

NP-COMPLETE PROBLEMS 529

example) insertion sort runs in time proportional to N 2: the existence of
N log N sorting algorithms is not relevant to the present discussion. Also, the
time taken by an algorithm obviously depends on the computer used, but it
turns out that using a different computer will affect the running time by only
a polynomial factor (again, assuming reasonable limits), so that also is not
particularly relevant to the present discussion.

Of course, the theoretical results that we're discussing are based on a
completely specified model of computation within which the general state
ments that we're making here can be proved. Our intent is to examine some of
the central ideas, not to develop rigorous definitions and theorem statements.
The reader may rest assured that any apparent logical flaws are due to the
informal nature of the description, not the theory itself.

One ''unreasonable" way to extend the power of a computer is to endow it
with the power of nondeterminism: when an algorithm is faced with a choice
of several options, it has the power to "guess" the right one. For the purposes
of the discussion below, we can think of an algorithm for a nondeterministic
machine as "guessing" the solution to a problem, then verifying that the
solution is correct. In Chapter 20, we saw how nondeterminism can be useful
as a tool for algorithm design; here we use it as a theoretical device to help
classify problems. We have

NP: the set of all problems which can be solved by nondeterministic
algorithms in polynomial time.

Obviously, any problem in P is also in NP. But it seems that there should be
many other problems in NP: to show that a problem is in NP, we need only
find a polynomial-time algorithm to check that a given solution (the guessed
solution) is valid. For example, the "yes-no" version of the longest-path
problem is in NP. Another example of a problem in NP is the satisfiability
problem. Given a logical formula of the form

(x1 + x3 + xs)*(x1 + X2 + x4)*(X3 + X4 + + X3 + xs)

where the xi's represent variables which take on truth values (true or false),
"+" represents or, "*"represents and, and X represents not, the satisfiability
problem is to determine whether or not there exists an assignment of truth
values to the variables that makes the formula true ("satisfies" it). We'll see
below that this particular problem plays a special role in the theory.

Nondeterminism is such a powerful operation that it seems almost ab
surd to consider it seriously. Why bother considering an imaginary tool that
makes difficult problems seem trivial? The answer is that, powerful as non
determinism may seem, no one has been able to prove that it helps for any
particular problem! Put another way, no one has been able to find a single

530 CHAPfER 40

example of a problem which can be proven to be in NP but not in P (or even
prove that one exists): we do not know whether or not P = NP. This is a
quite frustrating situation because many important practical problems belong
to NP (they could be solved efficiently on a non-deterministic machine) but
may or may not belong to P (we don't know any efficient algorithms for
them on a deterministic machine). H we could prove that a problem doesn't
belong to P, then we could abandon the search for an efficient solution to
it. In the absence of such a proof, there is the lingering possibility that some
efficient algorithm has gone undiscovered. In fact, given the current state
of our knowledge, it could be the case that there is some efficient algorithm
for every problem in NP, which would imply that many efficient algorithms
have gone undiscovered. Virtually no one believes that P =NP, and a con
siderable amount of effort has gone into proving the contrary, but this remains
the outstanding open research problem in computer science.

NP-Completeness

Below we'll look at a list of problems that are known to belong to NP but
which might or might not belong to P. That is, they are easy to solve on a
non-deterministic machine, but, despite considerable effort, no one has been
able to find an efficient algorithm on a conventional machine (or prove that
none exists) for any of them. These problems have an additional property
that provides convincing evidence that P #=NP: if any of the problems can be
solved in polynomial time on a deterministic machine, then so can all problems
in NP (i.e., P = NP). That is, the collective failure of all the researchers
to find efficient algorithms for all of these problems might be viewed as a
collective failure to prove that P =NP. Such problems are said to be NP
complete. It turns out that a large number of interesting practical problems
have this characteristic.

The primary tool used to prove that problems are NP-complete uses
the idea of polynomial reducibility. We show that any algorithm to solve a
new problem in NP can be used to solve some known NP-complete problem
by the following process: transform any instance of the known NP-complete
problem to an instance of the new problem, solve the problem using the given
algorithm, then transform the solution back to a solution of the NP-complete
problem. We saw an example of a similar process in Chapter 34, where we
reduced bipartite matching to network flow. By "polynomially" reducible,
we mean that the transformations can be done in polynomial time: thus the
existence of a polynomial-time algorithm for the new problem would imply the
existence of a polynomial-time algorithm for the NP-complete problem, and
this would (by definition) imply the existence of polynomial-time algorithms
for all problems in NP.

NP-COMPLETE PROBLEMS 531

The concept of reduction provides a useful mechanism for classifying
algorithms. For example, to prove that a problem in NP is NP-complete,
we need only show that some known NP-complete problem is polynomially
reducible to it: that is, that a polynomial-time algorithm for the new problem
could be used to solve the NP-complete problem, and then could, in turn, be
used to solve all problems in NP. For an example of reduction, consider the
following two problems:

TRAVELING SALESMAN: Given a set of cities, and distances between
all pairs, find a tour of all the cities of distance less than M
HAMILTON CYCLE: Given a graph, find a simple cycle that includes
all the vertices.

Suppose that we know the Hamilton cycle problem to be NP-complete and
we wish to determine whether or not the traveling salesman problem is also
NP-complete. Any algorithm for solving the traveling salesman problem
can be used to solve the Hamilton cycle problem, through the following
reduction: given an instance of the Hamilton cycle problem (a graph) construct
an instance of the traveling salesman problem (a set of cities, with distances
between all pairs) as follows: for cities for the traveling salesman use the set
of vertices in the graph; for distances between each pair of cities use 1 if there
is an edge between the corresponding vertices in the graph, 2 if there is no
edge. Then have the algorithm for the traveling salesman problem find a tour
of distance less than or equal to N, the number of vertices in the graph. That
tour must correspond precisely to a Hamilton cycle. An efficient algorithm for
the traveling salesman problem would also be an efficient algorithm for the
Hamilton cycle problem. That is, the Hamilton cycle problem reduces to the
traveling salesman problem, so the NP-completeness of the Hamilton cycle
problem implies the NP-completeness of the traveling salesman problem.

The reduction of the Hamilton cycle problem to the traveling salesman
problem is relatively simple because the problems are so similar. Actually,
polynomial-time reductions can be quite complicated indeed and can connect
problems which seem to be quite dissimilar. For example, it is possible to
reduce the satisfiability problem to the Hamilton cycle problem. Without
going into details, we can look at a sketch of the proof. We wish to show
that if we had a polynomial-time solution to the Hamilton cycle problem,
then we could get a polynomial-time solution to the satisfiability problem by
polynomial reduction. The proof consists of a detailed method of construc
tion showing how, given an instance of the satisfiability problem (a Boolean
formula) to construct (in polynomial time) an instance of the Hamilton cycle
problem (a graph) with the property that knowing whether the graph has a
Hamilton cycle tells us whether the formula is satisfiable. The graph is built
from small components (corresponding to the variables) which can be traversed

532 CHAPTER40

by a simple path in only one of two ways (corresponding to the truth or falsity
of the variables). These small components are attached together as specified
by the clauses, using more complicated subgraphs which can be traversed by
simple paths corresponding to the truth or falsity of the clauses. It is quite
a large step from this brief description to the full construction: the point
is to illustrate that polynomial reduction can be applied to quite dissimilar
problems.

Thus, if we were to have a polynomial-time algorithm for the traveling
salesman problem, then we would have a polynomial-time algorithm for the
Hamilton cycle problem, which would also give us a polynomial-time algorithm
for the satisfiability problem. Each problem that is proven NP-complete
provides another potential basis for proving yet another future problem NP
complete. The proof might be as simple as the reduction given above from the
Hamilton cycle problem to the traveling salesman problem, or as complicated
as the transformation sketched above from the satisfiability problem to the
Hamilton cycle problem, or somewhere in between. Literally thousand~ of
problems have been proven to be NP-complete over the last ten years by
transforming one to another in this way.

Cook's Theorem

Reduction uses the NP-completeness of one problem to imply the NP-com
pleteness of another. There is one case where it doesn't apply: how was the
first problem proven to be NP-complete? This was done by S. A. Cook in
1971. Cook gave a direct proof that satisfiability is NP-complete: that if
there is a polynomial time algorithm for satisfiability, then all problems in
NP can be solved in polynomial time.

The proof is extremely complicated but the general method can be ex
plained. First, a full mathematical definition of a machine capable of solving
any problem in NP is developed. This is a simple model of a general-purpose
computer known as a Turing machine which can read inputs, perform certain
operations, and write outputs. A Turing machine can perform any computa
tion that any other general purpose computer can, using the same amount of
time (to within a polynomial factor), and it has the additional advantage that
it can be concisely described mathematically. Endowed with the additional
power of nondeterminism, a Turing machine can solve any problem in NP.
The next step in the proof is to describe each feature of the machine. includ
ing the way that instructions are executed, in terms of logical formulas such
as appear in the satisfiability problem. In this way a correspondence is estab
lished between every problem in NP (which can be expressed as a program on
the nondeterministic Turing machine) and some instance of satisfiability (the
translation of that program into a logical formula). Now, the solution to the
satisfiability problem essentially corresponds t.o a simulation of the machine

NP-COMPLETE PROBLEMS 533

running the given program on the given input, so it produces a solution to an
instance of the given problem. Further details of this proof are well beyond
the scope of this book. Fortunately, only one such proof is really necessary:
it is much easier to use reduction to prove NP-completeness.

Some NP- Complete Problems

As mentioned above, literally thousands of diverse problems are known to be
NP-complete. In this section, we list a few for purposes of illustrating the
wide range of problems that have been studied. Of course, the list begins
with satisfiability and inclades traveling salesman and Hamilton cycle, as well
as longest path. The following additional problems are representative:

PARTITION: Given a set of integers, can they be divided into two sets
whose sum is equal?

INTEGER LINEAR PROORAMMING: Given a linear program, is there
a solution in integers?

MULTIPROCESSOR SCHEDULING: Given a deadline and a set of
tasks of varying length to be performed on two identical processors can
the tasks be arranged so that the deadline is met?
VERTEX COVER: Given a graph and an integer N, is there a set of
less than N vertices which touches all the edges?

These and many related problems have important natural practical applica
tions, and there has been strong motivation for some time to find good algo
rithms to solve them. The fact that no good algorithm has been found for any
of these problems is surely strong evidence that P f:- NP, and most research
ers certainly believe this to be the case. (On the other hand, the fact that
no one has been able to prove that any of these problem do not belong to P
could be construed to comprise a similar body of circumstantial evidence on
the other side.) Whether or not P =NP, the practical fact is that we have at
present no algorithms that are guaranteed to solve any of the NP-complete
problems efficiently.

As indicated in the previous chapter, several techniques have been devel
oped to cope with this situation, since some sort of solution to these various
problems must be found in practice. One approach is to change the problem
and find an "approximation" algorithm that finds not the best solution but
a solution that is guaranteed to be close to the best. (Unfortunately, this is
sometimes not sufficient to fend off NP-completeness.) Another approach is
to rely on "average-time" performance and develop an algorithm that finds
the solution in some cases, but doesn't necessarily work in all cases. That is,
while it may not be possible to find an algorithm that is guaranteed to work
well on all instances of a problem, it may well be possible to solve efficiently
virtually all of the instances that arise in practice. A third approach is to work

534 CHAPTER 40

with "efficient" exponential algorithms, using the backtracking techniques
described in the previous chapter. Finally, there is quite a large gap between
polynomial and exponential time which is not addressed by the theory. What
about an algorithm that runs in time proportional to N 10gN or 2v'N7

All of the application areas that we've studied in this book are touched
by NP-completeness: there are NP-complete problems in numerical applica
tions, in sorting and searching, in string processing, in geometry, and in graph
processing. The most important practical contribution of the theory of NP
completeness is that it provides a mechanism to discover whether a new prob
lem from any of these diverse areas is "easy" or "hard." If one can find an
efficient algorithm to solve a new problem, then there is no difficulty. If not,
a proof that the problem is NP-complete at least gives the information that
the development of an efficient algorithm would be a stunning achievement
(and suggests that a different approach should perhaps be tried). The scores
of efficient algorithms that we've examined in this book are testimony that we
have learned a great deal about efficient computational methods since Euclid,
but the theory of NP-completeness shows that, indeed, we still have a great
deal to learn. n

535

Exercises

1. Write a program to find the longest simple path from x to y in a given
weighted graph.

2. Could there be an algorithm which solves an NP-complete problem in
an average time of N log N, if P -:F NP? Explain your answer.

3. Give a nondeterministic polynomial-time algorithm for solving the PARTI
TION problem.

4. Is there an immediate polynomial-time reduction from the traveling sales
man problem on graphs to the Euclidean traveling salesman problem, or
vice versa?

5. What would be the significance of a program that could solve the traveling
salesman problem in time proportional to 1.lN?

6. Is the logical formula given in the text satisfiable?

7. Could one of the "algorithm machines" with full parallelism be used to
solve an NP-complete problem in polynomial time, if P # NP? Explain
your answer.

8. How does the problem "compute the exact value of 2N" fit into the P
NP classification scheme?

9. Prove that the problem of finding a Hamilton cycle in a directed graph is
NP-complete, using the NP-completeness of the Hamilton cycle problem
for undirected graphs.

10. Suppose that two problems are known to be NP-complete. Does this
imply that there is a polynomial-time reduction from one to the other, if
P'i'NP?

536

SOURCES for Advanced Topics

Each of the topics covered in this section is the subject of volumes of
reference material. From our introductory treatment, the reader seeking more
information should anticipate engaging in serious study; we'll only be able to
indicate some basic references here.

The perfect shuffle machine of Chapter 35 is described in the 1968 paper
by Stone, which covers many other applications. One place to look for more
information on systolic arrays is the chapter by Kung and Leiserson in Mead
and Conway's book on VLSI. A good reference for applications and implemen
tation of the FFr is the book by Rabiner and Gold. Further information on
dynamic programming (and topics from other chapters) may be found in the
book by Hu. Our treatment of linear programming in Chapter 38 is based on
the excellent treatment in the book by Papadimitriou and Steiglitz, where all
the intuitive arguments are backed up by full mathematical proofs. Further
information on exhaustive search techniques may be found in the books by
Wells and by Reingold, Nievergelt, and Deo. Finally, the reader interested
in more information on NP-completeness may consult the survey article by
Lewis and Papadimitriou and the book by Garey and Johnson, which has a
full description of various types of NP-completeness and a categorized listing
of hundreds of NP-complete problems.

M. R. Garey and D. S. Johnson, Computers and InErat:tability: a GuUk to the
Theary of NP-Completeness, Freeman, San Francisco, CA, 1979.

T. C. Hu, Combi,natoria/, Algorithms, Addison-Wesley, Reading, MA, 1982.

H. R. Lewis and C. H. Papadimitriou, ''The efficiency of algorithms.," Scientific
American, 238, 1 (1978).

C. A. Mead and L. C. Conway, Imroduction to VliJI. Design, Addison-Wesley,
Reading, MA, 1980.

C. H. Papadimitriou and K. Steiglitz, Combinatorial, Optimization: Algorithms
and Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982.

E. M. Reing old, J. Nievergelt, and N. Deo, Combinatorial, Algorithms: Theory
and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1982.

L. R. Rabiner and B. Gold, D;gi,ta/, Sign.cil Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1974.

H. S. Stone, "Parallel processing with the perfect shuffle," !FEE Transactions
on Computing, C-20, 2 (February, 1971).

M. B. Wells, Hements of Combinatorial, Computing, Pergaman Press, Oxford,

1971.

Abacus, 528.

Abstract data structures, 30, 88,
128, 136.

adapt (integration, adaptive
quadrature), 85.

Additive congruential generator
(randomint), 38-40.

add (polynomials represented
with linked lists), 27.

add (sparse polynomials), 28.

Adjacency lists, 3788381, 3822
383, 391-392, 410-411, 435.

Adjacency matrix, 3777378, 384,
410-411, 425, 435, 493, 515.

Adjacency structure; see ad
jacency lists.

adjlist (graph input, adjacency
lists), 379.

adjmatrix (graph input, ad
jacency matrix), 378.

Adleman, L., 301, 304.

Aho, A. V., 304.

Algorithm machines, 4577469.

All-nearest-neighbors, 366.

All-pairs shortest paths, 4922494.

Analysis of algorithms, 12-16, 19.

Index

Approximation algorithms, 522-
524, 533.

Arbitrary numbers, 33.

Arithmetic, 23-30,
Arrays, 24.

Articulation points, 390-392,
430.

Artificial (slack) variables, 503,
509,

Attributes, 335.

Average case, 12-13.

AVL trees, 198.

B-trees, 228-231, 237.

Backtraclring, 517-522,
Backward substitution, 60, 62

(substitute), 64.

Balanced multiway merging,
1566161.

Balanced trees, 187-199. 237,
355.

Basis variables, 504.

Batcher, K E., 4633465.

Bayer, R., 228.

Bentley, J. L., 370.

Biconnectivity, 390-392, 429.

537

538

Binary search, 175-177, 176
(hinBI'ysearch), 336.

Binary search trees, 169, 178--
185, 204, 210, 336, 343-346.,
353, 356-359.

array representation, 1844185.

indirect representation, 184-
185, 353.

optimal, 489492,
standard representation, 178--

179.
weighted internal path length,

490,
Binary trees, 179, 237.

Binomial queues, 167.
Bipartite graphs, 444-447.
Bitonic merge, 463-465.
bits, 116., 118, 122, 214, 215, 221,

222,

Bland, R. G., 507.
Eland's method (for cycle

avoidance in simplex), 509.

Borodin, A,, 88.
Bottom-up parsing, 275-276.
Boyer, R. S., 242, 304.
Boyer-Moore string searching,

250-251.
Branch-and-bound, 519-520.

Breadth-first search, 395, 397-
398, 439,

Brown, M. R., 167.

brutesearch (brute-force string
searching), 243.

bstdelete (binary search tree dele
tion), 185, 355.

bstinsert (binary search tree in
sertion), 184, 353, 355.

bstrange (one-dimensional range
search), 337, 355.

bubblesort, 99.

Caesar cipher, 297.
Catalan numbers, 487.

Chi-square (x2) test (chisquare),
41-42.

Ciphers, 297-300.
Caesar, 297.
Vernam, 29<J.
Vigenere, 298.

product, 300.
Ciphertext, 297.

Clancy, M., 19.

Closest-pair problem, 362-366,
368,

Closest-point problems, 361-368,
370.

Closure, 258, 261.

Clustering, 207.
Comer, D., 237.

Compare-exchange, 93, 460-465.

Compilers, 247, 269, 276-279,
304,

Complete binary tree, 130.

Complete graphs, 376.
Complex numbers, 473-478.

Complex roots of unity, 473-477.
Computational accuracy, 61, 63,

86, 504.
Concatenation, 258, 261.

Connected components, 375.

Connected graph, 375.

Connectivity, 389-405, 454.
Conquer-and-divide, 152.

Constant running time, 14.
Constraints, 498.
Context-free grammars, 270-272.
Contextrsensitive grammars., 272.

Convex hull, 321.
Convex hull algorithms, 321-333,

368, 370.

INDEX

divide-and-conquer, 368.
Floyd-Eddy method, 331-332.
Graham scan, 326-330, 329

(grahamscan), 332.

hull selection, 331-332.
package wrapping, 323-326,

325 (wrap), 332,

Convex polygons, 321.

Convexity, 321.
Conway, L. C., 536.
Cook, S. A, 242, 532.
Cook's theorem (satisfiability is

NP-complete), 532-533.

Cooper, D., 19.
Counting, 455.

Cross edges, 423, 430.

Cryptanalysis, 295-296.
Cryptography, 295-296.

Cryptology, 295-302, 304.
Cryptosystem, 296.
Cryptovariables, 299.

Cubic running time, 15.
Curve fitting, 67-76.
Cycle, 375, 384.

Cycling in the simplex method,
506-507, 509.

Dags (directed acyclic graphs),
426-428,

Data fitting, 67-76.

Data structures.
abstract, 30, 128, 136.

adjacency lists, 378-381.
adjacency matrix, 377-378.
adjacency structure, 378-381
array, 24.
B-tree, 228-231, 237.

binary search tree, 178-185.

deque, 263-267.

heap, 129-140.

indirect binary search tree,
184-185.

indirect heap, 138-139.
linked list, 27-28, 202-203,

379.
priority queue, 127-140.

queue, 264, 395.
red-black tree, 192-199.

sorted list, 129.

539

stack, 109-110, 264, 394, 428,
429.

string, 241.

top-down 2-3-4 tree, 187-199.
unordered list, 129.

Database, 226, 237, 335.

Decryption, 297, 301.

Deletion in binary search trees,
183-184.

Deletion in hash tables, 208.

Dense graphs, 376, 378, 397-398,
411, 413, 415-417.

densepfs (priority graph traver
sal), 416, 439-440.

Deo, N,, 536,

Depth-first search, 371, 381-387,
391-395, 397-399, 422-423,
428-430, 454, 515.

Depth-first search forest, 382,
384, 394, 422-423.

Derivation, 270.
Deterministic algorithm, 528.
dfs (recursive depth-first search),

382-385,
Dictionaries, 171.

Diffie, W., 301.
Digital search trees, 213-216.

digitalinsert, 215.

digitalsearch, 214.

540

Dijkstra's algorithm (for finding
the shortest path), 415.

Dijkstra, E. W., 410, 415, 454.
Directed acyclic graphs (<lags),

426-428.
Directed cycle, 428.

Directed graphs, 376, 380, 421-
430.

Directed path, 423.
Directory, 233.
Discrete mathematics, 19.

Disk searching, 225-235.
Distribution counting, 99-101,

116., 122-123.

Divide-and-conquer, 48, 51, 104,
152, 175, 362, 474, 477-480,
483.

Divide-and-conquer recurrence,
51, 108, 149, 475, 363.

Dot product, 74.
Double buffering, 161.

Double hashing, 207-210.
Double rotation, 198.

Down edges, 423.
downheap (top-down heap

repair), 134.
Drawing lines, 310 (draw), 311.
Dual of Voronoi diagram, 367-

368.
Dummy node; see z.

Duplicate keys; see equal keys.
Dynamic programming, 483-494,

536.

Eddy, w. F., 331, 370.

Edges, 374.
baokwanl, 437.
capacities, 435.
cross, 423, 430.

down, 423.

forward, 437.
negative weight, 494.

up, 423, 430.

Edmonds, J ., 439-440.
eliminate (forward elimination),

62.
Encryption, 297, 301.

eof, 9.
Equal keys, 172, 177, 193, 204,

214, 227-228, 234.

Escape sequence, 286.
Euclid's algorithm (for finding

the gcd), 10-11, 19, 302.

Euclidean minimum spanning
tree, 417.

Euclidean shortest path problem,
418.

Euclidean traveling salesman
problem, 522-524.

eval (fast Fourier transform), 479.

eval (spline evaluation), 72.

Even, S., 454.

Exception dictionary, 210.

Exhaustive graph traversal
(visit), 515.

Exhaustive search, 513--524, 536.

Exponential running time, 15,
513, 520, 528, 534.

Exponentiation, 46-47, 301.

expression (top-down compiler),
277.

expression (top-down parser),
273.

Extendible hashing, 231-235,
237.

External nodes, 180, 230, 289,
490.

External searching, 225-235.

External sorting, 155-165.

INDEX

factor (top-down compiler), 278.
factor (top-down parser), 274.
Fagin, R., 231, 237.
fast/ind (union-find with com

pression and balancing), 403,
411.

Fast Fourier transform, 465, 471-
480, 479 (eval), 536,

Feasible basis, 509-510.
File compression, 283-293.

Huffman encoding, 286-293.
run-length encoding, 284--286.
variable-length encoding, 28&--

293,
Find, 399.
find (union-find, quick union),

40L
fin<linit (fast/ind initialization),

403, 411.
Finite-state machine.

deterministic, 248, 259.
nondeterministic, 259--267.

Flow, 435.
Floyd, R. W., 331.
Fonl, L. R., 435.
Forecasting, 161.

Forest, 375.
Forsythe, G. E., 88.
Forward elimination, 59, 60-62,

62 (eliminate), 64,
4-node, 188.
Fourier transform, 471-480.
Fredkin, R, 216.
Friedman, J. H., 370.
Fringe vertices, 393, 410.
Fulkerson, D. R., 435.

Garey, M. R, 536.
Gauss-Jordan method, 63, 65,

508,

541

Gaussian elimination, 57-65, 60
(gauss), 71, 76, 504, 508.

gcd (greatest common divisor,
Euclid's algorithm), 11, 12.

General regular-expression pat
tern matching, 265 (match),
279.

Geometric algorithms, 307-370.
closest pair, 362-366.
convex hull, 321-333, 368.
elementary, 307-319.
grid method, 339-342.
inside polygon test, 316-318.
intersection, 349-359.
line drawing, 310-311.
range searching, 336-347.
simple closed path, 313-315.
2D-trees, 343-346.

Gerrymandering, 307.
Gold, B,, 536,
Gosper, R W., 242.
Gralmm, R L, 326, 370,
Graham scan, 326-330, 329

(grahamscan).
Grammars, 270-272.
Graph algorithms, 373-454.

all-pairs shortest paths, 492-
494,

biconnectivity, 390-392.
bipartite matching, 444-447.

breadth-first search, 395.
connected components, 384.
cycle testing, 384.
depth-first search, 381-387.
elementary, 373-387.
exhaustive search for cycles,

515-520.
maximum flow in a network.,

439-440.

542

minimum spanning tree, 408-
413.

priority traversal. 395-397.
shortcsL path, 413-415.
stable marriage, 447-452.
strongly connected com-

ponents, 428-430.
topological sorting, 426-428.
transitive closure, 423-426.

union-find, 398 405.

Graph isomorphism, 387.
Graph traversal, 393-398.
Graphs, 492-494.

adjacency list, 416.

adjacency matrix, 416.

bipartite, 444--447.
complete, 376.
connccLCd, 375.

389-405.
dense,

directed, 376, 421-430, 421-
430.

directed acyclic, 426-428.
376-381, 416,

sparse, 376.

traversal, 393-398.
undirected, 376.
weighted, 376.

Greatest common divisor (gcd),
9-12.

Greatest increment method, 507.
341

Gui has, L 237.

Hamilton cycle problem, 514-
520, 531-532.

Hash fonctions, 202.
Hashing, 201-210, 234.

douhlc hashing, 207 210.

open addressing, 205-210.
202-204.
180, 18L

89, 129-140, 289-290,

Heap algorithms, 129-140.
change, 135.

construct, 136-137.
downheap, 134, 136.
insert, 132, 135.
join, 139-140.
pqconstruct, 138.
pqdownhcap, 139, 289-290.
pqinsert, 139, 158, 160.
pqrcmove, 139, 290.

159, 160.
135.

replace, 135.

130.
135-137, 136

Hellman, E., 301.
Hoare, C. A. R., I 03, 16 7
Hoey, D., 349, 370.
Holl, R., 19.
Homer's rule, 45-46.
Hu, T. C., 536.
Huffman, D. A., 304.

INDEX

Huffman's algorithm (for file
compression), 239, 286-293,
490.

Hlune, J. P., 19.
Hybrid searching, 219.

Increment sequence, 98.
Indexed sequential access, 226-

228.
index (convert from name to in

teger), 227, 230, 231, 376.
Indirect binary search trees, 184-

185.
Indirect heaps, 138-139, 159-160,

289-290.
Infeasible linear program, 501.
Inner loop, 13-14, 106, 124.

Insertion sort, 95-96, 96
(insertion), 112, 123-124.

inside (point inside test), 318.
insiderect (point inside rectangle

test), 338.
Integer linear programming, 533.
Integration, 79--86.

adaptive quadrature, 85-86, 85
(adapt).

rectangle method, 80-82, 81
(intrect), 85.

Romberg, 84.
Simpson's method, 83-84, 84

(intsimp), 85-86.
spline quadrature, 85.
symbolic, 79-80.

trapezoid method, 82-83, 83
(inttrap), 85.

Internal nodes, 180, 230, 289,
490.

Interpolation search, 177-178.

Interpolation.
polynomial, 68.

543

spline, 68-72.
Intersection, 349-359, 370.

Manhattan geometry, 350-356.
circles, 359.
horizontal and vertical lines,

305, 350-356.
lines, 356-359.
rectangles, 359.
two lines, 312-313, 313

(intersect).

interval, 337.
Inverse, 138, 385, 450-451.

Jarvis, R. A., 370.
Jensen, K., 19.

Johnson, D. S., 536.

Kahn, D., 304.

Krup, R M., 243, 439-440.
Key generation, 299.
Keys.

binary representation, 119.
cryptology, 297.
searching, 171.

strings, 254.
Knapsack problem, 483-486, 519.
Knuth, D. E., 19, 36, 88, 167, 200,

'131, 242, 304, 454.
Knuth-Morris-Pratt string search

ing, 244-249.

Kruskal, J. B. Jr., 412. 454.
Kruskal's algorithm (minimum

spanning tree), 411-413, 412
(kmlral), 417.

Kung, H. T., 466.

Lagrange's interpolation formula,
47, 472.

Leading term, 14, 15.

544

Leaf pages, 233.
Least-squares data fitting, 73-76.
Lewis, H. R., 536.
lgN, 16.
Lin, s., 524.
Line, 308.
Line drawing, 310-311.
Line intersection, 312-313, 349%

359.
one pair, 312-313.
initialization (buildytree), 353.
Manhattan (scan), 355.

Linear congruential generator,
35-38, 37 (random).

Linear feedback shift registers,
38.

Linear probing, 205-207, 209.
Linear programming, 497-510,

536.
Linear running time, 14.
Linked lists, 25-28.

create and add node, 27
(listadd).

input and construction, 26
(read.list).

merging, 148 Qistmerge).
output, 26 (writelist).

sequential search, 174 (Jistin-
sert, listsearch), 203, 341,
343.

sorting, 149-152, 149 (sort),
151 (mergesort).

lnN, 16.
Logarithm, 16.
Logarithmic running time, 14.
Longest path, 527.
Lookahead, 273.

MACSYMA, 88.
Malcomb, M. A., 88.

Master index, 227.
Matching, 443-452, 454.
match (general regular-expres

sion pattern matching), 265.

Mathematical algorithms, 23-88.
Mathematical programming, 497.

Matrices.
addition, 28-29 (matradd).
band, 64.
chain product, 486-489.
inverse, 65.
multiplication, 29, 53-54, 487.
multiplication by vector, 466--

469.
representation, 2S-30.
sparse, 30, 63.
Strassen's multiplication me

thod, 53-54, 65, 487.
transposition, 465.
tridiagonal, 64, 71.

Maxflow-rnincut theorem, 438.

Maximum flow, 435-438.
Maximum matching, 443.
Mazes, 385-386, 398, 418.
McCreight, E., 228.
Mead, c. A., 536.

Mecging, 146-152, 156-164. 363-
366.

mergesort (non-recursive),
150-152, 151 (mergesort),
366.

mergesort (recursive), 148-149,
148 (sort), 363.

multiway, 156-162.
polyphase, 163.

Microprocessors, 458, 469.
Minimum cut, 438.
Minimum spanning trees, 408-

413, 417, 454, 518, 522-524.

INDEX

string
mod, 10 12, 34-40,
Moler, C. B., 88.
Moore, J. S., 242, 304.
Morris, J. H., 242, 304.
Morrison, D. R., 219.
Multidimensional range search-

ing, 340-34 7.

polynomials
quer), 48

polynomials
lransfonn),

Moltip,cocc"m scheduling, 533.
merging, 156-162.
radix searching, 218-

Munro, I., 88.

N

name),
Nearest-neighbor problem, 366.
NeLwork How, 433-441, 445-447,

454, 497-499.
Networks, 376, 435.
Nievergelt, J., 231, 237, 536.
Node transformations, 189-191.
Non-basis variables, 504.
Nondeterminism, 259-267, 529.
Nonterminal symbol, 270.
NP, 529.

problems, 527-534,

Numerical analysis, 88.

Objective function, 498.

Odd-even merge, 459-463.
One-dimensional range search

(bsirange), 337.
One-way branching, 218.

545

Open addressing, 205-210.
Operations research, 433, 441
Optimal binary search trees, 489

492.
Or, 258, 261.
Ordered hashing, 210.

P, 528.
Package wrapping, 323-326.

Pages, 226 239.
Papadimitriou, C. H., 45-l-, 536.
Parallel computation, 457--469.
Parse tree, 271.
Parser generator, 280.
Parsing, 269-280, 304.

bottom-up, 275-276.
recursive descenl, 272-275.
shin-reduce, 276.
top-down, 272 275.

Partition, 533.
Partitioning, 104-105 (partition),

112, 145.
Pch~cal, 9, 19, 271-272.
PaLh compression, 403.
Palhs in graphs, 374-423.
Patricia, 219-223, 254.

patriciainsert, 222.
palriciasearch, 221.

Pallcm matching, 241. 257-267,
279.

Petfect shuffle, 459 465, 468-
469, 478 480, 536,

Permutation generation, 520-
522.

Pippenger, N., 231, N., 237.

546

Pivoting, 5044510, 508 (pivot).

PlfilnLCxL. 296.

PlanariLy, 387.

PoinL, 308.

Polygon, 308.

COilVCA. 321.

simple closed, 313-313.

sLandard representation, 318.
test if point inside, 316-318.

Voronoi, 367.

Polynomials, 45-54.

addition, 24-28.

evaluation, 45-46, 465, 471
472, 474-475.

47-48, 471-472,

multiplication, 24-25, 48-50,
471-472, 477-480.

rcprcscnt.ation, 23-28.
Polyphase merging, 163.

Pop, 109, 439.

pqchangc (change priority in
priority queue), 396.

pqconsLrucL (heap construction,

indirect), 138, 396, 411.

290.
pqinsert., 139.

pqremove (remove largest item
from queue), 396,
139,

Pratt. v. R., 242, 304.

Preprocessing, 335.

Prim, R. C., 410, 454.

Prim hinary search tree
(treep1int), 336.

graph traversal (priorit.y
scarch).

hrcadth-fi.rsL search, 397, 416.

denscpfs, 416.
depth-fast search, 397, 416.

Euclidean shortest path, 418.
minimum spanning l.rcc, 409-

41 L 416.
network How, 439-440.

shortesL palh, 413-416.
sparsepfs, 395- 397.

Probe, 205.

127 140, 144,
395-397.

Projection, 339.

Pruning, 517-522.

Pseudo-angle calculation (theta),
316.

Puhlic-kcy crypLOsystcms, 300-
302, 304.

Push, 109.

Pushdown stack, 109-110, 394.

Quadrature; see integration.

Queue, 109, 395.
Quicksort, 103-113, 118, 124,

135, 144, 152, 165, 167, 183,
218.

Rahin, M. 0., 243.

digit.al search trees, 213-216.

rnultiway, 218-219.

Patricia, 219-223.

INDEX

tries, 216-218, 291-293,
Radix sorting, 115-124, 165, 218.

radix exchange, 117-121.

straight radix, 121-124.

Random integer in a fixed range
(randornint), 38, 40.

Random number generation, 88,
202, 29<J.

Random numbers, 33-42, 112.
additive congruential generator,

38-40, 42.

linear congruential generator,
35-38, 42.

pseudo-, 33.
quasi-, 34.
uniform, 34.

Range searching.
grid method, 339-342, 346.
kD trees, 346-347.
multidimensional, 346--347.
one-dimensional, 336-337.
projection, 339.
sequential search, 338.
2D trees, 343-346.

rbtreeinsert (red-black tree inser
tion), 194.

rea.dlist (linked list input and
construction), 26, 148.

readln, 9.
Records.

database 335.
searching, 171-172.
sorting, 93-94.

Records/database, 335.
Records/searching, 171.
Recursion, 11-12, 176, 363-366,

381-382, 398, 465, 479, 489,
491, 515, 517-522.

removal, 110-111, 145-146,
152, 176, 179-180, 275, 366,
12.

two-dimensional, 356, 361,
363-367.

Red-black trees, 192-199.
Reduction, 445, 530-532.
Regular expression, 258.
Regular-expression pattern

matching, 258, 279, 304.
Reingold, E. M., 536.

547

rerrwve (delete largest element in
heap), 134.

Replacement selection, 158-161.
replace (replace largest element

in heap), 135.
Representation.

binary search trees, 178-179,
184-185.

finite state machines., 247, 262-
263.

functions, 65.
graphs, 376-381.
lines, 308.
matrices, 28-30.
points, 308.
polygons, 306, 318.
polynomials, 23, 28.
trees (father link), 290-202,

395-3%, 400-404, 411, 415.
Rivest, R L., 167, 301. 304.
rksearch (Rabin-Karp string

searching), 253.
Root node, 230, 233.
Roots of unity, 473-477.
Rotation, 1%-197.
Run-length encoding, 284-286.
RSA public-key cryptosystem,

301-302.

same (test if two points are on the
same side of a line), 313.

Satisfiability, 529, 531-532.

548

Scan conversion, 310-311.
scan (line intersection, Manhat

tan), 355.

Scheduling, 373.

Searching, 171-237.
binary search, 175-177.
binary tree search, 178-185.
digital search trees, 213-216.

disk searching, 225-235.
elementary methods, 171-185.
extendible hashing, 231-235.

external searching, 225-235.
hashing, 201-210.

indexed dequential access,
226-228.

Patricia, 221-222.
radix search tries, 216-218.

radix searching, 213-223.

sequential, 172.

sequential list, 174.
varying length keys, 223.

Sedgewick, R, 167, 237.
Selection, 144-146.
select (selection, nonrecursive),

146.
select (selection, recursive), 145.
Selection sort, 95 (selection), 144,

326.
Self-organizing search, 175.

Sentinumerical algorithms, 88.
Sentinel, 106, 173, 273, 309, 329,

96, 247, 254, 493.
Separate chaining, 202-204, 209.
Sequential searching, 172-174,

339.
Sets, 398-405.

Shanrir, A., 301, 304.
Shamos, M. I., 349, 370.

Shellsort (shellsort), 97-99, 329.

Shortest path, 413-415, 418, 454,
492-494.

Simple closed path, 313-315.

Simplex method, 497-510.
Simultaneous equations, 58, 75,

503-504.
Single rotation, 196-197.
Sink, 435.

Slack (artificial) variables, 503.
Sort-merge, 156.

sort3 (sorting three elements), 93,
459-460.

Sorting, 91-167.

bubble, 99.
disk, 162, 165, 155-165.
distribution counting, 99-101.

elementary methods, 91-101.

external, 92.
Heapsort, 135-137.

insertion, 95-96.
internal, 92.

linear, 123-124.
mergesort (non-recursive),

150-152.
mergesort (recursive), 148-149.

Quicksort, 103-114.
radix exchange, 117-121.

relationship to convex hull,
323.

selection, 94-95.

shellsort, 97-99.
stability, 92-93, 121, 152.
straight radix, 121-124.

tape, 155-165.
three elements (sort3), 93.

Source, 435.
Spanning trees, 375, 408-413.
Sparse graphs, 376, 378, 3%,

397-398, 411, 413.

INDEX

sparsepfs (priority graph traver
sal), 396, 410, 415-417, 439-
440.

Spline interpolation, 68872, 71
(makesplme). 72 (eval).

Spline quadrature, 85.
Splitting, 189-191, 1944199, 228-

229.

Stable marriage problem, 447-
452, 454.

Stack, 394, 428, 429.
Standard form of linear pro-

grams, 503.
Standish, T. A., 304.
Steepest descent method, 507.
Steiglitz, K, 454, 536.

Stone, H. S., 536.
straightradix (straight radix

sort), 121-124.
Strassen's method, 53-54, 65, 88,

487.

String processing, 241-304.
String searching, 241-254.

Boyer-Moore., 2499252.

brute-force, 243.
Knuth-Monis-Pratt, 244-249.
mismatched character, 250-

251.
multiple searches, 254.
Rabin-Karp, 252-253.

Strings, 241, 283, 284-285.
Strong, H R., 231, 237, 231.
Strongly connected components,

428-430.

substitute (backward substitu-
tion), 62.

Supercomputer, 458, 513, 528.

Symbol tables, 171.
Systolic arrays, 466, 536.

549

Tail node, 25-28, 174-175, 180,
203.

Tarjan, R. E.., 387, 405, 428, 454.
Terminal symbol, 270.
term (top-down compiler), 278.
term (top-down parser), 273.
theta (pseudo-angle calculation),

316, 324, 325.
Thompson, K, 304.
3-node, 188.
Top-down 2-3-4 trees, 187-199.
Top-down compiler (expression,

term, facto<). 277-278.
Top-down parsing, 272-275

(expression, term, factor),
273-274.

Topological sorting, 426-428,
430.

Transitive closure, 423-426, 493.
Traveling salesman problem, 387,

513--524, 531-532.
Tree vertices, 393.
treeinitialize (binary search tree

initialization), 181.
treeinsert (binary search tree in

sertion), 181.
treeprint (binary search tree

sorted output), 182, 346, 354.
Trees.

AVL, 198.
balanced, 187-199.
binary, 179, 237.
binary search, 1788185.
breadth-first search, 395.
depth-first search, 382, 384,

394, 422423.
exhaustive search, 516-519.
father link representation,

290-292, 395-396, 400--404,
411, 415.

550

parse, 271.
red-hlack, 192 199.
spanning, 375, 408-413.
top-down 2-3-4, 187-199.
2-3, 198.
2-3-4, 188.
union-find, 399-404.

treesearch (hinary tree search),
180, 193.

Tries, 216-218, 291-293.

2D (two-dimensional) trees, 343%
346.

twoDinsert (insertion into 20
trees), 345.

twoDrange searching with
2D trees),

2-node, 188.
2-3 trees, 198.
2-3-4 tree, 188.

Ullman, J. D., 237, 304.
Undirected graphs, 376.
Union, 399.
Union-find, 454.
Union-find algoriLhms, 398-405.

405.
403.

401.
halving, 404.
heighL balancing, 404.
palh compression, 403.

Up edges, 423, 430.

402.
410.

insert (heap insertion al
132.

van Leeuwan, J., 454.

Variable-length encoding, 286-
293.

Vernam cipher, 299.
VertcA cover, 533.
Vertex visit, adjacency lists

(visil), 382.
Vertex visit, adjacency matrix

(visit), 384.
Vertices, 374.

fringe, 393.
tree, 393.

unseen, 393.
Very large scale integrated cir-

cuits, 458.
Vigenerc cipher, 298.
Virtual memory, 165, 234.
Visited vertices, 410.
visit.

verteA visil for graph search
ing, adjacency lists, 382.

vertex visit for graph search
ing, adjacency matrix, 384.

search Lo Lest biconnec-
392.

graph traversal to find strong
components, 429.

exhaustive graph traversal,
515.

permutation generation, 521.
Von Neumann, L 457.
Von Neumann model of compula

tion, 457.
Voronoi diagram, 366-368.
Voronoi dual, 417.

Warsha!L S., 425.
Warshall's

trans1t1ve
493.

Wegner, P., 88.

(computing
425, 492-

INDEX

Weight balancing, 402.
Weighted graphs, 376, 380, 407-

418.

Weighted internal path length,
490.

Weighted matching, 444.
Wells, M. B., 536.
Wmh, N., 19.
Worst case, 13.
wrap (convex hull by package

wrapping), 325.
wrjtelist (linked list output), 26,

148.
writeln, 9.

z, 25-28, 174-175, 180-181, 194,
203, 214-215, 221-222, 341,
345, 352-353, 364-365.

551

DESIGNS

Cover Insertion sort: Color represents the key value; the ith column (from
right to left) shows result of ith insertion.

Page 1 Relatively prime numbers: A mark is in positions i,j for which the
greatest common divisor of i and j is not 1.

21 R.andnm points: A mark is in position i, j with i and j generated by
a linear congruential random number generator.

89 A heap: Horizontal coordinate is position in heap, vertical coordinate
is value.

169 A binary search tree laid out in the manner of an H-tree.

239 Huffman's d,gorithm before and after: run on the initial part of the
text file for Chapter 22.

305 One intersecting pair among a set of random horizontal and vertical
lines.

371 Depth first secuch on a grid graph: each node is adjacent to its
immediate neighbors; adjacency lists are in random order.

455 Counting to 28: eight cyclic rotations.

Back R.andnm permutatWn: Color represents the key value; the ith column
(from right to left) shows result of exchanging ith item with one
having a random index greater than i.

Heap design inspired by the movie "Sorting out Sorting," R. Haecker, Uni
versity of Toronto.

Pictures printed by Tom Freeman, using programs from the text.

	Algorithms (Cover)
	Copyright 1983 Addison-Wesley
	Preface
	Contents
	Introduction
	1. Preview
	MATHEMATICAL ALGORITHMS
	2. Arithmetic
	3. Random Numbers
	4. Polynomials
	5. Gausian Elimination
	6. Curve Fitting
	7. Integration

	SORTING
	8. Elementary Sorting Methods
	9. Quicksort
	10. Radix Sorting
	11. Priority Queues
	12. Selection & Merging
	13. External Sorting

	SEARCHING
	14. Elementary Searching Methods
	15. Balanced Trees
	16. Hashing
	17. Radix Searching
	18. External Searching

	STRING PROCESSING
	19. String Searching
	20. Pattern Matching
	21. Parsing
	22. File Compression
	23. Cryptology

	GEOMETRIC ALGORITHMS
	24. Elementary Geometric Methods
	25. Finding the Convex Hull
	26. Range Searching
	27. Geometric Intersection
	28. Closest Point Problems

	GRAPH ALGORITHMS
	29. Elementary Graph Algorithms
	30. Connectivity
	31. Weighted Graphs
	32. Directed Graphs
	33. Network Flow
	34. Matching

	ADVANCED TOPICS
	35. Algorithm Machines
	36. Fast Fourier Transform
	37. Dynamic Programming
	38. Linear Programming
	39. Exhaustive Search
	40. NP-complete Problems

	Index
	Designs

