

-- --

..

..
...

COMPUTE!'s
SECOND BOOK OF

ATARI
GRAPHICS

Greensboro, North Caro lina

Atori is a registered trademark of Atori. Inc.

"Four Color Character Editor" copyright 1982 by Tim Kilby, reprinted by permission of
Tim Kilby. An earlier version of this program appeared in Byte Magazine, December 1982.
The following articles were originally published in COMPUTE! Magazine, copyright 1981,
Small System Services, Inc.:
"Character Generation" (February)
"Copying Your Screen to Your Printer" (May)
"Memory Protection" auly)
"Positioning PlayerlMissile and Regular Graphics in Memory" (September)
"Beware the RAMTOP Dragon" (October)
"Discovering 'Hidden' Graphics" (December)
The following articles were originally pubHshed in COMPUTE! Magazine, copyright 1982,
Small System Services, Inc.:
"Atari GTlA: An Illustrated Overview" (September)
"Atari Rainbow of Colors by Page FHpping" (October)
"A Fill-In on XIO (Fill)" (November)
The following article was originally published in COMPUTE! Magazine, copyright 1983,
Small System Services, Inc.:
"Rainbow Atari Graphics" (April)
The following articles were originally published in COMPUTE! Magazine, copyright 1983,
COMPUTE! Publications, Inc.:
"Custom Characters on Atari" aune)
"Atari Player/Missile Graphics Simplified" aune)
"Atari Artifacting" auly)
"Atari Fontbyter" (September)
"Atari Screenbyter" (December)

Copyright 1984, COMPUTE! PubHcations, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted by Sections 107
and 108 of the United States Copyright Act without the permission of the copyright owner
is unlawful.

Printed in the United States of America

ISBN 0-942386-28-0

1098765432

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is a subsidiary of American Broadcasting Companies, Inc., and is not associated
with any manufacturer of personal computers. Atari is a trademark of Atan, Inc.

ii

Contents

Foreword...... v

Fundamentals. 1
Graphics in Mode 0

Stephen Levy 3
Discovering "Hidden" Graphics

Gregory L. Kopp . 9
Copy Your Screen to Your Printer

Harry A. Straw 17
GTIA: An Illustrated Overview

LOllis and Helen Markoya .. 20

Colors. 27
Using SETCOLOR, COLOR, and POKE to
Color Your Screen

Stephen Levy 29
Rainbow Graphics

JolIn R. Slaby 35
Colors by Page Flipping

Robert W. Myers .. 39
A Fill-In on XIO(FILL)

Gretchen Schabtach 43

Redefining Character Sets 47
Character Generation

Charles Bral11101l .. 49
Custom Characters

Charles Delp . 54
The Four-Color Character Modes

o rsol1 Scott Ca I'd .. 69
Four-Color Character Editor

Tim Kilby .. 82

Animation .. 93
Animation by Page Flipping

David N. Plotkin 95
Player /Missile Graphics Simplified

Staffan Sandberg 103

iii

PRINTing PIM Graphics
Sheldon Leemon . 111

Artists' Utilities 117
Fontbyter

Orson Scott Card and Carl Zahrt 119
Screenbyter

Carl Zahrt and Orson Scott Card 157

Advanced Techniques 183
Moving the Display

Michael P. Surh 185
Screen Flipping

Michael Kirtley 191
Artifacting

Judson Pewther 193

Protecting Memory . 201
Positioning Player/Missile and Regular
Graphics in Memory

Fred Pinho 203
Memory Protection

Jim Clark 208
Beware the RAMTOP Dragon

K. W Harms 211

Listing Conventions 218
Index 219

iv

...

Foreword
Whether you are a beginner to Atari Graphics or have been
programming graphics for years, COMPUTEf's Second Book of Atari
Graphics will prove to be an invaluable resource . There are articles
for beginners and utilities that both novices and professionals will
find useful.

As with all COMPUTE! publications, you'll find a wide range
of easy-to-understand tutorials, and high quality programs
collected for your use and enjoyment.

If you already have COMPUTEt's First Book of Atnri Graphics,
you know how useful it is; we know you will find this book just as
valuable. And if this is your first COMPUTE! publication, you are
in for some pleasant surprises .

v

-

1

Graphics in Mode 0
Stephen Levy

The Atari character set makes available numerous graphic characters.
Some ways to exploit this feature are explored here.

Atari, long known for its superior graphics, has one graphics
mode which is rarely used for graphics. Graphics mode 0 is
generally used only for text and text-oriented programs. Well,
why not use graphics in mode 07

Plenty to Choose from
Unlike modes 3 through 11, graphics mode 0 has its own set of
characters built-in which can be used to create some very nice
designs. The short program below will show most of the graphic
characters that are available in mode O.

10 POKE 82,9:POKE 83,25
20 GRAPHICS 0:CHAR=0:LINE=0:PRINT
30 PRINT CHRS(CHAR) ;CHR$(32);
40 CHAR=CHAR+l:LINE=LINE+l
50 IF LINE=8 THEN LINE=0:PRINT :PRIN

T
6Ql IF (CHAR:>26 AND CHAF:<:=-.2) OR (CHAR

>155) THEN PRINT CHR$ (27;;
70 IF CHAR=32 THEN CHAR=128:PRINT
80 IF CHAR=155 THEN GOTO 40
90 IF CHAR=160 THEN PRINT :GOTO 110
1 QiQI GOTO 3Ql
110 POKE 82,2:POKE 83,39:END

What is seen on the screen when this program is RUN are the
ATASCII characters from 0 to 31 and 128 to 159. (A complete list of
the character set can be found in Appendix C of the Atari 4001800
BASIC Reference Manual.) Characters 128 to 159 are the inverse
characters.

Centering the Display
The display has been centered for two reasons: it looks nicer that
way, and it illustrates a way to place characters on the screen other
than at the left margin.

3

1

Actually, the first character on each line is at the left margin.
Look at line 10. Memory location 82 stores information the
computer needs to find the correct column for the left margin.
When you tum on the computer, a 2 is stored in this location.
Likewise, memory location 83 stores the column of the right
margin. All that has been done here is to change the margins to 9
and 25. On line 110 the margins are restored to 2 and 39.

There are a number of other ways to place characters on the
screen at a specific place, including the POSITION, PLOT, and
DRAWTO statements. More information about these statements
will be provided a little later.

Printing the Graphic Characters
There are two ways to print each character in the character set.
Printing the letter A can be done with either

PRINT "A"
or

PRINT CHR$(65)

Both methods produce the same results. The second method can
be very inefficient for printing text to the screen, but it's very effi
cient for printing characters with consecutive AT ASCII numbers
and graphic characters.

As an example, enter this line and press RETURN:
FOR 1=65 TO 90:PRINT CHR$(I),:NEXT I

Special Characters
Characters 27 to 31, 125 to 127, 156 to 159, and 253 to 255 need
special instructions in order to be printed. Note that line 60 checks
for some of those characters. When it finds one, it prints character
27 (the ESCape character) before printing the character.

An alternative method can be used to print these characters .
Make these changes in the program: delete line 60, add line 15,

15 POKE 766,2

and change line 110 to read
110 POKE 82,2:POKE 83,39:POKE 766,0:END

Try typing in the following program. It can be difficult to
enter correctly if you are not experienced at entering these charac
ters. When the program is RUN, the results should be four short
lines printed on the screen. The first line should have the ESCape
symbol. The second and third lines should show backward

4

curved arrows (one will be inverse video); the last two lines
should be the delete symbol and four arrows.

1

If you do not get the correct results, the proper keystrokes are
given after the listing.
l121 PRINT "{2 ESC } "
20 PRINT "{ESC}{CLEA R} "
3111 PRINT "{ESC} {BELL } "
4Ql PRINT "{ESC} {DELETE }"
5lZ1 PRINT " {ESC} {UP} {ESC} {DOWN } {ESC}

{LEFT}{ESC } {RIGHT}"

To enter this program, type each line number, the word
PRINT, a quote symbol ("), and the following keys:

40;

ESC, ESC, ESC, ESC, RETURN for line 10;
ESC, ESC, ESC, CTRL-CLEAR, RETURN for line 20;
ESC, ESC, ESC, CTRL-2, RETURN for line 30;
ESC, ESC, ESC, CTRL-DELETEIBACK S, RETURN for line

ESC, ESC, ESC, CTRL-UP arrow, ESC, ESC, ESC, CTRL
DOWN arrow, ESC, ESC, ESC, CTRL-LEFT arrow, ESC, ESC,
ESC, CTRL-RIGHT arrow, RETURN for line 50.

The Easy Way
The program below prints the same characters as the previous
program. By POKEing a 2 into memory location 766, you no
longer need to press the ESC key three times for each character,
but just once.
5 POKE 766,2
liZl PRINT "{ESC}"
2iZl PRINT "{CLEAR}"
3iZl PRINT " {ElELL}"
40 PRINT "{DELETE}"
5iZl PRINT" {UP} {DOWN} {LEFT} {RIGHT}"
61Z1 POI<: E 766, iZl

PLOT and DRAWTO
Any character can be used with the PLOT and DRAWTO
command. The following program is self-explanatory and should
give some idea of how to use these two commands in graphics
modeO.
10 GRAPHICS 0:POKE 752,1:REM SET GRA

PHICS MODE AND TURN OFF CURSOR
20 PRINT "{DOWN } ":COLOR 14B:REM ATAS

CII FOR CHARACTER TO PLOT

5

1

30 PLOT 2.4:DRAWTO 36.4
40 DRAWTO 36. 18:DRAWTO 2.18
50 DRAWTO 2.3:REM NOTICE WE DRAW ONE

POSITION PAST OUR STARTING POINT
60 POSITION 5.7:PRINT "PRINT YOUR ME

SSAGE HERE. BE"
70 POSITION 5.9:PRINT "SURE NOT TO P

UT TOO MANY"
80 POSITION 5.11:PRINT "CHARACTERS 0

N A LINE."
90 POSITION 2.20:REM MOVE CURSOR OUT

OF THE WAY
100 POKE 752.0:REM TURN CURSOR BACK

ON

POSITIONing Characters
Any character can be placed on the screen at any location chosen.
The POSITION statement is easy to use if you follow certain rules:

• The format for POSITION is POSITION e,r where e is the
desired column (0 to 39), and r is the desired row (0 to 23).

• A new POSITION statement will cause the next PRINT
command to print over any characters which are at that location.

• POSITION places the cursor anywhere on the screen.
• Be careful printing to the thirty-ninth position on line - it

will cause a line to wrap around to the next line. Likewise, be
careful using the twenty-third line-it can cause the screen to
scroll and lose the top line.

• It is a good idea to first erase the spaces to be used.
The next program also uses the POSITION statement, but

this time a loop is used to change the locations.

100 DIM TRIANGLES(34)
110 GRAPHICS 0:POKE 752.1:SETCOLOR 2

.7.14:SETCOLOR 1,7,4
12Ql C=18:R=1
13Ql TRIANGLES=" {H} {J}"

140 POSITION C,R:PRINT TRIANGLES
150 FOR B=2 TO 32 STEP 2
160 FOR A=2 TO B
17(! TRIANGLES(A.A)="."
18(1 NEXT A
190 TRIANGLES(A.A+l) =".{J}"
21210 C=C-l: R=R+ 1
210 POSITION C,R:PRINT TRIANGLES
22QI NEXT B
23(1 POKE 752. l'Z1

6

1

Now add these few lines to the previous program and watch
what happens to the triangle:
250 FOR C=1 TO 25
260 A=1:B=2:GOSUB 300
270 A=2:B=1:GOSUB 300
280 NEXT C
290 END
300 SETCOLOR B,7,4 : SETCOLOR A,7,14
310 FOR D=1 TO 50:NEXT D:RETURN

Drawing a Picture
The next two listings draw a simple picture. Both listings do
exactly the same thing. Both versions of the drawing are included
here as an illustration of two methods to print to the screen.
When you're creating the picture, the first method is often easier
because the picture can be seen while it is LISTed. The second
method is supplied for purposes of comparison.

Program 1. Drawing with Characters
10 GRAPHICS 0:SETCOLOR 4,3,6:SETCOLOR

2,11,14: SET COLOR 1,11,2: POKE 752,
1

15 POKE 559,0:REM THIS LINE OPTIONAL
20 POSITION 14,6:PRINT " {H}{J}

{3 SPACES}{H}{J}"
30 POSITION 14,7:PRINT "{B}{7 M}{V}"
40 POSITION 14,8:PRINT "{B}{Q}{W}{E}

{Q}{W}{E}{V}"
50 POSITION 14,9:PRINT "{B}{A}{S}{D}

{A}{S}{D}{V}"
60 POSITION 14,10:PRINT "{B}{Z}{X}

{C} {Z}{X}{C}{V}"
70 POSITION 14,11:PRINT "{B}

{4 SPACES}{H} {V}"
80 POSITION 14,12:PRINT "{B} {B}{2 M}

• {V}"

90 POSITION 14,13:PRINT IJ{B} {B} • {V} II

100 POSITION 14,14:PRINT tJ{B} {B} • {V}1t

110 POSITION 14,15:PRINT JI{B} {B}{2 N}

• {V}II

120 POSITION 14,16:PRINT "{B}{7 N}
{V}"

130 PRINT "{3 DOWN} A PICTURE IS WORT
H A THOUSAND WORDS"

140 POKE 559,34
150 GOTO 150

7

1

Program i. Drawing with CHR$
10 GRAPHICS 0:SETCOLOR 4,3,6:SETCOLOR

2, 11, 14: SETCOLOR 1, 11,2: POKE 752,
1

15 POKE 559,0:REM THIS LINE OPTIONAL
20 FOR 1=6 TO 16
30 POSITION 14,1
40 FOR H=1 TO 9
50 READ A
60 PRINT CHR$(A);
70 NEXT H
80 NEXT I
90 PRINT :PRINT "{3 DOWN} A PICTURE I

S WORTH A THOUSAND WORDS"
11210 POKE 559.34
110 GOTO 110
200 DATA 32,8,10,32 ,32,32,8,10,32
210 DATA 2,13,13,13,13,13,13,13,22
220 DATA 2~17,23,5,32,17,23,5,22
23QI DATA 2, I, 19,4,32, I, 19,4,22
240 DATA 2,26,24,3,32,26,24,3,22
250 DATA 2,32,32,32,32,8,32,32,22
260 DATA 2,32,2,13,13,160,32,32,22
270 DATA 2,32,2,32,32,160,32,32,22
280 DATA 2,32,2,32,32,160,32,32,22
290 DATA 2,32,2,14,14,160,32,32,22
300 DATA 2,14,14,14,14,14,14,14,22

8

-.

..

1

Discovering
"Hidden" Graphics
Gregory L. Kopp

GRAPHICS 1 and 2, the large-text modes, split the normal character set
in two and allow only half to be used at once. Both modes also handle
colors differently. Here's how to take advantage of those quirks.

If you were a shlmbling, beginning BASIC programmer like I was,
you probably tried to enter a few "improper" graphics commands
which resulted in curious and unexpected displays on your televi
sion screen. Before I understood the function and proper use of
POKE 756 (which displays lowercase letters and special graphics
characters in text modes 1 and 2), I stubbornly h·ied to put control
characters on screen without the requisite POKE, which produced
only seemingly random keyboard characters and frustration
instead.

Much later, the thought nevertheless occurred to me that I
might have accidentally discovered some "hidden" (or at least
undocumented) graphics capability of my Atari. In the experi
mental binge to which owners of microcomputers are sometimes
given, I used the PRlNT #6; command to enter each keyboard
character while pressing CTRL at the same time. Discovery!
Although the Atari special graphics characters appeared in the
PRlNT #6; statement, the actual screen display consisted of
keyboard characters, but not the characters for the keys I entered.

Dutifully noting the results (Tables 1 and 2), I pondered the
apparent micro-fluke, these "hidden" characters, then asked
myself the inevitable scientific question: "So what?" Two uses
came fairly quickly to mind - the first purely cosmetic, the
second functional.

If I could change these hidden characters from "default
green" to other colors, I could eliminate the irksome problem
encountered in modes 1 and 2 of having punctuation and
numbers displayed in different colors from the text lettering. The
INVERSE key! Sure enough, PRlNTing the graphics characters in

9

1

inverse changed my hidden green characters to red. Now I could
choose from normal character (orange), inverse normal (blue),
CTRL character (green) and inverse CTRL (red). Experimenting
further, I discovered I could achieve any Atari color by use of a
SETCOLOR 0 to 3 or POKE 708 to 711 command to change each
respective character. No more would I have to sheepishly explain
to those not-of-the-computer-persuasion why my apostrophe or
my "1" was blue while my text was red!

So much for cosmetics. If you are not bothered by the incon
sistent color text problem, then use the last two paragraphs as
speed-reading exercises. However, if you have purchased soft
ware for redefining character sets (see Chapter 3), you may already
have thought of the second application. Instead of redefining your
lowercase character set (and thereby "losing" it) to achieve new
characters, you may use "hidden graphics" to redefine the
number set, selected punctuation marks, or arithmetic signs.
While this could be done normally, using "hidden graphics"
allows you to display numbers, punctuation, or signs in four
colors instead of only two. (If you have not run Program 1 yet, try
it. Then try to produce four different color l's the conventional
way.)

A Second Approach
Now enter and run Program 2.

If you are trying to figure out how we got all those alphabet
characters using PLOT and COLOR statements, read on.

As any intermediate programmer can tell you, you cannot
plot points in modes 1 and 2. You get absolutely nothing
displayed if you try it. Of course, the stumbling beginner might
think the reason you get nothing is that you did not enter a
COLOR statement. Sandwiching COLOR 1 between the lines
and trying again, you discover that you have plotted a ! instead of a
point . "Pixel-head!" you chide yourself. "You can't use PLOT in
modes 1 and 2!" You note this in your reference manual and rank
yourself a step closer to intermediate programmer, missing the
opportunity to discover more hidden graphics.

The Atari will plot a character in modes 1 and 2 at whatever
position the programmer commands. The nature and color of that
character are determined by a single COLOR statement. Using
the COLOR Statement Graphics Chart (Table 3) you can display
any Atari keyboard character (POKE 756,226 for lowercase) by
using the associated COLOR statement, then plotting X, Y coordi
nates to place it at the desired position on the screen.

10

1

Once again, SETCOLOR 0 to 3 or POKE 708 to 711 can be
used to color each individual character, including lowercase charac
ters which are normally limited to only two colors. (Note: These
SETCOLORs and POKEs work only when using GR. lor 2 + 16.)
Again, redefined characters may be used and this time manipu
lated arithmetically. Game writers, rejoice!

While the PRlNT #6; approach displays numbers, punctua
tion and arithmetic signs, the COLOR/PLOT technique allows
access to upper- and lowercase letters as well. Preference for one
method over the other will vary from user to user and application
to application, as you will see once you have h-ied them a few
times.

Table 1. Regular and Hidden Colors
Character (Default)
Nonnal
"Hidden"
Inverse, normal
Inverse, "hidden"

orange
green
blue
red

SETCOLOR
o
1
2
3

POKE
708
709
710
711

11

1

Table 2. Hidden Graphics
To Get

Character Color Press Keys
0 Green CTRLP

Red INVERSE CTRL P
1 Green CTRLQ

Red INVERSE CTRL Q
2 Green CTRLR

Red INVERSE CTRL R
3 Green CTRLS

Red INVERSE CTRL S
4 Green CTRLT

Red INVERSE CTRL T
5 Green CTRLU

Red INVERSE CTRL U
6 Green CTRLV

Red INVERSE CTRL V
7 Green CTRLW

Red INVERSE CTRL W
8 Green CTRLX

Red INVERSE CTRL X
9 Green CTRLY

Red INVERSE CTRL Y
Green CTRLZ
Red INVERSE CTRLZ
Green CTRLA
Red INVERSE CTRL A
Green CTRLB
Red INVERSE CTRL B

Green CTRLC
Red INVERSE CTRL C

$ Green CTRLD
Red INVERSE CTRL 0

% Green CTRLE
Red INVERSE CTRL E

& Green CTRLF
Red INVERSE CTRL F
Green CTRLG
Red INVERSE CTRL G
Green CTRLH
Red INVERSE CTRL H
Green CTRLI
Red INVERSE CTRL I

* Green CTRLJ
Red INVERSE CTRLJ

12

1

To Get
Character Color Press Keys

+ Green CTRLK
Red INVERSE CTRL K
Green CTRLL
Red INVERSE CTRL L
Green CTRLM
Red INVERSE CTRL M
Green CTRLN
Red INVERSE CTRL N
Green CTRLO
Red INVERSE CTRL 0
Green CTRL;
Red INVERSE CTRL;

@ Green CTRL .
Red INVERSE CTRL .

!\ Green ESC then BACK S
Red ESC then CTRL + DELETE

< Green ESC then CTRL + minus
Red ESC then SHIFT + DELETE

> Green ESC then CTRL + plus
Red ESC then CTRL + TAB
Green ESC then CTRL + equals
Red ESC then SHIFT + INSERT

? Green ESC then CTRL + asterisk
Red ESC then SHIFT + TAB
Green ESC then TAB
Red ESC then CTRL + INSERT
Green ESC then ESC
Green ESC then CTRL + CLEAR
Red ESC then CTRL + 2

'greens manipulated by SE.l and POKE 709
reds manipula ted by SE.3 and POKE 711

13

1

Table 3. COLOR Statements Graphics Chart

(SETCOLOR #) 0 1 2 3
(POKE register) 708 709 710 711
(default) green yellow red blue

COLOR Number* Character
0 32 128 160 (space)
1 33 129 161 !
2 34 130 162 " (quotes)
3 35 131 163 #
4 36 132 164 $
5 37 133 165 %
6 38 134 166 &
7 39 135 167 ' (apostrophe)
8 40 136 168 (
9 41 137 169)

10 42 138 170 *
11 43 139 171 +
12 44 140 172 , (comma)
13 45 141 173 - (minus)
14 46 142 174 . (period)
15 47 143 175 /
16 48 144 176 0
17 49 145 177 1
18 50 146 178 2
19 51 147 179 3
20 52 148 180 4
21 53 149 181 5
22 54 150 182 6
23 55 151 183 7
24 56 152 184 8
25 57 153 185 9
26 58 154 186
27 59 t 187
28 60 156 188
29 61 157 189
30 62 158 190
31 63 159 191 ?
96 64 224 192 @
97 65 225 193 A
98 66 226 194 B
99 67 227 195 C

100 68 228 196 0
101 69 229 197 E

14

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

t
126

198 F
199 G
200 H
201 I
202 J
203 K
204 L
205 M
206 N
207 0
208 P
209 Q
210 R
211 S
212 T
213 U
214 V
215 W
216 X
217 Y
218 Z
219 [
220 /
221]
222 A

1

127

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255 223 (underline)

'Use this statement format: Color /1/1: PLOT X, y. For example, to put a green A on the
screen, use: COLOR 97: PLOT 0, 0

tCOLOR 155: PLOT x, y puts a carriage return on the screen at the PLOT location . If you
are also going to PRINT to the graphics screen using PRINT #6; "/1", this command puts
the PRINT #6 cursor in column 0 of the line after the line specified in PLOT x, y. In other
words, if your program executes this line:

GRAPHICS 2:PRINT #6; "ABC"; :COLOR 155:PLOT 0,5:PRINT #6; "DEF" the letters
ABC will be in line 0 and the letters DEF will be in line 6. To put a red semicolon on the
screen, you must POKE the number 219 into the appropriate place in screen memory.

:j:COLOR 125:PLOT x, y clears both the text window and the graphics screen. To put a
green 1 on the screen you must POKE the number 125 into the appropriate place in screen
memory.

15

1

Program 1. Hidden Graphics-1
10 GRAPHICS 2+16
20 x=o
30 FOR L=1 TO 50
40 RC=INT(15*RND(0»:RS=(255*RND(0»
50 SET COLOR 0~RC~6
60 SOUND 0~RS~10~4
70 POSITION 5~4
80 ? #6;"l{Q}~{rr}1

90 FOR W=1 TO 25:NEXT W
100 X=X+l:IF X=4 THEN X=O
110 NEXT L
120 SOUND O~O~O~O
130 GRAPHICS 2+16
140 POSITION 5~4
150 ? #6; "1 {Q}[!{[[} II

160 FOR W=l TO 500:NEXT W
170 POSITION 2~7
180 ? #6;"HIDDEN GRAPHICS~"
190 GOTO 190

Program 2. Hidden Graphics-2
10 X=0:Y=0:1=65
20 GRAPHICS 2+16
30 FOR Al=O TO 25
40 SOUND 0~255-Al*10~Al+8~8
50 COLOR 1
60 PLOT X~Y:IF X=18 THEN X=O:Y=Y+l
70 X=X+l:1=1+1
80 FOR W=l TO 50:NEXT W
90 NEXT Al
100 IF 1=91 THEN 1=193: X=O: Y=2: GOTO 30
110 IF 1=219 THEN 1=225: X=O: Y=4: GOTO 30
120 IF 1=219 THEN 1=225: x=o: Y=6: GOTO 30
130 FOR W=l TO 500:NEXT W
140 POSITION 2~9:? #6;"COLOR STATE MEN

Til

150 POSITION 4~10:? #6;"GRAPHICS~"
160 GOTO 160

16

-

...

1

Copy Your Screen to
Your Printer
Harry A. Straw

This is a simple, short screen dump for mode O. It will work with any
BASIC program.

Here's a handy routine for copying text from your Atari screen
(GRAPHICS 0 mode) to your printer. It is set up to use two
GOSUB commands in your main program:

GOSUB 32010 to initialize
GOSUB 32040 each time you want to line-print a page

displayed on your screen.

The program is straightforward, but a few comments may help
you to run it smoothly.

The main business of this program is the double FOR/NEXT
loop in lines 32050-32110. With the POSITION command, these
loops move the cursor over the entire screen, one position at a
time. At each cursor position, line 32080 GETs the ASCII number
for the character under the cursor, and line 32090 puts the corre
sponding character on the printer. Since I have an 80-column
printer and the Atari screen is only 40 characters wide, I need line
32105 to get printer carriage return at the proper place. You may
be able to delete this line if you have a 40-column printer (or one
that can be set to 40 columns).

Line 32040 (printer carriage return) makes sure that the
printer head starts copying at its left-hand margin. Line 32120
"homes" the cursor at the end of the subroutine. This is not
always necessary, but, depending on the next line in your main
program, it may prevent an ERROR -141, "cursor out of range:'

You must OPEN a channel to GET from the screen. I use
channel number 5, leaving channels 1-4 free for use in main
programs. The initializing subroutine in lines 32010-32030 does
this. It also expands the Atari display to its fu1l40-character width

17

1

and 24-line height to match the cursor movement controlled by
lines 32050 and 32060. The OPEN command clears the screen, so
you must OPEN before displaying the text you want to copy. Just
be sure your main program says GOSUB 32010 ahead of the screen
display to be printed.

If you have only a few lines to copy, no problem. Merely
adjust line 32050 to cover the rows you want to scan. Otherwise,
the printer will run for all 24 rows, printing a lot of blank spaces
wherever nothing shows on the screen.

There is no CLOSE #5 statement in the listing. This leaves
channel 5 open, so it is not necessary to repeat GOSUB 32010 for
each page to be line-printed.

Take advantage of Atari's ability to merge stored programs
with RAM-resident programs by recording this routine with the
command LIST"C:" and reading it with ENTER"C:" (or ENTER
"D:Filename). CSAVE and CLOAD won't work this way. In fact,
CLOAD erases programs in RAM! This routine starts with a high
line number, 32000, so its line numbers won't conflict with those
of a program already in RAM.

Sample Screen Dump

18

This is an example of a GRAPHICS 0
screen dumped to an Epson MX-80 printer
with the accompanying routine.

It is fast and easy to use~ and will
work with almost any 80-column printer.

The routine can be added to your own
programs.

STOPPED AT LINE 35

By typing GOTO 32040~ we'll access the
routine in direct mode. Use GOSUB
32040 in your programs.

GOSUB 32040

1

GRAPHICS 0 Screen to Printer
32000 REM * GR.O SCREEN TO PRINTER *
32001
32002
32003
32004
320(15

REM
REM
REM
REM
REM

"OPEN" CLEARS SCREEN
DO THIS EARLY IN PROGRAM
USE GOSUB 32010 FOR THIS

32010
32020

POKE
OPEN

82~0:POI<E 83~39

#5~4~0~"S:":OPEN #7~8~0~"P

: "
32030 RETURN
32031 REM
32032 REM USE GOSUB 32040 TO LPRINT
32033 REM TEXT FROM SCREEN
32034 REM
32040 PRINT #7;CHRS(10)
32050 FOR Y=(I TO 23
32060 FOR X=O TO 39
32070 POSITION X,Y
32080 GET #5~G
32090 PUT #7~G
32100 NEXT X
32105 PRINT #7
32110 NEXT Y
32120 POSITION 0,0
32130 RETURN

19

1

GTIA:
An Illustrated
Overview
Louis and Helen Markoya

Type in these graphics demonstrations and see the startling displays made
possible with the GTIA chip.

Have you ever seen computer-generated graphic displays that
seem truly 3-D? The ones of landscapes or the ones of molecular
structures? Have you ever wished you could generate similar
graphics on your own machine? If so, and you own a 400 or 800,
with the GTIA chip you're halfway there.

Modes 9, 10, and 11 are far from ordinary. They are called
from BASIC by typing GRAPHICS 9, 10, or 11. They all offer the
same screen resolution, 80 horizontal x 192 vertical, but different
color selection.

GRAPHICS 9 offers 16 shades of any of the 16 colors, thus
raising the machine's color capabilities to 256. GRAPHICS 10
offers the programmer a choice of 9 of any of the 128 colors
normally offered by the Atari, and GRAPHICS 11 gives the ability
to present 16 different colors in any of the 8 luminances (shades).
For those who had the machine before this new addition, the
authorized Atari service center nearest you should be stocking
this part.

GTIA is Atari's television Interface Chip . It is completely
compatible with the hardware and software previously available .
The only problem arises when software relying on the GTIA
modes is run on a computer without this chip. Something will go
to the screen, but not the desired effect.

GTIA is controlled for the most part by ANTIC, a microproc
essor dedicated to the screen display. The GTIA processes digital
commands from ANTIC or the 6502 (in the case of an interrupt)
into the signal that goes to the television. GTIA also. handles the

20

--

1

tasks of color, player/missile graphics, and collision detection.
GTIA adds powerful capabilities in graphics modes 9,10, and

11. All modes are extensions of graphics mode 8 + 16, ANTIC
Mode 15. The display list remains the same, and the new modes
are selected by the Priority Register. This Operating System
Shadow Register, called PRIOR, is located at decimal 623, hex 26E
Bits 6 and 7 control the GTlA modes. When both are zero, GTIA
works exactly the same as CTlA. When only bit 6 is set,
GRAPHICS 9 is called; when only bit 7 is set, GRAPHICS 10 is
called; and when both bits 6 and 7 are set, GRAPHICS 11 is called.

GRAPHICS 9
Setting bit 6 of PRIOR produces GRAPHICS 9, giving 16lumi
nances of one color. ANTIC provides the pixel data, and the back
ground register, 712, is used to select your color (POKE 712, Color
* 16 or SETCOLOR 4, Color,O) . Each screen byte is broken in half
for screen formatting. A display block is four pixels across by one
pixel down. Each four bits represents 16 color choices. The
number you choose (0-15) in your COLOR statement equates the
luminance value you wish to use. Here's a simple BASIC program
used to demonstrate this:

10 GRAPHICS 9:REM GRAPHICS MODE 9 (1
6 SHADES OF ONE COLOR)

20 SETCOLOR 4,6,0:REM SET BACKGROUND
REGISTER TO COLOR DESIRED (PURPL

E)
30 FOR 1=O TO 15:REM SET UP VARIABLE

FOR BOTH COLOR (SHADE) AND POSIT
ION

40 COLOR I:REM SHADE OF COLOR
50 PLOT I,0:REM PLOT FROM UPPER LEFT

CORNER
60 DRAWTO I,191:REM DRAWTO LOWER LEF

T CORNER
70 NEXT I:REM NEXT SHADE AND NEXT LI

NE
80 GOTO 80:REM HOLD SCREEN

The wide choice of luminances or shades available here will
be particularly useful for shading objects to give the impression of
bas-relief or the third dimension. With some background in
perspective and lighting, a person could create scenes with a
great illusion of depth, realistic or contrived.

21

1

GRAPHICS 10
GRAPHICS 10 is called when bit 7 of PRIOR is set to one and bit 6
to zero. This mode uses all nine of the Atari's color registers found
at decimal 704-712 (hex 2CO through 2C8). Any 9 of the 128 colors
normally available to your computer could be used in this mode
by simply POKEing the desired color (remember, 16 * Color +
luminance) into each register or POKEing the desired color into
the player/missile registers (704 through 707), using SETCOLOR
statements for the playfield and background registers.

COLOR 0 represents the background and is located at decimal
register 704, colors (for COLOR statements) 1-8 follow in order
from 705-712. The big advantage to mode 10 is that any of the
colors you choose can be changed independently of the others.
For example, once a scene is created, you could change the color
of the sky from dark to light blue very easily (FOR I = 128 TO 144:
POKE 704,1: NEXT I). This will rotate the background color
smoothly through its eight shades. You may wish to add a loop to
delay the color change. Playfield or player/missile colors can be
changed at any time. Also, special effects and animation could be
achieved by rotating the values in all these registers.

Program 1 draws a border around the screen in eight colors
(first register is used for background) and then rotates the colors
to give a theater marquee effect. To display even more of this
mode's capabilities, add the following lines:

185 A=96:REM SETS A VARIABLE FOR THE
BACKGRoUO

272 A=A+l:PoKE 704,A:REM CHANGES BAC
KGRoUNO COLOR

275 IF A=255 THEN A=l:REM ALLOWS oNL
Y GOOD COLOR VALUES

These additional lines will rotate the background color
through all its possibilities while the border is rotating.

GRAPHICS 11
Mode 11 operates similarly to mode 9. The difference is that only
one luminance or shade is used, and a choice of all 16 colors is
given. Bits 6 and 7 are set to one for this mode. Again, the back
ground register is used for the colors, with ANTIC supplying the
data. COLOR 0-15 relates exactly to the COLOR segment in the
SETCOLOR command. To initiate this mode, you must choose

22

1

the luminance or shade you want. The color would be set by your
COLOR statement (SE. 4,0,0-15 Lum choice). The background is
always COLOR ° (black). This mode allows fine color blending to
produce rainbow effects and therefore a wider color choice for
picture making.

Program 2 draws a cross in 16 colors, again using a 1 x 1
display block, and then draws an ellipse in 16 colors around the
center of the cross. This program shows the versatility of color use
in mode 11. No longer are we restricted to horizontal screen archi
tecture for extra color with Display List Interrupts.

GRAPHICS 9
Program 3 draws a landscape and a simple molecular structure
floating high above it. This display truly gives the impression of
depth and shows what can be done using light and shadow in
Graphics mode 9.

These demos are only an introductory hint of the spectacular
effects possible via GIlA. You could add more color to modes 9
and 11 by using players and missiles or create dramatic effects by
switching between these modes (or with GRAPHICS 8) by
POKEing PRIOR with the desired value.

1

120 C=C*(C (8)+I:COLOR C:REM CHANGES
COLOR VALUE

130 PLOT I.I:REM START AT LEFT HAND
CORNER

140 DRAWTO I.191-I:REM DRAWTO BOTTOM
LEFT CORNER

150 DRAWTO 79-I.191-I:REM DR. BOTTOM
RIGHT CORNER

160 DRAWTO 79-I , I:REM DR. TOP RIGHT
CORNER

170 DRAWTO I,I:REM DR. TOP LEFT TO C
OMPLETE BORDER

180 NEXT I
190 Z=PEEK(712):REM SETS Z EQUAL TO

THE VALUE IN THE LAST REGISTER
200 POKE 712.PEEK(711):REM ROTATES V

ALUES FROM 711 TO 712
210 POKE 711.PEEK(710):REM ROTATES V

ALUES FROM 710 TO 711
220 POKE 711,PEEK(709):REM ROTATES V

ALUES FROM 709 TO 710
230 POKE 709.PEEK(708):REM ROTATES V

ALUES FROM 708 TO 709
240 POKE 708,PEEK(707):REM ROTATES V

ALUES FROM 707 TO 708
250 POKE 707,PEEK(706):REM ROTATES V

ALUES FROM 706 TO 707
260 POKE 706.PEEK(705):REM ROTATES V

ALUES FROM 705 TO 706
270 POKE 705.Z:REM ROTATES VALUES FR

OM 712 TO 7{!J5
280 FOR 1=0 TO 15:NEXT I:REM SLOW DO

WN ROTATION
290 GOTO 190:REM START AGAIN

Program 2. GRAPHICS 11 Demonstration
5 REM GRAPHICS 11 DEMONSTRATION PAGE

5
10 A=I:R=26:REM SETS VARIABLES
20 DIM X(360) .Y(360):REM ALLOW STORA

GE SPACE FOR X AND Y COORDINATES
30 GRAPHICS 11:SETCOLOR 4,0, 12:DEG :

REM SETS GRAPHICS MODE, LUM OF CO
LORS AND DEGREE MODE FOR ELIPSE

40 FOR I=~ TO 15:REM COLOR AND POSIT
ION VARIABLE

50 COLOR I
60 PLOT 31+I,0 : DRAWTO 31+1,191

24

70 PLOT 0,86+I:DRAWTo 79,86+I:REM DR
AWS CROSS

81Z1 NEXT I
90 FOR 1=0 TO 360 STEP 2
100 X(I)=R*CoS(I)+34
110 Y(I)=R*SIN(I)+95
120 NEXT I:REM SETS X AND Y VALUES F

OR PLOTTING ELIPSE
130 FOR 1=0 TO 360 STEP 2:REM CALLS

ABOVE VALUES
140 COLOR A
150 PLOT X(I)+A,Y(I)+A:REM PLOT EACH

COLORS' ELIPSE
160 NEXT I
170 A=A+1:REM NEXT COLOR AND NEXT EL

IPSE POSITION
180 IF A=16 THEN 200:REM END IF ALL

COLORS ARE USED
190 GO TO 130:REM DRAW NEXT ELIPSE
200 GoTo 200

Program 3. GRAPHICS 9 Demonstration
10 R=16:X=0:C=15
20 GRAPHICS 9:SETCoLOR 4,13,0
30 FOR 1=130 TO 191
40 COLOR C
50 PLOT 0,I:DRAWTo 79,1
60 X=X+1: IF X=4 THEN X=0:C=C-1
7111 NEXT I
80 FOR 1=0 TO 79 STEP 8
90 COLOR 3: PLOT 59, 130: DRAWTO I, 191
1!!10 NEXT I
110 COLOR 1:FoR 1=0 TO 7:PLoT 2,164:

DRAWTO 21,158+1: NEXT I
120 COLOR 15:FoR 1=0 TO 3:PLoT 21,14

0:DRAWTO 21+1,164-I*2:NEXT I
130 COLOR 4:FOR 1=0 TO 4:PLOT 20,140

:DRAWTO 17+1,160+I:NEXT I
140 FOR Z=1 TO 15
150 FOR 1=0 TO 360 STEP 6
160 X=0.25*R*COS(I)+ 3 5
170 Y=R*SIN(I)+50
180 COLOR Z
190 PLOT X,Y
200 PLOT X+10,Y+17
210 PLOT X+30,Y-20
220 PLOT X-2,Y+12
230 PLOT X+21,Y+70

1

25

240 NEXT I
25y-1 R=R-1
260 NEXT Z
270 FOR 1=2 TO 4:COLOR I:PLOT 46,72:

DRAWTO 51+1.106
280 PLOT 43.62:DRAWTO 39.50+1
290 PLOT 47.62:DRAWTO 60+1,35
300 NEXT I
310 GO TO 310

26

1

...

Using SElCOLOR,
COLOR, and POKE
to Color Your Screen
Stephen Levy

The SETCOLOR and COLOR statements are important to Atari
graphics, but are often misunderstood by beginners. Here are simple
examples to help newcomers get the most from their Ataris.

One confusing aspect of Atari graphics for the beginner is the rela
tionship between the COLOR and SETCOLOR statements. Once
the relationship between these statements is understood, the
beginner can control the color patterns he or she wishes to create.

SETCOLOR in Mode 0
The SETCOLOR statement is used to define the colors which will
appear on the screen. In mode 0 the statement will function
alone . Try entering the following without a line number:

SETCOLOR 2,0,14 (RETURN)

The screen should have hlrned white. But characters on a white
screen are difficult to read. To remedy this sihtation, enter the
following line:

SETCOLOR 1,0,4 (RETURN)

The print on the screen is now dark enough to read easily. To try
one more color change, enter this line exactly as it's printed:

SE. 4,3,6 (RETURN)

SE. is the abbreviation for SETCOLOR and may be used to
enter the statement, even within a program line. As an example,
try entering this line using the SETCOLOR and GRAPHICS
abbreviations as follows:

100 GR. 0:SE.2,8,6

29

Now list the line by typing L. (RETURN) (L. is the same as
LIST). Notice that the computer has printed the entire word for
SETCOLOR and GRAPHICS.

Take a closer look at the SETCOLOR statement. The first
number is the color register, the second number is the hue, and
the last number is the luminance. There are 16 hues to choose
from and 8 luminances for each hue. Table 1 summarizes the
hues.

Table 1. Color Numbers
Number Color* Number Color

0 Gray 8 Light Blue
1 Gold 9 Blue-Green
2 Orange 10 Turquoise
3 Red-Orange 11 Green-Blue
4 Pink 12 Green
5 Violet 13 Yellow-Green
6 Purple-Blue 14 Orange-Green
7 Blue 15 Light Orange

'Colors may vary on different color TVs.

The simple examples of the SETCOLOR statement given
previously used registers 1, 2, and 4. The use of these registers
varies for the different modes . In mode 0, SETCOLOR 1 controls
the print color and should have the same hue as register 2, which
controls the screen color. Register 4 controls the border color for
mode O. Table 2 summarizes which color registers are used in
which modes. It is important to remember that the term color
register refers to the first number in the SETCOLOR statement, not
to the first number in the COLOR statement, which is discussed
below.

SETCOLOR and COLOR in Modes 3, 5, and 7
Look at Program 1. Lines 20,30, and 40 set the color registers 0, 1,
and 2. But just setting the registers does nothing to put color on
the screen. A COLOR statement is needed to tell the computer
which of the colors you wish to use, and something must be
PLOTted or drawn.

The numbering can be a bit confusing. Refer to the first two
columns of Table 2. Notice that to get the color established by the
SETCOLOR 0,4,6 statement, you must issue the command
COLOR 1. The COLOR statement number is always one more
than the first number in the SETCOLOR statement, except for
SETCOLOR 4, when COLOR 0 would be used.

30

If you haven't already typed in Program I, do so now. Line 50
is the COLOR statement that decides which of the three
SETCOLOR statements will be used when the box is drawn. This
program will continue to rotate through the three colors endlessly
until the BREAK key is pressed. Experiment with the program,
change the colors, and see what happens.

Changing the Background Color
Program 2 illustrates how to change the background color in
modes 3,5, and 7. SETCOLOR 4 has just been hinted at so far. It
is the color register that controls the background color in each of
the four-color modes (3, 5, and 7).

Line 50 sets the background color. Lines 20,30, and 40 set the
colors for the rectangles. The text window keeps you informed
about the colors. Again, the best way to learn about these colors is
to experiment.

POKE Instead of SETCOLOR
Replace lines 20,30,40, and 50 of Program 2 with those lines from
Program 3. Once this is done, run the program. All that was done
was to replace each of the SETCOLOR statements with a POKE
statement. The new lines act exactly the same as the originals.

Here's how to figure the second number in the POKE state
ment: multiply the hue by 16 and add the luminance. For
example, SETCOLOR 0,3, 10 would become 3 times 16 (4S) plus
10, for a total of 5S- POKE 70S, 5S. Table 2 shows which POKE
location to use for each color register.

Table 2. SETCOLOR, COLOR, and POKE
SETCOLOR* COLOR POKEt

O,a,b 1 708,c
1,a,b 2 709,c
2,a,b 3 710,c
3,a,b 711,c
4,a,b 0 712,c

*a =any number from 0 to 15.
b= zero or any even number from 2 to 14.

Tc= a x 16 + b (a times 16 plus b).

Selecting the Right Colors

MODES
1-7
0,1,2,3,5,7
0-8
1 and 2
0-8

One problem that many new programmers have is selecting the
best combination of colors. Each time a color is added or changed
on the screen, it affects the other colors on the screen. Program 4,

31

a simple color editor, is intended to help with this problem. It will
tell you the number to POKE to get the color you have selected.
It will also tell you which color number to use in the COLOR
statement.

Once the program is typed in and run, you will see one
number flashing. That is the current register that will be affected
by the joystick plugged into port one. Moving the joystick
forward advances the numbers, and pulling back makes the
numbers decrease. Pressing the fire button will change the
register that is affected by the joystick. Trial and error will be the
best teacher here. When you discover a combination of colors you
believe would fit your application, make a note of it so you can
use that combination in your own program.

Only the Beginning
This article is just an introduction to the world of Atari graphics.
There is much more to be learned, but with the simple techniques
shown here, you should be able to make some very impressive
displays.

Program 1. SETCOLOR Example
10 GRAPHICS 7:CoLR=I:POKE 752,1
20 SET COLOR ~,4,6
30 SET COLOR 1,1 3, 10
40 SET COLOR 2,8,4
50 COLOR CoLR
60 PRINT "{CLEAR}{DoWN}{8 SPACES}CoL

OR ";CoLR;"{4 SPACES}SETCoLoR ";C
oLR-l

80 FOR R=10 TO 60
90 PLOT 50,R:DRAWTo 110,R
100 NEXT R
110 CoLR=CoLR+l:IF CoLR=4 THEN CoLR=

1
120 FOR DELAY=1 TO 250:NEXT DELAY
130 GoTo 50

Program 2. Background Colors
10 GRAPHICS 5:C=0
20 SET COLOR 0,3,10:REM COLOR 1
30 SET COLOR 1 ,12 ,14:REM COLOR 2
40 SETCoLoR 2,8,8:REM COLOR 3
50 B=C:SETCoLoR 4,B,6
60 FOR CoLR=l TO 3

32

-

70 READ R:COLOR COLR
80 FOR D=0 TO 7
90 PLOT R+D,3:DRAWTO R+D,36
100 NEXT D:NEXT COLR
110 PRINT "{CLEAR}SE.0,3,10

{5 SPACES}SE.1,12,14{4 SPACES}SE
.2,8,8 11

120 PRINT" COLOR 1{7 SPACES}COLOR 2
{7 SPACES}COLOR 3"

130 TRAP 150:PRINT "(DOWN}SE.4,";B;"
,6";"{3 SPACES}NEW BACKGROUND CO
LOR";:INPUT C

140 C=INTCC):IF C (0 OR C)15 THEN C=B
150 RESTORE :GOTO 50
160 DATA 9,37,65

Program 3. POKE Instead of SETCOLOR
20 POKE 708,58:REM COLOR 1
30 POKE 709,206:REM COLOR 2
40 POKE 710,136:COLOR 3
50 B=C:~OKE 712,B*16+6

Program 4. Color Editor

10 GRAPHICS 3+16
20 START=PEEK(560)+PEEKC561)*256+4
30 POKE START-l,71
40 FOR R=2 TO 4:POKE START+R,7:NEXT

R
50 POKE START+21,65:POKE START+22,PE

EK(560):POKE START+23,PEEK(561)
60 POKE 87,3:POKE 712,10:B=6
70 FOR A=1 TO 3
80 COLOR A
90 FOR R=9 TO 18
100 PLOT A+B,R:DRAWTO A+10+B,R
110 NEXT R
120 B=B+10
130 NEXT A
140 POKE 87,2:DIM BL$C3':BL$="

{3 SPACES}"
150 POSITION 0,0:PRINT #6;"~ 708,
~ 710,"

160 POSITION 0,3:PRINT #6;"~"
170 POSITION 5,3:PRINT #6;"ONE two

180 CL=3:S0=70:S1=150:S2=206:S4=10
190 GOSUB 270:GOSUB 300:GOSUB 330:GO

SUB 340

2

33

200 IF STRIG(0)=0 THEN CL=CL+1
210 FOR W=1 TO 100:NEXT W
220 IF CL=4 THEN CL=0
230 ST=STICK(0):IF ST <> 15 THEN POKE

77,0
240 ON CL+1 GoSUB 250,280,310,340:Go

TO 200
250 IF ST=14 THEN S0=S0+2:IF S0)255

THEN S0=0
260 IF ST=13 THEN S0=S0-2:IF S0<0 TH

EN S0=254
270 POSITION 5,1:GoSUB 370:PoSITIoN

5,1:PRINT #6;S0:PoKE 708,S0:RETU
RN

280 IF ST=14 THEN S1=S1+2:IF S1)255
THEN S1=0

290 IF ST=13 THEN S1=S1-2:IF S1<0 TH
EN S1=254

300 POSITION 10,1:GoSUB 370:PoSITIoN
10,1:PRINT #6;S1:PoKE 709,S1:RE

TURN
310 IF ST=14 THEN S2=S2+2:IF S2)255

THEN S2=0
320 IF ST=13 THEN S2=S2-2:IF S2<0 TH

EN S2=254
330 POSITION 16,1:GoSUB 370:PoSITIoN

16,1:PRINT #6;S2:PoKE 710,S2:RE
TURN

340 IF ST=14 THEN S4=S4+2:IF S4>255
THEN S4=0

350 IF ST=13 THEN S4=S4-2:IF S4<0 TH
EN 54=254

360 POSITION 0,1:GoSUB 370:PoSITIoN
0,1:PRINT #6;S4:PoKE 712,S4:RETU
RN

370 PRINT #6;BL$:FoR W=1 TO 15:NEXT
W:RETURN

Rainbow
Graphics
John R. Slaby

Try these variations and see if you can't make use of this new technique in
games and graphics.

Here's how to print out any message in either GRAPHICS 1 or 2
and get up to seven colors for each character at the same time.
Each color is limited to one scan line. After typing in the program
and running it, you will be prompted to choose a graphics mode
(lor 2). You will then be asked for the message you want to
display.

Capital and lowercase letters will be displayed in their normal
solid default colors of orange and light green . Inverse capital and
lowercase letters will be displayed in multicolor and will rotate in
a curtain effect in opposite directions. The maximum length of the
message was set at 120 characters/spaces, but this can be altered
by changing the MSS$ dimension number. The input of the
message has margins set to stimulate the GRAPHICS 1 or 2
display so that you don't end up with unintentionally hyphen
ated words.

The REMs in the program describe what is done where, but 1
believe three sections deserve some amplification. First, look at
the 400 line numbers. The two FORINEXT loops store the various
color values into the page six table locations for use by the DLI
(the Display List Interrupt) and the vertical blank. Note that the
color and luminance values increase for each location, thus giving
a color and brightness change for each scan line.

If you want, you can easily change these values to give
different effects. Choosing several colors and alternating them
will give a barber pole effect. Keeping the same luminance value
(make the 1*2 just I) gives a sharper contrast between the colors.
And to get a wider range of colors, change the color number by
more than one for each scan line (for example, 1*16*1.2). There are
a great number of possibilities you can play with to get the effect

35

you want; and since there are two tables, the two effects can be
drastically different.

The vertical blank routine is contained in the DATA state
ments of the 300 lines. Its function is to rotate the two color tables
in different directions to give the rolling curtain effect. If you want
a static color display, you can eliminate the vertical blank by
removing line 520 and adding POKE 54286, 192 to line 510.

Another easy variation is to change the rotation rate. The
number 4 after the number 201 in line 320 controls the rate of
change. Decrease this number to increase the rotation rate;
increase it to slow it down. Please note that the maximum number
is 255. If you exceed this number, you will register an error, which
will be caught by the TRAP (line 50); this process will start the
program over again and again if you don't correct the bad POKE
value.

Multicolors with DLis
The DU is the key to the multicolors. In Space Invaders the DUs are
used to change the color of the invaders for each mode line . For
GRAPHICS 0 and 1, the mode line consists of 8 scan lines, and for
GRAPHICS 2, 16 scan lines. Normally, if you want to change
colors for a mode line, you load a color value into the A, X, or Y
registers, wait for horizontal sync (WSYNC), and then load the
registers into the desired color registers during the horizontal
blank. The problem is that the DU is for the entire 8 or 16 scan
lines, not each line.

Therefore, changing the color register after the horizontal
blank results in your not knowing when the color change will take
effect (for example, halfway across the scan line). One method to
get around this would be to accurately count the 6502's cycles.
When I first looked at the problem, this seemed the only way out;
but not feeling that ambitious, I put this project on hold until I
came up with an easier way.

The key is the WSYNC. For a meaningful display to exist on
the TV screen, the WSYNC must occur every scan line, not every
mode line. Thus, once you get control via the DU, you keep it for
eight WSYNCs and change the color registers during each scan
line's horizontal blank. In theory, you can get eight colors for each
character; but since the first line and the last lines are usually
blank, six colors is what you actually get. If you want to modify
the DU, you could get 12 colors for GRAPHICS 2.

The one drawback of this method: if it is used for every mode

36

-

line, it could tie up the 6502 processor for a good part of the avail
able time. The majority of the remaining time would be during
vertical blank. This would thus restrict the number of additional
calculations, etc., you might want to do. This doesn't mean the
technique is useless; it can be used for an eye-catching title page
or used sparingly for a graphics display. It can also be used in
games.

I believe this method is used in Demon Attack by Imagic for
the Atari yes. This game appears to change even the color of the
player. You can also do this with my program by loading the
player color register instead of the playfield. Overall, greater study
of this method should allow programmers more latitude in
creating striking visual effects.

The DLI and the vertical blank are not directly relocatable,
but if you have any machine language capabilities, you should be
able to modify them with little effort.

Rainbow Graphics
30 REM C I: [oX.:;o.,.. G [;{:):.}: Ii (1;.1 M ~
40 DIM MSS$(120)
50 TRAP 1000
60 ? .. WIIIT[j GI;r:1:'W'(I; .. 1 M~ 1 [!IT 2"; :

INPUT A:IF A<> 1 AND A<>2 THEN 60
70 GOSUB 100:GRAPHICS A+16
80 DL=PEEK(560)+256*PEEK(561)+6
90 FOR 1=0 TO 6:POKE DL+I,133+A:NEX

T I:GOTO 200
100 REM MCo].lIi1iiO-. l;r:)*JliI:i#1 [E ~ ~

~{8 SPACES} l;i;(:).,:).J ...
110 POKE 82,10:POKE 83,29:?
1 20 REM 1 r:r.;nu 1;14-S-t:111 ..
130 ? :? "WIIIT[j ~ 1;14-s.-t:U1;s? .. :? .. U~

ATAR 1 "iI:W"il;~., .. {3 SPACES} ~ [!I!llt!:
IT; l"iIiiiiliiiiI?i(lil. {3 SPACES} CAP 1 TAL [!IT ~
~."

140 INPUT MSS$:RETURN
200 REM LCOX!f: DL 1
210 FOR 1=0 TO 42:READ B:POKE 1553+

I,B:NEXT 1
220 DATA 72,138,72,152 , 72,162,0,141

,10,212
230 DATA 189,1,6,188,9,6,141,24,208

,140,25,208
240 DATA 232,173,0,6,201,1,144,3,14

1,10,212

37

25~ DATA 224,6y1 4 4 , 226,1~4,168,1~4,

17~,1~4,64

3~~ REM UaIlI:U;;a DI#iliiii#il;I#It: VI#iI;iioi_;;a B~
~

31~ FOR I=~ TO 73:READ C:POKE 1599+
I,C:NEXT I:POKE 1596,~

32~ DATA 72,138,72,173,6~,6,2~1,4,1
44,55,162,7

33~ D~TA 173,8,6,141 , 61,6,173,9,6,1
41,62,6

34~ DATA 2~2,189,1,6 , 157,2,6

35~ DATA 224,~,2~8,245,173 , 61,6

36~ DATA 141,1,6,162,~,189,1~,6,157
,9,6,232,224,7,2~8,245,173,62,6

,141,16,6, 169, ~
37~ DATA 141,6~,6,238,6~,6,1~4,17~,

1~4,76,98,228

4~~ REM CCillI.!]1; ~ 8< # 1_ .. :14-"'.1 ~ I:i[!:
f}l]!

41~ FOR I=~ TO 7: POKE 1537+1, (8+1) *
16+1*2:NEXT I

42~ FOR I=~ TO 7: POKE 1545+1, (1+1) *
16+1*2:NEXT I

43~ POKE 1536,A
49~ POSITION ~,~:? #6;"
5~~ REM EI:t:l;;J_;;a DL I AND DVVBLK
51~ POKE 512,17:POKE 513,6
52~ POKE 548,63:POKE 549,6:POKE 542

86,192
6~~ POSITION 1,2:? #6;MSS$
61~ GOTO 61~
1~~~ TRAP 4~~~~:GOTO 5~

38

-

-
-.

-.
-. ..

..

..
-. ..
..

..

Colors y Page
Flipping
Robert W. Myers

"Colors btJ Page Flipping" allows YOli to mix colors to produce new ones .

Have you ever wanted more colors than are provided on your
Atari? This program uses four colors in Graphics mode 2, and
mixes them two at a time to produce a total of ten different colors .

Blending Colors
All this color, like almost everything on the TV screen, is really an
illusion. The blending of colors takes place because the displays
are changed back and forth so fast that our eyes cannot keep up
with the changes. Therefore, we see only one color, which is a
mixture of the colors in all the different displays. You can mix
more than two colors at a time, but as the number of displays
increases, the amount of flicker on the screen increases too. The
practical limit is four displays mixing at once.

This mixing is done by using multiple screen RAM areas and
changing the Load Memory Scan (LMS) bytes in the display list
during the Vertical Blank Interrupt (VBI). I realize that this sounds
like a very complicated thing to do, but it's not.

Understanding the Display List
The Display List is a program for the ANTIC chip, the microproc
essor that controls the TV screen so that the 6502 is free to spend
more of its time doing computational chores. The Display List is
in RAM, and the first byte of the Display List can be found at
PEEK (560) + 256*PEEK (561) .

Usually you will find that the first three bytes are the code
that causes the black area at the top of the screen (to insure that
nothing is lost due to overscan of the TV). The next byte is the
LMS byte which sets the D6 bit (64 decimal) . Added to this 64 is
the ANTIC graphics mode number, which is given in the table .

The LMS is a three-byte instruction. The 64 + mode # is the

39

first byte; the second and third bytes are the address of the begin
ning of screen RAM.

This address is what we are interested in here. Rapidly
changing it allows us to switch from one picture to another and
back. We cannot do this address swapping from BASIC; it is far
too slow. The LMS bytes are changed by a short machine
language routine that is run 60 times a second while the picture is
blanked out as it returns to the top of the screen to begin the next
frame. This is Vertical Blank Interrupt.

The routine loads the LMS bytes with the address of the first
(normal) screen RAM, then it does an exclusive-OR with one of
the memory locations. This causes the memory location to toggle
between 0 and 1. This 0 or 1 is used to determine whether a
branch will be taken or not. If the branch is taken, the next
instruction is JMP $E462, which puts the interrupt back in normal
operation. If the branch is not taken, the LMS bytes are changed
to the address of the other (alternate) screen RAM. Then comes
the JMP $E462.

UsingVBI
The VBI is amazingly easy to use . All you do is write your routine
that is to run during the interrupt. Then you write a machine
language program that puts the high byte of your routine's
address into the X-register, the low byte into the Y-register, and
the number 7 into the accumulator. Finally, you JSR $E4SC. This
second machine language program is at lines 160, 170, and 180 of
my program.

After setting up your VBI to change the LMS, you print or
plot and move one set of your screen RAM to the other (alternate)
location that you have specified to the LMS. This technique
should be usable with any multicolor display mode or any combi
nation of display modes, not only to mix colors, but also to mix
text and graphics, to display mixed resolutions, etc.

ANTIC Graphics Mode Numbers

BASIC mode

ANTIC mode

40

F

Mixing Colors

1 REM ***************************
2 REM *{25 SPACES}*
3 REM * MIXING COLORS TO MAKE *
4 REM *{4 SPACES}AN ATARI RAINBOW

{5 SPACES}*
5 REM *{25 SPACES}*
6 REM ***************************
9 REM
10 PRINT CHR$(125):GRAPHICS 2+16:BRE

AK=1000
15 REM MACHINE LANGUAGE TO BE RUN DU

RING VERTICAL BLANK{9 SPACES}INTE
RRUPT

20 FOR 1=0 TO 36:READ A:POKE 1536+1,
A:NEXT I

30 DATA 173,39,6,141,49,6,173,40,6,1
41,50,6,173,51,6,73,1,141,51

40 DATA 6,240,12,173,41,6,141,49,6,1
73,42,6,141,50,6,76,98,228

45 REM FIND DISPLAY LIST IN RAM
50 DLIST=PEEK(560)+256*PEEK(561)
55 REM MODIFY MACHINE LANGUAGE PROGR

AM BY POKEING IN ADDRESSES FROM
DISPLAY LIST

60 BYTE=DLIST+4:GOSUB BREAK:REM LOAD
MEMORY SCAN LOW BYTE

70 POKE 1540,LOW:POKE 1562,LOW
80 POKE 1541,HIGH:POKE 1563,HIGH
90 BYTE=DLIST+5:GOSUB BREAK:REM LOAD

MEMORY SCAN HIGH BYTE
100 POKE 1546,LOW:POKE 1568,LOW
110 POKE 1547,HIGH:POKE 1569,HIGH
120 BYTE=DLIST+20:GOSUB BREAK:REM NO

RMAL SCREEN RAM
130 POKE 1576,HIGH:POKE 1575,LOW
140 BYTE=DLIST-250:GOSUB BREAK:REM A

LTERNATE SCREEN RAM
150 POKE 1578,HIGH:POKE 1577,LOW
155 REM MACHINE LANGUAGE PROGRAM TO

INITIALIZE VERTICAL BANK
{4 SPACES}INTERRUPT

160 FOR 1=0 TO 10:READ A:POKE 1600+1
,A:NEXT I

170 DATA 104,162,6,160,0,169,7,32,92
,228,96

180 X=USR(1600)
220 REM DRAW FIRST SCREEN

41

2

230 BYTE=DLIST-250:GOSUB BREAK
235 POKE 88,LOW:POKE 89,HIGH
240 POSITION 0,4
250 PRINT #6; "ATARi co:::r:I!TER Club"
260 PRINT #6
270 PRINT #6;" {4 SPACES}[!ljj f!tiARLott~

280 BYTE=DLIST+20:GOSUB BREAK
290 POKE 88,LOW:POKE 89,HIGH
305 REM SETCOLORS AND DRAW SECOND SC

REEN
312 SETCOLOR 0,12,6
313 SETCOLOR 1,4,6
314 SETCOLOR 2,15,8
315 SETCOLOR 3,8,6
320 POSITION 0,4
330 PRINT #6; "Atfffi!i ~~er:; ~[ffi;"
340 PRINT #6
350 PRINT #6;" {4 SPACES}[!ljj [!ITArlEt~

359 REM HOLD IMAGE ON SCREEN
360 GOTO 360
999 REM SUBROUTINE TO BREAK DOWN NUM

BER INTO HIGH AND LOW BYTES
1000 HIGH=INT(BYTE/256)
1010 LOW=BYTE-HIGH*256
1020 RETURN

42

-

-
•

•
•

•
•
•
•

•

•
•

•

•

•

•

•

A Fill-In on
XIO(FILL)
Gretchen Schabtach

This tutoria.i article presents several interesting extensiol1s for the
XIO(FlLL) program on page 54 of the Atari BASIC Reference Manual.

Your Atari readily fills line drawings of figures with color using a
special application of the XIO statement. However, the example in
the Atari BASIC Reference Mal1ual (page 54) can be expanded to
demonstrate the strengths and limitations of this application. A
critical point about XIO filling is that filling stops when a pixel
previously filled with color is encountered. Thus, interesting
effects occur when the Atari is commanded to fill overlapping
figures with color.

To get the most from the following short programs, begin by
running the demonstration program on page 54 of the BASIC
Reference Manual. Then run Program 1. Program 1 generates three
rectangles, randomly positioned, with random proportions, and
fills them from top to bottom and left to right with three different
colors. Observe what happens when the figures overlap.

Moving line by line, from top to bottom and left to right the
fill stops when a colored pixel is encountered. Thus, when the
program generates two overlapping rectangles, filling of the
second rectangle stops whenever the first filled rectangle is
encountered-and does not resume even if the second rectangle
extends to the right beyond the first rectangle.

With a few modifications, Program 1 is not only illuminating
with regard to the XIO(FILL) function, but also much more inter
esting. First, randomly change the colors to be used in filling.
Second, generate rectangles continuously. To do this, make the
following changes:

20 N = INT(RND(0)*3 + 1)
160 (i. eo, delete)
170 GOTO 20

43

2

After you've modified the program as specified above, run it
and admire the changes. Now, add a little music to your life. This
is easily accomplished by adding the following statements:

81 1 = INT(RND(0)*256)
82 SOUND 1,1,10,4
84 SOUND 2,255-1,10,4

Try this, and then delete line 150. This will speed things up a little
and make them even more interesting.

Finally, black backgrounds can become tiresome. To
randomly change the background color, type in the following:

11 REM: CHANGE BACKGROUND
12 B = INT(RND(O)*16)
13 SETCOLOR 4,B,2

166 REM: CHANGE BACKGRD SO GOTO 12
170 GOTO 12

Your final program listing should look like that shown in
Program 2.

There are further simple and interesting modifications. For
example, vary the constants in statements which include random
number generators-those containing (RND(O)); or delete + 16 in
line 10 and provide yourself with a text window in which you can
write commentary on what the viewer sees; or change the charac
teristics of the shapes generated to be filled with color (lines 40
through 80). Your imagination will suggest other possibilities.

Program 1. XIO Example 1

1 REM: DEMO OF XIO FILLING
2 REM: SUPPRESS WINDOW IN GR.7
10 GRAPHICS 7+16
15 REM : ESTABLISH 3 FILL COLORS
20 FOR N=l TO 3 STEP 1
30 COLOR N
35 REM : GENERATE FIGURE TO FILL
40 X1=INT(RND(0}*80}
50 Y1=INT(RND(0}*48}
60 X2=X1+INT(RND(0}*80}
70 Y2=Y1+INT(RND(0}*48}
80 IF X1=X2 OR Y1=Y2 THEN 40
90 PLOT X2,Y2
100 DRAWTO X2.V1
110 DRAWTO X1,V1
115 REM: FILL FIGURE
120 POSITION Xl,V2

44

130 POKE 765.N
140 XIo 18.#6.0,0,"5:"
150 FOR W=1 TO 400:NEXT W
155 REM CHANGE COLOR FOR NEXT FIGU

RE
160 NEXT N
165 REM :GENERATE NEW FIGURE
170 GoTo 10

Program 2. XIO Example 2
1 REM: DEMO OF XIo FILLING #2
5 REM: SUPPRESS WINDOW IN GR.7
10 GRAPHICS 7+16
11 REM :CHANGE BACKGROUND
12 B=INTIRND(0)*16)
13 SETCoLOR 4.B.2
15 REM : ESTABLISH 3 FILL COLORS
20 N=INTIRND(0)*3+1)
30 COLOR N
35 REM : GENERATE FIGURE TO FILL
40 Xl=INTIRND(0)*80)
50 Yl=INTIRND (0)*48)
60 X2=Xl+INT I RND(0)*80)
70 Y2=Yl+INTIRND(0)*48)
80 IF Xl=X2 OR Yl=Y2 THEN 40
81 I=INTIR ND (0)*2 56)
8 2 SOUND 1 , I. 1 0.4
84 SOUN D 2 .25 5 -1, 1 0, 4
9121 PLOT X2. Y2
100 DRAWTo X2.Yl
110 DRAWTo Xl.Yl
115 REM : FILL FIGURE
120 POSITION Xl.Y2
13121 POKE 765,N
140 XIo 18,#6.0.0."5:"
155 REM CHANGE COLOR FOR NEXT FIGU

RE
165 REM :GENERATE NEW FIGURE
166 REM :CHANGE BACKGRD SO GOTO 12
170 GoTo 12

45

-.

-

-

-

-

" .

3

~ Character ...
~ Generation
.. Charles Brannon

-

The ability to redefille characters is a very powerful feature of the Atari.
This discussion explail7s how it is done.

Atari computers are among the few that possess a very powerful
feature-the ability to redefine the character set. The character set
is the group of 255 alphanumeric characters that can appear on the
screen. It comprises the upper- and lowercase alphabet, the
numbers, special symbols, and punctuation. Also included in the
Atari character set are 29 "control graphics" characters. When the
CTRL key is held down and a letter of the alphabet is typed, the
corresponding graphics symbol is displayed. These symbols are
much like those found on the PET/CBM. Unlike the PET, however,
the Atari can redefine any of these characters. This allows custom
graphics, user-defined special symbols (like pi, theta, or foreign
language alphabets), and logos .

There is no built-in command to perfonn the changes; it has
to be done the hard way with PEEK and POKE. These are
commands to look at and modify memory, respectively. First of
all, you must understand how the Atari stores and displays these
characters . It is beneficial if you know how to work with binary
numbers, but it is not a prerequisite.

Start out by designing your characters. Fill in the blocks on an
8x8 grid; each block will represent a pixel (picture element, or
screen dot). Observe the A in Figure 1. Notice the heavy vertical
lines. A television screen will display horizontal lines brighter
than vertical lines, so it is necessary to have two vertical lines in
order for it to be clearly visible (this also prevents "artifacting").
Therefore, the pi in Figure 2 may be hard to see unless enlarged in
mode 1 or2.

After you have designed your characters, you have to convert
them to the numbers that a computer loves . Each row in your grid
represents a binary byte. A filled-in block represents a 1 and a

49

3

blank block means O. Hence, the top row of the A is 00011000 or
24 decimal. Now write the bytes for each row. If you do not work
with binary numbers, you can convert each line in the following
manner:

1. Notice the numbers above each column. They are the
powers of two.
2. If a block is filled in, take a number above it and add it to a
"Sum:' Sum up all the blocks in the row (for example, the
fourth line of the pi would be 128 + 32 + 4 = 164).
3. Do this for all eight rows.

Rgure 1. Character A

1

Figure 2. Character Pi

2631

8
24
68
182
182
126
182
8

11 m

8
1
126
164
36
36
36
36

Next, assemble the numbers into DATA statements. The
numbers for pi would then look like this:

1000 DATA 0,1,126,164,36,36,36,36

Finally, you have your numbers. Now all you have to do is
replace the numbers of the character you want to redefine with
your numbers. Unfortunately, this table is stored in Read Only
Memory (ROM), so it cannot be altered. The solution is to copy
this table into Random Access Memory (RAM), which can be
changed, and then tell the computer where you have moved the
characters.

First, we have to find a safe place in RAM to hold the char
acter set table. One solution is to place the character set at the top
of memory. We can use memory location 106, which holds the
number of the topmost page (a "page" is 256 bytes) of memory.
On a 32K machine, this is usually 128 (128*256 = 32768 = 32*1024).

50

3

We would need to store our character set four pages beneath this
limit, since we need 1024 bytes, and 4*256 = 1024.

However, there is a complication. The operating system has
also decided to use the top of memory to store information
needed to display the video screen. All we need to do is store our
character set a little further back in memory, behind the screen.
Here's the tricky part. Exactly how much we need to "step back"
depends on which graphics screen is used, since different modes
use varying amounts of memory (from 272 bytes in GRAPHICS 3,
to nearly 8,000 bytes in GRAPHICS 8). Just remember to step back
far enough to get past the screen, and make the "step size" a
multiple of four.

So to find the place to store a character set with graphics
modes 0,1,2,3,4 and 5, step back four pages to get past the screen,
then step back four more to hold your character set, for a total of
eight. GRAPHICS 6 would require 12, GRAPHICS 7 would
require 20, and you would need to step back a whopping 36 pages
to fit your character set beneath a GRAPHICS 8 display.

A sample program to redefine the character set (assuming
you've set up your DATA statements) might start out like this:

1" CHBAS=57344
2" CHSET=(PEEK(1"6)-B)*256
3" FOR 1=" TO 1"23
4" POKE CHSET+I,PEEK(CHBAS+I)
5" NEXT I

These lines transfer the ROM-based character set to RAM, where
they can be modified. The transfer (in BASIC) takes a long time to
execute, about 15 seconds. You don't need to copy the character
set if you want to redefine the entire character set, or don't need
any characters from the default character set. And unless you go
into a higher graphics mode that might wipe out the character set,
you don't need to execute these lines more than once. The data
will still be there, even when you RUN the program again.

The next line:
6" POKE 756,CHSET/256

tells ANTIC (the Atari's video microprocessor) where you have
placed your character set. This location normally contains 224
(224*256 = 57344, which is the address in ROM of the default
character set).

Now that the table is in RAM, we can find the place in it for
the new numbers. Look up the character you want to replace

51

3

(Table 9.6-Internal Character Set, in the Atari BASIC Reference
Manual) . Note that this number is not the AT ASCII value of the
character. Include this number preceding your eight bytes in the
DATA statements. For our pi:
1000 DATA 32,0,1,126,164,36,36,36,36

The 32 is the internal code for the @ symbol. Anytime you press
the @ key, you may be surprised to see pi.

A few more lines, and the program is finished:
70 READ NCHR:REM NUMBER OF CHARACTER

S TO BE CUSTOMIZED
80 FOR 1=1 TO NCHAR
90 READ RPLC:REM INTERNAL VALUE OF C

HARACTER TO BE REPLACED
100 FOR J=0 TO 7
110 READ A
120 POKE CHSET+8*RPLC+J,A
130 NEXT J
140 NEXT I
150 REM LINE 170 IS OPTIONAL
160 REM IT JUST DISPLAYS ALL THE CHA

RACTERS
170 FOR 1=0 TO 255:PRINT CHR$(27);CH

R$(l);:NEXT I
180 END
998 REM NUMBER OF CHARACTERS
999 DATA 1

A few program notes:

1. You can use multiple statements per line; delete REMs if you
like.
2. This program should be appropriately renumbered, and
RETURN added if you want to use it as a subroutine.
3. This is not the only way to customize the character set. See the
other articles in this book for more ideas.

The complete program (less DATA statements) and a utility
program that lets you look at characters wrap up this article .
Study them, puzzle them out, and have fun with Atari's custom
characters!

Program 1. Redefining Characters
10 CHBAS=57344
20 CHSET=(PEEK(106)-B)*256
30 FOR 1=0 TO 1023

52

40 POKE CHSET+I,PEEK(CHBAS+I)
50 NEXT I
60 POKE 756,CHSET/256
70 READ NCHR:REM NUMBER OF CHARACTER

S TO BE CUSTOMIZED
80 FOR 1=1 TO NCHAR
90 READ RPLC:REM INTERNAL VALUE OF C

HARACTER TO BE REPLACED
100 FOR J=0 TO 7
110 READ A
120 Pol<E CHSET+8*RPLC+J,A
130 NEXT J
140 NEXT I
150 REM LINE 170 IS OPTIONAL
160 REM IT JUST DISPLAYS ALL THE CHA

RACTERS
170 FOR 1=0 TO 255:PRINT CHR$(27);CH

R$(l);:NEXT I
180 END
998 REM NUMBER OF CHARACTERS
999 DATA 1
1000 DATA 32,0,1,126,164,36,36,36,36

Program 2. View Characters
10 GRAPHICS 4
20 SCR=PEEI«88)+256*PEEI«89)
30 PRINT "{CLEAR}CHARACTER #? (0-127

) ... ,
40 INPUT CHR
50 IF CHR<0 OR CHR) 127 THEN 30
60 PRINT #6;CHR$(125)
70 FOR 1=0 TO 7
80 Pol<E SCR+4+10*I,PEEK(57344+CHR*8+

I)
90 NEXT I
100 GoTo 30

3

53

3

Custom Characters
Charles Oelp

Custom character graphics is an easy way to program game animation,
but sometimes it results in uneven motion . Smoother animation can be
achieved by using custom characters to create the fixed playfield, and then
using player/missile graphics to animate the players . The three programs
here show you how.

One of the easiest ways to put colorful, high-resolution playfields
or special symbols on the screen is with character graphics,
employing custom characters.

One of the major drawbacks of using character graphics to
animate a game is that players can move only in large, character
sized jumps. When smoother action is desired, a better solution is
to draw the fixed playfields using custom characters and then
animate the players using player/missile graphics.

The advantages of using character graphics rather than
bitmapped graphics to draw fixed playfields are:

1. Much less memory is required to achieve the same resolution.

2. More colors are available.
3. Less time is required to draw to screen memory.
4. Color fill is faster and easier.

The major disadvantage of using character graphics to draw
fixed playfields is that only two colors (character color and back
ground color) are available within anyone character. The table
shows the resolution, memory requirements, and colors available
for various Atari BASIC character and bitmapped graphics
modes.

How Characters Are Defined
Atari characters are defined by 64 pixels arranged in eight
columns by eight rows. From right to left, the values of the
columns are 1,2,4,8, 16,32,64, and 128. If a particular pixel is
turned on, the value of that column is added to the row total; if

54

--

the pixel is turned off, zero is added to the row total. The total
value of all the" on" pixels in a row forms a byte of data which
defines that row. Each of the eight rows is defined by a byte of
data, for a total of eight bytes per character. (See Figure 1 for a
specific example.) Note how the row bytes are arranged in
memory from the character start address (CHADD).

Atari Display Mode Facts
Colors

3

Available Bytes of
Graphics Graphics Resolution (Including Memory/

Mode Type HxV Background) Screen

0 Character 320 x 192 2 960
1 Character 160 x 192 5 480
2 Character 160 x 96 5 240
5 Bitmapped 80x48 4 960
7 Bitmapped 160 x 96 4 3840
8 Bitmapped 320 x 192 2 7680

Character Color Information

Character Type Color Register
Uppercase alphabetical 0
Lowercase alphabetical 1
Inverse uppercase alphabetical 2
Inverse lowercase alphabetical 3
Numbers, punctuation marks, etc. 0
Inverse numbers, punctuation marks, etc. 2

Character Editor
Program 1 is a character editor utility which will be a help in
developing the DATA statements required to define each char
acter. Draw the character using the joystick. Erase errors by
holding the trigger button while drawing over the error. Press C
(Clear character) at any time to clear the screen for another char
acter. Press D (Demonstrate character) to see the character in all
three of the character graphics modes, as well as the DATA state
ment required to produce the character. Press P (Print data) to
print a hard copy of the character DATA statement. Press E (Enter
data) to enter the character data as a program line beginning at
line 9000. When all characters have been entered, typing LIST
"D:CHAR':9000,9999 will save the data to disk or LIST "C:

55

3

9000,9999, to cassette. The data may be merged into your graphics
program using the ENTER command (see Chapter 5, Atari BASIC
Reference Manual).

Figure 1 • lYPical Custom Character

Row Byte
Memory
Location
CHADD
CHADD +1
CHADD +2
CHADD +3
CHADD +4
CHADD +5
CHADD +6
CHADD +7

Rows
Byte 1=24
Byte 2=36
Byte 3=66
Byte 4=255
Byte5=O
Byte 6=27
Byte 7=24
Byte 8=64

Column Values

8+16
4+32
2+64
1 + 2+4+ 8+ 16 +32+64+ 128
o
1+2+8+16
8+16

-+-+---i 64

Locating the Custom Character Set in Memory

First, look at the memory map in Figure 2. The standard Atari
character set is located in ROM beginning at address 57344
(CHORG). The location and size of screen memory including the
display list will depend on how much RAM is installed in your
computer and which graphics mode is called by your program.
The new character set must be defined and stored in RAM in a
location which does not interfere with screen memory, the display
list, the player/missile display memory, or the BASIC program.
The procedure described below and illustrated in Figure 2 will
keep everything nicely separated.

56

1. Find MEMTOP on your computer by entering the
following line: PRINT PEEK (106)*256.

3

2. Decide whether your program using the custom characters
will be written in graphics mode 0, 1, or 2. For your informa
tion, the bottom of screen memory, including display list, will
be located at MEMTOP - X

where X = 992 for graphics mode 0
X=674 for graphics mode 1
X=424 for graphics mode 2

3. The starting address of the custom character set, CHBASE,
must be located on a lK memory boundary, so CHBASE
should start 2K below MEMTOP (IK for screen memory, lK
for the character set); therefore, CHBASE = MEMTOP - 2048.
4. If player/missile graphics are to be used, PMBASE must be
located on a 2K boundary (for single line resolution), so P/M
Base should start 4K below MEMTOP (IK for screen
memory, lK for the character set, 2K for PIM Display Area);
therefore, PM BASE = MEMTOP - 4096.

Figure 2. Memory Map

I------------t- CHORG + 1024
STANDARD ATARI
CHARACTER SET
(128 CHARACfERS)

I---------__+_ CHORG = 57344
~~~~-v---

1--:O==::-7""::-:-=:-:-::=-:-~-+- MEMTO P = PEEK(106)*256 

I--:":"'--==~:"::":"";='-=-----t- BOTTOM OF SCREEN 

ROOM FOR 128 
CUSTOM 
CHARACTERS 

MEMORY (MEMTOP - X) 

1----------+ CHBASE= MEMTOP - 2048 

PLAYER/MISSILE 
DISPLAY AREA 

I---------_+_ PMBASE = MEMTOP - 4096 

57 



3 

Developing a Custom Character Set 
Normally a character set consists of 128 different characters in 
graphics mode 0, and 64 different characters in graphics modes 1 
and 2. However, a character set need not be full and may contain 
only as many characters as needed to meet the requirements of 
your program. The first character in the set must always be a 
space (DATA statement filled with zeros). 

Program 2 demonstrates how to set up and use a custom 
character set containing only custom characters. To keep things 
simple, the set contains only eight characters. 

Lines 10-30 Initialize and find CHBASE 
Lines 50-70 Clear space in memory for the custom character 
set 
Lines 90-130 POKE the new characters into memory begin
ning at CHBASE 
Lines 200-280 Contain the character data 
Lines 300-360 Print the characters on the screen 
The simplest way to print the custom characters to the screen 

is with the PRINT #6; statement; however, the custom characters 
are not shown on the keyboard, so the following correlation must 
be performed: 

1. Assign a character number to each of your custom charac
ters, beginning with zero for your first character, number 1 
for your second character, number 2 for your third character, 
etc. 
2. Correlate your character numbers, one for one, with the 
Atari internal character set numbers in Table 9.6 (page 55 of 
the Atari BASIC Reference Manual). 

3. To print your custom character, enter the corresponding 
Atari character in your PRINT statement. For example, the 
Atari character number 4 is the dollar sign ($) . PRINT #6; "$" 
will print your custom character number 4 on the screen. 

It is necessary to skip the third character of your set. (See line 
220 of Program 2.) The third character corresponds to the Atari 
internal character quotation mark n. It is not possible to print a 
quotation mark to screen using the statement PRINT #6; and 
placing the quotation mark between quotation marks (" II ") . 

The color of a character is selected by its form in the PRINT 
statement. If the custom character corresponds to an Atari alpha
beticalletter, the color is determined by entering the corre-

58 



3 

sponding Atari letter in the PRINT statement in upper- or 
lowercase, or inverse upper- or lowercase. Four colors are avail
able for characters corresponding to Atari alphabetical letters. 

If the custom character corresponds to an Atari number, 
punctuation mark, etc. , the color is determined by entering the 
corresponding Atari number in the PRINT statement in standard 
or inverse video. The third and fourth colors for nunlbers and 
punctuation can be obtained by using control characters (see 
"Discovering 'Hidden' Graphics" in Chapter 1) . 

The PRINT #6; method of putting custom characters on the 
screen has some serious drawbacks. The method used in Program 
3 may not be as easy to understand, but has fewer limitations, 
particularly for drawing entire playfields. 

Mixing Standard and Custom Characters 
In addition to colorful playfields, most games print numbers and 
specific letters on the screen to display such things as score, time, 
fuel, hits, etc. The standard Atari character set already contains 
these characters, so it would be pointless to develop custom char
acters for this purpose . The solution is to develop a custom char
acter set containing all the necessary standard numbers and 
letters, but to replace all unneeded standard characters with 
custom characters . 

The procedure for developing a mixed character set is 
described below: 

Note: Refer to Table 9.6 in the Atari BASIC 
Reference Manual, page 55. 

1. Determine which standard characters will be needed in 
your program. 

2. Form a string variable which contains the unneeded stand
ard characters. The string may include any unneeded char
acters with 0 and 127 for GRAPHICS 0, or between 0 and 63 
for GRAPHICS 1 and 2. The only exception in either case is 
the quotation mark, for reasons explained before. 

3. Copy the standard character set from CHORG (57344) to 
CHBASE by PEEK and POKE statements. 

4. Modify the unneeded standard characters into custom 
characters by POKEing custom character data into the char
acter address (CHADD) of each character in the string. (See 
Program 3 for specific details of the procedure. ) 

59 



3 

Printing Complete Playfields 
Program 2 places the custom characters onscreen with PRINT #6; 
statements. A better, though more difficult, method is plotting the 
character on the screen using color data to designate which char
acter is to be plotted and in what color the character will appear. 
The color data to define a character contains two elements: the 
character number (the Atari internal character set number from 
Table 9.6), and a plus or minus offset which determines the color 
of the character. The offsets may be obtained from Figure 9.7 on 
page 56 of the Atari BASIC Reference Manual. The easiest way to 
explain this concept is with examples. 

Example 1: Suppose you want to display the standard char-
acter K in graphics mode 1 with color 0: 

1. From Table 9.6, the internal character number for K is 43. 
Note that the K is from column 2. 
2. From Table 9.7, the offset to produce a column 2 character 
in color 0 is + 32. 
3. The color data to plot K in color 0 would be 43 + 32 = 75. 
4.210 .. . 

220 Color 75 
230 Plot 5,7 
240 ... 

The program lines 'above will print a K in color 0 at X = 5, Y = 7. 
Example 2: Suppose you want to display your custom char

acter number 19 in graphics mode 2 with color 3. Your character 
number 19 corresponds to the standard character ";": 

1. From Table 9.6, the internal character number for the semi
colon (;) is 27 from column 1. 
2. From Table 9.7, the offset to produce a column 1 character 
in color 3 is + 128. 
3. The color data to plot your custom character in color 3 
would be 27 + 128 = 155. 
4.150 ... 

160 Color 155 
170 Plot 7,1 
180 ... 

The program lines above will print your custom character in 
color 3atX=7, Y=1. 

A complete playfield may be drawn using the color/plot 
method by implementing a nested row, column loop which reads 
the color numbers from DATA statements and plots the characters 

60 



3 

to the screen (see lines 550 through 610 of Program 3 for a 
method). 

Using the color data method has one other advantage: it 
allows easy printing of the quotation mark (If) as well as all the 
numbers and punchlation in four colors. 

Program 3 is a full screen, GRAPHICS 2, fixed playfield 
demonstration using 31 custom characters: 
Lines 30-80 Initialize, define string, and find CHBASE. 
Lines 110-130 Move standard character set down to CHBASE. 
Lines 150-210 Modify the characters in the string into custom char-

acters. Line 160 locates the correct addresses to 
modify. The - 32 is an offset to change ATASCII to 
Atari internal character numbers. 

Lines 301-331 Custom character data. 
Line 420 Select split screen mode; kill cursor. 
Lines 510-530 Change character set pointer; select colors. 
Lines 550-610 Read color data and plot characters on screen. 
Line 630 Print standard characters in text window. 
Lines 650-680 Flicker engine exhaust. 
Lines 700-709 Color data for 10 rows of 20 characters. 

Program 1. Character Editor 
5 CLR :? "{CLEAR}": OPEN #1,4,0, "K:": 

OPEN #6,4,0,"S:":SETCOLOR 2,9,2:SE 
TCOLOR 4,9,2:POKE 752,1 

10 DIM C$(1) ,ST ORE(B):N=0 
20 GOSUB 6000 
40 ? : ? : ? "PLUG JOYSTICK INTO JACK 

1 " 
50 ? "DRAW CHARACTER WITH JOYSTICK" 
60 ? "HOLD TRIGGER BUTTON TO ERASE" : 

? : ? 
70 ? : ? : ? "{B SPACES}PLEASE WAIT . 

90 CHBASE=(PEE K (106)-B)*256:CHORG=57 
344 

100 FOR 1=0 TO 1023:POKE CHBASE+I,PE 
EK(CHORG+I):NEXT I 

105 C$="&;" 
110 CHADD=CHBASE+(ASC(C$)-32)*B 
120 POKE 756,CHBASE/256 
200? "{CLEAR}":POKE 752,1:GOSUB 600 

o 
205 FOR 1=0 TO 7:STORE(I)=0:NEXT I 
210 ? 

61 



3 

220 
230 
240 
25~ 

260 

? 
? 
? 
? 
? 
{3 

1I{5 SPACES 
U{4 SPACES 
"{4 SPACES 
fI{4 SPACES 
U{4 SPACES 

SPACES}C 

S7654321" 
{Q}{S R}{E}" 
:{S SPACES}: 
:{S SPACES}: 
:{B SPACES}: 

= CLEAR CHAR" 

1 " 
211 

3 

270? "{4 SPACES}:{S SPACES}: 4 
{3 SPACES}D = DEMO CHAR" 

2S0? "{4 SPACES}:{S SPACES} 5 
{3 SPACES}P = PRINT DATA 

290? "{4 SPACES}:{S SPACES} 6 
{3 SPACES}E = ENTER DATA 

300? "{4 SPACES}: {S SPACES} 7" 
310? "{4 SPACES}:{S SPACES} S" 
320 ? "{4 SPACES}{Z}{S R}{C} 
499 REM MAIN LOOP 
500 X=7:Y=6 
510 K=PEEI«764) 
512 IF STRIG(0)=0 THEN 700 
513 IF K=IS THEN 1000 
514 IF K=5S THEN 2000 
515 IF K=10 THEN 3000 
516 IF K=42 THEN 5000 
518 POSITION X,Y:? 
520 FOR DELAY=1 TO 15:NEXT DELAY 
530 POSITION X,Y:? ..... 
540 FOR DELAY=1 TO 15:NEXT DELAY 
550 ST=STICK(0) 
560 IF ST=15 THEN 510 
570 IF ST=6 OR ST=14 OR ST=10 THEN Y 

=Y-l 
5S0 IF ST=5 OR ST=9 OR ST=13 THEN Y= 

Y+l 
590 IF ST=5 OR ST=6 OR ST=7 THEN X=X 

+1 
600 IF ST=9 OR ST=10 OR ST=11 THEN X 

=X-l 
610 IF X>1 4 THEN X=14 
620 IF X<7 THEN X=7 
630 IF Y>13 THEN Y=1 3 
640 IF Y<6 THEN Y=6 
650 GOTO 510 
7~!0 POSITION X,Y:? ... " 
710 FOR DELAY=1 TO 15:NEXT DELAY 
720 POSITION X,Y:? .. 
730 FOR DELAY=! TO 15:NEXT DELAY 
732 IF K=IS THEN 1000 
734 IF K=5S THEN 2000 
736 IF K=10 THEN 3000 

62 



738 IF K=42 THEN 5000 
740 GOTO 55Q! 

999 REM CLEAR CHAR 
1000 POKE 764,255 
101 Q! GOTO 2Q!0 

1999 REM DEMO CHAR 
2000 BYTE=0:BIT=0 
2Q!Q!5 GOSUB 40!!!0 
2008 REM DETERMINE DATA VALUES 
2010 FOR Y=0 TO 7 
2020 FOR X=7 TO 0 STEP -1 
2Q!3!!! LOCATE (X+7), (Y+6) ,PIX 
2iZ!35 POSITION (X+7), (Y+6):PUT #6,PIX 
2040 IF PIX=160 THEN PIX=1 
205Q! IF 
2 IZ! 61Z! IF 
2lZ!7Q! IF 
2080 IF 
2Q!9Q! IF 
2101Z! IF 
211!!! IF 
2121Z! IF 

PIX=32 THEN PIX=0 
X=7 THEN BIT=PIX 
X=6 THEN BIT=PIX*2 
X=5 THEN BIT=PIX*4 
X=4 THEN BIT=PIX*S 
X=3 THEN BIT=PIX*16 
X=2 THEN BIT=PiX*32 
X=l lHEN BIT=PIX*64 

213e IF X=0 THEN BIT=PIX*128 
2140 BYTE=BYTE+BIT 
215Q! NEXT X 
2160 STORE(Y)=BYTE 
2165 BYTE=!!! 
217Q! NEXT Y 
2180 POSITION 2,16: 7 "DATA "; 
2190 FOR Y=0 TO 6 
2200 STORE=STORE(Y) 
2210 ? STORE;","; 
222(:! NEXT Y 
2230 STORE=STORE(7) 
2240 7 STOF:E; 
2242 FOR J=0 TO 7:STORE=STORE(J) 
2244 POKE CHADD+J,STORE:NEXT J 
2248 REM ALTER DISPLAY LIST 
2250 A=PEEK(560)+PEEK(561)*256 
2260 POKE A+25,6:POKE A+26,6:POKE A+ 

27.7:POKE A+28,PEEKCA+29):POKE 
A+29,PEEK(A+30):POKE A+30,PEEK( 
A+31 ) 

2265 REM PRINT CHAR TO SCREEN 
227!!! POSITION 2,18:? " {3 SPACES}GR Q! 

& & & & & & & & & & & & &"; 
228!Z! POSITION Q! , 21Z!: 7 #6; "GR 1 : & 8, 8c 

g, ~( !!-: 8, " . 
229Q! POSITION 0, 21 : ? #6; "GR 2: ~.: & 8c 

8{ 8< ~< . " c, , 

3 

63 



3 

2345 POKE 764,255 
2350 GOTO 500 
2999 REM PRINT DATA TO PRINTER 
300(11 TRAP 3100 
3{1105 POKE 559, (11 
303(11 GOSUB 3201i1 
3040 LPRINT "DATA ";S0; ", ";Sl; ", ";S2 

; ", ";S3; II~ 11 ; 54 ; II !, 11 ; 55; 11 , " ; 56 ; II, 

";S7 
3050 POKE 559, 3 4 
3060 POKE 764,255 
3070 GO TO 21210 
3100 GOSUB 4000 
3110 POKE 559 , 34 
3120 POSITION 2,17 
3130 ?" PRINTER NOT CONNECTED" 
3140 ? "{9 SPACES}- OR -" 
3150 ? "{3 SPACES}PRINTER TURN E D OFF 

3160 FOR DELAY=1 TO 400 : NEXT DELAY 
3165 GOSUB 4000 
3170 POKE 764,255 
3180 GOTO 200 
3200 S0=STORE(0):S1=STORE(1) :S2=STOR 

E(2):S3=STORE(3) : S4=STORE(4):S5 
=STORE(5):S6=STORE(6) : S7=STORE( 
7) 

3210 RETURN 
3999 REM CLEAR DATA SUB 
4000 POSITION 2,16 
4010 FOR Y=16 TO 19 
4020 ? "{37 SPACES } " 
403{11 NEXT Y 
4040 POSITION 0,20 :? "{19 SPACES}" 
4050 POSITION 0 , 21:? "{19 SPACES}" 
4200 RETURN 
4999 REM ENTER DATA INTO PROGRAM 
500{11 POKE 559.0 
5010 GOSUB 3200 
5020 GOSUB 5200 
5030 ? 9000+N;" DATA "; S0; " , " ; S 1; " , " 

;82; 11,11;53; ",11;54; II, " ; 55; II, ";56 
;11,";57 

5040 GOSUB 5210 
5050 N=N+1 
5060 POKE 764 , 255 
5070 POKE 559 , 34 
5080 GOTO 200 
5200 ? CHR$(125) : ? :RETURN 

64 



521121 7 :7 :7 "CONT":POSITION !2I,!2I:POK 
E 842,13:STOP 

522121 POKE 842,12:7 CHR$(125):7 :RETU 
RN 

6121121121 7 "{1!21 SPACES}CHARACTER EDITOR" 
61211121 7 "{1!21 SPACES}{16 M}" 
6020 RETURN 

Program 2. Custom Characters 
1121 N=!2I 
2!21 MEMTOP=PEEK(1!216) *256 
3!21 CHBASE=MEMTOP-2!2148 
40 REM CLEAR MEMORY FOR NEW CHARACTE 

R SET 
5!21 FOR I=CHBASE TO CHBASE+1!2124 
6121 POKE I,!2I 
7121 NEXT I 
8121 REM POKE NEW CHARACTER SET INTO M 

EMORY 
90 READ A 
11210 IF A=999 THEN 3!21!21:REM 999 IS END 

OF DATA FLAG 
11121 POKE CHBASE+N,A 
120 N=N+1 
130 GOTO 90 
19121 REM DATA STATEMENTS FOR SPACE,6 

CHARACTERS AND FLAG. FIRST CHARA 
CTER MUST BE A SPACE 

195 REM LINE 220 IS A SPACE TO SKIP 
THE QUOTATION MARKS 

200 DATA 0,0,0,!21,0,!2I,0,0 
210 DATA 32,33,35,35,35,35,255,255 
22121 DATA 0,0,0,0,0,0,0,0 
230 DATA 112,112,112,112,248,248,248 

,248 
240 DATA 248,252,254,254,86,6,255,25 

5 
250 DATA 0,0,32,32,32,32,112,240 
260 DATA 41,38,32,32,32,32,32,32 
270 DATA O,O,O,O,O,32,32,48 
280 DATA 999 
290 REM SET GRAPHICS MODE 
300 GRAPHICS 2 
310 REM TELL COMPUTER WHERE TO FIND 

NEW CHARACTER SET 
320 
324 
325 
330 

POKE 756,CHBASE/256 
REM PRINT NEW CHARACTERS 
POSITION 9,7 
? #6; 11:0 /.11 

3 

65 



3 

335 POSITION 9,8 
340 ? #6;"&:#" 
345 POSITION 9,9 
350 ? #6;1I!$1I 
360 GOTO 360 

Program 3. Fixed Playfield Demonstration 
10 CLR 
20 REM N = NUMBER OF CHARACTERS IN C 

HNEW$ STRING 
30 N=31:CHORG=57344 
40 REM DEFINE STRING 
50 DIM CHNEW$(N) 
60 CHNEW$=" ~ #$'I.&:' () *+, -. /; < =}?@BGHJK 

MNPQVW" 
70 REM FIND CHBASE 
80 CHBASE=(PEEK(106)-8)*256 
90 ? :?" PLEASE WAIT, 760 NUMBERS 

TO MOVE" 
100 REM COPY STANDARD CHARACTER SET 

FROM CHORG TO CHBASE 
110 FOR 1=0 TO 511 
120 POKE CHBASE+I,PEEK(CHORG+I) 
130 NEXT I 
140 REM READ AND POKE CUSTOM DATA IN 

TO THE CHARACTERS IN STRING CHNE 
W$" 

150 FOR 1=1 TO N 
160 CHADD=CHBASE+(ASC(CHNEW$(I»-32) 

*8 
170 FOR J=0 TO 7 
180 READ A 
190 POKE CHADD+J,A 
200 NEXT J 
210 NEXT I 
300 REM CUSTOM CHARACTER DATA 
301 DATA 0,0,0,128,0,0,0,0 
302 DATA O,O,O,O,O,0,O,16 
303 DATA O,0,O,0,1,0,O,O 
304 DATA 8,O,O,O,O,O,O,0 
305 DATA 0,0,0,0,0,0,31,127 
306 DATA O,0,0,0,0,O,255,255 
307 DATA 0,0,O,O,0,O,248,254 
308 DATA O,0,O,O,7,15,31,31 
309 DATA 1,7,31,24,255,255,255,219 
310 DATA 255,231,255,O,255,255,255,2 

19 
311 DATA 128,224,248,24,255,255,255, 

219 

66 

-



312 DATA 0,0,0,0,224,240,248,248 
313 DATA 31,31,15,7,1,1,3,2 
314 DATA 219,255,255,255,127,16,32,6 

4 
315 DATA 219,255,255,255,255,24,60,6 

o 
316 DATA 219,255,255,255,254,8,4,2 
317 DATA 248,248,240,224,128,128,192 

,64 
318 DATA 6,5,6,12,127,0,0,0 
319 DATA 128,0,0.0,0,0,0,0 
320 DATA 60,126,126,126,60,60,60,60 
321 DATA 1,0,0,0,0,0,0,0 
322 DATA 96,160,96,48,254,0,0,0 
323 
324 

DATA 
DATA 

24,24,24,24,24,0,0,0 
128,192,240,240,248,252,254 

325 DATA 129,195,231,255,255,255~255 

,255 
326 DATA 128,192,192,224,224,224,248 

327 DATA 1,3,7,31,63,63,127,255 
328 DATA 1,3,7,7,15,31,63,255 
329 DATA 255,255,255,255,255,254,249 

, 7 
330 DATA 252,251,247,207,191,127,255 

,255 
331 DATA 255,255,255,255,255,255,255 

,255 
400 REM PUT PLAYFIELD ON SCREEN 
420 GRAPHICS 2:POKE 752,1 
500 REM TELL COMPUTER WHERE TO FIND 

NEW CHARACTER SET 
510 POKE 756,CHBASE/256 
530 SETCOLOR 0,3,6:SETCOLOR 1,8,6:SE 

TCOLOR 2,1,10:SETCOLOR 3,0,10 
540 REM PLOT CHARACTERS USING COLOR 

DATA 
550 FOR ROW=0 TO 9 
560 FOR COLUMN=0 TO 19 
570 READ CHAR 
580 COLOR CHAR 
590 PLOT COLUMN, ROW 
600 NEXT COLUMN 
610 NEXT ROW 
620 REM PRINT STANDARD NUMBERS AND L 

ETTERS IN TEXT WINDOW 
630 7 :7 "FUEL:2568 STARDATE:174 A 

LTITUDE:390"; 

3 

67 



3 

640 REM BLINK ENGINE EXHAUST 
650 FOR LUM=0 TO 8 STEP 2 
660 SETCOLOR 0,3,LUM 
670 NEXT LUM 
680 GOTO 650 
699 REM CHARACTER COLOR DATA 
700 DATA 0,129,0,0,0,13,131,0,132,0,1 

33,O,O,132,O,O,O,O,0,131 
701 DATA O,0,0,133,O,O,O,O,6,7,8,O,1 

29,0,0,129,0,133,0, ° 
702 DATA 0,133,0,0,132,0,9,10,11,11, 

11, 12, 13, 129, 0, 0, 131, 0, 129, ° 
703 DATA 0,0,132,0,0,0,14,15,27,27,2 

7,28,29,0,133,0,0,0,0,132 
704 DATA 202,133,O,132,O,133,30,31,6 

4,64,64,98,103,0,129,O,206,202,1 
32,0 

705 DATA 215,203,202,O,O,O,129,133,7 
2,72,72,13,133,13,206,203,215,215, 
205,O 

706 DATA 215,215,215,205,133,O,206,2 
03,215,202,133,O,O,208,215,215,2 
15,215,215,202 

707 DATA 215,215,209,214,215,215,215 
,215,215,215,215,209,214,215,215 
,215,215,215,215,215 

708 DATA 215,215,215,215,215,215,215 
,215,215,215,215,215,215,215,215 
,215,215,215,215,215 

709 DATA 215,215,215,215,215,115,99, 
111,114,101,26,21,16,19,23,215,2 
15,215,215,215 

68 



3 

The Four-Color 
Character Modes 
Orson Scott Card 

Here's how to unlock two "hidden" character modes on your Atari: 
ANTIC 4 and 5. Each character can display up to four colors at a time, 
and the effect can be exciting. This is a complete introduction to four-color 
character graphics, including subroutines that will help you use these 
modes in your own programs and a cOl1lplete character set you can type in 
and use. 

Two of the programs in this book are designed to help you make 
use of two "hidden" graphics modes on your Atari: the four-color 
character modes . "Four-Color Character Editor" allows you to 
create characters in these modes and save entire character sets to 
tape or disk. "Fontbyter" allows you to draw large or small screen 
displays using the character sets you created with the Four-Color 
Character Editor. To make full use of these utilities, it helps to 
know how the four-color character modes work. 

ANTIC and the Character Modes 
The GRAPHICS command automatically changes the way the 
ANTIC video chip in your Atari computer conh·ols the television 
screen. GRAPHICS 0, I, and 2 are text modes, putting characters 
like A, 7, or % on the screen; GRAPHICS 3 through 8 are pixel 
modes, in which you control the color of little squares, called 
pixels, on the screen. 

The modes differ from each other in the size of each character 
or pixel. If you use a mode with larger pixels or characters, you 
will use up less memory to create your screen display-but you 
will also get fewer colors or poorer picture resolution. 

When your program uses a character mode, the ANTIC 
processor scans through screen memory. Each byte of memory 
contains a number from 0 to 255. ANTIC uses that number as an 
index or pointer into character memory The number 22 tells 

69 



3 

ANTIC to skip 22 characters in order to find the one to display in 
that position on the screen. 

Let's go through that process in detail. 

The Display List 
First, ANTIC checks locations 560 and 561 to get the address of the 
display list. When ANTIC jumps to the display list, it usually 
finds that the first three bytes each contain the number 112, which 
tells ANTIC to output several blank lines to the TV screen. 

Screen memory address. ANTIC then finds an insh"uction 
that consists of the ANTIC mode number, or mode instruction, 
plus the number 64. The number 64 is a code that tells ANTIC to 
look for screen memory at the address contained in the next two 
bytes. Whenever ANTIC finds a 64 added to a mode instruction in 
the display list, it looks at the next two bytes to find the address of 
screen memory. 

The first mode instruction must have a 64 and be followed by 
the screen memory address. If screen memory continues 
unbroken from there, you never need to give the address of screen 
memory again. Anytime you want to change screen memory, 
however, you only need to add 64 to the mode instruction for the 
line where you want the change to begin, and then give the new 
screen memory address in the next two bytes. 

Mode instructions. The ANTIC mode number that is added 
to 64 is not the same as the graphics mode number you use with 
the GRAPHICS command. ANTIC modes range from 2 to 15. 
(Table 1 shows how the ANTIC mode numbers compare to 
graphics mode numbers.) ANTIC modes 2 through 7 are char
acter modes; modes 8 through 15 are pixel modes. 

There must be a mode instruction for every line on the 
screen. In ANTIC 2 (GRAPHICS 0) there are 24 lines on the 
screen-so there must be 24 mode instructions. In ANTIC 15 
(GRAPHICS 8) there are 192 lines-and so you must have 192 
mode instructions. 

Close the display list. After the last mode instruction, there 
will be a 65-which is the 64 instruction added to 1. The 64 tells 
ANTIC to look for an address in the next two bytes, but the 1 tells 
it that it won't be screen memory, but rather the address of the 
start of the display list. ANTIC then waits until it's time to start 
displaying at the top-left comer of the TV screen again, then 
jumps back to the start of the display list and starts over. 

Here's a short subroutine you can use in your own programs 

70 



3 

to create an ANTIC 4 or 5 display list. Lines 5-20 are not part of 
the subroutine-they're just there so you can RUN the program 
right now and see what ANTIC 4 and 5 do to the screen. 

Atari BASIC will still let you type and enter program lines or 
instructions as if you were in GRAPHICS O. That's fine if you're in 
ANTIC 4, since both GRAPHICS 0 and ANTIC 4 use 24 lines of 40 
characters. But ANTIC 5 uses only 12 lines of 40 characters, so 
BASIC's screen handler will put half the screen display 'below" 
the TV screen, out of sight. 

Display List Maker 
5 ? "What ANTIC mode do you want? 

4 Dr 5" 
10 TRAP 10:INPUT M:IF M<4 OR M)5 THE 

N M=2 
15 ? "Writing a display list in ANTI 

C ";M:GoSUB 4000 
20 END 
4000 DL=PEEK(560)+256*PEEK(561):PoKE 

DL+3,M+64 
4005 FOR I=DL+6 TO DL+16+12*(M=4):Po 

KE I,M:NEXT I:PoKE I,65:PoKE 1+ 
1,0:PoKE I+2,DL/256:RETURN 

This routine works only if you are leaving the display list exactly 
where the latest GRAPHICS 0 statement left it. 

Reading Screen Memory 
After each mode instruction in the display list, ANTIC goes to 
screen memory and reads the next line's worth of information. If a 
line is 40 units wide, ANTIC reads 40 bytes. In a pixel mode, 
ANTIC interprets those bytes directly as instructions telling it 
what color to use for the squares on the screen. In a character 
mode, however, ANTIC uses the bytes as an index into the char
acter set. 

Finding the character set. ANTIC finds the character set by 
using the number held in location 756. When the computer 
powers up, that number points to the page number (or high byte) 
of the address of the built-in character set. You can change that 
number to point to your own character set. Make sure that your 
character set begins on a 1K boundary, however. The easiest way 
to make sure that the address you are POKEing into location 756 
is on a 1K boundary is to use the following routine. The variable 
CHBAS is the high byte of the starting address of your character 

71 



3 

set. TOP is where you are telling the computer the top of memory 
is. Anything you put above TOP will be left alone by the 
computer. 
500 TOP=PEEK(106)-B 
510 POKE 106,TOP 
520 CHBAS=TOP+4 

This fools the computer into thinking that usable memory 
ends eight pages (2K) sooner than it really does. Now you have 
plenty of space that the computer won't touch. The character set 
itself needs only four pages (lK), but the other four pages will 
hold your display list and other safe memory. In fact, if you 
subtract more pages, you can put your screen memory in this safe 
area, too. 
530 CH=CHBAS*256 

If you multiply CHBAS by 256, you get CH, the full address 
of the character set, rather than just the page number, or high 
byte, of its address. 

540 OPEN #1,4,0,"D:CUSTOM.SET":FOR I 
=0 TO 1024:GET #1,N:POKE CH+I,N: 
NEXT I: CLOSE 

This line opens the disk file containing your character set 
("O:CUSTOM.SET") and loads it (slowly) into screen memory. 

550 POKE 756,CHBAS 

From the moment you make this POKE, ANTIC will use 
your character set instead of the built-in character set. 

Fast loading. Here is a subroutine you can add to your own 
programs. It loads your character set from disk in a few seconds, 
using a machine language routine, and then writes a display list. 
Most of the time you will completely eliminate lines 5 and 6, the 
PRINT ("?") statements in lines 4000 and 4020, and all of lines 
4025 and 4030; instead, your program will simply assign your 
character set's disk filename to the variable CHSET$ and the 
ANTIC mode number to the variable M. The excess material is 
included here so that you can try out the routine and see how it 
works. 

Character Set Loader 
5 DIM CHSET$(20):CHSET$="D:CASTLE.SE 

T":GOSUB 4000 
6 END 

72 



4000 A=PEEK(106):TOP=A-8:CHBAS=TOP+4 
:DL=256*TOP:POKE 106,TOP:CH= CHB 
AS*256:GRAPHICS 0:? "Loading "; 
CHSET$ 

4005 X=16:ICCOM=834: ICBADR=836: ICBLE 
N=840:SL=PEEK(88):SH=PEEK(89) 

4010 OPEN 31,4,0,CHSET$ 
4015 POKE ICBADR+X+1,CHBAS:POKE ICBA 

DR+X,0:POKE ICBLEN+X+1,4:POKE I 
CBLEN+X,0 

4020 POKE ICCOM+X,7:I=USR(ADR("hhhDL 
V~"),X):CLOSE 31:? "What ANTIC 
mode do you want? (4 or 5)" 

4025 TRAP 4025:INPUT M:IF M(4 OR M)5 
THEN 4025 

4030 ? "Writing the display list for 
ANTIC ";M 

4035 FOR 1=0 TO 2:POKE DL+I,112:NEXT 
I:POKE DL+3,M+64:POKE DL+4,SL: 

POKE DL+5,SH 
4040 FOR I=DL+6 TO DL+16+12*(M=4):PO 

KE I,M:NEXT I:POKE I,65:POKE 1+ 
1,0:POKE I+2,DL/256 

4045 POKE 756,CHBAS:POKE 560,0:POKE 
561,DL/256 

3 

Reading the character set. When ANTIC reads a byte of 
screen memory, it uses it as an index into the character set. Let's 
say that ANTIC found a 34 in screen memory. Since each char
acter in the set uses up eight bytes for its definition, ANTIC will 
look for the character at CH + 8*34, or 272 bytes after the start of 
the character set. ANTIC reads the eight bytes of that character 
pattern; it will display the character pattern in the next location on 
the screen. Then it goes to screen memory, reads the next byte, 
finds that character pattern in the character set, and so on. 

ANTIC 4 and 5 Character Modes 
ANTIC 4 handles screen memory exactly like GRAPHICS a 
(ANTIC 2), the normal text mode on the Atari. There are 24 lines 
of 40 characters each on the screen. However, the characters are 
interpreted very differently. 

Normal character patterns. No matter what character mode 
you are using, the characters are created following the pattern 
formed by eight bytes. Each byte consists of eight bits . Think of 
the bytes as if they were stacked on top of each other, making a 
square eight bits wide and eight bytes high, as in Table 2. 

73 



3 

ANTIC 2 (GRAPHICS 0) reads the character pattern in a 
straightforward way. If a bit in the character pattern is set to 1, it is 
on, and one dot of the character's color is displayed; if the bit is set 
to 0, the background color is displayed in that spot. The pattern 
for a letter A might look like the one shown in Table 3. 

Four-color character patterns. ANTIC 4 and 5 cannot use 
exactly this system, since the same eight bytes must tell ANTIC 
not only which bits are on and which are off, but also which color 
the dot on the screen should be. One bit just won't do. So the 
four-color character modes treat the bits as pairs, so that two bits 
control each dot on the screen, as shown in Table 4. 

However, this would make each character only half as wide, 
and it would take 80 characters to fill a line. To avoid this, each bit
pair in ANTIC 4 characters controls the color of two dots on the 
screen. Now the characters are just as wide as the characters in 
ANTIC 2 (GRAPHICS 0), but the horizontal resolution is only half 
as good. 

That is why, in these four-color character modes, it is nearly 
impossible to create letters like Wand M, and very hard to distin
guish between Nand H. The four-color modes are not particularly 
good for alphanumeric characters. However, they are wonderful 
for making the building blocks of elaborate full-color drawings. 

The five colors. Each bit-pair has four possible combinations: 
00,01, 10, and 11. These correspond to the decimal numbers 0, 1, 
2, and 3. A bit-pair with the value of 00 will cause the background 
color, stored at memory location 712, to be displayed. A bit-pair 
with the value of 01 will display the color stored at location 708; 
the bit-pair 10 (decimal 2) will display the color at location 709; and 
the bit-pair 11 (decimal 3) will display the color stored at location 
710. 

There is a fifth color available. If a character is entered into 
screen memory in inverse mode (the character number plus 128), 
then any bit-pair 11 (decimal 3) in that character will displaYt not 
the color at 710, but the color at 711. This means that if you plan 
your character set carefully, you can have five colors on your 
screen at one time. 

We still call them four-color character modes, however, 
because no one character can display more than four colors at a 
time. 

Table 5 shows a simple shape, an apple tree with fruit on it. 
The trunk is brown, the leaves are green, the fruit is red, and the 
background is black. However, this pattern creates only half the 

74 



3 

tree-it is assumed that the other half is held in another charactel~ 
and the two would be combined to create the full tree. 

Also, the fruit is created with the bit-pair 11 (decimal 3). This 
allows us to enter the same character in inverse mode and display 
different-colored fruit-orange, for example, instead of red. Or 
fruit could ripen gradually from green to bright red. Careful plan
ning can result in a great deal of freedom in creating your screen 
displays. 

How to Use the Utilities 
The Four-Color Character Editor will let you create your own 
ANTIC 4 and 5 character sets. This will be a time-consuming 
project, but once you have a character set made, you can use it 
again and again to make many different drawings. 

Fontbyter will let you use your own character sets-or the 
Castle Maker character set included here-to make your own 
drawings and save them, perhaps to use them in programs. You 
can make drawings many times the size of the TV screen and 
scroll through them. 

You don't have to have a particular programming goal in 
mind. Though both programs are long and will take quite a bit of 
time to type in, they can be used over and over again. You'll have 
a hard time deciding whether you're programming, creating 
artwork, or just playing. The truth is, with ANTIC 4 and 5, you 
can do all three at once. 

75 



3 

Table 1. Character Modes 

Characters or 
pixels per 

Character Modes line Comments 

GRAPHICS ANTIC 

0 2 40 The default mode of the Atari. The 
border and background can be 
different colors, but the characters are 
the same color as the background-
only the brightness is different. 
Twenty-four lines on the screen. 

3 40 Rarely used . It is identical to 
GRAPHICS 0 except that the top two 
lines of each lowercase character are 
put on the bottom. It can be used to 
create true descenders on lowercase 
letters. 

12* 4 40 Identical to GRAPHICS 0 in the way it 
uses screen memory and the size of 
the character set (all 256 characters are 
available), but four colors are possible 
in each character, and by using inverse 
characters, five colors can be displayed 
on the screen at once. However, the 
horizontal resolution is only half as 
good as in GRAPHICS O. Twenty-four 
lines on the screen. 

13* 5 40 Identical to ANTIC 4 except that each 
character is twice as tall . This gives the 
characters a stretched-out look, but fills 
up the screen while using half as much 
memory. Twelve lines on the screen. 

1 6 20 Uses only 64 characters, but each 
character can be displayed with one of 
four different colors. Twenty- four 
lines per screen. 

2 7 20 The same as GRAPHICS 1 (ANTIC 6) 
except the characters are twice as tall. 
Twelve lines per screen. 

*XLModels 

76 



Table 2. The 8 x 8 Character Matrix 

Bits 
Byte 1 
Byte 2 
Byte 3 
Byte 4 
Byte 5 
Byte 6 
Byte 7 
Byte 8 

7 6 5 4 3 210 
o 000 0 0 0 0 
00000000 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
o 0 0 0 0 0 0 0 
00000000 
o 0 0 0 0 0 0 0 

Table 3. A GRAPHICS 0 Character Pattern 

Bits 
Byte 1 
Byte 2 
Byte 3 
Byte 4 
Byte 5 
Byte 6 
Byte 7 
Byte 8 

7 6 5 4 3 2 1 0 
o 0 0 0 0 0 0 0 
o 0 0 1 1 000 
001 1 1 100 
o 1 100 1 1 0 
o 1 1 1 1 1 1 0 
o 1 100 1 1 0 
o 1 100 1 1 0 
o 0 0 0 0 0 0 0 

Table 4. The 4 x 8 ANTIC 4 and 5 Matrix 

Bits 7-6 5-4 3-2 1-0 
Byte 1 00 00 00 00 
Byte 2 00 00 00 00 
Byte 3 00 00 00 00 
Byte 4 00 00 00 00 
Byte 5 00 00 00 00 
Byte 6 00 00 00 00 
Byte 7 00 00 00 00 
Byte 8 00 00 00 00 

1 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 1 1 
1 1 1 1 
1 1 1 1 

3 

77 



3 

Table s. An ANTIC 4 Character Pattern 

Bits Bit Patterns" 
"On" Bits Colors Displayed 7-6 5-4 3-2 1-0 

Byte 1 00 10 00 10 10 10 GRE GRE 
Byte 2 10 11 10 11 10 11 10 11 GRE RED GRE RED 
Byte 3 10 10 10 10 10 10 10 10 GRE GRE GRE GRE 
Byte 4 00 10 11 10 10 11 10 GRE RED GRE 
Byte 5 00 10 10 10 10 10 10 GRE GRE GRE 
Byte 6 00 00 00 01 01 
Byte 7 00 00 00 01 01 
Byte 8 00 00 00 01 01 

'00 = Color Register 4 (background, memory location 712) 
01 = Color Register 0 (memory location 708) 
10 = Color Register 1 (memory location 709) 
11 = Color Register 2 (memory location 710) 
11 il1verse = Color Register 3 (memory location 711) 

Castle Maker-A Character Set 
9~~ OPEN *1,8,~,"Dl:CASTLE.SET" 
91~ FOR 1=1 TO 1~24:READ N:PUT *1,N: 

NEXT I:CLOSE #1:? I:END 
1~~~ DATA ~,~,~,~,~,~,~,~ 
1~~8 DATA 255,84,84,84,84,84,84,68 
1~16 DATA 255,21,21,21,21,21,21,17 
1~24 DATA 191,191,186,255,171,171,17 

1,255 
1~32 DATA ~,25,~,~,~,~,~,~ 
1~4~ DATA ~,4,16,64,85,64,16,4 
1~48 DATA 1,3,1,3,1,3,1,3 
1~56 DATA 64,192,64,192,64,192,64,19 

2 
1064 DATA 0,0,3,15,63,252,240,192 
1072 DATA 0,0,192,240,252,63,15,3 
1080 DATA 255,3,3,3,3,3,3,3 
1088 DATA 255,0,0,~,~,0,0,0 
1~96 DATA ~,0,0,~,68,32,0,0 
1104 DATA 250,250,255,255,175,175,17 

0,255 
1112 DATA 0,8,17,0,0,0,0,0 
1120 DATA 17,8,0,0,0,0,~,0 

1128 DATA 252,63,15,3,0,0,0,0 
1136 DATA 85,85,85,85,85,85,85,85 
1144 DATA 255,255,3,3,12,240,0,0 
1152 DATA 255,255,0.0,0,~,0,0 

78 

BRN 
BRN 
BRN 



1160 DATA 255,255,192,192,48,15,0,0 
1168 DATA 0,0,0,0,0,0,192,240 
1176 DATA 0,0,0,0 , 0,0,3,15 
1184 DATA 3,3,3,12,12,240,0,0 
1192 DATA 0,0,3,15,63,252,243 ,1 95 
1200 DATA 63,252,240,192,0 ,0,0, 0 
1208 DATA 42,4,4,4,4,0,0,0 
1216 DATA 255,192,192,192,192,192,19 

2, 192 
1224 DATA 0,0 , 192,240,252,63,207,195 
1232 DATA 171,171,171,171,251,251,25 

5,255 
1240 DATA 192,192,192,48,48,15,0,0 
1248 DATA 255 ,255,255,255,171,171,17 

1,255 
1256 DATA 0,0,0,0,0,32,68,0 
1264 DATA 186,186,186,255,171,171,17 

1,255 
1272 DATA 186,255,171,255,186,255,17 

1,255 
1280 DATA 0,0,0,0,255,195,195,195 
1288 DATA 0,0,0,0,0,0,0,255 
1296 DATA 64,80 , 84,85,85,85,85,85 
1304 DATA 3,3,3,3,3,3,3,255 
1312 DATA 192,192,192,192,192,192,19 

2,192 
1320 DATA 3,3,3,3~3,3,3,3 

1328 DATA 64,64,80,80,84,84,85,85 
1336 DATA 255,255,255,255,255,255,25 

5,255 
1344 DATA 0,0,0,0,171,171,171,255 
1352 DATA 171, 171, 171,255, 171, 171, 17 

1,255 
1360 DATA 192,192,224,224,232,232,23 

4,255 
1368 DATA 3,3,11,11,43,43,171,255 
1376 DATA 170,1.70,170,170,175,175,25 

5,255 
1384 DATA 175,175,255,255,251,251,17 

1,255 
1392 DATA 0,0,0,0,1,5,21 , 85 
1400 DATA 0,0,0,0,64,80,84,85 
1408 DATA 192,192,192,192,192,192,19 

2,255 
1416 DATA 87,23,87,3,3,3,3,3 
1424 DATA 1,1,5,5,21,21,85,85 
1432 DATA 0,0,0,255,186,255,171,255 
1440 DATA 1,5,21,85,85,85,85,85 
1448 DATA 255,195,195,195,255,0,0,0 

3 

79 



3 

1456 DATA 213,212,213,192,192,192,19 
2,192 

1464 DATA 255,195,195,195,255,195,19 
5,195 

1472 DATA 171, 171,43,43, 11, 11,3,3 
148~ DATA 11,11,11,15,3,3,3,3 
1488 DATA 234,234,232,232,224,224,19 

2,192 
1496 DATA 224,224,224,24~,192,192,19 

2,192 
15~4 DATA 186,186,186,255,43,43,43,6 

3 
1512 DATA 85,2~, 16,4, 1,17,68,16 
152~ DATA 2,2,1~,22,22,86,86,85 
1528 DATA 252,236,172,44,5,5,5,245 
1536 DATA 84,8~,64,16,68,68,16,64 
1544 DATA 4,4,21,2~,85,85,84,8~ 
1552 DATA 4,5,1,21,31,31,31,95 
156~ DATA ~,~,64,84,84,~,~,~ 
1568 DATA ~,0,1,21,21,0,~,~ 
1576 DATA 16,16,84,20,85,85,21,5 
1584 DATA ~,3,3, 15,61,4, 17,32 
1592 DATA 85,133,129,149,154,154,154 

, 154 
160~ DATA 128, 128,16~, 148, 148, 149, 14 

9,85 
16~8 DATA 85,16,4,1,17,68,16,64 
1616 DATA 85~8~,64,~,0,64,64,16 
1624 DATA 21,5,1,4,17,17,4,1 
1632 DATA 64,240,176,188,95,68,81,66 
1640 DATA 66~81,93,93,93,93,253,85 
1648 DAn~- 85,85,85,85,85,85,51,51 
1656 DATA 32,17,29,29,29,29,31,21 
1664 DATA 85,82,66,86,166,166,166,16 

6 
1672 DATA 66,81,221,221,221,221,253, 

85 
168~ DATA 0,3,3,3,1,4,16,16 
1688 DATA 63,59,58,56,80,8~,80,95 
1696 DATA 16,8~,64,84,244,244,244,24 

5 
17~4 DATA 85,5, 1,0,~, 1,1,4 
1712 DATA 64,24~,176,176,8~,68,65,65 
1720 DATA 85,2~,4,16,64,68,17,4 
1728 DATA 84,68,84,16,16,20, 16, 2~ 
1736 DATA 4,16,64,0,80,68,17,4 
1744 DATA 255,195,255,12,12,252,60,2 

52 
1752 DATA 5,7,12,48,63,53,53,63 

80 



3 

176O DATA 192,O,O,O,252,92,92,252 
1768 DATA O,O,2O,125,255,195,195,255 
1776 DATA O,O,O,5,21,85,84,85 
1784 DATA O,O,5,16,64,64,8O,5 
1792 DATA O,O,O,O,O,21,65,16 
18OO DATA 0, 0, 80, 4, 1 , 1 , 5, 8O 
1808 DATA 68,1OO,1OO,32,32,2O,33,32 
1816 DATA 0,£1,0,0,64,21,85,81 
1824 DATA £1,£1,16,4,1,65,84,0 
1832 DATA 16,16,16,68,68,65,17,81 
184O DATA 60,56,56,21,8£1,80,2£1,48 
1848 DATA 16,16,16,20,17,17,64,69 
1856 DATA 6O,28,223,215,215,215,215, 

235 
1864 DATA 48,48,24O,24O,252,255,252, 

65 
1872 DATA 48,48,6£1,63,63,63,63,24 
188O DATA 48,60,60,204,204,2£14,2£14,6 

8 
1888 DATA 48,236,239,16,1£10,100,85,4 

8 
1896 DATA 60,248,248,32,96,84,80,8£1 
19£14 DATA 16,4,O,85,5,O,4,16 
1912 DATA O,32,32,32,32,32,21,32 
192£1 DATA 16,8£1,69,85,64,80,68,17 
1928 DATA 60,4£1,4£1,21,84,84,84,48 
1936 DATA 24£1,176,176, Ib, 20, 20, 80, 48 
1944 DATA £1,£1,£1,0,1,84,85,69 
1952 DATA 1,4,4,84,16,16,64,64 
196O DATA £1,4,1,1,81,85,69,21 
1968 DATA 60,44,44,15,19,8£1,16,16 
1976 DATA 4,2£1,68,21,85,1,1,5 
1984 DATA 25£1,250,186,255,171,171,17 

1,255 
1992 DATA 186,186,186,255,232,232,23 

2,252 
2~00 DATA 0,£1,£1,£1,0,1£10,0,£1 
2£108 DATA 255,6£1,60,255,6£1,48,48,0 
2£116 DATA 3,12,48,192,80,196,1,0 

81 



3 

Four-Color Character 
Editor 
Tim Kilby 

Creating l1lulticolor character sets is no longer tedious guesswork. With 
this editor you can see the characters as you create them, with the exact 
colors you want. 

Two of the most effective graphics modes on the Atari are hidden 
away where you can't access them from BASIC. ANTIC modes 4 
and 5 require you to use a custom display list-and then you can't 
do anything until you develop your own character sets. But it's 
worth the effort. 

What makes these two modes so valuable? For one thing, 
each character can display up to four colors, and when you enter 
characters in inverse mode, any pixels in Color 3 are displayed 
instead as a fifth color. For another thing, you can get better reso
lution than GRAPl-UCS 7, while using up only a fraction of the 
memory. This lets you create easy-to-scroll displays that are many 
times larger than is possible in the pixel modes. 

With the right tools, ANTIC 4 and 5 are as easy to use as any 
other. This is one of those tools. 

What You See 
After a few moments of initialization, the editing workspace 
appears on the screen. 

The top third of the screen is the Character Grid. Actually, 
two grids are shown with little dots on a black background. The 
left-hand grid shows the current character roughly as it appears in 
ANTIC 4, but much enlarged. The right-hand grid shows the 
character bit-pattern. In both grids, the rectangles are the correct 
color. This means you don't have to keep track of which bits 
should be on or off in order to access Colors 1, 2, or 3. 

On the left-hand grid there is also a red rectangle. This is 
your cursor. It moves as you command it, and you can change the 
color of whatever rectangle it rests upon. 

82 

-----------------------------------



3 

The Message Field, below the grids, is light blue. At the 
beginning it shows the Menu, which tells you which commands 
are available to you. 

The Character Field displays the entire character set in 
ATASCII numerical order. 

And the black Display Field shows the character currently in 
the grid in its actual size, in regular and inverse modes, in ANTIC 
4 (short) and ANTIC 5 (tall), singly and clustered. 

How to Use the Editor 
Load. Press L to load a previously saved character set. The 

program assumes that the character set will be on disk drive 1 and 
will have the extender" .SET'~ Therefore, you need to enter only 
the eight-letter filename. As soon as the character set is loaded, it 
will be displayed in the Character Field. 

Save. Press 5 to save the character set as it is now displayed 
in the Character Field. Again, you need to enter only the eight
letter filename. To change the default device from "D1:" to "Dn:" 
or "C:'~ just change line 820. 

1, 2, and 3. Press 1 to select Color 1; press 2 to select Color 2; 
press 3 to select Color 3. Whichever color was last selected will be 
placed in the character at the cursor position when you press the 
joystick button. 

Edit. Press E to select a new character to edit. The Message 
Field will display the prompt "- Select character -'~ The character 
you select will then be displayed in the Character Grid and in the 
Display Field. 

Menu. Press M or the space bar to display the Menu in the 
Message Grid. 

Rub. Press R to erase completely the character now in the 
Character Grid. It will immediately become a blank. 

Copy. Press C to copy one character's pattern into another's 
place in the character set. Whatever character is then being edited 
will immediately be replaced by the copy-character's pattern
both characters will then be identical. This command lets you 
move characters around. Remember, though, that the character 
you copy to will disappear-it's a good idea, if you don't want to 
lose it, to copy that character to another position first. If you 
wanted to trade the positions of B and A, you would first choose 
to edit the blank character (space bar). Press C and then B; the 
blank character will then be replaced by B. Then choose to edit B, 
and copy from A. Then choose to edit A and copy from the blank 

83 



3 

character. Finally, choose to edit the blank character again, and 
type R to erase it-it will be blank again, and A and B will have 
traded places. 

Test. Press T to enter Test Mode. In this mode, the Display 
Field goes blank, and you can test your characters simply by 
typing them normally at the keyboard. The cursor control keys 
retain their normal function; to print the ARROW key characters, 
you must press ESC first, as in GRAPHICS O. You can still change 
colors (see Joystick 2, below). Pressing the INVERSE key will 
toggle you back and forth between inverse and regular mode. Exit 
Test Mode by pressing RETURN. No other editing commands 
function in Test Mode. 

SELECt Press SELECT to toggle the Character Field between 
ANTIC 4 and GRAPHICS O. 

Joystick 1. Joystick 1 controls the cursor's movement in the 
Character Grid. Pressing the button on Joystick 1 causes the 
cursor rectangle to toggle on or off. If the cursor is over a blank 
rectangle, it will then display the currently selected color. If the 
cursor is over a colored rectangle, it will then become blank. 

Joystick 2. Joystick 2 controls the actual color values 
displayed by Colors 1, 2, and 3, and the background and inverse 
colors as well. Moving the joystick toward you and away from 
you controls Color 1. Moving the joystick left and right controls 
Color 2. Moving the joystick toward you and away from you with 
the OPTION button pressed controls the inverse color. Moving 
the joystick toward you and away from you with the joystick 
button pressed controls Color 3. And moving the joystick left and 
right with the joystick button pressed controls the background 
color. This lets you see how different color combinations work 
with the characters you have created. You can also change colors 
during Test Mode. (GRAPHICS 0 reads the color registers differ
ently, so the Message Field and Character Field can behave oddly 
during color changes.) 

To quit editing, press RESET. 

Four-Color Character Editor 
2!1J REM 

• 
ee) COPVRIGHT 1~82 TI~ KILB 

3!1J DIM A$(1),O$(1),CLEAR2$(1),ZERO$( 
1),CLEAR1$(1),CLEAR4$(1),FILE$(15 
),NAME$(15),A(7,S) 

4!1J GOTO 11S!1J 

84 

-.. 



50 SOUND 0,Y/2+100-X/4,10,4:FOR D=1 
TO 8:NEXT D:SOUND 0,0,0,0:RETURN 

60 REM .;:;13:11_ 
70 GOSUB 110:POSITION 1,0 
80 ? "~it{5 SPACES}ffi:lpy{5 SPACES}[!o 

ad Set{4 SPACES}~ub" 
9 0 ? " Color U,~, 0 r I§{ 4 SPA C E S } ~ v e S 

et{4 SPACES}ijest" 
100 ? "i#J"I.?lIl, {ESC} {DOWN} mode {ESC} 

{DOWN}{7 SPACES}* CHOOSE ONE *"; 
:RETURN 

110 CLEAR2$=ZERO$(1,120):RETURN 

120 REM .... nJ:I?I?I:.;:;I?I;:;toJ:'· •• J:.II?1:.': •• IOJ:. 
130 POKE 87,3:POKE 88,PEEK(DL+4):POK 

E 89,PEEKCDL+5):RETURN 
140 POKE 82,I:POKE 87,0:POKE 88,HOME 

+100-INTCCHOME+100)/256)*256:POK 
E 89,INTCCHOME+100)/256):RETURN 

150 POKE 82,4:POKE 87,0:POKE 88,HOME 
+220-INTCCHOME+220)/256)*256:POK 
E 89,INTCCHOME+220)/256):RETURN 

160 POKE 82,0:POKE 87,0:POKE 88,HOME 
+380-INTCCHOME+380)/256)*256:POK 
E 89,INTCCHOME+380)/256):RETURN 

170 POKE 82,0:POKE 87,0:POKE 88,HOME 
+460-INTC(HOME+460)/256)*256:POK 
E 89,INTC(HOME+460)/256):RETURN 

180 GOSUB 160:POKE 766,l:POSITION 11 
,I:? CHR$CCHR):POSITION 18,1:? C 
HR$(CHR+128):POSITION 25,1 

190 FOR A=1 TO 5:? CHR$CCHR);:NEXT A 
:? :GOSUB 170:POSITION 11, I:? CH 
R$CCHR):POSITION 18,1:? CHR$(CHR 
+128) 

200 POSITION 25,l:FOR A=0 TO 5:? CHR 
$(CHR);:NEXT A:POKE 766,0:RETURN 

210 REM .~ •• i_:<l.)Ii:Mi-__ 
220 GOSUB 130:F=X/4:G=(Y-20)/4:LOCAT 

E 8+F,G+l,A:SOUND 0,20+G-F,10,2: 
COLOR C*CA=0):PLOT 8+F,G+l:PLOT 
9+F,G+l 

230 IF C=l THEN PLOT 28+F,G+l:COLOR 
0:PLOT 27+F,G+l:A(G,F+l)=INT(2~( 
6-F) +0.1) 

240 IF C=2 THEN PLOT 27+F,G+l:COLOR 
0:PLOT 28+F,G+l:A(G,F)=INT(2-C7-
F)+0.1) 

3 

85 



3 

250 IF C=3 THEN PLOT 27+F,G+l=PLOT 2 
B+F,G+l:A(G,F)=INT(2~(7-F)+0.1): 

A(G,F+l)=INT(2~(6-F)+0.1) 

260 IF A)0 THEN A(G,F)=0:A(G,F+l)=0 
270 A(G,B)=0:FOR D=0 TO 7:A(G,B)=A(G 

,B)+A(G,D):NEXT D:POKE CHBASE+CH 
R*B+G,A(G,B) 

2B0 SOUND 0,0,0 , 0:GOSUB 140:RETURN 
290 REM _iiil.)I •• 
300 GOSUB 110:GOSUB 340 
310 POSITION 10 , 1:? "- Select charac 

ter _II; 
320 GET 33,CHR:GOSUB 360:GOSUB 140:R 

ETURN 
330 FOR A=0 TO 7:POKE CHBASE+CHR*B+A 

,0:NEXT A 
340 CLEAR1$=ZERO$(1,100) 
350 FOR A=0 TO 7:FOR B=0 TO B:A(A,B) 

=@:NEXT B:NEXT A:RETURN 
360 REM _:.1.'1i_O:W:l:l:lO:1ii?!:_ 
370 POSITION 6,0:? "Use joystick to 

move cursor.":POSITION B, I:? "Pr 
ess FIRE to plot point." 

3B0 POSITION 14 , 2:? "(I:: for MENU)"; 
390 GOSUB IB0 
400 GOSUB 130:IF CHR ) 127 THEN CHR=CH 

R-12B 
410 IF CHR)127 THEN CHR=CHR-12B 
420 IF CHR>31 AND CHR ( 96 THEN CHR=CH 

R-32:GOTO 440 
430 IF CHR (32 THEN CHR=CHR+64 
440 R=CHBASE+CHR*B:FOR A=0 TO 7:D=PE 

EK(R+A):B=A+l 
450 F=0:IF D ) 127 THEN D=D-12B:F=F+i: 

COLOR 2:PLOT 27,B:PLOT 8,B:PLOT 
9,B:A(A,0)=128:A(A,B)=A(A , B)+A(A 
. 0) 

460 IF D)63 THEN D=D-64:F=F+l:COLOR 
I:PLOT 28,B:PLOT B,B:PLOT 9,B:A( 
A, 1) =64: A (A, 8) =A (A, 8) +A (A, 1 ) 

470 IF F)l THEN COLOR 3:PLOT 27,B:PL 
OT 28,B:PLOT 8,B:PLOT 9,B 

480 F=0:IF 0)31 THEN 0=0-32:F=F+l:CO 
LOR 2:PLOT 29,B:PLOT 10,B:PLOT 1 
1,B:A(A,2)=32:A(A , 8)=A(A,8)+A(A, 
2) 

490 IF 0)15 THEN 0=D-16:F=F+l:COLOR 
1 : PLOT 3~,B:PLOT 1~,B:PLOT 11,B: 
A(A,3)=16:A(A,8)=A(A,8)+A(A~3) 

86 



5~~ IF F>1 THEN COLOR 3:PLOT 29,B:PL 
OT 3~,B:PLOT 10,B:PLOT II,B 

510 F=0:IF D ) 7 THEN D=D-S:F=F+l:COLO 
R 2:PLOT 31,B:PLOT 12,B:PLOT 13, 
B:A(A,4)=S:A(A,8)=A(A,S)+A(A,4) 

520 IF D)3 THEN D=D-4:F=F+l:COLOR 1: 
PLOT 32,B:PLOT 12,B:PLOT 13,B:A( 
A,5)=4:A(A,S)=A(A,8)+A(A,5) 

530 IF F ) 1 THEN COLOR 3:PLOT 31,B:PL 
OT 32,B:PLOT 12,B:PLOT 13,B 

540 F=0:IF 0 > 1 THEN D=0-2:F = F+l:COLO 
R 2:PLOT 33,B:PLOT 14,B:PLOT 15, 
B:A(A,6)=2:A(A,8)=A(A,8)+A(A,6) 

550 IF D>0 THEN F=F+l:COLOR I:PLOT 3 
4,B:PLOT 14,B:PLOT 15,B:A(A,7)=1 
:A(A,S)=A(A,8)+A(A,7) 

560 IF F } 1 THEN COLOR 3:PLOT 33,B:PL 
OT 34,B:PLOT 14,B:PLOT 15,B 

570 NEXT A:GOSUB 140:RETURN 
580 REM _.;;ij..-tI _':'Ia:l :J:lIi II i:4;;o __ 

590 GOSUB 110:POSITION 5,0:7 "Your t 
yped characters":POSITION 7,1:7 
"will appear below.{5 SPACES}NOR 
MAL" 

600 POS I T:t ON 2,2:? "- Pr ess _:I",uIJ:I:. 
for menu -"; 

610 D=I:POKE 764,255:CLEAR4$=ZERO$:G 
OSUB 340:GOSUB 160:POKE 84,0:POK 
E 85,0:POKE 53259,I:A$=ZERO$(I,1 
27) 

620 POKE 53251,36:A$(86,89)="{4 C}" 
630 FOR 0=0 TO 5:POKE DL+D+23,4:NEXT 

D:POKE DL+29,65:POKE DL+30,PEEK 
(560):POKE DL+31,PEEK(561) 

640 A=PEEK(6331:0N A( 15 GOSUB 1500:1 
F PEEK(764'=255 THEN 640 

650 IF PEEK(764'=39 OR PEEK(764'=103 
THEN A=PEEK(84':B=PEEK(85':GOTO 
710 

660 GET #3,CHR:IF CHR=155 THEN GOSUB 
340:CLEAR4$=ZERO$:A$=ZERO$(1,12 

7):GOSUB 140:POKE 694,0:POKE 702 
,64: GOTO 75Ql 

670 7 CHR$(CHR';:IF PEEK(84'(0 THEN 
POKE 84,5 

675 IF PEEK(85'}38 THEN POKE 85,0 
680 IF PEEK(84) } 5 THEN POKE S4,0 
690 POKE 53251,PEEK(85'*4+36:A=PEEK( 

84)*4+86:A$=ZERO$(1,127':A$(A,A+ 
3)="{4 C}" 

3 

87 



3 

700 POKE 764,255:GOTO 640 
710 POKE 694,128*(PEEK(694)=0):POKE 

53279,0:GOSUB 140 
720 IF PEEK(694)=128 THEN POSITION 2 

9, 1: 7 "_II: ... J"'I .... ...,." 
7 3 0 IF PEEK(694)=0 THEN POSITION 29, 

1:7 " NORMAL 
740 POKE 764,255:GOSUB 160:POKE 84,A 

:POKE 85,B:GOTO 640 
750 GOSUB 760:GOSUB 140:POKE 5 3 259,3 

:RETURN 
760 POKE DL+23,4:POKE DL+24 , 4:POKE D 

L+25,5:POKE DL+26,5:POKE DL+27,6 
5:POKE DL+28,PEEK(560):POKE DL+2 
9,PEEK(561) 

770 RETURN 
7 8 0 REM -..... ..-;".rr.:Tl>,._~~ro;.,.r~: 1r..rr.:""ll:1l"'"'"ir="'IT..""&;--=-;;'Jr.;;i"""'.-

790 FILE$="load":GOSUB 800:TRAP 890: 
OPEN Dl,4,0,FILE$:POKE 850,7:GOS 
UB 870:RETURN 

800 POKE 752,0:GOSUB 140:GOSUB 110:P 
OSITION 2,0:7 "Enter name to ";F 
ILE$;". (1-8 characters)" 

810 POSITION 16,I:INPUT NAME$:POKE 7 
52,I:IF NAME$="" THEN POP :RETUR 
N 

811 FOR A=1 TO LEN(NAME$):IF NAME$(A 
,A)=":" THEN NAME$=NAME$(A+l,LEN 
(NAME$»:POP :GOTO 811 

812 IF NAME$(A,A)="." THEN NAME$=NAM 
E$(I,A-l):POP :GOTO 811 

813 IF ASC(NAME$(A,A» < 65 OR ASC(NAM 
E$(A,A» >90 THEN POP :POP :RETUR 
N 

814 NEXT A 
820 FILE$="D:":REM * Cassette users 

(3 SPACES}should replace "D:" wi 
th "C:". The{ 3 SPACES } remaining 
file name is irrelevant. 

830 FILE$(LEN(FILE$)+I)=NAME$:FILE$( 
LEN(FILE$)+I) = ".SET" 

840 GOSUB 110:RETURN 
850 REM .. ...,:lIJ_~;r:l.r:tiI:1I113 ... ...,;;i. 
860 FILE$="save":GOSUB 800:TRAP 890: 

OPEN Dl,8,0 , FILE$:POKE 850,11:GO 
SUB 870:RETURN 

870 POKE 852,0:POKE 853 , CHBASE/256:P 
OKE 856,0:POKE 857 , 4:POKE 756,CH 
BASE/256:A=USR(1555) 

88 



( 

880 CLOSE #1:TRAP 32767:PoKE 54286,1 
92:PoKE 756,224:RETURN 

890 GoSUB 110:PoSITIoN 1,0:? CHR$(25 
3);"An ERROR ";PEEK(195);" has 0 

ccurred." 
9 i!! !!! IF PEEK(195)=165 THEN? "Imprope 

r file name - try again." 
91!!! IF PEEf«195)=17!!! THEN? "File no 

t found - try again." 
920? "Press any key to continue.";: 

GET #3,KEY:GoTo 880 
930 A=STICK(I):IF A<> 15 THEN GoSUB 1 

500:REM -I·},·"-')j ~![~ :-
940 A=STICK(0):B=STRIG(0) 
950 IF A=7 THEN X=X+8:IF X>24 THEN X 

=0 
960 IF A=11 THEN X=X-8: IF X< 0 THEN X 

=24 
970 IF A=14 THEN Y=Y-4:IF Y<20 THEN 

Y=48 
980 IF A=13 THEN Y=Y+4:IF Y )- 48 THEN 

Y=20 
990 POKE 53251,X+56:A$=o$(81-Y.81-Y+ 

128) 
1000 IF B=1 AND A<>15 THEN GoSUB 50 
1010 IF PEEK(764)<>255 THEN GoSUB 10 

50 
1020 IF PEEK(53279)=5 THEN FOR D=0 T 

o 3:PoKE DL+D+19.4*(PEEKIDL+D+l 
9)=2)+2*(PEEK(DL+D+19)=4):NEXT 
D 

1030 IF B=0 THEN GoSUB 210 
104il! GoTo 930 
1 050 REM •• r:"7 .. ""'''' ... • .. T-;'''I'"'.Ir.:r.1 ;;T~"<"I._--.~,....,: I""';( .... ~,.,:""'.· 
1060 GoSUB 140:GET #3.KEY:IF KEY>127 

1070 
1080 
1090 
1100 
lllil! 
1115 
1120 
1130 
114!!! 
115!!! 
116!!! 
1170 
1180 

THEN KEY=KEY-128:PoKE 694.0 
A=KEY:A=A+64*(A <3 2)-32*(A)-95) 
IF A=76 THEN GoSUB 780:GoSUB 60 
IF A=83 THEN GoSUB 850:GoSUB 60 
IF A=69 THEN GoSUB 290 
IF A=82 THEN GoSUB 330 
IF A=67 THEN GoSUB 1630 
IF A=84 THEN GoSUB 580:GoSUB 60 
IF A=77 OR A=32 THEN GoSUB 60 
IF KEY=49 THEN C=1 
IF KEY=50 THEN C=2 
IF KEY=51 THEN C=3 
POKE 764.255:RETURN 
REM _ija ....... If'4:"j.ol:. 

3 

89 



3 

1190 RAMTOP=PEEK(106'-12:POKE 89,RAM 
TOP:POKE 88,0:~ CHR$(125':C=I:C 
HR=65:0PEN #3,4,0,"K:" 

1200 POKE 106,RAMTOP:CHBASE=(RAMTOP+ 
8)*256:PMBASE=(RAMTOP+4)*256:GR 
APHICS 0:POKE 710,176 

1210 POKE 203,CHBASE/256:POSITION 9, 
3:? "_ .. :II •• (:I ...... II:( .. ~:loI.,:f:1:; .. ;: GO 
SUB 350 

1220 FOR A=0 TO 24:READ B:POKE 1536+ 
A,B:NEXT A:POKE 512,0:POKE 513, 
6 

1230 VT=PEEK(134'+256*PEEK(135':AT=P 
EEK(140)+256*PEEK(141) 

1240 X=CHBASE-AT:Y=57344-AT:GOSUB 13 
20.00005>LI149 POKE VT+2,X2:POK 
E VT+3,Xl:POKE VT+4,I:POKE VT+5 
,4:POKE VT+6,I:POKE VT+7,4 

1260 POKE VT+10,Y2:POKE VT+ll,Yl:POK 
E VT+12,I:POKE VT+13,4:POKE VT+ 
14,I:POKE VT+15,4:A$=O$ 

1270 X=PMBASE+896-AT:Y=PMBASE-AT:GOS 
UB 1320:POKE VT+2,X2:POKE VT+3, 
Xl:POKE VT+10,Y2:POKE VT+ll,Yl 

1280 X=PEEK(88)+256*PEEK(89)+100-AT: 
Y=RAMTOP*256-AT:GOSUB 1320:POKE 

VT+18,X2:POKE VT+19,Xl:POKE VT 
+26,Y2 

1290 POKE VT+27,Yl:X=PEEK(88)+256*PE 
EK(89)-AT:GOSUB 1320:POKE VT+34 
,X2:POKE VT+35,Xl 

1300 X=PEEK(88)+256*PEEKI89)+380-AT: 
GOSUB 1320:POKE VT+42,X2:POKE V 
T+43,Xl 

1310 FOR A=4 TO 44 STEP 8:FOR B=0 TO 
3:READ D:POKE VT+A+B,D:NEXT B: 

NEXT A:GOTO 1330 
1320 Xl=INT(X/256i:X2=INTIX-(256*Xl) 

) :Yl=INTIY/256) :Y2=INT(Y-1256:t:Y 
1) ) : RETURN 

1 33 1<'l REM • ~ 1If:£iI "4 :T4:;IIIi--s.-Ji ij •• ., ::r:1 ~: 111(0;0. __ 
1340 POKE 54279,PMBASE/256:FOR D=0 T 

o 2:POKE 704+D,6:NEXT D:POKE 70 
7,68 

1350 FOR D=53248 TO 53255:READ X:POK 
E D,X:NEXT D:FOR D=53256 TO 532 
58:POKE D,l:NEXT D:POKE 53259,3 
:X=0 

90 



136121 FOR A=@ TO 256 STEP 128:FOR D=2 
121 TO 52 STEP 4:POKE PMBASE+512+ 
A+D,21:NEXT D:NEXT A 

137121 FOR D=22 TO 5 0 STEP 4:POKE PMBA 
SE+384+D,85:NEXT D:POKE 623,17 

1380 Y=2@:FOR D=@ TO 3:POKE PMBASE+D 
+Y+896 , 3:NEXT D:FOR D=@ TO 3:PO 
KE PMBASE+D+8@,3:NEXT D 

139(,! REM ."""-"Jii:l;3~~..,: •• )~"':J"-:""'-S:Ii;~"""":. 
1400 GRAPHICS 0:POKE 752,I:POKE 711, 

68:DL=PEEK(560)+256*PEEK(561):H 
OME=PEEK(DL+4'+256*PEEK(DL+5) :P 
OKE DL+3,72 

1410 FOR D=0 TO 8:POKE DL+D+6,8:NEXT 
D:POKE DL+18,144:GOSUB 760:POK 

E 54286, 1 'Of 2 
1420 GOSUB 150:POSITION 4,@:POKE 766 

,1:FOR F=0 TO 3:FOR D=0 TO 31:? 
CHR$(D+32*F); :NEXT D:7 :NEXT F 

: POKE 766, (,I 

143121 POKE 559,46:POKE 53277,3:GOSUB 
39@:GOSUB 140:GOSUB 60:GOTO 930 

144121 DATA 72,138,72,152,72,165,203,1 
41,1121,212,141,9,212,104,168,104 
,170,11114,64, 11Z14, 162, 16,76,86,22 
8 

145(,1 DATA 128,121,128,121,128,1,128,1,12 
0,!'!1, 12111,121, 16111,0, 16Ql,0, 100,Ql, 100 
,0,160,0,160, ° 

146Ql DATA 149,161,173,56,83,91,99,10 
7 

150121 B= STRIG(1)14:D=PEEK(53279)=3:IF 
A=7 THEN A=12 

1510 A=A-1@:IF A( 0 THEN RETURN 
1520 A=A+B:ON A GOTO 153121,154121,1550, 

1560,1570,1580,1590,1610: RETURN 

153121 POKE 712,PEEK(712)-2+2561(PEEK( 
712) < 2) :RETURN 

1540 POKE 712,PEEK(712)+2-256*(PEEK( 
712) }252):RETURN 

155121 POKE 710,PEEK(71!21)-2+256*(PEEK( 
71Ql) (2) : RETURN 

1560 POKE 710,PEEK(71!21)+2-256*(PEEK( 
710)}252):RETURN 

1570 POKE 709,PEEK(7!219)-2+256*(PEEK( 
709) ( 2):RETURN 

1580 POKE 709,PEEK(709)+2-256*(PEEK( 
709)}252):RETURN 

3 

91 



3 

1590 IF NOT D THEN POKE 708,PEEK(70 
8)-2+256*(PEEK(708) ( 2) :RETURN 

1600 POKE 711,PEEK(711)-2+256'(PEEK( 
710) < 2):RETURN 

1610 IF NOT D THEN POKE 708,PEEK(70 
8)+2-256*(PEEK(708) } 252):RETURN 

1620 POKE 711,PEEK(711)+2-256*(PEEK( 
711»252):RETURN 

1630 GOSUB 110:GOSUB 340:POSITION 8, 
I:? "Select character to copy" 

1640 KEV=CHR:GET #3,CHR:GOSUB 390 
1650 FOR A=0 TO 7:POKE CHBASE+KEV'B+ 

A,PEEK(CHBASE+CHR'B+A):NEXT A:G 
OSUB 140:GOTO 70 

92 







4 

Animation by Page 
Flipping 
David N. Plotkin 

A special anirnation techniq1le, storing several predrawn screens in 
memory at once, sUn/mons them to crea te 11l0vement, flashing 'frnl1les" 
on the screen as movie projectors do. This article includes a simple game, 
"Inferno," to show how it's done. 

Have you ever wished you could make a picture simply appear on 
the screen, without drawing it line by line in front of the user? Or 
perhaps you have an animation sequence, and drawing each new 
"frame" - erasing the parts you don't need, and PLOtting and 
DRAWTOing the new parts - takes too long and ruins the 
animated nature of the program. Well, the Atari computers do 
provide a way to draw a picture in the memory while the user is 
looking at a different picture, and then instantly flash the 
completed picture on the screen. By drawing several pictures 
beforehand in memory, and then flashing them on the screen one 
by one in sequence, you can easily create animation for your 
BASIC program. 

The key to page flipping is that you can write to an area of 
memory that you are not displaying on the screen. When you 
then tell the computer to display the area of memory you have 
previously written to, the picture drawn in that area of memory 
simply appears on the screen . 

Whenever you issue a GRAPHICS command, the computer 
creates what is called a display list . This is just information telling 
the computer how to display data on the screen. The memory 
address of the display list is stored at locations 560 and 561 as: 
DL Address = PEEK (560) + 256* PEEK (561) 

The fifth and sixth numbers of the display list (DL address + 4 and 
DL address + 5) contain the address of screell lIlel7l0ry, that is, the 
address of the first byte of data to be displayed on the screen. 

An entirely different set of memory locations contains the 

95 



4 

address of write memory, the memory address where the first byte 
of data is to be written from execution of keyboard commands 
and/or a running program: 

Write Memory address = PEEK (88) + 256* PEEK (89) 

Thus, when you type in a PLOT or DRAWTO command, the 
shape is written into computer memory at the location starting at 
the write memory address. The reason you normally see on the 
screen what has been written into write memory is that the 
address of write memory and the address of screen memory (or 
display memory) normally have the same value. To flip pages, 
then, you follow these steps: 

1. POKE a value into locations 88 and 89 (write memory) 
which correspond to an empty, protected area of memory (more 
on this in a moment). 

2. Execute PRINT, PLOT, DRAWTO, SETCOLOR, etc., 
commands, as usual, to draw the picture you want, using stand
ard cursor limits. You will not see your picture on the screen. 

3. Set DL address + 4 and DL address + 5 equal to the value 
in locations 88 and 89, respectively. Your picture will flash onto 
the screen. 

Animating is just an extension of this method. You follow 
steps 1 and 2 listed above over and over, each time creating in 
memory a new "frame" of the animation. You have to keep track 
of where each new frame begins (the value of memory locations 
88 and 89 for each screen) and make sure the screens don't 
overlap in memory. To prevent screens from overlapping, make 
sure that each screen starts further away in memory from the 
previous screen than the values listed below: 

GRAPHICS 0 - 960 bytes GRAPHICS 5 - 960 bytes 
GRAPHICS 1- 480 bytes GRAPHICS 6 -1920 bytes 
GRAPHICS 2 - 240 bytes GRAPHICS 7 - 3840 bytes 
GRAPHICS 3 - 240 bytes GRAPHICS 8 - 7680 bytes 
GRAPHICS 4 - 480 bytes 

These values are just the amount of memory used to store 
one full screen of data. Remember that a change of the value of 
either location 89 or DL address + 5 by one is equal to 256 bytes, 
and that locations 88 and DL address + 4 cannot exceed 255. 
You'll need to do some math so that whenever location 88 exceeds 
255, you subtract 256 from it and add one to location 89. Similarly, 
if location 88 goes below zero, then you add 256 to it and subtract 

96 



4 

one from location 89. These same rules apply for DL address + 4 
or DL address + 5. 

A couple of other pointers before we get to the fun part. 
Player/missile graphics are the best way to handle user
manipulated shapes when animating using page flipping. P/M 
graphics are not affected by the display memory or write memory 
manipulations. Assuming you left the write memory address 
pointing to one of your frames (usually the last one you drew), 
any further BASIC graphics or text commands during the 
program run will flash on the screen only when the single frame 
to which the command was written is put on the screen. To avoid 
this, you have to keep changing the write memory to match the 
screen memory, which you are changing to "flip pages;' and 
create the animation effect. This takes time and slows down 
program execution. To produce the P/M graphics for the included 
program, I've used Eric Stoltman's machine language utility from 
the article "Extending PlayerlMissile Graphics" (COMPUTE!'s First 
Book of Atari Graphics) with a new wrinkle . 

To move vertically (see lines 150-170), I first read zeros into 
the PIM memory, increment the Y coordinate, and then read the 
correct shape back into memory. This occurs quickly and works 
well. One last thing-to get the empty, protected memory to store 
your pictures, step back RAMTOP as many pages as you need 
and read zeros into the protected memory to clear it. See program 
lines 900-910 for details. 

"Inferno" demonstrates page-flipping animation. A large 
skyscraper is burning fiercely, and the only escape for the 20 occu
pants is the roof. It's up to you to pilot your helicopter to a safe 
landing on the roof, navigating through the flames, which move 
faster as the fire progresses. The flames aren't as bad on the left 
side of the building, but that is where the fire engine is coming, so 
you can't land there. A flashing red dot apt'ears in the upper left 
of the screen for each person you successfully rescue. When 
you've lost three helicopters or rescued all 20 people, just press 
the fire button to play again . 

97 



4 

Variables 
DIF: 

F: 

P: 

NUM: 
H: 
DL4: 
DL5: 
ST: 
PB: 
XO,YO: 
Xl,Yl: 
DL: 
RT: 
A, I, N, M: 

Measures difficulty. As DIP increases, flames move 
faster 
Helicopter facing flag; = 1 when copter faces right; 
= - 1 when copter faces left 
Person flag; = 1 when person on roof; = 0 when 
person rescued 
Number of people rescued 
N umber of helicopters left 
Low byte of screen memory 
High byte of screen memory 
STICK (0) 
Start of PIM graphics memory 
Player 0 coordinates 
Player 1 coordinates 
Address of display list 
RAMTOP 
Loop variables 

Program Listing 
LINE 
10 
20-80 

110-145 

150-170 
180 
190 
210 
230-250 
260-320 

330-370 

800-890 
900-980 
1000-1370 
1500-1550 

98 

Call initializing subroutines, initialize variables 
Main Program Loop-set display memory address 
and jump to rescue subroutine 
Move helicopter horizontally, keep it from going 
offscreen, set direction of helicopter 
Move helicopter vertically 
Test for helicopter landing on roof 
Test for collision of helicopter with playing field 
Test for dropping off passenger 
Person runs to helicopter after it lands on roof 
Destruction of helicopter, test for all helicopters 
destroyed 
Passenger leaves helicopter after it lands. If all 
people are rescued, restart game. Increase difficulty 
as fire progresses 
POKE machine language routine 
Set up pages 
Flip pages 
Introduction 



Inferno 
10 GOSUB 1500:DIF=0:F=-1:P=1:VEL=2:N 

UM=0:H=3:GOSUB 900:GOSUB 800:S0UN 
o 1, 100, 4, 2 

20 POKE DL5,RT:GOSUB 100 
30 POKE DL5,RT+4:GOSUB 100 
40 POKE DL5,RT+8:GOSUB 100 
50 POKE DL5,RT+12:GOSUB 100 
60 POKE DL5,RT+8:GOSUB 100 
70 POKE DL5,RT+4:GOSUB 100 
80 GOTO 20 
100 FOR N=l TO 5-DIF:ST=STICK(0):IF 

ST=16 THEN FOR WAIT=l TO 15:NEXT 
WAIT:GOTO 185 

110 X0=X0+VEL*(ST=7)*(X0<201)-VEL*(S 
T=11)*(X0 ) 47) 

120 IF X0 < 48 THEN X0=48 
130 IF ST=7 AND F=-1 THEN F=l:D=USR( 

1536,PB+512+Y0,268):FOR W=l TO 2 
0:NEXT W:D=USR(1536,PB+512+Y0,26 
0):X0=X0-2 

140 IF 5;=11 AND F=l THEN F=-l:D=USR 
(1536,PB+512+Y0,268):FOR W=l TO 
20:NEXT W:D=USR(1536,PB+512+Y0,2 

145 
150 

160 

170 

180 

185 
190 
210 
220 
230 

240 

76):X0=X0+2 
POKE 53248,X0 
IF ST=14 THEN D=USR(1536,PB+512+ 
Y0,292) :Y0=Y0-2*(Y0 >20) 
IF ST=13 THEN D=USR(1536,PB+512+ 
Y0,292):Y0=Y0+2*(Y0 < 102) 
D=USR(1536,PB+512+Y0,260*(F=1)+2 
76*(F=-1» 
IF X0 >112 AND X0 < 138 AND Y0=28 A 
NO P=l THEN GOSUB 230 
NEXT N 
IF PEEK(53252) <> 0 THEN GOSUB 260 
IF Y0=102 AND P=0 THEN GOSUB 330 
RETURN 
N=(X0 >X1}-(X1 ) X0}:IF N=0 THEN GO 
TO 250 
FOR M=X1 TO X0 STEP N:POKE 53249 ,..s: 

~r ,M:NEXT M:X1=M 
I - 250 D=USR ( 1536, PB+640+Y 1,292) : P=0: RE 
<::~ TURN 

(A- 260 POKE 53278,l:D=USR(1536,PB+512+Y 
0,300):FOR W=120 TO 40 STEP -l:P 
OKE 704,W 

270 POKE PB+512+Y0+INT(RND(0}*7},PEE 
K(53770}:SOUND 0,200,8,W/10:NEXT 

W:SOUND 0,0,0,0:POKE 704,250 

4 

99 



4 

280 D=USR(1536,PB+512+Y0,292):H=H-1: 
POSITION 29,0:? H;:IF H< >0 THEN 
GOTO 300 

290 POKE DL5,RT+12:POSITION 0,0:? "G 
AME OVER-RESCUED ";NUM;:POSITION 
20.0:?" PRESS FIRE "; 

291 IF STRIG(0)=1 THEN 291 
292 POSITION 0,0:? "{37 SPACES}"; 
295 H= 3:COLOR 0:NUM=0:DIF=0:VEL=2:GO 

SUB 970 
300 POKE 53278,1:X0=180:Y0=20:POKE 5 

3248,X0:D=USR(1536,PB+512+Y0,276 
):F=-1 

310 IF P=0 THEN X1=120:Y1=28:POKE 53 
249,X1:D=USR(1536,PB+640+Y1,284) 
:P=1 

320 RETURN 
330 D= USR(1536,PB+640+Y0,284) 
340 FOR M=X0 TO 210:POKE 53249,M:NEX 

T M:NUM=NUM+l:D=USR(1536,PB+640+ 
Y0,292):IF NUM=20 THEN GOTO 370 

345 POSITION 9,0:? NUM;:IF NUM/4=INT 
(NUM/4) THEN DIF=DIF+1:IF NUM/8= 
INT(NUM/8) THEN VEL=VEL+2 

350 P=l:POKE 53249,Xl:D=USR(1536,PB+ 
640+Y1,284) 

360 RETURN 
370 D=U5R(1536,PB+512+Y0,292):GOTO 290 
800 FOR A=1536 TO 1560:READ I :POKE A 

,I:NEXT A 
810 DATA 104,104,133,204,104,133,203 

,104,133,207,104,133,206,160,0,1 
77,206,145,203,200,192,8,208,247,96 

820 FOR A=260 TO 307:READ I:POKE A,I 
:NEXT A 

830 DATA 0,31,4,143,249,15,2,63,0,12 
7,8,62,34,62,20,62,0 ,248,32,241, 
159,240,32,252 

840 DATA 0,0,24,24,126,24 ,36,102,0 , 0 
,0,0,0,0, 0,0,68, 186,84, 130,255, 1 
30,68,186 

850 POKE 752,1:POKE 559,46 
860 A=PEEK(106)-4:POKE 54279,A:POKE 

53277,3:PB=256*A:X0=180:Y0=20:X1 
=120:Yl=28 

875 POKE 704,250:POKE 705,80 
880 POKE 53248,X0:D=USR(1536,PB+512+ 

Y0,276):POKE 53249,X1:D=USR(1536 
,PB+640+Y1,284) 

890 RETURN 

100 



900 RT=PEEK(106)-16:GRAPHICS 5+16:PO 
KE 88,0:PoKE 89,RT-4:? #6;CHR$(1 
25):PoKE 106,RT:GRAPHICS 5+16 

910 POKE 559,0 
915 SETCoLoR 4,7,4:SETCoLoR 1,12,8:5 

ETCoLoR 2,3,3 
920 PAGE=0:PoKE 88,0:PoKE 89,RT:GoSU 

B 1000 
930 PAGE=l:PoKE 88,0:PoKE 89,RT+4:Go 

SUB 1000 
940 PAGE=2:PoKE 88,0:PoKE 89,RT+8:Go 

SUB 1000 
950 PAGE=3:PoKE 88,0:PoKE 89,RT+12:G 

oSUB 1000 
960 DL=PEEK(560)+256*PEEK(561):DL4=D 

L+4:DL5=DL+5:PoKE DL4,0:PoKE DL5 
,RT+4:PoKE 559,34 

970 POKE 752,1:PoKE DL+3,66:PoKE 87, 
0:PoSITIoN 0,0: 7 "RESCUED :";NUM 
;:POSITIoN 20,0:? "COPTERS :";H; 

980 RETURN 
1000 COLOR l:FOR X=32 TO 47:PLoT X,l 

0:DRAWTo X,47:NEXT X 
1010 COLOR 2:FoR X=33 TO 45 STEP 4:F 

OR Y=13 TO 41 STEP 4:PLoT X,Y:P 
LOT X+l,Y:PLoT X,Y+l:PLoT X+l,Y 
+l:NEXT Y:NEXT X 

1020 PLOT 39,45:DRAWTO 39,47:PLoT 40 
,45:DRAWTo 40,47:PLoT 0,47:DRAW 
TO 31,47:PLoT 48,47:DRAWTo 79,4 
7 

1030 IF PAGE=l OR PAGE=2 OR PAGE=3 T 
HEN GoTo 1100 

1040 COLOR 3:FoR Y=45 TO 46:PLoT 1,Y 
:DRAWTo 8,Y:NEXT Y:PLoT 2,47:PL 
oT 7,47:CoLoR 0:PLoT 5,45 

1050 RETURN 
1100 COLOR 3:PLoT 48,13:PLoT 48,14:P 

LOT 49,12:PLoT 48,26:PLoT 48,27 
:PLoT 49,25 : PLoT 48,36:PLoT 48, 
37:PLoT 49,35 

1110 PLOT 31,19:DRAWTo 31,21:PLoT 30 
,18:PLoT 31,31:DRAWTo 31,33:PLo 
T 30,30 

1120 IF PAGE=2 OR PAGE=3 THEN GOTo 1 
200 

1130 FOR Y=45 TO 46:PLoT 14,Y:DRAWTo 
21,Y:NEXT Y:PLoT 15,47:PLOT 20 

,47:COLoR 0:PLoT 18,45 
1140 RETURN 

4 

101 



4 

12~0 COLOR 3:PLOT 48,11:PLOT 48,12:P 
LOT 49,11:PLOT 49,1~:PLOT 5~,1~ 
:PLOT 5~,9 

121~ PLOT 48,24:PLOT 48,25:PLOT 49,2 
4:PLOT 49,23:PLOT 5~,23:PLOT 5~ ..,.., 
,LL 

122~ PLOT 48,35:PLOT 48,34:PLOT 49,3 
4:PLOT 49,33:PLOT 5~,33:PLOT 5~ 
,32 

123~ PLOT 31,4~:PLOT 31,41:PLOT 31,3 
~:PLOT 31,29:PLOT 3~,29:DRAWTO 
3~,27:PLOT 29,27:PLOT 29,26 

1240 PLOT 31,18:PLOT 31,17:PLOT 3~,3 
9:PLOT 3~,17:DRAWTO 3~,15:PLOT 
29,15:PLOT 29,14 

125~ IF PAGE=3 THEN GOTO 13~~ 

126~ FOR Y=45 TO 46:PLOT 24,Y:DRAWTO 
31,Y:NEXT Y:PLOT 25,47:PLOT 30 

,47:COLOR ~:PLOT 28,45 
127~ RETURN 
13~~ COLOR 3:PLOT 49,9:DRAWTO 49,3:P 

LOT 5~,8:DRAWTO 5~,5:PLOT 51,7: 
DRAWTO 51,9 

131~ PLOT 49,22:PLOT 49,21:PLOT 5~,2 
1:DRAWTO 5~,19:PLOT 51,2~:DRAWT 
o 51,22 

132~ PLOT 49,32:PLOT 49,31:PLOT 5~,3 
1:DRAWTO 5~,29:PLOT 51,3~:DRAWT 
o 51,32 

133~ PLOT 3~,38:PLOT 3~,37:PLOT 29,3 
8:DRAWTO 29,35 

134~ PLOT 3~,26:DRAWTO 3~,24:PLOT 29 
,25:DRAWTO 29,22 

135~ PLOT 3~,14:DRAWTO 3~,12:PLOT 29 
,13:DRAWTO 29,10 

136~ COLOR 3:FOR Y=45 TO 46:PLOT 1,Y 
:DRAWTO B,Y:NEXT Y:PLOT 2,47:PL 
OT 7,47:COLOR ~:PLOT 5,45 

137~ RETURN 
15~0 GRAPHICS 2+16:POSITION ~, 1:? #6 

;"COMPUTE PUBLICATIONS":POSITIO 
N 6,3:? #6; "1:;a:~","""#4:Ui .. ...," 

1510 POSITION 6,6:? #6; "H,jii4i1h!.:" 
153~ FOR SND=2~ TO 120 STEP ~.2:S0UN 

D 0,SND,B,6:POKE 712,SND:NEXT S 
ND 

154~ FOR VOL=6 TO ~ STEP -~.1:S0UND 
~,SND,B,VOL:NEXT VOL:POKE 712,0 

155~ RETURN 

102 



-

Player/Missile 
Graphics Simplified 
Staffan Sandberg 

4 

You've seen the wonderful things the Atari cal1 do with player/missile 
graphics, but until now YOll 've either had to settle for slow-moving 
wobbles or learn machine language. Here is an overlay method which is 
simple to use and results ill extremely fa st animation of up to five players. 

In the overlay method we will design overlays, or patterns that we 
can place on the screen. We can create as many patterns as we 
want and use them as often as we want. Each overlay is eight dots 
wide and anything from one to 128 dots high. The overlay allows 
specified dots to be lit up on the screen. When we want an object 
to appear to be moving, we place one of the overlays on the screen 
by specifying its X and Y coordinates. We then give it new X and 
Y coordinates, and it appears to move. This process is very fast, so 
the object appears to move quite quickly. These overlays are 
totally separate from player/missile graphics. It is the combination 
of the overlays and player/missile graphics that allows us the 
freedom of movement of the overlay method. 

To use overlays, just follow these steps: 

Step 1: Decide how many players you wish to use and set 
aside enough memory to hold them. That is, what is the 
maximum number of objects you want on the screen at one time? 
You can have up to five . We must give each one a name and set 
aside 128 spaces for it because each player is potentially 128 dots 
high. We do this by DIMensioning the space: 
10 DIM PM1$(128),PM2$(128),PM3$(128) 

The DIMensioning must be the first thing the computer sees 
when it is turned on, so before you start programming, turn off 
the computer and turn it back on. This is necessary because as the 
computer constructs a variable table, the variables are stored in 
the order that they are entered. The variable table is not cleared by 
typing NEW. We want these variables at the beginning of the table 

103 



4 

so we can find them easily later. If they are not the first thing that 
the computer sees, the method will not work. 

Step 2: Design the overlays or patterns that you wish to use. 
Remember, you can create as many overlays as you wish. They 
are stored in strings (ALIEN$, SHIP$, etc.), so you must give each 
overlay a name and DIMension its size. When deciding the size of 
each overlay, keep the following questions in mind: 

1. How tall do you want to make your overlay? 
2. What directions do you want to move your player? 
3. How fast do you want to move your players? 

You don't need to worry about the width of the overlay. But 
you must decide how many dots high you wish to make an 
overlay. It can be up to 128 dots in height (an average spaceship 
might be six dots high). If you are going to be moving your 
players down the screen, you must leave blank spaces to cover up 
the old overlay, and you must take into account the speed at 
which your player will move. The speed is measured in Dots Per 
Move (DPM). If your players will be moving at a top speed of 
three DPM up and down the screen, then you need to leave three 
spaces above and three spaces below. To help decide the size to be 
DIMensioned for each overlay, use the formula: 

SIZE = height of overlay + DPM up + DPM down 

SHIP$ and ALIEN$ Examples 
In our example we will have one ship which we'll call SHIP$, with 
a height of six moving up and down at the speed of five DPM, 
and another ship which we'll call ALIEN$, with a height of eight 
moving neither up nor down. 

20 SIZE1=16:SIZE2=B 
30 DIM SHIP$(SIZE1),ALIEN$(SIZE2) 

We also want a blank overlay that we use to erase the player 
from the screen quickly. We'll call this overlay CLEAR$. It should 
be 128 dots high so that it can erase anything on the 128 dot high 
player. 

40 DIM CLEAR$(12B) 

Now you must create the overlays line by line. Each line or 
row is made up of dots or ''boxes:' Each box is numbered from 
right to left 1, 2,4,8, 16,32,64, and 128. 

104 



4 

2 1 

To create the overlays, you must decide which boxes you 
want filled or lit up on the screen. You then add the value of each 
filled box for each row (see Figures 1 and 2). 

Figure 1. The Ship Figure 2. The Alien 

128 64 32 16 8 4 2 1 128 64 32 16 8 4 2 1 

o 
~r-+--r-r-+~~~ 

o 
r-r-+-~-r-+~~~ 

o 
r-r-+-~-r-+~~~ 

o 
~r-+--r-r-+~~~ 

o 
~t-+-+--i 

16 
--j--j~ 

--j--j~ 

~r-+--r-r-+~~~ 

56 

56 

124 

108 

68 

o 
o 

~r-+--r-r-+-4--i~ 
o 

1--r-+--r-r-+-4--i~ 
o 

~r-+-4--r-+~~~ o 

60 

126 

219 

126 

36 
-+---l 

36 

66 

129 

Now that you have the totals for each row, you must put 
them in the string that you have DIMensioned for them. This is 
done in a short loop such as the one below. 
50 FOR ROWS=l TO SIZE1 
60 READ DOTS 
70 SHIP$(ROWS,ROWS)=CHR$(DOTS) 
80 NEXT ROWS 
90 DATA 0,0,0,0,0 
100 DATA 16,56,56,124,108,68 
110 DATA 0,0,0,0,0 
120 FOR ROWS=l TO SIZE2 
130 READ DOTS 

105 



4 

140 ALIEN$(ROWS,ROWS)=CHR$(DOTS) 
150 NEXT ROWS 
160 DATA 60,126,219,126,36,36,66,129 

You need a loop for each overlay that you have. 
You also need to create the blank overlay, CLEAR$, by 

entering 128 blank lines into CLEAR$. 
170 FOR ROWS=l TO 128 
180 CLEAR$(ROWS,ROWS)=CHR$(0) 
190 NEXT ROWS 

Step 3: Tell the computer that you are going to be using 
player/missile graphics with overlay method by entering the 
following lines, substituting a value for NUMBEROFPLAYERS. 
200 A=4*(INT(PEEK(742)/4)-1) 
210 POKE 54279,A 
220 VSA=256*PEEK(135)+PEEK(134) 
230 BOA=256*PEEK(141)+PEEK(140) 
240 PM=256*A+512 
250 DISP=PM-BOA 
260 ADD=2 
270 FOR T=l TO NUMBEROFPLAYERS 
280 PMHIGH=INT(DISP/256) 
290 PMLOW=DISP-256*PMHIGH 
300 POKE VSA+ADD,PMLOW 
310 POKE VSA+ADD+1,PMHIGH 
320 DISP=DISP+128:ADD=ADD+8 
330 NEXT T 

If you are going to have five players on the screen at one 
time, you must change line 240 from PM = 256* A + 512 to 
PM = 256* A + 384. This tells the computer to let us use the fourth 
missile as a player. 

Step 4: Now we are ready to add the initial specifications, 
such as color, size, and shape to the players. First, line 340 places 
the blank overlay on each player, clearing out any stray data. 
340 PM1$=CLEAR$:PM2$=CLEAR$:PM3$ = CLEAR$ 

Next we set the player/missile graphics to double-line resolu tion 
and tum on the PIM graphics (a 3 enables them and a 0 
disables them). 

350 POKE 559,46:POKE 53277,3 

To set the colors of the players, we must POKE the color 
register for each player with the proper color number. The regis
ters go from 704 (for Player 0) through 707 (for Player 3). The fifth 

106 



4 

player takes on a combination of the colors of the other four. The 
colors that I have chosen are: COLR1 is yellow, COLR2 is white, 
and COLR3 is pink: 
360 COLR1=25:COLR2=11:COLR3=74 
370 POKE 704,COLR1:POKE 705,COLR2:PO 

KE 706,COLR3 

The size of the players is automatically set to normal. If you 
want to change the size, POKE 0 for normal, 1 for double, and 3 
for quadruple size into the size register for the corresponding 
player. These registers go from 53256 (for Player 0) through 53259 
(for Player 3). 
POKE 53256,1 would make Player 0 double size. 

Now we can place the player on the screen. First, we give the 
player an X (horizontal) value and POKE it into the horizontal 
position register for each player. The registers go from 53248 (for 
Player 0) through 53251 (for Player 3). The horizontal positions 
that show up on the screen range from about 50 to 200 
(depending on your TV). Numbers lower than 50 and greater than 
200 are to the right and left of the screen. 
380 X1=125:X2=75:X3=175 
390 POKE 53248,X1:POKE 53249,X2:POKE 

53250,X3 

Now we must give our player a Y (vertical) value and an 
overlay. The format is PM$ (Y value) = overlay. 

400 Y1=125:Y2=25:Y3=25 
418 PM1$(Y1)=SHIP$:PM2$(Y2)=ALIEN$:P 

M3$(Y3)=ALIEN$ 

To move the player around the screen, change the X and/or 
the Yvalue and repeat steps 390 and 410. Be sure not to change 
the X value more than the maximum DPM that you decided 
earlier. If you do, you will leave parts of the overlay on the screen. 

Program 1. Player/Missile Graphics Example 1 
5 REM PMSAMPLE1 
10 DIM PM1$(128),PM2$(128),PM3$(128) 
20 SIZE1=16:SIZE2=8 
30 DIM SHIP$(SIZE1),ALIEN$(SIZE2) 
40 DIM CLEAR$(12B) 
50 FOR ROWS=1 TO SIZE1 
60 READ DOTS 
70 SHIP$(ROWS,ROWSJ=CHR$(DOTS) 

107 



4 

80 NEXT ROWS 
90 DATA O,O,O,O,0 
100 DATA 16,56,56,124,108,68 
110 DATA 0,O,0 , O,0 
120 FOR ROWS=1 TO SIZE2 
130 READ DOTS 
140 ALIEN$(ROWS,ROWS)=CHR$(DOTS) 
150 NEXT ROWS 
160 DATA 60,126,219,126,36 , 36,66,129 
170 FOR ROWS=1 TO 128 
180 CLEAR$(ROWS,ROWS)=CHR$(0) 
190 NEXT ROWS 
200 A=4*(INT(PEEK(742)/4)-1) 
210 POKE 54279,A 
220 VSA=256*PEEK(135)+PEEK(1 3 4) 
230 BOA=256*PEEK(141)+PEEK(140) 
240 PM=256*A+512 
250 DISP=PM-BOA 
260 ADD=2 
270 FOR T=1 TO 3 
280 PMHIGH=INT(DISP/256) 
290 PMLOW=DISP-256*PMHIGH 
300 POKE VSA+ADD,PMLOW 
310 POKE VSA+ADD+l,PMHIGH 
320 DISP=DISP+128:ADD=ADD+8 
330 NEXT T 
340 PM1$=CLEAR$:PM2$=CLEAR$:PM3$=CLE 

AR$ 
350 POKE 559,46:POKE 53277,3 
360 COLR1=25:COLR2=11:COLR3=74 
370 POKE 704,COLR1:POKE 705,COLR2:PO 

KE 706,COLR3 
380 Xl=125:X2=75:X3=175 
390 POKE 53248,X1:POKE 53249,X2:POKE 

53250,X3 
400 Y1=75:Y2=25:Y3=25 
410 PM1$(Y1)=SHIP$:PM2$(Y2)=ALIEN$:P 

M3$(Y3)=ALIEN$ 
420 IF STICK(0) ( 8 THEN X1=X1+3 
430 IF STICK(0»8 AND STICK(0) ( 13 TH 

EN X1=X1-3 
440 IF STICK(0)=14 THEN Y1=Y1-3 
450 IF STICK(0)=13 THEN Y1=Y1+3 
460 POKE 53248,X1:PM1$(Y1)=SHIP$ 
470 IF STICK(1) ( 8 THEN X2=X2+2 
480 IF STICK(1»8 AND STICK(1) ( 13 TH 

EN X2=X2-2 
490 POKE 53249,X2 
500 IF STICK(2) ( 8 THEN X3=X3+2 

108 

-



510 IF STICK(2»8 AND STICK(2)(13 TH 
EN X3=X3-2 

520 POKE 53250,X3 
530 GOTO 420 

Program 2. Player/Missile Graphics Example 2 
5 REM PMSAMPLE2 
10 DIM PM$(128) 
20 DIM SHIP$(16),CLEAR$(128) 
30 FOR ROW=1 TO 16 
40 READ DOTS 
50 SHIP$(ROW,ROW)=CHR$(DOTS) 
60 NEXT ROW 
70 DATA 0,0,0,0,0 
80 DATA 16,56,56,124,108,68 
90 DATA 0,0,0,0,0 
100 FOR ROW=1 TO 128 
110 CLEAR$(ROW,ROW)=CHR$(0) 
120 NEXT ROW 
130 A=4*(INT(PEEK(742)/4)-I) 
140 POKE 54279,A 
150 VSA=256*PEEK(135)+PEEK(134) 
160 BOA=256*PEEK(141)+PEEK(140) 
170 PM=256*A+512 
180 DISP=PM-BOA 
190 ADD=2 
200 FOR T=1 TO 1 
210 PMHIGH=INT(DISP/256) 
220 PMLOW=DISP-256*PMHIGH 
230 POKE VSA+ADD,PMLOW 
240 POKE VSA+ADD+l,PMHIGH 
250 DISP=DISP+128:ADD=ADD+8 
260 NEXT T 
270 PM$=CLEAR$ 
280 POKE 559,46:POKE 53277,3 
290 POKE 704,12 
300 POKE 53248,50 
310 PM$(10)=SHIP$ 
320 N=1 
330 FOR X=60 TO 190 STEP N 
340 POKE 53248,X 
350 NEXT X 
360 FOR Y=10 TO 100 STEP N 
370 PM$(Y)=SHIP$ 
380 NEXT Y 
390 FOR X=190 TO 60 STEP -N 
400 POKE 53248,X 
410 NEXT X 

4 

109 



4 

420 FOR Y=100 TO 10 STEP -N 
430 PM$(Y)=SHIP$ 
440 NEXT Y 
450 N=N+0.1 
460 IF N > 5 THEN N=l 
470 GOTO 330 

110 



--

PRINTing P/M 
Graphics 
Sheldon Leemon 

4 

Using a PRINT statement to lIlake multiple POKEs can speed up your 
prograll1s. The technique is easily learned and will 'work especially well 
with player/missile graphics. 

The PRINT statement is one of the easiest BASIC commands to 
learn, and one of the first mastered by the beginning programmer. 
POKE, on the other hand, seems very mysterious to those just 
starting out with computers. Just changing the value of certain 
memory locations can have many different effects, but the how 
and why often elude the novice. 

The POKE and PRINT commands are alike in a number of 
ways. For example, it is fairly easy to make a character appear on 
the screen by POKEing a value to display memory. Since Atari 
screen memory isn't always in the same place, you first have to 
find the start of screen memory by entering the statement 
SM= PEEK(88) + 256*PEEK(89). Now you POKE SM,33, and the 
letter A will appear in the top-left corner of the screen. You might 
think of this as PRINTing with the POKE statement. The reason 
that you use a 33 to make an A appear is that it is the internal 
screen code value used to display that letter. A table of these 
screen codes appears on page 55 of the Atari BASIC Reference 
Manual. (The internal character set can also be found on page 120 
of COMPUTE/'s First Book of Atari Graphics and in COMPUTE/'s 
Third Book of Atari.) Try not to confuse this with the ATASCII 
values that appear in Appendix C of the manuaL Those are the 
values that work with the CHR$ statement. 

The fact that you can accomplish the same thing with both 
statements points out their fundamental similarity. When you get 
right down to it, all that the PRINT statement really does is to 
POKE a series of values into screen memory according to certain 
rules of cursor placement. The main advantage of using PRINT 
instead of POKE is its ease of use and speed, as compared to 

111 



4 

calculating a screen location and a numeric value for each char
acter that you wish to display. 

But if printing to the screen really involves only quickly 
POKEing a series of values into screen memory, it is not too 
different from a number of other situations in which the user must 
POKE a number of values into sequential memory locations. 
Examples of such situations include putting a machine language 
subroutine into place, installing a user-defined character set, or 
setting a number of music or graphics registers at once. If PRINT 
can facilitate the movement of a number of values to screen and 
color memory in one situation, might it not also be able to help 
out in some of these other situations? 

Fooling the Computer 
It is quite possible to use the PRINT statement for purposes other 
than printing to the screen. To do so, we have to make the 
computer think that the address we want POKEd to is the address 
of screen memory, and then PRINT a string of characters to that 
location whose POKE values correspond to the changes we wish 
to make to memory. The first part is possible because screen 
memory is not fixed in one set location in the Atari . Instead, the 
computer has a way of telling the display chip what spot in 
memory to display, and of letting the operating system know 
what area of memory is currently being shown on screen. Thus it 
knows the proper place to PRINT. Normally, the display chip 
reads and displays the same area of screen memory that the oper
ating system (OS) writes. It is possible, however, to change the OS 
pointer so that the area of memory being PRINTed is different 
from the one being displayed. 

Locations 88 and 89 hold the OS pointer to screen memory. 
The number in location 88 plus the number in location 89 multi
plied by 256 equals the address of the first location which will be 
written to as screen memory. Let's try an experiment to see how 
this works. ENTER and RUN the following: 

10 L=PEEK(BB):H=PEEK(B9) 
20 POKEBB,0:POKE B9,6 
30 POSITION 0,0:PRINT "A":PRINT "8" 
40 POKE BB,L:PO KE B9,H 

Nothing is printed on the screen, although the cursor does move 
to the top line. Where in memory did the PRINT statements write 
to? 

112 



4 

We can figure out step by step what locations must have 
changed. When we POKEd 88 with a 0 and 89 with a 6, we 
changed what the computer thought the top of PRINT memory 
was to 0 + 6*256 or 1536. Using the POSITION statement, we 
home the cursor to the top left, which is the first character in 
screen memory. Therefore, the screen value of A must have been 
PO KEd in to 1536. If we type: 
PRINT PEEK(1536) <RETURN> 

We find a 33, which is indeed the screen value of A. But where did 
the B go? Since after every PRINT statement, the cursor moves to 
the next line, the cursor would move at least 40 spaces in memory. 
In addition, the cursor also moves two more spaces for the right 
margin, making a total of 42. If we type: 

PRINT PEEK(1536+42) <RETURN> 

We will find a 34, which is the screen value of B. 

Using PRINT with P/M Graphics 
One practical application for this technique is in displaying 
player/missile graphics. Nonnally, to move a player vertically you 
must POKE each byte of shape data into memory, one byte at a 
time, causing motion that is slow and jerky. But by changing the 
operating system PRINT pointers to the player area, we can use 
the speed of the PRINT statement to make the multiple POKEs 
appear to occur at the same time. This can be done by PRINTing a 
string of characters into player memory. This string will contain 
the data for the player. And, by combining data for several shapes 
into one long shape string, we can change the shape of the player 
at any time just by PRINTing a different segment of the string. 

Program 1 shows just how easily a short BASIC program can 
move and animate a player. When the ship appears on the screen, 
insert a joystick into port 1. Use the joystick to move the ship 
around. You will notice that when you move the ship, its shape 
will change to point in the direction in which it is moving. The 
program has enough internal remarks to enable someone with a 
basic understanding of player/missile graphics to follow the 
program logic. 

Player/Missile Graphics from PILOT 
An added feature of this technique is that it is applicable to other 
languages besides BASIC. PILOT, for example, is a language that 
lacks built-in player/missile graphics commands. The T: statement 

113 



4 

in PILOT works the same way as PRINT in BASIC, so it is possible 
to use the same techniques to move a player in PILOT. Program 2 
is a simplified program in PILOT which demonstrates moving a 
player with a joystick. Considering that PILOT allows only one 
statement per line, you can see that this program is extremely 
compact. When you type it in, pay careful attention to characters 
you enter for $SHIP. There are instructions in the comments at the 
end of the program to help you. 

UnPRINTable Characters 
One problem you should keep in mind is that not every value that 
you may need in screen memory can be placed there by a printing 
character. Some characters move the cursor rather than print 
anything on the screen, and in order to get them to print you must 
precede them with an ESCape character. For example, let's 
suppose you want to put into screen memory a value of 28, which 
corresponds to the cursor up arrow. Rather than moving the 
"cursor" up a line, you must print an ESCape and an up arrow in 
order for the character to be placed into memory. Program 1 has 
many instances in which such nonprinting characters are 
preceded by a 27 so that their number value will be placed in 
memory. Some characters, like the quote (internal value of 2) and 
the carriage return (internal value of 253) are even more difficult to 
PRINT. Keep a sharp eye out for such exceptions. Since perhaps 
the greatest drawback to this technique is in generating the strings 
to print, you might want to write a short program to do this for 
you. 

Other Uses 
I think you'll find this technique a useful one for controlling 
player/missile graphics from BASIC. But don't ignore the possibili
ties for using it to install nonrelocatable machine language into 
page six, for producing 16-bit sound, and for other applications 
where you have to move a number of bytes of data to a specific 
spot in memory quickly and efficiently. 

Program 1. PRINTing Player/Missile Graphics from BASIC 

1 GOTO 20 
2 POKE 88,V:POSITION 0,0:? SHIP$(I,I+15); 
3 POKE 53248,X 
4 GOTO STICK(0) 
5 Y=Y+l:X=X+l:I=49:GOTO 2 

114 



6 Y=Y-1+(Y=~):X=X+1:I=17:GOTO 2 
7 X=X+1:I=33:GOTO 2 
9 Y=Y+1:X=X-1:I=81:GOTO 2 
1~ Y=Y-1+(Y=~):X=X-l:I=113:GOTO 2 
11 X=X-l:I=97:GOTO 2 
13 Y=Y+l:I=65:GOTO 2 
14 Y=Y-1+(Y=~):I=I:GOTO 2 
15 GOTO 4:REM Line 2 sets screen poi 

nter and prints ship into player 
~ data area, line 3 moves ship ho 
rizontally 

2~ ? CHR$(125):POKE 752,1:POKE 82,~: 
POKE 83,39:? ":REM clear screen 

set margins to full screen , cur 
sor off 

3~ DIM BL$(255),SHIP$(128):BL$(1)=" 
":BL$(255)=" ":BL$(2)=BL$:REM fil 
1 bl$ with space character 

4~ FOR 1=1 TO 128:READ A:SHIP$(I,I)= 
CHR$(A):NEXT I:REM Read player sh 
ape data into ship$ 

50 DATA 32,56,56 , 56,56,56,92,92,92,2 
7,126,27,126,231,131,32 

51 DATA 32,32,33,39,62,27,254,27,126 
,46,44,44,6~,40 , 4~,32 

52 DATA 32,32,16~,128,224 , 112,124,95 

,124,112,224,128,160,32,32,32 
53 DATA 32,32,40,40,60,44,44,46,27,1 

27,27,254,62,39,33,32 
54 DATA 32,131,231,27,126,27,126,92, 

92,92,56,56,56,56,56,32 
55 DATA 32,32,48,48,88,80,80,112,27, 

126,27, 127, 12~,228, 160,32 
56 DATA 32 , 32,33,35,39,46,94,252,94, 

46,39,35,33,32,32,32 
57 DATA 32,32,160,228,120,27,127,27, 

126,112,80,80,88,48,48,32 
60 A=PEEK(106)-16:POKE 54279,A:X=129 

:Y=96:POKE 704,14:REM set pmgraph 
ics base, x and y position and co 
lor of ship 

70 POKE 88,0:POKE 89,A+4:POSITION 0, 
0:? BL$:REM set screen pointer to 
player 0 data area, print blanks 
to clear 

80 POKE 559,30:POKE 53277,3:I=1:GOTO 
2:REM enable pmgraphics, go to m 

ove loop 

4 

115 



4 

Program 2. PRINTing Player / Missile Graphics from PILOT 
100 J:*PMINIT 
110 *MOVE C:@B53248=#X 
120 C:@B88=#Y 
130 POS:0,0 
140 T:$SHIP 
150 *LOOP A:$S=%J0 
160 MS:10,9,8,6,5.4.2.1,0 
170 JM:*DR,*UR,*R,*DL,*UL,*L,*D,*U,* 

LOOP 
180 *DR C:#X=#X+l 
190 *D C:#Y=#Y+1 
200 J:*MOVE 
210 *UR C:#Y=#Y-1 
220 *R C:#X=#X+1 
230 J:*MOVE 
240 *DL C:#Y=#Y+1 
250 *L C:#X=#X-l 
260 J:*MOVE 
270 *UL C:#X=#X-l 
280 *U C:#Y=#Y-1 
290 J:*MOVE 
300 *PMINIT 
310 T:{CLEAR}{13 SPACES}[CLEAR SCREEN 
320 C:@82=9984{6 SPACES}[FULL MARGINS 
330 C:$SHIP= ~{ESC}{INSERT}~ [PM S 

HAPE DATA 
340 C:#P=@B106-12{3 SPACES}[BELOW SC 

REEN ... 
350 C:@B54279=#P{4 SPACES}[IS PM AREA 
360 C:#X=128{8 SPACES}[PLAYER X POS. 
370 C:#Y=48{9 SPACES}[PLAYER Y POS. 
380 C:@B704=14{6 SPACES}[PLAYER IS W 

HITE 
390 C:@B559=14{6 SPACES}[ENABLE DISP 

LAY .. 
400 C:@B53277=3{5 SPACES}[OF PM GRAP 

HICS 
410 C:@B89=#P+2{5 SPACES}[SET PRo PO 

INTER 
420 J:*MOVE 
430 R: 
440 R:BE CAREFUL IN TYPING LINE 330 
450 R:AFTER THE EQUAL SIGN, TYPE: 
460 R:SPACE,INVERSE KEY(ATARI LOGO) 
470 R:NINE,RIGHT BRACKET,ESCAPE,ESCAPE 
480 R:ESCAPE,CONTROL AND INSERT , 
490 R:RIGHT BRACKET,9, INVERSE (LOGO), 
500 R:SPACE, (COMMENT IS OPTIONAL) 

116 







-

.. 

.. .. 

.. 

.. 

.. 

.. 

5 

Fontbyter 
Orson Scott Card and Carl Zahrt 

"Fontbyter" is a utility which l11akes creatillg graphics displays in ANTIC 
modes 4 and 5 both easy and filii. FOl7tbyter requires a minimum of 40K 
memory. 

It's hard to tell, when you're using "Fontbyter;' whether this is a 
utility or a game. You can easily create graphics displays many 
times the size of the screen and save them to disk, using the ROM 
character set-or character sets you have designed yourself. And 
because Fontbyter allows you to use two "hidden" character 
modes, ANTIC modes 4 and 5, you get all the high-resolution 
color of GRAPHICS 7 with the convenience and memory usage of 
GRAPHICSO. 

Once you have a character set designed and a picture drawn 
on the screen, changing an 8-by-8-pixel character block takes only 
one POKE. This allows easy, almost instant animation; your 
programs can be shorter than they would be if you tried to get the 
same effect with GRAPHICS 7; and you have more memory avail
able to you because the screen displays take up less room . 

The problem is creating the actual display. In ANTIC 4, you 
have 24 lines of 40 characters; in ANTIC 5, 12 lines of 40 charac
ters. Laying out the screen display and writing the DATA state
ments can be a long, tedious, painful process. You have to 
remember what each character looks like and make sure that the 
characters are in the right order in the DATA statements you 
create. And when you want to change a display, you have to go 
back and find the right DATA statement and alter it. 

Fontbyter lets you create and edit in ANTIC 4 or 5 right on 
the screen. You don't have to write down the number of the char
acter and POKE it into memory; you only have to press a key or 
combination of keys, and your character will be displayed exactly 
where you want it on the screen. Simple commands allow you to 
fill large areas with a single character, insert or delete lines, scroll 
around the screen to view large areas quickly, or change the colors 
on the screen. And Fontbyter will scroll horizontally and verti-

119 



5 

cally, so you can use the screen as a window onto a very large 
display-up to 4K. 

Best of all, you can save your screen to disk at any point and 
return to continue editing it. Using a simple subroutine, you can 
then load your screen into memory in your own program. The 
first eight bytes of every file Fontbyter creates contain the mode 
number, the display width, the display height, and the five colors 
of the screen display. 

Starting Fontbyter 
Character Set. When you RUN Fontbyter, the program accesses 

your disk and shows you a directory of all the files with the file
type ".SET'~ Fontbyter assumes that these are all character sets. 
The program then asks you to choose which one you want to use . 
Or, if you wish to use the built-in ROM character set, enter the 
character @ as the filename. 

There is only one custom character set included with Font
byter, but by using a character editor you can create as many 
different sets as you want. There are several character editor 
programs that will help you create your own character sets, 
including Tim Kilby's ANTIC 4 and 5 character editor in the 
December 1982 BYTE (reprinted in this book by permission of the 
author) and Charles Brannon's "SuperFont" from COMPUTEf's 
First Book of Atari Graphics. 

Any character editor can be used if you remember that 
instead of an 8-byte by 8-bit grid, each character is drawn on an 8-
byte by 4-bit-pair grid. A bit-pair of 00 selects the background color 
(register 4), and bit-pairs of 01, 10, and 11 select color registers 0, 1, 
and 2. Bit-pair 11, in inverse mode, selects register 3. 

If the character set you ask for is not on the disk in drive 1, the 
program will prompt you either to insert the correct disk or to ask 
for a different set. Whenever Fontbyter asks you for a filename, 
you don't need to enter more than the eight-character name
Fontbyter always supplies the device name "01:" and the 
extender ".sET" or ". SCR'~ If you use an illegal name, Fontbyter 
will ask you to try again. 

Screen files. When you have chosen your character set, Font
byter displays a directory of all the files with the filetype " . SCR'~ 
Fontbyter assumes that these files contain screen displays created 
and saved by Fontbyter. If no directory is displayed, it means that 
there are no files with the filetype ". SCR" on the disk. 

At the end of the directory, you will be told the number of 

120 



5 

sectors left on the disk. Be sure that the disk you use for saving 
screens has enough room for the screen you intend to save. A 
maximum-size display is almost 4K, which will create a file of 33 
sectors. Disks can fill up pretty fast at that rate. 

Save file. The program asks you what name your saved 
screen file should have. When you are through editing and want 
to save your finished screen, this is the filename that Fontbyter 
will use to create the save file. You can use a filename that you 
used before, but saving the new file will erase the old one. Again, 
only the eight-letter filename is necessary. Fontbyter automatically 
selects "01:" as the device name and". SCR" as the filetype. 

Load file. The program asks you if you want to edit a screen 
that was previously saved. If you do, you will be asked the name 
of the file you want to load from. (Again, only the eight-letter 
name will be used-the file type must be ".sCR'~) If the file is not 
found, Fontbyter will ask you either to enter another name or to 
insert the disk with that file on it; if you choose to enter another 
name, Fontbyter goes back to the original load file prompt, and 
you can decide at that point not to edit a previously saved file 
after all. 

Notice that this sytem allows you to load from a file and then 
save your edited version back to the same file, erasing the old 
version; or you can choose to save the file under a different 
filename, so that both versions will exist. There is an added safe
guard, too. When you save the screen display, it is first saved 
under the name "D1.TEMPFILE.SCR'~ Then Fontbyter asks you if 
you want to save it under the name you chose at the beginning of 
the program. If you change your mind about the save filename 
then, you can exit Fontbyter and use DOS to change 
"D:TEMPFILE.SCR" to whatever name you want. 

Load file parameters. If your load file is found, Fontbyter 
immediately opens it and reads the first three bytes. Then it 
reminds you of the ANTIC mode, width (in characters), and 
height (in lines) of the file as it was saved. If you don't want to 
change those parameters, you can proceed directly to the final 
check; if you do want to change them, Fontbyter will ask you to 
choose the mode, width, and height of the file as if you were 
creating a new screen. 

Changing the height or mode is fairly safe. Mode changes 
put twice as many lines on the screen, but all the relationships are 
the same. Changing the height merely adds or subtracts lines at 

121 



5 

the bottom of the display. Remember, though, that changing the 
width of a file will have very odd results. It does not cut off the 
edges of the old screen-it merely causes the lines to wrap 
around at a different point, so that nothing fits together vertically 
the way that it did. 

ANTIC mode. Fontbyter asks you to choose which ANTIC 
mode you want. The only choices are 2 (GRAPHICS 0),4, or 5. 
Mode 4 has shorter, squarer characters, and fits 24 lines on a 
screen. Mode 5 has tall, thin characters and fits only 12 lines on a 
screen. This means that a display file a hundred lines from top to 
bottom will give you more than eight distinct screen displays in 
ANTIC 5, but only just over four distinct displays in ANTIC 4. 
ANTIC 2 (GRAPHICS 0) is included, even though it is not a four
color mode, so that you can use Fontbyter to create displays using 
the built-in ROM character set. 

Display width. The minimum width of a line is 40 characters. 
If you enter a number less than 40, Fontbyter will change it to 40. 
The maximum width depends on the mode. The limiting factor 
here is that all screen displays must fit within 4K. Because of this, 
the wider a screen display you choose, the fewer vertical lines you 
can have. You cannot have a line so wide that it would not allow 
the minimum number of lines. Since you will not be allowed any 
fewer than 24 screen lines in ANTIC 2 or 4, you naturally can't 
have as wide a screen as in mode 5, which has a minimum of 12 
lines per screen. 

Display height. The minimum height, in number of lines, is 
12 lines for ANTIC 5 and 24 lines for ANTIC 2 and 4. The 
maximum height depends on the line width you chose. If you ask 
for more lines than the allowable maximum, Fontbyter will 
change the figure to the maximum. 

Final check. Fontbyter clears the screen and then displays 
what your choices were: the character set, the file in which to save 
your screen, the file (if any) to load from, the mode, the width (in 
characters), and the height (in lines). If you want to make any 
changes, press OPTION. If you are satisfied with your choices, 
press START. 

Fontbyter will display a wait message for a few moments, 
and then the screen will go completely blank. This is so the setup 
operations will run faster. When Fontbyter is ready to go on-and 
it won't be long-either the load screen you asked for will appear 
or a cursor will appear in the upper-left-hand comer of a blank 

122 



5 

screen. The cursor is whatever the ESCAPE character looks like in 
the character set you chose . 

Also, part of the character set will be displayed on the bottom 
four lines of the screen. The characters are arranged in the same 
order as the computer keyboard, so that you can easily figure out 
which key to press in order to display a particular character. 

Editing Features 
To use the keyboard. The character set is divided into three 
groups: regular, shifted, and control. You can change from one to 
another using the CAPSfLOWR key. To get the regular character 
group, press CAPSfLOWR. To get the shifted character group, 
press SHIFT and CAPSfLOWR at the same time. To get the 
control character group, press CONTROL and CAPSfLOWR at 
the same time. As soon as you make the change, the character 
keyboard display at the bottom of the screen will change to show 
you the characters now available. 

Instead of the usual computer keyboard system of locking 
only the alphabetic keys into shifted and control functions, Font
byter shifts the entire keyboard. After you press SHIFT and 
CAPSfLOWR, you can press any key on the keyboard and get the 
shifted character-without pressing SHIFT again. The same 
applies to CONTROL with CAPSfLOWR. 

Some keys, of course, don't have a shifted or control value 
(ESC, DEL, and RETURN, for instance), and others usually 
display only the inverse of another character (SHIFT-TAB, for 
instance) . Since these don't display a separate character, pressing 
them only produces the same character that you would get if you 
pressed the space bar-a blank. (If your character set redefines 
the space bar character, that character will fill your display when it 
first comes up, and will appear on the screen whenever you enter 
a nonprinting character.) 

The keys do not produce their normal clicking sound, except 
for the command keys, which are described next. 

Command keys. No matter which character group you are 
using, there are some key combinations that Fontbyter interprets 
as commands. Pressing INSERT and SHIFT together will insert a 
blank line on the screen. Pressing DELETE and SHIFT together 
will delete a line. Pressing CONTROL and an ARROW key 
together will cause the cursor to move. 

Remember, to print the character represented by the 
CONTROL-ARROW combination, press only the ARROW key 

123 



5 

while the control group is locked in. To move the CursOl~ press 
CONTROL and ARROW at the same time, regardless of which 
group is locked in. 

Inverse video (Atari logo) key. This key is a toggle. Pressing 
it shifts you back and forth between inverse and regular video. In 
ANTIC 2 (GRAPHICS 0), this will cause all the characters you 
enter to be reversed, as the computer normally does. In ANTIC 4 
and 5, however, this will cause Color 3 to take its value from color 
register 4 (memory location 711 instead of 710). It will affect, there
fore, only one of the colors, and if a character does not contain any 
dots of Color 3, inverse mode won't have any effect at all. 

CONTROL-ESC. This key combination is a toggle. Pressing 
it will shift you back and forth between Still and Auto-Advance 
modes. In Still Mode, pressing noncommand keys will display a 
new character in the same place on the screen. In Auto-Advance 
Mode, pressing noncommand keys will display a new character 
and then advance the cursor to the next position to the right, 
unless doing so would take the cursor beyond the edge of the 
display. 

To move the cursor. Either move the joystick in the direction 
you want to move, or press the appropriate CONTROL-ARROW 
key combination. Only the joystick allows diagonal movement. 

When the cursor reaches the edge of the screen, the display 
will begin to scroll until it reaches the limits of display height 
and width you specified during start-up. If you are at the edge 
of the display, the cursor simply won't move any farther that 
direction. 

Fast-fill function. Sometimes you will have large areas or 
lines to fill with the same character. Instead of entering the char
acter by typing it in each space where it is to appear, you can use 
the joystick and fire button. First maneuver the cursor until it is on 
top of the character you want to copy, or move it to the place 
where you want to begin the fast-fill operation and enter the char
acter from the keyboard. Then press down the joystick button and 
hold it down while you use the joystick to move the cursor. From 
then on, until you let up on the button, wherever you move the 
cursor using the joystick, a trail made up of that character will be 
left behind. 

You can also use this function to erase areas of the screen 
fairly quickly. Just move the cursor to a blank, press down the 
button, and the cursor will leave blanks behind it wherever you 
make it go. 

124 



Clear screen function. To erase the entire display, press 
CONTROL-SHIFT-CLEAR. 

5 

Delete line function. To delete an entire line of your screen, 
move your cursor to the line you want to delete and press SHIFT
DELETE. The line will vanish, and the entire display below that 
line will move upward one line on the screen. Whether the very 
bottom of your display is visible on the screen or not, a line of 
blanks will be inserted as the last line in your display. 

Insert line function. To insert a blank line in your display, 
move the cursor to the position where you want the new line. 
Then press SHIFT-INSERT. The line that the cursor was on will 
move down, as will all the other lines below it in the display, and 
the cursor will now be on a blank line. At the bottom of the 
display, whether it is visible on the screen or not, the last line of 
your display will be deleted completely. 

With both the delete and insert line functions, the line that 
disappears is irrecoverably lost. To get it back, you will have to 
enter all the characters just as you did before. So be careful about 
using these two functions! 

By using the delete and insert functions in succession, you 
can quickly blank large areas of the screen, a line at a time. Simply 
move to the top of the area you want to blank out, and press 
SHIFT-DELETE as often as it takes to erase all the lines you 
wanted to get rid of. Then press SHIFT-INSERT until the desired 
number of blank lines appears. 

You can also use these functions to move the entire picture 
upward or downward in the display. For instance, suppose you 
loaded a display that had been created and saved with only 24 
lines, and you want to add another 24-line picture above it. At the 
beginning of the editing session, simply specify 48 lines as the 
height of the display. Fontbyter will put the 24 new blank lines at 
the end of the display. To move the old picture down into that 
blank area, start at the top of the screen and press SHIFT-INSERT 
24 t~es . 

Three joystick modes. We've already gone over the use of the 
joystick in Cursor Mode. The joystick can also be toggled into two 
other modes. If you press the START button while in Cursor 
Mode, the joystick will change to Scroll Mode. If you press the 
START button in Scroll Mode, the joystick will shift to Color 
Mode. And pressing the START button in Color Mode will shift 
you back to Cursor Mode again. 

1. Scroll Mode. This mode enables you to scroll the TV screen 

125 



5 

window around the entire display by moving the joystick in the 
appropriate direction. When you move, the cursor character will 
disappear. When you return to Cursor Mode, the cursor will come 
back to the middle of the screen. 

2. Color Mode. In this mode, the joystick controls the color 
registers as follows: 

• Forward and back: Color register 0 (Memory location 708) 
• Left and right: Color register 1 (709) 
• Forward and back with joystick button depressed: Color 

register 2 (710) 
• Left and right with joystick button depressed: Background 

color register (712) 
• Forward and back with SELECT depressed: Inverse color 

register (711) 
. As you press the joystick forward or to the right in Color 

Mode, that particular color will get brighter and brighter until it 
reaches maximum brightness; then it will jump to the next color at 
its darkest value and get brighter and brighter with that color. 
Pushing left or back cycles through the colors from bright to dark. 
There are 16 colors, each with eight levels of brightness. You can 
cycle through the colors endlessly in either direction. 

When you start editing with a new display, the colors are the 
system default colQrs. When you load a previously saved display, 
however, you start with the colors saved with that display. You 
can change the colors however you like, and whatever the colors 
are when you save your display, those values will be saved with it. 

Summary of Command Keys 
Command Key 
START 

SELECT 

OPTION 

CONTROL-ARROW 
SHIff-INSERT 

126 

Description 
Cycle from Cursor Mode to Scroll Mode 
to Color Mode and back to Cursor Mode. 
Save the current display without inter
mpting the edit. In Color Mode, moving 
the joystick forward and back with 
SELECT pressed will change the inverse 
color. 
Save the current display and stop the 
editing session. 
Move the cursor. 
Insert a blank line where the cursor is and 
delete the bottom line of the disphiy. 



SHIff-DELETE 

Atari logo key 

SHIFf-CAPS/LOWR 
CONTROL-CAPSI 
LOWR 
CONTROL-ESC 

CONTROL-SHIFf
CLEAR 

Ending and Saving 

5 

Delete the cursor line and add a blank line 
at the bottom of the display. 
Toggle back and forth between inverse 
and regular characters. 
Select the shifted character group. 
Select the control character group. 

Toggle between Still and Auto-Advance 
modes . 
Erase the entire display. 

There are two ways to save a screen. 
1. You can press the SELECT button when the joystick is in 

Cursor Mode, and the display will be saved as "D1: TEMP
FILE.SCR". The screen is not changed, and you can resume 
editing as soon as the joystick or keyboard responds again . 

2. You can press the OPTION button. Fontbyter will save the 
entire display in a file named "D1:TEMPFILE.sCR'~ The screen 
then clears, and Fontbyter asks if you want to save the display in 
the save file you asked for at the beginning of the edit. If you 
answer yes, "TEMPFILE" is renamed with the save filename you 
chose at the beginning. If a file with the same name already exists 
on the disk, it will be erased at this time. 

If you are merely saving a half-done file to make sure some 
catastrophe doesn't lose it for you, then "TEMPFILE.5CR" should 
be security enough-if the system crashes, you'll know that the 
screen as you last saved it is in that file . 

You will then be asked if you want to return to edit the same 
screen. If you say yes, your saved screen will quickly be reloaded 
into memory, and the program will reinitialize. If you say no, you 
will be asked whether you want to quit or start Fontbyter over 
again. If you choose the quit option and change your mind, don't 
worry. Just give the direct command RUN, and Fontbyter will 
begin again with the setup prompts. 

Using Fontbyter Screens in Your Programs 
Just because Fontbyter scrolls doesn't mean you have to make one 
continuous scrolling display. You can create many different screen 
displays in one file, "stacking" them vertically, and then use page 
flipping in your own program to move instantly from one to 

127 



5 

another. The advantage of using Fontbyter is that while you are 
creating the screen displays, you can scroll from one to the other 
to compare them and make sure that any animation effects you 
are trying for are working properly. 

The diagrams will show you the variety of display configura
tions you can choose. 

Figure 1 is the simplest and smallest display-just enter the 
minimum height and width for the mode you're working in. 

Figure 2 is a completely horizontal display. You might want 
such a display in a game program to provide a very wide 
scramble-type game playfield, or in a storytelling program to 
allow the story to progress from left to right. 

To get the widest possible display, use ANTIC 5. This allows 
displays that are 8.5 screens wide. However, the characters in 
ANTIC 5 are twice as tall as in ANTIC 4, which can distort your 
display. 

If you want even wider displays, you can chain several 
displays together by beginning one display with the exact picture 
that ends the previous one; from there, continue the display as if 
there were no break. Then, when your own program scrolls to the 
end of one, it can page flip to the next 4K block of memory, where 
the next display begins, and continue scrolling. If you are doing 
horizontal scrolling, however, you are undoubtedly revising your 
display list in machine language, and the page flip will have to be 
in machine language, too. You can even make two displays chain 
to each other by having Display 1 begin with the end of Display 2, 
and Display 2 begin with the end of Display 1. That way the user 
keeps cycling through the same endless loop. 

Figure 3 is a completely vertical display. You can use the same 
techniques to scroll vertically through a continuous display, 
except that now, since you are doing no horizontal scrolling, you 
can do scrolling and page flipping from BASIC just by POKEing 
new values into bytes 4 and 5 (counting from 0) of the display list. 

In Figure 4, the screen is a window into a display that 
extends some distance both horizontally and vertically. You could 
use this in your programs to allow users to explore a map, or find 
their way out of a maze, or control hundreds of armies in a really 
massive and complex full-color war game, or simply to admire an 
elaborate picture. 

128 



>-' 

tel 

Figure 1. The Minimum Display Figure 4. The Window Display 

T 
12 
or 
24 

lines 

1 

~40 characters~ r - -.... - -.. - -- - -- -- -- -- -- - -- .. -- .............. -- .. -- -_ ... --- ... -- -- - --. 

, , 

40 characters-t 

L __ _ _________ -________ " __ -__ -_________ -________ -__ 

Figure 2. The Maximum Horizontal Display 
4----40 characters--+ 

----------------, , ----r--------------------------------------------------:-
: 

• l 
I 

12 I 
or : 
24 

li1nes , : L ______________ I li_ _ __ ______ -______ ' __ ~ __________________ J 
4 170 or 340 characters • 

r 
12 

Figure 3. The Maximum 
Vertical Display 
t - -_ ..... _ .... _ ...... - -- -- .- ......... ----- .- - -, 
I i 
i I 
I I 
I I 

: 
I 
I 

~40 characters--ti 
I 

~~ 1 1
102 

lines lines 

1 !"--' ---.J 

I 
I 
I 
I 
I 
I 
I 
I L-___________________ ____ ______ ___ J 

'" 



5 

Programming with Fontbyter 
Here are subroutines you can include in your own programs to 
use the displays you have created with Fontbyter. 

Loading files. To use Fontbyter displays, your program will 
need to load a character set and the display file. Subroutine 1 loads 
slowly, entirely from BASIC. Subroutine 2 loads quickly, using a 
machine language routine that accesses an operating system fast
load program. 

Subroutine 1. Slow Load 
1~ REM Slow load (character set) 
1~~ OPEN .1,4,~,"Dl:CHARACT.SET":FOR 

I=~ TO 1~23:GET .1,N:POKE CH,N: 
NEXT I:CLOSE .1:RETURN 

19~ REM Slow load (display file) 
20~ OPEN #1,4,~,"Dl:DRAWING.SCR":GET 

.1,MD:GET #1,WD:GET #l,LN:IF MD 
)5 THEN MD=MD-10:WD=WD+256 

2~5 FOR I=7~8 TO 712:GET .1,N:POKE I 
,N:NEXT I:FOR I=~ TO WD*LN-l:GET 
.1,N:POKE SC+I,N:NEXT I:CLOSE # 

l:RETURN 

Subroutine 2. Fast Load 
10 REM Set up variables 
20 X=16:ICCOM=834:ICBADR=836:ICBLEN= 

84~:REM See text for meaning of v 
ariables SP and CHBAS 

90 REM Fast load (display file) 
10~ OPEN #1,4,~ , "Dl:DRAWING.SCR":GET 

#1,MD:GET #1,WD:GET #1,LN:IF MD 
)5 THEN WD=WD+256:MD=MD-10 

11~ SZ=WD*LN:FOR 1=708 TO 712:GET .1 
,N:POKE I,N:NEXT I 

120 POKE ICBADR+X+l,SP:POKE ICBADR+X 
,0:POKE ICBLEN+X+l,I+INT(SZ/256) 
:POKE ICBLEN+X,~ 

1 3 ~ PO K E 1 C COM + X , 7: 1 = U S R ( AD R ( .~ h h h OL V 
~"),X):CLOSE #1:RETURN 

19~ REM Fast load (character set) 
2~0 OPEN .1,4,0,"Dl:CHARACT.SET":POK 

E ICBADR+X+l,CHBAS:POKE ICBADR+X 
,0:POKE ICBLEN+X+l,4:POKE ICBLEN 
+X,~ 

21~ POKE ICCOM+X,7:C=USR(ADR("hhhDLV 
~"),X):CLOSE #l:POKE 756,CHBAS:R 
ETURN 

130 



5 

Display list setup. Subroutine 3 sets up an ANTIC 2 or 4 
display list that can be horizontally or vertically scrolled. Subrou
tine 4 sets up an ANTIC 5 display list that can be horizontally or 
vertically scrolled. Subroutines 5 and 6 set up display lists that 
cannot be horizontally scrolled-use these only to load displays 
that were created with the minimum line width. 

Subroutine 3. Horizontal Scroll Display List, ANTIC 2 or 4 
10 REM Lines 20 and 30 are just a de 

monstration. Change the value of 
5C and see what happens! 

20 DL=PEEK(88)+256*PEEK(89):5C=DL:MO 
DE=4:WIDE=40:G05UB 100 

30 FOR 1=0 TO 1000:NEXT I:5C=0:MODE= 
2:G05UB 100:FOR 1=0 TO 1000:NEXT 
I:GOTO 20 

90 REM This ANTIC 2 or 4 display lis 
t can be horizontally scrolled. 
Just set the values of 5C,DL,MODE 
, and WIDE. 

100 FOR 1=0 TO 2:POKE DL+I,112:NEXT 
I:N=0:M=MODE+64 

110 FOR I=DL+3 TO DL+72 5TEP 3:C=5C+ 
N:POKE I,M:POKE I+2,INT(C/256):P 
OKE I+1,C-256*PEEK(I+2):N=N+WIDE 
:NEXT I 

120 POKE I,65:DLHI=INT(OL/256):OLLO= 
OL-OLHI*256:POKE I+1,OLLO:POKE I 
+2,OLHI:POKE 561,OLHI:POKE 560,0 
LLO:RETURN 

Subroutine 4. Horizontal Scroll Display List, ANTIC 5 

10 REM Lines 20 and 30 are just a de 
monstration. Change the value of 

5C and see what happens! 
20 DL=PEEK(88)+256*PEEK(89):5C=PEEK( 

106)*256:MODE=5:WIDE=40:GOSUB 100 
30 FOR 1=0 TO 1000:NEXT I:SC=0:G05UB 

100:FOR 1=0 TO 1000:NEXT I:GOTO 
20 

90 REM This ANTIC 5 display list can 
be horizontally scrolled. Just 

set the values of SC,DL.MODE, and 
WIDE. 

100 FOR 1=0 TO 2:POKE DL+I,112:NEXT 
I:N=0:M = MODE+64 

131 



5 

110 FOR I=DL+3 TO DL+36 STEP 3:C=SC+ 
N:POKE I,M:POKE I+2,INT(C/256):P 
OKE I+l,C-256tPEEK(I+2):N=N+WIDE 
:NEXT I 

120 POKE I,65:DLHI=INT(DL/256):DLLO= 
DL-DLHlt256 : POKE I+l,DLLO:POKE I 
+2,DLHI:POKE 561,DLHI:POKE 560,D 
LLO:RETURN 

Subroutine 5. Regular Display List, ANTIC 2 or 4 
10 REM The actual subroutine is line 

s 100-120. You set the value of 
DL,SC,MODE,and WIDE. 

20 DL=PEEK(88)+256*PEEK(89):MODE=2:W 
IDE=40 

30 SC=0:MODE=2+2*(MODE=2):GOSUB 100 
40 TRAP 30:0N PEEK(753) <> 3 GOTO 40:S 

C=SC+480:SP=INT(SC/256):POKE DL5, 
SP:POKE DL4,SC-256*SP 

50 FOR 1=0 TO 30:NEXT I:GOTO 40 
90 REM This ANTIC 2 and 4 display Ii 

st can be page flipped from BASIC 
POKE the screen address into D 

L4 and DL5. 
100 FOR 1=0 TO 2:POKE DL+I,112:NEXT 

I:DL4=DL+4:DL5=DL+5 
110 POKE DL+3 , 64+MODE:POKE DL5,INT(S 

C/256):POKE DL4,SC-256*PEEK(DL5) 
:FOR I=DL+6 TO DL+28:POKE I,MODE 
:NEXT I 

120 POKE I , 65:DLHI=INT(DL/256):DLLO= 
DL-DLHI*256:POKE I+l,DLLO:POKE I 
+2,DLHI:POKE 561,DLHI:POKE 560,D 
LLO:RETURN 

Subroutine 6. Regular Display List, ANTIC 5 

10 REM The actual subroutine is line 
s 100-120. You set the value of 
DL,SC,MODE,and WIDE. 

20 DL=PEEK(88)+256*PEEK(89):MODE=5:W 
IDE=40:GOSUB 100 

30 SC=0 
40 TRAP 30:0N PEEK(753) <> 3 GOTO 40:S 

C=SC+480:SP=INT(SC/256):POKE DL5, 
SP:POKE DL4,SC-256*SP 

50 FOR 1=0 TO 30:NEXT I:GOTO 40 

132 

-



90 REM This ANTIC 5 display list can 
be page flipped from BASIC. Jus 

t POKE the screen address into DL 
4 and DL5. 

100 FOR 1=0 TO 2:POKE DL+I,112:NEXT 
I:DL4=DL+4:DL5=DL+5 

110 POKE DL+3,64+MODE:POKE DL5,INT(S 
C/256):POKE DL4,SC-256*PEEK(DL5) 
:FOR I=DL+6 TO DL+16:POKE I,MODE 
:NEXT I 

120 POKE I,65:DLHI=INT(DL/256):DLLO= 
DL-DLHI*256:POKE I+l,DLLO:POKE I 
+2,DLHI:POKE 561,DLHI:POKE 560,D 
LLO:RETURN 

These routines use the following variables: 

5 

TOP is the page number of the top of memory. The Atari will 
not touch anything located above the top of memory-but 
anything below it is fair game. The display list, character set, 
screen memory, and machine language routines should all be 
placed above Sp. So the load routines find out where the top of 
memory is and move it down enough pages to leave room for all 
the protected program areas. SC is the absolute address of the top 
of memory (SP*256); it is also the start of screen memory, so that it 
is POKEd into both the display list and location 106. 

How much room should you leave? The character set takes 
1K (four pages) and must start on a 1K boundary. Screen memory 
will never take more than 4K (16 pages), and should start on a 4K 
boundary, since ANTIC has problems when screen memory 
crosses that line. If your display is less than 2K, you can probably 
skip back from the top of memory a mere 4K (16 pages, or 
PEEK(106)-16), place screen memory at the new top of memory, 
and put the display list, machine language routines, and character 
set above it. If your display list is 3K or more, you should prob
ably skip back 6K (24 pages, or PEEK(106)-24), place the character 
set at the new top of memory, followed by the display list, 
machine language subroutines, and then screen memory begin
ning at the 4K boundary line, 16 pages before the old top of 
memory. This routine assumes that arrangement. 

SP is the page number of the start of screen memory, and SC 
is the absolute address of the start of screen memory (SP*2S6). 

DL is the start of the display list. For page flipping, DL3 is 
DL+3, and DL4is DL+4. These will contain the low byte and 

133 



5 

high byte of screen memory, and POKEing new values into these 
locations will flip screen memory. 

CHBAS is the page number of the character set, and CH is the 
absolute address (CHBAS*256). 

MODE is the ANTIC mode number-either 2, 4, or 5. 
Adding 64 to MODE each time it is POKEd in tells the computer 
to look for a new screen memory address in the next two bytes in 
the display list. 

WIDE is the width, in characters, of the entire horizontal line, 
not just the 40-character portion visible on screen at anyone time. 
Thus, every MODE instruction is followed by a two-byte address, 
C, which tells it where to find the start of the next horizontal line. 

POKEing 560 and 561 with 0 and DLl256 is what actually 
makes the display list start working. Until that moment, the 
display list is just a series of numbers in memory. But once 560 
and 561 contain the address of the start of your display list, the TV 
screen is under your program's control. 

ICBADR, ICBLEN, and ICCOM are the addresses of key loca
tions in the IOCB handler. ICCOM must contain the number of 
the operation to be performed (7 to load, 11 to save). ICBADR 
must contain the low byte of the starting address of the area in 
memory to be saved from or loaded to (ICBADR + 1 will contain 
the high byte). ICBLEN must contain the low byte of the length of 
the file to load (ICBLEN + 1 will contain the high byte). The vari
able X represents the offset into the IOCB area. If you OPEN #1, 
then X = 16. If you OPEN #2, then X = 32. And so on, in multiples 
of 16. You might not get good results using OPEN #0 or OPEN 
#6-those are reserved for system use. 

With screen files created by Fontbyter, remember that the first 
eight bytes always contain the following information: 

• ANTIC mode number (plus 10, if width is greater than 255 
characters) 

• width, or number of characters per line (low byte only, if 
width is greater than 255 characters) 

• display height, or number of lines in the entire display 
• colors to POKE into locations 708 through 712 
To calculate the number of bytes in the whole screen display 

(SZ), multiply the height by the width. The number of bytes in the 
file is that number plus eight. 

'tYping the Program 
The bulk of the program is written in BASIC. The shortest 

134 



5 

machine language routines are included as string constants. The 
longer routines, however, DISPLAY, EXPAND, and DELETE, and 
two data files, MENU.DAT and CHARDATA.DAT, are listed after 
the main program. These should be entered using the BASIC 
loader program provided and saved on disk with exactly the 
filename specified . Fontbyter will look for these files and load 
them into strings or particular areas of memory during the run of 
the program. 

Since Fontbyter works most efficiently with a disk drive, the 
program as written assumes a disk drive. However, a patient 
cassette user can remove all the routines rela ted to choosing and 
testing filenames, and simply assign the value /lC:/I to all filename 
variables. You may also want to add prompts to tell the user what 
file the program is asking for. (The biggest problem arises with 
load files during initialization, when the program tests the saved 
screen file once, then loads it again later. If you decide not to 
revise the program, make sure that you rewind the cassette 
containing the screen file after that initial test, so the file will be 
complete when it is loaded by the screen load subroutine.) 

There are no REM statements in Fontbyter. Instead, remarks 
are included as typeset lines that interrupt the program listing. 
Type only the numbered program lines that were printed out by a 
printer, not the comments printed in the same typeface you are 
reading now. 

Program 1. Fontbyter 
Start-up. DIMension arrays and string variables; clear the 

screen; establish key addresses. 
Line 5. F$ is the character set name; FSAVE$ is the save 

filename; FLOAD$ is the load filename; FL$ and FLL$ are tempo
rary filenames for various uses; DELETE$ and EXPAND$ will 
hold machine language subroutines in ASCII form; C(n) will hold 
the relationship between keyboard code and internal code. 

10. Clear the screen. ICCOM, ICBADR, and ICBLEN are 
addresses in Input/Output Control Block (IOCB) zero (for files 
opened as #0). ICCOM is the address where the command 
should be POKEd; ICBADR should be POKEd with the low byte 
of the address in memory where files should be stored or loaded 
(ICBADR + 1 holds the high byte); ICBLEN should be POKEd 
with the low byte of the length of the file to be moved (ICBLEN + 1 
holds the high byte). X is the offset into succeeding IOCBs. To use 
file #1, X = 16; for file #2, X = 32; and so on. 

135 



5 

15. COLl through COL5 are the addresses of the color regis
ters. COL4 is the inverse mode color; COL5 is the background 
color. SHIF keeps track of which character mode we are locked 
into-unshifted (0), shifted (64), control (128), or shift-control 
(192). SCON is the value to tum the screen back on. POKE 16,112 
disables the BREAK key. Jump to 440. 
5 DIM F$(2~),FSAVE$(2~),FLOAD$(2~),F 

L$(4~),FLL$(2~),DELETE$(124),EXPAN 

D$(124),CLEAR$(33),C(255) 
1~ GRAPHICS ~:X=16:ICCOM=B34:ICBADR= 

B36:ICBLEN=B40 
15 COL1=70B:COL2=709:COL3=710:COL4=7 

11:COL5=712:SHIF=64:SCON=PEEK(559 
):POKE 16,112:GOTO 440 

Display Load Subroutine. MD is the mode number; WD is 
the number of characters per line; LN is the number of lines in the 
display. If the width of the screen is greater than 255, the high byte 
of the width has been stored in MD by adding 10 to the mode 
number. The size of the display is (adjusted) WD*LN. The colors 
are read; then ICBADR is POKEd with the starting address of 
screen memory; ICBLEN is POKEd with the length of the 
remainder of the file; and ICCOM is POKEd with 7, which is the 
read-from-disk command. The machine language subroutine 
merely pulls three numbers off the stack and jumps to a subrou
tine built into the operating system. 

20 OPEN #1,4,~,FL$:GET #l,MD:GET #1, 
WD:GET #l,LN:IF MD>5 THEN WD=WD+2 
56:MD=MD-10 

25 SZ=WD*LN:FOR I=COL1 TO COL5:GET # 
1,N:POKE I,N:NEXT I 

30 SC=SP*256:POKE ICBADR+X+1,SP:POKE 
ICBADR+X,0:POKE ICBLEN+X+l,l+INT 

(SZ/256):POKE ICBLEN+X,~ 

35 POKE ICCOM+X,7:I=USR(ADR("hhhD-V~ 
"),X):CLOSE #l:RETURN 

Display Save Subroutine. The Display Load Subroutine in 
reverse . ICCOM is now POKEd with 11, the write-to-disk 
command. This is where the program adds 10 to MD if WD is 
greater than 255. The filename is always "Dl:TEMPFILE.sCR". 

40 OPEN #1,B,0,"D1:TEMPFILE.SCR":WD= 

136 

WIDE:MD=MODE:IF WIDE>255 THEN WD= 
WIDE-256:MD=MODE+10 



45 PUT #l,MD:PUT #l,WD:PUT #l,LINE:F 
OR I=COLl TO COL5:PUT #l,PEEK(I): 
NEXT I 

50 POKE ICBADR+X+l,SP:POKE ICBADR+X, 
0:POKE ICBLEN+X+l,l+INT«LINE*WID 
E)/256):POKE ICBLEN+X,0 

55 POKE ICCOM+X,ll:I=USR(ADR("hhhDLV 
~"),X):CLOSE #l:RETURN 

5 

Delete Line Subroutine. Line 60 quits the routine if the 
cursor is on the bottom line of the display. LOWAD is the address 
of the leftmost character on the cursor line; HIADD is the line 
below it on the screen (which is above it in memory). LOWAD is 
POKEd into 203-204, and HIADD into 205-206. Address 207 is 
POKEd with the number of lines between the cursor line and the 
end of the display, and 208 and 209 hold the low and high bytes of 
the width of a line . The machine language subroutine in the string 
DELETE$ moves everything below the cursor line up one line on 
the screen, and inserts a blank line at the bottom of the display. 
The cursor (91 = ESC) is then POKEd back into place. 
60 IF «LINE*WIDE-PIX) < WIDE) THEN RE 

TURN 
65 LOWAD=SC+WIDE*INT(PIX/WIDE)-l:HIA 

DD=LOWAD+WIDE:POKE 206,INT(HIADDI 
256):POKE 205,HIADD-PEEK(206J*256 

70 POKE 204,INT(LOWAD/256):POKE 203, 
LOWAD-PEEK(204)*256:POKE SC+PIX,O 
LD 

75 POKE 207,INT«LINE*WIDE-PIX)/WIDE 
):POKE 208,WLO:POKE 209,WHI 

80 C=USR(ADR(DELETE$» 
85 OLD=PEEK(SC+PIX):POKE SC+PIX,91:R 

ETURN 

Insert Line Subroutine. The same as the Delete Line Subrou
tine, except that everything from the cursor line to the end of the 
display is moved down the screen, and a blank line is inserted at 
the cursor line. LOWAD is now the second to last line of the 
display, and HIADD is the last line of the display. 

90 IF «LINE*WIDE-PIX) ( WIDE) THEN RE 
TURN 

95 HIADD=SC+WIDE*(LINE-1)-1:LOWAD=HI 
ADD-WIDE:POKE 206,INT(HIADD/256): 
POKE 205,HIADD-PEEK(206)*256 

100 POKE 204 , INT(LOWAD/256):POKE 203 
,LOWAD-PEEK(204)*256:POKE SC+PIX,OLD 

137 



5 

105 POKE 207,INT«LINE*WIDE-PIX)/WID 
E):POKE 208.WLO:POKE 209;WHI 

110 C=USR(ADR(EXPAND$» 
115 OLD=0:POKE SC+PIX,91:RETURN 

Main Loop. Most of the time, the program cycles through 
from line 125 to line 150; unless the user presses a key or moves the 
joystick, this will go on endlessly. 

120. Store the value of whatever character belongs in screen 
memory where the cursor now is in the variable OLD. When the 
cursor moves off, OLD will be POKEd back in. The internal code 
for the ESC character is 91-it is used as the cursor. POKE 
559,SCON turns the screen on. This line is executed only once. 

125. Zero out several variables and check for user input. OPT 
holds the value returned by the console keys, DI the value 
returned by joystick 1, and T the value of fire button 1. 

130. If the START button is pressed, jump to the Quick Scroll 
Subroutine at 870; when that is over, jump to the Color Change 
Subroutine at 255. 

135. If the joystick has been pushed, jump to the Cursor 
Movement Subroutine at 155. 

140. If a key has been pressed (PEEK(753) = 3), jump to the 
Read Keyboard Subroutine at 220. Upon RETURNing, the flag 
MY will tell whether the arrow keys or auto-advance mode were 
used to move the cursor; if yes (MY = 1), jump to the third line of 
the Cursor Movement Subroutine at 165. 

145. If OPTION has been pressed, jump to the Stop Edit 
Subroutine at 705. If SELECT has been pressed, jump to the 
Display Save Subroutine. The display will be saved as 
"Dl:TEMPFILE.5CR" without interrupting the edit. 

150. Start the loop over again. 

120 OLD=PEEK(SC+PIX):POKE SC+PIX,91: 
POKE 559,SCON:POKE 16,112 

125 MV=0:V=0:H=0:0PT=PEEK(53279):DI= 
PEEK(632) :T=PEEK(644):E=0 

130 IF OPT=6 THEN GOSUB 870:GOSUB 26 
0:GOTO 125 

135 IF DI<15 THEN GOSUB 155:GOTO 125 
140 IF PEEK(753)=3 THEN GOSUB 220:0N 

MV GOSUB 165:GOTO 125 
145 ON OPT=3 GOTO 705:IF OPT=5 THEN 

GOSUB 40:POKE SC+PIX,91:GOTO 125 
150 GOTO 125 

138 



/ 

5 

Cursor Movement Subroutine. In this routine, V is vertical move
ment; H is horizontal movement; PIX is the current position of the 
cursor relative to the start of screen memory; OLD is the character 
"under" the cursor in screen memory; UD is the current cursor 
line; LR is the current left-right position of the cursor on a line; W 
is the position of the upper-left-hand corner of the current screen 
display relative to the start of screen memory; U is the current line 
number of W; and L is the current left-right position of Won its 
line. WH is the horizontal scroll flag (1 = left, 2 = right); WV is the 
vertical scroll flag (1 = up, 2 = down). 

155-160. Convert the joystick position into cursor move 
instructions. 

165-175. Get the current cursor position. If the called-for 
movement would take the cursor beyond the edge of the display, 
cancel that movement instruction. If no movement is called for, 
quit the subroutine. Keyboard-controlled cursor movements enter 
the routine here. 

180-195. Get the current screen position relative to the start of 
screen memory. If scrolling is necessary, execute the machine 
language scroll subroutine at address DISPLAY. 

200. Put the OLD character into PIX; change PIX to its new 
value; sound the console buzzer (POKE 53279, 1). 

205-215. If the trigger is not pressed, put the character at PIX 
in the variable OLD and POKE the cursor character into the new 
cursor position. 
155 V=WIOE*«01=9 OR 01=13 OR 01=5)

(01=10 OR 01=14 OR 01=6»:PoKE 7 
7,0 

160 H=(01=6 OR 01=7 OR 01=5)-(01=10 
OR 01=11 OR 01=9) 

165 UO=INT(PIX/WIOE):IF UO-(V(0)(0 0 
R UO+(V)0)=LINE THEN V=0 

170 LR=PIX-WIOE*UO:IF LR+H<0 OR LR+H 
>WIOE-1 THEN H=0 

175 IF H=0 ANO V=0 THEN 215 
180 WH=0:WV=0:W=PEEK(OL4)+256*PEEK(0 

L5)-SC 
185 U=INT(W/WIOE):IF V<>0 THEN WV=(U 

0-U-(V<0)(0)+2*(UO-U+(V>0»8+12* 
(MoOE< >5» 

190 IF H<>0 THEN L=W-U*WIOE:WH=(LR+H 
-L<0)+2*(LR+H-L>39) 

195 IF WH>0 OR WV>0 THEN POKE OL+114 
,WH:PoKE DL+115,WV:C=USR(DISPLAY 
) 

139 



5 

2~~ POKE SC+PIX,OLD:PIX=PIX+H+V:POKE 
53279,1 

2~5 IF T=l THEN OLD=PEEK(SC+PIX):POK 
E SC+PIX,91:GOTO 215 

21~ POKE SC+PIX,OLD 
215 RETURN 

Read Keyboard Subroutine. C is the actual value of the key 
combination pressed (key plus SHIFT and/or CONTROL); N is 
the absolute value of the key depressed (key minus SHIFT and/or 
CONTROL); SHIF is the offset for unshifted, shifted, con trot or 
shift-control character groups (0 = unshifted, 64 = shifted, 
128 = controt and 192 = shift-control); VERS is the high-bit condi
tion for inverse mode (regular = 0, inverse = 128); and MV is the 
flag for whether movement is to take place upon leaving the 
subroutine (1 = movement) . 

220. Get the key pressed from the Keycode Subroutine at 785; 
if the key is an arrow key, jump to the arrow key routine at 250; if 
it is SHIFT-DELETE, jump to the Delete Line Subroutine at 60; if it 
is SHIFT-INSERT, jump to the Insert Line Subroutine at 90. 

225. If the key was CONTROL-ESC toggle the auto-advance 
flag AV from 0 to 1 or back again . 

230. If the key was CAPS-LOWR set SHIF to the appropriate 
value . CAPS-LOWR alone=O, SHIFT-CAPS-LOWR=64, 
CONTROL-CAPS-LOWR = 128, and SHIFT-CONTROL-CAPS
LOWR = 192. Jump to the subroutine at 930, which changes the 
keyboard display on the bottom four lines of the screen to show 
the current character group. 

235. If the key was the Atari logo key (or inverse key), toggle 
the value of VERS from 0 to 128 or back again. 

240-245. If none of the above commands was executed, 
change OLD to the internal character code of the character called 
for, using the array C(n), and POKE that value into the current 
cursor position (SC + PIX). If AV is set to l change the value of C 
to 135 (right arrow). 

250. Set the value of V and H as required by the arrow key 
pressed, and set the flag MV to 1 to indicate that a move is called 
for. 

22~ GOSUB 785:0N (C=134)+(C=135)+(C= 
142)+(C=143)+2*(C=116)+3*(C=119) 
+4*(C=246) GO TO 25~,6~,9~,645 

225 IF C=156 THEN AV=l*(AV=~):GOTO 9 
2~ 

140 



230 IF N=60 THEN SHIF=4+C-64:POKE 53 
279,4:GOSUB 930:RETURN 

235 IF N=39 THEN VERS=128*(VERS=0):G 
OTO 920 

240 OLD=C(N+SHIF)+VERS:POKE SC+PIX,O 
LD:ON AV GOTO 245:RETURN 

245 C=135 
250 V=WIDE*«C=143)-(C=142»:H=(C=13 

5)-(C=134):MV=1:RETURN 

5 

Color Change Subroutine. DI is the joystick position, T is the 
joystick trigger (0 = pressed, 1 = not pressed), OPT is the console 
key, and COLl-COLS are the addresses of the color registers. 

255-260. The exit and entrance routines. 920 is the Delay 
Subroutine. The exit routine also POKEs the cursor character into 
place and RETURNs. 

265-275. Read the joystick, button, and console keys. If 
START is pressed, exit the routine through 255. The four legal 
directions are 7, 11, 13, and 14. Change a 7 to a U, then subtract 10; 
now if the joystick is indicating a legal direction, the value of OI 
will be 1,2,3, or 4. If it isn't one of those, go back and read again. 
If it is, use those plus T to get to the right line. 

280-315. Read the color register and change the value as 
appropriate. Lines 310 and 320 change the inverse color register 
(COL4) if SELECT was pressed; otherwise, line 315 or 325 is 
executed. 

255 GOSUB 920:POKE SC+PIX,91:RETURN 
260 GOSUB 920 
265 DI=PEEK(632):T=PEEK(644):DI=DI+5 

*(DI=7):DI=DI-10:0PT=PEEK(53279) 
:IV=(OPT=5):IF OPT=6 THEN 255 

270 IF DI<1 OR DI ) 4 THEN 265 
275 ON (4*T)+DI GOSUB 280,285,290,29 

5,300,305,310,320:GOTO 265 
280 POKE COL5,PEEK(COL5)-2+256*(PEEK 

(COL5)<2):RETURN 
285 POKE COL5,PEEK(COL5)+2-256*(PEEK 

(COL5»253):RETURN 
290 POKE COL3,PEEK(COL3)-2+256*(PEEK 

(COL3)<2):RETURN 
295 POKE COL3,PEEK(COL3)+2-256*(PEEK 

(COL3»253):RETURN 
300 POKE COL2,PEEK(COL2)-2+256*(PEEK 

(COL2) < 2):RETURN 
305 POKE COL2,PEEK(COL2)+2-256*(PEEK 

(COL2»253):RETURN 

141 



5 

310 IF IV THEN POKE COL4,PEEK(COL4) -
2+256*(PEEK(COL4)<2):RETURN 

315 POKE COL1,PEEK(COL1)-2+256*(PEEK 
(COL1)<2):RETURN 

320 IF IV THEN POKE COL4,PEEK(COL4)+ 
2-256*(PEEK(COL4»253):RETURN 

325 POKE COL1,PEEK(COL1)+2-256*(PEEK 
(COL1»253):RETURN 

Filename Test Subroutine. This routine takes apart the 
filename that the user entered; removes anything before a colon, 
anything after a period, and any letters beyond the first eight; and 
provides error messages if there is nothing left, or if the name 
doesn't begin with a capital letter, or if there are illegal characters 
in the filename. If the name failed, flag N is set to 1. 

330 FLL$=FL$:FOR 1=1 TO LEN(FL$):N=A 
SC(FL$(I,I»:ON N=58 GOSUB 370:N 
EXT I:FL$=FLL$ 

335 FLL$=FL$:FOR 1=1 TO LEN(FL$):N=A 
SC(FL$(I,I»:ON N=46 GOSUB 375:N 
EXT I:FL$=FLL$ 

340 IF LEN(FL$»8 THEN FL$=FL$(l,8) 
345 IF LEN(FL$)(l THEN 390 
350 N=ASC(FL$(l,1»:IF N)90 OR N(65 

THEN 385 
355 IF LEN(F~$)<2 THEN GOTO 365 
360 FOR 1 = 2 TO LEN(FL$):N=ASC(FL$(I, 

I»:ON (N)90 OR N<65) AND (N)57 
OR N<48) GOTO 380:NEXT I 

365 FLL$="Dl:":FLL$(4)=FL$:N=0:RETUR 
N 

370 FLL$=FL$(I+l,LEN(FL$»:RETURN 
375 FLL$=FL$(1,I-l):RETURN 
380 POP :? "{CLEAR}":? "Illegal char 

acters in ";FL$:GOTO 390 
385? "{CLEAR}":? FL$;" must start w 

ith a capital":? "letter.":GOTO 
390 

390? "Let"s try that name again.":N 
=1:RETURN 

Disk Test Subroutines. These routines test to see if a file is 
present on the disk. If not, flag N is set to 1. 

395-410. Check to see if file FL$ is on the disk. If it isn't, warn 
the user. 

415-435. Check to see if file FL$ is on the disk. If it is, warn the 
user. 

142 



5 

395 TRAP 400:oPEN #1,4,0,FL$:N=0:CLo 
SE #l:RETURN 

400? :? FL$;" isn't on disk in":? " 
drive 1":? "Insert disk with ";F 
L$;"and":? "press RETURN. ":CLoSE 

#1 
405 ? "Or to try another file name, 

press anyother key." 
410 ON PEEK(753)<>3 GoTo 410:GoSUB 7 

85:oN N=12 GoTo 395:N=1:RETURN 
415 TRAP 435:oPEN #1,4,0,FL$:? FL$;" 

is already on disk.":? "Unless 
you change the name, the old" 

420 ? "file will be lost. To change 
the namepress RETURN":? "Or pre 

ss any other key to continue.":C 
LOSE #1 

425 ON PEEK(753)<>3 GoTo 425:GoSUB 7 
85:oN N=12 GoTo 430:N=0:RETURN 

430 N=l:RETURN 
435 CLOSE #1:N=0:RETURN 

Setup Routine. This long routine sets up the parameters for 
editing or creating the display. 

440. Print the program name and run the Keycode Array 
Subroutine at 905. 

445-460. Get a character set directory through the Directory 
Subroutine at 850, then get the user's choice of character set and 
test it through the Filename Test Subroutine at 330 and the Disk 
Test Subroutine at 395. 

465-475. Get a screen file directory through the Directory 
Subroutine at 840, then get the user's save filename (FSAVE$) and 
test it at 330 and 415. 

480-485. Find out if the user wants to edit a previously saved 
file. If not, skip on to 535. 

490-530. Get the user's load filename and test it at 330 and 
395. If the filename fails, go back to 480 so the user has the option 
of not loading a file after all. If the filename succeeds, then get the 
mode (MD), width (WD), and length (LN) parameters from the 
load file . Ask if the user wants to change the parameters. If not, 
jump to 585 for the final check; if yes, then proceed to 540. 

535. Set the flag FLOAD to 0, which means there is no load 
file. 

540-550. Get the user's choice of mode. Only 2,4 and 5 are 
acceptable. 

143 



5 

555-560. Get the user's choice of line width (WIDE). The 
minimum is 40 characters per line; the subroutine at 790 deter
mines the maximum. 

565-580. Get the user's choice of number of lines in the 
display (LINE). Minimum and maximum depend on mode and 
line width. The display cannot be longer than 4K. 

585-600. Show the user what the parameters are and get the 
user's decision about whether to proceed or not. If not, go back 
to 440. 
440 ? "{ 1 3 5 PAC E 5 } I ii.h\il3!.ii4ii"' :? :? :? 

:GOSUB 905 
445 GOSUB 850:? "What is the name of 

your character{4 SPACES}set? (E 
nter "@" for ROM set)":POKE 764, 
255: INPUT F$ 

450 IF F$="@" THEN 465 
455 FL$=F$:GOSUB 330:0N N GOTO 445:F 

$=FLL$:F$(LEN(FLL$)+1)=".SET" 
460 FL$=F$:GOSUB 395:0N N GOTO 445 
465 GOSUB 840:? ~? "What file should 

hold your finished{3 SPACES}scr 
een? (Eight characters)":POKE 76 
4,255:INPUT FSAVE$ 

470 FL$=FSAVE$:GOSUB 330:0N N GOTO 4 
65:FSAVE$=FLL$:FSAVE$(LEN(FLL$)+ 
1)=".SCR" 

475 FL$=FSAVE$:GOSUB 415:oN N GoTO 4 
65 

480 FLOAD$="":? :? "Would you like t 
o edit a screen you{3 SPACES}hav 
e already saved? (Y or N) 

485 GOSUB 785:oN N=35 GoTO 535:oN N= 
43 GOTO 490:GOTo 485 

490 ? :? "What is the name of the sa 
ved screen file? ":POKE 764,255 
:INPUT FLoAD$ 

495 FL$=FLOAD$:GOSUB 330:oN N=0 GO TO 
500:GOTo 480 

500 FLOAD$=FLL$:FLoPD$(LEN(FLL$)+1)= 
".SCR" 

505 FL$=FLOAD$:GoSUB 395:oN N GOTo 4 
80:0PEN #1,4,0,FLoAD$:GET #1,MD: 
GET #l,WD:GET #1,LN:CLoSE #1:FLO 
AD=1 

510 IF MD)5 THEN MD=MD-10:WD=WD+256 
515? :?·FLOAD$;" was saved as:":? " 

144 

Mode ";MD;",":? "with ";LN;" lin 
es":? "of ";WD;" characters per line." 

-



5 

520 ? "I f you w ish t 0 til rei -tag the s e p 
arameterspress RETURN.":? "To Ie 
ave them (I .. t"ij¥',UTIft press any 
{5 SPACES}other key." 

525 ON PEEK(753) <> 3 GOTO 525:GOSUB 7 
85:IF N=12 THEN 540 

530 MODE=MD:WIDE=WD:LINE=LN:GOTO 585 
535 FLOAD=0 

540 ? :? "What Antic mode will you w 
ork in?":? "(Antic 2, 4 , OR 5) 
:POKE 764,255 

545 GOSUB 785:0N N<> 30 AND N<>24 AND 
N<>29 GOTO 545 

550 MODE=C(N)-16 
555 ? :? "How wide a line?":?" (Mi 

nimum 40 characters":? " 
(3 SPACES}maximum ";170+170*(MOD 
E=5);" characters)" 

560 POKE 764,255:TRAP 560: INPUT WIDE 
:WIDE=INT(WIDE):ON WIDE<40 OR WI 
DE > 170 GOSUB 790 

565 ? :? "How many lines do you want 
to edit?{5 SPACES}(Minimum ";12 

+12*(MODE < >5);:? "(3 SPACES}Maxi 
mum"; INT (4096/WIDE);")" 

570 TRAP 570:INPUT LINE 
575 LINE=INT(LINE):IF LINE>INT(40961 

WIDE) THEN LINE=INT(4096/WIDE) 
580 IF LINE<12+12*(MODE=4) THEN LINE 

=12+12*(MODE=4) 
585? "{CLEAR}":? "You have chosen:" 

:? "Character set--";F$:? "Save 
file--";FSAVE$:? "Load file--";F 
LOAD$ 

590 SZ=LINE*WIDE-1:? "Mode ";MODE:? 
LINE;" lines of ";WIDE;" charact 
ers" 

595? "If this is right , press i#ti':1:11 
{9 SPACES}To make changes, press 

tll:tll CI]: 11 

600 ON (PEEK(53279)=6)+(2*(PEEK(5327 
9)=3» GOTO 605,440:GOTO 600 

Initialization. A is the old top of memory; TOP is the new 
top of memory; CHBAS is the page number of the character set; 
CH is the absolute address of the character set; SP is the page 

145 



5 

number of the start of screen memory; SC is the absolute address 
of the start of screen memory; and OLDCHBAS is the ROM char
acter set page number. (ICCOM, ICBADR, and ICBLEN are 
explained in the notes for lines 20-35.) 

605. Move memory down by 24 pages (6K) to reserve space 
for screen memory, the character set, the display list, and other 
protected data. Set addresses . 

610-615. Print the wait message. If the user specified the 
ROM character set (I/@I/), skip to 630. 

620-625. Use a machine language routine to read the char
acter set from disk and load it at CH. 

630. Turn off the screen, run the setup subroutines, and jump 
to the main loop at 120. 
605 A=PEEK(106):TOP=A-24:CHBAS=TOP:C 

H=CHBAS*256:SP=TOP+8:SC=SP*256:P 
OKE 106,TOP:OLDCHBAS=224:GRAPHIC 
S 0 

610 ? "Just a minute while I get mys 
elf{6 SPACES}together . 

615 IF F$="@" THEN CHBAS=224:CH=CHBA 
S*256:GOTO 630 

620 OPEN #1.4,0,F$:POKE ICBADR+X+l,C 
HBAS:POKE ICBADR+X,0:POKE ICBLEN 
+X+l,4:POKE ICBLEN+X,0 

625 POKE ICCOM+X,7:C=USR(ADR("hhhDLV 
~" ) , X) : CLOSE # 1 

630 POKE 559,0:GOSUB 640:GOSUB 655:G 
OSUB 810:GOSUB 635:0N FLOAD GOSU 
B 650:GOSUB 925:GOTO 120 

Set CHBAS Subroutine. Tell the operating system where the 
character set is. 
635 POKE 756,CHBAS : RETURN 

Clear Memory Subroutine. Machine language routine to fill 
screen memory with zeros. (Anything in brackets should be 
entered with the CONTROL key depressed.) 
640 OPEN #1,4 , 0 , "Dl:CLEAR.SUB":FOR I 

=1 TO 33:GET #1,N:CLEAR$(I , I)=CH 
R$(N):NEXT I:CLOSE #1 

645 C=USR(ADR(CLEAR$),SP,X):RETURN 

Load FLOAD$ Subroutine. Set FL$ TO FLOAD$ and run the 
Display Load Subroutine at 20. 
650 T=SZ:FL$=FLOAD$:GOSUB 20:SZ=T:RE 

TURN 

146 



5 

Display List Subroutine. DL is the address of the display list; 
DL4 + 256*DL5 is the address of the first screen memory address 
instruction in the display list; MENU is the address of the 
keyboard layout display; DLMEN is the display list instruction 
giving the low byte of the address of the keyboard layout display; 
DISPLAY is the address of the machine language scroll subrou
tine; WHI is the high byte of WIDE; WLO is the low byte of 
WIDE. 

655-665. Set up the display list for screen memory. 
670-675. Set up the display list for the keyboard layout 

display window. 
680-700. End the display list; load the scrolling subroutine 

from disk to DISPLAY; set up the parameters DISPLAY will use 
(WHI and WLO); and POKE the address of the display list into 
locations 560 and 561. 

655 DL=256*(TOP+4):DL4=DL+4:DL5=DL+5 
:FOR 1=0 TO 2:POKE DL+I,112:NEXT 

I:PIX=0:N=0 
660 FOR I=DL+3 TO DL+27+36*(MODE<>5) 

STEP 3:C=SC+N*WIDE:POKE I,64+MO 
DE:POKE 1+2,INT(C/256) 

665 POKE l+l,C-256*PEEK(I+2):N=N+l:N 
EXT I 

670 N=0:MENU=256*(TOP+5)+64:DLMEN=DL 
+32+36*(MODE<>5):POKE DLMEN-2,MO 
DE+64:POKE DLMEN,INT(MENU/256) 

675 POKE DLMEN-l,MENU-256*PEEK(DLMEN 
):FOR I=DLMEN+l TO DLMEN+3:POKE 
I,MODE:NEXT I 

680 POKE 1,65:POKE l+l,0:POKE 1+2,DL 
1256:0PEN #1,4,0,"D:DISPLAY.SUB" 

685 DISPLAY=DL+128:TRAP 690:FOR 1=0 
TO 186:GET #l,N:POKE DISPLAY+I,N 
:NEXT I:GOTO 695 

690 POP 
695 WHI=INT(WIDE/256):WLO=WIDE-256*W 

HI:POKE DL+112,WLO:POKE DL+113,W 
HI 

700 POKE 560,0:POKE 561,DL/256:CLOSE 
#l:RETURN 

Stop Edit Subroutine. This routine begins by executing the 
Display Save Subroutine at 20, restoring the ROM character set, 
and changing to GRAPHICS O. Then the user decides whether to 
change the name of "Dl:TEMPFILE.SCR" to FSAVE$, whether to 

147 



5 

quit or not, and whether to return to edit the same screen or start 
Fontbyter over. 

705-740. Save the screen and get the user's choices. 
745. Restore the old top of memory and start the program 

over. 
750-755. Return to edit the same screen. The flag FSAVE tells 

whether the screen is on disk as IDl:TEMPFILE.5CR" or FSAVE$. 
760. Restore the top of memory, clear the keyboard buffer, 

and quit. 
765-780. Check to see if a file named FSAVE$ is already on the 

disk. If it is, unlock it and erase it. Then change the name of 
"Dl:TEMPFILE.5CR" to FSAVE$. 

705 POKE SC+PIX,OLD:GOSUB 40:POKE 75 
6,OLDCHBAS:GRAPHICS 0:POKE 764,255 

710 ? "Screen is saved as D1:TEMPFIL 
E.SCR":? :? "Do you want to save 
the screen as":? FSAVE$;"? (Y 0 

r N)" 
715 GOSUB 785:0N N<>43 AND N<>35 GOT 

o 715:IF N=43 THEN GOSUB 765:GOT 
o 725 

720 FSAVE=0 
725 ? :? "Do you want to quit? (Y or 

N)":POKE 764,255 
730 GOSUB 785:0N N<>43 AND N<>35 GOT 

o 730:0N N=35 GOTO 735:0N N=43 G 
OTO 760 

735 ? :? "To return to edit the same 
s c r e en, {4 SPA C E S } pre s s [Il :Jj. (11: " : 

? :? "To start FONTBYTER over, p 
r ess j#jii:l;ln" 

740 OPT=PEEK(53279):ON «OPT=6)+(2*( 
OPT=3») GOTO 745,750:GOTO 740 

745 POKE 106,A:GRAPHICS 0:GOTO 10 
750 POKE 106,TOP:GOSUB 635:FL$="D1:T 

EMPFILE.SCR":IF FSAVE=1 THEN FL$ 
=FSAVE$ 

755 GOSUB 20:GOSUB 655:GOTO 120 
760 POKE 106,A:POKE 764,255:GRAPHICS 

0:END 
765 FSAVE=1:TRAP 770:0PEN #2,4,0,FSA 

VE$:CLOSE #2:XIO 36,#2,0,0,FSAVE 
$:XIO 33,#2,0,0,FSAVE$:GOTO 775 

770 CLOSE #2 
775 FL$="D1:TEMPFILE.SCR,":FLL$=FSAV 

E$(4,LEN(FSAVE$}}:FL$(17}=FLL$ 
780 XIO 32,#1,0,0,FL$:RETURN 

148 



5 

Keycode Subroutine. Read the keyboard buffer at 764. Cis 
the actual key combination, and N is the key pressed, regardless 
of the CONTROL and SHIFT keys. 
785 C=PEEK(764):N=C-64*INT(C/64):RET 

URN 

Test WIDE Subroutine. Check to make sure WIDE is within 
the legal range . 
790 IF WIDE<40 THEN WIDE=40:RETURN 
795 IF WIDE>170 AND MODE <> 5 THEN WID 

E=170:RETURN 
800 IF WIDE < 340 THEN RETURN 
805 WIDE=340:RETURN 

Load DELETE$ and EXPAND$. Read these two machine 
language subroutines from disk files "Dl:DELETE.SUB" and 
"Dl:EXPAND.5UB': and store them as strings DELETE$ and 
EXPAND$. 
810 TRAP 815:0PEN #1,4,0,"D:DELETE.S 

UB":FOR 1=1 TO 124:GET #1,N:DELE 
TE$(I,I)=CHR$(N):NEXT I:GoTo 820 

815 POP 
820 CLOSE #1:WHI=INT(WIDE/256):WLo=W 

IDE-256*WHI 
825 TRAP 830:oPEN #1,4,0,"D:EXPAND.S 

UB":FoR 1=1 TO 124:GET #l,N:EXPA 
ND$(I,I)=CHR$(N):NEXT I:GOTO 835 

830 POP 
835 CLOSE #1:RETURN 

Get Directory Subroutine. Get a directory of disk files with a 
particular extender and display it. Entry point 840 gets a directory 
of SCReen files, and entry point 850 gets a directory of character 
SETs. 
840 TRAP 865:XIo 36,#1,0,0,"D:*.SCR" 
845 ? :? "Cur-r-ently saved scr-een fil 

es:":FLL$="SCR":GOTO 860 
850 TRAP 865:XIO 35.#1,0,0,"D:*.SET" 
855 ? :? "Cur-r-ently available char-ac 

ter- sets:":FLL$="SET" 
860 FL$="Dl:*.":FL$(LEN(FL$)+I)=FLL$ 

:OPEN #1,6,0,FL$:FOR 1=0 TO 50:1 
NPUT #l,FLL$:? FLL$:NEXT I 

865 CLOSE #l:RETURN 

Quick Scroll Subroutine. This routine eliminates the cursor 
and reads the joystick to determine the direction of the scroll. It 

149 



5 

does not change screen memory, only the area of screen memory 
being read by the display list. Pressing START ends this routine. 
870 GOSUB 920:POKE SC+P1X,OLD:GOTO 8 

95 
875 WV=2*«D1=5)+(D1=13)+(D1=9»+(D1 

=10)+(DI=6)+(D1=14):WH=2*(D1<8 A 
ND D1>4)+(D1(12 AND D1>8) 

880 W=(PEEK(DL4)+256*PEEK(DL5»-SC:U 
=1NT(W/W1DE):WV=WV-(U=0 AND WV=1 
)-2*«U+7+12*(MODE<>5)=LINE-2) A 
ND WV=2) 

885 L=W-(U*W1DE):WH=WH-(L=0 AND WH=1 
)-2*«L+40)=WIDE AND WH=2) 

890 POKE DL+114,WH:POKE DL+115,WV:C= 
USR(DISPLAY) 

895 IF PEEK(53279)<>6 THEN DI=PEEK(6 
32):ON D1<>15 GOTO 875:GOTO 895 

900 P1X=PEEK(DL4)+256*PEEK(DL5)+(6+6 
*(MODE<>5»*W1DE+20:0LD=PEEK(PIX 
):PIX=P1X-SC:RETURN 

Keycode Array Subroutine. This routine creates an array 
C(n) such that in each array element C(X), X is the keyboard code 
read from 764 and C(X) is the internal character code value for the 
key depressed. The values are read from the disk file 
"Dl:CHARDATA. DAT". 

905 OPEN #4,4,0,"D:CHARDATA.DAT" 
910 FOR 1=0 TO 255:GET #4,N:C(1)=N:N 

EXT I 
915 CLOSE #4:RETURN 

Delay Subroutine. This routine sounds the console buzzer 
and takes up time, so that users have time to lift their fingers from 
the keyboard to avoid repeating a command. 
920 FOR 1=0 TO 10:POKE 53279,4:NEXT 

I:RETURN 

Load Keyboard Display. This routine sets up the keyboard 
display on the bottom four lines of the screen. If the routine is 
entered at line 930, it causes the currently available character 
group (MENS H) to be displayed. 
925 OPEN #1,4,0,"D:MENU.DAT":FOR 1=4 

TO 483:GET #1,N:POKE MENU+I,N:N 
EXT 1:CLOSE #1 

930 MENSH=MENU+160*1NT(SHIF/64):POKE 
DLMEN,INT(MENSH/256):POKE DLMEN 

-1,MENSH-256*PEEK (DLMEN):RETURN 

150 



5 

Compile Fontbyter 
Fontbyter will run much more quickly if the BASIC program is 
compiled. Program 8 is listed here for those users who wish to 
make a compiled version. If the lines from Program 8 are added to 
or substituted for lines in Fontbyter, the program will compile 
using Monarch Data Systems' ABC Compiler. 

Program 2. Machine Language Scrolling Subroutine 
900 OPEN #1,8,0,"Dl:DISPLAY.SUB" 
910 FOR 1=1 TO 186:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
1000 DATA 104,173,49,2,133,206,133,2 

13 
1008 DATA 173,48,2,105,3,133,205,105 
1016 DATA 109,133,212,162,0,161,205, 

41 
1024 DATA 191,133,207,230,205,161,20 

5, 133 
1032 DATA 203,160,1,177,205,133,204, 

200 
1040 DATA 177,212,240,34,201,2,208,1 

6 
1048 DATA 24,165,203,105,1,133,203,1 

65 
1056 DATA 204,105,0,133,204,24,144,1 

4 
1064 DATA 56,165,203,233,1,133,203,1 

65 
1072 DATA 204,233,0,133,204,24,160,3 
1080 DATA 177,212,240,42,201,2,208,1 

9 
1088 DATA 24,165,203,160,0,113,212,1 

33 
1096 DATA 203,200,165,204,113,212,13 

3,204 
1104 DATA 24,144,19,56,165,203,160,0 
1112 DATA 241,212,133,203,165,204,20 

0,241 
1120 DATA 212,133,204,24,144,0,160,8 
1128 DATA 165,207,201,5,240,2,160,20 
1136 DATA 162,0,165,203,129,205,230, 

205 
1144 DATA 165,204,129,205,132,207,24 

, 165 
1152 DATA 203,160,0,113,212,133,203, 

165 
1160 DATA 204,200,113,212,133,204,23 

0,205 

151 



5 

1168 DATA 230,205,164,207,136,208,21 
9,165 

1176 DATA 203,129,205,230,205,165,20 
4,129 

1184 DATA 205,96 

Program 3. Machine Language Line Insert Subroutine 
900 OPEN #1,8,0,"Dl:EXPAND.SUB" 
910 FOR 1=1 TO 122:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
1000 DATA 104,166,207,169,0,165,209, 

240 
1008 DATA 29,160,255,177,203,145,205 

,136 
1016 DATA 208,249,230,204,230,206,16 

4,208 
1024 DATA 177,203,145,205,136,208,24 

9,198 
1032 DATA 204,198,206,24,144,9,164,2 

08 
1040 DATA 177,203,145,205,136,208,24 

9,202 
1048 DATA 240,29,56,165,205,229,208, 

133 
1056 DATA 205,165,206,229,209,133,20 

6,56 
1064 DATA 16~,203,229,208,133,203,16 

5,204 
1072 DATA 229,209,133,204,24,144,182 

,165 
1080 DATA 209,240,27,160,255,169,0,1 

45 
1088 DATA 203,136,208,251,230,206,23 

0,204 
1096 DATA 164,208,145,203,136,208,25 

1, 198 
1104 DATA 206,198,204,24,144,11,164, 

208 
1112 DATA 240,7,169,0,145,203,136,20 

8 
1120 DATA 251,96 

Program 4. Machine Language Line Delete Subroutine 
900 OPEN #1,8,0,"Dl:DELETE.SUB" 
910 FOR 1=1 TO 122:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
1000 DATA 104,166,207,169,O,165,209, 

240 

152 



1008 DATA 29,160,255,177,205,145,203 
, 136 

1016 DATA 208,249,230,204,230,206,16 
4,208 

1024 DATA 177,205,145,203,136,208,24 
9,198 

1032 DATA 204,198,206,24,144,9,164,2 
08 

1040 DATA 177,205,145,203,136,208,24 
9,202 

1048 DATA 240,29,24,165,205,101,208, 
133 

1056 DATA 205,165,206,101,209,133,20 
6,24 

1064 DATA 165,203,101,208,133,203,16 
5,204 

1072 DATA 101,209,133,204,24,144,182 
,165 

1080 DATA 209,240,27,160,255,169,0,1 
45 

1088 DATA 205,136,208,251,230,206,23 
0,204 

1096 DATA 164,208,145,205,136,208,25 
1, 198 

1104 DATA 206,198,204,24,144,11,164, 
208 

1112 DATA 240,7,169,0,145,205,136,20 
8 

1120 DATA 251,96 

Program 5. Data for Keyboard Display 
900 OPEN #1,8,0,"D1:MENU.DAT" 
910 FOR 1=1 TO 482:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
1000 DATA 0,0,91,0,17,0,18,0 
1008 DATA 19,0,20,0,21,0,22,0 
1016 DATA 23,0,24,0,25,0,16,0 
1024 DATA 28,0,30,0,126,0,0,0 
1032 DATA 0,0,0,0,0,0,0,0 
1040 DATA 0,0,0,127,0,113,0,119 
1048 DATA 0,101,0,114,0,116,0,121 
1056 DATA 0,117,0,105,0,111,0,112 
1064 DATA 0,13,0,29,0,0,0,0 
1072 DATA 0,0,0,0,0,0,0,0 
1080 DATA 0,0,0,0,0;0,97,0 
1088 DATA 115,0,100,0,102,0,103,0 
1096 DATA 104,0,106,0,107,0,108,0 
1104 DATA 27,0,11,0,10,0,0,0 

5 

153 



5 

1112 DATA 0,0,0,0,0,0,0,0 
1120 DATA O,O,O,O,O,O,O,122 
1128 DATA 0,120, O, 99, 0,118, O, 98 
1136 DATA 0,110,0,109,0,12,13,14 
1144 DATA O,15,O,O,O,O,O,O 
1152 DATA 0,0,0,0,0,0,0,0 
116O DATA 0,0,0,0,1,0,2,0 
1168 DATA 3,0,4,0,5,0,6,0 
1176 DATA 7,0,32,0,8,0,9,0 
1184 DATA 125,0,0,0,0,0,0,0 
1192 DATA O,0,0,0,0,0,0,0 
12OO DATA 0,0,0,0,0,49,0,55 
1208 DATA 0,37,0,50,0,52,0,57 
1216 DATA 0,53,0,41,0,47,0,48 

1224 DATA 0,63,0,124,0,0,0,0 
1232 DATA 0,0,0,0,0,0,0,0 
124O DATA 0,0,0,0,0,0,33,0 
1248 DATA 51,O,36,O,38,O,39,O 
1256 DATA 4O,O,42,O,43,O,44,O 
1264 DATA 26,O,6O,O,62,O,O,O 

1272 DATA 0,0,0,0,0,O,O,O 
128O DATA 0,0,0,0,0,0,0,58 
1288 DATA O,56,O,35,O,54,O,34 
1296 DATA O,46,O,45,O,59,O,61 
1304 DATA 0,31,0,0,0,0,0,0 
1312 DATA 0,0,0,0,0,0,0,0 
132O DATA 0,0,0,0,0,0,0,0 
1328 DATA 0,0,0,0,0,0,0,0 
1336 DATA 0,0,0,0,0,0,0,0 
1344 DATA O,0,0,0,0,0,0,0 

1352 DATA 0,0,0,0,0,0,0,0 
136O DATA O,O,O,O,O,81,O,87 
1368 DATA O,69,O,82,O,84,O,89 -1376 DATA O,85,O,73,O,79,O,8O 
1384 DATA O,92,O,93,O,O,O,O 
1392 DATA 0,0,0,0,0,0,0,0 

14OO DATA 0,0,0,0,0,0,65,0 
1408 DATA 83,O,68,O,7O,O,71,O 
1416 DATA 72,0,74,0,75,0,76,0 
1424 DATA 123,O,94,O,95,O,O,O 
1432 DATA 0,0,0,0,0,0,0,0 
144O DATA 0,0,0,0,0,0,0,90 

1448 DATA O,88,O,67,O,86,O,66 
1456 DATA 0,78,0,77,0,64,0,96 
1464 DATA 0,0,0,0,0,0,0,0 
1472 DATA 0,0,0,0,0,0,0,0 
148O DATA O.O 

154 



Program 6. Data for Keycode Array 
900 OPEN #1,8,0,"Dl:CHARDATA.DAT" 
910 FOR 1=1 TO 256:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
1000 DATA 108,106,27,O,O,107,11,10 
1OO8 
1016 
1024 
1032 
104O 

1048 
1056 
1064 
1072 
108O 
1088 
1096 
1104 
1112 
112O 
1128 
1136 
1144 
1152 
116O 
1168 
1176 
1184 
1192 
12OO 
1208 
1216 
1224 
1232 
124O 
1248 

DATA 
DATA 
DATA 
DATA 
DATA 
113 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

111,0,112,117,0,105,13,29 
118,0,99,0,0,98,120,122 
20,0,19,22,91,21,18,17 
12,0,14,110,0,109,15,0 
114,0,101,121,127,116,119, 

25,0,16,23,126,24,28,30 
102,104,100,0,0,103,115,97 
44,42,26,0,0,43,60,62 
47,0,48,53,0,41,63,124 
54,0,35,0,0,34,56,58 
4,0,3,6,0,5,2,1 
59,O,61,46,O,45,31,O 
50,O,37,57,O,52,55,49 
8,O,9,7,O,32,125,O 
38,40,36,O,O,39,51,33 
76,74,123,O,O,75,94,95 
79,O,80,85,0,73,92,93 
86,O,67,O,O,66,88,90 
0,0,0,0,0,0,0,0 
64,O,96,78,O,77,O,O 
82,0~69,89,0,84,87,81 

0,0,0,0,0,0,0,0 
70,72,68,O,O,71,83,65 
0,0,0,0,0,0,0,0 
0,0,0,0,0,0,0,0 
0,0,0,0,0,0,0,0 
0,0,0,0,0,0,0,0 
0,0,0,0,0,0,0,0 
0,0,0,0,0,0,0,0 
0,0,0,0,0,0/0/0 
0,0,0,0,0,0/0,0 

Program 7. Clear Subroutine 
900 OPEN #1,8,0,"Dl:CLEAR.SUB" 
910 FOR 1=1 TO 33:READ N:PUT #1,N:NE 

XT I:CLOSE #1:? I:END 
1000 DATA 104,104,104,133,208,104,10 

4, 101 
1008 DATA 208,133,209,169,O,133,207, 

160 
1016 DATA 255,145,207,136,208,251,14 

5,207 

5 

155 



5 

1024 DATA 230,208,165,208,197,209,20 
8,235 

1032 DATA 96 

Program 8. Altered Lines for Compiler Version 
215 GOSUB 935:RETURN 
275 ON (4*T)+D1 GOSUB 280,285,290,29 

5,300,305,310,320:GOSUB 935:GOTO 
265 

780 POKE 1CCOM+X,32:1=ADR(FL$):POKE 
1CBADR+X+1,1NT(1/256) 

781 POKE 1CBADR+X,1-256*PEEK(1CBADR+ 
X+1):POKE 1CBLEN+X,LEN(FL$):POKE 

1CBLEN+X+1,0 
782 1=USR(ADR("hhhD-V~"),X):RETURN 
920 FOR 1=0 TO 120:POKE 53279,4:NEXT 

I:RETURN 
935 FOR 1=0 TO 60:NEXT I:RETURN 

156 



5 

Saeenbyter 
Carl Zahrt and Orson Scott Card 

Here is an artist's utility that lets YOII create screen displays in any of the 
regular pixel graphics 1I10des-and GRAPHICS "6.5" (XL Mode 14) and 
'7.5" (XL Mode 15) as well . It's sill1ple enough for a child to use. It gives 
you complete control over colO/; l7Iode, and display size . And a special Fill 
Mode lets you draw long lines or fil/large areas with color ill moments. 
"Screenbyter" requires 40K melllory and a disk drive. 

For color graphics, the Atari home computers are superb. 
Creating screen displays from BASIC, page flipping, scrolling, 
redefining characters, continuous memory, and changing from 
mode to mode to get exactly the effect you want-once you've 
worked with graphics on the Atari, most other home computers 
feel a bit confining. 

But that doesn't mean using Atari graphics is easy, especially 
if you want large displays which extend far beyond the edges of 
the TV screen, or detailed drawings that would take hundreds of 
PLOT and DRAWTO statements to create from BASIC. Such 
things take painstaking work on graph paper and many POKEs 
into screen memory-or a good chunk of your paycheck for soft
ware to do it for you. 

I/Screenbyter" takes the pain out of creating beautiful 
graphics displays. 

• You can work in any of the non-GTIA pixel modes . 
• You have access to GRAPHICS 1/6.51/ and 1/7.5/1 pixel modes 

that cannot be used with a simple GRAPHICS statement. 
• You can type RUN and start drawing with the joystick-no 

programming experience is needed. 
• You can fill in large areas quickly and easily. 
• Since the main action of the program is in machine 

language, it moves very quickly, but a Slow Mode is 
provided so you can do detail work, pixel by pixel. 

• You can change screen colors with the joystick. 
• You aren't always limited by the size of the screen. In 

GRAPHICS 3 you can create scrolling displays many times 

157 



5 

larger than the TV screen, and all the modes except 7.5 and 
8 allow some scrolling. 

• When you save a display to disk, all the parameters
mode, size, and colors-are saved with the screen data, so 
that you can load them directly into your own programs. 

Using Screenbyter 
Setup. Screenbyter begins by displaying a directory of all files 

on the disk with the extender ".PIX': This extender is automati
cally added to all files created by Screenbyter. If no directory 
appears, there are no previously saved files on the disk. 

"What file should hold your finished screen? (Eight charac
ters):' Respond to this prompt by giving the filename you want 
your new display to have, when you save it at the end of the 
editing session. Screenbyter automatically removes everything 
before a colon or after a period and replaces the characters with 
"Dl:" and ".PIX': so that you need to enter only the eight-letter 
filename. If you use illegal characters, Screenbyter will ask you to 
try again; if you use more than eight characters, only the first 
eight characters will be used. 

If the name you enter is the name of a file already on disk, 
Screenbyter will remind you of that. To change the name, press 
RETURN. Or, if you want your new display to overwrite the old 
file, press any other key to go on. 

"Would you like to edit a screen you have already saved? (Y 
or N)". If you answer Y, Screenbyter asks you for the name of the 
saved file. If the file is not on disk in the form "Dl:filename.PIX': 
Screenbyter will tell you and ask you to insert the correct disk or, if 
you wish, ask you again if you want to edit a previously saved 
screen. 

Once the file is found, Screenbyter reads the first four bytes 
of the file to get the mode number, the number of bytes per line, 
and the number of lines in the display as it was saved. Press 
RETURN if you want to change these parameters. Press any other 
key to leave them the same. 

Changing the parameters can have interesting effects . 
Remember that four-color modes all read the bytes the same way; 
if you want to draw your displays in GRAPHICS 3 (ANTIC 8) and 
then display them in a higher four-color mode, you can. 
Changing the length of a file either chops off the bottom or adds 
blank lines at the bottom of the display. Changing the line width, 
however, will usually result in garbage, since the vertical relation-

158 



5 

ships will all be changed. The option is included, however, 
because sometimes garbage can be fun, and who are we to forbid 
you to change the line width just because we can't think of a 
reason for doing it? 

If you are not editing a previously saved display; or if you are 
changing the parameters, you get the following series of prompts: 

"What Antic mode will you work in?" This prompt is 
followed by a table, which lists the eight ANTIC pixel modes and 
their graphics mode equivalent. ANTIC 8, for instance, is 
GRAPHICS 3; ANTIC F (15) is GRAPHICS 8. Two ANTIC modes, 
C (12) and E (14), have no graphics equivalent-they are the 
famous "GRAPHICS 6.5" and "GRAPHICS 7.5:' (See Table 1.) 
Enter the ANTIC mode number: 8, 9, A (10), B (11), C (12), D (13), 
E (14), or F (15). 

"How wide a line? (Minimum 1111 byte, maximum 1111 bytes)." 
Depending on the mode you choose, Screenbyter will give you 
minimum and maximum number of bytes per line. Remember 
that in the four-color modes, each byte is four pixels, while in the 
two-color modes, each byte is eight pixels. The minimum is based 
on the minimum number of bytes required to fill the screen. The 
maximum is based on the widest possible line that will allow the 
display to fit within 4K. If you enter numbers outside the legal 
range, Screenbyter will select the minimum or maximum, as 
appropriate. 

With ANTIC E and F, the minimum and maximum are the 
same-you have no option, so any number you enter will result 
in the same number of bytes per line. This is because these two 
modes will not scroll-they both require more than 4K. Scrolling 
a screen that crosses a 4K boundary requires elaborate arrange
ments of screen memory that were beyond the scope of this 
program. Displays created in E and F will take up 65 sectors on 
disk; all other displays will take up 33 sectors or fewer. 

"How many lines do you want to edit? (Minimum 1111, 

maximum 1111 r The minimum and maximum depend on the 
mode and the number of bytes per line already selected. Again, if 
you choose parameters outside the legal range, Screenbyter will 
select the minimum or maximum. And if you choose the 
maximum number of bytes per line, only the minimum number of 
lines per screen will be possible. 

When all selections have been made, you are given one last 
chance to change your mind. All the parameters you chose are 

159 



5 

displayed on the screen. If these are correct, press START, and the 
program will go on. If you want to make changes, press OPTION 
and the program will start over. 

Waiting. What's going on while you wait? Screenbyter config
ures the memory to reserve 10K (40 pages) at the top of memory to 
hold screen memory (up to 8K), the display list, and the machine 
language routine that actually puts your drawing on the screen. 
Screen memory is cleared and the machine language routines are 
loaded. If you chose to edit a previously saved screen, it is loaded 
into memory now. All this takes about six seconds. The rest of the 
time is spent writing the display list. The higher the ANTIC 
mode, the longer it takes to write the display list-ANTIC F 
requires about 200 POKEs in BASIC, plus the calculations to find 
out what numbers to POKE, and it can take as long as 20 seconds. 

When Screenbyter is ready for you to edit, there will be a 
cursor in the upper-left-hand comer. 

Moving the cursor. The joystick controls the cursor. 
Drawing a line. Hold down the joystick button to draw; let it 

up to move the cursor without drawing. 
Selecting a color. Press 1 or SHIFT-CAPS/LOWR to select 

Color 1. Press 2 or CONTROL-CAPS/LOWR for Color 2. Press 3 
or SHIFT-CONTROL-CAPSILOWR for Color 3. Press 0 or CAPSI 
LOWR to select the background color. Drawing in the background 
color has the effect of erasing. 

Color Mode. To change the actual colors that are displayed 
by Colors 1,2, or 3, or the background color, press START. You 
will hear a buzz, and the cursor will no longer respond to the 
joystick. Instead, moving the joystick will change the colors 
displayed on the screen. Moving the joystick up or right will 
change the color from darker to brighter, then jump to the darkest 
value of the next color. Moving the joystick down or left will 
change the color from brighter to darker, then jump to the 
brightest value of the next color. 

To change the background color, move the joystick forward 
or back; to change Color 3, move the joystick left or right. To 
change Color 2, move the joystick forward or back with the button 
pressed; to change Color I, move the joystick left or right with the 
button pressed. 

To return to Cursor Mode, press START again. No other 
commands will work during Color Mode. 

Slow Mode. Press the space bar to enter Slow Mode. A delay 
loop in the program makes the cursor move much more slowly 

160 



5 

around the screen, with a click between moves. This mode allows 
you to create details. To return to Fast Mode, press the space bar 
again. 

Fill Mode. Press the inverse key (Atari logo key) to enter Fill 
Mode. A low hum will come from the television. In this mode, 
when you press the joystick button, Screenbyter draws a dot of 
the selected color at the current cursor location, as usual, but it 
also searches to the right along the same line. If it finds another 
dot of the same color before it reaches the end of the line, it will fill 
in all the area between that dot and the current cursor position 
with dots of the same color. If no dot of the same color is found, 
no fill operation is performed. 

This allows you to fill large or small areas of the screen with a 
single color. Simply draw the right-hand edge of the figure first; 
then enter Fill Mode and draw the left-hand border. It takes some 
practice to use this function without accidentally erasing parts of 
your screen, but you will probably find that this is the most useful 
feature of Screenbyter. 

To exit Fill Mode, press the inverse key again. The hum will 
continue as long as you are in Fill Mode, and will stop only when 
you leave. 

Insert a line. Press SHIFT-INSERT to insert a line at the 
current cursor position. The bottom line of the display will be 
pushed down and lost. 

Delete a line. Press SHIFT-DELETE to delete the current 
cursor line. A blank line will be added at the bottom of the display. 

Clear the screen. Press CONTROL-SHIFT-CLEAR to 
completely erase the screen. If you haven't already saved the 
display, it will be lost. 

Saving the screen. Press SELECT to save the screen without 
ending the editing session. The current screen display will be 
saved as "Dl:TEMPFILE.PIX'~ You can save as often as you like; 
Screenbyter will simply overwrite any existing TEMPFILE.PIX 
file. 

Ending the editing session. Press OPTION to save the screen 
and end the editing session. (To exit without saving, press 
RESET.) The display will be saved as "Dl:TEMPFILE.sCR" Then 
the regular GRAPHICS 0 screen will return, and you will be given 
several prompts: 

"Do you want to save the screen as Dl:filename.PIX? (Y or Nt 
If you answer N, the saved display will be left as TEMPFILE.PIX. 
If you answer Y, Screenbyter will erase any existing file that has 

161 



5 

the same filename. Then Screenbyter will rename TEMPFILE.PIX 
with the filename you chose. 

"Do you want to quit? (Y or Nt If you answer Y, Screenbyter 
will restore the old top of memory and exit to BASIC. If you 
answer N, you will get another prompt. To return to edit the 
screen you just left, press OPTION. That display will be reloaded 
into memory, the display list will be rewritten, and you can start 
over. To edit an entirely new screen, or to change the name of the 
save file, press START. In effect, Screenbyter will then start over. 

What's Going On inside Screenbyter? 
Like everything else in a computer, your display exists as a series 
of numbers stored in binary form in memory locations in the 
computer. The ANTIC chip scans screen memory as it is 
instructed to do by the display list. But it doesn't read the 
numbers as numbers. Instead, it reads them as patterns of "on" 
and "off" bits. 

Four-color modes. In the four-color modes, each byte is read 
as code for four pixels. The eight-bit binary number is treated as 
four bit-pairs: 

00 00 00 00 
Each bit-pair provides the code for one pixel, or rectangle of color 
on the screen. In GRAPHICS 3, each pixel is the size of a character 
in GRAPHICS O.In GRAPHICS 7.5, each pixel is one scan line 
high and two color clocks wide, which gives very good resolution. 
But all four-color modes read the bit-pairs the same way. 

00 means to display the background color (the color code 
stored at location 712). 

01 means to display Color 1 (the color code stored at location 
708). 

10 means to display Color 2 (the color code stored at location 
709). 

11 means to display Color 3 (the color code stored at location 
710). 

This means that the number 216 (binary 11011000) is treated as 
four pixel-color instructions: The first pixel is Color 3, the second 
pixel is Color 1, the third pixel is Color 2, and the last pixel is the 
background color. 

Two-color modes. The two-color modes treat each bit as a 
separate pixel instruction, so that each byte controls eight pixels. 
An "on" bit, or I, is read as a Color 1 instruction, while an "off" bit, 
or 0, is read as a background color instruction. In a two-color 

162 



5 

mode, the number 216 would be treated as eight pixel-color 
instructions: Two "on" pixels, one "off" pixel, two more "on" 
pixels, and three "off" pixels. (See Table 1 for a listing of all the 
modes.) 

Table 1. Pixel Modes 

ANTIC mode 8 9 A (10) B (11) C (12) 0(13) E(14) F (15) 
Graphics mode 3 4 5 6 7 8 
Colors 4 2 5 2 2 4 4 2 
Resolution 24 x 48x 48x 96 x 192 x 96 x 192 x 192 x 

40 80 80 160 160 160 160 320 
Memory, bytes 240 480 960 1920 3840 3840 7680 7680 

(sectors) (3) (5) (9) (17) (33) (33) (65) (65) 

Lines/screen 24 48 48 96 192 96 192 192 
ByteslIine 10 10 20 20 20 40 40 40 
Bits/pixel 2 1 2 1 1 2 2 1 
(Pixelslbyte) (4) (8) (4) (8) (8) (4) (8) (4) 
Scan lines/pixel 8 4 4 2 1 2 1 1 
Color clocks/ 

pixel 4 2 2 1 1 1 1 1/2 

Note: ANTIC C (12) and E (14), the two "hidden" pixel modes, provide the same resolution. 
All the other pixel modes attempt to create as square a pixel as the TV screen allows-the 
same number of color clocks wide as scan lines high. C and E, however, are twice as wide 
as they are high, making each pixel very short and wide. They come very near the 
resolution of ANTIC F (GRAPHICS 8). The advantages are that, compared to F, C uses 
half the memory and E allows four colors. 

Moving around the screen. Moving the cursor around the 
screen, then, isn't simply a matter of moving from one byte to the 
next in screen memory. Screenbyter also has to move from bit to 
bit or from bit-pair to bit-pair within the bytes. This can be done in 
BASIC by adding or subtracting values, but it is very slow. 
Machine language, however, has powerful commands that make 
it easy to move from bit to bit. DRAWTO and PLOT commands 
do these manipulations for you, but since Screenbyter is circum
venting the BASIC graphics commands entirely, the main 
drawing operations are executed in machine language. 

To understand what Screenbyter is doing, you need to 
understand a few machine language commands: EOR, ORA, and 
AND. The two OR instructions and the AND instruction are not 
the same as the AND and OR you use in Atari BASIC. In machine 
language, these are operations on the bits of an eight-bit number, 
and are often called ''bitwise'' AND and OR to help keep the 
difference in mind. 

163 



5 

All three operations compare two numbers, one stored in the 
accumulator and another somewhere else in memory. The opera
tion results in a third number, which is stored in the accumulator 
in place of the number that was already there. 

AND, referred to as ''bitwise AND;' compares the two 
numbers, bit by bit. Any bit that is on in both numbers stays on in 
the resulting number. All other bits are htrned off. In other words, 
only bits that are on in the first number and in the second number 
remain on in the result. 

10010110 
AND 11110000 

results in 10010000 

ORA, referred to as "bitwise OR;' compares the two 
numbers, but in this case any bit that is on in either number stays 
on in the result: 

ORA 
results in 

10010110 
11110000 
11110110 

EaR, referred to as "exclusive OR;' compares the two 
numbers, and any bit that is on in one and only one number is left 
on in the result. Any bit that is on in both numbers or off in both 
numbers is off in the result: 

10010110 
EOR 11110000 

results in 01100110 

How do these actually work, in practice? 
Screenbyter maintains several masks. The Color Mask is in 

page six, at memory location 1692 ($069C). This byte is set from 
BASIC whenever the color is changed, and it is set so that every 
bit or bit-pair represents a pixel of the selected color. If the back
ground color is selected, the Color Mask is 00000000. If Color 1 is 
selected, the Color Mask is 01010101. For Color 2, the Color Mask is 
10101010, and for Color 3 it is 11111111. With two-color modes, the 
Color Mask is either 00000000 or 11111111. 

The Cursor Mask is kept at location 1696 ($06AO) . It is set to 
represent the current cursor pixel within the cursor byte. The bits 
in the current pixel are on; all others are off. In four-color modes, 
if the cursor is in the leftmost pixel of the cursor byte, the Cursor 
Mask will be set to 11000000; if it is in the rightmost pixel, the 
mask will be set to 00000011. The two middle pixels are 00110000 

164 



5 

and 00001100. In two-color modes, a single "on" bit represents the 
cursor position. 

Whenever you move the cursor left or righ t or diagonally, the 
Cursor Mask is shifted left or right, so that at any given moment 
the Cursor Mask will mark which bit or bit-pair Screenbyter 
should ::hange. 

If you are drawing, Screenbyter first picks up the value of the 
current cursor byte and stores it at 1690 ($069A). Then it picks up 
the Cursor Mask and EORs it with 11111111 (decimal 255). This 
reverses the Cursor Mask-any bit that was on is now off, and 
any bit that was off is now on . 

Let's see that in action in a four-color mode, in which the 
background is black, Color 1 is red, Color 2 is green, and Color 3 is 
blue. The bit-pairs will be separated in these examples, to make it 
easier to keep track of the pixels. 

Cursor Mask 00 11 0000 
EOR 11 11 11 11 

results in 11 00 11 11 (Reverse Cursor Mask) 

Screenbyter then ANDs the Reverse Cursor Mask with the 
number at 1690 ($069A), which in effect makes a hole in the cursor 
position: 

Reverse Cursor Mask 11 00 11 11 
AND 010101 11 

results in 01 00 01 11 
red red red blue 
red red blue 

The two bits in the cursor position will always be turned off. 
Now Screenbyter must prepare the pixel code to go in that 

hole. Screenbyter picks up the Cursor Mask and ANDs it with the 
Color Mask. Since all the bits in the Cursor Mask are off except the 
two bits of the current pixel, the resulting number will have only 
the bits that represent the current color, and only in the pixel posi
tion: 

Cursor Mask 00 11 00 00 
AND Color Mask 10 10 10 10 green green green green 

results in 00 10 00 00 green 

Now we are ready to put the correct pixel code into the hole 
in the current cursor byte. To do this, we bitwise OR the current 
pixel (the one with the cursor byte with a hole in it) we just got 
from the operation before. Remember that with ORA, any byte 

165 



5 

that is on in either or both of the two numbers is on in the result: 

correct pixel 00 10 00 00 
ORA current byte with hole 01 00 01 11 

results in 01 10 01 11 

green 
red red blue 
red green red blue 

The result is then stored in 1690 ($069A), and later in the program 
it is put into screen memory. 

If you are not drawing, but just moving the cursor, the opera
tion is a little different, but AND, EOR, and ORA perform the 
same functions . 

Machine language is so fast that all this seems to happen 
instantaneously. In fact, the only reason the cursor doesn't fly 
around the screen out of control is because Screenbyter keeps 
leaving the machine language routine, returning to BASIC to 
check the keyboard for other commands. Even so, the cursor 
moves so quickly that it has to be slowed down in order to allow 
you to draw details. 

Use of page six. The machine language routine at SCROLL 
uses a field in page six to hold some important variables. The 
memory locations in page six are explained in Table 2. 

Screenbyter Displays in Your Own Programs 
Here are two routines you can add to your own programs, which 
will allow you to load the displays you created with Screenbyter. 
The first routine, Load and Display List, works with any Screen
byter file. However, it sets up a custom display list with individual 
LMS instructions, suitable for scrolling. This makes the set-up 
time rather long. So a Simple Load Routine is also included. It will 
work with any display file that was created using the minimum 
line width and number of lines per screen, except screens created 
in ANTIC C and E (GRAPHICS //6.5// and //7.5//). You cannot use 
it if you intend to scroll horizontally. However, you can use it if 
you intend to scroll vertically or flip pages, and your display was 
created with the minimum line width. 

Both routines will configure memory to protect the screen 
display, read the display parameters from whatever display file 
you choose, and load the file into memory. It uses a load routine 
very similar to the one used by Fontbyter, so we won't explain 
them again here. 

Notice that in loading displays created in ANTIC E (14) and F 
(15) (GRAPHICS 7.5 and 8), the screen display must cross a 4K 

166 



5 

Table 2. Page 6 Memory Locations 

Dec Hex 
1670 0686 

1671 0687 

1672 0688 
1673 0689 

1674-1675 068A-068B 
1676-1677 068C-068D 
1678 068E 

1679 068F 
1680 0690 

1681 0691 
1682 0692 

1683 0693 
1684 0694 

1685 0695 
1686-1687 0696-0697 

1688-1689 0698-0699 

1690 069A 
1691 069B 

1692 069C 
1693 069D 
1694 069E 
1695 069F 
1696 06AO 
1697 06A1 
1698 06A2 

1699 06A3 

1700 06A4 

1701 06A5 

1702-1704 06A6-06A8 

WIDE -1. Used to check for the end of the logical 
line. 
Used in fill routine to keep track of right border 
of fill. 
Cursor location: current byte on logical line. 
Used by the fill routine to hold the pattern of the 
righhnost byte of the fill line. 
LINE -1. Used to check for last line of display. 
Cursor location: current logical line number. 
Bytes per screen line - 1. Used by the scrolling 
routine to check for the end of the screen line. 
Cursor location: current byte on screen line. 
Lines per screen -1. Used by the scrolling routine to 
check for the bottom of the screen display. 
Cursor location: current screen line number. 
Used by the fill routine to hold the pattern of the 
leftrnos t byte of the fill line . 
A temporary holding location. 
Used by the fill routine to hold the real value of 
the byte currently being tested. 
A temporary holding location. 
The current screen starting address (the address 
of the upper-left-hand comer of the screen). 
Cursor location: the address of the current cursor 
byte in screen memory. 
The real contents of the current cursor byte. 
The reverse (cursor display) contents of the 
current cursor byte. 
Color Mask. 
The number of bits per pixel (1 or 2). 
Scroll flag (0 = do not scroll) . 
Fill flag (0 = do not fill). 
Cursor Mask. 
Joystick value. 
Total number of lines per screen. Used in the 
scroll routine to change the correct number of 
LMS instructions in the display list. 
WIDE. Used in the scroll routine to increment 
the LMS addresses in the display list. 
Fill Test Mask. Used in the fill routine to isolate 
and test each pixel until a pixel of the selected 
color is found. 
Starting Fill Test Mask. Either 192 (four-color 
mode) or 128 (two-color mode). 
Machine language jump vector: JMP followed by 
the address of the fill subroutine held in the 
string FILL$. 

167 



5 

boundary line. The ANTIC chip gets fussy at this point, and 
ignores anything after a 4K boundary line until the beginning of 
the line pointed to by the next LMS instruction. Therefore, screen 
memory must be arranged so that the 4K boundary line comes 
right at the end of a line; the display list routine will have set the 
value of Sc, the start of screen memory, so that the 4K boundary 
line will fall right at the end of a line. 

If you have an XL model (600XL, 800XL, 1200XL, 1400XL, or 
1450XLD), ANTIC C and E can be accessed from BASIC using the 
statements GRAPHICS 14 and GRAPHICS 15, respectively. 

Program 1. Load and Display List Routine 
5 CLR :DIM PPB(7),BPL(7),MXW(7),LPS( 

7) ,FL$(20) :FL$="Dl:SHIP.PIX":GOSUB 
4000 

4000 FOR 1=0 TO 7:READ W,N,C,T:PPB(I 
)=W:BPL(I)=N:MXW(I)=C:LPS(I)=T: 
NEXT I 

4005 A=PEEK(106):TOP=A-36:SP=TOP+4:S 
C=SPt256:DL=256*TOP:POKE 106,TO 
P:GRAPHICS 0:PRINT "{CLEAR}" 

4010 X=16:ICCOM=S34: ICBADR=S36: ICBLE 
N=S40:SCON=PEEK(559):K4=4096 

4015 OPEN #1,4,0,FL$:GET #1,M:MS=M-S 
:GET #1,WIDE:GET #I,LLO:GET #1, 
LHI:LINE=LLO+256*LHI:SZ=WIDE*LI 
NE 

4020 FOR I=70S TO 711:GET #1,N : POKE 
I,N:NEXT I:POKE I,N 

4025 SC=SC+«LINE*WIDE»K4)t(K4-INT( 
K4/WIDE)*WIDE):SH=INT(SC/256):S 
L=SC-256*SH 

4030 FOR 1=0 TO 2:POKE DL+I,112:NEXT 
I:N=0 

4035 FOR I=DL+3 TO DL+3*LPS(MS) STEP 
3:C=SC+N*WIDE:POKE I,64+M:T=IN 

T(C/256) 
4040 POKE I+2,T:POKE I+l,C-256*T:N=N 

+l:NEXT I 
4045 POKE I,65:POKE I+l,0:POKE I+2,D 

L/256 
4050 POKE 560,0:POKE 561,DL/256 
4055 POKE ICBADR+X+l,SH:POKE ICBADR+ 

X,SL:POKE ICBLEN+X+l,l+INT(SZ/2 
56):POKE ICBLEN+X,0 

4060 POKE ICCOM+X,7:I=USR(ADR("hhhDL 
V~"),X):CLOSE #l:RETURN 

168 



4065 DATA 2,10,170,24,1,10,85,48,2,2 
0,85,48,1,20,42,96 

4070 DATA 1,20,21,192,2,40,42,96,2,4 
0,40,192,1,40,40,192 

Program 2. Simple Load Routine 
5 CLR :DIM GM(15),FL$(20):FL$="D1:G8 

.PIX":GOSUB 4000 
6 FOR 1=O TO 30000:NEXT 1 
4000 FOR 1=O TO 15:READ N:GM(I)=N:NE 

XT I 
4005 A=PEEK(106):TOP~A-36:SP=TOP+4:S 

C=SP*256:DL=256*TOP:POKE 106,TO 
P: GRAPHICS ~l: PRINT" {CLEAR}" 

4010 X=16:ICCOM=834: ICBADR=836: ICBLE 
N=840:SCON=PEEK(559):K4=4096 

4015 OPEN #1,4,0,FL$:GET #l,M:GET #1 
,WIDE:GET #l,LLO:GET #l,LHI:LIN 
E=LLO+256*LHI:SZ=WIDE*LINE 

4020 FOR 1=708 TO 711:GET #l,N:POKE 
I,N:NEXT I:POKE I,N 

4025 SC=SC+«LINE*WIDE»K~)*(K4-INT( 
K4/WIDE)*WIDE):SH=INT(SC/256):S 
L=SC-256*SH 

4030 GRAPHICS GM(M)+16:IF GM(M)=0 TH 
EN ? "INVALID MODE":RETURN 

4035 DL=PEEK(560)+256*PEEK(561):DL4= 
DL+4:DL5=DL+5:POKE DL4,SL:POKE 
DL5,SH 

4055 POKE ICBADR+X+1,SH:POKE ICBADR+ 
X,SL:POKE ICBLEN+X+1,1+INT(SZ/2 
56):POKE ICBLEN+X,0 

412160 POKE ICCOM+X,7: I=USR(ADR("hhhDL 
V~"),X):CLOSE #l:RETURN 

4065 DATA O,O,O,O,O,O,O,O,3,4,5,6,O, 
7,0,O 

Screenbyter 

5 

After the main listing of the BASIC program, you will find several 
programs to create disk files containing the machine language 
routines used in Screenbyter. If you prefer, you can easily add 
these DATA statements to your program and read them that way, 
or-as I prefer to do-load them into string constants and use 
them that way, without so many disk accesses. However, typing 
in strings that have lots of inverse and control characters in them 
can be tedious and often leads to typing errors, so these DATA 
statements are necessary in the published version of the program. 

169 



5 

If you are also using Fontbyter, you might notice that Screen
byter follows the same structure. That's because Fontbyter was 
used as the starting point, and changed wherever Screenbyter's 
needs were different. However, the line insert, line delete, and 
clear screen machine language routines are not identical, so don't 
try to use the similar Fontbyter routines for Screenbyter-you will 
hopelessly confuse your Atari if you do, and confused Ataris have 
a way of locking up or otherwise expressing their frustration. 

(And an acknowledgment: Our thanks to Steve and Tammy 
Rector at the Computer Shop in South Bend, Indiana, for their 
help in keeping this project from getting lost between Taiwan and 
Greensboro. ) 

Program 3. Screenbyter 
5 DIM FSAVE$(20),FLOAD$(20),FL$C40), 

FLL$(20),DELETE$(118),EXPAND$CI02) 
,N$ (13) ,FILL$ (230) ,CLEAR$ (26) 

10 DIM PPB(7),BPL(7),MXW(7),LPS(7),C 
OL(II),CLC3) 

15 A=PEEK(106):TOP=A-40:SP=TOP+8:SC= 
SP*256:DL=256*TOP:SCROLL=DL+600:P 
OKE 106,TOP 

20 X=16: ICCOM=834: ICBADR=836: ICBLEN= 
840:GRAPHICS 0:SCON=PEEK(559):F=1 
670:1<4=4096:N$="No equivalent" 

25 C=707:FOR 1=0 TO 7:IF I/2=INT(I/2 
) THEN C=C+l:IF C=711 THEN C=712 

30 COL(I)=C:NEXT I:CL(0)=0:CLC1)=85: 
CL(2)=170:CL(3)=255:FMS=ADR("hhhD 
LV~" ) 

35 RESTORE 770:FOR 1=0 TO 7:READ W, N 
,C,T:PPB(I)=W:BPL(I)=N:MXW(I)=C:L 
PSCI)=T:NEXT I:POKE 16,112:GOTO 3 
15 

40 OPEN #1,4,0,FL$:GET #1,MD:GET #1, 
WD:GET #1,LLO:GET #1,LHI:LN=LLO+2 
56*LHI:SZ=WD*LN 

45 FOR 1=0 TO 6 STEP 2:GET #1,N:POKE 
COL(I),N:NEXT I 

50 POKE ICBADR+X+l,SH:POKE ICBADR+X, 
SL:POKE ICBLEN+X+l,1+INTCSZ/256): 
POKE ICBLEN+X,0 

55 POKE ICCOM+X,7:I=USR(FMS,X):CLOSE 
#l:RETURN 

60 OPEN #l,8,0,"Dl:TEMPFILE.PIX":PUT 
#1,M:PUT #1,WIDE:PUT #I,LLO:PUT 

#1,LHI 

170 



65 FOR 1=0 TO 6 STEP 2:PUT #I,PEEK(C 
OLCI»):NEXT I:POKE PEEKCI688)+256 
*PEEKCI689),PEEKCI690) 

70 POKE ICBADR+X+l,SH:POKE ICBADR+X, 
SL:POKE ICBLEN+X+l,I+INTCCLINE*WI 
DE)/256):POKE ICBLEN+X,0 

75 POKE ICCOM+X,II:I=USRCFMS,X):CLOS 
E #1:RETURN 

80 IF C(LINE*WIDE-PIX){WIDE) THEN RE 
TURN 

85 C=USRCADRCDELETES»:POKE 1690,PEE 
KCPEEKCI688)+256*PEEKCI689»:POKE 

53279,4:0N SPEED GOSUB 740:RETUR 
N 

90 IF CCLINE*WIDE-PIX){WIDE) THEN RE 
TURN 

95 T=SC+WIDE*LINE-WIDE-l:C=INT(T/256 
):T=T-256*C:POKE 205,T:POKE 206,C 

100 POKE CPEEK(1688)+256*PEEK(1689» 
.PEEK(1690) 

105 C=USR(ADR(EXPANDS»:POKE 1690,0: 

110 

115 

120 

I ~C LJ 

130 

POKE 53279,4:0N SPEED GOSUB 740: 
RETURN 
POKE 1690,PEEK(SC):POKE 1691,121 
:POKE 559,SCON:OPT=8 
OPT=PEE K(53279):IF OPT=6 THEN GO 
SUB 180:GOTO 115 
N=PEEK(632):C=USR(SCROLL,N):IF N 
{ 15 THEN POKE 77,0:IF SPEED THEN 

GOSUB 740:POKE 53279,4 
IF PEEK(753)=3 THEN GOSUB 140:GO 
TO 115 
ON OPT=3 GOTO 550:IF OPT=5 THEN 
GOSUB 60:GOTO 115 

135 GOTO 115 
140 GOSUB 635:0N (C=116)+2*(C=119)+3 

*(C=246) GOTO 80,90,170 
145 IF N=60 THEN C=C-59:SHIF=INTCC/6 

4):GOSUB 725 
150 IF C=31 OR C=30 OR C=26 OR C=50 

THEN GOSUB 720 
155 IF N=33 THEN SPEED=I*(SPEED=0):G 

OSUB 715 
160 IF N=39 THEN VERS=255*CVERS=0):P 

OKE 1695,VERS:GOSUB 735 
165 RETURN 
170 C=USR(ADR(CLEARS),SP):POKE 1690, 

0:POKE 1691,PEEK(1696):RETURN 
175 GOSUB 715:RETURN 
180 GOSUB 715 

5 

171 



5 

185 DI=PEEK(632):T=PEEK(644):DI=DI+5 
*(DI=7):DI=DI-ll:0PT=PEEK(53279) 
:IF OPT=6 THEN 175 

190 IF DI(0 OR DI ) 3 THEN 185 
195 DI=4*T+DI:IF DI/2=INT(DI/2) THEN 

POKE COL(DI).PEEK(COL(DI»-2+25 
6*(PEEK(COL(DI»(2):GOTO 185 

200 POKE COL(DI),PEEK(COL(DI»+2-256 
*(PEEK(COL(DI» ) 253):GOTO 185 

205 FLL$=FL$:FOR 1=1 TO LEN(FL$):N=A 
SC(FL$(I,I»:ON N=58 GOSUB 245:N 
EXT I:FL$=FLL$ 

210 FLL$=FL$:FOR 1=1 TO LEN(FL$):N=A 
SC(FL$(I,I»:ON N=46 GOSUB 250:N 
EXT I:FL$=FLL$ 

215 IF LEN(FL$»8 THEN FL$=FL$(1.8) 
220 IF LEN(FL$)(1 THEN 265 
225 N=ASC(FL$(I.I»:IF N ) 90 OR N(65 

THEN 260 
230 IF LEN(FL$) ( 2 THEN GOTO 240 
235 FOR 1=2 TO LEN(FL$):N=ASC(FL$(I, 

I) ) : ON (N )9/Z1 OR N( 65) AND (N )57 
OR N(48) GOTO 255:NEXT I 

240 FLL$="Dl:":FLL$(4)=FL$:N=0:RETUR 
N 

245 FLL$=FL$(I+l,LEN(FL$»:RETURN 
250 FLL$=FL$(I.I-l):RETURN 
255 POP :? "{CLEAR}":? "Illegal char 

acters in ";FL$:GOTO 265 
260? "{CLEAR}":? FL$;" must start w 

ith a capital":? "letter.":GOTO 
265 

265? "Let's try that name again.":N 
=1:RETURN 

270 TRAP 275:0PEN #1.4,0,FL$:N=0:CLO 
SE #1:RETURN 

275? :? FL$;" isn't on disk in":? " 
drive I":? "Insert disk with ";F 
L$;"and":? "press RETURN.":CLOSE 

#1 
280 ? "Or to try another file name, 

press anyother key." 
285 ON PEEK(753) (> 3 GOTO 285:GOSUB 6 

35:0N N=12 GOTO 270:N=I:RETURN 
290 TRAP 310:0PEN #l,4,0,FL$:? FL$;" 

is already on disk. ":? "Unless 
you change the name, the old" 

172 



295 ? "file will be lost. To change 
the namepress RETURN":? "Or pre 

ss any other key to continue.":C 
LOSE #1 

300 ON PEEK(753) < >3 GoTo 3 00:GoSUB 6 
35:oN N=12 GoTo 305:N=0:RETURN 

305 N=1:RETURN 
310 CLOSE #1:N=0:RETURN 
315 ? "{CLEAR} {12 SPACES} Ei .. it=X:h1~li4ii" 

:7 :? :? 
320 GoSUB 695:? :';> "What file should 

hold your finished{3 SPACES}scr 
een? (Eight characters)":poKE 76 
4,255:INPUT FSAVE$ 

325 FL$=FSAVE$:GoSUB 205:oN N GO TO 3 
20:FSAVE$=FLL$ : FSAVE$(LEN(FLL$)+ 
1)=".PIX" 

330 FL$=FSAVE$:GoSUB 290:oN N GoTo 3 
20 

335 FLoAD$="":? :? "Would you like t 
a edit a screen you{ 3 SPACES}hav 
e already saved? (Y or N) 

340 GoSUB 6 3 5:oN N=35 GoTo 390:oN N= 
43 GoTo 345:GoTo 340 

3 45 ? :? "What is the name of the sa 
ved scr e en file? " : PoKE 764,255 
:INPUT FL oAD$ 

350 FL$=F L OAD $ : GOS UB 20 5 : oN N=0 GOTO 
355:GoTO 335 

355 FLOAD$=FLL$:FLoAD$(LEN(FLL$)+l)= 
".PIX" 

360 FL$=FLoAD$:GoSUB 270:oN N GoTo 3 
35:oPEN #1 , 4,0,FLoAD$:GET #l,MD: 
GET #l,WD : GET #l,LLo:GET #l,LHI 

365 CLOSE #1:FLOAD=1:LN=LLO+256*LHI 
370? :? FLOAD$;" was saved as:":? " 

Mode ";MD;",":? "with ";LN;" lin 
es":? "of ";WD;" characters per 
line." 

375 ? "I f you w ish t a til *1 .t!E the s e p 
arameterspress RETURN.":? "To Ie 
a vet hem Li htli rei ."Gi¥2f pre 55 any 
{5 SPACES}other key." 

3 80 ON PEE K (753) <>3 GoTO 380:GOSUB 6 
35:IF N=12 THEN 395 

385 M=MD:M8=M-8:WIDE=WD:LINE=LN:GoTO 
445 

390 FLOAD=0 

5 

173 



5 

395 ? :? "What Antic mode will you w 
ark in?":? :? "Antic","Graphics" 
:? 8,3:? 9 ,4 :? "A (10)",5:? "B ( 
11) " , 6 

400? "C (12)",N$:? "0 (13)",7: ? "E 
( 14) " , N$: ? "F (15)", 8: POKE 7 64, 2 
55 

405 TRAP 405:0PEN #1,4,0,"I<:":GET #1 
,N:CLOSE ~1:0N N( 56 OR (N ) 57 AND 

N( 65) OR N ) 70 GOTO 405 

410 M=N - 48:M=M-7*(M ) 9):M8=M-8 
415 ? :? "How wide a line? " :?" (Mi 

nimum ";BPL(M8);" bytes":? " 
{3 SPACES}maximum ";MXW(M8);" by 
tes) " 

420 POKE 764,255:TRAP 4 2 0:INPUT WIDE 
:WIDE=INT(WIDE):GOSUB 640:GOSUB 
745 

425 ? :? "How many lines do you want 
to edit?":? "(Minimum ";LPS(M8) 

;" Maximum ";MXL;")" 
430 TRAP 430:INPUT LINE 
435 LINE=INT(LINE):ON LINE < =MXL AND 

LINE ) =LPS(M8) GOTO 440:LINE=MXL* 
(LINE ) MXL)+LPS(M8)*(LINE ( LPS(M8) 
) 

440 LHI=INT(LINE/256):LLO=LINE-256*L 
HI 

445? "{CLEAR}":? "You have chosen:" 
:? "Save file--";FSAVE$:? "Load 
file--";FLOAD$ 

450? "Mode ";M:? LINE;" lines 
WIDE;" characters" 

455 ? "If this is right, press 
{9 SPACES}To make changes, 

el]:.Ji. (I]: " 

of " . • 
i#Ji .:1:1 .. 
press 

460 ON (PEEI«53279)=6)+(2*(PEE K (5327 
9)=3» GOTO 465,315:GOTO 460 

465 ? "{CLEAR}Just a minute while I 
get myself{6 SPACES}together 

470 SC=SC+( (LINE*WIDE»1<4)*CI<4-INTCK 
4/WIDE)*WIDE):SH=INT(SC/256):SL= 
SC-256*SH 

475 POKE 1670,WIDE-1:POKE 1674,LLO-1 
+256*CLLO=0):PO KE 1675,LHI-CLLO= 
255) 

174 



480 POKE 1678,BPLCM8)-1:POKE 1680,LP 
SCM8)-1:POKE 1692,CL(3):POKE 169 
3,PPBCM8):POKE 1698,LPSCM8):POKE 

1699,WIDE 
485 GOSUB 755:GOSUB 490:GOSUB 505:GO 

SUB 650:GOSUB 530:0N FLOAD GOSUB 
500:GOTO 110 

490 OPEN #l,4,0,"Dl:CLEARS.SUB":FOR 
1=1 TO 26:GET #l,N:CLEAR$CI,I)=C 
HR$CN):NEXT I:CLOSE #1 

495 C=USR(ADR(CLEAR$},SP}:RETURN 
500 T=SZ:FL$=FLOAD$:GOSUB 40:SZ=T:RE 

TURN 
505 DL4=DL+4:DL5=DL+5:FOR 1=0 TO 2:P 

OKE DL+I,112:NEXT I:C=INT(SC/256 
}:N=SC-C*256 

510 FOR 1=1686 TO 1688 STEP 2:POKE 1 
,N:POKE I+l,C:NEXT I:N=0 

515 FOR I=DL+3 TO DL+3*LPS(M8) STEP 
3:C=SC+N*WIDE:POKE I,64+M:T=INT( 
C/256) 

520 POKE I+2,T:POKE l+l,C-256*T:N=N+ 
l:NEXT I 

525 POKE I,65:POKE I+l,0:POKE I+2,DL 
1256:RETURN 

530 OPEN #1,4,0,"D:SCROLL.SUB":N=INT 
(SCROLL/256):C=SCROLL-256*N 

535 POKE ICBADR+X+l,N:POKE ICBADR+X, 
C:POKE ICBLEN+X+l,3:POKE ICBLEN+ 
X,0 

540 POKE ICCOM+X,7:I=USR(FMS,X):CLOS 
E ttl 

545 POKE 560,0:POKE 561,DL/256:CLOSE 
ttl:RETURN 

550 POKE PEEK(1688)+256*PEEK(1689),P 
EEK(1690):GOSUB 60:GRAPHICS 0:PO 
KE 764,255 

555 ? "Screen is saved as Dl:TEMPFIL 
E.SCR":? :? "Do you want to save 
the screen as":? FSAVE$;"? (Y 0 

r N)" 
560 GOSUB 635:0N N<>43 AND N<>35 GOT 

o 560:IF N=43 THEN GOSUB 610:GOT 
o 570 

565 FSAVE=0 
570 ? :? "Do you want to quit? (Y or 

N)":POKE 764,255 
575 GOSUB 635:0N N<>43 AND N< >35 GOT 

o 575:0N N=35 GOTO 580:0N N=43 G 
OTO 605 

5 

175 



5 

580 ? :? "To return to edit the same 
s c r e en, {4 SPA C E S } pre s s (o]:Jij tl(o]: " : 

? :7 "To start SCREENBYTER over, 
pre s s j#Ji ':1 oj ." 

585 OPT=PEEK(53279):ON «OPT=6)+(2*( 
OPT=3») GOTO 59@,595:GOTO 585 

5913 POKE 106,A:GRAPHICS @:GOTO 213 
595 POKE 106,TOP:FL$="Dl:TEMPFILE.Pl 

X":IF FSAVE=1 THEN FL$=FSAVE$ 
6013 GOSUB 755:GOSUB 40:GOSUB 505:POK 

E 56@,0:POKE 561,DL/256:GOTO 1113 
6135 POKE 106,A:POKE 764,255:GRAPHICS 

0:END 
6113 FSAVE=l:TRAP 615:0PEN #2,4,@,FSA 

VE$:CLOSE #2:XIO 36,#2,0,0,FSAVE 
$:XIO 33,#2,0,@,FSAVE$:GOTO 620 

615 CLOSE #2 
6213 FL$="Dl:TEMPFILE.PIX,":FLLS=FSAV 

ES(4,LEN(FSAVES»:FLS(17)=FLLS 
625 XIO 32,#I,@,@,FLS:RETURN 
630 ON PEEK(753)<>3 GOTO 630:RETURN 
635 C=PEEK(764):N=C-64*INT(C/64):RET 

URN 
640 IF WIDE >=BPL(M8) AND WIDE ( =MXW(M 

8) THEN RETURN 
645 WIDE=MXW(M8)*(WIDE ) MXW(M8»+BPL( 

M8)*(WIDE(BPL(M8»:RETURN 
650 OPEN #I,4,@,"D:DELETES.SUB":FOR 

1=1 TO 118:GET #I,N:DELETES(I,I) 
=CHRS(N):NEXT I:CLOSE #1 

665 OPEN #1,4,0,"D:EXPANDS.SUB":FOR 
1=1 TO 102:GET #I,N:EXPANDS(I,I) 
=CHRS(N):NEXT I:CLOSE #1 

680 OPEN #I,4,0,"D:FILL.SUB":FOR 1=1 
TO 230:GET #I,N:FILLS(I,I)=CHRS 

(N) :NEXT I 
690 CLOSE #1:C=ADR(FILLS):N=INT(C/25 

6):C=C-N*256:POKE 1702,76:POKE 1 
7@3.C:POKE 1704,N:RETURN 

695 TRAP 710:XIO 36,#I,l1I ,@,"Dl:*.PIX 

7013 7 :7 "Currently saved screen fil 
es: .. 

705 FLS="Dl:*.PIX":OPEN #I,6,0,FLS:F 
OR 1=0 TO 50:1NPUT #I,FLLS:? FLL 
S:NEXT I 

710 CLOSE #1:RETURN 
715 FOR 1=0 TO 10:POKE 53279,4:NEXT 

I:RETURN 

176 



720 SHIF=(C=31}+2*(C=30}+3*(C=26} 
725 POKE 53279,4:POKE 1692,CL(SHIF}: 

IF PPB(M8}=1 AND SHIF)0 THEN SHI 
F=3:POKE 1692,CL(SHIF} 

730 RETURN 
735 N=(VERS=255}:SOUND 0,200*N,14*N, 

4*N:RETURN 
740 FOR 1=0 TO 10:NEXT I:RETURN 
745 IF BPL(M8}=MXW(M8} THEN MXL=LPS( 

M8}:RETURN 
750 MXL=INT(K4/WIDE} :RETURN 
755 FOR 1=1677 TO 1681 STEP 2:POKE I 

,0:NEXT I:FOR 1=1686 T~ 1688 STE 
P 2:POKE I,SL:POKE I+l.SH:NEXT I 

760 N=128+64*(PPB(M8}=2}:POKE 1696,N 
:POI<E 1701,N 

765 POKE 1672,0:POKE 1676,0:VERS=0:G 
OSUB 735:POKE 1695,VERS:RETURN 

770 DATA 2,10,170,24,1,10,85,48,2,20 
,85,48,1,20,42,96 

775 DATA 1,20,21,192,2,40,42,96,2,40 
,40,192,1, 4~1, 40,192 

Program 4. Insert Line Routine 

9~10 OPEN #1,8,0, "Dl: EXPANDS. SUB" 
910 FOR 1=1 TO 102:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
1000 DATA 104,56,165,205,237,163,6,1 

33 
1008 DATA 203,165,206,233,O,133,204, 

56 
li!116 DATA 173,138,6,237, 140,6, 133,2~1 

7 
li!124 DATA 173,139,6,237,141,6,133,20 

8 
1032 DATA 165,208,240,5,162,255,24,1 

44 
li!14~1 DATA 2,166,207,172, 163,6, 177,2~1 

3 
1048 DATA 145,205,136,208,249,202,24 

0,31 
1056 DATA 56,165,205,237,163,6,133,2 

05 
1064 DATA 165,206,233,O,133,206,56,1 

65 
1072 DATA 203,237,163,6,133,203,165, 

204 

5 

177 



5 

1080 DATA 233,0,133,204,24,144,212,1 
65 

1088 DATA 208,208,206,172,163,6,169, 
o 

1096 DATA 145,203,136,208,251,96 

Program S. Delete Line Routine 
900 OPEN #1,8,0,"D1:DELETES.SUB" 
910 FOR 1=1 TO 118:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
1000 DATA 104,56,173,152,6 , 237,136,6 
1008 DATA 133,203,173,153,6,233,0,13 

3 
1016 DATA 204,24,165,203,109,163,6,1 

33 
1024 DATA 205,165,204,105,0,133,206, 

56 
1032 DATA 173,138,6,237,140,6,133,20 

7 
10412! DATA 173,139,6,237,141,6,133,212! 

8 
1048 DATA 165,208,240,5,162,255,24,1 

44 
1056 DATA 2,166,207,172,163,6,177,20 

5 
1064 DATA 145,203,136,208,249,202,24 

0,31 
1072 DATA 24,165 , 205,109,163 , 6,133,2 

05 
1080 DATA 165,206,105,0,133,206,24,1 

65 
1088 DATA 203,109,163,6,133,203,165, 

204 
1096 DATA 105,0,133,21214,24,144,212,1 

65 
1104 DATA 208,208,206,172,163,6,169, 

12! 
1112 DATA 145 , 205,136,208,251,96 

Program 6. Cursor Movement Routine 
900 OPEN #1,8,0,"Dl : SCROLL.SUB" 
910 FOR 1=1 TO 650:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
llZ!IZ!0 DATA 104,104,104,141,161,6,173, 

1008 DATA 6,133,207,173,153,6,133,20 
8 

178 



1016 DATA 
1024 DATA 
1032 DATA 
1040 DATA 
1048 DATA 

o 
1056 DATA 

6 
1064 DATA 
1072 DATA 
1080 DATA 
1~88 DATA 
1096 DATA 
1104 DATA 
1112 DATA 

160,0,140,158,6,173,154,6 
145, 2Q17, 173, 161,6,41,8,240 
92,173,161,6,41,4,208,71 
172,157,6,173,160,6,42,176 
8,136,208,250,141,160,6,24 

54,42,136, 2Q18, 252,141,148, 

173,136,6,208,2,240,40,173 
148,6,141,160,6,56,173,136 
6,233,1,141,136,6,56,173 
152,6,233,1,141,152,6,173 
153,6,233,0,141,153,6,173 
143,6,240,6,206,143,6,24 
144,99,173,158,6,9,8,141 

112QI DATA 158,6,24,144,88,172,157,6 
1128 DATA 173,160,6,106,176,8,136,20 

8 
1136 DATA 250,141,160,6,241Z1,71,106,1 

36 
1144 DATA 

6 
1152 DATA 
1160 DATA 
1168 DATA 
1176 DATA 
1184 DATA 
1192 DATA 
1201Z1 DATA 
1208 DATA 
1216 DATA 
1224 DATA 
1232 DATA 
124QI DATA 
1248 DATA 

21Z18, 252,141,148,6,173,136, 

205,134,6,208,2,240,54,173 
148,6,141,160,6,24,173,136 
6,105,1,141,136,6,24,173 
152,6,105,1,141,152,6,173 
153,6, l1Z15, 0,141,153,6,173 
143,6,205,142,6,240,6,238 
143,6,24,144,8,173,158,6 
9,4,141,158,6,173,161,6 
41,1,240,83,173,161,6,41 
2,208,62,173,140,6, 21Z15, 138 
6,208,8,173,141,6,205,139 
6,240,124,24,173,1413,6,105 
1, 141 , 140,6, 173, 141,6, 105 

1256 DATA O,141,141,6,24,173,152,6 
1264 DATA l1Z19, 163,6,141,152,6,173,15 

3 
1272 DATA 6,105,O,141,153,6,173,145 
1280 DATA 
1288 DATA 
1296 DATA 
1304 DATA 
1312 DATA 
1320 DATA 
1328 DATA 
1336 DATA 
1344 DATA 
1352 DATA 

6,205,144,6,240,6,238,145 
6,24,144,75,173,158,6,9 
1,141,158,6,24,144,64,173 
140,6,208,5,173,141,6,240 
54,56,173,140,6,233,1,141 
140,6,173,141,6,233,0,141 
141,6,56,173,152,6,237,163 
6,141,152,6,173,153,6,233 
0,141,153,6,173,145,6,240 
6,206,145,6,24,144,8,173 

5 

179 



5 

1360 
1368 

1376 
1384 

1392 
1400 
14l'i18 
1416 

1424 
1432 
1440 
1448 
1456 
1464 
1472 
1480 
1488 
1496 
1504 
1512 

152l'i1 
1528 
1536 
1544 
1 cc ,") .J.J ""-

156lZi 

1568 
1576 

1584 

1592 

160l'i1 
1608 

1616 

1624 

1632 

164lZi 
1648 

180 

DATA 
DATA 
3 
DATA 
DATA 
5 
DATA 
DATA 
DATA 
DATA 
55 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
ill 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
6 
DATA 
DATA 
74 
DATA 
5 
DATA 
~ 2~J5 

DATA 
DATA 
,6 
DATA 
204 
DATA 
0 
DATA 
208 
DATA 
DATA 

158,6,9,2, 141, 158,6, 173 
152,6,133,207,173,153,6,13 

2QI8, 173, 132,2,240,36,160,0 
177,207,141,154,6,73,255,4 

160,6,141,155,6,173,16QI,6 
73,255,45, 154!, 6, 13, 155!, 6 
141,155,6,173,158,6,240,40 
2il18,41, 160,0, 177,207 , 141, 1 

6,173,156,6,45,160,6,141 
161,6,173,160,6,73,255,45 
155,6,141,155,6,13,161,6 
141,154,6,173,158,6,208,3 
24, 144,98,41,8, 241!I, 17,56 
173, 150,6,233, 1, 141 , 150,6 
173,151,6,233,0,141,151,6 
173,158,6,41,4,24ill ,17,24 
173,150,6,105,1,141,150,6 
173,151,6,105,0,141,151,6 
173,158,6,41, I, 241!I, 18,24 
173,150,6, lQI9, 163,6,141,15 

6,173,151,6,105,0,141,151 
6,173,158,6,41,2,240,24 
56,173,15ill,6,237,163,6,141 
150,6,173,151,6,233,0,141 
151,6,24,144,3,24,144,67 
173,150,6,133,203,173,151, 

133, 2ill4, 24, 173,48,2, 1 Q15, 4 
133,205,173,49,2,133, 2Q16, 1 

162,6,160,0,165,203,145,20 

21!10, 165, 2ill4, 145,205,24,165 

105,3,133,205 , 165,206,105,0 
133,206,24.165,203,109,163 

133,21!13, 165,2ill4, 1I!f5,lZl, 133, 

21!f2, 208, 215,173,155,6, 16lZf, 

145,21217,173,159,6,201,255, 

8,173,132,2, 2ilf8, 3, 32,166 
6,96 



Program 7. Clear Screen Routine 
9CZl0 OPEN #1,8,0, "Dl: CLEARS. SUB" 
910 FOR 1=1 TO 26:READ N:PUT #1,N:NE 

XT I:CLOSE #1:7 I:END 
100121 DATA 11214,11214,11214,133,208,162,32 

, 169 
1008 DATA 121, 133,2CZI7, 16121,255, 145,21217, 

136 
112116 DATA 208,251,145,207,230,208,20 

2,2CZ18 
1024 DATA 238,96 

Program 8. Fill Subroutine 

900 OPEN #1,8,0,"Dl:F1LL.SUB" 
910 FOR 1=1 TO 230:READ N:PUT #1,N:N 

EXT I:CLOSE #1:? I:END 
100121 DATA 173,136,6,141,135,6,173,15 

4 
1008 DATA 6,141,146,6,165,207,133,20 

3 
112116 DATA 165, 2CZ18, 133, 2CZ14, 162, CZ1, 173, 

160 
1024 DATA 6,141,148,6,172,157,6,78 
1032 DATA 148,6,176,52,136,208,248,1 

73 
104121 DATA 146,6,45,148,6,141,149,6 
1048 DATA 173,156,6,45,148,6,205,149 
112156 DATA 6,240,2121,141,149,6,173,148 
1064 DATA 6,73,255,45,146,6,13,149 
1072 DATA 6,141,146,6,24,144,205,173 
108121 DATA 146,6,129,21217,141,154,6,96 
1088 DATA 173, 135,6,2CZI5, 134,6,240,24 

7 
112196 DATA 238,135,6,24,165,203,105,1 
111214 DATA 133,21213,165,21214,11215,121,133, 

21214 
1112 DATA 161,21213,141,148,6,173,165 ; 

6 
112121 DATA 141,164,6,173,164,6,45,148 
1128 DATA 6,141,149,6,173,164,6,45 
1136 DATA 156,6,205,149,6,240,13,172 
1144 DATA 157,6,78,164,6,176,193,136 
1152 DATA 208,248,24121,223,172,157,6, 

14 
1160 DATA 164,6,176,29,136,21218,248,1 

73 
1168 DATA 164,6,45,156,6,141,149,6 

5 

181 



5 

1176 DATA 173,164,6,73,255,45,148,6 
1184 DATA 13, 149,6, 141, 148,6, 24, 144 
1192 DATA 219,162,0,173,148,6,129,20 

3 
120111 DATA 173,146,6,129,21117,141,154, 

6 
1208 DATA 56,173,135,6,237,136,6,240 
1216 DATA 12,168,136,240,8,173,156,6 
1224 DATA 145,207,136,208,251,96 

182 





\ 



-

Moving the Display 
Michael P Surh 

A variation on the techniques which allow screen flipping also makes 
possible screen scrolling-even horizontally. Here's how. 

6 

The Atari computers are capable of moving their display memory 
(that is, the section of memory storing the screen display), and 
they can have more than one section of display memory stored at 
the same time. This feature is particularly useful for graphics 
displays and can be used for animation. It is possible to move the 
entire screen so that everything you see on the screen moves too, 
and the technique can be used to create smoother animation and 
drawing than would otherwise be possible. 

Before you try the following programs which demonstrate 
these tricks, you should have some understanding of how the 
Atari display works . The Atari has two separate registers that 
control where it keeps its display (the display list) in the overall 
computer memory. These registers work by storing the address of 
the first memory location used by the display list. The computer 
puts all of the screen data into the memory starting at that first 
address, and also reads the numbers stored there to display 
images on the screen. Since what you see on the screen is stored 
in this memory section, it is possible to modify the display 
directly by using POKEs instead of the usual BASIC commands 
PRINT, PLOT, and DRAWTo. 

If this is news to you, try Program 1 to modify a GRAPHICS 
o screen with POKEs . This program begins by printing the 
address for the start of the display list as read from both of the 
registers (see lines 20 through 50). Then the program POKEs 
numbers from 0 to 255 into successive locations in the display list. 
All of the alphanumeric and graphics characters appear on the 
screen. Also, try changing the graphics mode on line 10 (but 
remove line 40 if the graphics mode is not mixed with a 
GRAPHICS 0 text window). This program works on any graphics 
mode, but its effects are different with various modes. At times 
this graphics technique is better than using PRINT or PLOT and 
DRAWTO because it is faster, even though it is more difficult. 

185 



6 

The program works because the computer keeps the display 
of characters or graphics points stored as numbers in the reserved 
display memory. Each number stored there corresponds to a char
acter or some graphics points on the screen. Whenever the 
computer prints or draws something, it is going into this memory 
section and changing something (this is what Program 1 did, 
without using PRINT or DRAWTO). Changing the display list 
changes the screen because the computer also reads this memory 
section from start to finish and sends it to the screen 60 times 
every second. 

Controlling Display Memory 
The two registers that store the location of the display list tell the 
computer where to read from or write to the display memory; 
without them, the computer would not be able to find it. There is 
a good reason for storing the display address in two locations
this allows sophisticated graphics and animation. Both of the 
registers act as pointers to the display memory, and they both 
store its starting address, but one pointer controls where the 
computer goes to write in the memory, and the other tells the 
computer where to start reading the information to be displayed. 
If you remember, the computer must do both operations to put the 
display on your screen, and it has a pointer for each function. 

The pointer conh'olling all writing to the screen is located at 
88 and 89 in the memory, but the second pointer's location 
depends on your computer's memory size and the graphics mode 
you are using. See Program I, line 20, to find out how to locate 
the pointer; its position is the variable PNTR and PNTR + 1. 

Usually the two pointers store the same address, so if the 
computer prints something on the third line, the information 
appears on the third line of the screen in exactly the same place as 
it was written in the display list. But if you change one of the two 
pointers, when the computer wants to read or write on the display 
memory and goes to what it thinks is the start of the memory 
section, it is in the wrong location. As a result, the information 
appears in the wrong place. 

Program 2 demonstrates what happens when you change the 
pointer controlling where the computer writes into the memory. 
The program starts by printing the word left all the way down the 
left margin of the screen . Then it clears the screen and starts over, 
but this time it changes the number stored in 88 each time it prints 
a word. The computer still prints on the left margin (at least it 

186 

-



6 

thinks it does!), but the words are stored in the memory offset 
from their correct positions, so they appear in the wrong places on 
the screen. 

Once the computer is given the wrong starting address, 
everything it prints afterward will appear in the wrong place. This 
is because the computer starts at the location specified by the 
register in 88 and 89 and counts through the memory until it is 
where it wants to print. If it starts in the wrong place, it winds up 
in the wrong place, and whatever is printed or drawn is in a 
clifferent spot on the screen. If you want to prove that the 
computer is starting in the wrong place, hit BREAK (not SYSTEM 
RESET). The READY prompt and anything you type will line up 
at the new margin, and the lines will overlap onto both sides of 
the screen. 

Notice that whatever was written on the screen before loca
tion 88 was changed did not move; only the words printed after 
the change are displaced. Also, it is not always possible to print at 
the bottom of the screen, and it sometimes becomes impossible to 
use the PLOT function after the numbers in 88 or 89 have been 
changed. Since I can find no way to remedy these problems, I see 
little use for this even though it is an interesting trick. 

The other pointer tells the computer where to start reading the 
clisplay memory. Changing the address stored here is much more 
interesting, because it makes the computer start reading in the 
wrong place, and the entire screen shifts. By controlling how 
much the pointer changes from its original value, you can make 
everything on the screen seem to move horizontally or vertically. 

Unfortunately, it is not very practical to move the screen 
vertically because garbage is sometimes displayed. You can see 
this in Program 3, which changes the pointer to move any 
graphics mode horizontally. This pointer is stored in a variable 
because it is placed just before the start of the display memory, 
and the display memory's location depends on the graphics mode 
and your computer's memory size. 

Moving the Screen 
When you try this program, you may notice certain features of the 
moving screen. First, in any of the mixed graphics modes, the text 
window of GRAPHICS 0 at the bottom of the screen remains 
stationary as the rest of the screen moves. In GRAPHICS 8 and 8 
+ 16, only the top half of the screen moves while the bottom is at 
rest. Also, the screen jumps each time the loop is reexecuted, and 

187 



6 

as the program runs through the loop, part of the screen fills with 
apparently random data (garbage) . Last of all, the edge of the 
screen that moves out of view horizontally reappears on the other 
side of the screen. 

The text window of GRAPHICS 0 in the mixed graphics 
modes does not move because it has its own pointer to control the 
start of its display memory. This is also true for the bottom half of 
a GRAPHICS 8 or 8 + 16 display. Check Table 1 to find where to 
POKE to move the bottom half of GRAPHICS 8 and the text 
window for each of the mixed graphics modes. 

There is an advantage to this added complexity. Not only can 
you move part of the screen and leave the rest still, but you can 
also move the different parts in different directions or at different 
rates. In GRAPHICS 8 you can actually move all three parts at 
different speeds at the same time. 

That cures the problem of unmoving parts of the screen, but 
there are still more problems. When the program finishes its loop 
and starts over again, there is a large and noticeable jump on the 
screen. Also, there are unusual problems with the top of the 
screen; unwanted garbage occasionally appears or part of the 
display disappears off the top. This is particularly noticeable in 
GRAPHICS 0 through 2, which are text modes. Strange charac
ters can appear, and if you erase them the display goes haywire. 

You can reduce the jump in the screen each time the loop is 
run. Change the loop in line 70 to match what is in Table 2 for the 
particular graphics mode. This also remedies the occasional 
appearance of mysterious characters at the top of the screen. 
Unfortunately, this means that the top line will periodically 
disappear and reappear. You could leave it blank to keep this 
unnoticed. 

Still, the method is satisfactory for the higher resolution 
graphics modes where the screen "bumps" are less obvious. And 
by carefully adapting the loop, you might find a decent compro
mise. 

I' Try the programs included with this article, and experiment 
with different graphics modes to get an idea of the possibilities 
and limitations of these unusual features. 

188 



Table 1. Where to POKE to Move Parts of the Screen 
To Move GR.O 
Text Window in: 

GR.1 
GR.2 
GR.3 
GR.4 
GR.5 
GR.6 
GR.7 
GR.8 

POKE into PNTR - 4 + 

26 or 27 
16 or 17 
26 or 27 
46 or47 
46 or47 
860r87 
860r87 
168 or 169 

To move lower part of GR.8, POKE into PNTR -4 + 100 or 101. 

Table 2. Smoothing the Horizontal Motion of the Screen 
Graphics Change Line 70 to 
~~ IDRWill= 
o XTOX + 39 
1 XTOX + 19 
2 XTOX + 19 
3 XTOX + 9 
4 XTOX + 9 
5 XTOX + 19 
6 XTOX + 19 
7 XTOX + 39 
8 XTOX + 39 

Program 1. Display Using POKE 

o REM ******* PROGRAM1 ******* 
10 GRAPHICS 0 
20 SCR1=PEEK(SS)+256*PEEK(S9) 
30 PNTR=PEEK(560)+256*PEEK(561)+4 
35 SCR2=PEEK(PNTR)+256*PEEK(PNTR+1) 
40 ? SCR1~SCR2 

45 FOR PAUSE=1 TO 500:NEXT PAUSE 
50 FOR LOOP=O TO 255 
60 POKE SCR2+LOOP~LOOP 
70 NEXT LOOP 
SO GOTO SO 

6 

189 



6 

Program 2. Changing the Pointer to Screen Memory 

o REM PROGRAM 2 
10 GRAPHICS 0 
20 FOR LOOP=1 TO 20 
30 ? "LEFT" 
40 NEXT LOOP 
50 FOR PAUSE=l TO 500:NEXT PAUSE 
60 ? CHR$ ( 125) 
70 FOR LOOP=1 TO 20 
80 ? "LEFT" 
90 POKE 88~PEEK(88)+1 
100 NEXT LOOP 
110 GOTO 110 

Program 3. Moving Horizontally 

o REM PROGRAM 3 
10 GRAPHICS 0 
20 FOR LOOP=l TO 100 
30 POSITION RND(I)*30,RND(I)*20:? "*" 

:REM FILL SCREEN WITH ASTERISKS 
40 NEXT LOOP 
50 PNTR=PEEK(560)+256*PEEK(561)+4:REM 

LOCATION OF READ POINTER 
60 X=PEEK(PNTR):REM STARTING POINT OF 

SCREEN 
70 FOR LOOP=O TO 255 
80 POKE PNTR,LOOP:REM CHANGE ADDRESS 

IN POINTER 
90 FOR PAUSE=l TO 10:NEXT PAUSE 
100 NEXT LOOP 
110 GOTO 70 

190 



6 

Screen Flipping 
Michael Kirtley 

Here's another way to rapidly "flip" screens. 

This useful subroutine can be appended to your own BASIC 
programs. It lends them a cleaner, more professional look. The 
screen-flipping routine can be used to include a page or two of 
documentation with your program or to switch to a menu 
instantly. Another intriguing use would be to flip rapidly between 
several screens to create animation. 

When you first run the program, there will be a brief pause as 
the Atari writes screen two. Then you will see screen one being 
written. I intentionally left this in to contrast between writing a 
screen and flipping to a previously written one. This effect can be 
eliminated by POKEing 559 with a 0 to tum off the video display 
until the screen has been written. Another advantage in using this 
POKE is a significant increase in execution speed. You can try this 
by adding the following lines to the program: 
130 R=PEEK(559) :POKE 559,0 
180 POKE 559,R 

Another embellishment to the program would be to write 
screen one and show it to the user. While the user is viewing 
screen one, the computer could be writing screens two, three, etc. 

A small "beep" sound subroutine placed just before the POKEs 
on lines 220 and 230 will give a crisper effect upon flipping screens. 
I've found the following routine to be a good one for this purpose. 
250 SOUND 0,100,10,15:FOR X= l TO 20:NEXT X 
260 SOUND 0,0,0,0:RETURN 

Now let's look at how the program works. 
Lines 100-120: Initialize variables. Locations 560 and 561 hold the 
low and high bytes of the address of the display list. Location 742 
is the high byte of the top of memory pointer. Location 89 is the 
high byte of the lowest address of screen memory. 
Line 140: Tell the Atari where to write screen two. Before writing 
screen two, clear the screen. 
Line 150: Write screen two. You can substitute your own applica
tion here. 
Line 160: Tell the Atari where to write screen one. 

191 



6 

Line 170: Write screen one. 
Line 190: GET a keyboard response from the user. 
Line 200: GOTO whichever screen the user selects. 
Line 210: Go back and get another keyboard response if the user 
picks a screen we don't have. 
Line 220: POKE the location of screen one into the correct place in 
the display list (DL + 5). This is where the Atari looks to find 
where the current screen is located. 
Line 230: POKE the location of screen two into the display list. 

Additional screens can be added (depending on memory size 
and the application program) by stepping down four 256-byte pages 
from the location of the previous screen. In graphics mode 0 there 
are 24 lines with 40 one-byte characters each, for a total of 960 bytes. 
This is a little less than four pages (1024 bytes) . Therefore, if 
SCREEN2 = MEMTOP-5 then 
SCREEN3 = MEMTOP - 9 and 
SCREEN4 = MEMTOP -13 etc. 
To make room for screen two, you must step down five pages 
from MEMTOP to avoid garbage on the screen. To add additional 
screens, initialize as above, then POKE 89 with the new screen 
and POKE 106 with the new screen + 4. You will now be able to 
write the new screen. To view the screen, just POKE DL + 5 with 
the new screen. 

Now enter the program and run it. Press 1 for screen one and 
2 for screen two. 

Screen Flipping 
100 DL=PEEK(560)+256lPEEK(561) 
110 MEMTOP=PEEK(742) 
120 SCREENl=PEEK(89):SCREEN2=MEMTOP-5 
140 POKE 89~SCREEN2:POKE 106~SCREEN2+ 

4:? CHR$ ( 125) 
150 FOR X=1 TO 22:? "********* THIS I 

S SCREEN 2 *********":NEXT X 
160 POKE 89~SCREENl:POKE 106~SCREENl+ 

4:? CHR$ ( 125) 
170 FOR X=1 TO 22:? "-------- SCREEN 

1 GOES HERE --------":NEXT X 
190 OPEN #1,4,O,"K:":GET #1,X:CLOSE # 

I:X=X-48:IF X<1 THEN 190 
200 ON X GOTO 220,230 
210 GOTO 190 
220 POKE DL+5,SCREEN1:GOTO 190 
230 POKE DL+5,SCREEN2:GOTO 190 

192 



-

... 

... 

6 

Artifacting 
Judson Pewther 

These tools for exploring artifacting can create some of the most beautiful 
graphics you've ever seen from your Atari. 

Even if you are not already familiar with the phrase television arti
facts, you have probably noticed that the colors of points and 
lines drawn in Atari's graphics mode 8 are not always what they 
are supposed to be. (False colors may also appear in graphics 
mode 0.) 

Although the BASIC RefereJlce Mallual claims that only "one 
color and two different luminances" are available in GRAPHICS 
8, in fact six distinguishable colorlluminance combinations are 
possible because of TV artifacting. 

While the BASIC Reference Manual does not mention this very 
interesting fact, it is fully documented in De Re Atari, Appendix 
IV, which gives the definition: "The term TV artifacts refers to a 
spot or 'pixel' on the screen that displays a different color than the 
one assigned to it." And, as further explained, TV artifacts are 
caused by the way in which color and luminance information is 
modulated onto an NTSC television signal. 

Let's summarize the effects of artifacting in GRAPHICS 8: 

1. The effect is maximized by plotting a light color (high lumi
nance) on a dark background, or dense dark patterns on a 
light background. 
2. The color of a pixel is not affected by its Y-coordinate . 
3. The color displayed by a pixel depends not only on its 
assigned color, but also on whether its X-coordinate is even or 
odd, and on the color assigned to its horizontal neighbors. 
4. Horizontal resolution has a practical limit of 160 rather than 
320. Thus, two horizontally contiguous pixels tend to form a 
single pixel of uniform color . 

What colors are aChlally produced? This can depend on the 
particular TV monitor being used and on the exact setting of its 
controls . The setting of the tint control will make the biggest 
difference. 

193 



6 

The major effects of plotting white (the assigned color) pixels 
on a black background are summarized in the following table. N 
is the number of horizontally contiguous white pixels. X is the X
coordinate(s) of these pixels in terms of "even" and "odd:' 
COLOR is the approximate actual color displayed by these pixels, 
assuming normal settings on the TV monitor. 
N X Color 

1 even 
1 odd 
2 even-odd 
2 odd-even 
3 
4 

green 
blue 
orange 
light blue 
nearly white 
white 

The Table Illustrated 
Program 1 illustrates artifacts by drawing two series of nearly 
vertical white lines on a black background. Colored horizontal 
bands are produced in accordance with the rules in the previous 
table. No actual white is produced in this example, because there 
are at most only pairs of horizontally contiguous "white" pixels . 
Notice in particular that the solid-color bands are created either 
because all the "even" pixels give a solid green, or all the "odd" 
pixels give a solid blue. 

Lines 199 to 250 can be added to allow the user to easily step 
the assigned hue through all 16 possibilities, while preserving the 
o luminance setting for the background and the 14 luminance 
setting for the plotted lines. The background color may be nearly 
invisible because it is at 0 luminance, but the colors in the hori
zontal bands will change greatly. Remember that in GRAPHICS 8 
the hue associated with the COLOR 1 statement and with the 
lines that were drawn is the background hue as determined in the 
SETCOLOR 2,hue,O statement. Even when we are not seeing the 
assigned hue because of TV artifacting, changing the assigned 
hue changes the displayed hues. 

Best results are obtained by adjusting TV brightness and 
contrast to a low or minimum value. TV color may be boosted 
somewhat, but too much boost blurs the picture. However, the 
tint control may be adjusted freely from one extreme to the other 
to vary the colors. These comments apply generally to any 
program where TV artifacts are used . 

TV artifacts are really a failure of resolution, but a very inter
esting failure. And the colors produced can add dazzle to graphics 

194 



6 

art programs. Although these false colors may at times be 
annoying, and although the failure in horizontal resolution is 
certainly an annoyance, TV artifacts compensate considerably for 
the fact that only two intensities of a single color are officially 
available in GRAPHICS 8. 

Moir~ Patterns 
Program 2 is a graphics art program which relies on artifacts for 
its beauty. It also makes use of a technique for creating enhanced 
moire patterns. 

To see a somewhat different moire pattern with a more 
uniform distribution of light and enhanced contrasts in the 
details, add the following line and run the program again: 

50 COLOR 0:PLOT 159,0:DRAWTO X+l,191 

This program step draws a black line which cancels out half 
(or more) of the "white" pixels which were plotted in the previous 
step, line 40. This basic idea is varied and elaborated in Program 
3, "Pyramid:' 

Program 3 is designed so that slow typists (like myself) will 
not have to type in the whole thing just to see what it does. The 
first half of the program (lines 100 through 470) is almost entirely 
for the purpose of letting the user control the parameters of the 
pattern in order to see better how the various effects are achieved. 
To eliminate some typing, replace the first half of the program 
with the single line: 100 GRAPHICS 24. Then begin typing at line 
500. 

The program is essentially self-explanatory, but it might be 
worthwhile to point out a few things. Lines 500 to 545 select a set 
of random parameters for the pattern that is about to be drawn. 
LIGHT and DARK are associated with the subroutine for drawing 
a set of vertical lines at line 1000 in the program. They are dual 
purpose variables: if equal to 0 or I, then a set of "even" or "odd" 
lines will be drawn, but if greater than 1 the subroutine will not be 
called. So the probability is .25 that LIGHT will call the subrou
tine, since it is a random integer ranging from 0 to 7. The same 
applies to DARK. 

LIGHT lays down a colored background for the pattern, but 
has a slightly different effect if the old pattern has not been wiped 
out by line 730. DARK erases all colors in the pattern except for 
black and another color, just before the program recycles to select 
a new set of random parameters. 

195 



6 

Line 535 works in conjunction with line 740 to insure that the 
new values of MODE, APEX, and SPACE are not exactly the same 
as the old values. 

Line 550 prevents the attract mode from setting in as long as 
the program continues to recycle through new variations. 

Except for the user option to hold a pattern indefinitely (lines 
450 and 720), there are no forced time delays. It takes about a 
minute for the program to make one cycle, which should be more 
than enough time to observe a variation of the pattern. If you 
wish to freeze a particular pattern, program execution may be 
stopped and restarted by hitting CTRL 1. 

Program 4 illustrates TV artifacts by way of a dense pattern of 
dark lines drawn on a light background. Equally spaced rays are 
drawn from each of the four corners of a square to the opposite 
two sides. The light-colored pixels left over after this process is 
finished form a cross made out of four trumpet-shaped segments, 
corresponding roughly to what my dictionary identifies as a 
"formee" cross. The display is quite dazzling if one first adjusts 
for a pleasing color combination, and then turns out the lights in 
the room. 

Program 1. Artifacts 
10 GRAPHICS 8:COLOR 1 
20 SETCOLOR 1,0,14:SETCOLOR 2,0,0 
30 FOR X=0 TO 318 STEP 4 
40 PLOT X,0:DRAWTO X+1,159:NEXT X 
50 FOR X=0 TO 308 STEP 4 
60 PLOT X,0:DRAWTO X+9,159:NEXT X 
199 REM *** CHANGE HUE *** 
200 OPEN #1,4,111, "1<:" 
210 ? :? "ASSIGNED HUE IS NOW ";H 
220 ? "HIT H KEY TO CHANGE HUE" 
230 GET #1,X: IF X<> 72 THEN 230 
240 H=H+1:IF H=16 THEN H=0 
250 SETCOLOR 2,H,0:GOTO 210 

Program i. Simple Moire 
10 GRAPHICS 24 
20 SETCOLOR 1,0,14:SETCOLOR 2,0,0 
30 FOR X=0 TO 318 STEP 3 
40 COLOR I:PLOT 159,0:DRAWTO X,191 
60 NEXT X 
7111 GOTO 70 

196 



Program 3. Pyramid 
100 GRAPHICS 0:POKE 82,5:POSITION 9, 

2:? "*** THE PYRAMID ***":PRINT 
112 ? "ADJUST TV CONTRAST AND" 
113 ? "BRIGHTNESS TO MINIMUM. ":? 
114 ? "ADJUST TV COLOR AND TINT" 
115? "TO SUIT INDIVIDUAL TASTE.":? 
120? "YOUR CHOICE:" 
130 ?" (0) RANDOM PARAMETERS" 
140 ? " 

ERS" 
(1) USER CONTROLLED PARAMET 

150 TRAP 150 : INPUT CHOICE:IF CHOICE= 
o THEN GRAPHICS 2 4:GOTO 500 

160 IF CHOICE <> 1 THEN 150 
17 i!1 ? :? "DRAW BACKGROUND OF VERT I CA 

L LINES?" 
180 ? " ( i!l ) EVEN LINES" 
190 ? " ( 1 ) ODD LINES" 
2 121 i!l ? " (2 ) NO BACKGROUND" 
210 TRAP 21i!1: INPUT LIGHT: IF LIGHT=2 

THEN 23121 
220 IF LIGHT <> 0 AND LIGHT< > 1 THEN 21 

o 
230 ? :? "DRAW PYRAMID IN MODE" 
240 ?" (121) FROM CENTER OUTWARD" 
250 ?" (1) FROM LEFT TO RIGHT" 
260 TRAP 260:INPUT MODE 
270 IF MODE <>0 AND MODE <> 1 THEN 260 
28i!1 ? :? "FOR APEX OF PYRAMID USE" 
29l!1 ?" (0) ONE POINT" 
3i!10 ?" (1) TWO POINTS" 
310 TRAP 310:INPUT APEX 
320 IF APEX <> 0 AND APEX <> 1 THEN 310 
330 ? :? "SPACING OF RAYS FROM APEX? 

340? " (USUALLY AN INTEGER: 2 TO 6)" 
350 TRAP 350:INPUT SPACE:IF SPACE < 1 

THEN 
360 ? : ? 
370 ? " 
380 ? " 
390 ? " 

35121 
"DRAW DARK VERTICAL LINES?" 
(0) EVEN LINES" 
( 1) ODD LINES" 
(2) NO LINES" 

400 TRAP 400:INPUT DARK:IF DARK=2 TH 
EN 420 

410 IF DARK <>0 AND DARK <> 1 THEN 400 
420 ? :? 
430 ? If 

440 ? " 

"WHEN FINISHED" 
(0) GOTO RANDOM PARAMETERS" 
(1) HOLD THE PATTERN" 

6 

197 



6 

450 TRAP 450:INPUT HOLD 
455 IF HOLD=0 THEN GRAPHICS 24:GOTO 

600 
460 IF HOLD<>0 AND HOLD<>1 THEN 450 
470 POKE 82,2:? :? "WHEN PATTERN IS 

FINISHED" 
475 ? "H I T "'1: .... .-02: .. ""''''''''''-. TO CHANGE HUE." 
480? :? "READY? HIT START KEY." 
490 IF PEEK(53279) <> 6 THEN 490 
495 TRAP 40000:GRAPHICS 24:GOTO 600 
497 REM 
498 REM *** RANDOM PARAMETERS*** 
499 REM 
500 LIGHT=INT(RND(0)*8) 
510 MODE=INT(RND(0)*2) 
520 APEX=INT(RND(0)*2) 
530 SPACE=2+INT(RND(0)*5) 
535 IF MODE=M AND APEX=A AND SPACE=S 

THEN 510 
540 DARK=INT(RND(0)*8) 
545 HUE=INT(RND(0)*16) 
550 POKE 77.0:REM RESET ATTRACT MODE 
597 REM 
598 REM *** PROGRAM EXECUTION *** 
599 REM 
600 SETCOLOR 2.HUE,0:SETCOLOR 1.0.14 
620 IF LIGHT>1 THEN 640 
630 COLOR I:B=LIGHT:GOSUB 1000 
640 IF MODE=0 THEN GOSUB 2000 
650 IF MODE=1 THEN GOSUB 3000 
660 REM *** DRAWTO SIDES *** 
670 FOR K=191 TO 1 STEP -SPACE 
680 COLOR I:PLOT 159,APEX:DRAWTO 318 

.K:PLOT 159.APEX:DRAWTO 0.K 
690 COLOR 0:PLOT 159,0:DRAWTO 318.K-

I:PLOT 159,0:DRAWTO 0.K-l:NEXT K 
700 IF DARK)1 THEN 720 
710 COLOR 0:B=DARK:GOSUB 1000 
720 IF HOLD=1 THEN 4000 
730 IF RND(0) <0.2 THEN GRAPHICS 24 
740 M=MODE:A=APEX:S=SPACE 
750 GOTO 501Z1 
998 REM 
999 REM *** SUBROUTINE VERTICAL LINE 

S 
1000 FOR K=8 TO 3 19 STEP 2 
1010 PLOT K.0:DRAWTO K,191:NEXT K 
1021Z1 RETURN 
1998 REM 
1999 REM *** SUB STARTS FROM CENTER 

198 



2000 FOR K=0 TO 158 STEP SPACE 
2010 COLOR I:PLoT 159,0:DRAWTo 159+K 

,191:PLoT 159,0:DRAWTo 159-K,19 
1 

2020 COLOR 0:PLoT 159,APEX:DRAWTo 16 
0+K,191:PLoT 159,APEX:DRAWTo 15 
8-1<,191 

2030 NEXT K:RETURN 
2998 REM 
2999 REM *** SUB DRAWS LEFT TO RIGHT 
3000 FOR K=0 TO 318 STEP SPACE 
3010 COLOR I:PLoT 159,APEX:DRAWTo K, 

191 
3020 COLOR 0:PLoT 159,0:DRAWTo K+l,1 

91:NEXT K:RETURN 
400~1 REM 
4001 REM *** ALLOWS USER TO CHANGE 
4002 REM *** HUE WHEN PATTERN IS ON 
4003 REM *** HOLD BY HITTING H KEY. 
4010 OPEN #1,4,0,"K:" 
4020 GET #1,X:IF X=72 THEN HUE=HUE+l 
4030 IF HUE=16 THEN HUE=0 
4040 SETCoLoR 2,HUE ,0: GoTo 4020 

Program 4. Cross 
40 REM *** PROGRAM 4: JEWELED CROSS 
50 GRAPHICS 0:PoSITIoN 8,2:? "THE JE 

WELED CROSS":7 :7 
55 ? "WHEN PATTERN IS FINISHED--":? 
60 ? "TURN ROOM LIGHTS DOWN TO GET" 
70 7 "THE EFFECT OF A STAINED GLASS" 
80 ? "WINDOW.":? 
9~1 ? "H I T H KEY TO CHANGE HUE AND I OR 

95 ? "ADJUST TV TINT CONTROL.":? 
Hl0 7 "D I AMETER OF SQUARE?" 
110 7 "(MAXIMUM OF 4*47--TRY 4*46)" 
120 TRAP 15~1:? "4*";:INPUT DIAM:DIAM 

=4*DIAM 
130 IF DIAM ( 1 OR DIAM ) 188 THEN 150 
140 TRAP 40000:GoTo 300 
150 PRINT CHR$(253):GoTo 50 
300 REM *** DEFINE CORNERS OF SQUARE 
310 XLo=INT(159.5-DIAM/2):XHI=XLo+DI 

AM 
320 YLo=INT(95.5-DIAM/2):YHI=YLo+DIA 

M 
349 REM 
350 REM *** DRAW BACKGROUND *** 

6 

199 



6 

360 GRAPHICS 24:SETCOLOR 2.0.0:SETCO 
LOR 1,0,14:COLOR 1 

410 FOR X=XLO TO XHI 
420 PLOT X,YLO:DRAWTO X.YHI:NEXT X 
449 REM 
450 REM *** DRAW CROSS *** 
460 COLOR 0:FOR K=0 TO DIAM STEP 4 
470 PLOT XLO.YLO:DRAWTO XHI,YHI-K 
480 PLOT XLO,YLO:DRAWTO XHI-K,YHI 
490 PLOT XHI,YLO:DRAWTO XLO,YHI-K 
500 PLOT XHI,YLO:DRAWTO XLO+K,YHI 
510 PLOT XHI,YHI:DRAWTO XLO,YLO+K 
520 PLOT XHI,YHI:DRAWTO XLO+K,YLO 
530 PLOT XLO,YHI:DRAWTO XHI,YLO+K 
540 PLOT XLO.YHI:DRAWTO XHI-K,YLO 
550 NEXT K 
599 REM 
600 REM *** CHANGE HUE:HIT H KEY *** 
610 OPEN #1,4.0."K:" 
620 GET #1.X:IF X=72 THEN HUE=HUE+l 
630 IF HUE=16 THEN HUE=0 
640 SET COLOR 2.HUE,0:GOTO 620 
1000 GOTO 1000 

200 







--
-
--

-

Positioning 
Player/Missile and 
Regular Graphics 
in Memory 

7 

- Fred Pinho 

--.. .. 
... 
-... --... --.. 
... 
.. 
---... 

Strange things indeed call appear on YOllr display if memory is not 
protected properly for player/Illissile grapllics. These charts should help 
you avoid memory cOl1flicts in your Atari . 

Have you ever used player/missile graphics only to notice funny
looking colored lines or dots on the screen with your carefully 
crafted images? When you moved your player or missile, these 
lines and dots seemed to acquire a life of their own. While it was 
fascinating to watch this "extra" display, it also quickly became 
frustrating to your programming attempts. The problem is that all 
the instructional articles I've seen tell you that you must step back 
in RAM a minimum of lK (four pages) for double-line resolution 
and 2K (eight pages) for single-line resolution. They either ignore, 
or barely mention in passing, the important fact that you must 
also allow for the screen display memory in this calculation. 

The Atari uses two blocks of memory to control the TV 
screen display. Residing at the very top of RAM is the display 
data. This block of memory contains a bitmap for the TV screen in 
graphics modes 3-8 and a character map for text modes 0-2 . 
Residing just below the display data is the display list. This block 
of memory is essentially a short program that tells the Atari how 
to set up the TV screen for the desired mode. The total memory 
required for the display list and display data varies with the 
graphics mode used . This is illustrated in Table 1. As you can see, 
the highest resolution mode, GRAPHICS 8, requires the most RAM. 

Thus, the explanation for the "extra bonus" lines or dots in 

203 



~ Table 1. Memory Required for Display List and Display Data 

TOTAL MEMORY BYTES ALLOCATED TO 
Memory Step-

DISPLAY DATA DISPLAY LIST Back To Be 
Bottom Unused Bytes Textor Added To 

GRAPHICS Text Graphics Unused Used Total P/M Step-
MODE* Window Always Conditional Screen Bytes Bytes Bytes Back, Pages t 

0 none none none 960 none 32 992 4 
1 160 none 80 400 none 34 674 3 
2 160 none 40 200 none 24 424 2 
3 160 none 40 200 none 34 434 2 
4 160 none 80 400 none 54 694 3 
5 160 none 160 800 none 54 1174 5 
6 160 none 320 1600 none 94 2174 9 
7 160 none 640 3200 96 94 4190 17 
8 160 16 1280 6400 80 176 8112 32 

'If 16 is added to the GRAPHICS mode number, then the conditional unused bytes are added to the screen memory block. The bytes 
formerly used for the text window then become unused . Also the display list expands slightly. 
tTo be added to player/missile step-back pages. 

....... 



7 

your P/M display is that the program did not step back far enough 
into RAM and consequently located the P/M data in the display 
data memory area. The Atari then obediently displayed this data 
both from the normal display and through the P/M system. Since 
the display data is displayed as a number of bytes per line (Table 
2), you will see a line of varying colored dots. By contrast, the P/M 
display is organized to display the bytes in a "stack" arrangement 
and so you see the desired figure (possibly as you designed it). 

To aid you in using P/M graphics, Table 1 gives the number of 
pages that must be stepped back in memory (from the top of avail
able RAM) to avoid interference between the two systems. For 
those not familiar with the concept of paging, the memory 
addressing system of the 6502 microprocessor within the Atari is 
based on the concept of a memory page. Each page is equivalent to 
256 bytes of memory. Thus there are four pages of memory in 
each K (1024 bytes) of memory. 

Note that, in calculating the step-back value for Table I, a 
restriction must be observed: positioning for the P/M RAM must 
be on a lK boundary for double-line resolution and on a 2K 
boundary for single-line resolution. If you position the P/M 
memory incorrectly, the P/M data will not be displayed. Since the 
Atari will be equipped with a varying amount of memory, it must 
be able to keep track of the amount available so that it knows 
where to locate the display data and display list. This is done at 
memory location 106 (RAMTOP). If you PEEK this location, you'll 
find the number of pages, not the number of bytes, in your machine. 
You can get the number of bytes by multiplying by 256. 

POKEing into this location can be very useful for the 
programmer. One example is the location of large machine 
language programs that must be placed in a secure location that is 
not touched by BASIC. One way to accomplish this is to POKE a 
lower number of pages into RAMTOp, fooling the computer into 
believing that it has less memory than is the case. Then you can 
load your machine code in this safe hiding place, yet still access it 
when needed. 

Another use is as a safe location for a redefined Atari char
acter set. Again, there is one restriction. The relocated display 
data cannot cross a 4K boundary (graphics modes up to 7). If you 
don't observe this restriction, you'll find that you will be unable to 
plot and draw on part of the screen. RAMTOP for GRAPHICS 8 
must be lowered in multiple 4K blocks. If you try it otherwise, 
you'll see weird and unwanted displays on your screen. 

205 



7 

Thus, two methods for storing P/M data are: 

1. Beneath the display list 

2. Above a lowered RAMTOP 

An example calculation for method one is shown below. However, 
it is tedious to have to calculate each time you program, so I've 
provided Table 3 for your use . This table gives the correct number 
of pages to offset the P/M system for either method of storage. 

I hope these tables aid you in using the P/M and graphics 
systems. The systems are powerful, and their use will result in 
increasingly sophisticated displays. 

Table 2. Example of P / M Positioning in Memory 
Assume you wish to run P/M graphics mode 7. You want to use 
all four players, so all of the playerlmissile memory must be free 
and clear of the Screen Display memory. 

GRAPHICS 7, Screen Display (Table 1) 
P/M graphics, single-line resolution (requires 2K) 

However, 25 pages is not on a 2K boundary: 
6K=24 pages 
8K=32 pages 

Required Step-Back 
In Memory, Pages 

17 
8 

Total = 25 pages 

Therefore, you must step back 32 pages for proper positioning of 
the P/M system. 

206 



7 

Table 3. Player/Missile Positioning 

Above RAMTOP* Beneath Display Listt 

Graphics 
Mode 

o 
1 
2 
3 
4 
5 
6 
7 

8-11 

Double 
Resolution 

4 
4 
4 
4 
4 
4 
4 

12 
16 

Single 
Resolution 

8 
8 
8 
8 
8 
8 

16 
16 
16 

Double 
Resolution 

8 
8 
8 
8 
8 

12 
16 
24 
36 

*Number of pages to lower RAMTOr Locate PMBASE at new RAMTOP 
tLocate PMBASE at indicated offset (in pages) below RAMTOP 

Notes 

Single 
Resolution 

16 
16 
16 
16 
16 
16 
24 
32 
40 

1. RAMTOP (location 106) defines the top of available memory. 
The display data lies just beneath RAMTOP. The display list 
resides just beneath the display data. 

2. When lowering RAMTOp, the display data memory area must 
not cross a 4K boundary. RAMTOP for GR.8 must always be 
lowered in 4K increments. 

3. Player/missile offsets are calculated by observing the following 
restrictions for the location of PMBASE: 

Offset from any other data 
Boundary location for PMBASE 

Double 
Resolution 

1K 
1K 

Single 
Resolution 

2K 
2K 

207 



7 

Memory Protection 
Jim Clark 

Player/missile graphics, redefined character sets, screen flipping, and 
machine language subroutilles all create a l1eed for protected areas of 
memory. This article covers several ways of handlil1g the problelll and 
gives you a program that protects low mel/wry. 

On the Atari, a problem arises in applications requiring a portion 
of memory to be protected from BASIC. For example, most 
machine language subroutines need protection. The problem is 
that BASIC is likely to use memory anywhere within available 
RAM, thus writing over the machine language subroutine and 
destroying it. 

In many computers it is possible to protect memory at the 
"high" end, that is, at the highest RAM address. The Atari uses 
high memory for the data which is displayed on the screen. If you 
attempt to protect memory above the screen display by reducing 
the high memory value that BASIC thinks it has, then you cannot 
clear the screen or scroll text in any of the split-screen modes 
because these actions affect memory beJjond the screen display 
area. These actions cause no problem when the screen display is 
actually the last thing in memory, because they apply to non
existent memory. Howevel~ if you want to use memory beyond 
the screen display for your own purposes, then your data will be 
damaged by any action in your program which clears the screen 
or scrolls text in a text window. 

Another alternative is to protect low memory. The main 
problem with this approach is that the memory protection must 
be done before BASIC gets control, since BASIC starts saving any 
program you enter beginning at the low memory address. The 
program shown here solves this problem as follows: it takes 
control of the Atari with a machine language subroutine and 
resets the system's low memory pointer. It then reinitializes 
BASIC-just as if you had pressed the SYSTEM RESET key-and 
BASIC takes control again, blissfully unaware that it now has less 
RAM to work with than it did before you ran this program. 

To find the address of the memory you have protected, type 

208 

-

-
--------------------------
--I 



7 

?PEEK(743) + 256*PEEK(744) before you run this program. The 
number printed can be used as the origin for a machine language 
subroutine, or as the destination address for whatever data you 
want to store in the protected area. 

When you run the program, it asks how much memory you 
want to protect. Type in any positive number which is less than 
the amount of RAM you have available, as determined by typing 
?FRE(O). The program reinitializes BASIC, and if you type 
?PEEK(743) + 256*PEEK(744) again, the number printed will be 
greater than the value shown before running the program: the 
difference is the amount you requested to be protected . The 
memory area will remain protected until you tum the computer 
off, and the area can be used for machine language subroutines, 
redefined character sets, player/missile graphics objects, or any 
other use you might wish. 

Memory Protection 
90 REM 1:1"':(1) :i--:J :11"';;;C0li. (I]: 

100 REM ** LOAD MACHINE LANGUAGE SUBR 
OUTINE ** 

110 PGMSIZ=24:DIM SUBR$(PGMSIZ) 
120 FOR 1=1 TO PGMSIZ 
130 READ BYTE 
140 SUBR$(I)=CHR$(BYTE) 
150 NEXT I 
200 REM ** GET AMOUNT OF MEMORY TO PR 

OTECT ** 
210 -;> "How many bytes do you want to 

protect"; 
220 INPUT PROTECT 
230 HI=INT(PROTECT/256):LOW=PROTECT-2 

56*HI 
240 SUBR$(6 , 6)=CHR$(LOW) 
250 SUBR$(14,14) = CHR$CHI) 
300 REM ** REINITIALIZE BASIC WITH TH 

E NEW LOW MEMORY POINTER ** 
310 Z=USRCADRCSUBR$» 
400 REM ** MACHINE LANGUAGE SUBROUTIN 

E ** 
410 REM MEMLO =$02E7;BOTTOM OF AVAILA 

BLE USER MEMORY 
420 REM WARMST=$08;WARM START FLAG 
430 REM CARTA =$AOOO;BASIC CARTRIDGE 

ENTRY POINT 
440 REM 

209 



7 

450 REM THE PROGRAM IS COMPLETELY REL 
OCATABLE, SO NO STARTING ADDRESS 
IS PROVIDED 

470 REM 
500 REM CLC ;INITIALIZE FOR ADDITION 
510 DATA 24 
520 REM LDA MEMLO ;ADD LEAST-SIGNIFIC 

ANT BYTES 
530 DATA 173,231,2 
540 REM ADC #PROTECT&$FF 
550 DATA 105,0 
560 REM STA MEMLO 
570 DATA 141,231,2 
580 REM LDA MEMLO+l ;ADD MOST-SIGNIFI 

CANT BYTES 
590 DATA 173,232,2 
600 REM ADC #PROTECT/256 
610 DATA 105,0 
620 REM STA MEMLO+l 
630 DATA 141,232,2 
640 REM LDA #0 ;RESET THE WARM START 

FLAG 
650 DATA 169.0 
660 REM STA WARMST 
670 DATA 133,8 
680 REM JUMP CARTA ;START BASIC OVER 

AGAIN 
690 DArA 76,0,160 
999 END 

210 



Beware the 
RAMTOP Dragon 
K. W. Harms 

While the previous article showed how to protect low memory, this one 
tackles the problem of shielding high memory. 

7 

You've just had a brilliant idea for a program which requires some 
protected memory. Perhaps a special display list or character set is 
needed, or maybe a direct access memory "file:' This article 
explains how to set aside that memory so that nothing will fiddle 
with it. Further, we'll reveal the generally unknown habits of the 
RAMTOP Dragon and show you three ways to make sure he 
doesn't gobble up your data. 

The Atari offers a simple way to control how memory is inter
nally managed by the operating system. In the previous article, 
Jim Clark shows how to move the lower boundary. Both Clark's 
method and the one discussed here protect memory from BASIC 
programs. 

The map gives a very simple picture of Atari's memory 
management. Fixed memory boundaries are presented in decimal 
"addresses;' but boundaries whicll. vary according to the amount 
of memory in your machine or the program loaded at a particular 
time are given names such as "RAMTOP // The 400 and 800 both 
use the same system. 

When you hlrn on the Atari with a BASIC cartridge, it takes a 
few seconds before "READY" to check out the machine and enter 
values for the boundaries into specific locations. PEEK allows you 
to look at those values. For instance, the value for RAMTOP is 
stored in address 106. The instmction//? PEEK(106)" will tell you 
where the Atari thinks the end of RAM is. Appendix I of the Atari 
BASIC Reference Mallual explains that the value in 106 is in "pages" 
of 256 bytes. Multiplying number of pages times 256 gives the last 
address BASIC thinks it can use (for example, a PEEK(106) of "32// 
equals an address of 8192 or "8K") . 

211 



7 

The 4001800 always places the display list and display data 
immediately below RAMTOP. If you alter the value in RAMTOp, 
the Atari will push the display list and display data" downward" 
in RAM. This reduces the space available for your program, but 
leaves free RAM above the new (fake) RAMTOP. Since the Atari 
doesn't know about this space, it doesn't use it, usually. This is the 
space usually considered "reserved" for you. 

Program 1 shows how to lower RAMTOP by four pages (1024 
bytes). Remember to issue a GRAPHICS command immediately 
after moving RAMTOP so that the display list and data are moved 
below the new RAMTOP. Since line 60 will clear the screen, write 
down the old amount of free RAM and RAMTOP. Comparing 
them to the new numbers from lines 80 and 90 will show that 
RAMTOP is now lower and that less space is available for 
programs. That extra memory is now above RAMTOP and 
"reserved" for your exclusive use. RAMTOP is reset only by the 
RESET switch (and powering down/up), so that successively 
RUNning Program 1 will keep lowering RAMTOP until you run 
out of memory. 

Although others have described ways to use the reserved 
space, they have not warned you about the RAMTOP Dragon 
who will periodically visit your reserved RAM and gobble up 
memory. Extensive field observations have revealed that the 
Dragon visits upper memory on three occasions: 

1. A GRAPHICS command clears the visible screen and also the 
first 64 bytes above RAMTOP. 
2. A CLEAR command (or "PRINT CHR$(125),,) clears the first 64 
bytes above RAMTOP. 
3. Scrolling the text window of a graphics mode 3-8 screen clears 
up to 800 bytes above RAMTOP. 

Program 2 lets you play with the RAMTOP Dragon. Lines 
100 to 140 move down RAMTOP and reset the display list and 
data. Answer "NO" for all except the first pass, or the program 
will lower RAMTOP each time until you are out of memory. 

After an initial questioning, the next section (lines 200 to 290) 
first turns off the "direct memory access" for the ANTIC processor 
so that the program will operate faster. It then fills the 900 bytes 
after RAMTOP with a sequence of values between 1 and 255. 
Note that the values will remain there as long as there's power to 
the CPU (and nothing clears them). Therefore, it's not necessary 
to repeat this step on subsequent RUNs. 

212 



7 

The "Choose Action" section (lines 300 to 340) GOSUBs to 
the three major program sections. 

The "Screen Play" routine (lines 1000 to 1100) exercises all 
three of the actions which call the Dragon. It clears the screen, 
changes graphics modes, and scrolls text windows. To scroll a 
window, enter graphics mode 3 to 8, and then enter numerical 
responses for as long as you wish to scroll (the amount of scrolling 
appears to affect the amount of memory cleared). 

The "Check Memory" routine (lines 2000 to 2100) prints 
addresses for the first and last positions of reserved memory and 
requests the starting and ending addresses you wish to check. 
This section allows you to look at different ranges of locations to 
see how much memory has been cleared by displaying these 
memory addresses and their values. Knowing that the Dragon 
always leaves O's in his path, and remembering that we loaded 
memory with values between 1 and 255, O's will appear only in 
areas he visited. (Actually, I'm not sure whether the Dragon is a he 
or a she.) When you're done checking and want to enter a 
different set of actions, a "0,0" entry will return you to the 
"Choose Action" section. 

The "Neat Trick of the Week" is found in lines 2055 and 2075. 
The memory address at 53775 can be used to tell you whether a 
key on the keyboard is being pressed at the time you PEEK it. If a 
key (any key) is depressed, 53775 contains the value 251. When 
the key is released, 53775 will show a 255. Line 2055 then stops 
the program whenever any key is pressed and restarts it when the 
key is released. Then POKEing 764 with a 255 (line 2075) clears the 
"halt" character so that future INPUTs, GETs, etc., aren't 
confused. 

How can one avoid the Dragon anyway? There are many 
ways. You could never change graphics modes or clear or scroll 
the screen. This is difficult if you have any significant screen 
output. However, since the screen clear erases only 64 bytes, you 
could always clear the screen before the text window scrolls and 
never use those first 64 bytes. Or you could skip the first 800 bytes 
after RAMTOP and allow both scrolls and clears. Taking the other 
path, you could move the bottom of memory up and use memory 
below the new bottom (review Clark's article). However, this 
requires using a (simple) machine language subroutine. 

If you are using the reserved memory in a stable program (one 
with no further coding), you have another choice. Program 3 
shows how to use memory below RAMTOP as your special area 

213 



7 

instead of reserving memory above RAMTOP. In your program, 
wait until after all strings and arrays are dimensioned. Then, go to 
the highest resolution graphics mode and PEEK at the top of your 
BASIC program (line 10000). Since the Atari saves data on 
COSUB and FORJNEXTstatements as it encounters them in a 
dynamic "stack" at the top of a program, you must provide some 
room for this storage. Figure on four bytes for each active COSUB 
(one which hasn't been RETURNed), plus 16 bytes for each active --
FORJNEXT (while it's FORing and NEXTing). Add this allowance 
to the previous address (line 10010) and use the total as the bottom 
of your reserved area. 

Next, PEEK at MEMTOp, the top of RAM available for BASIC 
programs (line 10100), and use that number as the top of your 
area. 

This method gives you the greatest possible amount of RAM 
without special code, but brings three general risks. If your BASIC 
program grows (by encountering an unexpected DIM or FORI 
NEXT, for instance) after you have set the lower boundary, it will 
gnaw into the bottom of "your" memory. If the graphics mode is 
changed to a higher resolution mode after the upper boundary is 
set, the display list will push down into the reserved memory. 
Last, a program loaded after the boundaries are set may be larger 
and run into the set-aside memory. 

The next time you see the RAMTOP Dragon, you'll be ready! 

Program 1. Lower RAMTOP 
10 ':' "FREE RAM = ";FRE(O) 
20 RAMTOP = PEEV ( 106 \ : ':' "RAMTOF' " ; RAM 

TOP;" PAGES":':' "LAST ADDRESS = ";R 
AMTOP*256 

30 FOR W=1 TO 1000:NEXT W 
40 SMALLRAM=RAMTOP - 4 
50 POKE 106,SMALLRAM 
60 GRAPHICS 0 
70 RAMTOP=PEEK(1061 
80 ':' "NEW FREE RAM = ";FRE(O) 
90 ':' "NEW RAM TOP = ";RAMTOP;" PAGES": 

':' "LAST ADDRESS = ";RAMTOP*25& 
100 ':' "RESERVED MEMORY BEGINS AT ";RA 

MTOP* 2 56+1 

214 



Memory Management 

57344-65535 
55296-57343 
53248-55295 

40960-49151 
RAMTOP 

MEMTOP 

PRO TOP 

BASIC LOMEM 

o 

ROM for character set, OS, etc. 
ROM, Floating Point ROM 
ROM, Hardware Registers ROM 
Unused space 
CARTRIDGE ROM for BASIC, etc. 

END of RAM PEEK(106) 
Display List and Display Data 

(Usually 1K in Graphics 0, 
around 8K in Graphics 8) 
Top of RAM usable by BASIC programs 
PEEK(741) + 256*PEEK(742) 

Program top for the current BASIC program 
PEEK(14) + 256*PEEK(lS) 

Free RAM used for programs, data storage, etc. 
Start of BASIC program 

Operating System, various 
buffers, hardware registers, etc. 

Start of RAM addresses 

Program 2. Move RAMTOP 

50 REM STEP UP VARIABLES FOR CALLS 
60 CHECK=1000:SCREEN=2000:QUIT=3000:D 

1M AN$(10):'7 CHR$(125) 
100 REM MOVE DOWN RAMToP 
110 RAMToP=PEEK(106) 
120 '7 "MOVE DOWN RAMToP";: INPUT AN$: I 

F AN$(l,I)="N" THEN 200 
130 RAMToP=RAMToP-5:PoKE 106,RAMToP 
140 GRAPHICS 0 
200 REM FILL 900 BYTES ABOVE RAM TOP 
210 FIRST=RAMTOP*256+1:LAST=RAMTOP*25 

6+900 
220 '7 "FILL MEMORY ABOVE RAMTOP";:INP 

UT AN$: IF AN$ (1,1) ="N" THEN 300 
230 POKE 559,0:REM TURN OFF SCREEN RE 

FRESHER 
240 FOR PoSITIoN=FIRST TO LAST 

7 

215 



7 

250 IF VALUE=255 THEN VALUE=O 
260 VALUE=VALUE+l 
270 POKE PoSITIoN,VALUE 
280 NEXT POSITION 
290 POKE 559,34:REM TURN ON SCREEN 
300 REM CHOOSE ACTION 
310 J :J "WHAT ACTION ? ":? "~ TO CHECK 

RAM": J "~ TO PLAY WITH SCREEN":? 
"~ TO QUIT" 

320 INPUT ACTION 
330 ON ACTION GoSUB SCREEN,CHECK,QUIT 
340 GoTo 300 
1000 REM SCREEN PLAY 
1010 ? "CLEAR SCREEN": INPUT AN$ 
1020 IF AN$ ( 1 , 1) =" Y" THEN J CHR$ I 125) 
1030? "CHANGE GRAPHICS MODE"; :INPUT 

AN$ 
1040 IF AN$ I 1,1) = " Y" THEN? "WHAT MOD 

E";:INPUT MoDE:GRAPHICS MODE 
1050 IF MoDE <> O THEN? " ENTER ANSWERS 

UNT I L DONE, THEN NO";: INPUT AN$ 
1060 IF AN$ I 1,1) <: > "N" THEN GoTo 1050 
1070 IF MoDE <> O THEN GRAPHICS 0 
1100 RETURN 
2000 REM CHECK MEMORY 
2010 J :J "FIRST POSITION = ";FIRST:? 

"LAST = ";LAST;? "ENTER PoSITIo 
NS TO CHECf< OR 0,0 TO RETURN" 

2020 INPUT START,FINISH; IF START=O TH 
EN GoTo 2100 

2030 POKE 82,7;PoKE 201, 11; ? ;REM MoV 
E MARGIN, SET TAB 

2040 FOR PoSITIoN=START TO FINISH 
2050 VALUE=PEEKIPoSITIoN):? POSITION; 

.. = ";VALUE, 
2055 HALT=PEEK(53775); IF HALT=251 THE 

N GoTo 2055 
2060 NEXT POSITION 
2070 POKE 82,2;REM RESTORE MARGIN 
2075 Pof<E 764,255 
2080 GoTo 2000 
2100 RETURN 
3000 REM QUIT 
3010 ? "NO RMAL END OF JoB";END 

216 

-. 



Program 3. Using Memory Below RAMTOP 
10000 PROTOP=PEEK(14)+256*PEEK(15) 
10010 MEMSTART=PROTOP+24+1:REM START 

OF YOUR MEMORY; ALLOWS FOR 2 GO 
SUBS AND 1 FOR/NEXT 

10100 MEMTOP=PEE K(7 41)+ 25 6*PEEK(742) 
10110 MEMFINI S H=MEMTOP:REM END OF YOU 

R MEMORY AREA 

7 

217 



Listing Conventions 
In order to make special characters, inverse video, and cursor 
characters easy to type in, COMPUTE! Magazine's Atari listing 
conventions are used in all the program listings in this book. 

Please refer to the following tables and explanations if you 
come across an unusual symbol in a program listing. 

Atari Conventions 
Characters in inverse video will appear like: .. aWi.;;..-J#kIJ •• )=t!: 
Enter these characters with the Atari logo key, {A}. 

When YOll ~ec Type Sec 

{CLEAR} ESC SHIFT '" Clear Screen 

{UP} ESC CTRL - ~ Cursor Up 

{DOWN} ESC CTRL ... Cursor Down 

{ L EFT} ESC CTRL + Cursor Left 

{RIGHT} ESC CTRL * Cursor Right 

{BACK S} ESC DEL E TE Backspace 

{DELETE} ESC CTRL DELETE 0 Delete Character 

{INSERT} ESC CTRL INSERT n Insert Character 

{DEL LINE} ESC SHIFT DELETE ,) Delete Line 

{I NS LINE} ESC SHIFT IN S ERT 0 Insert Line 

{TAB} ESC TAB TAB key 

{CLR TAB} ESC CTRL TAB 131 Clear TAB 

{SET TAB} ESC SHIFT TAB ~ Set TAB stop 

{BELL} ESC CTRL 2 G1 Ring Buzzer 

{ESC} ESC ESC Ii. ESCape key 

Graphics characters, such as CTRL-T the ball character. will 
appear as the "normal" letter enclosed in braces, e.g., {T}. 

A series of identical control characters, such as 10 spaces, 
three cursor-lefts, or 20 CTRL-R's, will appear as {10 SPACESL 
{3 LEFTL {20 Rt etc. If the character in braces is in inverse video, 
that character or characters should be entered with the Atari logo 
key. For example, { .. } means to enter a reverse-field heart with 
CTRL-comma, {5 [I]} means to enter five inverse-video CTRL-U's . 

218 

---------------. --. -, 
-
-------------) 

-



Index 

AND see bitwi se AND 
an imation 95-"lO2 
ANTIC chip 20, 51 

described 39 
ANTIC 2 mode 74 
ANTIC 4 mode 69, 73-75,82,83, TI 9 

in "Fo ntbyter" program 128 
ANTIC 5 mode 69, 73-75,82, 83, rl9 

in "Fontbyter" program 128 
ANTIC 8 mode 158 
ANTIC C (12) mode 159, 166 
ANTIC E (14) mode 159, 166 
ANTIC F (15) mode 21, 40, 159, 166 

graphic mode eq ui va lents 159 
artifacting see TV artifacts 
Atari BASIC Referellce MalIlwi nl , 193, 211 
background co lor 31 

example program 32-33 
background color register 21 
beep subroutine 19"1 
bitmap TV screen 203 
bitwise AND 163-65 
bitwise OR 163-65 
"Castle Maker" character set 78-81 
characte r color 60 
"Character Editor" program 55-66 
character generat ion see custom cha racters 
character graph ics, four-color 69-92 
character modes 76-77 
character set 49 
character se t, s ta ndard 55 
character set loader routine 72-73 
CHR$ statement 4, 111 
CLOAD statement 18 
CLOSE statement "I 
co lli sion 21 
color changes in mode 10 22 
"Color Editor" program 33-34 
color luminances 21 
color mask, in "Screenbyter" 164-65 
color numbers 30 
COLOR statement 10, 21, 30 
COLOR statement graphics chart 14 
COMPUT£l's First Book of Atari Graphics 

111, 120 
COMPUT£l's Third Book of Atari 111 
control graph ics characters 49 

CSAVE s tateme nt 18 
CTIA21 
CTRL key 49 
cursor mask, in "Screenbyter" 164-65 
custom characters 49-53,54,57 

exa mp le programs 52-53, 65 
mixing w ith standard 58 

" De mon Attack" game 37 
d e pth , illusion of 29 
De Re Atari 193 
DIMe nsion statement 103-4 
disp lay li st 70, "162 

location of 95 
Dis play List Interrupt see DLI 
di splay memory 185, 203 
display mode 60 
DLI 35, 36-37 
DRAWTO command 4, 5, 95-96, 163, 185-86 
EOR 163-66 
ESCa pe character 4-5 

w ith unPRINTable characters 114 
fixed playfield example program 66-68 
"Fo ntbyter" utility 

di scussed 119-30 
dis play li st setup 131-33 
load routines 130 
modification s for cassette 135 

"Fo ur-Color Character Editor" program 
82-92 

four-co lor modes 162 
GET from screen 17 
GOSUB stateme nt 17-"18 
G RAPHICS 0 mode 3-8, 17, 36, 69, 84, 162, 

185, 188 
GRA PHICS 1 mode 9-16, 69 
GRAPHICS 2 mode 36, 51,69,188 
GRAPHICS 3 mode 69, 158, 162 
GRAPHICS 4 mode 69 
GRAPH ICS 5 mode 69 
GRAPHICS 6 mode 51,69 
"G RAPHICS 6.5" mode 159, 166 
GRAPHICS 7 mode 51, 69,82 
"G RAPHICS 7.5" mode 159, 162, 166, 195 
GRAPHICS 8 mode 203 
GRAPI-IICS 9 mode 21-26 

examp le program 26 
GRAPH ICS 10 mode 21, 22, 29 

example program 23 

219 



GRAPHICS 11 mode 21,22-23 
example program 24-25 

GRAPHICS 12 mode 9-16 
GRAPHICS command, in moving 

RAMlDP212 
GRAPHICS modes,ANTIC equivalents 159 
GTIA chip 20-26 
halt character 213 
hidden graphics 9-16 

programs 16 
high memory 50-51 

as used by Atari 208 
protection from BASIC 211-17 
when protection from BASIC fails 212 

horizontal sync see WSYNC 
"Inferno" program 97-102 
joystick, drawing with 157, 159 
LMS39-40 
Load Memory Scan bytes see LMS 
low memory, protection from BASIC 208-10 
memory locations, choosing for graphics 

203-6 
memory map 61, 215 
memory protection 208-10, 211-17 
memory requirements (display) 204 
MEMTOP 55-56, 192, 214 
merging programs 18 
mixed graphics modes 188 
Mode 0 graphics see GRAPHICS 0 mode 
moire patterns 195-200 
multicolors with DLls 36-37 
OPEN statement 17-18 
ORA 163-66 
overlapping colors 43 
overlays 103-10 
page flipping 39-42 

animation and 95-102 
PET /CBM49 
pixel 49 
pixel graphics 157 
pixel modes 163 
Player /Missile graphics 

discussion 111-14 
examples 106-10 
positioning in memory 204-7 
PRINT and 113 

playfields, fixed 54 
PLOT command 4, 5, 95-96, 163, 185-86 
POKE 

instead of SETCOLOR 31 
modifying display memory with 185 

POSITION statement 4, 6 
PRINT #6 command 9, 11, 57, 58, 59 
PRINT memory 112-13 
PRI NT sta tement 

exam ples 114-16 

220 

faster than POKE 112, 185-86 
with PIM graphics 111-16 

PRIOR 21,22 
Priority Register see PRIOR 
Rainbow graphics 35-38 

demo program 37-38 
RAM 1, 50 
RAMTOP 97, 211-17 

finding 211 
ROM 50 
"Screenbyter" program 

code 168-82 
discussion 157-70 
memory locations 167 

screen codes 111 
screen dump 17-19 
screen flipping subroutine 191-92 
screen margins 3-4 
screen memory 112 

address 70 
lengths needed for different graphics 

modes 96 
reading 71 

screen pointers (read and write) 186-87 
screen RAM 39 
scrolling 185-90 

programs 189-90 
tables 189 

SETCOLOR statement 9, 10, 21, 22 
in mode 0 2-3 
in modes 3, 5, and 7 30-31 

shadow register, see PRIOR 
6502 chip 20,36 
size register for playerl missile 107 
SOUND co mmand 44 
special characters 3 
tex t graphics 3-8 
text modes 188 
text window 44 
3-D graphics 20-26, 36 
two-color modes 162 
TRAP stateme nt 36 
TV artifacts 

discussion 193-96 
programs 196-200 

VBI40 
Vertical Blank Interrupt see VBI 
video display, turning off 191 
write memory 95-96 
WSYNC36 
XIO(FILL) program 43-44 

example programs 44-45 
XL Mode 14 157 
XL Mode 15 157 

) 



Notes 



Notes 



If you've enjoyed the articles in this book, you'll find the 
same style and quality in every monthly issue of COMPUTE! 
Magazine. Use this form to order your subscription to 
COMPUTE!. 

For Fastest Service, 
Call Our Toll-Free US Order Line 

800-334-0868 
In NC call 919-275-9809 

COMPUTE! 
PO Box 5Ll06 
Greensboro. NC 27Ll03 

My Computer Is: 
o Commodore 64 0 TI -99/4A 0 TimeX/Sinclair 0 VIC-20 0 PET o Radio Shack Color Computer 0 Apple 0 Atari 0 Other __ _ o Don't yet have one ... 

o $24 One Year US Subscription o $45 Two Year US Subscription 
o $65 Three Year US Subscription 
Subscription rates outside the US 

0$30 Canada o $42 Europe, Australia, New Zealand /Ai r Delivery o $52 Middle East. North Africa, Central America/Air Mail 
o $72 Elsewhere/Air Mail o $30 International Surface Mail [lengthy, unreliable delivery) 

Name 

Address 

City State Zip 

Country 

Payment must be in US Funds drawn on a US Bank; International Money 
Order. o r charge card. 
o Payment Enclosed 
o MasterCard 
Acct. No. 

28-0 

o VISA 
o American Express 

Expires 



-, 

-
-. 



COMPUTE! Books 
p,o, Box 5406 Greensboro, NC 27403 

Ask your retailer for these COMPUTE! Books, If he or she 
has sold out, order directly from COMPUTE! 

For Fastest SeNice 
Call Our TOLL FREE US Order Line 

800-334-0868 
In Ne call 919-275-9809 

Quantity TIlle 

___ Machine Language for Beginners 

___ Home Energy Applications 

___ COMPUTEl's First Book o f VIC 

___ COMPUTErs Second Book o f VIC 

___ COMPUTErs First Book o f VIC Gomes 

___ C OMPUTEI's First Book o f 64 

___ COMPUTErs First Book o f Atari 

Price 

$14.95* 

$14.95* 

$12.95* 
$12.95* 
$12.95* 

$12.95* 
$12.95* 

$12.95* 

$12.95* 

Total 

____ COMPUTEl's Second Book o f Ata ri 

_ __ COMPUTErs First Book o f Atari Graphics 

_ __ COMPUTEI's Fi rst Book o f Alari Gam es 

_ __ Mapping The Atan 

$12.95* _ _ _ 

_ __ Inside Atar i DOS 

___ The Atari BASIC Sourcebook 

___ Programmer's Reference G uide for TI -99/4A 

___ COMPUTEI's Fi rst Book o f TI Gam es 

___ Every Kid's First Book o f Robots and Compute rs 

_ __ The Beginner's Guide to BUYing A Personal 
Computer 

$14.95* 

$19.95* 
$12.95* 

$14.95* 
$12.95* __ 

$ 4.95t __ 

$ 3.95t __ 
, Add 52 shipping and handling Oulslde US odd 55 air mall, 52 

surtacemall 

t Add 51 shipping and handling OutSide US odd 55 Olr mOil, 52 
surface m oll 

Please add shipping and handling for each book 
ordered, 

Tofal enclosed or to be charged, 

All o rders must be prepaid (money order, c heck, o r c horge), All 
payments must be in US funds, NC residents add 4% sa le5 tax, 
o Payment enclosed Please chorge my: 0 VISA 0 MasterCard 
o American Express Accl No, Expires / 

Name 

Address 

City 

Country 
Allow 4-5 weeks tor delivery, 

28-0 

Sto te Zip 



--



-




	Cover
	Contents
	1: Fundamentals 
	Graphics in Mode 0 
	Discovering Hidden Graphics
	Copy your screen to your printer
	GTIA: An Illustrated Overview

	2: Colors
	Using SETCOLOR and COLOR and POKE to color your screen
	Rainbow Graphics
	Colors by Page Flipping
	A Fill-in on XIO

	3: Redefining Character Sets
	Character Generation
	Custom Characters
	Four-Color Character Modes 
	Four-Color Character Editor

	4: Animation 
	Animation by Page Flipping
	P/M Graphics Simplified
	Printing P/M Graphics

	5: Artists Utilities
	Fontbyter
	Screenbyter

	6: Advanced Techniques 
	Moving the Display
	Screen Flipping
	Artifacting

	7: Protecting Memory
	Positioning P/M and Regular Graphics in Memory
	Memory Protection
	Beware the the RAMPTOP Dragon
	Listing Conventions

	Index

