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example) insertion sort runs in time proportional to N 2: the existence of 
N log N sorting algorithms is not relevant to the present discussion. Also, the 
time taken by an algorithm obviously depends on the computer used, but it 
turns out that using a different computer will affect the running time by only 
a polynomial factor (again, assuming reasonable limits), so that also is not 
particularly relevant to the present discussion. 

Of course, the theoretical results that we're discussing are based on a 
completely specified model of computation within which the general state
ments that we're making here can be proved. Our intent is to examine some of 
the central ideas, not to develop rigorous definitions and theorem statements. 
The reader may rest assured that any apparent logical flaws are due to the 
informal nature of the description, not the theory itself. 

One ''unreasonable" way to extend the power of a computer is to endow it 
with the power of nondeterminism: when an algorithm is faced with a choice 
of several options, it has the power to "guess" the right one. For the purposes 
of the discussion below, we can think of an algorithm for a nondeterministic 
machine as "guessing" the solution to a problem, then verifying that the 
solution is correct. In Chapter 20, we saw how nondeterminism can be useful 
as a tool for algorithm design; here we use it as a theoretical device to help 
classify problems. We have 

NP: the set of all problems which can be solved by nondeterministic 
algorithms in polynomial time. 

Obviously, any problem in P is also in NP. But it seems that there should be 
many other problems in NP: to show that a problem is in NP, we need only 
find a polynomial-time algorithm to check that a given solution (the guessed 
solution) is valid. For example, the "yes-no" version of the longest-path 
problem is in NP. Another example of a problem in NP is the satisfiability 
problem. Given a logical formula of the form 

(x1 + x3 + xs)*(x1 + X2 + x4)*(X3 + X4 + + X3 + xs) 

where the xi's represent variables which take on truth values (true or false), 
"+" represents or, "*"represents and, and X represents not, the satisfiability 
problem is to determine whether or not there exists an assignment of truth 
values to the variables that makes the formula true ("satisfies" it). We'll see 
below that this particular problem plays a special role in the theory. 

Nondeterminism is such a powerful operation that it seems almost ab
surd to consider it seriously. Why bother considering an imaginary tool that 
makes difficult problems seem trivial? The answer is that, powerful as non
determinism may seem, no one has been able to prove that it helps for any 
particular problem! Put another way, no one has been able to find a single 
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example of a problem which can be proven to be in NP but not in P (or even 
prove that one exists): we do not know whether or not P = NP. This is a 
quite frustrating situation because many important practical problems belong 
to NP (they could be solved efficiently on a non-deterministic machine) but 
may or may not belong to P (we don't know any efficient algorithms for 
them on a deterministic machine). H we could prove that a problem doesn't 
belong to P, then we could abandon the search for an efficient solution to 
it. In the absence of such a proof, there is the lingering possibility that some 
efficient algorithm has gone undiscovered. In fact, given the current state 
of our knowledge, it could be the case that there is some efficient algorithm 
for every problem in NP, which would imply that many efficient algorithms 
have gone undiscovered. Virtually no one believes that P =NP, and a con
siderable amount of effort has gone into proving the contrary, but this remains 
the outstanding open research problem in computer science. 

NP-Completeness 

Below we'll look at a list of problems that are known to belong to NP but 
which might or might not belong to P. That is, they are easy to solve on a 
non-deterministic machine, but, despite considerable effort, no one has been 
able to find an efficient algorithm on a conventional machine (or prove that 
none exists) for any of them. These problems have an additional property 
that provides convincing evidence that P #=NP: if any of the problems can be 
solved in polynomial time on a deterministic machine, then so can all problems 
in NP (i.e., P = NP). That is, the collective failure of all the researchers 
to find efficient algorithms for all of these problems might be viewed as a 
collective failure to prove that P =NP. Such problems are said to be NP
complete. It turns out that a large number of interesting practical problems 
have this characteristic. 

The primary tool used to prove that problems are NP-complete uses 
the idea of polynomial reducibility. We show that any algorithm to solve a 
new problem in NP can be used to solve some known NP-complete problem 
by the following process: transform any instance of the known NP-complete 
problem to an instance of the new problem, solve the problem using the given 
algorithm, then transform the solution back to a solution of the NP-complete 
problem. We saw an example of a similar process in Chapter 34, where we 
reduced bipartite matching to network flow. By "polynomially" reducible, 
we mean that the transformations can be done in polynomial time: thus the 
existence of a polynomial-time algorithm for the new problem would imply the 
existence of a polynomial-time algorithm for the NP-complete problem, and 
this would (by definition) imply the existence of polynomial-time algorithms 
for all problems in NP. 



NP-COMPLETE PROBLEMS 531 

The concept of reduction provides a useful mechanism for classifying 
algorithms. For example, to prove that a problem in NP is NP-complete, 
we need only show that some known NP-complete problem is polynomially 
reducible to it: that is, that a polynomial-time algorithm for the new problem 
could be used to solve the NP-complete problem, and then could, in turn, be 
used to solve all problems in NP. For an example of reduction, consider the 
following two problems: 

TRAVELING SALESMAN: Given a set of cities, and distances between 
all pairs, find a tour of all the cities of distance less than M 
HAMILTON CYCLE: Given a graph, find a simple cycle that includes 
all the vertices. 

Suppose that we know the Hamilton cycle problem to be NP-complete and 
we wish to determine whether or not the traveling salesman problem is also 
NP-complete. Any algorithm for solving the traveling salesman problem 
can be used to solve the Hamilton cycle problem, through the following 
reduction: given an instance of the Hamilton cycle problem (a graph) construct 
an instance of the traveling salesman problem (a set of cities, with distances 
between all pairs) as follows: for cities for the traveling salesman use the set 
of vertices in the graph; for distances between each pair of cities use 1 if there 
is an edge between the corresponding vertices in the graph, 2 if there is no 
edge. Then have the algorithm for the traveling salesman problem find a tour 
of distance less than or equal to N, the number of vertices in the graph. That 
tour must correspond precisely to a Hamilton cycle. An efficient algorithm for 
the traveling salesman problem would also be an efficient algorithm for the 
Hamilton cycle problem. That is, the Hamilton cycle problem reduces to the 
traveling salesman problem, so the NP-completeness of the Hamilton cycle 
problem implies the NP-completeness of the traveling salesman problem. 

The reduction of the Hamilton cycle problem to the traveling salesman 
problem is relatively simple because the problems are so similar. Actually, 
polynomial-time reductions can be quite complicated indeed and can connect 
problems which seem to be quite dissimilar. For example, it is possible to 
reduce the satisfiability problem to the Hamilton cycle problem. Without 
going into details, we can look at a sketch of the proof. We wish to show 
that if we had a polynomial-time solution to the Hamilton cycle problem, 
then we could get a polynomial-time solution to the satisfiability problem by 
polynomial reduction. The proof consists of a detailed method of construc
tion showing how, given an instance of the satisfiability problem (a Boolean 
formula) to construct (in polynomial time) an instance of the Hamilton cycle 
problem (a graph) with the property that knowing whether the graph has a 
Hamilton cycle tells us whether the formula is satisfiable. The graph is built 
from small components (corresponding to the variables) which can be traversed 
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by a simple path in only one of two ways (corresponding to the truth or falsity 
of the variables). These small components are attached together as specified 
by the clauses, using more complicated subgraphs which can be traversed by 
simple paths corresponding to the truth or falsity of the clauses. It is quite 
a large step from this brief description to the full construction: the point 
is to illustrate that polynomial reduction can be applied to quite dissimilar 
problems. 

Thus, if we were to have a polynomial-time algorithm for the traveling 
salesman problem, then we would have a polynomial-time algorithm for the 
Hamilton cycle problem, which would also give us a polynomial-time algorithm 
for the satisfiability problem. Each problem that is proven NP-complete 
provides another potential basis for proving yet another future problem NP
complete. The proof might be as simple as the reduction given above from the 
Hamilton cycle problem to the traveling salesman problem, or as complicated 
as the transformation sketched above from the satisfiability problem to the 
Hamilton cycle problem, or somewhere in between. Literally thousand~ of 
problems have been proven to be NP-complete over the last ten years by 
transforming one to another in this way. 

Cook's Theorem 

Reduction uses the NP-completeness of one problem to imply the NP-com
pleteness of another. There is one case where it doesn't apply: how was the 
first problem proven to be NP-complete? This was done by S. A. Cook in 
1971. Cook gave a direct proof that satisfiability is NP-complete: that if 
there is a polynomial time algorithm for satisfiability, then all problems in 
NP can be solved in polynomial time. 

The proof is extremely complicated but the general method can be ex
plained. First, a full mathematical definition of a machine capable of solving 
any problem in NP is developed. This is a simple model of a general-purpose 
computer known as a Turing machine which can read inputs, perform certain 
operations, and write outputs. A Turing machine can perform any computa
tion that any other general purpose computer can, using the same amount of 
time (to within a polynomial factor), and it has the additional advantage that 
it can be concisely described mathematically. Endowed with the additional 
power of nondeterminism, a Turing machine can solve any problem in NP. 
The next step in the proof is to describe each feature of the machine. includ
ing the way that instructions are executed, in terms of logical formulas such 
as appear in the satisfiability problem. In this way a correspondence is estab
lished between every problem in NP (which can be expressed as a program on 
the nondeterministic Turing machine) and some instance of satisfiability (the 
translation of that program into a logical formula). Now, the solution to the 
satisfiability problem essentially corresponds t.o a simulation of the machine 
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running the given program on the given input, so it produces a solution to an 
instance of the given problem. Further details of this proof are well beyond 
the scope of this book. Fortunately, only one such proof is really necessary: 
it is much easier to use reduction to prove NP-completeness. 

Some NP- Complete Problems 

As mentioned above, literally thousands of diverse problems are known to be 
NP-complete. In this section, we list a few for purposes of illustrating the 
wide range of problems that have been studied. Of course, the list begins 
with satisfiability and inclades traveling salesman and Hamilton cycle, as well 
as longest path. The following additional problems are representative: 

PARTITION: Given a set of integers, can they be divided into two sets 
whose sum is equal? 

INTEGER LINEAR PROORAMMING: Given a linear program, is there 
a solution in integers? 

MULTIPROCESSOR SCHEDULING: Given a deadline and a set of 
tasks of varying length to be performed on two identical processors can 
the tasks be arranged so that the deadline is met? 
VERTEX COVER: Given a graph and an integer N, is there a set of 
less than N vertices which touches all the edges? 

These and many related problems have important natural practical applica
tions, and there has been strong motivation for some time to find good algo
rithms to solve them. The fact that no good algorithm has been found for any 
of these problems is surely strong evidence that P f:- NP, and most research
ers certainly believe this to be the case. (On the other hand, the fact that 
no one has been able to prove that any of these problem do not belong to P 
could be construed to comprise a similar body of circumstantial evidence on 
the other side.) Whether or not P =NP, the practical fact is that we have at 
present no algorithms that are guaranteed to solve any of the NP-complete 
problems efficiently. 

As indicated in the previous chapter, several techniques have been devel
oped to cope with this situation, since some sort of solution to these various 
problems must be found in practice. One approach is to change the problem 
and find an "approximation" algorithm that finds not the best solution but 
a solution that is guaranteed to be close to the best. (Unfortunately, this is 
sometimes not sufficient to fend off NP-completeness.) Another approach is 
to rely on "average-time" performance and develop an algorithm that finds 
the solution in some cases, but doesn't necessarily work in all cases. That is, 
while it may not be possible to find an algorithm that is guaranteed to work 
well on all instances of a problem, it may well be possible to solve efficiently 
virtually all of the instances that arise in practice. A third approach is to work 
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with "efficient" exponential algorithms, using the backtracking techniques 
described in the previous chapter. Finally, there is quite a large gap between 
polynomial and exponential time which is not addressed by the theory. What 
about an algorithm that runs in time proportional to N 10gN or 2v'N7 

All of the application areas that we've studied in this book are touched 
by NP-completeness: there are NP-complete problems in numerical applica
tions, in sorting and searching, in string processing, in geometry, and in graph 
processing. The most important practical contribution of the theory of NP
completeness is that it provides a mechanism to discover whether a new prob
lem from any of these diverse areas is "easy" or "hard." If one can find an 
efficient algorithm to solve a new problem, then there is no difficulty. If not, 
a proof that the problem is NP-complete at least gives the information that 
the development of an efficient algorithm would be a stunning achievement 
(and suggests that a different approach should perhaps be tried). The scores 
of efficient algorithms that we've examined in this book are testimony that we 
have learned a great deal about efficient computational methods since Euclid, 
but the theory of NP-completeness shows that, indeed, we still have a great 
deal to learn. n 
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Exercises 

1. Write a program to find the longest simple path from x to y in a given 
weighted graph. 

2. Could there be an algorithm which solves an NP-complete problem in 
an average time of N log N, if P -:F NP? Explain your answer. 

3. Give a nondeterministic polynomial-time algorithm for solving the PARTI
TION problem. 

4. Is there an immediate polynomial-time reduction from the traveling sales
man problem on graphs to the Euclidean traveling salesman problem, or 
vice versa? 

5. What would be the significance of a program that could solve the traveling 
salesman problem in time proportional to 1.lN? 

6. Is the logical formula given in the text satisfiable? 

7. Could one of the "algorithm machines" with full parallelism be used to 
solve an NP-complete problem in polynomial time, if P # NP? Explain 
your answer. 

8. How does the problem "compute the exact value of 2N" fit into the P
NP classification scheme? 

9. Prove that the problem of finding a Hamilton cycle in a directed graph is 
NP-complete, using the NP-completeness of the Hamilton cycle problem 
for undirected graphs. 

10. Suppose that two problems are known to be NP-complete. Does this 
imply that there is a polynomial-time reduction from one to the other, if 
P'i'NP? 



536 

SOURCES for Advanced Topics 

Each of the topics covered in this section is the subject of volumes of 
reference material. From our introductory treatment, the reader seeking more 
information should anticipate engaging in serious study; we'll only be able to 
indicate some basic references here. 

The perfect shuffle machine of Chapter 35 is described in the 1968 paper 
by Stone, which covers many other applications. One place to look for more 
information on systolic arrays is the chapter by Kung and Leiserson in Mead 
and Conway's book on VLSI. A good reference for applications and implemen
tation of the FFr is the book by Rabiner and Gold. Further information on 
dynamic programming (and topics from other chapters) may be found in the 
book by Hu. Our treatment of linear programming in Chapter 38 is based on 
the excellent treatment in the book by Papadimitriou and Steiglitz, where all 
the intuitive arguments are backed up by full mathematical proofs. Further 
information on exhaustive search techniques may be found in the books by 
Wells and by Reingold, Nievergelt, and Deo. Finally, the reader interested 
in more information on NP-completeness may consult the survey article by 
Lewis and Papadimitriou and the book by Garey and Johnson, which has a 
full description of various types of NP-completeness and a categorized listing 
of hundreds of NP-complete problems. 

M. R. Garey and D. S. Johnson, Computers and InErat:tability: a GuUk to the 
Theary of NP-Completeness, Freeman, San Francisco, CA, 1979. 

T. C. Hu, Combi,natoria/, Algorithms, Addison-Wesley, Reading, MA, 1982. 

H. R. Lewis and C. H. Papadimitriou, ''The efficiency of algorithms.," Scientific 
American, 238, 1 (1978). 

C. A. Mead and L. C. Conway, Imroduction to VliJI. Design, Addison-Wesley, 
Reading, MA, 1980. 

C. H. Papadimitriou and K. Steiglitz, Combinatorial, Optimization: Algorithms 
and Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982. 

E. M. Reing old, J. Nievergelt, and N. Deo, Combinatorial, Algorithms: Theory 
and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1982. 

L. R. Rabiner and B. Gold, D;gi,ta/, Sign.cil Processing, Prentice-Hall, Englewood 
Cliffs, NJ, 1974. 

H. S. Stone, "Parallel processing with the perfect shuffle," !FEE Transactions 
on Computing, C-20, 2 (February, 1971). 

M. B. Wells, Hements of Combinatorial, Computing, Pergaman Press, Oxford, 

1971. 
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Abstract data structures, 30, 88, 
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Additive congruential generator 
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add (sparse polynomials), 28. 

Adjacency lists, 3788381, 3822 
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Adjacency matrix, 3777378, 384, 
410-411, 425, 435, 493, 515. 

Adjacency structure; see ad
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Artificial (slack) variables, 503, 
509, 

Attributes, 335. 

Average case, 12-13. 

AVL trees, 198. 

B-trees, 228-231, 237. 

Backtraclring, 517-522, 
Backward substitution, 60, 62 

(substitute), 64. 

Balanced multiway merging, 
1566161. 

Balanced trees, 187-199. 237, 
355. 

Basis variables, 504. 
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Binary search, 175-177, 176 
(hinBI'ysearch), 336. 

Binary search trees, 169, 178--
185, 204, 210, 336, 343-346., 
353, 356-359. 

array representation, 1844185. 

indirect representation, 184-
185, 353. 

optimal, 489492, 
standard representation, 178--

179. 
weighted internal path length, 

490, 
Binary trees, 179, 237. 

Binomial queues, 167. 
Bipartite graphs, 444-447. 
Bitonic merge, 463-465. 
bits, 116., 118, 122, 214, 215, 221, 

222, 

Bland, R. G., 507. 
Eland's method (for cycle 

avoidance in simplex), 509. 

Borodin, A,, 88. 
Bottom-up parsing, 275-276. 
Boyer, R. S., 242, 304. 
Boyer-Moore string searching, 

250-251. 
Branch-and-bound, 519-520. 

Breadth-first search, 395, 397-
398, 439, 

Brown, M. R., 167. 

brutesearch (brute-force string 
searching), 243. 

bstdelete (binary search tree dele
tion), 185, 355. 

bstinsert (binary search tree in
sertion), 184, 353, 355. 

bstrange (one-dimensional range 
search), 337, 355. 

bubblesort, 99. 

Caesar cipher, 297. 
Catalan numbers, 487. 

Chi-square (x2) test (chisquare), 
41-42. 

Ciphers, 297-300. 
Caesar, 297. 
Vernam, 29<J. 
Vigenere, 298. 

product, 300. 
Ciphertext, 297. 

Clancy, M., 19. 

Closest-pair problem, 362-366, 
368, 

Closest-point problems, 361-368, 
370. 

Closure, 258, 261. 

Clustering, 207. 
Comer, D., 237. 

Compare-exchange, 93, 460-465. 

Compilers, 247, 269, 276-279, 
304, 

Complete binary tree, 130. 

Complete graphs, 376. 
Complex numbers, 473-478. 

Complex roots of unity, 473-477. 
Computational accuracy, 61, 63, 

86, 504. 
Concatenation, 258, 261. 

Connected components, 375. 

Connected graph, 375. 

Connectivity, 389-405, 454. 
Conquer-and-divide, 152. 

Constant running time, 14. 
Constraints, 498. 
Context-free grammars, 270-272. 
Contextrsensitive grammars., 272. 

Convex hull, 321. 
Convex hull algorithms, 321-333, 

368, 370. 
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divide-and-conquer, 368. 
Floyd-Eddy method, 331-332. 
Graham scan, 326-330, 329 

(grahamscan), 332. 

hull selection, 331-332. 
package wrapping, 323-326, 

325 (wrap), 332, 

Convex polygons, 321. 

Convexity, 321. 
Conway, L. C., 536. 
Cook, S. A, 242, 532. 
Cook's theorem (satisfiability is 

NP-complete), 532-533. 

Cooper, D., 19. 
Counting, 455. 

Cross edges, 423, 430. 

Cryptanalysis, 295-296. 
Cryptography, 295-296. 

Cryptology, 295-302, 304. 
Cryptosystem, 296. 
Cryptovariables, 299. 

Cubic running time, 15. 
Curve fitting, 67-76. 
Cycle, 375, 384. 

Cycling in the simplex method, 
506-507, 509. 

Dags (directed acyclic graphs), 
426-428, 

Data fitting, 67-76. 

Data structures. 
abstract, 30, 128, 136. 

adjacency lists, 378-381. 
adjacency matrix, 377-378. 
adjacency structure, 378-381 
array, 24. 
B-tree, 228-231, 237. 

binary search tree, 178-185. 

deque, 263-267. 

heap, 129-140. 

indirect binary search tree, 
184-185. 

indirect heap, 138-139. 
linked list, 27-28, 202-203, 

379. 
priority queue, 127-140. 

queue, 264, 395. 
red-black tree, 192-199. 

sorted list, 129. 
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stack, 109-110, 264, 394, 428, 
429. 

string, 241. 

top-down 2-3-4 tree, 187-199. 
unordered list, 129. 

Database, 226, 237, 335. 

Decryption, 297, 301. 

Deletion in binary search trees, 
183-184. 

Deletion in hash tables, 208. 

Dense graphs, 376, 378, 397-398, 
411, 413, 415-417. 

densepfs (priority graph traver
sal), 416, 439-440. 

Deo, N,, 536, 

Depth-first search, 371, 381-387, 
391-395, 397-399, 422-423, 
428-430, 454, 515. 

Depth-first search forest, 382, 
384, 394, 422-423. 

Derivation, 270. 
Deterministic algorithm, 528. 
dfs (recursive depth-first search), 

382-385, 
Dictionaries, 171. 

Diffie, W., 301. 
Digital search trees, 213-216. 

digitalinsert, 215. 

digitalsearch, 214. 
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Dijkstra's algorithm (for finding 
the shortest path), 415. 

Dijkstra, E. W., 410, 415, 454. 
Directed acyclic graphs (<lags), 

426-428. 
Directed cycle, 428. 

Directed graphs, 376, 380, 421-
430. 

Directed path, 423. 
Directory, 233. 
Discrete mathematics, 19. 

Disk searching, 225-235. 
Distribution counting, 99-101, 

116., 122-123. 

Divide-and-conquer, 48, 51, 104, 
152, 175, 362, 474, 477-480, 
483. 

Divide-and-conquer recurrence, 
51, 108, 149, 475, 363. 

Dot product, 74. 
Double buffering, 161. 

Double hashing, 207-210. 
Double rotation, 198. 

Down edges, 423. 
downheap (top-down heap 

repair), 134. 
Drawing lines, 310 (draw), 311. 
Dual of Voronoi diagram, 367-

368. 
Dummy node; see z. 

Duplicate keys; see equal keys. 
Dynamic programming, 483-494, 
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Eddy, w. F., 331, 370. 

Edges, 374. 
baokwanl, 437. 
capacities, 435. 
cross, 423, 430. 
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negative weight, 494. 

up, 423, 430. 

Edmonds, J ., 439-440. 
eliminate (forward elimination), 

62. 
Encryption, 297, 301. 

eof, 9. 
Equal keys, 172, 177, 193, 204, 

214, 227-228, 234. 

Escape sequence, 286. 
Euclid's algorithm (for finding 

the gcd), 10-11, 19, 302. 

Euclidean minimum spanning 
tree, 417. 

Euclidean shortest path problem, 
418. 

Euclidean traveling salesman 
problem, 522-524. 

eval (fast Fourier transform), 479. 

eval (spline evaluation), 72. 

Even, S., 454. 

Exception dictionary, 210. 

Exhaustive graph traversal 
(visit), 515. 

Exhaustive search, 513--524, 536. 

Exponential running time, 15, 
513, 520, 528, 534. 

Exponentiation, 46-47, 301. 

expression (top-down compiler), 
277. 

expression (top-down parser), 
273. 

Extendible hashing, 231-235, 
237. 

External nodes, 180, 230, 289, 
490. 

External searching, 225-235. 

External sorting, 155-165. 
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factor (top-down compiler), 278. 
factor (top-down parser), 274. 
Fagin, R., 231, 237. 
fast/ind (union-find with com

pression and balancing), 403, 
411. 

Fast Fourier transform, 465, 471-
480, 479 ( eval), 536, 

Feasible basis, 509-510. 
File compression, 283-293. 

Huffman encoding, 286-293. 
run-length encoding, 284--286. 
variable-length encoding, 28&--

293, 
Find, 399. 
find (union-find, quick union), 

40L 
fin<linit (fast/ind initialization), 

403, 411. 
Finite-state machine. 

deterministic, 248, 259. 
nondeterministic, 259--267. 

Flow, 435. 
Floyd, R. W., 331. 
Fonl, L. R., 435. 
Forecasting, 161. 

Forest, 375. 
Forsythe, G. E., 88. 
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Gaussian elimination, 57-65, 60 
(gauss), 71, 76, 504, 508. 
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Euclid's algorithm), 11, 12. 

General regular-expression pat
tern matching, 265 (match), 
279. 

Geometric algorithms, 307-370. 
closest pair, 362-366. 
convex hull, 321-333, 368. 
elementary, 307-319. 
grid method, 339-342. 
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intersection, 349-359. 
line drawing, 310-311. 
range searching, 336-347. 
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Gosper, R W., 242. 
Gralmm, R L, 326, 370, 
Graham scan, 326-330, 329 
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Grammars, 270-272. 
Graph algorithms, 373-454. 
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494, 

biconnectivity, 390-392. 
bipartite matching, 444-447. 

breadth-first search, 395. 
connected components, 384. 
cycle testing, 384. 
depth-first search, 381-387. 
elementary, 373-387. 
exhaustive search for cycles, 

515-520. 
maximum flow in a network., 

439-440. 
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minimum spanning tree, 408-
413. 

priority traversal. 395-397. 
shortcsL path, 413-415. 
stable marriage, 447-452. 
strongly connected com-

ponents, 428-430. 
topological sorting, 426-428. 
transitive closure, 423-426. 

union-find, 398 405. 

Graph isomorphism, 387. 
Graph traversal, 393-398. 
Graphs, 492-494. 

adjacency list, 416. 

adjacency matrix, 416. 

bipartite, 444--447. 
complete, 376. 
connccLCd, 375. 

389-405. 
dense, 

directed, 376, 421-430, 421-
430. 

directed acyclic, 426-428. 
376-381, 416, 

sparse, 376. 

traversal, 393-398. 
undirected, 376. 
weighted, 376. 

Greatest common divisor (gcd), 
9-12. 

Greatest increment method, 507. 
341 

Gui has, L 237. 

Hamilton cycle problem, 514-
520, 531-532. 

Hash fonctions, 202. 
Hashing, 201-210, 234. 

douhlc hashing, 207 210. 

open addressing, 205-210. 
202-204. 
180, 18L 

89, 129-140, 289-290, 

Heap algorithms, 129-140. 
change, 135. 

construct, 136-137. 
downheap, 134, 136. 
insert, 132, 135. 
join, 139-140. 
pqconstruct, 138. 
pqdownhcap, 139, 289-290. 
pqinsert, 139, 158, 160. 
pqrcmove, 139, 290. 

159, 160. 
135. 

replace, 135. 

130. 
135-137, 136 

Hellman, E., 301. 
Hoare, C. A. R., I 03, 16 7 
Hoey, D., 349, 370. 
Holl, R., 19. 
Homer's rule, 45-46. 
Hu, T. C., 536. 
Huffman, D. A., 304. 
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Huffman's algorithm (for file 
compression), 239, 286-293, 
490. 

Hlune, J. P., 19. 
Hybrid searching, 219. 

Increment sequence, 98. 
Indexed sequential access, 226-

228. 
index (convert from name to in

teger), 227, 230, 231, 376. 
Indirect binary search trees, 184-

185. 
Indirect heaps, 138-139, 159-160, 

289-290. 
Infeasible linear program, 501. 
Inner loop, 13-14, 106, 124. 

Insertion sort, 95-96, 96 
(insertion), 112, 123-124. 

inside (point inside test), 318. 
insiderect (point inside rectangle 

test), 338. 
Integer linear programming, 533. 
Integration, 79--86. 

adaptive quadrature, 85-86, 85 
(adapt). 

rectangle method, 80-82, 81 
(intrect), 85. 

Romberg, 84. 
Simpson's method, 83-84, 84 

(intsimp), 85-86. 
spline quadrature, 85. 
symbolic, 79-80. 

trapezoid method, 82-83, 83 
(inttrap), 85. 

Internal nodes, 180, 230, 289, 
490. 

Interpolation search, 177-178. 

Interpolation. 
polynomial, 68. 
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spline, 68-72. 
Intersection, 349-359, 370. 

Manhattan geometry, 350-356. 
circles, 359. 
horizontal and vertical lines, 

305, 350-356. 
lines, 356-359. 
rectangles, 359. 
two lines, 312-313, 313 

(intersect). 

interval, 337. 
Inverse, 138, 385, 450-451. 

Jarvis, R. A., 370. 
Jensen, K., 19. 

Johnson, D. S., 536. 

Kahn, D., 304. 

Krup, R M., 243, 439-440. 
Key generation, 299. 
Keys. 

binary representation, 119. 
cryptology, 297. 
searching, 171. 

strings, 254. 
Knapsack problem, 483-486, 519. 
Knuth, D. E., 19, 36, 88, 167, 200, 

'131, 242, 304, 454. 
Knuth-Morris-Pratt string search

ing, 244-249. 

Kruskal, J. B. Jr., 412. 454. 
Kruskal's algorithm (minimum 

spanning tree), 411-413, 412 
(kmlral), 417. 

Kung, H. T., 466. 

Lagrange's interpolation formula, 
47, 472. 

Leading term, 14, 15. 
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Leaf pages, 233. 
Least-squares data fitting, 73-76. 
Lewis, H. R., 536. 
lgN, 16. 
Lin, s., 524. 
Line, 308. 
Line drawing, 310-311. 
Line intersection, 312-313, 349% 

359. 
one pair, 312-313. 
initialization (buildytree), 353. 
Manhattan (scan), 355. 

Linear congruential generator, 
35-38, 37 (random). 

Linear feedback shift registers, 
38. 

Linear probing, 205-207, 209. 
Linear programming, 497-510, 

536. 
Linear running time, 14. 
Linked lists, 25-28. 

create and add node, 27 
(listadd). 

input and construction, 26 
(read.list). 

merging, 148 Qistmerge). 
output, 26 (writelist). 

sequential search, 174 (Jistin-
sert, listsearch), 203, 341, 
343. 

sorting, 149-152, 149 (sort), 
151 (mergesort). 

lnN, 16. 
Logarithm, 16. 
Logarithmic running time, 14. 
Longest path, 527. 
Lookahead, 273. 

MACSYMA, 88. 
Malcomb, M. A., 88. 

Master index, 227. 
Matching, 443-452, 454. 
match (general regular-expres

sion pattern matching), 265. 

Mathematical algorithms, 23-88. 
Mathematical programming, 497. 

Matrices. 
addition, 28-29 (matradd). 
band, 64. 
chain product, 486-489. 
inverse, 65. 
multiplication, 29, 53-54, 487. 
multiplication by vector, 466--

469. 
representation, 2S-30. 
sparse, 30, 63. 
Strassen's multiplication me

thod, 53-54, 65, 487. 
transposition, 465. 
tridiagonal, 64, 71. 

Maxflow-rnincut theorem, 438. 

Maximum flow, 435-438. 
Maximum matching, 443. 
Mazes, 385-386, 398, 418. 
McCreight, E., 228. 
Mead, c. A., 536. 

Mecging, 146-152, 156-164. 363-
366. 

mergesort (non-recursive), 
150-152, 151 (mergesort), 
366. 

mergesort (recursive), 148-149, 
148 (sort), 363. 

multiway, 156-162. 
polyphase, 163. 

Microprocessors, 458, 469. 
Minimum cut, 438. 
Minimum spanning trees, 408-

413, 417, 454, 518, 522-524. 
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string 
mod, 10 12, 34-40, 
Moler, C. B., 88. 
Moore, J. S., 242, 304. 
Morris, J. H., 242, 304. 
Morrison, D. R., 219. 
Multidimensional range search-

ing, 340-34 7. 

polynomials 
quer), 48 

polynomials 
lransfonn), 

Moltip,cocc"m scheduling, 533. 
merging, 156-162. 
radix searching, 218-

Munro, I., 88. 

N 

name), 
Nearest-neighbor problem, 366. 
NeLwork How, 433-441, 445-447, 

454, 497-499. 
Networks, 376, 435. 
Nievergelt, J., 231, 237, 536. 
Node transformations, 189-191. 
Non-basis variables, 504. 
Nondeterminism, 259-267, 529. 
Nonterminal symbol, 270. 
NP, 529. 

problems, 527-534, 

Numerical analysis, 88. 

Objective function, 498. 

Odd-even merge, 459-463. 
One-dimensional range search 

(bsirange), 337. 
One-way branching, 218. 
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Open addressing, 205-210. 
Operations research, 433, 441 
Optimal binary search trees, 489 

492. 
Or, 258, 261. 
Ordered hashing, 210. 

P, 528. 
Package wrapping, 323-326. 

Pages, 226 239. 
Papadimitriou, C. H., 45-l-, 536. 
Parallel computation, 457--469. 
Parse tree, 271. 
Parser generator, 280. 
Parsing, 269-280, 304. 

bottom-up, 275-276. 
recursive descenl, 272-275. 
shin-reduce, 276. 
top-down, 272 275. 

Partition, 533. 
Partitioning, 104-105 (partition), 

112, 145. 
Pch~cal, 9, 19, 271-272. 
PaLh compression, 403. 
Palhs in graphs, 374-423. 
Patricia, 219-223, 254. 

patriciainsert, 222. 
palriciasearch, 221. 

Pallcm matching, 241. 257-267, 
279. 

Petfect shuffle, 459 465, 468-
469, 478 480, 536, 

Permutation generation, 520-
522. 

Pippenger, N., 231, N., 237. 
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Pivoting, 5044510, 508 (pivot). 

PlfilnLCxL. 296. 

PlanariLy, 387. 

PoinL, 308. 

Polygon, 308. 

COilVCA. 321. 

simple closed, 313-313. 

sLandard representation, 318. 
test if point inside, 316-318. 

Voronoi, 367. 

Polynomials, 45-54. 

addition, 24-28. 

evaluation, 45-46, 465, 471 
472, 474-475. 

47-48, 471-472, 

multiplication, 24-25, 48-50, 
471-472, 477-480. 

rcprcscnt.ation, 23-28. 
Polyphase merging, 163. 

Pop, 109, 439. 

pqchangc (change priority in 
priority queue), 396. 

pqconsLrucL (heap construction, 

indirect), 138, 396, 411. 

290. 
pqinsert., 139. 

pqremove (remove largest item 
from queue), 396, 
139, 

Pratt. v. R., 242, 304. 

Preprocessing, 335. 

Prim, R. C., 410, 454. 

Prim hinary search tree 
(treep1int), 336. 

graph traversal (priorit.y
scarch). 

hrcadth-fi.rsL search, 397, 416. 

denscpfs, 416. 
depth-fast search, 397, 416. 

Euclidean shortest path, 418. 
minimum spanning l.rcc, 409-

41 L 416. 
network How, 439-440. 

shortesL palh, 413-416. 
sparsepfs, 395- 397. 

Probe, 205. 

127 140, 144, 
395-397. 

Projection, 339. 

Pruning, 517-522. 

Pseudo-angle calculation (theta), 
316. 

Puhlic-kcy crypLOsystcms, 300-
302, 304. 

Push, 109. 

Pushdown stack, 109-110, 394. 

Quadrature; see integration. 

Queue, 109, 395. 
Quicksort, 103-113, 118, 124, 

135, 144, 152, 165, 167, 183, 
218. 

Rahin, M. 0., 243. 

digit.al search trees, 213-216. 

rnultiway, 218-219. 

Patricia, 219-223. 
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tries, 216-218, 291-293, 
Radix sorting, 115-124, 165, 218. 

radix exchange, 117-121. 

straight radix, 121-124. 

Random integer in a fixed range 
(randornint), 38, 40. 

Random number generation, 88, 
202, 29<J. 

Random numbers, 33-42, 112. 
additive congruential generator, 

38-40, 42. 

linear congruential generator, 
35-38, 42. 

pseudo-, 33. 
quasi-, 34. 
uniform, 34. 

Range searching. 
grid method, 339-342, 346. 
kD trees, 346-347. 
multidimensional, 346--347. 
one-dimensional, 336-337. 
projection, 339. 
sequential search, 338. 
2D trees, 343-346. 

rbtreeinsert (red-black tree inser
tion), 194. 

rea.dlist (linked list input and 
construction), 26, 148. 

readln, 9. 
Records. 

database 335. 
searching, 171-172. 
sorting, 93-94. 

Records/database, 335. 
Records/searching, 171. 
Recursion, 11-12, 176, 363-366, 

381-382, 398, 465, 479, 489, 
491, 515, 517-522. 

removal, 110-111, 145-146, 
152, 176, 179-180, 275, 366, 
12. 

two-dimensional, 356, 361, 
363-367. 

Red-black trees, 192-199. 
Reduction, 445, 530-532. 
Regular expression, 258. 
Regular-expression pattern 

matching, 258, 279, 304. 
Reingold, E. M., 536. 
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rerrwve (delete largest element in 
heap), 134. 

Replacement selection, 158-161. 
replace (replace largest element 

in heap), 135. 
Representation. 

binary search trees, 178-179, 
184-185. 

finite state machines., 247, 262-
263. 

functions, 65. 
graphs, 376-381. 
lines, 308. 
matrices, 28-30. 
points, 308. 
polygons, 306, 318. 
polynomials, 23, 28. 
trees (father link), 290-202, 

395-3%, 400-404, 411, 415. 
Rivest, R L., 167, 301. 304. 
rksearch (Rabin-Karp string 

searching), 253. 
Root node, 230, 233. 
Roots of unity, 473-477. 
Rotation, 1%-197. 
Run-length encoding, 284-286. 
RSA public-key cryptosystem, 

301-302. 

same (test if two points are on the 
same side of a line), 313. 

Satisfiability, 529, 531-532. 
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Scan conversion, 310-311. 
scan (line intersection, Manhat

tan), 355. 

Scheduling, 373. 

Searching, 171-237. 
binary search, 175-177. 
binary tree search, 178-185. 
digital search trees, 213-216. 

disk searching, 225-235. 
elementary methods, 171-185. 
extendible hashing, 231-235. 

external searching, 225-235. 
hashing, 201-210. 

indexed dequential access, 
226-228. 

Patricia, 221-222. 
radix search tries, 216-218. 

radix searching, 213-223. 

sequential, 172. 

sequential list, 174. 
varying length keys, 223. 

Sedgewick, R, 167, 237. 
Selection, 144-146. 
select (selection, nonrecursive), 

146. 
select (selection, recursive), 145. 
Selection sort, 95 (selection), 144, 

326. 
Self-organizing search, 175. 

Sentinumerical algorithms, 88. 
Sentinel, 106, 173, 273, 309, 329, 

96, 247, 254, 493. 
Separate chaining, 202-204, 209. 
Sequential searching, 172-174, 

339. 
Sets, 398-405. 

Shanrir, A., 301, 304. 
Shamos, M. I., 349, 370. 

Shellsort (shellsort), 97-99, 329. 

Shortest path, 413-415, 418, 454, 
492-494. 

Simple closed path, 313-315. 

Simplex method, 497-510. 
Simultaneous equations, 58, 75, 

503-504. 
Single rotation, 196-197. 
Sink, 435. 

Slack (artificial) variables, 503. 
Sort-merge, 156. 

sort3 (sorting three elements), 93, 
459-460. 

Sorting, 91-167. 

bubble, 99. 
disk, 162, 165, 155-165. 
distribution counting, 99-101. 

elementary methods, 91-101. 

external, 92. 
Heapsort, 135-137. 

insertion, 95-96. 
internal, 92. 

linear, 123-124. 
mergesort (non-recursive), 

150-152. 
mergesort (recursive), 148-149. 

Quicksort, 103-114. 
radix exchange, 117-121. 

relationship to convex hull, 
323. 

selection, 94-95. 

shellsort, 97-99. 
stability, 92-93, 121, 152. 
straight radix, 121-124. 

tape, 155-165. 
three elements (sort3), 93. 

Source, 435. 
Spanning trees, 375, 408-413. 
Sparse graphs, 376, 378, 3%, 

397-398, 411, 413. 
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sparsepfs (priority graph traver
sal), 396, 410, 415-417, 439-
440. 

Spline interpolation, 68872, 71 
(makesplme). 72 (eval). 

Spline quadrature, 85. 
Splitting, 189-191, 1944199, 228-

229. 

Stable marriage problem, 447-
452, 454. 

Stack, 394, 428, 429. 
Standard form of linear pro-

grams, 503. 
Standish, T. A., 304. 
Steepest descent method, 507. 
Steiglitz, K, 454, 536. 

Stone, H. S., 536. 
straightradix (straight radix 

sort), 121-124. 
Strassen's method, 53-54, 65, 88, 

487. 

String processing, 241-304. 
String searching, 241-254. 

Boyer-Moore., 2499252. 

brute-force, 243. 
Knuth-Monis-Pratt, 244-249. 
mismatched character, 250-

251. 
multiple searches, 254. 
Rabin-Karp, 252-253. 

Strings, 241, 283, 284-285. 
Strong, H R., 231, 237, 231. 
Strongly connected components, 

428-430. 

substitute (backward substitu-
tion), 62. 

Supercomputer, 458, 513, 528. 

Symbol tables, 171. 
Systolic arrays, 466, 536. 
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Tail node, 25-28, 174-175, 180, 
203. 

Tarjan, R. E.., 387, 405, 428, 454. 
Terminal symbol, 270. 
term (top-down compiler), 278. 
term (top-down parser), 273. 
theta (pseudo-angle calculation), 

316, 324, 325. 
Thompson, K, 304. 
3-node, 188. 
Top-down 2-3-4 trees, 187-199. 
Top-down compiler (expression, 

term, facto<). 277-278. 
Top-down parsing, 272-275 

(expression, term, factor), 
273-274. 

Topological sorting, 426-428, 
430. 

Transitive closure, 423-426, 493. 
Traveling salesman problem, 387, 

513--524, 531-532. 
Tree vertices, 393. 
treeinitialize (binary search tree 

initialization), 181. 
treeinsert (binary search tree in

sertion), 181. 
treeprint (binary search tree 

sorted output), 182, 346, 354. 
Trees. 

AVL, 198. 
balanced, 187-199. 
binary, 179, 237. 
binary search, 1788185. 
breadth-first search, 395. 
depth-first search, 382, 384, 

394, 422423. 
exhaustive search, 516-519. 
father link representation, 

290-292, 395-396, 400--404, 
411, 415. 
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parse, 271. 
red-hlack, 192 199. 
spanning, 375, 408-413. 
top-down 2-3-4, 187-199. 
2-3, 198. 
2-3-4, 188. 
union-find, 399-404. 

treesearch (hinary tree search), 
180, 193. 

Tries, 216-218, 291-293. 

2D (two-dimensional) trees, 343% 
346. 

twoDinsert (insertion into 20 
trees), 345. 

twoDrange searching with 
2D trees), 

2-node, 188. 
2-3 trees, 198. 
2-3-4 tree, 188. 

Ullman, J. D., 237, 304. 
Undirected graphs, 376. 
Union, 399. 
Union-find, 454. 
Union-find algoriLhms, 398-405. 

405. 
403. 

401. 
halving, 404. 
heighL balancing, 404. 
palh compression, 403. 

Up edges, 423, 430. 

402. 
410. 

insert (heap insertion al 
132. 

van Leeuwan, J., 454. 

Variable-length encoding, 286-
293. 

Vernam cipher, 299. 
VertcA cover, 533. 
Vertex visit, adjacency lists 

(visil), 382. 
Vertex visit, adjacency matrix 

(visit), 384. 
Vertices, 374. 

fringe, 393. 
tree, 393. 

unseen, 393. 
Very large scale integrated cir-

cuits, 458. 
Vigenerc cipher, 298. 
Virtual memory, 165, 234. 
Visited vertices, 410. 
visit. 

verteA visil for graph search
ing, adjacency lists, 382. 

vertex visit for graph search
ing, adjacency matrix, 384. 

search Lo Lest biconnec-
392. 

graph traversal to find strong 
components, 429. 

exhaustive graph traversal, 
515. 

permutation generation, 521. 
Von Neumann, L 457. 
Von Neumann model of compula

tion, 457. 
Voronoi diagram, 366-368. 
Voronoi dual, 417. 

Warsha!L S., 425. 
Warshall's 

trans1t1ve 
493. 

Wegner, P., 88. 

(computing 
425, 492-
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Weight balancing, 402. 
Weighted graphs, 376, 380, 407-

418. 

Weighted internal path length, 
490. 

Weighted matching, 444. 
Wells, M. B., 536. 
Wmh, N., 19. 
Worst case, 13. 
wrap (convex hull by package 

wrapping), 325. 
wrjtelist (linked list output), 26, 

148. 
writeln, 9. 

z, 25-28, 174-175, 180-181, 194, 
203, 214-215, 221-222, 341, 
345, 352-353, 364-365. 
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DESIGNS 

Cover Insertion sort: Color represents the key value; the ith column (from 
right to left) shows result of ith insertion. 

Page 1 Relatively prime numbers: A mark is in positions i,j for which the 
greatest common divisor of i and j is not 1. 

21 R.andnm points: A mark is in position i, j with i and j generated by 
a linear congruential random number generator. 

89 A heap: Horizontal coordinate is position in heap, vertical coordinate 
is value. 

169 A binary search tree laid out in the manner of an H-tree. 

239 Huffman's d,gorithm before and after: run on the initial part of the 
text file for Chapter 22. 

305 One intersecting pair among a set of random horizontal and vertical 
lines. 

371 Depth first secuch on a grid graph: each node is adjacent to its 
immediate neighbors; adjacency lists are in random order. 

455 Counting to 28: eight cyclic rotations. 

Back R.andnm permutatWn: Color represents the key value; the ith column 
(from right to left) shows result of exchanging ith item with one 
having a random index greater than i. 

Heap design inspired by the movie "Sorting out Sorting," R. Haecker, Uni
versity of Toronto. 

Pictures printed by Tom Freeman, using programs from the text. 
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