

Reference Guide to Pascal Statements

Statement

program heading

comment

Example of Use

program GUIDE (INPUT, OUTPUT, INFILE, OUTFILE);

[This section shows examples of Pascal statements.)
(* Comments are ignored by Pascal. *)

constant declaration
integer
character
string
real

const
STRINGSIZE = 20;
BLANK = ' ';
SCHOOL = 'TEMPLE
DEANSLIST = 3.5;

UNIVERSITY' ;
PROBATION = 1.0;

type declaration
enumerated
subrange
string
pointer
record

array
file
set

variable declaration
record
set
text file
file
pointer
array
character
integer

declaring function
with BOOLEAN
result

assignment (BOOLEAN)
set membership

type
COLLEGE = (BUSINESS, ARTS, EDUCATION, GENERAL);
STUDENTRANGE = 1 .. 100;
STRING = packed array [l .• STRINGSIZE] of CHAR;
CLASSPOINTER = ASTUDENT;
STUDENT = record

NAME : STRING;
GPA : REAL;
INCOLLEGE : COLLEGE;
NEXTSTU : CLASSPOINTER

end; [STUDENT)
MAJORARRAY = array [STUDENTRANGE] of COLLEGE;
STUFILE = file of STUDENT;
GRADESET = set of 'A' .. 'Z';

var
CURSTU STUDENT;
GRADES GRADESET;
INFILE TEXT;
OUTFILE : STUFILE;
CLASSLIST : CLASSPOINTER;
MAJOR: MAJORARRAY;
NEXTCH : CHAR;
I, COUNTPROBATION : INTEGER;

function MEMBER (NEXTCH : CHAR;
TESTSET : GRADESET) BOOLEAN;

[Returns TRUE if NEXTCH is a member of TESTSET.)

begin (MEMBER)
MEMBER := NEXTCH in TESTSET [Is NEXTCH in set?)

end; [MEMBERl

(continued on last page)

Problem Solving
and Structured
Programming in Pascal
SECOND EDITION

Problem Solving
and Structured
Programming in Pascal
SECOND EDITION

ELLIOT B. KOFFMAN
Temple University

Ayy
ADDISON-WESLEY PUBLISHING COMPANY, INC.
Reading, Massachusetts • Menlo Park, California •
Don Mills, Ontario > Wokingham, England> Amsterdam >

Sydney> Singapore· Tokyo > Mexico City> Bogota>
Santiago • San Juan

James T. DeWolf, Sponsoring Editor

Hugh Crawford, Manufacturing Supervisor
Robert Forget, Art Editor
Fran Palmer Fulton. Production Editor
Karen M. Guardino, Production Manager
Richard Hannus, Hannus Design Associates, Cover Design
Maureen Langer, Text Designer

Turbo Pascal0is a registered trademark of Borland International.
UCSD Pascale is a trademark of the Regents of the University of California.

Library of Congress Cataloging in Publication Data

Koffman. Elliot B.
Problem solving and structured programming in

Pascal.

Includes index.
1. Pascal (Computer program language) 2. Structured

programming. I. Title.
QA76.73.P2K63 1985 001.64'24 84-16811
ISBN 0-201-11736-3
ISBN 0-201-21450-4 School

Reprinted with corrections, June 1985

Copyright © 1985. 1981 by Addison-Wesley Publishing Company, Inc. All rights re
served. No part of this publication may be reproduced, stored in a retrieval sys
tem, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise. without the prior written permission of the
publisher. Printed in the United States of America. Published simultaneously in
Canada.

BCDEFGHIJK-DO-898765

To my family-Caryn, Richard, Deborah, and Robin Koffman,
for their constant love and understanding.

To my parents-Edward and Leah Koffman, for all that they
have given me.

Preface

There have been many changes in the way the first course in Computer
Science is taught since the first edition of this book was published in 1981.
During the past two years I have been the chairman of the ACM Task
Force that has been studying these changes with an eye towards updating
the description of the recommended first course for Computer Science ma
jors (CS1).l Parallel with this effort, the Educational Testing Service (ETS)
published a set of guidelines for an Advanced Placement course in Com
puter Science.f The text has been completely revised and reorganized to
conform to both of these guidelines.

This text can be used in any introductory programming course that em
phasizes a careful, disciplined approach to programming in Pascal. Since
the Advanced Placement course is a full year course, this text covers more
material than would normally be completed in one semester. The addition
al material on searching and sorting algorithms (Chapter 9) and dynamic
data structures (Chapter 10) are optional advanced topics in CS1 and
would normally be deferred until CSZ.

As in the first edition, the primary goal of this text is to illustrate and
teach problem solving through the stepwise development of algorithms. To
facilitate this, procedures are introduced much earlier in this edition.
There are also several large case studies throughout the text that integrate

'Koffman. E, Miller. P, and Wardle. C. Recommended Curriculum for CS1. 1984. Communications ACM 27.
10 (Oct., 1964). 996-1001.
2 Advanced Placement Program of the College Board. Advanced Placement Course Description: Computer
Science. Educational Testing Service. Princeton. NJ. 1963.

ix

x PREFACE

topics and illustrate their application in a substantial programming prob
lem with multiple procedures. Many new examples and programming as
signment projects are provided.

Some of the important features of this new edition are:

Early introduction of procedures: Procedures without parameters are in
troduced in Chapter 2 and are used for self-contained operations that re
quire no global variable access (no side-effects). Procedure parameters
are discussed in Chapter 3. Early coverage of procedures will enable
students to practice the top-down approach from the beginning and to
become more adept at program modularization.
Interactive programming: The emphasis is on modern technology and in
teractive programming. The majority of examples are written as interac
tive programs; however, students are shown early how to convert these
programs to run in a batch environment. There are some batch-oriented
examples as well.
New chapter on recursion: There is a new chapter on recursion that pro
vides many examples of recursive procedures and functions. Additional
algorithms for searching and sorting arrays are also provided in this
chapter.

Arrays: Single and multidimensional arrays are covered in one chapter
instead of in two as in the first edition. Similarly, all material on records
is covered in a single chapter.
New expanded case studies: There are a number of new, larger case
studies within the text. The solutions to the case studies are all careful
ly developed. System structure charts are used to represent the flow of
control and data between modules in a program system.

Spiral approach: A spiral approach is used to preview topics such as the
if statement, for statement, and input/output. Features are introduced
as needed rather than overwhelming a student by providing all the de
tails at once.
Pedagogical aids:
• Self-check Exercises are provided at the end of most sections. Solu

tions to selected exercises are provided at the end of the text.
• Each chapter ends with a Chapter Review section that includes a

summary, a table of new Pascal statements, and review questions.
• Boxed material: Syntax display boxes are used to describe the syn

tax of each new Pascal statement as it is introduced, while Program
Style boxes discuss the importance of good programming style.

• Error warnings: Each chapter ends with a discussion geared toward
helping students prevent and correct common programming errors.
Several sections discuss debugging techniques.

• Program comments: All programs are carefully commented. Loop in
variants and assertions are shown for some loops. For easy identifi
cation, the first and last line of each procedure or program is in blue
type.

New design: The page layout is larger providing more white space and

the overall tone is more user-friendly. The book has been completely re
designed with an eye towards making it easier for students to find fig
ures, examples, programs, and special display boxes. A second color is
used both to improve the appearance of the text and to clarify illustra
tions.

Pascal dialects: ANSI standard Pascal is covered in the text. Common
extensions are described in appendixes on ISO standard Pascal, UCSD
Pascal and Turbo Pascal.

Reference appendixes: There are also appendixes covering Pascal lan
guage elements, syntax diagrams, character codes, and error messages.

Complete instructor's manual: An Instructor's Manual provides a discus
sion of how to teach the concepts in each chapter. Sample test questions
will be included as well as answers to all exercises, chapter review
questions, and the Programming Projects found at the end of each chap
ter.

Transparency masters: A set of 131 transparency masters illustrating im
portant concepts is available upon request.

Acknowledgments

Many people participated in the development of this text. The principal re
viewers were most essential in finding errors and suggesting improve
ments. They include: William Eccles, University of South Carolina; Frank
Friedman, Temple University; David Hannay, Union College; Helen
Holzbaur, Temple University; Abraham Kandel, Florida State University;
Raymond Kirsch, LaSalle College; David Moffat, North Carolina State Uni
versity; Tom Nelson, North Carolina State University; Richard Rinewalt,
University of Texas at Arlington; Paul Ross, Millersville University of
Pennsylvania; Chris Speth, Western Kentucky University; Caroline
Wardle, Boston University; Charles C. Weems, [r., University of Massa
chusetts at Amherst; and Brad Wilson, Western Kentucky University. I am
grateful to all of them for their considerable efforts.

Towards the beginning of this project, several faculty and members of
the Addison-Wesley sales and marketing staffs participated in focus
groups to discuss the first programming course in Pascal. These discus
sions were helpful in providing direction to the text and clarifying its orga
nization. The faculty are: Linda Ottenstein, Michigan Tech University;
David Neusse, University of Wisconsin at Eau Claire; Richard Rinewalt,
University of Texas at Arlington; Ruth Barton, Michigan State University;
and Howard Edelman, West Chester State University.

Finally, a number of faculty reviewed and commented on preliminary
sections of the text. These faculty include: Gideon Frieder, University of
Michigan; Gary Ford, University of Colorado; Abraham Kandel, Florida
State University; Paul Hanna, Florida State University; M. Main, Universi
ty of Colorado; Kent Wooldridge, California State University at Chico;
Richard St. Andre, Central Michigan University; C. E. Wolf, Iowa State
University; Angela Wu, American University; Yure Gurevich, University of

PREFACE xi

Michigan; Amir Foroudi, State University of New York at Fredonia; Morris
Rang, 11, Western Illinois University; Peggy R. Ayres, Linn-Benton Commu
nity College; Muhammed H. Chaudhary, Millersville University of Pennsyl
vania; Stanley Thomas, Wake Forest University; R. J. Del Zoppo,
Jamestown Community College; David Rosenlof, Sacramento City College;
George Beekman, Oregon State University; George Witter, Western Wash
ington State University; J. M. Adams, New Mexico State University; John
Lushbough, University of South Dakota; Dave Valentine, State University
of New York at Potsdam; Dennis Martin, State University of New York at
Brockport; Chris J. Dovolis, University of Minnesota; Barbara Smith
Thomas, University of North Carolina at Greensboro; Barent Johnson, Uni
versity of Wisconsin at Oshkosh; Carl Wehner, University of Northern
Iowa; Aboalfazl Salimi, Embry-Riddle University; Larry Wilson, Old Do
minion University; Cary Laxer, Rose-Hulman Institute of Technology; J.
Mailen Kootsey, Duke University; Jerry Waxman, City University of New
York at Queens; Bruce J. Klein, Grand Valley State College; Eris Pas, Duke
University; Gove Effinger, Bates College; Krishna Moorthy, Framingham
State College; Brian Johnson, University of New Hampshire; and John
Coda, Georgia Institute of Technology.

There were also many people involved with the actual production of the
text. From Addison-Wesley, James DeWolf was the sponsoring editor and
recruited reviewers, provided input and suggestions during the writing
stage, and coordinated with the production staff. Bill Gruener also was the
publisher with overall responsibility for the text. Karen Guardino was the
production manager and saw to it that the book was able to meet a very
tight production schedule. Maureen Langer refined the design of the text.
In Philadelphia, Fran Palmer Fulton served as the Production Editor and
coordinated and supervised the typesetting of the manuscript. I am grate
ful to all of them for their involvement and extra efforts to get this book
published on schedule.

xli PREFACE

Philadelphia, PA
December 1984

E.B.K.

Contents

Introduction to Computers and Programming 1
1.1 Electronic Computers Then and Now 2
1.2 Components of a Computer 3
1.3 Problem Solving and Programming 6
1.4 Programming Languages 7
1.5 Processing a High-level Language Program 9
1.6 Introduction to Pascal 11
1.7 General Form of a Pascal Program 22
1.8 Using the Computer 26
1.9 Formatting Program Output 29
1.10 Introduction to Data Types 34
1.11 Common Programming Errors 36
1.12 Chapter Review 39

Problem Solving 45

2.1 Representing and Refining Algorithms 46
2.2 Using Procedures for Subproblems 52
2.3 Decision Steps in Algorithms 59
2.4 Tracing a Program or Algorithm 67
2.5 Problem Solving Strategies 69

xIII

II

II

II

xlv CONTENTS

2.6 Repetition in Programs 72
2.7 Generalizing a Solution 79
2.8 Repeating a Program Body 83
2.9 Debugging and Testing Programs 87
2.10 Common Programming Errors 88
2.11 Chapter Review 89

Control Statements 95
3.1 Syntax Diagrams 96
3.2 The if Statement Revisited 97
3.3 The while Statement 104
3.4 Procedure Parameters 111
3.5 Adding Data Flow Information to Structure Charts 128
3.6 Nested Procedures and Scope of Identifiers 132
3.7 Case Studies 136
3.8 Debugging a Program System 150
3.9 Common Programming Errors 151
3.10 Chapter Review 152

Simple Data Types 159
4.1 Constant Declarations 160
4.2 Numeric Data Types-REAL and INTEGER 161
4.3 Functions in Arithmetic Expressions 169
4.4 BOOLEAN Variables, Expressions, and Operators 175
4.5 Character Variables and Functions 180
4.6 Introduction to Programmer-defined Data Types 188
4.7 Input/Output Revisited 193
4.8 Case Study 201
4.9 Common Programming Errors 206
4.10 Chapter Review 207

More Control Statements 217
5.1 The case Statement 218
5.2 Set Values in Decisions 221
5.3 The General for Statement 223

II

5.4 The repeat Statement 225
5.5 Nested Loops 229
5.6 User-defined Functions 234
5.7 Case Studies 240
5.8 Common Programming Errors 251
5.9 Chapter Review 252

Arrays 263
6.1 Declaring and Referencing Arrays 264
6.2 Arrays with Integer Subscripts 266
6.3 Case Study 270
6.4 Manipulating Entire Arrays 276
6.5 Reading Part of an Array 282
6.6 General Arrays 283
6.7 Character Strings 288
6.8 Multidimensional Arrays 295
6.9 Case Study 302
6.10 Common Programming Errors 313
6.11 Chapter Review 313

Records 325
7.1 Declaring a Record 326
7.2 Manipulating Individual Fields of a Record 328
7.3 Manipulating an Entire Record 331
7.4 Arrays of Records 334
7.5 Case Study 335
7.6 Searching an Array 342
7.7 Sorting an Array 344
7.8 General Data Structures 348
7.9 Record Variants 352
7.10 Manipulating Strings Stored in Records 357
7.11 Common Programming Errors 363
7.12 Chapter Review 364

CONTENTS xv

II Sets and Files 371
8.1 Set Data Type and Set Operators 372
8.2 RESET, REWRITE, and the File Position Pointer
8.3 TEXT Files 381
8.4 Case Studies 385
8.5 User-defined File Types 396
8.6 Case Study-File Merge 401
8.7 Case Study-Data Base Inquiry 405
8.8 File Buffer Variable 411
8.9 Common Programming Errors 416
8.10 Chapter Review 417

379

II Recursion, Searching, and Sorting
9.1 The Nature of Recursion 426
9.2 Recursive Procedures 432
9.3 Recursive Functions 439
9.4 Binary Search of an Array 449
9.5 Searching by Hashing 453
9.6 Additional Sorting Algorithms 457
9.7 Case Study-The Quicksort Algorithm
9.8 Common Programming Errors 467
9.9 Chapter Review 468

425

462

II

xvi CONTENTS

Pointer Variables and Dynamic Data Structures
10.1 The NEW Statement and Pointer Variables 476
10.2 Understanding Dynamic Allocation 480
10.3 Introduction to Linked Lists 481
10.4 Manipulating Linked Lists Using Pointer Variables 483
10.5 Case Study-Maintaining a Linked List 487
10.6 Stacks and Queues 500
10.7 Multiple-linked Lists and Trees 506
10.8 Case Study-Maintaining a Binary Search Tree 511
10.9 Common Programming Errors 518
10.10 Chapter Review 519

475

II

II

Appendix A: Reserved Words, Standard Identifiers,
Operators, Functions, and
Procedures Ap-l

Appendix B: Additions and Extensions to
Pascal Ap-5

••••• B.1 Additional Features of ANSI/IEEE Pascal

••••• B.2 ISO Pascal

~~~~~ B.3 UCSD Pascal

••••• B.4 TURBO Pascal

III Appendix C: Pascal Syntax Diagrams Ap-19

III Appendix D: Character Sets Ap-29

III Appendix E: Error Number Summary Ap-31

II Answers to Selected Exercises Ans-I

II Index 1-1

CONTENTS xvii



Introduction to
Computers and
Programming
1.1 Electronic Computers Then and Now
1.2 Components of a Computer
1.3 Problem Solving and Programming
1.4 Programming Languages
1.5 Processing a High-level Language Program
1.6 Introduction to Pascal
1.7 General Form of a Pascal Program
1.8 Using the Computer
1.9 Formatting Program Output
1.10 Introduction to Data Types
1.11 Common Programming Errors
1.12 Chapter Review

This chapter introduces computers and computer programming. It begins
with a brief history of computers and describes the major components of a
computer including memory, central processor, input devices, and output
devices. The chapter discusses how information is represented in a com
puter and how it is manipulated.

The major categories of programming languages are introduced. Simple
computer operations are described along with some short programs that
demonstrate these operations. There is a brief introduction to the Pascal
programming language focusing on statements for reading and displaying
information and for performing simple computations.

1



Also described are the steps involved in creating a Pascal program and
the roles performed by various programs that are part of a computer sys
tem. These programs include the operating system, compiler, editor, and
loader.

• Electronic Computers Then and Now

It is difficult to live in today's society without having had some contact
with computers. Computers are used to provide instructional material in
some schools, print transcripts, send out bills, reserve airline and concert
tickets, play games, and even help authors write books.

However, it wasn't always this way. Just a short time ago, computers
were fairly mysterious devices that only a small percentage of our popula
tion knew much about. Computer "know-how" turned around when ad
vances in solid-state electronics led to drastic cuts in the size and costs of
electronic computers. Today, a personal computer (see color insert, Fig.
1.1) which costs less than $3000 and sits on a desk, has as much computa
tional power as one that 10 years ago would have cost more than $100,000
and would fill a 9 by 12 ft room. This price reduction is even more remark
able when we consider the effects of inflation over the last decade.

If we take the literal definition for computer as a device for counting or
computing, then the abacus might be considered the first computer. How
ever, the first electronic digital computer was designed in the late 1930s by
Dr. John Atanasoff at Iowa State University. Atanasoff designed his com
puter to perform mathematical computations for graduate students.

The first large-scale, general-purpose electronic digital computer, called
the ENIAC, was built in 1946 at the University of Pennsylvania. Its design
was funded by the U. S. Army, and it was used for computing ballistics ta
bles, for weather prediction, and for atomic energy calculations. The
ENIAC weighed 30 tons and occupied a 30 by 50 ft space (see color insert,
Fig. 1.2).

Although we are often led to believe otherwise, computers cannot think!
They are basically devices for performing computations at incredible
speeds (more than one million operations per second) and with great accu
racy. However, in order to accomplish anything useful, a computer must
be programmed or given a sequence of explicit instructions (the program)
to carry out.

To program the ENIAC it was necessary to connect hundreds of wires
and arrange thousands of switches in a certain way. In 1946, Dr. John von
Neumann of Princeton University proposed the concept of a stored pro
gram computer. The instructions of a program would be stored in comput
er memory rather than be set by wires and switches. Since the contents of
computer memory can be easily changed, it would not be nearly as diffi
cult to reprogram this computer to perform different tasks as it was to re
program the ENIAC. Von Neumann's design is the basis of the digital
computer as we know it today.

2 INTRODUCTION TO COMPUTERS AND PROGRAMMING



II Components of a Computer

Despite large variation in cost, size, and capabilities, modern computers
are remarkably similar in a number of ways. Basically, a computer con
sists of the five components shown in Fig. 1.3 (see color insert). The ar
rows connecting the components show the direction of information flow.

All information that is to be processed by a computer must first be en
tered into the computer memory via an input device. The information in
memory is manipulated by the central processor and the results of this
manipulation are stored in memory. Information in memory can be
displayed through an output device. A secondary storage device is often
used for storing large quantities of information in a semipermanent form.
These components and their interaction are described in more detail in the
following sections.

Computer Memory

Computer memory is used for information storage. All types of informa
tion-numbers, names, lists, and even pictures-may be represented and
stored in a computer memory.

The memory of a computer may be pictured as an ordered sequence of
storage locations called memory cells. In order to be able to store and re
trieve (access) information, there must be some way to identify the indi
vidual memory cells. To accomplish this, each memory cell has associated
with it a unique address that indicates its relative position in memory. Fig
ure 1.4 shows a computer memory consisting of 1000 memory cells with
addresses a through 999. Some large-scale computers have memories con
sisting of millions of individual cells.

The information stored in a memory cell is called the contents of a
memory cell. Every memory cell always contains some information al
though we may have no idea what that information is. Whenever new in
formation is placed in a memory cell, any information already there is
destroyed and cannot be retrieved. In Fig. 1.4, the contents of memory cell
3 is the number -26, and the contents of memory cell 4 is the letter H.

Central Processor Unit

The central processor unit (CPU) performs the actual processing or manip
ulation of information stored in memory. The CPU can retrieve informa
tion from memory. (This information may be either data or instructions for
manipulating data.] It can also store the results of these manipulations
back in memory for later use.

The control unit within the CPU coordinates all activities of the comput
er. It determines which operations should be carried out and in what or
der; the control unit then transmits coordinating control signals to the
computer components.

1.2 COMPONENTS OF A COMPUTER 3



memory cell '---
addresses

memory cell
---' contents

Fig. 1.4 A Computer Memory with 1000 Cells

Also found within the CPU is the arithmetic-logic unit (ALU). The ALU
consists of electronic circuitry to perform a variety of arithmetic opera
tions. including addition, subtraction, multiplication, and division. These
arithmetic operations are performed en data that are stored in memory;
the computational results are then saved in memory. The speed with
which the ALU can perform each arithmetic operation is about a millionth
of a second. The ALU also consists of electronic circuitry to compare in
formation and to make decisions based on the results of the comparison.

Input and Output Devices

The manipulative capability of the computer would be of little use to us if
we were unable to communicate with the computer. Specifically, we must
be able to enter data for a computation into memory. Later. the computa
tional results that are stored in memory can be displayed.

Most of you will be using a computer terminal (see color insert, Fig. 1.5)
as both an input and output device. A terminal consists of a keyboard
(used for entering information) and a monitor (used for displaying informa
tion). A terminal keyboard is similar to a typewriter keyboard except that
it has some extra keys for performing special functions. A monitor is simi
lar to a television or video screen.

4 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Some terminals are equipped with graphics capability (see color insert,
Fig. 1.6), which enables the output to be displayed as a two-dimensional
graph or picture, not just as rows of letters and numbers. With some
graphics devices, the user can communicate with the computer by moving
an electronic pointer using a joystick or a mouse.

The only problem with using a monitor as an output device is that there
is no written record of the computation. Once the image disappears from
the monitor screen it is lost. If you want hard-copy output, then you have
to send your computational results to an output device called a printer or
use a hard-copy terminal (see color insert, Fig. 1.7).

A card reader is sometimes used as an input device. A card reader
reads punch cards that have been prepared using a keypunch. Pressing a
symbol on the keypunch keyboard causes a particular configuration of
holes to be punched on a punch card. A card reader interprets these con
figurations of holes and sends the information to the computer.

Secondary Storage Device

There is another category of device, called a secondary storage device,
that is found on most computer systems. These devices are used to pro
vide additional data storage capability. Examples of secondary storage de
vices are magnetic tape and disk drives with their associated magnetic
tapes or disks (see color insert, Fig. 1.8). Large quantities of information
may be saved on a tape or disk.

The memory described in the computer memory section is often called
main memory to distinguish it from secondary memory (tapes or disks).
Main memory is much faster and more expensive than secondary memory.
Also, most computers can have only limited quantities of it. Consequently,
often it is necessary to add one or more secondary storage devices in or
der to expand the computer system's data storage capacity.

Information stored in secondary memory is organized into aggregates
called files. Results generated by the computer may be saved as data files
in secondary memory. Most of the programs that you write will be saved
as program files in secondary memory. Any file may be transferred easily
from secondary memory to main memory for further processing.

A typical computer system, including memory, a central processor. ter
minals, and tape and disk drives. is pictured in Fig. 1.9 (see color insert).
In the remainder of this text, we will see how to use this hardware by
writing software (computer programs) for specifying different kinds of data
manipulation.

Self-check Exercises for Section 1.2

1. What are the contents of memory cells 0 and 999 in Fig. 1.4? What
memory cells contain the letter X and the fraction 0.005?

2. Explain the purpose of the arithmetic-logic unit. memory, central pro
cessor, and the disk drive and disk? What input and output device will
be used with your computer?

1.2 COMPONENTS OF A COMPUTER 5



• Problem Solving and Programming

We mentioned earlier that a computer cannot think; therefore, in order to
get it to do any useful work, a computer must be provided with a program
that is a list of instructions. Programming a computer is a lot more in
volved than simply writing a list of instructions. Problem solving is an im
portant component of programming. Before we can write the program to
solve a problem, we must consider carefully all aspects of the problem
and then organize its solution.

Like most programming students, you will probably spend a great deal
of time initially in the computer laboratory entering your programs. You
will spend more time later removing the errors or bugs that inevitably will
be present in your programs.

It is tempting to rush to the computer laboratory and start entering your
program as soon as you have some idea of how to write it. You should re
sist this temptation and instead think carefully about the problem and its
solution before writing any program statements. When you have a solution
in mind, you should plan it out on paper and modify it if necessary before
writing the program.

Once the program is written on paper, you should desk check your solu
tion by "executing" it much as the computer would. You should carefully
determine the result of each program statement using sample data that are
easy to manipulate (e.g, small whole numbers). You should compare these
results with what would be expected and make any necessary corrections
to the program when the results are incorrect. Only then should you go to
the computer laboratory and start to enter the program. Experience has
shown that a few extra minutes spent evaluating the proposed solution in
this way often saves hours of frustration later. The process you should fol
low is shown in Fig. 1.10.

In this text, we will stress a methodology for problem solving that we
have found useful in helping students to learn to program. We will teach a
technique called structured programming that should enable you to write
programs that are relatively easy to read and understand and that contain
fewer initial errors.

Most students have very strong positive or negative feelings about pro
gramming; very few students are ambivalent. Some of the reasons that
programming can be less than enjoyable are the following:

1. You are learning a new language with its own syntax or rules of gram
mar.

2. You must carefully plan out what actions you would like performed
and their sequence.

3. You must be explicit and accurate in describing what you wish done.
4. You must implement your solution in an existing programming lan

guage. What seems simple to write in English may require consider
able effort to specify in a programming language.

5. You must carefully enter all program instructions and all data since

6 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Fig. 1.10 Programming Strategy

each instruction must correspond exactly with the syntax of the pro
gramming language. Omitting a comma can cause your program to fail.

6. You will be dealing with equipment that occasionally malfunctions
and sometimes is not accessible when you want to use it.

7. When you make a mistake (and you will make lots of mistakes) it is
often difficult to determine what is wrong so that you can fix it.

This list is not intended to scare you, but to alert you to some of the prob
lems that you may encounter. If you are careful, patient, and plan ahead
you can avoid some of these problems. Planning ahead includes schedul
ing your time so that you can make use of the computer laboratory during
hours when it is less busy.

• Programming Languages

Languages used for writing computer programs are called programming
languages. There are many different programming languages, which fall
into one of three broad categories: machine, assembly, or high-level lan
guages.

High-level languages are most often used by programmers (program
writers). One reason for the popularity of high-level languages is that they
are much easier to use than machine and assembly languages. Another
reason is that a high-level language program is portable. This means that
it can be executed without modification on many different types of com
puters. An assembly language or machine-language program, on the other
hand, may only execute on one type of computer.

1.4 PROGRAMMING LANGUAGES 7



Some common high-level languages are BASIC, FORTRAN, COBOL, and
Pascal. Each of these high-level languages has a language standard that
describes the form and meaning of all its statements. Generally there are
additional features available on a particular computer that are not part of
the standard. A program will be portable only when the programmer is
careful to use those features that are part of the standard.

One of the most important features of high-level languages is that they
allow us to write program statements that resemble English. We can refer
ence data that are stored in memory using descriptive names (e.g. NAME,
RATE) rather than numeric memory cell addresses. We can also describe
operations that we would like performed using familiar symbols. For ex
ample, in several high-level languages the statement

Z := X + Y

means add X to Y and store the result in Z.
We can also use descriptive names to reference data in assembly lan

guage; however, we must specify the operations to be performed on the
data more explicitly. The high-level language statement above might be
written as

LOAD X
ADD Y
STORE Z

in an assembly language.
Machine language is the native tongue of a computer. Each machine

language instruction is a binary string (string of D's and l's) that specifies
an operation and the memory cells involved in the operation. The assem
bly language statements above might be written as

0010 0000 0000 0100
0100 0000 0000 0101
0011 0000 0000 0110

in a machine language. Obviously, what is easiest for a computer to un
derstand is most difficult for a person and vice versa.

A computer can execute only programs that are in machine language.
Consequently, a high-level language program must first be translated into
machine language using a special program called a compiler. The machine
language program must then be loaded into computer memory by the load
er program before it can be executed. This process is illustrated in Fig.
1.11 and described in more detail in the next section.

Self-check Exercises for Section 1.4

1. Explain the role of a compiler and loader.
2. What do you think the high-level language statements below mean?

X := A + B + C X := Y / Z D := C - B + A

8 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Fig. 1.11 Translating a high-level language program

• Processing a High-level Language Program

Before it can be processed, a high-level language program must be entered
at the terminal. The program will be stored on disk as a file called the
source file (see Fig. 1.12).

Once the source file is saved, it must be translated into machine lan
guage. A compiler processes the source file and attempts to translate each
statement into machine language.

One or more statements in the source file may contain a syntax error.
This means that these statements do not correspond exactly to the syntax
of the high-level language. In this case, the compiler will cause some error
messages to be displayed.

At this point, you can make changes to your source file and have the
compiler process it again. If there are no more errors, the compiler will
create an object file, which is your program translated into machine lan
guage. The object file can then be stored in main memory by the loader
program and then executed. Both the compiler and loader programs are
part of your computer system. This process is shown in Fig. 1.12.

Executing a Program

In order to execute a program, the computer control unit must examine
each program instruction in memory and send out the command signals re
quired to carry out the instruction. Normally, the instructions are executed
in sequence; however, as we will see later it is possible to have the con-

1.5 PROCESSING A HIGH-LEVEL LANGUAGE PROGRAM 9



Fig. 1.12 Preparing a Program for Execution

trol unit skip over some instructions or execute some instructions more
than once.

During execution, data may be entered into memory and manipulated in
some specified way. Then, the result of this data manipulation will be
displayed.

Figure 1.13 shows the effect of executing a payroll program stored in
memory. The first step of the program requires entering data into memory
that describe the employee. In step 2, the employee data are manipulated
by the central processor and the results of computations are stored in
memory. In the final step, the computational results may be displayed as
payroll reports or employee payroll checks. An example of a program that
does this is provided later in the chapter.

Self-check Exercises for Section 1.5

1. What is the difference between the source file and object file? Which
do you create and which does the compiler create? Which one is pro
cessed by the loader?

2. What is a syntax error and in which file would a syntax error be
found?

10 INTRODUCTION TO COMPUTERS AND PROGRAMMING



memory

Fig. 1.13 Flow of Information during Program Execution

• Introduction to Pascal

Pascal was developed in 1971 by Professor Nicklaus Wirth of Zurich, Swit
zerland. It is currently one of the most widely used languages for teaching
programming. Its popularity is due to the fact that its syntax is relatively
easy to learn. Also, Pascal facilitates writing structured programs-pro
grams that are relatively easy to read, understand, and maintain (keep in
good working order).

There are two similar standards for Pascal. This textbook will cover
features of the language that are included in the 1983 ANSI/IEEE (Ameri
can National Standards Institute/Institute for Electrical and Electronics
Engineers) Standard. Features of this standard not discussed in the text
are described in Appendix B1. Other features that are included in the ISO
International Standard (but not in the ANSI/IEEE Standard) are described
in Appendix B2. Finally, additional features that are often available but
are not in either standard are described in Appendixes B3 and B4.

The rest of this chapter will provide a brief introduction to Pascal.
Statements for reading data, performing simple computations, and dis
playing results will be described.

Two Sample Programs

Before beginning our study of Pascal, we will examine two short pro
grams. Don't worry about understanding the details of these programs yet;
it will all be explained later.

1.6 INTRODUCTION TO PASCAL 11



Example 1.1

Example 1.2

program HELLO (INPUT, OUTPUT);

var
LETTERl, LETTER2, LETTER3 : CHAR;

begin
WRITELN ('Enter a 3 letter nickname and press return.');
READLN (LETTERl, LETTER2, LETTER3);
WRITELN ('Hello', LETTERl, LETTER2, LETTER3, '.');
WRITELN ('We hope you enjoy studying Pascal! ')

end.

Enter a 3 letter nickname and press return.
Bob
Hello Bob.
We hope you enjoy studying Pascal!

Fig. 1.14 Printing a Welcoming Message

Figure 1.14 contains a Pascal program followed by a sample execution of
that program. For easy identification, the program name and last line are
in blue; the information entered by the program user also is in blue in the
sample execution.

The program statement starting with var identifies the names of three
memory cells (LETTERl, LETTER2, LETTER3) that will be used to store
each letter of the nickname. Each program statement starting with
WRITELN cause a line of output to be displayed during program execution.
The first WRITELN statement generates the first line of the sample output,
which asks the program user to enter three letters.

The program statement

READLN (LETTERl, LETTER2, LETTER3);

reads the three letters Bob (entered by the program user) into the three
memory cells listed (one letter per cell). The next statement

WRITELN ('Hello', LETTERl, LETTER2, LETTER3, '.');

displays these letters after the message string' Hello '. The string ,
causes a period to be printed after the third letter.

The program in Fig. 1.15 converts inches to centimeters. The number of
inches to be converted is read into the memory cell INCHES by the state
ment

READLN (INCHES);

The statement

CENT := CENTPERINCH * INCHES;

12 INTRODUCTION TO COMPUTERS AND PROGRAMMING



program INCHTOCENT (INPUT, OUTPUT)~

const
CENTPERINCH 2.54~

var
INCHES, CENT : REAL~

begin
WRITELN ('Enter a length in inches.')~

READLN (INCHES) ~

CENT := CENTPERINCH * INCHES;
WRITELN ('That equals', CENT, ' centimeters. ')

end.

Enter a length in inches.
30.0
That equals 7.620000E+Ol centimeters.

Fig. 1.15 Converting Inches to Centimeters

computes the equivalent length in centimeters by multiplying the length in
inches by 2.54 (the number of centimeters per inch); the product is stored
in memory cell CENT.

The statement

WRITELN ('That equals " CENT, ' centimeters. ')

displays a message string, the value of CENT, and a second message
string. The value of CENT is printed in Pascal scientific notation as
7.620000E+01. This is equivalent to 7.62 X 10 or 76.2 as will be explained
later.

One of the nicest things about Pascal is that it lets us write program
statements that resemble English. At this point, you probably can read
and understand the sample programs, even though you may not know how
to write your own programs. The following sections provide a detailed ex
planation of the Pascal statements seen so far.

Reserved Words and Standard Identifiers

Each of the statements in the programs in Fig 1.15 satisfies the Pascal syn
tax for that statement type. If the program statements that you enter do
not follow this syntax, t~ey may not be translated.

Each Pascal statement contains a number of different elements: reserved
words, standard identifiers, special symbols, and names for data and pro
grams. The reserved words have special meaning in Pascal and cannot be
used for other purposes.

Reserved words in Figs. 1.14 and 1.15
program, const, var, begin, end

The standard identifiers also have special meaning but they can be used
by the programmer for other purposes (not recommended).

1.6 INTRODUCTION TO PASCAL 13



Standard identifiers in Figs. 1.14 and 1.15
READLN, WRITELN, REAL, CHAR, INPUT, OUTPUT

There are also some symbols (e.g. =, «, : =) that have special meaning.
Appendix A contains a complete list of reserved words, standard identi
fiers, and special symbols.

What is the difference between reserved words and standard identi
fiers? Although it is illegal to use a reserved word for the name of a data
item, it is legal to use a standard identifier. However, if you do this, then
Pascal no longer associates any special meaning with that identifier. For
example, you could decide to use READLN as the name of a data item, but
then you would not be able to use READLN to read a data value. Obvious
ly, this would be a pretty silly thing to do, and we don't recommend it.

Besides standard identifiers, the programs in Figs. 1.14 and 1.15 contain
other identifiers that are used as the names of programs or data. The form
of these identifiers is described in the next section.

Other identifiers in Figs. 1.14 and 1.15
HELLO, LETTERl, LETTER2, LETTER3, INCHES,
CENT, CENTPERINCH, INCHTOCENT

PROGRAM STYLE

Use of uppercase, lowercase, and computer type

Throughout the text, issues of good programming style will be dis
cussed in displays such as this one. Programming style displays will
provide guidelines for improving the appearance and readability of
programs. Most programs will be examined or studied by someone
else. A program that follows some consistent style conventions will
be easier to read and understand than one that is sloppy or inconsis
tent. Although these conventions make it easier for humans to under
stand programs, they have no affect whatsoever on the computer.

Reserved words will always appear in lowercase in programs; all
other identifiers will appear in uppercase. We recommend that you
follow this convention in your programs so that it will be easy to dis
tinguish reserved words from other identifiers. Some Pascal compil
ers do not allow lowercase characters in Pascal statements. If this is
true for your compiler, you will have to use uppercase for reserved
words as well.

If both uppercase and lowercase are allowed, the compiler will not
differentiate between them in reserved words or identifiers. This
means that you can write the reserved word const as CaNST or the
special identifier READLN as Readln. However, const and
READLN would be preferred according to our convention.

Within the text body, reserved words appear in a computer type
font, making them easily recognizable.

14 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Fig. 1.1 IBM personal computer

Fig. 1.2 The ENIAC computer (Photo courtesy of Sperry Corporation.)



Secondary Storage Device

II
<-=

Input Device

Output Device

Fig. 1.3 Components of a computer (From Koffman and Friedman, Problem Solvingin Struc
tured BASIC-PLUS and VAX-11 BASIC, © 1984, Addison-Wesley.)

Fig. 1.5 A computer terminal



Fig. 1.6 Macintosh computer with mouse (Courtesy of Apple Computer, Inc.)

Fig. 1.7 A printing terminal ( @ Digital Equipment Corp. All rights reserved.
Reprinted with permission.)



Fig. 1.8 Inserting a floppy disk in a disk drive ( @ Digital Equipment Corp. All rights re
served. Reprinted with permission.)

Fig. 1.9 VAX-111780 computer system (@ Digital Equipment Corp. All rights re
served. Reprinted with permission.)



Declaring Identifiers

How do we tell Pascal what identifiers will be used in a program? One
way is the program statement

program HELLO (INPUT, OUTPUT);

which specifies the name (HELLO) of the program. INPUT and OUTPUT
are standard identifiers; they indicate that data will be read into the pro
gram from an input data file (INPUT) and that output values will be writ"
ten to an output data file (OUTPUT). The data file INPUT may consist of
information entered at the terminal keyboard; information written to file
OUTPUT may be displayed on the video screen.

Another way to tell Pascal the names of identifiers is through declara
tion statements. The constant declaration

const
CENTPERINCH = 2.54;

specifies that the identifier CENTPERINCH will be used as the name of
the constant 2.54.

Identifiers declared in a constant declaration are called constants. Only
data values that never change (e.g. the number of centimeters per inch is
always 2.54) should be associated with an identifier that is a constant. It
is illegal to attempt to change the value of a constant in a Pascal program.

The variable declaration

var
LETTERl, LETTER2, LETTER3 : CHAR;

in Fig. 1.14 gives the names of three identifiers that will be used to refer
ence data items that are individual characters. The variable declaration

var
INCHES, CENT : REAL;

in Fig. 1.15 gives the names of two identifiers that will be used to refer
ence data items that are real numbers (e.g. 30.0. 562.57).

Identifiers declared in a variable declaration statement are called vari
ables. Variables are used in a program for storing input data items and
computational results. The standard identifiers (REAL. CHAR) used in the
variable declaration statement tell Pascal what type of data will be stored
in the variable. The data types REAL and CHAR will be discussed in more
detail in Section 1.10.

You have quite a bit of freedom in selecting identifiers that are used to
name your programs or data. The syntactic rules are:

1. An identifier must always begin with a letter.
2. An identifier must consist of letters or digits only.

1.6 INTRODUCTION TO PASCAL 15



You cannot use an identifier that is a reserved word in Pascal to name
your data. Some valid and invalid identifiers are listed below.

valid identifiers
LETTER1,LETTER2,INCHES,CENT,CENTPERINCH,HELLO

invalid identifiers
lLETTER,CONST,var,TWO*FOUR,Joe's

Although the syntactic rules above do not place a limit on the length of
an identifier, some compilers recognize only the first eight characters in an
identifier. These compilers will consider the identifiers CONSONANTl and
CONSONANT2 to be the same identifier (CONSONAN); consequently, these
identifiers could not be declared together in a program translated by such
a compiler.

Some compilers include the underscore character in the list of charac
ters specified in syntactic rule 2. On these compilers, the multi-word iden
tifier INCHTOCENT could be written more clearly as INCH_TO_CENT;
however, this is not valid in standard Pascal.

Every identifier used in a Pascal program must be either declared or
predefined (reserved words and standard identifiers). The category of
each identifier used in Examples 1.1 and 1.2 is shown in Table 1.1.

Table 1.1 Category of Identifiers in Examples 1.1 and 1.2

Reserved Words

program,var,const,
begin, end

Standard Identifiers

INPUT,OUTPUT,CHAR,
REAL, READLN,
WRITELN

Identifiers

HELLO, LETTER1,
LETTER2, LETTER3,
INCHTOCENT,
CENTPERINCH,
INCHES,CENT

The statements introduced in this section are summarized in the dis
plays below. Each display describes the syntax of the statement and then
provides an interpretation of the statement. Each of the elements in italics
is described in the interpretation section.

PROGRAM STATEMENT

program prog-name (INPUT, OUTPUT);

Interpretation: The name of the program is indicated by prog-name.
The input data will be read from data file INPUT; the output results
will be written to data file OUTPUT.

16 INTRODUCTION TO COMPUTERS AND PROGRAMMING



r
CONSTANT DECLARATION

const constant = value;

Interpretation: The specified value is associated with the identifier
constant. The value of constant cannot be changed by any subse
quent program statements.

VARIABLE DECLARATION

var variable-list: type;

Interpretation: A memory cell is allocated for each variable (an iden
tifier) in the variable-list. The type of data (REAL, CHAR, etc.) to be
stored in each variable is specified following the":". Commas are
used to separate the identifiers in the variable-list.

PROGRAM STYLE

Choosing identifier names

It is very important to pick meaningful names for identifiers as this
will make it easier to understand their use in a program. For exam
ple, the identifier SALARY would be a good name for a variable used
to store a person's salary; the identifiers S and BAGEL would be bad
choices.

There is no restriction on the length of an identifier. However, it is
hard to form meaningful names using fewer than three letters. On the
other hand, if an identifier is too long, it becomes difficult to type
correctly each time it appears in a program. A reasonable rule of
thumb is to use names that are between three and ten characters in
length.

If you mistype an identifier, the compiler will usually detect this as
a syntax error. Sometimes mistyped identifiers wind up looking like
other identifiers. For this reason, it is best to avoid picking names
that are very similar to each other. Also, names that are almost the
same can cause quite a bit of confusion.

Assignment Statements

One of the main functions of a computer is to perform arithmetic computa
tions. In this section, we will see how to specify computations using the
assignment statement.

1.6 INTRODUCTION TO PASCAL 17



The assignment statement

CENT := CENTPERINCH * INCHES;

in Fig. 1.16 is used to assign a value to the variable CENT. In this case,
CENT is being assigned the result of the multiplication (* means multiply)
of the constant CENTPERINCH by the variable INCHES. Valid information
must be stored in both CENTPERINCH and INCHES before the assignment
statement is executed. As shown in Fig. 1.16, only the value of CENT is af
fected by the assignment statement; CENTPERINCH and INCHES retain
their original values.

CENTERPINCH INCHES

CENT..
Fig. 1.16 Effect of CENT := CENTPERINCH * INCHES;

The symbol : = is the assignment operator in Pascal and should be read
as "becomes" or "takes the value of' rather than "equals". The : and =
must be adjacent characters (no intervening space). The general form of
the assignment statement is shown in the next display.

ASSIGNMENT STATEMENT

result : = expression

Interpretation: The variable specified by result is assigned the value
of expression. The previous value of result is destroyed. The expres
sion can be a single variable, a single constant, or involve variables,
constants, and the arithmetic operators listed in Table 1.2.

Table 1.2 Some Arithmetic Operators

Arithmetic Operator

+

*
/

Meaning

addition
subtraction
multiplication
division

18 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Example 1.3 In Pascal, it is alright to write assignment statements of the form

SUM := SUM + ITEM

where the variable SUM is used on both sides of the assignment operator.
This is obviously not an algebraic equation, but it illustrates something
that is often done in programming. This statement instructs the computer
to add the current value of the variable SUM to the value of ITEM; the re
sult is saved temporarily and then stored back into SUM. The previous val
ue of SUM is destroyed in the process as illustrated in Fig. 1.17; however,
the value of ITEM is unchanged.

before assignment: SUM ITEM

after assignment:

Example 1.4

Fig. 1.17 Effect of SUM := SUM + ITEM

Assignment statements can also be written with an expression part that
consists of a single variable or value. The statement

NEWX := X

instructs the computer to copy the value of X into NEWX. The statement

NEWX := -x

instructs the computer to get the value of X, negate this value, and store
the result in NEWX (e.g, If X is 3.5, NEWX is -3.5). Neither of the assign
ment statements above changes the value of X.

The READLN Statement

Information cannot be manipulated by a computer unless it is first stored
in main memory. There are three ways to place a data value in memory:
associate it with a constant, assign it to a variable, or read it into memory.
The first two approaches can be followed only when the value to be
stored will be the same every time the program is run. If we wish to be
able to store different information each time, then it must be read in as
the program is executing.

The READLN statement

READLN (INCHES);

1.6 INTRODUCTION TO PASCAL 19



number entered:

�iiil4..-----------3-0( (return)

Fig. 1.18 Effect of READLN (INCHES);

is used in Fig. 1.15 to read a real number into the variable INCHES. This
statement causes the number entered at the terminal to be stored in the
variable INCHES. After typing a number, the program user should press
the key labeled return or enter. The effect of this READLN statement is
shown in Fig. 1.18.

The program in Fig. 1.14 reads a person's nickname. Each person using
the program may have a different nickname so three letters are read in us
ing the READLN statement

READLN (LETTERl, LETTER2, LETTER3);

This statement causes data entered at the terminal to be stored in each
of the three variables listed above. Since these variables are type CHAR,
one character will be stored in each variable. Fig. 1.19 shows the effect of
this statement when the letters Bob are entered.

It is interesting to note that the four input characters in Fig. 1.18 com
prise a single data value, the number 30.5, which is stored in the variable
INCHES (type REAL). In Fig. 1.19, each input character represents a sepa
rate data value and is stored in a different variable (type CHAR).

The number of characters read by a READLN statement depends on the
type of the variable in which the data will be stored. Only one character
is read for a type CHAR variable; for a type REAL variable, Pascal contin
ues to read characters until a character that cannot be part of a number is
reached (e.g. a blank or a letter) or the return key is pressed.

How do we know when to enter the input data and what data to enter?
Your program should print a prompting message (as explained in the next
section) to inform the program user what data should be entered and
when. The cursor (a moving place marker) indicates the position on the
screen of the next character to be displayed. As each character is entered,
the cursor advances to the next screen position.

Fig. 1.19 Effect of READLN (LETIER1, LETIER2, LETIER3)

letters entered:

LETTER.,.1 B

1

ob (return).... .

LETTER2

LETTER3

20 INTRODUCTION TO COMPUTERS AND PROGRAMMING



READLN STATEMENT

READLN (input-list)

Interpretation: Data are entered into each variable specified in the in
put-list. Commas are used to separate the variable names in the in
put-list. When a READLN statement is executed, program execution is
suspended until the required data items are entered. There must be
one data item for each variable in the input-list, and the order of the
data must correspond to the order of the variables in the input-list. A
space should be left between numeric data items. Character data are
typed in without intervening spaces since a space is a character.

The WRITELN Statement

In order to see the results of a program execution we must have some way
of specifying what variable values should be displayed. In Fig. 1.15, the
statement

WRITELN ('That equals' CENT, , centimeters.')

causes the line

That equals 7.620000E+OI centimeters.

to be displayed. There are actually three separate items printed: the string
'That equals ',the value of the variable CENT, and the string
I centimeters. I. A string is a sequence of characters enclosed in sin
gle quotes or apostrophes. When a WRITELN statement is executed, the
characters enclosed in quotes are printed but not the quotes.

The number in the output line above is 76.2 expressed in Pascal scientif
ic notation. In normal scientific notation, 7.62 X 101 means multiply 7.62
by 10 or move the decimal point right one digit. Since superscripts cannot
be entered or displayed at the terminal, the letter E is used in Pascal to in
dicate scientific notation.

In Fig. 1.14, the statement

WRITELN ('Hello', LETTERI, LETTER2, LETTER3, , .');

causes the line

Hello Bob.

to be printed. In this case, three variable values are printed between the
strings 'Hello ' and I ,

1.6 INTRODUCTION TO PASCAL 21



Finally, the statements

WRITELN ('Enter a 3 letter nickname and press return.');
WRITELN ('Enter a length in inches.');

are both used to display prompts or prompting messages in Figs. 1.14 and
1.15, respectively. A prompting message is a string that is displayed just
before a READLN statement is executed to prompt the program user to en
ter data. The prompt may describe the format of the data expected. It is
very important to precede each READLN statement with a WRITELN that
prints a prompt; otherwise, the program user may have no idea that the
program has stopped executing or what data to enter.

THE WRITELN STATEMENT

WRITELN (output-list)

Interpretation: The value of each variable or constant is printed in
the order in which it appears in output-list. A string is printed with
out the quotes. The cursor advances to the start of the next line after
the entire output line is displayed.

Self-check Exercises for Section 1.6

1. Indicate which of the identifiers below are Pascal reserved words,
standard identifiers, identifiers, or invalid identifiers.

END READLN BILL PROGRAM SUE'S RATE OPERATE START
BEGIN CONST XYZ123 123XYZ THISISALONGONE Y=Z

2. Correct the syntax errors in the program below and rewrite it so that
it follows our style conventions. What does each statement of your
corrected program do? What is printed?

program SMALL (INPUT, output) VAR X, Y, X , real:
BEGIN 15.0 = Y; Z:= -Y + 3.5; Y + z =: X;
writeln (x; Y; z) end;

3. Change the WRITELN statement in the program above so that the line

The value of X is pounds.

is printed to display the value assigned to variable X.

II General Form of a Pascal Program

In the preceding sections, we described six kinds of Pascal statements: the
program statement, constant declaration, variable declaration, assign-

22 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Example 1.5

ment, READLN, and WRITELN. They will appear in most of the programs
that you write.

A new program is shown in Fig. 1.20. This program computes an employ
ee's gross pay and net pay using the algebraic formulas

gross pay = hours worked X hourly rate
net pay = gross pay - tax amount

These formulas are written as the Pascal assignment statements

GROSS := HOURS * RATE;
NET := GROSS - TAX;

in the payroll program shown in Fig. 1.20. New values of HOURS and RATE
are read each time the program is executed; a constant TAX of $25.00 is al
ways deducted.

program PAYROLL (INPUT, OUTPUT);

canst
TAX = 25.00;

var
HOURS, RATE, GROSS, NET : REAL;

begin
WRITELN ('Enter hours worked'); READLN (HOURS);
WRITELN ('Enter hourly rate'); READLN (RATE);
GROSS := HOURS * RATE;
NET := GROSS - TAX;
WRITELN ('Gross pay is $', GROSS);
WRITELN ('Net pay is $', NET)

end.

Enter hours worked
15
Enter hourly rate
3.35
Gross pay is $ 5.025000E+Ol
Net pay is $ 2.525000E+Ol

Fig. 1.20 Payroll Program

This program first reads the data representing hours worked and hourly
rate and then computes gross pay as their product. Next, it computes net
pay by deducting a constant tax amount of 25.00. Finally, it displays the
computed values of gross pay and net pay.

Semicolons, Begin, and End

In addition to the statements discussed so far, this program contains the
reserved words begin and end and also punctuation in the form of semi-

1.7 GENERAL FORM OF A PASCAL PROGRAM 23



colons and a period. Each Pascal program consists of a declaration part
and a program body. The declaration part is used to describe the identi
fiers referenced in the program; the program body is used to specify the
data manipulation. The reserved word begin is used to mark the begin
ning of the program body; the reserved word end marks the end of the
program body and is always the last line in a Pascal program. Note that
the last end is always followed by a period.

Semicolons are used to separate Pascal statements. Consequently. a
semicolon always is inserted between statements in a program. A semico
lon is not used after the reserved word begin nor before the reserved
word end because they are not statements.

As shown in Fig. 1.20. it is possible to write a Pascal statement on more
than one line. Both the variable declaration and constant declaration
statements start on one line and finish on the next. A statement may be
spread over two lines providing it is not split in the middle of an identi
fier. a reserved word. a number. or a string.

Also, it is possible to write more than one statement per line. We have
combined a WRITELN statement that displays a prompt with the READLN
statement that enters the data. A semicolon separates this pair of state
ments.

PROGRAM STYLE

Use of blank space

The consistent and careful use of blank spaces can significantly en
hance the style of a program. A blank space is required between
words in a program (e.g, between program and PAYROLL in the
program statement).

Extra blanks between words and symbols are ignored by the com
piler and may be inserted as desired to improve the style and ap
pearance of a program. As shown in Fig. 1.20, we will always leave a
blank space after a comma and before and after operators such as *,
-, :=. Also, we will indent each statement in the program body. We
will also write the reserved words const, var, begin, and end by
themselves on a line so that they stand out. Finally, we will use
blank lines between sections of the program.

All of these measures are taken for the sole purpose of improving
the style and hence the clarity of the program. They have no effect
whatever on the meaning of the program as far as the computer is
concerned; however. they can make it easier for humans to read and
understand the program.

Be careful not to insert blank spaces where they do not belong. For
example. there cannot be a space between the characters : and =
that comprise the assignment operator : =. Also. the identifier
TAXRATE cannot be written as TAX RATE.

24 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Programs in Memory

It would be worthwhile to pause for a moment and take a look at the pay
roll program in memory. Fig. 1.21 shows the payroll program loaded in
memory and the program data area before execution of the program body.
The question mark in memory cells HOURS, RATE, GROSS, and NET indi
cates that these variables are undefined (value unknown) before program
execution begins. During program execution, the data values 40.0 and 4.50
are read into the variables HOURS and RATE, respectively. After the as
signment statements shown earlier are used to compute values for GROSS
and NET, all variables are defined as shown in Fig. 1.21b.

a) before execution b) after execution

Fig. 1.21 Memory before and after Execution of a Program

Program Declaration Part and Program Body

We can summarize what we have learned about Pascal programs by ex
amining the general form of a Pascal program as shown in Fig. 1.22. Every
identifier used in a program must be declared exactly once in the declara
tion part of a program unless it is a reserved word or standard identifier.
The reserved words canst and var may appear at most once and in the
order shown. All constant declarations come after canst and all variable
declarations after var. More than one constant may be declared, and
there may be more than one variable-list.

The program body (including begin and end) follows the declaration
part. Semicolons must be inserted between program statements; a period
is required after end.

1.7 GENERAL FORM OF A PASCAL PROGRAM 25



program prog-name (INPUT, OUTPUT);

const
constant = value;

constant = val ue;

var
variable-list type;

variable-list: type;

begin
program statement;

program statement
end.

Fig. 1.22 General Form of a Program

II Using the Computer

After a program is written, it must be entered at the terminal. We talked
about the process of translating and executing a program in Section 1.5
(see Fig. 1.12). The mechanics of doing this differ on each computer sys
tem; we will describe the general process in this section.

Interactive Mode and Batch Mode

There are two basic modes of computer operation: batch and interactive.
The programs that we have written so far are intended to be run in inter
active mode. In this mode, the program user can interact with the program
and enter data while the program is executing.

Interactive mode is most common today and is normally used on a per
sonal computer or a larger timeshared computer. Timeshared computers
are often used in universities for instructional purposes. In this environ
ment, many users are connected by terminals to one central computer, and
all users share the central facilities.

In batch mode, all data must be supplied beforehand as the program
user cannot interact with the program while it is executing. A computer
system that only uses punch cards as its input medium must operate in
batch mode. Batch mode is an option on most timeshared or personal
computers.

If you use batch mode, then you must prepare a batch data file before
executing your program. On a timeshared or personal computer, a batch

26 INTRODUCTION TO COMPUTERS AND PROGRAMMING



data file is created and saved in the same way as a program file. This will
be discussed shortly.

Since a batch mode program cannot interact with its user, it makes no
sense to provide prompts. Each READLN statement reads data items from
a previously prepared data file. Since there is no record of the data that
are read, a WRITELN statement is used after [instead of before) each
READLN statement to echo print the data values just read into memory.

The payroll program is rewritten as a batch program in Fig. 1.23. The file
INPUT is associated with a batch data file instead of the keyboard. The
first four statements in the program body are used to read and echo print
the data. The statement

READLN (HOURS) ;

reads the value of HOURS from the first line of the batch data file; the next
statement

WRITELN (' Hours worked are I, HOURS);

echo prints the value read into HOURS.
Each of the WRITELN statements in Fig. 1.23 begins with a string whose

first character is a blank that is not printed. The reason for this is that
batch programs often use a printer as an output device instead of a video
screen. Some printers remove the first character from every output line
and use it to determine the line spacing between this line and the one
previously printed. Blank characters at the beginning of every line would
result in single-spaced program output.

Fig. 1.23 Payroll Program as a Batch Program

program PAYROLL (INPUT, OUTPUT);

const
TAX = 25.00;

var
HOURS, RATE, GROSS, NET REAL;

begin
READLN (HOURS);
WRITELN (' Hours worked are', HOURS);
READLN (RATE);
WRITELN (' Hourly rate is " RATE);
GROSS := HOURS * RATE;
NET := GROSS - TAX;
WRITELN (' Gross pay is $', GROSS);
WRITELN (' Net pay is $', NET)

end.

Hours worked are
Hourly rate is
Gross pay is $
Net pay is $

1.500000E+Ol
3.350000E+00

5.025000E+Ol
2.525000E+Ol

1.8 USING THE COMPUTER 27



Operating System

\,
\ .

Regardless of what mode of computing or kind of computer you are using,
it will be necessary to interact with a supervisory program within the "
computer called the operating system. In large timeshared computers, it is
the responsibility of the operating system to allocate the central resources
among many users. Some operating system tasks are:

1. Validating user identification and account number
2. Making the editor, compiler, or loader available
3. Allocating memory and processor time
4. Providing input and output facilities
5. Retrieving needed files
6. Saving new files that are created

,
t,,

Even in smaller personal computers, the operating system still must per-
form tasks 2 through 6 above. r

Each computer has its own special control language for communicating
with its operating system. We cannot really provide the details here, but '
we will discuss the general process next. Your instructor will provide the
specific commands for your system.

Creating a Program or Data File

In order to use an interactive system, it is first necessary to "boot up" a
personal computer or "log on" to a timeshared computer. Once you have
accomplished one of these tasks, you can begin to create your program. ;,

In most cases, you will use a special program called an editor to enter
your Pascal program. An editor is a program that is used to create and
modify program and data files. After accessing the editor, you can begin
to start to enter a new Pascal program. Once your program is entered, you
must save the program as a permanent file on disk. The steps followed to'
create and save a program file are:

1. Log onto a timeshared computer or boot up a personal computer.
2. Get the editor program. ,
3. Indicate that you are creating a new file and specify its name.
4. Enter each line of your program.
5. Save your program as a permanent file in secondary memory.

Once your program is created and you are satisfied that each line is en-'
tered correctly, you can attempt to compile, load, and execute it. On some
systems it will be necessary to give three separate commands to get this •
to happen; on other systems one command, such as RUN, will initiate this
sequence of three operations.

In any event, if your program contains syntax errors, it will be neces-~

sary to edit it to eliminate the syntax errors. To accomplish this you will ~:

have to access the editor again, retrieve your program file, make the nec
essary changes to the Pascal program, save the modified program file, and (

28 INTRODUCTION TO COMPUTERS AND PROGRAMMING



attempt to recompile. The steps used to correct and reexecute a program
file are:

1. Get the editor program.
2. Access your program file.
3. Correct the statements with syntax errors.
4. Save your edited program file.
5. Compile, load, and execute the new program file.

II Formatting Program Output

In the sample program output shown so far, all real numbers were printed
in Pascal scientific notation. Consequently, we had little control over the
appearance or format of each output line. In this section we will learn
how to specify the format of an output item.

Example 1.6

Formatting Integer Values

It is fairly easy to format program output in Pascal and to control the ex
act form of each output line. This is illustrated in the next example for an
integer value. An integer value in Pascal is a number without a decimal
point.

The program in Fig. 1.24 determines the value of a small collection of
coins (nickels and pennies only). The variables are declared to be type
INTEGER since it is impossible to have 2.5 coins. Only integer values can
be stored in type INTEGER variables. The assignment statement

CENTS := 5 * NICKELS + PENNIES;

READLN (NICKELS);
READLN (PENNIES);

Fig. 1.24 Formatting an Integer Value

program COUNTCOINS (INPUT, OUTPUT);

var
NICKELS, PENNIES, COINS, CENTS : INTEGER;

begin
WRITE ('How many nickels do you have? ');
WRITE ('How many pennies do you have? ');
COINS := NICKELS + PENNIES;
CENTS := 5 * NICKELS + PENNIES;
WRITELN ('You have " COINS :2, ' coins.');
WRITELN ('Their value is " CENTS :3, ' cents.')

end.

How many nickels do you have? 3
How many pennies do you have? 2
You have 5 coins.
Their value is 17 cents.

1.9 FORMATTING PROGRAM OUTPUT 29



computes the value in cents of the collection of coins in the obvious way.
The statement

WRITELN ('You have', COINS :2, ' coins.')

causes an integer value to be printed between the two strings. The sym
bols :2 after the variable COINS specify that the value of COINS (8)
should be displayed in two print positions. If a single digit is printed, it
will be printed right justified or in the second position with a blank in the
first position. In the output shown, there are two spaces before the digit 8
and one space after. Note the use of the space character at the end of the
first string and the beginning of the second string in the WRITELN state
ment above. Why do you think these spaces are needed?

The program body in Fig. 1.24 begins with two WRITE statements that
display prompts. The WRITE statement is described in the next section.

Table 1.3 shows how two integer values are printed using different for
mat specifications. The character 0 represents a blank character. The last
table line shows that the width specification may be a variable (or expres
sion) that has an integer value.

Table 1.3 Printing Integer Values Using Formats

Value

234
234
234

-234
-234
-234

234

Format

:4
:5
: 6
:4
: 5
: 6
:LEN

Printed Output

0234
00234
000234
-234
0-234
00-234
000234 (if the value of LEN is 6)

The WRITE Statement

If you run the program in Fig. 1.24, you will see that the cursor remains po
sitioned on the same line as the? after each prompt is displayed. This is
because the word WRITE is used instead of WRITELN in the statements
that print the prompting messages. Whenever WRITE is used the cursor re
mains positioned after the last character printed (a space in Fig. 1.24);
whenever WRITELN is used the cursor advances to the next line after the
output is displayed. (On some compilers, it may not be possible to use
READLN immediately after WRITE. If this is true for your compiler, then
you should continue to use WRITELN instead of WRITE.)

The three statements

WRITE ('You have ')i
WRITE (COINS :2)i
WRITELN (' coins.')

30 INTRODUCTION TO COMPUTERS AND PROGRAMMING



would cause the same line of output to be diplayed as the statement

WRITELN ('You have', COINS :2, ' coins.')

WRITE STATEMENT

WRITE (output-list)

Interpretation: The value of each variable or constant in the output
list is printed. Any string in the output-list is printed without the
quotes. The cursor does not advance to the next line after the output
is displayed.

Example 1.7

Formatting Real Values

The use of formats with real values will be illustrated next.

The program in Fig. 1.25 computes the average speed traveled on a trip
and also the gas mileage obtained. It uses the two formulas

speed = distance / time
mileage = distance / gallons

The input data consist of the trip distance and time and the number of gal
lons of gasoline used.

Fig. 1.25 Formatting Real Values

program TRIP (INPUT, OUTPUT);

var
SPEED, TIME, DISTANCE, MILEAGE, GALLONS : REAL;

begin
WRITE ('Enter distance in miles: '); READLN (DISTANCE);
WRITE ('Enter time of trip in hours: '); READLN (TIME);
SPEED := DISTANCE / TIME;
WRITELN ('Average speed in MPH was' I SPEED :5:1);
WRITELN;

WRITE ('Enter gallons used: I); READLN (GALLONS);
MILEAGE := DISTANCE / GALLONS;
WRITELN ('Miles per gallon was ,MILEAGE :5:1)

end.

Enter distance in miles: 100
Enter time of trip in hours: 1.5
Average speed in MPH was 66.7

Enter gallons used: 25
Miles per gallon was 4.0

1.9 FORMATTING PROGRAM OUTPUT 31



The two WRITELN statements

WRITELN ('Average speed in MPH was', SPEED :5:1);
WRITELN ('Miles per gallon was " MILEAGE :5:1)

each display a string followed by a real number. The symbols : 5 : 1 speci
fy that the real number should be displayed in 5 print positions (field
width of 5) and that there should be 1 digit after the decimal point. The
output value would be rounded to one decimal place before being printed;
the decimal point accounts for one position in the field width.

The output line printed by the first WRITELN statement above would
ha ve the form

Average speed = XXX.X

where the symbols XXX. X indicate the format of the real number (three
digits, a decimal point, and a digit). The decimal point always would be
positioned where indicated. A value less than or equal to 99.9 would have
extra blanks preceding the first digit; a value greater than 999.9 could not
fit in the field. You should always specify a field width that is adequate
for whatever number might be printed: if you are not sure, then make it
too big rather than too small. (If the field width is too small, most compil
ers will expand it automatically so that the number can be printed.) If the
number can be negative, don't forget to leave a space for the minus sign.

Table 1.4 shows some real values printed using different format specifi
cations. As shown in the table, it is possible to use a format specification
of the form .n where n is an integer expression. In this case, the real value
is printed in scientific notation using a total of n print positions.

Table 1.4 Printing Real Values Using Formats

Value

3.14159
3.14159
3.14159
3.14159
3.15159
-0.0006
-0.0006
-0.0006

Format

: 5: 2
: 5 : 1
: 5: 3
: 8: 5
: 9
: 9
: 8: 5
: 8: 3

Printed Output

03.14
003.1
3.142
03.14159
003.1E+00
0-6.0E-04
-0.00060
00-0.001

The WRITELN Statement without an Output List

In Fig. 1.25, the WRITELN statement without an output list

WRITELN;

32 INTRODUCTION TO COMPUTERS AND PROGRAMMING



causes the blank line in the middle of the program output. Execution of a
WRITELN always causes the cursor to be advanced to the next line. If
nothing was printed on the current line, a blank line will appear in the
program output.

WRITELN STATEMENT (without an output list)

WRITELN

Interpretation: Execution of a WRITELN statement advances the
cursor to the first column of the next line.

Formatting Strings

A string value is always printed right justified in its field. This means that
blanks will precede a string if the field in which it is printed is bigger than
the string. If a string contains more characters than the field in which it is
printed, then only part of the string will be printed; the number of charac
ters printed is the same as the field width. These points are illustrated in
Table 1.5.

Table 1.5 Printing String Values Using Formats

String Format Printed Output

'* ' : 1 *
'* ' : 2 0*
'* ' : 3 00*
'ACES' : 1 A
'ACES' : 2 AC
'ACES' : 3 ACE
'ACES' :4 ACES
'ACES' : 5 DACES

Self-check Exercises for Section 1.9

1. Write a program that prints a diagonal line of five asterisks (i.e, the
first line should have an asterisk in column 1, the second line an aster
isk in column 2, etc.).

2. Extend the program in Fig. 1.24 to handle dimes and quarters too. You
will have to change the format in the last WRITELN statement.

3. Show how the value -15.564 (stored in X) would be printed using the
formats:

X :8:4, X :8:3, X :8:2, X :8:1, X :8:0, X :8

1.9 FORMATTING PROGRAM OUTPUT 33



II Introduction to Data Types

A major reason for the popularity of Pascal is the fact that it is relatively
easy to manipulate many different kinds of information in Pascal. So far in
this chapter, we have written programs that manipulate numeric data and
character data. We will review the properties of these standard data types
next.

Two types of numeric data were manipulated: REAL and INTEGER. We
used the arithmetic operators +, -, *, / and the assignment operator := to
manipulate these data. In addition to the operators listed above, the inte
ger arithmetic operators div and mod can be used with type INTEGER
data. These operators will be described later; the Pascal operators are list
ed in Appendix A.

The basic distinction between these two data types is that real vari
ables may be used to store data containing a decimal point and a fraction
al part, whereas integer variables can store only a whole number. For this
reason, integer variables are more limited in their use; they are often used
to represent a count of items [e.g. a count of coins).

A real number in Pascal is represented as a string of digits containing a
decimal point. There must be at least one digit before and one digit after
the decimal point.

A real number may also be written in Pascal scientific notation. In sci
entific notation, a real number begins with an integer or real value
followed by the letter E and an integer [possibly preceded by a sign). Ex
amples of valid and invalid real numbers are shown in Table 1.6.

Table 1.6 Valid and Invalid Real Numbers

Valid Real Numbers Invalid Real Numbers

3.14159
-0.005
+12345.0
-15E-04
-2.345E2
1. 2E+6
1.15E-3

(value of -0.0015)
(value of - 234.5)
(value of 1200000)
(value of 0.00115)

150.
-.12345
.16
-15.E-03
12E.3
.123E3

(no digit after. )
(no digit before. )
(no digit before . )
(-15. invalid real)
(.3 invalid integer)
(.123 invalid real)

As shown by the last valid number above, 1.15E-3 means the same as
1.15 X 10~3 where the exponent -3 causes the decimal point to be moved
left 3 digits. A positive exponent causes the decimal point to be moved to
the right; the + sign may be omitted when the exponent is positive.

The standard identifier MAXINT is a constant that represents the value
of the largest integer that can be manipulated in each Pascal system. Use
the statement

34 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Example 1.8

WRITELN (MAXINT)

in a program to find out what this value is on your computer.
The third standard data type is type CHAR. We have already seen (Ex

ample 1.1) that type CHAR variables can be used to store any single char
acter value. Character data are always enclosed in single quotes [e.g. 'A')
when written in a Pascal statement; however, quotes are not used when
character data are entered at a terminal. When a READLN statement is
used to read character data into a type CHAR variable, the next character
entered at the terminal is stored in that variable. The space or blank char
acter is entered by pressing the space bar; it is written as' 'in a program.

The program in Fig. 1.26 reads three characters and prints them in reverse
order and enclosed in asterisks. Each character entered at the terminal is
stored in a variable of type CHAR; the character value '*' is associated
with the constant BORDER.

The WRITELN statement

WRITELN (BORDER, THIRD, SECOND, FIRST, BORDER)

prints five character values. As shown in the program output, each charac
ter value is printed in a single print position. The order in which the char
acters are displayed is the reverse of the order in which they are read.
The second character read in the sample run of Fig. 1.26 is a blank.

program REVERSE (INPUT, OUTPUT);

const

BORDER = '*';

var
FIRST, SECOND, THIRD: CHAR;

begin
WRITE ('Enter 3 characters: ');
READLN (FIRST, SECOND, THIRD);
WRITELN (BORDER, THIRD, SECOND, FIRST, BORDER)

end.

Enter 3 characters: E K
*K E*

Fig. 1.26 Program for Example 1.8

In Fig. 1.26, the string 'Enter 3 characters: I appears in a
WRITE statement. Strings are used as prompts and to clarify program out
put. Strings cannot be stored in type CHAR variables. We will see how to
process strings in Chapter 6.

1.10 INTRODUCTION TO DATA TYPES 35



The fourth standard data type is type BOOLEAN (named after the mathe
matician George Boole). There are only two values associated with this
data type, TRUE and FALSE. We will see examples of Boolean expres
sions (expressions that evaluate to TRUE or FALSE) in the next chapter.

Self-check Exercises for Section 1.10

1. Identify the data type of each value below. Indicate those that are in
valid.

, XY Z ' , * ' $ 2 5 •123 15 • - 9 9 9 .123 ' x ' "x" , 9' '-5 '

• Common Programming Errors

One of the first things you will discover in writing programs is that a pro
gram very rarely runs correctly the first time that it is submitted. Murphy's
Law, "If something can go wrong it will," seems to be written with the
computer programmer or programming student in mind. In fact, errors are
so common that they have their own special name (bugs) and the process
of correcting them is called debugging a program. To alert you to potential
problems, we will provide a section on common errors at the end of each
chapter.

When an error is detected, an error message will be printed indicating
that you have made a mistake and what the cause of the error might be.
Unfortunately, error messages are often difficult to interpret and are some
times misleading. However, as you gain some experience you will become
more proficient at understanding them.

There are two basis categories of errors that occur: syntax errors and
run-time or execution errors. Syntax errors are detected by the compiler
as it attempts to translate your program. If a statement has a syntax error,
then it cannot be translated and your program will not be executed.

Run-time errors are detected by the computer during execution of a pro
gram. A run-time error occurs as a result of directing the computer to per
form an illegal operation such as dividing a number by zero or reading
nonexistent or invalid data. When a run-time error occurs, your program
will stop execution and a diagnostic message will be printed that indicates
the line where the error occurred. Sometimes, the current values of all
variables will be printed as well.

Syntax Errors

Figure 1.27 shows a compiler listing of the payroll program with each line
numbered. The program contains the following syntax errors.

• missing semicolon after the program statement (line 1)
• use of : instead of = in the constant declaration (line 4)

36 INTRODUCTION TO COMPUTERS AND PROGRAMMING



1 program PAYROLL (INPUT, OUTPUT)
2
3 const

***** A14
4 TAX: 25.0:

***** A16,50

READLN (HOURS);
READLN (RATE):

"6
HOURS * RATE := GROSS:

A59
NET := GROSS -TAX:

AI04
WRITELN ('Gross pay is $', GROSS):
WRITELN ('Net pay is $', NET)

AI04

begin
WRITELN ('Enter hours worked');
WRITELN ('Enter hourly rate')

5
6 var
7 HOURS, RATE, GROSS : REAL:
8
9

10
11

13

12

14
15

*****

*****

*****

*****

16 end.

6: ILLEGAL SYMBOL
14: I:' EXPECTED
16: '=' EXPECTED
50: ERROR IN CONSTANT
59: ERROR IN VARIABLE

104: IDENTIFIER NOt DECLARED

Fig. 1.27 Compiler Listing of a Program with Syntax Errors

• missing semicolon after the WRITELN statement (line 11)
• assignment statement with transposed variable and expression (line 12)
• missing declaration for variable NET (lines 13 and 15)

The compiler's error messages are shown after the program and look
nothing like the ones above. When a syntax error is detected, the compiler
prints a line starting with five asterisks, a carat symbol ("), and a list of
numbers. The carat points to the position in the preceding line where the
error was detected. Each number is a preassigned code for the error; the
relevant codes and their meaning are listed following the program.

As an example of how this works, the first error is detected after the
symbol const is processed by the compiler. At this point the compiler
recognizes that a semicolon is missing (after the program statement) and
indicates this by printing error code 14 (";" expected). In this case, the po
sition of the carat is misleading as the compiler could not detect the error
until it started to process the constant declaration. There is also a missing
semicolon in line 11; however, this time the compiler prints error code 6
(illegal symbol) after processing READLN.

Two error codes are printed after line 4 to indicate an incorrect symbol
(: instead of =). The transposed assignment statement in line 12 is printed

1.11 COMMON PROGRAMMING ERRORS 37



as error code 59 (error in variable); the compiler is looking for the variable
in the assignment statement and detects an error when it reaches the as
terisk. Finally, the missing declaration for variable NET is printed as error
code 104 (identifier not declared) after lines 13 and 15. (See Appendix E for
error numbers.)

Syntax errors are often caused by the improper use of apostrophes as
string delimiters. Make sure that you always use a single quote or apos
trophe to begin and end a string; double quotes are not allowed.

Another common syntax error is a missing or extra apostrophe in a
string. If the apostrophe at the end is missing, the compiler will assume
that whatever follows is part of the string. A string must begin and end on
the same line.

The string below contains an extra apostrophe.

WRITELN ('Enter Joe's nickname: ')7

The compiler will assume that the apostrophe used to indicate possession
(Joe's) is terminating the string. This string must be entered as

WRITELN ('Enter Joe' 's nickname: ')7

where two consecutive apostrophes inside a string indicate possession.

Run-time Errors

Figure 1.28 shows an example of a run-time error. The program compiles
successfully, but the variable X is not defined before the assignment state
ment

Z := X + Y7

Fig. 1.28 Compiler listing of a Program with a Run-time Error

1 program ERRORS (INPUT, OUTPUT)7
2
3 var
4 X, Y, Z : REAL 7
5
6 begin
7 Y := 5.07
8 Z := X + Y 7
9 WRITELN (X, Y, Z)
10 end.

Program terminated at line 8 in program ERRORS
Undefined variable in expression

--- ERRORS

X
Z

UNDEF
UNDEF

Y 5.000000E+00

38 INTRODUCTION TO COMPUTERS AND PROGRAMMING



is executed. The error messages shown after the program listing indicate
the cause of the error ("undefined variable"), the location (line 8), and the
values of all variables in program ERRORS at the time of the error (X and
Z are undefined).

As we indicated earlier, debugging a program can be very time-consum
ing. The best approach is to plan your programs carefully and desk check
them beforehand to eliminate bugs before they occur. If you are not sure
of the syntax for a particular statement, look it up in the text or in the
glossary provided inside the covers. If you follow this approach, you will
be much better off in the long run.

• Chapter Review

Summary

The basic components of a computer were introduced. They are main and
secondary memory, the central processor, and the input and output de
vices. A summary of important facts about computers that you should re
member follows.

1. A memory cell is never empty, but its initial contents may be meaning
less to your program.

2. The current contents of a memory cell are destroyed whenever new
information is placed in that cell (via an assignment or READLN state
ment).

3. Programs must first be placed in the memory of the computer before
they can be executed.

4. Data may not be manipulated by the computer without first being
stored in memory.

5. A computer cannot think for itself; it must be instructed to perform a
task in a precise and unambiguous manner, using a programming lan
guage.

6. Programming a computer can be fun-if you are patient, organized,
and careful.

You also saw how to use the Pascal programming language to perform
some very fundamental operations. You learned how to instruct the com
puter to read information into memory, perform some simple computa
tions, and print the results of the computation. All of this was done using
symbols (punctuation marks, variable names, and special operators such
as *, -, and +) that are familiar, easy to remember, and easy to use. You
do not have to know very much about your computer in order to under
stand and use Pascal.

In the remainder of the text we will introduce more features of the Pas
cal language and provide rules for using these features. You must remem
ber throughout that, unlike the rules of English, the rules of Pascal are
precise and allow no exceptions. The compiler will be unable to translate

1.12 CHAPTER REVIEW 39



Pascal instructions that violate these rules. Remember to declare every
identifier used as a variable or constant and to separate program state
ments with semicolons.

New Pascal Statements
The new Pascal statements introduced in this chapter are described in Ta
ble 1.7.

Table 1.7 Summary of New Pascal Statements

Statement

Program statement
program PAYROLL (INPUT, OUTPUT):

Constant declaration
const

TAX = 25.00:
STAR = '*':

Variable declaration
var

X, Y, Z : REAL:
ME, IT : INTEGER:

Assignment statement
DISTANCE := SPEED * TIME

READLN statement
READLN (HOURS, RATE)

WRITE statement
WRITE ('NET =' NET :8:2)

WRITELN statement
WRITELN (X, Y)

Effect

Identifies PAYROLL as the name of the
program and INPUT and OUTPUT as
names of data files.

Associates the constant, TAX, with the real
value 25 • 00 and the constant STAR with
the type CHAR value ,* ,.

Allocates memory cells named X, Y, and Z
for storage of real numbers and ME and IT
for storage of integers.

Assigns the product of SPEED and TIME
as the value of DISTANCE.

Enters data into the variables HOURS and
RATE.

Displays the string 'NET = 'followed by
the value of NET printed in a field of eight
columns and rounded to two decimal
places.

Prints the values of X and Y and advances
the cursor to the next line.

40 INTRODUCTION TO COMPUTERS AND PROGRAMMING



Review Questions

1. List at least three types of information stored in a computer.
2. List two functions of the CPU.
3. List two input/output devices and two secondary storage devices.
4. A computer can think. T F
5. List the three categories of programming languages.
6. Give three advantages of programming in a high-level language such

as Pascal.
7. What two processes are needed to transform a high-level language

program to a machine-language program ready for execution?
8. What are four characteristics of a structured program?
9. Check the variables below that are syntactically correct.

Income
Itime
CONST
TOM'S

TWO FOLD
c3po
INCOME

10. What is illegal about the statements below?

canst PI 3.14159;

var C, R REAL;

begin
PI := C / (2 * R * R)

11. What computer action is required by the statement below?

var CELLI : REAL;

12. Write a program to read a five character name and print the name out
backwards.

13. If the average size of a family is 2.8 and this value is stored in the
variable FAMILYSIZE. provide the Pascal statement to display this
fact in a readable way (leave the cursor on the same line).

14. List the four standard data types of Pascal.

Programming Projects

1. Write a program to convert a measurement in inches to centimeters and me
ters.

2. Write a program to convert a measurement in meters to inches and yards.

3. Write a program to convert a temperature in degrees Fahrenheit to degrees
Celsius.

PROGRAMMING PROJECTS 41



4. Write a program to read three data items into variables X, Y, and Z, and find
and print their product and sum.

5. Write a program to read in the weight (in pounds) of an object, and compute
and print its weight in kilograms and grams. (Hint: one pound is equal to
0.453592 kilograms or 453.59237 grams.)

6. Eight track stars entered the mile race at the Penn Relays. Write a. program
that will read in the race time in minutes (MINUTES) and seconds (SEC
ONDS) for each of these runners, and compute and print the speed in feet
per second (FPS) and in meters per second (MPS). (Hints: There are 5280 feet
in one mile and one kilometer equals 3282 feet.) Test your program on each
of the times below.

Minutes
3
3
4
4

Seconds
52.83
59.83
00.03
16.22

Miles-per gallon
10.0
40.5
22.5
10.0

7. Write a program that prints your initials in large block letters. (Hint: Use a 6
X 6 grid for each letter and print six strings. Each string should consist of a
row of *'s interspersed with blanks.]

8. You are planning to rent a car to drive from Boston to Philadelphia. You
want to be certain that you can make the trip on one tankful of gas. Write a
program to read in the miles-per-gallon (MPG) and tank size (TANKSIZE) in
gallons for a particular rent-a-car, and print out the distance that can be
traveled on one tank. Test your program for the following data:

Tank size
(gallons)

15.0
20.0
12.0

9.0

9. A cyclist coasting on a level road slows from a speed of 10 miles/hr. to 2.5
miles/hr. in one minute. Write a computer program that calculates the cy
clist's constant rate of acceleration and determines how long it will take the
cyclist to come to rest, given an initial speed of 10 miles/hr. ( Hint: Use the
equation

V f - Va= I

t

where a is acceleration, t is time interval, Vi is initial velocity, and Vf is the
final velocity.)

10. Write a program that reads the user's first and middle initials and then the
first six letters of the user's last name. Blank characters should be entered if
the user's last name has fewer than six letters. The user's name should then
be displayed on the next line in the form last name first, space, first initial,
space, and middle initial.

42 INTRODUCTION TO COMPUTERS AND PROGRAMMING



11. The diagram below shows two airline routes from Philadelphia to Dallas.
Read each distance shown into a type INTEGER variable and then find the
distance from Philadelphia to Dallas for each route.

600 miles

Pittsburgh

300 miles

250 miles

New Orleans

12. If a human heart beats on the average of once a second for 78 years, how
many times does the heart beat in a life-time? (Use 365.25 for days in a year.
Rerun your program for a heart-rate of 75 beats per minute.

13. In shopping for a new house, several factors must be considered. In this
problem the initial cost of the house, estimated annual fuel costs, and annual
tax rate are available. Write a program that will determine the total cost af
ter a five year period for each set of house data below. You should be able
to inspect your program output to determine the "best buy".

Initial house cost
$67,000
$62,000
$75,000

Annual fuel cost
$2,300
$2,500
$1,850

Tax rate per $1000
0.025
0.025
0.020

To calculate the house cost, add the initial cost to the fuel cost for five years,
then add the taxes for five years. Taxes for one year are computed by multi
plying the tax rate by the initial cost.

PROGRAMMING PROJECTS 43



Problem Solving
2.1 Representing and Refining Algorithms
2.2 Using Procedures for Subproblems
2.3 Decision Steps in Algorithms
2.4 Tracing a Program or Algorithm
2.5 Problem Solving Strategies
2.6 Repetition in Programs
2.7 Generalizing a Solution
2.8 Repeating a Program Body
2.9 Debugging and Testing Programs
2.10 Common Programming Errors
2.11 Chapter Review

This chapter will focus on strategies for problem solving. The ability to
solve problems is an essential component of programming. Problem solv
ing strategies such as divide and conquer, stepwise refinement, solution by
analogy, and solution by generalization will be illustrated.

We will see how to represent the list of steps in a solution strategy as
an algorithm and how to implement an algorithm as a program. We will
discuss how to hand-simulate or trace the execution of an algorithm or
program to verify that it is correct.

The division of a problem into smaller subproblems will be discussed. A
structure chart will be used to show the relationships between program

45



modules that solve these subproblems. Also, the use of Pascal procedures
to implement separate program modules will be introduced.

The necessity for decision steps and repetition in a problem solution
will be demonstrated. Relational operators will be used to describe condi
tions that evaluate to true or false. The if statement will be introduced as
a way to specify decisions in a program; the for statement will be intro
duced as a way to specify repetition.

II Representing and Refining Algorithms

Divide and Conquer

One of the most fundamental methods of problem solving is to break a
large problem into several smaller subproblems. This enables us to solve a
large problem one step at a time, rather than to provide the entire solution
at once. This technique is often called divide and conquer.

As an example, let us assume it is the year 2000 and we have a house
hold robot (named Robbie) to help with some simple chores. We would
like Robbie to serve us breakfast. Unfortunately Robbie is an early pro
duction model, and in order for Robbie to perform even the simplest task,
we must provide the robot with a detailed list of instructions.

Robbie
Serving
Breakfast

Problem: Robbie is at point R (for Robbie) in Fig. 2.1. We want Robbie to
retrieve our favorite box of cereal (point C] and bring it to the table (point
T) in the next room. The position of these points and an additional point D
(described later) is shown in Fig. 2.1.

Discussion: We can accomplish our goal by having Robbie perform the
four steps listed below.

1. Move from point R to point C.
2. Retrieve the cereal box at point C.
3. Move from point C to point T.
4. Place the cereal box on the table at point T.

Solving these four subproblems will give us the solution to the original
problem stated earlier.

Fig. 2.1 Robbie Serving Breakfast

.c
.R

.T

.0

46 PROBLEM SOLVING



Algorithm

We can attack each of these subproblems independently. In order to
solve any of these problems we must have an idea of the basic operations
that Robbie can perform. We will assume that Robbie can rotate or turn to
face any direction, move straight ahead, and grasp and release specified
objects. Given this information, subproblems 2 and 4 are basic operations,
provided Robbie is in the correct position. First we will concentrate on
moving Robbie (subproblems 1 and 3).

In solving the first subproblem

1. Move from point R to point C.

we must allow for the fact that Robbie can move only in one direction at
a time, and that direction is straight ahead. Consequently, the steps re
quired to solve subproblem 1 are:

1.1 Turn to face point C.
1.2 Move from point R to point C.

Step 3 may be solved in a similar way. However, since Robbie cannot
walk through walls, the steps for solving subproblem 3 might be:

3.1 Turn to face the doorway (point D) between the rooms.
3.2 Move from point C to point D.
3.3 Turn to face point T.
3.4 Move from point D to point T.

To summarize the events so far, we divided the original problem of get
ting Robbie to bring our breakfast cereal to the table into four subprob
lems, all of which can be solved independently. Two of these subproblems
were broken up into even smaller subproblems.

The complete list of steps required to solve our problem is shown be
low. This list of steps is called an algorithm. The process of adding detail
to a solution algorithm (e.g., rewriting step 1 as steps 1.1 and 1.2) is called
stepwise refinement.

1. Move from point R to point C.
1.1 Turn to face point C.
1.2 Move from point R to point C.

2. Retrieve the cereal box at point C.
3. Move from point C to point T.

3.1 Turn to face the doorway (point D) between the rooms.
3.2 Move from point C to point D.
3.3 Turn to face point T.
3.4 Move from point D to point T.

4. Place the cereal box on the table at point T.

Algorithms in Everyday Life

Algorithms are not unique to the study of robots or computer program
ming. You have probably been using algorithms to solve problems without
being aware of it.

2.1 REPRESENTING AND REFINING ALGORITHMS 47



Changing a
Flat Tire

Algorithm

Step 1
refinement

Step 1.3
refinement

Step 1.4
refinement

Problem: You are driving a car with two friends and suddenly get a flat
tire. Fortunately, there is a spare tire and jack in the trunk.

Discussion: After pulling over to the side of the road, you might decide to
subdivide the problem of changing a tire into the subproblems below.

1. Jack up the car.
2. Loosen the lug nuts from the flat tire and remove it.
3. Get the spare tire, place it on the wheel, and tighten the lug nuts.
4. Lower the car.
5. Secure the jack and flat tire in the trunk.

Since these steps are relatively independent, you might decide to assign
subproblem 1 to friend A, subproblem 2 to friend B, subproblem 3 to your
self, etc. If friend A has used a jack before, then the whole process should
proceed very smoothly; however, if friend A does not know how to use a
jack it might be necessary to refine step 1 further.

1.1 Place the jack under the car near the tire that is flat.
1.2 Insert the jack handle in the jack.
1.3 Place a block of wood under the car to keep it from rolling.
1.4 Jack up the car until there is enough room for the spare tire.

Step 1.3 requires a bit of decision making on your friend's part. The ac
tual placement of the block of wood depends on whether the car is facing
uphill or downhill, as described next.

1.3.1 If the car is facing uphill then place the block of wood in back of a
tire that is not fla t; if the car is facing downhill, then place the block
of wood in front of a tire that is not flat.

Finally, step 1.4 involves a repetitive action: moving the jack handle un
til there is sufficient room to put on the spare tire. Often, people stop
when the car is high enough to remove the flat tire, forgetting that an in
flated tire requires more room. It may take a few attempts to complete
step 1.4.

1.4.1 Move the jack handle repeatedly until the car is high enough off the
ground that the spare tire can be put on the wheel.

Throughout the rest of this chapter (and book), we will discuss computer
problem solving. Pertinent concepts from this section include:

• Dividing a problem into subproblems
• Solving each subproblem separately
• Assigning separate subproblems to independent program modules
• Refining an algorithm step to provide solution detail
• Decision making in an algorithm step
• Repetition of an algorithm step

48 PROBLEM SOl~VING



Finding the
Sum and
Average of
Two
Numbers

Understanding the Problem

An important skill in human communication is the ability to listen careful
ly. Often, we are too busy thinking of what our response will be to really
hear what the other person is saying. This can lead to a lack of under
standing between the speaker and listener.

Many of us suffer from a similar difficulty when we attempt to solve
problems that are either presented verbally or in writing. We do not pay
close enough attention to the problem statement to determine what really
is being asked; consequently, we are either unable to solve the stated
problem, or our problem solution is incorrect because it solves the wrong
problem.

This text is concerned with improving your problem solving skills, and
will present hints and techniques for problem solving. It is most important
that you analyze a problem statement carefully before attempting to solve
it. You should read each problem statement two or three times if neces
sary. The first time that you read a problem you should get a general idea
of what is being asked. The second time that you read it you should try to
answer the questions:

• What information should the solution provide?
• What data do I have to work with?

The answer to the first question will tell you the desired results or the
problem outputs. The answer to the second question will tell you what
da ta are provided or the problem inputs. It may be helpful to underline the
phrases in the problem statement that identify the inputs and outputs. In
puts are in blue and outputs in gray in the problem statement that follows.

Problem: Read in two numbers and find and print their sum and average.

Discussion: After identifying the problem inputs and outputs, we must
determine the amount and type of memory required to store these data.
Clearly, two memory cells are required for the input data and two memory
cells are required for the output information. We must also choose mean
ingful variable names for these cells which will hold type REAL data. We
will summarize these decisions as shown below.

the first number (NUMl : REAL)
the second number (NUM2 : REAL)

the sum of the 2 numbers (SUM: REAL)
the average of the 2 numbers (AVERAGE: REAL)

2.1 REPRESENTING AND REFINING ALGORITHMS 49



Algorithm

Step 3
refinement

Once the problem inputs and outputs are known, the steps necessary to
solve the problem should be listed. It is very important that you pay close
attention to the order of the steps. The algorithm follows.

1. Read the values of NUMl and NUM2.
2. Find the sum (SUM) of NUMl and NUM2.
3. Find the average (AVERAGE) of NUMl and NUM2.
4. Print the values of SUM and AVERAGE.

Next, we should refine any steps whose solution is not immediately ob
vious. All of you know how to find the average of two numbers, but to fur
ther illustrate the refinement process, the refinement of step 3 is listed
next.

3.1 Divide SUM by 2 and store this value in AVERAGE.

The next step is to implement the algorithm as a program. This is done
by first writing the declaration section of the program using the problem
input and output descriptions; then the algorithm steps should be written
in Pascal. If an algorithm step is refined, then the refinement is
implemented instead. Consequently, we should implement algorithm steps
1, 2, 3.1, and 4 in the body of the program. The Pascal program is shown in
Fig. 2.2.

Fig. 2.2 Finding the Sum and Average of Two Numbers

program FINDSUMAVE (INPUT, OUTPUT);

IFinds and prints the sum and average of two numbers.l

var
NUM1, NUM2,
SUM,
AVERAGE REAL;

Itwo input numbersl
Isum of NUM1, NUM2l
laverage of NUM1, NUM2l

begin
IRead the values of NUMl and NUM2l
WRITE ('First number? '); READLN (NUM1);
WRITE ('Second number? ')i READLN (NUM2)i

IFind the sum of NUM1, NUM2l
SUM := NUMl + NUM2;

IFind the average of NUM1, NUM2l
AVERAGE := SUM / 2;

IPrint the values of SUM and AVERAGEl
WRITELN ('Their sum is " SUM :8:2);
WRITELN ('Their average is " AVERAGE :8:2)

end.

First number? 10.5
Second number? 11.5
Their sum is 22.00
Their average is 11.00

50 PROBLEM SOLVING



The program in Fig. 2.2 contains some English phrases enclosed in curly
braces ! J. These phrases, called comments, are used to make the program
easier to understand by describing the purpose of the program (see the
comment under the program statement), the use of identifiers (see the
comments in the variable declaration statement), and the purpose of each
program step (see the comments in the program body). Comments are con
sidered part of the documentation of a program as they help others read
and follow the program; however, they are ignored by the compiler and
are not translated into machine language.

As shown in Fig. 2.2, a comment can appear by itself on a program line,
at the end of a line after a statement, or be embedded in a statement. The
comment at the end of the line below

var
NUM1, NUM2, !two input numbers 1

is embedded within the variable declaration statement that is continued
following the comment. The syntax and use of comments are described in
the next displays.

COMMENT

! this is a comment I
or (* this is a comment *)

Interpretation: The left curly brace !indicates the start of a comment;
the right curly brace 1 indicates the end of a comment. Comments are
listed with the program, but are otherwise ignored by the Pascal
compiler.
Note: On some Pascal systems, the characters (* and *) must be
used to indicate the start and end of a comment, respectively.

PROGRAM STYLE

Using comments

Comments are used to make a program more readable by describing
the purpose of the program and by describing the use of each identi
fier. Comments are used within the program body to describe the
purpose of each section of the program. There will generally be one
comment in the program body for each major algorithm step.

A comment within the program body should describe what the step
does rather than simply restate the step in English. For example, the
comment

IFind the average of NUM1, NUM21
AVERAGE := SUM / 2;

2.1 REPRESENTING AND REFINING ALGORITHMS 51



is more descriptive and, hence, preferable to

(Divide SUM by 2 and store the result in AVERAGE]
AVERAGE := SUM / 2;

Self-check Exercises for Section 2.1

1. Describe the problem inputs and outputs and algorithm for computing
the sum and average of four numbers.

2. Describe the problem inputs and outputs and algorithm for the follow
ing problem: Compute the discounted price for an item given the list
price and the percentage of the discount.

II Using Procedures for Subproblems

The Structure Chart

As we mentioned earlier, one of the most fundamental ideas in problem
solving is dividing a problem into subproblems and solving each subprob
lem independently of the others. In the simple problem just analyzed this
was not a difficult task. Only one subproblem required refinement and
that was not extensive. In many situations, one or more subproblems may
require significant refinement as shown next.

Mother's Day
Message
Problem

Algorithm

Problem: Mother's Day is coming and you would like to do something
special for your mother. Write a Pascal program to print the message "HI
MOM" in large capital letters.

Discussion: There is more than one way to interpret this problem. We
could simply print "HI MOM" as it appears on this line, but that would
not be too impressive. It would be nicer to use large block letters as
shown in Fig. 2.3. Since program output tends to run from the top of the
screen downward, it is easier and more interesting to print the letters in a
vertical column rather than across the screen.

1. Print the word "HI" in block letters.
2. Print three blank lines.
3. Print the word "MOM" in block letters.

The obvious refinements for each step are shown next.

Step 1 1.1 Print the letter "H".
refinement 1.2 Print the letter "I".

Step 3 3.1 Print the letter "M".
refinement 3.2 Print the letter "0".

3.3 Print the letter "M".

52 PROBLEM SOLVING



* *
* *
* *
********
* *
* *
* *

**
**
**
**
**
**
**

* *
** **
* * * *
* ** *
* *
* *
* *

****
** **

** **
* *
** **

** **
****

* *
** **
* * * *
* ** *
* *
* *
* *

Fig. 2.3 Mother's Day Message

We can illustrate what we have done so far by using a diagram to show
the algorithm subproblems and their interdependencies. This diagram,
called a structure chart, is shown in Fig. 2.4.

As we trace down this diagram, we go from a more abstract problem to
a more detailed subproblem. The original problem is shown at the top, or
level 0, of the structure chart. Each of the major subproblems is shown at
level 1. The different subproblems resulting from the refinement of each
level 1 step are shown at level 2 and are connected to their respective lev
ell subproblem. The right side of this diagram shows that the subproblem
Print "MOM" is dependent on the solutions to the subproblems Print "M"
and Print "0". Since the subproblem Print 3 blank lines is not refined fur
ther, there are no level 2 subproblems connected to it.

2.2 USING PROCEDURES FOR SUBPROBLEMS 53



original
problem

detailed
subproblem

level
o

level
1

level
2

Fig. 2.4 Structure Chart for Mother's Day Message

The purpose of the structure chart is to show the structural relationship
between the subproblems. The algorithm (not the structure chart) shows
the order in which each step must be carried out to solve the problem.

Procedure Declaration

It is desirable to implement each of the subproblems shown at level 2 in
Fig. 2.4 as a separate module. In this way we can concentrate on the de
sign of each individual module without distraction. This can be done in
Pascal by using a procedure.

The procedure PRINTM is shown in Fig. 2.5. A procedure declaration
begins with a procedure heading which consists of the word procedure
followed by the procedure name (an identifier).

procedure PRINTM;

A comment describing the purpose of the procedure will come next,
followed by the procedure body. The procedure body always starts with

Fig. 2.5 Procedure PRINTM

procedure PRINTMj

I Prints the block letter "M".l

begin IPRINTMI
WRITELN ('* *')j
WRITELN ('** **')j
WRITELN ('* * * *')j
WRITELN ('* ** *')j
WRITELN ('* *')j
WRITELN ('* *')j
WRITELN ('* *')j
WRITELN

e nd r IPRINTMI

54 PROBLEM SOLVING



begin and ends with end. In Fig. 2.5, the procedure body contains the
seven WRITELN statements needed to print the block letter "M" followed
by the WRITELN statement needed to print a blank line.

In this text, the begin and end that bracket a procedure body will al
ways be followed by a comment that identifies the procedure name; the
comment is added for clarity and is not required hy Pascal. The semicolon
following end is required.

The declaration of procedure PRINTM must appear in the declaration
part of any program that uses it. The procedure declaration indicates that
the identifier PRINTM is the name of a procedure and provides the list of
statements that comprise PRINTM. Procedure declarations always follow
the variable declarations in a program.

Procedure (Call) Statement

When procedure PRINTM is referenced in a program, the procedure body
is executed and the block letter "M" is printed. The procedure (call) state
ment

PRINTM

may be used to reference or call this procedure; i.e. to make it execute.
Figure 2.6 shows the body of the Mother's Day program, assuming that

each subproblem at level 2 in Fig. 2.4 is implemented as a separate proce
dure. The program body (called the main program) implements the algo
rithm described earlier. Algorithm steps 1.1, 1.2, 3.1, 3.2, and 3.3 are
implemented as procedure (call) statements; algorithm step 2 is a sequence
of WRITELN statements.

Besides the WRITELN statements, there are five procedure (call) state
ments in the main program shown in Fig. 2.6. Procedure (call) statement
PRINTM appears twice because the letter "M" must be printed twice. The
comment !MOTHER 1 follows the begin and end that bracket the main
program body.

Fig. 2.6 Main Program Body for the Mother's Day Problem

begin IMOTHER!
IPrint the word "HI"!
PRINTHi
PRINTIi

IPrint three blank lines!
WRITELNi
WRITELNi
WRITELNi

IPrint the word "MOM"!
PRINTMi
PRINTOi
PRINTM

end. IMOTHERj

2.2 USING PROCEDURES FOR SUBPROBLEMS 55



The procedure (call) statement is used to call a procedure into execu
tion. Pascal requires that each procedure called by the main program be
declared in the declaration part of the program (before the program body).
The relative order of the individual procedures is irrelevant in this prob
lem. The program so far is shown in Fig. 2.7; the remaining procedure dec
larations are left as an exercise.

program MOTHER (OUTPUT)j

IPrints a mother's day welcoming message.!

procedure PRINTMj

IPrints the block letter "M".!

begin IPRINTM!
WRITELN ('* *')j
WRITELN ('** **')j
WRITELN ('* * * *')j
WRITELN ('* ** *')j
WRITELN ('* *')j
WRITELN ('* *')j
WRITELN ('* *')j
WRITELN

end j IPRINTMj

procedure PRINTHj

IPrints the block letter "H".!

begin IPRINTH!
Ibody of procedure PRINTH goes here!

e nd r IPRINTH!

procedure PRINTI;

IPrints the block letter "I".!

begin \PRINTI!
Ibody of procedure PRINTI goes here!

end; IPRINTI j

procedure PRINTOj

IPrints the block letter "O".!

begin
Ibody of procedure PRINTO goes here!

e nd j IPRINTO!

begin IMOTHER l
IPrint the word "HI"!
PRINTH;
PRINTIj

(Print three blank linesl

56 PROBLEM SOLVING



WRITELNi
WRITELNi
WRITELNi

IPrint the word "MOM" I
PRINTMi
PRINTOi
PRINTM

end. IMOTHERj

Fig. 2.7 Partially Completed Mother's Day Program

Note that it was not necessary to include file INPUT in the program
statement of Fig. 2.7. This is because there were no input data to be read
by the program.

A convenient aspect of the use of procedures in Pascal is that it allows
us to delay the detailed implementation of a complicated subproblem until
later (procedures PRINTH. PRINT I, PRINTO are not yet written). This is.
in fact, what we are trying to do when we divide a problem into subprob
lems and add details of the solution through stepwise refinement. The use
of procedures also enables us to implement our program in logically inde
pendent sections in the same way that we develop the solution algorithm.

Another advantage is that procedures may be executed more than once.
For example, procedure PRINTM is called twice in Fig. 2.7. Each time
PRINTM is called the list of eight WRITELN statements shown in Fig. 2.5
would be executed and the letter "M" would be printed. If we were not
using procedures, these WRITELN statements would have to be listed
twice in the program body.

Finally. once a procedure is written and tested. it may be used in other
programs. For example. the procedures discussed here could be used to
write programs that print the messages "OH HIM" or "HI HO." It would
be very easy to write these programs.

Each procedure declaration may contain declarations for its own con
stants. variables, and even for other procedures. These identifiers are con
sidered local to the procedure and can only be referenced within the
procedure (more on this later). The displays that follow summarize the
new statements introduced in this section.

PROCEDURE DECLARATION

procedure pname:

Iocal-deelaration-section

begin !pname 1
procedure-body

end i !pname I
Interpretation: The procedure pname is declared. Any identifiers that
are declared in the local-declaration-section are defined only during

2.2 USING PROCEDURES FOR SUBPROBLEMS 57



the execution of the procedure and can only be referenced within the
procedure. The procedure body describes the data manipulation to be
performed by the procedure.

PROCEDURE (CALL) STATEMENT
pname

Interpretation: The procedure (call) statement initiates the execution
of procedure pname.

PROGRAM STYLE

Use of comments and cotor in a program with procedures

Several comments are included in Fig. 2.7. Each procedure begins
with a comment that describes its purpose. The beg in and end that
bracket each procedure body and the main program body are
followed by a comment identifying that procedure or program. The
first and last line of each procedure declaration is in blue type. This
is also to help you locate each procedure in the program listing.

Relative Order of Procedures and the Main Program

In the Mother's Day Message Problem, the main program body was writ
ten as a sequence of procedure (call) statements before the details of all
procedures were specified. The next step would be to provide the missing
procedure declarations. We will use this technique to write Pascal pro
grams for most problems in the text.

When we actually pull the separate procedures and main program to
gether into a cohesive unit (the final program), the procedures must be list
ed in the declaration part of the program directly following any variable
declarations. Thus the procedure declarations will be listed before the
main program body. The reason for this is that Pascal requires that every
identifier be declared before it can be referenced.

When the program is run, the first statement in the program body is the
first statement executed. When a procedure (call) statement is reached,
control is passed to the procedure that is referenced. Any memory that
may be needed for the procedure's local data will be allocated, and the
first statement in the procedure body will be executed. After the last
statement in the procedure body is executed, control is returned to the
main program and the next statement after the procedure (call) statement
will be executed. Any memory that was allocated to the procedure will be
released to be reallocated for other purposes.

The sequence of execution of the Mother's Day program is illustrated in
Fig. 2.8. The first statement in the main program body

58 PROBLEM SOLVING



PRINTH;

is executed first and calls procedure PRINTH into execution. After each of
the WRITELN statements in PRINTH is executed, control is returned to the
next statement in the main program body

PRINTI;

The above procedure (call) statement would, of course, call procedure
PRINT I into execution.

~ procedure PRINTH;

begin IMOTHERI
IPrint the word "HI"I
PRINTH; ----------'
PRINTI ;....-------.,

IPrints block letter H.I

begin IPRINTHI
WRITELN ('* *');

WRITELN ('* *');
WRITELN

_ end; IPRINTHj

Fig 2.8 Flow of Control Between Main Program and Procedure

Self-check Exercises for Section 2.2

1. Provide procedures PRINTH, PRINTI, and PRINTO for the Mother's
Day Problem.

2. Write a program to print "HI HO" in block letters. Provide a structure
chart for this problem.

• Decision Steps in Algorithms

In all the algorithms illustrated, each algorithm step is executed exactly
once in the order in which it appears. Often we are faced with situations
in which we must provide alternative steps that mayor may not be exe
cuted, depending on the input data. For example, in the simple payroll
problem discussed in Chapter 1, a tax of $25 was deducted regardless of
the employee's salary. It would be more accurate to base the amount
deducted on the employee's gross salary.

Conditions and Relational Operators

An example of a decision step is illustrated in the step below:

If gross salary exceeds $100 deduct a tax of $25;
otherwise, deduct no tax.

2.3 DECISION STEPS IN ALGORITHMS 59



Example 2.1

The refinement of this step should show that there are two alternative
courses of action: either deduct a tax or do not deduct a tax. In order to
determine what to do, a payroll clerk might ask the question "Is gross sal
ary greater than $1001"; the clerk would perform one action (deduct tax) if
the answer is "Yes" and the other action (deduct no tax) if the answer is
"No."

We can describe the payroll clerk's decision process using the decision
step below.

if gross salary is greater than $100 then
Deduct a tax of $25

else
Deduct no tax

This decision step is written in pseudocode, a mixture of English and Pas
cal. We will use pseudocode to represent algorithms.

This decision step specifies that either the action "Deduct a tax of $25"
or the action "Deduct no tax" will take place, but not both. The evaluation
of the condition "gross salary is greater than $100" determines which ac
tion will take place. A condition is a Boolean expression, which is an ex
pression that evaluates to either true or false. If the condition value is
true, then the task following the word then is executed; if the condition
value is false, then the task following the word e 1 s e is executed instead.

We can rewrite the condition "gross salary is greater than $100" in Pas
cal as GROSS > 100 where the symbol> means greater than. Most con
ditions that we use will have one of the forms

variable relational operator variable
variable relational operator constant

where the relational operators are the familiar symbols < (less than), <=
(less than or equal), > (greater than), >= (greater than or equal), = (equal),
and <> (not equal).

The relational operators and some sample conditions are shown in Table
2.1. Each condition is evaluated assuming the variable values below.

X POWER MAXPOW Y ITEM MINITEM MOMORDAD NUM SENTINEL---------
Table 2.1 Pascal Relational Operators and Sample Conditions

Operator Condition

<= X <= 0
< POWER < MAXPOW
>= X >= Y
> ITEM > MINITEM

MOMORDAD = 1M'
<> NUM <> SENTINEL

Meaning

X less than or equal to 0
POWER less than MAXPOW
X greater than or equal to Y
ITEM greater than MINITEM
MOMORDAD equal to 'M I

NUM not equal to SENTINEL

Value

true
false
false
true
true
false

60 PROBLEM SOLVING



Modified
Payroll
Problem

Algorithm

Step 3
refinement

Using a Decision Step in a Problem Solution

The problem that follows requires the use of a decision step in its solu
tion.

Problem: Modify the simple payroll program to deduct a $25 tax only if
an employee earns more than $100 and deduct no tax otherwise.

Discussion: We will analyze this problem using the tools developed so
far in this chapter. First, we list the data requirements and the algorithm.

maximum salary without a tax deduction (TAXBRACKET = 100.00)
amount of tax deducted (TAX = 25.00)

hours worked (HOURS: REAL)
hourly rate (RATE: REAL)

gross pay (GROSS: REAL)
net pay (NET: REAL)

1. Enter hours worked and hourly rate.
2. Compute gross salary.
3. Compute net salary.
4. Print gross salary and net salary.

As shown previously, problem constants have the same values for each
run of the program as distinguished from problem inputs whose values
may vary. Each constant value is associated with an identifier (TAX and
TAXBRACKET above). The reason for this will be discussed after the pro
gram is completed.

The structure chart for this algorithm is shown in Fig. 2.9; the complete
program is shown in Fig. 2.10. The refinement of algorithm step 3 follows.

3.1 if GROSS > TAXBRACKET then
Deduct a tax of $25

else
Deduct no tax

2.3 DECISION STEPS IN ALGORITHMS 61



Fig. 2.9 Structure Chart for Modified Payroll Problem

Fig. 2.10 Program for Modified Payroll Problem

program MODPAY (INPUT, OUTPUT);

[Computes and prints gross pay and net pay given an hourly
rate and number of hours worked. Deducts a tax of $25 if gross
salary exceeds $100; otherwise, deducts no tax. I

const
TAXBRACKET = 100.00;
TAX = 25.00;

var
HOURS, RATE,
GROSS, NET REAL;

begin [MODPAYj
[Enter HOURS and RATEI
WRITE ('Hours worked? ');
WRITE ('Hourly rate? ');

[Compute gross salarYI
GROSS := HOURS * RATE;

[maximum salary for no deductionl
\ tax amourrt ]

[hours worked, hourly ratel
[gross pay, net paYI

READLN (HOURS);
READLN (RATE);

[Compute net salarYI
if GROSS > TAXBRACKET then

NET := GROSS - TAX [Deduct a tax amountj
else

NET .= GROSS; [Deduct no taxi

[Print GROSS and NETI
WRITELN ('Gross salary is $', GROSS :8:2);
WRITELN ('Net salary is $', NET :8:2)

end. IMODPAYj

Hours worked? 40
Hourly rate? 5.00
Gross salary is $ 200.00
Net salary is $ 175.00

62 PROBLEM SOLVING



In Fig. 2.10. the Pascal if statement

if GROSS > TAXBRACKET then
NET := GROSS - TAX

else
NET := GROSS;

ldeduct a tax amountl

[deduct; no t.ax]

Example 2.2

is used to implement the decision step (step 3) shown earlier. The com
ments on the right are embedded in the if statement. The next section
will provide more examples of the if statement.

PROGRAM STYLE

Use of constants

The constants TAX and TAXBRACKET appear in the preceding if
statement and in Fig. 2.10. We could just as easily have inserted the
constant values directly in the if statement and written

if GROSS> 100.00 then
NET := GROSS - 25.00

else
NET ;= GROSS;

There are two advantages to using constants. First, the original if
statement is easier to understand because it uses the names TAX and
TAXBRACKET, which are descriptive, rather than numbers, which
have no intrinsic meaning. Second, a program written with constants
is much easier to modify than one that is not. If we wish to use dif
ferent constant values in Fig. 2.10, we need to change only the con
stant declaration statement. If the constant values were inserted
directly in the if statement as shown above, then we would have to
change the if statement and any other statements that manipulate
the constant values.

More if Statement Examples

The if statement in Fig. 2.10 has two alternatives, but only one will be
executed for a given value of GROSS. An if statement can also have a
single alternative that is executed only when the condition is true, as
shown next.

The if statement below has one alternative which is executed only when
X is not equal to zero. It causes PRODUCT to be multiplied by X; the new
value is saved in PRODUCT. If X is equal to zero, the multiplication is not
performed.

23 DECISION STEPS IN ALGORITHMS 63



Example 2.3

lMultiply PRODUCT by a nonzero X onlyj
i£ X <> 0 then

PRODUCT := PRODUCT * X

The if statement below has two alternatives. It will call either procedure
PRINTMOM or PRINTDAD depending on the character stored in variable
MOMORDAD.

if MOMORDAD
PRINTMOM

else
PRINTDAD

'M' then

The if statement below is identical to the one above except that a
semicolon appears after PRINTMOM. A syntax error would be detected
when the compiler reaches the word else because the semicolon termi
nates the if statement and the next statement cannot begin with the
word else. This error is called a dangling else.

if MOMORDAD = 'M' then
PRINTMOMi

else
PRINTDAD

lerror -- dangling elsel

Finding the
First Letter

In the next if statement, a semicolon also appears after PRINTMOM. In
this case, the semicolon separates the if statement from the procedure
(call) statement PRINTDAD that follows it.

if MOMORDAD = 'M' then
PRINTMOMi

PRINTDAD

The if statement above has one alternative; procedure PRINTMOM will be
called only when MOMORDAD has the value I M'. Regardless of whether or
not PRINTMOM is called, procedure PRINTDAD will always be called.

The next problem illustrates the use of if statements with one and two
alternatives.

Problem: Read three letters and find and print the one that comes first in
the alphabet.

Discussion: From our prior experience with conditions and decision
steps, we know how to compare two items at a time to see which one is
smaller using the relational operator <. In Pascal, we can also use this
operator to determine whether one letter precedes another in the alphabet.
For example, the condition I A' < I F I is true because A precedes F in
the alphabet. The problem inputs and outputs are listed next followed by
the algorithm.

64 PROBLEM SOLVING



three letters (CH1, CH2, CH3 : CHAR)

Algorithm

Step 2
refinement

the alphabetically first letter (ALPHAFIRST : CHAR)

1. Read three letters into CH1, CH2, and CH3.
2. Save the alphabetically first of CH1, CH2, and CH3 in ALPHAFIRST.
3. Print the alphabetically first letter.

Step 2 can be performed by first comparing CHl and CH2 and saving
the alphabetically first letter in ALPHAFIRST; this result can then be com
pared to CH3. The refinement of step 2 follows.

2.1 Save the alphabetically first of CHl and CH2 in ALPHAFIRST.
2.2 Save the alphabetically first of CH3 and ALPHAFIRST in ALPHA

FIRST.

The structure chart corresponding to the algorithm is drawn in Fig. 2.11;
the program is shown in Fig. 2.12.

In Fig. 2.12, the if statement with two alternatives saves either CHl or
CH2 in ALPHAFIRST. The if statement with one alternative stores CH3
in ALPHAFIRST if CH3 precedes the value already in ALPHAFIRST.

In the next chapter, we will see that if statements with several (more
than two) alternatives are also possible in Pascal. The forms of the if
statement we will use are summarized in the displays that follow.

Fig. 2.11 Structure Chart for Finding Alphabetically First Letter

2.3 DECISION STEPS IN ALGORITHMS 65



letters: ');

Ithree letters readj
lalphabetically first letterj

program FIRSTLETTER (INPUT, OUTPUT);

IFinds and prints the alphabetically first letter.j

var
CHI, CH2, CH3,
ALPHAFIRST : CHAR;

begin IFIRSTLETTERj
IRead three lettersj
WRITE ('Enter any three
READLN (CHI, CH2, CH3);

IStore the alphabetically first of CHI and CH2 in ALPHAFIRSTj
if CHI < CH2 then

ALPHAFIRST := CHI ICHI comes before CH2j
else

ALPHAFIRST := CH2; ICH2 comes before CHlj

IStore the alphabetically first of CH3 and ALPHAFIRSTj
if CH3 < ALPHAFIRST then

ALPHAFIRST := CH3; ICH3 comes before ALPHAFIRSTj

IPrint resultj
WRITELN (ALPHAFIRST, ' is the first letter alphabetically')

end. IFIRSTLETTERj

Enter any three letters: EBK
B is the first letter alphabetically

Fig. 2.12 Finding the Alphabetically First Letter

IF STATEMENT (two alternatives)

if condition then
statement-;

else
statement-

Interpretation: If the condition evaluates to true, then statement.; is
executed and statement- is skipped; otherwise, statements is skipped
and statement.; is executed.

IF STATEMENT (one alternative)

if condition then
statements

Interpretation: If the condition evaluates to true, then statement.; is
executed; otherwise, it is skipped.

66 PROBLEM SOLVING



PROGRAM STYLE

Structuring the if statement

In all the if statement examples, statement.; and statement- are in
dented. If the word el se appears, it is entered on a separate line
and aligned under the word if. The structure of the if statement
makes its meaning apparent. Again, this is done solely to improve
program readability; the structure used makes no difference to the
compiler.

Self-check Exercises for Section 2.3

1. Modify the structure chart and program in the First Letter Problem to
find the alphabetically last of three letters.

2. Modify the structure chart and program in the First Letter Problem to
find the first of four letters.

3. Write Pascal statements to carry out the steps below.
a) If ITEM is nonzero, then multiply PRODUCT by ITEM and save the

result in PRODUCT; otherwise, skip the multiplication. In either
case, print the value of PRODUCT.

b) Store the absolute difference of X and Y in Z, where the absolute
difference is X - Y or Y - X, whichever is positive.

c) If X is zero then add 1 to ZEROCOUNT; otherwise, if X is negative,
add X to MINUSSUM; otherwise, if X is positive, add X to PLUSSUM.

• Tracing a Program or Algorithm

A critical step in the design of an algorithm or program is to verify that it
is correct before extensive time is spent entering or debugging it. Often a
few extra minutes spent in verifying the correctness of an algorithm will
save hours of testing time later.

One important technique is a hand trace or desk check of an algorithm or
program. This consists of a careful, step-by-step simulation on paper of
how the algorithm or program would be executed by the computer. The re
sults of the simulation should show the effect of each step as it is executed
on data that are relatively easy to manipulate by hand.

Table 2.2 shows a trace of the program in-Fig. 2.12 for the data string
THE. Each program step is listed at the left in order of its execution. If a
program step changes the value of a variable, then the new value is
shown; the effect of each step is described at the far right. For example,
the table shows that the statement

READLN (CHI, CH2, CH3);

stores the letters T, H, and E in the variables CHI, CH2, and CH3.

2.4 TRACING A PROGRAM OR ALGORITHM 67



Table 2.2 Trace of Program in Fig. 2.12

Program Statement

WRITE ('Enter three ... ')

READLN(CHI,CH2,CH3)

if CHI < CH2 then

ALPHAFIRST := CH2

if CH3 < ALPHAFIRST.

ALPHAFIRST := CH3

WRITELN(ALPHAFIRST..

CHI

?

T

CH2 CH3 ALPHAFIRST Effect

? ? ?
Prints a prompt

H E Reads the data

Is 'T' < 'H' ?
- value is false

H ' H' is first so far

Is 'E' < 'H' ?
- value is true

E 'E' is first

Prints E is the
first letter...

The trace in Table 2.2 clearly shows that the alphabetically first letter,
E, of the input string is stored in ALPHAFIRST and printed. In order to
verify that the program is correct it would be necessary to select other
data which cause the two conditions to evaluate to different combinations
of their values. Since there are two conditions and each has two possible
values (true or false), there are 2 X 2 or 4 different combinations that
should be tried. (What are they?) An exhaustive (complete) desk check of
the program would show that it works for all of these combinations.

Besides the four cases discussed above, you should verify that the pro
gram works correctly for unusual data. For example, what would happen
if all three letters or a pair of letters were the same? Would the program
still provide the correct result? To complete the desk check, it would be
necessary to show that the program does indeed handle these special situ
ations properly.

In tracing each case, you must be very careful to execute the program
exactly as it would be executed by the computer. It is very easy to carry
out the operations that you expect to be performed without explicitly test
ing each condition and tracing each program step. A trace that is
performed in this way is of little value.

Self-check Exercises for Section 2.4

1. Provide sample data and traces for the remaining three cases of the al
phabetically first letter problem. Also, test the case where all three let
ters are the same. What is the value of the conditions in this case?

2. Trace the program in Fig. 2.10 when HOURS is 30.0 and RATE is 5.00.
Perform the trace when HOURS is 20.0 and RATE is 3.00.

68 PROBLEM SOLVING



II Problem Solving Strategies

Often what appears to be a new problem will turn out to be a variation of
one that you already solved. Consequently, an important skill in problem
solving is the ability to recognize that a problem is similar to one solved
earlier. As you progress through the course you will start to build up a li
brary of programs and procedures. Whenever possible, you should try to
adapt or reuse parts of a program that have been shown to work correctly.

Extending a Problem Solution

An experienced programmer usually writes programs that can be easily
changed or modified to fit other situations. One of the reasons for this is
the fact that programmers (and program users) often wish to make slight
improvements to a program after having used it. If the original program is
designed carefully from the beginning, the programmer will be able to ac
commodate changing specifications with a minimum of effort. It may be
possible to modify one or two small procedures rather than rewrite the en
tire program.

Computing
Overtime Pay

Problem: We wish to modify the payroll program so that employees who
work more than 40 hours a week are paid double for all overtime hours.

Discussion: This problem is an extension of the Modified Payroll Problem
solved earlier (see Fig. 2.10). Overtime pay must be added for those
employees who are eligible. We can solve this problem by adding a new
step (step 2A) after step 2 in the original algorithm. The data requirements
are listed below followed by the new algorithm and the refinement for
step 2A.

PROBLEM CONSTANTS
maximum salary for no tax deduction (TAXBRACKET = 100.00)
amount of tax deducted (TAX = 25.00)
maximum hours without overtime pay (MAXHOURS = 40.0)

I
hours worked (HOURS: REAL)
hourly rate (RATE: REAL)

gross pay (GROSS: REAL)
net pay (NET: REAL)

2.5 PROBLEM SOLVING STRATEGIES 69



Algorithm

Step 2A
refinement

Computing
Insurance
Dividends

1. Enter hours worked and hourly rate.
2. Compute gross salary.

2A. Add overtime pay to gross salary.
3. Compute net salary.
4. Print gross salary and net salary.

2A.1 if HOURS> MAXHOURS then
Add overtime pay to GROSS

As shown below, the if statement that implements step 2A should fol
low the statement in Fig. 2.10 used to compute gross salary.

GROSS := HOURS * RATE;

IAdd overtime pay to GROSSI
if HOURS > MAXHOURS then

GROSS ;= GROSS + ((HOURS - MAXHOURS) * RATE);

The assignment statement involves three arithmetic operators: +, -, *. We
will talk more about how Pascal evaluates arithmetic expressions with
multiple operators in Chapter 4, but for the time being it is sufficient to
know that the parentheses cause the operators above to be evaluated in
the order: - first, * next, and + last. Consequently, the overtime hours
(HOURS - MAXHOURS) will be multiplied by RATE and added to the value
of GROSS computed in algorithm step 2; the result will be the new value of
GROSS.

Solution by Analogy

Sometimes a new problem is simply an old one presented in a new guise.
You should try to determine whether you have solved a similar problem
before and, if so, adapt the earlier solution. This requires a careful reading
of the problem statement in order to detect similar requirements that may
be worded differently.

Problem: Each year an insurance company sends out dividend checks to
its policyholders. The dividend amount is a fixed percentage (4.5%) of the
insurance premium paid in. If there were no claims made by the
policyholder, the dividend rate for that policy is increased by 0.5%. Write
a program to compute dividends.

Discussion: This problem is quite similar to the payroll problem just
completed. The dividend amount may be determined by first computing
the basic dividend and then adding the bonus dividend when applicable.
This is analogous to first computing gross pay and then adding in overtime
pay when earned. The data requirements and algorithm are shown next;
the structure chart is drawn in Fig. 2.13.

70 PROBLEM SOLVING



Algorithm

Step 3
refinement

PROBLEM CONSTANTS

the fixed dividend rate of 4.5% (FIXEDRATE = 0.045)
the bonus dividend rate of 0.5% (BONUS RATE = 0.005)

premium amount (PREMIUM: REAL)
number of claims (CLAIMS: REAL)

dividend amount (DIVIDEND: REAL)

1. Enter premium amount and number of claims.
2. Compute basic dividend.
3. Add bonus dividend to basic dividend.
4. Print total dividend.

Fig. 2.13 Structure Chart for Insurance Dividend Problem

The refinement of step 3 above is similar to the refinement of step 2A in
the payroll problem just completed. This refinement is shown next. The
complete program is shown in Fig. 2.14.

3.1 if CLAIMS = 0 then
Add bonus dividend to DIVIDEND

In Fig. 2.14, 4.5% is written as the decimal fraction 0.045 and 0.5% is
written as the decimal fraction 0.005. Since there is no % operator, decimal
fractions are required in Pascal. All real numbers must begin with a digit;
therefore, the zero in front of the decimal point is always required for a
real value less than 1.0.

Fig. 2.14 Insurance Company Dividend Program

program COMPDIVIDEND (INPUT, OUTPUT);

IFinds and prints the insurance dividend.j

2.5 PROBLEM SOLVING STRATEGIES 71



const
FIXEDRATE 0.045i
BONUS RATE 0.005;

var
PREMIUM,
CLAIMS,
DIVIDEND : REALi

Ibasic dividend ratej
Ibonus dividend ratel

[pz'em i.um amountj
Inumber of claimsj
Idividend amount I

begin ICOMPDIVIDENDj
IEnter PREMIUM and CLAIMS I
WRITE ('Premium amount: $');
WRITE ('Number of claims: ')i

READLN (PREMIUM)i
READLN (CLAIMS) i

ICompute basic dividendj
DIVIDEND := PREMIUM * FIXEDRATEi

(Add any bonus dividendi
if CLAIMS = 0 then

DIVIDEND := DIVIDEND + (PREMIUM * BONUSRATE)i

(Print total dividendj
WRITELN ('Total dividend is $', DIVIDEND :8:2)

end. ICOMPDIVIDENDj

Premium amount: $1200
Number of claims: 0
Total dividend is $ 60.00

Self-check Exercises for Section 2.5

( Add borius ]

1. Provide the complete program for Overtime Pay Problem.
2. Rewrite the algorithm for the modified payroll problem so that the

computation of gross salary is performed in one step rather than in
two (i.e. combine steps 2 and 2A). Use an if statement with two al
ternatives.

3. In Fig. 2.14. combine the two steps that compute DIVIDEND into one
step using an if statement with two alternatives.

II Repetition in Programs

Just as the ability to make decisions is a very important programming tool,
so is the ability to specify that a group of operations is to be repeated. For
example, if there are six employees in a company. then we might like to
carry out the gross pay and net pay computations shown in Fig. 2.10 six
times. We can express this in pseudo code as shown on p. 73.

Pascal provides three control statements for specifying repetition. We
will examine one of these in the next section. The others will be intro
duced in Chapters 3 and 5.

72 PROBLEM SOLVING



Example 2.4

for each employee do
Read hours worked and hourly ra te
Compute gross salary
Compute net salary
Print gross pay and net pay

The for Statement

The for statement can be used to specify some forms of repetition quite
easily as shown in the next examples.

The statements below have the same effect.

IPrint three blank linesj
WRITELNi
WRITELN;
WRITELN;

IPrint three blank linesj
for LINE := 1 to 3 do

WRITELN;

Example 2.5

If LINE is declared as an integer variable, the for statement above causes
the WRITELN operation to be performed three times.

Procedure PRINTI for the Mother's Day Problem (see Fig. 2.7) can be
written using the for statement as shown in Fig. 2.15. This procedure
prints 7 lines that contain asterisks in columns 4 and 5.

procedure PRINTI;

IPrints the block letter 'I'.I

var
NEXTLINE : INTEGER; ILoop control variable - from 1 to 71

begin IPRINTlj
for NEXTLINE := 1 to 7 do

WRITELN (' **' :5 ) ;
WRITELN

end; IPRINTI 1

Fig. 2.15 Procedure PRINTI

The for statement is used to implement counting loops or loops where
the exact number of loop repetitions required may be specified as a vari
able or constant value. In Examples 2.4 and 2.5, the number of repetitions
required were 3 and 7, respectively.

The for statement in Fig. 2.15 specifies that the variable NEXTLINE
should take on each of the values in the range 1 to 7 during successive
loop repetitions. This means that the value of NEXTLINE is 1 during the
first loop repetition, 2 during the second loop repetition, and 7 during the
last loop repetition.

2.6 REPETITION IN PROGRAMS 73



Example 2.6

NEXTLINE is called the loop control variable as its value controls the
loop repetition. The loop control variable is intialized to 1 when the for
statement is first reached; after each execution of the loop body, the loop
control variable is incremented by 1 and tested to see whether loop repeti
tion should continue.

The loop control variable may also bereferenced in the loop body, but
its value cannot be changed. The next example shows a for statement
whose loop control variable is referenced in the loop body.

The program in Fig. 2.16 uses a for statement to print a diagonal line of
integers. During each repetition of the loop, the statement

WRITELN (COLUMN : COLUMN)

causes the value of the loop control variable (an integer from 1 to 5) to be
printed. The value of the loop control variable COLUMN also determines
the position of the integer in each output line. Recall from Chapter 1 that a
variable may be used to indicate an output field width and that an integer
value is always printed right justified in its field. A trace of this program
is shown in Table 2.3.

program DRAWDIAGONAL (OUTPUT);

IDraws a diagonal line of integers.j
canst

SIZE = 5; (number of integers printedl

var
COLUMN : INTEGER; Iloop control variablej

begin IDRAWDIAGONALj
IPrint 5 integersj
for COLUMN := 1 to SIZE do

WRITELN (COLUMN : COLUMN)
end. IDRAWDIAGONALj

1
2

3
4

5

Fig. 2.16 Program to Draw a Diagonal

The trace in Table 2.3 shows that the loop control variable COLUMN is
initialized to 1 when the for statement is reached. The for statement
causes the WRITELN statement to be repeated. Before each repetition,
COLUMN is incremented by one and tested to see whether its value is still
less than or equal to SIZE (5). If the test result is true, then the WRITELN
is executed again and the next value of COLUMN is printed. COLUMN is

74 PROBLEM SOLVING



Table 2.3 Trace of Program in Fig. 2.16

Statement COLUMN Effect

?
for COLUMN := 1 to SIZE do Initialize COLUMN to 1

WRITELN (COLUMN : COLUMN) Print 1 in column 1

Increment and test COLUMN 2 2 < = 5 is true -
WRI TELN (COLUMN : COLUMN) Print 2 in column 2

Increment and test COLUMN 3 3 < = 5 is true -
WRI TELN (COLUMN : COLUMN) Print 3 in column 3

Increment and test COLUMN 4 4 < = 5 is true -
WRITELN (COLUMN : COLUMN) Print 4 in column 4

Increment and test COLUMN 5 5 < = 5 is true -
WRITELN (COLUMN : COLUMN) Print 5 in column 5

? Exit loop

equal to 5 during the last loop repetition. After this repetition, the loop is
exited and the value of COLUMN is considered undefined (indicated by the
? in the last table line). This means that COLUMN cannot be referenced
again until it is given a new value.

COUNTING LOOPS

for counter: = 1 to repetitions do
statement

Interpretation: The number of times statement is executed is deter
mined by the value of repetitions. The value of the loop control vari
able counter is set to 1 before the first execution of statement;
counter is incremented by 1 after each execution of statement. The
variable counter must be type INTEGER; repetitions may be a type
INTEGER variable. INTEGER constant, or expression with an INTE
GER value.
Note: If the value of repetitions is less than 1, statement will not be
executed. The value of counter cannot be changed within statement.

PROGRAM STYLE

Loop control variables as local variables

In Fig. 2.15. the loop control variable NEXTLINE is declared in proce
dure PRINTI. Identifiers declared within a procedure are called lo
cal identifiers. All loop control variables used in a procedure must be
declared as local variables.

2.6 REPETITION IN PROGRAMS 75



Sum and
Average of
Integers

Algorithm

Step 2
refinement

Accumulating a Sum

We can use a counting loop to accumulate the sum of a collection of data
values as shown in the next problem.

Problem: Write a program that finds the sum and average of all integers
from 1 to N.

Discussion: In order to solve this problem. it will be necessary to find
some way to form the sum of the first N integers. The data requirements
and algorithm follow.

the last integer in the sum (N : INTEGER)

the sum of integers from 1 to N (SUM: INTEGER)
the average of the integers from 1 to N (AVERAGE: REAL)

1. Read the last integer (N).
2. Find the sum (SUM) of all the integers from 1 to N inclusive.
3. Find the average (AVERAGE) of the integers from 1 to N.
4. Print the sum and average.

Step 2 is the only step needing refinement. One possible refinement is
shown next.

2.1 Add 1 to SUM
2.2 Add 2 to SUM
2.3 Add 3 to SUM

2.N Add N to SUM

For a large value of N, it would be rather time-consuming to write this
list of N steps. We would also have to know the value of N before writing
this list; consequently, the program would not be general as it would only
work for one value of N.

Since these steps are all quite similar, we can represent each of them
with the general step 2.i below.

2.i Add i to SUM

This general step must be executed for all values of i from 1 to N, inclu
sive. This suggests the use of a counting loop with I as the loop control
variable.

76 PROBLEM SOLVING



Step 2
refinement

2.1 for each integer I from 1 to N do
Add I to SUM

The variable I will take on the successive values 1, 2, 3, ... , N. Each
time the loop is repeated, the current value of I must be added to SUM.
The description of I follows.

loop control variable - represents each integer from 1 to N
(I : INTEGER)

The complete program is shown in Fig. 2.17. The statements

SUM := 0;
for I := 1 to N do

SUM := SUM + I;

(initialize SUM to zeroj

(add next integer to SUMj

are used to perform step 2. In order to ensure that the final sum is correct,
the value of SUM must be initialized to zero before the first addition oper
ation. The for statement causes the assignment statement

SUM := SUM + I

to be repeated N times. Each time, the current value of I is added to the
sum being accumulated and the result is saved back in SUM. This is illus
trated below for the first two loop repetitions.

SUM I

SUM I

program SUMINTEGERS (INPUT, OUTPUT);

(Finds and prints the sum and average of all ~ntegers from 1 to N.}

2.6 REPETITION IN PROGRAMS 77



var
N, (the last integer to be added to the sum]
SUM, (the sum being accumulatedj
I : INTEGER; lthe next integer to be added to the sum]
AVERAGE : REAL; (the average of the numbersj

begin (SUMINTEGERSj
lRead the last integer (N)j
WRITE ('Enter the last integer in the sum: '); READLN (N);

(Find the sum
SUM := 0;
for I := 1 to

SUM := SUM

(SUM) of all the integers from 1 to N inclusivej
(Initialize SUM to zeroj

N do
+ I; (Add the next integer to SUMj

(Find the average (AVERAGE) of N integersj
AVERAGE := SUM / N;

(Print the sum and averagel
WRITELN ('The sum is " SUM :5);
WRITELN ('The average is " AVERAGE :5:2)

end. (SUMINTEGERSl

Enter the last integer in the sum: 6
The sum is 21
The average is 3.50

Fig. 2.17 Program for Sum and Average of Integers from 1 to N

A trace of the program for a data value of 3 is shown in Table 2.4. The
trace verifies that the program performs as desired since the final value
stored in SUM is 6 (1 + 2 +3). The value of the loop control variable I be
comes undefined after it reaches the value of N (3 in this case). As shown
in the table, the statement

SUM := SUM + I

is executed exactly three times.

Self-check Exercises for Section 2.6

1. There is generally more than one way to solve a problem. It so hap
pens that the formula

N(N+1)

2

may be used to compute the sum of the integers from 1 to N inclusive.

78 PROBLEM SOLVING



Write a program that compares the results of both methods and prints
an appropriate message indicating whether or not the results are the
same.

2. Write a program that finds the product of the integers from 1 to N in
clusive. Test this program with values of N that are less than eight.

Table 2.4 Trace of Program in Fig. 2.17

Statement N I SUM AVE Effect

? ? ? ?
WRITE ( I Enter the. . . Print a prompt
READLN (N) 3 Read 3 into N
SUM := 0 0 Initialize SUM

for I := 1 to N do Initialize I to 1
SUM := SUM + I Add 1 to SUM

Increment and test I 2 2 < = 3 is true
SUM := SUM + I 3 Add 2 to SUM

Increment and test I 3 3 < = 3 is true
SUM := SUM + I 6 Add 3 to SUM

Increment and test I ? Exit loop

AVERAGE := SUM / N 2 AVERAGE is 6 I 3
WRITELN ( 'The sum. Print the sum, 6
WRITELN ( 'The average. Print the average, 2

III Generalizing a Solution

After finishing a program, someone will often ask a "What if?" question.
The person asking the question usually wants to know whether the pro
gram would still work if some of the restrictions implied by the problem
statement were removed. If the answer is "No," then you may have to
modify the program to make it work. You will be much better off if you try
to anticipate these questions in advance and make your programs as gen
eral as possible right from the start. Sometimes this can be accomplished
as easily as changing a program constant to a problem input.

One question that comes to mind for the last problem is: What if we
wanted to sum a list of any numbers, not just the first N integers; would
the program still work? Clearly, the answer to this question is "No." How
ever, it would not be too difficult to modify the program to solve this more
general problem.

2.7 GENERALIZING A SOLUTION 79



General Sum
and Average
Problem

Algorithm

Step 2
refinement

Problem: Write a program that finds and prints the sum and average of a
list of numbers.

Discussion: In order to add any list of numbers, a new variable would be
needed to store each item to be summed. The numbers must be provided
as input data. The new data requirements and algorithm follow.

number of items to be summed (NUMITEMS : INTEGER)
each data value to be summed (ITEM: REAL)

sum of the N data items (SUM: REAL)
average of the N data items (AVERAGE: REAL)

1. Read in the number (NUMITEMS) of items to be summed.
2. Read each data item and add it to the sum.
3. Find the average of the data.
4. Print the sum and average.

This algorithm is nearly identical to the previous one. The only step that
is significantly different is step 2, which is refined below.

2.1 Initialize SUM to O.
2.2 for each data item do

Read the data item into ITEM and add ITEM to SUM.

In this refinement, the variable ITEM is used to store each number to be
summed. After each number is read into ITEM, it will be added to SUM. If
there are more data items, the loop will be repeated and the next data
item will replace the last one in ITEM.

The number of data items is read into NUMITEMS. This value deter
mines the number of loop repetitions that are required. A loop control
variable is needed to count the data items as they are processed and en
sure that all data are summed.

loop control variable-the number of data items added so far
(COUNT: INTEGER)

The general program to find the sum and average of a list of data items
is shown in Fig. 2.18.

80 PROBLEM SOLVING



program SUMITEMS (INPUT, OUTPUT);

(Finds and prints the sum and average of a list of data items.]

var
NUMITEMS,
COUNT : INTEGER;
ITEM,
SUM,
AVERAGE : REALi

(the number of data items to be summed]
(count of items added so far]
(the next data item to be summed]
(the sum being accumulated]
!the average of the data]

, );

(read next data item]
!add the next data item]

begin ISUMITEMS]
(Read the number of data items to be summed]
WRITE ('Number of items to be summed? '); READLN (NUMITEMS);

(Find the sum (SUM) of NUMITEMS data items]
SUM := 0; (initialize SUM to zero]
for COUNT := 1 to NUMITEMS do

begin
WRITE ('Next item to be summed?
READLN (ITEM);
SUM := SUM + ITEM

end; (for COUNT]

(Find the average of the data]
AVERAGE := SUM / NUMITEMS;

(Print the final value of SUM and AVERAGE]
WRITELN ('The sum is " SUM :8:2);
WRITELN ('The average is' AVERAGE :8:2)

end. (SUMITEMS]

Number of items in the sum? 3
Next item to be summed? 4.5
Next item to be summed? 6.5
Next item to be summed? 7.0
The sum is 18.00
The average is 6.00

Fig. 2.18 Program to Sum a List of Data Items

PROGRAM STYLE

Defensive programming

The programs in Fig. 2.17 and 2.18 both have the same flaw: the divi
sion operation in the assignment statement

AVERAGE := SUM / N;
or AVERAGE:= SUM / NUMITEMSi

cannot be performed if the divisor is zero. Instead, the computer will

2.7 GENERALIZING A SOLUTION 81



print an error message such as "division by zero" and program exe
cution will stop.

You are correct if you are thinking that no reasonable person
would enter a data value of zero for N or NUMITEMS, but program
users often do not know what is reasonable and what is not. There
fore, experienced programmers often practice "defensive program
ming" to ensure that a program operates properly even for invalid
data.

In Fig. 2.18, it would be safer to compute AVERAGE using the if
statement below

if NUMITEMS = 0 then
WRITELN ('Invalid data value (0) for NUMITEMS')

else
AVERAGE := SUM / NUMITEMSi

The program causes its own error message to be displayed when
NUMITEMS is invalid; the program computes the value of AVERAGE
only when NUMITEMS is valid. In either case, program execution will
continue. This is preferable to having the computer stop the program
because of an error.

Compound Statement

In the for statement

for COUNT := 1 to NUMITEMS do
begin

WRITE ('Next item to be summed? ')i
READLN (ITEM)l (Read next data item]
SUM := SUM + ITEM (Add the next data item]

e nd r [for COUNT]

the begin and end are used to bracket three statements (WRITE,
READLN, assignment) as one compound statement that forms the loop
body. All three statements are executed each time the loop is repeated.
The brackets were not needed before since the loop body was always a
single statement. Whenever a loop body consists of more than one state
ment, a compound statement must be used as shown above.

A compound statement can be used with an if statement as well. Ex
amples of this are found in Chapter 3.

PROGRAM STYLE

Use of semicolons

Semicolons are used to separate the individual statements in the com
pound statement shown above. Semicolons should not be used before

82 PROBLEM SOLVING



or after begin or before end since the reserved words begin and
end are not statements. This is consistent with our prior usage of
semicolons. The semicolon after the end [e nd r [fo r COUNT]) sepa
rates the for statement from the assignment statement

AVERAGE := SUM / NUMITEMSi

that follows it in Fig. 2.18.

PROGRAM STYLE

Comment after end

The reserved word end appears twice in Fig. 2.18. The first end is
followed by a comment (end ~ Ifor COUNT]) which indicates that
it is used to mark the end of the for statement with loop control
variable COUNT. This comment enhances the clarity and readability
of the program. We recommend that you follow this practice as there
will often be many occurrences of the word end in a program.
Commenting in this way makes it easier to associate each end with
its corresponding begin.

Self-check Exercises for Section 2.7

1. Write a general program to find the product of a list of data items. Ig
nore any data values of o.

II Repeating a Program Body

When we began the discussion of repetition in programs, we mentioned
that we would like to be able to execute the payroll program for several
employees in a single run. We will see how to do this next.

Processing
Several
Employees

Problem: Modify the payroll program to compute gross pay and net pay
for a group of employees.

Discussion: The number of employees must be provided as input data
along with the hourly rate and hours worked by each employee. The same
set of variables will be used to hold the data and computational results
for each employee. The computations will be performed in the same way
as before. The new data requirements and algorithm follow.

2.8 REPEATING A PROGRAM BODY 83



Algorithm

maximum salary for no tax deduction (TAXBRACKET = 100.0)
amount of tax deducted (TAX = 25.00)
maximum hours without overtime pay (MAXHOURS = 40.0)

number of employees (NUMEMP : INTEGER)
hours worked by each employee (HOURS: REAL)
hourly rate for each employee (RATE: REAL)

gross pay (GROSS: REAL)
net pay (NET: REAL)

1. Enter the number of employees (NUMEMP).
2. for each employee do

Enter payroll data and compute and print gross and net pay.

An additional variable is needed to count the number of employees pro
cessed and control the for loop in step 2.

loop control variable-counts the employees that are processed
(COUNTEMP : INTEGER)

The structure chart is shown in Fig. 2.19. The structure chart for the sub
problem "find gross and net pay" was drawn in Fig. 2.9.

The declaration section of the program in Fig. 2.20 contains a large pro
cedure (MODPAY) which is based on the payroll program in Fig. 2.10. The
main program body consists of statements to read in NUMEMP (number of
employees) and a for statement which repeatedly calls procedure

Fig. 2.19 Structure Chart for Multiple Employee Problem

84 PROBLEM SOLVING



program MULTIPAY (INPUT, OUTPUT);

[Finds and prints gross pay and net pay for a group of employees.l

var
NUMEMP,
COUNTEMP INTEGER;

[total number of employees I
[loop control variable - count
of employees processed I

procedure MODPAY;

[Computes and prints gross pay and net pay given an hourly rate
and number of hours worked. Deducts a tax of $25 if gross salary
exceeds $100; otherwise, deducts no tax. I

const
TAXBRACKET = 100.00;
TAX = 25.00;

var
HOURS, RATE,
GROSS, NET: REAL

[maximum salary for no deductionl
[tax amount I

[hours worked, hourly ratel
[gross pay, net paYI

begin [MODPAYI
[Enter HOURS and RATEI
WRITE ('Hours worked? ');
WRITE ('Hourly rate? ');

[Compute gross salarYI
GROSS := HOURS * RATE;

READLN (HOURS);
READLN (RATE);

[Compute net salarYI
if GROSS > TAXBRACKET then

NET := GROSS - TAX [deduct a tax amountl
else

NET := GROSS; [deduct no taxi

[Print GROSS and NETI
WRITELN ('Gross salary is $', GROSS :8:2);
WRITELN ('Net salary is $', NET :8:2)

end; (MODPAYI

begin [MULTIPAYI
[Enter total number of employeesl
WRITE ('How many employees? '); READLN (NUMEMP);

[Compute gross pay and net pay for NUMEMP employeesl
for COUNTEMP := 1 to NUMEMP do

begin
MODPAY; [process next employeel
WRITELN

end [for COUNTEMPI
end. (MULTIPAYI

2.8 REPEATING A PROGRAM BODY 85



How many employees? 2
Hours worked? 25
Hourly rate? 3.50
Gross salary is $ 87.50
Net salary is $ 87.50

Hours worked? 40
Hourly rate? 4.80
Gross salary is $ 192.00
Net salary is $ 167.00

Fig. 2.20 Multiple Employee Payroll Program

MODPAY. Each execution of MODPAY causes the payroll computations to
be performed for a different employee.

The only identifiers declared in the main program are NUMEMP,
COUNTEMP, and MODPAY. All other identifiers are declared as local identi
fiers in procedure MODPAY since they are manipulated only within the pro
cedure.

Procedure MODPAY contains exactly the same declaration section and
body as program MODPAY in Fig. 2.10. The only difference is that MODPAY
is now written as a procedure instead of a program; consequently, its first
line begins with the word procedure instead of program and its last
line is end; (MODPAYj instead of end. (MODPAYj.

The ability to convert an entire program into a procedure is a very pow
erful programming tool. This capability enables us to reuse old programs
as procedures in the solution of new problems. In this way, we can create
new solutions from old ones.

Similarity between Procedures and Programs

The problem just completed points out the similarity between a procedure
and a program. Both have a declaration part that begins with a heading
(program ... or procedure ...); the declaration part is followed by a
body (beg in ... end. or be g in ... end;). The declaration part de
scribes the identifiers that can be referenced in the body; the body per
forms the data manipulation.

Although many procedures may be declared in a program, there can be
only one program body. The program body always follows the last proce
dure declaration (if any) and is terminated by end and a period.

Procedure bodies and program bodies are translated into machine lan
guage and are saved in different sections of memory. When program exe
cution begins, control is transferred to the memory address of the first
statement of the main program body. When a procedure (call) statement is
executed, control is transferred to the memory address of the first state
ment of that procedure body. After the procedure is done, control is trans
ferred back to the statement in the main program body that follows the
procedure (call) statement.

In the next chapter, we will see that a procedure, like a program, can

86 PROBLEM SOLVING



call other procedures. Also, we will see how to pass information between
procedures and between procedures and the main program. All of these
capabilities increase the utility of procedures.

• Debugging and Testing Programs

In Section 1.11, we described the general categories of error messages that
you are likely to see: syntax errors and run-time errors. It is also possible
for a program to execute without generating any error messages, but still
produce incorrect results. Sometimes the cause of a run-time error or the
origin of incorrect results is apparent and the error can easily be fixed.
However, very often the error is not obvious and may require consider
able effort to locate.

The first step in attempting to find a hidden error is to try to determine
what part of the program is genrating incorrect results. Then insert extra
WRITELN statements in your program to provide a trace of its execution.
For example, if the summation loop in Fig. 2.18 is not computing the cor
rect sum, you might want to insert an extra diagnostic WRITELN as shown
by the last line in the loop below.

for COUNT := 1 to NUMITEMS do
begin

WRITE ('Next item to be summed? ');
READLN (ITEM);
SUM := SUM + ITEM;
WRITELN ('SUM = " SUM, 'COUNT =' COUNT)

end; [for; COUNTl

The extra WRITELN statement will display each partial sum that is ac
cumulated and the current value of COUNT. Be careful when inserting ex
tra diagnostic print statements as they can be a source of syntax errors or
additional run-time errors. In this case, a semicolon also needed to be in
serted after the assignment statement in the loop body. Sometimes it will
be necessary to add a begin ... end pair if a single statement inside an
if or while statement becomes a compound statement when a diagnos
tic WRITELN is added.

Once it appears that you have located the error, you will want to take
out the extra diagnostic statements. As a temporary measure, it is some
times advisable to make these diagnostic statements comments by
enclosing them in curly braces. If errors crop up again in later testing, it is
easier to remove the braces than retype the diagnostic statements.

Testing a Program

After all errors have been corrected and the program appears to execute
as expected, the program should be tested thoroughly to make sure that it
works. In Section 2.4, we discussed tracing an algorithm and suggested
that enough sets of test data be provided to ensure that all possible paths

2.9 DEBUGGING AND TESTING PROGRAMS 87



are traced. The same statement is true for the completed program. Make
enough test runs to verify that the program works properly for representa
tive samples of all possible data combinations.

• Common Programming Errors

When using comments. you must be very careful to insert each left and
right curly brace where required. If the left (opening) brace is missing,
then the compiler will not recognize the beginning of the comment and
will attempt to process the comment as a Pascal statement. This should
cause a syntax error. If the right brace is missing. the comment will simply
be extended to include all program statements that follow it. The comment
will not be terminated until the right curly brace at the end of the next
comment is reached. If there are no more comments, then the rest of the
program will be included in the comment and a syntax error such as "in
complete program" will be printed.

Remember that all identifiers in Pascal must be declared before they
can be referenced. Consequently, the main program body must come at
the end of a program, following the procedure declarations.

Make sure to use semicolons only at the end of a statement. If a state
ment is written over several lines, the semicolon may be placed at the end
of the last line only. The semicolon in the if statement below will cause
the syntax error "illegal symbol" when else is reached.

if X >= 0.0 then
WRITELN (X :8, , is positive or zero');

else
WRITELN (X :8, , is negative')

Don't forget to bracket a compound statement with begin and end. It
is not sufficient to indent the compound statement, as the compiler ignores
the indentation. Consequently, only the WRITELN statement is repeated in
the program fragment below.

SUM := 0;
for COUNT := 1 to 10 do

WRITELN (COUNT);
SUM := SUM + COUNT;

WRITELN (SUM)

The assignment statement

SUM := SUM + COUNT;

will be executed after the loop is exited. However, since the loop control
variable is undefined after loop exit, a run-time error will occur.

88 PROBLEM SOLVING



III Chapter Review

In the first part of this chapter we outlined a method for solving problems
on the computer. This method stressed six points:

1. Understand the problem.
2. Identify the input and output data for the problem as well as other rel-

evant data.
3. Formulate a precise statement of the problem.
4. Develop a list of steps for solving the problem (an algorithm).
5. Refine the algorithm.
6. Implement the algorithm in Pascal.

We showed how to divide a problem into subproblems and how to use
a structure chart to show the relationship between the subproblems. The
procedure was introduced as a means of implementing subproblems as
separate program modules.

Several guidelines for using program comments were discussed. Well
placed and carefully worded comments, and a structure chart, can provide
all of the documentation necessary for a program.

In the remainder of the chapter, we discussed the representation of the
various steps in an algorithm and illustrated the stepwise refinement of al
gorithms. We used pseudocode to represent the loops and decision steps
of an algorithm. We showed how to implement decisions in Pascal using
the if statement and repetition using the for statement.

Algorithm and program traces are used to verify that an algorithm or
program is correct. Errors in logic can be discovered by carefully tracing
an algorithm or program. Tracing an algorithm or program before entering
the program in the computer will save you time in the long run.

New Pascal Statements in Chapter 2

The new Pascal statements introduced in this chapter are described in Ta
ble 2.5 on page 90.

Review Questions

1. Briefly describe the steps to be taken to derive an algorithm for a giv
en problem.

2. The diagram that shows the algorithm steps and their interdepen-
dencies is called a _

3. What are three advantages of using procedures?
4. Where in the final program is the main program body found and why?
5. When is a procedure executed and where must it appear in the main

program?
6. A decision in Pascal is actually an evaluation of a(n) ex-

pression.

2.11 CHAPTER REVIEW 89



Table 2.5 Summary of New Pascal Statements

Statement

Comment
IThis is a comment!
(* So is this! *)

Procedure declaration
procedure DISPLAY;

IPrints 3 lines of 3 asterisks.!

const
STAR I * I;

begin IDISPLAY!
WRITELN (STAR, STAR, STAR);
WRITELN (STAR, STAR, STAR);
WRITELN (STAR, STAR, STAR)

end; IDISPLAY!

Procedure (call) statement
DISPLAY

if statement (with one alternative)
if X <> 0.0 then

PRODUCT := PRODUCT * X

if statement (with two alternatives)
if X >= 0.0 then

WRITELN (X, , is positive')
else

WRITELN (X, I is negative')

for statement

for NUMSTARS := 1 to 25 do
WRITE (I *' )

Effect

Comments document the use
of variables and statements in
a program. They are ignored by
the compiler.

Procedure DISPLAY is de
clared and may be called to
print three lines of asterisks.
The local constant STAR is de
fined only when DISPLAY is
executing.

Calls procedure DISPLAY and
causes it to begin execution.
The call must follow the decla
ration of DISPLAY.

Multiplies PRODUCT by X only
if X is nonzero.

If X is greater than or equal to
0.0, the message' is positive'
is printed; otherwise, the mes
sage' is negative' is printed.

Prints a row of 25 asterisks.

7. List the six relational operators discussed in this chapter.
8. What should be done by the programmer after the algorithm is written

but before the program is entered (typed) into the computer?
9. .Trace the following program fragment and indicate which procedure

will be called if a data value of 27.34 is entered.

90 PROBLEM SOLVING



WRITE ('Enter a temperature: ')i READLN (TEMP)i
if TEMP > 32 then

NOTFREEZING
else

ICEFORMING
10. Write the appropriate if statement to compute GROSSPAY given that

the hourly rate is stored in the variable RATE and the total hours
worked is stored in the variable HOURS. Pay time and a half for more
than 40 hours worked.

11. Write a loop that reads in HOURS and RATE and prints out GROSSPAY
as defined in questions 10 for 22 employees.

12. Modify the loop for question 11 to accumulate the sum of gross pay for
all employees.

13. Provide a separate procedure called GRPAY that solves questions 11
and 12.

Programming Projects

1. a) Write a program to print the message "XXOXOX" in block letters.
b) Modify your program so that any siX: letter message consisting of X's and
O's will be printed in block letter form. The message to be printed should be
entered and displayed one character at a time.

2. a) Write a program to simulate a state police radar gun. The program should
read an automobile speed and print the message "speeding" if the speed ex
ceeds 55 mph.
b) Modify your program so that ten speeds are handled in a single run. Also,
print a count of the number of speeding automobiles.

3. Write a program that computes the product of a collection of 15 data values.
Your program should ignore zero values.

4. Compute and print a table showing the first 15 powers of 2.

5. A program is needed that will read a character value and a number.
Depending upon what is read, certain information will be printed. The char
acter should be either an S or a T. If an S is read and the number is 100.50,
the program will print

Send money! I need $100.50

If a T is read instead of S, the program will print

The temperature last night was 100.50 degrees

6. Write a program that reads in 20 values and prints the number of values that
are positive (greater than or equal to zero) and the number that are negative.
Also print I more po s i, tive I or I more negative I based on the
result.

7. Write an algorithm to compute the factorial, N!, of a single arbitrary integer

PROGRAMMING PROJECTS 91



N. (N! = N X (N - 1) X ... 2 X 1). Your program should read and print the
value of N and print N! when done.

8. Continuation of Project 6 in Chapter 1 Modify the program to handle sever
al times in a single run. The number of data pairs should be the first problem
input. Also, print a count of runners who break the four minute mile.

9. Continuation of Project 8 in Chapter 1 Modify the program to handle all
data in a single run. Print 'Out of gas I or I All the way I as each
pair of data items is processed. Assume that the trip distance is 300 miles.

10. a) If N contains an integer, then we can compute XN for any X, simply by ini
tializing a variable to 1 and multiplying it by X a total of N times. Write a
program to read in a value of X and a value of N, and compute XN via re
peated multiplications. Check your program for

X = 6.0
X = 2.5
X = -8.0

N=4
N=6
N = 5

b) Modify your program to handle positive or negative values of N. Hint:
X-3 is equal to 1/X3.

11. Given the bank balance in your checking account for the past month and all
the transactions for the current month, write an algorithm to compute and
print your checking account balance at the end of the current month. You
may assume that the total number of transactions for the current month is
known ahead of time. (Hint: Your first data item should be your checking ac
count balance at the end of last month. The second item should be the num
ber of transactions for the current month. All subsequent items should be the
amount of a transaction.)

12. Write a program to compute gross and net pay for several employees. First,
read in the number of employees and then the hourly rate and then the num
ber of hours for each employee. Any hours exceeding 40 are to be paid time
and-a-half. Net pay is 65% of gross pay.

13. Write a program that reads in three numbers and finds and prints the
smallest and largest number.

14. Write a program that prints a table showing classroom number, maximum
size, number of seats available, and a message indicating whether the class
is filled or not. Before reading any data, call a procedure to print some table
headings indicating what the output represents. In an interactive program,
the headings should be printed to the right of the screen so that they are not
confused with the input data. Call another procedure repeatedly to read and
process the data for each classroom. Use the following classroom

92 PROBLEM SOLVING

Room
426
327
420
317

Capacity
25
18
20

100

Enrollment
25
14
15
90



Sample output might begin:

Room Maximum Number Remaining
number size enrolled seats Filled?

426 25 25 0 Yes
327 18 14 4 No

15. Write a program that will determine the additional state tax owed by an em
ployee. The state charges a 4% tax on net income. Net income is determined
by subtracting a $500 allowance for each dependent from gross income. Your
program will read gross income, number of dependents, and tax amount al
ready deducted. It will then compute the actual tax owed and print the dif
ference between tax owed and tax deducted followed by the message
, SEND CHECK' or ' REFUND' depending on whether this difference is
positive or negative.

16. Write a program that will help you determine the maximum number of traffic
lights that can be purchased for $50,000. Assume that the purchase cost of
each light is $5000 and the installation cost is $1000. Each light uses 420 kilo
watt-hours of electricity a year and kilowatts are charged at $0.047 per kilo
watt-hour. Enter a guess as to how many lights can be purchased and keep
rerunning the program until the best answer is printed.

17. The New Telephone Company has the following rate structure for long-dis
tance calls:
1) Any call started after 6:00 P.M. (1800 hours) gets a 50% discount.
2) Any call started after 8:00 A.M. (0800 hours) is charged full price.
3) All calls are subject to a 4% Federal tax.
4) The regular rate for a call is $0.40 per minute.
5) Any call longer than 60 minutes receives a 15% discount on its cost (af

ter any other discount is taken but before tax is added).

Write a program that processes several calls by reading the start time for
each call based on a 24-hour clock and the length of each call. The gross cost
(before any discounts or tax) should be printed followed by the net cost (af
ter discounts are deducted and tax is added). Use a procedure to print a ta
ble heading and a procedure to read and process each call.

PROGRAMMING PROJECTS 93



Control Statements
3.1 Syntax Diagrams
3.2 The if Statement Revisited
3.3 The while Statement
3.4 Procedure Parameters
3.5 Adding Data Flow Information to Structure Charts
3.6 Nested Procedures and Scope of Identifiers
3.7 Case Studies
3.8 Debugging a Program System
3.9 Common Programming Errors
3.10 Chapter Review

The control statements of a programming language enable the programmer
to control the sequence and frequency of execution of segments of a pro
gram. Control statements are used to call procedures into execution and
implement decisions and loops in programs. The control statements intro
duced so far are: the procedure statement, the if statement, and the
for statement.

Syntax diagrams will be discussed as a means of specifying the syntax
of a Pascal statement, including control statements. An examination of the
syntax diagram for the if statement will show how to write if state
ments with several (more than two) alternatives.

95



A new looping statement, the while statement, will be introduced. The
repetition of a while loop is controled by a condition; the loop is repeat
ed as long as (while) this condition is true.

There will be further discussion of procedures, and procedure parame
ters will be used for communication of information between procedures.
The structure chart will be used to show the required data flow between
procedures. Two large case studies will be implemented that use nested
procedures in their solution.

• Syntax Diagrams

Before discussing control statements, we will show how to describe the
syntax of any Pascal language feature using a syntax diagram. The syntax
diagram below describes a Pascal identifier. This syntax diagram refer
ences two other syntactical elements of Pascal: letter (A-Z, a-z) and digit
(0-9). Recall that an identifier is a sequence of letters and digits starting
with a letter.

Syntax Diagram for Identifier

In order to use a syntax diagram, you must trace through the diagram
following the arrows. You should start at the arrow tail on the left and fin
ish at the arrowhead on the right.

The shortest path through this diagram is from left to right passing
through the top box labeled letter. This means that a Pascal identifier may
be any single letter (e.g. A, B, c, z).

There are many other paths through this diagram. Instead of exiting at
the right after passing through the top box labeled letter, it is possible to
follow either path leading down and to the left. These paths go through a
box labeled digit or another box labeled letter. If the diagram is then
exited, the identifier formed will consist of two characters (e.g. it, ME, R2,
D2).

Since there is a closed cycle or loop in the diagram, the lower box
labled letter and the box labeled digit may be passed through several
times before exiting the diagram. Each time, a symbol from the box (letter
or digit) passed through should be added to the identifier being formed.
Some identifiers formed this way are: A, ABC, or A23b4 cdS. It is impossi
ble to trace a path that establishes 123 or 12ABC as valid identifiers.

96 CONTROL STATEMENTS



You can use syntax diagrams to verify that a program. statement is cor
rect before you enter it. If a syntax error occurs during debugging, you can
refer to the appropriate syntax diagram to determine the correct form of
the element that is incorrect. Appendix C contains all Pascal syntax dia
grams.

Self-check Exercises for Section 3.1

1. Which syntax diagrams in Appendix C would be used to verify that
the statement below was syntactically correct? The identifier N would
be classified as what kind of syntactic element? Answer the same
question for the identifiers I and SUM.

for I := 1 to N do
SUM := SUM + I

• The if Statement Revisited

The syntax diagram for an if statement shown below

if Statement

references the Pascal elements expression and statement. If the syntactic
form of any of these is uncertain then the appropriate diagram should be
consulted (see Appendix C).

The reserved words (if, then, else) are enclosed in ovals rather than
boxes. When you pass through one of these ovals, the word inside should
be inserted in the if statement being formed.

An if statement is completed by exiting at either of the arrowheads at
the far right of the diagram. If the top path is followed, the if statement
will consist of only one alternative (following then); there will be no
else part. If the path leading down and to the left (through else) is
followed instead, the if statement will consist of two alternatives.

The statement following the word then or else may be a single exe
cutable statement or a compound statement surrounded by a begin ...
end bracket. Some of the statements that may be used are assignment
statements, procedure statements (including READLN or WRITELN
statements), for statements, or other if statements.

3.2 THE IF STATEMENT REVISITED 97



Example 3.1

More if Statement Examples

The if statement below may be used to compute the discounted price of
an item. It first determines the discount by multiplying the item price and
the discount rate (a fraction); next, it deducts the discount. The compound
statement is not executed when the discount rate is zero.

if discrate <> 0.0 then
begin

discount := price * discratei
price := price - discount

end lifj

ICompute discount amountj
IDeduct discount from pricej

Example 3.2

Example 3.3

The if statement in Fig. 3.1 orders the values in X and Y so that the
smaller number will be in X and the larger number will be in Y. If the two
numbers are already in the proper order. the compound statement will not
be executed.

if X > Y then
begin [ sw i t ch X and Yl

TEMP := Xi IStore old X 1.n TEMPI
X := Yi [s t.ore old Y in XI
Y := TEMP IStore old X in Yl

end IX > Yj

Fig. 3.1 If Statement to Order X and Y

The variables X, Y. and TEMP should all be the same type. Although the
values of X and Yare being switched, an additional variable, TEMP, is
needed for storage of a copy of one of these values. The need for TEMP is
illustrated in the trace in Table 3.1, assuming X and Y have original values
of 12.5 and 5.0, respectively.

Table 3.1 Trace of if Statement to Order X and Y

Statement Part X Y TEMP Effect

12.5 5.0 ?
if X > Y then 12.5 > 5.0 - true

TEMP := Xi 12.5 Store old X in TEMP
X := Yi 5.0 Store old Y in X
Y := TEMP 12.5 Store old X in Y

The if statement below may be used to process a positive transaction
amount (TRANSAMOUNT) that represents a check (TRANSTYPE is I C') or
a deposit. In either case, an appropriate message is printed and the ac
count balance (BALANCE) is updated. Both the true and false statements
are compound statements.

98 CONTROL STATEMENTS



if TRANSTYPE = 'C' then
begin Icheck)

WRITE ('Check for $', TRANSAMOUNT)i
BALANCE := BALANCE - TRANSAMOUNT IDeduct check amountj

end [check]
else

begin Idepositj
WRITE ('Deposit of $', TRANSAMOUNT)i
BALANCE := BALANCE + TRANSAMOUNT IAdd deposit amountj

end Idepositj

Example 3.4

The two semicolons in the if statement above are used to separate the
individual statements in each alternative. A common error would be to in
sert a semicolon after the first end (end j Icheck I). This would cause
the if statement to be terminated prematurely, and the else would be
"dangling." The error message "unexpected symbol" would probably be
printed when the compiler tried to translate the rest of the if statement
(beginning with else).

The if statement below is a better way to find and print the average val
ue of a list of items given their sum (see Fig. 2.18). Since the true task is a
single statement only, it is not surrounded by a beg in, end bracket.

if NUMITEMS = ° then
WRITELN ('Invalid number of items - average undefined')

else
begin INUMITEMS <> OJ

AVERAGE := SUM / NUMITEMSj ICompute averagej
WRITELN ('Average is " AVERAGE :8:2)

end INUMITEMS <> OJ

In the event NUMITEMS is zero, the division is not performed and a
message is printed instead. If the division were attempted in this case, an
execution error would result and the error diagnostic "division by zero"
would be printed by Pascal. Rather than have an execution error occur, it
is much better to have your program test for this possible error and print
its own diagnostic.

PROGRAM STYLE

Writing if statements with compound true or false statements

Each if statement in this section contains at least one compound
statement surrounded by a begin-end bracket. Each compound
statement is indented. The purpose of the indentation is to improve
our ability to read and understand the if statement; indentation is
ignored by the Pascal compiler.

The comment after each end helps to associate the end with its
corresponding beg in. The comments are not required either, but are
included to improve program readability.

3.2 THE IF STATEMENT REVISITED 99



Example 3.5

Semicolons are required between the individual statements within
a compound statement. Semicolons should not be used before or af
ter the reserved words then, else, begin, or end; however, a
semicolon will be needed after the last end if another statement fol
lows the if statement.

Nested if Statements

Until now, we used if statements to implement decisions involving two
alternatives. In this section, we will see how the if statement can be
used to implement decisions involving several alternatives.

A nested if statement occurs when the true or false statement of an if
statement is itself an if statement. A nested if statement can be used to
implement decisions with several alternatives as shown in the next exam
ples.

The nested if statement below has three alternatives. It causes one of
three variables (NUMPOS, NUMNEG, or NUMZERO) to be increased by one
depending on whether X is greater than zero, less than zero, or equal to
zero, respectively.

(increment NUMPOS, NUMNEG, or NUMZERO based on XI
if X > 0 then

NUMPOS := NUMPOS + 1
else

if X < 0 then
NUMNEG := NUMNEG + 1

else IX = OJ
NUMZERO := NUMZERO + 1

The execution of this if statement proceeds as follows: the first condi
tion (X > 0) is tested; if it is true, NUMPOS is incremented and the rest of
the if statement is skipped. If the first condition is false, the second con
dition (X < 0) is tested; if it is true, NUMNEG is incremented; otherwise,
NUMZERO is incremented. It is important to realize that the second condi
tion is tested only when the first condition is false. A trace of this state
ment for X = -7 is shown in Table 3.2.

Table 3.2 Trace of if Statement in Example 3.5 for X = - 7

Statement Part

if X > 0 then
else if X < 0 then

NUMNEG := NUMNEG + 1

Effect

-7 > 0 - false
-7 < 0 - true

Add 1 to NUMNEG

100 CONTROL STATEMENTS



PROGRAM STYLE

Multiple alternative decisions

Nested if statements may become quite complex. If there are more
than three alternatives and indentation is not done consistently, it
may be difficult to determine the if to which a given else belongs.
(In Pascal, this is always the closest if without an else.) We find it
easier to write the nested if statement in Example 3.5 as the multi
pie alternative decision below.

[increment NUMPOS, NUMNEG, or NUMZERO based on XI
if X > ° then

NUMPOS := NUMPOS + 1
else if X < ° then

NUMNEG := NUMNEG + 1
else [X = 01

NUMZERO := NUMZERO + 1

In this format, the word else and the next condition appear on
the same line. All the words else align, and each dependent state
ment is indented under the condition that controls its execution. The
general form is shown next.

if condition l then
s t.e t.emerit: ;

else if condition 2 then
s t.etiementi ,

else if condition n then
statement n

else
st.at.ement ;

The conditions in a multiple alternative decision are evaluated in
sequence. If a condition is false, the statement following it is skipped
and the next condition is tested. If a condition is true, the statement
following it is executed and the rest of the multiple alternative deci
sion is skipped. If all conditions are false, then statement; following
the last else is executed.

Very often the conditions in a multiple alternative decision are not mu
tually exclusive. This means that it may be possible for more than one
condition to be true for a given data value. If this is the case, then the or
der of the conditions becomes very important because only the statement
following the first true condition will be executed.

3,2 THE IF STATEMENT REVISITED 101



Example 3.6 The table below describes the assignment of grades based on an exam
score.

Exam Score

90 and above
80-89
70-79
60-69
below 60

Grade Assigned

A

B
C

D

F

Example 3.7

The multiple alternative decision below prints the letter grade assigned
according to this table. The last three conditions are true for an exam
score of 85; however, a grade of B is assigned because the first true condi
tion is SCORE > = 80.

(correct grade assignmentj
if SCORE >= 90 then

WRITE ('A')
else if SCORE >= 80 then

WRITE ('B')
else if SCORE >= 70 then

WRITE (' C' )
else if SCORE >= 60 then

WRITE ('D')
else

WRITE ('F')

It would be wrong to write the decision as shown next. All passing
exam scores (60 or above) would be incorrectly categorized as a grade of
D because the first condition would be true and the rest would be skipped.

(incorrect grade assignmentj
if SCORE >= 60 then

WRITE ('D')
else if SCORE >= 70 then

WRITE ('C')
else if SCORE >= 80 then

WRITE ('B')
else if SCORE >= 90 then

WRITE (' A' )
else

WRITE ('F')

A nested if statement may be used to implement a decision table that
describes several alternatives. Each line of Table 3.3 indicates a salary
range and a base tax amount and tax percentage for that range. Given a
salary amount, the tax is calculated by adding the Base Tax for that sala
ry range, and the product of the Percentage of Excess and the amount of
salary over the minimum salary for that range. For example, the second
line of the table specifies that the tax due on a salary of $2000.00 is
$225.00 plus 16% of the excess salary over $1500.00 (i.e. 16% of $500.00).
Therefore, the total tax due is $225.00 plus $80.00 or $305.00.

102 CONTROL STATEMENTS



Table 3.3 Tax Table for Example 3.7

Range Salary Base Tax Percentage of Excess

0.00 - 1499.99 0.00 15%

2 1500.00 - 2999.99 225.00 16%

3 3000.00 - 4999.99 465.00 18%

4 5000.00 - 7999.99 825.00 20%

5 8000.00 - 14999.99 1425.00 25%

The if statement in Fig. 3.2 implements the tax table. If the value of
SALARY is within the table range (0 to 14999.99), exactly one of the state
ments assigning a value to TAX will be executed. A trace of the if state
ment for SALARY = $2000.000 is shown in Table 3.4. The value assigned
to TAX is $305.00 as desired.

if SALARY < 0.0 then
WRITELN ('Error! Negative salary $', SALARY :10:2)

else if SALARY < 1500.00 then
TAX := 0.15 * SALARY

else if SALARY < 3000.00 then
TAX := (SALARY - 1500.00) * 0.16 + 225.00

else if SALARY < 5000.00 then
TAX := (SALARY - 3000.00) * 0.18 + 465.00

else if SALARY < 8000.00 then
TAX := (SALARY - 5000.00) * 0.20 + 825.00

else if SALARY < 15000.00 then
TAX := (SALARY - 8000.00) * 0.25 + 1425.00

else
WRITELN ('Error! Too large salary $', SALARY :10:2)

Fig. 3.2 If Statement for Table 3.3

Table 3.4 Trace of if Statement in Fig. 3.3 for SALARY = $2000.00

(first rangej

(second rangej

(third rangej

(fourth rangej

(fifth rangej

Statement Part SALARY TAX Effect

if SALARY < 0.0

else if SALARY < 1500.00

else if SALARY < 3000.00

TAX := (SALARY - 1500.00)
* 0.16
+ 225.00

2000.00 ?
2000.0 < 0.0 - false

2000.0 < 1500.0 - false

2000.0 < 3000.0 - true

Evaluates to 500.00
Evaluates to 80.00

305.00 Evaluates to 305.00

3,2 THE IF STATEMENT REVISITED 103



PROGRAM STYLE

Validating the value Of variables

It is important to validate the value of a variable before performing
computations using invalid or meaningless data. Instead of computing
an incorrect tax amount, the if statement in Fig. 3.3 prints an error
message if the value of SALARY is outside the range covered by the
table (0 to 14999.99). The first condition is used to detect negative
salaries and an error message is printed if SALARY is less than zero.
If SALARY is greater than 14999.99, all conditions are false and the
alternative following else causes an error message to be printed.

Self-check Exercises for Section 3.2

1. What would be the effect of omitting the first be g in in the if state
ment of Example 3.3? What error messages do you think would be
printed as the compiler tried to translate the rest of the if statement?

2. Write an if statement that assigns the larger of X and Y to LARGER
and the smaller to SMALLER. Your statement should print 'X LARG
ER' or 'Y LARGER' depending on the situation.

3. Trace the execution of the nested if statement in Fig. 3.2 when SAL
ARY is 13500.00.

4. What would be the effect of reversing the order of the first 2 condi
tions in the if statement of Fig. 3.2?

5. Rewrite the if statement for Example 3.6 using only the relational op
erator < in all conditions.

6. Implement the decision table below using a nested if statement. As
sume that the grade point average is within the range 0.0 through 4.0.

Grade POint A verage Transcript Message
0.0 - 0.99 Failed semester-registration suspended
1.0 - 1.99 On probation for next semester
3.0 - 3.49 Deans list for semester
3.5 - 4.0 Highest honors for semester

III The while Statement

In all the loops used so far, the exact number of loop repetitions required
could be determined before the start of loop execution. We used the for
statement to implement these counting loops.

In many programming situations, the exact number of loop repetitions
cannot be determined before loop execution begins. It may depend on
some aspect of the data which is not known beforehand, but usually can
be stated by a condition. For example, we may wish to continue writing
checks as long as our bank balance is positive. Pascal provides additional

104 CONTROL STATEMENTS



Example 3.8

looping statements (while and repeat) to implement conditional loops.
The while statement is discussed below; the repeat statement is dis
cussed in Chapter 5.

The while loop in Fig. 3.3 could be used to find the sum of the first N in
tegers. The loop body is the compound statement (beg in ... end
[wh i l e J) and is repeated as long as (while) the value of NEXTINT is
less than or equal to N. In the loop body, each value of NEXTINT (starting
with 1) is added to SUM and NEXTINT is incremented by 1. Loop execu
tion stops when NEXTINT is equal to N + 1. The equivalent for loop is
provided for comparison.

while Loop
SUM := 0;
NEXTINT := 1;
while NEXTINT <= N do

begin
SUM := SUM + NEXTINT;
NEXTINT .= NEXTINT + 1

end [wh i Le ]

Fig. 3.3 while and for Statements to Sum N Integers

for Loop
SUM := 0;
for NEXTINT := 1 to N do

SUM := SUM + NEXTINT

The most obvious difference between the loops in Fig. 3.3 is that the
while statement is much longer. This illustrates that the while state
ment should not be used to implement a counting loop; the for statement
is easier to write and more efficient.

NEXTINT is the loop control variable for both loops in Fig. 3.3. The
main reason for the extra length of the while loop involves the manner in
which the loop control variable NEXTINT is manipulated:

• NEXTINT is set to an initial value of 1 (NEXTINT : = 1)
• NEXTINT is tested before each loop repetition (NEXTINT <= N)
• NEXTINT is updated during each loop repetition

(NEXTINT : = NEXTINT + 1)

Although these three steps are implicit in the for statement, they must
be specified explicitly when the while statement is used. If the loop con
trol variable is not initialized properly before the while statement is
reached, the loop repetition test will be meaningless. If the loop control
variable is not updated, the loop repetition test will always be true and
the loop will not be exited Unfjnite loop). The while statement is de
scribed in the next display.

WHILE STATEMENT

while condition do
statement

Interpretation: The condition is tested and if it is true, the statement

3.3 THE WHILE STATEMENT 105



Example 3.9

is executed and the condition is retested. The statement is repeated
as long as (while) the condition is true. When the condition is test
ed and found to be false, the while loop is exited and the next pro
gram statement is executed.
Notes: If the condition evaluates to false the first time it is tested, the
statement will not be executed.

The while statement below could be used in Fig. 2.18 to ensure that a
positive value is read into NUMITEMS. The loop body is repeated as long
as the value of NUMITEMS is less than or equal to zero. The loop body
will not be executed at all if the first value read is positive.

WRITE ('Number of items to be summed? ');
READLN (NUMITEMS);
while NUMITEMS <= 0 do

begin
WRITE ('Number not positive - try again: ');
READLN (NUMITEMS)

end [whLl.e ]

The interaction that would result for the data values -3, 0, 7 is shown
next.

Number of items to be summed? -3
Number not positive - try again: 0
Number not positive - try again: 7

In this example the READLN statement appears twice, before the while
statement and at the end of the loop body. The first READLN (called a
priming read) reads the first data value (-3); the second READLN state
ment would read any additional values of NUMITEMS (0 and 7). The prim
ing read initializes the loop control variable and is needed whenever the
value of the loop control variable is an input data item.

Example 3.10 The program in Fig. 3.4 prints each power, POWER, of an input integer N
that is less than 1000 (MAXPOWER). The while loop is exited when the
value of NEXTPOWER is greater than or equal to 1000. The assignment
statement

NEXTPOWER := 1; (Initialize NEXTPOWER to the zero powerl

initializes NEXTPOWER to the zero power. The loop repetition condition

NEXTPOWER < MAXPOWER

ensures that loop exit will occur at the proper time.

program POWERS (INPUT, OUTPUT);

(Prints all powers of N less than 1000.1

106 CONTROL STATEMENTS



const
MAXP OWER 1000; [the largest possible powerl

var
N,
NEXTPOWER : INTEGER;

begin [POWERSI
WRITELN ('This program prints all
WRITELN ('Enter an integer: ');
READLN (N);
WRITELN;

lnumber whose powers are printedl
[the next power of Nl

powers < 1000 of an integer.');

NEXTPOWER := 1; [Initialize NEXTPOWER to the zero power I
[Print each power of N less than MAXPOWERI
while NEXTPOWER < MAXPOWER do

begin
WRITE (NEXTPOWER :4);
NEXTPOWER := NEXTPOWER * N IGet next power of Nl

end [while I
end. IPOWERS I

This program prints all powers < 1000 of an integer.
Enter an integer: 2
1 2 4 8 16 32 64 128 256 512

Fig. 3.4 Program POWERS

Within the loop body, the statement

NEXTPOWER := NEXTPOWER * N [Get next power of NI

computes the next power of N by multiplying the previous power by N. If
the new value is less than MAXPOWER, the loop is repeated printing the
current value of NEXTPOWER and computing the next one.

In the sample run shown, the last value printed is 512; however, the last
value assigned to NEXTPOWER in the loop body is 1024. Since 1024 is
greater than 1000, the loop repetition test fails the next time it is evaluat
ed, and the loop is exited.

It is important to realize that the loop is not exited at the exact instant
that NEXTPOWER is assigned the value 1024. If there were more state
ments following the assignment statement in the loop body, they would be
executed. Loop exit does not occur until the loop repetition test is reevalu
ated at the top of the loop.

Non-unit Loop Control Increments

A for statement can be used to specify a loop in which the loop control
variable increases by after each execution of the loop body. In situations
where the change in the loop control variable is different from 1, a while
statement may be used.

3.3 THE WHILE STATEMENT 107



Example 3.11 The program in Fig. 3.5 prints a table of equivalent Celsius and Fahrenheit
temperatures. The Celsius temperatures range from -10 degrees to 30 de
grees in increments of 5 degrees. Within the loop, the equivalent Fahren
heit temperature is computed and printed, and the Celsius temperature is
incremented by 5 degrees (CELSTEP).

program TEMPTABLE (OUTPUT);

(Prints a table of Celsius and Fahrenheit equivalents.j

const
MINCEL = -10;
MAXCEL = 30;
CELSTEP 5;

(minimum Celsius temperaturej
(maximum Celsius temperaturej
(increment between Celsius valuesj

var
CELSIUS : INTEGER;
FAHREN REAL;

(Celsius temperaturej
(Fahrenheit temperaturej

(compute Fahrenheit tempj

(get next Celsius valuej

a table of Celsius and Fahrenheit temperaturesj
(start a new output pagej

(print hea d i.nq ]
(initialize Celsiusl

begin
(Print
PAGE;
WRITELN ('Celsius' :10, 'Fahrenheit' :15);
CELSIUS := MINCEL;
while CELSIUS <= MAXCEL do

begin
FAHREN := (1.8 * CELSIUS) + 32;
WRITELN (CELSIUS :10, FAHREN :15:1);
CELSIUS := CELSIUS + CELSTEP

end [whi.Le ]
end. (TEMPTABLEj

Celsius
-10
-5
o
5

10
15
20
25
30

Fahrenheit
14.0
23.0
32.0
41.0
50.0
59.0
68.0
77.0
86.0

Fig. 3.5 Printing a Temperature Conversion Table

PROGRAM STYLE

Printing a table

If the output device is a printer, the statements

PAGE;
WRITELN ('Celsius' :10,

(start a new output pagej
'Fahrenheit' :15);

(print headingj

108 CONTROL STATEMENTS



should cause two strings to be printed at the top of the next output
page. (The statement PAGE may have no effect on a video screen.)
The two strings serve as the table heading. In the WRITELN state
ment, the number following each colon specifies a field width. Since
a string is printed right justified in its field, the last s in I eels ius'
is printed in column 10 and the t in 'Fahrenhe it' is printed in col
umn 25 (10 + 15).

The statement

WRITELN (CELSIUS :10, FAHREN :15:1):

is used in the loop to print a table consisting of two columns of num
bers. Since field widths of 10 and 15 are used here also, the rightmost
digit of each number will be aligned under the rightmost letter of its
respective column heading.

Example 3.12

Using a Sentinel Value

Very often we do not know exactly how many data items there will be
when a program begins execution. In a batch or interactive program, this
may be because there are too many data items to count them beforehand
(e.g, a stack of exam scores for a very large class). In an interactive pro
gram, the number of data items provided may depend on how the compu
tation proceeds.

There are two ways to handle this situation. After processing a data
item, the program could ask whether there were any more data. The user
would enter YES or NO and the program would either continue its process
ing (YES) or terminate (NO). A second approach would be to instruct the
user to enter a unique data value when done. The program would test
each data item and terminate when this sentinel value is read.

The program in Fig. 3.6 finds the product of a collection of data values. It
stops reading data when a value of zero is entered.

program MULTIPLY (INPUT, OUTPUT):

IFinds the product of all nonzero data items -- stops at first 0.1

const
SENTINEL 0: Isentinel valuej

var
ITEM,
PRODUCT : REAL:

begin IMULTIPLYj
PRODUCT := 1;

leach data item I
Iproduct of all nonzero dataj

(initialize PRODUCTj

IMultiply PRODUCT by each nonzero data itemj
WRITE ('Enter first number or a to stop: '):
READLN (ITEM): Iread first iteml

3,3 THE WHILE STATEMENT 109



while ITEM <> SENTINEL do
begin

PRODUCT := PRODUCT * ITEM;
WRITE ('Next number or 0: ');
READLN (ITEM)

end; [whi Le]
WRITELN ('The product is " PRODUCT :8:2)

end. (MULTIPLYj

Enter first number or 0 to stop: 10
Next number or 0: 12
Next number or 0: 22
Next number or 0: 0
The product is 2640.00

Fig. 3.6 Program to Multiply Nonzero Data

lcompute next productj

(read next itemj

[p r i.nt; resultj

The program in Fig. 3.6 illustrates the proper use of a sentinel value. In
order to determine whether or not data entry is complete, each data item
must be compared to the value stored in SENTINEL (0). In order for this
test to make sense in the beginning, the first number must be read before
the while statement is reached. The last step in the while statement
must read the next number so that it can be tested to determine whether
or not the loop body should be repeated. This general pattern is illustrated
below.

Read first data item
while current data item is not the sentinel value do

Process current data item
Read the next data item

Remember, proper use of a sentinel value requires that the read appear
twice: before the while statement (the priming read) and at the end of
the loop body (the loop control variable update).

Self-check Exercises for Section 3.3

1. What values would be printed if the order of the statements in the
loop body of Fig. 3.4 were reversed?

2. Modify the program in Fig. 3.4 to print both the power and its value.
For the example shown, the table printed by POWERS should begin

POWER
o
1
2
3

VALUE
1
2
4
8

3. Write a procedure that prints the cumulative product of all numbers
entered as long as that product is less than a specified maximum.
Your procedure should ignore zero data values.

110 CONTROL STATEMENTS



Simple
Sorting
Problem

4. Use a for statement to implement the loop in Fig. 3.5. You will have
to introduce a new variable for loop control.

• Procedure Parameters

Until now, there was no communication of data between procedures or
between procedures and the main program. Only data that were stored lo
cally were manipulated by a procedure. This restriction has limited the
usefulness of procedures.

This section will introduce a very important concept in programming,
the use of procedure parameters. We will see that parameters provide a
convenient way to pass information between a main program and a proce
dure. Parameters also make procedures more versatile as they enable a
procedure to manipulate different sets of data.

Parameter Lists

We can make an analogy between a carefully designed program that uses
procedures and a stereo system. Each component of a stereo system
tape deck, tuner, amplifier, turntable, speakers-is an independent device
that performs a specific function. There may be similar electronic parts in
side the tuner and amplifier, but each component uses its own internal cir
cuitry to perform its required function.

Information in the form of electronic signals is passed back and forth
between these components over wires. If you look at the rear of a stereo
amplifier, you will find that some plugs are marked as inputs and others
are marked as outputs. This means that the wires attached to the plugs
marked inputs carry electronic signals into the amplifier where they are
processed. (These signals may come from a tape deck, tuner, or turntable).
New electronic signals are generated. These signals come out of the ampli
fier from the plugs marked as outputs and go to the speakers or back to
the tape deck for recording.

Currently, we know how to design the separate modules (procedures) of
a programming system, but we have no way to pass data between them.
In this section, we will learn how to use parameter lists to specify the in
puts and outputs of a module.

Problem: Write a program that reads any three numbers into the vari
ables NUMl, NUM2, NUM3 and rearranges the data so that the smallest
number is stored in NUMl, the next smaller number in NUM2, and the larg
est number in NUM3.

Discussion: This is a special case of a sorting problem: rearranging a col
lection of data items so that the values are either in increasing or decreas
ing order. Since there are only three items to be sorted, we will solve this
special case now; the general sorting problem is a bit more complicated

3.4 PROCEDURE PARAMETERS 111



Algorithm

Step 2
refinement

and will be considered later. The problem inputs and outputs are de
scribed below.

Three numbers (NIJMl, NUM2, NUM3 : REAL)

The three numbers stored in increasing order in NUMl, NUM2, NUM3

1. Read the three numbers into NUMl, NUM2, and NUM3
2. Place the smallest number in NUMl, the next smaller in NUM2, and the

largest number in NUM3
3. Print NUMl, NUM2, and NUM3

We can think of he three variables NUMl, NUM2, NUM3 as representing
a list of consecutive storage cells. To perform step 2, we can compare
pairs of numbers, always moving the smaller number in the pair closer to
the front of the list (NUMl) and the larger number closer to the end of the
list (NUM3). It should take three comparisons to sort the numbers in the
list; one possible sequence of comparisons is shown next.

2.1 Compare NUMI and NUM2 and store the smaller number in NUMI and
the larger number in NUM2

2.2 Compare NUMl and NUM3 and store the smaller number in NUMI and
the larger number in NUM3

2.3 Compare NUM2 and NUM3 and store the smaller number in NUM2 and
the larger number in NUM3

Table 3.5 traces this refinement for the input sequence: 8, la, 6. The final
order is correct.

Table 3.5 Trace of Steps 1 and 2 for Input Data: 8, 10, 6

Algorithm
Step NUMI NUM2 NUM3 Effect

8 10 6 Read the data

2.1 NUMl, NUM2 are in order

2.2 6 8 Switch NUMI and NUM3

2.3 8 10 Switch NUM2 and NUM3

The structure chart for this algorithm is shown in Fig. 3.7. Since steps
2.1, 2.2, and 2.3 perform the same operation on different data, it would be
a waste of time and effort to write a different procedure for each step. We
would like to be able to write one general procedure to order any pair of
numbers. This procedure is shown in Fig. 3.8.

112 CONTROL STATEMENTS



Fig. 3.7 Structure Chart for Simple Sorting Problem.

procedure ORDER (var X, Y : REAL);

!Orders a pair of numbers represented by X and Y so that the smaller
number is in X and the larger number is in Y. I

var
TEMP : REAL;

begin !ORDERI
if X > Y then

begin [Switch the
TEMP := X;
X ;= Y;
Y := TEMP

end !X > Yl
end; !ORDERI

Fig. 3.8 Procedure ORDER

(copy of number originally in Xl

values of X and Yl
!Store old X in TEMPI
!Store old Y in Xl
!Store old X in YI

The body of procedure ORDER consists of the if statement from Fig.
3.1. The procedure heading contains a formal parameter list enclosed in
parentheses.

(var X, Y : REAL)

A formal parameter list resembles a variable declaration statement. It
identifies the formal parameters (X and Y) that will be used within the
procedure in place of the variable names; the actual variables to be ma
nipulated are determined when the procedure is called. We can think of X
and Y as generic names for the procedure data; the specific names will be
supplied la ter.

The use of formal parameters in a procedure is analogous to the use of
the names defendant and plaintiff in a legal document. The name defen
dant is used in the body of the document to refer to the individual who is
accused; the name plaintiff is used to refer to the individual doing the ac
cusing. The actual names of the people involved are specified on a sepa
rate cover sheet preceding the document.

3.4 PROCEDURE PARAMETERS 113



A formal parameter list describes a template or pattern that is partially
filled in. The template described by the formal parameter list for proce
dure ORDER is shown below. The part that is filled in indicates that for
mal parameters X and Yare used to represent type REAL variables. The
missing entries in the template are the actual variables to be manipulated
(actual parameters); these entries are filled in when the procedure (call)
statement is executed.

Actual Parameters Formal Parameters

X

Y

Attributes

REAL variable

REAL variable

The procedure (call) statement below contains an actual parameter list
enclosed in parentheses.

ORDER (NUM1, NUM2)

This actual parameter list causes the template to be completed as follows:

Actual Parameters Formal Parameters Attributes

NUMl
NUM2

X
Y

REAL variable

REAL variable

The completed template shows that formal parameters X and Y represent
the variables NUMl and NUM2, respectively. This means that whenever X
is referenced in the procedure, the variable NUMl will actually be manipu
lated. Thus, the procedure (call) statement

ORDER (NUM1, NUM2)

can be used to perform step 2.1 of the algorithm: Compare NUMl and
NUM2 and store the smaller number in NUMl and the larger number in
NUM2.

The sequence of the actual parameters is most important. The first actu
al parameter is paired with the first formal parameter, the second actual
parameter is paired with the second formal parameter, etc. The procedure
(call) statement

ORDER (NUM2, NUM1)

would cause the smaller number to be stored in NUM2 and the larger num
ber in NUMl instead of the other way around. (Complete the partial tem
plate above to see why this is so.)

The final program is shown in Fig. 3.9. The main program body contains
three procedure statements that call procedure ORDER:

ORDER (NUM1, NUM2);
ORDER (NUM1, NUM3);
ORDER (NUM2, NUM3);

114 CONTROL STATEMENTS

lorder the data in NUMl and NUM21
lorder the data in NUMl and NUM31
lorder the data in NUM2 and NUM31



Since each of these statements contains a different actual parameter list. a
different pair of variables will be manipulated each time the procedure is
called. We will see how this is done in the next section.

program SORT3NUMBERS (INPUT, OUTPUT);

IReads three numbers and sorts them
so that they are in increasing order. I

var
NUMl, NUM2, NUM3 : REALi

procedure ORDER (var X, Y : REAL)i

!a list of three cellsl

IOrders a pair of numbers represented by X and Y so that the
smaller number is in X and the larger number is in Y.l

var
TEMP : REALi lcopy of number originally in Xl

lstore old X in TEMPI
lstore old Y in Xl
lstore old X in Yl

begin IORDERI
if X > Y then

begin !Switch the values of X and Yl
TEMP := Xi
X := Yi
Y := TEMP

end IX > Yl
e nd r IORDERI

begin ISORT3NUMBERSl
WRITELN ('Enter 3 numbers to be sorted separated by spaces: ')i
READLN (NUMl, NUM2, NUM3)i

[Sor t; the numbers I
ORDER (NUMl, NUM2)i
ORDER (NUMl, NUM3)i
ORDER (NUM2, NUM3)i

lorder the data in NUMl and NUM21
lorder the data in NUMl and NUM31
lorder the data in NUM2 and NUM31

IPrint the resultsl
WRITELN ('The three numbers in order are: I,

NUMl :8:2, NUM2 :8:2, NUM3 :8:2)
end. ISORT3NUMBERS I

Enter 3 numbers to be sorted separated by spaces:
8 10 6
The three numbers in order are:

6.00 8.00 10.00

Fig. 3.9 Program to Order Three Numbers

Executing a Procedure with Parameters

Figure 3.10 shows the data areas for the main program and procedure OR
DER immediately after the execution of the procedure (call) statement

3.4 PROCEDURE PARAMETERS 115



ORDER (NUM1, NUM2); lorder the data in NUMl and NUM21

This diagram shows the data values read into NUM1, NUM2, and NUM3. It
also shows that the local variable TEMP is considered undefined immedi
ately after the procedure is called.

Figure 3.10 also shows the parameter correspondence specified by the
actual parameter list above. The double-headed arrows symbolize the con
nection between formal parameters X and Y and main program variables
NUMl and NUM2, respectively. Whenever Y is referenced in the procedure,
the data in variable NUM2 are actually manipulated.

Fig. 3.10 Parameter Correspondence for ORDER (NUM1, NUM2)

The execution of the procedure is traced in Table 3.6. The actual param
eter represented by each formal parameter is shown in parentheses at the
top of the table. Since the value of NUMl is less than NUM2, the true alter
native is skipped and the variable values are unchanged.

Table 3.6 Trace of Procedure Execution for ORDER (NUM1, NUM2)

Statement in ORDER X(NUM1) Y(NUM2) TEMP Effect

if X > Y then

8 10 ?

8 > 10 - false,
do nothing

The parameter correspondence specified by the procedure (call) state
ment

ORDER (NUM1, NUM3);

116 CONTROL STATEMENTS



is pictured in Fig. 3.11. This time parameter X corresponds to variable
NUMl and parameter Y corresponds to variable NUM3. This means that
whenever formal parameter Y is referenced in the procedure, the data in
main program variable NUM3 are actually manipulated.

Fig. 3.11 Parameter Correspondence for ORDER (NUM1, NUM3)

The execution of the procedure is traced in Table 3.7. The actual param
eter represented by each formal parameter is shown in parentheses at the
top of the table. The procedure execution switches the values stored in
main program variables NUMl and NUM3 as desired.

Table 3.7 Trace of Procedure Execution for ORDER (NUM1, NUM3)

Statement in ORDER X(NUM1) Y(NUM3) TEMP Effect

8 6 ?

if X > Y then 8 > 6 - true
T~MP := Xi 8 Save old NUMl in TEMP
X .= Yi 6 Save old NUM3 in NUMl
Y := TEMP 8 Save old NUMl in NUM3

Variable and Value Parameters

You have already been using procedure (call) statements with actual pa
rameter lists. READLN and WRITELN are two procedures that are part of
the Pascal system. The input list for READLN is an actual parameter list;
so is the output list for WRITELN. Procedure READLN stores new values in
its actual parameters whenever it is called; procedure WRITELN displays
the values of its actual parameters. Unlike procedures that we declare, the
number of parameters used in a call to procedure READLN or WRITELN
may vary.

3.4 PROCEDURE PARAMETERS 117



Example 3.13

In procedure ORDER. formal parameters X and Yare called variable pa
rameters as they correspond to actual parameters that are variables dur
ing each execution of the procedure. The reserved word var in the formal
parameter list

(var X, Y : REAL)

indicates that X and Yare variable parameters. The parameters used with
procedure READLN are also variable parameters.

As we saw in Table 3.7. it is possible for a procedure execution to
change the value of an actual parameter that corresponds to a variable
formal parameter. Both NUMl and NUM3 were changed by the procedure
execution traced in this table. Only variables can be used as actual param
eters that correspond to variable parameters (e.g.. ORDER (5, 3.7) caus
es a syntax error).

In some situations. a parameter is used only to pass data into a proce
dure, and we know beforehand that the actual parameter value should not

.be changed by the procedure (e.g.. an actual parameter that is a constant).
Pascal provides a second type of parameter. called a value parameter. for
this purpose. The parameters used with procedure WRITELN are value pa
rameters.

A value parameter may correspond to an actual parameter that is a con
stant, variable. or expression of the same type as the value parameter. In
the procedure (call) statement

WRITELN (COUNT, ' is less than', COUNT + 1)

the actual parameter list contains a variable. a string constant, and an ex
pression. in that order.

Pascal allocates a local memory cell in the procedure data area for each
formal parameter that is a value parameter. Each local cell is initialized to
the value of its corresponding actual parameter when the procedure is
called, and there is no further connection between the actual and formal
parameter. When a value parameter is referenced within the procedure,
the local cell is manipulated. Consequently. even if the local data are
modified, the actual parameter value cannot be changed.

The next two examples illustrate the use of value parameters.

Procedure PRINTLINE in Fig. 3.12 prints a row of asterisks. In the proce
dure heading

,
procedure PRINTLINE (NUMSTARS : INTEGER);

NUMSTARS is declared to be a formal parameter of type INT2GER;
NUMSTARS is a value parameter (indicated by the absence of the word
var).

Parameter NUMSTARS determines how many aserisks are printed. and
its initial value is passed into procedure PRINTLINE when the procedure
is called. Since there is no need for the procedure to change its parameter

118 CONTROL 8TATEMENT8



procedure PRINTLINE (NUMSTARS : INTEGER);

IPrints a row of asterisks. The number of asterisks
printed is determined by NUMSTARS. 1

const
STAR I * Ii Isymbol being printedl

var
COUNTSTAR INTEGER; Iloop control variable for PRINTLINEl

begin
IPrint a row of asterisksl
for COUNTSTAR := 1 to NUMSTARS do

WRITE (STAR);
WRITELN

end; IPRINTLINEl

Fig. 3.12 Procedure PRINTLINE

value, NUMSTARS is declared to be a value parameter. The three proce
dure (call) statements

PRINTLINE (5);
PRINTLINE (3);
PRINTLINE (1)

would cause the three lines below to be printed.

*****
***
*

Example 3.14

An integer value (5, 3. or 1) is assigned to NUMSTARS when each proce
dure (call) statement is executed.

Procedure TRIANGLE in Fig. 3.13 uses procedure PRINTLINE to draw a
triangle. This example shows that a procedure may be declared locally in
another procedure and called by that procedure.

procedure TRIANGLE (NUMROWS : INTEGER);

IPrints a triangle using procedure PRINTLINE to print lines of
increasing length-number of lines is determined by NUMROWS.

var
ROW : INTEGER; Iloop control variable for TRIANGLEl

procedure PRINTLINE (NUMSTARS : INTEGER);

IPrints a row of asterisks. The number of asterisks printed is
determined by NUMSTARS.

const
STAR 1*' ; Isymbol being printedl

3.4 PROCEDURE PARAMETERS 119



var
COUNTSTAR : INTEGER; Iloop control variable for PRINTLINEI

begin IPRINTLINEl
IPrint a row of asterisksl
for COUNTSTAR := 1 to NUMSTARS do

WRITE (STAR) ;
WRITELN

end; IPRINTLINE 1

begin ITRIANGLE 1
IPrint lines of increasing lengthl
for ROW := 1 to NUMROWS do

PRINTLINE (ROW)
end; ITRIANGLE I

Fig. 3.13 Procedure TRIANGLE

The for statement in the body of procedure TRIANGLE

for ROW := 1 to NUMROWS do
PRINTLINE (ROW)

calls procedure PRINTLINE repeatedly; each time PRINTLINE is called
the current value of ROW (1 to NUMROWS) determines how many asterisks
will be printed.

The parameter NUMROWS determines the number of lines in the triangle.
The procedure (call) statement

TRIANGLE (5)

assigns a value of 5 to NUMROWS and causes the triangle below to be
drawn.

*
**
***
****
*****

Since procedure PRINTLINE is declared within procedure TRIANGLE,
PRINTLINE is considered a local identifier in TRIANGLE, and PRINT
LINE can be called only by TRIANGLE (or by PRINTLINE). Scope of
identifiers will be discussed in detail in Section 3.6.

When to Use a Variable or Value Parameter

You may be wondering how to tell when to use a variable parameter and
when to use a value parameter. Some rules of thumb follow:

• If information is to be passed into a procedure and does not have to be
returned, then the formal parameter representing that information can be

120 CONTROL STATEMENTS



Example 3.15

a value parameter. Such a parameter is called an input parameter or a
procedure input (e.g. NUMSTARS and NUMROWS in Fig. 3.13).

• If information is to be passed out of a procedure. then the formal param
eter representing that information must be a variable parameter. Such a
parameter is called an output parameter or a procedure output.

• If information is to be passed into a procedure, perhaps modified. and a
new value returned. then the formal parameter representing that infor
mation must be a variable parameter. Such a parameter is called an
input/output parameter (e.g. X and Y in Fig. 3.8).

Remember that it is alright to use a variable. constant. or expression as
an actual parameter corresponding to a value parameter; however. only a
variable can be used as an actual parameter corresponding to a variable
parameter. The reason for this restriction is that an actual parameter cor
responding to a variable parameter may be modified when the procedure
executes; it is illogical to allow a procedure to change the value of either a
constant or expression.

The next example shows a procedure with a value parameter (for input)
and a variable parameter (for output).

Procedure FINDTAX in Fig. 3.14 implements the income tax table (see Ta
ble 3.3). The procedure body consists of the if statement first shown in
Fig. 3.2. A value is passed into parameter SALARY (a value parameter)
when the procedure is called. If SALARY is within the range of the table. a
value is assigned to parameter TAX (a variable parameter) during proce
dure execution. This value is returned or passed out of the procedure. The
comments ! input J and! output J document the use of formal parame
ters SALARY and TAX. respectively.

program DRIVER (INPUT, OUTPUT)i

ITests procedure FINDTAX.l

var
MYSALARY, MYTAX : REALi

procedure FINDTAX (SALARY linputl : REALi
var TAX [ou t pu t ] REAL) i

Isalary and taxi

$ , , SALARY : 10: 2)
Ifirst r anqe ]

Isecond r anqe ]
+ 225.00

Ithird r anqe ]
+ 465.00

Ifourth r anqe ]
+ 865.00

3.4 PROCEDURE PARAMETERS 121

IComputes tax amount (TAX) owed for a salary (SALARY) < $15000.1

begin IFINDTAXI
if SALARY < 0.0 then

WRITELN ('Error! Negative salary
else if SALARY < 1500.00 then

TAX := 0.15 * SALARY
else if SALARY < 3000.00 then

TAX := (SALARY - 1500.00) * 0.16
else if SALARY < 5000.00 then

TAX := (SALARY - 3000.00) * 0.18
else if SALARY < 8000.00 then

TAX := (SALARY - 5000.00) * 0.20



else if SALARY < 15000.00 then Ififth rangel
TAX := (SALARY - 8000.00) * 0.25 + 1425.00

else
WRITELN ('Error! Too large salary $', SALARY :10:2)

end; IFINDTAXl

begin IDRIVERl
WRITE ('Enter a salary less than $15000.00: $');
READLN (MYSALARY);
FINDTAX (MYSALARY, MYTAX)i
WRITELN ('The tax on $', MYSALARY :8:2, ' is $' MYTAX :8:2)

end. IDRIVERl

Enter a salary less than $15000.00: $6000.00
The tax on $ 6000.00 is $ 1065.00

Fig. 3.14 Driver Program with Procedure FINDTAX

The parameter correspondence specified by the procedure (call) state
ment

FINDTAX (MYSALARY, MYTAX)

is shown in Fig. 3.15. The dashed line leading to value parameter SALARY
indicates that the connection between the actual and formal parameter is
broken after the actual parameter value is stored locally. Assuming a data
value of 6000.00 was read into MYSALARY before FINDTAX was called,
the value 1065.00 would be assigned to MYTAX during the execution of
procedure FINDTAX.

Fig. 3.15 Parameter Correspondence for FINDTAX (MYSALARY, MYTAX)

PROGRAM STYLE

Wnting formal parameter lists

The formal parameter list in Fig. 3.14 is written on two lines to im
prove program readability. The value parameter is written on the

122 CONTROL STATEMENTS



first line with the comment! input I inserted to document its use as
a procedure input. The variable parameter is written on the second
line with the comment! output I.

Generally, we will follow the practice shown here in writing formal
parameter lists. Input parameters will be listed first, then the
input/output parameters, and any output parameters will be listed
last. The order of the actual parameters must correspond to the order
of the formal parameters.

PROGRAM STYLE

Writing driver programs to test procedures

The main program body in Fig. 3.14 consists of a statement for data
entry, two statements for data display, and a procedure (call) state
ment. Its sole purpose is to test procedure FINDTAX. Such a program
is called a driver program.

The use of driver programs to pretest procedures is highly recom
mended. Generally, the small investment in time and effort required
to write a short driver program will payoff by reducing the total time
spent debugging a large program system containing several proce
dures.

The Procedure Data Area

Each time a procedure (call) statement is executed, an area of memory is
allocated for storage of that procedure's data. Included in the procedure
data area are storage cells for any local variables or constants that may
be declared in the procedure. The procedure data area is always erased
when the procedure terminates and it is recreated empty (all values unde
fined) when the procedure is called again.

Memory cells are also allocated in the procedure data area for each for
mal parameter. These cells are used in different ways for value and vari
able parameters. For a value parameter, the local cell is used to hold a
value; the value of the corresponding actual parameter is placed in this
cell when the procedure is called. For a variable parameter, the local cell
is used to hold a memory address; this is the address in the calling pro
gram data area of the corresponding actual parameter. This information
enables the procedure to manipulate data stored in the calling program
data area.

Syntax Rules for Procedures and Parameter Lists

In this section we will formally present the syntax rules for procedure dec
larations and procedure (call) statements with parameters. The displays
that follow summarize these rules.

3.4 PROCEDURE PARAMETERS 123



PROCEDURE DECLARATION (with parameters)

procedure pname (formal parameters) ;

declaration-section

begin
procedure-body

end;

Interpretation: The procedure pname is declared. The formal parame
ters are enclosed in parentheses.

Any identifiers that are declared in the declaration-section are de
fined only during the execution of the procedure.

The procedure body describes the data manipulation to be
performed by the procedure. The formal parameter names are used in
place of the actual parameter names in this description. For a vari
able parameter. the corresponding actual parameter is manipulated
by the procedure; for a value parameter, a local memory cell is ini
tialized to the actual parameter's value and is manipulated by the
procedure without altering the actual parameter.

PROCEDURE (CALL) STATEMENT (with parameters)

pname (actual parameters)

Interpretation: The actual parameters are enclosed in parentheses.
When procedure pname is called into execution. the first actual pa
rameter is associated with the first formal parameter, the second ac
tual parameter with the second formal parameter. etc. If the
parameter is a value parameter, then the actual parameter's value is
saved in the procedure. If the parameter is a variable parameter, then
the actual parameter's address is saved in the procedure.
Note: The actual parameters must satisfy the rules for parameter list
correspondence discussed later in this section.

There are certain rules that must be followed when writing parameter
lists. The syntax diagram for a formal parameter list follows.

Formal Parameter List

124 CONTROL STATEMENTS



Example 3.16

This diagram shows that a formal parameter list is always enclosed in
parentheses. It consists of one or more lists of identifiers. Each list may be
preceded by var. Identifiers are separated by commas, lists of identifiers
are separated by semicolons, and each list must end with a colon followed
by a data type name (e.g. REAL, CHAR, etc.].

Two formal parameter lists are shown below. Each list is printed on two
or more lines to improve readability.

(CH3 : CHAR:
var X, Y, Z : REAL)

(M, N, 0 : INTEGER:
A, B, C : REALi
var X, Y, Z : REAL)

In both lists above, X, Y, Z are declared to be type REAL variable parame
ters; CH3 is a type CHAR value parameter in the first list; A, B, C are type
REAL value parameters in the second list; M, N, 0 are type INTEGER value
parameters in the second list.

The formal parameter list also determines the form of any actual param
eter list that may be used to call the procedure. This form is determined
during the translation of the program when the compiler processes the pro
cedure declaration.

Later, when a procedure (call) statement is reached, the compiler checks
the actual parameter list for consistency with the formal parameter list.
An actual parameter list may be a list of expressions, variables, or con
stants separated by commas. The actual parameter list must satisfy these
rules.

Rules for Parameter List Correspondence

1. There must be the same number of actual parameters as formal pa
rameters.

2. The type of each actual parameter must match the type of its corre
sponding formal parameter.

3. An actual parameter corresponding to a variable formal parameter
must be a variable. An actual parameter corresponding to a value pa
rameter may be a variable, constant, or expression.

Example 3.17 The main program contains the following declarations:

var
X, Y : REAL:
M : INTEGER:
NEXT : CHAR:

procedure TEST (A, B : INTEGER:
var C, D : REAL:
var E : CHAR):

3.4 PROCEDURE PARAMETERS 125



where only the heading for procedure TEST is shown. Any of the proce
dure statements below would be syntactically correct in the main pro
gram.

TEST (M + 3, la, x, Y, NEXT)
TEST (M, MAXINT, Y, X, NEXT)
TEST (35, M * la, Y, X, NEXT)

The correspondence specified by the first parameter list above is shown in
Table 3.8.

Table 3.8 Parameter Correspondence for TEST (M + 3, 10, X, Y, NEXT)

Actual Parameter Formal Parameter Attributes

M + 3 A INTEGER, value

10 B IN'1'EGER, value

X C REAL, variable

Y D REAL, variable

NEXT E CHAR, variable

The last column in Table 3.8 describes each parameter. Table 3.8 shows
that an expression (M + 3) or a constant (10) may be associated with a
value parameter. All the procedure (call) statements in Table 3.9 contain
syntax errors as indicated.

Table 3.9 Invalid Procedure (Call) Statements

Procedure (Call) Statement

TEST (30, 10, M, X, NEXT)

TEST (M, 19, X, Y)

TEST (M, 10, 35, Y, 'E')

TEST (M, 3.5, X, Y, NEXT)

TEST (30, 10, X, X + Y, NEXT)

TEST (30, 10, C, D, E)

Error

Type of Mis not REAL

Not enough actual parameters

Constants 35 and 'E I cannot
correspond to variable
parameters

Type of 3.5 is not INTEGER

Expression X + Y cannot
correspond to a variable
parameter

C, D, and E are not declared in
the main program

The last procedure (call) statement above points out an error that is of
ten made in using procedures. The actual parameter names C, D, E are

126 CONTROL STATEMENTS



the same as their corresponding formal parameter names. However, since
these names are not declared in the main program, they cannot be used in
an actual parameter list in the main program.

When writing relatively long parameter lists such as the ones above,
you must be very careful not to transpose two actual parameters. This will
result in a syntax error if it causes a violation of a parameter correspon
dence rule. If no syntax is violated, the procedure execution may generate
incorrect results.

Self-check Exercises for Section 3.4

1. Draw the templates specified by the procedure calls

ORDER (NUM1, NUM3)i
ORDER (NUM2, NUM3)

2. trace the execution of the three procedure statements

ORDER (NUM3, NUM2)i
ORDER (NUM3, NUM1)i
ORDER (NUM2, NUM3)

for the data sets: 8, 10, 6 and 10, 8, 6. What does this sequence do?

3. Provide a table similar to Table 3,8 for the other correct parameter
lists shown in Example 3.17.

4. Correct the syntax errors in the formal parameter lists below.

(var A, B : INTEGER, C : REAL)
(value M : INTEGERi var NEXT : CHAR)
(var ACCOUNT, REALi X + Y , REAL)

5. Assuming the declarations

var
X, Y, Z : REALi
M, N : INTEGERi

procedure MASSAGE (var A, B
X

REAL;
INTEGER) ;

what is wrong with each incorrect procedure (call) statement?
a. MASSAGE (X, Y, Z) g., MASSAGE (A, B, X)
b. MASSAGE (X, Y, 8) h MASSAGE (Y, z, M)
c. MASSAGE (Y, X, N) i. MASSAGE (Y + Z, Y - z, M)
d. MASSAGE (M, Y, N) j,. MASSAGE (Z, Y, X)
e. MASSAGE (25.0, 15, X) k MASSAGE (X, Y, M, 10)
f. MASSAGE (X, Y, M + N) 1. MASSAGE (Z, Y, MAXINT)

3.4 PROCEDURE PARAMETERS 127



II Adding Data Flow Information to Structure Charts

Now that we can pass data into and out of procedures, we can make more
use of procedures in our programming. Many of the level one subproblems
shown in a structure chart will be implemented as separate procedures.
Generally, if a subproblem requires more than a few lines of code, it will
be written as a procedure.

In this section, we will see how to add data flow information to a struc
ture chart and how to practice top down design of programs. We will do
this by example, reexamining the solution to the General Sum and Aver
age Problem. The problem statement is repeated below, followed by its
data description and algorithm.

General Sum
and Average
Problem

Problem: Write a program to find and print the sum and average of a list
of data items.

Discussion: The data requirements and algorithm from Section 2.7 are
repeated below.

number of data items to be summed (NUMITEMS
each data item (ITEM : REAL)

INTEGER)

Algorithm

•sum of data items (SUM : REAL)
average of data items (AVERAGE : REAL)

1. Read the number of items (NUMITEMS).
2. Read each item and add it to the sum (SUM).
3. Find the average (AVERAGE).
4. Print the sum and average.

Step 2 is the only step needing refinement. Rather than refine it now, we
will implement it later as procedure FINDSUM.

The structure chart is drawn in Fig. 3.16. The data flow between sub
problems is documented in this chart. Downward pointing arrows indicate
inputs to a subproblem; upward pointing arrows indicate outputs from a
subproblem. The variables involved in the data transfer are listed inside
the arrow.

Since the step "Read the number of items" defines the value of the vari
able NUMITEMS, NUMITEMS is an output of this step. Procedure FINDSUM
needs this value in order to know how many data items to read; conse
quently, NUMITEMS is an input to procedure FINDSUM. The procedure re-

128 CONTROL STATEMENTS



It NUMITEMS
NUMITEMS ~

I

t
SUM

I
I

SUM,
NUMITEMS

~

t
AVERAGE SUM,
I AVERAGE

~

FINDSUM

Fig. 3.16 Structure Chart with Data Flow Information

sult SUM is an output of FINDSUM. The variable AVERAGE is an output of
the step "Find the average"; SUM and NUMITEMS are inputs to this step.
Both SUM and AVERAGE must be provided as inputs to the step that prints
them.

Once the data flow information has been added to the structure chart,
the main program can be written even if the details of the procedures are
not yet known. For example, we know from the data flow information in
Fig. 3.16 that the procedure (call) statement

FINDSUM (NUMITEMS, SUM)

may be used to call FINDSUM. We also know that NUMITEMS should cor
respond to a value parameter and SUM to a variable parameter.

The program is shown in Fig. 3.17-except for procedure FINDSUM. All
the variables that appear in the structure chart are declared in the main
program.

program SUMITEMS (INPUT, OUTPUT):

(Finds and prints the sum and average of a list of data items. I

var
NUMITEMS : INTEGER:
SUM,
AVERAGE : REAL:

(the number of items to be addedl
(the sum being accumulatedl
(the average of the datal

procedure FINDSUM (N (inputl : INTEGER:
var SUM [out.put.] : REAL):

(Finds the sum of a list of data items. The number of data items
is passed into N: the result is passed back as SUM. I

3.5 ADDING DATA FLOW INFORMATION TO STRUCTURE CHARTS 129



begin (FINDSUMI
WRITELN ('Procedure FINDSUM entered.')

end; IFINDSUMI

begin (SUMITEMSI
(Read the number of items to be summed I
WRITE ('How many items will be summed? '); READLN (NUMITEMS);

(Find the sum (SUM) of a list of data itemsl
FINDSUM (NUMITEMS, SUM);

(Find the average (AVERAGE) of the datal
AVERAGE := SUM / NUMITEMS;

(Print the sum and average I
WRITELN ('The sum is " SUM :8:2);
WRITELN ('The average is " AVERAGE :8:2)

end. ISUMITEMSI

Fig. 3.17 Main Program with a Stub for Procedure FINDSUM

The declaration for procedure FINDSUM shown in Fig. 3.17 is called a
stub. Including this declaration enables the main program to be compiled,
checked for syntax errors, and even run; however, the program will not
yet generate meaningful results.

Since we already know how to perform the summation operation, it will
be an easy matter to write procedure FINDSUM. The completed procedure,
shown in Fig. 3.18, should replace the stub.

Fig. 3.18 Procedure FINDSUM

procedure FINDSUM (N (inputl : INTEGER;
var SUM (output I : REAL);

(Finds the sum of a list of data items. The number of data items
is passed into N; the result is passed back as SUM. I

var
COUNT : INTEGER;
ITEM : REAL;

(count of items added so farl
(the next data item to be added I

beg in IFINDSUMI
(Read each data item and add it to SUMI
SUM := 0.0;
for COUNT := 1 to N do

begin
WRITE ('Next number to be summed? '); READLN (ITEM);
SUM := SUM + ITEM

end (for COUNT I
end; IFINDSUMI

130 CONTROL STATEMENTS



Since COUNT and ITEM are used only within procedure FINDSUM, they
are declared as local variables in FINDSUM. The parameter correspon
dence specified by the procedure statement

FINDSUM (NUMITEMS, SUM);

is shown in Fig. 3.19 assuming the value 10 is read into NUMITEMS just
before the procedure call.

Fig. 3.19 Parameter Correspondence for FINDSUM (NUMITEMS, SUM)

The body of the procedure begins by initializing to zero the main pro
gram variable SUM, which corresponds to variable parameter SUM. The
for statement causes each data item to be read into the local variable
ITEM and added to the main program variable SUM. The procedure exit
will occur after 10 items are added.

PROGRAM STYLE

Choosing formal parameter names

The identifiers N and SUM are used as formal parameter names in
procedure FINDSUM. In the procedure (call) statement shown, formal
parameter SUM happens to correspond to an actual parameter also
named SUM. This, of course, is not necessary but it causes no difficul
ties either.

3.5 ADDING DATA FLOW INFORMATION TO STRUCTURE CHARTS 131



You should choose meaningful generic names for formal parame
ters. When a procedure is developed for a particular program system,
it is fairly common for a formal parameter to have the same name as
its corresponding actual parameter. This may not be true if that pro
cedure is used later with a different program system.

PROGRAM STYLE

Separately testing a program system

In the program shown in Fig. 3.17, a stub is substituted for procedure
FINDSUM presumably because FINDSUM is not yet written. When a
team of programmers is working on a problem, this is a common
practice. Obviously, not all the procedures will be ready at the same
time. Still, it would be useful to test and debug those that are avail
able.

Currently, a message is printed when the stub is entered. If the
stub was modified to assign some test value (e.g. 100) to its output
parameter SUM, then the rest of the program could be tested while
procedure FINDSUM was being written. When FINDSUM was com
pleted, it could be tested separately using a driver program.

By testing procedures separately in this fashion, the programming
team can be fairly confident that the complete program system will
be debugged quickly when it is finally put together. It is also easier
to locate and correct errors when dealing with a single, small proce
dure rather than a complete program system containing several
untested procedures.

Self-check Exercises for Section 3.5

1. Add data flow information to the structure chart shown in Fig. 2.13.
Implement each subproblem as a procedure with parameters.

2. A procedure has four formal parameters: W, X, Y, and Z (all type REAL).
The procedure execution stores the sum of Wand X in Y and the prod
uct of Wand X in Z. Which parameters are inputs and which are out
puts? Write the procedure.

• Nested Procedures and Scope of Identifiers

In Fig. 3.17, procedure FINDSUM is nested or contained in program
SUMITEMS. It is also possible for one procedure to be nested within an-

132 CONTROL STATEMENTS



other. For example, procedure PRINTLINE is nested within procedure
TRIANGLE in Fig. 3.13. Nested procedures occur quite often in Pascal and
are a natural consequence of the top down design process.

Each procedure in a nest of procedures has its own declaration part and
body; there is also a declaration part and body for the main program. A
procedure's parameter list is included in its declaration part.

program NESTED

(INPUT, OUTPUT) ;

var X, Y : REAL;

procedure OUTER

(var X : REAL) ;

var M, N : INTEGER;

procedure INNER

(X : REAL) ;

var N, ° : INTEGER;
begin (INNERj.......
end; I INNERI

begin (OUTERj.......
end; IOUTERI

procedure TOO;

const BLANK = I I.,
begin (TOOj.......
end; ITOOj

begin (NESTEDj
.......

end. INESTEDj

scope of Y

scope of M

scope of BLANK

Fig. 3.20 Procedure Nesting

Figure 3.20 displays the organization of procedures in program NESTED.
Each box represents a procedure or program block. A block consists of the
declaration part and body of a program or procedure. The name of the
block is indicated just above it.

3.6 NESTED PROCEDURES AND SCOPE OF IDENTIFIERS 133



Figure 3.20 shows procedures OUTER and TOO nested within the main
program block. Procedure INNER is shown nested within the block for
OUTER.

Scope of Identifiers

The statements in each program or procedure body written so far manipu
late only local identifiers. Although we have not done so yet, it is possible
in Pascal to reference identifiers that are not declared locally.

The Pascal scope rule below tells us where an identifier may be refer
enced.

PASCAL SCOPE RULE

An identifier may be referenced only within the block in which it is
declared. The declaration of an identifier must precede its first refer
ence.

The scope of an identifier is the block in which it is declared. The scope
of the constant BLANK (see Fig. 3.20) is the block for procedure TOO;
therefore, BLANK may be referenced only in procedure TOO.

Since procedure INNER is nested in procedure OUTER, the scope of an
identifier declared in procedure OUTER includes the block for procedure
INNER (see Fig. 3.20). Therefore an identifier declared in OUTER (e.g. vari
able M) may be referenced in the body of either procedure.

Since all procedures are nested within the main program block, an iden
tifier declared in the main program may be referenced anywhere in the
program system. For this reason, main program variables are called global
variables.

Although global variables may be referenced in nested procedures, ex
perience has shown this to be a very dangerous practice. If a procedure
references a global variable, then it is possible for the procedure to change
the value of that variable in an incorrect way (called a side effect). Often,
there is no documentation to indicate that the procedure manipulates a
global variable; consequently, it may be difficult to find a statement in a
nested procedure that is responsible for assigning an incorrect value to a
global variable.

The formal parameter list and local declarations for a procedure explic
itly document the data that will be manipulated. We will continue to ma
nipulate only identifiers (including parameters) that are declared locally in
a procedure.

The only exceptions will be global constants and type identifiers (dis
cussed in later chapters). It is alright to reference a global constant in a
procedure because Pascal does not allow the value of a constant to be
changed. Hence, there can't be a side effect when a global constant is ma
nipulated.

134 CONTROL STATEMENTS



Multiple Declarations of Identifiers

The same identifier may be declared in more than one place. In Fig. 3.20,
for example, X is declared as a global variable in the main program and
as a formal parameter in procedures INNER and OUTER. Consequently,
when X is referenced in the program system there may be some question
in our minds as to which declaration takes precedence. Pascal uses the
closest declaration with a scope that includes the point of reference. This
will always be the local declaration if one exists.

If the identifier is not declared locally, then a declaration in an outer
block containing the point of reference is used. For example, if X is refer
enced in the body of procedure TOO, what declaration of X would be
used? Would it be the declaration of X as a global variable, or its declara
tion as a formal parameter in one of the other procedures? Since TOO is
nested only in the main program block, the declaration of X as a global
variable is used.

By this same reasoning, if identifier N is referenced in procedure INNER
or procedure OUTER, the corresponding local declaration for identifier N is
used. If identifier M is referenced in procedure INNER where it is not de
clared locally, the declaration for variable M in procedure OUTER is used.
A reference to identifier M in either the main program or procedure TOO
would cause an "identifier not declared" syntax error. Table 3.10 shows
the meaning of each valid reference to an identifier in the blocks of Fig.
3.20. Procedure names are included with other identifiers in this table.

Table 3.10 Valid Identifier References for Fig. 3.20

Block

INNER

OUTER

TOO

NESTED

Meaning of Each Identifier

X (parameter of INNER)
N, 0 (local variables)
M (variable declared in OUTER)
INNER (procedure declared in OUTER)
Y (variable declared in NESTED)
OUTER (procedure declared in NESTED)
INPUT, OUTPUT (parameters of NESTED)

X (parameter of OUTER)
M, N (local variables)
INNER (local procedure)
Y (variable declared in NESTED)
OUTER (procedure declared in NESTED)
INPUT, OUTPUT (parameters of NESTED)

BLANK (local constant)
X, Y (global variables)
OUTER, TOO (procedures declared in NESTED)
INPUT, OUTPUT (parameters of NESTED)

X, Y (global variables)
INPUT, OUTPUT (parameters of NESTED)
OUTER, TOO (procedures declared in NESTED)

3.6 NESTED PROCEDURES AND SCOPE OF IDENTIFIERS 135



Order of Procedures

Since procedure names are identifiers, the Pascal scope rule specifies
where a procedure may be referenced or called. Procedure OUTER is de
clared in the main program so it may be called anywhere. Procedure IN
NER is declared in procedure OUTER, so it may be called only by
procedure OUTER (or INNER itself). A syntax error would result if a call
to INNER occurred in the body of procedure TOO or the main program.

Procedure TOO (also declared in the main program) can call procedure
OUTER, but OUTER cannot call TOO. This is because an identifier must be
declared before it can be referenced and the declaration for procedure
TOO comes after the body of procedure OUTER.

As things stand now, only procedure OUTER can call procedure INNER.
If it were necessary for procedure TOO also to call procedure INNER, then
we would have to make INNER global and declare it in the main program
instead of in procedure OUTER. Since Pascal requires that the declaration
of an identifier precede its reference, INNER should be the first procedure
declared in the main program.

Self-check Exercises for Section 3.6

1. Explain why variable N declared in OUTER cannot be referenced by
the main program, procedure INNER, or procedure TOO.

2. What would be the effect of executing the body of INNER shown be
low? Which identifiers are related and where are they declared?

begin I INNERj
X .= 5.5;
Y .= 6.6;
M := 2;
N := 3;
a := 4

end; I INNER j

3. If the compound statement above was the body of OUTER, TOO, or
NESTED, then some of the assignment statements would be syntacti
cally incorrect. Identify the incorrect statements and indicate the ef
fect of executing all the others in each block.

• Case Studies

In this section we will examine two programming problems that illustrate
most of the concepts discussed in this chapter. Each problem contains a
nested if statement, a while statement, and makes extensive use of pro
cedures with parameters.

136 CONTROL STATEMENTS



CHAR)
REAL)

REAL)

Balancing a
Checkbook

Algorithm

The top down design process will be demonstrated in solving these
problems. The program solutions will be implemented in a stepwise man
ner starting at the top of the structure chart, or with the main program.

Problem: You have just received a new home computer and would like to
write a program to help balance your checkbook. The program will read
your initial checkbook balance and each transaction (check or deposit). It
will print the new balance after each transaction and a warning message
if the balance becomes negative. At the end of the session. the starting
and final balances should be printed along with a count of the number of
checks and deposits processed.

Discussion: After the starting balance is read. each transaction will be
read and processed separately. We can use a simple code (I C I or 10 I) to
distinguish between checks and deposits. The transaction amount will be
a real number. The starting balance must be available at the end so we
will save it in variable STARTBAL and use a different variable (CURBAL)
to keep track of the current balance.

starting checkbook balance (STARTBAL : REAL)
transaction data

type of transaction (TRANTYPE
amount of transaction (AMOUNT

current balance after each transaction (CURBAL
number of checks (NUMCHECK : INTEGER)
number of deposits (NUMDEP : INTEGER)

1. Display the instructions and read the starting balance.
2. For each transaction: read the transaction, update and print the cur

rent balance, and increment the count of checks or deposits.
3. Print the starting and final balance and the number of checks and de

posits processed.

The structure chart for this algorithm is shown in Fig. 3.21. The level one
subproblems will be written as procedures INSTRUCT, PROCESS, and
REPORT, respectively. The data flow information shows that STARTBAL is
read by INSTRUCT and passed to PROCESS. Procedure PROCESS defines
the program results (CURBAL, NUMCHECK, NUMDEP); these results are
passed to REPORT and printed.

3.7 CASE STUDIES 137



l'
STARTBAL

I
I

STARTBAL
-J,

l'
CURBAL,
NUMCHECK,
NUMDEP

I

I
STARTBAL,

CURBAL,
NUMCHECK,

NUMDEP

t

INSTRUCT PROCESS
REPORT

Fig. 3.21 Structure Chart (Level 0 and 1) for Checkbook Problem

The variables shown in the structure chart should be declared in the
main program as each variable must be declared at the highest level in
which it appears in the structure chart. Variables that are passed between
the main program and a level 1 procedure must be declared in the main
program.

The data flow information is used to write the parameter lists in the
program shown in Fig. 3.22. Since procedures INSTRUCT and REPORT
should consist of READ and WRITE statements only, they are written now.
Since procedure PROCESS requires further refinement, it is written as a
stub.

program CHECKBOOK (INPUT, OUTPUT);

(Reads the starting balance for a checking account and processes
all transactions. Prints the new balance after each transaction is
processed. Also prints a count of the total number of checks and
deposits processed.

var
STARTBAL,
CURBAL : REAL;
NUMCHECK,
NUMDEP : INTEGER;

(starting balancej
(current balancej
(number of checksl
(number of depositsj

procedure INSTRUCT (var (outputj STARTBAL : REAL);

(Displays the instructions to the user and reads starting balance.j

begin (INSTRUCTj
WRITELN ('Balance your checking account!');
WRITELN;
WRITELN ('Enter C (Check), D (Deposit), or Q (Quit)')j
WRITELN ('after prompt C, D, or Q: ');
WRITELN;

138 CONTROL STATEMENTS



WRITELN ('Enter a positive number after prompt AMOUNT $');
WRITELN;
WRITE ('Begin by entering your starting balance $');
READLN (STARTBAL)

end; I INSTRUCT j

procedure PROCESS (STARTBAL linputj : REAL;
var CURBAL loutputl : REAL;
var NUMCHECK, NUMDEP loutputj : INTEGER);

(Processes each transaction. Reads each transaction, updates and prints
the current balance and increments the count of checks or deposits.

begin IPROCESSj
WRITELN ('Procedure PROCESS entered. I )

end; (PROCESSj

procedure REPORT (STARTBAL, CURBAL linputj
NUMCHECK, NUMDEP linputj

REAL;
INTEGER) ;

(Prints the starting and final balances and the count of checks and
deposits. j

balance was $', STARTBAL :10:2);
balance is $', CURBAL :10~2)1

of checks written: " NUMCHECK :3);
of deposits made: " NUMDEP :3)

begin IREPORTj
WRITELN;
WRITELN ('Starting
WRITELN (' Final
WRITELN (' Number
WRITELN ('Number

end; (REPORTj

begin ICHECKBOOKj
(Display user instructions and read STARTBALj
INSTRUCT (STARTBAL);

(Process each transactionj
PROCESS (STARTBAL, CURBAL, NUMCHECK, NUMDEP);

(Print starting and final balances and count of checks/depositsl
REPORT (STARTBAL, CURBAL, NUMCHECK, NUMDEP)

end. (CHECKBOOKj

Fig. 3.22 Checkbook Balancing Program with Stub for PROCESS

Algorithm for
PROCESS

Procedure PROCESS performs step 2 of the algorithm which requires fur
ther refinement.

2. For each transaction: read the transaction, update and print the cur-
rent balance, and increment the count of checks or deposits.

All program results (NUMCHECK, NUMDEP, and CURBAL) should be initial
ized in PROCESS before any transactions are processed. The initial value
of CURBAL should be the same as STARTBAL. The steps to be carried out
by procedure PROCESS are listed below.

1. Set counters to 0 and current balance to starting balance.
2. Read the first transaction.

3.7 CASE STUDIES 139



3. while there are more transactions do
4. Update balance and increment check or deposit counter.
5. Read the next transaction.

The structure chart for PROCESS is shown in Fig. 3.23. Procedure
READTRANS will perform steps 2 and 5 above, and UPDATE will perform
step 4. The new variables, TRANTYPE and AMOUNT, should be declared as
local variables in procedure PROCESS; variables passed between a level 1
and level 2 procedure should be declared in the level 1 procedure. The
identifiers CURBAL, NUMCHECK, and NUMDEP are declared already as for
mal parameters of PROCESS.

PROCESS

l'
TRANTYPE,
AMOUNT

I

I
TRANTYPE,

AMOUNT

t

11'
CURBAL,
NUMCHECK,
NUMDEP

tl

READTRANS
UPDATE

Fig. 3.23 Structure Chart for Procedure PROCESS

Procedure UPDATE will consist of an if statement that implements the
decision table shown in Table 3.11. Procedure PROCESS is shown in Fig.
3.24; a sample run of program CHECKBOOK is shown in Fig. 3.25.

Table 3.11 Decision table for UPDATE

Condition Desired Action

TRANTYPE

TRANTYPE

'D'

'C'

Increment NUMDEP, add AMOUNT to CURBAL

Increment NUMCHECK, subtract AMOUNT from
CURBAL-if CURBAL is negative, print an
overdrawn warning

procedure PROCESS (STARTBAL (inputj : REAL;
var CURBAL (outputj : REAL;
var NUMCHECK, NUMDEP (outputj : INTEGER);

(Processes each transaction. Reads each transaction, updates and prints
the current balance and increments the count of checks or deposits. I

140 CONTROL STATEMENTS



const
SENTINEL 'Q' ; (sentinel value I

var
TRANTYPE : CHAR;
AMOUNT REAL;

(transaction type (check or deposit)l
(transaction amountl

end; (UPDATEj

procedure READTRANS (var TRANTYPE (outputl : CHAR;
var AMOUNT (outputl : REAL);

(Reads each transaction-called by PROCESS. I

begin (READTRANSI
WRITELN;
WRITE (' C, D, or Q: ');
READLN (TRANTYPE);
if TRANTYPE <> SENTINEL then

begin (Read amountl
WRITE ('AMOUNT $'); READLN (AMOUNT)

end (if I
end; (READTRANS j

procedure UPDATE (TRANTYPE (inputl : CHAR;
AMOUNT linputl : REAL;
var CURBAL (input/outputj : REAL;
var NUMCHECK, NUMDEP (input/outputl : INTEGER);

(Updates CURBAL and increments NUMCHECK for a check or NUMDEP for a
deposit-called by PROCESS. I

begin (UPDATEI
if TRANTYPE = 'D' then

begin [depos i, tj
CURBAL := CURBAL + AMOUNT;
NUMDEP := NUMDEP + 1;
WRITE ('Depositing $', AMOUNT :8:2);
WRITELN (' Balance of $', CURBAL :10:2)

end [depos i, tj
else if TRANTYPE = 'c' then

begin (checkj
CURBAL := CURBAL - AMOUNT;
NUMCHECK := NUMCHECK + 1;
WRITE ('Check for $', AMOUNT :8:2);
WRITELN (' Balance of $', CURBAL :10:2);
if CURBAL < 0.0 then

WRITELN ('Warning! Your account is overdrawn.')
end [chec k]

else (not check or depositj
WRITELN ('Invalid transaction type', TRANTYPE,

, -transaction ignored')

begin (PROCESS I
(Initialize counters to zero and CURBAL to STARTBALI
NUMCHECK := 0; NUMDEP:= 0; CURBAL"= STARTBAL;

(Process eacp transaction until donel
READTRANS (TRANTYPE, AMOUNT); (read first transaction I

3.7 CASE STUDIES 141



while TRANTYPE <> SENTINEL do
begin

UPDATE (TRANTYPE, AMOUNT, CURBAL,
READTRANS (TRANTYPE, AMOUNT)

end [whLLe ]
end; (PROCESSj

NUMCHECK, NUMDEP);
(read next transactionj

Fig. 3.24 Procedure PROCESS for the Checkbook Balancing Program

Balance your checking account!

Enter C (Check), D (Deposit), or Q (Quit)
after prompt C, D, or Q:

Enter a positive number after prompt AMOUNT $

Begin by entering your starting balance $1000.00

C, D, or Q: D
AMOUNT $100.00
Depositing $ 100.00

C, D, or Q: C
AMOUNT $1200.00
Check for $ 1200.00
Warning! Your account

Balance of $

Balance of $
is overdrawn.

1100.00

-100.00

C, D, or Q: X
AMOUNT $500.00
Invalid transaction type X-transaction ignored.

C, D, or Q: Q

Starting balance was $ 1000.00
Final balance is $ -100.00
Number of checks written: 1
Number of deposits made : 1

Fig. 3.25 Sample Run of Checkbook Balancing Program

Procedure PROCESS processes all transactions. PROCESS calls proce
dure READTRANS to read each transaction and UPDATE to process the
transaction just read. Since UPDATE and READTRANS are called by PRO
CESS only, they are declared inside PROCESS.

Procedure UPDATE contains a nested if statement that differentiates
between checks and deposits. When TRANTYPE is 'C', another if state
ment is executed and is used to detect an overdrawn account (CURBAL <
0.0).

Figure 3.26 shows the structure chart for the entire program system.

142 CONTROL STATEMENTS



l'
STARTBAL

I
I

STARTBAL

t

l'
CURBAL,
NUMCHECK,
NUMDEP

I

I
STARTBAL,

CURBAL,
NUMCHECK,

NUMDEP

t

INSTRUCT PROCESS
REPORT

l'
TRANTYPE,
AMOUNT

I

I
TRANTYPE,

AMOUNT

t

11'
CURBAL,
NUMCHECK,
NUMDEP

tl

READTRANS
UPDATE

Fig. 3.26 Complete Structure Chart for Checkbook Balancing Program

PROGRAM STYLE

Top down design

The program system for the checkbook problem is a good illustration
of the top down design process. It uses procedures to implement each
of the subproblems shown in the structure chart. With the exception
of procedure PROCESS each procedure is relatively short.

The main program at the bottom of Fig. 3.22 contains three proce
dure (call) statements. The second procedure (call) statement

PROCESS (STARTBAL, CURBAL, NUMCHECK, NUMDEP)i

is used to process all transactions. Procedure PROCESS calls proce
dures READTRANS and UPDATE to read each transaction and
process each transaction, respectively. Both of these procedures are
declared inside procedure PROCESS.

3.7 CASE STUDIES 143



INTEGER)
INTEGER)
: INTEGER)

Grading an
Exam

Algorithm

The identifiers SENTINEL, TRANTYPE, and AMOUNT are declared
in PROCESS since they are used only by PROCESS and the proce
dures it calls. NUMCHECK, NUMDEP, and CURBAL are initialized in
PROCESS rather than in the main program as this keeps the manipu
lation of these variables in one place.

The next problem solution further illustrates the top down design pro
cess with procedures. It also uses a while statement and if statement.

Problem: We wish to write a grading program that will determine the
number of exam scores that fall into each of three categories: outstanding,
satisfactory, and unsatisfactory. The program will also print the high score
on the exam. The program user must specify the minimum satisfactory and
outstanding scores, and enter each student's initials and exam score.

Discussion: The program must start by reading in the scale for the exam.
The main processing step must then read each student's data, categorize
each score, and find the largest score. We will begin by describing the
data requirements and the algorithm.

minimum satisfactory score (MINSAT : INTEGER)
minimum outstanding score (MINOUT : INTEGER)
each student's initials (FIRST, LAST : CHAR)
each student's score (SCORE : INTEGER)

highest score (HIGH : INTEGER)
number of outstanding scores (NUMOUT
number of satisfactory scores (NUMSAT
number of unsa tisfactory scores (NUMUNS

1. Read in the exam scale.
2. Read each student's initials and score, categorize each score, and find

the high score.
3. Print the number of scores in each category and the high score.

Step 2 is the main processing step and requires further refinement. Rath
er than do this now, we will examine the structure chart for the problem
shown in Fig. 3.27.

All level 1 subproblems will be implemented as procedures (READ
SCALE, DOSCORES, and REPORT from left to right). The data flow infor-

144 CONTROL STATEMENTS



l' I
l' I
NUMUNS, NUMUNS,

MINSAT, MINSAT, NUMSAT, NUMSAT,
MINOUT MINOUT NUMOUT, NUMOUT,

I -It HIGH HIGH

I ~

READSCALE
DOSCORES

Fig. 3.27 Structure Chart (Level 0 and 1) for Grading Problem

REPORT

mati on shows that the scale boundary values (MINSAT, MINOUT) are de
fined by procedure READSCALE and passed into procedure DOSCORES.
Procedure DOSCORES determines all required output values (NUMUNS,
NUMSAT, NUMOUT, and HIGH); these values are then passed into REPORT
to be printed.

The variables shown in the structure chart are all declared in the main
program (see Fig. 3.28). The data flow information is used to write the pa
rameter lists in the main program. Since procedure DOSCORES requires
further refinement before it can be completed, it is written as a stub.

program GRADER (INPUT, OUTPUT);

IReads an exam scale and uses it to find the number of students who
received outstanding, satisfactory, and unsatisfactory grades on
an exam. Also, finds the high score on the exam.

var
MINSAT,
NUMUNS,
HIGH

MINOUT,
N'OMSAT, NUMOUT,

INTEGER;

lboundary values for satisfactory category I
lcounters for each category)

lhigh score so farl

procedure READSCALE (var MINSAT, MINOUT loutputl : INTEGER);

IReads the exam scale.1

begin IREADSCALEI
IEnter the exam scalel
WRITE ('Enter the minimum satisfactory score: ');
READLN (MINSAT);
WRITE ('Enter the minimum outstanding score: ');
READLN (MINOUT)

end; /READSCALEI

3.7 CASE STUDIES 145



procedure DOSCORES (MINSAT, MINOUT linputl : INTEGER;
var NUMUNS, NUMSAT, NUMOUT, HIGH loutputl : INTEGER);

IReads each student's initials and score, categorizes each score, and
finds the high score. I

begin IDOSCORES I
WRITELN ('Procedure DOSCORES entered.')

end; IDOSCORES I

procedure REPORT (NUMUNS, NUMSAT, NUMOUT, HIGH linputl

IPrints the final counts and the high score.1

INTEGER) ;

begin IREPORTI
WRITELN;
WRITELN ('Number of outstanding scores:
WRITELN ('Number of satisfactory scores:
WRITELN ('Number of unsatisfactory scores:
WRITELN;
WRITELN ('High score on exam: " HIGH :3)

end; IREPORTI

beg in IGRADER I
IEnter the exam scalel
READSCALE (MINSAT, MINOUT);

, NUMOUT :3);
, NUMSAT :3);
, NUMUNS :3);

IRead and categorize all scores and find the high scorel
DOSCORES (MINSAT, MINOUT, NUMUNS, NUMSAT, NUMOUT, HIGH);

IPrint count of scores in each category and the high scorel
REPORT (NUMUNS, NUMSAT, NUMOUT, HIGH)

end. IGRADERI

Fig. 3.28 Grading Program with Stub for DOSCORES

Algorithm for
DOSCORES

Procedure DOSCORES implements step 2 of the initial algorithm:

2. Read each student's initials and score, categorize each score, and find
the high score.

The algorithm for DOSCORES follows.

1. Initialize category counters and high score to O.
2. Read first student's initials and score.
3. while there are more scores do

4. Increment the appropriate category counter.
5. Check whether current score is the highest score so far.
6. Read next student's initials and score.

Step 4 can be implemented as a multiple-alternative decision as outlined
in Table 3.12. This step will be performed by procedure CATEGORIZE.

In order to accomplish step 5 (Check for high score), the program must
save the highest score so far in HIGH (initial value 0). If the current score
is larger than the highest score so far, then it becomes the new high score.
An example of this process is shown in Table 3.13.

146 CONTROL STATEMENTS



Table 3.12 Decision Table for Step 4 of DOSCORES

SCORE

below MINSAT

MINSAT to MINOUT-l

above MINOUT-l

Action

SCORE is unsatisfactory, increment NUMUNS

SCORE is satisfactory, increment NUMSAT

SCORE is outstanding, increment NUMOUT

Table 3.13 Finding the High Score

SCORE HIGH Effect of New SCORE

35 0 35 > 0, 35 is the new high score

60 35 60 > 35, 60 is the new high score

47 60 47 < 60, 60 is still the high score

80 60 80 > 60, 80 is the new high score

75 80 75 < 80, 75 is still the high score

Now that the algorithm for DOSCORES is refined, we can draw the sys
tem structure chart (see Fig. 3.29) that describes this step and its subprob
lems. Each subproblem is implemented as a procedure. The structure chart
shows that SCORE is an output of procedure READSTU and an input to
procedures CATEGORIZE and CHECKHIGH. Since CATEGORIZE must in
crement a category counter, the counters are input/output parameters for
this subproblem. Since HIGH may be modified by CHECKHIGH, it is also
an input/output parameter.

Fig. 3.29 Structure Chart for Procedure DOSCORES.

DOSCORES

l'
FIRST,
LAST,
SCORE

I

I
SCORE,

MINSAT,
MINOUT

~

It
NUMUNS,
NUMSAT,
NUMOUT

~I

I
SCORE

~

It
HIGH

~I

READSTU CATEGORIZE CHECKHIGH

3.7 CASE STUDIES 147



Procedure DOSCORES is shown in Fig. 3.30. FIRST, LAST, and SCORE
are declared as local variables in the procedure; SENTINEL is a local con
stant. Each of the procedures shown in the structure chart for DOSCORES
are nested within DOSCORES. A sample run of the complete program is
shown in Fig. 3.31.

Procedure DOSCORES begins by initializing all counters and HIGH to
zero. It calls READ STU to read each student's initials and score and calls
CHECKHIGH to check for the highest score so far.

procedure DOSCORES (MINSAT, MINOUT linputl : INTEGER;
var NUMUNS, NUMSAT, NUMOUT, HIGH loutputl : INTEGER);

IReads each student's initials and score, finds the number of scores in
each category, and finds the high score. I

const
SENTINEL = '*';

var
SCORE : INTEGER;
FIRST, LAST: CHAR;

procedure READSTU (var FIRST, LAST Ioutput I : CHAR;
var SCORE loutputl : INTEGER);

Isentinel value I

leach exam scorel
Istudent's in~tialsl

[re ad a student's initials and score-called by DOSCORES.I

begin IREADSTUI
WRITELN;
WRITE ('Enter student initials or **: ');
READLN (FIRST, LAST);
if FIRST <> SENTINEL then

begin
WRITE (' Enter score: '); READLN (SCORE)

end I.i f ]
end; !READSTUI

IGet Ln i t i e Ls]

IGet score]

Isatisfactory scorel

lunsatisfactory scorel

procedure CATEGORIZE (SCORE, MINSAT, MINOUT linputl : INTEGER;
var NUMUNS, NUMSAT, NUMOUT Iinput/output I : INTEGER);

ICategorizes SCORE and increments the appropriate counter-called by
DOSCORES. I

begin ICATEGORIZE I
if SCORE < MINSAT then

begin
WRITELN ('Unsatisfactory' :40);
NUMUNS := NUMUNS + 1

end lunsatisfactorYI
else if SCORE < MINOUT then

begin
WRITELN (' Satisfactory' : 4 0) ;
NUMSAT := NUMSAT + 1

end IsatisfactorYI
else

148 CONTROL STATEMENTS



begin [outstanding score]
WRITELN ('Outstanding' :40);
NUMOUT := NUMOUT + 1

end routstandingl
end; !CATEGORIZEI

procedure CHECKHIGH (SCORE [inputl : INTEGER;
var HIGH Iinput/output I : INTEGER);

[Checks whether SCORE is the highest score so far.}

begin {CHECKHIGHI
if SCORE > HIGH then

HIGH := SCORE ISave new high scorel
end; /CHECKHIGHI

begin IDOSCORESI
[Initialize counters and HIGH to zerol
NUMUNS := 0; NUMSAT:= 0; NUMOUT:= 0; HIGH:= 0;

[Categorize each score and find HIGHI
READSTU (FIRST, LAST, SCORE); [Read initials and score)
while FIRST <> SENTINEL do

begin
[Categorize SCORE and increment appropriate counter)
CATEGORIZE (SCORE, MINSAT, MINOUT, NUMUNS, NUMSAT, NUMOUT)i
CHECKHIGH (SCORE, HIGH); [Check for high score I
READSTU (FIRST, LAST, SCORE) [Read initials and scorel

end [whLl.e ]
end; /DOSCORES I

Fig. 3.30 Procedure DOSCORES (Replaces the Stub in Fig. 3.28)

Fig. 3.31 Sample Run of Program GRADER

Enter the minimum satisfactory score: 75
Enter the minimum outstanding score: 90

Enter student initials or **: EK
Enter score: 100

outstanding

Enter student initials or **: RK
Enter score: 75

satisfactory

Enter student initials or **: HH
Enter score: 89

satisfactory

Enter student initials or **: **

Number of outstanding scores: 1
Number of satisfactory scores: 2
Number of unsatisfactory scores: 0

High score on exam: 100

3.7 CASE STUDIES 149



Procedure DOSCORES calls procedure CATEGORIZE to find the category
of each score. The multiple alternative decision in CATEGORIZE prints the
score category and increments a counter. The symbols :40 in each
WRITELN statement of CATEGORIZE cause the last character of the cate
gory string to be printed in column 40. making it easy to distinguish the
program output from the input data.

Self-check Exercises for Section 3.7

1. Modify the checkbook program so that a penalty amount of $15.00 is
deducted for each overdrawn check and a count of overdrawn checks
is maintained and printed next to each overdrawn check. Reset the
count of overdrafts to zero whenever the balance becomes positive.

2. What would be the effect of transposing the parameters MINSAT and
MINOUT in the call to procedure DOSCORES or READSCALE in Fig.
3.29? Would the compiler detect this error?

3. What would happen if the person using this program became confused
and switched the data values entered for MINSAT and MINOUT? Re
write procedure READSCALE so that it checks for this error and takes
corrective action if it occurs.

4. Draw the procedure nesting diagrams (see Fig. 3.20) for both program
systems.

III Debugging a Program System

As the number of modules and statements in a program system grows. the
possibility of error also increases. If each module is kept to a manageable
size. then the likelihood of error will increase much more slowly. It will
also be easier to read and test each module. Finally. the limited use of
global variables will minimize the chance of harmful side effects that are
always difficult to locate.

Whenever possible. test each procedure separately by writing a short
driver program that contains all necessary declarations. The body of the
driver program should assign values to the input parameters. call the pro
cedure. and display the procedure results.

Even before all procedures are written. you can test the main program
flow by substituting stubs for the missing procedures. If you do this make
sure that any procedure outputs needed by the main program are defined
in the stub.

A list of suggestions for preventing and debugging errors in a program
system follows.

Debugging Tips for Procedures

1. Carefully document each procedure parameter and local identifier us
ing comments. Also describe the procedure operation using comments.

2. During debugging, leave a trace of execution by printing the procedure

150 CONTROL STATEMENTS



name as it is entered. Sometimes a trace showing the currently execut
ing procedure and the procedures that called it is printed by Pascal
when a run-time error occurs.

3. During debugging, print the values of all input parameters upon entry
to a procedure. Make sure that these values make sense.

4. During debugging, print the values of all output parameters after re
turning from a procedure. Make sure that all output parameters are de
clared as variable parameters.

• Common Programming Errors

Remember to bracket each compound statement with begin and end.
The compiler will detect a syntax error if either a beg in is missing or an
end is missing, but not both. If both the begin and end are missing, then
your program will be translated, but it will not execute as intended. For
example, the while statement below is an infinite (non-terminating) loop
since the loop body consists of the assignment statement only.

WRITE ('Enter a number: '); READLN (NEXT);
while NEXT <> SENTINEL do

SUM := SUM + ITEM;
WRITE ('Enter a number: '); READLN (NEXT)

Be very careful when using tests for inequality to control the repetition
of a while loop. The loop below is intended to process all transactions
for a bank account while the balance is positive.

while BALANCE <> 0.0 do
UPDATE (BALANCE)

If the bank balance goes from a positive to a negative amount without
being exactly 0.0, the loop will not terminate. The loop below would be
safer.

while BALANCE> 0.0 do
UPDATE (BALANCE)

Unfortunately, there are many opportunities for error when using proce
dures with parameter lists. The proper use of parameters is difficult for
beginning programmers to master. One obvious pitfall is to be sure that
the actual parameter list has the same number of parameters as the formal
parameter list. The syntax error "number of parameters does not agree
with declaration" will indicate this problem.

Each actual parameter must be the same data type as its corresponding
formal parameter. An actual parameter that correponds to a variable for
mal parameter must be a variable. A violation of either of these rules will
result in a syntax error.

3.9 COMMON PROGRAMMING ERRORS 151



A procedure result should be returned to the calling module by
assigning a value to a variable parameter. Any value assigned to a value
parameter will be stored locally in the procedure and will not be returned.
This error cannot be detected by Pascal,

• Chapter Review

Syntax diagrams were introduced in this chapter and we saw how to use
them to check the syntax of Pascal statement. A complete set of syntax di
agrams for Pascal is provided in Appendix C.

The if statement was examined more formally. We saw how to use
nested if statements to implement decisions with several alternatives.

A conditional looping structure, the while statement, was used to im
plement loops whose repetition is controlled by a condition. The while
statement is useful when the exact number of repetitions required is not
known before the loop begins. Separate Pascal statements are needed for
initializing and updating the loop control variable associated with a
while loop.

One common technique for controlling the repetition of a while loop is
using a special sentinel value to indicate that all required data have been
processed. In this case, the loop control variable is a problem input; it is
initialized when the first data value is read (priming read) and updated at
the end of the loop when the next data value is read. Loop repetition ter
minates when the sentinel value is read into the loop control variable.

The use of procedure parameters for passing data to and from proce
dures was also discussed. The parameter list provides a highly visible
communication path between the procedure and the calling program. By
using parameters, we can cause different data to be manipulated by a pro
cedure each time we call it. This makes it easier to reuse the procedure in
another program system.

There are two types of parameters: value and variable. A value parame
ter is used only for passing data into a procedure. A variable parameter is
used to return results from a procedure. The actual parameter correspond
ing to a value parameter may be an expression or a constant; the actual
parameter corresponding to a variable parameter must be a variable.

We discussed the scope of identifiers. An identifier may be referenced
anywhere within the block that declares it. If one block is nested inside
another and an identifier is declared in the outer block, then the identi
fier's meaning in the inner block is determined by its declaration in the
outer block. If the identifer is declared in both blocks, then its meaning in
the inner block is determined by its declaration in the inner block.

A global variable is one that is declared in the main program; a local
variable is one that is declared in a procedure. A local variable is defined
only during the execution of the procedure; its value is lost when the pro
cedure is done.

152 CONTROL STATEMENTS



New Pascal Statements

The Pascal statements introduced in Chapter 3 are shown in Table 3.14.

Table 3.14 Summary of New Pascal Statements

Statement

MUltiple alternative decision
if SCORE >= 90 then

begin [Aj
WRITE (' A' ) :
COUNTA := COUNTA + 1

end [Aj
else if SCORE >= 80 then

begin [Bj
WRITE (' B ' ) :
COUNTB .= COUNTB + 1

end [Bj
else

begin [Cj
WRITE (' C ' ) :
COUNTC := COUNTC + 1

end [Cj

While statement
SUM := 0;
while SUM <= MAXSUM do

begin
WRITE ('Next integer: ');
READLN (NEXT);
SUM := SUM + NEXT

end [whilej

Procedure with parameters
procedure A (X : REAL;

OP : CHAR;
var XT03 REAL);

begin [Aj
if OP '*' then

XT03 := X * X * X
else if OP '+' then

XT03 .= X + X + X
else

WRITELN ('Invalid' OP)
end; [AI

Procedure (call) statement
A (~._5 I '+' I Y)

Effect

If SCORE is greater than or equal to
90, then COUNTA is increased by 1;
otherwise, if SCORE is greater than or
equal to 80, COUNTB is increased;
otherwise, COUNTC is increased.

A collection of input data items is read
and their sum is accumulated in SUM.
This process stops when the accumu
lated SUM exceeds MAXSUM.

Procedure A has two value parame
ters (X and OP) and one variable
parameter (XT03). If OP is '*', then
the value returned is X * X * X;
otherwise, if OP is '+', then the val
ue returned is X + X + X; other
wise, an error message is printed. A
result is returned by assigning a new
value to the actual parameter (a vari
able) that corresponds to parameter
XT03.

Calls procedure A. The value 16 . 5 is
assigned to Y (type REAL).

3.10 CHAPTER REVIEW 153



Review Questions

1. How can syntax diagrams aid a new user in becoming comfortable
with an unfamiliar programming language?

2. Given the following syntax diagram, circle the WORDS under the dia
gram that are valid.

Syntax Diagram for WORDS

PEAR BREAD DREAR DEADEN DAD DRRAB

3. Define a sentinel value.
4. For a sentinel value to be used properly when reading in data, where

should the READLN statements appear?
5. Write a program called SUM to sum and print a collection of payroll

amounts entered at the standard input device until a sentinel value of
-1 is entered. Use a while statement.

6. Hand trace the program below given the following data:

4,2,8,4, 1,4,2,1, 9,3,3,1, -22,10,8,2

program SLOPE (INPUT, OUTPUT);

const
SENTINEL 0;

var
SLOPE, Y2, Yl, X2, Xl : REAL;

begin
WRITELN ('Enter four real numbers');
READLN (Y2, Yl, X2, Xl);
SLOPE := (Y2 - Yl) / (X2 - Xl);
while SLOPE <> SENTINEL do

154 CONTROL STATEMENTS



begin
WRITELN ('Slope is SLOPE :5:3);
WRITELN;
WRITELN ('Enter four real numbers');
READLN (Y2, Yl, X2, Xl);
SLOPE := (Y2 - Yl) / (X2 - Xl)

end [wh i Le ]
end.

7. Explain when it is appropriate to use semicolons within
a) the variable declaration statement
b) the constant declaration statement
c) the program body
d) an if statement

8. Write the procedure heading statement for a procedure called SCRIPT
that accepts three parameters passed to it. The first parameter will be
the number of spaces to print at the beginning of a line. The second
parameter will be the character to print after the spaces, and the third
parameter will be the number of times to print the second parameter
on the same line.

9. Write a procedure called LETTERGRADE that has one input parameter
called GRADE, and will print out the corresponding letter grade using a
straight scale (90 - 100 is an A, 80 - 89 is a B, etc.],

10. Explain the difference between a value parameter and a variable pa
rameter with respect to the parameter's relationship to the variables in
the calling program.

11. Explain the allocation of memory cells when a procedure is called.
12. Write the procedure header statement for a procedure named PASS

that has two integer parameters. The first parameter should be a value
parameter and the second a variable parameter.

13. Explain the use of a stub in refining an algorithm.
14. In the chart below write YES for each procedure on the right that can

be referenced (called) by the procedure on the left, and NO for each
procedure that is inaccessible.

program PROCSCOPE (INPUT, OUTPUT); callable procedures

procedure A;
procedure B;

procedure C;

end; ICI
procedure D;

end; IDI

end; IBI

end; IAI

end. IPROCSCOPE I

calling
procedure A B C

A X
B X
C X
D

D

X

3.10 CHAPTER REVIEW 155



Programming Projects

1. Write a program that will find the product of a collection of data values.
Your program should terminate when a zero value is read.

2. Write a program to read in an integer N and compute SLOW = i = 1 + 2 +
3 + ... + N (the sum of all integers from 1 to N). Then. compute FAST =
(N X (N + 1)) / 2 and compare FAST and SLOW. Your program should print
both FAST and SLOW and indicate whether or not they are equal. (You will
need a loop to compute SLOW.) Which computation method is preferable?

3. Write a program to read a list of integer data items and find and print the in
dex of the first occurrence and the last occurrence of the number 12. Your
program should print index values of 0 if the number 12 is not found. The in
dex is the sequence number of the data item 12. For example. if the 8th data
item is the only 12. then the index value 8 should be printed for the first and
last occurrence.

4. Write a program to read in a collection of exam scores ranging in value from
1 to 100. Your program should count and print the number of outstanding
scores (90-100). the number of satisfactory scores (60-89). and the number of
unsatisfactory scores (1-59). Test your program on the following data:

63
90

75
89

72
43

72
59

78
99

67
82

80
12

63
100

75

In addition, print each exam score and its category.

5, Write a program to process weekly employee time cards for all employees of
an organization. Each employee will have three data items indicating an
identification number. the hourly wage rate. and the number of hours worked
during a given week, Each employee is to be paid time-and-a-half for all
hours worked over 40. A tax amount of 3.625 percent of gross salary will be
deducted. The program output should show the employee's number and net
pay.

6, Suppose you own a beer distributorship that sells Piels (ID number 1). Coors
(ID number 2). Bud (ID number 3) and Iron City (ID number 4) by the case.
Write a program to (a) read in the case inventory for each brand for the start
of the week: (b) process all weekly sales and purchase records for each
brand: and (c) print out the final inventory. Each transaction will consist of
two data items. The first item will be the brand identification number (an in
teger). The second will be the amount purchased (a positive integer value) or
the amount sold (a negative integer value). The weekly inventory for each
brand (for the start of the week) will also consist of two items: the identifica
tion and initial inventory for that brand. For now, you may assume that you
always have sufficient foresight to prevent depletion of your inventory for
any brand. (Hint: Your data entry should begin with eight values represent
ing the case inventory. These should be followed by the transaction values.]

7, Write a program to find the largest, smallest. and average value in a collec
tion of N numbers where the value of N will be the first data item read.

156 CONTROL STATEMENTS



8. a) Write a program to process a collection of savings account transactions
(deposits or withdrawals). Your program should begin by reading in the pre
vious account balance and then read and process each transaction. Enter a
positive value for a deposit and a negative value for a withdrawal. For each
transaction. print the message I WITHDRAWAL I or I DEPOSIT I and the
new balance. Print an error message if a withdrawal would result in a nega
tive balance and do not change the balance.
b) Compute and print the number of deposits, the number of withdrawals,
the number of invalid withdrawals. and the total dollar amount for each type
of transaction.

9, a) Write a program that computes and prints the fractional powers of two
(1/2, 1/4. 1/8, etc.], The program should also print the decimal value of each
fraction as shown below.

Power
1
2
3

Fraction
1/2
1/4
1/8

Decimal value
0,5
0,25
0,125

Print all values through power equal to ten.

b) Add an extra output column which shows the sum of all decimal values
so far. The first three sums are: 0.5, 0.75, 0,875.

10, a) The trustees of a small college are considering voting a pay raise for the
twelve faculty. They want to grant a 5.5% pay raise; however, before doing
so. they want to know how much this will cost. Write a program that will
print the pay raise for each faculty member and the total amount of the
raises. Also. print the total faculty payroll before and after the raise. Test
your program for the salaries:

$12500
$15500
$13780

$14029.50
$12800
$17300

$16000
$20000.50
$14120.25

$13250
$18900
$14100

b) Redo the program assuming that faculty earning less than $14000 receive a
4% raise. faculty earning more than $16,500 receive a 7% raise. and all others
recieve a 5.5% raise, For each faculty member. print the raise percentage as
well as the amount.

11, The assessor in your town has estimated the market value of all fourteen
properties and would like a program that determines the tax owed on each
property and the total tax to be collected. The tax rate is 125 mils per dollar
of assessed value. (A mil is 0.1 of a penny.) The assessed value of each prop
erty is 28% of its estimated market value. The market values are:

$50000
$53350

$48000
$28000

$45500
$58000

$67000
$52250

$37600
$48000

$47100
$56500

$65000
$43700

12, Patients required to take many kinds of medication often have difficulty in
remembering when to take their medicine. Given the following set of medica
tions. write a program that prints an hourly table indicating what medication
to take at any given hour, Use a counter variable CLOCK to go through a 24

PROGRAMMING PROJECTS 157



hour day. Print the table based upon the following prescriptions:

Medication
Iron pill
Antibiotic
Vitamin
Calcium

Frequency
0800, 1200, 1800
Every 4 hours starting at 0400
0800, 2100
1100, 2000

13. A monthly magazine wants a program that will print out renewal notices to
its subscribers and cancellation notices when appropriate. Utilize procedures
when advisable and write a program that first reads in the current month
number (1 through 12) and year. For each subscription processed, read in
four data items: the account number, the month and year the subscription
started, and the number of years paid for the subscription.

Read in each set of subscription information and print a renewal notice if
the current month is either the month prior to expiration or the month of ex
piration. A cancellation notice should be printed if the current month comes
after the expiration month.
Sample input might be:

10,85
1364, 4, 83, 3

for a current month of October 1985
for account 1364 whose 3 year subscription
began in April 1983

14. The square root of a number N can be approximated by repeated calculation
using the formula

NG = .5(LG + N / LG)

where NG stands for next guess and LG stands for last guess. Write a proce
dure which implements this process where the first parameter will be a posi
tive real number, the second will be an initial guess of the square root, and
the third will be the computed result.

The initial guess will be the starting value of LG. The procedure will com
pute a value for NG using the formula above. The difference between NG and
LG is checked to see whether these two guesses are almost identical. If so,
the procedure is exited and NG is the square root: otherwise, the new guess
(NG) becomes the last guess (LG) and the process is repeated [i.e, another
value is computed for NG, the difference is checked, etc.).

For this program the loop should be repeated until the difference is less
than 0.005 (DELTA). Use an initial guess of 1.0 and test the program for the
numbers: 4, 120.5, 88, 36.Q1, 10000.

158 CONTROL STATEMENTS



Simple Data Types
4.1 Constant Declarations
4.2 Numeric Data Types-REAL and INTEGER
4.3 Functions in Arithmetic Expressions
4.4 BOOLEAN Variables, Expressions, and Operators
4.5 Character Variables and Functions
4.6 Introduction to Programmer-defined Data Types
4.7 Input/Output Revisited
4.8 Case Study
4.9 Common Programming Errors
4.10 Chapter Review

Thus far in our programming, we have used the four standard data types
of Pascal: INTEGER, REAL, CHAR, and BOOLEAN (conditions in if and
while statements). In this chapter, we take a closer look at these data
types and introduce new operators and operations that can be performed
on them. We describe the standard functions of Pascal and demonstrate
how they are used to simplify computations.

We also learn how to declare new data types called enumerated types
and subrange types. All of the data types in this chapter are simple data
types, that is, only a single value can be stored in each variable.

Finally we review the input/output operations in Pascal and introduce

159



two new functions, EOLN and EOF, which are often used when reading in
data. This chapter also illustrates how to process a data file that was pre
pared before program execution.

• Constant Declarations

This chapter begins by reexamining constants in Pascal. The syntax dia
gram for the constant declaration statement is shown at the top of Fig. 4.1.
This diagram shows that each constant definition has the form

identifier = constant

where constant Is described in the syntax diagram at the bottom of Fig.
4.1.

The constant declaration statement below follows the syntax rules of
Fig. 4.1.

const
MAX = 100;
MIN = -MAX;
SPEEDOFLIGHT = 2.998E+6;
NAME = 'Alice';

Fig. 4.1 Syntax Diagrams for Constant Declaration

Constant Declaration

Constant

160 SIMPLE DATA TYPES



The constant declaration for MIN uses the previously-defined constant
MAX. Since MAX has the value 100, MIN has the value -100. The constant
SPEEDOFLIGHT is associated with a real value (2998000.0) expressed in
scientific notation. The string value 'Ai ice I is associated with the con
stant NAME; string values are further discussed in Chapter 6. The constant
value NIL is discussed in Chapter 10.

• Numeric Data Types-Real and Integer

The data types INTEGER and REAL are used to represent numeric infor
mation. We used INTEGER variables as loop counters and to represent
data such as exam scores that were whole numbers. In most other in
stances we used type REAL numeric data.

You may be wondering why it is necessary to have two numeric types?
Can the data type REAL be used for all numbers? The answer is yes, but
on many computers operations involving integers are faster and less stor
age space is needed to store integers. Also operations with integers are al
ways precise whereas there may be some loss of accuracy when dealing
with real numbers.

These differences result from the way real numbers and integers are
represented internally in memory. All data are represented in memory as
binary strings, strings of a's and L's, However, the binary string stored for
the integer 13 is not the same as the binary string stored for the real num
ber 13.0. The actual internal representation used is computer dependent;
some sample integer and real formats are shown in Fig. 4.2.

real format

Fig. 4.2 Integer and Real Formats

In Fig. 4.2, each integer is represented as a standard binary number. If
you are familiar with the binary number system, you know that the integer
13 is represented as the binary number 1101.

Real format is analogous to scientific notation. The storage area occu
pied by a real number is divided into two sections: the mantissa and the
exponent. The mantissa is a binary fraction between 0.5 and 1.0 (-0.5 and
-1.0 for a negative number). The exponent is a power of two. The mantis
sa and exponent are chosen so that the formula below is correct.

real-number = mantissa X 2exponenl

Besides the capability of storing fractions, the range of numbers that
may be represented in real format is considerably larger than for integer
format. For example, on Control Data Corporation Cyber series computers,
real numbers range in value from 10-294 (a very small fraction) to 10+ 322,

4.2 NUMERIC DATA TYPES-REAL AND INTEGER 161



whereas, the range of positive integers extends from 1 to approximately
1015.

Type of an Arithmetic Result

All the arithmetic operators (+, -, *, /) seen so far can be used with ei
ther integer or real operands. Table 4.1 shows the format of the result of
an arithmetic operation. If one or both operands are type REAL, then the
result always will be type REAL; only when both operands are type IN
TEGER can the result be type INTEGER. If the operator is /, then the re
sult will be type REAL even when both operands are type INTEGER.

Table 4.1 Data Type of the Result of an Arithmetic Operation

Operands Operator

left right +, -, * / mod,div
REAL REAL REAL REAL illegal

REAL INTEGER REAL REAL illegal

INTEGER REAL REAL REAL illegal

INTEGER INTEGER INTEGER REAL INTEGER

The operators div and mod require INTEGER operands and compute
INTEGER results. They are described in the next section.

Pascal does not allow a type REAL value to be assigned to a type IN
TEGER variable because the fractional part cannot be represented and
will be lost. This means that the assignment statements below will all gen
erate syntax errors if COUNT is a type INTEGER variable. However, either
a REAL or INTEGER result may be assigned to a type REAL variable.

COUNT := 3.5; lillegal assignment of a real number to INTEGERI
COUNT ;= COUNT + 1.0; lillegal -- 1.0 is REAL so result is REALI
COUNT ;= COUNT / 2 lillegal -- result of division is REALI

Arithmetic Operators div and mod

In Table 4.1, there are two new operators, div and mod, that must be
used only with type INTEGER operands. The integer division operator,
div, computes the integral part of the quotient that results when its first
operand is divided by its second operand; the modulo division operator,
mod, computes the integer remainder.

For example, the expression 7 div 2 evaluates to 3, which is the inte
gral part of the quotient of 7 divided by 2. The expression 7 mod 2 eval
uates to 1, which is the integer remainder of 7 divided by 2 as shown
below.

162 SIMPLE DATA TYPES



Example 4.1

Example 4.2

3 Rl
2~

6
1

The operator div may be used to divide two integer values when an in
teger result is required; any remainder is truncated or lost. The sign of the
result is positive if both operands have the same sign; otherwise, the sign
of the result is negative. The div and mod operators are described in the
next display.

OPERATORS DIV AND MOD

operand; div operandc
operand; mod operandi

Interpretation: The operator div yields the integral part of the result
of operand1 divided by operand2; any remainder is trunca ted. The
operator mod yields the integer remainder of this division. Both oper
ands must be integer constants, variables, or expressions with integer
values.
Notes: If operandi is 0, the result of the div or mod operation is
undefined. If operand, is negative, the result of the mod operation is
undefined.

The integer division operator, div, is illustrated below. The sign of the re
sult is the same as for regular division (operator j). The result is always
zero when the magnitude of the first operand is less than the magnitude of
the second operand.

3 div 15 0 3 div -15 0
15 div 3 5 15 div -3 -5
16 div 3 5 16 div -3 -5
17 div 3 5 -17 div 3 -5
18 div 3 6 -18 div -3 6

The modulo division operator, mod, is illustrated below. Each result is
shown in parentheses. The result is always less than the second operand
(the divisor). The mod operation is undefined when its second operand is
negative or zero. By comparing the second and third columns, we see that
M mod N is the negation of -M mod N.

3 mod 5 3 5 mod 3 2 -5 mod 3 -2
4 mod 5 4 5 mod 4 1 -5 mod 4 -1
5 mod 5 0 15 mod 5 0 -15 mod 5 0
6 mod 5 1 15 mod 6 3 -15 mod 6 -3
7 mod 5 2 15 mod 7 1 -15 mod 7 -1
8 mod 5 3 15 mod 8 7 -15 mod 8 -7

4.2 NUMERIC DATA TYPES-REAL AND INTEGER 163



Example 4.3 Procedure PRINTDIGITS in Fig. 4.3 prints each digit of its parameter
DECIMAL in reverse order (e.g. if DECIMAL is 738, the digits printed are 8,
3, 7). This is accomplished by printing each remainder (0 through 9) of
DECIMAL divided by 10; the integer quotient of DECIMAL divided by 10
becomes the new value of DECIMAL. DECIMAL must be a positive integer.

The parameter DECIMAL is used as the loop control variable. Within
the while loop, the mod operator is used to assign to DIGIT the rightmost
digit of DECIMAL, and the div operator is used to assign the rest of the
number to DECIMAL. The loop is exited when DECIMAL becomes O. Since
DECIMAL is a value parameter, the actual parameter value is not changed
by the procedure execution.

procedure PRINTDIGITS (DECIMAL linputl : INTEGER);

IPrints the digits of DECIMAL in reverse order. I

canst
BASE 10; Inumber system basel

var
DIGIT : INTEGER; leach digiti

begin IPRINTDIGITSI
IFind and print successive remainders of DECIMAL divided by 101
while DECIMAL <> 0 do

begin
DIGIT := DECIMAL mod BASE; Iget next remainderl
WRITE (DIGIT :1);
DECIMAL ;= DECIMAL div BASE Iget next quotient I

end; [wh i.Le ]
WRITELN

end; IPRINTDIGITSI

Fig. 4.3 Printing Decimal Digits

Table 4.2 shows a trace of the procedure execution for an actual param
eter of 43. The digits 3 and 4 are printed.

Expressions with Multiple Operators

To write expressions that compute the desired results. we must know the
Pascal rules for evaluating expressions. For example. in the expression
A + B * C, is * performed before + or vice versa? Is the expression
X / Y * Zevaluatedas (X / y) * ZorX / (Y * Z)?

Some expressions with multiple operators were used in earlier pro
grams. For example.

1.8 * CELSIUS + 32
(SALA~Y - 5000.00) * 0.20 + 1425.00

164 SIMPLE DATA TYPES



Table 4.2 Trace of Execution of PRINTDIGITS (43)

Statement

while DECIMAL <> 0 do
DIGIT := DECIMAL mod BASE
WRITE (DIGIT :1)
DECIMAL := DECIMAL div BASE

while DECIMAL <> 0 do
DIGIT := DECIMAL mod BASE
WRITE (DIGIT :1)
DECIMAL := DECIMAL div BASE

while DECIMAL <> 0 do

DECIMAL

43

4

a

DIGIT

3

4

Effect

43 < > a is true
Remainder is 3
Print 3
Quotient is 4

4 < > a is true
Remainder is 4
Print 4
Quotient is 4

a < > a is false - exit

Example 4.4

Example 4.5

In both these cases, the algebraic rule that multiplication is performed be
fore addition is applicable. The use of parentheses in the second
expression ensures that subtraction is done first. The rules for expression
evaluation in Pascal are based on standard algebraic rules:

a. All parenthesized subexpressions must be evaluated first. Nested pa
renthesized subexpressions must be evaluated inside out, with the in
nermost subexpression evaluated first.

b. [operator precedence) Operators in the same subexpression are evalu
ated in the following order:

*, /, div, mod first
+, - last

c. (left associative) Operators in the same subexpression and at the
same precedence level [such as + and -) are evaluated left to right.

The formula for the area of a circle, a = PI X r2, may be written in Pascal
as

AREA := PI * RADIUS * RADIUS

where PI is the constant 3.14159. The evaluation tree for this formula is
shown in Fig. 4.4. In this tree, the arrows connect each operand with its
operator. The order of operator evaluation is shown by the number to the
left of each operator; the rules that apply are shown to the right.

We shall see another way to specify RADIUS * RADIUS in the next
section.

The formula for the average velocity, v, of a particle traveling on a line
between points P1 and P2 in time t1 to t2 is

v = P2 - P1
t2 - t1

4.2 NUMERIC DATA TYPES-REAL AND INTEGER 165



Example 4.6

AREA: = PI * RADIUS * RADIUS

AREA

Fig. 4.4 Evaluation Tree for AREA: = PI • RADIUS' RADIUS

This formula may be written and evaluated in Pascal as shown in Fig. 4.5.
Inserting parentheses in an expression affects the order of operator

evaluation. Parentheses should be used freely to clarify the order of evalu
ation.

V : = (P2 - Pi) / (T2 - 'I'L)

v

Fig. 4.5 Evaluation Tree for V := (P2 - P1) / (T2 - T1)

Refer to Fig. 4.6 as you consider the expression

Z - (A + B DIV 2) + W * Y

containing integer variables only. The parenthesized subexpression (A + B
DIV 2) is evaluated first [Rule (a)] beginning with B DIV 2 [(Rule (b)].
Once the value of B DIV 2 is determined, it can be added to A to obtain
the value of (A + B DIV 2). Next the multiplication operation is per
formed [Rule (b)] and the value for W * Y is determined. Then the value
of (A + B DIV 2) is subtracted from Z [Rule (c)], and finally this result
is added to W * Y.

Writing Mathematical Formulas in Pascal

There are two problem areas in writing a mathematical formula in Pascal;
one concerns multiplication and the other concerns division. Multiplication

166 SIMPLE DATA TYPES



Example 4.7

z - (A + B DIV 2) + W * Y

Fig. 4.6 Evaluation Tree for Z - (A + B DIV 2) + W • Y

can often be implied in a mathematical formula by writing the two items
to be multiplied next to each other; e.g., a = be, In Pascal, however, the *
operator must always be used to indicate multiplication as in:

A := B * C

The other difficulty arises in formulas involving division. We normally
write the numerator and denominator on separate lines:

m = L=J2
x - a

In Pascal, all assignment statements must be written in a linear form;
consequently parentheses are often needed to separate the numerator
from the denominator, and to clearly indicate the order of evaluation of
the operators in the expression. The formula above would be written as

M := (Y - B) / (X - A)

This example illustrates how several mathematical formulas can be writ
ten in Pascal.

Mathematical
Formula Pascal Expression

a. b2 - 4ac B * B - 4 * A * C
b. a + b - c A + B - C

a + b (A + B) / (C + D)c. ---
c + d

d. 1 1 / (1 + X * X)---

1 + x2

e. a X -(b + c) A * (-(B + C) )

The points illustrated are summarized as follows:

4.2 NUMERIC DATA TYPES-REAL AND INTEGER 167



• Always specify multiplication explicitly by using the operator * where
needed (see Example 4.7a).

• Use parentheses when required to control the order of operator evalua
tion (see Examples 4.7c and d).

• Never write two arithmetic operators in succession; they must be sepa
rated by an operand or parentheses (see Example 4.7e).

Self-check Exercises for Section 4.2

1. What happens if BASE is 2 instead of 10 in procedure PRINTDIGITS?
What result is generated for PRINTDIGITS(23) and PRINTDIGITS
(64) if BASE is 2? Answer these questions if BASE is 8.

2. Evaluate the following expressions with 7 and 22 as operands.

22 div 7 7 div 22 22 mod 7 7 mod 22

Repeat this exercise for the pairs of integers:

15 I 16 3 I 23 4 I 16

3. Given the declarations

canst
PI 3.14159;
MAXI 1000;

var
X, Y : REAL;
A, B, I : INTEGER;

find the value of each of the valid statements below. Also indicate
which are invalid and why. Assume that A is 3, B is 4, and Y is -1. O.
a. I := A mod B
b. I := (990 - MAXI) div A
c. I := A mod Y
d. X := PI * Y
e. I := A / B
f. X .= A / B
g. X := A mod (A / B)
h. I := B div 0
i. I := A mod (990 - MAXI)
j. I := (MAXI - 990) div A
k. X := A / Y
I. I := PI * A
m. X := PI div Y
n. X := A div B
o. I := (MAXI - 990) mod A
p. I := A mod 0
q. I .= A mod (MAXI - 990)

168 SIMPLE DATA TYPES



4. What values are assigned by the valid statements in 3 above, assum
ing A is 5, B is 2, and Y is 2.01

5. Assume that you have the following variable declarations:

var
COLOR, LIME, STRAW, YELLOW, RED, ORANGE : INTEGER;
BLACK, WHITE, GREEN, BLUE, PURPLE, CRAYON : REAL;

3(1 + J)
5A / BC
5J3

d. K .=
e. X :=
f. I .=

4.0 A * C
AC
2 * -J

Evaluate each of the statements below given the values: COLOR is 2,
BLACK is 2.5, CRAYON is -1.3, STRAW is 1, RED is 3, PURPLE is a.3E1.
a. WHITE := COLOR * 2.5 / PURPLE
b. GREEN := COLOR / PURPLE
c. ORANGE := COLOR DIV RED
d. BLUE := (COLOR + STRAW) / (CRAYON + 0.3)
e. LIME := RED DIV COLOR + RED MOD COLOR
f. PURPLE := STRAW / RED * COLOR

6. Let A, B, C, and X be the names of four type REAL variables and I, J,
and K the names of three type INTEGER variables. Each of the state
ments below contains a violation of the rules for forming arithmetic
expressions. Rewrite each statement so that it is consistent with these
rules.
a. X :=
b. A :=
C. I .=

• Functions in Arithmetic Expressions

Example 4.8

The function is a feature of Pascal that is helpful in specifying numerical
computations. Each function performs a different mathematical operation
(square root, cosine, etc.] and computes a single value. Functions are refer
enced directly in an expression: the value computed by the function is
then substituted for the function reference.

SQRT is the name of a function that computes the square root of a positive
value. In the assignment statement

Y := 5.7 + SQRT(20.25)

the value computed by the function reference SQRT(20. 25) is 4.5; this
value replaces the function reference in the expression and is added to
5.7. The result of the addition or 10 .2 (5.7 + 4 .5) is stored in the real
variable Y.

Pascal provides a number of standard mathematical functions, such as
SQRT, that may be used by the programmer. The names and descriptions
of these functions are given in Table 4.3. The function name is always

4.3 FUNCTIONS IN ARITHMETIC EXPRESSIONS 169



Example 4.9

Table 4.3 Mathematical Functions

Name Description of Computation Argument Result

ABS The absolute value of the real/integer same as argument
argument

EXP The value of e (2.71828) real/integer real
raised to the power of the
argument

LN The logarithm (to the base e) of real/integer real
the argument

SQR The square of the argument real/integer same as argument

SQRT The positive square root of real/integer real
the argument (positive)

ROUND The closest integer value to the real integer
argument

TRUNC The integral part of real integer
the argument

ARCTAN The arc tangent of the argument real/integer real
(radians)

COS The cosine of the argument real/integer real
(radians)

SIN The sine of the argument real/integer real
(radians)

followed by its argument (an actual parameter) enclosed in parentheses as
shown in Example 4.8 (argument is 20.25). Any legal arithmetic expression
of the proper type may be used as an argument for these functions.

The Pascal functions SQR (square) and SQRT may be used to compute the
roots of a quadratic equation in X of the form

AX2 + BX + C = 0

The two roots are expressed in algebraic form as

ROOT = -B + yB2 - 4AC ,
1 2A

The Pascal implementation is

-B - yB2 - 4ACROOT2 = ----==-------''------=----'-
2A

DISC := SQR(B) - 4 * A * C
if DISC > 0 then

begin
ROOTl .= (-B + SQRT(DISC)) / (2 * A)i
ROOT2 := (-B - SQRT(DISC)) / (2 * A)

end [Lf ]

170 SIMPLE DATA TYPES



where the variable DISC represents the discriminant (B2 - 4AC) of the
equation.

Except for ABS. SQR. ROUND, and TRUNC. each of the functions listed in
Table 4.3 returns (computes) a real value regardless of its parameter type
(REAL or INTEGER). The type of the result computed by a reference to
ABS or SQR is the same as the type of its parameter.

The functions ROUND and TRUNC require type REAL parameters and al
ways return integer values. These functions determine the integral part of
a real-valued expression; consequently the expressions

TRUNC(1.5 * GROSS)
ROUND(TOTALSCORE / NUMSTUDENTS)

have INTEGER values and may be assigned to INTEGER variables.
TRUNC simply truncates, or removes, the fractional part of its parameter;
ROUND rounds its parameter to the nearest whole number. For example,
TRUNC(l7.5) is 17 while ROUND(17.5) is 18; TRUNC(-3.8) is-3
while ROUND (-3.8) is -4.

Example 4.10 The program in Fig. 4.7 illustrates the use of several arithmetic functions.
The function references are inserted in the output list of the WRITELN
statement. The ABS function is used to find the absolute value of X before
the SQRT function is called as the square root of a negative number is
undefined.

program ARITHFUNC (INPUT, OUTPUT);

IIllustrates the arithmetic functions. I

const
SENTINEL = 0.0;

var
X : REAL;

Isentinel value I

leach data valuel

begin {ARITHFUNCI
IPrint the table heading. I
WRITELN ('After each line enter a real number or 0.0 to stop');
WRITELN;
WRITELN ('X', 'TRUNC(X)' :16, 'ROUND(X) , :10, 'ABS(X)' :10,

'SQR(X)' :10, 'SQRT(ABS(X))' :15);

IRead and process each value
READLN (X);
while X <> SENTINEL do

begin
WRITELN (TRUNC(X) :17,

SQR (X ) : 10 : 2 ,
READLN (X)

end [whi Le ]
end. IARITHFUNCI

of X.I
Iget first number I

ROUND (X) :10, ABS(X) :10:2,
SQRT(ABS(X)) :10:2);

Iget next number I

After each line enter a real number or 0.0 to stop

4.3 FUNCTIONS IN ARITHMETIC EXPRESSIONS 171



x TRUNC(X) ROUND(X) ABS(X) SQR(X) SQRT(ABS(X) )
4.3

4 4 4.30 18.49 2.07
-24.78

-24 -25 24.78 614 .05 4.98
0.0

Fig. 4.7 Using the Arithmetic Functions

Example 4.11 The program in Fig. 4.8 draws a sine curve. It uses the Pascal function
S IN which returns the trigonometric sine of its parameter, an angle
expressed in radians. The assignment statement

RADIAN := THETA / 180 * PIi

computes the number of radians corresponding to the angle THETA (mea
sured in degrees). The value of the loop control variable THETA is in
creased by eighteen degrees (value of STEP) at the end of each repetition
of the loop body.

The assignment statement

INDENT := 1 + ROUND(20 * (1 + SIN(RADIAN)))i

assigns a value between 1 (when SIN(RADIAN) is -1) and 41 (when
SIN(RADIAN) is 1) to INDENT. Finally the statement

WRITE (STAR :INDENT)i (plot * in column INDENTI

plots an asterisk somewhere in columns 1 through 41 as determined by the
value of INDENT. Recall that a string (or character) is printed right justi
fied in its field; the value of INDENT determines the size of the output
field. The sine value is printed after each asterisk by the statement

WRITELN (SIN(RADIAN) :20)i

PROGRAM STYLE

(print sine valuel

Checking boundary values

The discussion for Example 4.11 states that the value of INDENT
ranges from 1 to 41 as the sine value goes from -1 to 1. It is always
a good idea to check the accuracy of these assumptions; this usually
can be done by checking the boundaries of the range as shown be
low.

SIN(RADIAN) is -1, INDENT
INDENT
INDENT

:= 1
:= 1
:= 1

+ ROUND(20 * (1 + (-1))
+ ROUND(20 * 0)

172 SIMPLE DATA TYPES



SIN(RADIAN) is +1, INDENT := 1 + ROUND(20 * (1 + 1))
INDENT := 1 + ROUND(20 * 2)
INDENT := 41

Fig. 4.8 Plotting a Sine Curve.

program SINECURVE (OUTPUT);

IPlots a sine curve. I

const
PI =
STEP
STAR

3.14159;
18;
r * f •,

Iconstant Pij
lincrement in degreesj
Isymbol being plottedj

var
THETA,
RADIAN : REAL;
INDENT : INTEGER;

[anqLe in degreesj
langle in radiansj
Icolumn of each * j

begin ISINECURVEj
WRITELN ('Sine curve plot' :28);
THETA := 0; linitial value of THETAj
while THETA <= 360 do

begin
RADIAN := THETA * PI / 180.0; Icompute radiansj
INDENT := 1 + ROUND(20 * (1 + SIN(RADIAN)));
WRITE (STAR :INDENT); Iplot * in column INDENTj
WR+TELN (SIN(RADIAN) :20); Iprint sine valuej
THETA := THETA + STEP Iget next anglej

e nd Twhi.Le ]
end. ISINECURVE I

*
*
*

*

*

Sine curve plot
* 0

* 3.090168E-Ol
* 5.877849E-Ol

* 8.090166E-Ol
* 9.510562E-Ol
* 1.000000E+00

* 9.510570E-Ol
* 8.090180E-Ol

* 5.877869E-Ol
* 3.090194E-Ol

* 2.621549E-06
* -3.090146E-Ol

* -5.877830E-Ol
-8.090152E-Ol

-9.510555E-Ol
-l.OOOOOOE+OO
-9.~10579E-Ol

;,...8.090194E-Ol
* -5.877893E-Ol

* -3.090214E-Ol
* -5.243099E-06

4.3 FUNCTIONS IN ARITHMETIC EXPRESSIONS 173



There is one additional function that is only used with an integer pa
rameter. It is the function ODD, which determines whether or not an inte
ger variable or expression evaluates to an odd number. The function ODD
returns the BOOLEAN value TRUE or FALSE as described in the next dis
play.

FUNCTION ODD

ODD (argument)

Interpretation: The function ODD returns the value TRUE if its argu
ment evaluates to an odd integer; otherwise, it returns the value
FALSE.

Numerical Inaccuracies

One of the problems in processing real numbers is that there is sometimes
an error in representing real data. Just as there are certain numbers that
cannot be represented exactly in the decimal number system (e.g. the frac
tion 1/3 is 0.333333 ...), so there are numbers that cannot be represented
exactly in real format. The representational error will depend on the num
ber of binary digits (bits) used in the mantissa: the more bits the smaller
the error.

The number 0.1 is an example of a real number that has a representa
tional error. The effect of a small error is often magnified through repeated
computations. Therefore, the result of adding 0.1 ten times is not exactly
1.0, so the loop below may fail to terminate on some computers.

TRIAL := 0.0:
while TRIAL <> 1.0 do

begin

TRIAL := TRIAL + 0.1
end (while I

If the loop repetition test is changed to TRIAL < 1.0, the loop may ex
ecute 10 times on one computer and eleven times on another. For this rea
son, it is best to use integer variables whenever possible in loop repetition
tests.

Other problems occur when manipulating very large and very small real
numbers. In adding a large number and a small number, the larger number
may "cancel out" the smaller number (a cancellation error). If X is much
larger than Y, then X + Y and X may have the same value (e.g. 1000.0 +
0.0001234 is equal to 1000.0 on some computers).

If two very small numbers are multiplied, the result may be too small to
be represented accurately and will become zero. This is called arithmetic

174 SIMPLE DATA TYPES



underflow. Similarly if two very large numbers are multiplied, the result
may be too large to be represented. This is called arithmetic overflow and
is handled in different ways by Pascal compilers. Arithmetic underflow
and overflow can occur when processing very large and small integer val
ues as well.

As an illustration of the numerical inaccuracy that may result in per
forming real computations, examine the sine value for 360 degrees printed
in the last line of Fig. 4.8. The actual sine should be zero; the sine value
computed is quite small (approximately 10-6) but is not zero. This is be
cause the value of the constant PI is imprecise so the result of any com
putation involving PI will have a small numerical error.

Self-check Exercises for Section 4.3

1. The numeric constant e is known as Euler's Number. The approximate
value of e is 2.71828. Write a procedure that computes

ea x In(b)

for several different values of a and b where In is the natural log func
tion. What does this procedure compute?

2. Using the ROUND function, write a Pascal statement to round any real
value X to the nearest two decimal places. (Hint: You will have to
multiply by 100 before rounding.)

• BOOLEAN Variables, Expressions, and Operators

We introduced the BOOLEAN data type in Chapter 1. We have used
BOOLEAN expressions (expressions that evaluate to true or false) to con
trol loop repetition and to select one of the alternatives in an if state
ment. Some examples of BOOLEAN expressions are:

GROSS > TAXBREAK
ITEM <> SENTINEL
TRANTYPE = 'C'

The simplest BOOLEAN expression is a BOOLEAN variable or constant.
A BOOLEAN variable or constant can be set to either of the BOOLEAN val
ues, TRUE or FALSE. The statement

canst
DEBUG = TRUE;

specifies that the BOOLEAN constant DEBUG has the value TRUE; the
statement

var
SWITCH, FLAG : BOOLEAN;

4.4 BOOLEAN VARIABLES. EXPRESSIONS. AND OPERATORS 175



declares SWITCH and FLAG to be BOOLEAN variables; i.e., variables that
may be assigned only the values TRUE and FALSE.

BOOLEAN Operators

A BOOLEAN variable or constant is the simplest form of a BOOLEAN ex
pression (e.g., SWITCH). We have used the relational operators (=, <, >,
etc.) with numeric data to form conditions or BOOLEAN expressions [e.g.
SALARY < MINSAL).

There are three BOOLEAN operators: and, or, not. These operators are
used with operands that are BOOLEAN expressions.

(SALARY < MINSAL) or (NUMDEPEND > 5)
(TEMP> 90) and (HUMIDITY> 90)
ATHLETE and not FAILING

The first BOOLEAN expression can be used to determine whether an em
ployee pays income tax. It evaluates to true if either condition in paren
theses is true. The second BOOLEAN expression can be used to describe
an unbearable summer day: temperature and humidity both above 90. The
expression evaluates to true only when both conditions are true. The third
BOOLEAN expression manipulates two BOOLEAN variables (ATHLETE and
FAILING). Any individual for whom this expression is true is eligible for
intercollegiate sports.

The BOOLEAN operators can be used with BOOLEAN expressions only.
They are described in the tables below.

Table 4.4 and Operator

opersndt operand2 opersndt and operand2

true true true

true false false

false true false

false false false

Table 4.5 or Operator

operendt operand2 opersndt or operand2

true true true

true false true

false true true

false false false

176 SIMPLE DATA TYPES



Table 4.6 not Operator

operandt

true

false

not operandt

false

true

Table 4.4 shows that the and operator yields a true result only when
both its operands are true; Table 4.5 shows that the or operator yields a
false result only when both its operands are false. The not operator has a
single operand; Table 4.6 shows that the not operator yields the logical
complement or negation of its operand.

The precedence of an operator determines its order of evaluation. Table
4.7 shows the precedence of all operators in Pascal, including the relation
al operators.

Table 4.7 Operator Precedence

Operator

not
*, I, diy, mod, and

+, - or

Precedence

highest (evaluated first)

<, <=, <>, >=, > lowest (evaluated last)

Example 4.12

This table shows that the not operator has the highest precedence.
Next are the multiplicative operators (including and), the additive opera
tors (including or), and, last, the relational operators. Since the relational
operators have the lowest precedence, they should generally be used with
parentheses to prevent syntax errors.

The expression

x < Y + Z

involving the real variables X, Y, and Z is interpreted as

x < (Y + Z)

since + has higher precedence than <.
The expression

x < Y or Z < Y

causes the syntax error "invalid type of operands". It is interpreted as

x < (Y or Z) < Y

4.4 BOOLEAN VARIABLES, EXPRESSIONS, AND OPERATORS 177



Example 4.13

since or has higher precedence than <. This is an error because the type
REAL variables Y and Z cannot be operands of the BOOLEAN operator or.
The parentheses shown below are required to prevent a syntax error.

(x < Y) or (Z < Y)

The following are all legal BOOLEAN expressions if X, Y, and Z are type
REAL, and FLAG is type BOOLEAN. The value of each expression is shown
in brackets, assuming that X is 3.0, Y is 4.0, Z is 2.0, and FLAG is
FALSE.

1. (X > Z) and (Y > Z) [TRUE]
2. (X + Y I Z) <= 3.5 [FALSE]
3. (Z > X) or ( Z > y) [FALSE]
4. not FLAG [TRUE]
5. (X = l.0) or (X = 3.0) [TRUE]
6. (0.0 < X) and (X < 3.5) [TRUE]
7. (X <= y) and (Y <= Z) [FALSE]
8. not FLAG or ((Y + Z) >= (X - Z) ) [TRUE)
9. not (FLAG or ((y + Z) >= (X - Z) ) ) [FALSE]

Expression 1 gives the Pascal form of the relationship "X and Yare
greater than Z." It is often tempting to write this as

X and Y > Z

However, this is an illegal BOOLEAN expression as the real variable X
cannot be an operand of the BOOLEAN operator and. Similarly, expression
5 shows the correct way to express the relationship "X is equal to 1.0 or
to 3.0."

Expression 6 is the Pascal form of the relationship 0.0 < X < 3.5,
i.e., "X is in the range 0.0 to 3.5." Similarly, expression 7 shows the Pas
cal form of the relationship X <= Y <= Z; i.e., "y is in the range X to Z,
inclusive." .

Finally expression 8 is evaluated in Fig. 4.9; the values given at the be
ginning of Example 4.13 are shown above the expression.

Example 4.14 We can also write assignment statements that assign a BOOLEAN value to
a BOOLEAN variable. The statement

SAME := X = Y

assigns the value TRUE to the BOOLEAN variable SAME when X and Yare
equal; otherwise, the value FALSE is assigned. The assignment above is
more efficient than the if statement

if X = Y then
SAME := TRUE

else
SAME := FALSE

178 SIMPLE DATA TYPES



FLAG Y Z x Z

,.. ~ ~ EpJ ~
.c;"4.'o,,,,,,,'J ~ ~ IlI!III II.IJIJ

not FLAG or ( (Y + Z) >= (X - z ) )

TRUE

Fig. 4.9 Evaluation Tree for not FLAG or «Y + Z) >= (X - Z))

Example 4.15

which has the same effect.

Either assignment statement below assigns the value TRUE to EVEN if N is
an even number.

EVEN := not ODD(N) EVEN := (N mod 2) = 0

The one on the left assigns to EVEN the complement of the value returned
by the BOOLEAN function ODD; the one on the right assigns a value of
TRUE to EVEN when the remainder of N divided by 2 is O. (All even num
bers are divisible by 2.)

Using BOOLEAN Variables as Program Flags
BOOLEAN variables are often used as program flags to signal whether or
not a special event occurs in a program. The fact that such an event oc
curs is important to the future execution of the program. A BOOLEAN vari
able used as a program flag is initialized to one of its two possible values
(TRUE or FALSE) and reset to the other as soon as the event being moni
tored occurs.

Example 4.16 Procedure READPOS in Fig. 4.10 continues to read integer values until an
integer greater than 1 is entered. The BOOLEAN variable POSITIVE is
used as a program flag to signal whether or not the event "data entry of
an integer greater than 1" has occurred. POSITIVE is initialized to FALSE
when the procedure is entered. Inside the while loop, the assignment
statement

POSITIVE := N > 1

resets POS ITIVE to TRUE when an integer greater than 1 is entered. The
loop is repeated as long as POSITIVE is still FALSE.

4.4 BOOLEAN VARIABLES, EXPRESSIONS, AND OPERATORS 179



procedure READPOS (var N (outputl : INTEGER);

(Reads an integer greater than 1 into parameter N.I

var
POSITIVE : BOOLEAN;

begin (READPOSI
POSITIVE := FALSE;

(program flag -- loop controll

(assume N is not an integer> 11

number is r'ead]

an integer greater than 1: I);
(read next integer into Nl
(set POSITIVE to TRUE if N > 11

(Keep reading until a valid
while not POSITIVE do

begin
WRITE (' Enter
READLN (N);
POSITIVE := N > 1

end (while I
end; (READPOSI

Fig. 4.10 Procedure READPOS

Self-check Exercises for Section 4.4

1. Draw the evaluation tree for expression 9 of Example 4.13.
2. Write the following BOOLEAN assignment statements:

a. Assign a value of TRUE to BETWEEN if the value of N lies between
-K and +K, inclusive; otherwise, assign a value of FALSE.

b. Assign a value of TRUE to UPCASE if CH is an uppercase letter;
otherwise, assign a value of FALSE.

3. Assign a value of TRUE to DIVISOR if M is a divisor of N; otherwise,
assign a value of FALSE.

• Character Variables and Functions

Pascal provides a character data type that can be used for the storage and
manipulation of the individual characters that comprise a person's name,
address, etc. Character variables are declared using the data type CHAR in
a declaration. A character value consists of a single printable character
(letter, digit, punctuation mark, etc.) enclosed in apostrophes. A character
value may be assigned to a character variable or associated with a con
stant identifier as shown below.

const
STAR I * I.,

var
NEXTLETTER CHAR;

begin
NEXTLETTER := 'A'

180 SIMPLE DATA TYPES



Example 4.17

The character variable NEXTLETTER is assigned the character value
, A' by the assignment statement above. A single character variable or
value may appear on the right-hand side of a character assignment state
ment. Character values may also be compared, read, and printed.

The program in Fig. 4.11 reads a sentence ending in a period and counts
the number of blanks in the sentence. Each character entered after the
prompting message is read into the variable NEXT and tested to see if it is
a blank.

The statement

READ (NEXT)

appears twice in the program and is used to read one character at a time
from the data line because NEXT is type CHAR. The while loop is exited
when the last character read is a period. Reading character data is dis
cussed in Section 4.7.

Fig. 4.11 Counting Blanks in a Sentence

program BLANKCOUNT (INPUT, OUTPUT);

(Counts the number of blanks in a sentence.j

const
BLANK
PERIOD

= I Ii
, '.. ,

(character being countedj
(sentinel characterj

var
NEXT : CHAR;
COUNT : INTEGER;

(next character in sentencej
(number of blank charactersj

begin (BLANKCOUNTj
COUNT := 0; (initialize COUNTj
WRlTELN ('Enter a sentence ending with a period.');

(Process each input character up to the periodj
READ (NEXT); (get first characterj
while NEXT <> PERIOD do

begin
if NEXT = BLANK then

COUNT := COUNT + 1: (increment blank countj
READ (NEXT) (get next characterj

end; [whi Le]

WRITELN ('The number of blanks is " COUNT :2)
end. !BLANKCOUNTI

Enter a sentence ending with a period.
There was an old woman who lived in a shoe.
The number of blanks is 9

4.5 CHARACTER VARIABLES AND FUNCTIONS 181



The READ Procedure

The program in Fig. 4.11 uses the standard Pascal READ procedure to read
individual characters from a data line. Like the READLN statement, the
READ statement causes input data to be stored in the variables specified
in its input list. Both statements below

READ (NEXT) READLN (NEXT)

cause one data character to be read into the character variable NEXT;
however, there is one important difference. After the READLN statement is
executed, the computer automatically skips to the end of the data line (in
dicated by pressing return); any additional characters entered on that data
line before the return key is pressed will not be processed. There is no
skip to the end of the line after a READ statement is executed; therefore
any additional characters entered on that line will be processed by the
next READ or READLN statement.

If READLN (NEXT) is used in Fig. 4.11 instead of READ (NEXT), then the
first character in the data line (the letter T) will be read into NEXT before
loop entry and the remaining characters in the input sentence will be
skipped. When the READLN statement in the loop body is executed, there
will be no characters left to process and the computer waits for more data
to be entered. We will further detail the differences between these two
statements in Section 4.7.

READ STATEMENT

READ t input-llst )

Interpretation: Data are entered into each variable specified in the in
put-list. There must be one data item for each variable in the input
list, and the order of the data must correspond to the order of the
variables in the input-list. A space should be left between numeric
data; character data are entered without intervening spaces. Any
data remaining on the current data line will be processed when the
next READ or READLN statement is executed.

Using Relational Operators with Characters

In Fig. 4.11, the BOOLEAN expressions

NEXT = BLANK
NEXT <> PERIOD

are used to determine whether two character variables have the same val
ue or different values. Order comparisons can also be performed on char
acter variables using the relational operators <, < =, >, > =.

182 SIMPLE DATA TYPES



To understand the result of an order comparison, we must know some
thing about the way characters are represented internally. Each character
has its own unique numeric code; this code is stored as a binary number
in a memory cell that has a character value. These binary numbers are
compared by the relational operators in the normal way.

Three common character codes are shown in Appendix D. Some of the
common features of these codes are that the digits are an increasing se
quence of consecutive characters.

'A' <'1' <'2' <'3' <'4' <'5' <'6' <'7' <'8' <'9'

The uppercase letters are also an increasing sequence of characters.

'A' <'B' <'C'< ... <'X' <'y' <'Z'

However, they are not necessarily consecutive characters. If the lowercase
letters are included in the character set, they are also an increasing, but
not necessarily consecutive, sequence of characters.

'a' <'b' <'e' < ..• <'X' <' y ' <'Z'

In our examples and programs we will assume that the lowercase letters
are included.

The Functions ORO, PREO, and SUCC

The data types INTEGER, BOOLEAN, and CHAR are considered ordinal
types. With ordinal data types, each value (except the first) has a unique
predecessor and each value (except the last) has a unique successor (e.g.
the predecessor of 5 is 4 and the successor of 5 is 6). The data type REAL
is not an ordinal type because a real number such as 3.1415 does not
have a unique successor. (Is its successor 3.1416 or 3.14151?)

The order or sequence of an ordinal data type is well defined. For ex
ample, -MAXINT is the smallest integer, and the positive integers follow
the sequence 0, 1, 2, 3, ... , MAXINT. The order of the BOOLEAN values is
FALSE, TRUE.

The Pascal function ORO determines the ordinal number or relative posi
tion of an ordinal value in its sequence of values. If the parameter of ORO
is an integer, the ordinal number returned is the integer itself. For all other
ordinal numbers, the ordinal number of the first value in the sequence is
zero, the ordinal number of the second value is one, etc. Thus ORO
( FALSE) is zero and ORO ( TRUE) is one. If A and B belong to the same
ordinal type and A < B is true, then ORO (A) < ORO ( B) must also be

. true.
The Pascal function PREO returns the predecessor of its parameter, and

the Pascal function SUCC returns the successor. These functions, like ORO,
can be used only with parameters that are ordinal types.

4.5 CHARACTER VARIABLES AND FUNCTIONS 183



Example 4.18 Table 4.8 shows the result of using the ORD, SUCC, and PRED functions
with an integer or BOOLEAN parameter.

As shown in Table 4.8, there is one value in each ordinal type that does
not have a successor (MAXINT, TRUE) and one value that does not have a
predecessor (-MAXINT, FALSE).

Although these functions may be used with any of the ordinal types,
they are most often used with type CHAR and the user-defined types dis
cussed later in this chapter. The ordinal number of a character is based on
the character set code used by Pascal and, therefore, is computer-depen
dent.

Table 4.8 Result of ORO, SUCC, and PREO

Parameter ORD SUCC PRED

15 15 16 14

0 0 1 -1

-30 -30 -29 -31

-MAXINT -MAXINT -MAXINT+l undefined

MAXINT MAXINT undefined MAXINT-l

FALSE 0 TRUE undefined

TRUE 1 undefined FALSE

Example 4.19 Table 4.9 illustrates ORD, SUCC, and PRED for the ASCII code (American
Standard Code for Information Interchange) shown in Appendix D.

Table 4.9 Result of ORO, SUCC, and PAEO Functions for ASCII Code

Parameter ORD SUCC PRED

'c' 67 'D' 'B'

'7 ' 55 '8 ' '6 '

'y' 121 'z' 'x'
32 ' ! ' unprintable

As shown above, the character '7' has the ordinal number 55 in the
ASCII code.

Regardless of which character code is used, the expression

ORD( '7') - ORD( '0') = 7

will always be true since the digit characters must be in consecutive se
quence. If we assume that the letters are in consecutive sequence as well,
then the BOOLEAN expression

184 SIMPLE DATA TYPES



ORD ( 'C') - ORD ( 'A I ) 2

will be true.

THE FUNCTION ORO

ORD (parameter)

Interpretation: The value returned by ORD is the ordinal number of
parameter. The parameter must be of an ordinal type.

THE FUNCTION PREO

PRED (parameter)

Interpretation: PRED returns the value whose ordinal number is one
less than the ordinal number of parameter. The parameter must be of
an ordinal type.
Note: If parameter evaluates to the first value for its type (-MAXINT
for type INTEGER), then the result is undefined.

THE FUNCTION SUCC

SUCC (parameter)

Interpretation: SUCC returns the value whose ordinal number is one
more than the ordinal number of parameter. The parameter must be
of an ordinal type.
Note: If parameter evaluates to the last value for its type (MAXINT
for type INTEGER). then the result is undefined.

The Function CHR

The function CHR returns a character as its result. The ordinal number of
the character returned is the same as the parameter value (an integer).
Therefore, the result of the function reference CHR ( 67) is the character
with ordinal number 67 (the letter I c ' in the ASCII code).

If CH is a type CHAR variable. the nested function reference

CHR(ORD(CH) )

has the same value as CH. Therefore, the function CHR is the inverse of
the ORD function for the characters.

4.5 CHARACTER VARIABLES AND FUNCTIONS 185



THE FUNCTION CHR

CHR( ordnum)

Interpretation: The value returned by CHR is the character with ordi
nal number corresponding to ordnum, where ordnum may be an inte
ger constant or integer-valued expression.
Note: If there is no symbol that has ordnum as its ordinal number,
the value of CHR is undefined.

Example 4.20 A collating sequence is a sequence of characters arranged by ordinal num
ber. The program in Fig. 4.12 prints part of the Pascal collating sequence.
It lists the characters with ordinal numbers 32 through 64, inclusive. The
sequence shown is for the ASCII code; the first character printed is a
blank (ordinal number 32).

program COLLATE (OUTPUT);

IPrints part of the collating sequence. I

const
MIN
MAX

32;
64 ;

Ismallest ordinal numberl
Ibiggest ordinal number I

var
NEXTORD : INTEGER; leach ordinal numberl

Example 4.21

begin ICOLLATE I
IPrint characters CHR(32) through CHR(64)1
for NEXTORD := MIN TO MAX do

WRITE (CHR(NEXTORD)); Iprint next character I
WRITELN

end. ICOLLATE I

!"#$%&' ()*+,-./0123456789: ;<=>?@

Fig. 4.12 Printing Part of a Collating Sequence

The if statement below

if (LOWCHAR >= 'a') and (LOWCHAR <= 'z') then
UPCHAR := CHR(ORD( 'A') + ORD(LOWCHAR) - ORD( 'a'))

sets UPCHAR to the uppercase form (a capital letter) of the lowercase let
ter in LOWCHAR. If LOWCHAR is 'c', the BOOLEAN expression will be
true, and the assignment statement will be evaluated as:

UPCHAR : = CHR ( ORD ( 'A') + ORD ( 'c') - ORD ( , a ' ) )
.= CHR(ORD( 'A') + 2)
:= 'c'

186 SIMPLE DATA TYPES



The evaluation above assumes that the lowercase and uppercase letters
are each consecutive character sets.

Example 4.22 It is sometimes desirable to read a number as a string of individual char
acters. This enables the program to detect and ignore input errors. For ex
ample, if the program user enters a letter instead of a number, this error
will be detected and the program will prompt again for a data value. Simi
larly, if the program user enters $15,400 instead of the number 15400, the
extra characters will be ignored.

Procedure READINT in Fig. 4.13 reads in a string of characters ending
with the character % and ignores any character that is not a digit. It also
computes the value of the number (an integer) formed by the digits only.
For example, if the characters $15,4 3AB0 % are entered, the value of
NUMDATA will be 15430.

procedure READINT (var NUMDATA loutputl : INTEGER);

IReads consecutive characters ending with the symbol %. computes
the integer value of the digit characters, ignoring non-digits.
Accumulates the integer value in NUMDATA.

const
BASE = 10;
SENTINEL ' %I ;

Ithe number system base]
Ithe sentinel character]

var
NEXT : CHAR:
DIGIT : INTEGER:

leach character readl
Ithe value of each numeric character I

Iget digit valuel
ladd digit valuel

Iread next character I

value of the digits in NUMDATAI
linitial value is zerol
Iread first character I

(NEXT >= '0') and (NEXT <= '9') then
begin IProcess digiti

DIGIT := ORD(NEXT) - ORD( '0');
NUMDATA := BASE * NUMDATA + DIGIT

end; IProcess digiti
READ (NEXT)

end [whi.Le ]
IREADINTIend;

begin (READINTI
IAccumulate the numeric
NUMDATA : = 0;
READ (NEXT);
while NEXT <> SENTINEL do

begin
if

Fig. 4.13 Reading a Number as a String of Characters

In Fig. 4.13, the statements

DIGIT := ORD(NEXT) - ORD( '0');
NUMDATA := BASE * NUMDATA + DIGIT

Iget digit valuel
ladd digit valuel

assign to DIGIT an integer value between 0 (for character value '0')
and 9 (for character value '9'). The number being accumulated in

4.5 CHARACTER VARIABLES AND FUNCTIONS 187



NUMDATA is multiplied by lO, and the value of DIGIT is added to it. Ta
ble 4.10 traces the procedure execution for the input characters 3N5%; the
value returned is 35.

Table 4.10 Trace of Execution of Procedure READINT for Data 3N5%

Statement NEXT DIGIT NUMDATA
Effect of

Statement

'3 '
NUMDATA .= 0
READ (NEXT)

while NEXT <> SENTINEL do
if (NEXT>='O' )and(NEXT<='9')
DIGIT := ORD(NEXT) - ORD( '0')
NUMDATA := BASE*NUMDATA+DIGIT
READ (NEXT) 'N'

while NEXT <> SENTINEL do
if (NEXT>='O' )and(NEXT<='9')
READ (NEXT) , 5 '

while NEXT <> SENTINEL do
if (NEXT>='O' )and(NEXT<='9')
DIGIT := ORD(NEXT) - ORD( '0')
NUMDATA := BASE*NUMDATA+DIGIT
READ (NEXT) '%'

while NEXT <> SENTINEL do

3

5

o

3

35

Initialize NUMDATA
Get character

, 3' <> '%' is true
, 3' is a digit
digit value is 3
Add 3 to 0
Get character

'N' <> '%' is true
, N' is not a digit
Get character

, 5' <> '%' is true
, 5' is a digit
digit value is 5
Add 5 to 30
Get character

, %' <> '%' is false

Self-check Exercises for Section 4.5

1. Evaluate the following;
a. ORD( TRUE) c. SUCC ( FALSE)
b. PRED(TRUE) d. ORD(TRUE) - ORD(FALSE)

2. Evaluate the following assuming the letters are consecutive characters.
a. ORD( I D') - ORD ( 'A I ) f. ORD( , 7 ') - ORD ( , 6 ' )
b. ORD ( 'd') - ORD( 'a ' ) g. ORD ( , 9 ') - ORD ( , 0 ' )
c. SUCC (PRED ( 'a' ) ) h. SUCC (SUCC ( SUCC ( 'd' ) ) )
d. CHR( ORD ( , C' ) ) i. CHR( ORD ( 'A') + 5)
e. CHR( ORD ( 'C' )

- ORD ( 'A ') + ORD( 'a ' ) )

II Introduction to Programmer-defined Data Types

One of the features of Pascal that accounts for its widespread use is that
it permits the declaration of new data types. Many of these data types
will be discussed in later chapters. In this section we will focus on the
programmer-defined data types called enumerated types and subrange
types.

188 SIMPLE D.ATA TYPES



Example 4.23

Enumerated Types

A payroll program that pays a worker time and a half for all Saturday
hours and double time for all Sunday hours may contain a statement such
as

if DAYNUM = 1 then
PAYVAL := 2 * RATE * HOURS

else if DAYNUM = 7 then
PAYVAL .= 1.5 * RATE * HOURS

else
PAYVAL := RATE * HOURS

assuming that the days Sunday and Saturday were "coded" as the inte
gers 1 and 7, respectively. In Pascal it is possible to rewrite this statement
as

if TODAY = SUNDAY then
PAYVAL := 2 * RATE * HOURS

else if TODAY = SATURDAY then
PAYVAL := 1.5 * RATE * HOURS

else
PAYVAL := RATE * HOURS

This statement is obviously more readable because it uses values
(SATURDAY and SUNDAY) meaningful to the problem rather than an arbi
trary code. In order to be able to use this statement, we must first declare
an enumerated type as shown next.

The declaration statements below are used to declare a data type called
DAY and a variable (TODAY) of type DAY.

type
DAY (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY); Idays of the weeki

var
TODAY : DAY; Icurrent day of the weeki

The data type DAY is an enumerated type with an ordered list of values
SUNDAY, MONDAY, etc. provided in parentheses. Each value is defined as
a constant identifier in the block containing the type declaration state
ment. The type declaration statement comes between constant and vari
able declarations.

The variable TODAY is declared as a variable of type DAY; thus, TODAY
may be assigned any of the identifiers in the list for DAY using an assign
ment statement such as

TODAY := TUESDAY

No values other than the ones associated with enumerated type DAY may
be assigned to TODAY.

4.6 INTRODUCTION TO PROGRAMMER-DEFINED DATA TYPES 189



Example 4.24

Enumerated types are also ordinal types since each value has a clearly
defined successor and predecessor. The value of SUCC (MONDAY) is
TUESDAY; the value of PRED (MONDAY) is SUNDAY. Both PRED

( SUNDAY) and SUCC ( SATURDAY) are undefined since SUNDAY is the
first value in type DAY and SATURDAY is the last.

The function ORD returns the ordinal number of a value belonging to an
ordinal type. The first value in each enumerated type has an ordinal num
ber of 0, the next value has an ordinal number of 1, etc. For type DAY,

ORD (SUNDAY) is 0 and ORD (SATURDAY) is 6.

If variables TODAY and TOMORROW are both declared to be type DAY (see
type declaration above), the if statements below assign to TOMORROW the
successor value of TODAY.

if TODAY = SATURDAY then
TOMORROW := SUNDAY

else
TOMORROW := SUCC(TODAY)

if TODAY < SATURDAY then
TOMORROW := SUCC(TODAY)

else
TOMORROW := SUNDAY

When TODAY is SATURDAY, the if statements assign the value SUNDAY

to TOMORROW.
The BOOLEAN expression TODAY < SATURDAY is true when

ORO (TODAY) is less than ORD ( SATURDAY). Since SATURDAY is the last
value in the list for DAY, this expression will be true for all values except
SATURDAY.

ENUMERATED TYPE DECLARATION

enumerated-type = t identiiier-Iist)

Interpretation: A new data type named enumerated-type is declared.
The values associated with this type are specified in the identifier
jist. Each value is defined as a constant identifier in the block con
taining the type declaration statement.
Note: A particular identifier can appear in only one identifier-list in a
given block.

As indicated in the above display, an enumerated-type value must be an
identifier. Numbers, characters (e.g. 'A '), and strings (e.g. 'Saturday ')
cannot be used as values for any enumerated type. The scope rules for
identifiers apply to enumerated-type values.

The only operators that may be used with enumerated types are the
ones shown in this section; these include the assignment and relational
operators. Enumerated-type variables and values may be parameters of
the standard functions PRED, SUCC, and ORD and programmer-declared
procedures and functions. We cannot use READLN and WRITELN with
enumerated data types. We will see how to read and write enumerated
type values later in this chapter.

190 SIMPLE DATA TYPES



Example 4.25

Subrange Types

Subranges are the other kind of simple data type that may be declared by
a programmer. A subrange is a subset of values associated with an ordi
nal type (the host type). Subranges are used both to make a program more
readable and to enable Pascal to detect when a variable is given a value
that is unreasonable in the problem environment.

Three subranges are declared below.

type
LETTER = 'A' .. 'Z';
DAYSINMONTH = 1 .. 31;
DAY = (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY); Idays of the weeki
WEEKDAY = MONDAY .. FRIDAY;

var
NEXTCH : LETTER;
DATE : DAYSINMONTH;
SCHOOLDAY : WEEKDAY;

The first subrange, LETTER, has the host type CHAR. Any character from
, A' to 'z' inclusive may be stored in a variable of type LETTER. An er
ror message will be printed and the program will stop execution if an at
tempt is made to store any other character in the variable NEXTCH. (This
assumes that the letters are consecutive characters.)

DAYSINMONTH is a subrange with host type INTEGER. A variable of
type DAYSINMONTH may be used to keep track of the current date, a val
ue between 1 and 31 inclusive. A "value out of range" error message will
be printed and the program will stop execution if a value outside this
range is assigned to the variable DATE.

WEEKDAY is a subrange of the enumerated type DAY. Any value listed
for DAY except SUNDAY or SATURDAY may be assigned to the variable
SCHOOLDAY.

The penalty for an out-of-range value is quite severe as the program
stops execution. This happens only if an error is made. If DATE is type
INTEGER (instead of DAYSINMONTH), then the program continues to exe
cute regardless of what value is assigned to DATE. In this case, assigning
DATE an invalid value, say 100, will cause a later statement to fail. The
program user may have a difficult time determining the real cause of this
later error: a bad value for DATE.

SUBRANGE TYPE DECLARATION

subrange-type = miavalue .. maxvalue

Interpretation: A new data type named subrange-type is defined. A
variable of type subrange-type may be assigned a value from
tninvalue through maxvalue inclusive. The values tninvalue and
maxvalue must belong to the same ordinal type (called the host

4.6 INTRODUCTION TO PROGRAMMER-DEFINED DATA TYPES 191



type), and ORD t minvalue i must be less than ORD (maxvalue).
Note: miavalue and maxvalue may be constant identifiers of the
same type.

The scope rules for a subrange type identifier are the same as for other
Pascal identifiers. The operations that may be performed on a variable
whose type is a subrange are the same as for the host type of the
subrange. The host type may be a standard ordinal type (INTEGER, CHAR,
or BOOLEAN) or any previously declared enumerated type. The host type
is determined by the pair of values used to define the subrange; the ordi
nal humber of the first value must be less than the ordinal number of the
second value.

Type and Assignment Compatibility

Two data types are considered type-compatible if they are the same type,
if one is a subrange of the other, or if they are both subranges of the same
host type. The data types CHAR and LETTER (see Example 4.25) are type
compatible.

Operands that are type-compatible may be manipulated by the same op
erator. For example the expression

NEXTCH <> '3'

is syntactically correct as long as NEXTCH is type CHAR or LETTER; how
ever, its value must be false if NEXTCH is type LETTER. On the other
hand, the expression

NEXTCH <> 3

is invalid because NEXTCH and the integer 3 are not type-compatible.
The variable DATE declared in Example 4.25 may be manipulated like

any type INTEGER variable. It can be used as an actual parameter that
corresponds to a formal parameter that is type INTEGER, type DAYS IN
MONTH, or any other sub range with host type INTEGER.

An expression is considered assignment-compatible with a variable if
their types are compatible. If the variable type is a subrange, then the val
ue of the expression must be within range. If a variable and an expression
are assignment-compatible, then the expression may be assigned to the
variable without error.

The assignment statement

NEXTCH := '3'

causes the syntax error "value to be assigned is out of bounds" because
the constant value '3' is not assignment-compatible with the variable
NEXTCH (type LETTER). If CH is type CHAR, the assignment statement

192 SIMPLE DATA TYPES



NEXTCH := CH

will compile, but it may cause a "value out of range" run time error. This
error occurs if the character stored in CH is not an uppercase letter.

There is one exception to the rule that a variable and expression must
be type-compatible in order to be assignment-compatible. A type INTE
GER expression is assignment-compatible with a type REAL variable. This
means that a type INTEGER expression may be assigned to a type REAL
variable or may correspond to a value parameter that is type REAL.

Self-check Exercises for Section 4.6

1. Evaluate each of the following:
a. ORD (MONDAY) c. SUCC ( SUCC (MONDAY) )
b. PRED(SATURDAY) d. CHR(MONDAY)

2. Identify the illegal subranges below.
a. SATURDAY •• SUNDAY d. 0 •• ' 9'
b. 'A' •. 'Z' e. 15 •• -15
c. -15 •• 15 f. 'ACE' •• 'HAT'

• Input/Output Revisited

In this section we will review some of the rules for input/output in Pascal
and will introduce the EOLN and EOF functions. We will begin by ex
plaining how to "read" and "write" enumerated type values.

Reading and Writing Enumerated-Type Values

One disadvantage in using enumerated types is that they cannot be read
or written directly. Generally we will assign a value based on the data en
try of one or more characters (e.g. enter SA for SATURDAY).

Example 4.26 Given the declarations below

type

COLOR = (RED, GREEN, BLUE, YELLOW);

var
EYES, HAIR
VALl DCOLOR

COLOR;
BOOLEAN;

Either of the statements

READLN (EYES) WRITELN (EYES)

4.7 INPUT/OUTPUT REVISITED 193



generates the syntax error message "error in type of standard procedure
parameter." This means that EYES cannot be used as a parameter for the
standard procedure READLN (or WRITELN) since its type is COLOR.

Although we cannot print an enumerated-type value directly. we can
use the if statement below to print a string that represents the value
stored in EYES. Make sure you recognize the difference between the string
'BLUE' and the constant identifier BLUE.

if EYES = BLUE then
WRITELN (' BLUE' )

else if EYES = RED then
WRITELN (' RED' )

else if EYES = YELLOW then
WRITELN (' YELLOW' )

else if EYES = GREEN then
WRITELN ('GREEN')

The statement

WRITELN ('Value of EYES is " ORD(EYES) :1)

may be used as a diagnostic print statement. It does not print the value of
EYES, but it displays the ordinal number of that value which is an integer
from 0 (for RED) to 3 (for YELLOW).

Example 4.27 The procedure in Fig. 4.14 assigns a value to EYES based on the character
read into COLORCHAR. The procedure statement

READCOLOR (EYES)

calls this procedure. If BLACK and BROWN are added to the list of values
for COLOR, it becomes necessary to read additional characters when the
first letter read is B. We will leave this as an exercise.

PROGRAM STYLE

Program flags as procedure results

In Fig. 4.14, the variable parameter VALIDCOLOR is used as a pro
gram flag to signal to the calling procedure whether or not a color
value was assigned to ITEMCOLOR by the procedure. This informa
tion will enable the calling block to take appropriate action based on
the value of the BOOLEAN variable corresponding to parameter
VALIDCOLOR. This use of the parameter VALIDCOLOR is consistent
with our prior usage of BOOLEAN variables as program flags to signal
the occurrence of an event.

194 SIMPLE DATA TYPES



procedure READCOLOR (var ITEMCOLOR Ioutput I : COLOR;
var VALIDCOLOR Ioutput I : BOOLEAN);

IAssigns a value to ITEMCOLOR based on an input character.
Sets VALIDCOLOR to indicate whether or not the assignment
was made.

var
COLORCHAR : CHAR; Ifirst letter of color name I

begin IREADCOLORI
VALIDCOLOR := TRUE; IAssume valid color will be readl
WRITE ('Enter first letter of color: ');
READLN (COLORCHAR); Iget the letter I

IAssign the color valuel
if (COLORCHAR = 'R') or (COLORCHAR = 'r') then

ITEMCOLOR := RED
else if (COLORCHAR = 'Y') or (COLORCHAR 'y') then

ITEMCOLOR := YELLOW
else if (COLORCHAR = 'G') or (COLORCHAR 'g') then

ITEMCOLOR := GREEN
else if (COLORCHAR = 'B') or (COLORCHAR 'b') then

ITEMCOLOR := BLUE
else

VALIDCOLOR := FALSE Ivalid color was not readl
end; IREADCOLOR I

Fig. 4.14 Procedure READCOLOR

Reading and Writing BOOLEAN Values

As we indicated earlier, BOOLEAN values may be printed, but they may
not be read directly. We can, however, assign a BOOLEAN value to a
BOOLEAN variable based on an input character as shown next.

WRITE ('Enter T (TRUE) or F (FALSE): ');
READLN (BOOLCHAR)i
if (BOOLCHAR = 'T') or (BOOLCHAR = 't') then

SWITCH := TRUE
else if (BOOLCHAR = 'F') or- (BOOLCHAR = 'f') then

SWITCH := FALSE
else

WRITELN ('Illegal BOOLEAN character' I BOOLCHAR)

The EOLN Function

Until now, we have used a sentinel value to indicate the end of a collec
tion of data values. As an example, the statements

WRITELN ('Enter characters ending with' SENTINEL);
READ (NEXTCHAR);
while NEXTCHAR <> SENTINEL do

READ (NEXTCHAR)

4.7 INPUT/OUTPUT REVISITED 195



Example 4.28

may be used to read a string of characters ending with a sentinel charac
ter [SENTINEL) into the variable NEXTCHAR. Each character that is read
is stored temporarily in NEXTCHAR. The EOLN [end of line) function can
be used to detect the end of a data line as shown next.

The while statement below

WRITELN ('Enter characters ending with a return');
while not EOLN do

READ (NEXTCHAR);
READLN

reads one character at a time into NEXTCHAR, stopping at the end of the
data line [indicated by pressing Return). The loop repetition test not
EOLN is true as long as the last character in the data line has not yet been
read into NEXTCHAR. When the end of the line is reached and the next
character to be read is the character representing the carriage return, the
EOLN function evaluates to true and the while loop is exited.

When the loop is exited, there is still one character remaining to be pro
cessed on the current data line; that is the character representing the car
riage return. READLN alone [without an input list) is used to skip over the
carriage return character so that it will not be processed by the next input
operation.

We discussed the difference between READ and READLN in Section 4.5.
Assuming A, B, and C are type REAL variables, only the characters in blue
below are processed when READ (A I B I C) is executed; the next char
acter [the letter x) will be processed when another READ or READLN is
executed.

15.34 5.5 8.67xyz 3.333<return>

The statements below have the same effect and cause all characters
through the < return> to be processed. Only the characters in blue are ac
tually saved in memory.

READLN (A, B, C) READ (A, B, C);
READLN

EOLN FUNCTION (for interactive input/output)

EOLN

Interpretation: The EOLN function returns a value of true if the next
character to be read is the carriage return; otherwise, the value re
turned is false.

196 SIMPLE DATA TYPES



READLN STATEMENT

READLN

Interpretation: The READLN statement skips over any characters on
the current data line that are not read, up to and including the car
riage return character.

Processing a Batch Data File

So far we have stressed interactive programming, assuming that all data
are read from file INPUT [the terminal). Pascal was originally designed as
a batch-oriented language in which all input was read from keypunched
data cards or a separate data file. Files are described in detail in Chapter
9; we will discuss how to read a batch data file in this section.

A text pie in Pascal consists of a string of characters segmented into
lines. The lines may be different lengths, but each line ends with a special
character called the end-of-line mark. For an interactive program, the data
entered at a terminal comprise a text file. Pressing the Return key places
the carriage return character in this file which is the same as an end-of
line mark in a batch text file.

A batch text file may be created using the editor in the same way that a
program file is created, or it may be keypunched on cards. When using the
editor simply type in each line of the text file; pressing the carriage return
places an end-of-line mark in the file. If the text file is keypunched on
cards, the computer system will insert an end-of-line mark after the last
character keypunched on each card.

A sample text file is shown in Fig. 4.15. Each line of this figure repre
sents a line of the file; the shaded symbol at the end of each line denotes
the end-of-line mark.

Peter Liacouras~

56000.00 311
George Simp1eton~

43000.50 O~

Caryn Koffman~

15000. 75 5~

Fig. 4.15 A Sample Text File

Example 4.29 The program in Fig. 4.16 reads and echo prints the data in the text file
shown in Fig. 4.15. We will assume that this text file is a batch file associ
ated with the name INPUT. In addition to using the EOLN function, this
program introduces the EOF [end-of-file) function which is used to deter
mine whether or not the end of a data file is reached.

4.7 INPUT/OUTPUT REVISITED 197



program ECHOFILE (INPUT, OUTPUT);

IEchos all the data on batch file INPUT. Uses procedure
ECHOLINE to echo each employee name.

var
SALARY
DEPEND

REAL;
INTEGER;

la salary amountj
Inumber of dependentsj

procedure ECHOLINE;

IEchos all characters on the current input line.j

var
NEXTCHAR : CHAR; Inext input characterj

begin (ECHOLINEj
while not EOLN do

begin
READ (NEXTCHAR);
WRITE (NEXTCHAR)

end; Iwhile j
READLN;
WRITELN

end; IECHOLINEj

Iread to the end of the linej

Iread the next character I
Iprint the next characterj

ladvance to the next input linej
Istart a new output linej

(read to the end of the filel

lecho an employee name I
Iread next linej
[e cho data readj

DEPEND : 2);
Iskip a linej

beg in IECHOFILEj
while not EOF do

begin
ECHOLINE;
READLN (SALARY, DEPEND);
WRITELN ('Salary is " SALARY :9:2);
WRITELN ('Number of dependents is '
WRITELN

end [whi Le]
end. IECHOFILEj

Peter Liacouras
Salary is 56000.00
Number of dependents is 3

George Simpleton
Salary is 43500.00
Number of dependents is 0

Caryn Koffman
Salary is 15000.75
Number of dependents is 5

Fig. 4.16 Program to Echo Print a Data File

In procedure ECHOLINE, the while loop reads all characters on the
current input line. The loop repetition condition not EOLN is true as long
as the next character to be read is not the end-of-line mark.

The EOF function is used in the main program to detect whether or not
the end of file INPUT has been reached. This function returns a value of

198 SIMPLE DATA TYPES



true when all characters in the file have been read; otherwise, it returns a
value of false. The loop repetition test not EOF evaluates to true as long
as there are more characters to be read. This expression will evaluate to
false when it is tested after the last value of DEPEND is read and printed.

EOLN FUNCTION (tor batch input)

EOLN
or EOLN (file-name)

Interpretation: The EOLN function returns a value of true if the next
character to be read is the end-of-line mark; otherwise, the value re
turned is false. The E<;?LN function may be used with other data files
besides file INPUT. If another data file is used, its name must be
specified as a parameter in the function reference.

EOF FUNCTION (tor batch input)

EOF
or EOF (file-name)

Interpretation: The EOF function returns a value of true if all charac
ters were read. If there are any more characters still to be processed,
the value returned is false. The EOF function may be used with other
data files besides file INPUT. If another data file is used, its name
must be specified as a parameter in the function reference.
Note: If a read operation is attempted when the value of EOF is true,
a "tried to read past end of input file" error occurs and the program
stops.

The Importance ot Advancing Past the End-ot-Line Mark

When a value is being read into a type CHAR variable, only a single char
acter is read regardless of what that character might be (e.g. letter, digit,
blank, end-of-line mark, etc.). If the end-of-line mark is read into a type
CHAR variable, it is stored as a blank character on most Pascal systems.

When a value is being read into a numeric variable [type REAL or IN
TEGER), Pascal skips over any leading blanks or end-of-line marks until it
encounters a character that is neither a blank nor an end-of-line mark.
This character must be a digit; if it is not, then a "non-digit found while
reading INPUT" error results and the program stops. If the first character
is a digit, then Pascal continues reading characters until it encounters a
character that cannot be part of the number [often a blank or end-of-line
mark).

It is easy to make an error when reading character data. Many problems
are caused by not advancing past the end-of-line mark. As an example,

4.7 INPUT/OUTPUT REVISITED 199



we will replace the last READLN statement in the main program of Fig.
4.16 with

READ (SALARY, DEPEND)

and trace the execution of the program. The first three lines of the data
file are shown below.

Peter Liacouras~

56000. 00 3~

George Simpleton~

The first name (Peter Liacouras] is read and printed by ECHOLINE,
and then values of SALARY (5-6000.00] and DEPEND (3] are read from
the second line. Without a READLN, the second end-of-line mark is the
next character to be read. When ECHOLINE is called to read the next
name, the EOLN function evaluates to true immediately, and no characters
are read. After returning from ECHOLINE, the READ statement above at
tempts to read new values for SALARY and DEPEND. However, the first
character following the end-of-line mark is the letter G on the third input
line. Since this is not a numeric character, an error results and program
execution stops.

A modified version of the data file is shown below. All the data for
each employee appears on the same line; the employee's name is at the
end of the line.

56000.00 3Peter Liacouras~

43000.50 OGeorge Simpleton~

15000.75 5Caryn Koffman~

The statements

READ (SALARY, DEPEND);
WRITELN ('Salary is " SALARY :9:2);
WRITELN ('Number of dependents is I DEPEND :2);
ECHOLINE

may be used to read and echo each line of this file. The first READ state
ment reads both numeric values (a real number and an integer] at the start
of each data line; procedure ECHOLINE reads the rest of each line, start
ing with the first letter of the first name.

Self-check Exercises for Section 4.7

1. What would be the effect of changing READ to READLN in the program
fragment above.

2. Rewrite procedure READCOLOR (Fig. 4.14] given the type declaration
for COLOR:

200 SIMPLE DATA TYPES



type
COLOR (RED, GREEN, YELLOW, BLUE, BROWN, BLACK)

• Case Study

The case study for Chapter 4 involves the manipulation of type INTEGER
data. It also illustrates the use of BOOLEAN variables as program flags.

Testing for a
Prime
Number

Algorithm

Step 3
refinement

Problem: Write a program that tests a positive integer to determine
whether or not it is a prime number.

Discussion: A prime number is an integer that has no divisors other than
1 and itself. Examples of prime numbers are the integers 2, 3, 5, 7, 11, etc.
Our program will either print a message indicating that its data value is a
prime number, or it will print the smallest divisor of the number if it is not
prime. The data requirements and the algorithm follow.

the number to be tested for a prime number (N : INTEGER)

the smallest divisor if N is not prime (FIRSTDIV : INTEGER)

1. Read in the number to be tested for a prime number.
2. Find the smallest divisor or determine that the number is prime.
3. Print a message that the number is prime or print its smallest divisor.

We will use the BOOLEAN variable PRIME as a program flag to indicate
the result of step 2 as described below. The system structure chart is
shown in Fig. 4.17.

a program flag that will be set to TRUE if N is prime and will be set to
FALSE if N is not prime (PRIME : BOOLEAN)

Step 3 of the algorithm is relatively simple and will be included in the
main program. The refinement for step 3 follows.

3.1 if N is prime then
Print a message that N is prime

else
Print the first divisor of N

4.8 CASE STUDY 201



t
N

I

I
N

t
FIRSTDIV,
PRIME

I

N,
PRIME,

FIRSTDIV

t

Algorithm for
TESTPRIME

Algorithm for
TESTODD

TESTPRIME

Fig. 4.17 Structure Chart for Prime Number Problem

Step 1 will be implemented by procedure READPOS (see Fig. 4.10) and is
included with the main program shown in Fig. 4.18.

Procedure TESTPRIME determines whether or not N has any divisors
other than 1 and itself. If N is an even integer, then it is divisible by 2.
Therefore, 2 is the only even integer that can be prime, and 2 is the
smallest divisor of all other even integers.

If N is an odd integer, then its only possible divisors are the odd inte
gers less than N. In fact, it can be proven that a number is prime if it is
not divisible by any odd integer less than or equal to its square root.
These considerations form the basis for the algorithm shown next.

1. if N = 2 then
2. N is a prime number

else if N is even then
3. 2 is the smallest divisor and N is not prime

else
4. Test each odd integer between 3 and the square root of N to see

whether it is a divisor of N

The structure chart for procedure TESTPRIME is shown in Fig. 4.19.
Step 4 is implemented as procedure TESTODD and is refined next. Proce
dure TESTPRIME (with nested procedure TESTODD) is shown in Fig. 4.20
and two sample runs are shown in Fig. 4.21.

1. Assume N is a prime number
2. Initialize FIRSTDIV to 3
3. while N is still prime and FIRSTDIV is a possible divisor do

if FIRSTDIV is a divisor of N then
N is not a prime number

else
Set FIRSTDIV to the next odd number

202 SIMPLE OATA TYPES



program PRIMENUMBER (INPUT, OUTPUT);

lPrints the smallest divisor (other than 1) of the integer N if a
divisor exists; otherwise, prints a message that N is prime.

var
N,
FIRSTDIV : INTEGER;
PRIME : BOOLEAN;

lnumber being tested as a prime I
lfirst divisor if foundl
lflag -- signals whether N is prime

(TRUE) or not prime (FALSE) I

procedure READPOS (var N loutputl : INTEGER);

lReads an integer greater than 1 into parameter N.I

var
POSITIVE : BOOLEAN; lprogram flag -- loop control I

begin lREADPOSI
POSITIVE := FALSE; lassume N is not an integer> 11

number is readl

an integer greater than 1: ');
lread next integer into NI
lset POSITIVE to TRUE if N > 11

lKeep reading until a valid
while not POSITIVE do

begin
WRITE (' Enter
READLN (N);
POSITIVE := N > 1

end [wh i.Le ]
end; 1READPOS I

procedure TESTPRIME (N linputl : INTEGER;
var FIRSTDIV 1output I : INTEGER;
var PRIME 1output I : BOOLEAN);

lFinds first divisor (FIRSTDIV) of N if it exists. If a divisor
is found sets PRIME to FALSE; otherwise, sets PRIME to TRUE.

begin lTESTPRIMEI
WRITELN ('Procedure TESTPRIME entered')

end; 1TESTPRIME I

begin lPRIMENUMBERI
lEnter an integer to test for a prime number I
WRITELN ('Enter a number that you think is a prime number.');
READPOS ( N) ;

lFind smallest divisor FIRSTDIV or determine that N is a
prime. Set PRIME to indicate whether or not N is a prime
number.

TESTPRIME (N, FIRSTDIV, PRIME);

lPrint first divisor or a message that N is primel
if PRIME then

WRITELN (N :5, , is a prime number')
else

WRITELN (FIRSTDIV :5, , is the smallest divisor of' N :5)
end. lPRIMENUMBERI

Fig. 4.18 Main Program to Test for a Prime Number

4.8 CASE STUDY 203



TESTPRIME

I
N

t

t
PRIME,
FIRSTDIV

I

TESTODD

Fig. 4.19 Structure Chart for TESTPRIME

procedure TESTPRIME (N linputl : INTEGER;
var FIRSTDIV loutputl : INTEGER;
var PRIME loutputl : BOOLEAN);

lFinds first divisor (FIRSTDIV) of N if it exists. If a divisor
is found sets PRIME to FALSE; otherwise, sets PRIME to TRUE. )

procedure TESTODD (N linputl : INTEGER;
var FIRSTDIV Ioutput I : INTEGER;
var PRIME [out.pu t ] : BOOLEAN);

lTests each odd integer from 3 to the square root of N as a
divisor of N. Returns the smallest divisor (FIRSTDIV) if one
exists. Sets PRIME to FALSE if a divisor is found; otherwise,
sets PRIME to TRUE.

begin 1'l.'ESTODD)
PRIME := TRUE; lassume that N is prime)

12 is a prime number I

lTest each odd integer from 3 to SQRT(N) as a possible divisor)
FIRSTDIV := 3; [t.ry 3 first I
while PRIME and (FIRSTDIV <= SQRT(N)) do

Iinvariant: FIRSTDIV is in range and N is not divisible by
any integer less than FIRSTDIVI
if N mod FIRSTDIV = 0 then

PRIME := FALSE lFIRSTDIV is a divisor)
else

FIRSTDIV := FIRSTDIV + 2 ltry next odd number)

lassertion: PRIME is TRUE and FIRSTDIV > SQRT(N) or PRIME is
FALSE and FIRSTDIV is the smallest divisor of N )

end; ITESTODDj

begin ITESTPRIME I
if N = 2 then

PRIME := TRUE
else if not ODD(N) then

begin IN is e ve n]
PRIME := FALSE;

204 SIMPLE DATA TYPES



FIRSTDIV := 2
end IN is e ve n]

else IN is odd]
TESTODD (N, FIRSTDIV, PRIME)

end; :TESTPRIME

Fig. 4.20 Procedure TESTPRIME with TESTODD

12 is first divisor}

.ITest for a divisor I

Enter a number that you think is a prime number.
Enter an integer greater than 1: 23

23 is a prime number

Enter a number that you think is a prime number.
Enter an integer greater than 1: 35

5 is the smallest divisor of 35

Fig. 4.21 Two Sample Runs of the Prime Number Program

The program flag PRIME is set within TESTODD or TESTPRIME to indi
cate whether or not N is a prime number. In TESTODD, PRIME is initial
ized to TRUE before any candidate divisors are tested. If a divisor is
found, PRIME is reset to FALSE and the while loop is exited. If no divi
sors are found, PRIME will remain TRUE and the loop is exited when
FIRS'fDIV becomes greater than SQRT(N). The values of PRIME and
FIRS'fDIV are returned to the main program.

PROGRAM STYLE

Using assertions as comments

In procedure TESTODD, a special kind of comment is used to de
scribe the situation that exists before each repetition of the loop
body (the comment beginning with invar iant :) and the situation
that exists after loop execution is complete (the comment beginning
with as sert ion:). Both of these comments are assertions where an
assertion is a BOOLEAN statement that must be true.

The BOOLEAN statement.

(PRIME and (FIRSTDIV > SQRT(N))
or (not PRIME and FIRSTDIV is the
smallest divisor of N)

must be true when the loop is exited. Our comment

lassertion: PRIME is TRUE and FIRSTDIV > SQRT(N)
or PRIME is FALSE and FIRSTDIV is the smallest
divisor of Nj

4.8 CASE STUDY 205



is a less formal way of phrasing this assertion. The assertion within
a loop is called a loop invariant and it must be true before each loop
repetition begins.

Comments in earlier programs were used to describe the opera
tions performed by a single statement or by a group of statements
following the comment. However, an assertion describes a condition
that must be true when the point of the assertion is reached.

Many computer scientists encourage the use of assertions as com
ments because they believe this makes it easier to verify that a pro
gram fragment does what it is supposed to do. We will use assertions
when they help to make a program easier to understand.

Self-check Exercises for Section 4.8

1. Modify TESTPRIME to print all divisors of N where N may be any
positive integer (odd or even). If N is prime, the only divisors printed
should be 1 and N.

• Common Programming Errors

A good deal of care is required when working with complicated expres
sions. It is easy to inadvertently omit parentheses or operators. If an oper
ator or a single parenthesis is omitted, a syntax error will be detected. If a
pair of parentheses is omitted then the expression, although syntactically
correct, will compute the wrong value.

Sometimes it is beneficial to break a complicated expression into
subexpressions that are separately assigned to temporary variables, and
then to manipulate these temporary variables. For example, it is easier to
write correctly the three assignment statements below

TEMPI := SQRT(X + Y);
TEMP2 := 1 + TEMPI;
Z := TEMPI / TEMP2

than the single assignment statement

Z := SQRT(X + Y) / (1 + SQRT(X + y))

that has the same effect. Using three assignment statements is also more
efficient because the square root operation is performed only once; it is
performed twice in the single assignment statement above.

Be careful to use the correct type of operator with each operand. The
arithmetic operators can be used only with type INTEGER or REAL oper
ands. The operator div can be used only with type INTEGER operands.

206 SIMPLE DATA TYPES



Only relational operators can be used with type CHAR data. The BOOL
EAN expression

3 <> '3'

is invalid as it compares an integer to a character value.
The BOOLEAN and and or operators can be used only with BOOLEAN

expressions. In the expression

FLAG and (x <= y)

the variable FLAG must be type BOOLEAN, and the parentheses shown are
required; this statement would be invalid without the parentheses.

Syntax or run-time errors may occur when using the built-in functions.
The argument of the functions CHR and ODD must be type INTEGER; the
argument of the functions ORD, SUCC, and PRED must be an ordinal type
(not type REAL).

If the argument of SQRT or LN is negative, an error will occur. The re
sult of the functions SUCC, PRED, and CHR will be undefined for certain
arguments.

In declaring your own enumerated types, make sure that a constant
does not appear in more than one type declaration. However, the same
constant may appear in more than one subrange declaration. Only the re
lational operators and the SUCC, PRED, and ORD functions may be used
with programmer-defined enumerated types. Their values can neither be
read nor written directly.

Sub ranges can be used to detect erroneous computations or bad data. If
a value being assigned is outside the subrange, an "out of range" error oc
curs. The operations that can be performed on a variable with a sub range
type are determined by the host type for that subrange.

When reading individual characters, remember that the carriage return
character or end-of-line mark must be accounted for. Make sure to ad
vance past this character using the READLN statement. If you don't skip
this character you may cause a later error such as reading a character into
a type REAL or INTEGER variable, or causing a loop to execute "forever".

• Chapter Review

This chapter described how to write arithmetic expressions involving sev
eral operators and the built-in functions of Pascal. It also discussed the
manipulation of other simple data types, including the standard types,
BOOLEAN and CHAR, and the programmer-defined types, enumerated
types and subranges, Several new operators were introduced, including
the operators d i v and mod for manipulating integer data and the opera
tors and, or, and not for manipulating BOOLEAN data.

4.10 CHAPTER REVIEW 207



The concept of an ordinal number was discussed and the functions
PRED, SUCC, and ORD were introduced for the manipulation of ordinal
da ta types. The function CHR, the inverse of ORD, was used to find the
character corresponding to a given ordinal number.

In addition, the character-by-character reading of a string of input char
acters was illustrated. Two functions, EOLN (end of line) and EOF (end of
file) were used to facilitate reading a batch data file. The EOLN function
evaluates to true when the next character is the end-of-line mark; the EOF
function evaluates to true when there are no more characters in the file.

New Pascal Statements

The new Pascal statements introduced in this chapter are described in Ta
ble 4.11.

Table 4.11 Summary of New Pascal Statements

Statement

Arithmetic assignment
I := J div K + (L + 5) mod N

Character assignment
NEXTCH := 'A'

BOOLEAN assignment
EVEN := not ODD(N)

Enumerated type declaration
type

BCOLOR = (BLUE, BROWN, BLACK)

SUbrange declaration
type

DIGIT = '0' .. '9'

208 SIMPLE DATA TYPES

Effect

Adds the result (an integer) of J div K
to the result (an integer) of (L + 5)
mod N. J, K, L, and N must be type
INTEGER.

Assigns the character value 'A' to
NEXTCH.

If N is an even number, assigns the value
TRUE to EVEN; otherwise, assigns the
value FALSE to EVEN.

A data type BCOLOR is declared. The
constants BLUE, BROWN, and BLACK
are values of this type.

A subrange of the characters is declared.
This subrange (named DIGIT) consists
of the character values ' 0' through
'9 '.



Table 4.11 Summary of New Pascal Statements (continued)

Statement Effect

Reading a batch file
while not EOF do

begin
while not EOLN do

begin
READ (CH);
WRITE(CH)

end; lline)
READLN; WRITELN

end lfile)

Reads every character in a batch input
tile into CH and echo prints it. READLN
is used to skip over every end-ot-line
mark; WRI TELN terminates each output
line.

Review Questions

1. What are the advantages of data type INTEGER over data type REAL?
2. Given the following declarations. indicate the data type of the result of

each expression below.

var
X, Y REALi
A, B INTEGER;

type
X * Y
A * B
B / y
B div A
X / Y
A mod B
X mod Y

3. Indicate the answer to the operations presented below.

11 mod 2
12 mod -3
27 mod 4
18 mod 6

11 div 2
12 div -3

-25 div 4
-18 div -5

4. What is the result of the expression (3 + 4 / 2) + 8 - 15 mod 4?
5. Write an assignment statement that rounds a real variable NUMI to

two digits after the decimal point leaving the result in NUMl.
6. Write a procedure called CHANGE that has one real parameter C and

four integer parameters Q. D. N. and P. C will be a value parameter
and the others will be variable parameters. The procedure will return
the number of quarters in Q. the number of dimes in D. the number of

4.10 CHAPTER REVIEW 209



nickels in N, and the number of pennies in P to make change with the
minimum number of coins. C (the change amount) is less than $1.00.
Hint: Use the mod and div operators.

7. List and explain three computational errors that may occur in type
REAL expressions.

8. Write an if statement that will write out TRUE or FALSE according
to the following conditions: either FLAG is TRUE or COLOR is RED, or
both MONEY is PLENTY and TIME is UP.

9. Write the statement to assign a value of TRUE to the BOOLEAN vari
able OVERTIME only if a worker's HOURS are greater than 40.

10. Write a BOOLEAN expression using the ORO function that will deter
mine whether the ordinal value for 'a' is greater than the ordinal val
ue for 'Z'. What is the value of this expression in the ASC I I
character set?

11. Write the Pascal statements necessary to enter an integer between 0
and 9 inclusive and convert it to an equivalent character value [e.g, 0
to '0', 1 to '1') to be stored in a character variable NUM.

12. Write a type declaration for FISCAL as the months from July through
June. Declare the subrange WINTER as December through February.
Declare the variable CURRENTMONTH as type FISCAL.

13. Enumerated data types can be directly read or written. T F
14. Assume that the data looks as follows, and write a Pascal procedure

to echo print this file using standard input and output devices. Use the
EOLN and EOF functions.

ID AGE YEARS OF SERVICE
FULL NAME

Sample Data

1243 23 5
Capone Boiles

4321 35 11 l
Anthony George ~

employee 1

employee 2

Programming Projects

1. A company has ten employees, many of whom work overtime (more than 40
hours) each week. They want a payroll program that reads the weekly time
records (containing employee name, hourly rate (rate), and hours worked
(hours) for each employee) and computes the gross salary and net pay as fol
lows:

{

hours X rate (if hours < = 40)
gross =

1.5 rate(hours - 40) + 40rate (if hours > 40)

1
gross (if gross < = $65)

net =
gross - (15 + o.45gross) (if gross> $65)

210 SIMPLE DATA TYPES



The program should print a five-column table listing each employee's
name, hourly rate, hours worked, gross salary, and net pay. The total amount
of the payroll should be printed at the end. It can be computed by summing
the gross salaries for all employees. Test your program on the following data:

Name Rate Hours

IVORY HUNTER 3.50 35
TRACK STAR 4.50 40
SMOKEY BEAR 3.25 80
OSCAR GROUCH 6.80 10
THREE BEARS 1.50 16
POKEY PUPPY 2.65 25
FAT EDDIE 2.00 40
PUMPKIN PIE 2.65 35
SARA LEE 5.00 40
HUMAN ERASER 6.25 52

2. Write a program to read in a collection of integers and determine whether
each is a prime number. Test your program with the four integers 7, 17, 35,
96. All numbers should be processed in one run.

3. Let n be a positive integer consisting of up to 10 digits, d10dg ••• d.. Write a
program to list in one column each of the digits in the number n. The
rightmost digit d, should be listed at the top of the column. Hint: If n = 3704,
what is the value of digit as computed according to the following formula?

digit = n mod 10

Test your program for values of n equal to 6, 3704, and 170498.

4. An integer N is divisible by 9 if the sum of its digits is divisible by 9. Use the
algorithm developed for project 3) to determine whether or not the following
numbers are divisible by 9.

N 154368
N 621594
N 123456

5. Redo Project 4) by reading each digit of the number to be tested into the type
CHAR variable DIGIT. Form the sum of the numeric values of the digits.
Hint: The numeric value of DIGIT (type CHAR) is ORD (DIGIT)
ORD( '0 ').

6. Each month a bank customer deposits $50 in a savings account. The account
earns 6.5 percent interest, calculated on a quarterly basis (one-fourth of 6.5
percent each quarter). Write a program to compute the total investment, total
amount in the account, and the interest accrued, for each of 120 months of a
10-year period. You may assume that the rate is applied to all funds in the
account at the end of a quarter regardless of when the deposits were made.

Print all values accurate to two decimal places. The table printed by your
program should begin as follows:

PROGRAMMING PROJECTS 211



NEW TOTAL
MONTH INVESTMENT AMOUNT INTEREST SAVINGS

1 50.00 50.00 0.00 50.00
2 100.00 100.00 0.00 100.00
3 150.00 150.00 2.44 152.44
4 200.00 202.44 0.00 202.44
5 250.00 252.44 0.00 252.44
6 300.00 302.44 4.91 307.35
7 350.00 357.35 0.00 357.35

7. The interest paid on a savings account is compounded daily. This means that
if you start with STARTBAL dollars in the bank. then at the end of the first
day you will have a balance of

STARTBAL X (1 + rate/365)

dollars. where rate is the annual interest rate (0.10 if the annual rate is 10
percent). At the end of the second day. you will have

STARTBAL X (1 + rate/365) X (1 + rate/365)

dollars, and at the end of N days you will have

STARTBAL X (1 + rate/365)N

dollars. Write a program that processes a set of data records. each of which
contains values for STARTBAL, rate. and N and computes the final account
balance.

8. Compute the monthly payment and the total payment for a bank loan, given:

1. the amount of the loan
2. the duration of the loan in months
3. the interest rate for the loan

Your program should read in one record at a time (each containing a loan
value, months value. and rate value), perform the required computation, and
print the values of the loan, months, rate. and the monthly payment, and to
tal payment.

Test your program with at least the following data (and more if you want).

Loan Months Rate

16000 300 12.50
24000 360 13.50
30000 300 15.50
42000 360 14.50
22000 300 15.50

300000 240 15.25

Notes:

1. The formula for computing monthly payment is

212 SIMPLE DATA TYPES



]/~( rate) months ]X loan 1 + -- - 1
1200

monthly = [rate X ( 1 + rate) months

1200 1200

2. The formula for computing the total payment is

total = monthly X months

Also, you may find it helpful to introduce additional variables defined
below in order to simplify the computation of the monthly payment. You
can print the values of ratem and expm to see whether your program's
computations are accurate.

ratem = rate/1200
expm = 1 + ratem

Hint: You will need a loop to multiply expm by itself months times.

9. The rate of decay of a radioactive isotope is given in terms of its half-life,
"H", the time lapse required for the isotope to decay to one-half of its origi
nal mass. The isotope strontium 90 (Sroo) has a half-life of 28 years. Compute
and print in table form the amount of this isotope remaining after each year
for 50 years, given the initial presence of 50.0 grams. The amount of Sroo re
maining can be computed by using the following formula:

r = amount X CIYee r/H)

where "amount" is 50.0 grams as the initial amount, "C" is expressed as
e-o.693 (e = 2.71828), "year" is the number of years elapsed, and "H" is the
half-life of the isotope in years.

10. Write a program that will scan a sentence and replace all multiple occur
rences of a blank with a single occurrence of a blank.

11. Write a program that will read a sentence and print each word entered on a
separate line followed by the number of letters in that word.

12. An employee time card is represented as one long string of characters. Write
a program using procedures that processes a collection of these strings.
a. Compute gross pay using the formula:

gross = regular hours X rate + overtime hours X t.srate

b. Compute net pay by subtracting the following deductions:

federal tax = .14(gross - 13 X dependents)
social security = 0.052 X gross
city tax = 4% of gross if employee works in the city
union dues = 6.75% of gross for union member

The data string for each employee has the form:

Positions

1-10
11-20
21
22

Data

Employee last name
Employee first name
Contains a C for City Office or S for Suburban Office
Contains a U (union) or N (non-union)

PROGRAMMING PROJECTS 213



23-26
27
28-29
30
31-36
37
38-39
40
41--42

Employee identification number
blank
Number of regular hours (a whole number)
blank
Hourly rate (dollars and cents)
blank
Number of dependents
blank
Number of overtime hours (a whole number)

13. Generate a table indicating the rainfall for the city of Bedrock which can be
used to compare the average rainfall for the city with the previous year's
rainfall. Assume a maximum monthly rainfall of 15 inches per month when
setting up the limits for the table. In addition provide some summary statis
tics which will indicate: (1) annual rainfall for last year, (2) average annual
rainfall, and (3) the difference between the two. The input data will consist
of 12 pairs of numbers. The first number in each pair will be the average
rainfall for a month and the second number will be what fell the previous
year. The first data pair will represent January, second will be February, and
so forth. The output should resemble the following:

January

February

1****************
1%%%%%%%%%%%%%%%%%%%%
1
1***********
1%%%%%%%%
1

1----1----2----3----4----5

* - average rainfall for a given month
% - previous year's rainfall for a given month

The data for the chart above begins with: 3.2 4 (for January)
2 .2 1. 6 (for February)

14. Read a series of integer numbers and determine the following information
about each:

a. Is it a multiple of 7, 11, or 13?
b. Is the sum of the digits odd or even?
c. What is the square root value (if positive)
d. Is it a prime number?

You should have at least four procedures and label all output. Some sample
input data might be: 104 3773 13 121 77 30751

15. Whatsamata U. offers a service to its faculty in computing grades at the end
of each semester. A program will process 3 weighted test scores and will cal
culate a student's average and letter grade (based on 90-100 is an A, 80-89 is
a B, etc.).

214 SIMPLE DATA TYPES



Write a program to provide this valuable service. The data will consist of
the three test weights followed by three test scores and a student ID number
(4 digits) for each student. You should calculate the weighted average for
each student and the corresponding grade. This information should be print
ed along with the initial three test scores. The weighted average for each stu
dent is equal to:

weightl X gradel + weight2 X grade2 + weight3 X grade3

For summary statistics print the "highest average", "lowest average",
"average of the averages", and "total number of students processed"

Sample data might be:

.35
100

96
45
35

.25
76
91
15
88

.40
88
99
65
86

1014
2222
3051
4067

16. As paymaster for the Badwater Brewery, you must determine each worker's
gross pay based on the following information:

a. Each person receives a base pay of $800 per month
b. A percentage of pay is added depending upon the following three cate

gories:
Category 1: Job Classification

Classification

1
2
3

Percent to add

5%
10%
20%

(For example if the employee had a classification of 2 then 10% of $800 or
$80 would be added to the base salary.]

Category 2: Years of service
If service is from 0 to 10 add 5% else add 5% plus 1% for every year over

10. For example, 12 years service would earn 7% of $800.
Category 3: Education

Amount of education

1 - High school
2 - Junior college
3 - University
4 - Graduate school

Percent to add

0%
5%

12%
20%

To calculate someone's wages use the base and calculate the additiqnal
amounts for the 3 categories and print out the gross pay. Each set of data
will consist of the following information: Employee ID (4 digits), job classifi
cation, years of service, and education code. Sample input for an employee
might be: 1041 3 124.

17. The Fibonacci numbers are defined to be the set of positive integers such
that each successive number is equal to the sum of the previous two. The

PROGRAMMING PROJECTS 215



first two numbers in the set are both one. Below is a list of the first seven
Fibonacci numbers.

1. 1, 2. 3, 5. 8. 13

Write a program that prints out the first 15 Fibonacci numbers.
Note: How big of an integer (MAXINT) can your system store? This sum can
approach that limit quite quickly.

216 SIMPLE DATA TYPES



More Control
Statements
5.1 The case Statement
5.2 Set Values in Decisions
5.3 The General for Statement
5.4 The repeat Statement
5.5 Nested Loops
5.6 User-defined Functions
5.7 Case Studies
5.8 Common Programming Errors
5.9 Chapter Review

In this chapter, more control statements are introduced. We are already
familiar with how to use the if statement to implement decisions; the
case statement provides us with another way to select among several al
ternative tasks.

We take another look at the for statement and describe its general
form. A new conditional looping statement, the repeat statement is in
troduced. The use of nested loops is also described.

Until now the procedure was used exclusively to implement separate
program modules. We have used the standard Pascal functions to simplify
computations. In this chapter, we see how to declare and use our own
functions to implement separate modules that return a single result.

217



Example 5.1

II The case Statement

The case statement is used in Pascal to select one of several alternatives.
It is especially useful when the selection is based on the value of a single
variable or a simple expression. This variable or expression must be an
ordinal type.

The case statement

case MOMORDAD of
'M', 'm' : PRINTMOM;
'D', 'd' : PRINTDAD

end lease MOMORDADI

has the same behavior as the if statement below when the character
stored in MOMORDAD is one of the four letters listed.

if (MOMORDAD = 'M') or (MOMORDAD = 'm') then
PRINTMOM

else if (MOMORDAD 'D') or (MOMORDAD = 'd') then
PRINTDAD

Example 5.2

The procedure (call) statement that is executed depends on the value of
the variable MOMORDAD (type CHAR). MOMORDAD is called the case selec
tor.

Procedure PRINTDAY in Fig. 5.1 uses a case statement to print a string
indicating the value of a variable whose type is the enumerated type DAY
(see Example 4.23).

procedure PRINTDAY (DAYVALUE linputl : DAY);

IPrints a string indicating the value of DAYVALUE.1

begin
case DAYVALUE of

SUNDAY WRITELN ('Sunday');
MONDAY WRITELN ('Monday');
TUESDAY WRITELN ('Tuesday');
WEDNESDAY WRITELN ('Wednesday');
THURSDAY WRITELN ('Thursday');
FRIDAY WRITELN ('Friday');
SATURDAY WRITELN ('Saturday')

end Icase DAYVALUEI
end; IPRINTDAY I

Fig. 5.1 Procedure PRINTDAY

Seven different alternatives are shown in Fig. 5.1; the value of
DAYVALUE (type DAY) is used to select one of these for execution. The
seven possible values of DAYVALUE are listed as case labels to the left of

218 MORE CONTROL STATEMENTS



Example 5.3

Example 5.4

each colon; the task for that case label follows the colon. After the
WRITELN statement selected is executed, the procedure is exited.

One common error is using a string such as I SUNDAY I as a case label.
Only ordinal values (i.e.. characters or integers) or ordinal constants [i.e.•
identifiers) may appear in case labels.

The case statement below could be used to compute the numeric value of
the hexadecimal digit stored in HEXDIGIT (type CHAR). In the hexa
decimal number systems, the valid "digits" are the character values 10 '
through I 9 I and I A I through 'F'. The character values '0' through
I 9' have the numeric value 0 through 9; the character values I A I

through I F I have the numeric values 11 (for' A ') through 15 (for 'F').

case HEXDIGIT of
'0', '1', '2', '3', '4', '5', '6' ,'7' ,'8', '9'

DECIMAL := ORD(HEXDIGIT) - ORD( '0'):
'A','B','C','D','E','F' :

DECIMAL := ORD(HEXDIGIT) - ORD('A') + 10
end lease HEXDIGITI

This ea se statement causes the first assignment statement to be exe
cuted when HEXDIGIT is one of the digits '0' through '9'; the second
assignment statement is executed when HEXDIGIT is one of the letters
'A' through' F'. If HEXDIGIT is not one of the characters listed, a "case
expression out of range" error occurs, and program execution stops. Note
that we cannot abbreviate either case label list as a sub range (e.g.
, A ' •• ' F' or '0' •• '9' is an invalid case label).

The case statement in Fig. 5.2 may be used in a student transcript pro
gram that computes grade point average (GPA). For each case shown, the
total points (POINTS) earned towards the GPA increases by an amount
based on the letter grade (GRADE); the total credits earned towards gradu
ation (GRADCREDITS) increases by 1 if the course is passed. Assuming
that the letters are in consecutive order, the expression

ORD('A') - ORD(GRADE) + 4

evaluates to 4 when GRADE is 'A'. 3 when GRADE is 'B', etc.

Fig. 5.2 The case Statement for Student Transcript Program

case GRADE of
'A', 'B', 'C', 'D'

begin
POINTS := POINTS + (ORD( 'A') - ORD(GRADE) + 4);
GRADCREDITS := GRADCREDITS + 1 .

end;
'P' : GRADCREDITS .= GRADCREDITS + 1;
'F', 'I', 'WI

end Icase GRADE I

5.1 THE CASE STATEMENT 219



In Fig. 5.2, a grade of A through D earns a variable number of points (4
for an A, 3 for a B, etc.] and 1 graduation credit, a grade of P earns 1 grad
uation credit, and a grade of F, I, or W earns neither graduation credits
nor points. The last case must be listed to prevent a "case expression out
of range" error even though nothing happens when GRADE assumes one of
these values.

The case statement is described in the next display.

CASE STATEMENT

case selector of
label; statementi t

label; : statementc,

labeln : statement;
end [ca se ]

Interpretation: The selector (an expression) is evaluated and com
pared to each of the case labels. Each label is a list of one or more
possible values for the selector, separated by commas. Only one
statement, will be executed; if the selector value is listed in label;
then statement, is executed. Control is next passed to the first state
ment following the end Icase]. Each statement, may be a single or
compound Pascal statement.
Note 1: If the value of the selector is not listed in any case label, an
error message is printed and program execution is terminated.
Note 2: A particular selector value may appear in, at most, one case
label.
Note 3: The type of each selector value must correspond to the type
of the selector expression.
Note 4: Any ordinal data type is permitted as the selector type.

As indicated in Note 1 of the case statement display, an error message
is printed if the selector value does not match a case label. Consequently,
all possible values of the selector must be listed in exactly one case label.
If no action is to be performed for a particular case label, then there
should be no statement for that case.

Each statement, except the last one should be followed by a semicolon;
the last statement is followed by the word end. Note that there is no cor
responding begin for a case statement.

As mentioned earlier, a "case expression out of range" error occurs
when the case selector value is not present. On many Pascal systems, the
language has been extended to allow the use of an otherwise clause to
prevent this error from occurring. The use of this clause is described in
Appendix B4.

220 MORE CONTROL STATEMENTS



Example 5.5

Comparison of Nested if Statements and the case Statement

Nested if statements are more general than the case statement and al
ways may be used to implement a multiple alternative decision. The case
statement, however, is more readable and should be used whenever prac
tical. The case statement cannot be used when the selection criteria in
volve a type REAL expression.

The case statement should be used when each case label contains a
reasonably sized list of values. Nested if statements should be used
when the number of possible values for the case selector is large (e.g.
more than ten). Nested if statements should also be used when a "case
value out of range" error is possible because of a large number of values
that require no action to be taken.

Self-check Exercises for Section 5.1

1. Rewrite the case statement in Fig. 5.1 as a nested if statement.
2. If type COLOR is described as the list of identifers (RED, GREEN, BLUE,

BROWN, YELLOW), write a case statement that assigns a value to
EYES (type COLOR) given that the first two letters of the color name
are stored in LETTERl and LETTER2.

• Set Values in Decisions

This section will introduce the use of set values and the set membership
operator in. Sets will be discussed in detail in Chapter 8.

Many of you have studied sets in a mathematics course. In mathematics,
a set is represented by a list of set elements enclosed in curly braces
(square brackets in Pascal). For example, the set of odd integers from 1
through 9 is written as !1, 3, 5, 7, 9J in mathematics and as [1, 3, 5, 7, 9] in
Pascal. The order in which elements are listed in a set is immaterial; the
Pascal set [9, 5, 7, 1, 3] is equivalent to the set above.

The case statement in Example 5.3 is rewritten as a nested if statement
below.

if HEXDIGIT in ['0' •. '9'] then
DECIMAL := ORD(HEXDIGIT) - ORD('O')

else if HEXDIGIT in ['A', 'B', 'C', 'D', 'E', 'F'] then
DECIMAL := ORD(HEXDIGIT) - ORD('A') + 10

else
WRITELN (HEXDIGIT, ' is an invalid Hexadecimal digit.')

This statement uses the set [' A', 'B', I C', 'D', 'E', 'F'] to represent
the letters 'A' through 'F'. The set membership operator in is used to
test whether or not HEXDIGIT is one of the elements of this set. The
BOOLEAN expression

HEXDIGIT in l ' A" 'B', 'C', 'D', 'E', 'F']

5.2 SET VALUES IN DECISIONS 221



Example 5.6

evaluates to TRUE if HEXDIGIT is one of the set elements listed; other
wise, the BOOLEAN expression evaluates to FALSE.

This if statement has one advantage over the case statement shown
earlier. If the value of HEXDIGIT is not one of the characters listed in the
case labels, a "case expression out of range error" occurs and program
execution stops. For the if statement, if an invalid character is stored in
HEXDIGIT, an error message is printed (by the WRITELN statement) and
program execution continues.

The BOOLEAN expression

HEXDIGIT in ['0' •• '9']

uses sub range notation to describe a set whose elements are the digits
, 0' through 19'. It is possible to use a combination of these techniques
as shown below to describe the set of characters that may appear in a
real number (the digits, +, -, E , and the decimal point).

['0' .• '9', '+', '-', 'E', '.']

SET VALUES

[list-oJ-elements]

Interpretation: A set is defined whose set elements are the list-of-ele
ments enclosed in brackets. Each set element (an expression) must
have the same ordinal type. Commas are used to separate elements
in the Iist-oj-elements. A group of consecutive elements may be spec
ified using subrange notation [i.e., minval .. maxval where minval
and maxval are expressions of the same ordinal type and ORD
(min val) is less than ORD ( maxval)).

SET MEMBERSHIP OPERATOR IN

element in [list-oj-elements]

Interpretation: The set membership operator in is used to describe a
condition that evaluates to true when element is included in the list
oj-elements; otherwise, the condition evaluates to false. The data
type of element must be the same ordinal type as the set elements.

Sets are often used to prevent a "case expression out of range" error. The
case statement below is executed in the same way as the nested if
shown in the previous example.

222 MORE CONTROL STATEMENTS



if HEXDIGIT in l ' 0' •. '9', 'A' •• ' F' J then
case HEXDIGIT of

'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
DECIMAL ;= ORD(HEXDIGIT) - ORD('O');

'A', 'B', 'C', 'D', 'E', 'F'
DECIMAL := ORD(HEXDIGIT) - ORD( 'A') + 10

end lease HEXDIGIT!
else

WRITELN (HEXDIGIT, , is an invalid Hexadecimal digit.')

Now the case statement is executed only when HEXDIGIT is valid; an
error message is printed when HEXDIGIT is invalid.

Self-check Exercises for Section 5.2

1. Write a set that consists of the special characters that are used for
punctuation in Pascal or to denote operators.

2. Write an if statement that prints a message indicating whether or not
NEXTCH (type CHAR) is a vowel. Use a set.

3. Write a multiple alternative decision statement that categorizes
NEXTCH as a vowel, as any letter, as a digit, or as any special charac
ter as defined in exercise 1 above. Your statement should print the
category.

II The General for Statement

We have used the for statement to implement counting loops in which
the loop control variable (type INTEGER) was always incremented by
one. The for statement is more general than the examples we have seen
so far and, in fact, the loop control variable may be any ordinal type. It is
also possible for the loop control variable to decrease (rather than in
crease) in value after each loop repetition.

FOR STATEMENT

for loop-control-variable: = initial to final do
loop-body

Interpretation: The loop-body is executed once for each value of the
loop-control-variable (lev) between initial and final inclusive. Initial
and final may be constants, variables, or expressions; however, lev,
initial, and final must all be the same ordinal type.
Note 1: The value of lev may not be modified in the loop-body.
Note 2: The value of final is computed once, just before loop entry.
Any subsequent changes in the variables that comprise the final

5.3 THE GENERAL FOR STATEMENT 223



Example 5.7

Example 5.8

Example 5.9

expression will not change the number of times the loop body is re
peated.
Note 3: Upon exit from the for loop. the value of lev is considered
undefined.
Note 4: If initial is greater than final. the loop-body will not be exe
cuted at all.
Note 5: The alternate form

for loop-control-variable: = initial downto final do
loop-body

may be used to implement a loop that counts down from a larger ini
tial value to a smaller final value. An example is

for I := 5 downto -5 do
WRITE (I)

In the downto form. the loop-body will never be executed if initial is
less than final.
Note 6: The variable lev should be declared locally.

The for loop below prints each uppercase letter and its ordinal number.
The for loop control variable. NEXT. must be type CHAR.

for NEXT := 'A' to 'z' do
WRITELN (NEXT, ORD(NEXT))

The for loop below prints the ordinal number corresponding to each val
ue of the enumerated type DAY (see Example 4.23) from MONDAY to FRI
DAY; the integer values from 1 through 5 are printed. The loop control
variable TODAY must be declared as type DAY.

for TODAY := MONDAY to FRIDAY do
WRITE (ORD(TODAY) :2)

The f o r loop below may be used to compute and print the Fahrenheit
temperature corresponding to each integer Celsius (C) temperature from 5
degrees C downto -10 degrees C (see Example 3.10).

for CELSIUS := 5 downto -10 do
begin

FAHRENHEIT := 1.8 * CELSIUS + 32;
WRITELN (CELSIUS :10, FAHRENHEIT :15:1)

end lfor CELSIUSl

SeIf-eheck Exercises for Section 5.3

1. Write a for statement that prints each digit character and its ordinal
number on a separate output line.

224 MORE CONTROL STATEMENTS



III The repeat Statement

The repeat statement is used to specify a loop that is repeated until
its repetition condition becomes true. Such a loop is called a repeat-until
loop.

Example 5.10 Both program segments in Fig. 5.3 print the powers of two between one
and 1000.

POWER := 1;
while POWER < 1000 do

begin
WRITE (POWER :5);
POWER := POWER * 2

end [whi Le ]

Fig. 5.3 While (left) and repeat (right) Statements

POWER := 1;
repeat

WRITE (POWER :5);
POWER := POWER * 2

until POWER >= 1000

Example 5.11

The test used in the repeat-until loop (POWER >= 1000) is the
complement of the test used in the while loop. The repeat-until loop
is repeated until the value of POWER is greater than or equal to 1000. Since
loop repetition stops when the condition is true, the test is called a loop
termination test rather than a loop repetition test. (Note that there is no
need for a beg in-end bracket around the loop body because the re
served words repeat and until perform this function.)

REPEAT STATEMENT (repeat-until loop)

repeat
loop-body

until termination-condition

Interpretation: After each execution of the loop-body, the termina
tion-condition is evaluated. If the termination-condition is true, loop
exit occurs and the next program statement is executed. If the termi
nation-condition is false, the loop-body is repeated.

A repea t statement is often used to ensure that a data value is in range.
For example, some interactive programs print a "menu" of choices from
which the program user selects a program operation. The menu for a sta
tistics program might look as follows.

1. Compute an average
2. Compute a standard deviation
3. Find the median
4. Find the smallest and largest value
5. Plot the data

Enter your choice (1 through 5):

5.4 THE REPEAT STATEMENT 225



The menu can be displayed using a sequence of WRITELN statements.
Procedure GETCHOICE below continues to print the prompt 'Enter
your choice •.. ' and to read an integer value until a valid data item
is entered. MAXCHOICE (value 5) is a constant.

procedure GETCHOICE (var CHOICE loutputl : INTEGER);

IReads a value between 1 and MAXCHOICE (a constant) into CHOICE.l

begin IGETCHOICEl
repeat

WRITE ('Enter your choice (1 through' MAXCHOICE :1, '): ');
READLN (CHOICE)

until CHOICE in [l .. MAXCHOICE]
end; IGETCHOICEl

Example 5.12

One important difference between the two conditional loops (whi Le
and repeat-until) is that the repeat-until loop is always executed
at least once since the loop-termination-condition is evaluated after exe
cution of the loop-body. This limits the usefulness of the repeat-until
loop because many times we would like to have the option of not execut
ing the loop-body even once. This is particularly true in loops used for
reading a batch data file as illustrated next.

Procedure GETCHAR in Fig. 5.4 returns the next input character that is not
a blank.

procedure GETCHAR (var NEXTCHAR loutputl : CHAR);

IReturns the next input character that is not a blank. Result
is not defined when the input file contains all blanks or is
empty.

const
BLANK = ' '; lcharacter being skippedl

begin IGETCHARl
if not EOF then lfind first non-blankl

repeat
READ (NEXTCHAR)

until EOF or (NEXTCHAR <> BLANK)

lassertion: at end of input file or NEXTCHAR is non-blank.l
end; IGETCHARl

Fig. 5.4 Procedure GETCHAR with a repeat-until Loop.

If the input file is not empty (not EOF is true), when GETCHAR is
called, the repeat statement is executed. Characters will be read into
NEXTCHAR until NEXTCHAR contains a non-blank character, or the end of
the input file is reached. If the input file is empty (not EOF is false) when
GETCHAR is called, the repeat statement is skipped.

It is interesting to consider what happens when the if statement is
omitted and the body of GETCHAR consists of the repeat statement only.

226 MORE CONTROL 8T ATEMENT8



The procedure works perfectly well as long as the input file is not empty
when GETCHAR is called. If the input file is empty, the first READ opera
tion causes a "tried to read past end of input file" error.

Complementing a Condition Involving and, or

Procedure GETCHAR is rewritten in Fig. 5.5 using a while loop. The loop
repetition test

not EOF and (NEXTCHAR = BLANK)

is the complement of the loop termination test

EOF or (NEXTCHAR <> BLANK)

used in Fig. 5.4.

procedure GETCHAR (var NEXTCHAR loutputl : CHAR):

IReturns the next input character that is not a blank. Result is
not defined when the input file contains all blanks or is emptY.l

const
BLANK = ' ':

begin IGETCHARl
NEXTCHAR := BLANK:
while not EOF and (NEXTCHAR

READ (NEXTCHAR)

lcharacter being skippedl

lmake sure a character is readl
BLANK) do

lfind first non-blankl

lassertion: at end of input file or NEXTCHAR is non-blankl
end: IGETCHARl

Fig. 5.5 Procedure GETCHAR with a while loop

In Fig. 5.5, the assignment statement

NEXTCHAR := BLANK; Imake sure a character is readl

is necessary to ensure that at least one character is read if the input file is
not empty. Otherwise, if the actual parameter corresponding to NEXTCHAR
contains a non-blank character when GETCHAR is called, the READ state
ment is skipped.

To complement a compound BOOLEAN expression involving the and, or
operators, write the complement of each individual BOOLEAN expression
and change each and to or and each or to and. Table 5.1 shows the
complements of some BOOLEAN expressions.

In Table 5.1, FLAG is a BOOLEAN variable and x, Y, M, and N are type
INTEGER. In the complement of the first condition, the operator > is
changed to <= and the operator and is changed to or. The last condition
is complemented by simply inserting the BOOLEAN operator not in front

5.4 THE REPEAT STATEMENT 227



Table 5.1 Complements of BOOLEAN Expresions

Condition Complement

(X > y) and (X > 0)
not EOLN or (X <= Y)
(N mod M = 0) and FLAG
NEXT in [' A I , I E I , I I I , I 0 I , I U I ]

(X <= y) or (X <= 0)
EOLN and (X > Y)
(N mod M <> 0) or not FLAG
not (NEXT in [' A I , I E I , I I I , '0' , I U I ] )

of the expression. Any BOOLEAN expression can be complemented in this
way.

The last complement shows the correct way to write "NEXT is not a
vowel" in Pascal. A common error is writing an expression of the form
NEXT not in [ ... ], which contains two consecutive operators (not
in).

Review of for, while, and repeat Loops

There are three kinds of loops in Pascal: for, while, and repeat. The
for loop should be used as a counting loop, i.e. a loop where the number
of iterations required can be determined at the beginning of loop execu
tion. The loop control variable of a for loop must belong to an ordinal
type.

The while and repeat loops are both conditional loops; i.e. the num
ber of iterations is dependent on whether the value of a condition is true
or false. The while loop is repeated as long as its loop repetition condi
tion is true; the repeat loop is repeated until its loop termination condi
tion becomes true.

It is easy to rewrite a while loop as a repeat loop (or vice versa) by
simply complementing the condition. However, a repeat loop will al
ways be executed at least once whereas a while or for loop body may
be skipped entirely. For this reason a while loop is preferred over a re
peat loop unless you are certain that at least one loop iteration must al
ways be performed.

As an illustration of the three loop forms. a simple counting loop is writ
ten in Fig. 5.6. (The comment represents the loop body.) The for loop is
the best to use in this situation. The repeat loop is nested in an if
statement to prevent it from being executed when STARTVALUE is greater
than STOPVALUE.

In Fig. 5.6, COUNT, STARTVALUE, and STOPVALUE must all be the same
ordinal type. The successor function (SUCC) is used in both the while
and repeat loops to update the loop control variable COUNT, although
COUNT : = COUNT + I is preferred if COUNT is type INTEGER. COUNT
will be equal to SUCC ( STOPVALUE) after the whi Le or repeat loops
are executed; COUNT will be equal to STARTVALUE if these loops are
skipped. The value of COUNT is considered undefined after execution of
the for loop.

228 MORE CONTROL STATEMENTS



for COUNT ;=
begin

I·
end I for

STARTVALUE to STOPVALUE do

. ·1

COUNT ;= STARTVALUE
while COUNT <= STOPVALUE do

begin
I· ·1
COUNT := SUCC(COUNT)

end I while 1

COUNT ;= STARTVALUE;
if STARTVALUE <= STOPVALUE then

repeat
I· ·1
COUNT ;= SUCC(COUNT)

until COUNT > STOPVALUE

Fig. 5.6 Comparison of Three Loop Forms

Self-check Exercises for Section 5.4

1. Write the complements of the conditions below.
a. (X <= Y) and (X <> 15)
b. (X <= y) and (X <> 15) or (Z = 7.5)
c. (X <> 15) or (Z = 7. 5) and (X <= Y)
d.FLAG or (X <> 15.7)
e.not FLAG and (NEXTCH in ['A' •. 'H'])

2. The while statement below can be rewritten as a for statement if a
new variable is introduced for loop control. Rewrite it as a for state
ment and a repeat statement.

NUM := 10;
while NUM <= 100 do

begin
WRITELN (NUM);
NUM := NUM + 10

end [wh i.Le ]

3. Write a procedure that reads the next character that is not a letter or
a digit from an input line. Write two versions: using repeat and us
ing while.

II Nested Loops

In this section, we examine nested loops. We have seen examples of nest
ed loops in our programming so far; however, the nesting was not appar
ent because the inner loop was contained in a procedure. Nested loops
consist of an outer loop with one or more inner loops. Each time the outer

5.5 NESTED LOOPS 229



Example 5.13

loop is repeated, the inner loops are reentered, their loop control parame
ters are reevaluated, and all required iterations are performed.

Fig. 5.7 shows a sample run of a program with two nested for loops. The
outer loop is repeated three times (for I equals 1, 2, 3). Each time the out
er loop is repeated, the statement

WRITELN ('OUTER' :5, I :7);

is executed, the inner loop is entered, and its loop control variable J is re
set to 1. The number of times the inner loop is repeated depends on the
value of 1. Each time the inner loop is repeated, the string 'INNER I and
both loop control variables are printed.

proqram NESTLOOP (OUTPUT);

IIllustrates nested for loops.l

type
SMALLINT = 1 •• 3;

var
I, J : SMALLINT; lloop control variablesl

begin INESTLOOPl
WRITELN ('I' :12, 'J' :5); IPrint head i.nq ]
for I := 1 to 3 do

begin louter loopl
WRITELN ('OUTER' :5, I :7);
for J := 1 to I do

WRITELN ('INNER' :7, I :5, J :5)
end [oute r Loop]

end. INESTLOOP l

I J
OUTER 1

INNER 1 1
OUTER 2

INNER 2 1
INNER 2 2

OUTER 3
INNER 3 1
INNER 3 2
INNER 3 3

Fig. 5.7 Nested for Loop Program

In Fig. 5.7, the outer loop control variable I is used as the loop parame
ter that determines the number of repetitions of the inner loop. This is per
fectly valid; however, it is not valid to use the same variable as the loop
control variable of both an outer and inner for loop in the same nest.

Example 5.14 Program TRIANGLE in Fig. 5.8 prints an isosceles triangle. The program

230 MORE CONTROL STATEMENTS



contains an outer loop (loop control variable ROW) and two inner loops.
Each time the outer loop is repeated, two inner loops are executed. The
first inner loop prints the leading blank spaces; the second inner loop
prints one or more asterisks.

program TRIANGLE (OUTPUT);

IDraws an isosceles triangle.l

const
NUMLINES = 5;
BLANK = I '; STAR I * I ;

lnumber of rows in trianglel
loutput charactersl

var
ROW,
LEADBLANKS,
COUNTS TARS : INTEGER;

lloop control for outer loopl
lloop control for first inner loopl
lloop control for second inner loopl

begin ITRIANGLE l
for ROW := 1 to NUMLINES do

begin
for LEADBLANKS := NUMLINES - ROW

WRITE (BLANK);
for COUNTSTARS := 1 to 2 * ROW 

WRITE (STAR);
WRITELN

end Ifor ROWl
end. ITRIANGLE l

*
***

*****
*******

*********

Fig. 5.8 Isosceles Triangle Program

ldraw each r-ow]
downto 1 do

lprint leading blanksl
1 do

Iprint asterisksl
lterminate Li.ne ]

The outer loop is repeated 5 times; the number of repetitions performed
by the inner loops is based on the value of ROW. Table 5.2 lists the values
of the loop control parameters for each value of ROW. As shown in Table
5.2, 4 blanks and 1 asterisk are printed when ROW is 1, 3 blanks and 3
asterisks are printed when ROW is 2, etc. When ROW is 5, the first inner
loop is skipped and 9 (2 * 5 - 1) asterisks are printed.

Table 5.2 Inner Loop Control Parameters

ROW LEADBLANKS cOUNTSTARS

1 4 downto 1 1 to 1
2 3 downto 1 1 to 3
3 2 downto 1 1 to 5
4 1 downto 1 1 to 7
5 0 downto 1 1 to 9

5.5 NESTED LOOPS 231



Example 5.15 The program in Fig. 5.9 prints the addition table for integer values be
tween 0 and 9 (type SMALLINT). For example, the table line beginning
with the digit 9 shows the result of adding to 9 each of the digits 0 through
9. The initial for loop prints the table heading, which is the operator +
and the list of digits from 0 through 9.

The nested for loops are used to print the table body. The outer for
loop (loop control variable ADDENDl) first prints the current value of

Fig. 5.9 Printing an Addition Table

program ADDTABLE (OUTPUT);

IPrints an addition table.l

const
MAXDIGIT

type
SMALLINT

9; 11argest digiti

O•• MAXDIGIT; lrange of digitsl

var
ADDEND1 ,
ADDEND2 : SMALLINT;
SUM INTEGER;

Ifirst addend]
[se cond addend]
Isum of addends I

begin IADDTABLEI
IPrint the table heading. I
WRITE ('+');
for ADDEND2 := 0 to MAXDIGIT do

WRITE (ADDEND2 :3); lprint
WRITELN;

each digit in headingl
lterminate headingl

IPrint the table body. I
for ADDEND1 := 0 to MAXDIGIT do

begin lprint each row of the tablel
WRITE (ADDENDI :1); lidentify first addendl
for ADDEND2 := 0 to MAXDIGIT do

begin
SUM := ADDEND1 + ADDEND2;
WRITE (SUM :3) lprint sum of addendsl

end; Ifor ADDEND21
WRITELN lterminate table r ow]

end lfor ADDEND1 I
end. fADDTABLEJ

+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

232 MORE CONTROL STATEMENTS



ADDEND!. In the inner for loop, each value of ADDEND2 (0 through 9) is
added to ADDENDl and the individual sums are printed. Each time the
outer loop is repeated lO additions are performed; a total of lO 0 sums are
printed.

Example 5.16 The program in Fig. 5.10 contains a pair of nested while loops that may
be used to read and echo print the data on an existing data file. The inner
loop reads and echos a line of the file. The outer loop is repeated as long
as there are more lines to read.

program ECHOTEXT (INPUT, OUTPUT);

IReads and echos an existing data file.l

var
NEXTCHAR : CHAR;

begin IECHOTEXT l
while not EOF do

begin
while NOT EOLN do

begin
READ (NEXTCHAR);
WRITE (NEXTCHAR)

end; [o f linej
READLN;
WRITELN

end [o f f i.Le ]
end. IECHOTEXTj

Fig. 5.10 Reading and Echoing a File

leach character in the filel

Iecho each line l

lecho each characterj

lskip end-of-line markl
Iterminate output linej

It is interesting to contemplate the effect of omitting the statement

READLN; lskip end-of-line markl

Exit from the inner loop occurs when the end-of-line mark at the end of
the first line is the next character to be read (not EOLN is false). The
outer loop is repeated because there is more data on the file (not EOF is
true); however, the inner loop is then skipped because the next character
is still the end-of-line mark. An endless loop will result because the outer
loop is repeated again, the inner loop skipped again, ad infinitum. If your
program reads lines of character data, remember to use the READLN state
ment to skip over each end-of-line mark.

Self-check Exercises for Section 5.5

1. Write a program that prints the multiplication table. Use separate pro
cedures to print the table heading and table body.

2. Show the output printed by the nested loops below.

5.5 NESTED LOOPS 233



for I := 1 to 2 do
begin

WRITELN ('OUTER' :5, I :5);
for J := 1 to 3 do

WRITELN (' INNER' : 7, I : 3, J : 3 ) ;
for K := 2 downto 1 do

WRITELN ('INNER' :7, I :3, K :3)
end; Ifor II

3. Write a nest of loops that causes the output below to be printed.

1
1 2
123
1 2 3 4
123
1 2
1

• User-defined Functions

In th~ last chapter we introduced some of the functions that are part of
Pascal such as ABS, SQRT, ORD. We can also declare our own functions in
much the same way that procedures are declared. In fact, a function may
be looked upon as a special type of procedure-a procedure that returns
exactly one result. Generally, the parameters of a function are value pa
rameters which cannot be modified by the function execution.

Example 5.17 Function POWERS in Fig. 5.11 raises its first parameter, X, to the integer
power indicated by its second parameter, N. This is accomplished by mul
tiplying X by itself N times and accumulating the product in PRODUCT.

Fig. 5.11 The Function POWERS

function POWERS (X : REAL; N : INTEGER) : REAL;

IComputes the value of X raised to the power N.l

var
PRODUCT : REAL;
COUNT : INTEGER;

beg in IPOWERS I
PRODUCT : = 1.°;
for COUNT := 1 to ABS(N) do

PRODUCT := PRODUCT * X

IDefine function result I
if N >= ° then

POWERS := PRODUCT
else

POWERS := 1.0 / PRODUCT
end; IPOWERS I

234 MORE CONTROL STATEMENTS

lthe accumulated productl
lloop control variablel

linitialize PRODUCT I

lmultiply X by itself N timesl

lfunction result when N >= 01

lfunction result when N < 01



The function designator ABS (N) [absolute value of N) ensures that the re
quired number of multiplications are performed even when N is negative.

The function heading

function POWERS (X : REAL; N : INTEGER) : REAL;

identifies the function name and its parameter list. The formal parameters
for a function are generally input parameters so we have not commented
them as such. A type identifier after the parameter list indicates the type
of the result returned by the function. The result may be any previously
defined simple data type including REAL, INTEGER, BOOLEAN, CHAR, an
enumerated type, or a subrange.

Unlike a procedure which returns a result by modifying a variable pa
rameter, a function result is defined by assigning a value to the function
name. In Fig. 5.11 if N is positive, the result to be returned is defined by
the assignment statement

POWERS := PRODUCT

If N is negative, the result to be returned is defined by the assignment
statement

POWERS := 1.0 / PRODUCT

You must be careful when using a function name inside its function dec
laration. A function name should not normally appear in an expression in
side the function. For example, the assignment statement

POWERS := POWERS * X

would be illegal inside function POWERS.

FUNCTION DECLARATION

function fname (formal-parameters) result-type:
Iocal-decloration-section
begin Ifname J

function body
end: Ifname I

Interpretation: The function fname is declared. The list of formal pa
rameters is enclosed in parentheses. The data type of the function re
sult is indicated by the identifier result-type.

Any identifiers declared in the local-declaration-section are de
fined only during the execution of the function.

The function body describes the data manipulation to be performed
by the function. At least one statement that gives a value to fname
must be executed each time the function is called. The last value giv-

5.6 USER-DEFINED FUNCTIONS 235



en to fname is returned as the function result upon completion of the
function body. This value replaces the function reference in the ex
pression that calls the function.
Note 1: The identifier result-type must be the name of a standard
data type (BOOLEAN, INTEGER, REAL, or CHAR), a previously-de
fined enumerated type, a sub range type, or a pointer type (described
in Chapter 10).
Note 2: If there are no parameters, the formal-parameters and paren
theses should be omitted.

PROGRAM STYLE

Checking special cases

What happens in function POWERS if the value of N happens to be
zero? If N is zero, the assignment statement

PRODUCT : = 1. 0 1

is executed and the for loop is skipped. In this case the if state
ment causes a value of 1. 0 to be assigned correctly as the function
result.

Often a procedure or function will fail for special cases such as
this. It is important to identify special cases and verify that they are
handled properly.

Function Designator

A user-defined function is called in the same way as a standard Pascal
function- by referencing it in an expression. The assignment statement
below computes the actual amount, AMOUNT, in a savings account after N
days have passed; DEPOSIT is the initial amount deposited at a daily in
terest rate of DAILYRATE.

AMOUNT := DEPOSIT * POWERS(l + DAILYRATE, N)

This statement is derived from the formula

amount = deposit X (1 + dailyrate]"

The function designator

POWERS(l + DAILYRATE, N)

calls function POWERS to raise the expression 1 + DAILYRATE to the
power N. After execution of the function body, the function result replaces
the function designator in the calling expression; this result is then multi
plied by the value of DEPOS IT and the product is stored in AMOUNT.

236 MORE CONTROL STATEMENTS



FUNCTION DESIGNATOR

fname (actual-parameters)

Interpretation: The function fname is executed, and its result replaces
the function designator. During the function execution, the first actual
parameter is associated with the first formal parameter, the second
actual parameter with the second formal parameter, etc.
Note: The actual parameters are separated by commas. There should
be the same number of actual and formal parameters. Each actual
parameter that is an expression is evaluated when fname is called;
this value is assigned to the corresponding formal parameter. Each
actual parameter must be assignment-compatible with its correspond
ing formal parameter. If there are no formal parameters, the actual
parameters and enclosing parentheses should be omitted.

Functions with Nonnumeric Results

A function can return a value belonging to any of the standard types, an
enumerated type, a subrange type, or a pointer type [discussed in Chapter
10). In this section we provide examples of functions with different result
types.

Example 5.18 Recall that the Pascal READ procedure cannot read data into a variable
whose type is an enumerated type. A program can read the first letter or
two of an identifier and then use this character data to determine what
value should be stored. Function DAYCONVERT in Fig. 5.12 returns a value
of enumerated type DAY [see Example 4.23). The parameters CHARI and
CHAR2 represent the first two letters in the day name.

Fig. 5.12 Function DAYCONVERT

function DAYCONVERT (CHARI, CHAR2 : CHAR) : DAY;

IReturns the day value beginning with the letters
CHARI, CHAR2. l

.= SATURDAY;

.= SUNDAY

:= TUESDAY;
:= THURSDAY

MONDAY;
WEDNESDAY;
FRIDAY;

'T', 't'

DAYCONVERT :=
DAYCONVERT :=
DAYCONVERT :=
case CHAR2 of

'A', 'a' : DAYCONVERT
'U', 'u' : DAYCONVERT

end; Icase CHAR2l
case CHAR2 of

'U', 'u' : DAYCONVERT
'H', 'h' : DAYCONVERT

end lease CHAR2l
end Icase CHARIl

end; jDAYCONVERTl

begin IDAYCONVERTl
case CHARI of

'M', 'm'
'W', 'w'
'F', 'f'
'S', 's'

5.6 USER-DEFINED FUNCTIONS 237



The statements below may be used to assign a value to the variable
TODAY (type DAY) using function DAYCONVERT.

WRITE ('Enter the first two letters of the day name: '):
READLN (CHARI, CHAR2) ;
TODAY: = DAYCONVERT ( CHARI, CHAR2)

Example 5.19 Figure 5.13 shows a function that may be used to determine the number of
days in any month of the twentieth century. The data types MONTH,
YEARS, and DAYS are defined as follows.

type
MONTH

YEARS
DAYS

(JAN, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC):

1900 .. 1999;
1. .31;

function DAYSINMONTH (CURMONTH : MONTH; THISYEAR : YEARS)

IDetermines the number of days in a given month and year.l

DAYS;

begin IDAYSINMONTHI
case CURMONTH of

APR, JUN, SEP, NOV: DAYSINMONTH := 30;
JAN, MAR, MAY, JUL, AUG, OCT, DEC DAYSINMONTH:= 31;
FEB : if THISYEAR mod 4 = 0 then

DAYSINMONTH : = 29 [Leap year ]
else

DAYSINMONTH .= 28
end Ieasel

end; IDAYS INMONTH I

Fig. 5.13 Function DAYSINMONTH

The if statement following case label FEB has a condition that is true
when THI SYEAR is divisible by 4. This condition is true every leap year.
An example of a function designator that calls the function DAYS IN
MONTH is

DAYSINMONTH(MAY, 1942)

Example 5.20 BOOLEAN functions are often used to make BOOLEAN expressions more
readable. The BOOLEAN function UPPERCASE in Fig. 5.14 determines
whether its argument is an uppercase letter (returns TRUE) or not (returns
FALSE). This function can be used to simplify the writing of if state
ments that require a test for an uppercase letter. A similar function called
LOWERCASE is left as an exercise. (See Exercise 5 at the end of this sec
tion.]

Procedure GETLETTER (see Fig. 5.15) returns the next input character
that is a letter; the loop is repeated until either an uppercase or lowercase

238 MORE CONTROL STATEMENTS



function UPPERCASE (CH : CHAR) : BOOLEAN;

IReturns a result of TRUE if CH is an uppercase letter;
otherwise, returns a result of FALSE. l

begin IUPPERCASE l
UPPERCASE := CH in ['A' .• 'Z']

end; IUPPERCASE l

Fig. 5.14 Function UPPERCASE

letter is read. It uses functions UPPERCASE and LOWERCASE to test each
input character.

procedure GETLETTER (var CH Ioutput l : \CHAR);

IReturns the next input character that is a letter.
Result is not defined when there are no letters in
the input file. }

begin IGETLETTERl
if not EOF then lfind first letter}

repeat
READ (CH)

until EOF or UPPERCASE(CH) or LOWERCASE (CH)

lassertion: at end of input file or CH is a letter.l
end; IGETLETTER l

Fig. 5.15 Procedure GETLETTER

Function CHANGECASE (see Fig. 5.16) returns a result that is type CHAR.
It changes an uppercase letter to lowercase and vice versa. If its argument
CH is an uppercase letter, the assignment statement

CHANGECASE : = CRR ( ORD ( CH) - ORD C' A') + ORD ( 'a ' ) )

is executed. If CH is 'C' and the letters are in consecutive order, then the
argument of the function CHR is 2 + ORD ( 'a ') and the value 'c' is
assigned to CHANGECASE. The analysis is similar when CH is a lowercase
letter.

PROGRAM STYLE

When to use a function instead of a procedure

All the function examples shown in this section have the property
that they transform one or more input values into a single output. A
variety of output types were illustrated; REAL, CHAR, BOOLEAN, DAY.

A procedure should be used when more than one result is to be re
turned by a program module. Generally a function is used only when

5.6 USER-DEFINED FUNCTIONS 239



a single result is to be returned. Since a function does not usually re
turn a result by modifying its parameters, the parameters of a func
tion are usually value parameters.

function CHANGE CASE (CH : CHAR) : CHAR;

(Changes the case of CH when CH is a letter - Uses the
BOOLEAN functions UPPERCASE and LOWERCASE to test CH.l

begin \CHANGECASE l
if UPPERCASE(CH) then

CHANGECASE := CHR(ORO(CH)
else if LOWERCASE(CH) then

CHANGECASE := CHR(ORO(CH)
else

CHANGECASE := CH
end; jCHANGECASEl

Fig. 5.16 Function CHANGECASE

Self-check Exercises for Section 5.6

jChange to lowercasel
- ORO ( 'A') + ORO ( 'a' ) )

jChange to uppercasel
- ORO ( 'a ') + ORO ( 'A' ) )

jCH is not a letterl

1. Write a function that computes the cube of any number.
2. Write a function that computes the tuition owed for a specified num

ber of credit hours taken at a university. Assume that the charge per
credit is $100 for up to 12 credit hours and that a flat fee of $1000 is
charged when more than 12 credits are taken.

3. Function POWERS in Fig. 5.11 works perfectly well for an integer expo
nent; however, the exponent cannot be type REAL. Write a new func
tion that will handle type REAL exponents. Hint: Use the LN and EXP
functions of Pascal.

4. Write a program that uses function POWERS to compute and print a ta
ble showing the powers of two.

5. Write function LOWERCASE.

III Case Studies

In this section we present two problems that illustrate most of the con
cepts discussed in the last two chapters. The problems involve: analyzing
a passage of text and printing a check.

Text
Analyzer
Program

We will begin with a problem that makes use of nested while loops and
the EOLN and EOF functions to process textual data. It also illustrates the
use of sets and program flags.

Problem: Write a program that analyzes a text passage and determines
the number of sentences in the text, the average number of words per sen
tence, and the average number of letters per word.

240 MORE CONTROL STATEMENTS



Discussion: Every character of the text should be read and echoed. The
three special characters. I ? indicate the end of a sentence; the three
special characters, ; : and the blank and end-of-line mark indicate the
end of a word. The data requirements follow.

the text passage (a batch file)

count of sentences (SENTCOUNT : INTEGER)
average number of words per sentence (AVEWORD : INTEGER)
average number of letters per word (AVELETTER : INTEGER)

It is necessary to maintain a count of words and letters in order to com
pute the averages requested. Descriptions of these variables and the algo
rithm follow.

Algorithm

count of words (WORDCOUNT : INTEGER)
count of letters (LETTERCOUNT : INTEGER)

1. Read the text and count the number of letters, words, and sentences.
2. Compute the average number of words per sentence and letters per

word.
3. Print the count of sentences and the two averages.

The system structure chart is shown in Fig. 5.17. Step 1 is implemented
as procedure COUNTCHARS; steps 2 and 3 are included in the main pro
gram body shown in Fig. 5.18.

Fig. 5.17 Structure Chart for Text Analyzer Program

l' I
LETTERCOUNT,
WORDCOUNT,
SENTCOUNT

I ~

l'
AVELETTER,
AVEWORD

I
AVE LETTER,

AVEWORD,
SENTCOUNT

~

COUNTCHARS

5.7 CASE STUDIES 241



program TEXTANALYZE (INPUT, OUTPUT);

IAnalyzes a body of text printing the number of sentences, the
average number of words per sentence, and the average number
of letters per word.

var
SENTCOUNT,
WORDCOUNT,
LETTERCOUNT,
AVEWORD ,
AVELETTER : INTEGER;

count of sentencesl
count of words ]
count of lettersl
average number of words/sentencel
average number of letters/wordsl

procedure COUNTCHARS (var SENTCOUNT loutputl,
WORD COUNT loutputl,
LETTERCOUNT !outputl : INTEGER);

IReads the text and counts the number of sentences, words, and
letters in the input text. l

begin ICOUNTCHARSl
WRITELN ('Procedure COUNTCHARS entered.');
SENTCOUNT := 10; WORD COUNT := 100; LETTERCOUNT:= 1000

end; ICOUNTCHARSl

begin !TEXTANALYZEl
IRead the text and count the letters, words, and sentences.l
COUNTCHARS (SENTCOUNT, WORDCOUNT, LETTERCOUNT);

IFind the averages.l
AVEWORD := ROUND(WORDCOUNT / SENTCOUNT);
AVELETTER := ROUND(LETTERCOUNT / WORDCOUNT);

IPrint the sentence count and the averages.l
WRITELN;
WRITELN ('There are', SENTCOUNT :2, , sentences with an');
WRITELN ('average of " AVEWORD :2, , words / sentence');
WRITELN ('and', AVELETTER :2, , letters / word.')

end. ITEXTANALYZEl

Fig. 5.18 Main Program for Text Analysis with a Stub for COUNTCHARS

Algorithm for
Procedure
COUNTCHARS

In most text processing situations, it is easier to process the text on a
line-by-line basis. The algorithm for procedure COUNTCHARS follows.

1. Initialize all counters to zero
2. while there are more lines to process do

3. Process each line of the text

Procedure COUNTCHARS calls procedure SCANLINE to perform step 3
above. SCANLINE uses procedure CHECKTERM to categorize each charac
ter as a terminator, letter, or other character. The structure chart for
COUNTCHARS is shown in Fig. 5.19.

Procedure SCANLINE reads and echoes each character of the text. It
uses procedure CHECKTERM to check for the occurrence of one or more of

242 MORE CONTROL STATEMENTS



COUNTCHARS

l'
LETTERCOUNT,
WORDCOUNT,
SENTCOUNT

I

l'
NEXTCHAR

I

11'
LETTERCOUNT,
WORDCOUNT,
SENTCOUNT

.J,I

I
NEXTCHAR

.J,

11'
INAWORD,
LETTERCOUNT,
WORDCOUNT,
SENTCOUNT

.J,I

Fig. 5.19 Structure Chart for COUNTCHARS

CHECKTERM

the special terminator characters mentioned earlier. Both the sentence
count and word count should be incremented by one whenever a sentence
terminator is read. The count of words should be incremented by one
whenever a word terminator is read or the end-of-line mark is reached.

The count of letters is incremented for each character that is a letter.
All other characters are only echo printed.

If a sequence of consecutive terminator characters occurs, only the first
in the sequence affects the counter values; e.g. if a period is followed by
two blanks then the count of words and sentences are increased by one
when the period is read but not the blanks. A program flag (INAWORD) is
used to indicate whether the last character processed is part of a word
(INAWORD is TRUE) or a terminator (INAWORD is FALSE).

The local variables declared in procedure SCANLINE and the algorithm
for SCANLINE follow.

each letter read from the text (NEXTCHAR : CHAR)
program flag that indicates whether or not the last character processed

was part of a word or a terminator (INAWORD : BOOLEAN)

5.7 CASE STUDIES 243



Algorithm for
Procedure
SCANLINE

Algorithm for
CHECKTERM

1. Set INAWORD to FALSE.
2. while the end of the input line is not reached do

3. Read and echo the next character (NEXTCHAR).
4. Categorize the next character as a terminator, letter, or other

character. Update INAWORD and the counters.
5. if the end-of-line mark follows a word then

6. Increment the count of words.
7. Skip over the end-of-line mark and terminate the output line.

Step 4 above is performed by procedure CHECKTERM. The algorithm for
CHECKTERM follows. Procedures COUNTCHARS, SCANLINE, and CHECK
TERM are shown in Fig. 5.20 and a sample run is shown in Fig. 5.21.

1. if NEXTCHAR is an initial sentence terminator then
2. Increment count of words and sentences and set INAWORD to

FALSE.
else if NEXTCHAR is an initial word terminator then

3. Increment the count of words and set INAWORD to FALSE.
else if NEXTCHAR is a letter then

4. Increment the count of letters and set INAWORD to TRUE.

procedure COUNTCHARS (var SENTCOUNT loutputl,
WORDCOUNT (outputl,
LETTERCOUNT (outputl : INTEGER);

IReads the text and counts the number of sentences, words,
and letters in the input text. Uses procedure SCANLINE. l

procedure SCANLINE (var SENTCOUNT linput/outputl,
WORDCOUNT (input/outputl,
LETTERCOUNT (input/outputl : INTEGER);

(Adds the count of sentences, words, and letters on the
current input line to the counts being accumulated. Uses
CHECKTERM. l

var
NEXTCHAR : CHAR; leach input characterl
INAWORD : BOOLEAN; (flag indicating whether last character

was in a word (TRUE) or was a terminator (FALSE)l

procedure CHECKTERM (NEXTCHAR linputl : CHAR;
var SENTCOUNT (input/outputl,

WORDCOUNT linput/outputl,
LETTERCOUNT linput/outputl : INTEGER;

var INAWORD linput/outputl : BOOLEAN);

IChecks whether current character is a terminator or letter or
other character. Increments counters and updates INAWORD. l

begin (CHECKTERMl
if (NEXTCHAR in ['. " '1', '?']) and INAWORD then

244 MORE CONTROL STATEMENTS



(read next characterl
(echo next characterl

IAssume not in a word at start of linel

(process word terminatorl
(skip end-of-line markl
(terminate output linel

begin (initial sentence terminatorl
SENTCOUNT := SENTCOUNT + 1;
WORDCOUNT := WORDCOUNT + 1;
INAWORD : = FALSE (no longer in a wordl

epd
else if (NEXTCHAR in [', I, '; I, ':', I I J) and INAWORD then

begin (initial word terminatorl
WORDCOUNT := WORDCOUNT + 1;
INAWORD : = FALSE (no longer in a word]

end
else if NEXTCHAR in ['A' .. 'Z', 'a' •• 'z'] then

begin [Le t t.e r ]
LETTERCOUNT := LETTERCOUNT + 1;
INAWORD := TRUE lnow in a wordl

end
end; ICHECKTERMI

begin (SCANLINEl
INAWORD := FALSE;
while not EOLN do

begin
READ (NEXTCHAR);
WRITE (NEXTCHAR);

(Check whether NEXTCHAR is a terminator or letter.l
CHECKTERM (NEXTCHAR, SENTCOUNT, WORDCOUNT,

LETTERCOUNT, INAWORD)
end; (while not EOLNI

(assertion: at end-of-line markl
if INAWORD then

WORDCOUNT := WORDCOUNT + 1;
READLN;
WRITELN

end; ISCANLINEl

begin (COUNTCHARSl
(Initialize counters to zerol
SENTCOUNT := 0; WORDCOUNT := 0; LETTERCOUNT:= 0;

(Process each character in the textl
while not EOF do

SCANLINE (SENTCOUNT, WORDCOUNT, LETTERCOUNT)
end; ICOUNTCHARS I

Fig. 5.20 Procedure COUNTCHARS with Nested Procedures SCANLINE and CHECKTERM

I never saw a purple cow.
1 never hope to see one.
But, I can tell you anyhow:
I'd rather see than be one!

There are 3 sentences with an
average of 8 words / sentence
and 3 letters / word.

Fig. 5.21 Sample Aun of Text Analysis Program

5.7 CASE STUDIES 245



Check
Writing
Problem

The next problem illustrates the use of the case statement. It also uses
two subrange types.

Problem: As part of a check writing program, it would be desirable to
have a procedure that writes a check amount in words. Some examples of
the desired procedure output are shown below.

Amount

43.55
62.05
15.20

0.95
35.00'

Output

forty three dollars and fifty five cents
sixty two dollars and five cents
fifteen dollars and twenty cents
zero dollars and ninety five cents
thirty five dollars and zero cents

Algorithm for
PRINTCHECK

Discussion: The procedure must separate the check amount into two in"
tegers, DOLLARS and CENTS. Once this is done, DOLLARS can be printed
followed by the string I dollars and I, the value of CENTS, and the
string , cents'. For the sake of simplicity, we will restrict the check
writing procedure to amounts less than $100. A description of the proce
dure data requirements and algorithm follow.

check amount as a real number (CHECK: REAL)

description of check amount in words

dollar amount (DOLLARS : 0 •• 99)
number of cents (CENTS : 0 •• 99)

1. if check amount is invalid then
2. Print an error message

else
3. Separate check amount into DOLLARS and CENTS
4. Print DOLLARS in words
5. Pr~t I dollars and I

6. Print CENTS in words
7. Print I cents'

The structure chart for procedure PRINTCHECK is shown in Fig. 5.22.
Procedure PETTYCASH is called twice: first to print the value of DOLLARS
in words and then to print the value of CENTS in words. Procedure
PRINTCHECK is shown in Fig. 5.23 with a stub for procedure PETTYCASH.

246 MORE CONTROL STATEMENTS



PRINTCHECK

I
CHECK

-t

l'
DOLLARS,
CENTS

I

I
DOLLARS

-t
I

CENTS

-t

PETTYCASH PETTYCASH

Fig. 5.22 Structure Chart for Procedure PRINTCHECK

Fig. 5.23 Procedure PRINTCHECK with a Stub for PETTYCASH

procedure PRINTCHECK (CHECK (input) : REAL):

(Prints a check amount in words. Uses procedure PETTYCASH
to first print the dollars amount and then the cents
amount.

type
SMALLINT 0 .. 99: (range of check amount)

var
DOLLARS,
CENTS SMALLINT:

(the dollar amount)
(the cents amountl

procedure PETTYCASH (AMOUNT: SMALLINT):

(Prints an integer AMOUNT less than 100 in words.)

begin (PETTYCASH)
WRITELN ('Procedure PETTYCASH entered. ')

end: (PETTYCASH)

(print cents amount)
, ):

PETTYCASH (DOLLARS):
WRITE (' dollars and
PETTYCASH (CENTS):
WRITELN (' cents')

end (valid amountl
(PRINTCHECK)

begin (PRINTCHECK)
if (CHECK < 0) or (CHECK> 99.99) then

WRITELN ('Check amount " CHECK, ' is invalid.')
else

begin (valid amount)
DOLLARS := TRUNC(CHECK): (get amount in dollars)
CENTS := ROUND(lOO * (CHECK - DOLLARS)):

(get amount in cents)
(print dollar amount)

end:

5.7 CASE STUDIES 247



In Fig. 5.23 the assignment statements

DOLLARS := TRUNC(CHECK); (get amount in dollarsl
CENTS := ROUND(lOO * (CHECK - DOLLARS));

(get amount in centsl

are used to determine the value of DOLLARS and CENTS (e.g. if CHECK is
95.63 then DOLLARS is 95 and CENTS is 63). The ROUND function ensures
that an integer value is assigned to CENTS.

Procedure PETTYCASH prints an integer value less than 100 in words.
Its parameter value is separated into a 10's digit (stored in TENS) and a
units digit (stored in UNITS). Once this separation is performed the two
digits are printed in words. The data requirements and algorithm for
PETTYCASH follow.

a number less than 100 (AMOUNT: 0..99)

a two digit integer printed in words

Algorithm for
PETTYCASH

Algorithm for
PRINT2DIGITS

the tens digit (TENS: 0..9)
the units digit (UNITS: 0..9)

1. If AMOUNT = 0 then
2. Print 'ze ro '

else
3. Separate AMOUNT into TENS and UNITS
4. Print TENS and UNITS in words

The structure chart is shown in Fig. 5.24. Step 4 above is performed by
procedure PRINT2DIGITS which calls procedure PRINTADIGIT to print
the word corresponding to a single digit value.

Procedure PRINT2DIGITS must be able to print amounts that are less
than 10 (TENS is 0), in the teens (TENS is 1), and above (TENS >= 2).
The algorithm below should handle all cases. Procedure PETTYCASH and
nested procedures PRINT2DIGITS and PRINTADIGIT are shown in Fig.
5.25.

1. case TENS of
0: print UNITS value
1 : select and print a string based on the UNITS value
2 : print 'twenty' followed by the UNITS value
3 : print 'thirty' followed by the UNITS value
4 : print 'forty' followed by the UNITS value

248 MORE CONTROL STATEMENTS



5 : print 'fifty' followed by the UNITS value
6, 7, 8, 9 : print the TENS value

print 'ty ,
print the UNITS value

PETTYCASH

I
AMOUNT

~

l'
TENS,
UNITS

I

I
TENS,
UNITS

~

I
TENS

~

PRINTADIGIT

I
UNITS

~

PRINTADIGIT

Fig. 5.24 Structure Chart for PETTYCASH

procedure PETTYCASH (AMOUNT (inputl : SMALLINT);

IPrints an AMOUNT less than 100 in words. Uses
PRINT2DIGITS. I

type
DIGIT = 0 •• 9j

var
TENS,
UNITS : DIGITj

[t.eris digiti
[un i t.s digiti

procedure PRINT2DIGITS (TENS, UNITS linputl : DIGIT)j

IPrints the 2 digits of a number in words. Uses
PRINTADIGIT. I

procedure PRINTADIGIT (INDIGIT linputl : DIGIT);

[Prints a single digit number (INDIGIT) as a word. I

5.7 CASE STUDIES 249



lPrint units digit only}
lPrint the special case teensl

begin !PRINTADIGIT!
case INDIGIT of

o IPrint nothingl;
1 WRITE (' one' ) ;
2 WRITE ('two');
3 WRITE ('three');
4 WRITE (' four' ) ;
5 WRITE ('five');
6 WRI~E ('six');
7 WRITE ('seven'):
8 WRITE ('eight');
9 WRITE ('nine')

end (easel
end; lPRINTADIGITI

begin (PRINT2DIGITSI
case TENS of

o PRINTADIGIT (UNITS);
1 : case UNITS of

o WRITE (' ten' ) ;
1 : WRITE ('eleven');
2 : WRITE ('twelve');
3 : WRITE ('thirteen');
5 : WRITE ('fifteen');
4, 6, 7, 8, 9 : begin (Print .•• teen)

PRINTADIGIT (UNITS):
if UNITS <> 8 then

WRITE (' t ' ) :
WRITE (' een ' )

end [pr i.nt, •.• t.een]
end: Icase UNITS I

2 begin lprint twenty •.. 1
WRITE ('twenty'):
PRINTADIGIT (UNITS)

end; 121
3 begin lprint thirty ..• I

WRITE (' thirty '):
PRINTADIGIT (UNITS)

end: P}
4 begin [prLnt, forty ••. I

WRITE (' forty ');
PRINTADIGIT (UNITS)

end: 141
5 begin [prLnt; fifty ••• I

WRITE ('fifty'):
PRINTADIGIT (UNITS)

end; 151
6, 7, 8, 9 : begin [pr i.nt; •.• ty •.• I

PRINTADIGIT (TENS):
if TENS <> 8 then

WRITE (' t ' ) :
WRITE ('y'):
PRINTADIGIT (UNITS)

end 16, 7, 8, 91
end !case TENS)

end: lPRINT2DIGITS}

250 MORE CONTROL STATEMENTS



begin !PETTYCASH)
if AMOUNT = 0 then

WRITE (' zero' )
else

begin !nonzero amount I
TENS := AMOUNT div 10j !Get tens digiti
UNITS := AMOUNT mod 10; IGet units digiti
PRINT2DIGITS (TENS, UNITS)!Print the 2 digits in words I

end !nonzero amount)
end; !PETTYCASHI

Fig.5.25 Procedure PETTYCASH with Nested Procedures PRINT2DIGITS and PRINTADIGIT

In the above procedures, the subrange SMALLINT is declared in
PRINTCHECK and is used as the data type of the formal parameter for
PETTYCASH. Similarly the subrange DIGIT is declared in PETTYCASH
and is used as the data type of the formal parameters for PRINT2DIGITS.
The data type INTEGER is the host type for both of these subranges; they
are used to limit the range of parameter values that may be passed to
each procedure.

A common error in a programmer-defined data type is to specify the
type declaration in the procedure header statement. The procedure header
statement

procedure PRINT2DIGITS (TENS, UNITS !input) : 0 •• 9)j

causes a syntax error because a parameter type must be an identifier, not
a subrange.

Self-check Exercises for Section 5.7

1. Verify that the assignment statements in PETTYCASH that assign val
ues to TENS and UNITS are correct.

• Common Programming Errors

When using a case statement, make sure the case selector and labels
are of the same ordinal type. Remember that only lists of ordinal values
may be used as case labels and that no value may appear in more than
one case label. If the selector evaluates to a value not listed in any of the
case labels, an error occurs and your program stops. Be sure to insert the
end {easel; there is no matching begin.

The main problem in using a repeat statement is the possibility of too
many loop repetitions. A repeat-until loop can execute forever if its
conditional test remains false. This is indicated by a program exceeding
its time limit or running out of input data. Remember that a repeat
until loop is always executed at least once because the loop termination
test follows the loop body.

5.8 COMMON PROGRAMMING ERRORS 251



Be sure to trace each nest of loops carefully. checking all loop parame
ter values. A loop control variable for a for statement cannot be changed
inside the loop body. It is also illegal to use the same loop control variable
for two nested for statements.

When using functions. make sure that the function result is defined for
all valid parameter values. Do not use the function name in an expression
inside the function body.

• Chapter Review

The case statement was introduced in this chapter as a convenient
means of implementing decisions with several alternatives. We saw how
to use the case statement to implement decisions that are based on the
value of a variable or simple expression (the case selector). The case
selector must have an ordinal data type.

The repeat statement was used to implement conditional loops. The
repeat statement can be used to implement a loop that will always exe
cute at least one time.

Nested loops were analyzed. Every inner loop of a nest is reentered and
executed to completion each time an outer loop is repeated.

Functions were used to implement modules that return a single result.
The parameters of a function are generally value parameters. Usually a
function result is defined by assigning a value to the function name inside
the function body. A function is called by using it in an expression in the
calling program; the function name and actual parameters (function argu
ments) are inserted directly in the expression.

New Pascal Statements

The new Pascal statements introduced in this chapter are shown in Table
5.3.

Table 5.3 Summary of New Pascal Statements

Statement

Case statement
case NEXTCH of

'A I, I a' WRITELN (' Excellent I ) ;

'B', 'b' : WRITELN (' Good' ) ;
'C', 'e' : WRITELN ('O.K.');
'D', 'd', 'F', If'

begin
WRITELN ('Poor');
PROBATION (IDNUM)

end
end [easel

252 MORE CONTROL STATEMENTS

Effect

One of four messages is printed based
on the value of NEXTCH (type CHAR). If
NEXTCH is 'D'. 'd' or ' F'. ' f ' •
procedure PROBATION is also called
with IDNUM as an actual parameter.



Table 5.3 Summary of New Pascal Statements (continued)

Statement Effect

Set values and operator in
if CURMONTH in [DEC, JAN, FEB] then

WRITELN ('Winter storm watch')

General for statement
for CURMONTH := JAN to DEC do

begin
READ (MONTHSALES);
YEARSALES := YEARSALES +

MONTHSALES
end [for}

Repeat statement
repeat

READLN (NEXTNUM);
WRITELN (SQR(NEXTNUM))

until NEXTNUM < 0

Declaring a function
function SIGN (X : REAL) : CHAR;

[Finds the sign ('+' or '-') of X.l

begin
if X >= 0 then

SIGN := '+'
else

SIGN := I_I

end; ISIGN}

The message' Winter storm
watch' is printed if the value of
CURMONTH is one of the three con
stants listed. CURMONTH and the con
stants must belong to the same
enumerated data type.

.The loop body is repeated for each value
of CURMONTH from JAN through DEC,
inclusive. For each month, the value of
MONTHSALES is read and added to
YEARSALES.

Reads each number and prints its square.
Loop is exited after the first negative
number is processed.

Returns a character value that indicates
the sign ( , +' or '-') of its type REAL
argument.

Review Questions

1. When should a nested if statement be used instead of a case state
ment?

2. Write a case statement to select an operation based on INVENTORY.
Increment TOTALPAPER by PAPERORDER if INVENTORY is 'B' or
, C'; increment TOTALRIBBON by RIBBONORDER if INVENTORY is
'L', 'T', or 'D'; increment TOTALLABEL by LABELORDER if IN
VENTORY is 'A' or 'X'. Do not take any action if INVENTORY is

'M'.
3. a) Write the for statement that displays the character values of the

ordinal numbers 21 through 126, inclusive. Use ORDNUM as the loop
control variable.

5.9 CHAPTER REVIEW 253



b) What is the value of ORDNUM, above, after completion of the loop?

4. Write a repeat statement that will only accept a valid response to a
menu. A valid response would be any of the following: I A " 'a I or
'B', 'b'.

5. Write the complement of each BOOLEAN expression below.

FLAG and (I < 20)
(ORD(NEXTCH) = 0) or EOLN

not (VOWEL and CONSONANT)
(ROUND(N) = N) OR (N < SQR(M))

6. a) Write an if statement that tests to see if TODAY is a working day.
Print either the message I Workday' or 'Weekend'. Assume that
TODAY is type DAY, an enumerated type which has the days of the
week as its values.
b) Write an equivalent case statement.

7. Write a for statement that runs from 'Z I down to 'A' and prints
out only the consonants. Test each character against the set of vowels.

8. Write a nested loop that prints the first six letters of the alphabet on a
line, the first five letters on the next line, the first four letters on the
next line, etc., down to and including the first two letters on the last
line. Use either upper- or lowercase letters.

9. Write a function called FINDGROSS that computes a worker's weekly
gross pay given HOURS (an INTEGER) and RATE (a REAL) as input
parameters. Pay time and a half for any hours worked over 40 along
with subtracting 30% for taxes. For 30 or more hours but less than 40,
subtract 20% for taxes. For 20 or more hours but less than 30, subtract
10% for taxes. Do not deduct any taxes for under 20 hours. Be sure to
check for a valid number of hours (0 < = HOURS < = 168).

Programming Projects

1. Write a program that reads in a positive real number and finds and prints
the number of digits to the left and right of the decimal point. Hint: Separate
both parts and repeatedly divide or multiply by 10. Test the program with the
following data:

4703.62 0.01 0.47 5764 10.12 40000

2. Write a program that finds the largest value, the smallest value, and the sum
of the input data. After all data are processed. call two functions to find the
average value and the range of values in the data collection. Print these re
sults.

3. Write a program that will provide change for a dollar for any item purchased
that costs less than one dollar. Print out each unit of change (quarters, dimes,
nickels, or pennies) provided. Always dispense the biggest denomination
coin possible. For example, if there are 37 cents left in change. dispense a
quarter which leaves 12 cents in change, then dispense a dime, then two
pennies.

254 MORE CONTROL STATEMENTS



4. The function SIN (X) increases in value starting at X = 0 radians. Write
a program to determine the value of X for which SIN (X) begins to de
crease. Calculate the value of SIN (X) beginning at X = 0 for intervals of
.01 radians, and watch for a decrease. Print a two-column table of X and
SIN (X) as long as the increase continues. At the point of decrease. simply
print X and stop.

5. The Norecall Auto Company keeps sales records for each employee. Each
time an automobile is sold the following data are entered into the record:

Salesperson Name
For example:
LITTLE NELL

Make of ear

CADILLAC

Date of Sale

6/24

Amount of Sale

$8532.67

Each month the company must collect the sales records for each employee.
add up the number of sales and the sales amount, and compute the employee
commission as follows

For sales up to $30.000.
For sales between $30,000--$50.000.

For sales over $50.000,

5% commission.
5% of first $30.000,
8% of the rest.
5% of first $30.000,
8% of next $20.000.
15% of the rest.

Write a program to perform these computations. For each employee, your
program should print employee name. total sales count, total dollar amount
of sales. and total commission. At the end. print grand totals of sales count,
dollar amount. and commissions. Use a function to compute the commission.

Insert tests in your program to ensure that the sales date and amount are
meaningful. The month being processed should be entered at the start of exe
cution.

6. Write a program to read in a collection of positive integers and print all divi
sors of each. except for 1 and the number itself. If the number has no divi
sors. print a message indicating that it is prime. Use a procedure to
determine all of the divisors of each integer read. This procedure should set
a flag, PRIME, to indicate whether or not an integer is prime. The main pro
gram should test the flag to decide whether or not to print the prime mes
sage.

7. Redo Project 6 of Chapter 3 using the enumerated type

type
BRAND = (PIELS, COORS, BUD, IRONCITY)j

Enter a single character to indicate which kind of beer is being sold and
write a function that converts to one of the values above. Your program
should also use a case statement with these values as labels.

8. Shown below is the layout of a string that the registrar uses as input for a
program to print the end-of-the-semester final grade report for each student.

PROGRAMMING PROJECTS 255



Positions
1-6
7-19

20-27
28
29

30-32
33-35

36
37

40-42
43-45

46
47

50-52
53-55

56
57

60-62
63-65

66
67

70-72
73-75

76
77

Data Description
Student number
Last name
First name
Middle initial
Academic year:

1 = Fr, 2 = So, 3 = Jr, 4 = Sr
First course-Department 10 (3 letters)
First course-Number (3 digits)
First course-Grade A, 8, C, 0, or F
First course-Number of credits: 0-7

Second course: data as described above

Third course data

Fourth course data

Fifth course data

Write a program to print the following grade report sheet for each student.

Line 1 MAD RIVER COLLEGE
Line 2 YELLOW GULCH, OHIO
Line 3
Line 4 GRADE REPORT, SPRING SEMESTER
Line 5
Line 6 (student number) (year) (student name)

Line 7
Line 8 GRADE SUMMARY
Line 9 COURSE
Line 10 DEPT NMBR CREDITS GRADE
Line 11 l.
Line 12 2.
Line 13 3.
Line 14 4.
Line 15 5.
Line 16
Line 17 SEMESTER GRADE POINT AVERAGE =

Your program should work for students taking anywhere from 1 to 5
courses.

256 MORE CONTROL STATEMENTS



9. Write a program to read in a string of up to 10 characters representing a
number in the form of a Roman numeral. Print the Roman numeral form and
then convert to Arabic form (an integer). The character values for Roman nu
merals are

M 1000
D 500
C 100
L 50
X 10
V 5
I 1

Test your program on the following data: LXXXVII (87). CCXIX (219).
MCCCLIV (1354). MMDCLXXIII (2673). MCDLXXVI (?)

10. An equation of the form

(1) mx + b = 0

(where m and b are real numbers) is called a linear equation in one un
known. x. If we are given the values of both m and b. then the value of
x that satisfies this equation may be computed as

(2) x = -b/m

Write a program to read in N different sets of values for m and b and com
pute x. Test your program for the following five sets of values:

m b
-12.00 3.0

0.0 18.5
100.0 40.0

0.0 0.0
-16.8 0.0

Hint: There are three distinct possibilities concerning the values of x that
satisfy the equation mx + b = O.
(1) As long as m < > O. the value of x that satisfies the original equation 1

is given by equation 2.
(2) If both band mare O. then any real number satisfies the equation.
(3) If m = 0 and b = < > 0 then no real number x satisfies this equation.

11. Each year the legislature of a state rates the productivity of the faculty of
each of the state-supported colleges and universities. The rating is based on
reports submitted by each faculty member indicating the average number of
hours worked per week during the school year. Each faculty member is
ranked. and the university also receives an overall rank.

The faculty productivity rank is computed as follows:

(1) Faculty members averaging over 55 hours per week are considered high
ly productive.

(2) Faculty members averaging between 35 and 55 hours a week. inclusive.
are considered satisfactory.

(3) Faculty members averaging fewer than 35 hours a week are considered
overpaid.

PROGRAMMING PROJECTS 257



The productivity rating of each school is determined by first computing the
faculty average for the school and then comparing the faculty average to the
category ranges above.

Write a program to rank the following faculty;

Name
HERM
FLO
JAKE
MO
SOL
TONY
AL

Hours
63
37
20
55
72
40
12

Your program should print a three-column table giving the name, hours and
productivity rank of each faculty member. It should also compute and print
the school's overall productivity ranking.

12. Write a savings account transaction program that will process the following
set of data

ADAM 1054.37
W 25.00 group 1D 243.35
W 254.55
Z
EVE 2008.24

Iw 15.55 group 2
z
MARY

128.

24 1W 62.48
D 13.42 group 3
W 84.60
Z
SAM 7.77 } group 4
Z
JOE 15.27
W 16.12 group 5D 10.00
Z
BETH 12900.001
D 9270.00 group 6
Z

The first record in each group (header) gives the name for an account and
the starting balance in the account. All subsequent records show the amount
of each withdrawal (W) or deposit (D) that was made for that account
followed by a sentinel value (Z). Print out the final balance for each of the
accounts processed. If a balance becomes negative, print an appropriate
message and take whatever corrective steps you deem proper. If there are no
transactions for an account, print a message so indicating.

13. Write a program to print a table of the following form.

258 MORE CONTROL STATEMENTS



Home loan mortgage interest payment table

Rate
(Percent)

10.00
10.00
10.00
10.25

Duration
(Years)

20
25
30
20

Monthly
Payment

Total
Payment

Your program should print a table showing the monthly and total pay
ments on a loan of $1.000 for interest rates from 10% to 14% with increments
of 0.25%. The loan duration should be 20. 25. and 30 years. Your program
should contain nested loops. some of which may be inside separate proce
dures. depending upon your solution. Be careful to remove all redundant
computations from inside your loops.

14. The equation of the form

(1) ax- + bx + c = 0 (a. b. c real numbers. with a < > 0)

is called a quadratic equation in x. The real roots of this equation are
those values of x for which

ax- + bx + c

evaluates to zero. Thus. if a = 1, b = 2. and c
roots of

xZ + 2x - 15

are +3 and - 5. since

-15. then the real

(3JZ + 2(3) - 15 = 9 + 6 - 15 = 0

and

(-5JZ + 2( -5) - 15 = 25 - 10 - 15 = 0

Quadratic equations of the form (1) have either 2 real and different
roots. 2 real and equal roots. or no real roots. The determination as to
which of these three conditions holds for a given equation can be made
by evaluating the discriminant d of the equation. where

d = bZ
- 4ac

There are three distinct possibilities:

1. If d > O. then the equation has two real and unequal roots.
2. If d = O. the equation has two real and equal roots.
3. If d < O. the equation has no real roots.

Write a program to compute and print the real roots of quadratic equations
having the following value of a. b, and c.

a
1.0
1.0
1.0
1.0
1.0

b
2.0

-1.25
0.0

-80.0
-6.0

c
-15.0
-9.375

1.0
-900.0

9.0

PROGRAMMING PROJECTS 259



Age

Data
Initials
Class

License
number
Code

If the equation has no real roots for a set of a, band c, print an appropriate
message and read the next set. Hint: If the equation has two real and equal
roots, then the root values are given by the expression

Root 1 = Root z = -b/Za

If the equation has two real and unequal roots, their values may be comput
ed as

Root 1 = - b + V"d
Za

-b - V"dRoot Z = --='------'--=
Za

15. At Bob's Bank, Bob senior would like to keep some information on his em
ployees readily available. Bob junior suggested he keep the data on the com
puter so that it would be available anytime someone ran a program. As the
sole computer programmer you are to write a program which will read in the
employee data and print a report. The data entered for each employee and
the output corresponding to each data item are described next.

Corresponding output
same as entered
This will be a character A, B, C which you will convert to
print one of the classifications
A-MANAGEMENT
B-SUPERVISOR
C-CLERICAL
This will be the employee's actual age, but you will print
out the group that the employee falls in according to the
ranges given below:

< 25: Group 1
25 - 40: Group Z
41 - 65: Group 3

> 65: Group 4
This is a 4 digit number, but you will print out I EVEN I or
'000' . (This is for possible gas rationing).
This is to be calculated by adding up the digits of the em
ployee license number. (For example 14, is the code num-
ber for license number 5432.)

The report line shown below is generated for the data: SCS, B, 37,
4436

NAME
SCS

POSITION
SUPERVISOR

AGE
GROUP

25 - 40
LICENSE

EVEN

CODE
NUMBER

17

Use the following data in your program.

TGP C 18 4737
JWW A 25 9630
TMS C 41 7000
MLH B 67 2468

260 MORE CONTROL STATEMENTS



16. One of the simplest and most often used means of encoding data is the prin
ciple of shifting the alphabet some number of letters in one direction or an
other. For the sake of simplicity assume all the letters of some message are
capitalized and all punctuation and blanks are not encoded.

Write a program that will read in a series of words and convert each to
some other word and then print it. The first letter that you read will indicate
what the shift will be. For example if the first letter was a J then all A's
would be converted to J's, B's to K's, C's to L's, etc. The amount to shift in
the alphabet can be determined by calculating the difference of the ordinal
value of A and the ordinal value of this first letter.

When a shift exceeds Z the program should start over at A. Hint: Add the
excess over the ordinal value of Z to the ordinal value of A minus 1.

Sample input might be:

F NIGHTS OF FUTURE'S PAST

where F would be used to substitute for A, G for B, etc.
Test this program with the example above.
(What would need to be done to the program to decode the message back
again?)

17. A problem encountered in writing compilers or determining efficient means
of storing data on disks is converting a name into a unique or a reasonably
unique numeric value. This procedure is called hashing. Several algorithms
are used to accomplish this task.

One of the simpler methods is to use the numeric representation of each
letter in some type of equation. In this problem you are to convert a word
into a reproducible integer value between 0 and 50 O. To get this value, add
each ordinal value of a letter times that letter's position within the word.
This should generate a rather large number which may not be within the re
quired range. To calculate a number within the range, determine the modulus
of this large number and 500. For example the number for ACE would be: 1
* 65 + 2 * 67 + 3 * 69 or 4 06.

Test your program with several words and print out the calculated value
for each word.

18. Often in doing a statistical analysis a calculation that is required is the stan
dard deviation (sd). It is derived by summing a series of numbers and doing
a few additional calculations which are depicted in the following equation.

Note: The symbol i represents a summation of values from 1 to n which
i=l

can easily be implemented as a for loop. The first summation under the
square root sign is the sum xi + x~ + ... + x~ where Xi is the ith data item
and n is the count of the number of items read.

sd =

For this problem, read in a series of real numbers and determine

PROGRAMMING PROJECTS 261



(1) the standard deviation
(2) the largest and smallest values
(3) the range of the numbers
(4) the average value

Use functions in cases where only one value is being returned.

19. Write a procedure that reads in a string of characters representing a real
number. The procedure will skip any leading blanks and then read all char
acters through the first character that cannot be part of the number. If an il
legal real value is read. a program flag will be set to indicate this; otherwise
the value of the number entered will be returned as a procedure result. (Un
like the standard Pascal READ procedure. the first character following the
number is also read.) Hint: This procedure must recognize all valid forms of
real data including integers. real numbers. and scientific notation. The nu
meric value returned is type REAL. Examples of the desired procedure out
puts are shown next

Input Characters
-1. 345
1.354E02
15E-3
999
17.
.012
1.35Ew
x

262 MORE CONTROL STATEMENTS

Real Value
-1. 345
135.4
0.015
999.0
17.0
undefined
undefined
undefined

Valid Flag
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE



Arrays
6.1 Declaring and Referencing Arrays
6.2 Arrays with Integer Subscripts
6.3 Case Study
6.4 Manipulating Entire Arrays
6.5 Reading Part of an Array
6.6 General Arrays
6.7 Character Strings
6.8 Multidimensional Arrays
6.9 Case Study
6.10 Common Programming Errors
6.11 Chapter Review

In the programs written so far. each variable was associated with a single
memory cell. These variables are called simple variables. and their data
types are simple types. In this chapter. we will begin the study of data
structures. A data structure is a grouping of related data items in memory.
The Items in a data structure can be processed individually although some
operations may be performed on the structure as a whole. Generally, the
form of a data structure is declared in a type declaration statement.

The array is a data structure used for storing a collection of data items
that are all the same type (e.g. all the exam scores for a class). By using an
array, we can associate a single variable name (e.g. SCORES) with an en-

263



tire collection of data. This enables us to save the entire collection of data
in adjacent cells of main memory (one item per memory cell) and to easily
reference individual items. To process an individual item, we need to
specify the array name and indicate which array element is being manipu
lated (e.g. SCORES [3] references the third item in the array SCORES).

Since each score is saved in a separate cell in main memory, we can
process the individual items more than once and in any order we wish. In
previous programs we reused the same cell to store each exam score. Con
sequently, we could no longer access the third score after the fourth score
was read.

We will see that the use of arrays also makes it easier for us to process
textual data. Text will be stored in special arrays called strings. Some
simple string manipulation operations will be discussed.

II Declaring and Referencing Arrays

Usually, we first describe the structure of an array in an array type decla
ration. Then we may allocate storage for one or more arrays of that type.
The array type REALARRAY is declared below followed by the declaration
of array X of type REALARRAY.

type
REALARRAY = array [1 .. 8] of REAL;

var
X REALARRAY;

Pascal allocates eight memory cells for the name X; these memory cells
will be adjacent to each other in memory. Each element of array X may
contain a single real value so a total of eight real values may be stored
and referenced using the array name X.

In order to process the data stored in an array, we must be able to ref
erence each individual element. The array subscript is used to differenti
ate between elements of the same array; the subscript is written in
brackets after the array name. For example, if X is the array with eight el
ements declared above, then we may refer to the elements of the array X
as shown in Fig. 6.1. The subscripted variable X [ 1] (read as X sub 1) ref
erences the first element of the array X (value is 16.0), X [ 2] references

Fig. 6.1 The Eight Elements of the Array X.

array X

264 ARRAYS

First Second Third
element element element

Eighth
element



Example 6.1

the second element [value is 12.0), and X [ 8] references the eighth element
[value is -54.5).

Let X be the array shown in Fig. 6.1. Some statements that manipulate this
array are shown in Table 6.1.

Table 6.1 Statements that Manipulate Array X

Statement

WRITELN (X [ 1] )
X[4] := 25.0
SUM .= X[l] + X[2]

SUM := SUM + X[3]
X[4] := X[4] + 1.0
X[3] := xt i j + X[2]

Explanation

Displays the value of X [ 1] or 16.0.
Stores the value 25.0 in X [ 4 ] .
Stores the sum of X [ 1] and X [ 2] or 28.0 in

the variable SUM.
Adds X [3] to SUM. The new SUM is 34.0.
Adds 1.0 to X [ 4 ]. The new X [ 4 ] is 26.0.
Stores the sum of X [ 1] and X [ 2] in X [ 3 ] .

The new X [ 3] is 28.0.

The contents of array X, after execution of these statements, is shown
below. Only X [ 3] and X [4] are changed

array X
X[i] X[2] X[3] X[4] X[5] X[6] xl?] X[8]

First Second Third
element element element

Eighth
element

Example 6.2 Two array types [BOOLARRAY and SCOREARRAY) and two arrays [AN
SWERS and SCORES) are declared below.

type
BOOLARRAY = array [1 •• 10] of BOOLEAN;
SCOREARRAY = array [1 •• 50] of 0 •• 100;

var
ANSWERS : BOOLARRAY:
SCORES : SCOREARRAY:

The array ANSWERS has 10 elements and each element can store a
BOOLEAN value. This array may be used to store the 10 answers for a
true-false quiz [e.g. ANSWERS [1] is TRUE, ANSWERS [2] is FALSE).

The array SCORES has 50 elements and each element can store an inte
ger value from 0 to 100. This array may be used to store exam scores for
up to 50 students (e.g. SCORES[l] is 90, SCORES[2] is 65).

6.1 DECLARING AND REFERENCING ARRAYS 265



ARRAY TYPE DECLARATION

array-type = array [subscript-type] of element-type

Interpretation: The identifier array-type describes a collection of ar
ray elements; each element can store an item of type element-type.
The subscript-type may be either of the standard types BOOLEAN or
CHAR, any user-defined enumerated type, or subrange. There is an
array element corresponding to each value in the subscript-type. Nor
mally, the subscript-type is expressed as a subrange of the form
MIN •• MAX, where ORD (MIN) must be less than ORD (MAX) .

The element-type describes the type of each element in the collec
tion or array. All elements of an array are the same type.
Note 1: The standard types REAL and INTEGER may not be used as
a subscript-type: however, a subrange of the integers may be a sub
script-type.
Note 2: The element-type may be any standard or user-defined type.

It is important to realize that no storage space is allocated when the ar
ray-type is declared. The array-type describes the structure of an array
only; storage space is allocated when a variable of this type is declared.

Self-check Exercise for Section 6.1

1. Execute the statements in Table 6.1 for array X shown after the table.

• Arrays with Integer Subscripts

As indicated in section 6.1, the subscript-type may be any ordinal type
(except type INTEGER) or a subrange. The subscript (sometimes called an
index) used to reference an array element must be an expression that is
assignment-compatible with the subscript-type. Very often, the subscript
type is a subrange whose host type is INTEGER. In this case, the subscript
must be an integer expression whose value is in the range specified by the
subscript-type. For the array SCORES declared in Example 6.2, the allow
able subscript values are the integers from 1 through 50.

Example 6.3 Table 6.2 shows some sample statements using the array X shown in Fig.
6.1. I is assumed to be a type INTEGER variable with value 6. Be sure
you understand each statement.

There are two illegal attempts to display element X [ 12 I. which is not
in the array. These attempts will result in an "index expression out of
bounds" run-time error.

The last WRITE statement uses TRUNC (X [5]) (or TRUNC (2.5)) as a
subscript expression. Since this evaluates to 2, the value of X [ 2] (and not

266 ARRAYS



Table 6.2 Sample Statements for Array X in Fig. 6.1 (I is 6)

Statement

WRITE (5, X[5])

WRITE (I, X [ I ] )

WRITE (X[I] + 1)

WRITE (X[I] + I)

WRITE (X[I+1])

WRITE (X[ 1+1])

WRITE (X[2*I])

WRITE (X[2*I-4])

WRITE (X[TRUNC(X[5])])

X[I-1] := X[I]

-X[I] := X[I+1]

X[I] - 1 := X[I]

Effect

Displays 5 and 2.5 (value of X [ 5 ] ).

Displays 6 and 12.0 (value of X [ 6 ] ).

Displays 13.0 (value of 12.0 + 1).

Displays 18.0 (value of 12.0 + 6).

Displays 14.0 (value of X [ 7 ] ).

Illegal attempt to display X [ 12 l.

Illegal attempt to display X [ 12 l.

Displays -54.5 (value of X[ 8 l).

Displays 12.0 (value of X [ 2 ] ).

Assigns 12.0 (value of X [ 6 ]) to X [ 5 ] .

Assigns 14.0 (value of X [ 7 ]) to X[ 6 ] .

Illegal assignment statement

Example 6.4

X [ 5 l l is printed. If the value of TRUNC (X [ 5 ]) is outside the range 1
through 8, this would be an illegal subscript expression.

ARRAY REFERENCE

name [subscript]

Interpretation: The subscript must be an expression that is assign
ment-compatible with the subscript-type specified in the declaration
for array name. If the expression is the wrong data type, then the
syntax error "index type is not compatible with declaration" will be
detected. If the expression value is not in range, then the run-time er
ror "index expression out of bounds" will occur.

Often we wish to process the elements of an array in sequence, starting
with the first element. For example we might enter data into the array or
print its contents. This can be accomplished using a for loop whose loop
control variable (e.g. I) is also used as the array subscript [e.g. X [ I ]). In
creasing the value of the loop control variable by 1 causes the next array
element to be processed.

The array CUBE declared below will be used to store the cubes of the first
10 integers (e.g. CUBE [1] is 1, CUBE [10] is 1000).

6.2 ARRAYS WITH INTEGER SUBSCRIPTS 267



type
INTARRAY = array [1 .. 10] of INTEGER;

var
CUBE INTARRAY;
I : INTEGER;

The for statement

for I := 1 to 10 do
CUBE[I] := I * I * I

initializes this array as shown below

1array of cubes j
lloop control variablej

[1] [2 ] [3 ] [4 ]
array CUBE
[5] [6]

Example 6.5 The program in Fig. 6.2 uses three for loops to process the array X. The
loop control variable I (1 <= I <= 8) is also used as the array sub
script in each loop. The first for loop

for I := 1 to MAXITEMS do
READ (X[ I ] ) ;

is used to read one data value into each array element (the first item is
stored in X[ 1 ], the second item in X[ 2 ], etc.] The READ statement is re
peated for each value of I from 1 to 8; each repetition causes a new data
value to be read and stored in X[ I ]. The subscript I determines which
array element receives the next data value. The data line shown in the
sample run causes the array to be initialized as in Fig. 6.1.

The second for loop is used to accumulate (in SUM) the sum of all val
ues stored in the array; this loop will be traced later. The last for loop

for I := 1 to MAXITEMS do
WRITELN (I :4, XlI] :8:1, X[I]-AVERAGE :14:1)

is used to display a table showing a subscript (I), the array element with
that subscript (X [ I ]), and the difference between that element and the
average value (X [I] -AVERAGE).

program SHOWDIFF (INPUT, OUTPUT);

I Computes the average value of an array of data and
prints the difference between each value and the average.j

canst
MAXITEMS = 8; lnumber of data itemsj

type
REALARRAY = array [l .. MAXITEMS] of REAL;

268 ARRAYS



var
X : REALARRAY;
AVERAGE,
SUM : REAL;
I : INTEGER;

begin lSHOWDIFFj
lEnter the data.j
WRITE ('Enter " MAXITEMS
for I := 1 to MAXITEMS do

READ (X[ I ] ) :
READLN;

[arr ay of dataj
laverage value of dataj

lsum of the dataj
lloop control variablej

: 2, ' numbers: ');

lCompute the average value.j
SUM := 0.0;
for I := 1 to MAXITEMS do

SUM := SUM + X[I];
AVERAGE := SUM / MAXITEMS;
WRITELN ('The average value is

1initialize SUMj

ladd each element to SUMj
1get average valuej

AVERAGE :8:1);

lDisplay the difference between each item and the average.j
WRITELN ('Table of differences between XlI] and the average');
WRITELN ('I' :4, 'XlI]' :8, 'Difference' :14);
for I := 1 to MAXITEMS do

WRITELN (I :4, XlI] :8:1, X[I]-AVERAGE :14:1)
end. 1SHOWDIFFj

Enter 8 numbers: 16 12 6 8 2.5 12 14 -54.5
The average value is 2.0
Table of differences between XlI] and the average

IX(I] Difference
1 16.0 14.0
2 12.0 10.0
36.0 4.0
4 8.0 6.0
5 2.5 0.5
6 12.0 10.0
7 14.0 12.0
8 -54.5 -56.5

Fig. 6.2 Printing a Table of Differences

The program fragment

SUM := 0.0;
for I := 1 to MAXITEMS do

SUM := SUM + XlI];

1initialize SUMj

ladd each element to SUMj

accumulates the sum of all eight elements of array X in the variable SUM.
Each time the for loop is repeated, the next element of array X is added
to SUM. The execution of this program fragment is traced in Table 6.3 for
the first three repetitions of the loop.

In Fig. 6.2, the subscripted variable X[ I] is an actual parameter for the
standard Pascal READ or WRITELN procedure. It is always necessary to
read data into an array one element at a time as shown in this example.

6.2 ARRAYS WITH INTEGER SUBSCRIPTS 269



Table 6.3 Partial Trace of for Loop

Statement Part I X[ I] SUM Effect

SUM := 0.0; 0.0 Initializes SUM

for I := 1 to MAXITEMS do 16.0 Initializes I to 1
SUM := SUM + X [I] 16.0 Add X [ 1] to SUM

increment and test I 2 12.0 2 <= 8 is true
SUM := SUM + X[I] 28.0 Add X [ 2] to SUM

increment and test I 3 6.0 3 <= 8 is true
SUM := SUM + X[I] 34.0 Add X [ 3] to SUM

In most instances it is also necessary to display one array element at time;
however. this requirement may be waived when dealing with packed ar
rays (see Section 6.7) .

• Case Study

We have written programs that accumulate the sum of all input data items
in a single variable. Often, we have different categories of data items and
we might want to accumulate a separate total for each category rather
than one grand total for all the items. The problem that follows uses an
array to accomplish this.

Home Budget
Problem

270 ARRAYS

Problem: We would like to write a program that keeps track of our
monthly expenses in each of 10 categories. The program should read each
expense amount, add it to the appropriate category total, and print the
total expenditures by category. The input data consists of the category
number and amount of each purchase made during the past month.

Discussion: There are 10 separate totals to be accumulated; each total
can be associated with a different element of a 10-element array. The
program must read each expenditure, determine its correct category, and
then add that expenditure to the appropriate array element. When finished
with all expenditures, the program can print a table showing each
category and its accumulated total. As in all programs that accumulate a
sum, each total must be initialized to zero. The problem inputs and
outputs and algorithm follow.

each expenditure and its category



Algorithm

the array of ten expenditure totals (BUDGET)

1. Initialize all category totals to zero.
2. Read each expenditure and add it to the appropriate total.
3. Print the accumulated total for each category.

The structure chart in Fig. 6.3 shows the relationship between the three
steps. The array BUDGET is manipulated by all three procedures. Proce
dures INITIALIZE and POST store information in this array; this infor
mation is displayed by procedure REPORT. The main program and
procedures INITIALIZE and REPORT are shown in Fig. 6.4.

l'
BUDGET

I

INITIALIZE

11'
BUDGET

J,I

F!OST

I
BUDGET

J,

REPORT

Fig. 6.3 Structure Chart for Home Budget Problem

program HOMEBUDGET (INPUT, OUTPUT);

I Prints a summary of all expenses by budget category.!

const
NUMCATEGORY = 10;

type
INDEX = 1 •• NUMCATEGORY;
BUDGETARRAY = array [INDEX] of REAL;

var
BUDGET : BUDGETARRAY;

procedure INITIALIZE (var BUDGET loutput!

IInitializes array BUDGET to all zeros.l

var
NEXTCAT : INDEX;

Inumber of categories!

Isubscript type!
Iarray type!

larray of ten totals!

BUDGETARRAY) ;

[Loop control variable
array subscript!

6.3 CASE STUDY 271



begin IINITIALIZEI
for NEXTCAT := 1 to NUMCATEGORY do

BUDGET[NEXTCAT] := 0.0
end: IINITIALIZE!

procedure POST (var BUDGET Iinput/output! BUDGETARRAY) :

I Reads each expenditure amount and adds it to the appropriate
element of array BUDGET. !

begin IPOST!
WRITELN ('Procedure POST entered')

end: IPOST!

procedure REPORT (BUDGET Iinput! : BUDGETARRAY):

IPrints the expenditures in each budget category.!

var
NEXTCAT : INDEX:

begin IREPORT!
WRITELN ('Category' :10, 'Expenses' :15):

[Loop control variable
array subscript!

[pr i.nt; heading!

IPrint each category number and the expenditure!
for NEXTCAT := 1 to NUMCATEGORY do

WRITELN (NEXTCAT :10, BUDGET [NEXTCAT] :15:2)
end: IREPORT!

begin IHOMEBUDGET!
IInitialize array BUDGET tq all zeros.!
INITIALIZE (BUDGET):

IRead and process each expenditure.!
POST (BUDGET):

IPrint the expenditures in each category.!
REPORT (BUDGET)

end. IHOMEBUDGET!

Fig. 6.4 Home Budget Main Program

Iprint row!

The main program (shown in Fig. 6.4) contains declarations for a con
stant NUMCATEGORY and two types (INDEX and BUDGETARRAY) as well
as the array BUDGET. The array BUDGET (type BUDGETARRAY) appears in
each parameter list shown in Fig. 6.4 and is passed between each proce
dure and the main program. When passing an entire array, no subscript is
used. Later we will say more about the use of arrays as parameters.

The constant NUMCATEGORY determines the number of repetitions of
the for loop in each procedure. The loop control variable NEXTCAT (type
INDEX) is declared as a local variable in each procedure.

In procedure INITIALIZE, the assignment statement in the loop

272 ARRAYS



for NEXTCAT := 1 to NUMCATEGORY do
BUDGET [NEXTCAT] := 0.0

is repeated once for each value of NEXTCAT from 1 to 10 and is used to
set each element of BUDGET to zero. In procedure REPORT, the statement

for NEXTCAT := 1 to NUMCATEGORY do
WRITELN (NEXTCAT :10, BUDGET[NEXTCAT] :15:2)

is used to print each category number (from 1 to 10) and its expense total.
Procedure POST must read each expenditure and add it to the appropri

ate array element. The total of all expenditures in category 1 is accumulat
ed in BUDGET [ 1 ], all expenditures in category 2 are accumulated in
BUDGET [ 2 ], etc. Procedure POST is shown in Fig. 6.5; it uses procedure
READEXPENSE to read in the category (CATEGORY) and amount (EX
PENSE) for each expenditure.

procedure POST (var BUDGET Iinput/output! : BUDGETARRAY)i

IReads each expenditure amount and adds it to the appropriate
element of array BUDGET. !

const
SENTINEL

type
CATRANGE

Oi

o.. NUMCATEGORY ;

Isentinel category!

var
CATEGORY: CATRANGE;
EXPENSE : REALi

lexpenditure category!
lexpenditure amount!

procedure READEXPENSE (var CATEGORY loutput! : CATRANGEi
var EXPENSE loutput! : REAL);

IReads the category and amount of each expenditure.!

var
TEMPCAT : INTEGER;

begin IREADEXPENSEj
jRead the category.!
repeat

WRITE ('Enter a budget category (1 to " NUMCATEGORY :2,
') or 0 to stop: ')i

READLN (TEMPCAT)i
until TEMPCAT in [O .• NUMCATEGORY]i
CATEGORY := TEMPCATi Ireturn valid category]

IRead the amount.)
if CATEGORY <> SENTINEL then

6.3 CASE STUDY 273



begin
WRITE ('Enter the expenditure amount $');
READLN (EXPENSE)

end
end; jREADEXPENSEI

begin IPOSTl
IRead each expenditure and add it to an element of BUDGET.l
READEXPENSE (CATEGORY, EXPENSE); jread first expense datal
while CATEGORY <> SENTINEL do

begin
BUDGET[CATEGORY] := BUDGET [CATEGORY] + EXPENSE;
READEXPENSE (CATEGORY, EXPENSE) jread next expense datal

end [wh i l.e ]
end; jPOSTI

Fig. 6.5 Procedure POST for Home Budget Problem.

An advantage to using arrays in Fig. 6.5 is that there is no need to pro
cess each expense category as a separate case using an if or case state
ment. In procedure POST, the assignment statement

BUDGET[CATEGORY] := BUDGET[CATEGORY] + EXPENSE;

adds the expense amount to the element of array BUDGET that is selected
by the subscript CATEGORY.

A sample run of the Home Budget Program is shown in Fig. 6.6. As illus
trated, it is not necessary for the data to be in order by category.

Fig. 6.6 Sample Run of Home Budget Program

Enter a budget category (1 to 10) or 0 to stop: 4
Enter the expenditure amount $10.00
Enter a budget category (1 to 10) or 0 to stop: 10
Enter the expenditure amount $15.00
Enter a budget category (1 to 10) or 0 to stop: 4
Enter the expenditure amount $35.00
Enter a budget category (1 to 10) or 0 to stop: 0

Category Expenses
1 0.00
2 0.00
3 0.00
4 45.00
5 0.00
6 0.00
7 0.00
8 0.00
9 0.00

10 15.00

274 ARRAYS



PROGRAM STYLE

AI/owing for array expansion

The constant NUMCATEGORY is used throughout the Home Budget
Program to represent the number (10) of budget categories. This en
ables us to easily extend the program to handle more budget catego
ries by changing the value of a single constant. This is consistent
with our prior use of program constants to write general programs.

PROGRAM STYLE

Avoiding out of bounds index errors

We have taken several measures to prevent the occurrence of an "in
dex expression out of bounds" run-time error in Fig. 6.5. In procedure
READEXPENSE. the local variable TEMP CAT (type INTEGER) tempo
rarily holds each data value entered as a possible category. The re
peat-until loop ensures that only valid category values are
assigned to the parameter CATEGORY (type o.. NUMCATEGORY). In
procedure POST, the while loop is exited when CATEGORY is O. so
there is no attempt to increment the nonexistent array element BUD
GET [0].

Since CATEGORY is used as a subscript to array BUDGET, it is
tempting to declare CATEGORY as type INDEX (subrange type
1 .• NUMCATEGORY). However, this causes an "out of bounds" error
to occur when the sentinel value (0) is stored in CATEGORY.

Sequential versus Random Access to Arrays

The Home Budget Program illustrates two common ways of selecting array
elements for processing. Often. we need to manipulate all elements of an
array in a uniform manner (e.g. initialize them all to zero). In situations
like this. it makes sense to process the array elements in sequence (se
quential access), starting with the first and ending with the last. In proce
dures INITIALIZE and REPORT, this is accomplished by using a for
loop whose loop control variable is also the array subscript.

In procedure POST the order in which the array elements are accessed
is completely dependent on the order of the data. The value read into
CATEGORY determines which element is incremented. This is called ran
dom access since the order is not predictable beforehand.

Self-check Exercises for Section 6.3

1. Write a procedure that copies each value stored in one array to the
corresponding element of another array. [i.e. If the arrays are INAR-

6.3 CASE STUDY 275



RAY and OUTARRAY, then copy INARRAY [1] to OUTARRAY [1]. next
copy INARRAY[ 2] to OUTARRAY[ 2], etc.)

2. Write a procedure that reverses the values stored in an array. If array
X has N elements. then Y [ 1] will become X [N]. Y [ 2] will become X
[N-1 ], etc. X and N should be procedure inputs; Y should be a proce
dure output.

II Manipulating Entire Arrays

Most Pascal operators can manipulate only one array element at a time.
Consequently an array name in an expression will generally be followed
by its subscript.

One exception is the array copy operation. It is possible to copy the
contents of one array to another array provided the arrays are the same
array type. Given the declarations

canst
MAXSIZE = 100i

type
INDEX 1 •• MAXSIZE;
TESTARRAY = array [INDEX] of REAL;

var
X, Y, Z : TESTARRAY;

the assignment statement

X := Y larray copy statementl

copies each value in array Y to the corresponding element of array X [l.e.
Y [ 1] is copied to X [l ], Y [ 2] to X [ 2 ], etc.).

Arrays as Parameters

If several elements of an array are being manipulated by a procedure, it is
generally better to pass the entire array of data instead of individual array
elements. In Fig. 6.4. the procedure (call) statements

INITIALIZE (BUDGET);
POST (BUDGET);
REPORT (BUDGET)

pass the entire array BUDGET to each procedure. BUDGET is declared as a
variable parameter in procedures INITIALIZE and POST and as a value
parameter in procedure REPORT.

In all three procedures, the formal parameter is declared as type

276 ARRAYS



Example 6.6

BUDGETARRAY. This is necessary since the formal and actual parameter
must be the same array type. The procedure heading

procedure INITIALIZE (var BUDGET: array [INDEX] of REAL);

is invalid because an identifier must be used to specify the parameter
type. .

When an array is used as a variable parameter. Pascal passes the ad
dress of the first actual array element into the procedure data area. Since
the array elements are stored in adjacent memory cells, the entire array of
data can be accessed directly by the procedure.

When an array is used as a value parameter, a local copy of the array is
made when the procedure is called. The local array is initialized so that it
contains the same values as the corresponding actual array. The proce
dure manipulates the local array, and the changes made to the local array
are not reflected in the actual array.

The next two examples illustrate the use of arrays as parameters, as
suming the declarations below.

const
MAXSIZE = 5;

type
INDEX = l .• MAXSIZE;
TESTARRAY = array [INDEX] of REAL;

var
X, Y, Z : TESTARRAY;

Although it is possible to use a single assignment statement to copy one
array to another. the assignment statement

Z := X + Y lillegal addition of arraysl

is invalid because the operator + cannot have an array as an operand.
Procedure ADDARRAY in Fig. 6.7 may be used to add two arrays of type
TESTARRAY.

procedure ADDARRAY (A, B linputl : TESTARRAY;
var C loutputl : TESTARRAY);

jStores the sum of A[I] and B[I] in C[I]. Array
elements with subscripts l •. MAXSIZE are summed,
element by element. I

var
I : INDEX; jloop control variable and

array subscriptl

6.4 MANIPUl.ATING ENTIRE ARRAYS 277



begin !ADDARRAYI
jAdd corresponding elements of each array I
for I := 1 to MAXSIZE do

e[I} := A[I} + B[I}
end; jADDARRAYI

Fig. 6.7 Procedure ADDARRAY

The parameter correspondence established by the procedure (call) state
ment

ADDARRAY (x, Y, Z)

is shown in Fig. 6.8. Arrays A and B in the procedure da ta area are local
copies of arrays X and Y in the calling program. As indicated by the solid
arrow, array parameter e is connected to array Z in the main program.
The procedure results are stored directly in array Z. After execution of the
procedure, Z[ l} will contain the sum of X[ l} and Y[ l} or 3.5, Z[ 2 }
will contain 6.7, etc; arrays X and Y will be unchanged.

main program data area procedure data area

Example 6.7

278 ARRAYS

Fig. 6.8 Parameter Correspondence for ADDARRAY (X, Y, Z)

Function SAMEARRAY in Fig. 6.9 is used to determine whether two arrays
of type TESTARRAY are identical. Two arrays are considered identical if
the first element of one is the same as the first element of the other, the
second element of one is the same as the second element of the other, etc.

We can determine that the arrays are not identical by finding a single
pair of unequal elements. Consequently, the repeat-until loop may be
executed anywhere from one time (first elements unequal) to MAXS I ZE



times. The loop is exited when a pair of unequal elements is found (A[ I ]
<> B[I]) or when all elements have been tested (I = MAXSIZE). The
subscript I is initialized to 0; however, it becomes 1 before the first test of
the until condition.

function SAMEARRAY (A, B : TESTARRAY) : BOOLEAN;

IReturns a value of TRUE if the arrays A, B are identical; otherwise,
returns a value of FALSE. I

var
I O•• MAXSIZE; larray subscriptl

begin
I := 0; II is incremented before first array referencel

ITest corresponding elements of arrays A and B.I
repeat

Iinvariant: I < MAXSIZE and elements
with subscripts 1 •. 1 are equall
I := I + 1 ladvance to next elementsl

until (A[I] <> B[I]) or (I = MAXSIZE);

lassert: an unequal pair was found or arrays are identical I
SAMEARRAY := A[I] = B[I]

end; ISAMEARRAY I

Fig. 6.9 Function SAMEARRAY

The BOOLEAN assignment statement

SAMEARRAY := A[I] B[I]

defines the function result. If the repeat-until loop is exited because
the elements with subscript I are unequal, then SAMEARRAY will be
FALSE; otherwise, SAMEARRAY will be TRUE.

As an example of how function SAMEARRAY may be used, the if state
ment

if SAMEARRAY(X, Y) then
Z := X

else
ADDARRAY (X, Y, Z)

either copies array X to array Z (X and Yare identical) or stores the sum
of arrays X and Y in array Z (X and Yare not identical).

6.4 MANIPULATING ENTIRE ARRAYS 279



Example 6.8

PROGRAM STYLE

Efficiency of variable parameters versus protection of value parameters

Parameters A and B in Fig. 6.9 are declared as value parameters be
cause they are used only to store data passed into procedure
ADDARRAY; and their values should not be changed by ADDARRAY.

Pascal must create a local copy of these two arrays each time pro
cedure ADDARRAY is called. This uses valuable computer time and
memory space. If the arrays being copied are very large, the program
may terminate with an error because all of its memory space has
been used. To conserve time and memory space, experienced pro
grammers sometimes declare arrays that are used only for input as
variable parameters instead of value parameters. However, this
means that the array is no longer protected from accidental modifica
tion by the procedure. Any changes (either by accident or design) are
made directly to an actual array that corresponds to a variable pa
rameter. If an array corresponds to a value parameter, the changes
are made to a local copy. and the actual array is unaffected.

Individual Array Elements as Parameters

It is also correct to use a single array element as an actual parameter. For
example. the expression

ROUND(BUDGET[5])

rounds the value stored in the fifth element of array BUDGET where the
subscripted variable BUDGET [ 5] is the actual parameter passed to func
tion ROUND.

Procedure EXCHANGE in Fig. 6.10 exchanges the values of its two type
REAL parameters.

Fig.6.10 Procedure EXCHANGE

procedure EXCHANGE (var P, Q jinputjoutputl

jExchanges the values of P and Q.I

REAL) ;

var
TEMP : REAL; jtemporary variable for the exchange I

begin jEXCHANGEI
TEMP := P; p.= Q; Q:= TEMP

end; jEXCHANGE I

280 ARRAYS



The procedure (call) statement

EXCHANGE (X[l], X[2])

uses this procedure to exchange the contents of the first two elements
(type REAL) of array X. The actual parameter X[ 1] corresponds to formal
parameter P: the actual parameter X [ 2] corresponds to formal parameter
Q. Figure 6.11 shows this correspondence for the array X shown earlier in
Fig. 6.8.

main program data area procedure data area

Fig. 6.11 Parameter Correspondence for EXCHANGE (X[1], X[2])

It is illegal to use a subscripted variable as a formal parameter. For ex
ample. the procedure header

procedure EXCHANGE (var XlI], X[J] Iinput/output I

will cause a syntax error.

REAL) ;

Type Compatibility Revisited

Three arrays (X. Y. and z) are declared below. Each array can be used to
store 100 real numbers. The declaration for array Z shows that it is not
necessary to declare the array type before declaring the array itself; how
ever. this is not recommended.

const
MAXSIZE = 100;

type
INDEX 1 .. MAXSIZE;
TESTARRAY = array [INDEX] of REAL;

var
X, Y : TESTARRAY;
Z : array [INDEX] of REAL;

X and Yare both declared to be the same array type; consequently. the ar
ray copy statement

X := Y Icopy array Y to array XI

6.4 MANIPULATING ENTIRE ARRAYS 281



can be executed without error. However, the array copy statement

X := Z \invalid array copYI

may cause a syntax error as array Z is not considered the same type as
array X (type TESTARRAY) even though both arrays have 100 type REAL
elements.

If the variable declaration statement is rewritten as

var
X, Y, Z

the array copy

X := Z

TESTARRAY;

IcoPY array Z to array xI

is valid. We recommend that you follow this convention of using array
type identifiers particulary when there is a possibility that the array may
be used as a procedure parameter.

Self-check Exercises for Section 6.4

1. Write a procedure that assigns a value of TRUE to element I of the
output array only if element I of one input array has the same value
as element I of the other input array.

• Reading Part of an Array

Usually we don't know exactly how many elements will be in an array,
For example, if we are processing exam scores, there may be 150 students
in one class, 200 in the next, etc. In this situation, we should declare an
array that can accommodate the largest anticipated class. Only part of
this array will actually be processed for a smaller class.

Example 6.9 The array SCORES declared below can accornodate a class of up to 250
students. Each array element may contain an integer value between 0 and
100.

const
MAXSIZE = 250;

type
CLASSINDEX
SCOREARRAY
CLASSRANGE

1 .. MAXSIZE;
array [CLASSINDEX] of 0 .. 100;
O•• MAXSIZE i

var
SCORES SCOREARRAY;
CLASSIZE : CLASSRANGEi

282 ARRAYS



Procedure READS CORES in Fig. 6.12 reads up to 250 exam scores. It
prints a warning message when the array is filled. The actual number of
scores read is returned as the value of CLASSIZE.

procedure READSCORES (var SCORES loutput! : SCOREARRAY;
var CLASSIZE loutputl : CLASSRANGE);

IReads an array of exam scores (SCORES) for a class of up to
MAXSIZE students and returns the number (CLASSIZE) of array
elements actually read. I

const
SENTINEL -1; Isentinel vaLue ]

var
TEMPSCORE : -1 •. 100;

begin IREADSCORES I
CLASSIZE := 0;

Itemporary storage for a scorel

!initial class sizel

MAXSIZE) ;

IRead each array element until done. I
repeat

WRITE ('Enter next score or -1 to stop: ');
READLN (TEMPSCORE);
if TEMPSCORE <> SENTINEL then

begin Isave I
CLASSIZE := CLASSIZE + 1;
SCORES[CLASSIZE] := TEMPSCORE

end Isave I
until (TEMPSCORE = SENTINEL) or (CLASSIZE

lincrement CLASSIZEI
Isave the score I

IAssert: Sentinel read or array is filled.1
if CLASSIZE = MAXSIZE then

WRITELN ('Array is filled.')
end; jREADSCORESI

Fig. 6.12 Reading Part of an Array

In any subsequent processing of array SCORES, the variable CLASSIZE
should be used to limit the number of array elements processed. Only the
subarray with subscripts 1 .. CLASSIZE is defined. All array elements
with subscripts larger than CLASSI ZE are still undefined and should not
be manipulated.

II General Arrays

The subscript type of each array examined so far was a subrange of the
integers. This, of course, is not required in Pascal as the subscript type
may be any enumerated type (except INTEGER) or a subrange. Several
different array types are described in Table 6.4.

6.6 GENERAL ARRAYS 283



Table 6.4 Some Array Types and Applications

Array Application

NAME array [1 •• 10] of CHAR;

FAHREN array [-10 .. 10] of REAL;

ANSWERS array [BOOLEAN] of INTEGER;

LET FOUND array ['A' •• 'Z'] of BOOLEAN;

NAME [ 1] : = 'A';
storing a person's name (up to 10
letters)

FAHREN[-lO] := 14.0;
storing Fahrenheit temperatures cor
responding to - 10 through 10 de
grees Celsius

LETCOUNT[ 'A'] : = 0;
storing the number of times each
letter occurs

LETFOUND [ 'X'] := FALSE;
storing a set of flags indicating which
letters occurred (flag is TRUE)

ANSWERS [TRUE] := 15;
storing the number of TRUE answers
and FALSE answers for a quiz

array ['A' •• 'Z'] of INTEGER;LETCOUNT

Example 6.10

The array NAME has 10 elements and may be used to store the letters of
a person's name. The array FAHREN has 21 elements and may be used to
store the Fahrenheit temperature corresponding to each Celsius tempera
ture in the range -10 through +10 degrees Celsius. For example, FAHREN
[ 0] would be the Fahrenheit temperature, 32.0, corresponding to 0 de
grees Celsius.

The arrays LETCOUNT and LETFOUND have the subscript type
, A' •• ' Z '. Hence, there is an array element for each uppercase letter.
LETCOUNT[ 'A' ] can be used to count the number of occurrences of the
letter A in a line; LET FOUND [ 'A'] can be used to indicate whether or
not the letter A occurs. If the letter A occurs, LET FOUND [ 'A'] will be
TRUE; otherwise. LETFOUND [ 'A' ] will be FALSE.

The program in Fig. 6.13 uses the arrays LETCOUNT and LET FOUND de
scribed above to count and print the number of occurrences of each letter
in a line of text. The first for loop initializes the two arrays. The whi le
loop reads each character into NEXTCHAR and updates the corresponding
array elements if the character is a letter. The last for loop prints the
number of times each letter occurs; only counts greater than zero are
printed.

program CONCORDANCE (INPUT, OUTPUT);

(Finds and prints the number of occurrences of each letter. \

type
LETTER = 'A' •. 'Z';

284 ARRAYS



var
LETCOUNT
LETFOUND
NEXTCHAR

array [LETTER] of INTEGERi
array [LETTER] of BOOLEANi
CHARi

(array of countsl
(array of flags l
(the next characterl

begin (CONCORDANCEI
(Initialize LETCOUNT and LETFOUND.I
for NEXTCHAR := 'A' to 'Z' do

begin
LETCOUNT [NEXTCHAR] := Oi
LETFOUND [NEXTCHAR] := FALSE

end; lforl

(initialize countsl
(initialize flagsl

(Count the letters in a line.1
WRITELN ('Type in a line of text using uppercase letters.');
while not EOLN do

begin
READ (NEXTCHAR) i (get next character I
if NEXTCHAR in ['A' .. 'Z'] then

begin [Le t t.e r ]
LETCOUNT[NEXTCHAR] .= LETCOUNT[NEXTCHAR] + li
LETFOUND [NEXTCHAR] := TRUE (set letter flagl

end [Le t t.e r ]
end r [wh i.Le ]

READLNi WRITELNi

(Print counts of letters that are in the line.1
WRITELN ('Letter', 'Occurrences' :16)i
for NEXTCHAR := 'A' to 'z' do

if LETFOUND [NEXTCHAR] then
WRITELN (NEXTCHAR :6, LETCOUNT[NEXTCHAR] :16)

end. (CONCORDANCE I

Type in a line of text using uppercase letters.
THIS IS IT!

Letter
H
I
S
T

Occurrences
1
3
2
2

Fig. ,6.13 Counting Letters in a Line.

Example 6.11 The array MONTHSALES declared below can be used to keep track of the
amount of sales in each month. The subscript type is MONTH; the subscript
values are the constants JAN to DEC.

type
MONTH = (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC)i
SALESARRAY = array [MONTH] of REALi

var
CURMONTH
MONTHSALES
CURSALES :

MONTHi
: SALESARRAYi
REALi

6.6 GENERAL ARRAYS 285



The statement

for CURMONTH := JAN to DEC do
MONTHSALES[CURMONTH] := 0.0

initializes this array to all zeros. The statement

MONTHSALES[CURMONTH] := MONTHSALES[CURMONTH] + CURSALES

adds the value of CURSALES to the element of MONTHSALES selected by
the subscript CURMONTH.

Example 6.12 The program in Fig. 6.14 generates cryptograms. A cryptogram is a coded
, message formed by substituting a code character for each letter of an orig

inal message. The substitution is performed uniformly throughout the origi
nal message, i.e., all A's might be replaced by S, all B's by P, etc. All
punctuation (including blanks between words) remains unchanged,

The program uses array CODE (subscript type •A' •• • Z ') to hold the
code symbol corresponding to each uppercase letter (e.g. CODE [ , A I] is
the code symbol for the letter A). The code symbols are read in by the
for statement in procedure READCODE, starting with the code symbol for
the letter A.

Procedure ENCRYPT reads each message character into NEXTCHAR. If
NEXTCHAR is an uppercase letter, its code symbol is printed next to it;
otherwise, NEXTCHAR is printed again. The original message is in the first
output column in blue type; the cryptogram appears in the second column.

program CRYPTOGRAM (INPUT, OUTPUT);

type
LETTER = 'A' .. 'Z';
CODEARRAY = array [LETTER] of CHAR;

var
CODE : CODEARRAY; (array of code symbolsl

procedure READCODE (var CODE (outputl : CODEARRAY);

(Reads in the code symbol for each letter. I

var
NEXTLETTER : LETTER; leach Le t t.e r ]

begin \READCODEj
WRITELN ('Enter a code symbol under each letter.');
WRITELN ('ABCDEFGHIJKLMNOPQRSTUVWXYZ');

IRead each code symbol into array CODE. I
for NEXTLETTER := 'A' to 'Z' do

READ (CODE[NEXTLETTER]);

READLN;
WRITELN

end i IREADCODE I

286 ARRAYS

Iterminate input linel
Iskip a linel



procedure ENCRYPT (CODE (inputl : CODEARRAY):

jReads each character and prints it or its code symbol. I

const
SENTINEL '@' ; (sentinel character I

var
NEXTCHAR : CHAR: jeach message character I

begin (ENCRYPTI
WRITELN ('Enter each message character. Use uppercase letters.');
WRITELN ('Enter the symbol "@" after your message.'):
repeat

READ (NEXTCHAR) ;
if NEXTCHAR in ['A' .. 'Z'] then

WRITELN (CODE [NEXTCHAR] :5) (print code symbol I
else

WRITELN (NEXTCHAR :5) (print nonletterl
until NEXTCHAR = SENTINEL

end: IENCRYPT\

begin (CRYPTOGRAMI
jRead in the code symbol for each letter. I
READ CODE (CODE):

jRead each character and print it or its code symbol. I
ENCRYPT (CODE)

end. jCRYPTOGRAMI

Enter a code symbol under each letter.
ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA

Enter each message character. Use uppercase letters.
Enter the symbol .,@" after your message.
A B

T U
I J
N 0
Y Z

o P
N 0
E F
! !
@ @

Fig. 6.14 Cryptogram Generator

The program in Fig. 6.14 must be modified slightly for computers that
use the EBCD IC character set. This character set contains some special
characters between the letters I and J and between the letters Rand S.
One possibility is to replace the for statement in procedure READCODE
with the one shown next.

6.6 GENERAL ARRAYS 287



for NEXTCHAR := 'A' to 'Z' do
if NEXTCHAR in [' A' .. ' I " ' J I •• I R " I S I •• I Z '] then

READ (CODE [NEXTLETTER]);

The if statement causes the READ statement to be skipped when
NEXTCHAR is a special character.

Self-check Exercises for Section 6.6

1. Describe the following array types:
~ array [1 •• 20] of CHAR
b) array [' 0' .• ' 9 '] of BOOLEAN
~ array [-5 .. 5] of REAL
d) array [BOOLEAN] of CHAR

II Character Strings

Until now, our use of character data has been quite limited. Variables of
type CHAR were used to hold single character values. In this section. we
shall discuss the manipulation of character arrays.

The variable declaration statement

var
NAME: array [1 .. 10] of CHAR;
I : INTEGER;

declares a character array NAME with 10 elements; a single character can
be stored in each array element.

The program fragment below first reads a sequence of characters. one at
a time. into the array NAME and then prints out the array NAME.

for I := 1 to 10 do
READ ( NAME [I ] ) ;

for I := 1 to 10 do
WRITE (NAME[I])

If the characters A. C. Jones are entered. then the array NAME would
be defined as shown next. NAME [5] contains the blank character [shown
as .).

Array NAME

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

As with any other array. a loop must be used to read and print each in
dividual array element. In the next section. we will introduce a special

288 ARRAYS



type of array that will enable us to print character arrays without using a
loop.

Storing Character Strings in Packed Arrays

A packed array can be used to store a sequence or string of characters.
When an array is packed some compilers can store more than one charac
ter in each memory cell. Thus less storage space is needed for storing a
character string in a packed array. Another important benefit is that Pas
cal makes it easier for the programmer to manipulate character strings
stored in packed arrays. For example, the arrays NAMEl and NAME2 de
clared below may each be used to store a character string of length
STRINGSIZE (10 characters).

canst
STRINGSIZE = 10;

type
STRING = packed array [l •• STRINGSIZE] of CHAR;

var
NAME 1 , NAME2 : STRING;

The statement

NAMEl := 'A.C. Jones'; (assign a string to NAME 1 I

stores the string value 'A.C. Jones' in the packed array NAMEl ('A'
in NAMEl [1], '.' in NAMEl [2], etc.], If NAMEl is not a packed array,
this statement causes a syntax error.

The string value being assigned must be the same type as the packed ar
ray receiving the string; this means that the number of characters in the
string value must match exactly the size (STRINGS I ZE) of the array. The
string assignments

NAMEl := 'Jones';
NAMEl := 'A.C. Johnson'

(invalid-string too shortl
(invalid-string too longl

cause a "type conflict of operands" syntax error.
The assignment statement

NAME2 := NAME1; (Copy NAMEl to NAME 2 I

copies the string stored in NAMEl to NAME2. The statement

NAME 2 [1] := 'K' (change A.C. to K.C.I

changes only the first character stored in array NAME2 to 'K'. The state
ments

6.7 CHARACTER STRINGS 289



WRITELN (NAME1);
WRITELN (NAME2)

display the lines

A.C. JONES
K.C. JONES

As shown above, a packed array of characters can be used as a parame
ter in a WRITELN statement. When this is done, the characters are printed
as a single string. Note that these WRITELN statements are only valid for
packed arrays. Unfortunately, there is no shortcut for reading a string into
a packed array. A loop must be used to read individual characters as it is
for a regular array.

Example 6.13 Procedure READSTRING in Fig. 6.15 uses a while loop to read in a data
string of up to STRINGSIZE (a global constant) characters. The data
string will be stored in the first actual parameter (type STRING); the string
length (actual number of characters read) will be stored in the second ac
tual parameter.

Fig. 6.15 Procedure READSTRING

procedure READSTRING (var INSTRING (outputl : STRING;
var LENGTH (outputl: INTEGER);

IReads a data string into INSTRING. The end of the string is
indicated by an end-of-line mark. The string length (number of
characters read) is assigned to LENGTH. A string that is shorter
than STRINGSIZE is padded with blanks.

canst
BLANK = , r ,, (character used for paddingl

var
I O•• STRINGSIZE; (loop control variablel

begin IREADSTRING I
IRead each character and store it in the next array element. I
LENGTH := 0; (no characters readl

while not EOLN and (LENGTH <
begin

linvariant: not at end of
LENGTH := LENGTH + 1;
READ (INSTRING[LENGTH])

end; [whi.Le ]

STRINGSIZE) do

line and array is not filledl
lincrement subscript I

(store next character I

(assert: at end of line or array is filledl
READLN; (advance to the next linel

(If LENGTH < STRINGSIZE, pad rest of string with blanksl
for I :=-LENGTH+l to STRINGSIZE do

INSTRING[I] := BLANK
end; IREADSTRING I

290 ARRAYS



Example 6.14

Procedure READSTRING assumes that the string being read is at the end
of the line. You indicate the end of the line by pressing the carriage return.
The while condition calls the standard function EOLN (see Section 4.7) to
test whether the end of the line is reached. The while loop is exited
when the EOLN function returns TRUE (at end of line) or the array is filled
(LENGTH is STRINGSIZE). After loop exit occurs, the READLN statement
processes the carriage return thereby advancing to the next line.

A data string may have fewer characters than the declared length,
STRINGS I ZE, of the array receiving it. If the data string length (LENGTH)
is less than STRINGSIZE, then a blank character should be stored in all
array elements that did not receive data. This is called padding a string
with blanks and, in Fig. 6.15, is performed by the for statement. The for
loop body is skipped if LENGTH is equal to STRINGSIZE (array is filled
with data). If the data string is longer than STRINGSIZE, only the first
STRINGS I ZE characters will be read and stored; the rest will be skipped.

Due to the different ways in which interactive input occurs in Pascal,
procedure READSTRING may have to be modified for your system. Your
instructor will tell you if any changes are necessary.

Some Pascal compilers provide a special STRING data type which may
be used for storing character strings. This data type is discussed in Ap
pendixes B.3 and B.4.

Now that we have a way to store character strings in memory, we can
improve our capability to manipulate textual data. One of the things we
might like to do is write a program that prints form letters.

The three lines below may be used to begin a series of letters inquiring
about a summer job.

Dear _

I would be interested in applying for the position of at
______ this summer. I am currently a junior at Temple University.

If the rest of the letter is relatively long, then it's wise to write a pro
gram to generate these letters. The procedure that fills in the three blanks
in the preamble above is shown in Fig. 6.16.

procedure PREAMBLE;

(Prints the preamble of a job inquiry letter. I

var
BOSS, JOBTITLE, COMPANY : STRING;
BOSSLEN, JOBLEN, COMPLEN INTEGER;

beg in (PREAMBLE I
(Get data needed to fill in the blanks. I
WRITE ('Name of prospective employer: '):
READSTRING (BOSS, BOSSLEN):
WRITE ('Job desired: ');
READSTRING (JOBTITLE, JOBLEN);
WRITE ('Company name: I);
READSTRING (COMPANY, COMPLEN);

(three data stringsl
(their lengths I

6.7 CHARACTER STRINGS 291



(Display the preamblel
PAGE;
WRITELN ('Dear', BOSS :BOSSLEN, ','): WRITELN;
WRITE ('I would be interested in applying for the'):
WRITELN ('position of I, JOBTITLE :JOBLEN):
WRITE ('at I, COMPANY :COMPLEN, I this summer. I);
WRITELN ('I am currently a junior at Temple University.')

end; (PREAMBLE!

Fig. 6.16 Procedure PREAMBLE

Procedure PREAMBLE calls procedure READSTRING to read a string
into the variables BOSS, JOBTITLE, and COMPANY (type STRING). The
WRITE and WRITELN statements at the bottom .of PREAMBLE determine
where these data strings are displayed in the program output. The number
of characters used to display each string is determined by its length (e.g.
BOSS : BOSSLEN); consequently, only the characters read in are
displayed, not the blank padding.

Procedure PREAMBLE displays its output on the system output device.
In Chapter 8, we will learn how to write data to a separate output file.

Comparing Character Strings

Function SAMEARRAY in Fig. 6.9 determines whether or not two arrays of
real numbers are identical. It is much easier to determine this for packed
character arrays. Assuming the declarations

type
STRING = packed array [1 .• 3] of CHAR;

var
ALPHASTR, BETASTR : STRING;
SAME, DIFFER : BOOLEAN;

the statement

SAME := ALPHASTR = BETASTR

(strings being compared!
(BOOLEAN flags!

(are strings identical?!

assigns the value TRUE to SAME when ALPHASTR and BETASTR contain
the same string. The assignment statement

DIFFER := ALPHASTR <> BETASTR (are strings different?!

assigns the value TRUE to DIFFER when ALPAHSTR and BETASTR con
tain different strings. Finally, the assignment statement

SAME := ALPHASTR = 'Rob'

assigns the value TRUE to SAME when ALPHASTR contains the string
'Rob'.

292 ARRAYS



Example 6.15

It is also possible to compare packed arrays and strings of the same
type for lexicographic or alphabetical order usirig the relational operators
<, <=, >, >=. The result of such a comparison is based on the collating se
quence (order of characters) for your computer. For example, the condition

ALPHASTR < BETASTR

is true if the string stored in ALPHASTR is considered less than the string
stored in BETASTR. This is determined by comparing corresponding char
acters in both strings, starting with the first pair. If the characters are the
same, then the next pair is checked. If the characters in position i are the
first different pair, then ALPHASTR is less than BETASTR if ALPHASTR
[ i] is less than BETASTR [ i ].

The conditions shown in Table 6.5 are true for all character codes shown
in Appendix D. The reason each condition is true is explained in the last
column.

Table 6.5 Some True String Comparisons

ALPHASTR Operator BETASTR Reason condition is true

'AM' < 'zzz' 'A' < 'z'
'AZZ' < 'zzz' 'A' < 'z'
'ZAZ' < 'ZZA' 'A' < 'z'
'AZZ' < 'BAA' 'A' < 'B'
'Bll' > 'A99' 'B' > 'A'
'Bll' < 'B12' '1 ' < '2 '
'ACE' < 'AID' 'c' < 'I'
'123 ' > '103 ' '2 ' > '0 '
'123 ' >= '123' all characters equal
'30 , >= '123' '3 ' > ' l'

The last line of Table 6.5 shows the curious result that '30 >=
, 123' is true, This is because the condition result is based solely on the
relationship between the first pair of different characters, '3' and '1'.
To avoid these kinds of results, it is best to replace any blanks in numeric
strings with zeros. The condition

'300' >= '123'

is true while the condition

'030' >= '123'

is false as expected.
In summary, the following operations can be performed on the packed

array ALPHASTR (type is packed array [1 •• 3] of CHAR).

6.7 CHARACTER STRINGS 293



• A packed array can be assigned a string value. e.g.
ALPHASTR := 'ABC'

• A packed array can be written without using a loop. e.g.
WRITE ( 'Alpha is " ALPHASTR : 3)

• A packed array can be compared to another packed array or a string.
e.g. ALPHASTR <> 'zzz'

Arrays of Strings

So far, each array element has been used to store a simple data value. Ar
ray elements can also be data structures. One application that comes to
mind is an array whose elements are character strings.

Example 6.16 The array MONTHNAME declared below can be used to store 12 character
strings. Each element of MONTHNAME is a packed array of length 9 (type
STRING).

type
MONTH = (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC);
STRING = packed array [1 •• 9] of CHARi
NAMEARRAY array [MONTH] of STRING;

var
MONTHNAME : NAMEARRAY;
CURMONTH : MONTH;

(array of month namesl

If the name of each month is stored in this array as shown in Fig. 6.17
(e.g. MONTHNAME [SEP] is 'September'), the statement

WRITE (MONTHNAME[CURMONTH])

prints the string corresponding to the value of CURMONTH [e.g. If CUR
MONTH is FEB, the string 'February , is printed.] In this way, we can
print the value of a variable whose type is an enumerated type. This array
can be initialized by a series of assignment statements of the form

MONTHNAME[JAN] := 'January , ., MONTHNAME[FEB] := 'February';

MONTHNAME [JAN]
MONTHNAME [FEB]

MONTHNAME[DEC]

Fig. 6.17 Array MONTHNAME

The array MONTHNAME is an array of arrays. Such a data structure is
called a two-dimensional array and is the subject of the next section.

294 ARRAYS



Self-check Exercises for Section 6.7

1. Write a function that finds the actual length of a string that is padded
with blanks. The blank padding should not be included in the actual
length.

2. Write a procedure that stores the reverse of an input string parameter
in its output parameter. (e.g. if the input string is 'happy ',the out
put string should be 'yppah I.) The actual length of the string being
reversed (excluding blank padding) should also be an input parameter.

3. Write a program that uses the procedure in Exercise 2 above to deter
mine whether or not a string is a palindrome. A palindrome is a string
that reads the same way from left to right as it does from right to left.
[e.g, 'LEVEL' is a palindrome.)

• Multidimensional Arrays

In this section, we will see how to store tables of data and how to repre
sent multidimensional objects using arrays. A two-dimensional object we
are all familiar with is a tic-rae-toe board. The declarations

type
BOARDROW array [1 •• 3] of CHAR;
BOARDARRAY = array [1 •• 3] of BOARDROW;

var
TICTACTOE : BOARDARRAY;

allocate storage for the array TICTACTOE shown in Fig. 6.18. This array
has nine storage cells arranged in three rows and three columns. A char
acter value may be stored in each cell.

In the declarations above, BOARDROW is declared as an array type with
three elements of type CHAR; BOARDARRAY is declared as an array type
with three elements of type BOARDROW. Consequently, the variable TIC
TACTOE (type BOARDARRAY) is an array of arrays, or a two-dimensional
array.

Fig. 6.18 A Tic-Tac-Toe Board Stored as Array TICTACTOE

Row
1

2

3

--- TICTACTOE [2,3]

6.8 MULTIDIMENSIONAL ARRAYS 295



Usually, it is clearer to use one type declaration for an array type that is
multidimensional. The declarations

type
BOARDARRAY = array [1 .. 3, 1 .. 3] of CHARi

var
TICTACTOE : BOARDARRAYi

are equivalent to the ones above in that they allocate storage for a two-di
mensional array (TICTACTOE) with three rows and three columns. This
array has nine elements, each of which must be referenced by specifying a
row subscript (1, 2, or 3) and a column subscript (1, 2, or 3). Each array el
ement contains a character value. The array element TICTACTOE [2,3]
pointed to in Fig. 6.18 is in row 2, column 3 of the array; it contains the
character '0'. The diagonal line consisting of array elements TICTACTOE
[ 1 ,1], TICTACTOE [ 2 ,2], and TICTACTOE [ 3 , 3] represents a win for
player X because each cell contains the character' X I.

ARRAY TYPE (Multidimensional)

array [subscript1 ] of array [subscript z]'"
of array [subscript n ] of element-type

or array i subscript.. subscripts. ..., subscriptn ] of element-type

Interpretation: Subscript, represents the subscript-type of dimension i
of a multidimensional array. The subscript-type may be BOOLEAN,
CHAR, an enumerated type, or a subrange. The element-type may be
any standard data type or a previously-defined data type.

Although we will focus our discussion on arrays with two and three di
mensions, there is no limit on the number of dimensions allowed in Pas
cal.

Example 6.17 The array TABLE declared below

var
TABLE: array [1 .. 7, 1 .• 5, 1 .. 6] of REALi

consists of three dimensions: The first subscript may take values from 1 to
7; the second, from 1 to 5; and the third, from 1 to 6. A total of 7 X 5 X 6,
or 210 real numbers may be stored in the array TABLE. All three sub
scripts must be specified in each reference to array TABLE (e.g, TABLE
[2,3,4]).

296 ARRAYS



Manipulation of Two-dimensional Arrays

A row and column subscript must be specified in order to reference an el
ement of a two-dimensional array. The type of each subscript must be
compatible with the corresponding subscript type specified in the array
declaration.

If I is type INTEGER, the statement

for I := 1 to 3
WRITE (TICTACTOE[l,I])

displays the first row of array TICTACTOE (TICTACTOE [ 1 ,1], TIC
TACTOE [1,2], and TICTACTOE [ 1 , 3]) on the current output line. The
statement

for I := 1 to 3 do
WRITELN (TICTACTOE[I,2])

displays the second column of TICTACTOE (TICTACTOE [ 1 , 2 ], TIC
TACTOE [ 2,2], and TICTACTOE [ 3 ,2]) in a vertical line.

Nested loops may be used to access all elements in a multidimensional
array in a predetermined order. In the next examples, the outer loop deter
mines the row being accessed, starting with row 1; the inner loop cycles
through the elements of that row. This is called row-major order.

Example 6.18 Procedure PRINTBOARD in Fig. 6.19 displays the current status of a tic
tac-toe board. A sample output of this procedure is also shown in Fig. 6.19.

Fig. 6.19 Procedure PRINTBOARD with Sample Output

procedure PRINTBOARD (TICTACTOE linputl : BOARDARRAY);

[Displays the status of a tic-tac-toe board (array TICTACTOE).]

var
ROW, COLUMN: 1 •. 3;

begin IPRINTBOARDl
WRITELN ('-------')i
for ROW := 1 TO 3 do

begin [row]
IPrint all columns of current row]
for COLUMN := 1 TO 3 do

WRITE ('!', TICTACTOE[ROW,COLUMN])i
WRITELN (' I');
WRITELN ('-------')

end Irowl
end; IPRINTBOARDI

!XIO! !

!O!X!O!

IX! IX!

6.8 MULTIDIMENSIONAL ARRAYS 297



Example 6.19 Function BOARDFILLED in Fig. 6.20 returns a value of TRUE if a tic-tac
toe board is all filled up; it returns a value of FALSE if there is at least
one empty cell (contains a blank). In a tic-tac-toe program, function
BOARDFILLED could be called before each move to determine whether
there were any possible moves left. The if statement below prints an ap
propriate message when there are no moves.

if BOARDFILLED(TICTACTOE) then
WRITELN ('Game is a draw! ')

function BOARDFILLED (TICTACTOE : BOARDARRAY)

lReturns TRUE if the array TICTACTOE is filled;
otherwise, returns FALSE. l

BOOLEAN;

const
EMPTY , '.,

var
ROW, COLUMN: 1 •• 3;

begin lBOARDFILLEDj
BOARDFILLED := TRUE; lassume the board is filledl

IReset BOARDFILLED to FALSE if an empty cell is foundl
for ROW := 1 TO 3 do

for COLUMN := 1 TO 3 do
if TICTACTOE[ROW,COLUMN] = EMPTY then

BOARDFILLED .= FALSE
end; lBOARDFILLEDl

Fig. 6.20 Function BOARDFILLED

Example 6.20 Procedure ENTERMOVE in Fig. 6.21 is used to enter a move into the array
TICTACTOE. The character value stored (' X' or '0') is determined by
the value of PLAYER. Procedure ENTERMOVE reads the move coordinates
(MOVEROW, MOVECOLUMN). Function VALIDMOVE is used to test whether
the coordinates are valid (i.e. they are in-range and the selected cell is
currently empty).

procedure ENTERMOVE (PLAYER linputl : CHARi
var TICTACTOE linput/outputl : BOARDARRAY)i

IStores an X or 0 (identity of PLAYER) in the array TICTACTOE.l

var
MOVEROW , MOVECOLUMN : INTEGER; Icoordinates of selected movel

function VALIDMOVE (MOVEROW, MOVE COLUMN : INTEGER) : BOOLEAN;

lTests whether the move coordinates (MOVEROW, MOVECOLUMN) are O.K .•
References array TICTACTOE declared as a parameter of ENTERMOVE. I

298 ARRAYS



const
EMPTY = , ';

begin lVALIDMOVEI
if (MOVEROW in [1 .. 3]) and MOVE COLUMN in [1 .. 3]) then

VALIDMOVE := TICTACTOE[MOVEROW, MOVECOLUMN] = EMPTY
else

VALIDMOVE := FALSE
end; IVALIDMOVE I

begin lENTERMOVEI
repeat

WRITE ('Enter your move coordinates');
WRITELN ('Enter the row first and then the column: ');
READLN (MOVEROW, MOVECOLUMN)

until VALIDMOVE(MOVEROW, MOVECOLUMN);

lAssert: A valid move is enteredl
TICTACTOE[MOVEROW, MOVECOLUMN] := PLAYER

end; 1ENTERMOVE I

Fig. 6.21 Procedure ENTERMOVE with Function VALIDMOVE

lPlace X or 0 in celli

If either move coordinate is out-of-range, the statement

VALIDMOVE := FALSE

is executed and function VALIDMOVE returns a value of FALSE. When
both coordinates are in-range, the statement

VALIDMOVE := TICTACTOE[MOVEROW, MOVECOLUMN] = EMPTY

is executed, and the function result depends on whether the cell selected
is empty.

PROGRAM STYLE

Referencing a non/oca/ array

Function VALIDMOVE references the array TICTACTOE which is de
clared as a parameter in procedure ENTERMOVE. This is the first in
stance of a function referencing an identifier that is not declared
locally. The reason for this is to save the time and memory space re
quired to make a local copy of array TICTACTOE each time
VALIDMOVE is called. Since VALIDMOVE is a local function used
only by ENTERMOVE, it is reasonable to allow this reference to an
identifier declared in ENTERMOVE. Another alternative would be to
declare TICTACTOE as a variable parameter in VALIDMOVE.

6.8 MULTIDIMENSIONAL ARRAYS 299



Example 6.21

Multidimensional Arrays with Noninteger Subscripts

The subscript type for each dimension of the multidimensional array
TICTACTOE is a sub range of type INTEGER. It is not necessary for the
subscript types to have the same host type. The arrays in the next exam
ple have a different subscript type for each dimension.

A university offers 50 courses at each of five campuses. We can conve
niently store the enrollments of these courses in the array ENROLL de
clared below.

const
MAXCOURSE = 50; Imaximum number of coursesl

type
CAMPUS (MAIN, AMBLER, CENTER, DELAWARE, MONTCO);

var
ENROLL: array [l •• MAXCOURSE, CAMPUS] of INTEGER;

This array consists of 250 elements (see Fig. 6.22). ENROLL [ 1 ,
CENTER] represents the number of students in course 1 at CENTER
campus.

Course 1

Course 2

Course 50

Number of students taking
course 1 at CENTER campus

MAIN AMBLER CENTER DELAWARE MONTCO

Fig. 6.22 Two-dimensional Array ENROLL

If we wish to have this enrollment information broken down further ac
cording to student rank, we would need a three-dimensional array with
1000 elements. This array is declared below and shown in Fig. 6.23.

const
MAXCOURSE = 50; Imaximum number of coursesl

type
CAMPUS = (MAIN, AMBLER, CENTER, DELAWARE, MONTCO);
RANK (FRESHMAN, SOPHOMORE, JUNIOR, SENIOR);

300 ARRAYS



var
CLASSENROLL : array [l .. MAXCOURSE, CAMPUS,
CURCAMPUS : CAMPUS;
CLASSRANK : RANK;
TOTAL : INTEGER;

RANK] of INTEGER;
Icurrent campus I

Icurrent r ank]
[s t.uderit; totals)

Example 6.22

The subscripted variable CLASSENROLL [ 1, CENTER, SENIOR] repre
sents the number of seniors taking course 1 at CENTER campus.

Number of seniors taking
course 1 at CENTER campus

SENIOR

JUNIOR

SOPHOMORE

FRESHMAN

Course 1

Course 2

Course 50

MAIN AMBLER CENTER DELAWARE MONTCO

Fig. 6.23 Three-Dimensional Array CLASSENROLL

The program segment

TOTAL := 0;
for CLASSRANK := FRESHMAN to SENIOR do

TOTAL := TOTAL + CLASSENROLL[l, CENTER, CLASSRANK]

computes the total number of students of all ranks in course 1 at CENTER
campus.

The program segment

TOTAL := 0;
for CURCAMPUS := MAIN to MONTCO do

for CLASSRANK := FRESHMAN to SENIOR do
TOTAL := TOTAL + CLASSENROLL[l, CURCAMPUS, CLASSRANK]

6.8 MULTIDIMENSIONAL ARRAYS 301



Sales
Analysis
Problem

computes the total number of students in course 1 (regardless of rank or
campus).

Self-check Exercises for Section 6.8

1. Explain why the if statement below cannot replace the if statement
in function VALIDMOVE (see Fig. 6.21).

if (MOVEROW in [1 .. 3]) and (MOVECOLUMN in [1 .. 3])
and (TICTACTOE[MOVEROW, MOVECOLUMN] = EMPTY) then

VALIDMOVE := TRUE
else

VALIDMOVE := FALSE

2. Redefine MAXCOURSE as 5 and write and test program segments that
perform the following operations:
a) Enter the enrollment data for CLASSENROLL.
b) Find the number of juniors in all classes at all campuses. Students

will be counted once for each course in which they are enrolled.
c) Find the number of sophomores on all campuses who are enrolled

in course 2.
d) Compute and print the number of students at MAIN campus en

rolled in each course and the total number of students at MAIN
campus in all courses. Students will be counted once for each
course in which they are enrolled.

e) Compute and print the number of upper-class students in all
courses at each campus, as well as the total number of upper-class
students enrolled. (Upper-class students are juniors and seniors.]
Again, students will be counted once for each course in which they
are enrolled.

II Case Study

At this point you have learned a lot about Pascal and programming.
Knowledge of arrays will enable you to write fairly sophisticated pro
grams. In this section, we will develop a general program that could be
used by a company to analyze sales figures.

Problem: The High Risk Software Company has employed us to develop
a general sales analysis program that can be marketed to many different
companies. This program will be menu-driven, which means that each
user will be given a choice of options to perform. The menu format
follows.

GENERAL SALES ANALYSIS-choose an option

1. Enter sales data

302 ARRAYS



Algorithm

2. Display sales table
3. Tabulate sales data by year
4. Tabulate sales data by month
5. Graph sales data by year
6. Graph sales data by month
7. Exit the program

We need to write a program that can perform these operations.

Discussion: An examination of the menu shows that the central data
structure will be an array of sales data organized by year and month.
Since this is a general program, we should make the array large enough to
accommodate many companies that are likely to use this product. A good
choice would be the array type SALESARRAY below.

type
YEARRANGE = 1900 .• 1999;
MONTH = (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC);
SALESARRAY = array [YEARRANGE, MONTH] of REAL

By storing the names of the months in an array of strings (e.g. MONTH
NAME [1] is I January I, MONTHNAME [2] is 'February "). we can
simplify printing a month name. We also need two BOOLEAN flags
(MONTHDONE and YEARDONE) to keep track of whether or not the monthly
sums and annual sums have been computed.

The problem data requirements and algorithm follow.

the sales data
each selected option

The sales array with sums by year or month and graphic displays

an array of month names
(MONTHNAME : array [MONTH] of STRING)

a program flag indicating if month sums are computed
(MONTHDONE : BOOLEAN)

a program flag indicating if year sums are computed
(YEARDONE : BOOLEAN)

1. Initialize the month name array and flags.
2. Read in each option selected and perform it.

6.9 CASE STUDY 303



The structure chart is shown in Fig. 6.24. The array SALES is declared
in procedure DOCHOICE and passed to the level two procedures that are
used to carry out each menu option. The main program is shown in Fig.
6.25.

t
MONTHNAME,
MONTHDONE,
YEARDONE

I

INITIALIZE

I
MONTHNAME,
MONTHDONE,

YEARDONE

t

DOCHOICE

Fig. 6.24 Structure Chart for Sales Analysis Problem

program ANALYZE (INPUT, OUTPUT);

IAnalyzes an array of sales data. A menu is used to determine
which operations are performed. The choices include: reading the
sales data, displaying the data, tabulating sums by year or month,
and graphing the tabulated sums. l

const
EXITCHOICE = 7;

type
SMALLINT = 1 •. EXITCHOICE;
MONTH = (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC);
STRING = packed array [1 •• 9] of CHAR;
NAMEARRAY array [MONTH] of STRING;

var
MONTHNAME : NAMEARRAY;
YEARDONE : BOOLEAN;
MONTHDONE : BOOLEAN;

larray of month namesj
Iprogram flag for year sumsl
Iprogram flag for month sumsl

procedure INITIALIZE (var MONTHNAME loutputj : NAMEARRAY;
var MONTHDONE, YEARDONE loutputl : BOOLEAN);

304 ARRAYS



IIni tializes the array of month names and the program f Laq s . ]
begin IINITIALI ZE j

MONTHNAME[JAN] . = 'JANUARY , . MONTHNAME[FEB] := 'FEBRUARY , ., ,
MONTHNAME[MAR] .= 'MARCH ' . MONTHNAME[APR] := 'APRIL ' ., ,
MONTHNAME[MAY] . = 'MAY , . MONTHNAME [JUN] := 'JUNE ' ., ,
MONTHNAME[JUL] := 'JULY , . MONTHNAME[AUG] := 'AUGUST ' ., ,
MONTHNAME[SEP] := ' SEPTEMBER' ; MONTHNAME[OCT] := 'OCTOBER ' .,
MONTHNAME[NOV] := 'NOVEMBER ' . MONTHNAME[DEC] := 'DECEMBER ' ., ,
MONTHDONE := FALSE;
YEARDONE := FALSE

end; IINITIALI ZE j

procedure DOCHOICE (var MONTHNAME linputj : NAMEARRAY;
MONTHDONE, YEARDONE linputj : BOOLEAN);

IReads in each option selected and perform it.j

begin IDOCHOICEj
WRITELN ('Procedure DOCHOICE entered. ' )

end; IDOCHOICEj

begin IANALYZEj
IInitialize MONTHNAME array and flags.j
INITIALIZE (MONTHNAME, MONTHDONE, YEARDONE);

IProcess all user choices.j
DOCHOICE (MONTHNAME, MONTHDONE, YEARDONE)

end. IANALYZEj

Fig. 6.25 Main Program for Sales Analysis Problem

The array SALES will be local to procedure DOCHOICE. There will also
be local arrays used to store the sales totals by year (SUMBYYEAR) and
the sales totals by month (SUMBYMONTH). Procedure DOCHOICE must
read the option selected and call a level 2 procedure to process the array
SALES. The local variables and algorithm for DOCHOICE are described
next.

the array of sales data (SALES : SALESARRAY)
an array of sums by year

(SUMBYYEAR : array [YEARRANGE] of REAL)
an array of sums by month

(SUMBYMONTH : array [MONTH] of REAL)
the first sales year processed (FIRSTYEAR : YEARRANGE)
the last sales year processed (LASTYEAR : YEARRANGE)
each option selected (CHOICE : SMALLINT)

6.9 CASE STUDY 305



Algorithm for
DOCHOICE

1. repeat
2. Read and validate the user's choice.
3. Process the option selected.

until the user is done

Step 3 above will be implemented as a case statement that selects a
procedure based on the value of CHOICE. The structure chart for
DOCHOICE (see Fig. 6.26) shows the level-two procedures that may be
called in step 3 except for TABMONTH (similar to TAB YEAR) and
GRAPHMONTH (similar to GRAPHYEAR). The level-two procedures are rela
tively straightforward to implement. We will show them nested in
DOCHOICE in Fig. 6.27 and discuss them afterwards.

DOCHOICE

t
CHOICE

I

I
SALES,

FIRSTYEAR,
LASTYEAR,

MONTHNAME

-l,

I
SUMBYYEAR,

FIRSTYEAR,
LASTYEAR

-l,

READCHOICE t DISPLAY I GRAPHYEAR

t
I SALES, SALES,

SUMBYYEAR,
FIRSTYEAR, FIRSTYEAR,

MONTHNAME LASTYEAR LASTYEAR
YEARDONE

-l, I -l, I

ENTERSALES

Fig. 6.26 Structure Chart for DOCHOICE

TABYEAR

procedure DOCHOICE (var MONTHNAME linputl : NAMEARRAYi
MONTHDONE , YEARDONE linputl : BOOLEAN)i

IReads in each option selected and perform it.l

306 ARRAYS



type
YEARRANGE = 1900 .. 1999;
SALESARRAY = array [YEARRANGE, MONTH] of REAL;
YEARARRAY = array [YEARRANGE] of REAL;
MONTHARRAY = array [MONTH] of REAL;

var
SALES : SALESARRAY;
SUMBYYEAR : YEARARRAY;
SUMBYMONTH : MONTHARRAY;
FIRSTYEAR, LASTYEAR : YEARRANGE;
CHOICE : SMALLINT;

Itable of sales datal
Isales totals for each year)
Isales totals for each monthl
{period covered I
leach option selectedl

procedure READCHOICE (var CHOICE loutputl : SMALLINT);

IReads and validates the user's choice.l

var
TEMPCHOICE : INTEGER;

procedure PRINTMENU;

[PrLnt s the menu. I

la possible choicel

begin IPRINTMENUl
WRITELN ('Procedure PRINTMENU entered.')

end; IPRINTMENUI

begin IREADCHOICE I
PRINTMENU; Idisplay the menul
repeat

WRITE ('Select an option (1 through 7): ');
READLN (TEMPCHOICE)

until TEMP CHOICE in [l .. EXITCHOICE]i
CHOICE := TEMPCHOICE Ireturn valid choicel

end; IREADCHOICE I

procedure ENTERSALES (var MONTHNAME linputl : NAMEARRAY;
var SALES loutputl : SALESARRAY;
var FIRSTYEAR, LASTYEAR loutputl : YEARRANGE);

IReads the sales data into the array SALES. The first and last
years stored are read into FIRSTYEAR and LASTYEAR. Uses array
MONTHNAME to prompt for monthly sales. I

var
CURMONTH : MONTH;
CURYEAR : YEARRANGE;

begin IENTERSALES)
IEnter first and last years of sales data.l
WRITE ('Enter first year of sales data: ');
WRITE ('Enter last year of sales data: ');
WRITELN;

IEnter table data. I
for CURYEAR := FIRSTYEAR to LASTYEAR do

Icurrent month I
[curr ent; yea.r ]

READLN (FIRSTYEAR);
READLN (LASTYEAR);

6.9 CASE STUDY 307



begin
WRITELN ('For year " CURYEAR :4)j
WRITELN ('Enter sales amount for each month or O')j
for CURMONTH := JAN to DEC do

begin
WRITE (MONTHNAME[CURMONTH], ' sales $')j
READLN (SALES [CURYEAR, CURMONTH]) Iget amountl

endj Ifor CURMONTHl
WRITELN

end ffor CURYEARI
endj IENTERSALESl

procedure DISPLAY (var SALES linputl : SALESARRAYj
FIRSTYEAR, LASTYEAR linputl : YEARRANGEj
MONTHNAME linputl : NAMEARRAY)j

IDisplays the sales data as a table. Due to line length limits,
the first 6 months and last 6 months of each year are shown in
separate tables. Uses SHOWHALF to display each table.

procedure SHOWHALF (var SALES linputl : SALESARRAY;
FIRSTYEAR, LASTYEAR linputl : YEARRANGEj
FIRSTMONTH, LASTMONTH [inputl : MONTH);

[Displays the sales amounts by year for each of the months from
FIRSTMONTH to LASTMONTH. l

var
CURMONTH : MONTHj
CURYEAR : YEARRANGEj

Iloop control variablel
Iloop control variablel

begin ISHOWHALFl
IPrint table heading for 6 months of each year.}
WRITE ('YEAR')j
for CURMONTH := FIRSTMONTH to LASTMONTH do

WRITE (MONTHNAME[CURMONTH] :12)j
WRITELN;

IPrint sales figures for 6 months of each year.l
for CURYEAR := FIRSTYEAR to LASTYEAR do

begin
WRITE (CURYEAR :4)j
for CURMONTH := FIRSTMONTH to LASTMONTH do

WRITE (SALES [CURYEAR, CURMONTH] :12:2)j
WRITELN

end Ifor CURYEARl
endj ISHOWHALFI

begin IDISPLAYl
IDisplay first 6 months of array SALES.l
SHOWHALF (SALES, FIRSTYEAR, LASTYEAR, JAN, JUN)j
WRITELNj

IDisplay last 6 months of array SALES.l
SHOWHALF (SALES, FIRSTYEAR, LASTYEAR, JUL, DEC)

endj [DISPLAYl

308 ARRAYS

Iprint month namesl
lend the headingl



procedure TABYEAR (var SALES {inputl : SALESARRAY;
FIRSTYEAR, LASTYEAR linputl : YEARRANGEi
var SUMBYYEAR loutputl : YEARARRAY;
var YEARDONE loutputl : BOOLEAN);

ITabulates sales totals by year. Sums are printed and stored in
array SUMBYYEAR. YEARDONE is set to TRUE.

var
CURMONTH : MONTH;
CURYEAR : Y~ARRANGE;

SUM ; REAL;

begin ITABYEAR I
IPrint heading. I
WRITELN ('Total sales by year');
WRITELN ('YEAR', 'TOTAL' :13);

Iloop control variablel
lloop control variable I
(sum £or each year)

IFind and print each annual total.l
for CURYEAR := FIRSTYEAR to LASTYEAR do

begin
IAccumulate sum for 12 months I
SUM := 0.0;
for CURMONTH := JAN to DEC do

SUM := SUM + SALES[CURYEAR, CURMONTH);
WRITELN (CURYEAR :4, SUM :13:2); [print sales totall
SUMBYYEAR[CURYEAR) := SUM Istore sales totall

end; Ifor CURYEARI

YEARDONE := TRUE
end; ITABYEAR I

Iset program flagl

procedure TABMONTH (var SALES linputl : SALESARRAY;
var MONTHNAME [Lnput ] : NAMEARRAY;
FIRSTYEAR, LASTYEAR linputl : YEARRANGE;
var SUMBYMONTH loutputl : MONTHARRAY;
var MONTHDONE loutputl : BOOLEAN);

ITabulates sales totals by month. Sums are printed and stored in
array SUMBYMONTH. MONTHDONE is set to TRUE.

begin ITABMONTH I
WRITELN ('Procedure TABMONTH entered.')

end; !TABMONTH I

procedure GRAPHYEAR (var SUMBYYEAR {input) : YEARARRAY;
FIRSTYEAR, LASTYEAR linputl : YEARRANGE);

{Plots the annual sales totals (stored in SUMBYYEAR) as a bar
graph. One line is plotted for each year from LASTYEAR to
FIRSTYEAR. The graph is scaled so that the longest line is
approximately 50 characters. Uses function FINDMAX to find
the largest value in the array SUMBYYEAR.

canst
STAR = '*'j
MAXPOINTS = 50;

Isymbol plotted)
Ilongest line length)

6.9 CASE STUDY 309



var
MAXDOLLARS,
PLOTVAL : REALi
DOLLARINC : INTEGER:
CURYEAR : YEARRANGEi

Ithe largest value plottedl
Ithe amount plotted so farl
[the amount represented by each pointl
Iloop control variablel

function FINDMAX (var SUMBYYEAR : YEARARRAY:
FIRSTYEAR, LASTYEAR : YEARRANGE) : REAL:

IFinds the largest element in array SUMBYYEAR. Examines elements
with subscripts FIRSTYEAR through LASTYEAR. l

var
MAXSOFAR : REAL:
CURYEAR : YEARRANGE:

Ilargest value found so farl
Iloop control variablel

begin IFINDMAXl
IInitialize MAXSOFAR to first array element.l
MAXSOFAR := SUMBYYEAR[FIRSTYEAR]:

Iredefine MAXSOFARl

ICompare each element to MAXSOFAR. If current element
than MAXSOFAR, redefine MAXSOFAR as current element.

for CURYEAR :=FIRSTYEAR + 1 to LASTYEAR do
if SUMBYYEAR[CURYEAR] > MAXSOFAR then

MAXSOFAR := SUMBYYEAR[CURYEAR]i

is larger
l

FINDMAX ~= MAXSOFAR Idefine resultl
end: IFINDMAXl

begin IGRAPHYEARl
IDefine the scale for the horizontal axis.l
MAXDOLLARS := FINDMAX (SUMBYYEAR, FIRSTYEAR, LASTYEAR):
DOLLARINC := ROUND(MAXDOLLARS / MAXPOINTS):
WRITELN ('Each point on the horizontal scale represents $',

DOLLARINC :9):

IPlot the bar graph.l
WRITELN ('YEAR AMOUNT'): [prLnt; headi.nq ]
IPrint a bar for each element of SUMBYYEAR, start with last onel
for CURYEAR := LASTYEAR downto FIRSTYEAR do

begin
WRITE (CURYEAR :4): Iprint the yearl

[Plot points until value plotted exceeds element value.l
PLOTVAL := DOLLARINC: linitialize sum plottedl
while PLOTVAL <= SUMBYYEAR[CURYEAR] do

begin
WRITE (STAR): Iplot a new point l
PLOTVAL := PLOTVAL + DOLLARINC ladd to sum plottedl

end: [wh i.Le ]
WRITELN (SUMBYYEAR[CURYEAR] :12:2) Iprint value of barl

end Ifor CURYEAR l
end: IGRAPHYEAR l

procedure GRAPHMONTH (var SUMBYMONTH linputl : MONTHARRAY:
var MONTHNAME linputl : NAMEARRAY):

IPlots the sales totals for each month as a bar graph.l

310 ARRAYS



begin IGRAPHMONTHI
WRITELN ('Procedure GRAPHMONTH entered. ')

endi IGRAPHMONTH I

begin IDOCHOICEI
repeat

IRead and validate the user's choice. I
READCHOICE (CHOICE)i

IProcess the option selected. I
case CHOICE of

1 ENTERSALES (MONTHNAME, SALES, FIRSTYEAR, LASTYEAR)i
2 DISPLAY (SALES, FIRSTYEAR, LASTYEAR, MONTHNAME)i
3 TABYEAR (SALES,FIRSTYEAR,LASTYEAR,SUMBYYEAR,YEARDONE)i
4 TABMONTH (SALES, MONTHNAME, FIRSTYEAR, LASTYEAR,

SUMBYMONTH, MONTHDONE)i
5 if YEARDONE then

GRAPHYEAR (SUMBYYEAR, FIRSTYEAR, LASTYEAR)
else

WRITELN ('Tabulate sums before graphing.')i
6 if MONTH DONE then

GRAPHMONTH (SUMBYMONTH, MONTHNAME)
else

WRITELN ('Tabulate sums before graphing.')i
7 : WRITELN ('Sales analysis completed.')

end [case ]
until CHOICE = EXITCHOICE

end r IDOCHOICEI

Fig. 6.27 Procedure DOCHOICE with Nested Procedures

During each repetition of the loop in DOCHOICE, procedure READ
CHOICE is called to print the menu (performed by PRINTMENU) and read
the user's next choice (CHOICE). The case statement in DOCHOICE se
lects a level 2 procedure based on the value of CHOICE. Since the array
SUMBYYEAR (or SUMBYMONTH) cannot be graphed before it is tabulated,
an error message is printed if option 5 is selected before option 3 (or op
tion 6 is selected before option 4).

Procedure DISPLAY calls procedure SHOWHALF twice. The first time
the data in array SALES for the first six months of each year are printed;
the second time the data for the last six months are printed. This is be
cause many output devices can only display 80 characters per line.

Procedure GRAPHYEAR calls function FINDMAX to find the largest value
in the array SUMBYYEAR. FINDMAX examines each element in the array,
saving the largest element found so far in MAXSOFAR. The largest value is
returned (saved in MAXDOLLARS) and divided by MAXPOINTS (50) to get
the value represented by each point plotted. For each year being
displayed, the while loop in GRAPHYEAR continues to plot points until
the value plotted exceeds the sales total for that year. Hence, the largest
value will be plotted as a bar of length 50; all other bars will be smaller.

Procedures TABMONTH and GRAPHMONTH are similar to TABYEAR and
GRAPHYEAR; they are left as exercises. A sample run of the sales analysis
program is shown in Fig. 6.28. Only part of the data entry process and the

6.9 CASE STUDY 311



first half of the sales table display are shown. Only the first menu display
is shown.

GENERAL SALES ANALYSIS-choose an option

1. Enter sales data
2. Display sales table
3. Tabulate sales data by year
4. Tabulate sales data by month
5. Graph sales data by year
6. Graph sales data by month
7. Exit the program

Select an option (1 through 7): 1

Enter first year of sales data: 1984
Enter last year of sales data: 1985

For year 1984
Enter sales amount for each month or 0
JANUARY sales $1012
FEBRUARY sales $13

Select an option (1 through 7): 2

YEAR
1984
1985

JANUARY
1012.00
2125.00

FEBRUARY
13.00

0.00

MARCH
144.00

0.00

APRIL
155.00
120.00

MAY
1000.00
4230.00

JUNE
0.00

815.00

Select an option (1 through 7): 3

Total
YEAR
1984
1985

sales by year
TOTAL

5220.00
10425.00

Select an option (1 through 7): 5

Each point on the horizontal scale represents $ 209
YEAR AMOUNT
1985************************************************* $
1984************************ $ 5220.00

Select an option (1 through 7): 7

Sales analysis completed.

Fig. 6.28 Sample Run of the Sales Analysis Program

10425.00

Self-check Exercises for Section 6.9

1. Write procedures PRINTMENU, TABMONTH, and GRAPHMONTH.

312 ARRAYS



• Common Programming Errors

The most common error made when using arrays is a subscript range er
ror. This occurs when the subscript value is outside the sub range specified
for that array type. Subscript range errors are not syntax errors; they will
not be detected until program execution begins. They are usually caused
by an incorrect subscript expression, a loop parameter error, or a nonter
minating loop. Before considerable time is spent in debugging, all ques
tionable subscript calculations should be carefully checked for out-of
range errors. This is easily done by inserting diagnostic output statements
in your program in order to print subscript values that may be out-of
range.

If an out-of-range subscript occurs inside a loop, you should make sure
that the loop is terminating properly. If the loop control variable is not be
ing updated as expected, then the loop may be repeated more often than re
quired. This can happen, for example, if the update step follows the loop
end statement or if the loop begin and end are erroneously omitted.

You should also double-check the subscript values at the loop bound
aries. If these values are in-range, it is likely that all other subscript refer
ences in the loop will also be in-range.

As with all Pascal data types, make sure that there are no type
inconsistencies. The subscript type and element type used in all array ref
erences must correspond to the types specified in the array declaration.
Similarly, the types of two arrays used in an array copy statement or as
corresponding parameters must be the same. Remember to use only identi
fiers without subscripts as array parameters and to specify the types of all
array parameters using identifiers.

When using multidimensional arrays, the subscript for each dimension
must be consistent with its declared type. If nested for loops are used to
process the array elements, make sure that loop control variables used as
subscripts are in the correct order.

• Chapter Review

In this chapter we introduced the array which is a data structure used to
simplify the storage and manipulation of a collection of like data items.
We discussed how to declare an array type and how to reference an indi
vidual array element by placing a subscript in brackets following the array
name.

The for statement enables us to easily reference the elements of an ar
ray in sequence. We used for statements to initialize arrays, read and
print arrays, and to control the manipulation of individual array elements.

Packed arrays were used for storage of character strings. We saw that
operations such as array comparison, array assignment, and array printing
are performed more easily on a packed array since the entire array can be
processed as a unit rather than element by element.

6.11 CHAPTER REVIEW 313



Arrays of arrays, or multidimensional arrays, were used to represent ta
bles of information and game boards. Nests of loops are needed to manip
ulate the elements of a multidimensional array in a systematic way. The
correspondence between the loop control variables and the array sub
scripts determines the sequence in which the array elements are pro
cessed.

New Pascal Statements

The new Pascal statements introduced in this chapter are described in Ta
ble 6.6.

Review Questions

1. Identify the error in the Pascal fragment below.

type
ANARRAY = array [1 •. 8] of INTEGER;

var
X
I

ANARRAY;
INTEGER;

begin
for I := 1 to 9 DO

X[I] := I
end.

When will the error be detected?
2. Declare an array of reals called WEEK that can be referenced by using

any day of the week as a subscript, where SUNDAY is the first sub
script.

3. Identify the error in the Pascal fragment below.

type
ANARRAY = array [CHAR] of REAL;

var
X
I

ANARRAY;
INTEGER;

begin
I : = 1;
X[I] := 8.384

end.

4. The statement! a I in the following Pascal program segment is a valid
Pascal statement-TRUE or FALSE?

314 ARRAYS

type
REALARRAY array [1 .. 8] of REAL;



Table 6.6 Summary of New Pascal Statements

Statement

Array declaration
type

INTARRAY = array [1 •• 10] of INTEGER;

var
CUBE, COUNT: INTARRAY;

Packed array declaration
type

STRING = packed array [1 •• 10] of CHAR:

var
NAME : STRING;

Multidimensional array declaration
type

DAY = (SUN,MON,TUE,WED,THU,FRI,SAT);
MATRIX = array [1 •• 52, DAY] of REAL;

var
SALES : MATRIX;

Array references
for I := 1 to 10 do

CUBE[I] := I * I * I

if CUBE[5] > 100 then

WRITE (CUBE[l], CUBE[2])

WRITE (SALES[3, MON])

for WEEK := 1 to 52 do
for TODAY := SUN to SAT do

SALES [WEEK, TODAY] := 0.0

READ (SALES[l, SUN])

Array copy
COUNT := CUBE

Operations on packed arrays
NAME := 'R. Koffman'

WRITELN (NAME)

if NAME = 'Daffy Duck' then

Effect

The data type I NTARRAY
describes an array with 10 type
INTEGER elements. CUBE and
COUNT are arrays with this
structure.

The data type STRING describes
a packed array of 10 characters.
NAME is an array with this
structure.

MATRIX describes a two
dimensional array with 52 rows
and seven columns (days of the
week). SALES is an array of this
type and can store 364 real
numbers.

Saves 1 3 in the Ith element of
array CUBE (1 ~ I ~ 10).

Compares CUBE [ 5 ] to 100.

Displays the first two cubes.

Displays the element of SALES
for week 3 and day Monday.

Initializes each element of SALES
to zero.

Reads the value for week 1 and
day Sunday into SALES.

Copies contents of array CUBE to
array COUNT.

Saves' R. Koffman' in
NAME.

Displays' R. Koffman'.

Compares NAME to
'Daffy Duck'.

6.11 CHAPTER REVIEW 315



var
X
I

REALARRAYj
INTEGER;

316 ARRAYS

begin
I : = 1;
X(I) .= 8.384 [a]

end.

5. What are the two common ways of selecting array elements for pro
cessing?

6. Write a Pascal fragment to print out the index of the smallest and the
largest numbers in an array X of 20 integers. Array X has a range of
values of 0 to 100. Assume array X already has values assigned to
each element.

7. The parameters for a procedure are two arrays (type REALARRAY)
and an integer representing the length of the arrays. The procedure
copies the first array in the parameter list to the other array in reverse
order using a loop structure. Write the procedure.

8. List two advantages to using packed character arrays.
9. Define row-major order.

10. Declare an array that can be used to store each title of the TOP4Q hits
for each week of the year, given that the TITLELENGTH will be 20
characters.

11. Declare an array YEARLYHOURS for storing the hours five employees
work each day of the week, each week of the year.

Programming Projects

1. Write a program to read N data items into two arrays X and Y of size 20.
Store the product of corresponding elements of X and Y in a third array Z,
also of size 20. Print a three-column table displaying the arrays X, Y, and Z.
Then compute and print the square root of the sum of the items in Z. Make
up your own data, with N less than 20.

2. Let A be an array containing 20 integers. Write a program that first reads up
to 20 data items into A, and then finds and prints the subscript of the largest
item in A and that item.

3. Each year the Department of Traffic Accidents receives accident count re
ports from a number of cities and towns across the country. To summarize
these reports, the Department provides a frequency-distribution printout that
gives the number of cities reporting accident counts in the following ranges:
0-99, 100-199, 200-299, 300-399, 400-499, 500 and above. The Department
needs a computer program to read the number of accidents for each report
ing city or town and to add one to the count for the appropriate accident
range. After all the data have been processed, the resulting frequency counts
are to be printed.

4. Assume for the moment that your computer has the very limited capability of



being able to read and print only single-decimal digits at a time and to add
together two integers consisting of one decimal digit each. Write a program
to read in two integers of up to 10 digits each, add these numbers together,
and print the result. Test your program on the following numbers.

X 1487625
Y 12783

X 60705202
Y 30760832

X 1234567890
Y 9876543210

Hints: Store the numbers X and Y in two character arrays X, Y, of size 10,
one decimal digit per element. If the number is less than 10 digits in length,
enter enough leading zeros (to the left of the number) to make the number 10
digits long.

array X

array Y

[1] [2] [3 ] [4] [5] [6] [7 ] [8 ] [9] [10]

You will need a loop to add together the digits in corresponding array ele
ments, starting with the element with subscript 10. Don't forget to handle the
carry if there is one! Use a BOOLEAN variable CARRY to indicate whether
or not the sum of the last pair of digits is greater than nine.

5. Write a program for the following problem. You are given a collection of
scores for the last exam in your computer course. You are to compute the av
erage of these scores, and then assign grades to each student according to
the following rule.

If a student's score is within 10 points (above or below) of the average,
give the student a grade of SATISFACTORY. If the score is more than 10
points higher than the average. give the student a grade of OUTSTANDING.
If the score is more than 10 points below the average, give the student a
grade of UNSATISFACTORY. Test your program on the following data:

RICHARD LUGAR
FRANK RIZZO
DONALD SCHAEFFER
KEVIN WHITE
JAMES RIEHLE
ABE BEAME
TOM BRADLEY
WALTER WASHINGTON

55
71
84
93
74
70
84
68

PROGRAMMING PROJECTS 317



RICHARD DALEY
RICHARD HATCHER

64
82

Hint: The output from your program should consist of a labelled three-col
umn list containing the name. exam score. and grade of each student.

6. Write a program to read N data items into each of two arrays X and Y of
size 20. Compare each of the elements of X to the corresponding element of
Y. In the corresponding element of a third array Z. store:

+ 1 if X is larger than Y
o if X is equal to Y

- 1 if X is less than Y

Then print a three-column table displaying the contents of the arrays X, Y.
and Z, followed by a count of the number of elements of X that exceed Y,
and a count of the number of elements of X that are less than Y. Make up
your own test data with N less than 20.

7. It can be shown that a number is prime if there is no smaller prime number
that divides it. Consequently, in order to determine whether N is prime, it is
sufficient to check only the prime numbers less than N as possible divisors
(see Section 4.8). Use this information to write a program that stores the first
100 prime numbers in an array. Then have your program print the array.

8. The results of a true-false exam given to a Computer Science class have
been coded for input to a program. The information available for each stu
dent consists of a student identification number and the students' answers to
10 true-false questions. The available data are as follows:

Student
identification

0080
0340
0341
0401
0462
0463
0464
0512
0618
0619
0687
0700
0712
0837

Answer string
FTTFTFTTFT
FTFTFTTTFF
FTTFTTTTTT
TTFFTFFTTT
TTFTTTFFTF
TTTTTTTTTT
FTFFTFFTFT
TFTFTFTFTF
TTTFFTTFTF
FFFFFFFFFF
TFTTFTTFTF
FTFFTTFFFT
FTFTFTFTFT
TFTFTTFTFT

318 ARRAYS

Write a program that first reads in the answer string representing the 10
correct answers (use FTFFTFFTFT as data). Next, for each student, read
the student's data and compute and store the number of correct answers for
each student in one array. and store the student ID number in the corre
sponding element of another array. Determine the best score, BEST. Then
print a three-column table displaying the ID number. score. and grade for



each student. The grade should be determined as follows: If the score is
equal to BEST or BEST-I, give an A; if it is BEST-2 or BEST-3, give a
C. Otherwise, give an F. .

9. The results of a survey of the households in your township have been made
available. Each record contains data for one household, including a four-digit
integer identification number, the annual income for the household, and the
number of members of the household. Write a program to read the survey re
sults into three arrays and perform the following analyses:

a) Count the number of households included in the survey and print a
three-column table displaying the data read in. (You may assume that no
more than 25 households were surveyed.]

b) Calculate the average household income, and list the identification num
ber and income of each household that exceeds the average.

c) Determine the percentage of households having incomes below the pov
erty level. The poverty level income may be computed using the formula

P = $6500.00 + $750.00 X (m - 2)

where m is the number of members of each household. This formula
shows that the poverty level depends on the number of family members,
m, and the poverty level increases as m gets larger.

Test your program on the following data.

Identification
number

1041
1062
1327
1483
1900
2112
2345
3210
3600
3601
4725
6217
9280

Annual income
12,180
13,240
19,800
22,458
17,000
18,125
15,623

3,200
6,500

11,970
8,900

10,000
6,200

Household members
4
3
2
8
2
7
2
6
5
2
3
2
1

10. Write a program which, given the taxable income for a single taxpayer, will
compute the income tax for that person. Use Schedule X shown in Fig. 6.29
on the page. Assume that "line 34," referenced in this schedule, contains the
taxable income. Example: If the individual's taxable income is $8192, your
program should use the tax amount and percent shown in column 3 of line 5
(see arrow). The tax in this case is $692 + 0.19(8192 - 6500) = $1013.48. For
each individual processed, print taxable earnings and the total tax. Hint: Set
up three arrays, one for the base tax (column 3), one for the tax percent (col
umn 3), and the third for the excess base (column 4). Your program must
then compute the correct index to these arrays, given the taxable income.

11. Write a program that removes all of the blanks from a character string and

PROGRAMMING PROJECTS 319



320 ARRAYS

Tax Rate
Schedule

Schedule X
Single Taxpayers

Use this schedule if you checked Filing
Status Box 1 on Form 1040-

If theamount on Enter on line 2
Form 1040, oftheworksheet
line 34 is: onthis page:

of the
But not amount

Over- Over- over-

$0 $2,300 -0-
2,300 3,400 ........ 14% $2,300
3,400 4,400 $154+16% 3,400
4,400 6,500 314+18% 4,400

---+ 6,500 8,500 692+19% 6,500
8,500 10,800 1,072+21% 8,500

10,800 12,900 1,555+24% 10,800
12,900 15,000 2,059+26% 12,900
15,000 18,200 2,60~+30% 15,000
18,200 23,500 3,965+34% 18,200
23,500 28,800 5,367+39% 23,500
28,800 34,100 7,434+44% 28,800
34,100 41,500 9,766+49% 34,100
41,500 55,300 13,392+55% 41,500
55,300 81,800 20,982+63% 55,300
81,800 108,300 37,677+68% 81,800

108,300 55,697+70% 108,300

Fig. 6.29 Schedule X (from IRS Form 1040)

compacts all nonblank characters in the string so that all the blanks are at
the end. You should only have to scan the input string once from left to right.

12. Assume a set of sentences is to be processed. Each sentence consists of a se
quence of words, separated by one or more blank spaces. Write a program
that will read these sentences and count the number of words with one let
ter, two letters, etc., up to ten letters.

13. Write a program to read in a collection of character strings of arbitrary
length. For each string read, your program should do the following:

a) Print the length of the string.
b) Count the number of occurrences of four letter words.
c) Replace each four letter word with a string of four asterisks and print

the new string.

14. Write an interactive program that plays the game of HANGMAN. Read the
word to be guessed into successive elements of the packed array WORD. The
player must guess the letters belonging to WORD. The program should termi-



nate when either all letters have been guessed correctly (player wins) or a
specified number of incorrect guesses have been made (computer wins). Hint:
Use a packed array SOLUTION to keep track of the solution so far. Initial
ize SOLUTION to a string of symbols I * I. Each time a letter in WORD is
guessed, replace the corresponding I *' in SOLUTION with that letter.

15. Write a program that reads in a tic-tac-toe board and determines the best
move for player X. Use the following strategy: Consider all squares that are
empty and evaluate potential moves into them. If the move fills the third
square in a row, column, or diagonal that already has two X's, add 50 to the
score; if it fills the third square in a row, column or diagonal with two O's,
add 25 to the score; for each row, column, or diagonal containing this move
that will have two X's and one blank, add 10 to the score; add eight for each
row, column or diagonal through this move that will have one 0, and X, and
one blank; add four for each row, column or diagonal that will have one X
and the rest blanks. Select the move that scores the highest.

The possible moves for the board below are numbered. Their scores are
shown to the right of the board. Move five is selected.

1 0 X

2 X 3

0 4 5

1-10 + 8 = 18
2-10 + 8 = 18
3-10 + 10 = 20
4-8
5-10 + 10 + 8 = 28

16. Write a program that reads the five cards representing a poker hand into a
two-dimensional array (first dimension is suit, second dimension is rank).
Evaluate the poker hand using procedures to determine whether the hand is
a flush (all one suit), a straight (five consecutive cards), a straight flush (five
consecutive cards of one suit), four-of-a-kind, a full house (three-of-a-kind,
two of another), three-of-a-kind, two pair, or one pair.

17. Write a set of procedures to manipulate a pair of matrices. You should pro
vide procedures for addition, subtraction, and multiplication. Each procedure
should validate its input parameters [i.e., check all matrix dimensions) before
performing the required data manipulation.

18. The results from the mayor's race have been reported by each precinct as
follows:

Precinct
1
2
3
4
5

Candidate
A

192
147
186
114
267

Candidate
B
48
90
12
21
13

Candidate
C

206
312
121
408
382

Candidate
D
37
21
38
39
29

Write a program to do the following:

a) Print out the table with appropriate headings for the rows and columns.
b) Compute and print the total number of votes received by each candidate

and the percent of the total votes cast.

PROGRAMMING PROJECTS 321



c) If anyone candidate receives over 50% of the votes. the program should
print a message declaring that candidate the winner.

d) If no candidate receives 50% of the votes. the program should print a
message declaring a run-off between the two candidates with the highest
number of votes; the two candidates should be identified by their letter
names.

e) Run the program once with above data and once with candidate C re
ceiving only 108 votes in precinct 4.

19. The game of Life. invented by John H. Conway. is supposed to model the ge
netic laws for birth. survival, and death. (See Scientific American. October.
1970. p. 120.) We will play it on a board consisting of 25 squares in the hori
zontal and vertical directions. Each square can be empty or contain an X in
dicating the presence of an organism. Each square (except the border
squares) has eight neighbors. The small square shown in the segment of the
board drawn below connects the neighbors of the organism in row three. col
umn three.

X- - X

X

- X--

X X

Generation 1

The next generation of organisms is determined according to the following
criteria:

1. Birth: An organism will be born in each empty location that has exactly
three neighbors.

2. Death: An organism with four or more organisms as neighbors will die
from overcrowding. An organism with fewer than two neighbors will
die from loneliness.

3. Survival: An organism with two or three neighbors will survive to the
next generation. Generations 2 and 3 for the sample follow:

X

X X X

X X X

X

Generation 2

X X X

X X X

Generation 3

322 ARRAYS

Read in an initial configuration of organisms. Print the original game array.
calculate the next generation of organisms in a new array. copy the new ar
ray into the original game array and repeat the cycle for as many genera-



tions as you wish. Hint: Assume that the borders of the game array are
infertile regions where organisms can neither survive nor be born; you will
not have to process the border squares.

20. The results of a multiple-choice exam are recorded in a computer. It is often
useful to provide a simple item analysis of a set of questions to determine
their effectiveness. Read the 10 answers for each exam and process the fol
lowing information: (a) determine if each answer is correct, accumulate the
number of correct answers, and [b] increment a respective counter for the
appropriate answer whether right or wrong.

Assume all of the answers are of the range of A-E. The output should con
sist of each question number, the correct answer, number of correct re
sponses, number of incorrect responses, and a count of the number of A's,
B's, C's, D's, and E's.

Use the following sample data:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
A B C E A B C D B B
E C C E D A B A D E
C A B B C D E D B B
E A D A D A D A D A
C C B B A A D D B E
E D C B A A B C D E
E A C C D A C A B A
B B A C B A B B B D

And use as the key: E C C B E A DAB C

21. An amusing program consists of a sentence generator that will read a series
of four numbers and print out a sentence. Provide three arrays containing
eight words each (maximum of 10 characters to each word) called NOUN,
VERB, and ADJECTIVE. Fill each of these arrays with some appropriate
words and then read four numbers (each in a range from 1-8). Write out a
short sentence in which each number is the appropriate subscript from ar
rays in the following order:

NOUN, VERB, ADJECTIVE, NOUN

An example would be to read 4, 5, 2, 6. This will print the strings NOUN[4 ],
VERB [ 5 l. ADJECTIVE [ 2 l. and NOUN[ 6 ]. If their contents are:

NOUN[4] is 'JOHN
VERB[5] is 'LIKES
ADJECTIVE[2] is 'CRAZY
NOUN[6] is 'BREAD '

The sentence

JOHN LIKES CRAZY BREAD.

would be printed. A trailing blank should not be printed; however, one blank
between each word is needed and a period should be supplied at the end.

PROGRAMMING PROJECTS 323



324 ARRAYS

22. The INDEX function is useful in character string manipulation. This function
locates the first appearance of the second string within the first string and
returns the subscript of this location. Parameters to this function are:

(STRINGl, STRING2 : STRING: LENl, LEN2 : INTEGER)

where STRING is an array type sufficiently large enough to hold each
string. The length parameters (LENI. LEN2) are used to indicate how many
characters of each string should be used in the processing.

If no match is found the function returns a zero. Some examples are in
cluded below:

Given:

var
A, B: STRING:
X : INTEGER:

begin
A := 'ABCDEFGHIJK';
B := 'DEF ':
X := INDEX(A, B, 11, 3);

X would have a value of 4.

For the same A if B contained:

B := , ABD ':
X := INDEX(A, B, 11,4);

X would be asigned 0 since ' ABD' is not contained (in order) in string A.
Test your function with several sets of data.

23. Write the appropriate procedures to process a standard address and extract
the following information. First read an address of the form:

LINEl: < Title> < First name> < Middle name> < Last name>
LINE2: < Street address>
LINE3: < City>. < State> < Zipcode >

For example: Dr. John E. Smith
111 Chestnut Street
Kalamazoo. MI 49001

Determine and print the (a) Title. (b) Last name. (c) State. and (d) Zipcodes
for each label.



Records
7.1 Declaring a Record
7.2 Manipulating Individual Fields of a Record
7.3 Manipulating an Entire Record
7.4 Arrays of Records
7.5 Case Study
7.6 Searching an Array
7.7 Sorting an Array
7.8 General Data Structures
7.9 Record Variants
7.10 Manipulating Strings Stored in Records
7.11 Common Programming Errors
7.12 Chapter Review

In the previous chapter we introduced the array. a data structure funda
mental to programming and included in almost every high-level program
ming language. In this chapter we will introduce an additional data
structure. the record. that is available in Pascal, but not in all other high
level languages. The use of records makes it easier to organize and repre
sent information in Pascal. This is a major reason for the popularity of the
Pascal language.

A record. like an array. is a collection of related data items. However.
unlike an array. the individual components of a record can contain data of
different types. We can use a record to store a variety of kinds of informa-

325



tion about a person, such as the person's name, marital status, age, date of
birth, etc. Instead of using a subscript, we refer to the information in a
record by using a field name.

II Declaring a Record

Normally a record is declared in two stages, as is an array. We first de
clare the structure or form of a record in a record type declaration. Next,
we declare one or more record variables of this record type. The record
type declaration specifies the name and type of each record component or
field.

Example 7.1

326 RECORDS

We wish to store the descriptive information shown below in a
computerized payroll program.

NAME: Danielson
SEX : FEMALE
SOCIAL SECQRITY NUMBER: 035-20-1111
NUMBER OF DEPENDENTS : 2
HOURLY SALARY RATE: 3.98
TAXABLE SALARY (for 40 hour week): 130.40

We will declare a record type EMPLOYEE with six distinct fields and a
record variable, CLERK, for storage of the data above.

canst
STRINGSIZE = 11;

type
STRING = packed array [l •• STRINGSIZE] of CHAR;
EMPLOYEE = record

NAME : STRING;
SEX: (FEMALE, MALE);
SOCSECNUM : STRING ;
NUMDEPEND : INTEGER;
RATE,
TAXSAL : REAL

end; (EMPLOYEEj

var
CLERK : EMPLOYEE;

The record variable CLERK is structured as defined in the declaration
for record type EMPLOYEE. Thus the memory allocated for CLERK con
sists of storage space for two character strings (length 11), a scalar value
(FEMALE or MALE), an integer value, and a real value.

The record variable CLERK (see Fig. 7.1) assumes the values shown ear
lier are stored in memory.



Record variable CLERK

NAME

SEX
SOCSECNUM
NUMDEPEND
RATE

TAXSAL

Fig. 7.1 Record Variable CLERK

As illustrated in the type declaration for EMPLOYEE, it is possible to spec
ify record fields corresponding to any standard or user-defined type. In
addition, the type declaration of a field can be included within the record
declaration, e.g. (FEMALE, MALE). The record type declaration is de
scribed in the next display.

RECORD TYPE DECLARATION

ree-type = record
id-Iist; : type; ~

id-listz : typez~

id-List; : type;
end~

Interpretation: The identifier ree-type is the name of the record struc
ture being described. Each id-Iist, is a list of one or more field names
separated by commas; the data type of each field in id-Iist, is speci
fied by type j'

Note: type, may be any standard or user-defined data type including
a structured type such as an array or another record. If type, is a
user-defined data type, it can either be defined before the record or
as part of the record description.

Self-check Exercises for Section 7.1

1. A catalogue listing for a textbook consists of the author's name, title,
publisher, and year of publication. Define a record type CATALOGUE
for storage of this information.

2. Each part in an inventory is represented by its part number, a descrip
tive name. the quantity on hand, and price. Define a record type PART.

7.1 DECLARING A RECORD 327



Example 7.2

• Manipulating Individual Fields of a Record

In most instances, each field of a record must be individually manipulated.
We can reference a record field by using a field selector consisting of the
record variable name followed by the field name. A period is used to sep
arate the field name and the record name.

Fig. 7.1 gives an example of the record variable CLERK. The data shown
earlier can be stored in CLERK through the sequence of assignment state
ments

CLERK.NAME := 'Danielson ';
CLERK.SEX := FEMALE;
CLERK.SOCSECNUM := '035-20-1111';
CLERK.NUMDEPEND := 2;
CLERK.RATE := 3.98

Once data are stored in a record, they can be manipulated in the same
way as other data in memory. For example, the statements

WRITE ('The clerk is ');
case CLERK. SEX of

FEMALE: WRITE ('Ms. ');
MALE : WRITE ('Mr. ')

end; [case]
WRITELN (CLERK.NAME)

print the character string stored in the NAME field of CLERK following an
appropriate message. For the data above. the output would be

The clerk is Ms. Danielson

The field selector CLERK. NAME [ 1] references the first character (' D ' )
stored in the NAME field (a string) of the record variable CLERK.

The assignment statement

CLERK.TAXSAL := 40.0 * CLERK.RATE - 14.40 * CLERK.NUMDEPEND

computes the clerk's taxable salary by deducting $14.40 for each depen
dent from the gross salary (40.0 * hourly rate). The computed result is
saved in the record field named CLERK. TAXSAL.

The with Statement

It becomes tedious to write the complete field selector each time we refer
ence a field of a record. The with statement can be used to shorten the
field selector.

328 RECORDS



with CLERK do
begin

WRITE ('The clerk is ');
case SEX of

FEMALE: WRITE ('Ms. ');
MALE WRITE ('Mr. ')

end; [cas e]
WRITELN (NAME);

TAXSAL := 40.0 * RATE - 14.40 * NUMDEPEND;
WRITELN ('The clerk' 's taxable salary is $', TAXSAL :7:2)

end lwithl

As shown, it is not necessary to specify both the record variable and
field names inside a with statement. The record variable CLERK is iden
tified in the wi th statement header; consequently, only the field name is
needed inside the with statement, not the complete field selector (e.g.,
RATE instead of CLERK. RATE). The wi th statement is particularly useful
when several fields of the same record variable are being manipulated, as
in this example.

WITH STATEMENT

wi th record-var do
statement

Interpretation: The statement may be a single or compound state
ment. Record-var is the name of a record variable. Within the state
ment body, any field of record-var may be referenced by specifying
its field name only.

Example 7.3 The program in Fig. 7.2 computes the distance from an arbitrary point on
the X-Y plane to the origin (intersection of X axis and Y axis). The values
of the X and Y coordinates are entered as data and stored in the fields
XCOORD and YCOORD of the record variable POINTl. The formula used to
compute the distance from the origin to an arbitrary point (X, Y) is

distance = IIXz + yz

Since the record variable POI NT1 is specified in the with statement
header, only the field names XCOORD and YCOORD are needed to refer
ence the coordinates of the data point. Each coordinate is read separately
since it is illegal to use a record variable by itself in a READ (READLN) or
WRITE (WRITELN) statement [i.e., only individual fields of a record vari
able may be read or displayed at a terminal. not the entire record).

7.2 MANIPULATING INDIVIDUAL FIELDS OF A RECORD 329



program DISTORIGIN (INPUT, OUTPUT);

(Finds the distance from a point to the origin.j

type
POINT = record

XCOORD, YCOORD
end; (POINT j

var
POINTI : POINT:
DISTANCE : REAL:

REAL

(the data po i n t ]
(its distance from the originl

330 RECORDS

begin
with POINTI do

begin
WRITE ('X: '): READLN (XCOORD)i
WRITE ('Y: '): READLN (YCOORD)i
DISTANCE := SQRT(SQR(XCOORD) + SQR(YCOORD)):
WRITELN ('Distance to origin is " DISTANCE :5:2)

end [w i t.h]
end. (DISTORIGINj

X: 3.00
Y: 4.00
Distance to origin is 5.00

Fig. 7.2 Distance from Point to Origin.

PROGRAM STYLE

A word of caution about the wi th statement

Although the wi th statement shortens program statements that ma
nipulate record components. it can also reduce the clarity of these
statements. For example, in Fig. 7.2 it is not obvious that the state
ment

DISTANCE := SQRT(SQR(XCOORD) + SQR(YCOORD)):

is passing two record fields (POINTI. XCOORD and POINTI.
YCOORD) to the function SQR and not two variables.

The possibility of confusion and error increases when two record
variables (e.g. POINTI and POINT2) are being manipulated. In this
case if the field name XCOORD is referenced by itself. it is not clear
whether we mean POINTI. XCOORD or POINT2. XCOORD. Pascal
uses the record variable specified in the header of the closest con
taining wi tho



Self-check Exercises for Section 7.2

1. Write the Pascal statements required to print the values stored in
CLERK in the form shown in Fig. 7.1.

• Manipulating an Entire Record

Since arithmetic and logical operations must be performed on individual
memory cells, record variables cannot be used as the operands of arithme
tic and relational operators. These operators must be used with individual
fields of a record as shown in the previous section. This is also true now
for the standard procedures READ( READLN) and WRITE (WRI TELN ). In
the next chapter we will learn how to read and write entire record vari
ables to certain types of files.

Copying One Record to Another

All the fields of one record variable can be copied to another record vari
able of the same type using a record copy (assignment) statement. If
CLERK and JANITOR are both record variables of type EMPLOYEE, the
statement

CLERK := JANITOR (copy JANITOR to CLERKI

Example 7.4

copies each field of JANITOR into the corresponding field of CLERK.

Records as Parameters

A record variable can be passed as a parameter to a function or proce
dure. As always, the actual parameter must be the same type as its corre
sponding formal parameter. The use of records as parameters can shorten
parameter lists considerably because only one parameter (the record vari
able) has to be passed instead of several.

In a grading program, the vital statistics about an exam might consist of
the highest and lowest scores, the average score, and the standard devia
tion. In previous problems these data would be stored in separate vari
ables; however, it makes sense to group them together as a record.

type
EXAMSTATS = record

LOW, HIGH: 0 .. 100:
AVERAGE, STANDARDDEV

end: IEXAMSTATS I

var
EXAM : EXAMSTATS:

REAL

7.3 MANIPULATING AN ENTIRE RECORD 331



Example 7.5

A procedure that computes one of these results (e.g. AVERAGE) could be
passed a single record field (e.g. EXAM. AVERAGE). A procedure that ma
nipulates more than one of these fields could be passed the entire record.
An example would be procedure REPORT shown in Fig. 7.3.

procedure REPORT (EXAM (inputj : EXAMSTATS):

(Prints the exam statistics.j

begin (REPORTj
with EXAM do

begin
WRITELN ('High score: " HIGH :3):
WRITELN ('Low score: " LOW :3):
WRITELN ('Average: " AVERAGE :5:1):
WRITELN ('Standard deviation: " STANDARDDEV :5:1)

end [wi t.h]
end: (REPORT I

Fig. 7.3 Procedure REPORT

In computer simulations we need to keep track of the time of day during
the progress of a simulated event or experiment. Normally the time of day
is updated after a certain time period has elapsed. The record type TIME
is declared below assuming a 24-hour clock.

type
TIME = record

HOUR : 0 •• 23:
MINUTE, SECOND

end: (TIMEI
0 .. 59

Procedure CHANGETIME in Fig. 7.4 updates the time of day, TIMEOF
DAY (type TIME), after a time interval, ELAPSEDTIME. expressed in sec
onds. Each statement that uses the mod operator updates a particular field
of the record represented by TIMEOFDAY. The mod operator ensures that
each updated value is within the required range; the div operator con
verts multiples of 60 seconds to 'minutes and multiples of 60 minutes to
hours.

Reading a Record

Normally we use a procedure to read data into a record. Procedure
READEMPL in Fig. 7.5 be used to read data into the first five fields of a
record variable of type EMPLOYEE. Since we can pass a record variable to
READEMPL, only one parameter is needed. not five. The procedure (call)
statement

READEMPL (CLERK)

causes the data read to be stored in record variable CLERK.

332 RECORDS



procedure CHANGETIME (ELAPSEDTIME (inputj : INTEGER;
var TIMEOFDAY linput/outputj : TIME);

(Updates the time of day, TIMEOFDAY, assuming a 24-hour clock and
an elapsed time of ELAPSEDTIME in seconds. j

var
NEWHOUR, NEWMIN, NEWSEC INTEGER; (temporary variablesj

begin (CHANGETIMEj
with TIMEOFDAY do

begin
NEWSEC := SECOND + ELAPSEDTIME;
SECOND := NEWSEC mod 60;
NEWMIN := MINUTE + (NEWSEC div 60);
MINUTE := NEWMIN mod 60;
NEWHOUR := HOUR + (NEWMIN div 60);
HOUR := NEWHOUR mod 24

end [w i t.h]
end; (CHANGETIMEI

Fig. 7.4 Procedure CHANGETIME

(total seconds j
[s e conds mod 60j
(total minutes j

(minutes mod 60 j
ltotal hoursj

[hour-s mod 24j

Fig. 7.5 Procedure READEMPL

procedure READEMPL (var ONEEMPL (outputj : EMPLOYEE);

(Reads one employee record into ONEEMPL. Uses procedure
READSTRING to read in a string of up to 11 characters.j

var
LENGTH : INTEGER;
SEXCHAR : CHAR;

(actual length of data stringj
(letter indicating sexj

(Insert procedure READSTRING here.j

begin (READEMPLj
with ONEEMPL do

begin
WRITE ('Name: '); READSTRING (NAME, LENGTH);
WRITE ('Sex (F or M): '); READ (SEXCHAR);
case SEXCHAR of

'F', 'f' : SEX := FEMALE;
'M', 'm' : SEX := MALE

end: [case ]
WRITE ('Social Security number: ');
READSTRING (SOCSECNUM, LENGTH);
WRITE ('Number of dependents: '); READLN (NUMDEPEND):
WRITE ('Hourly rate: '): READLN (RATE)

end [w i t.h]
end; (READEMPLI

7.3 MANIPULATING AN ENTIRE RECORD 333



The two procedure (call) statements

READSTRING (NAME, LENGTH);
READSTRING (SOCSECNUM, LENGTH);

use procedure READSTRING (see Fig. 6.15) to enter a data string.
READSTRING returns a character string and an integer value. The first ac
tual parameter in each procedure (call) statement specifies which record
field (ONEEMPL. NAME or ONEEMPL. SOCSECNUM) receives the data string.

The second parameter of READSTRING represents the length of the
string read. The string length is stored in local variable LENGTH but is not
saved in the employee's record.

II Arrays of Records

In Chapter 6, we manipulated arrays with one or more dimensions. We
found the array to be a useful data structure for storing a large collection
of data items of the same type. We were able to represent game boards
and tables of sales figures using arrays.

Often a data collection contains items of different types. For example,
the data representing the performance of a class of students on an exam
might consist of the student names, exam scores, and grades assigned.

One approach to organizing these data is to allocate separate arrays for
the names, scores, and grades as shown in Fig. 7.6. These arrays are called
parallel arrays because all the data items with the same subscript (for ex
ample I) pertain to a particular student (the Ith student). Related data
items have the same color in the arrays shown in Fig. 7.6. The data for the
first student are stored in NAMES [ 1 ], SCORE S [ 1 ], and GRADE S [ 1 ] .

Fig. 7.6 Three Parallel Arrays

array SCORES
[1] [2] [3] [4]
_il~_

array GRADES
[1] [2] [3] [4]

_ ••'~i.iit"

334 RECORDS



A more natural organization of the class performance data is to group
all the information pertaining to a particular student in a record. Then a
single array of records can be used to represent the class. This array of
records is illustrated in Fig. 7.7 below.

CLASS [1]

CLASS [2]

CLASS [3]

CLASS [4]

array CLASS
NAME SCORE GRADE

-Fig. 7.7 Array of Records

The data for the first student are stored in the record CLASS [ 1 I: her in
dividual data items are CLASS [ 1] •NAME, CLASS [ 1] • SCORE, and
CLASS [ 1] • GRADE. This particular data organization is used next.

• Case Study

The next problem illustrates the use of an array of records.

Student
Grading
Problem
Revisited

Problem: In Section 3.7 we wrote a program to assign grades to each
student taking an exam. Since we could not save strings, only the
student's initials were read as data. The grade category (outstanding,
satisfactory, unsatisfactory) was determined by comparing the student's
exam score to the data values MINOUT and MINSAT. We would like to
improve this program to read and display the student's last name, to
display the low score, high score, average score, and standard deviation,
and to assign letter grades more equitably based on the class average and
standard deviation.

Discussion: The input data for the new grading program consists of a
name (a string) and exam score (an integer) for each student; the output
consists of the exam statistics and the grade (a character) assigned to
each student. The record variable EXAM can be used to provide storage for
the grade statistics (see Example 7.4).

Since we will have to find the class average before assigning a grade, it
will be necessary to process the exam scores more than one time. Conse
quently we should save all the student data (name, score, and grade) in an
array.

If the items being stored were all the same data type, a two-dimensional
array or table could be used. Since the individual items are not all the

7.5 CASE STUDY 335



same type, we can organize the data for a single student as a record; the
data for the entire class can then be stored in an array of records (CLASS).
Each student record should contain storage space for the student's name,
score, and the grade to be assigned.

The name and score of each student taking the exam (CLASS)

The exam statistics including the low score, high score, average score,
and standard deviation (EXAM : EXAMSTATS)

The grade assigned to each student (stored in CLASS)

The number of students taking the exam (NUMSTU INTEGER)

Algorithm 1. Read the student data.
2. Compute the exam statistics.
3. Assign letter grades to each student.
4. Print the exam statistics.
5. Print the data and grade for each student.

The structure chart for this problem is shown in Fig. 7.8; The main pro
gram is shown in Fig. 7.9

Fig. 7.8 Structure Chart for Improved Grading Problem

l' I l' It I I
CLASS, CLASS,

EXAM
EXAM,

CLASS EXAM
CLASS,

NUMSTU NUMSTU
I

NUMSTU +1 + NUMSTU

I + + +
READCLASS ASSIGN

FINDSTAT PRINTSTAT REPORT

336 RECORDS



program NEWGRADER (INPUT, OUTPUT);

lReads student names and scores and computes exam statistics such
as low score, high score, average, standard deviation. Assigns
letter grades based on the average score. Prints these results.!

canst
STRINGSIZE = 20;
CLASSIZE 200;

lMaximum length of each name string!
lmaximum number of students!

type
STRING = packed array [l .. STRINGSIZE] of CHAR;
STUDENT = record

NAME : STRING;
SCORE: 0 .. 100;
GRADE : I A I •• I E I

end; 1STUDENT!
CLASSRANGE = 1 .. CLASSIZE;
STUDENTARRAY = array [CLASSRANGE] of STUDENT;

EXAMSTATS = record
LOW, HIGH: 0 •• 100;
AVERAGE, STANDARDDEV

end; IEXAMSTATI

var
CLASS : STUDENTARRAY;
EXAM: EXAMSTATS;
NUMSTU: O.. CLASSIZE;

REAL

larray of student recordsl
Istatistics for examl
Inumber of students I

IInsert procedures READCLASS, FINDSTAT, ASSIGN, PRINTSTAT, REPORT. I

begin INEWGRADER I
IRead the student data.1
READCLASS (CLASS, NUMSTU);

lCompute the exam statistics.!
FINDSTAT (CLASS, NUMSTU, EXAM);

IAssign letter grades to each student. I
ASSIGN (NUMSTU, EXAM, CLASS);

IPrint the exam statistics. I
PRINTSTAT (EXAM);

IPrint the data and grade for each student.!
REPORT (CLASS, NUMSTU, EXAM)

end. INEWGRADER I

Fig. 7.9 Main Program for Improved Grading Problem

Rather than show stubs for the five level one procedures, we have sim
ply indicated by a comment where these procedures belong in the main
program. We will discuss some of the level two procedures next and leave
the rest as exercises.

7.5 CASE STUDY 337



Procedure READCLASS in Fig. 7.10 is used to enter the data [student
name and exam score) for the class. It also returns a count of students
(NUMSTU) taking the exam.

Fig. 7.10 Procedure READCLASS

procedure READCLASS (var CLASS loutputl : STUDENTARRAY;
var NUMSTU loutputl : INTEGER);

IReads all student records and stores them in consecutive elemen~s

of the array CLASS. Returns the count of students in NUMSTU.

const
SENTINEL

var
NEXTSTUDENT : STUDENT;

, ., Istring of 20 blanksl

Icurrent student recordl

procedure READSTUDENT (var NEXTSTUDENT loutputl : STUDENT);

IReads a single student record. Reads a blank string for the NAME
field if there are no more student records. I

var
LENGTH: O•• STRINGSIZE;

IInsert procedure READSTRING here.l

lactual length of name stringl

Iread next studentl

linitial count of studentsl

Iincrease coun t ]
Isave the data in CLASS I

begin IREADSTUDENTI
with NEXTSTUDENT do

begin
WRITE ('NAME: '); READSTRING (NAME, LENGTH);
if NAME <> SENTINEL then

begin
WRITE ('SCORE: '); READLN (SCORE)

end [Lf ]
end [w i t.h]

end; IREADSTUDENTI

begin IREADCLASSI
WRITELN ('Enter the data requested for each student.');
WRITELN ('Press return (after prompt NAME: ) when done.');

NUMSTU := 0;
repeat

READSTUDENT (NEXTSTUDENT);
if NEXTSTUDENT.NAME <> SENTINEL then

begin
NUMSTU := NUMSTU + 1;
CLASS [NUMSTU] := NEXTSTUDENT

end [Lf ]
until (NEXTSTUDENT.NAME = SENTINEL) or (NUMSTU = CLASSIZE);

lassert: no more students or array is filledl
if NUMSTU = CLASSIZE then

WRITELN ('Array is filled with student data.')
end; IREADCLASSI

338 RECORDS



Procedure READCLASS is similar to procedure READSCORES in Fig.
6.12. It uses procedure READSTUDENT to read each student's data (name
and exam score only) into the local record variable NEXTSTUDENT. Enter
ing a blank name (by pressing <Return» indicates that there are no
more records. If a nonblank name is read into NEXTSTUDENT. NAME, pro
cedure READCLASS increments the array subscript NUMSTU by 1, and the
assignment statement

CLASS [NUMSTU] := NEXTSTUDENT Isave the data in CLASSl

copies the record in NEXTSTUDENT into the array of records.
The student data can be manipulated in the usual way after being

stored in array CLASS. Procedure FINDSTAT will call a different level
two function to find each of the four individual exam statistics. Procedure
FINDSTAT is shown in Fig. 7.11 along with one of these functions
(FINDAVE).

Fig. 7.11 Procedure FINDSTAT with Function FINDAVE

procedure FINDSTAT (var CLASS linputl : STUDENTARRAY;
NUMSTU linputl : INTEGER;
var EXAM loutputj : EXAMSTATS);

IFinds the exam statistics: low score, high score, average, and
standard deviation.

function FINDAVE (var CLASS : STUDENTARRAY;
NUMSTU : INTEGER) : INTEGER;

IFinds the average score assuming NUMSTU students took the exam. I

var
SCORESUM : INTEGER
CURSTU : CLASSRANGE;

Isum of scores I
Iloop control variablel

begin IFINDAVEI
IAccumulate sum of scores in SCORESUM.I
SCORESUM := 0;
for CURSTU := 1 to NUMSTU do

SCORESUM := SCORESUM + CLASS[CURSTU].SCORE;

[De f i.ne result. I
if NUMSTU <> 0 then

FINDAVE := SCORESUM / NUMSTU
else

FINDAVE := 0.0
end; IFINDAVEI

IInsert functions FINDHIGH, FINDLOW, FINDSTDEV here.1

Iini tialize sum]

ladd next scorel

Icompute average I

laverage undefinedl

(continued)

7.5 CASE STUDY 339



begin IFINDSTATI
with EXAM do

begin
IFind the average score. I
AVERAGE := FINDAVE(CLASS, NUMSTU);

IFind the low score.1
LOW := FINDLOW(CLASS, NUMSTU)i

IFind the high score. I
HIGH := FINDHIGH(CLASS, NUMSTU);

IFind the standard deviation. I
STANDARDDEV := FINDSTDEV(CLASS, NUMSTU, AVERAGE)

end [w i.t.h ]
end i IFINDSTAT I

In procedure FINDSTAT, the assignment statement

AVERAGE := FINDAVE(CLASS, NUMSTU);

calls function FINDAVE, assigning the function result to EXAM. AVERAGE.
Function FINDAVE uses a for statement to accumulate the sum of all
exam scores in the local variable SCORE SUM. Each score is referenced by
the field selector CLASS ( CURSTU) . SCORE, where CURSTU is the loop
control variable. Next, the average is defined by dividing the sum by the
number of students.

Procedure ASS IGN assigns a letter grade to each student. The grade can
be determined by comparing the student's score to the class average and
standard deviation. The decision table below specifies the grade to be
assigned for each possible score.

Table 7.1 Decision Table for Assigning Letter Grades

Score Range

>= AVERAGE + 2 * STANDARDDEV
>= AVERAGE + STANDARDDEV
>= AVERAGE - STANDARDDEV
>= AVERAGE - 2 * STANDARDDEV
< AVERAGE - 2 * STANDARDDEV

Grade

A
B
C
D
E

Procedure ASSIGN is shown in Fig. 7.12. The nested if statement im
plements the decision table above. The for loop causes this if statement
to be executed once for each student.

340 RECORDS



procedure ASSIGN (NUMSTU linputl : INTEGER;
EXAM {inputj : EXAMSTATS;'
var CLASS {input/outputj : STUDENTARRAY);

{Assigns a letter grade to each student based on the
student's score and the average score and standard deviation.j

var
CURSTU : CLASSRANGE; Iloop control variablej

begin IASSIGNj
with EXAM do

for CURSTU := 1 to NUMSTU do
if CLASS[CURSTU).SCORE >= AVERAGE + 2 * STANDARDDEV then

CLASS[CURSTU).GRADE := 'A'
else if CLASS[CURSTU).SCORE >= AVERAGE + STANDARDDEV then

CLASS[CURSTU).GRADE := 'B'
else if CLASS[CURSTU].SCORE >= AVERAGE - STANDARDDEV then

CLASS[CURSTU) .GRADE := 'c'
else if CLASS[CURSTU].SCORE >= AVERAGE - 2 * STANDARDDEV then

CLASS[CURSTU).GRADE := 'D'
else

CLASS[CURSTU].GRADE := 'E'
end; IASSIGNI

Fig. 7.12 Procedure ASSIGN

Procedure REPORT (see Fig. 7.13) displays the information stored in ar
ray CLASS. The with statement selects the record variable, CLASS
[CURSTU], to be printed. Since the with statement is nested inside the
for statement and CURSTU is the loop control variable, a different stu
dent's record is printed on each output line. It would be an error to at
tempt to nest the for statement inside the with statement.

Fig. 7.13 Procedure REPORT

procedure REPORT {var CLASS linputj : STUDENTARRAY;
NUMSTU {inputj : INTEGER);

{Prints a report of student results.j

var
CURSTU : CLASSRANGE; {loop control variablej

IPrint studentj

begin
WRITELN ('Table of " NUMSTU :3, ' students follows:');
WRITELN ('Name' :20, 'Score' :10, 'Grade' :10); {Print headingj

{Print each student's data.j
for CURSTU := 1 to NUMSTU do

with CLASS[CURSTU) do
WRITELN (NAME :20, SCORE :10, GRADE :10)

end; IREPORTI

7.5 CASE STUDY 341



The array CLASS is declared as a variable parameter in FINDSTAT,
FINDAVE, and REPORT even though it is used for input only. This saves
the extra time and memory required to make a local copy of this rather
large array.

Self-check Exercises for Section 7.5

1. Why must FINDSTAT be a procedure and not a function?
2. Write functions FINDLOW, FINDHIGH, and FINDSTDEV. Function

FINDSTDEV should implement the formula

standard deviation =

N

~ score j2

i=l

N

Example 7.6

N

where ~ score." is the sum of the square of each score and N is the

number of scores.

II Searching an Array

A common problem in dealing with arrays is searching an array to deter
mine whether or not a particular data item is in the array. If the array ele
ments are records, then we must compare a particular field of each record,
called the record key, to the data item that we are seeking. Once we have
located the item in question, we can display or update the associated
record.

Function SEARCH in Fig. 7.14 searches the array CLASS for a target name,
represented by STUNAME. If the target name is located, SEARCH returns
the index of the student record with that name. Otherwise, it returns a
value of O. For the array CLASS shown in Fig. 7.7, the value returned
would be 3 for the target name 'Philips, Susan '; the value returned
would be a for the target name 'Philips, Sue

Each time the wh i le loop is repeated, the student name selected by
CURSTU is compared to the target name. If they are equal, the BOOLEAN
flag FOUND is set to TRUE and the loop will be exited when the while
condition is retested; otherwise, CURSTU is increased by 1 so that the next
student name can be checked.

The wh i le loop is exited after all names are checked (if not before).
The if statement following the loop defines the search result as the sub
script of the target name (FOUND is TRUE) or a (FOUND is FALSE).

342 RECORDS



function SEARCH (var CLASS : STUDENTARRAY;
STUNAME : STRING;
NUMSTU : INTEGER) : INTEGER;

ISearches for STUNAME in the NAME field of array CLASS. If found,
returns for subscript of STUNAME; otherwise, returns O.

var
CURSTU : INTEGER;
FOUND : BOOLEAN;

begin ISEARCHj
FOUND := FALSE;

larray subscriptl
Iflag indicating success or failurel

linitially target not foundl

ICompare the NAME field of each record to STUNAME until done.)
CURSTU := 1; Istart with first recordl
while not FOUND and (CURSTU <= NUMSTU) do

Iinvariant: STUNAME not found and CURSTU is in range. I
if CLASS[CURSTUJ.NAME = STUNAME then

FOUND := TRUE Itarget is foundl
else

CURSTU := CURSTU + 1; Icheck next recordl

lassert: STUNAME found or CURSTU is out of range. I
IDefine the function result. I
if FOUND then

SEARCH .= CURSTU Ireturn target subscriptl
else

SEARCH : = 0 Ireturn 0 I
end; ISEARCH I

Fig. 7.14 Function SEARCH

Example 7.7 In the grading program, we wish to be able to change the exam score
and/or grade of a particular student. We can use function SEARCH to lo
cate the student whose name matches the target name. Then we can modi
fy the rest of the data stored for that student. This is accomplished by
procedure CHANGERECORD shown in Fig. 7.15.

First, procedure READSTUDENT is called to store the new student data
in record TARGET. Next, function SEARCH is called to locate the target
name. If the target name is found, the statement

CLASS[INDEX] := TARGET IUpdate the record I

copies the new student data into the element of array CLASS selected by
INDEX. If the target name is not found (INDEX is 0), then an appropriate
message is printed.

7.6 SEARCHING AN ARRAY 343



procedure CHANGERECORD (var CLASS Iinput/output 1 : STUDENTARRAY;
NUMSTU Iinput 1 : INTEGER);

IChanges the record stored in CLASS for a particular student.
Calls procedure READSTUDENT and function SEARCH.

var
TARGET : STUDENT;
INDEX: O•• MAXSTU;

Idata for record being updatedl
Isubscript of target record or 01

IInsert procedure READSTUDENT and function SEARCH 1

begin ICHANGERECORD 1

IEnter the new student data. 1

WRITELN ('Enter the name of the student whose record'l;
WRITELN ('is being changed and the new data for that student.')
READSTUDENT (TARGET);

ISearch for the target name in the array CLASS. 1
INDEX := SEARCH (CLASS, TARGET. NAME, NUMSTU);

IIf the target name is found, update the record. 1
if INDEX <> 0 then

. CLASS [INDEX] := TARGET lupdate the recordl
else

WRITELN ('Student', TARGET. NAME, , is not in the class. ')
end; ICHANGERECORDj

Fig. 7.15 Procedure CHANGERECORD

Self-check Exercise for Section 7.6

1. Write a procedure to count the number of students with a passing
grade on the exam (D or higher).

II Sorting an Array

In Section 3.4 we discussed a simple sort operation involving three num
bers. We performed the sort by examining pairs of numbers and exchang
ing them if they were out of order. There are many times when we need to
sort the elements in an entire array. For example, we might prefer to have
a grade report printed out in alphabetical order, or in order by score.

In this section, a fairly simple (but not very efficient) algorithm called
the bubble sort will be discussed. The bubble sort compares adjacent ar
ray elements and exchanges their values if they are out of order. In this
way the smaller values "bubble" up to the top of the array (toward the
first element) while the larger values sink to the bottom of the array;
hence the name bubble sort. The data requirements and algorithm for a
bubble sort procedure follow.

344 RECORDS



Algorithm for
Bubblesort
Procedure

the array being sorted
the number of array elements

the sorted array

1. repeat
2. Examine every pair of adjacent array elements and exchange

any values that are out of order.
until the array is sorted

As an example we will trace through one execution of step 2 above, that
is one pass through an array being sorted. By scanning the diagrams in Fig.
7.16a from left to right we see the effect of each comparison. The pair of ar
ray elements being compared is shown in a darker color in each diagram.
The first pair of values (M [1] is 60, M [ 2] is 42) is out of order so the val
ues are exchanged. The next pair of values (M [ 2] is now 60, M[ 3] is 75)
is compared in the second array shown in Fig. 7.16a; this pair is in order
and so is the next pair (M[3] is 75, M[4] is 83). The last pair (M[4] is
83, M [5] is 27) is out of order so the values are exchanged as shown in
the last diagram.

M[l]

M[2 ]

M[3 ]

M[4 ]

M[5 ] 1
4 2

::27
Switch

M[l], M[2]
M[2], M[3]

are In order
M[3], M[4]

are In order
Switch

M[4], M[5]

Fig. 7.16a One Pass of Bubble Sort of Array M

The last array shown in Fig. 7.16a is closer to being sorted than the orig
inal. The only value that is out of order is the number 27 in M[4 ]. Unfor
tunately, it will be necessary to complete three more passes through the
entire array before this value bubbles up to the top of the array (we
warned you the sort was inefficientl). In each of these passes, only one
pair of values will be out of order so only one exchange will be made. The
exchanges made and the contents of array Mafter the completion of each
pass are shown in Fig. 7.16b.

We can tell by looking at the contents of the array at the end of pass 4
that the array is now sorted; however, the computer can only recognize
this by making one additional pass with no exchanges. If no exchanges
are made, then all pairs must be in order. This is the reason for the extra
pass shown in Fig. 7.16b and for the BOOLEAN flag NOEXCHANGES de
scribed next.

7.7 SORTING AN ARRAY 345



M[l]
M[2]

M[3 ]

M[4 ]

M[S] I
end of
pass 1

end of
pass 2

end of
pass 3

end of
pass 4

end of
pass 5

Fig. 7.16b Array M after Completion of Each Pass

1[,111
flag to indicate whether or not any exchanges were made in a pass

(NOEXCHANGES : BOOLEAN)
loop control variable and subscript (FIRST : INTEGER)
number of the current pass starting with 1 (PASS : INTEGER)

Refinement of
step 2 of Bubble
Sort

2.1 Initialize NOEXCHANGES to TRUE
2.2 for each pair of adjacent array elements do

2.3 if the values in a pair are out of order then
2.4 Exchange the values
2.5 Set NOEXCHANGES to FALSE

Step 2.2 will be implemented as a for statement. The for loop control
variable, FIRST, will also be the subscript of the first element in each
pair; consequently, FIRST+1 will be the subscript of the second element
in each pair. During each pass, the initial value of FIRST is 1. The final
value of FIRST must be less than the number of array elements so that
FIRST+1 will be in range.

For an array of N elements, the final value of FIRST can be N-PASS,
where PASS is the number of the current pass, starting with 1 for the first
pass, The reason is that at the end of pass 1 the last array element must
be in its correct place; at the end of pass 2 the last 2 array elements must
be in their correct places; at the end of pass 3 the last 3 array elements
must be in their correct places, etc. There is no need to examine array ele
ments already in place, The section of the array already sorted at the end
of each pass is shown in a darker color in Fig. 7.16b.

Procedure BUBBLE SORT in Fig, 7,17 performs a bubble sort on the
array CLASS, Because the array is being sorted on the NAME field,
CLASS[FIRST] • NAME is compared to CLASS[FIRST+l] • NAME, If the
student names are out of order, the statement

SWITCH (CLASS[FIRST], CLASS[FIRST+l])i (Switch datal

346 RECORDS

calls procedure SWITCH to exchange the records of the two array ele
ments listed as actual parameters, Note that the entire records are
switched, not just the names, If only the names are switched, the scores



and grades will be associated with the wrong students. When BUBBLE
SORT is completed, the array of records will be in alphabetical order by
student name.

procedure BUBBLESORT (var CLASS (input/outputj : STUDENTARRAYj
NUMSTU [Lnput.] : INTEGER) j

(Sorts the data in array CLASS by student name.j

var
NOEXCHANGES : BOOLEANj
FIRST,
PASS : INTEGER:

procedure SWITCH (var STUl, STU2

(Switches records STUI and STU2.j

var
TEMPSTU : STUDENT:

(any exchanges in current pass?j
(first element of a pairj
(number of current passl

(input/outputj : STUDENT):

(temporary student recordJ

begin (SWITCHj
TEMPSTU := STUl: STUl:= STU2i STU2:= TEMPSTU

end: (SWITCHj

begin /BUBBLESORTj
PASS := 1:
repeat

NOEXCHANGES := TRUEj

(start with pass 11

(no exchanges yetj

/switch dataj
(reset flagl

[Compare student names in each pair of adjacent elementsJ
for FIRST := 1 to NUMSTU-PASS do

if CLASS[FIRST].NAME > CLASS[FIRST+l].NAME then
begin (exchangej

SWITCH (CLASS [FIRST] , CLASS[FIRST+l])j
NOEXCHANGES := FALSE

end i (exchange j

PASS := PASS + 1
until NOEXCHANGES

(assert: array is sortedj
end: lBUBBLESORTj

Fig. 7.17 Bubblesort Procedure

(increment pass numberj
[until no exchanges in last pass]

Self-check Exercises for Section 7.7

1. What changes would be needed to sort the array CLASS by exam
score instead of student name? How could you have the scores ar
ranged in descending order (largest score first)?

7.7 SORTING AN ARRAY 347



• General Data Structures

In solving any programming problem, data structures must be selected that
enable us to efficiently represent in the computer a variety of information.
The selection of data structures is a very important part of the problem
solving process. The data structures used can have a profound effect on
the efficiency and simplicity of the algorithm and program.

The data structuring facilities in Pascal are quite powerful and general.
In the last sample. we used a data type consisting of an array of records.
It is also possible to declare a record type with fields that are arrays or
other records.

Fig. 7.18 Record Type NEWEMPLOYEE and Record Variable PROGRAMMER

const
STRINGSIZE = 11;
DIGITSIZE = 5;

type
STRING = packed array [1 •• STRINGSIZE] of CHARi
DIGITSTRING = packed array [1 .. DIGITSIZE] of '0' •• '9';
MONTH = (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT ,NOV,DEC);

EMPLOYEE = record
NAME : STRING;
SEX : ( FEMALE, MALE);
SOCSECNUM : STRING ;
NUMDEPEND : INTEGER;
RATE : REAL;
TAXSAL : REAL

end; [EMPLOYEE I

ADDRESS = record
STREET, CITY, STATE: STRING;
ZIPCODE : DIGITSTRING

end; [ADDRESSj

DATE = record
MONTHVAL : MONTH;
DAY: 1. .31;
YEAR: 1900 .. 1999

end; [DATEI

NEWEMPLOYEE = record
PAYDATA : EMPLOYEE;
HOME : ADDRESS;
STARTDATE, BIRTHDATE DATE

end; [NEWEMPLOYEEj

var
PROGRAMMER: NEWEMPLOYEE;
DAYOFYEAR : DATE;

348 RECORDS



We began our study of records by introducing a record type EMPLOYEE.
In this section we will modify this record by adding new fields for storage
of the employee's address, starting date, and date of birth. The record type
NEWEMPLOYEE as well as two additional record types, DATE and AD
DRESS, are declared in Fig. 7.18.

The hierarchical structure of PROGRAMMER, a record variable of type
NEWEMPLOYEE, is shown in Fig. 7.19. This is not a structure diagram, but
is used to provide a graphic display of the record form.

record variable
PROGRAMMER

PAYDATA STARTDATE

HOME

subrecord --+
PROGRAMMER.HOME

Fig. 7.19 Record Variable PROGRAMMER (Type NEWEMPLOYEE)

BIRTHDATE

This diagram shows that PROGRAMMER is a record with fields PAYDATA,
HOME, STARTDATE, BIRTHDATE. Each of these fields is itself a record
(called a subrecord) of PROGRAMMER. Each subrecord is shaded in Fig.
7.19. As shown. there are 4 data fields (STREET. CITY, etc.] in the
subrecord PROGRAMMER. HOME.

In order to reference a field in this diagram, we must trace a complete
path to it starting from the top of the diagram. For example, the field se
lector

PROGRAMMER.STARTDATE

references the entire subrecord STARTDATE (type DATE) of the variable
PROGRAMMER. The field selector

PROGRAMMER.STARTDATE.YEAR

references the YEAR field (type INTEGER) of the subrecord PROGRAM
MER. STARTDATE. The field selector

7.8 GENERAL DATA STRUCTURES 349



PROGRAMMER. YEAR

is incomplete (which YEAR field?) and will cause a syntax error.
The record copy statement

PROGRAMMER.STARTDATE := DAYOFYEAR

is legal if DAYOFYEAR is a record variable of type DATE. This statement
copies each field of DAYOFYEAR into the corresponding field of the
subrecord PROGRAMMER. STARTDATE. Three values are copied.

In many situations, the wi th statement can be used to shorten the field
selector. The statement

with PROGRAMMER.STARTDATE do
WRITELN ('Year started: " YEAR,

'Day started: " DAY)

prints two fields of the subrecord PROGRAMMER. STARTDATE. The compu
tation for taxable salary could be written as

with PROGRAMMER.PAYDATA do
TAXSAL := 40.0 * RATE - 14.40 * NUMDEPEND

You can use a list of field names in a wi th statement. The statement

with PROGRAMMER, PAYDATA, HOME, STARTDATE do
WRITELN (NAME, ' lives in " CITY,

, and started in " YEAR :4)

displays one field of each subrecord PROGRAMMER. PAYDATA, PROGRAM
MER. HOME, and PROGRAMMER. STARTDATE. This is equivalent to

with PROGRAMMER do
WRITELN (PAYDATA.NAME, ' lives in " HOME.CITY,

, and started in " STARTDATE.YEAR :4)

You can also nest with statements. The nested with statement below
is equivalent to those just discussed.

with PROGRAMMER do
with PAYDATA do

with HOME do
with STARTDATE do

WRITELN (NAME, ' lives in
, and started in

, CITY,
YEAR :4)

350 RECORDS

The record variable name (PROGRAMMER) must precede the subrecord
names as shown above. The order of the field names PAYDATA, HOME,
and STARTDATE is not important.



Procedure READNEWEMP in Fig. 7.20 can be used to read in a record of
type NEWEMPLOYEE. It calls procedures READEMPL (see Fig. 7.5).
READDATE. and READDRESS.

procedure READNEWEMP (var NEWEMP loutputj : NEWEMPLOYEE);

{Reads a record into record variable NEWEMP. Uses
procedures READEMPL, READDATE, and READADDRESS.

begin !READNEWEMPj
with NEWEMP do

begin
WRITELN ('Enter employee payroll data.')1
READEMPL (PAYDATA)1
WRITELN ('Enter Address.')1
READADDRESS (HOME) 1
WRITELN ('Enter starting date. ')1
READDATE (STARTDATE)1
WRITELN ('Enter birthday. ')1
READDATE (BIRTHDATE)

end [withj
end1 !READNEWEMPj

Fig. 7.20 Procedure READNEWEMP

Finally, we can extend our declarations to include an array (PERSON
NEL) with record type NEWEMPLOYEE.

const
STRINGSIZE = 111 DIGITSIZE 51
MAXEMP = 300;

type

: } insert declarations from Fig. 7.18

EMPRANGE 1 •. MAXEMP1
EMPARRAY = array [EMPRANGE) of NEWEMPLOYEE1

var
PERSONNEL : EMPARRAY1
NUMEMP, CUREMP : EMPRANGE1

The for statement below can be used to fill this array with data for the
number of employees specified by NUMEMP.

for CUREMP := 1 to NUMEMP do
READNEWEMP (PERSONNEL[CUREMP)

Each record read will be stored in the array element selected by CUREMP.

Self-check Exercises for Section 7.8

1. Write procedures READDATE and READADDRESS.

7.8 GENERAL DATA STRUCTURES 351



• Record Variants"

All record variables of type NEWEMPLOYEE have the same form and struc
ture, However, it is possible to define record types that have some fields
that are the same for all variables of that type (fixed part) and some fields
that may be different (variant part).

For example, we might wish to include additional information about an
employee based on the employee's marital status. For all married employ
ees, we might want to know the spouse's name and number of children.
For all divorced employees, we might want to know the date of the di
vorce, For all single employees, we might want to know whether or not
the employee lives alone.

This new employee type, EXECUTIVE, is declared in Fig. 7.21. It uses
several data types declared earlier in Fig. 7.18 for type NEWEMPLOYEE.

The fixed part of a record always precedes the variant part. The fixed
part of record type EXECUTIVE has the form of record type
NEWEMPLOYEE. The variant part begins with the phrase

case MS : MARITALSTAT of

defining a special field MS, of type MARITALSTAT, that is called the tag
field. The value of the tag field (MARRIED, DIVORCED, or SINGLE) indi
cates the form of the remainder of the record. If the value of the tag field
is MARRIED, there are two additional fields, SPOUSENAME and NUMKIDS;
otherwise, there is only one additional field, DIVORCEDATE (type DATE)
or LIVESALONE (type BOOLEAN).

Some samples of record variable BOSS are shown below. Only the tag
field and variant part are shown since the fixed parts all have the same
form.

BOSS.MS
BOSS.SPOUSENAME
BOSS.NUMKIDS

BOSS.MS
BOSS.DIVORCEDATE.MONTHVAL
BOSS.DIVORCEDATE.DAY
BOSS.DIVORCEDATE.YEAR •

352 RECORDS

BOSS.MS _
BOSS.LIVESALONE

'This section is optional and may be omitted.



const
STRINGSIZE = 11;
DIGITSIZE = 5;

type
STRING = packed array [l •• STRINGSIZE] of CHAR;
DIGITSTRING = packed array [l •. DIGITSIZE] of '0' .• '9';
MONTH = (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC);

EMPLOYEE = record
NAME : STRING;
SEX: (FEMALE, MALE);
SOCSECURE : STRING ;
NUMDEPEND : INTEGER;
RATE : REAL;
TAXSAL : REAL

end; IEMPLOYEE I

ADDRESS = record
STREET, CITY, STATE: STRING;
ZIPCODE : DIGITSTRING

end; IADDRESS j

DATE = record
MONTHVAL : MONTH;
DAY: 1. .31;
YEAR: 1900 .• 1999

end; {DATE I

NEWEMPLOYEE = record
PAYROLLDATA : EMPLOYEE;
HOME : ADDRESS;
STARTDATE, BIRTHDATE : DATE

end; INEWEMPLOYEEj

MARITALSTAT = (MARRIED, DIVORCED, SINGLE);
EXECUTIVE = record

Ifixed part j
PAYDATA : EMPLOYEE;
HOME: ADDRESS;
STARTDATE, BIRTHDATE : DATE;

Ivariant partj
case MS : MARITALSTAT of

MARRIED: (SPOUSENAME : STRING;
NUMKIDS : INTEGER);

DIVORCED: (DIVORCEDATE : DATE);
SINGLE : (LIVESALONE : BOOLEAN)

end; IEXECUTIVEj

var
BOSS : EXECUTIVE;

Fig. 7.21 Record Type EXECUTIVE and Record Variable BOSS

7.9 RECORD VARIANTS 353



For each variable of type EXECUTIVE, the compiler will allocate suffi
cient storage space to accommodate the largest of the record variants.
However, only one of the variants is defined at any given time; this partic
ular variant is determined by the tag field value.

For example, if the value of BOSS .MS (the tag field) is MARRIED, then
only the variant fields BOSS. SPOUSENAME and BOSS. NUMKIDS may be
correctly referenced; all other variant fields are undefined. The statement

with BOSS do
begin

WRITELN {'Spouse is '
WRITELN ('They have '

end; [w i.t.h ]

SPOUSENAME) ;
NUMKIDS, ' children.')

can only be executed without error when BOSS .MS is MARRIED.
The programmer must ensure that the variant fields that are referenced

are consistent with the tag field value. For this reason, a case statement
is often used in processing the variant part of a record. By using the tag
field as the case selector, we can ensure that only the currently defined
variant is manipulated. The case statement below will execute correctly
for any valid tag field value. The value of BOSS .MS determines what in
formation will be displayed.

with BOSS do
case MS of

MARRIED

DIVORCED

SINGLE

end [case]

begin
WRITELN ('Spouse is' SPOUSENAME);
WRITELN ('They have' NUMKIDS :2, ' children.')

end; {MARRIEDj
with DIVORCEDATE do

WRITELN ('Date of divorce: "
ORD{MONTHVAL)+l :2, '/', DAY :2, 'I', YEAR :4);

if LIVESALONE then
WRITELN ('Lives alone')

else
WRITELN ('Does not live alone')

The syntax for a record with fixed and variant parts is described in the
next display.

RECORD TYPE WITH VARIANT PART

ree-type = record
id-Iist; type 1 ;

id-list.: : typez;

fixed part

354 RECORDS



case tag
label;
labelz

tag-type of
(jield-list l ) ;

(field-listz) ;
variant part

Example 7.8

labelc : (field-listk)
end;

Interpretation: The field-list for the fixed part is declared first. The
variant part starts with the reserved word case. The identifier tag is
the name of the tag field of the record; the tag field name is separat
ed by a colon from its type (tag-type), which must be a previously
defined enumerated type or subrange.

The case labels tlabel; labelz ,..., labelk) are lists of values of the
tag field as defined by tag-type. Field-list, describes the record fields
associated with label; Each element of [ield-Iist, specifies a field
name and its type; the elements in field-list, are separated by semi
colons. Field-list; is enclosed in parentheses.
Note 1: All field names must be unique. The same field name may
not appear in the fixed and variant parts or in two field lists of the
variant part.
Note 2: An empty field list (no variant part for the case label) is in
dicated by an empty pair of parentheses, ( ) .
Note 3: It is possible for [ield-Iist, to also have a variant part. If so, it
must follow the fixed part of [ield-list:
Note 4: There is only one end for the record type declaration; there
is no separate end for the case.

When initially storing data into a record with a variant part, the tag
field value should be read first. Once the value of the tag field is defined,
data can be read into the variant fields associated with that value.

The record type FIGURE can be used to represent a geometric object. It
has three variants. one for each type of object. There is no fixed part in
the declaration of FIGURE.

type
FIGKIND = (RECTANGLE, SQUARE, CIRCLE);
FIGURE = record

case FIGSHAPE : FIGKIND of
RECTANGLE: (WIDTH, HEIGHT: REAL);
SQUARE: (SIDE: REAL);
CIRCLE : (RADIUS : REAL)

end; IFIGUREj

The program in Fig. 7.22 enters data describing a geometric figure and
computes its perimeter and area. The first letter entered (R, S. or C) indi-

7.9 RECORD VARIANTS 355



cates the type of figure to be processed. This letter is converted by func
tion FIGCONVERT (not shown) to a scalar value of type FIGKIND
(RECTANGLE, SQUARE, CIRCLE, ILLEGAL) where the scalar value
ILLEGAL has been added to signal an illegal input character.

_______ "'T:"I"••T:"IIT1T"1o'IT 0 "

var
Sl, S2, S3 : LINE;

Example 7.9

Most programming languages provide special string manipulation proce
dures and functions. In fact, several extended versions of Pascal include
such features. However, standard Pascal does not. In this section, we will
discuss how to perform some common operations on strings in standard
Pascal. (See Appendixes B.3 and B.4.)

Procedure READLINE in Fig. 7.23 is based on procedure READSTRING in
Fig. 6.15. Only one parameter is passed because the character string read
and its length are both saved in the record variable corresponding to
INSTRING (type LINE).

procedure READLINE (var INSTRING loutputj : LINE);

IReads a string of characters into INSTRING.INFO. The string
length is saved in INSTRING. LENGTH. j

const
BLANK I I., Icharacter used for paddingj

var
I 1 .. STRINGSIZE; Iloop control variablej

of line and INFO not filledj
lincrease LENGTHj

Istore next characterj

and store it in field INFO.j
Ino characters readj

do

begin IREADLINEj
with INSTRING do

begin
IRead each character
LENGTH := 0;
while not EOLN and (LENGTH < STRINGSIZE)

begin
Iinvariant: not at end
LENGTH := LENGTH + 1;
READ (INFO[LENGTH)

end; [wh i.Le ]

lassert: at end of line or INFO is filledj
READLN; ladvance to the next linej

IPad rest of INFO with blanks.j
for I := LENGTH+l to STRINGSIZE do

INFO[I) := BLANK
end [w i.t.h ]

end; IREADLINEj

Fig. 7.23 Procedure READLINE

If thp r.hRrRr.tpr<: I am a strina. <~"tllrn'> aro ontororl at tho ].,.n,,_



is executed. S1 will be defined as shown below. Those parts of S1 that
contain data are in a darker color. STRINGSIZE is 20.

Sl.INFO
Sl.LENGTH

The rest of the material in this section is rather detailed. You may wish
to skip it on a first reading.

Example 7.10 Procedure COpy in Fig. 7.24 copies a portion of its source string (SOURCE)
to its destination string (DESTIN). The substring copied. starting at posi
tion INDEX in the source string, will begin at position 1 in DESTIN. The
parameter SIZE represents the length of the substring being copied.

A result of the procedure (call) statement

COpy (Sl, 3, 2, S2)

follows, assuming S 1 is defined as shown earlier. Only the characters in
cells 3 and 4 of S1. INFO are copied to S 2 . INFO; S 1 is unchanged.

s i , INFO
Sl.LENGTH

S2.INFO
S2.LENGTH

Fig. 7.24 String Copy Procedure

procedure COPY (SOURCE linputl : LINE;
INDEX, SIZE linputl : INTEGER;
var DESTIN loutputj : LINE);

lCopies a substring of SOURCE to DESTIN. The substring copied
starts at position INDEX of SOURCE. The length of the substring
copied is specified by SIZE. l

var
I : 1 .• STRINGSIZE; lloop control variablel

begin lCOPYl
if (INDEX < 1) or (SIZE < 1) or

(INDEX + SIZE - 1 > SOURCE.LENGTH) then
WRITELN ('Illegal integer parameter. Copy aborted.')

else
begin lcopy operationl

for I := 1 to SIZE do
DESTIN.INFO[I] := SOURCE.INFO[INDEX+I-l];

DESTIN.LENGTH := SIZE
end lcopy operationl

end; ICOPYI

7,10 MANIPULATING STRINGS STORED IN RECORDS 359



Example 7.11

The if condition in Fig. 7.24 validates the parameters INDEX and SI ZE.
Both parameters must be positive and the last character to be copied (at
position INDEX+SIZE-l in SOURCE. INFO) must be defined,

The for statement copies SIZE characters from the source string to the
destination string. When the loop control variable I is 1, the character at
position INDEX of the source string is copied; when I is SIZE, the char
acter at position INDEX+SI ZE-l is copied. The assignment statement

DESTIN.LENGTH := SIZE

defines the actual length, SIZE, of the destination string.

Procedure CONCAT in Fig. 7.25 concatenates or joins its two source strings
together. The destination string, DESTIN, will contain the string in
SOURCEl followed by the string in SOURCE2. A result of the procedure
(call) statement

CONCAT (Sl, S2, S3)

follows assuming Sl and S2 are defined as shown below.

Sl.INFO
Sl.LENGTH

52.INFO

52.LENGTH

53.INFO

53.LENGTH

Procedure CONCAT begins by checking that the concatenated string will
fit in DESTIN, If so, the assignment statement

DESTIN. INFO := SOURCE1.INFO; lcopy SOURCEl firstl

Example 7.12

360 RECORDS

copies the string in SOURCE 1 . INFO to DESTIN • INFO. This defines the
characters in positions 1 through SOURCE 1. LENGTH of DESTIN • INFO.
The for statement copies each character in SOURCE2. INFO to
DESTIN • INFO. The first character in SOURCE 2. INFO is stored at posi
tion SOURCE 1. LENGTH+ 1, or just after the string SOURCE 1. INFO. Final
ly, the length of the string in DESTIN is defined as the sum of the lengths
of the two strings that were concatenated.

The final string operation we will discuss is a string search. It is often nec
essary to locate the starting position of a particular target string in a
source string. This is done by "sliding" the target string over the source
string until each character in the target string matches the source string



procedure CONCAT (SOURCE1, SOURCE2 linputl : LINE;
var DESTIN [outputl : LINE);

[Concatenates the strings in SOURCEl and SOURCE2; the resulting
string in stored in DESTIN. l

var
I : 1 •• STRINGSIZE; [loop control variablel

begin [CONCATl
if (SOURCE1.LENGTH + SOURCE2.LENGTH > STRINGSIZE) then

WRITELN ('Strings too long. Concatenation aborted.')
else

begin [join stringsl
DESTIN. INFO := SOURCE1.INFO; [copy SOURCEl firstl

[Copy SOURCE2 after SOURCE1.l
for I := 1 to SOURCE2.LENGTH do

DESTIN. INFO [SOURCE1. LENGTH + I] : = SOURCE 2. INFO [ I] ;
DESTIN.LENGTH := SOURCE1.LENGTH + SOURCE2.LENGTH

end [join stringsl
end; [CONCATl

Fig. 7.25 Concatenation Procedure

character under it. For the example shown below, there is a match when
the target string, Sl. INFO, is over positions 3 and 4 of the source string,
S2 • INFO, so the function designator POS (Sl, S2) returns a value of 3. If
there is no match, then the function result will be 0 (e.g. POS (S2, Sl) re
turns 0). Function POS in Fig. 7.26 implements the string search operation.

81. INFO
Sl.LENGTH

82. INFO
82.LENGTH

Function POS begins by validating the parameters TARGET. LENGTH
and SOURCE. LENGTH. If either the source or target string length is not
positive or if the target string is longer than the source string the BOOL
EAN flag MATCHED is set to FALSE.

If the parameters are valid, then each substring in SOURCE. INFO of
length TARGET. LENGTH is compared to TARGET. INFO using function
MATCH. Function MATCH is similar to function SAMEARRAY (see Fig. 6.9),
which determines whether or not two arrays are identical. MATCH returns
a value of TRUE if the substring of SOURCE. INFO starting at position
START is the same as the string TARGET. INFO; otherwise, MATCH re
turns a value of FALSE. Function POS continues sliding START to the
right until either a match occurs or START is so large that there are less
than TARGET. LENGTH characters in the substring of SOURCE. INFO
starting at START.

7.10 MANIPULATING STRINGS STORED IN RECORDS 361



function POS (TARGET, SOURCE : LINE) : INTEGER;

IReturns the starting position of the first occurrence
of the string TARGET in string SOURCE. Returns 0 if TARGET is not a

substring of SOURCE. I

var
START: O.• STRINGSIZE;
MATCHED : BOOLEAN;

lthe starting position in SOURCE I
lindicator of success or failurel

function MATCH (TARGET, SOURCE LINE;
START : INTEGER) : BOOLEAN;

IReturns TRUE if TARGET.INFO matches the substring in SOURCE.INFO
starting at position START; otherwise, returns FALSE.

var
NEXT: O.. STRINGSIZE;

begin IMATCHI
NEXT := 0;

lsubscript for TARGET.INFOI

lNEXT will be increased by 11

ICompare corresponding characters in TARGET and SOURCE
starting with TARGET.INFO[l] and SOURCE.INFO[START].1

repeat
linvariant: all pairs tested match
and NEXT < TARGET.LENGTHI
NEXT := NEXT + 1 ladvance to next pairl

until (TARGET.INFO[NEXT] <> SOURCE.INFO[START+NEXT-l]) or
(NEXT = TARGET.LENGTH);

lassert: an unequal pair is found or strings matchl
MATCH := TARGET.INFO[NEXT] = SOURCE.INFO[START+NEXT-l]

end; jMATCHI

begin IPOSI
if (TARGET.LENGTH < 1) or (SOURCE.LENGTH < 1) or

(TARGET.LENGTH > SOURCE.LENGTH) then
MATCHED := FALSE linvalid parameterl

else
begin lslide and matchl

START : = 0; 1START will be increased by 11
repeat

linvariant : TARGET is not matched
and START is in range.l
START := START + 1; [slide to rightl
MATCHED := MATCH(TARGET, SOURCE, START)

until MATCHED or (START> SOURCE.LENGTH - TARGET.LENGTH);

lassert: TARGET is matChed or START is too large I
end; [s Ld.de and ma t ch]

IDefine function result.1
if MATCHED then

POS := START ltarget string begins at STARTI
else

POS := 0 ltarget string is not found I
end; jPOSI

Fig. 7.26 String Search Function POS

362 RECORDS



Self-check Exercises for Section 7.10

1. Write a procedure DELETE that can be used to delete a substring of a
string. The procedure parameters are the source string, the starting po
sition of the substring to be deleted, and the length of the substring.

2. Write a procedure to insert a new string into a source string. The pa
rameters are the two strings and the position in the source string
where the new string is to be inserted. Verify that the expanded string
will fit before doing the insertion.

3. Exercises 1 and 2 can both be solved by using procedures COpy and
CONCAT. Provide alternate solutions that utilize these procedures to
extract and concatenate substrings. Hint: To delete, copy the substring
following the one to be deleted to a local variable, shorten the original
string by changing its length, and then concatenate the modified origi
nal string and the local string. To insert, copy the substring following
the point of insertion to a local string, shorten the original string by
changing its length, and then concatenate the modified original string,
the new string, and the local string.

• Common Programming Errors

The most common error when using records is to incorrectly specify the
record field to be manipulated. The full field selector (record variable and
field name) must be used unless the record reference is nested inside a
wi th statement. or the entire record is to be manipulated. So far we have
discussed the latter option only for record copy statements and for records
passed as parameters. When reading or writing records at the terminal,
each field must be processed separately.

If a record variable name is listed in a with statement header, then
only the field name is required to reference fields of that record inside the
wi th statement. The full field selector must still be used to reference
fields of any other record variable.

When an array of records is manipulated, the array subscript must be
included in the field selector. If a with statement is being used, then the
array name and subscript must be listed in the wi th statement header. If
the subscript is updated in a loop, then the with statement must be nest
ed inside the loop; otherwise, the array element (record) being manipulat
ed will not change as the subscript value changes.

If a record has both a fixed and a variant part, be sure to define the
fixed part first. Remember that the value of the tag field determines the
form of the variant part that is currently defined. Consequently, the vari
ant part should be manipulated in a case statement with the tag field as
the case selector in order to ensure that the proper form is being manipu
lated. This is the programmer's responsibility because the compiler does
not check to make sure that the variant part is being manipulated correctly.

7.11 COMMON PROGRAMMING ERRORS 363



II Chapter Review

In this chapter we studied the record data type. Records were shown to be
useful for organizing a collection of related data items of different types.
We were able to create some very general data structures to model our
"real world" data organization through hierarchical combinations of ar
rays and records.

In processing records, we learned how to reference each individual com
ponent through the use of a field selector consisting of the record variable
name and field name separated by a period. The with statement was in
troduced as a means of shortening the field selector. If a record variable
name is specified in a wi th statement header, then the field name may be
used alone inside the wi th statement.

We also studied arrays of records as well as records that contained ar
ray fields. In both cases, we found that the subscript should be included
as part of the field selector.

Each individual component of a record must be manipulated separately
in a READ(READLN) or WRITE(WRITELN) statement or an arithmetic ex
pression. However, it is permissable to assign one record variable to an
other record variable of the same type (record copy statement), to pass a
record as a parameter to a procedure or function, or to compare two
records. In the next chapter, we will learn how to read and write complete
records to external files of records.

We also learned how to search an array to see if a desired value or key
was present. An array search involves examining each element in se
quence until either the key is found or all elements are examined without
success. If the latter situation occurs, then the desired key is not present
in the array.

Another important application discussed in this chapter is sorting an ar
ray. We introduced one technique, the bubble sort, to order the elements
of an array of records based on the values of a particular field.

Finally, we discussed storing strings in records and wrote some proce
dures and a function to manipula te such strings.

New Pascal Statements

The new Pascal statements introduced in this chapter are described in Ta
ble 7.2.

Review Questions for Chapter 7

1. Declare a record called SUBSCRIBER which contains the fields NAME,
STREETADDRESS, MONTHLYBILL (how much the subscriber owes),
and which paper the subscriber receives (MORNING, EVENING, or
BOTH).

2. Write a Pascal program to enter and then print out the data in record
COMPETITION declared following Table 7.2.

364 RECORDS



Table 7.2 Summary of New Pascal Statements

Statement

Record declaration
type

PART = record
10 : packed array [1 .. 6] of CHAR;
QUANTITY: INTEGER;
PRICE : REAL

end; IPARTl
var NUTS, BOLTS PART;

Record variant declaration
type

CHILDKIND = (GIRL, BOY);
CHILD = record

NAME : packed array [1 .. 20] of CHAR;
AGE : INTEGER;
case KIND : CHILDKIND of

GIRL: (SUGAR, SPICE: REAL);
BOY :

(SNAKES, SNAILS, TAILS : INTEGER)
end; ICHILDl

var KID: CHILD;

Record reference
NUTSVALUE := NUTS.QUANTITY * NUTS.PRICE;

WRITELN ('Part ID is " BOLTS.ID);

Record copy
BOLTS := NUTS

with statement
with BOLTS do

WRITE ('Part " ID, ' costs $', PRICE)

Referencing a record variant
with KID do

case KIND of
GIRL :

begin
WRITE ('Enter pounds of sugar:');
READLN (SUGAR)

end; IGIRLl
BOY :

begin
WRITE ('Enter count of snakes:');
READLN (SNAKE S )

end IBOYl
end [case ]

Effect

A record type PART is declared
with fields that can store a char
acter string, integer, and real
number. NUTS and BOLTS are
record variables of type PART.

A record type with a variant part
is declared. Each record variable
can store a string and an integer.
Besides the fixed part, one vari
ant can store 2 real numbers and
the other can store 3 integers.
The record variable KID is type
CHILD. The tag field, KIND, is
type CHILDKIND.

Multiples 2 fields of NUTS.

Prints 1 field of BOLTS.

Copies record NUTS to BOLTS.

Prints 2 fields of BOLTS.

Uses a case statement to read
data into the variant part of
record variable KID. If tag field
KIND is GIRL, reads a value
into the field SUGAR. If tag field
KIND is BOY, reads a value into
the field SNAKES.

7,12 CHAPTER REVIEW 365



366 RECORDS

type
STRING = packed array [1 •• 15] of CHAR;
OLYMPICEVENT = record

EVENT : STRING;
ENTRANT : STRING;
COUNTRY: STRING;
PLACE : INTEGER

end; IOLYMPICEVENT I

var
COMPETITION: OLYMPICEVENT;

3. Explain the use of the wi th statement.
4. Identify and correct the errors in the following Pascal program seg

ment.

program REPORT (INPUT, OUTPUT);

type
STRING = packed array [1 .. 15] of CHAR;
SUMMERHELP = record

NAME : STRING;
STARTDATE : packed array of [1 .. 9];
HOURSWORKED : REAL

end; ISUMMERHELP I

var
OPERATOR: SUMMERHELP;

begin
with SUMMERHELP do

begin
NAME := 'Stoney vic';
STARTDATE := 'Ol-JUN-84, ;
HOURSWORKED := 293

end;
WRITELN (OPERATOR)

end.

5. Write the declarations for the array CPUARRAY that will hold 20
records of type CPU. The record CPU has the following fields:
IDNUMBER (11 characters in length), MAKE (five characters), LOCA
TION (15 characters), and PORTS (integer).

6. Write the function TOTALGROSS that will return the total gross pay
paid given the data stored in array EMPLOYEES.

const
TOTALEMPLOYEES = 20;

type
EMPLOYEE = record

ID: INTEGER;
RATE,
HOURS : REAL

end; [EMPLOYEE I



EMPARRAY = array [l •• TOTALEMPLOYEES] of EMPLOYEE;

var
EMPLOYEES: EMPARRAY;

7. Declare the proper data structure to store the following student data:
GPA, MAJOR, and ADDRESS, which consists of STREETADDRESS,
CITY, STATE, ZIPCODE; and CLASSCHEDULE, which consists of up
to six class records each of which has DESCRIPTION, TIME, and
DAYS fields. Use whatever data types are most appropriate for each
field.

8. Write the variant declaration for SUPPLIES. SUPPLIES consist of ei
ther PAPER, RIBBON, or LABELS. If paper is chosen then the informa
tion needed is the number of sheets per box and the size of the paper.
If RIBBON is chosen then the size, color, and kind (CARBON or CLOTH)
are needed. If LABELS is chosen then the size and number per box is
needed. For each item, the cost, number on hand, and the reorder
point must also be included. Use whatever variable types are appro
priate for each field.

9. Write the variant declaration for VEHICLE. If the vehicle is a TRUCK
then bedsize and cabsize are needed. If the vehicle is a wagon then
third seat or not is needed (BOOLEAN). If a sedan then the information
needed is 2-door or 4-door, manual or automatic transmission. For all
vehicles store air conditioning, power steering, power brakes (all
BOOLEAN), and miles per gallon. Use whatever data types are appro
pria te for each field.

10. Write a procedure that replaces a substring of a source string with a
new string. The procedure should be passed the source string, the
string to be replaced, and the new string. Call function POS, and pro
cedures COpy and CONCAT to do the replacement (see Section 7.10).

Programming Projects
1. An examination has been administered to a class of students, and the scores

for each student have been provided as data along with the student's name.
Write a program to do the following:

a) Determine and print the class average for the exam.
b) Find the median grade.
c) Scale each student's grade so that the class average will become 75. For

example, if the actual class average is 63, add 12 to each student's grade.
d) Assign a letter grade to each student based on the scaled grade:

90-100 (A), 80-89 (B), 70-79 (C), 60-69 (D), 0-59 (E).
e) Print out each student's name in alphabetical order followed by the

scaled grade and the letter grade.
f) Count the number of grades in each letter grade category.

2. An array may be used to contain descriptions of people including name,
height, weight, sex, color of hair, color of eyes, religion. Write a program that
reads and stores data into this array, sorts the array in alphabetical order by
name, and prints its contents.

PROGRAMMING PROJECTS 367



368 RECORDS

3. Write a program that searches an array of records of type EMPLOYEE (see
Section 7.1) to find and print the data stored for all employees who match a
target description. Modify the record type by adding a third category (UN
KNOWN) for the sex field. The array of employee data should be read in first
and then the target data. A blank target name or Social Security number in
dicates that this field should be ignored during the matching process. Enter a
range of values for each numeric target field. A lower bound of -1 should
indicate that this particular numeric field should be ignored.

4. A number expressed in scientific notation is represented by its mantissa (a
fraction) and its exponent. Write a procedure that reads two character
strings representing numbers in Pascal scientific notation and stores each
number in a record with two fields. Write a procedure that prints the con
tents of each record as a real value. Also write a procedure that computes
the sum, product, difference. and quotient of the two numbers. Hint: The
string -- 0.1234E20 represents a number in scientific notation. The fraction
0.1234 is the mantissa and the number 20 is the exponent.

5. Write a program that generates the Morse code equivalent of a sentence.
First, read the Morse code for each letter and punctuation character and
save it in an array of records of type LINE (see Section 7.10). Next, read
and convert the sentence. Your program should print the Morse code for
each word on a separate line,

6. Write a set of procedures to delete a substring from a source string, to insert
a new string in a source string at a specified position, to indica te where a
specified target string occurs in the source string, and to replace the first oc
currence of a specified substring in a source string with another. Test these
procedures by writing a text editor and performing several editing opera
tions. The editor should be driven by the menu below.

Enter the first letter of an edit operation described below:
D -- Delete a substring
E- Enter a source string to be edited
1- Insert a substring
L -Locate a substring
P - Print the source string
R-- Replace one substring with another
S - Show the menu
Q-- Quit

7. Write a more complete text editor (see the previous project) that will edit a
page of text. Store each line of the page in a separate element of an array of
strings. Maintain a pointer (index) to the line currently being edited. In addi
tion to the edit commands, include commands that move the index to the top
of the page, the bottom of the page, or up or down a specified number of
lines. Your program should also be able to delete an entire line, insert a new
line preceeding the current line, or replace the current line with another. The
first two of these new operations will require moving a portion of the array
of strings up or down by one element.



8. At a grocery store, certain categories of food have been established and this
information is to be comuterized, Write a procedure to read and store infor
mation into a variant record with appropriately-designed types,

The first letter read will either be a M, F, or V (indicating a kind of meat,
fruit, or vegetable). The second set of information (until a blank is encoun
tered) will be the name of the item (maximum of 20 letters). The third item
read will be cost/unit. The fourth item read will be the unit (either 0 for
ounces or P for pounds).

The last field (5th) read will be one character indicating information
depending upon the M, F, or V read earlier. For meat the valid input values
are:

R for red meat, P for poultry and F for fish
For fruit the valid input values are:

T for tropical and N for nontropical
For vegetables the valid input values are:

B for beans, P for potatoe. 0 for other
The procedure should check to see if all input read is valid before

assigning a value to the record parameter. Also write procedures to print the
data stored for all the meats and another to print the data stored for all the
potatoes.
(Points to ponder: How could you generalize the selection process so a pro
cedure is not needed for every combination of searches?)

9. The selection sort is similar to the bubble sort presented in Section 7.6, in
that repeated passes are made through the data until it is sorted. The funda
mental difference between the two is that in the bubble sort adjacent ele
ments are compared and switched while in the selection sort one element is
compared against the others.

In the selection sort the first pass through the array finds the largest value
in the collection and stores the location (subscript) of this element. At the
completion of the pass the item at this subscript location is switched with
the one in the last position in the array. This puts the largest value in the
last position, where it belongs, much like the bubble sort. The process is then
repeated (the second pass) but the last position is not included in the search
for the largest value. After the second pass, the second largest value in the
array is now known and can be inserted in the second position from the end
of the array. This continues until each item is in its correct location.

Write a program to implement this method on an array of names. Write
out the before and after contents of the array to verify success.

10. By adding additional comparisons to the if statement in the bubble sort, it
can be used to sort any field of the records in an array of records. Assume
each record contains a NAME (20 characters), ADDRESS (20 characters),
CITY (20 characters), STATE (2 characters), ZIPCODE (5 characters). Pro
vide a sort that will sort the records in either NAME, STATE, or ZIPCODE
order. The sort should be written as a procedure which has a parameter of
type (NAME, STATE, ZIPCODE) to indicate the field to sort. Call the pro
cedure for all three cases and write the array of records after each call to
verify the procedure.

11. Write a program that will read 400 characters into a 20 by 20 array. After
wards read in a character string of a maximum of 10 characters which will

PROGRAMMING PROJECTS 369



370 RECORDS

be used to search the "table" of characters. Indicate how many times the
second string occurs in the 20 by 20 array. This should include horizontal,
vertical, and right diagonal occurrences. (Right diagonal means only going
down and to the right for the search.)

12. The inventory for a certain warehouse is to be kept on a computer. In addi
tion, shipments into and from the warehouse (transactions) are to be pro
cessed. Each item will contain an ID number (3 digits), name (maximum of 10
characters), initial quantity on hand, and cost per item. Write a procedure
that will read and store the initial quantities of items into an appropriate ar
ray of records until an ID number of 0 is read. At this point write the initial
contents of the warehouse.

Now process the transactions, which will consist of the ID number for the
item and the quantity of items shipped or received (if negative, the quantity
was shipped; otherwise, the items were received). Process these transactions
until done.

Each transaction processed should generate a message indicating the item
name, quantity shipped or received, and new quantity on hand. The program
should check to make sure that more items are not shipped than are on hand
and that the ID number requested for a transaction matches one in the ware
house.

After all transactions are processed, print a list of all items in the ware
house. Show how many of each remain and the approximate total value of
each item in the inventory.

Sample input might be:

376 BOLTS 350 0.05
142 NUTS 425 0.03
261 HAMMERS 100 10.45
0
142 -27
142 104
261 -75



Sets and Files
8.1 Set Data Type and Set Operators
8.2 RESET, REWRITE, and the File Position Pointer
8.3 TEXT Files
8.4 Case Studies
8.5 User-defined File Types
8.6 Case Study-File Merge
8.7 Case Study-Data Base Inquiry
8.8 File Buffer Variable
8.9 Common Programming Errors
8.10 Chapter Review

In this chapter. we will complete the study of the set da ta type. Sets were
first introduced in Chapter 5. and we have used sets and the set member
ship operator in to simplify conditions. We will learn how to perform the
opera tions of set union, set intersection, and set difference in Pascal and
how to test for subsets, supersets, and set equality.

Sets, like arrays and records, are internal data structures; i.e. they are
stored in main memory. We will also study the file, the only data structure
that is stored in external memory (e.g. disk or tape storage).

In our programming so far. data items were either read from the key
board or from a batch file associated with the system file INPUT. Each

371



Example 8.1

data item could be read only once. Furthermore, all output generated was
printed on the screen and could not be processed a tala ter time.

In this chapter, we will learn how to save output generated by a pro
gram as a permanent file on disk. This file can be sent to a printer or used
as input data for another program at a later time. We will also learn how
to read data from more than one input file and merge these data together
into a single output file.

Like an array, a file is a collection of elements that are all the same
type. Since files are located in secondary memory rather than in the main
computer memory, files can be much larger than arrays.

The elements of an array can be accessed in arbitrary (random) order.
Files in standard Pascal can only be accessed in sequential order. This
means that file component 1, component 2, ... , component n-1 must all
be accessed before file component n can be accessed.

• Set Data Type and Set Operators

The use of set values in conditional sta tements was introduced in Chapter
5. Until now, we have only used the set membership operator in with set
values. In this section, we will examine the other set operators and learn
how to declare and manipulate set variables.

The statements below define a set type DIGIT and two set variables
named ODD and EVEN. Each set variable of type DIGIT can contain be
tween zero and nine elements chosen from the integers in the subrange
1 •• 9. The set variables ODD and EVEN represent the set of odd digits and
even digits in the range 1 through 9.

type
DIGIT set of 1 .. 9;

var
ODD, EVEN : DIGIT;

begin
ODD := [1,3,5,7,9];
EVEN : = [2,4, 6 , 8 ]

The set type declara tion is described below.

SET TYPE DECLARATION

set-type = set of base-type

Interpretation: The identifier set-type is defined over the values spec
ified in base-type. A variable declared to be of type set-type is a set
whose elements are chosen from the values in base-type. The base
type must be an ordinal type.

372 SETS AND FILES



Example 8.2

Notes: Most implementations impose a limit on the number of values
in the base-type of a set. In many implementations this limit is the
same as the number of values in the data type CHAR (64, 128, or 256).
This allows the programmer to use CHAR as a base-type. Given this
limitation, the data type INTEGER may not be used as a base-type;
however, a subrange of type INTEGER is allowed.

Set Assignment, Empty Set and Universal Set

An existing set can be modified using the set operators, which will be dis
cussed in the next section. Before a set can be manipulated, its initial ele
ments must be defined using a set assignment statement.

The statements below specify two sets defined over the base type MONTH.

type
MONTH = (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC):
MONTHSET = SET OF MONTH:

var
WINTER, SUMMER: MONTHSET;

begin
WINTER := [DEC,JAN,FEB];
SUMMER := [JUN .. AUG];

Each assignment statement consists of a set variable on the left and a
set value on the right. A set value is indicated by a pair of brackets and a
list of values from the base type of the set being defined. As shown in the
assignment statement for SUMMER, a list of consecutive values may be
denoted as a subrange (see Section 5.2).

It is also possible to have a set variable on the right of the assignment
statement, provided that both set variables have compatible base types.
The value of the set variable on the right would be assigned to the set
variable on the left.

Often we wish to denote that a set is empty, that is, it has no elements.
The empty set is indica ted by a pair of brackets [].

SUMMER := [] ja very long winter! I

A set variable must always be initialized before it can be used with any
of the set operators. Very often, a set variable is initialized to the empty
set or the universal set, the set consisting of all values of the base type.
The universal set for a set of type MONTHSET would be denoted as
[JAN .. DEC).

The general form of the set assignment statement is shown in the dis
play below. As indicated, it is possible to write set expressions involving
set manipulation operators. These operators are described in the next sec
tion.

8.1 SET DATA TYPE AND SET OPERATORS 373



SET ASSIGNMENT

set-var : = set-expression

Interpretation: The variable, set-var, is defined as the set whose ele
ments are determined by the value of set-expression. The set-expres
sion may be a set value, or another set variable. Alternatively, a set
expression may specify the manipulation of two or more sets using
the set operators. The base type of set-vat and set-expression must
be type compa tible, and all the elements in set-expression must be
included in the base type of set-var.

Set Union, Intersection, and Difference

The set operators union, intersection, and difference require two sets of
the same type as operands.

• The union of two sets (set operator +) is defined as the set of elements
tha t are contained in either set or both sets.

[1,3,4] + [1,2,4] is [1,2,3,4]
[1,3] + [2,4] is [1,2,3,4]
[ 'A' , "C I , , F'] + [' B I , I C' , 'D I , , F'] is [' A' , 'B ' , 'C' , 'D' , 'F' ]
[ I A I , I C' , 'F'] + [I A' , , C' , I D' , , F I] is [' A I , I C' , , D I , 'F' ]

• The intersection of two sets (set operator *) is defined as the set of all
elements that are common to both sets:

[1,3,4] * [1,2,4] is [1,4]
[1,3] * [2,4] is []
[ 'A' , 'C' , , F'] * [' B ' , 'C' , 'D' , , F'] is [' C' , , F' ]
[ 'A' , 'C' , , F'] * [' A ' , I C ' , I D' , 'F'] is [' A' , 'C' , 'F' ]

• The difference of set A and set B (set operator -) is defined as the set of
elements that are in set A but not in set B:

[1,3,4] - [1,2,4] is [3]
[1,3] - [2,4] is [1,3]
[ 'A' , 'C' , , F' ] [ 'B ' , 'C' , 'D ' , , F'] is [' A ' ]
['A','C','F'] - ['A','C','D','F'] is []

The operators +, *, and - are treated as set operators when their oper
ands are sets. These operators can be used to combine two sets to form a
third set. If more than one set operator is used in an expression, the nor
mal precedence rules for the opera tors +, *, and - will be followed (see
Table 4.7 in Section 4.4). When in doubt, it is best to use parentheses to
specify the intended order of evaluation.

374 SETS AND FILES



Example 8.3

Often we wish to insert a new element in an existing set. This is accom
plished by forming the union of the existing set and the unit sel containing
only the new element. The set [2] below is a unit set.

[ 1 , 3 ,4 , 5] + [2] is [1, 2 , 3 ,4 , 5 ]

A common error is omitting the brackets around a unit set. The expres
sion

[1,3,4,5] + 2

is invalid because one operand is a set and the other is an integer con
stant.

.

SET OPERATORS

Intersection: sell * selz
Union: sell + selz
Difference: sell - selz

Interpretation: sell and selz are either set variables or set values (a
list of elements enclosed in square brackets). The normal definitions
for set intersection, union, and difference apply. The set operators re
turn sets as values. Sell and sel z must have compatible base types.

Procedure BUILDSETS in Fig. 8.1 returns a set of odd numbers (ODD) and
a set of even numbers (EVEN) in the range 1 to MAXNUM assuming the dec
larations

const
MAXNUM

type
INTSET

60;

set of 1 .. MAXNUM;

var
ODD, EVEN : INTSET;

Procedure BUILDSETS uses the set operators + (union) and - (difference).

procedure BUILDSETS (var ODD, EVEN loutputl : INTSET);

IBuilds a set of odd integers (ODD) and a set of even
integers (EVEN) in the range 1 to MAXNUM. l

var
I : INTEGER;

begin IBUILDSETSl

Iloop control variablel

8.1 SET DATA TYPE AND SET OPERATORS 375



ODD := [];

(Build a set of odd integers.l
I := 1;
while I <= MAXNUM do

begin
ODD := ODD + [I];
I := I + 2

end; [wh i.Le ]

EVEN := [1 .. MAXNUM] - ODD
end; (BUILDSETS l

Fig.8.1 Procedure BUILDSETS

(initialize ODD to the empty setl

(initialize I to first odd integerl

lunion next odd integer with ODDl
(get next odd integerl

lassign integers not in ODD to EVENl

Set Relational Operators

Sets may also be compared through the use of the relational operators =,

<=, etc. Both operands of a set relational operator must have the same
base type, The operators = and <> are used to test whether or not two
sets contain the same elements.

[1,3]
[1,3]
[1,3]

[ ]

[1,3] is TRUE
[2,4] is FALSE
[3,1] is TRUE
[1] is FALSE

[1,3] <> [1,3] is FALSE
[1,3J <> [2,4J is TRUE
[1,3] <> [3,1] is FALSE

[] <> [1] is TRUE

As the next to last example above illustrates, the order in which the ele
ments of a set are listed is not important [I 1,3] and [3,1] denote the
same set). However, we will usually list the elements of a set in ordinal
sequence.

Other relational operators are used to determine subset and superset re
lationships.

• Set A is a subset of set B (A <= B) if every element of set A is also an
element of set B.

[1,3] <= [1,2,3,4 ] is TRUE
[1,3] <= [1,3] is TRUE
[1,2,3,4] <= [1,3] is FALSE
[1,3] <= [ ] is FALSE
[ ] <= [1,3] is TRUE

As the last example above illustrates, the empty set, [], is a subset of
every set.

376 SETS AND FILES



• Set A is a superset of set B (A >= B) if every element of B is also an el
ement of A.

[1,3] >= [1,2,3,4 ] is FALSE
[1,3] >= [1,3] is TRUE
[1,2,3,4] >= [1,3] is TRUE
[1,3] >= [ ] is TRUE
[ ] >= [1,3] is FALSE

The set relational operators are summarized in the next display.

SET RELATIONAL OPERATORS

Equality
Inequality
Subset
Superset

sell = set;
sell <> selz
sell <= set;
sell >= selz

Example 8.4

Interpretation: Sell and set; are either set variables or set values.
The value of a set relation (TRUE or FALSE) corresponds to the stan
dard set-theoretic definitions of set equality, subset, superset, etc.
Note: The base type of sell and selz must be compatible.

Reading and Writing Sets

Like most other data structures, a set cannot be a parameter of the stan
dard READ or WRITE procedures. Data items to be stored in a set must be
read individually and inserted in an initially empty set using the set union
operator.

Procedure READSET in Fig. 8.2 reads a sequence of uppercase letters ter
minated by a * and inserts them in the set represented by parameter
LETTERS (set type LETTERSET). Given the declarations below

type
LETTERSET set of 'A' •• ' Z ' ;

8.1 SET DATA TYPE AND SET OPERATORS 377



var
MYLETTERS LETTERSET;

The procedure (call) statement READSET (MYLETTERS) could be used to
enter data in the set MYLETTERS.

procedure READSET (var LETTERS loutputl : LETTERSET);

IReads a set of uppercase letters terminated by *
and stores them in LETTERS.

canst
SENTINEL '*' ; Isentinel characterj

linitialize LETTERS I
set of uppercase letters followed by n*n. ');

Iread first data iteml

var
NEXTCHAR : CHAR;

begin IREADSETI
LETTERS := [];
WRITELN ('Enter a
READ (NEXTCHAR);
while NEXTCHAR <> SENTINEL do

begin
if NEXTCHAR in ['A' .. 'Z'] then

LETTERS := LETTERS + [NEXTCHAR];
READ (NEXTCHAR)

end [wh Lle ]
end; lREADSETI

Inext input character I

linsert next letterj
Iread next data itemj

Fig. 8.2 Procedure READSET

Example 8.5

When printing a set every value in the base type must be tested to see
whether or not it is a set element. Only values that are set elements
should be printed.

Procedure PRINTSET in Fig. 8.3 prints the uppercase letters that are in the
set represented by its parameter LETTERS.

Fig. 8.3 Procedure PRINTSET

procedure PRINTSET (LETTERS linputl : LETTERSET);

lPrints the uppercase letters in set LETTERS. I

var
NEXTLETTER : 'A' .. 'Z';

beg in 1PRINTSET I
for NEXTLETTER := 'A' to 'z' do

if NEXTLETTER in LETTERS then
WRITE (NEXTLETTER)

end; IPRINTSETI

378 SETS AND FILES

Iloop control variablel

lprint a set member I



A complete case study using sets and set operators appears in Section
8.4.

Self-check Exercises for Section 8.1

set [2 f 4 f 6 J, and C is the set

e. C + (A - C)

f. C - (A - B)
g. (C - A) - B

h. (B + C) = (A

1. A is the set [1 f 3 f 5 f 7 J, B is the
[ 1 , 2 , 3 ]. Evaluate the following;

a. A + (B - C)

b. A + (B * C)
c. A + B + C
d. (C - A) <= B + C)

2. Modify PRINTSET to print a set of type DIGIT.

• Reset, Rewrite, and the File Position Pointer

Files may be used to store large quantities of data on a secondary storage
device such as a disk. All components of a file are the same type. and the
file components are always accessed in sequential order, starting ,with the
first. Associated with each file is a file position pointer, which indicates
the current position in the file; i.e. the next component to be processed.

At any given time a file may be used either for input or for output, but
not both simultaneously. If a file is being used for input, then its compo
nents may be read as data. If a file is being used for output, then new
components may be written to the file.

If INFILE is the name of a file, the statement

RESET (INFILE)

calls the standard procedure RESET to prepare file INFILE for input. The
file position pointer is moved to the beginning of file INFILE so that the
first file component will be read by the next READ operation. The file po
sition pointer is automatically advanced after each READ operation.

If OUTFILE is the name of a file, the statement

REWRITE (OUTFILE)

calls the standard procedure REWRITE to prepare file OUTFILE for out
put. If OUTFILE is a new file, it is initialized to an empty file. If OUTFILE
is an existing file in disk storage, its file position pointer is returned to the
beginning. In this way OUTFILE becomes an empty file and the data
previously associated with the file are lost.

Each subsequent WRITE operation appends a new component to the end
of file OUTFILE. The file position pointer is at the end of file OUTFILE,
following the last file component.

8.2 RESET, REWRITE, AND THE FILE POSITION POINTER 379



Example 8.6 Assume that INFILE and OUTFILE are both files whose individual com
ponents are characters and NEXT CHAR is a type CHAR variable. The state
ments

RESET (INFILE);
REWRITE (OUTFILE);
READ (INFILE, NEXTCHAR);
WRITE (OUTFILE, NEXTCHAR)

read the first character from file INFILE and write it to file OUTFILE.
The status of both files [after the RESET and REWRITE statements are ex
ecuted) is shown below. File OUTFILE is an empty file.

After RESET and REWRITE

file INFILE

~
file position pointer

file OUTFILE

l'
file position pointer

The READ statement stores 'A' in NEXTCHAR; the WRITE statement
copies it to OUTFILE. The file position pointer for file INFILE is ad
vanced to the next file component ( I C ' ). The file position pointer for file
OUTFILE remains at the end of the file. The status of both files after the
READ and WRITE is shown next.

After READ and WRITE

file INFILE.,....
file position pointer

file OUTFILE

~
file position pointer

The first parameter in the READ and WRITE statements indicates the
name of the file to be processed. If this parameter is omitted it is assumed
to be INPUT [for READ) or OUTPUT [for WRITE). A read operation can
only be performed on a file that is being used as an input file [after RE
SET). A write operation can only be performed on a file that is being used
as an output file [after REWRITE).

RESET PROCEDURE

RESET (infile)

Interpretation: File infile is prepared for input and the file position
pointer for infile is moved to the first file component. The RESET op
eration is automatically performed on system file INPUT, so RESET
[INPUT) is not required and may cause an error on some Pascal sys
tems.

380 SETS AND FILES



REWRITE PROCEDURE

REWRITE t outfile )

Interpretation: File outfile is prepared for output and outfile is
initialized to an empty file. Any data previously associated with file
outfile are lost. The REWRITE operation is automatically performed
on system file OUTPUT, so REWRITE (OUTPUT) is not required and
may cause an error on some Pascal systems.

III Text Files

The file type TEXT is predefined in Pascal. The individual components of
a file of type TEXT are the Pascal characters (type CHAR) and a special
character called the end-of-line mark (see Section 4.7). The end-of-line
mark is used to group sequences of characters into lines. You have been
using two files of type TEXT, INPUT, and OUTPUT. In this section we will
see how to declare and use other files of type TEXT.

Files of type TEXT can be created using the system editor in the same
way that you create a Pascal program. The individual characters are en
tered at the keyboard; the end-of-line mark is entered in the file by press
ing < Return>. Once the file is completely entered it can be saved as a
permanent file on disk and retrieved as needed.

Example 8.7 The program in Fig. 8.4 makes a copy of a file of type TEXT. Each charac
ter of the input file INFILE is written to the output file OUTFILE.

The program statement

program COpy (INFILE, OUTFILE);

identifies INFILE and OUTFILE as file parameters for program COPY.
These names will be used in program COPY to reference the files being
processed and are declared as type TEXT in the variable declaration
statement. It is possible to associate these names with other external file
names; however, the details of accomplishing this are system dependent.

The EOF and EOLN functions are used to test for the end of a file and
the end of a line, respectively (see Section 4.7). The function parameter in
dicates which input file is being tested. If there is no parameter, then the
system file INPUT is assumed. If the file position pointer for INFILE has
advanced past the last character in INFILE, the function designator
EOF ( INFILE) evaluates to TRUE. If the file position pointer for file
INFILE is at an end-of-line mark, the function designator EOLN
( INFILE) evaluates to TRUE.

The outer while loop is repeated once for every line in file INFILE.

8.3 TEXT FILES 381



program COpy (INFILE, OUTFILE);

IMakes a copy, OUTFILE, of file INFILE.j

var
INFILE, OUTFILE : TEXT;
NEXTCHAR : CHAR;

ltwo files of type TEXTj
leach character of INFILEj

1get next characterj
lwrite it to OUTFILEj

linsert end-of-line markj
lskip end-of-line markj

begin ICOPYj
IPrepare INFILE for input and OUTFILE for output. I
RESET (:INFILE);
REWRITE (OUTFILE);

ICopy each character of INFILE to OUTFILE, one line at a time.j
while not EOF(INFILE) do

begin
while not EOLN(INFILE) do

begin
READ (INFILE, NEXTCHAR);
WRITE (OUTFILE, NEXTCHAR)

end; [Li.ne ]
WRITELN (OUTFILE);
READLN (INFILE)

end lfilej
end. ICOPYI

Fig. 8.4 Program COpy

Inside the inner while loop, the statements

READ (INFILE, NEXTCHAR);
WRITE (OUTFILE, NEXTCHAR)

[get next characterj
lwrite it to OUTFILEj

copy each character on the current line of file INFILE to file OUTFILE.
The inner while loop is exited when the file position pointer for file
INFILE is at an end-of-line mark [EOLN ( INFILE) is TRUE). This situa
tion is depicted below.

End-of-Iine mark reached

file INFILE

file position pointer

file OUTFILE

file position pointer

All characters in the first line of INFILE are copied to OUTFILE, and
the file position pointer for INFILE is at the end-of-line mark [denoted by

Since EOLN ( INFILE) is TRUE, the inner while loop is exited, and
the statements

382 SETS AND FILES



WRITELN (OUTFILE);
READLN (INFILE)

linsert end-af-line markl
lskip end-af-line markj

are executed. The WRITELN statement inserts an end-of-line mark in file
OUTFILE; the READLN statement advances the file position pointer for
INFILE to the next line as shown below.

After first execution of WRITELN and READLN

r file INFILE

file position pointer

file OUTFILE

file position pointer

It is interesting to contemplate the effect of omitting either of these
statements. If WRITEtN (OUTFILE) is deleted, then the end-of-line mark
will not be written in file OUTFILE whenever the end of a line is reached
in file INFILE. Consequently, OUTFILE will contain all the characters in
file INFILE, but on one line.

If READLN (INFILE) is omitted, the end-of-line mark will not be
skipped. Consequently, EOLN ( INFILE) will remain true, the inner loop
will be exited immediately, and another end-of-line mark will be written
to file OUTFILE. This will continue "forever" or until the program is ter
minated by the program user or its time-limit is exceeded.

The situation after the second execution of WRITELN and READLN is
depicted below. At this point, the file position pointer for INFILE has ad
vanced past the last character in the file. The value of EOF ( INFILE) is
true so the while condition is false and the outer loop is exited.

After second execution of WRITELN and READLN

file INFILE

file position pointer

file OUTFILE

file position pointer

The standard input/output procedures work the same way for other
TEXT files as they do for the system files INPUT and OUTPUT. Conse
quently, it is not necessary to read and write only single characters. The
READ and READLN statements can be used to read a sequence of numeric

8.3 TEXT FILES 383



characters in a TEXT file into an integer or real variable. Similarly the
WRITE and WRITELN statements can be used to write an integer, real, or
string value as a sequence of numeric characters in a TEXT file. Whenever
READLN is used, the file position pointer is always advanced to the begin
ning of the next line after the required data are read; whenever WRITELN
is used an end-of-line mark is always inserted in the file after the output
characters are written.

READ, READLN PROCEDURES (for text files)

READ (infile, input-list)
or READLN (infile, input-list)

Interpretation: A sequence of characters is read from file infile into
the variables specified in input-list. The type of each variable in in
put-list must be CHAR, INTEGER, a subrange of CHAR or INTEGER,
or REAL. If the data type of a variable is CHAR, only a single charac
ter is read into that variable; if the data type of a variable is INTE
GER or REAL, a sequence of numeric characters is read, converted to
a binary value, and stored in that variable. If READ is used, the file
position pointer for infile is advanced past the last character read. If
READLN is used, the file position pointer for infile is advanced to the
start of the next line.
Notes: If infile is omitted, it is assumed to be the system file INPUT.
File infile must first be prepared for input via RESET (infile) except
when infile is INPUT. An error will result if EOF (infile) is true be
fore the read operation.

WRITE, WRITELN PROCEDURES (for text files)

WRITE ( outfile, output-list)
or WRITELN i outfile , output-list)

Interpretation: The characters specified by output-list are writteri to the
end of file outfile. The type of each expression in output-list must be
one of the standard data types (BOOLEAN, CHAR, INTEGER, REAL),
a subrange of a standard data type, or a character string. If an ex
pression is type CHAR, a single character is written to file outfile;
otherwise, a sequence of characters may be written. If WRITELN is
used, an end-of-line mark is written as the last character in outfile.
The file position pointer for outfile is at the end of the file.
Notes: If outfile is omitted, it is assumed to be the system file OUT
PUT. File outfile must first be prepared for output via REWRITE
t.outfile ) except when outfile is OUTPUT.

384 SETS AND FILES



EOF FUNCTION (for text files)

EOF (filename)

Interpretation: The function result is TRUE if the file position pointer
has passed the last component of file filename; otherwise, the func
tion result is FALSE.
Note: If filename is omitted, it is assumed to be the system file IN
PUT.

EOLN FUNCTION (for text files)

EOLN (filename)

Interpretation: The function result is TRUE if the file position pointer
is at an end-of-line mark; otherwise, the function result is FALSE.
Notes: If filename is omitted, it is assumed to be the system file IN
PUT. It is an error to call the EOLN function if EOF (filename) is
TRUE.

Self-check Exercises for Section 8.3

1. Making a copy of a file is analogous to echo printing a batch data file.
Consequently, there is a great deal of similarity between program
COpy and a program that displays each character of a batch input file
(represented by INPUT) at the terminal (represented by OUTPUT).
Modify COpy to perform this task.

• Case Studies

In Section 6.7 we considered writing a series of letters inquiring about the
availability of summer jobs. Now that we know about files, we can auto
mate the process.

Form Letter
Problem
Revisited

Problem: Write a program that can be used to send individualized letters
to prospective employers. Assume that the letter body is already saved as
a file called LETTER, and that each employer name and address is saved
in a file called EMPLOYER. We wish to create a file of letters that can
eventually be sent to a printer and printed.

Discussion: The data for each employer will occupy four consecutive
lines of file EMPLOYER: the first line is the individual being contacted, the
second line is the company name, and the next two lines are the address.
Each letter will begin with today's date (read from the keyboard), the

8.4 CASE STUDIES 385



l'
DATE

I

I
EMPLOYER

~

l'
CONTACT,
JOBLETTER

I

I
LETTER

~

11'
JOBLETTER

~I

READ1L1NE COPYEMP COPYFILE

I
DATE

~

11'
JOBLETTER

~I

I
CONTACT

~

11'
JOBLETTER

~I

Fig. 8.5 Structure Chart for Job Inquiry Letter Program

company data, a salutation (Dear __), and the letter body (including the
closing).

A sample letter is shown below. The date is read from the keyboard, the
next four lines are from file EMPLOYER, and the letter body is from file
LETTER.

March 25, 1986

Mr. Kermit Frog
Muppet Madness
15 Times Square
New York, New York 10020

Dear Mr. Kermit Frog,

I am a student at Temple University and would like
to apply for a summer job with your company

The problem inputs, outputs, and algorithm follow.

today's date (a string read from the terminal)
four lines of data per employer (file EMPLOYER)
each line of the letter body and closing (file LETTER)

a file of letters ready to be printed (file JOBLETTER)

386 SETS AND FILES



Algorithm 1. Enter today's date
2. while there are more employers do

3.' Write today's date to file JOBLETTER.
4. Copy the employer data (the addressee) to JOBLETTER.
5. Write the salutation.
6. Copy file LETTER to file JOB LETTER.

Steps 3 through 6 write the different parts of each letter. Step 3 is
performed by a WRITELN statement that prints the date string read in step
1; step 5 is performed by a WRITELN statement that prints the first line of
the employer data (CONTACT) read in step 4. The structure chart is shown
in Fig. 8.5; the program is shown in Fig. 8.6.

program JOBS (LETTER, EMPLOYER, JOBLETTER, INPUT, OUTPUT);

[Writes a series of job inquiry letters to file JOBLETTER. Each
letter consists of a date, the employer's data (from file
EMPLOYER) and the letter itself (from file LETTER).

const
STRINGSIZE = 65;
PAD = ' ';

Imaximum length of each linej
Icharacter for padding date linej

type
STRING = packed array [l •• STRINGSIZE] of CHAR;
LINE = record

INFO : STRING;
LENGTH; O•• STRINGSIZE

end: ILINEj

Ithe data on a linej
Ilength of the linej

var
LETTER,
EMPLOYER,
JOBLETTER : TEXT:
DATE,
CONTACT: LINE;

Ifile containing letter bodyj
Ifile of prospective employersj

Ifile of complete lettersj
Itoday' s date j

Ithe employer's contact personj

procedure READ1LINE (var INFILE linput filej : TEXT;
var NEXTLINE loutputj : LINE);

IReads the next line of data from file INFILE. Returns data
and length in fields INFO and LENGTH of record NEXTLINE.

const
PAD , I., [pad characterj

var
I 1. . STRINGSI ZE: Iloop control variablej

each character in the next array element.j
linitial string lengthj

STRINGSIZE) do

begin IREAD1LINEj
with NEXTLINE do

begin
IRead and store
LENGTH := 0:
while not EOLN(INFILE) and (LENGTH <

(continued)

8,4 CASE STUDIES 387



begin
LENGTH := LENGTH + 1;
READ (INFILE, INFO[LENGTH])

end; Iwhile j

lincrement LENGTHj
Isave next characterj

lassert: at end of line or array is filledj
READLN (INFILE); Iskip end-of-line markj

IPad rest of INFO with blanks.j
for I := LENGTH+l to STRINGSIZE do

INFO[I] .= PAD
end [w i.t.h ]

end; IREAD1LINEj

procedure COPYEMP (var INFILE linput filej,
OUTFILE loutput filej : TEXT;

var CONTACT loutputj : LINE);

ICopies the next NUMLINES lines of file INFILE to file OUTFILE.
stores the first line read and its length in record CONTACT. j

const
NUMLINES 4 ; Inumber of employer data linesj

var
NEXTLINE : LINE;
COUNTLINE : INTEGER;

[the next line of file INFILEI
Iloop control variablej

begin ICOPYEMPj
IRead the first line into CONTACT and copy it to OUTFILE.j
READ1LINE (INFILE, CONTACT);
WRITELN (OUTFILE, CONTACT.INFO :CONTACT.LENGTH);

ICopy the rest of the lines to OUTFILE.j
for COUNTLINE := 2 to NUMLINES do

begin
READ1LINE (INFILE, NEXTLINE);
WRITELN (OUTFILE, NEXTLINE.INFO :NEXTLINE.LENGTH)

end Iforj
end; ICOPYEMP j

procedure COPYFILE (var INFILE linput filej : TEXT;
var OUTFILE loutput filej : TEXT);

IAppends file INFILE to the end of file OUTFILE.j

var
NEXTLINE : LINE; Ithe next line of file INFILEj

begin ICOPYFILEj
RESET (INFILE); Ireset the file position pointerj
ICopy each line of file INFILE to OUTFILE.j
while not EOF(INFILE) do

begin
READ1LINE (INFILE, NEXTLINE);
WRITELN (OUTFILE, NEXTLINE.INFO :NEXTLINE.LENGTH)

end [wh i.Le ]
end; ICOPYFILEj

388 SETS AND FILES



begin IJOBSI
IPrepare file EMPLOYER for input and file JOBLETTER for output. I
RESET (EMPLOYER); REWRITE (JOBLETTER);

/Enter today's date.l
WRITE ('Enter the date as you would like it printed: ');
READ1LINE (INPUT, DATE);

IWrite a letter for each employer. I
while not EOF(EMPLOYER) do

begin
PAGE (JOBLETTER); Istart a new page I
ICopy the date to file JOBLETTERI
WRITE (JOBLETTER, PAD :STRINGSIZE - DATE.LENGTH);
WRITELN (JOBLETTER, DATE.INFO :DATE.LENGTH);

ICopy the employer data (the addressee) to file JOBLETTERI
WRITELN (JOBLETTER);
COPYEMP (EMPLOYER, JOBLETTER, CONTACT);
IWrite the salutationl
WRITELN (JOBLETTER);
WRITELN (JOBLETTER, 'Dear I,

CONTACT.INFO : CONTACT.LENGTH, ';');

end.

ICopy the letter body and closing to file JOBLETTERI
WRITELN (JOBLETTER);
COPYFILE (LETTER, JOBLETTER)

end [wh i Le]
IJOBSI

Fig. 8.6 Program to Write a File of Job Letters

The program begins by reading the date string from the keyboard using
procedure READ1LINE. The date string is saved as a record (type LINE)
with an INFO field (the data) and a LENGTH field. Procedure READ1LINE
is used in program JOBS to read one line from a designated input file
(INPUT, EMPLOYER, or JOBLETTER) that is represented by parameter
INFILE. READ1LINE is a general version of procedure READLINE (see
Fig. 7.23) which can only read data from file INPUT. In READ1LINE, the
file being read is passed as parameter INFILE to the standard procedures
READ, READLN, and EOLN.

Within the main program while loop, the PAGE procedure causes each
letter of inquiry to start on a new page of program output when file
JOB LETTER is printed. The statements

WRITE (JOBLETTER, PAD : STRINGSIZE - DATE. LENGTH) i
WRITELN (JOBLETTER, DATE.INFO :DATE.LENGTH)i

cause string (DATE. INFO) to be printed right-justified (preceded by
blanks) at the top of each letter in file JOB LETTER. The statement

WRITELN (JOBLETTER)i

is used to skip a line in the output file JOBLETTER.

8.4 CASE STUDIES 389



Wheel of
Fortune
Problem

Procedure COPYEMP copies the next four lines of file EMPLOYER (the
addressee) to file JOBLETTER. COPYEMP begins by calling READ1LINE
to read the first line of the input file into the main program record variable
CONTACT. This line and the next three lines of file EMPLOYER (the em
ployer address) are written to file JOBLETTER. After returning to the
main program, the string stored in CONTACT is written to JOBLETTER a
second time as part of the salutation.

Procedure COPYFILE appends all lines of file LETTER to the end of file
JOB LETTER. COPYFILE does the same job as program COpy (see Fig.
8.4); however, COPYFILE reads and writes one line at a time rather than
individual characters. Procedure COPYFILE begins by resetting the file
position pointer for LETTER (its first actual parameter) back to the begin
ning. Procedure READ1LINE reads each line from LETTER into
NEXTLINE; the WRITELN statement writes the line just read to file
JOBLETTER.

PROGRAM STYLE

Files as variable parameters

Several file parameters are declared in the procedures shown in Fig.
8.6. Each of these is declared as a variable parameter regardless of
whether it represents a file used for input or for output. This is re
quired in Pascal because it is not possible to make a local copy of a
complete file in main memory.

In the game show "The Wheel of Fortune" three contestants attempt to
guess a phrase. The contestants select consonants that they think are in
the phrase. If a consonant that is chosen occurs in the phrase it is inserted
in its proper place. Contestants may also "buy" vowels; if the vowel oc
curs in the phrase it is also inserted.

Problem: The game show producers would like a computer program they
can use to help select phrases. Since the consonants are key, it will help
the producers if they can see what the phrase looks like without vowels.
The program will read a phrase entered at the keyboard and then display
that phrase with a minus sign inserted in place of every vowel. A list of
vowels and consonants occurring in the phrase will be printed underneath
it. The input phrase

THIS IS A SAMPLE
PHRASE WITH
VOWELS REMOVED

would generate the output

390 SETS AND FILES



TH-S -S - S-MPL
PHR-S- W-TH
V-W-LS R-M-V-D

The consonants are: DHLMPRSTVW
The vowels are: AEro

Discussion: We will read each line of the phrase, substitute a minus sign
for each vowel, and write each converted line to a file (SCRATCH). Each
individual letter in a line will be added to a set of consonants or vowels.
After the phrase is completed, file SCRATCH will be echo printed. The
problem inputs and outputs and algorithm follow.

phrase to be processed (uppercase letters)

Algorithm

phrase with vowels removed (SCRATCH : TEXT)
set of consonants in the phrase (CONSONANTS : set of 'A I •• ' Z ')
set of vowels in the phrase (VOWELS : set of I A' •• I Z ')

1. Classify each character as a consonant or vowel, substitute the minus
sign for each vowel, and write the phrase to a scratch file.

2. Echo print the scratch file.
3. Print the set of consonants.
4. Print the set of vowels.

The structure chart in Fig. 8.7 uses separate procedures to accomplish
steps 1 through 4. The main program is shown in Fig. 8.8.

Fig. 8.7 Structure Chart for Wheel of Fortune Problem

l'
SCRATCH,
CONSONANTS,
VOWELS

I

I
SCRATCH

~

I
CONSONANTS

~

I
VOWELS

~

PRINTSETPRINTSETCOPYFILE
OUTVOWELS

8.4 CASE STUDIES 391



program WHEEL (INPUT, OUTPUT);

lDisplays a phrase with vowels removed. Also
lists the consonants and vowels in the phrase.j

const
STRINGSIZE 65; lmaximum length of each linej

lthe data on a linej
lactual length of the linej

type
STRING = packed array [l •• STRINGSIZE] of CHAR;
LINE = record

INFO : STRING;
LENGTH: O•. STRINGSIZE

end; lLINEj
LETTERSET = set of 'A' .. 'Z';

var
CONSONANTS,
VOWELS : LETTERSET;
SCRATCH: TEXT;

[ae t; of lettersj

lset of consonantsj
[se t; of vowelsj

la scratch f i l.e ]

lInsert procedure READ1LINE here.j
lInsert procedures OUTVOWELS, COPYFILE, and PRINTSET here.j

begin
lClassify each character as a consonant or vowel,
- for each vowel, and write the scratch file.

OUTVOWELS (SCRATCH, CONSONANTS, VOWELS);

lEcho print the scratch file.j
COPYFILE (SCRATCH, OUTPUT);

lPrint the set of consonants.j
WRITE ('The consonants are: ');
PRINTSET (CONSONANTS);
WRITELN;

lPrint the set of vowels.j
WRITE ('The vowels are: ');
PRINTSET (VOWELS)

end. lWHEELj

Fig. 8.8 Main Program for Wheel of Fortune Problem

substitute
j

This program uses three procedures that are already written. Procedure
READ1LINE and COPYFILE (see Fig. 8.6) are used to echo print the file
SCRATCH. Procedure PRINTSET (see Fig. 8.3) prints the sets VOWELS and
CONSONANTS. However, first procedure OUTVOWELS must write the file
SCRATCH and define the sets VOWELS and CONSONANTS. The local vari
ables and algorithm for OUTVOWELS follow.

each line of the phrase (NEXTLINE

392 SETS AND FILES

LINE)



Algorithm for
OUTVOWELS

1. Prepare SCRATCH for output.
2. Initialize CONSONANTS and VOWELS to empty sets.
3. Print the user instructions.
4. Read the first line of the phrase.
5. while there are more lines in the phrase do

6. Replace each vowel in the current line with - and add the
vowel to VOWELS. Add each consonant to CONSONANTS.

7. Write the modified line to file SCRATCH.
8. Read the next line of the phrase.

Procedure READ1LINE is used to enter each line of the phrase and its
length into the record NEXTLINE. Procedure CLASSIFY performs step 5.
The structure chart for OUTVOWELS is shown in Fig. 8.9; procedure
OUTVOWELS is shown in Fig. 8.10.

OUTVOWELS

I
INPUT

~

l'
NEXTLINE

I

l'
NEXTLlNE,
CONSONANTS,
VOWELS

I

READ1L1NE

Fig. 8.9 Structure Chart for Procedure OUTVOWELS

CLASSIFY

procedure OUTVOWELS (var SCRATCH loutputl: TEXT;
var CONSONANTS loutputl,

VOWELS loutputl: LETTERSET);

IClassifies each character as a consonant or vowel, substitutes
- for each vowel, and writes the scratch file. I

var
NEXTLINE : LINE; Ithe next data linel

procedure CLASSIFY (var NEXTLINE Iinput/output I : LINE;
var CONSONANTS Iinput/output I ,

VOWELS Iinput/output I : LETTERSET);

IAdds each letter in NEXTLINE to the set CONSONANTS or VOWELS.
Replaces each vowel in NEXTLINE with - I

const
MINUS 1_' ; [mi.nus s i.qn]

8.4 CASE STUDIES 393



var
ALLVOWELS,
ALLCONSONANTS : LETTERSETi
NEXTCHAR : CHARi
I : 1 .. STRINGSIZEi

begin ICLASSIFYI
IInitialize ALLVOWELS and ALLCONSONANTSI
ALLVOWELS : = [' A' , 'E ' , ' I ' , '0' , 'U' ] i

ALLCONSONANTS := ['A' .. 'Z'] - ALLVOWELSi

Iset of all vowelsl
Iset of all consonants I

leach character in the linel
Iloop control variablel

Irest of alphabetl

Iadd consonant I

Isave next character I

Iinsert vowe L]
Ireplace vowe L]

IReplace each vowel with -i update vowel and consonant sets.1
for I := I to NEXTLINE.LENGTH do

begin
NEXTCHAR := NEXTLINE.INFO[I]i
if NEXTCHAR in ALLVOWELS then

begin [vowe L]
VOWELS := VOWELS + [NEXTCHAR]i
NEXTLINE.INFO[I] := MINUS

end [vowe L]
else if NEXTCHAR in ALLCONSONANTS then

CONSONANTS := CONSONANTS + [NEXTCHAR]
end Ifori

e nd r ICLASSIFYI

begin IOUTVOWELSI
REWRITE (SCRATCH)i
CONSONANTS := []i VOWELS:= []i

Iprepare SCRATCH for output I
linitialize setsl

IPrint user instructions. I
WRITELN ('Enter each line of the text phrase.')i
WRITELN ('Press return twice when done.')i

IRead each line, convert it, and write it to SCRATCH. I
READILINE (INPUT, NEXTLINE) i Iget the first line I
while NEXTLINE.LENGTH <> 0 do

begin
IReplace vowels with - and update CONSONANTS and VOWELS. I
CLASSIFY (NEXTLINE, CONSONANTS, VOWELS);

Iwrite converted line to scratch file.1
WRITELN (SCRATCH, NEXTLINE.INFO :NEXTLINE.LENGTH)i
READILINE (INPUT, NEXTLINE) Iget the next linel

end [wh i Le ]
end i IOUTVOWELS I

Fig. 8.10 Procedure OUTVOWELS

The length of the input line, NEXTLINE . LENGTH, is used to control rep
etition of the while loop in procedure OUTVOWELS. A length of zero indi
cates that the < Return> key was pressed twice. The line length also
determines the number of characters that are written to file SCRATCH by
the statement

WRITELN (SCRATCH, NEXTLINE.INFO :NEXTLINE.LENGTH)i

394 SETS AND FILES



The sets ALLVOWELS and ALLCONSONANTS are defined in CLASSIFY
as the set of all vowels and consonants, respectively. The assignment
statement

ALLCONSONANTS := ['A' •• 'Z'] - ALLVOWELSi Irest of alphabetl

defines ALLCONSONANTS properly when the letters are consecutive char
acters. If this is not the case on your system, you may wish to represent
the set [' A ' •• ' Z '] differently. (For example, in the EBCDIC code use
[ 'A' •• ' I ' , ' J' .. 'R' , ' S ' •• ' Z ' [].

In CLASSIFY, the assignment statements

VOWELS := VOWELS + [NEXTCHAR]i
NEXTLINE.INFO[I] := MINUS

Iinsert voweL]
Ireplace vowe L]

insert a letter (NEXTCHAR) that is a vowel in the set VOWELS and re
place that letter with a minus sign in the string NEXTLINE • INFO. A letter
that is a consonant is inserted in the set CONSONANTS by the statement

CONSONANTS := CONSONANTS + [NEXTCHAR]

PROGRAM STYLE

Iadd consonant I

Use of scratch files

File SCRATCH is created by procedure OUTVOWELS and echo printed
by procedure COPYFILE. Since it is completely processed during the
execution of program WHEEL, there is no need to retain it in second
ary storage after WHEEL is finished. For this reason, the identifier
SCRATCH was not listed as a file parameter in the program state
ment. Files that are defined only during the execution of a program
are called scratch files. The space used by a scratch file on a disk
may be reallocated after the program is done.

It would have been just as easy to use an array of records to store
each line of the phrase being processed instead of a scratch file. A
scratch file was used for two reasons. First, to demonstrate its use
and, secondly, because the number of lines in the input phrase is un
known. Because of limitations on available memory, it might be im
possible to store a very long phrase in an array of records; however,
this would be no problem using a scratch file.

Self-check Exercises for Section 8.4

1. Discuss the changes that would be needed in the Wheel of Fortune
program to save the phrase in an array of records instead of using a
scratch file.

8.4 CASE STUDIES 395



.. User-defined File Types

We can declare file types with components that are any standard or user
defined data type. except for another file type. Files with components oth
er than type CHAR are called binary files as the binary values stored in
memory are copied directly to the disk. In a TEXT file, the file components
are characters from the Pascal character set; consequently, only binary
character codes can be copied to the disk. Pascal converts a numeric val
ue in memory to a sequence of character codes before writing it to a TEXT
file; this conversion is not performed when a numeric value is written
from memory to a binary file.

Example 8.8 Program ECHOFILE in Fig. 8.11 creates and echo prints a file of integer
values from 1 to 1000. The file type declaration

type
NUMBERFILE = file of INTEGER;

identifies NUMBERFILE as a file type whose components are integer val
ues. The binary file that is processed is named NUMBERS and is shown
below.

file NUMBERS

ECHOFILE begins by preparing file NUMBERS for output (the REWRITE
statement). The for loop with loop control variable I is used to create a
file of integer values. The statement

WRITE (NUMBERS, I); Iwrite each integer to NUMBERSl

copies each value of I (1 to 1000) to file NUMBERS.
Next. file NUMBERS is prepared for input (the RESET statement). The

while loop echo prints each value stored in NUMBERS until the end of
file NUMBERS is reached (EOF (NUMBERS) is TRUE). Within the loop, the
statement

READ (NUMBERS, NEXTINT); Iread next integer into NEXTINTI

reads the next file component (an integer value) into variable NEXTINT.
The statement

WRITELN (NEXTINT) [d i.spl.ay Lt ]

displays this value on the screen (system file OUTPUT).
The above example shows how the standard procedures READ and

WRITE can be used with binary files. The file name must be the first pa-

396 SETS AND FILES



program ECHOFILE (NUMBERS, OUTPUT);

ICreates a file of integer values and echo prints it.1

const
NUMINT = 1000;

type
NUMBERFILE = file of INTEGER;

Inumber of integers in the filel

var
NUMBERS
I,
NEXTINT

NUMBERFILE;

1 .. NUMINT;

{file of integersl
Iloop control variablel

leach integer read from file NUMBERS}

begin IECHOFILEI
ICreate a file of integers. I
REWRITE (NUMBERS);
for I := 1 to NUMINT do

WRITE (NUMBERS, I);

IEcho print file NUMBERS. I
RESET (NUMBERS);
while not EOF(NUMBERS) do

begin
READ (NUMBERS, NEXTINT);
WRITELN (NEXTINT)

end [whi Le ]
end. IECHOFILEI

Fig. 8.11 Program ECHOFILE

linitialize NUMBERS to an empty filel

Iwrite each integer to NUMBERS I

Iprepare NUMBERS for inputl

Iread next integer into NEXTINTI
[d i spl ay Lt ]

rameter. For the READ procedure, a single variable of the same type as the
file components must follow the file name. For the WRITE procedure, a
single expression of the same type as the file components must follow the
file name.

The EOF function may be used to test for the end of a binary file in the
same way that it tests for the end of a TEXT file. The file name must be
passed as a parameter to the function.

Unlike TEXT files, binary files cannot be segmented into lines. Conse
quently, the standard procedures READLN, WRITELN, and EOLN cannot be
used with binary files.

FILE DECLARATION

file-type = file of component-type

Interpretation: A new type file-type is declared whose components
must be type component-type. Any standard or previously-declared
data type may be the component-type except for another file type or
a structured type with a file type as one of its fields.

8.5 USER-DEFINED FILE TYPES 397



Example 8.9

READ PROCEDURE (for binary files)

READ (infile, variable)

Interpretation: The READ procedure reads the current component of
file infile into variable and then advances the file position pointer to
the next file component. The type of variable must correspond to the
component type for infile. The value of EOF (infile) must be FALSE
before the read operation occurs.

WRITE PROCEDURE (for binary files)

WRITE t.outfile , expression)

Interpretation: The WRITE procedure appends the value of expres
sion to file outfile. The type of expression must correspond to the
component type for outfile.

Creating a File of Records

The components of a binary file may be any simple or structured type ex
cept for another file type. Often the components of a binary file are
records. In this section we will see how to create a binary file of records.

Unlike a TEXT file, a binary file cannot be created by using the system
editor. Instead, a binary file must be' created by executing a program. Nor
mally, the data to be stored in the file are read from the keyboard (or an
other TEXT file) into a record variable; then the contents of the record
variable is written to the binary file.

The program in Fig. 8.12 creates a binary file. INVENTORY, that represents
the inventory of a bookstore. Each file component is a record of type
BOOK since INVENTORY is declared as type BOOKFILE (file of BOOK).
The information saved in each component consists of a four-digit stock
number, the author and title (strings), the price. and the quantity on hand.
The program also computes and prints the total value of the inventory.

Procedure READBOOK is called to enter the data for each book from the
terminal into record variable ONEBOOK. READBOOK calls procedure
READSTRING (see Fig. 6.15) to read the author and title strings.

Once ONEBOOK is defined. the main prugram statement

WRITE (INVENTORY, ONEBOOK)i IcoPY the book to INVENTORY I

copies the internal, binary form of the entire record ONEBOOK to file IN
VENTORY. Contrast this with the statement

398 SETS AND FILES



with ONEBOOK do
WRITELN (STOCKNUM :4, AUTHOR, TITLE, PRICE':10:2, QUANTITY :5)

that would be needed to display each individual record field as a se
quence of characters on the terminal (the TEXT file OUTPUT). The binary
file created by the program run shown in Fig. 8.12 is sketched below.

file INVENTORY

program BOOK INVENTORY (INVENTORY, INPUT, OUTPUT);

{Creates an inventory file, INVENTORY, from data entered at the
terminal. Also computes and prints the total inventory value. l

canst
STRINGSIZE = 20;
SENTINEL 9999;

type
STOCKRANGE = 1111 .. 9999;
STRING = packed array [l .. STRINGSIZE]
BOOK = record

STOCKNUM : STOCKRANGE;
AUTHOR,
TITLE : STRING;
PRICE : REAL;
QUANTITY : INTEGER

end; IBOOKI
BOOKFILE file of BOOK;

var
INVENTORY: BOOKFILE;
ONEBOOK : BOOK;
INWALUE : REAL;

Isize of each stringl
{sentinel stock number)

{range of stock numbersl
of CHAR;

Ithe new inventory filel
leach book]

Ivalue of inventorYl

procedure READBOOK (var ONEBOOK {outputl : BOOK);

IReads a book from the keyboard into ONEBOOK.
Uses procedure READSTRING. l

var
LENGTH : INTEGER;

IInsert procedure READSTRING here.l

Ilength of a data stringl

begin IREADBOOKl
with ONEBOOK do

begin
WRITE ('Stock number: '); READLN (STOCKNUM);

8.5 USER-DEFINED FILE TYPES 399



end;

if STOCKNUM
begin

WRITE
WRITE
WRI'l'E
WRITE

end [Lf ]
end [w i t.n]

IREADBOOKj

<> SEN'rINEL then

('Author: ');
( 'Ti tIe: ');
( 'Pr ice: $ I ) ;

( 'QuantitY: ');

READSTRING (AUTHOR, LENGTH);
READS'l'RING ('rITLE, LENGTH);
READLN (PRICE);
READLN (QUANTITY)

begin IBOOKINVENTORYj
REWRITE (INVENTORY);
INVVALUE ;= 0.0;

iprepare INVENTORY for outputj
linitialize inventory valuej

Icopy the book to INVENTORYj

each book. ');
when done. ' ) ;

Iread first bookj

IRead and copy each book until done.j
WRITELN ('Enter the data requested for
WRITELN ('Enter a stock number- of 9999
READBOOK (ONEBOOK);
while ONEBOOK.STOCKNUM <> SENTINEL do

begin
WRITE (INVENTORY, ONEBOOK);
IUpdate inventory valuel
INVVALUE := INVVALUE + ONEBOOK.PRICE *
READBOOK (ONEBOOK)

end; [whi.Le ]

ONEBOOK.QUANTITY;
!read next bookj

IPrint inventory value.j
WRITELN;
WRITELN (' Inventory value is $', INVVALUE : 9: 2)

end. IBOOKINVENTORYj

Enter the data requested for each book.
Enter a stock number of 9999 when done.
Stock Number: 1234
Author: Robert Ludlum
Title: The Parsifal Mosaic
Price: $17.95
Quantity: 10
Stock Number: 7654
Author: Blaise Pascal
Title: Pascal Made Easy
Price: $50.00
Quantity: 1
stock Number: 9999

Inventory value is $ 229.50

Fig. 8.12 Creating a Bookstore Inventory File

Self-check Exercises for Section 8.5

1. Write a program that echo prints file INVENTORY at the terminal.
2. Modify procedure BOOKINVENTORY so that a special sentinel record

is added at the end. This record should have a stock number field of
9999; the remaining field values are immaterial.

400 Si::TS AND FILES



II Case Study-File Merge

Like most data structures, a file often needs to be modified or updated af
ter it has been created. We may want to modify one or more fields of an
existing record, delete a record, insert a new record, or simply display the
current field values for a record.

Unlike a TEXT file, a binary file cannot be modified by an editor. In
stead, we must create a new file whose records are based on the original
file. In order to do this, we must read each existing record, perhaps modify
it, and then write it to the new file.

The next problem discusses how to merge two files with similar compo
nents into one larger file.

File Merge
Problem

Problem: Whenever our bookstore receives a new shipment of books a
file (UPDATE) is prepared that describes the new shipment. In order to
keep our inventory file (INVENTORY) up-to-date, we need a program to
combine or merge the information on these two files, assuming the records
on both files are the same type (BOOK).

Discussion: Merging two files is a common data processing operation. To
perform this and most other tasks involving sequential files efficiently, we
will assume that the records on both files are in order by stock number.
We will also reserve the largest stock number (9999) as a special sentinel
record always found at the end of each file (see Exercise 2 above).

Our task is to create a third file (NEWINVEN) that contains all data ap
pearing on the two existing files. If a stock number appears on only one of
the files, then its corresponding record will be copied directly to
NEWINVEN. If a stock number appears on both files, then the data from
file UPDATE will be copied to NEWINVEN, since that is most recent; how
ever, the QUANTITY field of the record written to NEWINVEN must be the
sum of both QUANTITY fields, i.e., the quantity shipped plus the quantity
on hand. The records on the new file should also be in order by stock
number.

Table B.1 illustrates the desired result of merging two small sample files.
For simplicity, only the STOCK and QUANTI TY fields of all three files are
shown. The only stock numbers appearing on all three files are 4234 and
the sentinel stock number (9999).

The data requirements and algorithm for a MERGE procedure are de
scribed next. Since we are writing a procedure, the type declarations
should appear in the main program; they will be similar to those in Fig.
B.12.

the current inventory file (INVENTORY : BOOKFILE)
the file of new books received (UPDATE : BOOKFILE)

8.6 CASE STUDY-FILE MERGE 401



Algorithm

Table 8.1 Sample File Merge Operation

File INVENTORY File UPDATE File NEWINVEN

STOCK QUANTITY STOCK QUANTITY STOCK QUANTITY

1111 30 4234 55 1111 30

4234 15 6345 10 4234 70

8955 90 7789 22 6345 10

9999 ? 9999 ? 7789 22

8955 90

9999 ?

the new inventory file (NEWINVEN : BOOKFILE)

the current record from INVENTORY (INVENBOOK : BOOK)
the current record from UPDATE (UPDATEBOOK : BOOK)

1. Prepare files INVENTORY and UPDATE for input and file NEWINVEN
for output.

2. Read the first record from INVENTORY into INVENBOOK and from
UPDATE into UPDATEBOOK.

3. Copy all records that appear on only one input file to NEWINVEN. If a
record appears on both input files. sum both QUANTITY values before
copying record UPDATEBOOK to NEWINVEN.

In step 3 above. the records currently stored in INVENBOOK and
UPDATEBOOK are compared. Since the records on file NEWINVEN must be
in order by stock number. the record with the smaller stock number is
written to NEWINVEN. Another record is then read from the file containing
the record just written and the comparison process is repeated. If the
stock numbers of UPDATEBOOK and INVENBOOK are the same (a record
appears on both files). the new value of UPDATEBOOK. QUANTITY is com
puted. the modified record is written to NEWINVEN. and the next records
are read from both input files. (See refinement at top of next page.)

What happens when the end of one input file is reached? The stock
number for the current record of that file will be 9999 (the maximum) so
each record read from the other input file will be copied directly to file
NEWINVEN. When the end of both input files is reached. the while loop
is exited and the sentinel record is written to file NEWINVEN (step 3.5).

Procedure COpySMALLER implements the if statement shown in the
refinement of step 3. The three files are global identifiers referenced by

402 SETS AND FILES



Step 3 refinement 3.1 while there are more records to copy do
ifINVENBOOK.STOCKNUM < UPDATEBOOK.STOCKNUMthen

3.2 Write INVENBOOK to NEWINVEN and read the next
record of INVENTORY into INVENBOOK.

else if INVENBOOK. STOCKNUM > UPDATEBOOK. STOCKNUM
then
3.3 Write UPDATEBOOK to NEWINVEN and read the next

record of UPDATE into UPDATEBOOK.
else

3.4 Modify the QUANTITY field of UPDATEBOOK, write
UPDATEBOOK to NEWINVEN, and read the next record
from INVEN and UPDATE.

3.5 Write the sentinel record to NEWINVEN.

COPYSMALLER. The structure chart for the MERGE procedure is shown in
Fig. 8.13; procedure MERGE is shown in Fig. 8.14.

It
INVENBOOK,
UPDATEBOOK

-tl

COPYSMALLER

Fig. 8.13 Structure Chart for Procedure MERGE

procedure MERGE (var INVENTORY, UPDATE (inputj : BOOKFILE;
var NEWINVEN (outputj : BOOKFILE);

(Merges the data on files INVENTORY and UPDATE to file NEWINVEN.
All records are in order by stock number (field STOCKNUM). If the
same stock number appears on both input files, the new QUANTITY
field value is the sum of the old QUANTITY field values.

var
INVENBOOK,
UPDATEBOOK : BOOK;

(current record of file INVENTORYj
!current record of file UPDATE)

procedure COpySMALLER (var INVENBOOK,
UPDATEBOOK (input/outputj : BOOK);

(Compares the stock numbers of the current records, writes the
record with the smaller stock number to NEWINVEN, and reads the

8.6 CASE STUDY-FILE MERGE 403



next record from the file whose record was written. If both
records have the same stock number, sums the quantity fields
before writing the record, and reads new records from each file.\

lcopy UPDATEBOOKl
READ (UPDATE, UPDATEBOOK)

lread bot.h]

then

1copy INVENBOOK l
1read INVENTORYl

lcoPY UPDATEBOOKl
1read UPDATE l

:= UPDATEBOOK.QUANTITY +
INVENBOOK.QUANTITYi

UPDATEBOOK) i
INVENBOOK) i

WRITE (NEWINVEN,
READ (INVENTORY,

end l=l
lCOPYSMALLERl

begin lCOPYSMALLER\
if INVENBOOK.STOCKNUM < UPDATEBOOK.STOCKNUM then

begin l<l
WRITE (NEWINVEN, INVENBOOK)i
READ (INVENTORY, INVENBOOK)

end l<l
else if INVENBOOK.STOCKNUM > UPDATEBOOK.STOCKNUM

begin l>l
WRITE (NEWINVEN, UPDATEBOOK)i
READ (UPDATE, UPDATEBOOK)

end [>]
else

begin l=l
UPDATEBOOK.QUANTITY

endi

begin lMERGEj
lPrepare INVENTORY and UPDATE for input, NEWINVEN for output.l
RESET (INVENTORY)i RESET (UPDATE)i REWRITE (NEWINVEN)i

lRead the first record from INVENTORY and UPDATE.l
READ (INVENTORY, INVENBOOK)i READ (UPDATE, UPDATEBOOK)i

lCoPY all records from file INVENTORY and UPDATE to NEWINVEN.j
while not EOF(UPDATE) or not EOF(INVENTORY) do

COPYSMALLER (INVENBOOK, UPDATEBOOK)i

lWrite the sentinel record to NEWINVEN.l
WRITE (NEWINVEN, INVENBOOK)i
WRITELN ('File merge completed')

e nd r lMERGEl

Fig. 8.14 Procedure MERGE

The only output displayed as a result of executing procedure MERGE is
the message 'File merge completed'. After the procedure's execu
tion you may wish to echo print file NEWINVEN. Once you are certain file
NEWINVEN is correct, you can rename it file INVENTORY, using an operat
ing system command. It can then be used as the input inventory file and
merged with another UPDATE file at a later time.

The merge procedure can be adapted to perform other update opera
tions. For example, a file representing the daily sales of all books (file
SALES) can be merged with file INVENTORY to generate an updated in
ventory file at the end of each day. If the quantity sold is represented as a
negative number in file SALES, then the sum of the quantity fields will in
dicate the quantity remaining in stock. It is even possible to delete records

404 SETS AND FILES



whose quantity fields become negative or zero by simply not copying such
records to NEWINVEN.

PROGRAM STYLE

Analysis of the merge procedure

A number of questions can be asked about the merge procedure
shown in Fig. 8.14. For example, what happens if an input file is emp
ty or only contains the sentinel record? Since procedure MERGE al
ways reads at least one record, an execution error will occur if either
input file is empty. If a file contains only the sentinel record, then
only the sentinel record will be read from that file and all the records
in the other file will be copied directly to file NEWINVEN. If both in
put files contain only the sentinel record, then the while loop will
be exited immediately and the sentinel record only will be copied to
file NEWINVEN after loop exit.

There is also a question as to whether or not the if statement is
executed when both records (INVENBOOK and UPDATEBOOK) con
tain the sentinel stock number 9999. If it is, then the sentinel record
will be copied to NEWINVEN, and an execution error will occur when
Pascal attempts to read the next pair of records. Fortunately, this
does not happen because immediately after the second sentinel stock
number is read the whi le condition is tested. Since the end of both
input files is reached, the while condition is false and the loop is
exited immediately.

Finally, we must question the efficiency of the merge procedure
when the end of one file is reached much sooner than the other. This
will result in the stock number 9999 being repeatedly compared to
the stock numbers on the file that is not yet finished. It is more effi
cient to exit the while loop when the end of one file is reached and
then copy all remaining records on the other file directly to file
NEWINVEN. This modification is left as an exercise.

Self-check Exercises for Section 8.6

1. Modify procedure MERGE as described in the program style display
above.

III Case Study-Data Base Inquiry

Computerized matching of data against a file of records is becoming very
common. For example, many real estate companies maintain a large file of

8.7 CASE STUDY - DATABASE INQUIRY 405



Data Base
Inquiry
Problem

property listings. This file can be processed to locate the most desirable
properties for a client. Similarly, computerized dating services maintain a
file of clients from which compatible matches can be made.

These large files of data are called data bases. In this section we will
write a program that searches a data base to find all records that match a
proposed set of requirements.

Problem: One reason for storing the bookstore inventory as a computer
file is to facilitate answering questions regarding this data base. Some
questions of interest might be:

• What books by Robert Ludlum are in stock?
• What books in the price range $5.95 to $8.00 are in stock?
• What is the stock number of the book Pascal Made Easy and how many

copies are in stock?
• What books priced over $25 are in stock in quantities greater than 10?

These questions and others can be answered providing we know the cor
rect way to ask them.

Discussion: A data base inquiry program has two phases: setting the
search parameters and searching for records that satisfy the parameters.
In our program we will assume that all of the record fields can be in
volved in the search. The program user must enter low and high bounds
for each field. The sample dialogue below sets the search parameters to
answer the question:

What are the books by Tennyson that cost less than $11 and for which 2
or more copies are in stock?

We are assuming that there are never more than 5000 copies of a book in
stock and that the price of a book does not exceed $1000.

Enter the low bound for stock number or 1111: 1111
Enter the high bound for stock number or 9999: 9999
Enter the low bound for author name or AAA: Tennyson
Enter the high bound for author name or ZZZ: Tennyson
Enter the low bound for title or AAA: AAA
Enter the high bound for title or ZZZ: ZZZ
Enter the low bound for price or $0: $0
Enter the high bound for price or $1000: $10.99
Enter the low bound for quantity or 0: 2
Enter the high bound for quantity or 5000: 5000

The data description and algorithm for the data base inquiry problem
follow.

the search parameter bounds
the inventory file (INVENTORY BOOKFILE)

406 SETS AND FILES



Algorithm

all books that satisfy the search parameters

1. Prepare file NEWINVENTORY for input.
2. Enter the search parameters.
3. Display all books that match the parameters.

To simplify parameter passing between the procedures that implement
steps 1 and 2, we will store the search parameters in a record variable
(PARAMS). The structure chart for the data base inquiry problem is shown
in Fig. 8.15; the main program with procedure ENTERPARAMS is shown in
Fig. 8.16.

t
PARAMS

I

ENTERPARAMS

I
PARAMS,

INVENTORY

~

DISPLAYMATCH

Fig. 8.15 Structure chart for data base inquiry problem

program INQUIRE (INVENTORY, INPUT, OUTPUT);

IPrints all books that satisfy the search parameters specified
by the program user. I

canst
STRINGSIZE = 20;
MAXQUANTITY = 5000;
MAXPRICE 1000.00;
MINSTOCK 1111;
MAXSTOCK = 9999;

type
STRING packed arFay [l .• STRINGSIZE]
STOCKRANGE = MINSTOCK .. MAXSTOCK;
BOOK = record

STOCKNUM ; STbCKRANGE;
AUTHOR,
TITLE : STRING;
PRICE : REAL;
QUANTITY : INTEGER

end; IBOOKj

BOOKFILE = file of BOOK;

(size of each stringj
Imaximum quantity)

Imaximum book pricej
Iminimum stock numberj
Imaximum stock numberj

of CHAR;

[four-digit stock number)

8.7 CASE STUDY-DATA BASE INQUIRY 407



SEARCHPARAMS = record
LOWSTOCK, HIGHSTOCK : STOCKRANGE;
LOWAUTHOR, HIGHAUTHOR,
LOWTITLE, HIGHTITLE STRING;
LOWPRICE, HIGHPRICE REAL;
LOWQUANT, HIGHQUANT INTEGER

end; ISEARCHPARAMS I

var
INVENTORY: BOOKFILEi
PARAMS : SEARCHPARAMSi

Isearch parameter bounds I

Ithe inventory filej
Ithe search parameters I

procedure ENTERPARAMS (var PARAMS Ioutput j : SEARCHPARAMS);

IEnters the search parameters and validates them. The low bound
for a parameter must be <= the high bound and both bounds must be
in range. \

begin IENTERPARAMSI
WRITELN ('Procedure ENTERPARAMS entered. I )

end; IENTERPARAMSI

procedure DISPLAYMATCH (var INVENTORY linputj : BOOKFILE;
PARAMS linputj : SEARCHPARAMS);

IDisplays all records of INVENTORY that satisfy search parameters. I

begin IDISPLAYMATCHI
WRITELN (I Procedure DISPLAYMATCH entered. ' )

end; IDISPLAYMATCHj

begin IINQUIREI
IPrepare INVENTORY for input.j
RESET (INVENTORY);

IEnter the search parameters.j
ENTERPARAMS (PARAMS);

IDisplay all books that match the search parameters.j
DISPLAYMATCH (INVENTORY, PARAMS)

end. IINQUIRE j

Fig. 8.16 Main Program for Data Base Inquiry Problem

Procedure ENTERPARAMS is left as an exercise. As an example of how
this might be implemented, procedure BOUND STOCK in Fig. 8.17 enters and
validates the stock number boundary values. The procedure (call) state
ment

BOUNDSTOCK (PARAMS.LOWSTOCK, PARAMS.HIGHSTOCK)

can be used in ENTERPARAMS to set the stock number boundary values.
Procedures similar to BOUNDSTOCK can be used to set the other search
parameters.

408 SETS AND FILES



procedure BOUNDSTOCK (var LOWSTOCK,
HIGHSTOCK loutputj : STOCKRANGE);

IEnters and validates the search boundaries for stock number.j

var
LOWVALUE, HIGHVALUE : INTEGER; lunvalidated boundary valuesj

begin IBOUNDSTOCKj
repeat

WRITE ('Enter the low bound for stock number or "
MINSTOCK :4, ': '); READLN (LOWVALUE);

WRITE ('Enter the high bound for stock number or "
MAXSTOCK :4, ': '); READLN (HIGHVALUE)

until (LOWVALUE <= HIGHVALUE) and (LOWVALUE >= MINSTOCK) and
(HIGHVALUE <= MAXSTOCK);

lassert: search boundaries are validj
LOWSTOCK := LOWVALUE; HIGHSTOCK:= HIGHVALUE

end; IBOUNDSTOCK I

Fig. 8.17 Procedure BOUNDSTOCK

Procedure DISPLAYMATCH must examine each file record with stock
number less than or equal to the upper bound. If a record satisfies the
search parameters it is displayed. DISPLAYMATCH will also print a mes
sage if no matches are found. The local variables and algorithm for proce
dure DISPLAYMATCH follow.

the current book (NEXTBOOK : BOOK)
a program flag indicating whether or not there are any matches

(NOMATCHES : BOOLEAN)

Algorithm for 1. Initialize NOMATCHES to TRUE.
DISPLAYMATCH 2. Read the first book record.

3. while the current stock number is in range do
4. If the search parameters match then

5. Display the book and set NOMATCHES to FALSE.
6. Read the next book record.

7. if there were no matches then
8. Print a "no books available" message

The structure chart for DISPLAYMATCH is shown in Fig. 8.18. The
BOOLEAN function MATCH is used to implement step 4; procedure SHOW is
used to implement step 5. The program is shown in Fig. 8.19.

Function MATCH uses a local BOOLEAN variable, MATCHED, to indicate
whether or not each search parameter is satisfied. There are five assign
ment statements, one per parameter, that assign a value to MATCHED. If a
search parameter is not satisfied, its corresponding assignment statement

8.7 CASE STUDY-DATA BASE INQUIRY 409



t
NEXTBOOK

I

I
NEXTBOOK,

PARAMS

~

MATCH

I
NEXTBOOK

~

SHOW

Fig. 8.18 Structure Chart for DISPLA YMATCH

procedure DISPLAYMATCH (var INVENTORY linputj : BOOKFILE;
PARAMS linputj : SEARCHPARAMS);

(Displays all books that match the search parameters.j

var
NEXTBOOK : BOOK;
NOMATCHES : BOOLEAN;

(the current recordj
lindicates if there were any matchesj

function MATCH (NEXTBOOK : BOOK;
PARAMS : SEARCHPARAMS) : BOOLEAN;

(Returns TRUE if the current record (NEXTBOOK) satisfies search
parameters (PARAMS); otherwise returns FALSE. j

var
MATCHED: BOOLEAN; Ilocal BOOLEAN flagj

begin (MATCHj
with PARAMS do

begin
INEXTBOOK matches if it satisfies all search parameters.j
MATCHED "= (NEXTBOOK.STOCKNUM >= LOWSTOCK);
MATCHED := MATCHED and (NEXTBOOK.AUTHOR >= LOWAUTHOR) and

(NEXTBOOK.AUTHOR <= HIGHAUTHOR);
MATCHED := MATCHED and (NEXTBOOK.TITLE >= LOWTITLE) and

(NEXTBOOK.TITLE <= HIGHTITLE);
MATCHED := MATCHED and (NEXTBOOK.PRICE >= LOWPRICE) and

(NEXTBOOK.PRICE <= HIGHPRICE);
MATCHED := MATCHED and (NEXTBOOK.QUANTITY >= LOWQUANT)

and (NEXTBOOK.QUANTITY <= HIGHQUANT)
end; [wLt.h ]

(Define function result.j
MATCH := MATCHED

end; \MATCH\

procedure SHOW (var NEXTBOOK (inputj : BOOK);

IDisplays each field of NEXTBOOK at the terminal. Leaves a line
space after each book. j

410 SETS AND FILES



begin (SHOWj
WRITELN ('Procedure SHOW entered. ')

end; ISHOWj

begin (DISPLAYMATCHj
NOMATCHES := TRUE;
READ (INVENTORY, NEXTBOOK);

(assume no matches to startj
(read the first recordj

(read the next recordj

!signal a ma t ch]
!print matched recordj

thenMATCH (NEXTBOOK, PARAMS)
begin [mat.ch ]

NOMATCHES := FALSE;
SHOW (NEXTBOOK)

end; [rnat.ch ]
READ (INVENTORY, NEXTBOOK)

end; [wh i Le]

(Display each book that satisfies the search parameters.j
WRITELN ('Books that satisfy the search parameters follow. I);
while (NEXTBOOK.STOCKNUM <= PARAMS.HIGHSTOCK)

and not EOF(INVENTORY) do
begin

if

(assert: all records in range are searched or end of file reachedj
if NOMATCHES then

WRITELN ('Sorry, no books are available.')
end; \DISPLAYMATCHj

Fig. 8.19 Procedure DISPLAYMATCH

sets MATCHED to FALSE. Since MATCHED is "anded" with the result of
each parameter test, once MATCHED is set to FALSE it remains FALSE.
Consequently, in order for the function result to be TRUE, NEXTBOOK
must satisfy all search parameters.

Self-check Exercises for Section 8.7

1. Write the search parameters needed to answer the questions listed at
the beginning of this section.

2. Write procedures ENTERPARAMS and SHOW described in the data
base inquiry problem.

3. Explain why NEXTBOOK. STOCKNUM is not compared to PARAMS.
HIGHSTOCK in function MATCH.

II File Buffer Variable

Unlike other Pascal data structures, a file is located in secondary storage
rather than main memory. For this reason, it is less convenient to access
data stored in a file. The file component must first be transferred into
main memory by a READ operation before the data in that component can
be manipulated.

To simplify file access, Pascal allocates a buffer variable in main memo
ry for each file declared in a program. The buffer variable acts as a "win-

8.8 FILE BUFFER VARIABLE 411



dow" through which file data can be accessed. The buffer variable for a
file being read contains a copy of the file component currently selected by
the file position pointer. Data in the buffer variable can be manipulated
just like any other data in main memory. Data in the buffer variable can
also be appended to the end of a file that is being written.

The file buffer variable is denoted by writing the file name followed by
a caret (A) or an arrow (i), depending on the Pascal system. Therefore,
INVENTORY" or INVENTORYl represents the file buffer variable for file
INVENTORY. The field selector INVENTORY". AUTHOR may look strange,
but it correctly references the AUTHOR field of the file buffer variable. The
wi th statement

with INVENTORY" do
begin

WRITELN ('Stock number of book sold is
QUANTITY := QUANTITY - 1;
SALESTOTAL := SALESTOTAL + PRICE

end

STOCKNUM : 4 ) ;

manipulates the STOCKNUM, PRICE, and QUANTITY fields of the record
currently in the file buffer variable.

GET and RESET

The RESET operator moves the file position pointer to the beginning of a
file. It also initializes the file buffer variable for that file. The effect of the
statement

RESET (INVENTORY)

is shown below.

INVENTORY" file INVENTORY

file position pointer

As indicated, the file buffer variable contains the data stored in the first
file component after RESET. The statement

GET (INVENTORY)

advances the file position pointer to the next file component and updates
the file buffer variable as shown next.

412 SETS AND FILES



INVENTORY" file INVENTORY

file position pointer

When the file position pointer is at the last file component, the next
GE'l' operation causes the buffer variable to become undefined and
EOF( INVENTORY) becomes true.

RESET PROCEDURE (effect on file buffer variable)

RESET (infiie)

Interpretation: The file position pointer for file infile is moved to the
beginning of file infile. The first file component is stored in the file
buffer variable infile>.
Note: The RESET operation is automatically performed on system file
INPUT, so RESET (INPUT) is not needed and may cause an error
on some Pascal systems.

GET OPERATOR

GET i infile )

Interpretation: The file position pointer for file infile is advanced and
the next file component is stored in the file buffer variable infiler .
Note: The effect of the GET operation is undefined if EOF t infile ) is
true before or after the GET is executed. The first GET must be pre
ceded by a RESET operation (except for system file INPUT).

PUT and REWRITE

W~ write a file in Pascal by appending data to the end of the file. Data
stored in a file buffer variable can be appended using the PUT operator.
Whenever the statement

PUT (outfile)

is executed, the current contents of the file buffer variable outfile: is
appended to the end of file outfile. The data to be transferred must be
stored in the file buffer variable outfile: before the PUT is executed. The
statement

8.8 FILE BUFFER VARIABLE 413



Example 8.10

REWRITE (outfile)

must be executed before the first PUT operation.

Procedure BUILDSMALL in Fig. 8.20 creates an abbreviated inventory file,
SMALLINV, which consists of the stock number and quantity only of every
record in file INVENTORY. File types BOOKFILE and SMALLBOOKFILE
must be declared in the calling program.

procedure BUILDSMALL (var INVENTORY (inputl : BOOKFILEi
var SMALLINV !outputl : SMALLBOOKFILE);

!Creates a new inventory file (SMALLINV) containing only stock
numbers and quantities of the records in INVENTORY. 1

begin !BUILDSMALLI
!Initialize buffer variable for INVENTORY and prepare SMALLINV.I
RESET (INVENTORY); REWRITE (SMALLINV);

SMALLINV·I

INVENTORyA.STOCKNUM;
INVENTORYA.QUANTITY;

!append data
[acces s

ICopy stock number and quantity from INVENTORY to
while not EOF(INVENTORY) do

begin
SMALLINVA.STOCKNUM .=
SMALLINVA.QUANTITY .=
PUT (SMALLINV);
GET (INVENTORY)

end [whi Le ]
end; (BUILDSMALLI

to SMALLINVI
next recordl

Fig. 8.20 Procedure BUILDSMALL

Each assignment statement

SMALLINVA.STOCKNUM := INVENTORyA.STOCKNUM;
SMALLINVA.QUANTITY := INVENTORYA.QUANTITY;

copies one field from the file buffer variable for INVENTORY to the file
buffer variable for SMALLINV. The statement

PUT (SMALLINV); !append data to SMALLINVI

appends the data just copied to file SMALLINV. The statement

GET (INVENTORY) !access next recordl

updates the file buffer variable for INVENTORY so the next record can be
transferred.

Note that it is no longer necessary to allocate local variables in
BUILDSMALL for storage of a single record of each file. The buffer vari
ables INVENTORyA and SMALLINVA are used for this purpose.

414 SETS AND FILES



REWRITE PROCEDURE (effect on file buffer variable)

REWRITE t outfile i

Interpretation: The file position pointer for file outfile is returned to
the beginning of file outfile thereby erasing any data that may be
stored on the file. The file buffer variable outfile: becomes unde
fined. The REWRITE operation is automatically performed on system
file OUTPUT, so it is not needed; REWRITE (OUTPUT) may cause an
error on some Pascal systems.

PUT OPERATOR

PUT t outfile )

Interpretation: The contents of the file buffer variable outfile: is
appended to the end of file outfile. The file buffer variable must be
defined before the PUT operation; it becomes undefined after the
PUT operation.
Note: The first PUT operation must be preceded by a REWRITE oper
ation (except for system file OUTPUT).

GET and PUT versus READ and WRITE

GET and READ may both be used to access data stored in a file. The
READ procedure enters the current file component into a local variable of
the same type. The statement

READ (INVENTORY, NEXTBOOK)

stores the next component of file INVENTORY in the variable NEXTBOOK
and advances the file position pointer for INVENTORY.

A local variable is not needed when using GET because the data in the
file buffer variable may be accessed directly. However. data can still be
stored in a local variable, if desired. The statements

NEXTBOOK := INVENTORyA:
GET (INVENTORY)

have the same effect as the READ above; the current file component
(stored in INVENTORyA) is copied into NEXTBOOK and the file position
pointer is advanced.

The statement

WRITE (NEWINVEN, NEXTBOOK)

8.8 FILE BUFFER VARIABLE 415



writes the data stored in variable NEXTBOOK to file NEWINVEN. This can
also be accomplished using the statements

NEWINVENA :~ NEXTBOOK;
PUT (NEWINVEN)

The assignment statement defines the file buffer variable NEWINVEW; the
PUT operation appends this data to the end of file NEWINVEN.

Self-check Exercises for Section 8.8

1. Rewrite procedure BUILDSMALL to copy every other record of file
INVENTORY to file SMALLINV.

2. Indicate how you would modify procedures MERGE and COpy
SMALLER (see Fig. 8.14) to use GET and PUT instead of READ and
WRITE. Also, manipulate the file buffer variables directly instead of
local variables UPDATEBOOK and INVENBOOK.

III Common Programming Errors

Remember that a set variable. like any variable, must be initialized before
it can be manipulated. It is tempting to assume that a set is empty and be
gin processing it without initializing it to the empty set, []. through an ex
plicit assignment.

The operands of the set manipulation operators must all be sets. Re
member to use a unit set (a set of one element) when inserting or deleting
a set element. The set union operation in the expression below is incor
rect.

['A', 'E', '0', 'U'] + 'I'

It should be rewritten as

['A', 'E', '0', 'U'] + ['I']

lincorrect set unionl

Ivalid set unionl

It is not possible to use a set as an operand of the standard READ or
WRITE procedure. The elements of a set must be read in individually and
inserted in an initially empty set using the set union operator. To print a
set, each value in the base type of a set must be tested for set member
ship. Only those values that are in the set should be printed.

File processing in any programming language tends to be difficult to
master and Pascal is no exception. Remember to include the name of each
permanent file that you wish to process in the program statement. This is
the name that will be used in the program and it may differ from the actu
al external name of the associated disk file. All file types (except TEXT)
must be declared as well as all file names (except INPUT and OUTPUT).

Do not forget to prepare a file for input or output using the RESET or
REWRITE procedure (except for system files INPUT and OUTPUT). If you

416 SETS AND FILES



REWRITE an existing file, the data on that file may be lost. Make sure
that you do not inadvertently place the RESET or REWRITE statement in a
loop. If you do. a read operation in the loop will repeatedly read the first
file component; a write operation in the loop will repeatedly write the first
file component.

The READ (READLN) procedure can be used only after a file has been
prepared for input. Similarly, the WRITE (WRITELN) procedure can be
used only after a file has been prepared for output. Be sure to specify the
file name as the first procedure parameter; otherwise, the system file IN
PUT or OUTPUT will be assumed. An "attempt to read beyond end of file"
error occurs if a read operation is performed when the file position pointer
for a file has passed the last file component.

There are a number of operations that can be performed with TEXT files
that cannot be performed with binary files. since binary files are not seg
mented into lines. The EOLN function and READLN and WRITELN proce
dures cannot be used with binary files. Also, you cannot create or modify
a binary file using an editor.

Binary files do have an advantage in that an entire record can be trans
ferred between a binary file and a variable in main memory. The variable
involved in the data transfer must be the same type as the components of
the binary file.

When processing TEXT files, sequences of characters are transferred be
tween main memory and disk storage. The data type of a variable used in
an input list must be CHAR or INTEGER (or a subrange thereof) or REAL.
The data type of an expression used in an output list must be CHAR or
INTEGER (or a subrange thereof), BOOLEAN, REAL, or a character string.

The file buffer variable can be used to directly access the current file
component. A common error is writing the operators that manipulate the
file buffer variable as GET t infiler ) or PUT t outfiler ), The carat should be
deleted and the operators written as GET (infile) or PUT Coutfile),

II Chapter Review

Set and file data types can be used for storing a collection of elements of
the same type. A set is stored in main memory, whereas a file is stored in
secondary memory. The base type of a set specifies which values may be
long to the set. Each value in the base type of a set is either a member of
the set or it is not. Unlike an array or file, a value can only be saved once
in a set and there is no way to determine the time sequence in which the
values were stored in the set (e.g. [1,5,2,4] is the same set as
[1,2,4,5]).

Whereas the elements of a set must be simple values, the components of
a file may be any simple or structured type except for another file type.
The file type TEXT is predefined and its components are the Pascal char
acters and a special character designated the end-of-line mark. The EOLN
function can be used to test for an end-of-line mark, and the WRITELN

8.10 CHAPTER REVIEW 417



statement places one in a TEXT file. If an end-of-line mark is read into a
type CHAR variable. it is stored as a blank character.

We also learned how to declare and manipulate binary files whose
components were not individual characters. We created a file of records
and merged two files of records into a third file. We also searched a da ta
base to retrieve file records that matched a specified set of search param
eters.

New Pascal Statements

The new Pascal statements introduced in this chapter are summarized in
Table 8.2.

Table 8.2 Summary of New Pascal Statements

Statement

Set type declaration
type

DIGITSET = set of 0 •• 9;

var
DIGITS, PRIMES : DIGITSET;

Set assignment
DIGITS := [];
PRIMES := [2,3,5] + [7];
DIGITS := DIGITS + [1 •• 3];
DIGITS := [0 •• 9] - [1,3,5,7,9];
DIGITS := [1,3,5,7,9] * PRIMES

Set relations
PRIMES <= DIGITS
PRIMES = []
PRIMES <> []
[1,2,3] = [3,2,1]

File type declaration
type

DIGITFILE = file of INTEGER;

var
MOREDIGITS : DIGITFILE';
MORECHARS : TEXT;
I : INTEGER;
NEXTCH : CHAR;

RESET and REWRITE procedures
RESET (MOREDIGITS)i
REWRITE (MORECHARS);

418 SETS AND FILES

Effect

Declares a set type DIGITSET whose base
type is the set of digits from 0 through 9.
DIGITS and PRIME are set variable of type
DIGITSET.

DIGITS is the empty set.
PRIMES is the set [2, 3 ,5 ,7].
DIGITS is the set [1,2,3].
DIGITS is the set [0,2,4,6,8].
DIGITS is the set [3,5,7].

True if PRIMES is a subset of DIGITS.
True for the empty set [ ] .
True if PRIMES contains any element.
True because order does not matter.

Declares a file type DIGITFILE whose com
ponents are integers. MOREDIGITS is a file
of type DIGITFILE. MORECHARS is a file
of type TEXT.

MOREDIGITS is prepared for input and
MORECHARS is prepared for output.



Table 8.2 Summary of New Pascal Statements (continued)

Statement Effect

READ and WRITE procedures
READ (MOREDIGITS, I)i
WRITELN (MORECHARS, 'number: I I)

EOF function
while not EOF(MOREDIGITS) do

begin
READ (MOREDIGITS, I);
WRITELN (MORECHARS, I)

end [wh i l.e ]

EOLN function
RESET (MORECHARS)i
while not EOLN do

begin
READ (MORECHARS, NEXTCH);
WRITE (NEXTCH)

end [wh i Le ]

GET operator
RESET (MOREDIGITS)i
I := MOREDIGITSA;
GET (MOREDIGITS)i
WRITE (MOREDIGITSA)

PUT operator
MORECHARSA := 'A';
PUT (MORECHARS)

The next integer is read from file
MOREDIGITS into variable I (type INTE
GER). A sequence of characters representing a
string and the value of I are written to
MORECHARS.

Every integer value on file MOREDIGITS is
written as a sequence of characters on a sepa
rate line of file MORECHARS.

File MORECHARS is prepared for input. Each
character on the current line is read into
NEXTCH and displayed on the terminal
screen.

The first integer in file MOREDIGITS is
placed in the file buffer variable and assigned
to variable I. The second integer is displayed,

The letter A is appended to file MORECHARS.

Review Questions

1. Given the declarations below, indicate how FISCAL year from JULY
to JUNE would be declared as a set of type MONTHSET.

type
MONTHS (JAN,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC);
MONTHSET = SET OF MONTHS;

2. Write the Pascal statements to find and print the intersection, union,
and difference of the two sets defined in the last two lines below.

type
LETTERSET set of r A' .. r Z' ;

8.10 CHAPTER REVIEW 419



var
VOWEL,
LETTER: LETTERSETi

procedure PRINTSET (ASET : LETTERSET)i

(Prints the elements of set ASET.I

var
NEXTCH 'A' •• ' Z' i

begin (PRINTSETI
for NEXTCH := 'A' to 'Z' do

if NEXTCH in ASET then
WRITE(NEXTCH)i

WRITELN
end i IPRINTSET I

begin
VOWEL : = [' Y' , 'U ' , '0' , ' I ' ] i
LETTER : = [' A' .. 'P , ] i

3. List three advantages to using files for input and output as opposed to
the standard input and output devices used thus far in the text.

4. Where are files stored?
5. Modify the COpy program given in the text to accept data from the

system file INPUT and write the data out to both the file OUTFILE
and the system file OUTPUT.

6. There is an EMPSTAT file (type TEXT) that contains records for up to
15 employees. The data for each employee consists of the employee's
name (maximum length of 20), social security number (length of 11
characters), gross pay for the week (real), taxes deducted (real), and
the net pay (real) for the week. Each data item is on a separate line of
file EMPSTAT. Write a program called PAYREPORT that will create a
TEXT file REPORTFILE with the heading line:

NAME SOC. SEC. NUM. GROSS TAXES NET

followed by two blank lines and then the pertinent information under
each column heading. REPORTFILE should contain up to 18 lines of
information after PAYREPORT is executed.

7. Define a sera tch file.
8. Describe the characteristics of a binary file.
9. Write the type and variable declaration for a file that will consist of

multiple records of type STUDENTSTATS. The statistics kept on each
student are the GPA, MAJOR, ADDRESS-consisting of NAME,
STREETADDRESS, CITY, STATE, ZIPCODE, and CLASSCHEDULE
consisting of up to six records of CLASS each containing DESCRIP
TION, TIME, and DAYS fields. Use variable types that are appropriate
for each field.

10. Explain the use and manipulation of a file buffer variable.

420 SETS AND FILES



11. What Pascal statement would be used to advance the file position
pointer in a file being used for input?

12. Write a Pascal procedure LASTNAME that will accept a file of names
of the form Lastname, firstname (example: Drend, Jane) and PUT
only the length of the last name and the last name in the file LAST
ONLY. Assume the declarations below are in the main program.
Hint: Write a function that returns the position of the comma.

program GETLAST (NAMES linputl, LASTONLY loutputl);

canst
MAXNAME = 30;

type
STRING = packed array [l .. MAXNAME] of CHAR;
NAMERECS = record

NAME : STRING
end;

LASTNAMES
LENGTH
LAST

end;

= record
: INTEGER;
STRING

NAMEFILE = file of NAMERECS;
LASTNAMEFILE = file of LASTNAMES;

var
NAMES : NAMEFILE;
LASTONLY : LASTNAMEFILE;

Programming Projects

1. Write a procedure that reads in a hand of cards and stores it in an array of
sets, one set for each suit. Each card is represented using a pair of charac
ters. The first character represents the rank of the card: the digits 2 through 9
stand for themselves, and the letters T, J, Q, K, A stand for ten, jack, queen,
king, ace, respectively. The second character denotes the suit: C, D, H, or S.
Check for invalid cards and duplicate cards.

2. Extend the program in 1), assuming that the cards read represent a bridge
hand. Count the point value of the hand assuming the following point count
method:

rank
2 .. 10
jack
queen
king
ace

points
a
1
2
3
4

Also, add one point for each suit that has only one card but not a jack,

PROGRAMMING PROJECTS 421



queen, king, or ace; add two points for each suit that is void (no cards for
that suit).

3. Assume that you have a file of records each containing a person's last name,
first name, birth date, and sex. Create a new file of records containing only
first names and sex. Also print out the complete name of every person
whose last name begins with the letter A, C, F, or P through Z, and was born
in a month beginning with the letter J.

4. Create separate files of saleswomen and salesmen. For each employee on
these files, there is an employee number (four digits), a name, and a salary.
Each file should be in order by employee number. Merge these two files into
a third file that also has a gender field containing one of the values in the
type (FEMALE, MALE). After the file merge operation, find the average sal
ary for all employees. Then search the new file and print a list of all female
employees over the average and a separate list of all male employees over
the average. Hint: You will have to search the new file once for each list.

5. Write a procedure that will merge the contents of three sorted files by ID
number and write the merged data to an output file. The parameters to the
procedure will be the three input files and the one output file. Data will be of
the form

DATA = record
ID : INTEGER:
NAME : STRING:
LENGTH INTEGER:
SALARY : REAL

end:

Assume a sentinel ID number of 9999 is at the end of each file. Test your
procedure with some sample data.

6. Cooking recipes can be stored on a computer and with the use of files, can
be quickly referenced.
a) Write a procedure that will create a TEXT file of recipes from informa

tion entered at the terminal. The format of the data to be stored is:

1. Recipe type (e.g. DESSERT, MEAT, etc.)
2. Subtype [e.g, for DESSERT: CAKE, PIE or BROWNIES)
3. Name [e.g, GERMAN CHOCOLATE, for a cake)
4. Number of lines in the recipe to follow
5. Actual recipe

Items 1, 2, 3, and 4 should be on separate lines.
b) Write a procedure that will accept as parameters a file and a record of

search parameters that will cause all recipes of a type, all recipes of a
subtype, or a specific recipe to be written.

7. A local weather station keeps daily statistics on its weather. This weather
data is stored in files by months (one file per month). The data is also in
chronological order; therefore, no date is stored within the file. The informa
tion stored consists of the high and low temperature, rainfall, and snowfall
reading.

422 SETS AND FILES



a) Write a procedure that will write the day of the month with the highest
temperature, the day with the lowest temperature, the day with the most
rainfall, and the day with the most snowfall.

b] Write a procedure that will write the total rainfall and snowfall for a
month.

All procedures will have as parameters the file to search, and the number
of days in that month. Test your procedures with a few months worth of
data. A main program can request the month to search.

8. The college football teams need a service to keep track of all the records and
vital statistics for various teams. Write a program that will maintain this in
formation on a file. Every week an update file is "posted" against this master
file. The update file updates all team statistics and records. All of the infor
mation in both files will be stored in order by ID number. Each master
record will contain the ID number, team name, number of games won, lost
and tied, total yards gained by the team's offense, total yards gained by the
other teams against this one, total points scored by this team, and total
points scored by the other teams against this one.

For this program, use the master file TEAMS and update TEAMS from file
WEEKLY. The updated information should be written to a file called
NEWTEAMS. In addition, each record of the weekly file should be echo print
ed. When files are finished being processed, write a message indicating the
number of weekly scores processed, the team that scored the most points,
and the team with the most offensive yardage for this week.

9. Write a program that takes a master file of college football information and
prints out teams that match a specified set of search parameters. The bounds
on the search parameters can be presented in the format described in the
section on Data Base Inquiry (see Section 8.7]. Some information to be print
ed can be: all teams with a won/lost percentage in a certain range, all teams
within a certain range of points scored or scored upon, or yardage gained
and given up, or number of games won, tied or lost. (Note: the won/lost per
centage is calculated by dividing number of games won by total games
played where ties count as half a game won.)

10. Write a program to scan a line of characters containing an equation and cal
culates the result. Assume all numeric values are integer. Tests should be
made to determine if the equation is valid.

Valid operations are +, -, /, *, A where +, -, /, * perform their normal
functions and A indicates the left value is raised to the power of the right op
erand (must be positive).

Numbers may be negative and all operations are done in left to right order
(no operator precedence]. For example:

2 + 3 A 2 + 36 * -1

would be

5 A 2 + 36 * -1 = 25 + 36 * -1 = 61 * -1 = -61

Use sets to verify the operations and ignore all blanks. Output should con-

PROGRAMMING PROJECTS 423



sist of the echo printing of the equation followed by an equal sign (=] and
then the answer. If an equation is invalid display the message I * * IN
VALID **'.

11. Write a program that updates a file of type INVENTORY (see Section 8.6].
Your program should be able to modify an existing record, insert a new
record, or delete an existing record. Assume that the update requests are in
order by stock number and that they are of the form shown below.

type
CHANGEKIND = (DELETE, INSERT, MODIFY):
UPDATEREQ = record

case CHANGE : CHANGEKIND of
DELETE (STOCKNUMBER: STOCKRANGE):
INSERT (NEWBOOK BOOK);
MODIFY (MODBOOK: BOOK)

end

Each update request should be read from a binary file. Only the stock
number appears in an update request for a deletion. The new book record is
supplied for a req uest to insert a record or modify an existing record. Your
program should also print an error message for invalid requests such as an
attempt to delete a record that does not exist, an attempt to insert a new
record with the same stock number as an existing record, or an attempt to
modify a record that does not exist.

424 SETS AND FILES



Recursion, Searching,
and Sorting
9.1 The Nature of Recursion
9.2 Recursive Procedures
9.3 Recursive Functions
9.4 Binary Search of an Array
9.5 Searching by Hashing
9.6 Additional Sorting Algorithms
9.7 Case Study-The Quicksort Algorithm
9.8 Common Programming Errors
9.9 Chapter Review

A recursive procedure or function is one that calls itself. This ability to
call itself enables a recursive procedure to be repeated with different pa
rameter values. Recursion may be used as an alternative to iteration
(looping). Generally, a recursive solution is less efficient in terms of com
puter time than an iterative one; however, in many instances the use of re
cursion enables us to specify a natural, simple solution to a problem that
would otherwise be very difficult to solve. For this reason, recursion is an
important and powerful tool in problem solving and programming.

We will also discuss additional techniques for searching and sorting ar
rays. We will study two new techniques for searching an array and sever-

425



al algorithms for sorting an array. The efficiency of various sorting
algori thms will be compared.

III The Nature of Recursion

Problems that lend themselves to a recursive solution have the following
characteristics:

Algorithm

• There are one or more simple cases of the problem (called stopping
cases) that have a simple solution.

• The other cases can be solved by substituting one or more reduced cases
of the problem that are closer to a stopping case.

• Eventually the problem can be reduced to stopping cases only, all of
which are relatively easy to solve.

The Towers of Hanoi problem is an example of a problem that has
these characteristics. In the version of the problem shown in Fig. 9.1 there
are five discs (numbered 1 through 5) and three towers or pegs (lettered A,
B, C). The goal is to move the five disks from peg A to peg C, according to
the following rules:

1. Only one disc may be moved at a time and this disc must be the top
disc on a peg.

2. A larger disc can never be placed on top of a smaller disc.

The stopping cases of the problem involve moving one disc only (e.g.
move disc 2 from peg A to peg C). It is simpler to solve the problem for
four discs than five. Therefore, we want to redefine the original problem
(which was to move five discs) in terms of moving four discs, even if this
means we have additional steps. If we use peg B as an intermediary, we
get the recursive solution:

1. Move 4 discs from peg A to peg B.
2. Move disc 5 from peg A to peg C.
3. Move 4 discs from peg B to peg C.

Fig. 9.1 Towers of Hanoi

A B C

1A
~ ~21 1

41
31

51

426 RECURSION, SEARCHING, AND SORTING



To verify the validity of substituting these three steps for the original
problem, we show the status of the three towers after completing steps 1
and 2 in Fig. 9.2. It should be clear that performing step 3 above will lead
to the desired result.

A

~
B

,1t
21 I

3\
41 51

Fig. 9.2 Towers of Hanoi after Steps 1 and 2

Unfortunately, we still don't know how to perform step 1 or 3. (Step 2 is
easy because it's a stopping case.] Both these steps involve four discs in
stead of five so they are simpler than the original problem. Using peg C as
an intermediary, we can generate the recursive solution to step 1 shown
below.

Step 1 refinement 1.1 Move 3 discs from peg A to peg C.
1.2 Move disc 4 from peg A to peg B.
1.3 Move 3 discs from peg C to peg B.

By repeating the process for three discs and then for two discs we will fi
nally reach only cases of moving one disc, which we know how to solve.
Later, we will write a Pascal procedure that does this.

Tracing a Recursive Procedure

Recursive procedures are used to implement recursive algorithms. We
cannot use conventional techniques for tracing the execution of a recur
sive procedure. We will illustrate how to do this by studying a recursive
procedure next.

Example 9.1 Procedure PALINDROME in Fig. 9.3 is a recursive procedure that reads in a
string of length N and prints it out backwards. If the procedure (call) state
ment

PALINDROME (5)

is executed, the five characters entered will be printed in reverse order. If
the characters abcde are entered when this procedure is called, the line

abcde edcba

9.1 THE NATURE OF RECURSION 427



will appear on the screen. The letters in blue are entered as data and the
letters in black are printed. If the procedure (call) statement

PALINDROME (3)

is executed instead, only three characters will be read and the line

abccba

will appear on the screen if abc are the data.

procedure PALINDROME (N : INTEGER):

lEcho prints a string of length N in
reverse of the order in which it is entered.j

var
NEXT : CHAR:

begin lPALINDROMEj
if N = 1 then

begin !stopping casej
READ (NEXT):
WRITE (NEXT)

end lstopping casej
else

begin lrecursionj
READ (NEXT):
PALINDROME (N-l):
WRITE (NEXT)

end [re cur s Lon ]
end: lPALINDROMEj

Fig. 9.3 Procedure PALINDROME

lnext data characterj

Like most recursive procedures, the body of procedure PALINDROME con
sists of an if statement that evaluates a terminating condition, N = 1.
When the terminating condition is true, the problem has reached a stop
ping case. If so, the READ and WRITE statements are executed imme
diately, causing a single character to be read and echo printed. The
procedure end statement is then reached and control is returned back
from the procedure.

If the terminating condition is false (N is greater than 1), the recursive
step (following else) is executed. The READ statement enters the next
data character. The procedure (call) statement

PALINDROME (N-l)i

calls the procedure recursively with the parameter value decreased by 1.

428 RECURSION, SEARCHING, AND SORTING



The character just read is printed later. This is because the WRITE state
ment comes after the recursive procedure call; consequently, the WRITE

statement cannot be performed until after the procedure execution is com
pleted and control is returned back to the WRITE statement. For example,
the character that is read when N is 3 is not echo printed until after the
procedure execution for N equal to 2 is completed. Hence, this character is
printed after the characters that are read when N is 2 and N is 1.

To fully illustrate this it is necessary to trace the execution of the proce
dure (call) statement

PALINDROME (3)

This trace is shown in Fig. 9.4, assuming the letters abc are entered as
data.

PALIDROME (3) J
-V

Fig. 9.4 Trace of PALINDROME (3)

The trace shows three separate activation frames for procedure PAL

INDROME. Each activation frame begins with a list of the initial values of
N and NEXT for that frame. The value of N is passed into the procedure
when it is called since N is a value parameter; the value of NEXT is initial
ly undefined since NEXT is a local variable.

The statements in blue are executed first, starting with the frame on the
left. Each recursive call to PALINDROME transfers control to a new activa
tion frame as indicated by the blue arrows. A procedure return occurs
when the procedure end statement is reached. In Fig. 9.4 this is indicated
by the word Return and by a black arrow that points to the statement in
the calling frame to which the procedure returns. Tracing the blue arrows
and then the black arrows gives us the sequence of events listed next. All
the statements for a particular activation frame are indented to the same
column.

91 THE NATURE OF RECURSION 429



Call PALINDROME with N equal to 3.
Read the first character (a) into NEXT.
Call PALINDROME with N equal to 2.

Read the second character (b) into NEXT.
Call PALINDROME with N equal to 1.

Read the third character (c) into NEXT.
Display the third character (c).
Return from third call.

Display the second character (b).
Return from second call.

Display the first character (a).
Return from original call.

As shown above, there are three calls to procedure PALINDROME, each
with a different parameter value. The procedure returns always occur in
the reverse order of the procedure calls; i.e. we return from the last call
first, then we return from the next to last call, etc. After we return from a
particular execution of the procedure, we display the character that was
read into NEXT just prior to that procedure call.

Parameter and Local Variable Stacks

You may be wondering how Pascal keeps track of the values of Nand
NEXT at a given point. Pascal uses a special data structure called a stack,
which is analogous to a stack of dishes or trays. In a cafeteria. clean
dishes are always placed on top of a stack of dishes. When we need a
dish, we always remove the one most recently placed on the stack. This
causes the next to last dish placed on the stack to move to the top of the
stack.

Whenever a new procedure call occurs, the parameter value associated
with that call is placed on the top of the parameter stack. Also, a new cell
whose value is initially undefined is placed on top of the stack that is
maintained for the local variable NEXT. Whenever N or NEXT is refer
enced, the value at the top of the corresponding stack is always used.
When a procedure return occurs, the value currently at the top of each
stack is removed and the next lower value moves to the top.

As as example we will look at iue two stacks immediately after the first
call to PALINDROME. There is one cell on each stack as shown below.

After first call to PALINDROME
N NEXT_.

The letter a is read into NEXT just before the second call to PALIN
DROME.

N NEXT_.
430 RECURSION, SEARCHING, AND SORTING



However, the top of the stack for NEXT becomes undefined immediately
after the second call occurs as shown below. The darker color cells repre
sent the top of each stack.

After second call to PALINDROME
N NEXT

~~
The letter b is read into NEXT just before the third call to PALINDROME.

N NEXT

III"mCiJ
However, NEXT becomes undefined again right after the third call.

After third call to PALINDROME

During this execution of the procedure. the letter c is read into NEXT.
and c is echo printed immediately since N is 1 (the stopping case).

N NEXT

m~
The procedure return causes the values at the top of the stack to be re
moved as shown below.

After first return

Since control is returned to a WRITE statement, the value of NEXT (b)
at the top of the stack is then displayed. Another return occurs, causing
the values currently at the top of the stack to be removed.

After second return
N NEXT
rlJm

Again control is returned to a WRITE statement and the value of NEXT
(a) at the top of the stack is displayed. The third return removes the last
pair of values from the stack.

9.1 THE NATURE OF RECURSION 431



We will see how to declare and manipulate stacks in the next chapter.
Since Pascal does this automatically, we can write recursive procedures
without worrying about the stacks.

Self-check Exercises for Section 9.1

1. Why must N be a value parameter in Fig. 9.3?
2. Assume the characters *+- / are entered for the procedure (call) state

ment

PALINDROME (4)

What output line would appear on the screen? Show the contents of
the stacks immediately after each procedure call and return.

II Recursive Procedures

In this section, we will examine two familiar problems and implement re
cursive procedures to solve them. Both of these problems involve printing
the contents of an array and can easily be solved using iteration. We will
also solve the Towers of Hanoi problem, which is not easily solved using
iteration.

Printing an
Array
Backwards

Problem: Provide a recursive solution to the problem of printing the
elements of an array in reverse order.

Discussion: If the array X has elements with subscripts 1 .. N, then the
element values should be printed in the sequence X [N], X [N-1],
X [ N- 2], ... , X [ 2 ], X [ 1 ] . The stopping case is printing an array with 1
element (N is 1); the solution is to print that element. For larger arrays, the
recursive step is to print the last array element (X [N]) and then print the
subarray with subscripts 1 .. N-1 backwards. The data description and
algorithm are shown next.

an array of integer values (X : INTARRAY)
the number of elements in the array (N : INTEGER)

the array values in reverse order (X [ N], X [ N-1], ... , X [ 2 ], X [ 1 ])

432 RECURSION, SEARCHING, AND SORTING



Algorithm 1. if N is 1 then
2. Print X[ I)

else
3. Print X[N)
4. Print the subarray with subscripts 1 .. N-l

Procedure PRINTBACK in Fig. 9.5 implements this algorithm.

procedure PRINTBACK (var X (inputj : INTARRAY;
N Iinput! : INTEGER);

(Print an array of integers (x) with subscripts 1 .. N.!

begin IPRINTBACKj
if N = 1 then

WRITELN (X[l])
else

begin (recursive step!
WRITELN (X[N]);
PRINTBACK (X, N-l)

end (recursive step!
end; IPRINTBACKj

Fig. 9.5 Procedure PRINTBACK

Given the declarations

type
INTARRAY = array [1 .. 20] of INTEGER;

(stopping case!

var
TEST INTARRAYi

and the procedure (call) statement

PRINTBACK (TEST, 3)

three WRITELN statements will be executed in the order indicated below
and the elements of TEST will be printed backwards as desired.

WRITELN (TEST[3));
WRITELN (TEST[2])i
WRITELN (TEST[l))

Figure 9.6 verifies this by tracing the execution of the procedure (call)
statement above. Tracing the blue and then the black arrows leads to the
sequence of events listed below.

9.2 RECURSIVE PROCEDURES 433



Call PRINTBACK with parameters TEST and 3.
Print TEST [ 3 ].
Call PRINTBACK with parameters TEST and 2.

Print TEST [ 2 ] .
Call PRINTBACK with parameters TEST and 1.

Print TEST [ 1 ].
Return from third call.

Return from second call.
Return from original call.

Fig. 9.6 Trace of PRINTBACK (TEST, 3)

As shown above, there are three calls to procedure PRINTBACK, each
with different parameters. The procedure returns always occur in the re
verse order of the procedure calls; i.e. we return from the last call first,
then we return from the next to last call, etc. This time there are no state
ments left to execute after the returns because the recursive call

PRINTBACK (X, N-l)

occurs at the end of the recursive step.

Printing an
Array in
Normal Order

Problem: Provide a recursive procedure that prints the elements of an
array in usual order.

Discussion: We can use the approach just followed to print the elements
of an array in normal order. Again, the stopping case is an array with just
one element. The data description and algorithm follow.

--~-- ---~

an array of integer values (X : INTARRAY)
the number of elements in the array (N : INTEGER)

434 RECURSION, SEARCHING, AND SORTING



Algorithm

the array values in normal order (X[ 1], X[ 2 ], ... , X[N-l], X[N])

1. if N is 1 then
2. Print X[ 1]

else
3. Print the subarray with subscripts 1 .. N-l
4. PrintX[N]

The only difference between this algorithm and the one shown earlier is
that steps 3 and 4 are transposed. Procedure PRINTNORMAL is shown in
Fig. 9.7.

procedure PRINTNORMAL (var X (inputl : INTARRAY~

N [Lnput ] : INTEGER);

(Print an array of integers (X) with subscripts 1 .• N.l

begin (PRINTNORMALj
if N = 1 then

WRITELN (X [ 1 ] )
else

begin (recursive step)
PRINTNORMAL (X, N-l);
WRITELN (X[N])

end (recursive step)
end; (PRINTNORMALl

Fig. 9.7 Procedure PRINTNORMAL

(stopping case l

The trace of PRINTNORMAL (TEST, 3) is shown in Fig. 9.8. The black
return arrows to each activation frame point to the WRITELN statement;
therefore, the WRITELN statement is executed after the return. Following
the blue and then the black arrows results in the sequence of events listed
below. This time there are no statements that precede the recursive calls.

Call PRINTNORMAL with parameters TEST and 3.
Call PRINTNORMAL with parameters TEST and 2.

Call PRINTNORMAL with parameters TEST and 1.
Print TEST [ 1 ].
Return from third call.

Print TEST [ 2 ] .
Return from second call.

Print TEST [ 3 ] .
Return from original call.

9.2 RECURSIVE PROCEDURES 435



PRINTNORMAL (TEST I 3) J
-lI

Fig. 9.8 Trace of PRINTNORMAL (TEST, 3)

PROGRAM STYLE

Effect of variable array parameters in recursive procedures

x is declared as a variable parameter in both procedures PRINT
BACK and PRINTNORMAL even though it is used for input only. If X
were a value parameter instead, then each recursive call would gen
erate a local copy of the actual array corresponding to X in each acti
vation frame, This can result in a tremendous waste of time and
memory space. For example, if X corresponds to an array with 10 ele
ments and we want to print the entire array (N is 10), then there will
be 10 activation frames so storage space will be needed for 100 inte
ger values. If N is 100, then storage space is needed for 100 X 100 or
10,000 integer values.

The next case study is considerably more complicated than the preced
ing ones, It leads to a recursive procedure that solves the Towers of Hanoi
problem introduced in Section 9,1.

Towers of
Hanoi
Problem

Problem: Solve the Towers of Hanoi problem for N discs where N is a
parameter.

Discussion: The solution to the Towers of Hanoi problem consists of a
printed list of individual disk moves. A general recursive procedure is
needed that can be used to move any number of discs from one peg to
another using the third peg as an auxiliary, The data description and
algorithm for this procedure follow,

the number of discs to be moved (N : INTEGER)
the from peg (FROMPEG : ' A I •• ' C ' )
the to peg (TOPEG : I A I •• I C I )

the auxiliary peg (AUXPEG : I A' •• I C ' )

436 RECURSION, SEARCHING, AND SORTING



Algorithm

a list of individual disc moves

1. if N is 1 then
2. Move disc 1 from the from peg to the to peg

else
3. Move N-1 discs from the from peg to the auxiliary peg using

the to peg.
4. Move disc N from the from peg to to peg.
5. Move N-l discs from the auxiliary peg to the to peg using the

from peg.

The recursive step (following else) will generate the three subproblems
listed earlier when N is 5, the from peg is 'A', the to peg is 'C', and the
auxiliary peg is 'B'. The implementation of this algorithm is shown as
procedure TOWER in Fig. 9.9. Procedure TOWER has four parameters. The
stopping case (move disc 1) is handled by the first WRITELN statement.
Each recursive step consists of a WRITELN statement sandwiched be
tween two calls to procedure TOWER. The first recursive call moves N-l
discs to the auxiliary peg. The WRITELN statement moves disc N to the to
peg. The second recursive call moves the N-l discs back from the auxilia
ry peg to the to peg.

procedure TOWER (FROMPEG,
TOPEG
AUXPEG
N

ILnput.] : CHAR:
linputl : INTEGER);

IMoves N discs from FROMPEG to TOPEG using AUXPEG as an auxiliarY_I

begin ITOWER I
if N = 1 then

WRITELN ('Move disc 1 from peg " FROMPEG,
, to peg " TOPEG)

else
begin Irecursive stepl

TOWER (FROMPEG, AUXPEG, TOPEG, N-l):
WRITELN ('Move disc " N :1, ' from peg ,FROMPEG,

, to peg " TOPEG):
TOWER (AUXPEG, TOPEG, FROMPEG, N-l)

end Irecursive stepl
end; (TOWERI

Fig. 9.9 Recursive Procedure TOWER

The procedure (call) statement

TOWER (' A', ' C', ' B', 5)

9.2 RECURSIVE PROCEDURES 437



generates the solution to the original problem. The procedure (call) state
ment

TOWER (' A I, I C I, I B', 3)

solves the simpler three disc problem. Its execution is traced in Fig. 9.10.
The output generated is shown below. Verify for yourself that this solves
the three disc problem.

Fig. 9.10 Trace of TOWER ('A', 'C', 'B', 3)

TOWER ( I A I I I C I I 'B I I 3)

Return

438 RECURSION, SEARCHING, AND SORTING

fROMPEG Is 'A I

TOPEq", 'c'
AUXPEG Is 'B'
N Is'1 •
Move 1 from A to C
Return



Comparison of Iteration and Recursive Procedures

It is interesting to consider that procedure TOWER in Fig. 9.9 will solve the
Tower of Hanoi problem for any number of discs. The three disc problem
results in a total of seven calls to procedure TOWER and is solved by sev
en moves. The five disc problem would result in a total of 31 calls to pro
cedure TOWER and is solved in 31 moves.

Since each procedure call requires the allocation and initialization of a
local data area in memory, the computer time and memory requirements
increase exponentially with the problem size (23 is 8, 25 is 32). This is dif
ferent than for an iterative solution where the computer time required is
generally proportional to the number of cases being processed, so the time
requirements increase 'linearly rather than exponentially. The memory re
quired for an iterative solution does not necessarily increase when there
are more cases to process.

This means that recursion is generally inefficient in its use of computer
resources. In cases where an iterative solution can easily be implemented,
the iterative solution is preferred. For example, it would be quite easy to
write iterative solutions to the problems "Print the values in an array
backwards" and "Print the values in an array in normal order." In fact, we
have solved the latter problem many times.

We have provided the recursive solutions to these simple problems to
demonstrate recursion, but we would not use them in practice. On the oth
er hand, the Towers of Hanoi problem would be very difficult to program
iteratively. Yet the recursive procedure TOWERS is a very natural solution
to the problem and results in a compact program that is easy to read.

Self-check Exercises for Section 9.2

1. Write a main program that reads in a data value for N (the number of
discs) and calls procedure TOWER.

2. Show the solution that would be generated for the four disc problem.
3. Provide an iterative procedure that is equivalent to PRINTBACK in

Fig. 9.5.

• Recursive Functions

The process demonstrated in the previous section can also be followed to
write recursive functions. This process involves identifying the stopping
cases of a problem. For the other cases, there must be a means of reducing
the problem to one that is closer to a stopping case.

A difference between recursive functions and procedures is that the re
cursive function calls appear in an expression. Also, a result or value is
passed back from each activation frame to an earlier frame. These results
must be combined in some way to produce the final result.

9,3 RECURSIVE FUNCTIONS 439



Summing the
Values in an
Array

Algorithm

Example 9.2

Problem: We want to write a recursive function that finds the sum of the
values in an array X with subscripts 1 .. N.

,Discussion: The stopping case occurs when N is I-the sum is X [ 1 l . If N
is not 1, then we must add the sum of the values in the subarray with sub
scripts 1 .. N-l to X[N].

an array of integer values (X : INTARRAY)
the number of elements in the array (N :. INTEGER)

the sum of the array values

1. if N is 1 then
2. The sum is X [1. ]

else
3. Add X [ N] to the sum of values in the subarray with subscripts

1 .. N-l

Function FINDSUM in Fig. 9.11 implements this algorithm. The result of
calling FINDSUM for a small array (N is 3) is also shown.

A trace of the function call FINDSUM (X, 3) is shown in Fig. 9.12. As
before, each recursive function call is in blue, and a blue arrow points to
the activation frame for a recursive call. The black arrows indicate the re
turn point (the operator +) after each function execution. The value re
turned is indicated alongside the arrow. The value returned for the
original call. FINDSUM (X, 3), is 8.

Functions that return BOOLEAN values (TRUE or FALSE) can also be
written recursively. These functions do not perform a computation; howev
er, the function result is still determined by evaluating a BOOLEAN expres
sion containing a recursive call. We will write recursive functions that
search an array and compare two arrays.

The BOOLEAN function MEMBER in Fig. 9.13 returns the value TRUE if the
argument TARGET is in the array X with subscripts 1 •• N; otherwise. it re
turns the value FALSE. If N is 1 (the stopping case). the result is deter
mined by comparing X [1] and TARGET. If N is not 1 (the recursive step).
then the result is true if either X [N] is TARGET or TARGET occurs in the
subarray with subscripts 1 .. N-l, The recursive step is implemented as
the assignment statement

MEMBER := (X[N] = TARGET) or MEMBER(X, TARGET, N-l)

in Fig. 9.13

440 RECURSION, SEARCHING, AND SORTING



program TESTFINDSUM (INPUT, OUTPUT);

(Tests function FINDSUM.j

type
INTARRAY = array [1 •. 20] of INTEGER;

var
N : INTEGER;
X : INTARRAY;

function FINDSUM (var X : INTARRAY;
N : INTEGER) : INTEGER;

(Finds the sum of the values in elements 1 .. N of array X.j

begin (FINDSUMj
if N = 1 then

FINDSUM := X[l]
else

FINDSUM := X[N] + FINDSUM(X, N-l)
end; !FINDSUMI

begin !TESTFINDSUMI
N := 3;
x l i l := 5; X[2] .= 10; X[3] := -7;
WRITELN ('The array sum is' FINDSUM(X, 3) :3)

end. !TESTFINDSUMj

The array sum is 8

Fig. 9.11 Using Recursive Function FINDSUM

Fig. 9.12 Trace of FINDSUM(X, 3)

9.3 RECURSIVE FUNCTIONS 441



function MEMBER (var X : INTARRAY;
TARGET,
N INTEGER) : BOOLEAN;

It can be argued that the recursive version is esthetically more pleasing.
It is certainly more compact (a single if statement) and requires no local
variables. Once you are used to thinking recursively you will find it some
what easier to read and understand than the iterative form.

Some programmers like to use recursion as a conceptual tool. Once the
recursive form of a function or procedure is written it can always be
translated into an iterative version if run-time efficiency is a major con
cern. This translation is necessary when programming in older languages
that do not support recursion.

Recursive Definitions of Mathematical Functions

Many mathematical functions are defined recursively. An example is the
fractorial of a number n (n!).

• O! is 1
• n! is n X (n-1)! for n > 0

Thus 4! is 4 X 3 X 2 X 1 or 24. It is easy to implement this definition as a
recursive function in Pascal.

Example 9.4 Function FACTOR in Fig. 9.17 computes the factorial of its argument N.
The recursive step

FACTOR := N * FACTOR(N-l)

implements the second line of the factorial definition above. This means
that the result of the current call (argument N) is determined by multiply
ing the result of the next call (argument N-l) by N.

function FACTOR (N : INTEGER) : INTEGER;

IRecursively computes the factorial of N. ]

begin IFACTORl.
if N = 0 then

FACTOR := 1
else

FACTOR := N * FACTOR(N-l)
end; IFACTORl

FIg. 9.17 Function FACTOR

A trace of

FACT := FACTOR(3)

is shown in Fig. 9.18. The value returned from the orizinal r.HII. FAC:-



Example 9.5

Fig. 9.18 Trace of FACT:= FACTOR(3)

The Fibonacci numbers are a number sequence that have varied uses.
They were originally intended to model the growth of a rabbit colony. Al
though we will not go into details of the model here. the Fibonacci se
quence 1.1,2,3,5,8,13,21,34, ... certainly seems to increase rapidly enough.
The fifteenth number in the sequence is 610. (That's a lot of rabbits!)

The Fibonacci sequence is defined below.

• Fib, is 1
• Ftb, is 1
• Fib , is Fib n _ 2 + Fibn _ 1 for n > 2

Verify for yourself that the sequence of numbers shown in the paragraph
above is correct. A recursive function that computes the Nth Fibonacci
number is shown in Fig. 9.19.

Fig. 9.19 Recursive Function FIBONACCI

function FIBONACCI (N : INTEGER) : INTEGER;

IComputes the Nth Fibonacci number.}

begin IFIBONACCI}
if (N = 1) or (N = 2) then

FIBONACCI := 1
else

FIBONACCI .= FIBONACCI(N-2) + FIBONACCI (N-l)
end; IFIBONACCI I

9.3 RECURSIVE FUNCTIONS 445



Example 9.6

Although easy to write, the FIBONACCI function is not efficient be
cause each recursive step generates two calls to function FIBONACCI.
This is similar to procedure TOWER shown earlier, in that time and memo
ry requirements grow exponentially as N increases.

Euclid's algorithm for finding the greatest common divisor of two integers,
GCD (M, N), is defined recursively below. The greatest Gammon divisor of
two integers is the largest integer that divides them both.

• GCD(M, N) is N if N < = M and N divides M
• GCD(M, N) is GCD(N, M) if M < N
• GCD(M, N) is GCD(N, M mod N) otherwise

This algorithm states that the GCD is N if N is the smaller number and N
divides M. If M is the smaller number, the GCD determination should be
performed with the arguments transposed. If N does not divide M, then the
answer is obtained by finding the GCD of N and the remainder of M divid
ed by N. The declaration and use of the Pascal function GCD is shown in
Fig. 9.20.

Fig. 9.20 Euclid's Algorithm for the Greatest Common Divisor

program FINDGCD (INPUT, OUTPUT);

IPrints the greatest common divisor of two integers.l

var
M, N : INTEGER;

function GCD (M, N : INTEGER) : INTEGER;

IFinds the greatest common divisor of M and N.l

Itwo input items]

begin IGCDl
if (N <= M) and (M mod N = 0) then

GCD := N
else if M < N then

GCD := GCD(N, M)
else

GCD := GCD(N, M mod N)
erid r IGCDl

begin IFINDGCD]
WRITE ('Enter two positive integers separated by a space: ')j
READLN (M, N);
WRITELN ('Their greatest common divisor is ,GCD (M, N) :6)

end. IFINDGCD l

Enter two positive integers separated by a space: 24 84
Their greatest common divisor is 12

446 RECURSION, SEARCHING, AND SORTING



Counting
Cells in a
Blob

Case Study

The next problem is a good illustration of the power of recursion. Its solu
tion is relatively easy to write recursively but would be much more diffi
cult without using recursion.

Problem: We have a two-dimensional grid of cells. each of which may be
empty or filled. The filled cells that are connected (adjacent in a vertical,
horizontal, or diagonal direction) form a blob. There may be several blobs
on the grid. We would like a function that accepts as input the
coordinates of a particular cell and returns the size of the blob containing
the cell.

There are three blobs in the sample grid below (indicated by the shad
ing). If the function parameters represent the X and Y coordinates of a cell.
the result of BLOBCOUNT ( 3, 4) is 5; the result of BLOBCOUNT ( 1, 2)
is 2; the result of BLOBCOUNT ( 5 , 5) is 0; the result of BLOB
COUNT ( 5, 1) is 4.

5
4

Y3
2
1

Algorithm

12345
X

Discussion: Function BLOBCOUNT must test the cell specified by its argu
ments to see whether it is filled. There are two stopping cases: the cell (X,
Y) is not on the grid or the cell (X. Y) is empty; in either case. the vaue re
turned by BLOBCOUNT is O. If the cell is on the grid and filled. then the
value returned is 1 plus the size of the blobs containing each of its eight
neighbors. To avoid counting a cell more than once. we will mark it as
empty once it has been counted. The data description and algorithm fol
low.

the grid (a global array)
the X and Y coordinates of the point being tested (X, Y : INTEGER)

the number of the cells in the blob containing point X. Y

1. if cell (X. Y) is not in the array then
2. BLOBCOUNT is 0

else if cell (X. Y) is empty then

9.3 RECURSIVE FUNCTIONS 447



3. BLOBCOUNT : = 0
else

4. Mark cell (X, Y) as empty
5. Add 1 to the size of the blobs containing the 8 neighbors of cell

(X, Y)

The recursive function BLOBCOUNT is shown in Fig. 9.21, assuming the
declarations below. The global array GRID is type BLOBARRAY with ele
ment values EMPTY or FILLED. The constants MAXX and MAXY represent
the largest X and Y coordinate, respectively.

const
MAXX 100;
MAXY 100;

type
BLOBARRAY = array [l •. MAXX, 1 •• MAXY] of (FILLED, EMPTY);

var
GRID : BLOBARRAY;

function BLOBCOUNT (X, Y : INTEGER) : INTEGER;

ICounts the number of filled cells in the blob containing
point (X, Y). Resets each cell in array GRID that is part of
this blob from FILLED to EMPTY. l

begin IBLOBCOUNTl
if (X < 1) or (X > MAXX) or (Y < 1) or (Y > MAXY) then

BLOBCOUNT := 0 lcell not in gridl
else if GRID[X, Y] = EMPTY then

BLOBCOUNT := 0 lcell is emptYl
else lcell is filledl

begin lrecursive stepl
GRID[X, Y] := EMPTY;
BLOBCOUNT := 1 + BLOBCOUNT(X-l, Y+l) + BLQBCOUNT(X, Y+l) +

BLOBCOUNT(X+l, Y+l) + BLOBCOUNT(X+l, Y) +
BLOBCOUNT(X+l, Y-l) + BLOBCOUNT(X, Y-l) +
BLOBCOUNT(X-l, Y-l) + BLOBCOUNT(X-l, Y)

end lrecursive stepl
end; IBLOBCOUNTI

Fig. 9.21 The Function BLOBCOUNT

In the recursive step, function BLOBCOUNT is called eight times with the
neighbors of the current cell passed as arguments. For example, if the cur
rent cell is (1, 2), its eight neighbors would be: (0,3), (1,3), (2,3), (2,2), (2.1).
(1,1). (0,1), (0,2). The cells are passed in a clockwise manner with the
neighbor above and to the left passed first. If a cell is off the grid [e.g,
(0,3), (0,2), (0,1)) or empty, a value of zero will be returned immediately.
The function result is defined as the sum of all values returned plus 1 (for
the current cell).

448 RECURSION, SEARCHING, AND SORTING



The sequence of operations performed in function BLOB COUNT is very
important. The if statement tests whether the cell (X, Y) is on the grid be
fore testing whether (X, Y) is empty. If the order is reversed, the error "out
of bounds subscript" occurs whenever (X, Y) is off the grid.

Also, the recursive step resets GRID [X I Y] to EMPTY before checking
the neighbors of point (X, Y). If this were not done first, then cell (X, Y)
would be counted more than once since it is a neighbor of all its neigh
bors. A more serious problem is that the recursion would not terminate.
When each neighbor of the current cell is tested, BLOB COUNT is called
again with the coordinates of the current cell as arguments. If the current
cell is EMPTY, an immediate return occurs. If the current cell is still
FILLED, then the recursive step would be executed erroneously. Eventual
ly, the program will run out of time or memory space; the latter is often in
dicated by a "stack overflow" message.

A side effect of the function execution is that all cells that are part of
the blob being processed are reset to EMPTY. It would be necessary to
save a copy of array GRID before the first call to BLOBCOUNT if its origi
nal status was important. This could also be achieved by making GRID a
value parameter in procedure BLOB COUNT; however, this wastes memory
because each time BLOB COUNT is called a new copy of array GRID is
made.

Self-check Exercises for Section 9.3

1. Write the recursive function FINDMIN that finds the smallest value in
an integer array X with subscripts 1 •• N.

2. Trace the execution of function BLOBCOUNT for the coordinate pair
(1,2) in the sample grid.

• Binary Search of an Array

We discussed searching an array in Section 7.6 and wrote a function that
returned the index of a target value in an array or the value 0 if the target
was not present. In order to do this it was necessary to compare array ele
ment values to the target value, starting with the first array element value.
The comparison process was terminated when the target value was found
or the end of the array was reached.

Often we want to search an array that is already sorted in ascending
(increasing) order. We can take advantage of the fact that the array is
sorted and terminate our search when an array element value greater than
or equal to the target value is reached. Since the array is sorted, there is
no need to look any further in the array as all other values will be too
large.

9.4 BINARY SEARCH OF AN ARRAY 449



Computer scientists are very concerned about the efficiency of an algo
rithm as it relates to the number of elements being processed. If there are
N elements in the array. then on the average N/Z of the elements will need
to be examined to either locate the target or to determine that it is not in
the array using our improved search algorithm. In the original algorithm.
all N elements need to be examined when the target is not in the array.

The array search described above is called a linear search because its
execution time increases linearly with the number of array elements. This
can be a problem when searching large arrays (N > 100). Consequently.
when searching large sorted arrays we often use the binary search algo
rithm described below.

Binary Search Problem: The binary search algorithm may be used to search an ordered
array. It takes advantage of the fact that the array is ordered to eliminate
half of the array elements with each probe into the array. Consequently. if
the array has 1000 elements. it will either locate the target value or
eliminate 500 elements with its first probe. 250 elements with its second
probe. 125 elements with its third probe. etc. It turns out that only ten
probes will be needed to completely search an array with 1000 elements.
(Why?) The binary search algorithm can be used to find a name in a large
metropolitan telephone book using thirty probes or less.

Discussion: Since the array is ordered. all we have to do is compare the
target value with the middle element of the sub array we are searching. If
their values are the same. then we are done. If the middle value is larger
than the target, then we should search the lower half of the array next;
otherwise. we should search the upper half of the array next.

The sub array to be searched has subscripts FIRST •• LAST. The vari
able MIDDLE is the subscript to the middle element in this range. The por
tion of the array with subscripts MIDDLE •• LAST is eliminated by the first
probe shown in the diagram below.

tst probe TARGET
_<35<45)

~FIRST

~MIDDLE

~LAST

LAST should be reset to MIDDLE-l to define the new subarray left to be
searched. and MIDDLE should be redefined as shown below. The target
value. 35. would be found on this probe.

450 RECURSION, SEARCHING, AND SORTING



Algorithm

2nd probe~B,gE; 10~ FIRST(35~35)~ :::::LE
The binary search algorithm can be stated clearly using recursion. The

stopping cases are:

• The array bounds are improper (FIRST> LAST)
• The middle value is the target value

In the first case above, the function result is zero; in the second case, the
function result is MIDDLE. The recursive step is to search the appropriate
sub array. The data requirements and algorithm for a recursive binary
search function follow.

array to be searched (TABLE : INTARRAY)
target being searched for (TARGET : INTEGER)
the first subscript in the subarray (FIRST : INTEGER)
the last subscript in the subarray (LAST : INTEGER)

the location of the TARGET value or 0 if not found

1. Compute the subscript of the middle element
2. if the array bounds are improper then

3. Return a result of 0
else if the middle value is the target then

4. Return the subscript of the middle element
else if the middle value is larger than the target

5. Search the subarray with subscripts FIRST •• MIDDLE-l
else

6. Search the subarray with subscripts MIDDLE+1 •• LAST

For each of the recursive steps (steps 5 and 6), the bounds of the new
subarray must be listed as actual parameters in the recursive call. The ac
tual parameters define the search limits for the next probe into the array.

In the initial call to the recursive procedure, FIRST and LAST should be
defined as the first and last elements of the entire array, respectively. For
example, the procedure (call) statement

BINARYSEARCH (X, 35, I, 9)

could be used to search the elements of array X with subscripts 1 .. 9
for the target value 35 (assuming X is type INTARRAY). Function
BINARYSEARCH is shown in Fig. 9.22.

9.4 BINARY SEARCH OF AN ARRAY 451



function BINSEARCH (var TABLE : INTARRAY;
TARGET : INTEGER;
FIRST, LAST : INTEGER) : INTEGER;

IPerforms a recursive binary search of an ordered array of integer
values with subscripts FIRST .. LAST. Returns the subscript of
TARGET if found in array TABLE; otherwise, returns a value of O. l

var
MIDDLE : INTEGER; Ithe subscript of the middle elementl

begin IBINSEARCHl
MIDDLE := (FIRST + LAST) div 2; Idefine MIDDLEl

Istopping case: TARGET foundl
Isearch lower subarraYl

FIRST, MIDDLE-I)
Isearch upper subarraYl

MIDDLE+I, LAST)

Istopping case: TARGET missingl
TARGET then

IDetermine if TARGET is found or missing or redefine subarraY.l
if FIRST > LAST then

BINSEARCH := 0
else if TABLE[MIDDLE]

BINSEARCH := MIDDLE
else if TABLE[MIDDLE] > TARGET then

BINSEARCH := BINSEARCH(TABLE, TARGET,
else

BINSEARCH := BINSEARCH(TABLE, TARGET,
end; IBINSEARCHl

Fig. 9.22 Recursive Binary Search Function

Fig. 9.23 Iterative Binary Search Function

function BINSEARCH (var TABLE : INTARRAY;
TARGET : INTEGER;
FIRST, LAST : INTEGER) : INTEGER;

IPerforms an iterative binary search of an array of integer values
with subscripts FIRST .. LAST. Returns the subscript of TARGET
if found in array TABLE; otherwise, returns a value of O.

var
MIDDLE : INTEGER; Ithe subscript of the middle elementl

[de f i.ne MIDDLEl

Isearch lower subarraYl

Isearch upper subarraYl
TARGET) ;

begin IBINSEARCHl
ICompare TARGET to middle element and reduce subarray to searchl
repeat

MIDDLE := (FIRST + LAST) div 2;
if TABLE[MIDDLE] > TARGET then

LAST := MIDDLE - I
else

FIRST := MIDDLE + I
until (FIRST> LAST) or (TABLE[MIDDLE]

IAssert: improper array bounds or TARGET is found.l
if TABLE[MIDDLE] = TARGET then

BINSEARCH := MIDDLE ITARGET is foundl
else

BINSEARCH := 0 ITARGET not foundl
end; IBINSEARCHl

452 RECURSION, SEARCHING, AND SORTING



The assignment statement

MIDDLE := (FIRST + LAST) div 2; [de f Lne MIDDLEl

computes the subscript of the middle element by finding the average of
FIRST and LAST. This value has no meaning when FIRST is greater than
LAST, but it does no harm to compute it.

An iterative version of the binary search function is shown in Fig. 9.23.

Self-check Exercises for Section 9.4

1. Trace the search of the array TABLE shown in this section for a TAR
GET of 40. Specify the values of FIRST, MIDDLE, and LAST during
each recursive call.

2. Assume each character string terminates in a dollar sign ($) and that
the null string (length 0) starts with a $. Write a recursive function that
finds the length of its character string argument. Hint: Call this func
tion with a parameter, NEXT, that equals 1. Increase NEXT with each
recursive call.

• Searching by Hashing

So far we have discussed the advantages of using the binary search tech
nique to retrieve information stored in a large array. Binary search can be
used only when the contents of the array are ordered.

An additional technique used for storing data in an array so it can be
retrieved in an efficient manner is called hashing. This technique consists
of implementing a hash function, which accepts as its input a designated
field of a record, the record key, and returns as its output an integer, the
hash index. The hash index selects the particular array element that will
be used to store the new data. To retrieve the item at a later time, it is
only necessary to recompute the hash index and access the item in that
array location. This process is illustrated in the diagram below. The hash
index is 3.

array of students

record key
I SALLY SIM'

[1]
[2 ]

[ 3 )
[4 )
[5 )

9.5 SEARCHING BY HASHING 453



As an example, let's assume we have up to 100 student records to main
tain and each record (type STUDENT) has a string field (NAME) of 20 char
acters or less, an exam score, and a grade. The student data can be stored
in an array with subscripts 1 .. 100. The record key must be unique for
each record; hence, we can use the student's name as the record key. One
possible hash function would simply add up the ordinal values of each
nonblank character in the student's name and then use the mod function
to convert this sum to an integer in the range 1 to 100. Figure 9.24 shows
such a function, assuming that STRINGSI ZE (20), BLANK (I I), and
CLASSIZE (100) are all declared as global constants and STRING is a
packed array of STRINGSIZE characters.

function HASH (KEY : STRING) : INTEGER;

IComputes an integer value between I and CLASSIZE
based on the nonblank characters in KEY.

canst
BLANK I I.,

var
I 1 .. STRINGSIZE;
HASHINDEX INTEGER;

Iloop control variablel
laccumulated hash valuel

begin IHASHI
HASHINDEX := 0;
IAdd ordinal values for all non-blank characters in
for I := I to STRINGSIZE do

if KEY[I] <> BLANK then
HASHINDEX := HASHINDEX + ORD(KEY[I]);

HASH := HASHINDEX mod CLASSIZE + I
end; \HASHI

Fig. 9.24 Function HASH

linitialize s um]
string KEY. 1

Iincrement s um]

Ide fine re s uL t 1

Inserting a student record then becomes a matter of passing its key to
function HASH and storing the record in the array element selected by
HASH. After all records are stored L the array, we can retrieve a particu
lar student's record by passing the student's name to function HASH and
accessing the array element selected by HASH. The net result is that it will
usually take only one probe into the array to get the record we are seek
ing. Sometimes it will take more than one probe, as explained next.

Effect of Collisions

The hashing technique described above works well as long as HASH never
returns the same hash index for two different keys. However, the names
'SILLY SAM' and' SALLY SIM' would both yield the same hash index
since they contain the same letters. It would be easy to improve the hash

454 RECURSION, SEARCHING, AND SORTING



function so this situation is avoided (see Exercise 2); however, regardless
of what hash function is used there is always a possibility that two differ
ent keys will hash to the same index. This is called a collision.

One way to handle collisions is to insert a new record in the element
selected by function HASH only if that slot is currently empty. If that slot
is filled, then advance to the next empty slot in the array and place the
record in that location. The record keys could all be initialized to blank
strings to indicate that they are initially empty.

To retrieve a record, we first examine the element selected by the hash
index. If the record we are seeking is there, then we are finished. If the el
ement selected by the hash index is filled with other data, then we keep
searching until we find the record we are seeking or we reach an empty
cell. If we reach an empty cell, the record we are seeking is not present in
the array.

Procedure INSERT (see Fig. 9.25) is used to insert a student record
(NEXTSTU) in an array CLASS. Function FINDSTU (see Fig. 9.26) returns
the subscript of the record specified by KEY if it is in the array; otherwise,
it returns a value of O. Both these modules assume that BLANKSTRING is
a global constant (all blanks).

Both modules use the assignment statement

INDEX := INDEX mod CLASSIZE + 1; Iget next element!

to increment the value of INDEX. If the current value of INDEX is
CLASSIZE, the new value will be 1; otherwise, the new value will be one
more than the current value.

Procedure INSERT assumes that the same name cannot appear twice in
the array. If the new student name matches one in the array, then the new
data replace the old data and a message is printed.

Both procedures use the local variable PROBE to count the number of
probes into the array. If the array is completely filled it would be possible
to search forever for an empty slot. The while condition (PROBE <=
CLASSIZE) prevents this from happening.

Fig. 9.25 Procedure INSERT

procedure INSERT (var CLASS Iinput/output! : STUDENTARRAY;
NEXTSTU linputl : STUDENT);

IInserts a new student record (NEXTSTU) in the array of student
records CLASS using hashing. Function HASH computes the hash
index based on the student's name.

var
INDEX: 1 .. CLASSIZE;
PROBE : INTEGER;

begin IINSERT!
INDEX := HASH(NEXTSTU.NAME);

Iindex to array!
Inumber of probes into array!

Icompute hash index!

9.5 SEARCHING BY HASHING 455



IPlace NEXTSTU in first empty slot or
update data if student is in the array. I

PROBE := 1;
while (CLASS[INDEX].NAME <> BLANKSTRING) and

(CLASS[INDEX].NAME <> NEXTSTU.NAME) and
(PROBE <= CLASSIZE) do

begin
INDEX := INDEX mod CLASSIZE + 1;
PROBE := PROBE + 1

end; [wh i.Le ]
Iget next elementl

lassert: first empty slot reached or student found
or the array is filled.

if CLASS[INDEX].NAME = BLANKSTRING then
CLASS[INDEX] := NEXTSTU linsert new student datal

else if CLASS[INDEX].NAME = NEXTSTU.NAME then
begin Iin a r r ay]

CLASS[INDEX] := NEXTSTU; lupdate student datal
WRITELN (NEXTSTU. NAME , ' in array -- record updated.')

end Iin array I
else

WRITELN ('Array is filled -- insertion is not possible.')
end; IINSERT I

Fig. 9.26 Function FINDSTU

function FINDSTU (var CLASS : STUDENTARRAYj
KEY : STRING) : INTEGER;

IReturns the index of the student whose name field matches KEY.
Returns 0 if the student is not in the array CLASS.
Calls function HASH to determine the search start point.

var
INDEX: 1 .. CLASSIZE;
PROBE : INTEGER;

begin IFINDSTUI
INDEX := HASH(KEY)j

Iindex to e r r ay ]

Istarting point for searchl

ISearch for student whose name is KEY.1
PROBE := 1;
while (CLASS[INDEX].NAME <> KEY) and

(CLASS[INDEX].NAME <> BLANKSTRING) and
(PROBE <= CLASSIZE) do

begin
INDEX := INDEX mod CLASSIZE + 1;
PROBE := PROBE + 1

end; [wn i Le]

Iget next elementl

lassert: current NAME field matches KEY or empty slot reached
or all array elements searched without success. I

if CLASS[INDEX].NAME = KEY then
FINDSTU := INDEX Istudent at INDEXI

else
FINDSTU := 0 Istudent not found I

end; IFINDSTUI

456 RECURSION, SEARCHING, AND SORTING



Algorithm

Example 9.7

Self-check Exercises for Section 9.5

1. Assume that the ordinal number for the letter A is 1, B is 2, etc. and
CLASSIZE is 10 (array CLASS has 10 elements). Compute the hash
values for the following names and indicate where each name would
be stored in the array: 'SAL', 'BIL', 'JILL', 'LIB', 'HAL',
'ROB'

2. Rewrite HASH so that the ordinal value for each letter is multiplied by
its position in the string (e.g. for 'SAL I, multiply ORO ( 'S' ) by 1,
ORO ( 'A' ) by 2, etc). Why is this a better hash function? Answer Ex
ercise 1 for this new function.

3. An improved way of handling colli sons is called quadratic hashing
where 1 is added to the hash index after probe 1, 4 (22) is added after
probe 2, 9 (32) is added after probe 3, etc. Modify INSERT and
FINDSTU to use this technique.

II Additional Sorting Algorithms

The binary search algorithm may be used to search a sorted array. We
discussed one of the simplest and least efficient sorting algorithms, the
Bubble Sort, in Section 7.7. In this section, we will discuss other algo
rithms for sorting an array.

The first algorithm discussed is quite natural and involves finding the
largest element in the array and making it the last element, finding the
next largest element in the array and making it the next to last element,
etc. This is called the selection sort.

The selection sort process lends itself to a recursive solution as described
below, for an array with subscripts 1 •• N.

1. If the subarray being sorted has one element then
the subarray is already sorted

else
2. Find the largest value in the subarray and switch it with the value

in the last element of the subarray.
3. Sort the subarray with subscripts 1. . N-1.

As indicated above, there is nothing to do if the array has only one ele
ment (stopping case) since such an array is sorted by definition. For a
larger array, it is necessary to switch the largest value with the last value
and then sort the subarray with subscripts 1 •• N-1. A trace of the effect
of this algorithm for an array of four elements is shown in Fig. 9.27; the
subarray being sorted at each point is in the lighter color. The procedure
is shown in Fig. 9.28.

9.6 ADDITIONAL SORTING ALGORITHMS 457



array is
sorted

switch
15, 23

switch
34, 23

mk.

3

•

4

1><.34......~.2311 5 I4515 ].5.
23 23
15

switch
45, 15

Fig. 9.27 Trace of Selection Sort

Fig. 9.28 Procedure SELECTSORT

procedure SELECT SORT (var TABLE Iinput/output I
N [Lnput ] : INTEGER);

INTARRAY;

IPerforms a selection sort on array TABLE with subscripts 1 .. N.1

var
MAXPOSITION : INTEGER; Iposition of largest elementl

function FINDMAXPOS (var TABLE INTARRAY;
N : INTEGER) : INTEGER;

IReturns the subscript of the largest value in TABLE.
Examines the element values with subscripts 1 .. N.

var
I,
MAXPOS : INTEGER;

Iloop control variablel
Iposition of largest so farl

lassume first element is largestl
begin IFINDMAXPOSI

MAXPOS := 1;
for I := 2 to N do

if TABLE[I] > TABLE [MAXPOS]
MAXPOS := I;

FINDMAXPOS := MAXPOS
end; IFINDMAXPOSI

then
Ivalue at I is largerl

Idefine resul t ]

procedure EXCHANGE (var X, Y Iinput/output I INTEGER) ;

Iswitches the values in X and Y.l

var
TEMP : INTEGER; Itemporary cell for exchange I

begin IEXCHANGE I
TEMP := X; X:= Y;

end; IEXCHANGE I
Y := TEMP

begin ISELECTSORTI
if N > 1 then

begin Irecursion stepl
MAXPOSITION := FINDMAXPOS(TABLE, N);
EXCHANGE (TABLE[MAXPOSITION], TABLE[N]);
SELECT SORT (TABLE, N-l)

end Irecursion stepl
end; ISELECTSORTI

458 RECURSION, SEARCHING, AND SORTING



Example 9.8

Algorithm

I........ I~-
.•2$.·2$-.

shift all values insert NEXTVAL in
> NEXTVAL down place of first 25

Fig. 9.29 Inserting the Fourth Array Element Value

The next sorting algorithm we will discuss is used by card players to sort
their cards. They keep the cards dealt so far in sorted order. As each new
card is dealt they insert it in its proper place. The algorithm is called the
insertion sort.

1. for each element value after the first do
2. Make room for the next value by shifting all larger values down

one position.
3. Insert the next value in place of the last value moved.

This process is illustrated in Fig. 9.29 for the array shown on the left of
the diagram. The sub array with subscripts 1 .. 3 is sorted and we wish to
insert the next value, 20, into its proper place (in element 2). Since 30 and
25 are greater than 20, both these values starting with 30, are shifted down
one place. After the shift occurs (middle diagram), there will temporarily
be two copies of the value 25 in the array. The first of these is erased
when 20, saved in NEXTVAL, is moved into its correct position (rightmost
diagram). The shift and insert operations should then be repeated to insert
the new next value (28) where it belongs.

The structure chart for procedure INSERTSORT is shown in Fig. 9.30.
Procedure SHIFTBIGGER is called to perform the shift operation and de-

Fig. 9.30 Structure Chart for Procedure INSERTSORT

INSERTSORT

I
NEXTVAL,
NEXTPOS

J,

t
TABLE,
NEWPOS

J, I

I
NEXTVAL,
NEWPOS

J,

I t
TABLE

J, I

SHIFTBIGGER

9.6 ADDITIONAL SORTING ALGORITHMS 459



termine the correct position for the array element currently being inserted
(NEXTVAL). Procedure INSERTSORT is shown in Fig. 9.31.

procedure INSERTSORT (var TABLE (input/outputl : INTARRAY;
N Iinput I : INTEGER);

(Performs an insertion sort on array TABLE with subscripts 1 .. N.j

var
NEXTPOS,
NEWPOS,
NEXTVAL :

(subscript of the next element to be insertedj
( subscript of this element after insertion I

INTEGER; (temporary storage for next element valuej

procedure SHIFTBIGGER (var TABLE (input/outputj : INTARRAY;
NEXTPOS, NEXTVAL !inputj : INTEGER;
var NEWPOS (outputj : INTEGER);

!Shifts each array element value in the sorted subarray
1 .. NEXTPOS-l that is greater than NEXTVAL down 1 element.
NEWPOS is set to indicate the position of last value moved.)

begin !SHIFTBIGGERI
WRITELN ('Procedure SHIFTBIGGER entered. ' )

end; (SHIFTBIGGERj

begin !INSERTSORTI
for NEXTPOS := 2 to N do

begin
(invariant: subarray 1 .. NEXTPOS-l is
NEXTVAL := TABLE[NEXTPOS];

sortedj
!save next elementj

!Shift all values> NEXTVAL down one element.j
SHIFTBIGGER (TABLE, NEXTPOS, NEXTVAL, NEWPOS);

(Insert NEXTVAL in location NEWPOS.j
TABLE[NEWPOS] := NEXTVAL

end [f'or ]
end; !INSERTSORTj

Fig. 9.31 Procedure INSERTSORT

Algorithm

Procedure SHIFTBIGGER must move all array element values larger
than NEXTVAL, starting with the array element at position NEXTPOS-l.
The shift operation terminates when all array elements are moved
(NEXTVAL is the smallest value so far) or a value less than or equal to
NEXTVAL is reached. NEXTVAL should then be inserted in the position
formerly occupied by the last value that was moved. The algorithm for
SHIFTBIGGER follows; the procedure is shown in Fig. 9.32.

1. Start with the element in position NEXTPOS-l.
2. while first element not reached and element value > NEXTVAL do

3. Move element value down one position.
4. Check next smaller element value.

5. Define NEWPOS as the position of the last value moved.

460 RECURSION, SEARCHING, AND SORTING



Ishift value downj
Itry next elementj

procedure SHIFTBIGGER (var TABLE linput/outputj : INTARRAY;
NEXTPOS, NEXTVAL (inputj : INTEGER;
var NEWPOS loutput) : INTEGER);

{Shifts each array element value in the sorted subarray
1 .. NEXTpOS-l that is greater than NEXTVAL down 1 element.
NEWPOS is set to indicate the correct position of NEXTVAL.1

begin ISHIFTBIGGERj
IShift all values> NEXTVAL. Start with element at NEXTPOS-l.j
while (NEXTPOS > 2) and (TABLE[NEXTPOS-l] > NEXTVAL) do

begin
TABLE[NEXTPOS] := TABLE[NEXTPOS-l];
NEXTPOS := NEXTPOS - 1

end; [whi Le ]

{move TABLE[l] downj
INEXTVAL is the smallest so farj

lassert: NEXTPOS is 2 or NEXTVAL
IShift TABLE[l] if necessary and
if TABLE[l] > NEXTVAL then

begin
TABLE[2) := TABLE[l]i
NEWPOS := 1

end
else

NEWPOS := NEXTPOS
end; ISHIFTBIGGERj

belongs at position NEXTPOSj
de fine NEWPOS. j

Ide fine NEWPOS j

Fig. 9.32 Procedure SHIFTBIGGER

The while statement in Fig. 9.32 compares and shifts all values greater
than NEXTVAL in the subarray with subscripts 2 •• NEXTPOS-1. The if
statement in Fig. 9.32 is used to compare only the first array element value
to NEXTVAL and possibly shift it. This seemingly extra statement is needed
because an "out of bounds subscript" error occurs if the while condition is
evaluated for NEXTPOS = 1 (NEXTPOS-l = 0). The if statement also
defines the value of NEWPOS.

So far, we have studied three sorting algorithms: bubble sort, selection
sort, and insertion sort. In each of these algorithms the time required to
sort an array increases with the square of the number of array elements,
or, the time required to sort an array of N elements is proportional to N2.
Consequently, these algorithms are not particularly efficient for large ar
rays (i.e. N >= 100). A much faster sorting procedure will be discussed
in the next section.

Self-check Exercises for Section 9.6

1. Rewrite the selection sort without using recursion.
2. Assume the values 10, 5, 7, - 3, 4, 9, 7, - 3, - 5 are stored in consecu

tive array elements. Trace the execution of SELECTSORT and
INSERTSORT on this array. Show the array just before each recursive
call to SELECTSORT and just before each repetition of the for state
ment in INSERTSORT.

9.6 ADDITIONAL SORTING ALGORITHMS 461



II Case Study-The Quicksort Algorithm

The time required to sort an array using a simple sorting algorithm in
creases with the square of the number of array elements. This means that
the time required to sort an array with N elements is proportional to N2.

Quicksort Problem: A faster algorithm is needed for sorting an array. We would
like to see an improvement similar to that provided by binary search over
simple search.

Discussion: The quicksort algorithm works in the following way. Given
an array with subscripts FIRST •• LAST to sort, it rearranges this array so
that all element values smaller than a selected pivot value are first,
followed by the pivot value, followed by all element values larger than the
pivot value. After this rearrangement (called a partition), the pivot value
is in its proper place. All element values smaller than the pivot value are
closer to where they belong as they precede the pivot value. All element
values larger than the pivot value are closer to where they belong as they
follow the pivot value.

An example of this process is shown below. We will assume that the
first array element is arbitrarily selected as the pivot. A possible result of
the partitioning process is shown beneath the original array.

pivoto original array

array after 1st partition

After the partitioning process, the fifth array element contains the pivot
value, 44. All values less than 44 are in the left subarray (blue area); all
values greater than 44 are in the right subarray (grey area) as desired. The
next step is to apply quicksort recursively to both subarrays. The data re
quirements and algorithm for quicksort follow. We will describe how to do
the partitioning later.

the array being sorted (TABLE : I NTARRAY)
the first subscript (FIRST : INTEGER)
the last subscript (LAST : INTEGER)

462 RECURSION, SEARCHING, AND SORTING



the sorted array (TABLE INTARRAY)

Algorithm

the subscript of the pivot value after partitioning
(PIVINDEX : INTEGER)

1. if FIRST < LAST then
2. Partition the elements in the subarray FIRST •• LAST so that the

pivot value is in place (subscript is PIVINDEX)
3. Apply quicksort to the sub array FIRST •• PIVINDEX-l
4. Apply quicksort to the subarray PIVINDEX+I •• LAST

The recursive algorithm above shows that nothing is done for the simple
case FIRST >= LAST. If FIRST > LAST is true, then the array bounds
are improper; if FIRST = LAST is true, then a one-element array exists
which is sorted by definition. The implementation of procedure QUICK
SORT is shown in Fig. 9.33. The procedure (call) statement

QUICKSORT (TABLE, 1, N)

could be used to sort an array TABLE (type INTARRAY) with subscripts
1 •• N.

The two recursive calls to QUICKSORT in Fig. 9.33 will cause the
QUICKSORT procedure to be applied to the sub arrays that are separated
by the value at PIVINDEX. If any subarray contains just one element (or
zero elements), an immediate return will occur.

Procedure PARTITION selects the pivot and performs the partitioning
operation. When the arrays are randomly ordered to begin with, any ele
ment may be used as the pivot value. For simplicity, we will choose the el
ement with subscript FIRST. We will then search for the first value at the
left end of the sub array being sorted that is greater than the pivot value.
When we find it, we search for the first value at the right end of the
subarray that is less than or equal to the pivot value. These two values
are exchanged and we repeat the search and exchange operations. This is
illustrated below with UP pointing to the first value greater than the pivot
and DOWN pointing to the first value less than or equal to the pivot value..

pivoto
i
UP

original array

i
DOWN

9.7 CASE STUDY-THE QUICKSORT ALGORITHM 463



var
PIVINDEX : INTEGER;

procedure QUICKSORT (var TABLE linput/outputl : INTARRAY;
FIRST, LAST linputl : INTEGER);

IRecursive procedure to sort the subarray of TABLE with
subscripts FIRST •. LAST. Uses procedure PARTITION to split the
array into two subarrays such that the pivot value is in its
proper place (subscript PIVINDEX) preceded by all smaller values
and followed by all larger values. l

Isubscript of pivot value
returned by PARTITIONl

procedure PARTITION (var TABLE linput/outputl : INTARRAY;
FIRST, LAST linputl : INTEGER;
var PIVINDEX loutputl : INTEGER);

IPartitions the subarray of TABLE with subscripts FIRST •. LAST into
two subarrays. All values less than or equal to TABLE[PIVINDEX]
are in the left subarray; all values greater than TABLE[PIVINDEX]
are in the right subarray. l

begin IPARTITIONl
WRITELN ('Procedure PARTITION entered.')

end; (PARTITIONI

begin IQUICKSORTl
if FIRST < LAST then

begin
ISplit into two subarrays separated by value at PIVINDEXl
PARTITION (TABLE, FIRST, LAST, PIVINDEX);
QUICKSORT (TABLE, FIRST, PIVINDEX-I);
QUICKSORT (TABLE, PIVINDEX+I, LAST)

end
end; (QUICKSORTI

Fig. 9.33 Procedure QUICKSORT

Seventy-five is the first value at the left end of the array that is larger
than 44; thirty-three is the first value at the right end that is less than or
equal to 44 so these two values are exchanged. The pointers UP and DOWN
are then advanced from their current positions to the positions below.

after first exchange

i i
UP DOWN

Fifty-five is the next value at the left end that is larger than 44; twelve is
the next value at the right end that is less than or equal to 44, so these
two values are exchanged, and UP and DOWN are advanced again.

464 RECURSION, SEARCHING, AND SORTING



Algorithm for
PARTITION

after second exchange

After the second exchange above, the first five array element values are
all less than or equal to the pivot; the last four element values are all larg
er than the pivot. Fifty-five is selected by UP once again as the next ele
ment larger than the pivot; twelve is selected by DOWN as the next element
less than or equal to the pivot. Since UP has now "passed" DOWN, these
values are not exchanged. Instead, the pivot value (subscript is FIRST)
and the value at position DOWN are exchanged. This puts the pivot value
in its proper position (new subscript is DOWN) as shown below.

The partitioning process is now complete, and the value of DOWN is re
turned as the pivot index (PIVINDEX). QUICKSORT will be called recur
sively to sort the left sub array and the right subarray. The algorithm for
PARTITION follows.

This algorithm is implemented in Fig. 9.34.

1. Define the pivot value as the contents of TABLE [FIRST].
2. Initialize UP to FIRST and DOWN to LAST.
3. repeat

4. Assign the subscript of the first element greater than the pivot
value to UP.

5. Assign the subscript of the first element less than or equal to
the pivot value to DOWN.

6. if UP < DOWN then
7. Exchange their values.

until UP meets or passes DOWN
8. Exchange TABLE [FIRST] and TABLE [DOWN].

9. Define PIVINDEX as DOWN.

9.7 CASE STUDY - THE QUICKSORT ALGORITHM 465



procedure PARTITION (var TABLE Iinput/output! : INTARRAY;
FIRST, LAST linput! : INTEGER;
var PIVINDEX loutput! : INTEGER);

IPartitions the subarray of TABLE with subscripts FIRST .. LAST into
two subarrays. All values less than or equal to TABLE[PIVINDEX]
are in the left subarray; all values greater than TABLE[PIVINDEX]
are in the right subarray.

var
PIVOT,
UP,
DOWN : INTEGER;

Ithe pivot value!
Ipointer to values > PIVOT!
Ipointer to values <= PIVOT!

procedure EXCHANGE (var X, Y Iinput/output! : INTEGER);

ISwitches the values in X and Y.!

var
TEMP : INTEGER Itemporary cell for exchange!

begin IEXCHANGE!
TEMP := Xi X:= Yi Y:= TEMP

end; IEXCHANGE)

values that are out of place.!
Iset UP to point to leftmost element!

Iset DOWN to point to rightmost element!

begin IPARTITION!
PIVOT := TABLE[FIRST];

IFind and exchange
UP := FIRST;
DOWN := LAST;
repeat

IMove UP to the next value
while (TABLE[UP] <= PIVOT)

UP := UP + 1;
lassert: TABLE[UP] > PIVOT

Idefine leftmost element as the pivot)

larger than PIVOT.!
and (Up < LAST) do

or UP is equal to LAST!

IMove DOWN to the next value less than or equal to PIVOT.!
while TABLE[DOWN] > PIVOT do

DOWN := DOWN - 1;
lassert: TABLE[DOWN] <= PIVOT!

IExchange out of order values.!
if UP < DOWN then

EXCHANGE (TABLE[UP], TABLE[DOWN])
until UP >= DOWN; luntil UP meets or passes DOWN!

IAssert: values <= PIVOT have subscripts <= DOWN and
values > PIVOT have subscripts > DOWN!

IPut pivot value where it belongs and define PIVINDEX.!
EXCHANGE (TABLE[FIRST] , TABLE[DOWN])i
PIVINDEX := DOWN

end; IPARTITION!

Fig. 9.34 Procedure PARTITION

466 RECURSION, SEARCHING, AND SORTING



The two while loops in Fig. 9.34 are used to advance pointers UP and
DOWN to the right and left, respectively. Since TABLE [FIRST] is equal to
PIVOT, the second loop will stop if DOWN reaches the left end of the array
(DOWN is FIRST). The extra condition (up < LAST) is added to the first
while loop to ensure that it also stops if UP reaches the right end of the
array.

The quicksort procedure works better for some arrays than for others. It
works best when the partitioning process splits each subarray into two
subarrays of almost the same size. The worst behavior results when one
of the sub arrays has 0 elements and the other has all the rest except for
the pivot value. Ironically, this worst case behavior results when
QUICKSORT is applied to an array that is already sorted. The pivot value
remains in position FIRST, and the rest of the elements will be in one
subarray.

The relationship between the number of array elements, N, and the time
required to perform QUICKSORT is on the order of N X 10g2 N as com
pared to N X N for bubble sort. Table 9.1 lists the values of these formulas
for different N. By moving down a column of the table, we see the relative
effect of increasing N; obviously N X 10g2 N increases much more slowly
than does N X N.

Table 9.1 Comparison of Effect of N on Simple Sorts and QUICKSORT

N N X N (simple sorts) N X 1092 N (QUICKSORT)

32 1024 160
64 4096 384

128 16384 896
256 65536 2048
512 262144 4608

Self-check Exercises for Section 9.7

1. Complete the trace of QUICKSORT for the subarrays remaining after
the first partition.

2. If an array contains some values that are the same, in which subarray
(left or right) will all values equal to the pivot value be placed?

• Common Programming Errors

The most common problem with a recursive procedure is that it does not
terminate properly. For example, if the terminating condition is not correct
or is incomplete, the procedure may call itself indefinitely or until all
available memory is used up. Normally, a "stack overflow" run-time error
is an indicator that a recursive procedure is not terminating. Be sure to
identify all stopping cases and provide a terminating condition for each
one. Also be sure that each recursive step leads to a situation that is clos-

9.8 COMMON PROGRAMMING ERRORS 467



er to a stopping case and that repeated recursive calls will eventually lead
to stopping cases only.

The use of large arrays as value parameters can quickly consume all
available memory. Unless absolutely essential for data protection, arrays
should be passed as variable parameters. An expression such as N-1
must be passed as a value parameter.

Debugging Recursive Procedures

Sometimes it is difficult to observe the result of a recursive procedure exe
cution. If each recursive call generates many output lines and there are
many recursive calls, the output will scroll down the screen more quickly
than it can be read. On most systems it is possible to stop the screen tem
porarily by pressing a control character sequence (e.g. Control S). If this
cannot be done, it is still possible to cause your output to stop temporarily
by printing a prompting message followed by a READLN. Your program
will resume execution when you press the carriage return character.

One problem with sort and search procedures is the possibility of going
beyond the bounds of a subarray. Make sure that your Pascal system
checks for subscript range errors. On some systems this important check
must be activated by the programmer; otherwise, subscript range viola
tions are not detected. If this is the case on your system, make sure that
you activate this feature when debugging any program that manipulates
arrays, particularly a search or sort.

When debugging a search or sort procedure it is best to use relatively
small arrays (e.g. 10 elements). Make sure that you print the new contents
of the array after each pass through a sort procedure.

• Chapter Review

This chapter provided many examples of recursive procedures and func
tions. Hopefully, studying them has given you some appreciation of the
power of recursion as a problem solving and programming tool and has
provided you with valuable insight regarding its use. It may take some
time to feel comfortable thinking in this new way about programming, but
it is certainly worth the effort.

We discussed a minor improvement to an array search and also studied
the binary search technique, which provides significant improvement for
larger arrays. The relationship between the number of array elements, N,
and the time required to perform a binary search is on the order of 10gzN.
This means that the time required to perform a binary search increases
very slowly. For example, it should only take about twice as long to per
form a binary search on an array with 256 elements (logz256 is 8) as it
would take to perform a binary search on an array with 16 elements (log,
16 is 4).

Searching an array using hashing was also discussed. In the absence of

468 RECURSION, SEARCHING, AND SORTING



collisions. this technique enables a target to be found with a single probe
regardless of the array size.

We also discussed three new sorting algorithms. The selection sort and
insertion sort are considered N X N sorts just like the bubble sort. This
means that the time required to sort an array using one of these tech
niques is proportional to the square of the number of elements. For larger
arrays. it is best to use the recursive QUICKSORT algorithm described in
Section 9.7. The relationship between this algorithm and the number of ar
ray elements. N. is expressed by the formula N X logzN.

Review Questions

1. Explain the nature of a recursive problem.
2. Discuss the efficiency of recursive procedures.
3. Differentiate between stopping cases and a terminating condition.
4. Write a Pascal program with a procedure that has a character string

parameter (maximum length of six). The procedure should print the ac
cumulating sum of ordinal values corresponding to each character in
the string until a blank is encountered or all six characters have been
summed.

5. Write a Pascal program with a function that will return the sum of or
dinal values corresponding to the characters in a character string pa
rameter (maximum length of six). The function should add up the ordi
nal values until a blank is encountered or all six characters have been
summed.

6. Convert the Pascal program below from an iterative process to a re
cursive function that calculates an approximate value for e, the base
of the natural logarithms, by summing the series

1 + 1/1! + 1/2! + ••• l/N!

until additional terms do not affect the approximation.

program ELOG (OUTPUT):

var
ENL, DELTA, FACT : REAL:
N : INTEGER:

begin IELOGI
ENL := 1. 0:
N := 1:
FACT := 1. 0:
DELTA := 1.0:
repeat

ENL := ENL + DELTA:
N := N + 1:
FACT := FACT * N:
DELTA := 1 / FACT:

until ENL = (ENL + DELTA):
WRITE ('The value of e is " ENL :18:15)

end. IELOGI

9.9 CHAPTER REVIEW 469



7. Write a function that will recursively search a string of maximum
length of 30 characters and return the position of the first comma in
the string. If the string does not contain a comma, then return 30.

8. Discuss the major differences between hashing and binary search.

Programming Projects

1. Write a procedure that reads each row of an array as a string and converts
it to a row of GRID (see Fig. 9.21). The first character of row one corre
sponds to GRID [ 1,1], the second character to GRID [1,2], etc. Set the
element value to EMPTY if the character is blank; otherwise, set it to
FILLED. The number of rows in the array should be read first. Use this pro
cedure in a program that reads in cell coordinates and prints the number of
cells in the blob containing each coordinate pair.

2. The expression for computing C(n,r) , the number of combinations of n items
taken r at a time is

nlc(n,r) = --
r! (n-r)!

Write and test a function for computing cln.r] given that nl is the factorial of
n.

3. A palindrome consists of a word that reads the same forward or backward,
such as level, deed, and mom. Write a recursive function that returns the
BOOLEAN value TRUE if a word, passed as a parameter, is a palindrome.

4. Write a recursive function that returns the value of the following recursive
definition:

F(X,Y)
F(X,Y)

x - Y
F(X-1,Y) + F(X,Y-1)

if X or Y < 0
otherwise

5. Write a recursive routine that lists all the pairs of positive integers that are
the sum of a given number. For example:

7 = 6+1, 5+2, and 4+3

Do not repeat any pairs [ie. not both 6+1 and 1+6).

6. Write a routine that lists all the pairs of subsets for a given set of letters. For
example

[ 'A' , 'C' , 'E' , 'G']~ ['A',
[ 'A' ,
[ , C' ,
[ 'E' ,

, C' ] ,

'G' ],
'E' ],
'G' ]

[ 'A' ,

[ 'C' ,

'E' ] ,

'G' ],

470 RECURSION, SEARCHING, AND SORTING



7. Write two recursive routines that add the numerical equivalents of two char
acter strings and save the result in a third string. The first recursive routine
will accept five parameters: two strings of digits, right-justified with leading
blanks, the length of each string, and a RESULT string. The routine will add
each corresponding set of digits, from the right, and calculate the sum. At
this point, each digit calculated by this ADDER procedure will be inserted
into a character string for the RESULT. At the completion of this routine,
the answer will be in reverse order in the string RESULT.

The second recursive routine will take the string RESULT and reverse the
digits and right-justify the answer with leading blanks.

An example would be:

368'
4162'

, 0354 'if all are size 6

After Routine #1:
STRING1 '
STRING2
RESULT

After Routine #2:

ORIGINAL RESULT = '0354
PROCESSED RESULT =' 4530'

8. Write a routine that converts a character string consisting of numbers, let
ters, spaces, and punctuation symbols into a compressed and symbolic repre
sentation of the original string. Each consecutive string of digits, letters,
blanks, or punctuation symbols will be converted to one specially defined
character. Use the following conversion scheme:

• Letters convert to an 'L'
• Digits convert to a '#'
• Blanks convert to a blank
• Anything else converts to a '?'

For example the following string would be converted as indicated:

INITIAL STRING = 'HELLO, MY.,NUMBER IS 2716 •• '

would convert to: 'L? L?L L #?'

9. Write a routine that accepts an 8 by 8 array of characters that represent a
MAZE. Each position can contain either an 'X' or a blank. Starting at posi
tion [ 1 , 1 ], list any path through the maze to get to location [8,8]. Only
horizontal and vertical moves are allowed (no diagonal moves). If no path
exists, write a message indicating this. Moves can only be made to locations
that contain a blank. Encountering an 'X' means the path is blocked and
another must be chosen. Use recursion.

10. One method of solving a continuous numerical function for a root imple
ments a technique similar to the binary search. Given a numerical function
defined as F(X), and two values of X that are known to bracket one of the
roots, we can approximate this root through a method of repeated division of
this bracket.

PROGRAMMING PROJECTS 471



For a set of values of X to bracket a root, the value of the function for one
X must be negative and the other must be positive, as illustrated in the dia
gram below, which plots F(X) for values of X between Xl and X2.

F(x)=O--+----_~-------X

Root desired

F(X) X1

The algorithm requires that the midpoint between the left X and the right
X be evaluated in the function; if it equals zero the root is found; otherwise,
the left X(Xl) or right X (X2) is set to this midpoint. To determine whether
to replace either Xl or X2, the sign of the midpoint is compared against the
signs of the values of F(Xl) and F(X2). The midpoint replaces the X (Xl or
X2) whose function value has the same sign as its function value.

This routine can be written recursively. The terminating conditions are
true when either the midpoint evaluated in the function is zero or the abso
lute value of the left minus the right X is less than some small predetermined
value [e.g. 0.0005). If the second condition occurs then the root is said to be
approximately equal to the midpoint of the last set of left and right X's.

11. We can use the file merge technique demonstrated in Section 8.6 to sort two
arrays. The mergesort begins by taking adjacent pairs of array values and
ordering the values in each pair. It then forms groups of four elements by
merging adjacent pairs (first pair with second pair, third pair with fourth
pair, etc.] into another array. It then takes adjacent groups of four elements
from this new array and merges them back into the original array as groups
of eight, etc. The process terminates when a single group is formed that has
the same number of elements as the array. MERGESORT is illustrated in Fig.
9.35 for an array with eight elements. Write a MERGESORT procedure.

Fig. 9.35 Illustration of MERGESORT

original
array

472 RECURSION, SEARCHING, AND SORTING

pairs
ordered

merged
pairs

merged
quads



12. Many compilers use the recursive descent technique for compiling. This tech
nique consists of writing a recursive procedure for each syntactic element of
the language. To determine whether or not an input line is a particular kind
of statement it is parsed by the procedure for that statement. If the procedure
is able to successfully process every element in the input line, then the line
is accepted as satisfying the syntax of that statement.

Write a parser that determines whether or not its input string is a Pascal
expression. Assume that all characters of the string are squeezed together (no
blanks) and that all unsigned constants are single digits and all variables are
individual uppercase letters. The operators mod, div, and, or, not are
represented by single lowercase letters (m for mod, d for div, etc.) Also, ig
nore sets and functions as possible syntactic elements. The symbol $ will
appear at the end of each string to be parsed. The string 'X+ (y* 2m4 ) $ ,
represents the expression X + (Y * 2 mod 4) which is syntactically
valid. The string IX+(Y* 2m4 $ I should not be accepted as valid (missing
parenthesis).

To write your parser, provide a procedure corresponding to each relevant
syntax diagram in Appendix C. Each procedure should return TRUE if its
syntax is satisfied and should also return the length of the string that it ac
cepted; otherwise, it should return FALSE. We will start you off with the
procedure for expression in Fig. 9.36. An expression is either a simple ex
pression (accepted by procedure SIMPEXPR) or two simple expressions
separated by a relational operator. (For simplicity, the relational operators
are <, >, = only.]

procedure EXPRESSION (INSTRING linputl : STRING;
START linputl : INTEGER;
var EXPRLENGTH loutputl : INTEGER;
var ISEXPR [out.put.] : BOOLEAN);

IAttempts to recognize an expression in INSTRING starting at
position START. If an expression exists, ISEXPR is set to TRUE
and EXPRLENGTH indicates the length of the expression. Otherwise,
ISEXPR is set to FALSE. Calls SIMPEXPR. l

var
POSITION,
SIMPEXPRLENGTH : INTEGER;
ISSIMPEXPR : BOOLEAN;

begin IEXPRESSION)
POSITION := START;
ISEXPR := FALSE;

Icurrent position in INSTRINGl
Ilength of last simple expressionl
lis a simple expression found?l

linitial positionl
lassume not an expressionl

[de f i.ne Leriq t.h]
ladvance in stringl

IAn expression must start with a simple expression.)
SIMPEXPR (INSTRING, POSITION, SIMPEXPRLENGTH, ISSIMPEXPR);
if ISSIMPEXPR then

begin Ifirst simple expressionl
EXPRLENGTH := SIMPEXPRLENGTH;
POSITION := POSITION + SIMPEXPRLENGTH;

PROGRAMMING PROJECTS 473



ICheck whether next character is a relational operator.l
if not (INSTRING[POSITION] in [' <' ,'>' ,'=']) then

ISEXPR := TRUE lis an expression without reI opl
else Inext character is reI opl

begin Irel op]
IA simple expression must follow relational operator.l
POSITION := POSITION + Ii
SIMPEXPR (INSTRING,POSITION, SIMEXPRLENGTH,ISSIMPEXPR)i
if ISSIMPEXPR then

begin Isecond simple expression\
ISEXPR := TRUEi lis an expression with reI op\
IIts length is sum of simple lengths + 1 (reI op)\
EXPRLENGTH := EXPRLENGTH + SIMPEXPRLENGTH + 1

end Isecond simple expression\
end [re L op]

end !first simple expressionl
endi IEXPRESSION\

Fig. 9.36 Procedure EXPRESSION

You will need procedures for simple expressions. factors. terms. variables.
and unsigned constants. Your main program should read the input string and
call the procedure EXPRESSION. If the value returned is TRUE and the
next character is '$', the string is a valid expression

474 RECURSION, SEARCHING, AND SORTING



Pointer Variables and
Dynamic Data
Structures
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

The NEW Statement and Pointer Variables
Understanding Dynamic Allocation
Introduction to Linked Lists
Manipulating Linked Lists Using Pointer Variables
Case Study-Maintaining a Linked List
Stacks and Queues
Multiple-linked Lists and Trees
Case Study-Maintaining a Binary Search Tree
Common Programming Errors
Chapter Review

In this chapter, we shall see how Pascal can be used to create dynamic
data structures. Dynamic data structures are data structures that "grow"
as a program executes. A dynamic data structure is a collection of ele
ments [called nodes) that are normally records. Unlike an array that al
ways contains storage space for a fixed number of elements, a dynamic
data structure expands and contracts during program execution based on
the data storage requirements of the program.

Dynamic data structures are used for storage of real world data that are
constantly changing. An example would be an airline passenger list. If this
list were maintained in alphabetical order in an array, it would be neces-

475



Example 10.1

sary to move all passenger records that alphabetically followed a new
passenger in order to make room for that passenger's data in the array.
This would require using a loop to copy the data record for each passen
ger being moved to the next array element. If a dynamic data structure is
used instead, the new passenger data can simply be inserted between two
existing passenger records with a minimum of effort.

Dynamic data structures are extremely flexible. As described above, it
is relatively easy to add new information by creating a new node and in
serting it between two existing nodes. We shall see that it is also relative
ly easy to modify dynamic data structures by removing or deleting an
existing node. This is more convenient than modifying an array of records,
where each record is in a fixed position relative to the others as deter
mined by its subscript.

This chapter discusses four dynamic data structures: lists, stacks,
queues, and trees. We will learn how to insert and delete elements from
each of these data structures. We will also learn how to search a list and
a tree. Before beginning our study of these data structures, we will intro
duce dynamic storage allocation in Pascal.

• The NEW Statement and Pointer Variables

Since we don't know beforehand the order or number of nodes (elements)
in a dynamic data structure, we cannot allocate storage for a dynamic
data structure in the conventional way (using a variable declaration state
ment). Instead, we must allocate storage for each individual node as need
ed and, somehow, join this node to the rest of the structure. The NEW
statement is used to allocate storage for a new node.

We must also have some way of referencing each new node that is allo
cated in order to store data in it. Pascal provides a special type of vari
able, called a pointer variable (or pointer], for this purpose.

The statements

type
STRING = packed array [1 .• 3] of CHAR;
NODE = record

WORD : STRING;
PLACE : INTEGER

end; INODEI
NODE POINTER = ~NODE;

var
P, Q, R : NODEPOINTER;

declare a record type NODE and a pointer type, NODEPOINTER, to records
of type NODE. The variables P, Q, and R are defined as pointer variables
of type NODEPOINTER.

476 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



The statements

NEW (p);
NEW (Q);

allocate storage for two records that are "pointed to" (referenced) by
pointers P and Q. Since P and Q are type NODEPOINTER. these new
records must be type NODE as illustrated below. The value of a pointer
variable is really the address in memory of a particular node. We will rep
resent a pointer value by drawing an arrow to the node referenced by the
pointer. Both fields of these new nodes are initially undefined.

p

Q

P~.WORD := 'ACE';
Q~.WORD := 'BOY';

define the WORD field of P" (the node referenced by pointer P) and Q" (the
node referenced by pointer QJ as shown next.

---

i ii, "

P , . :\ .'1.•',·.",.' , .

The diagram shows that P points to a record of type NODE whose first
field contains the string 'ACE' and Q points to a record of type NODE
whose first field contains the string 'BOY'. The second field of both
records is still undefined.

The statements

P~ •PLACE : = 25 i
Q~.PLACE := 37;

define the PLACE fields as shown next.

---.. ,
p" , .....

. 11... ~:

10.1 THE NEW STATEMENT AND POINTER VARIABLES 477



Example 10.2

a--,
In the example above, we used pointers P and Q to reference two differ

ent nodes. The pointer that references each node was determined when
the node was created. We shall demonstrate next that it is possible to
change the node referenced by a particular pointer, or to have the same
node referenced by more than one pointer.

The pointer assignment statement

R := Pi

copies the value of pointer P into pointer R. This means that pointers P
and R contain the same memory address and now point to the same node
as shown below.

The pointer assignment statements

P := Qi
Q := Ri

would have the effect of exchanging the nodes pointed to by P and Q as
shown below.

R

p

a

The statement

WRITE (P~.WORD, Q~.WORD, R~.WORD)

displays the WORD field (a character string) of the records pointed to by P,
Q and R. The output printed would be

BOYACEACE

Pointers P, Q and R are similar to subscripts in that they select particu
lar nodes or elements of a data structure. Unlike subscripts, their range of

478 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



values is not declared and their values (memory cell addresses) may not
be printed.

It is important to understand the difference between using P and p" in a
program. P is a pointer variable (type NODE POINTER) and is used to store
the address of a data structure of type NODE. P can be assigned a new
value through a pointer assignment or execution of a NEW statement. P" is
the name of the record pointed to by P and can be manipulated like any
other record in Pascal. The field selectors p" . WORD and p" . PLACE can be
used to reference data (a string and integer) stored in this record.

Throughout the chapter. we will represent the value of a pointer vari
able by drawing an arrow to a box that denotes a record. The actual point
of contact of the arrowhead with the box is not important. The arrow in
the diagram below represents the value of P; the value of P". WORD is
I BOY' and P" • PLACE is 37.

P". WORD

P". PLACE

In this section. we discussed how to declare pointer variables and ma
nipulate pointer values. We also saw how to create nodes and reference
nodes using pointer variables. These operations are described in the dis
plays that follow.

POINTER TYPE

pointer-id = <node-id

Interpretation: The identifier pointer-id is defined as a pointer type to
elements of type node-id where node-id is a data type name.

NEW STATEMENT

NEW i pointer i

Interpretation: The procedure NEW allocates storage for a data struc
ture that is pointed to by the pointer variable pointer. The type of
data structure allocated is determined by the type of pointer.

REFERENCING A FIELD USING A POINTER

pointer>, field-name

Interpretation: The field specified by field-name of the node currently
pointed to by pointer variable pointer is referenced.

10.1 THE NEW STATEMENT AND POINTER VARIABLES 479



POINTER ASSIGNMENT

pointer; : = pointer;

Interpretation: The address contained in variable pointer; is assigned
to variable pointer.. The result is that pointer variable pointer; now
points to (references) the same node as pointer.; Pointer; and pointer:
must be the same pointer type.

Self-check Exercises for Section 10.1

1. For the last diagram in this section. explain the effect of each legal as
signment statement below,
a) R".WORD := 'CAT'
b) P" : = R"
c) P.WORD := 'HAT'
d) P : = 54
e) P".PLACE := 0
f) P := R
~ P".WORD := -10
h) Q". PLACE : = R". PLACE

2. The sequence of assignment statements

R := Pi
P := Qi
Q := R

was used to exchange the values of pointer variables P and Q so that
P points to the element containing 'BOY' and Q points to the element
containing' ACE'. What would the sequence

R".WORD := P".WORDi
P".WORD := Q".WORDi
Q".WORD := R".WORD

do? What is the difference between these two sequences?

• Understanding Dynamic Allocation

As mentioned above. a new record is created whenever the NEW state
ment (a standard procedure) is executed. You may be wondering where in
memory the new record is stored. Pascal maintains a storage pool of
available memory cells; memory cells from this pool are allocated when
ever a NEW statement is executed.

480 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



The statement

NEW (P)

in Example 10.1 has pointer variable P as its parameter. Since P is de
clared as a pointer to records of type NODE, the execution of this state
ment causes the allocation of memory space for the storage of three
characters and an integer variable. These cells are originally undefined
(they retain whatever data was last stored in them) and the address of the
first cell allocated is stored in P. The cells allocated are no longer consid
ered part of the storage pool of available cells. The only way to reference
these cells is through pointer variable P (e.g. P". WORD or P". PLACE).

Fig. 10.1 shows the pointer variable P and the storage pool before and
after the execution of NEW (P). The before diagram shows pointer vari
able P as undefined before the execution of NEW (P). The after diagram
shows P pointing to the first of two memory cells that were allocated for
the new record (assuming that three characters and an integer can be
stored in two cells). The cells considered part of the storage pool have the
darker color in Fig. 10.1

Before NEW (P) After NEW (P)

p

III

Fig. 10.1 Storage Pool before and after NEW (P)

As an example. if the memory cells with addresses 1000 through 1003
were originally in the storage pool, then after the execution of NEW (P)
only the memory cells with addresses 1002 and 1003 would be considered
part of the storage pool. The address 1000 would be stored in pointer vari
able P and that cell and cell 1001 can only be referenced through P .

• Introduction to Linked Lists

A linked list or simply list is a sequence of nodes in which each node is
linked or connected to the node following it. A list with three nodes is
shown below.

HEAD

10.3 INTRODUCTION TO LINKED LISTS 481



Each node in the list above has two fields: the first field contains data and
the second field is a pointer (represented by an arrow) to the next list ele
ment. There is a pointer (HEAD) to the first list element or list head. The
symbol/is always found in the pointer field of the last list element.

Lists are important data structures because they can easily be modified.
For example. a new node containing the string I BYE' can be inserted be
tween the strings I BOY I and 'CAT' by changing only one pointer value
(the one from 'BOY ') and defining the pointer from the new node. This is
true regardless of how many elements there may be in the list. The list is
shown below after the insertion; the pointer values that are new are
shown in blue.

HEAD

Similarly, it is easy to delete a list element. Only one pointer value has to
be changed-the pointer that currently points to the element being deleted.
The linked list is redrawn below, after deleting the string 'BOY I by chang
ing the pointer from the node I ACE I (new value shown in blue; old value
in grey). The node containing string I BOY' is effectively disconnected
from the list since there is no longer a pointer to it. The new list consists
of the strings I ACE I, I BYE I, I CAT I •

HEAD

Implementing Linked Lists in Arrays

Two methods are commonly used to implement linked lists. In older pro
gramming languages, linked lists are implemented using arrays. Nodes are
stored in parallel arrays or arrays of records. The node value is stored in
one field, and the subscript of the next list element is stored in the pointer
field. A pointer value of 0 indicates the end of the list. The original three
element list is shown at the left of Fig. 10.2. Since HEAD is 1, the first ar
ray element represents the first node in the list. The third array element is
the last list node.

Fig. 10.2 Representing Lists in Arrays

HEAD

original
list

HEAD

list after
inserting 'BYE'

HEAD

list after
deleting 'BOY'

482 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



The array element pointed to by each subscript is indicated by an ar
row. The original list (' ACE I, 'BOY', I CAT I) can be traced by following
the arrows. The list is shown in the middle diagram after inserting 'BYE'
( , ACE I, I BOY I, 'BYE', I CAT '); the list is shown in the diagram on the
right after deleting I BOY I (' ACE I, I BYE I, I CAT '). Note that the node
containing I BOY I is still in the array (second element), but it is no longer
considered part of the list.

One of the disadvantages of storing lists in arrays is that we must de
clare an array that is big enough to hold the largest possible list regardless
of how many nodes are actually used. In Pascal, we can use pointer vari
ables and dynamic allocation to ensure that we only allocate enough
memory to store the actual list. We will see how to do this next.

• Manipulating Linked Lists Using Pointer Variables

In order to implement a linked list using pointer variables, we must de
clare a record with at least one field that is a pointer. The record type
LISTNODE declared below describes a node in our sample list.

type
STRING = packed array [1 •• 3) of CHARi
LISTPOINTER = ALISTNODEi
LISTNODE = record

WORD : STRINGi
LINK : LISTPOINTER

erid r ILISTNODEj

A pointer type, LISTPOINTER, that points to elements (records) of type
LISTNODE is declared. Each element of type LISTNODE contains a field
named LINK that is also type LISTPOINTER. The above declaration is
circular in that the record type LI STNODE appears in the declaration of
LISTPOINTER; similarly, the pointer type LISTPOINTER appears in the
declaration of LISTNODE. Pascal requires the pointer type to be declared
first.

Creating a List

Let us see how we might create the list described at the start of Section
10.3. First of all, we must have some way of referencing the list. This is
usually done by establishing a pointer to the list head. We will declare
HEAD, Q and R as variables of type LISTPOINTER and use HEAD as the
pointer to the list head.

var
HEAD, Q, R : LISTPOINTERi

10.4 MANIPULATING LINKED LISTS USING POINTER VARIABLES 483



In the discussion below, each statement that defines a pointer has a
number comment. This comment identifies the pointer in a diagram.

The statements

III NEW(HEAD);
HEADA.WORD := 'ACE';

define the WORD field of a new list element referenced by pointer HEAD.

HEAD~

The LINK field of this element must point to the next element of our list.
The statements

121 NEW(Q);
131 HEADA.LINK := Q;

have the effect shown below.

HEAD

Q

As indicated, a new element is created that is pointed to by Q. The value
of Q is then copied into the link field of our first node 131 thereby connect
ing the two elements.

The sequence of statements

QA.WORD := 'BOY' ;
141 NEW(R) ;
lSI QA.LINK := R;

RA.WORD := 'CAT' ;

completes the linked list. The first statement copies 'BOY' into the WORD
field of the second element. The next statement 14 I creates a third ele
ment pointed to by R. This element is then joined to the second 151, and
the value of its WORD field is defined as 'CAT I • The new data structure is
shown below.

The only thing left to do is to indicate that the element pointed to by R
is, in fact, the last element of the list and points to no other. This is ac
complished by the statement

484 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



RA.LINK := NIL

The reserved word NIL is a predefined constant in Pascal that is used to
designate the end of a list.

The extra pointers, Q and R, in the list above may be ignored. The final
list is shown below.

Example 10.3

Obviously, we do not want to go through this process each time we cre
ate a new linked list. Hence, we will write a procedure to do this for us
later.

Traversing a list

In many list processing operations, each node in the list must be pro
cessed in sequence; this is called traversing a list. In order to traverse a
list, we must start at the list head and follow the list pointers. This is illus
trated in the next two examples.

Procedure PRINTLIST in Fig. 10.3 displays the WORD fields of each node
in a list starting with the node pointed to by HEAD. Consequently,
PRINTLIST may be used to print the words stored in our sample list.

procedure PRINTLIST (HEAD (inputl : LISTPOINTER)i

(Prints out the list pointed to by HEAD. I

begin
(Traverse the list until the
while HEAD <> NIL do

begin
WRITELN (HEADA.WORD):
HEAD := HEADA.LINK

end (while I
e nd , (PRINTLISTI

Fig. 10.3 Procedure PRINTLIST

end is reached. I

(print the node valuel
(advance to next nodel

For our original sample list, the output of PRINTLIST would be

ACE
BOY
CAT

The statement

HEAD := HEADA.LINK (advance to next nodel

advances the pointer HEAD to the next list element, which is pointed to by
the LINK field of the current list element. The while loop is exited when

10.4 MANIPULATING LINKED LISTS USING POINTER VARIABLES 485



Example 10.4

Algorithm for
List Search

HEAD becomes NIL. Since HEAD is a value parameter. a local copy of the
pointer to the first list element is established when the procedure is en
tered. This local pointer is updated; however. the corresponding pointer in
the calling program remains unchanged.

List processing operations can be formulated very naturally using recur
sion. As an example. we will consider the problem of searching a list to
find a string TARGET. The result will be a pointer to the list element con
taining TARGET or NIL if TARGET is not found. One stopping state would
be an empty list; in this case the TARGET cannot be present. The other
stopping state would be finding TARGET at the head of the list. The recur
sion step is to search the rest of the list (excluding the current list head)
for TARGET. This algorithm is summarized below; function SEARCH is
shown in Fig. 10.4.

1. if the list is empty then
2. TARGET is not present.

else if TARGET is in the list head then
3. The result is a pointer to the list head.

else
4. Search for TARGET in the rest of the list.

function SEARCH (HEAD : LISTPOINTER;
TARGET : STRING) : LISTPOINTER;

(Searches a list for a specified TARGET string. Returns
a pointer to TARGET if found. Returns NIL if TARGET is
not in the list.

(empty list-TARGET not foundl

(TARGET is in HEADl

begin (SEARCHl
if HEAD = NIL then

SEARCH := NIL
else if HEADA.WORD = TARGET then

SEARCH := HEAD
else

SEARCH := SEARCH(HEADA.LINK,
end; (SEARCHl

Fig. 10.4 Function SEARCH

TARGET) (search rest of listl

As indicated by the function header. a pointer value may be returned as
a function result. In the recursive step

SEARCH := SEARCH(HEADA.LINK, TARGET) (search rest of listl

the function SEARCH is called again to search the rest of the list that is
pointed to by HEADA. LINK. Eventually. a stopping state will be reached
and a value will be assigned to the function identifier. The value returned
from a lower level call is not modified; it is simply passed up as the func
tion result.

A trace of

486 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



P := SEARCH(HEAD, 'BOY')

is shown in Fig. 10.5 for our sample list I ACE I, I BOY I, 'CAT I. Since the
TARGET string 'BOY' is in the second list element, there is one recursive
call to SEARCH after the original function call. The result, as desired, is a
pointer to the node containing the string I BOY' . The address of this node
is saved in pointer variable P.

P : = SEARCH(HEAD, I BOY I )

Result
is a
pointer
to I BOY I

Result
is a
pointer
to I BOY'

Fig. 10.5 Trace of P:= SEARCH(HEAD, 'BOY')

PROGRAM STYLE

Testing for an empty list

The order of evaluation of the terminating conditions in Fig. 10.4 is
very important. The value of HEADA•WORD is not defined if the list is
empty [HEAD is NIL); consequently, the terminating condition HEAD
= NIL must be evaluated before HEADA. WORD = TARGET. In all
list processing operations, you must make sure that your program
does not attempt to reference a field pointed to by NIL. This illegal
reference to undefined data is a very common error.

Self-check Exercises for Section 10.4

1. Write procedure PRINTLIST as a recursive procedure.
2. Write an iterative version of function SEARCH.
3. Write a recursive function that finds the length of a list.

• Case Study-Maintaining a Linked List

We stated earlier that lists are very flexible data structures and can easily
be modified. In this section we will show how to keep a list up to date
and in alphabetical order while performing list insertions and deletions.

10.5 CASE STUDY-MAINTAINING A LINKED LIST 487



Maintaining a
Linked List

Problem: We wish to maintain a data base that contains up-to-date
information about the passengers on a particular airline flight. The
passenger data at the start of each day is available on a disk file. In order
to be able to process new data rapidly, we would like to transfer the
passenger data into main memory, process the changes that occur during
the day by modifying the passenger data in main memory, and save the
updated passenger data in a new disk file. Both the original passenger file
and the new passenger file should be in alphabetical order by passenger
name.

Discussion: Since the list of passengers on an airline flight is changed
frequently, a linked list is a good choice for an internal data structure. We
will create a linked list by reading the passenger data from an external
file. This linked list will be updated during the day as new data are
entered. At the end of the day, each record stored in the linked list will be
copied to another external file.

We will need to provide procedures that create the original linked list,
copy this list to an external file, and perform whatever updates may be re
quired. For now, we will assume that the update operations consist of de
leting passengers from the list and inserting new passenger records. We
also want to be able to display the record of a particular passenger or
print the entire passenger list.

The data for each passenger will be stored in a record of type PASSEN
GER as described below.

type
STRING = packed array [l •• STRINGSIZE] of CHAR;
PASSENGER = record

NAME : STRING;
CLASS: (ECONOMY, FIRSTCLASS);
NUMSEATS : 1 •• MAXSEATS

end; IPASSENGERl

Each list element will contain a passenger record as described above
(field PASS INFO) and a pointer (field LINK) to the next passenger record
in the list.

Irest of type declarationsl
PASSPOINTER = APASSNODE;
PASSNODE = record

PASSINFO : PASSENGER;
LINK : PASSPOINTER

end; IPASSNODEl

An entire record of type PASSENGER can be stored in a record of type
PASSNODE. Assuming NEXT is type PASSPOINTER and ONEPASS is type
PASSENGER, the statements

NEW (NEXT);
NEXTA.PASSINFO := ONEPASS

488 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



(continued on p. 491)

Algorithm

copy the record variable ONEPASS into the PASS INFO field of the new
node pointed to by NEXT.

To simplify the list processing operations, we will assume that the pas
senger file always begins with a record whose NAME field is 'AA ••• A '
and always ends with a record whose NAME field is 'Z Z ••• Z ' . The rea
son for these dummy elements will be discussed later. An empty
passenger list will contain only these two elements, as shown below.

An empty passenger listH_____.
The problem inputs and outputs and algorithm follow.

the file of passenger records in alphabetical order by NAME field
beginning with I AA ••• A' and ending with 'z Z ••• Z ' .
(PASSFILE : FLIGHTFILE)

the updated file of passengers [NEWPASSFILE : FLIGHTFILE)

1. Create a linked list corresponding to the original passenger file
(PASSFILE).

2. Process each update request.
3. Copy the passenger records in the updated list to a new passenger file

[NEWPASSFILE).

Procedure CREATELIST performs step 1 and is described next. Proce
dure COPYLIST performs step 3 and is based on procedure PRINTLIST
shown earlier (see Fig. 10.3). To perform step 2, we must first print a menu
of update choices and then call a procedure to read each choice and per
form it. We will call procedures PRINTMENU and MODLIST, respectively,
to perform these tasks. The structure chart is shown in Fig. 10.6; the main
program and COPYLIST are shown in Fig. 10.7.

Procedure CREATELIST must allocate a new node for storage of each
passenger record and then read the passenger data into that node. It
should return a pointer, HEAD, to the first passenger record (NAME field
, AA ••• A'). The procedure inputs, outputs, and algorithm follow.

the file of passenger data in alphabetical order by NAME field
beginning with 'AA ••• A' and ending with 'Z Z ••• Z ' .
(PASSFILE : FLIGHTFILE)

10.5 CASE STUDY-MAINTAINING A LINKED LIST 489



I
PASSFILE

~

t
HEAD

I
I

HEAD

~

t
CHOICE

I
I

HEAD

~

t
NEWPASSFILE

I

CREATELIST PRINTMENU MODLIST COPYLIST

Fig. 10.6 Structure Chart for Passenger List Problem

program MAINTAIN (PASSFILE, NEWPASSFILE, INPUT, OUTPUT);

lstores the data in file PASSFILE in a linked list and updates
the linked list by performing insertions and deletions. When
done, copies the records in the linked list to file NEWPASSFILE.!

const
DONE = 5;
MAXSEATS = 350;
STRINGSIZE = 10;

type
STRING = packed array [l •. STRINGSIZE]
PASSENGER = record

NAME : STRING;
CLASS: (ECONOMY, FIRSTCLASS);
NUMSEATS : 1 .. MAXSEATS

end; IPASSENGERl
FLIGHTFILE = file of PASSENGER;

PASSPOINTER = APASSNODE;
PASSNODE = record

PASSINFO : PASSENGER;
LINK : PASSPOINTER

end; IPASSNODEl

var
HEAD : PASSPOINTER;
PASSFILE, NEWPASSFILE : FLIGHTFILE;
CHOICE : INTEGER;

lfinished list updatel
lnumber of seats in airplanel
lmaximum length of a stringl

of CHAR;
leach passenger recordl

lfile of passenger recordsl

leach list elementl

lpointer to head of listl
lold and new filesl

loption selectedl

procedure COPYLIST (HEAD linputl : PASSPOINTER;
var NEWPASSFILE loutputl : FLIGHTFILE);

ICopies each node of the list pointed to by HEAD to NEWPASSFILE.l

begin ICOPYLISTl
REWRITE (NEWPASSFILE); lprepare NEWPASSFILE for outputl

490 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



while HEAD <> NIL do
begin

WRITE (NEWPASSFILE, HEADA.PASSINFO);
HEAD := HEADA.LINK

end [whi Le]
end; 1COPYLISTI

lcopy current nodel
ladvance to next nodel

lInsert procedures CREATELIST, PRINTMENU, MODLIST here.l

begin
lRead the passenger data from PASSFILE into the linked list.l
CREATELIST (PASSFILE, HEAD);

lProcess each update request. I
repeat

PRINTMENU;
MODLIST (HEAD, CHOICE)

until CHOICE = DONE;

ldisplay the option)
lread and perform user's choicel

lCopy each passenger record from the linked list to NEWPASSFILE.1
COPYLIST (HEAD, NEWPASSFILE)

end. 1MAINTAIN I

Fig. 10.7 Main Program and COPYL/5T

a pointer to the list head (HEAD : PASSPOINTER)

a pointer to the last list node (LAST PASSPOINTER)

Algorithm for
CREATELIST

1. Prepare PASSFILE for input.
2. Allocate a node for storage of the first list element, point HEAD to this

node, and read the first record into it.
3. Initialize the pointer to the last list node (LAST) to HEAD.
4. while there are more passenger records do

5. Attach a new node to the end of the list and read the next pas
senger's data into it.

6. Reset LAST to point to the new node.

In step 2, the pointer HEAD is set to point to the first node that is allo
cated and the first passenger record is read into this node. The local point
er variable LAST always points to the current end of the list. In step 5, a
new node is allocated and attached to the current end of the list; the next
passenger's data are read into the new node. Procedure CREATENODE is
called to perform steps 2 and 5; procedure CREATELIST is shown in Fig.
10.8.

10.5 CASE STUDY-MAINTAINING A LINKED LIST 491



procedure CREATELIST (var PASSFILE linputl : FLIGHTFILEi
var HEAD loutputl : PASSPOINTER)i

IReads each passenger record from PASSFILE into a linked list.
The pointer HEAD is set to point to the first list node. I

var
LAST : PASSPOINTERi lpointer to last list nodel

procedure CREATENODE (var PASSFILE linputl : FLIGHTFILEi
var NEXT loutputl : PASSPOINTER)i

IAllocates a new node that is pointed to by NEXT for storage of
the next passenger's data. Reads the data from PASSFILE. I

begin ICREATENODE I
III NEW (NEXT) i

READ (PASSFILE, NEXTA.PASSINFO)i
12INEXTA.LINK := NIL

endi ICREATENODEI

begin ICREATELISTI
RESET (PASSFILE)i
CREATENODE (PASSFILE, HEAD)i

lpoint NEXT to a new nodel
lsave the data in new nodel

lset LINK field of new node to NILI

lprepare PASSFILE for inputl
lpoint HEAD to the first recordl

lattach a new node
to the last nodel

lmake the new node the last nodel13lLAST := LASTA.LINK
end [whi Le ]

ICREATELISTI

IRead each record and add it to the end of the list.l
LAST := HEADi linitialize last node to list headl
while not EOF(PASSFILE) do

begin
CREATENODE (PASSFILE, LASTA.LINK)i

endi

Fig. 10.8 Procedures CREATELIST and CREATENODE

In CREATENODE, the statement

IIINEW (NEXT) i lpoint NEXT to a new nodel

allocates a new node and points the parameter represented by NEXT to
this node. The first statement below

READ (PASSFILE, NEXTA.PASSINFO)i Isave the data in new nodel
12INEXTA.LINK := NIL Iset LINK field of new node to NILI

reads the next record from file PASSFILE into the record NEXTA.
PASS INFO, thereby defining the PASSINFO field of the new node. State
ment 121 initializes the LINK field of each new node to NIL.

In CREATELIST, the procedure (call) statement

CREATENODE (PASSFILE, HEAD) i [po i.nt; HEAD to the first recordl

492 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



creates the list head and reads the first passenger record (name
I AA ••• A ') into it. Within the while loop, the first statement below

CREATENODE (PASSFILE, LASTA.LINK); lattach a new node
to the last nodel

l3lLAST := LASTA.LINK lmake the new node the last nodel

calls CREATENODE to attach a new node to the current last node; the next
passenger's data are read into the new node. Then statement l31 ad
vances LAST to point to the new list node. The last node attached before
CREATELIST is exited will have a NAME field of I ZZ••• Z I and a link
field of NIL.

The process of adding a new node to the end of the list is illustrated be
low. The current last node contains passenger I ALPHARD I and passenger
I ATKINSON I is being added. The blue lines show the new pointer values;
the grey lines show the original values of pointers that are changed. The
comments identify the statement in Fig. 10.8 that caused the change.

Procedure PRINTMENU simply prints out the menu of update choices
(l-insert, 2-delete, 3-print passenger, 4-print passenger list, 5-quit)
and is not shown. Procedure MODLIST reads the user's choice and at
tempts to process it. The data requirements and algorithm for MODLIST
are shown below.

a pointer to the head of the passenger list (HEAD : PASSPOINTER)

the update operation selected (CHOICE : INTEGER)

the passenger data to be inserted (NEWPASS : PASSENGER)
the name of a passenger to be processed (TARGET : STRING)
the length of the passenger's name (LENGTH : INTEGER)
a pointer to a particular node in the list (TARGPOINT : PASSPOINTER)

10.5 CASE STUDY-MAINTAINING A LINKED LIST 493



Algorithm for
MODLIST

a BOOLEAN flag indicating whether or not a passenger was deleted
(DELETED : BOOLEAN)

1. Read the user's update choice into CHOICE.
2. case CHOICE of

1: Read the new passenger data into NEWPASS.
Insert NEWPASS in the list.

2: Read the name of the passenger to be deleted into TARGET.
Delete the designated passenger from the list. .

3: Read the name of the passenger to be displayed into TARGET.
Find the passenger and display the passenger's data.

4: Traverse the passenger list and print each passenger's data.
5: Do nothing

The structure chart for MODLIST is shown in Fig. 10.9. The procedure is
shown in Fig. 10.10.

MODLIST

t
NEWPASS

I
HEAD, I
NEWPASS

-!t

HEAD,
TARGET

-!t

t
DELETED

I
HEAD,
TARGET

-!t

t
TARGPOINT

I

SEARCHPASS

I
HEAD

-!t

DELETE

I
TARGPOINT

-!t

INSERTt
TARGET,
LENGTH

READ1PASS

PRINT1PASS
READSTRING PRINTPASSLIST

Fig. 10.9 Structure Chart for MODLIST

procedure MODLIST (HEAD [inputl : PASSPOINTER;
var CHOICE [outputl : INTEGER);

[Reads each update choice (CHOICE) and performs it.1

var
TARGPOINT : PASSPOINTER;
NEWPASS : PASSENGER;

[pointer to a target node I
[a passenger recordl

494 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



TARGET : STRING;
LENGTH : INTEGER;
DELETED : BOOLEAN;

!a passenger name!
!length of a name I
IBOOLEAN f Laq]

!Insert READSTRING, READ1PASS, PRINT1PASS here.1
!Insert SEARCHPASS, PRINTPASSLIST, INSERT, DELETE here.)

') ;

!show the data )

3 :

end;

begin !MODLIST)
WRITE ('Select an option 1 through 5: '); READLN (CHOICE);
if CHOICE in [1 •• 5] then

case CHOICE of
1: begin

WRITELN ('Enter the data for the new passenger.');
READ1PASS (NEWPASS); !read new passengerl
INSERT (HEADA.LINK, NEWPASS, HEAD) !insert in list)

end; !ll
2: begin

WRITE ('Enter name of passenger to delete: ');
READSTRING (TARGET, LENGTH);
DELETE (HEADA.LINK, TARGET, HEAD, DELETED);
if not DELETED then

WRITELN (TARGET : LENGTH , ' not found.')
end; (2)
begin

WRITE ('Enter name of passenger to display:
READSTRING (TARGET, LENGTH);
TARGPOINT := SEARCHPASS(HEAD, TARGET);
if TARGPOINT = NIL then

WRITELN (TARGET, ' not found.')
else

PRINT1PASS (TARGPOINTA.PASSINFO)
end; 131

4: begin
WRITELN ('CURRENT PASSENGER LIST');
WRITELN ('Name' :10, 'Seats' :10, 'Class' :10);
PRINTPASSLIST (HEAD)

end; !41
5: WRITELN ('Passenger list update complete for today.')

end [case]
!MODLISTI

Fig. 10.10 Procedure MODLIST

Procedure MODLIST consists of a long case statement. Each case la
bel implements a different option. Working backwards, option 5 simply
prints a message and returns. Option 4 calls procedure PRINTPASSLIST
(similar to procedure PRINTLIST in Fig. 10.3) to echo print each passen
ger's data. Option 3 reads a passenger's name into TARGET and then calls
function SEARCHPASS (similar to function SEARCH in Fig. 10.4) to set
TARGPOINT to point to the record containing this passenger's data. Proce
dure PRINT1PASS is then called to display the passenger information. All
of these procedures are similar to earlier procedures and are left as exer
cises.

10.5 CASE STUDY -MAINTAINING A LINKED LIST 495



Algorithm for
DELETE

We will discuss cases 1 and 2 next. In case 1, insert a new passenger,
procedure READ1PASS is first called to read the passenger's data from the
keyboard. We have written many similar procedures already. Procedure
INSERT is then called to insert this passenger's data where it belongs in
the list.

In case 2, delete a passenger, procedure READSTRING is called to read
the name of the passenger to be deleted. Procedure DELETE is called to
delete the corresponding passenger record from the list. If the passenger to
be deleted is not in the list. an error message is printed after returning
from DELETE. We will write procedures DELETE and INSERT in the next
sections.

Deleting a List Node

We stated earlier that deleting a list node is simply a matter of changing a
single pointer value. The LINK field of the predecessor of the node being
deleted must be reset to point to the successor of the node being deleted.
A recursive algorithm for deleting a node follows.

1. If the list is empty then
2. TARGET cannot be deleted.

else if TARGET is in the list head then
3. Delete the list head.

else
4. Delete TARGET from the rest of the list.

Itry rest of listl

Ireset LINK field of predecessor}
Iset flag to indicate deletionl

Ireturn node to storage pool}

Fig. 10.11 Procedure DELETE

procedure DELETE (NEXT linputl : PASSPOINTER;
TARGET Iinput) : STRING;
PRED linputl : PASSPOINTER;
var DELETED loutput} : BOOLEAN):

IDeletes the passenger with name TARGET from the list pointed to
by NEXT. The predecessor of the list head is pointed to by PRED.
DELETED is a flag that is set to indicate whether or not the
deletion is performed (DELETED is TRUE if performed).

begin IDELETEl
if NEXT = NIL then

DELETED := FALSE lempty list-TARGET not foundl
else if NEXTA.PASSINFO.WORD = TARGET then

begin
IllPREDA.LINK ;= NEXTA.LINK;

DELETED ;= TRUE:
DISPOSE (NEXT)

end
else

DELETE (NEXTA.LINK, TARGET, NEXT, DELETED)
end; IDELETE}

496 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



Procedure DELETE is shown in Fig. 10.11. The parameter NEXT repre
sents a pointer to the head of the list being searched; the parameter PRED
represents a pointer to the predecessor of the list head. The BOOLEAN pa
rameter DELETED is used to signal that the TARGET was found and re
moved from the list (DELETED set TRUE) or that the TARGET was not
found (DELETED set FALSE).

The assignment statement

IljPREDA.LINK := NEXTA.LINK; Ireset LINK field of predecessorj

performs the list deletion by changing the LINK field of the predecessor of
node NEXT to point to the successor of node NEXT. The statement

DISPOSE (NEXT)

returns the memory cells allocated to the node pointed to by NEXT to the
storage pool.

If the TARGET string is not found, the recursive step

DELETE (NEXTA.LINK, TARGET, NEXT, DELETED) [try rest of list 1

is used to search the rest of the list for TARGET. The current head (point
ed to by NEXT) becomes the predecessor; the current second element
(pointed to by NEXTA. L INK) becomes the new list head. The search is
terminated when the end of the list is reached.

For the original procedure (call) statement

DELETE (HEADA.LINK, NEWPASS, HEAD, DELETED);

the first actual list element is pointed to by NEXT and the dummy node
with NAME field 'AA •• A' is pointed to by PRED as shown below.

PRED NEXT

[11

If the string in TARGET is 'ALPHARD', the value of PREDA. LINK would
be changed as shown by the blue arrow labeled 11J; otherwise. the recur
sive step would cause PRED and NEXT to advance down the list. The orig
inal value of PREDA. LINK is shown by the grey arrow. Note that the val
ue of PREDA. L INK can be changed even though PRED is a value parame
ter.

10.5 CASE STUDY-MAINTAINING A LINKED LIST 497



Algorithm for
INSERT

Without the dummy element at the head of the list there would be no
predecessor to the first actual element. Consequently, the algorithm as
shown could not be used because the deletion of the first actual element
would have to be treated as a special case.

DISPOSE STATEMENT

DISPOSE tpotnteri

Interpretation: The memory space allocated to the node pointed to by
pointer is returned to the storage pool and may be reallocated later.
Note: It is an error to perform the DISPOSE operation when the val
ue of pointer is NIL or undefined.

Inserting a Node in a List

We stated earlier that it was relatively easy to insert a new node in a list.
We must locate the first node that alphabetically follows the new node
(the successor of the new node). The LINK field of the new node must be
set to point to its successor; the LINK field of the new node's predecessor
should be changed to point to the new node.

The insertion algorithm is written below using recursion to search the
list for the correct position of the new passenger. Step 2 assumes that
there cannot be two passenger's with the same NAME field. If the new pas
senger's name matches a name already in the list, then that record is
updated with the new data. Step 3 inserts a new node between two
existing nodes. Step 4 is the recursive step and is executed until one of the
two stopping conditions becomes true. The second stopping condition
must eventually be true (i.e. 'Z Z••• Z' follows all actual passenger
names).

1. if the name at the list head matches the new passenger's then
2. Replace the passenger's data with the new data.

else if the name at the list head follows the new name then
3. Insert the new passenger just before the list head.

else
4. Insert the new passenger in the rest of the list.

Procedure INSERT is shown in Fig. 10.12. The parameter NEXT repre
sents a pointer to the head of the list being searched; the parameter PRED
represents a pointer to the predecessor of the list head.

procedure INSERT (NEXT linputl : PASSPOINTERj
NEWPASS [input) : PASSENGER;
PRED linputl : PASSPOINTER)j

[Inserts a new passenger (NEWPASS) in the list pointed to by NEXT.
The predecessor of the list head is pointed to by PRED. I

498 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



var
TEMP : PASSPOINTER; la temporary pointerl

linsert in rest of listl

then

lallocate a new nodel
Istore new passenger datal

Ijoin new node to successorl
Ijoin new node to predecessorl

begin IINSERTI
if NEXTA.PASSINFO.NAME = NEWPASS.NAME then

NEXTA.PASSINFO := NEWPASS
else if NEXTA.PASSINFO.NAME > NEWPASS.NAME

begin [Lrise r t ]
IllNEW (TEMP);

TEMpA.PASSINFO := NEWPASS;
12lTEMPA.LINK := NEXT;
(3)PREDA.LINK := TEMP

end Iinsert)
else

INSERT (NEXT~.LINK, NEWPASS, NEXT)
end; I INSERTI

Fig. 10.12 Procedure INSERT

In Fig. 10.12, the statements

IllNEW (TEMP); [a Ll.ooa t.e a new node]
TEMP~.PASSINFO := NEWPASS; Istore new passenger data]

allocate a new node that is pointed to by the local pointer variable TEMP.
Next, the new passenger data (stored in record NEWPASS) is copied into
the PASS INFO field of this new node. The assignment statements

(2)TEMP~.LINK := NEXT;
(3)PRED~.LINK := TEMP

Ijoin new node to successor)
Ijoin new node to predecessor)

insert the new node in the list. If the original list is in alphabetical order,
then so must the new list because all insertions maintain the alphabetical
ordering.

For the original procedure (call) statement

INSERT (HEADA.LINK, NEWPASS, HEAD) linsert in listl

the first actual list element is pointed to by NEXT and the dummy node
with NAME field 'AA •• A' is pointed to by PRED. Fig. 10.13 illustrates the
insertion of a new first passenger, I ARNOLD I • The new pointer values are
shown as blue arrows; the original values of pointers that are changed ap
pear as grey arrows. Again, the inclusion of the dummy first element al
lows us to use this algorithm to insert a node at the head of the actual
passenger list.

10.5 CASE STUDY-MAINTAINING A LINKED LIST 499



PRED NEXT

Fig. 10.13 Inserting Passenger 'ARNOLD'

Self-check Exercises for Section 10.5

1. Write procedures READ1PASS, PRINTPASSLIST, and PRINT1PASS
called in Fig. 10.10. PRINTPASSLIST should use procedure
PRINT lPASS.

• Stacks and Queues

In this section we will discuss two kinds of linked lists that find wide ap
plication in the design of compilers and operating systems, stacks and
queues. We introduced stacks in Section 9.1 and described their role in
implementing recursion. A stack may be thought of as a linked list in
which each new node is inserted at the head of the list and each deletion
removes the current head of the list. Inserting a node is a push operation
and deleting a node is popping the stack.

We might also want to determine whether a stack is empty (i.e, has no
elements) or examine the element currently on top of the stack. The latter
operation is easy since the top of the stack is always pointed to by the list
head pointer.

A stack created by inserting the character values 12 I, I + I, I C I, I * I

in that order is shown below.

TOP

The character 1*' is at the top of the stack. If each character is stored in a
field named DATA, then the top of the stack is referenced as TOP".
DATA. The element at the top of the stack is the last element placed on
the stack and is the first one that will be removed. For this reason a stack
is sometimes called a LIFO [Last In First Out) list. The character value

500 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



, 2' is at the bottom of the stack and will be the last one removed; its
pointer value is NIL.

Example 10.5 Procedure PUSH in Fig. 10.14 is used to push a new value (type CHAR)
onto a stack. We are assuming the following declarations.

type
STACKPOINTER = ASTACKNODE:
STACKNODE = record

DATA : CHAR:
LINK : STACKPOINTER

end: ISTACKNODEj

procedure PUSH (NEXTCHAR linput] : CHAR:
var TOP loutputj : STACKPOINTER):

IPushes the data stored in NEXTCHAR onto the top of the
stack pointed to by TOP. j

var
TEMP : STACKPOINTER:

begin IPUSHj
Ilj NEW (TEMP):

TEMpA.DATA := NEXTCHAR:
{2jTEMpA.LINK := TOP:
13jTOP : = TEMP

end: IPUSHj

Fig. 10.14 Procedure PUSH

[LocaL pointerj

Ipoint TEMP to a new nodej
lsave the next characterl

Iconnect it to old topj
Iredefine top of the stackj

The stack of characters is redrawn below after execution of the proce
dure (call) statement

PUSH (I x', TOP)

The character value 'X I is the new top of the stack. The value of TOP be
fore the push operation is shown by the grey arrow.

TEMP

~1j
~~

Example 10.6 Procedure POP in Fig. 10.15 returns the top of the stack pointed to by TOP.
The pointer TOP is reset to point to the current second element that be
comes the new top of the stack. The BOOLEAN function EMPTYSTACK is
called by POP to determine whether the stack is currently empty

10.6 STACKS AND QUEUES 501



(EMPTYSTACK returns TRUE). An error message is printed if procedure
POP is called when the stack is empty.

function EMPTYSTACK (TOP: STACKPOINTER) : BOOLEAN;

!Returns TRUE if the stack pointed to by TOP is empty.j

begin !EMPTYSTACKj
EMPTYSTACK := TOP = NIL

end; !EMPTYSTACKJ

procedure POP (var ITEM !outputj : CHAR;
var TOP !input/outputj : STACKPOINTER);

\Pops the top of the stack pointed to by TOP. ITEM is assigned the
current top item. TOP is reset to point to the current second item. An
error message is printed if the stack is empty. Calls function
EMPTYSTACK.

begin !POPj
if EMPTYSTACK(TOP) then

WRITELN ('Stack underflow error.')
else

begin
ITEM := TapA. DATA;
TOP := TOpA.LINK

end
end; !POPj

Fig. 10.15 Procedure POP

!stack is emptyj

!get ITEMj
[re se t; TOPj

Example 10.7 The program in Fig. 10.16 reads a sequence of characters ending with '#'
and echo prints the string in reverse order. The line

PALINDROME#EMORDNILAP

appears on the screen when the characters in blue are entered.

Fig. 10.16 Using a Stack to Print Cbaracters Backwards

program USESTACK (INPUT, OUTPUT);

!Uses a stack of characters to print out a data string backwards.j

const
SENTINEL = '#'; !sentinel characterj

type
STACKPOINTER = ASTACKNODE;
STACKNODE = record

DATA : CHAR;
LINK : STACKPOINTER

end; !STACKNODE j

502 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



var
TOP : STACKPOINTER;
NEXTCHAR : CHAR;

lpointer to stack topj
[next; characterj

lInsert function EMPTYSTACK here.j
lInsert procedures PUSH and POP here.j

begin lUSESTACKj
TOP := NIL; linitially stack is emptyj

lPush each input character onto the stack.j
READ (NEXTCHAR);
while NEXTCHAR <> SENTINEL do

begin
PUSH (NEXTCHAR, TOP); 1push next character j
READ (NEXTCHAR)

end; [whi.Le ]

lPop each character and. display it.j
while not EMPTYSTACK(TOP) do

begin
WRITE (NEXTCHAR);
POP (NEXTCHAR, TOP)

end; [wh i l.e ]
WRITELN

end. lUSESTACKj

Queues

lprint last item poppedj
[pop the stackj

A queue is a linked list used to model things such as a line of customers
waiting at a checkout counter or a stream of jobs waiting to be printed by
a line printer in a. computer center. In a queue. all insertions are done at
one end (the rear of the queue) and all deletions are made from the other
end (the front of the queue).

A queue of three passengers on a waiting list for an airline flight is
shown below. The name of the passenger who has been waiting the lon
gest is I BROWN' (pointed to by FRONT); the name of the most recent ar
rival is I CARSON I (pointed to by REAR). The passenger pointed to by
FRONT will be the first one removed. Since this is also the passenger who
has been waiting the longest, a queue is sometimes called a FIFO (First In
First Out) list. The last passenger who will be removed is the one pointed
to by REAR. The pointer field of this passenger's node contains NIL.

Note that the passengers above are listed in order of arrival into the
queue rather than in alphabetical order. If an opening occurs on the flight,
then passenger I BROWN' will be removed from the queue and inserted
into the flight list, and FRONT will be reset to point to passenger 'WAT
SON' . If another passenger is added to the waiting list, the new passenger

10.6 STACKS AND QUEUES 503



Example 10.8

will be linked to passenger 'CARSON'. and REAR will be reset to point to
the new passenger.

Procedure ENQUEUE in Fig. 10.17 is used to add a new passenger
(NEWPASS) to a waiting list of passengers assuming the declarations
shown in Section 10.5. The pointer REAR is reset to point to the new pas
senger's data.

The BOOLEAN function EMPTYQUEUE is used to test whether the queue
was empty just prior to the insertion (EMPTYQUEUE returns TRUE). If so,
FRONT is also reset to point to the pew passenger since there is only one
passenger in the queue.

function EMPTYQUEUE (FRONT : PASSPOINTER) : BOOLEAN:

lReturns TRUE if the queue pointed to by FRONT is empty.j

begin lEMPTYQUEUEj
EMPTYQUEUE := FRONT = NIL

end: lEMPTYQUEUEj

procedure ENQUEUE (NEWPASS linputl : PASSENGER:
var FRONT,

REAR linput/outputl : PASSPOINTER):

lInserts the passenger data stored in NEWPASS in the queue. REAR is
reset to point to the new passenger. If the queue is empty, FRONT is
assigned the same value as REAR. Calls EMPTYQUEUE.

var
TEMP PASSPOINTER: ltemporary pointerj

begin
lljNEW (TEMP):

TEMpA.PASSINFO := NEWPASS:
\2jREARA.LINK := TEMP:
l3jTEMpA.LINK := NIL:
l4jREAR : = TEMP

if EMPTYQUEUE(FRONT) then
FRONT := REAR

end: lENQUEUEj

Fig. 10.17 Procedure ENQUEUE

lallocate a new nodej
lstore new passenger dataj

\attach new node to old end of listj
lnew node is the new end of listj

lreset REAR to new nodej

lsingle element queuej

The queue is shown in Fig. 10.18 after passenger 'MCMANN' has been
added to the waiting list. The original values of pointers that are changed
appear as grey arrows.

Example 10.9 Procedure DEQUEUE in Fig. 10.19 is used to remove from the queue the
passenger who has been waiting the longest (pointed to by FRONT).
FRONT is reset to point to the passenger who has been waiting the second
longest amount of time. If there is only one passenger in the queue when
DEQUEUE is called, the queue becomes empty and FRONT and REAR are

504 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



131

Fig. 10.18 Adding a Passenger to a Queue

reset to NIL. An error message is printed if the queue is empty when
DEQUEUE is called.

procedure DEQUEUE (var NEXTPASS linput/outputj : PASSENGER;
var FRONT,

REAR linput/outputj : PASSPOINTER);

lAssigns to NEXTPASS the passenger record pointed to be FRONT. Resets
FRONT to point to the next passenger at the front of the list. If the
queue is initially empty, an error message is printed. If the queue
becomes empty, sets both FRONT and REAR to NIL. Calls EMPTYQUEUE.

lremove passenger at frontj
ladvance next passenger to front}

beg in 1DEQUEUE j
if EMPTYQUEUE(FRONT) then

WRITELN ('Queue underflow error. ')
else

begin [r'emove]
NEXTPASS := FRONTA.PASSINFO;

llJFRONT := FRONTALINK;
if EMPTYQUEUE(FRONT) then

REAR := NIL
end 1remove j

end; IDEQUEUE j

lqueue is already emptyj

lqueue becomes emptYl

Fig. 10.19 Procedure DEQUEUE

The queue is shown below after deletion of the passenger at the front of
the queue. Passenger' WATSON' is now at the front of the queue. The new
value of FRONT is shown by the blue arrow; the original value is shown
by the grey arrow.

A main program should initialize pointers FRONT and REAR to NIL be
fore any insertions or deletions are performed on the queue. The first call
to procedure ENQUEUE will insert a new node in the queue, resetting both
FRONT and REAR to point to this node.

10.6 STACKS AND QUEUES 505



FRONT

Fig. 10.20 Deleting a Passenger from a Queue

Self-check Exercises for Section 10.6

1. Draw the stack for Fig. 10.16 after the last push operation is
performed. Use the data string HELLO#. Answer this question assum
ing the string is stored in a queue instead of a stack.

2. Modify POP and DEQUEUE so that the node removed is returned to the
storage pool. Use DISPOSE.

3. Discuss how to implement a stack using an array.
4. Discuss how to implement a queue using an array.

• Multiple-linked Lists and Trees

All the examples seen so far have involved list elements or nodes with a
single pointer field. It is possible to have lists of elements with more than
one link. For example, each element in the list shown below has a forward
pointer that points to the next list element and a backward pointer that
points to the previous list element. This allows us to traverse the list in ei
ther the left or right direction.

This structure is called a doubly linked list. The statements below de
clare a list element of this general form.

type
LINK = AMULTINODE;
MULTINODE = record

:} data fields

LEFT, RIGHT: LINK
end; !MULTINODEj

Introduction to Trees

A special kind of multiple-linked list that has wide applicability in com
puter science is a data structure called a binary tree. A sample tree is
drawn in Fig. 10.21.

506 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



ROOT

Fig. 10.21 A Sample Tree

Trees in computer science actually grow from the top down rather than
from the ground up. The topmost element is called the root of the tree. The
pointer, ROOT, points to the root of the tree drawn in Fig. 10.21. Each tree
node shown has a single data field and two pointer fields called the left
branch and right branch, respectively.

Any node with both pointer fields equal to NIL is called a leaf.
The node containing the string 'HEN' is the parent of the nodes con

taining the strings 'HAT' and 'HOG I. Similarly, the nodes 'HAT' and
, HOG' are siblings since they are both children of the same parent node.
The root of the tree is an ancestor of all other nodes in the tree and they,
in turn, are all descendants of the root node.

Each node in a tree may be thought of as the root node of its own
subtree. Since each node has two branches, it spawns two subtrees, a left
subtree and a right subtree. Its left child is the root node of the left
subtree, and its right child is the root node of the right subtree.

The statements below describe the form of a tree node.

type
STRING = packed array [1 .. 3] of CHAR;
BRANCH = "TREE;
TREE = RECORD

WORD : STRING;
LEFT, RIGHT: BRANCH

end; [TREEj

Trees may be used for representing expressions in memory. For exam
ple, the expression

(X + Y) * (A - B)

could be represented as the tree drawn in Fig. 10.22.
The root node contains the operator (*) that is evaluated last. Each

subtree that is itself an expression has an operator in its root node. The
left subtree of the root node represents the expression (X + Y}: the right
subtree represents the expression (A - B).

10.7 MULTIPLE-LINKED LISTS AND TREES 507



Algorithm

Fig. 10.22 Tree Form ofExpression (X+Y) • (A-B)

Trees are also used to organize related data items as a hierarchical data
structure in order to facilitate efficient search and retrieval for a desired
item. For example, the binary search tree shown in Fig. 10.21 is arranged
so that the left descendent of each node alphabetically precedes its parent
and the right descendant alphabetically follows its parent. Hence, in
searching for a particular key at any level of this tree, the left branch
should be followed if the key value is "less than" the current node value,
and the right branch should be followed if the key value is "greater than"
the current node value. (What if the key value equals the current node
value?) This effectively reduces the search space by a factor of two each
time since all the descendants (children and grandchildren) in the branch
not chosen are ignored.

Traversing a Tree

In order to process the data stored in a tree, we need to be able to tra
verse the tree, or visit each and every node in a systematic way. The first
approach that will be illustrated is called an inorder traversal. The algo
rithm for an inorder traversal is described below.

1. Traverse the left subtree.
2. Visit the root node and print its data.
3. Traverse the right subtree.

Recall that the left subtree of any node is the part of the tree whose root
is the left child of that node. The inorder traversal for the tree shown in
Fig. 10.23 would visit the nodes in sequence

'CAT' 'DOG' 'ELF' 'FOX' 'HAT' 'HEN' 'HOG'

In Fig. 10.23, a numbered circle is drawn around each subtree. The
subtrees are numbered in the order that they are traversed. Subtree 1 is
the left subtree of the root node. Its left subtree (number 2) has no left
subtree (or right subtree); hence, the string 'CAT' would be printed first.
The root node for subtree 1 would then be visited and 'DOG' would be
printed. Its right subtree consists of the leaf node containing the string
, ELF' (number 3). After 'ELF' is printed, the root node for the complete

508 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



ROOT

Fig. 10.23 Subtrees ofa Tree.

tree is visited (' FOX' is printed) and the right subtree of the root node
(number 4) is traversed in a like manner.

Procedure INORDER in Fig. 10.24 is a recursive procedure that performs
an inorder traversal of a tree and displays each node's data. The parame
ter ROOT represents the pointer to the root node of the tree being tra
versed. If the tree is empty (ROOT = NIL) an immediate return occurs.
Procedure INORDER is much simpler than any nonrecursive procedure
that might be written to traverse a tree.

procedure INORDER (ROOT linputj : BRANCH);

IPerforms an inorder traversal of the tree
pointed to by ROOT. Prints each node visited.j

begin 1INORDERj
if ROOT <> NIL then

begin lrecursive stepj
INORDER (ROOTA.LEFT);
WRITELN (ROOTA.WORD);
INORDER (ROOTA.RIGHT)

end Irecursive step)
end; IINORDERj

Fig. 10.24 Procedure INORDER

ltraverse left subtreej
lprint root value)

Itraverse right subtreej

As we saw earlier an inorder traversal of the tree shown in Fig. 10.23
would visit the nodes in alphabetical sequence. If we performed an inor
der traversal of the expression tree in Fig. 10.22, the nodes would be visit
ed in the sequence

10.7 MULTIPLE-LINKED LISTS AND TREES 509



x + Y * A - B

Except for the absence of parentheses, this is the form in which we would
normally write the expression. The expression above is called an infix ex
pression because each operator is between its operands.

Switching the sequence of the three statements in the if statement
shown in Fig. 10.24 will produce rather different results. The sequence

WRITELN (ROOTA.WORD)i
INORDER (ROOTA.LEFT)i
INORDER (ROOTA.RIGHT)

[print root valuej
[traverse left subtreej

[traverse right subtreej

displays the root node before traversing its subtrees; consequently, the
root value will be displayed before the values in its subtrees. This is
called a pre order traversal. The nodes in Fig. 10.23 would be visited in the
sequence

'FOX' 'DOG' 'CAT' 'ELF' 'HEN' 'HAT' 'HOG'

The nodes in the expression tree in Fig. 10.22 would be visited in the se
quence

* + X Y - A B

The expression above is called a prefix expression because each operator
precedes its operands. The operands of + are X and Y; the operands of
- are A and B; the operands of * are the two triples + X Y and - A B.

Finally, the sequence

INORDER (ROOTA.LEFT)i
INORDER (ROOTA.RIGHT)i
WRITELN (ROOTA.WORD)

[traverse left subtreej
[traverse right subtreej

Iprint root value}

displays the root node after traversing each of its subtrees; consequently,
each root value will be printed after all values in its subtrees. This is
called a postorder traversal. The nodes in Fig. 10.23 would be visited in
the sequence

'CAT' 'ELF' 'DOG' 'HAT' 'HOG' 'HEN' 'FOX'

The nodes in the expression tree in Fig. 10.22 would be visited in the se
quence

X Y + A B - *

The expression above is called a postfix expression because each operator
follows its operands. The operands of + are X and Y; the operands of 
are A and B; the operands of * are the two triples X Y + and A B -

510 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



Note that the left subtree is always traversed before the right subtree
for all three methods discussed above.

Self-check Exercises for Section 10.7

1. Draw the binary tree representation of the expression below.

x * Y / (A + B) * C
X * Y / A + B * C

2. What would be printed by the inorder, pre order, and postorder tra
versals of the tree below?

III Case Study-Maintaining a Binary Search Tree

We mentioned earlier that the tree in Fig. 10.23 is a binary search tree. A
binary search tree has the property that for any node, all values less than
that node's value are in its left subtree and all values greater than that
node's value are in its right subtree.

Trying to locate an item in a binary search tree is analogous to perform
ing a binary search on an array that has already been sorted. To find a
particular item or key, we compare the key to the value of the root node.
If the key is less than the root node, then we can eliminate the right
subtree and search only the left subtree, thereby reducing by half the num
ber of nodes to be searched. For this reason, the time required to search a
binary tree of N nodes is proportional to log2N. The algorithm for search
ing a binary tree is shown below.

Algorithm for
binary tree
search

1. if the tree is empty then
2. The key is not in the tree.

else if the key matches the root node data then
3. The key is found in the root node.

else if the key is less than the root node data then
4. Search the left subtree.

else
5. Search the right subtree.

10.8 CASE STUDY-MAINTAINING A BINARY SEARCH TREE 511



Maintaining a
Binary Search
Tree

Algorithm

Steps 2 and 3 are stopping steps. We will leave the writing of this proce
dure as an exercise and describe how to build and maintain a binary
search tree next.

Problem: We want to write a concordance program that counts the
number of times each word appears in a large TEXT file. After the file is
completely read, an alphabetized list of the words and their occurrence
counts should be printed.

Discussion: For simplicity, we will assume that each word is on a
separate line of the TEXT file. We can use an array of records or a binary
search tree to store the words in memory. One advantage of using a
binary search tree is that it is already ordered and does not need to be
sorted. Each new word that is read will be entered in its proper place in
the tree with an initial occurrence count of 1. If the word is already in the
tree, its occurrence count should be increased by 1. Once the tree is
completed, performing an inorder traversal will enable the nodes to be
printed in alphabetical order. The problem inputs, outputs, and algorithm
follow.

the file of words, one word per line (WORDS : TEXT)

an alphabetized list of words and occurrence counts

1. Store each word in its appropriate place in a binary search tree to
gether with its occurrence count.

2. Perform an inorder traversal of the tree and print each word and its
occurrence count.

We can modify procedure INORDER to perform step 2. Step 1 will be
performed by procedure BUILDTREE. Each node of the tree must have
storage space for a character string, an integer value, and two pointers.
The main program variable ROOT will point to the root of the tree. The
structure chart is shown in Fig. 10.25; the main program is shown in Fig.
10.26.

We will leave the modification of procedure INORDER as an exercise
and discuss procedure BUILDTREE next. Procedure BUILDTREE should
store the first word in the node pointed to by ROOT. Each subsequent
word should be read and inserted in the tree if it is not already there. The
data requirements and algorithm for BUILDTREE follow.

the file of words (WORDS : TEXT)

512 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



a pointer to the root of the tree being formed (ROOT : BRANCH)

the next word in file WORDS (NEXTWORD : LINE)
a pointer to each ancestor of the word being inserted

(ANCESTOR : BRANCH)

Algorithm for
BUILDTREE

1. Prepare file WORDS for input.
2. Store the first word in the root of the tree.
3. while there are more words do

4. Read the next word into NEXTWORD.
5. Insert NEXTWORD in the tree or increment its occurrence count

if NEXTWORD is already in the tree.

I
WORDS

~

l'
ROOT

I

I
ROOT

~

BUILDTREE
INORDER

Fig. 10.25 Structure Chart for Concordance Program

program CONCORD (WORDS, INPUT, OUTPUT);

(Prints the words in file WORDS and their number of occurrences
in alphabetical order. I

const
STRINGSIZE = 10; (maximum length of a wordl

type
STRING = packed array [l .. STRINGSIZE] of CHAR;
BRANCH = ATREENODE;
TREENODE = record

WORD : STRING;
COUNT : INTEGER;
LEFT, RIGHT : BRANCH

end; (TREENODEI

var
ROOT : BRANCH;
WORDS : TEXT:

(pointer to tree rootl
(file of words in textl

10.8 CASE STUDY-MAINTAINING A BINARY SEARCH TREE 513



(Insert procedures BUILDTREE and INORDER here.!

begin (CONCORD!
(Build the binary search tree.!
BUILDTREE (WORDS, ROOT);

lPrint the words and their counts in alphabetical order.!
WRITELN ('Word' :10, 'Occurrences' :15);
INORDER (ROOT)

end. (CONCORD!

Fig. 10.26 Concordance Program

Procedure READ1LINE (see Fig. 8.6) can be used to read each line of
file WORDS. Step 2 will be performed by procedure ATTACHNODE. Step 5
will be performed by procedure PUTINTREE. The structure chart for pro
cedure BUILDTREE is shown in Fig. 10.27; the procedure is written in Fig.
10.28.

BUILDTREE

ATIACHNODE

t
ANCESTOR

I

I
NEXTWORD

~

t
ROOT

I

t I
NEXTWORD NEXTWORD

I ~
~~'*"~~

I
NEXTWORD

~

PUTINTREE

t
ANCESTOR

I

ATIACHNODE

Fig. 10.27 Structure Chart for BUILDTREE

procedure BUILDTREE (var WORDS (input! : TEXT;
var ROOT (output! : BRANCH);

(Builds a tree of words and occurrence counts based on the words in
file WORDS. Returns ROOT as a pointer to this tree.

type
LINE = record

INFO : STRING;
LENGTH: O•• STRINGSIZE

end; (LINEl

514 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



var
NEXTWORD
ANCESTOR

LINE;
BRANCH;

leach word in WORDS I
[Loca l po i.n t.e r ]

procedure ATTACHNODE (NEXTWORD linputl : LINE;
var ANCESTOR loutputl : BRANCH);

IAttaches a new tree node to the pointer ANCESTOR. The WORD field is
defined as the string in NEXTWORD. The COUNT field is 1. Both pointer
fields are initialized to NIL. I

begin IATTACHNODEI
NEW (ANCESTOR);
with ANCESTORA do

begin
WORD := NEXTWORD.INFO;
COUNT := 1;
LEFT : = NIL; RIGHT : = NIL

end
end; IATTACHNODEI

lattach new tree node to its parenti

Istore the word I
linitialize COUNT I

linitialize pointersl

IInsert procedures READ1LINE, PUTINTREE here.l

begin (BUILDTREEI
RESET (WORDS);
READ1LINE (WORDS, NEXTWORD):
ATTACHNODE (NEXTWORD, ROOT):

(Insert rest of words in the tree.l
while not EOF(WORDS) do

begin
READ1LINE (WORDS, NEXTWORD);
ANCESTOR := ROOT;
PUTINTREE (NEXTWORD, ANCESTOR)

end [whi.Le ]
end; IBUILDTREEI

Fig. 10.28 Procedure BUILDTREE

lprepare WORDS for inputl
1get first wordl

lplace it in rootl

lroot is first ancestorl
linsert next wordl

Algorithm for
PUTINTREE

After reading the first word into NEXTWORD, procedure BUILDTREE
calls ATTACHNODE to attach this word to the pointer ROOT. The remain
ing words are inserted in the tree by procedure PUTINTREE. After each
word is read by READ1LINE, the local pointer variable ANCESTOR is re
set to ROOT and is then passed to PUTINTREE. This local variable is
needed to prevent PUTINTREE from redefining the tree root whenever it
inserts a new node in the tree. The algorithm for PUTINTREE follows.

1. if the subtree being searched is empty then
2. Attach the next word to the parent of this subtree.

else if the next word is in the subtree root then
3. Increment the occurrence count by 1.

else if the next word is alphabetically < the subtree root word then
4. Insert the next word in the left subtree.

else
5. Insert the next word in the right subtree.

108 CASE STUDY-MAINTAINING A BINARY SEARCH TREE 515



Steps 2 and 3 are stopping steps. We will trace this algorithm for the list
of words 'the', 'week', 'of', 'the', 'start'. The word 'the' is
placed in the root node as shown below.

ROOT

The next string 'week' is alphabetically greater than 'the' so the
right pointer from the root node is followed. This subtree is empty so
'week I is attached as the right subtree of the root node. The pointers
represented by ANCESTOR during the search are in color.

ROOT

T

The next string 'of' is alphabetically less than 'the' so the left
pointer from the root node is followed. This subtree is empty so 'of I is
attached as the left subtree of the root node.

ROOT

The next word is 'the'. It is found in the root so its count is increased
to 2.

The next word is 'start'. It is alphabetically less than' the' so the
left pointer from the root node is followed. The word 'start' is alpha-

516 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



betically greater than 'of' so the right pointer from 'of' is followed.
This subtree is empty so 'start' is attached as the right subtree of the
node containing' of'. Procedure PUTINTREE is shown in Fig. 10.29.

ROOT

procedure PUTINTREE (NEXTWORD (inputl : LINE;
var ANCESTOR (input/outputl : BRANCH);

(Inserts the string in NEXTWORD in the tree if it is not already in the
tree pointed to by ANCESTOR. Otherwise, increments its count. Uses
procedure ATTACHNODE to attach a new node.

begin (PUTINTREEI
if ANCESTOR = NIL then

ATTACHNODE (NEXTWORD, ANCESTOR) (attach word to its parenti
else if NEXTWORD.INFO = ANCESTORA.WORD then

ANCESTORA.COUNT := ANCESTORA.COUNT + 1 (increase count by 11
else if NEXTWORD.INFO < ANCESTORA.WORD then

PUTINTREE (NEXTWORD, ANCESTORA.LEFT) (follow left pointerl
else

PUTINTREE (NEXTWORD, ANCESTORA.RIGHT) (follow right pointerl
end; lPUTINTREEI

Fig. 10.29 Procedure PUTINTREE

If the value of ANCESTOR becomes NIL, procedure PUTINTREE calls
procedure ATTACHNODE (see Fig. 10.28] to attach a new node to the tree.
ATTACHNODE changes the value of the pointer represented by ANCESTOR
so that it points to a newly allocated node.

Self-check Exercises for Section 10.8

1. Modify procedure INORDER as needed to print the words and their
counts.

2. Continue to grow the tree in this section by processing the words:
'of', 'the', 'first', 'semester', 'is', 'next', 'week'.

10.8 CASE STUDY-MAINTAINING A BINARY SEARCH TREE 517



Draw the tree.
3. Write the algorithm for searching a binary tree as a function. Return a

pointer to the node containing the key or NIL. Hint: See Fig. 10.4.

• Common Programming Errors

It is often very difficult to debug a program involving pointer variables
since the value of a pointer variable represents a memory cell address and
cannot normally be printed. Hence, if a pointer value is invalid or incor
rect, there may be no way of finding out what this erroneous value hap
pens to be.

Make sure that the symbol > follows each pointer variable used to des
ignate a particular node or record. The '" must always be written when
you wish to manipulate a field of a node. If the pointer variable appears
without the "', the compiler will maniplate the pointer value itself (an ad
dress) rather than the node pointed to by the pointer variable.

Another potential source of error involves attempting to reference a
field of a node pointed to by a pointer whose value is NIL. This, of
course, is illegal since the NIL pointer is a special value used to indicate
the end of a list.

An additional error may arise if your program gets stuck in a loop dur
ing the creation of a dynamic data structure. In this case, the number of
cells allocated may exceed the memory space available in your Pascal
system. This condition will result in a "stack overflow" error mes
sage.

When traversing a list, make sure that the pointer to the list head is ad
vanced down the list. The while statement below

while HEAD <> NIL do
WRITE (HEADA.WORD)i
HEAD := HEADA.LINK

will execute forever because the pointer assignment statement is not in
cluded in the loop body so HEAD will not be advanced down the list.

Debugging Tips

Because the value of a pointer variable cannot be printed, it is difficult to
debug programs that manipulate pointers. You will have to trace the exe
cution of such a program by printing an information field that identifies
the list element referenced by the pointer instead of printing the pointer
value itself.

When writing driver programs it is often helpful to create a sample
linked structure using the technique shown at the beginning of Section
10.4. The information and pointer fields of the structure can be defined us
ing assignment statements.

518 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



II Chapter Review

In this chapter, we introduced several dynamic data structures. We dis
cussed the use of pointers to reference and connect elements of a dynamic
data structure. The procedure NEW was used to allocate additional ele
ments or nodes of a dynamic data structure.

Many different aspects of manipulating linked lists were covered. We
showed how to build or create a linked list, how to traverse a linked list,
and how to insert and delete linked list elements.

We also described how to implement stacks and queues. Procedures
were written to add and remove elements from these data structures.

The tree was shown to be a special list form with two links. We showed
how to create a binary search tree and how to perform three kinds of tree
traversal: inorder, preorder, and postorder. If you continue your study of
computer science, all of these subjects will be covered in much more de
tail in a future course on data structures.

New Pascal Statements

The new Pascal statements introduced in this chapter are described in Ta
ble 10.1.

Table 10.1 Summary of New Pascal Statements

Statement

Pointer type declaration
type

POINT = ANODE:
NODE = record

INFO INTEGER:
LINK : POINT

end:

var
HEAD : POINT:

NEW statement
NEW (HEAD)

DISPOSE statement
DISPOSE (HEAD)

Pointer assignment
HEAD := HEADA.LINK

Effect

The identifier POINT is declared as a pointer to a record of
type NODE where NODE is a record type containing a field
(LINK) of type POINT. HEAD is a pointer variable of type
POINT.

A new record is allocated of type NODE. This record is
pointed to by HEAD and may be referenced as record
variable HEADA.

The memory space occupied by the record HEADA is
returned to the storage pool.

The pointer HEAD is advanced to the next node in the
dynamic data structure pointed to by HEAD.

10.10 CHAPTER REVIEW 519



Review Questions

1. Differentiate between dynamic and nondynamic data structures.
2. What kind of value is contained in a pointer variable?
3. Give the necessary statements to create a pointer variable Q that

points to a record type NUMBERS consisting of three integer fields
called A, B, and C. Also indicate at what point actual space is allocat
ed for Q and one occurrence of NUMBERS.

4. Define a simple linked list. Indicate how the pointers are utilized to
establish a link between nodes. Also indicate any other variables that
would be needed to reference the linked list.

5. Write a procedure that will link a node into an existing list. Parame
ters will be the HEAD of the linked list and a pointer to the node to be
inserted. Assume a dummy record exists at the beginning and end of
the linked list and there are no duplicate records,

Given the following record definition. insert the new element pre
serving ID order:

type
PTR = ANODE;
NODE = record

ID : INTEGER;
NAME : STRING;
GPA : REAL;
LINK : PTR

end;

6. Write an algorithm to remove a node (identified by TARGETID) from
an ordered list that does not contain a dummy record at the beginning.

7. Write the necessary procedures to duplicate all elements with a GPA
of 3.5 or above in one linked list in another linked list. The original list
is ordered by ID number; the new list should be ordered by GPA. Do
not remove nodes from the existing list. Assume the list nodes are
type NODE as described below.

Parameters will be the head of the existing list (HEAD) and the head
of the new linked list (GPAHEAD).

type
PTR = ANODE;
NODE = record

ID : INTEGER;
NAME : STRING;
GPA : REAL;
LINK : PTR

end;

8. Declare a node for a two-way or doubly linked list, and indicate how
a traversal would be made in reverse order (from the last list element
to the list head). Include any variables or fields that are necessary.

9. Discuss the differences between a simple linked list and a binary tree.
Consider such things as numbers of pointer fields per node, search
technique. and insertion algorithm.

520 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



10. Write a procedure to delete all males over 25 from an existing linear
linked list, given the following global statements [assume no dummy
records).

type
PTR = ANODE;
NODE = record

NAME : STRING;
AGE : INTEGER;
SEX: (MALE,FEMALE);
LINK : PTR

end;

The procedure parameter is the head of the list.
11. How can you determine whether a node is a leaf?
12. Traverse the tree below in inorder, preorder, and postorder.

Provide one sequence that would create this ordered binary tree. Are
there any letters that must occur before other letters?

13. Discuss how you might delete a node from a binary tree. Consider
nodes with a or 1 child first.

Programming Projects

1. Write a main program that first builds an airline passenger list in alphabeti
cal order from passenger data provided on an input file. The program should
next process commands read from system file INPUT to modify this list.
The first letter of each command indicates what is to be done with any pas
senger data on that input line (I-Insert. D-Delete. R-Replace flight data,
P-Print all passengers. Q-Quit). After the Q command is entered, the pro
gram system should display the final passenger list.

2. Redo the problem in Section 10.5 using a tree to store the passenger data.
When deleting a passenger, simply blank out the information fields and
leave the passenger node in the tree. Use an extra data field to indicate
whether a node is still in the tree or deleted.

3. Write a program to moniter the flow of an item into and out of a warehouse.
The warehouse will have numerous deliveries and shipments for this item (a

PROGRAMMING PROJECTS 521



widget) during the time period covered. A shipment out is billed at a profit of
50% over the cost of a widget. Unfortunately. each shipment received may
have a different cost associated with it. The accountants for the firm have in
stituted a first-in. first-out system for filling orders. This means that the
newest widgets are the first ones sent out to fill an order. This method of in
ventory can be represented using a stack. The PUSH procedure will add a
shipment received. The POP procedure will be used for a shipment out. Each
data record will consist of:

SOl' 0
#
Cost
Vendor

for shipment received or an order to be sent
a quantity received or shipped out
the cost per widget (for a shipment received only)
character string naming company sent to or received from.

Write the necessary procedures to store the shipments received and pro
cess orders. The output for an order will consist of the total cost for all the
widgets in the order as well as the quantity. Hint: Each widget price is 50%
higher than its cost. The widgets used to fill an order may come from multi
ple shipments with different costs.

4. Redo Project 3, assuming the widgets are shipped using a first-in, first-out
strategy. Use a queue to store the widget orders.

5. At Bob's Bank a program is needed to store the checks processed during a
month for a customer. Since the checks will be processed daily, but not in
numerical order. it is best to store them in a simple linked list by check num
ber.

Write a program that will input a check number. date of transaction,
amount of check, and the name of the person receiving the check. Insert the
checks into a list and after all checks have been entered. display all of the
checks with all associated information, and a final total for all the checks
written during the month.

6. In preparing mailing lists, it is often useful to be able to reference the infor
mation by using either the person's name or zipcode. This can be done if
each list node has a pointer to the next node by name and a pointer to the
next node by zipcode. The nodes representing each person's data should be
linked together in both name and zipcode order; there should only be one
copy of the data for each person.

First the information can be inserted in a list by name order using a point
er field called NEXTNAME. Then the pointer field NEXTZIPCODE can be
defined so that the new list node is also in zipcode order. There should be a
list head that points to the first person in name order and a second list head
that points to the first person in zipcode order.

Write a program that reads a record containing first name (character 10),
last name (character 15). street address (character 50). city (character 20),
state (character 2), and zipcode (character 6) and inserts each record into the
lists. After all of the information has been entered. provide a list of the infor
mation in name order and a second list in zipcode order.

7. The set capability is limited in the number of elements that can be stored in
a set (often only 255). A more universal system can be implemented using
list representation to store sets.

522 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



Write the necessary routines needed to insert and delete integer values
from a set. Also write the routines necessary to implement the set difference,
intersection, and union operations. To verify the results, list the contents of
the sets before and after each operation.

8. Many card games require that each of four players receive 13 cards of a 52
card deck (for example: bridge). The computer can be utilized to shuffle a
deck of cards and then deal them.

To accomplish this first place all 52 cards into a linked list. Afterwards,
"deal" the cards to 4 players by generating a random number between 1 and
the size of the list remaining. Traverse the linked list and delete the selected
card from the list. Each player's hand will consist of a record that has point
ers to a list of hearts, diamonds, clubs, and spades in ascending order. [i.e.
You will need 4 pointer fields). After all cards are dealt, list the contents (by
suit) of each hand.

9. In this chapter we wrote recursive procedures to perform preorder, inorder,
and postorder tree traversals. A tree traversal can be written without using
recursion. In this case it is necessary to push the address of a tree node that
is reached during the traversal onto a stack. The node will be popped off lat
er when it is time to traverse the tree rooted at this node. For example, the
algorithm for a nonrecursive pre order traversal follows.

1. Push NIL onto the stack.
2. Assign the root node as the current node.
3. while the current node is not NIL do

4. Print the current node.
5. if the current node has a right subtree then

Push the right subtree root onto the stack.
6. If the current node has a left subtree then

Make it the current node
else

Pop the stack and make the node removed the
current node.

In this algorithm each right subtree pointer that is not NIL is pushed onto
the stack; the stack is popped when the current left subtree pointer is NIL.

Implement and test a nonrecursive procedure for pre order traversal. Write
a nonrecursive algorithm for inorder traversal and implement and test it as
well.

10. If an arithmetic expression is written in prefix or postfix notation, then there
is no need to use parentheses to specify the order of operator evaluation. For
this reason, some compilers translate infix expressions to postfix notation
first and then evaluate the postfix string.

Write a procedure that simulates the operation of a calculator. The input
will consist of an expression in postfix notation. The operands will all be sin
gle digit numbers. Your program should print the expression value. For exam
ple, if the input string is '54+3/', the result printed should be ((5 + 4) / 3) or 3.

To accomplish this, examine each character in the string in left to right
order. If the character is a digit, push its numeric value onto a stack. If the
character is an operator, pop the top two operands, apply the operator to
them, and push the result onto the stack. When the string is completely

PROGRAMMING PROJECTS 523



..

scanned there should only be one number on the stack and that should be the
expression value. Besides the operators +, -. *. and /, use the operator A to
indicate exponentiation.

11. There are many applications in which a two-dimensional matrix with large
dimensions must be stored in memory. If a majority of the elements in the
matrix are zero, the matrix is called a sparse matrix. A sparse matrix may be
more efficiently represented using a one-dimensional array of pointers where
each element of this array, ROW, points to a linked list. ROW [ I] would
point to a list whose nodes indicate the value and column number for each
nonzero element in row 1. For example, if row 3 is (25 0 0 0 -14 0 0). then
the third element of this array would point to the list shown below.

This list indicates that there are two nonzero elements in the third row of the
sparse matrix at columns 1 and 5. Write procedures to read a sparse matrix
and store it as shown. to add together two sparse matrices and to print a
sparse rnatrix.

12. A polynomial may be represented as a linked list where each node contains
the coefficient and exponent of a term of the polynomial. The polynomial 4x 3

+ 3x 2
- 5 would be represented as the linked list.

Write a program system that reads two polynomials, stores them as linked
lists. adds them together, and prints the result as a polynomial. The result
should be a third linked list. Hint: Traverse both polynomials. If a particular
exponent value is present in either of the two polynomials being summed.
then it should be present in the answer. If it is present in both polynomials,
then its coefficient is the sum of the corresponding coefficient in both poly
nomials. (If this sum is zero, the term should be deleted.]

13. Assume that the registration data for a class of students is stored as the ar
ray of records shown below.

KEY POINTER

2

3

524 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



The first field in each record contains the student 1D number (four digits)
and the second field contains a pointer to all classes for which the student is
registered. Write a program system that builds this array from a file of ran
domly arranged data and prints it out. Assume each data line starts with an
1 (insert) or D (delete), followed by the student 1D and course identification
string.

14. Write a program system that represents the Morse code as a binary tree. The
symbol. should cause a branch to the left and the symbol - a branch to the
right. The information field of each node should be the letter represented by
the corresponding code. The first three levels of the tree are shown below.

MORSE

The Morse code should be read from an input file where each file component
consists of a letter, and the corresponding code string. After building the
tree, read a coded message and translate it into English.

15. Use two stacks (OPERATOR and OPERAND) and procedures PUSH and
POP to help in "compiling" a simple arithmetic expression without parenthe
ses. For example, the expression

A+B*C-D

should be compiled as the table:

OPERATION

+

OPERANDl
B
A
y

OPERANDZ
C
Z
D

RESULT
Z
Y
X

The above table shows the order of the three operations (*, +, - J and their
operands. The result column gives the name of an identifier selected to hold
the result.

PROGRAMMING PROJECTS 525



Your procedure should read each character (NEXT CHAR) and process it as
follows: If it is a blank, then ignore it; otherwise, if it is an operand (A-F),
then push it onto the OPERAND stack; otherwise, if it is not an operator
(+, -, *, /l. then print an error message, If the character is an operator, then
it should be pushed onto the OPERATOR stack if its precedence is greater
than the operator currently at the top of the stack [e.g. when * is read in the
example above, it is pushed onto the stack because + is on the top) or if the
operator stack is empty, Otherwise, a line of the output table should be writ
ten by popping the OPERATOR stack and removing the first two elements of
the OPERAND stack (two pops), A new symbol is used to hold the result
(Z-G), and this symbol is pushed onto the operand stack. The process of
generating output table lines continues until the precedence of NEXTCHAR
is greater than the precedence of the operator at the top of the stack or the
operator stack is empty. At this point. NEXTCHAR should be pushed onto
the operator stack. When the end of the input line is reached, any remaining
operators and operands should be popped as described above.

526 POINTER VARIABLES AND DYNAMIC DATA STRUCTURES



Appenclixes



Appendix A
Reserved Words,
Standard Identifiers,
Operators, Functions,
and Procedures

Reserved words

and end nil set
array file not then
begin for of to
case function or type
const goto packed until
div if procedure var
do in program while
downto label record with
else mod repeat

Standard identifiers

Constants:
FALSE, TRUE, MAXINT

Types:
INTEGER, BOOLEAN, REAL, CHAR, TEXT

Program parameters:
INPUT, OUTPUT

Functions:
ABS, ARCTAN, CHR, COS, EOF, EOLN, EXP, LN, ODD, ORD,
PRED, ROUND, SIN, SQR, SQRT, SUCC, TRUNC

Procedures:
GET, NEW, PACK, PAGE, PUT, READ, READLN, RESET,
REWRITE, UNPACK, WRITE, WRITELN

Ap-1



Table A.1 Table of Operators

Operator Operation Type of Operand(s) Result type

:= assignment any type except file
types

arithmetic:
+ (unary) identity integer or real same as
- (unary) sign inversion operand

+ addition integer or real integer or real
subtraction

* multiplication

div integer division integer integer

/ real division integer or real real
mod modulus integer integer

relational:
equality scalar, string, set,

<> inequality or pointer

< less than scalar or string BOOLEAN

> greater than

<= less than or equal scalar or string
-or-
subset set

>= greater than or equal scalar or string
-or-
superset set

in set membership first operand is any
scalar, the second
is its set type

logical:
not negation
or disjunction BOOLEAN BOOLEAN

and conjunction

set:
+ union

set difference any set type T T

* intersection

Ap-2 APPENDIX A



Table A.2 Standard Functions

Name Description of Computation Argument Result

ABS The absolute value of the real/integer same as argument
argument

EXP The value of e (2.71828) real/integer real
raised to the power of the
argument

LN The logarithm (to the base e) of real/integer real
the argument

SQR The square of the argument real/integer same as argument

SQRT The positive square root of real/integer real
the argument (positive)

ROUND The closest integer value to the real integer
argument

TRUNC The integral part of real integer
the argument

ARCTAN The arc tangent of the argument real/integer real
(radians)

COS The cosine of the argument real/integer real
(radians)

SIN The sine of the argument real/integer real
(radians)

CHR Returns the character whose integer CHAR
ordinal number is its argument

ODD Returns TRUE if its argument is integer BOOLEAN
an odd number; otherwise returns
FALSE

ORD Returns the ordinal number of its ordinal integer
argument

PRED Returns the predecessor of its ordinal ordinal
argument

SUCC Returns the successor of its ordinal ordinal
argument

APPENDIX A Ap-3



Table A.3 Table of Standard Procedures

Procedure Call

DISPOSE (P)

GET (F)

NEW (P)

PACK (U , I I P)

PAGE (F)

PUT (F)

READ (F , variables)

READLN (F I variables)

RESET (F)

REWRITE (F)

UNPACK (P, U, I)

WRITE (F I outputs)

WRITELN (F , ou~u~)

Ap·4 APPENDIX A

Description

Returns the record pointed to by pointer variable P
to free storage.

Advances the file position pointer for file F to its
next component and assigns the value of the
component to FA.

Creates a record of the type pointed to by pointer
P and saves its address in P.

Copies the elements in unpacked array U, starting
with U [ I ] , to packed array P, starting with the
first element.

Advances the printer to a new page before printing
the next line of file F.

Appends the current contents of FA to file F.

Reads data from file F to satisfy the list of
variables. Only one component of file F can be
read unless F is a text file. If F is not specified, file
INPUT is read.

Reads data from text file F to satisfy the list of
variables. Skips any characters at the end of the
last line read.

Resets the file position pointer for file F to the
beginning. File F may then be read.

Resets the file position pointer for file F to the
beginning; any prior contents are lost. File F may
then be written.

Copies the elements in packed array P, starting
with the first element, to unpacked array U, starting
with U [I].

Writes the data in the order specified by outputs to
file F. Only one output item can be written unless
F is a text file. If F is not specified, the data are
written to file OUTPUT.

Writes the data in the order specified by outputs to
text file F. Writes an end-of-line mark after the
data.



AppendixB
Additions and Extensions
to Pascal

I B.1[ Additional Features of ANSI/IEEE Pascal

This appendix describes additional features of the ANSI/IEEE Pascal stan
dard not covered in the text.

Forward Declarations

Given the procedure declarations below, procedure B can call A, but pro
cedure A cannot call B. This is because the declaration for procedure B is
not processed until after procedure A is translated.

procedure A (var X : REAL);

end; IAI

procedure B (var Y

end; IBI

REAL) ;

If a forward declaration for procedure B is inserted before procedure 'A,

then A can also call B.

procedure B (var Y

procedure A (var X.........
end; IAI

procedure B;.........
end; IBI

REAL); FORWARD;

REAL) ;

As shown above, the forward declaration for procedure B consisting of
only the procedure heading comes first. followed by the declaration of
procedure A, and finally the declaration for procedure B. The parameter
list for procedure B appears only in the forward declaration. Now proce
dure A can call B, and procedure B can call A; so A and B are called mutu
ally recursive.

Ap-S



Functions and Procedures as Parameters

A procedure or function may be passed as a parameter to another proce
dure or function. As an example, we may wish to compute the sum below
for the integers 1 through N where f represents a function that is applied
to each integer.

f(l) + f(2) + f(3) + ... + f(N)

If f is the function SQR (square), then we wish to compute the sum
a) 1 + 22 + 32 + ... + N2

If f is the function SQRT (square root), then we wish to compute the sum
b) vr+ vz+ y'3+ ... + VN

In function SUMINT below, the function F is declared as a function pa
rameter. The function designator

SUMINT (SQR, 10)

computes sum a) above for N

SUMINT (SQRT, 10)

lO; the function designator

computes sum b) above for N = 10.

function SUMINT (function F(X
N : INTEGER)

INTEGER)
REAL;

REALi

[Comput.e s F(l) + F(2) + ... + F(N).!

var
SUM : REALi
I : INTEGER;

begin ISUMINT j
SUM := 0.0;

for I := 1 to N do
SUM := SUM + F(I)i

SUMINT := SUM
end; ISUMINTj

Ithe partial sumj
(loop control variablej

\initialize SUMj

[de f i.ne resultj

The parameter of function F is represented by X in the heading for func
tion SUMINT; any identifier may be used. F can also represent a user-de
fined function with one type INTEGER parameter.

GOTO Statements and Labels

The GOTO statement is used to transfer control from one program state
ment to another. The label (a positive integer) is used to indicate the state
ment to which control is transferred. Labels must be declared in label dec
laration statements at the beginning of a block. In function SAMEARRAY
below, the GOTO statement is used to exit a for loop before the specified
number of repetitions (N) are performed.

Ap-6 APPENDIX B



function SAMEARRAY (A, B : REALARRAY;
N : INTEGER) : BOOLEAN;

IReturns TRUE if arrays A[l •• N] and B[l •• N] are the same arraY.l

label 100;

var
I : INTEGER;

begin ISAMEARRAYl
SAMEARRAY := FALSEi

Iloop control variable]

lassume arrays are not the samel

ICompare elements 1 .• N until an unequal pair is found.]
for I := 1 to N do

if A[I] <> B[I] then
GOTO 100i

lassert: arrays A and Bare equal.l
SAMEARRAY := TRUE;

100: Ireturn from function]
end; ISAMEARRAY]

The function result is initialized to FALSE and corresponding array ele
ments are compared in the for loop. If an unequal pair of elements is
found, the loop is exited via an immediate transfer of control to label 100.
If all pairs are equal, the loop is exited after the Nth pair is tested and the
function result is set to TRUE. This function can easily be implemented
without using the GOTO (see Fig. 6.9 and 9.15); computer scientists general
ly avoid using the GOTO except when absolutely necessary.

PACK and UNPACK

The standard procedures PACK and UNPACK are used to transfer data be
tween packed and unpacked arrays. Given the declarations

var
PA : packed array [l •• N] of CHAR;
UA : array [l •• M] of CHARi
I : INTEGERi

the procedure (call) statement

PACK (UA, I, PAl

copies elements from unpacked array UA (starting with UA [ I ]) to packed
array PA (starting with PA[ 1]). The procedure (call) statement

UNPACK (PA, UA, I)

copies elements from packed array PA (starting with PA[1]) to unpacked
array UA (starting with UA[ I]). Arrays PA and UA do not have to be the
same size.

APPENDIX B Ap-7



1 B.21 ISO Pascal

This appendix describes a feature of the Pascal standard approved by the
International Organization for Standardization (ISO Pascal) that is not in
cluded in the ANSI/IEEE standard.

Conformant Array Parameters

One of the principal frustrations in using ANSI/IEEE standard Pascal is
the fact that a function or procedure that manipulates an array of one type
cannot also manipulate an array of a similar type. For example, a proce
dure that manipulates array NAME declared below cannot manipulate ar
ray FLOWER because the arrays have different types.

type
STRINGI
STRING2

packed array [1 •. 20] of CHAR;
packed array [1 .• 8] of CHAR;

var
NAME STRINGl;
FLOWER: STRING2;

Even though the only difference between these two arrays is their size
(number of elements), separate procedures would have to be written to
read data into them.

In ISO Pascal, the conformant array schema

packed array [u.. v : INTEGER] of CHAR

describes a packed array of characters whose subscript type is a subrange
of type INTEGER. The use of this schema in the procedure header below
enables procedure READSTRING to read data into a packed array of char
acters (represented by INSTRING) of any size (represented by
STRINGSIZE).

procedure READSTRING (SIZE linputl : INTEGER;
var INSTRING loutputl : packed array [U .• V

In ISO Pascal, the procedure (call) statement

READSTRING (20, NAME)

INTEGER] of CHAR);

could be used to read up to twenty characters into array NAME; the proce
dure (call) statement

READSTRING (8, FLOWER)

could be used to read up to eight characters into array FLOWER.

Ap-a APPENDIX B



Any identifiers can be used in the declaration of the index-type specifi
cation [U .. V : INTEGER] for INSTRING. The data type listed (INTE
GER) must be an ordinal type.

Conformant array schemas can be used with packed and unpacked ar
rays of any element type, not just CHAR. Conformant array schemas can
also be used with multidimensional arrays. The two-dimensional con
formant array schema below is valid if MONTH is declared as an enumer
ated type.

array [U .. V : INTEGER; J .. K : MONTH] of REAL;

The corresponding actual parameter must be a two dimensional array of
type REAL values. The first subscript type must be a subrange of the inte
gers; the second subscript type must be a subrange of type MONTH.

I B.31 UCSD Pascal"

UCSD Pascal is a complete operating system that includes facilities for
editing and saving files as well as a Pascal compiler. This section covers
some of the differences between UCSD Pascal and standard Pascal with
emphasis on string and file processing.

Identifiers in UCSD Pascal

There are a number of additional reserved words and standard identifiers
in UCSD Pascal. The reserved words are listed below followed by the
standard identifiers discussed in this section.

Additional reserved words
external implementation
separate unit

interface
uses

process segment

Selected standard identifiers
CLOSE CONCAT
INTERACTIVE LENGTH
STRING

COpy
LOCK

CRUNCH
NORMAL

DELETE
POS

INSERT
PURGE

UCSD Pascal uses only the first eight characters of an identifier to de
termine uniqueness. The underscore character C) can appear in an identi
fier but it is not considered one of the eight characters (i.e, TOP_SCORE
and TOPSCORE are the same identifier).

String Manipulation in UCSD Pascal

One of the most important extensions of UCSD Pascal is the inclusion of
the data type STRING. In UCSD Pascal, the declarations

• UCSD Pascal is a trademark of the regents of the University of California.

APPENDIX B Ap-9



Ap-10

var
PUPILNAME, TEACHERNAME : STRING;

allocate space for storage of two character strings of up to eighty charac
ters each. The procedure READLN can be used to read data into a variable
of type STRING.

WRITE ('Enter the name of the teacher: ');
READLN (TEACHERNAME);

After the prompt above is displayed, all characters (up to 80) entered be
fore pressing the < Return> key are stored in TEACHERNAME.

UCSD Pascal keeps track of the actual length of the string stored in
TEACHERNAME. The string length can change dynamically as the string is
manipulated. The assignment statement

TEACHERNAME := 'Mr. Chips'

replaces the string stored in TEACHERNAME with a new string. The func
tion LENGTH can be used to determine the current string length. The state
ment

WRITELN ('The number of characters in ,TEACHERNAME, ' is
LENGTH(TEACHERNAME) :2)

displays the line

The number of characters in Mr. Chips is 9

It is possible to set the maximum string size at any length up to 255
characters. The declarations below provide storage space for one string of
up to ten characters and one string of up to 255 characters.

var
WORD: STRING[lO];
PARAGRAPH: STRING[255];

Strings of different sizes can be manipulated together. The first assign
ment statement below stores the string shown on the right in PARAGRAPH.
The second assignment statement stores the ten character substring
I This is a ' in WORD. This substring replaces the string originally
saved in PARAGRAPH when the third assignment statement is executed.

PARAGRAPH := 'This is a very, very long string';
WORD := PARAGRAPH;
PARAGRAPH := WORD

Because the STRING data type is part of UCSD Pascal, it is not neces
sary to declare your own data type STRING or to write procedures such
as READSTRING (see Fig. 6.15) and READLINE (see Fig. 7.23) to enter

APPENDIX B



string data. Consequently, the programs in Chapters 6 through 10 that ma
nipulate strings can all be rewritten to take advantage of this. The type
declaration

type
STRING = packed array [l •• STRINGSIZE] of CHARi

should be deleted since STRING is a predefined data type. The procedure
READLN can be used to enter each data string instead of READSTRING or
READLINE.

In Section 7.10, we wrote a number of procedures that manipulate char
acter strings. These operations are all performed by standard functions in
UCSD Pascal as described in Table B.l. All arguments ending with -string
are type STRING; all other arguments are type INTEGER.

Table B.1 Table of String Manipulation Functions

Function

CONCAT ( string-list)

CONCAT ( 'X', ' +, ,y' )

COpy (source-string,
index, size)

COPY( 'HI HO', 4, 2)

POS ( target-string,
source-string)

POS ( 'Find me', 'me')

Description

Returns a string formed by concatenating
the strings in string-list The string-list con
sists of any numberof strings separated by
commas.
Result is 'X + y'.

Returns a string of size characters taken
from source-string starting at position index.
The source-string is unchanged.
Result is 'HO'.

Returns the starting position (an integer) of
the first occurrence of target-string in
source-string. Returns 0 if target-string is
not found.

Result is 6.

There are two string-manipulation procedures in UCSD Pascal. They are
described in Table B.2 and illustrated. The examples assume that STRl is
'Mr. & Mrs. Jones' and STR2 is 'The day'.

To illustrate the use of these functions and procedures, we will write
two versions of procedure REPLACE. Procedure REPLACE replaces all oc
currences of a target-string in a source-string with a pattern-string. For ex
ample, the procedure (call) statement

REPLACE ('Pascal', 'UCSD Pascal', TEXTSTRING)

would replace all occurrences of 'Pascal' in TEXTSTRING by 'UCSD
Pascal' .

The first implementation (see Fig. B.l) uses the standard functions; the
second implementation (see Fig. B.2) uses the standard procedures. In both

APPENDIX B Ap-11



Table B.2 Table of String Manipulation Procedures

Procedure Description

DELETE (source-string,
index, size)

DELETE (STRl, 5, 7)

INSERT (pattern-string,
source-string, index)

INSERT (STR2, 'next', 5)

Removes the next size characters from
source-string starting with the character
at position index.
The new value of STRI is 'Mr.
Jones '.

Inserts the pattern-string at position index
of source-string.
The new valueof STR2 is 'The next
day'.

implementations, the while loop is repeated as long as the string TAR
GET is still present in the string SOURCE. The loop body replaces each oc
currence of TARGET with PATTERN and finds the next occurrence of
TARGET in SOURCE.

procedure REPLACE (TARGET, PATTERN linput! : STRING;
var SOURCE Iinput/output! : STRING);

IReplaces each occurrence of TARGET in SOURCE by PATTERN.!

var
INDEX : INTEGER;
HEAD,
TAIL : STRING;

Ithe position of TARGET if found!
Ithe substring of SOURCE preceding TARGET!
Ithe substring of SOURCE following TARGET!

begin IREPLACE!
IFind each occurrence of TARGET and replace it with PATTERN.!
INDEX := POS(TARGET, SOURCE); Ifind first occurrence!
while INDEX <> 0 do

begin
IGet the head of the string SOURCE.!
HEAD := COPY(SOURCE, 1, INDEX-I);
IGet the tail of the string SOURCE.!
TAIL := COPY(SOURCE, INDEX+LENGTH(TARGET),

LENGTH(SOURCE)-INDEX-LENGTH(TARGET)+l);
IConcatenate HEAD, PATTERN, and TAIL.!
SOURCE := CONCAT(HEAD, PATTERN, TAIL);
INDEX := POS(TARGET, SOURCE) Ifind next occurrence!

end [wh i l.e ]
end; IREPLACE!

Fig. B.1 Procedure REPLACE Using Standard Functions

Fig. B.2 Procedure REPLACE Using Standard Procedures

procedure REPLACE (TARGET, PATTERN Iinput! : STRING;
var SOURCE Iinput/output! : STRING);

IReplaces each occurrence of TARGET in SOURCE by PATTERN.!

Ap-12 APPENDIX B



var
INDEX : INTEGER;
HEAD,
TAIL : STRING;

Ithe position of TARGET if foundj
Ithe substring of SOURCE preceding TARGETj
Ithe substring of SOURCE following TARGETj

Idelete TARGETj
Iinsert PATTERNj

Ifind next occurrencej

begin IREPLACEj
IFind each occurrence of TARGET and replace it with PATTERN.j
INDEX := POS(TARGET, SOURCE); Ifind first occurrencej
while INDEX <> 0 do

begin
DELETE (SOURCE, INDEX, LENGTH(TARGET)):
INSERT (PATTERN, SOURCE, INDEX);
INDEX := POS(TARGET, SOURCE)

end [whi Le ]
end; IREPLACEj

Compiler Directives in UCSD Pascal

A special form of comment called a pseudo comment may be used to set
option switches in the UCSD Pascal compiler. Each pseudo comment be
gins with the symbol $. One particulary useful option switch directs the
compiler to insert a disk file into the source program being compiled. The
comment

I$1 PROCESS I

causes the file PROCESS to be inserted where the comment occurs in the
program. This enables the programmer to save procedures and functions
in separate files and pull these files together at a later time.

Sequential File Manipulation in UCSD Pascal

There are a few differences in the way sequential files are processed in
UCSD Pascal. There are two predefined file types in UCSD Pascal: TEXT
and INTERACTIVE. The system files INPUT and OUTPUT are predeclared
as type INTERACTIVE. If CH is type CHAR, the operation READ (CH) is
implemented as

GET (INPUT);
CH := INPUT"

This is the reverse of the order for a TEXT file (see Section 8.8) and facili
tates interactive data entry in UCSD Pascal.

The RESET and REWRITE statements have a slightly different form in
UCSD Pascal. The first statement on Ap-14 associates the internal file
name INFILE with the directory name 'MYDATA' and prepares this file
for input. The second statement Ap-14 associates the internal file name
OUTFILE with the directory name 'NEWDATA I and prepares this file for
output.

APPENDIX B Ap-13



RESET (INFILE, 'MYDATA');
REWRITE (OUTFILE, 'NEWDATA');

Iprepare INFILE for input}
Iprepare OUTFILE for output}

The internal file names must be referenced in the program. The if
statement

if not EOF(INFILE) then
begin

READ (INFILE, NEXT_RECORD);
WRITE (OUTFILE, NEXT_RECORD)

end;

copies a record from file INFILE to file OUTFILE using NEXT_RECORD
as an intermediary.

After file processing is finished, the statements

CLOSE (INFILE, NORMAL);
CLOSE (OUTFILE, LOCK)

should be used to update the disk directory. Failure to do so may result in
a newly created file being lost.

The second parameter of the CLOSE statement specifies the disposition
of the file being closed as explained in Table B.3. The LOCK parameter
should be used to save a newly created file. If the program does not close
an opened file, the system performs a CLOSE (file, NORMAL) operation on
that file.

Table B.3 Table of CLOSE Options

CLOSE Statement Effect

Ap-14

CLOSE ( file, NORMAL) The file is closed and has the same contents that it
CLOSE (file) had before it was opened.

CLOSE ( file, LOCK) The file is closed and its contents as changed by
the' program is saved.

CLOSE ( file, PURGE) The file is closed and is removed from the disk
directory.

CLOSE ( file, CRUNCH) The file is closed and all records following the last
one accessed are deleted.

The directory name may be read into a string variable during program
execution. If INNAME is type STRING, then the statements below associ
ate the directory file specified by the program user with file INFILE.

WRITE ('Enter directory name of file to be copied: ');
READLN (INNAME); Iread the directory name}
RESET (INFILE, INNAME) Iprepare INFILE for input}

APPENDIX B



1 8.41 TURBO Pascal*

TURBO Pascal is another version of Pascal that is available on personal
computers. Like UCSD Pascal, TURBO Pascal provides facilities for editing
and saving files. The text editor in TURBO Pascal uses many of the com
mands found in the popular WordStart word processing program.

Identifiers in TURBO Pascal

There are a number of additional reserved words and standard identi
fiers in TURBO Pascal. The reserved words are listed below followed by
the standard identifiers discussed in this section.

Additional reserved words
absolute external inline shl shr string xor

Selected standard identifiers
CLOSE CONCAT COpy DELETE INSERT LENGTH POS

An identifier may consist of up to 127 characters. The underscore char
acter C) can appear in an identifier.

The case Statement in TURBO Pascal

The case statement in TURBO Pascal has been extended to include an
else clause. This clause is executed when the case selector value does
not match any of the case labels. If the value of OPERATOR (type CHAR)
is not one of the four characters listed, the WRITELN statement following
else is executed in TURBO Pascal.

+ OPERAND2i
- OPERAND2i
I OPERAND2i
* OPERAND2

OPERANDI
OPERANDI
OPERANDI
OPERANDI

case OPERATOR of
,+, RESULT:=
'-' RESULT:=
'I' : RESULT :=
,*' : RESULT : =

else
WRITELN ('Invalid symbol 'f OPERATOR)

end [case ]

The word otherwise is sometimes used instead of else in other ex
tended versions of Pascal. The rest of the case statement would be
unchanged.

• TURBO Pascal is a trademark of Borland International. Inc.

tWordStar is a trademark of MicroPro International. Inc.

APPENDIX B Ap-15



Ap-16

String Manipulation in TURBO Pascal

The string data type and string processing features of UCSD Pascal are
also provided in TURBO Pascal. You should read the section entitled
String Manipulation in UCSD Pascal at the beginning of Appendix B.3.

There are two significant differences between the STRING data type in
UCSD Pascal and TURBO Pascal. First, STRING is a reserved word in
TURBO Pascal and cannot be redefined; STRING is a standard identifier
in UCSD Pascal. Second, the maximum length of a string variable must al
ways be specified in TURBO Pascal; there is no default value. The decla
rations

var
WORD: STRING[lO]i
LINE: STRING[80];
PARAGRAPH: STRING[255];

allocate space for storage of three strings; the maximum length of each
string is specified.

The programs that manipulate character strings in Chapters 6 through 10
must be modified to run in TURBO Pascal. The declaration

type
STRING = packed array [1 •• STRINGSIZE] of CHAR;

is invalid because STRING is a reserved word in TURBO Pascal. Replace
this declaration with

type
A STRING = STRING[STRINGSIZE];

and substitute A_STRING for each occurrence of the type identifier
STRING. The READLN procedure can be used to read up to STRINGSIZE
characters into a variable of type A_STRING.

The string manipulation procedures and functions described for UCSD
Pascal are also implemented in TURBO Pascal. Procedure REPLACE
shown in Fig. B.1 and B.2 will run in TURBO Pascal provided the type
identifier A_STRING is declared and used in place of STRING as de
scribed above. Also, the statement

SOURCE := HEAD + PATTERN + TAIL;

can be used in Fig. B.l to concatenate the three strings listed on the right
because the operator + means concatenation when used with string oper
ands in TURBO Pascal.

Compiler Directives in TURBO Pascal

There are a number of compiler options which are set to default values of
+ or - in TURBO Pascal. In order to change the default value, the pro-

APPENDIX B



grammer must specify the new value for a compiler directive. This new
value is provided in the form of a pseudo comment.

TURBO Pascal does not normally check for subscript range errors. The
pseudo comment I$R+ I changes the value of the R compiler directive from
- to + and enables subscript checking and should be used while
debugging programs. This comment should appear before the first refer
ence to an array element.

The pseudo comment I$ I PROCESS. PAS I instructs the compiler to in
clude the file PROCESS .PAS in the source program at the point where t~
comment occurs. The I compiler directive is necessary for compiling large
programs. It enables the programmer to save procedures and functions as
separate files and then pull these files together at a later time.

Sequential File Manipulation in TURBO Pascal

The system file INPUT may correspond to either of two logical devices in
TURBO Pascal. In normal operation. the system file INPUT corresponds to
the console device. This is fine for entering numeric data and allows the
user to edit the data string before pressing the <Return> key. The disad
vantage is that the EOLN functions and EOF functions will not work prop
erly and character data are not read as expected.

The pseudo comment [$B-] resets the value of the B compiler directive
from + to -. The effect is to assign the system file INPUT to the terminal
device instead of the console device. This enables data entry to proceed
as described in the text. This comment must precede the program state
ment.

When processing disk files, two additional statements must be used in
TURBO Pascal. The ASSIGN statements below associate the internal file
name INFILE with the directory name 'MYDATA. TXT' and the internal
file name OUTFILE with the directory name' NEWDATA. TXT'.

ASSIGN (INFILE, 'MYDATA.TXT');
ASSIGN (OUTFILE, 'NEWDATA.TXT');

The ASSIGN statement for a file must precede any statement that manipu
lates the file.

The internal file names may be manipulated as before. The statements
below

RESET (INFILE);
REWRITE (OUTFILE);
if not EOF(INFILE) then

begin
READ (INFILE, NEXT_RECORD);
WRITE (OUTFILE, NEXT RECORD)

end; -

prepare INFILE and OUTFILE for input and output, respectively, and
copy the first record of INFILE to OUTFILE using NEXT_RECORD as an
intermediary.

APPENDIX B Ap-17



After file processing is finished, the statements

CLOSE (INFILE);
CLOSE (OUTFILE)

should be used to update the disk directory. Failure to do so may result in
a newly created file being lost.

The directory name may be read into a string variable during program
execution. If INNAME is type STRING [ 11 ], then the statements below as
sociate the directory file specified by the program user with file INFILE.

Ap-18

WRITE ('Enter directory name
READLN (INNAME);
ASSIGN (INFILE, INNAME);
RESET (INFILE)

APPENDIX B

of file to be copied: I);
Iread the directory namel

Iprepare INFILE for inputl



Appendix C

Pascal Syntax Diagrams
Program

program parameters

declaration part

Program Parameters

identif""ieofr__.......)-.<D-....,.c...•I_ - - -.........---.~0))-------~

Body

----J.~I compound statement II----------------------J~

Declaration Part I I _
--.,.-----J~ ~abel declaration r--

type definition

}---..--.l constant definition

)----,_-.tvariable declaration I----J~

1'----.1 procedure declaration I-----'~

function declaration

Ap-19



Label Declaration

~statement labelI )
....----(0)00.........-----.

Constant Definition

---'l·~lidentifier~constantl-----------""

Type Definition

--·~lidentifier~I-------------"

Variable Declaration

Statement Label
-----~·l-in-te-g-e-r-n-um-be-r-------------....

Constant

unsigned constant

Ap-20 APPENDIX C

'-------10{ NIL

Unsigned Constant
unsigned number

constant Identifier

Identifier

letter



Function Declaration

Procedure Declaration

formal parameter list

formal parameter list

Formal Parameter List

type identifier

APPENDIX C Ap-21



Type

type identifier --l

scalar type I- I

sUbrange type :

pointer type- --l

array type

~~~ record type-
file type

set type

Subrange Type

-----i.~1 constant

("'------(0.
1------+·,0 ·1 constant Ir-------------i~

Pointer Type

-----i.~Ot-----i.~11 type identifier I----------------i~

Array Type

~/-----"(---.'I type If-~)---'.cv-.~I type t---+-
'------{Ol"'"II(If--~

Ap-22

Record Type

-----i.~~)----:l.~1 field list

APPENDIX C

I----..@)I-----------.

Field List

Variant

(.I....~fleld11s'1-----Q)

File Type

--....,.~~~----l.~~t------------~~

Set Type

--"';••~I---••~t-------------....

APPENDIX C Ap-23

Compound Statement

Statement

statement label

Assignment Statement

function identifier

Procedure (Call) Statement

assignment statement

procedure statement

compound statement

if statement

case statement

while statement 1----1

for statement

repeat statement

with statement

goto statement

expression

Ap-24

procedure identifier

APPENDIX C

if Statement

----.Gf----i·~lexpressionll----;~(statement

statement

while Statement

~ expression~ statement r--.

for Statement

expression

case Statement

-

APPENDIX C Ap-25

case Label

.,constant I

repeat Statement

with Statement

.~bleI) .~[is~t!at~e~m~e~n~t}I------.
- "-0.

goto Statement

.1 statement labelj---~.~@)---~~~~~~~~--------------~~

Actual Parameter

expression

variable

function identifier

procedure identifier

Ap-26 APPENDIX C

Expression

--+I simple expression f---------.,,....--------------.

'--~-~-~-...:...-...:...-~__iI.jsimpleexpression

Term

~ factor l-----;---------.---~-~---...---.....,.,....------..

factor I....
Factor

unsigned constant

Function Designator

function identifier

APPENDIX C Ap-27

Set Value

Variable

expression

Ap-28

variable identifier

Unsigned Number

~in:::~r ~

Integer

•

Real

APPENDIX C

integer

Appendix D
Character Sets

The following charts show the ordering of the character sets: ASCII
(American Standard Code for Information Interchange), EBCDIC (Extend-
ed Binary Coded Decimal Interchange Code), and CDC* Scientific. Only
printable characters are shown. The ordinal number for each character is
shown in decimal. The blank character is denoted by a "0".

Right ASCII
Digit

0 2 3 4 5 6 7 8 9

3 0 " # s % &
4 () * + / 0 1
5 2 3 4 5 6 7 8 9
6 < > ? @ A B C D E
7 F G H I J K L M N 0
8 P Q R S T U V W X y

9 Z [\] a b c
10 d e f g h i j k 1 m
11 n 0 p q r s t u v w
12 x y z I I

Codes 00-31 and 127 are nonprintable control characters.

• CDC is a trademark of Control Da ta Corpora lion.

Ap-29

Right EBCDIC
Digit

0 2 3 4 5 6 7 8 9

6 D
7 ¢ < +
8 &
9 ! s * -, /

10 %
11 > ?
12 :# @ " a
13 b c d e f g h i
14 j k 1 m n
15 0 P q r
16 s t u v w x y z
17 \ !
18
19 A B C D E F G
20 H I J
21 K L M N 0 p Q R
22 S T U V
23 W X y Z
24 0 1 2 3 4 5 6 7 8 9

Codes 00-63 and 250-255 are nonprintable control characters.

Right CDC
Digit

0 2 3 4 5 6 7 8 9

0 A B C D E F G H I
1 J K L M N 0 p Q R S
2 T U V W X y Z 0 1 2
3 3 4 5 6 7 8 9 + *
4 / () s D , [
5] % =I=- ~ V 1\ t t < >
6 .;; > -,

Ap-30 APPENDIX D

Appendix E
Error Number Summary

1 :
2 :
3 :
4 :
5 :
6 :
7 :
8 :
9:

10:
11:
12:
13:
14 :
15:
16:
17:
18:
19:
20:
21:

50:
51:
52:
53:
54 :
55:
56:
57:
58:
59:
60:

101:
102:
103:
104 :
105:
106:
107:
108:
109:
110:
111:
112:
113:
114 :
115:

error in simple type
identifier expected
'program' expected
')' expected
, :' expected
illegal symbol
error in parameter list
'of' expected
I (' expected
error in type
, [' expected
,]' expected
'end' expected
'j' expected
integer expected
'=' expected
'begin' expected
error in declaration part
error in field-list

" expected
'*' expected

error in constant
, : =' expected
'then' expected
'until' expected
'do' expected
'to'/'downto' expected
'if' expected
'file' expected
error in factor
error in variable
identifier not declared

identifier declared twice
low bound exceeds highbound
identifier is not of appropriate class
identifier not declared
sign not allowed
number expected
incompatible subrange types
file not allowed here
type must not be real
tagfield type must be scalar or subrange
incompatible with tagfield type
index type must not be real
index type must be scalar or subrange
base type must not be real
base type must be scalar or subrange

Ap-31

Ap-32

116:
117:
118:

119:

120:

121:
122:

123:
124 :
125:
126:

127:
128:

129:
130 :
131 :
132:
133 :
134 :
135:
136 :
137:
138 :
139 :
140 :
141 :
142 :
143 :
144 :
145 :
146 :
147:

148:
149 :
150:
151:
152:
153:
154 :
155:

156:
157:
158:
159:
160:
161:
162:
163:
164 :

APPENDIX E

error in type of standard procedure parameter
unsatisfied forward reference
forward reference type identifier in variable
declaration
forward declared; repetition of parameter list
not allowed
function result type must be scalar, subrange or
pointer
file value parameter not allowed
forward declared function; repetition of result
type not allowed
missing result type in function declaration
F-format for real only
error in type of standard function parameter
number of parameters does not agree with
declaration
illegal parameter substitution
result type of parameter function does not agree
with declaration
type conflict of operands
expression is not of set type
tests on equality allowed only
strict inclusion not allowed
file comparison not allowed
illegal type of operand(s)
type of operand must be Boolean
set element type must be scalar or subrange
set element types not compatible
type of variable is not array
index type is not compatible with declaration
type of variable is not record
type of variable must be file or pointer
illegal parameter substitution
illegal type of loop control variable
illegal type of expression
type conflict
assignment of files not allowed
label type incompatible with selecting
expression
subrange bounds must be scalar
index type must not be integer
assignment to standard function is not allowed
assignment to formal function is not allowed
no such field in this record
type error in read
actual parameter must be a variable
control variable must neither be formal nor non
local
multidefined case label
too many cases in case statement
missing corresponding variant declaration
real or string tagfields not allowed
previous declaration was not forward
again forward declared
parameter size must be constant
missing variant in declaration
sUbstitution of standard proc/func not allowed

165: multidefined label
166: multideclared label
167: undeclared label
168: undefined label
169: error in base set
170: value parameter expected
171: standard file was redeclared
172: undeclared external file
173: Fortran procedure or function expected
174: Pascal procedure or function expected
175: missing file "input" in program heading
176: missing file "output" in program heading

201:
202:
203:
204 :

250:
251:
252:
253:
254:
255:
256:
257:
258:
259:

300:
301:
302:
303:
304 :

398:
399:

error in real constant: digit expected
string constant must not exceed source line
integer constant exceeds range
8 or 9 in octal number

too many nested scopes of identifiers
too many nested procedures and/or functions
too many forward references of procedure entries
procedure too long
too many long constants in this procedure
too many errors on this source line
too many external references
too many externals
too many local files
expression too complicated

division by zero
no case provided for this value
index expression out of bounds
value to be assigned is out of bounds
element expression out of range

implementation restriction
feature not implemented

APPENDIX E Ap-33

Answers to Selected
Exercises

Chapter 1

Section 1.2

1. -27.2, 75.62. Memory cells: 998, 2.

Section 1.4

2. Add A, B, and C and store result in X.
Divide Y by z and store result in X.
Subtract B from C and then add A and store result in D.

Section 1.5

1. The programmer creates the source file. The compiler produces the ob
ject file from a syntactically correct source file. The loader processes
the object file

Section 1.6

1. Pascal reserved words: END, PROGRAM, BEGIN, CONST
standard identifiers: READLN
identifiers: BILL, RATE, OPERATE, START,. XYZ123,

THIS ISALONGONE
invalid identifiers: SUE IS, 123XYZ, Y=Z

2.
program SMALL (INPUT, OUTPUT);

var
X,Y,Z : REAL; IX,Y,Z are declared variables with real contentsl

variable Y l
is added to 3.5

l

begin
Y . = 15. 0 ; Ithe
Z . = - Y + 3. 5; Ithe

and
X .= Y + Z; lthe

and
WRITELN (X, Y, Z) lthe

end.

value 15.0 is assigned to
negative of contents in Y
assigned to variable Z
contents of Y is added to contents of Z
assigned to variable X l
contents of variables X, Y, Z are printedl

3.500000 1.500000El -1.150000El
3. WRITELN ('The value of X is " X, , pounds.')

An8-1

Section 1.9

2.
program COUNTCOINS (INPUT, OUTPUT);

var
QUARTERS, DIMES, NICKELS, PENNIES, COINS, CENTS : INTEGERi

begin
WRITE {'How many quarters do you have?')i READLN {QUARTERS)i
WRITE {'How many dimes do you have?')i READLN {DIMES)i
WRITE {'How many nickels do you have?')i READLN (NICKELS);
WRITE {'How many pennies do you have?')i READLN (PENNIES);
COINS := QUARTERS + DIMES + NICKELS + PENNIESi
CENTS := 25 * QUARTERS + 10 * DIMES + 5 * NICKELS + PENNIES;
WRITELN {'You have', COINS :2, , coins.')i
WRITELN ('Their value is' CENTS :3, , cents.')

end.
3. -15.5640

-15.564
-15.56
-15.6

-16
-16

Section 1.10

1. Integer, string, character, invalid character, real, invalid real, integer, in
valid real, character, invalid character, character, string

Chapter 2

Section 2.1

2. Problem inputs
the list price of an item (LISTPRICE : REAL)
the rate of discount as a percentage (RATE : REAL)

Problem outputs
the discounted price of the item (DISPRICE : REAL)

Algorithm for computation of discounted price of an item
1. Read the values of LISTPRICE and RATE.
2. Determine actual discount.

2.1 Multiply RATE by 0.01 and store in DISCRATE.
3. Computed discounted price of item.

3.1 Multiply LISTPRICE by DISCRATE, save result in DISCOUNT.
3.2 Subtract DISCOUNT from LISTPRICE, save result in DISPRICE.

4. Print value of DISPRICE.

Section 2.2

2. program HIHO;
IPrint the words "HI HO" in block letters. 1
IInsert procedures PRINTH, PRINTI, PRINTO here.\

Ans-2 ANSWERS TO SELECTED EXERCISES

begin IHIHOI
IPrint the word "HI".1
PRINTHi
PRINTIi

IPrint three blank linesl
WRITELNi
WRITELNi
WRITELNi

[Pr i.nt; the word "HO".j
PRINTHi
PRINTO

end. IHIHOI

Structure Chart

Section 2.3

2. Structure chart

save first of CH3 and
ALPHAFIRST in ALPHAFIRST

program FIRSTLETTER (INPUT, OUTPUT)i
IFinds and prints the alphabetically first letter. I

var
CHI, CH2, CH3, CH4
ALPHAFIRST : CHARi

CHARi lfour letters read inl
lalphabetically first letterl

begin IFIRSTLETTERI
IRead four lettersl
WRITE ('Enter any four letters: ')i
READLN (CHI, CH2, CH3, CH4)i

ANSWERS TO SELECTED EXERCISES Ans-3

IStore the alphabetically first of CHI and CH2 in ALPHAFIRSTl
if CHI < CH2 then

ALPHAFIRST := CHI
else

ALPHAFIRST := CH2;

IStore the alphabetically first of CH3 and ALPHAFIRSTl
if CH3 < ALPHAFIRST then

ALPHAFIRST ~= CH3j

IStore the alphabetically first of CH4 and ALPHAFIRSTl
IF CH4 < ALPHAFIRST then

ALPHAFIRST := CH4;

IPrint the resultl
WRITELN (ALPHAFIRST, ' is the first letter alphabetically. ')

end. IFIRSTLETTERl

3. a) if ITEM <> 0 then
PRODUCT := PRODUCT * ITEM;

WRITELN (PRODUCT)
b) if (X - y) > 0 then

Z := X - Y
else

Z := Y - x;
c) if X = 0 then

ZEROCOUNT := ZEROCOUNT + I
else if X < 0 then

MINUSSUM := MINUS SUM + X
else

PLUS SUM := PLUSSUM = X;

Section 2.4

1. Rearrange letters T, H, and E between CHI, CH2, and CH3 so that all
the possibilities of the two if statements can be examined. When all
three letters are the same then ALPHAFIRST will be assigned the value
of that letter through variable CH2 in the else statement. When all let
ters are the same neither of the conditions is true.

2. Trace of program from figure 2.10 where HOURS is 30.0 and RATE is
5.00.

Program statement HOURS RATE GROSS NET Effect

WRITE ('Hours worked?');
READLN (HOURS); 30.0

WRITE ('Hourly rate?');
READLN (RATE);

GROSS := HOURS * RATE;

if GROSS > TAXBRACKET then

NET := GROSS - TAX

5.00

print prompt
data read into HOURS

print prompt
data read into RATE

150.00 product saved in GROSS

Is GROSS larger than
TAXBRACKET? Yes,
expression is true.

125.00 difference saved in NET

Ans-4 ANSWERS TO SELECTED EXERCISES

Program statement HOURS RATE GROSS NET Effect

WRITELN ('Gross salary is $' •••);

WRITELN ('Net salary is $' •••);

gross salary printed

net salary printed

Section 2.5

2. Algorithm combining steps 2 and 2A
1. Enter hours worked and hourly rate
2. Compute gross salary including double pay for overtime
3. Compute net salary
4. Print gross salary and net salary

step 2 refinement
2.1 if HOURS > MAXHOURS then

GROSS := (MAXHOURS * RATE) + ((HOURS - MAXHOURS) * RATE * 2)
else

GROSS := HOURS * RATE
3. Revision of Figure 2.14

if CLAIMS = 0 then
DIVIDEND := (PREMIUM * FIXEDRATE) + (PREMIUM * BONUSRATE)

else
DIVIDEND := PREMIUM * FIXEDRATE

Section 2.6

1.
program SUMINTEGERS (INPUT, OUTPUT);
IFinds and compares summation of integers by two methods.l

var
N,
SUM1,
SUM2,
NEXTINT : INTEGER;

lthe last integer to be added to the suml
lthe sum being accumulated with a loopl
lthe sum being accumulated without a loopl
lthe next integer to be added to suml

begin ISUMINTEGERSl
IRead in an integerl
WRITE ('Enter a number to be summed: ');
READLN (N);

ICompute the summation using a loopl
SUMl := 0;
For NEXTINT := 1 to N do

SUMl := SUMl + NEXTINT;

ICompute summation using formulal
SUM2 := (N * (N + 1)) DIV 2;

linitialize SUMll

IDIV means division
yields integer resultl

IPrint out resultsl
WRITELN ('The sum computed using a loop is
WRITELN ('The sum computed by a formula is

, SUMl : 5) ;
, SUM2 : 5) ;

ANSWERS TO SELECTED EXERCISES Ans-5

IPrint out comparison messagel
if SUMI = SUM2 then

WRITELN ('The sums computed differently are the same.')
else

WRITELN ('The sums computed differently are not the same.')
end. ISUMINTEGERSI

Section 2.7

1.
program FINDPRODUCT (OUTPUT, INPUT)j
IComputes and prints the product of a list of nonzero data itemsl

var
NUMITEMS,
COUNT : INTEGERj
ITEM,
PRODUCT : REAL;

lthe number of data items to be summed I
lcount of the items multiplied so farl
lthe next data ite~ to be multipliedl
lthe product of the computation I

begin IFINDPRODUCTI
IEnter the number of data items to be multipliedl
WRITE ('Enter the number of data items: ');
READLN (NUMITEMS)j

IFind the product of items enteredl
PRODUCT := Ij IInitialize PRODUCT to onel
for COUNT := 1 to NUMITEMS do

begin
WRITE ('Please enter data item: ')j
READLN (ITEM);

IProcess valid data ignoring value of 01
if ITEM <> 0 then

PRODUCT := PRODUCT * ITEM
end; lfor COUNT I

IPrint the final product of data itemsl
WRITELN ('The product of all nonzero data items is

end. IFINDPRODUCTI
PRODUCT :8:2)

Chapter 3

Section 3.1

1. for statement. identifier, expression, simple expression. term. factor.
variable. statement. assignment statement. I is a variable identifier and
also a term. SUM is a variable and also a term. N is an expression.

Section 3.2

2. if X > y then
begin

LARGER := X;
SMALLER := Yj
WRITELN ('X LARGER')

end Iif I
else

begin

Ans-6 ANSWERS TO SELECTED EXERCISES

LARGER := Y;
SMALLER := X;
WRITELN ('Y LARGER')

end; [e Lae]
~ Icorrect grade assignmentl

if SCORE < 60 then
WRITE ('F')

else if SCORE < 70 then
WRITE ('D')

else if SCORE < 80 then
WRITE (' C')

else if SCORE < 90 then
WRITE ('B')

else
WRITE ('A')

& lassign correct grade I
if GPA >= 3.5 then

WRITELN ('Highest honors for the semester')
else if GPA >= 3.0 then

WRITELN ('Deans list for the semester')
else if GPA <= 0.99 then

WRITELN ('Failed semester-registration suspended')
else if GPA <= 1.99 then

WRITELN ('On probation for next semester');

Section 3.3

1. 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
2.
program POWERS (INPUT, OUTPUT);
IPrints all powers of N with a value less than 10001

const
MAXPOWER = 1000;

var
NEXTPOWER,
COUNT,
N : INTEGERj

Ithe largest possible power I

Ithe value of the next power of Nl
Ithe present power of Nl
Ian integerl

IInitialize NEXTPOWER to the zero powerl
IInitialize COUNT to zero powerl

begin IPOWERS I
WRITELN {'This program prints all powers of an integer
WRITE ('value less than 1000. Enter an integer: ')j
READLN (N);
NEXTPOWER := 1;
COUNT := OJ

with a') j

IPrint table heading I
WRITELN {'POWER VALUE')j
IPrint each power of N less than MAXPOWER and its valuel
while NEXTPOWER < MAXPOWER do

begin
WRITELN (COUNT :3, MAXPOWER :8);
NEXTPOWER := NEXTPOWER * Nj
COUNT := COUNT + 1

end [wh i.Le]
end. IPOWERS I

ANSWERS TO SELECTED EXERCISES Ans-7

~ CELSIUS := MINCEL;
for LCV := 1 to 8 do

begin
FAHREN := 1.8 * CELSIUS + 32;
WRITELN (CELSIUS :10, FAHREN :15:1);
CELSIUS := CELSIUS + CELSTEP

end [for]

Section 3.4

1. actual parameters formal parameters attributes
------------- ------------- -------

NUMI X REAL variable
NUM3 y REAL variable

actual parameters formal parameters attributes
------------- ------------- -------

NUM2 X REAL variable
NUM3 y REAL variable

4. (var A, B : INTEGER; var C : REAL);
(M : INTEGER; var NEXT: CHAR);
(var ACCOUNT: REAL; X, Y : REAL);

5. a) type REAL of Z does not correspond to type INTEGER of formal pa-
rameter X

b) procedure call is correct
c) procedure call is correct
d) type INTEGER of M does not correspond to type REAL of formal pa-

rameter A
e) 25.0 and 15.0 cannot correspond to variable parameters
f) procedure call is correct
g) parameter names A. B have not been declared in main program
h) procedure call is correct
i) expressions (Y + Z) or (Y - Z) may not correspond to a vari

able parameter
j) type REAL of actual parameter X does not correspond with type

INTEGER of formal parameter X
k] 4 actual parameters are one too many for 3 formal parameters
1) procedure call is correct

Section 3.5

2. procedure STORE (W [Lnpu t] , X [Lnpu t] : REAL;
var Y Ioutput I, Z Ioutput I REAL) ;

ISums and multiplies two numbers enteredl

begin
Y :=
Z :=

end;

W + X;
W * X
ISTORE!

Ans-8 ANSWERS TO SELECTED EXERCISES

Section 3.6

1. The scope of variable N is procedure OUTER only. Since INNER is nest
ed in OUTER. it is permissible for INNER to reference N. However.
there is a local declaration for N in INNER which takes precedence.

2.
begin I INNER 1

X := 5.5;
Y .= 6.6;
M := 2;
N : = 3;
o := 4

end. I INNER 1

llocal value parameter X is set to 5.51
19lobal variable Y is set to 6.61
lvariable M declared in OUTER is set to 21
llocal variable N is set to 31
llocal variable 0 is set to 41

Section 3.7

2. Such a transposition would result in only categories of Outstanding
or Unsatisfactory being given. Anyone with less than the minimum
score for Outstanding would be classified as Unsatisfactory.
Since both variables are type INTEGER. the compiler would not detect
the error.

Chapter 4

Section 4.2

1. If base 2 is used in PRINTDIGITS instead of base 10 a binary number
is printed in reverse (11101 - reverse of 23 in Base 2). PRINTDIGITS
(64) in base 2 prints 0000001 which is the reverse of 64 in base 2. If
the base is 8, data printed is 72 and 001 respectively.

2. 3. O. 1 .7
0.1.15. 1
o 7,3. 2
0.4.4. 0

3. a) 3 b) -3 c) undefined because of negative mod operand d) -3.14159
e) invalid, assigning REAL value to INTEGER variable I f) 0.75 g) inval
id. REAL operand (A/B) for mod operator h) invalid. result of division
by 0 is undefined i) invalid. undefined because of negative mod oper
and (990-1000) j) 3 k) -3.0 1) invalid, assigning REAL value to IN
TEGER variable I m) invalid, REAL operand for div operator n) 0 0) 1

p) invalid. result of division by 0 is undefined q) 3
4. a) 1 b) -2 d) 6.28138 f) 2.5 i) -5 j) 2 k) 2.5 n) 2.0 0) 0 q) 5
5. a) WHITE : = 1.6666... b) GREEN : = 0.6666... c) ORANGE . - 0

d) BLUE : = -3.0 e) LIME : = 2 f) PURPLE : = 0.6666...

6. a) X: = 4.0 * A * C
b) A:= A * C
c) 1:=2*(-J)
d) K: = 3 * (I + J)
e) X:= (5 * A) / (B * C)
f) I: = 5 * J * 3

ANSWERS TO SELECTED EXERCISES Ans-9

Section 4.3

1. procedure EULER (BASE, APOWER : INTEGER;
var EXPON : REAL);

IComputes the value of a number raised to a power I
begin IEULERI

EXPON := EXP(APOWER * LN(BASE))
end; IEULERI

2. ROUNDX : = ROUND ri 0 0 * X) / 1 0 0 • 0

Section 4.4

2. a) BETWEEN : = N <= ABS (K)
b)UPCASE := CH in ['A' •• 'Z']

3. DIVISOR := N mod M = 0

Section 4.5

1. a) 1 b) FALSE c) TRUE d) 1
2. a) 3 b) 3 c) a d) C e) c f) 1 g) 9 h) g i) F

Section 4.6

1. a) 1 b) FRIDAY c) WEDNESDAY d) CHR(MONDAY) is undefined
2. a) illegal unless declared in a type declaration where SATURDAY pre

cedes SUNDAY b) legal subrange c) legal subrange d) illegal. Quotes
must be added to 0 or removed from' 9 '. e) illegal subrange. The first
value must be less than the last value. f) illegal. String values may not
be used as-identifiers in a subrange

Section 4.7

1. The salary and number of dependents would be read and the rest of
the line would be discarded. Then procedure ECHOLINE will echo print
the entire next line.

Chapter 5

Section 5.1

1. if (DAYVALUE = SUNDAY) then
WRITELN ('Sunday')

else if (DAYVALUE = MONDAY) then
WRITELN ('Monday')

else if (DAYVALUE = TUESDAY) then
WRITELN ('Tuesday')

else if (DAYVALUE = WEDNESDAY) then
WRITELN ('Wednesday')

else if (DAYVALUE = THURSDAY) then
WRITELN ('Thursday')

else if (DAYVALUE = FRIDAY) then
WRITELN ('Friday')

else if (DAYVALUE = SATURDAY) then
WRITELN ('Saturday')

2. case LETTERl of

Ans-10 ANSWERS TO SELECTED EXERCISES

'R' , 'r'
'G' , 'g'
'B' , 'b'

'1" , 'y'
end lease

Section 5.2

EYES := RED;
EYES := GREEN;
case LETTER2 of

'L', 'I' : EYES := BLUE
'R', 'r' : EYES := BROWN

end; lea se LETTER21
EYES := YELLOW

LETTER 11

1. OPERCHARSET : = [' +, , ' - , , ' /' , ' * ' , '=' , ' < ' , ' > '] ;
2.
if NEXTCH in ['A', 'E', 'I', '0', 'U', 'a', Ie', Ii', '0', lUll then

WRITELN ('The next character' NEXTCH,' is a vowel.')
else

WRITELN ('The next character' NEXTCH, ' is not a vowel.')

Section 5.3

L IPrint each digit and its ordinal number]
for CH := '0' to '9' do

WRITELN (CH, ' " ORD(CH))

Section 5.4

1. a) (X > Y) or (X = 15)
b) ((X> Y) or (X = 15)) and (Z <> 7.5)
c) (X = 15) and ((Z <> 7.5) or (X > Y))
~ not FLAG and (X = 15.7)
e) FLAG or not (NEXTCH in l ' A' •• 'H'])

2. NUM : = 10; NUM : = 10;
for LCV := 1 to 10 do repeat

WRITELN (NUM * LCV) WRITELN (NUM);
NUM := NUM + 10

until NUM > 100

Section 5.5

2. OUTER 1
INNER 1 1
INNER 1 2
INNER 1 3

INNER 1 2
INNER 1 1

OUTER 2
INNER 2 1
INNER 2 2
INNER 2 3
INNER 2 2
INNER 2 1

3. for I := 1 to 4 do

ANSWERS TO SELECTED EXERCISES Ans-11

begin
for J := 1 to I do

WRITE (J :2);
WRITELN

end; Ifor I I
for I := 3 downto 1 do

begin
for J := 1 to I do

WRITE (J : 2) ;
WRITELN

end lfor II

Section 5.6

1. function CUBE (NUM : REAL) : REAL;
IComputes the cube of any number. I

begin
CUBE := NUM * NUM * NUM

end; ICUBE I
2.
function TUITION (CREDHOURS : INTEGER) : INTEGER;
IComputes the tuition for a certain number of credit hours taken
at the university. I

const
MINCHARGE
MAX CHARGE

100; [mi n i.mum charge per class hour t.aken]
1000; [max.i.murn charge for 12 hours or morel

begin
if CREDHOURS > 0 then

if CREDHOURS <= 11 then
TUITION .= CREDHOURS * MINCHARGE

else
TUITION .= MAXCHARGE

else
TUITION := 0

end; ITUITIONI
3. function EXPONENT (NUMBER, POWER : REAL) : REAL;

IComputes the value of a number to a given powerl

begin
EXPONENT := EXP(POWER * LN(NUMBER))

end; IEXPONENT I
5.
function LOWERCASE (CH : CHAR) : BOOLEAN;
IReturns a result of TRUE if CH is a lowercase letter and FALSE if notl

begin ILOWERCASE I
LOWERCASE := CH in rIal .. 'z']

end; ILOWERCASE I

Ans-12 ANSWERS TO SELECTED EXERCISES

Chapter 6

Section 6.1

1. Array X is unchanged. The new value of SUM is 56.0

Section 6.3

1. procedure COpy (INARRAY linputl : ANARRAY:
SIZE linputl : INTEGER:
var OUTARRAY [out.put.] : ANARRAY):

ICopies each value in array INARRAY to array OUTARRAY.l

var
I : INTEGER:

begin ICOPYl
for I := 1 to SIZE do

OUTARRAY[I] := INARRAY[I]
end: ICOPYl

2. procedure REVERSE (X [Lnput.] : ANARRAY:
N linputl : INTEGER:
var Y [out.pu t] : ANARRAY):

IReverses the values stored in an arraY.l

var
I : INTEGER:

begin IREVERSE l
ICopy X[N] to yell, X[N-l] to Y[2], etc.l
for I := 1 to N do

Y[I] := X(N+l-I]
end: IREVERSE l

Section 6.4

1.
type

INDEX = l .. MAXSIZE:
ANARRAY = array [INDEX] of REAL:
BOOLARRAY = array [INDEX] of BOOLEAN:

procedure COMPARE (X, Y linputl : ANARRAY:
N linputl : INTEGER:
var Z [out.put.] : BOOLARRAY):

jAssigns TRUE to Z[I) if XlI) = Y[I]: assigns false if XlI) <> Y[I]l

var
I : INTEGER:

begin ICOMPAREl
for I := 1 to N do

Z[I] := XCI] = Y[I]
end: ICOMPAREl

ANSWERS TO SELECTED EXERCISES Ans-13

Section 6.7

1.
function LENGTH (INSTRING : STRING) : INTEGER;
IFinds the actual length of INSTRING excluding blank padding.l

const
BLANK I I.

I

var
I INTEGER; lcharacter being testedl

begin ILENGTH l
IFind first non-blank.l
I := STRINGSIZE;
while (INSTRING[I] = BLANK)

I := I - 1;

lstart at right end of stringl
and (I > 1) do

ltest character to the leftl

lassert: at left end of string or at a non-blank characterl
if INSTRING[I] = BLANK then

LENGTH := 0 [a t, left end of a string of all bLanks]
else

LENGTH := I
end; ILENGTH l
2. See exercise 2 in Section 6.3.
3. Use the program body below where READSTRING is shown in Fig. 6.15

and REVERSE is the solution to exercise 2. INSTRING and
OUTSTRING should both be type STRING.

begin
READSTRING (INSTRING, STRINGLENGTH);
REVERSE (INSTRING, STRINGLENGTH, OUTSTRING);
WRITE (INSTRING :STRINGLENGTH, I is ');
if INSTRING <> OUTSTRING then

WRITE (' not ');
WRITELN ('a palindrome. ')

end.

Section 6.8

1. If MOVEROW or MOVE COLUMN is greater than 3 (or less than 1), a sub
script range error will occur.

2. Declare CAMPUS NAME and CLASSNAME as arrays of strings and initial
ize them so that CAMPUS NAME [DELAWARE] is 'DELAWARE I and
CLASSNAME [JUNIOR] is 'JUNIOR'.

a)
IEnter the enrollment data.l
for CURCAMPUS := MAIN to MONTCO do

for I := 1 to MAXCOURSE do
for CLASSRANK := FRESHMAN to SENIOR do

begin
WRITE ('Enter No. of I, CLASSNAME[CLASSRANK],

, in class #', I :2, ' at "
CAMPUSNAME [CURCAMPUS], I campus: ');

Ans-14 ANSWERS TO SELECTED EXERCISES

READLN (CLASSENROLL[I,CURCAMPUS,CLASSRANK))
end [for CLASSRANKj

b)
CLASSUM := 0;
for CURCAMPUS := MAIN to MONTCO do

for I := 1 to MAXCOURSE do
CLASSUM := CLASSUM + CLASSENROLL[I,CURCAMPUS,JUNIOR)

c)
CLASSUM := 0;
for CURCAMPUS := MAIN to MONTCO do

CLASSUM := CLASSUM + CLASSENROLL[2,CURCAMPUS,SOPHOMORE]
d)
STUDENTOTAL := OJ
WRITELN ('ENROLLMENT AT MAIN CAMPUS');
WRITELN ('-------------------------')j
WRITELN (' COURSE# STUDENTS')j
for I := 1 to MAXCOURSE do

begin
CLASSUM := OJ
for CLASSRANK := FRESHMAN to SENIOR do

CLASSUM := CLASSUM + CLASSENROLL[I,MAIN,CLASSRANK];
WRITELN (I :5, CLASSUM :14);
STUDENTOTAL := STUDENTOTAL + CLASSUM

end; Ifor I I
WRITELN ('Total students enrolled at Main campus

STUDENTOTAL :4)
e)
UPPERCLASSTOTAL := 0;
WRITELN ('ENROLLMENT OF UPPERCLASS STUDENTS BY CAMPUS')
WRITELN ('---');
WRITELN (' CAMPUS ENROLLMENT');
for CURCAMPUS := MAIN to MONTCO do

begin
CLASSUM := OJ
for CLASSRANK := JUNIOR to SENIOR do

for I := 1 to MAXCOURSE do
CLASSUM := CLASSUM +

CLASSENROLL[I,CURCAMPUS,CLASSRANK];
WRITELN (CAMPUSNAME[CURCAMPUS] :16, CLASSUM :15);
UPPERCLASSTOTAL := UPPERCLASSTOTAL + CLASSUM

end; [for CURCAMPUSJ
WRITELN ('Total enrolled upperclass students is '

UPPERCLASSTOTAL :5)

Section 6.9

1. PRINTMENU is implemented as a sequence of WRITELN statements.
TABMONTH must compute and save the sales amounts for January of all
years covered in SUMBYMONTH [JAN], etc. It will be similar to

ANSWERS TO SELECTED EXERCISES Ans-15

TABYEAR except that the order of the loop control variables should be
reversed. GRAPHMONTH will plot the values in the array SUMBYMONTH
for each month from January to December and is similar to
GRAPHYEAR. Both TABMONTH and GRAPHMONTH are passed the array
MONTHNAME so that the name of each month can be displayed.

Chapter 7

Section 7.1

1. CATALOGUE = record
TITLE : STRING;
AUTHOR : STRING;
PUBLISHER : STRING;
PUBDATE : INTEGER

end; ICATALOGUEl
2. PART = record

NAME : STRING;
SERIALNUM = STRING;
INVENTORY : INTEGER;
PRICE : REAL

end; IPARTl

Section 7.5

2.
function FINDLOW (var CLASS linputl : STUDENTARRAY;

NUMSTU linputl : INTEGER) : INTEGER;
IReturns the lowest score of NUMSTU students

var
CURSTU : CLASSRANGE;
LOW : INTEGER;

lloop control variablel
lcontains lowest scorel

begin IFINDLOWl
LOW := 100;
for CURSTU := 1 to NUMSTU do

if CLASS[CURSTU].SCORE < LOW then
LOW := CLASS[CURSTU].SCORE;

FINDLOW := LOW
end; IFINDLOWl

function FINDSTAND (CLASS linputl : STUDENTARRAY;
NUMSTU linputl : INTEGER;
AVERAGE linputl : REAL) : REAL;

IDetermines standard deviation for scores of NUMSTU students

var
SUMSQSCORE : INTEGER;
CURSTU : CLASSRANGE;

lsum of the squares of NUMSTU scoresl
lloop control variablel

begin IFINDSTANDl
SUMSQSCORE := 0;
for CURSTU := 1 to NUMSTU do

SUMSQSCORE := SUMSQSCORE+SQR(CLASS[CURSTU].SCORE);
if NUMSTU > 0 then

FINDSTAND := SQRT(SUMSQSCORE / NUMSTU-SQR(AVERAGE))
end; IFINDSTANDl

Ans-16 ANSWERS TO SELECTED EXERCISES

Section 7.7

1. Change the condition in the if statement to

if CLASS[FIRST].SCORE > CLASS[FIRST+l].SCORE then

For descending ordr, change the operator> to <

Section 7.9

2.
function FIGCONVERT (FIGCHAR : CHAR) : FIGKIND;
{Converts FIGCHAR (a letter) to a value of type FIGKIND.1

begin IFIGCONVERTl
if FIGCHAR in ['R', 'S','C', 'T'] then

case FIGCHAR of
'R' FIGCONVERT'= RECTANGLE;
IS' FIGCONVERT:= SQUARE;
'c' : FIGCONVERT := CIRCLE;
'T' : FIGCONVERT := TRIANGLE

end [case]
else

FIGCONVERT .= ILLEGAL
end; IFIGCONVERTl

Section 7.10

1.
procedure DELETE (var SOURCEl linput/outputl : LINE;

STARTINDEX, SIZE linputj : INTEGER);
IDeletes a substring of SOURCEl of length SIZE at STARTINDEX.l

var
I : 1 •. STRINGSIZEi Iloop control variablel

begin IDELETEl
if (STARTINDEX < 1) or (SIZE < 1) or

(STARTINDEX+SIZE-l > SOURCE1.LENGTH) then
WRITELN ('Illegal integer parameter-deletion aborted.')

else
begin Ideletionj

for I := STARTINDEX to STARTINDEX+SIZE-l do
SOURCE.INFO[I] := SOURCE.INFO[I+SIZE];

SOURCE. LENGTH := SOURCE.LENGTH - SIZE ladjust LENGTHj
end [de Le t.Lon]

end; IDELETEl
3.
procedure DELETE (var SOURCEl linput/outputl : LINE;

STARTINDEX, SIZE linputl : INTEGER);
IDeletes a substring of SOURCEl of length SIZE at STARTINDEX.j

var
TAIL : LENGTH; Isubstring at end of SOURCE1,

following the one to be deletedl
TAILINDEX, Istarting point of TAIL in SOURCEll
TAILLENGTH : O•• STRINGSIZE; Ilength of TAILj

ANSWERS TO SELECTED EXERCISES Ans-17

begin IDELETEl
if (STARTINDEX < 1) or (SIZE < 1) or

(STARTINDEX+SIZE-l > SOURCEl.LENGTH) then
WRITELN ('Illegal integer parameter-deletion aborted.')

else
begin ldeletionl

TAILINDEX := STARTINDEX + SIZE;
TAILLENGTH := SOURCEl.LENGTH - TAILINDEX + 1;
COpy (SOURCEl, TAILINDEX, TAILLENGTH, TAIL): ldefine TAILl
SOURCEI . LENGTH : = STARTINDEX - 1; I" shorten" SOURCEll
CONCAT (SOURCEl, TAIL, SOURCEl)

end [de Le t i on]
end; IDELETEl

Chapter 8

Section 8.1

a) [1,3,4,5,6,7] b) [1,2,3,5,7] c) [1,2,3,4,5,6,7] d) TRUE e) [1,2,3,5,7] f) [2]
g) [] h) FALSE

2. procedure PRINTSET (DIGITS linputj : DIGITSET):
IPrints the digits in set DIGITSl

var
NEXTDIGIT : '0' .. ' 9 ' :

begin IPRINTDIGITl
for NEXTDIGIT := '0' to '9' do

if NEXTDIGIT in DIGITS then
WRITE (NEXTDIGIT)

end: IPRINTSETl

Section 8.5

1.
program ECHOFILE (INVENTORY,INPUT,OUTPUT):

IEchoes file INVENTORY at the terminall

type
STOCKRANGE = 1111.9999:
BOOK = RECORD

STOCKNUM : STOCKRANGE;
AUTHOR,
TITLE: STRING:
PRICE : REAL:
QUANTITY : INTEGER

end: IRecord l
BOOKFILE = FILE OF BOOK:

var
INVENTORY : BOOKFILE;
ONEBOOK : BOOK:

begin
RESET (INVENTORY):
READ (INVENTORY,ONEBOOK):
if not EOF(INVENTORY) then

Ans-18 ANSWERS TO SELECTED EXERCISES

begin
WRITELN ('INVENTORY LISTING OF BOOKS ON HAND');
WRITELN ('----------------------------------');
WRITELN

end; I.i f]
while not EOF (INVENTORY) do

begin
with ONEBOOK do

begin
WRITELN ('StockNumber: ',STOCKNUM);
WRITELN ('Title: " TITLE);
WRITELN (' Author: " AUTHOR);
WRITELN ('Price: ',PRICE:lO:2,' Quantity: ',QUANTITY:5)

end;
READ (INVENTORY, ONEBOOK)

end
end. IECHOFILEI

Section 8.6

1.
begin IMERGE I

IPrepare INVENTORY and UPDATE for input, NEWINVEN for output. I
RESET (INVENTORY); RESET (UPDATE); REWRITE (NEWINVEN);

IRead the first record from INVENTORY and UPDATE. I
READ (INVENTORY, INVENBOOK); READ (UPDATE, UPDATEBOOK);

IWhile not EOF for both files copy INVENTORY and UPDATE to NEWINVENI
while not EOF (UPDATE) and not EOF (INVENTORY) do

COPYSMALLER (INVENBOOK, UPDATEBOOK);

ICopy remainder of whichever file remains to NEWINVENI
while not EOF (UPDATE) do

begin
WRITE (NEWINVEN, UPDATEBOOK);
READ (UPDATE, UPDATEBOOK)

end;
while not EOF (INVENTORY) do

begin
WRITE (NEWINVEN, INVENBOOK);
READ (INVENTORY, INVENBOOK)

end;

IWrite the sentinel record to NEWINVEN.1
WRITE (NEWINVEN, INVENBOOK);
WRITELN ('File merged completed.')

end; IMERGE I

Section 8.7

2. a)
procedure ENTERPARAMS (var PARAMS loutputl : SEARCHPARAMS);

IEnters the search parameters and validates them. The low bound for a
parameter must be <= the high bound and both bounds must be in range. I

IInsert procedures BOUNDSTOCK, BOUNDAUTHOR, BOUNDTITLE, BOUNDPRICE,
BOUNDQUANTITY

ANSWERS TO SELECTED EXERCISES Ans-19

begin IENTERPARAMSI
with PARAMS do

begin
BOUNDSTOCK {LOWSTOCK, HIGHSTOCK)j
BOUNDAUTHOR {LOWAUTHOR, HIGHAUTHOR)j
BOUNDTITLE {LOWTITLE, HIGHTITLE)j
BOUNDPRICE {LOWPRICE, HIGHPRICE)j
BOUNDQUANTITY (LOWQUANT, HIGHQUANT)

end Iwith I
IENTERPARAMS Iend;

2. b)
procedure SHOW {NEXTBOOK linputj : BOOK)j

IDisplays each field of NEXTBOOK at the terminal. Leaves a line space
after each book.

begin ISHOWI
with NEXTBOOK do

WRITELN (STOCKNUM :4,' ',TITLE,' ',AUTHOR,PRICE:IO:2,QUANTITY:5)j
WRITELN

e nd r ISHOWI
3. NEXTBOOK.STOCKNUM is compared to PARAMS.HIGHSTOCK in the

condition of the while loop within which function MATCH is called.

Section 8.8

1. At bottom of while not EOF (INVENTORY) loop do GET (INVENTORY)
twice

Chapter 9

Section 9.1

1. The actual parameter in the procedure call PALINDROME (N-I) is an
expression and must correspond to a variable parameter.

Section 9.2

1.
program TESTHANOI (INPUT, OUTPUT);
ITests the Towers of Hanoi procedure. I

var
NUMDISCS : INTEGER; lnumber of discs to be moved I

IInsert procedure TOWER here.1

INTEGERj

begin ITESTHANOII
WRITE {'How many discs do you wish moved?')j READLN {NUMDISCS)j
TOWER ('A', 'C', 'B', NUMDISCS)

end. ITESTHANOI I

Section 9.3

1.
function FINDMIN (var X : INARRAYj N : INTEGER)
IFinds the smallest value in X[l] .. X[N].I

Ans-20 ANSWERS TO SELECTED EXERCISES

lminimum of rest of array)
var

MINOFREST : INTEGER;

begin IFINDMIN l
if N = 1 then

FINDMIN : = X[1]
else

begin lrecursive step)
MINOFREST := FINDMIN(X, N-l);
if MINOFREST < X[N] then

FINDMIN := MINOFREST
else

FINDMIN := X[N]
end lrecursive stepl

end; IFINDMIN J

Section 9.4

2.
function LENGTH (var INSTRING : STRING; NEXT : INTEGER)
{Returns the length of its character string argument.l

INTEGER;

const
DOLLAR = '$';

begin ILENGTH l
if INSTRING[NEXT] = DOLLAR then

LENGTH := 0
else

LENGTH := 1 + LENGTH(INSTRING, NEXT + 1)
end; ILENGTH l

Section 9.5

lstring terminatorl

1. for' SAL' , HASH .= 32 mod 10 + 1 or 3; stored at subscript [3]
for 'BIL', HASH := 23 mod 10 + 1 or 4; stored at subscript (4]
for 'JIL', HASH := 31 mod 10 + 1 or 2; stored at subscript [2]
for I LIB' , HASH := 23 mod 10 + 1 or 4; stored at subscript [5]
for' HAL' , HASH := 21 mod 10 + 1 or 2; stored at subscript [6]
for' ROB I, HASH := 35 mod 10 + 1 or 6; stored at subscript [7]

2. Change the statement in the for loop to:

HASHINDEX := HASHINDEX + I * ORD(KEY[I]) ;

Now' LIB' and I BIL I may not hash to the same value.
3. Change the statement in the while loop to

INDEX := (INDEX + SQR(PROBE-l)) mod CLASSIZE

Section 9.6

2. Trace of SELECTSORT :
End of pass 1: -5, 5, 7, -3,4,9, 7, -3, 10
End of pass 2: -5,5,7, -3,4, -3, 7, 9, 10
End of pass 3: -5, 5, 7, -3,4, -3, 7,9, 10

ANSWERS TO SELECTED EXERCISES Ans-21

End of pass 4: -5.5. -3. -3.4.7.7.9.10
End of pass 5: -5.4. -3. -3.5.7.7.9.10
End of pass 6: -5. -3. -3.4.5.7.7.9.10 unchanged in 7 and 8

Trace of INSERTSORT

End of pass 1: 5. 10. 7. -3.4.9.7. -3. -5
End of pass 2: 5. 7. 10. -3.4.9.7. -3. -5
End of pass 3: -3.5.7.10.4.9.7. -3. -5
End of pass 4: -3.4.5.7.10.9.7. -3. -5
End of pass 5: -3.4.5.7.9.10.7. -3. -5
End of pass 6: -3.4.5.7.7.9.10. -3. -5
End of pass 7: -3. -3.4.5.7.7.9.10. -5
End of pass 8: -5. -3. -3.4.5.7.7.9.10

Section 9.7

1. For Subarray 12. 33. 23. 43. the pivot value is the smallest value.
New Subarray to sort is 33. 23. 43. When pivot value is placed
in the middle. two single element arrays are left.

for subarray 55. 64. 77. 75. the pivot value is the smallest value.
New subarray to sort is 64. 77. 75. Pivot value is smallest.

New subarray to sort is 77. 75-it becomes 75. 77
2. In the left subarray.

Chapter 10

Section 10.1

1. a) The string I CAT I is stored in the world field of the record pointed
to by R.

b) The record pointed to by R is copied into the record pointed to by P.
c) Illegal. P. WORD should be written as p....WORD.

d) Illegal. P cannot be assigned an integer value.
e) The integer 0 is stored in the PLACE field of the record pointed to

by P.
f) Pointer P is reset to point to the same record as pointer R.
g) Illegal, -10 is not a string.
h) The PLACE field of the record pointed to by R is copied into the

PLACE field of the record pointed to by Q.
2. Exchanges the WORD fields of the records pointed to by P and Q.

Section 10.4

1. procedure PRINTLIST (HEAD [Lnput] : LISTPOINTER);
IPrints the contents of the list pointed to by HEAD. I

begin IPRINTLISTI
if HEAD <> NIL then

begin
WRITELN (HEAD....WORD);
PRINTLIST (HEAD"'. LINK)

end [Lf]
end; IPRINTLISTI

lprint current nodel
lprint rest of listl

Ans-22 ANSWERS TO SELECTED EXERCISES

11 + length of rest of listl

WRITE ('Economy' :13);
WRITE ('First class' :13)

2. The body of iterative function SEARCH shown below assumes FOUND is
a local BOOLEAN variable.

begin ISEARCHI
FOUND := FALSE; ITARGET not found yeti
while (HEAD <> NIL) and not FOUND do

if HEAD~.WORD = TARGET then
FOUND := TRUE IHEAD points to TARGETI

else
HEAD := HEAD~.LINK; ladvance down the listl

lassert: HEAD is NIL or HEAD points to TARGETI
SEARCH := HEAD Idefine resultl

end; ISEARCHI
3.
function LENGTH (HEAD : LISTPOINTER) : INTEGER;
IFinds the length of the list pointed to by HEAD. I

begin ILENGTH I
if HEAD = NIL then

LENGTH := 0
else

LENGTH := 1 + LENGTH (HEAD~.LINK)

end; ILENGTH I

Section 10.5

1. Procedures READIPASS and PRINTIPASS read and print a record of
type PASSENGER. respectively.

procedure PRINTIPASS (ONEPASS linputl : PASSENGER);
IPrints the contents of record ONEPASS.1

begin IPRINTIPASSI
with ONEPASS do

begin
WRITE (NAME :10);
WRITE (NUMSEATS :10);
case CLASS of

ECONOMY
FIRSTCLASS

end; [case]
WRITELN

end [w i.t.h]
end; IPRINTIPASSI

procedure PRINTPASSLIST (HEAD linputl : PASSPOINTER);
IPrints the passenger list. Uses PRINTIPASS.1

begin IPRINTPASSLISTI
while HEAD <> NIL do

begin
PRINTIPASS (HEAD~.PASSINFO);

HEAD := HEAD~.LINK

end [wh i.Le]
end; IPRINTPASSLISTI

ANSWERS TO SELECTED EXERCISES Ans-23

Section 10.6

1.

TOP

FRONT REAR

2. Introduce a local pointer TEMP and set TEMP to point to the original
top of the stack or front of the queue. After removing the node. execute

DISPOSE (TEMP)

3. Use an integer variable as a pointer to the last element in the array
which will be considered the top of the stack. Initialize the pointer to O.
To push an item. increment the pointer by 1 and insert the new item in
the array element selected by the pointer. To pop an item. access the
element at the top of the stack (subscript is the pointer value) and dec
rement the pointer value by 1. The stack is empty if the pointer value is
O.

Section 10.7

1. Inserting parentheses according to the algebraic rules for expression
evaluation gives us the two expressions and trees below.

«X * Y) / (A + B)) * C «X * Y) / A) + (B * C)

Ans-24 ANSWERS TO SELECTED EXERCISES

2. Inorder: BDCA-X+Y, Preorder: ABCD-+XY, Postorder: DCBXY+-A

Section 10.8

1. Change the WRITELN statement in INORDER to

WRITELN (ROOT~.WORD, ROOT~.COUNT :5);
2.

ROOT

ANSWERS TO SELECTED EXERCISES Ans-25

	Problem Solving & Structured Programming in Pascal (Cover)
	Contents
	1. Introduction to Computers & Programming
	2. Problem Solving
	3. Control Statements
	4. Simple Data Types
	5. More Control Statements
	6. Arrays
	7. Records
	8. Sets & Files
	9. Recursion, Searching, & Sorting
	10. Pointer Variables & Dynamic Data Structures
	Appendix A: Reserved Words, Standard Identifiers, Operators, Functions, & Procedures
	Appendix B: Additions & Extensions to Pascal
	Appendix C: Pascal Syntax Diagrams
	Appendix D: Character Sets
	Appendix E: Error Number Summary
	Answers to Selected Exercises

