet, 
how many bounces will it take to bounce back less than one inch? 

10) If you were to place one grain of rice on the first square of a chess 
board, two grains on the second, four grains on the third, doubling 
the number from each square to the next, how many grains would 
you have to place on the 64th square? (Could you?) 

11) Print a few terms of any of the following: 
(a) 2n + 3 (d) nn 
{b} 2n2 - n + 1 (e) n(l fn) 
(c) 2n /n 2 (f) (1 + 1/nt 

9-2 Convergence and Divergence 

Looking at the sequences of the last section and the results of the prob
lems, we can see some differences. Note that for the Fibonacci sequence, the 
numbers get larger and larger, and for the sequence in which the distance is halved 
each minute, the terms get closer and closer to zero. For the sequence generated 
by (2n - l}/(2n + 1), the terms seem to get closer and closer to one. The later 
two sequences are examples of converging sequences, and the Fibonacci sequence 
is an example of a diverging sequence. 

If a sequence converges on some value, then that value is called the limit of 
the sequence. In the formal study of limits, methods are developed for deter
mining whether or not a sequence has a limit and for finding the limit if it does 
exist. However, we will take a somewhat informal approach here. 

The limit of a sequence of values s1 , s2 , •• • Sn is denoted by 

Thus for Sn 

lim Sn 
n-+"' 

(2n - l)/{2n + 1), we write: 

2n - 1 
lim --- = 1 

n-+oo 2n + 1 

Note that there is no integer for which (2n - l}/(2n + 1) actually equals one, 
but the larger n gets, the closer to one the value of (2n l)/(2n + 1) becomes. 
We can get some insight into the behavior of sequences by looking at a few terms, 
even if that insight is that we need to look at still more terms. In order to be 
certain about the properties of some sequences, you should pursue a formal 
study of limits. However, one clear benefit of using the computer is that we 
may look at hundreds or even thousands of terms without tedious hand calcu
lations. Of course, one way to save computer time is to print only those values 
that we are interested in seeing. Sequences converge and diverge at vastly 
different rates. Therefore don't be too quick to infer too much from just a few 
terms. 

We can look at .lim (- t / by writing a very short program to print some 
1-+oo 

terms. See program LIMO!. 
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LIMO! 

94 REM * THIS PROGRAM PRINTS SAMPLE VALUES 
95 REM FOR THE SEQUENCE S = C-3/5ltH 
100 DEF F"NLCHl = C-3/5ltH 
110 FOR I = I TO I 0 
120 PRINT IJ F"NLIIl 
130 NEXT I 
132 
140 PRINT 1001 FNLCIOO> 
150 PRINT IOIJ F"NLC IOI l 
!60 EMO 
RUN 
LIMO! 

I -0.6 
2 o. 36 
3 -0.216 
4 0.1296 
5 -0.07776 
6 o. 046656 
7 -2.79936E-2 
B 1.67962E-2 
9 - I. 00777E-2 
10 6.Q4662E-3 
100 6.53319E-23 
101 -3.91991E-23 

Looking at just the first 10 terms we can see that each term is closer to 
zero than the one before and that the values alternate between positive and 
negative. For the one-hundredth term, we get 6.5 X 10-23 and for the one
hundred and first term we get - 3.9 X 10-23

, making us more and more confi
dent that the limit is zero. 

Not all converging sequences converge on zero. Consider lim (2 + t"). 
n-+oo 

We can see that (i-)" converges on zero, and therefore 2 + (i-)" converges on 
2 + 0, or 2. Look at program LIM02, and see how much faster it converges 
than program LIMOl. 

LIM02 

94 
95 
100 
110 
120 
130 
132 
140 
RUN 
LIM02 

REM * THIS PROGRAM PRINTS 
REM FOR THE SEQUENCE S = 
DEF FNLCHl = C2+C!/5ltHl 
FOR I = I HJ I 0 

PRINT II F"NLC!l 
NEXT I 

END 

I 2.2 
2 2.04 
3 2.oos 
4 2.0016 
5 2.00032 
6 2.00006 
7 2.00001 
B 2. 
9 2. 
10 2. 

SAMPLE VALUES 
C2+ C 1/5 lt H> 

It should be clear that if any number n such that In I < 1 is raised to 
higher and higher powers, the closer to zero n is, the faster the result approaches 
zero. 
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We will look at an example of divergence before we leave this section. 

Suppose that we have a magic ball that bounces to 110 percent of the height 

from which it is dropped. If we drop this ball from 10 feet, after one bounce it 

reaches 11 feet. After the second bounce, it reaches 12.1 feet, etc. How high 

will it go after 10 bounces? See program B<!>UNCE. 

B0UNCE 

94 REM * THIS PR0GRAM PRINTS HEIGHTS FOR A BALL 

95 REM RECOVERING 11 OX 0F ITS HEIGHT EACH BOUNCE 

100 LET H = I 0 
110 F0R I = I TO I 0 
120 LETH= H*l.10 
130 PRINT !J H 
140 NEXT I 
142 
150 END 
RUN 
BOUNCE 

I II 
2 12.1 
3 13.31 
4 14.641 
5 16. I 051 
6 17.7156 
7 19.48'72 
8 21.4359 
9 23.5795 
10 25.9374 

Summary of Sec. 9-2 

We have been judging divergence and convergence of sequences by looking 

at successive terms. 

Problems for Sec. 9-2 

1) Compare the convergence of (- ~g~)" with <lot. 
2) Print a few terms of 1 + (f )"and (1 + (f ))". 
3) Write a program to give enough terms of (2 + (n - 2)/n2

) to decide on 

convergence. 
4) Write a program to examine any or all of the following: 

(a) 
n2 + 3n - 1 

n 

n - 1 

(b) (n + l)(n - 2) 

( c) 1/n! 

(d) 1 - 1/3! + 1/5! + ... + (-1)"+1 /(2n - 1)! 

(e) (1 + (1/n)") 

{f) sin(n) 
n 

5) It can be shown for the Fibonacci sequence that the nth term is: 
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Verify this for a reasonable number of terms. 

9-3 Series 
A series is what you get if you write the terms of a sequence with plus 

signs between them. In other words, a series is the sum of a sequence. Thus the 
series for the counting sequence is 

1 + 2 + 3 + 4 + 5 + . . . 

The sum of the first five terms is 15. Note that if we look at successive sums, we 
can form yet another sequence called the sequence of partial sums. For the 
counting sequence, we get 

1, 1 + 2, 1 + 2 + 3, ( + 2 + 3 + ~ 1 + 2 + 3 + 4 + 5, .... 
--.,......... '---y----1 ~ 

1 3 6 10 15 ... 

We could look at the series associated with that sequence and so on without end. 
For some series, we can evaluate the sum by formula, and for others, to do 

so is difficult. It is even possible to evaluate the sum by formula for certain 
infinite sequences. 

Looking at an arithmetic series of n terms, we see that 

Sn = t1 + (t1 + ld) + (t1 + 2d) + ... + (t1 + (n - l)d) (8·1) 

and looking at the same series in reverse order we see that 

l)d) + ... + (t1 + 2d) + (t1 + ld) + t1 (8-2) 

Adding (8-2) to (8-1) we get 

2sn = (2t1 + (n - l)d) + ... + (2t1 + (n - l)d) + (2t1 + (n - l)d) 

+ (2t 1 + (n l)d) 

which is therefore twice the sum sn. Note that 2t1 + (n - l)d occurs n times. 
Thus we get 2sn = n(2t1 + (n - l)d) or 2sn = n(t1 + (t1 + (n - l)d). 
Sincethenthtermist1 + (n - l)d,weget2sn = n(t 1 + tn)or 

Sn (n/2)(t1 + tn) 

This gives us a choice for finding the sum of an arithmetic series. We may 
use either the formula, or add terms as we generate them in a computer loop. 

For a geometric series we have 

Multiplying both sides by r we get 

.L •• 2 
'JI 

• Jn-1\ 
T lt/ 

rsn = t 1 r + t 1 r
2 + t 1 r

3 + . . . + t 1 rn 

Subtracting (8-4) from (8-3) we get 

(8-3) 

(8-4) 
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which simplifies to 

Again we have the choice of finding the sum by formula or by having the 
computer add terms as it generates them. 

We can get some idea about how the arithmetic and geometric series 
behave by picking two terms and treating them as the first and second terms for 
both kinds of sequences. This is done for two pairs of terms in two runs of 
program GEq.>ARI. 

Note that in both cases the sequence of sums for the arithmetic sequence 
seems to diverge. In fact, all arithmetic sequences ford <> 0 diverge and so 
do their associated sequences of sums. We can see that one of the geometric 
sequences diverges and the other seems to converge. All geometric sequences 
and their associated series for which lrl < 1 converge. 

GEO ARI 

94 REM * THIS PROGRAM PRINTS VALUES FOR GEOMETRIC AND 
95 REM ARITHMETIC SEQUENCES AND SERIES WITH THE SAME 
96 REM FIRST TWO TERMS 
100 PRINT "FIRST TW0 TERMS"; 
110 INPUT AC I>. AC2> 
120 LET SCI> = TCI> = GCll = ACJ> 
130 LET GC2l = AC2> 
132 
134 REM * FIND COMM0N DIFFERENCE f0R ARITHMETIC SEQUENCE 
140 LET D = AC2l - ACll 
142 
144 REM * FIND COMM0N RATIO F0R GEOMETRIC SEQUENCE 
150 LET R = GC2l/GCI> 
160 PRINT "TERM"• "GEO SEQ''. "GEO SERIES''. 
170 PRINT "ARITH SEQ''. "ARITH SERIES" 
172 
174 REM * STORE SUCCESSIVE VALUES IN LISTS 
I BO F0 R I = 2 T0 I 0 
190 LET GCI> GCI-l>*R 
200 LET SCI> SCI-I> + GCI> 
210 LET AC!> ACI-1> + D 
220 LET TC!> TCI-1> +AC!> 
230 NEXT I 
232 
234 REM * PRINT RESULTS 
240 FOR I = I TO I 0 
250 PRINT J. GCI>. SCI>. AC!>• Tell 
260 NEXT I 
262 
270 END 

RUN 
GE0ARI 

FIRST TWO TERMS? 112 
TERM GEO SEQ GEO SERIES 

I I I 
2 2 3 
3 4 7 
4 B 15 
5 16 31 
6 32 63 
7 64 127 
8 128 255 
9 256 511 
JO 512 1023 

ARITH 
I 
2 
3 
4 
5 
6 
7 
8 
9 
10 

SEQ ARITH SERIES 
I 
3 
6 
10 
15 
21 
28 
36 
45 
55 



124 Advanced BASIC 

RUN 
GEil AR I 

FIRST TW0 TERMS? 4, 3 
TERM Gm s<:o GEO SERIES AR!TH SEQ AR!TH SERIES 

I 4 4 4 4 
2 3 7 3 7 
3 2.25 9.25 2 9 
4 l o6B75 10.9375 I I 0 
5 1.26562 12.2031 0 I 0 
6 ·949219 13.! 523 -1 9 
7 • 711914 t 3.13643 -2 7 
8 ~533936 14.3932 -3 4 
9 .400452 14.7986 -4 0 
•v ,, 30033-? I 5., U'J') -~ -5 

Looking at the formula for the sum of a geometric sequence, 

Sn =ti(~) 
1 - r 

we can see for lrl < 1 that rn gets closer and closer to zero as n gets larger 
and larger. Thus 1 - rn gets closer and closer to one, that is, Jim 1 - r n = 1, 

n-+~ 

and 

Jim Sn = Jim ti(~) = ti (
1 

1
_ r) n-+ 00 n-+ 00 1 - ,. 

Thus for an infinite sequence with lrl < 1, 

s =ti (-
1 

) 1 - r 

Finally, we will look at some other series in the next section. 

Summary of Sec. 9-3 
We have defined a series as what we get by replacing commas with plus 

signs in sequences. We can find the successive sums of a series, which is the 
sequence of partial sums. For an arithmetic series the nth sum is sn = (n/2) · 
(ti + tn), and for a geometric series the nth sum is Sn = ti (1 - rn)/(1 - r). 

Series either converge on some real number value or they diverge. All 
arithmetic series diverge, and geometric series diverge for a common ratio greater 
than or equal to 1 or less than or equal to -1. 

Problems for Sec. 9-3 
1) For the magic ball bounding to 110 percent of its height in Sec. 9~2, 

find the total distance traveled before reaching the height of the tenth 
b('t!n~e. 

2) Find the sum of the first n positive integers for the following values of 
n: 10, 100, 1000, and 10000. 

3) In the song "The Twelve Days of Christmas," gifts are bestowed upon 
the singer in the following pattern: the first day she receives a partridge 
in a pear tree; the second day two turtle doves and a partridge in a pear 
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tree; the third day three French hens, two turtle doves, and a partridge 
in a pear tree. This continues for 12 days. On the twelfth day she 
receives 12 + 11 + · · · + 2 + 1 gifts. How many gifts were there 
altogether? Note that the figure asked for here is the twelfth term of 
the sequence of partial sums of the sequence of partial sums of the 
sequence of positive integers. 

9-4 More on Series 

There are many series that have importance in the field of mathematics 

which are neither arithmetic nor geometric. 
It can be shown that the cosine is the sum of an infinite sequence: 

x2 x4 x2n-2 

cos(x) = 1 - - + - - · · · + (-l)n+l + · · · 
2! 4! (2n - 2)! 

While this is a very tedious calculation by hand, it is relatively simple with the 

aid of a computer program. As with finding zeros for polynomials, we use a 

relative comparison to decide when to stop (see line 180 of program Cft>SINE). 

However, in the case of polynomial evaluation, we were using the value at the 

midpoint of an interval which we knew contained the true value. In that case we 

had a measure of relative error. In the present situation we have somewhat less 

information. We have only the sum of n terms to compare with the sum of 

n - 1 terms. Thus we are saying that the magnitude of the most recent term is 

small enough to stop summing. When the magnitude of the most recent term is 

very small compared to the sum so far, we may expect the error to be small also, 

but not necessarily as small. We have not attempted to measure the cumulative 

effect of the remaining terms, although methods exist for evaluating it. 

COSINE 

REM * THIS PROGRAM APPROXIMATES 
REM USING TERMS Of A SERIES 
PRINT ''FIND COSINE Of"J 
INPUT X 
LET SI = S = N = f = I 
PRINT NJ S 
LET N = N+l 
LET SI = S 

CO SINE X 94 
95 
100 
110 
120 
130 
140 
150 
152 
154 
160 
170 

REM * f IS THE VALUE Of FACTORIAL 2*N-2 
LET f = f*C 2*N-2 >*< 2*N·3 > 
LETS= S + CC·!ltCN+ll * XtC 2*N·2 l/f l 

-180 
190 
200 
RUN 
COSINE 

If ABS<S·Sl l/CABSCSl+ABSCSI ll > lE-6 THEN 130 
PRINT "BY COMPUTER COSINE fUNCTION"J CGSCXl 
END 

FIND CGSINE Of? t.57 
I 1 
2 -0.23245 
3 2.07055E·2 
4 ·9.45914E·5 
5 8.20947E·4 
6 7.95873E·4 
7 7.96341E·4 
8 7.96335E-4 

BY CGMPUTER COSINE FUNCTION 7.96334E·4 
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Similarly it can be shown that 

x3 xs x211-1 
sin(x) = x - - + - - ... + (-1)11 +1 ----

3! 5! (2n - 1)! 

Evaluation of this is left as a problem. 

Problems for Sec. 9-4 
1) Vlrite a program to calculate sin(x) using the series in this section. 
2) Each of the following series approaches pi as n increases. 

(a)4(1-t+t- ... +(-l)"-1(2nl 1) + .. '.) 

+ __!__) 
nz 

+ 
(2n ~ 1)2 ) 

Write a program to compare convergence for each of the above. 
3) The constant e, whose value is approximately 2.718, is of importance 

in calculus. It can be shown that 

1 1 1 1 
-+-+-+ +-
0! 1! 2! n! 

and 

both approach e as n increases. Compare convergence for the two 
different methods of calculating e. 

4) One method of approximating pi is to select random points in a square 
and find how many of them fall within a quarter circle whose radius is 
a side of the square. The number of points that fall within the quarter 
circle should be proportional to the area. The area of the quarter circle 
is t7Tr2, whereas the area of the square is r2

• Thus four times the ratio 
of circle to square should approximate pi. This is a variation of the 
Monte Carlo method. Write a program to select from 1,000 to 10,000 
such points to obtain an approximate value for pi. 



10-1 Introduction 

10 
MATRICES 

A matrix is simply a rectangular array of numbers. As such, an array is a 

set of numbers arranged in rows and columns. This is, of course, exactly the ar

ray we have been using whenever we have used subscripted numeric variables in 

BASIC. A matrix may also consist of a single row or a single column. Such 

arrays are sometimes called "row vectors" and "column vectors." 
It is the purpose of this chapter to study some of the properties of matri

ces and see some applications. We will not concern ourselves with theorems and 

their proofs. A brief review of Sec. 1-5 at this time might be helpful. 
Matrices may be studied in a totally abstract setting, but it is useful to 

have a concrete example. Suppose that we are operating the Framis Corpora

tion, which employs three salesmen (it could be 300): Brown, Jones, and Smith. 

Brown, Jones, and Smith are selling clevises, hammer handles, shoehorns, and 

whipsockets. In a given week the three salesmen turn in orders for merchandise 

as shown in Table 10-la. 
One fundamental piece of information is the amount of money brought in 

by each salesman. To calculate that we need the prices as shown in Table 10-lb. 

We can find subtotals by multiplying the price of an item by the number of 

items. The subtotals are shown in Table 10-2a. Now to obtain each salesman's 

total, we simply add across the rows to get the figures shown in Table 10-2b. 

TABLE 10-1a ARRAYS 

Hammer 

Salesman Clevis handle Shoehorn Whipsocket 

Brown 30 800 50 20 

Jones 50 31 40 10 

Smith 0 500 50 90 

127 
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IADLC i0·2a 

Hammer 
Salesman Clevis handle Shoehorn Whipsocket 

Brown $30 $312.00 $24.50 $ 75.80 
Jones 50 12.08 19.60 37.90 
Smith 0 195.00 24.50 341.10 

TABLE 10-1b ARRAY P TABLE 10-2b ARRAY M 

Item Price Salesman Dollar sales 

Clevis $1.00 Brown $442.30 
Hammer Jones 119.59 

handle 0.39 Smith 560.60 
Shoehorn 0.49 
Whipsocket 3.79 

To make the discussion easier, we label the array of Table 10-la as S, the 
array of Table 10-lb as P, and the array of Table 10-2b as M. Thus to get 
M(l,1), we add the products S(l,I)*P(I,l), for I going from one to four, and to 
get M(2,l), we sum the products 8(2,I)*P(I,l), for I going from one to four. 
That makes M(J,1) the sum of the products S(J,I)*P(I,1) for J going from one to 
three and for I going from one to four. If the P array had had a second column, 
such as the salesmen's commission per item, we could carry out the above pro
cess for the second column, getting M(J,K) by summing up the products 
S(J,I)*P(I,K), for K going from one to the number of columns in P, J going from 
one to the number of rows in S, and I going from one to the number of columns 
in S. Note that the number of columns in S must equal the number of rows in 
P and that the product array has the number of rows in S and the number of 
columns in P. This is exactly the definition for matrix multiplication. There
fore, instead of constructing triply-nested loops to perform the algorithm de
scribed above, we take advantage of the BASIC matrix multiplication statement 
(see line 290 of program SALESl). To make the run of the program more 
readable, we have used string lists to provide labeling. 

SALES I 

94 REM * THIS PROGRAM CALCULATES SALES T0TALS 
95 REM USING MATRICES 
100 DIM sc3,4), p(4, I), MC3, I), !$(4), S$(3) 
110 MAT READ s, p, I$, S$ 
112 
114 REM* PRINT RAW DATA IN LINES 120 THROUGH 260 

130 F0R I = I T0 4 
140 PRINT !$CI>, 
150 NEXT I 
152 
16 0 F0 R I = I T0 3 
170 PRINT S$C!l, 
180 F0R J = I T0 4 
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190 PRINT SCI,J>, 
200 NEXT J 
202 
210 NEXT I 
220 PRINT 
222 
230 PRINT "ITEM"• "PRICE" 
240 FOR I = I TO 4 
2SO PRINT !$CI>. PCI.J> 
260 NEXT I 
270 PRINT 
272 
274 
2BO 
2B2 

REM * CALCULATE T0TALS IN LINE 290 
PRINT "SALESMAN"• "DOLLAR SALES" 

MAT M = S•P 
F0R I = I T0 3 

PRINT S$CI>• MCl1ll 
NEXT I 

REM 
DATA 
DATA 
DATA 

DATA 

30, BOO, SO~ 20 
so. 31. 40. 10 
o. soo. so. 90 

1 ... 39, ,49, 3,79 

-- 290 
300 
310 
320 
322 
324 
330 
340 
3SO 
3S2 
360 
362 
370 
3BO 
382 
390 

DATA 
DATA 

CLEVIS• HAMMER HANDLE 
SHOE HORN, WHIPSOCKET 

DATA 
400 END 
RUN 

BROWN, JONES, SMITH 

SALES I 

SALESMAN\ ITEM CLEVIS HAMMER 
BROWN 30 BOO 
JONES so 31 
SMITH 0 soo 

ITEM PRICE 
CLEVIS I 
HAMMER HANDLE o. 39 
SHOE HORN 0.49 
WHIPSOCKET 3.'79 

SALESMAN DOLLAR SALES 
BROWN 442·3 
JQNES 119.S9 
SMITH 560.6 

HANDLE SHOE HORN 
so 
40 
so 
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WHIPSOCKET 
20 
10 
90 

It may strike you that SALESl is rather long, and indeed it is. However, 
most of the program is devoted to producing nicely formatted output. If all that 
is required is the three dollar amounts at the end of the printout, that can be 
done with an extremely short program having just one calculation statement and 
one print statement, as shown in program SALES2. 

SALES2 

100 DIM SC3,4), PC41 I>. MC 3, I) 
110 MAT READ s, p 

-290 MAT M = S•P 
310 MAT PRINT M 
330 DATA 30. BOO• so. 20 
340 DATA so. 31. 40. 10 
3SO DATA o. soo. so. 90 
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360 DATA 1, .39, .49, 3.79 
400 END 
RUN 
SALES2 

442.3 
119.59 
560.6 

There are rnany properties of rnatrices \i\fhich corn.e to light lhrough the 
process of just experimenting with different relationships. So it is recommended 
that you do as many probiems as possible and that you work on problems of 
your own throughout this chapter. 

Summary of Sec. 10-1 
Matrices are not only convenient as storage areas for data, they possess 

mathematical properties that are both interesting and of practical value. The 
mathematics of matrix algebra is fairly complex, containing numerous abstract, 
involved, and intricate theorems. The thrust of our work will be to use familiar 
properties to develop new facts. 

Problems for Sec. 10-1 
1) As manager of the FramisCorporation of this section, you are interested 

only in total sales. Create a row vector T to contain the sales totals by 
item for the week. Then find T*P and print it. 

2) MAT READ the integers 1through12 into both a column vector C and 
a row vector R. Find R *C and C*R and print them both. 

3) Write a program to print integer powers of an array. How must the 
number of rows and columns be related for this? 

4) A light fixture manufacturer makes three different fixtures requiring 
parts as shown in the table and wishes to make 800 of fixture A, 200 
of fixture B, and 1,500 of fixture C. Write a program to find how 
many bulbs, switches, meters of wire, and screws will be needed. 

A B c 
Bulbs 3 1 4 
Switches 1 1 2 
Meters of wire 9 2 3 
Screws 15 8 12 

5) Find any or all of the following products: 

<·r 0 m; 
2 

:J 
(blO 1 m; 

2 

:J l 0 5 0 1 5 

1 0 8 0 1 8 
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6) Find the result: 

~1 1 1] [~: 
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800 50 

31 40 

500 50 

and compare with the results of problem 1. 

20]] [1.00] 10 . .39 

90 .49 

3.79 

10-2 Solving Simultaneous Linear Equations Using MAT INV 

The matrix equation, 

can be multiplied out on the left side to obtain 

[
a1x + b1Y + C1Z] [d1] 
ll2X + b2Y + C2Z = d2. 

ll3X + b3y + C3Z d3 
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(10-1) 

(10-2) 

We say that two matrices are equal if each entry of one equals the corresponding 

entry of the other. (Each entry of a matrix is often referred to as an element of 
the matrix.) For MAT A = MAT B that means A(I,J) = B(I,J) for all values of 

I and J. Therefore, we may say that 

ll1X + b1Y + C1Z = di 

a2x + b2Y + C2Z = d2 

ll3X + b3y + C3Z = d3 

(10-3) 

Equation (10-3) constitutes a system of three linear equations in three un

knowns. Actually Eqs. (10-1), (10-2), and (10-3) are simply three different ways 

of writing the same equality. 
We want to solve the set of equations (10-3). It will be easier to discuss 

the solution if we assign variables to the matrices of Eq. (10-1) as follows: 
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iviairix C may be referred to as the coefficient matrix, ::::; the solution matrix, and 
K the matrix of constants. Now we may rewrite Eq. (10-1) in the form 

C*S = K 

and proceed to solve for S. 
It would be very convenient if we could just divide both sides by C. But 

it turns out that the division of one matrix by another is not an easily describ
able process. However, division by C is equivalent to multiplication by the in-
verse of C and the inver~e of C, if it exists, is easily obtained in BASIC. 

Before we use an inverse to solve simult.anP.ons linP.ar P.rprntiom:: !i:>t's !ook 
more closely at just what the inverse of a matrix is. The inverse of a matrix C 
is the matrix c-1 such that the product of C and c-1 is the identity matrix. The 
identity matrix has the same number of rows as columns and is filled with zeros 
except for the upper left to lower right diagonal, which is filled with ones. Note 
that in order for a matrix to have an inverse, it must be square. 

Let's find, for example, the inverse of 

We are looking for a matrix with entries a, b, c, and d such that 

[: :J . [~ :J = [~ ~] 
Finding the product on the left we get 

[ :: : ~: :: : :: ] = [ ~ ~] 
If two matrices are equal, then their corresponding entries are equal. So we get 
the following four equations with four unknowns: 

5a + 7b 

5c + 7d 

1 

0 

6a + Sb 

6c + 8d 

We can easily solve these equations to get a 
- 2.5. Therefore, 

-4, b 

0 

1 

[~ ~] 
or 

r -4 3 1 
L 3.5 -2.5J 

3, c 3.5, and d 

We can easily verify this with the demonstration program MATINV. (Note 
that the computer in some cases, unlike our example here, is susceptible to slight 
roundoff errors when the MAT INV statement is used.) 

Now to get back to solving simultaneous linear equations. We had the 
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MAT INV 

94 
100 
110 
120 
122 
130 
140 
150 
152 
160 
170 
!BO 
182 
190 
200 
210 
212 

REM * THIS IS A PR0GRAM TO DEMONSTRATE MAT INV 
DIM xc2.2>. AC2.2), PC2.2> 
MAT READ A 
MAT X = INVCAl 

PRINT "ORIGINAL MATRIX" 
MAT PRINT A 
PRINT 

PRINT "INVERSE MATRIX" 
MAT PRINT X 
PRINT 

PRINT "THE PRODUCT IS" 
MAT P = X*A 
MAT PRINT P 

214 REM 
220 DATA 
230 END 
RUN 
MA TI NV 

0RIGINAL MATRIX 

5 6 
7 B 

INVERSE MATRIX 

-4 3 
3,5 -2.5 

THE PRODUCT IS 

I 0 
0 I 

matrix equation, C * S K. Now 

c-1 *C*S = c-1 *K 
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(10-5) 

and a matrix times its inverse gives the identity matrix, sometimes designated I. 
Thus c-1 *C = I. The identity matrix has the property that for any matrix M 

with dimensions compatible with the dimensions of I, 

I*M = M*I = M 

Thus Eq. (10·5) becomes 

I*S c-1 *K 

or 

S = c-1 *K 

and we have solved Eq. (10-4) for S, which was our purpose. It is now a relatively 

simple matter to write a program (see program S</)LVE) to solve the system, 

x+2y- z=2 

3x 

4x 

3y + 2z 

y + 2z 

3 

8 

(10-6) 
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S0LVE 

94 REM * THIS PROGRAM SOLVES SIMULTANEOUS LINEAR 
95 REM EQUATIONS USING THE MAT INV STATEMENT 
100 DIM CC3,3>. SC3. I>. KC3, I>. NC3.3> 
110 MAT READ C• K 
120 MAT N = INVCC> 
130 MAT S = N*K 
140 PRINT "SOLUTIONSt" 
150 MAT PRINT S 
152 
154 REM 

170 DATA 2,3,g 

RUN 
S0LVE 

S0LUTI0NS1 

In program S<;!>LVE, the column vector, 

s-m 
translates back to x = 1, y = 2, and z = 3. We may now substitute these 
values in Eq. (10-6) to verify that they do in fact solve the system of equations. 

Summary of Sec. 10-2 

We have seen that sets of simultaneous linear equations may be solved by 
considering an equivalent matrix equation C*S = K, where C is the coefficient 
matrix, S is a column vector which contains the values of the variables in the 
original set of linear equations, and K is a column vector containing the constant 
terms in the original set of linear equations. We may solve for S by finding the 
inverse of matrix C, so that S c-1 *K. The inverse may be found with the 
BASIC statement MAT I = INV(C). For systems of simultaneous linear equa
tions having a unique solution, MAT C will always be square, which is one of the 
requirements for having an inverse. 

Problems for Sec. 10-2 

1) Let 

A [~ -~ J 
Find the print A-1 , A*A-1

, and A-1 *A. 
2) Let 

B = [-8 -3] 
0 -1 
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Find B- 1 and print it. Verify by hand-computing the inverse of B. 
Find and print B*B-1 and B-1 *B. 

3) Solve for x and y: 

4) 

5) 

-2x - 5y = -16 

- x + 4y = 31 

Solve for x, y, and z: 

2x - 9y 5z 2 

7x 6y + 5z -35 

9x 6y + 5z -39 

Solve for x, y, and z: 

3x + 4y + z = 7 

5x - 6y + 3z = 8 

3x + 4y + z = -3 

6) Solve for w, x, y, and z: 

6w + 3x + 6y + 5z = -12 

-7w + 5x - 7y - z = 77 

-3w + x + 3y + 6z = 31 

-2w - 4x + 4y - 7z = -76 

7) Solve for w, x, y, and z: 

-3w + 6x - 5y - z = -32 

w + 9x - 5y - 2z = 9 

w + 6y + 5z = 2 

-7w + 4x - y + 5z -86 

8) Solve for x, y, and z: 

2x + 4y - 3z = -11.9 

-9x - 3y 58.5 

-9x + 8y + 5z = 66.6 

9) Solve for v, w, x, y, and z: 

7v + 6w - 3x - y + 9z = 26.3 

-9v + 2w + 9x + 5y + z = 91.1 

-3v + 4w + 5x + 5z = 62.9 

6v - 8x - 2y - 6z = - 55.6 

-3v - 9w + 5x + 7y + 3z = -25.9 

10) Let 
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A = [~ :~ -!] •nd B 

Find and print (A*Bf1 and B-1 *A-1 

11) Write a program that can solve sets of simultaneous linear equations 
having different numbers of equations. Provide an item of data that is 
the nurnber of equation~ and redimension aH matrices accordingly. 
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SOME TOPICS 

OF STATISTICS 

11-1 Introduction 

The possibilities for using the computer to analyze and summarize large 
amounts of data are virtually unlimited. This chapter will introduce just a few 
fundamental statistical calculations. 

11-2 Average, Variance, and Standard Deviation 

One of the most common measures of statistical information is the average 
or arithmetic mean. The average is the sum of the measures divided by the num
ber of measures. In some cases the mere task of counting the number of mea
surements may be a job in itself. So we can even use the computer to do the 
counting for us. All that is necessary is to append an item of artificial data as a 
flag to stop counting and calculate the average, as shown in program AVG. 

AVG 

94 
95 
100 
110 

-120 
130 
140 
150 
160 
170 
190 
492 
494 
500 
510 
520 
530 

REM * THIS PROGRAM COUNTS DATA AND 
REM CALCULATES AVERAGE 
LET N = T = 0 
READ D 

IF" D = .01 THEN 160 
LET N = N+ I 
LET T = T+D 
G0TO 110 
PRINT " MEASUREMENTS"; N 
LET A = TIN 
PRINT "AVERAGE MEASURE"J A 

REM 
DATA 93, so, 73, 92, 77, 34, 
DATA 99, 63, 63, 92, s 1, 93, 
DATA 93, 71, 73, .Qt 
END t 
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33, 
47, 

79, 37, 73 
53, 89, 100 
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RUN 
AVG 

Advanced BASIC 

MEASUREMENTS 23 
AVERAGE MEASURE B0.3478 

The average for a set of data gives no idea of the spread or dispersion of 
the data. The average of zero and 100 is 50, and the average of 49 and 51 is also 
50. We could get some idea by having the computer find for us the largest and 
the smallest rneasures. Even that inf0:rrnatiun eou!d be misleading" since the 
largest measure could be much larger than the next largest, or the smallest could 
be much smaiier than the next smallest. One way to gain some insight into the 
distribution of the measures is to find the average of the amount by which each 
measurement differs or deviates from the average of the measures. There is a 
flaw here, however, as some will deviate by a positive amount and some will 
deviate by a negative amount, thus cancelling each other out. Using mean ab
solute deviation would avoid this difficulty. However, expressions involving 
absolute value are difficult to work with algebraically, and statisticians thus find 
the average of the squares of the deviations. This figure is called the "sample 
variance." In order to write a formula for variance, we use the Greek letter 
sigma, L , which indicates summation. Defining average using summation nota
tion looks like this: 

n 

.2: xi 
i=l 

A = 
n 

The average A is the sum of all values of xi for i going from 1 to the number of 
measurements, which is n, divided by the number of measurements. We define 
variance in terms of the average as follows: 

n 
L (xi - A)2 
i=l 

V= 
n 

Even the variance, which gives an indication of how measurements are distrib
uted, doesn't indicate actual dispersion. It indicates the square of dispersion. 
Thus we take the square root of V, getting a number called "standard 
deviation": 

n 
L (xi - A)2 

s2 i=l 

n 

and 

s 
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Now if we try to apply a computer program directly to the formula for 8 2
, we 

soon find that we will have to READ the DATA twice, once to find the average, 
and again to get each value of xi - A. This is not a problem for small amounts 
of data; but since it can be avoided, let's do so. 

It can be shown that 

11 

I: (xi - A)2 
11 

i=l 1 I: x~ - Az 
I 

n n i=l 

This means that we can, alternatively, have the computer sum up the squares of 
the measures rather than the squares of the deviations. This can easily be incor
porated into program A VG. See lines 150 and 210 of program VAR. 

VAR 

94 
95 
100 
110 
120 
130 
140 

REM * THIS PROGRAM COUNTS DATA AND CALCULATES 
REM THE AVERAGE, VARIANCE AND STANDARD DEVIATION 
LET N = T = Tl = 0 
READ D 

IF" D = • 0 I THEN I 7 0 
LETN=N+l 
LET T = T+D 
LET Tl = Tl + Dt2 
GOTO 110 

-150 
160 
170 
172 
IBO 
190 
192 
200 

PRINT " MEASUREMENTS"J N 

LET A = TIN 
PRINT " AVERAGE MEASURE" J A 

LET Al = Tl/N 
LET V = Al - At2 -210 

220 
222 

PRINT VARIANCE"J V 

230 LET S = SQRCV l 
240 PRINT "STANDARD DEVIAT!ON"J S 
492 
494 
500 
510 
520 
530 
RUN 
VAR 

REM 
DATA 98, 
DATA 99, 
DATA 98. 
END 

so, 73, 92, 
63. 63. 92, 
7), 7 3, .01 

MEASUREMENTS 23 
AVERAGE MEASURE 80.3478 

VARIANCE 202.314 
STANDARD DEVIATION 14·2237 

Summary of Sec. 11-2 

77, 84, 
B 1, 93, 

83. 79, 87, 73 
47, 53, 89, 100 

In this section, the average, or arithmetic mean, variance, and standard 
deviation have all been defined. We have written programs to calculate the 
average and standard deviation. 

Problems for Sec. 11-2 

1) Modify program AVG so that the computer tells us the highest and 
the lowest measures. 
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2) Modify program VAR so that we get the deviations of the largest and 
smallest measures from average in terms of the number of standard 
deviations. (If the largest measure is 91 for an average of 70 and the 
standard deviation is 7, then the largest measure would be three stan -
dard deviations from average.) 

3) Often in practice we use what is called the "weighted average." Sup
pose that tests count three quizzes and that the final exam counts two 
tests. Find the weighted average for quiz marks 70, 80, and 73, test 
marks 63, 82, and 91, and a final exam of 83. 

4) Generate 100 random numbers from 1 to 201. Caicuiate the average 
and standard deviation. 

5) Generate 100 random numbers from -100 to 100 and calculate the 
average and standard deviation. 

6) Devise a scheme without reading data twice for finding accurately 
the average and standard deviation for the following data: 9999.12, 
9999.36, 9999.64, 10000.03, 10000.41, 9999.83, 9999.51, 9999.13 
and 10000.08. Due to roundoff error, many programs will give a large 
standard deviation for the above data. (Hint: we can simply measure 
differences from 10000 instead of from zero.) 

11-3 Median 

The median is the middle value. Sometimes the median is presented as an 
item of statistical information, such as median income or median weight. If 
there are an even number of data items, then the median is the average of the 
middle two values. One reason for using the median is that it tends to be less 
affected by a few widely dispersed items of data than the average. There are 
no particularly difficult calculations required to find the median. What does 
have to be done, though, is to first arrange the data in numerical order. Thus 
let us develop an ordering routine. 

There are many, many ways of ordering. Some ordering procedures are 
very elaborate and some are very simple. As the number of items to be sorted 
increases, the need for efficiency increases. The study of sorting is a fascinating 
and intriguing one. However, we hesitate to become too involved at this time. 
We will instead develop an ordering routine that works with only a little atten
tion to efficiency and defer a more sophisticated study of ordering for another 
time and place. 

If we test every adjacent pair of numbers in a list and find that they are 
in order, then we know that the entire list is in order. This is called a "bubble 
sort." If we find any adjacent pair that is not in order, then we can direct the 
computer to exchange those two elements so that they are in order. If every 
time that we make such an exchange, we turn a switch on by letting S = 1, 
J:hen we Cl\n oeterinine ::it the enfl of Checking thro11gh the list th::it lln P}(Ch::inge 
has been made and that the list might not be in order yet. If after scanning the 
entire list we find that switch Sis still zero, then we know that no exchange has 
been made and the list must be in order. After the first scan through the list, 
we know that the number at the end of the list is the highest or lowest depend
ing on which order we specify. That is, it is the number that will be there when 
the list is finally ordered. Thus we do not need to check the entire list the next 
time; we can check one less item. See program <!>RDER. 
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ORDER 

94 
100 
102 
104 
110 
120 
130 
140 
150 
160 
170 
IBO 
IB4 
190 
200 
210 

-220 
222 
224 
230 
240 
250 

-260 
270 
272 
274 
275 
276 

-2BO 
2B2 
2B4 
290 
300 
310 
492 
494 
500 
510 
520 
530 
RUN 
0ROER 

REM * THIS PROGRAM ORDERS UP TO 200 NUMBERS 
DIM LC200) 

REM * READ ANO COUNT DATA 
LET I = 0 
LETI=I+l 

Ir I <= 200 THEN 160 
PRINT "CURRENT LIMIT IS 200 NUMBERS" 
ST0P 
READ L< I> 

If L<I> <> .at THEN 120 
LET N = I = 1-1 
REM * TURN SWITCH Orr ANO BEGIN SORT 
LET S = 0 
LET N = N-1 
f0R J = I T0 N 

Ir L<J> >= LCJ+I) THEN 270 

REM * EXCHANGE ELEMENTS AND TURN SWITCH ON 
LET St = L<J> 
LET L<J> = LCJ+t> 
LET L < J+ I) = SI 
LET S = I 

NEXT J 

REM * CHECK SWITCH 
REM S = 0 SORT C0MPLETE 
REM S = I S0RT N0T C0MPLETE 

If S = I THEN 190 

REM * THE LIST IS IN 0ROER - PRINT IT 
r0R X = I T0 I 

PRINT LCX>J 
NEXT X 

REM 
DATA 9B. BO. 73, 92. 11. B4. 83. 79, 
DATA 99, 63. 63. 92. st. 93, 47, 53. 
DATA 9B. 11. 73, .01 
ENO 

B7. 73 
B9• 100 

141 

100 99 9B 9B 93 92 92 89 B7 B4 B3 Bl BO 79 77 73 73 73 
71 63 63 53 47 

Note that in line 220 we check for greater than or equal to. What would 
happen if we only checked for greater than? If there are two equal numbers in 
the list, the switch will always get turned on and cause the routine to be re
peated endlessly. In program </)RDER we have done two things in the interest 
of efficiency. We do not scan that part of the list that we know to be in order, 
and we quit when we know the entire list is in order. 

There are other things that may be done to improve the efficiency of 
program </)RDER. One is to sort "up" the list as well as "down." However, 
in spite of these precautions, the general procedure here is satisfactory only for 
relatively small amounts of data. If we are to order thousands or hundreds of 
thousands of data items, then there are far more efficient algorithms which we 
would have to use. The fundamental weakness in the procedure we have used 
is that on each pass the computer checks only one less pair of data items than 
on the previous pass. Much can be gained by partitioning the data to be ordered 
in such a way that only a small fraction of the data need be scanned each time 
an item is placed in its final spot in the list. However, such procedures generally 
require much more programming effort. 
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If all we want is the median, then there is no need to actually print the 
data in order. The middle number for I odd is L(INT(I/2)+1) or L(INT((I+ 1)/2)). 
See line 320 of program MEDIAN. 

MEDIAN 

94 
95 

REM * THIS PROGRAM FINDS THE MEDIAN FOR 
REM AN ODD NUMBER OF DATA ITEMS 

!00 D!M L<200l 
i iG LEi ;;; 0 

LET I = I+ 1 
11• 1 <= ;;!UU IHt.N 160 

120 
l3U 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
312 

PRINT "CURRENT LIMIT IS 200 NUMBERS" 
ST0P 
READ LC I> 

IF L<I> <> .01 THEN 120 
LET N = I = 1-1 

IF N/2 <> INTCN/2) THEN 220 
PRINT "N EVEN" 
STOP 
LET S = 0 
LET N = N-1 
FOR J = I TO N 

IF L<J> >= LCJ+I> THEN 300 
LET SI = L<J> 
LET LCJ) = l.CJ+I> 
LET L<J+I> = SI 
LET S = I 

NEXT J 
IF S = I THEN 220 

PRINT -320 
492 
494 
500 
510 
520 
530 
RUN 
MEDIAN 

"MEDIAN"J LC INTCCI+l>/2> 

REM 
DATA 98> so, 73, 92, 77, 84> 83, 
DATA 99, 63, 63, 92, 81, 93, 47, 
DATA 98. 71, 7 3, .01 
END 

MEDIAN 81 

) 

79, 
53, 

87, 
89, 

73 
100 

As written, MEDIAN does not properly account for an even number of 
data items. 

Problems for Sec. 11-3 
1) Modify program MEDIAN to allow for both even and odd numbers of 

data items. 
2) Modify q'>RDER so that it can be used to arrange in either ascending or 

descending order determined by an INPUT request. 
3) Modify MEDIAN as in problem 1 and print the largest, smallest, and 

average value. 
A\ £'"1 .... ..,..,"'! .... ....,"-,, 1 fl(\ .... ,.. ..... ,....l ..... ._,. vu1~hr\v<- f\·n.~ 1 tr-. 1 ()() "'.l1"'rl ftn.rl tho marll!ln 
-XJ \...A'VJ.J.\..>.LUIJ'V .L.V'J LU.l.lUVlJ..L .l.L\A,.l.l.l.IU'.._,.._.., .l."-'-"-'".l _,_ .,..,.,,. ...._ • ..., ... , .....,,.,........_ .._,.. ... ,. ..... "''"'""" ... _ ... ..,,..,,.. ____ _ 

5) As written, program q'>RDER is efficient for a set of numbers in which 
only the first number in the list is out of order. But suppose only the 
last number is out of order. Then the program is slow. We can im
prove it by inserting an upward sort, taking the number that belongs 
at the top of the list up to the top in one pass and then not scanning 
that element again. Incorporate this step into the program. 
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11-4 Coefficient of Linear Correlation 

Very often people have a set of data consisting of two or more figures for 
each object of the study and would like to know if there is a relation between 
them. For example, suppose we have test scores for five people for whom we 
also have IQ scores, as shown in Table 11-1. We would like to know if one score 
is a good predictor of the other score. 

TABLE 11-1 IQ's and Test Scores 
for Five People 

IQ 

110 
105 
134 
128 
92 

TEST 

80 
84 
92 
71 
83 

There is a variety of formula and techniques for finding correlations. We 
present here a computational formula for finding the degree of linear correlation 
between two sets of data, X and Y. 

11 11 11 

n_L X1Y1 - .L X1 .L Y1 
i=I i=I i=I 

(11-1) rxy 
VxVy 

where rxy is the linear correlation coefficient, Vx is the variance of the X data, 
and Vy is the variance of the Y data. 

Let's look at the correlation coefficient for the data of Table 11-1. See 
program Cft>RREL. The correlation is about .03. That may safely be taken to 
indicate that there is no correlation between these two sets of data. That is, IQ 
is unrelated to the test score. We can see by inspection that no obvious pat
tern is present. 

We can get some idea of how the value of r is affected by various patterns 
in the data by simply using Cfl>RREL with a variety of data. We present two 
additional runs for your observation. 

CEJRREL 

94 REM * THIS PROGRAM CALCULATES CEJRRELATIEJN CEJEFFICIENT 
100 LET N = S = St = S2 = Tl = T2 = 0 
110 PRINT "IQ TEST SCEJRE" 
120 READ x. Y 
130 IF X = 0 THEN 220 
140 PRINT XJ TABC6lJ Y 
150 LET N = N+t 
152 
154 REM * SUMMATIEJNS DONE IN LINES 160 THREJUGH 200 
160 LET S = S + X*Y 
170 LET St = St+X 
180 LET S2 = S2+Y 
190 LET Tl = Tl + Xt2 
200 LET T2 = T2 + Yt2 
210 GEJTEJ 120 
212 
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214 
220 
230 
240 
250 
260 
270 
272 
260 
290 
300: 
310 

REM * VARIANCES CALCULATED IN LINES 220 THROUGH 270 
LET Al Sl/N 
LET A2 S2/N 
LET Bl Tl/N 
LET B2 T2/N 
LET VI SQR( Bl - Al•2 l 
LET V2 SQR( B2 - A2t2 > 

LET R = < N*S - Sl*S2 l/( CNt2l*Vl*V2 l 
PRINT 
CORRELATION n.nuu 
PRINT USING 300• R 

3!2 
314 REM 

330 DATA 126.71• 
340 END 
RUN 
CORREL 

IQ TEST SCORE 
110 60 
105 64 
134 92 
126 71 
92 63 

C0 RRELAT ION .021 

RUN 
C0RREL 

IQ TEST SCCJRE 
134 92 
126 64 
110 63 
105 60 
92 71 

CORRELATION ,930 

RUN 
CORREL 

IQ TEST SC0RE 
I -2 
2 -3 
4 -5 
5 -6 

CORRELATION *-1.000 

o. 0 

We can see that correlation coefficients range from -1 to .930 in the 
sample of runs. It turns out that -1 to 1 is the true maximum range. A coef
ficient of one indicates perfect correlation. A coefficient of zero indicates no 
correlation, and a coefficient of negative one indicates perfect negative correla· 
tion. Generally, values between - .40 and .40 are considered to indicate that the 
variables are unrelated, whereas for -1 to - .9 and for .9 to 1 the variables are 
coi1sidei"ed tv bG extremely clcsoly rc!G.tcd in :i linc:!r f!lsh!cn. The !arge! the 
number of data items we use to calculate the value of r, the more reliable its 
value. For a small amount of data, the coefficient is more likely to be affected 
by a single stray or inaccurate item of data. 

Often it may happen that we have more than two sets of data with which 
to work. With a slight modification of Cq'>RREL, we can easily find the linear 



Some Topics of Statistics 145 

correlation coefficient for columns 1 and 2, 1 and 3, and 2 and 3 for the data 
shown in Table 11-2. See program runs labelled WEATHER. The program is 
actually CQ'.>RREL with the READ statement modified as shown in each run. 
An alternative approach would be to RESTQ'.>RE the data and use the entire 
program as a subroutine three times. 

TABLE 11-2 Run Table Showing Normal, Record High, and Record Low 
Temperatures for 24 Selected Dates of the Year 

Normal High Low Normal High Low 

32 61 4 32 63 5 
46 81 14 53 91 27 
33 61 2 34 63 -2 
58 90 35 63 90 37 
36 68 11 41 86 10 
68 97 44 72 98 44 
74 102 52 76 98 56 
62 89 34 55 89 34 
76 97 56 74 94 56 
50 84 30 44 72 21 
71 97 49 67 93 44 
39 68 11 33 60 7 

120 REAO x. y, z 120 READ x .. z, y 120 READ z .. x, y 

RUN RUN RUN 
WEATHER WEATHER WEATHER 

x y x y x y 
32 61 32 4 61 4 
32 63 32 s 63 s 
46 Bl 46 14 B 1 14 
S3 91 S3 27 91 27 
33 61 33 2 61 2 
34 63 34 -2 63 -2 
SB 90 SB 3S 90 3S 
63 90 63 37 90 37 
36 6B 36 11 6B II 
41 B6 41 10 B6 10 
6B 97 68 44 97 44 
72 98 72 44 9B 44 
74 102 74 S2 102 S2 
76 9B 76 S6 98 S6 
62 B9 62 34 89 34 
SS 89 S5 34 89 34 
76 9'7 76 56 97 S6 
74 94 74 56 94 56 
50 B4 so 30 84 30 
44 72 44 21 72 21 
71 97 71 49 97 49 
67 93 67 44 93 44 
39 68 39 II 6B II 
33 60 33 7 60 7 

CORRELATION .944 CO RRELATl0N ·984 C0RRELATHlN .920 

For correlation normal to high, we get .944; for normal to low, we get 
.984; and for high to low, we get .920. These all indicate a high degree of linear 
correlation. 
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If we were to require the correlation coefficients for all pairs of columns 
for more than three columns, it is a bit awkward to use the method we used in 
program WEATHER. It would be a lot cleaner to read all the data into an array 
and manipulate the column subscripts to get all possible pairs. This is left as an 
exercise. 

Summary of Sec. 11-4 

We have presented a computational formula for obtaining the linear cor
reiation coefficient. This is also referred to as the Pearson r. Values close to 
zero ii1di(;ate a lov; dt:gree of linear ;.;ui'i'eiatiuu, whcn:!a~ values vvith absolute 
value close to one indicate a high degree of linear correlation. 

Problems for Sec. 11-4 
1) Write a program to generate 25 pairs of random numbers and compute 

the correlation coefficient. What value do you expect? Run the pro
gram several times. 

2) Write a program to calculate the correlation coefficient for the integers 
2 through 100 and the number of factors. 

3) Do problem 2 for prime factors not including 1. 
4) Write a program to find correlation coefficients for all pairs of columns 

by first reading the data into a single array as described in the section. 
Use the following data: 

a b c d 

39 12 2 1978 
43 8 5 1749 
25 4 1 1462 
22 4 1 1288 
21 11 11 1241 
21 7 3 1176 
32 10 2 1086 
37 7 12 1026 
18 2 1 1003 
30 10 3 971 

5) For the data given, find any or all of the following linear correlations: 

(a) aandb a b 
(b) a2 and b 

1 1.04631 (c) a3 and b 
(d) a4 andb 2 16.5958 

3 84.0632 (e) aandlog(b) 
4 266.206 
5 651.343 
6 1353.51 
7 2512.56 
8 4294.3 
9 6890.5 

10 10519 
11 15424 



12-1 Introduction 

12 
SIMULATION A 

GAMES 

'I'he ability of the computer to store information, generate random num
bers, and make decisions makes it well suited for simulations of all kinds. Com
puters can be programmed to play games. Programs can be written to simulate 
business activity, social phenomena, and numerous activities in the physical 
sciences. Computers can be used to conduct gambling enterprises, schedule 
classes, and manage production schedules. Some situations are dealt with by 
having the computer investigate all possible alternatives. Other situations are so 
complex that a procedure must be found that enables the computer to make a 
best reasonable decision which may not be the best possible decision. For 
example, it is possible to write an unbeatable tic.tac-toe program. However, the 
game of chess allows so many possible sequences of moves that it is impossible 
to write a program for existing computers to investigate them all. 

'l'he purpose of this chapter is to present a few examples of simulation and 
to suggest areas for further investigation. 

12-2 Lines at the Bank 

As the manager of a new bank branch, you are interested in knowing what 
to expect in the way of teller requirements. You are presented a bank that has 
five windows. As a preliminary trial, you make the following estimates and 
assumptions: 

1. Assume that there is always a customer waiting with a four-minute 
transaction when the bank opens at 9 AM. 

2. Always open two windows at 9 AM. 

3. Customers will tolerate only as many as 10 persons per line; thus when 
all lines are full, a new window must be opened. 

147 
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4. During every minute of the day one or two or no customers will enter 
with equal probability. 

5. Every customer after the first has transactions that will last one, two, 
or three munutes with equal probability. 

6. A new customer upon entering the bank goes to the line with the 
fewest persons. In case of a tie, the customer takes the line closest to the door. 

'l. The bank closes at 3 PM. 

Our joh now is to wr·ite a c•)mputer program that reacts to each of the 
restrictions above and keeps track of the day's business. One possible simulation 
is to use two arrays-one from the customer's point of view and one from the 
window's point of view. Both arrays have five columns, one per window. The 
customer array has 10 rows to allow as many as 10 people in line. The window 
array has four rows. The first row contains a '1' to signify that the window is 
open and a 'O' to signify that the window is closed. The second row contains the 
number of people in line for that window. The third row contains the number 
of people served since the run began. The fourth row contains the number of 
minutes that the window has been open. The customer array contains the 
number of minutes each customer in line will take. 

In program LINES, all loops F</>R Wl = 1 T</> 5 scan all five windows. 
Lines 200 and 210 open two loops to keep track of time. H stands for hours 
and Ml stands for minutes of that hour. Line 240 looks to see if a window is 
open, and line 250 adds one minute to open time for the window. Line 260 
looks to see if anyone is in line at the open window. Lines 390 through 500 
search for the line having the fewest people. Numerous other relevant comments 
appear in the REM statements of program LINES. 

LINES 

94 REM * THIS PR0GRAM SIMULATES LINES AT 
95 REM TELLER WINDOWS 0, A BANK 
96 
97 REM * ARRAY L IS THE CUSTOMER ARRAY 
98 REM ARRAY R IS THE WINDOW ARRAY 
100 DIM LCI0,5>. RC4,5J. A$C4l 
I 05 RAND0M I ZE 
110 MAT READ A$ 
120 MAT R = ZER 
130 MAT L = ZER 
132 
134 REM * 0PEN WIND0WS I AND 2 BY PLACING A 
135 REM I IN ROW I OF COLUMNS I AND 2 IN ARRAY R 
140 LET RCl,ll = RCJ.2> = I 
142 
144 REM * THE FIRST CUSTOMER ENTERS WITH A 
145 REM FOUR MINUTE TRANSACTION 
150 LET LCI, I> = 4 
160 LET RC2, I> = I 
162 
164 REM * SET UP L00PS Tel KEEP TRACK lff TIME 
200 roR H 0 TO 5 
210 rnR Ml I TO 60 
220 LET T = 60*H + Ml 
222 
224 REM * THIS L0BP ADJUSTS TIME FOR 
225 REM CUST0MERS AND WIND0WS 
230 ,0 R WI = I T0 5 
240 ff RC 1,w1 > = 0 THEN 350 
250 LET RC4,Wll = RC4,Wll+I 



260 
262 
264 
265 
270 
280 
282 
284 
290 
300 
310 
320 
322 
324 
330 
340 
350 
352 
354 
360 
370 
372 
374 
380 
382 
384 
385 
390 
400 
410 
420 
430 
432 
434 
435 
440 
450 
460 
462 
500 
510 
520 
530 
532 
540 
550 
560 
562 

Simulation and Garnes 

I' RC2.Wll = 0 THEN 350 

REM * THERE IS A LINE 
REM REDUCE 'IRST PERSON'S TIME 
LET LCl.Wl> LCl.Wll-1 

I, L<l.Wll <> 0 THEN 350 

REM * ENO 0' TRANSACTION - MOVE PEOPLE UP IN LINE 
,OR P= I TO RC2.Wll-l 

LET LCP.Wll = LCP+l.Wll 
NEXT P 
LET LC RC2.WI l.WI l = 0 

REM * ONE MORE TRANSACTHlN - ONE LESS PERS0N 
LET RC3.Wll RC3.Wll+I 
LET RC2.Wll = R<2.Wll-l 

NEXT WI 

REM * ENTER o. I OR 2 CUSTOMERS 
LET C = INT< RNDC-1>*3 l 
rQRCI ITOC 

REM * SELECT TRANSACTION TIME 
LET TI = INT< RND<-1>*3+ I l 

REM * NOW 'IND THE SHORTEST LINE WITH 
REM LESS THAN TEN PECJ PLE 
LET N = R<2.ll 
LET NI = I 
,OR WI = 2 TO 5 

ff R <I• WI l = 0 THEN 46 0 
I, R<2.Wll >= N THEN 460 

REM * CURRENT LINE IS SHORTER 
REM SAVE WINDOW # ANO # 0, PEOPLE 
LET N = RC2.Wl l 
LET NI = WI 

NEXT WI 

I' N <= 9 THEN 590 
,OR WI = I TO 5 

If RCl.Wll = 0 THEN 570 
NEXT WI 

PRINT "ALL WINDOWS ,ULL AT"I TJ "MIN 1JTES" 
MAT PRINT RJ 
ST0P 

564 REM * OPEN ANOTHER WINDOW 
570 LET RCl.Wll I 
580 LET NI = WI 
590 LET RC2.Nll RC2.Nll+I 
600 LET LC R<2.Nll.Nl l = Tl 
610 NEXT Cl 
620 NEXT Ml 
622 
6 30 GCl SIJB 800 
640 NEXT H 
650 ST0P 
652 
800 PRINT TAB< 11 l l "AT THE ENO O'"J T/60J "HOURS" 
810 PRINT WINDOW NO. ClNE TW0 THREE rnuR '1VE" 
820 ,0R I = I T0 4 
830 PRINT A$CilJ 
840 ,OR J = I TO 5 
850 PRINT TA9(15+CJ-ll*6lJ R<I.JlJ 
860 NEXT J 
870 PRINT 
880 NEXT I 
890 PRINT 
900 RETURN 
972 

149 
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974 REM 
980 OATA "!=OPEN O= CLOSED", .. PEO PL.E IN LINE" 
990 DATA .. PEOPLE SSRVED 0 ~ " MINUTES OPENED" 
999 END 

RUN 
LINES 

AT THE END Or I H0URS 
WINDOW NO. 0NE TW0 THREE FOUR FIVE 

1=0PEN O= CLIJ SED I I 0 0 0 
PE~PLE J,\'I t..J.1'11:. 4 4 0 0 0 

PE0PLE SERVED 31 25 0 0 0 
M!~!!JTE:S 0?Er-!E:!} 60 60 0 0 0 

AT THE END Or 2 HOURS 
WIND0W N0. 0NE TW0 THREE FOUR F"IVE 

1=0PEN O=CL0SED I I 0 0 0 
PE0PLE IN LINE 8 8 0 0 0 

PE0PLE SERVED 59 52 0 0 0 
MINUTES 0PENED 120 120 0 0 0 

AT THF. END 0r 3 H0URS 
W!ND0W NO. 0NE TWO THREE FOUR FIVE 

1=0PEN O=CL0SED I I 0 0 0 
PE0PLE IN LINE 9 9 0 0 0 

PE0Pl.E SERVED 92 79 0 0 0 
MINUTES OPENED ISO 180 0 0 0 

AT THE END OF 4 HOURS 
WIND0W N0. 0NE TVJO THREE F"CJUR FIVE 

!=OPEN O=CUlSED I I I 0 0 
PEOPLE IN LINE I 0 0 0 a 

PEOPLE SERVED 122 108 23 0 0 
MINUTES OPENED 240 240 50 0 0 

AT THE END 0F 5 HOURS 
111IND0W Nlil• 0NE TWO THREE FOUR F"IVE 

!=OPEN O=CLO SED I I I 0 0 
PEOPLE IN LINE I I I 0 0 

PEOPLE SERVED 148 I 31 36 0 0 
MINUTES OPENED 300 300 110 0 0 

AT THE END 0F 6 HOURS 
WINDOW NO. 0NE TW0 THREE r01JR FIVE 

l=OPEN O=CLOSED I I I 0 0 
PEOPLE IN LINE I I 0 0 0 

PEOPLE SERVED 178 153 51 0 0 
MINUTES 0PENED 360 36D 170 0 0 

The run shows that ten minutes into the fourth hour the third window 
was opened. We can see that at the end of the day there was one person waiting 
at window 1, which had served 178 people during the day. Window 2 also had 
one person in line, but had served only 153 customers. Similarly, the third win
dow had served 51 customers and left none in line at the end of the day's 
business. 

While the results of LINES provide some interesting information, there are 
virtually unlimited possibiiities for extracting more information and for testing 
changes in the original list of assumptions and estimates. 

There have been no provisions for closing a window. We might want to 
close a window due to lack of activity or to allow employees time to lunch. In 
practice, bank tellers close windows but service those customers already in line. 
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Program LINES does not provide for having a window closed with people 
standing in line. We could use a "-1" in the window array to signify this 
condition. 

It is fairly obvious that the assumption of random arrival of customers 
is an oversimplification of the true pattern. Clearly, large numbers of people 
conduct bank business during their lunch hour. Not only does the arrival of 
customers vary during the day, but it varies with the days of the week and of 
the month. Fridays tend to be heavier, and the first of the month is heavy. 

The limit of 10 persons per line was thus arbitrary and perhaps unrea
sonable as an absolute limit. The program could be modified to open a new 
window when all the lines contain 10 customers, but when all windows are 
open and all lines contain 10, then we should allow the lines to grow. 

In practice, a new customer generally steps into the shortest line, but 
the customer is not obligated to stay there. Thus we could make provision in 
our simulator for customers to move to a faster moving line. (We know from 
experience that fast-moving lines immediately become slow-moving lines when 
we step into them and slow-moving lines immediately become fast-moving lines 
when we step out of them.) This points up the fact that although a customer 
enters a line based on the number of customers in it, what he really cares about 
is how long he has to wait. We could add a row to the window array giving 
maximum waiting time so far. We could cause a certain waiting time to trigger 
opening a new window. 

As the program is written, when a new window opens only new customers 
may enter that line. Generally when a new window opens, a whole bunch of 
people swarm into the new line. Sometimes the new line quickly exceeds the 
old lines in length. We could modify the simulation of LINES to allow an 
orderly shift of customers from all lines to a newly opened window. 

It is easy to see that we could go on and on at great length, making our 
simulation program more and more like what we believe to be the real life 
activity. What about drive-in windows, automatic tellers, etc.? 

Based on many runs of simulations like this, a business person is in a better 
position to make decisions about hiring, opening hours, business procedures, and 
other aspects of management than he would be without the computer. Once we 
are convinced that a simulation is realistic, then we can experiment with innova
tive procedures using computer results to warn us of poor changes without 
actually having to use customers as guinea pigs. 

Similar simulations could be set up for toll booths, grocery store check
outs, post offices, gas stations, and stores and businesses of all kinds. 

Summary of Sec. 12-2 

We have looked at a much simplified set of rules for lines at the tellers' 
windows of a bank and written a program to imitate the activities of bank 
customers for a sample business day. Random numbers are used to simulate the 
random nature of the arrival of people at the bank and the random nature of 
transactions. Arrays have proved very useful for keeping track of many of the 
activities of our banking model. We recognize that simulations usually must be 
simplifications of the real activity under study. 
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Problems for Sec. 12-2 

The possibilities for making changes in program LINES and developing 
other models are so varied and so numerous that no attempt will be made to 
enumerate a specific set of problems. Instead you should select one or more of 
the improvements outlined in this section and implement them, along with any 
changes not mentioned that you would like to make. You should obtain several 
runs of your final program to get a range of results. Experiment with differing 
transaction times, differing rates of arrival of customers, and so forth. 

12-3 Magic Squares 

Magic squares have provided entertainment and been the source of wonder 
for more than a thousand years. They have been considered to have magic 
powers and therefore have been used to keep away evil spirits. Magic squares are 
square arrays of numbers (usually integers) so arranged that all row sums equal 
all column sums and these equal each of the sums of the elements of the two 
main diagonals. 

Of course, this feat can be accomplished by simply entering the same 
number in each position of the array, but this is trivial and of little interest. The 
simplest magic square of real interest is the following three-by-three magic square: 

8 1 6 

3 5 7 

4 9 2 

Note that all integers from 1 through 9 have been used and that the magic sum is 
15. It turns out that while we can rotate this to get a total of eight different 
positions, there is no other arrangement of these integers that will produce a 
magic square, even though there are 45,360 possible different arrangements. 
The magic sum can be found for integers 1 through n 2 by the formula, 

n3 + n 
s = ---

2 

An odd order magic square from 3 up can be generated by a procedure 
called the De la Loubere method. For a 5 X 5 magic square, this method pro
duces only one magic square, but millions are possible. The De la Loubere 
method uses the integers 1 to n2 for an nth-order magic square and may be 
described with the following set of rules: 

1. Begin by entering a "1" in the center column of the first row. 
2. Always move diagonally up one and to the right one and enter the next 

larger integer there unless the move (a) is the move immediately following an 
entry that is a multiple of the order of the magic square, in which case the new 
number goes directly beneath the previous one, or, (b) takes us out the side of 
the square, in which case the new number goes to the extreme left of the new 
row, or, (c) takes us out the top of the square, in which case the new number 
goes to the bottom of the new column. 

3. Proceeding in this way, n2 should always be placed in the middle 
column of the bottom row, and we know it is time to stop. 
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In program MAGIC for n = 5, the middle column is determined in line 

160, and the row is set to 1 in line 170 so that the first entry in line 190 follows 

rule 1 above. Line 210 checks to see if the condition in rule 2a has occurred. 

Line 250 checks for the condition of rule 2b, and line 300 checks on rule 2c. 

Line 200 determines the stopping point as per rule 3. 

MAGIC 

94 
95 
96 
100 
110 
120 
130 
140 
150 

-160 
-110 

180 
--190 
-200 
--210 

220 
230 
240 

-250 
260 
270 
280 
290 

--300 
310 
320 
330 
340 
342 
344 
350 
360 
370 
372 
380 
390 
400 
410 
RUN 
MAGIC 

REM * THIS PR0GRAM GENERATES 0DD 0RDER 
REM MAGIC SQUARES BY THE DE LA L0UBERE 
REM METH0D 
DIM M(47.47) 
PRINT "WHAT 00D SIZE"J 
INPUT N 

IF N/2 = INTCN/2) THEN 110 
MAT M = ZER<N•N> 
LET Cl = 0 
LET C = INT(N/2)+1 
LET R = I 
LET Ct " Ct+! 
LET M <R. C > = CI 

IF Cl = Nt2 THEN 330 
IF Cl/N <> INT<Cl/N) THEN 240 

LET R " R+t 
G0T0 180 
LET C C+l 

IF C <= N THEN 290 
LET C = I 
LET R = R-1 
G0T0 lf!O 
LET R = R-1 

IF R > 0 THEN 180 
LET R = N 
G0T0 180 
PRINT 
LET T = 0 

REM * ADD 0NE COLUMN T0 FIND MAGIC NUMBER 
F0R I = I T0 N 

LET T = T+M Cl• l> 
NEXT I 

PRINT "MAGIC NUMBER IS"J T 
PRINT 
MAT PRINT MJ 
END 

WHAT 0DD SIZE?5 

MAGIC NUMBER IS 65 

17 24 8 15 

23 5 7 14 16 

4 6 13 20 22 

10 12 19 21 3 

II 18 25 2 9 

As written, this program will arrange and print magic squares up to 4 7 by 

47. Of course, we can't print 47 numbers across the page. So we would have to 

do some rearranging to make the results easy to read. 



154 Advanced BASIC 

Problems tor Sec. 12-3 

1) The magic squares of this section used 1 as the first number. It is easy 
to show that beginning with any integer will also produce a magic 
square. Modify program MAGIC to allow beginning with any integer. 
Be careful about rule 2a. 

2) Another way to generate odd order magic squares may be described as 
follows. Place the first number in the array position directly beneath 
the central element, and proceed down one row and to the right one 
column unless this move: (a) takes you both out the bottom and out 
Lire righL side of the square, in which case the new entry goes in posi
tion (2,n), or (b) takes you out the bottom of the square, in whicl:v 
case the new entry goes to the top of the new column, or (c) takes you 
out the right side of the square, in which case the new entry goes to the 
extreme left in the new row, or (d) the new location is already occupied, 
in which case the new entry goes in the second row directly below the 
previous entry. (Note that this may take you out the bottom.) Write 
a program to generate this type of odd-order magic square. 

3) Squares of the type described in problem 2 can also be generated by 
beginning with any integer. Modify your program for problem 2 to 
do this. 

4) There are 880 different 4-by-4 magic squares using the integers 1 
through 16. One of them can be generated by the following simple 
procedures: MAT READ the integers 1 through 16 into a 4-by-4 array 
and then make these exchanges: 

A(l,1) ~ A(4,4) 

A(2,2) ~ A(3,3) 

A(3,2) 

A(4,1) 

A(2,3) 

A(l,4) 

Write a program to do this. 

12-4 Games 

There are hundreds of games which may be played with computers. There 
are games played with cards, dice, dominoes, and numbers. There are board 
games and two- and three-dimensional tic-tac-toe. Programs have been written 
to play casino gambling games and to simulate slot machines. There are programs 
which simulate horse races. Programs can be written to play word games such as 
Hangman or Geography using strings and files. Using computer files, game-
p!aying prog:rf!.ms ~2n be dev!setl i,x,rhich mcdify st!'.'atcgy depending en ccnsc·· 
quences of previous decisions. It is not the purpose of this section to present 
any comprehensive or systematic study of games or game strategy. Rather, it is 
the purpose of this section to arouse the sleeping giant of gamesmanship that 
may lie within the reader by exploring two examples. 
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Battle of Numbers 

The game, Battle of Numbers, begins with two integers, such as 63 and 11, 
where one should always be somewhat larger than the other. Two players take 
turns subtracting an integer in the range 1 to 11 from 63 and subsequent new 
remainders. The last player to subtract loses. The feature that makes this game 
intriguing is that usually the first player may assure a win by applying proper 
strategy on the very first move. Working out the strategy is fairly straightforward 
if we look at the last few moves. Suppose it is your turn, and you may subtract 
up to 11 from 15. If you subtract 2 leaving 13, you win because your opponent 
must leave you a number in the range of 2 to 12, subtracting in the range 11 to 1. 
Now it is your turn again and you can be assured of leaving your opponent a "1," 
which he must subtract, thereby losing. Now one pair of plays earlier you can 
assure yourself of leaving your opponent with 13 by leaving 25 and before that 
37, and so forth. That is, you want to leave (11 + 1) i + 1, or one more than 
an integral multiple of one more than the largest number you are allowed to 
subtract. For subtracting in the range 1 to a, then leave (a + 1) i + 1. This 
means that if the human player goes first in competition with the computer, the 
human can always win except when the original larger number is one more than 
an integral multiple of the largest subtractable number. However, one slip-up, 
and the computer can always win. 

Thus in our game with 63 as the starting total and 11 as the maximum 
subtractable integer, divide 63 by 12 to get 5 as the integral quotient. Since 5 
times 12 is 60, if we are faced with 61 we can't win and should subtract some 
random integer. But since we are not faced with 61, we want to leave our 
opponent with 61 by subtracting 2. No matter what our opponent does, we will 
leave 49, then 37, then 13, then 1. The calculations and testing here are done in 
lines 370 through 410 of program BATTLE. Note that lines 280 through 320 
assure that the human player inputs a number in the range 1 to a. If you would 
like to play the game, but don't want to type the program, many timesharing 
systems include the game under the name BATNUM. 

BATTLE 

94 REM * THIS PROGRAM PLAYS BATTLE 0r NUMBERS 

100 PRINT TAB<ISJJ "BATTLE 0r NUMBERS" 
I 05 RAND0M I ZE 
110 PRINT "00 Y0U KN0W THE RULES"J 
120 INPUT AS 
130 ff A$ = "YES" THEN I BO 
140 PRINT "WE TAKE TURNS SUBTRACTING AN INTEGER IN THE" 

150 PRINT "INTERVAL I T0 S0ME NUMBER A rR0M AN0THER NUMBER" 

160 PRINT "B WITH THE DffrERENCE LEAVING B r0R THE NEXT" 

1'70 PRINT "TURN. THE LAST PERS0N T0 TAKE LlilSES." 

!BO PRINT "HERE WE G0. ***" 
IB2 
IB4 REM * SELECT RANGE AND STARTING NUMBER 
!BS REM THE RESTRICTING CONSTANTS HERE ARE ARBITRARY 

190 LET A= INT< RNDC-1>*14+7 J 
200 LET B = INTC RND<-1>*77+41 > 
210 PRINT 
220 PRINT "INTERVAL = I T0"J A 
230 PRINT 
240 PRINT "STARTING TOTAL IS"J B 

250 PRINT 
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260 
270 
272 
274 
275 

{

280 
290 

- 300 
310 
320 
330 
340 

360 

-{~~g 
400 
410 
420 
430 
440 
450 
460 
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PRINT "YOU G0"J 
INPUT P 

REM * CHECK FOR AN INTEGER IN THE LEGAL RANGE 
REM LESS THAN 0R EQUAL T0 THE REMAINING T0TAL 
IF P <> !NTCP> THEN 310 
IF INT«P-1 )/Al <> 0 THEN 310 
IF P <= B THEN 330 

PRINT "ILLEGAL MOVE" 
GOTO 250 
LET B = B-P 

IF B > 0 THEN 370 

STOP 
TM'T'' ,n .. t ' ~,I\• t "-,.,. , ......... ,,, ,,.... .. , 

LET C = B - C CA+ll*l+I l 
Ir C > 0 THEN 420 

LET C = INT C RNDC-1 HA+ I l 
Ir B-C < 0 THEN 400 

LET B = B-C 
PRINT "I TAKE"J C 

Ir B = 0 THEN 470 
PRINT "LEAVING A TaTAL Or"J B 
GCJTa 250 

470 PRINT "*** YClU 'A IN ***" 
480 END 

RUN 
BATTLE 

BATTLE Clr NUMBERS 
DIJ YOIJ KNOW THE RULES? YES 
HERE WE GO. *** 
INTERVAL = I TO 

STARTING TOTAL 

YalJ GO? 4 
I TAKE 6 
LEAVING A TOTAL 

Y0!J G0? 15 
I TAKE 7 
LEAVING A TOTAL 

YOU G0? 14 
I TAKE 6 
LE.AV ING A TOTAL 

Y0U GCJ? 15 
I TAKE I 

*** YCJU 'NIN *** 

20 

IS 68 

aF 58 

OF 36 

OF 16 

The Knight's Tour 
The game of chess is played on a square board having 64 smaller squares, 

eight on a side. The various pi(;!ces belonging to the two sides are assigned specific 
moves~ The knight moves !!! an !..-sh2.ped path, rr!cving en~ ~qu!!r~ in ~ny 
direction and two squares in a direction perpendicular to the first move. Thus 
from a position near the center of the chess board, a knight may move to any of 
eight possible positions. If the knight occupies position (3, 4), then he may 
move to any one of the following: (4, 6), (4, 2), (2, 6), (2, 2), (5, 5), (5, 3), (1, 5) 
or (1, 3). In general, if the knight occupies position (r, c), then he may move to 
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any of the following: (r + 1, c + 2), (r + 1, c - 2), (r - 1, c + 2), (r - 1, 

c - 2), (r + 2, c + 1), (r + 2, c - 1), (r - 2, c + 1), or (r - 2, c - 1), 

unless the new position is off the board. An ancient and intriguing challenge is 

to move the knight about the board in such a way that it visits all 64 squares of 

the chess board exactly once. 
This is a difficult feat, known as the Knight's Tour, but it can be done. We 

will here contrive only to select moves randomly until the knight reaches a 

dead end due to the fact that all reachable squares have already been visited. We 
use an 8-by-8 array B to simulate the board. Initially all entries are zero to 
indicate open positions. We will place the move numbers in the squares as the 
knight moves about the board. The 8-by-2 array U stores all eight possible 

moves from the present position as described in the previous paragraph. These 
eight moves are scanned for legal use in lines 220, 230, and 240 of program 
T<!>UR. Note that IN'f ((Rl - 1)/8) = 0 in line 220 is equivalent to (O<Rl 

T0UR 

94 REM * THIS PR0GRAM CARRIES 0UT A RAND0M 
95 REM KNIGHT'S T0UR T0 DEAD END 
100 DIM Bca.0>.Tc2.0>.ucs.2> 
110 MAT B = ZER 
120 MAT READ U 
130 LET M = I 
140 PRINT "BEGIN WHERE"J 
150 INPUT R, C 
160 LET BCR.C> = M 
170 MAT T = ZER 
172 
174 REM * Kl C0UNTS THE NUMBER 0r LEGAL M0VES 
160 LET Kl = 0 
162 
164 REM * ENTER ALL LEGAL MOVES IN T ARRAY 
190 r0R T = I T0 B 
200 LET RI= R + UCT,J> 
210 LET Cl = c + UCT.2> 
220 Ir INTC CRl-l>IB > <> 0 THEN 260 
230 Ir INTC CCl-ll/6 > <> 0 THEN 260 
240 Ir B(RJ,CI> <> 0 THEN 260 
250 LET Kl = Kl+! 
260 LET TCJ,KJ> RI 
270 LET TC2•Kl> = Cl 
260 NEXT T 
262 
290 Ir Kl = 0 THEN 350 
292 
294 REM * SELECT A LEGAL MOVE AT RANDOM 
300 LET T = INTC RNDC-l>*Kl+I > 
310 LET R = TCJ,T> 
320 LET C = TC2.T> 
330 LET M = M+I 
340 G0Tlil 160 
342 
350 PRINT "G0T T0"J M 
360 PRINT "PRINT IT"J 
370 INPUT A$ 
380 Ir A$ <> "YES" THEN 420 
390 MAT PRINT BJ 
392 
394 REM 
400 DATA 1,2, J,-2, -1•2• -J,-2 
410 DATA 2, 1, 2,-J, -2, 1, -2,-1 
420 END 
RUN 
T0UR 
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BEGIN WHERE?4,4 
G0T T0 41 
PRINT IT? YES 

0 6 15 0 0 24 39 0 

14 II 0 7 36 0 0 25 

0 16 9 12 0 26 23 40 

10 13 16 6 37 D D 

17 0 5 36 27 22 41 0 

D 0 2 19 32 35 26 0 

0 0 0 4 0 30 21 34 

0 3 0 31 20 33 0 29 

AND R1<9). If a move is found to be legal, then we enter it into the T array. 
When all legal moves are in the Array T, Kl is the number of legal moves. If 
Kl is zero, then the knight has reached a dead end and we may print the tour 
or not. We present a flowchart in two parts. Figure 12-1 details the sorting out 
of legal next moves. Figure 12-2 shows where a legal move chosen at random 
is incorporated into the tour. 

Summary of Sec. 12-4 
We have seen programs to play Battle of Numbers and simulate the 

Knight's Tour. In the first case there is a guaranteed strategy which we exploit 
in our program. In the second case we have not employed strategy of any kind 
but merely progress from step to legal step at random with no procedure for 
maximizing results. 

Projects for Sec. 12-4 
Some of the projects listed will require considerable study and planning 

before the actual coding of the program takes place. Be sure to allow a reason
able amount of time should you attempt any of the longer projects. Some of 
the solution programs can be very long indeed. The reader needn't feel limited 
to projects proposed here. 

1) Modify the game of Battle of Numbers so that the last person to take 
away wins. Be sure to change the computer's strategy. 

2) Write a program to play the game of Nim. 
3) Write a program to play Tic-Tac-Toe. First decide whether or not you 

want an unbeatable program. 
4) Write a program to play three-dimensional Tic-Tac-Toe. 
5) Write a program to lengthen the knight's tour by backing up every time 

the knight hits a dead end. 
6) Write a program to pl:ty th~ gam<:> of Geogr!!p!!y using st!ings :!nd fil::!~. 

In this game two players take turns naming places where the first 
letter of the new place must be the last letter of the last place named. 

7) Write a program to make the computer the dealer in a blackjack game. 
8) Write a program to play craps. 
9) Write a program to simulate a Roulette-wheel. 



Start 
T,0'UR 

MAT B=Z:l 
Clear the b:~J 

M=1 
Start move counter 

B(R,C) = M 
Place move 
on the board 

MATT =ZER 
Clear possible 
move array 

Find all possible 
moves and select 
one at random 
(see Fig.12-18) 

M=M+1 
Bump move 
counter 

Figure 12-1 Flowchart for keeping track of Knight's Tour. 



R1=R+U(T,1) 
Cl=C+U(T,2) 
Find next possible 
move 

Kl=Klg+ 
Bump legal 
move counter 

T(1,K1l=R1 
T(2, K1)= C1 
Enter point as 
possible move 

v •• 
1c.:i 

Yes 

K1=0 
Set up legal 
move counter 

F0R T = iT,08 
Check 8 
potential moves 

NEXT T 

Yes 

T =INT (RNDH) *Kl+ 1) 
Select a move at random 
from legal moves 

Return to main 
flowchart at 
this point 

Print move number 
and offer to 
print ihe whole 
touri then quit 

END 

Figure 12-2 Flowchart for selecting moves at random for Knight's Tour. 
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ASCII Character Set Printable on Model 33 

C0DE CHARACTER C0DE CHARACTER 

32 64 i 

33 65 A 
34 66 B 

35 67 c 
36 $ 68 D 
37 % 69 E 
38 & 70 F" 
39 71 G 
40 72 H 

41 73 I 
42 * 74 J 
43 + 75 K 

44 76 L 
45 77 M 
46 78 N 
47 I 79 0 
48 0 80 p 

49 I 81 Q 

50 2 82 R 
51 3 83 s 
52 4 84 T 
53 5 85 u 
54 6 86 v 
55 7 87 w 
56 8 68 x 
57 9 89 y 

58 90 l. 

59 91 c 
60 92 ' 61 93 l 
62 94 
63 95 

N0TE SPECIAL CHARACTERS I 

LI NEF"EED 0R Cl'RL J 10 
F"0RMF"EED 0R CTRL L. 12 
RETURN 0R CTRL M 13 
SPACE 32 
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( Terminal ) 

Input 
Output 

Predefined 
process 

Operation 
Opens loop 
Closes loop 

Summary of flowchart Shapes 

Used for beginning and ending of program. 

Indicates data entered into the computer or results 
returned by the computer. 

READ 
PRINT 
INPUT 

MAT READ 
MAT PRINT 
MAT INPUT 

READ# 
READ: 
WRITE# 
WRITE: 

Indicates that a decision is being made. 

IF xxxxxx THEN yyy 

Indicates a sequence of program statements not in
cluded in the flowchart. May be used for Gl;l>SUB 
statement. 

Connector. Indicates transfer from one statement to 
another other than the next higher numbered 
statement in the program. N matches another N 
elsewhere in the same flowchart. 

Used for anything not already specified. 

NEXTX 
LET 
RETURN 
STIJ>P 
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Summary of Statements in BASIC 

NOTE: Not all statements which appear in this appendix will run on all systems 

and the list here does not cover every statement for some systems. 

END 

PRINT 

PRINT USING n 

READ 

DATA 

G</JT(/J n 

(/JN X G</>T(/J ni,n 2 ,n3 , 

etc., or 
G</JT</J X </JF n 1,n2 ,n 3 , 

etc., or 
G</JT</J n1 ,n2 ,n3 , etc., 

</>N X 
LET 

REM 

It is the highest numbered statement of every BASIC 
program. It is optional on a few systems and re
quired on most. 

Prints values of variables, calculated values, and 
literal expressions inside quotes. Spacing is con
trolled by commas, semicolons, and TAB. More 
spacing functions are available on some systems. 

Prints according to format specified in line n. 
Specifies printing for PRINT USING statements. 
Enters values stored in DAT A statements into vari-

ables named in the READ statement. All legal 
BASIC variables (string and numeric) may be read 
in a single READ statement by separating them 
with commas. 

Stores values for READ statements. Items of data 
must be separated by commas. Some systems re
quire that strings be in quotes. 

Names n as the next line number to be executed by 
the computer. 

Computed G</JT</J goes to the line number in the xth 
position in the list of line numbers ni, n2 , n 3 , etc. 
If available, one of these should work. They are 
not interchangeable. 

Assignment statement. The word LET is optional on 
many systems. Stores the value on the right of an 
equals sign in the variable named on the left. May 
be used to assign string variables. Multiple assign
ment is available on most systems. 

Permits the programmer to remark upon the program 
in the program itself without affecting the pro-
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164 

IF THEN n 

F</>R X =A Tc/> B 
STEPC 

NEXT X 

G</>SUB n 

</>N X G<,l>SUB ni,n2 ,n3 , 

etc., or 
G<,l>SUB X <,l>F ni,n 2 ,n3 , 

etc., or 
G<,l>SUB X <,l>N ni,n2 ,n3 , 

etc. 
RETURN 
DEF FNA(X) 

DEF FNA(X) 

FNEND 

ST</>P 

DIM A( ),B$( ) .... 

INPUT 

REST</> RE 

REST</> RE* 
REST<,l>RE$ 

Appendix C 

gram operation. Some systems allow' to serve the 
same purpose. 

Tests the truth of an algebraic sentence placed be
tween the IF and the THEN. Sends the computer 
to line n if the sentence is true. Control passes to 
the next line if the sentence is false. 

Opens a machine loop with first value for X at A, last 
number B, and increment C. If C is omitted, the 
~tep defat!lts to an increment cf 1. 

Closes machine loop, Sends the ~ompnter to the 
corresponding F<,l>R statement to increment and 
test X. 

Sends the computer to a subroutine beginning at line 
n. Upon executing a RETURN statement, the 
computer returns to the line immediately follow
ing G</>SUB n. 

Computed G</>SUB goes to the subroutine beginning 
at the xth line number in the list. Upon executing 
a RETURN statement, control goes to the line 
immediately following this statement. If avail
able, one of these should work. They are not 
interchangeable. 

Closes all subroutines. 
Program-defined function. The letter pair FN desig

nates that a function is called for. The function 
name is A, and the argument is X. Any letter of 
the alphabet may be used. Some systems permit 
multiple arguments separated by commas. 

Opening line of a multiple-line program-defined 
function. Several arguments may be permitted, 
separated by commas. A value must be assigned 
to FNA in the lines to follow. 

Closing statement of a multiple-line, program-defined 
function. 

Execution of the ST</>P statement causes termination 
of the RUN at that point. 

Declares dimensions for one- or two-dimensional 
numeric arrays or string arrays or both. One 
number is required in the parentheses for a list 
and two numbers separated by a comma are 
required for a two,dimensional array. 

Same as READ except that data is to be typed on the 
keyhoarci oi the remote terminal. 

Restores all data in the program. The next item of 
data to be read will be the very first data item in 
the program. 

Restores numeric data only. 
Restores string data only. 



REST<J>RE n 
CHANGE A$ T<f> A 

CHANGE A T<J> A$ 

RAND<!> MIZE 

MAT READ 

MAT PRINT 

MAT INPUT 

MAT C =A* B 
MAT A B + C 
MAT A B C 
MA1' A (K)*B 

MAT A= ZER 

MAT A C<f>N 

MATE IDN 

MAT X = INV(A) 
MAT A = TRN(B) 

SQR(X) 

ABS(X) 
SGN(X) 
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Restores all data from line n on. 
Stores the ASCII code of the characters of the string 

A$ in the array A with the length of the string in 

characters stored in A(O). 
Stores a string in A$ with length specified in A(O) 

and characters determined by the ASCII code 

stored in the array elements of the A list. 

Causes the random numbers generated in successive 

runs of the same program to vary. 

MATRIX INSTRUCTIONS 

Enters data into numeric and string arrays. Several 

arrays can be read in the same MAT READ state· 

ment by separating the array names with commas. 

Prints the array(s) listed, separated by commas or 

semicolons. The delimiter used specifies spacing 

for the preceding array. Numeric and string arrays 

are allowed. 
Enters data into an array (string or numeric) from the 

keyboard. Some systems allow more than one 

array listed here; others do not. 
Enters the product of A and B into array C. 

Enters the sum of B and C into array A. 

Enters the difference of Band C into array A. 

Multiplies each entry of B by the scalar K and enters 

the result into A. 
Creates the zero matrix (fills each entry of A with 

zero). ZER may be followed by redimensioning 

specifications in parentheses. 
Fills each element of A with 1. C<!>N may be fol

lowed by redimensioning specifications in 

parentheses. 
Forms the identity matrix E. E must be square. All 

elements with equal row and column numbers are 

1 and all other elements are 0. IDN may be fol

lowed by redimensioning specifications in 

parentheses. 
Finds the inverse of A and enters it in X (if it exists). 

Fills A with the transpose of B. 

FUNCTIONS 

Computes the non-negative square root of X. X must 

be non-negative. 
Computes the absolute value of X. 

Returns the value 1 for X positive, 0 for X equals 

zero, and -1 for X negative. 
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!N'l'(X) 

RND(X) 

SIN(X),C<{>S(X),TAN(X) 

ATN(X) 

1'/>G(X) 
EXP(X) 
TAB(X) 

ASC( ) 

LEN(A$) 
EXT$(A$,I,J) 

NUM 

DET 

RND 

FILES 

READ#N,R 
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Returns integer part of X. For some systems this is 
the mathematically greatest integer function. For 
others, the computer simply chops off the digits 
to the right of the decimal point. (The results 
are the same for non-negative numbers.) 

Generates a random number. In some systems the 
set of random numbers accessed is determined by 
the value of X. Some systems generate the same 
set cf numbers each time the progra1n is run, 
wherP.a~ others provide a. different set 3nd still 
others provide an option. See RND below. 

Computes the sin, cos, or tan of X, where X must be 
in radians. 

Computes the arctan of X. ATN(X) is in radians. 
The program must be written to determine the 
correct quadrant for the result. 

Computes the logarithm of X using base e. 
Computes the number whose L!/>G base e is X. 
Moves the printing mechanism to the (X + l)st posi

tion of the carriage unless the printing mechanism 
is already past that point, in which case there is 
no effect. 

Returns the ASCII code for the character placed in 
parentheses. 

Returns the number of characters in the string A$. 
String extract function. Isolates a substring in A$ 

from the Ith to the Jth character inclusive. 
Returns the number of elements typed in response to 

the most recent MAT INPUT statement executed 
in the program. 

Returns the determinant of the most recent matrix 
for which the inverse has been found with the 
MAT INV ( ) statement. No argument required. 

Returns a random number. The numbers will be the 
same on successive runs of the program if the 
RAND!/>MIZE statement is not present in the pro
gram and different on successive runs if the 
RAND!/>MIZE statement is present. 

FILES 

Hewlett Packard Files 

Names files to be used by the present program and 
makes them available for access. File names are 
separated by commas. 

Sets the file pointer to the beginning of the Rth 
record of the Nth file named in the files statement. 
In addition, when followed by a semicolon and 



READ#N; 

MAT READ# 

PRINT #N,R 

PRINT #N; 

MAT PRINT# 

IF END #N THEN n 

TYP(N) 

FILES 

READ #N, 

WRITE #N, 

IF Mct>RE #N 

IF END #N 

APPEND #N 
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variable list, this statement reads values from the 
file to the variables. 

When followed by a variable list, this statement reads 
from the file at a point previously established. 

Reads values from a file with the same options al
lowed for READ #. 

Sets the file pointer in the Nth file named in the files 
statement to the beginning of the Rth record and 
erases the contents of that record. In addition, 
when followed by a semicolon and a variable list, 
this statement causes the contents of the variables 
to be printed into the file. 

When followed by a variable list this statement 
causes the contents of the variables to be printed 
wherever the file pointer has been previously set. 

Prints values from a matrix to a file with the same 
options as for PRINT #. 

When executed, this statement sets a flag. If at any 
later time an attempt is made to read past the end 
of data or past the physical end of the file or to 
print past the physical end of the file, control 

passes to linen. 
The TYP (N) function takes on values from 1 to 4, 

depending on the nature of the next information 
in the file. TYP(N) becomes 1 for number, 2 for 
string, and 3 for end of file. If the argument is 
negative, the value 4 will be returned for end of 
record. 

General Electric Files 

Names files to be used by the current program and 
makes them available for access. File names are 
separated by semicolons. 

ASCII Files 

Reads data from the Nth file named in the program 
into the variables of the variable list following the 
comma. 

Writes data from the variable list following the 
comma to the file. The variables in the list may be 
separated by semicolons or commas to achieve 
corresponding spacing in the file. 

Determines whether or not there is more data in the 
file. 

Determines whether or not the end of the file has 
been reached. 

Allows additional data to be written to an existing 
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SCRATCH #N 

RESTORE #N 

Appendix C 

file by setting the file pointer to the end of the 
Nth file and placing the file in write mode. 

Sets the pointer of the Nth file to the beginning of 
the file, erases the file, and places it in write mode. 

Sets the pointer of the Nth file to the beginning of 
the file and places it in the read mode. 

Binary Sequential Files 

Rinary SP.l)UP.ntiftl files may be processed by a!! of the 2bcve &t:!tcmcnt:; by 
substituting a colon (:) for the pound sign (#). Binary files should be less ex
pensive to work with; however, ASCII files are very convenient due to the fact 
that they may be listed at the terminal. 

READ :N, 
WRITE :N, 
IF MqlRE :N 

IF END :N 

SCRATCH:N 

RESTqlRE :N 

SETW N Tql X 

Random Access Files 

Same as ASCII. 
Same as ASCII. 
Tests true, except when the file pointer is at the 

physical end of file. 
Tests false, except when the file pointer is at the 

physical end of file. 
Places the file pointer at the beginning of the file and 

fills the file with binary zeros. 
Places the file pointer at the beginning of the file 

without altering the contents of the file. 
Places the file pointer to the Xth word of file N. To 

access a random file by record, the formula 
W*(R - 1) + 1 places the pointer at the begin
ning of the Rth record if there are W words per 
record. 



Program 

ADD 
ADDl 
ADD2 
ALPHA 
ALPHAl 
AREAl 
AREA2 
ARRAY$ 
ASC 
AVG 
BATTLE 
B(,l)UNCE 
CITY 
C(,l)LIN 

C(,l)MPAR 
C(,7)MPR$ 
C(,l)NCAT 
C(,l)NVRT 
C(,l)RREL 
C(,l)SINE 

DECIDE 
DISTl 
DIST2 
DIVIDE 
DRAW 

DRAWOl 
DRAW02 

END 
ENTERl 
ENTER2 
ENTER3 

ENTER4 
FIB(,7)1 
FUNCTI(,l)N 

GE(,l)ARI 

GRAPHl 
GRAPH2 
GRAPH3 
GR(,l)WTH 

HALF 
IMAGE01-

IMAGE05 
INT 
LIMOl 
LIM02 
LINEl 

APPENDIXD 

Index of Programs in Text 

Description 

Adds Numbers from Data ............ . 
Adds and Counts Numbers from Data .... . 
Adds Numbers from Input ........... . 
Arranges Characters of String . . . . . .... . 
First Use of Change Statement ........ . 
Area by Summing Rectangles . . . . . . . . . . 
Areal with Variable Interval Width ..... . 
Demonstrates a String Array .......... . 
Prints Sample ASCII Codes ........... . 
Averages Numbers from Data ......... . 
Plays Battle of Numbers ............. . 
Prints Successive Heights for a Magic Ball .. 

First GE Data File ................ . 
Determines Colinearity of Three Points 
in a Plane ...................... . 
Compares Two Numerics . . . . . . . . . . . .. 
Program COMP AR with Strings ........ . 
Appends One String on Another ....... . 
Converts Numeric to String ........... · 
Calculates Linear Correlation Coefficient . . 
Compares Computer cos(x) Function and 
Series Evaluation . . . . . . . . . . . . . . . . . . 
First Demonstration of Strings ........ . 
Uses Distance Formula for Two Points ... . 
Finds Distance for Several Pairs of Points .. 
Demonstrates Synthetic Division ....... . 
Draws 5 Numbers at Random from 10 with 
Replacement .................... . 
Draws with FOR-NEXT ............ . 
Draws Numbers from io Without 
Replacement .................... . 
Prints A$(I) in Substring Scheme ....... . 
Prints Data Serially in File INVOl (HP) ... . 
Adds Data to File INVOl (HP) ........ . 
Prints Data to Random Access File 
INV02 (HP) ..................... . 
Adds Data to File INV02 (HP) ........ . 
Prints the First 30 Fibonacci Numbers ... . 
Demonstrates Multiple Line Defined 
Function ....................... . 
Compares Geometric and Arithmetic 
Sequences and Series . . . . . . . . . . . . . . . . 
Bare Plot, No Axes, Origin Only ........ . 
Graphl with Axes ................. . 
Plotting from an Array with Axes ...... . 
Orders Contents of City into File 
CITYl (GE) .................... . 
Halves Remaining Distance of Separation .. 

Demonstrates Print Using ............ . 
Computes Compound Interest by Formula . 
Prints Powers of (-3/5) ............. . 
Prints Terms of (2+(1/5)1 H) .......... . 
Gives Equation of Line Given Two Points 
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Section 

1-2 
1-2 
1-2 
3-3A 
3-3B 
6 
6 
3-3 
3-3B 
11-2 
12-4 
9-2 
4-3 

7-5 
1-2 
3-2 
3-3A 
3·3A 
11-4 

9-4 
3-2 
7-2 
7-2 
8-3 

1-3 
1-3 

1-3 
3-3A 
4-2 
4·2 

4-2 
4-2 
9-1 

2-5 

9-3 
5-2 
5-2 
5-3 

4-3 
9-1 

2·3 
9-1 
9-2 
9-2 
7-2 



Program 

LINES 
L(iJGICl 
L(,l)GIC2 

MAGIC 

MAT$ 

MATOl 

MAT02 
iviATI:N~l 
MEDIAN 
M(}.>D 
M(,l)Dl 

(,l)PRATN 
(,l)RDER 
(,l)RDER$ 
PERP 

P(,l)INT 

P(,l)LYOl 
PRT 
PYTHl 

PYTH2 
PYTH3 

RANK 
READ 
READl 
READ2 

READCITY 
REDCITY2 
REVRS 
REVRSl 
RNDENTER 

RNDREAD 
RNDS(,l)RT 
R(,l)UND 
SALESl 
SALES2 
SEQOl 
SL(,l)PE 
S(,l)LVE 

SUBSTR 
TABOl 

TAB02 
T(,l)UR 
UPDATE 
VAR 
WEATHER 

Description Section 

Simulates Bank Teller Window Activity 12-2 
Prints Truth Vaiues . . . . . . . . . . . . . . ::l-4 
Gets Factors Using Truth of 
N/X=INT(N/X) . . . . . . . . . . . . . . . . 2-4 
Prints Odd Order De La Loubere Magic 
Squares . . . . . . . . . . . . . . . . . . . . . . . . . 12-3 
Demonstrates MAT READ and MAT PRINT 
for String Arrays . . . . . . . . . . . . . . . 3-3B 
Demonstration MAT READ and MAT 
PRINT . . . . . . . . . . . . . . . . . . . . . . 1-5 
Demonstrates Matrix Product . . . . . . . 1-5 
......... . . ... .......................... ... uemonstrates 1v11y1· 11'~ v 
Finds Median for Odd Number of Data . 
Modular Arithmetic with One Subroutine 
Modular Arithmetic with Nested 
Subroutines .................. . 
Uses t ,*,/,+,- .................. . 
Orders Numbers from Data .......... . 
Alphabetizes Names in a String Array ... . 
Equation of Line Given Point and Points 
on Perpendicular Line . . . . . . . . . . . . . . 
Finds Intersection of Two Lines in 
AX+BY+C=O Form ............... . 
Compares Values of F(X) by Three Methods 
Demonstration of User Defined Function .. 
Reads and Prints Coordinates of Three 
Points ......................... . 
Sets Up Three Points in Six List Positions .. 
Checks Three Points for Vertices of 
Right Triangle ................... . 
Arranges the Contents of File CITY2 (GE) 
Reads File INVOl (HP) .......... . 
Reads with IF END Trap (HP) ........ . 
Finds Number of Parts in Inventory File 
INVOl (HP) .................. . 
Reads File CITY (GE) ........... . 
Reads Contents of File CITY2 (GE) .. . 
Prints String in Reverse Order ...... . 
Reverses Characters of a String Using Change 
Writes 10 Random Numbers to Binary File 
RAND (GE) ................... . 
Reads File RAND (GE) ............ . 
Arranges Contents of File RAND (GE) .. . 
Rounds to Various Precisions . . . 
Matrix Demonstration ........... . 
Salesl Stripped to Bare Essentials ... . 
Prints Ratios of Successive Odd Integers 
Finds Slope of Lines Given Two Points . 
Solves Simultaneous Linear Equations Using 
MAT INV ................. . 
Demonstrates A$(I,J) As a Substring ..... 
Demonstrates Tab Printing of String 
Ch?..r?~-cters . ., . . . . . . . ., ....... . 
Prints Numerics Using the Tab Function .. . 
Knight's Tour-Prints at Dead End ...... . 
Edits Inventory File INV02 (HP) ....... . 
Calculates Variance and Standard Deviation 
Calculates Linear Correlation for 
Temperature Data ................. . 

170 

10-~ 
11-3 
1-4 

1-4 
1-2 
11-3 
3-3B 

7-3 

7-4 
8-1 
1-4 

7-5 
7-5 

7-5 
4-3 
4-2 
4-2 

4-2 
4-3 
4-3 
3-3A 
3-3B 

4-3 
4-3 
4-3 
1-3 
10-1 
10-1 
9-1 
7-2 

10-2 
3-3 

2-2 
2-2 
12-4 
4-2 
11-2 

11-4 



Program 

WEE KA 
WEEKAl 
WEEKBl 

WET HR 
WETHRl 
XFER 

ZER<l>Ol 

ZER(,))02 

Description 

Matches String and Substring ......... . 
Finds Day Number from String Day ..... . 
WEEKAl Checking Only First Three 
Letters of Input String .............. . 
Array Demonstration with Weather Data .. . 
Array Demonstration with Weather Data .. . 
Transfers Contents of City to Random 
File CITY2 (GE) ................. . 
Search for Change of Sign in Polynomial 
Function ....................... . 
Uses Interval Halving to Find an Approxi-
mate Zero ...................... . 

BIBLIOGRAPHY 

Section 

3-3A 
3-3B 

3·3B 
1-4 
1-4 

4-3 

8-2 

8·2 
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1973. Programmed instruction is used to introduce BASIC. 
Coan, James S., Basic BASIC, Hayden, 1970. An introduction to BASIC 
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Book Company, 1970. Brief introduction to the rudiments of BASIC. 
Gruenberger, Fred, and George Jaffray, Problems for Computer Solution, 

Wiley, 1965. A book of problems from a wide variety of topics. 
Kemeny, John G., and Thomas E. Kurtz, BASIC Programming, 2nd Ed., 

Wiley, 1971. BASIC programming presented by the originators of the 
language. 

Knuth, Donald E., The Art of Computer Programming, Vol. 3, Sorting and 

Searching, Addison-Wesley, 1973. A comprehensive treatment on 
arranging data in order and locating items in an ordered data structure. 

Ledgard, Henry F., Programming Proverbs, Hayden, 1975. Writing pro
grams that work the first time. 

Nolan, Richard L., Introduction to Computing Through the BASIC 
Language, Holt, Rinehart and Winston, 1969. Introduction to com
puters and computing as well as BASIC. 
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Sage, Edwin R., Problem Solving with the Computer, Entlek, 1969. An 
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Smith, Robert E., Discovering BASIC, Hayden, 1970. Introduces BASIC 

using a wide variety of interesting problems. 
Spencer, Donald D., A Guide to BASIC Programming; A Time-Sharing 
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reader solution. 
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"' ANSWERS TO SELECTED PROBLEMS 

Each two-page spread should be read from top to bottom as an individual page. 

C!i.1plcr1 

'lt tam !~.! 

;-.,;, mbt•r.! 

• f"!ND LAfWEST i'l'JU S'll'LLEST rJUMhEK f~;CM OATA 

" 91' HEM - RF.AO FIRST ~l'JMBEH 
READ ~I 

JO.-; R£.,., • l'"JRST VAL'JE IS LARC:E~T AND SMALLEST SO FAR 
110 LET s " L "' N 
120 READ N 
120 t• N : -.Ol T'if.N 200 

S <= N THEN liO 

l'·•l REM • CURRENT NU~BER S,_,ALLER SO SAVE 
l'.:0 LET S " N 
160 GOTO 120 
170 IF L ~= N THEN 120 
1'72 
!"ir. REM • NU~rn£R LARC-EF SO SAVE 
l''G LET L " 
190 GOTO 

200 PRINT " LARf.EST ="= L 
210 PRINT "SMALLEST :"1 S 
212 

REM 
220 DATA SJ. 54, 711 q2, -J, -.01 
2Jfl 
H\J'-1 

NC.2 

U·RGEST " 92 
S~•·LLEST ::-3 

1'1mlwr.J 

• SU'1 INTEGERS FROi-< I 10 N 
''SUM I TO"I 
N 
I: 0 

!JO LET ( " 1 +I 

150 II' 1 < N THEN 130 
160 PRINT T 

;>;umber.! 

q4 REM • FINO GREATEST INTEGER WITHOUT INT !"UNCTION 
100 REAO X 
110 IF' X"' -.001 THEN 290 
120 PRINT "INTC"J XI ") IS "1 

I JO IF" X o 0 THEN 160 
140 PRINT X 
ISO 
152 
160 
170 

GOTO 100 

LET C = 0 
IF' X > 0 THEN 230 

LET C = C-1 
190 LET X :: X+I 
200 IF' X < 0 THEN 180 
210 PRINT C 
220 GOTO 100 
222 
230 LET C = C+I 
2·10 LET X = X-1 
250 IF" X >: I THEN 230 
260 PRINT C 
270 GOTO 
272 
274 
280 DATA 21 l.234561 -2.8712• J, 01 -4, -.OOI 
290 END 
RUN 
N0.2 

INTC 2 ~ IS 2 
HHC 1.23456 IS I 
INTC-2.8712 IS -J 
lNTC i IS 
WTC 0 1 IS 
INTC-<l • IS -4 

Number-I 

94 REM • TO DEAL FOUR 1 3 CARD HANDS 
100 DIM OC52l 
110 PRINT " HANDS" 
120 
'30 
1·10 
150 
152 
160 

PRINT "ONE"• "TWO"• "THREE", "FOUR" 
FOR I = I TO 52 

LET CCI> = I 
NEXT l 

LET N : 52 
170 FOR R = l TO 13 
lfiO 

230 DATA 1001• !JQQ, 010 
232 
234 REM • THE FUCLJ!ll' f·N ALC-ORITHM 
235 REM WOULD BE MC fif E.i'F' IC I ENT 
240 END 
RUN 
NC.8 

F"IRST I 
50 
28 
1001 

Number 10 

~ECONt 

JS 

" 1300 

G.C.F'. 
5 
I 
IJ 

94 REM • COUNT FRECUE~JCY OF' OCCURANCE F'OP. RANDOM INTEC ERS 
IDD OtM SCIO> 
102 
10• 
110 

C;JUNT lN(' LI ST 

120 LET 
lJO NEXT I 
132 
134 REM• GENE::<ATE ICO RANDOM INTEGERS COUNT IN LINE HO 
140 FOR I = I TJ lOC 
150 
160 
170 
172 
174 
•SO 
'90 
200 
202 

LET N::: JNTC fi:>0<-1>•10+1 
LET SCNl :: SCNJ + l 

NEXT 1 

REM • PRINT RESULTS 
FOR i = I TJ 10 

PRINT II S<I l 
NEXT I 

210 ENO 
RUN 
NO. JO 

" J 

' 10 
12 
10 

• a I• 

' a 
10 



~ __, 
(,J 

170 ENO 
RUN 
NC.4 

SUM l T0?5 
JS 

Numbers 

94 REM • F'INO F'ACTORIAL N 
100 PRINT "F'ACTORIAL"l 
110 INPUT N 
120 LET F' = 1 
130 LET t : 0 
140 
150 
150 
170 
180 
RUN 
NQ,S 

LET I : J+I 
LET F' = F'•l 

IF' I < N THEN 140 
PRINT F' 
ENO 

F'ACTORJAL?5 
120 

Numberh 

94 REM • TO SOLVE EQUATIONS OF' THE F'ORM 
9S REM AX+B = CX+O 
100 READ A, B. C. 0 

IF' A <:> 0 THEN 140 
IF' B o 0 THEN 140 

STOP 
PRINT Al "X+C"I Bl "l :: 

110 
120 
130 
140 
150 IF' A-C o 0 THEN 180 
160 PRINT " NO SOLUTION" 
170 GOTO 100 
172 

t"t Cl ")X+C": DI ") 

PRINT " SOLUTION X " "1 <O-Bl/CA-Cl 
190 
192 
194 REM 
200 DATA 1,3,2,-1, 3,2, 1,-J 
210 DATA 2.-1,2,-3, O.O,Q,O 
220 ENO 
RUN 
N0.6 

I X+l 3 l ,. < 2 lX+t-1 l SOLUTION X = 4 
3 X+t 2 > : I )X+r-3 ; SOLUTION X " -2.S 
2 X+i-1 l " t 2 lX+t-3 • NO SOLUTION 

Chaptcrl 

Section l·J 

Number I 

N 
100 
110 

'" IW 
10 
IH 
IH 
IU 
IH 
IH 
174 
~ 
IN -NOo I 

REM • F'JND ABSCXl WITHOUT COMPUTER F'UNCTIONS 
READ X 

IF' X: -.001 THEN 190 
PRINT "ABS<"J XI "l " "J 

IF' X < 0 THEN 160 
PRINT X 
GOTO 100 

PRINT -X 
GOTO 100 

REM 
DATA -5, o, 3, -2• 2.4, -.OOI 
END 

ABSC-S 
ABS< 0 
ABS< 3 
ABSC-2 
ABSC 2.4 

3 
2 

) :: 2.4 

182 
I 64 REM • SELECT A CARD AT RANDOM 
190 LET C = INTC RNDC-1 hN+ I } 
200 LET Cl " DCC} 
202 
204 REM • F"INO SUiT 
210 LETS:: INTC CCl-D/13 +I l 

212 
214 REM • F'JNO CARO IN SUIT 
220 LET C2 "' Cl - CS-lh13 
230 IF' C2 > 10 THEN 270 
240 IF" C2 = i THEN 560 
250 PRINT C2J 
260 GOTO 280 
270 GOTO c2-10 OF' 500.520.S40 
280 GOTO S OF' 600.620.640,660 
290 LET OCC) : DCNl 
300 LET N = N- l 
310 NEXT H 
320 PRINT 
330 NEXT R 
332 
340 STOP 
342 
SOD PRINT "JACK 
SID GOTO 280 
S20 PRINT "QUEEN "I 
S30 GOTO 280 
S40 PRINT "KING 
5SO GOTO 280 
S60 PRINT "ACE 
S70 GOTO 280 
572 
600 PRINT "CLUBS", 
610 GOTO 290 
620 PRINT "DIAMONDS''. 
630 GOTO 290 
640 PRINT "HEARTS". 
6SO GOTO 290 
660 PRINT "SPADES", 
670 GOTO 290 
672 
700 
RUN 

HANDS 
ONE Tl.ID THREE 

3 CLUBS 9 DIAMONDS 3 SPADES 
JACK CLUBS 

7 SPADES 
ACE OIAMONOS 5 

2 DIAMONDS 5 
KING SPADES 10 

10 SPADES 4 
JACK HEARTS ' CLUBS 2 

DIAMONDS KING 
9 HEARTS 5 

KING DIAMONDS 10 
J DIAMONDS 10 

Number!\ 

SPADES 6 HEARTS 
5 

CLUBS QUEEN SPADES 
HEARTS ACE CLUBS 
CLUBS KING CLUBS 
SPADES JACK DIAMONOS 
CLUBS ACE HEARTS 
HEARTS QUEEN DIAMONDS 
HEARTS QUEEN HEARTS 
DIAMONDS ' OIAMONDS 
HEARTS 4 HEARTS 
DIAMONDS 4 DIAMONDS 

94 REM • F"INO GREATEST COMMON F'ACTOR 
100 PRINT "FIRST #", "SECOND •"1 "G.c.F"." 
110 READ A. B 
120 IF' A = 0 THEN 240 
130 PRINT A. B. 
140 F'OR 1 : A TO 2 STEP - I 
150 IF A/1 o INTCA/I) THEN 170 
160 IF B/ I :: ltlTCB/I l THEN 200 
170 NEXT I 

"' 180 PRINT 1 
190 
192 
200 PRINT ) 
210 GOTO 110 
212 
214 REM 
220 DATA 50• JS, 

F'OUR 
QUEEN CLUBS 

CLUBS 
CLUBS 

7 DIAMONDS 
7 CLUBS 
9 SPADES 
7 HEARTS 
2 SPADES 
3 HEARTS 

ACE SPADES 
2 CLUBS 

JACK SPADES 

' HEARTS 

Chaplcrl 

Sectmnl-·1 

Number:.'. 

94 REM * F'INOS MAX ANO MIN FOR OEFINEO F'UNCTION 
100 DEF F'NR<Xl = t3•X•3 - 2•SINCX•2l - LOGCABSCIS•Xll 
110 PRINT "F'•L•l"! 
120 INPUT F'•L• I 
130 LET M"' Ml = F'NRCF'> 
140 LET P Pl " F' 
150 F'OR X : F'+I TO L STEP I 
160 IF M <= FNRCXl THEN 200 
170 LET P " X 
180 LET M " F'NROO 
190 GOTO 230 
200 IF' Ml :.: FNRCXl THEN 230 
210 LETPl=X 
220 LET Ml :: F'NRCXl 
230 NEXT X 
232 
240 PRINT MJ "MINIMUM AT"I P 
250 PRINT MIJ "MAXIMUM AT"J Pl 
260 ENO 
RUN 
N0.2 

F',L~I?t.22;.S 

S.60901 MINIMUM AT 1 
MAXIMUM AT 22 

NumlwrJ 

94 REM • KEEPS SCORE IN A GAME OF TIC TAC TOE 
100 DIM AC3.3); P<2>; WC4) 
I ID PRINT "THE BOARD" 
120 F'OR l "' I TO 3 
130 F'OR J " I TO 3 
140 READ /\CI,Jl 
ISO NEXT J 
160 NEXT 1 
1'2 
170 LET Pl : 0 
180 GOSUB 400 
190 F'OR Z "' 1 TO 2 
200 LETPl=Pl+1 
210 IF Pl < 10 THEN 250 
220 PRINT "IT'S A DRAW" 
230 GOSUB 400 
240 STOP 
250 GOSUB 500 
260 GOSU8 600 
270 NEXT Z 
272 
280 GOTO 180 
392 
394 REM • PRINT THE SOARD 
400 F'OR I " I TO 3 
410 FORJ:ITOJ 
'120 PRINT A(J,J)J 
430 NEXT J 
44D PRINT 
450 NEXT I 
452 
'160 RETURN 
490 PRINT "ILLEGAL MOVE" 
492 
494 REM • INPUT MOVES ANO CHECK F'OR I TO 9 
500 PRINT "I"! ZJ 
SIO INPUT PCZ> 
S20 IF' INTC CPCZ)-1)/9 ) <> 0 THEN 490 
530 LET P :: -z 
S40 RETURN 
592 
S94 REM • ENTER NEl.I MOVE ANO CHECK F'OR WIN 
600 LET C "' 0 
610 F'OR I "' I TO 3 
620 F'OR J : I TO 3 
630 LET C " C + I 
6'10 IF' C < PCZ> THEN 710 
650 IF' Act.Jl " PCZ> THEN 690 



.._, 
-"" 

.)<:,tion 1-·l lum!'dl 

.'ii mber J icont'ch 

660 
670 
680 

PRINT "SPACE TAKEN'' 
GOSUB 500 
GOTO 600 

662 
68•1 REM • ENTER NEW MOVE 
6~0 LET Act~J) = P 
7CO GOTO 730 
710 NEXT J 
720 NEXT ~ 

122 
12·1 REM • 
7~0 FOR l :::: 
7.·,Q LET 

NEXT 1 

·~2 

F'OR WIN 

' '0 

F"OR I = 1 TO 3 
7l2 
1( 4 REM * CHECK DIAGONALS 
770 IF AO.I> <> P THEN 
7CO LET IHll = W<ll + 1 
7'.'0 ff A(J,4-ll <> P THEr, 810 
600 LET W(2) = WC2) + I 

8112 
60.t REM * CHECK ROWS AND COLUM!JS 
810 LET WC3> = IH4> = 0 
8'.~0 FOR J = 1 TO 3 
8'.10 If" A(l,J) <> P THJ:N 850 
8·10 LET WC3l = \HJ) + I 
8~10 IF ACJ, I> <> P THCN 870 
St10 LET WC4) = W(4) + I 
870 NEXT J 
872 
SHO FOR K = i TO 4 
6'10 IF WCKJ < J THEN )30 
9·l0 PRINT "YOU WIN l"J 
910 GOSUB 400 
9:!0 STOP 
9JO NEXT K 
9-lO NEXT I 
9-12 
9)0 RETURN 
9-;_2 
9;,4 REM 
9~0 DATA 1,2,3,4,5,6,;,5,9 

970 END 
R'JN 
NJ.3 

T-tE BOARD 
I 2 

5 
8 

I ?3 
• 2 ?2 

-2 -I 

' 5 6 
7 8 ' 'I ?5 

• 2 71 
-2 -2 -I 

-I 6 
8 ' 

'I " YOU WIN I I 
-2 _, 
-I 6 

8 ' 
,'.11rnber6 

94 REM * COMPAR WITH COMPUTED GOSUB 
JOO READ A18 
110 IF" A= ,QI THEN 320 
120 GOSUB SGNCA-81+2 OF 240,2201200 

!JO GOTO 100 
200 PRINT Al "IS GREATER THAN"! B 
2 !O RETURN 
220 PRINT Al "IS EQUAL TO": 6 
2JO RETURN 
2·~0 PRINT AJ "IS LESS THAN"J S 

Chaptcr3 

'.-<-'ltlOll l-~ 
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94 REM • "/IGHEST A'<D L0';1£5T STRl'lGS 1~; OATA 
100 RE:AD OS 
l IO LET HS=DS 
120 LET LS:>OS 
122 REM 
1:10 PRINT OS 
140 READ OS 
150 IF' OSe"LAST" THE'l 220 
160 If." LS <= OS T>iEN 190 
170 LET LS=OS 
ISO GOTO 130 
162 REM 
190 IF' HS>" OS THE:-J 130 
200 LET HS,,OS 
210 GOTO 130 
212 RE., 
220 PiHNT 
230 PRINT " LOWEST : "ILS 
240 PRINT ''HIG'-IEST = "P·IS 
242 RE"I 
250 DATA "O'l£", "TWO"• "THREE"• "FO'JR", "FIVE"• "LAST" 

250 ENO 
R•JN 
NO.J 

ONS 

LO\..IEST = FIVE 
HIGHEST = TWO 

t>.umberS 

100 PRINT 
110 HEAO As.as.cs.os 
120 IF" AS="STOP" HiEl-1 250 
!JO tF BS<OS THE~ 190 
140 tF BS>OS T'-IE~ 160 
ISO IF AS<CS TKEN 190 
152 REM 
160 PRINT OSI"• "1C.S 
170 PRINT SSI"• "IAS 
160 GOTO 100 
182 REH 
190 PRINT BSI"• "IAS 
200 PRINT OSI"• "JCS 
210 GOTO 100 
212 REM 
220 DATA "\.llLLIA"l","SMITH","GEORGE"•"SMITH" 
230 DATA "ALtCE''."JONES''.''ROBERTA",".J:JNES" 

240 OATA "STOP"•'"'•""•'"' 
250 ENO 
R'JN 
NO,S 

S'ilTHo GEORGE 
SMITH, WILLIAM 

J:l'IES, ALICE 
JONES• ROBERTA 

Ch.ip1er3 
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"4 REM • WJLTlPLIES TWO l"HEGEHS 'J? TO 20 OIGlTS EACH 

100 otM Asr201.ssr201.osc 101.At201.sr201.cr;io1 

R•JN 
N:l.11 

AS? 10 
CS?6 
6 IO 

AS?6 
CS? 10 

' to 

AS?AIOO 
CS?A60 
ASO AJO'.J 

AS?ASO 
CS?AlOO 
ASO AIOO 

AS? STOP 

Chapter] 

Section J-5 

Nurnber 

100 DIM A<75J 
110 INPUT AS 
120 CHANGE AS fO A 
130 LET L = At1}) 
132 
140 FOR t = i iO L-1 
150 FORJ=l+!TJL 
160 11" ACJJ <; A<J> THEN 200 
170 LET { = A<J l 
urn LET HI) = A<J> 
190 LET HJ> : X 
200 NEXT J 
2>0 

212 
220 LET X = 1 
230 IF ACX)<> AC1<•1> THEN 290 

232 
23' 
235 
2<0 
250 
260 
270 
280 
282 
290 
300 
310 
312 
320 
330 

REM* I~ ACX>= ACX+ll THEN MOVE EACH 
REM 1EM UP HE POSITION 

FOR (::: X .. I TO --1 
LETACil=A<IHl 

NEXT ! 
LET i.. ::: L- ! 
GOTO 230 

LET X = X .. ! 
IF X < '.-1 T-t::·~ 230 

LET ACOl = L 

CHANGE A T J AS 
PRINT AS 

340 ENO 
RUN 
NO• I 

.. THE OUlCK BROm F'OX JUMPED OVER THE LAZY DOGS 
ABCOEFGHl JKLM1l lPORSTUVWXYZ 

Number:! 

100 OJM NS{IOO>. NC:JO) 

110 REAON 
120 MAT READ llS<N> 
130 F'OR 1 ::: l TO N 
140 PRINT ~S<l>J TA8(20lJ 
ISO CHANGE 'IS< I) T>J N 
152 
15' 
160 
170 
180 
190 
200 

REM * SEARCH F>JR FIRST SPACE 
FOR J"' N<O> HJ I STEP -I 

!=- NC.J> = 32 THEN 190 
NEXT J 
LET NSCIJ = EXTS<NSC1>.J+1,NC0l) • "• "• EXTS<NS0>.11J) 
PRINT ~SCil 



" CJ1 

250 RETURN 
292 
294 REM 
300 DATA 3,4, l•7• I• I• :,31,31, -3,2, o.o 
310 DATA .01.0 
320 END 
RUN 
NO.& 

l S LESS THAN 4 
i.7 IS GREATER THAN l•I 
3t IS EQUAL TO 31 

-3 IS LESS THAN 2 
0 IS EQUAL TO 0 

Chi1plcr1 
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94 REM • FIND LARGEST RA!'JDOM INTEGER IN ROWS AND COLUMNS 
100 DIM A<S.5) 
102 
104 REM * F'ILL ARRAY WITH RA.'llDOM INTEGERS 

110 F'OR I "' I TO 5 
120 F'OR J "' I TO S 
130 LET ACl.J> = INT< RN0<-1U51-2S) 

140 NEXT J 
ISO NEXT l 
152 
160 MAT PRINT AJ 
162 
164 REM * F'INO LARGEST INTEGER JN EACH ROW 
170 F'OR R I TO 5 
180 LET Cl "' I 
190 LET L = ACR.o I) 
200 F'OR C = 2 TD 5 
210 IF' A<R.C> <= L THEN 240 
220 LETCl=C 
230 LET L = ACR~Cl 
240 NEXT C 
250 PRINT "ROW": RJ "LARGEST IS"J Lj "IN COLUMN"! Cl 
260 NEXT R 
270 PRINT 
212 

~· •o 
no 

REM * F'INO LARGEST INTEGER lN EACH COLUMN 
F'OR C "' I TO S -310 

= --~ 
LET RI :: I 
LET L"' ACl.-Cl 
F'OR R : 2 TO 5 

IF' ACR.-Cl <= L THEN 350 

LET RI "' R 
LET L "' A<R. C} 

NEXT R 
~ PRINT "COLUMN"J CJ "LARGEST lS"J LJ "IN ROW"J RI 

NEXT C = = 
~--N0.-2 

-IS -19 -14 

23 17 

-10 

13 -9 23 15 -10 

_, 
3 ' 25 23 

ROW i LARGEST IS 3 IN COLUMN 4 
ROW 2 LARGEST IS 23 IN COLUMN 4 
ROW 3 LARGEST l S 20 IN COLUMN 2 
ROW o LARGEST IS 23 IN COLUMN 3 
ROIJ 5 LARGEST IS 25 IN COLUMN 4 

COLUMN I LARGEST IS 13 IN ROW 4 
COLUMN 2 LARGEST l S 20 IN ROW 3 
03LUMN 3 LARGEST IS 23 IN ROW 4 
COLUMN 4 LARGEST IS 2S IN ROW 5 
COLUMN 5 LARGEST 1 S 23 IN ROW 5 

110 LET 05="01234567'39" 
120 READ As.as 
130 IF AS="STDP" TYEN 530 
140 PRINT AS1"•"16S1" = "J 
142 REM 
144 REM * CO:-.!VEiH AS TO Lt ST A 
150 LET A=LEN<ASl 
160 MAT A=ZERtAl 
170 FOR '=I TO A 
180 FOR J= I TO 10 
190 IF AS(I,Il=DS{J,J) THE'll 210 
200 NEXT J 
210 LET ACA+l-ll=J-t 
220 NEXT I 
222 REM 
224 REM • CONVERT BS TO LI ST B 

230 LET B=LE'H8Sl 
240 MAT 8=ZERt91 
250 FOR I:I TO B 
260 F'OR J= I TO 10 
270 1F' BS[J,JJ:OStJ,JJ HIEN 290 
280 NEXT J 
290 LET aCB+l-ll=J-t 
JOO NEXT .1 

302 REM 
304 RE~ * M'.JLTIPLY DIGIT BY DIGIT 
310 LET N=A+B 
320 MAT C;ZERtNl 
330 F'OR ): I TO A 
340 FOR J=I TO 8 
350 LET So: 1 +J-1 
360 LET CESl=CtSl+ACll•BCJl 
370 IF CCS1<10 TfiEN 410 
380 LET C(Sl=CtSl-10 
390 L.ET C( S+l l,,.CtS+l l+ I 
<lOO GOTO 370 
410 NEXT J 

NEXT I 
REM 
REM • PRINT RESULTS 

<13{} IF C[NJ <> 0 Tl-li':N 4SO 
440 LET N;N-1 

FOR l:"I TO I STEP - I 
PRINT OSCCEIJ+l,Ctll+lll 
NEXT J 

480 PRINT 
<190 PRINT 
500 GOTO 120 
502 R.EM 
5 I 0 DATA "I 000"•" I 000" • "9999999", "9999999" 
520 DATA "STOP",'"' 
530 ENO 
RUfl 
NOo8 

1000•1000 " 
9999999•9999999 = 99999980000001 

Xumber 11 

94 REM * ORDERS N'.J'1ERIC CYARACTE:RS I"l STRING VARIABLES 
100 DI"! AS£25J.CSt25l 
! JO PHHlT 
120 PRINT "AS"I 
130 INPUT AS 
140 IF AS="STOP" THEN 290 
150 PRINT "CS"! 
160 IN?tJT CS 
170 IF LEN<AS);LEN<CS> HIEN 260 
180 F'OR G:J TO L~N<A$) 

190 IF' AS(G,Gl o CSCG.Gl THEN 210 
200 NEXT G 
210 IF' AStG•Gl>"d" T!-IE"I 260 
220 IF' csrG.Gl>"!J" TH€'."I 260 
230 IF LE/\ICASl<Lf::.•HCSl Tf.IE'J 270 
240 PRINT CSJ" "JAS 
250 GOTO 110 
260 IF' AS>CS THEN 240 
270 PRINT A.SJ" "JCS 
280 GOTO 110 
290 ENO 

210 
212 
220 FOR I = I TO N-1 
230 F'OR J = l + l TO N 
240 IF' NSCil <" NSCJ) TfiEN 280 
250 LET AS = NS CI} 
260 LET NSCll = NSCJ> 
270 LET NSCJl : AS 
280 NEXT J 
290 NEXT I 
292 
300 PRINT 
310 PRINT "OROEREDt" 
320 PRINT 
330 F'OR I = I TO N 
340 PRINT NS CI) 
3SO NEXT I 
352 
360 DATA 3 
370 DATA GEORGE WASHINGTON.- JOHNNY APPLESEED• JOHN O. AOAMS 

380 ENO 
RUN 
NOo2 

GEORGE WASHINGTON 
JOHNNY APPLESEED 
JOHN Q, ADAMS 

WASHINGTON. GEORGE 
APPLESEED, JOHNNY 
ADAMS• JOHN Oo 

ORDERED: 

ADAMS.- JOHN O. 
APPLESEED• JOHNNY 
WASHINGTON> GEORGE 

Number 5 

100 DIM O<IO>. AC!S>.. 8Cl5>. 
110 LET OS = "0123456789" 
120 CHANGE OS TO 0 
130 Rf:AO AS.- SS 
140 PRINT A.SJ ... "J es 
ISO CHANGE AS TO A 

FOR I = I TO ACOl 
FOR J = I TO 10 

PC30>. OC30l 

152 
160 
110 
!BO 
190 
200 
210 
220 
222 
230 
2•0 
250 
260 
270 
280 
290 
300 
302 

IF AC!l <> DCJ) THEN 210 
LET AC!) = J~l 

310 
320 
330 
340 
350 
360 
310 
360 
390 

GOTO 220 
NEXT J 

NEXT I 

CHANGE as TO a 
F'CR I : I TO BCOl 

FOR J = I TO 10 
IF BCll <> OCJ) THEN 290 

LET sen : J-1 
GOTO 300 

NEXT J 
NEXT l 

MAT P :: ZERCACOl+BCO)) 
F'OR 1 : BCOl TO 1 STEP -I 

F'OR J: ACOl TO I STEP -I 
LET K = l+J 
LET PCK> : POO + ACJHaC!) 

IF' PCK> < 10 THEN 390 
LET PCK-1} :: PCK-1> + INTcPCK)/10) 
LET PCK) = PCK) - lNTCf\CK)/10>*10 

NEXT J 
400 NEXT I 

LET PCO> " ACO> + BCO> 
002 
010 
•20 IF' PC!) <> 0 THEN 470 
430 FOR I :: I TO P<Ol -I 
440 LET PCI > = PCl +I} 
..ol50 NEXT I 
'52 
460 LET PCOl :: PCOl - 1 
470 MAT 0 ZERCPCO)) 
480 F'DR I = I TO PCO> 
490 LET OCI>: OCPCJ>+ll 
500 NEXT l 
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~.t1mher 5( cont'd) 

5J2 
510 LET OCO> " PCO> 
520 CHANGE 0 TO OS 
530 PRINT "THE PRODUCT IS "1 
5J2 
540 DATA "9999999"• "9999999" 
550 ENO 

"'" NJ.S 

9"99999 • 9999999 
T-lE PRODUCT IS 99999980000001 

1'.\imberU 

JOO DIM AC IQ), BC )0) 
110 PRINT 
120 PRINT "AS"I 
130 INPUT AS 
\•lO IF AS = "STOP" THEN 32( 
l•\2 
150 PRINT "BS"I 
! 60 INPUT BS 

CHANGE AS TO A 
HANGE BS TO 8 

1'10 IF A(Q) = BCOl THEN 27C 
200 FOR G = I TO A<O> 
210 IF A<G) = S(G) THEN 260 

<·12 
:!14 REM• ASCCO) = 64 CSEE ASCll 
220 IF A<G> > 64 THEN 210 
~JO IF' BCG> ,. 64 THEN 210 
240 ff A(Q} < BCD) THEN JOO 

2•12 
GOTO 280 

260 NEXT G 
270 IF' AS < as THP:N JOO 
280 PRINT BSJ " "; AS 

GOTO 110 
PRINT ASJ " 
GOTO I 10 

~ :rn ENO 
1 UN 

rs? 100 
[ $? 60 
to 100 

rs? A60 
FS? AJOO 
(>(,Q AlOO 

rs? STOP 

Chapter-I 

'c•(l!on·l-2 

:.umber·l 

!00 "1LES TRY 
110 IF' ENO II THE•~ 200 
1?.0 LET 1=0 
130 LET l=l+l 
1•10 READ 11, l 
150 IF' TYPC-ll <> 3 THEN 130 
160 PRUIT "F'lRST EMPTY RECORD IS"J I 
170 LET I=I+l 
1'>0 R!::AO 11, 1 
190 GOTO liO 
:'.OO PRINT "F'ILE SIZE !S''1t-11"RECOROS" 
C!O END 
CPEN-TRY.11 
J«JN 

F JRST EMPTY RECORD IS I 
FILE SIZE IS 11 RECOROS 

12 REM Y-AXIS. 
96 READ s1.s2 
100 DEF' F'NF'CXl = C!/S2>•SINCX> 
115 l.ET K "' IVS2 
117 LET N = NIS2 
IJO F'OR X = F TO L STEP SI 
160 FOR YI = -K•52 Ta CN-K>•S2 STEP 52 
410 IF' ABSCY-Yll < .5•52 THEN 470 
600 DATA .S;.2 
610 DATA a, 3, -4, 12 
620 END 

RUN 
NO. I 

Chilptcr.'i 

~ectam5-J 

Number6 

. 

. . 

X=-4 

' ' . 
" 

I 
I . ' --· , 

" . ' 
' 1 
1 
I 

" I 
1 
I 
I 

'. 

12 

10 REM • THESE CHANGES IN GRAPHJ PROVlOE F'OR SCALE 
11 REM FACTORS OF" SI ON THE X-AXIS ANO S2 ON THE 
12 REM Y-AXIS· 
110 LET D ::: 47 
130 LET T " 5 
195 READ 511 S2 
215 LET XI = X•SI 
217 LET YI = Y•S2 
220 IF ABSC Xlt2+CYl+llt2 - 169 1 :. T THEN 300 
550 IF ABSHX-LIHSl/10-INTCCX-Ll>•Sl/10)) < .OS THEN 590 
580 IF" A8SCCY-Ll>•S2/I0-1NTCCY-Lih'S2/10)) < .OS THEN 560 
630 DATA .6, I 

N0.6 

II OF' INCREMENT:;??. 
AREA ISi 6500•17 

Chaplcr7 

Sechon 7-2 

Numbcr4 

100 PRINT "TO FIND .. HE DISTANCE BETWEEN nio POINTS" 

'50 

••o 
170 
100 
190 
200 LET DI ' <X2-:(1)•2 + CY2-Yllt2 

210 
220 
230 
232 
240 F'OR X = If!T<OJ.':!l TO 2 STEP - t 
250 IF' .iORCXl "> INTCSORCX)) THEN 270 
260 IF lll/X -" INTCDllX> THEN JOO 
270 NEXT X 
272 
280 PRINT "SOilC"'I 
290 GOTO 330 
JOO PRINT SOF:'.X)J "~50RC"J 01/Xl "l" 
310 GCTO 330 
320 PRltlT D 
330 END 
RUN 
N0.4 

TO FIND THE 01 ;TANC;: 3ETWEEN TWO POHITS 

POHIT A? 15,0 
POINT B? o, 15 
DISTANCE AB : lS •S:l'H 2 > 

t-<umbcrB 

100 DIM X(20) • YC20l 
I 10 LET N = 0 
120 READ A1 !l 
130 IF A : -.001 THEN 180 
140 LET N = N•I 
150 LET XCNl ' A 
160 LET Y<N> ' 8 
170 GOTO 120 
172 
!BO FOR P = l 
190 FOR Pl = P+l TO N 
200 PRl'IT "C"1 XCP>J .. , .. , YC?)J "b C"l 
210 ?R!TlT XC?llJ "•"J YC?l)J "l" 
220 !F XCP\ <> XC?l > THEN 280 
230 !F YC?) <> YC?I l THEN 260 
2.iO ?RfllT "PJl'lTS COINCIDE" 
250 GOTIJ 340 
260 ?Rl!IT "EJJ.;TJotJ IS X :"J XCP> 
270 GOT<l 340 
280 LET M = Cl'C?l>-YC?))ICXC?Jl-XCPll 
290 LET 8 = y( ?l - M•XCPl 
300 [F M C> 0 THEN 330 
310 ?Rt IT "EQJAT!ON IS Y ="1 8 
320 GOTJ 340 
330 PR! 1T "ECJATION IS Y ='"; MJ "*X+C"; Bl "l" 
340 PRI!IT 
350 NEXT Pl 
360 NEXT P 
362 
495 REM 
500 OATA 3,.1, 5,5, -1.6 
510 DATA -J, 3, 6,3. 516 
520 OATA -.o)l,O 
530 ENO 
RUN 
NO.B 



Ch;ipter4 

Sectmn·l-J 

NumbL•rJ 

100 F"ILES F'ILEIJ F'ILE2 
l!O PRINT "F'IRST F'ILE1" 
120 READ IJ, A 
130 PRINT A 
140 IF' MORE 11 THEN 120 

150 PRINT 
160 PRlNT "SECOND F'lLEt" 

170 READ 12• A 
160 PRINT A 
190 IF' MORE 12 THEN 170 
200 PRINT 
210 RESTORE II 
220 RESTORE 12 
230 PRINT "MERGED LISTS:" 
240 READ 11, A 
250 READ 12; B 
260 IF' A <: 8 THEN 340 
270 PRINT a 
2BO IF' HORE 12 THEN 250 
290 PRINT A 
300 IF' HORE I I THEN 320 

310 STOP 
320 READ 11, A 
330 GOTO 290 
340 PRINT A 
350 IF' HORE II THEN 410 

360 PRINT B 
370 IF' MORE 12 THEN 390 

360 STOP 
390 READ 12, 8 
-400 GOTO 360 
410 READ 11, A 
-420 GOTO 260 

END 

F'lRST F'ILE: 

SECOND F'ILE1 
lo! 
2.2 

4.4 
5.5 

MERGED LtSTSt 
! 
1.1 
2 
2.2 
3 
3.3 

4.4 
5 
5.5 
6 
7 

Ch.ipler5 

Sechon 5-2 

Numherl 

-......j 10 REH • THESE CHANGES IN GRAPH2 PROVIDE FOR SCALE 

-.....J I J REM FACTORS OF' SI ON THE X-AXIS ANO S2 ON THE 

RUN 
N0•6 

. . 

. . 

. . 

Ch;iplcr6 

NumhL•rb 

....... 
' 

94 REM • SIMPSON'S RULE 
100 DEF' F'NSCX) : 2•XT3 - 2•Xt2 + X + S 
110 READ F';T 
120 PRINT "I OF' INCREMENTS"J 

130 INPUT l 
140 LET W = CT-F')/J 
150 LET Al = F'NSCF') 
160 F'OR C = i TO l-1 
170 LET X = F + C•W 
180 IF' C/2 = INT<C/2) THEN 210 
190 LET Al : Al • 4•FNS(Xl 
200 GOTO 220 
210 LET Al = Al • 2•FtJSCXl 
220 NEXT C 
222 
230 LET Al = Al • F'NS<Tl 
2-40 LET A : Al•CW/3) 
250 PRINT "AREA I St"! A 
252 
254 REM 
260 DATA -3, I I 
270 ENO 

. . 

. . 

! 3 • <l >. ~ s • 6 ) 
ECUATION IS Y: I •X+r I ) 

I 3 1 4 ),(-! • 6) 

EQUATION IS y =-o.s •X+C s.s l 

r 3, 4 hC-j , 3 i 
EQUATION l S Y : o. 25 .:<;:+r 3• 25 

r 3 , <l >. ~ 6 • 3 ) 
EQUATION IS Y "-0.2 •X•C 

! 3 • 4 ), ( 5 • 6 
EQUATION IS Y = I •XH I ) 

t 5 • b ,, (-j • 6 l 
EQUATION IS Y : 6 

( 5. 6 ),l-1. 3} 
EQUATION IS Y = o.S •X-+t 3.5 l 

' 5 • b ), ( 8 • 3 l 
EQUATION IS Y =-I •X+t 1 ! 

r 5 , 6 ), l 5 • 6 
POINTS COINCIDE 

,_,. 6 ),l-1. :l, 
EQUATION rs x =-I 

I - I • b ), ~ 8 1 3 ) 
EQUATION IS Y =-0.:)33333 •X+t 5.66667 ) 

1-1. b l.l 5. b) 
EQUATION IS Y = 6 

t-1 • 3 ;,t B, 3) 
EQUATION l S Y = 3 

1-1 • 3 ),{ 5 • I> l 
EQUATION IS Y: Q.S •X+( 3.5 } 

r 6 , 3 >. 1 5 , o ; 
EQUATION IS Y =-I •X+i 11 

Cli.1ptcri 

~ecl!on 7-J 

0:wnber2 

100 PRINT 
110 READ Xl1Yl1 X2.oY2 
120 IF XI = .OQI THEN 530 
130 PRINT "PERPENDICULAR BISECTOR CF'" 
140 PRINT ''LINE SEGMENT - GIVEN HID EtlO POHHS" 
!SO PRINT "t"J XIJ ","! YIJ "} ANO (''J X2J "•"I Y21 

160 PRINT "EQUATION IS "J 
17Q LET XO : CX1+X2>12 
180 LET YO = <Yl-+Y2ll2 
190 IF' Xl-X2 <> 0 THEN 250 
200 IF" Yl-Y2 <> 0 THEN 23Q 

202 
204 
210 
220 
222 
224 
230 
240 
250 
252 
254 
260 
270 
2BO 
290 
300 
310 
320 
322 

REM * THE TWO GIVEN POINTS COINCIDE 
PRINT "NOT UN I OUE" 
GOTO 100 

REM • HORIZONTAL LINE 
PRINT "Y =" J YO 
GOTO 100 

1F' Y!-Y2 <> 0 THEN 280 

REM • VERTICAL LINE 
PRINT "X =": XO 
GOTO 100 
LET M = CY2-YlllCX2-Xll 
LET MO= -JIM 
LET 8 = YO - MO•XO 
PRINT "y ="I MDI "•X+C"l BJ ")" 

GOTO 100 



" ()) 

~'-'' 1ion 7-J (cont'd! 

Nuinber 2 fcon!'dl 

4'/•\ REM 
500 DATA 1.2, 4,7, <1,7, 4,3 
510 DATA -3,9, 4,5, 11,-7, 11,-1 

520 DATA .001.0.0.0 
SJO END 
RWl 
NC.2 

PERPENDICULAR BISECTOR OF 
LHIE SEGMENT - GlVEN TWO END POINTS 
C ! • 2 ! ANO t 4 , 1 1 
ECUATION IS Y "'-0.6 •X+C 6 l 

PERPENDICULAR BISECTOR OF 
LlrlE SEGMENT - GIVEN nm END PO!NTS 

< -~ , 7 • AND t 4 , J 1 
E(UATHIN IS Y : 5 

PERPENDICULAR BISECTOR OF' 
Ll!lE SEGMENT - GIVEN TWO ENO POlNTS 
(- 3 • 9 ·, ANO ~ 4 , 5 1 
EfUATION IS '( = 1.75 'l'X+( 6.12:5 l 

PERPENDICULAR BISECTOR OF' 
LHIE SEGMENT - GIVEN TWO END POJNTS 
( -1 ,-7 l ANO ;: 4 ,-7 l 

EfUATION IS NOT UNIQUE 

1':umber.t 

PRINT 
GOSUB 5000 
LET 1<1 : I< 

IF' I< <> 3 THEN 150 

LET H2 " M 
PRINT TAB< 15lJ "AND" 
GOSUB 5000 
ON I< GOTO 600· 700. aoo. 1:100 

ON i<l GOTO 1100• 1000• 1200, 1300 
ON I< I GOTO 1000, 11 oo, 12:0•1• 1300 

ON I<\ GOTO 1200• 1200• 140•l• 1300 

PRINT "PERPENDICULAR" 
GOTO 100 
PRINT "PARALLEL" 
GOTO 100 
PRINT "NEITHER" 
GOTO 100 
PRINT "MEANINGLESS" 
GOTO 100 

IF' M•M2 "' - I THEN I 000 
IF' M = M2 THEN 1100 

GOTO 1200 

5'J00 READ A. B, C 
5010 IF' A "' -.001 THEN 9999 
5J20 PRINT AJ "•X+C"l BJ "l•Y+C"1 CJ "l:Q "l 

5J30 IF' A= 0 THEN 5100 
5J40 IF' B " 0 THEN 5200 
5J50 LET H " -AIB 

5J60 LET K " J 
5J70 PRINT "SLOPE :••1 M 

5J80 RE1URN 
5100 IF' B = O THEN 5300 

5110 LET I< = 2 
5120 PRINT "HORIZONTAL" 

5130 RETURN 
5200 LET I< : I 
5210 PRINT "VERTICAL" 

5220 RETURN 
5300 LET I< "' 4 
5310 PRINT "MEANINGLESS" 

5320 RETURN 
5322 
5995 REM 
6000 DATA 1.1,t. 2:;2•4• Q,J,2• t.0.2 

Chaptcr7 

:iec!1on ;:-.:; 

Number·\ 

'22 
REM • THE FOLLOWING NEW LINES IN PROGRAM 

425 REM PYTHJ WILL PRODUCE THE DESI RED RESULTS 

430 FOR P = l TO 3 
435 IF OCPlT2 > D<P+l)T2+0CP+2lt2 THEN 475 

NEXT P 

"2 
•MS LET 0 = OCJ) 
450 FOR P = 2 TO 3 
455 IF ASSCO-OCPl>,. .QOOOOI THEN 465 

460 NEXT P 
'62 
465 PRINT "EQUILATERAL ANO EQUIANGULAR" 

470 GOTO 110 
475 PRINT "OBTUSE TRIANGLE WITH LONG SIOE DETERMINED BY" 

460 GOTO 510 
4BS PRINT "ACUTE TRI ANGLE" 
490 GOTO 110 

"2 

'" BOO 
BIO 
820 
830 
6'0 
RUN 
N(h4 

REM 
DATA 1. 
DATA 1. 
DATA 1. 
DATA ,, 
DATA 0 

o,o. 2:.o. 
1.2. 5,-1. 
o.o. o.3, 
-2.6. 1.2. 

( 0 • 0 '• { 2 • 0 
EQUILATERAL ANO EQUIANGULAR 

1. j,73205 
6.15 

,,o 

1-73205 

'1 
OBTUSE 
POINTS: ( 

,-1 l ANO t 6 , 15 

LONG SIDE DETERHHlEO BY 
t ANO ( 6 , 15 

• 3 I AND i 4 • 0 
HYPOTENUSE DETERMWED BY 

t ANO ( 4 , 0 l 

<-2 , 6 i,t 1 , 2 i ANO ( q • 8 

RIGHT TRIANGLE WITH HYPOTEtlUSE DETERMHlEO BY 
POINTS1fQ ,a >A.'JOC-2 .6 l 

~>:umlH'r 5 

100 FOR A " 3 TO 98 
110 F'OR B" A+! TO 99 
12:0 LET Kl : SORCA12 + Bt2l 

IJO IF' Kl <> INT<l<ll THEN 160 

1'0 IF I< I > 100 THEN 170 
PRINT A; BJ Kl 150 

160 NEXT B 
170 NEXT A 
160 END 
ilUN 
N0.5 

' 10 
11 
12 
12 
13 

" 15 
15 
16 
16 
1B 
1B 

4 
12 
B 
u 
15 
12 
0 
u 
60 
16 
B 
~ 
a 
u 
~ 

H 
63 
N 
u 

5 
13 
10 
e 

" 15 

" H 
61 
u 
H 
e 
so 
e 
H 
M 

" H 
a 

Chapter{) 

Sect1onil-I 

;-..'umb1.>r2 

100 DIM PC20), FCIO:, SCIOl 

110 l'"OR W = I 10 10 
120 LET F'CWl " SCl.O ~ P('.l) " PHl+IOl 

130 NEXT :./ 
132 
134 REM * READ A'JO f'f:JNT COEF"FIC!ENTS 

140 READ A 
150 ff A = C THEil •120 
160 F'OR X =A 10 1 !iTEP -l 
170 R!:AD F'O l 
180 PRINT F'CX)J 
190 NEXT X 
200 PRINT 
210 READ B 
220 F'OR y" B 10 i '.;'."EP -I 
230 READ SC) l 

240 PRINT 51 Y>J 
250 NEXT Y 
260 PRINT 
262 
264 REM * F"IND A'JO i>JUNT PRODUCT 

270 PRINT "PRONJCT '"'; 
280 F'OR I " I ··o A 
290 l'"OR J = I TO !l 
300 LET !'Cl+J-ll" PCI+J-1> + F"CIHS(J) 

310 NEXT J 
320 NEXT I 
33D F"OR Z: A+B-1 TO 1 STEP -1 
340 PRINT F• Zl I 

350 NEXT Z 
360 PRINT 
370 PRINT 
380 GOTO 110 
382 
384 REM 
390 DATA 5, J. 2,Q, !, l• 
400 DATA 2, J, 2, 2, 2• 3 
410 DATA 0 
420 ENO 
RUN 
N0.2 

3 2 0 2 I 
2 5 2 

PRODUCT = 5 

3 2 
2 3 

PRODUCT " 6 13 6 

Ch.1pkr9 

Sectmn 'l-l 

,-...:llmber I 

100 DIM F'(50) 
102 

3 12 " 2 

104 REM • STOfE F"IE:i·rncc1 NUMBERS IN A LIST 

110 LET F'C ll " F'!2) " ! 
120 l'"OR X = 3 ro II! 
130 LET F'CO = F'C<:-1 > + F"CX-21 

140 NEXT X 
1'2 
144 REM * NO'« "'RlNT R::SUL TS 
150 PRINT "FC:OT2"• ";;"CX-ll•F'CX+ll''. "DIF'F'ERENCE" 

160 FOR x " 2: ro 17 
110 LET A " F'CXh2 
180 LET 8" F'CX-\HF(X+ll 
190 PRINT /\, B, A-3 
200 NEXT X 
202 
210 ENO 
RUN 



...., 
"' 

6010 OATA i,2,3, 2.-1.-3, 3,4,5, g,9,2 
6020 DATA o, O, I• 2• 3, 4 
6030 DATA - • 00 I• Q, 0 
9999 END 
RUN 
N0.4 

I •XH I >•Y+t I >=O SLOPE ,,_ J 
ANO 

2 •X•C 2 )*'(•C 4 ):0 SLOPE=-! 
PARALLEL 

0 •XH l >•Y•C 2 ):::0 HORIZONTAL 
ANO 

I •XH 0 l•Y•t 2 >=O VERTICAL 
PERPENDICULAR 

! •X•C 2 >•Y•C 3 ):0 SLOPE =-0.5 
ANO 

2 •X•t-1 )*Y+C-3 >=O SLOPE = 2 
PERPENDICULAR 

3 •X•C 4 >•Y•f 5 >=O SLOPE =-0.?S 
ANO 

8 •X•C 9 >*YH 2 ):0 SLOPE =-0.888889 
NEITHER 

O •X•t O >*YH I >=O MEANINGLESS 
AND 

2 •X•C 3 >•YH 4 >"'O SLOPE =-0.66666? 
MEAN INGLE SS 

Chaplcri 

St!ct1on 7--l 

~umber 

PRINT 
READ Mh Bl 

IDD 
llD 
120 
IJD 
i.D 
ISO 
16D 
17D 
IBD 
19D 
2DD 
210 
220 
222 
22' 
23D 
2'D 
25D 
26D 
RUN 
NO. I 

IF' Ml = -.001 THEN 260 
PRINT "LINE i Y "' C"t Mil ">•X•C"J 81J 
READ M2> 82 
PRINT "LINE 2 Y : f"J M2J "H•X•C"J 821 

If Ml <> M2 THEN 190 
PRINT "THE LINES ARE PARALLEL" 
GOTO 100 
LET Xi::: CB2-Bll/CMl-M2> 
LET Y "' Ml•X•BI 
PRINT "INTERSECT AT C"J XJ ''>"! YI "l" 
GOTO 100 

REM 
DATA 3•-7• -4• 14• 
DATA 5.3. 5,3, 
OATA -.001.0 
END 

LINE I Y : 1 3 >•XH-i 
LINE 2 Y = 1-4 »"'X•C 14 
INTERSECT AT 1 3 , 2 

LINE i Y = r 1 >•X•C 2 
LINE 2 Y = f 3 
INTERSECT AT 1 - I 

LINE 1 Y = I 5 H•X+l 3 
LINE 2 Y : r 5 >•XH 8 
THE LINES ARE PARALLEL 

LINE I Y ::: t 2 
LINE 2 Y : c 5 
INTERSECT AT 1 0 

>•X•{-11 
l•XH-11 

.-11 

1.2. 3, 4 
2.-1 i. 5.-11 

H 
m - H 
21 H 2 
21 n H 

" • " " 0 SI 

" w H 
n 60 65 
n . 0 
H 0 53 
H " IM 
m " H 
m n H 

• 60 u 
~ M H 
~ H 65 
2 8' 91 

-
60 

" " H 65 
H " n 

" 42 H 

" H H 
42 H w 
0 60 H - H 13 - u " 51 u H 
5' n 90 
~ H " 60 u 87 
60 " IH 
65 n 97 

Number/ 

94 REM •DOES NOT HANDLE PAIRS OF' POINTS 
95 REM ON A VERTICAL LINE 
100 DIM XC20), YC20) 
110 PRINT 
120 READ T 
130 IF"T:DTHEN530 
140 LET N "' 0 
150 READ XI• Yl 
160 IF' XI : -·001 THEN 220 
no LET N "' N• I 
180 LET XCN> : XI 
190 LET YCN) = YI 
200 PRINT "f"J XIJ ".o"! YIJ ")" 
21D GOTO ISO 
220 LET Ml: CYC2l-YCJ}) .1 CXC2)-X(l)) 
230 F'OR I = 2 TO N-1 
240 LET M2: (YCI•l>-YCJ)) ,- CXCJ+ll-XC!)) 
2SO JF' Ml <:> M2 THEN 300 
260 LET Ml : M2 
2?0 NEXT l 
272 
280 PRINT NJ "POINTS COLLINEAR" 
290 GOTO 110 
300 PRINT "POINTS NON-COLLINEAR" 
310 GOTO 110 
32D 
494 REM 
500 DATA 999, 1.2. 3,4, s.r .. 7,3, 9.10. -.001.0 
510 OATA 999• i•8• 3,9, 2,7, 3,2, -.001.0 
520 DATA 0 
530 END 
RUN 
NOo7 

t 5 • 6 } 
! 1 • 8 ) 
' 9 • 10 } 
5 PO JNTS COLLINEAR 

1 I, 8; 
t 3. 9) 
r 2 ., 7 ~ 

r 3 ~ 2 l 
Pt!INTS NON-COLLINEAR 

F'00•2 F'O(-ll•F'CX .. 1> 
I 2 

' 3 
9 10 
25 " u 65 
169 166 

"' 
,., 

1156 1155 
3025 3026 
7921 7920 
20736 20737 
54289· 54288. 
142129· l42JJO • 
372100· 372099. 
974169. 
2o55041E•06 

NunibN2 

100 DIM F'C2S» LC20) 
110 LET F'CI > = F'C2l "' I 
120 F'OR X = 3 TO 25 
IJO LET FCX> = F'CX-1) 

140 NEXT X 
142 
ISO FOR X "' 2 TO 24 
160 FOR y = X•I TO 2S 
162 

I 
-I 

I 
-I 

-I 
I 

-I 

\64 REM • lJSE THE £UCLIOEAN ALGORIT4M TO 
165 RE'1 FINO THE GCF" 
170 LET N = F"CXl 
180 LET 0 = F'CY> 
190 LET l = l~HCN/Ol 

200 LETR=N-l•O 
210 IF"R=OTHEN250 
220 LET N = 0 
230 LET D = R 
240 GOTO 190 
~.ii::' 

24• HEM * 
245 RE'1 
25D 
260 
no 
2BO 
29D 

THE LATEST GCF' TO THE L LIST 
IS NOT ALREADY T4ERE. 

Z = l TO ~l I 
IF" LCZl = D THE'l 300 

NEXT t 
LET NI : NI + I 
LET LCN I l = 0 

NEXT Y 
310 NEXT X 
312 

'" 32D 
330 
3'D 
3'2 
350 ENO 
RIJN 
N0.2 

ALL DIF"F"ERE'JT GCF''S. 

1 2 3 5 8 13 21 34 SS 89 144 

NumberJ 

100 DIM FC50) 
110 LET F'C!l: FC2) = I 
120 F'OR X = 3 TO 30 
130 LET F'CX> = F'CX-1) • l"CX-2> 
140 NEXT X 
142 
150 FOR X = 2 TO 20 
160 PRINT F'CXl/FCX-1 >. 
l?D NEXT X 
172 
180 ENO 
RUN 
NQ,J 

I 
1.625 
1.61798 
1.61803 

2 
1.6\538 
1.61806 

1.5 
!.61905 
io6J80J 
\061803 

1.66667 
1.61?65 
t.61804 
!.61!303 

1.0 
1.61818 
J.6!603 



~ 

O> 
0 

•:ct1on9-I (cun!'d) 

-,umber·! 

JOO DIM F"CSOl 
l 10 LET FC I l = I 
!20 LET F'C2> = J 
!30 F'OR I = 3 TO 20 
!40 LET FCI>: F<I-ll + FC:-2) 
!SO NEXT I 
'52 
l 60 F'OR l = t TO 20 
l70 PRINT F'CJ), 
160 NEXT ! 
<B2 
190 ENO 
·~'JN 

" 199 
2207 

•umber 9 

100 LET 0 = 10 
I 10 LET B = 0 

3 
29 
322 
3571 

!20 LET 0 = 3•0/4 
130 LET 8 B+I 
140 ff 0 > 1112 THEN 120 

47 
521 
5778 

150 LET D = INTC D•IOOO l/100 J 
H:iO PRINT BJ "BOUNCES"; OJ "H:IGHT" 
170 ENO 
<UN 

'11).9 

17 BOUNCES Q.075 HEIGHT 

'umber 10 

!00 LET A = 2J63 
110 PRINT Al "GRAINS" 
120 ff A > 1000 THEN 150 
130 PRINT "YES THEY WILL FJT" 
140 STOP 

76 
843 

150 PRlNT "NO THEY WILL NEVER FIT IN THAT LITTLE SPACE" 
!60 END 
·!UN 
'l[l.10 

9.22337£+18 GRAINS 
'Hl THEY WILL NEVER F'IT IN THAT LITTLE SPACE 

i:tiapter<J 

'(.'Cl!on'J-l 

-..umber:! 

100 PRINT "N''. "1+(2/JltN''. ''Cl+C2/Jl)tN" 
110 FOR N = J TO 10 
!20 GOSUB 180 
!JO NEXT N 
132 
140 F'OR N = 20 TO 70 STEP 10 
!SO GOSU8 180 
!60 NEXT N 
162 
!70 STOP 
172 
!80 PRINT N.o l+C2/3)TN, Cl+C2'J))TN 
!90 RETUR.'I 
?00 ENO 
~'JN 

'JJ.2 

., 
I 
2 
3 

l+C2/JltN 
J.66667 
1.44444 
1.2963 
lo 19753 

: 1+(2/J))TN 
!066667 
2.17?78 
4062963 
1. 71605 

II 
123 
1364 
15127 

110 FOR I = I TO 12 
120 LET S = S+I 
130 LET SI "' Sl+S 

NEXT I 
142 
150 PRINT Sil "GIF'TS ALL TOGET~ER" 
160 ENO 
RUN 

364 GIFTS ALL TOGETHER 

Chaptcr9 

Sec11on'J-4 

Numbcr4 

100 PRINT "riOW M"-'<Y POINTS"J 
110 INPUT NI 
120 LET C = 0 
130 RANDOMIZE 
140 F'OR N = ! TO NI 
ISO LET X = R'ID 
160 LET Y ::: RND 
170 IF' x~2 + Y•2 >:: 1 THSN 190 
ISO LET C = C+I 
190 NEXT N 
192 
200 
210 
R'J:-.1 
N0.4 

PRINT CJ "IN THE CIRCLE:"I 4•C/N\ 
ENO 

HO\.I MA°"Y POINTS? 2500 
1968 IN THE CIRCLE J.1486 

RlJ:-.1 
N0-4 

H:J\.I MA'lY POINTS? 2500 
1958 IN THE CIRCLE 3.1328 

Chapter 10 

Section 10·1 

Numbl'r 

100 DIM SCJ14l.P<4• ll.MC3. I l.TC J,4},AC 11 I l 
110 MAT READ 5, ? 
120 F'OR R = l TO .J 
130 F'ORC=IT04 
140 LET TCl.tC) = TU.Cl + so~.Cl 

150 NEXT C 
160 NEXT R 
162 
170 MAT A : T•P 
180 MAT PRINT A 
182 
164 REM 
190 DATA JO, 6001 SO. 20, SO, 31•40t Io, o, 500, SO, 90 
200 OATA 1,. J9,, 49, J. 79 
210 ENO 
RUN 
NOo I 

1122.49 

Number4 

100 DIM A(J, !l, 8(4,Jl. CC41 ll. NSC4l 
110 MAT READ A, a, NS 
120 MAT C :: 6•A 
122 
130 F'OR I = I TO 4 
!40 PRINT GCI. l>J TABUOlJ NSCI > 
ISO NEXT I 

INVCA> 

0038587 -2. 1739 IE-2 0.173913 
7o06522E-2 Oo 108696 Oo 130435 

-6.52174£-2 Q, JJ0435 -4.34763£-2 

A•lNV!Al 

j 0 -J,72529E-<1 
7o4505SE-9 1. 9, 3132JE-10 
7.45058£-Q -J.72529£-9 I 

I -9.JIJ~JE-<1 S.58794£-9 
J.72529E-9 I• -9,Jl323E-<1 
9.JIJ2JE-IO -2.79JJ7E-9 I• 

f>,;umbcr-l 

DIM CC3,J), K<::J.!), SC3.!>. 1(3,J) 
110 MAT READ c, I{ 

!20 MAT I = !WCCl 
130 MAT S = !•K 
140 MAT PR!Nf S 
\02 
145 REM 
150 DATA 2,-:;i,-5, 1,-6,5, 
160 DATA 2,-35,-39 

1. 
-3· 

Number 10 

!00 DIM A(3,)), 8C:!;J), CC:J.J), DC3,Jl• £{3,3) 

110 MAT READ A, 8 
120 "lAT C = ,,•8 
130 MAT D : !'iVCCl 
140 PRINT 
150 PRINT "I:l<HA•E>" 
160 MAT PRl~T D 
170 MAT C = !'IVCAl 
160 MAT D = !'IVCS> 
190 MAT E = IHC 
200 PRINT 
210 PRINT "l'.hfCBl•l~NCAl" 
220 MAT PRINT E 
222 
224 REM 
230 DATA 1,-2,3, s.-1,-2. 0,3,4 
240 DATA 2.-4.0. -J· 1.2. s.2.-s 
250 ENO 
RUN 
N0.10 

INV<A•Bl 

!050575 
0.747126 
1.11012 

lNVCB>*lNVCA) 

!.50575 
00747127 
1.11012 

Number 11 

-1.2c11s -2.72989 
-o.6~9425 -1.38506 
- I .~5.-.02 

-J.2C 115 -2.72989 
-O.El9425 -I .J8506 
-1 • .os.-.02 -3- 3046 

100 DIM C<JO~IO>• -<CIO.t>• ICJ0,10» S<t0.1> 
110 READ N 



~ 

5 1.13169 
6 )008779 
7 J.05853 
8 lo03902 

' 1.02601 
IO 1.01734 
20 1.0003 
JO 1.00001 
<O I 
50 I 
60 I 

Numbers 

100 DIM F'C20l 
110 LET F'CI) "'F'C2): I 
120 F'OR N "' 3 TO 20 
130 LET F'CNl "' F'CN-)) 
140 NEXT N 
1'2 

12.0601 
2104335 
35.7225 
59.5374 
99.2291 
165.382 
27351.1 
•h52338E+06 
7o<l8085E+08 
J.23720E:+l I 
2004610£+ 13 
J,J8388E .. 15 

ISO PRINT "BY A001Tl0N"• "BY FORMULA" 
160 LET SO : SORCSl 

F'OR N = I TO 20 170 
ISO 
190 

LET SI "' CCl•SOhN-Cl-SO)tN)/((21N>•SOl 
PRINT F'CN), SI 

200 
202 

NEXT N 

210 END 
RUN 
NO.S 

BY ADDITION BY FORMULA 
I 
I 
2 
J 
5 
a 

" 34 34. 
SS ss. 
89 59, 
144 )44. 
233 233. 
377 377. 
610 610. 
937 987. 
1597 1597· 
2584 2SB4. 
4181 4181. 
676S 676S. 

Chapter!> 

Sectmn'kl 

Number J 

94 REM * THE TWELVE DAYS OF CHRISTMAS 
100 LET S = SI : 0 

152 
15' REH 
160 DATA aoo. 200. 1 soo 
170 DATA 3,1 •• h 1.1.2. 9,2.J. 1s.a.12 
180 DATA BULBS• SWITCHES• METERS OF' ~HRE• SCREWS 
190 ENO 
RUN 

8600 BULBS 
4000 Sl.JITCHES 
12100 METERS OF WIRE 
31600 SCREWS 

Numberb 

100 DIM ACl.3»BC3,4»CC4,J>.DC!.4l>ECl,\l 
110 MAT READ A. B. C 
120 MAT 0 :: A•B 
130 MAT C : D•C 
140 MAT PRINT E 
1'2 
145 REM 
!SD DATA I, I• I 
16D DATA JD. aoo. so. 20. so. 31. 40. Io. 
170 OATA 1,.39,.49,3.79 
180 END 
RUN 

1122.49 

Chaplcr10 

Secl1or1!0-2 

Number 

DIM ACJ,J), BCJ,J>. CCJ,J) 
110 MAT R£AO A 
120 MAT B = INVCAl 
\JO PRINT "INVCAl" 
\40 MAT PRINT B 
ISO MAT C : A•B 
160 PRINT 
170 PRINT "A•INVCA>" 
180 MAT PRINT C 
190 MAT C :: B•A 
200 PRINT 
210 PRINT "INVCAl•A" 
220 MAT PRINT C 
222 
224 REM 
230 DATA 4,-4,4, I• 1.7, 
240 ENO 
RtJ.'J 
NO.I 

120 ff N = 0 THEN 310 
130 Ml\T READ CCN.N>. K<N. t} 
140 PRINT "COEF"F'ICIENT MATRIX" 
150 MAT PRINT C 
160 PRWT 
170 PRINT "CONSTA"JT TERMS" 
180 MAT PRINT K 
190 MAT 1 "' HIVCC} 
200 MAT S : !ti( 

210 PRINT 
220 PRINT "SOLUTIONS" 
230 MAT PRINT S 
240 PRINT 
250 GOTCl 110 
252 
254 REM 
260 DATA 2, 3,1, S,-J 
270 DATA ;,21 
280 DATA 3, 2,J,-1. J,Q,1, 1,-2,-S 
290 DATA 20.- Q, 6 
300 DATA 0 
310 ENO 
RUN 
NQ, JI 

COEFFICIENT MATRIX 

CONSTA.'H TERMS 

7 
21 

SOLUTIONS 

J. 
-2. 

COEF"F'ICIENT MATRIX 

CONSTANT TERMS 

20 
0 

SOLUTIONS 

1. 
s. 

-J. 

0 
-2 

I 
-s 



ABS(X) function, 7 
Algorithm, 10 
Alphabetization, 42 
AND, 29 
Append statement, 55 
Area, 72 
Arithmetic mean, 137 
Arithmetic operators, 4 
Arithmetic sequence, 

116 
Arithmetic series, 122 
Array; numeric, 15, 127 

string, 34 
ASCII code, 31, 35, 40, 

44 
ASCII files, 54 
Assignment operator, 5 
Assignment statement, 5, 

31,40,47 
ATN(X) function, 11 
Average, 137 
Axes, 64, 68 

Battle of numbers, 155f 
Binary files, 54, 57 
Bubble sort, 140 

Cartesian coordinates, 18 
Census, 54 
CHANGE statement, 40 
Chess, 156 
Circle, 74 
CLK(X) function, 11 
Coefficient matrix, 132 
Coefficients, 101 
Coinciding lines, 90 
Collinear points, 78 
Column vector. 127 
Comma delimiter, 3, 33 
Common difference, 116 
Common ratio, 117 
Compound interest, 117 
Computed G(/JSUB state-

ment, 15 

INDEX 

Computed G(/JT(/J state
ment, 3 

Computer functions: 
ABS(X), 7 
ASC(I$), 44 
ATN(X), 11 
CLK(X), 11 
C(/JS(X), 11 
DEF, 12 
EXP(X), 11 
EXT$( ), 44 
INT(X), 7, 8 
LEN(A$), 35, 40 
L(/JG(X), 11 
MAX, 29 
MIN, 29 
NUM, 18 
RND,9 
RND(X), 8 
SEG$( ), 44 
SGN(X), 7 
SIN(X), 11 
SQR(X), 7 
TAB(X), 23, 64 
TAN(X), 11 
TIM(X), 11 
TYP(N), 51 

C(/)N, 19 
Concatenation, 39 
Constant matrix, 132 
Content addressing, 52 
Continuous function, 

104 
Convergence, 119 
Correlation coefficient, 

linear, 143, 146 
C(/JS(X) function, 11 
Cosine, 125 
CREATE command, 58, 

61 

DATA statement, 2, 43 
Degree of a polynomial, 

101 
182 

De la Loubere, 152 
Delimiter; comma, 3, 25, 

33 
in a file, 47 
semicolon, 3, 25, 33 

Descartes' Rule of Signs, 
112f 

DIM statement, 10, 35, 
40 

Dispersion, 138 
Distance, 72, 78f 
Distance formula, 80 
Divergence, 119 
Dummy data, 2, 47, 48, 

59, 137 
Dummy string, 38 

Efficiency, 10, 42, 46, 
102,140 

E-format, 5, 26 
END statement, 2 
EOF, 52 
Error, 75, 112, 125 
Error message, 48, 51 
EXP(X) function, 11 
EXT$( ) function, 44 

Factor Theorem, 108 
Fibonacci sequence, 115 
Files, 46, 54 

ASCII, 54 
binary, 54, 57 
random access, 50, 57f 
sequential, 57 
serial, 46, 55, 57 
teletype, 54 

FILES statement, 4 7, 55 
FNEND statement, 29 
Formatting, 25 
F<,l>R-NEXT statement, 9 
Functions, computer; see 

Computer functions 
Function, mathematical, 

64 



Index 183 

Games, 147,154-159 Matrix algebra, 19 Random numbers, 147 
Geometric sequence, 117 MAX function, 29 RAND(,Z)MIZE statement, 
Geometric series, 122 Median, 140 9 
G(,Z)SUB statement, 13 Midpoint, 75, 81 READ statement, 2, 31, 
G(,Z)T(,Z) statement, 3 MIN function, 29 40,55 
Graph, 64 Monte Carlo, 126 Record of storage, 47, 58 

Multiple assignment Relational operators, 2f 
Hero's formula, 100 statement, 6 REM statement, 4 
Hypotenuse, 95 Multiple zeros, 111 Remainder Theorem, 

108 
Identity matrix, 19, 132 NAME command, 2 REST(,l)RE statement, 57 
IDN, 19 Nested form of a poly- RETURN statement, 13 
IF END statement, 48, nomial, 102, 110 Right triangle, 79, 84, 95 

59 Nested loops, 16 RND function, 9 
IF M(,Z)RE statement, 55 NEW command, 2, 54 RND(X) function, 8 
IF-THEN statement, 27 Noncollinear points, 94 Row vector, 127 
Inconsistent equations, Nonreal zeros, 104 RUN command, 3 

90 N(,Z)T, 29 
Indeterminant solution NUM function, 18 SA VE command, 54 

89f Scale, 66 
Initialization, 6 Operators SCRATCH statement, 57 
INPUT statement, 6, 31, arithmetic, 4 Sectors of storage, 4 7 

40 assignment, 5 SEG$( ) function, 44 
Integral zeros, 112 logical, 27 Semicolon delimiter, 3, 
Interest, compound, 117 relational, 2, 3 33 
Intersecting lines, 84 (,l)R, 29 Sequence; arithmetic, 
INT(X) function, 7, 8 Ordering data, 140 116 
INV, 21, 131 Origin of a graph, 64 defined, 115 
Inverse of a matrix, 132 Fibonacci, 115 

Parabola, 66 geometric, 11 7 
Knight's tour, 156ff Parallel lines, 84 of partial sums, 122 

Pearson r, 146 Sequential files, 57 
LEN(A$) function, 35, Perpendicular bisector, Serial files, 5 5 

40 85 Series; arithmetic, 122 
LET statement, 5, 40 Perpendicular lines, 84 defined, 122 
Limit of a sequence, 119 Plot, 64 geometric, 122 
Linear correlation coef- Plotters, 64 SETW statement, 59 

ficient, 143, 146 Pointer, 51, 55, 59 SGN(X) function, 7 
List, 10 Polynomial, 12, 101 Significant digits, 5 
LIST command, 2 Polynomial equation, Similar triangles, 85 
Logical operators: 104 Simpsons' rule, 77 

AND, 29 Prettyprinting, 4 Simulation, 147 
(,Z)R, 29 PRINT statement, 2, 40, Simultaneous linear 
N(,l)T, 29 47,81 equations, 88, 131 

Logical value, 28 PRINT USING state- SIN(X) function, 11 
L(,l)G(X) function, 11 ment, 25 Slope, 81 
Loops, 9 Pseudo-random numbers, positive, 82 

nested, 16 8 negative, 82 
Pythagorean Theorem, Slope-intercept, 83 

Magic squares, 152ff 95 Solution matrix, 132 
MAT equals, 21 Spacing; comma, 43 
MAT INPUT, 18 Quadratic formula, 104, semicolon, 43 
MAT PRINT, 18, 43 111 Standard deviation, 137, 
MAT READ, 18, 43 Quotes, 33, 35 138 
Matrix, 127 Statements: 

coefficient, 132 Radians, 11 APPEND, 55 
constant, 132 Random access files, 57, ASSIGN, 47 
identity, 19, 132 58 assignment, 5, 31, 40 
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Statements (continued) 
CHANGE, 40 
computed GQ.>SUB, 15 
DATA, 2, 43 
DIM, 10, 35, 40 
END,2 
FILES, 47, 55 
FNEND, 29 
FQ.>R-NEXT, 9 
flff\CiTTn i •") 
\_T\fH~"JU,Lt; ..LU 

GQ.>T(/J, 3 
IF Ef~D, 48, 59 
IF M(/JRE, 55 
IF-THEN, 27 
image, 25 
INPUT, 6, 31, 40 
LET, 5, 40 
MAT, 18, 19 
multiple assignment, 6 
PRINT, 2, 31, 40 
PRINT USING, 25 
RAND(/JMIZE, 9 
READ, 2, 31, 40, 55 
REM,4 
RESTQ.>RE, 57 
RETURN, 13 
SCRATCH, 57 
SETW, 59 
STQ.>P, 5 
WRITE, 57 

STQ.>P statement, 5 

Index 

Storage, 59, 68 
String, 25, 31 

dummy, 38 
null,50 

SQR(X) function, 7 
Subroutine, 13 
Subscripted variable, 10 
Synthetic division, 109 
System command, 2 

CREATE, 58, n1 
LIST, 2 
.,.TA 1\11'1.' 0 
J. "4 .t"' .. J..~'.! !.:.1' .::. 

NEW, 2, 54 
Q.>PEN, 47 
RUN,3 
SAVE, 54 

TAB(X) function, 23, 64 
TAN(X) function, 11 
Teletype files, 54 
TIM(X) function, 11 
Transfer; conditional, 2 

unconditional, 3 
Trapezoid method, 77 
Trial and error, 10 
Triangles, similar, 85 
TRN, 21 
Truth values, 27 
TYP(N) function, 51 

Undefined condition, 82 

Undefined slope, 84, 97 
Undefined solution, 89 
User-defined function, 

12 
multiple line, 29 

Variables, 4 
numeric, 31 
string, 31 
:;ubscripted ntl!T!E-d£::

1 

10 
subscriiJLt!d stihig, 34 

Variance, 138, 142 
Variation, 113 
Vector; column, 127 

row, 127 

WRITE statement, 57 

X-axis, 65, 68 
X-coordinate, 78 

Y-axis, 65, 68 
Y-coordinate, 78 

ZER, 19 
Zeros; integral, 112 

multiple, 111 
nonreal, 104 
real, 104 



ADVANCED BASIC: 
Applications and Problems 
James S. Coan 

Now you can extend your expertise in the BASIC language with 
this book of advanced techniques and applications of the BASIC 
language. It allows you to gradually increase both your understand
ing of concepts and your ability to write programs. The develop
ment of each topic progresses from simple to more sophisticated 
problems and is accompanied by many sample programs to clarify 
the discussions. 

ADVANCED BASIC opens with a review chapter on the elemen
tary points of BASIC. Then, the book covers extended features, 
strings and files, and the applications of the BASIC language in 
such areas as: coordinate geometry, area, sequences and aeries, 
polynomials, graphing, simulations and games. Summaries and 
problem exercises end each section. 
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BASIC BASIC: 
An Introduction to Computer Programming In 
BASIC Language 
James S. Coan 

This popular text for high school and college students integrates pro
gramming in BASIC language and the teaching of mathematics. Each topic 
begins with a short. complete program and moves to more sophisticated 
problems. The use of flowcharts is encouraged as an aid in writing programs. 
Summaries and questions review important concepts. #5872-1. pa,,.r, 
# 5873-X, cloth, 256 pages, 6 x 9, illus. 
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Creative Technlqu• for Beginning Programmers 
Kenneth E. Schoman. Jr. 

A hands-on approach to learning BASIC and the fundamentals of 
problem-solving using a computer. Through many exercises. you develop 
a workable BASIC vocabulary, a feeling for the logic and intrigue of pro
gramming algorithms. and the self-confidence needed to use a computer 
in a variety of applications. # 5104-2, paper, 128 pages, 8~ x 11, Illus. 

[{] 
HAYDEN BOOK COMPANY, INC. 

Rochelle Park, New Jersey 

ISBN 0·8104-5855·1 




