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Preface 

With the increasing availability of computer access through remote terminals 
and time sharing, more and more schools and colleges are able to introduce 
programming to substantial numbers of students. 

This book is an attempt to incorporate computer programming, using BASIC 
language, and the teaching of mathematics. I believe the two activities support 
each other. 

Flowcharts are used throughout the text. The general approach is to begin 
with short complete programs and then simply and methodically build them 
into larger programs. Each new capability or new organization of capabilities 
is presented to create a desired effect in a program. Details are introduced 
only as they become necessary or useful for the writing of a program, rather 
than as sets of facts to be memorized in case a particular situation should 
ever arise. Over 125 prngrams are used to achieve this. 

All of the elementary BASIC language capabilities are presented in the first 
five chapters and Chap. 7. Chapter 6 and Chaps. 8-13 emphasize applications. 
The first seven chapters may be studied in conjunction with, or at any time fol
lowing, a first-year algebra course. Chapters 8-13 are applications oriented, 
covering many of the popular topics of precalculus mathematics, with all of the 
required algorithms developed in the text. Thus, this text is suitable for use 
either as a supplementary text to be incorporated into existing mathematics 
courses, or as the text for a course or unit to cover programming alone. 

Appendices A and B, respectively, present information for the operation 
of programs on paper tape and a few comments on error diagnosis. Appendix 
C introduces two formatting capabilities that are available on some time
sharing systems. Flowchart shapes are summarized in App~ndix D. A sum
mary of BASIC statement types is provided in Appendix E and an index of 
all the programs in Chaps. 2-13 is provided in Appendix F. 

Many of the problems in the book are intended to enable the student to 
develop interesting mathematical concepts upon seeing the printed results of 
program RUNS. Possible solution prngrnms are given in Appendix G for the 
even-numbered problems to give the student an indication of the correctness 



of his program without being required to nm every program. However, par

ticularly at the beginning, students derive greater beneHt from seeing programs 

run (or not run) than from any other programming activity. 

I wish to thank Germantown Friends School for its support in the prepara·· 

tion of this text. Thanks are due Mrs. Geoffrey Wilson for test teaching and 

numerous students for test learning portions of the manuscript. 

JAMES S. COAN 

Philadelphia 



Pref ace to the Second Edition 

The First Edition of this book has been significantly enhanced by present
ing character string handling and the use of data files. Since strings and files 
involve language differences which depend on the computer, two versions are 
presented. Demonstration programs are presented in Chap. 7 for both General 
Electric Information Services BASIC and Hewlett-Packard BASIC. 

The little used statement RESTORE is no longer discussed, and the INPUT 
statement is now presented in Chap. 1. 

Thanks are due to the Community Computer Corporation for assistance in 
the p1eparntion of material for this Second Edition. 

JAMES S. COAN 

Philadelpllia 
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CHAPTER 1 

Introduction to BASIC 

In working with a computer, you, the programmer, must communicate 
with the computer. In order to do that you will have to use a language that 
the computer will understand. There are many languages written for this pur
pose. The language of this text is called BASIC. The actual physical com
munication is rather complicated and 'we will ignore most of the mechanics 
except for the apparatus at our end of things. Th.e device we will be using is 
called a remote terminal. It will have a specific name depending on the manu
facturer. The remote terminal has a keyboard, which is the part we are most 
concerned about. 

1-1 PRINT 

No matter how complicated a particular set of instructions is, you will have 
to tell the computer to put the results into some fo1 m discernible to yourself. 

Therefore, let us begin with a discussion of the PRINT statement. If you want 
the computer to write the following statement "THIS IS A SHORT PRO
GRAM," you will type on the keybomd of the terminal as follows: 

10 PRINT "THIS IS A SH0RT PR0GRAM•" 
20 END 

The computer, on proper instruction, will do exactly what you have set out 

to do. 
The two lines 10 and 20 constitute a complete program. Several comments 

are in order here. 

I) Note that every line in a program must begin with a positive integer. 
2) The statement that we want to write out is in quotes; this may be used 

to good advantage, for example, for headings and labels. 
3) In many time-share systems, every program must have as its highest 

numbered line the END statement. In some systems, the END statement 
is optional. 

1 



2 Basic BASIC 

4) Note that all the letters are capitals. The terminal you may use or may 
not be restricted in this way. Note also that the letter "O" has a slash 
mark to distinguish it from the digit "O." On some terminals the reverse 
is true, the digit "O" has a slash and the letter "O" does not. On some 
printers one is more nearly a circle than the other or one is nearly dia
mond shaped. You can easily determine the method used by your equip
ment by examining some sample output on your screen or "hard copy." 

5) It is conventional although not required to use intervals of 10 for the 
numbers of adjacent lines in a program. This is because any modifica
tion in the program must also have line nu1nbers, So you can use the 
!n-betv;.reer! numbers for that pt!rpo~e. !t sh0uk! be ccrnfnrt!ng ta knn·.v 
at this point that the line numbers do not have to be typed in order. 
No matter what order they are typed in, the computer will follow 
numerical order in exeu1ting the program. 

6) Each line of a program is called a program statement. 

You probably think of the computer as something that more commonly 
produces numerical results and you are partly correct. Suppose you wish to 
multiply 23.4 by 91. One way of doing this on the computer would be to 
write a program like this: 

10 PRINT 23.4•91 
20 ENO 

Then on proper instruction the computer will type out the following and stop. 

2129.4 

00NE 

Computers vary as to the message that gets printed here. Notice the absence 
of quotes. In this case you have instructed the computer to perform an opera
tion. Had you in fact wanted 23.4 ° 91 typed out, then you would change the 
program. You might write the following: 

10 PRINT "23.4>1<91=''.23•4*91 
20 E·'llO 

This time the result will be as fo"Ilows: 

23. 4•91= 

0111NE 

2129.4 

You have succeeded in instrncting the computer not only to perform an opera
tion, but to print out the result in easily understandable form, which is desir
able throughout mathematics. Notice the use of the comma here. The comma 
may be used to separate the different parts of a PRINT statement. Used in 
this way, a comma is called a delimiter. Notice too, that there are eight spaces 
bctvv·ccn the C(fll~tls sign and the itUlll1Jef. r\ \Vay to eli111iuaiJ.-! an Lui 011e uf 
them will be explained later, There ai e many fine points that we will discuss 
as we progress, but for now we will take it in small quantities. 

If we were limited to the PRINT and the END instructions, we would 
quickly rctm n to using pencil and paper or an ordinary desk calculatoL With-
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out some additional capability, the computer would soon disappear. This 
brings us to the READ and DATA statements. 

PRINT 
Characters in quotes will be printed exactly as typed. Computed 

results will be typed as decimal numbers or as integers. 

1-2 READ-DATA 

The READ statement says to look for DATA as in the following: 

10 DATA 23.4,91.83.19.67•94. 76.S.98.876.918 
20 READ A, 8 
30 PRINT MB 
35 GJT0 20 
40 E"ID 

The computer ignores the DAT A statement until it finds a READ, then it 
takes the first number in the first DATA statement and assigns that value to 
the first variable in the READ statement. Then, if there is a comma and 
another variable in READ as in our example, the computer assigns the second 
number in the DATA line to it; were there a third variable, the computer 
would continue until it ran out of variables. In our program, the first time 
through, A = 23.4 and B = 91. The next line says PRINT the product. Having 
printed the product the computer looks for the next instrnction, which is 
C0T0 20. This is a new one that means exactly what it says. So the computer 
will C0T0 line 20 and execute that instruction again. At this point the com
puter "knows" that it has already read and used the first two numbers in 
the DAT A line. So it goes to the third and fourth numbers and assigns them 
to A and B in order and proceeds to print the product of 83 and 19, then 
goes back and assigns the fifth and sixth numbers to A and B, and so on until 
it runs out of numbers in the DATA line. There may be any number of DATA 
lines in a given program; all you need to realize for the time being is that a 
comma must be used to separate each discrete item of data and a comma 
should not be placed after the last item in a particular DATA line. Also, be 
careful not to usc commas to designate thousands, millions, etc. Warning: You 
may not put variables or operation symbols in a DAT A line. Only numbers in 
decimal form are allowed so far. Here is the computer's response to the above 
program: 

2129.4 
1577 
61 78 
454. 48 
804168. 

<!UT 0r DATA Pl LI 'IE 20 
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Note the explicit message at the completion of the print-out. This will vary 
from computer to computer. 

In our examples so far, we have used only multiplication ( 0
). The other 

arithmetic operations that you may use are addition ( + ), subtraction (- ), 
division (/), and exponentiation (raising to a power). There are two symbols 
in common use for exponentiation: one is an upwards arrow ( f), and the other 
is a double asterisk ( 0 0

). Symbols used to instruct the computer to perform 
some operation are called operators. The symbols listed here are specifically 
designated as the arithmetic operators. The numbers on which the operation 
is to be pcrfotmcd arc called operands, Contrary to convention in algebra, the 
m11ltipliC':itinn symhnl mmt hP pr·p,f:'nt. AJ3 in a!gebn1 ff!USt be '.V!itten A 0 B 
for the computer. The computer assigns the same priorities to arithmetic 
operations as are assigned in algebra. If there are several operations of the 
same priority to be performed on the same line, the computer does them from 
left to right. Several sample programs will be given soon. 

READ 
The READ statement looks for numbers in a DAT A statement. 

READ X, Y, Z looks for numbers in groups of three. 

DATA 
The DATA statement supplies values for the variables designated 

in the corresponding READ statement. Items of data must be sep
arated by a comma. Numbers only are allowed. 

1-3 SYSTEM COMMANDS 

There are two kinds of instructions of which you should be aware. We have 
already discussed an instruction given by a program that you have wiitten. \Ve 
have not yet mentioned an equally important kind of instruction, the system 
command. We must realize that the computer does nothing by itself. There
fore, there must be what is called an executive program which will respond to 
your wishes. You need not worry about the executive program; it is taken care 
of by the people who maintain the computer. 

The first system command 1equired is referred to as the sign-on or log-on. 
The exact form of this varies from computer to computer. So we really cannot 
be specific here. It simply notifies the computer that you would like to use it. 

Once you are signed on, the next most important command is RUN. After 
yuu have type.l out yuur prug;ralll, ll1e curnpuie1 111usi. have a way of knowing 
that you want it to execute the program. So you must type RUN and then 
touch the return key on the keyboard. Only then will it respond to the pro
grammed instructions. 

Possibly next in importance is the command SCR (SCRub or SCRatch) or 



Introduction to BASIC 5 

CLE (CLEar) followed by depressing the return key. (Which you use will 
depend on the computer you are connected with.) Suppose you have run a 
program and someone else would like to run his. The ol<l program may be 
erased by using the SCR command. So whenever you begin a new program 
it might be wise to simply type SCR and touch the return key. The system 
command must not be preceded by a number. There are severnl other com
mands that we will take up as they seem appropriate. 

RUN 
Notifies the computer to execute the program instructions. Must 

not have a number in front of it. 

SCR or CLE 
Notifies the computer that you are not going to use the current 

program. The current program is erased from the working area of the 
computer. Must not have a number in front of it. 

1-4 LET 

At this point you do have enough information to write quite a few 
programs. However, another statement type that may be use<l to make life 
easier is the LET statement. The LET statement may be use<l to assign any 
number or any algebraic expression to any variable. Using a LET statement, 
the last program would look like this: 

10 OATA 23.4,91.83·19.87.94.7fu5.98.876.918 
20 Ri;;AD A, B 
30 LET C=A•B 
40 PRINT C 
50 G0T3 20 
60 END 
RU'll 

2129.4 
1577 
81 73 
454. 48 
804168. 

0UT 3F DATA IN LINE 20 

We obtain the same results as before. In this pm ticular program, we really 
did not save anything. However, in any situation where we nee<l to write the 
value of A 0 B several times or the expression is more involved, we will see 
that a saving may result. There are many things that you could not do 
without a LET capability. 
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LET 
May be used to assign explicit values to a variable as LET X = 4.56, 

or may be used to assign algebraic expressions to a variable as LET 
V = X ° F + Y 0 G. Note: All variables on the right-hand side must 
have been previously evaluated. On some computers LET is optional. 
Such systems permit Z = 4.56, for example. 

1-5 INPUT 

l 

The INPUT statement serves much the same purpose as the READ state
ment in that it permits us to provide numbers for the computer to work with. 
For example, 100 INPUT A will cause the computer to print a question mark 
and stop at line 100. The question mark is a signal to whoever is operating the 
terminal that he or she is to type the desired value for A on the keyboard and 
press the carriage return key to resume the run of the program. Likewise, 100 
INPUT A, B, C will call for three numbers separated by commas to be typed 
at the keyboard. It is advisable to have the computer print a label so that the 
operator can determine the nature of the numbers required. In the following 
program, note that the semicolon at the end of line 100 enables us to type the 
values for A and B on the same line as the printed label. The input numbers 
15, 17 following the question mark were typed at the keyboard by the program 
operator. 

100 PRINT "INPUT TW0 NUMBERS:"; 
110 INPUT A1B 
120 PRINT " THE NUMBERS ARE:"; AJ B 
130 PRINT" THEIR SUM IS:";A+B 
140 PRINT "THEIR PR0DUCT IS:"lA*B 
150 END 
RUN 

INPUT TW0 NUMBERS:?15.17 
THE NUMBERS ARE: 1 5 I 7 

THEIR SUM rs: 32 
THEIR PR0DUCT IS: 255 

D0NE 

INPUT 
Causes the computer to request data from the keyboard. 

If we want the computer to obtain a decimal value for a compound frac
tion, there may be several programs that will do the job. Here we will have 
to use our knowledge of the order of operations as determined in algebra. 



Three programs follow that find a decimal value for 

10 LET i\1=2/5+317 
20 LET 0=314-113 
30 PRINT N/O 
40 El\IO 
RUN 

1·98857 

00NE 

2/5 + 3/7 
3/4-1/3 

10 LET F=C2/S+3/7)/(3/4-113> 
20 PRii'IT F 
30 E'IO 
RUN 

1·988S7 

O:iJNE 

10 PRINT C2/S+3/7)/(3/4-l/3) 
20 ENO 
RUN 

1·988S7 

00NE 
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Parentheses serve as a powerful tool in grnuping terms properly for the 
desired results. Keep in mind that priorities are exactly as they are in algebra 
and that if several operations of the same priority appear in the same line, they 
are executed from left to right. 

Carefully study the programs which follow to see how the placement of the 
parentheses affects the results. 

10 PRINT "3/S/3/S="J 3/S/3/S 
20 PRINT "3/(5/31S>="J 3/C5/31S> 
30 PRINT "3/S/C31S>="J 3/S/C3/Sl 
40 PRINT "C3/S)/C31S>="I C3/S)/(3/S) 
SO PRINT "C3/S/3l/S="IC3/S/3)/5 
60 PRINT "C3/S)/3/5="J C3/Sl/3/5 
70 ENO 
RUi'I 

3/S/3/S= .04 
3/CS/31S>= 9. 
31SIC31S>= 1 
C3/S>IC31S>= 1 
C3/5/3l/S= .04 
(3/5)/3/S= .04 

OONE 

10 PRINT "A="J2t3+1+3t2+1 
20 PRl-'lT "B="J 2t C 3+ 1>+3t 2+ I 
30 PRINT "C="J2t3+Cl+3)t2+1 
40 PRUJT "0="J2t3+1+3•C2+1> 
SO PRINT "E="J2tC3+1+3Jt2+1 
60 ENO 
RUN 
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A= 19 
8= 26 
C= 25 
D= 36 
E= 16385 

DlilNE 

It is important to know the capacity of the computer you are working with. 

Notice that according to the computer, (2/5 + 3/7)/(3/4 1/3) = 1.98857. 

If we work that out longhand, the result would be 1.98857142. BASIC pro

vides from 6 to 15 digits, if they are needed, depending on the computer, with 

the last digit roun<lctl off iu J.eciu1al 11u1uLt:fS, if it is the capacity digit 

If the results require more than the digit capacity of the computer, the 

computer prints in scientific notation as follows: 

10 LET A=98781• 
20 LET A1=8976 
30 LET P=A•Al 
40 PRINT A11"*"11Al11"="11P 
50 END 
RUN 

98781 • 

DlilNE 

89 76 8.66658E+08 

The E + 08 means "times ten to the eighth power" and the decimal number is 

rounded off to the sixth digit. When the computer uses this notation, it is 

called E-format. Again we get large spaces using the comma to delimit the 

printed results. We will discuss this before we wind up chapter one. 

A new item Al appears in the above program in line 20. There you will find 

the statement LET Al = 8976. The computer treats this as a new variable. In 

BASIC you may use any letter of the alphabet and any letter of the alphabet 

followed by a single digit as a variable. Some computers have aclditiuual 

simple variables. Thus a large number of variables are available. 
Probably the best way to learn how the computer handles scientific notation 

is by experience. So, let us run a sample program to see what happens. 

5 PRINT "X",, nyn,, "Q",, "P",, "S" 
10 DATA 1·31E+l0o2·13E+ll.1·16132E-05.2.83E+06 
20 READ x,y 
26 LET Q=X/Y 
40 LET P=X•Y 
50 LET S=X+Y 
60 PRINT x,y,Q,p,5 
65 GlilTlil 20 
70 END 
RUN 
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x y Q p s 
lo3IOOOE+IO 2ol3000E+ll 6d5023E-02 2o79030E+21 2o26100E+ll 

lol6132E-OS 2·83000E+06 4· 10360E-12 32.8654 2·33000E+06 

0UT 0f OATA IN LINE 20 

Notice the use of Q for quotient, P for product, etc. This is a technique 
that is useful not only on the computer, but throughout mathematics. 

Suppose you wish to write a program to find the total cost of a purchase 
in which there are different numbers of items at various prices, say 2 @ $.35, 
3 @ $2.65, 11 @ $.25, 1 @ $9.49, and 35 @ $1.59. We could have many 
more, but for a sample this should suffice. This program could of course be 
written in several ways, but here is one possibility: 

10 PRINT "ITEMS","UNIT PRICE","C0ST","SUBHlTAL" 
20 DATA 2,. 35, 3, 2· 65, 11,. 251 1,9. 49, 35, 1. 59 
25 LET T=O 
30 READ N, P 
40 LET T=T+N*P 
45 PRINT 1\1,P,N*P,T 
50 G!H0 30 
70 END 
RIJ>'l 

ITEMS U'lIT 
2 • 35 
3 2-65 
11 .25 
I 9. 49 
35 1. 59 

0UT 01' DATA !'I LI·~E 

PRICE C0ST SUBrnTAL 
• 7 • 7 
7. 9 5 'l· 65 
2· 75 11. 4 
9. 49 20.'39 
55.65 76. 54 

30 

The single figure we set out to obtain is in the lower right-hand corner. The 
result is $76.54; however, the other information is bound to be useful in at 
least some situations. Besides, even if we only print the right-hand column, 
we do not yet know how to dispose of the first four figures in that column. If 
you only want to print the right-hand column, then lines 10 and 45 may be 
altered thus: 

10 PRINT "SUBT0TAL" 
45 PRINT T 

and only that column will be printed. Notice that line 10 is executed only once 
and line 45 is executed five times. The G0T0 statement in line 50 only 
returns the computer back to line 30. So the computer only prints the headings 
once and only lets T = 0 once. 

Still, in the last program, the combination of lines 25 and 40 may seem 
strange, but it will not as soon as you gain a little more insight into how the 
computer works. Line 25 is said to initialize the value of T at 0, i.e., give it an 
initial value of 0. When the computer executes the initializing statement, line 
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25 LET T = 0, it "says" that there is a location in the computer storage area 
vihich thi::; progn:un vvi!l call T and that this program also requires that the 
number zero be stored in that location for now. If we then say 26 LET T = 5, 
then the computer will put the number 5 in that iocation designated as T and 
zero will no longer be there. If we write a program that says 25 LET T = 0 
followed by 26 LET T = T + 1, then the computer goes to the location where 
it is storing the value for T, "sees" 0, adds 1 to it, and returns the result to the 
location from which it just got 0, thereby replacing 0 (the old value) with 1 
(the new value). So we see that in BASIC (as in other computer languages) = 
does not mean "two names for the same thing." It means, instead, that the 
number on the right is to be placed in a location whose name is specified on 
the left. Thus we see that the equals sign as used here really specifies an opera
tion for the computer to perform. So the equals sign is called an assignment 
operator or a replacement operator, and the LET statement is called the 
assignment statement or replacement statement. 

Let us go through the program line by line. The lowest numbered line is a 
PRINT statement. So, right off, the computer prints the headings. Then it 
recognizes that the next statement is a DAT A statement and ignores it. Line 
25 assigns the value 0 to T. Then in line 30 the computer reads the first two 
numbers in the DATA line. Line 40 says that the previous value of Tis to be 
taken out of storage and added to N times P. So, the first time through line 
40, the value of T on the left will be 0 (from storage) plus the cost of two 
items at $.35, or $.70, and the computer returns the value .70 to the location 
in storage called T. Line 50 sends the computer back to read the next two 
numbers in the DATA line and to add their product (7.95) to .70 to get 8.65. 
It should be clear that we are printing the values of N, P, N times P, and T 
each time we read two new numbers. This process continues until the com
puter finds no more data. This causes the computer to terminate the RUN. 

1-7 COMMA AND SEMICOLON IN PRINT STATEMENTS 

Let us look at one more capability. In two of the programs of this chapter, 
the results were printed out with unnecessary great spaces. You may have 
noticed that we did not have these spaces in the two programs where semi
colons were used in the PRINT statements. We have two delimiters, i.e., we 
have two signals that tell the computer how closely we want the results 
printed. The mies are a little complicated, but in general, the semicolon 
specifies closer spacing than the comma. The comma sets up zones across the 
page. The number of characters in the zones does vary from computer to 
computer, but 15 characters per zone is common. This zone width does 
not change with the number of digits in the numbers being printed. The 
semicolon sets up different sized zones depending on the number of digits 
in the number and whether it is in scientific notation. Here is the pro
gram from p. 8 again. First we run it. Then we insert a line which 
replaces the comma print delimiters with semicolon delirnite1s. And we call 
for another RUN. 



10 LETA=98781. 
20 LET Al=8976 
30 LET P=A*Al 
40 PRINT A,"*"• At."="• P 
50 E.''10 
RUN 

98 781 • * 

£.l3NE 
41 PRINT AJ''*'';AIJ''='';P 
RUl\J 

98 '781. * 
98 781. * 89 76 

D0NE 
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89 76 8·86658E+08 

89 76 8-86658€+08 

8.86658E+08 

The output of this prngram is much more closely spaced. Notice that in the last 
line of the printing there is a space between the 0 and 8976. The compute1 
leaves a space there for a + sign but does not print it If the number printed 
were negative, then there would be a minus sign printed in that space. The 
same holds true for the space between the and 8.86658E + 08. Also notice 
that in all program runs there is a space before the first number printed in any 
line if the number is positive. However, if we write 10 PRINT "3" in a pro
gram, then when we run the program, 3 will be printed in the very first 
space. This is because the computer treats things in quotes differently from 
the values of variables for printing purposes. 

SUMMARY OF CHAP. I 

I) We now have the PRINT statement which puts results in readable form. 
It may be used for titles, headings, and labels. 

2) Everything in quotes will be printed just as you type it (except more 
quotes). 

3) Commas or semicolons may be used between the different items to be 
printed to control spacing. 

4) The READ statement is used to read data. Several variables may be 
read with a single READ statement by separating them with commas, or they 
may be read with different READ statements. Just be sure the data is in 
proper order to match the READ variables. 

5) The DATA statement supplies data for the READ statements. Discrete 
items of data must be separated with commas. 

6) The LET statement may be used to assign any value or any algebraie 
expression to any variable. 

7) The INPUT statement allows the opeiator to enter data from the key
board in response to a question mark. 



12 Basic BASIC 

8) The G0T0 statement is used to alter the prngress of the computer 
during the execution of a program. 

9) The END statement may or may not he required. If 1 equired, it must 
carry the highest line number in the program. 

10) The system commands to date are RUN and SCH or CLE. System com
mands must not be preceded by line numbers. 

PROBLEMS FOR CHAP. I 0 

1) Define the following items: BASIC, PRINT, END, READ-DATA, LET, RUN, 
G¢T\z), statement, system command, program, remote terminal, comma delimiter, 
semicolon delimiter, scientific notation, initialize, and print zone. 

2) What is the greatest number of variables permissible in a single BASIC pro
gram thus far? 

3) Which of the following arc valid BASIC variables? A, XI, lB, XA, Yl2. 
4) The statement was made in Chap. 1 that you cannot have the computer print 

quotes by putting quotes inside quotes. Why not? 
5) Write a program to add 2081, 682, 1161, and 72.03. 
6) Write a program to add 1E6 and lE - 3. Comment on the result. 
7) Have the computer multiply 2E3 by lE - 1. 
8) Have the computer print a decimal value for 7·f: 
9) Modify the purchase program on p. 9 to total the number of items. 
10) Write a program that will print the sum of the first 10 counting numbers. 

Put the numbers in as data. 
11) Write a program that will print the product of the first 10 counting numbers. 

j 12) Write a program that will multiply two binomials. In other words, for 
(Ax+ B)(Cx + D), you will put in data in groups of four numbers (A, B, C, D), and 
you want the computer to write out the three numbers that arn coefficients in the 
product. 
j 13) Have the computer print products of fractions by putting the numerators 
and denominators in as data and printing the numerator and denominator of the 
product as two numbers. 
j 14) Do the same for adding fractions as in problem 13). 

15) Have the computer print all possible arrangements of three digits using each 
once. Assign the digits in a DAT A line and use semicolon spacing. 

16) Write programs to print decimal values for the following: 

(a) 1/2 + 113 
1/3-1/4 

(b) 2/3 + 314 
516 2/3 

(c) 
( 1/2 + 317) ( 4::t:~-) 

2.33- 1 

(d) ( 23.481 7.098)4 "' 
4.98a - 87.82 

° Check rparks (j) in front of problem numbers indicate the more difficult problems. 



CHAPTER 2 

Writing a Program 

2-1 PLANNING 

In Chap. 1 we looked at some programs and tried to analyze them, but 
we did not really go into the development of the programs themselves. Pro
grams do not just happen, they do not appear whole. They are planned and 
developed with some considerable care. There are two important tools that we 
will be using to help us write programs. One is a new BASIC statement type, 
the REM statement. The other is flowcharting. 

2-2 REM 

XXX REM (REMark), where XXX is a line number in a BASIC program, 
notifies the computer that what follows is to be ignored during the RUN of 
the p1 ogram. This means that you may write any message you like following 
REM. None of what you type has any effect on the execution of the pro
gram, but you may comment or remark upon the function of a particular 
line or a group of lines or the entire program. 

REM 
Permits the programmer to remark or comment in the body of his 

program. 

EXAMPLE 
118 REM THE NEXT THHEE LINES PHINT THE FIHST SUM. 
9 REM THIS PH0GRAM ADDS PAIHS 0F NUt-.IBERS. 

2-3 FLOWCHARTING 

Flowcharting, 01 block diagramming as it is sometimes called, is useful in 
planning programs in any computer language or for that matter in planning 
the solving of any problem, whether or not you me using a computer. We 

13 
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introduce flowcharting by an example. Suppose we want to add the counting 
uu111bers frorn 1 to 50 including l and 50. 'l'lc Vvyill need t·.vo "/~1riab!es: one 

for counting and the other to keep track of the sum. We want to start the 

counting variable at 1 and the summing variable at 0. Then for every value 

of the counting variable we want to add the counting variable to the old 

value of the summing variable to get a new value of the summing variable. 

Figure 2-1 represents a rough flowchart for such a process. 
Figure 2-1 attempts to break the problem into its most fundamental steps. 

By using a diagram of this kind, we are able to show the direction we must 

foliow to do the problem. vVe would like to have each step small enough for 

the computer to handle with one BASIC statement. However, this will not 

always be practical. In our example, though, it will be both practical and 

reasonable to have each step be a BASIC statement. With that in mind we 

redraw the diagram using statements more nearly like those in BASIC lan

guage. At the same time we will introduce the more standard practice of 

having different shapes for boxes that indicate different kinds of functions. 

The shapes used for this example are listed in Fig. 2-2 and the new flow

chart is Fig. 2-3(A). 
This time we are very close to being able to write the program directly 

from the flowchart. Of the statements in Fig. 2-3(A), the only one for which 

we do not yet have a corresponding BASIC language statement is decision

makihg. BASIC has a statement type that allows us to alter the path of the 

computer through a program depending on whether an algebraic sentence is 

true or false. 

Start 

Start counting variable 
Cat 1 

Start summing variable 
S atO 

Add summing variable 
and counting variable 

Have we done 
all 50? 

yes 

Print sum 

no Add 1 to 
counting 
variable 

Fig. 2-1. Diagram for adding counting numbers from 1 to 50. 
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Operation 

PRINT 
READ 

Used for beginning and 
ending of programs. 

Indicates that a computation 
is to be performed. 

Shows that a question is being asked 
and a decision is being made. 

Indicates that results are 
to be printed and will also 
be used to indicate the 
READ statement. 

Small circle shows that we are 
going to transfer to another 
statement in the program. N 
will match another small circle 
in the same chart. 

Arrowheads will indicate direction in all cases. 

2-4 IF-THEN 

Writing a Program 15 

Fig. 2-2. First five shapes 
used for flowcharting. 

XXX IF Z = Q THEN 230 means that if Z does equal Q, then the next 
line to be executed is line number 230. If Z does not equal Q, then the com
puter is directed to simply execute the line with the next number after XXX. 

The equals sign appears in the IF-THEN statement. Used here the equals 
sign is clearly not the assignment operator we defined earlier. In the IF-THEN 
statement the equals sign specifies a required relation (mathematical equality) 
to exist between two numbers. Therefore, the equals sign is now designated as 
a relational operator. 

With the IF-THEN statement added to our growing list of BASIC state
ments, we should be able to write the program directly from the .3owchart. See 
Fig. 2-3(B). If we simply copy the program in Fig. 2-3(B) and run it, it looks 
like the program below. 

10 LET C=I 
20 LET S=O 
30 LET S=S+C 
40 l F' C= 50 T~ E -.J 70 
50 LE:T C=C+ I 
60 Gt3H 30 
70 PR!-.JT S 
80 t::'llO 
RU-.J 

12 75 
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Slarl 

LET C = 1 

LETS= 0 

LETS= S + C 

yes 

LET C = C + 1 

(A) 

PRINTS 

END 

10 LET C = 1 

20 LETS= 0 

30 LETS= S + C 

40 IF C =SO THEl'J 70 

SO LET C = C + 1 

60 G¢T¢ 30 

70 PRINTS 

80 END 

(B) 

Fig. 2-3. (A) Flowchart for adding counting numbers 1 to SO. (B) Pro
gram written from flowchart 

BASIC allows us to give programs names. This requires a system com

mand and will vary with the system tied in with your terrninaL Some systems 

use the command NAME-, while others use NAME without the hyphen. After 

the system command, you type the name to be used. Being able to name pro

grams will be helpful to us here as we will be able to refer to programs by 

name from now on. 
We will give the last program a name, insert some REM statements to 

explain the function of certain lines, and add a label to make the printed 

result clearer. It is always recommended that you wtite programs with the 

thought that someone else will be reading them and you may not be there to 

do the explaining. You may even find that you cannot understand your own 



Writing a Program 17 

SUMI 

3 HEM THE EXECUTIVE PH0GRAM ALL0WS US T0 GIVE 0UR PH0GRAM A 
·~AME 

~ HEM THE HESTHICT!0NS 0N NAMES VARY FR3M SYSTEM T0 SYSTEM 
8 HEM ***** 
9 HEM WE AHE ADDJ,\JG INTEGEHS 0NE THR0UGH 50 IN THIS PR0GRAM 
10 LET C=I 
2D LET S=O 
30 LET S=S+C 
38 HEM HAVE WE ADDED 50 C THE LAST NUMBER T0 BE ADDED> YET? 
40 IF C= 50 THEN 70 
48 HEM WE HAVEN'T ADDED 50 YET*** S0 WE ADD 0NE 
~O LET C=C+ I 
60 G0T0 3D 
68 HEM WHEN C=SD WE PHINT S <THE SUM> IN LINE 70 
70 PRINT S 
80 END 
RUN 
SUMI 

1275 

D0NE 
70 PRINT "THE SUM 0F THE INTEGERS FR0M 0NE T0 FIFTY IS"; S 
HUN 
SUMI 

THE SUM 0F THE INTEGERS FR0M 0NE T0 FIFTY IS 1275 

D0NE 

programs several weeks after you write them, unless they have good REM 
statements. See SUMI. 

Let us do another program, similar to SUMI, where we will add all the 
odd integers from 5 through 1191. This time instead of starting the counting 
variable at 1, we will have to start it at 5. Since we are only interested in 
odd numbers, we will have to add 2 instead of 1 each time we add the new 
number to the summing variable. We will test N (the number added) each 
time through the summing step to decide whether we have reached the 
desired number, in this case 1191. First we draw the flowchart in Fig. 2-4. 
This flowchart is very much like the one in Fig. 2-3(A). See SUM2. Again, of 

SUM2 

10 LET N=5 
20 LET S=O 
28 HEM LINE 30 ADDS THE NEW NUMBER m THE SUMMING VARIARLF. 
30 LET S=S+N 
40 IF N= I I 9 I THEN 70 
48 REM ADO 2 IN LINE 50 F0R 0DD NUMBERS 
50 LET N=N+2 
60 G0TO 30 
70 PRINT "SUM OF 0DD NUMBERS FROM 5 TO 1191 IS"lS 
80 ENO 
RUN 
SUM2 

SUM 0F 0DD NUMBERS FROM 5 TO 1191 IS 355212. 

D0NE 
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Start 

LET N = 5 

LETS= 0 

LETS= S + N 

yes 
PRINTS 

LET N = N + 2 c END 

Fig. 2-4. Flowchart for adding 
odd integers from 5 to 1191 

course, we use the IF-THEN statement, because we have to decide each time 
we add 2 whether or not we have reached 1191. 

The IF-THEN instruction is called a conditional transfer. Unless instructed 
otherwise, the computer executes the statements of the program in numerical 
order. The IF-THEN statement allows us to tell the computer to alter that 
order of execution on the condition that an algebiaic sentence is true. If the 
algebraic sentence is false, then the computer passes to the next line in 
sequence. On the other hand, the G0T0 statement is an unconditional transfer. 

IF-THEN 
XXX TF YYYYYY THEN ZZZ. If YYYYYY is true, transfer to line 

ZZZ. If YYYYYY is false, pass to the next line after XXX. 
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You may have more than one conditional transfer in the same place in a 
program. This would be necessary if you wanted to test for several conditions. 
Suppose in SUM2 you want to see the sum several times duri~g the RUN. 
Let us look at the sum for the first two, for N = 731, and the last two. 

First we should draw a new flowchmt. It is clear from the flowchart that we 
have to decide each time we print the sum whether or not we have finished 
or have to add 2 and take the sum again. See Fig. 2-5 and SUM3. 

Note that we test N for three relations: 1) "less than 9," 2) "equals 731," 
and 3) "greater than 1188." \Ve have already seen the equals sign used as a 
relational operator. The two new relational operators "less than" ( <) and 
"greater than"(>) are introduced here. 

Start 

LET N = 5 

LETS= 0 

LETS= S + N 

LET N = N + 2. 

yes 

yes 

yes 

Fig. 2-5. Flowchart for changing program SUM2 so that 
the sum is printed several times during the program. 
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SUM3 

S PRINT "SUM 0F' 000" 
6 PRINT "NUMBERS FR0M" 
7 PRINT "FIVE Tlil"• "IS" 
10 LET N=S 
20 LET S=O 
28 REM LINE 30 ADDS THE NEW NUMBER Tlil THE SUMMING VARIABLE· 

JO LET S=S+N 
40 IF N<9 THEN 90 
SO IF N= 731 THEN 90 
60 IF' N> 1168 THEN 90 
68 REM .l\DD 2 !N L!NE 70 !"!Zit? @DD NUMBERS 
70 LET N=N+2 
tlU u0 11.1 .JO 
90 PRINT N,S 
100 IFN<ll91 THEN 70 
110 ENL> 
RUN 
SUM3 

SUM 01' 000 
NUMBERS FR0M 
Fl VE rn 

5 
7 
731 
1189 
1191 

D3NE 

IS 
s 
12 
133952. 
354021· 
355212· 

Other relational operators are "less than or equal to" (< =), "greater than 
or equal to" (> =), and "not equal to" (< >). Some time-sharing systems 
require a set of alphabetic relational operators (such as EQ for =) instead of 

the symbols listed above. 
Some facts about flowcharts should be becoming clearer. Arrowheads along 

connecting lines show the direction the computer is to follow. Rectangles and 
parallelograms have only one exit arrow, but they may have more than one 
entrance arrow. Diamonds have two exit arrows. Can diamonds have more 
than one entrance arrow? 

We said previously that we did not know how to eliminate some of the print
ing in the .SUBT0TAL column. Look at the purchase program on p. 9 again. 

We had no way of preventing the computer from running out of data. Now we 
can simply tack on some artificial data at the end of the DAT A line, which 

could not possibly be data in the problem, and use the conditional transfer to 
test each time data is read to see if the computer has read the artificial data. If 
the computer has read the artificial data, then we do not want to use it; but we 
have a signal for the computer that it is time to plint the total and terminate 

the run without reading any more data. Artificial data used in this way is 
called dummy data. If we are talking about prices and numbers of items, we 

can use 0 or negative numbers for dummy data. Let us use 0 for the number 

of items and 0 for the price and name the program T0T AL. See the flowchart 
in Fig. 2-6. 



Start 

[ LETT~O 

LETT 
= T + N• P 

yes 
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PRINT 
r 

END 

Fig. 2-6. Flowchart for using dummy data in program T¢TAL. 

T0TAL 

5 HEM THIS PR0GRAM IS A M0DIFICATI0N 0F A PR0GRAM THAT WE DID 
BEF!JRE. 

10 PRINT "T0 fAL C0ST =$"; 
20 DATA 2,.35,3,2.6s.11,.2s,1,9.49,35,1.s9,o,o 
21 KEM THE DUMMY DATA IN THIS DATA LINE IS ,,, 
25 LET T=O 
30 HEAD N, P 
34 IF N=O THEN 45 
40 LET T=T+N*P 
42 G0 T0 30 
45 PRINT T 
70 END 
RU,~ 

T0TAL 

f0TAL ClilST =$ 76. 54 

D0NE 

Look at lines 10 and 45 and then look at the printed result. These two 
PRINT instructions are executed on the same printed line. This is accomplished 
by using the semicolon at the end of the PRINT instruction in line 10. The 
semicolon there tells the computer to wait after printing the $ until it executes 
the next PRINT instruction in the program and to print that on the same line 
right after the $. Again there is a single space for the plus sign which is not 
printed. If the number were negative, there would be a minus sign there. 
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SUMMARY OF CHAP. 2 

1) We are now able to remark about a program right in the program 
itself by using REM. You should use REM statements so that whoever reads 
your program can determine what they are intended to do. It will also help 
you to remember your own programs weeks or months later when you your
self have forgotten what they will do. 

2) Flowcharting will prove a very valuable process that we will use to 
develop programs to solve problems. 

3) The ability to have the con1puter make decisions, using !F-THE!'-J, ::ind 
nl't n<'<'orrlin~ to thP. nntf'omP. nf thP. dP.<'isions grP.atly inf'rP.asP.s the complexity 
of the problems we may solve by computer. 

4) We now distinguish between conditional and unconditional transfer 
statements. 

5) Dummy data may be used to gain a greater control over what we can 
ask the computer to do after it has read the last item of data. 

PROBLEMS FOR CHAP. 2 

Unless instructed otherwise, draw a flowchart for every problem that calls for 
a computer program to be written. Also use REM liberally. 

1) Write a short description of each of the following terms: flowchart, dummy 
data, IF-THEN, REM, conditional transfer, unconditional transfer. 

2) In the program TIZ)TAL, why did we use two O's for dummy data? Why 
couldn't we have used just one 0 since line 34 only tests to see if N O? 

3) Bill took four tests. His marks were 100, 86, 71, and 92. vVhat was his average 
score? 

4) Modify the program SUM2 to count the number of odd numbers from 5 to 
1191 by first modifying the flowchart. 

5) Three pairs of numbers follow in which the first number is the base and the 
second number is the altitude of a triangle: 10, 21; 125, 8; 289, 114. Write a 
program to print in good form the base, the altitude, and the area for the three 
triangles. 

6) Find the number of and the sum of all positive integers greater than 1000 
and less than 2213 divisible by 11. 

7) A man is paid 1¢ the first <lay t1n the job, 2¢ the second day, 4¢ the third <lay, 
and so on, doubling each day on the job for 30 days. You are to calculate his wages 
on the 30th day and his total for the 30 davs 

8) \ii/rite a program to print the inlegt'rs from 1 to 2.5 pairt'd with their reciprocals. 
9) Write a program to print tl1e integers from 75 to 100 paired with their 

reciprocals. 
10) Rewrite the program T0T AL to count the number of different itt'ms in the 

order and print the total. 
11) A C'Ustomt'r put in an order for four books which retail at $5.95 and carry a 

25% <liseou11t, three records at $.3.})8 \\·ith a 15% discount, and one record player for 
$3\:J.\:J5 on which there is 110 discount. ln addition, there is a 2.io discount aiiowed 
on the total order for prompt paymt'nl. \\'rite a program to compute the amount 
of the order. 

12) \Vrite a program to balance a checkbook that includes the following transac
tions: Sept. 2, deposit $9.00; Sept. 5, write a check for $3.24; Sept. 10, write a 
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check for $1.98; and Sept. 17, write a cheek for $3.85. Assume that the balance was 

$14 23 on Sept. 1. Have the computer print the balance after each transaction. 

13) Write a program to find the amount of $100.00 deposited for one year in a 

savings account at 4% per year compounded four times yearly. · 

.j 14) In the song "The 12 Days of Christmas," gifts are bestowed upon the singer 

in the following pattern: the first day she received a partridge in a pear tree; the 

second day two turtle cloves and a partridge in a pear tree; the third day three 

french hens, two turtle doves, and a partridge in a pear tree. This continues for 12 

days. On the 12.th day she received 12 + 11 + · + 2 + 1 gifts. How many gifts 

were there all together? 
.J 15) For problem 14) have the eom1')l]tcr print the number of gifts on each of the 

12 days and the total up to that day . 
.j 16) George had test scores of 83, 91, 97, 100, and 89. Write a program to com

pute his average. Have the computer count how many tests George took. 

j 17) ·write a program that will take more than one set of test scores, find the 

average for each set, and print the result before going back to read the next set of 

scores. 



CHAPTER 3 

Loops and Lists 

3-1 INTRODUCTION TO MACHINE-MADE LOOPS 

A computer loop may be defined as a self-repeating sequence of program 
statements. This being true, loops are nut new to us. Most of the programs 
we wrote in Chap. 2 used a loop. In those programs we initialized a variable 
with the idea that we would be adding a fixed numher repeatedly and doing 
something each time we added the fixed number. Let us draw a flowchart and 
write a program to simply print the integers 1 through 6. See L00Pl and 
Fig. 3-1. 

Start 

LET X = 1 

LET X = X + 1 

END 

10 LET X = 1 

20 PRINT X; 

30 IF X = 6 THEN 99 
40 LET X = X + 1 
50 Gc;t>T¢ 20 

99 END 

Fig. 3-1. Flowchart for L00P1 for printing six integers. 

24 



L00Pl 

10 LET X=l 
20 PRINT Xl 
30 IF X= 6 THEN 99 
40 LET X=X+ 1 
50 G0Hl 20 
99 END 
RUN 
L00Pl 

00NE 
2 3 
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4 5 6 

In L00Pl we first print the number an<l then test to see if we have printed 
the last number in the sequence. If we have, then we stop. If we have not 
printed the last number, then we a<l<l l an<l print the new number. The 
results we obtain are entirely equivalent to the results we would get when we 
test to see if the number we are about to print is too great before we print it 
If it is not too great, then we print it. If it is too great, then we stop. Consider 
the flowchart of Fig. 3~2 and L00P2. 

Start 

LET X = 1 

no 
PRINT X END 

LE} X = X + 1 

Fig. 3-2. Flowchart for L0(Z)P2 for testing X before it is printed. 

L00P2 

10 LET X=l 
20 IF X> 6 THEN 99 
30 PKINl ;<; 

40 LET X=X+I 
50 G0l0 20 
99 END 
RUN 
l00P2 

2 3 4 5 6 
U0NE 
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F0R-NEXT 

Loops are used so routinely in programming that BASIC provides a 
machine-made loop. Program L00P3 is the machine equivalent of our pro
gram L00P2. 

Notice that the two statements 10 F0R X 1 T0 6 and 50 NEXT X in 
L00P3 do the work of the four statements 10, 20, 40, and 50 in L00P2. 
F0R X = 1 T0 6 indicates doing everything between this statement and 
NEXT X, beginning with X = 1 and ending with X = 6. NEXT X tells the 
computer to add l to the old value of X and go to the beginning of the loop 
again. When X = 6. L00P3 prints 6. After it prints 6, line 50 says NEXT X. 
This means, add 1 and go to the beginning of the loop. At this point in the 
RUN the value of X is 7, not 6 as you might think. Since 7 is greater than 6, 
the F0R-NEXT combination instructs the computer to execute the next 
instruction after NEXT X, which in program L00P3 is END. 

L00P3 

10 F"0R X=l T0 6 
30 
50 
99 
RUN 

PrHNT XJ 
NEXT X 
END 

L00P3 

1 
D0NE 

2 3 4 5 6 

A machine loop does not have to begin with 1. It may begin wherever you 
require. The variable that is incremented in the machine loop may be treated 
in the same way as other variables in the program. However, you are warned 
against changing the value of that variable. L00P3+, which is a modification 
of L00P3, prints the values of X, 2 ° X, X 10, X 0 

• 3, and X/(-3). 

L00P3+ 

5 PRINT "X 2*X X-10 Xt3 
10 F"0R X=l T0 6 
30 PRINT X!2*X!X-!OlX•3lXl(-3) 
50 NEXT X 
99 END 
t<UN 
L00P3+ 

x 
1 
2 
3 
4 
5 
6 

D0NE 

2*X 
2 
4 
6 
8 
10 
12 

x-10 X•3 XI ( ·-3> 
-9 I -.333333 
-8 8 -.666667 
- 7 27 -1 
-6 64 -1.33333 
-5 125 -1.66667 
-4 216 -2 

XI ( - 3 >" 

Notice lines 80, 100, 150, 220, 240, and .310 in program LUPDEM. They 
are all of the form XXX PRINT. This statement is sometimes called the 
blnnk PRINT. It has the effect of di1ecting the computer to turn up a new 
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line of paper at the terminal. In some cases, XXX PRINT serves to begin a 
new line; in others, XXX PRINT results in a space between lines of printed 
output. 

LUPDEM 

10 REM **THIS PR0GRAM IS INTENDED T0 DEM0NSTRATE S0ME 0r 
20 REM **THE CAPABILITIES 0r THE r0R-NEXT STATEMENT PAIR 
30 REM 
40 PRINT "50 r0R X=l4 T0 20 PR0DUCES THE r0LL0WING VALUES r0R X" 
50 r0R X=14 T0 20 
60 PRINT XJ 
70 NEXT X 
80 PRINT 
90 REM BASIC ALL0WS US T0 INCREMENT A L00P BY VALUES 0THER THAN 0NE 
100 PRINT 
ilO PRINT "120 r0R X=I T0 19 STEP 2 PR0DUCESJ" 
120 r0R X=l T0 19 STEP 2 
130 PRINT XJ 
140 NEXT X 
150 PRINT 
160 REM THE STEP NEED N0T INCREASE THE VALUE 0r X 
1 70 PRINT 
180 PRINT "190 r0R X=345 T0 282 STEP -9 GI VESJ" 
190 r0R X=345 T0 282 STEP -9 
200 PRINT XJ 
210 NEXT X 
220 PRINT 
230 REM DECIMALS ARE ALL0WED IN BASIC 
240 PRINT 
250 PRINT "260 r0R X=91. 5 T0 3 STEP - 15· 7 YI ELDSJ" 
260 r0R X=91.S T0 3 STEP -15.7 
270 PRINT XJ 
280 NEXT X 
300 REM VARIABLES MAY BE USED T0 SET UP A MACHINE L00P IN BASIC 
310 PRINT 
320 PRINT "330 LET A= s, 340 LET B= 45, 350 LET C= 6 AND" 
325 PRINT "360 r0R V=A T0 B STEP C GIVES THESE RESLl. TSJ" 
330 LET A=S 
340 LET B=45 
350 LET C=6 
360 r0R V=A T0 B STEP C 
370 PRINT VJ 
380 NEXT V 
390 END 

RUN 
LUPDEM 

50 r0R X=14 T0 20 PR0DUCES THE rlilLL0WING VALUES r0R X 
1 4 I 5 1 6 I 7 18 19 20 

120 r0R X= 1 T0 19 STEP 2 PR0DUCESJ 
I 3 5 7 9 11 13 15 

190 r0R X=345 T0 282 STEP -9 GI VESJ 
345 336 327 318 309 30D 291 282 

260 r0R X=9 l. 5 T0 3 STEP - 15. 7 YI ELD SJ 
91.s 1s.8 60.1 44.4 

330 LET A=S, 340 LET B=451 350 LET C=6 AND 
360 rlilR V=A T0 B STEP C GIVES THESE RESLA.. TSJ 

5 11 I 7 23 29 35 41 
D0NE 

I 7 19 

13. 
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F0R-NEXT 
F0R X = A T0 B STEP C sets up a machine loop with first num

ber A, last number B, and increment C. See LUPDEM for detail. 

Now we will look again at some of the programs in Chap. 2 and do them 
with a F0R-NEXT loop. Let us redo program SUM3 and call it SUM3+. 
Of course as we should expect, the printed results for SUM3+ are identical 
with those of SUM3. See the Howchart in Fig. 3-3. 

__ s_ta~0 

LET 5 = 0 

F\Z)R N = 5 TQ'> 
1191 STEP 2 

[:s~s+N 

yes 

Fig. 3-3. Flowchart for using machine loop for 
program SUM3 from Chap. 20 

no 

END~ 
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Sl.a-13+ 

4 REM THIS PR0GRAM IS A M00IrICATI0N 0r SUM3 rR0M CHAPTER TW0 
5 PRINT "SUM 0r 000" 
6 PRINT "NUMBERS rR0M" 
7 PRINT "rl VE T0''. "IS" 
10 LET S=O 
20 r0R N=5 T0 1191 STEP 2 
28 REM LINE 30 ADOS THE NEW NUMBER T0 THE SUMMING VARIABLE• 
30 LET S=S+N 
40 Ir N<9 THEN 90 
50 lf' N=731 THEN 90 
60 1 r N< 1188 THEN I 00 
90 PRINT N. S 
100 NEXT N 
110 ENO 
RUN 
SUM3+ 

SUM 0r 000 
NUMBERS rR0M 
rIVE T0 

5 
7 
731 
1189 
1191 

00NE 

IS 
5 
12 
133952· 
354021. 
355212· 

F0R-NEXT may be used to count the number of times the computer does 
a particular operation or a set of operations. For instance, we can use a 
machine loop to count the number of different items in program T0TAL of 
Chap. 2 and at the same time instruct the computer to read data repeatedly. 
We did not know how many items of data there were, but that does not 
matter. We can simply pick a number that we are sure is greater than the 
number of times we want the computer to read data. There could not possibly 
be more than say 50 items. 

So in T0TAL+ we can use F0R X = 1 T0 50. Then we can test for the 
dummy data each time data is read, using the conditional transfer to get the 
data out of the loop and to print the results, when N is 0. 

T0TAL+ 

5 REM THIS PR0GRAM IS A M00IFICATI0N 0F A PR0GRAM THAT WE DID 
BEr0RE 

20 DATA 2 •• 35, 3,2. 65, I I• .25, 1,9. 49, 35, I· 59, o,o 
21 REM THE DUMMY DATA IN THIS DATA LINE IS '•' 
25 LET T=O 
27 r0R X=I T0 50 
30 READ N, P 
34 Ir N=O THEN 45 
40 LET T=T+N*P 
42 NEXT X 
45 PRINT "T0TAL C0ST $"; n "THERE ARE"J x- t; "DirrERENT ITEMS" 
70 ENO 
RUN 
T0TAL+ 

T0TAL C0ST $ 76.54 THERE ARE 5 DI rrERENT ITEMS 

D0NE 
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Look carefully at line 45 in T0TAL+. This line gives the printing instruc
tions. The counting loop calls for X to go from I to 50, but line 45 says print 
X - 1. Since X counts the number of times the READ statement is executed, 
1 is added even when the dummy data is read; but we do not want to count 
the dummy data. So we have to tell the computer to subtract 1. An alterna
tive method would be to use F0R X = 0 T0 50. Then we could call for 
printing the value of X. 

The same loop may be used several times in the same program. Every time 
the computer executes the F0R statement, the limits on the incremented 
vuriuble are reestablishd. Suppose in !l group of five people each person took 
six tP.sts. And WP. want to read thP.ir scores and find the average for each 
person. We can set up a loop F0R X = 1 T0 6 and use this repeatedly until 
the computer runs out of data. The flowchart appears in Fig. 3-4 and we call 
the program AVG. Note that the flowchart of Fig. 3-4 contains no END box. 
This is because the computer runs out of data in the READ statement and 
termination is antomatic. Notice in the program that each score is printed as it 
is read. This is one way of keeping track of whose average is being printed on 
each line in the printed results. Also note that each line of data is devoted to 
the scores for one person. This makes it easy to organize the typing of data. 

Start 

Set total 
at 0 

READ loop 
F9.)R X = 1 T9.) 6 

NEXT X 

PRINT 

7j 

Add scores 
LETT= T + S 

Fig. 3-4. Flowchart for averaging test 
scores for several people, 



AVG 

10 LET T=O 
20 F'0R X=l T0 6 
30 READ S 
35 PRINT SJ 
40 LET T=T+S 
50 NEXT X 
60 PRINT "AVG="J T/6 
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68 REM WE SEND THE C0MPUTER BACK T0 LINE 10 T0 SET T AT ZER0 
AGAIN 

70 G01'0 10 
80 DATA 65168173185182187 
02 DATA 74.87190188.01.00 
84 DATA 8819h91192o90189 
86 DATA 911 831 781 89179,67 
88 DATA 65176.6b50160166 
100 END 
RUN 
AVG 

65 
74 
88 
91 
65 

68 
87 
97 
83 
76 

73 85 
90 86 
91 92 
78 89 
67 50 

0UT 0F' DATA IN LINE 30 

62 
87 
90 
79 
60 

87 
88 
69 
87 
66 

SUMMARY 

AVG= 76. 666 7 
AVG= 85.6667 
AVG= 9lol667 
AVG= 84. 5 
AVG= 64 

We see that it is not necessary for us to construct repetitive operations. 
This may be done automatically with the F0R-NEXT statement pair in BASIC. 

PROBLEMS FOR SEC. 3-1 

Draw flowcharts for all programs unless instructed otherwise. 
1) Add the counting numbers from 1 to 50 using F0R-NEXT. 
2) Do problem 6) in Chap. 2 using a machine loop. 
3) Do problem 7) in Chap. 2 with F0H-NEXT. 
4) Do problem 8) in Chap. 2 using a machine loop. 
5) Do problem 9) in Chap. 2 with FQlH-NEXT. 
6) Find the sum of the reciprocals of all the integers from I to 1000. 
7) Find the sum of the reciprocals of the integers from 900 tu 1000. Compare 

this number with the result of problem 6). 
8) Do problem 13) in Chap. 2 using a machine loop. 
9) Find the sum of the squares of the reciprocals of the integers from 1 to 1000. 
10) If you were given $1.00 today, $2.00 tomorrow, $3.00 the next day, and so 

on for 12 days, how many dollars would you have been given? Suppose this went on 
for 30 <lays. Then how much? Compare this with problem 3). 

3-2 MORE ON LOOPS 

In program AVG in Sec. 3-1, we went through the read and sum loop five 
times, once for each person's test data. When we have the computer do the 
same set of ope1 ations five times, we are actually using a loop. So let us 
rewrite A VG with a loop F0R P 1 T0 5 and call it A VCCNC. 
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AVGCNG 

S F0R P= I T0 S 
10 LET T=O 
20 F0R X=I T0 6 
30 READ S 
3S PRINT SJ 
40 LET T=T+S 
SO NEXT X 
60 PRINT "AVG="J T/6 
70 NEXT P 
80 DATA 6S. 68. 73,5s,52,51 
82 DATA 74,87.90.88,87.88 

86 
88 

DATA 66•9i.9i.92,90.69 
DATA 91.83. 73,39, 79,87 
DATA 6S• 76. 67, SO. 60. 66 

ENO 100 
~UN 
AVGCNG 

6S 
74 
88 
91 
6S 

OONE 

68 
87 
97 
83 
76 

73 
90 
91 
78 
67 

8S 
88 
92 
89 
so 

82 
87 
90 
79 
60 

87 AVG= 76·6667 
88 AVG= 8S.6667 
89 AVG= 91·1667 
87 AVG= 84· s 
66 AVG= 64 

Notice that the X loop is entirely within the P loop. Loops written in this 
way are called nested loops. They occur often in programming. Loops may be 
nested to almost any number you may require, but the loops must be com
pleted from within. The F0R statements and the NEXT statements must be 
paired. Legal and nonlegal combinations are shown below. 

Legal Illegal 

F0R A=I Till 8 F0R A=I T0 8 
F'0R B=2 Tlil 7 FlilR B=2 Till 7 
F0R C=2· 3 Till 6. I F0R C=2• 3 Till 60 I 
NEXT C NEXT A 
Filltt O=A Till B NEXT C 
NEXT D F0R D=A T0 B 
NEXT B NEXT 0 
NEXT A NEXT B 

Suppose we want to calculate compound interest on $2000 at 4% com
poun<led quarterly for nine years. When you take your savings account book 
to the bank after the first of the year, it calculates the interest four times at 
1% each time. In nine years you take the hook to the bank nine times. This is 
an ideal example for nested loops. One loop goes from 1 to 9, with a loop 
inside going from I to 4. This provides a good computer model for the actual 
problem. As the program is written, it is a simple matter to have the principal 
printed at the end of each year. A line may be inserted between 50 and 60 
to prir.t the <w1uu11t after ead1 year. The program couid aiso have been written 
using F0R X = .25 T0 9 STEP .25, or even F0R X = 1971.25 T0 1980 
STEP .25. If you want to be able to <lo several problems at several interest 
rates, then substitute a variable, which may be assigned as data, for .01 in 
line 40. See CMPINT and Fig. 3-5. 
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Start 

LET P 2000 
F\DR Y F(Z)R Q 

T(b 9 TQ') 4 

Compute 
interest 

Add 
interest to 
principal 

NEXT Y NEXT Q 

END 

Fig. 3-5. Flowchart for finding the compound amount of $2000 after 
nine years compounded quarterly. 

CMPINT 

8 
10 
18 
20 
28 
30 
38 
40 
48 
50 
52 
60 
62 
70 
80 
90 

REM START THE PRINCIPAL P AT $2000 
LET P=2000 
REM G0 FOR 9 YEARS 
F'0R Y=l TO 9 
REM G0 F0UR QUARTERS EACH YEAR 
FOR Q= 1 TO 4 
HEM COMPUTE THE INTEREST F0R THI~ QUARTER 
LET J=.Ol*P. 
REM ADD THE INTEREST TO THE PRINCIPAL 
LET P=P+I 
HEM *** WE CCULD HAVE USED LET P=P+.Ol*P HERE 
NEXT Q 
HEM AFTER FOU~ QUARTERS THE COMPUTER GFTS TO NEXT Y 
NEXT Y 
PRINT "AFTER 9 YEARS THE AMOUNT IS $"JP 
END 

RUN 
CMPINT 

AFTER 9 YEARS THE AMOUNT IS I 2861.54 

DONE 

33 

We may want to have the limits of one loop determined by the variable in 
another loop. For instanee, we ean print a triangle of numbers in which each 
row piints all of the eounting numbers up to and including the row number. 
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We need one loop for rows and another for columns. We want the number of 
coiumns to go from l to the row number. This is accomplished by program 
TRAGL. Now you can do problem 14) in Chap. 2 very easily. (Of course you 
could do the problem before, but it took a longer program.) 

TRAGI... 

10 r0R R=I T0 10 
20 r0R C= I Tiil R 
30 PR!NT G.1 
40 NEXT C 
50 :-~:.,~· 
60 NEXT R 
70 ENO 
RUN 
TRAGI... 

OONE 

2 
2 
2 
2 
2 
2 
2 
2 
2 

3 
3 
3 
3 
3 
3 
3 
3 

4 
4 s 
4 s 6 
4 s 6 7 
4 s 6 7 8 
4 s 6 7 8 9 
4 s 6 7 8 9 10 

SUMMARY 

Loops may be nested inside other loops as long as we see to it that opera
tions are done from within, much the same as we deal with sets of parentheses 
within other sets of parentheses in algebraic expressions. There may be as many 
loops within other loops as the problem may require up to a point. The limits 
of one loop may be set by the variables of other loops. Caution is urged 
against inadvertently changing the loop variable within the loop, although we 
may use its value for any purpose. 

PROBLEMS FOR SEC. 3-2 

1) In TRAGL we printed from I to the row number. Write a program to print 
from the row number to 10 for ten rows. 

2) Print the multiplication table up to 12 X 12. 
3) Print the addition table up to 12 + 12. 
4) Find the compound interest on $1000 at 5% compounded quarterly for 10 

years. Print the amount after each year with the year number. 
5) In problem 4), have the computer print the interest cumulatively each year. 
6) Print a table showing compound interests on $1000 for one, two, three, and 

four years at 4%, 4J2%, 5%, and 5)2% compounded quarterly. Print year 1 through 4 at 
the top, and put the interest rate in the first column of eat:h row. Put the rate in a 
loop F<l)R R = 4 TO 5.5 STEP .5. 
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7) Redo problem 14) in Chap. 2 using nested loops. 
/ 8) Write a program to read 10 numbers from data, find the largest number, print 
it and the position it oecupied in the data line. This requires only one loop, but you 
will have to read the first number directly from data outside the loop and then 
have the loop begin with 2 to read the rest of the data. (This is essentially a problem 
of storing values.) 
/ 9) Write a program to print all sets of three integers less than 20 so that they 
can be the sides of a right triangle. Print no duplications, i.e., if you have the 
computer print 3, 4, 5, do not print 4, 3, 5. 

10) Write a program to print the integers 1 through 50 in order in 5 rows of 10 
columns eaeh. 

11) Write a program to print the integers 1 through 50 in order in 10 rows of 
5 columns each. 
/ 12) Print a table of the squares of positive integers 1 through 29. Label the 
columns 0 through 9 and the rows 0, 10, and 20. Make the entry in the table be 
the square of the sum of the row and column labels. 

13) Have the computer print the product and the sum of all possible different 
pairs of integers from 15 to 20. 

3-3 INTRODUCTION TO LISTS 

Recall that in Chap. I it was stated that when a program specifies a vari
able, the computer sets up a location with the variable as its name. This 
provides a means for the computer to store numbers for later use. You are 
about to meet a very powerful extension of that concept, the computer list. A 
computer list sets up not a single location for a variable, but many locations 
for a variable. If we use the computer for a list of say four items (we may 
have many more) and choose to call it L, the different locations of the list 
will be L[I], L[2], L[3], and L[4]. If we want the list to contain the numbers 
4, 9, -92, and 8, this could be accomplished by saying LET L[I] = 4, LET 
L[2] = 9, LET L[3] = -92, and LET L[ 4] = 8. The numbers in brackets 
may be thought of as subscripts and they designate at which location of the L 
list the number is being stored. However, the LET statement with explicit 
subscripts is not really any better than assigning a different variable for each 
number. So values are usually assigned in a loop with the subscript being the 
variable in the loop. In the demonstration program LISTI we are letting S 
go from I to 4 and reading L[S] horn data. There may be several lists in the 
same program Any -letter of the alphabet may be used to designate a list. 
At this point we are limited to 10 or 11 items in a list, depending on the 
computer. If we have 10, they are numbered I through 10. Some computers 
start at 0. 

As you can see from the RUN of LISTI, we may use any or all of the 
numbers in a list. We can print them forwards or backwards. We can re
arrange them at will. We may look at the numbers in any identifiable manner. 
Lists are inc1edibly useful when you learn to handle them. 

Let us use lists and loops to write all possible combinations of four digits 
in one list taken in pairs with four digits in another list. First we draw a 
flowchart as in Fig. 3-6. We call the program PAIRS. 
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LISTI 

8 
10 
20 
30 
38 
40 
so 
60 
70 

80 
90 
100 
120 
130 
135 
140 
145 
150 
155 
160 
170 
180 

REM WE ARE READING F"llJUR ITEMS llJF DA TA WI TH A LllJllJP 
FllJR S=l T0 4 
READ LCSl 
NEXT S 
PRINT "WE CAN PRINT THE ITEMS 01' THE LIST EXPLICITLY" 
PRINT "LC l l LC 2l LC 3l LC 4l" 
PRINT LCllJLC2lJLC3lJLC4l 
PRINT 
PRINT "WE CAN ALS0 USE A L00P· THE Lli!l\I GER THE LI ST THE 
BETTER" 
PRINT "BEING ABLE T0 USE A L011JP I~' 

PRINT LCXJJ 
NEXT i\ 
PRINT 
PRINT 
PRINT "WE CAN 0PERATE 0111 THE NUMBERS IN THE LI ST" 
PRINT " B LCBl B>l<LCBJ" 
F0R B= I Tl2I 4 
PRINT BJLCBlJB>l<LCBl 
NEXT B 
PRINT 
PRINT "WE CAN PRINT THE LIST BACKWARDS WITH F'121R X=4 Tl2I I 
STEP -I" 

190 F0R X=4 T0 1 STEP -I 
200 PRINT LCXll 
210 NEXT X 
220 PRINT 
225 PRINT 
230 PRINT "WE CAN REL0CATE ITEMS IN THE LI ST" 
240 PRINT "250 LET Z=LC!l, 260 LET LC1l=LC2l AND 270 LET 

LC2J=Z" 
245 PRINT "GIVE THE 1'0LL0WING RESLl.T" 
250 LET Z=LCll 
252 REM >1<>1<HERE WE ARE ST0RING THE VALUE 01' LC 1 l IN Z 
260 LET LC1l=LC2l 
262 REM WE HAVE PUT THE VALUE 0F LC2l INT0 LC 1 J 

270 LET LC2l=Z 
272 REM HERE THE llJLD VALUE 01' LCIJ IS PUT INT0 LC21 FR0M Z 

280 PRINT "LC 1 l ="ILC 1 l 
290 PRINT "LC2l ="ILC2l 
300 PRINT "L00K CAREFULLY AT THE 0RIGINAL LIST" 
310 PRINT "WE HAVE EXCHANGED ITEMS 0NE AND TW0" 
320 PRINT 
330 PRINT "WE CAN PUSH EVERY NUMBER UP F0UR LllJCATI0NS IN THE 

LIST" 
340 FllJR P=l T0 4 
350 LET LCP+4l=LCPJ 
360 NEXT P 
370 F0R 111=1 T0 8 
380 PRINT LCNJJ 
390 NEXT Ill 
500 DATA 4, 9, -92. 8 
9999 END 

RUN 
LISTl 

WE CAN PRINT THE ITEMS llJF" THE LIST EXPLICITLY 
LCll LC2l LC3l LC4l 

4 9 -92 8 
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WE CAN ALS0 USE A L00P. THE L0NGER THE LIST THE BETTER 
BEING ABLE T0 USE A L00P IS 

4 9 -92 8 

WE CAN 0PERATE 0N THE NlMBERS IN THE LIST 
B LC BJ B•LC Bl 

I 4 4 
2 9 18 
3 -92 -276 
4 8 32 

WE CAN PRINT THE LIST BACKWARDS WITH F0R X=4 T0 I STEP -I 
8 -92 9 4 

WE CAN REL0CATE ITEMS IN THE LIST 
250 LET Z=LCIJ. 260 LET LCIJ=LC2l AND 270 LET LC2l=Z 
GI VE THE F0LL0 WING RESULT 
LCll = 9 
LC 2J = 4 
L00K CAREFULLY AT THE 0RIGINAL LIST 
WE HAVE EXCHANGED ITEMS 0NE ANO T\10 

WE CAN PUSH EVERY NUMBER UP F0UR L0CATl0NS IN THE LIST 
9 4 -92 8 9 4 -92 8 

OONE 

Start 

F¢RK= 
T¢4 

NEXT K 

END 

F¢R L = 1 
T¢4 

NEXT L 

PRINT 
A[KJ; B[L], 

Fig. 3-6. Flowchart for program PAIRS for printing all combinations from 
two four-item lists. 
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PAIRS 

10 REM 20 T0 40 READ THE A LIST 
20 F"0R I=I T0 4 
30 READ ACil 
40 NEXT I 
45 REM 50 T0 65 READ THE B LIST 
50 F"0R J=I T0 4 
60 READ BCJl 
65 NEXT J 
67 REM HERE IS AN0THER NESTED L00P 
70 F"0R K= I T0 4 
80 F"0R L= I T0 4 
90 PRINT I\ r ,,. "\a,....,., I "\ 

Mli.h..I" DLL.., .. 

REM *** N0TICE THE USE 0r THE SEMiC0L0N AND THE C0MMA 
NEXT L 

91 
100 
110 
120 
500 
510 
999 
RUN 
PAIRS 

I 
3 
5 
7 

OONE 

PRINT 
NEXT K 
DATA 1, 3, 5, 7 
DA TA 2. 3, 61 9 
END 

2 I 
2 3 
2 5 
2 7 

3 
3 
3 
3 

I 6 I 9 
3 6 3 9 
5 6 5 9 
7 6 7 9 

SUMMARY 

The computer list has been introcluced. A list is like a subscripted variable 
in that it takes on different values accorcling to the subscript. Each of the 
numbers in a list is a variable unto itself. It may be handled in the same way 
that any of our previous variables mav be handled. The numbers in a list may 
be rearrangecl. In order to exchange two numbers in a list, we first have to 
store one of them in another variable. 

PROBLEMS FOR SEC. 3-3 

1) Using one READ statement in a loop, prepare a nine-element list using the 
following numbers: 6, -89, 200, 31, 999, -999, 0, 1, and 18. Print out the list 
across the page first in the order given, then in reverse order. 

2) Fill a IO-element list with the squares of the subscripts. Print the element 
number and the listed value in order in two columns down the page. 

3) Prepare a IO-element list using the following numbers: 17, 18, 281, -722, 0, 
-5, --16, 11, -1, and 10. Find the largest number in the list and its location. Print 
them. Then exchange the largest number with the first element in the list and print 
the new list with a loop. 

4) Prepare one list with the numbers 6, 4, 11, 51, and 17 and another with 51, 
12, 11, and 16. Now print all possible pairs using one number from each list. 

5) Hepeat problem 4), without printing a pair if the numbers are the same. 
6) Redo program T0T AL in Chap. 2 using ;m N list for numbers of items and 

a P list for prices. Instead of N ° P use N[I] 0 P[l]. 
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7) Prepare one list with the numbers 6, 11, 15, 17, 26, and 83 and another 
with 15, Hl, 27, 83, and 91. Have the computer form a new list that contains only 
those numbers that are in both lists. 

8) Using the two lists given in problem 7), create a new list consisting of all 
numbers that appear in either list. If the numbe~ appears in both lists, enter it only 
once in the new list. 

9) LET F[l] 1 and LET F[2] = 1, then fill the next eight positions in F so that 
every entry is the sum of the previous two entries. Print the complete list. You have 
begun to form the sequence known as the Fibonacci numbers. 
,/ 10) Form a 10-item list consisting of the first 10 positive odd integers in order. 
Form a second list so that each entry contains the sum of all the numbers in the 
first list up to and including the location number for the second list. 

11) Prepare one list containing 6, 1, 3, 7, 2, and 9 and another containing 8, 2, 
3, 9, 7, and 4. Form a third list containing the sums of the corresponding elements, 
i.e., A[I] = F[I] + S[I]. 

12) Do problem 11), but enter the products in the third list. 
,/ 13) Fill a four-element list with 9, 60, 700, and 3000. Fill a three-element list 
with 7, 30, and 200. Sum up the products of all possible pairs of numbers, one 
from each list. 

Start 

PRINT 
list 

--..__E_N_~~ 

NEXT I 

For J =I+ 1 
T\i') 10 

Exchange 
L[I], L[J] 

NEXT J 

Fig. 3-7. Flowchart for arranging a 10-item list in 
numerical order 
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3-4 MORE ON LISTS 

We will now discuss the arrangement of a list in numerical order. If we 
look at every pair of numbers in a list of numbers and they are all in numerical 
order, then we are assured that the entire list is in order. Thus, we must 
instruct the computer to look at all the pairs and determine whether or not 

they are in order. If the pair is in numerical order, then we want the com

puter to look at the next pair. If it is not, then we want the computer to 
exchange the two numbers. We can accomplish this in the same manner as 
was done in program LISTI. In other 'Nords, we store one of the numbers in 
a new variable. Then we put the second variable's value into the first variable 
and the original value of the first variable into the second variable from the 
storage variable. The three statements look like this: 

xxx 
yyy 

zzz 

ARANGE 

LETS= L[I] 
LET L[I] = L[J] 
LET L[J] = S 

10 REM WE ARE READING THE LIST F"R0M DATA 

20 F"0R X=I T0 10 
30 READ L(Xl 
40 NEXT X 
SO PRINT "HERE IS THE LI ST IN 0RI GIN AL 0RDER" 
60 F"0R Y= I T0 I 0 
70 PRINT Lt YlJ 
80 NEXT Y 
90 PRINT 
100 REM N0W WE TEST PAIRS 0F" NUMBERS T0 SEE IF" THEY ARE IN 

0RDER 
110 F"0R I=I T0 9 
118 REM WHY D0N'T WE SAY F"0R I=I T0 10???? 
120 F0R J=I+I T0 10 
130 IF" Ltll <= L(Jl THEN 300 
140 LET S=Lt 1l 
ISO LET LCil=LCJl 
160 LET LCJl=S 
170 REM WE HA\IE RE.VERSED TW0 ELEMENTS 0F' THE LIST 

180 REM **** SEE PR0GRAM LISTI **** 
300 NEXT J 
400 NEXT I 
40S PRINT "AND HERE IS THE LIST IN 0RDER F"R0M SMALLEST T0 

GREATEST" 
410 F"0R Y=I T0 10 
420 PRINT LlYH 
430 NEXT Y 
500 DATA 6, • 19.28.20.-32, 111. 19,28• 23• 43 
999 END 

RLl'J 
ARAN GE 

HERE IS THE 
6 -19 

AND HERE IS 
-32 -19 

D0NE 

LIST IN 0RlulNAL 0KU~K 
28 20 -32 74 19 28 23 43 

THE LIST IN 0RDER F"R0M SMALLEST T0 GREATEST 
6 19 20 23 28 28 43 74 
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In flowcharting when we have a process of this kind, which has been used and 
clearly defined, we can avoid being explicit by using a shape to indicate a 
predefined process. The generally accepted shape is a rectangle with two 
additional vertical lines, which appears in the flowchart of Fig. 3-7 for pro
gram ARANGE that solves the problem we have just outlined. 

In program ARANGE, the list is read in lines 20, 30, and 40. Then, for the 
purpose of seeing the list in the original order, it is printed immediately in 
lines 60, 70, and 80. In lines 110 and 120 two loops are set up, where the I 
loop represents the first number of the pair and the J loop represents the 
second number. As per line 118, why did we not let I go from 1 to 10? Had 
we done that, at some point in the program the computer would have to 
compare L(lO] and L[lO], which is not necessary. The first time through, 
L[l] = 6 and L[2] = -19. The first element is not less than or equal to the 
second. Thus, We want the computer to exchange these two elements. This is 
done by lines 140, 150, and 160. As the computer leaves line 160, L[l) = -19 
and L(2] = 6. It is relatively simple for us to have the computer print the list 
every time it is necessary to exchange two elements of the list. All that is 
required is to insert four statements exactly like 60, 70, 80, and 90. This is 
done in program ARANGl in lines 200, 210, 220, and 230. This means that 
the more numbers out of order, the more printing we might expect. Study 
the printing of ARANGl carefully. Notice that after the first reversal, L[l] = 
-19 and L[2] = 6 as promised. 

Look at the three sets of lines: 60, 70, 80, 90; 200, 210, 220, 230; and 410, 
420, 430, 440. You should recognize that these three sets of lines are identical. 
BASIC provides a convenient program statement that allows us to type out 
that set of lines only once and then call that set of lines from anywhere in the 
program. The statement is G0SUB XXX, where XXX designates the first line 
of the set of lines you would like repeated. The set of program statements 
that is repeated is called a subroutine. When the computer encounters YYY 
G0SUB XXX, it initially behaves as it would for G0T0 XXX. However, the 
computer "remembers" where it was when it left YYY and will return to the 
next higher numbered line after YYY when it finishes the subroutine. In order 
to achieve this, the computer must "know" when it has completed the sub
routine. You, the programmer, must notify the computer where the end is by 
inserting a line ZZZ RETURN at the end of the subroutine. Then the com
puter will "know" that it must go to the line immediately following the G0SUB 
XXX it most recently encountered. 

G0SUB-RETURN 
YYY G0SUB XXX sends the computer to line XXX to execute all 

lines it encounters until the RETURN statement, which sends the 
computer back to the line following YYY. G0SUB is especially useful 
in programs where the same set of lines is used several times. 
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ARAlllGl 

10 REM WE ARE READING THE LIST rR0M DATA 
20 r0R X=l T0 10 
30 READ LCXl 
40 NEXT X 
SO PRINT "HERE IS THE LIST IN 0RIGINAL 0RDER" 
60 r0R Y=l T0 10 
70 PRINT LCYJJ 
80 NEXT Y 
90 PRINT 
95 PRINT "riERE WE ARE ARRANGING THE LIST" 
!CO REM N0 ~! t-JE TEST PAI RS 0 F MUMBERS T0 SEE ! F THEY ARE IN 

0RDl::k 
r0R I= 1 T0 9 
REM WHY D0N'T WE SAY r0R I=l T0 10???? 
r0R J=I+ I T0 10 
Ir LCI.l <= LCJl THEN 300 
LET S=LC I l 
LET Lll l=LC.Jl 
LET LC.Jl=S 
REM WE HAVE REVERSED TW0 ELEMENTS 0F THE LI ST 

REM **** SEE PR0GRAM LISTI **** 
r0R Y=l T0 10 
PRINT LCYJJ 
NEXT Y 
PRINT 
NEXT ,J 
NEXT I 

110 
il8 
120 
130 
140 
150 
160 
170 
180 
200 
210 
220 
230 
300 
400 
405 PRINT "AND HERE IS THE l.IST IN 0RDER rR0M SMALLEST T0 

GREATEST" 
r0R Y=l T0 10 
PRINT LC YlJ 
NEXT Y 
PRINT 

410 
420 
430 
440 
500 
999 
RUN 
ARANGl 

DATA 6.-19.28.20.-32.74.19.28.23.43 
ENrl 

HERE IS THE LIST IN 0RIGINAL 0RDER 
6 -19 28 20 -32 74 19 

HERE WE ARE ARRANGING THE LIST 
-19 6 28 20 -32 74 19 
-32 6 28 20 -19 74 19 
-32 -19 28 20 6 74 19 
-32 -19 20 28 6 74 19 
-32 -19 6 28 20 74 19 
-32 -19 6 20 28 74 19 
-32 -19 6 19 28 74 20 
-32 -19 6 19 20 74 26 
-32 -19 6 19 20 28 74 
-32 -19 6 19 20 23 74 
-32 -19 6 19 20 23 28 
-32 -19 6 19 20 23 26 
-32 -19 6 19 20 23 26 

28 

28 
28 
28 
28 
26 
28 
26 
26 
28 
26 
74 
26 
26 

A.'\ID HERE IS THE LIST IN 0RDER FR0M SMALLEST T0 
-32 -19 6 19 20 23 28 28 

.... ,,...."..::,,, 

23 43 

23 43 
23 43 
23 43 
23 43 
23 43 
23 43 
23 43 
23 43 
23 43 
28 43 
28 43 
74 43 
43 74 

GREATEST 
43 74 
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G0SUB 

10 PR!NT "THIS PR0GRAM IS INTENDED T0 DEM0NSTRATE G0SUB'S 
BEliAV10UR" 

20 G0SUB 700 
30 r0R X= 1 T0 3 
40 G0SUB 500 
45 G0SUB 700 
50 NEXT X 
60 G0SUB 400 
70 PRINT 70 
75 G0SUB 700 
80 G0SUB 400 
90 PRINT 90 
95 G0SUB 700 
100 LET X=4 
110 G0SUB 500 
115 G0SUB 700 
120 G0SUB 400 
130 PRINT 130 
135 G0SUB '100 
1 40 G0 SUB 600 
150 PRINT 150 
155 G0SUB 700 
399 G0Tlil 999 
400 PRINT "HERE WE ARE AT LINE"J 
410 RETURN 
500 PRINT "fHIS IS G0SUB 500"JXl"TlMES" 
510 RETURN 
600 PRINT "CALL G0SUB 400 l'R0M G0SUB 600" 
610 G0SUB 400 
620 RETURN 
700 PRINT 
710 RETURN 
999 END 
RUN 
G0SUB 

THIS PR0GRAM IS INTENDED T0 DEM0NSTRATE G0SUB'S BEliAVI0UR 

l'HI s IS G0SUB 500 TIMES 

THIS IS G0SUB 500 2 TIMES 

THIS IS G0SUB 500 3 TIMES 

HERE WE ARE AT LINE 70 

HERE WE ARE AT LINE 90 

THIS IS G0SUB 500 4 TIMES 

HERE WE ARE AT LINE 130 

CALL G0SUB 400 l'R0M G0SUB 600 
HERE WE ARE AT LINE 150 

D0NE 
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Let us look at a demonstration program before we use G0SUB in ARANGI. 
Go through program G0SUB line by line to be sure you see what has hap
pened. Line 10 is reasonably clear. Line 20 says G0SUB 700. Line 700 says 
PRINT and the next line is RETURN. Thus the computer generates one blank 
line and goes to line 30, which sets up a loop. Inside the loop, G0SUB 500 
and 700 are called three times, once each for X = 1, 2, and 3. This program 

ARANG2 

10 REM WE ARE READING THE LIST !"R0M DATA 
20 F'0R X=l T0 10 
30 READ LCXl 
40 NEXT X 
SO PRINT "HERE IS THE LIST IN 0RIGINAL 0RDER" 
60 G0SUB 410 
9S PRINT "HERE WE ARE ARRANGING THE LIST" 
100 REM N0W WE TEST PAIRS 0F' NUMBERS T0 SEE IF' THEY ARE IN 

0RDER 
110 F'0R I=l T0 9 
118 REM WHY D0N'T WE SAY F'0R I=l T0 10???? 
120 F'0R J=I+l T0 10 
130 IF' LC I l <= LCJl THEN 300 
140 LET S=Ltl l 
ISO LET LCIJ=LCJl 
160 LET LCJJ=S 
170 REM WE HAVE REVERSED TW0 ELEMENTS 0F' THE LIST 

180 REM **** SEE PR0GRAM LISTI **** 
200 G0SUB 410 
300 NEXT J 
400 NEXT I 
40S PRINT•"AND HERE IS THE LIST IN 0RDER F'R0M SMALLEST T0 

GREATEST" 
407 G0SUB 410 
408 G0T0 999 
410 F'0R Y=I T0 10 
420 PRINT LC Y lJ 
430 NEXT Y 
440 PRINT 
4SO RETURN 
SOO DATA 6,-19,28.20.-32, 74, 19.28.23, 43 
999 END 
ARANG2 

HERE IS THE LIST IN 0Rl GINAL 0RDER 
6 -19 28 20 -32 74 19 28 

HERE WE ARE ARRANGING THE LIST 
-19 6 28 20 -32 74 19 28 
-32 6 28 20 -19 74 19 28 
-32 -19 28 20 6 74 19 28 
-32 -19 20 28 6 74 19 28 
-32 -19 6 28 20 74 19 28 
-32 -19 6 20 28 74 19 28 
-32 -19 6 19 28 74 20 28 
-32 -19 6 19 20 74 28 28 
-32 -19 6 19 20 28 74 28 
-32 -19 6 19 20 23 74 28 
-32 -i9 0 i9 20 2;, 2ti ,,. 
-32 -19 6 19 20 23 28 28 
-32 -19 6 19 20 23 28 28 
AND HERE IS '!'HE LIST IN 0RDER F'R0M SMALLEST T0 
-32 -19 6 19 20 23 28 28 

D0NE 

23 43 

23 43 
23 43 
23 43 
23 43 
23 43 
23 43 
23 43 
23 43 
23 43 
28 43 
2ti ,..:; 
74 43 
43 74 

GREATEST 
43 74 
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is not intended to actually achieve any particular result except to give us a 
chance to trace out the path of the computer through several G0SUB 
statements. 

You might wonder why 399 G0T0 999 is in there. Consider what would 
happen if it were not there. Line 155 says G0SUB 700, which means go to 
line 700, execute a line feed, and return. Then what? Line 400 is next. Print 
"HERE WE ARE AT LINE," and "RETURN." RETURN where? RETURN 
in this subroutine responds only to G0SUB 400 and there was no such 
statement. The computer cannot execute such a set of instructions and will 
print a message to that effect. So you must build a barrier in front of sub
routines to prevent the computer from accidentally beginning without the 
proper G0SUB statement. Notice that lines 500, 600, and 700 are already 
protected by RETURN statements. 

Now we should be ready to enter the G0SUB concept into ARANGI. This 
program is called ARANG2. Examine lines 60, 200, and 407. See the barrier 
at line 408 to prevent accidentally beginning the subroutine. 

SUMMARY 

I) The computer list is beginning to emerge as a powerful storage area for 
keeping numbers while we have the computer perform tests on numbers in 
the list. 

2) We can rearrange the elements in numerical order by testing all pairs 
and exchanging any that are not in the required order. 

3) G0SUB permits us to use the same set of program statements many 
times at many different points in a prngram without disturbing the progress 
of the computer through the rest of the program. 

PROBLEMS FOR SEC. 3-4 

1) Write a program to print the following numbers in decreasing numerical order: 
34, -67, 10, 0, -99, 103, and L Count the number of times the computer has to 
exchange two numbers and the number of comparisons. 

2) Write a program to print the following numbers in increasing numerical order: 
45, 76, - 76, 45, and 98. Do not print the duplicated number, but leave it in the list. 

3) Program the computer to list the numbers in order in problem 1) by comparing 
elements one and two first, then elements two and three, then elements three and 
fom, etc. Create a switch S = 0 for off and S = 1 for on. Tum the switch off, then 
if an exchange is required, tum the switch on. After testing the last two elements, 
look at the switch. If it is on, go through the list again. If it is off, print the list; 
it must be in order. Count the number of tests and the number of exchanges. 

4) Prepare a five-clement list using the averages of the test scores from program 
AVG in Sec. 3-1. Then arrange the averages in decreasing order and print a number 
representing the position in the original list. This latter can be clone by setting up 
a second list containing 1, 2, 3, 4, 5, then exchanging these numbers each time the 
corresponding averages are exchanged. 

5) Prepare one list with the numbers 0, 6, 1, 3, 7, 2, 3, 1, 4, and 9 and another 
with 0, 8, 2, 3, 9, 7, 4, 1, 2, and 4. Prepare a third list with the sums of the corre
sponding elements. So far this is similar to problem 11) in Sec. 3-3. Beginning with 
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the highest subscript, look at each entry in the sum list. If the entry is less than 10, 
procce<l to the ntxl entry_ If the entry is 1nure than 9, subtra(;l 10 frL)H1 that entry 
and add 1 to the entry with the next lower subscript. Print all three lists across the 
page, one above the other, with the sum list last. What have you accomplished? 
j 6) On seven consecutive days the high and low temperatures were as follows: 
51-71, 48-67, 50-77, 55-78, 55-76, 55-75, 49-79. Write a program using lists to find 
the greatest range and the number of the day on which it occurred, the average high, 
and the average low. 
j 7) Prepare two 10-element lists using the following numbers: 43, 65, 92, 38, -45, 
0, 15, 61, -61, -15, 45, 54, 52, -14, 49, -3, 66, 72, 29, -L Arrange all the 
numbers in increasing numerical ordero 
j 8) The following test scores are given: 65, 71, 82, 63, 90, 58, 66, 67, and 68. 
Program the computer to list the scores, calculate the average, and then find the 
number of test scores that were above average and the number below average. 
Also, find the score where there are the same number of scores above as below. 
j 9) The Fibonacci numbers are generated by letting the first two numbers of the 
sequence equal 1, and from there on each number may be found by taking the 
sum of the previous two clements in the sequence. So you get 1, 1, 2, 3, 5, 8, 13, 
etc. Prepare two lists: one with the first 10 and the other with the second 10. For 
each clement from 2 to 19 find the difference between the square of the element 
and the product of the clements immediately preceding and following. In other 
words, print F[l] 0 0 2 - F[l - l] ° F[l + l]. 



CHAPTER 4 

Computer Functions 

4-1 INTRODUCTION TO INT( ), SQR( ), ABS( ), AND SGN( 

The four functions discussed in the following, will prove very useful in 
BASIC. 

INT(X) is used in two ways. In some computers, INT(X) determines the 
greatest integer not greater than X. For example, if A = INT(43.2), then 
A= 43; if A = INT(6), then A= 6; and if A = INT(-2.3), then A= -3. In 
other computers, INT(X) truncates the number X, i.e., it simply removes the 
decimal part. So if A = INT(-2.3), then A = -2. 

SQR(Y) computes the non-negative square root of Y. For example, if B = 
SQR(l6), then B = 4. 

Some computers will not compute if B = SQR(-16). However, if we have 
many values for which we want the square roots and some happen to be 
negative, we can instrnct the computer to take the square root of the absolute 
value of Y. BASIC p10vides ABS(Y) for just such occurrences. For example, 
ABS(18.3) = 18.3, and ABS(-24.61) = 24.61. So we can use SQR(ABS(Y)) for 
the problem above. 

A fourth BASIC function which you may not have much call for right now 
is SGN(N). SGN(N) is + 1 if N is positive, 0 if N is 0, and -1 if N is negative. 
The number in parentheses is called the argument of the function. Note that 
the argument may be an explicit number, a variable, another function, or any 
algebraic expression. Study the demonstration program ASIS to see how the 
computer handles these functions. 

INT(X) computes the greatest integer of X. 
SQR(X) computes the positive square mot of X. 
ABS(X) computes the absolute value of X. 
SGN(X) is + 1 if Xis positive, 0 if X 0, -1 if X is negative. 

47 
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ASIS 

10 PRINT "X","ABSCX>"•"SQRCABSCX>>"•"INTCX>"•"SGNCX>" 
20 READ X 
30 PRINT X.ABSCX>.SQRCABSCX>>•INTCX>.SGNCX) 
40 DATA -699913.,-35.2,-.032 
50 DATA 0,.032,23.412.6391' 
60 G0T0 20 
70 END 
RUN 
ASIS 

x ABSCX> SQRCABSCX» 
-8999!3:: 8999!3:: 948e 637 
-35.2 j5.2 5.93296 
- 0032 .032 • I 7666 5 

0 0 0 
.032 .032 • 1 76665 
23.412 23.412 4. 6366 
6391 6391 91.6024 

0UT 0r DATA IN LINE 20 

INTCX> 
-8999!3e 
-36 
- i 

0 
0 
23 
6391 

SGN C X: 
- ! 
- I 
-1 

0 
I 
I 
I 

One common use of INT( ) is for factoring integers. We can look at the 
quotient of two integers, and if that is an integer, then the denominator is a 
factor. For example, 6515 = INT(6515); therefore 5 is a factor of 65. So in 
order to find the greatest factor, all we have to do is start with the integer, one 
less than the number we are trying to factor, and test to see if it divides with
out remainder. If it does, we use the conditional transfer and send the com
puter to a PRINT statement. If it does not, we let the computer subtract 1 by 
using a loop and try again. If we start at N, we will get NIN = INT (NIN) the 
first time through even for prime numbers. Let us also print N is prime if it is. 

Start 

PRINT 
.. , :-

/ .... ____,, ., I~ ~ime. 

F(Z)R D = N --1 
Tc,?) 2 STEP-1 

PRINT 
N,D 

Fig. 4-1. Flowchart for factoring integers. 

no 



PRIME I 

10 
20 
30 
40 
50 
60 

REAO N 
r0R D=N-1 T0 2 STEP -1 
Ir N/D=INTCN/D) THEN 70 
NEXT D 
PRINT NJ"IS PRIME" 
G0T0 10 

70 
80 

PRINT DJ "IS THE GREATEST rACT0R 0r"JN 
G0T0 10 

90 DATA 1946,1949•1009. 1003 
DATA 11001.240.11 100 

110 
RUN 
PRIME! 

END 

9 73 IS THE GREATEST F"ACT0R 0r 
1949 IS PRIME 
1009 IS PRIME 
59 IS THE GREATEST rACT0R 0r 
3667 IS THE GREATEST rACT0R 
120 IS THE GREATEST rACT0R 0r 
II IS PRIME 

0UT 0r DATA IN LINE 10 

1946 

1003 
0r 11001 
240 
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So we stop at 2 rather than 1. First we draw the flowchart in Fig. 4-1, then 
write the program PRIME I. 

In PRIMEl the computer tested 1949/D with 1947 different values for D 
before it decided that 1949 is prime. That is a lot of tries. Whenever reasonable, 
we should try to improve the efficiency of our program. What do we know 
about factors of integers? We know that the smallest possible factor is 2. So the 
greatest could be N/2. For 1949 then, we can reduce the number of tries to 
975. But we also know that if we try all possible divisors down to the square 
root of the number we are trying to factor, then the quotients will also be less 

PRIME2 

10 READ N 
20 r0R D=2 T0 SQRCN> 
30 Ir N/D=INTCN/D> THEN 70 
40 NEXT D 
50 PRINT NJ "IS PRIME" 
60 G0T0 10 
70 PRINT N/DJ "IS THE GREATEST rACT0R 0r"JN 
80 G0T0 10 
90 DATA 1946,1949•1009,1003 
100 DATA 11001.240.11 
110 END 
RUN 
PRIME2 

913 IS THE GREATEST rACT0R 0F 
1949 IS PRIME 
1009 IS PRIME 
59 IS THE GREATEST rACT0R 0r 
3667 IS THE GREATEST rACT0R 
120 IS THE GREATEST rACT0R 0F 
11 lS PRIME 

0UT 0F DATA IN LINE 10 

1946 

1003 
0r 11001 
240 
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than the square root. So we might try F0R D = N - 1 T0 SQR(N) STEP -1. 

Well, SQR(l949) is approximately 44 and this means 1904 tries, which is much 

worse. But why not go from 2 up to SQR(l949)? Now we have only 43 tries 

and if we do get divisibility for other numbers, we will have the smallest 

factor and we can get the greatest factor by dividing the number by its small

est factor. This seems worth making the necessary changes in PRIMEL Only 

lines 20 and 70 require changing. Line 20 is the line which sets up the loop 

to test for divisibility and line 70 is the PRINT statement. In the PRINT 

statement we want N/D printed now, whereas we wanted D printed before. 

See PRIME2. 

SUMMARY 

Four computer functions were introduced. 

1) INT(A) evaluates the greatest integer of A. 

2) SQR(B) finds the positive square root of B. 

3) ABS(C) computes the absolute value of C. 

4) SGN(D) becomes +I if Dis positive, 0 if D is 0, and 1 if D is negative. 

The value in parentheses is called the argument of the function. 

PROBLEMS FOR SEC. 4-1 

I) Modify PRIME2 to write all pairs of factors. 

2) Modify the program in problem I) to print no duplications. 

3) 'Write a program that will print only prime factors of integers. 

4) V\lritc a subroutine that will perform the work of ABS( ), without using 

another computer function. 
5) \Vrite a subroutine that will perform the work of SGN( ), without using 

another computer function. 
6) \Vritc a program to print all different pairs of factors of the following set of 

integers: 711, 991, -991, 453, -654, 1009, -1009, 9001. 

7) vVritc a program to print all of the prime positive integers less than 100. Do 

not let the computer try numbers divisible by 2. 

8) Print the prime integers from 1000 to 1500. Do not let the computer test the 

even numbers. 
/ 9) For each of the following pairs of numbers, find two numbers so that the 

sum of your two is the first number in the given pair and the product is the second 

number in the given pair: 3, 2; 7, 12; 11, 28; -11, 28; 3, -28; 76, 1003; 7, 8; 

34, 289. 

4-2 !\EDUCING COMMON FRACTIONS AND DIMENSION 
CONVERSIONS 

\Ve are finally ready to reduce fractions to lowest terms. Look at problems 

13) and 14) in Chap. I Thne, if we had aclclecl 5/6 ancl 7 /8 we would have 

gotten 82/ 48. Since, howevc1, it is customm y to 1 educe fractions, we would 

like to get 41/24. 
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All we have to do is find the largest factor of the numerator that is also a 
factor of the denominator. Only this time we have to go all the way to 2. So 
we will use the procedure of program PRIMEL First we should prepare a 
flowchart. See Fig. 4-2. We simply find the greatest factor of the numerator 
and see if it is also a factor of the denominator. If it is, fine. If it is not, then 
we go back and find the next greatest factor of the numerator and test to see 
if that is a factor of the denominator. If it is, fine. If not, we go back again 
and look for the next factor of the numerator. If we get all the way to 2 
without a number that is a factor of both numerator and denominator, then 
we print the fraction as it was given. See program REDUCE. 

\Ve should try to pick the largest factor of the smaller number to reduce 
the number of tries the computer has to execute. 

Dimension Conversions 

\Ve find the INT( function useful in simplifying dimensioned numbers 
to simplest form. Suppose we change 93 in. to feet and inches. By hand we 
would divide 93 by 12 and the whole number in the result would be in feet. 
Then the remainder would be in inches. The problem would appear as follows: 

7 
12)93 

84 
9 

and we would say 7 ft 9 in. with no difficulty. \Ve can easily get the 7 by 
using INT(93/ 12), but it is an exercise in mathematics to get the 9. Let us 
look at the division problem in more detail: 

7.75 
12)93.00 

84 
9.0 
8.4 

.60 
.60 
.00 

,75 
12)9.00 

8.4 
.60 
.60 
.00 

\Ve see that if we divide 12 into the remainder after integer division, we get 
the decimal portion of the result if we divide by 12 by decimal division. That is, 

9/12 93/12 - INT(93/12) 

for this problem. Or in general, for N divided by D and calling the remainder 
R we get 

R/D = N/D - INT(N/D) 

i\Iultiplying both sides by D we get 

R N - INT(N/D) 0 D 
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Start 

F¢R P =NT¢ 
2 STEP-1 

PRINT 
N/P, 0/P 

Fig. 4-2. Flowchart for reducing common fractions" 

REDUCE 

10 
20 
30 
40 
so 
60 
70 
60 
90 
100 
110 
120 
130 
140 

READ N.D 
r0R P=N T0 2 STEP -I 
Ir N/P=INTCNIP> THEN 70 
NEXT P 
PRINT N"/"D 
G0Tl3 10 
Ir D/P=INTCDIP> THEN 90 
G0T0 40 
PRINT N 11/"D"="N/P"/"IJ/P 

G0T0 10 
DATA 5, 6 
DATA 62,46 
DATA 3,4 
DATA 36, 46 
END 150 

RUN 
REDUCE 

5 
62 
3 
36 

I 6 
I 46 
I 4 
I 46 

41 I 24 

3 I 4 

0UT 0r DATA IN LINE 10 
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So all we need is a program statement LET R = N - INT(N/D) " D. See line 20 in program DEMREM. 

DEM REM 

5 PRINT "NUMERAT0R"• "DEN2JMINAT0R"• "REMAINDER"• "INTEGER QU2JTIENl'" 10 READ N•D 
15 REM F"IND THE REMAINDER WHEN 'N' IS DIVIDED BY 'D' 20 LET R=N-INT<NID>*D 
30 PRINT N.D.R.INT<NID> 
40 G0T0 10 
50 DATA 93,12.100.25.365,52.365.7 
52 DATA 365, 12, 52• 13• 5280• 440, 55, 6 
60 END 
RUN 
DEMREM 

NUMERAl'0R DEN0MINAT0R REMAINDER 
93 12 9 
100 25 0 
365 52 1 
365 7 1 
365 12 5 
52 13 0 
5280 440 0 
55 6 1 

0UT 01' DATA IN LINE 10 

INTEGER QU0TIENT 
7 
4 
7 
52 
30 
4 
12 
9 

Now we can easily convert numbers in inches to feet and inches. First see the flowchart in Fig. 4-3 and then the program C0NVRT. 

Start 

LET F 
= INT (1/12) 

LET 11 
=l-F•12 

Fig. 4-3 Flowchart for converting 
numbers in inches to feet and inches. 
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C0NVP.T 

10 READ I 
20 LET F=INTCI/12> 
30 LET Il=I-F*12 
40 PRINT I"INCHES ="F"FEET "I I "INCHES" 
45 G0T0 10 
50 DATA 9,56.47,37,947,450 
60 END 

RUN 
CiONiiRT 

9 INCHES 0 FEET 9 INCHES 
86 INCHES 7 FEET 2 INCHES 
47 INCHES 3 FEET 11 INCHES 
37 INCHES 3 FEET 1 INCHES 
947 INCHES 78 FEET 11 INCHES 
480 INCHES 40 FEET 0 INCHES 

0UT 0F DATA IN LINE 10 

SUMMARY 

1) We can now find the greatest common factor of two integers and thus 

reduce fractions to lowest terms. 
2) We have seen that the INT( ) function may be used to break quotients 

up into their integer part and their decimal part less than 1. 
3) We can find the remainder in a division problem by using R = N - INT 

(N/D) " D. This allows us to convert dimensioned numbers, such as inches, 

to feet and inches. 

PROBLEMS FOR SEC. 4-2 

1) Write a program to add two simple fractions and print the sum reduced to 

lowest terms. 
2) Improve the eHiciency of program REDUCE by putting the smaller number in 

the P loop in line 20. 
3) Write a program to convert improper fractions to mixed numbers. 

4) Convert inches to yards and feet and inches. 

/ 5) Write a program to multiply two fractions, converting the result to a mi.xed 

number in reduced form. 
/ 6) Convert dollars in decimal form to the equivalent in coins. 

7) Do problem 5) for adding two fractions. 
8) For each of the following pairs of numbers, find the greatest common factor: 

19~ 1083;27,35; 27,36; 16,34; 12,30. 
9) For each of the following pairs of numbers, find the least common multiple: 

190, 1083; 25, 745; 187,84. 
10) Prepare a list consisting of the first 10 Fibonacci numbers. Find the greatest 

common factor for every pair in the list, prepare a list of these \Yith no duplications, 

and print them. 
/ 11) Write a program to find the greatest common factor of sets of three numbers 

assigned as data. 
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4-3 PROGRAM-DEFINED FUNCTIONS 

Suppose we have $56.31 in a savings account bearing 4Jf% interest com
pounded monthly and we hear of a bank that is offeiing 4Y.1% compounded 
quarterly. Should we change banks? We did wot k with compound interest 
earlier. So this should be a matter of doing two calculations in the same pro
gram. Let us leave the $56.31 in each bank for 10 years and see if there is 
enough difference to change banks. For compounding monthly, we use the 
yearly rate divided by 12, and calculate and add the interest 12 times per year. 
For quarterly compounding, we use the yearly rate divided by 4, and calcu
late and add interest four times per year. In this case, use one loop for the 
years and a 1 to 12 loop for monthly compounding and a 1 to 4 loop for 
quarterly compounding, both inside the same 1- to 10-year loop. The flowchart 
in Fig. 4-4 should help to sort out this plan. 

Since the intent is to develop several concepts in this program that will 
require changing the pt inting, the variables will be printed individually on 
sepat ate lines. This technique may often save typing when you anticipate 

Start 

Initialize 
principal 

on both rates 

F\l>R Y = 1 T0 
10 

Compute 
new principal 
for this year 

at4.5% 

Compute 
new principal 
for this year 

at4.75% 

NEXT Y 

PRINT 
headings 
and P's 

Fig. 4-4. Flowchart for computing END 
compound interest at two rates. 
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making changes as you develop a progrn.n-1. Thus in program BP ... ~JKl lines 
130 and 150 are printed with semicolons at the end so that the printing can 
be placed at the ends of those lines from PRINT instructions on other lines. 
The values of the different principals will be printed, according to instructions, 
on lines 140 and 160. 

Note: On some computers line 10 of BANKl would be written as 10 LET 
P, Pl= 0. 

We can certainly obtain the information we want from the RUN of this 
program in its present form. Clearly, we would get more interest by changing 
banks. You will have to decide whether it is worth switching. Even so, let us 
see what we can do to simpiify the results. For instance, when we talk about 
money, most of us tend to round off to the nearest cent. So we should be able 
to have the computer do that too. We could multiply by 100 and then take 
the greatest integer, but that would give 8823 for P and we want dollars and 
cents. Let us then divide by 100 again and get 88.23. However, we really 
want 88.24 because the .007 is more than one half a cent. We can obtain this 
by adding .5 after we multiply by 100, then taking the greatest integer and 
dividing by 100 again. Adding .5 to positive numbers from .5 to .99 results in 
numbers from 1.0 to 1.49, and sends positive numbers from .01 to .49 into 
numbers from .51 to .99. When we take INT(the sum), the result increases by 
1 for numbers .5 or more and is unchanged for numbers less than .5. Thus 

BANK I 

10 LET P=Pl=56.31 
20 F0R Y=I T0 10 
22 REM F"0R TEN YEARS 
30 F0R M=I T0 12 
32 REM C0MP0UND M0NTHLY AND C0MPUTE INTEREST 
40 LET I=P•4.5/I00/12 
50 LET P=P+I 
60 NEXT M 
62 REM THAT FIGURES THE INTEREST F0R THIS YEAR C0MP0UNDED 

M0NTHLY 
70 F0R Q= 1 T0 4 
72 REM C0MP0UND QUARTERLY 
BO LET ll•Pl*4•75/I00/4 
90 LET Pl•Pt+I I 
100 NEXT Q 
102 REM THAT TAKES CARE 0F THE QUARTERLY INVESTMENT F0R THIS 

YEAR 
!OB REM N0W T0 C0MPUTE THE NEXT YEAR 
tlONEXTY 
120 PRINT "F0R TEN YEARS" 
130 PRINT "@4.5% C0MP0UNDED M0NTHLY•·•"J 
I 40 PRINT P 
150 PRINT "@4.75% C0MP0UNDED QUARTERLY···"l 
160 PRINT Pt 
9999 END 
RUN 
BANK I 

F0R TEN YEARS 
@4.5% C0MP0UNDED M0NTHLY·•• BB.2374 
@4.75% C0MP0UNDED QUARTERLY··· 90.2943 

D0NE 



Computer Functions 57 

R0UND 

10 READ X 
20 LET Y=INTCX*l00+.5)/100 

PRINT y,X 30 
40 
so 
60 
RUN 

DATA 2.31462,2.34999,2.35001.362.617.346,3.66149E-02 
G0T0 10 
END 

R0UND 

2. 31 
2.35 
2.35 
362 
617.35 
.04 

0UT 0F DATA 

2.31462 
2. 34999 
2.35001 
362 
617-346 
3.66149E-02 

IN LINE 10 

we have a rounding function all our own as follows: 

LET Y INT(X 0 100 + .5)/100 

Let us try this with a few numbers to see that it actually works, before we 
insert it in our banking problem. See R0UND. (It may often be wise to perfect 
a technique in a smaller uninvolved program before trying it in a longer more 
complicated one. There should be fewer sources of error in the final program.) 

R0UND wmks out well. However, we often have more than one variable 
that we want to round off. BASIC has a way of doing this. We may define 
any function of our own using DEF FNA(X) = ZZZZZZZZZZZZ, where X is 
a dummy variable. It simply hokls a place where we will later enter the 
variable for which we want the function evaluated. The format of our round
ing function looks like this: 

XXX DEF FNH(Z) = INT(Z 0 100 + .5)/100 

XXX is the line number of the statement number of the DEFining statement 
in a BASIC program. We may substitute any letter of the alphabet for H. 
Thus, we may for example, DEF FNI( ) and DEF FNJ( ) for other func
tions in the same program. The third letter is the one that identifies which 
function we are calling for. We may define another function that rounds off 
to tenths as ZZZ DEF FNT(G) INT (G • 10 + .5)/10 and whenever we call 
for FNT( ), we round off to tenths. Let us see how this works out in program 
DEF( ). 

DEF 
XXX DEF FNA(X) (any legal BASIC expression). BASIC pro-

vides a program-defined function. It begins with FN followed by a 
third letter which is used to identify the function. (Some computers 
allow more than one argument.) 
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DEFC > 

20 DEF FNH<H>=INTCH*I00+.5)/100 
30 DEF FNT<T>=INTCT*I0+.5)/10 
40 
45 

PRINT "X"11 "Y", "XIY", "FNH< X/Y > ", "FN TC X/Y >" 
READ x,y 

50 PRINT x,y,X/Y,FNHCXIY>,FNTCXIY> 
60 
70 

DATA 1, 11, Io, 3, 3, 4, 6. 11. 2, 3. 125, B, 6324 
G0T0 45 
END 80 

RUN 
DEF<> 

x 

10 

3 

6 

3. 125 

y 
11 

3 

4 

11.2 

8.6324 

0UT 0F DATA IN LINE 45 

X/Y 
9.09091E-02 

3,33333 

• 7S 

.535714 

• 362008 

FNHCX/Y) 
.09 

3.33 

• 75 

• 54 

• 36 

F1\il\X/Yi 
.1 

3.3 

• 8 

• 5 

• 4 

Now we can alter om compound interest program BANKL We only need 

to change two lines and insert the DEF statement. It is common practice to 

put all DEF statements at the beginning of the program. Let us also put in 

dollar signs ($). 

2 DEF FNH<X>=INT<X*l00+.51/100 
140 PtUN T "$"FNH< P> 
1 60 P i1 INT "$" FN HCP I > 

RUN 
BANK 1 

F0H TEN YEARS 
@4.5:4 C0MP0U.'IDE.D M0NTHLY···$ 88·24 
@4,75z C0MP0U~DED QUARTE~LY ••• $ 90.29 

D0NE 

The results in the above prngram are rnun<led off to the nearest cent and 

the dollar signs make it clear that we a1 e dealing with monev. However, it 

would be even better if we coulcl line up the decimal points. If your version 

of BASIC does not p1 ovide a computer function to ove11ide the semicolon 

spacing, you may write your own subroutine that will allow you to place 

results exactly where you want them printed. In om pa1 ticular problem all we 

want to do is move the fi1 st number th1 ee spaces to the 1 ighL B11t we might 

then \Vt.tilt to 111ove il1e111 Lolli [ u1 tl1c1 i.u i.l1L' 1 jgl1l. Su k·L u;-, l.t~t_·· the tiiiJC t\; 

devel<>p a sub1 outine. 
\Vhat we me trying to do is to gain control oYer the number of spaces 

bel\\ecn items ol p1inted ontp11L This implies getting the comp11tc1 to print 

difle1cnt numbers ol spaces acrn1ding to ou1 ncccl This suggests putting XXX 
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PRINT " "; in a loop and letting the high number be a variable that equals 
the number of blank spaces required. The following subroutine will print X 
spaces. 

500 F0R S = 1 T0 X 
510 PRINT " "; 
520 NEXT S 
530 RETURN 

In BANKl, no matter where we place the numbers, we will have to put the 
first number three spaces further to the right than the second number. We 
may now accomplish the required spacing by first printing according to line 
130 and then setting a reasonable value of X followed by G0SUB 500. Upon 
getting the computer to print according to line 1.50, we next LET X = X - 3 
put in three fewer spaces and G0SUB 500 again. Finally, we must be sure 
that we do not let the computer enter the sub10utine accidentally. Should this 
happen, the computer will attempt to execute the RETURN statement when 
there was no prior G0SUB to direet it. To avoid this we can use 490 G0T0 
9999. However, BASIC has the statement XXX ST0P for just such a situation. 

ST0P 
XXX ST0P is equivalent to XXX G0T0 9999 when 9999 is the 

END statement. 

Below we list the latest changes, and name the resulting program BANK2. 
The entire prngram is listed to see where things fit together. As you can see, 
the results are aligne<l in the RUN. 

132 LET X=4 
1 38 G0 SUB 500 
156 LET X=X-3 
1 58 G0 SUB 500 
490 ST0P 
500 r0R S=l 1'0 X 
510 PRINT " "J 
520 NEXT S 
530 RETURN 

RUN 
8ANK2 

r0R TEN YEARS 
@4.5% C0MP0UNDED M0NTHLY·•• $ 88.24 
@4.75% C0MP0UNDED QUARTERLY••• $ 90.29 

00NE 
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BANK2 

2 DEF FNHCX>=INTCX*IOO+.Sl/100 
10 LET P=Pl=S6.31 
20 F0R Y= I T0 I 0 
22 REM r0R TEN YEARS 
30 r0R M= I T0 12 
32 REM C0MPOUND MONTHLY AND COMPUTE INTEREST 
40 LET I=P*4.S/100112 
SO LET P=P+ I 
60 NEXT M 
62 REM THAT Fl GURES THE INTEREST FOR THIS YEAR COMPOlF'1DF.D 

MONTHLY 
10 FOR O=I TO 4 
72 REM COMPOUND QUARTERLY 
BO LET ll=Pl*4•7S/100/4 
90 LET Pl=Pl+I I 
100 NEXT Q 
102 REM THAT TAKES CARE OF THE QUARTERLY INVESTMENT FOR THIS 

YEAR 
IOB REM NO~ TO COMPUTE THE NEXT YEAR 
I I 0 ,\JEX T Y 
120 Pk!NT "FOR TEN YEAkS" 
130 PRINT "@4.S% COMPOUNDED MONTHLY···"; 
132 LET X=4 
I 36 GO SUB SOD 
140 PRINT "$"rNHCP> 
I SO PRINT "i!4. 7S% C0MPOUNDED QUARTERLY ••• "J 

I S6 LET X=X-3 
I SB GOSUB SOO 
160 PRINT "$"FNHCPI> 
490 ST0P 
SOD r0R S=I TO X 
SI 0 PRINT " "J 
S20 NEXT S 
S30 RETURN 
9999 END 
RUN 
BANK2 

FOR TEN YEARS 
i!4.S% COMPOUNDED MONTHLY··· $ 68.24 
@4.7S% COMPOUNDED QUARTERLY··· $ 90.29 

D0NE 

Now as long as we have the spacing subroutine available, let us try several 
values of X in line 132 an<l see what happens. 

132 LET X=IO 
RUN 
BANK2 

r0R TEN YEARS 
@4o5% C0MP0UNOEO M0NTHLYooo 
@4.75% C0MP0UNDED QUARTERLY··• 

OONE 

132 LET X=20 
RUN 
BANK2 

$ BBo24 
$ 90.29 



F0R TEN YEARS 
114.5% C0MP0lJllOEO M0NTHLY··· 
114.75% C0MP0UNOEO QUARTERLY••• 

OONE 

132 LET X=3 
RIJll 
BANK2 

F0R TEN YEARS 
11405% C0MP0UNOEO M0NTHLY··· $ 88.24 
114075% C0MP0UNOEO QUARTERLY•••$ 90.29 

OONE 
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$ 88024 
$ 90.29 

Note: See Appendix C for TAB( ) and PH.INT USING formatting 
functions. 

SUMMARY 

1) The program-defined function DEF FNA(X) has been introduced. This 
allows us to have the computer perform the same function on different 
variables. 

2) The ST0P statement may be used to terminate the RUN of a program 
at places other than the physical end of the prngram. The end of a program 
specified in this way may be referred to as the logical end. 

3) We have constructed a subroutine that enables us to control more pre
cisely than with the semicolon or comma the spacing of printed results by 
putting " "; in a loop. This gives more versatility of format. 

PROBLEMS FOR SEC. 4-3 

1) Find the square roots of the integers from 11 to 23. Print the integer, its 
square root, and its square root rounded off to the nearest thousandth and to the 
nearest tenth with appropriate labels. 

2) How much money will you have in the bank, if you deposit $5 at the begin
ning of every month for 25 years in a savings account which pays 4J2% compounded 
monthly? 

3) Define a function for Y = -3X2 + 7X - 3. Print pairs of values for 
X = -4 to 5. 

4) Do problem 2), but for daily compounding. Ignore leap year; use 12, 30-day 
months. 
/ 5) Set up a table of amounts that $100.00 will be at the end of 5, 10, 15, and 
20 years at 4%, 4J2%, 414%, and 5% per year compounded monthly. Put the rates in 
a rate loop. Print the years across the top and the rates in the first column of each 
row. 
/ 6) Write a program to compare $99.00 compounded monthly at 4%%, quarterly 
at 5%, and daily at 4%% for 15 years. Print with the decimal points lined up. 

7) Define a function for Y = 3X + 4. Print pairs of values for X and Y for 
X = -5 to 5. 

8) Define a function for Y = 2X2 + BX - L Print pairs of values for X and Y 

for X = -6 to 2. 
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4-4 RANDOM NUMBER GENERATOR 

The last computer function we will consider in this chapter is RND(X). 
Often in programming we want numbers to try out a new program. Also, there 
are many events in mathematics and science that occur at random. If we do 
not have any real data or we want a very large number of numbers, it is 
desirable to have the computer pick the numbers for us. This can be done in 
BASIC with the computer function RND(X). 

RND(X) picks at random a decimal fraction between 0 and 1. It will not 
pick 0 or I. DeP,ending on the computer, the value of .X n1ay be immaterial, 
but there must be a number in parentheses. If the argnment does not affect 
the numbers generated, it is called a dummy argumqnt. Some computers use 
the argument to determine the numbers generated. Computers vary as to the 
actual set of random numbers generated. Some have a fixed set of numbers that 
is the same every time RND( ) is used in the same program. Such a random 
number generator is called a pseudo random number generator. Others give a 
different set of numbers each time you run the same program. Program 
RND(l) is a short routine that prints a few random numbers. 

RNDC 1 > 

10 
20 
30 

F0R X=I T0 10 
PRINT RNDC 5» 
NEXT X 

40 END 
RUN 
RNDC 1 > 

0 766345 

6o97632E-02 

OONE 

0665051 

.209305 

• 595169 0265522 0656563 

• 12793 • 363604 • 651426 

Before we get very far trying to use RND(Z) we realize that numbers 
between 0 and I do indeed limit us greatly as a source of data. Suppose we 
want data selected from l to 10. First we might try to multiply the random 
number by 10 before taking the INT( ) function. Let us try it in RND(2). 

RNDC2> 

10 F0R X=I T0 20 
20 PRINT !NT< IO*RND< I> H 
30 NEXT X 
40 END 
RUN 
KNUl c > 

3 5 5 2 6 3 0 2 3 9 4 

2 2 6 3 9 4 3 4 
OONE 
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Program RND(2) seems only to give integers 0 through 9. However, RND(Z) 
will never take on 1 as a value, and therefore multiplying by 10 will never yield 
10 as the product. But we can add 1 to each of the above integers and both 
include 10 and exclude 0, which is exactly what we set out to do. The 1 can 
be added either before or after taking INT( ). We get 1 to 10 in program 
RND(3). 

RND< 3) 

10 F'0R X= 1 T0 30 
20 
30 

PRINT INT< lO*RND< 1>+1 >J 
NEXT X 

40 END 
RUN 
RNDC 3) 

5 

8 

8 

7 

1 6 
D0NE 

4 5 3 

7 

6 3 

3 7 5 5 10 9 10 

8 3 4 2 10 9 

3 

If we want decimal numbers from 1 to 11, not including 11, all we have to 
do is leave out the INT( ), as in RAND3+. 

RAND3+ 

10 F'0R X=l T0 10 
20 PRINT 10*RNDC9>+1J 
30 NEXT X 
40 END 
RUN 
RAND3+ 

10·0205 

2.02798 
D0NE 

3.06177 

9. 08411 

7.18546 4·55652 1.66971 8000928 

5.25241 8· 75757 

Now we have a way to determine the interval in which the numbers are 
picked. If we can get 1 to 11 with 10 ° RND(Z) + 1, we ought to be able to 
get 1 to 100 with 99 ° RND(Z) + 1. 

RND(X) 
XXX LET Y = RND(X) will assign at random a number between 0 

and 1 to Y. We can get integers from 1 to A with INT(A o RND(X) 
+ 1). 
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Now, what shall we do with randomly assigned numbers? The possi
bilities are endless. We could put some in a list and arrange them in numerical 
order. Remember ARANGE? Instead of reading data, we can use randomly 
assigned numbers. This time, let us not print the list after every exchange, 
but only after it is in order. How about picking integers from l to 250? This 
will require INT(250 ° RND(l) + n This time let us rewrite the program to 
look at successive adjacent pairs in the list. This method was outlined in 
problem 3) of Sec. 3-4. As we have the computer look at each pair, we have 
it decide whether the first is less than or equal to the second. If it is, then we 
do not exchange-exactly as in ARANGE. But if the first is greater than the 
second, we cail for the exchange. However, there is no guarantee that the list 
is in order after the first time through. So we have to turn on a switch after 
each exchange. Then after the computer has gone through the list comparing 
1 and 2, then 2 and 3, then 3 and 4, etc., we have it check the switch. The 

Start 

F0RX = 1 
T010 

LET L(X) 
= INT(250• 
RND(l) + 1) 

NEXT X 

END 

ll 

Turn 
switch off 
LETS= 0 

Exchange 
L(I) and L(I + 1) ---< 

See ARANGE 

Turn 
switch on 
LETS= 1 

PRINT 
list 

in order 

F(ZSR I= 1 
T<;Z)9 

NEXT I 

Does 
s = 1? 

~ 

Fig. 4-5. Flowchart for arranging a list of numbers assigned from 
RND( ) using comparison of adjacent pairs. 
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name of the switch can be any number of things, but here we will use S. If 
S = 0, the switch is off. If S = 1, the switch is on and we tell the computer to 
look at the list again. If the switch is off, we want the computer to print the 
ordered list. Under what conditions do you think this will be the most efficient 
ordering technique? The name of this program is ARANG3 and its flowchart is 
in Fig. 4-5. 

ARANG3 

10 
20 
40 
56 
60 
70 
BO 
90 

F'0R X=l T0 10 
LET LlXl=INTC250*RNDCl)+I> 
NEXT X 
REM TURN THE SWITCH 0F'F'!!! 
LET S=O 
F'0R I= I T0 9 
IF' LCil <= LCl+ll THEN 130 
LET K=LC I J 

LET LCil=LCI+ll 
LET LC I+ I l=K 
LET S= 1 
REM *** TURN THE SWITCH 0N *** 
NEXT I 
REM IS THE SWITCH 0N?? 
IF' S= I THEN 60 
REM IF' THE SWITCH IS 0F'F' THERE WERE N0 EXCHANGES AND 
REM THE LIST IS IN 0RDER 

100 
110 
120 
121 
130 
136 
140 
142 
143 
145 
150 
160 
170 
ISO 
RUN 
ARANG3 

PRINT "THE NUMBERS IN 0RDER" 
F'0R X=I T0 10 
PRINT LCXJJ 
NEXT X 
END 

THE NUMBERS IN 0RDER 
12 67 75 96 109 161 162 199 221 231 

D0NE 

The program looks fine, but nobody could prove that we really used the 
ordering routine to put the list in order, because we do not know what the 
original list was. So let us put back the routine that prints the list as it is 
formed. 

5 PRINT "HERE IS THE LIST AS IT IS BEING F'0RMED***" 
30 PRINT LCXH 
42 PRINT 
RUN 
ARANG4 

HERE IS THE 
94 156 

THE NUMBERS 
11 22 

D0NE 

LIST AS IT 
216 22 

IN 0RDER 
64 65 

IS BEING F'0RMED*** 
64 65 195 210 129 

94 129 156 195 210 

11 

216 

Fine! Now we believe it. We have just put 10 random numbers in order. 
It is about time we found out how to create longer lists. 
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DIM 

We can usually get 10 (or 11) elements in a list. If we want longer lists 
we simply notify the computer that we wish to specify a greater dimension for 
our list. The BASIC statement is XXX DIM L[Z], where Z is the highest sub
script in the list. Computers vary. Some allow a variable in parentheses, while 
others require an explicit integer. If you do not know how long the list is 
going to be, simply pick a number larger than you think you will need. You 
need not use every location in the list. Let us dimension a list in ARANG4 up 
to 7.5 and use 20 locations to see how a longer list looks. 

2 
7 

DIM L< 75> 
LET N=20 

10 F0R X=l T0 N 
70 F'0R I = I T0 N- I 

F0R X=l T0 N 150 
RUN 
ARANG5 

HERE IS THE LIST AS IT 
41 246 236 83 

73 93 27 204 
THE NUMBERS IN 0RDER 
25 27 41 73 

134 195 go4 208 
D0NE 

IS BEING F0RMED*** 
248 119 107 195 85 128 

111 208 122 241 

83 85 93 107 111 119 

236 241 246 248 

The program seems to work nicely. Let us try a few other numbers. 

7 LET N=5 
RUN 
ARANG5 

HERE IS THE 
71 86 

THE NUMBERS 
6 71 

OONE 

LIST AS IT IS BEING F0RMED*** 
6 141 I 72 

IN 0RDER 
86 141 I 72 

134 25 

122 128 

For N = 25 we list the entire program with all the changes we have made. 
Notice that when we made the original change we put lines 10, 70, and 150 
in terms of N so that we would not have to retype them each time we made a 
minor change in the length of the list. See ARANG5. 

XXX DIM A[24], B[75], L[33] dimensions three lists. The A list 
has 24 as its highest subscript, B has 75, and L has 33. You may 
dimension as many lists as will fit on one line. 
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ARAN GS 

2 
s 
7 
10 
20 
30 
40 
42 
SB 
60 
70 
BO 
90 
100 
110 
120 
121 
130 
13B 

DIM LC 7Sl 
PRINT "HERE IS THE LIST AS IT IS BEING F"0RMED***" 
LET N=2S 

F"0R X= 1 T0 N 
LET LlXl=INT<2SO•RND<l>+l> 
PRINT LCXlJ 
NEXT X 
PRINT 
REM TURN THE SWITCH 0F"F"! ! ! 
LET S=O 
F"0R 1=1 T0 N-1 
IF" LCIJ <= Lll+ll THEN 130 
LET K=LC I l 

LET LCll=LlI+ll 
LET LCI+ll=K 
LET S= 1 
REM *** TURN THE SWITCH 0N *** 
NEXT I 
REM IS THE SWITCH 0N?? 
IF" S= 1 THEN 60 140 

142 
143 
14S 

REM IF" THE SWITCH IS 0F"F THERE WERE N0 EXCHANGES AND 
REM iHE LIST IS IN 0RDER 
PRINT "THE NUMBERS IN 0RDER" 

1 SO 
160 
170 

F"0R X= I T0 N 
PRINT LC XlJ 
NEXT X 
END lBO 

RUN 
ARAN GS 

HERE IS THE LIST 
107 19S BS 

s 13B 162 

13B 

AS IT IS BEING 
130 13B 3B 

109 7S 9B 

THE NUMBERS IN 0RDER 
s s 6 lS lB 30 

109 112 127 130 l 3B 13B 

213 
00NE 

F"0RMED*** 
112 209 

44 6 

3B 44 

13B 162 

127 s l S 

lB 1 77 30 

7S BS 9B 

16B 1 '77 19S 

l 6B 

213 

107 

209 

We will now generate random data for one other type of problem. If it is 
4 o'clock, 10 hours later it will be 2 o'clock This concept contains the seed 
of the development of modular arithmetic. First let us write a little program 
to take random times and add random numbers of hours. The random times 
must be numbers from 1 to 12. The iandom numbers of hours could have 
virtually any range, but 1 to 36 will do. The flowchart of Fig. 4·6 should 
help to organize the problem. We c.an determine the number of computations 
with a loop. Here we are picking 10 pairs of numbers, with T for time and 
H for hours. Then we add them and check to see if the sum is less than or 
equal to 12. If the sum is less than or equal to 12, we want to have the sum 
printed as the time. If the sum is greater, we want to subtract 12 and check to 
see if the result is less than or equal to 12, etc. After the sum is printed we 
want the computer to return and pick another pair and repeat the same process 
until 10 pairs of numbers have been picked and prncessed. See CL0CK1. 
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( Start ) 

F(l)R P = 1 
T9) 10 

NEXT P 

END 

LETT= INT 
(12•RND(1) + 1) 

LETH= INT 
(36 • RND(1) + 1) 

LETS= T + H 

LETS=S-12 

Fig. 4-6. Flowchart for adding hours to times and computing times for 
program CLOCK. 

Now, if we want to change the number picked for hours, we can change 
line 30 to 30 LET H = INT(l2 ° RND(l) + 1) and get the same range for 
both T and H. But then we would have two lines using exactly the same 
function: 

20 LET T = INT(l2" RND(l) + 1) 
30 LETH= INT(l2 ° RND(l) + 1) 

This situation is a candidate for the program-defined function: 

DEF FNC(Z) INT(l2 ° RND(Z) + 1) 

Then lines 20 and 30 are 

20 LET T = FNC(l) 
30 LETH= FNC(l) 



CL0CK I 

10 F0R P=I T0 10 
20 LET T=INTCl2*RNDC1>+1> 
30 LET H=INTC36*RNDCl>+l> 
40 LET S=T+H 
50 IF S <= 12 THEN 80 
60 LET S=S-12 
70 G0T0 50 

Computer Functions 69 

80 PRINT H"H0URS FR0M"T"0 'CL0CK IT WILL BE"S"0 'CL0CK" 
90 NEXT P 
100 END 

RUN 
CL0CK I 

8 H0URS FR0M 6 0 'CL0CK IT WILL BE 2 0 'CL0CK 
33 H0URS FR0M 9 0 'CL0CK IT WILL BE 6 0 'CL0CK 
27 H0URS FR0M 5 0 'CL0CK IT WILL BE 8 0 'CL0CK 
33 H0URS FR0M 5 0 'CL0CK IT WILL BE 2 0 'CL0CK 
31 H0URS FR0M 9 0 'CL0CK IT WILL BE 4 0 'CL0CK 
32 H0URS FR0M 12 0 'CL0CK IT WILL BE 8 0'CL0CK 
2 H0URS FR0M 9 0 'CL0CK IT WILL BE 11 0 'CL0CK 
28 H0URS FR0M 4 0 'CL0CK IT WILL BE 8 0 'CL0CK 
8 H0URS FR0M 10 0 'CL0CK IT WILL BE 6 0 'CL0CK 
4 H0URS FR0M 11 0 'CL0CK IT WILL BE 3 0 'CL0CK 

D0NE 

In CL0CK2 we change lines 20 and 30 and insert line 5 to define FNC( 
and list the program in full. 

CL0CK2 

5 DEF FNC<Z>=INTC 12*RNDCZ>+ I> 
10 F0R P=l T0 10 
20 LET T•FNCC I> 
30 LET H•FNCC 1 > 
40 LET S=T+H 
50 IF S <= 12 THEN 80 
60 LET S=S-12 
70 G0T0 50 
80 PRINT H"H0URS FR0M"T"0 'CL0CK IT WILL BE"S"0 'CL0CK" 
90 NEXT P 
100 END 

RUN 
CL0CK2 

6 H0URS FR0M 6 0 'CL0CK IT WILL BE 12 0'CL0CK 
7 H0URS FR0M 8 0 'CL0CK IT WILL BE 3 0 'CL0CK 
7 H0URS FR0M 12 0 'CL0CK IT WILL BE 7 0 'CL0CK 
8 H0URS FR0M 3 0 'CL0CK IT WILL BE 11 0 'CL0CK 
5 H0URS FR0M 7 0 'CL0CK IT WILL BE 12 0 'CL0CK 
4 H0URS FR0M 4 0 'CL0CK IT WILL BE 8 0 'CL0CK 
7 H0URS FR0M 5 0 'CL0CK IT WILL BE 12 0 'CL0CK 
4 H0URS FR0M 11 0 'CL0CK IT WILL BE 3 0 'CL0CK 
11 H0URS FR0M 3 0 'CL0CK IT WILL BE 2 0 'CL0CK 
10 H0URS FR0M 12 0 'CL0CK IT WILL BE 10 0 'CL0CK 

D0NE 
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Modular Arithmetic 

From the clock program we can easily develop the concept of modular addi
tion. The biggest difference between modular addition and ihe last program is 
that for modulo 12 addition mathematicians define the set of integers as (0, I, 
2, 3, 4, 5, 6, 7, 8, 9, 10, ll), dropping 12 and appending 0. Now we may not 
allow sums of 12 as before. So we will have to change line 50 to test for less 
than or equal to 11 not 12. But we must not change line 60 which subtracts 
12. Why? Since we defined a function in CL0CK2, we need change only line 5 
to generate integers from 0 to 11. As we wrote CL0CK1, we would have had 
to change two lines. Of course, we will have to change the printing and name 
the new program M0Dl2. 

M0012 

5 
10 

DEF FNCCZ>=INT<l2*RNDCZ>> 
FllJR P= 1 Till 10 

20 
30 
40 
so 
60 
70 

LET T=F'NCC 1 > 
LET H=FNCC 1 > 
LET S=T+H 
IF' S <= 11 THEN 80 
LET S=S-12 
Gill Till 50 

80 PRINT H"+"T"="S"M0D 12" 
NEXT P 90 

100 
RUN 
MllJD12 

END 

7 + 6 1 M0D 12 
8 + 5 1 M00 12 
2 + 9 11 M00 12 
8 + 6 2 M00 12 
10 + 8 6 M00 12 
1 + I 2 MllJD 12 
1 + 3 4 M00 12 
7 + 11 6 MllJD 12 
10 + 9 7 M00 12 
1 + 7 8 M0D 12 

D0NE 

iW•\J 
l~AMD 12 

10 + 4 2 MOD 12 
1 + 2 3 MOD 12 
6 + I 7 MOD 12 
3 + 10 l M0D 12 

+ 10 11 ·"iOD 12 

D01\JE 

10 
l 
6 
3 

MAMO! 2 

5 DEF FNC<l>=INf<l2*1iND<~» 
F::J,; r'=l TO 5 
LET A=F·\JC<l> 
LF1 8=PJC< l > 
LET S=A+B 
PRINT A"+"B"= 
G0Sll3 500 
Ll':T S=A*B 
1-'tnNT A"*"B"= 
GOSUl:l 500 
Pii!NT 
NEXT I-' 

STOI-' 

... , 

l 0 
20 
.)0 
40 
50 
60 
70 
80 
85 
87 
90 
490 
500 IFS<= 11 THEN 530 
510 LE.I S=S-12 
520 GOTO 500 
530 Pti!NT S",'ICl• 12 
540 i<ETU1<·\J 
9999 E1~D 

* 4 4 '10.D 12 

* 2 ? MOD l>' 

* l 6 '·10fl 12 

* 10 6 M'1D 12 

* 10 10 '10lJ 12 

'.~.'be:·~ th8!·~ fr; ~dditic~, ~~ltiplic~t.tivu. i:; bvu.11d tu fvHv-w. Suppusc wt:: 1·11ul

tiply 5 by 7. We are accustomed to getting 35. But for M0Dl2 we only allow 
0 through ll, so we subtract 12 and get 23, which is still too large. Subtract 
12 again to get 11. Thus we are going to use the subtraction routine in the 
multiplication part of M0D 12 also. This is a G0SUI3 situation. In the flow-
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chart of Fig. 4-7, the G0SUB predefined prncess is the subroutine of lines 50, 
60, and 70 in M0Dl2. Of course, there are more changes in printing. We call 
the program MAMD12 (Multiply and Add MoD 12). 

Start 

FOR p = 1 
T¢5 

END 

NEXT P 

Get two num
-bers 0 to 11 

A,B 

LETS=A+B 

Gt;l>SUB 500 

LETS= A• B 

GqJSUB 500 

Fig. 4-7. Flowchart for adding and multiplying mod 12 for program 
MAMD12. 

SUMMARY 

Two majm expansions in om programming capability have occurred in this 
section. \·Ve are now able to gene1ate random numbers in any range we like. 
They can be limited to integers or they can be decimal numbe1 s And lists 
may now Le dirne11sio11ed to the length that we requite. \·Ve have also used the 
G0SU U statement to good advantage i11 a moduhu a1 ithrnetic progrnm. 
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PROBLEMS FOR SEC. 4-4 

1) Print a list of 30 randomly assigned numbers from 2.00 to 20.00 with tenths 
and hundredths permitted but no digits to the right. 

2) Print a list of 25 integers from -200 to 200 assigned by a random number 
function in increasing order. 

3) Print the list in problem 2) to guarantee that there are no duplications. In 
other words, if you generate a number that has already been used, generate another. 

4) Prepare a list of the first 18 Fibonacci numbers. For all nonequal pairs find 
the greatest common factor. Enter the greatest common factors in a list with no 
duplications and print t.l:ie result. 

5) Prepare a list of the first 20 Fibonacci numbers. For 1 = 2 to 19 print F[I] " 0 2 
- F[I 11 ° F[I + l]. 

6) Use three lists to add two 20-digit numbers. Use one list for each number and 
enter the digits one by one as elements in the list. Use the third list as the sum list. 
Be sure to carry if the sum of the two corresponding digits is 10 or more. 

7) Do problem 6) using two lists instead of three. 
,/ 8) Use three lists to multiply two 10-digit numbers digit by digit. (Could this 
be done with two lists?) 

9) Modify program MAMD12 to find the remainder after dividing the value of 
S by 12 to replace the subroutine that uses successive subtraction. 

10) Write a program to do arithmetic mod 5 and mod 6, five problems each. 
Put 5 and 6 in a data line and write one random function so that it generates 0 to 4 
for mod 5 and 0 to 5 for mod 6. 

11) Have the computer print the addition table and the multiplication table for 
mod6. 

12) Have the computer do subtraction mod 7. 
13) Write a program in which the mod and the number of problems are selected 

at random, and the problems are generated with random data. 
14) Have the computer generate pairs of integers and find the greatest common 

factor. 
15) Have the computer generate sets of three integers and find the greatest 

common factor. 
16) Generate pairs of integers and find the least common multiple. 
17) Generate sets of four integers and treat them as coefficients of two binomials 

and find the three coefficients of the product; i.e., generate A, B, C, and D 
in (AX + B)(CX + D) and find E, F, and G in EX 00 2 + FX + G. Print all 
five numbers in two groups, one group for A, B, C, and D and another for E, F, 
andG. 
I 18) Form two 20-element lists with integers in the same range. Form two other 
lists. One list is to contain all numbers that appear in both lists, i.e., the intersec
tion of the two lists. The other list is to contain a number if it is in either of the 
original two lists, but only entering it once if it is in both lists. In other words, find 
the union. 

19) Fill a 25-element list with the first 25 positive odd integers. Fill a second 
25-element list with the sum of all the entries of the first list up to and including 
the subscript number of the second list. 

C){\\ 11..f~.:I;, .. rr olrv1 ·~ hn-..lln ,;_n_ ,_ hn··-- n-..l _,_ ... __ 
_ ...,./ ........................ J --- ....................................................................................................... "'4 .................................... ...,. 



CHAPTER 5 

Elementary Data Processing 

5-1 INTRODUCTION TO DATA PROCESSING 

One of the very common uses of computers is for data processing. There is 
no clear cut definition for data processing that distinguishes it from other 
kinds of computer activity. In a sense, all computer work is data processing. 
However, data processing often implies that the computer is being used to 
sort, collate, tabulate, and/or otherwise process data. Such activities as process
ing questionnaires fall in this category. 

Tabulating One Item 

Let us ask some families how many television sets they have in their homes. 

The answers will be numbers, one number per family. We can set up a list so 
that the first element counts the number of families with one set and the Nth 
element counts the number of families with N sets. Before we begin counting, 
there will be zero families having each number of sets. So we will have to 
initialize each element of the list at 0. Then when the number for a family is 
read, we will add 1 to the element in the list corresponding to that number of 
television sets. If the first family has one set, then we have the computer look 
at T[l]. T[l] = 0 to start, and adding 1 makes T[l] = 1. The next time a 
family has one set we have the computer add 1 to T[l], and then T[l] will 
equal 2. The process is repeated until all data is read. We will have to use 
dummy data, since we want to print the results only after we have tabulated 
all data. We can draw a simple flowchart. See Fig. 5-1. 

Of course we could allow for a larger number of sets by simply using a 
longer list. We could have provided for zero sets by letting T[ l] tabulate 0, 

T[2] tabulate 1, T[3] tabulate 2, etc. Then line 60 in program TV'S would read 

60 LET T[N + l] = T[N + l] + 1 

because, when N is 0, you want T[l] and when N is 1, you want T[2], etc. 
Or we could use 0 subscripts if they are available. 

73 
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Start 

Initialize 
four-item 
list all O's 

PRINT 
headings 

LETT[N] END 
=T[N]+1 

TV'.::.; 

I 0 FOi< I= 1 TO 4 
20 LET Hl.l=O 
30 i'lEX T I 

Fig. 5-1. Flowchart for tabulating number 
of television sets per family. 

31 rff.M EACH ELEME.\JT IN THE LI ST IS \10v' '.'.EHJ 
40 HEAD N 
49 nEM TEST FOk THE END JF DATA 
50 IF N=-1 THEN ~O 
~9 HEM INCHEASE THE TABULATING ELEMENT FOR N SETS BY ONF 
60 LET TlNl=TlNl+l 
70 GOTO 40 
80 Pl<INT "NO. OF TV'S","NO. OF FAMILIES" 
89 REM NOW PRINT THE NUMBER OF SETS AND THE NUMBER OF FAMILIES 
90 FOR I=l TO 4 
100 PRINT I,T[IJ 
I 10 NEXT I 
498 HEM EACH ITEM OF DATA IS THE NUMBEk OF TV'S IN ONE FAMILY 
500 DATA 1,3,4, 1,2, 1,3, J, 1,2,4, 1,3, J,2,4, 1,3, t, J, J,Lh 1,3,,2, 

2, J, 2 
510 DATA 2J11,3,3,2,2,1,1,1,2,2,,3,4,4,2,4,1,L1,2,4,2,1 .. 2,1 
520 DATA • 1 
999 END 
RUN 
TV'S 

iVJ. OF Iv·:;, 
1 
2 
3 
4 

D0NE 

NU. Ur· FAMILIES 
20 
1 5 
8 
9 
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There are some more things that we can do with TV'S. We might have the 

computer count the number of families or count the total number of television 

sets. These figures may be computed as the data is being read. There can be a 

counting statement LET C = C + 1 somewhere between lines 50 and 70, and 

there can be a summing statement in the same part of the program. LET S = 
S + N will total the number of sets. Then as long as we have the total number 

of sets and the total number of families, we might just as well compute the 

average number of sets per family. These are left as exercises. 

Tabulating Several Items 

With just a few modifications TV'S can be extended to handle data pertain

ing to several different things. 
Suppose in taking a census, we ask not only how many television sets the 

family has, but also how many cars, homes, and bathrooms. All that is neces

sary is to have four counting lists instead of one. We need one list for each 

item being counted. In lines 10, 20, and 30 we initialize four lists at 0 for up 

to eight items in any one category. This could be more or less for any par

ticular problem. vVe check for dummy data in line 50 and then update the 

four lists in lines 60 through 90. In the printing routine, I determines the 

element number in each list and so is the number of items in each list. T[I] 

is the number of families that have I television sets, C[I] is the number of 

families that have I cars, etc. See program TCHB. 

From the results we see that there were nine families with one car, seven 

families with two television sets, etc. We could also do more data processing 

in TCHB. We could find the average number of cars per family, etc. 

Tabulating Yes-No Answers 

vVe are not limited to numerical quantities. Suppose you .we1e to question 

each of yom classmates about comses they want to take. If you ask, "Do you 

want to take chemistry?" and the answer is "no," you can call that 0, and sim

ilarly call "yes" 1. Let us ask people if they want to take the following courses: 

chemistry, physics, French, Spanish, calculus. If someone says he wants to 

take chemistiy, F1ench, and Spanish, his data will be: 1, 0, 1, 1, 0. We can use 

one list to count all comses The fit st element of the list will count people who 

want to take chemistry, the second will count people who want to take French, 

etc. Before reading any data, we will have to initialize each element of the list 

at 0. Then after 1eading the first person's data, we wa11t the list to be 

1, 0, 1, 1, 0, which can be done by adding the number representing yes or no 

to the number already in that location of the list vVe can get the computer to 

read the data in g1 oups of five by using a loop F0R R = 1 T0 5, with the 

HEAD statement and the tabulating statement inside. The real works of the 

prngram will be the tabulating statement 

LET C[R] = C[H] + K 

where R is the loop available and goes horn 1 to 5 for each pe1so11's data, If 

H 1, the comse is chemistry; if H 2, the comse is physics, etc. vVhere K is 
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TCHB 

10 F0R I= 1 T0 6 
20 LET TCil=CCil=H(Il=BCil=O 
30 NEXT I 
31 REM ALL TABULATING LISTS ARE HHTIALilED AT ZER0 
40 READ T, c, H• B 
49 HEM CHECK F0R DUMMY DATA 
50 IF T=-1 THEN 110 
59 HEM 60 T0 90 ENTER THE LATEST DATA IN THE F0UR LISTS· 
60 LET H Tl=TC Tl+ 1 
70 LEI CCCJ=CCCJ+l 
80 LET H(HJ=H(HJ+l 
90 
100 
i09 
110 
119 
120 
130 
140 
349 
350 
355 
360 
365 
400 
RUN 
TCHB 

LET 8(8J=8(8]+1 
G0T0 40 
HEM HERE THE HEADINGS ARE PRINTED 
PHi NT "NUMBER, TV'S, CARS, H0MES, BATHS" 
REM HERE THE RESULTS ARE PRINTED 
F0R I=l T0 6 
PRI1~T IITCIHC(IJJHCIJJBCIJ 
NEXT I 
RE~ EACH GH0UP 0F F0UR NUMBERS IS F0R 0NE FAMILY
DATA 1,1,1,1,2,1,1,2,3,2,1,2,4,3,2,6,4,2,115 
DATA 2, 1, 1,3, 1, 1, 1,3,2, 1, 1,2, 1.1, 1, 1,2, 1, 1.1 
DATA 2,2,2, 6, 11 1, 1, 4, 3, 4, 2, 6, 1. 2, 1,2, 2, 2• 2,6 
DATA 2, 1, 1,2,-1,0,0,0 
ENO 

NUMBER, TV'S, CARS, H0MES• BATHS 
1 s 9 12 3 
2 7 5 4 5 
3 2 I 0 2 
4 2 1 0 I 
5 0 0 0 1 
6 0 0 0 2 
7 0 0 0 0 
6 0 0 0 2 

IJ0NE 

0 this pe1 son does not want to take the comse, and where K is I he does. So 
when K = 0, the tabulating statement adds 0 to the previous value in the C 
list, which does not change the number there. This is what we want for the 
person who does not want to take the c0t11 se. However, if K 1, then the 
tabulating statement adds I to the previous value of the en ti y in the C list, 
which is exactly what we want the computer to do for a pe1son wanting to 
take the course. Again the dummy data is -L 

From C0UHS1, we can easily see that seven people want to take chemistry, 
five people want to take physics, etc. 

One last thing we might try to consider in this section is getting larger 
amounts of C.:ata in a program similar to C0UH.Sl. Suppose you want to see 
what results might look like for say 500 people .. Well, you could ask 500 
pcGp?c tlit\.1 thcx1 lypt: uul (_ln i.iiai. t1ala. 01 you couid generate 1 andon1 data, 
with the understanding that the results will be random and may not simulate 
the real situation. However, knowing that the numbers will be random will 
help you spot seiious errors if there are any. For .500 people and random data, 
each course should <l1 aw about 250 yeses. If the results show 96 or 600 yeses 
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COUHS I 

10 FOK l=I TO 5 
20 LET CCll=O 
30 NEXT I 
40 FO:< H= I TO 5 
50 :<EAD t< 
60 IF t<=-1 THEN 100 
70 LET C[Hl=C[Hl+t< 
80 NEXT :-1 
90 GOTO 40 
I 00 P1<1 '\J T "CHEM I STKY", "f'HY 51 CS", "Ff<ENCH", "SPAN I SH"• "CALC 1 IL' IS" 
110 F:l1< l=I T0 5 
120 PKINT CCIJ, 
130 NEXT I 
990 KEM DATA IS IN OHDER CHEMISTKY PHYSICS FRENCH SPA'\JISH 

CALClfLIJS 
995 
1000 
1010 
I 020 
1100 

<EM 
DATA 
DATA 
DATA 
DATA 

9999 END 
RUN 
C0URSI 

CHEM I srnY 
7 

D0NE 

'I' MEANS YES 'O' MEANS NO 
1,0, 1 .. 1,,0 .. 0,0 ... 1, 1 .. 0 .. 1 .. l.11 .. 1 .. 1 .. 0 .. 0,, l.11,,0 .. 1 .. 1 .. 0 .. 0 .. 1 
Q,, 1, I .1 Q, 1.1 Q, Q, Q, l .1 Q, l .1 l .1 Q, l .1 Q, 1, 1, Q, Q, 1, t, O, Q, Q, I 
o,o, 1,0, 1, 1,0, 1,0,0 
- I 

PHYSICS 
5 

F"RENCH 
7 

SPA"IISH 
6 

CALCULUS 
6 

in some course, then you must search for the error. One nice thing about using 
random data is that you do not have any data to type in. So in C0URS1 we 
may eliminate lines 1000, 1010, 1020, and llOO. Now the REM statements 
are not quite relevant. Line 60 can be deleted as we are not testing for dummy 
data and line 50 is deleted as we are not going to read data anymore. Line 90 
will be taken care of by putting in a loop 1 to 500 to simulate 500 people. To 
get random numbers 0 or 1 we need INT(2 ° RND(l)). The initializing, the 
tabulating, and the printing of C0URS1 can be used in the new program 
C0URS2, where the results are reasonably close to 250. 

SUMMARY 

We have seen lists used to analyze data from questionnaire-type questions 
having numerical or yes-no type answers. The tabulating may be done using 
one or several lists depending on the problem itself. Random numbers may be 
used to try out such programs with many numbers. The random nature of 
these numbers may help to spot serious program errnrs, which might not show 
up with small amounts of data unless you check the totals by hand. 

PROBLEMS FOR SEC. 5-1 

1) Modify program TV'S to total the number of television sets and the number 
of families, and find the average number of sets per family rounded off to the nearest 
hundredth. 
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C0URS2 

10 F0R 1=1 TO 5 
20 LET C[IJ=O 

NEXT I 
REM THIS L00P SIMULATES 500 PE0PLE 
F"0R X= I T0 500 
F"0R R=l T0 5 

30 
33 
35 
40 
42 
48 
50 
70 
78 

REM THIS L00P L00KS AT FIVE C0URSES F0R EACH PERS0N 
REM PICK A RAND0M NUMBER ZER0 0R 0NE 
LET K=INTC2*RNDCI>> 
LET CCRl=CCRJ+K 
REM NEXT C0URSE 

80 NEXT R 
86 REM NEXT PERS0N 

NEXT X 90 
100 
110 
120 
130 
9999 
RUN 

PRINT "CHEM! STRY", "PHY SI CS", "FRENCH"," SPAN I SH", "CALCULUS" 
FOR I=I n; 5 
PRINT C[I), 
NEXT I 

END 

C0URS2 

CHEMISTRY 
253 

D0NE 

PHYSICS 
257 

FRENCH 
237 

SPAN! SH 
249 

CALCULUS 
256 

2) Modify program C!Z)URSI to find the number of people who want to take 
chemistry and physics. 

3) Modify CIZ)URS2 to generate twice as many yeses as nos. 
4) Modify C0URS1 to find the number of people who want to take physics but 

not calculus. 
j 5) Consider a questionnaire in which there are 14 questions which call for yes, 
no, or other answers. Let 1 be yes, 2 be no, and 3 be other. Set up three separate 
lists for yes, no, and other. Generate 25 sets of 14 numbers 1, 2, or 3 and find the 
number of each type of answer for each question number. Print the results in 
decipherable form. 

6) Modify CIZ)URS2 to generate yes-to-no answers in a ratio of 3 to 4. 

5-2 ARRAYS 

So far we have only been able to store numbers in a simple variable or in 
a list. There will be situations where we will want to store more numbers than 
is convenient in a list. While we have seen that we can use several lists very 
effectively, BASIC provides a two-dimensional list for such situations. It may 
be called an array. You may think of an array as being similar to a checker
board. Instead of the familiar single subscript we have been using for lists, we 
will need double subscripts; one for rows and the other for columns. (As with 
lists, <'nmrintP.rs v<1ry SomP. will "llow 0 snhs<'ripts, othP.rs hP.gin with 1.) For 

an array designated as A, A[l, 1) is the number in the upper lefthand corner. 
(In some cases, it will be A[O, O].) A[l, 2) indicates the number in row 1 
and column 2; A[5, 8) indicates the number in row 5 and column 8, etc. In 
other words, the first subscript indicates the row starting at the top and the 
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second subscript indicates the column starting at the left. Thus, A[R, CJ indi
cates the number in row R and column C. 

An array is just a set of numbers arranged in columns and rows, This per
fectly matches the printed result in program TCHB in Sec. 5-1. We may use 
each column of an airay in the same manner that we used each list in that 
program, and we can use each row to keep track of the number of families 
having that number of the item being tabulated. But before we tackle TCHB 
in an array, we should see a little more how arrays operate. 

Very often we will use a nested loop, with one loop taking the computer 
through the columns and the other loop going through the rnws .. The structu1 e 
of an array is shown in Table 5-1. For students without 0 subscripts, consider 
the dashed outline to exclude the 0 row and 0 column. For students who have 
0 subscripts, consider the dashed outline to suggest that it is optional whether 
or not you use them at this time. 

TABLE 5-1. ARRAY STRUCTURE. 

1------------ -----1 
: [O,OJ -~·~-~~-~,3J _ _[~4l__[~~I 
I I 
I [1, OJ I [1, 1J [1, 2] [1, 3J [1, 4] [1, SJ 
I I 
I I 
I [2, OJ I [2, ·11 [2, 2J [2, 3] [2, 4J [2, Sl 
I I 
I I 
J~3_'._0u [3, 1 J [3, 2] [3, 3J [3, 4] [3, SJ 

ARRAY I 

9 
10 
19 
20 
29 
30 
40 
50 
59 
60 
69 
70 
80 
999 

REM INITIALIZE A AT ONE 
l.ET A= I 
REM R0 WS G0 FR0M I Hl 3 
F'0R R= I T0 3 
REM COLUMNS G0 FR0M I T0 5 
F0R C=I 10 5 
LET HR, CJ=A 
LET A=A+I 
REM NEXT C0L,UMN 
NEXT C 
REM NEXT R0 W 

NEXT R 
PRI,\IT "AT THIS P0INT THE ARHAY IS FILLED" 

ENO 
RUN 
ARRAY! 

AT THIS P0INT THE ARRAY IS FILLED 

D0NE 

It is time for another demonstration program. In ARRAYl we simply fill a 
3-row by 5-column array with integers 1 through 1.5 going first acrnss the 
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page and then down, just as we read the printed page. In this program we 
have called the array T . .1.A ... ny letter of the alphabet may be used. Ho·vvevcr, do 
not use the same letter to name both a list and an array in the same program. 
This is because the computer treats a list as an array with just one column or 
one row, depending on the computer. 

We have filled the array just as the printed message states. However, as 
was noted in Chap. 1, in order for the work of the computer to be useful, 
we must eventually get back from the computer some printed results. Note 
that we say eventually. The more advanced we get in programming, the 
more we will do things that are not immediately printed. Nonetheless, just 
to restore your faith in the computer, let us ask it to print some values from 
the array we just created. After line 80 we will insert a variety of printing 

ARRAY2 

9 REM INITALIZE A AT 0NE 
10 LET A=I 
19 REM R0WS G0 FR0M I T0 3 
20 F"0 R R= I T0 3 
29 REM C0LUMNS G0 FR0M I T0 5 
30 F"0R C= I T0 5 
40 LET TCR.Cl=A 
50 LET A=A+ I 
59 REM NEXT C0LUMN 
60 NEXT C 
69 REM NEXT R0W 
70 NEXT R 
BO PRINT "AT THIS P0INT THE ARRAY IS FILLED" 
65 PRINT 
69 REM LET'S PRINT TC314l 
90 PRINT "TC 3, 41 ="J TC 3, 4.1 
100 PRINT 
110 PRINT "WH0 LIVES AT C2,5l?"JTC2.5JJ"LIVES THERE" 
120 PRINT 
130 PRINT "LET'S L00K AT THE EN TI RE ARRAY" 
139 REM INCREMENT R0W~ 
I 40 F"0 R R= I T0 3 
149 REM INCREMENT C0LUMNS 
I 50 F"0R C= I T0 5 
160 PRINT TCR.ClJ 
I 70 NEXT C 
l 75 PRINT 
I 76 PRINT 
ISO NEXT R 
999 END 
RI.JN 
ARRAY2 

AT THIS P0INT THE ARRAY IS FILLED 

TC 3, 41 = 14 

WH0 LIVES AT C215l? 10 LIVES THERE 

LET'S L00K AT THE ENTIRE ARRAY 
I 2 3 4 5 

6 7 B 9 10 

II 12 13 14 15 

D0NE 
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with labels and comments much as we did earlier in the introduction to lists. 
SeeARRAY2. 

The elements of an array constitute variables just as do the elements of a 
list \Ve may operate on any element or elements in the array we choose. 
Consider ARRA Y3. 

ARRAY3 

10 LET A=I 
20 F'0R R=I T0 3 
30 F'0R C=I T0 5 
40 LET ACR1Cl=A 
50 LEf A=A+ I 
60 NEXT C 
70 NEXf rl 
90 PrlINT "WE PRINT THE 0RI GINAL ARRAY" 
100 G0SUB 900 
110 PRINT "WE CAN MULTI PLY EVERY ELEMENT IN THE 4TH C0LUMN 

BY 6" 
120 F'0R R=I T0 3 
130 LET A(R,4l=ACR14l*6 
140 NEXT R 
150 G0SUB 900 
160 PRINT "WE CAN SUBTRACT THE 3RO R0 W F'R0M THE 2N 0 R0 W" 
170 PrlINT "ANO PUT THE RESULT IN THE 3RD R0W" 
180 F'0R C=I T0 5 
190 LET A[3,Cl=AC21Cl-AC3.Cl 
200 NEXT C 
210 G0SUB 900 
880 ST0P 
690 REM ****PRINTING SUBR0UTINE IS HERE**** 
900 F'0R R=I T0 3 
910 F'0rl C=I T0 5 
920 PRINT A(k1ClJ 
930 NEXT C 
940 PRINT 
950 PRINT 
960 NEXT R 
970 RETURN 
999 END 
;(UN 
ARRAY3 

WE PRINT THE 0RI GINAL ARRAY 
I 2 3 4 5 

6 7 8 9 10 

II 12 13 14 15 

WE CAN MULTIPLY EVERY ELEMENT IN THE 4TH C0LUMN BY 6 
I 2 3 24 5 

6 7 8 54 10 

11 12 13 84 15 

WE CAN SUBTRACT THE 3RD R0W F'R0M THE 2ND R0W 
AND PUT THE RESLLT IN THE 3RD R0W 

I 2 3 24 5 

6 7 8 54 10 

-5 -5 -5 -30 -5 

D0NE 
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We oan even change the size of the array during a program. In ARRAY4 
we begin with the original 3 by 5 array of ARRAY3 and tack on an extra row 
to enter the sums of the entries in the first three columns. Notice that in both 
ARRAY3 and ARRAY4 we are able to use G0SUB to save writing the printing 

routines more than once. 
You should begin to see that we have exactly the same control over the 

contents of an array that we do over the contents of a list 
Now let us look. again at our census program TCHB. There we used an 

8-row by 5-column array in which the first column simply contained the row 
number and the other four columns each contained tabulated results for a 
different item. We may now put the READ statement in a loop going from 2 

to 5 and let the loop variable determine the column in which the tabulation 
takes place. The other features of the program are procedures that we haVE 

used before. See TCHB+. 

ARRAY4 

10 LET A= l 
20 F'0R R=l T0 3 
30 F'0R C=l T0 5 
40 LET A(R,Cl=A 
50 LET A=A+ 1 
60 NEXT C 
70 NEXT R 
80 P1HNT "HERE IS THE 0RI GINAL ARRAY!" 
100 F'l3R R=l T0 3 
110 F'0R C=l T0 5 
120 PRINT ACR.ClJ 
130 NEXT C 
140 PRINT 
150 PRINT 
160 NEXT R 
168 REM SET ALL ELEMENTS IN THE 4TH R0W T0 Z:ER0 

l 70 F'0 R I = l HJ 5 
180 LET A(41Il=O 
190 .'IEXT I 
200 PRINT "Nl31<1 WE HAVE THE 4 BY 5 ARRAYJ" 

210 G0SUB 500 
219 KEM THIS R0UTINE ADOS C0LUMNS ANO PUTS THE SUM IN THE 4TH 

R01<1 
220 F0R C=l T0 5 
230 F0R R=l T0 3 
240 LET A(4,CJ=AC41CJ+AlR1CJ 
250 NEXT R 
260 NEXT C 
270 PRINT "THE F'0URTH R01<1 C0NTAINS THE SUMS 0F THE F'IRST 3 

R0WS." 
280 G0SUB 500 
490 SHIP 
498 REM **THIS IS THE PRINTING R0UTINE F0R THE 4 BY 5 ARRAY** 

500 F'0K R=l T0 4 
51 0 F'0 I< C= 1 T0 S 
520 PRINT AC R, CJJ 
530 NEXT C 
540 PRINT 
550 Pl<INT 
560 NEXT I< 
570 l<ETUKN 
999 ENO 
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RUN 
ARKAY4 

HERE IS THE 0RI GINAL ARRAY! 
I 2 3 4 5 

6 7 8 9 10 

11 12 13 14 IS 

N0W WE HAVE THE 4 BY 5 ARRAYJ 
I 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

0 0 0 0 0 

THE F"0URTH R0W C0NTAINS THE SUMS 0F" THE F"I RST 3 R0 WS. 
I 2 3 4 5 

6 7 8 9 10 

II 12 13 14 15 

18 21 24 27 30 

D0NE 

TCHB+ 

10 F"0R R=l T0 8 
14 REM HERE THE R0W NUMBER IS ENTERED IN THE F"IRST C0LUMN 
15 LET SlR. I J=R 
20 F"0R C=2 T0 5 
30 LET SCR. CJ=O 
40 NEXT C 
50 NEXT R 
68 REM WE AijE ENTERING F"IGURES IN C0LUMNS 2 THR0UGH 5 0NLY 
70 F"0R C=2 T0 5 
80 READ N 
85 IF" N=-1 THEN 110 
88 REM N DETERMINES THE R0W NUMBER WHICH KEEPS TRACK 0F N 

ITEMS 
90 LET srn. CJ=S[N, Cl+ I 
100 NEXT C 
105 601'0 70 
110 PRINT '"NUMBER1TV'S, CARS, H0MES.BATHS" 
119 REM HERE THE RESULTS ARE PRINTED 
120 F"0R R= I T0 8 
130 F"0R C= 1 T0 5 
140 PRINT SC R. CJJ 
150 NEXT C 
155 PRINT 
160 NEXT R 
349 REM EACH GR0UP 0F" F0UR NUMBERS IS F"0R 0NE FAMILY- T.C.H.B 
350 DATA I. 1.1. 1.2, l1 l121 3,2, 1,2, 4, 312181 4,2, I• 5 
355 DATA 2. 1, 1,3, 1, 1, 1,3,2, 1.1,2.1.1.1, 1,2, 1, 111 
360 DATA 2, 2, 2, 6, 1, 1, t. 4, 3, 4, 2, 61 1, 2, 1, 2, 2, 2, 2, 8 
365 DATA 2, 1, 1, 2, - t. o, Q, O 
400 END 
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NUMBER, TV's, 
I 5 
2 7 
3 2 
4 2 
5 0 
6 0 
7 0 
8 0 

00NE 

CAHS, 
9 
5 
I 
I 
0 
0 
0 
0 

H0MES1BATHS 
12 3 
4 5 
0 2 
0 I 
0 I 
0 2 
0 0 
0 2 

SUMMARY 

We may now use a powerful extension of the list concept, the array. An 
array may be thought of as an arrangement of numbers in which there are 
rows and columns. Numbers in an array may be accessed by designating the 
location by a double subscript such as H[3, 7) for the number in array named 
H which is located in the row numbered 3 and the column numbered 7. As 
you may have guessed, you will not need a DIMension statement as long as 
you do not exceed a subscript of [ 10, 10 J. 

PROBLEMS FOR SEC. 5-2 

1) Print an array with 3 rows and 6 columns filled with O's. 
2) Print an array with 6 rows and 3 columns filled with l's. 
3) Set up an array with 4 rows and 9 columns and fill it with random numbers 

from -999 to +999. Print the array. 
4) Fill the addresses along the top left to bottom right diagonal of a square 

7 by 7 array with l's and all other locations with O's and print the result. 
5) Fill two arrays of the same dimensions with random integers and print each 

array. Then fill a third array with the sums of the corresponding entries from the 
first two and print the result. 

6) Fill two arrays of the same dimensions with random integers and print each 
array. Then fill one of these two arrays with the sums of the corresponding entries 
from each array and print the result. 

7) Fill a 3 by 7 array with the integers 0 through 20. Print that array. Then 
multiply each entry by the sum of the row number and the column number and 
print the result. 

8) Fill a 4 by 7 array with random integers from -500 to +500 and print the 
result. Then multiply each entry by 2 and print that result. Insert the printing 
routine using G0SUB. 

9) Fill a 10 by 10 array with the addition table. 
10) Fill:> 10 hy 10 :urny with thP m11ltiplir•ntinn tnhlP 

11) Fill a 5 by 5 array with the addition table mod 5. Then have the computer 
generate addition problems with a random number function and find the sum by 
accessing the appropriate entry in the additon array. 

12) Do problem 11) for the multiplication table mod 5. 
j 13) Consider a questionnaire containing 10 questions with yes, no, or other as the 
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three possible answers, Generate random data and print the results in a 10 by 4 
array, Use the first column for the question number and the other three for yes, no, 
or other. Have the computer generate 50 questionnaires. 

5-3 A MORE DETAILED QUESTIONNAIRE ANALYSIS 

Consider a questionnaire submitted to four categories of people: male-21 or 
over, male-under 21, female-21 or over, and female-under 21. On this ques~ 
tionnaire there are 15 questions calling for yes-no answers. Our task is to 
present a tabulated summary of the data collected. 'vVe can provide sample 
data for say 10 people for the purpose of getting a first test RUN. Let us 
refer to this first problem and the program as SURVEY. The flowchart for 
SURVEY is drawn in Fig. 5~2. 

The first computer problem we run into is, how do we get 15 rows in an 
array? The answer is that we may dimension an array much the same as we 
dimensioned lists. In the array DIM (DIMension) statement, we must specify 

Start 

Initialize 15 by 5 
array cols. 2-5 at 0 

Col. 1 to contain row no. 

F¢RQ = 1 
T¢ 15 

NEXT Q 

PRINT 

headings 

READ 
A 

LET S[Q, Pl 
= S[Q, Pl+ A 

PRINT 
array 

Fig. 5-2. Flowchart for program SURVEY. 
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two dimensions: one for rows and one for columns. We want an array with 15 
rows and 5 columns (4 for categories and 1 for the question numbers). DIM 
8[15, 5] will provide just such an array. 

DIM (TWO-DIMENSIONAL) 
DIM A[R, CJ sets up an array designated as A with highest column 

number C and highest row number R. The statement is required if 
either R or C exceeds 10. Some computers require expiicit integers, I 
others allow variables in DIM statements. ___J 

In our questionnaire problem, there are three things that we must keep 
track of: 1) the category of the respondent, 2) the question number, and 3) the 
response. We may organize the data and results according to Table 5-2. 

TABLE 5-2. CHART TO ORGANIZE SURVEY. 

Array 
Code in 

Column Number Use DATA Line 

1 Question number Position in line 

2 Male 21 or over 2 

3 Male under 21 3 

4 Female 21 or over 4 

5 Female under 21 5 

It will be easier to organize the data, if we reserve an entire data line for 
each person. Then we can put the category code (2 through 5) in the first 
location and the response (0 or 1) in the next 15 locations. A DATA line will 
look like this: 

XXX DATA 4, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1 

where the 4 indicates that the respondent is female and 21 or over, and the 
l's and O's mean yes and no in response to the 15 questions. We could count 
the number of people in advance or use dummy data so that the printing can 
be done after all data is read. 

9 REM DIM SCJS,Sl SETS UP A'J A'<RAY \.:ITH 'HIGH<:.ST' UlCAT!(}'J 
c 1 s. s1 

I 0 DIM SC I 5, 5 J 
20 F3R R=I TO 15 
28 HEM LINE 30 E"JTERS THE HO\, .'IU·'l8ER l''J THE FIFST COL'J.'l\J 
30 LET scH.ll=H 
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40 f'{H C=2 TO 5 
48 t<EM LINE 50 SETS THE LAST 4 C3L 1J;>!\JS AT ZERO 
50 LET S(i<,CJ=O 
60 NEXT C 
70 NEXT 1< 
78 REM BO ·°'EADS THE CATELORY FOR THE NEXT PICRSON IN THF SIFlVFY 
BO .<EAD P 
90 IF P=-1 THEN 200 
9B kEM Q GOES TH-<OUGH THE. 15 f.lUcSTl:JNS 
100 FOR 0=1 TO 15 
110 READ A 
120 LET S(Q,PJ=S(Q,PJ+A 
130 NEXT 0 
I 38 REM LI NE I 40 SENDS THE C::JMPIJTER BACK TO REl'.\D ANO THFfl LI NF' 

OF DATA 
140 GOTO BO 
198 REM THE Prt!NTING BEGINS HERE 
200 PHl•\JT "OUEST MALE MALE FEMALEFEMALE" 
210 ?t<INT "NIJ:-1flE•< 21+ U'lDEt< 21+ IJNDE•l" 
220 FOR R=I T3 15 
230 FOR C=I TJ 5 
250 PRINT S(K,CJ; 
260 NEXT C 
270 PRl·'IT 
2ao NEXT R 
49B REM ***A LINE Ll~E 500 MAY HELP TO LINEUP THE DATA LINES 
499 REM IN TYPING*** 
500 rtEM I• I, I• I, I, I, I• I• I• I• I• I• I• I• I• I 
501 DATA 4, 1.0.1.1.1.0.0.1.1.0.1.0.1.0, 1 
so2 DATA 4, 1.o.o.0.0.1.1.0.1.1.o.o.o.1.1 
so3 DATA J.1.1. 1.1.0.0.1.0.1.o.o.1.1.o.o 
504 DATA 5, 1, 1, 1, o, o, O, 1, O, o, o, 1, t. I• 1, 0 
sos DATA 2.1.1.1.0.0.1,0.1.0.0.1.1.1.1.0 
506 DATA s.0.0.1.0.1.0.0.0.1, 1.1.0.0.1.1 
507 DATA s.0.0.0.1. 1.1.0.1.0.1.0.1.0.0.1 
SOB DATA 2.0.0.1.1.0.o.1.1.o.1.o.1.o.o.1 
509 DATA 4, 1, I• t. 1, 1, 1, 1.0, o,o, 1,0, l•O•O 
s10 DATA 2.1.1.0.0.1.0.1.o.o.o.o.1.1.1.1 
900 DATA -I 
9 99 END 

JH1\J 
SUK\/EY 

QUEST MALE MALE FEMALEFEMALE 
NUMB EK 21+ UNDE:R 21+ UNDEK 

I 2 3 I 
2 2 I I 
3 2 2 2 
4 I 2 I 
5 I 0 2 2 
6 I 0 2 
7 2 I 2 I 
B 2 0 I I 
9 0 I 2 I 
10 I 0 I 2 
11 I 0 2 2 
12 3 I 0 2 
13 2 I 2 I 
14 2 0 2 
15 2 0 2 2 

D0NE 

Notice in SURVEY that while there are four categories in the original 
problem, there are five additional categories generated by the conditions of the 
problem. They are male, female, under 21, 21 or over, and total. We may 
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further process the tabulated results after line 140 in SURVEY by totaling up 
t11e appropriate columns to get these latest categories tabulated. Of course, we 
will have to change the DIM statement to DIM S[l5, 10). This is done in 
SRVEYl. Study lines 145 through 190 carefully to assure yourself that the 
correct values are being tabulated there. 

There are many other results that we might try to find. There are other 

SRVEYI 

!O D!M S(!5:!03 
20 F0R R=I T0 15 
28 REM Li NE 30 ENTERS THE Rll\' NUMBER IN THE Fl RST C::JLll"lN 
30 LET SU<. I l=r< 
40 FOR C=2 TO 10 
48 rtEM LINE SO SETS THE LAST 9 COLUMNS AT ZERO 
50 LET SCR1CJ=O 
60 NEXT C 
70 :\JEXT I< 
78 REM 80 READS THE CATEGORY FOR THE NEXT PERSON l'IJ THE S11RVl'Y 
80 READ P 
90 IF P=-1 THEN 145 
96 REM 0 GOES THf<OUGH THE 15 OUESTI ONS 
100 FOR Q=l TO 15 
110 READ A 
120 LET sru.PJ=SCO.Pl+A 
130 NEXT Q 

138 REM LINE 140 SENDS THE C0MP'JTEH BACK TO READ ANOTHER Ll'IJF 

140 
145 
150 
160 
I 70 
180 
185 
190 
198 
200 
210 

::JF DAT£\ 
G0T0 80 
F0R R=l TO 15 
LET SCR16l=SCF<12J+SCR13J 
LET SCR. 7l=SCk14l+SC:;;,5J 
LET sr R. 8 J =SC I<. 3 J + S[ ·~. 5 J 
LET SCR19l=SCl<12l+SC ll• 41 
LET SCR1IOJ=S£:l.6l+SCl<17l 
NEXT R 
REM THE PRINTING BE,GINS HE:-<F: 
PRINT "QUEST MALE MALE FEMALEFEMALE" 
PRINT "NUMBER 21+ UNDER 21+ UNDER MALE 
21+"; 

211 PRINT " TOTAL" 
220 FOR R=l TO 15 
230 FOr< C=l TO 10 
250 PRINT SCR.CJJ 
260 NEXT C 
2 70 PRINT 
280 NEXT N 

FEMALE IJNDEq 

498 r<EM ***A LINE LIKE 500 MAY HELP TO LINE•JP THF DAT/\ LINF<; 
499 REM IN TYPING*** 
500 REM 1, 1, 1.1, 1, 1, 1, 1.1, 1.1.1, 1.1. 11 I 
501 DATA 4, 1.0.1.1.1.0.o.1.1.o.1.o.1.o.1 
502 DATA 4, 1, o, o, Q, o, l • 1, O, 1, I• o. 01 o, l • 1 
503 DATA 3.1. 1.1.1.0.0.1.0.1.o.o.1.1.o.o 
504 DATA 5,1.1.1.0.0.0.1.o.o.o.1.1.1.1.o 
505 DATA 2, I• 111,0,0.1,0, 1,0,0.1, l• 1, 1,0 
506 DATA 5,0,0, 1,0, 1,o,o.o, 1, 1, 1,0.0.1, 1 
50 7 DATA 5, o, o, o, I, 1, 1, o, 1, o, 11 o, 1, o. o, 1 
508 DATA 2,0,0, 1, 1.o,o, 1, 1,0, 1,o, 1.0.0, I 
509 DATA 4,1.1.1.1.1.1.1.0.0.0.1.0.1.0.0 
510 DATA 2.1.1.0.0.1.0.1.o.o.o.o.1.1.i.1 
900 DATA -1 
999 END 
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tWN 
SR VEY I 

QUEST MALE MALE f"EMAL Er EMAL E 
NUMBER 21+ UNDEK 21+ UNDEK MALE f"EMALE UNDER 21+ rnTAL 

1 2 I 3 I 3 4 2 5 7 
2 2 1 I 1 3 2 2 3 5 
3 2 I 2 2 3 4 3 4 7 
4 1 I 2 1 2 3 2 3 5 
:; 1 D 2 2 1 4 2 3 5 
6 i 0 2 I 1 3 I 3 4 
7 2 1 2 I 3 3 2 4 6 
8 2 0 I I 2 2 1 3 4 
9 0 I 2 1 1 3 2 2 4 
ID 0 I 2 3 2 2 4 
II 1 0 2 2 4 2 3 5 
12 3 1 0 2 4 2 3 3 6 
13 2 I 2 1 3 3 2 4 6 
14 2 0 1 2 2 3 2 3 5 
15 2 0 2 2 2 4 2 4 6 

00.'-lE 

totals that could be tabulated. At the time P is read, we could total the 
number of people in each of the original four categories and enter these 
totals in row 16. Then we could compute averages. There are numerous ratios 
that we could evaluate. We could have the computer generate random data to 
get larger numbers in the printed result. That would require random integers 
2 through 5 for P in line 80 and random 0 or 1 in line 110 for the yes-no 
responses. 

SUMMARY 

We see that the two-dimensional array permits tremendous flexibility. We 
may determine its size exactly. The array serves as a vast storage area for 
large amounts of data or tabulated results. We may process the contents of 
an array and enter results in other parts of the same array with tremendous 
maneuverability. 

The DIM statement may be used to specify subscripts greater than 10 in 
the two-dimensional array much as it was used for lists. 

PROBLEMS FOR SEC. 5-3 

I) Modify SURVEY to handle 75 questionnaires with random data. 
2) Modify SRVEYI to tabulate the totals discussed with that program in the 16th 

row of the S array. 
3) Modify SURVEY to handle yes, no, and other as possible answers. Create 

three arrays: one for yes, a second for no, and a third for other responses. Use 
random data and 50 questionnaires. 

4) Modify SRVEYI to generate random data for 50 questionnaires. 
5) Modify SRVEYI to tabulate the results as percentages of the total number of 

yes responses. Do not create a second array. 
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6) Fill an array with the multiplication table up to 12 X 12, and print the last 
three rows. 
j 7) In a 12 by 12 array enter all l's in the upper left to lower right diagonal and 
the left-most column, and all O's elsewhere" Then beginning in the third row, second 
column, enter the sum of the entry in the same column of the row immediately 
above and in the column one to the left and the row immediately above, through 
the 12th row, 11th column. Print the result. 



CHAPTER 6 

Specific Applications 

6-1 EUCLIDEAN ALGORITHM 

In Chap. 4 when we first reduced common fractions to lowest terms, even 
though the computer did the work, it was done the hard way. 

For two integers N and D, 

N/D =I+ R/D 
or N =I 0 D + R 

where I is the integer quotient and R is the remainder. If we successively 
divide the remainder into the previous divisor until the remainder is 0, the last 
divisor is the greatest common factor. This will always happen, even for 
mutually prime pairs, as the last divisor will be 1. 

Let us see what hap ~ for 13398 and 7854. 

N I"D--t 
13398 = (1)[7854] + 
7854 = (1)[5544] + 2310 

5544 = (2)[2310] + 924 

2310 = (2)[ 924] + 462 

924 = (2)[ 462] + 0 

(6-1) 
(6-2) 
(6-3) 
(6-4) 
(6-5) 

According to Euclid the greatest common factor of 13398 and 7854 is 462, be
cause 462 was the divisor when the remainder was 0. Indeed 13398 = 29 " 462 
and 7854 = 17 ° 462. That took only five tries. How many would it have taken 
using the old method? Now all we have to do is figure out why it works. 

Look carefully at Eq. (6-5). 924 is divisible by 462 because the remainder 
is 0 and 0 is divisible by any nonzero number. This 0 remainder is the key to 
the entire proposition. Now look at Eq. (6-4). Since 924 is divisible by 462, so 
is (2)[924] + 462, which makes 2310 divisible by 462. Now look at Eq. (6-3). 

91 
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Since 2310 and 924 are both divisible by 462, so is 5544. This makes 7854 
divisible by 462, which in turn makes 13398 divisible by 462, which is the 
original contention. The argument we have just presented is hardly a proof of 
the Euclidean algorithm, but it should be convincing. 

Now, how do we get the computer to carry out this process? First, from 
Eqs. (6-1) through (6-5) we should see that we have simply taken the old 
divisor D and made it the dividend and the old remainder R and made it the 
divisor. So we will get the computer to LET N D and LET D R after we 
look at the remainder to see if it is 0. If the remainder is 0, we direct the 
computer to print the last divisor as it is the greatest common factor. 

Now we shouid be abie to draw the flowchart (Fig. 6-1) and write the 
program C0MF AC. 

Start 

END 

LET I 
= INT(N/D) 

LET R 
= N-1 • D 

LET N = D 

LETD = R 

Fig. 6-1. Flowchart for using Euclidean algorithm for program C\ZlMFAC. 



C0MF"AC 

10 
20 
25 
28 
30 
38 
40 

PRINT "N, D"I 
INPUT N, D 
IF" N=O THEN 120 
REM F"IND THE INTEGER QU0TIENT 

LET I=INTCNID> 
REM F"IND THE REMAINDER 
LET R=N-1*D 
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48 REM IF" THE REMAINDER IS ZER0 THEN D IS THE G,C•r• 

so IF" R=O THEN 90 
58 
60 

REM R WAS N0T ZER0, S0 WE ITERATE 

LET N=D 
70 
80 
90 
100 
110 

LET D=R 
G0Tlil 30 
PRINT "G•C•r• 

PRINT 
G0T0 10 
END 120 

RUN 
C0MF"AC 

N1D?133981922251 
G·C•r• = 33 

N1D?7412791922251 

G·C•r• = 33 

N, D? 133981 78 54 
G·C·F"o = 462 

N1D?9911199 
G.C•r• = I 

N, D?2 728 51• 2461 56 
G·C·r• = 281 

N, D?O, 0 

D0NE 

="JD 

PROBLEMS FOR SEC. 6-1 

1) Write a program to add fractions given the numerators and denominators. 

Print the sum reduced to lowest terms. 
2) Do problem 1) for multiplication. 

,/ 3) INPUT two pairs of coordinates. Have the computer find the slope and the 

Y-intercept of the straight line containing the points and print the results as rational 

numbers reduced to lowest terms. If the result is negative, have the numerator be 

the negative number. 
4) As a project, write a program to factor quadratic expressions with integer 

coefficients. Be sure to allow for 0 eoclficicnts and factor out greatest common 

factors of all three coefficients. 

6-2 CHANGE BASE 

In this section we are going to develop a program to convert base-10 

numbers to base-2 numbers. You will recall that for base-2, only the digits 0 

and I are permitted and each digit represents a power of 2 instead of 10. 



94 Basic BASIC 

One of the widespread uses for base-2 numbers is in computers themselves. 
This is because in base-2, all numbers may be expressed by a set of switches 
with 0 being off and l being on. 

One difficulty that we quickly encounter is that whatever the digit capacity 
of the computer we have access to, that number of digits provides a much 
smaller number in base-2 than it does in base-10. We will use up to six digits 
in the base-10 number for our program. In base-2 100000 is only 32 
base-10 and 

1111112 = 1 0 2 00 0 or 1 
+1~2..,lll or + 2 
+ 1"2 "" 2 or + 4 
+102003 or + 8 
+102004 or +16 
+102005 or +32 

6310 

which we could handle :asily with pencil and paper. Clearly, we are going 
to have to work with more than six digits in base-2. 

Let us assume that we can provide for as many digits as are needed. How 
many digits do we need to represent the base-10 number 999999 in base-2? 
We could write a program that would give that information, but we can also 
figure it out ourselves. We can begin with 2 °0 5. 

2 °0 5 = 32 
2 ° 0 IO = 32 ° 0 2 = 1024 
2 °0 20 = 1024 °0 2 = 1048576 

So, if we provide for up to 2 ° 0 20, we can handle six-digit integers with 
room to spare. We know how many digits we need, now we have to figure 
out how to make the conversion. 

Let us run a sample conversion before we attempt to write the program. 
We use 149 base-IO here. First find the greatest integer power of 2 that is 
less than 149. It is 2 ° 0 7 or 128. 

149/2 °0 7 = 1 + 21/2 °0 7 

or 149 = 1 ° (2 ° 0 7) + 21 
21 = 0 ° (2 ° 0 6) + 21 
21 = 0 ° (2 °. 5) + 21 
21 = l 0 (2 °. 4) + 5 

5 = 0 • (2 °. 3) + 5 
5 = 1 • (2 ° 0 2) + 1 
l = 0 ° (2 • 0 1) + 1 
l = 1 ° (2 ° 0 0) + 0 

By successive substitution we see that 

(6-6) 
(6-7) 
(6-8) 

(6-9) 

(6-10) 
(6-11) 

(6-12) 

(6-13) 



149 = 1 ° (2 ° 0 7) 
+ 0 0 (2 00 6) 

+ 0 0 (2 00 5) 

+ 1 0 (2 00 4) 
+00(2003) 
+ 1 0 (2 00 2) 
+ 0 0 (2 00 l} 

+ 1 0 (2 00 0) 

So that 

14910 = 100101012 

Equation (6-6) may be written in general as 

N = I 0 (2 ° 0 E) + R 
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where N is the number, I is the integer quotient, E is the exponent on the 
base-2, and R is the remainder after integer division. Therefore 

I = INT(N/(2 ° 0 E) 

and, solving for R we get 

R=N I 0 (2° 0 E} 

Now, looking at Eqs. (6-6) through (6-13} we see that we have an iterative 
process in which the new number is to be the old remainder and the exponent 
on the base-2 is reduced by 1 until it gets to 0. This looks like a loop in which 
the loop variable is the exponent on the base-2 and stops at 0. Where does it 
start? Earlier we decided that the greatest exponent on 2 could be 20. Now 
we should be able to assemble our problem into a flowchart (Fig. 6-2}. 

BASE 

10 READ N 
20 PRINT NJ "BASE TEN ="; 
30 F0R E=20 T0 0 STEP -1 
40 LET l=INTCN/2•EI 
50 PR! NT I; 

60 LET R=N-1*2•E 
70 LET N=R 
80 NEXT E 
8 5 PR! NT "BASE T ,,,.0" 
86 PRINT 
90 GClT0 10 
100 DATA 999999.,1,16 
110 END 
RU'J 
BASE 

999999. 
0 0 

BASE [EN 
0 

BASE TWO 

0 0 0 
0 0 0 



Start 

I BASE. TE.N 0 0 
0 0 0 0 

BASE Two 

16 BASE TEN 0 0 
0 0 0 0 

BASE. TwO 

GUT GF DATA F-1 LINE. I 0 

Fig. 6-2. Flowchart for conversion 
from base-10 to base-2 . 

F(l'>R E = 20 
Ti/J 0 STEP-·1 

NEXT E 

0 0 
0 0 

0 0 
0 0 

.. I LET I I 
--- = INT(N/2 •• E) 

1 

0 
0 0 

0 
0 

LET R 
=N-1•2••E 

LETN = R 

0 0 
0 0 

0 

0 0 0 
0 0 

0 
0 

0 
0 0 

Looking carefully at the printed results in BASE, we can see that 16 base-10 
does equal 000000000000000010000; however it is difficult to sort that out. 
Printing the variable I is controlled by semicolon spacing which will not place 
one-digit numbers in adjacent spaces. We can however, get the digits next to 
each other by printing them explicitly. If we say PRINT "l"; the next printed 
character will be printed in the next space. So, instead of 50 PRINT I; we 
insert 

45 IF I=l THE.N 55 
50 PHINT "Q"; 
52 G0TO 60 
55 PRINT "l"J 



and call for a RUN: 

RUN 
BASE-2 
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999999. BASE TEN =011110100001000111111 BASE TWO 

BASE TEN =000000000000000000001 BASE TWO 

16 BASE TEN =000000000000000010000 BASE TWO 

0UT OF' DATA IN LINE 10 

By not worrying too much about the fact that we were going to require a 
large number of digits, we have succeeded in printing numbers with 21 digits. 
Quite often in programming, as in any problem-solving situation, you will 
solve seemingly impossible problems by emphasizing those things that you 
can do rather than holding back because of all the things you think that you 
will be unable to handle. 

Let us reassemble the program as it now stands in BASE-2 and insert 
another set of data just to see a few more results. 

BASE-2 

I 0 READ N 
20 PRINT N; "BASE TEN ="; 
30 F'0R E=20 T0 0 STEP -1 
40 LET I=INTCN/2•E> 
4 5 I F' I = I TH EN 5 5 
50 Pf<INT "O"; 
52 GOT0 60 
55 Pf<INT "!"; 
60 LET R=N-1*2•E 
70 LET N=R 
80 NEXT E 
85 Pf<INT " BASE TwO" 
86 PRINT 
90 GOTO 10 
100 DATA 999999., 1, 16 
110 END 
100 DATA 45,9875,123456 
iWN 
EJASE-2 

45 BASE TEN =000000000000000101101 BASE TWO 

9875 BASE TEN =00000001001101001001 I BASE TWO 

123456. BASE TEN =000011110001001000000 BASE TWO 

0UT 0F' DATA IN LINE 10 

Of course we really are not finished with the program yet. We should 
eliminate the leading O's. Then the printed results will be in more familiar 
form. This is left as an exercise. 
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PROBLEMS FOR SEC. 6-2 

1) Eliminate the leading O's in BASE-2. Be careful not to eliminate all O's. 
2) Write a program to convert base-2 numbers to basc-10. It may help to put 

the digits of the base-2 number in a list. 
3) Write a program to add two numbers in base-2. 
4) Have the computer convert numbers in hase-10 to hase-3. 

j 5) Write a program to convert from base-10 to base-12. It is conventional to use 
T for 10 and E for 11 in base-12. 
j 6) Have the computer convert base-3 numbers to base-2. 
/ 7) \Vrite a program to convert bn.se-10 numbers to any ba~e up to 12 \vith the 
base determined from data. 

6-3 LOOKING AT INTEGERS DIGIT BY DIGIT 

In general, the more control we have over a number in the computer, the 
more complex the problems we might expect to be able to handle. So, for the 
purpose of learning to control a number in the computer digit by digit, let us 
write a program to take the digits of an integer and print them one at a time. 

Consider the number 8394. The 8 means 8 thousand which may be written 
8 ° 10 ° 0 3; the 3 means 3 hundred which may be written 3 ° 10 ° 0 2; the 9 
means ninety which may he written 9 ° IO 0 0 1; and the 4 means four which 
may be written 4 ° IO 0 0 0. Looking at the numbers step by step, 

8394 = 8 ° IO 0 0 3 + 394 

394 = 3 " IO 0 0 2 + 94 
94 = 9 ° IO 0 0 1 + 4 
4=4°I0° 0 0+ 0 

This is an example of the general relationship 

N=I 0 I0° 0 E+R 

where I is the integer quotient found by 

I= INT(N/IO 00 E) 

and an iterative process whereby the 11ew N is the old R and the value of E 
is decreased by 1 for each iteration. Solving for R we get 

R=N-I 0 I0° 0 E 

All of this should begin to look familiar. 
For six-digit intPgPrs th1~ vnl111~ of F. will h:ivP tn hP!'.in :it ~ ;mrl gr_> tr_i (\ 

STEP -I. Carefully study prngram DIGIT and you will see that we have 
indeed broken integers into their separate digits. However, as always, we should 
look for ways to improve our programs. One change that will save a little paper 



DIGIT 

I 0 PRINT "INPUT ANY 
20 INPUT N 
30 IF N=O THEN 999 
40 FOK E= 5 TO 0 STEP 
so LET I=INTCN/IO•E> 
60 PRINT I 
70 LET R=N-I*IO•E 
80 LET N=R 
90 ·'llEX T E 
100 PRINT 
110 GOTO 10 
999 E.'llD 
RUN 
DIGIT 

INTEGEH"l 

- l 

INPUT ANY I NTEGE1l? 123456 
I 
2 
3 
4 
5 
6 

INPUT ANY l'llTEGER?819045 
8 
I 
9 
0 
4 
5 

INPUT ANY INTEGER?53627 
0 
5 
3 
6 
2 
7 

INPIJT ANY INTEGEK?O 

DONE 
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would be to print the <ligits across the page with semicolon spacing. We can 
do that by changing line 60 to rea<l 60 PH.INT I; an<l call for a HUN. 

60 PRINT I l 
RUN 
DIGIT 

INPUT ANl' INTEGER?l23456 
I 2 3 4 5 6 

INPUT ANY I NTEGER?9 75432 
9 7 5 4 3 2 

INPUT ANY INTEGER? 5362 7 
0 5 3 6 2 7 

INPUT ANY INTEGE1<?0 

DONE 
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Now let us see the program with the change and try another number. 
(See DIGITl.) 

DI GIT I 

10 PRINT "INPUT AN'{ INTEGER"I 
20 INPUT N 
30 IF N=O THEN 999 
40 F0R E=5 T0 0 STEP -I 
50 LET l=INTCN/IO•E> 
60 PRINT IJ 
70 LET R=N-1¢JQ!E 
60 LET N=R 
90 NEXT E 
100 PRINT 
110 G0T0 10 
999 END 
HUN 
DI GIT I 

INPUT ANY INTEGER?666666 
6 6 6 6 6 6 

INPUT ANY INTEGER?O 

D0NE 

One last consideration is that we might want to eliminate the leading O's. 

We leave this as an exercise. 

PROBLEMS FOR SEC. 6-3 

1) Eliminate the leading O's in DIGIT Be careful not to eliminate all zeroes. 
2) Test integers for divisibility by 3 by summing the digits. 

3) Construct the integer formed by reversing the order of the digits in an INPUT 
integer. Print the result as an integer. 
j 4) Test integers with the integer formed by reversing the order of the digits to 

find the greatest common factor. 
j 5) Find all three-digit integers that are prime. Form new integers by reversing 

the digits and see if the new number is also prime. Print a number only if it and 

its reverse number is prime. There arc 43 pairs of numbers, some of which will 
appear twice. You should pay particular attention to efficiency in this problem. 



CHAPTER 7 

Strings and Files 

7-1 INTRODUCTION TO STRINGS 

To a BASIC programmer, a string is a set of characters. We use strings every 
time we print a message by enclosing it in quotes in a PRINT statement. BASIC 
provides the ability to save strings in a special string variable, identified by 
using a trailing dollar sign ($). We may use A$, B$, etc., to designate string 
variables. Some computers allow Al$, B8$, etc., and some allow A$(R,C) to 
designate string arrays. The use of strings enables us to process alphabetic data, 
such as names and addresses, and descriptive data of all kinds. 

We may work with string variables in many of the ways that we do with 
numeric variables. For instance, in BASIC prngrams we may use such state
ments as 

100 LET A$ = "FlkST" 
100 READ A$, 8$ 
100 INPUT A$, 8$ 
100 PRINT A$, 8$ 

In order to READ A$, B$, we must provide a corresponding DAT A state
ment. Some systems require all strings in DATA statements to be enclosed in 
quotes. Others require quotes only when the string contains a comma or 'looks 
like' a number. For PRINT A$, B$, the output will have "comma spacing." That 
is, the page will be arranged in 15-character columns. If we replace the comma 
with a semicolon, the two strings will be printed with no space between them. 

We will use a short program named FIRST$ to <lemonsb·ate LET, READ, 
INPUT, and PRINT. 

101 
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FIRST$ 

95 
96 
100 
110 
120 
130 
140 

REM * F'IRST STRING PR0GRAM 
REM 
LET A$ = "THIS IS A" 
READ 8$, C$ 
PRINT A$J " "J 8$J " "J C$J 
INPUT D$ 
PRINT 

J50 
J55 

PRINT A$J " "J 8$J " "J C$J " "J D$ 
REM 

J60 DATA "PR0GRAM T0''. "DEM0NSTRATE" 
J70 END 
RUN 
F'IRST$ 

THIS IS A PR0GRAM T0 DEM0NSTRATE?STRINGS 

THIS IS A PR0GRAM T0 DEM0NSTRATE STRINGS 

BASIC allows us to compare strings for order in accordance with a sequence 

known as ASCII (American Standard Code for Information Interchange). For 

strictly alphabetic strings, this code will alphabetize in the conventional order. 

ASCII places the digits 0 through 9 ahead of the letters of the alphabet We 

can easily write a short program to demonstrate order comparison. See ORD$. 

0RD$ 

95 REM * C0MPARES STRINGS F'0N ORDEN 
JOO PRINT 
110 PRINT "A$"J 
120 INPUT A$ 
130 IF A$ = "ST0P" THEN 240 
J40 PRINT "8$"J 
J50 INPUT 8$ 
J60 IF' A$ < 8$ THEN 220 
J70 IF' A$ = 
J60 PRINT A$J 
J90 G0T0 JOO 
J95 REM 
200 PRINT A$J 
2JO G0T0 JOO 
2J5 REM 
220 PRINT A$J 
230 G0T0 JOO 
240 END 
RUN 
0RD$ 

A$?WHAT' S THIS 
8$?WHAT' S THAT 

8$ THEN 200 .. IS GREATER THAN 

.. IS EQUAL T0 "; 

.. IS LESS THAN "J 

"; 8$ 

8$ 

8$ 

WHAT'S THIS IS GREATER THAN WHAT'S THAT 

A$?WHAT'S THIS 
B$?WHAT' S WHAT 
WHAT'S THIS IS LESS THAN WHAT'S WHAT 

A$?WHAT'S WHAT 
8$?WHAT' S WHAT 
WHAT'S WHAT IS EQUAL T0 WHAT'S WHAT 

A$?ST0P 

In the handling of strings, we find that different computers have significantly 

different BASIC language definitions. For example, on one computer, the state-
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ment 100 PRINT A$(4) will cause the computer to output the character sb'ing 

stored in string variable A$, beginning with the fourth character, whereas on 

another, the same statement will cause the computer to output the fourth string 

of the string list A$. It is because of these differences that we present two dis

tinctly different schemes for handling strings in the next two sections. 

7-2 STRINGS-THE SUBSTRING SCHEME 0 

In the substring scheme, strings may be considered as a complete entity by 

referring to A$, B$, etc., or we may consider segments of A$ by using one or 

two subscripts. A$(I) specifies the segment beginning with the Jt 11 character and 

continuing to the end of the string. A$(I,J) [some computers using this scheme 

may require A$(I:J)] specifies the segment from the Jt 11 character through the 

Jill character inclusive, provided I == J. If I = J, then A$(I,J) is a single char

acter. This scheme does not provide for string arrays. (It has been extended on 

some computers, however, by using A$(I;J ,K), where the I designates which 

string in the single dimension array is referred to and the J,K pair designates 

the segment from the J! 11 through the Kth character.) 

As with arrays, it is necessary to specify the capacity of any string variable 

we intend to use (for more than one character) in a DIMension statement, Thus, 

100 DIM A$(10),B$(16),C(2,ll) provides for up to 10 characters in A$, up to 

16 characters in B$, and two rows and 11 columns in a numeric array G The 

C dimensioning is included here merely to demonstrate that string and array 

dimensioning may be intermixed in a single statement. The LEN( ) function is 

provided to count the number of chmacters actually stored in a string. LEN(Z$) 

takes on the value of the number of characters stored in string variable Z$. 

In program SEG$1, note the dimensioning in line 100, the use of the LEN( 

function in lines 140 and 150, and the printing of segments in line 160. 

SEG$1 

95 
100 
110 
120 
130 
140 
150 
160 

REM * DEM0NSTRATES STRING SU8SCKIP1S 

DIM A$(8) 

17 0 
!BO 
190 
195 
200 
210 
;:UN 
SEG$l 

READ A$ 
IF A$="STOP" THEN 210 
PRINT "A$="JA$ 
PRINT "LENCA$)-:";LENCA$l 

F0R I=l TO LENCA$) STEP 2 
PRINT "A$C"J IJ","J I+IJ"):";A$[1, l+ ll 

NEXT l 
PRINT 
GOTO 110 
REM 
DATA "Ai:lCDEF","l:lA!>l0","::.fOr'" 

END 

A$= ABC DEF 
LEN CA$>= 6 
A$( I , 2 >=AB 
A$< 3 , 4 >=CD 
A$< 5 , 6 > =EF' 

0 The programs of this section were run on a Hewlett-Packard computer. 
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A$=8ASIC 
LENCA$l= 5 
A$C I , 2 l =BA 
A$C 3 , 4 l =SI 
A$C 5 , 6 l=C 

The ability to isolate a segment of a string has many uses. We may wish to 
pack related information into a single string such as 

100 LET D$ = "JANFEBMARAPRMAYJUNJULAUGSEP0CTN0VDEC" 

Now we. may select the desired month according to its position in D$, Or, we 
might want to use a single string to contain the names of a group of individuals, 
last name first, but to print only the last name and first initial. 

One common use of string segments is to format numbers in printed results. 
For instance, the appearance of the output produced by program SEG$1 could 
be improved by using string output to print I and I + 1 in line 160. See lines 
110 and 160 in program SEG$2. Notice the compact appearance of the printed 
result there. 

SEG$2 

95 REM * PRINTING A SINGLE DIGIT NUME~IC 
96 REM USING STRING 0UTPUT 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
195 
l'!OO 
210 
RUN 
SEG$2 

DIM A$[8J,D$f.9J 
LET D$="1234567B9" 
READ A$ 
IF A$="ST0P" THEN 210 
PRINT "A$="JA$ 
FOR I=l T0 l.ENCA$l STEP 2 
PRINT "A$C"JD$[ 1, IJJ","; 0$( I+ 1, I+ 1 H ">=";A:£[ I, I+ 11 
NEXT I 
PRINT 
G0T0 110 
REM 
DATA "ABCDEF","BASIC","ST0P" 
END 

A$= ABC DEF 
A$CJ,2l=AB 
A$C 3, 4) =CD 
A$C5. 6>=EF 

A$=BASIC 
A$Cl,2l=BA 
A$C 3, 4) =SI 
A$(5,6>=C 

We see in SEG$2 the beginning of a technique for printing a numeric using 
string output. Obviously missing are the ability to print zero and the ability to 
handle more than one digit. We can take care of zero by using LET D$ = 
"f\1(,,')Af::'Q'"1Q(\H L __ ... ---!-J.! ___ -----1---·- ~f --~--~ .1..1.., ___ ~--- _l!.--!J.. -·--·--: ____ Ll __ .a. ----

V..LLn.J"'XUV. UV ' LIUl. .PJ.U..ll..UJ.O UUU.tUVli::J V.l UlVlV l.Ua.U vuc; u151L .lCil{Ull(;.") LUa.t.. WV 

use the technique of program DIGIT in Sec. 6-3. That is, we must isolate the 
digits of our number one at a time. Once we have the digit to be printed stored 
in I, we must print D$(1 + l,I + 1) since zero is the first digit in D$. This step 
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is taken in program DIGIT2. The numeric output is placed between # signs, 
and the string output is placed between $ signs. 

DIG I T2 

95 
96 
97 

REM * PRINTING A NUMERIC 0r M0RE 
REM THAN 0NE DIGIT USING STRING 
REM 0UTPUT 

DIM D$[10l 
LET D$•"0123456789" 
PRINT "INPUT ANY INTEGER"J 
INPUT N 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
RUN 
DIGIT2 

Ir N•O THEN 260 
PRINT "#"JNJ "II .. 
PRINT "$"J 
r0R E=5 T0 0 STEP -I 
LET I=INTCN/IO•E> 
PRINT D$[I+l,I+IJJ 
LET R=N-I*lOtE 
LET N•R 
NEXT E 
PRINT "$" 
PRINT 
G0T0 120 
END 

INPUT ANY INTEGER?93617 
II 93617. II 
$093617$ 

INPUT ANY INTEGER?O 

It is left as an exercise to eliminate the printing of the leading zero in the 
output of DIGIT2. 

SUMMARY 

We have used strings to store nonnumeric data. Any string may be con
sidered in its entirety, or any segment may be isolated using subscripts. A$(I,J) 
designates the substring from the Jth to the J!11 characters, inclusive. By placing 
the ten digits in a dummy sb·ing, we gain complete control over the printing 
of numerics by using string output. 

PROBLEMS FOR SEC. 7-2 

I) Write a program to print the characters of a string in reverse order. 
2) Eliminate leading zeros in the output of DIGIT2. Be careful not to eli

minate all zeros. 
3) Write a program to arrange the characters of a string in order using the 

technique of program ARANG5 of Sec. 4-4. 
4) Use string formatting to print the output in problem 7 of Sec. 6-2. 
5) Write a program to convert a string integer to a numeric . 

./ 6) Write a program to convert a numeric input to a string output if the nu
meric input is allowed to contain a decimal point and be negative. 
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7-3 THE STRING ARRAY SCHEME" 

In the string array scheme, A$(1) names the string stored in the position 
numbered I of a string single-dimensioned array, and A$(I,J) names the string 
stored in row I and column J of a string two-dimensional array. As with arrays 
used elsewhere, a DIMension statement is required if we intend to have either 
subscription exceed 10. The maximum number of characters which may be 
stored in any one array position varies from computer to computer but ranges 
from 6 to the thousands. 

We may do many things with string arrays that we do with numeric arrays. 
Vie may READ, PRINT, INPUT, assign, and cumpare for order elements of 
the array. We may even be able to use the statement LET A$ = "XYZ" -+ 
"ATV" to assign "XYZATV" to A$. 

DAYSOl 

100 DIM W$C7) 
105 
108 REM * READ DAYS 0F THE WEEK 
110 F0R I = 1 T0 1 
120 READ W$CI> 
130 NEXT I 
135 
138 REM * PRINT DAYS 0F THE WEEK 
140 F0R I = 1 T0 1 
150 PRINT I; W$CI> 
160 NEXT I 
165 
168 REM * DATA 
170 DATA SUN DAY• M0NDAY, TUESDAY• fJEDNESDAY 
180 DATA THURSDAY, FRIDAY. SATURDAY 
190 END 
RUN 

I SUNDAY 
2 M0NDAY 
3 TUESDAY 
4 WEDNESDAY 
5 THURSDAY 
6 FRIDAY 
1 SATURDAY 

Suppose we wish to work with the days of the week. We can easily read the 
names of the days of the week into an array. Then these names can be printed 
later as labels whenever needed, as shown in program DAYSOl. 

It is useful to be able to manipulate data in sh"ing variables. We might want 
to know the number of characters in one of them, for example. There are two 
ways to find out. One is to use the LEN function. LEN(A$) returns the number 
of characters iil A$. Another is to use the CHANGE statement. CHANGE A$ 
T0 A stores the number of characters in A$ in A(O), converts each of the char
acters in the string A$ to a numeric equivalent code, and then stores that nu
meric in a corresponding position of the one-dimensional A array. The code 

__ _ 1 I'_ 11. !- !- A C'r"ITT / A . __ .. ! _ . _ C" 1 •• _l ... ~1 r"I _ ~1 - r _ .. T . I'. . . ,- 1 • T • . 1 .. \ u;::,c;u J.Ul uu;:, 1;:, .t'l.L.1' .. 1.1.,l \I"llUClJ.L'dU i..Jld.HUdlU '-'uuc lUl .1U1U11Ud.l1UU lULClL'HUUbCJ. 

CHANGE A T0 A$ makes the conversion in the opposite direction. This can 

0 The programs of this section were run on the General Electric Information Services 
time sharing system. 
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CHANGE 

98 REM * DEM0NSTRATE CHANGE STATEMENT 
100 DIM AC30>,8<1> 
110 PRINT "STRING"J 
120 INPUT A$ • 
130 CHANGE A$ T0 A 
140 PRINT LENCA$)J "CHARACTERS IN '"J A$J "'" 
150 PRINT 
160 LET 8<0> = I 
170 PRINT "CHAR ASCII C0DE" 
180 F"0R I = I T0 A<O> 
190 LET 8< I> = ACI> 
200 CHANGE 8 T0 8$ 
210 PRINT "'"J 8$J "' "J AC!) 
220 NEXT I 
230 END 
RUN 

STRING? TRY THIS 
8 CHARACTERS IN 'TRY THIS' 

CHAR ASCII C0DE 
'T' 84 
'R' 82 
•y• 89 

32 
'T' 84 
'H' 72 
'I' 73 
•s• 83 

probably best be demonstrated with a program. See especially lines 130 and 
200 of program CHANGE. 

Notice that it required four statements to extract the Jt11 character of A$. 
In program CHANGE, we used statements 130, 160, 190, and 200 to do this. 
The EXT$ function is available for just this purpose. EXT$(A$,1,J) extracts the 
group of characters beginning with I and ending with J for string A$. Some 
computers use SEG$ for this. Using EXT$, program CHANGE becomes 
CHANGF. 

CHAN Gr 

98 REM * DEM0NSTRATE CHANGE STATEMENT 
100 DIM AC30> 
110 PRINT "STRING"J 
120 INPUT A$ 
130 CHANGE A$ T0 A 
140 PRINT LENCA$>J "CHARACTERS IN "'J A$J ""' 
150 PRINT 
170 PRINT "CHAR ASCII C0DE" 
180 r0R I = I T0 ACO> 
210 PRINT "'"J EXT$(A$,I,I>J "J ACI> 
220 NEXT I 
230 END 
RUN 

STRING? #I&+: J 
6 CHARACTERS IN '#!&+:]' 

CHAR ASCII C0DE .,. 35 
'!' 33 
'&' 38 
•+• 43 
•:• 58 
• J' 93 
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We may form strings from the characters of strings in some rearranged se
quence. \~le might print a string backwards or with the characters in alphabetic 
order. In order to arrange the characters of a string in alphabetic order, we can 
simply provide a one-dimensional array with the corresponding ASCII code 
numerics in increasing order. Program ORDER$ does exactly this. 

0RDER$ 

100 DIM AC 100> 
II 0 PRINT "A$"J 
120 IN PUT AS 
i30 PRINT 
140 CHANGE A$ T0 A 
150 F0R I = 1 T0 A<O> - I 
160 F0R J = I + I T0 A< O> 
17 0 IF AC I> < = A< J > TH EN 21 0 
175 REM * EXCHANGE 0UT 0F 0RDER C0DES 
180 LET S = A< I> 
190 LET A< I> A<J> 
200 LET A<J> = S 
210 NEXT J 
220 NEXT I 
230 CHANGE A T0 A$ 
240 PRINT A$ 
250 END 
RUN 

A$? WHAT' IF I CAN'T THINK 0F S0METHING? 

'?AAGEFFGHHHIIIIKMNNN00STTTTW 

SUMMARY 

Whenever subscripted array string variables may be used, A$(I,J) specifies 
the string stored in row I, column J. We may use CHANGE A$ T0 A to con
vert the characters in the string variable A$ to the equivalent ASCII code 
numerics in corresponding positions of the A array. We may also reverse this 
process by using CHANGE A T0 A$. We also find the number of characters 
in A$ stored in A(O). Alternatively, we may use the LEN function. We may 
extract a group of characters with the EXT$(A$,I,J) function. This may be im
plemented as SEC$. 

We may assign, PRINT, INPUT, and READ string variables in much the 
same way that we handle these operations with numeric variables. Strings may 
be placed in DATA statements, and string arrays must be DIMensioned if a 
subscript is to exceed 10. 

PROBLEMS FOR SEC. 7-3 

1) Write a program to print the characters of a string in reverse order. 
2) Write a progam to accept string input, and tabulate the number of times 

each character appears. 
3) Write a program to alphabetize the strings of a single-dimension string 

array. 
4) Write a program to produce the following output, using the days of the 

week as stored in W$ in program DAYSOI. 
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s M T '(I T F s 
u 0 u E H R A 

N N E D u I T 
D D s N R D u 
A A D E s A R 
y y A s D y D 

y D A A 
A y y 
y 

5) Modify program ORDER$ to eliminate duplicates. 
6) Write a program to produce the following output, using the days of the 

week as stored in W$ in program DAYSOl. 

s M T w T F s 
u 0 u E i-l R A 

N N E D u I T 
D D s N R D u 

A A D E s A I< 
y y A s D y D 

y D A A 
A y '{ 

'{ 

7-4 INTRODUCTION TO DATA FILES 

So far in our programming work all of the data used by our programs has 
been entered through DATA statements, INPUT statements, or LET statements. 
Consequently, we have had to store the data as part of the prngram or type the 
data directly at the keyboard of our terminal. This works out all right for small 
amounts of data that we wish to process just once. But, if we have large 
amounts of data or we expect to carry out several processes on our data, then 
we need to separate the data from the program. We can do this by using data 
files. 

A data file is simply a storage space in the computer where we store data, 
much as a program may be stored in a storage space. (In fact, in some com
puters, files and programs are indistinguishable until we type certain commands. 
Obviously, we cannot RUN a data file.) By designating a separate storage space 
for data, we gain many capabilities. We may now store much larger amounts of 
data than we could possibly store in the data statements of a program. We may 
alter the data to accommodate the results of program calculations. We may 
rearrange the data according to prngram specifications. The possibilities are 
limited only by our ability to think of problems to solve. 

Most computer processing done today utilizes data flies. Data files are used 
for inventory, bookkeeping, and data processing of all kinds. Just considering 
the data handled by the Internal Revenue Service and the Census Bureau, the 
use of data files can be seen as a very complex business indeed. So we will 
attempt here to present only some rudiments of files processing in BASIC. 

As we said earlier, a file is a storage space accessible to the computer. This 
space may be used to store programs and data, which may be accessed dming 
program execution. One of the features of these files that makes them mysteri
ous is that they are invisible. But then, so are programs during execution. How
ever, it is now possible to carry out tremendous amounts of useful computer 
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work without the need for printing at the terminal, although it is good pro
gramming practice to prnvi<le some printe<l output to help keep track of what 
the computer has done. After we have seen several examples, we will gain 
confidence that the computer is really performing the expected operations. 

The fundamental concept is that we may write or print data into a file and 
that we may retrieve that data under program control. Several versions of pro
gram statements are used to achieve these purposes. The next two sections 
explain the use of files as defined by two different systems. We have chosen 
Hewlett-Packard and General Electric versions of BASIC for this. 

7-5 HEWLETT-PACKARD FILES 

Just to get an idea about how data gets into files and how file data is ac
cessed, let's look at two short programs. The first is a program to enter some 
numbers into a file. See program PRINT. 

PRINT 

90 REM * FIRST FILE DEMONSTRATION 
FILES TEST 100 

110 
115 
120 
130 
140 
150 
RUN 
PRINT 

FOR I= 1 T0 4 
READ X 
PRINT llBX 
NEXT I 
DATA 3, 17, 11,31 
END 

This is the very first program we have run which does something useful 
without any printed output. (As a general rule, however, it is good practice to 
have programs produce some meaningful printed output at the terminal.) State
ments 100 and 120 introduce the first two file handling statements. Statement 
100 is called the FILES statement. It is the statement which makes the file 
whose name is TEST available to the program. Statement 120 instructs the 
computer to print data into the film instead of onto the paper in the terminal. 
In that statement, the # 1 specifies the first file named in the files statement. We 
may be able to name eight or more files, separated by commas. In addition, 
some computers allow us to replace any file originally named during program 
execution by using the ASSIGN statement. In the PRINT # statement, every
thing past the semicolon is printed into the file. We may list several data items 
here, and strings and numerics may be intermixed. 

In order to allocate the file space in the first plac~, we used the OPEN com
mand. OPEN-TEST, 1.5 designates a file space, called TEST, that contains 
15 segments called records or sectors. Typically, a sector is large enough to 
store 32 numbers, or about 128 alphameric characters. More recent Hewlett
J:'ackard computers aiiow the option of specifying record size through the 
CREATE command. On such a machine, CREATE TEST, 15,106 provides 15 
records, each allowing up to 53 numerics, or about 212 alphameric characters. 
(106, 212, and 319 are storage efficient numbers to use in the CEA TE command.) 

In counting space for strings, we must add two to the number of characters 
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for each string an<l add one if there is an odd number of characters. Thus three 
characters require the same storage space as four. 

Now let's examine a program to rea<l the contents of our file TEST. 

READ 

90 
JOO 
110 
120 
130 
140 
RUN 
READ 

REM * PROGRAM 
flLES TEST 
READ lllJY 
PRINT Y; 
GOTO 110 

TO READ NUMBERS FROM A FILE 

END 

3 17 11 31 
END-OF-FILE/END 0F RECORD IN LINE 110 

The printed output produced by program READ should convince us that 
those numbers really came from a computer file as they do not appear anywhere 
in the program itself. We also got an error message which is exactly analogous 
to the 0UT 0F DATA IN LINE n message we have seen before. 

There are several ways to avoi<l terminating with this error. One is to keep 
track of the number of entries in the file; another is to place an item of artificial 
data at the end of the real data just as we <li<l in DATA statements in programs. 
However, BASIC provides a special statement just for this purpose. It is the IF 
END statement. See line 105 of program READOl. 

READO I 

90 REM * PROGRAM READ WITH IF END 'TRAP' 
100 FILES TEST 
105 IF END Ill THEN 140 
11 0 READ 111 J Y 
120 PRINT Y; 
130 GOTl'l l 10 
140 END 
RUN 
READO! 

3 17 II 31 

Statement 105 caused the computer to "remember" that if at any time we 
ask it to read beyond the data, it is to then execute line 140 as the next state
ment. In our case, that causes the program execution to terminate through the 
END statement. 

The IF END "trap" may also be used to find the end of data in a file so that 
we may begin at that point to print additional data into it. Program PRINTl 
does exactly this. 

PRINT! 

90 REM * PRINT WITH IF' END 'TRAP' 
100 FILES TEST 
110 IF END Ill THEN 140 
120 READ II J; X 
130 GOT0 120 
140 FOR !=I Tl'J 3 



112 Basic BASIC 

150 READ X 
160 PRIN1 lllJX 
170 
180 
190 
200 
RUN 

PRIN1 XJ 
NEXT I 
DA1A 19,2,6 
END 

PRINT I 

19 2 6 

Note that PRINT I will also print numbers into an empty file. Consequently, 
we can eliminate the need for program PRINT. Now we run program READO! 
to verify for us that the file now contains numbers printed into it in separate 
runs of two programs. 

RU'J 
READO I 

3 17 11 31 19 2 6 

When we used file TEST above, we simply printed numbers one after an
other into the file without any concern for exactly where in the file those num
bers were placed. Used in this way, file TEST is called a serial file. However, 
we could have directed the computer to print each of those numbers on a 
different record of the file. We need the following expanded file PRINT state
ment for this purpose: 

999 PRINT #l,R;X 

This statement allows us to specify that the data following the semicolon is to 
be printed in the Rth record of file #1. See line 130 of program PRINT2. 

PRINT2 

90 
100 

REM * PRINT T0 REC0RD R IN A FILE 
FILES TEST 

110 
120 
130 
140 
150 

F0R R= I T0 4 
READ X 
PRINT #t,R;X 
PRINT X; 
NEXT R 

160 DA TA 3, 17 • I 1, 31 
END 170 

RUN 
PRINT2 

3 17 II 31 

Now to read the Rth value we needn't read through all R items. We may 
read it directly with the statement, 

999 READ #1,R;X 

Since this structure allows us to select at random any starting point in the file, 
we refer to the file as a random access file. See program READ02. 
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90 REM * DEMONSTRATE RANDOM ACCESS 
100 FILES TEST 
110 PRINT "ITEM II"; 
120 INPUT R 
130 IF R=O THEN 170 
140 READ 111, R; X 
150 PRINT X 
160 G!H0 110 
170 END 
RUN 
READ02 

ITEM #?4 
31 

ITEM II? 1 
3 

ITEM #?0 
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One of the uses of data files is to rearrange data and store it in rearranged 
form. For example, let's enter the names of seven people along with their dates 
of birth and death in file TEST, one person to a record, and arrange them in 
alphabetical order using the technique of program ARANGE in Sec. 3-4. 

Program ENTERA reads the data from DAT A statements and prints it in the 
first seven records of the file. 

ENTERA 

90 
100 

REM * FILE PRINT 0NE T0 A RECORD 
DIM N$(72J 

110 
120 
130 
140 
150 

FILES TEST 
F0R I=l T0 7 
READ N$,A,8 
PRINT #l,I;N$,A,8 
NEXT I 

160 DATA "J0NES, J0HN PAUL", 1747, 1792 
170 DATA "ANTH0NY, SUSAN 8. ", 182011906 
180 
190 

DATA "WASHINGT0N, 800KER T.",185911915 
DATA "BELL, ALEXANDER GRAHAM''. 1847• 1922 
DATA "EDISON, TH0MAS ALVA", 184711931 
DATA "F0RD, HENRY", 1863, 1947 

200 
210 
220 
230 
RUN 
ENTERA 

DATA "8L00MER, AMELIA JENKS", 181811894 
END 

Program READA reads from file TEST and prints at the terminal. 

READA 

90 REM * READ NAMES FR0M A FILE 
DIM N$C72J 100 

110 
120 
130 
140 
150 
160 
170 
RUN 
READA 

FILES TEST 
PRINT " DOB 
FOR I=l Hl 7 
READ #l,IJN$,A,8 
PRINT AJN$ 
NEXT I 
END 

NAME" 
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D0B NAME 
1747 J0NES, ,HlHN PAUL 
1620 ANTH0NY, SUSAN B, 
1659 WASHINGTON, B00KER T· 
1647 BELL., ALEXANDER GRAH1eM 
1647 EDIS0N, ~H0MAS ALVA 
1663 FORD, HENRY 
1616 BL00MER, AMELIA JENKS 

Program ORDERA arranges the data in the file alphabetically. Note that 
line 190 is required so that when the comparison for order is made in line 160 
after an exchange has taken place, A$ stores the appropriate string. This is 
necessary because data is stored in two places-in the file and in the variables 
of the program. It is the programmer's job to keep these two storage areas 
coordinated. 

0RDERA 

90 
100 

REM * ALPHABETIZE NAMES IN A FILE 
DIM A$[72J,B$l72J 

110 
120 
130 
140 
150 
160 
170 
160 

F"ILES TEST 
F0R I=l T0 6 
READ #!,IJA$,A,Al 
F0R J=I+ 1 T0 7 
READ #l,JJB$,B,Bl 
IF A$ <= B$ THEN 200 
PRINT #l,I;B$,B,Bl 
PRINT #l,J;A$,A,Al 
READ #l,IJA$,A,Al 
NEXT J 
NEXT I 

190 
200 
210 
220 PRINT "FILE ALPHABETIZED" 

END 230 
RUN 
0RDERA 

FILE ALPHABETIZED 

And once again we run READA to see that the data is properly arranged in 
the file. 

RUN 
REA DA 

D0B NAME 
1620 ANTH0NY, SUSAN l:J, 
1647 BELL, ALEXANDER GRAHAM 
1616 BL00MER, AMELIA ,JENKS 
1647 EDIS0N• TH0MAS ALVA 
1663 FllJRD, HENRY 
1747 J0NES, JllJHN PAUL 
1659 WASHINGT0N• B00KER T. 

SUMMARY 

The FILES statement is used to make files accessible to a program. We may 
be able to replace the files named during execution using the ASSIGN state
ment. We may print data into a file using PRINT #N;A,B,C$ to print in the 
next available space serially. Or we may use PRINT #N,R;A,B,C$ to specify 
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that the printing be at the beginning of record R. This approach is referred to 
as random access. We have the same options in the file READ statement. READ 
#N;A,B,C$ reads the next available data serially and READ #N,R;A,B,C$ reads 
at record R. The IF END statement allows us to determine when we are read
ing past the end of data in the file or are trying to read or print past the physical 
boundaries of the file itself. 

PROBLEMS FOR SEC. 7-5 

1) Use the IF END "trap" to avoid reading empty records or past the physi
cal end of the file in program READ02. 

2) Modify ENTERA so that it will accept varying numbers of names and can 
be used to add names to a file without "losing" data. 

3) Modify READA to read any number of names. 
4) Modify ORDERA to handle any number of names. 
5) Modify ORDERA to arrange the data in increasing order of date of birth. 
6) Write a program to print the names in file TEST at the terminal in alpha

betical order without altering the arrangement in the file itself. 
7) Write a program to print the names from file TEST in order of increasing 

age at death without altering the arrangement within the file itself. 
8) Since strings and numbers may be intermixed in a file and an attempt to 

read one when the other is next will result in an error condition, it is desirable 
to be able to distinguish between them. The TYP( ) function is provided for 
this purpose. TYP(N) takes on a value of one if the next item in the file is a 
numeric, two if the next item is a string, three if the next item is the end of file, 
and, if N is negative, four if the next item is end of record. The absolute value 
of N is the position of the file in the files statement. In order to get positioned 
at the beginning of a record without reading data, we can READ #N,R. Using 
the TYP( ) function and the positioning READ statement, write a program to 
read the unknown contents of a file and print them record by record at the 
terminal. 

7-6 GENERAL ELECTRIC FILES 

The files we are concerned with in this section are referred to as extemal files 
since they store data externally to any programs. Files are generally charac
terized in two ways: the access type and the data storage type. 

Data in files may be accessed sequentially or at random. Sequential access is 
similar to the way in which DATA statements of a program are accessed. Ran
dom access is similar to the way in which the elements of an array are accessed. 
As long as we know the exact position of a data item in a file, we may access 
it directly. 

The data contained in a file may be stored either as ASCII character codes 
or as the binary representations of ASCII character codes and the numbers 
being stored. \,Ye do not need to be concerned with the details of this distinction 
when writing BASIC programs. We need only identify the slight differences in 
program statement syntax required. ASCII files may be accessed only sequen
tially whereas binm y files may be accessed either sequentially or at random. 
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ASCII Files 

ASCII files behave in many ways just like the DAT A statements of a pro
gram. The data must be read sequentially, beginning with the first data item 
in the file. There is no way to access data at random points. The file may be 
filled from the keyboard exactly as DAT A statements of a program are typed, 
but omitting the word DAT A. The file may be listed at the keyboard with the 
LISt command, just as programs may be listed. Lines may be corrected in a 
file by retyping them. Lines may be removed by typing the line number fol
lowed by a carriage return. In order to make a file available for future use, it 
must be SA Ved, just as a program must. 

Perhaps the best way to learn about files is to study an example. Let's type 
an ASCII file containing test score data for a class. Suppose we consider a class 
of only five people and enter their test scores on six tests. 

File SC0RE has been typed at the keyboard and SAVed as described earlier. 
We list the file here: 

LI ST 

SC0RE 

100 MARK UNDERWl'll'JD,65,83,92,77,68,79 
110 SUSAN STALBERG,73,88,82,77,69,79 
120 EDGAR ANGLEMAN,74,86,73,79,80,7~ 
130 ALTHEA LARGE,91,92,90,99,92,90 
140 GERTRUDE SMITH,71,86,87,90,83,92 

Now, to gain some file handling experience, let's make our first program 
merely print the contents of the file under program control rather than use the 
LIST command. This approach makes it possible to print labels and arrange 
the data in an easy-to-read form. See program READTEST. 

READ TEST 

94 REM * READ FROM A FILE AND PKINT ON lHE fERMINAL 
100 FILES SCORE. 
110 PRINT "1~AME","TESTl TEST2 1ESf3 1EST4 TES!:'> rESl6" 
130 READ # 1, N$ 

150 PRINT N£; TAi:lC 15); 
160 FOR I = l TO 6 
17 0 READ 11 l, X 
190 PRINT X; " "; 
200 NEXT I 
210 Pi<INT 
230 IF MORE Ill THEN 130 
260 END 
RUN 

NAME TEST! TEST2 
MARK UN DERW000 65 il3 
SUSAN ST ALBERG 73 88 
C:UGMn Hi~Gi...Ei·i,:u-,; , .. 00 

AL THEA LARGE 91 92 
GERTRUDE SMITH 7 l 86 

TEST3 TESf4 fEST:i TESf6 
92 77 60 79 
82 77 69 79 
'u ' , UV 'u 

90 99 92 90 
tl7 90 88 92 

In program READTEST, there are just four statements of a file-handling 
nature. The statement 100 FILES SC0RE makes the file available to the pro-
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gram. The file must exist to execute the program. The statement 130 READ 
#l, N$ is like a DATA READ statement except that the "#1" appears to notify 
the computer to read from the first file named in the FILES statement. We may 
name up to eight files there by separating them with semicolons. Statement 160 
is another file read statement. A statement 999 READ #N, A,B,X$,T would 
read three numerics and one string from the Nth-named file in the FILES state
ment. The statement 230 IF M0RE #1 THEN 130 has the ability to "look 
ahead" in the file to "see" if there is more data in the file. If there is more data, 
the computer is transfered to line 130; if not, then control passes to the next line. 

Now that we are able to read the file, let's perform the necessary operations 
to find each student average and the class average. We will require two vari
ables to store running totals. In program AVERAGE, T2 is the running total 
for the class, and Tl is the student running total. 

AVERAGE 

94 REM * CALCULATE AVERAGES FkOM A FILE 
100 FILES SCORE 
110 PRINT "NAME","TESTI TEST2 TEST3 rEST4 TESTS fEST6 AVE1,AGi:." 
12!) LET Tl=O 
130 READ #l, N$ 
140 LET T2 = 0 
150 PRINT N$l TABC 15H 
160 FOR I = 1 TO 6 
170 READ #1, X 
180 LET T2 = T2 + X 
190 PRINT XJ " "; 
200 NEXT I 
210 PRINT T2/6 
220 LET Tl = Tl + T2 
230 IF MORE #I THEN 130 
240 PRINT 
250 PRINT "CLASS AVERAGE = "Tl/30 
260 END 
RUN 

NAME TEST! TEST2 TEST3 TESTL1 TEST:, TEST6 AVEl-<AGt. 
MARK UNDERWOOD 65 83 92 77 68 7 ';/ 77.JJJ3 
SUSAN STAL BERG 73 88 82 77 69 79 7S 
EDGAR ANGLEMAN 74 86 78 79 so 7i:J 79. I 667 
AL THEA LARGE 91 92 90 99 92 90 92.JJjj 
GERTRUDE SMITH 7 I 86 87 90 Bo 92 3:,. 6667 

GLASS AVERAGE = 82.5 

Now that we know how to read an ASCII file under program control, let's 
see how to write data into such a file under program control. Suppose that we 
consolidate the data in file SC0RE, retaining just the names and averages to 
write into a new file, SC0REL To do this, we begin by naming both files in 
the FILES statement. We may enter data into an ASCII file with the WRITE 
#N statement. However, before writing into the file, it must be prepared for 
writing with the SCRATCH #N statement. SCRATCH #N sets a pointer to 
the beginning of the Nth-named file and prepares it for writing. In program 
WRITEA VG, we print each name at the terminal just to show the progress 
of execution during the program r'un. For large amounts of data, we might 
simply print the number of names moved. See lines llO and 140 of program 
WRITEAVG. 
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WRITEAVG 

94 REM * READ SCORE - WRITE SCORE! 
100 FILES SCOREJ SCORE! 
110 SCRATCH 112 
120 READ 01, Ns.x1,x2,x3,x4,xs,x6 
130 PRINT N$ 
140 WRITE 112, N$; CXl+X2+X3+X4+X5+X6)/6 
150 IF MORE #I THEN 120 
160 END 
RUN 

MARK UNDERWOOD 
SUSAN STALBERG 
EDGAR ANGL.EMAN 
AL THEA LARGE 
GERTRUDE SM ITH 

Since this is an ASCII file, we may LISt it at the keyboard as follows: 

SCORE I 

100 MARK UNDERWOOD, 77,3333, 
110 SUSAN STALBERG, 78 , 
120 EDGAR ANGLEMAN, 79.1667, 
130 ALTHEA LARGE, 92.3333, 
140 GERTRUDE SMITH, 85.6667, 

Additional files statements include APPEND #N, which sets a pointer to the 
end of data in a file and prepares the file for the write mode in a way similar 
to that of the SCRATCH #N statement, and RESTORE #N, which sets a 
pointer to the beginning of the file and prepares it for the read mode so that 
we may read the data in a file more than once in a single execution of a program. 

Binary Files 

Binary files may be used only under program control. They may be either 
sequential or random access. Sequential binary files are treated for programming 
purposes exactly like ASCII files except that where pound signs ( #) appear for 
an ASCII file, a colon (:) is used for a binary file. 

Random Access Files 

Random access files may be segmented into blocks of storage called records. 
We may dictate the size of each record and the number of records in a file when 
we create it, much as we dimension a two-dimensional array. The record size 
is measured in words of storage. The word requirements for data are as follows: 

One word per numeric 
One word per four string characters, or fraction thereof 
Orn" wnril f'F'r strine fm· intprmi l f'nmrintt>r f'nntrnl 

The exact arrangement of data within a file is completely the programmer's 
responsibility. We must know exactly where data is to be found and what it 
means. The situation is no different from data handling within an array except 
that once data is in a file, it seems more invisible. 
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' 
For our first example, let's simply write three rows of six numbers each into 

a binary file with one program and then select some of them for printing at the 
keyboard with another program. The storage requirements amount to just three 
records, each containing six words. We obtain such a file with the CREate com .. 
mand, as follows: 

CRE NUMB,(RAN(6,3)) 

See program RND. 

RllD 

94 REM * LOA~ RANDOM NUMBERS INTO A BINARY FILE 
100 FILES NUMB 
110 F0R I = I T0 3 
120 F'OR J = 1 T0 6 
130 LET X = RNDCX) 
140 loJRITE : 1, X 
150 PRINT XJ 
160 NEXT J 
170 PRINT 
180 NEXT I 
190 END 
RUN 

o.98385 
o. 676737 
o. 151996 

0.362274 
0.820017 
0.975866 

0.250535 
0.290332 
0.811924 

o. 338 07 4 
Q.68319 
0.448439 

0.250009 
0.373523 

0.139030 

0.342306 
0.853779 
o. 84716:; 

Notice that we are able to fill the file without regard to position in the file 
because we are exactly filling each record as we go. This is not always the case. 

To select locations at random within the file, we need the SETW statement. 
SETW N T0 X places a pointer in file N to the Xth word in the file without 
regard to file dimensions. Thus, in our file of six words per record, the ninth 
word is the third word on the second record. To think in terms of records and 
words within a record, we need a formula to determine the value of X. For the 
Cth word in record R where there are W words per record, the value of X is 
Wo(R-1) + C. Now let's write a short program to find selected positions in file 
NUMB. See program PICK. Notice that the REST0RE statement is not re
quired for random access files. REST0RE:N is equivalent to SETW N T0 1. 

PICK 

94 REM * SELECT A NUMBER FHOM A FILE AT HA~DOM 
100 FILES NUMB 
110 PRINT "R0W,COL"; 
120 INPUT R, K 
130 IF R = 0 THEN 190 
140 SETW I TO 6*CR-I > + K 
150 READ : 1, A 
160 PRINT "F'OUN D"; A 
1'70 PRINT 
180 G0TO 110 
190 END 
RUN 

RO\v,COL? 2,3 
FOUND o. 290332 
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HOW, COL? 3, 6 
FOUND O. 647165 

HOW,COL? O,O 

For our final example we will use a binary file to arrange the student data 

from our ASCII file SC0RE1 in order of increasing test average. We must 

write the necessary data into a binary file, arrange it, and then print the results. 

This can be done with three different programs or with a single program. We 

will use a single program here. See 0RDERAUG. 

To determine the size records required, we must know the number of char

acters in the name strings. vVe find a maximum of 14 characters. \Ve should 

go to at least 16 since that is the next multiple of four. In practice, to make 

such a file generally useful, we would probably go even higher. Allowing for 

16 characters, we need four words for storage of string data, plus one word 

for control, plus one word for the numeric. For this problem, a file with five 

records containing six words per record is sufficient. We get that with CRE 

SC0RE2,(RAN(6,5)). 

0RDERAVG 

100 FILES SCOHEll SCOHE2 

104 HEM * WRITE DATA INTO BINAHY FILE 

110 FOR I = 1 re 5 
120 READ Ill, NS,Al 

130 SETW 2 TO 6•<1-11 + 1 

140 11JRITE :2, NS.Al 

150 NEXT I 
154 REM * NOvJ Al,HANGE THE DATA ACCORDii"G TO AVERAGES 

160 FOR I = 1 TO 4 
17 0 FOR J = I + 1 TO 5 

160 SEHJ 2 TO 6*Cl-ll + 1 

190 i-<EAD :2, NS,AI 

200 SET'll 2 TO 6*CJ-l I + 1 

210 READ :2, MS,dl 

22 0 I F A 1 < = i:J 1 THE," 2 7 0 

230 SET>I 2 TO 6•<I-ll + 1 

240 WHITE :2, MS18l 

250 SET'd 2 TC 6* CJ-1 I + 

260 !Jf<ITE : 2, '"':,Al 

270 NE.AT J 
280 NEXT l 
?J34 REM * AND NOW PRI1"T THE RESUL. rs 
290 PRINT " NAME","AVEi<AGE" 

300 PRINT 
310 
320 
330 
340 
350 

FGH I 1 TC 5 

SETW 2 TO 6*11-11 
READ :2, N:;;,Al 
PR!Mf NS,Al 

i"E;\T I 
360 END 
RUN 

MARK UNDERWOOD 
SUSAN STAL8E.l<G 
EDGAR ANGLEMAN 
GERTRUDE Si~ l TH 
AL THEA LARGE 

77. J.1.'33 
73 
79. 1667 
135, 6667 
92. 3;333 

+ l 
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SUMMARY 

The FILES statement is used to make files accessible to a program. The files 
of this section are of two types: ASCII and BINARY. ASCII files are sequential 
and may be accessed from the keyboard or through a program. Binary files 
may be either sequential or random access and may be accessed only through 
a program. We may use READ #N, WRITE #N, SCRATCH #N, APPEND #N 
or RESTORE #N to handle data in an ASCII file. For sequential binary files, 
all of the above statement types may be used by replacing the pound signs (#) 
with colons (:). For random access files, we have the additional statement 
SETW N T0 X which sets a pointer at the Xth word of a file in preparation 
for the next READ or WRITE statement. A file is made random access in the 
CREate command. 

PROBLEMS FOR SEC. 7-6 

1) Type a few inventory items with quantity and price data into an ASCII 
file. Write a program to print the value of each item and the total value of 
inventory at the terminal. 

2) Write a program to print a list of an unknown number of names in an 
ASCII file at the terminal in alphabetic order. Use RESTORE #N and repeated 
reading of the file for this purpose. Assume that there are no duplicates. 

3) Consider a random access file containing five words per record and six 
records filled with numbers. Write a program to find the largest number in each 
record and the largest number in each "column." 

4) You are presented with a random access file with a set of ten names in it; 
each name was entered first name first, followed by a space, followed by last 
name. Since this ordering is difficult to alphabetize, you are to replace each 
entry in the file rearranged so that the last name is first, followed by a comma, 
a space, and the first name. You know that each string is to be allocated eight 
words of storage. 

5) (Pro;ect) Print some names into a random access file. Place a list of point
ers to those names in an ASCII file so that if the pointers are read sequentially 
from the ASCII file and used to access the names in the random access file with 
the SETW statement, the names will be accessed in alphabetic order. Use the 
ASCII file to print the names in alphabetic order. 



CHAPTER 8 

The Quadratic Function 

We define a quadratic function as a real function of the form 

f(X) = AX2 +BX+ C 

where A does not equal 0. 

8-1 ZEROS 

(8-1) 

Often in mathematics we would like to find the zeros of a quadratic func
tion. For some sets of coefficients, we may factor the expression on the right in 
Eq. (8-1) and set each factor equal to 0. This would be the method to use 
for f(X) = X2 + 3X + 2. We would find zeros as follows: 

x2+ 3X+ 2= 0 

Factoring, 

(X + l)(X + 2) = 0 

and (X + 1) = 0 or (X + 2) = 0 

So X=-1 or X=-2 

and the truth set is {-2, -1 }. 
However, in general for nonfactorable as well as factorable quadratic ex

pressions on the right in Eq. (8-1), we may use the quadratic formula, which 
may be derived by the method of completing the square. The zeros of 
f(X) = AX2 + BX + C are 

XI = -B + v'B~ - 4.AC 
2A 

X2 = - B - yB~ - 4AC 
2A 

122 
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Since we are going to insert these equations into a program we will write 

ZZZ LET Xl = (-B + SQR(B 00 2 - 4 ° A 0 C))/(2 ° A) 
and 

ZZZ + 10 LET X2 = (-B - SQR(B 00 2 - 4 ° A ° C))/(2 ° A) 

Now all we need is some data and some printing instructions (see QUADl), 
which seems to work well enough. You will want to modify QUADl to 
account for nonreal zeros. You may want to just print a message or you may go 
ahead and compute the nonreal values. As the program stands though, if 
B 0 0 2 - 4 ° A ° C is negative, the computer will at best print an error 
message and at worst it will terminate the RUN. 

QUAD! 

5 
10 
15 
20 
30 
40 
45 
50 
60 
70 

PRINT " A 
READ A.s.c 

8 

Ir A=O THEN 99 

c ", "X t "~ "X2" 

LET Xl=C-B+SQRCB•2-4*A*C>>IC2*A> 
LET X2=C-B-SQRCB•2-4*A*C>>IC2*A> 
PRINT A;s;c,x1.x2 
G0 Tl2I I 0 
DATA 1,3,2 
DATA 1,2,-3,2,4,-6,6,t3,6,5,-b2 
DATA Q,Q,Q 
END 99 

RUN 
QUAD! 

A 8 c XI 
I 3 2 - I 
I 2 -3 I 
2 4 -6 I 
6 13 6 -.666667 
5 -7 2 I 

D0NE 

X2 
-2 
-3 
-3 
- 1. 5 

• 4 

8-2 AXIS OF SYMMETRY AND TURNING POINT 

The graph of a quadratic function is called a parabola. In examining the 
graph of a quadratic function we often want to know where the axis of 
symmetry is and where the turning point is. By completing the square on 
the right 

f (X) = AX2 + BX+ C 

f(X)=A[x2 + ! x+ 4n;2 - 4n;2 J+c 

[ 
., B n2 J n2 

f(X)=A x-+Ax+ 4A2 - 4A +c 

we get 

[ 
B ]

2 
4AC - B2 

f(X) =A X + 2A + 4A 
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Now, when X = -B/2A, X + B/2A = 0. The value of f(X) is minimum if A 
is positive and maximum if A is negative, and the value of f(-B/2A) is 
( 4AC - B2) / 4A. Thus the coordinates of the turning point are 

(
- ~ 4AC-B2) 

2A ' 4A 

You should know, too, that the line whose equation is X = -B/2A is called the 
axis of symmetry. We should now be able to write a program to print three 
items of information: 1) the maximum or minimum status of the parabola, 
2) the equation of the axis of symmetry, and 3) the coordinates of the turning 
point. Let us collect things into a flowchart (see Fig. 8-1), and write program 
QUAD2. 

Start 

LETM 
= SGN(A) 

Fig. 8-1. Flowchart for finding axis 
of symmetry, turning point, and 

maximum-minimum status for 
parabolas. 

END 

LETX =-Bl 
(2•A) 

LET Y = (4• A• C 1----'lil 
-B •• 2)/(4 •A) 

PRINT 
minimum 

PRINT 
x, y 



QUAD2 

READ A.B.c 
IF B=-·001 THEN 9999 
PRINT AlBJC 
IF A <> 0 THEN 30 
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10 
15 
20 
25 
26 
27 
28 
30 
40 
50 
60 
70 
78 
80 
90 
98 
100 
110 
115 
120 
150 

PRINT "A=O THE EXPRESSI0N IS ~0T QUADRATIC" 
G0T0 20 
REM DETERMINE MAX. 0R MIN. 
LET M=SGNCA> 
IF M= 1 THEN 70 
PRINT "MAXIMUM PARAB0LA" 
GOT0 80 
PRINT "MINIMUM PARAB0LA" 
REM FIND THE AXIS 0F SYMMETRY 
LET X=-B/C2*A> 
PRINT "AXIS 0F SYMMETRY IS X ="IX 
REM FIND THE EXTREME VALUE 

LET Y=C4*A*C-Bt2l/C4•A> 
PRINT "THE TURNING P0INT IS C"lXl".''lYJ"}" 
PRINT 

I 55 
160 
9999 
RUN 
QUAD2 

G0T0 10 
DATA 1,3,2, 1.2.-3,6, 13•6 
DATA -3,5,11 
DATA 4,-.001, 1 

END 

I 3 2 
MINIMUM PARAB0LA 
AXIS 0F SYMMETRY IS X =-1·5 
THE TURNING P0INT IS c-1.5 

I 2 -3 
MINIMUM PARABOLA 
AXIS 0F SYMMETRY IS X =-1 
THE TURNING P0INT IS C-1 ,-4 

6 13 6 
MINIMUM PARAB0LA 
AXIS 0F SYMMETRY IS X =-1.08333 
THE TURNING P0INT IS C-1.08333 

- 3 5 11 
MAXIMUM PARABOLA 
AXIS 0F SYMMETRY IS X = .333333 
THE TURNING P0INT IS C .333333 

D0NE 

.-.25 

·-1.04167 

• 13.0833 

8-3 PLOTTING THE PARABOLA 

One last consideration for the parabola is to plot its graph. This works well 
right on the te1minal itself. We may use the spaces across the carriage as one 
axis and the paper lengthwise as the other axis. Since the line feed is auto
matically set on the terminal, the X-axis should run perpendicular to the 
carriage and the Y-axis should run across the page. This means that one line 
represents one unit on the X-axis and one space represents one unit on the 
Y-axis. This is rotated 90 degrees clockwise from the conventional system. 

Let us start out with the simplest possible graph and see what refinements 
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will be required. We will first graph Y = X 00 2. We will put" ";in a loop to 
get the printing head to the point that we want plotted. Any printed character 
may be used to represent the plotted points. The range you select will depend 
on the width of the carriage on your terminal. Selecting the domain for X as 
-7 to +7 we will require a range of 0 to 49. 

When X = -7, we want the printing head to step out 48 spaces, then print 
a character, and then RETURN. Now we want X to go to -6 and the printing 
head will have to step out only 35 spaces, print a character, and RETURN. As 
this process is repeated, it too will be put in a loop with X going from - 7 to 
+7 incrementing by 1. It will be convenient to define a function here, not as 
a saving now, but to fit in with later plotting problems. Before writing the 
program PL0Tl, let us draw a flowchart (see Fig. 8-2). Notice that we intend 
printing the spaces followed by a semicolon and the plotted points also fol
lowed by a semicolon. After the point has been plotted, we do not want the 
printing head to step the rest of the way across the carriage as that would be 
a waste of computer time for this particular plot. So line 62 is used to re~urn 
the printing head to the left margin. We should observe that the procedure 
we are developing is not especially efficient in the first place, and so should 
be used sparingly. 

Start 

DEF FNQ(X) 
= x •• 2 

F(t)RX 

=-7T(1')7 

Fq)RY 
= OT(t) 70 

Fig. 8-2. Flowchart to plot Y = X ** 2. 
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PL0Tl 

DEF FNQCX>=X•2 
F0R X=-7 T0 7 
PRINT 
REM LINE 90 HAS THE EFFECT 0F NUMBERING THE SPACES 
REM ACR0SS THE PAGE 0 T0 70 
F0R Y=O T0 70 

IF Y=FNQCX> THEN 210 

30 
60 
62 
88 
89 
90 
120 
148 REM IF Y D0ES N0T EQUAL FNQCX> THEN PRINT A BLANK SPACE 
1 so 
180 
210 
212 
240 
270 
RUN 
PL0Tl 

* 
* 

* 
* 

* 

D0NE 

PRINT " "J 
NEXT Y 
PRINT "*"J 
REM PL0T THE 
NEXT X 
END 

* 
* 

* 
* 

P0INT AND G0 T0 NEXT X 

* 
* 

* 

* 
* 

* 

PL0Tl was not bad for our first try. If we are going to plot other para
bolas, we will have to make a provision for values of Y less than 0. So we 
may change line 90 to read 90 F0R Y = - M T0 70 - M, where M is the 
number of spaces to the left of 0, and then we can put M on INPUT: 

90 F0R Y= -M T0 70-M 
S INPUT M 
4 PRINT "INPUT THE NUMBER 0F SPACES DESIRED T0 THE LEFT 0F ZER0"J 
88 
89 
6 PRINT 
RUN 
PL0T2 

INPUT THE NUMBER 0F SPACES DESIRED T0 THE LEFT 0F ZER0?10 

D0NE 

* 
* 
* 

* 
* 

* 
* 

* 
* 

* 

* 
* 

* 

* 

* 
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We have indeed graphed Y = X "" 2; however, the graph is not clearly 
defined because there are no axes to specify the coordinate system. Let us 
build up the coordinate system by first putting in the origin by plotting a 0 
there. Immediately, we are faced with a decision. If the graph contains the 
origin, do we want the plotted point or the origin designation? Since the 
absence of the plotted point for X = 0 would indicate that it should have been 
plotted at the origin, let us plot the 0 at the origin as first priority. So, before 
anything gets done for a particular value of X, we ask if the value of Y is 0. 
If it is, we next look for the point at which X is also 0. At (0, O) we print 0. 
Having printed 0, we next look to see if FNQ(X) is greater than 0. If it is, we 
send the printing head on across the page. 

92 IF Y <> 0 THEN 120 
94 IF X <> 0 THEN 120 
95 REM IF THE C0MPUTER GETS THR0UGH HERE THE 
96 REM PRINTING HEAD IS AT THE 0RIGIN 
98 PRINT "O"; 
100 IF FNQCXl>O THEN 180 
102 REM IF FNQCX> > 0 GO FIND WHERE IT IS 
103 REM 0THERWISE GET THE NEXT VALUE OF X 
106 G0T0 240 

RUN 
PL0T3 

INPUT THE NUMBER OF SPACES DESIRED T0 THE. LEFT 0F ZER0?6 

DONE. 

* 
0 

* 

* 

* 

* 
* 

* 
* 

* 
* 

* 

* 
* 

* 

As long as we have the X-axis located, we might just as well put it in 
the graph. All that is necessary is to have a PRINT instruction whenever 
Y = 0 but X does not. 

94 IF X=O THEN 98 
95 PRINT "t "; 

96 Gorn 100 
RUN 
PLOT4 
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INPUT THE NUMBER 0F SPACES DESIRED TO THE LEFT OF ZER0?9 

* 
* 

* 
* 

* t * 
'* 0 

'* 
* 

* 
* 

* 
* 

* D0NE 

Finally, we may put in a Y-axis. Let us settle for having the Y-axis along 
the leading side of the graph. By putting the Y-axis there, we will be able to 
print the scale without interfering with the graph itself. For the particular 
graph we have been plotting a range from 0 to 50 is reasonable. 

8 PRINT " "; 
10 F0R X=O T0 50 STEP 10 
12 PRINT " "JXJ 
14 NEXT X 
15 PRINT 
16 F0R X=l T0 70 
ls IF X/IO=INTCX/IO> THEN 24 
20 PHINT "-"; 
22 G0T0 26 
24 PRINT "t "J 

26 NEXT X 
RUN 
PL0T5 

INPUT THE NUMBER OF SPACES DESIHED TO THE LEFT OF ZER0?9 

0 10 20 30 40 50 
---~-----t---------1---------t---------t---------t---------t---------r 

* 
* 

* 
* 

* 
* 

T * 
0 
T * 

* 
* 

* ,, 
* 

* 
DONE 
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At this point, the program is scattered all over the place and some of the 
line numbers are very close together. So we renumber beginning with line 10 
and print the entire program in PL0T5. 

PLCH5 

10 PRINT "INPUT THE NUMBER 0F SPACES DESI RED T0 THE LEFT 0F 
ZER0"J 

20 INPUT M 
30 PRINT 
40 PRINT " "; 
50 F0R X=O T0 50 STEP 10 
60 PRINT " ";X; 
70 NEXT X 
80 PRINT 
90 F0R X=l T0 70 
100 IF X/lO=INTCX/10> THEN 130 
110 PRINT"-"; 
120 G0T0 140 
130 PRINT "t "; 
140 NEXT X 
150 DEF FNQCX>=Xt2 
160 F0R X=- 7 T0 7 
1 70 PRINT 
160 FGR Y=-M T0 70-M 
190 IF Y <> 0 THEN 260 
200 IF X=O THEN 230 
210 PRINT "t"; 
220 G0T0 240 
230 PRINT "O"J 
240 IF FNQCX>>O THEN 310 
250 REM IF FNQCX> > 0 G0 FIND WHERE IT IS 
260 REM 0THERWISE GET THE NEXT VALUE OF X 
270 G0T0 340 
260 IF Y=FNQCX) THEN 320 
290 REM IF Y DOES N0T EQUAL FNQCX> THEN PRINT A BLANK SPACE 
300 P1<INT " "; 
310 NEXT Y 
320 Pi<INT "*"; 
330 REM PL0T THE P0INT AND G0 T0 NEXT X 
340 NEXT X 
350 END 

There are still several considerations regarding this program for plotting. 
For instance, as the program is written, it will not plot the X-axis if the Y 
value is less than 0. The scale is fixed. There is provision for only one function 
to be plotted. Also, consider what happens if the value of Y is not an integer. 
All of these comments suggest areas in which the program could be improved. 
Let us insert a different function and call for one last RUN of PL0T5. 

150 DEF FNQCX>=<X-2)t2+3 
160 FllJR X=-5 T0 6 
RI.IN 
PLOTS 
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INPUT THE NUMBER 0F SPACES DESI RED T0 THE LEFT 0F ZER:<l?9 

0 10 20 30 40 50 _________ , _________ , _________ , _________ , _________ , _________ , _________ , 

* * 
* ' * ' * 0 * 

* 
* 
* 

* 
* 

* 
* 

* 00NE 

SUMMARY FOR CHAP. 8 

There are several things that can be done with the quadratic function on a 
computer: 1) we can calculate the zeros; 2) we can find the various constants 
that specify the appearance of the graph; 3) and we can even use the terminal 
itself to plot a graph of the function. Of course the graphing program may be 
used to plot other functions as well. 

PROBLEMS FOR CHAP. 8 

I) Write a program that finds the results of QUADI, but prints rational zeros as 
fractions reduced to lowest terms. 

2) Modify QUAD I to compute nonreal zeros. 
3) The Y-coordinate of the turning point of a parabola may also be found by 

evaluating f(-B/(2 ° A)). Rewrite QUAD2 by defining a function. 
4) For sets of coefficients in data lines, have the computer print coordinate pairs 

(X, Y) for a reasonable range. 
5) Modify PL(Z)T5 to permit the X-axis to be printed for Y-coordinates less than 

0. Also provide for the point to be plotted where the graph crosses the X-axis. 



CHAPTER 9 

Trigonometry 

9-1 INTRODUCTION TO SIN(X), C(}S(X), AND TAN(X) 

We choose to define the circular functions in terms of a point (X, Y) plotted 
in a rectangular coordinate system. Consider the point (X, Y). It is at a dis
tance R from the origin. We may find R from X and Y by using the 
Pythagorean theorem: 

R = yX~ + y:i 

It is conventional to use Greek letters for angles. However, since computer 
terminals do not provide them, we may use any letters we wish. Let us use G 
to measure the angle whose initial side is the non-negative portion of the 
X-axis and whose terminal side is the ray that has its endpoint at the origin and 
contains the point (X, Y). See Fig. 9-1. 

From Fig. 9-1 we define th1ee circular functions as follows: 

cos G = X/R 

sin G = Y/R 

tan G = Y/X 

whet e cos stands for cosine, sin stands for sine, and tan stands for tangent. 
In BASIC it is required that the angles be measured in 1 adians. 1 radian 

may be defined as the central angle subtended by an arc length of R on the 
circumference of a circle of radius H. Since the circumle1e11ce of a circle of 
radius H is 21TR, we see that 

21T radians = 3GO degrees 

1T radians= 180 degrees 

1 radian 180/1T degrees 

1T/l80 radians= 1 degree 

132 
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y 

x 

Fig. 9-1 

Although some time-share systems provi<le the special computer functions 

RAD(X) an<l DEG(X) to convert from degrees to ra<lians and from radians to 

degrees, respectively, you should be prepared to make the required conversions. 

The usually available computer trigonometric functions are SIN(X), 

C0S ( X), and TAN ( X). They are used in much the same way that all other 
computer functions are used. Just be sure that the argument of the function 
is in radians. 

In mathematics, it is customary to define three additional circular functions 

as follows: 

sec G =RIX 

csc G R/Y 

cot G X/Y 

or 

or 

or 

sec G = l/cos G 

csc G = l/sin G 

cot G l/tan G 

where sec stands for secant, csc stands for cosecant, an<l cot stands for 

cotangent. Some eomputers provide these three functions in addition to the 
earlier three, but we may always use the appropriate reciprocal. As always, 

shoul<l an expression become too cumbersome, we have the option of defining a 

program function using DEF. 
Let us get the computer to print a small table of values of sin, cos, and 

tan for 0 to 80 degrees in intervals of 10 degrees. We stop short of 90 degrees 

to avoi<l having an undefine<l value for the tangent of 90 degrees. To write 

program TRIGl, we will have to convert <legrees to radians, so we multiply 

by7T/l80. 

9-2 RIGHT TRIANGLES AND ARCTANGENT 

Taking the graph of Fig. 9-1 an<l <lropping the perpen<licular from (X, Y) 

in the first quadrant to the X-axis we get Fig. 9-2. We have forme<l a right 

triangle in which the length of the hypotenuse is R, the length of the base is 

X, an<l the length of the altitu<le is Y. Redrawing the triangle without the 

coordinate system, we get triangle ABC with the trigonometric ratios as in 

Fig. 9-3. 
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TRI Gt 

5 PRINT "SINE''. "C0SINE"• "TAN GENT"• "RAOI ANS"• "DEGREES" 
9 REM WE C0MPUTE A C0NVERSI0N C0NSTANT 
10 LET C=3·14159/180 
20 r0R G=O T0 80 STEP 10 
30 
40 

PRINT SINCG*C>.C0SCG•C>.TANCG*C>. G•C• G 
NEXT G 
END 50 

RUN 
TRI Gl 

SINE 
0 
• I 73648 
.34202 
.5 
• 642 788 
• 766044 
0866025 
.939692 
0984808 

1)0NE 

C0SINE 
I• 
.984808 
0939692 
0866025 
• 766044 
0 642788 
• 5 
034202 
o I 73648 

c 

\ 
b 

TANGENT RADIANS 
0 0 
·176327 • I 74533 
• 3639 i • 349066 
,57735 • 523599 
·8391 • 698132 
1. 191 75 • 8 72665 
Io 73205 1.0472 
2o 74748 1. 221 73 
5o 67129 1. 39626 

y 
(X,Y) 

R y 

x 

fig. 9-2 

B 

a 

cos LA= b/c 

<::in/ A==-lr 
~··· '--'. -· -

tan LA= alb 

fig. 9-3 

DEGREES 
0 
10 
20 
30 
40 
50 
60 
10 
80 
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B Fig. 9-4 

We also know from geometry that LA and LB are complements, i.e., their 
sum is 90 degrees or 1T /2 radians. 

Let us solve a problem: George has a 36-ft ladder which he is going to use 
to paint his father's house. He believes that the angle formed by the ladder 
and the side of the house should be not less than 14 degrees and not more 
than 15 degrees. He needs to know how far out from the house to place the 
foot of the ladder. See Fig. 9-4. 

We may use either SIN(G) = B/L or C0S(90 -· G) = B/L. Let us choose 
the sin function and solve for B: 

B = L 0 SIN(G) 

We will have to convert degrees to radians. This is the purpose of line 10 in 
program LADER. 

LADEil 

10 LET C=3.14159/180 
20 LET L=36 
30 PRINT "36' LADDER BASE MUST BE OUT FROM THE H01JSE IN FEET" 
40 PRINT "N0T LESS THAN''. "NCJT MORE THAN" 
50 PRINT L•SIN<C•l4>•L•SIN<C•IS> 
60 END 
RUN 
LADER 

36' LADDER BASE MUST BE OUT FilOM THE HOUSE IN FEET 
N0T LESS THAN NOT MORE THAN 

3.10913 9.31143 

DONE 

We really do not need more than hundredths, so let us round off. Also, 
since George may want to change the length of the ladder to reach different 
heights, let the ladder length go from 36 ft to 20 ft. See LADERI. 
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LADEk I 

10 LET C=3·14159/160 
30 
40 
45 

PRINT "LADDER BASE MUST BE 0UT FR0M THE HO\JSE IN FEET" 
PRINT "NOT LESS THAN", "N0 T MORE THAN", "LADDER LENGTH" 
F0R L=36 TO 20 STEP -2 

50 
51 

PRINT INTCL•SIN<C•l4l*I00+.5l/IOO,INTCL•SIN<C•l5l*I00+.5l/IOO, 
PRINT L 

55 NEXT L 
60 END 
RUN 
LADER I 

LADDER BASE MUST BE 0UT FROM 
N0T LESS THAN N0T MORE THAN 

s.11 9.32 
s.23 B·8 
7.74 8·28 
7o26 7•76 
6.77 7.25 
6.29 6073 
5o8l 6021 
5.32 5.69 
4o84 5.J8 

90NE 

ATN(X) 

THE HOUSE IN FEET 
LADDER L. EN GTH 

36 
34 
32 
30 
28 
26 
24 
22 
20 

Suppose we know the lengths of the sides of a right triangle and we need 
to know the angles. If we are using printed tables in a book, we may look up 
the angle whose sin, cos, or tan is known. Not so with the computer. An addi
tional computer function is required for this. ATN(X) is the function usually 
available, though some systems will provide others as well. ATN(X) computes 
the angle whose tangent is X. If 

TAN(G)=X 
then 

ATN(X)=G 

where A TN stands for arctangent and G is in radians. 

8 
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Suppose we lean a 36-ft ladder against a building with the base 8 ft out 
and we would like to know the angle formed by the ground and the ladder, 
as in Fig. 9-5. We can say 

TAN(G) =H/8 

which means 

ATN(H/8) = G 

H = SQR(36 ° 0 2 - 8 ° 0 2) 

Therefore, G may be found in radians by 

G = ATN(SQR(36 °0 2 - 8 °0 2)/8) 

and the angle in degrees may be found by 

LET G = G 0 180/17' 

See LADER2. 

LADER2 

10 LET G=ATNCSQRC~6•2-8t2)/8) 
15 PRINT GJ"RADIANS" 
20 LET G=G*l80/3.14159 
30 PRINT GJ "DEGREES" 
40 END 
RUN 
LADER2 

1. 346 7 
77. 1605 

DONE 

RADIANS 
DEGREES 

SUMMARY 

We now may apply the computer to the trigonometry of the right triangle 
using SIN (X), C0S (X), and TAN (X) to find sides when angles are known and 
using ATN(X) when we wish to compute angles. We must always be aware of 
the need to use radians for the argument of the computer trigonometric 
functions. 

PROBLEMS FOR SEC. 9-2 

1) Modify LADER2 to give the angle in degrees and minutes. 
2) Modify LADER2 to give the angle in degrees, minutes, and seconds. 
3) Rewrite LADER2 so that the number of radians is given in terms of rr. 
4) If the sides of a triangle are 10, 10, and 4, find the angles of the triangle to 

the nearest minute. 
5) Find the angles of a 3, 4, 5 right triangle to the nearest minute. 
6) Find the angles of a 5, 12, 13 right triangle to the nearest minute. 
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7) A right triangle has one angle 42°25' and the side opposite that angle has a 
length of 10.0". Find the other sides of the triangle. 

8) Standing 1000 ft from the base of a lighthouse on level ground, the angle of 
elevation is 7°30'. Find the height of the lighthouse. 

9-3 LAW OF SINES AND LAW OF COSINES 
Law of Sines 

By drawing a triangle successively with each of its vertices at the origin of 
a rectangular coordinate system, we may compute its area in three ways. 
Referring to Fig. 9-6, the area is found by 

Area= Jfb(Hl) 

We should see that 

sin Cl= HI/a 

sin Bl= H2/c 

sin Al= H3/b 

or 

Solving for the heights we get 

Hl =a sin Cl 

H2 = c sin Bl 

H3 = b sin Al 

Jfa(H2) or 

Substituting in Eq. (9-1) we get 

Area= Jfb(a sin Cl) or )fa(c sin Bl) 

Jfc(H3) (9-1) 

or Jk(b sin Al) (9-2) 

Therefore we may find the area of any triangle by taking one half the product 
of two sides and the sine of the included angle. 

Since the area of a triangle is unique, we may set the three expressions for 
area in Eq. (9-2) equal to get 

Jfba sin Cl= )fac sin Bl = Jkb sin Al 

By clearing of fractions and dividing through by abc, we get 

sin Cl 
c 

sin Bl 
b 

sin Al 
a 

(9-3) 

Equation ( 9-3) is ca.lied the [,aw of Sines. It enables us to find all parts of a 
triangle if we are given any two sides and the angle opposite one of them, or 
if we are given any two angles and any one side (provided, of course, the 
triangle exists). 

Let us write a program to find the remaining parts of a triangle ABC given 
Al, Bl, and a. Since the sum of the measures of the angles of a triangle is 
180 degrees, we first gee 

Cl= 180° - (Al+ Bl) (9-4) 



y 

B1 

A1 

The Law of Sines gives us 

sin Al 
a 

sin Bl 
b 

Solving for b gives 

b _ a sin Bl 
- sinAl 

Similarly we get 

b sin Cl 
c= sin Bl 

y 

b 

C1 

Fig. 9-6 

And finally, the area may be found by 

Area = Jfab sin Cl 
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y C1 

A1 
c 

H2i 
a B1 X B1 c A1 

x 

(9-5) 

(9-6) 

(9-7) 

All we have to do is put all that into a program. We may do that almost 
directly from Eqs. (9-4)-(9-7). These four equations appear in order in lines 
60, 70, 80, and 90 of program LA WSIN. 

In writing the program, we have done only slightly more work than we 
would do preparing to do the calculation by hand. However, we are letting 
the computer take the drudgery out of the actual calculation. We also have the 
program available to do large numbers of calculations at a later date with 
virtually no additional effort required. However, we continue to be totally 
responsible for the mathematics required. 

If we reflect for a moment upon the congruence of triangles, the various 
congruence conditions come to mind. They are side-angle-side, angle-side-angle, 
side-side-side, and angle-angle-corresponding side. There are special cases for 
right triangles. We should see then, that if any of these four sets of measures 
is known, we should be able to find the remaining three parts uniquely. And 
so we can. We have just used LA WSIN for two angles and a nonincluded 
side. We should be able to handle two angles and the included side with only 
slight modifications of LA WSIN. However, you should see that we cannot 
handle side-side-side or side-angle-side with the Law of Sines. For these we 
need the Law of Cosines. 
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LA\o,•SIN 

8 kEM wE COMPUTE THE CONVERSION FACTOR 
LET K=J.14159/180 
HEM DEFINE THIG FUNCTION FO~ DEGREES 
DEF FNTC Gl=SINC G*K) 
RE,'1 DEFINE A R0UNDING FU1~CTI0N 

DEF FNRCXl=INTCX*I00+.5)/100 

I 0 
18 
20 
28 
30 
3g 
40 
50 
58 
60 
68 
70 
80 
Sil 
90 

REM' Al AND Bl ARE ANGLES AND A IS A SIDE 
f<EAD Al18l1A 
IF AI=O THEN 999 
HEM FIND THE THIHD ANGLE 
LET Cl=l80-CAl+Bll 
REM 70 AND 80 COMPUTE THE OTHER TWO SIDES 
LET B=A*FNTCBll/FNTCAll 

98 

LET C=B•FNTCCll/FNTCBll 
HEM COMPUTE AREA 
LET A2=.5•A•B•FNTCCI> 
REM NOW PRINT THE RESULlS 

PRINT" ","A"," B",," C" 
PRINT "THE ANGLES ARE'',Al1Bl1CI 

100 
110 
120 
130 
140 

PRINT "THE SIDES ARE'',FNRCA»FNRCB»FNRCC> 
PRINT "AND THE AREA IS "; FNRCA2> 
PRINT 
G0T0 4D 
DATA 24. 511 IO 
DATA 301 601 1 5 
DATA 45,45,20 
DATA o,o,o 
END 

I 50 
500 
510 
520 
530 
999 
RUN 
LAWS IN 

A 
THE ANGLES ARE 24 
THE SI DE.S ARE I 0 
AND THE AREA IS 92. 20 

A 
THE ANGLES ARE 30 
THE SIDES ARE 1 5 
AND THE AREA IS 19 4, 86 

A 
THE ANGLES ARE 45 
THE SIDES ARE 20 
AND THE AREA IS 200 

DONE 

Law of Cosines 

B c 
51 105 
19. 11 23. 75 

B c 
60 90 
25.98 30 

B c 
45 90 
20 2s.2s 

For any triangle AIBlCl we may place a vertex at the origin of a rectangu
lar coordinate system and designate the vertices as shown in Fig. 9-7. 

TT • - . ,1 Tio ol ol , n 1 
v::,111g, u1e .c yu1ag,uu:~a11 u1eu1eu1, we ruay CUIUJ?Ule: a- uy 

a2 = (c cos Al - b)2 + (c sin Al)2 

Simplifying the right side we get 

a2 = c2 cos2 Al - 2bc cos Al + b2 + c2 sin2 Al 
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y 

(c cos A1, c sin A1) 

Rearranging terms 

A1 
(0, 0) 

c 

b 

a2 = b2 + c2(cos2 Al + sin2 Al) - 2bc cos Al 

Since cos2 Al + sin2 Al = 1, we finally get 

a2 = b2 + c2 - 2bc cos Al 

B1 

a 

C1 
(b, 0) 

Fig. 9-7 

(9-8) 

Equation (9-8) is the statement of the Law of Cosines solved for vertex Al at 
the origin. Placing Bl at the origin we would get 

b2 = a2 + c2 - 2ac cos Bl 

and placing Cl at the origin would produce 

cz = a2 + b2 - 2ab cos Cl 

(9-9) 

(9-10) 

In the form of Eqs. (9-8)-(9-10) the Law of Cosines is appropriate for 
handling problems in which two sides and the included angle are given. Once 
you obtain the third side by taking the square root of the right side of the 
equation, you may use the Law of Sines to obtain a second angle, or you may 
proceed as for the side-side-side congruence. 

If we solve Eq. (9-8) for cos Al, we get 

b2 + c2 - a2 
cos Al= 2bc (9-11) 

So, if we are faced with a side-side-side congruence, we may easily find the 
value of cos Al. Now our only problem is to get the value of Al from the value 
of cos Al. This will require the ATN (X) function. We should know that 

sin Al 
tanAl=-Al cos 

and for Al between 0 and 180 degrees, sin Al is always positive. Thus, 

sin Al = yl - cos2 Al (9-12) 



142 Basic BASIC 

Thus 

tan Al = yl - cos2 Al 
cos Al 

And so, 

Al = ATN ( yl - cos2 Al ) 
cos Al 

(9-13) 

Now, we will be able to translate Eqs. (9-11)-(9-13) into BASIC program 
statements. From Eq. (9-11) we get 

LETT= (B 00 2 + C 00 2 - A 00 2)/(2 ° B ° C) 

and from Eq. (9-12) we get 

LET Tl= SQR(l T 00 2) 

and finally from Eq. (9-13), 

LET Al = ATN(Tl/T) 

These three statements constitute the heart of our program LA WC0S which 
reads three sides from data and prints all six parts of the triangle. See espe
cially lines 50, 60, and 70. 

We could have done the work of lines 90 through 120 by shuffling the data 
around and using lines 50 through 80 as a subroutine. 

SUMMARY 

This section has been devoted to solving triangles which may be uniquely 
determined. We have developed the Law of Sines into a program to solve the 
case of two angles and a nonincluded side and indicated that, with a few 
changes, the angle-side-angle case is solvable by the Law of Sines also. 

The Law of Cosines has been used to find the angles of a triangle whose 
sides are known. It has been indicated that the case of side-angle-side is appro
priate for the Law of Cosines also. This covers the uniquely determined cases 
except hypotenuse-leg. There remains the ambiguous case. If two sides and a 
nonincluded angle are given, there may be two, one, or no triangles possible. 
If solvable, such triangles are solvable by the Law of Sines. This is left to the 
student in the exercises. 

PROBLEMS FOR SEC. 9-3 

1) Write a program to solve the angle-side-angle case. 
2)• Write a program to handle given two angles and a nonincludcd side, and two 

angles and the included side. Use an item of data to determine which kind of data 
is provided. 

J) lviodiiy LA W~Cy:/5 to use lines 50, 60, 70, a11U OG as a ~uUruuiiue auU :,11ufilc 

the data as discussed in text. 
4) Write a program to solve the side-angle-side case. 
5) Write a program to handle given three sides, and two sides and the included 

angle. Use an item of data to designate which set of data is provided. 
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LAWC0S 

10 DEF' F'NRCX>=INTCX•IOO+.S>llOO 
lS 
20 
30 
40 
48 
so 
S8 
60 
68 
70 
78 
80 
88 
90 
100 
110 
120 
130 
140 
I SO 
soo 
SIO 
S20 
S30 
999 
RUN 

PRINT " .. ,, " A",," B".t" C0 

READ A.e.c 
IF' A .. O THEN 999 
PRINT "THE SIDES ARE".A.e.c 
REM T IS REALLY C0SCAI> 
LET T=C8t2+Ct2-At2>1C2•B•C> 
REM Tl IS REALLY SINCAI> 
LET Tl=SQRCl-T•2> 
REM Al IS THE ANGLE INCLUDED BY SIDES B AND C 
LET A I =ATNC TllT> 
REM C0NVERT RADIANS T0 DEGREES 
LET Al=Al•l8013.141S9 
REM WE N0W REPEAT THE PR0CESS T0 FIND ANGLE Bl 
LET T=CAt2+Ct2-B•2>1C2•A•C> 

LET Tl=SQRCl-T•2> 
LET Bl=ATNCTl/T> 
LET Bl=Bl•18013.141S9 
PRINT "THE ANG.ES ARE"• F'NRCAI >. F'NRCBI >. 180-CF'NRCAI >+F'NRCBI > > 
PRINT 
G0T0 20 
DATA 3, 4, s. 300. 400. SOO 
DATA 1.132os.1.2 
DATA 2• 2• 3 
DATA o.o.o 
END 

LAWC0S 

A B c 
THE SIDES ARE 3 4 s 
THE ANG.ES ARE 36.87 53. 13 90 

THE SIDES ARE 300 400 soo 
THE ANG.ES ARE 36.87 53. 13 90 

THE SIDES ARE 1.73205 I 2 
THE ANGLES ARE 60 30 90 

THE SIDES ARE 2 2 3 
THE ANG.ES ARE 41. 41 41. 41 97. 18 

D0NE 

,/ 6) Write a program to solve the ambiguous case. Be sure to provide for no 
triangles, one triangle, or two triangles. 
j 7) Rewrite problem 3) to handle degrees, minutes, and seconds. 
j 8) Rewrite problem 4) to handle degrees, minutes, and seconds. 

9) Proiect: Write a single program to process data in four unic1ucly determined 
cases. You might include the HL case. 

9-4 POLAR COORDINATES 

Every point in a rectangular coordinate system may be named by a unique 
pair of real numbers. The pair is usually designated (X, Y). If we plot a point 
(X, Y), we find that we may determine anotfier ordered pair of numbers, one 
of which is the distance from the origin and the other is an angle measured 
from the positive portion of the X-axis to the ray with endpoint at the origin 
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and containing point (X, Y). If we call the distance R and the measure of the 
angle G, we may designate a new ordered pair (R, G). Refer to Fig. 9-1. 

Ordered pairs of this kind are called polar coordinates. The ray consisting of 
the origin and the positive portion of the X-axis is called the polar axis and 
the origin is called the pole. Our new coordinate system appears in Fig. 9-8. 
Such a coordinate system is particularly adapted to plotting periodic functions 
with finite upper and lower bounds. k(R,GI Fig. 9-8 

.. 
POLE POLAR AXIS 

Note that there is no one-to-one correspondence between ordered pairs and 
plotted points for the polar coordinate system. How do we designate the 
origin? (0, 00)? How about calling it (0, 10°) or (0, -25°)? Also note that 
(1, 45°) and (1, 405°) name the same point. Any particular ordered pair does 
name a unique point, but every point may be named by an unlimited number 
of ordered number pairs in this polar coordinate system. 

Looking at the polar equation R = cos G suggests that for some values of G 
we would like to allow R to take on negative values. So we extend the defini
tion of R to permit this. The absolute value of R is the distance of the point 
from the pole and we define (-R, G) and (R, G + 180°) to name the same 
point. 

Some polar equations are relatively easy to convert to rectangular form. 
For instance, 

R = 2cosG 

is equivalent to 

which is equivalent to 

x2 + Y2-2X = 0 

which turns out to be a circle with radius 1 and center at the point (I, 0). 
However, other polar equations are not so easily identifiable when converted 
and so are more appropriate to plot on a polar coordinate system. Consider, 

R=l-2cosG 

R = 2 + sin2G 

R = l + 2 cos G - 3 sin~ G 

(9-14) 

(9-15) 

(9-16) 

No matter how you approach plotting any of these, you run into a tremendous 
amount of calculating. 
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We can easily get the coordinates of the points to plot for all three of these 
in the same computer program. 

In program P0LAR we have simply defined a function for each of the Eqs. 
(9-14), (9-15), and (9-16), an<l put the value of the angle G in a loop to get 
values every 15 degrees. We are not obligated to define functions, but with 
converting to radians and rnunding off to hundredths this seems a reasonable 
approach. Now if we want different functions we only need change the 
printing in line IO and redefine the new functions in lines 30, 40, and 50. Of 
course the actual plotting is left to the student to do on polar coordinate paper. 

P0LAR 

LET K=3.14159/180 5 
10 
20 
30 
40 
50 
60 
70 
80 

PnINT "ANa.E","1-2COSC G>"• "2+ SINC2G>"• "1+2C0SC Gl-3SINC Gl •2" 
DEF FNRCXl=INTCX*lOQ+.5l/100 
DEF FNACXl=1-2*C0SCK*Xl 
DEF FNBCXl=2+SINC2*K*Xl 
DEF FNCCXl=1+2*C0SCK*Xl-3*SINCK*Xlt2 
F0R G=O T0 360 STEP 15 
PRINT G, FNR ( FNA CG>» FN RC FN B < Gl l. FN R < FNC < Gl l 
NEXT G 

90 END 
RUN 
P0LAR 

ANGLE 
0 
15 
30 
45 
60 
75 
90 
105 
120 
135 
150 
165 
180 
19 5 
210 
225 
240 
255 
270 
285 
300 
315 
330 
345 
360 

DONE 

1-2cosc G> 
-1 
- • 93 
-.73 
- • 41 

0 
• 48 
1 
1. 52 
2 
2. 41 
2. 73 
2.93 
3 
2. 93 
2. 73 
2. 41 
2 
1. 52 

• 48 
0 

- • 41 
- • 73 
- • 9 3 
- I 

2+SINC2Gl 1+2COSC Gl- 3Sl·\J( Gl • 2 
2 3 
2.5 2. 73 
2· 8 7 1. 98 
3 • 91 
2· 8 7 -.25 
2.5 -1. 28 
2 -2 
I• 5 -2.32 
I· 13 -2.25 
1 - I• 9 I 
I• 13 - I. 48 
I· 5 - I .J 3 
2 - I 
2· 5 - 1. I 3 
2· 8 7 -1. 48 
3 - 1.91 
2· 8 7 -2.25 
2.5 -2.32 
2 -2 

1 • 5 - 1. 28 
1·13 -.25 
I • 91 
I· 13 I. 98 
I· 5 2. 73 
2 3 

SUMMARY 

The computer is an invaluable aid to obtaining values of ordered pairs of 
polar comdinates for polar equations. 
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PROBLEMS FOR SEC. 9-4 

1) Obtain polar coordinates for plotting any of the following polar equations. IIt 
would be instructive to plot the graph as well.) 

(a) R =cos 2G 

(b) R = cos3G 

(c) R =cos 4G 

(d) R =sin 2G 

(e) R= sin3G 

(f) R cos G =I 

(g) R = 1 + R cos G 

(h) R = sin G + cos G 

2) Write a program to convert from polar coordinates to rectangular coordinates 
for any of the polar equations in problem n 
I 3) \Vrite a program to store rectangular coordinates in an array for any of the 
polar equations in problem I) except (f) and (g) and then rearrange the ordered pairs 
in order of increasing values of X. Print the resulting set of ordered pairs. Plot the 
graph on rectangular coordinate paper and compare it with the plot obtained in 
problem I). 



CHAPTER 10 

Complex Numbers 

10-1 FUNDAMENTAL OPERATIONS 

In the development of mathematics we find that we cannot solve the 
equation 

x2 + i = o 
if we are limited to real numbers. We want to say 

X=y-1 or X= -y-1 

However, such numbers are not allowed in the real number system. So we 
define a new number i such that 

i2 = -1 or i = y-1 

Then, if we should try to solve X:? + 2X + 2 = 0 using the quadratic formula, 
we get 

x = -2 ± v-:r=lf 
2 

or X= -2± v=-4 
2 

and we decide to call y-4 the same number as iy'4 which is 2i. So now 

-2 ± 2i 
X= 2 

or X = -1 + i 
= -1-i 

These two numbers are representative of complex numbers in rectangular form. 
In general, rectangular form is written as a + bi, where a and b are real mun
bers. Another number could be written c + di. Of course, the computer cannot 
handle a + bi because it is limited to real numbers. But we can deal with the 
two real numbers a and b. This means that we will be working with complex 
numbers in ordered pair form or (a, b) form. Since the computer terminal is 
limited to capital letters, we use (A, B). 
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For two complex numbers (A, B) and (C, D) we define equality: 

(A, B) = (C, D) 

if and only if 

A=C and B=D (10-1) 

Their sum is found by 

(A,B) + (C,D) = (A+C,B+D) ( 10-2) 

and their product is found by 

(A, B) 0 (C, D) = (AC - BD, AD + BC) (10-3) 

Equations (10-1 ), ( 10-2), and ( 10-3) are relatively straightforward consid
erations for a computer program. We can test a pair of real numbers for 
equality with another pair or we can perform the addition of Eq. (10-2) or the 
multiplication of Eq. (10-3). As an example, let us write a sh01t program to 
add two complex numbers on INPUT. See ADDA, B. 

ADOA.8 

10 PRINT "THIS PR0GRAM ADDS TW0 C0MPLEX NUMBERS IN A,8 FORM" 
20 PRINT 
30 PRINT " FIRST NUMBER"J 
40 INPUT A, B 
50 IF A=999 THEN 999 
60 PRINT " SEC0ND NUMBER"; 
70 INPUT c, D 
60 PRINT "THE SUM IS C"JA+CJ''."JB+DJ"l" 
90 G0T0 20 
999 END 
RUN 
ADDA.B 

THIS PR0GRAM ADDS TW0 C0MPLEX NUMBERS IN A,B FORM 

FIRST NUMBER?J,4 
SEC0ND NUMBER?O,Q 

THE SUM IS < I , 4 

FIRST NUMBER?l.5 
SEC0ND NUMBER?316 

THE SUM IS < 4 , I 3 

FIRST NUMBER?-4671902 
SEC0ND NUMBER?56,-1234 

THE SUM IS C-411 ,-332 

FIRST NUMBER?999,I 

Subtraction and multiplication are also relatively straightforward. 
Now consider division: 

(A, B)/(C, D) = (X, Y) ( 10-4) 
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Equation (10-4) may be defined in terms of multiplieation: 

(A, B) = (X, Y) 0 (C, D) 

(A, B) (XC - YD, XD + YC) 

By the <lefiniton of equality for complex numbers, 

A= XC-YD and B XD + YC 

Solving for X and Y we get 

AC+BD 
X = C:.! + D~ and y BC-AD 

c~ + D:.! 

This is a little more complicated than the othe1 ope1ations, but still manage
able. 

SUMMARY 

The computer may be programmed to wmk with complex numbeJs, if we 
represent them as ordered pairs of real numbers. The four fundamental oper
ations of addition, subtraction, multiplication, and division may all be <lone 

by formula. 

PROBLEMS FOR SEC. 10-1 

1) Write a program to give the sum, difference, product, and quotient for pairs 

of complex numbers assigned as data. 
2) Write a program to compute and print the complex roots of quadratic 

equations. 
3) Write a program to test the commutative properties of both addition and 

multiplication for five pairs of complex numbers, 
4) Demonstrate that subtraction and division are not commutative. 
5) Write a program to generate random complex numbers. Then test the asso

ciative property for both addition and multiplication. 
j 6) Find the reciprocal of complex numbers assigned as data. 

7) Whenever we talk about ordered pairs of real numbers, the rectangular 

coordinate system should come to mind. Think of (A, B) as a plotted point on a 
graph with an A-axis and a B-axis. Write a program to find the distance from the 

origin of five complex numbers assigned as data. 

10-2 POLAR COORDINATES 

If we think of ordered pairs of real numbers as being associated with a 
rectangular coordinate system, we may plot a point representing (A, B) as 
shown in Fig. 10-1, where the distance from the B-axis is the absolute value 
of A and the distance from the A-axis is the absolute value of B. 

Whenever we plot an ordered pair of real numbers on a rectangular 

coordinate system, we may associate the point with another ordered pair of 
real numbers. In the new pair, the first number is the distance from the origin 
and the second is the angle whose initial side is the positive A-axis and whose 
terminal side is the ray with an endpoint at the origin and containing the point 
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B 

0 (A,B) 

Fig. 10-1 

(A, B). We use R for the distance and call it the absolute value of the complex 
number (A, B). R is found from (A, B) by 

R = I (A, B) I = v' A 2 + B2 

We use C for the angle. C may be found from (A, B) by 

C = arctan ( A/B) 

C is sometimes called the argument of the complex number. We may now 
refer to complex numbers in polar form as ( R, C). This form for complex 
numbers is the same as the form for (X, Y) ordered pairs converted to polar 
form in Chap. 9, with the one exception that we prefer not to allow R to be 
negative for complex numbers. 

So we see that for every complex number we may choose a rectangular 
form or polar form depending on which form is appropriate to the problem at 
hand. We saw in Sec. 10-1 that addition and subtraction worked out easily 
in (A, B) form, but that multiplication and division were more cumbersome. 
Let us look at multiplication in (R, G) form. 

It turns out that a third form will be helpful in establishing the multiplica
tion algorithm. From (R, G) we get that A = R cos G and B = R sin G, and 
similarly for (Rl, Cl) we get that C = Rl cos Cl and D = RI sin CL Using 
the old formula to multiply (A, B) by (C, D) we get 

(R cos G, R sin C) (Rl cos GI, Rl sin Cl) 
= (RRl cos G cos Cl - RRl sin C sin Cl, 

RRl sin G cos Cl+ RRl cos G sin Cl) 

After factoring, the right side becomes 

(RRl(cos C cos Cl sin G sin Cl), RRl(sin G cos Cl+ cos G sin Cl)) 

cos C cos Cl - sin G sin Cl =cos (G +Cl) 
and 

sin G cos Cl + cos G sin Cl = sin (G + GI) 

(10-5) 

( 10-6) 

( 10-7) 



Substituting Eqs. (10·6) and (10-7) into (10-5) we get 

(RRl cos (C +Cl), RRl sin (C + Cl)) 
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which is a plotted point associated with a distance from the origin of RRl and 
an angle of C + CL So 

(R, C)(Rl, Cl)= (RRl, C +Cl) (10-8) 

This means that to multiply two complex r:umbers in polar form we should 
multiply their absolute values and add their arguments. This is less cumber
some than the method of Sec. 10-1. 

It follows from Eq. (10-8) that to divide two complex numbers in polar 
form we divide their absolute values and subtract their arguments: 

(R, C)/(Rl, Cl)= (R/Rl, C - Cl) 

Again this is less cumbersome than the formula of Sec. 10-1. 
Let us multiply some randomly assigned complex numbers in polar form. 

We generate arguments in degrees and absolute values in units 1 to 10. See 
MLTR, C. 

ML TR, G 

10 
20 
30 
40 
50 
60 

DEF' 
F'0R 
LET 
LET 
LET 
LET 

F'NCCZ>=INTCZ•RNDCZ>+l> 
X= 1 T0 6 
R=F'NCC 1 O> 
G=F'NCC 360> 
Rl=F'NC< 10> 
Gl=F'NCC360> 

70 
80 

PRINT "C"JRJ","JGJ .. >*<"JRlJ","JGlJ">=C"JR*RlJ".1"JG+GlJ")" 
NEXT X 

90 END 
RUN 
MLTR, G 

10 
6 
9 
10 
6 

( 10 

D0NE 

, 135 >•C 
, 98 >*C 
, 6 >*( 
, 95 >•C 
, 60 >*< 
, 139 >*C 

2 , 311 >=< 20 , 446 
9 , 341 >=< 54 , 439 
1 , 231 >=< 9 , 237 
8 , 307 >=< 80 , 402 
5 , 356 >=< 30 , 416 
2 , 343 ) =< 20 , 482 

SUMMARY 

Complex numbers may be represented in polar form as (R, C), where R is 
the absolute value and C is the angular location starting at the positive end of 
the A-axis on an (A, B) graph. We have seen that while addition and subtrac
tion are easily done in (A, B) form, multiplication and division are better 
suited to (R, C) form. (R, C)(Rl, Cl) = (RRl, C + Cl) and (R, C)/(Rl, Cl) = 
(R/Rl, C Cl). To multiply in polar form, multiply absolute values and add 
arguments. To divide in polar form, divide absolute values and subtract 
arguments. 
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PROBLEMS FOR SEC. 10-2 

1) \Vrite a program to find the quotient of two complex numbers in polar form. 
2) \Vrite a program to print the positive integral powers of (I, 45°) from I to 8. 
3) \Vrite a program to convert from (R, G) form to (A, B) form . 

./ 4) Write a program to convert complex numbers from (A, B) form to (R, G) form. 
You will want to use the ATN(X) computer function here and be sure you have the 
angle in the correct quadrant. To check this, simply try numbers in all four quadrants . 
./ 5) Write a program to take two complex numbers in (A, B) form and print their 
product in (R, G) form. 
j 6) \\'rite a program to print the positive integral powers of a complex number in 
(A, B) form. Keep the result in (A, B) form . 
./ 7) ~fodify ML TR, G to generate negative as well as positive numbers for angles. 
Print the resulting angle as a value between -360 and +360 degrees. 

10-3 POWERS AND ROOTS 

\Ve have seen that for multiplying two complex numbers the polar form 
provides a very convenient algorithm. If we wish to square a complex number, 
i.e., multiply it by itself, we get 

(R, G)~ = (R~, G + G) or (R~, 2G) 

\Ve also see that for a positive integer n, 

(R, G)n = (Rn, nG) 

It can also be shown that an nth root of (R, G) may be found by 

(R, G)l/n = (R11n, G/n) 

(10-9) 

(10-10) 

where Rl/n means \)IR. Equations (10-9) and (10-10) constitute a portion of 
De Moii:re's theorem. It can also be shown that every nonzero complex mun
ber has exactly n complex nth roots. 

Let us find the four complex fourth mots of unity. By taking the square roots 
of the square mots of 1, we should get 1, i, -1, and -i, which in (R, G) form 
are (1, 0°), (1, go 0

), (1, 180°), and (1, 270°). Using De l\foivre's theorem, 

(1, 0°)1/4 = (11/4, 0/4°) Of (1, 0°) 

However, there should be three more. Now we see that there is a tremendous 
advantage associated with the nonuniqueness for polar coordinates. By writing 
unity (1, 0°) as (1, 360°) we may apply Eq. (10-10) again: 

(1, 360°)1/4 = (1, go 0
) 

Writing (1, 0°) as (1, 720°) we get 

(1, 720°)114 = (1, 180°) 

and finally (1, 0°) = (1, 1080°) gives 

(1, 1080°)114 = (1, 270°) 
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R00TS 

10 
20 

PRINT "TAKE R00TS QJF' C0MPLEX NUMBERS IN P0LAR FORM" 
READ R, G•N 

30 
40 

PRINT "l'HE"JNJ","JNJ"TH R00TS 0F" <"JR;",,";G;"> ARE:" 
F'0R X= 1 T0 N 

50 
60 

PRINT "(";Rt C l/N)J ",, "; GINJ ">" 
LET G= G+ 360 

70 NEXT X 
80 PRINT 

G0T0 20 90 
100 
110 
120 
130 
140 
RUN 
R00TS 

DATA 1,0,4 
DATA 1, o, 3 
DATA 1,45,2 
DATA 3,90,3 
END 

TAKE R00TS 0F' C0MPLEX NUMBERS IN P0LAR F'QJRM 
THE 4 • 4 TH R00TS 0F < • 0 ARE: 
< 1. • 0 

I. , 90 
I. • 180 
I. • 270 

THE 3 . 3 TH R00TS 0F' ( I 
( ). . 0 ) 

). . 120 
1. . 240 

THE 2 . 2 TH R00TS 0F' ( I 
( 1. . 22.5 ) 

( ). . 202.5 

THE 3 • 3 
( 1.44225 

I• 44225 
) • 44225 

TH 
• 30 
• 150 
• 270 

R00TS 0F < 3 
) 

0UT 0F' DATA IN LINE 20 

, 0 > ARE: 

, 45 > ARE: 

• 90 > ARE: 

as expected. Suppose we add 360 degrees again. Then G = 1440° and 
1440(1/4) = 360° which we have already in (1, 0°). Finding roots of complex 
numbers in polar fo1 m becomes a ve1 y straightforward computer program. 
See R00TS. 

PROBLEMS FOR SEC. 10-3 

1) In program R00TS have the computer convert the roots to (A, B) form. 
/ 2) \Vrite a program to find the n complex nth roots of complex numbers in (A, B) 
form and print the results in (A, B) form. 
/ 3) In program H00TS print the roots in both (A, B) and polar form. 



CHAPTER 11 

Polynomials 

11-1 FUNDAMENTAL OPERATIONS 

We define a real polynomial in X as an expression that can be written in 
the form 

ANXN + AN_ 1XN-l + · · · + A2X2 + A1X +Au 

where N is a non-negative integer, X is a complex number, and the AN are 
constant real coefficients. The following are examples of polynomials in X: 

5 X-3 X8 + 3XG - X + 1 x2 + 3X-4 

For the polynomial 5, note that 5 = 5X0 so the polynomial consists of the term 
Au, which is 5. The number 0 is considered a polynomiaL All real polynomials 
except the zero polynomials have degree i where AiX1 is the term of the 
polynomial with the greatest value of i for A1 not equal to 0. Polynomials may 
be used to describe many physicai problems. For instance, the trajectory of a 
projectile is described by a second-degree polynomiaL 

We may perform operations on polynomials much as we perform opera
tions on explicit numbers. You have had considerable experience adding and 
subtracting such expressions. You have often multiplied two binomials of the 
form (AX+ B)(CX + D). One of the problems in Chap. 1 was to perform just 
that multiplication by computer. We now develop a program to multiply two 
polynomials. 

Multiplication 

Clearly we will perform operations on the computer by working with the 
coefficients and being careful to line things up properly. This means being very 
much aware of missing terms and inserting zero coefficients where necessary. 
Let us begin with an example, say (2X + 7)(3X:! + llX - 5). By hand we get 
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3x2 + llX - 5 
2X+ 7 

21x2 + 77X - 35 
6X3 + 22X2 - lOX 
6X3 + 43x2 + 67X - 35 
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where all the xx were known in advance and <lo not depend on the coefficients. 
So the problem could have been done in the following manner: 

3+11- 5 
2+ 7 

21+77 - 35 
6+22-10 
6 + 43 + 67 - 35 (11-1) 

The program can be set up by putting 3, 11, and -5 in one computer list, 
2 and 7 in another, and making provision for putting 6, 43, 67, and -35 in a 
third list. We may find the organization to be a little easier by thinking of the 
computation in Eq. (11-1) as being set up in columns numbered from right to 
left. (If your computer permits 0 subscripts in a list, you may use that to 
good advantage here by starting with 0.) 

3 2 1 0 Column numbers 
4 3 2 1 Column numbers 

3 + 

21 
6 +22 -10 
6 +43 +67 -35 

We observe that when we multiply two numbers in column 1, we put the 
result in column l; when we multiply a number from column 1 by a number 
from column 3, we put the result in column 3; and when we multiply a 
number in column 2 by a number in column 3 we put the result in column 4. 
This suggests that multiplying a number in column I by a number in column J 
calls for the result to go in column (I + J - 1). [If 0 is allowed, then the 
result goes in column (I + J).] So, if we store the two polynomials being 
multiplied in an F list and an S list and the product in a P list, our computer 
program will have an instruction to store F[l] 0 S[J] in P[I + J - l]. We must 
also provide for subtotals. Thus the program statement will be 

XXX LET P[I + J - l] P[I + J - l] + F[I] 0 S[Jl 

where we initialize the P list at 0. Program TRI 0 BI multiplies the two poly
nomials of our example. 

It will be left as an exercise to modify TRI " BI to multiply pairs of poly
nomials of various degrees. 
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TR1*BI 

B HEM LINES 10 THR0UGH 40 READ AND PRINT THE FIRST P0LYNOMIAL 
10 FOR X=3 T0 1 STEP -1 
20 READ H XJ 
30 Pr<INT FC XJ; 
40 NEXT X 
50 PRINT "TIMES "J 
58 REM LINES 60 THROUGH 90 READ AND PRINT THE SECOND P0LYNOMIAL 
60 F0R Y=2 TO 1 STEP -1 
70 READ 5( Yl 
BO Pi<INT S[YJJ 
90 NEXT Y 
98 REM 100 THROUGH 120 SET THE RESIJL T LI ST AT ALL ZER0S 
100 F0R W=l TO 4 
110 LET P(WJ=O 
120 NEXT \,• 
128 REM LINES 130 THROUGH 170 DO THE ACTUAL MULTIPLYING 
1 30 F0 R I = I T0 3 
140 F0R J=l T0 2 
150 LET PU+J-ll=P[!+J-ll+F[IHS(JJ 
160 NEXT J 
170 NEXT I 
180 PRINT "YIELDS "; 
188 llEM AND NOl-1 \.,'E PRINT THE 'ANSWER LI ST' 
190 FOR Z=4 TO l STEP -1 
200 PRINT P[ZJJ 
210 NEXT Z 
218 REM THE FIRST THREE NUMBERS REPRESENT 3X•2+11X-5 
219 REM THE NEXT TWO Nl™BERS REPRESENT 2X+7 
220 DATA 3, 11,-5,2, 7 
230 END 
IWN 
TR1*81 

3 
DONE 

Division 

11 -5 Tl MES 2 7 YIELDS 6 43 67 - 35 

When working with polynomials we often wish to perform the operation of 
division. It is especially frequent that we wish to divide by a polynomial of the 
form X - R where R i2 a constant. Let us divide 2x:i - 3X2 - lOX + 3 by 
X - 3 and see what can be done to computerize the operation. As with multi
plication, we will end up considering only the coefficients. First we do the 
division by hand: 

2x2 + 3X- l 
X - 3)2Xa - 3X2 - lOX + 3 

2X3 - 6X2 

3X2 - lOX 
3x2- 9X 

X+3 
x 3 

Every term in the computation that will be written twice in every problem 
appears in bold face. Now if we simply decide not to write things twice and 
at the same time compress the problem vertically, we get 



2x2 + 3X - 1 
X - 3)2Xa - 3x2 - lOX + 3 

- 6X2 - 9X + 3 
3X2 X 
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We saw that for multiplication, as long as everything was lined up correctly, 

we could eliminate all the X's. Also note that we are dividing only by 

binomials of the form X - R, so the coefficient of X will always be 1. Let us 

not even write it Now we have the division in the following form: 

2+3-1 
-3)2 - 3 - 10 + 3 

-6- 9+3 
3- 1 

Since the coefficient of X in the divisor is always 1, the coefficient of each term 

in the quotient will always be the same as the coefficient of the leading term 

of the expression into which we divide the X term. Thus it is no accident that 

we see 3 - 1 in the bottom row as well as in the answer. So, if we agree to 

simply insert the leading coefficient of the polynomial into which we are 

dividing X - R in front of the bottom row of figmes, we will always have 

the coefficients of the quotient polynomial and we would not need the top 

row. We now have reduced the problem to an iteration involving "multiply 

and subtract" repeatedly, and the division looks like 

-3)2 - 3 - 10 + 3 
-6- 9 3 

2+3- 1 

which we got by the following set of steps: 1) copy down the first coefficient 

of the original polynomial 2; 2) multiply 2 by -3 to get -6 and write it down 

under the second term of the original polynomial; 3) subtract to get 3, mul

tiply 3 by -3 to get -9; 4) write it down beneath the next term to the right 

and subtract to get -1; 5) multiply -1 by -3 to get +3 and write it down 

beneath the next term; 6) subtract to get 0 and we have a 0 remainder. So we 

see that 2 + 3 - 1 is interpreted as 2X2 + 3X - 1. 
Since subtracting a number may be accomplished by multiplying the num

ber to be subtracted by -1 and adding, we may convert "multiply and sub

tract" to "multiply and add" if we multiply the -3 by -1 to get 3. Or for 

X - R we just use R. Let us complete the development of this algorithm by 

inserting the 0 in the last column to the right to indicate a remainder of 0. 

3)2 - 3 - 10 + 3 
6 9-3 

2+3- +o 

Dividing 3X! - 2X2 + 5X - 2 by X + 2 results in 

-2)3 + 0 - 2 + 5 - 2 
- 6 + 12 - 20 + 30 

3 - 6 + 10 - 15 + 28 

yielding a quotient of 3X3 - 6X2 + lOX - 15 and a remainder of 28. 
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Division by the algorithm we have just developed is usually called synthetic 
division. Since this is essentially an iterative process, we should be able to get 
the computer to perfo1m division in this way. We put the original polynomial 
in a P list and the quotient polynomial in a Q list. Let us store the division 
constant in R. For every division problem of the kind we are working with 
here, the first coefficient in the quotient polynomial is the same as the first 
coefficient in the dividend polynomial. So we need a line in the program which 
says LET Q[4] = P[4]. See line 70 in program SYNDIV. 

SYNOI V 

5 
8 
10 

PRINT "SYNTHETIC DIVISl0N:" 
REM READ THE OIVIS0R 

READ R 
18 
20 

REM REAO ANO PRINT 0RIGINAL P0LYN0MIAL IN LINES 20 THRU 50 
F0R N=4 T0 I STEP ·I 

30 READ PCNl 
40 PRINT PCNlJ 
so NEXT N 
60 PRINT "DIVIDED BY X ·"JRJ"YIELOS" 
68 
69 

REM FIRST QU0TIENT C0EFFICIENT EQUALS FIRST 
REM C0ErrICIENT 0F 0RIGINAL P0LYN0MIAL 

70 LET QC 4l=PC 4l 
80 PRINT QC 4JJ 
90 
98 

F0R X=3 T0 I STEP -1 
REM "MULTIPLY AND ADD" 

LET QCXJ=PCXJ+QCX+ll*R 
PRINT QCXJJ 

100 
110 
120 
130 
140 
RUN 
SYNOI V 

NEXT X 
DATA 3,2,-3,-10,3 
ENO 

SYNTHETIC DIVIS10N: 
2 -3 -10 3 
2 3 -I 0 

00NE 

DIVIDED BY X - 3 YIELDS 

In SYNDIV, 2 3 -1 0 is to be interpreted as 2X2 + 3X - 1 with 
a remainder of 0. Let us try another: 

130 DATA 2, 3, - 1, •I. - 5 
RUN 
SYNDI II 

SYNTHETIC DIVISI0N: 
3 -1 4 -s 
3 5 14 23 

DIVIDED BY X - 2 YIELDS 

The 3 5 14 23 is to be interpreted as 3X~ + 5X + 14 with a 
remainder of 23. 
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SUMMARY 

You should be able to add and subtract polynomials easily using computer 
lists. We have written an elementary program for multiplication of two poly
nomials, and we have written a program to perform synthetic division using 
X - R as the divisor. 

PROBLEMS FOR SEC. 11-1 

1) vVrite a program to find the sum of two polynomials assigned as data. Be sure 
to avoid printing leading zero coefficients when adding pairs similar to 3XI + 6X - 4 

and - 3X 4 + sxa - 3X + 1. 
2) Do problem 1) for subtraction. 
3) Write a single program to add or subtract pairs of polynomials as determined 

by an item of data. (Example: use S = 1 for add and S = 0 for subtract.) 
4) Prepare a program to multiply two polynomials of varying degrees. 
5) Write a program to multiply three polynomials. 
6) Generate pairs of random polynomials of random degree and multiply them. 

Print the original polynomials and the product. Be sure to allow negative coefficients. 

/ 7) Extend SYNDIV to divide X - R into polynomials of any degree. Also have the 

computer print the remainders with a message to the effect that the remainder 
equals whatever it comes out to. 
/ 8) Write a program to print the first 11 integral powers of (X + 1). 
/ 9) Write a program to divide any polynomial by any polynomial of equal or 
lesser degree. Suggestion: get data from problem 6. 

11-2 INTEGRAL ZEROS 

It is common practice to abbreviate any polynomial and call it P<Xl for a 
polynomial in X (read as P of X). We often look at the polynomial equation 

Y=P<x> 

and its graph. The values of X for which Y = 0 are called the zeros of the 
function. You have solved many quadratic functions in which there were always 
two zeros. Sometimes they were equal, sometimes integral, sometimes real, 
and sometimes complex. It can be shown that every Nth-degree polynomial 
equation has exactly N complex zeros. Before we actually look for any zeros 
of Y = P (X) we need to have some theorems available. 

Remainder Theorem 

According to the Remainder theorem, if a polynomial is divided by X - Z, 
then the remainder is the value of the polynomial when Z is substituted 
for X. Dividing P <X> by (X - Z) we get 

p(X) - R 
(X- Z) - Q<X> + (X - Z) 

where Qcx> is the quotient polynomial. Multiplying through by (X - Z) we get 
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p(X) = Q(X) 
0 (X - Z) + R 

and we can see that if we substitute Z for X, then X - Z = 0 and 

p<Z> =R (11-2) 

Looking at SYNDIV we see that substituting 3 for X in 2xa - 3X2 - IOX 
+ 3 gives 54 - 27 - 30 + 3 or 0, confirming that P <a> = 0, which is the 
remainder after dividing by X - 3. We also see that substituting 2 for X in 
3X3 - X2 + 4X - 5 gives 24 - 4 + 8 - 5 or 23, confirming that P <2 > = 23, 
which is the remainder after dividing by X - 2. 

Factor Theorem 

The Factor theorem states very simply that if the value of R in Eq. (11-2) 
is 0, then X - Z is a factor of P <X» Looking at SYNDIV again, we see that 
X - 3 is a factor of 2X3 - 3X2 - IOX + 3 while X - 2 is not a factor of 
3X3 - X2 + 4X - 5. Now all we have to do is find a value of Z so that 
Por,> = 0 and Z is a zero of the function. 

Search for Integral Zeros 

What integers do we try for Z to test P<Z> for O? We have assumed that 
there are N complex zeros. Let us call them ZN, ZN_1, .. ., Z2 , Z1• It can be 
shown that 

(X - ZN)(X - ZN-1) ... (X - Z2)(X - Z1) 
= ANXN + AN_1XN-l + · · · + A1X + A0 

Multiplying the left side out we should see that the only constant term in the 
product is (-ZN) (-ZN_ 1) · · · (-Z2) (-Z1) which simplifies to (-l)N (ZN) 
(ZN_ 1) · · · (Z2 ) (Z1) and must equal the constant term in the product poly
nomial which is A0• And so it follows that if a polynomial has any integral 
zeros, they must be factors of the constant term A0 • That is not to say that all 
integral factors of A0 are zeros of the polynomial. 

This should provide sufficient basis for writing a computer program to find 
the integral zeros of a polynomial function. We can define a computer func
tion and test for FNP(X) = 0 for all integral factors of the constant term. If 
we continue to enter the coefficients of polynomials in computer lists as we 
have been doing, then we know that the constant term will always be P[l]. For 
our first program, let us define our function using the list entries as coefficients 
in a DEF statement and look at only third-degree polynomials. 

One feature of the program that requires comment is the finding of num
bers to test for factors. These numbers must be in the interval -P[l] to P[l] 
including the end numbers. Well, if P[l] is negative, we want to step -1 
arnl if Fi 1] is positive, we want to step + l. This 1s a perfect place to use 
SGN(P[l]). See line 80 of program INTZER. It would be useful to print that 
there are no integral zeros if that turns out to be the case. In order to do 
that, we need a switch which is off initially and which we turn on only if we 
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find at least one zero. Then after we test all possible factors of P[l], we test 
to see if the switch is on. If it is, we read more data. If the switch is off, 
there were no zeros, so we print a message and then read more data. See 
the flowchart in Fig. 11-1. 

INTZER works well for polynomials of the same degree; but suppose we 
have polynomials of several different degrees we wish to study using the same 
program? Well, we could define a different function for each degree or we 
could define a function of the highest degree we anticipate and fill in with 
leading zeros. But suppose we want up to ninth or tenth degree? The function 
would not fit on one line on some terminals. We could define two functions 

INTZER 

10 
20 
22 
25 
30 
40 
50 
60 
66 
70 
76 
60 

DEr rNP<X>=PC41*X•3+PC31*Xt2+Pt21*X+PCtl 
PRINT 
PRINT 
r0R S=4 T0 1 STEP -I 
READ PtSJ 
PRINT PCSJJ 
NEXT S 
PRINT "INTEGRAL ZER0<S>r "J 
REM TURN SWITCH 0rr 
LET K=O 
REM STUD-Y LINE 60 CAREFULLY! 
r0R X=-Pttl T0 PCIJ STEP SGN<Ptll> 

66 
69 

REM LINE 90 PREVENTS ~~ ERR0R MESSAGE CAUSEO BY 
REM DIVIDING BY ZER0 

90 
96 

IF" X=O THEN 140 
REM IS X A F"ACT0R 0r PCll? 

IF" PCIJ/X <> INT<PClJ/X) THEN 140 
REM IS THE REMAINDER ZER0? 
IF" F"NPCX> <> 0 THEN 140 

100 
106 
110 
116 
119 
120 
126 
130 
140 

REM IF" THE C0MPUTER GETS THR0UGH HERE• THE 
REM VALUE 0F" X IS A ZER0 0F" THE rUNCTl0N 
PRINT XJ 
REM TURN THE SWITCH 0N - WE HAVE A ZER0 
LET K= I 
NEXT X 
Ir K=t THEN 20 t 50 

160 
165 
170 
160 
190 
200 
210 
RUN 
INTZER 

2 

PRINT "N0NE r0UND"J 
G0T0 20 
DATA 1.-2.-11,12 
DA 1' A I , I • - 5, - 2 
DATA J,-2,3,-4 
DATA 2,-3,-10, 3 
END 

-2 -11 12 

-s -2 

-2 3 -4 

-3 -10 3 

0UT 0F" DATA IN LINE 30 

INTEGRAL ZER0CS>: -3 

INTEGRAL ZER0CS>1 2 

INTEGRAL ZER0<S>1 N0NE r0UND 

INTEGRAL ZER0<S>: 3 
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Start 

Turn switch 
off 

LET K = 0 

Open X loop 
to search for 

factors of 
P[l] 

Close X 
loop 

Turn switch 
on 

LET K = 1 

Fig. 11-1. Flowcha1t for finding integral zeros of polynomial 

and add them. But then we have la1 ge 11umbc1 s of leading zeros to worry 
about. All of these complications may be eliminated by using a subrnutine to 
define a function instead of a DEF statement NotiC'e that evaluating an 
Nth-degree polynomial is equivalent to summing up N + l terms which look 
like AiXi where i goes from N to 0. If you have 0 subscripts, this is perfect. 
For those of us without 0 subscripts, we must use a term similar to 
P[I] 0 X 00 (I - 1), whe1e the value of I goes from N to 1 for N equal to one 
TTil11-P th:in thP r]p~rPP nf thP rnlynmni:i] 

We may now define a polynomial function in a five-line subrnutine for any 
degree with no f urthe1 complications and no l uss over leading zeros and such: 

500 LET P 
510 F0H I 

0 
N T0 1 STEP -1 



520 LET P = P + P[I] 0 X 0 0 (I - 1) 
530 NEXT I 
540 RETURN 
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Let us insert G0SUB 500 after line 100 in INTZER, insert line 23 READ N, 
where N is the number of terms in the polynomial, and change line 25 to 
read F0R S = N T0 I STEP -1. See IZER01. 

This program will handle up to ninth-degree polynomials. (Tenth, if you 
have 0 subscripts.) If we want to work with polynomials of greater degree, 
all we need is a DIM statement to specify a longer list for P. 

SUMMARY 

We have seen that by combining the Remainder theorem, the Factor 
theorem, and the fact that the product of all zeros multiplied by (-1)\ where 
N is the degree of the polynomial, gives the constant term, we are able to 
find all integral zeros. We simply test all integral factors of the constant term 
to see if the remainder is 0. If the remainder is 0, then we have a zero of the 
polynomial. If it is not 0, then we do not have a zero of the polynomial. We 
have two alternative methods of evaluating a polynomial for a specified value 
of X: one is to use a DEF statement, and the other is to write a subroutine to 
sum up terms. 

PROBLEMS FOR SEC. 11-2 

1) For each of the polynomials to follow: (a) find an integral zero, (b) use syn
thetic divbion to find the resulting factor after dividing by (X - Z), and (c) search 
for zeros of the depressed polynomial. Repeat until all integral zeros are found and 
then print the remaining polynomial. 

10X3 - 11x2 - 76X + 32 

6XR - 32X7 - 23X6 - 3XG - 12X4 - 36X:l - X~ +BX - 12 

8XG - 18X4 - sxa - 32X~ + 2X + 3 

2X4 + 5X3 - 31X2 - 21X + 45 

2) Generate random intcp;crs in sets of three. Have th(' computer print the poly
nomial having those three integers as zeros I3c smc to get some n('gative integers. 

3) Do problem 2) for sets of four integers. 
4) In IZEH¢>1 have the computer determine if P(XJ is within two units of 0 for 

each factor of the constant term. 
5) Prepare a table of ordered pairs (X, P<XJ) such as would be appropriate for 

plotting points. Sketch a graph on graph pap('r. How would you estimate non
intcgrnl zeros? 

11-3 HEAL ZEROS 

It can be shown that for a polynomial, if P 1x 11 > 0 and P 1 x~ 1 < 0, then 
there is a value of X between X1 and X~ such that P ( x 1 = 0. This is called the 
Location Principle. In graphical terms, the Location Principle may be stated as 
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IZER0 l 

20 PRINT 
22 PRINT 
23 READ N 
2S F'0R S=N T0 I STEP -I 
30 READ PCSJ 
40 PRINT PC SH 
SO NEXT S 
SS PRINT 
60 PRINT "INTEGRAL ZER0C S> 1 "J 
68 REM TURN SWITCH 0F'F' 
70 1..ET K=O 
78 REM STUDY 1..INE 80 CAREF'LLI.. Y ! 
80 F'0R X=-PCIJ T0 PCIJ STEP SGNCP[IJ> 
88 REM L.INE 90 PREVENTS AN ERR0R MESSAGE CAUSED BY 
89 REM DIVIDING BY ZER0 
90 IF' X=O THEN l 40 
98 REM IS X A F'ACT0R 0r PCIJ? 
100 IF' PCll/X <> INTCPCIJ/X) THEN 140 
IOS G0SUB SOO 
108 REM IS THE REMAINDER ZER0? 
110 IF' P < > 0 THEN l 40 
118 REM IF' THE C0MPUTER GETS THR0UGH HERE, THE 
119 REM VALUE 0F' XIS A ZER0 0F' THE F'UNCTI0N 
120 PRINT XJ 
128 REM TURN THE SWITCH 0N - WE HAVE A ZER0 
130 1..ET K=l 
140 NEXT X 
lSO IF' K=I THEN 20 
160 PRINT "N0NE F'0UNO"J 
16S G0T0 20 
170 DATA 4,1,-2,-11.12 
180 DATA 4, 1, 1,-s,-2 
190 DATA 4, 1,-2,3,-4 
200 DATA s.2.-1.-11.11.-2 
210 DATA 1,2,-S,-6,9,9,-39,36 
490 REM SUBR0UTINE SOO THR0UGH S40 TAKES THE Pl.ACE 0r A 
491 REM DEF' STATEMENT ANO EVALUATES A P01..YN0MIAI.. 0F' 
492 REM 0r DEGREE N-1· 
SOO LET P=O 
SIO F'0R l=N T0 I STEP -I 
S20 1..ET P=P+PCil•XtCI-1> 
S30 NEXT I 
S40 RETURN 
999 ENO 
RUN 
IZE:R0 I 

I -2 -11 12 
INTE:GRAI.. ZER0CS>1 -3 

I l -s -2 
INTE:GRAL ZER0CS>& 2 

I -2 3 -4 
INTEGRAL. ZER0CS>I N0NE F'0UND 

2 ·I -11 II -2 
INTEGRAL ZE:R0 < S)I 2 

2 -s -6 9 9 
INTE:GRAL ZE:R0 C S>i 3 

0UT 0F' DATA lfll 1..INE: 23 

4 

-39 36 
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follows: If point (X1, P<Xil) and point (X2, Pcx
2

J) are on opposite sides of the 
X-axis, then the graph must cross the X-axis between (X1, 0) and (X2, 0). 

We may now search for real zeros by finding intervals in which the graph 
crosses the X-axis. In order to find out if the value of the function is positive 
for one value of X and negative for another, we may simply test the product. 
If the product is negative, they are of opposite sign. If the product is positive, 
then they are of the same sign and we are not concerned with those values of 
X. Since we anticipate more than one zero, let us make a provision for putting 
the information in a list. For that, we need a counter. It seems reasonable to 
list the left number of the interval. As long as we know the increment, we 
should be able to see the right number of the interval. It is usual to start 
looking for real zeros in an increment of one unit. Let us prepare a flowchart 
for this problem and call the program REAL. See Fig. 11-2. 

Thus, we have found that the three zeros of 12Xa - 64X2 + l 7X + 195 fall 
in the three intervals -2 to -1, 2 to 3, an<l 3 to 4. That is fine to know, but 
we generally prefer more precision than that So, we should try to improve on 

Start 

Define 
function 
FNT(X) 

F¢RX = -5 
T¢5 

NEXT X 

END 

Set counter 
at O 

LET A= 0 

LET S1 = FNT(X) 
LET S2 = FNT(X+1) 

LETA=A+1 
LET S(A) = S1 

Fig. 11-2 Flowchart for searching for 
real zeros in program REAL 
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REAL 

50 DEF FNTCX>=t2•Xt3-64*Xt2+17•X+l95 

60 LET A=O 
70 F0R X=-5 T0 5 
so LET st=FNTcx> 
90 LET S2=FNTCX+I) 
100 IF' St•S2>0 THEN 130 
110 LET A=A+I 
120 LET SCAl=X 
130 NEXT X 
190 PRINT "lNTERVALCS> BEGIN AT:" 
200 r0R I=I T0 A 
210 PRINT SClll 
220 NEXT 
270 END 
RUN 
REAL 

INTERVALCS> BEGIN AT: 
-2 2 3 
00NE 

REAL to get smaller intervals. There are several very satisfactory procedures 

one might try. Let us develop a program that permits us to make decisions 

about what to try for the limits and the increment of the search. That calls 

for INPUT statements. We can change line 70 to 70 F0R X = F T0 L STEP 

S and INPUT F, L, S for First, Last, and Step. We may also use S = 0 as a 

flag to terminate the RUN. After we get the computer to search for a change 

of sign in a particular interval, we want it to come back and permit us to 

either look for more precision in that same interval or to search in a different 

interval. We should also provide for the situation where there has been no 

change in sign. This will happen for one of several reasons. Either the search 

is not including the zeros within its limits, or the increment is large enough 

that two zeros are included in one interval, or there might be no real zeros. 

We will discuss this in Sec. 11-4. We can determine that no change of sign 

has been found by testing the value of A after line 130. If A is still 0, then 

there were no changes of sign and we should print a message to that effect. 

We make the above changes and call the program REALI. 

REALI 

10 PRINT "SEARCH F'0R REAL ZER0S 0F' A P0LYN0MIAL" 

20 PRINT "START, END. INCREMENT"J 

30 INPUT F'•L• S 
40 IF' S=O THEN 270 
50 DEF FNTCX>=t2•Xt3-64*Xt2+17*X+l95 

60 LET A=O 
70 r0R X=r T0 L STEP S 

90 LET S2=rNTCX+S> 
100 Ir S1*S2>0 THEN 130 
110 LET A=A+I 
120 LET SCAl=X 
130 NEXT X 
140 Ir A>O THEN 190 
150 PRINT "N0 INTERVALS r0UND **** TRY AGAIN " 
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160 
170 
160 
190 
200 
210 
220 
230 
240 
250 
260 
270 
HUN 
REAL I 

PRINT "WI TH El THER 
PRINT 

GREATER LIMITS 0R SMALLER INCREMENT" 

G0T0 20 
PRINT "INTERVAL<S> 
F'0R I= I T0 A 
PRINT SC I lJ 
NEXT I 
PRINT 
PRINT 
PRINT "N0W "J 
G0T0 20 
END 

BEGIN AT:" 

SEARCH F'0R REAL ZER0S 0F' A P0LYN0MIAL 
START. END. INCREMENT?-5.5. I 
INTERVAL<S> BEGIN AT: 
-2 2 3 

N0W START. END. INCREMENT?-3,-2, .1 
N0 INTERVALS F'0lJ'ID **** TRY AGAIN 
WITH EITHER GREATER LIMITS '0R SMALLER INCREMENT 

START. END. INCREMENT?-2.-1 • .i 
INTERVAL<S> BEGIN AT: 
-1. 5 

N0W START. END. INCREMENT?-1·5.-1.4 .. 0I 
INTERVAL<S> BEGIN AT: 
-1.45 

N0W START, END. INCREMENT?2,3,.1 
INTERVAL<S> BEGIN AT: 
2.s 

N0W START. END, INCREMENT?t.2.0 

D0NE 

Since we are using INPUT often in this program, we should pick limits and 
increments carefully. We should also be prepared to make up our mind quickly. 
Some of the things we should not try are -50 to 50 STEP .01, or 50 to -50 
STEP 1. A little care should avoid such blunders. 

Let us define a new function and obtain another RUN. 

50 DEF' F'NT<X>=Xt3+49.16b9*X•2+2.67761*X-15223·B 
RUN 
REAL2 

SEARCH F'0R REAL ZER0S 0F' A P0LYN0MIAL 
START. END• INCREMENT?-10, 10, I 
N0 INTERVALS F'0LND **** TRY AGAIN 
WITH EITHER GREATER LIMITS 0R SMALLER INCREMENT 

START, END, INCREMENT?-100.100,5 
INTERVAL<S> BEGIN AT: 
-40 -30 15 

N0W START. END. INCREMENT?-40,-35,.) 
INTERVAL< S> BEGIN AT: 
-39.3 
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N0W START• END• INCREMENT?-39,3,-39.2,.01 
INTERVALCS> BEGIN AT: 
-39.22 

N0W START• END. INCREMENT?IS1201ol 
INTERVAL CS> BEGIN AT: 
1s.3 

N0W START. END. INCREMENT?IS.J.!S.4 .. 01 
INTERVALCS> BEGIN AT: 

1 s. 33 

N0~J START. END, INCREMENT?O, Q, 0 

OONE 

One of the contingencies that we have not accounted for in REALl is the 
possibility that the polynomial has integral zeros. As the program stands, if Sl 
or S2 equals 0, then the value of X used for Sl will be identified as the 
number at the beginning of the interval in which a real zero will be found. 
It will be left as an exercise to identify a zero more explicitly if Sl or S2 
does equal 0. 

SUMMARY 

We have used the Location Principle to find intervals within which real 
zeros are expected to occur. It should be noted that the Location Principle 
may be applied to any continuous function and is not limited to polynomial 
functions. 

PROBLEMS FOR SEC. 11-3 

1) Modify REALI so that if the value picked for X in line 70 gives either Sl 
or S2 equal to 0, we get a message and the value of the zero printed. 

2) In program REALI, after the computer has found the initial intervals for all 
real zeros, we do not want the computer to search the entire intervals specified in 
subsequent searches in the X-loop. vVe want the computer to print immediately 
after finding the change in sign without searching the rest of the interval. Incorporate 
this into the program. 

3) Modify REALI to read data for more than one polynomial. You may use 
some dummy value for S in line 30 as a signal to read the next set of data. 
j 4) Write a program to search for real zeros by first finding the unit intervals and 
then using linear interpolation uutil FNT(X) is within 1()-4 of zero. You may want 
to specify less or greater precision. 

11-4 COMPLEX ZEROS 

The simplest real polynomial for which we may find complex zerns is the 
second-degree polynomial A~X'.!+ A 1X + A0 . vVe may use the general quad
ratic formula 

X = -A1 ± yA 1'.! 4A'.!Ao 
2A2 

( 11-3) 



Letting the radicand equal D we get 

D = A1
2 -4A2Ao 
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D is called the discriminant of the quadratic expression. We can see that if D 
is negative, the zeros are nonreal. We can rewrite Eq. ( 11-3) as 

-Ai VD 
X=u-± 2A 

2 2 

and finally, considering X as being associated with two numbers A and B, we let 

and 

If D is greater than or equal to 0, the real zeros are 

Xl =A+ B and X2=A-B (11-4) 

But if D is less than 0, we get the nonreal zeros 

Xl =(A, B) and X2 =(A, -B) (11-5) 

So, in our computer program we compute D, A, and B. Then we test D. If 
D is negative, we print as in Eq. (11-5) and if D is not negative, we print as 
in Eq. (11-4). See Fig. 11-3 for the flowchart. We call the program C0MP-l. 

It turns out that there is no convenient general procedure for finding non
real zeros for polynomials of higher degree than two. But for any polynomial 
that has exactly two nonreal zeros, we may find the real zeros first, then for 
each real zero Z we may divide out the corresponding X - Z using synthetic 
division and if after all division is carried out the result is a second-degree 
polynomial, we may apply the technique of program C0MP-l. We demon
strate this procedure by an elementary example: Find all zeros of the following 
polynomials, given that each has at least one integral zero: 

X3 + 2X2 -X- 2 
X3 - X2 - 48 
X3 -l 
X3 +1 
X3 -X2 + X-1 
6X3 - 77x2 - 189X - 90 

This is of course a special case, but it should help us develop a more gen
eral approach. Since we have a thii cl-degree polynomial with one integral 
zero, we may take program INTZER to find the integral zero Z and then use 
program SYNDIV to divide the given polynomial by X - Z. The polynomial 
we get is called a depressed polynomial. We know that in this problem each 
depressed polynomial will be a second-degree polynomial. So we may then 
use program C0MP-1. In each of these earlier programs the polynomials were 
all represented with the same variable P list. So all that will have to be 
changed is the various READ statements and the variable in which the integral 
zero in INTZER is called X, while in SYNDIV the corresponding number was 
stored in R. Thus the need for line 170 in program ALLZER. We also changed 
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Start 

Fig. 11-.3. Flowchart for finding real 
and nonreal zeros of second-degree 

polynomials 

END LET F = 2•P[3] 

LET A= - P[2]/F 

PRINT 
nonreal 

(A,B), (A,-B) 

C0MP- l 

10 PRINT 
20 READ PC3J,PC2J,PCIJ 
30 IF PC3l=O THEN 170 
40 PRINT PC3JJPC2JJPCIJ 

LET B = SQR 
(ABS(D))/F 

SO LET D=PC2l•2-4•PC3l•PCll 
60 LET F=2•PC3l 
70 LET A=-PC2l/F 
80 LET B=SQRCABSCD>>IF 
90 IF D<O THEN 130 
100 PRINT "REAL ZER0SI" 
110 PRINT A+BJ"AND "JA-8 
120 G0T0 10 
130 PRINT "N0N-REAL ZER0S:" 

PRINT 
real 

A+B,A-B 

140 PRINT .. C"JAJ","JBJ") AND C"JAJ","J-BJ">" 
150 G0T0 10 
160 DA TA 1, 2. 3, I 1 - 3, 2, 1, 3, 2, 1, 3, I 3, - 1, 2, - 3, I• 3, 12, o, Q, 0 
I 70 END 



HUN 
C0MP-l 

1 2 3 
N0N-REAL ZEr10S: 
C-1 • 1·41421 

1 -3 2 
REAL ZER0S: 

2 ANO 

1 3 2 
REAL lER0S: 
-1 AND -2 

1 3 13 
N0N-REAL ZER0S: 

> AND C-1 , - 1 • 41 421 

C - 1 • 5 , 3 • 2 78 72 ) AND c-1.s 

-1 2 • 3 
N0N-REAL ZER0S: 
C 1 ·-1.41421 > AND C 1 , 1. 41 421 

I 3 12 
N0N-REAL ZER0S: 
c-1. s • 3-1225 ) AND c-1.s 

D0NE 

ALLZER 
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• -3· 278 72 

·-3·1225 

8 REM INTZER BEGINS HERE C WE HAVE REM0VED THE REM STATEMENTS> 9 REM SEE THE PR0GRAM r0R REM STATEMENTS 
10 DEr rNPCX>=PC4J*X•3+PC3l*X•2+PC2l*X+PCll 
20 PRINT 
30 PRINT 
40 r0R S=4 T0 1 STEP -I 
50 READ PCSJ 
60 Ir PCSJ=.0101 THEN 430 
70 PRINT PC SlJ 
80 NEXT S 
90 PRINT "INTEGRAL ZER0: "J 
100 r0R X=-PClJ T0 PCll STEP SGNCPCll> 
110 Ir X=O THEN 160 
120 Ir PCll/X <> INTCPCll/X> THEN 160 
130 Ir rNPCX> <> 0 THEN 160 
140 PRINT X 
150 G0T0 I 70 
160 NEXT X 
164 REM INTZER ENDS HERE *** SYNDIV BEGINS HERE 
1 70 LET R=X 
180 PRINT "SYNTHETIC DIVISl0N BY X -"JRJ"YIELDS:" 
190 PRINT PC 4JJ 
200 r0R X=3 T0 1 STEP ·I 
210 LET PCXl=PCXl+PCX+ll*R 
220 Ir X>l THEN 240 
230 PRINT "REMAINDER ="J 
240 PRINT PtX]J 
250 NEXT X 
252 REM SYNOIV ENDS HERE 
258 REM HERE WE M0VE EACH ENTRY IN THE P LIST 
259 REM T0 THE L0CAT!0N 0NE SUBSCRIPT L0WER 
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260 F"0R X= 1 T0 3 
270 LET P[Xl=P[X•ll 
280 NEXT X 
290 PRINT 
298 REM C0MP-1 BEGINS HERE 
300 LET D=PC2Jt2-4•Pt3l•PC1l 
310 LET F"=2•PC3l 
320 LET A=-Pt2J/F" 
330 LET B=SQRCABS<D>>IF 
340 IF D<O THEN 380 
350 PRINT "REAL ZER0S:" 
360 PRINT A+BJ "AND "J A-B 
370 G0T0 20 
380 PRINT '~0N-REAL ZER0S1" 
390 PRINT "C"JAJ"11'°JBJ"> ANO C"JAJ"1"J-8J">" 
400 G0T0 20 
405 DATA 112,-1,-2 
410 DATA l1-l101-48.110.01-l. l101011.1.-1.11-l 
415 DATA 61-771-1891-90 
420 DATA ·0101 
430 END 

RUN 
ALLZER 

1 2 -I -2 INTEGRAL ZER0: 
SYNTHETIC DIVISI0N BY X - I YIELDS: 

I 3 2 REMAINDER = 0 
REAL ZER0S: 
-I AND -2 

I - I 0 -46 INTEGRAL ZER0: 4 
SYNTHETIC DIVISI0N BY x - 4 YIELDS: 

1 3 12 REMAINDER = 0 
N0N-REAL ZER0S: 
c-1. 5 . 3.1225 AND c-1.5 .-3.1225 

I 0 0 -1 INTEGRAL ZER0: 
SYNTHETIC DIVISI0N BY x - I YI ELDSI 

I I I REMAINDER = 0 
N0N-REAL ZER0S: 
<-·5 . 0666025 AND (-. 5 .-.666025 

I 0 0 INTEGRAL Z£R0: - I 
SYNTHETIC DI VI SI0N BY x --1 YIELDS: 

I - I I REMAINDER = 0 
Ni2JN-REAL ZER0S: 
( • 5 . o666D25 AND ( • 5 1-.866025 

I -I ·I INTEGRAL ZER0: 
SYNTHETIC DIVISI0N BY X - I YIELDS: 

I 0 I REMAINDER = 0 
N0N-REAL ZER0S: 
< 0 , I >AND< 0 1-I 

6 -77 -189 -90 INTEGRAL ZER0: 15 
SYNTHETIC DIVISI0N BY X - 15 YIELDS: 

6 13 6 REMAINDER = 0 
REAL ZER0S: 
-.666667 AND -1.5 

00NE 
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the way in which the quotient was stored in SYNDIV. It turns out that the 
quotient polynomial can be stored right back in the P list instead of creating 
the new Q list. This is done in line 210 of ALLZER. Then in order to avoid 
changing the subscripts in C0MP-l it seems reasonable to simply take the 
quotient polynomial, which also stores the remainder in the lowest subscripted 
location, and move every entry into the location one subscript lower. Instead 
of having the quotient polynomial in P[4], P[3], and P[2], we are putting the 
quotient polynomial in P[3], P[2], and P[l], which exactly fits program 
C0MP-l. This is done in lines 260, 270, and 280. 

As always, some interesting problems have been left for you to solve. For 
instance, suppose we have third-degree polynomials with two nonreal zeros 
and a real zero that is not an integer, or what about higher degree poly
nomials? These considerations are left as exercises in the problems set for 
Sec. 11-4. 

Descartes' Rule of Signs 

We may define the variation in a sequence of numbers as the number of 
changes in sign found by comparing successive pairs of adjacent numbers. 
For example, for the sequence 1, 3, 4, -8, 2, the value of V is 2. There is no 
change for 1 to 3 or 3 to 4. There is one change for 4 to -8 and for -8 to 2. 
If zeros appear in the sequence, we drop them. The sequence -2, 8, 0, 5, -3, 
6 becomes -2, 8, 5, -3, 6 in order to determine the number of variations 
which is 3. 

Descartes' Rule of Signs says that for 

ANXN + AN_ 1XN-l + · · · + A1X + A0 

the number of positive zeros depends on the number of variations in the 
sequence 

AN, AN_ 1, ..• , Al> A0 

in the following manner. If V is the number of variations, then the number 
of positive zeros is either V or V - 2 or V - 4, etc., but not less than 0. This 
may be written V - 21, where I is a positive integer. 

It turns out that we may find a corresponding number for negative zeros 
by finding positive zeros for P < -x). Substituting -X for X will change the 
sign of all terms which have an odd exponent on X. So if Pcxl = -4X5 
- 3X4 + 5X3 - 2X2 + X - 3, the value of V is 4 and there must be 4 or 2 or 0 
positive zeros. Now we find P < -X) = +4XG - 3X4 - 5X3 - 2x2 - X - 3, 
and V is L So there must be exactly one negative zero. 

This is something we can get the computer to do for us. We may read the 
coefficients into the first row of a P array and change the sign of the coefficients 
of the terms with odd exponents on X and put the new coefficient list in the 
second row of the P array. Then we may look for changes in sign and provide 
two counters: one for the first row keeping track of changes of sign for the 
positive zeros, and the other for the second row counting sign changes for the 
negative zeros. These are Vl for the positive zeros and V2 for the negative 
zeros in program DESCRT. 
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DES CRT 

10 READ N 
15 IF N=O THEN 999 
20 F0R X=N T0 I STEP ·1 
30 READ PCl.Xl 
40 PRINT PCl.XlJ 
48 REM ENTER THE SAME C0EFF'ICIENT IN THE SAME C0LUMN 
49 REM 0r THE SEC0ND R0W 
50 LET PC2.Xl=PCl,Xl 
58 REM Ir THE EXP0NENT 0N X IS 0DD THEN CHANGE THE SIGN 
60 Ir CX+l>l2=INTCCX+l>l2> THEN 80 
70 LET PC2,Xl=-PC2,Xl 
80 NEXT X 
90 PRINT 
100 PRINT N- IJ "C0MPLEX ZER0S" 
200 LET Vl=V2=0 
210 r0R X=N-1 T0 1 STEP -1 
218 REM L00K AT P0SITIVE ZER0S 
220 Ir PCl.Xl•PCl,X+ll>O THEN 240 
230 LET Vl=Vl+l 
238 REM L00K AT NEGATIVE ZER0S 
240 IF PC2,Xl•PC2,X+ll>O THEN 260 
250 LET V2=V2+1 
260 NEXT X 
300 PRINT VIJ"MAX P0SITIVE" 
310 PRINT V2J "MAX NEGATIVE" 
320 PRINT 
340 G0T0 10 
500 DATA 4.6.103.201.90 
510 DATA 5, 1,3,4,.3,2 
520 DATA 6, - 4, - 3, 5, -2, 1, - 3 
600 DATA 0 
999 END 
RUN 
DES CRT 

6 103 201 90 
3 C0MPLEX ZER0S 
0 MAX P0SI TI VE 
3 MAX NEGATIVE 

3 4 -8 2 
4 C0MPLEX ZER0S 
2 MAX P0Sl Tl VE 
2 MAX NEGATIVE 

-4 -3 5 -2 
5 C0MPLEX ZER0S 
4 MAX P0 SI Tl VE 

MA
0

X NE GA TI VE 

D0NE 

-3 

You might reasonably ask, just what have we done that could not be done 

quicker bv hand. Well, maybe not much, but look at 6 103 201 90 

in DESCRT. If we run these coefficients through INTZER, the computer tests 

P[I]/X 180 times (from -90 to 90 skipping 0). We may now use DESCRT 

and change the limits on the test loop in INTZER to test no positive values 

of X. So the computer will now test a maximum of 90 values of X. V\Te could 

take this one step further and use the fact that the maximum number of 
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negative zeros is three to transfer out of the loop after the third value is found 
if they all are integ!al. 

There is more to Descartes' Rule of Signs than appears in program DESCRT. 
The rule states that zero coefficients are to be dropped. DESCRT does not 
provide for that. You will find that when zero mefficieuts appear, we may 
consider polynomials such as 

P!Xl = 3X4 + 2X:1 - 5X:! - 7 

Vl for positive zeros gives us l. The eoefficients fo1 P!-Xl are 3, -2, -5, -7, 
and V2 is l. Since there are no 0 zeros, there are a total of two real zeros. 
Since there are 4 eomplex zeros, we find that there are two nonreal zeros 
for p (X)" 

SUMMARY 

Once again we have used polynomial coefficients stored in a computer list. 
This time we find all zeros whenever no more thau two zeros are nonintegral. 
In addition, we have used Descartes' Rule of Signs to obtain the possible 
numbers of positive and negative zeros and outlined a procedure for deter
mining the possible numbers of nonreal zeros. 

PROBLEMS FOR SEC. 11-4 

1) Modify DESCRT to permit zero coefficients. Read all coefficients into a P list 
and then eliminate the zero coefficients as you enter them into a two-row array. 

2) Modify ALLZER to handle polynomials of degree greater than three which 
have for degree D at least D - 2 integral zeros. 
j 3) Write a program to generate polynomials of random degree D which are 
guaranteed to have exactly D - 2 integral zeros and two nonreal zeros. 

4) Proiect: Modify your program in problem 2) to handle D - 2 real zeros using 
linear interpolation until P<Xl is within .001 of 0. (You may want to change the 
tolerance.) 

5) Pro;ect: Use DESCRT to modify ALLZER to reduce the number of tests for 
polynomials similar to 6Xa + l03X:! + 201X + 90. 



CHAPTER 12 

MAT Instructions in BASIC 

12-1 INTRODUCTION TO MAT INSTRUCTIONS 

MAT instructions are BASIC statements which allow us to manipulate 

entire arrays in the computer without being required to do it entry by entry. 

This capability will enable us to write shorter programs, using arrays, than we 

have been able to write thus far. 
We have had to assign values of array entries one at a time. We have been 

putting LET A[I, J] = or READ A[I, J] in a nested loop for assignment and 

then in order to print the array, we have been putting PRINT A[I, J]; in 

another nested loop. In order to print out a 3 by 4 array consisting of -l's, we 

MAT-I 

8 REM LINES 10 T0 50 'ASSIGN VALUES 
10 f"0R R=I T0 3 
20 F0R C=l T0 4 
30 LET A[R,Cl=-1 
40 NEXT C 
50 NEXT R 
98 REM LINES 100 T0 160 PRINT THE ARRAY 

100 F0R R=I T0 3 
I I 0 F0R C= 1 T0 4 
120 PRINT AtR.ClJ 
130 NEXT C 
I 40 PRINT 
150 PRINT 
160 NEXT R 
200 END 
RUN 
MAT-I 

-1 - I - I - I 

- I ·I - I - I 

-I - I - I - I 

OONE 

.176 
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DIM AC 3, 41 
MAT READ A 
MAT PRINT AJ 
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10 
20 
30 
40 DATA -1,-i.-1,-1,-1,-1, -1, -1, -1, -1,-1,-1 
50 END 
RUN 
MAT-2 

- I - I 

- I - I 

- I - I 

OONE 

- I - I 

- I - I 

- I - I 

would proceed as in MAT-1, using programming statements and techniques 
with which we are familiar. MAT-1 c~rtainly does what we said we would do. 

But consider MAT-2, which is a five-line program that does what required 13 
lines to do in MAT-1. In MAT-2, line 10 instructs the computer to set up a 
3 by 4 array. Then line 20 reads the data into the array named and dimen
sioned in line 10. (Some of you who had 0 subscripts will find that as soon 
as you specify a MAT instruction for a particular variable you also lose 0 
subscripts for that variable. Others will find the situation unchanged. This 
depends on the system.) Note in line 20 a semicolon appears after the array A. 
Used in this way we are specifying semicolon spacing. To get comma spacing, 
we may place a comma there or leave it blank. If we wish to specify printing 
for several arrays in one print instruction, we may do so as follows: 

XXX MAT PRINT A, B; C 

In this case A and C will be printed with comma spacing, and B will be 
printed with semicolon spacing. 

In MAT-2 it may not be clear just how the computer takes the numbers in 
the data line and enters them in the array locations. MAT-3 is intended to 
show what numbers are entered where in the array. 

MAT-3 

10 
20 
30 

AC 3, 51 
READ A 
PRINT AJ 

40 

DIM 
MAT 
MAT 
DATA 
END 

1.2. 3, 4, 5, 6. 1.a.9, 10.11. 12. 13.14, 15 
50 
RUN 
MAT-3 

6 

11 

D0NE 

2 

7 

12 

3 4 5 

8 9 10 

13 14 15 
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It should be clear now that MAT READ enters numbers just as we read 
across the printed page. It reads and enters across until it runs out of space 
in the row and then reads the next data item into the first location of the next 
row. This is the method we have been using in all array programs throughout 
this text. 

It was stated earlier that a list is just a special array consisting of a single 
column or a single row, depending on the computer. Now we will look at 
arrays of just one column or just one row. See MAT-4 and MAT-5. 

MAT-4 

10 
20 
30 
40 

DIM 
MAT 
MAT 
DATA 
ENO 50 

RUN 
MAT-4 

2 

3 

4 

5 

00NE 

AC 5, l l 
READ A 
PRINT A 
I 1 2, 3, 4, 5 

MAT-5 

10 DIM AC 11 SJ 
20 MAT READ A 
30 MAT PRINT AJ 
40 DATA 1. 2, 3, 4, 5 
50 ENO 
RUN 
MAT-5 

2 3 4 5 

00NE 

Some systems may permit you to dimension a list as DIM A[5] and then 
MAT READ A. If this works, then you can determine whether your system 
thinks of a list as a row vector or a column vector, by having it MAT PRINT 
A when A is a list. 

The MAT READ statement has an optional redimensioning capability. 
MAT READ A[R, C] redimensions A to have rows numbered up to R and 
columns numbered up to C and then reads data into that redimensioned array. 
See MAT-6. 

MAT-6 

10 
20 
30 
40 

DIM 
MAT 
MAT 
DATA 

50 ENO 
RUN 
MAT-6 

6 3 

AC616J 
READ AC 21 51 
PRINT AJ 
6, 3, 4, 61 - 1, o, 1 7, 31, 699 • 10 

4 6 -1 

0 I 7 31 699 10 

OONE 
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Some systems permit the use of MAT READ A[R, CJ to perform the initial 
dimensioning within certain limits (usually up to [10, 10]). 

An array of just one column is called a column vector by mathematicians. 
An array of one row is called a row vector. Mathematicians use the term matrix 
to describe all arrays. Thus the term MAT is used in BASIC. 

MAT READ X 
Reads data into the array named X according to previously deter

mined dimensions. 

MAT READ Y[R, CJ 
Dimensions or redimensions an array named Y with R rows and C 

columns and reads data into the array Y. R and C may be explicit 
integers or variables. 

MAT PRINT P; Q, R; 
Prints array P with semicolon spacing, then prints array Q with 

comma spacing, and then prints array R with semicolon spacing. 

Even though you use MAT READ in a program, you are not required to 
use MAT PRINT. You may often want to use nested loops to print an array 
as we have been doing up to this section. You will do this if you do not want 
the blank line between printed rows and if you want to print headings in front 
of each row or if you only want to print a p01 tion of the array. Note too, 
that you may use MAT PRINT even if you have not used MAT READ. This 
will be the case iJ·we analyze data and enter results into an array as we did 
in Chap. 5. 

PROBLEMS FOR SEC. 12-1 

1) Fill an array with the numbers 1, 2, 3, 4, 5, 6, 7, 23, 51, 47, 56, and 234 and 
fill another array of the same dimensions with the numbers 2, -3, 43, 90, 45, 32, 
-89, 65, 43, -96, 0, and 1. Fill a third army of the same dimensions with the sums 
of the numbers in order. The sum array should contain the numbers 3, -1, 46, 94, 
etc. 

2) Use the data of problem 1). Dimension a 3 by 12 array. MAT READ the 
above data into the first two rows and O's into the third row and then replace the 
O's with the sums of the entries in the first two rows column by column. 

3) Fill an array with the multiplication table up to 12 X 12. MAT PHINT the 
result. 

4) Fill a 4 by 3 army with the following numbers: 2, 56, 78, 3, 20, 45, 3, 9, 673, 
564, 90, and 234. Have the computer multiply each number in the array by 3 and 
enter the product to replace the old number. Print the result. 
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5) Use the data of problem 4), but this time multiply each entry by the product 

of the row and column number. MAT PRINT the result. 

6) Fill a 2 by 5 array with the following numbers: 3, 67, 32, 45, 90, 2, 9, 57, -3, 

and 1. Multiply each entry by -3 if the sum of the row and column numbers is odd 

and by --1 if the sum of the row and column numbers is even. Print the result. 

7) Fill a square array so that the locations along the top left to bottom right 

diagonal are filled with l's and all other entries are O's. MAT PRINT the array. 

8) Fill an array with all l's and print it. 
9) Have the computer read the following array: 

1 6 11 

2 7 12 

3 8 13 

4 9 14 

5 10 15 

and have it create the new array: 

l 2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

IO) Fill a 2 by 8 array with all O's and print it. 
11) A company has salesmen on the road four days a week. At the end of each 

week each salesman turns in an expense sheeL Here is a sample expense sheet: 

Mon Tue. Wed Thur. 

Lodging $12.00 $11.00 $10.50 $14 00 

Meals $ 4 00 $ 7.50 $ 6.90 $ 740 

Transportation $ 2 00 0 0 $ 3.50 

Customer 
entertainment 0 $18 . .00 $ 450 $ 450 

Miscellaneous $ 2.31 $ 1 .. 84 $ 3 .. 15 $ 1.83 

Write a program that will find lolal expenses for the week, total expenses for each 

day of the week, and total expenses in each of the five categories listed on the 

expense sheet. 

12-2 SOLVING A PROBLEM 

To get from a certain town to another town one must travel over a toll 

road, through a toll tunnel, and over a toll bridge. At the beginning of the 

trip there is a sign posted, listing the rates as in Table 12-1. 
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TABLE 12-1. 

Tolls per Vehicle 

Road Tunnel Bridge 

Trucks $6.00 $3.00 $2.00 

Buses $5.00 $3.00 $2.00 

Passenger Cars $4.00 $3.00 $2.00 

Motorcycles $3o00 $2.00 $1.00 

On a particular day there were five caravans which traveled this route. The 
caravans consisted of different types of vehicles as shown in Table 12-2. 

TABLE 12-2. 

Vehicles per Caravan 

Trucks Buses Cars Cycles 

Caravan 1 1 3 4 2 

Caravan 2 1 5 3 6 

Caravan 3 2 4 2 5 

Caravan 4 1 6 3 2 

Caravan 5 3 0 2 

The Road Commission would like to have a report which would include the 
amount each caravan paid in tolls at each toll booth. The problem will be 
solved, when we are able to fill in Table 12-3. 

TABLE 12-3. 

Tolls Paid 

Road Tunnel Bridge 

Caravan 1 A B c 
Caravan 2 D E F 

Caravan 3 G H 

Caravan 4 K L 

Caravan 5 M N ¢ 

Before we actually attempt the problem solution, let us write just the por
tion of our program that we will use later, which will read the data into two 
arrays. One array, which we call A, stores the values of Table 12-1, the other 
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array, which we call B, stores the values of Table 12-2. Then let us print the 
two arrays with headings so that we may later concentrate on the actual 
problem solution, having taken care of the mechanics of getting the data into 
the proper arrays. Taken by itself, the task of getting the data into the two 
arrays is reasonably straightforward. See program T0LL-l. 

T0LL- I 

20 DIM A(4,3J,B(S.4l 
40 MAT READ A 
60 DA TA 6, 3, 2• 5, 3, 2• 4, 3, 2, 3, 21 I 
80 PRINT "T0LLS PER VEHICLE" 
100 PRINT "R0AD TLINL BRIDGE" 
120 MAT PRINT Al 
140 MAT r<EAD B 
I 60 DATA I, 3, 4, 21 I• 5, 31 6, 21 4, 2, S. I 1 6, 3, 2, 3, I• o. 2 
180 PRINT "VEHICLES PER CARAVAN" 
200 PRINT "TRUCK BUS CARS M0T0RCYCLES" 
220 MAT PRINT BJ 
240 ENO 
t<UN 
T0LL- I 

T0LLS PER VEHICLE 
r<0AO TUNL BRI OGE 

6 3 2 

s 3 2 

4 3 2 

3 2 

VEHICLES PER CARAVAN 
TRUCK BUS CARS M0T0RCYCLES 

I 3 4 2 

s 3 6 

2 4 2 s 

6 3 2 

3 0 2 

00NE 

\Vriting the program in parts like this will help us isolate any errors that 
we might encounter while writing the program. We may now strike out lines 
80, 100, 120, 180, 200, and 220 as we will not need these values printed again. 

Now to tackle the problem itself. We can find out how much Caravan 1 
paid at the road toll booth. It had one truck which paid $6, three buses at $5 
e::!C::~ fo!· $!5, fo'..!!' <:'l'.!o '.1.t $4 l"'.'r:h fnr *lR, <>nrl two motmf'yf'lP.s >it $~ P.~lf'h 

for $6. Totaling 1 ° 6, 3 ° 5, 4 ° 4, and 2 ° 3 we get $43. So, $43 is the value 
of A in Table 12-3. How much did Caravan 1 pay at the tunnel? It paid 
1 ° 3 for the truck, 3 ° 3 for the buses, 4 ° 3 for the cars, and 2 ° 2 for the 
motorcycles for a total of $28, which is the value of B in Table 12-3. We 
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repeat this process at the bridge substituting 2, 2, 2, and 1 for 3, 3, 3, and 2 
and sum up 1 ° 2, 3 ° 2, 4 ° 2, and 2 ° 1 getting a total of $18 for the value 
of C in Table 12-3. Then we would go to Caravan 2 and step through the 
road tolls, then the tunnel tolls, and finally the bridge tolls. Then on to the 
next caravan until we have gotten results for all the five caravans. This is 
just the kind of repetitive process that we use the computer for. 

We will find it helpful to think of Table 12-3 as an array with C[I, J] as 
the values of the entries rather than A, B, ... , M, N, 0. Calling that array C 
we get C[l, l] =A, C[l, 2] = B, etc. down to C[5, 3] = 0. 

Note that after we step across row 1 in MAT Band down column 1 in MAT 
A, the final sum is entered in row 1 and column 1 of MAT C. When we step 
across row 1 of MAT Band down column 2 of MAT A, the sum is entered in 
row 1 column 2 of MAT C. You should see that stepping across row R of MAT 
B and down column C of MAT A results in a sum that is entered in row R, 
column C of MAT C. Note too, that the row headings of MAT B correspond 
to the row headings of MAT C and the column headings of MAT A cmre
spond to the column headings of MAT C, and that the row headings of i\1AT A 
and the column headings of MAT B coincide. With some experimentation, you 
should be able to convince yourself that this is a natural consequence of the 
problem and not mere coincidence for this particular set of data. If you 
change the number of toll booths, all of the above statements still hold. 

Summarizing, we have just tried to establish that we sum up the following 
products: 

B[R, X] 0 A[X, C] (12-1) 

where R is the row number in MAT B, C is the column number in MAT A, 
and X goes from 1 to the number of columns in l'vlAT B which is the same as 
the number of rows in MAT A. Having found the sum of all products in Eq. 
(12-1) for a fixed [R, C] pair, we enter that sum in C[R, CJ. We do this for all 
rows of MAT B and all columns of MAT A. 

You should run through the calculations by hand with pencil and paper to 
verify the procedure and to become more familiar with it. We draw a flowchart 
in Fig. 12-1 and call the program T0LL-2. 

PROBLEMS FOR SEC. 12-2 

1) Suppose on a particular day there were four caravans. Caravan 1 had one 
truck, Caravan 2 had one bus, Caravan 3 had one car, and Caravan 4 had one 
motorcycle. Have the computer print the amounts that each caravan f>aid at each 
toll booth. 

2) Suppose there were no vehicles on a partin~lar day. 'What would the Road 
Commission report look like? 

3) Suppose there were three caravans, each having one vehicle of each type. 
Print the schedule of payments for this situation. 

4) On a given day there were four caravans. Caravan 1 had one motorcycle, 
Caravan 2 had one car, Caravan 3 had one bus, and Caravan 4 had one tnwk. Have 
the computer print the schedule of payments. 
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Start 

Step through 
Step through 
columns of rows of MAT B 

MATA LET C[R, CJ = 0 
Ft/>R R = 1 T\2'>5 FQ)R C = 1 T\LJ 3 

Step columns in 
Band rows in A 
FOR X = 1 T\2)4 

LET C[R, CJ= 
C[R, CJ + Bll<, XJ 

• A[X, CJ 

NEXT R NEXT C NEXT x 

END 
Fig. 12-1. Flowchart for finding tolls paid 
by caravans at various toll booths for program 

T0LL-2. 

f0LL-2 

20 DIM AC4o3loBC5o4J 
25 DIM CC 51 3l 
40 MAT READ A 
60 DA TA 61 31 21 5, 3, 21 4o 3• 21 31 2o 1 
140 MAT READ B 
160 DATA l • 31 4, 2. I 1 5, 3, 61 2, 4o 2• 5, lo 6• 3, 21 3, l 1 01 2 
235 REM WE STEP THR0UGH R0WS 0F' B THE CARAVANS 
240 F'0R R= 1 T0 5 
255 REM WE STEP THR0UGH C0LUMNS 0F' MAT A 
2 56 REM THE T0L.L 800 TH IDEN Tl F'I CA TI 0N 
260 F'0R C=l T0 3 

1'"11' TT Al T":JI'~ ................................. 
260 LET CCR1Cl=O 
295 REM X STEPS THR0UGH THE R0WS 0F A ANO THE C0LUMillS 0F B 
296 REM THERE WE F'li\10 'TRUC~S BUSES CARS M0T0RCYCLES' 
297 REM IN EACH ARRAY 
300 F'0R X=l T0 4 
320 LET CCR1Cl=CCR1Cl+BCR1Xl•ACX.Cl 
335 REM G0 T0 THE NEXT C0LUMN 0F' B ANO THE NEXT R0W 0F' A 
340 NEXT X 
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3SS 
360 
37S 
380 
soo 

REM G0 T0 l'HE NEXT C0LUMN 0F" MAT A 
NEXT C 
REM G0 T0 THE NEXT R0W 0F" MAT B 
NEXT R 

S20 
999 

PRINT "R0AD"•"TUNNEL"• "BRIDGE" 
MAT PRINT C 
END 

RUN 
T0LL-2 

R0AD 
43 

61 

SS 

S4 

29 

OONE 

5) Let 

A~[: 
10 

2 

5 

8 

11 

TUNNEL BRIDGE 
28 18 

39 24 

34 2·1 

34 22 

16 10 

Ii] and B= [~ 

Perform the operations of this section to get MAT C. 

6) Suppose we let 

A=G 
2 3 :J and B = [10 
6 7 14 

2 3 :] 6 7 

11 12 
15 16 

Why could not we perform the set of operations of program T0LL-2? 

12-3 OPERATIONS AND SPECIAL MATRICES 

13 J 
17 

While the MAT operations have specialized and rigid definitions in matrix 
algebra, we will find at times that some of the MAT capabilities will help us 
in writing prngrams not deeply involved in a matrix algebra setting. It is the 
purpose of this section to list the MAT capabilities, but not to develop the 
matrix algebra to any great extent. For such a treatment, you should see any 
text in advanced algebra. 

Multiplication 

The requirements of the Road Commission report in Sec. 12-2 led us to 
evolve a set of steps that occurs often in both applied and theoretical mathe
matics. The set of steps carried out there exactly fits the definition of matrix 
multiplication. Using the array names of Sec. 12-2, we define the product of 
B and A as the array C, which is written as C B 0 A. 
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From the discussion in Sec. 12-2, we should see that the dimensioning must 
conform as 

B[R, M] 0 A[M, CJ = C[R, C] 

Calling for a product of two nonconfm ming matrices will generate an error 
message from the computer. The program statement for multiplication is 

XXX MAT C B 0 A 

We may now have the computer do everything from lines 240 through 380 
with a single statement Having worked through the operation in considerable 
detail in Sec. 12-2, you should have little difficulty in having the dimensions 
correctly provided for. See T0LL-3. 

T0LL-3 

20 
25 
40 

DIM A[4,3J,BC514l 
DIM C[ 5, 3.1 
MAT READ A 

60 DATA 61 3, 2, 5, 3, 2, 4, 3, 2, 3, 2, I 
140 MAT READ B 
160 
200 
210 
230 
999 
RUN 

DATA 1,3,4,2,1,5,3,6,2,4,2,5, 1,6,3,2,3,1,0,2 
MAT C=B*A 
PRINT "R0AD","TUNNEL"• "BRIDGE" 
MAT PRINT C 
END 

T0LL-3 

R0AD TUNNEL BKIDGE 
43 28 18 

61 39 24 

55 3A 21 

54 34 22 

29 16 10 

D0NE 

Addition and Subtraction 

Some past problems have asked you to add two a1 ravs. For two an ays of 
the same dimensions, the sum is defined as an an av containing the sums of 
corresponding entiies of the given anays. In othe1 words, for all I, J pairs, 
S[l, J] = A[l, J] + B[l, J], where the sum array is S. lvlatrix addition is accom
plished with the program statement 

XXX MATS A+B 
or XXX MAT A = A + B 

may be used if you no longer need l\!AT A. 
Subtraction is defined just as you would expect 

must be an array so that for all I, J pairs, D[I,]] 
gram statement is 

For A - B, the difference 
A[I, J] - B[I, Jl The pro-



XXX MAT D = A - B 
or XXX MAT A = A - B 
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Neither addition nor subtraction is defined for arrays of different dimensions. 

Scalar Multiplication 

You may multiply each element of an array by some constant or algebraic 
expression using 

XXX MAT Z = (SIN(G)) 0 X 

which multiplies every entry in MAT X by SIN(G) and enters the product in 
MATZ. 

Equality 

A matrix may be created to be identical to an already existing matrix by 

XXX MAT P=Q (12-2) 

or, in systems which do not permit Eq. (12-2), you should be able to achieve 
the same result by 

XXX MAT P = (1) 0 Q 

Special MAT's 

The1e are three special matiices available with a single assignment state
ment in BASIC. They are 

xxx MAT A= ZER (12-3A) 
xxx MAT B = ZER[R, C] (12-3B) 
yyy MAT C =C0N (12-4A) 
yyy MAT D = C0N[R, CJ (12-4B) 
zzz MATE= IDN (12-5A) 
zzz MAT F = IDN[N, N] (12-5B) 

Equation (12-3A) sets all entries in MAT A equal to 0 according to previ
ously determined dimensions, while Eq. (12-3B) sets the dimensions of B at 
[R, CJ and fills MAT B with O's. Equation (12-3B) is often used to change the 
dimensions of a matrix during the RUN of a program. 

Equation (12-4A) sets all entries in MAT C equal to 1 according to pre
viously determined dimensions, while Eq. (12-4B) sets the dimensions of MAT 
D at [R, CJ and fills it with l's. 

Equation (12-5A) requires that ivfAT E be a square array, and fills the 
upper left to lower right diagonal with l's and all other locations with O's. 
Equation ( 12-5B) has the same effect as Eq. ( 12-.SA), but the dimensions are 
set at [N, NJ. The matrix c1eated in this form is called an identity matrix. 
Prog1am MATSPl is intended to show how these special arrays are established. 
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MAT SP I 

10 DIM AC2.4J.sc2.121.cc 10.111 
20 
30 

PRINT "MAT A=ZER ** PREVI0USLY DIMENSI0NED AT 2BY4" 
MAT A=ZER 

40 
50 
60 
70 
BO 
90 

MAT PRINT A 
PRINT "MAT B=C0N(3, 71" 
MAT B=C0NC 3, 71 
MAT PRINT BJ 
PRINT "MAT C=IDNC 4, 4]" 
MAT C=IDNC 4, 41 

100 
110 
120 
130 
140 
RUN 
MAT SP I 

MAT PRINT CJ 
PRINT "MAT A=C0NC I• 61" 
MAT A=C0NC I• 61 
MAl PRINT AJ 
END 

MAT A=ZER ** PREVI0USLY DIMENS10NED AT 2BY4 
0 0 0 0 

0 0 0 0 

MAT B=C0NC 3, 7J 
I I 

MAT C=lDNf 4, 41 
I 0 0 0 

0 0 0 

0 0 0 

0 0 0 

MAT A=C0NCl.6J 
I I I 

00NE 

SUMMARY 

We have introduced the matrix operations-multiplication, addition, subtrac
tion, and scalar multiplication, The special matrices ZER, C0N, and IDN have 
been specified. 

PROBLEMS FOR SEC. 12-3 

1) Redo program T¢TAL using a row vector for the numbers of items and a 
column vector for the prices. Obtain the total cost \vith a single MAT statement. 

2) Have the computer iind the product of 

[ 1 

3 -2 -'] [=n 2 -3 1 -3 
and 

-~ 5 -1 11 

-1 -1 
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If we think of the above as 

[ : 3 -2 -'] [fl -3 1 -3 
an<l 

-7 5 -1 11 
3 -1 1 -1 

then we are really finding the values of W + 3X - 2Y - Z, 2W - 3X + Y 3Z, 
-7W + 5X - Y + llZ, an<l 3W - X + Y - Z. 

3) Multiply 

G 
0 n [: 7 

-~] 0 by 5 

0 0 

an<l multiply 

[~ 
0 n G 

6 

~] 0 by 1 

0 0 

Any conclusions about the matrix of O's? 

4) Let 

A=[~ l!] and B= [-12 
3 

28] 
-7 

Find the product A 0 B and the product B 0 A. What do you conclude? 

5) Let 

A=U !] B= [-1 
5 -~J [ 2 c-- 25 

-11] 
31 

Find [A 0 BJ ° C and A 0 [B 0 C]. 

6) Using A, B, and C from problem 5), find A 0 [B + CJ and A 0 B + A ° C. 

7) Multiply 

[i 
2 -n ["' -.24 ·'] -1 by .52 .44 -.2 

-2 .12 .64 -.2 

8) Let 

[-2 A-
- 1.5 ~.5] and B=G !] 

Find A 0 B and B 0 A . 

./ 9) ·write a program to raise a matrix to a power. Let the power be determined 
by an item of data. 

10) Enter the integers 1 through 12 into a row vector and into a column vector, 
using MAT READ. (You can avoid typing the data twice by using REST0RE.) 
Find the 12 by 12 product matrix and print it. 
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12-4 SOLVING SIMULTANEOUS LINEAR EQUATIONS 

You should see that the matrix equation 

( 12-6) 

can be multiplied out on the left-hand side to obtain 

[

A 1X + B 1Y + C1Zl [D11 
A~X + B~ Y + C2Z = D 2 

A:;X + B:1Y + C3ZJ D3 j 
( 12-7) 

Defining equality for two matrices as existing if and only if for all I, J pairs 
the entry of one matrix equals the corresponding entry of the other, or for 

MAT A and MAT B, A[I, J] = B[I, J], we may say that 

A1X + B1Y + C1Z = D 1 

A2X + B2 Y + C2Z = D 2 

A3X + B3Y + C3Z = D 3 

which constitutes a system of three linear equations. 

( 12-8) 

Equations (12-6), (12-7), and (12-8) are simply three different ways of writ
ing the same set of equations. If we can find the values of X, Y, and Z in 
Eq. (12-6), we will have solved the set of linear equations in Eq. (12-8). 

Let us rewrite Eq. (12-6) as 

C 0 S =K 

where 

It would be very convenient if we could just divide both sides by C. But it 
turns out that the division of one 111atrix by allother is not an easily describable 
process. However, we may instead multiply each side by the multiplicative 
inverse of C. \Ve write that as C- 1• Doing that we get 

S = C-1 ° K 

We note he1e without elaboration, the following facts: 

1) In order to have an inverse, a matrix must be square. 
2) Not all matrices have inverses. 
3) The product of a square matrix and its inverse is the identity matrix 

To see more clearly what the inverse of a matrix is, let us find the inverse of 
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We may call its inverse the matrix with entries A, B, C, and D such that 

~] = [~ 
Finding the product on the left, we get 

[
5A + 7ll 
5C+7D 

6A + 8B J = [l 
6C + 8D 0 ~] 

Two matrices are equal if their conesponding entries are equaL So we get 

the following fom equations: 

5A + 7B 1 
5C + 7D 0 

6A +BB= 0 
6C + 8D = 1 

Solving these for A, B, C, and D we get A 

D = -2.5. So 

6]-l- [-4 
8 - 3.5 -~.5 J 

-4, B 3, c 3.5, and 

BASIC prnvides a statement to find the inverse of a square matrix, if it 

exists. After we have arranged for proper dimensioning, we may use 

XXX MAT X INV(A) 

MA TI NV 

10 DIM xc2.21.Ac2.21.Pc2.21 
20 MAT READ A 
30 MAT X=INV<A> 
40 PRINT "0RIGINAL MATRIX" 
50 MAT PRINT AJ 
60 
70 
80 
90 
100 
110 

PRINT "INVERSE MATRIX" 
MAT PRINT XJ 
P1HNT "THE PR0DUCT IS" 
MAT P=X*A 

MAT PRINT Pl 
DA TA 5, 6, 7, 8 

120 END 
RUN 
MAT INV 

0RIGINAL MATtHX 
5 6 

7 8 

INVERSE MATRIX 
-4. J. 

THE PR0DUCT IS 
1 0 

0 

00NE 
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and matrix X will be the inverse of matrix A. We may easily verify our calcu
lations for finding the inverse above. See MA TINY. 

(You are cautioned that the computer may be susceptible to slight errors 
when using the INV( ) statement.) 

So with the MAT INV( ), we should be able to solve sets of simultaneous 
linear equations such as the following: 

4W- X + 2Y + 3Z = - 3 (12-9A) 

- W+4X+ 2Y =-15 (12-9B) 

W + 2X - Y + 3Z = - 3 (12-9C) 

-4W+ 3X+ 2Y + Z= -17 (12-9D) 

We let 

[ 4 

-1 2 

~] -1 4 2 
C= 1 2 -1 

-4 3 2 

where C is usually referred to as the coefficient matrix, and we let 

K= [=':] 
-17 

Now we can read the data into two matrices C and K, have the computer find 
the inverse of C, and multiply it by K to get matrix S consisting of the values 
for W, X, Y, and Z, which satisfy Eq. (12-9). See program S0LVE. 

S0LVE 

10 DIM C[4,4),K[4,IJ,SC4.IJ,I[4,4J 
20 MAT READ C.K 
30 MAT !=INVCC> 
40 MAT S=l*K 
50 Pt<INT "S0LlJTI0NS;" 
60 MAT PRINT S 
70 DATA 4, .. 1, 2, 3, - I• 4, 2, o, 1, 2. - 1, 3, - 4, 3, 2, J, - 3, - I 5, - 3, - I 7 
80 END 
RUN 
S0l. VE 

S0LUTl0NSJ 
1. 

-2 

-3. 

-I 

D0NE 
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The column vector 

is to be interpreted as, W =I, X = -2, Y = -3, and Z = -1. We may now 

substitute these values in Eq. (12-9) to verify that they <lo in fact constitute the 

unique solution. 

SUMMARY 

We have seen that sets of simultaneous linear equations may be solved by 

considering an equivalent matrix equation C 0 X = K, where C is the coeffi
cient matrix, X is a column vector which contains the values of the variables 

in the original set of linear equations, and K is a column vector containing the 

constant terms in the original set of linear equations. We may solve for X by 

finding the inverse of matrix C, so that X = C-1 0 K. The inverse may be found 

with the BASIC statement MAT I= INV(C[. For systems of simultaneous 

linear equations having a unique solution, MAT C will always be square, which 

is one of the requirements for having an inverse. 

PROBLEMS FOR SEC. 12-4 

1) Let 

A= [ : 
-3 

-4 
1 
9 

_;] 
Find and print A -1, A 0 A -1, and A -1 ° A. 

2) Let 

B = [-8 -3] 
0 -1 

Find B-1 and print it Verify by hand-computing the inverse of R Find aml print 

B 0 B-1 and B-1 ° B. 

3) Solve for X and Y: 

-2X- SY= -16 

- X + 4Y = 31 

4) Solve for X, Y, and Z: 

2X- 9Y- 5Z = 2 

7X - 6Y + 5Z = -35 

9X - 6Y + 5Z = -39 
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5) Solve for X, Y, and Z: 

3X+ 4Y + Z = 7 

5X- 6Y + 3Z = B 
3X+4Y+Z =-3 

6) Solve for W, X, Y, and Z: 

6W + 3X + 6Y + SZ = -12 

- 7W + SX - 7Y - Z = 77 

-3W + X + 3Y + 6Z = 31 
-2W - 4X + 4Y - 7Z = -76 

7) Solve for W, X, Y, and Z: 

-3W + 6X - SY - Z = --32 

W + 9X - SY 2Z = 9 

W + 6Y + SZ= 2 

- 7W + 4X - Y + SZ = -B6 

B) Solve for X, Y, and Z: 

2X + 4Y - 3Z = -11.9 
-9X - 3Y = SB.S 

-9X + BY + SZ = 66.6 

9) Solve for V, W, X, Y, and Z: 

7V + 6W - 3X - Y + 9Z = 26.3 

-9V + 2W + 9X + SY + Z = 91.1 
-3V + 4W + SX + SZ= 62.9 

6V - BX - 2Y - 6Z = -S5.6 

-3V - 9W + 5X + 7Y + 3Z = -25.9 

10) Let 

-2 
-1 

3 -n and 

Find and print (A 0 B)-1 and B-1 ° A-1. 

13 

-4 

~] 
-5 2 

j 11) Write a program that can solve sets of simultaneous linear equations having 
different numbers of equations. Have an item of data that is the number of equa
tions and redimension all matrices accordingly. 

12-5 TRANSPOSE OF A MATRIX 

Suppose you have just solved a set of lU simultaneous imear equations. The 
10 values of the 10 unknowns are entered into a column vector that is called 
X in Sec. 12-4. Calling for l\IAT PRINT X prints the 10 values down the page 
with a blank line between every two. This takes up a lot of space. It might 
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be convenient to enter these same values in a row vector and MAT PRINT 
that on one line. What \\le want is to create a new matrix whose row corre
sponds to the column of the matrix X and whose columns correspond to the 
rows of matrix X, i.e., an exchange of rows and columns. Of course we could 
make the exchange element by element or we could do the printing entry by 
entry, but both are unnecessary. BASIC provides a program statement to per
form this set of exchanges. XXX MAT A= TRN(B) fills matrix A so that its 
rows correspond to the columns of B and its columns correspond to the rows of 
B. This set of exchanges creates a matrix called the transpose of B. We write 
the transpose of B as Bt. 

As noted earlier, the transpose will enable us to have more compact print
ing in some programs. The transpose also introduces some matrix properties 
of theoretical interest. Some of these properties may be suggested by the 
exercises. 

TRP0Sl is simply a demonstration program that finds and prints the trans
pose of a IO-element column vector. 

TRP0Sl 

6 REM A IS A C0LUMN VECT0R AND B IS A R0W VECT0R 
10 
20 
30 
40 

DIM At 10• I l • B[I • I 0 l 
MAT READ A 
DATA 1, 2• 3, 4, 5, 6. 7, 6, 9, 10 
MAT B=TRNCA> 

45 
so 

PRINT "TRANSP0SE 0F" C0LUMN VECT0R A" 
MAT PRINT BJ 

60 END 
RUN 
TRP0SI 

TRANSP0SE 0F" C0LUMN VECT0R A 
1 2 3 4 5 

D0NE 

6 7 6 9 10 

The transpose differs from the inverse in that every matrix has a transpose. 
If MAT A has M rows and N columns, then Al has N rows and M columns. 
Let us write a second demonstration program to print a 2 by 4 matrix and its 
transpose. See TRP0S2. 

TRP0S2 

10 DIM A[2,4J,B[4,2J 
20 PRINT "2 BY 4 MATRIX" 
30 MAT READ A 
40 MAT PRINT AJ 
~O MAT B=TRN<A> 
60 PRINT "TRANSP0SE 0F" THE AB0VE MATRIX" 
70 MAT PRINT BJ 
60 DATA 3.6.1.-s.o.1s.999,11 
90 END 
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RUN 
TRP0S2 

2 l:lY 4 MATRIK 
3 6 1 -S 

0 18 999 11 

TRANSP0SE 0r THE AB0VE MATRIK 
3 0 

6 18 

999 

-S II 

OONE 

MAT X = TRN(Y) 
Creates a matrix X so that for all I, J pairs, X[I, J) = Y[J, I]. Dimen

sions must be correctly provided for. X is called the transpose of Y. 

PROBLEMS FOR SEC. 12-5 

1) Let 

A= [ ~ 
-3 

-2 
1 

4 -n 
Find and print At, At+ A, andAt 

2) Let 

A=D 
3 

~] -2 

9 

A. 

Print At, A+ At, A - At, and At - A. 
3) Let 

A=[~ !] 
Let B =At and let C = A-1. Print B-1 and Ct. 

4) Let 

[ 

2 

A= 5 

-3 

-1 

0 

4 

Print [A 0 B]t, Bt 0 At, and At 0 Bt. 

and 
3 

5 
-2 



CHAPTER 13 

Elementary Probability 

13-1 INTRODUCTION 

It is the purpose of this chapter to introduce some fundamental concepts 
of probability and to develop program routines for some of these applications. 

Taking an intuitive approach to probability, we may think of rolling a die. 
The term experiment is used to describe a particular trial, or in the case of 
rolling a die, an experiment is the actual rolling of the die. The outcome is the 
number that comes up. There are six possible outcomes for rolling a die. We 
may say that the probability of the die coming up 2 is one in six or Yri, 
because there is only one 2 and there are six different numbers, each of which 
is equally likely to come up. We refer to the outcome we are looking for as a 
success and all others as failure. We define probability so that the probability 
of success P added to the probability of failure Q is 1, or P + Q = 1. 

Often our requirements for success permit more than one single outcome, 
all of which are equally likely to occur. We define probability as the quotient 
of the number of outcomes that constitute success and the total possible 
number of outcomes: 

P=S/T 

where P is the probability of success, S is the number of outcomes that 
constitute success, and T is the total number of possible outcomes. All out
comes are equally likely to occur. 

So, before we work with probability, we will have to develop ways of 
counting the numbers of outcomes of various kinds of experiments. 

13-2 ENUMERATION 

Fundamental Principle of Enumeration 

The Fundamental Principle of Enumeration states that, if one choice can 
occur in A ways and then a second choice can occur in B ways, the total 
number of ways that the two choices may occur is the product of A and B, 
or A" B. 

197 
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So, if you are going to buy a car tbat comes in five models and seven 
colors, the number of cars you have to choose from is 5 ° 7, or 35. The 
Fundamental Principle of Enumeration may be extended to cover any number 
of choices so that, if in buying the car you also may choose airconditioning 
and whitewalls and you have four engines from which to clioose, the number 
of cars available is 5 ° 7 ° 2 ° 2 ° 4, or 560. 

Permutations 

How many four-letter combinations may be formed using the letters of the 
word FLAG each used once? 

We could approach this problem in one of several ways. We could sit down 
with pencil and paper and try to write them all, or we might write a program 
to write them all. 

The techniques required for this vary so greatly from system to system 
that we wiU not present the program, but only the RUN. 

RUN 
FLAG 

FLAG FLGA FALG FAGL FGLA FGAL 
LFAG LFGA LAFG LAGF LGFA LGAF 
AFLG AFGL ALFG ALGF AGFL AGLF 
GFLA GFAL GLFA GLAF GAFL GALF 

D0111E 

We can easily see that the number of different combinations is 24. Each of 
the combinations listed is a permutation of the four letters F, L, A, and G, and 
each is different from the others because the letters are in a different order. 
In other words, when we talk about permutations, order matters. 

One other approach to solving the original problem will lead us to a more 
general enumeration technique. We observe that to form a four-letter word 
using four different letters once, we may use any one of the four letters for 
the first letter. Now there are only three letters left from which to choose the 
second letter, two left from which to pick the third letter, and finally we have 
exactly one letter for the fourth letter of the new word. Using the Fundamental 
Principle of Enumeration, there are four choices. The first can occur in four 
ways, the second can occur in three ways, the third in two ways, and the 
fourth in one way. This makes 4 ° 3 ° 2 ° 1 or 24, ways that the four choices 
can occur. 

This kind of calculation occurs often in mathematics and so is given a special 
name. 4 ° 3 ° 2 ° 1 is called 4 factorial written as 4! . In general, 

N(N - l)(N - 2) · · · (2)(1) = N! 

where N is a positive integer. Let us write a routine to compute factorials 
(see program N!). 
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N ! 

10 PRINT "FIND THE FACTORIAL OF"J 
20 INPUT N 
30 LET F=I 
40 F0R X=N TO I STEP -I 
50 LET F=F*X 
60 NEXT X 
70 PRINT NJ"FACTORIAL ="lF 
80 END 
RUN 
N ! 

FIND THE FACTORIAL OF?4 
4 FACTORIAL = 24 

DONE 

Of course for larger integers, N! becomes very large. 

RUN 
N ! 

FIND THE FACTORIAL OF?20 
20 FACTORIAL= 2.43290E+l8 

DONE 

Suppose we want to find the number of three-letter words that can be 
formed from the letters of the word COMPUTER without duplication. For 
the first letter we may pick from among eight, for the second we may pick 
from among seven, and for the third we may pick from among the remaining 
six letters. This makes 8 ° 7 ° 6, or 336, different words. Since the order is 
different, these are 336 different permutations. Notice that 

8 ° 7 ° 6 ° 5 ° 4 ° 3 ° 2 ° 1 8! 8! 
8 0 7 0 6 = 5 0 4 0 3 0 2 0 1 = 5f = (8 - 3)! 

We should see that for the number of arrangements of R letters taken from 
among N different letters with no duplications we get N!/(N - R)!. This 
defines the number of permutations of N things taken R at a time written as 

N! 
NPn = (N - R)! (13-1) 

Writing the right side of Eq. (13-1) as the quotient of products, we get 

N(N - l)(N - 2) · (N - R + 1) (N - R)(N - R - 1) · · · (2)(1) 
(N - R)(N - R - 1) · · · (2)(1) 

Dividing we get 

:-iPn = N(N - l) · · (N - R + 1) 

which is ideal for computing with a loop that goes from N to N - R + 1 
STEP -1. See line 40 of p1 ogram NPR. 
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NPR 

10 READ N,R 
20 IF N=O THEN 100 
30 LET P= I 
40 FflR X=N Tel N-R+I STEP -I 
50 LET P=P*X 
60 NEXT X 
70 Pr<INT N; "THINGS"! RI "AT A TIME HAVE"! P; "PE.RMUTATIO"lS" 
80 G0T0 10 
90 DATA a,3,4,4,0,0 
I 00 END 
RUN 
NPR 

8 
4 

D0NE 

THINGS 3 
THINGS 4 

Combinations 

AT A TIME HAVE 336 PEflMIJTATIO,\JS 
AT A TIME HAVE 24 PERMIJTATIO·\JS 

The distinction between combinations and permutations is order. For com
binations, order does not matter. We may think of combinations as selections 
of items while permutations are arrangements. The number of combinations of 
four letters selected from among four letters is one. The number of combina
tions of N different things taken R at a time is written :-;Cn. We may find the 
number of combinations of N things taken R at a time by looking at the 
number of permutations. Each combination of R things could be arranged in 
R! ways and that gives us the number of permutations. So 

and solving for NCu we get 

:-;Pn N! 
:r.;C1t = ----ru- = (R!)(N R)! 

Thus, the number of combinations of three letters selected from eight different 
letters with no duplications is 

8! 
sCs = 3!5! = 56 

while the number of permutations is 

8P3 = 336 

Combinations pertain to such things as committees and dealing cards where 
order does not matter. 

If we want to know the number of five-member committees that can be 
selected from among ::lU people, we get ~0t:~. !<'or the purpose ot wntmg a 
computer program, we might think of ~0C,1 as ~ 0P0/R!. One approach is to 
compute ~0P0 and then successively divide by the integers from 5 down to L 
Let us draw a flowchart (Fig. 13-1) and call the program NCK 
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(_Start 
Fig. 13-1. Flowchart for computing 
combinations of N things taken R at 

a time. 

LETC = 1 

NCR 

1 0 READ N, R 
20 IrN=OTHENl50 
30 LET C= 1 

END ) 

F</>R X = N Tq') 
N--R+1 STEP-1 

LETC = C•X 

NEXT X 

PRINT 
results 

40 REM 30 TO 50 FIND NPR 
50 r0R X=N T0 N-R+l STEP -I 
60 LET C=C*X 
70 NEXT X 
80 REM 60 T0 80 DIVIDE BY R! 
90 FOR X=R T0 I STEP -I 
100 LET C=C/X 
llONEXTX 

F¢R X = R Tq') 1 
STEP-1 

LETC = C/X 

NEXT X 

120 PRINT NJ"THINGS"JRJ"AT A TIME HAVE"lCl"C0:-1BP.JATIO'JS" 
130 GOTO 10 
140 DATA 3,3,4,4,20.5.0.0 
I 50 END 
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RUN 
NCR 

8 THINGS 3 
4 THINGS 4 
20 THINGS 5 

D0NE 

AT A TIME HAVE 56 C0MBINATIDNS 
AT A TIME HAVE I CGMBINATI0~S 

AT A TIME HAVE 15504 CCMBINATIDNS 

Permutations of Things Not All Different 

Suppose we want to know the number of arrangements possible for the let
ters of the word PROGRAM. Sir1ce there are two R's and we cannot tell which 
is which, taking 7! counts every distjnguishable arrangement twice, because 
the R's may occupy two positions in 2! ways. Therefore, the number of words 
is 71/21. How many ways can we arrange the letters of the word ABSENTEE? 
Well, if the E's were distinguishable, we would get 8!; but that counts the 
indistinguishable anangements 3! times, because three E's can be arranged in 
three locations in 3! indistinguishable ways. So we get 81/3!. The letters of the 
word SNOWSHOES can be arranged 91/2!3! ways, because the two O's can 
be ananged in 21 ways and the three S's can be arranged in 3! ways. 

Partitioning 

In how many ways can we arrange three X's and five Y's? We get 8!/3!51. 

We might ask this question in the following way: In how many ways can we 
put eight different things in two groups where one group contains three things 
and the other contains five and order does not matter? 

In how many ways can we arrange three X's, five Y's, and six Z's? We get 

141/3!5!6!. We could ask the question in the following way: In how many 
ways can 14 different items be put into three groups of three, five, and six 

items? 
The second version of each of the last two problems are examples of parti

tioning. In general, if we have RI> R2 , . . . , R11 items such that R1 + R2 

+ · · · + R0 = T, then the number of ways that we can put the T items in n 
groups of R1, R2, ••• , R0 is 

Note that all the problems treated under pe1mutations and combinations 
were really special cases of partitioning. The combinations of N things taken 
R at a time may be thought of as partitioning into two groups of R and N - R 
items. The problem of arranging SNOWSHOES may be thought of as parti
tioning into six groups of three items for the S's, two items tor the U's, and one 

item each for the four remaining letters N, W; H, and E. Finally, the permu

tations of N different items taken R at a time may be thought of as R + I 
groups of N - R in the first group and one item each for the other R groups. 
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SUMMARY 

This section has been devoted to introducing the Fundamental Principle of 
Enumeration and the enumeration of permutations, combinations, and parti·· 
tionings of objects. In counting permutations order matters. Permutations count 
such things as arrangements of letters in a word and books lined up on a 
bookshelf. When counting combinations order does not matter. We use com
binations for such things as the number of different committees formed from 
a group of people and hands dealt in a game of cards. 

PROBLEMS FOR SEC. 13-2 

1) In how many orders can 15 people enter a classroom? 
2) In how many different ways can 15 keys be put on a circular key ring? 
3) Cars come in 18 colors, seven models, four engines, and there are 15 options 

such as whitewalls, outside mirror, radio, etc. How many different cars are available? 
4) You have 25 different books and two bookshelves, one of which holds exactly 

12 books and the other holds exactly 13 books. In how many ways can the books 
be arranged on the shelves? 

5) In a class of 30, a six-member committee is to be selected. How many differ
ent committees are possible? If there are 15 girls in the class, how many of the com
mittees consist of six girls? 

6) How many different five-card hands may be dealt from a deck of 52 cards? 
7) How many different 13-card hands may be dealt from a deck of 52 cards? 
8) There arc five people in a room. In how many ways can they all have 

different birthdays? Use a 365-day year and ignore Feb. 29. 
9) In how many ways can 10 people have all different birthdays? Ignore Feb. 29. 
10) If a state uses three letters followed by three digits for its license plates, 

how many different license plates can it produce? 
11) You have five different flags with which to form signab by arranging them 

all on a flagpole. How many signals can you form? 
12) You have five different flags with which to form signals by arranging up to 

five of them on a flagpole. How many signals can you form? Let zero flags constitute 
a signal. 

13) You have 10 different flags with which to form signals by arranging up to 
five of them on a flagpole. How many signals can you form? 

14) You have 50 friends. You are going to have a party and can only invite 25 
people. How many different guest lists could you have? 

15) In how many ways can 15 people sit in a row of 15 chairs? 
16) Do problem 15) if t\\ o of the people must sit next to each other. 
17) How many different \\'ords can he formed from the letters of the word 

COMPUTEHS if 1) you must use all of the letters and 2) you must leave out one 
letter? 

18) A class consists of .30 students of which 17 arc girls. In how many ways can 
\\ e select a committee of four? Ho\\' many will have two boys and t\\ o girls? How 
many will have one hoy and three girls? How many will have fom girls? How 
many will have four boys? 

19) How many outcomes arc pos:;iblc fm rolling two dice followed by drawing 
three cards from a 52-card deck? 
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20) How many different sets of two five-card hands can be dealt from a 52-card 

deck? 
21) How many words can be formed using all the letters in MISSISSIPPI? 

13-3 SIMPLE PROBABILITY 

We defined probability in Sec. 13-1 as S/T, where S is the number of 

ways in which an outcome may constitute a success and T is the number of 

possible outcomes, and all outcomes are equally likely. For flipping a coin, 

we see that the probability of coming up heads is 1/2 or .5. For drawing a 

card from a 52-card deck, the probability of getting the ace of spades is 1/52 

or about .0192. 
Suppose you are in a class of 29 students and a committee of four members 

is to be selected at random. What is the probability that you get on the com

mittee? Well, the total number of committees possible is 29C4• Now all we 

have to find is how many of those committees count yourself as a member. 

We can find out by saying in effect, "Let us put you on the committee and 

pick the other three members from the remaining 28 class members." This 

means that you will be on 28C3 of the committees, and the probability that 

you get on the committee is 28C3/ 29C4• Let us write a program to compute 

this probability. We can use lines 30 through llO of program NCR as a 

subroutine to first find 28C3 and then find 29C4• See program CLASS. You can 

see that your chances are about 14%. You should also see that the probability 

that you do not get on the committee is about 1 - .14 or .86. 

CLASS 

10 READ N.K 
20 G0SUB 500 
30 LET Cl=C 
32 REM Cl ST0RES THE 1'dUMBER 0F' C0MMITTEES 0F' WHICH 

33 REM Y0U ARE A MEMBER 
40 READ N, R 
50 G0SUB 500 
60 LET P=C!/C 
70 PRINT "THE PR0BABILI TY THAT Y0U GET 0N A 4 MEMBER" 

75 PRINT "C0MMI TTEE F'R0M A CLASS 0F 29 IS": P 

1:10 STeP 
490 KEM F'Ii\ID C0MBINATI0NS 0F' N THINGS TAKEN R AT A TIME 

500 LET C= I 
510 F'0ri X=N T0 N-R+I STEP -1 
!>20 LET C=C•X 
530 NEKT X 
540 F'0R Y=R T0 I STEP -I 
550 LET C=C/Y 
560 NEXT Y 
570 RETURN 
600 DATA 26.3 
610 DATA 2914 

RUN 
CLASS 

THE PR0BABILI TY THAT Y0U GET 0N A 4 MEMBER 

C0MMITTEE F'K0M A CLASS 0F' 29 IS 0137931 

OONE 
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Suppose we roll a die. The probability that a 3 comes up is one in six or 
1/6. Now roll the die again. Again, the probability of a 3 is 1/6. We can see 
that if we roll the <lie twice, the probability of both rolls coming up 3 is 
(1/6) 0 (1/6), or 1/36. We define an event as a set of outcomes for a particular 
experiment. If we have two events A and B such that the probability of suc
cess for A is P and the probability of success for B is Q, the events A and B 
are said to be independent if the probability of success for A and B both is 
P 0 Q. This is exactly the case for rolling a 3 on each of two <lice, which 
enables us to arrive at probabilities without actually enumerating outcomes. 
Thus we have extended our definition of probability. 

For rolling two dice, the events associated with the first die are independent 
of the events associated with the second die. The same may be said of rolling 
the same die twice. Flipping two coins are independent. Drawing a card from 
a deck is independent of rolling a die. So, the probability of getting a 1 and 
an ace upon rolling a die and drawing a card is (1/6) 0 (4/52), or (1/78). 

Let us look at a problem often referred to as the "birthday problem." Sup
pose you are in a room with 29 other people. What is the probability that 
at least two people have the same birthdate? We can say that if the probabil
ity of no two people having the same birthdate is P, then the probability 
that at least two do have the same birthdate is 1 - P. The birthdates for two 
people are independent events, so we may multiply individual probabilities. 
Picking any person first, we say that his probability of having a different birth
date from those already picked is 365/365. Picking a second person, the 
probability that his birthdate is different from the first person's is 364/365. 
For the third person we get 363/365 as the probability that his birthdate is 
different from the first two, and for the 30th person we get 336/365 as the 
probability that his birthdate is different from each of the first 29 birth<lates. 
So, the probability that all are different is 

365 364 336 
p = 365 ° 365 • ' ' . 0 365 

an<l the probability that at least two people have the same birthdate is 1 - P. 
We can write a short program to compute 1 - P. See BIRTH. 

The chances are about 71%, which is much higher than many people would 

BI kTH 

10 LET r=l 
cO FOk 0=365 TO 336 STEP -1 
30 LET P=P*D/365 
40 NEXT D 
SO LET '.!= 1-P 
1)0 PidNT "THE PrWBA':llLITY OF n:o 0." MOf,E" 
70 i"klNT "IDC,J!JCAL 9lrHHDAlF.:S A 1~0NG 30 PF.:OPLF.: IS";O 
8 D E~~ D 
i<UN 
BI 1-<TH 

THE P:<OHABIL I TY :JF H!O O!< MO«E 
IDENTICAL BlklHDATES AMONG 30 PF.:1PL~ JS ·706316 

DONE 



206 Basic BASIC 

guess before doing the problem. Note that this is not the probability that 
someone else in the room has the same birthday that you have. That problem 
is left as an exercise. 

SUMMARY 

We have initially defined probability as the quotient of the number of ways 
to constitute success and the total number of possible outcomes for equally 
likely outcomes. We see that this can easily be applied to situations of enumer
ation. Independent events which have individual probabilities P and Q occur 
together with a probability of P 0 Q. This produces an extended definition of 
probability which does not always require enumeration, but requires only that 
we know individual probabilities for successive events. 

PROBLEMS FOR SEC. 13-3 

1) A class of 29 has 16 girls. A committee of five is selected at random. What 
is the probability that all five committee members are girls? 

2) Ten people are to sit in a row of 10 chairs. What is the probability that two 
particular persons sit next to each other? 

3) What is the probability of being dealt the ace of spades, the three of clubs, 
the eight of hearts, the seven of diamonds, and the 10 of clubs? 

4) What is the probability of being dealt the ace, king, queen, jack, and 10 of 
spades from a 52-card deck? 

5) What is the probability of the first six flips coming up heads and the last 
four tails when flipping a coin IO times? 

6) What is the probability of getting all heads when flipping a coin 10 times? 
7) You have a list of 20 true-false questions from which 10 will be selected at 

random for a test. Of the 20, there are 15 you are guaranteed to get right and five 
that you are guaranteed to get wrong. What is the probability that you will get 
exactly eight right? 

8) An experiment consists of drawing a card from a 52-card deck until the first 
ace appears. Find the probability of the first ace appearing on the fourth draw. 

9) For the experiment of problem 8), find the probability of the first ace appear
ing on draws one through ten. 

10) An experiment consists of rolling a die until it comes up 2. Find the proba
bility of the first 2 coming up on the fourth roll, on the tenth roll. 
j 11) Refer to the birthday problem. How many people must be in a room to have 
the probability of at least two identical birthdates be .5? 

12) You are in a room with 29 other people. What is the probability that one of 
them has your birthdate? 
j 13) How many people must be in a room for the probability of another person 
to have your birthdate be .5? 

13-4 RANDOM SIMULATION 

We may use the random number generator to simulate experiments that 
occur at random. We can have the computer flip a coin by generating two 
random digits. We can roll a die by generating six random digits, etc. 
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FLIP 

5 LET C=O 
10 FOK X=l TO 50 
20 LET F=I\ITC2*>lNDClll 
30 IF F= 1 T'"EN 60 
40 P.<I\IT "T"J 
50 GQH3 100 
58 REM C COUNTS THE 'JU:~f3ER CJF YEADS 
60 LET C=C+l 
70 PRINT "H"J 
I 00 NEXT X 
110 PRINT 
120 P:<!NT "rlEADS ";C;"OIJT- 'JF 50 FLIPS" 
1 30 END 
RU~ 

FLIP 

H TTHTTTH TTHHHTTTHHH THTTHH-ITTTT>-HHrlHTTHTHTH TTTTTH Trl ; 
HEADS 2 3 OUT (JF 50 FL I PS 

Let us begin by having the computer flip a coin 50 times. See program FLIP. 
We get 23 heads out of 50 flips. One of the intriguing things about flipping 
a coin many times is that we do not get heads for half of the flips for each 
experiment. In fact, it is possible to flip a coin 50 times and get no heads or 
to get all heads. Of course the probability of all heads or no heads is very 
small compared to the probability of half heads. We will be able to compute 
those probabilities in the next section. For now we are concentrating on 
simulation. 

In many ways, flipping a coin 50 times is the same as flipping 50 coins once. 
Let us put program FLIP in a loop to perform the experiment 10 times to 
see a range of results. Sec FLIP-1. 

We get a range of 17 to 34 heads for this RUN of the program, and it 
turned out this time that none of the trials came out 25 heads. 

One of the nice features of simulation by computer is that we can have the 
computer perform hundreds or thousands of trials of an experiment that might 
take days to do with physical apparatus. 

FLIP- 1 

2 F<lk Y= 1 TJ 10 
S LET C=O 
10 F0R X=l T0 50 
20 LET F=INTC2*RNDClll 
30 IF F= 1 THE.\! 60 
40 PKli'JT "T"; 
50 G0T0 100 
S8 REM C C<JUNTS THE NUMBER 0F HEADS 
60 LET C=C+ 1 
70 PtHN f "H"J 
100 .~EXT X 
110 PRINT 
120 PRINT "HEADS "JCJ"OUT ·JF 50 FLIPS" 
!2~ .~EXT Y 
130 END 
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HUN 
Ji'l...IP- 1 

HTTTTTHTTHHTTHTTTTTTTTHTHHHHHHTTTTTHTHHHTHHHTTHHTT 

HEADS 21 0UT 0F SO FLIPS 
HTTHTHHTTHTTHTHHTTTHHHTTTTTTHHHHTTHTHTHHHHTHHTTHHH 

HEADS 26 0UT 0F SO Ji'l...IPS 
HTHTTTHTTHTTHTTTTTTTTHTTHTTTHTHTHTTTHTTTTTHHHTHHHT 

HEADS 17 0UT 0F SO FLIPS 
TH TTTTTTHTHTHTHtHHHHHHHTHTTTHHTTHTTTTTTTHH TH TTHHTT 

HEADS 21 0UT 0F SO FLIPS 
TTHHTTTTHTHHTTHTHTHHHHTTHHTHHHTTTTTTHTHHHHTTHTHHTT 

HEADS 24 0UT 0F SO F1..IPS 
HTHTHHHHHHHTHTTTTTTTHTTHHHHHHTTTHTTTTHTHTTHHTHHTHH 
HEADS 26 0UT 0F SO FLIPS 
HTTTTTHTTTTHHTTHTTHTHHHHTHTHHTTHHHHTHTTHTHTHTTTTHT 

HEADS 22 0UT 0F SO FLIPS 
THTHHHHHHTHTHHHHTTTHHTHTHHHHHTHHHTHHTHHHHHHHTTTHTH 

HEADS 34 0UT 0F SO FLIPS r 

HTTHHTHHTTHTTTTTTHHHTTTHTTTHHTTHTHTHHHHHTTHHTHHTHT 

HEADS 24 0UT 0F SO FLIPS 
TTHHTHHTHHHTHTTHTHHH THHHTTTTHHH TTTTH TTHTHH THH THTHT 

HEADS 26 0UT 0F SO FLIPS 

OONE 

Let us set up an experiment to roll six dice 1000 times, counting the num

ber of times 1 comes up for each roll of six dice. The possibilities are from 

zero to six. Then let us count the number of times each of those seven numbers 

occurs. \Ve can keep track of all seven totals in a 1 by 7 row vector. We will 

count the number of times no l's come up in column 1 and the number of 

times one 1 comes up in column 2, etc. See the flowchart in Fig. 13-2 and 

program R0LL. 

R0LL 

S REM THE MAT INSTRUCT10NS ARE C0NVENIENT HERE 

10 DIM L[ I• 7l 
20 MAT L=ZER 
38 REM THE C0MPUTER 00ES SO THR0UGH 110 1000 TIMES 

40 F0R X=l 10 1000 
SO LET C=O 
SS REM C IS G01NG T0 C0UNT I'S 
SS REM LINES 60 THR0UGH 100 R0LL 6 DICE ANO C0UNT I'S 

60 F0R R=l T0 6 
70 LET U=INT<6•RNOC!J+l) 
80 IF U> I THEN I 00 
90 LET C=C+ I 
100 NEXT R 
110 LET u1.c+1l=Lll1C+ll+I 
120 NEXT X 
130 PRINT "N0NE 0NE TW0 THREE F0UR Fl VE SIX" 

140 MAT PRINT LJ 
I SO END 
RUN 
R0LL 

N0NE 0NE TW0 THREE F0UR Fl VE St X 
343 410 193 44 9 I 0 

DflNE 



Start 

Initialize 
vector at 0 

FcpR X = 1 
T<,2) 1000 

LET C = 0 
Set counter 

at O 

NEXT X 

END 
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i--~~F¢RR=1T¢61--~-1111 
Roll 6 dice 

NEXT R 

Enter C into 
vector 

LET U =INT (6 
•RND(1)+1) 

LET C = C + 1 

Fig. 13-2. Flowchart for rolling six dice 1000 times. 

PROBLEMS FOR SEC. 13-4 

I) Have the computer flip six coins 1000 times and print the distribution of 
outcomes. 

2) Sketch a graph of the distribution for problem I) and the distribution for 
program R0LL. 

3) Write a program to deal five-card hands from a 52-card deck. Be sure not 
to deal the same card twice. 

4) A company manufactures light bulbs and can openers. For light bulbs it is 
known that I in 20 is defective and for can openers I in 25 is defective. Write a 
program to select at random one light bulb and one can opener 1000 times. Total 
each of the following: the number of times neither was defective, the number of 
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times both were defective, the number of times the light bulb was defective, and 

the number of times the can opener was defective. 

5) A regular tetrahedron has four equilateral triangles as faces. Let an experi

ment consist of numbering one face 1 and the remaining faces 2, and tossing the 

tetrahedron into the air to determine which number faces down. Write a program 

to toss the tetrahedron 500 times and count the number of times the 1 faces down. 

6) Roll a die 500 times. Count the number of times the 1 or the 5 comes up. 

7) Roll a die and toss the tetrahedron of problem 5) 1000 times. Count the 

number of times both come out 1 and count the number of times both come out 2. 

8) An experiment consists of rolling a die until a 1 comes up. Write a program 

to perform the experiment 500 times. Count the number of rolls for each experiment. 

9) An experiment consists of flipping a coin untii it comes up heads. Write a 

program to perform the experiment 1500 times and count the number of flips 

required for each. Print the distribution. 
10) Roll 10 dice 500 times. Count the number of l's that come up for each roll. 

Print the distribution. 
11) Suppose 10% of the population is left handed. Write a program to pick groups 

of 10 people at random. Count the number of left-handed people. Print the 

distribution. 
12) Pro;ect: Write a program to make the computer the dealer in a game of 21. 

13-5 BINOMIAL TRIALS 

Suppose we roll two dice. What is the probability that a 1 comes up 

exactly once? If we use one red die and one green die, we may more clearly 

describe the results. There are two ways that that we could get exactly one 1. 

First, we could have the red die come up 1 and the green die not come up 1. 

The probability of this is (1/6) 0 (5/6). Second, we could have the red die 

not come up 1 and the green die come up 1. The probability of this is 

(5/6) 0 (l/6). Now, if we roll the two dice, the probability that we get 

exactly one 1 is the sum of the above two possibilities, or (5/6) 0 (1/6) 

+ (1/6) 0 (5/6)· Or we can say that the probability of exactly one 1 is two 

times the probability of getting a 1 on the green die and not a 1 on the red die 

which is 2 ° (5/6) 0 (1/6). 
Now suppose we roll four dice colored red, green, blue, and white. What is 

the probability that we get exactly two l's? The probability that the red and 

the green dice are l's and the blue and white are not is (1/6) 0 (1/6) 0 (5/6) 
0 (5/6). But we might get the l's on the green and blue with the same proba

bility, or we might get l's on the red and white dice with the same probability. 

In fact, there are 4C~ ways that we could select two dice from the four to come 

up with l's. Each selection has probability of (1/6) 0 (1/6) 0 (5/6) 0 (5/6) . 

. So the probability of exactly two l's up for a roll of four dice is 

which simplities to 25/2rn. 

Suppose we have 10 dice. What is the probability that exactly two dice 

come up 1 when all 10 are rolled? For a particular selection of two dice, we 

get (l/6)2 ° (5/6)8 and we can select the two dice in 10C~ ways. So, 

P = 10C2 ° (1/6)2 0 (5/6)8 
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We can write a short program to find the value of P. Note that in program 
DICE lines 15 through 40 compute the value of 10C2 . 

DICE 

10 READ R 
15 LET C=I 
20 r0R X=IO T0 10-R+I STEP -I 
30 LET C=C•X/CIO-X+I) 
40 NEXT X 
50 LET P=C•Cl/6>•R•C5/6)tCIO-R> 
60 PRINT P 
65 DATA 2 
70 END 
RUN 
DICE 

·29071 

D0NE 

Program DICE is for exactly two I's. What about the other possible numbers of l's? ·with just a few changes in program DICE, we can answer that 
question. Instead of computing for R = 2 only, we can let R go from 0 to 
10 in a F0R-NEXT loop. This can be done by changing only lines 10 and 65 
in DICE. See DICE-I. 

In DICE-I we have defined 11 events that cover all possible outcomes in 
this experiment. There can be no outcomes that do not give from 0 to 10 l's. 
It is also true that no two of the events have any outcomes in common. Events 
which do not have any outcomes in common are called mutually exclusive 

DICE-I 

5 
10 

PRINT "0NES PR0BABILITY" 
r0R R=O T0 10 

15 
20 
30 
40 
50 
60 
65 
70 

LET C= I 
r0R X=IO T0 10-R+I STEP -I 
LET C=C•X/CIO-X+I) 
NEXT X 
LET P=C•Cl/6)•R•C5/6)tCIO-R> 
PRINT RIP 
NEXT R 
END 

RUN 
DICE-I 

0NES PR0BABILITY 
0 • 161506 
I ·323011 
2 ·29071 
3 ·155045 
4 5.42659E-02 
5 1·30238E-02 
6 2·17063E-03 
7 2·48072E-04 
8 1·86054E-05 
9 8.26908E-07 
10 1·65382E-08 

D0NE 
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events. If we have a set of mutually exclusive events that also cover all pos
sible outcomes, then the sum of the individual probabilities must total 1. We 
can verify that the sum of the probabilities in DICE-1 is in fact 1. Of course 
one way to do that would be to rewrite the program to total the probabilities in 

DICE-1. 
Suppose we know that 10% of a certain population is left handed. If we 

select 100 people at random, what is the probability that exactly 10 of them 
will be left handed? The probability that a particular set of 10 people will be 
left handed will be (1/10)10 0 (9/10)9µ and from 100 people there are 100C10 
ways that 10 of them can be left handed. So the probability is 

p = iooC10 " (1/10)10 " (9/10)90 

This too, can be done with a short program. See LEFT. 

LEF'T 

10 LET C=I 
20 F'0R X=IOO T0 100-10+1 STEP -I 
30 LET C=C•X/CIOO-X+I> 
40 NEXT X 
SO LET P=C•<·l>•I0*<·9>•90 
60 PRINT P 
70 END 
RUN 
LEF'T 

o 131865 

OONE 

In general, we should see that if an outcome has probability P of success 
and Q of failure and we perform an experiment consisting of N trials, the 

probability of exactly R successes is 

p =NCR 0 pR" QN-R 

Experiments that behave in this way are called binomial experiments because 
the values of NCR 0 pu 0 QN -It are the terms of the expansion of the binomial 

(P + Q) raised to the Nth power. 

Binomial Theorem 

Looking at (P + Q)N, we should be able to see the general term in the 
product. (P + Q)N means, write (P + Q) as a factor N times. So 

(P + Q )N = (P + Q )(P + Q )(P + Q) · · · (P + Q) 

When we multiply this out, we are actually taking one term from each factor 

in such a way that we can sum up all possible products of combinations of N 
factors one from each (P + Q) factor. How many factors are there in the 
product? There is one term that takes P as a factor N times. There is one term 
that takes P as a factor N - 1 times and Q as a factor once. There is also a 



Elementary Probability 213 

term that takes P as a factor N - 2 times and Q as a factor twice, etc., down 
to the term that takes Q as a factor N times. That makes N + 1 terms. Now, 
for a particular term, say P3QN-3, we want three P's and N minus three Q's· 
We can select three P's from among N terms in NC3 ways and so the value 
of this term is :-;C3 " P3QN-3. For the Rth term we get NCn" PHQN-n, which 
is exactly what we get for a probability of R successes in N trials where the 
probability of success on a single trial is P and the probability of failure on a 
single trial is Q. So to find (P + Q)N we simply evaluate NCn "PHQN-n for 
all values of R from 0 to N. 

Taking a look at the probability of any binomial experiment, we see that 
since P + Q = 1 and the sum of all :-;Cn" PHQx-n terms is (P + Q)X, we get 

if P+Q=l then 

which can be verified by summing up the probabilities in program DICE-I. 
Finally, if we look at (X + Y)X for X and Y both equal to 1, we get the 

general term in the expansion to be :-;Cnl1tIN-n, which is the same as NCn, 
so that the numerical coefficients of any binomial expansion are simply the 
corresponding values of NCn. Since the values of X and Y are both 1, we are 
really finding the value of 2N if we sum up all of the coefficients. Let us 
write a program to print the coefficients for values of N from 0 to 11. See 
program PASCAL. 

You may recognize these numbers as Pascal's Triangle which has many 
interesting properties. Problem 9) in Sec. 11-1 and problem 7) in Sec. 5-3 
should also have given the results of program PASCAL. 

PASCAL 

10 
20 
30 

F'0R N=O T0 11 
F'0R R=O 1'0 N 
LET C=I 

40 
so 

F'0R X=N T0 N-R+I STEP -I 
LET C=C•XICN-X+I> 

60 NEXT X 
70 PRINT CJ 
80 NEXT R 
90 PRINT 

NEXT N 
END 

100 
110 
RUN 
PASCAL 

1 
2 
3 
4 
s 
6 
7 
8 
9 
10 
11 

00NE 

1 
3 1 
6 4 I 
10 10 s 
IS 20 lS 
21 3S 3S 
28 S6 70 
36 84 126 
4S 120 210 
SS 16S 330 

I 
6 I 
21 7 I 
S6 28 8 I 
126 84 36 9 1 
2S2 210 120 4S 10 1 
462 462 330 16S SS II 
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PROBLEMS FOR SEC. 13-5 

1) Moclify PASCAL to sum up the coefficients. Print the values of R and the 
sum of the coefficients. Do not print the coefficients. 

2) Modify DICE-I to sum up the individual probabilities. Have the loop go 

from 10 to 0. 
3) It is known that 1% of the population has a certain type of blood. In a class 

of 25 persons, what is the probability that exactly two people have this hloocl type? 
4) A company makes bolts. It is known that 1 in 1000 is defective. You buy a 

box of 100 bolts. \Vhat is the probability of getting exactly one defective bolt? 
5) For the <:ompany in probiem 4), what is the probability of getting iO defective 

bolts. 
6) For the <:ompany in problem 4), what is the probability of getting at least one 

defective bolt. 
7) For the company in problem 4), what is the probability of getting less than 

five defective bolts. 
8) Find the probabilities of getting zero through six 1 's when rolling six dice. 

Compare your result-; with the random simulation in program R0LL. 
9) What is the probability of getting zero through 10 heads when flipping 10 

coins. 
10) What is the probability of getting more heads than tails when flipping 10 

coins. 
11) A test consists of 25 true-false questions. You know that your probability of 

guessing right on any given question is 75%. Find the probability of getting 76% on 
the test, if you guess on all questions. Find your probability of getting 76% or better. 
j 12) An experiment <:0nsists of Hipping a coin until it comes up heads. Find the 
probability of success for 1 to 10 flips. 
j 13) An experiment consists of rolling a die until it comes up 1. Find the proba
bility of su<:eess for 1 to 10 flips. Find the probability that success will require more 
than IO rolls. Find the probability that success will require more than 20 rolls. 



APPENDIX A 

Storing Programs on Paper 
Tape 

A-1 INTRODUCTION 

Once you have written your program, you would like to have the computer 
execute it In order to execute a program it must be typeg into the com
puter. Ideally, we should all be expert typists, but many of us are not. 
So, many time-share terminals provide for punching programs on paper tape 
when the termi.nal is not connected to the computer. Then the high-speed 
tape reader may be used for reading the program in on-line. Even so, the 
considerate student will do his utmost to improve his typing speed so as not 
to tie up the terminal when others would like to be typing. One suggestion 
is to type all programs in advance before sitting in front of the terminal to 
punch tape. You will benefit in two ways: by getting practice in typing and 
by being able to read the program easily. 

A-2 PUNCHING PAPER TAPE OFF-LINE 

Programs may be stored on a narrow strip of paper tape by punching rows 
of holes in a code. Each row represents a character, space, line feed, carriage 
return, or other nonprinting character. 

There are so many variations from one time-share company to the next, 
that we cannot list them all here. But we can outline the general procedure. 
First the terminal must be switched to local. Then the tape punch apparatus 
must be turned on. Now you want some blank leading tape so that the tape 
reader will be able to read the first character of your program. Some terminals 
gene1 ate the blank leader by depressing the HERE IS key. On others, you 
may have to depress the REPT and RUBOUT keys simultaneously until suffi
cient tape shows, or try depressing CTRL, SHI.FT, REPT, and Pall at once. 

Now you may type your program. As you type, holes will be punched, 
which the tape reader will interpret when you feed the finished tape back. 
Be sure to begin each line with a line number and touch the RETURN and 
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LINE FEED keys at the end of each line. (There may be a special key for 
RETURN.) 

If you make a typing error, you may correct it in one of several ways. If 
it is the previous character or within a few characters, depress the backspace 
button on the tape punch apparatus once for each character you wish to 
erase. Then touch the RUBOUT key once for each backspace. The RUBOUT 
key punches out all holes in the row and will be ignored by the computer 
and will not print. Alternatively, you may depress the SHIFT key and the 
0 key once for each character you wish to erase. A backwards arrow will be 
printed for each correction. Spaces do count as characters for this purpose. If 
the entire iine is a iost cause, simply RETURN, LINE FEED, and begin 
typing from the beginning including the line number. After you have finished 
typing, touch RETURN and LINE FEED. Then generate blank tape as you 
did before typing your program. The idea is to get some paper that is not 
filled with holes so that you may write some kind of identification on the 
tape. As soon as you have your second tape, the need for this will become 
obvious. After tape preparation is completed, tear it off and roll it up. It is 
suggested that you not roll it less than about 2 in. in diameter, as the tape 
will take on a permanent curl and that may cause trouble in the reader later. 

A-3 READING PAPER TAPE 

With the terminal on-line and the previous program erased, you are ready 
to enter your program into the computer via the tape reader. Again computers 
vary, but most require a system command, and for some the command is 
TAPE followed by turning the tape reader on. After the tape is read in, 
remove your tape from the reader and roll it up again. If the computer 
requires a system command to enter tape mode, then a second command will 
be required to remove it from that mode. The command KEY removes the 
computer from tape mode ancr prepares it for instructions from the keyboard. 
The command RUN usually will serve the same purpose. 

At this time the computer takes your entire program and compiles it. To 
compile a program means to put all instructions in order and convert it to a 
form that the computer uses to actually perform the instructions. In order to 
run, all statements must be legal BASIC statements and the entire program 
must fit certain requirements that vary depending on the computer. 

At this point, you should read all of Appendix B and then return and finish 

this appendix. 

A-4 GETTING THE COMPUTER TO PUNCH PAPER TAPE 

Having read Appendix B, you can see that after you have read in a program 
1 1 "I l•o• A ('o 1 1 11 

on tape, you may maKe rna11y cna11g,es or auu1uuus. n.1 Le1 yuu 11a ve 111a(,e a11 

of the necessary changes or after it becomes clear that you cannot make all of 
the necessary corrections in a reasonable length of time at the keyboard, you 
may want a new tape of the program in its latest form. Here again, time-



Storing Programs on Paper Tape 217 

share systems will vary, but you will have a way of getting the computer to 
punch your program. Some will automatically provide blank leading and 
trailing tape, others will require you to use the method you used when you 
typed off-line. Two of the system commands in use are PUNCH and LIST
N0-HEADER. 

Now you have two tapes for the same program. Most likely you will want 
to throw the old one away. Be sure to write some identification on the new tape. 



APPENDIX B 

Error Diagnosis 

B-1 INTRODUCTION 

From the time you type the last line of your program to the completion 
of a successful RUN, there are three types of errors that may show up: 1) those 
errors that prevent a RUN; 2) those errors that allow a RUN to begin but 
cause it to terminate during execution; and 3) those that permit a complete 
RUN, but cause the computer to produce an unexpected or incorrect result 
The whole process of taking a program that does not work and turning it into 
one that does is called debugging. Let us look at the errors by type. 

B-2 ERRORS THAT PREVENT RUN 

These are very often simply typing errors: 

10 LT~ET X=5 
20 PRllJNT X 
30 ENO 
RUN 
Nill STATEMENT TYPE F"llJUNO IN LINE 20 

The exact wording will vary from computer to computer, but the message 
is clear. We retype line 20 as in the following: 

20 PRINT X 
RUN 

5 

OllJNE 

Even though BASIC does use English words, you may not get too conversa
tional as in the following: 
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10 READ X AND Y 
20 PRINT X1 Y 
30 DATA 41S171-ll 
40 G0 T0 10 
SO END 
RUN 
CHARACTERS ArTER STATEMENT END IN LINE 10 

Error Diagnosis 219 

As far as BASIC is concerned, line 10 says READ X. The AND Y is not 
part of the language and so is rejected. Since there is no way to know just 
what the characters after X mean, if the first one is not a comma or a single 
digit, the computer will not take a guess at what you meant. You must say 
exactly what you mean; the computer is not clairvoyant. So, change line 10 
as follows: 

10 READ X1Y 
RUN 

4 s 
7 -11 

0UT 0r DATA IN LINE 10 

To multiply X times Yin algebra we write XY. 

10 LET X=S 
20 LET Y=IO 
30 LET Z=XY 
40 PRINT Z 
SO END 
RUN 
CHARACTERS ArTER STATEMENT END IN LINE 30 

However, even though in algebra XY is understood to mean X times Y, you 
must be more explicit for the computer, and write X 0 Y. 

30 LET Z=X*Y 
RUN 

so 

D0NE 

Let us put many errors in one program and see what happens. 

10 LET X= S 
20 READ Y • Z 
30 LER W=Y* Z 
40 PRINT X 
SO LET A*B=X 
60 READ W 
70 G0T0 9010 
80 LET S=<AX+B>*<CX+D> 
90 LET Al 
100 G0 BACK T0 10 
110 LET X=3*4+S> 
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120 DATA 5o 11• 25. -5 
130 PRINT Wt2 
140 G0T0 60 
150 DATA 2. 67.-1• 
RUN 
N0 STATEMENT TYPE F0UND IN LINE 30 
MI SS ING ASSIGNMENT 0PERAT0R IN LINE 50 
MISSING RIGHT PARENTHESIS IN LINE 80 
MISSING ASSIGNMENT 0PERATi2JR IN LINE 90 
N0 STATEMENT TYPE F0UND IN LINE 100 
CHARACTERS AFTER STATEMENT END IN LINE 110 
MISSING 0R ILLEGAL DATA ITEM IN LINE 150 

Now let us see what we can do to fix the program so it will run. First v 
would like to see what is left of our program. The system command LIST w1 
do that for us. 

LIST 

10 LET X=5 
20 READ y,z 
40 PRINT X 
60 READ W 
70 G0T0 9010 
120 DATA 5.11.25.-5 
130 PRINT Wt2 
140 G0Hl 60 

The computer automatically wiped out all of the statements that did n< 
conform to BASIC requirements. So what remains ought to run, right? Wroni 
The computer has only eliminated the errors that are self-contained in sing] 
statements. These are sometimes called syntax errors or errors of form. Th 
computer has not yet looked to see if the statements fit together into a set c 
executable statements. To achieve that we type RUN again: 

RUN 
UNDEFINED STATEMENT REFERENCE IN LINE 70 

We can easily see that the compute1 cannot G0T0 9010 as there is 1 

line 9010 in the program. We take line 70 out by typing 70 followed 
RETURN and try again. 

70 

RUN 
LAST STATEMENT N0T 'END' IN LINE 140 
9999 END 
Rl_ll\1 

5 
625 
25 

0UT 0F DATA IN LINE 60 
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Now we have gotten something printed, but the program is all over the 
place. We can assemble it again with the LIST command or we may use a 
new command first. We can get nice numbering by the command RENUM
BER. Some computers use EDIT RESEQUENCE. We RENUMBER here and 
LIST the program in its present form. 

RENUMBER 
LIST 

10 LET X=5 
20 READ y,z 
30 PRINT X 
40 READ W 
50 DATA 5, 11•25, - 5 
60 PRINT Wt2 
70 G0T0 40 
80 END 
RUN 

5 
625 
25 

0UT 0r DATA IN LINE 40 

There is no substitute for experience. 

B-3 ERRORS THAT TERMINATE A RUN 

The possible errors in this category become more and more plentiful as 
you use more and more advanced capabilities. However, the error messages 
are rather explicit and so the most fundamental examples should serve to 
demonstrate how termination errors operate. Probably the most common error 
for beginning programmers is that the data is either missing or not matched 
correctly for the READ variables. 

10 PRINT "THE RUN HAS BEGUN" 
20 LET A=2 
30 READ B,C,D 
40 PRINT B*C•A 
50 PRINT "D ="JD 
60 PRINT "WE G0T T0 LINE 60 AT LEAST" 
70 READ X 
80 PRINT X 
90 DATA 3, I 7, 11 
100 END 
RUN 

THE RUN HAS BEGUN 
867 

D = II 
WE G0T T0 LINE 60 AT LEAST 

0UT 0r DATA IN LINE 70 
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Not al! computers will print the out of data message, but they will termi
nate after the last item of data is read if the program sends it back to READ 
again. 

You might instruct the computer to perform an illegal operation as follows: 

10 PRINl "A","B",,"A-8111"At8" 
20 READ A.8 
30 PRINT A,8,A-8,AtB 
40 G0Hl 20 
50 DATA 1, 2, 5, 3, 3. 41, 2, 1. 23, 4, o, o, 4. 03, 5 
60 END 
RUN 

A 
I 
5 
3. 4J 
1.23 
0 

LER0 T0 LER0 

8 
2 
3 
2 
4 
0 

P0WER IN LINE 30 

A-8 
- I 

2 
1. 41 

-2.77 
0 

AtB 
J 
J25 
JI. 628 J 
2·28887 

Zero to the zero power is not defined. So the computer notifies you that it 
has come to this undefined condition and halts execution awaiting your pro
gram change. There are many more errors that will halt execution, but these 
examples should demonstrate the principle involved. 

B-4 ERRORS THAT CAUSE UNEXPECTED OR INCORRECT RESULTS 

These are the most difficult errors to find. Suppose you write a program and 
the computer prints nothing, but notifies you that it has run the program in 
the usual manner. 

J5 LET X=5 
25 LET Y=JO 
30 LET Z=Xt2 
40 LET W=Yt 2 
70 END 
RUN 

D0NE 

We got three blank lines and that is not what we wrote the program to do. 
It is reasonably obvious that we forgot to put in any PRINT statements. 

50 PRINT X;Y;Z;W 
JO PRINT "X Y 
l<llN 

x 
5 

D0NE 

y Xt2 Yt2 
10 25 JOO 

Xt2 Yt2" 
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If you think that you have the PRINT statements and do not get any 
printed results, look for a G0T0 that causes the computer to bypass the 
PRINT statements. 

The ways in which programs can give incorrect results are unlimited. And 
to make matters worse, the computer has no way of determining that the 
result is correct. This is the responsibility of the p10grammer. Consider the 
following program to read pairs of numbers and print their sum and their 
product and the number of pairs: 

10 PRINT "A 8 SUM PROD 
20 LET C=O 
30 READ A, B 
40 LET C=C+ I 
50 PRINT AJBJA+B;A*BlCJ"PAIRS S0 F'AR" 
60 G0T0 10 
70 DATA I 01 20, I I 1 9 
80 DATA 1. 2. -45. 18 
90 END 
RUN 

A 8 SUM PROD 
10 20 30 200 PAIRS S•~ F'AR 

A 8 SUM PROD 
11 9 20 99 PAIRS S0 F'AR 

A 8 SUM PROD 
2 3 2 PAI RS S0 F'AR 

A 8 SUM PROD 
-45 18 -27 -810 PAIRS S0 F'AR 
A 8 SUM PROD 

0UT 0F' DATA IN LINE 30 

We certainly do not need to have the headings printed more than once. 
So we want to change the G0T0 in line 60 as follows: 

60 GLH020 
RU.\I 

A 8 SUM PROD 
10 20 30 200 PAIRS S0 F'AR 
11 9 20 99 PAIRS S0 F'AR 
I 2 3 2 PAIRS S0 F'AR 

-4:; 18 -2 '7 -810 PAIRS S0 F'AR 

0UT 0F' DATA IN LINE 30 

But now we still have to find out why the computer prints 1 for the number 
of pairs each time. Line 40 is LET C ::: C + 1. C must be 0 each time the 
computer comes to line 40. This is because the G0T0 sends the computer 
to line 20 which is LET C ::: 0. So we change line 60 again. This time we want 
the computer to go only to the READ statement in line 30. 
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60 G0Hl 30 
KtJN 

A B SUM 
10 20 30 
11 9 20 
1 2 3 

-45 18 -27 

0UT ilF DATA IN 

PiWi) 
200 
99 
2 

-BIO 

LINE 30 

I 
2 
3 
4 

PAI RS S0 l'AR 
PAIRS S<I FAR 
PAIRS S0 FAR 
PAI RS S<J FAR 

f .... nd novv the program is as follovvl's: 

10 
~o 

30 
4Ll 
!>O 
60 
70 
tlO 
90 

PKINT "A 
LET C=O 
KEAD A,8 
LET C=C+ 1 

B SUM PKOD 

PtUNf AJBJA+B;A*BJC;"PAit<S S0 FAW' 
G:H0 30 
OAfA lQ,;:!Q,l!.9 
DATA 1, 2, -45, 18 
t:ND 

SUMMARY 

We begin to see some of the types of errors and the way in which they 
affect the running of our program. There are errors of language or syntax 
errors. There are errors that prevent execution such as G0T0 870 when there 
is no line 870 in the program. Some errors do not affect the computer until it 
tries to evaluate an expression that calls for an undefined condition. And 
finally we have seen some errors that give incorrect results. As we are making 
changes in programs we may find the LIST command helpful to see the 
program in its present form. As we change programs, the line numbers may 
become very scattered or very close together. The command RENUMBER or 
EDIT RESEQUENCE makes 10 the first line number and the intervals 10. 
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Special Formatting Functions 

C-1 TAB(X) 

The TAB(X) function is available on many BASIC systems. The TAB( 
function numbers the spaces across the terminal carriage and uses this number 
to designate where to print. XXX PRINT TAB (10); "HELL0 THERE" is 
an instruction to the computer to skip out to the space whose number is 10 
and begin printing there. See program HELL0. 

HELL0 

5 PRINT "HELL0 THEf<E" 
10 PRINT TABC 10)J "HELL0 THERE" 
20 ENO 
KUN 
HELL0 

HELL0 THEf<E 
HELLiil THERE 

OiilNE 

Some systems call the leftmost space zern an<l others call it one. Some 
systems treat the argument of the TAB( ) function mod 72, so that 
TAB(lOO) and TAB(28) mean the same thing. Others use mod 75, in which 
case TAB(lOO) means the same as TAB(25). 

There may be several TAB( )'s in the same PRINT instruction. The argu
ment of TAB( ) may be a variable as in program TAB(l)· 

TAl::!C 1) 

IQ LET X=lO 
20 Pf<INT TABCX>JXJTABCX+10>JX+10JTABCX+25)JX+25 
30 ENO 
f<UN 
TABC I> 

10 20 35 

DiilNE 
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Notice that TAB( ) counts from the left margin every time it appears, not 
from the previous printed character· 

We may use the TAB( ) function to make the formatting a little simpler 
in program BANK2 in Sec. 4-3. Turn back to that program and look at lines 
132, 138, 156, 158, and 500 through 530. All of these lines were required 
to achieve flexible format. We may eliminate all of these as well as line 490 
and replace line 140 with 140 PRINT TAB(X); "$";FNH(P) and replace line 
160 with 160 PRINT TAB(X);"$";FNH(Pl). Now all we need to take care of 
is a value for X. Let us try 35 the first time through. Anywhere before line 
:140 we may insert ZZZ LET X = 35 and call for a RUN. 

530 
520 
510 
500 
490 
15B 
156 
138 
132 
140 PRINT TABCIOJ "$"J FNHCP> 
160 PRINT TABCXH"$";FNHCPI> 
135 LET X=35 
RUN 
BANK2 

F0R TEN YC:AkS 
@4.51 C0MP0UNDED M0NTHLY••• 
~4.751 C0MP0UNDED QUARTERLY ••• 

$ BB· 24 
$ 90.29 

The printed results are aligned nicely. Now let us list the new program in 
full with the value of X at 31 and call for a final RUN. 

BANK2 

2 DEF FNHCX>=INTCX*I00+.5)/100 
10 LET P=Pl=S6.31 
20 FOR Y=l TO 10 
22 REM F0R TEN YEARS 
30 F0R M=l T0 12 
32 REM C0MP0UND M0NTHLY AND COMPUTE INTEREST 
40 LET I=P*4.S/100/12 
SO LET P=P+I 
60 NEXT M 
62 REM THAT FIGURES THE INTEREST FOR THIS YEAR C0MP0ll·\JDED 

M::JNTHLY 
70 FOR Q= 1 T0 4 
72 REM C0MP0UND QUARTERLY 
BO LET Il=Pl*4·75/I00/4 
90 LET Pl=Pl+I 1 
100 NEXT Q 
102 REM THAT TAKES CARE 0F THE QUARTERLY INVESTMENT FOR THIS 

YEAR 
108 REM NOW TO COMPUTE THE NEXT YEAR 
110 NEXT Y 
120 PRINT "F0R TEN YEARS" 
130 PRINT "@4. 5% C0MP0UNDED M0NTHLY· •• "J 
135 LET X=31 
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140 
150 
160 
9999 
RUN 
BANK2 

PRINT TAB< X > J "$"; FNH< P > 
PRINT "84. 75% C0MP0UNDED QUARTERLY••."; 
PRINT TAB<X>J "$"; FNH<Pl) 

END 

F0R TEN YEARS 
84.5% C0MP0UNDED M0NTHLY... $ 88.24 
84.75% C0MP0UNDED QUARTERLY ••• $ 90.29 

D0NE 

C-2 IMAGE STATEMENT 

There may be an IMAGE statement available on your system. An IMAGE 
statement provides the printing pattern for a PRINT statement in yet another 
statement. For our BANK2 program, we would use the following set of 
statements: 

130 PRINT USING 140, FNH(P) 
140 :@4.5% C0MP0UNDED M0NTHLY 
150 PRINT USING 160, FNH(Pl) 
160 :@4.75% C0MP0UNDED QUARTERLY 

$ ## ## 

$ ## ## 

to achieve the results of the last RUN above. The IMAGE statement begins 
with a colon and the number signs specify the locations of the digits in the 
numerical results. In an IMAGE statement, you may specify the location of the 
decimal point and the number of digits on either side with the number of 
number signs. The IMAGE statement may specify printing for several num
bers by having several sets of number signs. You may also specify E-format 
by following the number signs with four exclamation marks ( ... ##!!!!). In 
our problem above, if we decide to change the location of the printed results, 
we simply retype lines 140 and 160. 



Summa 

( TerminaQ 

Input 
Output 

Predefined 
process 

0 

Operaiion 
Opens loop 
Closes loop 

APPENDIX D 

of Flowchart Shapes 

Used for beginning and ending of program. 

Indicates data entered into the computer or results 
returned by the computer. 

READ 
PRINT 
INPUT 

MAT READ 
MAT PRINT 
MAT INPUT 

READ# 
READ: 
WRITE# 
WRITE: 

Indicates that a decision is being made. 

IF xxxxxx THEN yyy 

Indicates a sequence of program statements not in
cluded in the flowcha1 t May be used for G0SUB 
statement. 

Connector. Indicates transfer from one statement to 
another other than the next higher numbered 
statement in the program. N matches another N 
elsewhere in the same flowchart. 

Used for anything not already specified. 

NEXT X 
LET 
RETURN 
ST0P 
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APPENDIX E 

Summary of Statements in 
BASIC 

NOTE: Not all statements which appeal' in this appendix will nm on all systems, 
and the list here docs not cover every statement from some systems. 

END 

PRINT 

READ 

DATA 

INPUT 

LET 

G0T0n 

IF-THEN n 

It is the highest numbe1ed statement of every BASIC 
program. It is optional on some systems and re
quired on others. 

Prints values of variables, calculated values, and 
literal expressions inside quotes. Spacing is con
trolled by semicolons or commas. 

Enters values stored in DATA statements into vari
ables named in the READ statement. All legal 
BASIC va1iables (string and numeric) may be read 
in a single READ statement by separating them 
with commas. 

Stores values for READ statements. Items of data 
must be separated by commas. Some systems re
quire that strings be in quotes. 

Same as READ except that data is to be typed on the 
keyboard of the remote terminal. 

Assignment statement. The word LET is optional on 
many systems. Stores the value on the right of an 
equals sign in the variable named on the left. May 
be used to assign string variables. Multiple assign
ment is available on most systems. 

Names n as the next line number to be executed by 
the computer. 

Tests the truth of an algebraic sentence placed be
tween the IF and the THEN. Sends the computer 
to line n if the sentence is true. Control passes to 
the next line of the sentence is false. 
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REM 

F0RX = AT0B 
STEPC 

NEXTX 

G0SUBn 

RETURN 
DEF FNA(X) 

DIM A( ),B$( ) .... 

ST0P 

REST0RE 

CHANGE A$ T0 A 

CHANGE A T0 A$ 

MAT READA 

MAT PRINT A 

Permits the programmer to remark upon the program 
in the program itself without affecting the program 
operation. Some systems allow an apostrophe, ', to 
serve the same purpose. 

Opens a machine loop with first value for X at A, last 
number B, and increment C. If C is omitted, the 
step defaults to an increment of 1. 

Closes machine loop. Sends the computer to the 
corresponding F0R statement to increment and 
test X. 

Sends the computer to a subroutine beginning at line 
n. Upon executing a RETURN statement, the com
puter returns to the line immediately following 
G0SUB n. 

Closes a subroutine. 
Program-defined function. The letter pair FN desig

nates that a function is called for. The function 
name is A and the argument is X. Any letter of 
the alphabet may be placed where the A is. Some 
systems permit several variables as arguments. 

Declares dimensions for one- or two-dimensional nu
meric arrays or string arrays or both. One number 
is required in the parentheses for a list, and two 
numbers separated by a comma are required for a 
two-dimensional array. 

Execution of ST0P statement causes termination of 
the RUN at that point. 

Restores all data in the program. The next item of 
data to be read will be the very first data item in 
the program (not discussed in text). 

Stores the ASCII code of the characters of the string 
A$ in the array A with the length of the string in 
characters stored in A(O). 

Stores a string in A$ with length specified in A(O) 
and characters determined by the ASCII code 
stored in the array elements of the A list. 

MATRIX INSTRUCTIONS 

Enters data into the array named A. Several arrays 
can be read in the same MAT READ statement by 
rn.,.-.01••'\f.;,,,-r +'ha ri1•1"•'\1r ",,,..,,"Y'IOC' ,'lr;fl, nrVn'"\1..,onC' ........... 1 ......................... b ....... ....., ............... ) ............................. ~ ..... ...,...._, .................... . 

Prints the array named A with comma spacing. Sev
eral arrays may be printed with the same MAT 
PRINT statement by separating array names with 
a comma or a semicolon. The delimiter specifies 
the spacing for the preceding array. 



MAT INPUT 

MAT C =Ao B 
MATA=B + C 
MAT A= B-C 
MAT A= (K)oB 

MATA= ZER 

MAT A= C0N 

MATE=IDN 

MAT X = INV(A) 
MAT A = TRN(B) 

SQR(X) 

ABS(X) 
SGN(X) 

INT(X) 

RND(X) 

RND 

RAND0MIZE 

SIN(X),C0S(X), T AN(X) 
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Enters data into an array from the keyboard (not dis-
cussed in text). 

Enters the product of A and B into array C. 
Enters the sum of Band C into array A. 
Enters the difference of B and C into array A. 
Multiplies each entry of B by the scalar K and enters 

the result into A. 
Creates the zero matrix (fills each entry of A with 

zero). ZER may be followed by redimensioning 
specifications in parentheses. 

Fills each element of A with 1. C0N may be followed 
by redimensioning specifications in parentheses. 

Forms the identity matrix E. E must be square. All 
elements with equal row and column numbers are 
1 and all other elements are 0. IDN may be fol
lowed by redimensioning specifications in paren
theses. 

Finds the inverse of A (if it exists) and enters it in X. 
Fills A with the transpose of B. 

FUNCTIONS 

Computes the nonnegative square root of X. X must 
be nonnegative. 

Computes the absolute value of X. 
Returns the value 1 for X positive, 0 for X equals 

zero, and -1 for X negative. 
Returns integer part of X. For some systems this is 

the mathematically greatest integer function. For 
others, the computer simply chops off the digits 
to the right of the decimal point. (The results are 
the same for nonnegative numbers.) 

Generates a random number. In some systems the 
set of random numbers accessed is determined by 
the value of X. Some systems generate the same 
set of numbers each time the program is run, 
whereas others provide a different set and still 
others provide an option. See RND below. 

Returns a random number. The numbers will be the 
same on successive nms of the program if the 
RAND0MIZE statement is not present in the 
program and different on successive runs if the 
RAND0MIZE statement is present. 

Causes the random numbers generated in successive 
runs of the same program to vary. 

Computes the sin, cos, or tan of X, where X must be 
in radians. 
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ATN(X) 

L0G(X) 
EXP(X) 
TAB(X) 

LEN(A$) 
EXT$(A$,I,J) 

FILES 

READ #N,R 

READ #N; 

MAT READ# 

PRINT #N,R 

PRINT #N; 

IF END #N THEN n 

TYP(N) 

Computes the arctan of X. ATN(X) is in radians. 
The program must be written to determine the 
correct quadrant for the result. 

Computes the logarithm of X using base e. 
Computes the number whose L0G base e is X. 
Moves the printing mechanism to the (X + l)st posi

tion of the carriage unless the printing mechanism 
is already past that point, in which case there is 
no effect 

Returns the number of characters in the string A$. 
String extract function. Isolates a substring in A$ 

from the Ith to the Jth character inclusive. 

FILES 

Hewlett-Packard Files 

Names files to be used by the present program and 
makes them available for access. File names are 
separated by commas. 

Sets the file pointer to the beginning of the Rth rec
ord of the Nth file named in the files statement. In 
addition, when followed by a semicolon and vari
able list, this statement reads values from the file 
to the variables. 

When followed by a variable list, this statement reads 
from the file at a point previously established. 

Reads values from a file with the same options al
lowed for READ #. 

Sets tl;e file pointer in the Nth file named in the files 
statement to the beginning of the Rth rcord and 
erases the contents of that record. In addition, 
when followed by a semicolon and a variable list, 
this statement causes the contents of the variables 
to be printed into the file. 

When followed by a variable list this statement 
causes the contents of the variables to be printed 
wherever the file pointer has been previously set. 

When executed, this statement sets a flag. If at any 
later time an attempt is made to read past the end 
of data or past the physical end of the file or to 
i~rjnt f''1<t tJlP I'hydr>n J Pnr] nf t]lP filp, NmtrnJ 

passes to line n. 
The TYP (N) function takes on values from 1 to 4, 

depending on the nature of the next information 
in the file TYP(N) becomes 1 for number, 2 for 



FILES 

READ #N, 

WRITE #N, 

IF M0RE #N 

IF END #N 

APPEND #N 

SCRATCH #N 

RESTORE #N 
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string, and 3 for end of file. If the argument is 
negative, the value 4 will be returned for end of 
reconl. 

General Electric Files 

Names files to be used by the current program and 
makes them available for access. File names are 
separated by semicolons. 

ASCII Files 

Reads data from the Nth file named in the program 
into the variables of the variable list following the 
comma. 

Writes data from the variable list following the 
comma to the file. The variables in the list may 
be separated by semicolons or commas to achieve 
corresponding spacing in the file. 

Determines whether or not there is more data in the 
file. 

Determines whether or not the end of the file has 
been reached. 

Allows additional data to be written to an existing 
file by setting the file pointer to the end of the Nth 
file and placing the file in the WRITE mode. 

Sets the pointer of the Nth file to the beginning of 
the file, erases the file, and places it in write mode. 

Sets the pointer of the Nth file to the beginning of 
the file and places it in the READ mode. 

Binary Sequential Files 

Binary sequential files may be prncessecl by all of the above statements by 
substituting a colon (:) for the pound sign (#). Binary files should be less ex
pensive to work with; however, ASCII files are very convenient due to the fact 
that they may be listed at the terminal. 

READ :N, 
WRITE :N, 
IF M0RE :N 

IF END :N 

SCRATCH :N 

Random Access Files 

Same as ASCII. 
Same as ASCII. 
Tests true, except when the file pointer is at the phy

sical encl of file. 
Tests false, except when the file pointer is at the phy

sical encl of file. 
Places the file pointer at the beginning of the file and 

fills the file with binary zeros. 
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REST0RE :N 

SETW NT0X 

Places the file pointer at the beginning of the file 
without altering the contents of the file. 

Places the file pointer to the Xth word of file N. To 
access a random file by record, the formula 
W 0 (R - 1) + 1 places the pointer at the begin
ning of the Rth record if there are W words per 
record. 



APPENDIX F 

Index of Programs in Text 

Program 

ADDA,B 
ALLZER 

ARANGl 

ARANG2 
ARANG3 
ARANG5 
ARANGE 
ARRAY! 
ARRAY2 
ARRAY3 
ARRAY4 
ASIS 

AVERAGE 

AVG 
AVGCNG 

BANKl 

BANK2 
BASE 
BASE-2 
BIRTH 
CHANGE 
CHANGF 
CLASS 

CL0CK1 
CL0CK2 

Description 

Adds complex numbers in (A,B) form 
Finds nonreal zeros for some fourth-

degree polynomials 
Prints list after each exchange in 

ARANGE 
Uses G0SUB for printing in ARANGl 
Orders a list of random integers 
Orders lists in excess of 10 elements 
Orders list of 10 numbers from data 
Demonstrates filling an array 
Prints contents of ARRAY! 
Detailed array manipulation 
More detailed than ARRA Y3 
ABS( ), SQR( ), INT( ), and SGN( 

demonstration 
Calculates test average from file SC0RE 

(GE) 
Average test scores 
A VG done with nested loops First nested 

machine loops 
Compound amount on $56.31 at two 

rates 
BANK! with rounding and spacing 
Change base-10 numbers to base-2 
Base with digits printed closely packed 
Probability of two identical birthdates 
Demonstrates change statement (GE) 
Demonstrates EXT$ function (GE) 
Probability of membership on a commit· 

tee 
Clock arithmetic with time of day 
Modifies CL0CK1 
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Page 

148 

171-172 

42 
44 
65 
67 
40 
79 
80 
81 
82-83 

48 

117 
31 

32 

56 
60 
96 
97 
205 
107 
107 

204 
69 
69 
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Program 

CMPINT 

C0MFAC 

C0MP-l 
C0NVRT 
C0URS1 

C0URS2 
DAYSOl 
DEF( ) 
DEMREM 

DESCRT 
DICE 
DICE-1 
DIGIT 
DIGIT2 
ENTERA 
FIRST$ 
FLIP 
FLIP-1 
G0SUB 
INTZER 
IZER01 

LADER 
LADERl 
LADER2 
LAWC0S 
LAWSIN 
LEFT 

LISTI 
L00Pl 
L00P2 
L00P3 
L00P3+ 
LUPDEM 
MAMD12 
MAT-1 
MAT-2 
MAT-3 

MAT-4 
MAT-5 
MAT-6 
MATINV 
MATSPl 

Description 

Finds compound amount of $2000 after 
nine years 

Finds greatest common factor using the 
Euclidean algorithm 

Finds nonreal zeros for trinomials 
Converts inches to feet and inches 
Finds numbers of persons taking five 

courses 
C0URS1 with random data 
Reads days of week into MAT W$(GE) 
Introduces DEF 
Demonstrates finding remainder after in-

teger division 
Uses Decartes' Rule of Signs 
Probability of two l's on 10 dice 
Probability of 0 to 10 l's on 10 dice 
Prints base-10 numbers digit by digit 
Prints integers using string output (HP) 
File prints one name to a record (HP) 
First string program 
Simulates flipping a coin 50 times 
Simulates flipping 50 coins 10 times 
G0SUB demonstration program 
Finds integral zeros of polynomials 
INTZER with a subroutine-defined func-

tion 
Uses SIN( ) in right triangle 
Gets several values for LADER 
Introduces arctangent function 
Given three sides of a triangle 
Given two angles and nonincluded side 
Probability of 10% success on 100 bi-

nomial trials 
First list demonstration program 
First loop introduction 
Second loop introduction 
First machine loop using F0R-NEXT 
Uses the loop variable 
Demonstrates several loop properties 
Multiply and add mod 12 
Preintroduction to matrix instructions 
First MAT READ and MAT PRINT 
Shows the order in which MAT READ 

reads 
Prints column vector 
Prints row vector 
Shows redimensioning of a matrix 
Takes the inverse of a matrix 
Special matrices in BASIC 

Page 

33 

93 
170-171 
54 

77 
78 
106 
58 

53 
174 
211 
211 
99 
105 
113 
102 
207 
207-208 
43 
161 

164 
135 
136 
137 
143 
140 

212 
44-45 
25 
25 
26 
26 
27 
70 
176 
177 

177 
178 
178 
178 
191 
188 



Program 

MLTR,G 

M0Dl2 
N! 
NCR 

NPR 

0RD$ 
0RDER$ 
0RDERA 
0RDERAVG 

PAIRS 

PASCAL 
PICK 

PL0Tl-PL0T5 

P0LAR 
PRIME I 
PRIME2 
PRINT 
PRINTl 
PRINT2 
QUADl 

QUAD2 
RAND3+ 
READ 
READOl 
READ02 
READA 
READTEST 
REAL 

REALI 
REDUCE 
RND 

RND(l) 
RND(2) 
RND(3) 
R0LL 
R00TS 

R0UND 
SC0RE 
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Description 

Multiplies two complex numbers in polar 
form 

Mod 12 addition 
Computes factorial N 
Computes combinations of N things R 

at a time 
Computes permutations of N things R 

at a time 
Compares strings for order 
Alphabetizes characters of a string (GE) 
Alphabetizes names in a file (HP) 
Arranges student data by test average in 

a binary file 
Prints all possible pairs from two sets of 

four numbers 
Prints numbers of Pascal's triangle 
Selects numbers from a random access 

binary file 
PL0Tl tluough PL0T5 develop a plot-

ting program 
Prints coordinates from polar graphing 
Finds prime integers from data 
More efficient than PRIMEl 
First HP file program 
Uses 'IF END' in HP file 
Prints to a file random access (HP) 
Finds real roots of 

AX t 2 + BX + C = 0 
Analyzes parabola 
Random decimal numbers 1. to 11 
Reads a data file (HP) 
Uses 'IF END' in HP file 
Reads from a file random access (HP) 
Reads names from a file (HP) 
Reads file SC0RE (GE) 
Finds intervals for real zeros of poly-

nomials 
REAL with input to reduce interval size 
Reduces common fractions 
Loads a binary file with 18 random num-

bers (GE) 
Introduces random number generator 
Random integers 0 to 9 
Random integers 1 to 10 
Simulates rolling 6 dice 1000 times 
Takes roots of complex numbers in polar 

form 
Uses INT(X " 100 + .5)/100 for first time 
Listing of ASCII file (GE) 
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151 
70 
199 

201-202 

200 
102 
108 
114 

120 

38 
213 

119 

127-130 
145 
49 
49 
110 
111 
112 

123 
125 
63 
111 
111 
113 
U.3 
116 

166 
166-167 
52 

119 
62 
62 
63 
208 

153 
57 
116 
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Program 

SC0REI 
SEG$I 
SEG$2 

S0LVE 
SR VEY I 
SUMI 
SUM2 
SUM3 
SUM3+ 
SURVEY 

SYNDIV 
TCHB 
TCHB+ 
T0LL-I 
T0LL-2 
T0LL··3 
T0TAL 
T0TAL+ 
TRAGL 
TRI 0 BI 
TRIG I 
TRP0SI 
TRP0S2 
TV'S 
WRITEAVG 

Description 

Listing of ASCII file (GE) 
Demonstrates string subscripts (HP) 
Prints one digit numeric using string out-

put (HP) 
Solves four equations and four unknowns 
More processing of data' in SURVEY 
Adds integers I through 50 
Modifies SUMI 
Modifies SUM2 
SUM3 using machine loop 
Uses a I5 by 5 array to analyze a ques-

tionnaire 
Divides a polynomial by X - R 
Tabulates four items per family 
TCHB done with an array 
Reads and prints data for T0LL-2 
Prints schedule of tolls paid 
T0LL-2 with matrix operation 
Finds total cost of five different items 
T0T AL using machine loop 
Demonstrates variable loop limit 
Multiplies a trinomial by a binomial 
Prints trig table 0 to 80 degrees 
Takes the transpose of a column vector 
Takes the transpose of a 2 by 4 matrix 
Tabulates survey of TV sets per family 
Loads file SC0REI from file SC0RE 

(GE) 
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88-89 
I7 
17 
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76 
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APPENDIX G 

Answers Eve u bered Problems 

Each two-page spread should be read from top to bottom as one individual page. 

CHAP. 1 

Problem No. 2 

The answer to th s wi 11 vary from 286 ior computers 

permitting only single letters of the alphabet. upward. 
Some systems permit dollar signs and ampersands as 
variables. Other sy,.tems permit several letters of the 
alphabet, such as ABX. as simple variables. 

Problem No. 4 

The quote IS an nstruction to the computer that the 
printed message 1s terminated. Here again. systems dif
fer. Some systems r erm1t printing double quotes (") by 
including them bel\;een Single quotes ('), such as: 'HE 
SAID. "HELLO." ' 

Problem No. 6 

10 ><£AU A,Ji 
20 PrtINT A+~ 
25 OATA 1 ·E•06 •• 0QI 
JO ENO 

"'"' 6 

1 .oooooE•06 

DONE 

Problem No. 8 

10 P~INT 2/"J 
?.O ENO 
RUN 
8 

·666667 

OCNE 

Problem No. 16(dl 

10 LET N=<2Jo461-7o048)14 
20 LET 0:4.96tJ-67o8•2 
JO PRINT N/"D 
40 ENO 
RUN 

"' 
-9.61374 

DONE 

CHAP. 2 

Problem No. 2 

The READ statement calls for two variables. A Single 
zero would have caused the program to terminate, as 

the variable P would find no data. 

Problem No. 4 
~ .-.CEM THE LINES USED TO MODIFY l-'1W(HAM SUM2 AriE 75• 15 ANU J5 

10 LET N"S 
IS LET T::iO 
20 LET S=O 
JO LE"T S:iS+N 
JS LET T"T• I 
40 JF"N:IJ91THEN70 

SQ LET N"N+2 
60 GOTO JO 
70 PRlNT "S•JM DF' DOD NUMBErtS FROM 5 TC 1191 15"1 S 

7S Pi'!INT "THE NUMBEH OF NU1'1BERS SUMMED IS"JT 

90 ENO 
RUN 
'l(!,4 

su;.i OF' GOD NUMBE~S F',tQH s TO 1191 IS JSS212· 

THE NUMBER OF' NUMBERS Sl..1'1HEO IS 594 

DONE 

Problem No. 12 

10 PRINT "INITIAL BA!.ANCE" S1<1.2J'" 

20 LET B::t.o1.2J 
JO READ T 
JS IF' T"O THEN 110 
<10 1..ET a-..a .. r 
50 PRINT B 
60 GOTO JO 
100 OATA 9,-J.2.o1.-1.9a.-J.as .. o 
110 END 
RW 
N0.12 

INITIAi... BALANCE" Sl.t.23 
2J.23 
19,9<,i 
18-01 
l.4ol6 

DONE 

Problem No. 14 

10 LET G•O 
20 LET D"I 
JO REH G KEE:PS TRACK OF' THE NU11BER OF' GlF'TS 

JI REH 0 IS THE DAY NUMBER 

32 REH T TOTAl.S THE NU11BER OF' GlF'TS ON A GI VEN DAY 

40 I.ET T•O 
SO I.ET T•T+I 
60 I.ET G•G+T 
70 lF' T,.O THEN BO 
75 GOTO 50 
BO LET O•O• I 
90 IF' D <• 12 THEN 40 
100 PRINT "T0TAI.. Nl.1'4BER OF' GIF'TS IS"J G 

120 ENO 
RUN 
NO. l-4 

TOTAi.. NU'1BER OF' GI f"TS JS J6-4 

OONE 

/ 
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Problem No. 10 

10 l~AO A,!!•C•O•E•F'•G•H•l•J 
2U ... NINT A•=i•C•IJ•E•F•G•Y•!+J 
JO OATA 1,2,3,4,5,f,.?•'i•9• 10 
40 ENO 
A'JN 
IO 

DONE 

Problem No. 12 
10 READ A.a.c.o 
20 Pl'IINT A•C•A•D•>J•C.lhD 
JO DATA l•?.,J,4,2.-J,J,? 
40 GCTO 10 
50 END 
RUN 

OUT OF DATA IN LINE 

Problem No. 14 
10 l'IEAO NJ,Ql,N2,Q2 
20 LET tl=Nl•02+o'l2•DI 
JO LET Q;Ol•!J~ 

40 i>nINT "C l/2l•CS/6) 
50 DATA J.'.?,S,.6 
61) ENO 

( l/2)+{5/6) 

Problem No. 16la) 
10 
20 
JO 

HUN 
IOA 

OCNE 

N=l/2+1/J 
D=l/J-l/4 

N/O 

Problem No. 16lb) 
10 LET A:t2/Jl/C5/6J 
20 LET 8:(J/4l/C2/Jl 
JO PRINT A•B 
40 END 
R'-" 

l ·925 

DONE 

Problem No. 16(c) 
10 L.ET A"'( l/2•J/7J/C2ol• J-1 l 
20 L.ET 8:C(MJ·J•2l/Sl/Cll/4l 
JO PRINT A•8 
40 END 
RUN 

-J.J261J 

DONE 

Problem No. 6 
10 Lt::T N"IOOI 
20 LET S=O 
JO LET T=O 
JS LET T11T• \ 
40 LET S"'S•N 
45 LET N;N+ 1 l 
50 If' N >;: 2213 THEN 
70 GOTO JS 
100 PRINT "THE SUM ar THE NU'16ERS I S"J s 
110 PRINT "'THE NUMBER OF NLNBERS I S"J T 
200 END 
RUN 
NO•b 

THE SUM OF' THE NUMBERS IS 178266. 
THE NLHBER OF NUMBERS IS 111 

DONE 

Problem No. 8 
10 LET i= 1 
20 ?!<INT ll \/) 
JO IF l=25 THEN 50 
JS LET !=I•! 
40 (illTIJ 20 
50 END 
RUN 
No.a 

" " 12 

" I• 

" " " " " 20 
21 
22 
2J 
2• 
2' 

QONE 

I 
.; 
.JJJJJJ .,, 
.2 
• I 66667 
.)"42657 
.12s 
-111111 
.1 
9.09091£-02 
a. JJJJJE·02 
1·692JIE-02 
7o l4286E-02 
6o66667E-02 
.0625 
5.BB2J5E-02 
5.55556E-02 
5.26ll6E-02 .. , 
0047619 
4o54545E-02 
4ol47BJE-02 
4·16667E-02 

Problem No. 10 

5 REM THIS 15 N0. )0 
20 DATA 2,.35,3,2.65.11,.25,1.9.49,J5,1.59,o,o 
25 LET T=O 
JO AEAO N, P 
40 IF N:O THEN 100 
50 LET T:T+\ 
60 G0TO JO 
100 PRINT "THE NUMBER OF DIFFERENT ITEMS IN THE ORDER IS"IT 
110 END 
RU' 
NO. ID 

THE NUMBER OF DI FF"ERENT ITEMS IN THE ORDER IS 5 

DONE 

Problem No. 16 
10 LET T"O 
15 LET C•O 
2D READ S 
JO IF" SaD THEN 70 
40 LET CsC• I 
50 LET T"T•S 
60 GOTO 20 
70 PRINT "GEORGE TOOl("J CJ "TESTS" 
BO PRINT "FOR AH AVERAGE OF""J T/C 
90 OATA BJ,91,97, ID0,09,0 
200 EHD .,., 
N0· 16 

GEORGE T0£1K 5 TESTS 
FSA AN AVERAGE OF" 92 

OONE 

CHAP. 3 

SEC. 3-1 
Problem No. 2 
10 LET C=O 
20 L(T P•O 
JO FCi< N:\001 TO 2213 STEP 11 
40 LET C•C• 1 
50 LET T=T+N 
60 NEXT N 
70 PRINT "TOTAL lS"JT 
80 PRINT .,THE NU118Eli OF" NUMBERS IS"lf 
90 END 

R"' 
N0·2 

TOTAL IS 178~66, 
TH£. NUMBF:tl: OF Nl.l'1BERS l 5 

DONE 

Problem No. 4 
10 FO<l: ;w;;:\ TC 25 
20 P1HNT X, \/;>'; 
JO NE;>";T ;w; 
40 L'10 

""' 

.JJJJJJ 

.~5 

·' o\66667 
·142'157 
.125 
·111111 

10 ·I 

" 9.09()91£-1)2 
12 'l.JJJJJE-02 

" 7.692.31£-02 

" 7o l4266E-1)2 

" bo66667£-IJ?. 

" ~ •)6 ~5 

" s.sa2J5E-o?. 

" 5055556£-02 

" 5·"6316£-02 
?.O ·" 21 00476!9 

4,545115£-02 
4.)47'13£-0"! 
4o\6.;67E-O?. 

2' 

DONE 
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SEC. 3·1 Cont'd 

Problem Ne,. 6 
10 LET S•O 
20 f"OR X,. I TO I 000 
JO LET S:oS•t/X 
40 NEXT X 
so P~lNT "SUM or ttf.Cl~dCCA-'i f'riC'1 i TO 10-J) IS .. •S 
60 EN!J 

""' N0•6 

SUl1 or RECIPrii'.:CALS f'rlO'i 1 TJ 1000 ts 7.45547 

DONE 

Problem No. 8 
S LS::T P•IOO 
10 F'Ori 0,..1 TO 4 
20 LtT l•oOl•P 
JIJ LS::T P"P•I 
40 NEXT 0 
SO PiHNT "AMOIJNT AF'TF:R ONE YEAR lS"H' 
60 ENO 

"'' NOoB 

Al10'JNT Af"T£'1: ONE YEAR 1 S 104006 

O:JNE: 

Problem No. 10 
10 r(~el.0 !,) 

i:?U lF 020 THi:N 110 
JO L'.:T S11Q 
40 FO~ X11 1 TO 0 
51J L~T SsS•X 
60 N::xr x 
70 PMJNT "S'.N Ui" TO"JOJ"Dll.fS IS"IS 
90 GOTO 10 
10') OATA 1~~Jo.o 
110 ENO 
HUN 
NC.JO 

SU;ot urr TO 12 DAYS IS 78 
SUl4 UP TO JO DAYS JS 465 

l):lNt 

SEC. 3·2 

Problem No. 2 
10 ro~ ("I TG 
?.O F"Grl G= I TO I~ 
J'.) P·l!.'H (•Cl 
41J N;::xr c 
~O PMlillT 
61) .~EitT .l 
7·) 1:"10 
~ •}.'/ 
1~0. '=! 

" 

.... 
N8•8 

999 IS THE LARGEST AHO JS IN POSITION 9 .... 
Problem No. 1 O 
S LET l•O 
10 ,.OR R•I TO S 
20 F'O:l C•I TO 10 
25 LE.T l"l•I 
JJ PUNT II 
40 Nl'.:XT C 
SO l'.tlNT 
60 NEXT R 
70 END 

"'"' NOolO 

I 2 
II " . 

3 
13 ' ' " " 21 22 23 2' 25 

31 32 33 

" ., ., 
DONE 

Problem No. 12 
10 PrllNT "50'J.\q£"J 
20 F'Ott X•O TO 9 
JO l'r!INT XJ 
40 NEXT )( 
45 PdlNT 
SQ PIHNT 

" .. 

70 ro~ L•O TO 20 STE" 10 
75 PntNT L; 
ao f"Orl Cao TC 9 
90 PrilNT tL•CH2J 
JOG NE:XT C 
105 PttlNT 
106 P.-HNT 
110 NEXT L 
13') ENO 
1WN 
NOo 12 

SOUA>{£ 0 

" " 

6 1 
16 " 26 27 
36 37 

" 

B 9 10 
IB 19 20 
U U H 
39 39 •0 
49 .. 9 50 

10 IOJ 121 144 169 196 2::!5 256 2a9 J2.. J61 

20 400 441 46.. 529 576 625 676 729 784 

OONt 

SEC. 3-3 
Problem No. 2 
10 FOi'l I•t TO 10 
20 LET t..CIJzJt2 
JO illEXT I 
40 f"C:i J"l TO 10 
50 i"!IINT JJLtJl 
60 NEXT J 
70 END 
HU.V 
N0.2 

16 

" 
a " 
' 81 
10 100 

DONE 

eeo 1'8R J•I T8 A 
230 PRINT TCJJJ 
e•o NEXT J ... DATA 6,, 11,, 1s. n,,e6.83,, 1 s. l9•2l· 831 91 
260 [NO 

""' Nll-8 

P'IRST LIST 6 II 15 
SEClllHD LIST J5 19 ., 
Nlt4SERS tN LIST F 8R LlST S 

6 11 15 
DONE 

Problem No. 1 O 
10 P'OR 1•1 TB 10 
20 LET LCIJ,.2•I·l 
30 NEXT I 
•O F'OR J•I Te 10 
50 LET S•O 
60 F'OR K•I TO J 
10 LET S•S•l.CKJ 
80 NEXT K 
90 LET MtJJaS 
100 PRINT H[JJI 
110 NEXT J 
1eo ... ..... 
NO•IO 

I . 9 .... 
Problem No. 12 
10 P'OR X•I T8 6 
ea READ P'CXJ 
30 PRltlT F'CXJJ 
-"O NEXT X 
.. , PRINT 
50 F'OR Y•l TO 6 
60 READ SCYl 
70 PRINT SCYU 
80 NEXT Y 
85 PRINT 
90 P'OR I•1 re 6 

17 

.. 

100 LET AtIJ•F'Cll•StJl 
110 PRINT ACllJ 
120 NEXT I 

26 

•• 

17 
83 

03 

36 

130 DATA 6•h3•7•2•9•8,,2•3•9•7•• 
1-"0 END ..... 
Ne.1e 

6 

' .. a 2 9 63 I.. :Jti 
DONE 

SEC. 3-4 
Problem No. 2 
S PRINT "ORIGINAL OROER"'I 
10 F'OR X•l TO 5 
20 READ LCXl 
25 PRINT LtXlJ 
30 NEXT X 
35 PRINT 
.-o roR 1111 TO " 
50 P'OR J•l TO 5 
60 Ir LCIJ o LtJJ THEN 110 
70 LET S•Lt I l 
BO LET LC ll•LCJl 
90 LET LtJJ•S 
110 NEXT J 
120 NEXT I 
130 PRINT "l.EAST F'IRST ••1 
1'40 PRINT Lt I JI 
150 FOR U•2 TO 5 
160 IP' LCUJ•LtU-1) THEN IBO 
170 PRINT l.CUH 

•• 91 

19 

.. 

03 

., 91 

.. Bl 100 
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Problem No. 4 

5 f>-!ltlT "YEA:".!. P.~JNC!PLE" 

JU L"'.T />=1000 
20 F0:-1 Y•>l TO 10 
JO F~b •.j:! TO 4 
40 LET ! =P•·0~/"4 
50 LET f'o:?•) 
60 NEXT·.! 
70 f»UNT YIP 
flO NF.:ii:T Y 
90 mo 

N0 •. 4 

YEAH PiltNCIPLE 

DONE 

1050095 
11040<19 
I 160o?5 
1219089 
12B2o04 
IJ4?oJS 
1415099 
148fiolJ 
156Jo94 
1643-62 

Problem No. 6 
10 PrllNT "ttATE\YEARS''. l.-::?.Jo4 
15 P•HNT 
20 F"CR ~"'"' TO 5,5 STEP 
25 LET P: 1000 
30 P..tlNT rlo 
40 FOR Y=I TO 4 
50 F"Dtt Q:I TO 4 
60 LET f=P•(,1.1'100>1'4 
70 LET P•f>•I 
80 NEXT 0 
90 P~JNT ;>, 

100 NEXT Y 
120 N£XT H 
130 £NO 

N0o6 

RATEVl'EAN!:i 

•·5 

5.5 

OGrH: 

Problem No. B 
10 READ S 
20 LET P•l 

104006 

1045.77 

1050.95 

1056-14 

28 F'BR F•2 Te 10 
30 READ N 
50 IF S ,.. N THEH 80 
60 LET S•N 
70 LET P•F' 
80 NtxT F' 

I'>;\ 

J08::?oli6 11:n •• w 

l09J.62 ll4J.67 

110•1.49 1160075 

1115044 11713:007 

90 PRINT SJ,.IS THE LARGEST AND IS lN POSITION,.JP 
100 DATA s1.32.1s3.-999.816;321.~2.18.999·3 
110 END 

"' 

117?..SR 

1 IY6.0! 

1?.l9.R9 

l'>;-t<1.~I 

Problem No. 4 
10 PRINT "F"IRST LIST"J 
20 r;'OR X•I T0 5 
JO READ nxl 
AO PRINT r;'CXlJ 
SO NEXT X 
SS PRINT 
60 PRINT "SECOND LJST"J 
10 F'OR Y• I TS A 
80 R£AD SCYl 
90 PRINf SCYlJ 
100 NEXT Y 
105 PRINT 
110 PRINT "ALL PAIRS" 
120 nm A•I TD s 
130 F'BR B•I TO A 
140 PRINT F"CAlJStBl• 
I SO NEXT 8 
ISS PRINT 
160 NEXf A 
165 DATA 6.A.11.s1.11.s1.12.11.16 
170 ENO 
RUN 
N0oo4 

F'IRST LIST 6 . II 51 
SECOND LIST SI 12 II 16 
ALL PAIRS 

6 51 6 12 6 . 51 . 12 . 
II 51 II 12 II 
51 51 51 12 51 
17 51 17 12 17 

OSNE 

Problem No. 6 
10 PRJNT "TOTAL COST • S"J 

17 

II 
II 
II 
II 
II 

. 
II 
51 
17 

20 DATA 2 •• JS.Ja2o65.11 •• 2s.1,9 • .-9,35,1.5910.-0 
25 LET T•O 
27 LET l•O 
28 LET l•l•I 
JO READ NCll•P(ll 
JA Ir NC I l•O THEN '45 
'40 LET T•T•Nt I l•PC I l 
42 GOTO 28 
'45 PRINT T 
70 ENO 
RUN 
NB.6 

TOTAL COST • S 76.SA 

DONE 

Problem No. B 

16 
16 
16 
16 
16 

5 REH USE THREE LISTS r.s.r F'OR F"IRST SECOND ANO THIRD 
10 PRINT "rtRST LIST"J 
20 F'OR X•I TO 6 
JO READ F"CXl 
<40 LET TCXl•F'tXl 
so PRINT nxu 
60 NEXT X 
70 PRINT 
80 PRINT "SECOND LIST"J 
90 F'OR Y•I TO 5 
100 READ SCYl 
110 PRINT S(YlJ 
120 NEXT Y 
!JO PRINT 
IAO LET A•6 
145 PRINT ,.HUl18ERS IN LIST F' OR LIST S" 
150 FOR X•l TO S 
160 F'OR J•t re A 
170 IF' SCXl•Ttll THEN 210 
180 NEXT I 
190 LET A•A+l 
200 LET TCAJ.SCXJ 
210 NEXT )( 

180 HEXf U 
190 DATA 45•76.•76•<45•98 
200 END 
RUN 
He .. 2 
DRJGIHAL DROER 45 76 •76 45 98 
LEAST F'IRST •76 AS 76 98 
DBHE 

Problem No. 4 
10 L£T A"O 
IS LET T•O 
20 nm X•I TD 6 
30 READ S 
3S lF' Sa- t THEN 130 
40 PRINT SJ 
SO 1..ET T•T•S 
60 NEXT X 
10 LET G•T/6 
80 PRINT "AVG ""IG 
90 LET A"'A+l 
100 LET GCAl•G 
120 GOTO IS 
130 F'OR X•I TD A 
140 L£T HC Xl•X 
150 NEXT X 
155 LET SAO 
160 F'DR Y•I re A-1 
170 IF G(Yl ,.. GCY•ll THEN C40 
160 L£T SlaGCl'l 
190 LET GfYJ•GlY+ll 
200 LET G(Y+ll•SI 
205 LET S2•HCYl 
210 LET HtYl•HCY•ll 
220 LET HCY+ll•S2 
2JO LET S11t 
240 NEXT Y 
250 IF' S.,1 THEN 155 
252 PRINT 
255 PRINT "GRAD£ AVERAGE"•"tlRIGINAL LOCATleN" 
260 F'OR S•I TO A 
270 PRINT GCS),HtSl 
280 NEll:T S 
290 DATA 65.68.73.as.82.a1 
292 DATA 1.-.81.90,9a.81.8e 
294 DATA 86.91191192;90.89 
296 DATA 9118J;76•89,79.87 
298 DATA 65.16167.SQ,60.66 
299 DATA -t 
300 END 
R ... 

65 68 73 85 82 ,. 87 90 88 87 
88 97 " 92 90 
91 83 78 89 " 65 76 67 50 60 

87 
88 
89 
87 
66 

GRADE AVE:RAGE 
91.1667 
aS.6667 

BRIGlNAL L0CATION 
3 
2 

a.-.s 
76.6667 
6• 

DSNE 

Problem No. 6 
5 LET L•O 
6 LET H•O 
10 reR X•I TO 1 
20 READ LCXl•HtXl 
JO LET L•L•Lt Xl 
40 L£T H•H+HtXl 
SO LET RtXJ•HCXl•L[Xl 
60 NEXT X 
10 PRINT "AVG Lew •"L/7 
BO PRINT "AVG HIGH •"H/'J 
90 LET R•R( I l 

AVG • 16·6667 
AVG • 85.6667 
AVG • 91 .. 1667 
AVG • 8Ao5 
AVG ., 6A 
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SEC. 3-4 Cont'd 

Problem No. 6 Cont'c 

100 L£T O•l 
110 F"OR X•2 TO 7 
120 ff R >• RCXl THEN lSl 
I JO LET fl•f(( Xl 
I 40 LET O"X 
150 NEXT X 
160 PRINT "HIGHEST RANGE :o"R 
170 PRINT "'ON oA·t NUMBER "O 

11s DATA s1.11,Aa.61.so. n.ss.1a.ss.16.ss.1s.~9,.79 

180 ENO 
Rl.W 
Ni'.h6 

AVG LOW a SI 08571 
AVG HIGH a 1'4,7143 
HIGHEST RANGE " JO 
ON Ohl NUHBER 7 

DONE 

Problem No. 8 

10 LET X110 
20 LET T•O 
JO LET X•X•l 
<10 Rf.:AO 1.CXJ 
50 H" LCXl•O THEN 90 
60 PRINT LOOI 
70 LET T•T•L{Xl 
BO GOTO JO 
90 LET A:of/(J::-1) 
95 PRINT 
100 PRINT "AVERAG£ •"A 
110 LET S•O 
120 ,.OR B•I Ta X-2 
130 IF' L{Bl o LCB•IJ Tl EN ISO 

140 LET Sl•L[Sl 
ISO LET LC8JaLC8•1l 

160 LET LCB•ll•SI 
170 LET S= I 
I BO NEXT 0 
190 II' 5 7 1THEN110 

200 F'OR C• I TO x- I 
210 II' A•LtCl THEN 240 

220 PRINT C- i"SCORES WEl!E BELOW AVE:RAGE" 

230 Gore 260 
240 NEXT C 
250 PRINT "TROUBLE" 

260 F'OR O"X-1 TO ! STEP -I 
210 lf' Acl..,[DJ THEN 300 

260 PRINT X-C"TEST SCORl:S WERE ABOVE AVERAGE" 

290 GOTO 320 
300 NEXT 0 
310 PRINT "TROUBLE" 

J20 PRINT LC INTC<X-1 )/2 ··5>J"IS THE MEOlAN SCORE" 

325 OATA 65,71,62>63190 56166,67,6S 

J26 OATA 0 
J30 ENO 
it UN 
NO.a 

65 71 52 90 56 
AVERAGE ::: 70 

6 SCORES WERE BELOW WERAGE 

J TEST SCOH ES \IERE A lOVE AVERAGE 

IS THE MEDIAN SCIJR~ 

DONE 

CHAP. 4 

SEC. 4-1 

Problem No. 2 

" 65 

""' NC.6 

2J7 • J • 711 

79 • 9 " ?I I 
• 711 " 711 

' •-991 ., • 991 "-991 

1'1 • 3 "453 
I • 453 • 453 

-327 • 2 •-654 
327 •·2 .. -654 

-216 • 3 •-65'4 
216 •-3 •-654 

-109 • 6 a-65"' 
109 ·-· =-654 

' •-654 .. -654 
·I • 654 .. -654 

1009 

•-1009 "-1009 
• 1009 •-1009 

9001 

OONE 

Problem No. 8 

10 F'OR X•'iOOi TO 1500 STEP 2 

20 F'OR 1=3 TO SQR<X> STEP 2 
JO IF' X/I»lNT<X/U THEN 60 
40 NEXT I 
~O PRINT XI 
60 NEXT X 
70 ENO 
Rt>< 
NO.g 

1009 

1103 

1111 

1229 

1269 

1321 

1<127 

1<171 
DONE 

10JJ 

1061 

1109 

llSI 

1231 

1291 

1361 

1<129 

1<181 

SEC. 4-2 

Problem No. 2 

10 READ N10 

11 IF' N•O THEN 150 
12 PRINT N"l"'D"""J 
13 IF' N•O THEN 11 
IA L.ET X•O 
15 Lt:T Y•N 
16 GIJTO 20 
11 LET Y•O 
16 LET X•N 

1019 

1063 

1117 

1167 

1237 

1297 

1367 

1<133 

1483 

20 F'OR P1rX TC 2 STEP -1 
JO IF' X/PcJNTOVPl THEN 70 

1021 

1069 

1123 

1193 

1249 

!JOI 

1373 

1<139 

1467 

1031 1033 1039 

1067 1091 1093 

1129 1151 1153 1163 

1201 1213 1217 1223 

1259 1217 1219 1263 

1303 1307 1319 1321 

1361 1399 1409 1423 

1<141 1451 1<153 l.459 

1469 1493 1<199 

Problem No. 8 
10 READ r.s 
20 IF' F'•O THEN 999 
25 PRINT F'JS."GCF'•"J 

30 F'0R X•F' TO I STEP - I 
AO IF' S/X•INTCS/X) THEN 60 

50 CHH0 10 
60 IF' F'/X•INTCF'/Xl THEN 

10 NEXT X: 
60 PRINT l 
90 GOTO 10 
110 PRINT X 
120 GOTO 10 
200 OATA I YO. 1063.271 351211 J61 16,. 34> 121201 Q,. 0 

999 ENO 
R .... 
N0.6 

190 1063 GCF'c 19 

27 35 GCI'• I 
27 36 GCf'c 9 

" 
,. GCF'• 2 

12 20 GCF'• A 

DONE 

Problem No. 10 

10 LET F"rl}•I 
20 LET F't2l•I 
JO f'OR Jr.J rn 10 
40 l.ET f'( IJ•F'Cl-ll•F'ct-21 

50 NEXT ': 
60 F'OR InJ TO 9 
70 F'OR J11I+l TO 10 
60 l.E'i F'nF'Cil 
90 l.ET SHF'{J] 

100 Gesuo 1000 
110 NEXTJ 
120 NEXT l 
130 F'0R Z•I TO C 
IAO PRINT UZH 
ISO NEXT Z 
160 GOT0 I 120 
I 000 ,.OR X•F TO I STEP - I 

1010 IF SIX•JHTCS/XJ THEN 1030 

1020 GOTO IOAO 
IDJO 1' l"IX•WTCF'IX> THEN 1060 

1040 NEXT X 

1050 GOTO 1110 
1060 reR Y•i TO c 
1010 IT :t•l.tYl TH£N 1110 
1060 NEXT Y 
1090 Lt:T C•C• I 
1100 I.ET 1...cc1 .. x 
1110 Rt:TURN 
1120 ENO 
RUN. 
NO.to 

' OONE 

SEC. 4-3 

Problem No. 2 
10 l.tT P11 5 
20 roR y .. 1 TO es 
JO F'OR 11111 TO 12 
AO LET JnPo.045/12 
50 LET PnP+I 
60 LE:T PnP•S 
70 NEXT 11 
80 NEXT Y 
90 PRINT P 
100 om 



"'° .i:.. 
CJt 

10 PRINT 
IS READ N 
17 IF' N•O THEN 110 
20 F'DR 0•2 TO SORHI> 
30 IT N/D•INTCN/0) THEN 70 
"40 NEXT 0 
SO PRINT l"•"N"•"N 
60 GOTO 10 
70 PRINT N/O"•"D"•"N 
7S IT O•N THEN 10 
ao GOTO 40 
es DATA 19"46.1949.1001·0 
110 END 
RUN 
N0.2 

973 • 2 • 1946 
278 • 7 .. 1946 
139 • 1"4 .. 19"46 
I • 19"46 • 19"46 

1"43 • 7 .. 1001 
91 • 11 " 1001 
77 • IJ " 1001 

• 1001 • 1001 

OON( 

Problem No. 4 

5 PRINT "NUMBER"•"ABS0LUTE VALUE" 
10 READ A 
20 PRINT A. 
JO GO SUB I 000 
40 GOTO 10 
1000 IF' A "" 0 THEN 1020 
1010 LET A•-A 
1020 PRINT A 
IOJO RETURN 
1040 DATA 11·3•0,wJ7,13,31.2.-ll.J 
1050 ENO 
ROO 
N0.4 

NU18£R 
11.3 
0 

-17 
ll 
J1.2 

OUT OJ: DATA 

ABSOLUTE VALUE 
11.J 
0 
17 
IJ 
31·2 
11·1 

JN LJNE 10 

Problem No. 6 

PRINT 
I~ READ N 
17 ff N2 0 THEN 110 
20 F'DR 0•2 TO SORCABSCN> > 
JO IF li/O•INTCN/0) THEN 70 
40 NEXT D 
50 PRINT l"•"N":"N 
SJ IF' N"'O THEN 60 
52 PRINT -1"•"-N'"•"N 
60 GOT0 10 
70 PRINT Nl'O"•"D"•"N 
71 IF' N"'O THEN 75 
7J PRINT -N/0"•"-D"•"N 
75 IF' D•N THEN 10 
SO GOTO 40 
65 DATA 71l.991.-991.45J.-6S4•1009.~I009•900l.O 
110 ENO 

40 NEXT P 
SO PRINT N"/"O 
60 GOTO 10 
70 IT Y/P,.fNHY/P) THEN 90 
eo GOTO -10 
90 PRINT N/P"l'"O/P 
100 GOTO 10 
110 DATA s.6.a2.'48.3•"4•36.4S 
120 DATA o.O 
ISO ENO 
RUN 
N0.2 

5 , ' • 5 , ' 
62 , <6 .. , , 2• 
J , . • J 
l6 , •6 • J 

DONE 

Problem No. 4 
10 PRINT .. INCHES •"•"YARDS F'EET INCHES" 
20 READ I 
25 IF" l•O THEN 999 
JO PRINT t. 
"40 LET Y•INT<Il'J6> 
SO LET 11•1•36•Y 
60 LET F'•INTCil/12> 
10 LET l2•IJ-F'•12 
SO PRINT Y"'Jl2 
90 GOTO 20 
100 DATA 20.191.150.60S.el.Jl·O 
999 £NO 
RUN 

INCHES • 
20 

'" 150 
606 
63 
JI 

DaNE 

YARDS F'E£T 
0 I 
5 I 
• 0 

" 2 2 0 
0 2 

Problem No. 6 

10 READ H.a.DO.N 

INCHES 

' 5 

' 6 
II 
1 

15 PRINT "DOLLARS","HALF' QUARTER DIMES NICKEL PENNIES" 
20 R£AD 0 
21 IF D•O THEN 9999 
25 PRINT Q, 
27 LET D•D•IDO 
30 LET Hl•INTCDl'H> 
"40 LET 01•0-Hl•H 
50 LET Ql•INT<Dl/0) 
60 LET Dl•Dt-01•0 
70 LET D2•1NT<Dt/OO> 
80 LET Ol•Dl-D2•DO 
90 LET Nl•INTCDl/N) 
100 LET Ol•Dl-NJ•N 
110 PRINT HIJOIJD2JNUOI 
120 GOTO 20 
1010 DATA 50.25.10.s 
1020 DATA J.56 •• J5•1•76 
1021 DATA •Ol•O 
9999 END ..... 
N9·6 

DOLLARS 
1.s6 .,, 
J.76 
.01 

DONE 

HALF' QUARTER DlHES NlCKEl. PENNIES 
3 0 0 I I 
0 I I 0 0 
J I 0 0 I 
0 0 0 0 ! 

RUN 
N8•2 

e780o36 

DONE 

Problem No. 4 
10 L£T P•O 
20 F'IJR Y•I TS 25 
:10 F'OR H•l TO 12 
"40 LET P•P•S 
Sp F'OR O•t TO JO 
60 LET l•P••0"45/J60 
10 LET P•P+I 
60 NEXT D 
90 NEXT H 
100 NEXT '( 
l 10 PRINT "S"IJNT<POIOO+o5)o.Ot 
120 ENO 

""' 
s 2778.71 

DONE 

Problem No. 6 
10 OEr F'NHOO•lNT!IOO•X•·5)•.0l 
20 LET Pl•P2•P3•99 
30 F'OR Y•I re 15 
.. o reR H•I re 12 
50 LET Pl•Pl+Pl•"4·75/I00/12 
60 NEXT K 
70 raR Q•I TO .. 
80 LET P2•P2+P2•5/I00/4 
90 NEXT Q 
100 FllR O•I TO 36S 
110 LET PJ•PJ+P30"4oS/100/365 
120 NEXT 0 
!JO NEXT Y 
1"40 PRINT " •••S99o00 f'OR 15 YEARSooo" 
150 PRINT "14.751 COHPOOOOED MONTHLY •• "I 
160 LET ;o;a5 
170 GOSUB 500 
180 PRINT FNHCPl > 
190 PRINT "051 COMPOIJoiOEO QUARTER1.Y••"I 
200 LtT x .. x+ I 
210 Gosua 500 
220 PRINT F'NHCP2> 
2JO PRINT "0"4.51 COHPOLNOEO DAILYo."J 
2"40 LET X•X+2 
250 GOSUB 500 
260 PRINT FNHCPJ> 
270 STOP 
500 F'OR Z•I TO X 
510 PRINT'' "J 
S20 NEXT Z 
530 PRINT "S"J 
5"40 RETURN 
999 ENO .... 
N0.6 

•••S99.00 F'OR 15 YEARS• .. 
1.4. 751 C0HPOUN0£D MONTHLY., 
l~t C8HPOUND£0 QUARTtRLY•• 
U.51 COHPOOODED DAILY•• 

DONE 

s 201.59 
s 208.61 
S 19'4o4J 
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SEC. 4-3 Cont'd 

Problem No. 8 
10 ou 'NH<C>•e•cre•a•c-1 
eo PRINT .. x Y" 
30 FOR x-.6 TO e 
<40 PRINT XJP'NHCX> 
SO NEXT X 
60 END 
RU'f 
N£hB 

x y 
-6 ea -· 9 -· -1 
-3 ·? 
·2 -9 
-1 ·7 

0 ·I 
I 9 
e ea 

DONE 

SEC. 4-4 

Problem No. 2 
S OEf' F'NR<X>•INTC.40l•RNO( 0-200> 
10 DIM LC25J 
eo F'BR X•J T0 25 
30 LET Ltxl•F'NR<X> 
40 PRINT LtXJJ 
50 NEXT X 
60 PRINT 
10 LET 1•26 
75 REH WE CAN IMPROVE THE EF'P'ICIENCY BY HAVING THE 

76 REH COl'fPUTER LOCK AT DiE LESS NUMBER EACH TIHE THROUGH 
80 l.ET 1•1-1 
90 LET S•O 
100 F'OR X•l TO l•I 
110 IF' LtXJ o LCX+ll THE'I 160 
120 LE.T Sl•L(X) 
130 LET L(X)Dl.[)(+ll 
140 LET LCX+ll•Sl 
150 LET S•I 
160 NEXT X 
170 IF' S•I THEN BO 
180 F'OR Y•I TO 25 
190 PRINT Lt YlJ 
200 NEXT Y 
210 ENO ..... 
Na.e 

106 -151 -79 -117 -190 116 -200 -37 

155 59 82 161 26 122 -12<1 

•60 

169 -52 

-130 

-eoo -190 -1s1 -130 -12.e; -111 -79 -60 -se -"41 

28 59 BO 12 ... 
DONE 

Problem No. 4 
10 DIM F'C 18l•GCl8l 
20 LET A•I 
30 l.ET GCll•I 
.oo l.ET P'Ctl11F'C2l•I 
50 f'BR X•3 TB 18 
60 l.ET f't;tlaf'[X-ll+f'CX-2 
70 NEXT X 
60 f'OR X•l TO 17 

JOB 109 116 122 155 

•31 

191 

-37 

161 

109 

•31 

169 

360 PRINT PCKU 
31'0 NEXT I< 
500 DATA 7.6.h0•9•8•1'•1•2a9 
SOI OATA a.1.o.3.6.5a9.e.o.1 
S99 REH NO WE COtLD NOT US£ JUST lllO LlSTSOoo•••o 
600 END .... 
NO.a 

1 
DONE 

Problem No. 1 O 
10 DEi' f'NRCX)•JNT(XoRNO(l)) 
20 READ N 
25 Jf' N•O THEN 999 
30 F'BR Z•I TO 5 
40 LET A•F'NRUU 
50 LET B•F'NRCN) 
SS LET X•A+B 
60 PRINT A .. •"B"• 
70 G9SUB 700 
80 LET X•A•B 
90 PRINT A"O"S"• "J 
100 GB SUB 700 
105 PRINT " 
110 NEXTZ 
115 PRINT 
120 GOTO 20 
700 l.ET l•INT<X/N) 
710 l.ET W•X-l•N 
720 PRINT W"HOO "JNJ 
730 RETURN 
900 DATA S.6,0 
999 ENO .... 
N0-10 

• 3 . 
• l . 
• 0 . 
• l 
• l . 
• 5 . 
• 2 . 
• s . 
• 2 . 
• 0 . 

DONE 

2 
0 . 
0 
0 . 
0 
5 
I 
3 

Problem No. 12 

HOO 
HOO 
HOO 
HOO 
HOO 

HOO 
HOO 
HOO 
HDO 
HOO 

5 
5 
5 
5 
5 

6 

' ' 6 

' 

5 REM SUBTRACT S F'ROH f' HOO 7 
10 READ r.s 
IS IF' F•.01 THEN 999 
20 l.ET Oaf'-S 
30 IF' O..:O THEN I 00 
40 If' Del THEN 60 
SO LET D•D•'T 
60 PRINT F"'-"S"• "O"HOD 'T" 
70 GOTO 10 
100 LET O•O+'T 
110 GOTO 60 

. . . . . 
5 . 
0 
5 
3 

soo DATA 3.6 • .0.0.0 • .0.s.2.e.s •• 01.o 
999 ENO .... 
ND.12 

- 6 II 4 HDD 
- 0 :r 4 HOO 
- 4 11 3 HOD 
• 2 • 3 HOO 
- 5 • .0 HOD 

DONE 

• 3 
• 1 . 
• 0 . 
• 1 . 
•I . 
• 5 . 
• 2 . 
• 5 . 
• 2 . 
• 0 . 

2 HDO . HOO 
0 HOO . HOO . HOO 

I HOO 
2 HOO 
0 KBD . HOO 
0 HOO 

2SS LET A•2.0 
270 F'OR Ul•I TO 20 
eas F'OR U• i TO 20 
300 1' UtuJ•TtUI J THEN ses 
315 NEXT U 
330 LET A•A+ I 
34S LET UCAl•TtUll 
360 NEXT UI 
37S PRJNT "ELEMENTS Of' EITHER SET" 
390 F'OR X'"i TO A 
.llOS PRINT UCX)J 
420 NEXT X 
435 PRINT 
450 PRINT "ELEMENTS WHICH APPEAR IN BOTH LISTS" 

465 f'OR X•I TO B 
480 PRINT l(X]J 
495 NEXT X 
500 JF' B•O THEN SIO 
SOS PRINT "NO ELEl1£NTS COHHON TO BOTH LISTS" 
SlO STOP 
520 STOP 
s2s LET e•e• 1 
540 LET HSl•UtUl 
555 tr U•20 TK[ff 360 
570 GOTO 315 
585 END ..... 
N0· 18 

f'JRST LIST 
88 -77 54 -85 

80 96 .. , -•8 
SECOND LIST 

28 33 •5 80 

77 .. -82 .. 
ELEMENTS 0,. EITHER SET 

88 ·77 5• -85 

80 96 -49 -•8 

-e8 " 
., 13 

-100 •96 23 .. 

-9• _., 
51 33 

-28 16 

8 100 -96 

-u •97 

51 33 

-· .. , 
ELEHE.NTS \HUCH APPEAR IN BOTH LISTS 

33 80 ·•9 96 
DONE 

Problem No. 20 

-.e •76 

<O •8 

., 13 

23 96 

-'2 -76 

40 •8 

50 38 

5 PRINT "TIME UOW"•"ADO TlHE"•"TIHE LATER" 
10 DEF' f'NTCT>:1lNTCTORNO(l)+IJ 
20 F'OR Pool TO 10 
30 LET HsF'NTCl2J 
40 LET HooF'NTC S9l 
SO LET Hl:if'NTC36> 
60 LET Ht.:1f'NTCS9) 
70 l.ET H2.:1Ht+H 
75 LET H2:1H+HI 
80 IF H2c60 THEN 110 
90 LET H2,.H2-60 
100 U:T H.?•H2+ I 
110 If' H2 ca 12 THEN ISO 
130 LET H:?•H2~12 
140 GBT0 110 
ISO PRINT H"1"~1.Hl"•"Hl•H2"r"H2 
160 NEXT ? 
170 ENO 
RUN 
N0•20 

TJHE NOW AOO TlHE TIHE LATER 
12 ' 30 " ' 56 ' • 26 
9 ' 36 12 ' 3 9 : 39 
II ' 36 36 ' SS 12 ' 31 
3 ' 20 27 ' .. ' ' .. 
6 ' ., .. ' SS ' ' .. . . .. 13 • 28 6 • 9 

' ' 36 34 • 21 II ' .. 
2 ' 23 12 • 2 2 ' 25 
II • 17 20 ' 14 7 '31 

' •9 33 ' 29 II ' 18 

DONE 

16 90 76 ·58 

•5 -'9 50 38 

16 90 76 -56 

26 33 .. 80 

77 .. -8e .. 
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90 ''R Y•X•I re 18 
100 ,IR Z•P'tXl Te GtAJ+I STEP •I 
110 I' 'CXllZ•INTtr[XJ/Z> THtN 1.0 
120 NtXT Z 
130 GITI 210 
140 I' P'tYll'Z o INTfr(l'l/Z> THEN 120 
150 ,.IR V•t TG A 
160 I, Z•GCVJ THLN 210 
170 NtXT V 
180 LET A•A• I 
190 LET GCltJ•Z 
210 NEXT Y 
220 NEXT X 
930 'IA 8•1 TB A 
2'40 PRJNT GCBJJ 
250 NEXT B 
260 [NO 
RUN 
NllJ•• 

I 
DINE 

Problem No. 6 

13 21 

5 ROI V[ ADO 3"4.563.218•650.986,5•3•612 Tl 
6 REH 12•6•0.980•-'92•015••62•1S9 
10 OIM 1Jt20l.T(20J.sce1> 
20 '8R X•I Te 20 
30 READ ICXl 
'40 NEXT X 
SO F'BR Y•I TD 20 
60 READ f(YJ 
70 NEXT Y 
80 '9R H•20 TU I STEP .. J 
90 LET SCH•l l•UCHJ•TCHl 
100 NEXT H 
110 P'8R A•21 TD 2 STEP •I 
120 Ir SCA)•IO THtN eoo 
130 LET SIAJ•.StAJ .. 10 
l.tO LtT !CA•ll•SCA•tl+I 
200 NEXT A 
300 'OR Z•l Te 21 
310 PRINT SCZH 
320 Ntl'l:T Z 

,. 

500 DATA 3•••5•6•l•2•1•8•6•!•0•9•B•6•5•'413•6•l•2 
501 DATA 1.2., .... o.9.s.o.•.9•2•0•1•s .... 6.e.6.5.9 
600 END 
RUN 
Nt.6 

0 
DINE 

Problem No. 8 
5 Rt" Vt Mll.TIPLY 1610981129 BY 810365'201 
10 DIM 8t10J.TCIOJ.Pl20J 
20 '9R Y•I T8 10 
30 READ eCYJ 
•O NEXT Y 
50 F'SR 11:•1 Tl 10 
60 READ TIXl 
10 Nl:XT X 
72 1'1R Q•I T8 20 
1• LET PCQJ•O 
76 NEXT Q 

80 '8R F'•IO T8 I Sf[P '"I 
90 ,llR S•IO Tif I STEP .. , 
100 LET PCP'+SJ•Pt,+Sl•tt1'l•TCSl 
110 NEXT S 
120 NEXT t 
130 1'8R A•20 T8 2 STtP wJ 
140 I,. PCA)<tlO THtH 300 
ISO LET l•INTtP(AlJ'IO> 
160 LET PlA)•P(AJ•IO•J 
110 LtT P[AwlJ•PCA•ll+J 
300 NEXT A 
350 1'1R K•I Tl ao 

Problem No. 14 
10 OU ,.NR<X)•JNT<X•RND<2>•1 > 
20 'llR X*'l Tl 10 
30 LET J•,.NRC999> 
'40 LET Il•'NRCl500> 
'45 PRINT t1It.-'"GC1 •"1 
50 ,.GR T•I re 2 STEP •I 
60 11' Jl'T•INTCJJ'T> THEN 200 
10 NEXT T 
80 PRINT 1 
85 GGTI •oo 
200 11' Jll'T•INT<lll'T> TH£H 300 
205 GBTS 70 
300 PRINT T 
'400 N[XT X 
99' CHO 
RUN 
N8ol• ... 1302 ocr ... . .. ocr • 6 

306 1195 GC1' • I ,., ,., ocr • 3 
665 233 ocr • ! ... 11'7 ocr . ,, 
93 ... ocr •I 
HO ... GC1' • 5 
815 635 GC1' • 5 ,., 1387 acr •I 

DINI 

Problem No. 16 
10 0£1' ,-NR<X>•IMT<X•RHDt2>•1> 
20 F'OR X•I Tl 10 
JO LET l•F'NROOO) 
-'O LtT 1 l•F'NRCIOO) 
•S PRINT UJJ ... Lot •"I 
50 '8R T•l Tl 2 STl:P •I 
60 IF' JJ'T•INT<IJ'T> THEN 200 
10 Hl:XT T 
00 PRINT ?el I 
as one •oo 
200 I' 11/T•INTU l/f) THtN 300 
205 GOTO 10 
300 PRINT l•J ll'T 
'400 NtXT X 
999 t.HO 
RUN 
N0.16 

99 39 LCM • 1287 
I • LCM • 2 

" " LCM • 3685 

" " LCM • '123 

' " LCM • 133 
e " LCM • If-' 

" 
,, LCM • 1095 .. ' LCM • -'68 

36 91 LCM • 3276 ,. " LCM • "4680 

ODNt 

Problem No. 18 
IS DIM 8C2oJ.TC20l.tc20J.ut•OJ 
30 DEF F'NR(Xl•INTC20l•RND<t>•IOO> 
•S LET B•O 
60 PRINT "F'IRST LIST'' 
75 1'0R X•I re 20 
90 LET l(XJ•rNR( I> 
105 LET U(Xl•O[XJ 
120 PRINT 8[XH 
135 N[Xf X 
1'0 PRINT 
"' PRINT .. Sl:CIND LIST .. 
190 '8R Y• I TO 20 
US LET TtYJ•,NR<I > 
210 i-RtNT TIYJI 
22! NEXT 'f 
2.tO PRINT 

CHAP. 5 

SEC. 5·1 

Problem No. 2 
10 F8R l•l TO 5 
20 LrT Ctl J •O 
30 NEXT I 
35 LET P•O 
•O FOR R•l TO 5 
50 READ C 
60 11' C•'" I THEN 100 
61 LET AtRJ•C 
70 LtT CtRJ.,CCRJ+C 
80 NEXT R 
81 11' AC I J•O THEN 90 
82 IF' Al2l•O THEN 90 
83 LET P•P•I 
90 GOTO •O 
I 00 PRINT .. CHtNI STRY ... "PHYSICS"• "'RtNCH" ... SPANJSH"•"CALCll.US .. 
110 F"eR l•I T8 5 
120 PRINT en h 
l:!O NEXT I 
1-'0 PRINT .. THE NlMBtR OF' PEGPLE TAKING CHDUSTRY AHO ... 
145 PRINT "PHYSICS IS"P 
990 REN DATA IS IN ORDER CHEtUSTRY PHYSICS ,RENCH SPAHISH CALClLUS 
995 REM 'I' MEANS YES •o• MEANS NO 
1000 DATA I •O• I• l•O•O•O• I• I •O• I• I• 1, 1, 1.0.0. 1.1,0, 1 •I •0•0• l 
1010 DATA 0• I• 1•0• 1•0•0•0• 1•0• h 1.0, 1,0,. h l•O•O• I• 1•0•0•0• I 
1020 DATA O•O•l•O•l•l•O•l•O•O 
1100 OATA •t 
9999 [NO 
RI.I< 
ND·2 

CHlMISTRY 
1 

PHYSICS 
5 

,RENCH 

' 
SPANISH 

6 

THt Nt.ttBER 81' PtOPLt TAKING CHDUSTAY ANO PHYSICS ts <I 

DIN[ 

Problem No. 4 
10 1'DR l•I TC S 
20 LET Ct I J•O 
30 N[XT I 
JS LET P•O 
<10 FOR R•I TC 5 
SO RLAO C 
60 1' C••I THEN 100 
61 LET ACRJ•C 
10 LET CCRJ•CtRl•C 
80 NEXT R 
Bl IF' AC2l•O THEN 90 
82 IF' A(SJ•l THEN 90 
83 LET P•P• 1 
90 OCT() "40 

CA1.CtA.US 
6 

100 PRINT "CHEM! STRT"•"PHYSICS"•"F'RENCH ..... SPANl SH°'•"CALCll..US .. 
110 1'0R l•I TO 5 
120 PRINT Ct I J. 
130 NEXT I 
l•O PRINT "TAKING PHYSICS BUT NOT CALCll.US"P 
990 R[H OATA lS IN Oll0£R CHEMISTRY PHYSICS 1'H:£NCH SPANISH CALCll.US 
995 RCM • 1 • HEAHS YES •o• MEANS HI 
1000 DATA 1.o.1.1.o.o.o.1.1.0.1.1.1.1.1.0.0.1.1.o.1 .. 1.0.0.1 
1010 DATA 0.1.1.0.1.0.0.0 .. 1.0.1. i.o.1.0.1.1.0.0.1.1.o.o.o.1 
10?0 DATA O•O•l•O•l•l•O•l•O•O 
1100 DATA '"l 
9999 tHO 
RUN 
Nllo'4 

CHtMISTRT 

' 
PHYSICS 

' 
P'RENCH 

' 
TAKING PHYSICS BUT NIT CALCll.US : 

DINE 

SPNUSH 

' 
CALCtA.US 

6 
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SEC. 5-1 Cont'd 

Problem No. 6 
POR J1q TO 5 

20 LET C{Il"O 
JO NEXT I 
JJ REM THIS LOOP SIMULATE! 500 PEOPLE 

JS F'OR X"I TO 500 
40 f'OR R"I TO 5 
42 REM THIS LOOP LCOKS A' F"IVE COURSES f'OR EACH PERSON 

50 LET C"JNTC7•RNOC 1)) 
52 IF C>J THEN 58 
54 LET C•O 
56 GOTO 70 
58 LET C" I 
70 LET CCRl=CCRJ+C 
78 REM NEXT COURSE 
60 NEXT R 
aa RE.M NEXT PERSON 
90 NEXT X 
I 00 PRINT "CHE Ml STRY"•"PH"SICS"• "F'RENCH" •"SPANISH"• "CALCULUS" 

110 F"£lR !"I TO 5 
120 PRINT CCJl• 
\JO NEXT l 
9999 ENO 
RUN 
NQ.6 

CHEMISTRY 

OONE 

PHY SJ CS 
232 

SEC. 5-2 

Problem No. 2 
10 F"OR R"I TO 6 
20 f'OR C•t TO J 
JO LET B[R•Cl•l 
-40 NEXT C 
50 NEXT R 

f'RENCH 

60 REM ARRAY 8 IS F"ILLEO 11 TH ONES 

70 nm R•l TO 6 
80 FOR C=t TO J 
90 PRINT BtR•ClJ 
100 NEXT C 
110 PRlNT 
120 N£XT R 
!JO ENO 
RUN 
N(I02 

ODNE 

Problem No. 4 

10 F'OR R•I TO i 

20 F'OR C• 1 TO 7 
JO LET OCR.Cl•O 
40 If R o C THEN 60 
SO LET OCR1CJ•I 
60 NEXT C 
70 NEXT R 
60 F'OR P•I TO 1 

90 F'OR 0•1 TO ,. 
100 PRINT DtP,Q]J 
110 NEXT Q 

120 PRINT 
IJO NEXT P 
1•0 ENO 

SPANISH 
205 

CALCULUS 
219 

115 PRINT "2 THIES ENTRIES OF' FIRST ARRAY" 

120 GOSUB IOOO 
130 ST0P 
1000 F'OR A"I TO 4 
1010 F'OR B•<I TO 1 
1020 PRINT J{A,BlJ 

1030 NEXT B 
10.110 PRINT 
1050 NEXT A 
1060 RETURN 
9999 ENO 
RUN 
N0.9 

F'lRST ARRAY 
210 25S lSS IJ2 -132 --479 -IS6 

-Jo; 332 2•6 -0 2.o10 14 .1121 

-69 2<14 -<116 -16• 13.li -37 66 

2.til 335 343 -<152 -293 -196 -52 

2 TIHES ENTRIES OF' f'IRST ARRAY 
•20 516 J16 264 -26• -956 -J72 

-614 66-4 492 -16 "460 26 6S4 

-1 JS 468 -8J2 -J68 266 -74 I 36 

"462 670 686 -904 -566 -396 - fo.t 

DONE 

Problem No. 10 

10 F'OR A=I re 10 
20 F'OR B:J TO 10 
JO LET H[A,Bl:A•B 

.liO NEXT B 
50 NEXT A 
60 F'OR I•t TO 10 
70 FOR J•I TO 10 
60 PRINT Ht l•JlJ 
90 NEXT J 
95 PRINT 
100 NEXT I 
110 END 
R<RI 
NC.10 

10 

DONE 

8 
10 
12 

" 16 
18 
20 

' 12 
15 
18 
21 

" 27 
30 

Problem No. 12 

20 F'OR l"-1 TO 5 
30 F'OR J•i TO 5 

' 8 
12 
16 
20 
2' 
28 
32 
36 
•O 

60 LET P:Cl-1 >•<J-ll 
70 ff P'<S THEN 90 
75 LET P"-P-5 
80 Gt:TO 70 
90 LET PU,J]•P 
100 NEXT J 
I 10 NEXT l. 

5 6 
10 12 
15 18 
u " " H 
H H 
H . 
• . 
H " m " 

l.tO PRINT "HULTIPLJCATION MCD 5" 
150 FDR I•I TO 5 
160 FOR J•I TO 5 
170 PRINT P{f,J)J 
160 NEXT J 
190 PRINT 
200 NEXT 1 
205 PRINT 
210 F"CR M"l TO 6 
220 LET A•INT<S•RNO(J)) 
2JO LET B•ItlT<5•RNOCll} 

" 21 
u 
H 

• 
ft 
H 
H 
m 

8 
16 

" • . 
• H 
u 
H 
H 

' 18 
n 
H 
e 

" H 
H 
81 

" 

10 
u 
H 
• m 

" w 
H 

" 100 

RUN 
N0•2 

QUEST HALE 
NUMBER 21+ 

HALE f'EHALEF'EHALE 
UNDER 21+ UNDER HALE 

I 2 I 3 l 3 

2 2 
2 

II I 0 
12 3 I 
13 2 I 

" 2 0 
15 2 0 
16 " s 

DONE 

Problem No. 4 
10 Dll1 SC !SdOl 
20 F"OR R:t TO 15 

I I 3 
2 2 3 
2 j 2 
2 2 I 

I 2 I 
2 2 I 
0 2 . 
2 ' 3 
j 2 2 
2 2 2 
25 .. 32 

F'EHA1..E ~DER 21 + 
2 5 
2 3 
3 
2 
2 
I 
2 
I 
2 

3 2 

' 2 
2 3 
3 2 
3 2 

' 2 ' ., 30 " 

TOTAL 
1 
5 
7 
5 
5 

6 
79 

26 REM LINE JO ENTERS THE ROW NU!1SER IN THE F"JRST COLUMN 

JO LET StR, I l*R 
<10 F'OR C"2 TO 10 
"48 RE11 LINE SO SETS THE LAST 9 COLUMNS AT ZERO 

50 LET SCR,Cl"O 
60 NEXT C 
70 NEXT R 
80 F"OR N=I TO 50 
90 LET P=l.~TC4•RNDC\>•2> 
98 ·REH O GQES THROUGH THE 15 QUESTIONS 

100 F'OR O"I TO 15 
110 LET A"lNH2•i<N00>l 
120 LET S(Q,pl:S(O,pJ+A 
\JO NEXT 0 
J.tO NEXT N 
I A.5 F'OR R:J TO 15 
150 LET StR,6l"S(R,2l+SCR,JJ 
160 LET S(R17J:S[R,4l+S{R,Sl 

170 LET S(R,Sl=S(R,3J+S(R,Sl 

100 LET srn.9J=S{R,2l•SCR.4l 

165 LET S[R,JOl•SCR,6J+SCR17l 

190 NEXT R 
198 REM THE PRINTING BEGINS HERE 

200 PRINT "QUEST 11ALE HALE F'EMALEF"EMALE" 

210 PRINT "NUMBER 21• l.R'/DER 21• UNDER HALE FEMALE UNDER 21•"1 

211 PRINT " TOTAL" 
220 F'OR R" 1 TO J 5 
230 F"OR C"I TO JO 
250 PRINT SCR,Cll 

260 NEXT C 
270 PRINT 
260 NEXT F 
9999 END 
RUN 

QUEST 11ALE HALE F"EMALEf'E11ALE 

NUMSER 21• UNDER 21• UNDER MALE 

I 5 10 5 3 15 
2 8 5 ' 8 13 

' II 7 1 20 
1 6 8 6 13 
8 6 8 15 
II ' 2 ' 20 
7 6 3 6 13 
6 ' 7 ' 10 

' 8 5 6 10 13 
10 ' ' 3 ' 13 

II 7 B ' ' 15 
12 7 ' ' ' II 

13 10 ' 1 6 " " 7 6 7 ' 13 
15 ' 7 ' II 

f'EHALE UNDER 21• TOTAL 

8 13 10 23 
12 13 12 25 

" 18 II• " " 12 " 27 

" 15 1·1 2' 
II 18 13 31 

' 12 10 22 

" 13 " 26 

" 15 I·' 2' 
7 8 12 20 
8 12 II 23 
II II II 22 
13 10 " 27 

" 13 14 27 

16 16 II 



1:-.:l 

~ 

RLW 
Ne • .-

DONE 

Problem No. 6 
10 otr F'NRCC>•INT<C•RNOCl>>-50 
20 PRINT "rlRST ARRAY" 
30 F"EJR R• I TO 3 
<40 f'OR C•t TO 1 
SO LET EtR•Cl•f'NR( 100> 
60 PRINT £CR.CH 
70 NEXT C 
BO PRlNT 
90 NEXT R 
95 PRINT "S£CONO ARRAY" 
100 F'OR R•I Te 3 
110 f'DR C•I TO 7 
120 LET TCR.Cl•FNRC200) 
130 PRINT f'CR•Cll 
1'40 NEXT C 
150 PRINT 
160 NEXT R 
170 F'DR R•l TO 3 
lBO TOR C•I TB 7 
190 LET F'CR.Cl•rtR.Cl+ECR.Cl 
200 NEXT C 
210 NEXT R 
220 PRINT "SUHS ENTERED IN SECOND ARRAY" 
230 'OR R•I TO 3 
2•0 F'OR C•I TB 7 
2!10 PRINT F'tR.ClJ 
260 NEXT C 
270 PRINT 
280 NEXT R 
290 END 
RLW 
N8•6 

F"lRST ARRAY 
19 .. -33 IS -<2 

-12 -13 -·· 26 16 
33 I -•5 -31 

_,. 
SECOND ARRAY 
•6 •1 128 99 139 

-35 101 5• 56 1•8 
13 39 1• 31 -•2 

SUHS ENT£R£0 IN SECOND ARRAY 
65 55 95 117 _., • 9• 30 82 .. •o -31 0 

OONE 

Problem No. 8 
5 PRINT "FIRST ARRAY" 
10 reR X•l Te " 
20 f'OR Y•I TB 7 

97 
164 

-76 

2B 
9 
23 

36 
19 

-30 .. 
88 

-7 

30 LET ICX•Yl•INT<IOOl•RNDCl)-500> 
40 NEXT Y 
50 N£XT X 
60 G9SUB 1000 
70 ,.OR I•! TO 4 
80 ,.BR Y•I TO 1 
90 LET ltl.Yl•2•H1 .. Yl 
100 NtxT '( 
IJO NEXT I 

-1 
-39 
-; 

65 
37 
97 .. 

-2 
90 

240 PRINT A"•"B"="P{A+ 1.a+ I )"'100 5" 
250 NEXT H 
260 ENO 
RUN 
ND.12 

HUL.TIPLICATION MOO 5 
0 0 0 0 
O I 2 3 

2 < I 
3 . 

• 2 
•I • 2 
'I • 0 
• 2 . ' .. •I 
• 2 • 3 

DONE 

SEC. 5-3 

Problem No. 2 
10 DIM Stl6.10l 
20 F'OR R•I TO 16 

HOO 5 
HOD 5 
HOO 5 
HOD 5 
HOD 5 
MOD 5 

28 REH LINE 30 ENTERS THE Rew NUMBtR IN TH£ "'1RST COLUMN 
30 LET SCR;tJ•R 
40 roR C•2 ra 10 
48 RtH LJN£ 50 SETS THE LAST 9 COLUMNS AT ?£RD 
50 LET SCR,.Cl•:l 
60 NEXT C 
10 NEXT R 
18 REH BO READS TH£ CATAGORY l"OR THE NEXT PERSON IN THE: SURVEY 
80 READ P 
90 tr P•-1 THEN l4S 
98 R£M 0 GO£S THROUGH THE IS QUESTIONS 
100 l"BR Q•t TO 15 
110 READ A 
llS LET SC16,.Pl•Stl6;PJ+A 
120 LET S(Q,,PJ•SCQ.Pl+A 
130 NEXT Q 
138 REH LINE t 40 SENDS THE COMPUTER BACK TO READ ANOTHER LINE or DATA 
140 GOTO BO 
l-15 F"OR R•I TB IS 
150 LET S[R,,6J•StR;2J+S[R;3l 
160 LET StR.7J•S[R,,4l+StR.5l 
170 LET S[R;6J•StR.3J+StR..Sl 
180 LET SCR.9l•SCR.2l+SCR.4l 
185 LET SCR.!Ol•SCR.6J+SCR,.1l 
188 f'BR C•S TS 10 
190 LET SC16.Cl•SCl61Cl•StR .. Cl 
192 NEXT C 
195 NEXT R 
198 REH THE PRINTING BEGINS HERE 
200 PRINT ugu£ST HALE HAl..E FEHALErEHALE" 
210 PRINT "NUHBER 21+ OOOER 21+ OOOER HALE F"EHALE I.HOER 21+"J 
21 l PRINT .. TOTAL" 
220 l"OR R•I TG 16 
230 roR C• I TO 10 
250 PRINT srn.c11 
260 NEXT C 
270 PRINT 
260 NEXT R 
498 REM • .. A LINE LIKE 500 HAY HELP TO LINEUP THt DATA LINES 
499 R£H IN TYPING••• 
500 R£H l;l;l;l1l1l•l•l•l•l•l•l•l•l•l•I 
501 DATA 4•1;0;1•1•1•0•0•1•1•0•1•0•1•0"1 
so2 DATA 4 .. 1.o.o.o.0.1.1.0 .. 1.1.0.o.o.1.1 
503 DATA 3•1. I; I• 1.0,.0,.1.0,,1,.0.0,. 1,. 1,,0.0 
504 DATA 5.1.1.1.0.0.0.1.o.o.o.1.1 .. 1.1 .. o 
505 DATA 2 .. 1 .. 1 .. 1.0.0 .. 1.0 .. 1,.0 .. 0.1,,1.1,,1 .. 0 
506 DATA 5.0 .. 0 .. 1 .. 0.1.o .. o .. o.1.1.1.o.o .. i.1 
so; DATA 5,,0 .. 0 .. 0.1.1 .. 1~0.1.o.1.o.1 .. o.o.1 
508 DATA 1?.o .. 0.1 .. 1.0 .. o.i.1 .. o.1.o.1.o.o.1 
509 DATA 41l .. t1l1l•l•l1l10;0;0;J;O•l•O"O 
s10 DATA 2.1.1 .. 0.0.1.0 .. 1.o .. o.o .. o.1.1.1.1 
900 DATA -I 
999 END 

Problem No. 6 
10 DIM Htl2•12l 
20 1"9R R•I T0 12 
30 F'OR C•I TO 12 
40 LET HCR;Cl•R•C: 
SO NEXT C 
60 NEXT R 
10 f'OR R•IO Ta 12 
80 F"OR C•I TB 12 
90 PRINT MCR1ClJ 
100 NEXT C 
110 PRINT 
120 NEXT R 
130 ENO .... 
ND.6 

10 30 

22 

50 70 

SS 66 

12 48 60 72 84 

DONE 

CHAP. 6 

SEC. 6-1 
Problem No. 2 
10 PRINT "Hut.TIPl.Y TWa F'RACTICN5'' 
20 PRINT " TO ST0P RUN INPUT .QI F"DR NI., 
30 PRINT 
3S PRINT "tH10l"J 
40 INPUT Nl•DI 
42 lf' Nl••OI THEN 999 
50 PRINT "N2.02"J 
60 INPUT N2.02 
70 l.ET N•Nl•N2 
75 LET N3•N 
80 1.ET 0•01•02 
SS LET 03•0 
90 REH HERE IS THE EUCLIDEAN ALGORITHM 
100 LET I•INTCN/0) 
110 LET R•N-UO 
120 If' R•O THEN 160 
I.JO LET N•O 
140 LET O•R 
ISO GOTll 100 
160 PRINT "PRODUCT I S"NJ/0"/"03/0 
180 GSTO j)O 
999 [NO 
RLW 
N0•2 

Mll..TIPLY TWO l"RACTlONS 
TO STOP RIM INPUT .01 F"BR NI 

N1.on1 .. 2 
N.2.0214•3 
PRODUCT JS 2 

Nl.01?<115•72 
H2102121;8 
PRODUCT JS 105 

Hl.Dl?·Ol• I 

09N£ 

SEC. 6-2 

Problem No. 2 
5 DIM Lt21l 
10 READ N 
15 LET T•O 
20 J'DR X•l TO N 

BO 90 

" 
96 108 

100 

110 

120 

110 120 

121 132 

132 I•• 



~ 
C.ll 
0 

SEC. 6-2 Cont'd 

30 R£AO L( Xl 
35 LET T•T•LCXJo2t<N-Xl 
"'O JF L(X]•l THEN 70 
50 PRINT "O"J 
60 GOTO 80 
70 PRINT "l"J 
80 NE::U X 
90 PRINT .. BASE TWO •",...lASt TCN" 
100 GOTO 10 
110 DATA 5.1.0.i..t.i 
120 DATA 2• l•O 
130 DATA 15.1.0.0.o.1.1.o.o.1.1.o.o.o.1.o 
999 tND 

""' Ne.2 

10111 BA.SE TWO • 23 BAS!'. TCN 
10 BASt TWO • 2 BASE TEN 
100011001100010 BASE TWO• 18018 BASE TtH 

OUT 0,. DATA IN LrNE 10 

Problem No. 4 
10 READ N 
IS LET T•O 
20 PRINT NJ"BASE TEN •"J 
30 f'OR E•20 TO 0 STEP - I 
"O LET l•JNTtN/JtEl 
"'2 LET T•T•l 
U Jf' T•O THEN 60 
<1!5 If' 1•1 THEN 55 
.n IF 1•2 THEN 58 
50 PRINT "O"I 
52 GOTO 60 
55 PRINT ''l"J 
57 GDTa 60 
50 PRINT .. 2'"1 
60 LET R•N-I•3•E 
70 LET H•R 
80 NEXT E 
85 PRINT " BASE THREE"' 
90 GOTO JO 
100 DATA '1'19999 .. 1•16 
110 CNO 

""' NO ... 

999979. 8AS£ T[H •1212!10202000 DAX THRH 
I BASE TEN •I BA.SE THU:E 
16 BAS£ TtN •121 BAS£ THREE 

OUT 01 DATA IN LJHl 10 

Problem No. 6 
5 REH NI IS NUMBER Of' DIGITS 
10 READ NI 
15 LET N•O 
20 f'OR X•Nl TO I STEP ~1 

22 RtAO A 
24 If' A•l THEN 30 
25 If' A"2 THEN 34 
26 PRINT "O"J 
28 GOTO AO 
JO PRINT "l"J 
32 GOTO AO 
34 PRINT "2"J 
°'O LtT N•N•A•Jt (X-1 l 
SO NEXT X 
60 PRINT " SASE THREE" 
70 PRINT "EQUALS" 
110 LET T•O 
130 f'GR E•20 TO 0 STEP •I 
1'40 LET l•INTCN/2tE) 
150 LET T•T+I 
160 If' T•O THEN 210 
170 lf' 1•1 THEN 200 
180 PRINT "O"; 

150 LET Nl•Nl•I•!Ot£l 
160 LE:T R•N-l•IOrE 
170 LE:T N•R 
180 NEXT£ 
190 PRINT N2JNl"G.C.f'. 
200 LET I•lNT<N2/NI l 
210 L£T R•N2-J•NI 
220 Jf' R•O THEN 260 
230 LET N2•NI 
2"'0 LtT Nl•R 
250 GOTO 200 
260 PRINT NI 
280 GOTO 30 
350 ENO 
RLH 
N0.4 

INPUT 1NTEG£R72S 
25 52 G.c.f', • I 

INPUT 1NTEGER7"'!56 
'456 65'4 G•C•f'• • 6 

INPUT JNTEGER1779 
779 977 G.c.f'. "' 1 

INPUT 1NTEG£R10 

DON£ 

CHAP. 7 

SEC. 7-2 
Problem No. 2 

95 REM • PRINTING A NUMERIC OF' MOHE 
96 REM THA~ ONE DIGIT USING STl{lNG 
97 REM SEE LINES 165~ 182 AND 165 
100 DIM OS( !Ol 
110 LET OS,."0123456769" 
120 PRINT "POSITIVE INTEGER LE!:iS THAN 1000000"· 
130 INPUT N 
140 IF' N:O THEN 260 
150 PRINT """JNJ""" 
160 PRINT "S"J 
165 LET T=O 
170 F"OR E=5 TO 0 STEP - I 
180 LET I=INTCN/IOtE) 
182 LET T:T+l 
165 ff T=O THEN 200 
190 PRINT DSU+l.I+llJ 
200 LET R=N-I•IOrE 
210 LET N=rR 
220 NEXT E 
230 PRINT "S" 
240 PRINT 
250 GOT0 120 
260 END 

""' N0.2 

POSITIVE INTEGER LESS THAN 10000007189231 
I 169231. I 
S189231S 

POSITIVE INTEGER LESS THAN 1000000?0 

Problem No. 4 

REM ** NOTICE THAT 
REM THEN A PHOG~AM 
REM STRINGS 
OlM OS{ 121 

8 QS::"0123456789TE" 
10 READ N•B 

!:iHOHTEk 
USE OF 

110 PRINT "BS .. J 
teo INPUT BS 
130 CHANGE BS TB B 
140 F'BR I • J TO 8(0) 
150 LET A(BCI)) • ACBCI)) + I 
160 NEXT I 
170 LET B<O> ,. 1 
180 PRINT "CHAR NUH CODE" 
190 F'eR I = 0 TO 127 
200 IF' ACI > ,. O THEN 240 
210 LET Bet> ,. I 
220 CHANGE 8 TO AS 
230 PRINT "'"J ASJ "' '"J ACI>J " "J 1 
240 NEXT I 
eso END .... 
N0o2 

BS7 SUPP0SE I Da'.PT WISH TD PLAY THIS GAME 
CHAR NUM C00E 

1 32 
I 39 

"A' 2 65 
•o• t 66 
'E' 2 69 
'G' l 71 
'H' 2 72 
'I' 3 73 
'L' I 76 
'H' 1 77 
'N' j 78 
'0' 3 79 
•p• 3 80 
•s• 4 83 
'T' J 64 
'U' I 65 
•w• 87 

89 

Problem No. 

100 DIM WSC7> 
105 
JOB REM • READ DATA AND FINO L.eNGEST STRING 
110 LET L=O 
120 F0R I : I Te 1 
130 READ WSCI) 
140 lF LEJHWSCI» <= !.. THEN 160 
ISO LET L = LENCWSCI» 
160 NEXT 1 
165 
168 REM * PRINT DAYS 0F' THE: WEEK VERTICALLY 
170 F"eR I = I T0 L 
180 FOR J = I T0 7 
190 PRINT TABC3•.J>J EXTSCWSCJ>,I.lH 
200 NEXT J 
210 PRINT 
220 NEXT I 
225 
226 REM * DATA 
230 DATA SUNDAY• M0NDAY, TUESDAY• WEDNESDAY 
240 DATA THURSDAY. FRIDAY. SATURDAY 
250 ENO 
RUN 
N0.4 

s M T w T F s 
u • u E 
N N E 0 
0 0 s N 
A A D E 
y y A s 

D 
A 
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190 G0TC 210 
200 PRrnt "l"I 
210 LET R•N-h2fE 
220 LET N•R • 
230 NEXT £ 
2"40 PRINT " BAS£ TWO" 
2"45 PRINT 
250 GOTB 10 
260 DATA 5.1.0 .. 0 .. 1 .. 2 
26~ OATA I0 .. 2 .. 0 .. 0 .. 0 .. 1 .. 1121 l•O; I 
270 £NO ..... 
N0.6 

I 0012 BAS£ THREE 
EQUALS 
10101 JO RAS£ TWO 

2000! 12101 BASE THRE£ 
£QUALS 
1001101101001010 BAS£ TWO 

CUT OF' DATA IN LINE 10 

SEC. 6-3 
Problem No. 2 

5 PRWT "TEST F'9R OlVISIBILITY BY THRE£" 
6 PRINT 
I 0 PRINT "INPUT INTEGER" J 
20 INPUT N 
25 LET T•O 
30 H' N•O THEN 999 
°'O F'DR E•S T0 0 STEP -I 
SO LET I•INHN/IOtE> 
60 LET T•T•I 
70 LET R•N-1•10'£ 
80 LET N•R 
90 NE11:T E 
100 PRINT "SL-"! OF' DIGITS IS"T 
IOS IF' T/3•1NT<T/3) THEN 130 
110 PRINT "NOT 01VJSIBL£ BY THREE" 
120 GDT0 6 
130 PRINT "3 IS A F'ACTOR" 
l-"O GOTO 6 
999 ENO 
RUH 
N0o2 

TEST '9R OIVISIBILJTY BY THREE 

INPUT INT£GER7e3o4972 
SUM OF' DIGITS IS 27 
3 IS A F'ACTOR 

INPUT INTEGER737 
St.tt OF DIGITS IS 10 
NOT DIVISIBLE BY THREE 

INPUT INTEGER?O 

DBNE 

Problem No. 4 

30 PRINT 
-"O PRINT "INPUT INTEGER"J 
SO INPUT N 
S5 LET N2•N 
60 LET T•O 
70 ff N•O THEN 350 
80 LET Nl•O 
90 LET £1•-l 
100 F'OR £•S TD 0 STEP -1 
110 LET l•INTCN/10,E> 
120 LET T•T•I 
130 IF' T•O THEN 160 
1"40 LET El.,£1+1 

20 LET T=O 
30 PRINT NJ "BASE: TEN ="! 
40 FOR E=20 TO 0 STEP - t 
50 LET l =INTCN/Br El 
60 LET T=T+I 
70 IF T= 0 THEN 430 
80 PRINT DS(l+J,I+llJ 
430 R=N-I•BrE 
440 LET N=R 
450 NEXT E 
460 PRINT " BASE "J B 
470 GOTO 10 
480 DATA 99862 ... 12179324• ,.9 
t85 DATA 6412,.999999.,3 
490 END 
J<JN 
NO. 4 

99862· BASE TEN =4995T BASE 12 
79324• BASE TEN =130727 BASE 9 
64 BASE TEN = l 000000 BASE 2 
999999, BASE TEN =1212210202000 BASE 

OUT OF" DATA IN LINE 10 

Problem No. 6 
100 DIM DSC IOJ 
110 DS:"O 123456789" 
120 GOTO I 40 
130 PRINT "OUT OF' RANGE" 
140 PRINT 
150 PRINT "l"J 

160 INPUT N 
170 IF ABS<Nl<.000001 THEN J30 
180 IF A85CN)>999999. THEN 130 
190 PRINT "l"JNJ"I" 
200 PRINT "S"J 
2IO IF N>O THEN 240 
220 PRINT "-"J 
230 LET N=ABSCN> 
240 FOR E=5 TO 0 STEP - 1 
250 IF N >= lOtE THEN 280 
260 NEXT E 
"10 GOT0 350 
280 F'OR EI =E TO 0 STEP -1 
290 LET I=INT<N/lOtEll 
300 PRINT DS(l+l .. I+tlJ 
310 LET R=N-1* IOtEl 
320 LET N=R 
330 NEXT El 
340 IF" R=O THE-"l 430 
350 PRINT ","J 
360 FDR El=-i TO -6 STEP -I 
370 LET IcINTCN/IOTEI+• 05l 
380 PRINT DS[l+l11+llJ 
390 LET R:N-l*IOrEI 
400 LET N=R 
410 IF N<.000001 THEN 430 
420 NEXT El 
430 PRINT "$" 
440 ENO 
RUN 
NO• 6 

l?-t.10023 
1-1.10023 
S-i.100235 

SEC. 7-3 
Problem No. 2 

9B REH * TABULATE CHARACTER FREQUENCY 
100 DIM AC127> .. BC72) 

Problem No. 6 

100 DIM wsc7> 
105 
106 REM * READ DATA AND FIND LONGEST STRlillG 
110 LET L=O 
120 FOR 1 = 1 TO 7 
130 READ WSCI> 
140 IF LEN(WSCI)) <= L THEN' 160 
150 LET L = LENCWS<I>> 
160 NEXT 1 
165 
168 REM * PRINT DAYS OF THE WEEX AT A SLANT 
17 0 FOR I = I TO L 
180 FOR J = ! TO 7 
190 PRINT TAB<4•J+I>J EXTSCWS(Jbl;l>J 
200 NEXT J 
210 PRINT 
220 NEXT I 
225 
228 REM • DATA 
230 DATA SUllOAY,. MONDAY,. TUESDAY,. WEDNESDAY 
240 DATA THURSDAY,. FRIDAY• SATURDAY 
250 END 
RUN 
NO. 6 

T 
u 0 u 

N N E 
0 0 

A A 
y y 

SEC. 7-5 
Problem No. 2 

w 
E 

0 
5 N 

0 
A 

y 

T r 
H R A 
u 1 T 

R 0 u 
E 5 A R 

5 0 y 0 
0 A A 

A y 

90 REM * F'ILE PRINT ONE TO A RECORD 
92 REM • WITH RESTART FEATURE 
100 DIM NSC72l 
110 FILES TEST 
120 FOR I= I TO 1000 
121 IF END 11 THEN 130 
122 READ 11 .. IJNS 
123 GOTO 150 
130 READ NS,A,B 
132 IF' NS="STOP" THEN 230 
138 IF END II THEN 155 
140 PRINT 1t .. IJNS .. A18 
145 PRINT NS 
150 NEXT 1 
152 STOP 
155 PRINT "FILE FULL" 

y 

170 DATA "WAGNER, WILHELM RICHARD"1 l813, 1883 
180 DATA "VERRAZA."10• GIOV!lNNI",1480,1527 
190 DATA "BRDNTE .. ANNE"• 18201 1849 
210 DATA "CURIE• MARIE"• 1867; !934 
220 DATA "VER-IE.- JULES", 18281 1905 
225 DATA "STOP" .. o .. o 
230 END 
R\.N 
N0.2 

WAGNER, WILHELM RICHARD 
VERRAZAt>Hh GIDVANNl 
BRONTE1 ANNE 
CURIE, MARIE 
VERNE, JULES 



~ 
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SEC. 7-5 Cont'd 

Problem No . .J 
90 REM * ALPHABETIZE ilAMES IN A FILE 
92 REM * CA'JY NUMBER JF' NAMES> 
100 DIM AS(72J,8S(72J 
110 F"ILES TEST 
112 IF END #I THEN 119 
114 FOR N=I TO 1000 
116 READ #1,NJAS 
118 NEXT t~ 

119 LET N=N-! 
120 FOR 1=! TO N-1 
130 READ IJ,JJAS,A .. AJ 
140 F'OR J=l+ I TO N 
150 READ 11 .. J1Bs .. a .. s1 
160 IF" AS <= es THEN :mo 
170 PRINT 11 .. 11ss .. a .. s1 
180 PRINT 11 .. J1AS1A1Al 
190 READ IJ,IJAS,A,Al 
200 NEXT J 
210 NEXT I 
220 PRINT "FILE ALPHA3ETIZED" 
230 ENO 
RUN 
NQ.4 

F"ILE ALPHABETIZED 

GET-NO• 3 
RUN 
NO. 3 

008 NAME 
1820 ANTHONY.1 SUSA>/ 0. 
1847 BELL, ALEXANDER GRAHAM 
1620 BRONTE, ANNE 
1667 CURIE, MARIE 
1747 JONES1 JOHN P4UL 
1628 VE~E .. JULES 
1480 VERRAZAN01 Gl3VANN1 
1813 WAGNER.1 WILHELM RICHARD 
1859 WASHINGTIJN.1 E<!OKER T. 

Problem No. 6 

100 DIM A:SC72l1BSC72J1AC250l 
110 FILES TEST 
120 REM 'II' COOOT NAME! AND SAVE 
130 REH POSITION IN A ARRAY 
140 If' END 11 THEN 190 
150 FBR I'" i TO 250 
160 READ ll.1UAS 
170 LET AC IJ.,I 
180 NEXT I 
190 LET I .. I-1 
200 REM * ARRANGE PO! I TI 0N S IN 
210 REM A ARRAY 
220 nm R=I TO 1-1 
230 READ ll.1ACRlJAS 
240 F'OR J .. R+ I TO I 
250 READ fl.1ACJJJBS 
260 IF AS <::: BS THEN 310 
27 O LET X=At RJ 
280 LET ACRl=A(Jl 
290 LET ACJJ:::X 
300 LET AS=BS 
310 NEXT J 
320 NEXT R 
330 REM * NOW PRINT f,AMES 
340 PRINT ''NAMES IN llRDER" 
350 PRINT " 008 NAME" 
360 FOR N=l TO l 
370 READ #l1AtNJJAS,,1 
380 PRINT AJAS 

170 LET SIS = "ZZzz·· 
160 RESTORE I I 
190 FOR I = 1 TO C 
200 READ #I, NS 
204 REM * GET THE NEXT NAME GREATER THAN THE LAST 
205 REM NAME PRINTED 
210 IF' NS <= SS THEN 240 
220 IF NS> SIS THEN 240 
230 LET SlS = NS 
240 NEXT I 
250 PRINT SIS 
260 LET SS = SIS 
270 NEXT P 
280 END 
RUN 
N0.2 

~RISTIE AGATHA 
GOOSE MOTHER 
TRUMAN HARRY 
NIST OLIVER 
WHITE SNOW 

Problem No. 4 

100 FILES NAMES! 
110 PRINT " ** BEFORE **"J TABC25H " ** AFTER**" 
120 FOR I = l TO I 0 
130 SETW 1 TO B•Cl-1} + i 
140 READ 1 J.1 AS 
150 PRINT ASJ TAB<25H 
160 FOR J = I TO LEN<ASl 
170 IF' EXTSCAs .. J,J) = " " THEN 210 
180 NEXT J 
190 PRINT "SPACE MISSING" 
200 GOTO 280 
210 LET BS = EXTSCAS,J+ l.1LENCASl l 
220 LET CS = ", " 
230 LET OS= EXTSCAs,1,J-ll 
240 LET AS SS + CS + OS 
250 SETW l TO 8• C 1- I l + I 
260 WRITE I l.1 AS 
270 PRINT AS 
280 NEXT I 
290 END 
RUN 
NO. 4 

** BEFORE ** 
J'JGATHA CHRISTIE 
KARRY TRUMAN 
srnw WHITE 
MOTHER GOOSE 
OLIVER TWIST 
SAMUEL SPADE 
LEMOOT CRANSTON 
DELORES SPIELER 
EDGAR MARKS 
DOROTHY WOODSON 

CHAP. 8 

Problem No. 2 
10 REAO A.s.c 
15 If A•O THEN 99 
16 PRINT AIBJCJ 
17 LET D•Bt2•0A•C 
IS IF' 0,.0 THEN 72 

** AFTER ** 
CHRISTIE, AGATHA 
TRUMAN• HARRY 
WHITE1 SNOW 
GOOSE. MOTHER 
TWIST~ OLIVER 
SPADE, SAMUEL 
CRANSTON. LEMONT 
SPIELER, DELORES 
MARKS~ EDGAR 
W(IOOSON.1 DOROTHY 

20 LET Xl•C-B+SGRC8t2-<l•A•C»,.C2•Al 
JO LET X2•<·B-SGR(8t2-4'•A•C)},.C2•A) 
410 PRINT "REAL ZEROS "XIJX2 
45 GCT(I 10 
SO DATA I• 3,2 
60 OATA j,J,J,3,-2,4 
70 DATA o,o,o 

Problem No. 4 
10 LET G•ATNCSORC96Jn?> 
20 LET G•G•ISO/J.14159 
30 LET D=INT<G> 
40 LET ~l•INTCCG-0>•60+.5> 
4S PRINT "TWO ANGLES ARE" 
50 PRINT D"OEGREES "H"HJNUTES" 
60 LET Cil•l80•2•G 
65 PRINi' "THE THlRO ANGLE HEASURES" 
10 PRINi' lNT<Gl )"DEGREES "J 
60 PRINT INTCCGJ-INT<G1»•60••5>"HINUTES" 
90 ENO 
RUN 
NtJ.4 

TWO ANGLES ARE 
76 DEGREES 26 MINUTES 

THE THJRO ANGLE MEASURES 
2J DEGREES 4 MINUTES 

DONE 

Problem No. 6 
I 0 LET G•ATlH 12,.Sl 
20 LET c; .. G•IBO/J.14159 
JO LET O,.JNT<Gl 
40 LET ~!•INT<CG•Ol•60+.S) 
SO PRINT O"OEGREES "M"HINUTES" 
60 LET GID90-G 
70 PRINT INT<GI >"DEGREES "J 
BO PRINT INT<CGl•INT<G1>>•60•.5l"HlNUTES" 
90 ENO 
RUN 
NB·6 

61 DEC.REES 2J MINUTES 
22 DEGREES 37 HlNUTES 

DONE 

Problem No. 8 
10 LET il"IOOO•TAN<C7+30,.6D>*J•l<lt59,.IB0l 
2D PRINi' "HEIGHT I S"H"fEET" 
30 ENO 
RU'i 
N0•6 

HEIGHT IS 131·652 FEET 

ODNE 

SEC. 9-3 

Problem No. 2 
10 LET Y.:rJ.14159/160 
20 DEF' f"NTCGJ«SJN<G•IO 
JO OEf f"NRCX>sINTCX•IOO+.S>,.100 
35 READ X 
J6 ff X«• I THEN 999 
37 IF' X:oO THEN 62 
AO READ Al.Bl.A 
SB REM F'INO THE THIRD ANGLE 
60 l.ET CJ:rl60-(Al+BI> 
61 GBTB 70 
62 READ c1,e1.A 
64 LET Al,.160-(Cl+BI) 
68 REM 10 ANO 60 COMPUTE THE 0THER TW0 SIDES 
70 LET OsA•f"NT<BIUf"NTCAI) 
60 LET C"B•F'NTCCll/f"NT<Bll 
9B REH UDW PRHH THE RESULTS 
100 PRitlT " "•" A".'' 8"1" C" 
110 PRltiT "THE ANGL£S ARE"•At.a1.c1 
120 PRlf/T "THE SIDES ARE"1F'NRCAhFNR(8)1fNRCC> 
I 40 PRHIT 
ISO GOTO JS 



"° ~ 

390 NEXT N 
400 ENO ..... 
N0·6 

NAMES IN 0ROER 
008 NAME 
1620 ANTHONY. SUSAN 8. 
1647 BELL, ALEXANDER GRAHAM 
1620 BRONTE. ANNE 
1867 CURIE, MARIE 
1747 JONES, J0HN PAUL 
1626 VERNE. JULES 
1460 VERRAZAl'rn .. GICVANNl 
1613 WAGNER, WILHELM RICHARD 
1859 WASHINGTON,. BOOKER T. 

Problem No. 8 

90 DIM AS(72l 
toO FILES TEST 
105 IF' ENO 11 THEN 999 
110 FOR I=I TO 1000 
115 READ 111,1 
116 PRINT 
120 PRINT "RECORD" I 1 
200 ff TYPC -1 )> ! THEN JOO 
205 READ llJA 
220 PRINT Al 
230 GOTO 200 
300 IF TYP!-1)~2 THEN 400 
310 READ llJAS 
320 PRINT ASJ 
330 GOTO 200 
400 IF' TYPf-ll=4 THEN 600 
500 PRINT "END OF FILE" 
600 NEXT 1 
999 END 
RUN 
NO·B 

RECORD ! 
F"IRST 999812. 
RECORD 2 
SECOND RECORD 
RECORD 3 

7612 -123. 45 

END OF FILE 

RECORD 4 
1234 12456 -999999. 123 

RECORD 5 
END OF FILE 

SEC. 7-6 

Problem No. 2 

NAMES 

100 CHHISTIE AGATHA 
110 TRUMAN HARRY 
120 WHITE SNOW 
130 Gl30SE MOTHER 
140 TWIST OLIVER 

NO• 2 

100 F"ILES NAMES 
104 REM * FIRST COLN T NAMES 
110 LET C = 0 
120 LET C = C + I 
130 READ #1,. NS 
140 IF MORE #l THEN 120 
150 LET 5$ :: "AAAAA" 
160 FOR P = 1 TD C 

72 PRINT 
75 PRINT "NCN-REAJ.. ZERCS "-B/<2•A>JSQRC-0)/<2•A), 
BO PRINT -B/C2•AU-SQRC-Ol/C2•A> 
90 GCTC 10 
99 ENO 

RUN 
N0.2 

I 3 2 REAl. ZEROS -I 
I I I 

NON-REAl. ZEROS -.S oB6602S 
3 -2 .. 

NON-REAl. ZEROS •333333 l • 1055<1 

DONE 

Problem No. 4 
10 READ A.8.C 
20 IF A" .OJ THEN 999 
30 PRINT "X"•A"Xt2 +"B"X +"C 
AO FOR X•-12 TO 12 STEP 3 
SO PRINT X•A•Xt2+B•X•C 
60 NEXT X 
70 GOTO 10 
BO DATA 2,-:J.4 
90 DATA oOl; I• I 
999 ENO 
RUN 
NO.A 

x 2 
-12 328 
-9 193 -· ,. 
-3 31 

0 
13 
58 
139 

" 256 

DBNE 

CHAP. 9 

SEC. 9-2 

Problem No. 2 

Xt2 +-J 

10 l.ET G=ATNCSORtJ6t2-B•2)/8) 
IS Pf.flNT Gl"RAOIANS" 
17 PRINT" OR" 
20 LET G=G•IBO/J.14159 
2B l.ET O=INTCG> 
JO PAINT 0"0£GREES" 
JS LET H"60•CG-1NTCG>> 
AO l.ET Ml,,lNTCM> 
AS PRINT Hl"HINUTE~" 
50 l.ET S:::tH-HI 
55 PRINT S•60"SECONOS" 
60 ENO 
RUN 
N0.2 

1. 3467 RADIANS 
OR 

7? OEGKEES 
9 MINUTES 
J7. 7 161 SE CON OS 

DONE 

.JJ33JJ 

-·866025 

-1.1oss.-

Ht.M •I• Mt.AN~ AA!) 
.498 REM 'O' MEANS ASA 
499 REM ' - I' MEANS STOP 
500 DATA 1·24.51.JO 
SIO DATA Q,901601 IS 
520 DATA - I 
999 ENO 

RUN 
N0.2 

A 
THE ANGl.ES ARE 24 
THE SIDES ARE I 0 

A 
THE ANGl.ES ARE JO 
THE SIDES ARE IS 

DONE 

Problem No. 4 
2 DEF' FNRCX»:JNTCX•IOO•oSl/100 
S LET l<=IBO/J.J41S9 
7 PRINT •• "•" A"•" 8".'' C" 
10 READ A10!1C 
IS IF" A=O THEN 1000 
20 LET TcCOS<Sl/Kl 

8 
51 

" 2S·96 

30 l.ET B=SQl{CAt2+Ct2-2•A•C•Tl 
AO l.ET Tl•CBr2+Ct2-At2l/£2•B•C} 
SO l.ET Al:K•ATNCSQRCl-Tlt2l/TI> 
60 LET Cl,.180-CAl+Sl> 
6S PRINT "THE SIDES ARE".A.a.c 

c 
105 
2J.75 

90 
30 

70 PRINT "THE ANGLES ARE''.F'NRCAl»F'NRCi3ibF'NRCCI> 
SO PRINT 
90 GOTO 10 
500 DATA J,SJ. IJ.S 
540 DATA o, o, 0 
1000 END 
Rili 

A 
THE SIDES ARE J 
THE ANGl.ES ARE J6.87 

DONE 

Problem No. 6 

5 PRINT " "•" A"•" B"." C" 

J.99999 
SJ.13 

10 DEF' F'NRCX)=INTCX•IOO•oS)/100 
15 l.ET K=180/Jol<llS9 
20 READ a1.c.a 
22 PRINT 
2S IF' St=O THEN 9999 
JO JF' ASS<SIN<Sl/I0-8/C)c.00001 THEN 1000 
40 IF' BcC•SIN<Sl/K) THEN 1100 
60 IF a .. c THEN 1200 
BO PRINT "THERE ARE TWO TRlANGl.ES" 
90 LET Sl=I 
95 PRINT "ONE" 
100 GOTO 1210 
110 PRINT "TWO" 
IJO l.ET CJ;JBO-CI 
140 LET Sl;O 
I SO GOTO I 2JO 
I 000 PRINT "RIGHT TRIANGl.E" 
1010 LET A"SGRCC•2•8•2> 
1020 PRINT "SJOES ARE".f'NRCA>.s.c 
IOJO PRINT "ANGl.ES ARE"• 90-81•SIo90 
10<10 GOTO 20 
1100 PRINT "NO TRIANGl.E" 
1110 GOTO 20 
1200 PRINT "SINGl.E TRIANGLE" 
120S l.ET Sl"O 
1210 l.ET S"C*SIN<Bl/K)/8 
1220 l.ET Cli:ATNfS/SORCl-S•2>>•K 

c 
5 
90 



kl 
Q-( 
ol:l. 

SEC. 9-3 Cont'd 

1230 LET A!cl60-CBl+CI 
1240 LET A=SINCAl/K,.B,"SlNCBJ/KJ 
12SO PRINT "SIDES ARE" A.-8.C 
1260 PRJNT "ANGLE:S AR£",f'NR<Al>.f'NR<81),F'NRCC1> 

126S IF' Sl"i THEN 110 
1270 GOTO 20 
!JOO DATA J0.6.-9 
IJIO DATA J0•9•6 
I 320 DATA J0•2• I 
1400 DATA o,Q,Q 
9999 END 
RW 
NOo6 

SINGLE: TRIANGLE 
SIDES ARE 14·9905 
ANGLES ARE 12J·61 

THERE ARE T'<IO TRIANGLES 
ONE 
SID£S ARE 14·4086 
ANGLES ARE 11s.11 

T"O 
SIDES ARE Io 17965 
ANGLf.S ARE 4o2J 

RIGHT TR JANGLE 
SIDES ARE 2•24 
ANGLES ARE 60 

DONE 

Problem No. 8 

S LET l<<1160/J.t4159 
? PRINT " "•" A"•" B" "' C" 
10 READ A.-82,83184,C 
IS IF A•O THEN 1000 
17 LET B1•82•8J/60+841 J600 
20 LET TaC0SC81/l<l 

' 30 

. 
30 . 
30 

I 
30 

JO LET 8•SORCAf2+Cf2·~ •A•C•T> 
40 I.ET Tl•CB12+Cf2-AH J/C2•B•C> 
SO I.ET Al•K•ATNCSQRC I• Tl f2)/TJ) 
60 I.ET Cl•180-CAl+BIJ 
65 PRINT "THE SIDES Al'E''.A.a.c 
70 PRINT "THE ANGLES I RE" 
60 L£T A2•lNTCAI > 
90 LET AJ•INTC<Al-A2» 60) 
100 LET A4=INTC<CA1•A: )•60-AJ)•60+oSJ 
110 I.ET C2•INT<CI > 
120 LET CJ•lNTCCCl-C2 •601 
130 I.ET C4:r:INT<«Cl-C!~>•60-CJ>•60•·S> 
1 JS PRINT "ANGLE DEG HIN SEC" 
140 PRINT "Al • "A2JA.JJA4 
l~O PRINT "Bl • "B21a:u8.o\ 
160 PRINT "Cl " "C2JC:uC4 
165 PRlNT 
170 GOTO 10 
399 REH 0 H S 
500 DATA 3.sJ.1 • .ota.s 
SJO DATA tO.Jl• 16•5.-2<> 
540 DATA o.o,o.o.o 
1000 ENO 
RUN 
Na.a 

THE SIDES ARE 
THE ANGLES ARE 
ANGLE DEG HIN SEC 
Al " 36 52 12 
Bl • 53 7 48 
Cl • 90 0 O 

' 3.99999 

8 
26.J9 

34.23 

' J45,77 

90 

-.es - • <43 .43 .75 
.13 .46 .13 .. 6 

0 ' 0 0 

-.13 ·46 .13 -·<lB 

.2s - • .tJ .43 -.75 .,, -.11 ·" -·71 . ., -.25 .75 -.43 

- ... a .. , .. 6 -.13 ., 0 0 0 

- • .ts -.13 ··A:B -·13 
.43 ... ..75 -·43 

·" .71 -.71 -·71 

.25 .. , -.43 -.75 
-.13 -.•a -.13 - ... a 

0 ·I 0 0 
.13 - • .i11a -.13 .. 6 

-.2s . ., -.43 .75 
-.11 ·" -·71 .,, 
- • .tJ .25 -.1s .43 ... -.13 .... a .,, 

I 0 0 0 

DONE 

Problem No. 2(e),(f) 

10 LET K•J.14159/180 
20 PRJNT " R•SINCJG>"•" RCOStGl•I" 

25 PRINT " X"•" Y"•" X"•" Y"1"ANGLE" 
JO DEF' F'NXCR)•R•CDS<G•IO 

JS OEr F'NYCR).,R•SIN(G•Kl 
40 OE'.f fNRCX)•INTCX•IOO+.Sl/100 
so F'GR G•O TC 360 STEP 15 
60 LET E•SJN<:l•G•KJ 
65 PRINT F'NRCF'NXCE> >.FNRCF'NYCE:»• 
70 1" ABSCCDSCG•I0><.0001 THEN 90 

60 LET F'"1/C0S<G•I() ., PRINT FNR<F'NXCF")J,f'NR<F'NY<f>J,G 

87 GDTO 170 

" PRINT " X DR Y UNOEF'lNED"• G 

170 NEXT G 
180 ENO 
RUN 
NGo2EF 

RBSlNCJG> RCOSCGh f 

x y x y 

0 0 0 

o66 . " ' ·27 
•• 7 .. ' ... 
.s .s ' ' 0 0 ' 1.73 

··IB -.66 ' J.7J 
0 ., X OR Y lf-IDEF"INEO ... -.66 -3.1J 
0 0 I -l.7J 

".s .s I ., 
-.51 .s -.s5 
-.66 • 16 I -·21 

0 0 I 0 ... ... ' .27 

•• 7 .s I .SB 

.s .s ' I 

0 0 I 1.1J 

--16 -.66 J.1J 

0 •I X CR Y UNDEF'INEO ... -·68 ' -J.1J 

0 0 ' -I .1J 

-.s .s ' ., 
-.67 .s ' -·58 

-.66 d6 I -·27 
0 

OONE 

Problem No. 2(gJ,(hJ 
10 LET K"J.\4159/160 
20 PiHNT " ft=! •RCOSCGl"•" R=SlN(GJ+COS<G>" 
25 PRINT " X"•" Y"•" X"•" Y"."ANGLE" 
JO OEf' f'NXCR>=R•COSCG•Kl 

60 
75 
90 
105 
120 
135 
ISO 
165 
160 
195 
210 
225 

2'0 
255 
270 
265 
300 
JI s 
JJO 

"' 360 

ANGLE 
0 

" JO 

" 60 
75 
90 
105 
120 
135 
ISO 
165 
160 
195 
2!0 
225 
2<0 
255 
270 
265 
300 
315 
330 
3'5 
360 

Problem No. 4 

10 READ A.a.c.o 
11 Ir A"•OI THEN 999 
12 PRINT 
20 PRINT "C"A"•"B">•C"C"•"D"l•C"A•C"•"B-0">" 

JO PRINT "<"C","O">•<"A"•"B">•<"C-A".''O-B">" 
40 PRINT "("A"1"8")/C"C"1"D")•C"J 

.o\S PRINT CA•C•B•Dl/ CCT2+D•2>"•"<B•C-A•O>/(Cf2+0T2)")" 

SO PRINT "<"C"•"O"J/C"A"•"B">•C"I 
SS PRINT CA•C•B•D}/(Af2+9T2)","(A•0-8•C>/ (Af2+B•2>">" 

60 GOTO 10 
100 OAT" J.0.0.1.1.2.3,4,s.-a.2.4 
110 DAT" .01.0.0.0 
999 END 
RUR 
NG.4 

' ' • 0 l-{ 0 ' }•( j 

l 0 . ' )•( 1 0 >•(•I 

l' • 0 )/( 0 ' J•( 0 
l 0 . ' J/C I • 0 )•( 0 

l' • 2 }•( J • 4 hC•2 

' J 
.. >-<I • 2 I•( 2 

l l • 2 )/( 3 .. }•( o.o\4 

'J • 4 )/( 1 • 2 J•( 2·2 

' 5 
, .. )-( 2 .. }a( J 

l 2 • 4 J•( 5 ··6 l•(-J 
l s . ·• )/( 2 .. 1•(-lol 

. ' ··• . ' 
,-2 
• 2 

.-12 
• 12 

( 2 • 4 J/( s ··• hC-.24T191 

DONE 

Problem No. 6 

S FOR X1r1 TC 5 
10 READ C,Q 
20 PRINT ··c1.o>/("C"•"O"l•("C/(C•2•0•2>"•"' 
25 PRINT -O/CCr2+0•2>">" 
JO NEXT X 

40 DATA l12..l•O•O•i•2•J•-3••.ll 
SO END 
RUN 
N0•6 

(1,0)/( 1 • 2 

C l•O>/C I , 0 
Cl.OJ/( 0 , I 
(1,0)/( 2 • J 
C!.0)/(-J 

DONE 

SEC. 10·2 
Problem No. 2 
10 LET R•i 
20 LET G•4S 
JO LET Rt•i 
40 LET Gt•O 
SO f'OR N• I TO 6 
60 LET Rl•Rl•R 
70 I.ET Gi•Gl•G 

J:( .2 .-.4 
J•( l • 0 
J•( 0 .-1 
1" ( .153846 .. ~.230769 
j;i(-.12 

60 PRUIT ''(l,4S>'"N''•<"Rl'"•"GI")" 
90 NEXT N 
100 ENO 
RUN 
NQ.2 

Cl;4'5)• I 
Cl.4Sl• 2 
{J,45)1 3 
<l•<lS)f 4 •( 
Cl•45H 5 •( 
<1.•S>• 6 •C 
( l•45)f 7 •( 
Cl,45Jt 6 

ODNE 

" 90 
135 
180 
225 

• 270 
• 315 ' 

> 
•• oa 

.-1.a 
, .404494 



"'° en. 
en. 

TH£ SIDES AR£ 
TH£ ANGLES ARE 
ANGLE DEG HIN SEC 
Al II 2.. 23 .... 
81 • 31 18 5 
Cl " 12.. 18 11 

00NE 

SEC. 9·4 

Problem No. 2(a),(b) 
5 LET K•3ol4159J'l80 

12.5186 

10 DE1' FHR<X>•JNTCX•100••5)'100 
12 PRINT .. cesc20G>"'•.. CISC3•G> .. 
15 PRJNT • X"".-"' Y'"•" X".-" Y"1 .. ANGLE" 
30 FBR G•O TB 360 STEP 15 
40 LET A•CDSC2•G•K> 
50 LET B•COSC3•0•K) 
60 PRINT fNRCA•C8SCG•K))1FNRCAOSINCG•K>>• 
70 PRINT P'HRCB•COSCG•K>>.-F'NRCB•SIHCG•K>>.-G 
90 NEXT G 
100 £HD 
Rt.t< 
NOo2AB 

COSC2•G> C8SC3•G> 
x y x y 
I 0 I 0 
·8• ... ·•8 d8 
·•3 ·25 0 0 
0 0 •• 5 •• 5 

-.es .... 3 •• 5 -.81 
-·22 •• 5 .. -·18 -·68 

0 ·I 0 0 
.22 -·84 -.18 ·•8 
·25 .... J •• 5 ·87 
0 0 ... .. 

- • .tJ ... 0 0 
-.8 .. .22 ... -.19 
•I 0 I 0 
-·8"' -·22 ·68 ·18 
.... 3 ··25 0 0 

0 0 ··5 •• 5 ... . ., •• 5 -.87 
.22 ·8• -·18 -·68 
0 I 0 0 

•o22 ·8• •o18 .08 
•o25 . ., •• 5 ·87 

0 0 •• 5 .5 . ., -025 0 0 ... -.22 .08 •olB 
I 0 I 0 

DONE 

Problem No. 2(c),(d) 
S LtT K•Jol.tlS9/180 
10 PRINT " COS< .. •G>"•" SIN<2•G)" 
IS PRINT•• X"•'' 'I'"•" X .. , .. 'l'"•"ANGL£" 
20 DEF" F'NRCX>•INT<X•I00+.5J/'IOO 
30 F'9R G•O Te 360 STEP IS 
60 LET C•COSC.t•G•K> 
10 LET D•SIN<2•G•K> 
75 PRINT F'NR<C•COSCG•K>>1F'NRCC•SlN<G•K>>• 
80 PRINT F'NRCO•CBS<G•K>>,F'NR<O•SIN<G•K>>•G 
90 NEXT G 
100 ENO 
Rl>I 
N£h2CD 

CBSU•G> SIN<2•G> 
y x y 
0 0 0 ... ·13 ·•8 d3 

.... J -.2s .,, . ., 
-·71 -·71 .71 .71 

ANGLE 
0 

" 30 
•5 •• 75 

•• ,., ... 
135 
ISO 
165 
180 
195 
210 
225 
2 .. 
255 
270 
285 
300 
315 
330 
3'5 
360 

ANGLE 
0 
IS 
30 
•5 

.J::O uEF FNY(Rl,.R•SIN(G•IO 

.:iO DEF FNROO::slNT<X•I00 ... 5)/100 
50 FOR a .. o TO J60 STEP I 5 
90 IF ABS<J-COS<G•K»<·OOCI THEN 110 
100 LET Gl=l/<l-COSCG•K)) 
105 PRINT f'NRCFNXCGl>>,FNRCf'NYCGI>>• 
107 GOTO 120 
110 PRINT " X OH Y UNDEFINED''. 
120 LET H=StNtG•K>•COS<G•IO 
I JO PltlNT FNRCFNXCH)) ,FNRCFNYfH) > •G 
170 NEXT G 
!BO ENO ..... 

NG.2GH 

R•1•RC9S<G> 
y 

R•SIN<G>•CUS(G) 
y 

X OR Y Lf.IOEF'INEO 
2Bo3S 106 
6· .. 6 J.7J 
2o4I 2o41 
l t.73 
.35 1·3 
0 I 

-.21 .77 
-.JJ 058 
- ... 1 ..... 
- ... 6 .21 
.... 9 ·13 
•o5 0 
-049 -.13 
- ... 6 -.21 
.... 1 - .... 
•oJJ -.sa 
-.21 -077 

0 •I 
.35 -1·3 
I •t.73 
2 ... 1 •2o-41 
60 .. 6 •Jo7J 
28035 •106 

X OR Y lfiD£J'IN£0 

DONE 

CHAP. 10 

SEC. 10-1 

Problem No. 2 

' lol8 
1.18 
I ... .. 
0 

-·18 
-·18 

0 
.32 ... 
I 
1.18 
lol8 
I ... .. 
0 

-·18 
-.18 

0 .. ... 
' 

10 PRINT "RdOTS OF AXt2+BX .. C" 
20 PRINT 
JO PRINT "A•B•C"J 
.. 0 INPUT A•B•C 
50 IF A•O THEN 160 
60 LET O•Bt2• .. •A•C 
70 ff O<O THEN 120 
BO PRINT "REAL R60TS" 
90 PRINT C-B .. SQR<O>J/'C2•A)J 
100 PRINT <•8-SQRC0))/C2•A> 
110 Gate 20 
120 PRINT "NDN•REAL ROOTS" 

0 
.32 
·68 
I 
l•IB 
lol8 
I ·•8 
-32 
0 

··18 
-·18 

0 
-32 

·•8 
I 
lolB 
J.18 
I ·•8 
-32 
0 

-.1s 
-· 18 

0 

130 PRINT "C"·B/C2•A>"•"SOIHABSCD) )/(2•A>">" 
140 PRINT "~"·8/C2•Al"•"·S01HABSCD> )/C2•Al">" 
150 GOTO 20 
160 END ..... 
N0o2 

ROCITS OF AXt2+8X+C 

A.S.C76.13•6 
REAL ROOTS 
··666667 -1.s 

A.e.c12.1.6 
NON•REAL ROOTS 
r-.25 • I oTIJ91 
r-.25 .-1.11391 

A.a.c10.o.o 

DONE 

ANGLE 
0 
IS 
30 
•5 
60 
7S 
90 
105 
120 
135 
ISO 
165 
180 
195 
210 
225 
240 
255 
270 
285 
300 
315 
330 
3'5 
360 

Problem No. 4 
10 LET K•J•l .. IS9/180 
20 PRINT "CONVERT ,.ROH CA18) TO <R•G>"' 
30 PRINT 
.tO PRINT "A•B"J 
50 INPUT A•B 
60 IF A•-·01 THEN 260 
70 PRINT "CR.Gl ,.8RM • C"J 
eo ,,. A .... 0 THEN 110 
90 IF Bco THtH I JO 
100 ,,. a .. o THEM 1so 
t to PRINT ""D.O>"" 
120 GlllT8 30 
130 PRINT •8"•270)" 
UO GCITS JO 
150 PRINT 8",9D>" 
160 GDTB 30 
110 LET R•SQR(AJC+Bt2> 
180 LET G•ATfHB/Al/K 
190 I'· A .. O TH£H eeo 
200 LtT G•0• 180 
210 GOTO 2 .. 0 
220 IF' 8.,0 THEN 240 
230 LET G•G•360 
240 PRINT R .. ,"G">" 
e5o Get& 30 
260 £HD . .... 
N8o4 

CONVERT ,.RSM <A.B> TO ClhG> 

A.BfO,I 
<R.G> ,BRM • ( I 190) 

A•Bf•l••l 
<R•G> F'8RM • < lo .. 1 .. 21 , 22S• 

A18f•oOl10 

08NE 

Problem No. 6 
10 PRINT ""IND INTEGRAL POWERS 8,. <A•B>" 
20 PRINT 
30 PRINT "WHAT P8WER"J 
.. o INPUT N 
50 PRINT '"A•B"J 
60 INPUT A18 
10 LET C•C•I 
80 LET D•,.•O 
90 1DR X•I re N 
I 00 LET C•A•£·B•,. 
110 LET D•A•F'•B•£ 
120 LET E•C 
130 LtT F'•D 
140 PRINT X"<"C"1"0"}" 
ISO NEXT X 
160 ENO ..... 
NOo6 

F'JND INTEGRAL POWERS or <A.B> 

WHAT POWERU 
A1B?•h•I 

I (•J ••! 
2 ( 0 • 2 
J ( 2 .-2 
.. ,... * 0 

D8N[ 

SEC. 10-3 
Problem No. 2 
20 DE' F'NR<X>•INT<X•l000•o5>11000 
.. 0 PRINT "TAKE RBl3TS DF' COMPLEX NUMBERS lN (A,B> F'ORM" 
60 READ A•B•N 
BO PRINT "TH£"N''."N"TH ROOTS er t"A''."B"> AR[I" 
IOD LET R•SQRCA'2 .. Bt2) 
102 1r A o 0 THEN 12CI 



l>:i 

''1 Q) 

SEC. 10·3 Cont'd 

10"' LET G•3·1'1159/2 
I 06 If" B>O THEN 2"'0 
108 GOTO 160 
120 LET G•ATNCB.-A) 
I 40 Ir A>O THEN 200 
160 LET G•G+J.1<4159 
160 GOT(l 2410 
200 Ir B>O THEN 2410 
220 LET G•G•2•Jo I 4159 
2-40 F'CR X•l TON 
260 LET RI •Rt C l/N) 
280 LET Gl•G/N 
JOO LET Al•Rl•COS<Gl l 
320 LET Sl•Rl•SIN<Gl > 
340 PRINT "C"F'NRCA1)",·•f'NRCB1l"1" 

360 LET G•G•2it3· 1"'159 
380 NEXT X 
400 PRJNT 
420 GOTO 60 
430 OATA Q,J,4 
440 OATA 1, 1,2 
460 DATA !.013 
460 ENO 
Rl.Ot 
NClo2 

TAKE: ROOTS \IF' COMPLEX NUMBERS IN CA,B> F'ORH 
THE A 4 TH ROOTS OF' C 0 , I ! AREt 

< ,924 , ,3g3 
c-.JBJ , .9<!4 
c-.924 .-.JeJ 
' ,353 .-.924 

THE 2 2 TH R001 S OF' 
'1.099 • ,455 
(•j .099 .-.455 

TH£ 3 • J TH tlOClS OF 
(-oS o!l66 

<-.5 ,-.B66 

OUT OF DATA IN LlNE 6C 

CHAP. 11 
SEC. 11-1 
Problem No. 2 
5 REH SUBTRACT TWO POLYNOMIALS 
10 FOR X"I TO 10 
20 LET O(XJ:HXJ=SCXJ:>O 
JO NEXT x 
40 READ N 
50 FOR X"'N TO 2 STEP • 1 
60 READ (l(Xl 
70 PRINT O[X)"Xt"X-1''•"1 

60 NEXT X 
90 READ or 1 l 
100 PRINT 0( 1 l 
110 READ NI 
120 FOR X=N l TO 2 STE! 
lJO READ HXl 
140 PRINT TCXJ"X•"X-1' +"1 
150 NEXT X 
160 READ Tt 11 
170 PRINT Tl 1 l 
190 f'OR )(:110 TO I STE!' 
200 LET SCXl=OtXl-TtX 
210 NEXT X 
215 LET S"O 
220 FOR X.:110 TO 2 STE!' 
2JO LET S=S•SCX) 
240 IF S:>O THEN 260 
250 PRINT StXl"X1 .. X-\' 
260 NEXT X 
270 PRlNT SC 11 
280 DATA 4,.3,2,6,-6 
290 DATA 5.6.-7.s.o.1 
299 END 

! AHEI 

> AREi 

'20 N()(T 

125 F'OR z,.A+B· I TO ~ STEP - I 
130 PRINT PCZlJ 

"' NEJO;T Z 
1<0 Pt<INT 
I <5 PRINT 

150 NEXT T 
155 ENO 

""" NC.6 

0 
I• 
JO 

' I• 
-112 . 
' 2& 

' ' . IJ . ,. 110 182 15' 

DONE 

Problem No. 8 

I 0 PRINT "POWERS OF C X+ I)•• 
20 DIM Ptl2J.F"Clll 
JO FOR W•I TO 12 
40 LET PCWJ•O 
50 NEXT W 
60 LET Ft!J•FC2J•j 
70 LET SC I 1•5(2)•1 
60 LET A•Sor:2 
90 PRlNT FC I JJ1''[2l 
100 FOil T•I TO 10 
I I 0 FOR I• I TD A 
120 F'OR J•I TO 8 
!JO LET P(J+J-lJ•PCl+J-11+.Cil•SCJJ 
140 NEXT J 
150 NEXT i 
160 F"OR X•! TO 11 
170 LET F'OO•P{XJ 
160 NEXT X 
190 FOR Z•A+l TO l STEP -J 
200 PRINT PC Zll 
210 NEXT Z 
220 F'OR H•I TO 12 
2JO LET PCMJ•O 
240 NEXT M 
250 LET A•A+I 
260 PRINT 
270 NEXT T 
260 END 
RUN 
NOoB 

POWERS OF C X• 1 J 
I I 

2 j 

' ' ' 10 
15 
21 

6 26 . " 10 " II 55 

DONE 

' . I 
10 5 
20 15 

" " " 10 

" 126 
120 210 
165 '30 

' 21 

" 126 
252 
'62 

I 
1 I 
26 6 I 

" " . I 
210 120 •5 10 I 
'62 '30 165 55 II 

260 IF' H•l THEN 10 
:no PRttlT "NONE 1"(1UN0" 

280 GOTO 10 
290 OAT/\ 4, 1.--2,3,-.o11 
JOO OAT!\ s,2,-1,-11,11.--2 
JlO OAT/\ ... 1.J.-10.-eo 
Jl5 OATI\ -·01 
J20 IF' 1\BS<P) "" 2 THEN 160 
JJO LET 1<{0• l l"'P 
J•O LET l<CQ,2J"X 
JSO LET O•Q+l 
J60 GCTIJ 160 
J70 LET P•O 
JBO FOR I•N TO 1 STEP -I 
390 LET P•P+P( ll•X• <I-I l 
400 N(X7 1 
410 RETURN 
420 ENO 
HUN 

NO·• 

1 -2 J -4 
INTEGRAL ZERO c S l 1 NONE FOUND 

2 -1 -11 11 -2 
INTEGRAL ZE!lOCSll 2 
ABSCPl•2 

x ' 

1 J -78 -so 
INTEGRAL ZEROCS)I 6 

DONE 

SEC. 11-3 
Problem No. 
10 PMINT "SEARCH '°ilR REAL ZEROS 0,. A POLYNOMIAL" 

20 PRINT "START, END• INCREMENT"J 
25 LET SJ•O 
JO INPUT ,.,L,5 
40 I,. S•O THEN 27U 
SO DEF' ;'NTCX>•12•X•J-64•X•2•17•X•l95 
60 LET A•O 
70 FOR X•F TO L STCP S 
60 LET Sl•rNf(X) 
90 LET S2•F'NTCX•S> 
100 IF' Si•S2•0 THEN !JO 
110 LET A•A•I 
120 LET S!Al•X 
125 If SJ•I THEN 190 
IJO NEXT X 
I •O IF' A>O THEN 190 
!SO ?HINT "NO INTERVALS FOUND •••• TRY AGAIN" 
160 PMINT "WITH EITHER GREATE.t LIHITS OR SMALLER INCREMENT" 

I 60 GOTO 20 
190 PRINT "INTERVALCSl BEGIN ATI" 
200 FOR J•l TC A 
210 PRINT SttJJ 
220 NEXT I 
225 Lt.T SJ•I 
230 PHINT 
250 P.t!NT "NOW ''J 

260 GOTO 20 
270 END 
HUN 

SEARCH 1'0R HEAL Zt.RCS or A POLYNOMIAL 
STA'iT• [NQ, INCHEMENT7-195, l95.1 
INTEMVAL.<Sl dtGIN ATt 
-.i! 2 J 
NOW STA.tT. ENQ, INCHEHENT72,J,.J 
INTE~VAL<Sl BEGIN ATI 
2.6 

NOW STAJo<T. ENO, INCKEHENTll• 1>0 

DONE 



NJ 
Cit 

"" 

RUN 
N0•2 

-· DONE 

Xf J • 2 JI• 2 
•-1 X• J 

Problem No. 4 
20 DIM PC20l 
100 rDR W•l TO 10 
120 LET f'CWl•S(W)•PCWl•PCW+!Ol•O 
l"O NE:itT w 
160 READ A 
165 I,. A•- I THEN 620 
IBO F'OR X•A TD ! STCP -I 
200 READ rt Xl 
220 PRINT F'tX)J 
2-40 NEKT X 
260 PRINT 
280 R£AD 8 
300 F'OR Y•B TO I STEP - I 
320 READ S(Yl 
3•0 PRINT S{YlJ 
360 NEXT Y 
380 PRINT 
"00 F'Or1 1•1 TO A 
"20 F'OR J•t TO B ""o LET PCl+J-IJ•P(l•J-ll•F"CIJoS(Jl 
"60 NEXT J 
.. ao NEXT I 
500 FOR l•A•B-1 TO I ST£P - I 
520 PRINT P[ZJJ 
SAO NEXT Z 
560 PRINT 
580 PRJNT 
585 GOTO 100 
590 DATA 5,3,2.0.2.1 
595 DATA J,2, 5,2 
600 DATA 2,3,2 
605 DATA 2•2•3 
610 OATA -I 
620 ENO 
Rt.fl 
NO•o4 

DONE 

2 
J 
IJ 

Problem No. 6 
5 OlM P[20l 

12 

10 OEF" F'NP<X>s:INTCXORNO<JO+l-X/2) 
IS DEF' F'NR<Xl•JNTCX•~NOClO+I) 
20 l"O:f T=t TO 4 
~5 f"Ort ~·I TC 10 
)•) LET F"[Wl•S{lol)•P('1)'*P(IH\0)•0 
JS NEXT '.I 
"O Li:T A:F'N:~< I 0) 
.,.5 F'C.;: X•A TO I STEP •I 
50 LET F'(XJ=F'NPP')) 
55 ;>~INT f'tXlJ 
60 NEXT X 
65 ?HINT 
'M LET ?l•F'Nrl:C5) 
15 F'C:~ Y=tJ TC I STE~ -1 
IJV LET S(Y)#F'NIHl6> 
85 i"tUNT S[Yll 
90 NEXT Y 
95 ?~INT 
100 F'CR l•l TO A 
105 F'CR J• I TO B 
110 LET ?tl•J-IJ.aPCI•J•ll•f'til•.S(J} 
115 NE1.T J 

.. , 
• 0 

SEC. 11-2 
Problem No. 2 
10 DEF' F'NRCXl•INTCX•RNO<il•X./2l 
15 F'OR T•l TO 3 
20 ?iUNT 
JO PrtJNT "ZEROS AREt 
40 LET S•I 
50 F'OR X•I TO 4 
60 LET P( X)•O 
10 NEXT X 
BO LET F'C2l•S[2J•I 
90 LET A•B•2 
100 LET F'[ ll•F'NRC20) 
110 PRINT -F'CllJ 
120 LET SCIJ•F'NRC20l 
IJO PRlNT -StllJ 
140 F'OR I•! TO A 
150 F'OR J•I TO B 
160 LET PCl•J-ll•PCl•J-ll+F'tll•SCJl 
170 NEXT J 
!BO NEXT I 
190 IF' S•O THEN 270 
200 LET S•O 
210 F'OR X•I TO 4 
220 LET F'[Xl•P(X} 
230 LET P( Xl•O 
240 NEXT X 
250 LET A•.3 
260 GOTO 120 
2'10 PltlNT 
215 PRINT "THE COEFF'JCIENTS AREi ••1 
280 F'On X•4 TO I STEP •I 
290 PRINT PCXJJ 
JOO NEXT X 
J05 PRINT 
310 NEXT T 
J20 ENO 
RUN 
N0.2 

ZEROS AHE 1 I 4 
THE COEF'F"JCIENTS ARE1 I 

ZEROS AREi -• B 
THE COEF'F'ICIENTS AREi l 

ZEROS AREi 6 -1 
THE COEF'F'ICIENTS AREi I 

DONE 

Problem No. 4 
10 PRINT 
20 READ N 
25 ff N•-·01 THEN "420 
JO F'OR S•N TO I STEP - I 
.tO READ PC SJ 
50 PRINT PC SJJ 
60 NEXT S 
10 PRINT 
80 LET Q•I 
90 PRINT "INTEGRAL ZERD<S>1 
100 LET lhO 

-12 J9 

110 F'IlR X•-PC!l TO P[IJ ST£P SGN(P[IJ> 
120 IF' X•O THEN 180 
130 IF' p[IJ/X <> INT<PCll/X) THEN 180 
I "40 GOSua 310 
150 IF' P ... 0 TH£N J20 
160 PRINT XI 
170 LET K•I 
180 NEXT X 
190 H" 0• I THEN 260 
200 PRINT 
210 PRINT "ABS<P> .. 2" 
215 PRINT" X P" 
220 ,-OR X•I TO 0-1 
230 PRINT KCX121J1<CX1ll 
2"40 NEXT X 
250 GOTO JO 

•28 

-252 

Problem No. 4 
10 DEF' FNT<X>•12•Xt.3•64•Xt2•11•X .. 195 
20 L£T A•O 
JO ,-OH X,.-5 TO 5 
40 LET Sl•F'NTCXl 
50 L£T S2•F'NTCX .. I > 
60 I" Sl•Sl?•O TH£N 90 
70 LET A•A .. I 
fJO L£T StAl•X • 
82 IF X o F' THEN 90 
84 IF' Sl ... 0 THEN 90 
86 PRINT X"I S A ZEHO" 
90 NEXT X 
92 JF' S2 o 0 THEN I 00 
9"4 PnlNT x .. S"IS A ZEno" 
100 PIHNT "INT£RVAL<S> SEGIN ATt" 
110 FOH J•I TO A 
120 PrilNT SCIJJ 
I JO NEXT I 
l.tO PHINT 
150 Pri!Nf 
160 F'OR l•I TO A 
170 LET F'•S£ IJ 
180 LET 11•1 
190 LET S•f"•J I 
200 LET D•<ll•F'NT<f'll/f,-NTCF'l-,-NTCS)) 
210 LET X•F'•O 
220 IF' F'NTOO o 0 THEN 250 
230 PRINT Xl"IS A ZERC" 
2.tO GOTO J.tO 
?.50 IF' ABSCF'NTCXl>>oOOOI THEN 280 
260 PIUNT XJ"YIELDS F'NTOO •"IF'NTOO 
:?10 GOTO .3"40 
280 IF' F'NTCF'>•F'NTCX>•O THEN JIO 
290 LET 11•0 
JOO GOTO 190 
310 L£T I 1•11-0 
J20 LET F'•X 
J30 GOTO 190 
J.tO NEXT i 
.350 END 
<UN 
N0·4 

INTEH:VAL<S> BEGIN ATI 
-2 2 J 

-l.4.t1l4 YIELDS F'NTCXl a 6.10352E-05 
2·8751.l YIELDS F'NTCX> •-6. IOJ52E-05 
Jo90475 YIELDS F'NT(X) •-J.05116£-05 

SEC. 11-4 
Problem No. 2 
IO DEF' F'NAC Xl•P[ 9 l•X.t 8 .. P[ 8 J•Xt7•PC 7 l •X• 6•P[ 6) •XI 5•P[ 51 •X• 4 
20 DEF' F'N!HX>•PC4)•XtJ+P(Jl•X•2•PC2l•X.•P( I l 
JO DEF' F'NPCX.>•F'NAC)()•F'N0(Xl 
AO P>1lNT 
Al FOH X•I TO 9 
50 LET PtXl•O 
60 NEXT X 
70 H:EAO N 
15 !IC N•.6101 THEN 500 
t!O F'OH SsN TO I STEP ·I 
90 HEAD P[SJ 
I 10 PtHNT PCSJJ 
120 NE.'H S 
I JO PRINT "JNTEGHAL ZEHOI 
\AO F'Olt X"'-P{\) TO Piil STEP SGN<Ptll> 
150 IF' X•O THEN 200 
160 IF' P{ll/X .... INT<P{l]/Xl THEN :?00 
170 IF' fNPtX> <> 0 THEN 200 
I RO PRINT X. 
190 GOTO 210 
200 NEXT X 
210 LET ~=X 
~20 ~1HNT "SYNTHETIC DIVISION BY X ~"JtO"YIELOS1" 
2J0 PHINT P[Nl I 

F'O~ X•N- I TO I STEP - I 



·~ •::Il 
,)::) 

SEC. 11-4 Cont'd 

250 LET P(XJ•POO+P(X>ll•R 
260 IF Xotl THEN 280 
270 PH INT P[ Xj • 
280 NEXT X 
JOO F'Ori X• I TO N-1 
JIO LET P[X)•P{X+l) 
J20 NEXT X 
325 LET PCNJ"O 
JJO IF" N•4 THEN J60 
J 40 LET N•N-1 
J50 GOTO I JO 
J60 LET O•PC2)T2•·0P( ll•P(ll 
370 LET F"•2•PCJJ 
JBO LET A•-Pt2l/F' 
390 LET 8•SOR<A85<01J 'f' 

IF' D«O THEN ""O 
PH'JNT "REAL ZEROS' "I 

420 PHINT A+SJ"ANO 'JA-B 
430 GOTO 40 
4'10 PRINT "NON-1-lEAL z:ROS1'" 
450 PRINT "(''JAJ"•"l8•"1 ANO t"JAl"•"•·dJ"~" 

460 GOTO .110 
470 DATA .11,1,2,-1,-2 
480 DATA s.2.s.-:11.-21.<115 
490 DATA •0101 
500 E:ND 

I ?. - I -2 INTEGRAL ZERO I 
SYNTHETIC OlVtSJON 0Y X - I YlELOSI 

1 J 2 RtAL ZEROS! ·I ANO 

2 5 -JI -21 45 INTEGRAL ZEHOI 
SYNTHLTJC OIVJSlON SY X --5 YIELOS1 

2 -5 •6 9 INTEGf<AL ZERO 1 
SYNTHETIC DIVISION BY X - I YIELOS1 

2 •J -9 HEAL ZEROSt J AND 

CHAP. 12 

SEC. 12-1 
Problem No. 2 
10 DP1 A(J,121 
20 HAT READ A 
JO F'OR X•I TO 12 
40 LET ACJ,XJ11A!2•Xl•:\( 1.X] 
50 NEXT X 
60 MAT PRINT AJ 
65 DATA 1,2,3,4,5.6,7,23,51,41,S6.2J.:i 
66 DATA 2.-3,43,9Q,45,32.-a9.6S • .:i3.-96.o.1 
67 DATA Q,Q,Q,O,Q,Q,Q,Q,Q,Q,O,Q 
70 END 

_, 

DONE 

Problem No. 4 
10 DIH At.:i,;l) 
20 MAT MEAD A 
JO MAT PRINT AJ 
40 F'OR R,.I TO 4 
SO F'OR C•I TO 3 
60 LET ACR.CJsJ•Atrl.Cl 
70 NEXT C 
60 NEXT A 

2J 

"' 

" •7 56 2' 

MAT PrllNT AJ 
F:Nf.) 

SEC. 12-2 
Problem No. 2 
20 OIH AC4.3J.8[1,4J,Ctl•JJ 
<40 P'!AT READ A 
60 DATA 6• J,2, 5, 3,2, 4, 3,.2, 3, 2• I 
1.:10 MAT READ B 
160 DATA 0.0,010 
240 FOR Rzr.1 TO I 
260 F'OR C•I TO 3 
2so LET crn.cJ .. o 
JOO F'OR X• l TO 4 
320 LET CCR.Cl•CtR.Cl•B!R.xJoACX.Cl 
3<40 NEXT X 
360 NEXT C 
360 NEXT A 
500 PRINT "ROAO"•"TUNNEL"•''FIHIDGE" 
520 MAT PRINT C 
999 ENO 
RUN 
NOo2 

HOAO 
0 

OCNE 

TUNNEL 
0 

Problem No. 4 
20 DIM AC-4•Jl.8(4,4},C(-4.J) 
40 MAT READ A 

BHIOGE 
0 

60 DATA 6,J,2,S.:l.2,4,3,2,3,2,1 
140 MAT REAO 6 
160 DATA 0.0.0.1.o.o.1.o.o. j,0.0.1.0.0.0 
240 F'CH R= I TO 4 
260 F'OR C• I TO 3 
280 LET CCR,.Cl•O 
300 J""-R X"l TO <4 
J20 "T CCR.Cl•CCR,Cl•BCR,X}oA(X,Cl 
J•O NEXT X 
J60 NEXT C 
J60 NtXT R 
500 PRINT "ROAO","TUNN£L"1"BHIOGE" 
520 MAT PRINT C 
999 ENO 
RUN 
N0o4 

ROAD 

OCNE 

TUNNEL 
2 

Problem No. 6 

BiHOGE. 

10 PIUNT "BE.CAUSE THE OlMENSlONS ARE" 
20 PRINT "NON-CONF'CRHING" 
JO END 
RUN 
N0.6 

BECAUSE THE OIHENSICNS ARE 
NON-CONFORM I NG 

DONE 

61 SS 

12J 

Problem No. 8 
10 OH Ac2 .. ::i:1 .. ':!c2.21.cr2.:n.ou'!.2l 
?:O ;~AT .~EAO fl., d 
30 OATA -2.1.1.s.-.s.1.2.:114 
-41) MAT C•A•d 
51) "'r<INT '"A•tl" 
60 MAT f>HINT CJ 
10 ~IAT O•!:i•A 
RO ,,,lJNT "~•A" 
9'.l •.::n P,HNT DI 
100 F.tJO 
n!JN 
NC.a 

A•A 
1 

OCNE 

Problem No. 10 
10 01'1 A[J,12l•Btl2•1J.CCl2•121 
21) MAT r<EAO A 

JO l'l'i:STOr'IE 
4•) "IAT READ 6 
51) MAT C•9•A 
60 '1AT PRJ~T CJ 

too DATA j,l!;,J·•·5·6·1·ff·9· IO. I I· 12 
200 ENO 

""' NO.JO 

10 

12 

" 
" 20 

16 u 

" 

10 1?. 

15 

?.O u 

?.5 

JO J6 

J5 

10 

.. " IA n n u 

21 u ~ - JJ J6 

" • H m .. 
J5 ~ a M 5$ 

a 0 u M " 72 

" 2' J?. " .lllJ 56 6" RO IJIJ 96 .. .. 
10 20 " '° $0 10 'l>J 9') 11)0 110 l?.0 

:??. JJ .. 5$ 99 110 121 132 

12 .. " 
., 60 H !!4 9JS, lOfl l?.O !JP. 144 

DONE: 



t'° 
Cll co 

as P:tINT 
90 HAT t>l{JNT At 
95 DATA 2• 56. 78; 3,20, 45, 3, 9, 673• 564190• 234 
IOD ENO 

RUN 
N0.4 

564 90 234 

ll5 

1692 702 

t.lON!'.: 

Problem No. 6 
DIM ;>;(?.,51 

-!I) MAT HEAD lt 
:JO ;1AT PRINT Xl 
40 f"Orl fl:>! TO .., 
':>O f"O•< C"I TO '.:! 

60 IF cq•Cl/?.=INTCCrl•Cl/?.) THEN 90 
70 LET xot.t:l=-J•X('l,Cl 
RO GCTO 110 
9') LET lt(t(,CJ:·l•X[11,c1 
110 NEXT C 
l~O NE;>;T •1 
I JO MAT PRINT ltJ 
140 UATA J,6"/,J?.,45,91),~,9,57,.3,1 
15') >'.NO 

"'" 

S7 

-201 -J:;> 

OON'i: 

Problem No. 8 
10 0111 Xt"!.6l 
20 F'01t tt=J TC 2 
J J F'O.t C= I TV I> 

<10 Ll:T xt11,CJ-=! 
SD N'O:·q C 
61} ~£lliT -r 
7 l "lf!.T '""<INT r.1 
R0 
-?•JN 

NC.i'I 

Problem No. 10 
10 DIM A(?,;i) 
?.J ' F'C ~ X: l TO ;> 

JV >O·: Y=l TC R 
40 L'.:T A(X,y}::"1 
SIJ N£.H 'I' 
6".I Ni:XT X 

SEC. 12-3 
Problem No. 2 

DIM A!4,4J.'l[ 4,) J.Ct4d l 
2t} '1AT ifEAO A 

JO OATt\ l1J,-~.-1,2.-J.1,-J,-7,s.-1,11,J.-1,1,-1 
40 MAT H!:AD B 
50 DATA -1,2,-3,;i 
6U HAT C=A•!;J 
70 MAT ""11NT C 
!JO !:NO 
RUN 
NCo2 

-2l 

-12 

DONE 

Problem No. 4 
JO UIM A(?..~J.~!?..?.l.Ct?..:n.Dc2.?) 
20 MAT READ A,8 
JO DATA l• 12, \,4,-1?.,;?k,J,-7 
4'l Mt\T C•A•3 
SO MAT 0:1H•A 
60 Pl{JNT "A•'l" 
70 MAT PitlNT Cl 
~O P>tJNT "9•A" 
91) MAT PrllNT DJ 
100 PHINT "! COtlCL!JOE THAT HATHIX" 
110 P-~INT "M'.JLTIPLICATICN !SNOT" 
120 P~fINT "COMMUTATIVE" 
I JO ENU 

.. , 
0 

, .. _, 

I CONCLUDE THAT HATRI X 
MULTIPLICATION JS NOT 
COHMUTATI VE 

OONE 

Problem No. 6 
\'! o.H'I t\£2•2l-'H'=',?J,ct~.~J.IJ(:>,~J 
12 !JJ ·1 E:C ;>, 21, F' f ~ • .> J ,G[ ·,?, ~ l 
20 ~AT l'.:ll,L) A, B, C 
)0 UATA 1,:>,.1,4,- l,-.,,'),J,?.,-11,:><;, JI 
M) "'!AT D•A•'> 
'.>O 'IAT F.:"A•C 
'>0 ."'\AT l'=U•F'. 
70 P-!INT "A•lhA•C" 
R<l .'IAT P•!INT f"1 
90 "1AT G"lhC 
1')0 !>'AT "'"~*G 
l 111 f>1/JNT "A•[4•tl" 
l?O MAT P.{!NT F'I 
130 END 

A•~Hl•C 

61 55 

SEC. 12-4 

Problem No. 2 

10 OJM ec2.2J,cc2.21.oc2.2i 
20 MAT REAO B 

JO HAT C•lNll<B> 
410 PRINT "INVfBl" 
50 HAT PRINT C 
60 HAT D•B•C 
70 PRINT *'B• INll< B>" 
75 HAT PRINT 0 
60 MAT O•C•B 
90 PRINT "'JNVCBl•B" 
l 00 HAT PRINT 0 
200 DATA -8.-J,o,-1 
JOO ENO 
R<.N 
N0o2 

INll<B> 
--125 

B•INllCB> 

' 

JNllCBhB 
I 

09NE 

Problem No. 4 

·J75 

10 DIM CCJ,3J,K(3.1l,S(J,1J.UJ,Jl 
20 HAT READ C•K 
JO HAT !•!NVCC! 
410 HAT S•l•K 
SO HAT PRINT S 
100 DATA 2,-9,-5,7,-6,S,9,-6,5 
105 DATA 2,-J5,-39 
110 ENO 
R<.N 
N0o41 
-2. 

.999995 

-l 

00NE 

Problem No. 6 
10 DIM Ct 41, 41l1K[ 41, I), H 41,41), SC -t• IJ 
20 MAT READ C.K 
JO MAT l"INllfC) 
410 MAT S•l•K 
50 HAT PRINT S 
100 OATA 6,J,6,S,-7,S,-7,-1 
102 DATA -J,1,3,6,-2,-41,41,-7 
105 DATA -12,71,31,-76 
110 ENO 
R<.N 
N0.6 

·>· 

DONE 



l'() 
O') 
a 

SEC. 12·4 Cont'd 

Problem No. 8 
DIM CtJ.J],l({J, I 1.sc: • l J,{[J.JJ 

~O MAT READ C,I( 
Jf} MAT J•INV<C> 
40 MAT S:l•I< 
50 1'1AT ?RJNT S 
100 DATA 2141•3•·9,-J,Q, .9,5,5 
105 DATA -I! .91SA.S16601 
110 ENO 
rl'JN 
NO.a 

o6rlOOVI 

.~99998 

DCNE 

Problem No. 10 
10 OH-• cuo.101.Kt10.11 uio.101.sno.11 
I?. REM W£ AL.LOW !JP TO Tl:N UNKNOWNS 
20 READ N 
?.S Ir N•O THEN 999 
JO MAT !IEAO CtN.NbKCN. 11 
40 ?HINT '"COEFPICIENT M•1T1UX" 
50 MAT PHINT CJ 
60 PRINT "CONSTANT T£HM;;" 
70 MAT Pl{INT I( 

80 MAT I•ZE1HN.Nl 
90 MAT S•ZEtUN, 11 
100 MAT I•INV<C> 
110 MAT S•I•K 
120 P1HNT "SCLUTIONS" 
I JO MAT P'ttlNT S 
\ 40 GOTO 20 
?.01) DATA 21J• l•5•-J17.?. 
?.10 DATA J,?,,J,-i•J•O•l11••?.,-5 
?.?.O DATA 21hl),6 
?.30 DATA 0 
999 ENO 
RON 
NO.JO 

CC£F"1Clf.NT MATIHX 
3 

CONSTANT TEltMS , 
21 

SCL!JTIONS 
3 

COEF"F'ICIENT MATRIX 
?. J -1 

., 
CONSTANT TERMS 

20 

SOl.UTlCNS .. 
,_ 

_, 

TRN<A>•TRN(B> 
:i JI 12 

-11 

SB 75 

DONE 

CHAP.13 

SEC. 13-2 

Problem No. 2 
10 LET N"I 
20 F'Orl X:'14 TO I STEP -1 
JO LET N•N•X 
.tO NEXT X 

50 LET N•N/2 
60 PRINT N 
70 END 

""" N0.2 

4.J5891E+IO 

OONE 

Problem No. 4 
JO t.ET P•J 
20 FOrl X•25 TO I J STEP ·I 
JO l.ET p,,,p•X 
40 NEXT X 
so •on x"' 12 TCl I STEP - I 
60 t.ET P:mP•X 
70 NEXT X 
80 PRINT P 
90 ENO 
RUN 
N0,4 

1-55112£•25 

DONE 

Problem No. 6 
10 LET C=I 
20 Fl:IR X• 52 TO 52- 5+ I STEP -1 
JO l.ET C•c..-.; 
40 NEXT X 
50 POR )';•5 TO I STEP •I 
60 LET C•C/X 
70 NEXT X 
80 PRINT C"HANDS" 
90 ENO 
RUN 

2·59B96E+06 HANDS 

DONE 

Problem No. 8 
5 LtT N•t 
10 nJR X•365 Te J65·S•1 STCP •I 
20 LET N•NOX 
30 NEXT X 
.-o PRINT N 
5D CHO 

<40 NEXT ;~ 

50 F'OR Xn'4 l(I J STEP •I 
60 L£T Cnc.-x 
"10 N£XT ;( 
60 PRINT C"STRAIGHT CDMMJTTEE:S" 
90 LE'T C,.13•12/<2•1> 
100 LET Cl•l7•16/C20l 
110 LET C2•C•CI 
120 PRINT "TWO GIRLS AND TWO BOYS .. C2 
lJO LET C•1J•l"IOl6•15,CU2•3) 
i "O PRJNi "ONE DOY ANO THREE GJRLS"C 
150 LET C•l7016415•1,.l<••l•2•1> 
160 PRINT "Al.I.. GJRLS"C 
170 LET C•13•12oll•IO/C4'•J•2•l> 
180 PRINi "ALL IJOYS"C 
200 ENO 
R'-" 
Na. is 

27'105 STRAIGHT CBMMITT££S 
TWO GIRLS AND TWD BOYS 10608 
ON£ Bl'IY A!IO THR££ GIRLS 88o40 
AL.L. GIRLS 2J80 
AL.L. BOYS ?IS 

DONE 

Problem No. 20 
10 LET H"Hl•I 
20 Fen; )(n52 TC 52-5•1 STEP •1 
30 LET H"HOX 
o40 NE.XT :t 
50 FOR Xn5 TD I STEP •I 
55 L.ET HnH/X 
60 NE.XT ;< 
100 FOR it•Se-s TO (52-S>-5•1 STEP -1 
110 L.ET lll•HlaX 
120 NEXT X 
130 FBR :t•S TB I STtP •I 
lo40 I.ET lll•Hl/X 
150 NEXT X 
160 PRINT H•Hl"PAIRS er FIVE CARO HANDS" 
200 END 
R'-" 
Nll•20 

J.9866SE .. 12 PAIRS er FIVE: CARO HANDS 

DONE 

SEC. 13-3 

Problem No. 2 
10 LET N.,2 
20 ron X .. 9 TO I STEP • j 

30 I.ET N"N•X 
.-o NEJ;T l: 
50 I.ET On! 
60 ,.OR x .. 10 Ta t STEP -1 
70 l.tT o .. O•X 
BO NEXT Jt 
90 PRINT NIO 
100 ENO 
RUN 
NO.e .. 
OON£ 

Problem No. 4 
10 L.ET Nril 
eo ,.DR x .. se re 52-5• I STEP •I 
30 LtT N"N•X 
<110 NEXT ll 
50 ,-OR X"S TO l STEP •I 
60 LET N11ff/X 
70 NEXT J: 



l-.o 

~ 

SEC. 12-5 

Problem No. 2 
10 0111 A!;l.JJ,8[;),J),C[J,Jl 
20 MAT READ A 
30 MAT B=TRNCA) 
40 PRINT "TRNCA>" 
50 HAT PRINT Bl 
60 HAT C=A•B 
70 PRINT "A+TRN(Al" 
BO HAT PRINT CJ 
90 MAT C«A-8 
100 PRINT "A-TRNCA>" 
120 HAT PRINT CJ 
I JO MAT C=B-A 
140 PRINT "TRN!Al-A" 
\SO MAT PRINT CJ 
JOO DATA 5,3,1,6,-2,9,3,9,1 
999 ENO 
RUN 
N0.2 

TRIHA) 
5 

A+TRN<A) 

" ' 

A-TRNCA> 
0 -J -2 

TRNCA>-A 
0 J 

00NE 

Problem No. 4 
10 DIM A(J,JJ,B(J,J),C[J,JJ.O(J,JJ.E(J,Jl 
20 HAT REAO A.B 
30 HAT C=A•B 
410 HAT Q;TRNCC) 
50 PRJNT "TRN<A•Sl" 
60 HAT PRINT OJ 
70 HAT C=TRNCA) 
80 HAT O=TRtHBl 
90 MAT E:O•C 
100 PRINT "TRNCBhTRNCAl" 
110 MAT PRlNT EJ 
120 HAT E=C•O 
130 PRINT "TRNCA>•TRN<B>" 
l 40 MAT PRINT El 
300 OATA 2.-bJ.s.o.s.-3 • .i:i.2 
JIO OATA e..J.a.9.s • .i:i.11.-2.0 
999 END 
RUN 

TR.•HA•B> 
36 116 

-s 

12 40 -e 

TRN<Bl•TRNCA) 

Rt>< 
NO•B 

6o30255E+12 

DONE 

Problem No. 10 
I 0 PRINT 26t 3• I Ot J"DJf'F'ERENT PLATES" 
20 ENO 
RLN 
ND• ID 

1•75'760E+0'7 011f'EREHT Pl.ATES 

DONE 

Problem No. 12 
S LET T•O 
10 f'OR F'•S TO 0 STEP -1 
15 LET P•! 
20 nm X•S TO s-r+t STEP -I 
30 LET P•P•X 
410 NEXT X 
50 L.E:T T•T+P 
60 PRINT f'",.LAGS"P"SJGNALS" 
70 NEXT F' 
75 PRINT "TOTAL NUMBER OF' SIGNAL.S I S"T 
BO ENO 
Rt>< 
N0.12 

F'l.AGS 120 SIGNALS 
'"LAGS 120 SIGNALS 
F'l.AGS 60 SIGNALS 
F'LAGS 20 SIGNALS 
F'LAGS 5 SIGNALS 

0 F'l.AGS I SIGNALS 
TOTAi. NlR18ER OF' SIGNALS IS 326 

DONE 

Problem No. 14 
10 LET G•l 
20 f'OR XcSO TO 50-25+ l 
30 I.ET G•G•X 
"40 NEXT X 
60 F'0R X•25 TO I STEP - t 
70 LET G•G/X 
SO NEXT X 
90 PRINT G''GUEST 1.ISTS" 
100 ENO 
RU« 
NO.t"4 

6o"4"11695E-26 GUEST 1.ISTS 

DONE 

Problem No. 16 
10 LET N'"I 
20 F'OR X11!4 Tll I STEP -I 
JO I.ET N•N•X 
40 NE:XT X 
<45 LET N•N•2 
50 PRINT N 
60 ENO 
Rt>< 
N0.t6 

lo74357E•l 1 

DONE 

Problem No. 18 
10 I.ET C•I 
20 F'CR X•JO TC 30•"11+1 STEP -I 
JO LET c ... c•X 

80 PRINT ll'N 
90 ENO 
Rt>< 
N0.4\ 

J.8.t'769£-07 

DONE 

Problem No. 6 
10 PRINT Cl/2)tl0 
20 END 
RU< 
NC.6 

9o76562E-04 

DONE 

Problem No. 8 
10 LET P•C•B/S2>•C4'7/Sl>•C46/SO>•C·4/"49> 
20 PRINT P 
30 ENO 
RUN 
N9•8 

6o3B817E-02 

OCNE 

Problem No. 10 
10 PRINT CS/6)tJ•<tl6l 
20 PRINT CS/6)t9•<116> 
50 ENO 
RUN 
No.10 

9·6"11506E-02 
3·2301 IE-02 

OONE 

Problem No. 12 
l 0 PRINT 1- C 36"41365) '28 
20 ENO 
RUN 
N0.12 

7 ·39399£-02 

DONE 

SEC. 13-4 
Problem No. 4 
10 HAT S•ZERCl14l 
20 PRINT " DEFECTIVE" 
30 PRINT "'1.lGHT OPENE:R BOTH NEITHER" 
"110 F'GR X• I TO 1000 
50 LET L• INTC20•RNOCI)) 
60 LET C•INTC25•RNOCI>> 
70 IF' 1.>0 THEN 120 
80 I.ET S(l.dl•Stl•ll+I 
90 lF' C>O THEN 140 
100 I.ET S{l1?l•S{l12J+I 
105 IF' L>O THEN 1"110 
110 LET Stl13l•S{l•Jl+I 
I 15 GOTO l"40 
120 IF' C•O THEN 90 
130 LET st1~"11l•S{1."4)+l 
1"110 NEXT X 
150 HAT PRINT SJ 
160 ENO 
Rt>< 
Na • .-

OEF'ECTIVE 
LIGHT OPENER BOTH NEITHER 

42 35 J 926 

OBNE 



k> 
C') 
k) 

SEC. 13-4 Cont'd 

Problem No. 6 
LET C•O 

20 F'OR X• t TO 500 
30 LET R•INT<6•RN0(1)+1> 
40 IF' R:1I THtN 100 
SO IF' R•S THEN 100 
60 GOTO 200 
100 LET C•C•I 
200 NEXT X 
2t0 PRINT C"rlVE OR CNt UP" 
220 END 
RUN 
N0.6 

162 F'IVE DR 0NE UP 

DDNE 

Problem No. 8 
10 LET Nl•J 
20 OJH StSOOl 
JO MAT S•ZER 
-'O P'CR :it• I TO 500 
SO LET N•I 
60 LE.T R•INTC6•RN0<1>•1> 
70 IF' A• I THEN 120 
60 LET SCNJ•SCNl+l 
90 IF' N<o:NI THEN 
100 LET Nl•N 
110 GOTO 140 
120 l.ET N•N• I 
130 GOTO 60 
140 NEXT X 
150 PRINT "ROl.l.S TJI. 01'<£"•"NUHBER OF TIME 
160 roR X•I TO NI 
170 PRINT x.stX} 
180 NEXT X 
190 END 
Rlf' 
NO.a 

ROLLS TIL (IN£ NUMSE:R OF TIMES 
8• 

10 

" 12 
lJ .. 
15 
16 
11 
18 

" 20 
21 
22 
2J 
2• 
25 
26 
21 
28 
29 
JO 
JI 
J2 
JJ ,. 
J5 

DONE 

62 
60 
37 
35 
39 

" 2J 
17 .. 
16 
15 
II 
1 
5 
5 
1 

Problem No. 10 
10 OJM S[l. Ill 
1 S HAT S•ZER 
20 F'DR X• 1 TD 500 
25 LET C•O 
JO F'OR R•~ TD JO 
40 LET Rl•INT<6•RNOCl>+ll 
SO JP' Rl"'i THEN 100 
60 LET C•C+I 
100 NEXT A 
110 I.ET S[l,C•ll•SCl•C•ll•1 
,JO NEXT X 
140 PRINT "NCNE CHE TWO THREE"J 
1 SO PRINT " F"OUR F'JVE SIX SEVEN"J 
160 PRINT " EIGHT NINE TEN" 
110 MAT PRINT SJ 
160 ENO 
RUH 
ND.JO 

N0NE ONE TWO THREE F'6UR nve: SIX SEVEN EIGHT NINE TEN 
160 t SJ 69 32 6 O 0 O 0 O 

DONE 

SEC. 13-5 

Problem No. 2 
5 PRINT "BNES PROBABll.ITY .. •"TOTAl." 
1 l.ET T•O 
10 FOR R•IO TO 0 STEP -f 

15 \.ET C•I 
20 FOR X•IO TO 10-R•l STEP -t 
30 l.ET C•C•X/(10-X•l) 
40 NEXT X 
SO LET P•C•Cl/6>tR•t5/6)•CIO-R> 
55 LET T•T•P 
60 PRINT RJP.T 
65 NEXT R 
70 ENO 
RLW 
N{lo2 

ONE:S PROBABILITY 
10 l•653B2E-OB 
9 8o26906E-07 

OCNE 

I •86054E:-OS 

2046072£-04 
2· 17063£-03 
i. 30236£-02 
5-426S9E-02 
·155045 
.29071 
0323011 
• 161506 

Problem No. 4 

TOTA.l.. 
I ·65JB2E-oa 
B•43447E-07 
l o94489E:-05 

2o67521E-04 
2•43816£-03 
o0JS462 
6o97279E-02 
·224773 
o5154BJ 
0838495 .. 

10 REM COMB 100 THINGS I AT A Tll'IE•JOO 
20 LET P•IOO•oOOltlOo999t99 
JO PRINT P 
40 ENO 
RlJf 

9005693£-02 

DONE 

Problem No. 6 
10 LET P•<J••OOl•0•·999rl00 
20 PRINT t-P 
JO END 
RUN 

9o52127E-02 

DONE 

Problem No. 8 
5 PRINT "ONES PRD0A01L1TY" 
10 l.ET N•6 
20 F'OR R•O TO 6 
JO l.ET C:I 
SO FOR X"N TO N-R• I STEP - j 

60 LET C•C•X 
70 NEXT X 
90 FOR XsR TC I STEP - I 
1 00 LET C•Cl'X 
110 NEXT X 
120 PRINT RJCa(S/6)r(N-RU(l/6ltR 
130 NE1'T R 
ISO ENO 
RUN 
No.a 

ONES PROBAB 1 l. J TY 
0 .J34B98 
I •401878 
2 ·200939 

DONE 

s. 35837E-02 
fl·037SSE-OJ 
6o4J004E-04 
2ol4JJ5E•OS 

Problem No. 10 
5 LET T•O 
10 F0R R"6 T0 10 
15 LET CE! 
20 F0R X•IO TO IO•R•l STEP ~J 

JO LET C:oCo)(/'(10-X•I) 
40 NEXT X 
SO l.ET P•C•<ll2l•ROCl/2)f(IO~R> 
60 LET T•T+P 
65 NEXT R 
68 PRWT T 
10 ENO 
RUH 
NllolO 

o3769SJ 

Problem No. 12 
5 PRINT "Fl.JPS PROBABILITY" 
10 l.ET P•I 
20 FOR R"I TC 10 
30 LET P=P•<l/2) 
40 PRl!lT RIP 
SO NEXT R 
60 ENO 
RUN 
NOo 12 

FL.JPS PRCBABILITY 

' ,5 
2 .25 

.J25 

.0625 
0 03125 
.015625 
1.a12soE-OJ 
3·9062SE:-03 

q lo95312E•03 
10 '1076562£•04 

DONE 
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Index 
ABS (Y) function, 47 
Addition 

matrix, 186 
modular, 67 

Algorithm, Euclidean, 91-92 
Argument, definition of, 47 
APPEND N statement, 118 
Arithmetic, modular; see Modular arith

metic 
Arithmetic operators, definition of, 4 
Arrays, 78-79, 84 

DIM (two-dimensional), 85, 86, 89 
dimensioning, 85-86 
.tvIAT instructions in, 176 
structure of, 79 

Artificial data, 20 
ASCII, 102, 115, 116 
Assignment operator, 10 
Assignment statement, 10 
ATN (X) function, 136 
Axis of symmetry, 123, 124 

Base-2, 93, 94 
Binary files, 118 
Binomial experiments, 212 
Binomial theorem, 212 
Binomial trials, 210-213 
Birthday problem, 205 
Block diagramming; see Flowcharting 

Circular functions, 132, 133 
CLE; sec SCR 
Coefficient matrix, 192 
Column vector, definition of, 179 
Combinations, 200 
Comma, use of, 2, 3, 101 
Comma delimiter, 10-11 
Complex numbers 

addition of, 148 
de Moivre's theorem, 152 
division of, 148 
multiplication of, 148 
polar form, 150, 151 
rectangular form, 147, 149 
roots of, 152 
subtraction of, 148 

Complex zeros, 168-175 
Compound fraction, decimal value for, 

6 

Compound interest, 55 
calculating, 32 

Computer list, 35-36, 40-"15 
dimensioning, 66 

Computer functions 
ABS(Y), 47 
ATN(X), 136 
DEF FNA(X), 57, 58, 61 
INT(X), 47, 48, 51 
RND(X), 62-63 
SGN(N), 47 
SQR(Y), 47 
trigonometric, 133, 136 

C0N, 187 
Conditional transfer, 18, 19 
Congruence conditions, 139 
Conversions 

base-10 to base-2, 93-96 
degrees to radians, 133 
dimensions, 50-51 
inches to feet and inches, 51, 54 

Coordinate systems, 128 
polar, 144, 150, 151 
rectangular, 132, 138, 143, 147 

C0S(X) function, 133 
Cosines, Law of, 139-142 
CREATE command, 110 

Data files, 109-121 
access, 115 
ASCII, 116-118 
binary, 118 
data storage, 115 
General Electric, 11.'5 
Hewlett-Packard, 110-115 
random access, 112, 118-120 

Data processing. 2 
arrays, 78 · 
questionnaires, 85 
tabulation, 73-77 

DATA statement, 3-4, 101, 116 
Debugging, 218 
Decision-making, 14 
DEF, 57, 58 
DEG(X), 133 
Degrees, conversion to radians, 133 
Delimiter, 73 

comma, 10-11 
semicolon, 10-11 

265 



266 Basic BASIC 

De Moivre's theorem, 152 
Depressed polynomial, definition of, 169 
Descartes' Rule of Signs, 173, 175 
Dimension conversions, 50-51 
Dimensioning 

arrays, 85-86 
lists, 66 

DIM statement, 66, 103 
two-dimensional, 85, 86, 89 

Division 
of polynomials, 156-158, 159 
synthetic, 158 

Dummy argument, definition of, 62 
Dummy data; see Artificial data 

E-format, 8-9 
END statement, 2, 12 
Enumeration 

combinations, 200 
factorial, 198 
partitioning, 202 
permutations, 198-199, 200, 202 
Principle of, 197-198 

Equality, matrix, 187, 190 
Equals sign, 10 

in IF-THEN statement, 15 
as relational operator, 15 

Error diagnosis, 218-224 
Euclidean algorithm, 112-113 

greatest common factor, 91 
Event, definition of, 205 
Executive program, 4 
Experiment in probability, definition of, 

197,207 
Exponentiation, symbols used for, 4 

Factorial, 198 
Factoring integers, 48-49 
Factor theorem, 160 
Failure in probability, definition of, 197 
Fibonacci numbers, 3tl, 46 
FILES statement, 110, 117 
Flowcharting, 13-14, 20 
F0R-NEXT statement, 26, 28, 31, 32 
Fractions, reducing, 50-51 
Functions 

circular, 132, 133 
computer, see Computer functions 

G0SUB statement, 41, 45 
G0T0 statement, 3, 12, 18 

Greatest common factor, 51, 54, 91 

Identity matrix, 187 
IDN, 187 
IF END statement, 111 
IF-THEN statement, 15, 18-19 
IMAGE statement, 227 
Initializing, 9-10 
INPUT statement, 166 
Integers 

computing greatest, 47 
factoring, 48-49 

Integral zeroes of polynomials, 159-163 
INT(X) function, 47, 48, 51 
INV( ) statement, 191-192 

Law of Cosines, 139-142 
Law of Sines, 138-139, 141, 142 
LEN( ) function, 103 
LET statement, 5-6, 11, 56 

as assignment statement, 10 
Lists; see Computer list 
Location principle, 163 
Logical end, definition of, 69 
Log-on; see Sign-on 
Loops,24-25,31-34 

F0R-NEXT, 26, 28 
machine-made, 26, 28-30 
nested, 32 

Machine-made loops, 26, 28-30 
MAT instructions, 176 
MAT READ, 178-179 
MAT PRINT, 177, 178, 179 
Matrix, 179; see also Arrays 

coefficient, 192 
creating zero matrix (ZER), 187 
filling locations with 1 (C0N), 187 
forming identity matrix (IDN), 187 
identity, 187 
inverse of, 190-191 
transpose of, 195 

Matrix addition, 186 
Matrix algebra, 185-188 
Matrix equality, 187, 190 
Matrix inverse, 190, 191 

difference from transpose, 195 
Matnx multiplication, H>5-H>o 

scalar, 187 
Matrix subtraction, 186 
Maximum, 124 



Minimum, 124 
Modular arithmetic, 67 

addition, 70 
multiplication, 70 

Multiplication 
matrix, 185-186 
modular, 70 
of polynomials, 155 
scalar, 184 

Multiplication symbol, use of, 4 
Mutually exclusive events, 211, 212 

NAME command, 16 
Nested loops, 32 
Nomeal zeros, 169 
Numerical order, 40-41 

OPEN command, 110 
Operands, definition of, 4 
Operators 

arithmetic, 4 
assignment, 10 
relational, 15, 19, 20 

Ordering routine, 65 
Outcome, definition of, 197 

Papertape,215 
Parabola 

definition of, 123 
plotting, 125-131 

Parentheses, 7-8 
Partioning, 202 
Pascal's Triangle, 213 
Permutations, 198-199, 200, 202 
Polar axis, definition of, 144 
Polar coordinate system, 151 

complex numbers, 150 
polar axis, 144 
pole, 144 

Pole, definition of, 144 
Polynomials 

abbreviation of, 159 
complex zeros, 168-175 
definition of, 154 
depressed, 169 
Descartes' Rule of Signs, 173, 175 
division of, 156-158, 159 
Factor theorem, 160 
integral zeroes of, 159-163 
Location Principle, 165 

multiplication of, 155 
polynomial function, 160 
quotient, 173 

Index 267 

real zeros, 163, 165-167 
Remainder theorem, 159 
second-degree, 168 
synthetic division, 158 
variation in sequence, 173 

Predefined process, 41 
Prime numbers, 48-49 
Principle of Enumeration, 197-198 
PRINT statement, 1, 2, 101 
PRINT USING function, 61, 227 
Probability 

binomial trials, 210-213 
"birthday problem," 205 
definition of, 197, 204 
event, definition of, 205 
experiment, definition of, 197 
failure, definition of, 197 
independence, 205 
outcome, definition of, 197 
success, definition of, 197 

Program, definition of, 1 
executive, 4 

Program defined functions, 55-60 
Pseudo random number generator, def

inition of, 62 
Pythagorean theorem, 132 

Quadratic formula, 122, 168 
Quadratic function 

definition of, 122 
graph of, 123-124 
quadratic formula, 122, 168 
zeros of, 122-123 

Questionnaire, 77, 85 
Quotient polynomial, 157 

storing of, 173 

Radians, definition of, 132, 133 
RAD(X) function, 133 
Random access, 115 
Random access files, 112, 118-120 
Random number generator, 62--71, 206-

207 
dummy argument, 62 
pseudo random number generator, 62 
RND(X), 62-63 

READ statement, 3-4 
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READ #N statement, 117 
Real zeros, 163, 165-167 
Records, 118 
Rectangular coordinate system, 132, 

138, 143 
complex numbers, 147, 149 

Relational operators 
~quals sign as;, 15 
greater than, 19 

"greater than or equal to," 20 
"less than," 19 
"less than or equal," 20 
"not equal to," 20 

REM statement, 13, 16-17 
Remainder, 51, 91 
Remainder theorem, 159 
Remote terminal, definition of, 1 
Replacement operator; see Assignment 

operator 
REST0RE #N statement, 118, 119 
RETURN statement, 41, 44-45 
Right triangles, 133, 135 

computing angles, 136 
RND(X) function, 62-63 
Roots, complex numbers, 152 
Rounding off, 57 
Routine, ordering, 65 
Row vector, definition of, 179 
RUN command, 4, 5 

Scalar multiplication, 187 
Scientific notation, 8-9 
SCR command, 4-5 
SCRATCH #N statement, 117, 118 
Selections, 200 
Semicolon delimiter, 10-11 
Sequential access, 115 
SETW statement, 119 
SGN(N) function, 47 
Sign-on, 4 
Simulation, random 

random number generator, 206-207 
Simultaneous linear equations 

printing results, 194-195 
solving, 192-193 

Sines, Law of, 138-139, 141, 142 
nTlt. T /'\T\ ( • • '1 f"\f"\ 
u11~\A..J 1u11cuu11, 1-•JV 

Spacing, 58-59 
comma, 10, 11 
semicolon, 10, 11, 96 

SQR(Y) function, 47 

Statements 
DATA, 3-4 
DEF, 57, 58 
DIM, 66, 85, 86 
END, 2, 11 
F0R-NEXT, 26, 31, 32 
G0SUB, 41, 45 
G0T0, 3, 11, 18 
IF-THEN, 15, 18-19 
INPUT, 166 
LET, 5-6, 10, 11, 56 
READ, 3-4 
REM, 13, 16-17 
REST0RE, 108, 110 
RETURN, 41, 44-45 
ST0P, 59 

ST0P statement, 59 
Strings, 101-109 
String array scheme, 106-108 
String variable, 101, 103 
Subroutine, 41, 45 
Subscripts, 35, 103 
Substring scheme, 103 
Subtraction, matrix, 186 
Success in probability, definition of, 

197 
Sum array, 186 
Symmetry 

axis of, 123 
definition of, 124 

Syntax errors, 220 
Synthetic division, definition of, 158 
System commands, 4-5 

NAME, 16 
RUN,4, 5 
SCR, 4-5 
Sign-on, 4 

T AB(X) function, 225 
Tabulating 

one item, 73-75 
several items, 75 
yes-no answers, 76-77 

TAN(X) function, 133 
Tape, paper, 215 
Tape punch, 215 
Tape reaU.er, 21G 
Transpose, of a matrix, 195 
Transfer 

conditional, 18 
unconditional, 18 



Triangle 
area of, 138 
Law of Cosines, 140-142 
Law of Sines, 138-139 
right triangles, 1.33, 135, 136 

Trigonometric ratios, 133 
Trigonometry 

area of triangle, 138 
circular functions, 1.32 
complement, 135 
congruence conditions, 139 
Law of Cosines, 139-142 
Law of Sines, 138-139, 141, 142 
polar coordinate system, 144, 150, 

151 
Pythagorean theorem, 132 
radians, 132 
rectangular coordinate system, 132, 

138,143 
trigonometric computer functions, 

133, 136 
trigonometric ratios, 133 
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THN( ), 195-196 
Two-dimensional list; see Arrays 

Unconditional transfer, 18 

Variation in number sequence, defini
tion of, 173 

Vectors 
column, 179 
row, 179 

WHITE #N statement, 117 

ZEH, 187 
Zero subscripts, 155 
Zeros of polynomials 

complex zeros, 168-175 
of function, 159 
integral zeros, 159-163 
nonreal zeros, 169 
real zeros, 16.3, 165-167 
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III 
HAYDEN BOOK COMPANY, INC. 

Rochelle Park, New Jersey 
ISBN 0-a104-6106-9 




