
THE

ELEMENTS
OF

PROGRAMMING
STYLE

SECOND EDITION

Kernighan and Plauger

THE

ELEMENTS

OF

PROGRAMMING

STYLE
Second Edition

Brian W. Kernighan

Bell laboratories
Murray Hill, New Jersey

P. J. Plauger

Yourdon, Inc.
New York, New York

McGRAW-HILL BOOK COMPANY

New York St. Lou1; San Franc1;co Auckland Bogota Du;seldorf
London Madnd Mexico Montreal New Delhi

Panama Pan' Sao Paulo Singapore Sydney Tokyo Toronto

Library of Congress Cataloging in Publication Data

Kernighan, Brian W.
The elements of programming style.

Bibliography: p.
Includes index.
I. Electronic digital computers-Programming.

I. Plauger, P.J., date joint author.
II. Title.
QA 76.6.K47 1978 001.6'42 78-3498
ISBN 0-07-034207-5

The Elements of Programming Style

Copyright © 1978, 1974 by Bell Telephone Laboratories, Incorporated.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy
ing, recording, or otherwise, without the prior written permission of Bell Laboratories.
Printed in the United States of America.

12 13 14 15 DODO 8 9

This book was set in Times Roman and Courier 12 by the authors, using a Graphic Sys
tems phototypesetter driven by a PDP-11/70 running under the UNIX operating system.

UNIX is a Trademark of Bell Laboratories.

We are deeply indebted to the following authors and publishers for their kind permission
to reproduce excerpts from the following copyrighted material:

R V Andree, J P Andree, and D D Andree, Computer Programmmg Techniques, A nalys1s, and Mathematics. Copyright ©
1973 by R V Andree By permission of Prentice-Hall, Inc

F Bates and M L Douglas, Programmmg Language/One with Structured Programming (Thtrd Edmon) Copyright © 1975 by
Prentice-Hall, Inc Reprinted by permission

C R Bauer and A P Peluso, Basic Fortran IV with Waifor & Wa(/iv. Copyright © 1974 by Addison-Wesley Publishing Com
pany, Inc By permission

C R Bauer, A P Peluso, and D A Gomberg, Baste PL/I Programming. Copyright © 1968 by Addison-Wesley Publishing
Company, Inc By permission

M Bohl and A Walter, Introduction to PL/I Programming and PL/C. Copyright © 1973 by Science Research Associates, Inc
Reprinted by permission of the publisher

V J Calderbank, A Course on Programming m Fortran IV. Copyright © 1969 by Chapman and Hall, Ltd By permission

Paul M Chirlian, lntroductt0n to Fortran IV Copyright © 1973 by Academic Press By permission

Frank J Clark, lntroduc11on to PL/I Programming. Copyright© 1971 by Allyn and Bacon, Inc By permission

Computerworld Copyright© 1972 by Computerworld, Newton, Mass 02160 By permission

Datoma11on9 Copyright© 1972, 1973 by Technical Publishing Company, Greenwich, Connecticut 06830 Reprinted with per
mission

D F DeTar, Prmetples of Fortran Programming. Copyright © 1972 by W A Benjamin, Inc, Menlo Park, California By per
mission of the publisher

H Dinter, lntroductt0n to Computing. Copyright © 1973, Heinz Dinter By permission of The Macmillan Company, New York

D Dmitry and T Mott, Jr, lntroduc11on to Fortran IV Programming Copyright © Holt, Rinehart and Winston, Inc, 1966 By
permission

V T Dock, Fortran IV Programming, Copyright © 1972 by Reston Publishing Company, Inc By permission

W S Dorn, G G Bitter, and D L Hector, Computer Appltca11ons for Calculus Copyright © Prindle, Weber & Schmidt, Inc,
1972 By permission

W S Dorn and D D McCracken, Numerical Methods with Fortran IV Case Studtes. Copyright © 1972 by John Wiley & Sons,
Inc By permission

L E Edwards, PL// for Busmess Applica11ons. Copyright© 1973 by Reston Publishing Company, Inc By permission

M V Farina, Fortran IV Seif-Taught. Copyright© Prentice-Hall, Inc, 1966 By permission

B S Gottfried, Programming with Fortran IV Copyright© 1972 by Quantum Publishers, Inc By permission

Gabriel F Groner, PL// Programming 1n Technological Applteatt0ns. Copyright © 1971 by John Wiley and Sons, Inc Reprinted
by permission of the publisher

N Haag, Comprehensive Standard Fortran Programmmg. Copyright© Hayden Book Company, Inc, 1969 By permission

K Hughes, PL/I Programming. Copyright © 1973 by John Wiley & Sons, Inc By permission

K Hughes and J I Michtom, A Structured Approach to Programming Copyright © 1977 by Prentice-Hall, Inc Reprinted by
permission

R J Kochenburger and C J Turcio, Introduction to PL/I and PL/C Programming - Instructor's Guide Copyright © 1974 by John
Wiley & Sons, Inc By permission

C B Kreitzberg and B Shneiderman, The Elements of Fortran Style. Copyright © 1972 by Harcourt Brace Jovanovich, Inc By
permission

J L Kuester and J H Mize, Op11m1za11on Techniques with Fortran Copyright © 1973 by McGraw-Hill, Inc By permission

S S Kuo, Computer Applica11ons of Numer1cal Methods. Copyright ©Addison-Wesley Publishing Company, 1972 By permis
sion

H L Ledgard, Programming Proverbs Copyright © 1975 by Hayden Book Company By permission

R S Ledley, Fortran IV Programming. Copyright© McGraw-Hill, Inc, 1966 By permission

G 0 Manifold, Ca/cu/atmg W1th Fortran Copyright © 1972 by Charles E Merrill Publishing Co , Inc By permission

W A Manning and R S Gamero, A Fortran IV Problem Solver. Copyright © McGraw-Hill, Inc, 1970 By permission

E Marxer and D Hartford, Elements of Computer Programming: Fortran. Copyright© 1973 Published by Delmar Publishers, a
division of Litton Educational Publishing, Inc By permission

D D McCracken, A Guide to Fortran IV Programming Copyright © 1965 by John Wiley and Sons, Inc Reprinted by permis
sion of the publisher

v

vi THE ELEMENTS OF PROGRAMMING STYLE

D D McCracken, A Guide to Fortran IV Programming, Second Edmon Copyright © 1972 by John Wiley and Sons, Inc Re
printed by permission of the publisher

C L McGowan and J R Kelly, Top-Down Structured Programming Techniques Copyright © 1975 by Litton Educational Pub
lishing, Inc Reprinted by permission of Van Nostrand Reinhold Company, a division of Litton Educational Publishing, Inc

L P Meissner, The Science ofCompullng. Copyright© 1974 by Wadsworth Publishing Company, Inc By permission

H Mullish, Modern Programming: Fortran IV Copyright © 1968 by John Wiley & Sons, Inc By permission

Paul W Murrill and Cecil L Smith, Fortran IV Programming for Engineers and Scientists, Second Edmon Ontext) Copyright ©
1973 by Harper & Row, Publishers, Inc Used by permission of Harper & Row, Publishers

Paul W Murrill and Cecil L Smith, PL/I Programming Ontext) Copyright© 1973 by Harper & Row, Publishers, Inc Used by
permission of Harper & Row, Publishers

R L Nolan, Fortran IV Compullng and App/1ca11ons Copyright © Addison-Wesley Publishing Company, 1971 By permission

E I Organick and L P Meissner, For1ran IV (Second Edmon) Copyright © 1974 by Addison-Wesley Publishing Company,
Inc By permission

S V Pollack, A Guide to Fortran IV. Copyright © Columbia University Press, 1965 By permission

Seymour V Pollack and Theodor D Sterling, A Guide to PL/I Copyright © 1969 by Holt, Rinehart and Winston Reprinted
by permission of Holt, Rinehart and Winston

Seymour V Pollack and Theodor D Sterling, A Guide 10 Pl// (Second Ed1t1onJ Copyright © 1976 by Holt, Rinehart and Win•
ton Reprinted by permission of Holt, Rinehart and Winston

Seymour V Pollack and Theodor D Sterling, Essen11als of PL/I Copyright © 1974 by Holt, Rinehart and Winston Reprinted
by permission of Holt, Rinehart and Winston

A Ralston, Fortran IV Programming, A Concise Expos111on Copyright© McGraw-Hill, Inc, 1971 By permission

J K Rice and J R Rice, lntroduc11on to Computer Science Copyright © 1969 by Holt, Rinehart and Winston, Inc Reprinted
by permission of Holt, Rinehart and Winston, Inc

G L Richardson and S J Birkin, Program Solving Using Pl/C Copyright © 1975 by John Wiley ~· Sons, Inc By permission

J S Roper, Pl/I in Easy Stages Copyright© 1973 by Paul Elek (Scientific Books) Ltd By permis-.;m

W P Rule, Fortran IV Programming Copyright © 1968 by W P Rule Prindle, Weber & Schmidt, Inc By permission

School Mathematics Study Group, Algortthms, Computa11on and Mathema11cs, Fortran Supplement. Studen1 Tex1 (Revised Edt110n)
Copyright ©Stanford University, 1966 By permission No endorsement by SMSG is implied

G L Scott and J Scott, Pl/I. A Se!f-lnstruc11onal Manual Copyright © 1969 by Dickenson Publishing Company By permis
sion

R C Scott and N E Sondak, Pl// for Programmers Copyright ©Addison-Wesley Publishing Company, 1970 By permission

Donald D Spencer, Programming with USA S1andard Fortran and Fortran IV Copyright© 1969 by Xerox Corporation Used by
permission of Ginn and Company (Xerox Corporation)

Donald D Spencer, Computers and Programming Guide For Engineers Copyright © 1973 by Howard W Sams & Co. Inc By
permission

R C Sprowls, lntroduc11on to Pl/I Programming Copyright © 1969 by Harper & Row, Publishers. Inc By permission

R A Stern and N B Stern. Principles of Data Processing Copyright © 1973 by John Wiley & Sons. Inc By permission

F Stuart, Fortran Programming Copyright © 1969 by Fredric Stuart Reprinted by permission of John Wiley and Sons, Inc

A Vazsonyi, Problem Solving by D1g1tal Computers wl/h Pl/I Programming Copyright © Prentice-Hall, Inc. 1970 By permis
sion

T M Walker and W W Cotterman, An Introduction to Computer Science and A/gortthm1c Processes Copyright© 1971 by Allyn
and Bacon. Inc Used by permission

G M Weinberg, Pl/I Programming· A Manual of Style Copyright© McGraw-Hill, Inc. 1970 By permission

CONTENTS

Preface to the Second Edition ix
Preface to the First Edition xi

1. Introduction 1
2. Expression 9
3. Control Structure 31
4. Program Structure 59
5. Input and Output 83
6. Common Blunders 101
7. Efficiency and Instrumentation 123
8. Documentation 141

Epilogue 155
Supplementary Reading 157
Summary of Rules 159
Index 163

vii

PREFACE to the Second Edition

The practice of computer programming has changed since The Elements of Pro
gramming Style first appeared. Programming style has become a legitimate topic of
discussion. After years of producing "write-only code," students, teachers, and
computing professionals now recognize the importance of readable programs. There
has also been a widespread acceptance of structured programming as a valuable cod
ing discipline, and a growing recognition that program design is an important phase,
too often neglected in the past.

We have revised The Elements of Programming Style extensively to reflect these
changes. The first edition avoided any direct mention of the term "structured pro
gramming," to steer well clear of the religious debates then prevalent. Now that the
fervor has subsided, we feel comfortable in discussing structured coding techniques
that actually work well in practice.

The second edition devotes a whole new chapter to program structure, showing
how top-down design can lead to better organized programs. Design issues are dis
cussed throughout the text. We have made considerable use of pseudo-code as a
program development tool.

We have also rewritten many of the examples presented in the first edition, to
reflect (we hope) a greater understanding of how to program well. There are new
examples as well, including several from the first edition which now serve as models
of how not to do things. New exercises have been added. Finally, we have
extended and generalized our rules of good style.

We are once again indebted to the authors and publishers who have graciously
given us permission to reprint material from their textbooks. Looking back on some
of our own examples makes us realize how demanding an effort good programming
is.

We would also like to thrnk friends who read the second edition in draft form.
In particular, Al Aho, Jim Blue, Stu Feldman, Paul Kernighan, Doug Mcilroy,
Ralph Muha, and Dick Wexelblat provided us with valuable suggestions.

Brian W. Kernighan

P. J. Plauger

ix

PREF ACE to the First Edition

Good programming cannot be taught by preaching generalities. The way to
learn to program well is by seeing, over and over, how real programs can be
improved by the application of a few principles of good practice and a little common
sense. Practice in critical reading leads to skill in rewriting, which in turn leads to
better writing.

This book is a study of a large number of "real" programs, each of which pro
vides one or more lessons in style. We discuss the shortcomings of each example,
rewrite it in a better way, then draw a general rule from the specific case. The
approach is pragmatic and down-to-earth; we are more interested in improving
current programming practice than in setting up an elaborate theory of how pro
gramming should be done. Consequently, this book can be used as a supplement in
a programming course at any level, or as a refresher for experienced programmers.

The examples we give are all in Fortran and PL/I, since these languages are
widely used and are sufficiently similar that a reading knowledge of one means that
the other can also be read well enough. (We avoid complicated constructions in
either language and explain unavoidable idioms as we encounter them.) The princi
ples of style, however, are applicable in all languages, including assembly codes.

Our aim is to teach the elements of good style in a small space, so we concen
trate on essentials. Rules are laid down throughout the text to emphasize the les
sons learned. Each chapter ends with a summary and a set of "points to ponder,"
which provide exercises and a chance to investigate topics not fully covered in the
text itself. Finally we collect our rules in one place for handy reference.

A word on the sources of the examples: all of the programs we use are taken
from programming textbooks. Thus, we do not set up artificial programs to illus
trate our points - we use finished products, written and published by experienced
programmers. Since these examples are typically the first code seen by a novice pro
grammer, we would hope that they would be models of good style. Unfortunately,
we sometimes find that the opposite is true - textbook examples often demonstrate
the state of the art of computer programming all too well. (We have done our best
to play fair - we don't think that any of the programs are made to look bad by
being quoted out of context.)

Let us state clearly, however, that we intend no criticism of textbook authors,
either individually or as a class. Shortcomings show only that we are all human, and
that under the pressure of a large, intellectually demanding task like writing a pro
gram or a book, it is much too easy to do some things imperfectly. We have no

xi

xii THE ELEMENTS OF PROGRAMMING STYLE

doubt that a few of our "good" programs will provide "bad" examples for some
future writer - we hope only that he and his readers will learn from the experience
of studying them carefully.

A manual of programming style could not have been written without the
pioneering work of numerous people, many of whom have written excellent pro
gramming textbooks. D. D. McCracken and G. M. Weinberg, for instance, have
long taught the virtues of simplicity and clarity. And the work of E. W. Dijkstra and
Harlan Mills on structured programming has made possible our rules for properly
specifying flow of control. The form and approach of this book has been strongly
influenced by The Elements of Style by W. Strunk and E. B. White. We have tried to
emulate their brevity by concentrating on the essential practical aspects of style.

We are indebted to many people for their help and encouragement. We would
like especially to thank the authors and publishers who gave us permission to repro
duce the computer programs used in this text. Their cooperation is greatly appreci
ated.

Our friends and colleagues at Bell Laboratories provided numerous useful
suggestions, which we have incorporated, and saved us from more than one embar
rassing blunder, which we have deleted. In particular, V. A. Vyssotsky bore with us
through several revisions; for his perceptive comments and enthusiastic support at
every stage of this book's evolution (and for several aphorisms we have shamelessly
stolen) we are deeply grateful. We would also like to single out A. V. Aho, M. E.
Lesk, M. D. Mcllroy, and J. S. Thompson for the extensive time and assistance they
gave to this project.

We were able to type the manuscript directly into a PDP 11/45, edit the source,
check the programs, and set the final version in type - all with the help of a
uniquely flexible operating system called UNIX. K. L. Thompson and D. M. Ritchie
were the principal architects of UNIX; besides reading drafts, they helped us get the
most out of the system while we were working on this book. J. F. Ossanna wrote
the typesetting program and made several modifications for our special needs. We
thank them.

Brian W. Kernighan

P. J. Plauger

THE

ELEMENTS

OF

PROGRAMMING

STYLE

Consider the program fragment

DO 14 I=1,N
DO 14 J•1,N

14 V(I,J)=(I/J)•(J/I)

CHAPTER I: INTRODUCTION

A modest familiarity with Fortran tells us that this doubly nested DO loop assigns
something to each element of an N by N matrix v. What are the values assigned? I
and J are positive integer variables and, in Fortran, integer division truncates
toward zero. Thus when I is less than J, (I/J) is zero; conversely, when J is less
than I, (J/Il is zero. When I equals J, both factors are one. So (I/J)•(J/I)
is one if and only if I equals J; otherwise it is zero. The program fragment puts
ones on the diagonal of v and zeros everywhere else. (V becomes an identity
matrix.) How clever!

Or is it?
Suppose you encountered this fragment in a larger program. If your knowledge

of Fortran is sufficiently deep, you may have enjoyed the clever use of integer divi
sion. Possibly you were appalled that two divisions, a multiplication, and a conver
sion from integer to floating point were invoked when simpler mechanisms are
available. More likely, you were driven to duplicating the reasoning we gave above
to understand what is happening. Far more likely, you formed a vague notion that
something useful is being put into an array and simply moved on. Only if motivated
strongly, perhaps by the need to debug or to alter the program, would you be likely
to go back and puzzle out the precise meaning.

A better version of the fragment is

C MAKE V AN IDENTITY MATRIX
DO 14 I= 1,N

DO 12 J = 1,N
12 V(I,J) = 0.0
14 V(I,I) = 1.0

This zeros each row, then changes its diagonal element to one. The intent is now
reasonably clear, and the code even happens to execute faster. Had we been pro
gramming in PL/I, we could have been more explicit:

2 THE ELEMENTS OF PROGRAMMING STYLE

/* MAKE V AN IDENTITY MATRIX •/
v = 0.0;
DO I - 1 TO N;

V(I,I) • 1 .O;
END;

CHAPTER I

In either case, it is more important to make the purpose of the code unmistak
able than to display virtuosity. Even storage requirements and execution time are
unimportant by comparison, for setting up an identity matrix must surely be but a
small part of the whole program. The problem with obscure code is that debugging
and modification become much more difficult, and these are already the hardest
aspects of computer programming. Besides, there is the added danger that a too
clever program may not say what you thought it said.

Write clearly - don't be too clever.

Let's pause for a moment and look at what we've done. We studied part of a
program, taken verbatim from a programming textbook, and discussed what was
good about it and what was bad. Then we made it better. (Not necessarily perfect
- just better.) And then we drew a rule or a general conclusion from our analysis
and improvements, a rule that would have sounded like a sweeping generality in the
abstract, but which makes sense and can be applied once you've seen a specific case.

The rest of the book will be much the same thing - an example from a text,
discussion, improvements, and a rule, repeated over and over. When you have
finished reading the book, you should be able to criticize your own code. More
important, you should be able to write it better in the first place, with less need for
criticism.

We have tried to sort the examples into a logical progression, but as you shall
see, real programs are like prose - they often violate simultaneously a number of
rules of good practice. Thus our classification scheme may sometimes seem arbi
trary and we will often have to digress.

Most of the examples will be bigger than the one we just saw, but not exces
sively so; with the help of our discussion, you should be able to follow them even if
you're a beginner. In fact, most of the bigger programs will shrink before your very
eyes as we modify them. Sheer size is often an illusion, reflecting only a need for
improvement.

The examples are all in either Fortran or PL/I, but if one or both of these
languages is unfamiliar, that shouldn't intimidate you any more than size should.
Although you may not be able to write a PL/I program, say, you will certainly be
able to read one well enough to understand the point we are making, and the prac
tice in reading will make learning PL/I that much easier.

For example, here is a small part of a PL/I program that we will discuss in
detail in Chapter 4:

CHAPTER I

OVFLO:

IF CTR > 45 THEN GO TO OVFLO;
ELSE GO TO RDCARD;

INTRODUCTION 3

The first GOTO simply goes around the second GOTO, which seems a bit disorgan
ized. If we replace > by <=, we can write

IF CTR <= 45 THEN GOTO RDCARD;
OVFLO:

One less statement, simpler logic, and, as it happens, we no longer need the label
OVFLO. The lesson? Don't branch around branches: turn relational tests around if
it makes the program easier to understand. We will soon see a Fortran example of
exactly the same failing, which brings up an important point: although details vary
from language to language, the principles of style are the same. Branching around
branches is confusing in any language. So even though you program in Cobol or
Basic or assembly language or whatever, the guidelines you find here still apply.

It might seem that we're making a great fuss about a little thing in this last
example. After all, it's still pretty obvious what the code says. The trouble is,
although any single weakness causes no great harm, the cumulative effect of several
confusing statements is code that is simply unintelligible.

Our next example is somewhat larger:

The following is a typical program to evaluate the square root (B) of a number (X):

READ(5,1)X
1 FORMAT(F10.5)

A=X/2
2 B=(X/A+A)/2

C=B-A
IF(C.LT.O)C=-C
IF(C.LT.10.E-6)GOTO 3
A=B
GOTO 2

3 WRITE(6,1)B
STOP
END

Because it is bigger, we can study it on several levels and learn something from
each. For instance, before we analyze the code in detail, we might consider whether
this program is truly "typical." It is unlikely that a square root routine would be
packaged as a main program that reads its input from a file - a function with an
argument would be far more useful. Even assuming that we really do want a main
program that computes square roots, is it likely that we would want it to compute
only one before stopping?

This unfortunate tendency to write overly restricted code influences how we
write programs that are supposed to be general. Soon enough we shall meet pro
grams designed to keep track of exactly seventeen salesmen, to sort precisely 500
numbers, to trace through just one maze. We can only guess at how much of the
program rewriting that goes on every day actually amounts to entering parameters
via the compiler.

4 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER I

Let us continue with the square root program. It is an implementation of
Newton's method, which is indeed at the heart of many a library square root routine
(although we need not go into precisely how it works). With proper data, the
method converges rapidly. If x is negative, however, this program can go into an
infinite loop. (Try it.) A good routine would instead provide an error return or a
diagnostic message. And the program blows up in statement 2 if x is zero, a case
that must be treated separately. The square root of zero should be reported as zero.

Even for strictly positive values of x this program can give garbage for an
answer. The problem lies in the convergence test used:

C=B-A
IF(C.LT.O)C=-C
IF(C.LT.10.E-6)GOTO 3

To make effective use of the Fortran language, the second line should read

C = ABS(C)

To avoid having someone misread 10.E-6 as "IO to the minus sixth power," the
constant in the third line should be 1 . OE-5 or even O. 00001. And to say what is
meant without bombast, all three lines should be changed to

IF (ABS(B-A) .LT. 1 .OE-5) GOTO 3

The test now reads clearly; it is merely wrong.
If x is large, it is quite possible that the absolute difference between successive

trial roots will never be less than the arbitrary threshold of 1 . OE-5 unless it is
exactly zero, because of the finite precision with which computers represent
numbers. It is a delicate question of numerical analysis whether this difference will
always become zero. For small values of x, on the other hand, the criterion will be
met long before a good approximation is attained. But if we replace the absolute
convergence criterion by a test of whether the estimate is close enough relative to the
original data, we should get five place accuracy for most positive arguments:

C COMPUTE SQUARE ROOTS BY NEWTON'S METHOD
100 READ(5,110) X

c

c

c

110 FORMAT(F10.0)

IF (X .LT. 0.0) WRITE(6,120) X
120 FORMAT(1X, 'SQRT(', 1PE12.4, ')UNDEFINED')

IF (X .EQ. 0.0) WRITE(6,130) X, X
130 FORMAT(1X, 'SQRT(', 1PE12.4, ')

IF (X .LE. 0.0) GOTO 100
B = X/2.0

1PE12.4)

200 IF (ABS(X/B - B) .LT. 1.0E-5 * B) GOTO 300
B = (X/B + B) I 2.0
GOTO 200

300 WRITE(6,130) X, B
GOTO 100
END

The modified program is still not a typical square root routine, nor do we wish
to go into the detailed treatment of floating point arithmetic needed to make it one.
The original example is, however, typical of programs in general: it profits from

CHAPTER I INTRODUCTION 5

criticism and revision.

Let us conclude the chapter with another example that illustrates several fail
ings. This program is a sorting routine.

DIMENSION N(500)
WRITE (6,6)

6 FORMAT (1H1,26HNUMBERS IN ALGEBRAIC ORDER)
DO 8 I=1,500

8 READ (5,7) N(I)
7 FORMAT (I4)

DO 10 K=1,1999
J=K-1000
DO 10 I-1,500
IF(N(I)-J)10,9,10

10 CONTINUE
STOP

9 WRITE (6,95) N(I)
95 FORMAT (1H ,I4)

GO TO 10
END

The code suffers not only from lack of generality, but from an ill-advised algorithm,
some dubious coding practices, and even a typographical error. The line

DO 10 I-1,500

is wrong: the "-" should be "=". The program was contrived in part to illustrate
that the range of a DO loop can be extended by a transfer outside and back, even
though in this case the inner DO loop and the code of the extended range can all be
better written in line as

DO 10 I= 1, 500
IF (N(I) .EQ. J) WRITE (6,95) N(I)

95 FORMAT(1X, I4)
10 CONTINUE

More to the point is the question of whether programmers should be
encouraged to use extended ranges in the first place. Jumping around unnecessarily
in a computer program has proved to be a fruitful source of errors, and usually indi
cates that the programmer is not entirely in control of the code. The apparently ran
dom statement numbers in this example are often a symptom of the same disorder.

The program has other flaws. It reads in 500 numbers, one per card, and sorts
them about as inefficiently as possible - by comparing each number with all
integers between -999 and +999. It does this once, for only one set of numbers,
then stops.

But wait. With an I4 input format, it is possible to read positive numbers as
large as 9999, since we can leave out the plus sign; the program as it stands will fail
to list four-digit numbers. To correct the oversight will slow the algorithm by a fac
tor of more than five, without extending its generality in the least. Extending this
method to handle larger integers would slow it by orders of magnitude, and to ask it
to handle floating point numbers would be unthinkable.

We will not attempt to rewrite this code, since we disagree with its basic
approach. (Chapter 7 contains several better sorting programs.) We just want to

6 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER I

show that the same program can be viewed from different perspectives, and that the
job of critical reading doesn't end when you find a typo or even a poor coding prac
tice. In the chapters to come we will explore the issues touched on here and several
others that strongly affect programming style.

We begin, in Chapter 2, with a study of how to express individual statements
clearly. Writing arithmetic expressions and conditional (IF) statements is usually
the first aspect of computer programming that is taught. It is important to master
these fundamentals before becoming too involved with other language features.

Chapter 3 treats the control-flow structure of computer programs, that is, how
flow of control is specified through looping and decision-making statements. It also
shows how data can be represented to make programming as easy as possible, and
how data structure can be used to derive a clean control flow. Program structure is
covered in Chapter 4, how to break up a program into manageable pieces. Consid
erable emphasis is given in these chapters to proper use of structured programming
and sound design techniques.

Chapter 5 examines input and output: how to render programs less vulnerable
to bad input data and what to output to obtain maximum benefit from a run. A
number of common blunders are studied in Chapter 6, and tips are given on how to
spot such errors and correct them.

Contrary to popular practice, efficiency and documentation are reserved for the
last two chapters, 7 and 8. While both of these topics are important and warrant
study, we feel they have received proportionately too much attention - particularly
in introductory courses - at the expense of clarity and general good style.

A few words on the ground rules we have used in criticizing programs:

(I) Programs are presented in a form as close to the original as our typescript per
mits. Formatting, typographical errors, and syntax errors are as in the original.
(Exception: three PL/I programs have been translated from the 48-character set
into the 60-character set.)

(2) We regularly abstract parts of programs to focus better on the essential points.
We believe that the failings we discuss are inherent in the code shown, and not
caused or aggravated by abstracting. We have tried not to quote out of context.
We have tried throughout to solve essentially the same problem as the original
version did, so comparisons may be made fairly, even though this sometimes
means that we do not make all possible improvements in programs.

(3) We will not fault an example for using non-standard language features (for
example, mixed mode arithmetic in Fortran) unless the use is quite unusual or
dangerous. Most compilers accept non-standard constructions, and standards
themselves change with time. Remember, though, that unusual features are
rarely portable, and are the least resistant to changes in their environment.

Our own Fortran hews closely to the 1966 American National Standards Insti
tute (ANSI) version, except for our use of quoted Hollerith strings (we refuse
to count characters). PL/I programs meet the standard set by IBM's checkout
compiler, version 1, release 3.0. Although there are new versions of Fortran
and PL/I in sight which will make better programming possible in both of these

CHAPTER I INTRODUCTION 7

languages, they are not yet widespread, so we have not written any examples in
the newer dialects.

(4) In our discussions of numerical algorithms Oike the square root routine above)
we will not try to treat all possible pathological cases; the defenses needed
against overflow, significance loss, and other numerical pitfalls are beyond the
scope of this book. But we do insist that at least the rudimentary precautions
be taken, like using relative tests instead of absolute and avoiding division by
zero, to ensure good results for reasonable inputs.

(5) Every line of code in this book has been compiled, directly from the text, which
is in machine-readable form. All of our programs have been tested (Fortran on
a Honeywell 6070, PL/I on an IBM 370/168). Our Fortran programs have also
been run through a verifier to monitor compliance with the ANSI standard.

Nevertheless, mistakes can occur. We encourage you to view with suspicion
anything we say that looks peculiar. Test it, try it out. Don't treat computer
output as gospel. If you learn to be wary of everyone else's programs, you will
be better able to check your own.

8 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER I

POINTS TO PONDER

1.1 A matrix with n rows and n columns has n2 elements. So to initialize such a
matrix requires n2 assignments. To multiply two n by n matrices together, or to
solve n linear equations in n unknowns, involves on the order of n3 operations by
classical methods. (These are the sorts of things that matrix manipulation programs
do.) Give arguments to support the following conjectures:

If n;;?; 10, the time required to initialize a matrix is not very important.

If n < 10, the time required to initialize a matrix is not very important. (Hint:
input and output conversions are more time consuming than arithmetic.)

1.2 In the first edition of this book, we wrote the square root routine this way:

c COMPUTE SQUARE ROOTS BY NEWTON'S METHOD
1 0 READ(5,11) x
11 FORMAT (F10. 0)

IF (X .GE. 0.0) GOTO 20
WRITE(6,13) x

13 FORMAT (' SQRT(', 1PE12.5, ') UNDEFINED')
GOTO 10

20 IF (X .GT. 0.0) GOTO 30
B = 0.0
GOTO 50

30 B = 1 .0
40 A = B

B = (X/A + A)/2.0
IF (ABS ((X/B) /B - 1. 0) .GE. 1.0E-5) GOTO 40

50 WRITE(6,51) X, B
51 FORMAT(' SQRT(', 1PE12.5, ') = ' '

1PE12.5)
GOTO 10
END

This is "more efficient" because there are no repeated tests. Which version do you
prefer, and why? How much time and space difference does the change make?
What deficiencies of the Fortran language are illustrated by both versions?

1.3 In the square root routine, we saw that testing for convergence against an
absolute threshold like 1 . OE-5 is perilous. We recommended testing instead
against some sort of relative standard. How can the function

REAL FUNCTION RELDIF(X, Y)
RELDIF = ABS(X - Y) I AMAX1 (ABS(X), ABS(Y))
RETURN
~ND

be used in the example? (AMAX1 is the Fortran function that returns the maximum
of two or more floating point numbers as floating point.) This function is relatively
well-behaved for values that might be encountered in the square-root routine. In
more general applications, are there any values of x and Y that might cause trouble?

CHAPTER 2: EXPRESSION

Writing a computer program eventually boils down to wntmg a sequence of
statements in the language at hand. How each of those statements is expressed
determines in large measure the intelligibility of the whole; no amount of comment
ing, formatting, or supplementary documentation can entirely replace well expressed
statements. After all, they determine what the program actually does.

It is easy to mistake a sequence of overly-simple expressions for profundity.
An extreme example of this is

IF(X .LT. Y) GO TO 30
IF (Y .LT. Z) GO TO 50
SMALL = z
GO TO 70

30 IF (X .LT. Z) GO TO 60
SMALL = z
GO TO 70

50 SMALL = y
GO TO 70

60 SMALL = x
70

Ten lines, with four statement numbers and six GOTO's; surely something is happen
ing. Before reading further, test yourself. What does this program do?

The mnemonic SMALL is a giveaway - the sequence sets SMALL to the smallest
of x, Y, and z.

There are a number of ways to do this computation. If our purpose is to teach
how to compute the minimum, we write

SMALL = X
IF (Y .LT. SMALL) SMALL = Y
IF (Z .LT. SMALL) SMALL = Z

which is direct and to the point. Labels and GOTO's are not needed. And the gen
eralization to computing the minimum of many elements is obvious.

Say what you mean, simply and directly.

But if we are just trying to get the job done, we use the Fortran built-in func
tion AMIN1, which computes the minimum of two or more floating point numbers:

9

10 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

SMALL = AMIN1 (X, Y, Z)

One line replaces ten. How can a piece of code that is an order of magnitude too
large be considered reliable? There is that much greater chance for confusion, and
hence for the introduction of bugs. There is that much more that must be under
stood in order to make changes.

Library functions like AMIN1 are one way to reduce the apparent complexity of
a program; they help to keep program size manageable, and they let you build on
the work of others, instead of starting from scratch each time.

Use library }Unctions.

Code that is excessively clever is at least as hard to understand as code that is
too simple-minded. For example,

DCL TEXT CHAR(200)VAR;
GET LIST(TEXT);
N=O;
START: A=INDEX(TEXT,' ');
IF A=O THEN GO TO FINISH;
N=N+1;
TEXT=SUBSTR(TEXT,A+1);
GO TO START;
FINISH: PUT LIST(N);

Even though this uses PL/I's built-in functions INDEX and SUBSTR, it is hardly
clear. INDEX (TEXT, ' ') returns the position of the first blank in TEXT, or zero if
there is no blank. SUBSTR (TEXT, A+1) produces the substring of TEXT that begins
at position A+1; this is re-assigned to TEXT, thus disposing of characters up to and
including the leftmost remaining blank. So after a bit of thought, we can see that
this program counts the number of blanks in TEXT.

Suppose that you were trying to teach a novice programmer how to count the
blanks in a character string? How would you do it? Surely not by this elegant but
mystifying method - instead you would say "Look at each character, and if it's a
blank, count it." Or, in PL/I,

DECLARE TEXT CHARACTER(200) VARYING;
GET LIST (TEXT);
N = O;
DO I= 1 TO LENGTH(TEXT);

IF SUBSTR(TEXT, I, 1) =' 'THEN
N = N + 1;

END;
PUT LIST (N);

This too uses the built-in functions that PL/I provides, but it uses them in a way
that clarifies the method of solution, rather than obscuring it. Everyone knows that
debugging is twice as hard as writing a program in the first place. So if you're as
clever as you can be when you write it, how will you ever debug it?

Peculiar modes of expression often arise out of attempts to write "efficient"
code. The programmer has some knowledge about how a particular compiler

CHAPTER 2 EXPRESSION 11

generates code, and so uses only those expressions "known" to be "better." For
instance

1 0 F1 •X1 -X2•X2
F2•1. 0-X2
FX•F1•F1+F2•F2

C NOTE THAT IT IS MORE EFFICIENT TO COMPUTE
C F1•F1 THAN TO COMPUTE F1••2.

Whether "efficient" means "takes less time" or "takes fewer machine instruc
tions," the comment is not always true. Many compilers recognize the special case
F1 ••2 and generate the same code as for F1 •F1. Some compilers would, in fact,
generate shorter and faster code for

10 FX = (X1 - X2••2)••2 + (1 .0 - X2)••2

than for the original version. (Ours produced 15 instructions for the original ver
sion, 13 for the revision.)

This rendition also happens to be more readable and eliminates the temporary
variables F1 and F2, which have little mnemonic value. The fewer temporary vari
ables in a program, the less chance there is that one will not be properly initialized,
or that one will be altered unexpectedly before it is used. "Temporary" is a dirty
word in programming - it suggests that a variable can be used with less thought
than a "normal" (permanent?) one, and it encourages the use of one variable for
several unrelated calculations. Both are dangerous practices.

A void temporary variables.

Even if the comment about efficiency were true in a particular environment,
there is still little justification for using the more obscure mode of expression. We
shall discuss the question of efficiency further in Chapter 7. For now, we observe
simply that a program usually has to be read several times in the process of getting
it debugged. The harder it is for people to grasp the intent of any given section, the
longer it will be before the program becomes operational. Trying to outsmart a
compiler defeats much of the purpose of using one.

Write clearly - don't sacrifice clarity for ''efficiency. ''

A variation of this is

I• NOTE THAT '110010' IN BINARY IS ·so• IN DECIMAL •/
I• THIS WILL BE USED FOR LINE COUNTING •/

IF N0>101111B THEN DO ; PUT PAGE; NO=OB;
END;

The programme1 evidently hopes to avoid a run-time type-conversion by using
FIXED BINARY constants in expressions involving FIXED BINARY variables. The

12 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

comment underlines the fact that human beings are not likely to know the binary
representation of 50. Yet we are expected to recognize a binary 47 on the basis of
this one hint. One of the first services to be automated in early computer languages
was the conversion of decimal to binary. It would be a shame if we were forced to
think in binary, after all these years, by misinformed considerations of "efficiency."
(Most compilers will convert "47" to binary at compile time, by the way. Those
that will not must certainly provide worse inefficiencies to worry about.)

The proper thing to do here is to introduce a parameter, such as MAXLINES,
and initialize it to 4 7 once and for all at the top of the program. The code becomes
much more readable and easier to change. And if there happens to be an expensive
conversion, it will occur only once.

Let the machine do the dirty work.

Repeated patterns of code catch the eye when scanning listings. Since the com
puter is a tool for handling repetitious operations, we should be alerted by such pat
terns to look for oversights - why didn't the programmer let the computer do the
repeating? In the middle of a program for manipulating triangles we see the frag
ment

C COMPUTE LENGTHS OF SIDES
AB= SQRT((X2 - X1)••2 + (Y2 - Y1)••2)
AC= SQRT((X3 - X1)••2 + (Y3 - Y1)••2)
BC= SQRT((X3 - X2)••2 + (Y3 - Y2)••2)

C COMPUTE AREA
S = (AB + BC + AC) I 2.0
AREA = SQRT(S * (S-BC) * (S-AC) * (S-AB)

C COMPUTE ANGLES
ALPHA= ATANF((4.0•AREA) I (AC••2 + AB••2 - BC••2))
BETA= ATANF((4.0•AREA) I (AB••2 + BC••2 - AC••2))
GAMMA= ATANF((4.0•AREA) I (AC••2 + BC••2 - AB••2))

We can see immediately the advantage of defining two arithmetic statement
functions:

SIDE(XA, YA, XB, YB) = SQRT((XA-XB)••2 + (YA-YB)••2)
ANGLE(SAREA, SA, SB, SC) = ATAN2(4.0•SAREA, SA••2 + SB••2 - SC••2)

so that we can write

AB SIDE(X1, Y1, X2, Y2)
AC= SIDE(X1, Y1, X3, Y3)
BC = SIDE(X2, Y2, X3, Y3)

ALPHA = ANGLE(AREA, AC, AB, BC)
BETA = ANGLE(AREA, AB, BC, AC)
GAMMA= ANGLE(AREA, AC, BC, AB)

This is not only easier to write but also easier to modify. For instance the For
tran II name ATANF should be changed whenever possible to the Fortran IV stan
dard ATAN. In fact, the form

CHAPTER 2 EXPRESSION 13

ATAN(Y/X)

should always be changed to

ATAN2(Y, X)

which correctly handles right-angled triangles instead of causing a division by zero
when Y /X is evaluated. Only one change was needed in the function definition to
correct all three calculations; we were more likely to get it right. (The program also
contains a typographical error:

AREA = SQRT(S * (S-BC) * (S-AC) * (S-AB)

needs a balancing right parenthesis on the end.)
Fortran's arithmetic statement function is unfortunately restricted to one-line

expressions, and is thus of limited usefulness. When the operation to be done is
more complex, write a separate subroutine or function. The ease of later
comprehending, debugging, and changing the program will more than compensate
for any overhead caused by adding the extra modules.

Replace repetitive expressions by calls
to a common function.

Another eye-catching repeat appears in

R • 12.
AL = 24.
TIME • 0.
THETA= 0.
DELTH • 2. * 3.1416 / 100.
DO 18 I= 1,100
X = R•(1. - COS(THETA)) + L - L•SQRT(1. - (R*SIN(THETA)/L)**2)
THETA • THETA + DELTH
XNEW• R * (1. - COS(THETA)) + L - L*SQRT(1. - (R•SIN(THETA)/L)**2)
VEL • (XNEW - X) / 0.01
TIME = TIME + 0.01

18 WRITE (2,8) TIME, THETA, XNEW, VEL
8 FORMAT (4F9.2)

STOP
END

Our first impulse is to define another arithmetic statement function for the gangling
expression that appears twice, but closer inspection shows a more fundamental over
sight.

The program computes x and its first derivative VEL at each of 100 successive
points. Two adjacent values of x must be known to find VEL, so the program duti
fully computes both on each iteration, even though one value is already known from
the previous iteration. The elaborate expression is computed twice as often as
necessary. Worse, it is written twice, which increases the risk that one occurrence
will be modified and the other overlooked.

There is also an error: L is used in both expressions where AL is certainly
intended. Less serious, but potentially troublesome, is the practice of incrementing
a floating point variable many times (see Chapter 6). To keep arithmetic errors

14 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

from piling up and to make the code clearer, we are better off computing TIME and
THETA from I on each iteration. Putting everything together gives:

REAL L
R 12. 0
L = 24.0
x = o.o
DO 20 I= 1, 100

TIME = FLOAT(I)/100.0
THETA = 2.0 * 3.141593 * TIME
XNEW = R * (1.0 - COS(THETA)) + L -

$ L * SQRT(1 .0 - (R•SIN(THETA)/L)••2)
VEL = (XNEW - X)/0.01
WRITE(2,10) TIME, THETA, XNEW, VEL

10 FORMAT(4F9.2)
X = XNEW

20 CONTINUE
STOP
END

(We have used $ as the continuation character, because it is the only standard For
tran character without any other syntactic meaning. It minimizes the chance for
confusion, and is likely to cause a visible error if used in the wrong column.)

Since we have saved a hundred function evaluations, we will not worry about
computing 21T inside the loop. We also decided to stick with the identifier L, instead
of changing all occurrences to AL. The original problem was stated in terms of R
and L; it is usually safer to remain consistent with this notation than to try to
remember the translation all the time. This is one of those unfortunate occasions
when standard Fortran notation is at odds with the usage desired. You can argue it
either way, but we decided in this case that adding the statement

REAL L

is better than renaming the variable. If you get into the habit of declaring all vari
ables, the problem doesn't arise at all.

Arithmetic expressions in Fortran and PL/I also differ sometimes from the way
we intuitively tend to write them. We are accustomed, in writing algebra, to bind
multiplication tighter than division. That is, we assume that if we write

A•B/2.0•C

it means

But in Fortran and PL/I the interpretation is

((A•B)/2.0)•C

Only by using parentheses or rearranging the computation can we avoid potential
confusion.

A more insidious operator ambiguity occurs in this expression from an
arctangent routine:

TERM= TERM•(-X••2)/DENOM

CHAPTER 2 EXPRESSION 15

Is x negated and then squared, or is it squared and then negated? Fortran reference
manuals seldom treat such fine points in detail; this may be a hard question to
answer without running a test program. As a matter of fact the ANSI standard for
Fortran calls for the latter interpretation (fortunate in this case) - the variable x is
squared and then negated - but the line should still be rewritten as:

TERM = -TERM * X••2 I DENOM

The first form invites misunderstanding on the part of the reader, if not the com
piler. Unless reader and compiler both understand the writer, the program is not
communicating properly.

Parenthesize to avoid ambiguity.

Variable names can also be either safe or dangerous:

8 NOSS = NOSS + 1

Now was that "N, letter o, five, s," or "N, zero, five, s," or even "NOSS"? The
possibilities for error are numerous. Would you trust someone else to type correc
tions for this program? Mixtures of similar characters (letter o and digit 0, letter I
and digit 1, etc.) are unsafe, as are long identifiers that differ only at the end. Use
XPOS and YPOS, not POSITIONX and POSITIONY. When abbreviating, always
keep first letters, favor "pronounceable" forms (XPOS, not XPSTN), and above all
be consistent.

Similar identifiers arc dangerous in general. One program contains the improb-
able sequence

N = K
N = K••2
NNN = K••3

It is only when, much further down, we read

WRITE (6 1 60) N ,NN,NNN, ...

that the typographical error in the second line becomes clear. A better choice of
names here is N, NSQ, NCUBE. Try to choose names that differ widely; typos and
misspellings are less likely to be disguised. Of course, choose names that mean
something as well, so the intent of the code is clearer. (We will discuss this more in
Chapter 8.)

Choose variable names that won't be confused

We have discussed arithmetic expressions quite a bit, but conditional expres
sions are at least as important in writing programs. In either PL/I or Fortran, condi
tional expressions nearly always involve at least one IF statement, which controls
whether or not another statement is executed, on the basis of some condition. PL/I

16 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

allows the controlled statement to be compound, and therefore arbitrarily complex,
but we will save more complicated examples for Chapter 3. Some of the worst
examples of misused conditional expressions are in Fortran, since the limited facili
ties of that language encourage greater atrocities.

Part of the reason for this is historical. Fortran II had only the arithmetic IF
statement, which does not perform as we suggested in the previous paragraph.
Instead it causes a branch to one of three statement numbers, depending on
whether an arithmetic expression is negative, zero, or positive. The logical IF was
added to Fortran IV as a cleaner way of expressing conditionals. It should always be
used instead of the arithmetic IF, especially since two of the three labels are almost
always the same in practice.

One of the most productive ways to make a program easier to understand is to
reduce the degree of interdependence between statements, so that each part can be
studied and understood in relative isolation. One of the major liabilities of the For
tran arithmetic IF is that it increases the connections between statements:

50 IF(C-COMMA) 55,70,55
55 IF(C-SCOL) 60,70,60
60 IF(C-DASH) 65,70,65
65 NC=NC+1
70

The wall-to-wall statement numbers are the first thing to strike the eye. The first
line says that if C-COMMA is negative or positive, control transfers to statement 55; if
it is zero, control goes to 70. In other words, if c equals COMMA, branch to 70; if
not, fall through to the next statement, 55. Similar reasoning applies at statements
55 and 60.

Putting everything together, if c is not a comma and c is not a semicolon and c
is not a dash, the statement NC=NC+1 is executed. Or, in Fortran,

50 IF (C.NE.COMMA .AND. C.NE.SCOL .AND. C.NE.DASH) NC =NC + 1

Most people "understand" an arithmetic IF by mentally translating it into a logical
IF, just as we did here. There is little reason ever to use an arithmetic IF.

There is another difficulty with the arithmetic IF version of this program. All
those labels in the left margin represent potential targets for branches from other
parts of the program. Without reading through all of the program from which this
excerpt comes, you can't be certain that no other statement branches into the mid
dle of the construction. But when the group of statements is collapsed into a single
IF, there is no doubt about how to get to it - it is entered at the beginning and
exited at the end, and it has no other connections with the rest of the program. The
logical IF reduces the apparent complexity of the program.

Occasionally the third branch of an arithmetic IF can serve to direct an "impos
sible" condition to error-handling code. It is always good practice to think through
such conditions and deal with them properly. Even when all three branches of the
arithmetic IF are distinct, however, readability is better served by substituting two
logical IF's and a GOTO.

CHAPTER 2 EXPRESSION 17

Avoid the Fortran arithmetic IF.

The influence of the arithmetic IF often extends into misuse of the logical IF.
For example,

IF((X(I) - X(N)) .LE. 0.) GO TO 300

is a literal translation of an arithmetic into a logical IF, which should be written

IF (X(I) .LE. X(N)) GOTO 300

("Say what you mean.") And

IF (MOD(K,N1).NE.0) GO TO 9
WRITE (6,4) K,X

9 ...

is better rendered as

IF (MOD(K,N1) .EQ. 0) WRITE (6,4) K, X

The same observation holds for PL/I:

GROSSPAY = BASERATE *
TOTALHRS;

IF TOTALHRS <= 40 THEN GO TO
NOVT;

GROSSPAY = GROSSPAY + 0.5 *
BASERATE * (TOTALHRS - 40);

NOVT: ...

Since the GOTO branches around only a single statement, it is clearly unnecessary.
Rewriting gives

GROSSPAY = BASERATE * TOTALHRS;
IF TOTALHRS > 40 THEN

GROSSPAY = GROSSPAY + 0.5 * BASERATE * (TOTALHRS-40);

A conditional expression can also be disguised by using a Fortran computed
GOTO:

GOT0(65,70),PRNT
65 WRITE(6,105) X
70

The computed GOTO has a definite place, but this is not it. Since labels 65 and 70
appear nowhere else in the program, this code is certainly better written as

IF (PRNT .NE. 2) WRITE (6,105) X

to eliminate the two statement numbers. Now we can tell at a glance that there is
only one way to reach the WRITE statement.

These last three examples show a tendency to follow all IF's with branches,
even when they do not have to be. Such usage eventually leads to circumlocutions
like

18 THE ELEMENTS OF PROGRAMMING STYLE

GRVAL = A(1)
DO 25 I = 2,10
IF (A(I) .GT.GRVAL) GO TO 30
GO TO 25

30 GRVAL = A(I)
25 CONTINUE

CHAPTER 2

The IF controls a branch that branches around the branch that branches around the
statement we wanted to do in the first place! Turning things right side up gives

GRVAL = A(1)
DO 25 I = 2,10

IF (A(I) .GT. GRVAL) GRVAL = A(I)
25 CONTINUE

We leave it to the reader to decide whether the IF statement should be replaced by

GRVAL = AMAX1 (GRVAL, A(I))

when we are finding the larger of just two elements.

A void unnecessary branches.

Even though PL/I has adequate facilities for writing programs without any
branches at all, they are often neglected, in a style of coding called "Fortran with
semicolons." Abuse of PL/I ultimately leads to code like this sorting routine:

DO M = 1 TO N;
K = N-1;
DO J = 1 TO K;
IF ARAY(J) - ARAY(J+1) >= 0

THEN GO TO RETRN;
ELSE;

SAVE= ARAY(J);
ARAY(J) = ARAY(J+1);

ARAY(J+1) =SAVE;
RETRN: END;

END;

The construction THEN GOTO might be an early exit from a loop, but more
often is a tipoff that something is amiss. Here it only branches around three state
ments, not out of the loop. Why not turn the test around so no GOTO or label is
required? (The ELSE with no statement after it, a "null ELSE," serves no purpose
whatsoever; it only confuses the issue.) Subtraction and comparison against zero is a
bad idea because of the danger of overflow or underflow; a direct comparison would
be safer and far easier to understand. The outer loop need only be done N-1 times,
and the inner N-M times. Of course PL/I allows expressions in the limits of DO
loops, so there is no need for the temporary variable K. And the erratic indentation
should be changed so it tells how the statements are related to each other. Putting
these improvements all together gives

CHAPTER 2

DOM= 1 TO N-1;
DO J = 1 TO N-M;

IF ARAY(J) < ARAY(J+1) THEN DO;
SAVE= ARAY(J);
ARAY(J) = ARAY(J+1);
ARAY(J+1) =SAVE;

END;
END;

END;

Use the good features of a language;
avoid the bad ones.

EXPRESSION 19

A failure to state clearly the underlying logic can le.id to tangled control flow, as
in this program for a rudimentary computer dating service:

LOGICAL FEM(8),MALE(8)
READ(S,6)IGIRL, (FEM(I),I=1,8)

9 READ(S,6)IBOY,(MALE(I),I=1,8)
DO BI= 1,8
IF(FEM(I)) GO TO 7
IF(.NOT.MALE(I)) GO TO 8
GO TO 9

7 IF(.NOT.MALE(I)) GO TO 9
8 CONTINUE

WRITE(2,10) IBOY
6 FORMAT (IS,8L1)

10 FORMAT (10X,IS)
GO TO 9
STOP
END

We have to look long and hard at this jungle of IF's and GOTO's before the light
dawns. The program is supposed to write IBOY only if each of the MALE (I) has
the same truth value as the corresponding FEM (I). Standard Fortran does not
allow us to ask directly if two LOGICAL variables are equal or not, but we can still
improve readability by using . AND. and . OR. :

LOGICAL FEM(Bl, MALE(B)
READ (S,10) IGIRL, FEM

10 FORMAT (IS, 8L1)
20 READ (S,10) IBOY, MALE

DO 30 I= 1, 8
IF ((FEM(I) .AND .. NOT.MALE(!)) .OR.

$ (MALE(!) .AND .. NOT.FEM(!))) GOTO 20
30 CONTINUE

WRITE (2,40) IBOY
40 FORMAT (10X, IS)

GOTO 20
END

This tells us directly that the program will go on to read the next input line, without
printing IBOY, if any one of the FEM (I) differs from its corresponding MALE (I).

20 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

We also deleted the inaccessible STOP statement and the explicit indexing in the
READ statements, indented the code, and numbered the statements systematically.

Don't use conditional branches as a substitute for a logical expression.

As an aside, the dating program provides a simple example of how an appropri
ate data representation can make programming easier. With INTEGER variables
instead of LOGICAL, we can make the desired comparison directly:

INTEGER FEM(B), MALE(B)
READ (5,10) !GIRL, FEM

10 FORMAT (IS, 811)
20 READ (5,10) IBOY, MALE

DO 30 I= 1 1 8
IF (FEM(I) .NE. MALE(!)) GOTO 20

30 CONTINUE

The data will also have to be changed, from T's and F's to ones and zeros, but this
is a simple mechanical operation. We will discuss data structure at more length in
Chapter 3.

The expression in parentheses in a logical IF statement is of type LOGICAL; its
value is either . TRUE . or . FALSE . . Most of the time we use just a relational
operator, such as . LE. or . EQ., to determine the truth value of the condition. But
we can, if we wish, use the Boolean operators . AND . , . OR., and . NOT. to make
arbitrarily complex logical expressions. Boolean algebra is not used nearly as widely
as ordinary arithmetic, so we must write logical expressions more carefully lest we
confuse the reader.

Consider the sequence

6 IF(X1.GE.ARRAY(I)) GO TO 2
IF(ARRAY(I).LT.X2) ICOUNT=ICOUNT+1

2

It takes a while to realize that I COUNT is incremented only if ARRAY (I) lies
between X1 and X2. Inversions and GOTO's slow down reading comprehension and
should be avoided. Rewriting gives:

6 IF (ARRAY(I).GT.X1 .AND. ARRAY(I).LT.X2) !COUNT= !COUNT+ 1

It is much easier to tell at a glance what the logic implies.
Logical conditions can often be combined ifthey are all related, and if they are

combined with only a single type of operator. For example,

CHAPTER 2

IF(NUM.LT.OOOOOOO)GO TO 500
IF(NUM.GT.9999999)GO TO 500
IF(AMON.LT.OOOOOOOO)GO TO 500
IF(AMON.GT.99999999)GO TO 500
IF(ITEM.LT.OOOO)GO TO 500
IF(ITEM.GT.9999)GO TO 500
GO TO 150

500 WRITE(6,80)NUM,CUST,AMON,ITEM,IMM,IDD,IYY
GO TO 150

EXPRESSION 21

Leaving aside the redundant zeros (after all, zero is zero, so adding more digits
won't make it more precise), there is a suspicious regularity to the code: everything
heads for statement 500.

Combining the logical conditions gives us the following version:

IF (NUM .LT. 0 .OR. NUM .GT. 9999999
$.OR. AMON .LT. 0 .OR. AMON .GT. 99999999
$.OR. ITEM .LT. 0 .OR. ITEM .GT. 9999)
$ WRITE(6,80) NUM, CUST, AMON, ITEM, IMM, IDD, IYY

GO TO 150

This is still quite a mouthful, but since each part of the test has the same structure,
and the parts are all combined with the same operator, it can be readily understood.

It is simpler to write good logical expressions in PL/I, but that is no guarantee
that all expressions will be written as clearly as they can be:

IF K=O I (~(PRINT='YES' I PRINT='NO')) THEN DO;

The inversion and double parentheses slow comprehension. It seems better to dis
tribute the "not" operation through the parenthesized expression. De Morgan's
rules

~(A B) <=> ~A & ~B
~(A & B) <=> ~A I ~B

tell us how:

IF K = 0 I (PRINT~= 'YES' & PRINT~= 'NO') THEN DO;

The expression is still not simple, but it is now in a form that more closely resem
bles how we speak. Note that we elected to keep the parentheses, even though
none are necessary here, to make the operator binding unambiguous to the reader
as well as the compiler.

A useful way to decide if some piece of code is clear or not is the "telephone
test." If someone could understand your code when read aloud over the telephone,
it's clear enough. If not, then it needs rewriting.

Use the "telephone test" for readability.

Judicious use of De Morgan's rules often improves the readability of programs
by simplifying logical expressions. But care should be exercised in how they are
applied. An example of the pitfalls of inverting logic comes from this routine to
access a sparse matrix stored as a linear table. The function is supposed to return a

22 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

table value if it finds a matching row and column; otherwise it returns zero.

FUNCTION SPARSE(I,J)
COMMON /SP/ N1 NROW(500) 1 NCOL(500),VALUE(SOO)
DO 10 K = 1,N
IF (NROW(K).NE.I .AND. NCOL(K).NE.J) GO TO 10
SPARSE = VALUE(K)
GO TO 999

10 CONTINUE
SPARSE ,. 0.0

999 RETURN
END

By definition the sparse array has a value stored at VALUE (K) for (I , J) if

NROW(K).EQ.I .AND. NCOL(K).EQ.J

Negating this for the IF statement gives

.NOT. (NROW(K) .EQ.Il .OR .. NOT. (NCOL(K) .EQ.J)

which in turn is

NROW(K).NE.I .OR. NCOL(K).NE.J

Compare this line with the IF statement in the function. The function SPARSE is
wrong; it will return the first value where either I or J is matched. The . AND. must
be changed to . OR. . (This error has been corrected in later printings of the text
from which it was taken.) Actually, the code would be more direct if it were written
with the test stated the way a human reader would say it:

c

FUNCTION SPARSE(!, J)
COMMON /SP/ N, NROW(SOO), NCOL(SOO), VALUE(SOO)
DO 10 K,. 1,N

IF (NROW(K).EQ.I .AND. NCOL(K).EQ.J) GOTO 20
10 CONTINUE

SPARSE = 0.0
RETURN

20 SPARSE VALUE(K)
RETURN
END

We have discussed a number of small examples where expressions were either
hard to read, misleading, or downright incorrect. Let us conclude this chapter with
a larger example, to show how quickly a program can get out of hand when you fail
to look after the little things. (This is the first big PL/I program we have looked at
- don't let it frighten you.) The program finds the area under the parabola y=x2
between x=O and x= 1, using a trapezoidal rule, for several different step sizes.

CHAPTER 2

TRAPZ: PROCEDURE OPTIONS (MAIN);
DECLARE MSSG1 CHARACTER (20);

MSSG1 ='AREA UNDER THE CURVE';
DECLARE MSSG2 CHARACTER (23);

MSSG2 ='BY THE TRAPAZOIDAL RULE';
DECLARE MSSG3 CHARACTER (16);

MSSG3 'FOR DELTA X = 1/';
DECLARE I FIXED DECIMAL (2);
DECLARE J FIXED DECIMAL (2);
DECLARE L FIXED DECIMAL (7,6);
DECLARE M FIXED DECIMAL (7,6);
DECLARE N FIXED DECIMAL (2);
DECLARE AREA1 FIXED DECIMAL (8,6);
DECLARE AREA FIXED DECIMAL (8,6);
DECLARE LMTS FIXED DECIMAL (5,4);

PUT SKIP EDIT (MSSG1) (X(9), A(20));
PUT SKIP EDIT (MSSG2) (X(7), A(23));
PUT SKIP EDIT (' ') (A(1));

AREA = O;
DOK= 4 TO 10;

M 1 I K;
N K - 1;

LMTS .5 * M;
I 1;

DO J = 1 TO N;
L = (I I K) ** 2;

AREA1 = .5 * M * (2 * L);
AREA,. AREA+ AREA1;

IF I = N THEN CALL OUT;

END;
END;

ELSE I= I+ 1;

OUT: PROCEDURE;
AREA = AREA + LMTS;

EXPRESSION

PUT SKIP EDIT (MSSG3,K,AREA) (X(2),A(16),F(2),X(6),
F(9,6));

AREA = O;
RETURN;

END;
END;

23

Held at arm's length, this program looks pretty impressive. There is a large
assortment of data declarations, followed by a computation that is evidently complex
enough to warrant a sub-procedure. Declarations are neatly aligned, and the execut
able statements are staggered so as to indicate several levels of control nesting.
There are text strings to suggest the intent of the program, and mnemonic
identifiers to give hints about how the results are obtained. The general impression
conveyed is that this is a moderately complicated problem that has been carefully
coded and is now well under control.

Closer inspection, however, shows quite the opposite.
Each output message is used only once, and would be better placed in the PUT

statement that uses it instead of being separately declared and initialized by an
assignment. (One message is even misspelled.) The first two PUT statements can be
combined into

24 THE ELEMENTS OF PROGRAMMING STYLE

PUT SKIP EDIT ('AREA UNDER THE CURVE',
'BY THE TRAPEZOIDAL RULE')
(X(9) 1 A, SKIP, X(7), A);

and the bizarre

PUT SKIP EDIT (' ') (A (1)) ;

CHAPTER 2

changed into a simple PUT SKIP. And there is no reason to specify character-string
lengths in the A format items; computers count much better than people do.

The purpose of the assignment

M = 1 I K;

is unclear. Does it defend against some mysterious conversion? Is it to convey
geometrical insight? Or does the programmer worry that computers divide more
slowly than they multiply? It is a rare program that can be speeded up significantly
by changing divisions into multiplications, and this is not one of them - M appears
only twice. Efficiency cannot be of grave importance anyway, not when the code
contains the statement

AREA1 = .5 * M * (2 * L);

which has two superfluous multiplications (but no divisions!). M can be eliminated.
Similarly, N, LMTS, Land AREA1 vanish as the obvious substitutions are made.

We can now remove all those declarations with the strang, precisions needed
for intermediate results. The remaining declarations consist ot just two different
types. A close look reveals that K is not declared, even though all other arithmetic
variables are. By default K will be FIXED BINARY so a number of type conversions
will occur, to no advantage. K should be included in the declarations.

With all the extraneous assignments removed, it is easier to see the underlying
structure. It is also easy to see that the indentations reflect little of what is going on.
But what is the purpose of the variable I? It is laboriously kept equal to J so that
OUT can be called at the end of the last iteration. Clearly I is not needed, for J
could be used for the test. But the test is not needed; OUT could be called just after
the inner DO loop has terminated. But OUT need not be called at all, for its code
could just as well appear in the one place it is invoked. The structure simplifies
remarkably.

Now we can see that the summing variable AREA is supposed to be initialized at
the beginning of each loop on K. This is much better practice than clearing it before
entering the loop and again at the end of each iteration - in a remote procedure at
that. Our major criticism of the procedure OUT is not its existence, since it was
there for pedagogical reasons, but that it changes AREA and uses LMTS when it does
not have to. Destroying modularity in this fashion, referring to seemingly local vari
ables in unexpected places, is an invitation to future bugs. When code is
rearranged, or the use of such non-local variables is changed, errors are almost cer
tain to be introduced.

Putting all our improvements together gives:

CHAPTER 2

TRAPZ: PROCEDURE OPTIONS(MAIN);
DECLARE (J,K) FIXED DECIMAL (2),

AREA FIXED DECIMAL (8,6);

PUT SKIP EDIT ('AREA UNDER THE CURVE',
'BY THE TRAPEZOIDAL RULE')
(X(9), A, SKIP, X(7), A);

PUT SKIP;

DOK• 4 TO 10;
AREA= 0.5/K;

DO J • 1 TO K-1;
AREA= AREA+ ((J/K)••2)/K;

END;

EXPRESSION 25

PUT SKIP EDIT ('FOR DELTA X=1/', K, AREA)
(X(2), A, F(2), X(6), F(9,6));

END;
END;

The program now reflects how straightforward the calculation really is. (Both the
original and our version are quite specialized. See problem 2.4.)

The original program gave correct answers, yet we were able to improve upon it
considerably. It is clear that successful operation is no guarantee of a good program.
The changes we made were not designed to decrease execution time (which is too
short to measure reliably) or to decrease storage utilization (which improved by
thirty percent). Had we been concerned with optimization in the usual sense, we
would have factored l/K3 out of the AREA calculation.

What then did we improve? Readability, principally, but also locality and simpli
city of structure. AREA is initialized just before it is used, not in two widely
separated and illogical places. The calculation now proceeds from top to bottom
without the pointless excursion to a sub-procedure. The original program was
puffed up with needless declarations and expressions, with over-simple computations
and over-complex control structure.

Programs are not used once and discarded, nor are they run forever without
change. They evolve. The new version of the integration program has a greater
likelihood of surviving changes later without acquiring bugs. It assists instead of
intimidating those who must maintain it. This will be the goal of all our revisions.

To summarize some of the specific points of this chapter:

(1) Write clearly. If you find your code branching around branches or around sin
gle statements, turn relational tests around. For each GOTO, ask if it could be
cleanly eliminated. Avoid constructions like Fortran's arithmetic IF that force
GOTO's and labels upon you.

(2) Be sparing with temporary variables. The clutter from too many temporaries
confuses readers (including you), and may well thwart an optimizing compiler.

26 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 2

(3) Be unambiguous. Add parentheses and alter too-similar identifiers to avoid any
possibility of misunderstanding.

(4) Don't build all of your own tools: use standard library functions like ABS and
AMIN1 . If no function exists, write your own as a separate function, and add it
to your library. Be sufficiently general that your routine can be used in future
applications and by other people.

(5) Make sure conditional tests read clearly. Try speaking them aloud; rearrange
unwieldy tests.

CHAPTER 2 EXPRESSION 27

POINTS TO PONDER

2.1 In case you think the examples in this chapter are rare, here are a few more
fragments for you to practice on. Decide what each does, then improve it.

IF A>B THEN DO;
LARGE=A;
GO TO CHECK;
END;
LARGE=B;
CHECK: IF LARGE>C THEN GO TO OUTPUT;
LARGE=C;
OUTPUT: ...

IF(ITEM1 .LE. ITEM2)GO TO 3
IHIGH1=ITEM1
GO TO 4

3 IHIGH1=ITEM2
4 IF(IHIGH1 .GE. ITEM3)GO TO 5

IHIGH2=ITEM3
GO TO 6

5 IHIGH2=IHIGH1
6

DCL A(B);
GET LIST (A) ;
DO I=1 TO B;

IF ABS(A(I))<ABS(A(I+1)) THEN;

END;

ELSE BEGIN;
STORE=A(I);
A(I)=A(I+1);
A(I+1)=STORE;
END;

PUT LIST (A);

(Find the bug too.)

IF A = 0 THEN GO
GO TO CHECK;

TESTB: IF B = 0 THEN GO
GO TO CHECK;

TESTC: IF C = 0 THEN GO
/•HERE WE TEST FOR COMPLEX

CHECK:

TO TESTB;

TO TESTC;

TO NOMORE;
ROOTS. •I

28 THE ELEMENTS OF PROGRAMMING STYLE

DIMENSION F(46)
INTEGER F

Q=FLOAT(F(I))/FLOAT(J)
QTRUNC=FLOAT(F(I)/J)
IF ((Q-QTRUNC) .EQ.O.) GO TO 4

(Does it even work on your machine?)

DO 10 K=KK,N
IF(NAME(I) .EQ.NAME(K))GO TO 5
GO TO 10

5 WRITE(6,3)NAME(I)
3 FORMAT(' ',A4)
10 CONTINUE

CHAPTER 2

2.2 How long do you think it would take you to make the following Fortran
expression for the root of a quadratic syntactically and semantically correct?

ROOT1 = (-B + SQRT(B••2 - 4AC)/2A

Six characters have to be added, counting decimal points after floating point literals.
Did you use eight on your first try? Which version is easier to read? Do you think
knowing the quadratic formula by heart helps or hinders proofreading?

2.3 In the trapezoidal integration program discussed above, suppose you had been
assigned the job of writing procedure OUT, while someone else wrote the main pro
cedure. How many things do the two of you have to agree on - names of vari
ables, who initializes what - before you can write OUT as it stands? If each initial
ized his own variables, and the values to be printed were passed as parameters as in

CALL OUT (K, AREA);

how many things do you then have to agree on?

2.4 Consider the effort needed to change both versions of the trapezoidal integra
tion program to deal with an arbitrary function F (X) between arbitrary limits A and
B. Which conversion represents an easier task and why?

CHAPTER 2 EXPRESSION 29

2.5 The following program counts sentences, words and characters in a text. A
slash marks the end of the text. Rewrite it using logical IF's instead of arithmetic
IF's. How many labels are now necessary?

INTEGER C 1 KT,BUFR(72) 1 BLANK,COMMA,SCOL,DASH,SLSH,PEROD,NW,NC,NS
REAL AWS,ASW
DATA BLANK,COMMA,SCOL,DASH,SLSH,PEROD/' • ,• ,' ,';' ,•-• ,•/• ,•.•/,

* NW,NC,NS,KT,C/0,0,0,73,• '/
101 FORMAT(1H1 1 35X,'INPUT TEXT')
102 FORMAT(72A1)
103 FORMAT(4X,72A1)
104 FORMAT(///,26X 1 'NUMBER OF SENTENCES•' 1 I8 1 / 1 19X 1 'AVERAGE NUMBER OF

•WORDS/SENTENCE•' 1 F8.2 1 /20X,'AVERAGE NUMBER OF SYMBOLS/WORD•',F8.2)
WRITE(6 1 101)

10 READ(5 1 102) BUFR
WRITE(6 1 103) BUFR
KT•KT-72
IF(C-PEROD) 20 1 35 1 20

20 C•BUFR(KT)
25 IF(C-PEROD) 40 1 30 1 40
30 NS•NS+1

NW•NW+1
KT•KT+3
IF(KT-72) 35 1 35 1 10

35 C•BUFR(KT)
IF(C-SLSH) 25 1 75 1 25

40 IF(C-BLANK) 50 1 45 1 50
45 NW•NW+1

GO TO 70
50 IF(C-COMMA) 55 1 70 1 55
55 IF(C-SCOL) 60 1 70 1 60
60 IF(C-DASH) 65 1 70 1 65
65 NC•NC+1
70 KT•KT+1

IF(KT-72) 20 1 20 1 10
75 AWS•FLOAT(NW)/NS

ASW•FLOAT(NC)/NW
WRITE(6 1 104) NS,AWS,ASW
CALL EXIT
END

2.6 In the preceding program, what happens if a period occurs in column 71 or 72
of an input card? What happens if more than one blank separates two words? What
happens if there are leading or trailing blanks on a line? What happens if a sen
tence ends with a question mark? What else happens? Rewrite the program to make
it less vulnerable.

CHAPTER 3: CONTROL STRUCTURE

A computer program is shaped by its data representation and the statements
that determine its flow of control. These define the structure of a program. There is
no sharp distinction between expression and organization; it is more a question of
scope. In the previous chapter we were concerned with the details of expressing
each statement well. In this chapter and in the next we will concentrate on matters
of style that affect the program as a whole.

The control structures of a language provide the framework of a program.
These include decision-making with IF and ELSE; looping with DO and WHILE;
statement grouping; and procedures or subroutines and functions. The care with
which they are used determines how easy it will be to understand the program in the
large - in what order things happen, and what controls what. The transformations
we made in Chapter 2, such as removing obviously unnecessary GOTO's and state
ment labels, are simple examples of the proper use of control flow. In this chapter
we will go much further.

The easiest construction is the group of statements - a set of operations that
are always done together and in sequence. PL/I provides DO-END and BEGIN-END
to delimit groups of statements that belong together. In PL/I, branching around a
group of statements with THEN GOTO is a sign of "Fortran-think," a clue that
rearrangement is called for.

IF PRICE(J) >LOT THEN GO TO X;
I• REDEFINE LOT IF LOWER PRICE IS FOUND •/
LOT= PRICE(J);
/* STORE LOCATION OF THE LOWEST PRICE •/
LOCATION = J;
X: ...

Since PL/I's DO-END permits a group of statements to follow an IF, there is never
any need to branch around them. And so there is never any need to invent a label,
nor to try and figure out where a GOTO is going, nor to wonder how many ways one
can get to a label. Turning "greater than" into "less than or equal to" here lets us
introduce a DO-END and eliminate the label and the GOTO. At the same time, we
indent to emphasize that the IF controls the two indented lines, and omit the
repetitive comments, which obscure the code without conveying information.

31

32 THE ELEMENTS OF PROGRAMMING STYLE

IF PRICE(J) <=LOT THEN DO;
LOT= PRICE(J);
LOCATION = J;

END;

CHAPTER 3

Fortran provides nothing analogous to DO-END; this is one of its major failings.
There is no way to treat a block of statements as a group (after an IF, for instance),
except by putting them into a subroutine or branching around them. This leads to
tortuous code indeed if the program is at all complicated. Even so, some usages are
clearer than others.

IF (TABLE (NO) .GT. HICOM) GO TO 50
GO TO 20

50 HICOM = TABLE (NO)
NUMBER • NO

20 CONTINUE

This should be replaced by

IF (TABLE(NO) .LE. HICOM) GOTO 20
HICOM = TABLE(NO)
NUMBER = NO

20 CONTINUE

Again we indent the statements that are skipped over, to show that they are con
trolled by the IF. Within the limitations of Fortran, this is about the best we can
do.

Use DO-END and indenting
to delimit groups of statements.

In PL/I, an IF may be followed by an ELSE part, to express the action to be
taken if the condition is not true. But consider

IF SWFSTCTL = '1'
THEN GOTO CONTINUE ;
ELSE DO ;

DIVCTL = DIV ;
SWFSTCTL = '1'

END ;
CONTINUE :

I• INITIALIZE CONTROL •/

The ELSE is a red herring, serving no purpose here. It should be used only when
there are two distinct and mutually exclusive actions depending on one test. If there
is only one action, it belongs after the THEN, so that the reason for the action can be
stated directly:

IF SWFSTCTL ~= '1' THEN DO;
DIVCTL = DIV; /• INITIALIZE CONTROL •/
SWFSTCTL = '1 ';

END;

On the other hand, when there really are two cases, an ELSE should be used:

CHAPTER 3 CONTROL STRUCTURE 33

IF DISCRIM<O THEN DO;
PUT EDIT('COMPLEX ROOTS') (SKIP,A);
PUT DATA(A,B,C);
GOTO MISS;

END;
ROOT=SQRT(DISCRIM);
ROOT1=(-B+ROOT)/(2•A);
ROOT2=(-B-ROOT)/(2•A);
PUT SKIP DATA(A,B,C,ROOT1,ROOT2);

MISS: , ..

The actions after the DO-END are done if and only if the DO-END block is not
done; they should be part of an ELSE:

IF DISCRIM < 0 THEN DO;
PUT EDIT ('COMPLEX ROOTS') (SKIP, A);
PUT DATA (A, B, C);

END;
ELSE DO;

ROOT= SQRT(DISCRIM);
ROOT1 = (-B+ROOT) I (2•A);
ROOT2 = (-B-ROOT) I (2•A);
PUT SKIP DATA (A, B, C, ROOT1, ROOT2);

END;

In Fortran, it is hard to make the structure of an IF-ELSE explicit, since there
is no ELSE, and only a single (restricted) statement can follow the IF. For even
more complicated combinations, things get tough indeed. Consider this fragment
for keeping track of the largest and smallest A (I l :

IF(A(I) .LE.BIG) GO TO 100
BIG=A(I)
GO TO 49

100 IF(A(I) .GE.SMAL) GO TO 49
SMAL=A(I)

49 CONTINUE

This is an essentially mechanical translation of the algorithm into Fortran, and as
such is hard to fault. It is possible, however, to write the code rather more clearly
in this special case:

IF (A(I) .GT. BIG) BIG = A(I)
IF (A(I) .LT. SMAL) SMAL = A(I)

If the first test succeeds, the second presumably cannot, but an occasional redundant
test is a small price to pay for improved readability.

By the way, it is necessary to be quite careful when tests might overlap. Avoid
situations like this one:

IF HRS_WORKED<=40
THEN CALL REGPAY;

IF HRS_WORKED>=40
THEN CALL OTPAY;

People who work exactly forty hours are rewarded with a double paycheck! An
IF-ELSE divides things into two separate pieces, only one of which is done. It also
ensures that someone reading the code can see that only one thing is done. Thus:

34 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

IF HRS_WORKED <• 40 THEN
CALL REGPAY;

ELSE
CALL OTPAY;

Use IF-ELSE to emphasize that
only one of two actions is to be performed.

Another major aspect of control flow is looping. We are already familiar with
the indexed. loop, the

DO I = 1 TO N

of PL/I and the

DO 10 I= 1, N

of Fortran. But even more frequent are loops which are not arithmetic progres
sions, as in this sorting procedure:

SORT: PROCEDURE OPTIONS(MAIN);
DECLARE (NAMES(50),SPARE)CHARACTER(10),
SWITCH BIT(1),(I,N) FIXED BINARY;
/•READ IN ALL 50 NAMES
GET LIST(NAMES);
N=50;

AGAIN:SWITCH='O'B; /•CLEAR THE SWITCH•/

END;

DO I=1 TO N-1; /•SET THE NUMBER OF COMPARISONS•/
IF NAMES(I)>NAMES(I+1) THEN

END;

DO;
SWITCH='1 'B;
SPARE•NAMES(I);
NAMES(I)•NAMES(I+1);
NAMES(I+1)•SPARE;

END;

/•SWAP THE PAIR •/
/•USING SPARE,AND •/
I• SET THE SWITCH•/

N=N-1; /•DECREASE NUMBER OF COMPARISONS•/
IF SWITCH THEN GOTO AGAIN; /•REPEAT IF SWAP WAS MADE•/
PUT LIST(NAMES);

There are actually two loops here, although it takes a bit of work to find that out.
The inner loop is clear enough; it runs from 1 to N-1. The outer loop is executed
so long as an interchange has been made during a pass through the list of items.
This is recorded by SWITCH, which is '1 'B if an exchange has been made, and

1 o 'B otherwise.
The PL/I DO-WHILE statement provides a way to write this loop that makes it

instantly obvious to the reader that there is a loop, and what controls it.

CHAPTER 3

SORT: PROCEDURE OPTIONS (MAIN);
DECLARE (NAMES(SO), SPARE) CHARACTER(10);
DECLARE SWITCH BIT(1);

CONTROL STRUCTURE 35

DECLARE YES BIT(1) INITIAL ('1 'B), NO BIT(1) INITIAL ('O'B);
DECLARE (I, N) FIXED BINARY;

GET LIST (NAMES);
SWITCH = YES;
DON= 50 TO 2 BY - 1 WHILE (SWITCH= YES);

SWITCH = NO;
DO I= 1 TO N-1;

IF NAMES(!) > NAMES(I+1) THEN DO;
SWITCH = YES;
SPARE= NAMES(!);
NAMES(!) = NAMES(I+1);
NAMES(I+1) =SPARE;

END;
END;

END;
PUT LIST (NAMES);

END;

The original version used a label and an IF-GOTO to build the outer loop, and a
DO for the inner; it was hard to see at a glance that there are truly two loops or
where each begins. Now the two loops are explicitly marked as such.

We have also used the variables YES and NO instead of the literals '1 'B and
' O 'B, to make the code read a bit more clearly.

As much as possible, a program should be written so the control flow structures
lead the reader quickly and directly to an understanding of what the program does.
For example, in

A: IF COUNT(RANK) < 4 THEN
BEGIN;

PUT LIST(RECONVERT(RANK));
COUNT(RANK) = COUNT(RANK) + 1;
GOTO A;

END;

the construction

IF ... THEN BEGIN ... END

is a clear signal that the group of statements between BEGIN and END is to be done
exactly once if the condition is true, or not at all if it is false; then, in either case,
execution will resume after the END. But look carefully, and you will find that the
last statement of the group is a branch back to the test. Although the code claims to
be merely an IF, that is a lie - it is actually a loop.

A DO-WHILE provides an honest way to say what the code does:

DO WHILE (COUNT(RANK) < 4);
PUT LIST(RECONVERT(RANK));
COUNT(RANK) = COUNT(RANK) + 1;

END;

The advantage is not that the second version is smaller, but that it is explicit. The
DO-WHILE says "This is a loop," and is that much easier to understand. The first
version forces the reader to ferret out the control flow.

36 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

The WHILE statement, which specifies a loop with an arbitrary termination con
dition (tested at the top), is not available in Fortran. This means that loops in For
tran are often contorted into DO loops, which makes them hard to understand and
prone to errors. Alternatively, loops are written with IF's and GOTO's, which con
ceal the structure of code, again making it hard to understand and prone to errors.
Newer languages have better control-flow constructs, like PL/I's DO-WHILE. But the
DO-WHILE is seldom used, and PL/I programmers often write much as their Fortran
colleagues do.

Use DO and DO-WHILE to emphasize
the presence of loops.

Things get more complicated when several fundamental structures are
intertwined and built with spare parts instead of being spelled out explicitly, as in
this excerpt from a procedure that computes bowling scores.

Y=O; L=1; FRM=1;
CYCLE: IF X(L) = 10 THEN STRK: DO;

Y=Y+10+X(L+1)+X(L+2);
L=L+1;
GO TO NEXT;
END STRK;

IF X(L) + X(L+1) 10 THEN SPR: DO;

NEXT: IF FRM=10 THEN RETURN(Y);
FRM=FRM+1; GO TO CYCLE;

Y=Y+10+X(L+1);
L=L+2;
GO TO NEXT;
END SPR;

ELSE REG: DO;
Y=Y+X(L)+X(L+1);
L=L+2;
GO TO NEXT;
END REG;

There are actually two structures here, both built with IF's and GOTO's instead of
with the higher-level facilities provided by PL/I. The outer part is an indexed loop,
represented by

FRM-1;
CYCLE:

NEXT: IF FRM=10 THEN RETURN(Y);
FRM=FRM+1; GO TO CYCLE;

and the interior is a three-way decision: strike, spare, or regular frame.
Rewritten with explicit control structures, it becomes much clearer. Bowlers

will appreciate the correction of the computation for a spare; non-bowlers may be
less interested.

CHAPTER 3 CONTROL STRUCTURE 37

y • O;
L z 1;
DO FRM = 1 TO 10;

IF X(L) = 10 THEN DO; I• STRIKE •/
Y • Y + 10 + X(L+1) + X(L+2);
L = L + 1;

END;
ELSE IF X(L) + X(L+1) = 10 THEN DO;

Y Y + 10 + X(L+2);
L = L + 2;

END;
ELSE DO; I• REGULAR •/

Y,. Y + X(L) + X(L+1);
L ,. L + 2;

END;
END;
RETURN(Y);

I• SPARE •/

(There is another version of this program in Chapter 8.)
As a fringe benefit, the RETURN statement now occurs at the end, where one

would normally expect it, instead of being buried inside. It is a good rule of thumb
that a program should read from top to bottom in the order that it will be executed;
if this is not true, watch out for the bugs that often accompany poor structure.

Make your programs read from top to bottom.

The code we used to express the three-way decision in the bowling program is
an example of an important control construction, the multi-way decision, sometimes
called a CASE statement. Some languages provide a separate statement for writing
such branches; in PL/I, multi-way decisions are usually best expressed as a chain of
IF ... ELSE IF ... ELSE, like this:

IF condition-/ THEN
statement-/

ELSE IF condition-] THEN
statement-2

ELSE IF condition-n THEN
statement-n

ELSE
default-statement

The condition's are read from top to bottom; at the first condition that is satisfied,
the statement that follows is executed, and then the entire construct is exited. The
statement parts may be single statements, or (as above) a group of statements
enclosed in DO-END. The last ELSE handles the "default" situation, i.e., where
none of the other alternatives was chosen. This trailing ELSE part may be omitted
if the program logic requires no action for the default, although leaving it in with an
error message may help to catch "impossible" conditions.

We will return in a moment to how to handle the CASE statement in Fortran.

38 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

Note that we align all of the ELSE's in a CASE, rather than lining up each ELSE
with the corresponding IF. This emphasizes that all the legs of the CASE have
equal status and keeps them from marching off the right side of the page.

Use IF ... ELSE IF ... ELSE IF ... ELSE ...
to implement multi-way branches.

The CASE statement is often recognizable in a sequence of related decisions,
where only minor rearrangement is needed to bring things into the proper form:

IF AMT_OF_SALES <= 50.00 THEN COMM= 00.00;
IF AMT_OF_SALES > 50.00 THEN IF AMT_OF_SALES <• 100.00

THEN COMM = .02 * AMT_OF_SALES;
IF AMT_OF_SALES > 100.00 THEN

COMM = .03 * AMT_OF_SALES;

The two IF's in the second line can certainly be compressed into a single test with
the logical operator &. So an improved version might read

IF AMT_OF_SALES <= 50.00 THEN
COMM= 00.00;

IF AMT_OF_SALES > 50.00 & AMT_OF_SALES <- 100.00 THEN
COMM= 0.02 * AMT_OF_SALES;

IF AMT_OF_SALES > 100.00 THEN
COMM= 0.03 * AMT_OF_SALES;

But the tests in an ELSE-IF chain are done in the prescribed order, and this fact
may be used to advantage. If it fails the first test, AMT_OF _SALES is greater than
50; if it fails the second, it is greater than 100. Neither test need be repeated if an
ELSE-IF is used:

IF AMT_OF_SALES <= 50.00 THEN
COMM= 00.00;

ELSE IF AMT_OF_SALES <= 100.00 THEN
COMM 0.02 * AMT_OF_SALES;

ELSE
COMM 0.03 * AMT_OF_SALES;

Peeling off cases in numerical order in this way is also highly readable and easy to
change.

We have now mentioned several control flow constructions:

statement grouping with, for example, DO-END or BEGIN-END;

decision making with IF-ELSE;

looping with DO and DO-WHILE;

subroutines, functions, or procedures.

The DO loop comes in at least two flavors in PL/I, indexed and DO-WHILE, and the
IF-ELSE can be extended into the CASE or multi-way decision.

CHAPTER 3 CONTROL STRUCTURE 39

Taken together, this set of constructions is generally adequate for comfortably
expressing any sequencing operations in a program. The term "structured program
ming" is sometimes used (at least in a narrow sense) to refer to the process of pro
gramming with nothing but proper nests of these basic operations.

The advantage of this discipline is that since there are no GOTO statements, it is
generally easier to follow the flow of control; for the most part such a program reads
directly from top to bottom, so the reader doesn't have to follow paths with his
fingers all over the listing. And no GOTO's means no labels - there is only one way
to reach each statement.

On the other hand, structured programming in this limited sense certainly will
not solve all your programming problems. We will see in the rest of this chapter
plenty of code that contains only the basic constructions in properly nested combina
tions, yet which is hard to understand and even incorrect.

Use the fandamental control.flow constructs.

Bare Fortran doesn't have any of these fundamental structures. What can you
do to cope? We have several suggestions. For the long term, the 1977 Fortran
Standard provides an ELSE and a way to group statements after IF and ELSE; it
looks like:

IF (condition) THEN
statements

ELSE
statements

END IF

These can be nested, and there can be an ELSE IF. Regrettably, Fortran 77 does
not have a WHILE statement. There is also a version of the debugging compiler
WATFIV, called WATFIV-S, which supports statement grouping, ELSE, and WHILE.

A second possibility, which may be more accessible in the short run, is to use
one of the host of Fortran preprocessors which have been developed in the past few
years. A preprocessor is a program which translates a Fortran dialect with adequate
control flow statements into pure Fortran; ideally you never need to look at the gen
erated Fortran. (The "pseudo-code" that we will present in the next sections is
based on Ratfor, a language implemented by one such Fortran preprocessor. It is
described in Software Tools, by Brian W. Kernighan and P. J. Plauger, Addison
Wesley, 1976.)

A third possibility is to think out your code in a decent language, then translate
into Fortran when it comes time to start transcribing the code into machine-readable
form. This requires no software, just discipline. To see how it works in practice,
consider the following quadratic equation solver, in which IF statements come so
thick and fast as to baffie the reader.

40 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

c
c

1 0
8000

c

9000
c

c

c

15
20

9010

c
30
40

50

OBTAINS SOLUTIONS OF THE EQUATION A•X••2 + B•X + C 0

READ(5,8000) A,B,C
FORMAT(3F10.5)
A IN COLUMNS 1-10, BIN COLUMNS 11-20, C IN COLUMNS 21-30
WRITE(6 1 9000) A,B,C
FCRMAT(4HOA = F12.5,3X,3HB = ,F12.5,3X,3HC = ,F12.5)
TEST FOR TWO ZEROS
IF(B.EQ.O .. AND.C.EQ.O.) GO TO 15
AT THIS POINT EITHER B, OR C, OR BOTH MAY BE NONZERO
IF(B.NE.O .. AND.C.NE.0.) GO TO 50
AT THIS POINT EITHER B IS 0 OR C IS ZERO
IF(A) 30,20,30
IF(A.EQ.O.) STOP
WRITE(6,9010)
FORMAT(33H TRIVIAL CASE. TWO OR MORE ZEROS.)
GO TO 10
NOW TEST FOR C = 0 CASE.
IF(C) 60,40,60
XA = B/A
XB = 0.
GO TO 100
IF(A.NE.0.) GO TO 60
XA = -C/B
XB = 0.
GO TO 100

C START OF MAIN COMPUTATION
60 Q = B•B-4.•A•C

XX = -Bl (2.•A)
IF(Q) 80,70,80

70 XA = XX
XB = XX
GO TO 100

80 QA= ABS(Q)
XS= SQRT(QA)/(2.•A)
IF(Q) 110,110,90

90 XA = XX + XS
XB = XX - XS

100 WRITE(6,9020) XA,XB
9020 FORMAT(5H X1 = ,F12.5,3X,4HX2

GO TO 10
110 XA =XS

XB = -XS
WRITE(6,9030) XX,XA,XX,XB

,F12. 5)

9030 FORMAT(5H X1 = ,F12.5,2H + ,F12.5,2H I,5X,4HX2
1 F1 2 . 5 , 2H I)

GO TO 10
END

,F12.5,2H +,

A painful trace through the logic reveals several small errors. The most
significant is statement 40, the case where only c is zero, which should have a
minus sign:

40 XA = -B/A

Statement 20 writes "TRIVIAL CASE. TWO OR MORE ZEROS.", even though the
case where all three coefficients are zero is eliminated by the STOP at statement 15.
Worse, the same message is delivered for the equations

CHAPTER 3 CONTROL STRUCTURE 41

A•X••2 = 0, a valid equation with a double root at zero.

B•X = 0, which has a single root at zero.

c = 0, which is true only when c is zero.

Trivial they may be, but all are different and two out of the three are legitimate.
Finally, for the case where only A is zero, the program prints out two roots, -C/B
and 0.0, even though the equation has only one root.

A useful way to write a complex program in any language, not just Fortran, is
to code it first in a convenient, expressive pseudo-language (typically not Fortran or
PL/I) and then, when it appears correct, to translate it into the language at hand
(Fortran in this case). At the highest level, we might even write something like

REPEAT
read and print coefficients A, B and C
solve quadratic Ax2 + Bx + C

REPEAT implies an indefinitely repeated loop. On each iteration we fetch a new set
of coefficients and solve the corresponding quadratic.

The next step is to fill in some details, a process sometimes called "top-down
design" or "successive refinement." (We will have more to say about this in
Chapter 4.) Solving the quadratic is a multi-way decision, to decide what specific
kind of quadratic must be dealt with. Thus the second version is

REPEAT
read and print A, B, C
IF (A = 0 & B = 0 & C = 0)

stop
ELSE IF (A = 0 & B 0)

equation is C 0
ELSE IF (A = 0)

only root is -C/B
ELSE IF (C = 0)

roots are -B/A and 0
ELSE

Realpart = -B/(2A)
Discrirn = B••2 - 4AC
Irnagpart = sqrt(abs(Discrirn))/(2A)
IF (Discrirn >= 0)

roots are Realpart+Irnagpart and Realpart-Irnagpart
ELSE

roots are (Realpart, Irnagpart) and (Realpart, -Irnagpart)

Indeed this is no language in particular, but it is sufficiently precise for our
needs, and readily understood. There is no need for more formality. Not only is
the pseudo-code readable and precise, but it is sufficiently close to normal program
ming languages that we can apply principles of programming style to it just as if it
were executable. We can even check that it works, in the sense of doing the right
things at the right times.

Once we are satisfied, we translate. Since most Fortrans do not allow grouping
of statements, let alone a PL/I-like IF-ELSE, we must link up the pieces of the
IF-ELSE structures by GOTO's. At the same time we can fix minor details like out
put formats and statement labels, and make the variable names more mnemonic.

42 THE ELEMENTS OF PROGRAMMING STYLE

The resulting code is:

C OBTAINS SOLUTIONS OF THE EQUATION A•X••2 + B•X + C 0
c

1 0 READ(5,11) A, B, c
11 FORMAT (3F10. 0)

WRITE(6,12) A, B, c
12 FORMAT ('0A =', 1PE16.6, ' ' B ='' 1PE16.6, ' ' c =',

IF (A .EQ. o.o . AND. B .EQ. 0.0 .AND. c .EQ . 0) STOP
IF (A .NE. 0.0 .OR. B .NE. 0. 0)

WRITE(6,13) c
13 FORMAT (' EQUATION

GOTO 90
20 IF (A .NE. 0.0) GOTO 30

R1 = -C/B
WRITE(6,21) R1

21 FORMAT (' ONE ROOT.
GOTO 90

C A IS NOT ZERO
30 IF (C .NE. 0.0) GOTO 40

R1 = -B/A
R2 = 0.0
WRITE(6,31) R1, R2

SAYS',

R _,

'

GOTO 20

1PE16. 6,' 0')

1PE16.6)

31 FORMAT (' R1 =', 1PE16.6, ' R2 =', 1PE16.6)
GOTO 90

C GENERAL CASE: A, C NON-ZERO
40 RREAL = -B/(2.0•A)

DISC = B••2 - 4.0•A•C
RIMAG = SQRT(ABS(DISC))/(2.0•A)
IF (DISC .LT. 0.0) GOTO 50

R1 = RREAL + RIMAG
R2 = RREAL - RIMAG
WRITE(6,31) R1, R2
GOTO 90

50 R1 = -RIMAG
WRITE(6,51) RREAL, RIMAG, RREAL, R1

51 FORMAT(' R1 (', 1PE16.6, , , 1PE16.6, ')',
$ ' , R2 = (' , 1 PE1 6. 6, , , 1 PE1 6. 6, ') ')

90 GOTO 10
END

CHAPTER 3

1PE16.6)

Two roots are printed only when there are two, one is printed when and only when
there is one, and an imaginary part is printed only when called for. More important,
it is easy to determine how the program gets to each separate case. (This program is
still far from being a general-purpose quadratic-equation solver; the defenses needed
against every conceivable numerical hazard require more analysis than we can go
into here.)

Write.first in an easy-to-understand pseudo-language;
then translate into whatever language you have to use.

IF-ELSE constructions formed the framework of our quadratic routine, as they
do in most programs. But mere use of IF-ELSE does not guarantee that the result

CHAPTER 3 CONTROL STRUCTURE 43

will stand up. Consider this fragment, which computes the effective weight of an
airplane, based on its true weight, length, and wingspan.

IF LENGTH >= 30 & LENGTH <= 50 THEN

IF WING < .6•LENGTH THEN WEIGHT1
(1+.0B-.037)•WEIGHT;

ELSE WEIGHT1=(1+.0B+.045)•WEIGHT;
ELSE IF LENGTH > 50 & LENGTH < 60 THEN

IF WING < .6•LENGTH THEN
WEIGHT1•(1+.09-.037)•
WEIGHT;

ELSE WEIGHT1=(1+.09+.045)•
WEIGHT;

ELSE IF LENGTH > 60 & LENGTH
< 80 THEN

IF WING < .6•LENGTH THEN
WEIGHT1=(1+.105-.037)•
WEIGHT;

ELSE WEIGHT1=(1+.105+.045)•
WEIGHT;

ELSE IF WING < .6•LENGTH
THEN

WEIGHT1=(1+.122-
.037)•WEIGHT;

ELSE WEIGHT1=(1+
.122+.045)•WEIGHT;

When a program is well-structured, its layout can be made clean. For instance,
programs that avoid labels and undisciplined branches should use indentation to
emphasize the logical structure. (This program was originally displayed with vertical
bars joining !F's with their corresponding ELSE's.) But indentation is no substitute
for organization; tasteful formatting and top-to-bottom flow is no guarantee that the
code cannot be improved.

Look at all the repetitions. The entire structure is turned inside out. If the test
on WING is done first and the result saved for later use, and if we remove all the
redundant tests, the code simplifies remarkably. Rearrangement also reveals the
oversight in the original: the case where LENGTH is exactly 60 has been lumped in
with the case for 80 and larger.

44 THE ELEMENTS OF PROGRAMMING STYLE

IF WING< 0.6 * LENGTH THEN
CORR 1.0 - 0.037;

ELSE
CORR 1 .O + 0.045;

IF LENGTH >= 80 THEN
WEIGHT1 = (CORR+0.122) *WEIGHT;

ELSE IF LENGTH > 60 THEN
WEIGHT1 = (CORR+0.105) *WEIGHT;

ELSE IF LENGTH > 50 THEN
WEIGHT1 = (CORR+0.09) * WEIGHT;

ELSE IF LENGTH >= 30 THEN
WEIGHT1 = (CORR+0.08) *WEIGHT;

CHAPTER 3

Both versions use a nest of IF-ELSE's, but ours uses it in a special way: we
never use an IF immediately after a THEN, but only after an ELSE. The result is
much easier to understand, because we know that exactly one case is done (if
LENGTH exceeds 30), and it is clear how we get to it: it is the first condition satisfied
as we read down the list of ELSE I F's. After one of these has been done, execution
resumes after the entire statement. Of course this is just a CASE statement.

The construction THEN IF is often a warning that trouble looms ahead.

IF QTY> 10 THEN
IF QTY > 200 THEN

IF QTY >= 500 THEN
ELSE

ELSE;

/•A•/
/•B•/

BILL_A = BILL_A + 1.00; /•C•/
BILL_A = BILL_A + .50; l•C•I

ELSE BILL_A = .00;

Those letters down the right hand side are designed to help you figure out what is
going on, but as usual, no amount of commenting can rescue bad code. The
sequence of THEN-IF's requires you to maintain a mental pushdown stack of what
tests were made, so that at the appropriate point you can pop them until you deter
mine the corresponding action (if you can still remember). You might time yourself
as you determine what this code does when QTY equals 350. How about 150?

Since at most one of a set of actions is ever called for here, what we really want
is some form of CASE statement. Changing the order in which the decisions are
made leads to a clearer version:

IF QTY >= 500 THEN
BILL_A = BILL_A + 1.00;

ELSE IF QTY > 200 THEN
BILL_A = BILL_A + 0.50;

ELSE IF QTY<= 10 THEN
BILL_A = 0.0;

Now all we need do is read down the list of tests until we find one that is met, read
across to the corresponding action, and continue after the last ELSE.

In Fortran, this could be rendered as

IF (QTY .GE. 500.0) BILLA = BILLA+ 1 .0
IF (QTY .LT. 500.0 .AND. QTY .GT. 200.0) BILLA= BILLA+ 0.5
IF (QTY .LE. 10.0) BILLA= 0.0

which is best if the tests are mutually exclusive and if the relations and actions are

CHAPTER 3 CONTROL STRUCTURE 45

simple enough to write one per line. Don't let anyone tell you this is not efficient -
it doesn't take all that much time to make the whole set of tests, and you're more
likely to get the code right the first time. If it does take too much time, and you
have measurements that prove it, then and only then should you re-write it with
GOTO's.

The THEN-IF was the culprit in this example, but there is another symptom of
the same problem. Note the null ELSE clause in the original, required to make the
unstacking of the nested IF's come out right when one of the conditions has no
corresponding action. These seemingly useless statements cauterize the stumps of
any ill-thought-out THEN-IF's buried in the code. A program containing null ELSE
clauses is suspect, if for no other reason than that it was written by someone burned
by THEN-IF's often enough to sprinkle null ELSE's around for insurance.

The THEN-IF does have its uses. It is often the only way to ensure that tests
are performed in the proper order, as in

IF I > 0 THEN
IF A(I) = B(I) THEN ...

which checks that I is in range before it is used as an index. Some languages pro
vide special AND's and OR's which guarantee left-to-right evaluation and early exit as
soon as the truth value of the expression is determined. But if you are not for
tunate enough to be able to program with these useful tools, wrap a DO-END around
the inner IF so you don't have to worry about trailing ELSE's.

A void THEN-IF and null ELSE.

Consider this procedure for finding the largest of a set of positive numbers:

FINDNUM: PROC OPTIONS (MAIN);
DCL NEWIN DEC FLOAT (4);

LARGE DEC FLOAT (4) INIT (.0E1);
I• .0 x 10••1 = .O x 10 = 0.0

NEXT_C: GET LIST (NEWIN);
IF NEWIN >=0

THEN IF NEWIN > LARGE
THEN LARGE = NEWIN;
ELSE GO TO NEXT_C;

ELSE GO TO FINISH;
GO TO NEXT_C;

FINISH: PUT LIST (LARGE);
END;

Change the illegal semicolon into a comma in the second line. Ignore the curious
zero in the INIT attribute, and the equally curious explanatory comment. Now, try
to trace the flow of control. This is not a trivial exercise. How does one get to that
last GO TO NEXT_C, for example? Why, from the innermost THEN clause, of
course.

An ELSE GOTO tells you where you went if you didn't do the THEN, leaving you
momentarily at a loss in finding the successor to the THEN clause. And when ELSE
GOTO's are used one after the other, as here, the mind boggles. Needless to say,

46 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

ELSE RETURN is no better.
Such convolutions are almost never necessary if decisions are made in the right

order.

FINDNUM: PROCEDURE OPTIONS (MAIN);
DECLARE (NEWIN, LARGE) DECIMAL FLOAT (4);
NEWIN = O;
LARGE = O;
DO WHILE (NEWIN >= O);

GET LIST (NEWIN);
IF NEWIN > LARGE THEN

LARGE = NEWIN;
END;
PUT LIST (LARGE);

END;

What we have here is a simple DO-WHILE, done while the number read is not
negative, controlling a simple IF-THEN. Of course we have rearranged the order of
testing, but the end-of-data marker chosen was a convenient one and does not inter
fere with the principal work of the routine. True, our version makes one extra test,
comparing the marker against LARGE, but that will hardly affect the overall efficiency
of the sequence. Readability is certainly improved by avoiding the ELSE GOTO's.

A void ELSE GOTO and ELSE RETURN.

Most of the IF-ELSE examples we have shown so far have a characteristic in
common. Each approximates, as closely as the programmer could manage, a
minimum depth decision tree for the problem at hand. If all outcomes have equal
probability, such a tree arrives at the appropriate action with the minimum number
of tests on the average, so it might seem desirable to lay out programs accordingly.
But a program is a one-dimensional construct, which obscures any two-dimensional
connectedness it may have. The minimum depth tree is not the best structure for a
readable program.

Recall the program for finding the minimum of three numbers which we
showed at the beginning of Chapter 2. Let us rewrite that program in PL/I, adher
ing to the spirit of the original Fortran, but using only IF-ELSE's:

IF X >- Y THEN
IF Y >= Z THEN

SMALL = Z;
ELSE

SMALL = Y;
ELSE

IF X >= Z THEN
SMALL

ELSE
SMALL

z· '
x· '

Even though neatly laid out and systematically indented, it is still not easy to grasp.
Not all the confusion of the original can be attributed to the welter of GOTO's and
statement numbers. What we have here is a "bushy" tree, needlessly complex in

CHAPTER 3 CONTROL STRUCTURE 4 7

any event, but still hard to read simply because it is conceptually short and fat.
The ELSE-IF sequence, on the other hand, is long and skinny as trees go; it

seems to more closely reflect how we think. (Note that our revised minimum func
tion was also linear.) It is easier to read down a list of items, considering them one
at a time, than to remember the complete path to some interior part of a tree, even
if the path has only two or three links. Seldom i:> it actually necessary to repeat tests
in the process of stringing out a tree into a list; often it is just a matter of perform
ing the tests in a judicious order. Yet too often programmers tend to build a thicket
of logic where a series of signposts are called for.

Let us summarize our discussion of IF-ELSE. The most important principle is
to avoid bushy decision trees like

IF ••• THEN
IF ..• THEN
ELSE .••

ELSE
IF ••• THEN
ELSE •••

The bushy tree should almost always be reorganized into a CASE statement, which is
implemented as a string of ELSE-IF's in PL/I and as a series of !F's linked with
GOTO's in Fortran. The resulting long thin tree is much easier to understand.

A THEN-IF is an early warning that a decision tree is growing the wrong way.
A null ELSE indicates that the programmer knows that trouble lies ahead and is try
ing to defend against it. An ELSE GOTO from such a structure may leave the reader
at a loss to understand how the following statement is reached. A null THEN or
(more commonly) THEN GOTO usually indicates that a relational test needs to be
turned around, and some set of statements made into a group with DO-END.

The general rule is: after you make a decision, do something. Don't just go
somewhere or make another decision. If you follow each decision by the action that
goes with it, you can see at a glance what each decision implies.

Follow each decision as closely as possible
with its associated action.

We turn now to the general area of data structure and representation. A pro
gram frequently turns out ill-formed or hard to work with because its data represen
tation is inappropriate for the job at hand. We have already seen one small example
of this: the change from LOGICAL to INTEGER variables clarified the dating service
program of Chapter 2.

Choosing the right data types is usually pretty simple in Fortran, for there are
few choices - basically just INTEGER, LOGICAL, and REAL. In PL/I, however,
there are many more choices, and accordingly more ways to go wrong. Here is an
example where data structure makes all the difference. It is from a program which
makes change for an amount DIFF dollars, using $20 bills and smaller denomina
tions. The example is supposed to handle positive values of DIFF up to $10,000;

48 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

the part we have omitted deals with negative and zero values.

DECLARE A(B) REAL DECIMAL FIXED(6,2) INITIAL(20.,10.,5.,1.,.25,
.1,.05,.01), (AMT_PD,DIFF,COST) REAL DECIMAL FIXED(8,2),
(I,J,NT) REAL DECIMAL FIXED(3);

CHANGE:DO I=1 TO 8;
NT=O;

CASH:DO J=1 TO 50;

I• IN THIS LOOP WE DETERMINE THE MAXIMUM NUMBERS OF TIMES THE
DIFFERENCE IS DIVISIBLE BY THE I(TH) DENOMINATION •/

IF DIFF/(J•A(I))<1 THEN GO TO OUT;
NT=J;

END CASH;
I• WE THEN DECREASE THE DIFFERENCE BY THE APPROPRIATE AMOUNT

AND PRINT THE APPROPRIATE STATEMENT •/

OUT:IF NT>O THEN DO;
DIFF=DIFF-NT•A(I);
IF I=1 THEN

END

PUT SKIP(2) LIST(NT,'TWENTY DOLLAR BILLS');
IF I=2 THEN

PUT SKIP(2) LIST(NT,'TEN DOLLAR BILLS');
IF I=3 THEN

PUT SKIP(2) LIST(NT,'FIVE DOLLAR BILLS');
IF I=4 THEN

PUT SKIP(2) LIST(NT,'ONE DOLLAR BILLS');
IF I•5 THEN

PUT SKIP(2) LIST(NT,'QUARTERS');
IF I=6 THEN

PUT SKIP(2) LIST(NT,'DIMES');
IF I=7 THEN

PUT SKIP(2) LIST(NT,'NICKELS');
IF I•B THEN

PUT SKIP(2) LIST(NT,'PENNIES');
CHANGE;

Consider the variable NT. It always has the value J-1 whenever it is refer
enced; it is not needed. Worse, its presence helps obscure an important point - the
algorithm is wrong.

The inner DO loop (at label CASH) is clearly designed to exit via the IF before
the loop completes. But 50 times $20 is only $1000, not $10,000, so an exit can
occur from the bottom of the loop. The program will make change poorly at or over
$1020, and incorrectly over $1820.50.

Whenever a DO loop is designed "never" to exit from the bottom, one should
ask:

(1) Are there any circumstances when an exit from the bottom might take place?

(2) What happens if such an exit does occur?

The first question points to the typo that made the upper limit of the CASH loop 50
instead of 500; the second question reveals that the program charges straight on
after an error. (A judiciously placed error message, plus a comprehensive set of test

CHAPTER 3 CONTROL STRUCTURE 49

cases, would have brought this bug to light before it became a bad example.)
You might ask if it's fair to criticize such a "typographical" error, as we have

done several times. Our answer is that, regrettably, a program with a typo in it
won't work. If you're lucky, it will fail to compile. Worse, like this one, it may run
but provide subtly wrong answers.

One flaw in a program is often a clue that more are present. The whole purpose
of the strange computation in the CASH loop is to determine the maximum number
of times the I-th denomination A (I) can be removed from DIFF without causing
overdraw. This is exactly what division does. In fact, DIFF I A (I) gives the desired
result when truncated to the next lower integer, and the built-in function FLOOR
performs just such a truncation. The CASH loop is not only incorrect, but wasteful
and unnecessary.

Let us reconsider the data representation. It hardly seems necessary to rattle
down a series of IF's to output the appropriate denomination name. If instead we
use indexing, we can rewrite the fragment as:

DECLARE NAME(B) CHARACTER(19) INITIAL
'TWENTY DOLLAR BILLS', 'TEN DOLLAR BILLS
'FIVE DOLLAR BILLS ', 'ONE DOLLAR BILLS
'QUARTERS ', 'DIMES
'NICKELS ', 'PENNIES

DECLARE DENOM(B) REAL DECIMAL FIXED (6,2)
INITIAL (20.00, 10.00, 5.00, 1.00, 0.25,

DECLARE NT REAL DECIMAL FIXED (3);
DECLARE DIFF REAL DECIMAL FIXED (8,2);

DO I = 1 TO B;
NT= FLOOR(DIFF/DENOM(I));
DIFF = MOD(DIFF, DENOM(I));
IF NT > 0 THEN

PUT SKIP(2) LIST (NT, NAME(I));
END;

' ');

0.10, 0.05, 0.01);

The different denomination names are collected into a character-string array NAME
so we can use the computed index NT to select the one to print. NT now performs a
useful function and so is retained. Not only is this version smaller and more read
able, but it works correctly for any positive value that DIFF can assume. (We have
not shown the code for the case when DIFF is negative or zero.)

It is interesting that this program failed to use truncating division when it
should have, while the very first example in Chapter 1 used it to excess. In either
case, the result is obscure code. Some friendly criticism could have helped each
toward a happier middle ground. Curiously, manuscripts are almost always reviewed
before publication, yet programs are most often inspected only by the original coder
and the compiler. Both have blind spots.

Use data arrays to avoid repetitive control sequences.

50 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

It is easy to overlook a poor choice of data representation by getting involved in
fixing up the intricate code that usually accompanies it. The following program
reads cards and centers the non-blank information on each card within a border of
periods.

c

DIMENSION STRING(80),PHRASE(80)
BLANK • 1H
PERIOD • 1H.

999 READ 100, (PllRASE(I),I•1,80)
100 FORMAT(80A1)
103 FORMAT(1HO)

C LOOP 1
c

c

NBEF•O
J -1
IF(PHRASE(J) .NE.BLANK) GO TO 2
NBEF•NBEF+1
J - J+1
IF(J.EQ.81) GO TO 1000
GO TO 1

C LOOP 2
c

c

2 NAFT•O
I•80

3 IF(PHRASE(I) .NE.BLANK)GO TO 4
NAFT•NAFT+1
I•I-1
GO TO 3

C COMPUTE LENGTHS OF PHRASE AND MARGIN
c

c

4 LENGTH•80-(NBEF+NAFT)
MARGIN • (80-LENGTH)/2+1
IND1•NBEF
IND2•MARGIN
DO 41 J•2,79

41 STRING(J)•BLANK

C TRANSFER PHRASE TO STRING
c

DO 5 I•1,LENGTH
IND1 •IND1 +1
IND2•IND2+1

5 STRING(IND2) • PHRASE(IND1)
STRING(1)•PERIOD
STRING(80) • PERIOD
PRINT 103
PRINT 101, (STRING(I),I•1,80)

101 FORMAT(1H, 80(1H.)/3(2H .,78X,1H./) 1 1H ,80A1/3(2H .,78X,1H./)
1,1H ,80(1H.))

GO TO 999
1000 PRINT 102

102 FORMAT(1X, 37HBLANK CARD READ IN. EXIT FROM CENTER.)
CALL EXIT
END

Let us first examine the two errors that mar this otherwise straightforward pro
gram. The loop that ends at statement 5 copies the non-blank part of PHRASE into
the appropriate part of STRING. Then positions I and 80 of the output area,
STRING, are overwritten with a PERIOD, regardless of the length of the input. This
bodes ill for input strings 79 or 80 characters long. We can avoid the overwrite by

CHAPTER 3 CONTROL STRUCTURE 51

putting the two statements that set STRING (1) and STRING (80 l before the loop,
although it might be better to widen the output to 82 columns instead.

The second bug is more serious. We will leave it as an exercise for the reader
to verify that even-length input fields are not centered, but are placed one position
too far to the right. When the length is 80, this overwrites STRING (81 l. This
operation is illegal, of course, but few implementations bother to catch it, preferring
instead to let you deduce for yourself how some other variable mysteriously changes
its value in the middle of a computation.

Rather than trying to patch the errors, let us re-examine the data structure. A
moment of study reveals that two arrays, PHRASE and STRING, are used to hold a
single piece of data, the original input card. We can eliminate this double represen
tation by creating an array BORDER of 80 blanks with a period on each end, then
writing out PHRASE with enough of BORDER on each side to provide the necessary
periods and blanks.

c

INTEGER BLANK, PHRASE(BO), BORDER(B2), LEFT, LNB, RIGHT, RNB
DATA BLANK/' 'I, BORDER(1) /'.'/, BORDER(B2) /'.'/
DO 10 I = 2, B1

BORDER(!) = BLANK
10 CONTINUE

20 READ(5,21) (PHRASE(!), I = 1, BO)
2~ FORMAT (BOA1)

C FIND LNB=LEFTMOST NON-BLANK, RNB=RIGHTMOST
LNB = 0
DO 30 I= 1, BO

IF (PHRASE(!) .NE. BLANK) RNB = I
IF (PHRASE(!) .NE. BLANK .AND. LNB .EQ. 0) LNB = I

30 CONTINUE
IF (LNB .EQ. 0) GOTO 90

LEFT= 1 + (B0-(RNB-LNB+1))/2
RIGHT= B2 - (BO-(RNB-LNB+1)+1)/2
WRITE(6,41) (BORDER(!), I-1,LEFT), (PHRASE(!), I=LNB,RNB),

$ (BORDER(!), I=RIGHT,B2)
41 FORMAT(1X, B2('.'), !,

$ 3(1X, '.',BOX, . , /),
$ 1X, B2A1, /,
$ 3(1X, '.',BOX, . , !),
$ 1 x, B2 (•.•))

GOTO 20
90 WRITE(6,91)
91 FORMAT(1X, 'BLANK CARD READ IN. EXIT FROM CENTER.')

STOP
END

The actual centering part is now smaller by a factor of three, and that much
simpler. As a fringe benefit, it is correct. (This problem is easier in PL/I because
variables are permitted in FORMAT statements and because loops can be done zero
times. Try it.)

Choosing a better data structure is often an art, which we cannot teach. Often
you must write a preliminary draft of the code before you can determine what
changes in the data structure will help simplify control. The place to begin such
improvements is by asking, "How can I organize the data so the computation
becomes as easy as possible?"

52 THE ELEMENTS OF PROGRAMMING STYLE

Choose a data representation
that makes the program simple.

CHAPTER 3

Excessive use of labels (statement numbers) and GOTO's is often the hallmark
of undisciplined design, a sign that a program is out of control. Tracing the flow can
be next to impossible if there are too many potential paths from one point to
another. Even when such code is correct, it is hard to understand and thus even
harder to modify. Consider this program for converting a year and day of the year
into the month and day of the month:

DATES: PROC OPTIONS (MAIN);
READ: GET DATA (!YEAR, !DATE);

IF !DATE < 1 I !DATE > 366 I !YEAR < 0 THEN RETURN;
IF !DATE <• 31 THEN GO TO JAN;
L 1;
I • IYEAR/400; IF I = IYEAR/400 THEN GO TO LEAP;
I IYEAR/100; IF I = IYEAR/100 THEN GO TO NOLEAP;
I • IYEAR/4; IF I IYEAR/4 THEN GO TO LEAP;

NOLEAP: L O;
IF !DATE > 365 THEN RETURN;

LEAP: IF !DATE> 181 + L THEN GO TO G181;
IF !DATE > 90 + L THEN GO TO G90;
IF !DATE > 59 + L THEN GO TO G59;
MONTH= 2; !DAY• !DATE - 31; GO TO OUT;

G59: MONTH= 3; !DAY• !DATE - (59 + L); GO TO OUT;
G90: IF !DATE > 120 + L THEN GO TO G120;

MONTH• 4; !DAY= !DATE - (90 + L); GO TO OUT;
G120: IF !DATE> 151 + L THEN GO TO G151;

MONTH• 5; !DAY= !DATE - (120 + L); GO TO OUT;
G151: MONTH= 6; !DAY= !DATE - (151 + L); GO TO OUT;
G181: IF !DATE> 273 + L THEN GO TO G273;

G212:
G243:
G273:

IF !DATE > 243 + L THEN GO TO G243;
IF !DATE > 212 + L THEN GO TO G212;
MONTH 7; !DAY !DATE - (181 + L);
MONTH= 8; !DAY= !DATE - (212 + L);
MONTH= 9; !DAY= !DATE - (243 + L);
IF !DATE > 334 + L THEN GO TO G334;
IF !DATE > 304 + L THEN GO TO G304;

GO TO OUT;
GO TO OUT;
GO TO OUT;

MONTH• 10; !DAY !DATE - (273 + L); GO TO OUT;
G304: MONTH= 11; !DAY !DATE - (304 + L); GO TO OUT;
G334: MONTH= 12; !DAY !DATE - (334 + L);

OUT:

JAN:

PUT DATA (MONTH,IDAY,IYEAR) SKIP;
GO TO READ;
MONTH=1; IDAY=IDATE; GO TO OUT;
END DATES;

We have nothing to say about the "structure" of this program; the code speaks
for itself. There is one curious usage that bears explaining, however, in the leap
year determination. Three lines have the form

I = IYEAR/n; IF I = IYEAR/n THEN GO TO label;

It would seem that the GOTO is always obeyed, since I surely equals that which was

CHAPTER 3 CONTROL STRUCTURE 53

just assigned to it. But in PL/I this is not necessarily so. In the assignment any
fractional part is discarded, but in the comparison it is retained. The code thus tests
whether IYEAR is divisible by n, and branches if it is. Try to explain that to a
novice programmer! Such unobvious code should surely be replaced by

IF MOD(IYEAR,n) = 0 THEN GOTO label;

This still may not be obvious to a rank beginner, but it is unambiguous and easily
learned.

Calendar computations are notoriously complex, but the approach shown above
makes them seem even worse. The rococo structure of the calendar is intimately
intertwined with the control flow in an attempt to arrive at the proper answer with a
minimum number of tests.

Clarity is certainly not worth sacrificing just to save three tests per access (on
the average) - the irregularities must be brought under control. In the next
chapter we will discuss using subroutines to achieve regularity: the procedure body
shows what is common to each invocation, and the differences are concisely sum
marized in the parameter list for each call. In a similar way, the irregularities in a
computation can often be captured in well-chosen data structures. All of the infor
mation about how many days precede the first of each month can be put in a table
instead of being strung throughout the code. Then a more organized approach is
possible. Accordingly, in the first edition of this book, we wrote

DATES: PROCEDURE OPTIONS (MAIN);
DECLARE NDAYS(0:1,0:12) INITIAL(

0,31,59,90,120,151,181,212,243,273,304,334,365, /*NON-LEAP*/
0,31,60,91,121,152,182,213,244,274,305,335,366); /*LEAP*/

DO WHILE (' 1 'B) ;
GET LIST (IYEAR, IDATE) COPY;

IF MOD(IYEAR,400)=0 I
(MOD(IYEAR,100)~=0 & MOD(IYEAR,4)=0)

THEN LEAP= 1;
ELSE LEAP = 0;

IF IYEAR<1753 I IYEAR>3999 I IDATE<=O I IDATE>NDAYS(LEAP,12)
THEN PUT SKIP LIST('BAD YEAR, DATE-', IYEAR, IDATE);

ELSE DO;
DO MO= 1 TO 12 WHILE (IDATE>NDAYS(LEAP,MO));
END;

PUT SKIP LIST(MO, IDATE-NDAYS(LEAP,M0-1), IYEAR);
END;

END;
END DATES;

Even though this code is a single procedure, internally it decomposes into
several almost independent pieces. A date is input, LEAP is computed, the date is
validated (with excessive zeal), the conversion is made and the result is printed.
Each of these pieces could be picked up as a unit and planted as needed in some
other environment with a good chance of working unaltered, because there are no
unnecessary labels or other cross references between pieces. The control flow

54 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

structures we have described tend to split programs into computational units like
these and thus lead to internal modularity.

Yet we can still improve the program, by improving its data structure. A cumu
lative table of days must be calculated by someone and checked by someone else.
Since few people are familiar with the number of days up to the end of a particular
month, neither writing nor checking is easy. But if instead we use a table of days
per month, we can let the computer count them for us. ("Let the machine do the
dirty work.")

DATES: PROCEDURE OPTIONS (MAIN);
DECLARE NDAYS(0:1, 1 :12) FIXED BINARY INITIAL(

31,28,31,30,31,30 1 31,31,30,31,30,31, /•NON-LEAP•/
31,29,31,30,31,30 1 31 1 31,30,31,30,31); I• LEAP •/

DECLARE (YEAR, DATE, LEAP, MONTH) FIXED BINARY;
DECLARE TRUE BIT(1) INITIAL ('1 'B);

DO WHILE (TRUE);
GET LIST (YEAR, DATE) COPY;

IF MOD(YEAR,400)=0 I (MOD(YEAR,100)~=0 & MOD(YEAR,4)=0) THEN
LEAP 1;

ELSE
LEAP = O;

IF YEAR<1753 I YEAR>3999 I DATE<=O I DATE>365+LEAP THEN
PUT SKIP LIST('BAD YEAR, DATE-' 1 YEAR, DATE);

ELSE DO;
DO MONTH= 1 TO 12 WHILE (DATE> NDAYS(LEAP, MONTH));

DATE= DATE - NDAYS(LEAP, MONTH);
END;
PUT SKIP LIST(MONTH, DATE, YEAR);

END;
END;

END DATES;

Most people know the lengths of the different months ("Thirty days hath Sep
tember ... "), so the table in this version can be more quickly checked for accuracy.
The program may take a bit more time counting the number of days every time it is
called, but it is more likely to get the right answer than you are, and even if the pro
gram is used a lot, 1/0 conversions are sure to use more time than the actual com
putation of the date. The double computation of NDAYS (LEAP ,MONTH) falls into
the same category. Write it clearly so it works; then check later whether it's worth
your while to rewrite parts of it.

A second, more general, lesson to be drawn from these variations is that no
program is ever perfect; there is always room for improvement. Of course, it is
foolish to polish a program beyond the point of diminishing returns, but most pro
grammers do too little revision; they are satisfied too early.

Don't stop with your first draft.

CHAPTER 3 CONTROL STRUCTURE 55

We have presented a handful of tools for organizing the control flow and data
structures of computer programs. We have also shown what can happen if not
enough care is taken in these tasks. This is not to say that these are the only con
trol constructs that lead to intelligible programs. Nor can we guarantee that using
just these structures will yield a readable program. But it helps.

The specific points of this chapter are:

(1) Write your program first in a made-up high-level language that you like, where
you can see and debug your algorithm. When it is correct and well done,
translate it into whatever language you have a compiler for.

(2) The control-flow constructions in your pseudo language should include:

The ability to group statements, as in PL/I's DO-END or BEGIN-END.

IF-ELSE, where the ELSE part is optional.

CASE, which is a multi-way decision. In PL/I it can be written with a series of
ELSE-IF's. In Fortran, the computed GOTO can sometimes serve.

DO-WHILE, which repeats a set of statements zero or more times while some
condition is true. Note that the range of a Fortran DO is generally executed at
least once, so the DO statement must be preceded by an IF and GOTO whenever
a zero or negative repeat count might occur.

Subroutines and functions, to break your code into small, separate, manageable
pieces.

Your translation should be based on these constructions. GOTO's and labels are
suspect; use them sparingly. Any GOTO's and labels in the final product should
reflect these constructions only.

(3) Plan your data structures with the same care that you use for the control flow.
Try to find a data representation that leads to a simpler program.

56 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

POINTS TO PONDER

3.1 Rewrite procedure DATES, using just one array of cumulative days instead of a
separate array for leap years:

DECLARE NPAYS(0:12)
INITIAL (0,31,59,90,120,151,181,212,243,273,304,334,365);

Rewrite it using one non-cumulative table of days:

DECLARE NDAYS(0:12)
INITIAL (0,31,28,31,30,31 1 30,31,31,30,31,30,31);

How do these approaches compare with the ones we showed?

3.2 Revise the following program, after determining what it does.
IF X • Y & X • Z & X • W THEN IF X • 0 THEN GO TO DONE;

ELSE L1 : DO;

ELSE IF X <• Y THEN
IF X <• Z THEN

IF X <• W THEN
IF Y <• Z THEN

IF Y <• W THEN

SUM • 4•X;
PUT SKIP DATA(SUM);

END L1;

IF Z <• W THEN PUT SKIP DATA(X,Y,Z,W);
ELSE PUT SKIP DATA(X,Y,W,Z);

ELSE PUT SKIP DATA(X,W,Y,Z);
ELSE IF W < Z THEN PUT SKIP DATA(X,W,Z,Y);

ELSE IF Y <• W THEN PUT SKIP DATA(X,Z,Y,W);
ELSE PUT SKIP DATA(X,Z,W,Y);

ELSE IF Y <• Z THEN PUT SKIP DATA(W,X,Y,Z);
ELSE PUT SKIP DATA(W,X,Z,Y);

ELSE IF W < Z THEN PUT SKIP DATA(W,Z,X,Y);
ELSE IF W < X THEN PUT SKIP DATA(Z,W,X,Y);

ELSE IF W < Y THEN PUT SKIP DATA(Z,X,W,Y);
ELSE PUT SKIP DATA(Z,X,Y,W);

ELSE IF Y <• Z THEN
IF Y <• W THEN

IF X <• Z THEN
IF X <• W THEN

IF z <• w THEN PUT SKIP DATA(Y,x,z,w);
ELSE PUT SKIP DATA(Y,X,W,Z);

ELSE PUT SKIP DATA(Y,W,X,Z);
ELSE IF W < Z THEN PUT SKIP DATA(Y,W,Z,X);

ELSE IF X <• W THEN PUT SKIP DATA(Y,Z,X,W);
ELSE PUT SKIP DATA(Y,Z,W,X);

ELSE IF X <• Z THEN PUT SKIP DATA(W,Y,X,Z);
ELSE PUT SKIP DATA(W,Y,Z,X);

ELSE IF W < Z THEN PUT SKIP DATA(W,Z,Y,X);
ELSE IF W < Y THEN PUT SKIP DATA(Z,W,Y,X);

ELSE IF W < X THEN PUT SKIP DATA(Z,Y,W,X);
ELSE PUT SKIP DATA(Z,Y,X,W);

3.3 Rewrite the following Fortran function, attempting to make better use of the
regularity of the situation.

CHAPTER 3 CONTROL STRUCTURE

FUNCTION KTOSS(KRAND)
c
C THIS FUNCTION GENERATES THE OUTCOME OF A RANDOM TOSS OF TWO DICE
c

2

3

4

5
6

KTOSS•O
DO 6 I•1,2
X•XRANO(KRAND)
IF (X.GT.0.1666667) GO TO 1
KTOSS•KTOSS+1
GO TO 6
IF (X.GT.0.3333333) GO TO 2
KTOSS•KTOSS+2
GO TO 6
IF (X.GT.0.5) GO TO 3
KTOSS•KTOSS+3
GO TO 6
IF (X.GT.0.6666667) GO TO 4
KTOSS•KTOSS+4
GO TO 6
IF (X.GT.0.8333333) GO TO 5
KTOSS•KTOSS+5
GO TO 6
KTOSS•KTOSS+6
CONTINUE
RETURN
END

57

3.4 The following program prints the basic grid for a plotting package. Improve its
data structure to improve the plotting accuracy and use the DO loop better.

SUBROUTINE GRAPH1 (PLOT)
LOGICAL•1 PLOT(50,100)
LOGICAL•1 BLANK/' •/,DOT/'. •/,A/'A'/,B/'B'/,c/•c•/
DO 200 L4•1,50
DO 200 L2•1,100

200 PLOT(L4,L2)•BLANK
DO 210 L2•1,100

210 PLOT(1,L2)•DOT
DO 211 L2•1,100

211 PLOT(10,L2)•DOT
DO 212 L2•1,100

212 PLOT(20,L2)•DOT
DO 213 L2•1,100

213 PLOT(30,L2)•DOT
DO 214 L2•1,100

214 PLOT(40,L2)•DOT
DO 215 L2•1,100

215 PLOT(50,L2)•DOT
DO 220 L4•1,50

220 PLOT(L4 1 1)•DOT
DO 221 L4•1,50

221 PLOT(L4,20)•DOT
DO 222 L4•1,50

222 PLOT(L4,40)•DOT
DO 223 L4•1,SO

223 PLOT(L4,60)•DOT
DO 224 L4•1,50

224 PLOT(L4,80)•DOT
DO 225 L4•1,SO

225 PLOT(L4,100)•DOT
RETURN
END

58 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 3

3.5 Modify the following program, first by making it into a CASE statement, then
by using a different data structure and a loop. Which version is clearer?

OUT:

TAXPAY•PAY-14.5•NO_EXEMP;
IF TAXPAY<11 .01

THEN DO;
TAX•O;
GO TO OUT;

END;
IF TAXPAY<35.01

THEN DO;
TAX•.14•(TAXPAY-11);
GO TO OUT;

END;
IF TAXPAY<73. 01

THEN DO;
TAX•3.36+.1B•(TAXPAY-35);
GO TO OUT;

END;
IF TAXPAY<202.01

THEN DO;
TAX•10.20+.21•(TAXPAY-73);
GO TO OUT;

END;
IF TAXPAY<231 .01

THEN DO;

END;

TAX•37.29+.23•(TAXPAY-202);
GO TO OUT;

IF TAXPAY<269.01
THEN DO;

END;

TAX•43.96+.27•(TAXPAY-231);
GO TO OUT;

IF TAXPAY<333.01
THEN DO;

TAX•54.22+.31•(TAXPAY-269);
GO TO OUT;

END;
TAX=74.06+.35•(TAXPAY-333);

CHAPTER 4: PROGRAM STRUCTURE

Most programs are too big to be comprehended as a single chunk. They must
be divided into smaller pieces that can be conquered separately. That is the only
way to write them reliably; it is the only way to read and understand them.

Subroutines, functions, and procedures are the "modules," or building blocks,
of large programs. In many languages, they can be compiled separately and, if prop
erly designed, maintained nearly independently of each other. Well designed build
ing blocks are often usable in other applications, contributing to a library of labor
saving routines.

When a program is not broken up into small enough pieces, the larger modules
often fail to deliver on these promises. They try to do too much, or too many
different things, and hence are difficult to maintain and are too specialized for gen
eral use.

Consider the following subroutine, which generates simple moves (no jumps)
for a checker-playing program. The routine tries to make up to four moves: forward
right and left, backward right and left. If the move is off the board or to an occu
pied square, it is disallowed. White men may only move forward and black men
may only move backward. Kings may move either way.

59

60 THE ELEMENTS OF PROGRAMMING STYLE

SUBROUTINE SEARCH (BOARD,I,J,MOVROW,MOVCOL,L)
DIMENSION BOARD(8 1 8),MOVROW(4),MOVCOL(4)
INTEGER BOARD

C ASSUME THE CHECKERS ARE CODED AS FOLLOWS:
C 1-WHITE MAN
C 2-WHITE KING
C 3-BLACK MAN
C 4-BLACK KING
C BOARD IS THE ARRAY REPRESENTING THE
C CHECKER BOARD WITH O'S IN POSITIONS WITH
C NO MEN, I AND J ARE THE COORDINATES OF
C THE MAN WHOSE MOVES ARE BEING SEARCHED
C FOR, MOVROW AND MOVCOL ARE ARRAYS WHICH
C ARE TO CONTAIN THE ROW AND COLUMN COORDINATES
C OF POSSIBLE MOVES AND L COUNTS THE NUMBER OF
C POSSIBLE MOVES ***
C IF(BOARD(I,J) IS ZERO, ERROR HAS BEEN MADE

IF(BOARD(I,J).EQ.0) STOP
L=O
K=BOARD(I,J)

C ASSUME WHITE MEN START IN ROWS ONE
C TO THREE, BLACK MEN IN ROWS SIX TO EIGHT

GO TO (4,4,6,4),K
C ENTRY FOR ALL EXCEPT BLACK MAN
C FORWARD RIGHT
C TEST IF MOVE IS ON BOARD

4 IF(I.EQ.8) GO TO 8
IF(J.EQ.8) GO TO 2
IF(BOARD(I+1,J+1).NE.0) GO TO 2
L=L+1
MOVROW (L) =I+1
MOVCOL(L)=J+1

C FORWARD LEFT
2 IF(J.EQ.1) GO TO 8

IF(BOARD(I+1,J-1).NE.0) GO TO 8
L=L+1
MOVROW (L) =I+1
MOVCOL (L) =J-1

C EXIT TEST FOR WHITE MAN
8 IF(K.EQ.1) RETURN

C BACKWARD RIGHT
6 IF(I.EQ.1) RETURN

IF(J.EQ.8) GO TO 10
IF(BOARD(I-1,J+1).NE.0) GO TO 10
L=L+1
MOVROW(L)=I-1
MOVCOL (L) =J+1

C BACKWARD LEFT
10 IF(J.EQ.1) RETURN

IF(BOARD(I-1,J-1).NE.0) RETURN
L=L+1
MOVROW(L)=I-1
MOVCOL (L) =J-1
RETURN
END

CHAPTER 4

Again, the repeated tests, with no obvious pattern, should alert us to a possible
structural weakness. Some combination of statements ought surely to be isolated as

CHAPTER 4 PROGRAM STRUCTURE 61

a second subroutine, to modularize the code. If we do not fret over making a few
"unnecessary" tests, we can unsnarl the tangle of branches with a general "test and
store" subroutine, which decides whether one specified direction represents a legal
move, and saves it. All that is left then is the constraint on what men may make
certain moves, which can be simply encoded:

SUBROUTINE SEARCH(BOARD, I, J, ROW, COL, L)
INTEGER BOARD(B,B), ROW(4), COL(4)

C BOARD(I,J)=O => EMPTY SQUARE
C 1 => WHITE MAN, 2 •> WHITE KING
C 3 => BLACK MAN, 4 => BLACK KING
C I INCREASES FORWARD, J INCREASES RIGHT
C L COUNTS THE MOVES STORED IN ROW,COL

IF (I.LT.1 .OR. I.GT.8 .OR. J.LT.1 .OR. J.GT.8)
$ CALL ERROR(9, 'OFF BOARD')

K • BOARD(I,J)
IF (K.LT.1 .OR. K.GT.4) CALL ERROR(20, 'ILLEGAL MAN ON BOARD')
L = 0
IF (K .NE. 3) CALL STORE(BOARD, I+1, J+1, ROW, COL, L)
IF (K .NE. 3) CALL STORE(BOARD, I+1, J-1, ROW, COL, L)
IF (K .NE. 1) CALL STORE(BOARD, I-1, J+1, ROW, COL, L)
IF (K .NE. 1) CALL STORE(BOARD, I-1, J-1, ROW, COL, L)
RETURN
END

SUBROUTINE STORE(BOARD, IC, JC, ROW, COL, L)
INTEGER BOARD(B,Bl, ROW(4), COL(4)
IF (IC.LT.1 .OR. IC.GT.8 .OR. JC.LT.1 .OR. JC.GT.8) RETURN
IF (BOARD(IC,JC) .NE. 0) RETURN
L = L+1
ROW(L) • IC
COL(L) • JC
RETURN
END

Separating code into appropriate modules is an important aspect of writing a pro
gram. As we can see here, the subroutine call permits us to summarize the irregu
larities in the argument list, where we can see quickly what is going on. The subrou
tine itself summarizes the regularities of the code, so repeated patterns need not be
used. An added advantage of this version is that including complexities like jumps
later on will be rather easy. "Optimizing" too early in the life of a program can kill
its chances for growth.

We have included calls co an unspecified error-printing routine, to simplify the
handling of illegal inputs. Such a subroutine can overcome the inertia normally felt
when it comes time to check for possible errors. Some people feel that the calls to
ERROR should be inserted "until the program is debugged," then removed. Leave
them in indefinitely - the insurance is cheap.

Modularize. Use subroutines.

62 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 4

Breaking a program into arbitrary pieces is not sufficient, however. The integra
tion program at the end of Chapter 2 actually benefited by eliminating a separate
module. This was because there were too many shared assumptions between the
calling and called routines. Since it was not possible to ignore either module while
studying the other, the separation of operations into two groups simply made more
work, forcing the reader to skip back and forth.

Here is the subprocedure OUT once again:

OUT: PROCEDURE;
AREA = AREA + LMTS;

PUT SKIP EDIT (MSSG3,K,AREA) (X(2) ,A(16) ,F(2) ,X(6),
F(9,6));

AREA = O;
RETURN;

END;

To do its assigned task, OUT must be privy to the values of AREA, LMTS, MSSG3,

and K. Moreover it relies on the calling routine to perform part of the AREA calcula
tion; the calling routine in turn depends on OUT to reinitialize AREA to zero.

There is no way one can summarize all these relationships succinctly enough to
permit separate maintenance of the two routines - yet that is the essence of modu
larity. It must be possible to describe the function performed by a module in the
briefest of terms; and it is necessary to minimize whatever relationships exist with
other modules, and display those that remain as explicitly as possible. This is how
we obtain the minimum "coupling," and hence maximum independence, between
modules.

In the case of OUT, this means that the AREA calculations should be performed
completely in the calling routine, and the literal value of MSSG3 written in place of
the variable. If we wish to keep this as a separate module, small as it has now
become, then the remaining shared data, AREA and K, should be explicitly passed as
arguments:

OUT: PROCEDURE(K, AREA); /•PRINT STEP SIZE AND AREA•/
DECLARE K FIXED DECIMAL (2),

AREA FIXED DECIMAL (8, 6);

PUT SKIP EDIT ('FOR DELTA X = 1/', K, AREA)
(X(2), A, F(2), X(6), F(9, 6));

END;

Make the coupling between modules visible.

There are other considerations besides coupling that affect how to modularize a
program. The following program computes the median of a set of numbers, and
tells whether the number of elements is even or odd.

CHAPTER 4

ST14_3: PROCEDURE OPTIONS (MAIN);
ON ENDFILE (SYSIN) GO TO OD_EV;
DCL X(100) FIXED (3) INITIAL ((100)0);
DCL HALF FIXED (4,2) INITIAL (O);
I • 1;

INLOOP: GET LIST (X(I));
I•I+1;
GO TO INLOOP;

OD_EV: HALF• (I - 1) I 2;
IF HALF• TRUNC(HALF) THEN DO;

A = X(HALF) i
B • X(HALF + 1);
CALL EV_ARY (A,B);
END;

ELSE DO;

END;

A• X(TRUNC(HALF) + 1);
CALL OD_ARY (A) ;
END;

EV_ARY: PROCEDURE (R,S);
DCL MEDIAN FIXED (5, 2) INITIAL (O);
MEDIAN • (R + S) I 2;

PROGRAM STRUCTURE 63

PUT SKIP LIST ('ARRAY HAS EVEN NUMBER OF ENTRIES');
PUT SKIP DATA (MEDIAN);
END EV_ARY;

OD_ARY: PROCEDURE (R);
DCL MEDIAN FIXED (5, 2) INITIAL (0);
MEDIAN • R;
PUT SKIP LIST ('ARRAY HAS ODD NUMBER OF ENTRIES');
PUT SKIP DATA (MEDIAN);
END OD_ARY;

If you find the code a bit hard to understand, it's probably because it's hard to
figure out what HALF does. HALF has an inappropriate data type - although it's
actually an integer because it represents an array index, it's typed FIXED DECIMAL
with two decimal places. The built-in function TRUNC is used to truncate any frac
tional part, in a strange test for divisibility.

But the biggest problem lies in the choice of modules used to express the solu
tion. EV _ARY is called when there are an even number of X's, so two adjacent ele
ments are needed to compute the median, which is then printed. OD_ARY is similar,
but different - only one element is needed to determine the median, so only that
one is passed as an argument.

Two such similar functions ought surely be combined into one more generally
useful routine. It seems silly to have a function that can compute the median only
of arrays with an even number of elements; it is even sillier to require the calling
routine to perform half the calculation (determining which elements are needed to
compute the median), then decide which of two specialized functions should finish
the job. A true MEDIAN function, on the other hand, is likely to be usable in a
number of contexts. It is also much easier to describe what it does.

But it is not enough just to combine the two functions OD_ARY and EV _ARY,
because in addition to not doing enough, each also does too much. Why print the
result from inside the routine that computes the median? The print operation has

64 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 4

nothing to do with the calculation; it merely happens to use the result. A more gen
eral function would simply compute the median of an array and return it to the cal
ling program. The resulting value can be used in further calculations, or stored, or
printed in a variety of formats, depending on the application. Combining too many
functions in one module is a sure way to limit its usefulness, while at the same time
making it more complex and harder to maintain.

Each module should do one thing well.

Here is the same program modularized a different way:

ST14_3: PROCEDURE OPTIONS (MAIN);
/* READ A LIST AND PRINT MEDIAN •/
DECLARE (N, X(100)) FIXED DECIMAL (3);

N = GETLIST(X, 100);
IF N = 0 THEN

PUT SKIP LIST ('ARRAY HAS NO ENTRIES');
ELSE DO;

IF MOD(N, 2) = 0 THEN
PUT SKIP LIST ('ARRAY HAS EVEN NUMBER OF ENTRIES');

ELSE
PUT SKIP LIST ('ARRAY HAS ODD NUMBER OF ENTRIES');

PUT SKIP LIST ('MEDIAN IS' 1 MEDIAN(X, N));
END;

GETLIST: PROCEDURE (X, MAXN) RETURNS (FIXED DECIMAL (3));
I• READ AT MOST MAXN ITEMS INTO ARRAY X •/
DECLARE (X(•), MAXN, I) FIXED DECIMAL(3);

ON ENDFILE (SYSIN)
GOTO DONE;

DO I = 1 TO MAXN;
GET LIST (X(I));

END;
RETURN (MAXN);

DONE:
RETURN (I-1);

END;

CHAPTER 4 PROGRAM STRUCTURE 65

MEDIAN: PROCEDURE (X, N) RETURNS (FIXED DECIMAL (5, 2));
DECLARE (X(•), N) FIXED DECIMAL (3);

IF N <• 0 THEN
RETURN(O);

ELSE IF MOD(N, 2) = 0 THEN
RETURN((X(N/2) + X(N/2 + 1)) I 2);

ELSE
RETURN(X((N+1)/2ll;

END;

END;

Testing whether N is zero both in the main routine and in MEDIAN may seem like
paranoia, but it is actually a small example of defensive programming, a topic we
will talk more about in Chapter 6. Someday, someone else will use the median rou
tine, and it would be nice to know that it will do its task sensibly even if the user
doesn't take special precautions.

We also chose to isolate the business of reading a list of numbers in a separate
procedure because it is a task that occurs in many programs. Not only that, but it
involves a messy test for end of file that is expressed in PL/I by an ON-condition
and a GOTO. The bulk of the program does not have to know what is involved in
detecting the end of input data. In fact, it is much better off not knowing exactly
what mechanism is used; the input code only adds to the general confusion and may
well have to be changed later on.

For all these reasons, it is best to hide the details of reading a list of numbers
inside a function that has a simple interface to the outside world. Input/output is
almost always messy and subject to change, so we make a point of hiding input and
output in separate modules. One good test of the worth of a module, in fact, is how
good a job it does of hiding some aspect of the problem from the rest of the code.

Make sure every module hides something.

Program organization, deciding what gets done where, is often given insufficient
consideration. This can be true even when the format of input or output data
strongly suggests the most convenient order of processing. Failure to heed such
suggestions leads to code that is hard to relate to the problem being solved, and
hence likely to contain mistakes. Here is part of a program for processing customer
accounts:

66 THE ELEMENTS OF PROGRAMMING STYLE

CTR = O;
GO TO OVFLO;
RDCARD: READ FILE (CARDIN) INTO (CARD);

/•TABLE LOOKUP FOR VALID CUSTOMER NUMBER•/
LOOP: DO I • 1 TO 20;

IF CARD.NUM = NUM_TBL(I)
THEN GO TO NN;

ELSE;
END;

GO TO RDCARD;
NN: ...

IF CARD.AMT > 0 THEN GO TO CR_RTN;
ELSE GO TO DR_RTN;

CR_RTN: DETAIL.CREDIT = CARD.AMT;
DETAIL.DEBIT • O;

WRITE FILE (PRTFLE) FROM (DETAIL);
GO TO TST_CTR;

DR_RTN: DETAIL.DEBIT = CARD.AMT;
DETAIL.CREDIT • O;

WRITE FILE (PRTFLE) FROM (DETAIL);
TST_CTR: CTR= CTR+ 1;

OVFLO:

IF CTR > 45 THEN GO TO OVFLO;
ELSE GO TO RDCARD;

WRITE FILE (PRTFLE) FROM (HDR);
WRITE FILE (PRTFLE) FROM (COL_HDR);
WRITE FILE (PRTFLE) FROM (LINE);

CTR = O;
GO TO RDCARD;

CHAPTER 4

The program evidently intends to produce a report with a header and up to 46
detail lines per page. But what happens if there are zero transactions, or exactly 46,
or 92, or any other multiple of 46? Sure enough, the column headings are printed
on an extra page, even though there is no data to go under them. The test for end
of-page should happen before line 47 is printed, not after line 46.

The problem is that the structure of the program is only loosely related to the
structure of the output report to be generated. It should be no surprise that the two
structures don't always agree. What we want to generate can be described as

zero or more pages, each of which has
a header, and
one to 46 detail lines

We should be able to use our knowledge of the report format to find our way
around in the code; yet the header is generated near the bottom of the program and
cards are read for the detail lines near the top. The GOTO at the top of the program
is a giveaway that things don't happen naturally at the right places.

A pseudo-code program that more closely resembles the report format is

WHILE (there's more input)
IF (we're at top of page)

write header
compute detail information
write detail line

This calls for reading an input record and using the success or failure of that

CHAPTER 4 PROGRAM STRUCTURE 67

operation to control the loop. Since that is not a simple operation, we make a
separate module to isolate that complexity from the code that produces the output
report.

The result:

CTR = O;
DO WHILE (GETCARD() =YES);

IF ~ANY(NUM_TBL = CARD.NUM) THEN
PUT SKIP LIST ('BAD CARD', CARD.NUM, CARD.AMT);

ELSE DO;
CTR= CTR+ 1;
IF MOD(CTR, 46) = 1 THEN DO; /* HEADER */

WRITE FILE (PRTFLE) FROM (HOR);
WRITE FILE (PRTFLE) FROM (COL_HDR);
WRITE FILE (PRTFLE) FROM (LINE);

END;
IF CARD.AMT > 0 THEN DO;

DETAIL.CREDIT = CARD.AMT;
DETAIL.DEBIT O;

END;
ELSE DO;

DETAIL.CREDIT = O;
DETAIL.DEBIT = CARD.AMT;

END;
WRITE FILE (PRTFLE) FROM (DETAIL);

END;
END;

This takes care of producing the report, leaving the problem of input to a separate
module:

GETCARD: PROCEDURE RETURNS (BIT(1));
ON ENDFILE (CARDIN)

GOTO EOF;
READ FILE (CARDIN) INTO (CARD);
RETURN (YES);

EOF:
RETURN (NO);

END;

GETCARD merely reads a card each time it is called; it signals end of file when there
is no data left.

Let the data structure the program.

Modularity becomes most important when a program starts getting large, so we
will devote the rest of this chapter to a single example that is big enough to illustrate
several principles of program structure. The following program simulates a mouse
trying to find a path through a maze by the simple rule, "Turn right if you can, left
if you must." The maze is a Boolean matrix, with ones representing possible paths
and zeros the walls. A path consists of a connected series of horizontal and vertical
strings of ones that enters the maze somewhere and exits somewhere else. A path
may not run along the edge, although its ends may both be on one side. For

68 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 4

example, the maze on the left below has a solution as shown on the right.

00010
1111 0
01010
0111 0
00000

xxx x
x x

x x x
x x
xxxxx

As you read the code, remember that a big program should be a collection of
manageable pieces, each of which must obey the rules of good style.

EX510:PROCEDURE OPTIONS(MAIN);

/• FIRST ASSUME MAXIMUM DIMENSIONS FOR THE MAZE - HERE 50 X 50 •/
DCL (POINT(2,60),X,Y, (POSITIONX,POSITIONY) (2500)) DEC FIXED(4),

MAZE(50,50) BIT(1),XMAZE(50 1 50) CHAR(1) ,
BRANCH LABEL(LOOKL,LOOKR,LOOKU,LOOKD);
XMAZE•'X';

GET LIST(N,M);

GET EDIT(((MAZE(I,J) DO J=1 TON) DO I•1 TOM)) (COLUMN(1), (N)B(1));
PUT EDIT(((MAZE(I,J) DO J=1 TON) DO I•1 TOM)) (LINE(33-M/2),

(M) (COLUMN(40-N/2l, (N) B(1),SKIP));
I,MM,NN=1; II,IN1 ,IN2=0;

/• NEXT FIND A PATH THROUGH THE MAZE - THIS IS DONE BY SIMULATING
A MAN KEEPING HIS RIGHT HAND IN CONTACT WITH THE WALL AND FOLLOWING IT •/

RUNUD:DO K1=NN TON BY N-1;
DO K2•IN1+1 TO M;
IF MAZE(K2,K1)='1 'B THEN GO TO TEST1;

END RUNUD;

RUNLR:DO K1•MM TOM BY M-1;
DO K2•IN2 TO N;
IF MAZE(K1,K2)='1 'B THEN GO TO TEST2;

END RUNLR;

TEST1 :X,NN•K2; POSITIONX(1)•X;
Y,IN1=K1; POSITIONY(1)=Y;
IF NN•1 THEN C-0 TO LOOKR;

GO TO LOOKL;

TEST2:Y,MM•K2; POSITIONY(1)=Y;
X1 IN2•K1; POSITIONX(1)=X;
IF MM•1 THEN GO TO LOOKD;

CHAPTER 4

LOOKU:IF MAZE(X-1 1 Y)•'1 'B THEN DO;
BRANCH•LOOKR; x-x-1;

GO TO SET;
END;

LOOKL:IF MAZE(X,Y-1)•'1 'B THEN DO
BRANCH•LOOKU; Y•Y-1;

GO TO SET;
END;

LOOKD:IF MAZE(X+1,Y)•'1 'B THEN DO;
BRANCH•LOOKL; X•X+1;

GO TO SET;
END;

LOOKR:IF MAZE(X,Y+1)•'1 'B THEN DO;
BRANCH•LOOKD; Y•Y+1;

GO TO SET;
END;
ELSE GO TO LOOKU;

SET:I•I+1;

POSITIONX(I)•X; POSITIONY(I)•Y;

IF X<N&X>1&Y<M&Y>1 THEN GO TO BRANCH;

IF X•POSITIONX(1)&Y•POSITIONY(1) THEN DO;
IF IN2•0 THEN GO TO RUNUD;

ELSE GO TO RUNLR;
END;

PROGRAM STRUCTURE

/• NOW PICK OUT THOSE PARTS OF THE PATH FOLLOWED WHICH WENT IN A LOOP OR
DEAD ENDED */

/* NOTE THE TRANSFER STATEMENT WHICH CAUSES A TRANSFER TO WHAT LOOKS

69

LIKE THE NEXT STATEMENT - ACTUALLY THE COMPILER CREATES A DUMMY STATEMENT
BETWEEN THESE TWO TO END THE INNER DO LOOP - HENCE THE PROGRAM MUST
BRANCH AROUND IT */

SORT:DO J•I TO 2 BY-1;
DO K•J-1 TO 1 BY -1;

IF POSITIONX(K)•POSITIONX(J)&POSITIONY(K)•POSITIONY(J)
THEN DO; II•II+1; POINT(1,II)=J;

POINT(2,II)•K; J•K+1; GO TO ENDSORT;
ENDSORT:END SORT;

/• FINALLY SET UP THE FINAL MAZE WITH THE PATH FOLLOWED •/

MERGE:DO KK•1 TO I;
DO IK•1 TO II;

IF KK•POINT(2,IK) THEN KK•POINT(1,IK);
END;

XMAZE(POSITIONX(KK) 1 POSITIONY(KK))•' ';
END MERGE;

PUT PAGE EDIT(((XMAZE(I 1 J) DO J•1 TON) DO I•1 TO Ml) (LINE(33-M/2),
(M) (COLUMN(40-N/2), (N) A(1) ,SKIP));

END EXS10;

The interesting thing about this program is that it successfully ran a test case,
despite all the errors we are about to unearth. To debug this code by running test
cases alone would clearly take a long time. Just proofreading is hard enough,

70 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 4

because the control logic is so curiously distributed. Let us analyze the code by sec
tions.

The DO loops at RUNUD and RUNLR inspect the borders of the maze, looking for
an entrance. TEST1 and TEST2 start the mouse going "in" from an opening by
transferring control to the appropriate LOOKx test. These implement the right-turn
rule described above, either to find a path continuation or to cause the mouse to
back out of a dead end. SET stores each point along the path and tests whether the
mouse has reached the border again. If the mouse comes out where it went in, this
is not a path, so the program goes back to the appropriate RUNxx loop to continue
searching the border where it left off. Otherwise it falls through to the SORT and
MERGE loops, which determine the path to be printed out.

The RUNxx loops have elaborate control parameters so that they can be
resumed. This is not an easy thing to do, so we are not surprised to find that it is
done wrong. At TEST1, for instance, we see that NN remembers the index K2; but
at RUNUD, NN is associated with the index K1. Sure enough, the lower limits for all
four DO loops are stored incorrectly. The program cannot properly resume the
border scan.

There are other problems with these DO loops. If the maze has no entry points,
or if there is no path through it, control falls through to TEST1 and the program
starts looking around outside the array MAZE. (Watch out for DO loops that
"never" terminate normally.) By definition, it is not possible to go "in" from a
corner, yet each is tried and could give an uninteresting answer - a path that only
runs along the edge. In fact, any adjacent ones on the border will be reported as a
path. Finally, the two inner loops (on K2) are handled differently even though they
perform similar functions. This tips us off that one of them is incorrect. (As a
matter of fact both are, but the details are not worth pursuing.)

The four LOOKx tests form one of those repeated patterns we have already
encountered several times. Defining the appropriate data structures should permit
us to summarize all four tests in one. Then perhaps we could avoid the dubious
GOTO BRANCH, which is a PL/I equivalent of Fortran's assigned GOTO and equally
obscure. Anything that disguises the flow of control should be avoided.

SORT and MERGE are correctly coded, but not well designed. It seems silly to
save all the loops and dead ends encountered until the very end, when they can be
readily eliminated along the way. Then it is not necessary to make a list of all the
matching points so that loops can be skipped over on output. (POINT should be
written as two arrays, by the way, and each should be much larger than 60 elements.
POSITIONX and POSITIONY, on the other hand, need be only about two thirds of
their current size of 2500.) SORT and MERGE are far more complicated than neces
sary.

Finally, the sequence

GO TO ENDSORT;
ENDSORT:END SORT;

is an open invitation to misunderstanding. The fact that a four line comment is
needed to explain what is going on should be reason enough to rewrite the code.
An even better reason is that the comment is wrong - two dummy statements are
created to end two DO groups. How much easier and clearer it is to write

CHAPTER 4

GOTO ENDSORT;
END;

END;
ENDSORT: END SORT;

PROGRAM STRUCTURE 71

There are too many other errors to discuss in detail. An isolated border cell
with value ' 1 'B will cause grief, as will a non-square maze. Even for a maze as
trivial as

000
111
000

the correct path is never found; when we ran it, after an indeterminate amount of
poking around outside the maze the program reported that the middle cell on the
left border forms a "path." When subscript range checking is turned on, the pro
gram aborts.

It is an enlightening exercise to patch the maze program, providing just enough
corrections to permit it to handle reasonable inputs. But patching only serves to
emphasize the shortcomings of this organization. After a brief attempt, most
readers will agree that the best cure is not revision but a total rewrite.

Don't patch bad code - rewrite it.

The maze program is big enough that it is well worth while planning its struc
ture carefully. One of the better ways of doing this is what is often called "top
down design." In a top-down design, we start with a very general pseudo-code state
ment of the program like

solve mazes

and then elaborate this statement in stages, filling in details until we ultimately reach
executable code. Not only does this help to keep the structure fairly well organized,
and avoid getting bogged down in coding too early, but it also means that we can
back up and alter bad decisions without losing too much investment.

How do we "solve mazes"? The loop

WHILE (there's a maze)
solve it

breaks the job into two clean pieces - checking whether a maze exists, and process
ing it. Usually the easiest way to find out whether there is a maze is to try to read it
in, using a separate input procedure. This is a convenient organization, as we shall
see here and again in Chapter 5.

Refining further,

WHILE (READMAZE() •YES)
IF (there's a path)

print it
ELSE

print 'no path'

72 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 4

This specifies the input function interface more clearly, and shows where the print
ing is done. It also implies that we need a procedure that tests whether there is a
path, which is obviously the hard part. In fact, since this is a big job, it might be
desirable to write READMAZE completely and test it before we go on with path
finding.

We will represent the maze by a bit array with one value for a wall and the
other for a non-wall, just as in the original. Then READMAZE is the following:

READMAZE: PROCEDURE RETURNS (BIT(1));

ON ENDFILE(SYSIN)
GOTO EOF;

GET LIST (M, N);
IF M < 2 I M > 50 I N < 2 I N > 50 THEN DO;

PUT SKIP LIST (M, N, 'BAD DIMENSIONS');
RETURN (NO);

END;
GET EDIT (((MAZE(I,J) DO J • 1 TON) DO I= 1 TOM))

(COLUMN(1), (N)B(1));
PUT PAGE EDIT (((MAZE(I,J) DO J = 1 TON) DO I= 1 TOM))

(COLUMN(1), (N)B(1));
RETURN(YES);

EOF:
RETURN (NO);

END READMAZE;

Now we can write an abbreviated main routine that calls only READMAZE, and test it
before any more code is added to confuse the logic.

With READMAZE out of the way, we can continue with the procedure
FINDPATH, which searches a maze for a path. Basically, FINDPATH must probe at
the maze from each edge. If it ever finds a path, it returns YES; otherwise it returns
NO.

FINDPATH()
IF (path from left side)

return(YES)
ELSE IF (path from right side)

return(YES)
ELSE IF (path from top)

return(YES)
ELSE IF (path from bottom)

return(YES)
ELSE

return(NO)

Suppose we put the details of how to look for a path from a particular edge into a
separate procedure called TRY, where we can use arguments to indicate what edge
and direction is of interest in a particular call.

TRY looks at the cell under consideration. If this is a wall, then there can be no
path, and TRY can return NO immediately. If the cell is not a wall, TRY can search
from the cell in each direction in turn.

CHAPTER 4

TRY()
IF (this cell is a wall)

return(NO)

PROGRAM STRUCTURE 73

ELSE IF (path from this cell in any direction)
return(YES)

ELSE
return (NO);

We have now come to something that actually looks difficult - how can we find
out whether there is a path from a point to the edge in a particular direction?

The maze can get pretty big, and neither a mouse nor a computer can consider
much of it at any one time. Whatever strategy mouse or machine adopts should be
a "local" one, in the sense that only a small neighborhood of cells is ever con
sidered at once and that the same strategy is used regardless of where the neighbor
hood lies in the maze.

A powerful tool for reducing apparent complexity is recursion. In a recursive
procedure, the method of solution is defined in terms of itself. That is, each part of
the routine handles only a small piece of the strategy, then calls the other parts of
the routine as needed to handle the rest. The trick is to reduce each hard case to
one that is handled simply elsewhere.

The mouse in a maze problem is a natural for recursion. Imagine that the
mouse is sitting somewhere in the middle of the maze wondering if there if a path
from where he is. If he is a clever mouse, he will realize that there is a path from
where he is to the border if

(1) there is an adjacent accessible cell that he hasn't already looked at, and

(2) there is a path from that cell.

Answering (1) is trivial. And the answer to (2) can be determined in exactly the
same way as the original question, except that the mouse is presumably one step
nearer to a solution. Thus the solution process is defined in terms of itself: recur
sion.

Although defining the solution recursively sounds like an infinite loop, it does
terminate. Searching stops when the mouse finds a path, or when he has checked
out all possibilities without success.

Let us see how recursion applies to path-finding. Suppose we define a recursive
function TRY (i 1 , j 1 , i 2, j 2 l which returns YES if there is a path from the point
(i1,j1) through adjacent point (i2,j2) that leads to the edge. If there is no
path, TRY returns NO. How does it work?

If (i 1 , j1 l is a wall, there is certainly no path. If we've previously investi
gated (i2, j2) without success or if it's a wall, there is no path. If (i2, j2 l is an
edge cell, there is a path. Otherwise, we simply put (i 1 , j 1) on the path tenta
tively, step over to (i2,j2) (making it the current (i1,j1)), then look in the
four directions from there. If there's a path from one of them, there's a path from
(i 1 , j 1 l , otherwise there isn't.

This is actually clearer in pseudo-code:

74 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 4

TRY(i1 ,j1 ,i2,j2)
IF (maze(i1,j1)

return(NO)
IF (maze(i2,j2)

return(NO)

is there a path from i1,j1 using i2,j2?
is a wall)

is a wall)

IF (we've been to i2,j2 before)
return(NO)

remember that we've been to i1,j1
put i1,j1 on the path tentatively
IF (i2,j2 is at edge of maze)

put i2,j2 on path too
return(YES)

ELSE IF (path from up cell adjacent to i2,j2)
return(YES)

ELSE IF (path from right cell adjacent to i2,j2)
return(YES)

ELSE IF (path from down cell adjacent to i2,j2)
return(YES)

ELSE IF (path from left cell adjacent to i2,j2)
return(YES)

ELSE
take i1,j1 off the path
return(NO)

Each test of the form

ELSE IF (path from ... cell adjacent to i2,j2)

is performed by calling TRY. In this way, TRY handles only a small part of the prob
lem directly, then calls itself recursively when necessary to handle the rest.

Finally, we must consider the question of data representation. We have to
record things like whether we've been to a cell before, and also what the actual path
is. One simple possibility is to record in an array STATE whether we've been to a
cell before or not. The array STATE contains two states, "used" (meaning we've
looked at this square before), and "free" (meaning we haven't). We could also use
STATE to record the path as it is found, or (as we choose here), use two linear
arrays !PATH and JPATH to record the coordinates of the path as it is found. This
latter organization takes a bit more code, but is substantially faster, since we never
follow a blind alley more than once.

Putting all of these pieces together makes a large program, but no larger than
the original, and markedly easier to follow.

CHAPTER 4

MOUSE: PROCEDURE OPTIONS (MAIN);
I• MOUSE IN A MAZE •/

PROGRAM STRUCTURE

/* SEARCHES PERIPHERY OF M X N MATRIX FOR AN ENTRY POINT •/
I• FIRST PATH WITH EXIT DIFFERENT FROM ENTRANCE IS ACCEPTED •/

DECLARE (YES INITIAL('1'B), NO INITIAL('0'B)) BIT(1);
DECLARE MAZE(50 1 50) BIT(1);
DECLARE WALL BIT(1) INITIAL('O'B);
DECLARE STATE(50,50) CHARACTER(1);
DECLARE USED CHARACTER(1) INITIAL('U');
DECLARE FREE CHARACTER(1) INITIAL('F');
DECLARE (PATHPTR, IPATH(2000), JPATH(2000)) FIXED BINARY;
DECLARE (M, N) FIXED BINARY;

DO WHILE (READMAZE() YES);
IF FINDPATH() - YES THEN

CALL PRINTPATH;
ELSE

PUT SKIP(2) LIST ('NO PATH');
END;

READMAZE: PROCEDURE RETURNS (BIT(1));
ON ENDFILE(SYSIN)

GOTO EOF;
GET LIST (M, N);
IF M < 2 I M > 50 I N < 2 I N > 50 THEN DO;

PUT SKIP LIST (M, N, 'BAD DIMENSIONS');
RETURN (NO);

END;
GET EDIT (((MAZE(I,J) DO J = 1 TON) DO I= 1 TOM))

(COLUMN(1) 1 (N)B(1));
PUT PAGE EDIT (((MAZE(I,J) DO J = 1 TON) DO I= 1 TOM))

(COLUMN(1) 1 (N)B(1));
RETURN(YES);

EOF:
RETURN (NO);

END READMAZE;

FINDPATH: PROCEDURE RETURNS (BIT(1));
STATE(•, •) - FREE;
PATHPTR = 0;
DO I= 2 TO M-1;

IF TRY(I, 1, I, 2) THEN
RETURN(YES);

IF TRY(I, N, I, N-1) THEN
RETURN (YES);

END;
DO J = 2 TO N-1;

IF TRY(1, J, 2, J) THEN
RETURN(YES);

IF TRY(M, J, M-1, J) THEN
RETURN(YES);

END;
RETURN(NO);

END FINDPATH;

I• LEFT SIDE •/

I• RIGHT SIDE •/

I• BOTTOM •/

75

76 THE ELEMENTS OF PROGRAMMING STYLE

TRY: PROCEDURE(I1, J1, I2, J2) RECURSIVE RETURNS (BIT(1));
DECLARE (I1, J1, I2, J2) FIXED BINARY;

IF MAZE(I1, J1) =WALL THEN
RETURN(NO);

IF MAZE(I2, J2) =WALL I STATE(I2, J2) •USED THEN
RETURN(NO);

STATE(I1, J1) =USED;
PATHPTR • PATHPTR + 1;
IPATH(PATHPTR) • I1;
JPATH(PATHPTR) = J1;
IF I2 = 1 I I2 = M I J2 1 I J2 N THEN DO;

STATE(I2, J2) •USED;
PATHPTR = PATHPTR + 1;
IPATH(PATHPTR) I2;
JPATH(PATHPTR) • J2;
RETURN(YES);

END;
IF TRY(I2, J2, I2, J2-1) THEN

RETURN(YES);
IF TRY(I2, J2, I2+1, J2) THEN

RETURN(YES);
IF TRY(I2, J2, I2, J2+1) THEN

RETURN(YES);
IF TRY(I2, J2, I2-1, J2) THEN

RETURN(YES);
PATHPTR = PATHPTR - 1;
RETURN(NO);

END TRY;

PRINTPATH: PROCEDURE;
STATE(•,•) = 'X';
DO I = 1 TO PATHPTR;

STATE(IPATH(I), JPATH(I))
END;

...
I

CHAPTER 4

PUT SKIP(2) EDIT (((STATE(I,J)
(COLUMN(1), (N)A(1));

DO J • 1 TO N) DO I 1 TO M))

END PRINTPATH;

END MOUSE;

There is no claim that we went directly from original conception to final work
ing PL/I without a single slip. But it is true that most of our mistakes were made
with pseudo-code, and corrected long before the program made it into PL/I, let
alone onto a machine. At each stage of the process, it was easy to analyze, test, and
revise, because the program structure was clearly expressed as a handful of routines
and a few lines of code, not a hundred lines of PL/I.

The maze program is pretty big; it takes effort to analyze. Yet our version has
fewer statements than the original, and is far easier to understand. This is not
because we have better comments, nor is it because our identifiers are more mean
ingful. The main difference is structural.

We chose our control structures on the basis of legibility; people tend to under
stand th: m with little effort. Our version of the maze program has only one label
besides procedure names. That in itself is no great accomplishment, but it indicates
that the flow of control must be essentially from top to bottom.

CHAPTER 4 PROGRAM STRUCTURE 77

The biggest change we made was to break the job into five small functions, each
one of which can be assimilated separately, then treated as a black box that does
some part of the job. Once it works, we need no longer concern ourselves with how
it does something, only with the fact that it does. We thus have some assurance
that we can deal with the program a small section at a time without much concern
for the rest of the code. There is no other way to retain control of a large program.

Write and test a big program in small pieces.

Recursion represents no saving of time or storage. Somewhere in the computer
must be maintained a list of all the places a recursive routine is called, so the pro
gram can eventually find its way back. But the storage for that list is shared among
many different uses. More important, it is managed automatically; many of the bur
dens of storage management and control flow are placed on the compiler, not on the
programmer. And since bookkeeping details are hidden, the program can be much
easier to understand. Learning to think recursively takes some effort, but it is
repaid with smaller and simpler programs.

Not every problem benefits from a recursive approach, but those that deal with
data that is recursively defined often lead to very complicated programs unless the
code is also recursive. A list, for example, can be said to consist of two elements,
where each element is either an atom or a list. To trace through an arbitrary list
requires an indefinite amount of storage to keep track of how to get back. The
recursion mechanism provides this simply and concisely.

Even if you cannot use recursion in such a situation, perhaps because you must
stick to Fortran, or because it is too inefficient (don't believe that until you've tried
it), you will find it valuable to do the original design as a recursive program. Then
unfold the recursion, simulating the recursive storage with your own explicitly
indexed data structures. The resulting program should be cleaner and easier to
understand than if you start from scratch.

Use recursive procedures/or recursively-defined data structures.

The discipline of breaking a large job into appropriate small pieces is often
called "structured design" and sometimes "composite design." Whatever you
choose to call it, that discipline is necessary. To summarize some of the points
made in this chapter about program structure,

(1) The only way to write and maintain a big program is as a set of small functions,
subroutines, or procedures. No module should have to know much about the
total problem, nor deal with more than a handful of immediate neighbors.

78 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 4

(2) Each module should deal with but one aspect of the solution, for otherwise it
will become too big and too complicated. If a module does precisely one job,
then it will not become a tangle of pieces lumped arbitrarily, nor will it be sim
ply a displaced fragment of some other module.

(3) A module should hide from its fellows the details of how it performs its task,
for ot1'erwise one module cannot be changed independently of others.

CHAPTER 4 PROGRAM STRUCTURE 79

POINTS TO PONDER

4.1 The function

INTEGER FUNCTION TEST(BOARD,I,J)
INTEGER BOARD(B,B)
TEST • -1
IF (I.LT.1 .OR. I.GT.B .OR. J.LT.1 .OR. J.GT.8) RETURN
IF (BOARD(I,J).GE.O .AND. BOARD(I,J).LE.4) TEST= BOARD(I,J)
RETURN
END

returns -1 if BOARD (I , J) is undefined or illegal; otherwise it returns
BOARD (I, J). Rewrite subroutine STORE of the checker-playing program to use
TEST. Add code to SEARCH to include valid single jumping moves. At most eight
statements should have to be added. (Don't forget to add TEST to the INTEGER
statement and increase the sizes of ROW and COL.) What would be involved in
adding jumps to the original version?

4.2 What simplifications can be made in the checker-playing subroutines if we use
a 10 by 10 checkerboard, where the border squares contain negative values?

4.3 What happens to the original maze program if the top border looks like

•.. 010 .. .
. . . ooo .. .

What if the top left corner looks like

11 0
000

The POINT array can handle up to 60 loops. Can you define a maze that has more
than 60 loops? Remember that

111111111111111
010101 010101 01 0
000000000000000

looks like seven loops when searched from left to right. Does our version handle
these cases correctly?

4.4 Rewrite the maze program without using recursion, using the recursive version
as a model. How much bigger and more complicated does it get? Can you do
better with a different approach?

80 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 4

4.5 In the first edition of this book, we presented the following version of the
maze program. In retrospect, we don't much care for it. Criticize it, and contrast it
with the recursive version.

/• MOUSE IN A MAZE •/
/• SEARCHES PERIPHERY OF AN M X N MATRIX (MAX 50 X 50) */
/• FOR AN ENTRY POINT. THEN FOLLOWS PATH BY SIMULATING •/
/• MAN WITH RIGHT HAND ON WALL (TURN RIGHT IF YOU CAN, •/
/• LEFT IF YOU MUST) UNTIL HE REEMERGES. FIRST PATH •/
/• WITH EXIT DIFFERENT THAN ENTRANCE IS ACCEPTED. •/
/• MAZE•'1 'B IS A PATH, MAZE•'O'B IS A WALL. •/

EX510: PROCEDURE OPTIONS (MAIN);

/*** CONSTANTS ***/
DECLARE (UP INITIAL(O), LEFT INITIAL(1),

DOWN INITIAL(2), RIGHT INITIAL(3))
STATIC FIXED BINARY;

/*** GLOBAL VARIABLES ***/
DECLARE MAZE(S0,50) BIT(1),

(XPOS, YPOS) (1250) FIXED BINARY,
L FIXED BINARY;

ON ENDFILE STOP;

/*** INPUT AND LIST MAZE ***/
MORE:

GET LIST (M, N);
IF M<2 I M>SO I N<2 I N>SO THEN DO;

PUT SKIP LIST (M, N, 'BAD DIMENSIONS'); STOP;
END;

GET EDIT (((MAZE(I,J) DO J • 1 TON) DO I• 1 TOM))
(COLUMN(1), (N)B(1));

PUT PAGE EDIT (((MAZE(I,J) DO J • 1 TON) DO I• 1 TOM))
(LINE (33-M/2), (M) (COLUMN(40-N/2), (N)B(1)));

/*** SEARCH PERIPHERY ***/
DECLARE FIND ENTRY (FIXED BINARY, FIXED BINARY, FIXED BINARY)

RETURNS (BIT(1)); /• '1 'B IF PATH FOUND•/

DOK= 2 TO M-1;
IF FIND(K,1,RIGHT) THEN GOTO FOUND;
IF FIND(K,N,LEFT) THEN GOTO FOUND;

END;
DOK• 2 TO N-1;

IF FIND(1,K,DOWN) THEN GOTO FOUND;
IF FIND(M,K,UP) THEN GOTO FOUND;

END;

PUT SKIP LIST ('NO ENTRANCE'); GOTO MORE;

/*** PRINT ANSWER ***/
DECLARE XMAZE(S0,50) CHARACTER(1);

FOUND:
XMAZE • 'X';

DO J • 1 TO L; /• L, XPOS, YPOS ARE SET IN FIND •/
XMAZE(XPOS(J),YPOS(J)) • ' ';

END;
PUT PAGE EDIT (((XMAZE(I,J) DO J • 1 TON) DO I• 1 TOM))

(LINE (33-M/2), (M) (COLUMN (40-N/2), (N)A(1)));
GOTO MORE;

CHAPTER 4 PROGRAM STRUCTURE

/• PROCEDURE FOR SEARCHING: •/
/• BEGINS AT BORDER CELL KX,KY AND PROBES IN DIRECTION •/
/• KW. IF ENTRY THERE THEN FOLLOWS PATH, AND RETURNS •/
/• '1 'B IF COMES OUT SOMEWHERE ELSE. •/
/• STORES L ELEMENTS OF PATH IN XPOS, YPOS •/

FINO: PROCEDURE (KX, KY, KW) RETURNS (BIT(1));

f*** CONSTANTS ***/
DECLARE (DX(0:3) INITIAL(-1,0,1,0), DY(0:3) INITIAL(0,-1,0,1))

STATIC FIXED BINARY;

/*** STORAGE ***/
DECLARE (X, Y, W) FIXED BINARY;

IF MAZE(KX,KY) = '0'B I MAZE(KX+DX(KW),KY+DY(KW)) '0'B
THEN RETURN ('0'B);

/*** EXPLORE ***/
= KY; XPOS(1) • KX; YPOS(1)

XPOS(2),X = KX+DX(KW);
W = KW; L • 2;

YPOS(2),Y = KY+DY(KW);

DO WHILE (X>1 & X<M & Y>1 & Y<N);
W • MOD(W+3,4); /• TURN RIGHT •/

DO WHILE (MAZE(X+DX(W),Y+DY(W)) '0'B);
W = MOD(W+1 ,4); /• TURN LEFT UNTIL OUT •/

END;

L • L+1;
XPOS(L) ,X = X+DX(W); YPOS(L),Y Y+DY(W);

DO J = L-2 TO 1 BY -1; /• TEST FOR KNOT •/
IF X = XPOS(J) & Y = YPOS(J) THEN

IF J = 1 THEN RETURN ('0'B);

END;
EXIT:

END;

ELSE DO;
L = J; GOTO EXIT;

END;

RETURN ('1 'B);
END FIND;

END EX510;

/• REACHED BORDER •/

81

CHAPTER 5: INPUT AND OUTPUT

From Computerworld, June, 1972:

Slip of the Keypuncher's Finger Means
City to Lose $290,000 in Tax Revenue

WOONSOCKET, R.I. - A keypunch error compounded by a lack of programming safeguards
will cost this city almost $300,000 in tax revenues this year.

The error occurred several weeks ago when the city's tax evaluation was being computed.
It caused a 1967 Ford to be valued at over $7 million - $7,000,950 to be exact - and there
fore cause the tax rate to be based on a figure that was about $7 million too high.

As a resull, tax revenues will be decreased by $290,000, reported A. Robert Mailloux,
finance director. The city will not increase the tax rate, so department heads will have to "pull
in the belt," Mailloux said.

The error resulted when operators were preparing a test run for the property tax rolls on
the municipal card-fed Honeywell 110. A keypunch operator mistakenly punched a "P" in the
first column of a seven-column field.

The first four columns should have been empty, indicating that the automobile was only
worth $950.

The logic of the computer, Mailloux related, stripped the zone bit from the field during a
multiplication operation. The letter was thereby translated into a "7" and the next three
blanks were filled with zeroes by the computer.

$182 Million Correct
The result, then, was $7,000,950 instead of $950 for the automobile; the total tax assess

ment for the city was originally reported as $187 million, based on an 80% rate, instead of the
correct $182 million, Mailloux confirmed.

Tax revenues will be proportionately reduced, he added.
There were five checkpoints at which the erroneous card should have been detected and

destroyed, he continued. In fact, the error was detected, and a new card punched, but the old
card was not removed from the deck, despite the fact that a supervisor reported that it had
been removed and destroyed.

Mailloux said the program should have contained checks that would not have permitted so
great an assessment on an automobile to be processed.

A preparatory run by account number (taxpayer number) and another preparatory run by
automobile registration number both should have detected the duplicate card, he related.

There were, however, "no programming safeguards," he stated. "Given human frailties,
the program was the ultimate chance" to detect and avoid the error, he added.

The error was discovered two weeks ago, when the tax bills were mailed and the owner of
the Ford received a bill for $290,000. Officials would not identify the recipient.

The error marks the "largest financial error in the city's history," according to local
sources. Other observers suggested the $290,000 sum represented the largest amount ever
lost, without compensation or recovery, for a computer-related error.

The actual loss will be increased if the city has to borrow money between now and the end
of the fiscal year.

83

84 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 5

In twenty-five words or less, this article says that the assessment program did its
computation without checking that its input data made sense. There is a lesson here
that every programmer must learn, usually the hard way (how would you like to be
the programmer who wrote the assessment program?) and often several times:
NEVER TRUST ANY DAT A. Input prepared by people or even by other programs
will contain errors. A good program tests its input for validity (the letter "P" is not
a digit) and, in critical cases like tax computations, for plausibility. (An automobile
assessed at seven million dollars is not plausible.)

Many introductory programming texts contain variants of the problem "Write a
program to read three numbers A, B, and c, representing the sides of a triangle, and
compute the area of the triangle." Here is one solution:

READ (5, 23) A, B, C
23 FORMAT (3F10.0)

S • (A + B + C) I 2.0
AREA= SQRT(S * (S - A) * (S - B) * (S - C))
WRITE (6, 17) A, B, C, AREA

17 FORMAT (1P4E16.7)
STOP
END

In most ways this is a good program: it is well-formatted, and copies its input
data to the output for visual inspection. The output format is well chosen: it uses
the E format to handle very large or very small answers without losing significant
digits, and the scale factor 1 P to print one position before the decimal point, so the
answers are in the form most familiar to readers. Our only minor complaint con
cerns the apparently random statement numbers.

But what happens if we test the program on the "triangle" (3, 1, I)? Most
probable is an unexpected termination with a diagnostic like "negative argument in
SQRT," certainly an indirect way to report that the input does not represent a trian
gle. (And try it on -1, -1, -1.)

You should always "launder" your input: after s has been computed, verify
that no side is too big (or negative). One programmer used PL/I's built-in function
ANY to test each element of an array T which contains the lengths of the three sides:

S = SUM(T)/2;
IF ANY (T <•0) IANY (T>S) THEN it's not a triangle ...

IF ANY (T=S) THEN it's a straight line ...

The test for a straight line may not always be reliable, for reasons we shall explore
in Chapter 6, but the generally suspicious approach is commendable. This checking
is easy in PL/I. In Fortran, the same tests require more code, which may explain
why they are not often made.

Test input/or validity and plausibility.

CHAPTER 5 INPUT AND OUTPUT 85

Simple tests save later grief. Does the program read a parameter to define an
array size? Then test that it does not exceed the array bounds. Here is part of a sort
program:

DIMENSION X(300)
C READ NUMBERS TO BE SORTED.

READ 1,N, (X(I) ,I=1,N)
FORMAT(I3/(F5.1))

C INITIALIZE TO MAKE N-1 COMPARISONS ON FIRST PASS.
K=N-1

C INITIALIZE TO BEGIN COMPARISONS WITH THE FIRST 2 NUMBERS.
6 J=1

C L IS USED TO RECORD THE FACT THAT AN INTERCHANGE OCCURS.
19 L=O

C MAKE COMPARISONS.

3

DO 2 I=J,K
IF(X(I)-X(I+1)) 2,2,3

There are minor flaws, such as the random statement numbers (again) and the
use of an arithmetic IF where a logical IF would be more readable, but we will
defer discussion of the full text until Chapter 7. For now, let us concentrate on the
input statement.

Suppose N exceeds 300. Parts of storage outside the array x may be overwrit
ten. Whatever happens after that will not be good, nor will it tell the user
unequivocally what he did wrong. The program may run to completion, but if the
user does not look carefully at the output, he may not even notice that the program
failed.

Some compilers (W ATFIV, PL/I with SUBSCRIPTRANGE enabled, for instance)
allow a check during execution that subscripts do not exceed array dimensions. This
is a help, but not sufficient. First, many programmers do not use such compilers
because "They're not efficient." (Presumably this means that it is vital to get the
wrong answers quickly.) Second, subscript range checking will not detect the other
deficiency in this code. Suppose that the value of N is one. Then the program com
pares x (1 l with x (2 l, which is not defined and hence garbage. If the garbage hap
pens to be less than x (1 l, x (1 l is gone forever, since it is sorted out of its posi
tion.

If we write a precise description of the exact input data for which the sort pro
gram works, we find, of course, that it fails for N outside the range 2 to 300. At
that point, we might be embarrassed into making it do something sensible for all
values of N:

DIMENSION X(300)
READ 10, N

10 FORMAT(I3)
IF (N.LT.1 .OR. N.GT.300) takeerroraction
READ 20, (X(Il, I=1,N)

20 FORMAT(FS.O)
IF (N. EQ. 1 l leave routine, since in order

It may be easier to redo a program than to describe exactly what cases it works for.
In any case, writing the description should point to bugs, and to areas for improve
ment. (The author of this sort program came close - his second and third

86 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 5

comments both suggest that there might not be two items.)

Make sure input cannot violate the limits of the program.

The statement

READ 1,N,(X(I),I=1,N)

in the sort program illustrates a risky way to read data. N has to be computed by the
user, probably by hand. Since people make mistakes, this is an error-prone opera
tion, especially if N is at all large. And while the statement is compact, it does not
leave room for the checking that is so important with this form of input. It should
be avoided.

As we said before, computers count better than people; let them do the work.
Mark the end of the data, then read until the marker is encountered. On some
languages, the marker can be implicit, as in the

ON ENDFILE ... ;

statement of PL/I or the END=... construction in many Fortrans.) You would be
annoyed if you had to count the number of cards in your source programs; thus
compilers read until they find an END card or no more input. Do the same for your
users.

Terminate input by end-of-file or marker, not by count

The program below reads cards containing a name and a hair color, and totals
the number of people with each color of hair.

INTEGER NAME,COLOR,LAST,COL(6) 1 COUNT(6)
DATA COL/3HBLA,3HBLU,3HBR0,3HGRE,3HRED,3HWHI/ 1

1 LAST,COUNT/4H0000,6•0/
1 READ(5,2)NAME,COLOR
2 FORMAT(A4,1SX,A3)

DO 3 I= 1,6
3 IF(COLOR.EQ.COL(I)) COUNT(!) COUNT(I) + 1

IF(NAME .NE. LAST) GO TO 1
WRITE(6,4)

4 FORMAT(12H COLOR COUNT)
DO 5 I= 1,6

5 WRITE(6,6)COL(I),COUNT(I)
6 FORMAT(4X,A3,2X,I3)

STOP
END

Instead of forcing users to count their data cards correctly, the program uses an
explicit "end-of-file" test - a card with a name field of "0000" marks the end of
the input. Excellent! But notice that the end-of-file test is made only after the data
from the end-of-file marker card has been checked and accumulated. Should a color

CHAPTER 5 INPUT AND OUTPUT 87

be punched in the "unused" field of the end-of-file card, it will corrupt the counts.
This code may not fail often, but it is careless.

The use of mnemonics like "RED" and "BLU" instead of numeric codes like
"l" and "2" is commendable, for it makes the program easier to use correctly. But
if a color does not match any of the list, it is quietly skipped. Debugging input data
is as important as debugging a program - some provision for locating bad input
should be included. In this case, each bad color should be printed (with an indica
tion of which card is in error, for the deck may contain hundreds of cards.)

The program "works", but with negligible effort it can be improved:

INTEGER NAME, COLOR, LAST, COL(6), COUNT(6), CARDNO
DATA COL(1), COL(2), COL(3) /'BLA' 1 'BLU' 1 'BRO'/
DATA COL(4), COL(S), COL(6) /'GRE', 'RED', 'WHI'/
DATA LAST /'0000'/
DO 10 I= 1,6

COUNT(!) = 0
10 CONTINUE

CARDNO • 0
20 READ(S,21) NAME, COLOR
21 FORMAT(A4, 1SX, A3)

IF (NAME .EQ. LAST) GOTO SO
CARDNO = CARDNO + 1
DO 30 I= 1,6

IF (COLOR .NE. COL(I)) GOTO 30
COUNT(!) =COUNT(!) + 1
GOTO 40

30 CONTINUE
C FALL OUT IF BAD COLOR

WRITE(6,31) COLOR, CARDNO
31 FORMAT (' BAD COLOR - ' 1 A3 1 ' IN CARD NUMBER' 1 IS)
40 GOTO 20

C END OF DATA INPUT
SO WRITE(6,S1) (COL(I), COUNT(I), I 1 1 6)
S1 FORMAT(4X, A3, IS)

STOP
END

We have written the input loop as a large DO-WHILE (while the NAME is not
equal to LAST). If a color is recognized, we count it and skip to the next case
(GOTO 40 is an early exit from the loop); otherwise we list the bad input color and
then loop.

Identify bad input; recover if possible.

The same error, treating the end-of-file marker as legitimate data, is carried a
step further in this program for computing student grade averages:

88 THE ELEMENTS OF PROGRAMMING STYLE

I•1;
I• INITIALIZE SUM •/
IN: SUM=O;
/• READ SCORES AND COMPUTE SUM •/
DO J•1 BY 1 TO 5;
GET LIST (SCORE(I,J));
SUM•SUM+SCORE(I,J);
END;
I• STOP READING IF FIRST SCORE IS NEGATIVE •/
IF SCORE(I,1)<0 THEN GO TO OUT;
I• COMPUTE AVERAGE •/
AVG(I)•SUM/5;
I• READ NAME •/
GET LIST (NAME(I));
I=I+1;
I• GET NEXT STUDENT'S SCORES •/
GO TO IN;
I• COMPUTE TOTAL NUMBER OF STUDENTS •/
OUT: I=I-1;
I• PRINT ... •I

CHAPTER 5

The comments imply that scores and names are read until the first score is
negative; this indicates the end of data. Unfortunately, what comments imply is not
always precisely what happens. Because GET LIST reads free-fr ·m input, this pro
gram requires five dummy scores to t~rminate the DO loop that reads scores, although
only the first need be negative. If less than five are given, the program encounters
the end of the input unexpectedly, before the GET LIST is satisfied. Since no
ENDFILE action has been specified, the program simply terminates without printing
the desired output. This is not implied by the comments.

PL/l's explicit test for end-of-file is much superior to the Fortran-like mechan
ism used here. Let us use it to correct the error. One possibility is

ON ENDFILE
GOTO OUT;

DO I = 1 TO IMAX; /• LOOP UNTIL EOF OR ARRAYS FULL •/
GET LIST (SCORE(!,•), NAME(I));

should check data for validity here
AVG(I) = SUM(SCORE(I,•))/5;

END;
get here if arrays are fall

OUT:
output processing

(A * subscript repeats an operation over all legal values of that subscript. Thus GET
LIST (SCORE(I,•)) reads SCORE(I,1), SCORE(I,2), etc.; SUM(SCORE(I,•))
adds them all up.) We have dispensed with the negative dummy score for terminat
ing the input. As an added bonus, we can easily avoid reading more input than the
arrays can hold, by limiting the range of the DO loop that replaces

CHAPTER 5

I•1;
IN:

I•I+1;
GO TO IN;

INPUT AND OUTPUT 89

The ENDFILE condition provides an early exit from this loop, so if we fall out of
the loop, we know there is too much data for the program to handle. We also used
a GOTO in the ON ENDFILE statement, rather than placing the output code there
itself, so we could keep the code laid out in the order in which it is obeyed. So long
as the input routine is not too large, there is little danger of confusion.

One can also use the ON ENDFILE unit just to set a flag, which is then tested
after each attempt to read. This organization requires no branching.

ON ENDFILE
EOF • YES;

EOF = NO;
GET LIST (...) ;
IF EOF • NO THEN

normal processing

In either case, the intent is to make end of file look to the rest of the program
as much as possible like any other input record. We will return to this topic again
later in the chapter.

Treat end of.file conditions in a uniform manner.

Explicit tests for end of file and the identification of faulty data make programs
easier for people to use. So does input that is easy to prepare correctly:

From Computerworld, October, 1971:

Loss of One Digit Brings School Scheduling Snafu

KINGSTON, MASS. - One lost column in a punched card caused several high school classes
to be scheduled for one room, while scores of other students wandered aimlessly all day long,
for lack of a destination.

That's the description given by local and wire service reports of a computerized scheduling
snafu at Silver Lake Regional High School here, but employees of the school "didn't know we
had a big problem until we read about it in the paper."

There actually were some problems, originally blamed on keypunch errors, but they were
not as severe as reported.

Assistant Superintendant Norman Donegan claimed the school committee was "not partic
ularly upset" at the problems, which were reportedly settled in two or three days.

The matter has not been dropped, but there is no intense investigation either. Donegan
indicated that the company involved in the error may lose the computer contract, which is
worth $2000 a year, but that "we don't plan to stop scheduling by computer.

"In fact, we've even thought about increasing" the applications, he stated.
Donegan said that the error apparently was caused when the first digit in a three column

field was dropped. The field indicates Teacher-Department-Subject, and with the omission of
the teacher, the other categories became jumbled.

In other instances, the teacher indicated had left the school system, causing scheduling
problems for students if a replacement had not been hired.

90 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 5

Leaving aside any question of why the program failed to check its input, this
"minor" problem might never have happened if input formats were better suited to
humans, and if mnemonics were used. Mnemonics make it easier for people to
remember legal input and understand output, and they make it less likely that a
keypunch error will transform one legal code into another one.

To illustrate, here is a part of a program which computes prices of metals of
various types and weights:

KOUNT • 0
1 READ 6 1 WEIGHT 1 XMETAL
6 FORMAT(F10.1,3X,F4.1)

KOUNT • KOUNT+1
DATA BRAC1/0./ 1 BRAC2/1000./,BRAC3/2000./,BRAC4/3000./,BRAC5/4000./
DATA ALUM/1 ./,TIN/2./,COPPER/3./,BORON/4./
IF(WEIGHT.LE.BRAC1)GO TO 100
IF(WEIGHT.LT.BRAC2.AND.XMETAL.EQ.ALUM)GO TO 101
IF(WEIGHT.LT.BRAC3.AND.XMETAL.EQ.ALUM)GO TO 102

IF(WEIGHT.LT.BRAC3.AND.XMETAL.EQ.BORON)GO TO 118
IF(WEIGHT.LT.BRAC4.AND.XMETAL.EQ.BORON)GO TO 119
IF(WEIGHT.GE.BRAC5.AND.XMETAL.EQ.BORON)GO TO 120
METAL•XMETAL

100 PRINT 200,WEIGHT,METAL,KOUNT
200 FORMAT(1X 1 9HWEIGHT • ,F10.1,8HMETAL • 1 I2 1 27HERROR FOUND IN CARD N

1UMBER I3)
GO TO 1

101 COST•WEIGHT•3.00
GO TO 300

102 COST•WEIGHT•2.75
GO TO 300

118 COST•WEIGHT•1 .50
GO TO 300

119 COST•WEIGHT*1 .25
GO TO 300

120 COST•WEIGHT*1 .00
300 METAL=XMETAL

PRINT 301,KOUNT,METAL,WEIGHT,COST
301 FORMAT(1X,13HSHIPMENT NO. (,I2,1H),3X 1 7HMETAL• 1 I2 1 3X 1 9HWEIGHT • ,F

11 0 . 1 , 3X, 7HCOST • , F1 0 . 2)
GO TO 1

Each input data card contains a weight and a numeric code for a metal. In all,
there are twenty !F's to determine the weight bracket and metal to use for computa
tion, and twenty different computations (statement numbers 101 through 120).
Clearly, it would be better to put the prices in an array, indexed by metal type and
weight class, and in fact the textbook from which the example was taken later gives
a version of the program that does just that.

There are some other minor things to criticize. For instance, it is error-prone
and inflexible to use a source card right up to the last column, as in statements 200
and 301. FORMAT 200, for example, leaves no space between the metal code and
the word "ERROR". To fix this buglet, we must change both statement 200 and its
continuation, then we must correct the character count (27) as well. If instead the
card broke to a continuation at the end of a field, this problem would not arise, and
only one change would be needed to fix the error:

CHAPTER 5 INPUT AND OUTPUT 91

200 FORMAT(1X, 'WEIGHT=', F10.1, ' METAL= ', I2,
$ ' ERROR FOUND IN CARD NUMBER ', I3)

The program has good points, too. It counts its data cards, instead of relying on
the user. It copies the input onto the output (after computation) so it can be
inspected visually. And, most important, it validates its input, testing for negative
or zero weight and invalid metal code. It prints the offending card and its sequence
number, then continues to the next data.

But our enthusiasm is tempered by discovering that if a negative or zero weight
is encountered, the program prints the value of METAL for the previous input card.
Label 100 is placed incorrectly, one statement too late.

If the conversion

METAL = XMETAL

were done once, immediately after the READ, the bug would vanish, and so would
the need for statement 300 and the one before statement 100.

The other, more general, failing is the use of numeric codes (floating point at
that) to name the metals. (Was floating point used because all the metals had
names that were "floating point" variables in Fortran? What if we added LEAD,
NICKEL, and IRON?) A typical line of output looks like

SHIPMENT NO. (1) METAL= 1 WEIGHT= 1000.0 COST= 2750.00

It is only after scanning the listing that we can deduce that metal 1 is aluminum.
The use of numeric codes is bad practice in a program that people use directly.

The codes in this program are not even in alphabetical order. How can a user
remember them? (As we mentioned, the textbook presents another version of this
program a few pages later, which uses alphabetic names instead of numeric codes
for the metals, but discards all error checking.)

Make input easy to prepare and output self-explanatory.

Here is an example that shows ill-chosen mnemonic values:

Write a program segment that will assign sales area 1 to each even salesman, and
sales area 2 to each odd salesman.

DIMENSION SALESM(17)
DO 20 IJ=1 , 17

10 IF(IJ/2•2-IJ) 12,11,12
11 SALESM(IJ)=1.

GO TO 20
12 SALESM(IJ)=2.
20 CONTINUE

The curious expression IJ /2•2-IJ is a Fortran idiom that determines whether
IJ is evenly divisible by two. The original problem can be solved more clearly and
succinctly with the MOD function:

92 THE ELEMENTS OF PROGRAMMING STYLE

DIMENSION SALESM(17)
DO 20 I = 1, 17

SALESM(I) = MOD(I,2) + 1
20 CONTINUE

CHAPTER 5

We are more concerned here with the mnemonic values chosen: even
numbered salesmen have an odd number, while odd-numbered salesmen have an
even number. This is backwards. It is certainly no more difficult to let "l" be the
code for odd-numbered salesmen, and "2" the code for even. (We leave it to the
reader to decide whether using a floating point array to hold integer values is an
appropriate data representation.)

Programs should not only cope with incorrect input, but also encourage users to
make fewer errors by being easy to use. Consider this input fragment:

READ(1,4) XIHP(I),R(I),FORCE(I),NREV(I)
4 FORMAT(F5.1,F3.1,F3.0,I2)

If you are an occasional user of this program, will you be able to remember, a week
from now, that the XIHP field is five columns wide, R and FORCE are three, and
NREV is two? Not likely. There would be less to remember if the author had used
a uniform format, like

4 FORMAT(3F5.0, 15)

in which all fields have the same width. This also leaves room for future growth -
whatever NREV is, it may someday be bigger than 99, which is all the I2 format per
mits. I2 is not only non-uniform, but restrictive.

You might even consider doing this:

READ(1,4) XIHP(I), R(I), FORCE(!), REV
4 FORMAT(4F5.0)

NREV(I) = REV

Now we do not need to right-justify the integer NREV - we enter it with a
decimal point like everything else, and convert it internally. (As it turns out, the
only place in the program where NREV is used is in a long product where all the
other factors are floating point. It might as well have been declared floating point
anyway.)

The difference between F3 .1 and F3. 0, by the way, lies in the interpretation of
an input number that does not contain a decimal point. If the number contains a
decimal point, as it should for reliability, the explicit point overrides the decimal
point position in the FORMAT statement. Floating point input specifications should
thus be restricted to the form Fn. 0. (We have quietly made this change in most of
our examples so far.) Omitting decimal points to make fields smaller is penny-wise,
pound-foolish.

Use uniform inputformats.

CHAPTER 5 INPUT AND OUTPUT 93

While we are making uniform formats, consider this excerpt from a program in
another text:

READ (5,100) MAX,JLOW,JHIGH
100 FORMAT (13,214)

READ (5,7) N(I)
7 FORMAT (14)

Here two (randomly numbered) FORMAT statements are used, because the
pointless irregularity in the first means that it cannot be used with the second READ.
(Did the programmer use I3 because he "knew" that MAX would never exceed
999? Users now have to learn two formats; when the program grows, they may
have to learn a third.) Do it this way:

READ(5,100) MAX, JLOW, JHIGH
100 FORMAT(3I5)

READ(5,100) N(I)

The idea is not to save the small space represented by a second FORMAT, but to
make life simpler for the user. Even if you prefer to write FORMAT's after each 1/0
statement (a good practice), make them as similar as possible.

Formats should also be chosen with some thought to the probable device used
to create input - usually a keypunch or a terminal. Free-form input is easiest; next
best are uniform fields near the left end of the card or line. Imagine typing with this
format, even after the missing comma is inserted:

GET EDIT(X,ZILCH) (X(10) ,F(4)X(65) ,A(1));

If possible, numbers should be justified left, not right. (That was the purpose
of our floating-to-fixed conversion above.) Spread the data out a little - cramming
it into the absolute minimum space makes it too hard for reading by people, who
may well have to look at it to find errors.

Make input easy to proofread

The ideal arrangement for reading numbers, especially for getting programs
working quickly, is free-form input, where the data layout is essentially unspecified.

Free-form input is easy in PL/I:

GET LIST (A, B, C);

reads input until it finds three numbers. These can be on one card or line, or on
several, separated by blanks or commas or card/line boundaries.

Not all Fortran implementations allow free-form input, but some, especially for
interactive systems, do provide unrestricted input, often as

READ A, B, C

You must weigh the question of future portability against ease of use right here and
now. In this case, our vote goes to ease of use.

94 THE E',EMENTS OF PROGRAMMING STYLE CHAPTER 5

Use free-form input when possible.

The following READ statement sets five variables:

READ(1,10) KONST1,KONST2,FEED,DIAM,RPM
10 FORMAT(I6,I6,F5.3,F5.3,F4.0)

Suppose you had to use this program periodically (after negotiating to have the
input format made more uniform). Without looking, is the third argument the feed
rate or the diameter? If you last used the program a week ago, would you
remember? When there are many (i.e., more than one or two) arguments or
parameters to be provided to a program, let the users specify their parameters by
name; that way they have to input only what they want changed from the default,
and they don't have to remember any particular order.

Parameters can be read directly by name with the GET DATA statement of PL/I.
Input like

FEED=27.0 DIAM=3.5 RPM=3600.0

lets users give input arguments in an arbitrary order and format, as long as they can
remember what the names are. Fortran's NAMELIST feature does much the same
thing, although it is nonstandard and its use is clumsy.

If input parameters are supplied by name, you can use default values in a grace
ful way. If some parameter is normally given a certain value, build that value into
the program; then if users do not specify its value, they will get the built-in value
"by default." Of course the defaults have to be chosen intelligently, to satisfy some
significant fraction of the user population. On output reports, it may be helpful to
print the defaulted va.ues as well as the inputs, so the user will know what the pro
gram did. (We have also sometimes found it useful to print date and time, to help
people identify their output.)

Use self-identi/Ying input. Allow defaults.
Echo both on output.

In our version of the maze program of Chapter 4, you may recall that we wrote
a separate function READMAZE to read each new maze, rather than embedding the
input code in-line in the main routine. This allowed our main loop to be simply

DO WHILE (READMAZE() =YES);
IF FINDPATH() = YES THEN

CALL PRINTPATH;
ELSE

PUT SKIP(2) LIST ('NO PATH');
END;

All of the details of rr.aze input are hidden from the main routine, including coping
with end of file and invalid input. If READMAZE returns YES (actually '1 'B) it

CHAPTER 5 INPUT AND OUTPUT 95

found a maze, which is now ready to be processed. Otherwise it returns NO (' O ' B)
and the loop is finished.

As we have said several times, the hard part of programming is controlling
complexity - keeping the pieces decoupled so they can be dealt with separately
instead of all at once. And the need to separate into pieces is not some academically
interesting point, but a practical necessity, to keep things from interacting with each
other in unexpected ways.

Writing a separate input function is a prime example of decoupling, an example
which crops up frequently. To illustrate, let us examine the following program,
which reads text and computes the average number of words per sentence. It is not
the most general program in the world, for the input comes on exactly ten cards,
but this can be readily changed.

DIMENSION IA(BO)
DATA IBLK,IPER/' ','.'/
NWDS•O
NSEN•O
DO 7 I•1,10
READ(5,1) IA
FORMAT(80A1)
JW•O
J=1

5 IF(IA(J).NE.IPER) GO TO 2
IF(JW.NE.0) NWDS•NWDS+1
NSEN•NSEN+1
GO TO 3

2 IF(IA(J).EQ.IBLK) GO TO 4
JW•1
GO TO 3

4 IF(JW.EQ.1) NWDS•NWDS+1
JW=O

3 J•J+1
IF(J.LE.80) GO TO 5

7 IF(JW.EQ.1) NWDS•NWDS+1
AVG•NWDS/NSEN
WRITE(6,6) AVG

6 FORMAT('OAVERAGE WORDS PER SENTENCE=' ,F10.2)
STOP
END

The program is rather involved, mainly because the card-reading (with its
accompanying tests for the end of the card) is thoroughly intertwined with counting
the words and sentences. With this much complexity, it's not too surprising that the
code is wrong - the average is always too high. (You might like to verify this.)

Suppose we separate fetching characters from counting interesting things. Fol
lowing the lead of the maze program, we define a function READCH which will read
the next character from the input. READCH should take care of all the nasty details
of converting the 80 characters of a card Oet us say) into 80 separate characters,
handed out one at a time. It should also give back a signal that no more characters
are left when the end of the input is reached.

Given READCH (which we'll write in a moment) the main program simplifies
quite a bit. In pseudo-code,

96 THE ELEMENTS OF PROGRAMMING STYLE

inword = NO
nword = 0
nsent = 0
WHILE (readch(char) YES)

IF (char = blank)
inword = NO

ELSE IF (char = period)
nsent = nsent + 1

ELSE IF (inword = NO)
inword = YES
nword = nword +

IF (nsent > 0)
print nword/nsent

CHAPTER 5

This is just about right to verify that the underlying algorithm works, even for fairly
perverse sequences of blanks, words and periods. Now we can translate it into For
tran.

INTEGER READCH, BLANK, PERIOD, CHAR, YES
DATA BLANK/' '!,PERIOD/'.'/, NO /0/, YES /1/
NWORD = 0
NSENT = 0
INWORD = NO

10 IF (READCH(CHAR) .EQ. NO) GOTO 90
IF (CHAR .EQ. BLANK) INWORD NO
IF (CHAR .EQ. PERIOD) NSENT NSENT + 1
IF (CHAR .EQ. BLANK .OR. CHAR .EQ. PERIOD) GOTO 20
IF (INWORD .EQ. YES) GOTO 20

INWORD = YES
NWORD = NWORD +

20 GOTO 10
90 IF (NSENT .GT. 0) AVG FLOAT(NWORD) I FLOAT(NSENT)

IF (NSENT .LE. 0) AVG 0.0
WRITE(6,91) AVG

91 FORMAT('O', 'AVERAGE WORDS PER SENTENCE =', F10.2)
STOP
END

Now the only remaining detail is READCH. Although there are several ways to
write it, they all share the same basic approach - read in a whole card, then dole
out the characters one at a time, reading a new card whenever the current one is
exhausted. As a matter of timing, it's easier to read a new card only when it is
really needed, not when the old one has just run out. Also, since READCH really
returns two things, we return the character in the argument, and the end of file sig
nal as the function value. This approach seems most convenient for Fortran, and
eliminates the problem of choosing an end of file signal that is not a valid character.

CHAPTER 5 INPUT AND OUTPUT 97

INTEGER FUNCTION READCH(CHAR)
INTEGER LINE(81), NEXTCH, CHAR, YES, NO
DATA NEXTCH /82/, LINE(81) /' '!,YES /1/, NO /0/

c
IF (NEXTCH .LE. 81) GOTO 20

READ(5,11,END•90) (LINE(!), !=1,80)
11 FORMAT (80A1)

NEXTCH • 1
20 CHAR • LINE(NEXTCH)

NEXTCH • NEXTCH + 1
READCH = YES
RETURN

C END OF FILE
90 READCH NO

RETURN
END

The construction END=90 in the READ statement causes a branch to statement
90 when end of file occurs. This feature is well on its way to becoming a standard.
(It is part of Fortran 77.) We have also assumed that the end of a card should mark
the end of a word. To ensure this, READCH returns a blank after the end of each
card. (Notice that this is done with a well-chosen data structure: there is a dummy
8lst column on the card which is always blank. READCH fetches a new card only
after this blank has been returned.)

There are some pragmatic advantages to having a separate function for input,
many of which we discussed in Chapter 4. Most important is simply breaking a big
job into smaller, non-interacting pieces. Furthermore, 1/0 is often the most
system-dependent part of a program; when a program has to be moved or changed,
it's much better to have all input and output in one place than scattered randomly
throughout a large program. As another benefit, consider how easy it is to imple
ment centralized functions like stripping off trailing blanks or performing character
set translations.

Localize input and output in subroutines.

Input/output is the interface between a program and its environment. Two
rules govern all 1/0 programming: NEVER TRUST ANY DAT A, and REMEMBER THE
USER. This requires that a program be as foolproof as is reasonably possible, so
that it behaves intelligently even when used incorrectly, and that it be easy to use
correctly. Ask yourself: Will it defend itself against the stupidity and ignorance of
its users (including myself)? Would I want to have to use it myself?

To summarize the major principles discussed in this chapter:

(I) Check input data for validity and plausibility.

(2) Make sure that data does not violate limitations of the program.

98 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 5

("Garbage in, garbage out" is not a law of nature, but a commentary on how
well principles (1) and (2) are followed in practice.)

(3) Read input until end-of-file or marker, not by count.

(4) Identify input errors and recover if possible. Do not stop on the first error. Do
not simply ignore errors.

(5) Use mnemonic input and output. Make input easy to prepare (and easy to
prepare correctly). Echo the input and any defaults onto the output; make out
put self-explanatory.

(6) Localize 1/0 instead of spreading it all over the program. Hide the details of
end of file, buffering, etc., in functions.

(7) Make sure that program structure reflects the data the program processes.

CHAPTER 5 INPUT AND OUTPUT 99

POINTS TO PONDER

5.1 Write a free-form input subroutine that works from a pre-specified array of
variable names. How much more work is required to allow for defaults? Once you
have such a subroutine, how much harder is it to input variables of different types
(say INTEGER as well as REAL variables)? How much harder is it to input elements
of an array?

5.2 Here is a routine that does part of the job suggested in the previous problem -
it converts characters into integers. Improve its structure.

DIMENSION IDIG(10),IA(80)
DATA IBLK, !DIG, IPLS, IMIN/' ' , '0' , '1 ' , '2 ' , '3' , '4' , '5' , '6' , '7' , '8' , '

19', '+',,_,I
READ(S,1) IA
FORMAT(80A1)
IDG=O
NUM•O
J-0

3 J•J+1
IF(J.GT.80) GO TO 2
IF(IA(J) .EQ.IBLK) GO TO 3
IS•+1
IF(IA(J) .NE.IMIN) GO TO 4
IS--1
J•J+1
GO TO 5

4 IF(IA(J) .EQ.IPLS) J=J+1
5 IF(J.GT.80) GO TO 6

DO 7 !=1,10
IF(IA(J) .EQ.IDIG(I)) GO TO 8

7 CONTINUE
IF(IA(J) .NE.IBLK) GO TO 9
IF(IDG.EQ.0) GO TO 9

12 NUM•NUM•IS
WRITE(6,10) NUM

10 FORMAT('OVALUE =' ,I10)
STOP

2 WRITE(6,11)
11 FORMAT (' OBLANK CARD ')

STOP
6 IF(IDG.NE.O) GO TO 12
9 WRITE(6,13) IA,J
13 FORMAT(6X,80A1/6X, 'INVALID CHARACTER NEAR COLUMN' ,I3)

STOP
8 NUM•NUM•10+I-1

IDG•1
J•J+1
GO TO 5
END

100 THE ELEMENTS OF PROGRAMMING STYLE CHAPTERS

5.3 Fortran ignores most blanks in program statements, but treats most blanks as
zeros in input data. Thus

READ(S,10) N
10 FORMAT(IS)

IF (N .EQ. 1 024) WRITE(6,20) N
20 FORMAT(1X, IS)

will cause the input number

1 024

to be stored as 10024 by the READ statement, but compared to 1024 in the IF. Can
you think of any benefit to be gained from this inconsistency? How can you avoid
any trouble it might cause?

5.4 The following PL/I program counts words and sentences and computes aver
ages. Debug it, then revise it along the lines suggested in this chapter.

START:

DECLARE TEXT CHARACTER(200) VARYING,
CHAR CHARACTER(1) 1

(SENT, /• NO. OF SENTENCES •/
WORDS, /• NO. OF WORDS •/
LETTERS) FIXED ;

/• INITIALIZE AND READ TEXT •/
SENT, WORDS, LETTERS • 0 ;
GET LIST(TEXT) ;

/• EXAMINE TEXT FOR WORDS AND SENTENCES, AND
COUNT LETTERS IN THE PROCESS •/

DO I • 1 BY 1 TO LENGTH(TEXT) ;
CHAR = SUBSTR(TEXT, I, 1) ;
IF CHAR•'.' THEN

DO ;
/• A PERIOD ENDS A WORD AND A SENT. */
WORDS • WORDS + 1 ;
SENT • SENT + 1 ;

END ;
ELSE IF CHAR=' ' THEN WORDS • WORDS + 1
ELSE LETTERS • LETTERS + 1

/• NOTE THE ASSUMPTION THAT A CHARACTER IS
CONSIDERED TO BE A LETTER IF IT IS NOT
A PERIOD OR A BLANK. •/

END ;

/• PRINT RESULTS •/
PUT SKIP EDIT('SENTENCES •' 1 SENT,

'WORDS/SENTENCE =', WORDS/SENT,
'LETTERS/WORDS •' 1 LETTERS/WORDS

(X(10), A, F(4)) ;
GO TO START

CHAPTER 6: COMMON BLUNDERS

A major concern of programming is making sure that a program can defend
against bad data. But even with correct data, there is no guarantee that a program
will work. In this chapter we will discuss other aspects of making software reliable.

We begin, appropriately enough, with initialization, for failing to set a variable
to some value before using it is a fruitful source of error. For example:

DOUBLE PRECISION FUNCTION SIN(X,E)
C THIS DECLARATION COMPUTES SIN(X)TO ACCURACY E

DOUBLE PRECISION E,TERM,SUM
REAL X
TERM=X
DO 20 I=3,100,2
TERM=TERM•X••2/(I•(I-1))
IF(TERM.LT.E)GO TO 30
SUM=SUM+(-1••(I/2))•TERM

20 CONTINUE
30 SIN=SUM

RETURN
END

This program is a straightforward implementation of the Maclaurin series

sin (x) = x - .t_ + x5 - · · ·
3! 5!

Although large values of x will cause truncation errors long before convergence, it
will work for small values of x

At least it should, if properly programmed. But what is the value of SUM when
it is first referenced inside the loop? A search shows that SUM has never been set to
anything, so it begins as garbage and in most systems accumulates more garbage
with each successive call. This oversight is readily corrected, if it is detected. How
do we find it? We might run some sample cases and compare them with a table or
with another sine routine. (The latter is better because it is faster and less prone to
error.) The important thing, however, is to check, for a casual look at the output
may not always reveal that something is amiss.

Make sure all variables are initialized before use.

101

102 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 6

It would be well to test this routine further, for it is still incorre• t. Suppose Xis
negative upon entry, as it may often be. Then TERM is negative, · nd remains so
after it is recomputed just inside the DO loop. So it will be less t11an E, and an
immediate exit will take place. The "sine" computed, needless to say, is worthless.
We replace the test by

IF (DABS(TERM) .LT. E) GOTO 30

and now we have a working sine routine.
Or do we?
Where there are two bugs, there is likely to be a third. Look at the clever

expression used to provide alternating signs for successive terms:

(-1 .. (I/2))

Is this expression "minus one to an integer power," as desired, or "one to an
integer power, with a minus sign in front," which is always minus one? We encoun
tered a similar expression in Chapter 2 that happened to work right. This one hap
pens to work wrong.

Additional parentheses should be used in either case to remove all ambiguity.
Even 1etter, the computation inside the DO loop should be rewritten as

IF (DABS(TERM) .LT. E) GOTO 30
TERM= -TERM* X••2 I FLOAT(I•(I-1))
SUM = SUM + TERM

and the whole issue is avoided. Notice that the new TERM is added to SUM as soon
as it is computed, r us ensuring that each TERM computed is accumulated before the
loop is exited. Thii corrects the fourth bug in the routine. We also test for conver
gence before computing TERM, to eliminate any possibility of underflow should x
already be very small upon entrance. This corrects a .fifth bug.

Surely there is a more orderly way to write a program in the first place. As we
suggested in Chapter 3, pseudo-code is a great help, particularly when the target
language (Fortran in this case) is less than ideally expressive. We write in our
anonymous language

sin = x
term = x
i = 3
WHILE (i < 100 & abs(term) >= el

term= -term* x••2 I (i•(i-1))
sin sin + term
i - i + 2

return

and then translate into Fortran:

CHAPTER 6 COMMON BLUNDERS

c

DOUBLE PRECISION FUNCTION SIN(X, El
DOUBLE PRECISION E, TERM, SUM
REAL X

SIN = X
TERM = X
DO 20 I • 3, 100, 2

IF (DABS(TERMl .LT. El GOTO 30
TERM= -TERM* X••2 I FLOAT(I•(I-1ll
SIN • SIN + TERM

20 CONTINUE
30 RETURN

END

103

In this case, the pseudo-code WHILE becomes a DO followed by an IF. The
Fortran DO neatly summarizes the initialization, incrementing, and testing of I, and
keeps the loop control separate from the computation. It is a useful statement. The
important thing is to recognize its shortcomings and plan loops in terms of the more
general WHILE.

Exercise: determine if we now have a working sine routine.

Don't stop at one bug.

Sometimes there are several initialization errors, as in this code:
C CURRENT COMPUTING PROGRAM
C INPUT VALUES FOR RESISTANCE,FREQUENCY AND INDUCTANCE

READ(5,20) R,F,L
20 FORMAT(3F10.4)

C PRINT VALUES OF RESISTANCE,FREQUENCY AND INDUCTANCE
WRITE(6,30) R,F,L

30 FORMAT(3H1R•,F14.4,4H F•,F14.4,4H L•,F14.4)
C INPUT STARTING AND TERMINATING VALUES OF CAPACITANCE,AND INCREMENT

READ(5,40) sc,TC,CI
40 FORMAT(3F10.6)

C SET CAPACITANCE TO STARTING VALUE
c-sc

C SET VOLTAGE TO STARTING VALUE
v-1 .o

C PRINT VALUE OF VOLTAGE
50 WRITE(6,60) V
60 FORMAT(3HOV•,F5.0)

C COMPUTE CURRENT AI
70 AI• E / SQRT(R••2 + (6.2832•F*L - 1.0/(6.2832•F•C))••2)

C PRINT VALUES OF CAPACITANCE AND CURRENT
WRITE(6,80) C,AI

80 FORMAT(3HOC•,F7.5,4H I=,F7.5)
C INCREASE VALUE OF CAPACITANCE

C = C + CI
IF (C .LE. TC) GO TO 70

C INCREASE VALUE OF VOLTAGE
v = v + , .0

C STOP IF VOLTAGE IS GREATER THAN 3.0
IF (V .LE. 3.0) GO TO 50
STOP
END

104 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 6

This program is thoroughly, even excessively, commented. Most of the input
parameters are printed out for inspection and verification. But there are several
errors that warrant discussion. To begin with, what is the value of E when state
ment 70 is executed? Again we must search through the code, to find that it has
never been set.

On some computer systems, storage is initialized to zero at the beginning of a
run; in such cases, this bug should come to light when it is observed that the
current is zero for all values of c and v. But if storage is left at some random
value, which is true on many systems, the current computed will be wrong
(although it might look plausible).

Simple oversight is the most common way to botch initialization. It seems
likely, however, that this particular error arose because the programmer was not
clear in his mind whether voltage was v (a mnemonic) or E (common usage among
electrical engineers, to whom this program is directed).

There are other troubles with this program. Since L is not declared REAL, it is
an integer by default. What happens when an integer variable is read in and printed
out with a floating point (F) format? We do not know for certain, but we can guess
that it will not likely be what was wanted. The missing declaration for L also means
that statement 70 contains a mixed-mode expression. If the version of Fortran in
use accepts mixed mode, the line will be executed, but probably incorrectly, because
it will use whatever has been placed in Las if it were an integer.

Most serious is the error in logic. The program prints the values of c and AI
for a series of capacitances, while v is 1.0. Then when c exceeds TC, v is increased
by 1.0 (to 2.0), and we return to statement 50. But c is never reinitiahzed to SC, so
after printing one value of AI with v equal to 2.0, we immediately increment v to
3.0. We then print one more value of AI (again with c beyond TC), and stop.

It is improbable that this is what the program should do. c has not been initial
ized to SC each time that v is changed. Whenever you have to build a loop out of
spare parts because a DO statement is not suitable, take pains to display clearly how
the control parameters are initialized, incremented and tested:

C LOOP ON V
v = 1 .o

50 WRITE(6,60) V
60 FORMAT('O', 'VOLTAGE=', F5.0)

C LOOP ON C
C = SC

70 AI• V/SQRT(R••2 + (6.2832•F•L - 1 .0/(6.2832•F•C))••2)
WRITE(6,71) C, AI

71 FORMAT('O' 1 'CAPACITANCE=', E16.5, ' CURRENT=' 1 E16.5)
C = C + CI
IF (C .LE. TC) GOTO 70

v = v + 1 .0
IF (V .LE. 3.0) GOTO 50

STOP
END

We will have more to say later in this chapter about the questionable wisdom of
using a floating point increment like

CHAPTER 6 COMMON BLUNDERS 105

C = C + CI

to step through a set of values, but for the moment we will let it pass.
Finding initialization errors is difficult and time-consuming. If you have access

to a compiler that checks whether variables have been set before being used (such
as WATFIV, IBM's PL/I checkout compiler, PL/C, etc.) use it. Worrying about the
"cost" of using a debugging compiler is false economy. Your time is worth more
than the small amount of machine time involved. More to the point, you may not
find out about some error until it is too late.

Use debugging compilers.

There is another type of faulty initialization which will not be detected by
debugging compilers. It occurs regularly in code that uses Fortran's DATA statement
to set values. Here is an excerpt from a program we have already seen in Chapter 5:

INTEGER NAME,COLOR,LAST,COL(6),COUNT(6)
DATA COL/3HBLA,3HBLU,3HBR0,3HGRE,3HRED,3HWHI/,

1 LAST,COUNT/4H0000,6•0/

Suppose this free-standing program is converted to a subroutine. If the pro
grammer forgets to replace the DATA statement that initializes COUNT by executable
code like

DO 10 I= 1,6
COUNT(!) = 0

10 CONTINUE

the subroutine will fail when called a second time, because the old values will
remain in COUNT. The rule is: as much as possible, use DATA for things that are
truly constant, like the table of colors in the example; execute initializing code for
variables, like counts and sums.

In PL/I, the INITIAL attribute re-initializes AUTOMATIC variables upon each
invocation of a procedure, so the problem is less severe. But you should still distin
guish between true constants and initialized variables; declare them separately, and
comment them clearly.

Initialize constants with DATA statements or INITIAL attributes;
initialize variables with executable code.

Another familiar class of errors is called "off-by-one": some action is done
once too often or one time too few, because a test is botched or the limit of a loop
is wrong. Let us look at some examples.

The following function sorts M numbers stored in the array v, by placing each
number in turn in its correct position among the previous ones. (This is often
called "insertion sorting.")

106 THE ELEMENTS OF PROGRAMMING STYLE

SUBROUTINE SORT
COMMON V, M
REAL V(50)
IF (M .LT. 2) GO TO 251
DO 250 J • 1, M

T z V(J + 1)
DO 235 K z 1, J

I • J + 1 - K
IF (T .GE. V(I)) GO TO 245
V(I + 1) z V(I)

235 CONTINUE
I • 0

245 V(I + 1) = T
250 CONTINUE
251 CONTINUE

RETURN
END

CHAPTER 6

The outer loop of SORT selects the next element to be inserted among the pre
vious ones. Since there is no previous element for the first member of the array, it
is somewhat surprising that the outer DO loop runs from 1 to M instead of 2 to M or
1 to M-1.

As might be expected, this is an error: when J reaches M, T is set to the non
existent v (M+1) and that in turn is inserted somewhere in the array.

The error is a classic off-by-one: the loop is done once too often. Fortunately,
it is easy to fix this one. The outer loop should be

DO 250 J = 1 1 M-1

Since Fortran does not permit the limit of a loop to be an expression, we must write
instead

M1 z M -
DO 250 J 1, M1

Watch out/or qff-by-one errors.

A common cause of off-by-one errors is an incorrect test, for example using
"greater than" when "greater than or equal to" is actually needed. This program is
a binary search routine, which looks for a particular element in a table by halving
the interval in which the element might lie, until it ultimately either finds it, or
deduces that it isn't present.

CHAPTER 6

LOW= 1;
HIC'H • LIMIT;

SEARCH_AGAIN:
I• LIMIT

MID ~ (LOW+ HIGH)/ 2;
IF HIGH <• LOW THEN

CALL ARG_NOT_FOUND;
ELSE

IF SEARCH_ARG = TABLE(MID) THEN
CALL PROCESS_TABLE_FUNCTION;

ELSE
DO;

IF SEARCH_ARG > TABLE(MID) THEN
LOW= MID+ 1;

ELSE
HIGH - MID - 1;

GO TO SEARCH_AGAIN;
END;

COMMON BLUNDERS 107

TABLE SIZE •/

We will be talking more about binary search shortly, but for now, observe that if the
table contains only one entry, then HIGH and LOW are both 1, and so the routine
decides that the desired value, SEARCH_ARG, is not in the table without ever look
ing at either value or table! The problem, of course, is that the "<=" should be
"<". (As an exercise, find the other cases for which this code fails.)

Take care to branch the right way on equality.

Here is another instance where branching the wrong way on equality results in a
small but real error. The code computes a table of monthly balances and interest
charges for a given principal amount, interest rate, and monthly payment.

DECLARE (A,R,M,B,C,P) FIXED DECIMAL (13,4);

L10:GET LIST (A,R,M);
PUT EDIT ('THE AMOUNT IS' ,A) (A(13) 1 F(10,2))

(' THE INTEREST RATE IS' ,R) (A(23),F(6,21))
(' THE MONTHLY PAYMENT IS',M) (A(25),F(8,2));

IF M<=A•R/1200 THEN GO TO L30;
PUT SKIP(3)EDIT

(' MONTH BALANCE CHARGE PAID ON PRINCIPAL') (A);
PUT SKIP;
B=A;

DO I•1 TO 60;
C=B•R/1200;
IF B+C<M THEN GO TO L20;
P•M-C; B=B-P;
PUT SKIP EDIT (I,B,C,P) (F(13),3 F(13,2));

END;
L20:PUT SKIP(2)EDIT ('THERE WILL BE A LAST PAYMENT OF:',B+C)

(A(35) ,F(S,2));
GO TO L10;

L30:PUT SKIP(2)EDIT ('UNACCEPTABLE MONTHLY PAYMENT') (A);
GO TO L10;

What happens if the amounts are such that the balance due plus the interest charge

108 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 6

(B+C) just happens to equal the monthly payment M (within one-half cent)? The
program takes an extra trip around the loop, recomputes B and c, and informs the
user that "THERE WILL BE A LAST PAYMENT OF: 0.00". This is graceless.

We can patch the code to read

IF B+C < 0.005 THEN GOTO L10; /• FINAL PAYMENT ALREADY MADE •/
IF B+C < M THEN GOTO L20;

but it would be better to reorganize it completely, so that it reads from top to bot
tom instead of branching about.

There is also an instance here of a familiar error. Notice that there are two
exits from the DO loop, one from the side and one from the bottom, that arrive at
the same place. This should always arouse suspicion. The program is designed to
exit from the side when the loan is paid off with sixty payments or fewer, and from
the bottom when it is not. What happens if it does exit from the bottom? The final
payment is B+C, but although B has been recomputed to be the correct remaining
balance, c is not recomputed before being used - it is the interest charge left over
from the previous payment. Clearly the interest charge should be either zero, or
recomputed from the new B, depending on whether the final payment is made
immediately or after another month.

In either case, this is an error. Ot must be coincidental that it is in the bank's
favor.) Our version avoids this problem with the safer DO-WHILE construction. As
we repair the code we can correct the illegal F (6, 21) format item in the first PUT
statement, add a SKIP so the headings are placed on a new line instead of being
tacked onto the end of whatever message was printed previously, and eliminate the
unnecessary variable B and the poorly-named labels.

CHAPTER 6

DECLARE (A, R, M, C, Pl FIXED DECIMAL(13,4);
DECLARE TRUE BIT(1) INITIAL ('1 'Bl;

DO WHILE (TRUE);
GET LIST (A, R, Ml;

COMMON BLUNDERS 109

PUT SKIP(3) EDIT ('THE AMOUNT IS' 1 A) (A, F(10,2))
(' THE INTEREST RATE IS' 1 R) (A, F(6,2))
(' THE MONTHLY PAYMENT IS', M) (A, F(8,2));

C • A•R/1200;
IF C >• M THEN

PUT SKIP(2) EDIT ('UNACCEPTABLE MONTHLY PAYMENT') (A);
ELSE DO;

PUT SKIP(3) EDIT
('MONTH', 'BALANCE', 'CHARGE', 'PAID ON PRINCIPAL')
(X(8), A, X(6), A, X(7), A, X(3), A);

PUT SKIP;
DO I= 1 TO 60 WHILE (A+C >=Ml;

P = M - C;
A ,. A - P;
PUT SKIP EDIT (I, A, C, P) (F(13), 3 F(13,2));
C = A•R/1200;

END;
IF A+C >= 0.005 THEN

END;
END;

PUT SKIP(2) EDIT ('THERE WILL BE A LAST PAYMENT OF:', A+C)
(A, X(5), F(10,2));

We have now combined the separate loop exits into one, which ensures that the
exit conditions will all be consistent. The interest charge c is now up-to-date when
ever it might be needed. And bringing the tests together at the top keeps the pro
gram from doing anything inside the loop if there is nothing to do, so silly messages
are avoided.

A void multiple exits from loops.

Here is another example of a common error. The program is another binary
search procedure to find out where in a sorted table x an element A lies. If the table
contains an entry that matches A, both of the indices LOW and IHIGH should point
to that value; otherwise LOW and !HIGH should be the indices of the two table ele
ments immediately below and above the input value A The elements of the array x
are already sorted into increasing order.

110 THE ELEMENTS OF PROGRAMMING STYLE

DIMENSION X(200),Y(200)
READ SO, N

SO FORMAT (IS)
2 READ S1 1 (X (K), Y (K) 1 K 1 1 N)

S1 FORMAT (2F10.S)
READ S2,A

S2 FORMAT (F10.S)
IF (X(1)-A)41, 41, 11

41 IF(A-X(N))S, S, 11
11 PRINT S3,A
S3 FORMAT(1H ,F10.S,

1 26H IS NOT IN RANGE OF TABLE.)
STOP

S LOW = 1
!HIGH = N

6 IF (IHIGH-LOW-1)7, 12, 7
12 PRINT S4, XLOW, YLOW, A, XHIGH, YHIGH
S4 FORMAT(1H SF10.S)

STOP
7 MID • (LOW + IHIGH)/2

IF (A-X(MID))9, 9 1 10
9 !HIGH = MID

GO TO 6
10 LOW= MID

GO TO 6
END

CHAPTER 6

First we correct statement 12 to refer to the arrays x and Y, with the appropriate
subscripts x (LOW), x (IHIGH), and so on. Presumably this error arose from a care
less transcription from mathematical notation to Fortran. The program does not
check that N is in range, but it does test whether A is inside the table range, which is
good.

What happens if we try to search a table containing only one entry? LOW and
IHIGH are both set to one, so we immediately go to statement 7, which sets MID to
one as well. Now, since A equals x (1 l (A has been tested to be sure it is in the
table), we branch to statement 9, where IHIGH is set to one (which does not change
it!) and we return to statement 6. LOW and IHIGH are still both set to one, so we
immediately go to statement 7... . This program is going to run for a long time.

The problem is that not all possible reasons for terminating the search loop
were taken into account. We could patch up this bug with special handling when N
is l, but before we do, let us examine another case. Suppose that the table contains
several entries, and that the entry at x (1 l happens to match A Then I HIGH and
MID will steadily converge toward l, while LOW remains at l. When IHIGH gets to
either 3 or 4, MID is set to 2; then since A is less than x (2 l, I HIGH is set to 2.
Now IHIGH-LOW is l, so the IF at statement 6 sends us to statement 12, and we
exit. LOW and I HIGH are left pointing at x (1 l and x (2 l even though there is an
exact match at x (1 l. We leave it to the reader to <'ecide how pervasive this error
is.

Patching is no substitute for rewriting:

CHAPTER 6

REAL X(200), Y(200)
READ 21, N

COMMON BLUNDERS 111

21 FORMAT(IS)
IF (1.LE.N .AND. N.LE.200) GOTO 30

PRINT 23, N
23 FORMAT(1X, 'BAD INPUT COUNT:', I10)

STOP
30 READ 31, (X(I), Y(I), I•1,N)
31 FORMAT(2F10.S)

READ 31, A
IF (A.GE.X(1) .AND. A.LE.X(N)) GOTO 40

PRINT 33, A, X(1), X(N)
33 FORMAT(1X, F10.S, ' IS OUT OF TABLE RANGE' 1 2F10.S)

STOP
40 LOW • 1

IHIGH • N
SO IF (IHIGH-LOW .LE. 1) GOTO 60

MID ,. (IHIGH+LOW)/2
IF (A.LE.X(MID)) IHIGH •MID
IF (A.GE.X(MID)) LOW• MID
GOTO SO

60 IF (A.EQ.X(LOW)) IHIGH •LOW
IF (A.EQ.X(IHIGH)) LOW• IHIGH
PRINT 61, X(LOW), Y(LOW), A, X(IHIGH), Y(IHIGH)

61 FORMAT(1X, SF10.S)
STOP
END

Our search loop is a DO-WHILE (while IHIGH-LOW>1) that can, under some cir
cumstances, be performed zero times. Degenerate cases frequently arise where a
piece of code has nothing to do - in this instance, when N is one or two, no search
is necessary. In such cases it is important to "do nothing" gracefully; the
DO-WHILE has this useful property.

Make sure your code "does nothing" gracefully.

Fortran programmers should remember that with most Fortran compilers the
DO loop is always done once, regardless of its limits; an explicit test is necessary to
"do" it zero times. For example, the subroutine INSERT inserts VALUE in the
array v at position J. The current size of v is N; INSERT increments this after
inserting VALUE.

SUBROUTINE INSERT (V, N, J, VALUE)
DIMENSION V(80)
DO 10 I ,. J, N

K ,. N + J - I
V(K + 1) • V(K)

10 CONTINUE
V(J) = VALUE
N ,. N + 1
RETURN
END

112 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 6

It seems natural to assume that if J equals N+1, the new element will simply be
added at the end. This is also convenient for entering the first element in an empty
array, for which N is zero.

But the Fortran DO loop does us in. The loop is done once even if J exceeds N,
so when N is zero, v (O l is accessed. The best solution is to protect the loop with an
IF:

IF (J .GT. N) GOTO 20
DO 10 I = J, N

K = N + J - I
V(K + 1) = V(K)

10 CONTINUE
20 V(J) = VALUE

N = N + 1

The PL/I DO loop behaves more suitably; it guarantees that if the termination
condition is already met when the DO is begun, the body of the loop is executed
zero times. Precautions like the following are unnecessary:

J=1; IF F1•1 THEN GO TO L2;
L1: DO I=1 TO F1-1; PUT SKIP LIST(I,PRICE(I)); END;
L2: DO I=F1 TO F2; TEMP•ROUND(PRICE(I)•(1-.01•DISCNT(J)),2);

PUT SKIP LIST(I,TEMP); JzJ+1;
END;

IF F2=32 THEN GO TO OTL;
L3: DO I=F2+1 TO 32; PUT SKIP LIST(I,PRICE(I)); END;

GO TO OTL;

The extra tests and branches add no safety factor. Quite the contrary, their
existence makes the program that much harder to read and understand. The code
will perform identically if the redundant tests are eliminated.

J = 1;
DO I= 1 TO F1-1;

PUT SKIP LIST(I, PRICE(I));
END;
DO I = F1 TO F2;

PUT SKIP LIST(I, ROUND(PRICE(I)•(1 - 0.01•DISCNT(J)) 1 2));
J J + 1;

END;
DO I F2+1 TO 32;

PUT SKIP LIST(I, PRICE(I));
END;
GOTO OTL;

The revised version appears bigger only because we have used white space more
generously; it actually has fewer statements.

How can a conscientious programmer avoid errors like those we have shown?
How can code be tested to exterminate those that do creep in? Many of our exam
ples have illustrated what might be called "boundary-condition" errors, errors that
arise at a critical data value or decision region. Things go wrong only there, not for
the vast majority of cases "in the middle."

So it seems likely that one good strategy, both for writing and for testing, is to
concentrate on the boundaries inherent in the program. For example, in the binary
search above, we might guess that since the search is based on powers of two,

CHAPTER 6 COMMON BLUNDERS 113

reasonable places to look for bugs are where N is 2\ 2k- l, and 2k+ I. Of course one
boundary is always the trivial or null case, here when N equals one. And we hit the
jackpot.

But by now we should have learned to be suspicious: where one bug is found,
there may be an infestation. So we looked at another boundary, the case where the
table contained a match for the input entry. And again we hit the jackpot.

For practice, let us examine the boundaries of the following routine, which
computes the mean of a set of numbers.

DIMENSION X(201)
READ (5, 100) TEST

100 FORMAT (F10.0)
C INITIALIZE

SUM= 0.0
COUNT = 0.0

C ADVANCE COUNTER ON EACH RETURN TO THIS POINT
4 COUNT= COUNT+ 1.0

I = COUNT
C READ A DATA ITEM

READ (5, 100) X(I)
C CHECK FOR END-OF-DECK SENTINEL

IF (X(I) .EQ. TEST) GO TO 9
C PROCESS THE ITEM

SUM = SUM + X(I)
GO TO 4

C COMPUTE THE MEAN
9 AVG = SUM I COUNT

The value TEST is read first; the next occurrence of this value signals the end of the
input.

The most obvious boundary in any program, and often the easiest to test, is
what it does when presented with no data at all. So what happens if we try to find
the average of zero items?

Rather surprisingly, the program does not attempt to divide by zero (which is
good), yet the very fact that it divides by 1 instead of zero is suspicious, since no
special precautions were taken. The next boundary, also easy, is for one data item.
And this time we see what is wrong. When there is one data item, the program
divides the running sum by 2 instead of 1. From here it is easy to verify that
COUNT, which counts the number of data items, is always 1 too high when the aver
age is computed. The program is only asymptotically correct.

Dividing by COUNT-1 instead of COUNT is a quick fix (except when COUNT is 1)
but it is usually wiser to rewrite than to patch, just to make sure that all the prob
lems have been found and that the code is still clean. The root of the trouble here
is that there are two counters, I and COUNT, yet only one thing to count, and the
states of the counters have become confused. Programs often have redundant vari
ables, perhaps for historical reasons, that serve only to add unnecessary complexity.
Considerable energy can be spent just trying to keep them in phase. COUNT and I

are both incremented before a new value is read in. This is done so the new value
can be put into x (I l before testing if it is an end of file signal. Of course COUNT

should only be incremented after the new value is known not to be an end of file
signal. Interestingly enough, the book from which this example is taken shows a

114 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 6

flowchart with a correct solution, but in the process of going from flowchart to code,
the increment of COUNT got moved to the wrong place. (The discrepancy between
flowchart and code illustrates one of the problems of program documentation, a
topic which we will study in Chapter 8.)

Rewriting in pseudo-code with only one counter leads to a neater solution:

read EOF test
sum = 0
i = 0
WHILE (get new value ~- EOF)

i = i + 1
x(i) = new value
sum = sum + new value

IF (i > 0)
avg sum I i

ELSE
avg 0

After we hand-test the pseudo-code at its boundaries, it can be translated into For
tran with some confidence in its correctness.

REAL X(200)
READ(S,100) TEST

100 FORMAT(F10.0)
SUM= 0.0
I = 0

1 0 READ(S,100) VAL
IF (VAL .EQ. TEST) GOTO 20

I = I + 1
X(I) = VAL
SUM = SUM + VAL
GOTO 10

20 IF (I .GT. 0) AVG SUM I FLOAT(!)
IF (I .LE. 0) AVG 0.0

As a small but satisfying sign of improvement, the array size needed to process
200 items is now 200 instead of 201, because the end of file signal is no longer
stored in x.

Test programs at their boundary values.

Another way to head off potential disasters is to "program defensively." Antici
pate that in spite of good intentions and careful checking, things will sometimes go
awry, and take some steps to catch errors before they propagate too far. For exam
ple, here is a fragment of a checker-playing program - it counts the number of reds
and blacks on the board. Reds are represented by + 1, blacks by -1, and unoccu
pied squares by 0. There are no other legal values.

IF BOARD(I,J)=1 THEN REDS = REDS + 1 ;
IF BOARD(I,J)=-1 THEN BLACKS = BLACKS + 1 ;

Suppose we are debugging the code. In the best of all worlds, there would never be

CHAPTER 6 COMMON BLUNDERS 115

anything in BOARD (I, J) but legal values, but errors do happen. Therefore, use the
fact that the cases of interest are disjoint, and write

IF BOARD(!, J) • 1 THEN
REDS• REDS+ 1;

ELSE IF BOARD(!, J) • -1 THEN
BLACKS• BLACKS+ 1;

ELSE IF BOARD(!, J) ~- 0 THEN
PUT SKIP LIST ('ILLEGAL PIECE:', I, J, BOARD(I,J));

If you ever get an ILLEGAL PIECE message, you have an early warning of some
disastrous bug. At the cost of an occasional extra test and a little extra code, the
program limits the spread of nonsense should anything damage the board.

Often a program can be made more resistant to errors at no additional cost:

GET LIST (N) ;
DO WHILE (N ~- 0) ;

GET LIST ((NUMBER(!) DO I; 1 TON)) ;
TOTAL• NUMBER(1) ; /*INITIALIZE FOR SUM•/
DO I • 2 TO N ;

TOTAL z TOTAL +NUMBER(!) ;
END
PUT LIST ((NUMBER(!) DO I• 1 TON), TOTAL)
GET LIST (N) ;

END ;

Presumably, the end of input is signaled by reading a zero value for N, so the
DO-WHILE carefully tests for this case. Indeed it must, for otherwise the body of the
loop will compute and print an incorrect TOTAL when N is zero. But the loop body
will also behave incorrectly for negative N, and there is no protection against that.

Any arithmetic comparison can in principle yield three different results - less,
equal, greater. Often only two outcomes are reasonable, the third being silly or
"impossible." An important aspect of defensive programming is to be alert for these
"impossible" conditions and to steer them in the safer direction (assuming the error
is so impossible that it's not worth a special check and error message). In this case,
the program is less vulnerable if we simply change the loop test to

DO WHILE (N > 0);

As a general rule, terminate a loop early if the impossible arises, so that infinite
loops are avoided.

Program defensively.

Floating point arithmetic adds a new spectrum of errors, all based on the fact
that the machine can represent numbers only to a finite precision. Here is a simple
example, a program which integrates the polynomial x2+2x+3 between the limits 1
and 10, by a trapezoidal approximation:

116 THE ELEMENTS OF PROGRAMMING STYLE

AREA=O.
x = 1 .
DELTX=0.1

9 Y=X••2+2.•X+3.
X=X+DELTX
YPLUS=X••2+2.•X+3.

10 AREA=AREA+(YPLUS+Y)/2.•DELTX
IF (X-10.)9, 15, 15

15 WRITE(2,7)AREA
7 FORMAT(E20.8)

STOP
END

CHAPTER 6

This should evaluate the function for X=1 . 0, 1 .1, until x is 10.0, should it
not? But try it, and you will discover that on many machines it in fact does an extra
evaluation, the last one at x equal to 10.09999 The reason is simple: "0.1" is not
an exact fraction in a binary machine On much the same way that 1/3 is not an
exact fraction in a decimal world); its nearest representation in most machines hap
pens to be slightly less than 0.1. Thus I 0 times "0.1" is not 1.0000 ... , but is
0.9999 ... , and by extension, when "0.1'' is added to 1.0 ninety times, the result is
not 10.000 ... , but 9.999.... The test that terminates the loop is sensitive to the
difference, and gives us an extra trip around.

The value of the integral is too high by over two percent for this function and
range. This error could have been readily caught, since the function can be
integrated by hand. The discrepancy might then have led to further analysis of the
program. (People who worry about computing efficiency might also notice that the
function is evaluated twice as often as it need be. Since the answers are wrong,
however, this seems unimportant.)

The moral? Floating point numbers should never be used for counting. If you
want intervals of 0.1, do it this way:

c

AREA= 0.0
x = 1 .0
Y = X••2 + 2.0•X + 3.0
DELTX 0 .1

STEPS OF 0.1 FROM 1 .1 TO 10.0
DO 10 I= 11,100

X = FLOAT(I)/10.0
YPLUS = X••2 + 2.0•X + 3.0
AREA= AREA+ DELTX•(YPLUS+Y)/2.0
Y = YPLUS

10 CONTINUE
WRITE(2,20) AREA

20 FORMAT(1PE20.8)
STOP
END

This also eliminates the redundant function evaluations.

10.0 times 0.1 is hardly ever 1.0.

CHAPTER 6 COMMON BLUNDERS 117

As a spectacular example of what floating point errors can lead to, when com
pounded at a million instructions per second, let us look at these two programs,
from consecutive pages of a text, each of which produces a table of natural loga
rithms:

Program 1 :
PUT EDIT ((LOG(A) DO A=1 TO 9.99 BY .01)) (F(10,6));

Program 2:
DECLARE A FIXED DECIMAL (4,2);

DO A=1 TO 9.9 BY .1;
PUT EDIT (A) (F(5,2));
PUT EDIT ((LOG(A+B) DO B=O TO .09 BY .01)) (X(5),10 F(9,5));

END;

We would hope that these produce identical tables, save for formatting. Since
the text reproduces some of the output of these programs, let us show the values
obtained for the logarithms of 3.00, 3.01, 3.02, 3.03:

Program 1:
1 . 098563 1 . 1 01891 1 .1 05208 1 .1 08513

Program 2:
1 . 09861 1 .1 0193 1 .1 0525 1 .1 0856

A third of the way through the table, these differ by five parts in a hundred
thousand, an uncomfortable error. Why are the answers so different? As a wise
programmer once said, "Floating point numbers are like sandpiles: every time you
move one, you lose a little sand and you pick up a little dirt." And after a few com
putations, things can get pretty dirty.

One of the first lessons that must be learned about floating point numbers is
that tests for exact equality between two computed floating point numbers are
almost certain to fail. For example,

C RIGHT TRIANGLES
LOGICAL RIGHT, DATA
DO 1 K = 1,100
READ (2,10) A, B, C

C CHECK FOR NEGATIVE OR ZERO DATA
DATA = A.GT.0 .. AND. B.GT.0 .. AND. C.GT.0.
IF(.NOT.DATA) GO TO 2

C CHECK FOR RIGHT-TRIANGLE CONDITION
A = A••2

C = C••2
RIGHT = A.EQ.B+C .OR. B.EQ.A+C .OR. C.EQ.A+B
WRITE(3,11) K, RIGHT
CALL EXIT

C ERROR MESSAGE
2 WRITE(1,12)

STOP
10 FORMAT(3F10.4)
11 FORMAT(I6,L12)
12 FORMAT(11H DATA ERROR)

END

118 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 6

The test for right triangles will fail on virtually all fractional values, because of
truncation errors. For example, the triangle A=3. 0, B=4. 0, C=S • O will be recog
nized as right-angled on most machines. But if we scale the values down by a factor
of ten, the triangle A=O • 3, B=O . 4, C=O. 5 will often not be "right-angled." The
code has to be replaced by some criterion of "near enough." (And this must be
relative, not absolute, as we saw in Chapter 1.)

We do not have space to go more deeply into the mysteries of floating point
computation; that is the province of numerical analysts. We intend only to
emphasize that floating point computations should be used cautiously when control
ling an algorithm. They should seldom be used for counting, nor should two com
puted floating point values be compared only for equality.

Don't compare.floating point numbers just for equality.

Let us summarize the main lessons of this chapter. Remember that the errors
that we have shown are by no means all that can happen; they represent the com
mon ones.

(1) Initialize variables before using them. Be sure that variables in subroutines and
inner loops are properly reset between successive uses. Set constants at compile
time and variables at run time. If a debugging compiler is available to check for
initialization errors, use it.

(2) Watch for off-by-one errors. Be sure that things are done the right number of
times, and that comparison tests branch the right way on equality.

(3) Check that array references do not go out of bounds. Again, if subscript-range
checking is available from your compiler, use it.

(4) Avoid multiple exits from a loop. Keep exit tests close together and as near the
top as possible.

(5) Test your program at its internal boundaries. This should be done before the
program is run, and as a running check. Ask whether each loop might be per
formed zero times under some circumstances, and if you are writing in Fortran,
augment DO statements with !F's if they may have to be skipped.

(6) Program defensively. Be aware of the kinds of things that could go wrong, and
add code to check for them.

(7) Do not count with floating point numbers. Do not expect fractional floating
point values to obey the familiar laws of arithmetic - they do not.

CHAPTER 6 COMMON BLUNDERS 119

POINTS TO PONDER

6.1 This program is supposed to print sin (x) for x=O, 0.1, 0.2, .. ., 1.0. It actually
contains several errors similar to some discussed in this chapter. Find and fix them.
Improve the style at the same time.

x - 0.0
10 SSIN • 0.0

DO 20 I • 1 , 1 00
N = I - 1
R • N
TERM= -1.0••N•X••(2.0•R + 1.0)/(2.0•R+1.0)
SSIN = SSIN + TERM
IF (ABS(TERM) .LT. 0.00001) GO TO 30

20 CONTINUE
30 WRITE(6,40) X, SSIN
40 FORMAT (F6.2, F14.8)

X=X+0.1
IF (X .LE. 1 .0) GO TO 10
STOP

6.2 This program computes the mean of a set of numbers. The end of the data is
marked by a card containing a number greater than or equal to 99999.

100 FORMAT(5F15.5)
SUM= 0.
DO 3 N = 1,5000
READ(2,100) X
IF (X - 99999.)3,4,4

3 SUM = SUM + X
4 XNUM = N - 1

XMEAN = SUM/XNUM
WRITE(3,100)XMEAN

The program "works for any number of data items up to 5000." True or false?
(Hint: Try a couple of boundary conditions.)

6.3 We observed that one should never test floating point numbers for exact equal
ity. But here is one case where any rational person would believe that the com
parison would work:

95 N • N+1
READ (5,100) DATA(NJ

100 FORMAT(F10.3)
IF(DATA(N).NE.999.999) GO TO 95

If the input card contains 999.999 in the proper field, the program will stop reading,
will it not? Try this case and similar ones on your system.

On some systems, the routines in the compiler that convert "999.999" into its
internal (binary) representation were written by different people than those who
wrote the routines that convert "999.999" when a READ is executed. Why are the
routines not identical, since they perform the same function? (Answer: That is the

120 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 6

state of the art of computing, and one of the reasons for this book.)

6.4 Now that you are alert to the perils of testing floating point numbers for equal
ity, try fixing

C FIRST ATTEMPT FOR APPROXIMATING AREA UNDER A CURVE
AREA•O.O
READ(2,10)T

10 FORMAT(F10.4)
H•0.1
X=O.O

2 XN=-X
AREA=AREA+(6.0•(2.0••XN)+6.0•(2.0••(XN-H)))•0.1/2.0
X=X+H
IF(X-T)2,8,9

8 WRITE(3,33)AREA
33 FORMAT('AREA =',F8.5)

GO TO 1
9 CALL EXIT

END

Do you think just changing the IF to

IF (X-T) 2, 8, 8

is sufficient?

6.5 "Defensive programming'· means anticipating problems in advance, and cod
ing to avoid errors before they arise. What could you do to the following program
fragments in the way of defensive programming?

(a) This is the entire body of a procedure for computing the arcsine of x in degrees:

IF X = 1 THEN RETURN(90);
ELSE RETURN(ATAND(X/SQRT(1-X••2)));

(b) This function finds the minimum element in an array A of N items.

FUNCTION SMALL(A,N)
DIMENSION A(1)
SMALL= A(1)
DO 1 K = 2,N
IF(A(K) - SMALL)2,1,1

2 SMALL = A(K)
1 CONTINUE

RETURN
END

(c) This is a PL/I table-search routine.

I = 1;
DO WHILE(I<= N & KEY~= TABLE.KEY(!));

I=I+1;
END;
IF I <= N

THEN DATA= TABLE.DATA(!);
ELSE DATA = ' ' ;

(Hint: In what order are compound logical expressions evaluated by your local PL/I

CHAPTER 6 COMMON BLUNDERS 121

compiler?)

(d) This subroutine is supposed to rotate the rows of array B by one position (i.e.,
row 1 goes into row M, row 2 goes into row 1, ... and row M goes into row M-1).

The array c is used for temporary storage.

SUBROUTINE ROTATE (B, M, N, C)
DIMENSION B (M, N), C (N)
DO 24 I• 1, N
C (I) • B (M, I)
B (M, I) • B (1, I)

24 CONTINUE

DO 34 I• 1 1 MM
DO 34 J • 1, N
B (I, J) • B (I + 1, J)

34 CONTINUE
DO 44 I• 1, N
B (M - 1, I) • C (I)

44 CONTINUE
RETURN
END

Rewrite the subroutine so it rotates a column at a time instead of a row at a time.
Which is easier?

CHAPTER 7: EFFICIENCY AND INSTRUMENTATION

Machines have become increasingly cheap compared to people; any discussion
of computer efficiency that fails to take this into account is shortsighted.
"Efficiency" involves the reduction of overall cost - not just machine time over
the life of the program, but also time spent by the programmer and by the users of
the program.

A clean design is more easily modified as requirements change or as more is
learned about what parts of the code consume significant amounts of execution
time. A "clever" design that fails to work or to run fast enough can often be sal
vaged only at great cost. Efficiency does not have to be sacrificed in the interest of
writing readable code - rather, writing readable code is often the only way to
ensure efficient programs that are also easy to maintain and modify.

To begin, let us state the obvious. If a program doesn't work, it doesn't matter
how fast it runs. For instance:

C PAYROLL COMPUTATION PROGRAM
C READ EMPLOYEES ID,HOURS WORKED AND PAY RATES

10 READ(5,20) EMPID,HOURS,SRATE,ORATE
20 FORMAT(2F5.0,2F5.2)

IF(EMPID .EQ. 77777.0)GO TO 60
IF(HOURS .GT. 40.0)GO TO 50

C COMPUTE WEEKLY PAY
WAGE • SRATE * HOURS

C CONVERT EMPLOYEES ID TO FIXED POINT FOR PRINTOUT
IEMPID ,. EMPID

C PRINT EMPLOYEES ID AND WAGE
30 WRITE(6,40) IEMPID,WAGE
40 FORMAT(12H1EMPLOYEE ID,I5,7H WAGE,FB.2)

GO TO 10
C COMPUTE OVERTIME PAY

50 A= ORATE * (HOURS - 40.0)
C COMPUTE BASE PAY

B = SRATE * 40.0
C COMPUTE TOTAL WAGE

WAGE = A + B
GO TO 30

60 STOP
END

After we unscramble the confusing flow of control, we can see that the integer
version of the employee's ID, IEMPID, is not set correctly when there is overtime
- its value is a leftover from the last employee who had no overtime. The cause is

123

124 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 7

trivial - IEMPID is not set immediately after input. A similar instance of this error
appears in Chapter 5.

Disorganized code often leads to errors. One wonders if the excessively compli
cated structure of this program comes from an attempt to be "efficient." There are
two distinct cases (overtime or not), with a different wage calculation for each. In
order to test HOURS only once per employee, these cases are separated and then
brought back together again incorrectly.

But if we test HOURS twice:

IF (HOURS .LE. 40.0) WAGE = SRATE * HOURS
IF (HOURS .GT. 40.0) WAGE= SRATE * 40.0 + ORATE•(HOURS-40.0)

indeed we do an extra test. But the program is simpler: two lines replace six, the
unnecessary variables A and B disappear, and the logic flows directly from beginning
to end. Not only is it now correct, but it can be seen to be correct.

Splitting the computation into two parts, only one of which is done, is preferred
if each half requires a complicated calculation. But the code should still flow from
top to bottom:

IF (HOURS .GT. 40.0) GOTO 25
standard calculation

GOTO 30
25 overtime calculation

30 WRITE ...

in the standard Fortran implementation of an IF-ELSE.

Make it right before you make it faster.

The following program, which computes the bills for an electric company, is
rather similar. The problem is specified as follows:

usage>500
500>=usage>100
100>=usage>50
else

bill
bill
bill
bill

14.50 + 0.025•(usage-500)
3.50 + 0.0275•(usage-100)
2.00 + 0.035•(usage-50)
2.00

In addition there is a discount for users of electric heat:

if heated by electricity, and
usage<1000 no discount
1000-10000 5%
>10000 10%

The first version of the program is

CHAPTER 7 EFFICIENCY AND INSTRUMENTATION

/•-----FIRST COMPUTE THE BASIC BILL.-----***/
IF USAGE> 500 THEN BILL• 14.50 + .025•(USAGE-500);

ELSE IF USAGE> 50 THEN BILL - 2.00 + .035•(USAGE-50);
ELSE BILL - 2.00;

/•••-----NOW APPLY THE DISCOUNT.-----***/

IF HEAT
THEN IF USAGE< 10000

THEN IF USAGE> 1000 THEN BILL= BILL* .95;
ELSE;

ELSE BILL =BILL * .9C;

125

To begin with, the case that deals with usage between 100 and 500 has been inad
vertently left out. This is not a big problem, since the error works to the advantage
of the electric company. There are also a couple of minor boundary errors, since
the specification gives a 5% discount for the inclusive range 1000 to 10000, while
the code gives it for the exclusive range. ("Take care to branch the right way on
equality.")

The null ELSE (second to last line) handles the case where the usage is less
than I 000; it is required because the decisions are made in the wrong order, as we
discussed in Chapter 3.

Most interesting, however, is the second version of the program. The textbook
says that "Since a customer with usage less than 500 will never receive a discount,
the program will be more efficient if the test for the discount is made only when we
already know the usage exceeds 500," and presents a more efficient version, as fol
lows:

IF USAGE > 500 THEN DO;
IF HEAT

END;

THEN IF USAGE< 10000 THEN BILL= BILL* .95;
ELSE;

ELSE BILL = BILL * .90;

ELSE IF USAGE> 100THEN BILL= 3.50 + .0275•(USAGE-100);
ELSE IF USAGE > 50 THEN

BILL= 2.00+.035•(USAGE-50);
ELSE BILL=2.00;

As is often the case, the attempt at "efficiency" doesn't work out too well. Passing
over the typo 1 OOTHEN, notice first that if USAGE exceeds 500, BILL is never ini
tialized, so it is either a dreg from the previous customer or garbage. This oversight
will probably be caught quickly once the program is actually run.

Less glaring, and therefore more likely to escape notice for a while, is the
incorrect correspondence of IF's and ELSE's: the test

IF HEAT

is paired with

ELSE BILL = BILL * .90;

because the null ELSE wasn't removed during the modifications. Thus anyone
whose usage is more than 500 but who doesn't heat with electricity gets a free 10%
discount. One hopes that the increased efficiency of the program will help to com
pensate for giving everyone a 10% discount.

126 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 7

When logical conditions are as complicated as they are here, it is risky indeed to
combine them. The whole thing should be separated into two stages, each doing its
job in a proper order:

/* COMPUTE BASIC BILL •/
IF USAGE > 500 THEN

I•

BILL• 14.50 + 0.025 * (USAGE-500);
ELSE IF USAGE> 100 THEN

BILL• 3.50 + 0.0275 * (USAGE-100);
ELSE IF USAGE > 50 THEN

BILL 2.00 + 0.035 * (USAGE-50);
ELSE

BILL 2.00;

COMPUTE DISCOUNT FOR ELECTRIC HEAT •/
IF HEAT & USAGE > 10000 THEN

BILL = BILL * 0.90;
ELSE IF HEAT & USAGE >= 1000 THEN

BILL =BILL * 0.95;

Concern for efficiency should be tempered with some concern for the probable
benefits, and the probable costs.

Keep it right when you make it/aster.

Here is another example, which replaces the first N elements of the array A by
their factorials:

SUBROUTINE ARRFAC (A,N)
DIMENSION A(100)
INTEGER A
DO 2 I•1,N
IF (A (I)) 2, 2, 4

c FACTORIAL PROGRAM
4 K•A(I)

NFACT=1
IF(K.EQ.1) GO TO 8
DO 6 J=2,K

6 NFACT=NFACT•J
8 A(I)=NFACT
2 CONTINUE

RETURN
END

Special handling is given the case where K (alias A (I)) equals one (but why
doesn't the test branch to statement 2 instead c;.f to 8?). Certainly the code runs
slightly faster if K is I, but the program is more involved. Remove the test, change
the inner DO limits to J=1 , K, eliminate the temporary variable NFACT, and the pro
gram still works well. Of course, it would be better if zero factorial were properly
computed (it equals one), instead of being skipped as an error. At the same time
it's easy to ensure that negative values are handled plausibly.

CHAPTER 7

SUBROUTINE ARRFAC(A, N)
INTEGER A(N)
DO 20 I• 1, N

K • MAXO(A(I), 1)
A(I) - 1
DO 10 J • 1, K

A(I) • A(I) * J
10 CONTINUE
20 CONTINUE

RETURN
END

EFFICIENCY AND INSTRUMENTATION 127

If the utmost in speed were of any importance here, the way to get it is obvi
ously not to test whether K is one, but to pre-compute a table of factorials, and
index into that directly. The table will not be very big on any current computer,
since the factorials rapidly get too large to store as exact integers. We have
remarked several times that a change in data representation often simplifies control
structure more profoundly than any amount of tweaking. Efficiency likewise
depends strongly on data representation.

Make it clear before you make it faster.

This brings us to another important point: simplicity and clarity are often of
more value than the microseconds possibly saved by clever coding. For instance,
one text suggests that the loop

DO 4 J • 1,1000
4 X(J) • J

be replaced by

z = o.o
DO 4 J • 1,1000
z = z + 1 .0

4 X(J) = Z

presumably to avoid a thousand conversions to floating point.
This is an excellent example of nit-picking. One compiler we tried compiled the

first loop into nine machine instructions, the second loop into eight. If all instruc
tions were to take about the same time, the time saving would be a little over ten
per cent. If this loop is ten per cent of an entire program (which seems high, since
it is clearly just an initialization), the "improved" program would run one percent
faster. As a matter of fact, the "improved" code uses a higher proportion of float
ing point instructions, which are more time consuming, so any saving is debatable.
A second compiler increased the number of instructions for the "improved" version
from ten to eleven, making the program slower! Trivia rarely affect efficiency. Are
all the machinations worth it, when their primary effect is to make the code less
readable?

128 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 7

Don't sacrifice clarity for small gains in "dficiency. "

Sometimes a preoccupation with minutiae lets obvious things slip by unnoticed.
In the code

I = K + 1
DO 6 J = 1,30

6 A(J) = B(J) * C(I)

one text observes correctly that c (I) is a constant within the loop, and thus there is
no need to make the subscript computation repeatedly. The suggested remedy is

I = K + 1
TEMP C(I)
DO 6 J = 1,30

6 A(J) = B(J) * TEMP

Many compilers will do the trivial optimization of moving constants out of a
loop without being asked. (By knowing too much, you may even impede their
efforts.) But even for a simple-minded compiler, the first two lines should certainly
be combined into

TEMP= C(K+1)

Let your compiler do the simple optimizations.

The attempt to re-use pieces of code often leads to tightly knotted programs,
difficult to get right, to understand, and to modify later, as in this program that
decides if a number is prime:

ST1: GET LIET(N);
IF N-->1 THEN

PUT EDIT('ILLEGAL INPUT N=',N,' <= 1')(SKIP,X(10),A,F(5),A);
ELSE DO; IF N<=3 THEN GO TO APRIME;

IF N=2•FLOOR(N/2) THEN NOPRIME: PUT EDIT(N,' IS NOT A PRIME'
'NUMBER') (SKIP,F(15),2 A);

ELSE DO; DO R•3 TO SQRT(N) BY 2; IF N=R•FLOOR(N/R) THEN
GO TO NOPRIME; END/• OF DO LOOP •/;

APRIME: PUT EDIT(N,' IS A PRIME NUMBER') (SKIP,F(15),A); END; END;
GO TO ST1;

The dilemma seems to have been how to avoid duplicating the PUT statement
that reports non-primes. The resulting code is almost unreadable. (This is partly
the fault of its layout, which we will comment on in Chapter 8.) For instance, it
contains a transfer from within an ELSE to the beginning of the corresponding
THEN! And instead of using the MOD function to test divisibility, it simulates
Fortran's truncating division with the FLOOR function. The code cries out for revi
sion:

CHAPTER 7 EFFICIENCY AND INSTRUMENTATION

DECLARE (N, R) FIXED BINARY(31);
DECLARE YES BIT(1) INITIAL ('1 'B), NO BIT(1) INITIAL ('O'B);
DECLARE PRIME BIT(1);

DO WHILE (YES) ;
GET LIST (N);
IF N <• 1 THEN

~uT EDIT ('ILLEGAL INPUT N =', N, ' <= 1 ')
(SKIP, X(10), A, F(S), A);

ELSE DO;
PRIME • YES;
IF N > 2 & MOD(N, 2) = 0 THEN

PRIME • NO;
DOR • 3 TO SQRT(N) BY 2 WHILE (PRIME

IF MOD(N, R) = 0 THEN
PRIME = NO;

END;
IF PRIME THEN

YES);

PUT EDIT (N, ' IS A PRIME NUMBER') (SKIP, F(15), Al;
ELSE

END;
END;

PUT EDIT (N, ' IS NOT A PRIME NUMBER') (SKIP, F(15), A);

129

This version is slightly longer, but markedly easier to understand. And it has no
duplicated PUT statement either.

Don't strain to re-use code; reorganize instead.

A faster-running program is often the by-product of clear, straightforward code.
As an example, this program computes n! for n = 3, 5, ... , 49.

C FACTORIAL PROGRAM
DOUBLE PRECISION FACTOR, X
NAMELIST /OUT/I,FACTOR
DO 100 I =3,50,2
FACTOR • I
J =I-1
DO 200 K=1,J
X=K

200 FACTOR = FACTOR•X
100 WRITE (6,0UT)

STOP
END

Admittedly one does not compute a table of odd factorials very often, but this
program is needlessly complicated and wasteful, because it recomputes n ! from
scratch for each n, instead of just multiplying the previous value by n x (n-1).
Here's the simpler version:

130 THE ELEMENTS OF PROGRAMMING STYLE

DOUBLE PRECISION FACTOR, X
NAMELIST /OUT/ I, FACTOR
FACTOR - 1 .ODO
DO 100 I z 3, SO, 2

FACTOR z FACTOR* FLOAT(I•(I-1))
WRITE(6,0UT)

100 CONTINUE
STOP
END

CHAPTER 7

Students of complexity theory will recognize that the first version requires com
puting time proportional to n2; the second takes time proportional to n. The abso
lute amount of computer time saved in this specific case is obviously irrelevant, but
the gain in intelligibility is significant.

The author of the factorial program, by the way, included some of the
machine-generated answers from his program. The value of 3! is given as

5.999999999999999

Other values, also integers, are printed just as badly. The 1/0 routines provided by
this particular compiler (not by the textbook author) are a typical example of false
economy (that is, misplaced efficiency), since they do not produce the most mean
ingful answer for the user. Not only did the routine distort what was almost cer
tainly an exact floating point 6.0 in its haste, but it then decided (presumably) that it
was "too inefficient" to round the decimal representation before printing it.

The Euclidean Algorithm computes the greatest common divisor of two integers
KA and KB by a series of divisions. Here is part of a program to do it. (KA and KB
are positive.)

IF(KA-KB) s, s, 4
4 KR • KA

KA = KB
KB = KR

5 IF(KA) 6, 7, 6
6 KR • KB - KB/KA•KA

KB = KA
KA • KR
GO TO 5

7 PRINT 102, KB

Mathematicians have grown used to assuming that KA is less than or equal to
KB in the algorithm, and so when the program is implemented, the first four lines of
code make sure this is the case. But a moment's reflection shows that if KA is
greater than KB, the algorithm works anyway, since the first pass through the pro
cedure does the reversal. Removing the explicit interchange shrinks the code by a
factor of two, without increasing its complexity. At the same time we can use the
MOD function to improve the readability:

CHAPTER 7

5 IF (KA .EQ. 0) GOTO 7
KR MOD(KB,KA)
KB - KA
KA = KR
GOTO 5

7 PRINT 102, KB

EFFICIENCY AND INSTRUMENTATION 131

This is of course a DO-WHILE - the division is repeated while KA is not zero. And
notice that it can be done zero times.

As another small instance of the same thing, consider

DO 10 I=1,M
IF (BP (I) +1 . 0) 19 1 11 1 1 0

11 IBN1 (I) = BLNK
IBN2(I) = BLNK
GO TO 10

19 BP(I) = -1 .0
IBN1 (I) = BLNK
IBN2(I) = BLNK

10 CONTINUE

If BP(I) is less than or equal to -1, this excerpt will set BP(I) to -1 and put
blanks in IBN1 (I) and IBN2 (I). The code uses a hard-to-read Fortran arithmetic
IF that branches three ways, two almost-duplicated pieces of code, two extra labels
and a GOTO, all to avoid setting BP (I) to -1 if it is already.

There is no need to make a special case. Write the code so it can be read:

DO 10 I= 1, M
IF (BP(I) .GT. -1.0) GOTO 10

BP(I) = -1.0
IBN1 (I) BLNK
IBN2(I) - BLNK

10 CONTINUE

Interestingly enough, our version will be more "efficient" on most machines, both
in space and in time: although we may occasionally reset BP (I) unnecessarily, we
do less bookkeeping. What did concern with "efficiency" in the original version
produce, besides a bigger, slower, and more obscure program?

Make sure special cases are truly special.

Let us turn to sorting, an area where efficiency is important in practice. Here is
an interchange sort:

132 THE ELEMENTS OF PROGRAMMING STYLE

DIMENSION X(300)
C READ NUMBERS TO BE SORTED.

READ 1,N, (X(I),I•1,N)
1 FORMAT(I3/(F5.1))

C INITIALIZE TO MAKE N-1 COMPARISONS ON FIRST PASS.
K•N-1

C INITIALIZE TO BEGIN COMPARISONS WITH THE FIRST 2 NUMBERS.
6 J-1

C L IS USED TO RECORD THE FACT THAT AN INTERCHANGE OCCURS.
19 L•O

C MAKE COMPARISONS.
DO 2 I•J,K
IF(X(I)-X(I+1)) 2,2,3

C AN INTERCHANGE IS TO TAKE PLACE.
C IS THIS THE FIRST INTERCHANGE.

3 IF(L) 20,21,20
C RECORD POINT OF FIRST INTERCHANGE LESS ONE POSITION.

21 J1 =I-1
C MAKE INTERCHANGE.

20 SAVE=X(I)
X(I)•X(I+1)
X(I+1)=SAVE

C RECORD POINT OF LAST INTERCHANGE (ACTUALLY ALL INTERCHANGES) .
L=I

2 CONTINUE
C DETERMINE IF NUMBERS ARE IN SEQUENCE.

IF(L) B,9,B
C NUMBERS ARE NOT YET IN SEQUENCE. SET DO PARAMETERS.

8 K=L
C DO NOT WANT TO START AT ZERO SO TEST J1 FOR VALUE OF 0.

IF(J1) 6,6,7
7 J•J1

GO TO 19
9 PRINT 16,N

• . . print numbers. etc.

CHAPTER 7

In Chapter 5 we mentioned the perils of making the user specify the number of
data points to be input rather than letting the machine do the counting. We have
also discussed how this type of code fails when N is less than two. Similarly, we
have often pointed out that arithmetic IF's are inadvisable, for they are less clear to
the reader (Quickly! Does it sort up or down?), and always add the possibility of
arithmetic overflow or underflow. And the hodge-podge of statement numbers
makes it unnecessarily difficult to find one's way around the code.

But for now our primary subject is "efficiency." Inspection reveals that this sort
program is carefully coded to squeeze most of the possible speed out of the basic
algorithm. A switch L determines whether the table has been sorted in less than the
maximum N-1 passes, so an early exit can be taken. The index J increases to skip
over elements known to be already in order at the beginning of the array. The
upper index K decreases over those in order at the end. The programmer has care
fully avoided the trap of letting J become zero. And there are plenty of comments
to explain what is going on. All in all, this should be a marked improvement over a
basic no-bells-and-whistles version.

Let us put that hypothesis to the test, by constructing another sort program and
comparing run times on identical data. Here is our interchange sort, absolutely
devoid of frills. We do not even bother to eliminate comparisons between an ele
ment and itself.

CHAPTER 7 EFFICIENCY AND INSTRUMENTATION 133

SUBROUTINE SORT(X, N)
C SORT INCREASING, BY INTERCHANGE

REAL X(N)
IF (N .LT. 2) RETURN
DO 20 I = 2, N

DO 10 J - 1, I
IF (X(I) .GE. X(J)) GOTO 10

SAVE X(I)
X(I) X(J)
X (J) SAVE

10 CONTINUE
20 CONTINUE

RETURN
END

This has about half as many lines of code as the "efficient" sort, and is simple
enough that comments seem superfluous. We have coded it as a subroutine, a more
likely usage. (Notice the immediate return if N is less than 2.)

How much faster is the "efficient" program than the simple-minded one? We
eliminated the 1/0 statements from the former and made it into a subroutine, so we
could directly compare sort times without 1/0 overhead. Then we sorted arrays of
uniformly distributed random numbers (several arrays of each size). Here are some
run times, in milliseconds:

size "efficient" simple ratio

10 1 1 1.0
50 22 19 1.15

300 850 670 1.25
2000 38500 29200 1.3

As we might have anticipated, complexity again loses out to simplicity: not only
has carefully-tailored code produced a 15 to 30 percent increase in run time, but the
ratio appears to be getting worse as the size goes up.

Keep it simple to make it faster.

Although the simpler code is faster, it is still time-consuming for larger arrays
- 30 seconds to sort 2000 numbers is extravagant if it is done often. (Done infre
quently, it is probably irrelevant; the programmer time needed to make a noticeable
improvement in speed is certainly more valuable than a few minutes of machine
time.)

How can we really speed it up? Fundamental improvements in performance are
most often made by algorithm changes, not by tuning. Let us demonstrate.

It is well known in the sorting business that the interchange sort is suitable only
for sorting a handful of items. Here is a simple version of a better procedure,
known as the Shell sort (after D. L. Shell). Conceptually it is similar to the
"efficient" sort we began with, and certainly no more complicated.

134 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 7

The basic idea of the Shell sort is that in the early stages far-apart elements are
compared, instead of adjacent ones. This tends to eliminate large amounts of
disorder quickly, so later stages have less work to do. For each value of the interval
between compared elements, if no exchanges have been made, the interval is
decreased, until it reaches one, at which point it effectively becomes a simple inter
change sort. If no exchanges are made when the interval is one, the data are sorted.

SUBROUTINE SHELL(X, N)
REAL X(N)

C SORTS UP. IF THERE ARE NO EXCHANGES (IEX•O) ON A SWEEP
C THE COMPARISON GAP (!GAP) IS HALVED FOR THE NEXT SWEEP

!GAP = N
5 IF (!GAP .LE. 1) RETURN

!GAP = IGAP/2
IMAX = N-IGAP

10 IEX = 0
DO 20 I= 1,IMAX

IPLUSG = I+IGAP
IF (X(I) .LE. X(IPLUSG)) GOTO 20

SAVE• X(I)
X(I) = X(IPLUSG)
X(IPLUSG) = SAVE
IEX = 1

20 CONTINUE
IF (IEX .NE. 0) GOTO 10

GOTO 5
END

Here are the run time comparisons, in milliseconds:

size "efficient" simple Shell

IO l l l.7
50 22 19 20

300 850 670 260
2000 38500 29200 3200

The run times speak for themselves - not only is the Shell sort faster by a fac
tor of nine at 2000 elements, but the rate of increase is lower. (Be it noted that the
Shell sort is not the fastest sort available; it is merely an easy step up from the usual
interchange sorts.)

There are two lessons. First, time spent selecting a good algorithm is certain to
pay larger dividends than time spent polishing an implementation of a poor method.
Second, for any given algorithm, polishing is not likely to significantly improve a
fundamentally sound, clean implementation. It may even make things worse.

Don't diddle code to make it/aster -find a better algorithm.

Our conclusions about the sort programs are based on measurements, not on a
priori notions of what will or will not be efficient. For example, theoretical studies

CHAPTER 7 EFFICIENCY AND INSTRUMENTATION 135

predict that for large values of n, the Shell sort will be substantially faster than any
interchange sort, for its run time grows as no more than nl.S instead of n2• Com
mon sense says that for small n, interchange sorts will be faster because they are
simpler.

Neither theory nor common sense tells us where the cross-over takes place; that
depends on programming. Measurements show that, for our particular programs,
the transition takes place for n around 50, but that the disparity is not impractical
even when n is 300.

These measurements are obtained by using a timing package to time a particular
piece of code, like this:

CALL TICK(TIME)
code to be timed
CALL TICK(TIME)

TIME is set to the elapsed computation time since the last call to TICK, to whatever
resolution the operating system provides. Most computer systems provide such a
service. (An even better service, less commonly available, times each subroutine
without any need to explicitly reference the timing package in the program being
timed.)

Timing is not always sufficient. For example, precisely why is the simple sort
faster than the "efficient" one? The real work of each is in comparisons and
exchanges; the rest is bookkeeping. Could it be that the simple sort is faster
because somehow it does much less real work, or does it just do less bookkeeping?

Instrumenting the program to make a simple measurement gives us the clue.
We add two counters, NCOMP and NEXCH, to each program:

C COUNT COMPARISONS
NCOMP • NCOMP+1
IF (X(I) .GE. X(J)) GOTO 10

C OUT OF ORDER; EXCHANGE AND COUNT
NEXCH • NEXCH+1
SAVE = X(I)

The counters are initialized and printed outside the sort.
(including the Shell sort):

size "efficient" simple Shell

Here are the results

10 43 54 60 comparisons
22 22 13 exchanges

50 1020 1280 880
570 570 150

300 41000 45100 11500
22400 22400 1500

2000 1920000 2000000 147000
1000000 1000000 18600

136 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 7

The two interchange sorts do the same number of exchanges. But, although
the "efficient" sort does fewer comparisons than the simple sort, the saving does
not offset the cost of all the other operations. With some confidence we can con
clude that the simple sort is faster because its bookkeeping is simpler. The Shell
sort column shows conclusively why it is faster than the others for large n.

Beware of preconceptions about where a program spends its time. This avoids
the error of looking in the wrong place for improvements. Of course, you have to
have some working idea of which part of a program has the most effect on overall
speed, but changes designed to improve efficiency should be based on solid meas
urement, not intuition.

A useful and cheap way to measure how a program spends its time is to count
how many times each statement is executed. The resulting set of counts is called
the program's "profile" (a term first used by D. E. Knuth in an article in Software
Practice and Experience, April, 1971). Some enlightened computer centers make
available a "profiler" to do this automatically for your program. It works by tem
porarily adding "N=N+1" statements to appropriate parts of the program.

Instrumentation such as counts, profiles, and subroutine timings helps you con
centrate effort on those parts of the code which really need improvement. Although
we have already obtained improvements without the aid of the profiler, we can illus
trate its potential. Here is a program that collates grades, counting right and wrong
answers for each student:

ISUM=O
DO 3 1•1,5
IF(CORANS(I).EQ.STUANS(I))GO TO 4
ICHECK(I)•O
GO TO 30

4 ICHECK(I)=1
ISUM=ISUM+1

30 IWRONG•S-ISUM
3 CONTINUE

If we take the profile of this code, we observe that the statement

30 IWRONG=S-ISUM

is executed five times for each student. Why is this necessary? Clearly the number
of wrong answers need only be computed once, after we know how many were right
(assuming there are no other possibilities).

The code contains a "performance bug" - although correct, it does more work
than necessary, because of misplaced code. The statement should be outside the
loop, with its label removed and the GO TO 30 changed to GOTO 3.

Instrument your programs.
Measure before making ''dficiency'' changes.

The cost of computing hardware has steadily decreased; software cost has
steadily increased. "Efficiency" should concentrate on reducing the expensive parts
of computing. To summarize the main points of this chapter.

CHAPTER 7 EFFICIENCY AND INSTRUMENTATION 137

(1) If a program is wrong, it doesn't matter how fast it is. Get it right before you
start to "improve" it.

(2) Keep code clean and straightforward - don't try to make it fast while coding.
Premature optimization is the root of all evil.

(3) Don't worry about optimizing every little calculation. Let the compiler do it for
you.

(4) Worry about the algorithm, not about the details of code. Remember that data
structure can profoundly affect how an algorithm must be implemented.

(5) Instrument a program during construction. Measure before deciding on
"efficiency" changes. Leave the instrumentation in as the program evolves.

138 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 7

POINTS TO PONDER

7.1 In our local computer center, control cards must be in a fixed format: there
must be a dollar-sign in column 1, the operation (e.g., "FORTRAN") begins in
column 8, and any additional information begins in column 16. Any deviation in
any card typically causes the run to be aborted. Fewer than 30,000 control cards are
submitted per day.

(a) If processing free-form input were to add 100 microseconds per card of operat
ing system overhead (a generous allowance), what would this flexibility cost per
day? (Answer: 3 seconds.)

(b) What does it cost one user to have to re-submit one job because of a
mispunched card?

(c) Debate the pros and cons of free-format versus fixed-format input from the
users' and the system's viewpoints.

(d) Find some analogous examples of short-sighted economy at your computer
center.

(e) [Term project] Try to get them changed.

7.2 Statement-frequency counts (profiles), although useful measurement tools in a
simple language like Fortran, break down to some extent in more complex
languages like PL/I where a single "statement" can involve substantial computation.
(For example, consider the implicit array operations.) What kinds of Fortran state
ments require non-trivial amounts of computation? How could the compiler advise
the user of the probaple complexity of constructions in a program? Would it be
worth it? What other aids can you suggest?

7 .3 The table of comparisons and exchanges for the three sorts shows that the
Shell sort has a much higher ratio of comparisons to exchanges than the interchange
sorts. What does this imply? Can the information be used to improve the algo
rithm?

7.4 Our timing tests of sorting methods were made on arrays of random numbers.
Experiment to decide what degree of non-randomness is necessary before the
"efficient" sort is faster than the simple sort. What does non-randomness do to the
Shell sort?

7 .5 Recoding a program in assembly language to make it as fast as possible is a last
resort usually taken too early and too often. There is a folk-theorem that "10 per
cent of the code takes 90 percent of the run time." Develop a methodology for
deciding what parts of a program should be converted to assembly language, based
on this observation. (You might try to verify it first.)

CHAPTER 7 EFFICIENCY AND INSTRUMENTATION 139

7.6 The following program computes prime numbers by the Sieve of Eratosthenes:

L•1 0000;
BEGIN;
DECLARE N (L) ;
N•1; M•SQRT(L);
DO I=2 TO L;

IF N(I)•O THEN GO TO JUMP;
PUT EDIT (I) (F(S));
IF I<=M THEN DO K=I TO L/I;

N(K*1)•0;
END;
JUMP:;

END;END;

Since two is the only even prime number, modify the program to test only two and
odd numbers. (You should clean up the formatting and eliminate the label as you
do.) Does your new version run twice as fast as the old? Nearly twice as fast?
Measure and see.

Modify the program to save storage by storing only odd numbers in the array N.
What effect does this have on the run time?

CHAPTER 8: DOCUMENTATION

The best documentation for a computer program is a clean structure. It also
helps if the code is well formatted, with good mnemonic identifiers and labels (if
any are needed), and a smattering of enlightening comments. Flowcharts and pro
gram descriptions are of secondary importance; the only reliable documentation of a
computer program is the code itself. The reason is simple - whenever there are
multiple representations of a program, the chance for discrepancy exists. If the code
is in error, artistic flowcharts and detailed comments are to no avail. Only by read
ing the code can the programmer know for sure what the program does.

This is not to say that programmers should never write documentation. Quite
the contrary. In a project of any size it is vital to maintain readable descriptions of
what each program is supposed to do, how it is used, how it interacts with other
parts of the system, and on what principles it is based. These form useful guides to
the code. What is not useful is a narrative description of what a given routine actu
ally does on a line-by-line basis. Anything that contributes no new information, but
merely echoes the code, is superfluous.

If you write your code first in a pseudo-language, as we suggested in Chapter 3,
then you already have an excellent "readable description of what each program is
supposed to do." Keep the original around to refresh your memory when you have
to alter the code - that way you won't have to "decompile" the actual program
each time you want to figure out why you did something a certain way. If you
include your pseudo-code as comments in your source code, you will in fact be help
ing everyone who must later read it.

Although comments have no effect on code, of course, they are still physically a
part of it, and thus provide most of program documentation. We will devote much
of our attention to style in commenting.

One thing we will not do is make pronouncements about how many comments a
program should have. We have already seen examples that contain none and others
with more comments than code. The right amount usually lies between these
extremes, but an arbitrary rule, like "one comment for every three lines," is
absurd.

A comment is of zero (or negative) value if it is wrong. For example, in

141

142 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 8

C TEST FOR NEGATIVE VALUE OF X.
IF(XST) 5,5,3

5 PRINT 11
11 FORMAT(1H041HTHE VALUE OF X MUST BE GREATER THAN ZERO.)

the comment is certainly not correct, even assuming that x refers to XST. For
tunately this case is sufficiently obvious that it is not likely to mislead.

The more common situation is that the comment is correct but the code it
describes is not:

I• THIS TIME WE SHALL TEST FOR •/
I• ODD NUMBERS. •/

IF MOD(X,2)=0 THEN
DO; SUM = SUM + X;
ODDNO = ODDNO + 1;
END;

The comment tells us that we are testing for odd numbers, the name ODDNO
encourages us to believe it, but the test still selects even numbers.

The trouble with comments that do not accurately reflect the code is that they
may well be believed subconsciously, so the code itself is not examined critically. A
programmer shaky in his understanding of the MOD function might accept this com
ment at face value, especially since the mnemonic identifier ODDNO provides
confirmation. (To avoid this subconscious acceptance, in The Psychology of Computer
Programming Weinberg suggests that comments should be written on the right side
of the page and code on the left, so the comments can be covered during debugging.)

Make sure comments and code agree.

Comments should also convey new information:

C NEXT TWO STATEMENTS TEST FOR XMAX, IF LESSTHAN 10••-8,GO TO 1000
c

EPSI=1 .E-8
IF(XMAX.LE.EPSI) GO TO 1000

This contains the same boundary error we saw above - the branch on equality
is not what the comment says it is. But even if the comment were true, it would be
useless. A meaningful comment would explain the reason for the test instead of
merely repeating it in words. A void empty remarks like

K13 = K13 + 1; /* INCREMENT COUNTER •/

and

C PRINT VALUE OF VOLTAGE
50 WRITE(6,60) V

and

ON ENDFILE(SYSIN) GO TO DATA_ERROR; /• TEST END-OF-FILE •/

and

CHAPTER 8 DOCUMENTATION 143

N1 = INDEX(TEXT,';'); /•INDEX OF; IN STRING TEXT•/
NAME• SUBSTR(TEXT,1,N1-1l; /•SUBSTRING IN TEXT FROM TO N1 MINUS1•/

and

and

N2 LENGTH(NAME); /•LENGTH OF STRING NAME•/

S S + F * EXP (-(I•B/N)••2/8);
I• S S + F * E ••(-(I* B/N) SQUARED/8 •/

ILOOP: DO I • 1 /• BY +1 ASSUMED •/ TO 2•N;

Don'tjust echo the code with comments -
make every comment count.

Comments should help the reader over the difficult spots in a program. But
when a comment becomes too involved, ask whether the code itself is at fault. We
have already seen, in Chapter 3,

DCL NEWIN DEC FLOAT (4);
LARGE DEC FLOAT (4) INIT (.OE1);

I• .0 x 10••1 = .0 x 10 = 0.0

where the comment "explains" the ill-considered initialization of LARGE. A bigger
example is

I• WE NEED A LOOP TO PRINT •/
I• EACH LINE BECAUSE WE ARE •/
I• PRINTING COLUMNS AS ROWS. •/

DO J=1 TO 20;

PUT SKIP EDIT(COL(J), (THRUST(I,J)DO I 1 TO
10)) (R(FORM));

FORM: FORMAT(X(5),A(9) 1 X(4),10(X(4),F(7,1));

I• WE CAN OMIT THE 'END' •/
I• STATEMENT FOR THIS LOOP •/
I• BECAUSE WE ARE ABOUT TO END •/
I• THE PROCEDURE.
END CORRECT;

The first comment is incorrect, for we can certainly write

PUT EDIT ((COL(J), (THRUST(I,J) DO I= 1 TO 10) DO J = 1 TO 20))
(SKIP, X(S), A(9), X(4), 10 (X(4), F(7,1)));

Since the format FORM appears only once in the program, we have moved it inside
the PUT as well, en route adding the right parenthesis missing from the original.

The second comment uses four lines in place of the four characters

END;

Should the code be changed, the END will probably have to be added anyway.

144 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 8

Indeed the code is explained, probably for pedagogical reasons, but a bad practice
well commented remains bad. (The last lines of the original maze program in
Chapter 4 contain a similar instance.)

Another example where potentially dangerous code is treated with a comment
instead of a rewrite is this fragment:

6 E=E+.5
C TEST FOR VOLTAGE EXCEEDING 3.0.

IF(E-3.01)5,7,7

Since the comment and the code disagree, something is afoot that we are not
being told about. Why is the test against 3.01 instead of 3.0? The most likely expla
nation is that it defends against some form of floating point rounding error, but in
the absence of a useful comment, we can only guess. The way to treat this situation
is not by adding arbitrary unexplained tolerances to tests. If the code has to be this
way, explain it, for it is certainly not obvious. But if (as seems more likely) it
reflects a poor algorithm, change the code.

Don't comment bad code - rewrite it.

Variable names, labels, and even Fortran statement numbers can aid or hinder
documentation. Well-chosen names jog the memory; too-similar or meaningless
identifiers hamper understanding. For example:

LOGICAL EL,EM,EN,AKK,ELL,EMM,ENN,ELLL,EMMM,ENNN,ELLLL,EMMMM

EL = A.EQ.5.•C
EM = B.EQ.A+C
EN = C/B.EQ.C/A
AKK = A/B.EQ.B/C
ELL = A/B.EQ.C
EMM = B.LT.A
ENN = C.GT.B
ELLL A.GT.C
EMMM = A.GE.B•C
ENNN = EM.OR.EN
ELLLL = EN.AND.AKK
EMMMM = .NOT. (EL.AND.EN)
PRINT 20,A,B,C,EL,EM,EN,AKK,ELL,EMM,ENN,ELLL,EMMM,ENNN,ELLLL,EMMMM

20 FORMAT (1X,3F10.1,12L5)

These names have no mnemonic significance - even AKK, although different
from the others for no apparent reason, conveys no information. The similarities
invite misunderstanding and typing errors.

One solution might be names reminiscent of the test performed, such as

BLTA = B .LT. A

but since this seems strained, it is probably easiest to make an array called E and put
headings on the output. Then the FORMAT statement can serve as part of the docu
mentation.

CHAPTER 8 DOCUMENTATION 145

As another example, less artificial, consider the bowling score program that we
rewrote in Chapter 3. That used identifiers like x, Y and L, which were devoid of
mnemonic value. Here is the same program, this time with variable names chosen
to indicate the function of the variable.

SCORE = O;
BALL = 1;
DO FRAME• 1 TO 10;

IF PINS(BALL) = 10 THEN DO; /* STRIKE •/
SCORE= SCORE+ 10 + PINS(BALL+1) + PINS(BALL+2);
BALL• BALL+ 1;

END;
ELSE IF PINS(BALL) + PINS(BALL+1) = 10 THEN DO;

SCORE• SCORE+ 10 + PINS(BALL+2);
BALL = BALL + 2;

END;
ELSE DO; I• REGULAR •/

SCORE= SCORE+ PINS(BALL) + PINS(BALL+1);
BALL = BALL + 2;

END;
END;
RETURN(SCORE);

I• SPARE •/

Which version would you rather have to figure out? Which version will be easier to
change a year from now?

Use variable names that mean something.

Statement labels (in PL/I) or numbers (in Fortran) are "mnemonics" just as
variable names are - they serve to aid the memory of the person reading the code.
Make them meaningful. Look back at the "efficient" sort program of Chapter 7.
The sequence of statement numbers in it was

1, 6, 19, J, 21, 20, 2, a, 1, 9, 16, 11

When a statement in the middle of the code says

GOTO 19

which way do you go? Fortran statement numbers should be used sparingly (avoid
the arithmetic IF, which forces at least two upon you), and should be sequenced in
increasing order, with gaps between for later insertions. In PL/I, statement labels
are rarely needed, but when they are, make them descriptive of their function.

Use statement labels that mean something.

The physical layout of a program should also assist the reader (whether the ori
ginal programmer or a later modifier) to understand the logical structure. In
Chapter 7 we looked at

146 THE ELEMENTS OF PROGRAMMING STYLE

DECLARE (N,R)FIXED BINARY(31); ON ENDFILE(SYSIN) GO TO EOJ;
PUT EDIT('PRIME NUMBER RESULTS') (PAGE,X(13),A);

ST1: GET LIST(N);
IF N-.>1 THEN

CHAPTER 8

PUT EDIT('ILLEGAL INPUT N•' ,N,' <• 1') (SKIP,X(10),A,F(5),A);
ELSE DO; IF N<=3 THEN GO TO APRIME;

IF N=2•FLOOR(N/2) THEN NOPRIME: PUT EDIT(N,' IS NOT A PRIME'
'NUMBER') (SKIP,F(15),2 A);

ELSE DO; DO R=3 TO SQRT(N) BY 2; IF N=R•FLOOR(N/R) THEN
GO TO NOPRIME; END/* OF DO LOOP•/;

APRIME: PUT EDIT(N,' IS A PRIME NUMBER') (SKIP,F(15),A); END; END;
GO TO ST1;

The attempt to squeeze the program into only a few lines has made it hard to
read, and concealed the convolutions of the code. Try to find the label NOPRIME,
and the executable statement on the same line as a declaration. In the construction

IF N-.>1 THEN
PUT EDIT('ILLEGAL INPUT N=' ,N,' <• 1 ') (...)

why is the test written differently from the printed output? That makes it necessary
to understand two things instead of one. Separating the semicolon from its state
ment in

END /• OF DO LOOP •/;

although harmless enough here, is prone to error. Similarly the statement

PUT EDIT(N,' IS NOT A PRIME'
'NUMBER') (SKIP,F(15),2 A);

uses the card up to its right boundary to no purpose. The alphabetic string still has
to be split onto the next card, which in turn demands the "2 A" format item. Put
it all on one line. Our version of this program is in Chapter 7.

Format a program to help the reader understand it.

The single most important formatting convention that you can follow is to
indent your programs properly, so the indentation conveys the structure of the pro
gram to the reader at a glance. Indentation must be done carefully, however, lest
you confuse rather than enlighten.

CHAPTER 8 DOCUMENTATION 147

IF CLOSE_BALANCE < 0 THEN SERV_CHARGE z 7.00;
ELSE BEGIN;
IF CLOSE_BALANCE < 100.00 THEN SERV_CHARGE z 2.00;

ELSE BEGIN;
IF LOW_BALANCE < 100.00 THEN SERV_CHARGE = 1.50;

ELSE BEGIN;
AVE_BALANCE z OPEN_BALANCE + HIGH_BALANCE +

LOW_BALANCE + CLOSE_BALANCE;
IF AVE_BALANCE < 800 THEN SERV_CHARGE = 1.00;

ELSE BEGIN;
IF AVE_BALANCE < 1600 THEN SERV_CHARGE = 0.50;
ELSE SERV_CHARGE = O; END;

END;
END;

END;

The indentation, though clearly systematic, is not a help. Nor do all the extraneous
BEGIN-END pairs contribute much. If we eliminate the unnecessary grouping, and
indent to show that the program is basically two CASE statements, things clarify
remarkably.

IF CLOSE_BALANCE < 0 THEN
SERV_CHARGE z 7.00;

ELSE IF CLOSE_BALANCE < 100.00 THEN
SERV_CHARGE • 2.00;

ELSE IF LOW_BALANCE < 100.00 THEN
SERV_CHARGE • 1.50;

ELSE DO;
AVE_BALANCE z OPEN_BALANCE + HIGH_BALANCE +

LOW_BALANCE + CLOSE_BALANCE;
IF AVE_BALANCE < 800 THEN

SERV_CHARGE z 1 .00;
ELSE IF AVE_BALANCE < 1600 THEN

SERV_CHARGE • 0.50;
ELSE

SERV _CHARGE 0;
END;

A CASE should not have each level of ELSE indented, as is often recommended.
Placing all the ELSE-IF's of a CASE at one level makes the multi-way nature more
clear, and also helps to keep long ones from disappearing off the right side of the
page.

Indent to show the logical structure of a program.

Another example of how an ill-chosen layout can hinder comprehension is

148 THE ELEMENTS OF PROGRAMMING STYLE

IF A > B
THENS,. 1;
ELSE IF A • B

THEN IF C > D
THEN S = 2;
ELSE S • 3;

ELSE IF C > D
THEN S = 4;
ELSE IF C = D

THEN S = 5;
ELSE S = 6;

CHAPTERS

Again this is neatly indented to display the structure, but it doesn't help the reader
to understand Under what circumstances will s be assigned the value three? It is
not easy to tell.

This code is almost in the form of a CASE statement. There is one violation:
the case A=B has an IF-ELSE in its THEN clause. It is no surprise that this is the
hardest part of the code to comprehend. So let us transform it accordingly:

IF A > B THEN
s = 1;

ELSE IF A • B & C > D THEN
s = 2;

ELSE IF A • B THEN
s = 3;

ELSE IF C > D THEN
s = 4;

ELSE IF C = D THEN
s 5;

ELSE
s - 6;

At the cost of one additional comparison, we have obtained a familiar structure.
Now we know for certain that one, and only one, case will be executed. Reading
from the top down until the proper condition is met tells us which one.

The reader has undoubtedly noticed by now that our personal stylistic conven
tions for layout, comments, and the like are not absolutely uniform. Nonetheless,
we have tried to be reasonably consistent, for unless we are consistent, you will not
be able to count on what our formatting is trying to tell you about the programs.
Good formatting is a part of good programming.

We conclude with a larger example of documentation. This program solves a
set of N linear equations in N unknowns, using Gauss-Seidel iteration. Originally
from a textbook, it appeared in an article entitled "How to Write a Readable Fortran
Program," in Datamation, October, 1972.

CHAPTER 8 DOCUMENTATION

C CASE STUDY 10
C THE GAUSS-SEIDEL METHOD FOR SOLVING SIMULTANEOUS EQUATIONS
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c

THE PROGRAM SOLVES A SYSTEM OF N EQUATIONS IN N UNKNOWNS.
N MAY NOT EXCEED 80; N IS READ AS INPUT.
ONLY THE NON-ZERO ELEMENTS NEED BE ENTERED, ONE ELEMENT PER DATA

CARD, WITH ROW AND COLUMN NUMBERS ON EACH CARD.
A ROW NUMBER OF 99 ACTS AS AN END-OF-DATA SENTINEL.
THE PROGRAM READS THE FOLLOWING PARAMETERS PRIOR TO ENTERING THE DATA

N -- THE NUMBER OF EQUATIONS IN THE SYSTEM FOR THIS RUN
MAXIT -- THE MAXIMUM NUMBER OF ITERATIONS TO BE PERMITTED
EPSLON -- THE CONVERGENCE CRITERION
BIGGST -- THE MAXIMUM SIZE (IN ABSOLUTE VALUE) TO BE PERMITTED

OF ANY COEFFICIENT OR CONSTANT TERM
ALL INPUT IS CHECKED FOR VALIDITY, EVEN IF AN ERROR IS FOUND.

DIMENSION A(80, 81), X(80)
LOGICAL OK

C CLEAR ARRAYS

c

DO 20 I= 1, 80
X(Il - a.a
DO 10 J • 1, 81

A(I, Jl - a.a
10 CONTINUE
20 CONTINUE

C READ CONTROL PARAMETERS DESCRIBED IN INTRODUCTORY COMMENTS
READ (S, 100) N, MAXIT, EPSLON, BIGGST
NPLUS1 = N + 1

c
C READ THE ELEMENTS OF THE ARRAYS, WITH CHECKING
C DO LOOP IS USED TO CONTROL MAXIMUM NUMBER OF ELEMENTS
C FIRST SET ERROR COUNT TO ZERO

c

NERROR • 0
LIMIT = N•NPLUS1 + 1
DO 30 K • 1, LIMIT

READ (5, 100) I, J, TEMP
IF (I .EQ. 99) GO TO 41
OK • .TRUE.
IF ((I . LT. 1)

1 .OR. (I .GT. N)
2 .OR. (J .LT. 1)
3 .OR. (J .GT. NPLUS1)
4 .OR. (ABS(TEMP) .GT. BIGGST)) OK • .FALSE.

IF (OK) A(I, J) • TEMP
IF (.NOT. OK) WRITE (6, 110) I, J, TEMP
IF (.NOT. OK) NERROR • NERROR + 1

30 CONTINUE

C IF DO IS SATISFIED, THERE WERE TOO MANY DATA CARDS FOR THE
C VALUE OF N THAT WAS SPECIFIED -- WRITE ERROR COMMENT

c

WRITE (6, 120)
STOP

C ALL DATA CARDS HAVE BEEN READ -- CHECK ERROR COUNT AND STOP IF ANY
41 IF (NERROR .NE. 0) WRITE (6, 130) NERROR

IF (NERROR .NE. 0) STOP
c
C BEGIN ITERATION SCHEME -- DO LOOP COUNTS THE NUMBER OF ITERATIONS

DO 70 ITER • 1, MAXIT
c
C ... NEXT STATEMENT IS EXECUTED ONCE PER SWEEP OF THE SYSTEM

RESID - a.a
c
C . . . INDEX I SELECTS A ROW

DO 60 I• 1, N
c
C . . . NEXT STATEMENT IS EXECUTED ONCE PER ROW

sUM - a.a
c
C . . . GET SUM OF TERMS IN ROW I , NOT INCLUDING DIAGONAL TERM

DO SO J • 1, N
IF (J .NE. I) SUM • SUM + A(I,J)•X(J)

149

150 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 8

50
c
c

c
c
c

c
c

60
c
c

c
c

70
c

CONTINUE

•.• COMPUTE THE NEW APPROXIMATION TO VARIABLE X(I)
TEMP• (A(I, NPLUS1) - SUM) / A(I,I)

•.• AT THE END OF A SWEEP OF ALL EQUATIONS, THE FOLLOWING
... STATEMENT WILL HAVE PUT LARGEST RESIDUAL IN RESID
IF (ABS(TEMP - X(I)) .GT. RESID) RESID • ABS(TEMP - X(I))

... STORE NEW APPROXIMATION TO VARIABLE X(I)
X(I) • TEMP

CONTINUE

•.• ONE SWEEP HAS NOW BEEN COMPLETED -- PRINT VARIABLES
WRITE (6, 140) (X(K), K • 1, N)

•.• IF LARGEST RESIDUAL LESS THAN EPSLON, PROCESS HAS CONVERGED
IF (RESID .LT. EPSLON) STOP

CONTINUE

C IF THIS OUTER DO IS EVER SATISFIED, MORE THAN MAXIT ITERATIONS WOULD
C BE NEEDED FOR CONVERGENCE -- WRITE ERROR COMMENT AND GIVE UP

c
c

WRITE (6, 150) MAXIT
STOP

100 FORMAT (2I2, 2F10.0)
110 FORMAT (1X, 'ERROR IN CARD WITH I• ',I2,', J • ',I2,

1 ', VALUE • ', 1PE14.6)
120 FORMAT (•O•, 'DECK CONTAINED TOO MANY CARDS')
130 FORMAT ('0', 'ERRORS FOUND IN ', I4, ' DATA CARDS - JOB ABORTED')
140 FORMAT ('0', BF12.5)
150 FORMAT (•O•, 'PROCESS DID NOT CONVERGE IN', I4, ' ITERATIONS')

END

In almost every way, this is an excellent program. It validates its input data. It
uses multiple loop exits to detect errors. In several places, the authors have
sacrificed a tiny amount of computation time by re-testing a condition, to avoid
extra labels and GOTO's.

And it is thoroughly commented and neatly formatted. Notice that even the
data is commented. One of the most effective ways to document a program is sim
ply to describe the data layout in detail. If you can specify for each important vari
able what values it can assume and how it gets changed, you have gone a long way
to describing the program. (The checker-playing subroutine we looked at in Chapter
4 is another good example.)

Document your data layouts.

All in all, the code above is a model of programming style.
But there are a few difficulties. To begin with, what about modularity? When a

single routine sprawls over several pages, it is hard to follow. Since well over half of
the actual code is concerned with validating the data, this could profitably be made a
separate input function, as we suggested in Chapters 4 and 5. Then the main pro
gram could read

IF (INPUT(N, A, MAXIT, EPSLON) .EQ. ERROR) STOP

The modularization would have the advantage that each part of the program would
fit comfortably on one page. (In fairness, we should observe that the textbook from

CHAPTER 8 DOCUMENTATION 151

which this program originally came had not yet introduced subroutines when the
example was presented.)

And what about its readability? Here is a letter to the editor of Datamation,
published shortly after the original article.

In the October issue, [. ..] told us "How to Write a Readable Fortran Program." I wish
they had followed their own advice in the example that they gave. Said example has so
many comments in it that it is unreadable. I agree that program documentation is a long
neglected and important problem. And placing a comment card before each statement in
a program does document it. It also makes the program unreadable. Grouping Fortran
comments and program statements into logical blocks makes both of them readable with
very little loss of clarity.

Neal Paris
Durham, North Carolina

Mr. Paris has a point. There are more comments than program; some of them con
vey little information. We use few comments in our programs - most of the pro
grams are short enough to speak for themselves. And when a program cannot
speak for itself, it is seldom the case that greater reliability or understanding will
result by interposing yet another insulating layer of documentation between the code
and reader.

Don't over-comment.

A second letter on the same subject also appeared in Datamation:

The example given in the article, "How to Write a Readable Fortran Program" (Oct.,
p 73), illustrates one of the most common faults of comments in programs - that the
comments don't agree with the program. The program itself illustrates one of the com
monest programming mistakes - the failure to check controlling parameters for limits.

Specifically, the last line of comment in the heading states reassuringly: "All input is
checked for validity." So what happens? The very first READ statement reads four con
trolling parameters which are checked only by the field width in the format, not a very
good way to do it. In particular, N is not checked for its limit of 80. The unchecked N is
used to "check" the values of I and J. Hence, a too-large N may result in storing of data
beyond the array bounds. The unchecked N also limits several DO loops in the program.

N. M. Taylor
Washington, D.C.

Ms. Taylor is also right. The comment, like the input checking, is slightly wrong.
As a final observation, not worth a letter to Datamation, try the program on the

equations

y = 1.0
x + y = 2.0

The solution is obviously X=1 . 0, Y=1 • 0. What does the program do? Following
the code, when I equals one in the first pass through the inner loop, we evaluate
(one line after statement 50)

TEMP• (A(I, NPLUS1) - SUM) I A(I,I)

152 THE ELEMENTS OF PROGRAMMING STYLE CHAPTER 8

But A (1 , 1) is zero, and the result is a division by zero.
The program, comments and formatting notwithstanding, fails on a significant

class of equations - those which happen to have a zero on the diagonal. Of course,
those familiar with the limitations of Gauss-Seidel iteration would know enough to
avoid such cases, and the textbook contains a proper warning. But it is a small cost
to add an extra test to detect a zero on the diagonal, however unlikely it may be.

Perhaps what the article really shows is that people who attempt to criticize pro
gramming style run the risk of being criticized in turn. On that note we bring our
discussion to a close.

In summary:

(1) If a program is incorrect, it matters little what the documentation says.

(2) If documentation does not agree with the code, it is not worth much.

(3) Consequently, code must largely document itself. If it cannot, rewrite the code
rather than increase the supplementary documentation. Good code needs fewer
comments than bad code does.

(4) Comments should provide additional information that is not readily obtainable
from the code itself. They should never parrot the code.

(5) Mnemonic variable names and labels, and a layout that emphasizes logical
structure, help make a program self-documenting.

CHAPTER 8 DOCUMENTATION 153

POINTS TO PONDER

8.1 Programming in a standard or stereotyped way is often a useful way to avoid
error. For example, in Fortran, identifiers that begin with I, J, K, L, M, or N are
integer by default, and all others are floating point. This convention is widely used.
Sometimes, however, to avoid straining for meaningful identifiers, it seems easier to
declare variables explicitly, overriding the default. From the standpoints of error
potential and reader comprehension, is this good practice or bad? You might con
sider this excerpt in your deliberations:

C A SORTING PROGRAM

INTEGER X, Y
DIMENSION X(25), Y(25)

IF (X(I) .LE. X(J)
TEMP • X(I)
X(I) • X(J)
X(J) • TEMP
TEMP • Y(I)
Y(I) • Y(J)
Y(J) z TEMP

) GO TO 20

8.2 Fortran continuation lines are often left behind when statements are moved
within a program. What practices can you think of, in writing multi-line statements,
that would reduce the likelihood of your making this mistake (or at least ensure that
the compiler will spot your error)? Look back over the Fortran programs in this
book.

8.3 Comment on these comments:

DO 65 Lz1 1 9999
C GENERATE RANDOM NUMBER
41 CALL RANDU(IX,IY,YFL)
C SET NEW VALUE OF IX TO VALUE OF IY

IX•IY
C COMPUTE SAMPLE WHICH IS TO RECEIVE BACTERIA

NzYFL•100.0 +1.0
C CHECK TO SEE IF N IS 101

IF(N-101) 40,41,40
C CHECK TO SEE IF SAMPLE ALREADY CONTAINS BACTERIA
40 IF(IT(N))21,20,21
C INCREMENT NUMBER OF SAMPLES CONTAINING BACTERIA BY ONE
20 ICT•ICT+1
C INCREMENT NUMBER OF BACTERIA IN SAMPLE BY ONE
21 IT(N)•IT(N)+1
C CHECK TO SEE IF 50 OF THE SAMPLES CONTAIN BACTERIA

IF(ICT-50)65,33,33
65 CONTINUE

EPILOOUE

It is time to take stock. Although we have touched on many aspects of com
puter programming in the last eight chapters, much has been left unsaid. In some
cases this was due to lack of space, but most of the omissions were intentional.
There are many good books on languages, algorithms and numerical methods avail
able to those who want to learn programming in greater depth. Our goal was not to
teach languages or algorithms, but to teach you to program well.

Programmers have a strong tendency to underrate the importance of good style.
Eternally optimistic, we all like to think that once we throw a piece of code together,
however haphazardly, it will work properly the first time and ever after. Why waste
time cleaning up something that is almost certain to be correct? Besides, it probably
will be used for only a few weeks.

There are really two answers to the question. The first is suggested by the word
"almost." A slap-dash piece of code that falls short of perfection can be a difficult
creature to deal with. The self-discipline of writing it cleanly the first time increases
your chances of getting it right and eases the task of fixing it if it is not. The pro
grammer who leaps to the coding pad or the terminal and throws a first draft at the
machine spends far more time redoing and debugging than does his or her more
careful colleague.

The second point is that phrase "only a few weeks." Certainly we write code
differently depending on the ultimate use we expect to make of it. But computer
centers are full of programs that were written for a short-term use, then were
pressed into years of service. Not only pressed, but sometimes hammered and
twisted. It is often simpler to modify existing code, no matter how badly written,
than to reinvent the wheel yet again for a new application. Big programs - operat
ing systems, compilers, major applications - are never written to be used once and
discarded. They change and evolve. Most professional programmers spend much of
their time changing their own and other people's code. We will say it once more -
clean code is easier to maintain.

One excuse for writing an unintelligible program is that it is a private matter.
Only the original programmer will ever look at it, and surely he need not spell out
everything when he has it all in his head. This can be a strong argument, particu
larly if you don't program professionally. It is the same justification you use for
writing "qt milk, fish, big box" for a grocery list instead of composing a proper sen
tence. If the list is intended for someone else, of course, you had better specify
what kind of fish you want and what should be inside that big box. But even if only
you personally want to understand the message, if it is to be readable a year from

155

156 THE ELEMENTS OF PROGRAMMING STYLE EPILOGUE

now you must write a complete sentence. So in your diary you might write, "Today
I went to the supermarket and bought a quart of milk, a pound of halibut, and a big
box of raisins."

You learn to write as if to someone else because next year you will be "someone
else. " Schools teach English composition, not how to write grocery lists. The latter
is easy once the former is mastered. Yet when it comes to computer programming,
many programmers seem to think that a mastery of "grocery list" writing is ade
quate preparation for composing large programs. This is not so.

The essence of what we are trying to convey is summed up in the elusive word
"style." It is not a list of rules so much as an approach and an attitude. "Good pro
grammers" are those who already have learned a set of rules that ensures good
style; many of them will read this book and see no reason to change. If you are still
learning to be a "good programmer," however, then perhaps some of what we con
sider good style will have rubbed off in the reading.

SUPPLEMENTARY READING

F. P. Brooks, Jr., The Mythical Man-Month. Addison-Wesley, 1975.

0.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured Programming. Academic
Press, 1972.

Brian W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

W. Strunk, Jr., and E. B. White, The Elements of Style. MacMillan, 1972.

G. M. Weinberg, The Psychology of Computer Programming. Van Nostrand Reinhold,
1971.

157

SUMMARY OF RULES

This summary is designed to give a quick review of the points we covered in the
book. Remember as you read the rules that they were presented in connection with
one or more examples - go back and reread the pertinent section if a rule doesn't
call them to mind.

To paraphrase an observation in The Elements of Style, rules of programming
style, like those of English, are sometimes broken, even by the best writers. When
a rule is broken, however, you will usually find in the program some compensating
merit, attained at the cost of the violation. Unless you are certain of doing as well,
you will probably do best to follow the rules.

Write clearly - don't be too clever.

Say what you mean, simply and directly.

Use library functions.

Avoid temporary variables.

Write clearly - don't sacrifice clarity for "efficiency."

Let the machine do the dirty work.

Replace repetitive expressions by calls to a common function.

Parenthesize to avoid ambiguity.

Choose variable names that won't be confused.

Avoid the Fortran arithmetic IF.

A void unnecessary branches.

Use the good features of a language; avoid the bad ones.

Don't use conditional branches as a substitute for a logical expression.

Use the "telephone test" for readability.

Use DO-END and indenting to delimit groups of statements.

Use IF-ELSE to emphasize that only one of two actions is to be performed.

Use DO and DO-WHILE to emphasize the presence of loops.

Make your programs read from top to bottom.

159

160 THE ELEMENTS OF PROGRAMMING STYLE

Use IF ... ELSE IF ... ELSE IF ... ELSE ... to implement multi-way branches.

Use the fundamental control flow constructs.

Write first in an easy-to-understand pseudo-language; then translate into whatever
language you have to use.

Avoid THEN-IF and null ELSE.

A void ELSE GOTO and ELSE RETURN.

Follow each decision as closely as possible with its associated action.

Use data arrays to avoid repetitive control sequences.

Choose a data representation that makes the program simple.

Don't stop with your first draft.

Modularize. Use subroutines.

Make the coupling between modules visible.

Each module should do one thing well.

Make sure every module hides something.

Let the data structure the program.

Don't patch bad code - rewrite it.

Write and test a big program in small pieces.

Use recursive procedures for recursively-defined data structures.

Test input for validity and plausibility.

Make sure input cannot violate the limits of the program.

Terminate input by end-of-file or marker, not by count.

Identify bad input; recover if possible.

Treat end of file conditions in a uniform manner.

Make input easy to prepare and output self-explanatory.

Use uniform input formats.

Make input easy to proofread.

Use free-form input when possible.

Use self-identifying input. Allow defaults. Echo both on output.

Localize input and output in subroutines.

Make sure all variables are initialized before use.

Don't stop at one bug.

Use debugging compilers.

Initialize constants with DATA statements or INITIAL attributes; initialize variables
with executable code.

Watch out for off-by-one errors.

Take care to branch the right way on equality.

Avoid multiple exits from loops.

Make sure your code "does nothing" gracefully.

Test programs at their boundary values.

Program defensively.

10.0 times 0.1 is hardly ever 1.0.

Don't compare floating point numbers just for equality.

Make it right before you make it faster.

Keep it right when you make it faster.

Make it clear before you make it faster.

Don't sacrifice clarity for small gains in "efficiency."

Let your compiler do the simple optimizations.

Don't strain to re-use code; reorganize instead.

Make sure special cases are truly special.

Keep it simple to make it faster.

SUMMARY OF RULES 161

Don't diddle code to make it faster - find a better algorithm.

Instrument your programs. Measure before making "efficiency" changes.

Make sure comments and code agree.

Don't just echo the code with comments - make every comment count.

Don't comment bad code - rewrite it.

Use variable names that mean something.

Use statement labels that mean something.

Format a program to help the reader understand it.

Indent to show the logical structure of a program.

Document your data layouts.

Don't over-comment.

absolute test, relative vs. 4, 8, 118
acceptance of comments, subconscious 142
agreement of code and comments 142
airplane weight program 43
algorithm, choice of 5, 74, 130, 134
algorithm complexity 135
algorithm, inefficient 5, 13, 49, 70, 116, 129
AMAX1 function 8
ambiguity, IF-ELSE 45
ambiguity, operator precedence 14, 21, 102
AMIN1 function 9
ANSI Fortran Standard 6, 15
ANY function 84
appropriate data representation 20, 47, 53,

63, 74, 90, 97, 127
appropriate modularization 24, 62, 63, 77,

95, 150
arguments, function 3, 62, 72, 96
arithmetic IF statement 16, 131, 132, 145
arithmetic, mixed-mode 6, 104
arithmetic statement function 12
array bounds, reference outside 51, 85,

106, 112
assembly language 3
assembly language, recoding in 138
asterisk subscript 88
asymptotic correctness 113
ATAN function 12
average-computing program 113
avoiding GOTO's and labels 9, 17, 18, 19,

31, 35, 39, 108, 150
avoiding special cases 112, 126, 130, 131

bad code, commenting 44, 45, 143, 144
bad code, patching 71, 110
bad data, identifying 87, 91
Basic 3
BEGIN-END statement 31
binary, decimal to 12
binary search program 107, 110
blank-counting program I 0
Boolean operators 20

163

INDEX

boundary condition error 43, 50, 112, 125
boundary condition testing 112
bowling program 36, 145
branch, multi-way 37
branch on equality, wrong 107, 125, 142
branches after IF 17, 31
branching around branches 3, 18, 32
bug, performance 13, 136
built-in functions 9, 10
bushy decision trees 4 7

CASE statement 37
centralized input and output 97
change, ease of 2, 12, 25, 28, 90, 123, 128,

155
change-making program 48
character input function, READCH 97
checker-playing program 60
choice of algorithm 5, 74, 130, 134
clarity before efficiency 11, 130
cleverness I, 10, 73, 102, 123
Cobol 3
code and comments, agreement of 142
color-counting program 86
combining logical operators 20, 21
commenting bad code 44, 45, 143, 144
commenting variables 150
comments, agreement of code and 142
comments, excessive 104, 151
comments, incorrect 70, 88, 142, 143, 151
comments, subconscious acceptance of 142
comments, useless 142
comparing LOGICAL variables 19
comparisons, sorting run-time 133, 134,

135
compilation, separate 59
compiler, debugging 105
compiler, outsmarting the 11, 127
complexity, algorithm 135
complexity, program 16, 76, 95
composite design 77
computational complexity 130

164 THE ELEMENTS OF PROGRAMMING STYLE INDEX

computed GOTO statement 17
condition, default 37
condition, ENDFILE 65, 86, 88
condition, impossible 16, 37, 115
condition, SUBSCRIPTRANGE 85
construction, incremental 72
continuation character 14, 153
control cards 138
control flow explicit, making 35, 36, 104
convergence tests 4, 8
conversion, output 130
conversion, type 12, 24
correctness, asymptotic 113
correctness before efficiency 123, 125, 126
counting characters 6, 24
counting input data 86
coupling between modules 28, 62, 95
criticism, rules for 6
current-computing program 103
customer account program 66

data, counting input 86
data, debugging 87
data, identifying bad 87, 91
data, mnemonic input 87, 90, 92
data, plausible input 84
data representation, appropriate 20, 47, 53,

63, 74, 90, 97, 127
DATA statement, initialization with 105
data structures, recursive 77
data type, incorrect 13, 104
data, validating input 84, 91, 150, 151
date conversion program 52
dating-service program 19
De Morgan's rules 21
debugging 2, 10, 61
debugging compiler 105
debugging data 87
decimal to binary 12
decision, multi-way 37
decision tree, minimum depth 46, 53
decision trees, bushy 47
decisions, forcing order of 45
decisions, order of 38, 44, 47
decisions, rearranging 38, 44, 46
declaration, explicit type 14, 153
declaration, implicit type 14, 104, 153
declaring all variables 14
default condition 37
default parameters 94
defensive programming 16, 65, 114, 133
design, top-down 41, 71
dice si'mulation program 57
Dijkstra, E. W. xii
divisibility test 53, 63, 91
division by zero 4, 13, 152
division, truncating integer I, 49, 53, 91,

128

DO, extended range 5, 70
DO statement 34
DO statement done once 112
documentation, pseudo-code as 141
DO-END statement 31
DO-WHILE in Fortran 36, 39, 87, 103, 131
DO-WHILE statement 34

ease of change 2, 12, 25, 28, 90, 123, 128,
155

efficiency 25, 123
efficiency, clarity before 11, 130
efficiency, correctness before 123, 125, 126
efficiency, false II, 12, 24, 45, 61, 124, 127,

131
electric bill program 125
ELSE GOTO 45, 47
ELSE IF statement 37
ELSE IF statement, indentation of 38, 147
ELSE statement 32
employee wage program 123
end of file marker 86
end of file test 65, 88, 97
END= statement 86, 97
ENDFILE condition 65, 86, 88
equality tests, floating point 118, 120
equality, wrong branch on 107, 125, 142
Eratosthenes, Sieve of 139
error, boundary condition 43, 50, 112, 125
error, off by one 51, 66, 95, 105, 106, 108,

113
error, typographical 5, 13, 15, 45, 48, 110,

125, 143
errors, floating point 115
errors, multiple 102, 113
Euclidean Algorithm program 130
excessive comments 104, 151
exits from loop, multiple 48, 108, 150
explicit, making control flow 35, 36, 104
explicit type declaration 14, 153
extended range DO 5, 70

factorial program 126, 129
failure to initialize IOI, 104, 125
false efficiency II, 12, 24, 45, 61, 124, 127,

131
floating point equality tests 118, 120
floating point errors 115
floating point incrementation 13, 104, 116
floating point numbers as sandpiles 117
floating point truncation 4, 116, 118
FLOOR function 49, 128
flow, top to bottom 25, 37, 39, 66, 76, 89,

108, 124
flowcharts 114, 141
Fn. 0 input format 92
forcing order of decisions 45

INDEX

format, program 146, 148, 150
FORMAT statements, variables in 51
format, uniform input 92
formats, uniform input 93
Fortran 77 6, 39, 97
Fortran, DO-WHILE in 36, 39, 87, 103, 131
Fortran, grouping of statements in 32
Fortran, IF-ELSE in 33, 39, 41, 124
Fortran preprocessors 39
Fortran, recursion in 77
Fortran verifier 7
Fortran with semicolons 18
free-form input 88, 93, 99, 138
function, AMAX1 8
function, AMIN1 9
function, ANY 84
function arguments 3, 62, 72, 96
function, ATAN 12
function, character input 97
function, FLOOR 49, 128
function, INDEX 10
function, MOD 49, 53, 91, 128, 130
function, SUBS'l'R 10
function, TRUNC 63
functions, built-in 9, 10
functions, library 9

garbage in, garbage out 98
Gauss-Seidel iteration program 150
generality, lack of 3, 5, 9, 25
GET DATA statement 94
GOTO's and labels, avoiding 9, 17, 18, 19,

31, 35, 39, 108, 150
grouping of statements 31
grouping of statements in Fortran 32

hazards, numerical 4, 42, 118
hiding, information 24, 62, 65

identifying bad data 87, 91
identity matrix 1
IF, branches after 17, 31
IF statement 17, 31
IF-ELSE ambiguity 45
IF-ELSE in Fortran 33, 39, 41, 124
implicit type declaration 14, 104, 153
impossible condition 16, 37, 115
inaccessible code 20
incorrect comments 70, 88, 142, 143, 151
incorrect data type 13, 104
incremental construction 72
incrementation, floating point 13, 104, 116
indentation 20, 31, 32, 43, 146
indentation of ELSE IF statement 38, 147
indentation, random 18, 24
INDEX function I 0
indexed loop 34
inefficient algorithm 5, 13, 49, 70, 116, 129

INDEX 165

infinite loop 4, 73, 110, 115
information hiding 24, 62, 65
initialization with DATA statement 105
initialization with INITIAL attribute 105
initialize, failure to 101, 104, 125
input and output, centralized 97
input conversion program 99
input data, counting 86
input data, mnemonic 87, 90, 92
input data, plausible 84
input data, validating 84, 91, 150, 151
input format, Fn. O 92
input format, uniform 92
input formats, uniform 93
input, free-form 88, 93, 99, 138
input function, separate 65, 67, 71, 94, 150
insertion sorting 105
instrumentation 135
integer division, truncating 1, 49, 53, 91,

128
integration program 120
interchange sort program 132
internal modularity 53, 95, 126

Knuth, D. E. 136

labels, mnemonic 85, 108, 145
lack of generality 3, 5, 9, 25
language features, non-standard 6
library functions 9
logarithm program 117
logical IF statement 16, 17, 85
logical operators, combining 20, 21
LOGICAL variables, comparing 19
loop done zero times 51, 109, 111, 112, 131
loop, indexed 34
loop, infinite 4, 73, 110, 115
loop, multiple exits from 48, 108, 150

maintenance 10, 25, 123, 128, 155
making control flow explicit 35, 36, 104
marker, end of file 86
McCracken, D. D. xii
median program 63
metal cost program 90
Mills, Harlan xii
minimum depth decision tree 46, 53
minimum-computing program 9
mixed-mode arithmetic 6, 104
mnemonic input data 87, 90, 92
mnemonic labels 85, 108, 145
mnemonic variable names 11, 14, 15, 104,

144
MOD function 49, 53, 91, 128, 130
modularity, internal 53, 95, 126
modularization 60
modularization, appropriate 24, 62, 63, 77,

95, 150

166 THE ELEMENTS OF PROGRAMMING STYLE INDEX

modules, coupling between 28, 62, 95
monthly payment program 107
mouse in a maze program 69
multiple errors 102, 113
multiple exits from loop 48, 108, 150
multi-way decision 37

named parameters 94
NAMELIST statement 94
Newton's method for square root 4
non-local variables 24, 62
non-standard language features 6
null ELSE statement 18, 45, 47, 125
null THEN 47
numerical hazards 4, 42, 118

off by one error 51, 66, 95, 105, 106, 108,
113

ON ENDFILE statement 65, 86, 88
one routine per page 150
operator precedence ambiguity 14, 21, 102
operators, Boolean 20
operators, relational 20
optimization, premature 61
order of decisions 38, 44, 47
order of decisions, forcing 45
output conversion 130
output scale factor 84
outsmarting the compiler 11, 127
overflow 18, 132
overwriting, storage 51, 85

parameter 12
parameters, default 94
parameters, named 94
parenthesization 14, 102
patching bad code 71, 110
patterns, repeated 12, 13, 21, 43, 60
performance bug 13, 136
plausible input data 84
PL/I checkout compiler 6, 105
plotting program 57
polynomial integration program 116
portability 6, 93, 97
premature optimization 61
preprocessors, Fortran 39
prime number program 128, 146
profiler 136
program, airplane weight 43
program, average-computing 113
program, binary search 107, II 0
program, blank-counting 10
program, bowling 36, 145
program, change-making 48
program, checker-playing 60
program, color-counting 86
program complexity 16, 76, 95
program, current-computing 103

program, customer account 66
program, date conversion 52
program, dating-service 19
program description 85, 141
program, dice simulation 57
program, electric bill 125
program, employee wage 123
program, Euclidean Algorithm 130
program, factorial 126, 129
program format 146, 148, 150
program, Gauss-Seidel iteration 150
program, input conversion 99
program, integration 120
program, interchange sort 132
program, logarithm 117
program, median 63
program, metal cost 90
program, minimum-computing 9
program, monthly payment 107
program, mouse in a maze 69
program, plotting 57
program, polynomial integration 116
program, prime number 128, 146
program, quadratic equation 40
program revision 54, 155
program, right triangle 118
program, Shell sort 134
program, sin(x) 101, 119
program, sorting 5, 18, 56
program, sparse matrix 22
program, square root 3, 8
program, student grade 88, 136
program, tax computation 58
program testing 69, 101, 112, 116
program, text-centering 50
program, trapezoidal integration 23, 62
program, triangle 12
program, triangle area 84
program, word-counting 29, 95, 100
programming, structured 39
pseudo-code 39, 41, 66, 95, 102, 114
pseudo-code as documentation 141
pseudo-code, style in 41

quadratic equation program 40

random indentation 18, 24
random statement numbering 5, 20, 84,

132, 145
range checking, subscript 85
Ratfor Fortran preprocessor 39
READCH character input function 97
rearranging decisions 38, 44, 46
1 ecoding in assembly language 138
recursion 73, 166
recursion in Fortran 77
recursive data structures 77

INDEX

redundant test 33, 43, 46, 60, 124, 148, 150
redundant variables 113
reference outside array bounds 51, 85, 106,

112
refinement, successive 41, 71
relational operators 20
relational tests, rewriting 3, 31, 47
relative vs. absolute test 4, 8, 118
repeated patterns 12, 13, 21, 43, 60
revision, program 54, 155
rewriting relational tests 3, 31, 47
right triangle program 118
robust code 29, 85, 96, 115
rules, De Morgan's 21
rules for criticism 6
run-time comparisons, sorting 133, 134,

135

sandpiles, floating point numbers as 117
scale factor, output 84
separate compilation 59
separate input function 65, 67, 71, 94, 150
Shell sort program 134
Sieve of Eratosthenes 139
sin(x) program IOI, 119
Software Tools 39
sort, simple interchange 133
sorting, insertion I 05
sorting program 5, 18, 56
sorting run-time comparisons 133, 134, 135
sparse matrix program 22
special cases, avoiding 112, 126, 130, 131
square root, Newton's method for 4
square root program 3, 8
Standard Fortran 6
statement, arithmetic IF 16, 131, 132, 145
statement, BEGIN-END 31
statement, CASE 37
statement, computed GOTO 17
statement, DO 34
statement, DO-END 31
statement, DO-WHILE 34
statement, ELSE 32
statement, ELSE IF 37
statement, END= 86, 97
statement, GET DATA 94
statement, IF 17, 31
statement, indentation of ELSE IF 38, 147
statement, logical IF 16, 17, 85
statement, NAMELIST 94
statement, null ELSE 18, 45, 47, 125
statement numbering, random 5, 20, 84,

132, 145
statement, ON ENDFILE 65, 86, 88
statements, grouping of 31
statements in Fortran, grouping of 32
statements, variables in FORMAT 51

storage overwriting 51, 85
structured design 77
structured programming 39
Strunk, W. xii

INDEX

student grade program 88, 136
style in pseudo-code 41

167

subconscious acceptance of comments 142
subroutines 13
subscript, asterisk 88
subscript range checking 85
SUBSCRIPTRANGE condition 85
SUBSTR function 10
successive refinement 41, 71

tax computation program 58
telephone test 21
temporary variable II, 18, 24, 108, 124,

126
test, divisibility 53, 63, 91
test, end of file 65, 88, 97
test, redundant 33, 43, 46, 60, 124, 148,

150
test, relative vs. absolute 4, 8, 118
testing, boundary condition 112
testing, program 69, 101, 112, 116
tests, convergence 4, 8
tests, floating point equality 118, 120
tests, rewriting relational 3, 31, 4 7
text-centering program 50
The Psychology of Computer Programming

142
THEN GOTO 17, 31, 47
THEN IF 44, 47
timing package 135
top to bottom flow 25, 37, 39, 66, 76, 89,

108, 124
top-down design 41, 71
trapezoidal integration program 23, 62
triangle area program 84
triangle program 12
TRUNC function 63
truncating integer division 1, 49, 53, 91,

128
truncation, floating point 4, 116, 118
type conversion 12, 24
type declaration, explicit 14, 153
type declaration, implicit 14, 104, 153
type, incorrect data 13
typographical error 5, 13, 15, 45, 48, 110,

125, 143

undeclared variable 24, I 04
underflow 18, 102, 132
uniform input format 92
uniform input formats 93
UNIX operating system xii
unsafe variable names 15

168 THE ELEMENTS OF PROGRAMMING STYLE

useless comments 142

validating input data 84, 91, 150, 151
variable names, mnemonic II, 14, 15, 104,

144
variable names, unsafe 15
variable, temporary 11, 18, 24, 108, 124,

126
variable, undeclared 24, 104
variables, commenting 150
variables, comparing LOGICAL 19
variables, declaring all 14
variables in FORMAT statements 51
variables, non-local 24, 62
variables, redundant 113

WATFIV 39, 85, 105
Weinberg, G. M. xii, 142
White, E. 8. xii
word-counting program 29, 95, 100
wrong branch on equality 107, 125, 142

zero, division by 4, 13, 152
zero times, loop done 51, 109, 111, 112,

131

INDEX

	Elements of Programming Style (Cover)
	Copyright 1978 Bell Laboratories Inc.
	References
	Contents
	Preface to Second Edition
	Preface to First Edition
	Chapter 1: Introduction
	Write clearly - don't be too clever
	Ground Rules Used in Critisizing Programs
	Points to Ponder

	Chapter 2: Expression
	Say what you mean, simply & directly
	Use library functions
	Avoid temporary variables.
	Write clearly - don't sacrifice clarity for efficiency
	Let the machine do the dirty work
	Replace repetitive expressions by calls to common functions
	Parenthesize to avoid ambiguity
	Choose varaible names that won't be confused
	Avoid the Fortran arithmetic IF
	Avoid unnecessary branches
	Use the good features of a language; avoid the bad ones
	Don't use conditional branches as a substitute for a logical expression
	Use the "telephone test" for readability
	Chapter Summary Points
	Points to Ponder

	Chapter 3: Control Structure
	Use DO-END & indenting to delimit groups of statements
	Use IF-ELSE to emphasize that only one of two actions is to be performed
	Use DO and DO-WHILE to emphasize the presence of loops
	Make your programs read from top to bottom
	Use IF ... ELSE IF ... ELSE IF ... ELSE ... to implement multi-way branches
	Use the fundamental control flow constructs
	Write first in an easy-to-understand pseudo-language; then translate into whatever language you have to use
	Avoid THEN-IF and null ELSE
	Avoid ELSE GOTO and ELSE RETURN
	Follow each decision as closely as possible with its associated action
	Use data arrays to avoid repetitive control sequences
	Choose a data representation that makes the program simple
	Don't stop with your first draft
	Specific Chapter Points
	Points to Ponder

	Chapter 4: Program Structure
	Modularize. Use subroutines
	Make the coupling between modules visible
	Each module should do one thing well
	Make sure every module hides something
	Let the data structure the program
	Don't patch bad code - rewrite it
	Write & test a big program in small pieces
	Use recursive procedures for recursively-defined data structures
	Chapter Summary Points
	Points to Ponder

	Chapter 5: Input & Output
	Test input for validity & plausibility
	Make sure input cannot violate the limits of the program
	Terminate input by end-of-file or marker, not by count
	Identify bad input; recover if possible
	Treat end-of-file conditions in a uniform manner
	Make input easy to prepare & output self-explanatory
	Use uniform input formats
	Make input easy to proofread
	Use free-form input when possible
	Use self-identifying input. Allow defaults. Echo both on output
	Localize input & output in subroutines
	Chapter Principles Summary
	Points to Ponder

	Chapter 6: Common Blunders
	Make sure all variables are initialized before use
	Don't stop at one bug
	Use debugging compilers
	Initialize constants with DATA statements or INITIAL attributes; initialize variables with executable code
	Watch out for off-by-one errors
	Take care to branch the right way on equality
	Avoid multiple exits from loops
	Make sure your code "does nothing" gracefully
	Test programs at their boundary values
	Program defensively
	10.0 times 0.1 is hardly ever 1.0
	Don't compare floating point numbers just for equality
	Chapter Main Lessons Summary
	Points to Ponder

	Chapter 7: Efficiency & Instrumentation
	Make it right before you make it faster
	Keep it right when you make it faster
	Make it clear before you make it faster
	Don't sacrifice clarity for small gains in "efficiency"
	Let your compiler do the simple optimizations
	Don't strain to re-use code; reorganize instead
	Make sure special cases are truly special
	Keep it simple to make it faster
	Don't diddle code to make it faster - find a better algorithm
	Instrument your programs. Measure before making "efficiency" changes
	Chapter Summary Points
	Point to Ponder

	Chapter 8: Documentation
	Make sure comments and code agree
	Don't just echo the code with comments - make every comment count
	Don't comment bad code - rewrite it
	Use variable names that mean something
	Use statement labels that mean something
	Format a program to help the reader understand it
	Indent to show the logical structure of a program
	Document your data layouts
	Don't over-comment
	Chapter Summary
	Points to Ponder

	Epilogue
	Supplementary Reading
	Summary of Rules
	Index

