

Programming the 65816
Including the 6502,
65C02, and 65802

Programming the
65816

Including the 6502,
65C02, and 65802

David Eyes
Ron Lichty

A B rady Book
Published by P ren tice Hall Press

N ew York, N ew York 10023

Copyright © 1986 by Brady Communications Company, Inc.
All rights reserved
including the right of reproduction
in whole or in part in any form

A Brady Book
Published by Prentice Hall Press
A Division of Simon & Schuster, Inc.
Gulf + Western Building
One Gulf + Western Plaza
New York, New York 10023

PRENTICE HALL PRESS is a trademark of Simon & Schuster, Inc.

Manufactured in the United States of America

1 2 3 4 5 6 7 8 9 10

Library of Congress Cataloging in Publication Data

Eyes, David, 1955-
Programming the 65816 including the 6502, 65C02, and 65802.

Includes index.
1. 65x series microprocessors— Programming.
2. Assembler language (Computer program language)
3. Computer architectures. I. Lichty, Ron. II. Title.
QA76.8.S633E95 1985 005.2'65 85-14892
ISBN 0-89303-789-3

Programming the 65816 Including the 6502, 65C02, and 65802

To Carolyn and Althea
— D avid

To Marilou,
and to Mike and Jean

— Ron

Contents
Preface xiii

Acknowledgments xv

Foreword xvii

Introduction xx

Part I Basics

1 Basic Assembly Language Programming Concepts 3
Binary Numbers 4/Grouping Bits into Bytes 4/Hexadecimal
Representation of Binary 7/The ASCII Character Set 8/
Boolean Logic 9/Signed Numbers 12/Storing Numbers in
Decimal Form 13/Computer Arithmetic 15/Microprocessor
Programming 15/Writing in Assembly Language 18/Basic
Programming Concepts 18

Part II Architecture
2 Architecture of the 6502 25

Microprocessor Architecture 26/The 6502 Registers 26/
Addressing Modes 34/Instructions 36/The 6502 System
Design 39/NMOS Process 43/Bugs and Quirks 43

3 Architecture of the 65C02 45
The 65C02 Architecture 46/Addressing Modes 46/
Instructions 46/CMOS Process 47/Bugs and Quirks 48

4 Sixteen-Bit Architecture: The 65816 and
the 65802 49

Power-On Status: 6502 Emulation Mode 50/The Full-Featured
65x Processor: The 65816 in Native Mode 51/The 65802 Native
Mode 65/Emulation Mode 67/Switching Between 6502
Emulation and Native Modes 71/65802/65816 Bugs and
Quirks 72

Part III Tutorial
5 SEP, REP, and Other Details 75

The Assembler Used in This Book 78/Address Notation 81

6 First Examples: Moving Data 83
Loading and Storing Registers 85/Moving Data Using the
Stack 89/Moving Data Between Registers 94/Storing Zero to
Memory 103/Block Moves 103

viii Programming the 65816

7 The Simple Addressing Modes 107
Immediate Addressing 108/Absolute Addressing 111/Direct
Page Addressing 114/Indexing 117/Absolute Indexed with X
and Absolute Indexed with Y Addressing 120/Direct Page
Indexed with X and Direct Page Indexed with Y
Addressing 123/Accumulator Addressing 126/Implied
Addressing 127/Stack 127/Direct Page Indirect
Addressing 128/Absolute Long Addressing 130/Absolute Long
Indexed with X Addressing 134/Direct Page Indirect Long 135/
Block Move 137

8 The Flow of Control 139
Jump Instructions 140/Conditional Branching 143/
Unconditional Branching 151

9 Built-In Arithmetic Functions 155
Increment and Decrement 156/Addition and Subtraction:
Unsigned Arithmetic 161/Comparison 166/Signed
Arithmetic 170/Signed Comparisons 174/Decimal Mode 176

10 Logic and Bit Manipulation Operations 179
Logic Functions 180/Bit Manipulation 187/Shifts and
Rotates 189

11 The Complex Addressing Modes 197
Relocating the Direct Page 198/Assembler Addressing Mode
Assumptions 200/Direct Page Indirect Indexed with Y
Addressing 203/Direct Page Indexing Indirect Addressing 2061
Absolute Indexed Indirect Addressing 210/Direct Page Indirect
Long Indexed with Y Addressing 212/Stack Relative
Addressing 213/Stack Relative Indirect Indexed Addressing
216/Push Effective Instructions216

12 The Basic Building Block: The Subroutine 225
The Jump-to-Subroutine Instruction 226/The Retum-from-
Subroutine Instruction 226/JSR Using Absolute Indexed
Indirect Addressing 230/The Long Jump to Subroutine 231/
Return from Subroutine Long 232/Branch to Subroutine 2321
Coding a Subroutine: How and When 235/Parameter Passing
237

13 Interrupts and System Control Instructions 249
Interrupts 250/Status Register Control Instructions 262/No
Operation Instructions 263

Contents ix

Part IV Applications

14 Selected Code Samples 267
Multiplication 268/Division 272/Calling an Arbitrary 6502
Routine 277/ Testing Processor Type 284/Compiler-Generated
65816 Code for a Recursive Program 285
The Sieve of Eratosthenes Benchmark 293

15 DEBUG16— A 65816 Programming Tool 299
Declarations 302/LIST 305/FLIST 308/FRMOPRND 311/
POB 317/STEP 319/PUTHEX 321/CLRLN 324/UPDATE 325/
PRINTLN 328/TRACE 330/EBRKIN 332/CHKSPCL 339/
DUMPREGS 345/PUTREG8 347/Tables 348

16 Design and Debugging 361
Debugging Checklist 362/Generic Bugs: They Can Happen
Anywhere 366/Top-Down Design and Structured
Programming 368/Documentation 369

Part V Reference

17 The Addressing Mode 373

18 The Instruction Sets 421

19 Instruction Lists 527

Appendices

A 65x Signal Description 543
6502 Signals 545/65C02 Signals 546/
65802 Signals 547/65816 Signals 547

B 65x Series Support Chips 551
The 6551 Serial Chip 552

C The Rockwell 65C02 561

D Instruction Groups 567
Group I Instructions 568/Group II Instructions 569

E W65C816 Data Sheet 573

F The ASCII Character Set 595

Index 599

Limits of Liability and
Disclaimer of Warranty

The authors and publisher of this book have used their best efforts in
preparing this book and the programs contained in it. These efforts
include the development, research, and testing of the theories and pro
grams to determine their effectiveness. The authors and publisher make
no warranty of any kind, expressed or implied, with regard to these
programs or the documentation contained in this book. The authors
and publisher shall not be liable in any event for incidental or conse
quential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

Registered Trademarks

Apple and ProDOS are trademarks of Apple Computer, Inc. PIE is a
trademark of SOFTWEST.

Preface

It is with great excitement that we present this book, which not only
introduces the 65816 and the 65802 in complete detail for the first time,
but also encompasses the 6502 and 65C02 in what is meant to provide a
complete reference guide to the 65x family.

As 6502 enthusiasts, we believe the two new 16-bit microprocessors—
the 65802 and the 65816—represent a great leap forward. We think they
hold the potential in days ahead for advances in systems and software
even greater than those realized by the 6502 in the early days of the
microcomputer revolution. Because of their unique compatibility with
the 6502 and 65C02, they bridge the past with the future in a way that
no other microprocessor has done.

While this collaboration represents our first work of reference propor
tions in the computer science field, both of us have written extensively
in this field and others, and both of us develop software professionally.
It was our unalloyed enthusiasm for the subject that led us to this under
taking. We hope the thrill we experienced when we ran our first 65802
programs on beta copies of the processor plugged into our Apples will
be yours to experience, too.

Both of us learned to program primarily through books and hands-on
experimentation with personal computers rather than through formal
training. Because of this, we share a high regard for the value of books
in the learning process and have formed strong opinions about what is
useful and what is not in learning how to use and program a new micro
processor. We hope what worked for us will work for you.

Ron Lichty
San Francisco, California

David Eyes
Lowell, Massachusetts

Acknowledgments

Many people have made contributions, directly and indirectly, to the
development of this book. To begin with, we want to thank the designer
of the 65816, 65802, and 65C02, Bill Mensch: first, for inviting us to be
part of his vision; second, for sharing so much of his time to educate us
in the details of the 65816 design during the two years in which it passed
from first logic drawings to functional silicon; and finally, for providing
us with copies of consecutive beta versions of 65802 and 65816 proces
sors for us to test our routines and programs and to use.

It was Smokie Clenney who first got David to consider writing a com
puter book. Mike Violano wisely suggested he seek a coauthor about
the time Ron realized he wanted to write this book and learned David
had already started one.

Chris Williams, our editor, was among the first to understand the sig
nificance of the 65816. He further contributed to this book by encour
aging us to deal with not only the 65802 and 65816 but the entire 65x
family. We have appreciated his unflagging support throughout this
effort.

Tom Crosley, Larry Hittel, Bill Judd, Bill Mensch, and Mike Wester-
field all reviewed the entire manuscript for this work in a matter of
weeks, providing many valuable suggestions for which we are grateful.
Any errors remaining in this book were most likely introduced after
they painstakingly proofed it. Their comments guided us as we sought
to hone our facts and our presentation.

Tom Crosley, who at Softwest is Ron's employer, is also his mentor,
and most important, his friend. He deserves special thanks both for his
patience when Ron's attention wandered for days and weeks at a time
back to the 65816 and for his guidance and advice, for which we are
both thankful.

Mike Westerfield deserves to be commended for creating the first 65x
assembler to work with the 65802 and 65816, ORCA/M. We certainly
could not have developed the example programs and routines in this
book in such a short time without it.

During David's early involvement with the 65816 project he worked
for Bill Overholt. Bill provided much needed support and encourage
ment when there were those who said the chip would never happen.
Bob Norby, recently of GTE Microcircuits, was a valuable resource and
promoter of our book project. Mike Weinstock deserves special thanks
for lending David an emergency printer during three of our most active
writing months. Larry Hittel, who made one of the first of his Com Log
Applel6 cards available, thereby gave us a complete 65816 test system.
Hank Harrison provided David with much hospitality during frequent

XV

xvi Programming the 65816

visits to California during the creation of the book. Bill Judd, currently
of Apple computer, encouraged David through his friendship and eager
anticipation of the finished book. Gus Andrade, also of Apple Com
puter, shared the results of his exhaustive analysis of the 65816 with us,
pointing out some anomalies we had been unaware of. Thanks also to
Bob Sander-Cederlof and Roger Wagner for providing us with versions
of the S-C assembler and Glen Bredon's Merlin assembler.

Final thanks must go to our families—Marilou and Carolyn, and our
children, Mike and Jean, and Althea. We appreciate their love and sup
port and patience throughout.

This book was written on Apple // computers with Hayden Soft
ware's PIE Writer word processing system and The Speller spell
checker, Byte Works' ORCA/M assembler, Epson MX-80 and C.Itoh
dot matrix printers, and, at David's end, the Sider hard disk. All per
formed marvelously.

Foreword

It was in July 1972, approximately one year after joining Motorola
Semiconductor Products Division, Phoenix, Arizona, that I was first in
troduced to microprocessor design. Previously, I had worked on analog
computers before graduating from Temple University in Philadelphia.
While at the University of Arizona I worked on computer simulation
of plasmas, simulating plasma reactions to radio frequency energy in
search of a breakthrough enabling a nuclear fusion energy generation
system (without radioactive waste) to become a reality. I graduated
from the University of Arizona with a bachelor's degree in electrical
engineering, majoring in digital semiconductor design with a minor in
computer engineering.

Then in July 1972, I was faced with a major challenge. Rod Orgill and
I were assigned the task that six engineers (two teams before us) had
failed, which was to deliver a custom microprocessor to Olivetti of
Italy. This was a very capable PMOS 8-bit microprocessor, which
became a basis for the design approach of the Motorola 8-bit NMOS
6800. Rod (who now works for HP in Colorado) and I were successful;
we were allowed to stay in design and become part of the 6800 design
team. As you may be aware, the 6800 led to the 68000. As you may or
may not be aware, it also led to the 6502.

In August of 1974, a few of us left Motorola and ended up at MOS
Technology in Valley Forge, Pennsylvania. In September 1975 in the St.
Francis Hotel in San Francisco, we introduced the NMOS 6502 with a
purchase price of $25. Because of the price, Steve Wozniak and others
could become familiar with this wonderful technology. At $375.00, (the
price of the Intel 8080 and Motorola 6800), Steve and others would have
bought a TV instead; with the 6502, we are talking about a computer
chip selling for the price of an engineering textbook. And so the per
sonal computer technology was born.

In May 1978, I founded the Western Design Center, Inc., in Mesa,
Arizona. Our goal is to create the most affordable, highest perform
ance, easiest to use, lowest power technology the world has seen. To
this end we created the 65C02 in 1982 by using the low-power CMOS
process (the same technology that lets a wristwatch run for a year off of
a single battery). It is a direct replacement for the NMOS 6502. The
65C02 is destined to become the most used core microprocessor for a
vast base of custom controller chips used in telephones, heart pacers,
and more. The Apple //c was introduced in 1984 using the 65C02, and
the Apple //e now uses it as well.

As Apple was introducing the Apple //c to the world, I was introduc
ing to Apple the 16-bit version of the 65C02 known as the 65816. The

xvii

xviii Programming the 65816

65816 will ultimately replace the 65C02 (as the 65C02 becomes used
predominantly in one-chip microcomputers) and will become the mid
range computer chip. Features have been selected that allow for com
plete emulation of the 6502 and 65C02 using the E (emulation) bit.
(Incidentally, it was David Eyes who first suggested the E bit.) This
saves a lot of software from premature obsolescence.

Other features were picked for high-level languages, cache memory,
and recursive and reentrant code, just like the "big systems." There will
be other generations. The 65832, for example, will have 32-bit floating
point operations, in addition to 8- and 16-bit operations. It will plug
into a 65816 socket and, of course, will be fully compatible with the
65C02 and 65816.

As the technology improves over the next 10 years and the density of
integration increases, we expect to have full-size personal computers on
one chip with only memory off chip. The memory cycle time for cache
operation should approach 100 MHz, the speed of multimillion dollar
mainframes. The power of the 65C02, in the same time frame, should
drop to under 1 micro amp (the same as a watch chip) running off a
watch crystal. Because the technology is low-power CM OS, low-cost
packages are available, and heat generated is very low; therefore, low-
cost environments can be built. The cost of the basic microprocessor
chip will be under $5.00. And so, this same technology that will power
human beings in heart pacers will also power telephones, communica
tion networks, personal computers, and desk-top work stations. It is my
belief that this technology will fuel world peace.

This book, as I see it, is and will become the vehicle that WDC will
use to communicate not only to the layman, but also to the engineer.
Within this edition many of the details of the operation exist. I hope the
success of this edition will provide the basis for future editions which
will include new details about the chip and system usage gained from
industry experience, as well as information about new versions of the
processors.

The development of these processors is not the work of one man:
many have contributed directly and indirectly. I would like to thank a
few of the people who have helped me through the years: Rod Orgill, E.
Ray Hirt (vice-president of WDC), and Chuck Peddle who have given
me many good ideas over the years; Lorenz Hittel who has suggested
many features used on the 65C02 and 65816; Desmond Sheahan, Ph.D.
and Fran Krch who, while at GTE Microcircuits, were instrumental in
having the 65C02 and 65816 second sourced by GTE—a key to the early
success of these programs; Apple computer engineers who suggested
features for the 65816; Mike Westerfield who created the ORCA/M
macro assembler; David Eyes and Ron Lichty who not only have writ
ten this book, which promises to be a classic, but also helped in the

Programming the 65816 xix

debug process by running some of the first software exploring various
modes of operation; Will Troxell who has developed a high-perfor
mance board for the Apple // and a high-performance operating system
exploiting the potential of the 65816; my sister, Kathryn, Secretary of
WDC, and WDC's layout design manager who laid out the entire 65816;
and the entire staff at WDC.

A special thanks to my wife, Dolores (Treasurer of WDC), who has
given me much love, support, encouragement, laid out chips, taught
layout designers, and given me four, happy, healthy, beautiful children.

William D. Mensch, Jr.
Mesa, Arizona
June 1985

Introduction

For years, the 6502 stood alone as the original and sole member of the
65x series—or 6500 series, as the family was originally to be called. First
shipped in 1975, the 6502 was, at its height, the most popular eight-bit
microprocessor on the market, with tens of millions sold. It is found in
such personal computers as those made by Acorn, Apple, Atari, Com
modore, and Ohio Scientific—to name some of the leading manufactur
ers of past and present—as well as in video games and dedicated control
applications. Currently the 6502 is manufactured by its original devel
oper, MOS Technology, and also by Rockwell International.

The 65C02, first introduced in 1983, was intended as a replacement
for the 6502. Using the CMOS fabrication process which became popu
lar for microprocessor manufacturing in the early eighties, it strove for
(and for most practical purposes achieved) complete compatibility with
the 6502, and sought to differentiate itself in the market primarily by
virtue of its CMOS fabrication. Nonetheless, it included several signifi
cant enhancements to the 6502 instruction set and fixed some of the
known problems in the 6502 design. These minor extensions, it turned
out, were intimations of the 65802 and 65816 to come.

The 65C02 was the design effort of William D. Mensch, Jr., who had
been, at MOS Technology, the lead designer on the original 6502 devel
opment project. Mensch left MOS Technology to found his own com
pany, The Western Design Center, where he designed the 65C02. In
addition to being available from the Western Design Center, the 65C02
is also manufactured by GTE Microcircuits, NCR, Rockwell Interna
tional, and Hyundai. The first notable adoption of the 65C02 was by
Apple Computer for their portable Apple //c computer, in which the
low power consumption and low heat generation that results from the
CMOS process provides significant advantage over the 6502.

Almost immediately after completing the 65C02, Mensch and The
Western Design Center began work on the 65816 and 65802 processors,
sixteen-bit versions of the original 6502 design. In addition to the
strengths they inherit from the 6502 and the set of powerful new exten
sions they implement, the 65802 and 65816 are unique among modern
microprocessors in that they faithfully execute the object code of their
eight-bit predecessors, the 6502 and 65C02.

Although they are two distinct products, the 65802 and 65816 are
really just two versions of the same design, which is fully realized in the
65816, with its sixteen-megabyte address space. The 65802, on the other
hand, provides compatibility with the 6502 not only on a software level
but, incredibly, on a hardware level, too: it can replace a 6502 or 65C02
in an existing system and emulate the processor it replaces faithfully,

XX

Programming the 65816 xxi

even as it provides a broad range of new features like sixteen-bit regis
ters; but all that compatibility leaves it confined to the earlier proces
sors' 64K address space.

The hardware compatibility of the 65802 makes the 65816 architec
ture readily accessible to the thousands of users of existing personal
computers. It will undoubtedly provide many users with their first
exposure to the 65816.

How to Use this Book
The uniqueness of the 65802's and 65816's compatibility with the 6502

and 65C02 cried out for a unique approach to an assembly language
book about them: an introduction not just to one of these microproces
sors, but to the entire family of them.

How you approach this book will depend most of all on who you are.
If you have little experience with assembly language, you should proba
bly begin with Chapter One, Basic Programming Concepts, and read
sequentially. You will find that it introduces you to the concepts essen
tial to understanding everything that follows. It should also provide a
useful and convenient review for more experienced readers.

If you understand assembly language, but have little or no experience
with 65x family processors, you should begin with Part Two, Architec
ture. Each of the three chapters introduces the architecture of one of the
three generations of 65x processors. Because the 65802 executes the
same instruction set as the 65816 (as limited by the 65802's memory
space restrictions), these two share a single chapter. Each chapter builds
on the last, so you should read them in order: Since the 65816 is a
superset of all of the other processors, each chapter describes a larger
subset of the complete 65816 design. Furthermore, they illustrate the
register set and other basics on which the tutorial section which follows
is based.

If you know and have worked with the 6502 before, you may want to
skip or lightly skim the 6502 architecture chapter and go right on to the
65C02 chapter. If you know the 65C02, you can go right on to the
65816/65802 chapter.

Part Three, Tutorial, is a teaching section, with code examples sprin
kled throughout. It is devoted to a step-by-step survey of all 256 dif
ferent instructions, grouped into six categories (moving data, flow of
control, arithmetic, logic and bit manipulation, subroutines, and system
control and interrupts), and all 25 different addressing modes, divided
into two classes (simple and complex).

Those of you who either have no experience with assembly language
or have no experience with the 65x family will find it especially helpful.
Even if you're familiar with the 65x family, however, you may want to
selectively read from this section.

xxii Programming the 65816

Having built up to a concept of the 65816 by examining its predeces
sor designs, the tutorial section views the entire series from this van
tage—that of the full 65816 architecture. Of course, the 65816 is a
superset of all the other members of the 65x family, so a complete dis
cussion of the 65816 is by definition a discussion of all the other proces
sors as well.

Almost all of the examples in this section and the next are intended to
be executed on a system with either a 65802 or 65816 processor, and
more likely than not include 65816 instructions, although there are some
examples which are intentionally restricted to either the 6502 or 65C02
instruction set for purposes of comparison.

As the 65816 is explored, however, care is taken to distinguish fea
tures, such as instructions or addressing modes, by the processors that
they are common to. In this way, this book provides the only reference
needed for the programmer faced with developing software for more
than one of the different processors in the series.

The highlighting and contrasting of the differences between the proc
essors in the series should also be helpful for the programmer already
familiar with one processor who wants to learn another—both the
65816 programmer who needs to restrict his knowledge when program
ming for the 6502, as well as the 6502 programmer who wishes to learn
the 65816.

If your interest is in writing applications for the 65x processors, you
will find Part Four, Applications, of particular interest and use. From
the selected code examples in Chapter 14 to the debugging tool in Chap
ter 15 to the debugging checklist in Chapter 16, this section should pro
vide helpful, down-to-earth examples and how-to.

But even if your interest in the 65x family is strictly academic, you
should study the examples in Chapter 14: The code for the sieve of
Eratosthenes, for example, provides you the means of comparing the
65816/65802 with other processors, in design, size, and speed; multiply
and divide routines for all three generations of 65x processors demon
strate what can be involved in conversion between them; there's a com
parison between machine code created by a hypothetical compiler and
assembly code written by a hypothetical programmer; and there are
routines which deal with the likelihood that many readers will write
65802 programs to be run under 6502-based and 65C02-based operating
systems.

Finally, Part Five, Reference, is designed so you can turn to it over
and over for information and detail on how the various instructions and
addressing modes work, their syntax, and their opcodes. You'll find
fully illustrated addressing modes arranged alphabetically in Chapter
17; the instructions arranged alphabetically, with descriptions and
tables of opcodes and syntax, in Chapter 18; and the instructions listed

Programming the 65816 xxiii

four ways—alphabetically, functionally, numerically, and mapped in a
matrix—in Chapter 19.

If you're a whiz at assembly language or already know one of the 65x
processors intimately, this section may be all you need to learn and use
the entire 65x family (although we recommend looking over the archi
tecture and applications sections for ideas and review; you may also
want to use the Debugl6 program in Chapter 15 as an aid for develop
ing code).

If you need specialized information—hardware descriptions, data
sheets, compatible I/O parts, cycle descriptions, instruction group
breakdowns, deviant family members, and an ASCII chart (with high-
bit both set and reset)—you'll find it in the appendix.

Programming the 65816
Including the 6502,
65C02, and 65802

Part I
Basics

Basic Assembly
Language
Programming
Concepts

This chapter reviews some of the key concepts that must be mastered
prior to learning to program a computer in assembly language. These
concepts include the use of the binary and hexadecimal number systems;
boolean logic; how memory is addressed as bytes of data; how charac
ters are represented as ASCII codes; binary-coded decimal (BCD) num
ber systems, and more. The meaning of these terms is explained in this
chapter. Also discussed is the use of an assembler, which is a program
used to write machine-language programs, and programming techniques
like selection, loops, and subroutines.

Since the primary purpose of this book is to introduce you to pro
gramming the 65816 and the other members of the 65x family, this sin
gle chapter can only be a survey of this information, rather than a
complete guide.

3

4 Programming the 65816

Binary Numbers_______________________
In its normal, everyday work, most of the world uses the decim al, or

base ten, number system, and everyone takes for granted that this sys
tem is the "natural" (or even the only) way to express the concept of
numbers. Each place in a decimal number stands for a power of ten: ten
to the 0 power is 1, ten to the 1st power is ten, ten to the 2nd power is
100, and so on. Thus, starting from a whole number's right-most digit
and working your way left, the first digit is multiplied by the zero
power of ten, the second by the first power of ten, and so on. The
right-most digits are called the low-order or least significant digits in a
positional notation system such as this, because they contribute least to
the total magnitude of the number; conversely, the leftmost digits are
called the high-order or most significant digits, because they add the
most weight to the value of the number. Such a system is called a posi
tional notation system because the position of a digit within a string of
numbers determines its value.

Presumably, it was convenient and natural for early humans to count
in multiples of ten because they had ten fingers to count with. But it is
rather inconvenient for digital computers to count in decimal; they have
the equivalent of only one finger, since the representation of numbers in
a computer is simply the reflection of electrical charges, which are either
on or off in a given circuit. The all or nothing nature of digital circuitry
lends itself to the use of the binary, or base two, system of numbers,
with one represented by "on" and zero represented by "off." A one or a
zero in binary arithmetic is called a binary digit, or a bit for short.

Like base ten digits, base two digits can be strung together to repre
sent numbers larger than a single digit can represent, using the same
technique of positional notation described for base ten numbers above.
In this case, each binary digit in such a base two number represents a
power of two, with a whole number's right-most bit representing two to
the zero power (ones), the next bit representing two to the first power
(twos), the next representing two to the second power (fours), and so on
(Figure 1.1).

Grouping Bits into Bytes________________
As explained, if the value of a binary digit, or bit, is a one, it is stored

in a computer's memory by switching to an "on" or charged state, in
which case the bit is described as being set; if the value of a given bit is a
zero, it is marked in memory by switching to an "off” state, and the bit
is said to be reset.

While memory may be filled with thousands or even millions of bits,
a microprocessor must be able to deal with them in a workable size.

1 Basic Assembly Language Programming Concepts_______ 5

0 1 1 0 0 1 1 0

 2

--------------------------- 4

-- 32

--- _64

102
Figure 1.1. Binary Representation.

The smallest memory location that can be individually referenced, or
addressed, is usually, and always in the case of the 65x processors, a
group of eight bits. This basic eight-bit unit of memory is known as a
byte. Different types of processors can operate on different numbers of
bits at any given time, with most microprocessors handling one, two, or
four bytes of memory in a single operation. The 6502 and 65C02 proces
sors can handle only eight bits at a time. The 65816 and 65802 can pro
cess either eight or sixteen bits at a time.

Memory is organized as adjacent, non-overlapping bytes, each of
which has its own specific address. An address is the unique, sequential
identifying number used to reference the byte at a particular location.
Addresses start at zero and continue in ascending numeric order up to
the highest addressable location.

As stated, the 65802 and 65816 can optionally manipulate two adja
cent bytes at the same time; a sixteen-bit data item stored in two contig
uous bytes is called a double byte in this book. A more common but
misleading usage is to describe a sixteen-bit value as a word; the term
word is more properly used to describe the number of bits a processor
fetches in a single operation, which may be eight, sixteen, thirty-two, or
some other number of bits depending on the type of processor.

It turns out that bytes—multiples of eight bits—are conveniently sized
storage units for programming microprocessors. For example, a single
byte can readily store enough information to uniquely represent all of
the characters in the normal computer character set. An eight-bit binary
value can be easily converted to two hexadecimal (base sixteen) digits;
this fact provides a useful intermediate notation between the binary and
decimal number systems. A double byte can represent the entire range

6 Programming the 65816

of memory addressable by the 6502, 65C02, and 65802, and one com
plete bank—64K bytes—on the 65816. Once you've adjusted to it, you'll
find that there is a consistent logic behind the organization of a com
puter's memory into eight-bit bytes.

Since the byte is one of the standard units of a computer system, a
good question to ask at this point would be just how large a decimal
number can you store in eight bits? The answer is 255. The largest
binary number you can store in a given number of bits is the number
represented by that many one-bits. In the case of the byte, this is
11111111, or 255 decimal (or 28 —1). Larger numbers are formed by
storing longer bit-strings in consecutive bytes.

The size of a computer's memory is typically expressed in bytes,
which makes sense because the byte is the smallest addressable unit.
And since a byte is required to store the representation of a single alpha
numeric character, you can get an easy visualization of about how
much storage 64K of memory is by thinking of that many characters.
The K stands for one thousand (from the Greek kilo, meaning thousand,
as in kilogram or kilometer); however, since powers of two are always
much more relevant when discussing computer memories, the symbol K
in this context actually stands for 1024 bytes, the nearest power-of-two
approximation of 1000, so 64K is 65,536 bytes, 128K is 131,072 bytes,
and so on.

Within a given byte (or double byte) it is often necessary to refer to
specific bits within the word. Bits are referred to by number. The low-
order, or right-most bit, is called bit zero; this corresponds to the one's
place. The next-higher-order bit is bit one, and so on. The high-order bit
of a byte is therefore bit seven; of a double byte, bit fifteen. The con
vention of calling the low-order bit the "right-most" is consistent with
the convention used in decimal positional notation; normal decimal
numbers are read from left to right, from high-order to low-order. Fig
ure 1.2 illustrates the bit numbers for bytes and double bytes, as well as
the relative weights of each bit position.

Double-Byte

B y te

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

High-Order

Figure 1.2. Bit Numbers.

Low -O rder

1 Basic Assembly Language Programming Concepts_______ 7

Hexadecimal Representation of Binary____
While binary is a convenient number system for computers to use, it

is somewhat difficult to translate a series of ones and zeroes into a num
ber that is meaningful. Any number that can be represented by eight
binary bits can also be represented by two hexadecimal (or hex for
short) digits. Hexadecimal numbers are base sixteen numbers. Since
base two uses the digits zero through one, and base ten the digits zero
through nine, clearly base sixteen must use digits standing for the num
bers zero through fifteen. Table 1.1 is a chart of the sixteen possible
four-bit numbers, with their respective decimal and hexadecimal repre
sentations.

Table 1 .1 . Decimal and Hex Numbers.

Binary D ecim al H exadecim al

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Because the positional notation convention reserves only a single
place for each multiplier of the power of that base, the numbers ten
through fifteen must be represented by a single base-sixteen digit.
Rather than create entirely new symbols for digits, the first six letters of
the alphabet were chosen to represent the numbers ten through fifteen.
Each of the sixteen hex digits corresponds to one of the possible combi
nations of four binary digits.

Binary numbers larger than 1111 are converted to hexadecimal
by first separating the bits into groups of four, starting from the right
most digit and moving left. Each group of four bits is converted
into its corresponding hex equivalent. It is generally easier to work
with a hexadecimal number like F93B than its binary counterpart

8 Programming the 65816

1111100100111011. Hexadecimal numbers are often used by machine
language programming tools such as assemblers, monitors, and debug
gers to represent memory addresses and their contents. The value of
hexadecimal numbers is the ease with which they can be converted to
and from their binary equivalents once the table has been memorized.

While a hexadecimal 3 and a decimal 3 stand for the same number, a
hexadecimal 23 represents two decimal sixteen's plus 3, or 35 decimal.
To distinguish a multiple-digit hex number from a decimal one, either
the word hexadecimal should precede or follow it, or a '$' should prefix
it, as in $23 for decimal 35, or $FF to represent 255. A number without
any indication of base is presumed to be decimal. An alternative nota
tion for hexadecimal numbers is to use the letter H as a suffix to the
number (for example, FFH); however, the dollar-sign prefix is generally
used by assemblers for the 65x processors.

The ASCII Character Set_________________
Characters—letters, numbers, and punctuation—are stored in the

computer as number values, and translated to and from readable form
on input or output by hardware such as keyboards, printers, and CRTs.
There are 26 English-language lower-case letters, another 26 upper-case
ones, and a score or so of special characters, plus the ten numeric digits,
any of which might be typed from a keyboard or displayed on a screen
or printer, as well as stored or manipulated internally. Further, addi
tional codes may be needed to tell a terminal or printer to perform a
given function, such as cursor or print head positioning. These control
codes include carriage return, which returns the cursor or print head to
the beginning of a line; line feed, which moves the cursor or print head
down a line; bell, which rings a bell; and back space, which moves the
cursor or print head back one character.

The American Standard Code for Information Interchange, abbrevi
ated ASCII and pronounced AS key, was designed to provide a com
mon representation of characters for all computers. An ASCII code is
stored in the low-order seven bits of a byte; the most significant bit is
conventionally a zero, although a system can be designed either to
expect it to be set or to ignore it. Seven bits allow the ASCII set to pro
vide 128 different character codes, one for each English letter and num
ber, most punctuation marks, the most commonly used mathematical
symbols, and 32 control codes.

The use of different bit values, or numbers, to store character codes,
is entirely analogous to the "decoder ring" type of cipher: the letter 'A' is
one, 'B' is two, and so on; but in the case of the ASCII character set, the
numbers assigned to the letters of the alphabet are different, and there
are different codes for upper- and lower-case letters.

1 Basic Assembly Language Programming Concepts_______ 9

There is an ASCII chart in Appendix F of this book. Notice that since
the decimal digits 0 through 9 are represented by $30 to $39, they can be
easily converted between their binary representations and their actual
values by the addition or subtraction of $30. The letters are arranged in
alphabetical order, the capital letters from A through Z represented by
$41 through $5A and the lower-case letters from a through z represented
by $61 through $7A. This allows letters to be placed in alphabetical
order by numerically sorting their ASCII values, and characters to be
converted between upper- and lower-case by the addition or subtraction
of $20. Finally, notice that the control characters from C trl-@ and Ctrl-
A through Ctrl-Z and on to Ctrl- run from zero to $1F and allow easy
conversion between the control characters and the equivalent printing
characters by the addition or subtraction of $40.

To print a character on an output device, you must send it the ASCII
value of the character: to print an 'A', you must send $41 to the screen,
not $A, which is the ASCII code for a line feed; and to print an '8', you
must send $38, not $8, which is the ASCII code for a back space. The
space character, too, has an ASCII code: $20.

Since any memory value—take $41 for example—could represent
either an ASCII code (for 'A' in this case) or a number (decimal 65), the
interpretation of the data is defined by the code of the program itself
and how it treats each piece of data it uses within a given context.

Boolean Logic_________________________

Logical operations interpret the binary on/off states of a computer's
memory as the values true and false rather than the numbers one and
zero. Since the computer handles data one or two bytes at a time, each
logical operation actually manipulates a set of bits, each with its own
position.

Logical operations manipulate binary "flags". There are three logical
operations that are supported by 65x microprocessor instructions, each
combining two operands to yield a logical (true or false) result: and, or,
and exclusive or.

Logical And

The AND operator yields true only if both of the operands are them
selves true; otherwise, it yields false. Remember, true is equivalent to
one, and false equivalent to zero. Within the 65x processors, two strings
of eight, or in the case of the 65816, eight or sixteen, individual logical
values may be ANDed, generating a third string of bits; each bit in the
third set is the result of ANDing the respective bit in each of the first
two operands. As a result, the operation is called bitwise.

10 Programming the 65816

When considering bitwise logical operations, it is normal to use
binary representation. When considered as a numeric operation on two
binary numbers, the result given in Figure 1.3 makes little sense. By
examining each bit of the result, however, you will see that each has
been determined by ANDing the two corresponding operand bits.

11011010 $DA

AND 01000110 $45

equals 01000010 $42

Figure 1.3. ANDing Bits.

A truth table can be drawn for two-operand logical operations. You
find the result of ANDing two bits by finding the setting of one bit on
the left and following across until you're under the setting of the other
bit. Table 1.2 shows the truth table for AND.

Table 1 .2 . Truth Table for AN D .

Second O perand
0 1

First O perand
0 0 0
1 0 1

Logical Or
The OR operator yields a one or true value if either (or both) of the

operands is true. Taking the same values as before, examine the result of
the logical OR operation in Figure 1.4. The truth table for the OR func
tion is shown in Table 1.3.

11011010 $DA

OR 01000110 $45

equals 11011110

I
O m

I

Figure 1.4. ORing Bits.

Logical Exclusive Or
The exclusive OR operator is similar to the previously-described OR

operation; in this case, the result is true only if one or the other of the

1 Basic Assembly Language Programming Concepts _____ 11

Table 1 .3 . Truth Table for OR.

Second O perand
0 1

First O perand
0
1

0
1

operands is true, but not if both are true or (as with OR) neither is true.
That is, the result is true only if the operands are different, as Figure 1.5
illustrates using the same values as before. The truth table for exclusive
OR is shown in Table 1.4.

EOR

equa ls

11011010
01000110

$DA

$45

$9C10011100
Figure 1.5. EXCLUSIVE ORing Bits.

Table 1 .4 . Truth Table for EXCLUSIVE O R.

Second O perand
0 1

First O perand
0
1

1
0

Logical Complement

As Figure 1.6 shows, the logical complement of a value is its inverse:
the complement of true is false, and the complement of false is true.

11011010 $DA

COM PLEM ENTED -------------

equa ls 00100101 $25

Figure 1.6. COMPLEMENTing Bits.

While the 65x processors have no complement or not function built
in, exclusive ORing a value with a string of ones ($FF or $FFFF) pro
duces the complement, as Figure 1.7 illustrates.

12 Programming the 65816

11011010 $DA

EOR 11111111 $FF

equa ls Com plem ent 00100101 $25

Figure 1.7. COMPLEMENTing Bits Using Exclusive OR.

Since complement has only one operand, its truth table, drawn in
Table 1.5, is simpler than the other truth tables.

Table 1 .5 . Truth Table
for CO M PLEM EN T.

operand result

0 1
1 0

Signed Numbers_______________________
Many programs need nothing more than the whole numbers already

discussed.But others need to store and perform arithmetic on both posi
tive and negative numbers.

Of the possible systems for representing signed numbers, most
microprocessors, among them those in the 65x family, use two's com
plement. Using two's-complement form, positive numbers are distin
guished from negative ones by the most significant bit of the number: a
zero means the number is positive; a one means it is negative.

To negate a number in the two's-complement system, you first com
plement each of its bits, then add one. For example, to negate one (to
turn plus-one into minus-one):

0 0 0 0 0 0 0 1 T o negate + 1 ,
1 1 1 1 1 1 1 0 complement each bit

+1 and add one.

1 1 1 1 1 1 1 1 The result i s -1.

So $FF is the two's-complement representation of minus-one. When
converting to two's complement by hand, an easier technique than the
two-step process is to copy zeroes from the right (least significant bit)
until the first one is reached; copy that one, and then change every zero
to a one and every one to a zero as you continue to the left. Try it on
the example above.

1 Basic Assembly Language Programming Concepts 13

Now, instead of using eight bits to represent the integers from zero to
255, two's-complement arithmetic uses eight bits to represent signed
numbers from -128 ($80) to + 1 2 7 ($7F), as Table 1.6 shows. There is
always one more negative than positive number in a two's-complement
system.

Table 1 .6 . The Eight-Bit Range of Tw o's-Com plem ent Numbers.

D ecim al H exadecim al Binary

+ 1 2 7 $7F 01111111
+ 126 $7E 0111 1110
+ 125 $7D 01111101

+ 1 1 0000 0001
0 0 0000 0000

- 1 $FF 11111111
- 2 $FE 11111110
- 3 $FD 1111 1101

- 1 2 6 $82 1000 0010
- 1 2 7 $81 1000 0001
- 1 2 8 $80 1000 0000

Another practical way to think of negative two's-complement num
bers is to think of negative numbers as the (unsigned) value that must be
added to the corresponding positive number to produce zero as the
result. For example, in an eight-bit number system, the value that must
be added to one to produce zero (disregarding the carry) is $FF; 1 + $FF
= $100, or 0 if only the low-order eight bits is considered. $FF must
therefore be the two's-complement value for minus one.

The introduction of two's-complement notation creates yet another
possibility in interpreting the data stored at an arbitrary memory loca
tion. Since $FF could represent either the unsigned number 255 or the
negative integer minus-one, it's important to remember that it is only
the way in which a program interprets the data stored in memory that
gives it its proper value—signed or unsigned.

Storing Numbers in Decimal Form________
Computers use numbers in binary form most efficiently. But when a

program calls for decimal numbers to be entered or output frequently,

14 Programming the 65816

storing numbers in their decimal form—rather than converting them to
binary and back—may be preferable. Further, converting floating-point
decimal numbers to a binary floating-point form and back can intro
duce errors: for example, 8 minus 2.1 could result in 5.90000001 rather
than the correct answer, 5.9.

As a result, some programs, such as accounting applications, store
numbers in decimal form, each decimal digit represented by four bits,
yielding two decimal digits per byte, as Table 1.7 shows. This form is
called binary coded decimal, or BCD. BCD lies somewhere between the
machine's native binary and abstractions such as the ASCII character
codes for numbers.

Since four bits can represent the decimal numbers from zero to fif
teen, using the same number of bits to represent only the numbers from
zero through nine wastes six combinations of the binary digits. This less
than optimal use of storage is the price of decimal accuracy and
convenience.

Table 1 .7 . The First 16 BCD Numbers.

Binary H exadecim al Decim al BCD

0000 0000 0 0 0000 0000
0000 0001 1 1 0000 0001
0000 0010 2 2 0000 0010
0000 0011 3 3 0000 0011
0000 0100 4 4 0000 0100
0000 0101 5 5 0000 0101
0000 0110 6 6 0000 0110
0000 0111 7 7 0000 0111
0000 1000 8 8 0000 1000
0000 1001 9 9 0000 1001
0000 1010 A 10 0001 0000
0000 1011 B 11 0001 0001
0000 1100 C 12 0001 0010
0000 1101 D 13 0001 0011
0000 1110 E 14 0001 0100
0000 1111 F 15 0001 0101

The 65x processors have a special decimal mode which can be set by
the programmer. When decimal mode is set, numbers are added and
subtracted with the assumption that they are BCD numbers: in BCD
mode, for example, 1001 + 1 (9 + 1) yields the BCD result of 0001 0000
rather than the binary result of 1010 (1010 has no meaning in the con
text of BCD number representation).

1 Basic Assembly Language Programming Concepts 15

Obviously, in different contexts 0001 0000 could represent either 10
decimal or $10 hexadecimal (16 decimal); in this case, the interpretation
is dependent on whether the processor is in decimal mode or not.

Computer Arithmetic___________________

Binary arithmetic is just like decimal arithmetic, except that the high
est digit isn't nine, it's one. Thus 1 + 0 = 1, while 1 + 1 = 0 with a
carry of 1, or binary 10. Binary 10 is the equivalent of a decimal 2. And
1 — 0 = 1, while during the subtraction of binary 1 from binary 10, the
1 can't be subtracted from the 0, so a borrow is done, getting the 1 from
the next position (leaving it 0); thus, 10 — 1 = 1.

Addition and subtraction are generally performed in one or more
main processor registers, called accumulators. On the 65x processors,
they can store either one or, optionally on the 65802 and 65816, two
bytes. When two numbers are added that cause a carry from the highest
bit in the accumulator, the result is larger than the accumulator can
hold. To account for this, there is a special one-bit location, called a
carry bit, which holds the carry out of the high bit from an addition.
Very large numbers can be added by adding the low-order eight or six
teen bits (whichever the accumulator holds) of the numbers, and then
adding the next set of bits plus the carry from the previous addition,
and so on. Figure 1.8 illustrates this concept of multiple-precision
arithmetic.

Microprocessor Programming____________

You have seen how various kinds of data are represented and, in gen
eral, how this data can be manipulated. To make those operations take
place, a programmer must instruct the computer on the steps it must
take to get the data, the operations to perform on it, and finally the
steps to deliver the results in the appropriate manner. Just as a record
player is useless without a record to play, so a computer is useless with
out a program to execute.

Machine Language
The microprocessor itself speaks only one language, its machine lan

guage, which inevitably is just another form of binary data. Each chip
design has its own set of machine language instructions, called its
instruction set, which defines the functions that it can understand and
execute. Whether you program in machine language, in its correspond
ing assembly language, or in a higher level language like BASIC or Pas
cal, the instructions that the microprocessor ultimately executes are

16 Programming the 65816

0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1

$38 $83

1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1

Plus $A5 Plus $A5

PLUS CARRY

0 0 1 0 1 0 0 0

Equals $28

------------------------------------- Carry = 1

$3883 Plus $A5A5 Equals $DE28

Figure 1.8. Multiple-Precision Arithmetic.

always machine language instructions. Programs in assembly and
higher-level languages are translated (by assemblers, compilers, and
interpreters) to machine language before the processor can execute
them.

Each machine language instruction in the 65x series of microproces
sors is one to four bytes long. The first byte of each instruction is called
the operation code (opcode for short); it specifies the operation the com
puter is to do. Any additional bytes in the instruction make up the oper
and, typically all or part of an address to be accessed, or a value to be
processed.

Assembly Language

Writing long strings of hexadecimal or binary instructions to program
a computer is obviously not something you would want to do if you
could at all avoid it. The 65816's 256 different opcodes, for example,
would be difficult to remember in hexadecimal form—and even harder
in binary form. Assembly language, and programs which translate
assembly language to machine code (called assemblers) were devised to
simplify the task of machine programming.

Assembly language substitutes a short word—known as a mnemonic
(which means memory aid)—for each binary machine code instruction.

1 1 0 1 1 1 1 0

Equal $DE

1 Basic Assembly Language Programming Concepts 17

So while the machine code instruction 1010 1010, which instructs the
65x processor to transfer the contents of the A accumulator to the X
index register, may be hard to remember, its assembler mnemonic TAX
(for "Transfer A to X") is much easier.

The entire set of 65x opcodes are covered alphabetically by mnemonic
label in Chapter Eighteen, while Chapters Five through Thirteen discuss
them in functional groups, introducing each of them, and providing
examples of their use.

To write an assembly language program, you first use a text editing
program to create a file containing the series of instruction mnemonics
and operands that comprise it; this is called the source program, source
code or just source. You then use this as the input to the assembler pro
gram, which translates the assembler statements into machine code,
storing the generated code in an output file. The machine code is either
in the form of executable object code, which is ready to be executed by
the computer, or (using some development systems) a relocatable object
module, which can be linked together with other assembled object mod
ules before execution.

If this were all that assembly language provided, it would be enough
to make machine programming practical. But just as the assembler lets
you substitute instruction mnemonics for binary operation codes, it lets
you use names for the memory locations specified in operands so you
don't have to remember or compute their addresses. By naming rou
tines, instructions which transfer control to them can be coded without
having to know their addresses. By naming constant data, the value of
each constant is stated only in one place, the place where it is named. If
a program modification requires you to change the values of the con
stants, changing the definition of the constant in that one place changes
the value wherever the name has been used in the program. These sym
bolic names given to routines and data are known as labels.

As your source program changes during development, the assembler
will resolve each label reference anew each time an assembly is per
formed, allowing code insertions and deletions to be made. If you hard
coded the addresses yourself, you would have to recalculate them by
hand each time you inserted or deleted a line of code.

The use of an assembler also lets you comment your program within
the source file—that is, to explain in English what it is you intend the
adjacent assembly statements to do and accomplish.

More sophisticated macro assemblers take symbol manipulation even
further, allowing special labels, called macro instructions (or just mac
ros for short), to be assigned to a whole series of instructions. M acro is
a Greek word meaning long, so a macro instruction is a "long" instruc
tion. Macros usually represent a series of instructions which will appear
in the code frequently with slight variations. When you need the series,

18 Programming the 65816

you can type in just the macro name, as though it were an instruction
mnemonic; the assembler automatically "expands" the macro instruc
tion to the previously-defined string of instructions. Slight variations in
the expansion are provided for by a mechanism that allows macro
instructions to have operands.

Writing in Assembly Language___________

In addition to understanding the processor you're working with, you
must also have a good knowledge of the particular assembler you are
using to program in assembly language. While the specific opcodes used
are carved in the silicon die of the processor itself, the mnemonics for
those opcodes are simply conventions and may vary slightly from one
assembler to another (although the mnemonics proposed by a proces
sor's manufacturer will tend to be seen as the standard). Varying even
more widely are assembler directives—assembler options which can be
specified in the midst of code. These options tell the assembler such
things as where to locate the program in memory, which portions of the
source listing to print, or what labels to assign to constants.

Nevertheless, most microcomputer assemblers have a great deal in
common. They generally provide four columns, or fields, for different
types of information about an operation: a label which can be used to
symbolically identify the location of the code; the opcode; the operand;
and space for comments. Figure 1.9 illustrates some typical assembler
source code, with the different fields highlighted.

While an opcode or directive appears in every assembler statement,
the operand field may or may not be required by any particular opcode,
since there are several one-byte instructions which consist solely of an
opcode. The label and comment field are optional, added to make the
program easier to read, write, debug, and modify later.

During assembly, the assembler checks the fields to be sure the infor
mation there is complete, of the proper type, and not out of order, and
issues error messages to warn you of problems. It also checks to be sure
you have not tried to define the same label twice, and that you have not
used a label you did not define.

Basic Programming Concepts____________

There are several concepts which, in general terms, characterize the
different ways a program can execute.

The most obvious concept is that of straight-line execution: a pro
gram starts in low memory and steps a few bytes higher into memory
with execution of each new instruction until it reaches the end, never

1 Basic Assembly Language Programming Concepts 19

Label
Field

O pcode
Field

O perand
Field

Com m ent
Field

REP #$10

LONG I ON

SEP #$20

LONGA OFF

LDY #0

LOOP LDA (1,S),Y get character from first string

BEQ PASS if zero, end of string: match

CMP (3,S),Y compare to corresponding char in 2nd string

BNE FAIL bra if not equal; probabty failure

INY else do next pair

BRA LOOP

i matches shortest string

PASS PLP they match up to shortest string;

CLC restore status, but clear carry

BRA EXIT

FAIL LOA <3,S),Y was last failure due to end of string2?

BEQ PASS yes; let it pass

PLP restore status, but set carry (no match)

SEC

Figure 1.9. Typical Assembler Source Code.

doubling back or jumping forward. Straight-line execution is clean and
clear: it begins at the beginning, executes every instruction in the pro
gram once, and ends at the end. This type of execution is the default
execution mode. The 65x processors have a register called the program
counter, which is automatically updated at the end of each instruction
so that it contains the address of the next instruction to be executed.

Selection Between Paths

Real-life problems—the kind you want to write computer programs
to solve—are seldom straight and simple. A computer would be very
limited with only straight-line execution capability, that is, if it could
not make choices between different courses of action based on the con
ditions that exist while it is executing. Selection between paths provides
computers with their decision-making capabilities. The 65x micropro

20 Programming the 65816

cessors carry out selection between paths by means of conditional
branch instructions.

An example of selection between paths would be a tic-tac-toe pro
gram. Playing second, the program must choose where to place its first
token from eight different squares. If the opponent has taken the center
square, the program must respond differently than if a side square were
taken.

Execution still begins at the beginning and ends at the end, in a single
pass through the code, but whole groups of instructions on paths not
taken are not executed.

Looping
Let's say you write a program to convert a Fahrenheit temperature to

Celsius. If you had only one temperature to convert, you wouldn't
spend the time writing a program. What you want the program to do is
prompt for a Fahrenheit temperature, convert it to Celsius, print out the
result, then loop back and prompt for another Fahrenheit temperature,
and so on—until you run out of temperatures to convert. This program
uses a program concept called looping or iteration, which is simply the
idea that the same code can be reexecuted repeatedly—with different
values for key variables—until a given exit condition. In this case the
exit condition might be the entry of a null or empty input string.

Often, it's not the whole program that loops, but just a portion of it.
While a poker program could deal out 20 cards, one at a time, to four
players, it would use much less program memory to deal out one card
to each of the players, then loop back to do the same thing over again
four more times, before going on to take bets and play the poker hands
dealt.

Looping saves writing repetitive code over and over again, which is
both tedious and uses up memory. The 65x microprocessors execute
loops by means of branch and jump instructions.

Looping almost always uses the principle of selection between paths
to handle exiting the loop. In the poker program, after each set of four
cards has been dealt to the four players, the program must decide if that
was the fifth set of four cards or if there are more to deal. Four times it
will select to loop back and deal another set; the fifth time, it will select
another path—to break out of the loop to begin prompting for bets.

Subroutines
Even with loops, programmers could find themselves writing the

same section of code over and over when it appears in a program not in
quick succession but rather recurring at irregular intervals throughout
the program. The solution is to make the section of code a subroutine,
which the program can call as many times and from as many locations

1 Basic Assembly Language Programming Concepts 21

as it needs to by means of a jump-to-subroutine instruction. The pro
gram, on encountering the subroutine call, makes note of its current
location for purposes of returning to it, then jumps to the beginning of
the subroutine code. At the end of the subroutine code, a return-from-
subroutine instruction tells the program to return from the subroutine to
the instruction after the subroutine call. There are several different types
of calls and returns available on the different 65x processors; all of them
have a basic call and return instruction in common.

Programmers often build up large libraries of general subroutines that
multiply, divide, output messages, send bytes to and receive bytes from
a communications line, output binary numbers in ASCII, translate num
bers from keyboard ASCII into binary, and so on. Then when one of
these subroutines is needed, the programmer can get a copy from the
library or include the entire library as part of his program.

Part II
Architecture

Architecture of the
6502

This chapter, and the two which follow, provide overviews of the
architecture of the four 65x family processors: the 6502, the 65C02, and
the 65802/65816. Each chapter discusses the register set and the function
of the individual registers, the memory model, the addressing modes,
and the kinds of operations available for each respective processor.
Because each successive processor is a superset of the previous one, each
of the next two chapters will build on the material already covered.
Much of what is discussed in this chapter will not be repeated in the next
two chapters because it is true of all 65x processors. As the original 65x
machine, the 6502 architecture is particularly fundamental, since it
describes a great number of common architectural features.

25

26 Programming the 65816

Microprocessor Architecture____________
The number, kinds, and sizes of registers, and the types of operations

available using them, defines the architecture of a processor. This archi
tecture determines the way in which programming problems will be
solved. An approach which is simple and straightforward on one proc
essor may become clumsy and inefficient on another if the architectures
are radically different.

A register is a special memory location within the processor itself,
where intermediate results, addresses, and other information which
must be accessed quickly are stored. Since the registers are within the
processor itself, they can be accessed and manipulated much faster than
external memory. Some instructions perform operations on only a sin
gle bit within a register; others on two registers at once; and others
move data between a register within the processor and external mem
ory. (Although the registers are indeed a special kind of memory, the
term memory will be used only to refer to the addressable memory
external to the microprocessor registers.)

The 6502 is not a register-oriented machine. As you will see, it has a
comparatively small set of registers, each dedicated to a special purpose.
The 6502 instead relies on its large number of addressing modes, partic
ularly its direct-page indirect addressing modes, to give it power.

An addressing mode is a method, which may incorporate several
intermediate calculations involving index registers, offsets, and base
addresses, for generating an instruction's effective address—the memory
address at which data is read or written. Many 6502 instructions, such
as those for addition, have many alternate forms, each specifying a dif
ferent addressing mode. The selection of the addressing mode by you,
the programmer, determines the way in which the effective address will
be calculated.

There are three aspects to learning how to program the 6502 or any
processor. Learning the different addressing modes available and how to
use them is a big part. Learning the available instructions and opera
tions, such as addition, subtraction, branching and comparing, is
another. But to make sense of either, you must begin by understanding
what each of the different registers is and does, and how the memory is
organized.

If you compare the different processors in the 65x family—the eight-
bit 6502 and 65C02 and the sixteen-bit 65816 and 65802—you will find
they all have a basic set of registers and a basic set of addressing modes
in common: the 6502's.

The 6502 Registers_____________________
The 6502 registers are:
• The accumulator, or A register, is the primary user register and

2 Architecture of the 6502 27

generally holds one of the operands, as well as the result, of any
of the basic data-manipulation instructions.

• The X and Y index registers are used chiefly in forming effective
addresses for memory accesses and as loop counters.

• The processor status, or P, register contains bit-fields to indicate
various conditions, modes, and results within the processor.

• The stack pointer, or S register, is a pointer to the next available
location on the system stack, a special area of memory for
temporary data storage. In addition to being available to the user,
the stack pointer and stack are also used automatically every
time a subroutine is called or an interrupt occurs to store return
information.

• Finally, the program counter, or PC, is a pointer to the memory
location of the instruction to be executed next.

These six basic 6502 registers are depicted in the programmer model
diagrammed in Figure 2.1. Notice that, with the exception of the pro
gram counter (PC), all of them are eight-bit registers. Because they can
contain only eight bits, or one byte, of data at a time, they can only per
form operations, such as addition, on one byte at a time. Hence the
6502 is characterized as an "eight-bit" processor.

Although the user registers of the 6502 are only eight bits wide, all of
the external addresses generated are sixteen bits. This gives the 6502 an
address space of 64K (216 = 65,536). In order to access data located
anywhere in that 64K space with an eight-bit processor, one instruction
operand in calculating effective addresses is almost always found in
memory—either in the code itself following an instruction, or at a speci
fied memory location—rather than in a register, because operands in
memory have no such limits. All that is needed to make a memory oper
and sixteen bits are two adjacent memory locations to put them in.

To allow programs longer than 256 bytes, the program counter,
which always points to the location of the next instruction to be exe
cuted, is necessarily sixteen bits, or two bytes, wide. You may therefore
locate a 6502 program anywhere within its 64K address space.

Now each of the 6502 registers will be described in more detail.

The Accumulator

The accumulator (A) is the primary register in a 65x processor.
Almost all arithmetic and most logical operations are performed on data
in the accumulator, with the result of the operation being stored in the
accumulator. For example, to add two numbers which are stored in
memory, you must first load one of them into the accumulator. Then
you add the other to it and the result is automatically stored in the accu
mulator, replacing the value previously loaded there.

28 Programming the 65816

6502 Programming Model

15

A c c u m u la to r (A)

X Index Register (X)

Y Index Register (Y)

r
1 0 0 0 0 0 0 0 1
L

S tack Pointer (S)

Program Counter (PC)

Processor S ta tus Register (P)

n V b d i z c

— C arry

— Zero

■ IRQ Disable

■ Decim al M o de

• B reak Instruct ion

■Overflow

- N e g a t iv e

Figure 2.1. 6502 Programming Model.

1 = C arry

1 = Result Zero

1 = Disabled

1 = Decim al M ode

1 = Break caused
in terrupt

1 = O verf low

1 = Negat ive

Because the accumulator is the primary user register, there are more
addressing modes for accumulator operations than for any other reg
ister.

The 6502 accumulator is an eight-bit register. Only one byte is ever
fetched from memory when the accumulator is loaded, or for operations
which use two values—one from memory and the other in the accumu
lator (as in the addition example above).

The X and Y Index Registers

The index registers are generally used either as components in gener
ating effective addresses when any of the indexed addressing modes are
used, or as loop counters. They can be easily incremented or decre

2 Architecture of the 6502 29

mented; that is, the value in the index registers can, by means of a single
instruction, be increased or decreased by the number one. They are,
therefore, useful in accessing successive table locations, moving mem
ory, and counting loop iterations. Unlike the accumulator, no logical or
arithmetic operations (other than incrementing, decrementing, and com
paring) may be performed upon them.

The use of indexing allows easy access to a continuous series of mem
ory locations, such as a multiple-byte, binary floating-point number, or
an array of many single- or multiple-byte objects. Indexing is performed
by adding one of several forms of base addresses, specified in the oper
and field of an instruction, to the contents of an index register. While a
constant operand is fixed when a program is created, the index registers
are variable and their contents can be changed readily during the execu
tion of a program. As a result, indexing provides an extremely flexible
mechanism for accessing data in memory.

Although the X and Y index registers are basically similar, their capa
bilities are not identical. Certain instructions and addressing modes
work only with one or the other of these registers. The indirect indexed
addressing modes require the Y register. And while the X register is pri
marily used with direct page indexed and absolute indexed addressing, it
has its own unique (though infrequently used) indexed indirect address
ing mode. These differences will become clear as you learn more about
the different addressing modes.

The Status Register
The status register (also called the P register, for processor status)

contains a number of flags which describe, in part, the status of the
microprocessor and its operations. A flag is, in this case, a single bit
within the status register. Its value, set (a one) or reset (a zero), indicates
one of two conditions. While the 6502's eight-bit status register could
provide eight one-bit flags, only seven of them are used.

Figure 2.1 showed the 6502 P status register; Tables 2.1 and 2.2
describe the functions of its flags.

Table 2.1 describes the five status register condition code flags—nega
tive, zero, overflow, carry, and break. Their values indicate various
conditions that result from the execution of many 6502 instructions.
Some instructions affect none of the condition code flags, others affect
only some, and still others affect all. The effect that an instruction has
on the condition flags is an important part of describing what the
instruction does. These condition code flags are used to determine the
success or failure of the branch on condition instructions.

Notice particularly the zero flag (z). It can sometimes confuse assem
bly programmers because a zero flag setting of one indicates a zero
result while a zero flag setting of zero indicates a non-zero result.

30 Programming the 65816

Table 2 .1 . Status Register Condition Code Flags.

N am e A bbrev Bit

Explicitly

set o r clear

Set o r cleared to

Reflect an operation result

negative Reflects most significant bit of result

(the sign of a two's-complement binary number):

0 = high bit clear (positive result)

1 = high bit set (negative result)

Indicates zero or non-zero result:

0 = non-zero result

1 = zero result

overflow Clear to reverse Indicates invalid carry into high bit of arithmetic

"set-overflow" result (two's-complement overflow):

hardware input 0 = two's-complement result ok

1 = error if two's-complement arithmetic

carry Clear before starting Arithmetic overflow:

addition addition: carry out of high bit:

Set before starting 0 = no carry

subtraction 1 = carry

subtraction: borrow required to subtract:

0 = borrow required

1 = no borrow required

Logic:

receives bit shifted or rotated out;

source of bit rotated in

break Status register itself: no function; value unknown.

Pushed status register after interrupt:

indicates source of interrupt:

0 = hardware interrupt

1 = software interrupt (BRK instruction)

In connection with the carry flag, it is important to know that the
6502 add operation has been designed to always add in the carry, and
the subtract operation to always use the carry as a borrow flag, making
it possible to do multiple-precision arithmetic where you add suc
cessively higher sets of bytes plus the previous add's carry or subtract
successively higher sets of bytes taking into the operation the previous
subtract's borrow. The drawback to this scheme is that the carry must
be zeroed before starting an add and set before starting a subtraction.

2 Architecture of the 6502 31

In the case of subtraction, the 6502's carry flag is an inverted borrow,
unlike that of most other microprocessors. If a borrow occurred during
the last operation, it is cleared; if a borrow did not result, it is set.

Finally, notice that in the status register itself, the break bit has no
function. Only when an interrupt pushes the status register onto the
stack is the break bit either cleared or set to indicate the type of inter
rupt responsible.

Table 2.2 describes the other two P register flags, the mode select
flags: by explicitly setting or clearing them, you can change the opera
tional modes of the processor.

Table 2 .2 . Status Register M ode Select Flags.

N am e A bbrev Bit

Reason to explicitly

set o r clear

decimal d 3 Determines mode for add & subtract (not increment/decrement, though):

Set to force decimal operation (BCD)

Clear to return to binary operation

interrupt i 2 Enables or disables processor's IRQ interrupt line:

Set to disable interrupts by masking the IRQ line

Clear to enable IRQ interrupts

The decimal mode flag toggles add and subtract operations (but not
increment or decrement instructions) between binary and decimal
(BCD). Most processors require a separate decimal-adjust operation
after numbers represented in decimal format have been added or sub
tracted. The 65x processors do on-the-fly decimal adjustment when the
decimal flag is set.

The IRQ disable or interrupt disable flag, toggles between enabling
and disabling interrupts. Typically, the interrupt mask is set during
time-critical loops, during certain I/O operations, and while servicing
another interrupt.

The Stack Pointer
The stack pointer (S) implements directly in hardware a data struc

ture known as a stack or push-down stack. The stack is a dedicated area
of memory which is accessed by the user via push and pull instructions.
Push stores the contents of a register onto the stack; pull retrieves a data
item from the stack, storing it into a register.

The 6502's stack is limited to 256 bytes by the eight-bit width of its
stack pointer. The chip confines it in memory between $100 and $1FF by
fixing the high-order byte of the stack address at $01. Software power-
up routines generally initialize the 6502 stack pointer to $FF, resulting in
an initial stack location of $1FF (see Figure 2.2).

32 Programming the 65816

Initializing the Stack Pointer to $FF:
Resulting Initial Stack of $1FF

S ta ck Po in te r= $FF

J O O O O O O O I 1 1 1 1 1 1 1 1

$01FF
S tack

(1st ava ilab le)

$01FE

$01FD

$01FC

$01FB

Figure 2.2. Initializing the Stack Pointer to $FF.

The push and pull instructions are one-byte instructions: the instruc
tion itself specifies the register affected, and the value in the stack
pointer register, added to $100, specifies the stack memory location to
be accessed.

When a push instruction is executed, data is moved from the register
specified by the instruction opcode to the stack address pointed to by
the stack pointer. As Figure 2.3 shows, the value in the stack pointer is
then decremented so that it points to the next lower memory location—
the location to which the next push instruction encountered will store its
data.

The pull instruction reverses the process and retrieves data from the
stack. When a pull instruction is executed, first the stack pointer is
incremented, then the register specified in the instruction opcode is
loaded with the data at the incremented address pointed to by SP.

In addition to being available as a temporary storage area, the stack is
also used by the system itself in processing interrupts, subroutine calls,
and returns. When a subroutine is called, the current value of the pro
gram counter is pushed automatically onto the stack; the processor exe-

2 Architecture of the 6502 33

After Pushing the Accum ulator

S ta c k P o in te r= $ F E

j 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

S ta c k

$ 0 1 FF A A A A A A A A *
$ 0 1 FE

(n e x t a v a ila b le)

$ 0 1 FD

$ 0 1 FC

$ 0 1 FB

A c c u m u la to r

A A A A A A A A

 1 ____________

Figure 2.3. After Pushing the Accumulator.

cutes a return instruction by reloading the program counter with the
value on the top of the stack.

While data is pushed into subsequently lower memory locations on
the 65x's stack, the location of the last data pushed is nonetheless
referred to as the top of the stack.

The Program Counter

The program counter (PC) contains the address of the next byte in the
instruction stream to fetch. Execution of a program begins when the
program counter is set to the program's entry point (typically the
address at which it was loaded). The processor fetches an instruction
opcode from that location, and proceeds to execute it. Based on the
given opcode, the processor will need to fetch zero, one, or two bytes of

34 Programming the 65816

operand from the successive locations following the instruction. When
the operand has been fetched, the instruction is executed. The program
counter is normally incremented to point to the next instruction in mem
ory, except in the case of jump, branch, and call instructions, which
pass control to a new location within the program by storing the new
location to the program counter.

The 6502 program counter is sixteen bits wide, allowing for programs
of up to 64K bytes. If the program counter is incremented past $FFFF, it
wraps around to $0000.

Addressing M odes_____________________
The fourteen different addressing modes that may be used with the

6502 are shown in Table 2.3. The availability of this many different
addressing modes on the 6502 gives it much of its power: Each one
allows a given instruction to specify its effective address—the source of
the data it will reference—in a different manner.

Table 2 .3 . 6502 Addressing M odes.

Addressing M ode Syntax Example
O pcode O perand

Implied DEX
Accumulator ASL A
Immediate LDA #55
Absolute LDA $2000
Program Counter Relative BEQ LABEL12
Stack PHA
Zero Page LDA $81
Absolute Indexed with X LDA $2000, X
Absolute Indexed with Y LDA $2000,Y
Zero Page Indexed with X LDA $55,X
Zero Page Indexed with Y LDX $55,Y
Absolute Indirect JMP ($1020)
Zero Page Indirect Indexed with Y (Postindexed) LDA ($55),Y
Zero Page Indexed Indirect with X (Preindexed) LDA ($55,X)

Not all addressing modes are available for all instructions; but each
instruction provides a separate opcode for each of the addressing modes
it supports.

For some of the 6502 addressing modes, the entire effective address is
provided in the operand field of the instruction; for many of them, how
ever, formation of the effective address involves an address calculation,
that is, the addition of two or more values. The addressing mode indi-

2 Architecture of the 6502 35

cates where these values are to come from and how they are to be added
together to form the effective address.

Implied addressing instructions, such as DEY and INX, need no oper
ands. The register that is the source of the data is named in the in
struction mnemonic and is specified to the processor by the opcode.
Accumulator addressing, in which data to be referenced is in the accu
mulator, is specified to the assembler by the operand A. Immediate
addressing, used to access data which is constant throughout the execu
tion of a program, causes the assembler to store the data right into the
instruction stream. Relative addressing provides the means for condi
tional branch instructions to require only two bytes, one byte less than
jump instructions take. The one-byte operand following the branch
instruction is an offset from the current contents of the program
counter. Stack addressing encompasses all instructions, such as push or
pull instructions, which use the stack pointer register to access memory.
And absolute addressing allows data in memory to be accessed by
means of its address.

Like the 6800 processor, the 6502 treats the zero page of memory spe
cially. A page of memory is an address range $100 bytes (256 decimal)
long: the high bytes of the addresses in a given page are all the same,
while the low bytes run from $00 through $FF. The zero page is the first
page of memory, from $0000 through $00FF (the high byte of each
address in the zero page is zero). Zero page addressing, a short form of
absolute addressing, allows zero page operands to be referenced by just
one byte, the low-order byte, resulting both in fewer code bytes and in
fewer clock cycles.

While most other processors provide for some form of indexing, the
6502 provides some of the broadest indexing possibilities. Indexed effec
tive addresses are formed from the addition of a specified base address
and an index, as shown in Figure 2.4. Because the 6502's index registers
(X and Y) can hold only eight bits, they are seldom used to hold index
bases; rather, they are almost always used to hold the indexes them
selves. The 6502's four simplest indexing modes add the contents of the
X or Y register to an absolute or zero page base.

Indirection (Figure 2.5) is less commonly found in microprocessor
repertoires, particularly among those microprocessors of the same
design generation as the 6502. It lets the operand specify an address at
which another address, the indirect address, can be found. It is at this
second address that data will be referenced. The 6502 not only provides
indirection for its jump instruction, allowing jumps to be vectored and
revectored, but it also combines indirection with indexing to give it real
power in accessing data. It's as though the storage cells for the indirect
addresses are additional 6502 registers, massively extending the 6502's
register set and possibilities. In one addressing mode, indexing is per-

36 Programming the 65816

Indexing: Base plus Index

For e x a m p le : B a s e = $ 2 0 0 0
In d e x R e g is te r X=$ 03

E ffe c tiv e A d d re s s = $ 2 0 0 3

B a s e = $ 2 0 0 0
i

0 0 1 o o o o o j o o 0 0 0 0 0 0

Figure 2.4. Indexing: Base Plus Index.

formed before indirection; in another, after. The first provides indexing
into an array of indirect addresses and the second provides indexing into
an array which is located by the indirect address.

The full set of 65x addressing modes are explained in detail in Chap
ters 7 and 11 and are reviewed in the Reference Section.

Instructions___________________________
The 6502 has 56 operation mnemonics, as listed in Table 2.4, which

combine with its many addressing modes to make 151 instructions
available to 6502 programmers.

2 Architecture of the 6502 37

Indirection: Operand Locates Indirect Address

F o r e x a m p le : Z e ro P ag e O p era n d = $ 2 0
D a ta a t $20.21 (In d ire c t Ad d re s s) = $ 3 4 5 8

E ffe c tiv e A d d re s s = $3 45 8

Z e ro P ag e
O p era n d = $ 2 0

0 0 1 0 0 0 0 0

$001F
$0020

$0021

M e m o ry

0 1 0 1 1 0 0 0

0 0 1 i 0 ~ i 0 0

$58

$34

$0022

$0 02 3

$ 3 45 6

$ 3457

$ 3 45 8 $ 3 4 5 8

$ 3 45 9

$3 45 A

Figure 2.5. Indirection: Operand Locates Indirect Address.

Arithmetic instructions are available, including comparisons, incre
ment, and decrement. But missing are addition or subtraction instruc-

38 Programming the 65816

Table 2 .4 . 6502 Instructions.

Instruction
M nem onic Description

ADC Add memory and carry to accumulator
AND And accumulator with memory
ASL Shift memory or accumulator left one bit
BCC Branch if carry clear
BCS Branch if carry set
BEQ Branch if equal
BIT Test memory bits against accumulator
BMI Branch if negative
BNE Branch if not equal
BPL Branch if plus
BRK Software break (interrupt)
BVC Branch if overflow clear
BVS Branch if overflow set
CLC Clear carry flag
CLD Clear decimal mode flag
CLI Clear interrupt-disable flag
CLV Clear overflow flag
CMP Compare accumulator with memory
CPX Compare index register X with memory
CPY Compare index register Y with memory
DEC Decrement
DEX Decrement index register X
DEY Decrement index register Y
EOR Exclusive-OR accumulator with memory
INC Increment
INX Increment index register X
INY Increment index register Y
JMP Jump
JSR Jump to subroutine
LDA Load accumulator from memory
LDX Load index register X from memory
LDY Load index register Y from memory
LSR Logical shift memory or accumulator right
NOP No operation
ORA OR accumulator with memory
PHA Push accumulator onto stack
PHP Push status flags onto stack
PLA Pull accumulator from stack
PLP Pull status flags from stack
ROL Rotate memory or accumulator left one bit

2 Architecture of the 6502 39

Table 2 .4 . 6502 Instructions (C on t.).

Instruction
M nem onic Description

ROR Rotate memory or accumulator right one bit
RTI Return from interrupt
RTS Return from subroutine
SBC Subtract memory with borrow from accumulator
SEC Set carry flag
SED Set decimal mode flag
SEI Set interrupt-disable flag
STA Store accumulator to memory
STX Store index register X to memory
STY Store index register Y to memory
TAX Transfer accumulator to index register X
TAY Transfer accumulator to index register Y
TSX Transfer stack pointer to index register X
TXA Transfer index register X to accumulator
TXS Transfer index register X to stack pointer
TYA Transfer index register Y to accumulator

tions which do not involve the carry; as a result, you must clear the
carry before beginning an add and set it before beginning a subtraction.

Logic instructions available include shifts and rotates, as well as an
instruction for bit comparing.

Branch instructions are entirely flag-based, not arithmetic-operation
based, so there are no single branch-on-greater-than, branch-on-less-
than-or-equal, or signed arithmetic branches. There is also no uncondi
tional branch and no branch-to-subroutine. The unconditional branch
can be imitated by first executing one of the 6502's many clear- or set-
flag instructions, then executing a branch-on-that-flag's-condition
instruction.

All three of the main user registers can be loaded from and stored to
memory, but only the accumulator (not the index registers) can be
pushed onto and pulled from the stack (although the flags can also be
pushed and pulled). On the other hand, single instructions let the accu
mulator value be transferred to either index register or loaded from
either index register. One more transfer instruction is provided for set
ting the value of the stack pointer to the value in the X index register.

The 6502 System Design________________
There are a number of other features of the 6502's design which make

it unique and make systems designed with it stand apart from systems
designed with other microprocessors.

40 Programming the 65816

Pipelining

The 65x microprocessors have the capability of doing two things at
once: the 6502 can be carrying on an internal activity (like an arithmetic
or logical operation) even as it's getting the next instruction byte from
the instruction stream or accessing data in memory.

A processor is driven by a clock signal which synchronizes events
within the processor with memory accesses. A cycle is a basic unit of
time within which a single step of an operation can be performed. The
speed with which an instruction can be executed is expressed in the
number of cycles required to complete it. The actual speed of execution
is a function both of the number of cycles required for completion and
the number of timing signals provided by the clock every second. Typi
cal clock values for 65x processors start at one million cycles per second
and go up from there.

As a result of the 6502's capability of performing two different but
overlapping phases of a task within a single cycle, which is called
pipelining, the 65x processors are much faster than non-pipelined proc
essors.

Take the addition of a constant to the 6502's eight-bit accumulator as
an example. This requires five distinct steps:

Step 1: Fetch the instruction opcode ADC.
Step 2: Interpret the opcode to be ADC of a constant.
Step 3: Fetch the operand, the constant to be added.
Step 4: Add the constant to the accumulator contents.
Step 5: Store the result back to the accumulator.

Pipelining allows the 6502 to execute steps two and three in a single
cycle: after getting an opcode, it increments the program counter, puts
the new program address onto the address bus, and gets the next pro
gram byte, while simultaneously interpreting the opcode. The com
pletion of steps four and five overlaps the next instruction's step one,
eliminating the need for two additional cycles.

So the 6502's pipelining reduces the operation of adding a constant
from five cycles to two!

The clock speed of a microprocessor has often been incorrectly pre
sumed to be the sole determinant of its speed. What is most significant,
however, is the memory cycle time. The 68000, for example, which
typically operates at 6 to 12 megahertz (MHz, or millions of cycles per
second) requires four clock periods to read or write data to and from
memory. The 65x processors require only one clock period. Because the
6502 requires fewer machine cycles to perform the same functions, a
one-megahertz 6502 has a throughput unmatched by the 8080 and Z80
processors until their clock rates are up to about four MHz.

2 Architecture of the 6502 41

The true measure of the relative speeds of various microprocessors
can only be made by comparing how long each takes, in its own
machine code, to complete the same operation.

Memory Order of Multiple-Byte Values

Multiple-byte values could be stored in memory in one of two ways:
low-order byte first, followed by successively higher order bytes; or
high-order byte first, followed by successively lower order bytes. The
6502, like the Intel and Zilog chips (the 8080, Z80, 8086, and so on), but
unlike the Motorola chips (the 6800, 6809, 68000, and so on), puts the
low-order byte first, into the lower memory address.

This seemingly unnatural order of the placement of multiple-byte val
ues in memory can be disconcerting at first. The sixteen-bit value stored
in memory as a $30 followed by $FE is not $30FE but rather $FE30.
Multiple-byte values are written high-order first, to read from left to
right; this is the opposite of how the bytes are placed in memory. This
memory order, however, contributes to the success and speed of
pipelining. Consider, as an example, the loading of the accumulator
using absolute indexed addressing (two lines for a cycle indicate simulta
neous operations due to pipelining):

Cycle 1: Fetch the instruction opcode, LDA.
Cycle 2: Fetch an operand byte, the low byte of an array base.

Interpret the opcode to be LDA absolute indexed.
Cycle 3: Fetch the second operand byte, the high array base byte.

Add the contents of the index register to the low byte.
Cycle 4: Add the carry from the low address add to the high byte.
Cycle 5: Fetch the byte at the new effective memory address.

(N o t e : The 6502 also does a fetch during Cycle 4, before it checks to
see if there was any carry; if there is no carry into the high byte of the
address, as is often true, then the address fetched from was correct and
there is no cycle five; the operation is a four-cycle operation in this case.
Absolute indexed writes, however, always require five cycles.)

The low-high memory order means that the first operand byte, which
the 6502 fetches before it even knows that the opcode is LDA and the
addressing mode is absolute indexed, is the low byte of the address base,
the byte which must be added to the index register value first; it can do
that add while getting the high byte.

Consider how high-low memory order would weaken the benefits of
pipelining and slow the process down:

Cycle 1: Fetch the instruction opcode, LDA.
Cycle 2: Fetch an operand byte, the high byte of an array base.

Interpret the opcode to be LDA absolute indexed.

42 Programming the 65816

Cycle 3: Fetch the second operand byte, the low array base byte.
Store the high byte temporarily.

Cycle 4: Add the contents of the index register to the low byte.
Cycle 5: Add the carry from the low address add to the high byte.
Cycle 6: Fetch the byte at the new effective memory address.

Memory-Mapped Input/Output
The 65x family (like Motorola's but unlike Zilog's and Intel's)

accomplishes input and output not with special opcodes, but by assign
ing each input/output device a memory location, and by reading from
or writing to that location. As a result, there's virtually no limit to the
number of I/O devices which may be connected to a 65x system. The
disadvantage of this method is that memory in a system is reduced by
the number of locations which are set aside for I/O functions.

Interrupts
Interrupts tell the processor to stop what it is doing and to take care

of some more pressing matter instead, before returning to where it left
off in regular program code. An interrupt is much like a doorbell: hav
ing one means you don't have to keep going to the door every few min
utes to see if someone is there; you can wait for it to ring instead.

An external device like a keyboard, for example, might cause an
interrupt to present input. Or a clock might generate interrupts to toggle
the processor back and forth between two or more routines, letting it do
several tasks "at once." A special kind of interrupt is reset (the panic
button), which is generally used out of frustration to force the processor
into reinitialization. Reset generally does not return to the interrupted
code after it has been served, however.

The 6502 has three interrupt vectors—memory addresses that hold
the locations of routines which are automatically executed upon recog
nition of an interrupt by the processor. The first of these is used for
reset.

The second vector is used both by maskable interrupts—those which
you can force the processor to ignore, either temporarily or perma
nently, by setting the i interrupt bit in the status register—and by soft
ware interrupts—which are caused by the execution of the break
instruction (BRK). If any hardware can cause a maskable interrupt, the
interrupt service routine pointed to by this vector must determine the
source of the interrupt. It must poll a status flag on each possible hard
ware source as well as check the stacked status register's b flag, which is
set and pushed when a break instruction is executed. When it finds the
source of the interrupt, it must then branch to a routine which will
respond to the interrupt in a way appropriate to the source (getting a
character from a communications port, for example).

2 Architecture of the 6502 43

The third vector is used by nonmaskable interrupts, those which
interrupt regardless of the i bit in the status register. The non-maskable
interrupt is usually reserved for a single high-priority or time-critical
interrupt, such as refresh of a CRT screen or to warn of impending
power failure.

The 6502 was designed to service interrupts as fast as possible.
Because interrupts cannot be served until the current instruction is com
pleted (so no data is lost), the worst case is the longest instruction time
and the 6502's instructions each take very few cycles to execute. As a
result, the 6502 and its successors have the lowest interrupt latency—the
time between interrupt occurrence and interrupt-handling response—of
any eight-bit or sixteen-bit processors.

NMOS Process_________________________
The 6502 is fabricated using the NMOS (pronounced "EN moss") pro

cess (for N-channel Metal-Oxide Semiconductor). Still one of the most
common of the technologies used in large-scale and very-large-scale
integrated circuits, NMOS was, at the time the 6502 was designed and
for many years after, the most cost-efficient of the MOS technologies
and the easiest process for implementation of relatively high-speed
parts. This made NMOS popular among designers of microcomputers
and other devices in which hardware cost was an important design
factor.

Most of the current generation of 8-, 16-, and 32-bit processors were
originally implemented in NMOS. Some, like the 6502, are still only
available in NMOS process versions. Others, like all of the recently
designed members of the 65x family (the 65C02, 65802, and 65816) were
produced exclusively using the CMOS process.

Bugs and Quirks_______________________
The 6502 has a number of features which the less enthusiastic might

be inclined to call bugs or quirks.
The one most clearly a bug involves using indirect addressing with the

jump instruction, when its operand ends in $FF. To use an example,

JM P ($ 2 0 F F >

should cause the program counter to get, as its new low byte, the con
tents of $20FF, and as its new high byte, the contents of $2100. How
ever, while the 6502 increments the low byte of the indirect address
from $FF to 00, it fails to add the carry into the high byte, and as a
result gets the program counter's new high byte from $2000 rather than
$2100.

44 Programming the 65816

You can also run into trouble trying to execute an unused opcode, of
which the 6502 has many. The results are unpredictable, but can include
causing the processor to "hang."

Finally, the decimal mode is not as easy to use as it might be. The
negative, overflow, and zero flags in the status register are not valid in
decimal mode and the setting of the decimal flag, which toggles the
processor between binary and decimal math, is unknown after the proc
essor has received a hardware "reset".

Architecture of the
65C02

The 65C02 microprocessor is an enhanced version of the 6502, imple
mented using a silicon-gate CMOS process. The 65C02 was designed
primarily as a CMOS replacement for the 6502. As a result, the signifi
cant differences between the two products are few. While the 65C02
adds 27 new opcodes and two new addressing modes (in addition to
implementing the original 151 opcodes of the 6502), its register set,
memory model, and types of operations remain the same.

The 65C02 is used in the Apple //c and, since early 1985, in the Apple
//e, and it has been provided as an enhancement kit for earlier //e's.

Remember that even as the 65C02 is a superset of the 6502, the 65802
and 65816, described in the next chapter, are supersets of the 65C02. All
of the enhancements found in the 65C02 are additionally significant in
that they are intermediate to the full 65816 architecture. The next chap
ter will continue to borrow from the material covered in the previous
ones, and generally what is covered in the earlier of these three architec
ture chapters is not repeated in the subsequent ones, since it is true for
all 65x processors.

45

46 Programming the 65816

The 65C02 Architecture_________________
Both the 65C02 and the 6502 are eight-bit processors, with a 64K

address space and exactly the same register set.
The 65C02 features some small but highly desirable improvements in

the use of the status register flags: it gives valid negative, overflow, and
zero flags while in decimal mode, unlike the 6502; and it resets the deci
mal flag to zero after reset and interrupt.

The 65C02 has slightly different cycle counts on a number of opera
tions from the 6502, some shorter and a few longer. The longer cycle
counts are generally necessary to correct or improve operations from
the 6502.

Addressing M odes_____________________
The 65C02 introduces the two new addressing modes shown in Table

3.1, as well as supporting all the 6502 addressing modes. All of them
will be explained in detail in Chapters 7 and 11, and will be reviewed in
the Reference Section.

Table 3 .1 . The 65C 02's New Addressing M odes.

Addressing M ode Syntax Example
O pcode O perand

Zero Page Indirect LDA ($55)
Absolute Indexed Indirect JMP ($2000, X)

Zero page indirect provides an indirect addressing mode for accessing
data which requires no indexing (the 6502's absolute indirect mode is
available only to the jump instruction). 6502 programmers commonly
simulate indirection by loading an index register with zero (losing its
contents and taking extra steps), then using the preindexed or post
indexed addressing modes to indirectly reference the data.

On the other hand, combining indexing and indirection proved so
powerful for accessing data on the 6502 that programmers wanted to see
this combination made available for tables of jump vectors. Absolute
indexed indirect, available for the jump instruction only, provides this
multi-directional branching capability, which can be very useful for case
or switch statements common to many languages.

Instructions___________________________
While the 65C02 provides 27 new opcodes, there are only eight new

operations. The 27 opcodes result from providing four different address

3 Architecture of the 65C02 47

ing modes for one of the new mnemonics and two for two others, and
also from expanding the addressing modes for twelve 6502 instructions.
The most significant expansion of a 6502 instruction by combining it
with a 6502 addressing mode it did not previously use is probably the
addition of accumulator addressing for the increment and decrement
instructions.

The new 65C02 operations, shown in Table 3.2, answer many pro
grammer's prayers: an unconditional branch instruction, instructions to
push and pull the index registers, and instructions to zero out memory
cells. These may be small enhancements, but they make programming
the 65C02 easier, more straightforward, and clearer to document. Two
more operations allow the 65C02 to set or clear any or all of the bits in a
memory cell with a single instruction.

Table 3 .2 . New 65C 02 Instructions.

Instruction
M nem onic Description

BRA Branch always (unconditional)
PHX Push index register X onto stack
PHY Push index register Y onto stack
PLX Pull index register X from stack
PLY Pull index register Y from stack
STZ Store zero to memory
TRB Test and reset memory bits against accumulator
TSB Test and set memory bits against accumulator

CMOS Process_________________________

Unlike the 6502, which is fabricated in NMOS, the 65C02 is a CMOS
(pronounced "SEE moss") part. CMOS stands for Complementary
Metal-Oxide Semiconductor.

The most exciting feature of CMOS is its low power consumption,
which has made portable, battery-operated computers possible. Its low
power needs also result in lower heat generation, which means parts can
be placed closer together and heat-dissipating air space minimized in
CMOS-based computer designs.

CMOS technology is not a new process. It's been around for about as
long as other MOS technologies. But higher manufacturing costs during
the early days of the technology made CMOS impractical for the highly
competitive microcomputer market until the mid 1980s, so process
development efforts were concentrated on NMOS and not applied to
CMOS until 1980 or 1981.

48 Programming the 65816

CMOS technology has reached a new threshold in that most of its
negative qualities, such as the difficulty with which smaller geometries
are achieved relative to the NMOS process, have been overcome. Price
has become competitive with the more established NMOS as well.

Bugs and Quirks_______________________
The 65C02 fixes all of the known bugs and quirks in the 6502. The

result of executing unused opcodes is now predictable—they do nothing
(that is, they act like no-operation instructions). An interesting footnote
is that, depending on the unimplemented instruction that is executed,
the number of cycles consumed by the no-operation is variable between
one and eight cycles. Also, the number of bytes the program counter is
incremented by is variable. It is strongly recommended that this feature
not be exploited, as its use will produce code incompatible with the
next-generation 65802 and 65816.

The jump indirect instruction has been fixed to work correctly when
its operand crosses a page boundary (although at the cost of an execu
tion cycle). The negative, overflow, and zero flags have been imple
mented to work in decimal mode (also at the cost of an execution cycle).
The decimal mode is now reset to binary after a hardware reset or an
interrupt.

Finally, a fix which is generally transparent to the programmer, but
which eliminates a possible cause of interference with memory-mapped
I/O devices on the 6502, is the elimination of an invalid address read
while generating an indexed effective address when a page boundary is
crossed.

The quirk unique to the 65C02 results from trying to eliminate the
quirks of the 6502. The timing improvements of a number of instruc
tions and the bug fixes from the 6502 make the 65C02 an improvement
over the 6502, but not quite fully compatible on a cycle-by-cycle basis.
This is only a consideration during the execution of time-critical code,
such as software timing loops. As a practical example, this has affected
very little software being ported from the Apple //e to the l i e .

Sixteen-Bit
Architecture: The
65816 and the 65802

While the 65C02 was designed more as a CMOS replacement for the
6502 than an enhancement of it, the 65802 and 65816 were created to
move the earlier designs into the world of sixteen-bit processing. And
although the eight-bit 6502 had been a speed demon when first released,
its competition changed over the years as processing sixteen bits at a
time became common, and as the memory new processors could address
started at a megabyte.

The 65816 and the 65802 were designed to bring the 65x family into
line with the current generation of advanced processors. First produced
in prototypes in the second half of 1984, they were released simulta
neously early in 1985. The 65816 is a full-featured realization of the 65x
concept as a sixteen-bit machine. The 65802 is its little brother, with the
65816's sixteen-bit processing packaged with the 6502's pinout for com
patibility with existing hardware.

The two processors are quite similar. They are, in fact, two different
versions of the same basic design. In the early stages of the chip fabrica
tion process they are identical and only assume their distinct "personali
ties" during the final (metalization) phase of manufacture.

The two processors provide a wealth of enhancements: another nine
addressing modes, 78 new opcodes, a "hidden" second accumulator in
eight-bit mode, and a zero page which, renamed the direct page, can be
relocated to any contiguous set of $100 bytes anywhere within the first
64K of memory (which in the case of the 65802 is anywhere in its
address space). The most dramatic of all the enhancements common to
both 65802 and 65816, though, is the expansion of the primary user
registers—the accumulator, index registers, and stack pointer—to
sixteen-bit word size. The accumulator and index registers can be tog
gled to sixteen bits from eight, and back to eight when needed. The
stack, pointed to by an expanded-to-sixteen-bit stack register, can be
relocated from page one to anywhere in a 64K range.

The primary distinction between the two processors is the range of
addressable memory: the 65816 can address up to sixteen megabytes;
the 65802 is constrained by its 6502 pinout to 64K.

49

50 Programming the 65816

A secondary distinction between the two processors is that the
65816's new pinout also provides several significant new signals for the
hardware designer. While outside the primary scope of this book, these
new signals are mentioned in part in this chapter and described in some
detail in Appendix C.

It is important to remember that the 65802 is in fact a 65816 that has
been coerced to live in the environment designed originally for the 6502
and 65C02. Outside of the memory and signal distinctions just listed,
the 65816 and the 65802 are identical. Both have a native mode, in
which their registers can be used for either eight- or sixteen-bit opera
tions. Both have a 6502 emulation mode, in which the 6502's register set
and instruction timings emulate the eight-bit 6502 (not the 65C02)
exactly (except they correct a few 6502 bugs). All existing 6502 software
can be run by the new processor—as can virtually all 65C02 software—
even as most of the native mode's enhancements (other than sixteen-bit
registers) are programmable in emulation mode, too.

To access sixteen megabytes, the signals assigned to the various pins
of the 65816's 40-pin package are different from the 6502, the 65C02 and
the 65802, so it cannot be installed in existing 65x computers as a
replacement upgrade. The 65802, on the other hand, has a pinout that is
identical to that of the 6502 and 65C02 and can indeed be used as a
replacement upgrade.

This makes the 65802 a unique, pin-compatible, software-compatible
sixteen-bit upgrade chip. You can pull a 6502 out of its socket in any
existing 6502 system, and replace it with a 65802 because it powers-on
in the 6502 emulation mode. It will run existing applications exactly the
same as the 6502 did. Yet new software can be written, and 6502 pro
grams rewritten, to take advantage of the 65802's sixteen-bit capabili
ties, resulting in programs which take up much less code space and
which run faster. Unfortunately, even with a 65802 installed, an older
system will remain unable to address memory beyond the original 64K
limits of the 6502. This is the price of hardware compatibility.

The information presented in this chapter builds directly on the in
formation in the previous two chapters; it should be considered as a
continuous treatment of a single theme. Even in native mode with
sixteen-bit registers, the 65802 and 65816 processors utilize many of the
6502 and 65C02 instructions, registers, and addressing modes in a man
ner which differs little from their use on the earlier processors. If you
are already familiar with the 6502 or the 65C02, you will discover that
the 65802 and 65816 logically expand on these earlier designs.

Power-On Status: 6502 Emulation M ode___
When the 65816 and 65802 are powered on, they initialize themselves

into 6502 emulation mode in which, with the exception of fixing several

Sixteen-Bit Architecture: The 65816 and the 65802 51

6502 bugs, they exactly emulate the 6502. The stack is confined to page
one, just like the 6502 stack pointer. The registers are configured to
eight bits, to model the 6502's registers. Every 6502 instruction is imple
mented identically. The timing of each instruction is exactly the same as
on the original NMOS 6502. The direct page of the 65802 and 65816,
which as you will learn can be relocated using the sixteen-bit direct page
register, is initialized to page zero, making direct page addressing
exactly equivalent to 6502 zero page addressing. The program and data
bank registers, which as you will learn provide efficient access in the
65816 to any one or two 64K banks of memory at a time, are initialized
to the zero bank.

Unlike the NMOS 6502, which has undefined results when unimple
mented opcodes are executed, and the 65C02, which treats unimple
mented opcodes as variously-timed and -sized no-operations, the 65802
instruction set implements every one of the 256 possible one-byte
opcodes. These additional instructions are available in emulation mode
as well as in native mode.

Among the newly implemented opcodes are ones that allow the proc
essors to be switched to their native mode—sixteen-bit operation. While
there is more to say about 6502 emulation mode, it will be easier to
understand in the context of native mode.

The Full-Featured 65x Processor:
The 65816 in Native M ode_______________

The 65816 in its native mode (as opposed to its 6502 emulation mode)
has it all: sixteen-bit registers, 24-bit addressing, and all the rest. The
65802's native mode is a subset of this, as are the emulation modes of
both processors.

Figure 4.1 shows the programming model for the 65816 in native
mode. While the accumulator is shown as a sixteen-bit register, it may
be set to be either a single sixteen-bit accumulator (A or C) or two
eight-bit accumulators, one accessible (A) and the other hidden but
exchangeable (B). While the index registers are shown as sixteen-bit reg
isters, they may be set, as a pair, to be either sixteen-bit registers or
eight-bit registers—their high bytes are zeroed when they are set to eight
bits. The obvious advantage of switching from a processor with eight-
bit registers to one with sixteen-bit registers is the ability to write pro
grams which are from 25 to 50 percent shorter, and which run 25 to 50
percent faster due to the ease with which sixteen-bit data is manip
ulated.

The feature that most clearly distinguishes the current generation of
advanced microcomputer systems, however, is the ability to address

52 Programming the 65816

65816 Native Mode Programming Model
(16-b it accum ulato r & index register modes: m = 0 & x = 0)

23 15 7 0
--- 1--

A ccum ulator (B) (A or C) A ccum ulator (A)

Data Bank Register (DBR)

X Index R egister (X)

Y Index R egister (Y)

o o o o o o o o Direct Page Register (D)

0 0 0 0 0 0 0 0 S tack Pointer (S)

Program Bank Register (PBR) Program Counter (PC)

Processor S tatus Register (P)

7 0

e

n v m d i

— Em ulation 0 = N a t iv e Mode

•C a rry

- Z e r o

IRQ Disable

--D ecim al Mode

 Index R egister Select

■ M em ory /A ccum u lato r Select

1 O verflow

--- N egative

1 = C a rry

1 = R e s u lt Zero

1 = D is ab le d

1 = Decim al, 0 = B in a ry

1 = 8 -b it , 0 = 16-bit

1 = 8 -b it , 0 = 1 6 -b it

1 = 0 v e r f lo w

1 = N e g a tiv e

Figure 4.1. 65816 Native Mode Programming Model.

lots of memory. It is this increased memory addressability which has
ushered in the new era of microcomputer applications possibilities, such
as large spreadsheets, integrated software, multi-user systems, and
more. In this regard, the 65816 stands on or above par with any of the

Sixteen-Bit Architecture: The 65816 and the 65802 53

other high-performance microprocessors, such as the 68000, the 8086,
or their successors.

There are two new eight-bit registers called bank registers. One,
called the data bank register, is shown placed above the index registers
and the other, called the program bank register, is appended to the pro
gram counter. The 65816 uses the two bank registers to provide 24-bit
addressing.

A bank of memory is much like a page; just as a page is a range of
memory that can be defined by eight bits (256 bytes), a bank is a range
of memory that can be defined by sixteen bits (64K bytes). For proces
sors like the 6502, which have only sixteen-bit addressing, a 64K bank is
not a relevant concept, since the only bank is the one being currently
addressed. The 65816, on the other hand, partitions its memory range
into 64K banks so that sixteen-bit registers and addressing modes can be
used to address the entire range of memory.

Bank zero, for example, is that 64K range for which, when addressed
using 24 bits, the highest byte (also called the bank byte) is zero. Simi
larly, a highest byte of nine in a 24-bit address would address a location
somewhere in bank nine. This highest byte is called the bank byte so
that the term high byte can still be used to refer to the byte that deter
mines the page address. In other words, "high byte" is used on the 65816
as it is on the 6502, 65C02 and 65802, where addresses are only sixteen
bits.

Another new register shown in Figure 4.1 is the direct page register.
Much like the 6800's special zero page became the 6809's direct page, the
6502's and 65C02's zero page has been transformed into the 65802's and
65816's direct page. This direct page is, as Figure 4.1 shows, limited to
bank zero, shown in the programming model by the implied zero as its
bank byte. The direct page register can be set to any 256-byte page
starting on any byte boundary within bank zero. All of the 6502 instruc
tions that use zero page addressing use an expanded form called direct
page addressing on the 65816 and 65802; however, when the direct page
register value is zero, the two modes are operationally identical.

Figure 4.1 also shows that the stack pointer has been unbound from
page one to float anywhere in bank zero by making it a sixteen-bit reg
ister.

While Figure 4.1 doesn't show the interrupt vectors, they too are
located in bank zero, and they point to interrupt handling routines
which also must be located in bank zero.

Finally, the status register is different from the 6502's and 65C02's
(compare Figure 4.1 with Figure 2.1 in Chapter 2). The first obvious dif
ference is the single bit labelled e for emulation hanging off the top of
the carry flag. Accessible only through the carry flag, its contents deter
mine whether the processor is in native or 6502 emulation mode. Here it

54 Programming the 65816

holds a zero to indicate the processor is in native mode. The second dif
ference is the m and x flags replace the 6502's break and unused flags: m
indicates the size of the accumulator (eight or sixteen bits) as well as the
size of memory accesses; x indicates the size of the two index registers
(eight or sixteen bits). Changing the contents of either of these two new
flags toggles the size of the corresponding registers. The b flag is no
longer necessary to distinguish the BRK software interrupt from hard
ware interrupts because native mode provides a new interrupt vector for
software interrupts, separate from the hardware interrupt vector.

Native mode also provides one timing improvement over the 6502:
one cycle is saved during a cross-page branch.

The Program Bank Register
The 65816's sixteen-bit program counter is concatenated to its eight-

bit program counter bank register (PBR, or K when used in instruction
mnemonics) to extend its instruction-addressing capability to 24 bits.
When the 65816 gets an instruction from memory, it gets it from the
location pointed to by the concatenation of the two registers. In many
ways, the net effect is a 24-bit program counter; for example, when an
interrupt occurs, all 24 bits (program counter plus program counter
bank) are pushed onto the stack. Likewise, when a return-from-inter-
rupt occurs, 24 bits (both registers) are pulled from the stack.

All previous instructions that jumped to sixteen-bit absolute addresses
still work by staying within the same bank. Relative branches stay in
the same bank; that is, you can't branch across bank boundaries. And
program segments cannot cross bank boundaries; if the program
counter increments past $FFFF, it rolls over to $0000 w ithout increment
ing the program counter bank.

New instructions and addressing modes were added to let you trans
fer control between banks: jump absolute long (jump to a specified 24-
bit address), jump indirect long (the operand is an absolute address in
bank zero pointing to a 24-bit address to which control is transferred),
jump to subroutine long (to a specified 24-bit address, with the current
program counter and program bank register pushed onto the stack
first), and a corresponding return from subroutine long, which re-loads
the bank register as well as the program counter. (The addressing modes
are among those listed in Table 4.3, the instructions in Table 4.4.)

These instructions that specify a complete 24-bit address to go to,
along with native mode's software interrupt and return from interrupt
instructions, are the only ones that modify the value in the program
bank register. The program bank can be pushed onto the stack so it can
be pulled into another register and be examined or tested. But there is
no instruction for pulling the program bank register from the stack,
since that would change the bank the next instruction would come

Sixteen-Bit Architecture: The 65816 and the 65802 55

from—certain to be catastrophic. To avoid such "strange" branches
across banks, the program counter bank register can only be changed
when the program counter is changed at the same time.

The Data Bank Register
The data bank register (DBR or, when used as part of a mnemonic, B)

defines the default bank to be used for reading or writing data whenever
one of the addressing modes that specifies (only) a sixteen-bit address is
used, such as the absolute, indirect, or indexed instructions found on the
6502. Such sixteen-bit effective addresses as used with the 6502 are con
catenated with the value in the data bank register to form a 24-bit
address, much as the program counter is concatenated with the program
bank register. An important difference is that, unlike the program
counter bank register, the data bank register can be tem porarily incre
mented by instructions which use indexed addressing; in other words,
bank boundaries do not confine indexing, which crosses them into the
next bank.

As already mentioned, direct page and stack-based values are always
accessed in bank zero, since the implied bank used with the direct page
and stack is zero. But indirect addresses pulled out of the direct page or
off the stack (when used with addressing modes that do not further
specify the bank value) point to locations in the current data bank.

The existence of the data bank register on the 65816 provides a con
venient way to access a large range of data memory without having to
resort to 24-bit address operands for every operation.

The Direct Page Register
The direct page register (D) points to the beginning of direct page

memory, which replaces zero page memory as the special page used for
short-operand addressing. All of the 6502 instructions that use zero page
addressing use an expanded form called direct page addressing on the
65816 and 65802. If the direct page register is set to zero, then direct
page memory is the zero page, and direct page addressing is operation
ally identical to zero page addressing.

One effect of having a direct page register is that you can set up and
alternate between multiple direct page areas, giving each subroutine or
task its own private direct page of memory, which can prove both use
ful and efficient.

The Stack Pointer
The native mode stack pointer holds a sixteen-bit address value. This

means it can be set to point to any location in bank zero. It also means
the stack is no longer limited in length to just $100 bytes, nor limited to

56 Programming the 65816

page one ($100 to $1FF). Page one therefore loses its character as a "spe
cial" memory area and may be treated like any other page while running
the 65802 or 65816 in the native mode.

The Accumulator and the Index Registers
The key difference between the 65816/65802 and the earlier proces

sors in the series is that the 65816's three primary user registers—the
accumulator and the X and Y index registers—can be toggled between
eight and sixteen bits. You can select which size (eight or sixteen bits)
you wish to use by executing special control instructions that modify the
new m and x flags.

This enhances the basic processing power of the chip tremendously. A
simple subtraction of sixteen-bit numbers, for example, illustrates the
difference. The eight-bit 6502 must be programmed to load the low byte
of the first sixteen-bit number, subtract the low byte of the second num
ber, then save the result, load the first number's high byte, subtract the
second number's, and finally, save the high result. The sixteen-bit proc
essors, on the other hand, can load one sixteen-bit value, subtract the
other, then save the sixteen-bit result. Three steps replace six.

With its ability to change register size, the 65816 functions equally
well with eight bits or sixteen. From the programmer's point of view, it
is a dual word-size machine. The machine word size—the basic unit of
data the machine processes in a given instruction cycle—may be either
byte or double byte, that is, eight or sixteen bits.

In the terminology used in describing other sixteen-bit processors, the
term w ord is used specifically to refer to sixteen-bit data, and byte to
refer to eight-bit data. But other sixteen-bit processors generally have
different mechanisms for selecting byte or double byte data to operate
upon. The terminology appropriate to the 65802 and 65816 is to refer to
sixteen-bit data as double byte, rather than word, since their word size
alternates between eight bits and sixteen, and since they can operate in
either byte mode or double byte mode with equal effectiveness. They
are hybrid processors.

The width of the accumulator and the width of the index registers are
independently controlled by setting and resetting the two special flag
bits within the status register, the index register select (x) and memory/
accumulator select (m) flags. When both are set, the eight-bit register
architecture of the 6502 is in force. While very similar to the emulation
mode, this eight-bit native mode is subtly different in important ways: a
BRK vector is available in the native mode; interrupt processing is dif
ferent between emulation and native mode in general; and of course
sixteen-bit processing can be called up with a single instruction. Yet the
65802 and 65816 will execute a good deal of existing 6502 programs
without modification in this mode.

Sixteen-Bit Architecture: The 65816 and the 65802 57

When either or both the index register select or memory select flags
are cleared, the word size of the corresponding register(s) is expanded
from eight bits to sixteen.

The four possible modes of operation are shown in Table 4.1.

Table 4 .1 . The Four Possible Native M ode Register
Combinations.

eight-bit accumulator (m bit is set)
eight-bit index registers (x bit is set)

eight-bit accumulator (m bit is set)
sixteen-bit index registers (x bit is clear)

sixteen-bit accumulator (m bit is clear)
eight-bit index registers (x bit is set)

sixteen-bit accumulator (m bit is clear)
sixteen-bit index registers (x bit is clear)

When the opcode for a given instruction is fetched from memory dur
ing program execution, the processor may respond differently based
upon the settings of the two register select flags. Their settings may be
thought of as extensions to the opcode. For example, consider the fol
lowing instruction:

object
code instruction

BD00B0 LDA $B000,X

which loads the accumulator with data from the effective address
formed by the sum of $B000 and the contents of the X register. The X
register contents can be either eight bits or sixteen, depending upon the
value of the index select flag. Furthermore, the accumulator will be
loaded from the effective address with either eight or sixteen bits of
data, depending upon the value of the memory/accumulator select flag.

The instruction and addressing mode used in the example are found
also on the 6502 and 65C02; the opcode byte ($BD) is identical on all
four processors. The 65816's new mode flags greatly expand the scope of
the 6502's instructions. For programmers already familiar with the 6502,
the understanding of this basic principle—how one opcode can have up
to four different effects based on the flag settings—is the single most
important principle to grasp in moving to a quick mastery of the 65802
or 65816.

58 Programming the 65816

Switching Registers Between Eight and Sixteen
Bits

The two register select flags are set or cleared by two new instructions
provided for modifying the status register: one of the instructions, SEP,
(set P) can be used to set any bit or bits in the P status register; the
other, REP, (reset P) can be used to reset any bit or bits in the status
register.

Figure 4.2 shows the results of changing the index registers and accu
mulator between eight and sixteen bits. When a sixteen-bit index regis
ter is switched to eight bits, the high byte is lost irretrievably and
replaced by a zero. On the other hand, when an eight-bit index register
is switched to sixteen bits, its unsigned value is retained by concatenat
ing it to a zero high byte; that is, the eight-bit unsigned index already in
the register is extended to sixteen bits.

Unlike the index operations, switching the accumulator's size in either
direction is reversible. The accumulator is treated differently due to its
function, not as an index register, but as the register of arithmetic and
logic. In this role, it is often called upon to operate on eight-bit values
with sixteen-bit ones and vice versa.

When the sixteen-bit A accumulator is switched to eight bits, the low
byte becomes the new eight-bit A accumulator while the high byte
becomes the eight-bit "hidden" B accumulator. B may be seen as an
annex to the A accumulator, accessible only through a new instruction
which exchanges the values in the two accumulators (making B useful
for temporarily storing off the eight-bit value in A). Conversely, when
the accumulator is switched from eight bits to sixteen, the new sixteen-
bit A accumulator has, as its low byte, the previous eight-bit A accumu
lator and, as its high byte, the previous hidden B accumulator.

Certain instructions that transfer the accumulator to or from other
sixteen-bit registers refer to the sixteen-bit accumulator as C to empha
size that all sixteen accumulator bits will be referenced regardless of
whether the accumulator is set to eight- or sixteen-bit mode. Again, this
is illustrated in Figure 4.2.

The Status Register

Because the emulation bit is a "phantom" bit, it cannot be directly
tested, set, or cleared. The flag that it "phantoms" or overlays is the
carry bit; there is a special instruction, XCE, that exchanges the contents
of the two flags. This is the "trapdoor" through which the emulation
mode is entered and exited.

Two status register bits were required for the two-flag eight-or-
sixteen-bit scheme. While the 6502's status register has only one unused
status register bit available, its break flag is used only for interrupt pro-

Sixteen-Bit Architecture: The 65816 and the 65802 59

Results of Switching Register Sizes
(L = b its in low byte; H = bits in high byte)

Index Registers; 16 Bits to 8

HHHH HHHH | LLLL LLLL
____________ i____________

x = 0

0000 0000 LLLL LLLL

x = 1

Index Registers: 8 Bits to 16

0000 0000 LLLL LLLL 0000 0000 LLLL LLLL

x = 1 x = 0

A ccum ulator: 16 Bits to 8

A B A

HHHH HHHH I LLLL LLLL
i

LLLL LLLL
L_

1 J

(also C) (also C)

A ccum ulator: 8 Bits to 16

HHHH HHHH LLLL LLLL

A
T

HHHH HHHH I LLLL LLLL
___________________I__________________

m = 1

— J —
(also C)

m=0

T ~
(a lso C)

Figure 4.2. Results of Switching Register Sizes.

cessing, not during regular program execution, to flag whether an inter
rupt comes from a break instruction or from a hardware interrupt. By
giving the break instruction its own interrupt vector in native mode, the
65816's designers made a second bit available for the m and x register
select flags.

6502/65C02 Addressing Modes on the 65816

All of the 6502 and 65C02 addressing modes are available to the
65816/65802, but native mode's sixteen-bit features mean you need to

60 Programming the 65816

expand your thinking about what they will do. For example, the 65816's
direct page, which can be located anywhere in memory, replaces the
earlier zero page as the special page for short-operand addressing
modes. All 6502/65C02 zero page addressing modes become direct page
addressing modes, as shown in Table 4.2.

Table 4 .2 . Addressing M odes: Zero Page vs. Direct Page.

6502/65C02

Zero Page. Addressing Mode

65802/65816

Direct Page Addressing Mode

Syntax Example Common to Both

Opcode Operand

Zero Page Direct Page LDA $55

Zero Page Indexed with X Direct Page Indexed with X LDA $55,X

Zero Page Indexed with Y Direct Page Indexed with Y LDX $55,Y

Zero Page Indirect Indexed with Y

(Postindexed) Direct Page Indirect Indexed with Y LDA ($55),Y

Zero Page Indexed Indirect with X

(Preindexed) Direct Page Indexed Indirect with X LDA ($55,X)

Zero Page Indirect Direct Page Indirect LDA ($55)

Notice in Table 4.2 that the assembler syntax for each direct page
addressing mode (not to mention the object bytes themselves) is the
same as its zero page counterpart. The names and the results of the
addressing modes are what differ. Direct page addressing, like the 6502/
65C02 zero page addressing, allows a memory location to be addressed
using only an eight-bit operand. In the case of the 6502, a sixteen-bit
zero page effective address is formed from an eight-bit offset by concate
nating a zero high byte to it. In the 65802/65816, the direct page effec
tive address is formed by adding the eight-bit offset to the sixteen-bit
value in the direct page register. This lets you relocate the direct page
anywhere in bank zero, on any byte boundary. Note, however, that it is
most efficient to start the direct page on a page boundary because this
saves one cycle for every direct page addressing operation.

When considering the use of 6502/65C02 zero page instructions as
65802/65816 direct page instructions, remember that a direct page
address of $23 is located in memory at location $0023 only if the direct
page register is set to zero; if the direct page register holds $4600, for
example, then direct page address $23 is located at $4623. The direct
page is essentially an array which, when it was the zero page, began at
address zero, but which on the 65816 and 65802 can be set to begin at
any location.

In the 6502/65C02, the effective address formed using zero page
indexed addressing from a zero page base address of $F0 and an index of
$20 is $10; that is, zero page indexed effective addresses wrap around to
always remain in the zero page. In the emulation mode this is also true.
But in native mode, there is no page wraparound: a direct page starting

Sixteen-Bit Architecture: The 65816 and the 65802 61

at $2000 combined with a direct page base of $20 and a sixteen-bit index
holding $300 results in an effective address of $2320.

The three main registers of the 65802/65816 can, in native mode, be
set to hold sixteen bits. When a register is set to sixteen bits, then the
data to be accessed by that register will also be sixteen bits.

For example, shifting the accumulator left one bit, an instruction
which uses the accumulator addressing mode, shifts sixteen bits left
rather than eight if the accumulator is in sixteen-bit mode. Loading a
sixteen-bit index register with a constant using immediate addressing
means that a sixteen-bit value follows the instruction opcode. Loading a
sixteen-bit accumulator by using absolute addressing means that the
sixteen-bit value stored starting at the absolute address, and continuing
into the location at the next address, is loaded into the accumulator.

Sixteen-bit index registers give new power to the indexed addressing
modes. Sixteen-bit index registers can hold values ranging up to 64K; no
longer must the double-byte base of an array be specified as a constant
with the index register used for the index. A sixteen-bit index can hold
the array base with the double-byte constant specifying the (fixed)
index.

Finally, the 65816 has expanded the scope of 6502 and 65C02 instruc
tions by mixing and matching many of them with more of the 6502/
65C02 addressing modes. For example, the jump-to-subroutine instruc
tion can now perform absolute indexed indirect addressing, a mode
introduced on the 65C02 solely for the jump instruction.

New 65816 Addressing Modes
Not only do the 65802 and 65816 provide all the 6502 and 65C02

addressing modes, but they also offer nine new addressing modes of
their own, in both emulation and native modes. They are shown in
Table 4.3.

Table 4 .3 . The 65816 /65802 's New Addressing M odes.

Addressing M ode Syntax Example
O pcode O perand

Program Counter Relative Long BRL JMPLABEL
Stack Relative LDA 3,S
Stack Relative Indirect Indexed with Y LDA (5,S),Y
Block Move MVP 0,0
Absolute Long LDA $02F000
Absolute Long Indexed with X LDA $12D080,X
Absolute Indirect Long JMP [$2000]
Direct Page Indirect Long LDA [$55]
Direct Page Indirect Long Indexed with Y LDA [$55],Y

62 Programming the 65816

There are six new addressing modes that use the word "long", but
with two very different meanings. Five of the "long" modes provide 24-
bit addressing for interbank accesses. Program counter relative long
addressing, on the other hand, provides an intrabank sixteen-bit form of
relative addressing for branching. Like all the other branch instructions,
its operand is an offset from the current contents of the program
counter, but branch long's operand is sixteen bits instead of eight, which
expands relative branching from plus 127 or minus 128 bytes to plus
32767 or minus 32768. This and other features greatly ease the task of
writing position-independent code. The use of the word "long" in the
description of this addressing mode means "longer than an eight bit off
set," whereas the word "long" used with the other four addressing
modes means "longer than sixteen bits."

Stack relative addressing and Stack relative indirect indexed with Y
addressing treat the stack like an array and index into it. The stack
pointer register holds the base of the array, while a one-byte operand
provides the index into it. Since the stack register points to the next
available location for data, a zero index is meaningless: data and
addresses which have been pushed onto the stack start at index one. For
stack relative, this locates the data; for stack relative indirect indexed,
this locates an indirect address that points to the base of an array
located elsewhere. Both give you the means to pass parameters on the
stack in a clean, efficient manner. Stack relative addressing is a particu
larly useful capability, for example, in generating code for recursive
high-level languages such as Pascal or C, which store local variables and
parameters on a "stack frame."

Block move addressing is the power behind two new instructions that
move a block of bytes—up to 64K of them—from one memory location
to another all at once. The parameters of the move are held in the accu
mulator (the count), the index registers (the source and destination
addresses), and a unique double operand (the source and destination
addresses in the operand specify the source and destination banks for
the move operation).

The five remaining "long" addressing modes provide an alternative to
the use of bank registers for referencing the 65816's sixteen-megabyte
address space. They let you temporarily override the data bank register
value to address memory anywhere within the sixteen-megabyte address
space. Absolute long addressing, for example, is just like absolute
addressing except that, instead of providing a two-byte absolute address
to be accessed in the data bank, you provide a three-byte absolute
address which overrides the data bank. Absolute long indexed with X,
too, is four bytes instead of three. On the other hand, it is the memory
locations specified by absolute indirect long, direct page indirect long,
and direct page indirect long indexed with Y that hold three-byte indi

Sixteen-Bit Architecture: The 65816 and the 65802 63

rect addresses instead of two-byte ones. Three-byte addresses in mem
ory appear in conventional 65x order; that is, the low byte is in the
lower memory location, the middle byte (still referred to in 6502 fashion
as the "high" byte) is in the next higher location, and the highest (bank)
byte is in the highest location.

Instructions
There are 78 new opcodes put into use through the 28 new operations

listed in Table 4.4, as well as through giving the previous processors'
operations additional addressing modes.

Table 4 .4 . New 6 5 8 1 6 /6 5 8 0 2 Instructions.

Instruction
M nem onic Description

BRL Branch always long
COP Co-processor empowerment
JML Jump long (interbank)
JSL Jump to subroutine long (interbank)
MVN Block move negative
MVP Block move positive
PEA Push effective absolute address onto stack
PEI Push effective indirect address onto stack
PER Push effective program counter relative address

onto stack
PHB Push data bank register onto stack
PHD Push direct page register onto stack
PHK Push program bank register onto stack
PLB Pull data bank register from stack
PLD Pull direct page register from stack
REP Reset status bits
RTL Return from subroutine long
SEP Set status bits
STP Stop the processor
TCD Transfer 16-bit accumulator to direct page register
TCS Transfer accumulator to stack pointer
TDC Transfer direct page register to 16-bit accumulator
TSC Transfer stack pointer to 16-bit accumulator
TXY Transfer index registers X to Y
TYX Transfer index registers Y to X
WAI Wait for interrupt
WDM Reserved for future two-byte opcodes
XBA Exchange the B and A accumulators
XCE Exchange carry and emulation bits

64 Programming the 65816

Five of the new push and pull instructions allow the new registers to
be stored on the stack; the other three let you push constants and mem
ory values onto the stack without having to first load them into a regis
ter. PER is unique in that it lets data be accessed relative to the program
counter, a function useful when writing relocatable code.

There are also instructions to transfer data between new combina
tions of the registers, including between the index registers—a long-
wished-for operation; to exchange the two bytes of the sixteen-bit
accumulator; and to exchange the carry and emulation bits, the only
method for toggling the processor between emulation and native modes.

There are new jump, branch, return, and move instructions already
described in the section on addressing modes. There's a new software
interrupt provided for sharing a system with a co-processor. There are
two instructions for putting the processor to "sleep" in special low-
power states. And finally, there's a reserved opcode, called WDM (the
initials of the 65816's designer, William D. Mensch, Jr.), reserved for
some future compatible processor as the first byte of a possible 256
tw o-byte opcodes.

Interrupts
Native mode supplies an entire set of interrupt vectors at different

locations from the emulation mode (and earlier 6502/65C02) ones to
service native mode and emulation mode interrupts differently. Shown
in Table 4.5, all are in bank zero; in addition, the sixteen-bit contents of
each vector points to a handling routine which must be located in bank
zero.

Table 4 .5 . Interrupt V ector Locations.

Emulation M ode N ative M ode

IRQ FFFE,FFFF FFEE,FFEF
RESET FFFC,FFFD -

NMI FFFA,FFFB FFEA,FFEB
ABORT FFF8,FFF9 FFE8,FFE9
BRK - FFE6,FFE7
COP FFF4,FFF5

All locations are in bank zero.
FFE4,FFE5

As discussed earlier in this chapter, native mode frees up the b bit in
the status register by giving the break instruction its own vector. When
a BRK is executed, the program counter and the status register are
pushed onto the stack and the program counter is loaded with the
address at $FFE6, the break instruction vector location.

The reset vector is only available in emulation mode because reset
always returns the processor to that mode.

Sixteen-Bit Architecture: The 65816 and the 65802 65

The 65816/65802, in both emulation and native modes, also provides
a new coprocessor interrupt instruction to support hardware coproc
essing, such as by a floating point processor. When the COP instruction
is encountered, the 65802's interrupt processing routines transfer control
to the co-processor vector location.

Finally, the pinout on the 65816 provides a new abort signal. This lets
external hardware prevent the 65816 from updating memory or registers
while completing the current instruction, useful in sophisticated memo-
ry-management schemes. An interrupt-like operation then occurs, trans
ferring control through the special abort vector.

The 65802 Native M ode_________________

For all that the 65816 is, it is not pin-compatible with the 6502 and
65C02. You can't just replace the earlier chips with it. It is here that the
other version of this chip, the 65802, comes into its glory. The price, of
course, is that the 65802 has the same addressability limitations as the
6502 and 65C02.

Figure 4.3 shows the programming model for the 65802's native
mode. The bank registers, while they exist, do not modify address
ability, so they are shown as eight-bit entities. All registers have been
scaled back to sixteen bits. There is only one bank a 65802 can address;
since it holds the direct page, the stack pointer, and the interrupt vectors
(bank-zero features on the 65816), you can consider the 65802's bank to
be bank zero. Otherwise, the programming model is identical to the
65816's.

The bank registers are an anomaly. They have no function because
the packaging provides no pins to connect them to. But they exist
because, inside the packaging, the chip itself is a 65816. In fact, you can
change their value just as you would on the 65816, with a pull instruc
tion, a long jump or JSR, an interrupt, or a long return, either from sub
routine or from interrupt. Furthermore, every interrupt and return from
interrupt pushes the program bank byte onto the stack or pulls it off,
just like the 65816 does. But the bank register values are ignored
(stripped from 24-bit addresses when they're sent to the sixteen-bit out
put pins).

The long addressing modes also seem misplaced here. You can exe
cute instructions using long addressing on the 65802, but the bank
addresses are, again, ignored. They are certainly an inefficient method
for undertaking intrabank accesses and transfers, since they take up
extra bytes for the bank address, and use up extra cycles in translation.
Still, they cause the 65802 no problems, as long as you understand that
the bank value is disregarded and only the remaining sixteen bits of

66 Programming the 65816

65802 Native Mode Program m ing Model
(1 6 -b it a c c u m u la to r & in d e x re g is te r m odes: m = 0 & x = 0)

15 7 0
--1---

A c c u m u la to r (B) (A or C) A c c u m u la to r (A)
i

X Index R e g is te r (X)

Y In d e x R e g is te r (Y)

D irec t Page R e g is te r (D)

S ta c k P o in te r (S)

P ro g ram C o u n te r (PC)

I--------------------------------------
j D a ta B a n k R e g is te r (DBR)

j P ro g ra m B an k R e g is te r (PBR) j

P ro ce ss o r S ta tu s R e g is te r (P)

7 0

E m u la tio n 0 = N a tiv e M o d e

• C a rry

- Z e r o

1 IRQ D isa b le

D e c im a l M o d e

 In d e x R e g is te r S e le c t

M e m o r y /A c c u m u la to r S e le c t

--- O v e rflo w

--- N e g a tiv e

= C a r r y

= R esu lt Z e ro

= D isab led

= D e c im a l, 0 = B in a r y

= 8 -b it , 0 = 16 -b it

= 8 -b it , 0 = 1 6 -b i t

= O v e rflo w

= N e g a tiv e

Figure 4.3. 65802 Native Mode Programming Model.

Sixteen-Bit Architecture: The 65816 and the 65802 67

address are effective in pointing to an address in the 65802's single
addressable bank of memory.

Finally, the bank bytes specified to the block move instructions are
ignored, too. Block moves are by necessity entirely intrabank on the
65802.

Because the abort signal was designed into the 65816 by virtue of its
redesigned pinout, its vector exists on the 65802 but has no connection
to the outside world. Since there is no way to abort an instruction with
out using the external pin, the abort operation can never occur on the
65802.

In all other respects, the 65802 and 65816 are identical, so the 65802
can almost be thought of as a 65816 in a system with only 64K of physi
cal memory installed. Table 4.6 summarizes the differences between the
65802 and 65816 native modes and the 6502 and 65C02.

Emulation M ode_______________________
That the 65802 provides a pinout the same as the 6502's and the

65C02's is not enough to run all the software written for the earlier two
processors. For one thing, the eight-bit software expects interrupt han
dlers to distinguish break instructions by checking the stacked break
flag, and the 65802's native mode has no break flag, having replaced
both it and the 6502's unused flag with the m and x flags. For another,
6502 instructions that use eight-bit registers to set the stack would set
only half of the sixteen-bit stack. The native mode interrupt vectors are
different from their 6502/65C02 counterparts, as Table 4.5 showed.
There are also little differences; for example, while the direct page can
be set to the zero page, direct page indexed addresses can cross pages in
native mode, but wrap on the 6502 and 65C02.

Reaching beyond hardware compatibility to software compatibility
was clearly so important that the designers of the 65802 and 65816
devised the 6502 emulation mode scheme. Both processors power-on in
emulation mode, with the bank registers and the direct page register ini
tialized to zero. As a result of both this and having the same pinout, a
65802 can be substituted for a 6502 in any application and will execute
the existing software the same. Furthermore, it is possible to design
second-generation 65816 systems compatible with existing 6502 designs
which, provided the computer's designers do as good a job in providing
compatibility as the 65816's designers have, could run all the existing
software of the first generation system in emulation mode, yet switch
into native mode for sixteen-bit power and 24-bit addressing.

It is important to realize, however, that 6502 emulation mode goes far
beyond emulating the 6502. It embodies all the addressing mode and
instruction enhancements of both the 65C02 and the 65802/65816; it has
a fully relocatable direct page register; it provides the stack relative

o> oo

T
ab

le
 4

.6
.

M
aj

or
 D

if
fe

re
n

ce
s

B
et

w
ee

n
P

ro
ce

ss
or

s
an

d
 M

od
es

.

65
02

65
C

02
65

80
2

N
at

iv
e

65
80

2
E

m
ul

at
io

n
65

81
6

N
at

iv
e

65
81

6
E

m
ul

at
io

n

65
02

 p
in

ou
t

ye
s

ye
s

ye
s

ye
s

no
no

65
02

 t
im

in
g

ye
s

no
no

ye
s

no
ye

s
ab

or
t

si
gn

al
no

no
no

no
ye

s
ye

s
ac

cu
m

ul
at

or
8

bi
ts

8
bi

ts
16

 o
r

8/
8

bi
ts

8/
8

bi
ts

16
 o

r
8/

8
bi

ts
8/

8
bi

ts
ad

dr
es

si
ng

 m
od

es
14

16
25

25
25

25
ad

dr
es

s
sp

ac
e

64
K

64
K

64
K

64
 K

16
M

16
M

ba
nk

 r
eg

is
te

rs
no

ne
no

ne
no

t
co

nn
ec

te
d

no
t

co
nn

ec
te

d
ye

s
ye

s
bl

oc
k

m
ov

es
no

ne
no

ne
ye

s
of

 li
tt

le
 u

se
ye

s
of

 l
itt

le
 u

se
br

ea
k

fl
ag

ye
s

ye
s

no
ye

s
no

ye
s

de
ci

m
al

 m
od

e
fl

ag
s

N
,

V
,

Z
 i

nv
al

id
N

,
V

,
Z

 v
al

id
N

,
V

,
Z

 v
al

id
N

,
V

,
Z

 v
al

id
N

,
V

,
Z

 v
al

id
N

,
V

,
Z

 v
al

id
di

re
ct

 p
ag

e
in

de
xe

d
w

ra
ps

w
ra

ps
cr

os
se

s
pa

ge
w

ra
ps

cr
os

se
s

pa
ge

w
ra

ps
fl

ag
s

af
te

r
in

te
rr

up
t

D
 n

ot
 m

od
if

ie
d

D
 =

 0
D

 =
 0

D
 n

ot
 m

od
if

ie
d

D
 =

 0
D

 n
ot

 m
od

if
ie

d
fl

ag
s

af
te

r
re

se
t

D
 u

nk
no

w
n

D
 =

 0
D

 =
 0

D
 n

ot
 m

od
if

ie
d

D
 =

 0
D

 n
ot

 m
od

if
ie

d
in

de
x

re
gi

st
er

s
8

bi
ts

8
bi

ts
8

or
 1

6
bi

ts
8

bi
ts

8
or

 1
6

bi
ts

8
bi

ts
in

st
ru

ct
io

ns
15

1
17

8
25

6
25

6
25

6
25

6
in

te
rr

up
ts

FF
FA

.F
FF

F
FF

FA
.F

FF
F

FF
E4

.F
FE

F
FF

F4
.F

FF
F

FF
E4

.F
FE

F
FF

F4
.F

FF
F

m
ne

m
on

ic
s

56
64

92
92

92
92

sp
ec

ia
l

pa
ge

ze
ro

 p
ag

e
ze

ro
 p

ag
e

di
re

ct
 p

ag
e

di
re

ct
 p

ag
e

di
re

ct
 p

ag
e

di
re

ct
 p

ag
e

st
ac

k
pa

ge
 1

pa
ge

 1
ba

nk
 0

pa
ge

 1
ba

nk
 0

pa
ge

 1
un

us
ed

 o
pc

od
es

co
ul

d
cr

as
h

N
O

P
no

ne
no

ne
no

ne
no

ne

Programming the 65816

Sixteen-Bit Architecture: The 65816 and the 65802 69

addressing modes; and in the 65816's emulation mode, it can switch
between banks to use 24-bit addressing. The primary differences be
tween native and emulation modes are limitations placed on certain
emulation mode registers and flags so that existing programs are not
surprised (and crashed) by non-6502-like results. These differences are
summarized in Table 4.6.

The pair of 65816 instructions that have little use in emulation mode
are the block move instructions. Because the source and destination
parameters for moves are passed to the instruction in the index registers,
their eight-bit limits confine the instruction to the zero page: a block can
only be moved from one zero page location to another.

Only in emulation mode do 65802/65816 interrupt vectors match
their 6502/65C02 counterparts. Native mode interrupt vectors have
their own locations, as Table 4.5 showed.

Emulation Mode Registers

The 65802/65816, under emulation mode, has the same six registers
as the 6502/65C02. In addition, all of the new 65802/65816 registers are
available in some form, although some of these on a limited basis. Fig
ure 4.4 shows the result.

The primary accumulator A is always limited to eight bits by lack of
an m flag, but the hidden eight-bit accumulator B is available, as with
the native mode eight-bit accumulator setting. For certain register-trans-
fer operations, the two are combined to form the sixteen-bit register C,
just as in native mode. The index registers are limited to eight bits by
lack of an x flag. The direct page register is fully functional, although
direct page indexing wraps rather than crossing into the next page. The
stack pointer is curtailed to page one, as on the 6502 and 65C02; if a
sixteen-bit value is used to set it, the high byte is ignored. Finally, there
are the two bank registers, which are initialized to zero, but which can
be changed to point to other banks.

Now look at the P status register. In addition to the eight bits of the
standard 6502/65C02 status register, you'll see the ninth "phantom" e
bit, which contains a one; this setting puts the processor into its 6502
emulation mode.

The A and B registers, which together make up the native mode
sixteen-bit accumulator, are used together in emulation mode as C
solely for transferring values to and from the direct page register and the
stack.

The direct page register (D) points to the beginning of direct page
memory. You'll probably normally set it to zero in the emulation mode
to make the direct page identical to 6502 zero page memory. This is par
ticularly true if your 65802 program is running within a 6502 or 65C02

J
L

70 Programming the 65816

65816 Emulation Mode Programming Model

23 15 7
,--1 ---

i A ccum ula to r (B) (C) A ccum ula to r (A)
i___________________________________ J____________________________

D ata B ank R egister (DBR)

X Index Register (X)

Y Index R egister (Y)

1 0 0 0 0 0 0 0 0 Direct Page R egister (D)

l o o o o o o o 0 T 0 0 0 0 0 0 0 1
1_________________________ 1_________________________

S tac k Poin ter (S)

Program B ank Register (PBR) Program C ounter (PC)

Processor S tatus R egister (P)

7 0

e ■ E m ulation 1 = 6 5 0 2 E m ulation M ode

•C a rry 1 = C a rry

- Z e r o 1 = Result Zero

■IRQ Disable 1 = D is a b le d

D ecim al M ode 1 = D e c im a l, 0 = B inary

-B re a k Instruction 1 = Break caused
in terrupt

■Overflow 1 = 0 v e r f lo w

■ Negative 1 = N e g a tiv e

Figure 4.4. 65816 Emulation Mode Programming Model.

operating system. The operating system will have stored values to zero
page memory; if you change the direct page to point to another page,
then call an operating system routine, the operating system will load its
information from the wrong direct page (any page other than the zero
page) and fail miserably.

Sixteen-Bit Architecture: The 65816 and the 65802 71

Switching Between 6502 Emulation and Native
Modes______________________________________

As you've seen, the native mode and the 6502 emulation mode
embody a number of significant differences. When running the 65802 in
an older machine, such as the Apple //c, //e, or II Plus, you will proba
bly call your 65802 programs from a 6502 operating system or program.
Your 65802 code can immediately switch the processor into native
mode, so you can take advantage of the additional power. You must,
however, switch back to emulation mode to use any I/O routines, or to
call the 6502-based operating system.

Understanding the transitions between the two modes is critical, par
ticularly in an environment where you are switching back and forth
between 6502 systems programs and your own 65802 code.

Switching from Emulation to Native Mode

When the 65802 is switched from emulation to native mode, the value
in the status register's carry bit winds up being toggled. Native mode is
set by swapping a cleared carry bit with the current value in the emula
tion bit (which was a one if the processor was in emulation mode). The
m and x flags in the status register are switched into place (replacing the
b break flag) and the processor automatically forces the flags to one,
which leaves the accumulator and index registers as eight-bit registers,
the same as they were in emulation mode. The rest of the bits in the sta
tus register remain the same.

While the emulation mode stack pointer register is only an eight-bit
register, it can be thought of as a sixteen-bit register with its high byte
hard-wired to one, so that the emulation stack is always in page one.
When the 65802 is switched from emulation to native mode, the
sixteen-bit native mode stack pointer assumes the same value the emula
tion mode stack pointer has been pointing to—a page one address.

All other registers make the transition unchanged.

Switching from Native to Emulation Mode

Switching from native to emulation mode also toggles the carry. The
carry bit is set, then exchanged with the emulation bit to force the proc
essor back into emulation mode. Provided the processor was previously
in native mode, the carry flag is cleared. The status register's m and x
bits disappear, forcing the accumulator and index registers back to eight
bits. If the index registers were in sixteen-bit mode, they keep their low
bytes, but their high bytes are permanently lost. If, on the other hand,
the accumulator was in sixteen-bit mode, the low byte remains in accu

72 Programming the 65816

mulator A while the high byte remains accessible as the hidden accu
mulator B. The m bit (bit five) returns to its emulation role as the break
flag; the x bit (bit four) becomes once again an unused flag.

The stack is truncated from sixteen to eight bits, with its high byte
forced to a one; that is, the stack is forced to page one. Any value in the
high byte of the stack pointer register is permanently lost, which means
you must be very careful not to “lose" a non-page-one stack. Solving
this and other sticky problems involved with calling an emulation mode
routine from native mode is the goal of one of the routines in Chap
ter 14.

All other registers make the transition unchanged.

65802/65816 Bugs and Quirks___________

As on the 65C02, the 6502's bugs are corrected by the 65802. Unlike
the 65C02, however, the 65802 fixes the bug either only in native mode
or without modifying the 6502's cycle counts (as the 65C02 in some
cases does). There are no unused opcodes on the 65802, although there
is an opcode which, while technically "used," is really reserved. If exe
cuted, it acts like a no-operation instruction.

The most anomolous feature of the 65816 is the behavior of new
opcodes while in the 6502 emulation mode. While strict 6502 compat-
ability is enforced for all 6502 and 65C02 opcodes, this is not the case
with new opcodes. For example, although the high byte of the stack reg
ister is always set to one, wrapping of the stack during the execution of
a single non-6502 instruction is not supported. These issues are dis
cussed more fully in Chapter 16.

Because the 65802 fixes the 6502's bugs and quirks while leaving that
chip's timing cycles untouched, the 65802 is in fact a hair more compati
ble as an upgrade chip than is the 65C02.

Part III
Tutorial

SEP, REP, and Other
Details

Part Three is devoted to a step by step survey of all 92 different 65816
instructions and the 25 different types of addressing modes which,
together, account for the 256 operation codes of the 65802 and 65816.
As a matter of course, this survey naturally embraces the instruction
sets of the 6502 and 65C02 as well.

The instructions are grouped into six categories: data movement, flow
of control, arithmetic, logical and bit manipulation, subroutine calls,
and system control instructions. A separate chapter is devoted to each
group, and all of the instructions in a group are presented in their
respective chapter.

The addressing modes are divided into two classes, simple and com
plex. The simple addressing modes are those that form their effective
address directly—that is, without requiring any, or only minimal, com
bination or addition of partial addresses from several sources. The
complex addressing modes are those that combine two or more of the
basic addressing concepts, such as indirection and indexing, as part of
the effective address calculation.

Almost all of the examples found in this book are intended to be exe
cuted on a system with either a 65802 or 65816 processor, and most
include 65816 instructions, although there are some examples that are
intentionally restricted to either the 6502 or 65C02 instruction set for
purposes of comparison.

Because of the easy availability of the pin-compatible 65802, there is a
good chance that you may, in fact, be executing your first sample pro
grams on a system originally designed as a 6502-based system, with sys
tem software such as machine-level monitors and operating systems that
naturally support 6502 code only. All of the software in this book was
developed and tested on just such systems (Apple // computers with
either 65802s replacing the 6502, or with 65816 processor cards in
stalled).

It is assumed that you will have some kind of support environment
allowing you to develop programs and load them into memory, as well
as a monitor program that lets you examine and modify memory, such
as that found in the Apple // firmware. Since such programs were origi
nally designed to support 6502 code, the case of calling a 65816 program
from a 6502-based system program must be given special attention.

75

76 Programming the 65816

A 65802 or 65816 system is in the 6502 emulation mode when first ini
tialized at power-up. This is quite appropriate if the system software
you are using to load and execute the sample programs is 6502-based, as
it would probably not execute correctly in the native 65816 mode.

Even though almost all of the examples are for the 65816 native mode
of operation, the early examples assume that the direct page register,
program counter bank register, and data bank register are all in their
default condition—set to zero—in which case they provide an environ
ment that corresponds to the 64K programming space and zero page
addressing of the 6502 and 65C02. Aside from keeping the examples
simple, it permits easy switching between the native mode and the emu
lation mode. If you have just powered up your 65816 or 65802 system,
nothing need be done to alter these default values.

The one initialization you must do is to switch from the emulation to
the native mode. To switch out of the 6502 emulation mode, which is
the default condition upon powering up a system, the code in Fragment
5.1 must be executed once.

0000 18 CLC clear carry flag

0001 FB XCE exchange carry with e bit (clears e bit)

Fragment 5.1.

This clears the special e flag, putting the processor into the 65816
native mode.

If you are using a 65802 processor in an old 6502 system, the above
code needs to be executed each time an example is called. Further,
before exiting a 65816 program to return to a 6502 calling program, the
opposite sequence in Fragment 5.2 must be executed.

0000 38 SEC set carry flag

0001 FB XCE exchange carry with e bit (sets e bit)

Fragment 5.2.

Even if you are running your test programs from a fully supported
65816 or 65802 environment, you should include the first mode-
switching fragment, since the operating mode may be undefined on
entry to a program. Execution of the second should be acceptable since
the system program should reinitialize itself to the native mode upon
return from a called program.

5 SEP, REP, and Other Details 77

A further requirement to successfully execute the example programs is
to provide a means for returning control to the calling monitor pro
gram. In the examples, the RTS (return from subroutine) instruction is
used. The RTS instruction is not explained in detail until Chapter 12;
however, by coding it at the end of each example, control will normally
return to the system program that called the example program. So to
exit a program, you will always code the sequence in Fragment 5.3.

0000 38 SEC set carry flag

0001 FB XCE exchange carry with e bit (sets e bit)

0002 60 RTS

Fragment 5.3.

Some systems may have a mechanism other than RTS to return con
trol to the system; consult your system documentation.

In addition to these two details, a final pair of housekeeping instruc
tions must be mastered early in order to understand the examples.

These two instructions are SEP and REP (set P and reset P). Although
they are not formally introduced until Chapter 13, their use is essential
to effective use of the 65802 and 65816. The SEP and REP instructions
have many uses, but their primary use is to change the value of the m
and x flags in the status register. As you recall from Chapter 4, the m
and x registers determine the size of the accumulator and index registers,
respectively. When a flag is set (has a value of one), the corresponding
register is eight bits; when a flag is clear, the corresponding register is
sixteen bits. SEP, which sets bits in the status register, is used to change
either the accumulator, or index registers, or both, to eight bits; REP,
which clears bits, is used to change either or both to sixteen bits. When
ever a register changes size, all of the operations that move data in and
out of the register are affected as well. In this sense, the flag bits are
extensions to the opcode, changing their interpretation by the processor.

The operand following the SEP and REP instructions is a "mask" of
the flags to be modified. Since bit five of the status register is the m
memory/accumulator select flag, an instruction of the form;

REP #% 00100000
makes the accumulator size sixteen bits; a SEP instruction with the same
argument (or its hexadecimal equivalent, $20) would make it eight bits.
The binary value for modifying the x flag is % 00010000, or $10; the
value for modifying both flags at once is %00110000, or $30. The sharp
(#) preceding the operand signifies the operand is immediate data,
stored in the byte following the opcode in program memory; the percent

78 Programming the 65816

(%) and dollar ($) signs are special symbols signifying either binary or
hexadecimal number representation, respectively, as explained in Chap
ter 1.

Understanding the basic operation of SEP and REP is relatively sim
ple. What takes more skill is to develop a sense of their appropriate use,
since there is always more than one way to do things. Although there is
an immediate impulse to want to use the sixteen-bit modes for every
thing, it should be fairly obvious that the eight-bit accumulator mode
will, for example, be more appropriate to applications such as character
manipulation. Old 6502 programmers should resist the feeling that if
they're not using the sixteen-bit modes “all the time" they're not getting
full advantage from their 65802 or 65816. The eight-bit accumulator and
index register size modes, which correspond to the 6502 architecture,
can be used to do some of the kinds of things the 6502 was doing suc
cessfully before the option of using sixteen-bit registers was provided by
the 65816. Even in eight-bit mode, the 65802 or 65816 will provide
numerous advantages over the 6502.

What is most important is to develop a sense of rhythm; it is undesir
able to be constantly switching modes. Since the exact order in which a
short sequence of loosely related instructions is executed is somewhat
arbitrary, try to do as many operations in a single mode as possible
before switching modes. At the same time, you should be aware that the
point at which an efficiency gain is made by switching to a more appro
priate mode is reached very quickly. By examining the various possi
bilities, and experimenting with them, a sense that translates into an
effective rhythm in coding can be developed.

Finally, a word about the examples as they appear in this book. Two
different styles are used: Code Fragments, and complete Code Listings.

Code Fragments are the kinds of examples used so far in this chapter.
Code Listings, on the other hand, are self-contained programs, ready to
be executed. Both appear in boxes, and are listed with the generated
object code as produced by the assembler. Single-line listings are
included in the text.

The Assembler Used in This Book_________

The assembly syntax used in this book is that recommended by the
Western Design Center in their data sheet (see Appendix F). The assem
bler actually used is the ProDOS ORCA/M assembler for the Apple //
computer, by Byteworks, Inc. Before learning how to code the 65816, a
few details about some of the assembler directives need to be explained.

Full-line comments are indicated by starting a line with an asterisk or
a semicolon.

5 SEP, REP, and Other Details 79

If no starting address is specified, programs begin by default at $2000.
That address can be changed by using the origin directive, ORG. The
statement

ORG $7000

when included in a source program, will cause the next byte of code
generated to be located at memory location $7000, with subsequently
generated bytes following it.

Values can be assigned labels with the global equate directive, GEQU.
For example, in a card-playing program, spades might be represented by
the value $7F; the program is much easier to code (and read) if you can
use the label SPADE instead of remembering which of four values goes
with which of the four suits, as seen in Fragment 5.4.

0000 SPADE GEQU $7F

0000 HEART GEQU $FF
0000 CLUB GEQU $3F
0000 DIAMOND GEQU $1F

Fragment 5.4.

Now rather than loading the A accumulator by specifying a hard-to-
remember value,

A97F LDA 0$7F

you can load it by specifying the easier-to-remember label:

A900 LDA 0SPADE

Once you have defined a label using GEQU, the assembler automati
cally substitutes the value assigned whenever the label is encountered.

The # sharp or pound sign is used to indicate that the accumulator is
to be loaded with an immediate constant.

In addition to being defined by GEQU statements, labels are also
defined by being coded in the label field—starting in the first column of
a source line, right in front of an instruction or storage-defining direc
tive. When coded in front of an instruction:

A905 BEGIN LDA 05

the label defines an entry point for a branch or jump to go to; when an
instruction such as

4C0400 JMP BEGIN

is assembled, the assembler automatically calculates the value of BEGIN
and uses that value as the operand of the JMP instruction.

80 Programming the 65816

Variable and array space can be set aside and optionally labelled with
the define storage directive, DS. In the example in Fragment 5.5, the
first DS directive sets aside one byte at $1000 for the variable FLAG1;
the second DS directive sets aside 20 bytes starting at $1001 for
ARRAY1.

0000 ORG $1000

0000 MAIN START

0000 00 FLAG1 DS 1

0001 00000000 ARRAY1 DS 20

0015 END

Fragment 5.5.

The value stored at FLAGl can be loaded into the accumulator by
specifying FLAGl as the operand of the LDA instruction:
AD0010 LDA FLAG1

Program constants, primarily default values for initializing variables,
prompts, and messages, are located in memory and optionally given a
label by the declare constant directive, DC. The first character(s) of its
operand specifies a type (A for two-byte addresses, II for one-byte inte
gers, H for hex bytes and C for character strings, for example) followed
by the value or values to be stored, which are delimited by single
quotes.

Fragment 5.6 gives an example. The first constant, DFLAG1, is a
default value for code in the program to assign to the variable FLAGl.
You may realize that DFLAGl could be used as a variable; with a label,
later values of the flag could be stored here and then there would be no
need for any initialization code. But good programming practice sug
gests otherwise: once another value is stored into DFLAGl, its initial
value is lost, which keeps the program from being restarted from mem
ory. On the other hand, using a GEQU to set up DFLAGl would pre
vent you from patching the location with a different value should you
change your mind about its initial value after the code has been
assembled.

0000 FE DFLAG1 DC I1'$FE'

0001 0010 COUNT DC A 1$10001

0003 496E7365 PROMPT DC C'Insert disk into drive 1'

001B 00 DC n ’O'

Fragment 5.6.

5 SEP, REP, and Other Details 81

Defining COUNT as a declared constant allows it, too, to be patched
in object as well as edited in source.

PROM PT is a message to be written to the screen when the program
is running. The assembler lists only the first four object bytes generated
('496E7365') to save room, but generates them all. The zero on the next
line acts as a string terminator.

Sometimes it is useful to define a label at a given point in the code,
but not associate it with a particular source line; the ANOP (assembler
no-operation) instruction does this. The value of the label will be the
location of the code resulting from the next code-generating source line.
One use of this feature is to define two labels with the same value, as
shown in Fragment 5.7.

0000 BLACK ANOP

0000 0000 WHITE OS 2

Fragment 5.7.

The two bytes of variable storage reserved may now be referred to as
either BLACK or WHITE; their value is the same.

Address Notation______________________
The 16-megabyte address space of the 65816 is divided into 256 64K

banks. Although it is possible to treat the address space in a linear fash
ion—the range of bytes from $000000 to $FFFFFF—it is often desirable
and almost always easier to read if you distinguish the bank component
of a 24-bit address by separating it with a colon:

$ 0 0 :FFF0
$xx:1234
$01 :xxxx

In these examples, the x characters indicate that that address compo
nent can be any legal value; the thing of interest is the specified compo
nent.

Similarly, when specifying direct page addresses, remember that a
direct page address is only an offset; it must be added to the value in the
direct page register:

dp :$30
$1000:30

The dp in the first example is used to simply indicate the contents of
the direct page register, whatever it may be; in the second case, the

82 Programming the 65816

value in the direct page register is given as $1000. Note that this nota
tion is distinguished from the previous one by the fact that the address
to the left of the colon is a sixteen-bit value, the address on the right is
eight. Twenty-four-bit addresses are the other way around.

A third notation used in this book describes ranges of address. When
ever two addresses appear together separated by a single dot, the entire
range of memory location between and including the two addresses is
being referred to. For example, $2000.2001 refers to the double-byte
starting at $2000. If high bytes of the second address are omitted, they
are assumed to have the same value as the first address. Thus, $2000.03
refers to the addresses between $2000 and $2003 inclusive.

First Examples:
Moving Data

Most people associate what a computer does with arithmetic calcula
tions and computations. That is only part of the story. A great deal of
compute time in any application is devoted to simply moving data
around the system: from here to there in memory, from memory into
the processor to perform some operation, and from the processor to
memory to store a result or to temporarily save an intermediate value.
Data movement is one of the easiest computer operations to grasp and is
ideal for learning the various addressing modes (there are more address
ing modes available to the data movement operations than to any other
class of instructions). It, therefore, presents a natural point of entry for
learning to program the 65x instruction set.

On the 65x series of processors—the eight-bit 6502 and 65C02 and
their sixteen-bit successors, the 65802 and 65816—you move data
almost entirely using the microprocessor registers.

This chapter discusses how to load the registers with data and store
data from the registers to memory (using one of the simple addressing
modes as an example), how to transfer and exchange data between reg
isters, how to move information onto and off of the stack, and how to
move blocks (or strings) of data from one memory location to another
(see Table 6-1).

83

84 Programming the 65816

Table 6 .1 . D ata M ovement Instructions.

Available on:
Mnemonic 6502 65C02 65802/816 Description

L oad /S tore Instructions:
LDA x X X load the accumulator
LDX x X X load the X index register
LDY x X X load the Y index register
STA x X X store the accumulator
STX x X X store the X index register
STY x X X store the Y index register

Push Instructions:
PHA x X X push the accumulator
PHP x X X push status register (flags)
PHX X X push X index register
PHY X X push Y index register
PHB X push data bank register
PHK X push program bank register
PHD

Push Instructions Introduced:

X push direct page register

PEA X push effective absolute address
PEI X push effective indirect address
PER X push effective relative address

Pull Instructions:
PLA x X X pull the accumulator
PLP x X X pull status register (flags)
PLX X X pull X index register
PLY X X pull Y index register
PLB X pull data bank register
PLD

Transfer Instructions:

X pull direct page register

TAX x X X transfer A to X
TAY x X X transfer A to Y
TSX x X X transfer S to X
TXS x X X transfer X to S
TXA x X X transfer X to A
TYA x X X transfer Y to A
TCD X transfer C accumulator to D
TDC X transfer D to C accumulator
TCS X transfer C accumulator to S

(Continued)

6 First Examples: Moving Data 85

Table 6 .1 . D ata M ovem ent Instructions (C on t.).

Available on:
M nemonic 6502 65C02 65802/816 Description

TSC X transfer S to C accumulator
TXY X transfer X to Y
TYX X transfer Y to X

Exchange Instructions:
XBA X exchange B & A accumulators
XCE X exchange carry & emulation bits

Store Zero to M em ory:
STZ x X store zero to memory

B lock M oves:
MVN X move block in negative direction
MVP X move block in positive direction

When programming the 6502, whether you're storing a constant value
to memory or moving data from one memory location to another, one
of the registers is always intermediate. The same is generally true for the
other 65x processors, with a few exceptions: the 65816's two block move
instructions, three of its push instructions, and an instruction first intro
duced on the 65C02 to store zero to memory.

As a result, two instructions are required for most data movement:
one to load a register either with a constant value from program mem
ory or with a variable value from data memory; the second to store the
value to a new memory location.

Most data is moved via the accumulator. This is true for several rea
sons. First, the accumulator can access memory using more addressing
modes than any of the other registers. Second, with a few exceptions,
it's only in the accumulator that you can arithmetically or logically
operate on data (although the index registers, in keeping with their role
as loop counters and array pointers, can be incremented, decremented,
and compared). Third, data movement often takes place inside of loops,
program structures in which the index registers are often dedicated to
serving as counters and pointers.

Loading and Storing Registers___________

To provide examples of the six basic data-movement instructions—
LDA, LDX, LDY (load accumulator or index registers) and STA, STX,

86 Programming the 65816

and STY (store accumulator or index registers)—requires introducing at
least one of the 65x addressing modes. Except for certain instructions—
such as push and pull, which use forms of stack addressing—the abso
lute addressing mode will generally be used in this chapter. Absolute
addressing, available on all four 65x processors, is one of the simplest
modes to understand. It accesses data at a known, fixed memory loca
tion.

For example, to move a byte from one absolute memory location to
another, load a register from the first location, then store that register to
the other location. In Listing 6.1, the eight-bit value $77 stored at the
absolute location identified by the label SOURCE is first loaded into the
accumulator, then saved to the absolute location labeled DEST. Note
the inclusion of the mode-switching code described in the previous
chapter.

The code generated by the assembler, when linked, will begin at the
default origin location, $2000. The example generates 13 ($0D) bytes of
actual code (the address of the RTS instruction is at memory location
$200C). The assembler then automatically assigns the next available
memory location, $200D, to the label on the following line, SOURCE.
This line contains a DC (define constant) assembler directive, which
causes the hexadecimal value $77 to be stored at that location in the
code file ($200D). Since only one byte of storage is used, the data stor
age location reserved for the label DEST on the next line is $200E.

The syntax for absolute addressing lets you code, as an instruction's
operand, either a symbolic label or an actual value. The assembler con
verts a symbolic operand to its correct absolute value, determines from
its context that absolute addressing is intended, and generates the cor
rect opcode for the instruction using absolute addressing. The
assembler-generated hexadecimal object code listed to the left of the
source code shows that the assembler filled in addresses $000D and
$000E as the operands for the LDA and ST A instructions, respectively
(they are, of course, in the 65x's standard low-high order and relative to
the $0000 start address the assembler assigns to its relocatable modules;
the linker will modify these addresses to $200D and $200E when creat
ing the final loadable object).

As Chapter 4 explained, the 65816's accumulator can be toggled to
deal with either eight-bit or sixteen-bit quantities, as can its index regis
ters, by setting or resetting the m (memory/accumulator select) or x
(index register select) flag bits of the status register. You don't need to
execute a SEP or REP instruction before every instruction or every
memory move, provided you know the register you intend to use is
already set correctly. But always be careful to avoid making invalid
assumptions about the modes currently in force, particularly when
transferring control from code in one location to code in another.

0001
0002

0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021
0022

0023

0024

0025

0026

0027

6 First Examples: Moving Data 87

0000 KEEP KL.6.1

0000 65816 ON

0000

0000 MAIN START

0000

0000 1 code to switch from 6502 emulation to native mode

0000

0000 18 CLC clear carry flag

0001 FB XCE exchange carry with E bit (clear E bit)

0002

0002 1 main example code

0002

0002 E220 SEP #*00100000 set 8-bit data mode

0004 AD0D00 LDA SOURCE load byte from memory location SOURCE

0007 800E00 STA DEST store byte to memory location DEST

000A

000A 1 code to return to 6502 emulation mode

000A

000A 38 SEC set carry flag

000B FB XCE exchange carry with E bit (set E bit)

oooc 1

000C 60 RTS

000D

OOOD 77 SOURCE DC H177'
000E 00 DEST DS 1

000 F

000 F END

Listing 6.1.

The load and store instructions in Listing 6.1 will as easily move a
double byte as they did a byte, if the register you use is in sixteen-bit
mode, as in Listing 6.2.

Note that the source data in the define constant statement is now two
bytes long, as is storage reserved by the define storage statement that
follows. If you look at the interlisted hexadecimal code generated by the
assembler, you will see that the address of the label DEST is now $200F.
The assembler has automatically adjusted for the increase in the size of
the data at SOURCE, which is the great advantage of using symbolic
labels rather than fixed addresses in writing assembler programs.

The load and store instructions are paired here to demonstrate that,
when using identical addressing modes, the load and store operations
are symmetrical. In many cases, though, a value loaded into a register

0001
0002

0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021
0022

Programming the 65816

0000 KEEP KL.6.2

0000 65816 ON

0000

0000 MAIN START

0000

0000 1 switch from 6502 emulation to native mode

0000 18 CLC

0001 FB XCE

0002 1

0002 C220 REP AFX00100000 reset accumulator to 16-bit mode

0004 ADODOO LDA SOURCE load double byte from memory location SOURCE

0007 8D0F00 STA DEST store double byte to memory location DEST

000A

000A 1 switch back to emulation mode

000A 38 SEC

000B F8 XCE

oooc 1

000C 60 RTS

0000 1

0000 7F7F SOURCE DC A 1S7F7F'

000F 0000 0EST DS 2

0011 END

Listing 6.2.

will be stored many instructions later, or never at all, or stored using an
addressing mode different from that of the load instruction.

Effect of Load and Store Operations on Status
Flags

One of the results of the register load operations—LDA, LDY, and
LDX —is their effect on certain status flags in the status register. When a
register is loaded, the n and z flags are changed to reflect two condi
tions: whether the value loaded has its high bit set (is negative when
considered as a signed, two's-complement number); and whether the
number is equal to zero. The n flag is set when the value loaded is nega
tive and cleared otherwise. The z flag is set when the value loaded is
zero and cleared otherwise. How you use these status flags will be cov
ered in detail in Chapter 8, Flow of Control.

The store operation does not change any flags, unlike the Motorola
68xx store instructions. On the other hand, Intel 808x programmers will
discover the 65x processors use load and store instructions instead of the
808x's all-encompassing MOV instruction. The 808x move instruction

6 First Examples: Moving Data 89

changes no flags whatsoever, unlike the 65x load instruction, which
does.

Moving Data Using the Stack_____________

All of the 65x processors have a single stack pointer. (This is a typical
processor design, although there are designs that feature other stack
implementations, such as providing separate stack pointers for the sys
tem supervisor and the user.) This single stack is therefore used both by
the system for automatic storage of address information during subrou
tine calls and of address and register information during interrupts, and
by user programs for temporary storage of data. Stack use by the sys
tem will be covered in later chapters.

As the architecture chapters in Part II discussed, the S register (stack
pointer) points to the next available stack location; that is, S holds the
address of the next available stack location. Instructions using stack
addressing locate their data storage either at or relative to the next avail
able stack location.

The stack pointers of the 6502 and 65C02 are only eight bits wide; the
eight-bit value in the stack pointer is added to an implied base of $100,
giving the actual stack memory of $100 to $1FF; the stack is confined to
page one. The 65816's native mode stack pointer, on the other hand, is
sixteen bits wide, and may point to any location in bank zero (the first
64K of memory). The difference is illustrated in Figure 6.1.

Push

Push instructions store data, generally located in a register, onto the
stack. Regardless of a register's size, the instruction that pushes it takes
only a single byte.

When a byte is pushed onto the stack, it is stored to the location
pointed to by the stack pointer, after which the stack pointer is auto
matically decremented to point to the next available location.

When double-byte data or a sixteen-bit address is pushed onto the
stack, first its high-order byte is stored to the location pointed to by the
stack pointer, the stack pointer is decremented, the low byte is stored to
the new location pointed to by the stack pointer, and finally the stack
pointer is decremented once again, pointing past both bytes of pushed
data. The sixteen-bit value ends up on the stack in the usual 65x mem
ory order: low byte in the lower address, high byte in the higher
address.

In both cases, the stack grows downward, and the stack pointer
points to the next available (unused) location at the end of the
operation.

90 Programming the 65816

65 02 /65 C 0 2
and
6 5 8 1 6 /6 5 8 0 2
em u la tio n m ode
s ta ck poin ter: ,
8 -b it rang e j
$0 10 0-50 1FF 1

$FFFF

M EM O RY

$0200

$0100

$0000

6 5 8 1 6 /6 5 8 0 2
n a tiv e m ode s ta ck poin ter:
16-b it rang e
$0000-$F FFF

Figure 6.1. Stack Memory.

Pushing the Basic 65x Registers
On the 6502, only the contents of the accumulator and the status reg

ister can be pushed directly onto the stack in a single operation, using
the PHA and PHP instructions, respectively. The 65C02 adds instruc
tions to push the index registers onto the stack: PHX and PHY.

6 First Examples: Moving Data 91

The 65816 and 65802 let double-byte data as well as single bytes be
pushed onto the stack. Figure 6.2 shows the results of both. In the case
of the accumulator and index registers, the size of the data pushed onto
the stack depends on the settings of the m memory/accumulator select
and x index register select flags. Since the accumulator and index regis
ters are of variable size (eight bits or sixteen), the PH A, PHX, and PHY
instructions have correspondingly variable effects.

Pull
Pull instructions reverse the effects of the push instructions, but there

are fewer pull instructions, all of them single-byte instructions that pull
a value off the stack into a register. Unlike the Motorola and Intel proc
essors (68xx and 808x), the 65x pull instructions set the n and z flags. So
programmers used to using pull instructions between a test and a branch
on the other processors should exercise caution with the 65x pull
instructions.

Pulling the Basic 65x Registers
The 6502 pull instructions completely complement its push instruc

tions. PLP increments the stack pointer, then loads the processor status
register (the flags) from the page one address pointed to by the offset in
the stack pointer (of course, this destroys the previous contents of the
status register). PL A pulls a byte from the stack into the accumulator,
which affects the n and z flags in the status register just as a load accu
mulator instruction does.

As instructions for pushing the index registers were added to the
65C02, complementary pull instructions were added, too—that is, PLX
and PLY. The pull index register instructions also affect the n and z
flags.

On the 65802 and 65816, the push and pull instructions for the pri
mary user registers—A, X, and Y —have been augmented to handle
sixteen-bit data when the appropriate select flag (memory/accumulator
or index register) is clear. Code these three pull instructions carefully
since the stack pointer will be incremented one or two bytes per pull
depending on the current settings of the m and x flags.

Pushing and Pulling the 65816’s Additional
Registers

The 65816 adds one-byte push instructions for all its new registers,
and pull instructions for all but one of them. In fact, the bank registers
can only be accessed using the stack.

PHB pushes the contents of the data bank register, an eight-bit regis
ter, onto the stack. PLB pulls an eight-bit value from the stack into the

8-B it o r Low Byte
of 16-B it Register

M e m o ry

16-Bit
R egister

M e m o ry

Figure 6.2. Push.

6 First Examples: Moving Data 93

data bank register. The two most common uses for PHB are, first, to let
a program determine the currently active data bank, and second, to
save the current data bank prior to switching to another bank.

Fragment 6.1 is a 65816 code fragment which switches between two
data banks. While OTHBNK is declared just once, it represents two dif
ferent memory cells, both with the same sixteen-bit address of $FFF3,
but in two different 64K banks: one is in the data bank that is current
when the code fragment is entered; the second is in the data bank
switched to by the code fragment. The code fragment could be executed
a second time and the data bank would be switched back to the original
bank.

0000 OTHBNK GEQU SFFF3 location of other bank stored here

0000
0000
0000
0000
0000 E220 SEP #*00100000 set accumulator to 8-bit mode

0002
0002 ADF3FF LDA OTHBNK get location of bank to switch to

0005

0005 8B PHB push current data bank onto stack

0006 48 PHA push other data bank onto stack

0007

0007 AB PLB pull data bank: make other data bank current

0008 68 PLA get original data bank into accum

0009

0009 8DF3FF STA OTHBNK store it in 2nd bank so can be restored

oooc
oooc
OOOC

OOOC

Fragment 6.1.

Similar to PHB, the PHK instruction pushes the value in the eight-bit
program counter bank register onto the stack. Again, the instruction
can be used to let you locate the current bank; this is useful in writing
bank-independent code, which can be executed out of any arbitrarily
assigned bank.

You're less likely to use PHK to preserve the current bank prior to
changing banks (as in the case of PHB above) because the jump to sub
routine long instruction automatically pushes the program counter bank
as it changes it, and because there is no complementary pull instruction.

94 Programming the 65816

The only way to change the value in the program counter bank register
is to execute a long jump instruction, an interrupt, or a return from sub
routine or interrupt. However, you can use PHK to synthesize more
complex call and return sequences, or to set the data bank equal to the
program bank.

Finally, the PHD instruction pushes the sixteen-bit direct page register
onto the stack, and PLD pulls a sixteen-bit value from the stack into the
direct page register. PHD is useful primarily for preserving the direct
page location before changing it, while PLD is an easy way to change or
restore it. Note that PLB and PLD also affect the n and z flags.

Pushing Effective Addresses

The 65816 also provides three instructions which can push data onto
the stack without altering any registers. These three push effective
address instructions—PEA, PEI, and PER —push absolute, indirect, and
relative sixteen-bit addresses or data directly onto the stack from mem
ory. Their use will be explained when their addressing modes are pre
sented in detail in Chapter 11 (Complex Addressing Modes).

Other Attributes of Push and Pull

The types of data that can be pushed but not pulled are effective
addresses and the K (or more commonly PBR) program bank register.

PLD and PLB are typically used to restore values from a previous
state.

Finally, you should note that even though the push and pull opera
tions are largely symmetrical, data that is pushed onto the stack from
one register does not need to be pulled off the stack into the same regis
ter. As far as the processor is concerned, data pulled off the stack does
not have to be the same size as was pushed onto it. But needless to say,
the stack can quickly become garbled if you are not extremely careful.

Moving Data Between Registers__________

Transfers
The accumulator is the most powerful of the user registers, both in

the addressing modes available to accumulator operations and in its
arithmetic and logic capabilities. As a result, addresses and indexes that
must be used in one of the index registers must often be calculated in the
accumulator. A typical problem on the 6502 and 65C02, since their reg
isters are only eight bits wide, is that sixteen-bit values such as addresses
must be added or otherwise manipulated eight bits at a time. The other
half of the value, the high or low byte, must meanwhile be stored away

6 First Examples: Moving Data 95

for easy retrieval and quick temporary storage of register contents in a
currently unused register is desirable.

For these reasons as well as to transfer a value to a register where a
different operation or addressing mode is available, all 65x processors
implement a set of one-byte implied operand instructions which transfer
data from one register to another:

TAX transfers the contents of the accumulator to the X index register
TAY transfers the contents of the accumulator to the Y index register
TSX transfers the contents of the stack pointer to the X index register
TXS transfers the contents of the X index register to the stack pointer
TXA transfers the contents of the X index register to the accumulator
TYA transfers the contents of the Y index register to the accumulator

Like the load instructions, all of these transfer operations except TXS
set both the n and z flags. (TXS does not affect the flags because setting
the stack is considered an operation in which the data transferred is
fully known and will not be further manipulated.)

The availability of these instructions on the 65802/65816, with its
dual-word-size architecture, naturally leads to some questions when you
consider transfer of data between registers of different sizes. For exam
ple, you may have set the accumulator word size to sixteen bits, and the
index register size to eight. What happens when you execute a TAY
(transfer A to Y) instruction?

The first rule to remember is that the nature of the transfer is deter
mined by the destination register. In this case, only the low-order eight
bits of the accumulator will be transferred to the eight-bit Y register. A
second rule also applies here: when the index registers are eight bits
(because the index register select flag is set), the high byte of each index
register is always forced to zero upon return to sixteen-bit size, and the
low-order value of each sixteen-bit index register contains its previous
eight-bit value.

Listing 6.3 illustrates these rules with TAY. In this example, the value
stored at the location DATA2 is $0033; only the low order byte has
been transferred from the accumulator, while the high byte has been
zeroed.

The accumulator, on the other hand, operates differently. When the
accumulator word size is switched from sixteen bits to eight, the high-
order byte is preserved in a "hidden" accumulator, B. It can even be
accessed without changing modes back to the sixteen-bit accumulator size
by executing the XBA (exchange B with A) instruction, described in the
following section. Listing 6.4 illustrates this persistence of the accumula
tor's high byte. After running it, the contents of locations RESULT.
RESULT + 1 will be $7F33, or 33 7F, in low-high memory order. In other
words, the value in the high byte of the sixteen-bit accumulator, $7F, was
preserved across the mode switch to eight-bit word size.

0001
0002

0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021
0022

0023

0024

0025

0026

0027

Programming the 65816

0000 KEEP KL.6.3

0000

0000 65816 ON

0000

0000

0000 MAIN START

0000 f switch-to-native-mode code

0000 18 CLC d e a r carry flag

0001 FB XCE exchange carry with

0002

0002 C220 REP #$20 set accum to 16

0004 E210 SEP #$10 set index to 8

0006 AO1200 LDA DATA

0009 A8 TAY

000A C210 REP #$10 set index to 16

oooc 8C1400 STY DATA2

000F

000F 1 return to 6502 emulation mode

000 F 38 SEC set carry flag

0010 FB XCE exchange carry with

0011

0011 60 RTS

0012

0012 33 FF DATA DC A '$ F F33'

0014 0000 DATA2 DS 2

0016

0016 END

Listing 6.3.

Now consider the case where the sixteen-bit Y register is transferred to
an eight-bit accumulator, as shown in Listing 6.5. The result in this case
is $33FF, making it clear that the high byte of the Y register has not been
transferred into the inactive high-order byte of the accumulator. The
rule is that operations on the eight-bit A accumulator affect only the
low-order byte in A, not the hidden high byte in B. Transfers into the A
accumulator fall within the rule.

Figure 6.3 summarizes the effects of transfers between registers of dif
ferent sizes.

There are also rules for transfers from an eight-bit to a sixteen-bit reg
ister. Transfers out of the eight-bit accumulator into a sixteen-bit index
register transfer both eight-bit accumulators.

In Listing 6.6, the value saved to RESULT is $7FFF, showing that not
only is the eight-bit A accumulator transferred to become the low byte

0001
0002

0003

0004
0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

6 First Examples: Moving Data 97

0000 KEEP KL.6.4

0000 65816 ON

0000

0000 MAIN START

0000

0000 1 switch-to-native-mode code

0000 18 CLC clear carry flag

0001 FB XCE exchange carry with e bit (clear e bit)

0002

0002 C230 REP #$30 set accum and index size to 16

0004 AD1400 LDA DATA16 load accum with 16-bit value at DATA16

0007 E220 SEP #$20 set accum to eight bits

0009 AD1600 LDA DATA8 load 8-bit value at DATA8

oooc C220 REP #$20 make accum 16 again

000E 8D1700 STA RESULT save accum lo.hi in RESULT.RESULT+1

0011

0011 1 return to 6502 emulation mode

0011 38 SEC set carry flag

0012 FB XCE exchange carry with e bit (set e bit)

0013

0013 60 RTS

0014

0014 FF7F DATA16 DC A '$7 F F F 1

0016 33 0ATA8 DC H '33'

0017 0000 RESULT DS 2
0019

0019 END

Listing 6.4.

of the sixteen-bit index register, but the hidden B accumulator is trans
ferred to become the high byte of the index register. This means you can
form a sixteen-bit index in the eight-bit accumulator one byte at a time,
then transfer the whole thing to the index register without having to
switch the accumulator to sixteen bits first. However, take care not to
inadvertently transfer an unknown hidden value when doing transfers
from the eight-bit accumulator to a sixteen-bit index register.

Transfers from an eight-bit index register to the sixteen-bit accumula
tor result in the index register being transferred into the accumulator's
low byte while the accumulator's high byte is zeroed. This is consistent
with the zeroing of the high byte when eight-bit index registers are
switched to sixteen bits.

In Listing 6.7, the result is $0033, demonstrating that when an eight-
bit index register is transferred to the sixteen-bit accumulator, a zero is
concatenated as the high byte of the new accumulator value.

0001
0002

0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020
0021
0022

0023

0024

0025

0026

0027

0028

0029

0030

Programming the 65816

0000 KEEP KL.6.5

0000 65816 ON

0000

0000 MAIN START

0000

0000 # switch to native mode

0000

0000 18 CLC clear carry flag

0001 FB XCE exchange carry with e bit (clear e bit)

0002

0002 C230 REP #$30 set accum, index size to 16

0004 AC1500 LDY DATA16 load Y-reg with 16-bit value at DATA16

0007 AD1700 LDA DATA2 load accum with 16-bit value at DATA2

000A E220 SEP #$20 set accum to eight bits

000C 98 TYA transfer Y register's value to A

000D C220 REP #$20 make accum 16 again

0O0F 8D1900 STA RESULT save accum lo.hi in RESULT.RESULT+1

0012

0012 1 return to 6502 emulation mode

0012

0012 38 SEC set carry flag

0013 FB XCE exchange carry with e bit (set e bit)

0014

0014 60 RTS

0015

0015 FF7F DATA16 DC A ‘$7F FF’

0017 4433 DATA2 DC A'$3344'

0019 0000 RESULT DS 2

001B

001B END

Listing 6.5.

In the 65816, transfers between index registers and the stack also
depend on the setting of the destination register. For example, transfer
ring the sixteen-bit stack to an eight-bit index register, as in Fragment
6.2, results in the transfer of just the low byte. Obviously, though,
you'll find few reasons to transfer only the low byte of the sixteen-bit
stack pointer. As always, you need to be watchful of the current modes
in force in each of your routines.

The 65816 also adds new transfer operations to accommodate direct
transfer of data to and from the new 65816 environment-setting registers
(the direct page register and the sixteen-bit stack register), and also to
complete the set of possible register transfer instructions for the basic
65x user register set:

6 First Examples: Moving Data 99

(L = b its in low byte; H = b its in h igh byte; P = previous b its unm od ified by transfer)

1 6 -B it Index R e g is te r------------------------------ t o -------------------------------- 8 -b it Accum ula to r A

HHHH HHHH LLLL LLLL 1 byte
* I

PPPP PPPP LLLL LLLL

X or Y B
on ly transfers low byte (hidden B accum ulator not affected)

A

16-B it Accum ulator A -------------------- -------- t o — --------------------8 -B it Index Register

HHHH HHHH LLLL LLLL 1 byte 1 0 0 0 0 0 0 0 0 LLLL LLLL

/ on ly transfers low byte
X or Y

16 -B it Stack P o in te r----------------------- — t o - - - --------------------- 8 -B it Index Register X

HHHH HHHH LLLL LLLL 1 byte | n o o n n n n n
i__

LLLL LLLL

S X
of little use: on ly transfers address-low

8-B it Index R eg is te r--------------------------------t o ------------------------------ 1 6 -B it Accum ulator A

0 0 0 0 0 0 0 0 LLLL LLLL 2 bytes 0 0 0 0 0 0 0 0 LLLL LLLL

X or Y h igh byte transferred is 0
\

8 -B it Accum ulator A -----------------------— to - - ----------------------1 6 -B it Index Register

i HHHH HHHH
L

LLLL LLLL 2 bytes HHHH HHHH LLLL LLLL

B A , . . , , X or Y
transfer both accum ulators

8 -B it Index Register X to 16-B it Stack Pointer

0 0 0 0 0 0 0 0 LLLL LLLL 2 bytes 0 0 0 0 0 0 0 0 LLLL LLLL

sets stack to page 0 value

Figure 6.3. Register Transfers Between Different-Sized Registers.

TCD transfers the contents of the sixteen-bit accumulator C to the D
direct page register. The use of the letter C in this instruction's
mnemonic to refer to the accumulator indicates that this opera
tion is always a sixteen-bit transfer, regardless of the setting of
the memory select flag. For such a transfer to be meaningful, of
course, the high-order byte of the accumulator must contain a
valid value.

TDC transfers the contents of the D direct page register to the
sixteen-bit accumulator. Again, the use of the letter C in the

0001
0002

0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021
0022

0023

0024

0025

0026

0027

0028

0029

0030

Programming the 65816

0000 KEEP KL.6.6

0000 65816 ON

0000

0000 MAIN START

0000

0000 1 swi tct\ to native mode

0000

0000 18 CLC clear carry flag

0001 FB XCE exchange carry with e bit (clear e bit)

0002

0002 C230 REP #$30 set accum, index size to 16 bits

0004 A01300 LDA DATA16 load accum with 16-bit value at DATA16

0007 AC1500 L0Y DATA2 load Y-reg with 16-bit value at DATA2

000A E220 SEP #$20 set accum to eight bits

000C A8 TAY transfer accum to Y

000D 8C1700 STY RESULT save 16-bit index into RESULT.RESULT+1

0010

0010 1 return to 6502 emulation mode

0010

0010 38 SEC set carry flag

0011 FB XCE exchange carry with e bit (set e bit)

0012

0012 60 RTS

0013

0013

0013 FF7F DATA16 DC A 1$7FFF'

0015 4433 DATA2 DC A'$3344'

0017 0000 RESULT DS 2

0019

0019 END

Listing 6.6.

mnemonic to name the accumulator indicates that the sixteen-
bit accumulator is always used, regardless of the setting of the
memory select flag. Thus, sixteen bits are always transferred,
even if the accumulator size is eight bits, in which case the high
byte is stored to the hidden B accumulator.

TCS transfers the contents of the sixteen-bit C accumulator to the S
stack pointer register, thereby relocating the stack. Since sixteen
bits will be transferred regardless of the accumulator word size,
the high byte of the accumulator must contain valid data.

TSC transfers the contents of the sixteen-bit S stack pointer register
to the sixteen-bit accumulator, C, regardless of the accumulator
word size.

6 First Examples: Moving Data 101

0001 0000 KEEP KL.6.7

0002 0000 65816 ON

0003 0000

0004 0000

0005 0000 MAIN START

0006 0000

0007 0000 r swi tch-to-nati ve-mode code

0008 0000

0009 0000 18 CLC clear carry flag

0010 0001 FB XCE exchange carry with e bit (clear e bit)

0011 0002

0012 0002 E210 SEP #$10 set index size to 8 bits

0013 0004 C220 REP #$20 set accum to 16 bits

0014 0006 AD1300 LDA DATA16 load accum with 16-bit value at DATA16

0015 0009 AC1500 LDY DATA8 load Y-reg with 8-bit value at DATA8

0016 oooc 98 TYA transfer Y to accumulator

0017 0000 801600 STA RESULT save 16-bit accum into RESULT.RESULT+1

0018 0010

0019 0010 f return to 6502 emulation mode

0020 0010

0021 0010 38 SEC set carry flag

0022 0011 FB XCE exchange carry with e bit (set e bit)

0023 0012

0024 0012 60 RTS

0025 0013

0026 0013

0027 0013 FF7F DATA16 DC A 1S7F F F'

0028 0015 33 DATA8 DC H' 33'
0029 0016 0000 RESULT DS 2

0030 0018

0031 0018 END

Listing 6.7.

0000 E210 SEP #*00010000 set index mode to 8 bits

0002 BA TSX transfer low byte of stack ptr to 8-bit X

Fragment 6.2.

TXY transfers the contents of the X index register to the Y index reg
ister. Since X and Y will always have the same register size,
there is no ambiguity.

TYX transfers the contents of the Y index register to the X index reg
ister. Both will always be the same size.

102 Programming the 65816

Transfer instructions take only one byte, with the source and destina
tion both specified in the opcode itself. In all transfers, the data remains
intact in the original register as well as being copied into the new reg
ister.

Using TCS and TCD can be dangerous when the accumulator is in
eight-bit mode, unless the accumulator was recently loaded in sixteen-
bit mode so that the high byte, hidden when the switch was made to
eight-bit mode, is still known. Transferring an indeterminate hidden
high byte of the accumulator along with its known low byte into a
sixteen-bit environment register such as the stack pointer will generally
result in disaster.

As always, you need to be watchful of the modes currently in force in
each of your routines.

Exchanges
The 65802 and 65816 also implement two exchange instructions, nei

ther available on the 6502 or 65C02. An exchange differs from a transfer
in that two values are swapped, rather than one value being copied to a
new location.

The first of the two exchange instructions, XBA, swaps the high and
low bytes of the sixteen-bit accumulator (the C accumulator).

The terminology used to describe the various components of the
eight-or-sixteen bit accumulator is: to use A to name the accumulator as
a register that may be optionally eight or sixteen bits wide (depending
on the m memory/accumulator select flag); to use C when the accumu
lator is considered to be sixteen bits regardless of the setting of the m
flag; and, when A is used in eight-bit mode to describe the low byte
only, to use B to describe the hidden high byte of the sixteen-bit accu
mulator. In the latter case, when the accumulator size is set to eight
bits, only the XBA instruction can directly access the high byte of the
sixteen-bit "double accumulator", B. This replacement of A for B and B
for A can be used to simulate two eight-bit accumulators, each of
which, by swapping, "shares" the actual A accumulator. It can also be
used in the sixteen-bit mode for inverting a double-byte value. The XBA
instruction is exceptional in that the n flag is always set on the basis of
bit seven of the resulting accumulator A, even if the accumulator is six
teen bits.

The second exchange instruction, XCE, is the 65816's only method for
toggling between 6502 emulation mode and 65816 native mode. Rather
than exchanging register values, it exchanges two bits—the carry flag,
which is bit zero of the status register, and the e bit, which should be
considered a kind of appendage to the status register and which deter
mines the use of several of the other flags.

Fragment 6.3 sets the processor to 6502 emulation mode. Conversely,

6 First Examples: Moving Data 103

native mode can be set by replacing the SEC with a CLC clear carry
instruction.

0010 38 SEC

0011 FB XCE

Fragment 6.3.

Because the exchange stores the previous emulation flag setting into
the carry, it can be saved and restored later. It can also be evaluated
with the branch-on-condition instructions to be discussed in Chapter 8
(Flow of Control) to determine which mode the processor was just in. A
device driver routine that needs to set the emulation bit, for example,
can save its previous value for restoration before returning.

The selection of the carry flag for the e bit exchange instruction is in
no way connected to the normal use of the carry flag in arithmetic oper
ations. It was selected because it is easy to set and reset, it is less fre
quently used than the sign and zero flags, and there are branch-on-
condition instructions which test it. The primary use of the SEC and
CLC instructions for arithmetic will be covered in upcoming chapters.

Storing Zero to Memory________________
The STZ instruction, introduced on the 65C02, lets you clear either a

single or double byte memory word to zero, depending, as usual, on the
current memory/accumulator select flag word size. Zero has long been
recognized as one of the most commonly stored values, so a “dedicated"
instruction to store zero to memory can improve the efficiency of many
65x programs. Furthermore, the STZ instruction lets you clear memory
without having to first load one of the registers with zero. Using STZ
results in fewer bytes of code, faster execution, and undisturbed reg
isters.

Block Moves__________________________
The two block move instructions, available only on the 65802 and the

65816, let entire blocks (or strings) of memory be moved at once.
Before using either instruction, all three user registers (C, X, and Y)

must be set up with values which serve as parameters.

1 0 4

0001
0002
0003

0004

0005

0006

0007

0008

0009

0010
0011

0012
0013

0014

0015

0016

0017

0018

0019

0020
0021
0022
0023

0024

0025

0026

0027

Programming the 65816

The C accumulator holds the count of the number of bytes to be
moved, minus one. It may take some getting used to, but this "count" is
numbered from zero rather than one. The C accumulator is always six
teen bits: if the m mode flag is set to eight bits, the count is still the
sixteen-bit value in C, the concatenation of B and A.

X and Y specify either the top or the bottom addresses of the two
blocks, depending on which of the two versions of the instruction you
choose. In Listing 6.8, $2000 bytes of data are moved from location
$2000 to $4000.

0000 KEEP KL.6.8

0000 65816 ON

0000

0000 MAIN START

0000

0000 18 CLC

0001 FB X <-> m

0002

0002 C230 REP #$30

0004 LONGA ON

0004 LONG I ON

0004

0004 AD1300 LDA COUNT

0007 AE1500 LDX SOURCE

000A AC1700 LDY DEST

OOOD

0000 540000 MVN 0,0

0010

0010 38 SEC

0011 FB XCE

0012 60 RTS

0013

0013 FF1F COUNT DC A'SIFFF

0015 0020 SOURCE DC A ’$2000

0017 0040 DEST DC A ’$4000

0019

0019 END

reset data and index mode to 16 bits

load 16-bit C accum with # bytes to be moved

load 16-bit X reg with address of source

load 16-bit Y reg with address of destination

Listing 6.8.

The MVN instruction uses X and Y to specify the bottom (or begin
ning) addresses of the two blocks of memory. The first byte is moved
from the address in X to the address in Y; then X and Y are incremented,
C is decremented, and the next byte is moved, and so on, until the num-

6 First Examples: Moving Data 105

ber of bytes specified by the value in C is moved (that is, until C reaches
$FFFF). If C is zero, a single first byte is moved, X and Y are each incre
mented once, and C is decremented to $FFFF.

The MVP instruction assumes X and Y specify the top (or ending)
addresses of the two blocks of memory. The first byte is moved from
the address in X to the address in Y; then X, Y and C are decremented,
the next byte is moved, and so on, until the number of bytes specified
by the value in C is moved (until C reaches $FFFF).

The need for two distinct block move instructions becomes apparent
when the problem of memory overlap is considered. Typically, when a
block of memory starting at location X is to be moved to location Y, the
intention is to replace the memory locations from Y to Y + C with the
identical contents of the range X through X + C. However, if these two
ranges overlap, it is possible that as the processor blindly transfers
memory one byte at a time, it may overwrite a value in the source range
before that value has been transferred.

The rule of thumb is, when the destination range is a lower memory
address than the source range, the MVN instruction should be used
(thus "Move Next") to avoid overwriting source bytes before they have
been copied to the destination. When the destination range is a higher
memory location than the source range, the MVP instruction should be
used ("Move Previous").

While you could conceivably move blocks with the index registers set
to eight bits (your only option in emulation mode), you could only
move blocks in page zero to other page zero locations. For all practical
purposes, you must reset the x mode flag to sixteen bits before setting
up and executing a block move.

Notice that assembling an MVN or MVP instruction generates not
only an opcode, but also two bytes of operand. The operand bytes spec
ify the 64K bank from which and to which data is moved. When operat
ing in the 65816's sixteen-megabyte memory space, this supports the
transfer of up to 64K of memory from one bank to another. In the
object code, the first byte following the opcode is the bank address of
the destination and the second byte is the bank address of the source.

But while this order provides microprocessor efficiency, assembler
syntax has always been the more logical left to right, source to destina
tion (TAY, for example, transfers the accumulator to the Y index regis
ter). As a result, the recommended assembler syntax is to follow the
mnemonic first with a 24-bit source address then with a 24-bit destina
tion address—or more commonly with labels representing code or data
addresses. The assembler strips the bank byte from each address (ignor
ing the rest) and inserts them in the correct object code sequence. (Desti
nation bank, source bank.) For example:

440102 MVP SOURCE,DEST move from bank of source(02) to bank of dest(01)

106 Programming the 65816

The bank byte of the label SOURCE is 02 while the bank byte of the
label DEST is 01. As always, the assembler does the work of converting
the more human-friendly assembly code to the correct object code for
mat for the processor.

If the source and destination banks are not specified, some assemblers
will provide a user-specified default bank value.

The assembler will translate the opcode to object code, then supply its
bank value for both of the operand bytes:

440000 MVP

If either bank is different from the default value, both must be speci
fied.

The Simple
Addressing Modes

The term addressing mode refers to the method by which the proces
sor determines where it is to get the data needed to perform a given
operation. The data used by a 65x processor may come either from
memory or from one or another of the processor's registers. Data for
certain operations may optionally come from either location, some from
only one or the other. For those operations which take one of their
operands from memory, there may be several ways of specifying a given
memory location. The method best suited in a particular instance is a
function of the overall implementation of a chosen problem-solving
algorithm. Indeed, there are so many addressing modes available on the
65x processors that there is not necessarily a single "correct" addressing
mode in each situation.

This chapter deals with those addressing modes which may be
described as the "simple" addressing modes. You have already seen
some of these used in the examples of the previous chapter; the simple
addressing modes are listed in Table 7.1. Each of these addressing modes
is straightforward. Those addressing modes that require more than a
simple combination of values from several memory locations or regis
ters are described as "complex modes" in Chapter 11.

107

108 Programming the 65816

Table 7 .1 . List of Simple Addressing M odes.

A vailable on all 65x processors: Example Syntax

immediate LDA #$12
absolute LDA $1234
direct page (zero page) LDA $12
accumulator ASL A
implied TAY
stack PHA

A vailable on the 65C02, 65802 and 65816 only:

direct page (zero page) indirect ID A ($12)

A vailable on the 65802 and 65816 only:

absolute long LDA $123456
direct page indirect long LDA [$12]
block move MVN SOURCE, DEST

In addition to solving a given problem, the processor must spend a
great deal of its time simply calculating effective addresses. The simple
addressing modes require little or no effective address computation, and
therefore tend to be the fastest executing. However, the problem-solving
and memory efficiencies of the complex addressing modes, which will
be described in subsequent chapters, can make up for their effective
address calculation overhead. In each case, the nature of the problem at
hand determines the best addressing mode to use.

Immediate Addressing_________________

Immediate data is data found embedded in the instruction stream of a
program itself, immediately following the opcode which uses the data.
Because it is part of the program itself, it is always a constant value,
known at assembly time and specified when you create the program.
Typically, small amounts of constant data are handled most efficiently
by using the immediate addressing mode to load either the accumulator
or an index register with a specific value. Note that the immediate
addressing mode is not available with any of the store instructions
(STA, STX, or STY), since it makes no sense to store a value to the
operand location within the code stream.

7 The Simple Addressing Modes______________ 109

To specify the immediate addressing mode to a 65x assembler, prefix
the operand with a # (pound or sharp) sign. The constant operand may
be either data or an address.

For example,

A912 LDA #$12

loads the hexadecimal value $12 into the accumulator.
The 6502 and 65C02, their registers limited to only eight bits, permit

only an eight-bit operand to follow the load register immediate opcodes.
When the constant in an assembly source line is a sixteen-bit value,
greater-than and less-than signs are used to specify whether the high- or
low-order byte of the double-byte value are to be used. A less-than indi
cates that the low byte is to be used, and thus:

A234 LDX #<$1234

causes the assembler to generate the LDX opcode followed by a one-
byte operand, the low byte of the source operand, which is $34. It's
equivalent to:

A234 LDX #$34

The use of a greater-than sign would cause the value $12 to be loaded.
If neither the less-than nor greater-than operator is specified, most
assemblers will default to the low byte when confronted with a double
byte value.

When assembling 65816 source code, the problem becomes trickier.
The 6502 and 65C02 neither have nor need an instruction to set up the
eight-bit mode because they are always in it. But the 65816's accumula
tor may be toggled to deal with either eight- or sixteen-bit quantities, as
can its index registers, by setting or resetting the m (memory/accumula
tor select) or x (index select) flag bits of the status register. Setting the m
bit puts the accumulator in eight-bit mode; resetting it puts it in sixteen-
bit mode. Setting the x bit puts the index registers in eight-bit mode;
resetting it puts them in sixteen-bit mode.

The m and x flags may be set and reset many times throughout a
65816 program. But while assembly code is assembled from beginning
to end, it rarely executes in that fashion. More commonly, it follows a
circuitous route of execution filled with branches, jumps, and subrou
tine calls. Except for right after the m or x flag has been explicitly set or
reset, the assembler has no way of knowing the correct value of either:
your program may branch somewhere, and reenter with either flag hav
ing either value, quite possibly an incorrect one.

While the programmer must always be aware of the proper values of
these two flags, for most instructions the assembler doesn't need to
know their status in order to generate code. Most instructions generated
are the same in both eight- or sixteen-bit mode. Assembling a load accu-

110 Programming the 65816

mulator absolute instruction, for example, puts the same opcode value
and the same absolute address into the code stream regardless of accu
mulator size; it is at execution time that the m bit setting makes a differ
ence between whether the accumulator is loaded with one or two bytes
from the absolute address.

But a load register immediate instruction is followed by the constant
to be loaded. As Figure 7.1 shows, if the register is set to eight-bit mode
at the point the instruction is encountered, the 65816 expects a one-byte
constant to follow before it fetches the next opcode. On the other hand,
if the register is set to sixteen-bit mode at the point the instruction is
encountered, the 65816 expects a double-byte constant to follow before
it fetches the next opcode. The assembler must put either a one-byte or
two-byte constant operand into the code following the load register
immediate opcode based on the status of a flag which it doesn't know.

Immediate Addressing: 8 bits vs. 16

8 -B it Data (a ll p rocessors): D a ta : O p e ra n d b y te .

Instruction:

O p co d e D a ta = O p e ra n d

16-B it Data (6 5 8 0 2 /6 5 8 1 6 . n a tive mode, a p p lica b le mode (lag m or x = 0) :

D a ta H ig h : S e c o n d o p e ra n d b y te .

D a ta L o w : F ir s t o p e ra n d b y te .

Instruction:

O p co d e D a ta L o w =
O p e ra n d L o w

D a ta H ig h =
O p e ra n d H ig h

Figure 7.1. Immediate Addressing: 8 vs. 16 bits.

Two assembler directives have been designed to tell the assembler
which way to go: LONGA and LONGI, each followed with the value
ON or OFF. LONGA ON indicates the accumulator is in sixteen-bit
mode, LONGA OFF in eight-bit mode. LONGI ON tells the assembler
that the index registers are in sixteen-bit mode, LONGI OFF that they
are in eight-bit mode. Load register immediate instructions are assem
bled on the basis of the last LONGA or LONGI directive the assembler
has seen—that is, the one most immediately preceding it in the source
file. For example,

LONGA ON
LO N G I ON

7 The Simple Addressing Modes______________ 111

tells the assembler that both accumulator and index registers are set to
sixteen bits. Now, if it next encounters the following two instructions

A93412 LDA #$1234
A05600 LDY #$56

then the first puts a LDA immediate opcode followed by the constant
$1234 into the code, and the second a LDY immediate opcode followed
by the constant $0056, again two bytes of operand, the high byte pad
ded with zero.

On the other hand,

LONGA OFF
LO N G I OFF

tells the assembler that both accumulator and index registers are set to
eight bits. Now,

A934 LDA #$1234

A056 LDY #$56

puts a LDA immediate opcode followed by the constant $34 into the
code, and the second a LDY immediate opcode followed by the constant
$56, each one byte of operand.

Like the flags themselves, of course, one directive may be ON and the
other OFF at any time. They also do not need to both be specified at the
same time.

The settings of the LONGA and LONGI directives to either ON or
OFF simply represent a promise by you, the programmer, that the flags
will, in fact, have these values at execution time. The directives do noth
ing by themselves to change the settings of the actual m and x flags; this
is typically done by using the SEP and REP instructions, explained ear
lier. (Note, incidentally, that these two instructions use a special form of
the immediate addressing mode, where the operand is always eight
bits.) Nor does setting the flags change the settings of the directives. You
must therefore exercise caution to set the LONGA and LONGI flags to
correctly represent the settings of the m and x flags, and to be sure never
to branch into the code with the m or x flag set differently. If, for exam
ple, the assembler generated a LDA #$1234 instruction with LONGA set
ON, only to have the m accumulator flag set to eight bits when the code
is executed, the processor would load the accumulator with $34, then
see the $12 which follows as the next opcode and try to execute it,
resulting in program failure.

Absolute Addressing___________________
There are two categories of simple addressing modes available for

accessing data in a known memory location: absolute and direct page.

112 Programming the 65816

The first of these, absolute addressing, is used to load or store a byte to
or from a fixed memory location (within the current 64K data bank on
the 65816, which defaults to bank zero on power up). You specify the
sixteen-bit memory location in the operand field (following the opcode)
in your assembly language source line, as Figure 7.2 shows.

For example, Fragment 7.1 loads the eight-bit constant $34 into the
accumulator, then stores it to memory location $B100 in the current
data bank.

0000 E220 SEP #%00100000 set 8-bit accumulator/memory mode

0002 LONGA OFF tell assembler the accumulator mode

0002 A934 LDA #$34 load constant $34 as immediate data

0004 8D00B1 STA $B100 store byte to memory location $B100

Fragment 7.1.

The same memory move could be done with either of the index regis
ters, as shown in Fragment 7.2 using the X register. Symbolic labels in
the operand fields provide better self-documentation and easier program
modification.

0000 NUM1 GEQU $34 give this data byte a symbolic label

0000 DATA GEQU $8100 give this data byte a symbolic label

0000

0000 E210 SEP #*00010000 set index registers to 8-bit mode

0002 LONGI OFF tell assembler the index mode is 8-bit

0002 A234 LDX #NUM1 load constant $34 as immediate data

0004 8E00B1 STX DATA store byte to memory location $B100

Fragment 7.2.

As you have seen, the 65816's accumulator may be toggled to deal
with either eight- or sixteen-bit quantities, as can its index registers, by
setting or resetting the m or x flag bits of the status register. Naturally,
you don't need to execute a SEP or REP instruction nor a LONGA or
LONGI assembler directive before every routine, provided you know
the register you intend to use is already set correctly, and the assembler
correctly knows that setting. But you must always exercise extreme care
when developing 65816 programs to avoid making invalid assumptions
about the modes currently in force or taking unintentional branches
from code in one mode to code in another.

Ef
fe

ct
iv

e
Ad

dr
es

s:
23

15
7

Ba
nk

Hi
gh

Lo
w

Da
ta

 B
an

k
(D

BR
)

In
str

uc
tio

n:

Op
co

de
Op

er
an

d
Lo

w
Op

er
an

d
Hi

gh

Fi
gu

re
 7

.2
.

A
bs

ol
ut

e
A

dd
re

ss
in

g.

114 Programming the 65816

As Fragment 7.3 shows, the load and store instructions above will as
easily move sixteen bits of data as they did eight bits; all that's needed is
to be sure the register used is in sixteen-bit mode, and that the assembler
has been alerted to the setting.

0000 DATA GEQU SB100 give this location a symbolic label

0000

0000 C210 REP #*00010000 reset index registers to 16-bit mode

0002 LONGI ON tell assembler

0002 A23412 LDX #1234 load 16-bit constant $1234 immediate

0005 8E00B1 STX DATA store double byte to memory toe $B100

Fragment 7.3.

As indicated, absolute addresses are sixteen-bit addresses. On the
6502, 65C02, and 65802, with memory space limited to 64K, sixteen bits
can specify any fixed location within the entire address space of the
processor. Therefore, the term absolute addressing was appropriate.

The 65816, on the other hand, with its segmentation into 256 possible
64K banks, requires a 24-bit address to specify any fixed location within
its address space. However, the same opcodes that generated sixteen-bit
absolute addresses on the 6502 and 65C02 generate 24-bit addresses on
the 65816 by concatenating the value of the data bank register with the
sixteen-bit value in the operand field of the instruction. (Instructions
that transfer control, to be discussed in Chapter 8, substitute the pro
gram bank register value for the data bank register value.)

Absolute addressing on the 65816 is therefore actually an offset from
the base of the current bank; nevertheless, the use of the term absolute
addressing has survived on the 65816 to refer to sixteen-bit fixed
addresses within the current 64K data bank.

So long as the programmer needs to access only the contents of the
current data bank, (sixteen-bit) absolute addressing is the best way to
access data at any known location in that bank.

Direct Page Addressing_________________

One of the most powerful and useful features of the 6502 and 65C02
processors is their zero page addressing modes. A page of memory on a
65x processor consists of 256 memory locations, starting at an address
which is an integer multiple of $100 hexadecimal, that is, $0000, $0100,
$0200, and so on. Generally, pages are numbered in hexadecimal, so
their range within a 64K bank is $00 through $FF. Zero page addressing

7 The Simple Addressing Modes______________ 115

is made even more powerful and generalized as direct page addressing
on the 65802 and 65816.

The zero page is the first of the 256 pages found within the 64K
address space of the 6502 and 65C02—memory addresses $0000 to
$00FF. These addresses may be accessed one byte cheaper than absolute
memory accesses. Whereas loading or storing data from an absolute
location will require three bytes of code, loading or storing a byte from
a zero page location requires only two bytes, as Figure 7.3 shows.

Effective Address:

H ig h L o w

0 0 0 0 0 0 0 0

Instruction:

O p code O p e ra n d

Figure 7.3. Zero Page Addressing.

Since all of the addresses in the zero page are less than $0100 (such as
$003F, for example) it follows that, if the computer knew enough to
assume two leading hexadecimal zeroes, a zero page address could be
represented in only one byte, saving both space and time. But if abso
lute addressing is used, the processor has to assume that two bytes fol
low an instruction to represent the operand, regardless of whether the
high-order byte is zero or not.

This concept of expressing a zero page address with a single-byte
operand was implemented on the 6502 and 65C02 by reserving separate
opcodes for the various instructions using zero page addressing. Since
an instruction's opcode for using zero page addressing is unique (as
opcodes are for all of the different addressing modes of a given instruc
tion), the processor will fetch only one operand byte from the code
stream, using it in effect as a displacement from a known base ($0000, in
the case of the 6502 and 65C02). Since only one byte need be fetched
from the instruction stream to determine the effective address, the exe
cution time is faster by one cycle. The result is a form of addressing that
is shorter, both in memory use and execution time, than regular sixteen-
bit absolute addressing.

Clearly, locating your most often accessed variables in zero page
memory results in considerably shorter code and faster execution time.

116 Programming the 65816

The limitation of having this special area of memory available to the
zero page addressing mode instructions is that there are only 256 bytes
of memory available for use in connection with it. That is, there are
only 256 zero page addresses. Resident system programs, such as oper
ating systems and language interpreters, typically grab large chunks of
page zero for their own variable space; applications programmers must
carefully step around the operating system's variables, limiting assign
ment of their own program's zero page variables to some fraction of the
zero page.

This problem is overcome on the 65816 by letting its direct page be set
up anywhere within the first 64K of system memory (bank zero), under
program control. No longer limited to page zero, it is referred to as
direct page addressing. The result is, potentially, multiple areas of 256
($100) bytes each, which can be accessed one byte and one cycle cheaper
than absolute memory. Setting the direct page anywhere is made possi
ble by the 65816's direct page register, which serves as the base pointer
for the direct page area of memory. Expressed in terms of the 65816's
direct page concept, it can be said that on the 6502 (and 65C02), the
direct page is fixed in memory to be the zero page.

So 6502 and 65C02 zero page addressing opcodes become direct page
opcodes on the 65802 and 65816; and when they are executed, the "zero
page address”—the single byte that the processor fetches immediately
after the opcode fetch—becomes instead a direct page offset. This means
that instead of simply pointing to a location in the range $0000 to $00FF
as it would on the 6502 and 65C02, the direct page offset is added to the
sixteen-bit value in the direct page register to form the effective direct
page address, which can be anywhere in the range $00:0000 to $00:FFFF.

For purposes of this chapter, however, the discussion of direct page
addressing will be limited to the default case, where the value in the
direct page register is zero, making it functionally identical to the 6502
and 65C02 zero page addressing mode. Since it requires the effective
address to be computed, relocation of the direct page will be considered
as a form of complex addressing, and will be covered in future chapters.
While "direct page offset" is more correct, it is also more abstract; the
term direct page address is most commonly used. However, it is essen
tial to remember that it is, in fact, an offset relative to a previously
established direct page value (again, as used in this chapter, $0000).

An example of the use of direct page addressing to store a constant
value to memory is as follows:
A9F0 LDA #$F0
8512 STA $12

This stores the one-byte value $F0 at address $0012. Note that the object
code generated for the store requires only one byte for the opcode and
one for operand.

7 The Simple Addressing Modes______________ 117

A9F0 LDA #$F0
8D00B1 STA $B100

stores the same one-byte value at the address $B100. In this case, the
store requires one byte for the opcode and two bytes for the operand.

Notice how the assembler automatically assumes that if the value of
the operand can be expressed in eight bits—if it is a value less than $100,
whether coded as $34 or $0034 or $000034—the address is a direct page
address. It therefore generates the opcode for the direct page addressing
form of the instruction, and puts only a one-byte operand into the
object code. For example, in the first of the two examples above, the
direct page address to store to is $12. One result of the assembler's
assumption that values less than $100 are direct page offsets is that
physical addresses in the range $xx:0000 to $xx:00FF cannot be refer
enced normally when either the bank (the "xx") register is other than
zero or the direct page register is set to other than $0000. For example,
assembler syntax like:

A4F0 LDY $F0

or

A4F0 LDY $00F0

is direct page syntax. It will not access absolute address $00F0 if the
direct page register holds a value other than zero; nor will it access
$00F0 in another bank, even if the data bank register is set to the other
bank. Both are evaluated to the same $F0 offset in the direct page.
Instead, to access physical address $xx:00F0, you must force absolute
addressing by using the vertical bar or exclamation point in your assem
bler source line:

ACF000 LDY !$F0 toad Y absolute (not direct page) from $00F0

Indexing______________________________
An array is a table or list in memory of sequentially stored data items

of the same type and size. Accessing any particular item of data in an
array requires that you specify both the location of the base of the array
and the item number within the array. Either your program or the proc
essor must translate the item number into the byte number within the
array (they are the same if the items are bytes) and add it to the base
location to find the address of the item to be accessed (see Figure 7.4).

Sometimes an array might be a table of addresses, either of data to be
accessed or of the locations of routines to be executed. In this case, the
size of each item is two bytes; the first address is at locations zero and
one within the array, the second at locations two and three, the third at
locations four and five, and so on. You must double the item number,

118 Programming the 65816

Indexing: Base plus Index

For example: Base = S2000
Index Register X = S 03

Effective Address = 52003

Base-$2000
 1— ■ . . .

0 0 i o o o o o j o o 0 0 0 0 0 0

Figure 7.4. Indexing.

resulting in the values O, 2, 4, . . . from the array indices 0, 1, 2, . . . ,
and so on, to create an index into this array of two-byte data items.

The 65x processors provide a wide range of indexed addressing modes
that provide automatic indexing capability. In all of them, a value in
one of the two index registers specifies the unsigned (positive integer)
index into the array, while the instruction's operand specifies either the
base of the array or a pointer to an indirect address at which the base
may be found. Each addressing mode has a special operand field syntax
for specifying the addressing mode to the assembler. It selects the
opcode that will correctly instruct the processor where to find both the
base and index.

Some early processors (the 6800, for example) had only one index reg
ister; moving data from one array to another required saving off the
first index and loading the second before accessing the second array,
then incrementing the second index and saving it before reloading the
first index to again access the first array. The 65x processors were
designed with two index registers so data can be quickly moved from an
array indexed by one to a second array indexed by the other.

7 The Simple Addressing Modes______________ 119

Often, the index registers are used simultaneously as indexes and as
counters within loops in which consecutive memory locations are
accessed.

The 65802 and 65816 index registers can optionally specify sixteen-bit
offsets into an array, rather than eight-bit offsets, if the x index register
select flag is clear when an indexed addressing mode is encountered.
This lets simple arrays and other structured data elements be as large as
64K.

On the 6502, 65C02, and 65802, if an index plus its base would exceed
$FFFF, it wraps to continue from the beginning of the 64K bank zero;
that is, when index is added to base, any carry out of the low-order six
teen bits is lost. (See Figure 7.5.)

o

z Correct result
m on 65816

Figure 7.5. Indexing Beyond the End of the Bank.

On the 65816, the same is true of direct page indexing: because the
direct page is always located in bank zero, any time the direct page, plus
an offset into the direct page, plus an index exceeds $FFFF, the address
wraps to remain in bank zero.

But as Figure 7.5 shows, whenever a 65816 base is specified by a 24-
bit (long) address, or the base is specified by sixteen bits and assumes
the data bank as its bank, then, if an index plus the low-order sixteen
bits of its base exceeds $FFFF, it will temporarily (just for the current
instruction) increment the bank. The 65816 assumes that the array being
accessed extends into the next bank.

120 Programming the 65816

Absolute Indexed with X and Absolute
Indexed with y Addressing_____________

Absolute addresses can be indexed with either the X (referred to as
Absolute,X addressing) or the Y (referred to as Absolute,Y addressing)
index register; but indexing with X is available to half again as many
instructions as indexing with Y.

The base in these modes is specified by the operand, a sixteen-bit
absolute address in the current data bank (Figure 7.6). The index is spec
ified by the value in the X or Y register; the assembler picks the correct
opcode on the basis of which index register the syntax specifies.

In Fragment 7.4, the X register is used to load the accumulator from
$2200 plus 5, or $2205. If run on the 65816 in native mode, then if the
accumulator is set to sixteen-bit mode, two bytes will be loaded from
$2205 and $2206 in the current data bank.

0000 A20500 LDX #5 toad an index vatue of five

0003 BD0022 LDA $2200,X toad the accumutator from $2205

Fragment 7.4.

If the 65816 is in native mode and the index registers are set to
sixteen-bit mode, indexes greater than $FF can be used, as Fragment 7.5
illustrates.

0000 A00501 LDY #$105 load an index value of $105

0003 B90022 LDA $2200,Y load the accumutator from $2305

Fragment 7.5.

If the index register plus the constant base exceeds $FFFF, the result
will continue beyond the end of the current 64K data bank into the next
bank (the bank byte of the 24-bit address is temporarily incremented by
one). So an array of any length (up to 64K bytes) can be started at any
location and absolute indexed addressing will correctly index into the
array, even across a bank boundary. 65802 arrays, however, wrap at
the 64K boundary, since effectively there is only the single 64K bank
zero.

Loading the index register with an immediate constant, as in the pre
vious two examples, is of limited use: if, when writing a program, you

Ef
fe

ct
ive

 A
dd

re
ss

:
23

15

Sa
nk

Hi
gh

Lo
w

In
st

ru
ct

io
n:

Op
co

de
Op

er
an

d
L
ow

Op
er

an
d
Hi
gh

In
de
x

Re
gi
st
er

x
=
 1

x
=
0

Fi
gu

re
 7

.6
.

A
bs

ol
ut

e
In

de
xi

ng
 w

ith
 a

 G
en

er
ic

 I
nd

ex
 R

eg
is

te
r.

122 Programming the 65816

know that you want to load the accumulator from $2305, you will gen
erate far fewer bytes by using absolute addressing:

AD0523 LDA $2305 Load the accumulator from $2305

The usefulness of indexed addressing becomes clear when you don't
know, as you write a program, what the index into the array will be.
Perhaps the program will select among indexes, or calculate one, or
retrieve it from a variable, as in Fragment 7.6.

0000 AE0600 LDX INDEX get previously calculated index from memory

0003 BD0022 LDA $2200,X load the accumulator from the array,X

0006

0006 .

0006

0006 0000 INDEX DS 2

Fragment 7.6.

It can be useful to be able to put the base of an array into the index
register and let it vary, while keeping the index into the array constant.
This is seldom possible with the eight bits of the 6502's and 65C02's
index registers, since they limit the base addresses they can hold to the
zero page, but it is a useful capability of the 65802 and 65816.

For example, suppose, as in Fragment 7.7, you're dealing with dozens
(or hundreds) of records in memory. You need to be able to update the
fifth byte (which is a status field) of an arbitrary record. By loading the
base address of the desired record into an index register, you can use a
constant to access the status field. The index into the array, five, is
fixed; the array base varies.

Because the index is less than $100, the assembler would normally
generate direct page indexing. To force the assembler to generate abso
lute indexing, not direct page indexing, you must use the vertical bar (or
exclamation point) in front of the five, as Fragment 7.7 shows. That
way, the five is generated as the double-byte operand $0005, an abso
lute address to which the address in the index register is added to form
the absolute effective address.

Had the Y index register been used instead of X in Fragment 7.7, the
vertical bar would have been acceptable but not necessary; direct
page,Y addressing, as you will learn in the next section, can only be
used with the LDX and STX instructions, so the assembler would have
been forced to use absolute,Y addressing regardless.

Both absolute,X and absolute,Y can be used by what are called the
eight Group I instructions, the memory-to-accumulator instructions

7 The Simple Addressing Modes______________ 123

0000 STATUS GEQU 5

0000 OK GEQU 1

0000 BAD GEQU 0

0000
0000 18 CLC

0001 FB XCE

0002
0002 C210 REP #$10 set index registers to 16 bits
0004 LONGI ON

0004
0004 E220 SEP #$20

0006 LONGA OFF

0006

0006 AE0E00 LDX REC get Location of record to update
0009 A901 LDA #0K load A with ok status token

000B 9D0500 STA !STATUS,X store to status field
000E 1 force absolute,X addressing
000E .

OOOE .

OOOE .

OOOE
OOOE 0030 REC DC A'$3000' loc of 1st record (in data bank)

Fragment 7.7.

which can use more addressing modes than any others: LDA, ST A,
ADC, SBC, CMP, AND, ORA, and EOR. In addition, absolute,X can
be used for shifting data in memory, incrementing and decrementing
data in memory, loading the Y register, and for other instructions; but
absolute,Y has only one other use—to load the X register.

Direct Page Indexed with X and Direct Page
Indexed with y Addressing______________

Arrays based in the direct page (the zero page on the 6502 and 65C02)
can be indexed with either the X register (called Direct Page,X address
ing) or the Y register (called Direct Page,Y addressing). However, direct
page,Y addressing is available only for the purpose of loading and stor
ing the X register, while direct page,X is full-featured.

As is standard with indexed addressing modes, the index, which is
specified by the index register, is added to the array base specified by
the operand. Unlike the absolute indexed modes, the array always starts

124 Programming the 65816

in the direct page. So the array base, a direct page offset, can be speci
fied with a single byte. The sum of the base and the index, a direct page
offset, must be added to the value in the direct page register to find its
absolute address, as shown in Figure 7.7.

In Fragment 7.8, the accumulator is loaded from a direct page offset
base of $32 plus index of $10, or an offset of $42 from the direct page
register's setting.

0000 A21000 LDX #$10 set up an index of $10

0003 8532 LDA $32, X Load accumulator from dp:$42

Fragment 7.8.

Remember that the effective address is an offset of $42 from the direct
page register and is always in bank zero. It will correspond to an abso
lute address of $0042 only when the direct page register is equal to zero
(the default here in this chapter). Chapter 11, which covers the complex
addressing modes, details relocation of the direct page.

When the index registers are set to eight bits, you can code the index
and the array base interchangeably—they are both the same size. So the
index, if it is a constant, may be specified as the operand, with the array
base in the index register. Using the last example, the $10 in the index
register could be the direct page base of the array; the operand, $32,
would then be the index into an array in the direct page which begins at
the direct page offset $10.

On the 6502 and the 65C02, and in the 6502 emulation modes of the
two sixteen-bit processors, indexing past the end of the direct page
wraps to the beginning of the direct page, as Fragment 7.9 shows. The
index and the direct page array base are added, but only the low eight
bits of the sum specify the direct page offset of the effective address. So
in Fragment 7.9, while the base of $32 plus the index of $F0 equals $122,
only the $22 is kept, and the accumulator is loaded from dp:$22.

A2F0 LDX #$F0 set up an index of $F0

B532 LDA $32, X toad accumulator from dp:$22

Fragment 7.9.

In 65802 and 65816 native mode, however, indexes can be sixteen
bits, so direct page indexing was freed of the restriction that the effective

In
st

ru
ct

io
n:

Op
co

de

65
81

6
R

eg
is

te
rs

:
Ba

nk
23 l --

--
00

00
 0

00
0

Ef
fe

ct
ive

 A
dd

re
ss

:
23

Ba
nk

Hi
gh

Lo
w

0
0

0
0

0
0

0
0

Op
er

an
d

Hi
gh

Lo
w

Di
re
ct

Pa
ge

 R
eg
is
te
r
(D
)

In
de
x

Re
gi
st
er

Fi
gu

re
 7

.7
.

D
ir

ec
t

Pa
ge

 I
nd

ex
in

g
w

ith
 a

 G
en

er
ic

 I
nd

ex
 R

eg
is

te
r.

126 Programming the 65816

address be within the direct page. Arrays always start in the direct page,
but indexing past the end of the direct page extends on through bank
zero, except that it wraps when the result is greater than $FFFF to
remain in bank zero (unlike absolute indexing, which temporarily
allows access into the next higher bank).

In Fragment 7.10, the accumulator is loaded from the value in the
direct page register plus the direct page base of $12 plus index of $FFF0,
or dp:$0002. Note this is in bank zero, not bank one.

0000 C230 REP #$30 set index and accumulator 16-bit modes
0002 LONGA ON

0002 LONGI ON
0002
0002
0002 A2F0FF LDX #$F F F0

0005 B512 LDA $12,X load accum from $0002

Fragment 7.10.

If the index registers are set to sixteen bits and the array indexes you
need to use are all known constants less than $100, then you can use
direct page indexing to access arrays beginning, not just in the direct
page, but anywhere in bank zero memory: load the index register with
the sixteen-bit base of the array and specify the index into the array as
the operand constant. This technique would generally only be useful if
the direct page register has its default value of zero.

Accumulator Addressing________________

Accumulator addressing is only available for the read-modify-write
instructions such as shifts and rotates. The instructions themselves will
be explained in subsequent chapters, and the use of accumulator
addressing with them will be reviewed in detail.

As a simple addressing mode, accumulator addressing is included in
this chapter for the sake of completeness even though the instructions
which use it have not yet been introduced.

Generally, most operations take place upon two operands, one of
which is stored in the accumulator, the other in memory, with the result
being stored in the accumulator. Read-modify-write instructions, such
as the shifts and rotates, are "unary" operations; that is, they have only
a single operand, which in the case of accumulator addressing, is located
in the accumulator. There is no reference to external memory in the

7 The Simple Addressing Modes______________ 127

accumulator addressing modes. As usual, the result is stored in the accu
mulator.

The syntax for accumulator addressing, using the ASL (arithmetic
shift left) instruction as an example, is:

OA ASL A

Implied Addressing____________________

In implied addressing, the operand of the instruction is implicit in
the operation code itself; when the operand is a register, it is specified in
the opcode's mnemonic. Implied operand instructions are therefore
single-byte instructions consisting of opcode only, unlike instructions
that reference external memory and as a result must have operands in
subsequent bytes of the instruction.

You have already encountered implied addressing in the previous
chapter in the form of the register transfer instructions and exchanges.
Since there are a small number of registers, it is possible to dedicate an
opcode to each specific register transfer operation. Other instructions
that use implied addressing are the register increments and decrements.

As one-byte instructions, there is no assembler operand field to be
coded: You simply code the assembler mnemonic for the given instruc
tion, as below:

7B TDC transfer direct page register to double accumulator

AA TAX transfer A to X

9B TXY transfer X to Y

Stack________________________________

Stack addressing references the memory location pointed to by the
stack register. Typical use of the stack addressing mode is via the push
and pull instructions, which add or remove data to or from the stack
area of memory and which automatically decrement or increment the
stack pointer. Examples of the use of push and pull instructions were
given in the previous chapter.

Additionally, the stack is used by the jump to subroutine, return from
subroutine, interrupt, and return from interrupt instructions to auto
matically store and retrieve return addresses and in some cases also the
status register. This form of stack addressing will be covered in Chapter
12, Subroutines, and Chapter 13, System Control.

The assembler syntax of the push and pull instructions is similar to
that of implied instructions; no operand field is coded, since the opera
tion will always access memory at the stack pointer location.

128 Programming the 65816

Direct Page Indirect Addressing__________

Direct page indirect addressing, or, as it is known on the 65C02, zero
page indirect, is unavailable on the 6502; it was first introduced on the
65C02.

Indirect addressing was designed for the 65C02 as a simplification of
two often-used complex forms of addressing available on the 6502
known as zero page indirect indexed and zero page indexed indirect
addressing (these forms of addressing on the 65816 are of course direct
page indirect indexed or indexed indirect addressing; they are explained
in Chapter 11, Complex Addressing Modes). It was found that pro
grammers were tolerating the overhead inherent in these two complex
addressing modes to simulate simple indirection.

The concept of simple indirect addressing lies on the borderline
between the simple and complex addressing modes. An understanding
of it forms the basis for understanding several of the more complex
indexed modes which use indirection as well.

An indirect address is an address stored in memory which points to
the data to be accessed; it is located by means of the operand, an
address which points to the indirect address, as shown in Figure 7.8.
Except in the case of indirect jump instructions, explained in Chapter 8,
Flow of Control, this pointer is always a direct page address.

The use of indirect addresses brings great flexibility to the addressing
options available to you. There is, however, a penalty in execution
speed, imposed by the fact that, in addition to the operand fetch from
the code stream, the actual effective address must also be fetched from
memory before the data itself can be accessed. For this reason, direct
page addresses are used as the pointers to the indirect addresses since, as
you will remember from the discussion of direct page addressing, the
direct page offset itself can be determined with only a single memory
fetch.

The syntax for indirect addressing is to enclose in parentheses, as the
operand, the direct page pointer to the indirect address.

B280 LDA ($80)

This means, as Figure 7.8 illustrates, "go to the direct page address $80
and fetch the absolute (sixteen-bit) address stored there, and then load
the accumulator with the data at that address." The low-order byte of
the indirect address is stored at dp:$80, the high-order byte at dp:$81—
typical 65x low/high fashion. Remember, in the default case where DP
equals $0000, the direct page address equals the zero page address,
namely $00:0080.

As explained above, the indirect address stored at the direct page
location (pointed to by the instruction operand) is a sixteen-bit address.

Ef
fe

ct
ive

 A
dd

re
ss

:
23

15
7

Ba
nk

 0

Fi
gu

re
 7

.8
.

D
ir

ec
t

Pa
ge

 I
nd

ir
ec

t
A

dd
re

ss
in

g.

130 Programming the 65816

The general rule for the 65816 is that when an addressing mode only
specifies sixteen bits of the address, then the bank byte (bits 16-23) of
the address is provided by the data bank register. This rule applies here;
but you must first note that the direct page offset which points to the
indirect address is itself always located in bank zero because the direct
page itself is always located in bank zero. The examples, however, were
simplified to assume both the data bank and the direct page register to
be zero.

The use of indirect addressing allows an address that is referenced
numerous times throughout a routine and is subject to modification—
for example, a pointer to a data region—to be modified in only one
location and yet alter the effective address of many instructions.

In Listing 7.1, the data $1234 is moved from location V A Rl to VAR2.
Note that the load and store instructions had the same operand: the
symbol DPA, which had been given a value of $80. The indirect address
stored at that location was different in each case, however, resulting in
the data being copied from one location to another. While this example
in itself is an inefficient way to move a double-byte word to another
location, it does illustrate the basic method of indirect addressing,
which will become quite useful as looping and counting instructions are
added to your working set of 65x instructions.

Absolute Long Addressing______________

This is the first of the simple addressing modes that are available only
on the 65816 and 65802 processors.

Absolute long addressing is an extension of (sixteen-bit) absolute
addressing—that is, addressing at a known location. Remember that on
the 6502 and 65C02, address space is limited to 64K, and any location
within the entire memory range can be specified with a sixteen-bit
address. This is not the case with the 65816, which can address up to
sixteen megabytes of memory. Thus 24 bits are required to specify a
given memory location.

In general, there are two ways by which a 24-bit data address is gen
erated. In the case of sixteen-bit absolute addressing, a 64K memory
context is defined by the value of the data bank register; the bank byte
of the 24-bit address is derived directly from that register via simple
concatenation (connecting together) of the data bank value and the
sixteen-bit address. The alternative method is to specify a complete 24-
bit effective address for a given instruction. The absolute long address
ing mode is one of the means for doing this.

As the name should imply, this addressing mode specifies a known,
fixed location within the sixteen-megabyte addressing space of the
65816, just as sixteen-bit absolute addressing specifies a known, fixed

0001
0002
0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020
0021
0022
0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

7 The Simple Addressing Modes______________ 131

0000 KEEP KL.7.1

0000

0000 65816 ON

0000

0000 MAIN START

0000

0000 DPA ESU $80 give memory cell at $80 a label

0000

0000 1 switch from 6502 emulation to native mode

0000

0000 18 CLC clear carry flag

0001 F8 XCE exchange carry with e bit (clear e bit)

0002

0002 C230 REP #$30 set 16-bit registers

0004 LONGA ON

0004 LONGI ON

0004

0004 A01500 LDY #VAR1 get the address where $1234 is stored

0007 8480 STY DPA and store it as an indirect address at $80

0009 8280 LDA (DPA) now load $1234 indirectly

0008 A01700 LDY #VAR2 change the indirect address in DPA

OOOE 8480 STY DPA to point to VAR2

0010 9280 STA (DPA) and store $1234 by overwriting the $0000 there

0012

0012 1 return to 6502 emulation mode

0012

0012 38 SEC set carry flag

0013 FB XCE exchange carry with e bit (set e bit)

0014

0014 60 RTS

0015

0015 3412 VAR1 DC A '$1234'

0017 0000 VAR2 DC A '0000'

0019

0019 END

Listing 7.1.

location within either the 64K space of the 6502, 65C02, or 65802, or
else the 64K data space determined by the 65816's data bank register.
Just as the sixteen-bit absolute addressing operations are three-byte
instructions, consisting of opcode, address low, and address high, the
instructions that use the 24-bit absolute long addressing mode are four-
byte instructions, comprised of opcode, low byte of address, high byte
of address, and bank byte of address, as shown in Figure 7.9. The value
in bits 8-15 of the effective address is described as the high byte, and

132 Programming the 65816

16-23 as the bank byte, because this most clearly reflects both the paral
lels with the 6502 and 65C02 and the bank-oriented memory segmenta
tion of the 65816 architecture.

When absolute long addressing is used, the bank address in the oper
and of the instruction temporarily overrides the value in the data bank
register fo r the duration o f a single instruction. Thus, it is possible to
directly address any memory location within the entire sixteen-mega
byte address space.

You will likely find, however, that this form of addressing is one of
the less frequently used. There are two reasons for this: first, it is more
efficient to use the shorter sixteen-bit addressing modes, provided that
the data bank register has been appropriately set; second, it is generally
undesirable to hard code fixed 24-bit addresses into an application, as
this tends to make the application dependent on being run in a fixed
location within a fixed bank. (An exception to this is the case where the
address referenced is an I/O location, which is fixed by the given system
hardware configuration.)

The 65x processors, in general, do not lend themselves to writing
entirely position-independent code, although the 65816 certainly eases
this task compared to the 6502 and 65C02. There is, however, no rea
son why code should not be written on the 65816 and 65802 to be
bank-independent—that is, capable of being executed from an arbitrary
memory bank. But using absolute long addressing will tend to make this
difficult if not impossible.

If you are using a 65802 in an existing system, it is important to note
that although the address space of the 65802 is limited to 64K at the
hardware level, internally the processor still works with 24-bit
addresses. One thing this means is that it is legal to use the long address
ing modes such as absolute long. But using them is futile, even wasteful:
an extra address byte is required for the bank, but the bank address gen
erated is ignored. There are cases where use of forms of long addressing
other than absolute long should be used if you are targeting your code
for both the 65802 and the 65816. But generally there is little reason to
use the absolute long addressing mode on the 65802, except perhaps for
fine-tuning a timing loop (the absolute long addressing mode requires an
extra cycle to execute in order to fetch the bank address in the fourth
byte of the instruction).

The assembler syntax to indicate the absolute long addressing mode is
simply to code a value in the operand field greater than $FFFF. To force
long addressing for bank zero addresses ($00:0000 to $00:FFFF), use the
greater-than sign (>) as a prefix to the operand (similar to the use of the
vertical bar to force sixteen-bit absolute addressing) as shown in Frag
ment 7.11.

Note that the first STA instruction in Fragment 7.11 generates a four-

E
ffe

ct
iv

e
A

dd
re

ss
:

23
15

7

In
st

ru
ct

io
n:

Ba
nk

Hi
gh

Lo
w

O
pc

od
e

O
pe

ra
nd

 L
ow

O
pe

ra
nd

 H
ig

h
O

pe
ra

nd
 B

an
k

Fi
gu

re
 7

.9
.

A
bs

ol
ut

e
Lo

ng
 A

dd
re

ss
in

g.

134 Programming the 65816

byte instruction to store the accumulator to a bank zero address, while
the second STA instruction generates a three-byte instruction to store
the accumulator to the same sixteen-bit displacement but within bank
two, the current data bank. Also note that for both the load and the
first store instructions, absolute long addressing causes the current data
bank register, which is set to two, to be overridden.

0000 E220 SEP #$20 set 8 bit accumulator

0002 LONGA OFF

0002

0002 A902 LDA #$02 set data bank

0004 48 PHA to bank two

0005 AB PLB

0006

0006 AF9DA303 LDA $03A39D absolute long at $03:A39D

000A 8F7F2E00 STA >$2E7F store data to $00:2E7F

000E 8D7F2E STA $2E7F store data to $02:2E7F

Fragment 7.11.

Absolute Long Indexed with X Addressing _

Absolute long indexed with X, or absolute long indexed, uses the X
register for its index, and an absolute long address as its base. It lets you
index into an array located in a bank other than the data bank.

Instructions using absolute long indexed addressing are four bytes in
length, since three bytes are needed to express 24-bit absolute-long oper
ands. The bank byte, being the highest byte in the operand, is the fourth
byte of the instruction. The contents of the X index register are added to
the absolute-long operand to form the 24-bit effective address at which
data will be accessed.

For example, Fragment 7.12 gets a character from a text buffer start
ing at $3000 in bank zero and stores it into buffers starting at $1000 in
bank two and at $E000 in bank three. Because the character to be
loaded is in bank zero, its long address is expressed in sixteen bits. You
must preface a reference to it with the greater-than sign to override the
assembler assumption that a sixteen-bit operand is in the data bank, and
force the assembler to instead use long addressing. The next instruction
stores to the data bank, requiring only absolute indexing; the assembler
assumes simple sixteen-bit operands are located in the data bank.
Finally, storing into bank three requires no special specification: since
$03E000 cannot be expressed in sixteen bits, long addressing is assumed.

7 The Simple Addressing Modes______________ 135

0000 E220 SEP #$20 set accumulator to 8 bits

0002 LONGA OFF

0002 C210 REP #$10 set indexes to 16 bits
0004 LONGI ON

0004
0004 A902 LDA #2 set the data bank to bank 2

0006 48 PHA

0007 AB PLB

0008

0008 AE0080 LDX BUFIDX get 16 bit buffer index

000B BF003000 LDA >$3000,X force tong indexed addr:bank0
000F 9D0010 STA $1000,X store into data bankCbank 2)
0012 9F00E003 STA $03E000,X store into bank 3

Fragment 7.12.

Direct Page Indirect Long_______________

Direct page indirect long is another case of long (24-bit) addressing,
where the effective address generated temporarily overrides the current
value in the data bank register. Unlike the previous two long addressing
modes, however, the 24-bit address is not contained in the operand
itself. The instruction is two bytes long, much like regular direct page
indirect addressing. The operand of the instruction is, like its non-long
counterpart, a direct page offset acting as an indirect pointer; the differ
ence in this case is that rather than pointing to a sixteen-bit address in
the data bank, it points to a 24-bit address. If, for example, the direct
page address is $80, as in Figure 7.10, the processor will fetch the low
byte of the effective address from dp:$80, the high byte from dp:$81,
and the bank byte from dp:$82. The bank byte temporarily overrides
the value in the data bank register.

Fragment 7.13 shows the use of both direct page indirect addressing
and direct page indirect long, using the latter to access the data as set up
in Figure 7.10. The syntax for indirect long addressing is similar to that
for direct page indirect, except left and right square brackets rather than
parentheses enclose the direct page address to indicate the indirect
address is long.

In this example, a sixteen-bit accumulator size is used with eight-bit
index registers. The simultaneous availability of both an eight-bit and a
sixteen-bit register in this mode simplifies the manipulation of long
addresses. First, a value of $04 is loaded into the eight-bit Y register
using immediate addressing. Since the LONGI OFF directive has been
coded, the assembler automatically generates an eight-bit operand for

Ef
fe

ct
ive

 A
dd

re
ss

:
23

15
7

Ba
nk

Hi
gh

Lo
w

In
st

ru
ct

io
n:

O
pc

od
e

O
pe

ra
nd

 =
 $

80

00
00

 0
00

0
D

ire
ct

Pa
ge

 R
eg

is
te

r
(D

)

+2
 d

p:
$8

2
1--

--

B
an

k
In

di
re

ct
 A

dd
re

ss

H
ig

h
In

di
re

ct
 A

dd
re

ss

i
.

r
dp

 $
80

Lo
w

 I
nd

ire
ct

 A
dd

re
ss

B
an

k
0

Fi
gu

re
 7

.1
0.

 D
ir

ec
t

Pa
ge

 I
nd

ir
ec

t
Lo

ng
 A

dd
re

ss
in

g.

7 The Simple Addressing Modes______________ 137

0000 C220 REP #$20 set accum/memory size to 16 bits

0002 LONGA ON

0002
0002 E210 SEP #$10 set index size to eight bits
0004 L O N G I OFF

0004

0004 A004 LDY #$04 set data bank
0006 5A PHY to bank 4
0007 AB PLB

0008 ;

0008 A002 LDY #$02 bank of indirect address
000A 8482 STY $82

OOOC

OOOC A90020 LDA #$2000 high/low of indirect address
000F 8580 STA $80

0011
0011 B280 LDA ($80) load indirect from $04:2000
0013 8780 STA [$80] store indirect long to $02:2000

Fragment 7.13.

this instruction. This is pushed onto the stack, and then pulled into the
bank register. Next, Y is loaded with #$02, the bank component of the
indirect long address, which is stored to dp:$82. The sixteen-bit accu
mulator is then used to load an immediate $2000 (high/low of the indi
rect and the indirect long addresses), which is stored at dp:$80. This
results in the following values in memory: at dp:$80 is $00, at dp:$81 is
$20, and at dp:$82 is $02. The data bank register contains $04. The
memory at locations dp:$80.81 contains the indirect address $2000,
while the memory at locations dp:$80.82 contains the indirect long
address $02:2000. The load indirect instruction uses the data bank regis
ter to form the bank address, and so loads double-byte data from
$04:2000. The store indirect long stores the double-byte data at
$02:2000. The overlapping of the low and high bytes of the indirect
address in locations dp:$80 and dp:$81 highlights the difference in the
source of the bank byte using the two addressing modes.

Block M ove___________________________

Block move addressing is a dedicated addressing mode, available only
for two instructions, MVN and MVP, which have no other addressing
modes available to them. These operations were explained in the previ
ous chapter.

The Flow of Control

Flow of control refers to the way in which a processor, as it executes a
program, makes its way through the various sections of code. Chapter 1
discussed four basic types of execution: straight-line, selection between
paths, looping, and subroutines. This chapter deals with those instruc
tions that cause the processor to jump or branch to other areas of code,
rather than continuing the default straight-line flow of execution. Such
instructions are essential to selection and looping.

The jump and branch instructions alter the default flow of control by
causing the program counter to be loaded with an entirely new value. In
sequential execution, on the other hand, the program counter is incre
mented as each byte from the code stream—opcode or operand—is
fetched.

The 65x processors have a variety of branch and jump instructions, as
shown in Table 8.1. Of these, when coding in the larger-than-64K envi
ronment of the 65816, only the three jump-long instructions (jump indi
rect long, jump absolute long, and jump to subroutine long) and the
return from subroutine long instruction are capable of changing the pro
gram bank register—that is, of jumping to a segment of code in another
bank. All of the other branch or jump instructions simply transfer
within the current bank. In fact, the interrupt instructions (break, return
from interrupt, and coprocessor instructions) are the only others which
can change the program bank; there is no direct way to modify the pro
gram counter bank without at the same time modifying the program
counter register because the program counter would still point to the
next instruction in the old bank.

139

140 Programming the 65816

T able 8 .1 . Branch and Jump Instructions.

A vailable on:
M nem onic 6502 65C02 65802/816 Description

BEQ X X X branch on condition instructions
(eight)

JMP X X X jump absolute
JMP X X X jump indirect
JSR X X X jump to subroutine absolute
RTS X X X return from subroutine
BRA X X branch always (unconditional)
JMP X X jump absolute indexed indirect
BRL X branch long always

(unconditional, 64K range)
JSR X jump to subroutine absolute

indexed indirect
JMP X jump indirect long (interbank)
JMP X jump absolute long (interbank)
JSL X jump to subroutine long

(interbank)
RTL X return from subroutine long

(interbank)

As you may have noticed, all of the flow-of-control instructions
(except the return instructions) can be divided into two categories:
jump-type instructions and branch-type instructions. This division is
based on addressing modes: branch instructions use program counter
relative addressing modes; jump instructions don't.

Jump instructions can be further split into two groups: those which
transfer control to another section of code, irreversibly, and those
which transfer control to a subroutine, a section of code which is meant
to eventually return control to the original (calling) section of code, at
the instruction following the jump-to-subroutine instruction.

The jump instructions will be covered in this chapter first, then the
branches; jump-to-subroutine instructions will be discussed in Chapter
12, which deals with subroutines.

Jump Instructions______________________
The jump instruction (JMP) can be used with any one of five different

65816 addressing modes (only two of these are available on the 6502, a
third is available on the 65C02) to form an effective address; control
then passes to that address when the processor loads the program
counter with it. For example,

8 The Flow of Control 141

4C0020 JMP $2000 jump absolute to the code at location $2000

uses absolute addressing, a mode available to all 65x processors, to pass
control to the code located at $2000 in the current program bank.
(Notice that using absolute addressing to access data in the last chapter
used the data bank in place of the program bank.)

In addition to absolute addressing, all of the 65x processors provide a
jump instruction with absolute indirect addressing. While this form of
indirect addressing is unique to the jump instruction, it is quite similar
to the direct page indirect addressing mode described in Chapter 7. In
this case, the sixteen-bit operand is the address of a double-byte variable
located in bank zero containing the effective address; the effective
address is loaded into the program counter. As with absolute address
ing, the program bank remains unchanged (Figure 8.1).

For example, the jump instruction in Fragment 8.1 causes the proces
sor to load the program counter with the value in the double-byte vari
able located at $00:2000. Unlike direct page indirect addressing, the
operand is an absolute address rather than a direct page offset. Further
more, this form of absolute addressing is unusual in that it alw ays refer
ences a location in bank zero, not the current data bank.

0000 LONGA ON

0000 C220 REP #$20

0002 A93412 LDA #$1234

0005 8F002000 STA >$2000

0009 6C0020 JMP ($2000)

set 16-bit accumulator

load sixteen-bit accumulator with $1234

store long to location $00:2000

jump to location $1234 in program bank

Fragment 8.1.

The 65C02 added the absolute indexed indirect addressing mode to
those available to the jump instruction. This mode is discussed further
in Chapter 12, The Complex Addressing Modes. Although its effective
address calculation is not as simple as the jump absolute or jump abso
lute indirect, its result is the same: a transfer of control to a new loca
tion.

The 65802 and 65816 added long (24-bit) versions of the absolute and
indirect addressing modes. The absolute long addressing mode has a
three-byte operand; the first two bytes are loaded into the program
counter as before, while the third byte is loaded into the program bank
register, giving the jump instruction a full 24-bit absolute addressing
mode. For example,

5C4423FF JMP $FF2344

Ef
fe

ct
ive

 A
dd

re
ss

:
23

15

7

Ba
nk

Hi
gh

Lo
w

Pr
og

ra
m

 B
an

k
(P

BR
)

In
st

ru
ct

io
n:

B
an

k
0

Fi
gu

re
 8

.1
.

Ju
m

p'
s

A
bs

ol
ut

e
In

di
re

ct
 A

dd
re

ss
in

g
M

od
e.

8 The Flow of Control 143

causes the program counter to be loaded with $2344 and the program
bank counter with $FF. Note that on the 65802, even though the bank
register is modified by the long jump instruction, the bank address is
effectively ignored; the jump is to the same location as the equivalent
(sixteen-bit) absolute jump.

When the target of a long jump is in bank zero, say to $00A030, then
the assembler has a problem. It assumes a jump to any address between
zero and SFFFF (regardless of whether it's written as $A030 or $00A030)
is a jump within the current program bank, not to another bank, so it
will generate an absolute jump, not a long jump. There are two solu
tions. One is to use the greater-than sign (>) in front of the operand,
which forces the assembler to override its assumptions and use long
addressing:

5C30A000 JMP >$A030 long jump from the current program bank to $00:A030

The alternative is to use the JML alias, or alternate mnemonic, which
also forces a jump to be long, even if the value of the operand is less
than $10000:

5C30A0O0 JML SA030 jump from the current bank to $00:A030

The final form of the jump instruction is a 24-bit (long) jump using
absolute indirect addressing. In the instruction,

DC0020 JMP [$2000] jump to the 24-bit address stored at $00:2000

the operand is the bank zero double-byte address $2000, which locates a
triple-byte value; the program counter low is loaded with the byte at
$2000 and the program counter high with the byte at $2001; the pro
gram bank register is loaded with the byte at $2002. A standard assem
bler will allow the JML (jump long) alias here as well.

Notice that absolute indirect long jumps are differentiated from abso
lute indirect jumps within the same bank by using parentheses for abso
lute indirect and square brackets for absolute indirect long. In both
cases the operand, an absolute address, points to a location in bank
zero.

The jump instructions change no flags and affect no registers other
than the program counter.

Conditional Branching__________________

While the jump instructions provide the tools for executing a program
made up of disjoined code segments or for looping, they provide no
way to conditionally break out of a loop or to select between paths.
These are the jobs of the conditional branch instructions.

144 Programming the 65816

The jump instruction requires a minimum three bytes to transfer con
trol anywhere in a 64K range. But selection between paths is needed so
frequently and for the most part for such short hops that using three
bytes per branch would tend to be unnecessarily costly in memory
usage. To save memory, branches use an addressing mode called pro
gram counter relative, which requires just two bytes; the branch opcode
is followed by a one-byte operand—a signed, two's-complement offset
from the current program location.

When a conditional branch instruction is encountered, the processor
first tests the value of a status register flag for the condition specified by
the branch opcode. If the branch condition is false, the processor
ignores the branch instruction and goes on to fetch and execute the next
instruction from the next sequential program location. If, on the other
hand, the branch condition is true, then the processor transfers control
to the effective address formed by adding the one-byte signed operand
to the value currently in the program counter (Figure 8.2).

As Chapter 1 notes, positive numbers are indicated by a zero in the
high bit (bit seven), negative numbers by a one in the high bit. Branch
ing is limited by the signed one-byte operands to 127 bytes forward or
128 bytes backward, counting from the end of the instruction. Because a
new value for the program counter must be calculated if the branch is
taken, an extra execution cycle is required. Further, the 6502 and 65C02
(and 65802 and 65816 in emulation mode) require an additional cycle if
the branch crosses a page boundary. The native mode 65802 and 65816
do not require the second additional cycle, because they use a sixteen-bit
(rather than eight-bit) adder to make the calculation.

The program counter value to which the operand is added is not the
address of the branch instruction but rather the address of the opcode
follow ing the branch instruction. Thus, measured from the branch
opcode itself, branching is limited to 129 bytes forward and 126 bytes
backward. A conditional branch instruction with an operand of zero
will continue with the next instruction regardless of whether the condi
tion tested is true or false. A branch with an operand of zero is thus a
two-byte no-operation instruction, with a variable (by one cycle) execu
tion time, depending on whether the branch is or isn't taken.

The 65x processors have eight instructions which let your programs
branch based on the settings of four of the condition code flag bits in the
status register: the zero flag, the carry flag, the negative flag, and the
overflow flag.

None of the conditional branch instructions change any of the flags,
nor do they affect any registers other than the program counter, which
they affect only if the condition being tested for is true. The most recent
flag value always remains valid until the next flag-modifying instruction
is executed.

Ef
fe

ct
ive

 A
dd

re
ss

:
23

15

B
an

k

In
st

ru
ct

io
n:

O
pc

od
e

O
pe

ra
nd

65
81

6
R

eg
is

te
rs

:
Ba

nk

si
gn

 e
xt

en
de

d
to

 1
6

bi
ts

Hi
gh

Lo
w

Pr
og

ra
m

 B
an

k
(P

BR
)

Pr
og

ra
m

C
ou

nt
er

 (
PC

)
+ |

Fi
gu

re
 8

.2
.

R
el

at
iv

e
Br

an
ch

 C
al

cu
la

ti
on

.

146 Programming the 65816

Branching Based on the Zero Flag

The zero bit in the status register indicates whether or not the result of
an arithmetic, logical, load, pull, or transfer operation is zero. A zero
result causes the bit to be set; a non-zero result causes the bit to be reset.

The BEQ instruction is used to branch when a result is zero—that is,
when the zero bit is set. Its mnemonic meaning, that of branch if equal
(to zero), describes what the processor does. Alternatively, it may be
considered a mnemonic for branch if (comparison) equal because it is
often used after two values are compared or subtracted; if the two val
ues are equal, then the result of the comparison (subtraction) is zero (no
difference), and the branch is taken.

The BNE instruction is used to branch when a result is not zero. Also,
any non-zero value which is loaded into a register will clear the zero
flag. It is a mnemonic for branch if not equal; it too is used to branch
after a comparison or subtraction if the two values are not equal.

Zero is often used as a terminator, indicating the end of a list, or that
a loop counter has counted down to the end of the loop. Fragment 8.2 is
a short routine to search for the end of ,a linked list of records, and then
insert a new element at the end. Each element in the list contains a
pointer to the next element in the chain. The last element in the chain
contains a zero in its link field, indicating that the end of the list has
been reached.

0000 traverse linked list searching for end of chain

0000

0000 AC0080 LDY NEXTNODE nextnode contains address of next

0003 data element to be inserted.

0003 A90080 LDA PROOT ROOT contains the address of

0006 ; the link field of the first

0006 record in the chain.

0006 AA LOOP TAX use fetched address to get next link

0007 B500 LDA 0,X

0009 00FB BNE LOOP if not zero, use value to go to next

000B ; record

000B 98 TYA

OOOC 9500 STA 0,X store address of next record

OOOE in link field of current record

OOOE AA TAX

000F 7400 STZ 0,X now store zero to link field of

0011 ; new record, which is now end

Fragment 8.2.

8 The Flow of Control 147

The routine hinges on the BNE instruction found half-way through
the code; until the zero element is reached, the processor continues loop
ing through as many linked records as exist. Notice that the routine has
no need to know how many elements there are or to count them as it
adds a new element. Figure 8.3 pictures such a linked list.

Data

Link
Field

$1204

$1203

$1202

$1201

$1200

$1254

$1253

$1252

X -

X -

X -

$12 $1251 $00

$50 -► $ 1 2 5 0 $00

Inserted
Data

New
Link
Field

End
of
List

$1254

$1253

$1252

$1251

•--► $1250

$13

$00 ■ U

$1304

$1303

$1302

$1301

$1300

$00

$00

New
End
of
List

Figure 8.3. Linked List.

The two conditional branch instructions that check the zero flag are
also frequently used following a subtraction or comparison to evaluate
the equality or inequality of two values. Their use in arithmetic, logical,
and relational expressions will be covered in more detail, with exam
ples, in the next few chapters.

Branching Based on the Carry Flag
The carry flag in the status register is affected by addition, subtrac

tion, and shift instructions, as well as by two implied-addressing
instructions that explicitly set or clear the carry (SEC and CLC) and, on
the 65802/65816, by the emulation and carry swapping XCE instruc
tion, and the SEP and REP instructions.

The BCC instruction (branch on carry clear) is used to branch when
the carry flag is a zero. The BCS instruction (branch on carry set) is
used to branch when the carry flag is a one.

148 Programming the 65816

The carry flag bit is the only condition code flag for which there are
explicit instructions both to clear and to set it. (The decimal flag, which
can also be set and cleared explicitly, is a mode-setting flag; there are no
instructions to branch on the status of the decimal flag.) This can come
in handy on the 6502, which has no branch-always instruction (only the
non-relocatable absolute jump): branch-always can be faked by setting
the carry, then branching on carry set:

38 SEC set carry bit in status register

BOEB BCS NEUCODE always document a BCS being used as branch-always

Since the code which follows this use of the BCS instruction will never
be executed due to failure of the condition test, it should be documented
as acting like a branch-always instruction.

The 6502 emulation mode of the 65802 and 65816 can be toggled on
or off only by exchanging the carry bit with the emulation bit; so the
only means of testing whether the processor is in emulation mode or
native mode is to exchange the emulation flag with the carry flag and
test the carry flag, as in Fragment 8.3. Note that CLC, XCE, and BCS
instructions themselves always behave the same regardless of mode.

0000

0000

0000 18 CLC shift to native mode

0001 FB XCE swap previous emulation bit value into carry

0002 B0FC BCS EHHAND if was emulation, branch to emulation handler

0004

0004 else processor in native mode

0004

0004

Fragment 8.3.

Arithmetic and logical uses of branching based on the carry flag will
be discussed in the next two chapters.

Branching Based on the Negative Flag

The negative flag bit in the status register indicates whether the result
of an arithmetic, logical, load, pull, or transfer operation is negative or
positive when considered as a two's-complement number. A negative
result causes the flag to be set; a zero or positive result causes the flag to
be cleared. The processor determines the sign of a result by checking to
see if the high-order bit is set or not. A two's-complement negative num

8 The Flow of Control 149

ber will always have its high-order bit set, a positive number always has
it clear.

The BMI (branch-minus) instruction is used to branch when a result is
negative, or whenever a specific action needs to be taken if the high-
order (sign) bit of a value is set. Execution of the BPL (branch-plus) in
struction will cause a branch whenever a result is positive or zero—that
is, when the high-order bit is clear.

The ease with which these instructions can check the status of the
high order-bit has not been lost on hardware designers. For example, the
Apple // keyboard is read by checking a specific memory location
(remember, the 65x processors use memory-mapped I/O). Like most
computer I/O devices, the keyboard generates ASCII codes in response
to keypresses. The code returned by the keyboard only uses the low-
order seven bits; this leaves the eighth bit free to be used as a special flag
to determine if a key has been pressed since the last time a key was
retrieved. To wait for a keypress, a routine (see Fragment 8.4) loops
until the high-order bit of the keyboard I/O location is set.

0000 KEYBD GEQLI $cooo
0000 KSTRB GEQU $C010
0000
0000 1 wait unti I a character is pressed at the keyboard
0000
0000 E230 SEP #$30 eight-bit words are used for 1/0
0002
0002 AD00C0 LOOP LDA KEYBD

0005 10FB BPL LOOP Loop until high order bit is set

0007 8010C0 STA KSTRB got one; reset keyboard
000A .

000A . continue execution having fetched key
000A . from keyboard
000A

Fragment 8.4.

The STA KSTRB instruction that follows a successful fetch is neces
sary to tell the hardware that a key has been read; it clears the high-
order bit at the KEYBD location so that the next time the routine is
called, it will again loop until the next key is pressed.

Remember that the high-order or sign bit is always bit seven on a
6502 or 65C02 or, on the 65802 or 65816, if the register loaded is set to
an eight-bit mode. If a register being used on the 65802 or 65816 is set to
sixteen-bit mode, however, then the high bit—the bit that affects the
negative flag—is bit fifteen.

150 Programming the 65816

Branching Based on the Overflow Flag

Only four instructions affect the overflow (v) flag on the 6502 and
65C02: adding, subtracting, bit-testing, and an instruction dedicated to
explicitly clearing it. The 65802/65816's SEP and REP instructions can
set and clear the overflow flag as well. The next chapter will discuss the
conditions under which the flag is set or cleared.

The BVS instruction is used to branch when a result sets the overflow
flag. The BVC instruction is used to branch when a result clears the
overflow flag.

Additionally, there is a hardware input on the 6502, 65C02, and
65802 that causes the overflow flag to be set in response to a hardware
signal. This input pin is generally left unconnected in most personal
computer systems. It is more likely to be useful in dedicated control ap
plications.

Limitations of Conditional Branches
If you attempt to exceed the limits (+ 1 2 7 and —128) of the condi

tional branches by coding a target operand that is out of range, an error
will result when you try to assemble it. If you should need a conditional
branch with a longer reach, one solution is to use the inverse branch; if
you would have used BNE, test it instead for equal to zero using BEQ. If
the condition is true, target the next location past a jump to your real
target. For example, Fragment 8.5 shows the end of a fairly large section
of code, at the point at which it is necessary to loop back to the top
(TOP) of the section if the value in location CONTROL is not equal to
zero. You would use the code like Fragment 8.5 if TOP is more than 128
bytes back.

0 0 0 0 AD0080 LDA CONTROL

0003 F003 BEQ DONE done processing; skip over loop back

0005 4C0080 JMP TOP control not equal to zero; loop again

0008 DONE AN0P go on to next phase of processing

0008

0008

Fragment 8.5.

The price of having efficient two-byte short branches is that you must
use five bytes to simulate a long conditional branch.

Many times it is possible and sensible to branch to another nearby
flow of control statement and use it to puddle-jump to your final target.
Sometimes you will find the branch or jump statement you need for

8 The Flow of Control 151

puddle jumping already within your code because it's not unusual for
two or more segments of code to conditionally branch to the same
place. This method costs you no additional code, but you should docu
ment the intermediate branch, noting that it's being used as a puddle-
jump. Should you change it later, you won't inadvertently alter its use
by the other branch.

Each of the 65x branch instructions is based on a single status bit.
Some arithmetic conditions, however, are based on more than one flag
being changed. There are no branch instructions available for the rela
tions of unsigned greater than and unsigned less than or equal to; these
relations can only be determined by examining more than one flag bit.
There are also no branch instructions available for signed comparisons,
other than equal and not equal. How to synthesize these operations is
described in the following chapter.

Unconditional Branching________________

The 65C02 introduced the BRA branch always (or unconditional
branch) instruction, to the relief of 6502 programmers; they had found
that a good percentage of the jump instructions coded were for short
distances within the range of a branch instruction.

Having an unconditional branch available makes creating relocatable
code easier. Every program must have a starting address, or origin,
specified, which tells the assembler where in memory the program will
be loaded. This is necessary so that the assembler will be able to gener
ate the correct values for locations defined by labels in the source code.

Consider Fragment 8.6, the beginning of a program that specifies an
origin of $2000. In order to make patching certain variables easier, they
have been located right at the beginning of the program. When this pro
gram is assembled, location $2000 holds a jump instruction, and the
assembler gives its operand the value of the location of BEGCODE, that
is, $2005. If this program were then loaded at $2200, instead of $2000 as
was "promised" by the ORG directive, it would fail because the very
first instruction executed, at $2200, would be the jump to $2005. Since
the program has now been loaded at $2200, the contents of $2005 are no
longer as expected, and the program is in deep trouble.

By substituting an unconditional branch instruction for the jump, as
in Fragment 8.7, the operand of the branch is now a relative displace
ment (the value two), and the branch instruction will cause two to be
added to the current value of the program counter, whatever it may be.
The result is that execution continues at BEGCODE, the same relative
location the jump instruction transferred control to in the fixed-position
version.

The code is now one byte shorter. Most importantly, though, this sec-

152 Programming the 65816

0 0 0 0 0RG $ 2 0 0 0

0 0 0 0 MAIN START

0000 4C0500 JMP BEGCODE jump around data to beginning code

0003 77 DATA1 DC H * 77 ’

0004 8 8 DATA2 DC H 1 8 8 1

0005 BEGCODE AN0P

0005 .

0005 .

0005 •

Fragment 8.6.

tion of the program is now position-independent. If executed at $2000,
the branch is located at $2000; the program counter value before the
branch's operand is added is $2002; the result of the addition is $2004,
the location of BEGCODE. Load and execute the program instead at
$2200, and the branch is located at $2200; the program counter value
before the branch operand is added is $2202; the result of the addition is
$2204, which is the new location of BEGCODE.

0 0 0 0 0RG $ 2 0 0 0

0 0 0 0 MAIN START

0 0 0 0 8002 BRA BEGCODE branch around data to beginning code

0002 77 DATA1 DC H 177 *

0003 8 8 DATA2 DC H 1 8 8 *

0004 AD0200 BEGCODE LDA DATA1

0007

0007

0007 .

0007

Fragment 8.7.

Because the operand of a branch instruction is always relative to the
program counter, its effective address can only be formed by using the
program counter. Programs that use branches rather than jumps may be
located anywhere in memory.

6502 programmers in need of relocatability get around the lack of an
unconditional branch instruction by using the technique described ear
lier of setting a flag to a known value prior to executing a branch-on-
that-condition instruction.

8 The Flow of Control 153

Even with the unconditional branch instruction, however, repeat
ability can still be a problem if the need for branching extends beyond
the limits imposed by its eight-bit operand. There is some help available
on the 6502 and 65C02 in the form of the absolute indirect jump, which
can be loaded with a target that is calculated at run time.

The 65802 and 65816 introduce the BRL unconditional branch long
instruction. This is the only 65x branch instruction which does not take
an eight-bit operand: its operand, being sixteen bits, lets it specify a tar
get anywhere within the current 64K program bank. It is coded like any
other branch, except that the target label can be outside the range of the
other branches. Obviously, a two-byte displacement is generated by the
assembler, making this branch a three-byte instruction. If the effective
address that results when the sixteen-bit displacement is added to the
current program counter would extend beyond the 64K limit of the cur
rent program bank, then it wraps around to remain within the current
program bank.

The BRL instruction can replace entirely the absolute JMP instruction
in a relocatable program; the price is an extra execution cycle per
branch.

Built-In Arithmetic
Functions

With this chapter you make your first approach to the heart of the
beast: the computer as automated calculator. Although their applica
tions cover a broad range of functions, computers are generally associ
ated first and foremost with their prodigious calculating abilities. Not
without reason, for even in character-oriented applications such as
word processing, the computer is constantly calculating. At the level of
the processor itself, everything from instruction decoding to effective
address generation is permeated by arithmetic or arithmetic-like opera
tions. At the software implementation level, the program is constantly
calculating horizontal and vertical cursor location, buffer pointer loca
tions, indents, page numbers, and more.

But unlike dedicated machines, such as desk-top or pocket calcula
tors, which are m erely calculators, a computer is a flexible and general
ized system which can be programmed and reprogrammed to perform
an unlimited variety of functions. One of the keys to this ability lies in
the computer's ability to implement control structures, such as loops,
and to perform comparisons and select an action based on the result.
Because this chapter introduces comparison, the elements necessary to
demonstrate these features are complete. The other key element, the
ability to branch on condition, was presented in the previous chapter.
This chapter therefore contains the first examples of these control struc
tures, as they are implemented on the 65x processors.

Armed with the material presented in Chapter 1 about positional
notation as it applies to the binary and hexadecimal number systems, as
well as the facts concerning two's-complement binary numbers and
binary arithmetic, you should possess the background required to study
the arithmetic instructions available on the 65x series of processors.

Consistent with the simple design approach of the 65x family, only
elementary arithmetic functions are provided, as listed in Table 9.1,
leaving the rest to be synthesized in software. There are, for example,
no built-in integer multiply or divide. More advanced examples pre
sented in later chapters will show how to synthesize these more complex
operations.

155

156 Programming the 65816

Table 9 .1 . Arithmetic Instructions.

A vailable on:
M nem onic 6502 65C02 65802/816 Description

Increment Instructions:
DEC X X X decrement
DEX X X X decrement index register X
DEY X X X decrement index register Y
INC X X X increment
INX X X X increment index register X
INY X X X increment index register Y

Arithm etic Instructions:
ADC X X X add with carry
SBC X X X subtract with borrow

C om pare with M em ory Instructions:
CMP X X X compare accumulator
CPX X X X compare index register X
CPY X X X compare index register Y

Increment and Decrement_______________
The simplest of the 65x arithmetic instructions are increment and

decrement. In the case of the 65x processors, all of the increment and
decrement operations add or subtract one to a number. (Some other
processors allow you to increment or decrement by one, two, or more.)

There are several reasons for having special instructions to add or
subtract one to a number, but the most general explanation says it all:
the number one tends to be, by far, the most frequently added number
in virtually any computer application. One reason for this is that index
ing is used so frequently to access multi-byte data structures, such as
address tables, character strings, multiple-precision numbers, and most
forms of record structures. Since the items in a great percentage of such
data structures are byte or double-byte wide, the index counter step
value (the number of bytes from one array item to the next) is usually
one or two. The 65x processors, in particular, have many addressing
modes that feature indexing; that is, they use a value in one of the index
registers as part of the effective address.

All 65x processors have four instructions to increment and decrement
the index registers: INX, INY, DEX, and DEY. They are single-byte
implied operand instructions and either add one to, or subtract one
from, the X or Y register. They execute quite quickly—in two cycles—
because they access no memory and affect only a single register.

9 Built-In Arithmetic Functions 157

All 65x processors also have a set of instructions for incrementing and
decrementing memory, the INC and DEC instructions, which operate
similarly. They too are unary operations, the operand being the data
stored at the effective address specified in the operand field of the
instruction. There are several addressing modes available to these two
instructions. Note that, unlike the register increment and decrement
instructions, the INC and DEC instructions are among the slowest-exe
cuting 65x instructions. That is because they are Read-Modify-Write
operations: the number to be incremented or decremented must first be
fetched from memory; then it is operated upon within the processor;
and, finally, the modified value is written back to memory. Compare
this with some of the more typical operations, where the result is left in
the accumulator. Although read-modify-write instructions require many
cycles to execute, each is much more efficient, both byte- and cycle-
wise, than the three instructions it replaces— load, modify, and store.

In Chapter 6, you saw how the load operations affected the n and z
flags depending on whether the loaded number was negative (that is,
had its high bit set), or was zero. The 65x arithmetic functions, includ
ing the increment and decrement operations, also set the n and z status
flags to reflect the result of the operation.

In Fragment 9.1, one is added to the value in the Y register, $7FFF.
The result is $8000, which, since the high-order bit is turned on, may be
interpreted as a negative two's-complement number. Therefore the n
flag is set.

0 0 0 0 C230 REP #$30 16-bit registers

0 0 0 2 LONGA ON

0 0 0 2 LONGI ON

0 0 0 2 A0FF7F LDY #$7FFF $7FFF is a positive number

0005 C8 INY $8000 is a negative nu m b e r ; n = 1

Fragment 9.1.

In a similar example, Fragment 9.2, the Y register is loaded with the
highest possible value which can be represented in sixteen bits (all bits
turned on).

0 0 0 0 C230 REP #$30

0 0 0 2 LONGA ON

0 0 0 2 LONGI ON

0 0 0 2 A0FFFF LDY #$FFFF

0005 C 8 INY z = 1 in status register

Fragment 9.2.

158 Programming the 65816

If one is added to the unsigned value $FFFF, the result is $10000:

1 one to be added
+ 1111 1111 1111 1111 binary equivalent of $FFFF
1 0000 0000 0000 0000 re s u lt is S10000

Since there are no longer any extra bits available in the sixteen-bit
register, however, the low-order sixteen bits of the number in Y (that is,
zero) does not represent the actual result. As you will see later, addition
and subtraction instructions use the carry flag to reflect a carry out of
the register, indicating that a number larger than can be represented
using the current word size (sixteen bits in the above example) has been
generated. While increment and decrement instructions do not affect the
carry, a zero result in the Y register after an increment (indicated by the
z status flag being set) shows that a carry has been generated, even
though the carry flag itself does not indicate this.

A classic example of this usage is found in Fragment 9.3, which shows
the technique commonly used on the eight-bit 6502 and 65C02 to incre
ment a sixteen-bit value in memory. Note the branch-on-condition
instruction, BNE, which was introduced in the previous chapter, is
being used to indicate if any overflow from the low byte requires the
high byte to be incremented, too. As long as the value stored at the
direct page location ABC is non-zero following the increment operation,
processing continues at the location SKIP. If ABC is zero as a result of
the increment operation, a page boundary has been crossed, and the
high order byte of the value must be incremented as well. If the high-
order byte were not incremented, the sixteen-bit value would “wrap
around" within the low byte.

0000 EE0080 TOP INC ABC increment low byte

0003 D0FB BNE SKIP if no overflow, done

0005 EE0180 INC ABC +1 if overflow: increment high byte, too

0008 SKIP continue

0008

0008

0008

Fragment 9.3.

Such use of the z flag to detect carry (or borrow) is peculiar to the
increment and decrement operations: if you could increment or decre-

9 Built-In Arithmetic Functions 1 5 9

ment by values other than one, this technique would not work consis
tently, since it would be possible to cross the "threshold” (zero) without
actually "landing" on it (you might, for example, go from $FFFF to
$0001 if the step value was 2).

A zero result following a decrement operation, on the other hand,
indicates that the next decrement operation will cause a borrow to be
generated. In Fragment 9.4, the Y register is loaded with one, and then
one is subtracted from it by the DEY instruction. The result is clearly
zero; however, if Y is decremented again, $FFFF will result. If you are
treating the number as a signed, two's-complement number, this is just
fine, as $FFFF is equivalent to a sixteen-bit, negative one. But if it is an
unsigned number, a borrow exists.

0000 C230 REP #$30 16-bit regi sters
0002 LONGA ON

0002 LONGI ON
0002 A00100 LDY #$0001 z = 0 in the status regi ster
0005 88 DEY z = 1 in the status regi ster

Fragment 9.4.

Together with the branch-on-condition instructions introduced in the
previous chapter, you can now efficiently implement one of the most
commonly used control structures in computer programming, the'pro-
gram loop.

A rudimentary loop would be a zero-fill loop; that is, a piece of code
to fill a range of memory with zeroes. Suppose, as in Listing 9.1, the
memory area from $4000 to $5FFF was to be zeroed (for example, to
clear hi-res page two graphics memory in the Apple //). By loading an
index register with the size of the area to be cleared, the memory can be
easily accessed by indexing from an absolute base of $4000.

The two lines at BASE and COUNT assign symbolic names to the
starting address and length of the fill area. The REP instruction puts the
processor into the long index/long accumulator mode. The long index
allows the range of memory being zeroed to be greater than 256 bytes;
the long accumulator provides for faster zeroing of memory, by clearing
two bytes with a single instruction.

The loop is initialized by loading the X register with the value
COUNT, which is the number of bytes to be zeroed. The assembler is
instructed to subtract two from the total to allow for the fact that the
array starts at zero, rather than one, and for the fact that two bytes are
cleared at a time.

0001

0002
0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020
0021
0022
0023

0024

0025

0026

0027

0028

0029

0030

Programming the 65816

0 0 0 0

0 0 0 0 KEEP KL.9.1

0 0 0 0 65816 ON

0 0 0 0 L91 START

0 0 0 0

0 0 0 0 18 CLC

0001 FB XCE

0 0 0 2

0 0 0 2

0 0 0 2 BASE GEQU $4000 starting address of fill area

0 0 0 2 COUNT GEQU $2000 number of bytes to clear

0 0 0 2

0002 C230 REP #$30 turn 16-bit modes on

0004

0004 LONGA ON

0004 LONGI ON

0004

0004 A2FE1F LDX ACOUNT-2 get the number of bytes to clear

0007 1 minus two

0007

0007 9E0040 LOOP STZ BASE.X store zero to memory

000A CA DEX

000B CA DEX

OOOC 10F9 BPL LOOP repeat loop again if not done

OOOE

OOOE 38 DONE SEC

000F FB XCE

0 0 1 0 60 RTS

0 0 1 1

0 0 1 1 END

Listing 9.1.

The loop itself is then entered for the first time, and the STZ instruc
tion is used to clear the memory location formed by adding the index
register to the constant BASE. Next come two decrement instructions;
two are needed because the STZ instruction stored a double-byte zero.
By starting at the end of the memory range and indexing down, it is pos
sible to use a single register for both address generation and loop con
trol. A simple comparison, checking to see that the index register is still
positive, is all that is needed to control the loop.

Another concrete example of a program loop is provided in Listing
9.2, which toggles the built-in speaker in an Apple I I computer with
increasing frequency, resulting in a tone of increasing pitch. It features
an outer driving loop (TOP), an inner loop that produces a tone of a

9 Built-In Arithmetic Functions 161

0 0 0 1 0 0 0 0 KEEP XL.9.2

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 L92 START

0005 0 0 0 0 18 CLC

0006 0 0 0 1 FB XCE

0007 0 0 0 2 E230 SEP #$30 set 8 -bit modes

0008 0004 LONGA OFF

0009 0004 LONGI OFF

0 0 1 0 0004 BELL GEQU $C030

0 0 1 1 0004

0 0 1 2 0004 A2 0 0 LDX # 0

0013 0006 8 A TXA X, now in A, initializes the delay loop

0014 0007

0015 0007 9B TOP TXY initialize X 8 Y to 0

0016 0008

0017 0008 8D30C0 LOOP STA BELL accessing the tone generator pulses it

0018 0 0 0 B

0019 000B 8 A TXA dimininishing delay loop

0 0 2 0 oooc
0 0 2 1 oooc 3A DELAY DEC A

0 0 2 2 0 0 0 D D0FD BNE DELAY loop 256 times before continuing

0023 000F

0024 000 F

0025 000 F 8 8 DEY

0026 0 0 1 0 D0F6 BNE LOOP

0027 0 0 1 2

0028 0 0 1 2 CA DEX

0029 0013 00F2 BNE TOP

0030 0015

0031 0015 38 SEC

0032 0016 FB XCE

0033 0017 60 RTS

0034 0018 END

Listing 9.2.

given pitch, and an inner-most delay loop. The pitch of the tone can be
varied by using different initial values for the loop indices.

Addition and Subtraction:
Unsigned Arithmetic___________________

The 65x processors have only two dedicated general purpose arithme
tic instructions: add with carry, ADC, and subtract with carry, SBC. As

162 Programming the 65816

will be seen later, it is possible to synthesize all other arithmetic func
tions using these and other 65x instructions.

As the names of these instructions indicate, the carry flag from the
status register is involved with the two operations. The role of the carry
flag is to "link” the individual additions and subtractions that make up
multiple-precision arithmetic operations. The earlier example of the
6502 sixteen-bit increment was a special case of the multiple-precision
arithmetic technique used on the 65x processors, the link provided in
that case by the BNE instruction.

Consider the addition of two decimal numbers, 56 and 72. You begin
your calculation by adding six to two. If you are working the calcula
tion out on paper, you place the result, eight, in the right-most column,
the one's place:

56
72

8

Next you add the ten's column; 5 plus 7 equals 12. The two is placed in
the tens place of the sum, and the one is a carry into the 100's place.
Normally, since you have plenty of room on your worksheet, you sim
ply pencil in the one to the left of the two, and you have the answer.

The situation within the processor when it adds two numbers is basi
cally similar, but with a few differences. First, the numbers added and
subtracted in a 65x processor are normally binary numbers (although
there is also a special on-the-fly decimal adjust mode for adding and
subtracting numbers in binary-coded decimal format). Just as you began
adding, the processor starts in the right-most column, or one's place,
and continues adding columns to the left. The augend (the number
added to) is always in the accumulator; the location of the addend is
specified in the operand field of the instruction. Since a binary digit can
only be a zero or a one, the addition of 2 ones results in a zero in the
current column and a carry into the next column. This process of addi
tion continues until the highest bit of the accumulator has been added
(the highest bit being either bit seven or, alternatively on the 65802/
65816, bit fifteen, if the m flag is cleared). But suppose that $82 is added
to $AB in the eight-bit accumulator:

1 1 carry digits from previous addition to right
1000 0010 binary equivalent of $82

+ 1010 1011 binary equivalent of $AB
0010 1101

If you begin by adding the binary digits from the right and marking
the sum in the proper column, and then placing any carry that results at
the top of the next column to the left, you will find that a carry results
when the ones in column seven are added together. However, since the

9 Built-In Arithmetic Functions 163

accumulator is only eight bits wide, there is no place to store this value;
the result has “overflowed" the space allocated to it. In this case, the
final carry is stored in the carry flag after the operation. If there had
been no carry, the carry flag would be reset to zero.

The automatic generation of a carry flag at the end of an addition is
complemented by a second feature of this instruction that is executed at
the beginning of the instruction: the ADC instruction itself always adds
the previously generated one-bit carry flag value with the right-most
column of binary digits. Therefore, it is always necessary to explicitly
clear the carry flag before adding two numbers together, unless the
numbers being added are succeeding words of a multi-word arithmetic
operation. By adding in a previous value held in the carry flag, and
storing a resulting carry there, it is possible to chain together several
limited-precision (each only eight or sixteen bits) arithmetic operations.

First, consider how you would represent an unsigned binary number
greater than $FFFF (decimal 65,536)—that is, one that cannot be stored
in a single double-byte cell. Suppose the number is $023A8EFl. This
would simply be stored in memory in four successive bytes, from low to
high order, as follows, beginning at $1000:

1000 - F1
1001 - 8E
1002 - 3A
1003 - 02

Since the number is greater than the largest available word size of the
processor (double byte), any arithmetic operations performed on this
number will have to be treated as multiple-precision operations, where
only one part of a number is added to the corresponding part of another
number at a time. As each part is added, the intermediate result is
stored; and then the next part is added, and so on, until all of the parts
of the number have been added.

Multiple-precision operations always proceed from low-order part to
high-order part because the carry is generated from low to high, as seen
in our original addition of decimal 56 to 72.

Listing 9.3 is an assembly language example of the addition of
multiple-precision numbers $023A8EFl to $0000A2C1. This example
begins by setting the accumulator word size to sixteen bits, which lets
you process half of the four-byte addition in a single operation. The
carry flag is then cleared because there must be no initial carry when an
add operation begins. The two bytes stored at BIGNUM and
BIGNUM + 1 are loaded into the double-byte accumulator. Note that
the DC 14 assembler directive automatically stores the four-byte integer
constant value in memory in low-to-high order. The ADC instruction is
then executed, adding $8EFl to $A 2Cl.

0001
0002
0003
0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021
0022

Programming the 65816

0 0 0 0 KEEP XL.9.3

0 0 0 0 65816 ON

0 0 0 0

0 0 0 0 L93 START

0 0 0 0 18 CLC

0001 FB XCE

0002 C220 REP # $ 2 0 use sixteen-bit accumulator

0004 LONGA ON

0004 18 CLC make sure carry is clear to start

0005 AD1A00 LDA BIGNUM load low-order two bytes

0008 6 D1 E0 0 ADC NEXTNUM add to low-order two bytes of NEXTNUM

000B 802200 STA RESULT save low-order result

OOOE A01C00 LDA BIGNUM+2 now load high-order two bytes

0 0 1 1 6 D2 0 0 0 ADC NEXTNUM+2 add to high order of NEXTNUM with carry

0014 802400 STA RESULT+2 save result

0017 38 SEC

0018 FB XCE

0019 60 RTS

001A F18E3A02 BIGNUM DC 14'S023A8EF11

001E C1A20000 NEXTNUM DC I4'$0000A2C1'

0 0 2 2 0 0 0 0 0 0 0 0 RESULT DS 4

0026 END

Listing 9.3.

Examine the equivalent binary addition:

1 1 11 1 1 1 carry from addition of column to right
1000 1110 1111 0001 $8EF1
1010 0010 1100 0001 SA2C1
0011 0001 1011 0010 $3182

The sixteen-bit result found in the accumulator after the ADC is exe
cuted is $31B2; however, this is clearly incorrect. The correct answer,
$131B2, requires seventeen bits to represent it, so an additional result of
the ADC operation in this case is that the carry flag in the status register
is set. Meanwhile, since the value in the accumulator consists of the cor
rect low-order sixteen bits, the accumulator is stored at RESULT and
RESULT + 1 .

With the partial sum of the last operation saved, the high-order six
teen bits of BIGNUM are loaded (from BIGNUM + 2) into the accumu
lator, followed immediately by the ADC NEXTNUM + 2 instruction,
which is not preceded by CLC this time. For all but the first addition of
a multiple-precision operation, the carry flag is not cleared; rather, the
setting of the carry flag from the previous addition is allowed to be

9 Built-In Arithmetic Functions 165

automatically added into the next addition. You will note in the present
example that the high-order sixteen bits of NEXTNUM are zero; it
almost seems unnecessary to add them. At the same time, remember
that there was a carry left over from the first addition; when the ADC
NEXTNUM + 2 instruction is executed, this carry is automatically
added in; that is, the resulting value in the accumulator is equal to the
carry flag (1) plus the original value in the accumulator ($023A) plus the
value at the address NEXTNUM + 2 ($0000), or $023B. This is then
stored in the high-order bytes of RESULT, which leaves the complete,
correct value stored in locations RESULT through RESULT + 3 in low-
high order:

RESULT - B2
RESULT+1 - 31
RESULT+2 - 3B
RESULT+3 - 02

Reading from high to low, the sum is $023B31B2.
This type of multiple precision addition is required constantly on the

eight-bit 6502 and 65C02 processors in order to manipulate addresses,
which are sixteen-bit quantities. Since the 65816 and 65802 provide
sixteen-bit arithmetic operations when the m flag is cleared, this burden
is greatly reduced. If you wish, however, to manipulate long addresses
on the 65816, that is, 24-bit addresses, you will similarly have to resort
to multiple precision. Otherwise, it is likely that multiple-precision
arithmetic generally will only be required on the 65802 or 65816 in math
routines to perform number-crunching on user data, rather than for
internal address manipulation.

An interesting footnote to the multiple-precision arithmetic compari
son between the 6502 and the 65816 is to observe that since the 6502
only has an eight-bit adder, even those instructions that automatically
perform sixteen-bit arithmetic (such as branch calculation and effective
address generation) require an additional cycle to perform the addition
of the high-order byte of the address. The presence of a sixteen-bit adder
within the 65802 and 65816 explains how it is able to shave cycles off
certain operations while in native mode, such as branching across page
boundaries, where an eight-bit quantity is added to a sixteen-bit value.
On the 6502, if a page boundary isn't crossed, the high byte of the
sixteen-bit operand is used as-is; if a carry is generated by adding the
two low bytes, a second eight-bit add must be performed, requiring an
additional machine cycle. On the 65816, the addition is treated as a sin
gle operation.

Subtraction on the 65x processors is analogous to addition, with the
borrow serving a similar role in handling multiple-precision subtrac
tions. On the 65x processors, the carry flag is also used to store a sub-

166 Programming the 65816

traction's borrow. In the case of the addition operation, a one stored in
the carry flag indicates that a carry exists, and the value in the carry flag
will be added into the next add operation. The borrow stored in the
carry flag is actually an inverted borrow: that is, the carry flag cleared
to zero means that there is a borrow, while carry set means that there is
none. Thus prior to beginning a subtraction, the carry flag should be set
so that no borrow is subtracted by the SBC instruction.

Although you can simply accept this rule at face value, the explana
tion is interesting. The simplest way to understand the inverted borrow
of the 65x series is to realize that, like most computers, a 65x processor
has no separate subtraction circuits as such; all it has is an adder, which
serves for both addition and subtraction. Obviously, addition of a nega
tive number is the same as subtraction of a positive. To subtract a num
ber, then, the value which is being subtracted is inverted, yielding a
one's-complement negative number. This is then added to the other
value and, as is usual with addition on the 65x machines, the carry is
added in as well.

Since the add operation automatically adds in the carry, if the carry is
set prior to subtraction, this simply converts the inverted value to two's
complement form. (Remember, two's complement is formed by invert
ing a number and adding one; in this case the added one is the carry
flag.) If, on the other hand, the carry was clear, this has the effect of
subtracting one by creating a two's-complement number which is one
greater than if the carry had been present. (Assuming a negative number
is being formed, remember that the more negative a number is, the
greater its value as an unsigned number, for example, $FFFF = -1,
$8000 = -32767.) Thus, if a borrow exists, a value which is more nega
tive by one is created, which is added to the other operand, effectively
subtracting a carry.

Comparison___________________________
The comparison operation—is VALUEl equal to VALUE2, for exam

ple—is implemented on the 65x, as on most processors, as an implied
subtraction. In order to compare VALUEl to VALUE2, one of the val
ues is subtracted from the other. Clearly, if the result is zero, then the
numbers are equal.

This kind of comparison can be made using the instructions you
already know, as Fragment 9.5 illustrates. In this fragment, you can see
that the branch to TRUE will be taken, and the INC VAL instruction
never executed, because $1234 minus $1234 equals zero. Since the
results of subtractions condition the z flag, the BEQ instruction (which
literally means "branch if result equal to zero"), in this case, means
"branch if the compared values are equal."

9 Built-In Arithmetic Functions 167

0000 C230 REP #$30 16-bit registers

0 0 0 2 LONGA ON

0 0 0 2 LONGI ON

0 0 0 2

0002 9C1200 STZ VAL clear double-byte at VAL

0005 A93412 LDA #$1234 get one value

0008 38 SEC

0009 E93412 SBC #$1234 subtract another

OOOC F003 BEQ TRUE if they are the same, leave VAL

OOOE EE1200 INC VAL if they are different, set VAL

0 0 1 1 60 TRUE RTS

0 0 1 2 0 0 0 0 VAL DS 2

Fragment 9.5.

There are two undesirable aspects of this technique, however, if com
parison is all that is desired rather than actual subtraction. First,
because the 65x subtraction instruction expects the carry flag to be set
for single precision subtractions, the SEC instruction must be executed
before each comparison using SBC. Second, it is not always desirable to
have the original value in the accumulator lost when the result of the
subtraction is stored there.

Because comparison is such a common programming operation, there
is a separate compare instruction, CMP. Compare subtracts the value
specified in the operand field of the instruction from the value in the
accumulator w ithout storing the result; the original accumulator value
remains intact. Status flags normally affected by a subtraction—z, n,
and c—are set to reflect the result of the subtraction just performed.
Additionally, the carry flag is automatically set before the instruction is
executed, as it should be for a single-precision subtraction. (Unlike the
ADC and SBC instructions, CMP does not set the overflow flag, com
plicating signed comparisons somewhat, a problem which will be cov
ered later in this chapter.)

Given the flags that are set by the CMP instruction, and the set of
branch-on-condition instructions, the relations shown in Table 9.2 can
be easily tested for. A represents the value in the accumulator, DATA is
the value specified in the operand field of the instruction, and Bxx is the
branch-on-condition instruction that causes a branch to be taken (to the
code labelled TRUE) if the indicated relationship is true after a compar
ison.

Because the action taken after a comparison by the BCC and BCS is
not immediately obvious from their mnemonic names, the recom
mended assembler syntax standard allows the alternate mnemonics

168 Programming the 65816

Table 9 .2 . Equalities.

BEQ TRUE branch if A = DATA
BNE TRUE branch if A < > DATA
BCC TRUE branch if A < DATA
BCS TRUE branch if A > = DATA

BLT, for "branch on less than," and BGE, for "branch if greater or
equal," respectively, which generate the identical object code.

Other comparisons can be synthesized using combinations of branch-
on-condition instructions. Fragment 9.6 shows how the operation
"branch on greater than" can be synthesized.

0000

0002
0004

F002

b o f c

SKIP

BEQ

BGE

ANOP

SKIP

TRUE

branch
A >

to TRUE if
DATA

Fragment 9.6.

Fragment 9.7 shows "branch on less or equal."

0000 F0FE BEQ TRUE branch if

0002 90FC BCC TRUE A < = DATA

Fragment 9.7.

Listing 9.4 features the use of the compare instruction to count the
number of elements in a list which are less than, equal to, and greater
than a given value. While of little utility by itself, this type of compari
son operation is just a few steps away from a simple sort routine. The
value the list will be compared against is assumed to be stored in mem
ory locations $88.89, which are given the symbolic name VALUE in the
example. The list, called TABLE, uses the DC I directive, which stores
each number as a sixteen-bit integer.

0 0 0 1 0 0 0 0 KEEP Kl.9.4

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 L94 START

0005 0 0 0 0

0006 0 0 0 0

0007 0 0 0 0 LESS GEQU $82 counter

Listing 9.4. Continued on next page

9 Built-In Arithmetic Functions 169

0008 0 0 0 0 SAME GEQU $84 counter

0009 0 0 0 0 MORE GEQU $ 8 6 counter

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0 VALUE GEQU $ 8 8 value for list to be compared against

0 0 1 2 0 0 0 0

0013 0 0 0 0 18 CLC

0014 0 0 0 1 FB XCE

0015 0 0 0 2 C230 REP #$30 turn on both 16-bit modes

0016 0004

0017 0004 LONGA ON

0018 0004 LONGI ON

0019 0004

0 0 2 0 0004

0 0 2 1 0004 6482 STZ LESS zero the counters

0 0 2 2 0006 6484 STZ SAME

0023 0008 6486 STZ MORE

0024 0 0 0 A

0025 000A

0026 000A A588 LOA VALUE get the comparison value

0027 OOOC A01A00 LDY #LAST-TABLE get a counter to # of list items

0028 000 F

0029 000 F

0030 000 F 092700 TOP CMP TABLE.Y compare accum to first list item

0031 0 0 1 2 F006 BEQ ISEQ

0032 0014 9008 BLT ISMORE

0033 0016 E682 INC LESS VALUE is less, bump LESS

0034 0018 8006 BRA LOOP

0035 0 0 1 A E684 ISEQ INC SAME value is same; bump SAME

0036 0 0 1 C 8002 BRA LOOP

0037 0 0 1 E E6 8 6 ISMORE INC MORE VALUE is greater; bump MORE

0038 0 0 2 0

0039 0 0 2 0 8 8 LOOP DEY move pointer to next list item

0040 0 0 2 1 8 8 DEY

0041 0 0 2 2 10EB BPL TOP continue if there are any list items

0042 0024 ; left to compare

0043 0024

0044 0024 38 SEC

0045 0025 FB XCE

0046 0026 60 RTS

0047 0027

0048 0027 OC000900 TABLE DC I'12,9,302,956,123,1234,98'

0049 0035 04116300 DC I'4356,99,11,40000,23145,562'

0050 0041 0F27 LAST DC I'9 9 9 9 '

0051 0043

0052 0043 END

Listing 9.4 (Cont.).

170 Programming the 65816

After setting the mode to sixteen-bit word/index size, the locations
that will hold the number of occurrences of each of the three possible
relationships are zeroed. The length of the list is loaded into the Y regis
ter. The accumulator is loaded with the comparison value.

The loop itself is entered, with a comparison to the first item in the
list; in this and each succeeding case, control is transferred to counter
incrementing code depending on the relationship that exists. Note that
equality and less-than are tested first, and greater-than is assumed if
control falls through. This is necessary since there is no branch on
greater-than (only branch on greater-than-or-equal). Following the
incrementing of the selected relation-counter, control passes either via
an unconditional branch, or by falling through, to the loop-control
code, which decrements Y twice (since double-byte integers are being
compared). Control resumes at the top of the loop unless all of the ele
ments have been compared, at which point Y is negative, and the rou
tine ends.

In addition to comparing the accumulator with memory, there are
instructions for comparing the values in the two index registers with
memory, CPX and CPY. These instructions come in especially handy
when it is not convenient or possible to decrement an index to zero—if
instead you must increment or decrement it until a particular value is
reached. The appropriate compare index register instruction is inserted
before the branch-on-condition instruction either loops or breaks out of
the loop. Fragment 9.8 shows a loop that continues until the value in X
reaches $A0.

0 0 0 0 LOOP ANOP work to be done in the loop goes here

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 E8 INX

0 0 0 1 E0A000 CPX #$A0

0004 D0FA BNE LOOP continue incrementing X until

0006 ANOP X = $A0, so loop ended

Fragment 9.8.

Signed Arithmetic

The examples so far have dealt with unsigned arithmetic—that is,
addition and subtraction of binary numbers of the same sign. What
about signed numbers?

9 Built-In Arithmetic Functions 171

As you saw in Chapter 1, signed numbers can be represented using
two's-complement notation. The two's complement of a number is
formed by inverting it (one bits become zeroes, zeroes become ones) and
then adding one. For example, a negative one is represented by forming
the two's complement of one:

0000 0000 0000 0001 — binary one in sixteen-bit word
1111 1111 1111 1110 -complement word
0000 0000 0000 0001 — add one to complement
1111 1111 1111 1111 — result is two's-complement

representation of minus one

Minus one is therefore equivalent to a hexadecimal $FFFF. But as far
as the processor is concerned, the unsigned value $FFFF (65,535 decimal)
and the signed value minus-one are equivalent. They both amount to
the same stream of bits stored in a register. It's the interpretation of
them given by the programmer which is significant—an interpretation
that must be consistently applied across each of the steps that perform a
multi-step function.

Consider all of the possible signed and unsigned numbers that can be
represented using a sixteen-bit register. The two's complement of $0002
is $FFFE—as the positive numbers increase, the two's-complement (neg
ative) numbers decrease (in the unsigned sense). Increasing the positive
value to $7FFF (%0111 1111 1111 1111), the two's complement is $8001
(%1000 0000 0000 0001); except for $8000, all of the possible values
have been used to represent the respective positive and negative num
bers between $0001 and $7FFF.

Since their point of intersection, $8000, determines the maximum
range of a signed number, the high-order bit (bit fifteen) will always be
one if the number is negative, and zero if the number is positive. Thus
the range of possible binary values (%0000 0000 0000 0000 through
%1111 1111 1111 1111, or $0000 .. $FFFF), using two's-complement
form, is divided evenly between representations of positive numbers,
and representations of the corresponding range of negative numbers.
Since $8000 is also negative, there seems to be one more possible nega
tive number than positive; for the purposes here, however, zero is con
sidered positive.

The high-order bit is therefore referred to as the sign bit. On the 6502,
with its eight-bit word size (or the 65816 in an eight-bit register mode),
bit seven is the sign bit. With sixteen-bit registers, bit fifteen is the sign
bit. The n or negative flag in the status register reflects whether or not
the high-order bit of a given register is set or clear after execution of
operations which affect that register, allowing easy determination of the
sign of a signed number by using either the BPL (branch on plus) or BMI
(branch if minus) instructions introduced in the last chapter.

172 Programming the 65816

Using the high-order bit as the sign bit sacrifices the carry flag's nor
mal (unsigned) function. If the high-order bit is used to represent the
sign, then the addition or subtraction of the sign bits (plus a possible
carry out of the next-to-highest bit) results in a sign bit that may be
invalid and that will erroneously affect the carry flag.

To deal with this situation, the status register provides another flag
bit, the v or overflow flag, which is set or reset as the result of the ADC
and SBC operations. The overflow bit indicates whether a signed result
is too large (or too small) to be represented in the precision available,
just as the carry flag does for unsigned arithmetic.

Since the high-order bit is used to store the sign, the penultimate bit
(the next-highest bit) is the high-order bit as far as magnitude represen
tation is concerned. If you knew if there was a carry out of this bit, it
would obviously be helpful in determining overflow or underflow.

However, the overflow flag is not simply the carry out of bit six (if
m = 1 for eight-bit mode) or bit fourteen (if m = 0 for sixteen-bit
mode). Signed generation of the v flag is not as straightforward as
unsigned generation of the carry flag. It is not automatically true that if
there is a carry out of the penultimate bits that overflow has occurred,
because it could also mean that the sign has changed. This is because of
the circular or wraparound nature of two's-complement representation.

Consider Fragment 9.9. Decimal values with sign prefixes are used for
emphasis (and convenience) as the immediate operands in the source
program; their hexadecimal values appear in the left-hand column
which interlists the generated object code (opcode first, low byte, high
byte). You can see that -10 is equivalent to $FFF6 hexadecimal, while 20
is hexadecimal $0014. Examine this addition operation in binary:

0000 C230 REP

0002 LONGA

0002 LONGI
0002
0002 A9F6FF LDA
0005 18 CLC
0006 691400 ADC

#$30 16-bit registers

ON
ON

#-10

#20

Fragment 9.9.

Two things should become clear: that the magnitude of the result (10
decimal) is such that it will easily fit within the number of bits available
for its representation, and that there is a carry out of bit fourteen:

1 1111 1111 111 1 carry from previous bit
1111 1111 1111 0110 -10 decimal
0000 0000 0001 0100 +20 decimal

1 0000 0000 0000 1010 result is + 1 0 decimal

9 Built-In Arithmetic Functions 173

In this case, the overflow flag is not set, because the carry out of the
penultimate bit indicates wraparound rather than overflow (or under
flow). Whenever the two operands are of different signs, a carry out of
the next-to-highest bit indicates wraparound; the addition of a positive
and a negative number (or vice versa) can never result in a number too
large (try it), but it may result in wraparound.

Conversely, overflow exists in the addition of two negative numbers
if no carry results from the addition of the next-to-highest (penultimate)
bits. If two negative numbers are added without overflow, they will
always wrap around, resulting in a carry out of the next-to-highest bit.
When wraparound has occurred, the sign bit is set due to the carry out
of the penultimate bit. In the case of two negative numbers being added
(which always produces a negative result), this setting of the sign bit
results in the correct sign. In the case of the addition of two positive
numbers, wraparound never occurs, so a carry out of the penultimate
bit always means that the overflow flag will be set.

These rules likewise apply for subtraction; however, you must con
sider that subtraction is really an addition with the sign of the addend
inverted, and apply them in this sense.

In order for the processor to determine the correct overflow flag
value, it exclusive-or's the carry out of the penultimate bit with the
carry out of the high-order bit (the value that winds up in the carry
flag), and sets or resets the overflow according to the result. By taking
the exclusive-or of these two values, the overflow flag is set according to
the rules above.

Consider the possible results:

• I f both values are positive, the carry will be clear; if there is no
penultimate carry, the overflow flag, too, will be clear, because 0
XOR 0 equals 0; the value in the sign bit is zero, which is correct
because a positive number plus a positive number always equals a
positive number. On the other hand, if there is a penultimate
carry, the sign bit will change. While there is still no final carry,
overflow is set. The final carry (clear) xor penultimate carry (set)
equals one. Whenever overflow is set, the sign bit of the result has
the wrong value.

• I f the signs are different, and there is a penultimate carry (which
means wraparound in this case), there will be a final carry. But
when this is exclusive-or'd with the penultimate carry, it is can
celed out, resulting in overflow being cleared. If, though, there
were no penultimate carry, there would be no final carry; again, 0
XOR 0 = 0, or overflow clear. If the sign bit is cleared by the
addition of a penultimate carry and the single negative sign bit,
since wraparound in this case implies the transition from a nega
tive to a positive number, the sign (clear) is correct. If there was

174 Programming the 65816

no wraparound, the result is negative, and the sign bit is also cor
rect (set).

• Finally, if both signs are negative, there will always be a carry out
of the sign bit. A carry out of the penultimate bit means wrap
around (with a correctly negative result), so carry (set) XOR pen
ultimate carry (set) equals zero and the overflow flag is clear. If,
however, there is no carry, overflow (or rather, underflow) has
occurred, and the overflow is set because carry XOR no carry
equals one.

The net result of this analysis is that, with the exception of overflow
detection, signed arithmetic is performed in the same way as unsigned
arithmetic. Multiple-precision signed arithmetic is also done in the same
way as unsigned multiple-precision arithmetic; the sign of the two num
bers is only significant when the high-order word is added.

When overflow is detected, it can be handled in three ways: treated as
an error, and reported; ignored; or responded to by attempting to
extend the precision of the result. Although this latter case is not gener
ally practical, you must remember that, in this case, the value in the
sign bit will have been inverted. Having determined the correct sign, the
precision may be expanded using sign extension, if there is an extra byte
of storage available and your arithmetic routines can work with a
higher-precision variable. The method for extending the sign of a num
ber involves the bit manipulation instructions described in the next
chapter; an example of it is found there.

Signed Comparisons____________________
The principle of signed comparisons is similar to that of unsigned

comparisons: the relation of one operand to another is determined by
subtracting one from the other. However, the 65x CMP instruction,
unlike SBC, does not affect the v flag, so does not reflect signed over
flow/underflow. Therefore, signed comparisons must be performed
using the SBC instruction. This means that the carry flag must be set
prior to the comparison (subtraction), and that the original value in the
accumulator will be replaced by the difference. Although the value of
the difference is not relevant to the comparison operation, the sign is. If
the sign of the result (now in the accumulator) is positive (as determined
according to rules outlined above for proper determination of the sign
of the result of a signed operation), then the value in memory is less
than the original value in the accumulator; if the sign is negative, it is
greater. If, though, the result of the subtraction is zero, then the values
were equal, so this should be checked for first.

The code for signed comparisons is similar to that for signed subtrac
tion. Since a correct result need not be completely formed, however,

0001
0002
0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021
0022
0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

9 Built-In Arithmetic Functions 175

overflow can be tolerated since the goal of the subtraction is not to gen
erate a result that can be represented in a given precision, but only to
determine the relationship of one value to another. Overflow must still
be taken into account in correctly determining the sign. The value of the
sign bit (the high-order bit) will be the correct sign of the result unless
overflow has occurred. In that case, it is the inverted sign.

Listing 9.5 does a signed comparison of the number stored in VAL1
with the number stored in VAL2, and sets RELATION to minus one,
zero, or one, depending on whether VALl < VAL2, VAL1 = VAL2 or
VAL1 > VAL2, respectively:

0 0 0 0 KEEP KL.9.5

0 0 0 0 65816 ON

0 0 0 0

0 0 0 0 COMPARE START

0 0 0 0

0 0 0 0 18 CLC

0001 FB XCE

0002 C230 REP #$30

0004

0004 LONGA ON

0004 LONGI ON

0004

0004 9C2500 STZ RELATION

0007 AD2100 LDA VAL1

000A 38 SEC

000B ED2300 SBC VAL2

000E F00E BEQ SAME

0010 7007 BVS INVERT

0012 3007 BMI LESS

0014 EE2500 GREATER INC RELATION

0017 8005 BRA SAME

0019 30F9 INVERT BMI GREATER

001B CE2500 LESS DEC RELATION

001E 38 SAME CLC

001F FB XCE

0 0 2 0 60 RTS

0 0 2 1

0 0 2 1 0 0 0 0 VAL1 DS 2

0023 0000 VAL2 DS 2

0025 0000 RELATION DS 2

0027

0027 END

turn 16-bit inodes on

clear result cell

if v set, invert meaning of sign

bra if VAL1 is less than VAL2

VAL1 is greater than VAL2

invert: bra if minus: minus=greater

Listing 9.5.

176 Programming the 65816

Decimal M ode_________________________

All of the examples in this chapter have dealt with binary numbers. In
certain applications, however, such as numeric I/O programming,
where conversion between ASCII and binary representation of decimal
strings is inconvenient, and business applications, in which conversion
of binary fractions to decimal fractions results in approximation errors,
it is convenient to represent numbers in decimal form and, if possible,
perform arithmetic operations on them directly in this form.

Like most processors, the 65x series provides a way to handle decimal
representations of numbers. Unlike most processors, it does this by pro
viding a special decimal m o d e that causes the processor to use decimal
arithmetic for ADC, SBC, and CMP operations, with automatic "on the
fly" decimal adjustment. Most other microprocessors, on the other
hand, do all arithmetic the same, requiring a second "decimal adjust"
operation to convert back to decimal form the binary result of arithme
tic performed on decimal numbers. As you remember from Chapter 1,
binary-coded-decimal (BCD) digits are represented in four bits as binary
values from zero to nine. Although values from $A to $F (ten to fifteen)
may also be represented in four bits, these bit patterns are illegal in deci
mal mode. So when $03 is added to $09, the result is $12, not $0C as in
binary mode.

Each four-bit field in a BCD number is a binary representation of a
single decimal digit, the rightmost being the one's place, the second the
ten's, and so on. Thus, the eight-bit accumulator can represent numbers
in the range 0 through 99 decimal, and the sixteen-bit accumulator can
represent numbers in the range 0 through 9999. Larger decimal numbers
can be represented in multiple-precision, using memory variables to
store the partial results and the carry flag to link the component fields of
the number together, just as multiple-precision binary numbers are.

Decimal mode is set via execution of the SED instruction (or a SEP
instruction with bit three set). This sets the d or decimal flag in the sta
tus register, causing all future additions and subtractions to be per
formed in decimal mode until the flag is cleared.

The default mode of the 65x processors is the binary mode with the
decimal flag clear. It is important to remember that the decimal flag
may accidentally be set by a wild branch, and on the NMOS 6502, it is
not cleared on reset. The 65C02, 65802, and 65816 do clear the decimal
flag on reset, so this is of slightly less concern. Arithmetic operations
intended to be executed in binary mode, such as address calculations,
can produce totally unpredictable results if they are accidentally exe
cuted in decimal mode.

Finally, although the carry flag is set correctly in the decimal mode
allowing unsigned multiple-precision operations, the overflow flag is

9 Built-In Arithmetic Functions 177

not, making signed decimal arithmetic, while possible, difficult. You
must create your own sign representation and logic for handling arith
metic based on the signs of the operands. Borrowing from the binary
two's-complement representation, you could represent negative num
bers as those (unsigned) values which, when added to a positive number
result in zero if overflow is ignored. For example, 99 would equal -1,
since 1 plus 99 equals 100, or zero within a two-digit precision. 98
would be -2, and so on. The different nature of decimal representation,
however, does not lend itself to signed operation quite as conveniently
as does the binary two's-complement form.

10
Logic and Bit
Manipulation
Operations

The logical operations found in this chapter are the very essence of
computer processing; even the arithmetic functions, at the lowest level,
are implemented as combinations of logic gates. Logic, or more accu
rately, boolean logic, is concerned with the determination of "true" and
"false."

Computers can represent simple logical propositions and relationships
as binary states: the bit-value used to represent "1" in a given computer
is considered equivalent to true; the bit-value which stands for "0" is
considered equivalent to false. This designation is in fact arbitrary, and
the values could easily be reversed. What matters is the consistent appli
cation of the convention. Alternative terms are "set" and "reset" (or
"clear”), "on" and "off," "high" and "low," "asserted” and "negated."
There is a tendency to equate all of these terms; this is generally accept
able except when you are concerned with the actual hardware imple
mentation of these values, in which case the issue of positive logic
("on" means "true") vs. negative logic ("off" means "true") becomes a
consideration. But the intuitive assumption of a positive logic system
("1" equals "on" equals "true") seems the most natural, and may be con
sidered conventional, so the terms listed above as equivalent will be
used interchangeably, as appropriate for a given context.

Before discussing these functions, it is important to remember the bit-
numbering scheme described in Chapter 1: bits are numbered right to
left from least significant to most significant, starting with zero. So a
single byte contains bits zero through seven, and a double byte contains
bits zero through fifteen. Bit zero always stands for the "one's place."
Bit seven stands for the "128ths place" and bit fifteen stands for the
"32768ths place," except that the high bit of a signed number is, instead,
the sign bit. A single bit (or string of bits smaller than a byte or double
byte) is sometimes called a bit-field, implying that the bits are just a part
of a larger data element like a byte or double byte.

You'll find two types of instructions discussed in this chapter; the
basic logic functions, and the shifts and rotates. They're listed in Table
10 .1 .

179

180 Programming the 65816

Tab le 10 .1 . Logic Instructions.

A vailable on:
M nem onic 6502 65C02 65802/816 Description

Logic Instructions:
AND x x X logical and
EOR x x X logical exclusive-or
ORA x x X logical or (inclusive or)

Bit M anipulation Instructions:
BIT x x X test bits
TRB x X test and reset bits
TSB x X test and set bits

Shift and Rotate Instructions:
ASL x x X shift bits left
LSR x x X shift bits right
ROL x x X rotate bits left
ROR x x X rotate bits right

Logic Functions________________________

The fundamental logical operations implemented on the 65x processor
are and, inclusive or, and exclusive or. These are implemented as the
AND, ORA, and EOR machine instructions. These three logical opera
tors have two operands, one in the accumulator and the second in mem
ory. All of the addressing modes available for the LDA, STA, ADC,
SBC, and CMP instructions are also available to the logical operations.
The truth tables for these operations are found in Chapter 1 and are
repeated again in the descriptions of the individual instructions in Chap
ter 18.

In addition to these instructions, there are also bit testing instructions
that perform logical operations; these are the BIT (test memory bits),
TSB (test and set bits), and TRB (test and reset bits) instructions. These
three instructions set status flags or memory values based on the result
of logical operations, rather than affecting the accumulator.

The logical and bit manipulation instructions are broadly useful: for
testing for a condition using boolean logic (for example, if this is true
and that is true then do this); for masking bit fields in a word, forcing
them to be on or off; for performing quick, simple multiplication and
division functions, such as multiplying by two or taking the modulus of
a power of two (finding the remainder of a division by a power of two);
for controlling I/O devices; and for a number of other functions.

10 Logic and Bit Manipulation Operations 181

The most typical usage of the boolean or logical operators is probably
where one of the two operands is an immediate value. Immediate values
will generally be used in these examples. Additionally, operands will
usually be represented in binary form (prefixed by a percent sign— %),
since it makes the bit-pattern more obvious. All of the logical operations
are performed bitwise; that is, the result is determined by applying the
logical operation to each of the respective bits of the operands.

Logical AND
Consider, for example, the eight-bit AND operation illustrated in Fig

ure 10.1.

bit number

7 6 5 A 3 2 1 0
0 1 1 1 0 1 1 0 $76

and 1 1 0 0 1 0 1 1 and $CB________
0 1 0 0 0 0 1 0 $42 re su lt

Figure 10.1. The AND Operation.

The result, $42 or %0100 0010, is formed by ANDing bit zero of the
first operand with bit zero of the second to form bit zero of the result;
bit one with bit one; and so on. In each bit, a one results only if there is
a one in the corresponding bit-fields of both the first operand and the
second operand; otherwise zero results.

An example of the use of the AND instruction would be to mask bits
out of a double-byte word to isolate a character (single-byte) value. A
mask is a string of bits, typically a constant, used as an operand to a
logic instruction to single out of the second operand a given bit or bit
field by forcing the other bits to zeroes or ones. Masking characters out
of double bytes is common in 65802 and 65816 applications where a
"default" mode of sixteen-bit accumulator and sixteen-bit index registers
has been selected by the programmer, but character data needs to be
accessed as well. For some types of character manipulation, it is quicker
to simply mask out the extraneous data in the high-order byte than to
switch into eight-bit mode. The code in Listing 10.1 is fragmentary in
the sense that it is assumed that the core routine is inserted in the middle
of other code, with the sixteen-bit accumulator size already selected.

It may seem to be splitting hairs, but this routine, which compares the
value in a string of characters pointed to by the value in the memory
variable CHARDEX to the letter 'e' is two machine cycles faster than the
alternative approach, which would be to switch the processor into the
eight-bit accumulator mode, compare the character, and then switch
back into the sixteen-bit mode.

182 Programming the 65816

0 0 0 1 0 0 0 0 KEEP XL.10.1

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 MAIN START

0005 0 0 0 0 PTR GEQU $80

0006 0 0 0 0

0007 0 0 0 0 18 CLC

0008 0 0 0 1 FB XCE

0009 0 0 0 2

0 0 1 0 0 0 0 2 C230 REP #$30 assume operation in 16-bit modes

0 0 1 1 0004 LONGA ON

0 0 1 2 0004 LONGI ON

0013 0004

0014 0004 AC4C00 LDY CHARDEX get index pointing to desired char

0015 0007 B91A00 LOOP LDA STRING,Y get the char & the one after it

0016 0 0 0 A 29FF00 AND #X0000000011111111 AND out the "next" char

0017 0 0 0 D C96500 CMP H ' e ' cmp low byte to 'e1, high 0 byte to 0

0018 0 0 1 0 D004 BNE NOMATCH

0019 0 0 1 2

0 0 2 0 0 0 1 2 38 SEC return to emulation mode

0 0 2 1 0013 FB XCE

0 0 2 2 0014

0023 0014 38 SEC set carry indicates successful match

0024 0015 60 RTS

0025 0016

0026 0016 38 NOMATCH SEC return to emulation mode

0027 0017 FB XCE

0028 0018

0029 0018 18 CLC clear carry indicates unsuccessful match

0030 0019 60 RTS

0031 0 0 1 A

0032 0 0 1 A 54686573 STRING DC C'These characters'

0033 002A 61726520 DC C are all packed next to 1

0034 0040 65616368 DC C'each other1

0035 004A 0 0 0 0 DC H 1 0 0 0 0 1

0036 004 C 0 0 0 0 CHARDEX DS 2 index to a particular char in STRING

0037 004 E END

Listing 10.1.

Each time the program is executed with a different value for
CHARDEX, a different adjacent character will also be loaded into the
high byte of the accumulator. Suppose the value in CHARDEX were
four; when the LDA STRING,Y instruction is executed, the value in the
low byte of the accumulator is $65, the ASCII value for a lower-case 'e'.

10 Logic and Bit Manipulation Operations_________ 183

The value in the high byte is $20, the ASCII value for the space charac
ter (the space between "These" and "characters"). Even though the low
bytes match, a comparison to 'e' would fail, because the high byte of the
CMP instruction's immediate operand is zero, not $20 (the assembler
having automatically generated a zero as the high byte for the single
character operand 'e').

H ow ever, by A N Ding the value in the accum ulator with
%0000000011111 111 ($00FF), no m atter w hat the original value in the
accum ulator, the high byte of the accumulator is zeroed (since none of
the corresponding bits in the immediate operand are set). Therefore the
comparison in this case will succeed, as it will for CHARDEX values of
2, 13, 18, 28, 32, 38, and 46, even though their adjacent characters,
automatically loaded into the high byte of the accumulator, are differ
ent.

The AND instruction is also useful in performing certain multiplica
tion and division functions. For example, it may be used to calculate the
modulus of a power of two. (The modulus operation returns the remain
der of an integer division; for example, 13 mod 5 equals 3, which is the
remainder of 13 divided by 5.) This is done simply by ANDing with
ones all of the bits to the right of the power of two you wish the modu
lus of and masking out the rest. A program fragment illustrating this
will be provided later in this chapter, where an example of the use of the
LSR instruction to perform division by powers of two will also be given.

In general, the AND operation is found in two types of applications:
selectively turning bits off (by ANDing with zero), and determining if
two logical values are both true.

Logical OR

The ORA instruction is used to selectively turn bits on by ORing
them with ones, and to determine if either (or both) of two logical val
ues is true. A character-manipulation example (Listing 10.2) is used—
this time writing a string of characters, the high bit of each of which
must be set, to the Apple // screen memory—to demonstrate a typical
use of the ORA instruction.

Since the video screen is memory-mapped, outputting a string is basi
cally a string move. Since normal Apple video characters must be stored
in memory with their high-order bit turned on, however, the ORA
#% 10000000 instruction is required to do this if the character string, as
in the example, was originally stored in normal ASCII, with the high-
order bit turned off. Note that it clearly does no harm to OR a character
with $80 (% 10000000) even if its high bit is already set, so the output
routine does not check characters to see if they need to have set the high
bit, but rather routinely ORs them all with $80 before writing them to
the screen. When each character is first loaded into the eight-bit accu-

0001
0002
0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020
0021
0022
0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

Programming the 65816

0 0 0 0 KEEP XL.10.2

0 0 0 0 65816 ON

0 0 0 0

0 0 0 0 1 1 0 2 START

0 0 0 0 MSB OFF

0 0 0 0 SCREEN GEQU $400

0 0 0 0

0 0 0 0 18 CLC

0001 FB XCE

0 0 0 2

0002 C210 REP # $ 1 0

0004 LONGI ON

0004

0004 E220 SEP # $ 2 0

0006 LONGA OFF

0006

0006 A00000 LDY # 0

0009

0009 B91900 TOP LDA STRING,Y

OOOC F008 BEQ DONE

OOOE 0980 ORA # * 1 0 0 0 0 0 0 0

0010 990004 STA SCREEN,Y

0013

0013 C8 INY

0014 80F3 BRA TOP

0016

0016 38 DONE SEC

0017 FB XCE

0018 60 RTS

0019

0019 48656C6C STRING DC C'Hello'

0 0 1 E 0 0 DC H' 0 0 '

0 0 1 F

0 0 1 F END

start of Apple // screen memory

16-bit index registers

8 -bit accum

starting index into string & screen = 0

get char from string

branch if at 0 terminator

set the high bit

store the char into screen memory

Listing 10.2.

mulator from STRING, its high bit is off (zero); the ORA instruction
converts each of the values—$48, $65, $6C, $6C, $6F—into the corres
ponding high-bit-set ASCII values—$C8, $E5, $EC, SEC, and $EF,
before storing them to screen memory, where they will be displayed as
normal, non-inverse characters on the video screen. In this case, the
same effect (the setting of the high-order bit) could have been achieved
if $80 had been added to each of the characters instead; however, the
OR operation differs from addition in that even if the high bit of the

10 Logic and Bit Manipulation Operations_________ 185

character already had a value of one, the result would still be one,
rather than zero plus a carry as would be the case if addition were used.
(Further a CLC operation would also have been required prior to the
addition, making ORA a more efficient choice as well.)

Logical Exdusive-OR
The third logical operation, Exclusive-OR, is used to invert bits. Just

as inclusive-OR (ORA) will yield a true result if either or both of the
operands are true, exclusive-or yields true only if one operand is true
and the other is false; if both are true or both are false, the result is
false. This means that by setting a bit in the memory operand of an
EOR instruction, you can invert the corresponding bit of the accumula
tor operand (where the result is stored). In the preceding example,
where the character constants were stored with their high bits off, an
EOR #$80 instruction would have had the same effect as O R A #$80;
but like addition, if some of the characters to be converted already had
their high-order bits set, the EOR operation would clear them.

Two good examples of the application of the EOR operation apply to
signed arithmetic. Consider the multiplication of two signed numbers.
As you know, the sign of the product is determined by the signs of the
multiplier and multiplicand according to the following rule: if both
operands have the same sign, either positive or negative, the result is
always positive; if the two operands have different signs, the result is
always negative. You perform signed multiplication by determining the
sign of the result, and then multiplying the absolute values of both oper
ands using the same technique as for unsigned arithmetic. Finally, you
consider the sign of the result: if it is positive, your unsigned result is the
final result; if it is negative, you form the final result by taking the two's
complement of the unsigned result. Because the actual multiplication
code is not included, this example is given as two fragments, 10.1 and
10.2.

Fragment 10.1 begins by clearing the memory location SIGN, which
will be used to store the sign of the result. Then the two values to be
multiplied are exclusive-OR'd, and the sign of the result is tested with
the BPL instruction. If the sign bit of the result is negative, you know
that the sign bits of the two operands were different, and therefore the
result will be negative; a negative result is preserved by decrementing
the variable SIGN, making its value $FFFF.

Next, the two operands are converted to their absolute values by
two's complementing them if they are negative. The technique for form
ing the two's complement of a number is to invert it, and then add one.
The EOR operation is used again to perform the inversion; the instruc
tion EOR #$FFFF will invert all of the bits in the accumulator: ones
become zeroes, and zeroes become ones. An INC A instruction adds

186 Programming the 65816

0000 0000 NUM1 DS 2
0002 0000 NUM2 DS 2
0004
0004 C230 REP #$30 16-bit modes
0006 LONGA ON
0006 LONGI ON

0006

0006 9C0080 STZ SIGN clear the sign

0009 AD0000 LDA NUM1

OOOC 400200 EOR NUM2 exclusive-or: check sign

000F 1003 BPL OK
0011 CE0080 DEC SIGN negative: sign=$FFFF

0014 AD0200 OK LDA NUM2

0017 1007 BPL 0K1
0019 49FFFF EOR #$FFFF minus: get absolute value

001C 1A INC A

001D 8D0200 STA NUM2

0020 AD0000 0K1 LDA NUM1

0023 1004 BPL 0K2

0025 49FFFF EOR #$FFFF

0028 1A INC A

0029 0K2 ANOP

Fragment 10.1.

one. In the case of NUM2, this result must be saved to memory before
the accumulator is reloaded with NUM l, which is also two's comple
mented if negative.

At this point, the unsigned multiplication of the accumulator and
NUM2 can be performed. The code for the multiplication itself is omit
ted from these fragments; however, an example of unsigned multiplica
tion is found in Chapter 14. The important fact for the moment is that
the multiplication code is assumed to return the unsigned product in the
accumulator.

0000 AE0080 LDX S IG N

0003 1004 B PL DONE

0005 49FFFF EOR #$FFFF if should be neg,

0008 1A IN C A two's complement the result

0009 60 DONE RTS

OOOA

Fragment 10.2.

10 Logic and Bit Manipulation Operations_________ 187

What remains is to adjust the sign of the result; this code is found in
Fragment 10.2. By testing the sign of SIGN, it can be determined
whether or not the result is negative; if it is negative, the actual result is
the two's complement of the unsigned product, which is formed as
described above.

Bit Manipulation_______________________
You have now been introduced to the three principal logical opera

tors, AND, ORA, and EOR. In addition, there are three more special
ized bit-manipulating instructions that use the same logical operations.

The first of these is the BIT instruction. The BIT instruction really
performs two distinct operations. First, it directly transfers the highest
and next to highest bits of the memory operand (that is, seven and six if
m = 1, or fifteen and fourteen if m = 0) to the n and v flags. It does
this without modifying the value in the accumulator, making it useful
for testing the sign of a value in memory without loading it into one of
the registers. An exception to this is the case where the immediate
addressing mode is used with the BIT instruction: since it serves no pur
pose to test the bits of a constant value, the n and v flags are left
unchanged in this one case.

BIT's second operation is to logically AND the value of the memory
operand with the value in the accumulator, conditioning the z flag in the
status register to reflect whether or not the result of the ANDing was
zero or not, but w ithout storing the result in the accumulator (as is the
case with the AND instruction) or saving the result in any other way.
This provides the ability to test if a given bit (or one or more bits in a
bit-field) is set by first loading the accumulator with a mask of the
desired bit patterns, and then performing the BIT operation. The result
will be non-zero only if at least one of the bits set in the accumulator is
likewise set in the memory operand. Actually, you can write your pro
grams to use either operand as the mask to test the other, except when
immediate addressing is used, in which case the immediate operand is
the mask, and the value in the accumulator is tested.

A problem that remained from the previous chapter was sign exten
sion, which is necessary when mixed-precision arithmetic is per
formed—that is, when the operands are of different sizes. It might also
be used when converting to a higher precision due to overflow. The
most typical example of this is the addition (or subtraction) of a signed
eight-bit and a signed sixteen-bit value. In order for the lesser-precision
number to be converted to a signed number of the same precision as the
larger number, it must be sign-extended first, by setting or clearing all of
the high-order bits of the expanded-precision number to the same value
as the sign bit of the original, lesser-precision number.

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

Programming the 65816

In other words, $7F would become $007F when sign-extended to six
teen bits, while $8F would become $FF8F. A sign-extended number eval
uates to the same number as its lesser precision form. For example, $FF
and $FFFF both evaluate to -1.

You can use the BIT instruction to determine if the high-order bit of
the low-order byte of the accumulator is set, even while in the sixteen-
bit accumulator mode. This is used to sign extend an eight-bit value in
the accumulator to a sixteen-bit one in Listing 10.3.

0 0 0 0 KEEP KL.10.3

0 0 0 0 65816 ON

0 0 0 0

0 0 0 0 L103 START

0 0 0 0 18 CLC

0 0 0 1 FB XCE

0 0 0 2

0 0 0 2 C230 REP #$30

0004 LONGA ON

0004 LONGI ON

0004

0004 A500 LDA 0
0006

0006 29FF00 AND #$FF

0009 898000 BIT #$80

oooc F003 BEQ OK

000E 0900FF ORA #$ F F00

0 0 1 1

0 0 1 1 8500 OK STA 0

0013

0013 38 SEC

0014 FB XCE

0015 60 RTS

0016 END

turn 16-bit modes on

get value to sign extend

zero out any garbage in high byte

test high bit of low byte

number is positive; leave as is

turn on high bits

save sign-extended value

Listing 10.3.

The pair of "test-and-set" instructions, TSB and TRB, are similar to
the BIT instruction in that they set the zero flag to represent the result of
ANDing the two operands. They are dissimilar in that they do not affect
the n and v flags. Importantly, they also set (in the case of TSB) or reset
(in the case of TRB) the bits of the memory operand according to the
bits that are set in the accumulator (the accumulator value is a mask).
You should recognize that the mechanics of this involve the logical func
tions described above: the TSB instruction ORs the accumulator with

10 Logic and Bit Manipulation Operations 189

the memory operand, and stores the result to memory; the TRB inverts
the value in the accumulator, and then ANDs it with the memory oper
and. Unlike the BIT instruction, both of the test-and-set operations are
read-modify-write instructions; that is, in addition to performing an
operation on the memory value specified in the operand field of the
instruction, they also store a result to the same location.

The test-and-set instructions are highly specialized instructions
intended primarily for control of memory-mapped I/O devices. This is
evidenced by the availability of only two addressing modes, direct and
absolute, for these instructions; this is sufficient when dealing with
memory-mapped I/O, since I/O devices are always found at fixed mem
ory locations.

Shifts and Rotates______________________
The second class of bit-manipulating instructions to be presented in

this chapter are the shift and rotate instructions: ASL, LSR, ROL and
ROR. These instructions copy each bit value of a given word into the
adjacent bit to the "left” or "right." A shift to the left means that the bits
are shifted into the next-higher-order bit; a shift to the right means that
each is shifted into the next-lower-order bit. The bit shifted out of the
end—that is, the original high-order bit for a left shift, or the original
low-order bit for a right shift—is copied into the carry flag.

Shift and rotate instructions differ in the value chosen for the origin
bit of the shift or rotate. The shift instructions write a zero into the ori
gin bit of the shift—the low-order bit for a shift left or the high-order bit
for a shift right. The rotates, on the other hand, copy the original value
of the carry flag into the origin b it of the shift. Figure 10.2a. and
Figure 10.2b. illustrate the operation of the shift and rotate instruc
tions.

The carry flag, as Fragment 10.3 illustrates, is used by the combina
tion of a shift followed by one or more rotate instructions to allow
multiple-precision shifts, much as it is used by ADC and SBC instruc
tions to enable multiple-precision arithmetic operations.

In this code fragment, the high-order bit in LOCI is shifted into the
carry flag in the first ASL instruction and a zero is shifted into the low-
order bit of LO CI; its binary value changes from

1010101010101010

to

0101010101010100 carry=1

The next instruction, ROL, shifts the value in the carry flag (the old
high bit of LOCI) into the low bit of LOC2. The high bit of LOC2 is
shifted into the carry.

190 Programming the 65816

ASL-Before Rol-Before

1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1

□ □
CARRY FLAG CARRY FLAG

A SL

1 0 1 1 0 0 1 1

Carry Flag

ROL

1 0 1 1 0 0 1 1 *•> !

X

Carry Flag

ASL -A f te r Rol-After

0 1 1 0 0 1 1 *0 1 1 0 0
1 0 1

Carry Flag Ca rry Flag

Figure 10.2a. Shift and Rotate Left.

0000 A9AAAA LDA #%1010101010101010

0003 8D0080 STA LOC1

0006 A9AAAA IDA #%1010101010101010
0009 8D0080 STA LOC2

OOOC 0E0080 ASL LOC1

000F 2E0080 ROL LOC2

Fragment 10.3.

10 Logic and Bit Manipulation Operations 191

LSR-Before ROR-Before

1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1

0 □
Carry Flag Carry Flag

LSR

r r r c c C C

ROR

1 0 1 1 0 0 1 1

Carry Flag

LSR-After ROR-After

0 1 0 1 1 0 0 1 X 1 0 1 1 0
0 1

Carry Flag

Figure 10.2b. Shift and Rotate Right.

1010101010101010

becomes

0101010101010101 carry=1

A double-precision shift left has been performed.
What is the application of the shift and rotate instructions? There are

two distinct categories: multiplication and division by powers of two,
and generalized bit-manipulation.

192 Programming the 65816

Left shifts multiply the original value by two. Right shifts divide the
original value by two. This principal is inherent in the concept of posi
tional notation; when you multiply a value by ten by adding a zero to
the end of it, you are in effect shifting it left one position; likewise when
you divide by ten by taking away the right-most digit, you are shifting
right. The only difference is the number base of the digits, which in this
case is base two.

Shifting is also useful, for the same reason, in a generalized multiply
routine, where a combination of shift and add operations are performed
iteratively to accomplish the multiplication. Sometimes, however, it is
useful to have a dedicated multiplication routine, as when a quick multi
plication by a constant value is needed. If the constant value is a power
of two—such as four, the constant multiplier in Fragment 10.4—the
solution is simple: shift left a number of times equal to the constant's
power of two (four is two to the two power, so two left shifts are equiv
alent to multiplying by four).

0000 A93423 LDA #$2334

0003 0A ASL A times 4 (2 to the 2nd power)

0004 0A ASL A

Fragment 10.4.

The result in the accumulator is $2334 times four, or $8CD0. Other
"quickie” multiply routines can be easily devised for multiplication by
constants that are not a power of two. Fragment 10.5 illustrates multi
plication by ten: the problem is reduced to a multiplication by eight
plus a multiplication by two.

0000 A9D204 LDA #1234

0003 0A ASL A multiply by 2

0004 8D0080 STA TEMP save intermediate result

0007 0A ASL A times 2 again = times 4

0008 0A ASL A times 2 again = times 8

0009 18 CLC

000A 6D0080 ADC TEMP = times 10

Fragment 10.5.

After the first shift left, which multiplies the original value by two,

10 Logic and Bit Manipulation Operations_________ 193

the intermediate result (1234 * 2 = 2468) is stored at location TEMP.
Two more shifts are applied to the value in the accumulator, which
equals 9872 at the end of the third shift. This is added to the intermedi
ate result of 1234 times 2, which was earlier stored at location TEMP, to
give the result 12,340, or 1234 * 10.

Division using the shift right instructions is similar. Since bits are lost
during a shift right operation, just as there is often a remainder when an
integer division is performed, it would be useful if there were an easy
way to calculate the remainder (or modulus) of a division by a power of
two. This is where the use of the AND instruction alluded to earlier
comes into play.

0000 A91FE2 LDA #$E21F

0003 48 PHA save accumulator

0004 4A LSR A divide by 2

0005 4A LSR A divide by 2 again = divide

0006 8D0080 STA QUO save quotient
0009 68 PLA recover original value

000A 290300 AND #$3

000D 8D0080 STA MOD save modulus

Fragment 10.6.

Consider Fragment 10.6. In this case, $E21F is to be divided by four.
As with multiplication, so with division: two shifts are applied, one for
each power of two, this time to the right. By the end of the second shift,
the value in the accumulator is $3887, which is the correct answer.
However, two bits have been shifted off to the right. The original value
in the accumulator is recovered from the stack and then ANDed with
the divisor minus one, or three. This masks out all but the bits that are
shifted out during division by four, the bits which correspond to the
remainder or modulus; in other words, the original value can be recon
structed by multiplying the quotient times four, and then adding the
remainder.

The second use for the shift instructions is for general bit manipula
tion. Since the bit shifted out of the word always ends up in the carry
flag, this is an easy way to quickly test the value of the high- or low-
order bit of a word. Listing 10.4 gives a particularly useful example: a
short routine to display the value of each of the flags in the status regis
ter. This routine will, one by one, print the letter-name of each of the
status register flags if the flag is set (as tested by the BCS instruction), or
else print a dash if it is clear.

194 Programming the 65816

0 0 0 1 0 0 0 0 KEEP KL.10.4

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0

0005 0 0 0 0 PRINTP START

0006 0 0 0 0 PREG GEQU $80

0007 0 0 0 0 PTR GEQU $82

0008 0 0 0 0

0009 0 0 0 0

0 0 1 0 0 0 0 0 08 PUP save (on the stack)

0 0 1 1 0 0 0 1 ; the status reg to be displayed

0 0 1 2 0 0 0 1

0013 0 0 0 1 18 CLC

0014 0 0 0 2 FB XCE

0015 0003

0016 0003 C2FF REP #$FF 16-bit index regs; reset atl flags

0017 0005 E220 SEP # $ 2 0 8 -bit accum

0018 0007 LONGI ON

0019 0007 LONGA OFF

0 0 2 0 0007

0 0 2 1 0007 6 8 PLA pull status reg to display into accum

0 0 2 2 0008 8580 STA PREG then store to memory location PREG

0023 0 0 0 A A23000 LDX #FLAGS load 16-bit X with ptr to flag string

0024 0 0 0 D 8682 STX PTR and store to PTR

0025 000 F A20800 LDX # 8 load X with counter (# of flag bits)

0026 0 0 1 2

0027 0 0 1 2 0680 LOOP ASL PREG shift high bit of PREG -> carry

0028 0014 B004 BCS DOFLAG branch if set

0029 0016 A92D LDA #'-' if flag not set, output

0030 0018 8002 BRA SKIP

0031 0 0 1 A B282 DOFLAG LDA (PTR) get flag letter from FLAGS

0032 0 0 1 C 200080 SKIP JSR COUT output flag letter or

0033 0 0 1 F E682 INC PTR 16-bit

0034 0 0 2 1 D0 0 2 BNE OK increment

0035 0023 E683 INC PTR+1 (incr hi byte if low rolls over)

0036 0025 CA OK DEX decrement counter

0037 0026 DOEA BNE LOOP dontinue thru all 8 bits of status reg

0038 0028 A90D LDA #$0D output cr after all 8 flags

0039 002A 200080 JSR COUT

0040 0 0 2 D

0041 0 0 2 D 38 SEC

0042 002E FB XCE

0043 002 F 60 RTS

0044 0030

Listing 10.4.

10 Logic and Bit Manipulation Operations_________ 195

0045 0030 6E766078 FLAGS DC c'nvmxdizc'

0046 0038

0047 0038 END

SKIP 0 0 0 0 1 C

0048 0 0 0 0

0049 0 0 0 0

0050 0 0 0 0 COUT START

0051 0 0 0 0 ECOUT GEQU SFDED COUT IN APPLE // MONITOR

0052 0 0 0 0 48 PHA

0053 0 0 0 1 DA PHX

0054 0 0 0 2 5A PHY

0055 0003 08 PHP

0056 0004 38 SEC

0057 0005 FB XCE

0058 0006 20EDFD JSR ECOUT

0059 0009 18 CLC

0060 0 0 0 A FB XCE

0061 0 0 0 B 28 PLP

0062 oooc 7A PLY

0063 0 0 0 D FA PLX

0064 000 E 6 8 PLA

0065 0 0 0 F 60 RTS

0066 0 0 1 0 END

Listing 10.4. (Cont.)

a a The Complex
11 Addressing Modes

Chapter 7 defined the term addressing mode and introduced the set of
simple 65x addressing modes, those which involve at most a minimum
of calculating combined values from multiple locations.

This chapter continues and expands the discussion of one of those
modes, the direct page addressing mode, for those cases where the direct
page register value is other than zero. It discusses the basis for selection
by the assembler among the direct page, absolute, and long addressing
modes, and how you can explicitly override those assumptions. And it
discusses the set of complex addressing modes available on the 6502, the
65C02, the 65802, and the 65816, those which require the effective
address to be calculated from several sources (Table 11.1). The under
standing of these modes also provides the context within which to
discuss several more complex push instructions that were previously
deferred to this chapter (Table 11.2).

Table 11 .1 . Com plex Addressing M odes.

A vailable on all 65x processors: Example Syntax

absolute indexed with X LDA $2234,X
absolute indexed with Y LDA $2234,Y
direct page (zero page) indexed with X LDA $17,X
direct page (zero page) indexed with Y LDX $17,Y
direct page (zero page) indirect indexed with Y LDA ($17),Y
direct page (zero page) indexed indirect with X LDA ($17,X)

A vailable on the 65C02, 65802 and 65816 only:

absolute indexed indirect JMP ($7821,X)

A vailable on the 65802 and 65816 only:

non-zero direct page LDA $17
absolute long indexed with X LDA $654321, X
direct page indirect long indexed with Y LDA [$17],Y
stack relative LDA $29, S
stack relative indirect indexed with Y LDA ($29,S),Y

197

198 Programming the 65816

Table 11 .2 . Com plex Push Instructions.

M nem onic
A vailable on:

6502 65C02 65802/816 Description

PEA X push effective absolute address
PEI X push effective indirect address
PER X push effective relative address

Relocating the Direct Page______________
Chapter 7 discussed zero page addressing as found on the 6502 and

65C02 and introduced direct page addressing, the 65816's enhancement
to zero page addressing. The 65816 lets the zero page addressing modes
use a direct page that can be located and relocated anywhere in the first
64K of memory. But Chapter 7 left the direct page set to page zero so it
could be discussed as a simple addressing mode—that is, so no calcula
tion of direct page register base plus direct page offset needed to be done
and so the operand, a direct page offset, could be thought of as an abso
lute address with a high-order byte of zero.

Relocating the direct page from page zero, to which it is initialized on
power-up, can be accomplished in either of two ways. The first would
let a new value be pulled off the stack into the direct page register with
the PLD instruction, as found in Fragment 11.1.

0000 set direct page register to $3400

0000 A20034 LDX #$3400 get $3400 into a register

0003 DA PHX and push it onto the stack.

0004 2B PLD then pull it into direct page reg

Fragment 11.1.

Fragment 11.2 illustrates the second method. The direct page register
can be set to the value in the sixteen-bit C accumulator by use of the
TCD instruction, which transfers sixteen bits from accumulator to direct
page register.

0 0 0 0 set direct page register to SFE00

0000 A900FE L0A #$FE00 get $FE00 into sixteen-bit accum

0003 58 TC0 and transfer from C accum into direct pg

Fragment 11.2.

11 The Complex Addressing Modes____________ 199

Both methods of setting the direct page register give it a sixteen-bit
value. Since sixteen bits are only capable of specifying an address within
a 64K range, its bank component must be provided in another manner;
this has been done by limiting the direct page to bank zero. The direct
page can be located anywhere in 64K but the bank address of the direct
page is always bank zero.

Chapter 7, which limited the use of the direct page to page zero, used
the example shown in Fragment 11.3 to store the one-byte value $F0 at
address $0012, which is the direct page offset of $12 added to a direct
page register value of zero. If instead the direct page register is set to
$FE00, then $F0 is stored to $FE12; the direct page offset of $12 is added
to the direct page register value of $FE00.

0000 A9F000 LDA #$F0

0003 8512 STA $12 store accumutator to dp:$12

Fragment 11.3.

While it is common to speak of a direct page address of $12, $12 is
really an offset from the base value in the direct page register ($FE00 in
the last example). The two values are added to form the effective direct
page address of $FE12.

But while Chapter 7 defined a page of memory as $100 locations start
ing from a page boundary (any multiple of $100), the direct page does
not have to start on a page boundary; the direct page register can hold
any sixteen-bit value. If the code in Fragment 11.4 is executed, running
the code in Fragment 11.3 stores the one-byte value $F0 at address
$1025; $1013 plus $12.

0 0 0 0 ; set direct page register to $1013

0000 A91310 LDA #$1013 get $1013 into sixteen-bit accum

0003 5B TCD transfer $1013 from C into direct pg reg

Fragment 11.4.

You will for the most part, however, want to set the direct page to
begin on a page boundary: it saves one cycle for every direct page
addressing operation. This is because the processor design includes logic
that, when the direct page register's low byte is zero, concatenates the
direct page register's high byte to the direct page offset—instead of add

200 Programming the 65816

ing the offset to the entire direct page register—to form the effective
direct page address; concatenation saves a cycle over addition.

One of the benefits of the direct page concept is that programs, and
even parts of programs, can have their own $100-byte direct pages of
variable space separate from the operating system's direct page of vari
able space. A routine might set up its own direct page with the code in
Fragment 11.5.

0 0 0 0 1 set up direct page for this routine at $0300

0 0 0 0 OB PHD first save current direct page location

0 0 0 1 A90003 LDA #$300 load sixteen-bit accumulator with $300

0004 5B TCD transfer $300 into direct page reg

Fragment 11.5.

To end the routine and restore the direct page register to its previous
value, simply execute a PLD instruction.

As discussed in Chapter 7, having a direct page makes accessing zero
page addresses in any bank require special assembler syntax. Since the
zero page is no longer special, absolute addressing must be used; but
since the assembler normally selects direct page addressing for operands
less than $100, the standard syntax requires that you prefix a vertical
bar or exclamation point to the operand to force the assembler to use
absolute addressing. This is just one of the potential assembler misas-
sumptions covered in the next section.

Assembler Addressing Mode
Assumptions__________________________

When the assembler encounters an address in the operand field of an
instruction, it must decide whether the address is a direct page offset, a
sixteen-bit absolute address, or a 24-bit long address and generate
opcode and operand values which are appropriate. Its decision is
based on the operand's size— not the number of digits in the oper
and, but w hether the value of the operand is greater than $FF or
greater than $FFFF. For example, the assembler will interpret the op
erand $3F to be a direct page offset regardless of whether it is writ
ten as $3F, $003F, or $00003F, because its value is less than 100 hex.

As a result, there are several areas of memory in 65802 and 65816 sys
tems that the assembler will not access without entering the special syn
tax shown in Table 11.3 to override the assembler's assumptions.

11 The Complex Addressing Modes __________ 201

Table 1 1 .3 . Assembler Syntax for Complete M em ory A ccess.

Syntax Description

8-bit operand (less than $100):

N orm al direct page addressing:
LDA $32 load accum from: bank zero:direct page:$32

Force absolute addressing: zero page in data bank:
LDA !$32 load accum from: data bank:$0032

Force long addressing: zero page in ban k zero:
LDA > $32 load accum from: $00:0032

16-bit operand (from $100 through $FFFF):

N orm al absolute addressing:
LDA $7512 load accum from: data bank:$7512

Force direct page addressing:
LDA <$7512 load accum from: bank zero:direct page:$12

Force long addressing:
LDA >$7512 load accum from: $00:7512

24-bit operand (over $FFFF):

N orm al long addressing:
LDA $123456 load accum from: $12:3456

Force absolute addressing:
LDA !$123456 load accum from: data bank:$3456

Force direct page addressing:
LDA <$123456 load accum from: bank zero:direct page:$56

The first is zero page memory. Page zero has no special meaning in
the 65802 and 65816: its special attributes have been usurped by the
direct page, so accessing it requires use of absolute addressing just like
any other absolute location. But the assembler assumes addresses less
than $100 are direct page offsets, not zero page addresses; it will not
generate code to access the zero page (unless the direct page is set to the
zero page so that the two are one and the same) without explicit direc
tion. And even if the direct page is set to the zero page, 65816 systems

202 Programming the 65816

have a zero page not only in bank zero but also in every other bank,
and those other page zeroes cannot ever be accessed by absolute ad
dressing without special direction.

The syntax to force the assembler to use absolute addressing is to pre
cede an operand with a vertical bar or exclamation point as shown in
Fragment 11.6.

0000 C220 REP #$20
0002 LONGA ON

0002 A90032 LDA #$3200

0005 5B TCD

0006 E210 SEP #$10

0008 LONGI OFF

0008 A202 LDX #2

000A DA PHX

000B AB PLB

OOOC A532 LDA $32

000E 8D3200 STA ! $32

0011 8F320000 STA >$32

set accumulator/memory to sixteen

get new di rect page Locat ion
and set up di rect page at $3200
set index registers to eight-bit

set new data bank location to bank 2
push 2 on stack

and pul I it oft into data bank
load accumulator from dp:$32 in bank 0
store accum at $02:0032 (data bank)
store accum at $00:0032 (long address)

Fragment 11.6.

Notice the use of another symbol, the greater-than sign (>) , to force
long addressing. This solves another problem: The assembler assumes
absolute addresses are in the data bank; if the value in the data bank is
other than zero, then it similarly will not generate code to access bank
zero without special direction. The greater-than sign forces the assembler
to use a long addressing mode, concatenating zero high bits onto the
operand until it's 24 bits in length. This usage is shown in Fragment 11.7,
where the greater-than sign forces absolute long addressing, resulting in
the assembler generating an opcode using absolute long addressing to
store the accumulator, followed by the three absolute long address bytes
for $00:0127, which are, in 65x order, $27, then $01, then $00.

The ASL instruction in Fragment 11.7 makes use of the third assem
bler override syntax: prefixing an operand with the less-than sign (<)
forces direct page addressing. It's not likely you'll use this last syntax
often, but it may come in handy when you've assigned a label to a value
that you need the assembler to truncate to its low-order eight bits so it
will be used as a direct page offset.

Note that this override syntax is the recommended standard syntax.
As Chapter 1 (Basic Concepts) pointed out, even mnemonics can vary
from one assembler to another, so assembler syntax such as this can dif
fer as well.

11 The Complex Addressing Modes 203

0000 E210 SEP #$10 use 8 bit index registers

0002 LONGI OFF

0002
0002 A202 LDX #2 get new data bank value
0004 DA PHX push it on stack

0005 AB PLB pull into data bank

0006 AD2701 LDA $127 from B :$0127 ($02:0127)

0009 8F270100 STA >$127 store at $00:0127

0000 0627 ASL <$127 shift word at dp:$27

Fragment 11.7.

Direct Page Indirect Indexed with y
Add ressi ng___________________________

Direct page indirect indexed addressing or postindexing, which uses
the Y register, is one of two ways indirect addressing can be combined
with indexing (the other will be described in the next section). In
postindexing, the processor goes to the location the direct page operand
specifies and adds the index to the indirect address found there.

Like direct page indirect addressing, which was discussed in Chapter 7
(The Simple Addressing Modes), postindexing gives you the freedom to
access a memory location which is not determined until the program is
executing. As you also learned from Chapter 7, direct page indirect lets
your program store the absolute address of a data bank location you
want to access (this address is called the indirect address) into any two
consecutive bytes in the direct page. This makes those two bytes per
form as though they are an extra sixteen-bit register in the microproces
sor itself. Further, it leaves the processor's registers unobstructed, and it
allows data at the location stored in the direct page "register" to be
accessed at any time.

Postindexing differs in that the absolute address you store into the
direct page "register" is not one location but the base of an array; you
can then access a particular byte in the array by loading its array index
into the Y register and specifying, as your operand, the direct page "reg
ister" (the location of the indirect base of the array). As Figure 11.1
shows, the processor goes to the direct page offset, gets the absolute
memory location stored there, then adds the contents of the Y register to
get the absolute memory location it will access. The direct page offset,
being in the direct page, is in bank zero on the 65816; the array, on the
other hand, is in the data bank.

Ef
fe

ct
ive

 A
dd

re
ss

:
23

15

7

0

Fi
gu

re
 1

1.
1.

 P
os

tin
de

xi
ng

.

11 The Complex Addressing Modes____________ 205

This addressing mode is called postindexing because the Y index regis
ter is added after the indirect address is retrieved from the direct page.

For example, suppose that your program needs to write a dash
(hyphen) character to a location on the Apple //'s 40-column screen
that will be determined while the program is running. Further suppose
your program picks a screen location at column nine on line seven. The
Apple // has a firmware routine (called BASCALC) which, when pre
sented with the number of a line on the screen, calculates the address of
the leftmost position in the line and returns it in zero page location
BASL, located at memory locations $0028 and $0029.

If you wanted to write your hyphen to the first position on the line,
you could, after calling BASCALC and loading the character to print
into the accumulator, use the 65C02's indirect addressing mode:
9228 STA (BASL)

The 6502 has no simple indirect addressing mode, but Fragment 11.8 il
lustrates what 6502 programmers long ago learned: you can use postindex
ing to the same effect as simple indirect by loading the Y register with zero.

0000 BASL EQU $28
0000 A92D LDA write a dash
0002 A000 LDY #0
0004 9128 STA (BASL),Y to (BASL)
0006 .

0006 .

0006 ■

Fragment 11.8.

But you want to write the hyphen character to column nine (the
leftmost position being column zero), not column zero. After calling
BASCALC, you load the Y register with nine and write your character
indirect through BASL indexed by the nine in Y as seen in Fragment 11.9.
If BASCALC calculates line seven on the screen to start at location $780,
and as a result stores that address at BASL, then the routine in Fragment
11.9 will write a dash to location $789 (column nine on line seven).

0000 A92D LDA write a dash
0002 A009 LDY #9 to col 9
0004 9128 STA (BASL), Y on the line with its base i

Fragment 11.9.

206 Programming the 65816

You could write a line of dashes from column nine through column
sixteen simply by creating the loop coded in Listing 11.1. This kind of
routine has been used for years on the 6502-based Apple //.

0001 0000 KEEP KL.11.1

0002 0000 65816 OFF

0003 0000 1 6502 example

0004 0000
0005 0000 L111 START

0006 0000
0007 0000 BASL GEQU $28

0008 0000 LINE7 GEQU $780

0009 0000
0010 0000 A980 LDA #LINE7

0011 0002 8528 STA BASL

0012 0004 A907 LDA #>LINE7

0013 0006 8529 STA BASL+1

0014 0008 A920 LDA write a dash

0015 000A A009 LDY #9 to col 9

0016 OOOC 9128 LOOP STA (BASL),Y on the line with its base in BASL

0017 000E C8 INY incr pointer to next column position

0018 000F C011 CPY #17

0019 0011 90F9 8CC LOOP (BLT): write another dash up to col. 17

0020 0013 60 RTS

0021 0014

0022 0014 END

Listing 11.1.

Finally, note that, like absolute indexed addressing, the array of
memory accessible to the indirect indexed addressing mode can extend
beyond the current 64K data bank into the next 64K bank, if the index
plus the array base exceeds $FFFF.

Direct Page Indexing Indirect Addressing__
As the introduction to the last section pointed out, you can combine

indexing with indirection in two ways. Postindexing, discussed in the
last section, is one. The other is called direct page indexed indirect
addressing or preindexing and uses the X register. It adds the index to
the operand (a direct page base) to form a direct page offset at which the
indirect address (the address of the data to be accessed) is located.

In effect, preindexing lets you index into a double-byte array of abso
lute memory addresses based in the direct page to choose the memory

11 The Complex Addressing Modes 207

location to access; the array begins at the direct page offset specified by
the operand.

Since the array base is a direct page location, adding the direct page
register value yields the absolute location in bank zero. The processor
then adds the value in the X register, which is the index into the array of
memory locations. Now the processor finally has an address that holds
the memory location you want to access; it now gets the location and
accesses the data at that location. This is shown in Figure 11.2. Since
indexing is done in order to find the indirect address, this addressing
mode is also called preindexing.

You'll find preindexing useful for writing routines which need to
access data in a number of different locations in exactly the same way.
For example, a tic-tac-toe game drawn on the screen has nine boxes to
which an 'O' or an 'X' might be written. The tic-tac-toe program might
keep internal arrays of information about the content of each of the nine
boxes, as well as arrays of data for working its win-seeking algorithms,
using indexes from 0 to 8 to represent the locations.

When it comes time for the program to write an 'X' to a chosen
square, you could, of course, write nine nearly identical routines which
differ only in the address to which the 'X' will be written; you would al
so have to write a tenth routine to select which one of the routines needs
to be called, based on the value of the box index (from zero to eight).

A faster and less wasteful method of writing the 'X' would be to use
preindexing. In the section of code which initially draws the tic-tac-toe
grid, you would determine the nine addresses where characters are to be
written and store them into a direct page array, perhaps starting at
direct page offset $50; this puts the 0 location at $50 and $51 (stored, in
65x fashion, low byte in $50 and high byte in $51), the 1 location at $52
and 53, and so on. The nine addresses use 18 bytes of memory.

When an 'X' is to be stored to one of the nine screen locations, only
one routine is necessary: you multiply the box number by two (using
the ASL instruction). Remember that each indirect address takes up two
bytes in the direct page array. Transfer it to the X register. Then load an
'X' character into the accumulator and write it to the box on the screen
using preindexing as Fragment 11.10 shows.

0000 AD0080 WRITEX LDA B0XNUMBR get which box to write an 'X' to
0003 0A ASL A multiply by two to get index
0004 AA TAX and transfer index to X register
0005 A958 LDA # ’X' write 'X' character
0007 8150 STA ($50,X) to scrn location at (dp:$50, index reg)

Fragment 11.10.

Ef
fe

ct
ive

 A
dd

re
ss

:
23

15

7

0

Fi
gu

re
 1

1.
2.

 P
re

in
de

xi
ng

.

11 The Complex Addressing Modes 209

Notice the differing syntax: postindexing looked like this:

9128 STA (BASL),Y

In postindexed, the operand locates the indirect address, so it's in paren
theses to indicate indirection. The ",Y " is not in parentheses, since the
index register is not part of finding the indirect address—it's added to
the indirect address once it is found.

On the other hand, with preindexing:

8150 STA ($50,X)

both the operand and the index register are involved in locating the indi
rect address, so both are in parentheses.

A very different application for preindexing enables the 65x to read
from (or write to) several I/O peripherals "at once." Obviously, a
microprocessor can only read from one device at a time, so it polls each
device: provided each device uses the same I/O controller chip (so that
a single routine can check the status of all devices and read a character
from each of them identically), your program can poll the various status
locations using preindexing. Begin by storing an array of all the status
locations in the direct page. Specify the base of the array as the operand
to a preindexed instruction. Load the X index with 0 and increment it by
two until you've checked the last device. Finally, restore it to zero and
cycle through again and again.

If a status check reveals a character waiting to be read, your program
can branch to code that actually reads the character from the device.
This time, you'll use preindexing to access a second direct page array of
the character-reading addresses for each device; the index in the X regis
ter from the status-checking routine provides the index into the
character-reading routine.

On the 6502, the 65C02, and the 6502 emulation modes, the entire
array set up for preindexing must be in the direct page. (On the 6502
and 65C02, this means the array must be entirely in the zero page
which, unfortunately, severely limits the use of preindexing due to the
competition for zero page locations.) If the specified direct page offset
plus the index in X exceeds $FF, the array wraps around within the
direct page rather than extending beyond it. That is,

A21A LDX #$1A

followed by

A1F0 LDA ($F0,X)

would load the accumulator from the indirect address in location $0A,
not $10A.

On the 65802 and 65816 (in native mode), the array must still start in
the direct page but wraps, not at the end of the direct page, but at the

210 Programming the 65816

end of bank zero, when the array base plus the D direct page setting
plus the X index exceeds $00:FFFF.

On the 65816, the data that is ultimately accessed (after the indirec
tion) is always in the data bank.

Absolute Indexed Indirect Addressing____
The 65C02 introduced a new addressing mode, absolute indexed indi

rect addressing, which is quite similar to direct page indexed indirect. (It
is also preindexed using the X index register, but indexes into absolute
addressed memory rather than the direct page to find the indirect
address.) This new addressing mode is used only by the jump instruc
tion and, on the 65802 and 65816, the jump-to-subroutine instruction.

Absolute indexed indirect provides a method for your program, not
to access data in scattered locations by putting the locations of the data
into a table and indexing into it, but to jum p to routines at various loca
tions by putting those locations into a table, indexing into it, and jump
ing to the location stored in the table at the index. Figure 11.3 shows
what happens.

A menu-driven program, for example, could ask users to respond to a
prompt by pressing a number key from '0' through '7'. Your program
would convert the key's value to an index by subtracting the ASCII value
of '0' and doubling the result (to reflect the fact that each table entry is an
address and thus takes two bytes in the table) (Fragment 11.11). It would
then jump indexed indirect to a routine appropriate to the menu choice.

0000 1 get menu choice into accumulator

0000
0000 38 SEC set carry before subtract

0001 E93000 SBC t f ' 0 ' convert 10* — '71 to 0-7

0004 0A ASL A times 2 = index

0005 AA TAX transfer index to X

0006 7 C0900 JMP (TABLE,X) jump to address TABLE + X

0009

0009 0080 TABLE DC A'ROUTINO’ routine for response 'O'

0008 0080 DC A'ROUTIN1' menu response '1'

000D 0080 DC A'R0UTIN2' menu response '2'

000F 0080 DC A'R0UTIN3' menu response '3'

0011 0080 DC A'R0UTIN4' menu response '4'

0013 0080 DC A'R0UTIN5' menu response '5'

0015 0080 DC A'R0UTIN6' menu response '6'

0017 0080 DC A'R0UTIN7' menu response '7'

Fragment 11.11.

Ef
fe

ct
ive

 A
dd

re
ss

:
N

ew
 P

ro
g

ra
m

 C
o

u
n

te
r

V
al

u
e

23

15

7
o

Fi
gu

re
 1

1.
3.

 A
bs

ol
ut

e
In

de
xe

d
In

di
re

ct
.

212 Programming the 65816

Because both the operand (the absolute address of the base of the table)
and the index register are involved in determining the indirect address,
both are within the parentheses.

On the 65816, a jump-indirect operand is in bank zero, but a jump-
indexed-indirect operand is in the program bank. There is a different
assumption for each mode. Jump indirect assumes that the indirect
address to be jumped to was stored by the program in a variable mem
ory cell; such variables are generally in bank zero. Jump indexed indi
rect, on the other hand, assumes that a table of locations of routines
would be part of the program itself and would be loaded, right along
with the routines, into the bank holding the program. So,

6C3412 JMP ($1234) jump to address stored at $00:1234.1235

assumes $1234 is in a double-byte cell in bank zero. But

7C3412 JMP ($1234,X) jump to address stored at pb:$1234,X

assumes $1234 is in the program bank, the bank in which the code cur
rently being executed resides.

The indirect addresses stored in the table are absolute addresses also
assumed to be in the current program bank.

Direct Page Indirect Long Indexed with Y
Add ressi ng___________________________

The 65816 can access sixteen megabytes of memory, yet lets you
access most data (data located in the current data bank) with just two
bytes. Nevertheless, there are times when data must be accessed in a
bank other than the current data bank when it would be inconvenient to
change the data bank, then change it back. As Chapter 7 pointed out,
this problem is solved by the "long" addressing modes, which allow
three bytes (the bank in addition to the address within the bank) to
specify a full 24-bit address. This solution lets you access the 65816's full
sixteen-megabyte address space. Probably the most useful way to refer
ence data outside of the current data bank is via the direct page indirect
long indexed with Y, or postindexed long, addressing mode. This is the
long version of direct page indirect indexed addressing, discussed earlier
in this chapter.

Instructions are two bytes in length, as shown in Figure 11.4: The
opcode is followed by a single byte, which is a direct page offset in bank
zero. The indirect address stored in the direct page (to which the oper
and points) is, in the long version, three bytes (a full 24-bit address); the
byte at the direct page offset is the low byte of the 24-bit address, the
byte in the next direct page location the middle byte of the 24-bit

11 The Complex Addressing Modes____________ 213

address, and the byte in the third location the bank byte of the 24-bit
address. The contents of the Y index register are added to this 24-bit
address to form the 24-bit effective address at which data will be ac
cessed.

The syntax for postindexed long is:

B715 LDA [$15],Y

The square brackets are used to indicate the indirect address is long.
So, like its sixteen-bit counterpart, indirect long indexed addressing

allows you to index into an array of which neither the base nor the
index need be determined until the program is executing. Unlike its
sixteen-bit counterpart, it allows you to access an array in any bank,
not just the current data bank.

Stack Relative Addressing_______________

Possibly the most exciting new addressing method introduced by the
65802 and 65816 is stack relative. This is the first 65x method for
directly accessing a stack byte other than the last data item pushed.

Stack relative addressing lets you easily access any byte or address in
the last $FF bytes stacked. Instructions using stack relative addressing
are two bytes long, the operand a single byte that is an index into the
stack. As Figure 11.5 shows, the stack is treated as an array with its base
the address in the stack pointer. The operand is added to the stack
pointer value to form the bank zero effective address which will be ac
cessed.

This can be especially useful when one part of a program needs to
send data to another part of the program, such as a multiply routine.
The two sixteen-bit values to be multiplied are pushed onto the stack in
one part of the program. Later, the multiply routine loads one of the
operands using stack relative addressing, leaving both the other operand
and the stack pointer undisturbed:

A303 LDA 3,S load first operand

or

A301 LDA 1,S load second operand

Notice that accessing the last data put on the stack requires an index
of 1, not of 0. This is because the stack pointer always points to the next
available location, which is one byte below the last byte pushed onto
the stack. An index of zero would generally be meaningless, except per
haps to re-read the last byte pulled o f f the stack! (The latter would also
be extremely dangerous since, should an interrupt occur, the left-behind
byte would be overwritten by interrupt-stacked bytes.)

In
st

ru
ct

io
n:

Ef
fe

ct
iv

e
Ad

dr
es

s:
23

5
7

0

Ba
nk

Hi
gh

Lo
w

O
pc

od
e

O
pe

ra
nd

65
81

6
R

eg
is

te
rs

:
Ba

nk
23

5
H

i9
h

7
L

°
W

V
In

de
x

R
eg

is
te

r
(Y

)
A _

o
II II
X X

0
0

0
0

0

0
0

0
D

ire
ct

Pa
ge

 R
eg

is
te

r
(D

)

+2 +1 ■

Ba
nk

 I
nd

ire
ct

 A
dd

re
ss

Hi
gh

 I
nd

ire
ct

 A
dd

re
ss

Lo
w

 I
nd

ire
ct

 A
dd

re
ss

Ba
nk

 0

i

Fi
gu

re
 1

1.
4.

 P
os

ti
nd

ex
ed

 L
on

g.

Ef
fe

ct
ive

 A
dd

re
ss

:
23

Ba
nk

Hi
gh

Lo
w

In
st

ru
ct

io
n:

oo

oo
oo

oo

O
pc

od
e

O
pe

ra
nd

6b
o.

.
R

eg
is

te
rs

:
Ba

nk

H
ig

h
Lo

w

r~ 1
00

00
 0

00
0

St
ac

k
Po

in
te

r
(S

)
+

Fi
gu

re
 1

1.
5.

 S
ta

ck
 R

el
at

iv
e.

216 Programming the 65816

Stack Relative Indirect Indexed
Add ressi ng___________________________

While the stack relative addressing mode serves to access data on the
stack, the stack relative indirect indexed addressing mode lets you access
data indirectly through addresses that have been pushed onto the stack.

Change the previous example: Instead of stacking the two sixteen-bit
values to be multiplied, the values are found in memory cells in the data
bank, one after the other (occupying four consecutive bytes), and it's the
address of the first that is pushed onto the stack. Now, as Fragment 11.12
shows, either value can be loaded using the stacked indirect address:

0000 A00000 L0Y m

0003 B301 LDA (1,S),Y load first 16-bit multiply operand

0005 AA TAX save first value

0006 A00200 LDY #2

0009 B301 LDA (1, S) ,Y load second 16-bit multiply operand

Fragment 11.12.

The 1,S is the stack location where the indirect address was pushed.
(Actually, 1,S points to the stack location of the low byte of the indirect
address; the high byte is in 2,S, the next higher stack location.) To this
indirect address, the value in Y is added: the indirect address plus 0
locates the first value to be multiplied; the indirect address plus 2 locates
the second. Finally the accumulator is loaded from this indirect indexed
address. Figure 11.6 illustrates the sequence.

This mode, very similar to direct page indirect indexing (also called
postindexing), might be called "stack postindexing." The operand which
indexes into the stack is very similar to a direct page address; both are
limited to eight bits and both are added to a sixteen-bit base register (D
or S). In both cases, the indirect address points to a cell or an array in
the data bank. In both cases, Y must be the index register. And in both
cases in the 65816, the postindexed indirect address about to be accessed
may extend out of the data bank and into the next bank if index plus
address exceeds $FFFF; that is, if the indirect address is the base of an
array, the array can extend into the next bank.

Push Effective Instructions_______________
The 65802 and the 65816 provide three instructions which push, not

registers, but absolute, indirect, and relative addresses straight onto the

Ef
fe

ct
ive

 A
dd

re
ss

:
23

B
an

k
Hi

gh
Lo

w

In
st

ru
ct

io
n:

O
pc

od
e

O
pe

ra
nd

65
81

6
R

eg
is

te
rs

:
Ba

nk
23

D
at

a
Ba

nk
 (

DB
R)

Hi
gh

Lo
w

Y
In

de
x

R
eg

is
te

r
(Y

)

|
OO

OO
 0

00
0

I__
__

__
__

__
__

_
St

ac
k

Po
in

te
r

(S
)

St
ac

k

H
ig

h
In

di
re

ct
 A

dd
re

ss

Lo
w

 I
nd

ire
ct

 A
dd

re
ss

B
an

k
0

Fi
gu

re
 1

1.
6.

 S
ta

ck
 R

el
at

iv
e

In
di

re
ct

 I
nd

ex
ed

.

218 Programming the 65816

stack. These three instructions are PEA, PEI, and PER, the push effec
tive address instructions. Addresses so pushed might be accessed, for
example, using the stack relative indirect indexed addressing mode just
discussed. Chapter 6, which introduced the push instructions in the con
text of data movement, deferred discussion of these three instructions to
this chapter. Except for the block move instructions, these are the only
instructions that move data directly from one memory location to
another.

As Figure 11.7 shows, the PEA (push effective absolute address)
instruction pushes the operand, a 16-bit absolute address or immediate
data word, onto the stack. For example,

F43421 PEA $2134 push $2134 onto the stack

pushes what may be either sixteen-bit immediate data or a sixteen-bit
address onto the stack. The operand pushed by the PEA instruction is
always 16 bits regardless of the settings of the m memory/accumulator
and x index mode select flags.

The PEI (push effective indirect address) instruction has, as an oper
and, a direct page location: it's the sixteen-bit value stored at the loca
tion that is pushed onto the stack. Figure 11.8 shows that this has the
effect of pushing either an indirect address or sixteen bits of direct page
data onto the stack. For example, if you had stored the value or indirect
address $5678 at direct page location $21, then

D421 PEI ($21) push two bytes at dp:$21 and dp:$22

would get the $5678 from the direct page location and push it onto the
stack. Like the PEA instruction, the PEI instruction always pushes six
teen bits regardless of the settings of the m memory/accumulator and x
index mode select flags.

The PER (push effective relative) instruction pushes an effective pro
gram counter relative address onto the stack, a capability helpful in
writing relocatable code. The operand you specify to the assembler is a
location in the program, for example, of a data area; the operand the
assembler generates is a sixteen-bit relative displacement, the difference
between the next instruction's address and the operand address. Figure
11.9 shows that when the instruction is executed, the displacement is
added to the next instruction's run-time address to form the address at
which the data is now located; it is this address which is pushed onto the
stack. If the data location precedes the PER instruction, the assembler
generates a very large sixteen-bit displacement which, when added to
the program counter value, will wrap around within the program bank
to reach the data.

The operation of the PER instruction is similar to the operation of the
BRL (branch long) instruction: the branch long operand you specify to

11 The Complex Addressing Modes____________ 219

In s t ru c t io n :

Opcode Data L o w =
Operand Low

Data High =
Operand High

before
Stack

Data High
Stack Pointer (S)

Data Low
after

Bank 0

Figure 11.7. PEA Addressing.

Ef
fe

ct
ive

 A
dd

re
ss

:
23

15
7

Ba
nk

Hi
gh

Lo
w

OO
OO

 0
00

0

In
st

ru
ct

io
n:

O
pc

od
e

65
81

6
Re

gi
st

er
s:

Ba
nk

O
pe

ra
nd

Hi
gh

Lo
w

r 1 L
00

00
 0

00
0

Di
re

ct
Pa

ge
 R

eg
is

te
r

(D
)

Ba
nk

 0

Fi
gu

re
 1

1.
8.

 P
EI

 A
dd

re
ss

in
g.

In
st

ru
ct

io
n:

j
O

pc
od

e
O

pe
ra

nd
 L

ow
O

pe
ra

nd
 H

ig
h

Re
gi

st
er

:
15

-

7
0

Pr
og

ra
m

C
ou

nt
er

 (
PC

)

D
at

a

be
fo

re
St

ac
k

D
at

a
H

ig
h

St
ac

k
Po

in
te

r
(S

)
Da

ta
D

at
a

Lo
w

af
te

r

B
an

k
0

Fi
gu

re
 1

1.
9.

 P
ER

 A
dd

re
ss

in
g.

222 Programming the 65816

the assembler is also a location in the program; the operand the assem
bler generates is also a sixteen-bit displacement; and when the instruc
tion is executed, the displacement is added to the next instruction's
run-time address to form the address to which the program will branch.

To understand the use of the PER instruction, together with the rela
tive branches, in writing a program that will run at any address, sup
pose that your relocatable program is assembled starting at location
$2000. There's a data area starting at location $2500 called DATA0. A
section of program code at $2200 needs to access a byte three bytes past,
called DATA1. A simple LDA $2503 would work, but only if the pro
gram were intended to always begin at location $2000. If it's meant to
be relocatable, you might load the program at $3000, in which case the
data is at $3503 and a LDA $2503 loads the accumulator with random
information from what is now a non-program address. Using the
instruction

62E17F PER DATA3 push address of DATA3 relative to PC

in your source program causes the assembler to calculate the offset from
$2203 (from the instruction following the PER instruction at $2200) to
D A TA l at $2503, an offset of $300. So the assembler generates object
code of a PER opcode followed by $300. Now if the code is loaded at
$3000, execution of the PER instruction causes the processor to calculate
and stack the current absolute address of D A TA l by adding the oper
and, $300, to the current program counter location; the result is $3503,
so it's $3503 that's stacked. Once on the stack, provided the program
and data banks are the same, the data can be accessed using stack rela
tive indirect indexed addressing. Fragment 11.13 contains the example
code.

Once the address of D A TA l is on the stack, the values at DATA2
and DAT A3 can be accessed as well simply by using values of one and
two, respectively, in the Y index register.

11 The Complex Addressing Modes 223

0 0 0 0 ORG $ 2 2 0 0

0 0 0 0 ACCESS START

0 0 0 0

0000 62FD7F PER DATA1 push run-time address of DATA1 onto stack

0003 E220 SEP # $ 2 0 set accum to 8 -bit mode

0005 A00000 LDY # 0 zero index: DATA1 is celt, not array

0008 B301 LDA (1,S),Y load accum from DATA1 in data ban

000A 1 (address of DATA1 @ 1,S & 2,S)

o o o a .

0O0A .

OOOA

OOOA

OOOA END

0 0 0 0

0 0 0 0 ORG $2500

0 0 0 0 DAT AO START

0000 2A2A2A DC C ' * * * 1

0003 FF DATA1 DC H * F F *

0004 F7 DATA2 DC H 1 F7'

0005 E3 0ATA3 DC H ' E3'

0006

0006 END

Fragment 11.13.

The Basic Building
Block: The Subroutine

The feature essential to any processor to support efficient, compact
code, as well as modular or top-down programming methods, is a
means of defining a subroutine. A subroutine is a block of code that can
be entered (called) repeatedly from various parts of a main program,
and that can automatically return control to the instruction following
the calling instruction, wherever it may be. The 65x jump-to-subroutine
instruction provides just such a capability.

When a jump-to-subroutine, or JSR, instruction is encountered, the
processor first pushes its current location onto the stack for purposes of
returning, then jumps to the beginning of the subroutine code. At the
end of the subroutine code, a return-from-subroutine (RTS) instruction
tells the processor to return from the subroutine to the instruction after
the subroutine call, which it locates by pulling the previously saved
return location from the stack.

Because subroutines let you write a recurring section of program code
just once and call it from each place that it's needed, they are the basis
of top-down, structured programming. Common subroutines are often
collected together by programmers to form a library, from which they
can be selected and reused as needed.

Chapter 8, Flow of Control, introduced the 65x jump instructions—
those flow-of-control instructions which do not use the stack for return
purposes. But discussion of the jump-to-subroutine instructions was put
off to this chapter.

Table 12.1 lists the instructions to be explained in this chapter. In
addition, this chapter will use the simple example of a negation routine
to illustrate how library routines (and routines in general) are written
and documented, and it examines the question of when to code a sub
routine and when to use in-line code. Finally, methods of passing infor
mation (or parameters) to and from subroutines are compared and
illustrated.

225

226 Programming the 65816

Table 12.1. Subroutine Instructions.

A vailable on:
M nem onic 6502 65C02 65802/816 Description

65x Subroutine Instructions:
JSR x x x jump to subroutine
RTS x x x return from subroutine
JSL x long jump to subroutine
RTL x long return from subroutine

The Jump-to-Subroutine Instruction_______
There is just one addressing mode available to the JSR instruction on

the 6502 and 65C02—absolute addressing. This mode lets you code a
subroutine call to a known location. When used on the 65816, that loca
tion must be within the current program bank. It uses the absolute
addressing syntax introduced earlier:

200020 JSR $2000 jump to subroutine located at pb:$2000

or

200080 JSR SUBR1 jump to subroutine SUBR1 in program bank

In the second case, the assembler determines the address of subroutine
SU BRl.

The processor, upon encountering a jump-to-subroutine instruction,
first saves a return address. The address saved is the address of the last
byte of the JSR instruction (the address of the last byte of the operand),
not the address of the next instruction as is the case with some other
processors. The address is pushed onto the stack in standard 65x or
der—the low byte in the lower address, the high byte in the higher ad
dress—and done in standard 65x fashion—the first byte is stored at the
location pointed to by the stack pointer, the stack pointer is decre
mented, the second byte is stored, and the stack pointer is decremented
again. Once the return address has been saved onto the stack, the proc
essor loads the program counter with the operand value, thus jumping
to the operand location, as shown in Figure 12.1. Jumping to a subrou
tine has no effect on the status register flags.

The Return-from-Subroutine Instruction___
At the end of each subroutine you write, the one-byte RTS, or

return-from-subroutine, instruction must be coded. When the return-
from-subroutine instruction is executed, the processor pulls the stored

Ef
fe

ct
iv

e
Ad

dr
es

s:
 N

e
w

 P
ro

g
ra

m
 C

o
u

n
te

r
V

a
lu

e
23

15

7

0

Ba
nk

 0

Fi
gu

re
 1

2.
1.

 J
SR

.

12 The Basic Building Block: The Subroutine 227

228 Programming the 65816

address from the stack, incrementing the stack pointer by one before
retrieving each of the two bytes to which it points. But the return
address that was stored on the stack was the address of the third byte o f
the JSR instruction. When the processor pulls the return address off the
stack, it automatically increments the address by one so that it points to
the instruction following the JSR instruction which should be executed
when the subroutine is done. The processor loads this incremented
return address into the program counter and continues execution from
the instruction following the original JSR instruction, as Figure 12.2
shows.

The processor assumes that the two bytes at the top of the stack are a
return address stored by a JSR instruction and that these bytes got there
as the result of a previous JSR. But as a result, if the subroutine used the
stack and left it pointing to data other than the return address, the RTS
instruction will pull two irrelevant data bytes as the address to return
to. Cleaning up the stack after using it within a subroutine is therefore
imperative.

The useful side of the processor's inability to discern whether the
address at the top of the stack was pushed there by a JSR instruction is
that you can write a reentrant indirect jump using the RTS instruction.
First formulate the address to be jumped to, then decrement it by one
(or better, start with an already-decremented address), push it onto the
stack (pushing first high byte, then low byte, so that it is in correct 65x
order on the stack) and, finally, code an RTS instruction. The return-
from-subroutine pulls the address back off the stack, increments it, and
loads the result into the program counter to cause a jump to the loca
tion, as Fragment 12.1 illustrates.

0000 ; 16-bit accumulator holds address of code to jump to

0000 3A DEC A DEST—1: address of byte before target

0001 48 PHA push it; now address is stacked as tho JSR

0002 60 RTS pull address; increment it; transfer control

Fragment 12.1.

Reentrancy is the ability of a section of code to be interrupted, then
executed by the interrupting routine, and still execute properly both for
the interrupting routine and for the original routine when control is
returned to it. The interruption may be a result of a hardware interrupt
(as described in the next chapter), or the result of the routine calling
itself, in which case the routine is said to be recursive. The keys to
reentrancy are, first, to be sure you save all important registers before

230 Programming the 65816

reentering and, second, to use no fixed memory locations in the re
entrant code. (There will be more on interrupts and reentrancy in the
next chapters.)

The indirect jump using RTS qualifies for reentrancy: While normally
you would code an indirect jump by forming the address to jump to and
storing it to an absolute address, then jumping indirect through the
address, this jump by use of RTS uses only registers and stack.

A subroutine can have more than one RTS instruction. It's common
for subroutines to return from internal loops upon certain error condi
tions, in addition to returning normally from one or more locations.
Some structured programming purists would object to this practice, but
the efficiency of having multiple exit points is unquestionable.

Returning from a subroutine does not affect the status flags.

JSR Using Absolute Indexed Indirect
Addressing___________________________

The 65802/65816 gives JSR another addressing mode—absolute in
dexed indirect (covered in the last chapter) which lets your program se
lect, on the basis of the index in the X register, a subroutine location
from a table of such locations and call it:

FC0080 JSR (TABLE,X) JSR to indirect address in (TABLE at X)

The array TABLE must be located in the program bank. The addressing
mode assumes that a table of locations of routines would be part of the
program itself and would be loaded, right along with the routines, into
the bank holding the program. The indirect address (the address with
which the program counter will be loaded), a sixteen-bit value, is concate
nated with the program bank register, resulting in a transfer within the
current program bank. If the addition of X causes a result greater than
$FFFF, the effective address will wrap, remaining in the current program
bank, unlike the indexing across banks that occurs for data accesses.

This addressing mode also lets you do an indirect jump-to-subroutine
through a single double-byte cell by first loading the X register with
zero. You must remember in coding this use for the 65816, however,
that the cell holding the indirect address is in the program bank, not
bank zero as with absolute indirect jumps.

The indexed indirect jump-to-subroutine is executed in virtually the
same manner as the absolute jump-to-subroutine: the processor pushes
the address of the final byte of the instruction onto the stack as a return
address; then the address in the double-byte cell pointed to by the sum
of the operand and the X index register is loaded into the program
counter.

12 The Basic Building Block: The Subroutine 231

There is no difference between returning from a subroutine called by
this instruction and returning from a subroutine called by an absolute
JSR. You code an RTS instruction which, when executed, causes the
address on the top of the stack to be pulled and incremented to point to
the instruction following the JSR, then to be loaded into the program
counter to give control to that instruction.

The Long Jump to Subroutine____________

A third jump-to-subroutine addressing mode is provided for program
ming in the 16-megabyte address space of the 65816—absolute long
addressing. Jump-to-subroutine absolute long is a four-byte instruction,
the operand a 24-bit address in standard 65x order (the low byte of the
24-bit address is in the lowest memory location immediately following
the opcode and the high byte is next, followed by the bank byte):

22563412 JSR $123456 jump to subroutine at $3456 in bank $12

This time a three-byte (long) return address is pushed onto the stack.
Again it is not the address of the next instruction but rather the address
of the last byte of the JSR instruction which is pushed onto the stack
(the address of the fourth byte of the JSR instruction in this case). As
Figure 12.3 shows, the address is pushed onto the stack in standard 65x
order: low byte in the lower address, high byte in the higher address,
bank byte in the highest address (which also means the bank byte is the
first of the three pushed, the low byte last).

Jumping long to a bank zero subroutine requires the greater-than (>)
sign, as explained in the last chapter:

22563400 JSR >$3456 long jump to subroutine at $3456 in bank 0

The greater-than sign forces long addressing to bank zero, voiding the
assembler's normal assumption to use absolute addressing to jump to a
subroutine at $3456 in the current program bank.

To avoid this confusion altogether, there is an equivalent standard
mnemonic for jump-to-subroutine long—JSL:

22563400 JSL $3456 long jump to subroutine at $3456 in bank 0

or

22563402 JSL $023456 long jump to subroutine at $3456 in bank 2

Using an alternate mnemonic is particularly appropriate for jump-to-
subroutine long, since this instruction requires you to use an entirely
different return-from-subroutine instruction—RTL, or return-from-sub-
routine long.

232 Programming the 65816

Return Address

(last JSR instruction bytel

S ta c k

Return Address Bank

Return Address High

Return Address Low

Bank 0

before

Stack Pointer(S)

after

Figure 12.3. JSL.

Return from Subroutine Long____________
The return from subroutine instruction pops two bytes off the stack

as an absolute address, increments it, and jumps there. But the jump to
subroutine long instruction pushes a three-byte address onto the stack—
a long return address that points to the original code, and is typically in
a bank different from the subroutine bank.

So the 65816 provides a return from subroutine long instruction,
RTL. This return instruction first pulls, increments, and loads the pro
gram counter, just as RTS does; then it pulls and loads a third byte, the
program bank register, to jump long to the return address. This is illus
trated in Figure 12.4.

Branch to Subroutine___________________
One of the glaring deficiencies of the 6502 was its lack of support for

writing relocatable code; the 65802 and 65816 address this deficiency,
but still lack the branch-to-subroutine instruction some other processors
provide. There is no instruction that lets you call a subroutine with an
operand that is program counter relative, not an absolute address. Yet,
to write relocatable code easily, a BSR instruction is required: suppose a
relocatable program assembled at $0 has an often-called multiply sub
routine at $07FE; if the program is later loaded at $7000, that subroutine
is at $77FE; obviously, a JSR to $07FE will fail.

The 65802 and 65816 can synthesize the BSR function using their PER
instruction. You use PER to compute and push the current run-time

234 Programming the 65816

return address; since its operand is the return address' relative offset
(from the current address of the PER instruction), PER provides reloca-
tability. As Fragment 12.2 shows, once the correct return address is on
the stack, a BRA or BRL completes the synthesized BSR operation.

0000

0000 .

0000
0000 62FC7F PER RETURN-1 push run-time return address
0003 82FA7F BRL SUBR1 intra-bank relative branch is BSR

0006 RETURN . continue processing here

0006 .

0006 .

0006

0006

0006 SUBR1 .

0006 . execute subroutine function

0006 .

0006 .

0006 60 RTS return from subroutine

Fragment 12.2.

In this case, you specify as the assembler operand the symbolic loca
tion of the routine you want to return to minus one. Remember that the
return address on the stack is pulled, then incremented, before control
is passed to it. The assembler transforms the source code operand,
RETURN-1, into the instruction's object code operand, a relative dis
placement from the next instruction to RETURN-1. In this case, the dis
placement is $0002, the difference between the first byte of the BRL
instruction and its last byte. (Remember, PER works the same as the
BRL instruction; in both cases, the assembler turns the location you
specify into a relative displacement from the program counter.) When
the instruction is executed, the processor adds the displacement ($0002,
in this case) to the current program counter address (the address of the
BRL instruction); the resulting sum is the current absolute address of
RETURN-1, which is what is pushed onto the stack.

If at run-time the PER instruction is at $1000, then the BRL instruc
tion will be at $1003, and RETURN at $1006. Execution of PER pushes
$1005 onto the stack, and the program branches to SU BRl. The RTS at
the end of the subroutine causes the $1005 to be pulled from the stack,
incremented to $1006 (the address of RETURN), and loaded into the
program counter.

12 The Basic Building Block: The Subroutine 235

If, on the other hand, the instructions are at $2000, $2003, and $2006,
then $2005 is pushed onto the stack by execution of PER, then pulled off
again when RTS is encountered, incremented to $2006 (the current run
time address of RETURN), and loaded into the program counter.

If a macro assembler is available, synthetic instructions such as this
are best dealt with by burying this code in a single macro call.

Coding a Subroutine: How and When_____
The uses of subroutines are many. At the simplest level, they let you

compact in a single location instructions that would otherwise be re
peated if coded in-line. Programmers often build up libraries of general
subroutines from which they can pluck the routine they want for use in
a particular program; even if the routine is only called once, this allows
quick coding of commonly used functions.

The next few pages will look at a simple logic function for the 65x
processors—forming the negation (two's complement) of eight- and
sixteen-bit numbers—and how such a routine is written. Also covered is
how subroutines in general (and library routines in particular) should be
documented.

The 65x processors have no negate instruction, so the two's comple
ment is formed by complementing the number (one's complement) and
adding one.

6502 Eight-Bit Negation— A Library Example
If the value to be negated is an eight-bit value, the routine in Listing

12.1 will yield the desired result.

0 0 0 1 0 0 0 0 KEEP KL.12.1

0 0 0 2 0 0 0 0

0003 0 0 0 0 ; NEGACC --

OOOA 0 0 0 0

0005 0 0 0 0 ; Negate the 8 -bit value in the accumulator

0006 0 0 0 0 ; On entry: Value to be negated is in accumulator

0007 0 0 0 0 ; On exit: Value now negated is in accumulator

0008 0 0 0 0

0009 0 0 0 0 NEGACC START

0 0 1 0 0 0 0 0 A9FF EOR #X11111111 form one’s complement

0 0 1 1 0 0 0 2 18 CLC prepare to add one

0 0 1 2 0003 6901 ADC #1 add one

0013 0005 60 RTS return

0 0 1 A 0006 END

Listing 12.1.

236 Programming the 65816

It is extremely important to clearly document library routines. Per
haps the best approach is to begin with a block comment at the head of
the routine, describing its name, what the routine does, what it expects
as input, what direct page locations it uses during execution, if the con
tents of any registers or any memory special locations are modified dur
ing execution, and how and where results are returned.

By documenting the entry and exit conditions as part of the header, as
in the example, when the routine is used from a library you won't have
to reread the code to get this information. Although this example is
quite simple, when applied to larger, more complex subroutines, the
principle is the same: Document the entry and exit conditions, the func
tion performed, and any side effects.

As a subroutine, this code to negate the accumulator takes six bytes.
Each JSR instruction takes three. So calling it twice from a single pro
gram requires 12 bytes of code; if called three times, 15 bytes; if four, 18
bytes.

On the other hand, if this code were in-line once, it would take only
five bytes, but each additional time it is needed would require another
five bytes, so using it twice takes 10 bytes, three times takes 15, and
four times takes 20. You can see that only if you need to negate the
accumulator four or more times does calling this code as a subroutine
make sense in view of object byte economy.

65C02, 65802, and 65816 Eight-Bit Negation
The addition of the accumulator addressing mode for the INC incre

ment instruction on the 65C02, 65802, and 65816 means no subroutine
is required for negating an eight-bit value in the accumulator on these
processors: the in-line code in Fragment 12.3 takes only three bytes.

0000 49FF EOR #%11111111 form one’s complement of accum

0002 1A INC A increment the accum by one

Fragment 12.3.

Since the in-line code takes the same number of bytes as the JSR instruc
tion, you would lose four bytes (the number in the subroutine itself) by
calling it as a subroutine.

6502 Sixteen-Bit Negation
Negating sixteen-bit values makes even more sense as a subroutine on

the 6502. One method, given the previously-coded routine NEGACC, is
shown in Listing 12.2.

12 The Basic Building Block: The Subroutine________ 237

0 0 0 1 0 0 0 0 KEEP Kl.12.2

0 0 0 2 0 0 0 0

0003 0 0 0 0

0004 0 0 0 0 Negate the 16-bit value in registers X-A (hi-lo)

0005 0 0 0 0 On entry: Value to be negated is in X-A (hi-lo)

0006 0 0 0 0 On exit: Value now negated is in A-Y (hi-lo)

0007 0 0 0 0 X is unchanged

0008 0 0 0 0 must be linked with NEGACC

0009 0 0 0 0

0 0 1 0 0 0 0 0 NEGXA START

0 0 1 1 0 0 0 0 first call the 8 -bit negation routine defined a few pages back

0 0 1 2 0 0 0 0 200080 JSR NEGACC negate the tow 8 bits in the accum

0013 0003 then get and negate the high 8 bits

0014 0003 A8 TAY

0015 0004 8 A TXA get high 8 bits into accum

0016 0005 49FF EOR #X11111111 form one's complement

0017 0007 6900 ADC #0 add carry from adding 1 to low byte

0018 0009 60 RTS return

0019 0 0 0 A END

Listing 12.2.

Here, one subroutine (NEGXA) calls another (the subroutine de
scribed previously that negates eight bits).

65802 and 65816 Sixteen-Bit Negation
Fragment 12.4 shows that on the 65802 and 65816, the sixteen-bit

accumulator can be negated in-line in only four bytes. As a result, a
subroutine to negate the sixteen-bit accumulator would be inefficient,
requiring five calls to catch up with the one-byte difference; in addition,
you should note that there is a speed penalty associated with calling a
subroutine—the time required to execute the JSR and RTS instructions.

0000 49FFFF EOR #$FFFF form one's complement of accum
0003 1A INC A increment the accum by one

Fragment 12.4.

Parameter Passing______________________
When dealing with subroutines, which by definition are generalized

pieces of code used over and over again, the question of how to give the

0001
0002

0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

0020

0021
0022

0023

0024

0025

0026

Programming the 65816

subroutine the information needed to perform its function must be con
sidered. Values passed to or from subroutines are referred to as the
parameters of the subroutine. Parameters can include values to be acted
upon, such as two numbers to be multiplied, or may be information
that defines the context or range of activity of the subroutine. For exam
ple, a subroutine parameter could be the address of a region of memory
to work on or in, rather than the actual data itself.

The preceding examples demonstrated one of the simplest methods of
parameter-passing, by using the registers. Since many of the operations
that are coded as subroutines in assembly language are primitives that
operate on a single element, like "print a character on the output device"
or "convert this character from binary to hexadecimal," passing param
eters in registers is probably the approach most commonly found.

A natural extension of this approach, which is particularly appropri
ate for the 65802 and 65816, but also possible on the 6502 and 65C02, is
to pass the address of a parameter list in a register (or, on the 6502 and
65C02, in two registers). Listing 12.3 gives an example.

0 0 0 0 KEEP KL.12.3

0 0 0 0 65816 ON

0 0 0 0

0 0 0 0 L123 START

0 0 0 0 18 CLC

0001 FB XCE

0 0 0 2

0002 E220 SEP # $ 2 0

0004 LONGA OFF

0004

0004 C210 REP # $ 1 0

0006 LONGI ON

0006

0006 A21500 LDX #STRING1

0009 200080 JSR PRSTRNG

OOOC

OOOC A22800 LDX #STRING2

0 0 0 F 200080 JSR PRSTRNG

0 0 1 2

0012 38 SEC

0013 FB XCE

0014 60 RTS

0015

0015 54686973 STRING1 DC C'This is

0028 54686973 STRING2 DC C'This is

003 B

8 -bit accumulator

16-bit index registers

pass the address of STRING1 to PRSTRNG

print STRING1

pass the address of STRING2 to PRSTRNG

print STRING2

string one'.H'OO'

string two',H'00'

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

0055

0056

0057

0058

0059

0060

0061

12 The Basic Building Block: The Subroutine 239

003B END

0000
0 0 0 0 ; print a string of characters terminated by a 0 byte

0 0 0 0 ; on entry: X register holds location of string

0 0 0 0

0 0 0 0 PRSTRNG START

0000 B00000 TOP LDA !0,X get char at index position in string

0003 F006 BEQ DONE if character is 0 , return

0005 200080 JSR COUT print character in accum

0008 E8 INX point to next char

0009 80F5 BRA TOP loop thru string

000B 60 DONE RTS

oooc
oooc END

0 0 0 0

0 0 0 0 1 COUT

0 0 0 0 1 machine-dependent routine to output a character

0 0 0 0 1

0 0 0 0 COUT START

0 0 0 0 ECOUT GEQU $FDED Apple // COUT

0000 48 PHA Save registers

0001 DA PHX

0002 5A PHY

0003 08 PHP and status,

0004 38 SEC switch to emulation

0005 FB XCE

0006 20EDFD JSR ECOUT call 6502 routine

0009 18 CLC.

000A FB XCE restore native mode

0 0 0 B 28 PLP restore status

OOOC 7A PLY restore registers

000D FA PLX return

000E 6 8 PLA

0 0 0 F 60 RTS

0 0 1 0 END

Listing 12.3.

By loading the X register with the address of a string constant, the sub
routine PRSTRNG has all the information it needs to print the string at
that address each time it is called. The data at the address passed in a reg
ister could also be a more complex data structure than a string constant.

On the 6502 and 65C02, a sixteen-bit address has to be passed in two
registers. Because of this, parameters are often passed in fixed memory
locations. Typically, these might be direct page addresses. Listing 12.4
gives an example of this method.

240 Programming the 65816

0 0 0 1 0 0 0 0 KEEP XL.12.4

0 0 0 2 0 0 0 0

0003 0 0 0 0

0004 0 0 0 0 1 6502/65C02 example

0005 0 0 0 0

0006 0 0 0 0 PEX START

0007 0 0 0 0

0008 0 0 0 0 PARAM GEQU S80

0009 0 0 0 0

0 0 1 0 0 0 0 0 A2 0 0 LDX #>STRING1 load high byte of STRING11s address

0 0 1 1 0 0 0 2 8681 STX PARAM+1 store to high byte of direct page cell

0 0 1 2 0004 A20C LDX #<STRING1 load low byte of STRINGI's address

0013 0006 8680 STX PARAM store to Io n byte of direct page cell

0014 0008 200080 JSR PRSTRNG print STRING1

0015 000B 60 RTS

0016 oooc
0017 OOOC 54686973 STRING1 DC C'This is string one'.H'OO1

0018 0 0 1 F

0019 0 0 1 F END

0 0 2 0 0 0 0 0

0 0 2 1 0 0 0 0 ; print a string of characters terminated by a 0 byte

0 0 2 2 0 0 0 0 ; on entry: direct page location PARAM holds address of string

0023 0 0 0 0

0024 0 0 0 0 PRSTRNG START

0025 0 0 0 0 COUT GEQU SFDED Apple // output routine

0026 0 0 0 0

0027 0000 A000 LDY # 0 start at string position zero

0028 0002 B180 LOOP LDA (PARAM),Y get char at index position in string

0029 0004 F006 BEQ DONE if character is 0 , return

0030 0006 20E0FD JSR COUT print character in accum

0031 0009 C8 INY point to next char

0032 000A D0F6 BNE LOOP loop thru string: must be < 256

0033 OOOC 60 DONE RTS

0034 0 0 0 D

0035 0 0 0 D

0036 000D END

Listing 12.4.

Unfortunately, it takes eight bytes to set up PARAM each time
PRSTRNG is called. As a result, a frequently used method of passing
parameters to a subroutine is to code the data in-line, immediately fol
lowing the subroutine call. This technique (see Fragment 12.5) uses no
registers and no data memory, only program memory.

12 The Basic Building Block: The Subroutine 241

0000

0000 .

0000 200080 JSR PRSTRNG print the following string

0003 54686520 DC C'The string to be printed',H'00'

001C RETURN . execution continues here

001C .

001C .

001C .

001C

Fragment 12.5.

This method looks, at first glance, bizarre. Normally, when a subrou
tine returns to the calling section of code, the instruction immediately
following the JSR is executed. Obviously, in this example, the data
stored at that location is not executable code, but string data. Execution
should resume instead at the label RETURN, which is exactly what hap
pens using the PRSTRNG coded in Listing 12.5. The return address
pushed onto the stack by the JSR is not a return address at all; it is,
rather, the parameter to PRSTRNG.

0 0 0 1 0 0 0 0 KEEP XL.12.5

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 PRSTRNG START

0005 0 0 0 0

0006 0 0 0 0 18 CLC

0007 0 0 0 1 FB XCE

0008 0 0 0 2

0009 0 0 0 2 E220 SEP # $ 2 0 8 -bit accum

0 0 1 0 0004 LONGA OFF

0 0 1 1 0004

0 0 1 2 0004 C210 REP # $ 1 0 16-bit index regs

0013 0006 LONGI ON

0014 0006

0015 0006 FA PLX pull return address

0016 0007 E8 INX and increment to point past JSR to string

0017 0008 BD0000 LOOP LDA !0,X get char at index position in string

0018 000B F006 BES DONE if character is 0 , return

0019 0 0 0 D 200080 JSR C0UT print char in accum

0 0 2 0 0 0 1 0 E8 INX point to next char

0 0 2 1 0 0 1 1 80F5 BRA LOOP loop thru string

0022
0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

Programming the 65816

0013

0013 ; push pointer to zero-terminator as return addr (RETURN

0013

0013 DA DONE PHX

0014 60 RTS return to label RETURN

0015 END

0 0 0 0

0 0 0 0

0 0 0 0 COUT

0 0 0 0 machine-dependent routine to output a character

0 0 0 0

0 0 0 0 COUT START

0 0 0 0 ECOUT GEQU SFDED Apple // COUT

0000 48 PHA Save registers

0001 DA PHX

0002 5A PHY

0003 08 PHP and status,

0004 38 SEC switch to emulation

0005 FB XCE

0006 20EDFD JSR ECOUT call 6502 routine

0009 18 CLC

000A FB XCE restore native mode

OOOB 28 PLP restore status

OOOC 7A PLY restore registers

000D FA PLX return

000E 6 8 PLA

000F 60 RTS

0 0 1 0 END

Listing 12.5.

The parameter address on the stack need only be pulled and incre
mented once, and the data can then be accessed in the same manner as
in the foregoing example. Since the loop terminates when the zero end-
of-string marker is reached, pushing its address in the X register onto the
stack gives RTS a correct return value—RETURN-1—the byte before
the location where execution should resume. Note that the data bank is
assumed to equal the program bank.

The advantage of this method is in bytes used: there is no need
for any explicit parameter-passing by the calling code, and the JSR
mechanism makes the required information available to the subroutine
automatically. In fact, for most applications on all four 65x micropro
cessors, this method uses fewer bytes for passing a single parameter than
any other.

12 The Basic Building Block: The Subroutine 243

One slight disadvantage of this method is that if the string is to be
output more than once, it and its preceding JSR must be made into a
subroutine that is called to output the string.

A second disadvantage to this method comes in calling routines to
which more than one parameter must be passed. This last example dem
onstrated how a parameter (the address of the string) can be implicitly
passed on the stack. But there is no way to extend the principle so two
parameters could be implicitly passed, for instance, to a routine that
compares two strings. On the other hand, parameters can also be explic
itly passed on the stack. The push effective address instructions and
stack-relative addressing modes make this all the easier, as Fragment
12.6 and Listing 12.6 show.

0000 F40080 PEA STRING1 push address of STRING1 onto stack
0003 F40080 PEA STRING2 push address of STRING2 onto stack
0006 200080 JSR COMPARE compare the two
0009 return and continue processing
0009
0009 •

Fragment 12.6.

244 Programming the 65816

0 0 0 1 0 0 0 0 KEEP KL.12.6

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 ; compare two strings of characters, each terminated by a 0 byte

0005 0 0 0 0 ; on entry: Iocs of strings are stacked just below the return addr

0006 0 0 0 0 ; on exit: carry clear if chars match up to len of shortest string

0007 0 0 0 0 1 else carry set for no match

0008 0 0 0 0

0009 0 0 0 0 COMPARE START

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0 08 PHP assume native mode; save status

0 0 1 2 0 0 0 1

0013 0 0 0 1 C210 REP # * 1 0

0014 0003 LONGI ON

0015 0003 E220 SEP # $ 2 0

0016 0005 LONGA OFF

0017 0005

0018 0005 A00000 LDY # 0

0019 0008 B303 LOOP LDA <3,S),Y get character from first string

0 0 2 0 0 0 0 A F007 BE9 PASS if zero, end of string: match

0 0 2 1 oooc 0305 CMP (5,S),Y compare to corresponding char in 2 nd string

0 0 2 2 OOOE D006 BNE FAIL branch if not equal; probably failure

0023 0 0 1 0 C8 INY else do next pair

0024 0 0 1 1 80F5 BRA LOOP

0025 0013

0026 0013

0027 0013 f matches shortest string: ok

0028 0013

0029 0013 28 PASS PLP restore previous status

0030 0014 18 CLC but clear carry

0031 0015 60 RTS

0032 0016

0033 0016 B305 FAIL LDA (5,S),Y was last failure due to end of string2 ?

0034 0018 F0F9 BEQ PASS yes; let it pass

0035 0 0 1 A

0036 0 0 1 A 28 P L P restore previous status

0037 0 0 1 B 38 SEC sorry, no good

0038 0 0 1 C 60 RTS

0039 0 0 1 D

0040 0 0 1 D END

Listing 12.6.

12 The Basic Building Block: The Subroutine 245

This example, which compares two strings to see if they are equal up
to the length of the shorter of the two strings, uses parameters that have
been explicitly passed on the stack. This approach, since it explicitly
passes the addresses of the strings, lets them be located anywhere and
referred to any number of times. Its problem is that when the subroutine
returns, the parameters are left on the stack. Clearly, the subroutine
should clean up the stack before returning; however, it can't simply pull
the parameters off, because the return address is sitting on top of the
stack (which explains why stack offsets of three and five, rather than
one and three, are used).

Perhaps the cleanest way to pass parameters on the stack prior to a
subroutine call is to decompose the JSR instruction into two: one to
push the return address, the other to transfer to the subroutine. The
push effective address instructions again come in handy. Fragment 12.7
shows how the parameters to the routine in Listing 12.7 are passed.

0000

0000 .

0000 F4FF7F PEA RETURN-1 push return addr before parameters
0003 F40080 PEA STRING1 push address of STRING1 onto stack
0006 F40080 PEA STRING2 push address of STRING2 onto stack

0009 4C0080 JMP COMPARE compare them
OOOC RETURN . continue processing
OOOC .
OOOC .

OOOC

Fragment 12.7.

246 Programming the 65816

0 0 0 1 0 0 0 0 KEEP KL.12.7

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 ; compare two strings of characters, each terminated by a 0 byte

0005 0 0 0 0 ; on entry: Iocs of strings are at top of stack

0006 0 0 0 0 1 return address is stacked just beneath

0007 0 0 0 0 ; on exit: carry clear if chars match up to len of shortest string

0008 0 0 0 0 i else carry set for no match

0009 0 0 0 0

0 0 1 0 0 0 0 0 COMPARE START

0 0 1 1 0 0 0 0

0 0 1 2 0 0 0 0 08 PHP assume native mode; save status

0013 0 0 0 1

0014 0 0 0 1 C210 REP # $ 1 0

0015 0003 LONGI ON

0016 0003

0017 0003 E220 SEP # $ 2 0

0018 0005 LONGA OFF

0019 0005

0 0 2 0 0005 AOOOOO LDY # 0

0 0 2 1 0008 B301 LOOP LDA < 1 , S) , Y get character from first string

0 0 2 2 OOOA F007 BEQ PASS if zero, end of string: match

0023 oooc 0303 CMP (3,S),Y compare to corresponding char in 2 nd string

0024 000E D007 BNE FAIL bra if not equal; probably failure

0025 0 0 1 0 C8 INY else do next pair

0026 0 0 1 1 80F5 BRA LOOP

0027 0013

0028 0013 f matches shortest string

0029 0013

0030 0013 28 PASS PLP they match up to shortest string;

0031 0014 18 CLC restore status, but clear carry

0032 0015 8006 BRA EXIT

0033 0017

0034 0017 B303 FAIL LDA (3,S),Y was last failure due to end of string2 ?

0035 0019 F0F8 BEQ PASS yes; let it pass

0036 0 0 1 B 28 PLP restore status, but set carry (no match)

0037 0 0 1 C 38 SEC

0038 0 0 1 D

0039 0 0 1 D FA EXIT PLX clean up stack: remove both 16-bit params

0040 0 0 1 E FA PLX

0041 0 0 1 F 60 RTS now return

0042 0 0 2 0

0043 0 0 2 0 END

Listing 12.7.

12 The Basic Building Block: The Subroutine 247

Since the return address was pushed first, the parameter addresses on
the stack are accessed via offsets of one and three. Before returning, two
pull instructions pop the parameters off the stack, then the RTS is exe
cuted, which returns control to the main program with the stack in
order.

Passing parameters on the stack is particularly well-suited for both
recursive routines (routines that call themselves) and reentrant routines
(routines that can be interrupted and used successfully both by the inter
rupting code and the original call) because new memory is automati
cally allocated for parameters for each invocation of the subroutine.
This is the method generally used by most high-level languages that sup
port recursion.

Fragment 12.8 sets up multiple parameters implicitly passed on the
stack by coding after the JSR, not data, but pointers to data. The rou
tine called is in Listing 12.8.

0000

0000 .

0000 200080 JSR COMPARE compare two strings; addresses follow
0003 0080 DC A ’STRING1' address of STRING1
0005 0080 DC A ’STRING2' address of STRING2
0007 RETURN . continue processing
0007 .

0007 .

0007

Fragment 12.8.

While this subroutine, unlike the previous one, uses a dozen bytes just
getting itself ready to start, each call requires only seven bytes (three for
the JSR, and two each for the parameters), while each call to the previ
ous routine required twelve bytes (three PERs at three bytes each plus
three for the JMP).

Apple Computer's ProDOS operating system takes this method a step
further: all operating system routines are called via a JSR to a single
ProDOS entry point. One of the parameters that follows the JSR speci
fies the routine to be called, the second parameter specifies the address
of the routine's parameter block. This method allows the entry points of
the internal ProDOS routines to “float" from one version of ProDOS to
the next; user programs don't need to know where any given routine is
located.

248 Programming the 65816

0001 0000 KEEP KL.12.8

0002 0000 65816 ON

0003 0000
0004 0000 ; compare two strings of characters, each terminated by a 0 byte

0005 0000 ; on entry: increment address at top of stack: pts to loc of 1st str

0006 0000 1 incr twice more to point to loc of 2nd str

0007 0000
0008 0000 COMPARE START

0009 0000
0010 0000 C210 REP #$10 caller must save and

0011 0002 LONGI ON restore mode status

0012 0002
0013 0002 E220 SEP #$20
0014 0004 LONGA OFF

0015 0004

0016 0004 7A PLY

0017 0005 C8 INY points to indirect address of 1st str

0018 0006 B90000 LDA !0,Y toad accum with address of 1st string

0019 0009 C8 INY

0020 000A C8 INY point Y to indirect addr of 2nd string

0021 0008 BE0000 LDX ! 0, Y load X with address of 2nd string

0022 OOOE C8 INY point Y to RETURN-1 for RTS

0023 000F 5A PHY and push it onto stack for RTS

0024 0010 A8 TAY load Y with address of 1st string

0025 0011
0026 0011 B90000 LOOP LDA !0,Y get character from first string

0027 0014 F009 BEQ PASS if zero, end of string: match

0028 0016 DD0000 CMP !0,X compare to corresponding char in 2nd string

0029 0019 D006 BNE FAIL bra if not equal; probably failure

0030 001B C8 INY else do next pair

0031 001C E8 INX

0032 001D 80F2 BRA LOOP

0033 001F 18 PASS CLC they match up to shortest string;

0034 0020 60 RTS

0035 0021 800000 FAIL LDA !0,X was last failure due to end of string2?

0036 0024 F0F9 BEQ PASS yes; let it pass

0037 0026 38 SEC sorry, no good

0038 0027 60 EXIT RTS now return!

0039 0028

0040 0028 END

Listing 12.8.

Interrupts and System
Control Instructions

This is the last chapter that introduces new instructions; almost the
entire 65816 instruction set, and all of the addressing modes, have been
presented. The only instructions remaining are the interrupt and status
register control instructions, listed in Table 13.1. This chapter intro
duces interrupt processing, as well.

Most of the system control functions described are of practical inter
est only if you are implementing systems programs for the 65x proces
sors, such as operating systems or device handling routines. It is quite
possible that if you are programming on an existing machine, with full
operating system support, you will have little cause to use many of the
system control instructions.

Table 13 .1 . Interrupt and System Control Instructions.

M nem onic 6502
A vailable
65C02

on:
65802/816 Description

BRK X X X Break (software interrupt)
RTI X X X Return from Interrupt
NOP X X X No operation
SEC X X X Set carry flag
CLC X X X Clear carry flag
SED X X X Set decimal mode
CLD X X X Clear decimal mode
SEI X X X Set interrupt disable flag
CLI X X X Clear interrupt disable flag
CLV X X X Clear overflow flag
SEP X Set status register bits
REP X Clear status register bits
COP X Co-processor or software

interrupt
STP X Stop the clock
WAI X Wait for interrupt
WDM X Reserved for expansion

249

250 Programming the 65816

I nterru pts____________________________
An interrupt, as the name implies, is a disruption of the normal

sequential flow of control, as modified by the flow-altering statements
such as branches and jump instructions encountered in the stream of
code.

Hardware interrupts are generated when an external device causes
one of the interrupt pins, usually the IRQ' or interrupt request pin, to
be electrically pulled low from its normally high signal level. The typi
cal application of 65x interrupts is the implementation of an interrupt-
driven I/O system, where input-output devices are allowed to operate
asynchronously from the processor. This type of system is generally
considered to be superior to the alternative type of I/O management
system, where devices are polled at regular intervals to determine
whether or not they are ready to send or receive data; in an interrupt-
driven system, I/O service only claims processor time when an I/O
operation is ready for service. Figure 13.1 illustrates how processor time
is spent under either system.

I /O R e q u e s te d a t T im e s A a n d B

Figure 13.1. I/O Management: Interrupts vs. Polling.

13 Interrupts and System Control Instructions 251

Software interrupts are special instructions that trigger the same type
of system behavior as occurs during a hardware interrupt.

When an interrupt signal is received, the processor loads the program
counter with the address stored in one of the sixteen-bit interrupt vec
tors in page $FF of bank zero memory, jumping to the (bank zero) rou
tine whose address is stored there. (In the case of the 6502, 65C02, and
65802, "bank zero" refers to the lone 64K bank of memory addressable
by these processors.) The routine that it finds there must determine the
nature of the interrupt and handle it accordingly.

When an interrupt is first received, the processor finishes the currently
executing instruction and pushes the double-byte program counter (which
now points to the instruction following the one being executed when the
interrupt was received) and the status flag byte onto the stack. Since the
6502 and 65C02 have only a sixteen-bit program counter, only a sixteen-
bit program counter address is pushed onto the stack; naturally, this is
the way the 65802 and 65816 behave when in emulation mode as well.
The native-mode 65802 and 65816 must (and do) also push the program
counter bank register, since it is changed to zero when control is trans
ferred through the bank zero interrupt vectors.

As Figure 13.2 shows, in native mode the program bank is pushed
onto the stack first, before the program counter and the status register;
but in emulation mode it is lost. This means that if a 65816 program is
running in emulation mode in a bank other than zero when an interrupt
occurs, there will be no way of knowing where to return to after the
interrupt is processed because the original bank will have been lost.

This unavoidable but fairly esoteric problem can be dealt with in two
ways. The first is simply never to run in emulation mode outside bank
zero. The second solution, which is to store the value of the program
counter bank register in a known location before entering the emulation
mode with a non-zero program counter bank register, is described later
in this chapter.

In addition to pushing the status and program counter information
onto the stack, the d decimal flag in the status register is cleared (except
on the 6502), returning arithmetic to binary mode. The i interrupt dis
able flag is set, preventing further interrupts until your interrupt-service
routine resets it (it may do this as soon as it is finished saving the previ
ous context) or the routine is exited (with an RTI return-from-interrupt
instruction). Indeed, if the interrupt flag had already been set, the first
interrupt would have been ignored as well.

This last feature of disabling interrupts, however, does not apply to a
second type of hardware interrupt, called the non-maskable interrupt
(or NMI') for the very reason that it cannot be ignored, even if the i flag
is set. NMI' is triggered by a separate pin on a 65x processor; its use is
usually reserved for a single high priority interrupt, such as power fail
ure detection.

6
5

0
2

/6
5

C
0

2
/E

m
u

la
ti

o
n

 M
o

d
e

St
ac

k
Po

in
te

r
(S

)

le
fo

re
St

ac
k

PC
 H

ig
h

PC
 L

ow

af
te

r
St

at
us

 (
P)

Ba
nk

 0

Pr
og

ra
m

C

ou
nt

er
 (

PC
)

St
at

us
 (

P)

65
80

2/
65

81
6

N
at

iv
e

M
od

e

St
ac

k

Pr
og

ra
m

 B
an

k
(P

BR
)

Pr
og

ra
m

 B
an

k
(P

BR
)

PC
 H

ig
h

St
ac

k
Po

in
te

r
(S

)
PC

 L
ow

—
I

Pr
og

ra
m

Co
un

te
r

(P
C)

St
at

us
 (

P)
St

at
us

 (
P)

an
er

Ba
nk

 0

Fi
gu

re
 1

3.
2.

 I
nt

er
ru

pt
 P

ro
ce

ss
in

g.

13 Interrupts and System Control Instructions 253

Just as the two types of interrupt have their own signals and pins,
they also have their own vectors—locations where the address of the
interrupt-handling routine is stored. As Table 13.2 shows, on the 65802
and 65816 there are two sets of interrupt vectors: one set for when the
processor is in emulation mode, and one set for when the processor is in
native mode. Needless to say, the locations of the emulation mode vec
tors are identical to the locations of the 6502 and 65C02 vectors.

Table 1 3 .2 . Interrupt V ectors.

Emulation m ode, e = 1 Native m ode, e = 0

00FFFE,FF — IRQ/BRK 00FFEE,EF — IRQ
00FFFC,FD — RESET
00FFFA,FB — NMI 00FFEA,EB — NMI
00FFF8,F9 — ABORT 00FFE8,E9 — ABORT

00FFE6,E7 — BRK
00FFF4,F5 — COP 00FFE4,E5 — COP

As you can see in Table 13.2, there are several other vector locations
named in addition to IRQ' and NMI'. Note that there is no native mode
RESET' vector: RESET' always forces the processor to emulation mode.
Also note that the IRQ' vector among the 6502 vectors is listed as IRQ'/
BRK, while in the 65802/65816 native mode list, each has a separate
vector.

The BRK and COP vectors are for handling software interrupts. A
software interrupt is an instruction that imitates the behavior of a hard
ware interrupt by stacking the program counter and the status register,
and then branching through a vector location. On the 6502 and 65C02,
the location jumped to in response to the execution of a BRK (a software
interrupt) and the location to which control is transferred after an IRQ'
(a hardware interrupt) is the same; the interrupt routine itself must
determine the source of the interrupt (that is, either software or hard
ware) by checking the value of bit five of the processor status register
pushed onto the stack. On the 6502 and 65C02 (and the 6502 emulation
mode of the 65802 and 65816), bit five is the b break flag. Note first that
this is not true of the 65816 native mode, since bit five of its status regis
ter is the m memory select flag. Secondly, notice that it is the stacked
status byte which must be checked, not the current status byte.

Suppose, for example, that the IRQ'/BRK vector at $00:FFFE.FF con
tains the address $B100 (naturally, in the low-high order all 65x ad
dresses are stored in), and the code in Fragment 13.1 is stored starting at
$B100. When a BRK instruction is executed, this routine distinguishes it
from a hardware interrupt and handles each uniquely.

254 Programming the 65816

0000 ORG $8100

0000
0000 IRQBRKIN START

0000 8D1000 STA SAVEA save original accumulator

0003 68 PLA copy p register

0004 48 PHA return it to stack
0005 2920 AND #7.00010000 look at bit four only

0007 D0F7 BNE ISBRK bra if bit 4 set:

0009 1 BRK caused interrupt
0009 . else caused by IRQ'

0009 .

0009 .

0009 .

0009 4C0C00 JMP RETURN reload accum and return

OOOC

OOOC ; handle interrupt caused by BRK instruction

OOOC
OOOC ISBRK . do BRK handling code

o o o c .

o o o c .

OOOC AD1000 RETURN LDA SAVEA reload saved accumulator

000F 40 RTI return

0010

0010 00 SAVEA DS 1

0011

0011 END

Fragment 13.1.

The RTI, or return-from-interrupt instruction is similar to the RTS
(return-from-subroutine) instruction. RTI returns control to the location
following the instruction that was interrupted by pulling the return
address off the stack. Unlike the RTS instruction, however, since the
status register was also pushed onto the stack in response to the inter
rupt, it too is restored, returning the system to its prior state. Further, in
the 65802/65816 native mode the RTI instruction behaves like an RTL
(return from subroutine long), in that the program counter bank register
is also pulled off the stack. This difference makes it critical that the
processor always be in the same state when the RTI instruction is exe
cuted as it was when it was interrupted. The fact that the 65816 has sep
arate vector groups for native and emulation modes makes this easier to
achieve.

There is another key difference between the RTI and the RTS or RTL:
RTS and RTL increment the return address after pulling it off the stack

13 Interrupts and System Control Instructions 255

and before loading it into the program counter; RTI on the other hand
loads the program counter with the stacked return address unchanged.

RTI will probably not function correctly in the special case where an
interrupt occurred while code was executing in the emulation mode in a
non-zero bank: RTI will try to return control to an address within the
bank the RTI is executed in, which will probably not be the correct
bank because (as on the 6502 and 65C02) the bank address is not
stacked. As mentioned earlier, the only way to deal with this is to save
the bank address prior to entering emulation mode. When the interrupt
handler returns, it should use this saved bank address to execute a long
jump to an RTI instruction stored somewhere within the return bank;
the long jump will preset the program bank address to the correct value
before the RTI is executed.

The interrupt handler itself should enter the native mode if interrupts
are to be reenabled before exiting in order to avoid the same problem,
then return to emulation mode before exiting via the long jump to the
RTI instruction.

Concerning the BRK instruction, you should also note that although
its second byte is basically a "don't care" byte—that is, it can have any
value—the BRK (and COP instruction as well) is a two-byte instruction;
the second byte sometimes is used as a signature byte to determine the
nature of the BRK being executed. When an RTI instruction is executed,
control always returns to the second byte past the BRK opcode. Figure
13.3 illustrates a stream of instructions in hexadecimal form, the BRK
instruction, its signature byte, and the location an RTI returns to. The
BRK instruction has been inserted in the middle; after the BRK is proc
essed by a routine (such as the skeleton of a routine described above),
control will return to the BCC instruction, which is the second byte past
the BRK opcode.

The fact that the opcode for the BRK instruction is 00 is directly
related to one of its uses: patching existing programs. Patching is the
process of inserting instruction data in the middle of an existing pro
gram in memory to modify (usually to correct) the program without
reassembling it. This is a favored method of some programmers in
debugging and testing assembly language programs, and is quite simple
if you have a good machine-level monitor program that allows easy
examination and modification of memory locations. However, if the
program to be patched is stored in PROM (programmable read-only
memory), the only way to modify a program that has already been
"burned-in" is to change any remaining one bits to zeroes. Once a
PROM bit has been "blown" to zero, it cannot be restored to a one.
The only way to modify the flow of control is to insert BRK instruc
tions—all zeroes—at the patch location and to have the BRK handling
routine take control from there.

256 Programming the 65816

LDA S44

A 5 44 00 00 90 32

B RK i n s t r u c t i o n

o p t io n a l
s i g n a t u r e b y te '

1 BCC i n s t r u c t i o n

c o n t r o l r e s u m e s here
a f t e r RTI e x e c u te d

Figure 13.3. Break Signature Byte Illustration.

Processing Interrupts

Before an interrupt handling routine can perform a useful task, it
must first know what is expected of it. The example of distinguishing a
BRK from an IRQ is just a special case of the general problem of identi
fying the source of an interrupt. The fact that different vectors exist
for different types of interrupts—for example, NMI would usually be
reserved for some catastrophic type of interrupt, like "power failure
imminent", which demanded immediate response—solves the problem
somewhat. Typically, however, in an interrupt-driven system there will
be multiple sources of interrupts through a single vector. The 65802 and
65816, when in native mode, eliminate the need for a routine to distin
guish between IRQ and BRK, such as the one above, by providing a
separate BRK vector, as indicated in Table 13.2. Although this does sim
plify interrupt processing somewhat, it was done primarily to free up bit
five in the status register to serve as the native mode memory select flag,
which determines the size of the accumulator.

The interrupt source is generally determined by a software technique
called polling: when an interrupt occurs, all of the devices that are
known to be possible sources of interrupts are checked for an indication
that they were the source of the interrupt. (I/O devices typically have a
status bit for this purpose.) A hardware solution also exists, which is to
externally modify the value that is apparently contained in the vector
location depending on the source of interrupt. The 65816 aids the imple
mentation of such systems by providing a VECTOR PULL signal,

13 Interrupts and System Control Instructions 257

which is asserted whenever the interrupt vector memory locations are
being accessed in response to an interrupt.

A simple example of the polling method could be found in a system
that includes the 6522 Versatile Interface Adapter as one of its I/O con
trollers. The 6522 is a peripheral control IC designed for hardware com
patibility with the 65x processor family. The 6522 includes two parallel
I/O ports and two timer/counters. It can be programmed to generate
interrupts in response to events such as hardware handshaking signals,
indicating that data has been read or written to its I/O ports, or to
respond to one of its countdown timers reaching zero. The 6522 con
tains sixteen different control and I/O registers, each of which is typi
cally mapped to an adjacent address in the 65x memory space. When an
interrupt occurs, the processor must poll the interrupt flag register,
shown in Figure 13.4, to determine the cause of the interrupt.

7 6 5 4 3 2 1 0

— C A 2

— C A 1

— S H I F T R E G

— C B 2 ----------------------
I— C B 1 -----------------------------

- T I M E R 2 -----------------------------

■— T I M E R 1

■— I R Q

Figure 13.4. 6522 VIA Interrupt Flag Register.

If register zero of the 6522 is mapped to location $FF:B080 of a 65816
system, for example, the interrupt flag register would normally be
found at $FF:B08D. The polling routine in Fragment 13.2 would be
needed whenever an interrupt occurred. To keep the example simple,
assume that only the two timer interrupts are enabled (for example,
timer 1 to indicate, in a multi-tasking system, that a given process'
time-slice has expired and the next process must be activated; timer 2,
on the other hand, to maintain a time-of-day clock).

S E T B Y C L E A R E D B Y
C A 2 a c t i v e e d g e R e a d o r w r i t e

R e g . 1 (O R A)

C A 1 a c t i v e e d g e R e a d o r w r i t e
R e g 1 (O R A)

C o m p l e t e 8 s h i f t s R e a d o r w r i t e
S h i f t R e g

C B 2 a c t i v e e d g e R e a d o r w r i t e O R B
C B 1 a c t i v e e d g e R e a d o r w r i t e O R B
T i m e - o u t o f T 2 R e a d T 2 l o w o r w r i t e

T 2 h i g h
T i m e - o u t o f T 1 R e a d T 1 l o w o r w r i t e

T 1 h i g h
A n y e n a b l e d
i n t e r r u p t

C l e a r a l l i n t e r r u p t s

258 Programming the 65816

0000 IRQIN START
0000 E220 SEP #$20 8-bit accumulator
0002 LONGA OFF
0002

0002 8D1B00 STA SAVEA save the accumulator
0005 AF8DB0FF LDA SFFB08D device interrupt register
0009 10F5 BPL NEXTDEV branch if bit 7 clear
000B OA ASL A check bits 6 & 5
OOOC OA ASL A bit 6 to carry, 5 to sign
000D 30F1 BMI TIMER2 if 5 set, timer2 caused
000F 1 interrupt
000 F
000F ; timer2 didn't cause interrupt; timerl?

000 F

000 F 90EF BCC ERROR interrupt source unknown
0011

0011 ; bit 6 set: timerl caused interrupt

0011

0011 TIMER1 . timer 1 handler code

0011 .

0011 .

0011

0011 8004 BRA RETURN

0013

0013 ; bit 5 set: timer2 caused interrupt

0013

0013 TIMER2 . timer 2 handler code

0013

0013 .

0013 8002 BRA RETURN

0015

0015 ; interrupt not caused by 6522: check other devices
0015
0015 NEXTDEV code to poll next device

0015 .

0015 .

0015 8000 BRA RETURN

0017

0017 ERROR . error handling code

0017 .

0017 .

0017
0017 AD1B00 RETURN LDA SAVEA reload saved accumulator
001A 40 RTI and return
001B
001B 00 SAVEA DS 1
001C END

Fragment 13.2.

13 Interrupts and System Control Instructions_______ 259

When the interrupt flag register is loaded into the accumulator, the
first thing checked is whether or not bit seven is set; bit seven is set if
any 6522 interrupt is enabled. If it is clear, then the interrupt handler
branches to the location NEXTDEV, which polls all other connected
I/O devices looking for the source of the interrupt.

If the 6522 was the source of the interrupt, then two shifts move
the flag register's bit six into the carry and bit five into bit seven of the
accumulator. Since bit five is set by the time-out of timer 2, if the high-
order bit of the accumulator is set (minus), then the source of the inter
rupt must be timer 2. If timer 2 did not cause the interrupt, then the
carry flag is checked; if it's set, then timer 1 caused the interrupt; if it's
clear, then timer 1 didn't cause it either, so there has been some kind
of error.

Control is thus assigned to the correct routine to handle the specific
source of interrupt.

It is important to note that in both examples in this chapter, the accu
mulator was saved in memory prior to its use within the interrupt-
handling routine. You should further note that in the second example,
which is specific to the 65816, only the low-order byte of the accumula
tor was stored, because the STA SAVEA instruction was executed after
the SEP #$20 instruction, which set the accumulator size to eight bits.
When the RTI instruction is executed at the end of the interrupt service
routine, the m status flag will be restored to whatever value it had prior
to the interrupt. If m was clear and the accumulator was in sixteen-bit
mode, the high-order byte will have been preserved throughout the
interrupt routine provided that none of the interrupt handling routines
switch into sixteen-bit mode; if they do, the high-order part of the accu
mulator must be saved first, then restored before execution of the RTI.

An important concept related to interrupt handling is that of reen
trancy; a reentrant program can be interrupted and literally reentered
by the interrupt handling routine and return correct values for both the
original invocation and the reentrant call from the interrupt handler.
Reentrancy is normally achieved by using no addressable memory—
only registers, which may be saved and restored on the stack on entry
and exit, and variable storage dynamically allocated on the stack each
time the routine is entered. The stack relative addressing modes simplify
the writing of reentrant routines considerably.

Interrupt Response Time
By saving only the essentials—the program counter, program counter

bank in 65802/65816 native mode, and status register—and shifting the
burden of saving and restoring user registers (those that are actually
used) to the programmer of the interrupt-handier, the 65x processors
provide maximum flexibility and efficiency. It is quite possible for an

260 Programming the 65816

interrupt routine to do useful work—such as checking the status of
something within the system at periodic intervals—without using any
registers.

At either seven or eight cycles per interrupt—the time required to
stack the program counter, pc bank, and status register, and then jump
through the interrupt vectors—the interrupt response cycle is among the
longest-executing 65x instructions. Since an interrupt always lets the
current instruction complete execution, there is a possible seven-cycle
delay between the receipt of an interrupt and the servicing of one; this
delay is called the interrupt latency. Small as the delay is, it can be
significant in the servicing of data acquisition and control devices oper
ating in real time, systems in which it is important that interrupts be dis
abled as little as possible.

It has been the goal of the designers of the 65x series to keep interrupt
latency to a minimum. To further reduce interrupt latency, the 65802
and 65816 introduced a special new instruction, the WAI or wait for
interrupt instruction. In an environment where the processor can be
dedicated to serving interrupts—that is, where the interrupts provide
timing or synchronization information, rather than being used to allow
asynchronous I/O operations to be performed—the processor can be
put into a special state where it sits and waits for an interrupt to hap
pen. This lets any of the user registers be saved before the interrupt
occurs, and eliminates the latency required to complete an existing
instruction. Upon execution of a WAI instruction, the processor goes
into a very low-power state, signals the outside world that it is waiting
by pulling the bi-directional RDY signal low, and sits idle until an inter
rupt is received. When that occurs, response is immediate since no
cycles are wasted completing an executing instruction.

There are two responses to an interrupt after the WAI instruction is
executed. The first, as you might expect, is to release the waiting condi
tion and transfer control to the appropriate interrupt vector, as nor
mally takes place whenever interrupts are serviced. The second response
is if maskable interrupts (on the IRQ' line) have been disabled, in which
case the normal interrupt processing does not occur. However, since the
waiting condition is released, execution continues with the instruction
following the WAI opcode. This means that specialized interrupt-syn-
chronization routines can be coded with a one-cycle latency between
receipt of interrupt and response.

A second, similar 65802/65816 instruction is the STP or stop the
clock instruction. The STP instruction reduces on-chip power consump
tion to a very low level by stopping the phase two clock input. Since
power consumption of CMOS circuits increases with operating fre
quency, by halting the clock input the STP instruction is able to reduce
the power consumption of the 65816 to its lowest possible value. Like

13 Interrupts and System Control Instructions 261

the WAI instruction, the STP idles the processor after being executed.
Further, the processor I/O buffers are disabled, making the bus avail
able. The processor is powered back up in response to a RESET' signal
being asserted.

The RESET' pin is an input similar to the IRQ' and NMI' inputs. It is
used to perform system initialization or reinitialization. When a 65x sys
tem is first powered up, RESET' must be asserted by external power-up
circuitry. It can also be used to let the user force the system into a
known state, for example, to break out of an infinite loop.

When RESET' is asserted, the processor is forced to emulation mode
and the registers and status flags are initialized as shown in Table 13.3.
Note that the initialization of the index register high bytes to zero is
really a function of x being forced to one; x = 1 always clears the high
byte of the index registers.

Table 13 .3 . Reset Initialization.

Stack High 01
Direct Page Register 0000
X Register High 00
Y Register High 00
Program Bank Register 00
Data Bank Register 00
Status Register m = 1, x = 1, d = 0, i = 1
Emulation Flag 1

In addition to the BRK, IRQ', RESET' and NMI' vectors discussed,
there are two remaining interrupt-like vectors. These are the COP (co
processor) and ABORT' vectors. The COP vector is essentially a second
software interrupt, similar to BRK, with its own vector. Although it can
be used in a manner similar to BRK, it is intended particularly for use
with co-processors, such as floating-point processors. Like BRK, it is a
two-byte instruction with the second available as a signature byte.

The ABORT' vector contains the address of the routine which gains
control when the 65816 ABORT' signal is asserted. Prior to transferring
control through the ABORT' vector, the current instruction is com
pleted but no registers are m odified. The pc bank, program counter,
and status register are pushed onto the stack in the same manner as an
interrupt. The ABORT' signal itself is only available on the 65816;
although the 65802 has an ABORT' vector, it is ineffective since no
ABORT' signal can be generated because of the need for the 65802 to be
pin-compatible with the 6502. Typical application of the abort instruc
tion feature is the implementation of hardware memory-management
schemes in more sophisticated 65816 systems. When a memory-bounds
violation of some kind is detected by external logic, the ABORT' signal

262 Programming the 65816

is asserted, letting the operating system attempt to correct the memory-
management anomaly before resuming execution.

Status Register Control Instructions_______

There are nine instructions that directly modify the flags of the status
register; two of them are available only on the 65802 and 65816. These
last two are the SEP (set the P status register) and REP (reset P) instruc
tions, which you are already familiar with from their use in the exam
ples to set or reset the m and x flags in the status register. They can be
used to set or clear any of the flags in the status register. For each bit in
the immediate byte that follows the opcode, the corresponding bit in the
status register is set or cleared (depending on whether SEP or REP,
respectively, was used).

The other seven flag instructions set or clear individual flags in the
status register. The pair SEC and CLC set and clear the carry flag when
executed. These should be familiar to you from the chapter on arithme
tic, where the CLC is always used before the first of a series of ADC
instructions, and SEC before the first of a series of SBC instructions.
Likewise, the SED and CLD modes should also be familiar from the
same chapter's discussion of decimal-mode arithmetic; these two in
structions set or clear the decimal mode. Note that reset can also affect
the decimal flag: it is always initialized to zero on reset on the 65C02,
65802, and 65816; on the other hand, its value is indeterminate after
reset on the 6502.

The SEI (set interrupt disable flag) and CLI (clear interrupt disable
flag) instructions are new to this chapter: they are used to enable or dis
able the processor's response to interrupt requests via the IRQ' signal. If
the SEI instruction has been executed, interrupts are disabled; a CLI
interrupt instruction may be used to reenable interrupts. Note that the
interrupt disable flag is set automatically in response to an interrupt
request, whether a software interrupt or IRQ', NMI', or RESET'; this
"locks out" other interrupts from occurring until the current one has
been serviced. Similarly, the interrupt disable flag is cleared automati
cally upon return from an interrupt via RTI due to reloading of the
stacked status register, which was pushed with i clear.

The SEI lets interrupts be locked out during critical routines which
should not be interrupted. An example would be a device controller that
depended on software timing loops for correct operation; interrupts
must be locked out for the duration of the timing loop. It is important in
an environment where interrupts are supported that they not be locked
out for long periods of time. Although the CLI instruction will explicitly
clear the interrupt disable flag, it is rarely used because typically the
processor status is saved before execution of an SEI instruction as in

13 Interrupts and System Control Instructions 263

Fragment 13.3, which reclears the flag by restoring the entire processor
status register.

0000 08 PHP save status

0001 78 SEI disable interrupts

0002 .

0002 . execute time-critical code

0002 .

0002 28 PLP done— restore status, enable interrupts

Fragment 13.3.

Since the interrupt disable flag was clear when the PHP instruction was
executed, the PLP instruction restores the cleared flag. This same tech
nique is also useful when mixing subroutine calls to routines with differ
ent default modes for accumulator and index register sizes; since saving
the status with PHP is a common operation between subroutine calls
anyway, the PLP instruction can be used to conveniently restore operat
ing modes as well as status flags.

Finally, there is a CLV (clear overflow flag). There is no correspond
ing set overflow instruction, and, as you will recall from the chapter on
arithmetic, the overflow flag does not need to be explicitly cleared
before a signed operation. The arithmetic operations always change the
overflow status to correctly reflect the result. The reason for including
an explicit CLV instruction in the 65x repertoire is that the 6502, 65C02,
and 65802 have a SET OVERFLOW input signal; external hardware
logic can set the overflow flag of the status register by pulling the SET
OVERFLOW input low. Since there is no corresponding clear overflow
input signal, the overflow must be cleared in software in order to regain
susceptibility to the SET OVERFLOW signal.

The practical application of the SET OVERFLOW signal is generally
limited to dedicated control applications; it is rarely connected on
general-purpose, 6502-based computer systems. On the 65816, there is
no SET OVERFLOW input; it was sacrificed to make room for some
of the more generally useful new signals available on the 65816 pin
configuration.

No Operation Instructions_______________

The final two instructions to complete the 65816 instruction set are
the no operation instructions. These do exactly what they sound like:
nothing. They are used as place holders, or time-wasters; often they are

264 Programming the 65816

used to patch out code during debugging. The NOP instruction—with a
hexadecimal value of SEA—is the standard no operation.

As mentioned in the earlier architecture chapters, the 6502 and 65C02
have a number of unimplemented instructions—the same opcodes
which, on the 65802 and 65816, correspond to the new instructions. On
the 6502, the operation of the processor when these “instructions" are
executed is undefined; some of them cause the processor to "hang up."
On the 65C02, these are all "well-behaved" no-operations of either
one, two, or more cycles. On the 65802 and 65816, there is only one
unimplemented instruction, defined as WDM; this is reserved for future
systems as an escape prefix to expand the instruction set with sixteen-bit
opcodes. For this reason, it should not be used in your current pro
grams, as it will tend to make them incompatible with future genera
tions of the 65816.

Part IV
Applications

14 Selected Code
Samples

This chapter contains five different types of example programs, which
are examined in detail. Each focuses on a different topic of interest to
the 65x programmer: multiplication and division algorithms; a 65802-
to-6502 mode-switching tour de force ; a quick utility routine to deter
mine which 65x processor a program is running under; high-level
languages; and a popular performance benchmark.

267

268 Programming the 65816

Multiplication_________________________
Probably the most common multiply routine written for eight-bit

applications is to multiply one sixteen-bit number by another, returning
a sixteen-bit result. While multiplying two large sixteen-bit numbers
would yield a 32-bit result, much of systems programming is done with
positive integers limited to sixteen bits, which is why this multiply
example is so common. Be aware that a result over sixteen bits cannot
be generated by the examples as coded—you'll have to extend them if
you need to handle larger numbers.

There are several methods for the sixteen-by-sixteen multiply, but all
are based on the multiplication principles for multi-digit numbers you
were taught in grade school: multiply the top number by the right-most
digit of the bottom number; move left, digit by digit, through the bot
tom number, multiplying it by the top number, each time shifting the
resulting product left one more space and adding it to the sum of the
previous products:

2344
X 12211

2344
2344

4688
4688

2344
28622584

Or to better match the description:

2344
X 12211

2344
+ 2344

25784 sum of products so far
+ 4688

494584 sum of products so far
+ 4688

5182584 sum of products so far
+ 2344

28622584 final product (sum of all single-digit multiplies)

Binary multiplication is no different, except that, since each single-digit
multiply is by either zero or one, each resulting single-digit product is
either the top number itself or all zeroes.

14 Selected Code Samples 269

101
x 1010

000 5
101 x 10

000 0
101 5
110010 50 decimal

To have the computer do it, you have it shift the bottom operand
right; if it shifts out a zero, you need do nothing, but if it shifts out a
one, you add the top number to the partial product (which is initialized
at zero). Then you shift the top number left for the possible add during
the next time through this loop. When there are no more ones in the
bottom number, you are done.

6502 Multiplication

With only three eight-bit registers, you can't pass two sixteen-bit
operands to your multiply routine in registers. One solution, the one
used below, is to pass one operand in two direct page (zero page) bytes,
while passing the other in two more; the result is returned in two of the
6502's registers. All this is carefully documented in the header of the
routine in Listing 14.1.

This 6502 multiply routine takes 33 bytes.

65C02 Multiplication

With the same three eight-bit registers as the 6502, and an instruction
set only somewhat enhanced, the 65C02 multiply routine is virtually the
same as the 6502s. Only one byte can be saved by the substitution of an
unconditional branch instruction for the jump instruction, for a total
byte count of 32.

65802 and 65816 Multiplication

The 65802 and 65816, when running in native mode, have three regis
ters, all of which can be set to sixteen bits, in addition to having many
more addressing modes. As you might expect, a multiply routine for
these processors is considerably shorter than the 6502 and 65C02. What
you might not expect is how much shorter: the multiply routine in List
ing 14.2 for the 65802 and 65816 takes only 19 bytes—its length is less
than 60 percent of each of the other two routines!

Notice the additional documentation at the beginning of the routine.
The processor must have both its index registers and its accumulator in
sixteen-bit modes before calling this routine.

270 Programming the 65816

0 0 0 1 0 0 0 0 KEEP XL.14.1

0 0 0 2 0 0 0 0

0003 0 0 0 0

0004 0 0 0 0 1 16 by 16 = 16-bit multiply for 6502 microprocessor

0005 0 0 0 0 1 operand 1 : sixteen bits in direct page loc MCAND1/MCAND1+1

0006 0 0 0 0 1 operand 2 : sixteen bits in direct page loc MCAND2/MCAND2+1

0007 0 0 0 0 1 result: returnee in X-Y (hi-lo)

0008 0 0 0 0 1 all original register values are destroyed

0009 0 0 0 0

0 0 1 0 0 0 0 0 MULT START

0 0 1 1 0 0 0 0 MCAND1 GEQU $80

0 0 1 2 0 0 0 0 MCAN02 GEQU $82

0013 0 0 0 0

0014 0 0 0 0 A200 LDX # 0 initialize result (hi)

0015 0 0 0 2 A000 LDY # 0 initialize result (lo)

0016 0004

0017 0004 A580 MULT1 LDA MCAND1 operand 1 (lo)

0018 0006 0581 ORA MCAND1+1 operand 1 (hi); if 16-bit operand 1 is 0 , done

0019 0008 F016 BEQ DONE

0 0 2 0 OOOA 4681 LSR MCAN01+1 get right bit, operand 1

0 0 2 1 oooc 6680 ROR MCAND1

0 0 2 2 000E 9009 BCC MULT2 if clear, no addition to previous products

0023 0 0 1 0 18 CLC else add oprd 2 to partial result

0024 0 0 1 1 98 TYA

0025 0 0 1 2 6582 ADC MCAND2

0026 0014 A8 TAY

0027 0015 8 A TXA

0028 0016 6583 ADC MCAND2+1

0029 0018 AA TAX

0030 0019

0031 0019 0682 MULT2 ASL MCAND2 now shift oprd 2 left for poss. add next

iteration

0032 0 0 1 B 2683 ROL MCAND2+1

0033 0 0 1 0 4C0400 JMP MULT1

0034 0 0 2 0

0035 0 0 2 0 60 DONE RTS

0036 0 0 2 1

0037 0 0 2 1 END

Listing 14.1.

14 Selected Code Samples 271

0 0 0 1 0 0 0 0 KEEP KL.14.2

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 1 16 by 16 = 16 multiply

0005 0 0 0 0 1 for 65802/65816 microprocessors in native mode with

0006 0 0 0 0 1 i ndex registers and accumulator already set to 16 bits

0007 0 0 0 0 1 operand 1 : sixteen bits in direct page location MCAND1

0008 0 0 0 0 1 operand 2 : sixteen bits in direct page location MCAND2

0009 0 0 0 0 1 result: sixteen bits returned in accumulator

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0 MULT START

0 0 1 2 0 0 0 0 MCAN01 GEQU $80

0013 0 0 0 0 MCAND2 GEQU $82

0014 0 0 0 0

0015 0 0 0 0 18 CLC

0016 0 0 0 1 FB XCE

0017 0 0 0 2 C230 REP #$30

0018 0004

0019 0004 LONGA ON tell assembler about

0 0 2 0 0004 LONGI ON index & accum settings

0 0 2 1 0004

0 0 2 2 0004 A90000 LDA # 0 initialize result

0023 0007

0024 0007 A680 MULT1 LDX MCAND1 get operand 1

0025 0009 FOOB BEQ DONE if operand 1 is zero, done

0026 OOOB 4680 LSR MCAND1 get right bit, operand 1

0027 0 0 0 0 9003 BCC MULT2 if clear, no addition to previous products

0028 OOOF 18 CLC else add oprd 2 to partial result

0029 0 0 1 0 6582 ADC MCAND2

0030 0 0 1 2

0031 0 0 1 2 0682 MULT2 ASL MCAND2 now shift oprd 2 left for poss add next time

0032 0014 80F1 BRA MULT1

0033 0016

0034 0016 38 DONE SEC

0035 0017 FB XCE

0036 0018 60 RTS

0037 0019 END

Listing 14.2.

272 Programming the 65816

Along the same lines, notice that the first two lines of the subroutine
are the mode directives—LONGA ON and LONGI ON—which inform
the assembler that all three registers have been set to sixteen bits. That
way, when the accumulator is loaded with immediate zero, the assem
bler will generate a sixteen-bit operand rather than an incorrect eight-bit
one, which would cause program failure when executed.

The RTS instruction is the intra-bank return instruction. An RTL
instruction could be substituted if the subroutine were intended to be
called only by long jump-to-subroutine instructions, whether by code
outside the bank or by code within it. You should document such a
requirement in the routine's introductory comments.

Division______________________________

Probably the most common division routine written for eight-bit
applications is the converse of the multiply routine just covered—to
divide one sixteen-bit number by another sixteen-bit number, returning
both a sixteen-bit quotient and a sixteen-bit remainder.

There are several methods for doing this, but all are based on the
division principles for multi-digit numbers that you learned in grade
school. Line up the divisor under the left-most set of digits of the divi
dend, appending an imaginary set of zeroes out to the right, and
subtract as many times as possible. Record the number of successful
subtractions; then shift the divisor right one place and continue until the
divisor is flush right with the dividend, and no more subtractions are
possible. Any unsubtractable value remaining is called the remainder.

12211 remainder 1
2344 I 28622585

-2344
5182585

-2344
2838585

-2344
494585

-2344
260185

-2344
25785

-2344
2345

-2344
1

0001
0002
0003

0004

0005

0006

0007

0008

0009

0010
0011
0012
0013

0014

0015

0016

0017

0018

0019

14 Selected Code Samples 273

Binary division is even easier since, with only ones and zeroes, sub
traction is possible at each digit position either only once or not at all:

1100 remainder 1 12 remainder 1
101 1111101 5 [6 l

-101 -_5
10101 11

-101 -_5
01 6

-_5
1

Many programs calling this division routine will need only the quo
tient or only the remainder, although some will require both. The rou
tines here return both.

6502 Division

The 6502, with its three eight-bit registers, handles passing parameters
to and from a division routine even less smoothly than to and from a
multiplication routine: not only do you need to pass it two sixteen-bit
values, but it needs to pass back two sixteen-bit results.

The solution used in Listing 14.3 is to pass the dividend and the divi
sor in two direct page double bytes, then pass back the remainder in a
direct page double byte and the quotient in two registers.

0 0 0 0 KEEP Kl.14.3

0 0 0 0

0 0 0 0

0 0 0 0 ; 16 divided by 16 = 16 divide for 6502 microprocessor

0 0 0 0 ; divide DIVDND / DIVSOR -> XA (hi - lo); remainder in DIVDND

0 0 0 0 ; DIVOND and DIVSOR are direct page double byte cells

0 0 0 0 ; no special handling for divide by zero (returns SFFFF quotient)

0 0 0 0

0 0 0 0 DIV START

0 0 0 0 DIVDND GEQU $80

0 0 0 0 DIVSOR GEQU $82

0 0 0 0

0000 A900 LDA #0

0002 AA TAX initialize quotient (hi)

0003 48 PHA initialize quotient (lo)

0004 A001 LDY #1 initialize shift count = 1

0006 A582 LDA DIVSOR get high byte of divisor

0008 300B BMI DIV2 bra if divisor can't be shifted left

OOOA

274

0020
0021
0022
0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

0050

0051

0052

0053

0054

Programming the 65816

000A C8 DIV1 INY else shift divisor to leftmost position

000B 0682 ASL DIVSOR

000D 2683 ROL DIVSOR+1 test divisor

000F 3004 BMI DIV2 done if divisor in leftmost position

0 0 1 1 C0 1 1 CPY #17 max count (all zeroes in divisor)

0013 00F5 BNE DIV1 loop if not done

0015

0015 38 0IV2 SEC now do division by subtraction

0016 A580 LDA DIVDND subtract divisor from dividend

0018 E582 SBC DIVSOR low bytes first

001A 48 PHA save lo difference temporarily on stack

001B A581 LDA DIVDND+1 then subtract high bytes

001D E583 SBC DIVSOR+1

001F 9006 BCC DIV3 bra if can't subtract divisor from dividend

0 0 2 1 ; else carry is set to shift into quotient

0021 8581 STA DIVDND+1 store high byte of difference

0023 6 8 PLA get low subtract result from stack

0024 8580 STA DIVDND

0026 48 PHA restore low subtract result->stack for pull

0027 6 8 0IV3 PLA throw away low subtract result

0028 6 8 PLA get quotient low byte from stack

0029 2A ROL A shift carry->quotient (1 for divide, 0 for not)

002A 48 PHA put back on stack

002B 8 A TXA get quotient high byte

002C 2A ROL A continue shift->quotient (high)

002D AA TAX put back in x

002E 4683 LSR DIVSOR+1 shift divisor right for next subtract

0030 6682 ROR DIVSOR

0032 8 8 DEY decrement count

0033 D0E0 BNE DIV2 branch unless done (count is 0)

0035

0035 6 8 DONE PLA get quotient (lo)

0036 60 RTS

0037

0037 END

Listing 14.3.

The label DONE is not needed (there is no branch to the location),
but was added for clarity.

The routine at DIV2 may seem curious. The 6502 has no sixteen-bit
compare; to compare two sixteen-bit numbers, you must actually sub
tract them (setting the carry first, as is required before a subtract using
the 65x SBC instruction). So the divisor is subtracted from the dividend,
with the low result saved on the stack. If the carry is clear, the divisor is

14 Selected Code Samples 275

too large to be subtracted from the dividend. Thus a branch is taken to
DIV3, where the low result is pulled but not used and the cleared carry
is rolled into the quotient to acknowledge the unsuccessful subtraction.
If the carry is set, then the high result, still in the accumulator, is stored,
and the low result is pulled from the stack, stored, then restacked to be
repulled at DIV3; since the carry is known to be set, it does not need to
be explicitly set before rolling it into the quotient to acknowledge the
successful subtraction.

The quotient is returned in registers X and A.
This 6502 divide routine takes 55 bytes.

65C02 Division
The 65C02 routine is virtually the same; only three early instructions

(shown in Fragment 14.1) in the 6502 routine are changed to the code in
Fragment 14.2, for a net savings of one byte, because the 65C02 has
instructions to push the index registers. This 65C02 divide routine takes
54 bytes, one byte fewer than the 6502 divide routine takes.

0000 A900 LDA #0

0002 AA TAX
0003 48 PHA

Fragment 14.1.

0000 A200 LDX #0
0002 DA PHX

Fragment 14.2.

65802/65816 Division
The 65802 and 65816 processors, with their registers extendable to

sixteen bits, can handle sixteen-bit division with ease. In the divide rou
tine in Listing 14.4, the dividend and the divisor are passed in sixteen-bit
registers X and A respectively; the quotient is passed back in a sixteen-
bit direct page location and the remainder in X.

0 0 0 1 0 0 0 0 KEEP KL.14.4

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

276 Programming the 65816

0004 0 0 0 0 16 divided by 16 = 16 divide for 65802/65816 microprocessor

0005 0 0 0 0 16-bit divide: X / A -> QUOTNT; remainder in X

0006 0 0 0 0 QUOTNT is a 16-bit direct page cell

0007 0 0 0 0 native mode: all registers set to 16-bit modes

0008 0 0 0 0 no special handling for divide by zero (returns $FFFF quotient)

0009 0 0 0 0

0 0 1 0 0 0 0 0 DIV START

0 0 1 1 0 0 0 0 QUOTNT GEQU $80

0 0 1 2 0 0 0 0

0013 0 0 0 1

0014 0 0 0 2

0015 0004

0016 0004 LONGA ON tell assembler about 16-bit

0017 0004 LONGI ON index 8 accumulator settings

0018 0004

0019 0004 6480 STZ QUOTNT initialize quotient to 0

0 0 2 0 0006 A00100 LDY # 1 initialize shift count to 1

0 0 2 1 0009

0 0 2 2 0009 OA DIV1 ASL A shift divisor: test leftmost bit

0023 OOOA B006 BCS DIV2 branch when get leftmost bit

0024 OOOC C8 INY else increment shift count

0025 0 0 0 D C0 1 1 0 0 CPY #17 max count (all zeroes in divisor)

0026 0 0 1 0 D0F7 BNE DIV1 loop if not done

0027 0 0 1 2

0028 0 0 1 2 6 A DIV2 ROR A put shifted-out bit back

0029 0013

0030 0013 now divide by subtraction

0031 0013 48 0IV4 PHA push divisor

0032 0014 8 A TXA get dividend into accumulator

0033 0015 38 SEC

0034 0016 E301 SBC 1,S subtract divisor from dividend

0035 0018 9001 BCC DIV3 bra if can't subtract; dividend still in X

0036 0 0 1 A AA TAX store new dividend; carry= 1 for quotient

0037 0 0 1 B

0038 0 0 1 B 2680 DIV3 ROL QUOTNT shift carry->quotient (1 for divide, 0 for not)

0039 0 0 1 D 6 8 PLA pull divisor

0040 0 0 1 E 4A LSR A shift divisor right for next subtract

0041 0 0 1 F 8 8 DEY decrement count

0042 0 0 2 0 D0F1 BNE DIV4 branch to repeat unless count is 0

0043 0 0 2 2

0044 0 0 2 2

0045 0023

0046 0024 60 RTS

0047 0025 END

Listing 14.4.

14 Selected Code Samples 277

This divide routine for the 65802 and 65816 generates only 31 bytes,
little more than half the bytes the 6502 and 65C02 divide routines gen
erate.

As the introductory comments note, it requires the processor to be in
native mode and the m and x memory select flags to be in sixteen-bit
modes before the routine is called; these requirements become doubly
obvious when you see in another of the comments that the values
passed in the accumulator and an index register are sixteen bits, with
one of the two sixteen-bit results being passed back in one of the same
registers. Assemblers, however, do not read comments; they only read
instructions and directives. That's the reason for the LONGA ON and
LONGI ON directives at the beginning of the routine.

Calling an Arbitrary 6502 Routine____________
Particularly during the early phases of the processor's life cycle, you

might wish to mix existing 6502 code with your 65816 applications. The
routine provided below provides a general purpose way of doing this.
Additionally, the context-saving code illustrated here could prove useful
in other applications. You'll find similar code in the debugger in the next
chapter, where it is needed to save the context between instructions of
the user program being traced.

The simplest way to call a 6502 routine from the 65802 or 65816 is
found in Fragment 14.3.

0000 38 SEC

0001 FB XCE

0002 200080 JSR D06502

Fragment 14.3.

Although this will work fine in som e cases, it is not guaranteed to. In
order to be assured of correct functioning of an existing 6502 routine,
the direct page register must be reset to zero and the stack pointer must
be relocated to page one. Although a 6502 program that uses zero page
addressing will technically function correctly if the direct page has been
relocated, the possibility that the zero page may be addressed using
some form of absolute addressing, not to mention the probability that
an existing 6502 monitor or operating system routine would expect to
use values previously initialized and stored in the zero page, requires
that this register be given its default 6502 value.

If the stack has been relocated from page one, it will be lost when the

278 Programming the 65816

switch to emulation mode substitutes the mandatory stack high byte of
one. So first, the sixteen-bit stack pointer must be saved. Second, if the
65802/65816 program was called from a 6502 environment, then there
may be 6502 values on the original 6502 page-one stack; such a program
must squirrel away the 6502 stack pointer on entry so it can be restored
on exit, as well as used during temporary incursions, such as this rou
tine, into the 6502 environment.

The goal, then, is this: provide a mechanism whereby a programmer
may simply pass the address of a resident 6502 routine and any registers
required for the call to a utility which will transfer control to the 6502
routine; the registers should be returned with their original (potentially
sixteen-bit) values intact, except as modified by the 6502 routine; and
finally the operating mode must be restored to its state before the call.

When loading the registers with any needed parameters, keep in mind
that only the low-order values will be passed to a 6502 subroutine, even
though this routine may be entered from either eight- or sixteen-bit
modes.

The call itself is simple; you push the address of the routine to be
called, minus one, onto the stack, typically using the PEA instruction.
Then you call the routine, which executes the subroutine call and man
ages all of the necessary housekeeping. Fragment 14.4 gives an example
of calling the routine.

0000 A94100 LOA #'A' character to be printed

0003 F4ECFD PEA $FDED-1 routine to be called

0006 200080 JSR JSR6502

Fragment 14.4.

$FDED is the address of an existing Apple // routine to print characters,
and JSR6502 is the routine described in Listing 14.5.

0 0 0 1 0 0 0 0 KEEP KL.14.5

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 JSR6502 START

0005 0 0 0 0

0006 0 0 0 0

0007 0 0 0 0 ; used by 65816 program called by 6502 code before moving stack

0008 0 0 0 0

0009 0 0 0 0 08 PHP save flags, including register sites

0 0 1 0 0 0 0 1

14 Selected Code Samples 279

0 0 1 1 0 0 0 1 C230 REP #$30 set all registers to 16 bits

0 0 1 2 0003 LONGA ON

0013 0003 LONGI ON

0014 0003

0015 0003 DA PHX then push them

0016 0004 5A PHY push index regs

0017 0005 OB PHD push direct page base

0018 0006 48 PHA push accum

0019 0007

0 0 2 0 0007 ; set up page- 1 stack ptr, saving 65802 stack ptr in DP & on new stack

0 0 2 1 0007 38 TSC save old stack pointer in

0 0 2 2 0008 5B TCD direct page register

0023 0009 2900FF AND #$FF0 0 mask stack pointer to examine high byte

0024 OOOC C90001 CMP # $ 1 0 0

0025 000 F F004 BEQ USESTK branch if stack already in page 1

0026 0 0 1 1 AD4F00 LDA STK6502 else retrieve safe 6502 stack pointer

0027 0014 18 TCS and load stack pointer with it

0028 0015 OB USESTK PHD push old stack pointer onto new stack

0029 0016

0030 0016 ; set up a return-to-this-code return address on new stack

0031 0016 ; (direct page register points to old stack with orig accum at 1)

0032 0016

0033 0016 F42700 PEA RETURN-1 push local return address (out exit code)

0034 0019 D40C PEI (1 2) push routine addr from prev stack onto this one

0035 0 0 1 B A50A LDA 1 0 shuffle return address

0036 0 0 1 D 850C STA 1 2 to bottom of old stack

0037 0 0 1 F A501 LDA 1 restore accum from prev stack using dp reg

0038 0 0 2 1

0039 0 0 2 1 ; set direct page to zero page

0040 0 0 2 1 F40000 PEA 0 set direct page

0041 0024 2B PLD to zero page

0042 0025

0043 0025 ; switch to emulation mode

0044 0025 38 SEC

0045 0026 FB XCE switch to emulation mode

0046 0027 LONGA OFF

0047 0027 LONGI OFF

0048 0027

0049 0027 ; and call 6502 routine

0050 0027 60 RTS JSR (via RTS) to 6502 routine 3 stacked addr

0051 0028

0052 0028 »
0053 0028 ; 6502 routine returns here

0054 0028 08 RETURN PHP now save returned flag results from 6502 code

0055 0029 EB XBA save returned A accum in B accum

0056 0 0 2 A 6 8 PLA get flags into A accum

280 Programming the 65816

0057 002B 2B PLD get old stack pointer

0058 002C

0059 002C address old stack values as direct page:

0060 002 C dp (stack) offset 12.13 = return address back to 65802/65816 code

0061 002 C 10.11 = unused (orig held addr of 6502 routine)

0062 002 C 9 = orig P flags

0063 002C 7.8 = orig 16-bit X

0064 002 C 5.6 = orig 16-bit V

0065 002C 3.4 = orig DP

0066 002 C 1 . 2 = orig 16-bit accum

0067 002C 0 = was next available stack location

0068 002C

0069 002C combine returned condition flags with 65802/816 mode flags

0070 0 0 2 C 29CF AND #%11001111 mask out m & x flags

0071 002E 850B STA 11 save for a minute; dp:11 is free

0072 0030 A509 LDA 9 get orig P value

0073 0032 2930 AND #X00110000 mask out all but m & x flags

0074 0034 050B ORA 11 combine new condition flags with old m & x

0075 0036 850B STA 11 store new P S 11

0076 0038 9.10 in old stack now free

0077 0038

0078 0038 save registers returned from 6502 routine

0079 0038 EB XBA swap: 6502 accum back to A

0080 0039 8501 STA 1 save returned accumulator low

0081 003 B 8405 STY 5 save returned Y low

0082 003 D 8607 STX 7 save returned X low

0083 003 F

0084 003 F 18 CLC

0085 0040 FB XCE restore native mode

0086 0041

0087 0041 C230 REP #$30 extend register size back to 16 bits

0088 0043 LONGA ON

0089 0043 LONGI ON

0090 0043

0091 0043 OB PHD

0092 0044 FA PLX

0093 0045 9A TXS restore old stack pointer

0094 0046

0095 0046 but still address old stack via direct page

0096 0046

0097 0046 6 8 PLA copy accum to free stack bytes 3 dp:9.10

0098 0047 8509 STA 9

0099 0049 stack was moved by PLA, but DP was not

0 1 0 0 0049

0 1 0 1 0049 pull registers from stack

0 1 0 2 0049 2B PLD restore old direct page

0103
0104

0105

0106

0107

0108

0109

0110
0111
0112

0113

0114

0115

14 Selected Code Samples 281

004A 7A PLY

004B FA PLX

004C 6 8 PLA load accumulator again

0040 28 PLP get 6502 condition flags; 65802/816 modes

004E

004E 60 RTS done!

004 F

004F 8001 STK6502 DC A '$180' arbitrary 'safe' stack in page one

0051 smart user will store last page one

0051 stack value here before switching stack

0051 out of page one

0051

0051 END

Listing 14.5.

The routine is entered with the return address on the top of the stack,
and the go-to address of the 6502 routine at the next location on the
stack. Since you want to be able to restore the m and x mode flags, the
first thing the routine does is push the status register onto the stack. The
REP #$30 instruction, which follows, puts the processor into a known
state, since the routine can be called from any of the four possible
register-size modes. The long accumulator, long index mode is the obvi
ous choice because it encompasses all the others. The user registers,
including the direct page register, are saved on the stack, and then the
stack pointer itself is saved to the direct page register via the accumula
tor. This has two benefits: it preserves the value of the old stack pointer
across a relocation of the stack, and provides a means of accessing all of
the data on the old stack after it has been relocated. This technique
is of general usefulness, and should be understood clearly. Figure
14.1, which shows the state of the machine after line 0034 (the PEI
instruction), helps make this clear.

The stack must be relocated to page one only if it is not already there.
If it is elsewhere, then the last 6502 page-one stack pointer should be
restored from where it was cubbyholed when the 65802/65816 program
took control and moved the stack elsewhere. If there is no previous 6502
stack to avoid, any page one address could be used to initialize the tem
porary 6502 stack needed.

The first item that goes onto the new stack is the value of the old
stack pointer, now found in the direct page register. Next, a local return
address must be pushed on the stack for when the called 6502 routine
executes an RTS.

While the direct page register was pushed onto the new stack, it

282 Programming the 65816

STACK

POINTER

40

20

30

4D

FD

EC

OLD STACK
POINTER

RETURN
ADDRESS

ADDRESS OF
6502 ROUTINE

$4020

FD

EC

C3

4F

XH

XL

YH

YL

DPH

DPL

AH

AL

ADDRESS OF
6502 ROUTINE

RETURN ADDRESS

P REGISTER

X REGISTER

Y REGISTER

DIRECT PAGE

AC C U M U LATO R

STACK DIRECT PAGE
(OLD STACK)

Figure 14.1. Stack Snapshot after PEI (12) Instruction.

14 Selected Code Samples 283

retains its value, and still points to the old stack; so although the stack
pointer has been relocated, you still have access to the values on the old
stack via direct page addressing. One of the needed items is the go-to
address, the address of the 6502 routine to be called. Since the size of all
of the elements pushed on the stack is known, by referencing the direct
page location 12, this value is retrieved. A PEI (push indirect) instruc
tion is used to transfer the routine to be called from the old stack (now
being referenced via the direct page) to the new stack. This frees up the
double byte on the old stack at dp:12.13, the bottom of the old stack;
the return address is shuffled in from dp:10.11, freeing those two bytes.

The accumulator was used during these operations, and must be
restored because it may contain one of the parameters required by the
6502 routine. Like the go-to address, the accumulator is loaded from the
old stack using direct page addressing.

Having restored the accumulator, all that remains is to set the direct
page register to zero; since no registers can be modified at this point,
this is accomplished by pushing a zero onto the stack, and then pulling
it into the direct page register.

When you switch the processor into emulation mode, the environ
ment is as it should be; the new stack is now set up to transfer control to
the 6502 subroutine via the execution of an RTS instruction which,
rather than exiting the JSR6502 routine, performs a kind of jump indi
rect to the value on top of the stack, the go-to address. The use of the
RTS to transfer control to the 6502 routine is the reason the address
minus one is put on the stack to begin with. This requirement could be
eliminated if the go-to address was decremented before being pushed on
the page one stack; but this would require the execution of two addi
tional instructions, one to load it into a register, and one to decrement.
PEI moves the value directly onto the stack from the direct page.

When control returns from the 6502 routine, the flags, representing
the 6502 routine's results, are pushed, then pulled into the eight-bit A
accumulator after its value has been saved by transferring it to the B
accumulator with an XBA. The only other item left on the new stack is
the old stack pointer. This is pulled into the direct page register, which
immediately restores access to all of the values pushed onto the old
stack.

The condition code bits in the returned status register are merged with
the mode flags in the original status register. The eight-bit result is
stored in the location immediately below the return address.

The register values upon return are saved into the locations where the
registers were originally pushed on the stack. Since the processor is still
in emulation mode, only the low bytes are stored; the high bytes of any
of the 65802/65816 registers are always preserved (which means that if a
low byte is unchanged, then the entire double-byte value is preserved).

284 Programming the 65816

The native mode is restored. The registers are extended to sixteen bits.
The stack pointer is restored from the direct page register.

There remains a gap on the stack; the value of the accumulator is cop
ied there. The registers are now restored, with the accumulator being
pulled a second time from its new location.

Control is now back with the calling 65816 program, the processor
never the wiser for having been transformed into a 6502.

This coding presumes that the calling code, the switching routine, and
the 6502 routine are all located in the same bank, bank zero. It also
assumes a data bank of zero. Should the 6502 routine be in a non-zero
bank, then you should save its program bank to a safe location prior to
the switch to emulation mode so that it cannot be lost in case of inter
rupt. You should also check your emulation mode interrupt service rou
tines to be sure they restore the program bank from the safe location
prior to returning.

Finally, should the calling code be in a bank different from the 6502
routine, you'll have to locate the switching code in the same bank with
the 6502 routine (its return will be an RTS); call the switching code with
a JSL; move the pushed program bank down two bytes to the bottom of
the stack before relocating the return address; and return to the calling
code via an RTL.

Testing Processor Type_________________
A related utility routine (Listing 14.6) checks the processor type,

allowing code targeted for the large 6502 installed-base to take advan
tage of a 65C02 or 65802/65816 if available. The processor is assumed
to be in emulation mode if it is a 65816 or 65802.

This routine takes advantage of the fact that the 65C02 and 65816 set
the sign flag correctly in the decimal mode, while the 6502 does not. The
sign flag is set (minus) after loading $99 (a negative two's-complement
number). When one is added to BCD 99, the result is BCD 0, a positive
two's-complement number. On the 6502, adding one in decimal mode
does not affect the sign flag. On the 65C02 and 65816, the sign flag is
cleared to reflect that adding one results in a positive value (zero).

Having distinguished between the 65C02 and the 6502, the code fur
ther distinguishes between the 65C02 and 65816 by trying to execute one
of the new 65816 instructions—specifically, the XCE instruction. If a
65C02 is in use, the execution of XCE has no effect; it simply performs a
no-op, and the carry flag remains clear. On a 65816 in emulation mode,
the carry flag would be set after exchanging.

14 Selected Code Samples 285

0 0 0 1 0 0 0 0 KEEP KL.14.6

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 LONGA OFF

0005 0 0 0 0 LONGI OFF generate '6502' code

0006 0 0 0 0

0007 0 0 0 0 CHECK -

0008 0 0 0 0 CHECK PROCESSOR TYPE

0009 0 0 0 0 MINUS = 6502

0 0 1 0 0 0 0 0 CARRY CLEAR = 65C02

0 0 1 1 0 0 0 0 CARRY SET = 65816

0 0 1 2 0 0 0 0

0013 0 0 0 0 CHECK START

0014 0 0 0 0 F8 SED Trick with decimal mode used

0015 0 0 0 1 A999 LDA #$99 set negative flag

0016 0003 18 CLC

0017 0004 6901 ADC # $ 0 1 add 1 to get new accum value of 0

0018 0006 3006 BMI DONE branch if 0 does not clear negative flag: 6502

0019 0008

0 0 2 0 0008 else 65C02 or 65802 if neg flag cleared by decimal-mode arith

0 0 2 1 0008

0 0 2 2 0008 18 CLC

0023 0009 FB XCE OK to execute unimplemented C02 opcodes

0024 OOOA 9002 BCC DONE branch if didn't do anything: 65C02

0025 OOOC FB XCE switch back to emulation mode

0026 0 0 0 D 38 SEC set carry

0027 000E D8 DONE CLD bi nary

0028 000F 60 RTS

0029 0 0 1 0 END

Listing 14.6.

Compiler-Generated 65816 Code for a
Recursive Program_____________________

Although it is not directly relevant to assembly-language program
ming per se, a look at how a compiler might generate 65816 code pro
vides another angle on 65816 program design. You may also find it
helpful when you are writing in a high-level language to have some idea
as to what kind of code your compiler might be generating.

For the brief example presented here, an integer-only subset of the C
programming language—such as the dialect known as "small C "—is
used. To understand C, it is important to understand the concept of the
pointer. Effectively, a pointer is a variable that holds the address of

286 Programming the 65816

another data structure. C programmers are particularly known for their
liberal use of pointers, primarily because they provide a method to
manipulate data structures that is very close to the machine level. The
concept of the variable itself is an abstraction which generally results in
additional overhead.

The most notable thing about the use of pointers in the example is
that they are limited to sixteen bits, even though the 65816 has an
address space of sixteen megabytes. The sixteen-bit machine word size
was chosen both for pointers and for the storage type int; this lets many
operations be implemented using one or two 65816 instructions. As a
consequence, the memory model used with this compiler limits data
storage to 64K; program storage is also limited to 64K. If the loader for
this hypothetical compiler supports loading of constant data and pro
gram code into separate banks, a total of 128K memory would be avail
able to the program.

The first line of the program, shown in Listing 14.7, is the declaration
of the function main. By convention, the function main is always called
as the entry point to a program; it typically (but not necessarily) is the
first routine coded, as it is in this example.

The curly braces define the function block; the first statement in the
block is the declaration of y, which is a pointer to a character; an aster
isk before an identifier indicates that it is a pointer variable. In C, point
ers are typed by the type of the data object to which they point.

main ();

{
char *y;

y = "A string to invert";

invert(y);

>

invert(yy) char *yy;

if (*yy)

<
invert(yy+1);

putchar(*yy);

>
}

Listing 14.7.

The first executable statement is the assignment of the string constant
“A string to invert" to the variable y. In this context, the y appears

14 Selected Code Samples 287

without the asterisk, because the variable is being given a value—an
address—rather than the string it points to. The C compiler always
returns the address of a string and zero-terminates it when it encounters
a string constant.

The next statement is a call to the function invert with a parameter of
y (which is the variable that just received a value in the preceding state
ment). Invert is the function that actually does the work of this pro
gram, which, as you may have guessed by now, prints an inverted
(backwards) string.

After the closing brace for main comes the declaration of the function
invert. Invert takes a parameter—a pointer to a character. When invert
is called from main with y as the parameter, yy assumes the value of y.

The code of invert tests the value poin ted to by yy; the first time
invert is called, this will be the letter "A", the first character in the string
constant. The test is whether or not the value "at yy" is non-zero or not;
if it is non-zero, the statements within the braces will be executed. If (or
when) the value is equal to zero, the code within the braces is skipped.

Looking at the first of the pair of lines contained within the braces,
you will find that it is a call to invert—the same function presently
being defined. This calling of a routine from within itself is called recur
sion, and programming languages such a C or Pascal, which allocate
their local variables on the stack, make it easy to write recursive pro
grams such as this one. The merits of using recursion for any given
problem are the subject for another discussion; however, as seen in the
example, it seems quite useful for the task at hand. What happens when
this function calls itself will be explored in a moment, as the generated
code itself is discussed.

The last executable line of the program calls the routine putchar, an
I/O routine that outputs the value passed it as a character on the stand
ard (default) output device.

Returning to the top of the program, Listing 14.8 shows the code gen
erated by the compiler to execute the C program; it is inter-listed with
the source code—each line of compiler source appears as an assembler-
source comment.

Before the first statement is compiled, the compiler has already gener
ated some code: a jump to a routine labeled CCMAIN. CCMAIN is a
library routine that performs the "housekeeping" necessary to provide
the right environment for the generated code to run in. At the very
least, CCMAIN must make sure the processor is in the native mode, and
switch into the default (for the compiler) sixteen-bit index and accumu
lator word sizes. If the operating system supports it, it should also ini
tialize the variables argc and argv, which allow the programmer access
to command-line parameters, although they are not used in this exam
ple. Finally, CCMAIN will call main to begin execution of the user-writ
ten code itself.

288 Programming the 65816

0 0 0 1 0 0 0 0 KEEP A. OUT

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 CCO START

0005 0000 4C0080 JMP CCMAIN

0006 0003 END

0007 0 0 0 0 ;main ();

0008 0 0 0 0 main START

0009 0 0 0 0 ;{

0 0 1 0 0 0 0 0 ; char *y;

0 0 1 1 0 0 0 0 ; y = "A string to invert";

0 0 1 2 0000 DA PHX

0013 0001 A90080 LDA RCCCO+O

0014 0004 8301 STA 1.S

0015 0006 ; invert(y);

0016 0006 A301 LDA 1.S

0017 0008 48 PHA

0018 0009 200080 JSR invert

0019 OOOC FA PLX

0 0 2 0 000D ;>

0 0 2 1 000D FA PLX

0 0 2 2 OOOE 60 RTS

0023 OOOF END

0024 0 0 0 0 ;invert(yy) char *yy;

0025 0 0 0 0 invert START

0026 0 0 0 0 ;C

0027 0 0 0 0 ; if (*yy)

0028 0 0 0 0 AOOOOO LDY # 0

0029 0003 B303 LDA (3,S),Y

0030 0005 29FF00 AND #$ F F

0031 0008 D003 BNE *+5

0032 OOOA 4C1F00 JMP CC3

0033 OOOD ; {

0034 0 0 0 D ; invert(yy+1);

0035 OOOD A303 LDA 3,S

0036 OOOF 1A INC A

0037 0010 48 PHA

0038 0 0 1 1 200080 JSR invert

0039 0014 FA PLX

0040 0015 ; putcharf* yy>;

14 Selected Code Samples 289

0041 0015 AOOOOO LDY #0

0042 0018 B303 LDA (3,S),Y

0043 0 0 1 A 48 PHA

0044 0 0 1 B 200080 JSR putchar

0045 0 0 1 E FA PLX

0046 0 0 1 F ; >
0047 0 0 1 F ;>

0048 001 F 60 CC3 RTS

0049 0 0 2 0 END

0050 0 0 0 0

0051 0 0 0 0 CCCO START

0052 0 0 0 0 41207374 DC 11 '$41,$20,$73,$74,$72,$69,$6E,$67

0053 0008 20746F20 DC 11 '$20,$74,$6F,$20,$69,$6E,$76,$65

0054 0 0 1 0 727400 DC 11'$72,$74,$00'

0055 0013 END

0056 0 0 0 0

0057 0 0 0 0 1 'LIBRARY' ROUTINES -- AS IF TO BE LINKED TO

0058 0 0 0 0 ; SOURCE PROGRAM

0059 0 0 0 0

0060 0 0 0 0 CCMAIN START

0061 0 0 0 0 18 CLC

0062 0 0 0 1 FB XCE

0063 0 0 0 2 C230 REP #$30

0064 0004 200080 JSR MAIN

0065 0007 38 SEC

0066 0008 FB XCE

0067 0009 60 RTS

0068 000A END

0069 0 0 0 0

0070 0 0 0 0

0071 0 0 0 0 PUTCHAR START

0072 0 0 0 0 COUT GEQU $FDED Apple // character output

0073 0 0 0 0

0074 0 0 0 0

0075 0 0 0 0 A303 LDA 3,S get parameter From stack

0076 0 0 0 2

0077 0 0 0 2 08 PHP

290 Programming the 65816

0078 0003 38 SEC

0079 0004 FB XCE

0080 0005 20EDFD JSR

0081 0008 18 CLC

0082 0009 FB XCE

0083 000A

0084 000A 28 PLP

0085 0 0 0 B 60 RTS

0086 ooo: END

Listing 14.8.

The declaration of main causes an assembler START statement to be
output; this simply defines the beginning of the subroutine or function.
The declaration char *y will cause the PHX instruction to be generated
after the first line of executable code is generated; this reserves space for
one variable (the pointer y) on the stack. That first executable code line
is the assignment y = "A string to invert". This causes the address of
the string constant, which will be temporarily stored at the end of the
generated program, to be loaded into the accumulator. The address just
loaded into the accumulator is now stored on the stack in the memory
reserved for it by the PHX instruction; the value of X that was pushed
onto the stack was meaningless in itself.

The next statement to be compiled is a call to the function invert with
the variable y as the parameter. This causes the value stored on the
stack to be loaded back into the accumulator, where it is then pushed
onto the stack. All parameters to function calls are passed on the stack.

Note that the accumulator already contained the value stored on the
top of the stack; the LDA 1,S instruction was redundant. However, the
hypothetical compiler in this example does not optimize across state
ments, so the potential optimization—elimination of the load instruc
tion—cannot be realized. Once the parameter is on the top of the stack,
the function itself is called via a JSR instruction. Since the program
space is limited to 64K, only a sixteen-bit subroutine call is used. After
the call returns, the PLX instruction removes the no-longer-needed pa
rameter from the stack. The right bracket indicating the end of the func
tion main causes the compiler to generate another PLX to remove the
variable storage, an RTS instruction, and an assembler END statement.

Invert is defined as having one parameter, the character pointer yy.
By declaring the function in this way, the compiler knows to generate
code to look for the variable yy on top of the stack whenever a refer
ence to it is made. You can see how this is done by looking at the code
generated for the first line, which tests the value at yy (rather than the
value o f yy) to see whether it is true, that is, not equal to zero. To get

14 Selected Code Samples 291

this value, the stack relative indirect indexed addressing mode is used.
First the Y register is loaded with zero, so that the first element pointed
to by the indirect value on the stack is accessed. The stack offset used is
three, rather than one, because when the subroutine call was made,
after the parameter was pushed onto the stack, the return address was
pushed onto the stack, on top of the parameter.

After the value is loaded, it must be ANDed with $FF to mask out the
high-order contents, since this is a character (one-byte) type of variable.

If the character is not equal to zero, as it is not the first time through,
the JMP CC3 instruction is skipped, and execution continues with the
code generated for the C source statements inside the braces.

The first statement is the recursive call to invert. Similar to the call
from main, a parameter is pushed onto the stack. Since an expression
(yy + 1) is being passed, however, it must first be evaluated. First the
value of yy is loaded from the stack, and then one is added to it.
Although this hypothetical compiler does not optimize across state
ments, it apparently does a pretty good job within them, for it has opti
mized the addition of one to a single increment instruction.

Invert is then called again. If you start counting them, you will find
that more pushes than pulls will have been made at this point; in other
words, the stack is growing. When invert is reentered, the value it finds
on the stack is the starting address of the string literal plus one; in other
words, the second element is being addressed. As long as the value
pointed to by the parameter passed to invert is non-zero, invert will
continue to be called recursively, and the stack will continue to grow.
When the last element (with the value of zero) is reached, the recursive
function "bottoms out"; the jump to CC3 that occurs when the value at
yy is equal to zero jumps directly to an RTS instruction. This causes
control to return to the next statement after the call to invert. The value
of yy in the most recently called invocation (the value at 3, S) will be a
pointer to the last character in the string; it is this character that is first
loaded into the accumulator, then pushed, output via a call to the rou
tine putchar, then pulled again.

Upon return from putchar, control falls through to the RTS instruc
tion, and the next set of values on the stack are processed. This contin
ues until all of the characters pointed to by the values on the stack have
been printed, in the reverse order in which they were found. Finally, the
last return executed pulls the address of the return address in main off
the stack, and the program terminates.

The Same Example Hand-Coded in Assembly
Language

A distinctive characteristic of the preceding high-level language pro
gramming example was that the algorithm employed involved recur-

292 Programming the 65816

sion. Consider Listing 14.9, which is the same algorithm hand-coded in
assembly language; it is much more efficient than the compiler-gener
ated example.

0 0 0 1 0 0 0 0 KEEP KL.14.9

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 MAIN START

0005 0 0 0 0 18 CLC

0006 0001 FB XCE

0007 0 0 0 2

0008 0002 C210 REP # $ 1 0 16-bit index registers

0009 0004 LONGI ON

0 0 1 0 0004 E220 SEP # $ 2 0 8 -bit accumulator

0 0 1 1 0006 LONGA OFF

0 0 1 2 0006

0013 0006 A21900 LDX #STRING

0014 0009

0015 0009 B500 INVERT LDA 0,X

0016 000B F009 BEQ DONE

0017 0000 48 PHA

0018 000E E 8 INX

0019 000F 200900 JSR INVERT

0 0 2 0 0 0 1 2 6 8 PLA

0 0 2 1 0013 200080 JSR COUT

0 0 2 2 0016

0023 0016 38 DONE SEC

0024 0017 FB XCE

0025 0018 60 RTS

0026 0019

0027 0019 41207374 STRING DC C'A string to invert 1 ,H ’0 0 1

0028 002C END

0029 0 0 0 0

0030 0 0 0 0

0031 0 0 0 0 i COUT

0032 0 0 0 0 i machine-dependent routine to output a character

0033 0 0 0 0 ;

0034 0 0 0 0 COUT START

0035 0 0 0 0 ECOUT GEQU $FDED Apple // COUT

0036 0000 48 PHA Save registers

0037 0001 DA PHX

0038 0002 5A PHY

0039 0003 08 PHP and status,

14 Selected Code Samples 293

0040 0004 38 SEC switch to emulation

0041 0005 FB XCE

0042 0006 20E0FD JSR ECOUT call 6502 routine

0043 0009 18 CLC

0044 000A FB XCE restore native mode

0045 000B 28 PLP restore status

0046 OOOC 7A PLY restore registers

0047 0 0 0 D FA PLX return

0048 OOOE 6 8 PLA

0049 000 F 60 RTS

0050 0 0 1 0 END

Listing 14.9.

Because the more elaborate parameter-passing and variable-allocation
requirements of the C language can be bypassed, the example here is
much more efficient. (Although some further optimization of the
compiler-generated code, as noted, is possible, the code in the example
would probably be a typical result.)

To start with, a more intelligent decision about the mode flags is
made right from the start, rather than coping with the default sixteen-bit
accumulator size of the compiler code by masking out the high-order
byte whenever a character is loaded.

Secondly, full use of the index register is made, both to access the
data and as the parameter-passing mechanism. Rather than push succes
sive pointers to the inverted character string on the stack, the character
itself is stored.

If this routine will be used to invert a single, known string (as
opposed to making INVERT a subroutine for inverting any string, the
beginning character of which is pointed to by the X register), then any
assembly language programmer would simply write the code found in
Listing 14.10. When the assembler evaluates the LDX instruction's oper
and, the "L:" function determines the length of STRING.

The Sieve of Eratosthenes Benchmark_____
With all of the different factors that affect system performance, it is

difficult to find a clear criterion by which to judge a processor's per
formance. Rightly or wrongly, the speed with which a processor runs a
standard "benchmark" program is often used in forming a judgement of
it. One of the most commonly used (and cited) benchmarks is the Sieve
of Eratosthenes algorithm. The use of the Sieve program first gained
popularity as the result of articles written by Jim Gilbreath and Gary

294 Programming the 65816

0 0 0 1 0 0 0 0 KEEP KL.14.10

0 0 0 2 0 0 0 0 65816 ON

0003 0 0 0 0

0004 0 0 0 0 MAIN START

0005 0 0 0 0

0006 0 0 0 0 C210 REP #$10 16-bit index registers

0007 0 0 0 2 LONGI ON

0008 0 0 0 2 E220 SEP #$20 8 -bit accumulator

0009 0004 LONGA OFF

0 0 1 0 0004

0 0 1 1 0004 A21700 LDX #L:STRING-1 get length of string less one

0 0 1 2 0007

0013 0007 BD1100 INVERT LDA STRING,X get a char from end of string

0014 0 0 0 A 200080 JSR COUT and output it

0015 0 0 0 D CA DEX point to previous char

0016 000E 10F7 BPL INVERT and loop through all characters

0017 0 0 1 0 60 DONE RTS

0018 0 0 1 1 41207374 STRING DC C'A string to invert',H'00'

0019 0024 END

0 0 2 0 0 0 0 0

0 0 2 1 0 0 0 0

0 0 2 2 0 0 0 0 1 COUT

0023 0 0 0 0 1 machine-dependent routine to output a character

0024 0 0 0 0 1

0025 0 0 0 0 COUT START

0026 0 0 0 0 ECOUT GEQU $FDED Apple // COUT

0027 0 0 0 0 48 PHA Save registers

0028 0 0 0 1 DA PHX

0029 0 0 0 2 5A PHY

0030 0003 08 PHP and status,

0031 0004 38 SEC switch to emulation

0032 0005 FB XCE

0033 0006 20EDFD JSR ECOUT call 6502 routine

0034 0009 18 CLC

0035 OOOA FB XCE restore native mode

0036 OOOB 28 PLP restore status

0037 OOOC 7A PLY restore registers

0038 0 0 0 D FA PLX return

0039 0 0 0 E 6 8 PLA

0040 0 0 0 F 60 RTS

0041 0 0 1 0 END

Listing 14.10.

0001
0002
0003

0004

0005

0006

0007

0008

0009

0010

0011

0012
0013

0014

0015

0016

0017

0018

14 Selected Code Samples 295

Gilbreath, appearing in BYTE magazine (September 1980, page 180),
and updated in January 1983 (page 283).

The Sieve program calculates the prime numbers between 3 and
16,381; it is based on an algorithm originally attributed to the Greek
mathematician Eratosthenes. The basic procedure is to eliminate every
nth number after a given number n, up to the limit of range within
which primes are desired. Presumably the range of primes is itself infi
nite.

As well as providing a common yardstick with which to gauge the
65816, the Sieve program in Listing 14.11 provides an opportunity to
examine performance-oriented programming; since the name of the
game is performance, any and all techniques are valid in coding an
assembly-language version of a benchmark.

Four variable locations are defined for the program. ITER counts
down the number of times the routine is executed; to time it accurately,
the test is repeated 100 times. COUNT holds the count of primes discov
ered. K is a temporary variable. And PRIME is the value of the current
prime number.

The variable I has no storage reserved for it because the Y register is
used; it is an index counter. Y is used instead of X because certain
indexed operations need the absolute,X addressing mode.

The constant SIZE is equal to one-half of the range of numbers within
which the primes are to be discovered; this algorithm ignores all even
numbers (even numbers being non-prime). The first element in the array
represents 3, the second 5, the third 7, and so on.

0000 KEEP KL.14.11

0000 65816 ON

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

ERAT0S START

SIZE GEQU 8192

ITER GEQU $80

COUNT GEQU $82

PRIME GEQU $ 8 6

FLAGS GEQU $4000

K GEQU $84

0 0 0 0 18

0001 FB

0002 C230

CLC

XCE

REP #$30

LONGI ON

LONGA ON

enter native mode

with 16-bit A and X

0004

0004

296 Programming the 65816

0019 0004

0 0 2 0 0004

0 0 2 1 0004 A96400 LDA # 1 0 0 do one hundred iterations

0 0 2 2 0007 8580 STA ITER in order to time

0023 0009

0024 0009 6482 AGAIN STZ COUNT zero count (# of primes)

0025 0006

0026 0008 A0FF1F LDY #SIZE-1 for I = 0 to size

0027 OOOE A9FFFF LDA #$FFFF

0028 0 0 1 1 8D0040 STA FLAGS (handle zero case)

0029 0014

0030 0014 990040 LOOP STA FLAGS,Y

0031 0017 8 8 DEY f lags Cl] = TRUE

0032 0018 8 8 DEY

0033 0019 10F9 BPL LOOP

0034 0 0 1 B

0035 0 0 1 B AOOOOO LDY # 0 for i = 0 to size

0036 0 0 1 E ; ("i" stored in Y)

0037 0 0 1 E

0038 0 0 1 E

0039 0 0 1 E B9FF3F MAIN LDA F LAGS—1 ,Y if f lags Cl] then

0040 0 0 2 1 1 0 1 E BPL SKIP minus-one offset: to see

0041 0023 ; high bit in long a mode

0042 0023 98 TYA

0043 0024 OA ASL A prime = 1 + 1 + 3

0044 0025 1 A INC A

0045 0026 1 A INC A

0046 0027 1 A INC A

0047 0028 8586 STA PRIME

0048 002A

0049 002A 98 TYA

0050 002B 18 CLC

0051 002 C 6586 ADC PRIME k = i + prime

0052 002E

0053 002E C90120 TOP CMP #SIZE+1 while k <= size

0054 0031 BOOC BGE SKIP2

0055 0033

0056 0033 AA TAX flagstk] = FALSE

0057 0034

0058 0034 E220 SEP # $ 2 0 clear only

0059 0036 9E0040 STZ FLAGS,X one byte

0060 0039 C221 REP # $ 2 1 clears carry as well

0061 003 B

0062 003 B 6586 ADC PRIME k = k + prime

0063 003 D 80EF BRA TOP (end while k <= size)

0064 003 F

0 0 6 5

0 0 6 6

0 0 6 7

0 0 6 8

0 0 6 9

0 0 7 0

0 0 7 1

0 0 7 2

0 0 7 3

0 0 7 4

0 0 7 5

0 0 7 6

0 0 7 7

0 0 7 8

0 0 7 9

14 Selected Code Samples 297

0 0 3 F E 6 8 2 S K IP 2 IN C COUNT

0 0 4 1

0 0 4 1 C8 S K IP IN Y

0 0 4 2 C 0 0 1 2 0 CPY 0 S IZ E + 1

0 0 4 5 D 0 D 7 BNE M A IN

0 0 4 7

0 0 4 7 C 6 8 0 DEC IT E R

0 0 4 9 D 0B E BNE A G A IN

0 0 4 B

0 0 4 B 3 8 SEC

0 0 4 C FB XCE

0 0 4 D 6 0 RTS

0 0 4 E

0 0 4 E

0 0 4 E END

(end for i = 0 to size)

Listing 14.11.

The program begins by entering the native mode and extending the
user registers to sixteen bits. ITER is initialized for 100 iterations. An
array (starting at FLAGS) of memory of size SIZE is initialized to SFF's,
two bytes at a time.

The routine proper now begins. Y is initialized with zero, and control
falls into the main loop. The high-order bit of each cell of the array
FLAGS is tested. Initially, they are all set, but the algorithm iteratively
clears succeeding non-prime values before they are tested by this code.
If the high bit is clear, this number has already been eliminated by the
algorithm; it is non-prime. Notice that the high-order bit of the FLAG[I]
(or FLAG[Y]) array is desired; however, since the processor is in
sixteen-bit mode, the high bit will be loaded from the memory location
at the effective address plus one. To overcome this, the base of the array
is specified as the actual base minus one; this calculation is performed
by the assembler during generation of the object code.

If the current value has not been cleared, the algorithm calls for the
number which is two times the current index value plus three (this con
verts the index to the array values of 3, 5, 7 . . .) to be the next value
for PRIME. This prime number is generated quickly by transferring the
Y index register into the accumulator, shifting it left once to multiply by
two, and incrementing it three times. Remember, this number is gener
ated from the current index only if the index value has not already been
eliminated as being non-prime.

This prime number is then added to the current index, and the array
elements at this offset, and at all succeeding indices every PRIME value

298 Programming the 65816

apart are eliminated from the array as being non-prime. They have the
current prime number as one of their factors. The most significant thing
to note here in the code is that only one byte can be cleared; the accu
mulator must temporarily be switched into the eight-bit mode to
accomplish this. However, since the next operation is an addition, an
optimization is available: both the sixteen-bit mode can be restored and
the carry cleared in a single REP operation.

The program now loops, checking to see if the next index value has
been eliminated; this process continues until the index reaches the limit
of SIZE.

You may be wondering what the result is: at 4 MHz, ten iterations are
completed in 1.56 seconds, which is twice as fast as a 4 MHz 6502. The
January, 1983 BYTE article cites results of 4.0 seconds for a 5 MHz
8088, 1.90 seconds for an 8 MHz 8086, and .49 seconds for an 8 MHz
68000; an 8 MHz 65816 would yield .78 seconds.

DEBUG16—A 65816
Programming Tool

This chapter consists of a complete 65816 application example and a
detailed discussion of its dozen or so routines. Where possible, different
programming techniques have been employed in an effort to illustrate
some of the different methods of coding that are available.

The program, DEBUG16, is a rudimentary step-and-trace debugger.
A debugger is a tool used during software development to isolate and
reveal sources of error in the program being tested. In other words, it
helps the programmer eliminate the bugs in a program, hence the name.
A step-and-trace function lets the program be halted after the execution
of each single instruction and the registers and possibly other memory
locations to be examined. This effectively provides a "view" into the
otherwise invisible internals of the processor.

The ability to trace programs in this manner can be extremely useful:
uninitialized variables, wild branches, infinite loops—all of the common
flaws that normally result in your program going away to never-never
land with little clue to their reasons for departure—are made visible. In
addition to displaying the register contents, a tracer will also list the
opcode mnemonic and display the operand using the same syntax as
originally specified in the source program. This process is called dis
assembly. Although the tracing program can accurately regenerate an
approximation of the source line that resulted in a given instruction, it
cannot determine any of the symbolic labels that might have been given
to the addresses found by the tracer in the assembler source program.
More sophisticated debuggers called sym bolic debuggers let you load a
program's symbol table created by either the link editor or assembler;
the debugger's disassembly routine looks up each address in a disassem
bly in the symbol table and inserts labels in place of addresses wherever
a correspondence is found.

DEBUG16 also has a LIST entry point, at which its disassembler can
be used apart from its tracer; this lets you re-create a listing of a pro
gram without having the source code available. Again, there is no sym
bolic information (labels) available. Additionally, the disassembler in its
current form does not deal with variable lengths of immediate operands
when in the LIST mode.

The tracer can display the disassembled instruction and register val
ues either one instruction at a time, or allow the trace to execute in free-

299

300 Programming the 65816

running mode. When only one instruction is disassembled at a time, the
tracer is said to be single-stepping; pressing a key lets the next instruc
tion be executed. Pressing RETURN toggles the tracer into free-running
mode. While free-running, a single key press will pause the trace. Press
ing any key except RETURN resumes tracing; RETURN switches back
to single-stepping.

The basic theory of operation of the tracer is simple. Starting with the
first program instruction, the tracer calculates the length of the instruc
tion by first determining the addressing mode associated with the op
code, and then referring to a table that gives the instruction lengths for
the different addressing modes. It can therefore determine the location
of the next instruction that follows the current one. It places a BRK
instruction at that location, having first saved the original value stored
there. Next, it executes (via a JMP instruction) the current instruction.
As soon as that instruction completes, the program counter increments
to the next instruction, where it encounters the inserted BRK. BRK ini
tiates an interrupt cycle that returns control back to the tracer, saves
copies of all of the processor's register contents to memory, then calls a
routine which displays them, along with the disassembled instruction.

When the next step (next instruction) is to be executed, the BRK
instruction is replaced with its original value, and the cycle is repeated.
In this way the program is able to gain control of the processor "in
between" the execution of each instruction.

The exception to this method is whenever an instruction (such as a
branch or jump) is encountered which can change the flow of control; in
these cases, the target location must be determined (by examining the
operand of the instruction), and a BRK inserted at that location instead.

The disassembly output looks like Figure 15.1.

00:2000 4CCB22 JM P $22CB
00:2003 08 PHP
00:2004 18 CLC
00:2005 FB XCE
00:2006 08 P H P
00:2007 0B PHD
00:2008 F40003 P E A $0300
00:200B 2B P L D
00:200C C220 R EP #$20
00:200E E210 S E P #$10

Figure 15.1. Disassembly Output.

15 DEBUG16—A 65816 Programming Tool 301

And the tracer output looks like Figure 15.2.

00:5000 A905 LDA #$05
A= 15 05 X= 00 11 Y= 00 13 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5002 AB TAY
A= 15 05 X= 00 11 Y= 00 05 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5003 990060 STA $600,Y
A= 15 05 X= 00 11 Y= 00 05 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5006 88 DEY
A= 15 05 X= 00 11 Y= 00 04 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5007 D0FA BNE $5003
A= 15 05 X= 00 11 Y= 00 04 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5003 990060 STA $600,Y
A= 15 05 X= 00 11 Y= 00 04 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5006 88 DEY
A= 15 05 X= 00 11 Y= 00 03 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5007 D0FA BNE $5003
A= 15 05 X= 00 11 Y= 00 03 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5003 990060 STA $6000,Y
A= 15 05 X= 00 11 Y= 00 03 S= 01 AA D= 00 00 B= 00 p= 7D E:1
00:5006 88 DEY
A= 15 05 X= 00 11 Y= 00 02 S= 01 AA D= 00 00 B= 00 p= 7D E:1

Figure 15.2. Tracer Output.

This example was developed and tested using an Apple //e with a
65816 processor card installed; the calls to machine-dependent locations
have been isolated and are clearly identified as such. DEBUG16 uses the
native BRK vector. On an Apple //, this location ($FFE6.FFE7) normally
contains ROM data, which varies between monitor ROM versions. Since
there is no way to patch ROM, the solution opted for here is for
DEBUG16 to try to patch the location pointed to by the data that is
stored there. For current ROMs, these are RAM locations that happen to
be more or less livable. Check the location pointed to by your ROMs,
and make sure that neither your own code nor the debugger are loaded
into that area. DEBUG16 will automatically read whatever value is stored
there and store a vector to that address to regain control after a BRK.

Both programs are executed by putting the starting address of the
routine to list or trace (which has been loaded into memory) at
DPAGE + 80.82 ($380.82) in low - high - bank order, and then calling
either the TRACE entry point at $2000, or the LIST entry at $2003.

302 Programming the 65816

Declarations__________________________
The listing begins with the declaration of global values by way of

GEQU statements. Almost all of these are addresses of direct page
memory locations that will be used; one notable exception is the label
DPAGE, a sixteen-bit value that defines the beginning of the direct page
memory to be used by this program. Because a 65816 debugger is by
definition a 6502 debugger, it is wise to relocate the direct page out of
the default zero page, since it will be used by 6502 programs, and you
want to avoid conflicting memory usage between the debugger and the
program being debugged. In the listing, a value of $300 is used; on an
Apple //, this relocates the direct page to page three, which is a conven
ient page to use.

Many of the direct page locations are used to store the register con
tents of the user program when the debugger is executing. All of the
registers are represented. As you will see in the code, the adjacent posi
tioning of some of the registers is important and must be maintained.

In addition to the direct page locations used for register storage, one
general-purpose temporary variable is used, called TEMP. Three other
variables—ADDRMODE, MNX, and OPLEN (for address m ode, m ne
m onic index, and operation length, respectively)—are used primarily to
access the tables used in disassembling an instruction.

The variable CODE contains the instruction opcode currently being
executed in the user program. The variable NCODE contains the next
instruction opcode to be executed, saved there before being replaced
with the BRK instruction inserted in the code. OPRNDL, OPRNDH,
and OPRNDB contain the three (possible) values of the operand of a
given instruction.

15 DEBUG16—A 65816 Programming Tool 303

0 0 0 1 0 0 0 0

0 0 0 2 0 0 0 0 KEEP DEBUG16

0003 0 0 0 0

0004 0 0 0 0 65816 ON

0005 0 0 0 0 MSB ON

0006 0 0 0 0 LONGA OFF

0007 0 0 0 0 LONGI OFF

0008 0 0 0 0

0009 0 0 0 0

0 0 1 0 0 0 0 0 * *

0 0 1 1 0 0 0 0 * DEBUG16 *

0 0 1 2 0 0 0 0 * A 65816 DEBUGGER *

0013 0 0 0 0 * *

0014 0 0 0 0 * *

0015 0 0 0 0

0016 0 0 0 0

0017 0 0 0 0 ORG $8000

0018 0 0 0 0

0019 0 0 0 0 MAIN START

0 0 2 0 0 0 0 0

0 0 2 1 0 0 0 0 USING MN

0 0 2 2 0 0 0 0 USING ATRIBL

0023 0 0 0 0

0024 0 0 0 0

0025 0 0 0 0 DPAGE GEQU $300 LOCATION OF THIS APPLICATION'S

0026 0 0 0 0 1 DIRECT PAGE

0027 0 0 0 0

0028 0 0 0 0 1 DIRECT PAGE STORAGE

0029 0 0 0 0 1 TRACE REGISTERS

0030 0 0 0 0 1
0031 0 0 0 0

0032 0 0 0 0 PCREG GEQU $80 PROGRAM COUNTER

0033 0 0 0 0 PCREGH GEQU PCREG+1

0034 0 0 0 0 PCREGB GEQU PCREGH+1 INCLUDING BANK

0035 0 0 0 0

0036 0 0 0 0 NCODE GEQU PCREGB+1 NEXT CODE TO BE TRACED

0037 0 0 0 0

0038 0 0 0 0 OPCREG GEQU NCODE+1 OLD PROGRAM COUNTER VALUE

0039 0 0 0 0 OPCREGH GEQU OPCREG+1

0040 0 0 0 0 OPCREGB GEQU OPCREGH+1

0041 0 0 0 0

0042 0 0 0 0 CODE GEQU OPCREGB+1 CURRENT CODE TO BE TRACED

0043 0 0 0 0

0044 0 0 0 0 OPRNPL GEQU CODE+1 OPERANDS OF CURRENT

0045 0 0 0 0 OPRNDH GEQU OPRNDL+1 INSTRUCTION

0046 0 0 0 0 OPRNDB GEQU OPRNDH+1

304 Programming the 65816

0047 0 0 0 0

0048 0 0 0 0

0049 0 0 0 0 XREG GEQU OPRNDB+1 X REGISTER

0050 0 0 0 0 XREGH GEQU XREG+1

0051 0 0 0 0

0052 0 0 0 0 YREG GEQU XREGH+1 Y REGISTER

0053 0 0 0 0 YREGH GEQU YREG+1

0054 0 0 0 0

0055 0 0 0 0 AREG GEQU YREGH+1 ACCUMULATOR

0056 0 0 0 0 AREGH GEQU AREG+1

0057 0 0 0 0

0058 0 0 0 0 STACK GEQU AREGH+1 STACK POINTER

0059 0 0 0 0 STACKH GEQU STACK+1

0060 0 0 0 0

0061 0 0 0 0

0062 0 0 0 0 DIRREG GEQU STACKH+1 DIRECT PAGE REGISTER

0063 0 0 0 0 DIRREGH GEQU DIRREG+1

0064 0 0 0 0

0065 0 0 0 0 DBREG GEQU DIRREGH+1 DATA BANK REGISTER

0066 0 0 0 0

0067 0 0 0 0 PREG GEQU DBREG+1 P STATUS REGISTER

0068 0 0 0 0

0069 0 0 0 0 EBIT GEQU PREG+1 E BIT

0070 0 0 0 0

0071 0 0 0 0 TEMP GEQU EBIT+2 TEMPORARY

0072 0 0 0 0 TEMPH GEQU TEMP+1

0073 0 0 0 0 TEMPB GEQU TEMPH+1

0074 0 0 0 0

0075 0 0 0 0

0076 0 0 0 0 ADDRMODE GEQU TEMPB+1 ADDRESS MODE OF CURRENT OPCODE

0077 0 0 0 0

0078 0 0 0 0 MNX GEQU ADDRMODE+1 MNEMONIC INDEX

0079 0 0 0 0 1 FROM ATTRIBUTE TABLE

0080 0 0 0 0

0081 0 0 0 0 OPLEN GEQU MNX+2 LENGTH OF OPERATION,

0082 0 0 0 0 1 INCLUDING INSTRUCTION

0083 0 0 0 0

0084 0 0 0 0 CR GEQU $8 D CARRIAGE RETURN

0085 0 0 0 0

0086 0 0 0 0

0087 0 0 0 0 M GEQU $ 2 0 SYMBOLIC NAMES FOR

0088 0 0 0 0 X GEQU $ 1 0 STATUS REGISTER BITS

0089 0 0 0 0 C GEQU $ 0 1

0090 0 0 0 0

0091 0 0 0 0

0092 0 0 0 0

0093 0000 4C0080 JMP TRACE

15 DEBUG16—A 65816 Programming Tool 305

LIST__________________________________
The program has two entry points, defined in the first routine. One is

for listing (disassembling) a program, the other for tracing. The first
entry point, at the program's origin (default $8000), is a jump to the
actual entry point of the trace routine; the second, immediately past it
(at $8003), is the beginning of the code for the disassembler.

Since this is a bare-bones disassembler, intended to be expanded and
perhaps integrated with a general purpose machine language monitor,
parameters such as the start address of the program to be traced are
entered by modifying the values of the register variables; for example,
to begin disassembly of a program stored at $800, the values $00, $08,
and $00 are stored starting at PCREG. Since the direct page is relocated
to page three, the absolute location of this variable is $380.

Starting at the LIST entry, some basic initialization is performed: sav
ing the status register, switching to native mode, and then saving the
previous operating mode (emulation/native) by pushing the status regis
ter a second time (the carry flag now containing the previous contents of
the e bit). Thus this program may be called from either native or emula
tion mode.

The current value of the direct page is saved in program memory, and
then the new value—DP AGE—is stored to the direct page register. The
native mode is entered.

Control now continues at TOP, the beginning of the main loop of
the disassembler. The mode is set to long accumulator, short index.
This combination allows simple manipulation of both byte and double
byte values. The value of PCREG is copied to OPCREG (old pcreg).
OPCREG will contain the starting location of the current instruction
throughout the loop; PCREG will be modified to point to the next
instruction. However, it hasn't been modified yet, so it is used to load
the accumulator with the opcode byte. Indirect long addressing is used,
so code anywhere within the sixteen-megabyte address space may be
disassembled. Since the accumulator is sixteen bits, a second byte is
fetched as well, but ignored; the next instruction transfers the opcode to
the X register and then stores it at the location CODE.

The utility routine UPDATE is called next. This is common to both
the disassembler and the tracer, and determines the attributes of this
instruction by looking the instruction up in a table; it also increments
the program counter to point to the next instruction.

The routines FLIST, FRMOPRND, and PRINTLN form the disassem
bled line and display it. After each line is printed, the routine PAUSE is
called to check the keyboard to see if a key has been pressed, signalling a
pause. If PAUSE returns with the carry clear, it means the user has sig
nalled to quit, and control falls through to QUIT; otherwise, the program
loops to TOP again, where it repeats the process for the next instruction.

306 Programming the 65816

0094 0003

0095

0096

0003

0003

0097 0003 LIST

0098 0003 MAIN LOOP OF DISASSMBLER FUNCTION

0099 0003

0 1 0 0

0 1 0 1

0003

0003

0 1 0 2 0003

0103 0003

0104 0003 LIST ENTRY

0105 0003 08 PHP SAVE ORIGINAL FLAGS

0106 0004 18 CLC

0107 0005 FB XCE SET NATIVE MODE

0108 0006 08 PHP SAVE PREVIOUS MODE

0109 0007

0 1 1 0 0007 OB PHD SAVE CURRENT DP

0 1 1 1 0008 F40003 PEA DPAGE

0 1 1 2 0 0 0 B 28 PLD SET TO NEW DP

0113 oooc
0114 oooc TOP ANOP

0115 oooc
0116 oooc C220 REP #M

0117 OOOE E210 SEP #X

0118 0 0 1 0 LONGA ON

0119 0 0 1 0 LONGI OFF

0 1 2 0 0 0 1 0

0 1 2 1 0 0 1 0 6490 STZ MNX CLEAR MNEMONIC INDEX

0 1 2 2 0 0 1 2 A580 LDA PCREG MOVE PROGRAM COUNTER

0123 0014 8584 STA OPCREG TO 'OLD PROGRAM COUNTER'

0124 0016 A682 LDX PCREGB INCLUDING BANK

0125 0018 8 6 8 6 STX OPCREGB

0126 0 0 1 A A780 LDA [PCREG] GET NEXT INSTRUCTION

0127 0 0 1 C AA TAX

0128 0 0 1 0 8687 STX CODE SAVE AS 'CODE'

0129 0 0 1 F

0130 0 0 1 F 200080 JSR UPDATE UPDATE ATTRIBUTE VARIABLES

0131 0 0 2 2

0132 0 0 2 2 200080 JSR FLIST FORM OBJECT CODE, MNEMONIC

0133 0025 200080 JSR FRMOPRND FORM OPERAND FIELD

0134 0028 200080 JSR PAUSE CHECK FOR USER PAUSE

0135 002B 9005 BCC QUIT

0136 002 D 200080 JSR PRINTLN PRINT IT

0137 0030

0138 0030 80DA BRA TOP LOOP TIL END

15 DEBUG16—A 65816 Programming Tool 307

0139 0032

0140 0032 2B QUIT PLD RESTORE ENVIRONMENT,

0141 0033 28 PLP RETURN TO CALLER

0142 0034 FB XCE

0143 0035 28 PLP

0144 0036 60 RTS

0145 0037 END

0146 0037

Local Symbols

LIST 000003 QUIT 000032 TOP OOOOOC

308 Programming the 65816

FLIST_________________________________

FLIST is called by both the disassembler and the tracer. This routine
displays the current program counter value, the object code of the
instruction being disassembled in hexadecimal, and the mnemonic
for the opcode. The code required to do this is basically the same for
any instruction, the only difference being the length of the instruction,
which has already been determined by UPDATE.

The first thing the code does is to blank the output buffer by calling
CLRLN. Particularly since 6502 emulation-mode I/O routines are used,
it is more efficient to build an output line first, then display it all at
once, rather than output the line "on the fly." Characters are stored in
the output buffer LINE via indexed absolute addressing; the Y register
contains a pointer to the current character position within the line, and
is incremented every time a character is stored. Since character manipu
lation is the primary activity in this routine, the accumulator is set to
eight bits for most of the routine.

The flow of the program proceeds to generate the line from left to
right, as it is printed; the first characters stored are therefore the current
program counter values. Since UPDATE has already modified the pro
gram counter variable to load the operands of the instruction, the value
in the variable OPCREG is used. The hex conversion routine, PUTHEX,
converts the data in the accumulator into the two ASCII characters that
represent the number's two hexadecimal digits, storing each character at
the location pointed to by LINE,Y, and then incrementing Y to point to
the next character. A colon is printed between the bank byte and the
sixteen-bit program counter display to aid readability.

Next, some spaces are skipped by loading the Y register with a higher
value, and the object code bytes are displayed in hexadecimal. These
values have already been stored in direct page memory locations CODE
and OPRNDL, OPRNDH, and OPRNDB by the UPDATE routine,
which also determined the length of the instruction and stored it at
OPLEN. The length of the operand controls a loop that outputs the
bytes; note that a negative displacement of one is calculated by the
assembler so that the loop is not executed when OPLEN is equal to one.

All that remains is to print the instruction mnemonic. The characters
for all of the mnemonics are stored in a table called MN; at three char
acters per mnemonic (which as you may have noticed is the standard
length for all 65x mnemonics), the mnemonic index (MNX) determined
by UPDATE from the instruction attribute table must be multiplied by
three. This is done by shifting left once (to multiply by two), and adding
the result to the original value of MNX. Note that this type of "custom”
multiplication routine is much more efficient than the generalized multi
plication routines described in the previous chapter. The characters in

15 DEBUG16—A 65816 Programming Tool 309

the mnemonic table are copied into the output line using the MVN
instruction; the result just calculated is transferred into the X register as
the source of the move. It is the line-buffered output that allows use of
the block-move instruction; on-the-fly output would have required each
character to be copied out of the mnemonic table in a loop.

0147 0 0 0 0

0148 0 0 0 0 FLIST - FORM IMAGE OF PROGRAM COUNTER,

0149 0 0 0 0 OBJECT CODE AND MNEMONIC IN 'LINE'

0150 0 0 0 0

0151 0 0 0 0 REQUIRES ATTRIBUTE VARIABLES TO BE PREVIOUSLY INITIALIZED

0152

0153

0 0 0 0

0 0 0 0

0154 0 0 0 0

0155 0 0 0 0 FLIST START

0156 0 0 0 0 USING MN

0157 0 0 0 0

0158 0 0 0 0 200080 JSR CLRLN BLANK 'LINE' VARIABLE

0159 0003

0160 0003 E230 SEP #M+X SHORT REGISTERS

0161 0005 LONGA OFF

0162 0005 LONGI OFF

0163 0005

0164 0005 A000 LDY # 0

0165 0007 A586 LDA OPCREGB GET BANK BYTE, FORM AS HEX

0166 0009 200080 JSR PUTHEX STRING

0167 OOOC A9BA LDA #':' BANK DELIMITER

0168 000E 990080 STA LINE,Y

0169 0 0 1 1 C8 INY

0170 0 0 1 2 A585 LDA OPCREGH GET BYTES OF PROGRAM COUNTER

0171 0014 200080 JSR PUTHEX FORM AS HEX STRING IN

0172 0017 A584 LDA OPCREG LINE

0173 0019 200080 JSR PUTHEX

0174 0 0 1 C

0175 0 0 1 C A00A LDY # 1 0

0176 001 E A587 LDA CODE STORE OPCODE AS HEX STRING

0177 0 0 2 0 200080 JSR PUTHEX

0178 0023 A201 LDX # 1

0179 0025

0180 0025 E49F MORE CPX OPLEN LIST OPERANDS, IF ANY

0181 0027 F008 BEQ DONE

0182 0029 B587 LDA OPRMOL-1,x

0183 002 B 200080 JSR PUTHEX

0184 002E E8 INX

0185 002 F 80F4 BRA MORE

0186 0031

310 Programming the 65816

0 1 8 7 0 0 3 1 C 2 30 DONE REP #M+X

0 1 8 8 0 0 3 3 LONGA ON

0 1 8 9 0 0 3 3 LONGI ON

0 1 9 0 0 0 3 3

0 1 9 1 0 0 3 3 A59D LDA MNX GET MNEMONIC IN D E X ,

0 1 9 2 0 0 3 5 0A ASL A M U L T IP L Y BY THREE

0 1 9 3 0 0 3 6 1 8 CLC (T IM E S TWO PLUS S E L F)

0 1 9 4 0 0 3 7 6 59 D ADC MNX

0 1 9 5 0 0 3 9 1 8 CLC

0 1 9 6 0 0 3 A 6 9 0 0 8 0 ADC #MN

0 1 9 7 0 0 3 D AA TAX IN D E X IN T O MNEMONIC TABLE

0 1 9 8 0 0 3 E A 0 1 4 8 0 LDY # L IN E + 2 0 COPY IN T O 'L I N E '

0 1 9 9 0 0 4 1 A 9 0 2 0 0 LDA # 2

0 2 0 0 0 0 4 4 MOVE ENTRY

020 1 0 0 4 4 5 4 0 0 0 0 MVN 0 , 0

0 2 0 2 0 0 4 7

0 2 0 3 0 0 4 7 6 0 RTS

0 2 0 4 0 0 4 8 END

L o c a l S ym b o ls

DONE 0 0 0 0 3 1 MORE 0 0 0 0 2 5 MOVE 0 0 0 0 4 4

15 DEBUG16—A 65816 Programming Tool 311

FRMOPRND___________________________

This routine is the second part of the line-disassembly pair. It per
forms the address-mode specific generation of the disassembled operand
field; the result is similar to the address mode specification syntax of a
line of 65x source code.

The Y register is loaded with the starting destination in LINE, and the
attribute stored at ADDRMODE is multiplied by two to form an index
into a jump table. There is a separate routine for each addressing mode;
the address of that routine is stored in a table called MODES in the order
that corresponds to the attributes given them from the attribute table.

The JMP indirect indexed instruction is used to transfer control
through the jump table MODES to the appropriate routine, whose
index, times two, has been loaded into the X register.

Each of the routines is basically similar; they output any special char
acters and print the address of the operand found in the instruction
stream. There are three related routines, POB, PODB, and POTB (for
put operand byte, put operand double byte, and put operand triple
byte) which output direct page, absolute, and absolute long addresses.

The two routines FPCR and FPCRL, which handle the program
counter relative instructions, however, must first calculate the destina
tion address (which is how an assembler would specify the operand, so
this is how they are disassembled) by adding the actual operand, a dis
placement, to the current program counter. The operand of a short
program counter relative instruction is sign-extended before adding,
resulting in a sixteen-bit signed displacement which is added to the pro
gram counter to find the destination address.

312 Programming the 65816

0205 0 0 0 0

0206 0009

0207 0 0 0 0 1
0208 0 0 0 0 ; FRMOPRND —

0209 0 0 0 0 ; FORMS OPERAND FIELD OF DISASSEMBLED INSTRUCTION

0 2 1 0 0 0 0 0 1
0 2 1 1 0 0 0 0 ; OPLEN ADDRMODE, AND OPRND MUST HAVE BEEN

0 2 1 2 0 0 0 0 ; INITIALIZED BY ’UPDATE

0213 0 0 0 0

0214 0 0 0 0 t
0215 0 0 0 0

0216 0 0 0 0 FRMOPRND START

0217 0 0 0 0 USING MODES

0218 0 0 0 0 E230 SEP #M+X

0219 0 0 0 2 LONGA OFF

0 2 2 0 0 0 0 2 LONGI OFF

0 2 2 1 0 0 0 2

0 2 2 2 0 0 0 2 A01C LDY #28 OFFSET INTO 'LINE' FOR OPERAND

0223 0004 ; TO BEGIN

0224 0004 A59C LDA ADDRMODE GET ADDRESS MODE, MULTIPLY BY

0225 0006 OA ASL A TWO, JUMP THROUGH ADDRESS

0226 0007 AA TAX MODE JUMP TABLE TO PROPER

0227 0008 7C0080 JMP (MODES,X) HANDLER

0228 0 0 0 B

0229 0 0 0 B

0230 0 0 0 B FIMM ENTRY IMMEDIATE MODE --

0231 000B A9A3 LDA #'#' OUTPUT POUND SIGN,

0232 0 0 0 D 990080 STA LINE,Y ONE OR TWO

0233 0 0 1 0 C8 INY OPERAND BYTES, DEPENDING

0234 0 0 1 1 A59F LDA OPLEN ON OPLEN

0235 0013 C902 CMP # 2

0236 0015 F003 BEQ GOSHORT

0237 0017 4C0080 JMP PODB

0238 0 0 1 A 4C0080 GOSHORT JMP POB

0239 0 0 1 D

0240 0 0 1 D FABS ENTRY ABSOLUTE MODE —

0241 0 0 1 D 4C0080 JMP PODB JUST OUTPUT A DOUBLE BYTE

0242 0 0 2 0

0243 0 0 2 0 FABSL ENTRY ABSOLUTE LONG —

0244 0 0 2 0 4C0080 JMP POTB OUTPUT A TRIPLE BYTE

0245 0023

0246 0023 FDIR ENTRY DIRECT MODE —

0247 0023 4C0080 JMP POB OUTPUT A SINGLE BYTE

0248 0026

0249 0026 FACC ENTRY ACCUMULATOR —

0250 0026 A9C1 LDA #' A ' JUST AN A

15 DEBUG16—A 65816 Programming Tool 313

0251 0028 990080 STA LINE,Y

0252 002 B 60 RTS

0253 002C

0254 002C FIMP ENTRY IMPLIED --

0255 002 C 60 RTS NO OPERAND

0256 002 D

0257 002 D FINDINX ENTRY INDIRECT INDEXED —

0258 0 0 2 0 20B600 JSR FIND CALL ’INDIRECT', THEN FALL

0259 0030 1 THROUGH TO INDEXED BY Y

0260 0030

0261 0030 FINY ENTRY INDEXED BY Y MODES —

0262 0030 A9AC LDA TACK ON A 'COMMA, Y ’

0263 0032 990080 STA LINE.Y

0264 0035 C8 INY

0265 0036 A9D9 LDA #'Y'

0266 0038 990080 STA LINE.Y

0267 003 B 60 RTS

0268 003 C

0269 003C FINDINXL ENTRY INDIRECT INDEXED LONG --

0270 003C 20C600 JSR FINDL CALL 'INDIRECT LONG', THEN

0271 003 F 4C3000 JMP FINY EXIT THROUGH INDEXED BY Y

0272 0042

0273 0042 FINXIND ENTRY INDEX INDIRECT —

0274 0042 A9A8 LDA PARENTHESIS

0275 0044 990080 STA LINE.Y

0276 0047 C8 INY

0277 0048 200080 JSR POB A SINGLE BYTE —

0278 004B 206000 JSR FINX COMMA, X

0279 004E A9A9 LDA #')' CLOSE.

0280 0050 990080 STA LINE.Y

0281 0053 60 RTS

0282 0054

0283 0054 FDIRINXX ENTRY DIRECT INDEXED BY X —

0284 0054 200080 JSR POB OUTPUT A BYTE,

0285 0057 4C6000 JMP FINX TACK ON COMMA,X

0286 005A

0287 005A FDIRINXY ENTRY DIRECT INDEXED BY Y —

0288 005A 200080 JSR POB OUTPUT A BYTE,

0289 0050 4C3000 JMP FINY TACK ON COMMA,Y

0290 0060

0291 0060 FINX ENTRY INDEXED BY X —

0292 0060 A9AC LDA TACK ON A

0293 0062 990080 STA LINE.Y COMMA,X

0294 0065 C8 INY (USED BY SEVERAL

0295 0066 A9D8 LDA #'X' MODES)

0296 0068 990080 STA LINE.Y

314 Programming the 65816

0297 006B C~> OO INY

0298 006C 60 RTS

0299 006D

0300 006D FABSX ENTRY ABSOLUTE INDEXED BY X —

0301 0060 200080 JSR PODB OUTPUT A DOUBLE BYTE,

0302 0070 4C6000 JMP FINX TACK ON A COMMA,X

0303 0073

0304 0073 FABSLX ENTRY ABSOLUTE LONG BY X —

0305 0073 200080 JSR POTB OUTPUT A TRIPLE BYTE,

0306 0076 4C6000 JMP FINX TACK ON COMMA, X

0307 0079

0308 0079 FABSY ENTRY ABSOLUTE Y --

0309 0079 200080 JSR PODB OUTPUT A DOUBLE BYTE,

0310 007 C 4C3000 JMP FINY TACK ON COMMA,Y

0311 007 F

0312 007 F FPCR ENTRY PROGRAM COUNTER RELATIVE —

0313 007 F A9FF LDA #$FF SIGN EXTEND OPERAND

0314 0081 EB XBA

0315 0082 A588 LDA OPRNDL

0316 0084 C221 REP #M+C

0317 0086 LONGA ON

0318 0086 3003 BMI OK

0319 0088 297F00 AND #$7F

0320 008B 6584 OK ADC OPCREG ADD TO PROGRAM COUNTER

0321 008D 1 A INC A ADD TWO, WITHOUT CARRY

0322 008E 1 A INC A

0323 008 F 8588 STA OPRNDL STORE AS NEW ’OPERAND'

0324 0091

0325 0091 E220 SEP #M

0326 0093 LONGA OFF

0327 0093

0328 0093 4C0080 JMP PODB NOW JUST DISPLAY A DOUBLE BYTE

0329 0096

0330 0096 FCPRL ENTRY PROGRAM COUNTER RELATIVE LONG

0331 0096

0332 0096 C221 REP #M+C

0333 0098 LONGA ON

0334 0098

0335 0098 A588 LDA OPRNDL JUST ADD THE OPERAND

0336 009A 6584 ADC OPCREG

0337 009C 18 CLC BUMP BY THREE, PAST INSTRUCTION

0338 009D 690300 ADC #3

0339 00A0 8588 STA OPRNDL STORE AS NEW 'OPERAND'

0340 00A2

0341 0 0 A 2 E220 SEP #M

0342 00A4 LONGA OFF

0343 00A4

15 DEBUG16—A 65816 Programming Tool 315

0344 00A4 4C0080 JMP PODB PRINT A DOUBLE BYTE

0345 00A7

0346 00A7 FABSIND ENTRY ABSOLUTE INDIRECT

0347 00A7 A9A8 LDA SURROUND A DOUBLE BYTE

0348 00A9 990080 STA LINE,Y WITH PARENTHESES

0349 0 0 AC C8 INY

0350 00AD 200080 JSR PODB

0351 00B0 A9A9 LDA

0352 00B2 990080 STA LINE.Y

0353 00B5 60 RTS

0354 00B6

0355 0 0 B6 FIND ENTRY INDIRECT —

0356 00B6 A9A8 LDA #'(' SURROUND A SINGLE BYTE

0357 00B8 990080 STA LINE,Y WITH PARENTHESES

0358 00BB C8 INY

0359 OOBC 200080 JSR POB

0360 OOBF A9A9 LDA

0361 00C1 990080 STA LINE.Y

0362 00C4 C8 INY

0363 00C5 60 RTS

0364 00C6

0365 00C6 FINOL ENTRY INDIRECT LONG —

0366 00C6 A9DB LDA SURROUND A SINGLE BYTE

0367 00C8 990080 STA LINE.Y WITH SQUARE BRACKETS

0368 OOCB C8 INY

0369 OOCC 200080 JSR POB

0370 OOCF A9DD LDA

0371 00D1 990080 STA LINE.Y

0372 00D4 C8 INY

0373 00D5 60 RTS

0374 00D6

0375 00D6 FABSINXIND ENTRY ABSOLUTE INDIRECT INDEXED

0376 0 0 D6 A9A8 LDA

0377 00D8 990080 STA LINE.Y SURROUND A CALL TO 'ABSOLUTE

0378 OODB C8 INY INDEXED' WITH PARENTHESES

0379 OODC 206D00 JSR FABSX

0380 OODF A9A9 LDA

0381 00E1 990080 STA LINE.Y

0382 00E4 60 RTS

0383 00E5

0384 00E5 FSTACK ENTRY STACK -- IMPLIED

0385 00E5 60 RTS

0386 00E6

0387 00E6 FSTACKREL ENTRY STACK RELATIVE

0388 00E6 202300 JSR FDIR JUST LIKE

0389 00E9 A9AC LDA DIRECT INDEXED, BUT WITH

0390 OOEB 990080 STA LINE.Y AN 'S'

316 Programming the 65816

0391 OOEE C8 INY

0392 OOEF A903 LDA #'S'

0393 00F1 990080 STA LINE.Y

0394 00F4 C8 INY

0395 00F5 60 RTS

0396 00F6

0397 00F6

0398 00F6 FSRINDINX ENTRY STACK RELATIVE INDIRECT INDEX

0399 00F6 A9A8 LDA r e

0400 00F8 990080 STA LINE.Y SURROUND STACK RELATIVE UITH

0401 OOFB C8 INY PARENTHESES, THEN

0402 OOFC 20E600 JSR FSTACKREL

0403 OOFF A9A9 LDA #')'

0404 0 1 0 1 990080 STA LINE.Y

0405 0104 C8 INY

0406 0105 4C3000 JMP FINY TACK ON A COMMA,Y

0407 0108

0408 0108

0409 0108 FBLOCK ENTRY BLOCK MOVE

0410 0108

0411 0108 C220 REP #M

0412 01 OA A588 LDA OPRNDL MAKE HUMAN-READABLE:

0413 010C EB XBA SWAP SOURCE, DEST

0414 01OD 8588 STA OPRNDL

0415 010F E220 SEP #M

0416 0 1 1 1

0417 0 1 1 1 200080 JSR POB OUTPUT THE SOURCE

0418 0114 A9AC LDA THEN COMMA

0419 0116 990080 STA LINE.Y

0420 0119 C8 INY

0421 0 1 1 A EB XBA SWAP DEST INTO OPRNDL

0422 0 1 1 B 8588 STA OPRNDL THEN PRINT ONE BYTE

0423 0 1 1 D 4C0080 JMP POB

0424 0 1 2 0

0425 0 1 2 0

0426 0 1 2 0 END

Local Symbols

FABS 0 0 0 0 1 0 FABSINO 0000A7 FABSINXIND 0000D6 FABSL 000020

FABSLX 000073 FABSX 00006D FABSY 000079 FACC 000026

FBLOCK 000108 FOIR 000023 FDIRINXX 000054 FDIRINXY 00005A

FIMM OOOOOB FIMP 00002C FIND 0000B6 FINDINX 00002D

FINDINXL 00003C FINDL 0000C6 FINX 000060 FINXIND 000042

FINY 000030 FPCR 00007F FPCRL 000096 FSRINDINX 0000F6

FSTACK 0 0 0 0 E5 FSTACKREL 0000E6 GOSHORT 00001A OK 00008B

15 DEBUG16—A 65816 Programming Tool 317

POB_________________________________
This routine (put operand byte), with three entry points, outputs a

dollar sign, followed by either one, two, or three operand bytes in hexa
decimal form; it calls the routine PUTHEX to output the operand bytes.
It is called by FRMOPRND.

Depending on the entry point, the X register is loaded with 0, 1, or
2, controlling the number of times the loop at MORE is executed; on
each iteration of the loop, an operand byte is loaded by indexing into
OPRNDL and then printed by PUTHEX.

0427 0 0 0 0

0428 0 0 0 0

0429 0 0 0 0 1

0430 0 0 0 0 ; POB, PODB, POTB

0431 0 0 0 0 ; PUT OPERAND (DOUBLE, TRIPLE) BYTE

0432 0 0 0 0 t

0433 0 0 0 0 ; PUTS OPRNDL (OPRNDH, OPRNDB) IN LINE AS HEX VALUE

0434 0 0 0 0 ; WITH '$' PREFIX

0435 0 0 0 0

0436 0 0 0 0 ; ASSUMES SHORT ACCUMULATOR AND INDEX REGISTERS

0437 0 0 0 0 ; (CALLED BY FOPRND)

0438 0 0 0 0

0439 0 0 0 0 r
0440 0 0 0 0

0441 0 0 0 0

0442 0 0 0 0

0443 0 0 0 0 POB START

0444 0 0 0 0 LONGA OFF

0445 0 0 0 0 LONGI OFF

0446 0 0 0 0

0447 0 0 0 0 1 PRINT:

0448 0000 A200 LDX #0 ONE OPERAND BYTE

0449 0 0 0 2 8006 BRA IN SKIP

0450 0004 PODB ENTRY

0451 0004 A201 LDX #1 TWO OPERAND BYTES

0452 0006 8002 BRA IN SKIP

0453 0008 POTB ENTRY

0454 0008 A202 LDX #2 THREE OPERAND BYTES

0455 000A 1 FALL THROUGH

0456 000A A9A4 IN LDA #'$' PRINT LEAD-IN

0457 OOOC 990080 STA LINE.Y

0458 000F C8 INY

0459 0 0 1 0

0460 0010 B588 MORE LDA OPRNDL,X LOOP THROUGH OPERAND

318 Programming the 65816

0461 0 0 1 2 200080 JSR PUTHEX HIGH TO LOW

0462 0015 CA DEX

0463 0016 1 0 F8 BPL MORE

0464 0018 60 RTS

0465 0019 END

Local Symbols

IN 00000A MORE 000010 PODB 000004 POTB 000008

15 DEBUG16—A 65816 Programming Tool 319

STEP_________________________________
This routine also contains the PAUSE entry point called by LIST;

STEP waits until a keypress, PAUSE simply checks to see if a key
has been pressed, and waits only if there has been an initial keypress.
In both cases, the wait loop continues until the next keypress. If the
keypress that exits the wait loop was the ESCAPE key, the carry is
cleared, signalling the calling program that the user wants to quit rather
than continue. If it was RETURN, the overflow flag is cleared; the tracer
uses this toggle between tracing and single stepping. Any other keypress
causes the routine to return with both flags set.

The code in this listing is machine-dependent; it checks the keyboard
locations of the Apple //. Since this is a relatively trivial task, in-line
code is used rather than a call to one of the existing 6502 monitor rou
tines; therefore, the processor remains in the native mode while it per
forms this I/O operation.

Like all utility routines, STEP saves and restores the status on entry
and exit.

0466 0 0 0 0

0467 0 0 0 0

0468 0 0 0 0

0469 0 0 0 0 APPEND DB.UTILITY

0470 0 0 0 0

0471 0 0 0 0

0472 0 0 0 0

0473 0 0 0 0 1

0474 0 0 0 0 ; STEP — CHECKS FOR USER PAUSE SIGNAL

0475 0 0 0 0 ; (KEYSTROKE)

0476 0 0 0 0 $

0477 0 0 0 0 ; CONTAINS MACHINE-DEPENDENT CODE

0478 0 0 0 0 ; FOR APPLE //

0479 0 0 0 0

0480 0 0 0 0 f
0481 0 0 0 0

0482 0 0 0 0 STEP START

0483 0 0 0 0 KEYBD EQU SC000

0484 0 0 0 0 KEYSTB EQU SC010

0485 0 0 0 0 ESC EQU $9B ESCAPE KEY (HIGH BIT SET)

0486 0 0 0 0 V EQU $40 MASK FOR OVERFLOW FLAG

0487 0 0 0 0 LONGA OFF

0488 0 0 0 0 LONGI OFF

0489 0 0 0 0

0490 0 0 0 0 08 PHP SAVE MODES

0491 0001 E230 SEP #M+X

320 Programming the 65816

0492 0003 800B BRA WAIT

0493 0005

0494 0005 PAUSE ENTRY ENTRY FOR PAUSE 1 CALL

0495 0005 08 PHP

0496 0006 E230 SEP #M+X

0497 0008 AD00C0 LDA KEYBD CHECK FOR KEYPRESS

0498 000B 1 0 1 B BPL RETNCR NONE; DON'T PAUSE

0499 OOOD 8D10C0 STA KEYSTB CLEAR STROBE

0500 0 0 1 0 1 IF KEYSTROKE

0501 0 0 1 0 AD00C0 WAIT LDA KEYBD LOOP FOR NEXT KEY

0502 0013 10FB BPL WAIT

0503 0015 8D10C0 STA KEYSTB CLEAR STROBE

0504 0018 C99B CMP #ESC IF ESC RETURN WITH

0505 0 0 1 A D004 BNE RETNESC

0506 0 0 1 C

0507 0 0 1 C 28 RETEQ PLP CARRY CLEAR (QUIT)

0508 0 0 1 D EA NOP

0509 0 0 1 E 18 CLC

0510 0 0 1 F 60 RTS

0511 0 0 2 0

0512 0 0 2 0 C98D RETNESC CMP #CR

0513 0 0 2 2 D004 BNE RETNCR

0514 0024 28 PLP

0515 0025 E241 SEP #C+V

0516 0027 60 RTS

0517 0028

0518 0028 8D10C0 RETNCR STA KEYSTB

0519 002 B 28 PLP ELSE SET

0520 002 C 38 SEC

0521 002 D B8 CLV

0522 002E 60 RTS (CONTINUE)

0523 002 F END

Local Symbols

ESC 00009B KEYBD OOCOOO KEYSTB 00C010 PAUSE 000005

RETEQ 0 0 0 0 1 c RETNCR 000028 RETNESC 0 0 0 0 2 0 V 000040

WAIT 0 0 0 0 1 0

15 DEBUG16—A 65816 Programming Tool 321

PUTHEX______________________________
This utility routine, already referred to in several descriptions, is

called whenever a hexadecimal value needs to be output. It converts the
character in the low byte of the accumulator into two hexadecimal char
acters, and stores them in the buffer LINE at the position pointed to by
the Y register.

PUTHEX calls an internal subroutine, MAKEHEX, which does the
actual conversion. This call (rather than in-line code) allows MAKEHEX
to first call, then fall through into, an internal routine, FORMNIB.

When MAKEHEX returns, it contains the two characters to be printed
in the high and low bytes of the accumulator; MAKEHEX was processed
with the accumulator eight bits wide, so the sixteen-bit mode is switched
to, letting both bytes be stored in one instruction. The Y register is
incremented twice, pointing it to the space immediately past the second
character printed.

FORMNIB is both called (for processing the first nibble) and fallen
into (for processing the second). Thus the RTS that exits FORMNIB
returns variously to either MAKEHEX or PUTHEX. This technique
results in more compact code than if FORMNIB were called twice.

The conversion itself is done by isolating the respective bits, and then
adding the appropriate offset to form either the correct decimal or
alphabetic (A-F) hexadecimal character.

Like all utility routines, the status is saved and restored on entry and
exit.

322 Programming the 65816

0524 0 0 0 0

0525 0 0 0 0

0526 0 0 0 0

0527 0 0 0 0

.....................
»

0528 0 0 0 0 ; PUTHEX

0529 0 0 0 0 1

0530 0 0 0 0 ; CONVERTS NUMBER IN ACCUMULATOR TO HEX STRING

0531 0 0 0 0 ; STORED AT LINE,Y

0532 0 0 0 0 1

0533 0 0 0 0 ; SAVES AND RESTORES MODE FLAGS

0534

0535

0 0 0 0

0 0 0 0

»..............

»

0536 0 0 0 0

0537 0 0 0 0

0538 0 0 0 0

0539 0 0 0 0 PUTHEX START

0540 0 0 0 0 08 PHP SAVE MODE FLAGS

0541 0 0 0 1 2 0 0 DOO JSR MAKEHEX GET ASCII COOES IN A, B

0542 0004 C220 REP #M

0543 0006 LONGA ON

0544 0006 990080 STA LINE.Y PUT TWO BYTES AT LINE

0545 0009 C8 INY INCREMENT Y PAST THEM

0546 000A C8 INY

0547 0008 28 PLP RESTORE MODE

0548 oooc 60 RTS RETURN

0549 000D

0550 0 0 0 D E230 MAKEHEX SEP $M+X ALL EIGHT BIT

0551 000 F LONGA OFF

0552 000 F LONGI OFF

0553 000F

0554 0 0 0 F 48 PHA SAVE VALUE TO BE CONVERTED

0555 0 0 1 0 290F AND ASOF MASK OFF LOW NIBBLE

0556 0 0 1 2 201 BOO JSR FORMNIB CONVERT TO HEX

0557 0015 EB XBA STORE IN B

0558 0016 6 8 PLA RESTORE VALUE

0559 0017 4A LSR A SHIFT HIGH NIBBLE

0560 0018 4A LSR A TO LOW NIBBLE

0561 0019 4A LSR A

0562 0 0 1 A 4A LSR A

0563 0 0 1 B 1 FALL THROUGH TO CONVERT

0564 0 0 1 B

0565 0 0 1 B C90A FORMNIB CMP ASA IF GREATER THAN OR EQUAL TO

0566 0 0 1 0 B004 BGE HEXDIG 10, USE DIGITS A .. F

0567 0 0 1 F 18 CLC ELSE SIMPLY ADD 'O' TO

0568 0 0 2 0 69B0 ADC A'O 1 CONVERT TO ASCII

0569 0 0 2 2 60 RTS

15 DEBUG16—A 65816 Programming Tool 323

0570 0023

0571 0023 69B6 HEXDIG ADC S ' A ' - n SUBTRACT 11, ADD 'A*

0572 0025 60 RTS (SORT OF)

0573 0026

0574 0026 END

Local Symbols

FORMNIB 00001B HEXDIG 000023 MAKEHEX 00000D

324 Programming the 65816

CLRLN_______________________________
CLRLN performs the very straightforward task of clearing the output

buffer, LINE, to blanks. It also contains the global storage reserved for
LINE.

Like the other utility routines, CLRLN saves and restores the status.

0575 0 0 0 0

0576 0 0 0 0

0577 0 0 0 0 1

0578 0 0 0 0 ; CLRLN

0579 0 0 0 0 1

0580 0 0 0 0 ; CLEARS 'LINE 1 WITH BLANKS

0581 0 0 0 0 1

0582 0 0 0 0 ; SAVES AND RESTORES MODE FLAGS

0583 0 0 0 0 1

0584 0 0 0 0

0585 0 0 0 0

f
1

0586 0 0 0 0

0587 0 0 0 0

0588 0 0 0 0 CLRLN START

0589 0 0 0 0 08 PHP

0590 0 0 0 1 C230 REP #M+X

0591 0003 LONGA ON

0592 0003 LONGI ON

0593 0003

0594 0003 A9AOAO LDA #' '

0595 0006 A24400 LDX # 6 8

0596 0009

0597 0009 9D1200 LOOP STA LINE.X

0598 oooc CA DEX

0599 OOOD CA DEX

0600 000E 10F9 BPL LOOP

0601 0 0 1 0 28 PLP

0602 0 0 1 1 60 RTS

0603 0 0 1 2

0604 0 0 1 2

0605 0 0 1 2 LINE ENTRY

0606 0 0 1 2 A0A0A0A0 DC 70C1 '

0607 0058 8D00 DC H'8D00'

0608 005A END

Local Symbols

LINE 000012 LOOP 000009

15 DEBUG16—A 65816 Programming Tool 325

UPDATE______________________________
This routine, common to both the disassembler and the tracer, up

dates the program counter and other direct page variables—the address
mode attribute (ADDRMODE) and the length (OPLEN)—and, using the
length, reads the instruction operands into direct page memory.

The address mode and length attributes are stored in a table called
ATR1BL, two bytes per instruction. Since there are 256 different op
codes, the table size is 512 bytes. The current opcode itself, fetched pre
viously, is used as the index into the table. Since the table entries are two
bytes each, the index is first multiplied by two by shifting left. Since the
sixteen-bit accumulator was used to calculate the index, both attribute
bytes can be loaded in a single operation; since their location in direct
page memory is adjacent, they can be stored in a single operation as well.

Normally, the value of OPLEN loaded from the attribute table is the
correct one; in the case of the immediate addressing mode, however, the
length varies with the setting of the m and x flags. The opcodes for the
immediate instructions are trapped using just three comparisons, an
AND, and four branches to test the opcode bits. Note that the immedi
ate operands are multiplied times two because the opcode already hap
pens to be shifted left once. If the current instruction uses immediate
addressing, the stored value of the status register is checked for the rele
vant flag setting; if m or x, as appropriate, is clear, then OPLEN is
incremented. The routines that output the immediate operand now
know the correct number of operand bytes to print, and the tracer
knows where the next instruction begins.

The status is saved on entry and restored on exit.

326 Programming the 65816

0609 0 0 0 0

0610 0 0 0 0

0611 0 0 0 0

0612 0 0 0 0

0613 0 0 0 0 UPDATE

0614 0 0 0 0

0615 0 0 0 0 UPDATES ATTRIBUTE VARIABLES BASED ON OPCODE

0616 0 0 0 0 PASSED IN ACCUMULATOR BY LOOKING IN ATTRIBUTE

0617 0 0 0 0 TABLES

0618 0 0 0 0

0619 0 0 0 0 SAVES AND RESTORES MODE FLAGS

0620 0 0 0 0

0621 0 0 0 0

0622 0 0 0 0

0623 0 0 0 0

0624 0 0 0 0 UPDATE START

0625 0 0 0 0 USING ATRIBL

0626 0 0 0 0

0627 0 0 0 0

0628 0 0 0 0 LDYI EQU $A0*2 OPCODE VALUE TIMES TWO

0629 0 0 0 0 LDXI EQU $A2*2

0630 0 0 0 0

0631 0 0 0 0 08 PHP SAVE STATE

0632 0 0 0 1 C230 REP #M+X

0633 0003 LONGA ON

0634 0003 LONGI ON

0635 0003

0636 0003 29FFOO AND #$FF MASK HIGH BYTE

0637 0006 OA ASL A TIMES TWO

0638 0007

0639 0007 AS TAY

0640 0008 B90080 LDA ATRIBL,Y INDEX INTO ATTRIBUTE TABLE

0641 0008 EB XBA SWAP ORDER OF ENTRIES

0642 oooc 859C STA ADDRMODE SAVE ADDRMODE, MNEMONIC INDEX

0643 OOOE

0644 OOOE AA TAX ADDRMODE TO X (LOW)

0645 000 F 98 TYA OPCODE * 2 TO ACCUM

0646 0 0 1 0 E210 SEP #X

0647 0 0 1 2 LONGI OFF

0648 0 0 1 2

0649 0 0 1 2 BCFF7F LDY LENS-1,X GET LENGTH OF OPERATION

0650 0015 849F STY OPLEN

0651 0017

0652 0017

0653 0017 A697 LDX EBIT EMULATION MODE?

0654 0019 E001 CPX #1 TEST BIT ZERO

0655 0 0 1 B F02E BEQ SHORT YES— ALL IMMEDIATE ARE

15 DEBUG16—A 65816 Programming Tool 327

0656 0 0 1 0 r SHORT

0657 0 0 1 0 892000 BIT # $ 2 0 IS MSD*2 EVEN?

0658 0 0 2 0 0029 BNE SHORT NO, CAN'T BE IMMEDIATE

0659 0 0 2 2 C94401 CMP #LDXI IS IT LDX #?

0660 0025 F00A BEQ CHKX

0661 0027 891E00 BIT #$F*2 IS LSD*2 ZERO?

0662 002A 000E BNE CHKA CHECK ACCUMULATOR OPCODES

0663 0 0 2 C C94001 CMP # LDYI MUST = LDY# OR GREATER

0664 0 0 2 F 9009 BLT CHKA NO, MAYBE ACCUMULATOR

0665 0031 A596 LDA PREG IF IT IS, WHAT IS FLAG SETTING?

0666 0033 291000 AND #X

0667 0036 F011 BEQ LONG CLEAR - 16 BIT MODE

0668 0038 D0 1 1 BNE SHORT SET - 8 BIT

0669 003A

0670 003A 291E00 CHKA AND #$0F*2 MASK OUT MSD

0671 003 D C91200 CMP #$9*2 IS LSD = 9?

0672 0040 D009 BNE SHORT

0673 0042 A596 LDA PREG WHAT IS FLAG SETTING?

0674 0044 292000 AND #M

0675 0047 0 0 0 2 BNE SHORT NO, 8 BIT MODE

0676 0049

0677 0049 E69F LONG INC OPLEN LONG IMMEDIATE — LENGTH IS

0678 004B » ONE MORE THAN FOUND IN TABLE

0679 004B

0680 004B A000 SHORT LDY # 0

0681 004D 8005 BRA LOOP IN

0682 004F

0683 004F A780 LOOP [PCREG 3 LOAD 16 BITS --16 BIT MODE

0684 0051 1 USED TO BUMP PCREG EASILY

0685 0051 AA TAX TRUNCATE TO EIGHT BITS

0686 0052 9687 STX ORPNDL-1,Y SAVE

0687 0054

0688 0054 E680 LOOPIN INC PCREG MOVE PC PAST NEXT INSTRUCTION

0689 0056 C8 INY BYTE

0690 0057 C49F CPY OPLEN MOVED ALL OPERAND BYTES?

0691 0059 00F4 BNE LOOP NO, CONTINUE

0692 005 B

0693 005 B 28 DONE PLP

0694 005 C 60 RTS

0695 005D END

Local Symbols

CHKA 00003A CHKX 000031 DONE 00005B LDXI 000144

LDYI 000140 LONG 000049 LOOP 00004F LOOPIN 000054

SHORT 00004B

328 Programming the 65816

PRINTLN______________________________

This is the output routine. In this version, an existing 6502 output
routine is called, necessitating a reversion to the emulation mode. Since
this is the only place a 6502 routine is called, a simpler mode-switching
routine than the generalized one of the previous chapter is used. The
user registers do not need to be preserved, but zero needs to be swapped
into the direct page to make it address page zero.

The main loop is in the emulation mode until the null terminal byte of
LINE is encountered; on exit, the native mode, direct page, and status
are restored.

0696 0 0 0 0

0697 0 0 0 0

0698 0 0 0 0

0699 0 0 0 0

0700 0 0 0 0 PRINTLN

0701 0 0 0 0

0702 0 0 0 0 MACHINE-DEPENDENT CODE TO OUTPUT

0703 0 0 0 0 THE STRING STORED AT 'LINE'

0704 0 0 0 0

0705 0 0 0 0 SAVES AND RESTORES MODE FLAGS

0706 0 0 0 0

0707 0 0 0 0

0708 0 0 0 0

0709 0 0 0 0

0710 0 0 0 0

0711 0 0 0 0 PRINTLN START

0712 0 0 0 0 COUT EQU SFDED APPLE CHARACTER OUTPUT ROUTINE

0713 0 0 0 0

0714 0 0 0 0 08 PHP SAVE STATUS

0715 0 0 0 1 0B PHD SAVE DIRECT PAGE

0716 0 0 0 2 F40000 PEA 0 SWITCH TO PAGE ZERO

0717 0005 2B PLD FOR EMULATION

0718 0006

0719 0006 LONGA OFF

0720 0006 LONGI OFF

0721 0006 38 SEC SWITCH TO EMULATION

0722 0007 FB XCE

0723 0008

0724 0008 A000 LDY #0

0725 OOOA

0726 OOOA B90080 LOOP LDA LINE.Y LOOP UNTIL STRING TERMINATOR

0727 0 0 0 0 F006 BEQ DONE REACHED

0728 OOOF 20EDFD JSR COUT

15 DEBUG16—A 65816 Programming Tool 329

0729 0 0 1 2 C8 INY

0730 0013 80F5 BRA LOOP

0731 0015

0732 0015 18 DONE CLC RESTORE NATIVE MODE

0733 0016 FB XCE

0734 0017 2B PLD RESTORE DIRECT PAGE

0735 0018 28 PLP RESTORE MODE FLAGS

0736 0019 60 RTS

0737 0 0 1 A

0738 0 0 1 A END

Local Symbols

COUT 00FDED DONE 000015 LOOP o o o o d a

330 Programming the 65816

TRACE_______________________________

This is the actual entry to the trace routine. It performs initialization
similar to LIST, and additionally sets up the BRK vectors, so they can
point to locations within the tracer.

The e flag, direct page register and data bank register are all given ini
tial values of zero. The program counter and program counter bank are
presumed to have been initialized by the user. The first byte of the pro
gram to be traced is loaded; since indirect long addressing is used, this
program can be used with the 65816 to debug programs located in any
bank. It can, of course, also be used with the 65802.

The jump to TBEGIN enters the main loop of the trace routine in the
middle—in other words, "between instructions."

0739 0 0 0 0

0740 0 0 0 0 APPEND DB.TRACE

0741 0 0 0 0

0743 0 0 0 0

0744 0 0 0 0 TRACE

0745 0 0 0 0

0746 0 0 0 0 ENTRY POINT FOR TRACER

0747 0 0 0 0

0748 0 0 0 0

0749 0 0 0 0

0750 0 0 0 0 TRACE START

0751 0 0 0 0 USRBRKV GEQU $3F0 USER BRK VECTOR FOR APPLE //

0752 0 0 0 0 BRKN GEQU SFFE6 NATIVE MODE BRK VECTOR

0753 0 0 0 0

0754 0 0 0 0 08 PHP SAVE CALLING STATE

0755 0 0 0 1 18 CLC

0756 0 0 0 2 FB XCE

0757 0003 08 PHP

0758 0004

0759 0004 C210 REP # $ 1 0

0760 0006 LONGI ON

0761 0006 F40000 PEA 0 OLD STACK BOUNDARY

0762 0009

0763 0009 BA TSX

0764 OOOA 8E3D00 STX SAVSTACK

0765 OOOD

0766 OOOD F40003 PEA DPAGE INITIALIZE DIRECT PAGE

0767 0 0 1 0 2B PLD

0768 0 0 1 1

0769 0 0 1 1 8691 STX STACK

0770 0013

15 DEBUG16—A 65816 Programming Tool 331

0771 0013 E220 SEP # $ 2 0

0772 0015 LONGA OFF

0773 0015

0774 0014 A901 LDA # 1

0775 0017 8597 STA EBIT

0776 0019 6493 STZ DIRREG DIRECT PAGE, DATA BANK

0777 0 0 1 B 6494 STZ DIRREGH TO POWER-UP DEFAULTS

0778 0 0 1 D 6495 STZ DBREG

0779 0 0 1 F 649E STZ MNX+1

0780 0 0 2 1

0781 0 0 2 1 9C0080 STZ STEPCNTRL

0782 0024

0783 0024 A20080 LDX #EBRKIN PATCH BRK VECTORS

0784 0027 8EF003 STX USRBRKV TO POINT TO TRACE CODE

0785 002A

0786 002A AEE6 FF LDX BRKN FIND OUT WHERE BRKN POINTS TO

0787 0 0 2 0 E000C0 CPX #$C000 MAKE SURE IT'S RAM ON AN APPLE

0788 0030 9003 BLT OK

0789 0032 4C0080 JMP QUIT MIGHT AS WELL GIVE UP NOW...

0790 0035 8E3F00 OK STX USRBRKN

0791 0038

0792 0038 A780 LDA [PCREG] GET FIRST OP CODE

0793 003A 4C0080 JMP TBEGIN BEGIN!

0794 003 D

0795 003 D SAVSTACK ENTRY

0796 003 D 0 0 0 0 OS 2

0797 003 F USRBRKN ENTRY

0798 003 F 0 0 0 0 DS 2

0799 0041 SAVRAM ENTRY

0800 0041 0 0 0 0 DS 2

0801 0043 END

Local Symbols

OK 000035 SAVRAH 000041 SAVSTACK 00003 D USRBRKN 00003F

332 Programming the 65816

EBRKIN_______________________________

This is the main loop of the tracer. It has three entry points: one each
for the emulation and native mode BRK vectors to point to, and a third
(TBEGIN) which is entered when the program starts tracing and there is
no "last instruction.” This entry provides the logical point to begin
examining the tracing process.

TRACE has performed some initialization, having loaded the opcode
of the first instruction to be traced into the accumulator. As with FLIST,
UPDATE is called to update the program counter and copy the instruc
tion attributes and operand into direct page memory. The routine
CHKSPCL is then called to handle the flow-altering instructions; in
these cases, it will modify PCREG to reflect the target address. In either
case, the opcode of the next instruction is loaded, and a BRK instruction
(a zero) is stored in its place, providing a means to regain control imme
diately after the execution of the current instruction.

The contents of the RAM pointed to by the (arbitrary) ROM values in
the native mode BRK vector are temporarily saved, and the location is
patched with a jump to the NBRKIN entry point.

The registers are then loaded with their user program values: these
will have been preinitialized by TRACE, or will contain the values
saved at the end of the execution of the previous instruction. Note the
order in which the registers are loaded; some with direct page locations,
others pushed onto the stack directly from direct page locations, then
pulled into the various registers. Once the user registers have been
loaded with their values, they cannot be used for data movement. The P
status register must be pulled last, to prevent any other instructions
from modifying the flags.

The e bit is restored by loading the P register with a mask reflecting
the value it should have; e is exchanged with the carry, and a second
PLP instruction restores the correct status register values.

The routine exits via a jump indirect long through the "old" pcreg
variable, which points to the current instruction. It will be reentered (at
either EBRKIN or NBRKIN) when the BRK instruction that immediately
follows the current instruction is executed.

Before this, however, the single instruction will be executed by the
processor; any memory to be loaded or stored, or any registers to be
changed by the instruction, will be modified.

After the BRK is executed, control returns to the tracer either at
EBRKIN, if the user program was in emulation mode, or at NBRKIN if
the user program was in native mode. The first thing that must be done
is preserve the state of the machine as it was at the end of the instruc
tion.

The BRK instruction has put the program counter bank (only in

15 DEBUG16—A 65816 Programming Tool 333

native mode), the program counter, and the status register on the stack.
The program already knows the address of the next instruction, so the
value on the stack can be disregarded. The status register is needed,
however.

Entry to EBRKIN is from the Apple // monitor user vector at $3F0
and $3Fl. The Apple // monitor handles emulation mode BRK instruc
tions by storing the register values to its own zero page locations; it
pulls the program counter and status register from the stack and stores
them, too. The code at EBRKIN dummies up a native mode post-BRK
stack by first pushing three place-holder bytes, then loading the status
register the from where the Apple Monitor stored it, and pushing it. The
accumulator and X registers are re-loaded from monitor locations; Y has
been left intact. A one is stored to variable EBIT, which will be used to
restore the emulation mode when EBRKIN exits. The processor switches
to native mode, and control falls through into NBRKIN, the native
mode break handler.

With the stack in the correct state for both emulation mode and
native mode entries, the routine proceeds to save the entire machine
context. The register sizes are extended to sixteen bits to provide a
standard size which encompasses the maximum size possible. The data
bank and direct page registers are pushed onto the stack; the DPAGE
value is pushed on immediately after, and pulled into the direct page,
establishing the local direct page. With this in place, the A, X, and Y
registers can be stored at their direct page locations. The register values
pushed on the stack are picked off using stack-relative addressing. Since
control is not returned by execution of an RTI (as is usual for interrupt
processing), but instead is returned by means of a JMP, the stack must
be cleaned up. Since seven bytes have been pushed, seven is added to
the current stack pointer, and then saved at the direct page variable
STACK. This being done, a small local stack region at $140 can be allo
cated.

The memory borrowed as a RAM native-mode BRK vector is re
stored.

The current line is then disassembled in the same manner as LIST.
The register values just stored into memory are also displayed via the
routine DUMPREGS.

Once this is done, the effect has been achieved and the contents of the
registers between instructions has been made visible. Before resuming
execution of the program being traced, a check is made to see if the user
wishes to quit, pause or step, or toggle between tracing and stepping.

Before returning to the TBEGIN entry, the BRK instruction stored at
the location of the new "current" instruction is replaced with the saved
opcode, the current program counter is moved to the old program
counter, and the cycle begins again at TBEGIN.

334 Programming the 65816

0802 0 0 0 0

0803 0 0 0 0

0804 0 0 0 0

0805 0 0 0 0 EBRKIK , NBRKIN, TBEGIN

0806 0 0 0 0

0807 0 0 0 0 ENTRY POINTS FOR TRACER MAIN LOOP

0808 0 0 0 0 EBRKIN AND NBRKIN RECOVER CONTROL AFTER

0809 0 0 0 0 * BRK* INSTRUCTION EXECUTED

0810 0 0 0 0 TBEGIK IS INITIAL ENTRY FROM 'TRACE'

0811 0 0 0 0

0812 0 0 0 0

0813 0 0 0 0

0814 0 0 0 0

0815 0 0 0 0

0816 0 0 0 0 EBRKIN START ENTRY FROM EMULATION MODE

0817 0 0 0 0 FOR TRACER

0818 0 0 0 0

0819 0 0 0 0 LONGA OFF

0820 0 0 0 0 LONGI OFF

0821 0 0 0 0

0822 0 0 0 0 F40000 PEA 0

0823 0003 48 PHA

0824 0004 A548 LDA $48 APPLE // MONITOR

0825 0006 48 PHA LOCATIONS

0826 0007 A545 LDA $45 FOR P, AA

0827 0009 A646 LDX $46 AND X

0828 0 0 0 B

0829 000B note that if direct page is relocated

0830 0 0 0 B in emulation mode these locations

0831 000B will be used by monitor brk handler

0832 000B

0833 000B EE9703 INC EBIT+DPAGE MARK AS EMULATION MODE

0834 OOOE

0835 0 0 0 E 18 CLC GO NATIVE

0836 OOOF FB XCE

0837 0 0 1 0

0838 0 0 1 0 NBRKIN ENTRY ENTRY FROM NATIVE MODE

0839 0 0 1 0 FOR TRACER

0840 0 0 1 0

0841 0 0 1 0 C230 REP #M+X USE LONG WORD SIZES

0842 0 0 1 2 LONGA ON

0843 0 0 1 2 LONGI ON

0844 0 0 1 2

0845 0 0 1 2 8 B PHB SAVE DATA BANK

0846 0013 OB PHD DIRECT PAGE

0847 0014 F40003 PEA DPAGE SWITCH TO APPLICATION

15 DEBUG16—A 65816 Programming Tool_________335

0848 0017 2B PLD DIRECT PAGE

0849 0018

0850 0018 858F STA AREG STASH USER REGISTERS

0851 0 0 1 A 8 6 8 B STX XREG

0852 0 0 1 C 848D STY YREG

0853 0 0 1 E

0854 0 0 1 E A301 LDA 1 ,s GET DIRECT PAGE VALUE

0855 0 0 2 0 8593 STA DIRREG SAVED

0856 0 0 2 2

0857 0 0 2 2 3B TSC CALCULATE TRUE STACK

0858 0023 18 CLC (BEFORE BRK)

0859 0024 690700 ADC #7

0860 0027 8591 STA STACK SAVE AS STACK

0861 0029

0862 0029 A3 03 LDA 3,S SAVE DATA BANK, STATUS

0863 002 B 8595 STA DBREG STATUS REGISTER

0864 002 D

0865 002 D A94001 LDA #$140 SET UP SMALL STACK

0866 0030 1 B TCS

0867 0031

0868 0031 4B PHK MAKE DATA BANK = PROGRAM BANK

0869 0032 AB PLB

0870 0033 AE0080 LDX USRBRKN RESTORE BORROWED RAM

0871 0036 AD0180 LDA SAVRAM+1

0872 0039 9D0100 STA !1,X

0873 003 C AD0080 LDA SAVRAH

0874 003 F 9D0000 STA ! 0, X

0875 0042 200080 JSR FLIST FORMAT DISASSEMBLY LINE

0876 0045 200080 JSR FRMOPRND

0877 0048

0878 0048 200080 JSR PRINTLN PRINT IT

0879 004B

0880 004B 200080 JSR CLRLN

0881 004E 200080 JSR DUMPREGS OUTPUT REGISTER VALUES

0882 0051 200080 JSR PRINTLN

0883 0054

0884 0054 E220 SEP #M

0885 0056 LONGA OFF

0886 0056

0887 0056 C210 REP #X

0888 0058 LONGI ON

0889 0058

0890 0058 2CE000 BIT STEPCNTRL

0891 005B 300E BHI DOPAUSE

0892 005D

0893 005D 200080 JSR STEP STEP ONE AT A TIME

336 Programming the 65816

0894 0060 9068 BCC QUIT USER WANTS TO QUIT

0895 0062 5011 BVC RESUME WANTS TO KEEP STEPPING

0896 0064 A980 LOA #$80 HIT CR; WANTS TO TRACE, NOT

0897 0066 8DE000 STA STEPCNTRL STEP -- SET FLAG

0898 0069 800A BRA RESUME

0899 0068

0900 0068 200080 DOPAUSE JSR PAUSE TRACING; ONLY WAIT IF USER

0901 006E 905A BCC QUIT HITS KEY

0902 0070 5003 BVC RESUME WANTS TO KEEP TRACING

0903 0072 9CE000 STZ STEPCNTRL HIT CR; WANTS TO STEP, NOT

0904 0075 » TRACE -- CLEAR FLAG

0905 0075

0906 0075 A583 RESUME LDA NCODE RESTORE OLD 'NEXT'; IT'S ABOUT

0907 0077 8780 STA [PCREG] TO BE EXECUTED

0908 0079

0909 0079 TBEGIN ENTRY

0910 0079 A8 TAY SAVE THE CURRENT (ABOUT TO BE

0911 007A 1 EXECUTED) OPCODE

0912 007A

0913 007A A680 LDX PCREG REMEMBER WHERE YOU GOT IT FROM

0914 007C 8684 STX OPCREG PCREG POINTED TO IT AFTER

0915 007E A582 LDA PCREGB PREVIOUS CALL TO UPDATE

0916 0080 8586 STA OPCREGB

0917 0082

0918 0082 98 TYA

0919 0083

0920 0083 8587 STA CODE SAVE CURRENT OPCODE

0921 0085 200080 JSR UPDATE UPDATE PC TO POINT PAST THIS

0922 0088 1 INSTRUCTION

0923 0088 1 UPDATE ATTRIBUTE VARIABLES

0924 0088

0925 0088 200080 JSR CHKSPCL CHECK TO SEE IF THIS CAUSES A

0926 008B 1 TRANSFER

0927 008B A780 LDA [PCREG] GET NEXT OPCODE TO BE EXECUTED

0928 008D 1 (ON NEXT LOOP THROUGH)

0929 008D 8583 STA NCODE SAVE IT

0930 008F A900 LDA # 0 PUT A BREAK ($00) THERE TO

0931 0091 I REGAIN CONTROL

0932 0091 8780 STA [PCREG]

0933 0093

0934 0093 GO ENTRY

0935 0093 C230 REP #M+X

0936 0095 LONGA ON

0937 0095 LONGI ON

0938 0095 AE0080 LDX USRBRKN BORROW THIS RAM FOR A SECOND

0939 0098 BD0 0 0 0 LDA !0,X

15 DEBUG16—A 65816 Programming Tool 337

0940 009B 8D0080 STA SAVRAM

0941 009E BD0100 LOA ! 1, X

0942 0 0 A 1 8D0180 STA SAVRAM+1

0943 00A4 A94C00 LDA #$4C

0944 00A7 9D0000 STA !0,X

0945 00AA A91000 LDA #NBRKIN

0946 00AD 9D0100 STA !1,X

0947 OOBO A591 LDA STACK RESTORE STACK

0948 00B2 18 TCS

0949 00 B3 0495 PEI (DBREG) GET THIS STUFF ON STACK

0950 00B5 D496 PEI (EBIT-1)

0951 00B7 D493 PEI (DIRREG)

0952 00B9

0953 00B9 6497 STZ EBIT ASSUME NATIVE MODE ON RETURN

0954 OOBB

0955 OOBB A58F LDA AREG RESTORE USER REGISTERS

0956 OOBD A48D LDY YREG

0957 OOBF A6 8 B LDX XREG

0958 00C1

0959 00C1 2B PLD POP IT AWAY!

0960 00C2

0961 00C2 28 PLP

0962 00C3 28 PLP

0963 00C4 FB XCE

0964 00C5

0965 00C5 AB PLB

0966 00C6 28 PLP

0967 00C7

0968 00C7 DC8403 JMP [DPAGE+OPCREG ON TO THE NEXT!

0969 OOCA

0970 OOCA QUIT ENTRY

0971 OOCA E220 SEP # $ 2 0

0972 OOCC LONGA OFF

0973 oocc

0974 OOCC A583 LDA NCODE CLEAN UP OLD PATCH

0975 OOCE 8780 STA [PCREG]

0976 OODO

0977 OODO C210 REP # $ 1 0

0978 0 0 0 2 LONGI ON

0979 0 0 0 2

0980 0 0 0 2 AE0080 LDX SAVSTACK GET ORIGINAL STACK POINTER

0981 0005 E8 INX

0982 0006 E8 INX

0983 0007 9A TXS

0984 0 0 D 8

0985 0 0 D8 F40000 PEA 0 RESTORE ZERO PAGE

338 Programming the 65816

0986 00DB 2B PLD

0987 OODC

0988 OODC 28 PLP

0989 OODD FB XCE

0990 OODE 28 PLP

0991 OODF 60 RTS

0992 OOEO

0993 OOEO STEPCNTRL ENTRY

0994 OOEO 00 DS 1

0995 00E1 END

Local Symbols

DOPAUSE 00006B GO 000093 NBRKIN 000010 QUIT 0 0 0 0 CA

RESUME 000075 STEPCNTRL OOOOEO TBEGIN 000079

15 DEBUG16—A 65816 Programming Tool 339

CHKSPCL______________________________
This routine checks the opcode about to be executed to see if it will

cause a transfer of control. Is it a branch, a jump, or a call? If it is any
of the three, the destination of the transfer must be calculated and
stored at PCREG so that a BRK instruction can be stored there to main
tain control after the current instruction is executed.

A table that contains all of the opcodes which can cause a branch or
jump (SCODES) is scanned. If a match with the current instruction is
not found, the routine exits and tracing resumes.

If a match is found, the value of the index into the table is checked.
The opcodes for all the branches are stored at the beginning of
SCODES, so if the value of the index is less than 9, the opcode was a
branch and can be handled by the same general routine.

The first thing that must be determined if the opcode is a branch is
whether or not the branch will be taken. By shifting the index right
(dividing by two), an index for each pair of different types of branches
is obtained. This index is used to get a mask for the bit in the status reg
ister to be checked. The value shifted into the carry determines whether
the branch is taken if the status bit is set or clear.

If a branch is not taken, the routine exits. If, however, a branch is
taken, the new program counter value must be calculated by sign ex
tending the operand and adding it to the current program counter.

Each of the other opcodes (jumps and calls) are dispatched to handler
routines through a jump table. Since only the new program counter val
ues must be calculated, jumps and calls with the same addressing mode
can be handled by the same routine.

Breaks, co-processor calls, and RTIs are not handled at all; a more
robust tracer would handle BRKs by letting breakpoints be set and
cleared. Since the software interrupts are not implemented, and soft
ware tracing of hardware interrupts is impractical, RTI is left unimple
mented. The program counter is incremented by one, causing these
instructions to be bypassed completely.

All of the jumps and calls are straightforward. Long addressing is
used to force the stack and indirect addressing modes to access bank
zero. Also notice the way the data bank register is copied to the pro
gram counter bank for indirect indexed addressing. Finally, note how
the long addressing modes call their absolute analogs as subroutines,
then handle the bank byte.

340 Programming the 65816

0996 0 0 0 0

0997 0 0 0 0

0998 0 0 0 0

0999 0 0 0 0 ; CHKSPCL

1 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0 ; CHECK CURRENT OPCODE (IN CODE) FOR SPECIAL CASES

1 0 0 2 0 0 0 0 ; — INSTRUCTIONS WHICH TRANSFER CONTROL (JMP, BRA, ETC.)

1003 0 0 0 0

1

1

1004 0 0 0 0 ; ASSUMES SHORTA, LONGI -- CALLED BY EBRKIN

1005 0 0 0 0

1006 0 0 0 0 #

1007 0 0 0 0

1008 0 0 0 0

1009 0 0 0 0 CHKSPCL START

1 0 1 0 0 0 0 0 LONGA OFF

1 0 1 1 0 0 0 0 LONGI ON

1 0 1 2 0 0 0 0

1013 0 0 0 0 A20000 LOX ASCX-SCODES

1014 0003 A587 LDA CODE

1015 0005

1016 0005 0D0080 LOOP CMP SCODES.X CHECK TO SEE IF CURRENT OPCODE

1017 0008 F004 BEQ HIT IS IN EXCEPTION TABLE

1018 000A CA DEX

1019 000B 10F8 BPL LOOP

1 0 2 0 000D 60 RTS EXIT IF NOT

1 0 2 1 OOOE

1 0 2 2 0003

1023 0003 E210 HIT SEP #X

1024 0 0 1 0 LONGI OFF

1025 0 0 1 0

1026 0 0 1 0 8 A TXA IF INDEX WAS LESS THAN 9, IT'S

1027 0 0 1 1 C909 CMP #9 A BRANCH

1028 0013 BOOF BGE NOTBR

1029 0015

1030 0015 4A LSR A SEE IF 'ODD OR EVEN'

1031 0016 AA TAX

1032 0017 BD0080 LDA PMASK.X GET MASK TO SELECT CORRECT

1033 0 0 1 A 1 PREG BIT

1034 0 0 1 A 2596 AND PREG IS IT SET?

1035 001 c
1036 001 c B003 BCS BBS IF INDEX WAS ODD, BRANCH IF

1037 0 0 1 E 1 PREG BIT IS SET

1038 0 0 1 E FOOB BEQ DOBRANCH ELSE IF EVEN, BRANCH IF CLEAR

1039 0 0 2 0 60 RTS

15 DEBUG16—A 65816 Programming Tool 341

1040 0 0 2 1

1041 0 0 2 1 0008 BBS BNE OOBRANCH "BRANCH IF BIT SET"

1042 0023 60 RTS

1043 0024

1044 0024 0A NOTBR ASL A NOT A BRANCH INSTRUCTION;

1045 0025 1 MULTIPLY BY TWO

1046 0025 AA TAX AND INDEX INTO HANDLER JUMP

1047 0026 TABLE

1048 0026 C210 REP #X

1049 0028 7CEE7F JMP (SPJMP-18 X) BIAS JUMP TABLE BY 9

1050 0028

1051 0028 OOBRANCH ENTRY

1052 002B A9FF LDA #$FF SET ACCUMULATOR BYTE HIGH

1053 0 0 2 0 ; (ANTICIPATE NEGATIVE)

1054 0 0 2 D EB XBA AND SIGN EXTEND INTO X

1055 002E

1056 002 E A588 LOA OPRNDL

1057 0030

1058 0030 C231 REP #M+X+C MAKE REGS LONG; CLEAR CARRY

1059 0032 LONGA ON (ANTICIPATE ADC)

1060 0032 LONGI ON

1061 0032

1062 0032 3003 BMI OK NUMBER WAS NEGATIVE; ALL IS OK

1063 0034

1064 0034 297F00 AND #$7F CLEAR HIGH BYTE OF ACCUM

1065 0037 i (POSITIVE NUMBER)

1066 0037 6580 OK ADC PCREG

1067 0039 8580 STA PCREG

1068 003B E220 SEP m RETURN WITH ACCUM SHORT

1069 003 D 60 RTS

1070 003 E END

Local Symbols

BBS 0 0 0 0 2 1 DOBRANCH 00002B HIT OOOOOE LOOP 000005

NOTBR 000024 OK 000037

1071 0 0 0 0

1072 0 0 0 0 SBRK START THESE ARE NOT IMPLEMENTED!

1073 0 0 0 0 SRTI ENTRY (AN EXERCISE FOR READER)

342 Programming the 65816

1074 0 0 0 0 SCOP ENTRY

1075 0 0 0 0 60 RTS

1076 0 0 0 1

1077 0 0 0 1 SJSRABS ENTRY ABSOLUTES —

1078 0 0 0 1 SJMPABS ENTRY

1079 0 0 0 1 A6 8 8 LDX OPRNDL MOVE OPERAND TO PC

1080 0003 8680 STX PCREG

1081 0005 60 RTS

1082 0006

1083 0006 SBRL ENTRY LONG BRANCH

1084 0006 C221 REP #M+C LONG ACCUM AND CLEAR CARRY

1085 0008 LONGA ON

1086 0008 A588 LDA OPRNDL ADD DISPLACEMENT TO

1087 0 0 0 A 6580 ADC PCREG PROGRAM COUNTER

1088 OOOC 8580 STA PCREG

1089 0 0 0 E E220 SEP #M

1090 0 0 1 0 LONGA OFF

1091 0 0 1 0 60 RTS

1092 0 0 1 1

1093 0 0 1 1 SJSRABSL ENTRY A8S0LUTE LONGS

1094 0 0 1 1 SJMPABSL ENTRY

1095 0 0 1 1 A6 8 8 LDX OPRNDL MOVE OPERAND, INCLUDING BANK,

1096 0013 8680 STX PCREG TO PROGRAM COUNTER

1097 0015 A58A LDA OPRNDB

1098 0017 8582 STA PCREGB

1099 0019 60 RTS

1 1 0 0 0 0 1 A

1 1 0 1 0 0 1 A SRTS ENTRY RETURN

1 1 0 2 0 0 1 A A691 LDX STACK PEEK ON STACK

1103 0 0 1 C EC0080 CPX SAVSTACK IF ORIGINAL STACK...

1104 001 F D003 BNE CONT

1105 0 0 2 1 4C0080 JMP QUIT RETURN TO MONITOR

1106 0024 E8 CONT INX

1107 0025

1108 0025 C2 2 0 REP m

1109 0027 BF000000 LDA > o ,x ALWAYS IN BANK ZERO

1 1 1 0 002 B 1 A INC A ADD ONE TO GET TRUE RETURN

1 1 1 1 002 C 8580 STA PCREG VALUE

1 1 1 2 002E E220 SEP #M

1113 0030

1114 0030 60 RTS

1115 0031

1116 0031

1117 0031 SRTL ENTRY RETURN LONG

1118 0031 2 0 1 A 0 0 JSR SRTS DO NORMAL RETURN,

1119 0034

15 DEBUG16—A 65816 Programming Tool 343

1 1 2 0 0034 E8 INX THEN GET BANK BYTE

1 1 2 1 0035 E 8 INX

1 1 2 2 0036 BF000000 LDA >0,X A IS NOW SHORT FOR BANK BYTE

1123 003A 8582 STA PCREGB

1124 003 C 60 RTS

1125 0030

1126 003D

1127 003 D SJMPIND ENTRY INDIRECT

1128 003 D A 6 8 8 LDX OPRNDL GET THE OPERAND

1129 003 F

1130 003 F C220 REP PM

1131 0041 BF0 0 0 0 0 0 LDA >0,X JMP IND ALWAYS IN BANK ZERO

1132 0045 8580 STA PCREG

1133 0047 E220 SEP PM

1134 0049 60 RTS

1135 004A

1136 004A

1137 004A SJMPINDL ENTRY

1138 004A 203D00 JSR SJMPIND SAME AS JMP INDIRECT,

1139 0040 E8 INX PLUS BANK BYTE

1140 004E E8 INX

1141 004 F BF000000 LDA >0,X ACCUM IS SHORT NOW

1142 0053 8582 STA PCREGB

1143 0055 60 RTS

1144 0056

1145 0056

1146 0056 SJMPINDX ENTRY INDEX JUMPS

1147 0056 SJSRINDX ENTRY

1148 0056 A48B LDY XREG LET CPU DO ADDITION

1149 0058 A 6 8 8 LDX OPRNDL GET INDIRECT POINTER

1150 005A 8699 STX TEMP

1151 005C A582 LDA RCREGB INDEXED JUMPS ARE IN PROGRAM

1152 005 E 859B STA TEMP+2 BANK

1153 0060

1154 0060 C220 REP PM

1155 0062 B799 LDA [TEMPI, Y ’Y IS X 1

1156 0064 8680 STA PCREG

1157 0066 E220 SEP PM

1158 0068

1159 0068 60 RTS

1160 0069

1161 0069

1162 0069 END

344 Programming the 65816

Local Symbols

CONT 000024 SBRL 000006 SCOP 0 0 0 0 0 0 SJMPABS 0 0 0 0 0 1

SJMPABSL 0 0 0 0 1 1 SJMPIND 00003D SJMPINDL 00004A SJMPINDX 000056

SJSRABS 0 0 0 0 0 1 SJSRABSL 0 0 0 0 1 1 SJSRINDX 000056 SRTI 0 0 0 0 0 0

SRTL 000031 SRTS 0 0 0 0 1 A

15 DEBUG16—A 65816 Programming Tool 345

DUMPREGS____________________________
This routine forms an output line that will display the contents of the

various registers. The routine is driven in a loop by a table containing
single-character register names ("A ," “X ," and so on) and the address of
the direct page variable that contains the corresponding register value.
It is interesting in that a direct page pointer to a direct page address is
used, since the two index registers are occupied with accessing the table
entries and pointing to the next available location in the output buffer.

1163 0 0 0 0

1164 0 0 0 0

1165 0 0 0 0

1166 0 0 0 0

1167 0 0 0 0 DUMPREGS

1168 0 0 0 0

1169 0 0 0 0 DISPLAYS CONTENTS OF REGISTER VARIABLES IN 'LINE'

1170 0 0 0 0

1171 0 0 0 0 SAVES AND RESTORES MODE

1172 0 0 0 0

1173 0 0 0 0

1174 0 0 0 0

1175 0 0 0 0 DUMPREGS START

1176 0 0 0 0 08 PHP

1177 0 0 0 1 E230 SEP #M+X

1178 0003 LONGA OFF

1179 0003 LONGI OFF

1180 0003

1181 0003 A000 LDY # 0

1182 0005

1183 0005 A903 LDA #>DPAGE STORE DPAGE HIGH IN TEMP HIGH

1184 0007 859A STA TEMPH

1185 0009

1186 0009 A209 LDX SENDTABLE-TABLE LENGTH OF COMMAND TABLE

1187 o o o b

1188 0 0 0 B BD4400 LOOP LDA TABLE,X GET ADDRESS OF NEXT REGISTER

1189 000E 8599 STA TEMP

1190 0 0 1 0 CA DEX

1191 0 0 1 1 BD4400 LDA TABLE,X GET REGISTER 'NAME'

1192 0014 200080 JSR PUTREG16

1193 0017 CA DEX

1194 0018 1 0 F1 BPL LOOP

1195 0 0 1 A

1196 0 0 1 A 1995 LDA #DBREG NOW ALL THE 8 -BIT REGISTERS

1197 0 0 1 C 8599 STA TEMP

346 Programming the 65816

1198 0 0 1 E A9C2 LDA #' B '

1199 0 0 2 0 200080 JSR PUTREG 8

1 2 0 0 0023 A996 LDA APREG

1 2 0 1 0025 8599 STA TEMP

1 2 0 2 0027 A9D0 LDA t t ' P '

1203 0029 200080 JSR PUTREG8

1204 002C A9C5 LDA #'E'

1205 002E 990080 STA LINE.Y

1206 0031 C8 INY

1207 0032 A9BA LDA

1208 0034 990080 STA LINE.Y

1209 0037 C8 INY

1 2 1 0 0038

1 2 1 1 0038 A9B0 LDA # ’0 '

1 2 1 2 003A A697 LDX EBIT

1213 003 C F001 BEQ OK

1214 003 E 1 A INC A 'O' BECOMES ' V

1215 003 F 990080 OK STA LINE.Y

1216 0042

1217 0042

1218 0042 28 PLP

1219 0043 60 RTS

1 2 2 0 0044

1 2 2 1 0044 C494 TABLE DC C ' D 1 ,11'DIRREGH 1 DIRECT PAGE

1 2 2 2 0046 0392 DC C ' S '.11 1 STACKH 1 ADDRESS OF

1223 0048 D98E DC C'Y',11 1 YREGH' REGISTER

1224 004A D8 8 C DC C 'X ',11 1 XREGH 1 VARIABLES

1225 004C C1 DC C'A'

1226 0040 90 ENDTABLE DC 11'AREGH'

1227 004E END

Local Symbols

ENDTABLE 000040 LOOP 0 0 0 0 0 B OK 00003F TABLE 000044

15 DEBUG16—A 65816 Programming Tool 347

PUTREG8_____________________________
This routine, along with PUTREG16, is called by DUMPREGS to

actually output a register value once its label and storage location have
been loaded from the table. Naturally, it calls PUTHEX to convert the
register values to hexadecimal.

1228 0 0 0 0

1229 0 0 0 0

1230 0 0 0 0

1231 0 0 0 0

1232 0 0 0 0 PUTREGS

1233 0 0 0 0

1234 0 0 0 0

1235 0 0 0 0

1236 0 0 0 0

1237 0 0 0 0

1238 0 0 0 0

1239 0 0 0 0 PUTREG 8 START

1240 0 0 0 0 990080 STA LINE.Y A CONTAINS REGISTER 'NAME'

1241 0003 C8 INY

1242 0004 A9BC LDA #' = ' EQUALS . .

1243 0006 990080 STA LINE.Y

1244 0009 C8 INY

1245 000A 8012 BRA PRIN USE PUTREG16 CODE

1246 oooc
1247 oooc PUTREG16 ENTRY

1248 oooc 990080 STA LINE.Y A CONTAINS REGISTER 'NAME'

1249 0 0 0 F C8 INY

1250 0 0 1 0 A9BD LDA # ' = ' EQUALS . .

1251 0 0 1 2 990080 STA LINE.Y

1252 0015 C8 INY

1253 0016 C8 INY

1254 0017 B299 LDA (TEMP) TEMP POINTS TO REGISTER

1255 0019 C699 DEC TEMP VARIABLE HIGH

1256 0 0 1 B 200080 JSR PUTHEX

1257 0 0 1 E

1258 0 0 1 E C8 PRIN INY

1259 0 0 1 F B299 LDA (TEMP) TEMP POINTS TO REGISTER

1260 0 0 2 1 20080 JSR PUTHEX VARIABLE LOW (OR 8 BIT)

1261 0024 C8 INY

1262 0025 60 RTS

1263 0026 END

Local Symbols

PRIN 0000 IE PUTREG16 00000C

348 Programming the 65816

Tables_______________________________

The next several pages list the tables used by the program—SPJMP,
PMASK, SCODES, MN, MODES, LENS, and ATR1BL.

SPJMP is a jump table of entry points to the trace handlers for those
instructions which modify the flow of control.

PMASK contains the masks used to check the status of individual flag
bits to determine if a branch will be taken.

SCODS is a table containing the opcodes of the special (flow-altering)
instructions.

ATRBL is the attribute table for all 256 opcodes. Each table entry is
two bytes, one is an index into the mnemonic table, the other the
address mode. This information is the key to the other tables, all used
by the UPDATE routine, which puts a description of the current instruc
tion's attributes into the respective direct page variables. MN is the table
of instruction mnemonics that the 'mnemonic index' attribute points
into. MODES is a jump table with addresses of the disassembly routine
for each addressing mode, and LENS contains the length of instructions
for each addressing mode. Both of these tables are indexed into directly
with the 'address mode' attribute.

1264 0 0 0 0

1265

1266

0 0 0 0

0 0 0 0

1267 0 0 0 0 SPJMP

1268 0 0 0 0 JUMP TABLE FOR 'SPECIAL' OPCODE HANDLERS

1269

1270

0 0 0 0

0 0 0 0

1271 0 0 0 0

1272 0000 SPJMP START JUMP TABLE FOR

1273 0 0 0 0 0080 DC A'SBRK' NON-BRANCH HANDLERS

1274 0 0 0 2 0080 DC A ’SJSRABS'

1275 0004 0080 DC A'SRTI'

1276 0006 0080 DC A'SRTS'

1277 0008 0080 DC A'SCOP'

1278 000A 0080 DC A'SJSRABSL'

1279 OOOC 0080 DC A'SBRL'

1280 000E 0080 DC A'SRTL'

1281 0 0 1 0 0080 DC A'SJMPABS'

1282 0 0 1 2 0080 DC A'SJMPABSL'

1283 0014 0080 DC A'SJMPIND'

1284 0016 0080 DC A 'SJMPINDX'

1285 0018 0080 DC A 'SJMPINDL'

1286 001A 0080 SCT DC A'SJSRINDX'

15 DEBUG16—A 65816 Programming Tool 349

1287 0 0 1 C

1288 001 c END

Local Symbols

SCT 0 0 0 0 1 A

1289 0 0 00
1290 0 0 00
1291 0 0 00
1292 0 0 00
1293 0 0 0 0 1

1294 0 0 0 0 ; PMASK

1295 0 0 00 ; STATUS REGISTER MASKS FOR BRANCH HANDLING CODE

1296 0 0 00
1297 0 0 00 t

1298 0 0 00
1299 0 0 00 PMASK START MASKS FOR STATUS REGISTER

1300 0 0 00 80 DC H'80' N FLAG

1301 0 0 0 1 40 DC H 140' V FLAG

1302 0 0 0 2 01 DC H 101 ' C FLAG

1303 0003 02 DC H ' 0 2 1 Z FLAG

1304 0004 00 DC H ' 0 0 1 BRA

1305 0005 END

1306 0 0 0 0

1307 0 0 0 0

1308 0 0 0 0

1309 0 0 0 0

1310 0 0 0 0

1311 0 0 0 0 SCODES START SPECIAL OPCODES

1312 0 0 0 0

1313 0 0 0 0 10 DC H M D ' BPL

1314 0 0 0 1 30 DC H ' 3 0 1 BMI

1315 0 0 0 2 50 DC H ' 5 0 1 BVC

1316 0003 70 DC H'70' BVS

1317 0004 90 DC H ' 9 0 1 BCC

1318 0005 BO DC H ’ B O ' BCS

1319 0006 DO DC H'DO* BNE

1320 0007 FO DC H'FO' BEQ

1321 0008 80 DC H ' 8 0 1 BRA

1322 0009 00 DC H'OO' BRK

1323 OOOA 20 DC H ' 2 0 1 JSR ABS

350 Programming the 65816

1324 OOOB 40 DC H'40' RTI

1325 oooc 60 DC H'601 RTS

1326 OOOD 0 2 DC H 1 0 2 ' COP

1327 OOOE 2 2 DC H ' 2 2 ' JSR ABSL

1328 OOOF 82 DC H ' 82 • BRL

1329 0 0 1 0 6 B DC H' 6 B' RTL

1330 0 0 1 1 4C DC H'4C' JMP ABS

1331 0 0 1 2 5C DC H ' 5 C' JMP ABSL

1332 0013 6 C DC H 1 6 C1 JMP ()

1333 0014 7C DC H'7C' JMP (,X)

1334 0015 DC DC H'DC' JMP []

1335 0016 sex ENTRY

1336 0016 FC DC H'FC' JSR (,X)

1337 0017 END

Local Symbols

sex 000016

1138 0 0 0 0 APPEND DB.TABLE

1139 0 0 0 0

1340 0 0 0 0

1341 0 0 0 0 HN DATA

1342 0 0 0 0 0 0 0 0 0 0 DX 3

1343 0003 C1C4C3 DC C'ADC 1

1344 0006 C1C3C4 DC C'AND' 2

1345 0009 C1D3CC DC C'ASL' 3

1346 OOOC C2C3C3 DC C ’BCC' 4

1347 OOOF C2C3D3 OC C'BCS' 5

1348 0 0 1 2 C2C5D1 DC C'BEO' 6

1349 0015 C2C9D4 DC C * BIT' 7

1359 0018 C2CDC9 DC C'BMI' 8

1351 0 0 1 B C2C3C5 DC C 1 BNE' 9

1352 0 0 1 E C2D0CC DC C'BPL' 1 0

1353 0 0 2 1 C2D2CB DC C'BRK' 1 1

1354 0024 C2D6C3 DC C 1 BVC 1 1 2

1355 0027 C2D6D3 DC C'BVS' 13

1356 002A C3CCC3 DC C'CLC 1 14

1357 002 D C3CCC4 DC C'CLD* 15

1358 0030 C3CCC9 DC C'CLI* 16

1359 0033 C3CCD6 DC C'CLV 17

1360 0036 C3CDD0 DC C'CMP' 18

1361 0039 C3D0D8 DC C'CPX' 19

15 DEBUG16—A 65816 Programming Tool 351

1362 003 C C3D0D9 DC C'1CPY 1 2 0

1363 003 F C4C5C3 DC C'’D E C 2 1

1364 0042 C4C5D8 DC C''DEX' 2 2

1365 0045 C4C5D9 DC C''DEY' 23

1366 0048 C5CF02 DC C''EOR' 24

1367 004B C9CEC3 DC r 'INC1 25

1368 004E C9C3D8 DC C''INX' 26

1369 0051 C9C3D9 DC C''INY' 27

1370 0054 CACDDO DC r 'JMP' 28

1371 0057 CAD3D2 DC r 'JSR' 29

1372 005A CCC4C1 DC r 'LDA' 30

1373 005 D CCC4D8 DC r 'LDX' 31

1374 0060 CCC4D9 DC r 'LDY' 32

1375 0063 CCD302 DC c 'LSR' 33

1376 0066 CECFDO DC r 'NOP' 34

1377 0069 CFD2C1 DC C''ORA' 35

1378 006C D0C8C1 DC C''PHA' 36

1379 006F D0C8D0 DC r 1PHP' 37

1380 0072 D0CCC1 DC C''PLA' 38

1381 0075 DOCCDO DC C''PLP' 39

1382 0078 D2CFCC DC r ' ROL ’ 40

1383 007B D2CFD2 DC C'1ROR ' 41

1384 007E D2D4C9 DC C ’1RIT' 42

1385 0081 D2D4D3 DC r 'RTS' 43

1386 0084 D3C2C3 DC C''SBC' 44

1387 0087 D3C5C3 DC c 'SEC' 45

1388 008A D3C5C4 DC C'' SED' 46

1389 0080 D3C5C9 DC C 1'SEI' 47

1390 0090 D3D4C1 DC C''STA' 48

1391 0093 D3D4D8 DC C 1'STX' 49

1392 0096 D3D4D9 DC C''STY' 50

1393 0099 D4C1D8 DC C''TAX' 51

1394 009C D4C1D9 DC C''TAY' 52

1395 009F D4D3D8 DC C'' TSX' 53

1396 00A2 D4D8C1 DC C'' TXA' 54

1397 00A5 D4D8D3 DC C'' TXS' 55

1398 00A8 D4D9C1 DC C'' TYA' 56

1399 00AB C2D2C1 DC C''BRA' 57

1400 00AE D0CCD8 DC C'' PLX' 58

1401 00B1 D0CCD9 DC C''PLY' 59

1402 00B4 D0C8D8 DC C 1'PHX' 60

1403 00B7 D0C8D0 DC C 1'PHY' 61

1404 00BA D3D4DA DC C''STZ' 62

1405 00BD D4D2C2 DC C''TRB' 63

1406 ooco D403C2 DC C 1'TSB' 64

1407 00C3

1408 00C3 D0C5C1 DC C 1'PEA' 65

1409 00C6 D0C5C9 DC C''PEI' 6 6

352 Programming the 65816

1410 00C9 OOC5D2 OC C''PER

1411 OOCC D0CCC2 OC r 1PLB

1412 OOCF D0CCC4 OC C''PLD

1413 00D2 D0C8C2 OC c ' PHB

1414 00D5 00C8C4 OC C''PHD

1415 00D8 D0C8CB OC C'' PHK

1416 OODB

1417 OODB D2C5D0 OC C''REP

1418 OODE 03C5D0 DC C''SEP

1419 00E1

1420 00E1 D4C3C4 OC C'' TCD

1421 00E4 D4C4C3 OC C'' TDC

1422 00E7 D4C303 OC c ' TCS

1423 OOEA D4D3C3 DC C'' TSC

1424 OOED D4D8D9 DC C ’'TXY

1425 OOFO D4D9D8 DC c 'TYX

1426 00 F3 D8C2C1 DC c 'XBA

1427 00F6 08C3C5 DC c 'XCE

1428 00 F9

1429 00F9 C2D2CC DC c 'BRL

1430 OOFC CAD3CC DC c 'JSL

1431 OOFF 02D4CC DC c ' RTL

1432 0 1 0 2 CDD6 CE DC c 'MVN

1433 0105 CDD600 DC c 'MVP

1434 0108 C3CFD0 DC c 'COP

1435 01 OB D7C1C9 DC c 'WAI

1436 01OE D3D4D0 DC c 'STP

1437 0 1 1 1 D7C4CD DC C'WDM

1438 0114 END

1439 0 0 0 0

1440 0 0 0 0 MODES DATA

1441 0 0 0 0 0 0 0 0 DS 2

1442 0 0 0 2 0080 DC A' FIMM’

1443 0004 0080 DC A' FABS'

1444 0006 0080 DC A' FABSL'

1445 0008 0080 DC A' FDIR'

1446 OOOA 0080 DC A'' FACC'

1447 OOOC 0080 DC A''FIMP’

1448 OOOE 0080 DC A''FINDINX'

1449 0 0 1 0 0080 DC A'1FINDINXL

1450 0 0 1 2 0080 DC A'' FINXIND'

1451 0014 0080 DC A 11FDIRINXX

1452 0016 0080 DC A 1'FDIRINXY

1453 0018 0080 DC A 1'FABSX'

1454 0 0 1 A 0080 DC A 1' FABSLX'

67

68
69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86
87

88
89

100
101

1
2
3

4

5

6

7

8

9

10
11
12
13

15 DEBUG16—A 65816 Programming Tool 353

1455 0 0 1 C 0080 DC A'FABSY 1 14

1456 0 0 1 E 0080 DC A'FPCR' 15

1457 0 0 2 0 0080 DC A'FPCRL 1 16

1458 0 0 2 2 0080 DC A 1 FABSIND 1 17

1459 0024 0080 DC A 1 FIND 1 18

1460 0026 0080 DC A'FINDL' 19

1461 0028 0080 DC A'FABSINXIND' 2 0

1462 002A 0080 DC A'FSTACK' 2 1

1463 002C 0080 DC A'FSTACKREL' 2 2

1464 002E 0080 DC A'FSRINDINX' 23

1465 0030 0080 DC A'FBLOCK' 24

1466 0032

1467 0032 END

1468 0 0 0 0

1469 0 0 0 0 LENS START

1470 0 0 0 0 0 2 DC H 1 0 2 ' I MM

1471 0 0 0 1 03 DC H ' 03' ABS

1472 0 0 0 2 04 DC H ' 04' ABS LONG

1473 0003 0 2 DC H ' 0 2 1 DIRECT

1474 0004 0 1 DC H 1 0 1 ' ACC

1475 0005 0 1 DC H 1 0 1 ' IMPLIED

1476 0006 0 2 DC H 1 0 2 ' DIR IND INX

1477 0007 0 2 DC H ' 0 2 ' DIR IND INX L

1478 0008 0 2 DC H '02' DIR INX IND

1479 0009 0 2 DC H ' 0 2 ' DIR INX X

1480 000A 0 2 DC H '02' DIR INX Y

1481 00OB 03 DC H '031 ABS X

1482 oooc 04 DC H ' 0 4 1 ABS L X

1483 OOOD 03 DC H 10 31 ABS Y

1484 OOOE 0 2 DC H'02' PCR

1485 OOOF 03 DC H ’0 3 1 PCR L

1486 0 0 1 0 03 DC H '031 ABS IND

1487 0 0 1 1 0 2 DC H ' 0 2 ' DIR IND

1488 0 0 1 2 0 2 DC H ' 0 2 ' DIR IND L

1489 0013 03 DC H '03' ABS INX IND

1490 0014 0 1 DC H '01' STACK

1491 0015 0 2 DC H '02' SR

1492 0016 0 2 DC H'02' SR INX

1493 0017 03 DC H '03 ’ MOV

1494 0018 END

1495 0 0 0 0

1496 0 0 0 0 APPEND DB.ATRIB

1497 0 0 0 0

1498 0 0 0 0 ATRIBL DATA

1499 0 0 0 0

354 Programming the 65816

1500 0000 0B06 DC 1 1 '1 1 ,6 ' BRK 0 0

1501 0002 2309 DC 11 '35,9' ORA D,X 0 1

1502 0004 5804 DC 11 '88,4' COP (REALLY 2) 0 2

1503 0006 2316 DC 11 '35,22' ORA -,X 03

1504 0008 4004 DC 11'64,4' TSB D 04

1505 000A 2304 DC 11 '35,4' ORA D 05

1506 OOOC 0304 DC 11'3,4' ASL D 06

1507 000E 2313 DC 11 '35,19' ORA CD] 07

1508 0010 2515 DC 11*37,21' PHP 08

1509 0012 2301 DC 11'35,1' ORA IMM 09

1510 0014 0305 DC 11 '3,5' ASL ACC OA

1511 0016 4715 DC 11'71,21' PHD OB

1512 0018 4002 DC 11'64,2' TSB ABS OC

1513 001A 2302 DC I1'35,2' ORA ABS OD

1514 001C 0302 DC 11'3,2' ASL ABS OE

1515 001E 2303 DC 11'35,3' ORA ABS L OF

1516 0 0 2 0 OAOF DC 11 '10,15' BPL 1 0

1517 0022 2307 DC 11'35,7' ORA CD),Y 1 1

1518 0024 2312 DC 11 '35,18' ORA (D) 1 2

1519 0026 2317 DC 11 '35,23' ORA S,Y 13

1520 0028 3F04 DC 11 '63,4' TRB D 14

1521 002A 230A DC 11 '35,10' ORA D,X 15

1522 002C 030A DC 11 '3,10' ASL D,X 16

1523 002E 2308 DC 11 '35,8' ORA (DL),Y 17

1524 0030 0E06 DC 11'14,6' CLC 18

1525 0032 230E DC 11'35,14' ORA ABS,Y 19

1526 0034 1905 DC 11'25,5' INC ACC 1 A

1527 0036 4D06 DC 11'77,6' TCS 1 B

1528 0038 3F02 DC 1 1 '63,2 ' TRB ABS 1C

1529 003A 230C DC 11 '35,12' ORA ABS,X 1 D

1530 003C 030C DC 11 '3,12' ASL ABS,X 1 E

1531 003E 2300 DC 11'35,13' ORA ABSL,X 1 F

1532 0040 1D02 DC 11'29,2' JSR ABS 2 0

1533 0042 0207 DC 11 '2,7' AND CD,X) 2 1

1534 0044 1003 DC 11'29,3' JSL ABS L 2 2

1535 0046 0216 DC 1 1 '2 ,2 2 ' AND SR 23

1536 0048 0704 DC 11'7,4' BIT D 24

1537 004A 0204 DC 11'2,4' AND D 25

1538 004C 2804 DC I1 '40,4' ROL D 26

1539 004E 0213 DC 11'2,19' AND (DL) 27

1540 0050 2706 DC 11'39,6' PLP 28

1541 0052 0201 DC 1 1 '2 ,1 ' AND IMH 29

1542 0054 2805 DC 11 '40,5' ROL ACC 2A

1543 0056 4515 DC 11'69,21' PLD 2B

1544 0058 0705 DC 11'7,2' BIT ABS 2C

1545 005A 0 2 0 2 DC I1 '2 ,2 ' AND ABS 2D

1546 005C 2805 DC 11'40,5' ROL A 2E

1547 005E 0203 DC 11'2,3' AND ABS L 2F

15 DEBUG16—A 65816 Programming Tool 355

1548 0060 080F DC 11'8,15' BMI 30

1549 0062 020B DC n ' 2 ,1 1 ' AND D,Y 31

1550 0064 0212 DC n'2,18' AND (D) 32

1551 0066 0217 DC H'2,23' AND CSR),Y 33

1552 0068 070A DC n ’7,10' BIT D,X 34

1553 006A 020A DC n'2,10' AND D,X 35

1554 006C 280A DC 11'40,10' ROL D,X 36

1555 006E 0208 DC n ' 2 ,8 ' AND (DL),Y 37

1556 0070 2D06 DC H'45,6' SEC 38

1557 0072 020E DC 11 '2,14' AND ABS,Y 39

1558 0074 1505 DC 11 '21,5' DEC 3A

1559 0076 4E06 DC 11'78,6' TSC 3B

1560 0078 070C DC 11 '7,12' BIT A,X 3C

1561 007A 020C DC 11'2,12' AND ABS,X 3D

1562 007C 280C DC 11 '40,12' ROL A,X 3E

1563 007E 020D DC 11 '2,13' AND AL,X 3F

1564 0080 2A06 DC H'42,6' RTI 40

1565 0082 1809 DC 11 '24,9' EOR CD,X) 41

1566 0084 6506 DC 11 '101,6' WDM 42

1567 0086 1816 DC 11 '24,22' EOR CD,X) 43

1568 0088 5718 DC 11'87,24' MVP 44

1569 008A 1804 DC 11'24,4' EOR D 45

1570 008C 2104 DC 11'33,4' LSR D 46

1571 008E 1813 DC 11'24,19' EOR (DL) 47

1572 0090 2406 DC 11'36,6' PHA 48

1573 0092 1801 DC 11'24,1 EOR IMM 49

1574 0094 2105 DC 11 '33,5' LSR ABS L 4A

1575 0096 4806 DC 11'72,6' PHK 4B

1576 0098 1C02 DC 11'28,2' JMP ABS 4C

1577 009A 1802 DC 11'24,2' EOR ABS 4D

1578 009C 2102 DC 11 '33,2' LSR ABS 4E

1579 009E 1805 DC 11'24,5' EOR ABS L 4F

1580 00A0 0C0F DC 11 '12,15' BVC 50

1581 00A2 1807 DC 11'24,7' EOR CD),Y 51

1582 00A4 1812 DC 11'24,18' EOR (D) 52

1583 00A6 1817 DC 11'24,23' EOR CSR),Y 53

1584 00A8 5618 DC 11'86,24' MVN 54

1585 00AA 180A DC 11'24,10' EOR D,X 55

1586 00AC 210A DC 11'33,10' LSR D,X 56

1587 OOAE 1808 DC 11'24,8' EOR CDL),Y 57

1588 00B0 1006 DC 11'16,6' CLI 58

1589 00B2 180E DC 11'24,14' EOR 59

1590 00B4 3D15 DC 11'61,21' PHY 5A

1591 00B6 4B06 DC 11'75,6' TCD 58

1592 00B8 1C03 DC 11'28,3' JMP ABSL 5C

1593 OOBA 180C DC 11 '24,12' EOR ABS,X 5D

1594 OOBC 210C DC 11 '33,12' LSR ABS,X 5E

1595 OOBE 180D DC 11'24,13' EOR ABSL,X 5F

356 Programming the 65816

1596 00C0 2B06 DC 11'43,6' RTS 60

1597 00C2 0109 DC n ' l ^ ' ADC (D,X) 61

1598 00C4 4310 DC 11'67,16' PER 62

1599 00C6 0116 DC 1 1 '1 ,2 2 ' ADC SR 63

1600 00C8 3E04 DC 11'62,4' STZ D 64

1601 OOCA 0104 DC 11 '1,4' ADC D 65

1602 OOCC 2904 DC 11'41,4* ROR D 6 6

1603 OOCE 0113 DC 11'1,19' ADC (DL) 67

1604 OODO 2615 DC 11'38,21' PLA 6 8

1605 0 0 D2 0 1 0 1 DC 1 1 '1 ,1 ' ADC 69

1606 00D4 2905 DC 11'41,5' ROR ABSL 6 A

1607 0006 5506 DC 11'85,6' RTL 6 B

1608 0008 1C11 DC 11'28,17' JMP (A) 6 C

1609 OODA 0102 DC 1 1 '1 ,2 ' ADC ABS 6 D

1610 OOOC 2902 DC 11'41,2' ROR ABS 6 E

1611 OODE 0103 DC 1 1 '1 ,3' ADC ABSL 6 F

1612 OOEO OOOF DC 11'13,15' BVS 70

1613 00E2 0108 DC 1 1 '1 ,8 ' ADC CD),Y 71

1614 00E4 0112 DC 1 1 '1,18' ADC (D) 72

1615 00E6 0117 DC 11'1,23' ADC (SR),Y 73

1616 00E8 3E0A DC 11'62,10' STZ D,X 74

1617 OOEA 01OA DC 1 1 ' 1 ,1 0 ' ADC D,X 75

1618 OOEC 290A DC 11'41,10' ROR D,X 76

1619 OOEE 0108 DC 1 1 '1 ,8 ' ADC (DL),Y 77

1620 OOFO 2F06 DC 11'47,6' SEI 78

1621 00F2 01OE DC 11'1,14' ADC ABS,Y 79

1622 00F4 3B15 DC 11'59,21' PLY 7A

1623 00F6 4C06 DC 11'76,6' TDC 7B

1624 00F8 1C14 DC H'28,20' JMP CA,X) 7C

1625 OOFA 010C DC 1 1 '1 ,1 2 ' ADC ABS.X 7D

1626 OOFC 290C DC 11'41,12' ROR ABS,X 7E

1627 OOFE 010D DC 11 '1,13' ADC ABSL,X 7F

1628 0 1 0 0

1629 0 1 0 0 END •

1630 0 0 0 0

1631 0 0 0 0 ATRIBH START

1632 0000 390F DC 11 '57,15' BRA 80

1633 0002 3009 DC 11'48,9' STA (D,X) 81

1634 0004 5310 DC 11'83,16' BRL 82

1635 0006 3016 DC 11 '48,22' STA -,S 83

1636 0008 3204 DC 11'50,4' STY D 84

1637 OOOA 3004 DC I1 ’48,4 ' STA D 85

1638 OOOC 3104 DC 11'49,4' STX D 8 6

1639 OOOE 3013 DC 11'48,19' STA CD] 87

1640 0 0 1 0 1706 DC 1 1 ' 23,6' DEY 8 8

15 DEBUG16—A 65816 Programming Tool 357

1641 0012 0701 DC

1642 0014 3606 DC

1643 0016 4615 DC

1644 0018 3203 DC

1645 001A 3002 DC

1646 001C 3102 DC

1647 001E 3003 DC

1648 0020 040F DC

1649 0022 3007 DC

1650 0024 3012 DC

1651 0026 3017 DC

1652 0028 320A DC

1653 002A 300A DC

1654 002C 310B DC

1655 002E 3008 DC

1656 0030 3806 DC

1657 0032 300E DC

1658 0034 3706 DC

1659 0036 4F06 DC

1660 0038 3E02 DC

1661 003A 300C DC

1662 003C 3E0C DC

1663 003E 300D DC

1664 0040 2001 DC

1665 0042 1E09 DC

1666 0044 1F01 DC

1667 0046 1E16 DC

1668 0048 2004 DC

1669 004A 1E04 DC

1670 004C 1F04 DC

1671 004E 1E13 DC

1672 0050 3406 DC

1673 0052 1E01 DC

1674 0054 3306 DC

1675 0056 4415 DC

1676 0058 2002 DC

1677 005A 1E02 DC

1678 005C 1F02 DC

1679 005E 1E03 DC

1680 0060 050F DC

1681 0062 1E07 DC

1682 0064 1E12 DC

1683 0066 1E17 DC

1684 0068 200A DC

1685 006A 1EOA DC

1686 006C 1E0B DC

1687 006E 1E08 DC

1688 0070 1106 DC

11*7.1 1 BIT IMM 89

11'54,6' TXA 8 A

H'70,21' PHB 8 B

n'50,2' STY ABS 8 C

H'48,2' STA ABS 8 D

H'49,2' STX ABS 8 E

11 '48,3' STA ABS L 8 F

11'4,15' BC 90

n'48,7' STA (D),Y 91

H ’48,18' STA (D) 92

11'48,23' STA <SR),Y 93

11 '50,10' STY D,X 94

11'48,10' STA D,X 95

11'49,11' STX D,Y 96

11'48,8' STA (DL),Y 97

H ' 5 6 , 6 ’ TYA 98

11'48,14' STA ABS,Y 99

11'55,6' TXS 0 9A

11'79,6' TXY 98

11'62,2' STZ ABS 9C

11'48,12' STA ABS,X 9D

11'62,12' STZ ABS,X 9E

11'48,13' STA ABSL.X 9F

11'32,1' LDY IMM AO

11'30,9' LDA (D,X) A1

11'31,1' LDX IMM A2

11'30,22' LDA SR A3

11 '32,4' LDY D A4

11'30,4' LDA D A5

11'31,4' LDX D A 6

11'30,19' LDA (DL) A7

11 '52,6' TAY A 8

H'30,1' LDA IMM A9

H ' 5 1 , 6 ’ TAX AA

1 1 '6 8 ,2 1 ' PLB AB

11 '32,2' LDY ABS AC

H'30,2' LDA ABS AD

11'31,2' LDX ABS AE

11 '30,3' LDA ABS L AF

H'5,15' BCS BO

11 '30,7' LDA (D),Y B1

11'30,18' LDA (D) B2

11'30,23' LDA (SR),Y B3

11'32,10' LDY D,X B4

11'30,10' LDA D,X B5

11*30,11' LDX D,Y B6

11'30,8' LDA COL),Y B7

11 '17,6' CLV B8

358 Programming the 65816

1689 0072 1EOE OC 11 '30,14' LDA ABS,Y B9

1690 0074 3506 DC H ’53,6' TSX BA

1691 0076 5006 DC H'80,6' TYX BB
1692 0078 200C DC 11 '32,12' LDY ABS,X BC

1693 007A 1EOC DC H ' 3 0 , 1 2 ’ LDA ABS.X BD

1694 007C 1 FOE DC n'31,14' LDX ABS,Y BE

1695 007E 1EOD DC H'30,13' LDA ABSL.X BF

1696 0080 1401 DC 11 '30,13' CPY CO

1697 0082 1209 DC 11 '18,9' CMP (D,X) C1

1698 0084 4901 DC 11'73,1' REP C2

1699 0086 1216 DC 1 1 '18,22' CMP C3

1700 0088 1404 DC 11'20,4' CPY D C4

1701 008A 1204 DC 11'18,4' CMP D C5

1702 008C 1504 DC 11'21,4' OEC D C6

1703 008E 1213 DC 11 '18,19' CMP (DL) C7

1704 0090 1B06 DC 11 '27,6' INY C8

1705 0092 1201 DC 11'18,1' CMP IMM C9

1706 0094 1606 DC 1 1 '2 2 ,6 ' DEX CA

1707 0096 5906 DC 11'89,6' UAI CB

1708 0098 1402 DC 1 1 '2 0 ,2 ' CPY ABS CC

1709 009A 1202 DC 11'18,2' CMP ABS CD

1710 009C 1502 DC 1 1 '2 1 ,2 ' DEC ABS CE

1711 009E 1203 DC 11'18,3' CMP ABSL CF

1712 OOAO 090F DC I1'9,15' BNE DO

1713 00A2 1207 DC 11 '18,7' CMP (D),Y D1

1714 00A4 1212 DC 1 1 '18,18' CMP (0) D 2

1715 00A6 1217 DC 1 1 '18,23' CMP 03

1716 00A8 4204 DC 11 '66,4' PEI D 04

1717 OOAA 120A DC 1 1 '18,10' CMP D,X D5

1718 OOAC 150A DC 1 1 '2 1 ,1 0 ' DEC D,X D6

1719 OOAE 1208 DC 11'18,8' CMP (DL),Y 07

1720 OOBO 0F06 DC 11'15,6' CLD 08

1721 00B2 120E DC 11 '18,14' CMP ABS,Y D9

1722 00B4 3C15 DC 11'60,21' PHX DA

1723 00B6 6406 DC 1 1 *1 0 0 ,6 ' STP DB

1724 00B8 1C11 DC 11'28,17' JMP (A) DC

1725 OOBA 120C DC 1 1 '18,12' CMP ABS.X DD

1726 OOBC 150C DC 1 1 '2 1 ,1 2 ’ DEC ABS,X DE

1727 OOBE 1200 DC 11'18,13' CMP ABSL.X DF

1728 OOCO 1301 DC 11 '19,1' CPX IMM EO

1729 00C2 2C09 DC 11'44,9' SBC (D,X) E1

1730 00C4 4A01 DC 11'74,1 SEP IMM E2

1731 00C6 2C16 DC 11'44,22' SBC SR E3

1732 00C8 1F04 DC 11'31,4' LDX D E4

1733 OOCA 2C04 DC 11'44,4' SBC D E5

1734 OOCC 1904 DC 11'25,4' INC D E6

1735 OOCE 2C13 DC 11 '44,19' SBD (DL) E7

1736 0 0 0 0 1A06 DC 11'26,6' INX D E8

15 DEBUG16—A 65816 Programming Tool 359

1737 00D2 2C01 DC n'44,1' SBC IMM E9

1738 00D4 2206 DC H'34,6' NOP EA

1739 00D6 5106 DC n ' 8 1 , 6 ' XBA EB

1740 0OD8 1302 DC n'19,2' CPX ABS EC

1741 00DA 2 C0 2 DC H'44,2' SBC ABS ED

1742 OODC 1902 DC H ' 2 5 , 2 ’ INC ABS EE

1743 OODE 2C03 DC H ’44,3' SBC ABSL EF

1744 00E0 060 F DC 11'6,15' BEO FO

1745 00E2 2C07 DC H ’44,7' SBC CD) ,Y F1

1746 00E4 2C12 DC 11'44,18' SBC CD) F2

1747 00E6 2C17 DC 11 '44,23' SBC CSR),Y F3

1748 00E8 4102 DC 11'65,2' PEA F4

1749 OOEA 2C0A DC 11'44,10' SBC D,X F5

1750 OOEC 190A DC 11'25,10' INC D,X F6

1751 OOEE 2C08 DC 11'44,8' SBC (DL),Y F7

1752 0 0 F0 2E06 DC 1 1 ' 46,6 ' SED F8

1753 0 0 F2 2C0E DC 11 '44,14' SBC ABS,Y F9

1754 00F4 3A15 DC H'58,21' PLX FA

1755 00F6 5206 DC 11'82,6' XCE FB

1756 00F8 1014 DC 11 '29,20' JSR (A,X) FC

1757 OOFA 2C0C DC I 1 ' 4 4 ,1 2 ' SBC ABS,X FD

1758 OOFC 190C DC 11'25,12' INC ABS,X FE

1759 OOFE 2C0D DC 11'44,13' SBC ABSL.X FF

1760 0 1 0 0 END

Global Symbols

ADDRMODE 00009C AREG 00008F AREGH 000090 BRKN 00FFE6

C 0 0 0 0 0 1 CODE 000087 CR 00008D DBREG 000095

DIRREG 000093 DIRREGH 000094 DPAGE 000300 EBIT 000097

M 0 0 0 0 2 0 MNX 00009D NCODE 000083 OPCREG 000084

OPCREGB 000086 OPCREGH 000085 OPLEN 00009F OPRNDB 00008A

OPRNDH 000089 OPRNDL 000088 PCREG 000080 PCREGB 000082

PCREGH 000081 PREG 000096 STACK 000091 STACKH 000092

TEMP 000099 TEMPB 00009B TEMPH 00009A USRBRKV 0003FO

X 0 0 0 0 1 0 XREG 00008B XREGH 00008C YREG 00008D

YREGH 00008E

1760 source lines

0 macros expanded

0 lines generated

0 page faults

Link Editor 4.0

00008000 D0000037 Code: MAIN

00008037 D0 0 0 0 0 CF Code: EBRKIN

360 Programming the 65816

00008106 00000048 Code: FLIST

0000814E 00000120 Code: FRMOPRND

0000826E 00000019 Code: POB

00008287 0000002F Code: STEP

00008286 00000026 Code: PUTHEX

0000820C 0000005A Code: CLRLN

00008336 0000005D Code: UPDATE

00008393 0000001A Code: PRINTLN

000083AD 00000043 Code: TRACE

000083F0 0000003E Code: CHKSPCL

0000842E 00000069 Code: SBRK

00008497 0000004E Code: DUMPREGS

000084E5 00000026 Code: PUTREG8

000085OB 0000001C Code: SPJMP

00008527 00000005 Code: PMASK

0000852C 00000017 Code: SCODES

00008543 00000114 Data: MN

00008657 00000032 Data: MODES

00008689 00000018 Code: LENS

000086A1 00000100 Data: ATRIBL

000087A1 00000100 Code: ATRIBH

Global symbol table:

ADDRM0DE 0000009C 00 AREG 0000008F 00 AREGH 00000090

ATRIBH 000087A1 00 ATRIBL 000086A1 03 BRKN 0000FFE6

C 00000001 00 CHKSPCL 00008DFO 00 CLRLN 000082DC

CODE 00000087 00 CR 0000008D 00 DBREG 00000095

DIRREG 00000093 00 DIRREGH 00000094 00 DOBRANCH 0000841B

DPAGE 00000300 00 DUMPREGS 00008497 00 EBIT 00000097

EBRXIN 00008037 00 FABS 0000816B 00 FABSIND 000081F5

FABSINXIND 00008224 00 FABSL 0000816E 00 FABSLX 000081C1

FABSX 00008188 00 FABSY 000081C7 00 FACC 00008174

FBLOCK 00008526 00 FDIR 00008171 00 FDIRINXX 000081A2

FDIRINXY 000081A8 00 FIMM 00008159 00 FIMP 0000817A

FIND 00008204 00 FINDINX 0000817B 00 FINDINXL 0000818A

FINDL 00008214 00 FINX 000081AE 00 FINXIND 00008190

FINY 0000817E 00 FLIST 00008106 00 FPCR 000081 CD

FPCRL 000081E4 00 FRMOPRND 0000814E 00 FSRINDINX 00008244

FSTACK 00008233 00 FSTACKREL 00008234 00 GO 000080C4

LENS 00008689 00 LINE 000082EE 00 LIST 00008003

M 00000020 00 MAIN 00008000 00 MN 00008543

MNX 0000009D 00 MODES 00008657 02 MOVE 0000814A

NBRKIN 00008047 00 NCODE 00000083 00 OPCREG 00000084

OPCREGB 00000086 00 OPCREGH 00000085 00 OPLEN 0000009F

00

00
00

00
00

00
00
00

00
00

00
00

00
00
00
00
00
01
00

00
00

16 Design and Debugging

Design and debugging stand on either side of the central coding phase
of the development cycle. Good techniques for both are as important as
skill in actual coding. This chapter provides a checklist of some com
monly encountered bugs—ones you should immediately suspect—as
well as some words of advice about program design and good coding
practice, which may help you avoid some of the bugs to begin with.

361

362 Programming the 65816

Debugging Checklist____________________

Program bugs fall into two categories: those specific to the particular
processor you're writing assembly code for, and those that are generic
problems which can crop up in any assembly program for almost any
processor. This chapter will primarily consider bugs specific to the 65x
processors, but will also discuss some generic bugs as they specifically
apply in 65x assembly programs.

You may want to put a checkmark beside the bugs listed here each
time you find them in your programs, giving you a personalized check
list of problems to look for. You may also want to add to the list other
bugs that you write frequently.

Decimal Flag
Seldom does the d decimal flag get misset, but when it does, arithme

tic results may seem to inexplicably go south. This can be the result of a
typo, attempting to execute data, or some other execution error. Or it
can result from coding errors in which the decimal flag is set to enable
decimal arithmetic, then never reset. If branching occurs before the deci
mal flag is reset, be sure all paths ultimately result in the flag being
cleared. Branching while in decimal mode is almost as dangerous as
branching after temporarily pushing a value onto the stack; equal care
must be taken to clear d and clean the stack.

This bug may be doubly hard to find on the 6502, which does not
clear d on interrupt or, worse, on reset. An instruction inadvertently or
mistakenly executed which sets d (only SED, RTI, or PLP have the
capability on the 6502) would require you to specifically reclear the dec
imal flag or to power off and power back on again. As a result, it is
always a good idea to clear the decimal flag at the beginning of every
6502 program.

Adjusting Carry Prior to Add/Subtract
If you're not used to 65x processors (and even for many programmers

who are), you may tend to write an ADC instruction without first writing
a CLC, or an SBC without first an SEC. After all, other processors have
add and subtract instructions that do not involve the carry. But the 65x
processors do not; so notice the "C" in each of the instructions each time
you code them and be sure the carry has the appropriate value.

65x Left-to-Right Syntax
Unlike some other processors' instructions, 65x mnemonics read from

left to right, just like English: TAX, for example, means to transfer the
A accumulator to the X index register, not the opposite.

16 Design and Debugging 363

65x Branches
There are eight 65x conditional branches, each based on one of the

two states of four condition code flags. Remembering how to use them
for arithmetic is necessary to code branches that work.

Keep in mind that compare instructions cannot be used for signed
comparisons: they don't affect the overflow flag. Only the subtract
instruction can be used to compare two signed numbers directly (except
for the relationships equal and not equal).

Remember that if the z flag is set (one), then the result was zero; and
if the zero flag is clear (zero), then the result was other than zero—the
opposite of most first guesses about it.

A common code sequence is to test a value, then branch on the basis
of the result of the test. A common mistake is to code an instruction
between the test and the branch that also affects the very flag your
branch is based on (often because an instruction you don't expect to
affect the flags does indeed do so).

Note that 65x pull instructions set the negative and zero flags, unlike
68xx and 8088/8086 processors; that store instructions do not set any
flags, unlike 68xx processors; that transfer and exchange instructions do
set flags, unlike Motorola and Intel processors; that load instructions do
set flags, unlike the 8088; and increment and decrement instructions do
not affect the carry flag.

Also, in decimal mode on the 6502, the negative, overflow and zero
flags are not valid.

6502 Jump Bug
There's a hardware bug on the 6502 that causes jump indirect, with an

operand which ends in $FF (such as $11FF), to bomb: the new high pro
gram counter value is taken incorrectly from $1100, not the correct
$1200.

Interrupt-Handling Code
To correctly handle 65x interrupts, you should generally, at the out

set, save all registers and, on the 6502 and in emulation mode, clear the
decimal flag (to provide a consistent binary approach to arithmetic in
the interrupt handler). Returning from the interrupt restores the status
register, including the previous state of the decimal flag.

During interrupt handling, once the previous environment has been
saved and the new one is solid, interrupts may be reenabled.

At the end of handling interrupts, restore the registers in the correct
order. RTI will pull the program counter and status register from the
stack, finishing the return to the previous environment, except that in
65802/65816 native mode it also pulls the program bank register from

364 Programming the 65816

the stack. This means you must restore the mode in which the interrupt
occurred (native or emulation) before executing an RTI.

65802/65816: Emulation Versus Native Mode

Emulation mode has been provided on the 65802 and 65816 to pro
vide continuity with existing applications. Native mode provides the
powerful sixteen-bit data handling registers. But mixing emulation and
native modes requires careful attention to detail. You should deal with
modes systematically.

Will you limit subroutines to be called only from a certain mode? All
subroutines? You must carefully document each for which mode it
expects.

You must be in emulation mode on the Apple //or other 6502-based
system to use the monitor and operating system 6502 routines. Further
more, you must put 0000 into D (the direct page register) before return
to the monitor or operating system, because zero page addressing now
addresses the direct page, but the 6502 firmware left its variables in page
zero before your program switched to native mode.

Any high bytes in the index registers are lost in the switch to emula
tion mode.

While native mode lets you set the stack anywhere, a non-page-one
stack location is lost on return to emulation mode (the high byte is
thrown away, replaced by the obligatory page one high byte of emula
tion mode). Furthermore, when setting the stack with the TCS instruc
tion, only the low accumulator byte is transferred to the stack pointer in
emulation mode, but in native mode, the high accumulator byte, even if
it is hidden, is transferred to the high stack pointer byte.

65802/65816: Eight-Bit Versus Sixteen-Bit
Registers

Almost as potentially confusing as mixing emulation and native
modes is mixing eight-bit and sixteen-bit modes. Again, you should deal
with modes systematically.

Will you limit subroutines to be called only from a certain mode set
ting? You must carefully document each for the mode it expects.

Because instructions using immediate addressing are different lengths
in eight- and sixteen-bit modes, being in the wrong mode will cause the
processor to grab the wrong number of operand bytes, followed by a
fetch for the next opcode which will miss by one and cause it to execute,
as though it were an opcode, either the last operand byte of the immedi
ate instruction, or the first operand byte of the next instruction. Either
way is sure program failure.

16 Design and Debugging 365

65802/65816: The Direct Page

Avoid inadvertently branching from code written to access one direct
page to code written to access another without executing an instruction
to reset the direct page register to the second location first (and resetting
it to the original location before returning). Remember, too, that pro
grams run faster when the direct page register is set to a page boundary.

Pay particular attention to the peculiarities of the direct page in the
emulation mode: as with the 6502 and 65C02, instructions which use
direct page addressing modes will "wrap” to stay within the zero page,
but only when the direct page register is equal to zero. Opcodes which
are not found on the 6502 or 65C02 will not wrap at all, even when the
direct page is equal to zero in the emulation mode.

65802/65816: Stack Overruns Program or Data

No longer limited to a single page, the native-mode stack will grow
downward as far as your program pushes bytes onto it. Large programs
should either retrieve every byte pushed on or reset the stack periodi
cally (using TCS or TXS). The potential danger is when a stack grows
uncontrollably until it overwrites variables, your program, or the oper
ating system.

In this connection it is important to be aware that, although the high
byte of the stack register is consistently forced to one, new 65816
opcodes executed in the emulation mode will not wrap the stack if the
low byte over- or underflowed in the middle of an instruction. For
example, if the stack pointer is equal to $101, and a JSL is executed, the
final byte of the three bytes pushed on the stack will be at $FF, not $1FF;
but the stack pointer at the end of the instruction will point to $1FE.
However, if JSR (a 6502 instruction) is executed in the emulation mode
with the stack pointer equal to $100, the second of the two bytes pushed
will be stored at $1FF.

65802/65816: JSR/JSL and RTS/RTL

RTL pulls one more byte off the stack than RTS: it requires that a
long jump-to-subroutine (JSL) or its equivalent pushed a full 24-bit
return address, not just a sixteen-bit one. Equally important is that a JSL
not be made to a subroutine ended by an RTS, which pulls only sixteen
of the 24 bits of return address pushed.

65802/65816: MVN/MVP

MVN and MVP require two operands, usually code or data labels
from which the assembler strips the bank bytes, in sourcebank,destbank
order (opposite of object code order). Eight-bit index registers will cause

366 Programming the 65816

these two instructions to move only zero page memory. But eight-bit
accumulator mode is irrelevant to the count value; the accumulator is
expanded to sixteen bits using the hidden B accumulator as the high byte
of the count. Finally, the count in the accumulator is one less than the
count of bytes to be moved: five in the accumulator means six bytes will
be moved.

Return Address

If your program removes the return address from the stack in order to
use it in some fashion other than using an RTS or RTL instruction to
return, remember that you must add one to the stacked value to form
the true return address (an operation the return-from-subroutine in
structions execute automatically).

Inconsistent Assembler Syntax

6502 assemblers have been wildly inconsistent in their syntax, and
early 65802 assemblers have not set standards either. This book de
scribes syntax recommended by the designers of the 65816, the Western
Design Center, as implemented in the ORCA/M assembler. Others,
however, do and will differ. For example, while many assemblers use
the syntax of a pound sign (#) in front of a sixteen-bit immediate value
to specify that the low byte be accessed, with the greater-than sign (>)
being used to represent the high byte, at least one 6502 assembler uses
the same two signs to mean just the opposite. Syntax for the new block
move instructions will undoubtedly vary from the recommended stand
ard in many assemblers. Beware and keep your assembler's manual
handy.

Generic Bugs: They Can Happen
Anywhere____________________________

Uninitialized Variables

Failing to initialize variables may be the most common bug commit
ted by programmers. Its symptom is often a program which operates
strangely only the first time it is run (after which the variable has at
some point been given a suitable value which remains in memory for the
program's second try), or only after running a certain other program.
Sometimes the symptom appears only on computers with one brand of
memory chips, and not another; they happen to power up with different
initial values.

16 Design and Debugging 367

Missing Code

The code you wrote on paper is perfect. The problem is one or more
lines that never got typed in, or were typed in wrong. The solution is to
compare your original handwritten code with the typed-in version, or
compare a disassembly with your original code.

More enigmatically, a line may be accidentally deleted or an opcode
or operand inadvertently changed by a keypress during a subsequent
edit (usually in a section of code which has just been proven to work
flawlessly). Regular source backups and a program that can compare
text to spot changes will often solve the problem. Or you can compare a
disassembly with the previous source listing.

Failure to Increment the Index in a Loop

The symptom are: everything stops, and typing at the keyboard has
no effect. The problem is an endless loop—your branch out of the loop
is waiting for an index to reach some specified value, but the index is
never decremented or incremented and thus never reaches the target
value.

Failure to Clean Up Stack

This problem is typically found in code in which first a value is
pushed, then there is a conditional branch, but all paths do not pull the
value still on the stack. It may result in a return address being pulled off
the stack which is not really a return address (one or more bytes of it are
really previously pushed data bytes).

Immediate Data Versus Memory Location

Failure to use the '#' sign to signify a constant (or whatever other syn
tax a particular assembler requires) will instruct the assembler to load,
not the constant, but data from a memory location that it assumes the
constant specifies. That is, #VAR means access a constant (or the
address of a variable); VAR, on the other hand, means access its con
tents.

Initializing the Stack Pointer from a Subroutine

It won't take much thought to realize that you can't just reset the
stack pointer from within a subroutine and expect the return-from-sub-
routine instruction to work. The return address was pointed to by the
previous stack pointer. Who knows where it is in relation to the newly
set one?

368 Programming the 65816

Top-Down Design and Structured
Programming__________________________

It's wise to carefully consider the design of a program before begin
ning to write any of it. The goals of design are to minimize program
errors, or bugs; to reduce complexity; to maximize readability; and to
increase the speed and ease of coding and testing and thus the produc
tivity of programmers.

The top-down approach to structured programming combines two
major design concepts. This approach is generally recognized as the
method of design which best achieves these goals, particularly when
coding large programs. Top-down design suggests that programs should
be broken into levels: at the top level is a statement of the goal of the
program; beneath it are second-level modules, which are the main con
trol sections of the program; the sections can be broken into their parts;
and so on.

A blackjack game (twenty-one), for example, might be broken down
into four second-level modules, the goals of which are to deal the cards,
take and place bets on the hands dealt, respond to requests for more
cards, and finally compare each player's hand with the dealer's to deter
mine winnings. The dealing module might be broken down into two
third-level modules, the goals of which are to shuffle the cards, and to
deliver a card to each player (executed twice so that each player gets
two cards). The shuffling module might be broken into two fourth-level
modules which assign a number to each card and then create a random
order to the numbers.

The makeup of each level is clear. At the top level, the makeup
describes the program itself. At lower levels, the makeup describes the
subprocess. At the lowest levels, the work is actually done.

A top-down design is then implemented using subroutines. The top
level of the program is a very short straight-line execution routine (or
loop in the case of programs that start over when they reach the end),
that does nothing more than call a set of subroutines, one for each
second-level module of the program. The second-level subroutines may
call third-level subroutines which may call fourth-level subroutines, and
so on.

Structured programming is a design concept which calls for modules
to have only one entry point; jumping into the middle of a module is
not permitted. (A structured approach to the problem of needing an
entry point to the middle of a module is to make that portion of the
module a sub-module with its own single entry and exit points.) A sec
ond rule is that all exits return control to the calling module; all
branches (selections) are internal; no branches are permitted to code
outside the module.

16 Design and Debugging 369

One of the side benefits of modular programming is the ability to
reuse previously coded modules in other programs: th? dealing module
could be dropped into any card game program that calls for shuffling
followed by the dealing of one card at a time to each player. And its
shuffling sub-module could be borrowed for other card game programs
which only need shuffling. This use of the modularity principle should
not be confused with the top-down structured design; they are distinct
but related concepts. Modular programming in itself is not the same as
top-down design.

A software development team could, using top-down design, readily
assign one programmer the task of coding the deck-shuffling routine,
another programmer the betting module, another responsibility for the
dealing routines, and a fourth with writing the code for the end-of-game
comparison of hands and determination of the winner.

A new programmer trying to understand a top-down program avoids
becoming mired in detail while trying to get an understanding of the
structure, yet can very easily figure how to get to the degree of detail
which interests him.

Finally debugging, the process of finding and removing programming
mistakes, is exceptionally straightforward with top-down design: on
seeing that, after shuffling, one of the 52 cards seems to be missing, the
programmer can go directly to the shuffling subroutines to fix the
problem.

Top-down design sometimes seems like a waste of time to program
mers anxious to get the bytes flying; complex programs can take days or
weeks of concerted thinking to break down into the subparts which fit
together most logically and efficiently. But the savings in time spent
coding—and recoding—and in being able to understand, debug, and
modify the program later well justify the time spent on design.

Documentation________________________

One of the most important elements of good programming practice is
documentation. It is remarkable how little one can recall about the
nitty-gritty details of a program written just last month (or sometimes
even yesterday)—the names of the key variables, their various settings
and what each means and how each interacts with other variables in
various routines, and so on. "Clever" programmers, those who bend
programming principles to ends never anticipated, too often find they
(not to mention their co-workers) can no longer discover the meaning
behind their cleverness when it comes time to debug or modify that
code.

The first principle of documentation is to make the program docu
ment itself. Choose labels which are meaningful: DEALLOOP is a much

370 Programming the 65816

better label for the beginning of a loop which deals cards in a card game
than is LAB137. Substitute a label for all constants: branching if there's
a 1 in some register after writing a byte to disk is, by itself, meaningless;
branching because there's a constant named DISKFULL in the register
provides clear documentation. When your program needs to determine
if an ASCII value is an upper-'case letter, it's much clearer to compare
with "greater than or equal to 'A '" than with "greater than ' @ ' ", Who
remembers that '@ ' precedes 'A' in the A SCII chart?

Variables should be commented when they're declared with a descrip
tion of their purpose, their potential settings, and any default states.
And if any of that information changes during the development of the
program, the comment should be changed to match.

Routines should be commented when they're written: Note the pur
pose of the routine, the variables or parameters which need to be set
before entry into the routine, and the variables or parameters which will
be passed back. If other data structures will be affected by the routine,
this, too, should be commented.

Nothing is as important both to debugging of code and to continuing
development of programs as documentation: self-documentation; a
comment on every important line of code that explains and expands it; a
comment header on every routine; and a comment on every variable.
While some languages are said to be autom atically "self-docum enting,"
no language can create documentation which is half adequate compared
to what the original programmer can provide while the program is being
written.

PartV
Reference

a — The Addressing
1 7 Modes

There are fourteen addressing modes available to the 6502, all of
those plus two more on the 65C02, and another nine categories avail
able on the 65802 and 65816. Each mode allows the location of the data
being referenced by a given instruction to be specified in a different
manner. The availability of many different addressing modes on the 65x
processors is one key to their power.

The data found in operand bytes of an instruction is only one part of
the effective address specification; the addressing modes, expressed
using the correct address-mode syntax in the operand field of an
assembly-language statement, cause the assembler to choose from
among the instruction's possible opcodes to one specific to the address
ing mode. Not all addressing modes are available for all instructions;
but there is one unique opcode for each combination of addressing
mode and operation.

The addressing mode is the determinant of the effective address for an
operation—the memory address that the instruction will access for data
or to transfer control within the program. For a few of the 65x address
ing modes, the effective address is provided in the operand field of the
instruction. But for most of them, formation of the effective address
involves an address calculation, that is, the addition of two or more val
ues. The addressing mode used with a given instruction indicates where
these values are to come from and how they are to be added together to
form the effective address. This effective address calculation has as
many forms as there are addressing modes.

An important aspect of effective address calculation on the 65802 and
65816, to be considered in addition to the addressing modes themselves,
is the state of the x index-register select flag and, to a lesser extent, the m
memory/accumulator select flag, both in the status register. In a sense,
the x flag, for example, extends the addressing mode specification part
of an instruction, which uses an indexed addressing mode, by determin
ing whether or not an eight-bit or sixteen-bit index register is to be used.
For every one of the indexed addressing modes, there are two similar
methods of forming an effective address, depending on the setting of the
index-register select flag. Pay special attention to the status and effects
of the select flags.

In the following pages are graphic and written presentations of each

373

374 Programming the 65816

of the addressing modes, illustrating the effective address formation,
complete with a listing of the processors on which, and the instructions
to which, each addressing mode is available. A sample of the assembler
syntax used to invoke each one is included as well.

The descriptions are the complete set available on the 65816. The dif
ferences between the four processors, with their various modes, are
graphically noted whenever possible.

The 65816's native mode features index registers and an accumulator
which may be either eight bits or sixteen, depending on the settings of
two mode select flags (x sets the index registers to eight or sixteen bits;
m sets the accumulator and memory to eight or sixteen).

The 65802's native mode differs in that, while the bank registers are
part of effective address formation, bank values are not propagated to
the bus, so long addressing modes have no bank effect. The bank
accessed is always bank zero, so there is, essentially, no bank portion to
the effective address generated.

The 6502 emulation mode on the 65802 and 65816 processors (e = 1)
differs in that the stack pointer's high byte is always $01; direct page
indexed addressing always wraps around to remain in the direct page
rather than crossing over into the next page (so the high direct page byte
remains the high byte of all direct page addresses formed). The excep
tion to this is that zero page stack wrapping is only enforced for 6502
and 65C02 instructions, and only when DP = 0 in the case of page zero
wrapping. New opcodes will cause effective addresses to be generated
outside of the zero page or the emulation mode stack page if an effective
address calculation overflows the low byte.

Additionally, the index registers and the A accumulator are limited to
eight bits. (There remains, however, a hidden eight-bit B accumulator,
as well as a 16-bit C accumulator which is the concatenation of B and A
but which is generally not accessible except to special instructions.)

The 65C02 and 6502 differ from 6502 emulation in that there are no
bank registers whatsoever; direct page addressing is, instead, zero page
addressing ($0000 is the zero page base to which offsets and, sometimes,
index values are added; there is no direct page register); and there is no
hidden B accumulator nor concatenated C accumulator.

The symbols in Table 17.1 are used to describe the kinds of operands
that are used with the various addressing modes.

Figures 17.1 through 17.4 repeat the illustrations of the programming
models for the four possible processor configurations: 6502/65C02, 65802
native mode, 65816 native mode, and 65816 emulation mode. The pro
gramming model for the native mode 65816 is used in the addressing
mode figures that follow; for different processors or modes, compare the
addressing mode figure with the processor-mode programming model for
clarification of the operation of the addressing mode for that model.

17 The Addressing Modes 375

Table 17.1. Operand Symbols.
addr two-byte address
addr/const two-byte value: either an address or a constant
const one- or two-byte constant
destbk 64K bank to which string will be moved
dp one-byte direct page offset (6502/65C02: zero page)
label label of code in same 64K bank as instruction
long three-byte address (includes bank byte)
nearlabel label of code close enough to instruction to be reachable

by a one-byte signed offset
sr one-byte stack relative offset
srcebk 64K bank from which string will be moved

6502/65C02 Programming Model
7 0

15

A ccum ula to r (A)

X Index Register (X)

Y Index Register (Y)

r --
1 0 0 0 0 0 0 0 1
L

Stack Pointer (S)

Program Counter (PC)

Processor Status Register (P)

n v b d i z c

“ C arry 1 = Carry

-------------------------Zero 1 = Result Zero

 IRQ Disable 1 = Disabled

 Decimal M ode 1 = Decimal Mode

 Break Instruction 1 = Break caused
interrupt

-- O verf low 1 = 0 v e r f lo w

-- N ega t ive 1 = Negative

Figure 17.1. 6502/65C02 Programming Model.

376 Programming the 65816

65802 Native Mode Programming Model
(1 6 -b i t a c c u m u l a t o r & in d e x r e g is te r m ode s : m = 0 & x = 0)

1 5 7 o

------------------------J— 1— - 1

A c c u m u l a t o r (B) (A or C) A c c u m u l a t o r (A)
i

X In d e x R e g is te r (X)

Y In d e x R e g is te r (Y)

D irect P age R e g is te r (D)

S ta c k P o in te r (S)

P ro g r a m C o u n te r (PC)

i---------------------------------------
j D a ta B a n k R e g is te r (DBR)

j P r o g r a m B a n k R e g is te r (PBR)

P ro c e s s o r S ta tu s R e g is te r (P)

7 o

e ■ E m u la t io n 0 = N a t iv e M o d e

■ C a r r y

- Z e ro

■ IRQ D is ab le

D e c im a l M o d e

 In d e x R e g is te r S e le c t

M e m o r y / A c c u m u l a t o r S e le c t

--- O v e r f lo w

--- N e g a t iv e

= C a r r y

= R esu lt Z e ro

= D is ab led

= D e c im a l , 0 = B in a ry

= 8 -b i t , 0 = 16 -b i t

= 8 -b i t , 0 = 16-b it

= O v e r f lo w

= N e g a t iv e

Figure 17.2. 65802 Native Mode Programming Model.

17 The Addressing Modes 377

65816 Native Mode Programming Model
(16-bit ac cum ulato r & index register modes: m = 0 & x = 0)

23 15 7 o
..................... ...1 1

A ccum ula to r (B) (A or C) A ccum ula tor (A)
- - ... - i

Data Bank Register (DBR)

X Index Register (X)

Y Index Register (Y)

l
| 0 0 0 0 0 0 0 0
1

Direct Page Register (D)

1
1 0 0 0 0 0 0 0 0
1

Stack Pointer (S)

Program Bank Register (PBR) Program Counter (PC)

Processor Status Register (P)

7 0

e — Emulat ion 0 = Nat ive Mode

■ Carry

- Zero

IRQ Disable

---Decimal Mode

 Index Register Select

■ M e m o ry /A c c u m u la to r Select

-- O verf low

-- N egative

= Carry

= Result Zero

= Disabled

= Decimal, 0 = Binary

= 8-bit , 0 = 16-bit

= 8-bit , 0 = 16-bit

= Overf low

= Negative

Figure 17.3. 65816 Native Mode Programming Model.

378_____________________________ Programming the 65816

65816 Emulation Mode Programming Model

23 15 7 0

I--- T---
j A ccum ula tor (B) (C) A ccum ula to r (A)
i________________________________ J________________________________

Data Bank Register (DBR)

X Index Register (X)

Y Index Register (Y)

r
1 0 0 0 0 0 0 0 0
L .

Direct Page Register (D)

0 0 0 0 0 0 0 0
L . J

0 0 0 0 0 0 0 1
L

S tack Pointer (S)

Program Bank Register (PBR) Program Counter (PC)

Processor Status Register (P)

7 o

e Emulation 1 = 6 5 0 2 Emulat ion M ode

■Carry 1 = C a r r y

- Z e r o 1 = Result Zero

•IRQ Disable 1 = Disabled

Decimal M o de 1 = D e c im a l , 0 = B inary

-B re a k Instruction 1 = B reak caused
interrupt

--------------------------------- O verf low 1 = Overf low

--------------------------------- Nega t ive 1 = Negative

Figure 17.4. 65816 Emulation Mode Programming Model.

17 The Addressing Modes 379

Absolute Addressing

Effective Address:
Bank: Data Bank Register (DBR) if locating data; Program Bank Register (PBR) if trans

ferring control.
High: Second operand byte.
Low: First operand byte.

Sample Syntax:
LDA addr

Etlective Address:

65816 Registers:

B a n k

D a ta B a n k (D B R l

B a n k H ig h L o w

O p e ra n d H ig h

i t lo c a t in g d a ta

X In d e x R e g is te r 1X 1

Y In d e x R e g is te r iY t

A c c u m u la to r (A o r C i

00 00 0000 D ire c t P ag e R e g is te r «D»

0 0 0 0 0 0 00 S ta c k P o in te r i S i

P ro g ra m B a n k 1P B R 1 P ru g ia m C o u n te r tP C i

i t t r a n s fe r in i t) c o n t r o l

Instructions Using It:

Effective Address Locates Data
ADC CPY LDY STA
AND DEC LSR STX
ASL EOR ORA STY
BIT INC ROL STZ*
CM P LDA ROR TRB'
CPX LDX SBC TSB'

Transfer Control to Effective Address
JM P JSR
1 65C02 and 65802/65815 only.

380 Programming the 65816

Absolute Indexed, X Addressing

Effective Address: T he Data Bank Register is concatenated w ith the 16-bit O perand: the 24-b it re
sult is added to X (16 b its if 65802/65816 native m ode, x = 0; else 8).

Sam ple Syntax:
LDA addr, X

Effective Address:

23 15 7 0

X In d e x R e g is te r (X)

; U-------- ,, 0 | —

Y In d e x R e g is te r (Y)

A c c u m u la to r iA o r C l
I

P ag e R e g is te r (D)

P ro g ra m B a n k i P B R i P ro g ra m

S ta tu s (P i

Instructions Using It:

Effective Address Locates Data
ADC DEC LSR STA
AND EOR ORA STZ'
ASL INC ROL
BIT1 LDA ROR
CM P LDY SBC

1 65C02 and 65802/65816 only.

17 The Addressing Modes 381

Absolute Indexed, Y Addressing

E ffectiv e A ddress: The Data Bank R egister is concatenated to the 16-bit O perand: the 24-b it re
sult is added to Y (16 b its if 65802/65816 native m ode, x = 0; else 8).

Sam ple Syntax:
LDA addr, Y

Effective Address:

B a n k H ig h L o w

Instruction:

O p co d e O p e ra n d L o w O p e ra n d H ig h

65816 Registers:

B a n k H ig h L o w
23 ts 0

D a ta B a n k iD B R '

t.

X In d e x R e g is te r tX i

Y In d e x R e g is te r iY i

P r o g ia m B a n k 1P B R 1

P ag e R e g is te r *D»

S ta tu s i P i

Instructions Using It:

Effective Address Locates Data
ADC EOR ORA
AND LDA SBC
CM P LDX STA

382 Programming the 65816

Absolute Indexed Indirect Addressing

Effective Address:

Bank: Program Bank Register (PBR).

High/Low: T he Indirect A ddress.

Indirect Address: Located in the Program Bank at the sum of the O perand double byte and X
(16 b its if 65802/65816 native m ode, x = 0 ; else 8 bits).

Sam ple Syntax:
JM P (addr, X)

Effective Address:

R e g is te r (X i

Y In d e x R e g is te r (Y)

H ig h in d ir e c t A d d re s s

L o w in d ir e c t A d d re s s

Program Ban*
Memory

A c c u m u la to r lA o r C)
I

P ag e R e g is te r (D>

00 00 0000 S ta c k P o in te r (S i

P ro g ra m B a n k 1P B R 1 P ro g ra m C o u n te r (PC)

S ta tu s iP i

Instructions Using It:

Transfer Control to Effective Address
JM P1 JSR2

1 65C02 and 65802/65816 only.
2 65802/65816 only.

17 The Addressing Modes 383

Absolute Indirect Addressing
E ffectiv e Address:

Bank: Program Bank R egister (PBR).

High/Low: The Indirect Address.

Indirect Address: Located in Bank Zero, at the O perand double byte.

Sam ple Syntax:
JM P (addr)

Effective Address:

D a ta B a n k 1D B R 1

Bank o
Memory

R e g is te r (X l

R e g is te r lY l

A c c u m u la to r |A o r C)
l

0 0 0 0 0 0 00 D ire c t P ag e R e g is te r iD>

0 0 00 0000 S ta c k P o in te r i S i

P ro g ra m B a n k (P BR i P ro g ra m C o u n te r i P C i

S ta tu s iP 1

Instructions Using It:

Transfer Control to Effective Address
IMP

384 Programming the 65816

Absolute Indirect Long Addressing
E ffective Address:
Bank/High/Low: The 24-bit Indirect Address.

Indirect Address: Located in Bank Zero, at the O perand double byte.

Sam ple Syntax:
JMP [addr\

Effective Address:

D a ta B a n k DBR

X In de « R e g is te r 1X 1

Y In d e * R e g is te r 'Y i

A c c u m u ia t

0 0 00 0 0 00 D ir e - ! P a g e R e g is te r :D)

0 0 00 0 0 00 S ta c k P o in te r .S i

P ro g ra m B a n k PBP P r o q ta " ' C o u n te r i PC i

In s tru c tio n s U sin g It :

Transfer Control to Effective Address
JMP/JML

Note: 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

17 The Addressing Modes 385

Absolute
Effective Address:
Bank: Third operand byte.
High: Second operand byte.
Low: First operand byte.

Sample Syntax:
LDA long

Long Addressing

Effective Address:

23 IS 7 0
B a n k H ig h L o w

I

O p co d e O p e ra n d L o w O p e ra n d H ig h O p e ra n d B a n k

65816 Registers:

B a n k H ig h

D a ta B a n k iD B R l

R e g is te r (X i

R e g is te r lY t

A c c u m u la to r (A o r C>

P ag e R e g is te r iD i

0 0 00 0 0 00 S ta c k P o in te r iS i

P ro g ra m B a n k iP B R l P ro g ra m C o u n te r tP C i

S ta tu s i P i

Instructions Using It:

Effective Address Locates Data
ADC CMP LDA SBC
AND EOR ORA STA

Transfer Control to Effective Address
JMP(JML) JSR(JSL)
Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

386 Programming the 65816

Absolute Long Indexed, X Addressing

Effective Address: T he 24-b it O perand is added to X (16 b its if 65802/65816 native m ode, x = 0;
else 8 bits)

Sam ple Syntax:
LDA long, X

Effective Address:

A c c u m u la to r 'A o r C>
I

0 0 0 0 0 0 00 D ire c t P ag e R e g is te r «D*

0 0 00 0000 S ta c k P o in te r (S i

P ro g ra m B a n k i P B R i P ro g ra m C o u n te r (PC)

S ta tu s i P i

Instructions Using It:

Effective Address Locates Data
ADC
AND

CMP
EOR

LDA
ORA

SBC
STA

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

17 The Addressing Modes 387

Accumulator Addressing
8-Bit Data (all processors): Data: Byte in accumulator A. o

A c c u m u la to r B A c c u m u la to r A

16-Bit Data (65802/65816, native mode. 16-bit accumulator (m = 0):

Data High: High byte in accumulator A.

Data Low: Low byte in accumulator A.
Data

A c c u m u la to r (A o r C i

1

Sample Syntax:
ASL A

Instruction:

O p co de

65816 Registers:

B a n k
?3

H ig h l o w
’ 5 ; 0

D a ta B a n k rO B R »

X In d e x R e g is te r 1X 1

Y In d e x R e g is te r <Y)

A c c u m u la to r lA o r C '

1

0 0 00 0 0 00 D ire c t P ag e R e g is te r i0>

0 0 00 0000 S ta c k P o in te r 1S 1

P ro g ra m B a n k <PBRi P ro g ra m C o u n te r iP C '

S ta tu s Pi

Instructions Using It:

ASL INC1 ROL
DEC' LSR ROR

1 65C02 and 65802/65816 only.

388 Programming the 65816

Block Move Addressing

Source Effective Address:
Bank: Second operand byte.
High Low: The 16-bit value in X; if X is only 8 b its (m ode flag x = 1), the high byte is 0.
D estination Effective Address:
Bank: First operand byte.
High Low: T he 16-bit value in Y; if Y is only 8 b its (m ode flag x = l) , the high byte is 0.
Count:
N um ber of bytes to be m oved: 16-bit value in Accum ulator C plus 1.

Sam ple Syntax:
MVN srcebk. destbk

S ource E ffe c tive A ddress

A c c u m u la to r iA o ' C»1
V — --- • i --------------------------------- 1 6 -b it c o u n t

P ag e R e g is te r D-

P rogram B ank tPBR) C o u n te r iP C 1

P o in te r 'S 1

Instructions U sing It:

Effective Address Locates Data

MVN MVP

N ote: Both are 65802 65816 only;
65802: Data bank values are not propagated
to the bus (bank accessed is alw ays bank 0).

17 The Addressing Modes 389

Direct Page Addressing
Effective Address:

Bank: Zero

High/Low: Direct Page Register plus Operand byte.

Sample Syntax:
LDA dp

Effective Address:

65816 Registers:

B a n k

D a ta B a n k (D B R i

R e g is te r (X I

A c c u m u la to r (A o r C l

 I____

0 0 0 0 0 0 00 D ire c t P a g e 1D 1

0 0 00 0000 S ta c k P o in te r (S i

P ro g ra m B a n k (PBR) P ro g ra m C o u n te r iPC>

S ta tu s tP i

Instructions Using It:

Effective Address Locates Data
ADC CPY LDY STA
AND DEC LSR STX
ASL EOR ORA STY
BIT INC ROL STZ'
CMP LDA ROR TRB'
CPX LDX SBC TSB'
1 65C02 and 65802/65816 only.

390 Programming the 65816

Direct Page Indexed, X Addressing

Effective A ddress:

Bank: Zero
High/Low: Direct Page Register plus Operand byte plus X (16 b its if 65802/65816 native m ode, x = 0;

else 8 bits).

Sam ple Syntax:
LDA dp, X

Effective Address:

Instruction:

O p c o d e

H ig h

O p e ra n d

S la c k P o in t e r (S)

P r o g r a m B a n k iP B R) P r o g r a m C o u n te r (P C)

S ta t u s (P I

Instructions Using It:

Effective Address Locates Data
ADC DEC LSR STA
AND EOR ORA STY
ASL INC ROL STZ 1
BIT1 LDA ROR
CMP LDY SBC

1 65C02 and 65802/65816 only.

17 The Addressing Modes 391

Direct Page Indexed, Y Addressing

E ffectiv e Address:

Bank: Zero

High/Low: Direct Page Register plus O perand byte plus Y (16 bits if 65802/65816 native m ode, x = 0;
else 8 bits).

Sam ple Syntax:
LDX dp, Y

Effective Address:

B a n k H ig h L o w

O p e ra n d

65816 Registers:

B a n k

D a ta B a n k (D B R i

R e g is te r rX i ' 1
R e g is te r i YI

A c c u m u la to r (A o r C l

l____

:: i h—

r ~ ‘
i
i__

oooc oooo D ire c t P ag e iD)

0 0 0 0 0 0 00 S ta c k P o in te r (S i

P ro g ra m B a n k i P B R i P ro g ra m C o u n te r (P C l

S ta tu s iP)

Instructions Using It:

Effective Address Locates Data
LDX STX

392 Programming the 65816

Direct Page Indexed Indirect, X Addressing

Effective Address:

Bank:

High/Low:

Data bank register

The indirect address

Indirect Address: Located in the direct page at the sum of the direct page register,
the operand byte, and X (16 bits if 65802/65816 native m ode, x = 0;
else 8), in bank 0.

Sam ple Syntax:
LDA (dp, X)

Effective Address:

23 15 7 0

B a n k H ig h L o w

Instruction:

O p e ra n d

65816 Registers:

B a n k
23

D a ta B a n k (D B R)

i---------------
I 0000 0000
I_________

+ 1

I . L o w In d i r e c t A d d re s s

B a n k 0
M e m o r y

P ro g ra m B a n k (PBR) P ro g ra m

S ta tu s (P)

Instructions U sing It:

Effective Address Locates Data
ADC CM P LDA SBC
AND EOR O RA STA

17 The Addressing Modes 393

Direct Page Indirect Addressing

E ffectiv e A ddress:

Bank: Data Bank R egister (DBR)

High/Low: T he 16-bit Indirect Address

Indirect Address: T he O perand byte plus the D irect Page Register, in Bank Zero

Sam ple Syntax:
LDA (dp)

Effective Address:

O p co d e

65816 Registers:

B a n k H ig h

X In d e x R e g is te r 1X 1

Y In d e x R e g is te r <Yi

H ig h in d ir e c t A d d re s s

L o w In d ir e c t A d d re s s

B a n k 0
M e m o ry

A c c u m u la to r (A o r C>
l

i ------------------------- ----------

1 0 0 00 oooo D ire c t P ag e iD)
1___

0 0 00 0000 S ta c k P o in te r (S i

P r o g ra m B a n k (P BR) P ro g ra m C o u n te r i P C i

S ta tu s i P i

Instructions Using It:

Effective Address Locates Data
ADC CM P LDA SBC
AND EOR O RA STA

Note: All are 65C02 and 65802/65816 only.

394 Programming the 65816

Direct Page Indirect Long Addressing

Effective Address:

Bank/High/Low: T he 24 -b it Indirect Address

Indirect Address: T he O perand byte plus the D irect Page Register, in Bank Zero

Sam ple Syntax:
LDA [dp]

Effective Address:

B a n k H ig h • L o w

65816 Registers:

B a n k

O a ta B a n k iD B R i

H ig h L o w
15 0

X In d e x R e g is te r (X)

V In d e x R e g is te r (Y i

• 2

i .

B a n k In d ir e c t A d d re s s

H ig h In d ir e c t A d d re s s

L o w in d ir e c t A d d re s s

B a n k 0
M e m o ry

A c c u m u la to r lA o r C l

I____

r ----------------------------- -------------------
| OOOC 0000 D ire c t P a g e i D i

I _______________________ .

S ta c k P o in te r (S I

P ro g ra m B a n k (PBR) P ro g ra m C o u n te r (PC)

S ta tu s (P i

Instructions Using It:

Effective Address Locates Data
SBC
STA

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0)

ADC CM P LDA
AND EOR ORA

17 The Addressing Modes 395

Direct Page Indirect Indexed, Y Addressing

Effective Address: Found by concatenating the data bank to the double-byte indirect address, then
adding Y (16 b its if 65802/65816 native m ode, x = 0; else 8).

Indirect A ddress: Located in the D irect Page at the sum of th e d irect page reg ister and the op
erand byte, in bank zero.

Sample Syntax:
LDA (dp), Y

Effective Addross:

23 15 7 0

Bank High Low

Instruction:

Opcode Operand

65816 Registers:
Bank

Data Bank (DBR)

High

Register (X)

Register (Y)

Accum ulatjr (A or C) '

+1

 L_

I—

1 0000 0000 Direct Page (D)

1________________

High Indirect Address

Low Indirect Address

Bank 0
Memory

Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC CM P LDA SBC
AND EOR ORA STA

396 Programming the 65816

Direct Page Indirect Long Indexed, Y Addressing
Effective Address: Found by adding to the triple-byte indirect address Y (16 bits if 65802/

65816 native mode, x = 0; else 8 bits).

Indirect Address: Located in the Direct Page at the sum of the direct page register and
the operand byte in bank zero.

Sample Syntax:
LDA (dp), Y

Effective Address:

B a n k H ig h L o w

Y Index Regislet tYi

A c c u m u la to r (A o r C l

 I____

r —
i 0000 0000 D ire c t P ag e i D i

i _______

B a n k in d ir e c t A d d re s s

• 2

L H ig h In d ir e c t A d d re s s
r

• i
1 l o w in d u e d A d d re s s

B a n k 0
M e m o ry

0 0 00 0000 S ta c k P o in te r (S i

P ro g ra m B a n k iP B R t P ro g ra m C o u n te r iP C l

S ta tu s iP r

Instructions Using It:
Effective Address Locates Data
ADC CM P LDA SBC
AND EOR ORA STA

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0)

17 The Addressing Modes 397

Immediate Addressing
8-Bit Data (all processors): Data Operand byte

16-Bit Data (65802/65816, native m ode, applicable m ode flag m or x = 0):

Data H igh: Second operand byte.
Data Low: First operand byte.
Sample Syntax:

LDA const.

Instruction:

O pcode
D a ta L o w =

O p e rand L o w
D a ta H ig h =

O p e ra nd H ig h

Instruction:

O pcode D a ta ^ O pe rand

6581 6 Registers:

B an k

23

H ig h L o w

15 7 0

D a ta B a n k (DBR)

X Index R e g is te r (X)

Y Index R e g is te r (Y)

A c c u m u la t j r (A o r C)

0000 0000 D ire c t P a g e R e g is te r (D)

0000 0000 S ta c k P o in te r (S)

P ro g ra m B a n k (PBR) P ro g ra m C o u n te r (PC)

Status (P)

Instructions Using It:

ADC CPX LDX
AND CPY LDY
BIT’ EOR ORA
CMP LDA REP’

1 65C02 and 65802/65816 only.
2 65802/65816 only.

SBC
SE P

398 Programming the 65816

Implied Addressing
Type 1: Mnemonic specifies register(s) to be operated on

Type 2: Mnemonic specifies flag bit(s) to be operated on

Type 3: Mnemonic specifies operation; no data involved

Sample Syntax:
NOP

Instruction:

Opcode

65816 Registers:
Bank

23
High Low

15 7 0

Data Bank (DBR)

X Index Register (X)

Y Index Register (Y)

Accum ulator (A or C)

0000 0000 Direct Page Register (D)

0000 oooo Stack Pointer (S)

Program Bank (PBR) Program Counter (PC)

Status (P)

Instructions Using It:

Mnemonic Specifies Register(s)
DEX TA Y T SX T Y X 1
DEY TC D 1 TXA XBA1
INX T C S1 TXS
INY T D C ' TXY1
TAX T S C TYA

M nem onic Specifies Flag Bit(s)
CLC CLI SEC SEI
CLD CLV SED XCE'

Mnemonic Specifies Operation
NOP STP1 WAI-

1 65802/65816 only.

17 The Addressing Modes 399

Program Counter Relative Addressing
Effective Address:

Bank: Program Bank Register (PBR).

High/Low: The Operand byte, a tw o's com plem ent signed value, is sign-extended to 16 bits, then
added to the Program C oun ter (its value is the address o f the opcode follow ing this
one).

Sam ple Syntax:
BRA nearlabel

Effective Address:

B a n k H ig h L o w

s ig n e x te n d e d to 16 b its

65816 Registers:

B a n k

D a ta B a n k (DBR)

R e g is te r (X)

A c c u m u la to r (A o r C)

 I____

P ag e R e g is te r (D)

0 0 00 0 0 00 S ta c k P o in te r (S)

P ro g ra m B a n k (P BR) P ro g ra m C o u n te r (PC)

r

S ta tu s (P)

Instructions Using It:

Transfer Control to Effective Address
BCC BMI BRA’
BCS BNE BVC
BEQ BPL BVS

1 65C02 and 65802/65816 only.

400 Programming the 65816

Program Counter Relative Long Addressing’

Effective Address:

Bank: Program Bank Register (PBR).

High/Low: T he O perand double byte, a tw o's com plem ent signed value, is added to the Program
C ounter (its value is the address o f th e opcode follow ing this one).

Sam ple Syntax:
BRL label

Effective Address:

?3 is ; o

B a n k H ig h L o w

Instruction:

O p co d e O p e ra n d L o w O p e ra n d H ig h

65816 Registers:

B a n k
23

O a ta B a n k iD B R)

H ig h
>S

L o w
0

X In d e x R e g is te r (X)

Y in d e x R e g is te r |Y)

A c c u m u la to r (A o r C)

P a g e R e g is te r (0)

00 00 0 0 00 S ta c k P o in te r (S)

P ro g ra m B a n k (P BR) P ro g ra m C o u n te r (PC)

S ta tu s (P i

Instructions Using It:

Transfer Control to Effective Address
BRL

Note: 65802/65816 only.

17 The Addressing Modes 401

Stack (Absolute) Addressing
Source of data to be pushed: The 16-bit operand, which can be either an absolute address
or immediate data.

Destination effective address: Provided by Stack Pointer.

Sample Syntax:
PEA ad d r/con st

Instruction:

O p c o d e
D a ta L o w =

O p e ra n d L o w
D a ta H ig h

O p e ra n d H ig h

65816 Registers:

B a n k
23

(D a ta)

H ig h L o w
IS 7 0

D a ta B a n k (D B R)

X In d e x R e g is te r (X)

Y In d e x R e g is te r (Y)

A c c u m u la to r i A o r C)

I

0 0 0 0 0 0 0 0 D ir e c t P a g e R e g is te r (D)

r
0 0 0 0 0 0 0 0

L

S ta c k P o in t e r (S i

P r o g ra m B a n k (P B R) P r o g ra m C o u n te r (P C)

S ta t u s iP)

Instructions Using It:

PEA

Note: 65802/65816 only.

402 Programming the 65816

Bank 0

17 The Addressing Modes 403

Stack (Direct Page Indirect) Addressing
Source of data to be pushed: The 16-bit indirect address (or double-byte data) located at
the sum of the Operand byte plus the Direct Page Register, in Bank Zero.

Destination effective address: Provided by Stack Pointer.

Sample Syntax:
PEI dp

Effective Address:

R a n k H ig h l o w

65816 Registers:

B a n k H ig h

O a ta B a n k lO BR)

R e g is te r iX)

R e g is te r lY i

A c c u m u la to r (A o r C)

1-------------
1 0000 0000 D ire c t P ag e R e g is te r (D i

L __

I” "
1 0 0 00 0000 S ta c k P o in te r iS>

L

P ro g ra m B a n k (P B R l P ro g ra m C o u n te r iPC>

Instructions Using It:

Effective Address Locates Data
PEI

Note: 65802/65816 only.

404 Programming the 65816

B a n k 0

17 The Addressing Modes 405

Stack (Interrupt) Addressing
E ffective A ddress: A fter pushing the Program Bank (65802/816 native m ode only),
followed by the Program Counter and the Status Register, the Effective Address is
loaded into the Program C ounter and Program Bank R egister, transferring control
there.

Bank: Zero
High/Low: The contents of the instruction- and processor-specific interrupt vector.

Data: Source: Program Bank, Program Counter and Status Register.
D estination Effective Address: Provided by Stack Pointer.

Sample Syntax:
BRK

Effective Address:

Instruction:

Opcode
0 jl.M -.ll _]

_ l
Note H a 'dw a re in te rrupt add ress in g d iffe rs on ly in that there

is no in s tru c tion in vo lved

65816 Registers:

Bank High

Data Bank iD BR l

X Index Reg is te r (Xi

Y Index Reg ister iY)

H ig h

Interrupt
Vector Address +1

Interrupt
Vector Address

C onten ts of
Vector High

Con ten ts of
Vector Low

B ank 0
M em ory

Vecto rs 6 502 /C02 /em u la tion N ative

IRQ OOFFFE Ft w ith BRK t OOFFEE F
RESET OOFFFC 0
NMI OOFFFA B O O FFE AB
ABORT 0 0F F F 8 9 00FFE8 9
BRK OOFFFE F OOFFE6 7
COP 0 0FFF4 5 00FFE4 5

A ccum u la to r (A or C l

Page Register (D)

r -
0000 0000

L
S tack Po inter (S)

Prog ram Bank iPBR) Program Counter iPC i

Instructions Using It:

Transfer Control to Effective Address
BRK COP

Sta tu s (Pi

406 Programming the 65816

Slick (Intirrupt) Addrmlng

before

6502/ 65C02/Em ulalion Mode

Stick

PC High

PC Low

Counter (PC)

Slack Pointer (S)

Status (P) • — — | ^ Status (P)

alter

Bank 0

17 The Addressing Modes 407

Stack (Program Counter Relative) Addressing

Source of data to be pushed: The 16-bit sum of the 16-bit Operand plus the 16-bit Pro
gram Counter. (Note that the 16-bit Operand which is added is the object code operand;
the operand used in the instruction's syntax required by most assemblers is a label which is
converted to the object operand.)

Destination Effective Address: Provided by Stack Pointer.

Sample Syntax:
PER label

Instruction:

S ta t u s (P)

Instructions Using It:
PER

Note: 65802/65816 only.

Bank 0

408 Programming the 65816

Stack (Pull) Addressing
Source Effective Address: Provided by Stack Pointer.

Destination of data to be pulled: Register specified by the opcode.
The Stack Pointer (S) is increm ented, specifying the location from w hich an 8-bit reg
ister— or the low byte of a 16-bit register— will be loaded. If the register is 16 bits,
the Stack Pointer will be incremented a second tim e, and the register's high byte will
be loaded from this second new Stack Pointer location.

Sample Syntax:
PLA

In s tru c tio n :

Opcode

6 5 8 1 6 R e g is te rs :

Bank High Low

Oala Bank 1DBR1

■ also called Bi

x index Register 1X1

Y Index Register (Yi

Accumulator (A or Cl

1

0000 0000 Direct Page Register (Dl

r
0000 0000

L
Stack Pointer i S i

Program Bank (PBR) Program Counter (PCi

Status i P i

Instructions Using It:

Effective Address Locates Data
PLA1 PLD' * PLX1
PLB11 PLP1 PLY1

1 65802/65816 only.
2 8 bit register, except on 65802/816 may be either 8 or 16 bits, dependent on flag
3 8 bit register, except on 65802/816 may be either 8 or 16 bits, dependent on flag
4 16 b its always.
5 8 b its always.

17 The Addressing Modes 409

Pull 8-Dii Register

alter

Stack

Register

Stack Pointer (Si
before

Bank 0

Pull 16-Dit Register

Stack

alter
eg g

Stack Pointer iS i Register Low

before

Bank 0

410 Programming the 65816

Stack (Push) Addressing
Source of data to be pushed: Register specified by the opcode.

Destination Effective Address: Provided by Stack Pointer.
The Stack Pointer (S) specifies the location to which an 8-bit register— or the high byte
of a 16-bit register— will be stored. The low byte of a 16-bit register will be stored to
the Stack Pointer location m inus one. After storage of an 8-b it register, S is decre
mented by 1; after a 16-bit register, S is decrem ented by 2.

Sample Syntax:
PHA

Instruction:

Opcode

65 41 6 Registers:
Bank

.’ 3
High Low

is • 0

Data Bank tOBRi

'also called Bi

X Index Register iX)

Y Index Register |Y)

Accumulator (A or Cl

I

0000 0000 Direct Page Register (01

r
0000 0000

l _
Stack Pointer iS>

Program Bank [PBRl Program Counter (PCI

iaiso called Ki

Status i Pi

Instructions Using It:

Effective Address Locates Data
PHA2 PHD1* PHPS PHY3
PHB35 PHKIS PHX3

1 65802/65816 only.
2 8 bit register, except on 65802/816, may be either 8 or 16 bits, dependent on flag
3 8 bit register, except on 65802/816, may be either 8 or 16 bits, dependent on flag
4 16 bits always.
5 8 bits always.

17 The Addressing Modes 411

Push 8-bit Register

Stack

before
Register

Stack Pointer (S)
after

Bank 0

Push 16-bit Register

Stack Pointer (S)

before _

Stack

Register High

Register Low

after

Bank 0

412 Programming the 65816

Stack (RTI) Addressing
Source Effective Address: Provided by Stack Pointer.

Destination of values to be pulled: First the Status Register, then the Program Counter is
pulled, followed (65802/65816 native mode only) by the Program Bank.

Control is transferred to the new Program Counter (and Program Bank) value(s).

Sample Syntax:
RTI

Instruction:

Opcode

65 8 1 6 Registers:

Bank
23

High Low
IS ' o

Oata Bank i DBRi

X index Register (X)

¥ Index Register (Yi

Accumulator i A or Cl
I

0000 0000 Direct Page Register (D)

r
I 0000 0000

L_
Stack Pointer (Si

Program Bank iPBRl Program Counter (PCi

Status i Pi

Instructions Using It:

RTI

17 The Addressing Modes 413

S lac k |R T I) Addressing

after

6502/65C02/Emulation Mode

SUck

PC High

Stack Pointer |S)
PC Low

before

Stafus IP) - | | Status (P)

Bank 0

after

65802/65816 Native Mode

Stack

Program Bank (PBR) ■ ■ " * | | ^ Program Bank (PBR)

PC High

Stack Pointer (Si
PC Low

Counter (PCI

Status (P) , | | Status (P)

before

Bank 0

414 Programming the 65816

Stack (RTL) Addressing

Source Effective Address: Provided by Stack Pointer.
Destination of values to be pulled: First the Program Counter is pulled and incremented
by one. Then the Program Bank is pulled.
Control is transferred to the new Program Counter and Program Bank values.

Sample Syntax:
RTL

Instruction:

Opcode

65116 Registers:
H ig h

15
L o w

7 0

X In d e x R e g is te r (X I

Y In d e x R e g is te r (Y)

A c c u m u la t >r (A o r C)

0000 0000 D irect Page Reg iste r (0)

r
0000 0000

L_
S tack Po inte r (S i

Prog ram Bank (PBRl Prog ram Counte r (PC)

S ta tu s (P)

Instructions Using It:

RTL

Note: 65802/65816 only;
65802: Program Bank value is not propagated to be bus
(bank accessed is always bank 0).

17 The Addressing Modes 415

Stack (R T L | Addressing

SUck

after
P rog ram B ank (PBR) ■— - * | | P rog ram B ank (PBR)

Stack P oin ter (S) PC High
i f

Coun te r (PC)

before

PC Low

B ankO

416 Programming the 65816

Stack (RTS) Addressing
Source Effective Address: Provided by Stack Pointer.
Destination of values to be pulled: The Program Counter is pulled and incremented by
one. The Program Bank remains unchanged.
Control is transferred to the new Program Counter value.

Sample Syntax:
RTS

Instruction:

O p co d e

65816 Registers:

B a n k H ig h L o w
23 15

O a ta B a n k iD B R i

X In d e x R e g is te r IX)

Y In d e x R e g is te r (Y t

A c c u m u la t ir (A o r C)

00 00 0 0 00 D ire c t P a g e R e g is te r (0)

r
0 0 00 0000

L .
S ta c k P o in te r (S)

P ro g ra m B a n k (PBR) P ro g ra m C o u n te r (PC)

Instructions Using It:

RTS
S ta tu s (P)

17 The Addressing Modes 417

S tic k (RTS) Addressing

alter

Slick

PC High

J j P g C I PC

Slack Pomier iS i PC Low

before

Bank 0

418 Programming the 65816

Stack Relative Addressing
Effective Address:

Bank: Zero.

High:Low: The 16-bit sum of the 8-bit O perand and the 16-bit Stack Pointer.

Sample Syntax:

LDA sr,S
Effective Address:

Program Bank (PBR)

High

Operand

Program Counter (PC)

Status (P)

Instructions Using It:

Effective Address Locates Data
ADC
AND

CMP
EOR

LDA
ORA

SBC
STA

Note: All are 65802/65816 only.

17 The Addressing Modes 419

Stack Relative Indirected Indexed, Y Addressing
Effective Address: The Data Bank Register is concatenated to the Indirect Address: the
24-bit result is added to Y (16 bits if 65802/65816 native mode, x = 0; else 8 bits).

Indirect Address: Located at the 16-bit sum of the 8-bit Operand and the 16-bit Stack
Pointer.

Sample Syntax:
LDA (sr,S), Y

Effective Address:

B a n k H ig h L o w

O p e ra n d

65816 Registers:

B a n k

O a ta B a n k lO BR)

R e g is te r (X)

R e g is te r |Y)

A c c u m u la to r (A o r C)
i

I oj-rv

S ta c k

* 1
i , L o w In d ir e c t A d d re s s n

B a n k 0
M e m o ry

P ag e R e g is te r (D l

0 0 00 0000 S ta c k P o in te r (S i

P ro g ra m B a n k (P BR) P ro g ra m

S ta tu s (P i

Instructions Using It:

Effective Address Locates Data
SBC
STA

Note: All are 65802/65816 only;
65802: Data bank value is not propagated to the bus
(bank accessed is always bank 0).

ADC CMP LDA
AND EOR ORA

The Instruction Sets

This chapter devotes a page to each of the 94 different 65816 opera
tions. Each operation may have more than one addressing mode avail
able to it; these are detailed for each instruction. The symbols in Table
18.1 are used to express the different kinds of values that instruction
operands may have. The effect of each operation on the status flags var
ies. The symbols in Table 18.2 are used to indicate the flags that are
affected by a given operation.

Table 18 .1 . Operand Symbols.

addr two-byte address
addr/const two-byte value: either an address or a constant
const one- or two-byte constant
destbk 64K bank to which string will be moved
dp one-byte direct page offset (6502/65C02: zero page)
label label of code in same 64K bank as instruction
long three-byte address (includes bank byte)
nearlabel label of code close enough to instruction to be reachable

by a one-byte signed offset
sr one-byte stack relative offset
srcebk 64K bank from which string will be moved

421

422 Programming the 65816

Table 18 .2 . 65x Flags.

Flags:

bits: 7 6 5 4 3 2 1 0

6502/65C02/6502 emulation: n v - b d i z c

65802/65816 native: n v m x d i z c

n — negative result
v — overflow
m — 8-bit memory/accumulator
x — 8-bit index registers
b — BRK caused interrupt
d — decimal mode
i — IRQ interrupt disable
z — zero result
c — carry

18 The Instruction Sets 423

Add With Carry ADC

Add the data located at the effective address specified by the operand to the con
tents of the accumulator; add one to the result if the carry flag is set, and store the
final result in the accumulator.

The 65x processors have no add instruction which does not involve the carry. To
avoid adding the carry flag to the result, you must either be sure that it is already
clear, or you must explicitly clear it (using CLC) prior to executing the ADC
instruction.

In a multi-precision (multi-word) addition, the carry should be cleared before the
low-order words are added; the addition of the low word will generate a new carry
flag value based on that addition. This new value in the carry flag is added into the
next (middle-order or high-order) addition; each intermediate result will correctly
reflect the carry from the previous addition.

d flag clear; Binary addition is performed.
d flag set; Binary coded decimal (BCD) addition is performed.
8-bit accumulator (all processors): Data added from memory is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data added from memory is six

teen-bit: the low-order eight bits are located at the effective address; the high-order
eight bits are located at the effective address plus one.

Flags Affected: n v ---------- z c
n Set if most-significant bit of result is set; else cleared,
v Set if signed overflow; cleared if valid signed result,
z Set if result is zero; else cleared.
c Set if unsigned overflow; cleared if valid unsigned result.

424 Programming the 65816

Codes:

O pcode Available on: # o f # o f
Addressing M ode* * Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate ADC #const 69 X X X 2* 2 1,4

Absolute ADC addr 6D X X X 3 4 1 .4

Absolute Long ADC long 6F X 4 5 1,4
Direct Page (DP) ADC dp 65 X X X 2 3 1-2-4
D P Indirect ADC (dp) 7 2 X X 2 5 U . 4

D P Indirect Long ADC [dp] 67 X 2 612,4
Absolute Indexed,X ADC addr.X 7D X X X 3 4 1 .3 .4

Absolute Long Indexed,X ADC long,X 7F X 4 5 1-4
Absolute Indexed, Y ADC addr,Y 79 X X X 3 4 1 .3 .4

D P Indexed,X ADC dp,X 75 X X X 2 4 1 .2 .4

D P Indexed Indirect,X ADC (dp,X) 61 X X X 2 6 1.2 .4

D P Indirect Indexed, Y ADC (dp),Y 71 X X X 2
5 1 .2 .3 .4

DP Indirect Long Indexed, Y ADC [dp],Y 77 X 2 61,2,4
Stack Relative (SR) ADC sr,S 63 X 2 4 1 .4

SR Indirect Indexed, Y ADC (sr,S),Y 73 X 2 7 1,4

+ + AD C, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary
4 Add 1 cycle if 65C02 and d = 1 (decimal mode, 65C02)

18 The Instruction Sets 425

And Accumulator with Memory AND

Bitwise logical AND the data located at the effective address specified by the
operand with the contents of the accumulator. Each bit in the accumulator is
ANDed with the corresponding bit in memory, with the result being stored in the
respective accumulator bit.

The truth table for the logical AND operation is:

Second O perand

0 1

First O perand
0 0 0
1 0 1

Figure 18.1. AND Truth Table.

That is, a 1 or logical true results in a given bit being true only if both elements
of the respective bits being ANDed are Is, or logically true.

8-bit accumulator (all processors): Data ANDed from memory is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data ANDed from memory is

sixteen-bit: the low-order byte is located at the effective address; the high-order
byte is located at the effective address plus one.

Flags Affected: n ------------z -
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.

426 Programming the 65816

Codes:

Addressing M ode+ + Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816

o f

Bytes

H of

Cycles

Immediate AND Uconst 29 X X X 2* 21
Absolute AND addr 2D X X X 3 4 1
Absolute Long AND long 2F X 4 5 1
Direct Page (DP) AND dp 25 X X X 2 31'2
DP Indirect AND (dp) 32 X X 2 51,2
DP Indirect Long AND [dp] 27 X 2 61-2
Absolute Indexed,X AND addr.X 3D X X X 3 41.3

Absolute Long Indexed,X AND long.X 3F X 4 5 1
Absolute Indexed, Y AND addr,Y 39 X X X 3 41.3

DP Indexed,X AND dp,X 35 X X X 2 41.2

DP Indexed Indirect,X AND (dp,X) 21 X X X 2 61-2
DP Indirect Indexed, Y AND (dp),Y 31 X X X 2 51.2.3

DP Indirect Long Indexed,Y AND (dp],Y 37 X 2 6 1-2,0

Stack Relative (SR) AND sr,S 23 X 2 4 1
SR Indirect Indexed,Y AND (sr,S),Y 33 X 2 71

+ + AND, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary

18 The Instruction Sets 427

Shift Memory or Accumulator Left ASL

Shift the contents of the location specified by the operand left one bit. That is, bit
one takes on the value originally found in bit zero, bit two takes the value origi
nally in bit one, and so on; the leftmost bit (bit 7 on the 6502 and 65C02 or if
m = 1 on the 65802/65816, or bit 15 if m = 0) is transferred into the carry flag;
the rightmost bit, bit zero, is cleared. The arithmetic result of the operation is an
unsigned multiplication by two.

A SL

f X Y Y Y Y Y A
1 0 1 1 0 0 1 1

Carry Flag

Figure 18.2. ASL.

8-bit accumulator/memory (all processors): Data shifted is eight bits.
16-bit accumulator/memory (65802/65816 only, m = 0): Data shifted is sixteen

bits: if in memory, the low-order eight bits are located at the effective address; the
high-order eight bits are located at the effective address plus one.

Flags Affected: n --------------z c
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.
c High bit becomes carry: set if high bit was set; cleared if high bit was

zero.

Codes:

Addressing M ode Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816
n o f

Bytes
#o/

Cycles

Accumulator ASL A 0A X X X 1 2

Absolute ASL addr 0E X X X 3 61
Direct Page (DP) AS L dp 06 X X X 2 5 12
Absolute Indexed,X ASL addr.X IE X X X 3 71 3
DP Indexed,X ASL dp,X 16 X X X 2 61 2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

428 Programming the 65816

BCC Branch if Carry Clear

The carry flag in the P status register is tested. If it is clear, a branch is taken; if it
is set, the instruction immediately following the two-byte BCC instruction is exe
cuted.

If the branch is taken, a one-byte signed displacement, fetched from the second
byte of the instruction, is sign-extended to sixteen bits and added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location.

The allowable range of the displacement is — 128 to + 1 2 7 (from the instruction
immediately following the branch).

BCC may be used in several ways: to test the result of a shift into the carry; to
determine if the result of a comparison is either less than (in which case a branch
will be taken), or greater than or equal (which causes control to fall through the
branch instruction); or to determine if further operations are needed in multi-preci
sion arithmetic.

Because the BCC instruction causes a branch to be taken after a comparison or
subtraction if the accumulator is less than the memory operand (since the carry flag
will always be cleared as a result), many assemblers allow an alternate mnemonic
for the BCC instruction: BLT, or Branch if Less Than.

Flags Affected: -------------------

Codes:

Addressing M ode+ + Syntax
O pcode

(hex)

Available on:

6502 65C02 65802/816

#o/

Bytes

* o f

Cycles

Program Counter Relative BCC nearlabel

(or BLT nearlabel)

90 X X X 2 2 u

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

18 The Instruction Sets 429

Branch if Carry Set BCS

The carry flag in the P status register is tested. If it is set, a branch is taken; if it is
clear, the instruction immediately following the two-byte BCS instruction is exe
cuted.

If the branch is taken, a one-byte signed displacement, fetched from the second
byte of the instruction, is sign-extended to sixteen bits and added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location.

The allowable range of the displacement is —128 to + 127 (from the instruction
immediately following the branch).

BCS is used in several ways: to test the result of a shift into the carry; to deter
mine if the result of a comparison is either greater than or equal (which causes the
branch to be taken) or less than; or to determine if further operations are needed in
multi-precision arithmetic operations.

Because the BCS instruction causes a branch to be taken after a comparison or
subtraction if the accumulator is greater than or equal to the memory operand
(since the carry flag will always be set as a result), many assemblers allow an alter
nate mnemonic for the BCS instruction: BGE or Branch if G reater or Equal.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

0 /

Bytes
o /

Cycles

Program Counter Relative BCS nearlabel

(or BGE nearlabel)

BO X X X 2 212

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

430 Programming the 65816

BEQ Branch if Equal

The zero flag in the P status register is tested. If it is set, meaning that the last
value tested (which affected the zero flag) was zero, a branch is taken; if it is clear,
meaning the value tested was non-zero, the instruction immediately following the
two-byte BEQ instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second
byte of the instruction, is sign-extended to sixteen bits and added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location.

The allowable range of the displacement is — 128 to + 1 2 7 (from the instruction
immediately following the branch).

BEQ may be used in several ways: to determine if the result of a comparison is
zero (the two values compared are equal), for example, or if a value just loaded,
pulled, shifted, incremented or decremented is zero; or to determine if further oper
ations are needed in multi-precision arithmetic operations. Because testing for
equality to zero does not require a previous comparison with zero, it is generally
most efficient for loop counters to count downwards, exiting when zero is reached.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

n o f

Bytes

0 /

Cycles

Program Counter Relative BEQ nearlabel F0 X X X 2 21,2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

18 The Instruction Sets 431

Test Memory Bits against Accumulator BIT

BIT sets the P status register flags based on the result of two different operations,
making it a dual-purpose instruction:

First, it sets or clears the n flag to reflect the value of the high bit of the data
located at the effective address specified by the operand, and sets or clears the v
flag to reflect the contents of the next-to-highest bit of the data addressed.

Second, it logically ANDs the data located at the effective address with the con
tents of the accumulator; it changes neither value, but sets the z flag if the result is
zero, or clears it if the result is non-zero.

BIT is usually used immediately preceding a conditional branch instruction: to
test a memory value's highest or next-to-highest bits; with a mask in the accumula
tor, to test any bits of the memory operand; or with a constant as the mask (using
immediate addressing) or a mask in memory, to test any bits in the accumulator.
All of these tests are non-destructive of the data in the accumulator or in memory.
When the BIT instruction is used with the immediate addressing mode, the n and v
flags are unaffected.

8-bit accumulator/memory (all processors): Data in memory is eight-bit; bit 7 is
moved into the n flag; bit 6 is moved into the v flag.

16-bit accumulator/memory (65802/65816 only, m = 0): Data in memory is
sixteen-bit: the low-order eight bits are located at the effective address; the high-
order eight bits are located at the effective address plus one. Bit 15 is moved into
the n flag; bit 14 is moved into the v flag.

Flags Affected: n v - - - - z - (Other than immediate addressing)
- - - - - - z - (Immediate addressing only)

n Takes value of most significant bit of memory data,
v Takes value of next-to-highest bit of memory data,
z Set if logical AND of memory and accumulator is zero; else

cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816

0 /

Bytes

it o f

Cycles

Immediate B IT ttconst 8 9 X X 2* 2}

Absolute B IT addr 2C X X X 3 4 1
Direct Page (DP) B IT dp 24 X X X 2 3 U

Absolute Indexed,X B IT addr.X 3C X X 3 4 1 . 3

D P Indexed,X B IT dp,X 34 X X 2 41.2

* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary

432 Programming the 65816

BMI Branch if Minus

The negative flag in the P status register is tested. If it is set, the high bit of the
value which most recently affected the n flag was set, and a branch is taken. A
number with its high bit set may be interpreted as a negative two's-complement
number, so this instruction tests, among other things, for the sign of two's-comple
ment numbers. If the negative flag is clear, the high bit of the value which most
recently affected the flag was clear, or, in the two's-complement system, was a pos
itive number, and the instruction immediately following the two-byte BMI instruc
tion is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second
byte of the instruction, is sign-extended to sixteen bits and added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location.

The allowable range of the displacement is - 128 to + 127 (from the instruction
immediately following the branch).

BMI is primarily used to either determine, in two's-complement arithmetic, if a
value is negative or, in logic situations, if the high bit of the value is set. It can also
be used when looping down through zero (the loop counter must have a positive
initial value) to determine if zero has been passed and to effect an exit from the
loop.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

n o f

Bytes

U o f

Cycles

Program Counter Relative BMI nearlabel 30 X X X 2 2 1,2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

18 The Instruction Sets 433

Branch if Not Equal BNE

The zero flag in the P status register is tested. If it is clear (meaning the value just
tested is non-zero), a branch is taken; if it is set (meaning the value tested is zero),
the instruction immediately following the two-byte BNE instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second
byte of the instruction, is sign-extended to sixteen bits and added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location.

The allowable range of the displacement is —128 to + 1 2 7 (from the instruction
immediately following the branch).

BNE may be used in several ways: to determine if the result of a comparison is
non-zero (the two values compared are not equal), for example, or if the value just
loaded or pulled from the stack is non-zero, or to determine if further operations
are needed in multi-precision arithmetic operations.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

H of

Bytes

H of

Cycles

Program Counter Relative BNE nearlabel DO X X X 2 2 1 .2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

434 Programming the 65816

BPL Branch if Plus

The negative flag in the P status register is tested. If it is clear—meaning that the
last value which affected the zero flag had its high bit clear—a branch is taken. In
the two's-complement system, values with their high bit clear are interpreted as
positive numbers. If the flag is set, meaning the high bit of the last value was set,
the branch is not taken; it is a two's-complement negative number, and the instruc
tion immediately following the two-byte BPL instruction is executed.

If the branch is taken, a one-byte signed displacement, fetched from the second
byte of the instruction, is sign-extended to sixteen bits and added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location.

The allowable range of the displacement is —128 to -I-127 (from the instruction
immediately following the branch).

BPL is used primarily to determine, in two's-complement arithmetic, if a value is
positive or not or, in logic situations, if the high bit of the value is clear.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816
#o/

Bytes

o f

Cycles

Program Counter Relative BPL nearlabel 10 X X X 2 21,2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

18 The Instruction Sets 435

Branch Always BRA

A branch is always taken, and no testing is done: in effect, an unconditional JMP
is executed, but since signed displacements are used, the instruction is only two
bytes, rather than the three bytes of a JMP. Additionally, using displacements from
the program counter makes the BRA instruction relocatable. Unlike a JMP instruc
tion, the BRA is limited to targets that lie within the range of the one-byte signed
displacement of the conditional branches: — 128 to + 127 bytes from the first byte
following the BRA instruction.

To branch, a one-byte signed displacement, fetched from the second byte of the
instruction, is sign-extended to sixteen bits and added to the program counter.
Once the branch address has been calculated, the result is loaded into the program
counter, transferring control to that location.

Flags Affected: -------------------

Codes:

O pcode A vailable on: # o f # o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Program Counter Relative BRA nearlabel 80 X X 2 3 ‘

1 Add 1 cycle if branch crosses page boundary on 65C02 or in 65816/65802's 6502 emulation mode (e = 1)

436 Programming the 65816

BRK Software Break

Force a software interrupt. BRK is unaffected by the i interrupt disable flag.
Although BRK is a one-byte instruction, the program counter (which is pushed

onto the stack by the instruction) is incremented by two; this lets you follow the
break instruction with a one-byte signature byte indicating which break caused the
interrupt. Even if a signature byte is not needed, either the byte following the BRK
instruction must be padded with some value or the break-handling routine must
decrement the return address on the stack to let an RTI (return from interrupt)
instruction execute correctly.

6502, 65C02, and Emulation Mode (e = l) : The program counter is incremented
by two, then pushed onto the stack; the status register, with the b break flag set, is
pushed onto the stack; the interrupt disable flag is set; and the program counter is
loaded from the interrupt vector at $FFFE-FFFF. It is up to the interrupt handling
routine at this address to check the b flag in the stacked status register to determine
if the interrupt was caused by a software interrupt (BRK) or by a hardware IRQ,
which shares the BRK vector but pushes the status register onto the stack with the b
break flag clear. For example,

0000 68 PLA copy status from
0001 48 PHA top of stack
0002 2910 AND #$10 check BRK bit
0004 D007 BNE ISBRK branch if set

Fragment 18.1.

65802/65816 Native Mode (e = 0): The program counter bank register is pushed
onto the stack; the program counter is incremented by two and pushed onto the
stack; the status register is pushed onto the stack; the interrupt disable flag is set;
the program bank register is cleared to zero; and the program counter is loaded
from the break vector at $OOFFE6-OOFFE7.

6502: The d decimal flag is not modified after a break is executed.
65C02 and 65816/65802: The d decimal flag is reset to 0 after a break is executed.

18 The Instruction Sets 437

Stack

Bank Address

Address High

Address Low

Stack Pointer

Contents of
Status Register

Bank 0

Figure 18.3. 65802/65816 Stack After BRK.

Flags Affected: - - - b - i - - (6502)
- - - b d i - - (65C02, 65802/65816 emulation mode

e = 1)

- - - - d i - - (65802/65816 native mode e = 0)
b b in the P register value pushed onto the stack is set.
d d is reset to 0, for binary arithm etic.
i The interrupt disable flag is set, disabling hardware IRQ interrupts.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

o f

Bytes

o f

Cycles

Stack/Interrupt BRK 00 X X X 2* 71

* BRK is 1 byte, but program counter value pushed onto stack is incremented by 2 allowing for optional signature
byte

1 Add 1 cycle for 65802/65816 native mode (e = 0)

438 Programming the 65816

BRL Branch Always Long

A branch is always taken, similar to the BRA instruction. However, BRL is a
three-byte instruction; the two bytes immediately following the opcode form a
sixteen-bit signed displacement from the program counter. Once the branch address
has been calculated, the result is loaded into the program counter, transferring con
trol to that location.

The allowable range of the displacement is anywhere within the current 64K pro
gram bank.

The long branch provides an unconditional transfer of control similar to the JMP
instruction, with one major advantage: the branch instruction is relocatable while
jump instructions are not. However, the (non-relocatable) jump absolute instruc
tion executes one cycle faster.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

0/

Bytes

0/

Cycles

Program Counter Relative Long BRL label 82 X 3 4

18 The Instruction Sets 439

Branch if Overflow Clear BVC

The overflow flag in the P status register is tested. If it is clear, a branch is taken;
if it is set, the instruction immediately following the two-byte BVC instruction is
executed.

If the branch is taken, a one-byte signed displacement, fetched from the second
byte of the instruction, is sign-extended to sixteen bits and added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location.

The allowable range of the displacement is —128 to -1-127 (from the instruction
immediately following the branch).

The overflow flag is altered by only four instructions on the 6502 and 65C02—
addition, subtraction, the CLV clear-the-flag instruction, and the BIT bit-testing
instruction. In addition, all the flags are restored from the stack by the PLP and
RTI instructions. On the 65802/65816, however, the SEP and REP instructions can
also modify the v flag.

BVC is used almost exclusively to check that a two's-complement arithmetic cal
culation has not overflowed, much as the carry is used to determine if an unsigned
arithmetic calculation has overflowed. (Note, however, that the compare instruc
tions do not affect the overflow flag.) You can also use BVC to test the second—
highest bit in a value by using it after the BIT instruction, which moves the second-
highest bit of the tested value into the v flag.

The overflow flag can also be set by the Set Overflow hardware signal on the
6502, 65C02, and 65802; on many systems, however, there is no connection to this
pin.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax
O pcode

(hex)

A vailable on:

6502 65C02 65802/816

n o f

Bytes

o f

Cycles

Program Counter Relative BVC nearlabel 50 X X X 2 212

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

440 Programming the 65816

BVS Branch if Overflow Set

The overflow flag in the P status register is tested. If it is set, a branch is taken; if
it is clear, the instruction immediately following the two-byte BVS instruction is
executed.

If the branch is taken, a one-byte signed displacement, fetched from the second
byte of the instruction, is sign-extended to sixteen bits and added to the program
counter. Once the branch address has been calculated, the result is loaded into the
program counter, transferring control to that location.

The allowable range of the displacement is —128 to + 127 (from the instruction
immediately following the branch).

The overflow flag is altered by only four instructions on the 6502 and 65C02—
addition, subtraction, the CLV clear-the-flag instruction, and the BIT bit-testing
instruction. In addition, all the flags are restored from the stack by the PLP and
RTI instructions. On the 65802/65816, the SEP and REP instructions can also mod
ify the v flag.

BVS is used almost exclusively to determine if a two's-complement arithmetic
calculation has overflowed, much as the carry is used to determine if an
unsigned arithmetic calculation has overflowed. (Note, however, that the compare
instructions do not affect the overflow flag.) You can also use BVS to test the
second-highest bit in a value by using it after the BIT instruction, which moves the
second-highest bit of the tested value into the v flag.

The overflow flag can also be set by the Set Overflow hardware signal on the
6502, 65C02, and 65802; on many systems, however, there is no hardware connec
tion to this signal.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode A vailable on:

(hex) 6502 65C02 65802/816

H of

Bytes

H of

Cycles

Program Counter Relative BVS nearlabel 70 x x x 2 21-2

1 Add 1 cycle if branch is taken
2 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

18 The Instruction Sets 441

Clear Carry Flag CLC

Clear the carry flag in the status register.
CLC is used prior to addition (using the 65x's ADC instruction) to keep the carry

flag from affecting the result; prior to a BCC (branch on carry clear) instruction on
the 6502 to force a branch-always; and prior to an XCE (exchange carry flag with
emulation bit) instruction to put the 65802 or 65816 into native mode.

Flags Affected: -----------------c
c carry flag cleared always.

Codes:

Addressing M ode Syntax
O pcode

(hex)

A vailable on:

6502 65C02 65802/816

0/

Bytes

0/

Cycles

Implied CLC 18 X X X 1 2

442 Programming the 65816

CLD Clear Decimal Mode Flag

Clear the decimal mode flag in the status register.
CLD is used to shift 65x processors back into binary mode from decimal mode,

so that the ADC and SBC instructions will correctly operate on binary rather than
BCD data.

Flags Affected: d -------
d decimal mode flag cleared always.

Codes:

O pcode A vailable on: # 0 / # 0 /

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied CLD D8 X X X 1 2

18 The Instruction Sets 443

Clear Interrupt Disable Flag CLI

Clear the interrupt disable flag in the status register.
CLI is used to re-enable hardware interrupt (IRQ) processing. (When the i bit is

set, hardware interrupts are ignored.) The processor itself sets the i flag when it
begins servicing an interrupt, so interrupt handling routines must re-enable inter
rupts with CLI if the interrupt-service routine is designed to service interrupts that
occur while a previous interrupt is still being handled; otherwise, the RTI instruc
tion will restore a clear i flag from the stack, and CLI is not necessary. CLI is also
used to re-enable interrupts if they have been disabled during the execution of
time-critical or other code which cannot be interrupted.

Flags Affected:---------------- i —
i interrupt disable flag cleared always.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

n o f

Bytes

o /

Cycles

Implied CLI 58 X X X 1 2

444 Programming the 65816

CLV Clear Overflow Flag

Clear the overflow flag in the status register.
CLV is sometimes used prior to a BVC (branch on overflow clear) to force a

branch-always on the 6502. Unlike the other clear flag instructions, there is no
complementary "set flag" instruction to set the overflow flag, although the over
flow flag can be set by hardware via the Set Overflow input pin on the processor.
This signal, however, is often unconnected. The 65802/65816 REP instruction can,
of course, clear the overflow flag; on the 6502 and 65C02, a BIT instruction with a
mask in memory that has bit 6 set can be used to set the overflow flag.

Flags Affected: - v ---------------
v overflow flag cleared always.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

It o f

Bytes

* o f

Cycles

Implied CLV B8 X X X 1 2

18 The Instruction Sets 445

Compare Accumulator with Memory CMP

Subtract the data located at the effective address specified by the operand from
the contents of the accumulator, setting the carry, zero, and negative flags based on
the result, but without altering the contents of either the memory location or the
accumulator. That is, the result is not saved. The comparison is of unsigned binary
values only.

The CMP instruction differs from the SBC instruction in several ways. First, the
result is not saved. Second, the value in the carry prior to the operation is irrele
vant to the operation; that is, the carry does not have to be set prior to a compare
as it is with 65x subtractions. Third, the compare instruction does not set the over
flow flag, so it cannot be used for signed comparisons. Although decimal mode
does not affect the CMP instruction, decimal comparisons are effective, since the
equivalent binary values maintain the same magnitude relationships as the decimal
values have, for example, $99 > $04 just as 99 > 4.

The primary use for the compare instruction is to set the flags so that a condi
tional branch can then be executed.

8-bit accumulator (all processors); Data compared is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data compared is sixteen-bit: the

low-order eight bits of the data in memory are located at the effective address; the
high-order eight bits are located at the effective address plus one.

Flags Affected: n ----------- z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c Set if no borrow required (accum ulator value higher or same);

cleared if borrow required (accum ulator value lower).

446 Programming the 65816

Codes:

Addressing M ode+ + Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816

n o f

Bytes

o f

Cycles

Immediate CMP Hconst C9 X X X 2* 21

Absolute CMP addr CD X X X 3 4 1
Absolute Long CMP long CF X 4 5 1

Direct Page (also DP) CMP dp C5 X X X 2 3 U

D P Indirect CMP (dp) D2 X X 2 5 U

D P Indirect Long CMP [dp] C7 X 2 61,2
Absolute Indexed,X CM? addr,X DD X X X 3 41.3

Absolute Long Indexed,X CMP long.X DF X 4 5 1

Absolute Indexed,Y CMP addr, Y D9 X X X 3 41.3

DP Indexed,X CMP dp,X D5 X X X 2 41.2

DP Indexed Indirect,X CMP (dp,X) C l X X X 2 612

DP Indirect Indexed, Y CMP (dp),Y D l X X X 2 51.2.3

DP Indirect Long Indexed, Y CMP [dp),Y D7 X 2 612

Stack Relative (also SR) CMPsr.S C3 X 2 4 1
SR Indirect Indexed, Y CMP (sr,S),Y D3 X 2 71

+ + CM P, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary

18 The Instruction Sets 447

Co-Processor Enable COP

Execution of COP causes a software interrupt, similarly to BRK, but through the
separate COP vector. Alternatively, COP may be trapped by a co-processor, such
as a floating point or graphics processor, to call a co-processor function. COP is
unaffected by the i interrupt disable flag.

COP is much like BRK, with the program counter value pushed on the stack
being incremented by two; this lets you follow the co-processor instruction with a
signature byte to indicate to the co-processor or co-processor handling routine
which operation to execute. Unlike the BRK instruction, 65816 assemblers require
you to follow the COP instruction with such a signature byte. Signature bytes in
the range $80 - $FF are reserved by the Western Design Center for implementation
of co-processor control; signatures in the range $00 - $7F are available for use with
software-implemented COP handlers.

6502 Emulation Mode (65802/65816, e = 1): The program counter is incremented
by two and pushed onto the stack; the status register is pushed onto the stack; the
interrupt disable flag is set; and the program counter is loaded from the emulation
mode co-processor vector at $FFF4-FFF5. The d decimal flag is cleared after a COP
is executed.

65802/65816 Native Mode (e = 0): The program counter bank register is pushed
onto the stack; the program counter is incremented by two and pushed onto the
stack; the status register is pushed onto the stack; the interrupt disable flag is set;
the program bank register is cleared to zero; and the program counter is loaded
from the native mode co-processor vector at $00FFE4-00FFE5. The d decimal flag is
reset to 0 after a COP is executed.

448 Programming the 65816

Stack

Stack Pointer

Bank Address

Address High

Address Low

Contents of

Status Register

Bank 0

Figure 18.4. Stack after COP.

Flags Affected: d i - -
d d is reset to 0.
i The interrupt disable flag is set, disabling hardware interrupts.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

n o f

Bytes

it o f

Cycles

Stack/Interrupt COP const 02 X 2* 71

* C O P is 1 byte, but program counter value pushed onto stack is incremented by 2 allowing for optional code byte
1 Add 1 cycle for 65816/65802 native mode (e = 0)

18 The Instruction Sets 449

Compare Index Register X with Memory CPX

Subtract the data located at the effective address specified by the operand from
the contents of the X register, setting the carry, zero, and negative flags based on
the result, but without altering the contents of either the memory location or the
register. The result is not saved. The comparison is of unsigned values only (except
for signed comparison for equality).

The primary use for the CPX instruction is to test the value of the X index regis
ter against loop boundaries, setting the flags so that a conditional branch can be
executed.

8-bit index registers (all processors): Data compared is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data compared is sixteen-bit:

the low-order eight bits of the data in memory are located at the effective address;
the high-order eight bits are located at the effective address plus one.

Flags Affected: n --------------z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c Set if no borrow required (X register value higher or same);

cleared if borrow required (X register value lower).

Codes:

Addressing M ode Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816

U o f

Bytes

0 /

Cycles

Immediate CPX ttconst E0 X X X 2* 2'
Absolute CPX addr EC X X X 3 4 1
Direct Page (also DP) CPX dp E4 X X X 2 3 12

Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)

450 Programming the 65816

CPY Compare Index Register Y with Memory

Subtract the data located at the effective address specified by the operand from
the contents of the Y register, setting the carry, zero, and negative flags based on
the result, but without altering the contents of either the memory location or the
register. The comparison is of unsigned values only (except for signed comparison
for equality).

The primary use for the CPY instruction is to test the value of the Y index regis
ter against loop boundaries, setting the flags so that a conditional branch can be
executed.

8-bit index registers (all processors): Data compared is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data compared is sixteen-bit:

the low-order eight bits of the data in memory is located at the effective address;
the high-order eight bits are located at the effective address plus one.

Flags Affected: n --------------z c
n Set if most significant bit of result is set; else cleared.
z Set if result is zero; else cleared.
c Set if no borrow required (Y register value higher or same);

cleared if borrow required (Y register value lower).

Codes:

Addressing M ode+ + Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816

n o f

Bytes

H o f

Cycles

Immediate CPY ttconst CO X X X 2* 21

Absolute CPY addr CC X X X 3 4 1
Direct Page (also DP) CPY dp C4 X X X 2 3 12

* Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)

18 The Instruction Sets 451

Decrement DEC

Decrement by one the contents of the location specified by the operand (subtract
one from the value).

Unlike subtracting a one using the SBC instruction, the decrement instruction is
neither affected by nor affects the carry flag. You can test for wraparound only by
testing after every decrement to see if the value is zero or negative. On the other
hand, you don't need to set the carry before decrementing.

DEC is unaffected by the setting of the d (decimal) flag.
8-bit accumulator/memory (all processors): Data decremented is eight-bit.
16-bit accumulator/memory (65802/65816 only, m = 0): Data decremented is

sixteen-bit: if in memory, the low-order eight bits are located at the effective
address; the high-order eight bits are located at the effective address plus one.

Flags Affected: n z -
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex) 6502

Available on:

65C02 65802/816

#o/

Bytes

#o/

Cycles

Accumulator DEC A 3A X X 1 2
Absolute DEC addr CE X X X 3 61
Direct Page (also DP) DEC dp C6 X X X 2 5 1,2
Absolute Indexed,X DEC addr,X DE X X X 3 71,3
DP Indexed, X DEC dp,X D6 X X X 2 61,2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

452 Programming the 65816

DEX Decrement Index Register X

Decrement by one the contents of index register X (subtract one from the value).
This is a special purpose, implied addressing form of the DEC instruction.

Unlike using SBC to subtract a one from the value, the DEX instruction does not
affect the carry flag; you can test for wraparound only by testing after every decre
ment to see if the value is zero or negative. On the other hand, you don't need to
set the carry before decrementing.

DEX is unaffected by the setting of the d (decimal) flag.
8-bit index registers (all processors): Data decremented is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data decremented is sixteen-bit.

Flags Affected: n --------------z -
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

0 /

Bytes

o f

Cycles

Implied DEX CA X X X 1 2

18 The Instruction Sets 453

Decrement Index Register Y DEY

Decrement by one the contents of index register Y (subtract one from the value).
This is a special purpose, implied addressing form of the DEC instruction.

Unlike using SBC to subtract a one from the value, the DEY instruction does not
affect the carry flag; you can test for wraparound only by testing after every decre
ment to see if the value is zero or negative. On the other hand, you don't need to
set the carry before decrementing.

DEY is unaffected by the setting of the d (decimal) flag.
8-bit index registers (all processors): Data decremented is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data decremented is sixteen-bit.

Flags Affected: n z -
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

0 /

Bytes

n o f

Cycles

Implied DEY 8 8 X X X 1 2

454 Programming the 65816

EOR Exclusive-OR Accumulator with Memory

Bitwise logical Exclusive-OR the data located at the effective address specified by
the operand with the contents of the accum ulator. Each bit in the accum ulator is
exclusive-ORed with the corresponding bit in memory, and the result is stored into
the same accumulator bit.

The truth table for the logical exclusive-OR operation is:

Second Operand

0 1

First Operand
0 0 1
1 1 0

Figure 18.5. Exclusive OR Truth Table.

A 1 or logical true results only if the two elements of the Exclusive-OR operation
are different.

8-bit accumulator (all processors): D ata exclusive-ORed from memory is eight-
bit.

16-bit accumulator (65802/65816 only, m = 0): Data exclusive-ORed from mem
ory is sixteen-bit: the low-order eight bits are located at the effective address; the
high-order eight bits are located at the effective address plus one.

Flags Affected: n -------------- z -
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.

18 The Instruction Sets 455

Codes:

Addressing M od e+ + Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816

#o/

Bytes

n o f

Cycles

Immediate EOR ttconst 49 X X X 2* 2}

Absolute EOR addr 4D X X X 3 4 1
Absolute Long EOR long 4F X 4 5 1

Direct Page (also DP) EOR dp 45 X X X 2 3 12
D P Indirect EOR (dp) 52 X X 2 5 1-2
D P Indirect Long EOR [dp] 47 X 2 61 2
Absolute Indexed,X EOR addr,X 5D X X X 3 41.3

Absolute Long Indexed,X EOR long,X 5F X 4 5 1
Absolute Indexed,Y EOR addr, Y 59 X X X 3 4 >.3

D P Indexed,X EOR dp,X 55 X X X 2 41.2

D P Indexed Indirect,X EOR (dp,X) 41 X X X 2 61 2
DP Indirect Indexed, Y EOR (dp),Y 51 X X X 2 5 1 2,3
DP Indirect Long Indexed,Y EOR [dp],Y 57 X 2 612

Stack Relative (also SR) EOR sr,S 43 X 2 4 1
SR Indirect Indexed,Y EOR (sr,S),Y 53 X 2 71

+ + EOR, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary

456 Programming the 65816

INC Increment

Increment by one the contents of the location specified by the operand (add one
to the value).

Unlike adding a one with the ADC instruction, however, the increment instruc
tion is neither affected by nor affects the carry flag. You can test for wraparound
only by testing after every increment to see if the result is zero or positive. On the
other hand, you don't have to clear the carry before incrementing.

The INC instruction is unaffected by the d (decimal) flag.
8-bit accumulator/memory (all processors): Data incremented is eight-bit.
16-bit accumulator/memory (65802/65816 only, m = 0): Data incremented is

sixteen-bit: if in memory, the low-order eight bits are located at the effective
address; the high-order eight-bits are located at the effective address plus one.

Flags Affected: n z -
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816

0 /

Bytes

It o f

Cycles

Accumulator INC A 1A X X 1 2
Absolute INC addr EE X X X 3 61
Direct Page (also DP) INC dp E6 X X X 2 5 1,2
Absolute Indexed,X 1UC addr,X FE X X X 3 yl,3

DP Indexed,X INC dp,X F6 X X X 2 61,2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

18 The Instruction Sets 457

Increment Index Register X INX

Increment by one the contents of index register X (add one to the value). This is a
special purpose, implied addressing form of the INC instruction.

Unlike using ADC to add a one to the value, the INX instruction does not affect
the carry flag. You can execute it without first clearing the carry. But you can test
for wraparound only by testing after every increment to see if the result is zero or
positive. The INX instruction is unaffected by the d (decimal) flag.

8-bit index registers (all processors): Data incremented is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data incremented is sixteen-bit.

Flags Affected: n -------------z -
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

0 /

Bytes

n o f

Cycles

Implied INX E8 X X X 1 2

458 Programming the 65816

INY Increment Index Register Y

Increment by one the contents of index register Y (add one to the value). This is a
special purpose, implied addressing form of the INC instruction.

Unlike using ADC to add one to the value, the INY instruction does not affect
the carry flag. You can execute it without first clearing the carry. But you can test
for wraparound only by testing after every increment to see if the value is zero or
positive. The INY instruction is unaffected by the d (decimal) flag.

8-bit index registers (all processors): Data incremented is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data incremented is sixteen-bit.

Flags Affected: n z -
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

o f

Bytes

n o f

Cycles

Implied INY C8 X X X 1 2

18 The Instruction Sets 459

Jump JMP

Transfer control to the address specified by the operand field.
The program counter is loaded with the target address. If a long JMP is executed,

the program counter bank is loaded from the third byte of the target address speci
fied by the operand.

Flags Affected: -------------------

Codes:

Addressing M ode+ + Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

o f

Bytes

o f

Cycles

Absolute JMP addr 4C X X X 3 3

Absolute Indirect JMP (addr) 6C X X X 3 5 1,2
Absolute Indexed Indirect JMP (addr.X) 7C X X 3 6
Absolute Long JMP long

(or JML long)

5C X 4 4

Absolute Indirect Long JMP [addr]
(or JML [addr])

DC X 3 6

1 Add 1 cycle if 65C02
2 6502: If low byte of addr is $FF (i.e ., addr is SxxFF): yields incorrect result

460 Programming the 65816

JSL Jump to Subroutine Long (Inter-Bank)

Jump-to-subroutine with long (24-bit) addressing: transfer control to the subrou
tine at the 24-bit address which is the operand, after first pushing a 24-bit (long)
return address onto the stack. This return address is the address of the last instruc
tion byte (the fourth instruction byte, or the third operand byte), not the address of
the next instruction; it is the return address minus one.

The current program counter bank is pushed onto the stack first, then the high-
order byte of the return address and then the low-order byte of the address are
pushed on the stack in standard 65x order (low byte in the lowest address, bank
byte in the highest address). The stack pointer is adjusted after each byte is pushed
to point to the next lower byte (the next available stack location). The program
counter bank register and program counter are then loaded with the operand val
ues, and control is transferred to the specified location.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode A vailable to:

(hex) 6502 65C02 65802/816

n o f H o f

Bytes Cycles

Absolute Long J S L long

(or JS R long)

22 x 4 8

18 The Instruction Sets 461

Jump to Subroutine JSR

Transfer control to the subroutine at the location specified by the operand, after
first pushing onto the stack, as a return address, the current program counter
value, that is, the address of the last instruction byte (the third byte of a three-byte
instruction, the fourth byte of a four-byte instruction), not the address of the next
instruction.

If an absolute operand is coded and is less than or equal to $FFFF, absolute
addressing is assumed by the assembler; if the value is greater than $FFFF, absolute
long addressing is used.

If long addressing is used, the current program counter bank is pushed onto the
stack first. Next—or first in the more normal case of intra-bank addressing—the
high order byte of the return address is pushed, followed by the low order byte.
This leaves it on the stack in standard 65x order (lowest byte at the lowest address,
highest byte at the highest address). After the return address is pushed, the stack
pointer points to the next available location (next lower byte) on the stack. Finally,
the program counter (and, in the case of long addressing, the program counter
bank register) is loaded with the values specified by the operand, and control is
transferred to the target location.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available to:

6502 65C02 65802/816

0 / # 0 /

Bytes Cycles

Absolute JS R addr 2 0 X X X 3 6

Absolute Indexed Indirect JS R (addr.X) FC X 3 8

Absolute Long JS R long

(or JS L long)

2 2 X 4 8

462 Programming the 65816

LDA Load Accumulator from Memory

Load the accumulator with the data located at the effective address specified by
the operand.

8-bit accumulator (all processors): Data is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data is sixteen-bit; the low-order

eight bits are located at the effective address; the high-order eight bits are located at
the effective address plus one.

Flags Affected: n z -
n Set if most significant bit of loaded value is set; else cleared,
z Set if value loaded is zero; else cleared.

Codes:

Addressing M ode* * Syntax

O pcode

(hex) 6502

A vailable to:

65C02 65802/816

#o/

Bytes

H of

Cycles

Immediate LDA Uconst A9 X X X 2* 2)

Absolute LDA addr AD X X X 3 4 1
Absolute Long LDA long AF X 4 5 1

Direct Page (also DP) LDA dp A5 X X X 2 3 1,2

DP Indirect LDA (dp) B2 X X 2 5 1-2

D P Indirect Long LDA [dp] A 7 X 2 61,2

Absolute Indexed,X LDA addr,X BD X X X 3 41.3

Absolute Long Indexed,X LDA long,X BF X 4 51

Absolute Indexed, Y LDA addr,Y B9 X X X 3 41.3

DP Indexed,X LDA dp,X B5 X X X 2 41.2

DP Indexed Indirect,X LDA (dp,X) A1 X X X 2 6 1,2

DP Indirect Indexed,Y LDA (dp),Y B l X X X 2 5 U . 3

DP Indirect Long Indexed,Y LDA [dp],Y B7 X 2 6 1,2

Stack Relative (also SR) LDA sr,S A3 X 2 41

SR Indirect Indexed,Y LDA (sr,S),Y B3 X 2 71

+ +LDA, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary

18 The Instruction Sets 463

Load Index Register X from Memory LDX

Load index register X with the data located at the effective address specified by
the operand.

8-bit index registers (all processors): Data is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data is sixteen-bit: the low-

order eight bits are located at the effective address; the high-order eight bits are
located at the effective address plus one.

Flags Affected: n z -

n Set if most significant bit of loaded value is set; else cleared,

z Set if value loaded is zero; else cleared.

Codes:

Addressing M ode Syntax
O pcode

(hex) 6502

Available to:

65C02 65802/816

0/

Bytes

o f

Cycles

Immediate LDX ttconst A2 X X X 2* 2}
Absolute LDX addr AE X X X 3 4 1
Direct Page (also DP) LDX dp A6 X X X 2 3 U
Absolute Indexed,Y LDX addr ,Y BE X X X 3 41.3

DP Indexed,Y LDX dp ,Y B6 X X X 2 41.2

Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL < > 0)
3 Add 1 cycle if adding index crosses a page boundary

464 Programming the 65816

LDY Load Index Register Y from Memory

Load index register Y with the data located at the effective address specified by
the operand.

8-bit index registers (all processors): Data is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Data is sixteen-bit: the low-

order eight bits are located at the effective address; the high-order eight bits are
located at the effective address plus one.

Flags Affected: n z -
n Set if most significant bit of loaded value is set; else cleared,
z Set if value loaded is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex) 6502

A vailable to:

65C02 65802/816

H of

Bytes

H of

Cycles

Immediate LDY Hconst AO x X X 2* 2 1

Absolute LDY addr AC X X X 3 4 1

Direct Page (also DP) LDY dp A4 X X X 2 3U

Absolute Indexed, X LDY addr,X BC X X X 3 41.3

DP Indexed,X LDY dp,X B4 X X X 2 41.2

* Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary

18 The Instruction Sets 465

Logical Shift Memory or Accumulator Right LSR

Logical shift the contents of the location specified by the operand right one bit.
That is, bit zero takes on the value originally found in bit one, bit one takes the
value originally found in bit two, and so on; the leftmost bit (bit 7 if the m memory
select flag is one when the instruction is executed or bit 15 if it is zero) is cleared;
the rightmost bit, bit zero, is transferred to the carry flag. This is the arithmetic
equivalent of unsigned division by two.

r r m n n r

Carry Flag

Figure 18.6. LSR.

8-bit accumulator/memory (all processors): Data shifted is eight-bit.
16-bit accumulator/memory (65802/65816 only, m = 0): Data shifted is sixteen-

bit: if in memory, the low-order eight bits are located at the effective address; the
high-order eight bits are located at the effective address plus one.

Flags Affected: n --------------z c

n Cleared.

z Set if result is zero; else cleared.

c Low bit becom es carry: set if low bit was set; cleared if low bit was
zero.

Codes:

Addressing M ode Syntax
O pcode

(hex) 6502

A vailable to:

65C02 65802/816

#o/

Bytes

#o/

Cycles

Accumulator LSR A 4A X X X 1 2
Absolute LSR addr 4E X X X 3 61
Direct Page (also DP) LSR dp 46 X X X 2 5 1,2
Absolute Indexed,X LSR addr,X 5E X X X 3 71.3

DP Indexed,X LSR dp,X 56 X X X 2 61 2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

466 Programming the 65816

MVN Block Move Next

Moves (copies) a block of memory to a new location. The source, destination
and length operands of this instruction are taken from the X, Y, and C (double
accumulator) registers; these should be loaded with the correct values before exe
cuting the MVN instruction.

The source address for MVN, taken from the X register, should be the starting
address (lowest in memory) of the block to be moved. The destination address, in
the Y register, should be the new starting address for the moved block. The length,
loaded into the double accumulator (the value in C is always used, regardless of the
setting of the m flag) should be the length of the block to be moved minus on e; if C
contains $0005, six bytes will be moved. The two operand bytes of the MVN
instruction specify the banks holding the two blocks of memory: the first operand
byte (of object code) specifies the destination bank; the second operand byte speci
fies the source bank.

The execution sequence is: the first byte is moved from the address in X to the
address in Y; then X and Y are incremented, C is decremented, and the next byte is
moved; this process continues until the number of bytes specified by the value in C
plus one is moved. In other words, until the value in C is $FFFF.

If the source and destination blocks do not overlap, then the source block
remains intact after it has been copied to the destination.

If the source and destination blocks do overlap, then MVN should be used only
if the destination is low er than the source to avoid overwriting source bytes before
they've been copied to the destination. If the destination is higher, then the MVP
instruction should be used instead.

When execution is complete, the value in C is $FFFF, registers X and Y each point
one byte past the end of the blocks to which they were pointing, and the data bank
register holds the destination bank value (the first operand byte).

Assembler syntax for the block move instruction calls for the operand field to be
coded as two addresses, source first, then destination—the more intuitive ordering,
but the opposite of the actual operand order in the object code. The assembler
strips the bank bytes from the addresses (ignoring the rest) and reverses them to
object code order. If a block move instruction is interrupted, it may be resumed
automatically via execution of an RTI if all of the registers are restored or intact.
The value pushed onto the stack when a block move is interrupted is the address of
the block move instruction. The current byte-move is completed before the inter
rupt is serviced.

If the index registers are in eight-bit mode (x = 1), or the processor is in 6502
emulation mode (e = 1), then the blocks being specified must necessarily be in
page zero since the high bytes of the index registers will contain zeroes.

18 The Instruction Sets 467

Flags Affected:

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

0/

Bytes

n o f

Cycles

Block Move MVN srcbk.destbk 54 X 3 *

* 7 cycles per byte moved

468 Programming the 65816

MVP Block Move Previous

Moves (copies) a block of memory to a new location. The source, destination
and length operands of this instruction are taken from the X, Y, and C (double
accumulator) registers; these should be loaded with the correct values before exe
cuting the MVP instruction.

The source address for MVP, taken from the X register, should be the ending
address (highest in memory) of the block to be moved. The destination address, in
the Y register, should be the new ending address for the moved block. The length,
loaded into the double accumulator (the value in C is always used, regardless of the
setting of the m flag) should be the length of the block to be moved minus one; if C
contains $0005, six bytes will be moved. The two operand bytes of the MVP
instruction specify the banks holding the two blocks of memory: the first operand
byte (of object code) specifies the destination bank; the second operand byte speci
fies the source bank.

The execution sequence is: the first byte is moved from the address in X to the
address in Y; then X and Y are decremented, C is decremented, and the previous
byte is moved; this process continues until the number of bytes specified by the
value in C plus one is moved. In other words, until the value in C is $FFFF.

If the source and destination blocks do not overlap, then the source block
remains intact after it has been copied to the destination.

If the source and destination blocks do overlap, then MVP should be used only if
the destination is higher than the source to avoid overwriting source bytes before
they've been copied to the destination. If the destination is lower, then the MVN
instruction should be used instead.

When execution is complete, the value in C is SFFFF, registers X and Y each point
one byte past the beginning of the blocks to which they were pointing, and the data
bank register holds the destination bank value (the first operand byte).

Assembler syntax for the block move instruction calls for the operand field to be
coded as two addresses, source first, then destination—the more intuitive ordering,
but the opposite of the actual operand order in the object code. The assembler
strips the bank bytes from the addresses (ignoring the rest) and reverses them to
object code order. If a block move instruction is interrupted, it may be resumed
automatically via execution of an RTI if all of the registers are restored or intact.
The value pushed onto the stack when a block move is interrupted is the address of
the block move instruction. The current byte-move is completed before the inter
rupt is serviced.

If the index registers are in eight-bit mode (x = 1), or the processor is in 6502
emulation mode (e = 1), then the blocks being specified must necessarily be in
page zero since the high bytes of the index registers will contain zeroes.

18 The Instruction Sets 469

Flags Affected:

Codes:

O pcode A vailable to: # o f It o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Block Move MVP srcbk.destbk 44 X 3 *

* 7 cycles per byte moved

470 Programming the 65816

NOP No Operation

Executing a NOP takes no action; it has no effect on any 65x registers or mem
ory, except the program counter, which is incremented once to point to the next
instruction.

Its primary uses are during debugging, where it is used to "patch out" unwanted
code, or as a place-holder, included in the assembler source, where you anticipate
you may have to "patch in" instructions, and want to leave a "hole" for the patch.

NOP may also be used to expand timing loops—each NOP instruction takes two
cycles to execute, so adding one or more may help fine tune a timing loop.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available to:

6502 65C02 65802/816

0 /

Bytes

It o f

Cycles

Implied NOP EA X X X 1 2

18 The Instruction Sets 471

OR Accumulator with Memory ORA

Bitwise logical OR the data located at the effective address specified by the oper
and with the contents of the accumulator. Each bit in the accumulator is ORed with
the corresponding bit in memory. The result is stored into the same accumulator
bit.

The truth table for the logical OR operation is:

Second O perand

0 1

First O perand
0 0 1
1 1 1

Figure 18.7. Logical OR Truth Table.

A 1 or logical true results if either of the two operands of the OR operation is
true.

8-bit accumulator (all processors): Data ORed from memory is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data ORed from memory is

sixteen-bit: the low-order eight bits are located at the effective address; the high-
order eight bits are located at the effective address plus one.

Flags Affected: n --------------z -

n Set if m ost significant bit of result is set; else cleared .

z Set if result is zero ; else cleared .

472 Programming the 65816

Codes:

Addressing M ode+ + Syntax

O pcode

(hex) 6502

Available to:

65C02 65802/816

#o/

Bytes

#o/

Cycles

Immediate ORA Hconst 09 X X X 2* 2}

Absolute ORA addr 0D X X X 3 41
Absolute Long ORA long OF X 4 51

Direct Page (also DP) ORA dp 05 X X X 2 31,2
DP Indirect ORA (dp) 12 X X 2 51,2

DP Indirect Long ORA[dp] 07 X 2 61,2
Absolute Indexed,X ORA addr,X ID X X X 3 41.3

Absolute Long Indexed,X ORA long,X IF X 4 5 1
Absolute Indexed, Y ORA addr,Y 19 X X X 3 41.3

D P Indexed,X ORA dp,X 15 X X X 2 41.2

DP Indexed Indirect,X ORA (dp,X) 01 X X X 2 61,2

D P Indirect Indexed, Y ORA (dp),Y 11 X X X 2 5 1 .2.3

D P Indirect Long Indexed, Y ORA [dp],Y 17 X 2 61,2

Stack Relative (also SR) ORA sr,S 03 X 2 41

SR Indirect Indexed, Y ORA (sr,S),Y 13 X 2 71

+ + O RA , a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary

18 The Instruction Sets 473

Push Effective Absolute Address PEA

Push the sixteen-bit operand (typically an absolute address) onto the stack. The
stack pointer is decremented twice. This operation always pushes sixteen bits of
data, irrespective of the settings of the m and x mode select flags.

Although the mnemonic suggests that the sixteen-bit value pushed on the stack
be considered an address, the instruction may also be considered a "push sixteen-bit
immediate data" instruction, although the syntax of immediate addressing is not
used. The assembler syntax is that of the absolute addressing mode, that is, a label
or sixteen-bit value in the operand field. Unlike all other instructions that use this
assembler syntax, the effective address itself, rather than the data stored at the
effective address, is what is accessed (and in this case, pushed onto the stack).

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

0 /

Bytes

o f

Cycles

Stack (Absolute) PEA addr F4 X 3 5

474 Programming the 65816

PEI Push Effective Indirect Address

Push the sixteen-bit value located at the address formed by adding the direct
page offset specified by the operand to the direct page register. The mnemonic
implies that the sixteen-bit data pushed is considered an address, although it can be
any sixteen-bit data. This operation always pushes sixteen bits of data, irrespective
of the settings of the m and x mode select flags.

The first byte pushed is the byte at the direct page offset plus one (the high byte
of the double byte stored at the direct page offset). The byte at the direct page off
set itself (the low byte) is pushed next. The stack pointer now points to the next
available stack location, directly below the last byte pushed.

The assembler syntax is that of direct page indirect; however, unlike other
instructions which use this assembler syntax, the effective indirect address, rather
than the data stored at that address, is what is accessed and pushed onto the stack.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode A vailable to:

(hex) 6502 65C02 65802/816

#o/

Bytes

U o f

Cycles

Stack (Direct Page Indirect) PE I (dp) D4 x 2 61

1 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)

18 The Instruction Sets 475

Push Effective PC Relative Indirect Address PER

Add the current value of the program counter to the sixteen-bit signed displace
ment in the operand, and push the result on the stack. This operation always
pushes sixteen bits of data, irrespective of the settings of the m and x mode select
flags.

The high byte of the sum is pushed first, then the low byte is pushed. After the
instruction is completed, the stack pointer points to the next available stack loca
tion, immediately below the last byte pushed.

Because PER's operand is a displacement relative to the current value of the pro
gram counter (as with the branch instructions), this instruction is helpful in writing
self-relocatable code in which an address within the program (typically of a data
area) must be accessed. The address pushed onto the stack will be the run-time
address of the data area, regardless of where the program was loaded in memory; it
may be pulled into a register, stored in an indirect pointer, or used on the stack
with the stack relative indirect indexed addressing mode to access the data at that
location.

As is the case with the branch instructions, the syntax used is to specify as the
operand the label of the data area you want to reference. This location must be in
the program bank, since the displacement is relative to the program counter. The
assembler converts the assembly-time label into a displacement from the assembly
time address of the next instruction.

The value of the program counter used in the addition is the address of the next
instruction, that is, the instruction follow ing the PER instruction.

PER may also be used to push return addresses on the stack, either as part of a
simulated branch-to-subroutine or to place the return address beneath the stacked
parameters to a subroutine call; always remember that a pushed return address
should be the desired return address minus one.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax
O pcode

(hex)
Available to:

6502 65C02 65802/816
H of

Bytes

H of

Cycles

Stack (Program Counter Relative Long) PER label 62 X 3 6

476 Programming the 65816

PHA Push Accumulator

Push the accumulator onto the stack. The accumulator itself is unchanged.
8-bit accumulator (all processors): The single byte contents of the accumulator

are pushed—they are stored to the location pointed to by the stack pointer and the
stack pointer is decremented.

16-bit accumulator (65802/65816 only, m = 0): Both accumulator bytes are
pushed. The high byte is pushed first, then the low byte. The stack pointer now
points to the next available stack location, directly below the last byte pushed.

Flags Affected: -------------------

Codes:

O pcode Available to: # 0 / # o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (Push) PHA 48 X X X 1 31

1 Add 1 cycle if m = 0 (16-bit memory/accumulator)

18 The Instruction Sets 477

Push Data Bank Register PHB

Push the contents of the data bank register onto the stack.
The single-byte contents of the data bank register are pushed onto the stack; the

stack pointer now points to the next available stack location, directly below the
byte pushed. The data bank register itself is unchanged. Since the data bank regis
ter is an eight-bit register, only one byte is pushed onto the stack, regardless of the
settings of the m and x mode select flags.

While the 65816 always generates 24-bit addresses, most memory references are
specified by a sixteen-bit address. These addresses are concatenated with the con
tents of the data bank register to form a full 24-bit address. This instruction lets the
current value of the data bank register be saved prior to loading a new value.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

o f

Bytes

n o f

Cycles

Stack (Push) PHB 8B X 1 3

478 Programming the 65816

PHD Push Direct Page Register

Push the contents of the direct page register D onto the stack.
Since the direct page register is always a sixteen-bit register, this is always a

sixteen-bit operation, regardless of the settings of the m and x mode select flags.
The high byte of the direct page register is pushed first, then the low byte. The
direct page register itself is unchanged. The stack pointer now points to the next
available stack location, directly below the last byte pushed.

By pushing the D register onto the stack, the local environment of a calling sub
routine may easily be saved by a called subroutine before modifying the D register
to provide itself with its own direct page memory.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

0 /

Bytes

0 /

Cycles

Stack (Push) PHD OB X 1 4

18 The Instruction Sets 479

Push Program Bank Register PHK

Push the program bank register onto the stack.
The single-byte contents of the program bank register are pushed. The program

bank register itself is unchanged. The stack pointer now points to the next available
stack location, directly below the byte pushed. Since the program bank register is
an eight-bit register, only one byte is pushed onto the stack, regardless of the set
tings of the m and x mode select flags.

While the 65816 always generates 24-bit addresses, most jumps and branches
specify only a sixteen-bit address. These addresses are concatenated with the con
tents of the program bank register to form a full 24-bit address. This instruction lets
you determine the current value of the program bank register—for example, if you
want the data bank to be set to the same value as the program bank.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

0 /

Bytes

0 /

Cycles

Stack (Push) PHK 4B X 1 3

480 Programming the 65816

PHP Push Processr Status Register

Push the contents of the processor status register P onto the stack.
Since the status register is always an eight-bit register, this is always an eight-bit

operation, regardless of the settings of the m and x mode select flags on the 65802/
65816. The status register contents are not changed by the operation. The stack
pointer now points to the next available stack location, directly below the byte
pushed.

This provides the means for saving either the current mode settings or a particu
lar set of status flags so they may be restored or in some other way used later.

Note, however, that the e bit (the 6502 emulation mode flag on the 65802/65816)
is not pushed onto the stack or otherwise accessed or saved. The only access to the
e flag is via the XCE instruction.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

0/

Bytes

0/

Cycles

Stack (Push) PHP 08 X X X 1 3

18 The Instruction Sets 481

Push Index Register PHX

Push the contents of the X index register onto the stack. The register itself is
unchanged.

8-bit index registers (all processors): The eight-bit contents of the index register
are pushed onto the stack. The stack pointer now points to the next available stack
location, directly below the byte pushed.

16-bit index registers (65802/65816 only, x = 0): The sixteen-bit contents of the
index register are pushed. The high byte is pushed first, then the low byte. The
stack pointer now points to the next available stack location, directly below the last
byte pushed.

Flags Affected: -------------------

Codes:

O pcode A vailable to: # 0/ n o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (Push) PHX DA X X 1 31

1 Add 1 cycle if x = 0 (16-bit index registers)

482 Programming the 65816

PHY Push Index Register

Push the contents of the Y index register onto the stack. The register itself is
unchanged.

8-bit index registers (all processors): The eight-bit contents of the index register
are pushed onto the stack. The stack pointer now points to the next available stack
location, directly below the byte pushed.

16-bit index registers (65802/65816 only, x = 0): The sixteen-bit contents of the
index register are pushed. The high byte is pushed first, then the low byte. The
stack pointer now points to the next available stack location, directly below the last
byte pushed.

Flags Affected: -------------------

Codes:

O pcode A vailable to: # o f # o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (Push) PHY 5A x x 1 31

1 Add 1 cycle if x = 0 (16-bit index registers)

18 The Instruction Sets 483

Pull Accumulator PLA

Pull the value on the top of the stack into the accumulator. The previous con
tents of the accumulator are destroyed.

8-bit accumulator (all processors): The stack pointer is first incremented. Then
the byte pointed to by the stack pointer is loaded into the accumulator.

16-bit accumulator (65802/65816 only, m = 0): Both accumulator bytes are
pulled. The accumulator's low byte is pulled first, then the high byte is pulled.

Note that unlike some other microprocessors, the 65x pull instructions set the
negative and zero flags.

Flags Affected: n z -

n Set if most significant bit of pulled value is set; else cleared.

z Set if value pulled is zero; else cleared.

Codes:

O pcode A vailable to: # 0 / # o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (Pull) PLA 68 X X X 1 4 1

1 Add 1 cycle if m = 0 (16-bit memory/accumulator)

484 Programming the 65816

PLB Pull Data Bank Register

Pull the eight-bit value on top of the stack into the data bank register B, switch
ing the data bank to that value. All instructions which reference data that specify
only sixteen-bit addresses will get their bank address from the value pulled into the
data bank register. This is the only instruction that can modify the data bank reg
ister.

Since the bank register is an eight-bit register, only one byte is pulled from the
stack, regardless of the settings of the m and x mode select flags. The stack pointer
is first incremented. Then the byte pointed to by the stack pointer is loaded into the
register.

Flags Affected: n z -
n Set if most significant bit of pulled value is set; else cleared,
z Set if value pulled is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available to:

6502 65C02 65802/816

0 /

Bytes

it o f

Cycles

Stack (Pull) PLB AB X 1 4

18 The Instruction Sets 485

Pull Direct Page Register PLD

Pull the sixteen-bit value on top of the stack into the direct page register D,
switching the direct page to that value.

PLD is typically used to restore the direct page register to a previous value.
Since the direct page register is a sixteen-bit register, two bytes are pulled from

the stack, regardless of the settings of the m and x mode select flags. The low byte
of the direct page register is pulled first, then the high byte. The stack pointer now
points to where the high byte just pulled was stored; this is now the next available
stack location.

Flags Affected: n z -

n Set if most significant bit of pulled value is set; else cleared,

z Set if value pulled is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

o f

Bytes

o f

Cycles

Stack (Pull) PLD 2B X 1 5

486 Programming the 65816

PLP Pull Status Flags

Pull the eight-bit value on the top of the stack into the processor status register P,
switching the status byte to that value.

Since the status register is an eight-bit register, only one byte is pulled from the
stack, regardless of the settings of the m and x mode select flags on the 65802/
65816. The stack pointer is first incremented. Then the byte pointed to by the stack
pointer is loaded into the status register.

This provides the means for restoring either previous mode settings or a particu
lar set of status flags that reflect the result of a previous operation.

Note, however, that the e flag—the 6502 emulation mode flag on the 65802/
65816—is not on the stack so cannot be pulled from it. The only means of setting
the e flag is the XCE instruction.

Flags Affected: n v - b d i z c (6502, 65C02,
65802/65816 emulation mode e = 1)

n v m x d i z c (65802/65816 native mode e = 0)
All flags are replaced by the values in the byte pulled from the stack.

Codes:

Addressing M ode Syntax
O pcode

(hex)

A vailable to:

6502 65C02 65802/816

H of

Bytes

0 /

Cycles

Stack (Pull) PLP 28 X X X 1 4

18 The Instruction Sets 487

Pull Index Register X from Stack PLX

Pull the value on the top of the stack into the X index register. The previous con
tents of the register are destroyed.

8-bit index registers (all processors): The stack pointer is first incremented. Then
the byte pointed to by the stack pointer is loaded into the register.

16-bit index registers (65802/65816 only, x = 0): Both bytes of the index register
are pulled. First the low-order byte of the index register is pulled, then the high-
order byte of the index register is pulled.

Unlike some other microprocessors, the 65x instructions to pull an index register
affect the negative and zero flags.

Flags Affected: n -------------z -

n Set if most significant bit of pulled value is set; else cleared,

z Set if value pulled is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

n o f

Bytes

o f

Cycles

Stack (Pull) PLX FA X X 1 4 1

1 Add 1 cycle if x = 0 (16-bit index registers)

488 Programming the 65816

PLY Pull Index Register Y from Stack

Pull the value on the top of the stack into the Y index register. The previous con
tents of the register are destroyed.

8-bit index registers (all processors): The stack pointer is first incremented. Then
the byte pointed to by the stack pointer is loaded into the register.

16-bit index registers (65802/65816 only, x = 0): Both bytes of the index register
are pulled. First the low-order byte of the index register is pulled, then the high-
order byte of the index register is pulled.

Unlike some other microprocessors, the 65x instructions to pull an index register
affect the negative and zero flags.

Flags Affected: n z -
n Set if most significant bit of pulled value is set; else cleared,
z Set if value pulled is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

#o/

Bytes

n o f

Cycles

Stack (Pull) PLY 7A x x 1 4 1

1 Add 1 cycle if x = 0 (16-bit index registers)

18 The Instruction Sets 489

Reset Status Bits REP

For each bit set to one in the operand byte, reset the corresponding bit in the
status register to zero. For example, if bit three is set in the operand byte, bit three
in the status register (the decimal flag) is reset to zero by this instruction. Zeroes in
the operand byte cause no change to their corresponding status register bits.

This instruction lets you reset any flag or flags in the status register with a single
two-byte instruction. Further, it is the only direct means of resetting several of the
flags, including the m and x mode select flags (although instructions that pull the P
status register affect the m and x mode select flags).

6502 emulation mode (65802/65816, e = l) : Neither the break flag nor bit five
(the 6502's undefined flag bit) are affected by REP.

Flags Affected: n v - - d i z c (65802/65816 emulation mode e = 1)
n v m x d i z c (65802/65816 native mode e = 0)
All flags for which an operand bit is set are reset to zero.
All other flags are unaffected by the instruction.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available to:

6502 65C02 65802/816

0 /

Bytes

0 /

Cycles

Immediate REP ttconst C2 X 2 3

490 Programming the 65816

ROL Rotate Memory or Accumulator Left

Rotate the contents of the location specified by the operand left one bit. Bit one
takes on the value originally found in bit zero, bit two takes the value originally in
bit one, and so on; the rightmost bit, bit zero, takes the value in the carry flag; the
leftmost bit (bit 7 on the 6502 and 65C02 or if m = 1 on the 65802/65816, or bit 15
if m = 0) is transferred into the carry flag.

*rYYYYYY\
1 0 1 1 0 0

Carry Flag

Figure 18.8. ROL.

8-bit accumulator/memory (all processors): Data rotated is eight bits, plus carry.
16-bit accumulator/memory (65802/65816 only, m = 0): Data rotated is sixteen

bits, plus carry: if in memory, the low-order eight bits are located at the effective
address; the high eight bits are located at the effective address plus one.

Flags Affected: n --------------z c
n Set if most significant bit of result is set; else cleared,
z Set if result is zero; else cleared.
c High bit becomes carry: set if high bit was set; cleared if high bit was

clear.

Codes:

Addressing M ode Syntax
O pcode

(hex) 6502

A vailable to:

65C02 65802/816

n o f

Bytes

H o f

Cycles

Accumulator ROL A 2A X X X 1 2

Absolute ROL addr 2E X X X 3 61
Direct Page (also DP) ROL dp 26 X X X 2 5U

Absolute Indexed,X ROL addr,X 3E X X X 3 yl,3

DP Indexed,X ROL dp,X 36 X X X 2 61,2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

18 The Instruction Sets 491

Rotate Memory or Accumulator Right ROR

Rotate the contents of the location specified by the operand right one bit. Bit
zero takes on the value originally found in bit one, bit one takes the value origi
nally in bit two, and so on; the leftmost bit (bit 7 on the 6502 and 65C02 or if m =
1 on the 65802/65816, or bit 15 if m = 0) takes the value in the carry flag; the
rightmost bit, bit zero, is transferred into the carry flag.

1 0 1 1 0 0 1 1

Figure 18.9. ROR.

8-bit accumulator/memory (all processors): Data rotated is eight bits, plus carry.
16-bit accumulator/memory (65802/65816 only, m = 0): Data rotated is sixteen

bits, plus carry: if in memory, the low-order eight bits are located at the effective
address; the high-order eight bits are located at the effective address plus one.

Flags Affected: n --------------z c

n Set if most significant bit of result is set; else cleared,

z Set if result is zero; else cleared.

c Low bit becomes carry: set if low bit was set; cleared if low bit was
clear.

Codes:

Addressing M ode Syntax

O pcode

(hex) 6502

A vailable to:

65C02 65802/816

n o f

Bytes

H of

Cycles

Accumulator ROR A 6A X X X 1 2

Absolute ROR addr 6E X X X 3 61
Direct Page (also DP) ROR dp 66 X X X 2 5 12
Absolute Indexed,X ROR addr.X 7E X X X 3 71.3

D P Indexed,X ROR dp,X 76 X X X 2 61 2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Subtract 1 cycle if 65C02 and no page boundary crossed

492 Programming the 65816

RTI Return from Interrupt

Pull the status register and the program counter from the stack. If the 65802/
65816 is set to native mode (e = 0), also pull the program bank register from the
stack.

RTI pulls values off the stack in the reverse order they were pushed onto it by
hardware or software interrupts. The RTI instruction, however, has no way of
knowing whether the values pulled off the stack into the status register and the pro
gram counter are valid—or even, for that matter, that an interrupt has ever
occurred. It blindly pulls the first three (or four) bytes off the top of the stack and
stores them into the various registers.

Unlike the RTS instruction, the program counter address pulled off the stack is
the exact address to return to; the value on the stack is the value loaded into the
program counter. It does not need to be incremented as a subroutine's return
address does.

Pulling the status register gives the status flags the values they had immediately
prior to the start of interrupt-processing.

One extra byte is pulled in the 65802/65816 native mode than in emulation
mode, the same extra byte that is pushed by interrupts in native mode, the program
bank register. It is therefore essential that the return from interrupt be executed in
the same mode (emulation or native) as the original interrupt.

6502, 65C02, and Emulation Mode (e = 1): The status register is pulled from the
stack, then the program counter is pulled from the stack (three bytes are pulled).

65802/65816 Native Mode (e = 0): The status register is pulled from the stack,
then the program counter is pulled from the stack, then the program bank register
is pulled from the stack (four bytes are pulled).

18 The Instruction Sets 493

Stack

(Stack Pointer After)

Stack Pointer Before

Old Status Register

Return Address Bank

Return Address High

Return Address Low

Bank 0

Figure 18.10. Native Mode Stack before RTI.

Flags Affected: n v - - d i z c (6502, 65C02,
65802/65816 emulation mode e = 1)

n v m x d i z c (65802/65816 native mode e = 0)
All flags are restored to their values prior to interrupt (each flag takes
the value of its corresponding bit in the stacked status byte, except that
the Break flag is ignored).

Codes:

Addressing M ode Syntax
O pcode

(hex)
A vailable to:

6502 65C02 65802/816
#o/

Bytes

it o f

Cycles

Stack (RTI) RTI 40 X X X 1 61

1 Add 1 cycle for 65802/65816 native mode (e = 0)

494 Programming the 65816

RTL Return from Subroutine Long

Pull the program counter (incrementing the stacked, sixteen-bit value by one
before loading the program counter with it), then the program bank register from
the stack.

When a subroutine in another bank is called (via a jump to subroutine long
instruction), the current bank address is pushed onto the stack along with the
return address. To return to the calling bank, a long return instruction must be exe
cuted, which first pulls the return address from the stack, increments it, and loads
the program counter with it, then pulls the calling bank from the stack and loads
the program bank register. This transfers control to the instruction immediately
following the original jump to subroutine long.

Stack

(Stack Pointer After)

Stack Pointer Before

Return Bank Address

Return Address High

Return Address Low

Bank 0

Figure 18.11. Stack before RTL.

18 The Instruction Sets 495

Flags Affected:

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

n o f # o f

Bytes Cycles

Stack (RTL) RTL 6B X 1 6

496 Programming the 65816

RTS Return from Subroutine

Pull the program counter, incrementing the stacked, sixteen-bit value by one
before loading the program counter with it.

When a subroutine is called (via a jump to subroutine instruction), the current
return address is pushed onto the stack. To return to the code following the sub
routine call, a return instruction must be executed, which pulls the return address
from the stack, increments it, and loads the program counter with it, transferring
control to the instruction immediately following the jump to subroutine.

Stack

(Stack Pointer After)
Return Address High

Return Address Low

Stack Pointer Before

Bank 0

Figure 18.12. Stack before RTS.

Flags Affected: -------------------

Codes:

O pcode A vailable to: # o f # o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Stack (RTS) RTS 60 x x x 1 6

18 The Instruction Sets 497

Subtract with Borrow from Accumulator SBC

Subtract the data located at the effective address specified by the operand from
the contents of the accumulator; subtract one more if the carry flag is clear, and
store the result in the accumulator.

The 65x processors have no subtract instruction that does not involve the carry.
To avoid subtracting the carry flag from the result, either you must be sure it is set
or you must explicitly set it (using SEC) prior to executing the SBC instruction.

In a multi-precision (multi-word) subtract, you set the carry before the low
words are subtracted. The low word subtraction generates a new carry flag value
based on the subtraction. The carry is set if no borrow was required and cleared if
borrow was required. The complement of the new carry flag (one if the carry is
clear) is subtracted during the next subtraction, and so on. Each result thus cor
rectly reflects the borrow from the previous subtraction.

Note that this use of the carry flag is the opposite of the way the borrow flag is
used by some other processors, which clear (not set) the carry if no borrow was
required.

d flag clear: Binary subtraction is performed.
d flag set: Binary coded decimal (BCD) subtraction is performed.
8-bit accumulator (all processors): Data subtracted from memory is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Data subtracted from memory is

sixteen-bit: the low eight bits is located at the effective address; the high eight bits is
located at the effective address plus one.

Flags Affected: n v ---------- z c
n Set if most significant bit of result is set; else cleared,
v Set if signed overflow; cleared if valid signed result,
z Set if result is zero; else cleared.
c Set if unsigned borrow not required; cleared if unsigned borrow.

498 Programming the 65816

Codes:

O pcode A vailable on: #o/ #o/

Addressing M ode+ + Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Immediate SBC ttconst E9 X X X 2 * 21,4
Absolute SBC addr ED X X X 3 41.4

Absolute Long SBC long EF X 4 51-4
Direct Page (also DP) SBC dp E5 X X X 2 31.2.4

D P Indirect SBC (dp) F2 X X 2 51'2,4
DP Indirect Long SBC I dp] E7 X 2 61,2,4
Absolute Indexed,X SBC addr,X FD X X X 3 41.3.4

Absolute Long Indexed,X SBC long,X FF X 4 5 1,4
Absolute Indexed, Y SBC addr,Y F9 X X X 3 4U .4

D P Indexed, X SBC dp,X F5 X X X 2 41,2.4,0

DP Indexed Indirect,X SBC (dp.X) El X X X 2 61,2'4
DP Indirect Indexed, Y SBC (dp),Y FI X X X 2 51.2.3.4

DP Indirect Long Indexed, Y SBC [d p iY F7 X 2 61'2,4
Stack Relative (also SR) SBC sr,S E3 X 2 41.4

SR Indirect Indexed, Y SBC (sr,S),Y F3 X 2 71.4

+ + SBC, a Primary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
* Add 1 byte if m = 0 (16-bit memory/accumulator)
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary
4 Add 1 cycle if 65C02 and d = 1 (decimal mode, 65C02)

18 The Instruction Sets 499

Set Carry Flag SEC

Set the carry flag in the status register.
SEC is used prior to subtraction (using the 65x's SBC instruction) to keep the

carry flag from affecting the result, and prior to an XCE (exchange carry flag with
emulation bit) instruction to put the 65802 or 65816 into 6502 emulation mode.

Flags Affected: c
c Carry flag set always.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

0/ # o f

Bytes Cycles

Implied SEC 3 8 X X X 1 2

500 Programming the 65816

SED Set Decimal Mode Flag

Set the decimal mode flag in the status register.
SED is used to shift 65x processors into decimal mode from binary mode, so that

the ADC and SBC instructions will operate correctly on BCD data, performing
automatic decimal adjustment.

Flags A ffe c te d :---------d -------
d Decimal mode flag set always.

Codes:

O pcode A vailable to: # 0 / # o f
Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied SED F8 X X X 1 2

18 The Instruction Sets 501

Set Interrupt Disable Flag SEI

Set the interrupt disable flag in the status register.
SEI is used to disable hardware interrupt processing. When the i bit is set, mask

able hardware interrupts (IRQ') are ignored. The processor itself sets the i flag
when it begins servicing an interrupt, so interrupt handling routines that are
intended to be interruptable must reenable interrupts with CLI. If interrupts are to
remain blocked during the interrupt service, exiting the routine via RTI will auto
matically restore the status register with the i flag clear, re-enabling interrupts.

Flags Affected: ----------- i —
i Interrupt disable flag set always.

Codes:

O pcode Available to: # o f # o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied SEI 78 X X X 1 2

502 Programming the 65816

SEP Set Status Bits

For each one-bit in the operand byte, set the corresponding bit in the status regis
ter to one. For example, if bit three is set in the operand byte, bit three in the status
register (the decimal flag) is set to one by this instruction. Zeroes in the operand
byte cause no change to their corresponding status register bits.

This instruction lets you set any flag or flags in the status register with a single
two-byte instruction. Furthermore, it is the only direct means of setting the m and x
mode select flags. (Instructions that pull the P status register indirectly affect the m
and x mode select flags).

6502 emulation mode (65802/65816, e = l) : Neither the break flag nor bit five
(the 6502's non-flag bit) is affected by SEP.

Flags Affected: n v - - d i z c (65802/65816 emulation e = 1)
n v m x d i z c (65802/65816 native mode e = 0)
All flags for which an operand bit is set are set to one.
All other flags are unaffected by the instruction.

Codes:

Addressing M ode Syntax
O pcode

(hex)

A vailable to:

6502 65C02 65802/816

o f # o f

Bytes Cycles

Immediate SEP ttconst E2 X 2 3

18 The Instruction Sets 503

Store Accumulator to Memory STA

Store the value in the accumulator to the effective address specified by the oper
and.

8-bit accumulator (all processors): Value is eight-bit.
16-bit accumulator (65802/65816 only, m = 0): Value is sixteen-bit: the low-order

eight bits are stored to the effective address; the high-order eight bits are stored to
the effective address plus one.

The 65x flags are unaffected by store instructions.

Flags Affected: -------------------

Codes:

Addressing M ode+ + Syntax

O pcode

(hex) 6502

A vailable on:

65C02 65802/816

o f H o f

Bytes Cycles

Absolute STA addr 8D X X X 3 4 1
Absolute Long STA long 8F X 4 5 1
Direct Page (also DP) STA dp 85 X X X 2 3 1 2
DP Indirect STA (dp) 92 X X 2 5 1,2
DP Indirect Long STA [dpi 87 X 2 612
Absolute Indexed, X STA addr,X 9D X X X 3 5 1
Absolute Long Indexed,X STA long.X 9F X 4 5 1
Absolute Indexed, Y STA addr ,Y 99 X X X 3 5 1
D P Indexed,X STA dp,X 95 X X X 2 4 u

D P Indexed Indirect,X STA (dp,X) 81 X X X 2 612
DP Indirect Indexed, Y STA (dp),Y 91 X X X 2 612
D P Indirect Long Indexed,Y STA [dp],Y 97 X 2 61 2
Stack Relative (also SR) STA sr,S 83 X 2 41
SR Indirect Indexed, Y STA (sr,S),Y 93 X 2 71

+ +STA , a Prim ary Group Instruction, has available all of the Primary Group addressing modes and bit patterns
1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (DL < > 0)

504 Programming the 65816

STP Stop the Processor

During the processor's next phase 2 clock cycle, stop the processor's oscillator
input; the processor is effectively shut down until a reset occurs (until the RES' pin
is pulled low).

STP is designed to put the processor to sleep while it's not (actively) in use in
order to reduce power consumption. Since power consumption is a function of fre
quency with CMOS circuits, stopping the clock cuts power to almost nil.

Your reset handling routine (pointed to by the reset vector, $00:FFFC-FD) should
be designed to either reinitialize the system or resume control through a
previously-installed reset handler.

Remember that reset is an interrupt-like signal that causes the emulation bit to be
set to one. It also causes the direct page register to be reset to zero; stack high to be
set to one (forcing the stack pointer to page one); and the mode select flags to be set
to one (eight-bit registers; a side effect is that the high bytes of the index registers
are zeroed). STP is useful only in hardware systems (such as battery-powered sys
tems) specifically designed to support a low-power mode.

Flags Affected; -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

0 / # 0 /

Bytes Cycles

Implied STP DB X 1 31

1 Uses 3 cycles to shut the processor down; additional cycles are required by reset to restart it

18 The Instruction Sets 505

Store Index Register X to Memory STX

Store the value in index register X to the effective address specified by the oper
and.

8-bit index registers (all processors): Value is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Value is sixteen-bit: the low-

order eight bits are stored to the effective address; the high-order eight bits are
stored to the effective address plus one.

The 65x flags are unaffected by store instructions.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

* o f # o f

Bytes Cycles

Absolute SIX addr 8E X X X 3 4 1

Direct Page STX dp 86 X X X 2 3 1*2

Direct Page Indexed, Y STX dp ,Y 96 X X X 2 41.2

1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)

506 Programming the 65816

STY Store Index Register Y to Memory

Store the value in index register Y to the effective address specified by the oper
and.

8-bit index registers (all processors): Value is eight-bit.
16-bit index registers (65802/65816 only, x = 0): Value is sixteen-bit: the low-

order eight bits are stored to the effective address; the high-order eight bits are
stored to the effective address plus one.

The 65x flags are unaffected by store instructions.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

0 / # o f

Bytes Cycles

Absolute STY addr 8C X X X 3 41
Direct Page STY dp 84 X X X 2 31,2

Direct Page Indexed, X STY dp,X 94 X X X 2 41.2

1 Add 1 cycle if x = 0 (16-bit index registers)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)

18 The Instruction Sets 507

Store Zero to Memory STZ

Store zero to the effective address specified by the operand.
8-bit accumulator (all processors): Zero is stored at the effective address.
16-bit accumulator/memory (65802/65816 only, m = 0): Zero is stored at the

effective address and at the effective address plus one.
The 65x store zero instruction does not affect the flags.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

o f * o f

Bytes Cycles

Absolute STZ addr 9C X X 3 4 1

Direct Page STZ dp 64 X X 2 31 2
Absolute Indexed,X STZ addr,X 9E X X 3 5 1
Direct Page Indexed,X STZ dp,X 74 X X 2 4 *2

1 Add 1 cycle if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)

508 Programming the 65816

TAX Transfer Accumulator to Index Register X

Transfer the value in the accumulator to index register X. If the registers are dif
ferent sizes, the nature of the transfer is determined by the destination register. The
value in the accumulator is not changed by the operation.

8-bit accumulator, 8-bit index registers (all processors): Value transferred is
eight-bit.

8-bit accumulator, 16-bit index registers (65802/65816 only, m = 1, x = 0): Value
transferred is sixteen-bit; the eight-bit A accumulator becomes the low byte of the
index register; the hidden eight-bit B accumulator becomes the high byte of the
index register.

16-bit accumulator, 8-bit index registers (65802/65816 only, m = 0, x = l) : Value
transferred to the eight-bit index register is eight-bit, the low byte of the accumu
lator.

16-bit accumulator, 16-bit index registers (65802/65816 only, m = 0, x = 0):
Value transferred to the sixteen-bit index register is sixteen-bit, the full sixteen-bit
accumulator.

Flags Affected: n ------------z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available to:

6502 65C02 65802/816

tt o f it o f

Bytes Cycles

Implied TAX AA X X X 1 2

18 The Instruction Sets 509

Transfer Accumulator to Index Register Y TAY

Transfer the value in the accumulator to index register Y. If the registers are dif
ferent sizes, the nature of the transfer is determined by the destination register. The
value in the accumulator is not changed by the operation.

8-bit accumulator, 8-bit index registers (all processors): Value transferred is
eight-bit.

8-bit accumulator, 16-bit index registers (65802/65816 only, m = 1, x = 0): Value
transferred is sixteen-bit; the eight-bit A accumulator becomes the low byte of the
index register; the hidden eight-bit B accumulator becomes the high byte of the
index register.

16-bit accumulator, 8-bit index registers (65802/65816 only, m = 0, x = 1): Value
transferred to the eight-bit index register is eight-bit, the low byte of the accumu
lator.

16-bit accumulator, 16-bit index registers (65802/65816 only, m = 0, x = 0):
Value transferred to the sixteen-bit index register is sixteen-bit, the full sixteen-bit
accumulator.

Flags Affected: n z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

0 / # 0 /

Bytes Cycles

Implied TAY A 8 X X X 1 2

510 Programming the 65816

TCD Transfer 16-Bit Accumulator to Direct Page Register

Transfer the value in the sixteen-bit accumulator C to the direct page register D,
regardless of the setting of the accumulator/memory mode flag.

An alternate mnemonic is TAD, (transfer the value in the A accumulator to the
direct page register).

In TCD, the "C " is used to indicate that sixteen bits are transferred regardless of
the m flag. If the A accumulator is set to just eight bits (whether because the m flag
is set, or because the processor is in 6502 emulation mode), then its value becomes
the low byte of the direct page register and the value in the hidden B accumulator
becomes the high byte of the direct page register.

The accumulator's sixteen-bit value is unchanged by the operation.

Flags Affected: n z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

O pcode A vailable to: n o f # 0/

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TCD

(or TAD)

5B X 1 2

18 The Instruction Sets 511

Transfer Accumulator to Stack Pointer TCS

Transfer the value in the accumulator to the stack pointer S. The accumulator's
value is unchanged by the operation.

An alternate mnemonic is TAS (transfer the value in the A accumulator to the
stack pointer).

In TCS, the "C " is used to indicate that, in native mode, sixteen bits are trans
ferred regardless of the m flag. If the A accumulator is set to just eight bits (because
the m flag is set), then its value is transferred to the low byte of the stack pointer
and the value in the hidden B accumulator is transferred to the high byte of the
stack pointer. In emulation mode, only the eight-bit A accumulator is transferred,
since the high stack pointer byte is forced to one (the stack is confined to page one).

TCS, along with TXS, are the only two instructions for changing the value in the
stack pointer. The two are also the only two transfer instructions not to alter the
flags.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

o f # 0/

Bytes Cycles

Implied TCS

(or TAS)

IB X 1 2

512 Programming the 65816

TDC Transfer Direct Page Register to 16-Bit Accumulator

Transfer the value in the sixteen-bit direct page register D to the sixteen-bit accu
mulator C, regardless of the setting of the accumulator/memory mode flag.

An alternate mnemonic is TDA (transfer the value in the direct page register to
the A accumulator).

In TDC, the "C" is used to indicate that sixteen bits are transferred regardless of
the m flag. If the A accumulator is set to just eight bits (whether because the m flag
is set, or because the processor is in 6502 emulation mode), then it takes the value
of the low byte of the direct page register and the hidden B accumulator takes the
value of the high byte of the direct page register.

The direct page register's sixteen-bit value is unchanged by the operation.

Flags Affected: n --------------z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

O pcode A vailable to: it o f tt o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TDC 7B

(or TDA)

x 1 2

18 The Instruction Sets 513

Test and Reset Memory Bits Against Accumulator TRB

Logically AND together the com plem ent of the value in the accumulator with the
data at the effective address specified by the operand. Store the result at the mem
ory location.

This has the effect of clearing each memory bit for which the corresponding
accumulator bit is set, while leaving unchanged all memory bits in which the cor
responding accumulator bits are zeroes.

Unlike the BIT instruction, TRB is a read-modify-write instruction, not only cal
culating a result and modifying a flag, but also storing the result to memory as
well.

The z zero flag is set based on a second and different operation, the ANDing of
the accumulator value (not its complement) with the memory value (the same way
the BIT instruction affects the zero flag). The result of this second operation is not
saved; only the zero flag is affected by it.

8-bit accumulator/memory (65C02; 65802/65816, m = 1): Values in accumulator
and memory are eight-bit.

16-bit accumulator/memory (65802/65816 only, m = 0): Values in accumulator
and memory are sixteen-bit: the low-order eight bits are located at the effective
address; the high-order eight bits are at the effective address plus one.

Flags Affected: z -
z Set if memory value AND'ed with accum ulator value is zero; else

cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available on:

6502 65C02 65802/816

0/ # o f

Bytes Cycles

Absolute TRB addr 1C X X 3 61
Direct Page TRB dp 14 X X 2 5 U

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)

514 Programming the 65816

TSB Test and Set Memory Bits Against Accumulator

Logically OR together the value in the accumulator with the data at the effective
address specified by the operand. Store the result at the memory location.

This has the effect of setting each memory bit for which the corresponding accu
mulator bit is set, while leaving unchanged all memory bits in which the corres
ponding accumulator bits are zeroes.

Unlike the BIT instruction, TSB is a read-modify-write instruction, not only cal
culating a result and modifying a flag, but storing the result to memory as well.

The z zero flag is set based on a second different operation, the ANDing of the
accumulator value with the memory value (the same way the BIT instruction
affects the zero flag). The result of this second operation is not saved; only the zero
flag is affected by it.

8-bit accumulator/memory (65C02; 65802/65816, m = 1): Values in accumula
tor and memory are eight-bit.

16-bit accumulator/memory (65802/65816 only, m = 0); Values in accumulator
and memory are sixteen-bit: the low-order eight bits are located at the effective
address; the high-order eight bits are at the effective address plus one.

Flags Affected: z -
z Set if memory value AND'ed with accum ulator value is zero; else

cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable on:

6502 65C02 65802/816

o f it o f

Bytes Cycles

Absolute TSB addr OC X X 3 61
Direct Page TSB dp 04 X X 2 51,2

1 Add 2 cycles if m = 0 (16-bit memory/accumulator)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)

18 The Instruction Sets 515

Transfer Stack Pointer to 16-Bit Accumulator TSC

Transfer the value in the sixteen-bit stack pointer S to the sixteen-bit accumulator
C, regardless of the setting of the accumulator/memory mode flag.

An alternate mnemonic is TSA (transfer the value in the stack pointer to the A
accumulator).

In TSC, the "C " is used to indicate that sixteen bits are transferred regardless of
the m flag. If the A accumulator is set to just eight bits (whether because the m flag
is set, or because the processor is in 6502 emulation mode), then it takes the value
of the low byte of the stack pointer and the hidden B accumulator takes the value
of the high byte of the stack pointer. (In emulation mode, B will always take a
value of one, since the stack is confined to page one.)

The stack pointer's value is unchanged by the operation.

Flags Affected: n --------------z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

O pcode Available to: n o f # 0/

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TSC

(or TSA)

3B x 1 2

516 Programming the 65816

TSX Transfer Stack Pointer to Index Register X

Transfer the value in the stack pointer S to index register X. The stack pointer's
value is not changed by the operation.

8-bit index registers (all processors): Only the low byte of the value in the stack
pointer is transferred to the X register. In the 6502, the 65C02, and the 6502 emula
tion mode, the stack pointer and the index registers are only a single byte each, so
the byte in the stack pointer is transferred to the eight-bit X register. In 65802/
65816 native mode, the stack pointer is sixteen bits, so its most significant byte is
not transferred if the index registers are in eight-bit mode.

16-bit index registers (65802/65816 only, x = 0): The full sixteen-bit value in the
stack pointer is transferred to the X register.

Flags Affected: n ---------- z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

n o f H o f

Bytes Cycles

Implied TSX BA X X X 1 2

18 The Instruction Sets 517

Transfer Index Register X to Accumulator TXA

Transfer the value in index register X to the accumulator. If the registers are dif
ferent sizes, the nature of the transfer is determined by the destination (the accumu
lator). The value in the index register is not changed by the operation.

8-bit index registers, 8-bit accumulator (all processors): Value transferred is
eight-bit.

16-bit index registers, 8-bit accumulator (65802/65816 only, x = 0, m = 1): Value
transferred to the eight-bit accumulator is eight-bit, the low byte of the index regis
ter; the hidden eight-bit accumulator B is not affected by the transfer.

8-bit index registers, 16-bit accumulator (65802/65816 only, x = 1, m = 0): The
eight-bit index register becomes the low byte of the accumulator; the high accumu
lator byte is zeroed.

16-bit index registers, 16-bit accumulator (65802/65816 only, x = 0, m = 0):Value
transferred to the sixteen-bit accumulator is sixteen-bit, the full sixteen-bit index
register.

Flags Affected: n -------------- z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available to:

6502 65C02 65802/816

n o f H o f

Bytes Cycles

Implied TXA 8A X X X 1 2

518 Programming the 65816

TXS Transfer Index Register X to Stack Pointer

Transfer the value in index register X to the stack pointer, S. The index register's
value is not changed by the operation.

TXS, along with TCS, are the only two instructions for changing the value in the
stack pointer. The two are also the only two transfer instructions that do not alter
the flags.

6502, 65C02, and 6502 emulation mode(65802/65816, e = 1): The stack pointer is
only eight bits (it is concatenated to a high byte of one, confining the stack to page
one), and the index registers are only eight bits. The byte in X is transferred to the
eight-bit stack pointer.

8-bit index registers (65802/65816 native mode, x = l) : The stack pointer is six
teen bits but the index registers are only eight bits. A copy of the byte in X is trans
ferred to the low stack pointer byte and the high stack pointer byte is zeroed.

16-bit index registers (65802/65816 native mode, x = 0): The full sixteen-bit value
in X is transferred to the sixteen-bit stack pointer.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

o f # o f

Bytes Cycles

Implied TXS 9A X X X 1 2

18 The Instruction Sets 519

Transfer Index Registers X to Y TXY

Transfer the value in index register X to index register Y. The value in index reg
ister X is not changed by the operation. Note that the two registers are never differ
ent sizes.

8-bit index registers (x = 1): Value transferred is eight-bit.
16-bit index registers (x = 0): Value transferred is sixteen-bit.

Flags Affected: n -------------- z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

O pcode A vailable to: It o f # o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TXY 9B x 1 2

520 Programming the 65816

TYA Transfer Index Register Y to Accumulator

Transfer the value in index register Y to the accumulator. If the registers are dif
ferent sizes, the nature of the transfer is determined by the destination (the accumu
lator). The value in the index register is not changed by the operation.

8-bit index registers, 8-bit accumulator (all processors): Value transferred is
eight-bit.

16-bit index registers, 8-bit accumulator (65802/65816 only, x = 0, m = 1): Value
transferred to the eight-bit accumulator is eight-bit, the low byte of the index regis
ter; the hidden eight-bit accumulator B is not affected by the transfer.

8-bit index registers, 16-bit accumulator (65802/65816 only, x = 1, m = 0): The
eight-bit index register becomes the low byte of the accumulator; the high accumu
lator byte is zeroed.

16-bit index registers, 16-bit accumulator (65802/65816 only, x = 0, m = 0):
Value transferred to the sixteen-bit accumulator is sixteen-bit, the full sixteen-bit
index register.

Flags Affected: n -------------- z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available to:

6502 65C02 65802/816

H o f % o f

Bytes Cycles

Implied TYA 98 X X X 1 2

18 The Instruction Sets 521

Transfer Index Registers Y to X TYX

Transfer the value in index register Y to index register X. The value in index reg
ister Y is not changed by the operation. Note that the two registers are never differ
ent sizes.

8-bit index registers (x = 1): Value transferred is eight-bit.
16-bit index registers (x = 0): Value transferred is sixteen-bit.

Flags Affected: n -------------- z -
n Set if most significant bit of transferred value is set; else cleared,
z Set if value transferred is zero; else cleared.

Codes:

O pcode Available to: # o f # o f

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

Implied TYX BB x 1 2

522 Programming the 65816

WAI Wait for Interrupt

Pull the RDY pin low. Power consumption is reduced and RDY remains low
until an external hardware interrupt (NMI, IRQ, ABORT, or RESET) is received.

WAI is designed to put the processor to sleep during an external event to reduce
its power consumption, to allow it to be synchronized with an external event, and/
or to reduce interrupt latency (an interrupt occurring during execution of an
instruction is not acted upon until execution of the instruction is complete, perhaps
many cycles later; WAI ensures that an interrupt is recognized immediately).

Once an interrupt is received, control is vectored through one of the hardware
interrupt vectors; an RTI from the interrupt handling routine will return control to
the instruction following the original WAI. However, if by setting the i flag, inter
rupts have been disabled prior to the execution of the WAI instruction, and IRQ' is
asserted, the "wait” condition is terminated and control resumes with the next
instruction, rather than through the interrupt vectors. This provides the quickest
response to an interrupt, allowing synchronization with external events. WAI also
frees up the bus; since RDY is pulled low in the third instruction cycle, the proces
sor may be disconnected from the bus if BE is also pulled low.

Flags Affected: -------------------

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

0/ # 0/

Bytes Cycles

Implied WAI CB X 1 3 1

lU ses 3 cycles to shut the processor down; additional cycles are required by interrupt to restart it

18 The Instruction Sets 523

Reserved for Future Expansion WDM

The 65802 and 65816 use 255 of the 256 possible eight-bit opcodes. One was
reserved; it provides an "escape hatch" for future 65x processors to expand their
instruction set to sixteen bit opcodes; this opcode would signal that the next byte is
an opcode in the expanded instruction set. This reserved byte for future two-byte
opcodes was given a temporary mnemonic, WDM, which happen to be the initials
of the processors' designer—William D. Mensch, Jr.

WDM should never be used in a program, since it would render the object pro
gram incompatible with any future 65x processors.

If the 65802/65816 WDM instruction is accidentally executed, it will act like a
two-byte NOP instruction.

Flags Affected*: -------------------
'F lags will be affected variously by future tw o-byte instructions.

Codes;

O pcode A vailable to: # 0 / # 0 /

Addressing M ode Syntax (hex) 6502 65C02 65802/816 Bytes Cycles

WDM 42 X 2 *

*Byte and cycle counts subject to change in future processors which expand W DM into 2-byte opcode portions of
instructions of varying lengths

524 Programming the 65816

XBA Exchange the B and A Accumulators

B represents the high-order byte of the sixteen-bit C accumulator, and A in this
case represents the low-order byte. XBA swaps the contents of the low-order and
high-order bytes of C.

An alternate mnemonic is SWA (swap the high and low bytes of the sixteen-bit A
accumulator).

XBA can be used to invert the low-order, high-order arrangement of a sixteen-bit
value, or to temporarily store an eight-bit value from the A accumulator into B.
Since it is an exchange, the previous contents of both accumulators are changed,
replaced by the previous contents of the other.

Neither the mode select flags nor the emulation mode flag affects this operation.
The flags are changed based on the new value of the low byte, the A accumulator

(that is, on the former value of the high byte, the B accumulator), even in sixteen-
bit accumulator mode.

Flags Affected: n -------------z -
n Set if most significant bit of new 8-bit value in A accum ulator is set;

else cleared.
z Set if new 8-bit value in A accum ulator is zero; else cleared.

Codes:

Addressing M ode Syntax

O pcode

(hex)

A vailable to:

6502 65C02 65802/816

o f n o f

Bytes Cycles

Implied XBA

(or SWA)

EB X 1 3

18 The Instruction Sets 525

Exchange Carry and Emulation Bits XCE

This instruction is the only means provided by the 65802 and 65816 to shift
between 6502 emulation mode and the full, sixteen-bit native mode.

The emulation mode is used to provide hardware and software compatibility
between the 6502 and 65802/65816.

If the processor is in emulation mode, then to switch to native mode, first clear
the carry bit, then execute an XCE. Since it is an exchange operation, the carry flag
will reflect the previous state of the emulation bit. Switching to native mode causes
bit five to stop functioning as the break flag, and function instead as the x mode
select flag. A second mode select flag, m, uses bit six, which was unused in emula
tion mode. Both mode select flags are initially set to one (eight-bit modes). There
are also other differences described in the text.

If the processor is in native mode, then to switch to emulation mode, you first set
the carry bit, then execute an XCE. Switching to emulation mode causes the mode
select flags (m and x) to be lost from the status register, with x replaced by the b
break flag. This forces the accumulator to eight bits, but the high accumulator byte
is preserved in the hidden B accumulator. It also forces the index registers to eight
bits, causing the loss of values in their high bytes, and the stack to page one, caus
ing the loss of the high byte of the previous stack address. There are also other dif
ferences described in the text.

e
Flags Affected: — m b / x c

e T ak es carry 's previous value: set if ca rry w as set; else cleared ,
c Takes em ulation's previous value: set if previous m ode w as

em ulation; else cleared,
m m is a native m ode flag only ; sw itching to native m ode sets it to 1 .
x x is a native m ode flag only ; it becom es the b flag in em ulation,
b b is an em ulation m ode flag only ; it is set to 1 to becom e the x flag in

native.

Codes:

Addressing M ode Syntax

O pcode

(hex)

Available to:

6502 65C02 65802/816

H o f H o f

Bytes Cycles

Implied XCE FB X 1 2

Instruction Lists

Hex

O p cod e

M nem onic A ddressing M ode

A v ailab le on:

6502 65C02 65802/816

o f # o f
Bytes C ycles

00 BRK Stack/Interrupt X X X 2 ** T9

01 ORA DP Indexed Indirect,X X X X 2 61'2

02 COP Stack/Interrupt X
2 * . T9

03 ORA Stack Relative X 2 41
04 TSB Direct Page X X 2 52,5
05 ORA Direct Page X X X 2 31,2
06 ASL Direct Page X X X 2 52,5
07 ORA DP Indirect Long X 2 61,2
08 PHP Stack (Push) X X X 1 3
09 ORA Immediate X X X 2* 21
0A ASL Accumulator X X X 1 2
OB PHD Stack (Push) X 1 4

OC TSB Absolute X X 3 65
OD ORA Absolute X X X 3 41
OE ASL Absolute X X X 3 65
OF ORA Absolute Long X 4 51
10 BPL Program Counter Relative X X X 2 27-8
11 ORA DP Indirect Indexed,Y X X X 2 51'2,3
12 ORA DP Indirect X X 2 51,2
13 ORA SR Indirect Indexed, Y X 2 71
14 TRB Direct Page X X 2 52,5
15 ORA DP Indexed,X X X X 2 41.2

16 ASL DP Indexed,X X X X 2 62-5
17 ORA DP Indirect Long Indexed, Y X 2 61,2
18 CLC Implied X X X 1 2
19 ORA Absolute Indexed, Y X X X 3 41.3

1A INC Accumulator X X 1 2
IB TCS Implied X 1 2
1C TRB Absolute X X 3 65
ID ORA Absolute Indexed,X X X X 3 41.3

IE ASL Absolute Indexed,X X X X 3 ^ 5 , 6

IF ORA Absolute Long Indexed,X X 4 5 1

20 JSR Absolute X X X 3 6
21 AND DP Indexed Indirect,X X X X 2 61,2

Continued.

527

528 Programming the 65816

Hex

O p cod e

M nem onic A ddressing M ode 6502
A v ailab le on:

65C02 65802/816

It o f # o f

Bytes C ycles

22 JSR Absolute Long X 4 8
23 AND Stack Relative X 2 41
24 BIT Direct Page X X X 2 31'2
25 AND Direct Page X X X 2 31,2
26 ROL Direct Page X X X 2 52,5
27 AND DP Indirect Long X 2 61,2
28 PLP Stack (Pull) X X X 1 4
29 AND Immediate X X X 2 * 21
2A ROL Accumulator X X X 1 2
2B PLD Stack (Pull) X 1 5
2C BIT Absolute X X X 3 41
2D AND Absolute X X X 3 41
2E ROL Absolute X X X 3 65
2F AND Absolute Long X 4 51
30 BMI Program Counter Relative X X X 2 27,8
31 AND DP Indirect Indexed, Y X X X 2 51'2,3
32 AND DP Indirect X X 2 51,2
33 AND SR Indirect Indexed, Y X 2 71
34 BIT DP Indexed, X X X 2 41.2

35 AND DP Indexed,X X X X 2 41.2

36 ROL DP Indexed,X X X X 2 62,5
37 AND DP Indirect Long Indexed, Y X 2 61,2
38 SEC Implied X X X 1 2
39 AND Absolute Indexed, Y X X X 3 4 1 . 3

3A DEC Accumulator X X 1 2
3B TSC Implied X 1 2
3C BIT Absolute Indexed,X X X 3 4 1 . 3

3D AND Absolute Indexed,X X X X 3 4 1 . 3

3E ROL Absolute Indexed,X X X X 3 ryS.b

3F AND Absolute Long Indexed,X X 4 5 1

40 RTI Stack/RTI X X X 1 69
41 EOR DP Indexed Indirect,X X X X 2 61,2
42 WDM X

2 i f 1 6

43 EOR Stack Relative X 2 41
44 MVP Block Move X 3 1 3

45 EOR Direct Page X X X 2 31-2
46 LSR Direct Page X X X 2 52'5
47 EOR DP Indirect Long X 2 61,2
48 PHA Stack (Push) X X X 1 31
49 EOR Immediate X X X 2 * 21
4A LSR Accumulator X X X 1 2

19 Instruction Lists 529

Hex

O p cod e
M nem onic A ddressing M ode 6502

A v ailab le on:
65C02 65802/816

0/ # o f
Bytes C ycles

4B PHK Stack (Push) X 1 3

4C JMP Absolute X X X 3 3

4D EOR Absolute X X X 3 4 1

4E LSR Absolute X X X 3 6s

4F EOR Absolute Long X 4 51

50 BVC Program Counter Relative X X X 2 27,8
51 EOR DP Indirect Indexed, Y X X X 2 51,2,3

52 EOR DP Indirect X X 2 51,2

53 EOR SR Indirect Indexed,Y X 2 71

54 MVN Block Move X 3 13

55 EOR DP Indexed,X X X X 2 41.2

56 LSR DP Indexed,X X X X 2 62,5

57 EOR DP Indirect Long Indexed, Y X 2 61,2

58 CLI Implied X X X 1 2
59 EOR Absolute Indexed, Y X X X 3 41.3

5A PHY Stack (Push) X X 1 310

5B TCD Implied X 1 2

5C JMP Absolute Long X 4 4
5D EOR Absolute Indexed,X X X X 3 41.3

5E LSR Absolute Indexed,X X X X 3 j 5 , b

5F EOR Absolute Long Indexed,X X 4 51

60 RTS Stack (RTS) X X X 1 6
61 ADC DP Indexed Indirect,X X X X 2 61'2,4

62 PER Stack (PC Relative Long) X 3 6

63 ADC Stack Relative X 2 41.4

64 STZ Direct Page X X 2 31-2
65 ADC Direct Page X X X 2 3 1-2-4

66 ROR Direct Page X X X 2 52'5
67 ADC DP Indirect Long X 2 61'2,4

68 PLA Stack (Pull) X X X 1 41
69 ADC Immediate X X X 2 * 21,4
6A ROR Accumulator X X X 1 2
6B RTL Stack (RTL) X 1 6

6C JMP Absolute Indirect X X X 3 5 11.12

6D ADC Absolute X X X 3 4 m

6E ROR Absolute X X X 3 65
6F ADC Absolute Long X 4 51,4
70 BVS Program Counter Relative X X X 2 278
71 ADC DP Indirect Indexed, Y X X X 2 51,2,3,4

72 ADC DP Indirect X X 2 51'2,4

Continued.

530 Programming the 65816

Hex
O p cod e

M nem onic A ddressing M ode

A v ailab le on:

6502 65C02 65802/816

o f # o f

Bytes Cycles

73 ADC SR Indirect Indexed, Y X 2 71,4
74 STZ Direct Page Indexed,X X X 2 41.2

75 ADC DP Indexed,X X X X 2 41.2,4

76 ROR DP Indexed, X X X X 2 6 2.5

77 ADC DP Indirect Long Indexed, Y X 2 61.2.4

78 SEI Implied X X X 1 2
79 ADC Absolute Indexed.Y X X X 3 41.3.4

7A PLY Stack/Pull X X 1 410
7B TDC Implied X 1 2

7C JMP Absolute Indexed Indirect X X 3 6
7D ADC Absolute Indexed, X X X X 3 41.3,4

7E ROR Absolute Indexed, X X X X 3 j 5 , 6

7F ADC Absolute Long Indexed, X X 4 51,4
80 BRA Program Counter Relative X X 2 38
81 STA DP Indexed Indirect,X X X X 2 61'2
82 BRL Program Counter Relative Long X 3 4

83 STA Stack Relative X 2 41
84 STY Direct Page X X X 2 3 2 , 10

85 STA Direct Page X X X 2 31,2

86 STX Direct Page X X X 2 3210

87 STA DP Indirect Long X 2 61,2

88 DEY Implied X X X 1 2
89 BIT Immediate X X 2* 21

8A TXA Implied X X X 1 2
8B PHB Stack (Push) X 1 3

8C STY Absolute X X X 3 410

8D STA Absolute X X X 3 41
8E STX Absolute X X X 3 410
8F STA Absolute Long X 4 51

90 BCC Program Counter Relative X X X 2 27,8
91 STA DP Indirect Indexed, Y X X X 2 61,2

92 STA DP Indirect X X 2 51,2

93 STA SR Indirect Indexed.Y X 2 71

94 STY Direct Page Indexed,X X X X 2 42.10

95 STA DP Indexed,X X X X 2 41.2

96 STX Direct Page Indexed.Y X X X 2 42.10

97 STA DP Indirect Long Indexed.Y X 2 61,2

98 TYA Implied X X X 1 2
99 STA Absolute Indexed.Y X X X 3 51

9A TXS Implied X X X 1 2
9B TXY Implied X 1 2

19 Instruction Lists 531

Hex

O p cod e
M nem onic A ddressing M ode 6502

A v ailab le on:

65C02 65802/816

it o f it o f
Bytes C ycles

9C STZ Absolute X X 3 4 1

9D STA Absolute Indexed,X X X X 3 5 1
9E STZ Absolute Indexed, X X X 3 5 1

9F STA Absolute Long Indexed,X X 4 5 1

AO LDY Immediate X X X 2 + 210
A1 LDA DP Indexed Indirect,X X X X 2 61'2
A2 LDX Immediate X X X 2 + 2 io

A3 LDA Stack Relative X 2 4 1

A4 LDY Direct Page X X X 2 32, 1 °

AS LDA Direct Page X X X 2 31'2
A6 LDX Direct Page X X X 2 3210

A7 LDA DP Indirect Long X 2 61,2

A8 TAY Implied X X X 1 2

A9 LDA Immediate X X X 2 * 21
AA TAX Implied X X X 1 2

AB PLB Stack (Pull) X 1 4

AC LDY Absolute X X X 3 410
AD LDA Absolute X X X 3 4’

AE LDX Absolute X X X 3 4 10
AF LDA Absolute Long X 4 51
BO BCS Program Counter Relative X X X 2 27-8

B1 LDA DP Indirect Indexed,Y X X X 2 S1-2-3
B2 LDA DP Indirect X X 2 5 1'2

B3 LDA SR Indirect Indexed,Y X 2 71
B4 LDY DP Indexed,X X X X 2 42.10

B5 LDA DP Indexed, X X X X 2 41.2

B6 LDX DP Indexed, Y X X X 2 42,10

B7 LDA DP Indirect Long Indexed, Y X 2 61,2
B8 CLV Implied X X X 1 2
B9 LDA Absolute Indexed, Y X X X 3 41,3

BA TSX Implied X X X 1 2
BB TYX Implied X 1 2
BC LDY Absolute Indexed,X X X X 3 43.10

BD LDA Absolute Indexed,X X X X 3 41.3

BE LDX Absolute Indexed,Y X X X 3 43,10

BF LDA Absolute Long Indexed,X X 4 5*

CO CPY Immediate X X X 2 + 210
C l CMP DP Indexed Indirect,X X X X 2 61,2
C2 REP Immediate X 2 3

C3 CMP Stack Relative X 2 4 1

Continued.

532 Programming the 65816

Hex
O p cod e

M nem onic A ddressing M ode 6502
A v ailab le on:
65C02 65802/816

o f H o f

Bytes C ycles

C4 CPY Direct Page X X X 2 3210
C5 CMP Direct Page X X X 2 31,2
C6 DEC Direct Page X X X 2 52,5
C7 CMP DP Indirect Long X 2 61,2
C8 INY Implied X X X 1 2

C9 CMP Immediate X X X 2 * 2 1

CA DEX Implied X X X 1 2

CB WAI Implied X 1 315
CC CPY Absolute X X X 3 410
CD CMP Absolute X X X 3 4 1
CE DEC Absolute X X X 3 65
CF CMP Absolute Long X 4 5*

DO BNE Program Counter Relative X X X 2 2 7 - 8

D l CMP DP Indirect Indexed, Y X X X 2 51,2'3
D2 CMP DP Indirect X X 2 51,2
D3 CMP SR Indirect Indexed, Y X 2 71
D4 PEI Stack (Direct Page Indirect) X 2 62
D5 CMP DP Indexed,X X X X 2 41.2

D6 DEC DP Indexed, X X X X 2 62,5
D7 CMP DP Indirect Long Indexed,Y X 2 61,2
D8 CLD Implied X X X 1 2

D9 CMP Absolute Indexed,Y X X X 3 41.3

DA PHX Stack (Push) X X 1 310
DB STP Implied X 1 314
DC JMP Absolute Indirect Long X 3 6
DD CMP Absolute Indexed, X X X X 3 41.3

DE DEC Absolute Indexed, X X X X 3 7 5 , 6

DF CMP Absolute Long Indexed, X X 4 5 1
EO CPX Immediate X X X 2 +

2 i o

El SBC DP Indexed Indirect,X X X X 2 61,2,4
E2 SEP Immediate X 2 3

E3 SBC Stack Relative X 2 41.4

E4 CPX Direct Page X X X 2 3210
E5 SBC Direct Page X X X 2 31,2'4
E6 INC Direct Page X X X 2 52,5

E7 SBC DP Indirect Long X 2 61,2,4

E8 INX Implied X X X 1 2

E9 SBC Immediate X X X 2 * 2 1 ,4

EA NOP Implied X X X 1 2

EB XBA Implied X 1 3

EC CPX Absolute X X X 3 410

19 Instruction Lists 533

Hex

O p cod e

M nem onic A ddressing M ode

A v ailab le on:

6502 65C02 65802/816

o f

Bytes

0 /

C ycles

ED SBC Absolute X X X 3 4 1 . 4

EE INC Absolute X X X 3 6 5

EF SBC Absolute Long X 4

F0 BEQ Program Counter Relative X X X 2 27,b

FI SBC DP Indirect Indexed,Y X X X 2 5 1 , 2 , 3 , 4

F2 SBC DP Indirect X X 2 5 1 , 2 , 4

F3 SBC SR Indirect Indexed.Y X 2 7 1 . 4

F4 PEA Stack (Absolute) X 3 5

F5 SBC DP Indexed,X X X X 2 4 1 . 2 , 4

F6 INC DP Indexed,X X X X 2 6 2 , 5

F7 SBC DP Indirect Long Indexed.Y X 2 61 .2.4

F8 SED Implied X X X 1 2
F9 SBC Absolute Indexed.Y X X X 3

4 1 . 3 , 4

FA PLX Stack/Pull X X 1 4 1 0

FB XCE Implied X 1 2
FC JSR Absolute Indexed Indirect X 3 8
FD SBC Absolute Indexed,X X X X 3

4 1 . 3 , 4

FE INC Absolute Indexed,X X X X 3
y5,b

FF SBC Absolute Long Indexed,X X 4 5 1,4

* Add 1 byte if m = 0 (16-bit memory/accumulator)
opcode is 1 byte, but program counter value pushed onto stack is incremented by 2 allowing for optional
signature byte

+ Add 1 byte if x = 0 (16-bit index registers)
1 Add 1 cycle if m = 0 (16-bit memory/accumulafor)
2 Add 1 cycle if low byte of Direct Page register is other than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary
4 Add 1 cycle if 65C02 and d = 1 (decimal mode, 65C02)
5 Add 2 cycles if m = 0 (16-bit memory/accumulator)
6 Subtract 1 cycle if 65C02 and no page boundary crossed
7 Add 1 cycle if branch is taken
8 Add 1 more cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 emulation mode

(e = 1)

9 Add 1 cycle for 65802/65816 native mode (e = 0)
10 Add 1 cycle if x = 0 (16-bit index registers)
11 Add 1 cycle if 65C02
12 6502: If low byte of operand is $FF (i .e ., operand is SxxFF): y ields incorrect result
13 7 cycles per byte moved

14 Uses 3 cycles to shut the processor down; additional cycles are required by reset to restart it
15 Uses 3 cycles to shut the processor down; additional cycles are required by interrupt to restart it
10 Byte and cycle counts subject to change in future processors which expand W DM into 2-byte opcode portions of

instructions of varying lengths

534 Programming the 65816

Opcodes Reference Chart

Mne
monic Operation

Immediate Absolute
Absolute*

Long
Direct

Page (DP) Accumulator Implied
DP Indirect
Indexed.Y

DP*

Indirect
Long

Indexed.Y

DP
Indexed
IndirecLX

DP

Indexed/

DP
Indexed.Y

Absolute

Indexed/

• const addr long dp A (dp), Y [dp].Y (dp. X) dp. X dp. Y addr, X

1 - # 2 - # 3 - » 4 -2 # 5 - # 6 - # 7 -2 « 8 - 2 # 9 - 2 # 10 - 2 # 11 -2 # 12 - #

ADC
AND
ASL
BCC
BCS

A + M + C —A (1X4)

Aa M -A (1)
C -I1 V 7 O l-O
Branch it C = 0(BLT) (7)
Branch if C = 1 (BGE) (7)

69 2 2*

29 2 2*

6D 4 3

2D 4 3
0E 6s 3

6F 5 4
2F 5 4

66 3 2
25 3 2

06 55 2 0A 2 1

71 53 2
31 53 2

77 6 2
37 6 2

61 6 2
21 6 2

75 4 2
35 4 2
16 6s 2

7D 43 3
3D 43 3
1E 7®-6 3

BEQ
BIT
BMI

BNE

BPL

Branch if Z = 1 (7)
AaM (1)
Branch if N = 1 (7)
Branch if Z = 0 (7)

Branch If N = 0 (7)

09* 2 2* 2C 4 3 24 3 2 34* 4 2 3C* 43 3

BRA
BRK
BRL
BVC
BVS

Branch always
Break (9)
Branch long always
Branch If V = 0 (7)
Branch if V = 1 (7)

CLC
CLD
CLI
CLV
CMP

0 -C
0—D

0-1
0 -V
A - M (1) C9 2 2* CO 4 3 CF 5 4 CS 3 2

18 2 1
D6 2 1
58 2 1
B8 2 1

D1 53 2 D7 6 2 C1 6 2 D6 4 2 DD 43 3

COP
CPX
CPY
DEC
DEX

Co-processor (9)
X - M (10)
Y - M (10)
Decrement
X - 1 - X

E0 2 2*
CO 2 2 +

EC 4 3
CC 4 3
CE 6s 3

E4 3 2

C4 3 2

C6 55 2 3A* 2 1
CA 2 1

06 6s 2 DE 7®-® 3

DEY
EOR
INC
INX
INY

Y - 1 - Y
A V M -A (1)
Increment
X + 1 -X
Y + 1 -Y

49 2 2* 4D 4 3

EE 6s 3

4F 5 4 46 3 2
E6 55 2 1A* 2 1

88 2 1

EB 2 1
C8 2 1

51 53 2 57 6 2 41 6 2 55 4 2
F6 e5 2

50 43 3
FE T6-6 3

JMP
JSL
JSR
LDA

Jump to new location
Jump long to subroutine
Jump to subroutine
M -A (1) A9 2 2*

4C 3 3

20 6 3
AD 4 3

5C 4 4
22 8 4

AF 5 4 A5 3 2 B1 53 2 B7 6 2 A1 6 2 B5 4 2 BD 43 3

LDX
LDY
LSR
MVN
MVP

M -X (10)
M -Y (10)

o-hiff f l - c
M - M Backward (start byte first)
M -M Forward (end byte first)

A2 2 2 +

A0 2 2 +

AE 4 3
AC 4 3

4E 6s 3

A6 3 2
A4 3 2
46 55 2 4A 2 1

B4 4 2

56 6s 2

B6 4 2
BC 43 3

5E 7®-6 3

NOP
ORA
PEA

PEI

PER

No operation
A V M -A (1)
M(pc + 2)-M(s); M(pc + 1)-M(s -1)
S - 2 - S
M(d + 1)—M(sX M(d)—M(s - 1) (2)
S - 2 - S
PC + rl + 3—M(s), M(s - 1)

S - 2 - S

09 2 2* 00 4 3 OF 5 4 06 3 2
EA 2 1

11 53 2 17 6 2 01 6 2 15 4 2 1D 43 3

PHA
PHB
PHD
PHK
PHP

A —M(s); S - 2 —S o r S - 1—S (1)
DBR—M(s); S - 1—S
D—M(s), M(s - 1); S - 2—S
PBR—M(s);S-1—S
P —M(s); S - 1—S

PHX
PHY
PLA
PLB
PLD

X - M (s) ; S - 1 - S o r S - 2 - S (10)
Y—M(s); S - 1—S o r S - 2 —S (10)
S +1 —S or S + 2—S; M(s)—A (1)
S+ 1-S;M (s)-DBR
S + 2 -S ; M(s - 1), M(s)—D

PLP
PLX
PLY

REP

ROL

S+ 1—S: M(s)-P
S +1 —S or S + 2 -S ; M(s)—X (10)
S+ 1—S o rS + 2—S; M(s)—Y (10)
M(pc + 1)a P - P

L-|l5/7 O l - C - J

C2 3 2

2E e5 3 26 55 2 2A 2 1 36 6s 2 3E 7®-® 3

ROR
RT1
HU
RTS

SBC

U c -r iS T oP
Return from interrupt (9)
Return from subroutine long
Return from subroutine
A - M - C - A (1X4) E9 2 2‘

6E 6s 3

ED 4 3 EF 5 4

06 55 2

E5 3 2

6A 2 1

F1 53 2 F7 6 2 E1 6 2

76 e5 2

F5 4 2

7E 3

FD 43 3

SEC
SED
SEI
SEP
STA

1 - C
1 - D
1 - I
M(pc+ 1) V P — P
A - M (1)

E2 3 2
8D 4 3 8F 5 4 85 3 2

38 2 1
F8 2 1
78 2 1

91 6 2 97 6 2 81 6 2 96 4 2 90 5 3

19 Instruction Lists 535

Opcodes Reference Chart

Absolute

Long
Indexed .X

Absolute
Indexed,Y

Absolute
Indirect
Long

Absolute
Indirect

Indirect
Long

Absolute
Indexed
Indirect

Stack*
Relative

(SR)
Indirect

Indexed,Y
Block
Move

79 43 ADC
AND
ASL
BCC
BCS

I 6C 511>123 7C 6 3

FC * 8 3

M , Mo

BNE
BPL

BVC
BVS

CLC
CLD
CLI
CLV

CMP

COP
CPX
CPY

DEC
DEX

DEY

EOR

54 7/n 3
7/n 3

MVN
MVP

NOP
ORA
PEA

PHA
PHB
PHD
PHK
PHP

PHX
PHY

PLA
PLB
PLD

RTS
SBC

SEC
SED

N V M X D I Z C

536 Programming the 65816

Opcodes Reference Chart—(continued)

Mne
monic Operation

Immediate Absolute

Absolute*
Long

Direct
Page (DP) Accumulator Implied

DP Indirect
Indexed.Y

DP*
Indirect
Long

Indexed.Y

DP
Indexed

Indirect^
DP

Indexed .X
DP

Indexed.Y
Absolute
Indexed .X

• const addr long dp A (Op). Y IdplY (dp, X) dp, X dp, Y addr, X

1 - # 2 - # 3 - # 4 - 2 # 5 - # 6 - # 7 -2 # 8 - 2 # 9 - 2 # 10 - 2 # 11 -2 # 12 - •

STP
STX
STY
STZ
TAX

Stop <1-*2) (14)
X - M (10)
Y - M (10)
00 - M (1)
A - X

8E 4 3
0C 4 3
9C 4 3

86 3 2
84 3 2

64 3 2

D6 3 1

AA 2 1

94 4 2
74 4 2

96 4 2

9E 5 3

TAY
TCD
TCS
TDC
TRB

A - Y
C - D
C - S
D - C
Aa M - M (5) 1C 6 3 14 5 2

A8 2 1
58 2 1

1B 2 1
7B 2 1

TSB

TSC
TSX

TXA

TXS

AVM - M (5)

S - C
S - X
X - A

X - S

0C 6 3 04 5 2
3B 2 1
BA 2 1
8A 2 1
9A 2 1

TXY
TYA
TYX
WAI

WDM

X - Y
Y - A
Y - X
0 - ROY (15)
No operation (reserved) (16)

96 2 1
96 2 1
BB 2 1
CB 3 1
42 216

XBA

XCE

B - A
C - E

EB 3 1
FB 2 1

Processor
* Opcode or instruction first introduced on the 65C02
* Opcode or instruction first introduced on the 65816/65802

(not marked: first introduced on the N M OS 6502)

Addressing m ode box:

Immediate Addressing mode
const Assembler operand syntax

1 - #
1— Number of bytes

------------Number of cycles
------------------ Key to detailed instruction operation chart (see Appendix E: 65816 Data Sheet)

Operation column:

A Accumulator
X Index register X
Y Index register Y
M Contents of memory location specified by effective address
M(d) Contents o f direct page m em ory location pointed to by operand
M(s) Contents of memory location pointed to by stack pointer
M(pc) Current opcode pointed to by the program counter
PC Memory location of current opcode pointed to by the program counter
rl Two-byte operand of relative long addressing mode instruction
+ Add
— Subtract
A And

O r
■v- Exclusive Or
— Logical complement of a value or status bit (A indicates the complement of the value in the accumulator)
<t>2 Phase 2 clock (hardware signal)
RDY Ready (hardware signal)

19 Instruction Lists 537

Opcodes Reference Chart—(continued)

Absolute *
Long

IndexedX

Absolute
Indexed.Y

PC
Relative

Absolute
indirect
Long

Absolute
Indirect

DP*
Indirect

DP*
Indirect
Long

Absolute
Indexed
Indirect

Stack

Stack*

Relative
(SR)

SR*
Indirect

Indexed,Y
Block
Move

Processor
Status Code

7 6 5 4 3 2 1 0
Mne
monic

longX addr.Y label [addr] laddO (dp) (dp) (addrX) sr.S (sr.S),Y srcbk.destbk N V M X D 1 Z C E = 0

13 - # 14 - » 15 - 8 # 16 ~ # 17 - # 18 - 2 # 19 - 2 » 20 - » 21 - # 22 - « 23 - # 24 - 13 » N V 1 B D I Z C E = 1

NZ

* STP
STX
STY

• STZ
TAX

NZ
N Z

NZ

....................................Z

TAY

* TCD
* TCS

* TDC
* TRB

z
NZ
NZ
N Z

• TSB
* TSC

TSX
TXA

TXS

N Z
N Z
N Z

* TXY

TYA
* TYX
* WAI
* WDM

N Z

. . E

* XBA

* XCE

Bytes, cycles, and status codes:
* Add 1 byte if M = 0 (16-bit m em ory accum ulator)

** opcode is 1 byte, but program counter value pushed onto stack is increm ented by 2 allow ing for optional signature
byte

+ Add 1 byte if x = 0 (16-bit index registers)
n num ber of bytes moved
1 Add 1 cycle if m = 0 (16-bit m em ory accum ulator)
2 Add 1 cycle if low byte o f D irect Page register is o ther than zero (D L < > 0)
3 Add 1 cycle if adding index crosses a page boundary
4 Add 1 cycle if 65C02 and d = l (decim al m ode, 65C02)
5 Add 2 cycles if m = 0 (16-bit memory/accumulator)
6 Subtract 1 cycle if 65C02 and no page boundary crossed
7 Add 1 cycle if branch is taken
8 Add 1 m ore cycle if branch taken crosses page boundary on 6502, 65C02, or 65816/65802's 6502 em ulation mode

(e= 1)
9 Add 1 cycle for 65802 65816 native m ode (e = 0)

10 Add 1 cycle if x = 0 (16-bit index registers)
11 Add 1 cycle if 65C02
12 6502: If low byte of addr is $FF (i.e., addr is $xxFF): yields incorrect result
13 7 cycles per byte moved
14 U ses 3 cycles to shut the processor dow n; additional cycles are required by reset to restart it

15 Uses 3 cycles to shut the processor dow n; additional cycles are required by interrupt to restart it
lh Byte and cycle counts su b ject to change in future processors w hich expand W DM into 2-byte opcode portions of

instru ctions o f varying lengths
17 BIT: im m ediate n and v flags not affected ; if m = 0, m(15) —»n and M(14) —>v; if m = l , M(7) —>n and M(6) —*v

18 BRK: if b = 1 in pushed status register (6502, 65C02 and emulation mode e = 1), then interrupt was caused by
software BRK;
if 6502, d is unaffected by BRK; if 65C02 or 65816/65802, d is 0 after BRK

O
p

co
d

e
 M

at
ri

x

M S 0
LS

D

M S D

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

0
B

R
K

 s
2

7
O

R
A

 (
d.

x)

2
6

C
O

P
s

2
*

7
O

R
A

d
.s

2
*

4
T

S
B

 d

2
*

5
O

R
A

 d
2

3
A

S
L

d
2

5
O

R
A

 (
d]

2

*
6

P
H

P
 s

1

3
O

R
A

 ft
2

2
A

S
L

A
1

2
P

H
D

 s

1
*

4
T

S
B

 a

3
*

6
O

R
A

 a

3
4

A
S

L
 a

3

6
O

R
A

 a
l

4
*

5
0

1
B

P
L

r
2

2
O

R
A

 (
d)

.y

2
5

O
R

A
 (

d)

2
*

5
O

R
A

 (
d.

s)
.y

2

*
7

T
R

B
 d

2
*

5
O

R
A

 d
.x

2

4
A

S
L

d.
x

2
6

O
R

A
 [

d]
,y

2

*
6

C
L

C
 i

1
2

O
R

A
 a

.y

3
4

IN
C

 A

1
*

2
T

C
S

 i
1

*
 2

T
R

B
 a

3
*

6
O

R
A

 a
.x

3

4
A

S
L

a.
x

3
7

O
R

A
 a

l .
K

4
*

5
1

2
JS

R
 a

3

6
A

N
D

 (
d.

x)

2
6

JS
L

al

4
*

8
A

N
D

 d
.s

2

*
4

B
IT

 d
2

3
A

N
D

 d
2

3
R

O
L

d
2

5
A

N
D

 (
d)

2

*
6

P
LP

 s

1
4

A
N

D
 ft

2
2

R
O

L
A

1

2
P

LD
 s

1

*
 5

B
IT

 a

3
4

A
N

D
 a

3

4
R

O
L

a
3

6
A

N
D

 a
l

4
*

5
2

3
B

M
I

r
2

2
A

N
D

 (
d)

,y

2
5

A
N

D
 (

d)
2

*
5

A
N

D
 (

d.
s)

,y

2
*

7
B

IT
 d

.x

2
*

4
A

N
D

 d
.x

2

4
R

O
L

d.
x

2
6

A
N

D
 [

d]
,y

2

*
6

S
E

C
 i

1
2

A
N

D
 a

.y

3
4

D
E

C
 A

1

*
2

T
S

C
 i

1
*

 2
B

IT
 a

.x

3
*

4
A

N
D

 a
.x

3

4
R

O
L

a.
x

3
7

A
N

D
 a

l.x

4
*

5
3

4
R

TI
 s

1

6
E

O
R

 (
d.

x)

2
6

W
D

M
2

*
E

O
R

 d
.s

2

*
4

M
V

P
 x

yc

3
*

7
E

O
R

 d
2

3
LS

R
 d

2
5

E
O

R
 I

d]

2
*

6
P

H
A

 s
1

3
E

O
R

 ft
2

2
LS

R
 A

1

2
P

H
K

 s

1
*

 3
JM

P
 a

3
3

E
O

R
 a

3

4
LS

R
 a

3

6
E

O
R

 a
l

4
*

5
4

5
B

V
C

 r
2

2
E

O
R

 (
d)

,y

2
5

E
O

R
 (

d)

2
*

5
E

O
R

 (
d.

s)
.y

2

*
7

M
V

N
 x

yc

3
*

7
E

O
R

 d
.x

2

4
LS

R
 d

.x
2

6
E

O
R

Jd
J.

y
2

*
6

C
LI

 i
1

2
E

O
R

 a
.y

3

4
P

H
Y

 s

1
*

3
T

C
D

 i
1

*
 2

JM
P

 a
l

4
*

4
E

O
R

 a
.x

3

4
LS

R
 a

.x

3
7

E
O

R
 a

l.x

4
*

5
5

6
R

T
S

s
1

6
A

D
C

 (
d.

x)

2
6

P
E

R
 s

3

*
6

A
D

C
 d

.s

2
*

4
S

T
Z

 d
2

*
3

A
D

C
 d

2

3
R

O
R

 d
2

5
A

D
C

 (
d)

2

*
6

P
L

A
s

1
4

A
D

C
#

2
2

R
O

R
 A

1

2
R

T
L

s
1

*
6

JM
P

 (
a)

3
5

A
D

C
 a

3

4
R

O
R

 a

3
6

A
D

C
 a

l
4

*
5

6

7
B

V
S

 r
2

2
A

D
C

 (
d)

,y

2
5

A
D

C
 (

d)

2
*

5
A

D
C

 (
d.

s)
.y

2

7
S

T
Z

 d
.x

2

*
4

A
D

C
 d

.x

2
4

R
O

R
 d

.x

2
6

A
D

C
 I

d]
,y

2

*
6

SE
I

i
1

2
A

D
C

 a
.y

3

4
P

LY
 s

1

*
4

T
D

C
 i

1
*

 2
JM

P
 (

a.
x)

3

*
6

A
D

C
 a

.x

3
4

R
O

R
 a

.x

3
7

A
D

C
 a

l.x

4
*

5
7

8
B

R
A

 r
2

*3
S

T
A

 (
d.

x)

2
6

B
R

L
rl

3
*

4
S

T
A

 d
.s

2

*
4

S
T

Y
 d

2
3

S
T

A
d

2

3
S

T
X

 d
2

3
S

T
A

 (
d)

2

*
6

D
E

Y
 i

1
2

B
IT

 ft
2

*
2

T
X

A
 i

1
2

P
H

B
 s

1
*

 3
S

T
Y

 a

3
4

S
T

A
 a

3

4
S

T
X

 a

3
4

S
T

A
 a

l
4

*
5

8

9
B

C
C

 r

2
2

S
T

A
 (

d)
.y

2

6
S

T
A

 (
d)

2

*
5

S
T

A
 (

d.
s)

.y

2
*

7
S

T
Y

 d
.x

2

4
S

T
A

 d
.x

2

4
S

T
X

 d
.y

2

4
S

T
A

 I
d)

,y

2
*

6
T

Y
A

 i
1

2
S

T
A

 a
.y

3
5

T
X

S
 1

1
2

T
X

Y
 i

1
*

2
S

T
Z

 a

3
*

4
S

T
A

 a
.x

3

5
S

T
Z

 a
.x

3

*
5

S
T

A
 a

l.x

4
*

5
9

A
LD

Y
 #

2
2

LD
A

 (
d.

x)

2
6

LD
X

 ft
2

2
LD

A
 d

.s

2
*

4
LD

Y
 d

2
3

LD
A

 d
2

3
LD

X
 d

2
3

LD
A

 [
d]

2

*
6

T
A

Y
i

1
2

LD
A

 ft
2

2
T

A
X

 i
1

2
P

L
B

s
1

*
 4

LD
Y

 a

3
4

LD
A

 a

3
4

LD
X

 a

3
4

LD
A

 a
l

4
*

5
A

B
B

C
S

 r

2
2

LD
A

 (
d)

,y

2
5

LD
A

 (
d)

2

*
5

LD
A

 (
d.

s)
.y

2

*
7

LD
Y

 d
.x

2

4
LD

A
 d

.x

2
4

LD
X

 d
.y

2

4
LD

A
Jd

J.
y

2
*

6
C

LV
 i

1
2

LD
A

 a
.y

3

4
T

S
X

 I
1

2
T

Y
X

 i
1

*
 2

LD
Y

 a
.x

3

4
LD

A
 a

.x

3
4

LD
X

 a
.y

3

4
LD

A
 a

l.x

4
*

5
B

C
C

P
Y

 #

2
2

C
M

P
 (

d.
x)

2

6
R

E
P

#
2

*
3

C
M

P
 d

.s

2
*

4
C

P
Y

 d
2

3
C

M
P

 d
2

3
D

E
C

 d
2

5
C

M
P

 [
d]

2

*
6

IN
Y

i
1

2
C

M
P

 ft
2

2
D

E
X

 i
1

2
W

A
I

i
1

*
 3

C
P

Y
 a

3

4
C

M
P

 a

3
4

D
E

C
 a

3

6
C

M
P

 a
l

4
*

5
C

D
B

N
E

 r
2

2
C

M
P

 (
d)

,y

2
5

C
M

P
 (

d)

2
*

5
C

M
P

 (
d.

s)
.y

2

*
7

PE
I

s
2

*
6

C
M

P
 d

.x

2
4

D
E

C
 d

.x

2
6

C
M

P
 [

d]
.y

2

*
6

C
L

D
 I

1
2

C
M

P
a

.y

3
4

P
H

X
 s

1

*
3

S
T

P
 i

1
*

 3
JM

L
 (

a)

3
*

6
C

M
P

 a
.x

3

4
D

E
C

 a
.x

3

7
C

M
P

 a
l.x

4

*
5

D

E
C

P
X

 ft
2

2
S

B
C

 (
d.

x)

2
6

S
E

P
 ft

2
*

3
S

B
C

 d
.s

2

*
4

C
P

X
 d

2

3
S

B
C

 d

2
3

IN
C

 d
2

5
S

B
C

 [
d]

2

*
6

IN
X

i
1

2
S

B
C

 ft
2

2
N

O
P

 i
1

2
X

B
A

 i
1

*
 3

C
P

X
 a

3

4
S

B
C

 a

3
4

IN
C

 a
3

6
S

B
C

 a
l

4
*

5
E

F
B

E
Q

 r
2

2
S

B
C

 (
d)

.y

2
5

S
B

C
 (

d)

2
*

5
S

B
C

 (
d.

s)
.y

2

*
7

P
E

A
 s

3
*

5
S

B
C

 d
.x

2

4
IN

C
 d

.x

2
6

S
B

C
 I

d]
,y

2

*
6

S
E

D
 i

1
2

S
B

C
 a

.y

3
4

P
LX

 s

1
*

4
X

C
E

 i
1

*
 2

JS
R

 (
a.

x)

3
*

8
S

B
C

 a
.x

3

4
IN

C
 a

.x
3

7
S

B
C

 a
l.x

4

*
5

F

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

O
p

 C
o

d
e

 M
at

ri
x

Le
g

en
d

IN
S

T
R

U
C

T
IO

N
A

D
D

R
E

S
S

IN
G

M
N

E
M

O
N

IC
*

=
N

ew
 W

65
C

81
6/

80
2

O
pc

od
es

M
O

D
E

•
-

N
ew

 W
65

C
02

 O
pc

od
es

B
A

S
E

B
la

nk
 =

 N
M

O
S

 6
50

2
O

pc
od

es
B

A
S

E
N

O
.

B
Y

TE
S

N
O

.
C

Y
C

LE
S

sy
m

b
o

l
a

d
d

re
ss

in
g

 m
o

d
e

sy
m

b
o

l
a

d
d

re
ss

in
g

 m
o

d
e

#
im

m
ed

ia
te

[d
]

di
re

ct
 i

nd
ir

ec
t

lo
ng

A
ac

cu
m

u
la

to
r

[d
].

y
di

re
ct

 i
nd

ir
ec

t
lo

ng
 i

nd
ex

ed
r

pr
og

ra
m

 c
ou

n
te

r
re

la
ti

ve
a

ab
so

lu
te

rl
p

ro
gr

am
 c

ou
n

te
r

re
la

ti
ve

 l
on

g
a.

x
ab

so
lu

te
 i

nd
ex

ed
 (

w
it

h
x)

i
im

pl
ie

d
a.

y
ab

so
lu

te
 i

nd
ex

ed
 (

w
it

h
y)

s
st

ac
k

al
ab

so
lu

te
 l

on
g

d
di

re
ct

al
.x

ab
so

lu
te

 l
on

g
in

de
xe

d
d.

x
di

re
ct

 i
n

de
xe

d
(w

it
h

x)
d,

s
st

ac
k

re
la

ti
ve

d.
y

di
re

ct
 i

nd
ex

ed
 (

w
it

h
y)

(d
.s

).
y

st
ac

k
re

la
ti

ve
 i

nd
ir

ec
t

in
de

xe
d

(d
)

di
re

ct
 i

nd
ir

ec
t

(a
)

ab
so

lu
te

 i
nd

ir
ec

t
(d

.x
)

di
re

ct
 i

nd
ex

ed
 i

nd
ir

ec
t

(a
.x

)
ab

so
lu

te
 i

nd
ex

ed
 i

nd
ir

ec
t

(d
),

y
di

re
ct

 i
nd

ir
ec

t
in

de
xe

d
xy

c
bl

oc
k

m
ov

e

Appendices

65x Signal Description

The four standard 65x parts considered in this book—the 6502,
65C02, 65802, and 65816—are each housed in a 40-pin dual in-line
package. There are also a number of special versions of the basic parts,
versions with external clocks, fewer address pins, one-chip computers
with on-board RAM and ROM, and with quadrature clocks. These are
not considered here; refer to the appropriate manufacturer's literature
for details about these special chips.

This appendix describes the pin signals found on the four standard
parts—the pins that connect the processor to the external system. Many
of them are common to all processors, some are unique to each.

The descriptions are meant to satisfy the programmer with a general
interest in the system implementation; the engineer implementing a 65x
system should consult the manufacturer's data sheets for more detailed
information.

To begin with, refer to Figure A .l, which illustrates the pin configura
tions of the four different processors.

A 65x Signal Description 545

6502 Signals__________________________
The 6502 defines the basic set of signals.

Address Bus
Pins AO - A15 are the address lines. Every time an address is gener

ated—opcode fetch, operand read, intermediate address, or effective
address of a read or write operation—the binary value of the address
appears on these pins, AO representing the low-order bit of the address,
and A15 representing the high-order bit. These outputs are TTL
compatible.

Clock Signals
All of the 65x series processors operate on a two-phase external cycle;

a 65x processor's frequency, expressed in Megahertz, or millions of
cycles per second, is also its memory-access cycle time. The 6502 has an
internal clock generator based on the phase zero input signal, a time
base typically provided by a crystal oscillator. The two output signals,
phase one and phase two, are derived from this signal. Phase one goes
high when phase zero is low; phase two goes low on the rising edge of
phase one.

Data Bus
Pins D 0-D 7 are the data lines; these eight pins form a bi-directional

data bus to read and write data between the processor and memory and
the peripheral devices. Like the address lines, the outputs can drive one
standard TTL load.

Data Bus Enable
This controls the three-state output buffers of the processor; it nor

mally is enabled by the phase two output, effectively disabling the out
put buffers during phase one; this frees the bus for access by other
devices during phase one. By pulling DBE low, the buffers may be disa
bled externally.

Read/Write
R/W' is high when data is being read from memory or peripherals

into the processor, low when the processor is writing data. When in the
low state, data and address lines have valid data and addresses.

Ready
The RDY signal enables the processor to be single-stepped on all

cycles except write cycles. When enabled during phase one, the proces

546 Programming the 65816

sor is halted and the address lines maintain the current address; this lets
the processor interface with lower-speed read-only memory devices, and
can also be used in direct memory access implementations.

Interrupt Request
The IRQ' signal requests that an interrupt-service cycle be initiated.

This signal is connected to peripheral devices that are designed to be
interrupt-driven. This is the maskable interrupt signal, so the interrupt
disable flag in the status register must be zero for the interrupt to be
effective. The RDY signal must be high for an interrupt to be recog
nized. IRQ' is sampled during phase 2.

Non-maskable Interrupt
NMI' is basically identical to IRQ', except that it causes an uncondi

tional interrupt when it is asserted, and control vectors through the
NMI' vector rather than IRQ'.

Set Overflow
When this line goes low on the trailing edge of phase one, the over

flow flag in the processor status register is set.

Sync
This line goes high during phase one of those cycles that are opcode

fetches. When used with the RDY signal, this allows hardware imple
mentation of a single-step debugging capability.

Reset
RESET' reinitializes the processor, either at power-up or to restart the

system from a known state. RESET' must be held low for at least two
cycles after a power down. When it is asserted, an interrupt-like service
routine begins (although the status and program counter are not
stacked), with the result that control is transferred through the RESET'
vector.

65C02 Signals_________________________
The 65C02 pinout is identical to the 6502, with the exception of mem

ory lock and notes described below.

Memory Lock
The ML' output signal assures the integrity of read-modify-write

instructions by signaling other devices, for example, other processors in

A 65x Signal Description 547

a multiprocessor environment, that the bus may not be claimed until
completion of the read-modify-write operation. This signal goes low
during the execution of the memory-referencing (non-register operand)
ASL, DEC, INC, LSR, ROL, ROR, TRB, and TSB instructions.

Notes

The 65C02, unlike the 6502, responds to RDY during a write cycle as
well as a read, halting the processor.

Response of the 65C02 to a reset is different from the 6502 in that the
65C02's program counter and status register are written to the stack.
Additionally, the 65C02 decimal flag is cleared after reset or interrupt;
its value is indeterminate after reset and not modified after interrupt on
the 6502.

When an interrupt occurs immediately after the fetch of a BRK
instruction on the 6502, the BRK is ignored; on the 65C02, the BRK is
executed, then the interrupt is executed.

Finally, the 65C02 R/W' line is high during the modify (internal oper
ation) cycle of the read-modify-write operations; on the 6502, it is low.

65802 Signals_________________________

The 65802 signals are by definition 6502 pin-compatible. The 65C02
ML' (memory lock) signal is not on the standard pin-out, although it is
available as a special-order mask option. Like the 6502, and unlike the
65C02, the 65802 does not write to the stack during a reset.

Some of the enhancements of the 65C02 are available on the 65802 in
the native mode, while in emulation mode the system behaves as a 6502.
R/W' is low during the modify cycle of read-modify-write cycles in the
emulation mode; high in the native mode.

65816 Signals_________________________

Most of the signals behave as on the 65802, with the following addi
tions and changes:

Bank Address

The most important difference on the 65816 is the multiplexing of the
bank address (BA0-BA7) with the data pins (D0-D7). During phase two
low, the bank address is valid; during phase two high, data is read or
written on the same pins. The bank address must be latched during
phase one to provide a valid twenty-four bit address when concatenated
with A0-A15.

548 Programming the 65816

Vector Pull
The VP' signal is asserted whenever any of the vector addresses

($00:FFE4-FFEF, $00:FFF4-FFFF) are being accessed as part of an
interrupt-type service cycle. This lets external hardware modify the
interrupt vector, eliminating the need for software polling for interrupt
sources.

Abort
The ABORT' input pin, when it is asserted, causes the current instruc

tion to be aborted. Unlike an interrupt, none of the registers are updated
and the instruction quits execution from the cycle where the ABORT'
signal was received. No registers are modified. In other words, the proc
essor is left in the state it was in before the instruction that was aborted.
Control is shifted to the ABORT' vector after an interrupt-like context-
saving cycle.

The ABORT' signal lets external hardware abort instructions on
the basis of undesirable address bus conditions; memory protection and
paged virtual memory systems can be fully implemented using this
signal.

ABORT' should be held low for only one cycle; if held low during the
ABORT interrupt sequence, the ABORT interrupt will be aborted.

Valid Program Address and Valid Data Address
The VPA and VDA signals extend the concept of the SYNC signal.

Together, these two pins encode one of four possible internal processor
states, based on the type of memory being accessed:

VPA VDA

0 0 -Internal operation
0 1 -Valid program address
1 0 -Valid data address
1 1 -Opcode fetch

During internal operations, the output buffers may be disabled by
external logic, making the address bus available for transparent direct
memory access. Also, since the 65816 sometimes generates a false read
during instructions that cross page boundaries, these may be trapped
via these two signals if this is desirable. Note, however, that addresses
should not be qualified in emulation mode if hardware such as the
Apple // disk controller is used, which requires false read to operate.

The other states may be used for virtual memory implementation and
high-speed data or instruction cache control. VPA and VDA high
together are equivalent to the 6502 SYNC output.

A 65x Signal Description 549

Memory and Index
These two signals are multiplexed on pin 38. M is available during

phase zero, X during phase one. These signals reflect the contents of the
status register m and x flags, allowing (along with E described below)
external logic to fully decode opcode fetches.

As a mask option, the 65816 may be specified with the 6502 SET
OVERFLOW signal instead of the M/X signal.

M and X are invalid for the instruction cycle following the REP, SEP,
and PLP instruction execution; this cycle is the opcode fetch cycle of the
next instruction.

Emulation
The E signal reflects the state of the processor's e flag; depending on

whether or not the processor is in emulation mode or not, external sys
tem compatibility features (such as memory mapping or system speed)
could be enabled or disabled.

Bus Enable
This signal replaces the data bus enable signal of the 6502; when

asserted, it disables the address buffers and R/W' as well as the data
buffers.

65x Series Support
Chips

There are a plethora of companion chips for the 65x processors. The
ones every assembly language programmer runs into eventually are
serial and parallel input/output (I/O) chips. The 65x family serial I/O
controller is the 6551 Asynchronous Communication Interface Adapter
(ACIA), while the the simplest parallel I/O controller is the 6521
Peripheral Interface Adapter (PIA).

As the architecture section of this book has already noted, the 65x
microprocessors have memory-mapped I/O, not special I/O opcodes.
That is, they assign each input and each output device one or more
memory locations. An output device's status registers can be tested to
determine if the device is ready to send a unit of data. Conversely, an
input device's status registers can be tested to determine if a unit of data
has arrived and can be read. Writing data is accomplished by storing it
to one of the output device's memory locations; reading it is accom
plished with a load-register instruction, with its operand one of the
input device's memory locations.

One caution: Don't attempt to use any peripheral chips without call
ing or writing the chip's manufacturer for a data sheet, usually provided
for little or no charge. While data sheets are no joy to read, they contain
enough information to sooner or later explain the programming prob
lems you will run into, if not on your current project, then on the next
one.

551

552 Programming the 65816

The 6551 Serial Chip____________________
You may already be familiar with the 6551 ACIA. There is one con

trolling the serial port on every Apple //c, and one on the plug-in Apple
//e Super Serial Card.

The 6551 features an on-chip baud-rate generator, which lets your
program set any of fifteen baud rates from 50 to 19,200. Like most other
serial chips, word length, number of stop bits, and parity bit generation
and detection can also be set under program control.

As an example, if the Super Serial Card were located, as it commonly
is, in the Apple //e's port two, four consecutive memory locations are
allocated to the 6551 beginning at $C0A8. The 6551's Transmit/Receive
Data Register is located at $C0A8. The current status of the chip (for
example, indicating it has received a byte of data) is indicated in the Sta
tus Register, located at $C0A9 {see Figure B .l) . Two registers are used
to initialize the chip. The Command Register, located at SCOAA, is used
to set up parity and several other parameters. As Figure B.2 indicates,
writing $0B to the Command Register sets up a commonly used set of
parameters—no parity, and both the RTS and the DTR lines enabled.
The Control Register, located at SCOAB, is used to set up stop bits,
word length, and baud rate; as Figure B.3 indicates, writing $1E to the
Control Register sets up a commonly used set of parameters—one stop
bit, eight-bit data, and communications running at 9600 baud.

So the 6551 is initialized by the 65816 code shown in Fragment B .l.

0000 COMPORT GEQU SC0A8 6551 located at $C0A8,9,A,B
0000
0000 E220 SEP #$20 use 8-bit accumulator
0002 LONGA OFF

0002
0002 A900 LDA #0
0004 8DA9C0 STA COMPORT+ 1 StatusReg: programmed reset first

0007 A91E LDA #$1 E

0009 8DABC0 STA COMPORT+ 3 CtrlReg:1 stop bit/8-bit data/960
OOOC A90B LDA #$0B

OOOE 8DAAC0 STA COMPORT+ 2 CmdReg: no parity/RTS.DTR enabled

0011 60 RTS

Fragment B .l .

Actually, any value can be written to the status register to cause a
programmed reset; this operation is done to reinitialize the I/O regis
ters—the three figures each show the effects on the non-data registers on
each of their status bits.

7
6

5
4

3
2

1
0

S
T

A
T

U
S

S

E
T

 B
Y

C

L
E

A
R

E
D

 B
Y

P
ar

ity
 E

rr
or

"
0

=
N

o
E

rr
or

1
=

E
rr

or
S

el
f

C
le

a
ri

n
g

"

F
ra

m
in

g
E

rr
or

"
0

=
N

o
E

rr
or

1
=

E
rr

or
S

el
f

C
le

a
ri

n
g

"

O
ve

rr
un

"
0

=
N

o
E

rr
or

1
=

E
rr

or
S

e
lf

-C
le

a
ri

n
g

"

R
ec

ei
ve

 D
at

a
R

eg
is

te
r

Fu
ll

0
=

N
ot

 F
ul

l
1

=
Fu

ll
R

ea
d

R
ec

ei
ve

D

at
a

R
eg

is
te

r

T
ra

ns
m

it
 D

at
a

R
eg

is
te

r
E

m
pt

y
0

=
N

ot
 E

m
pt

y
1

=
E

m
pt

y
W

ri
te

 T
ra

ns
m

it
D

at
a

R
eg

is
te

r

D
C

D
0

=
D

C
D

 L
ow

1
=

D
C

D
 H

ig
h

N
ot

 R
es

et
ta

bl
e

R
ef

le
ct

s
D

C
D

S

ta
te

D
S

R
0

=
D

S
R

 L
ow

1
=

D
S

R
 H

ig
h

N
ot

 R
es

et
ta

bl
e

R
ef

le
ct

s
D

S
R

S

ta
te

IR
Q

0
=

N
o

In
te

rr
up

t
1

=
In

te
rr

up
t

R
ea

d
S

ta
tu

s
R

eg
is

te
r

•N
O

 I
N

T
E

R
R

U
P

T
 G

E
N

E
R

A
T

E
D

 F
O

R
 T

H
E

S
E

 C
O

N
D

IT
IO

N
S

“

C
LE

A
R

E
D

 A
U

T
O

M
A

T
IC

A
LL

Y
 A

F
T

E
R

 A
 R

E
A

D
 O

F
R

D
R

 A
N

D

T
H

E
 N

E
X

T
 E

R
R

O
R

-F
R

E
E

 R
E

C
E

IP
T

 O
F

 D
A

TA

H
A

R
D

W
A

R
E

R
E

S
E

T
P

R
O

G
R

A
M

R
E

S
E

T

Fi
gu

re
 B

.l
.

65
51

 S
ta

tu
s

R
eg

is
te

r.

C
O

M
M

A
N

D
 R

E
G

IS
T

E
R

7
6

5
4

3
2

1
0

P
A

R
IT

Y
 C

H
E

C
K

 C
O

N
T

R
O

L
S

 -

B
IT

O
P

E
R

A
T

IO
N

7
6

5

—
—

0
P

ar
ity

 D
is

ab
le

d—
N

o
P

ar
ity

 B
it

G
en

er
at

ed
—

N
o

P
ar

ity
 B

it
R

ec
ei

ve
d

0
0

1
O

dd
 P

ar
ity

 R
ec

ei
ve

r
an

d
T

ra
ns

m
itt

er

0
1

1
E

ve
n

P
ar

ity
 R

ec
ei

ve
r

an
d

T
ra

ns
m

itt
er

1
0

1
M

ar
k

P
ar

ity
 B

it
T

ra
ns

m
itt

ed
.

P
ar

ity
 C

he
ck

 D
is

ab
le

d

1
1

1
S

pa
ce

 P
ar

ity
 B

it
Tr

an
sm

itt
ed

.
P

ar
ity

 C
he

ck
 D

is
ab

le
d

N
O

R
M

A
L

/
E

C
H

O
 M

O
D

E

F
O

R
 R

E
C

E
IV

E
R

__
__

__
__

0
r

N
or

m
al

1
=

E
ch

o
(B

its
 2

 a
nd

 3
m

us
t

be
 "

0"
)

H
A

R
D

W
A

R
E

 R
E

S
E

T

P
R

O
G

R
A

M
 R

E
S

E
T

D
A

T
A

 T
E

R
M

IN
A

L
 R

E
A

D
Y

0
-

D
is

ab
le

 R
ec

ei
ve

r
an

d
A

ll
In

te
rr

up
ts

 (
D

T
R

 h
ig

h)
1

=
E

na
bl

e
R

ec
ei

ve
r

an
d

A
ll

In
te

rr
up

ts
 (

D
T

R
 l

ow
)

R
E

C
E

IV
E

R
 I

N
T

E
R

R
U

P
T

 E
N

A
B

L
E

0
=

IR
Q

 I
nt

er
ru

pt
 E

na
bl

ed
 f

ro
m

 B
it

3
of

 S
ta

tu
s

R
eg

is
te

r
1

=
IR

Q
 I

nt
er

ru
pt

 D
is

ab
le

d

T
R

A
N

S
M

IT
T

E
R

 C
O

N
T

R
O

L
S

7
6

5
4

3
2

1
0

0
0

0
0

0
0

0
0

-
-

0
0

0
0

0

B
IT

T
R

A
N

S
M

IT
IN

T
E

R
R

U
P

T
R

TS
LE

V
E

L
T

R
A

N
S

M
IT

T
E

R
3

2
0

0
D

is
ab

le
d

H
ig

h
O

ff
0

1
E

na
bl

ed
Lo

w
O

n
1

0
D

is
ab

le
d

Lo
w

O
n

1
1

D
is

ab
le

d
Lo

w
T

ra
ns

m
it

B
R

K

Fi
gu

re
 B

.2
.

65
51

 C
om

m
an

d
R

eg
is

te
r.

C
O

N
T

R
O

L
 R

E
G

IS
T

E
R

S
T

O
P

 B
IT

S

0
=

1
S

to
p

B
it

1
=

2
S

to
p

B
its

1
S

to
p

B
it

if
W

or
d

Le
ng

th

=
8

B
its

 a
nd

 P
ar

ity
"

1'/
?

S
to

p
B

its
 i

f
W

or
d

Le
ng

th

-
5

B
its

 a
nd

 N
o

P
ar

ity

W
O

R
D

 L
E

N
G

T
H

 -

B
IT

D
A

T
A

 W
O

R
D

LE

N
G

T
H

6
5

0
0

8

0
1

7

1
0

6

1
1

5

R
E

C
E

IV
E

R
 C

L
O

C
K

 S
O

U
R

C
E

0
-

E
xt

er
na

l
R

ec
ei

ve
r

C
lo

ck
1

=
B

au
d

R
at

e
G

en
er

at
or

"T
hi

s
al

lo
w

s
fo

r
9-

bi
t

tr
an

sm
is

si
on

(8

 d
at

a
bi

ts
 p

lu
s

pa
rit

y)
H

A
R

D
W

A
R

E
 R

E
S

E
T

P
R

O
G

R
A

M
 R

E
S

E
T

7
6

5
4

3
2

1
0

B
A

U
D

 R
A

T
E

G

E
N

E
R

A
T

O
R

0
0

0
0

16
x

E
X

T
E

R
N

A
L

C
LO

C
K

0
0

0
1

50
 B

A
U

D

0
0

1
0

75

0
0

1
1

10
9.

92

0
1

0
0

13
4

58

0
1

0
1

15
0

0
1

1
0

30
0

0
1

1
1

60
0

1
0

0
0

12
00

1
0

0
1

18
00

1
0

1
0

24
00

1
0

1
1

36
00

1
1

0
0

48
00

1
1

0
1

72
00

1
1

1
0

96
00

1
1

1
1

19
.2

00

0
0

0
0

0
0

0
0

—
-

-
-

—
—

—
—

Fi
gu

re
 B

.3
.

65
51

 C
on

tr
ol

 R
eg

is
te

r.

556 Programming the 65816

When the 6551 connects a computer to a communications line—
whether twisted-pair wire at 9600 baud or a modem at 300 baud—read
ing a byte from the communications line is a matter of (once the 6551
has been initialized) waiting until the status register bit three (receiver
data register full) is set, then reading the byte from the data register, as
shown in Fragment B.2.

0000 ; code to read a byte from the communications line (6551)
0000 ; returns byte in 8-bit A

0000

0000 COMPORT GEQU $C0A8 6551 located at $C0A8,9,A,B
0000

0000 E220 SEP #$20 use 8-bit accumulator
0002 LONGA OFF
0002

0002 ADA9C0 AUAITCH LDA COMPORT+ 1 read Status Reg

0005 2908 AND #8 single out bit 3 (rcvr data reg full)
0007 F0F9 BEQ AWAITCH loop until bit 3 set

0009

0009 ADA8C0 LDA COMPORT read the byte from Receive Data Reg

OOOC 60 RTS and return with it

Fragment B.2.

Similarly, as Fragment B.3 shows, writing a byte out to the communi
cations line is a matter of (once the 6551 has been initialized) waiting
until the status register bit four (transmitter data register empty) is set,
then writing the byte to the data register.

Neither routine does any error checking using the other status register
bits.

The 6521 Parallel Chip

The 6521 parallel I/O peripheral interface adapter is used to interface
65x microprocessors with printers, matrix-type keyboards, and other
devices. It features two programmable eight-bit bidirectional parallel
I/O ports (Ports A and B), any lines of which can be individually set for
either reading or writing via a Data Direction Register. Provided all
eight lines are set one way, you can either read or write a byte at a time
(as opposed to a bit at a time via a serial chip) through the port. For
fancy I/O, the 6521 has several "handshake" lines for greater control of
I/O.

Like the 6551, the 6521 occupies four address locations (those depend
ent on the hardwiring of the two Register Select lines). But it has six reg-

B 65x Series Support Chips 557

0000 ; routine to write a byte to the communications line (6551)

0000 ; enter with byte in 8-bit A
0000

0000 COMPORT GEQU $C0A8 6551 located at $C0A8,9,A,B

0000

0000 48 PHA save byte to write; free accum

0001
0001 ADA9C0 WAITRDY LDA COMPORT+ 1 read Status Reg
0004 291000 AND #$10 get bit 4 (trnsmt data reg empty)

0007 F0F8 BEQ WAITRDY loop until bit 4 set
0009

0009 68 PLA retrieve byte to write

OOOA 8DA8C0 STA COMPORT write the byte to Transmit Data Reg
000D 60 RTS

Fragment B.3.

isters, three for each port: a control register, a data register, and a data
direction register. Each port's data register and data direction register
are addressed at the same location. Bit two of the port's control register
determines which register is connected to that address at any one time:
if control register bit two is set, the data register is connected; if control
register bit two is clear, the data direction register is connected.

The data direction register is generally initialized for an application
just once; then the data register is selected. Each data direction register
bit controls the same-numbered bit in the data register: if a data direc
tion register bit is set, the corresponding data register bit becomes an
output line; if a data direction register bit is clear, the corresponding
data register bit becomes an input line.

Imagine an application in which a printer is wired through a
Centronics-compatible printer port to a 6521's port A: the 6521's eight
Port A bits are connected to Centronics pins two through nine. Port B is
used to control the interface between computer and printer: the 6521's
Port B bit zero is connected to the printer's Data Strobe (Centronics pin
one); the 6521's Port B bit seven is connected to the printer Busy Line
(Centronics pin 11).

The 6521 PIA is automatically initialized on power-up and reset to all
be inputs (all registers are cleared). So every program should initialize
all the lines it will use, either as inputs or as outputs, every time it is
run. In this case, setting up output to the printer means all of Port A
needs to be set up as inputs, while Port B bit zero must be initialized
as an output and bit seven as an input. Setting up the rest of Port B
as inputs is a good habit to protect outside peripherals, as seen in Frag
ment B.4.

558 Programming the 65816

0000 E220 SEP #$20 use 8-bit accumulator

0002 LONGA OFF

0002

0002 ; set up Port A as entirely output

0002

0002 AD0080 LDA PORTACTRL get byte in Port A Control Reg

0005 29FB AND #*11111011 clear bit 2: select Data Direction Reg

0007 8D0080 STA PORTACTRL and store it back

000A

000A A9FF LDA #$FF

OOOC 8D0080 STA PORTA store all 1 1s to make Port A an output

OOOF
OOOF AD0080 LDA PORTACTRL get byte in Port A Control Reg

0012 0904 ORA #*00000100 set bit 2: select Data Reg

0014 8D0080 STA PORTACTRL and store it back

0017

0017 ; set up Port B: bit 0 as output; bit 7 as input

0017

0017 AD0080 LDA PORTBCTRL get byte in Port B Control Reg

001A 29FB AND #*11111011 clear bit 2: select Data Direction Reg

001C 8D0080 STA PORTBCTRL and store it back

001F

001F A901 LDA #1

0021 8D0080 STA PORTB store 1 to bit 0 (output); 0 to bit 7

0024
0024 AD0080 LDA PORTBCTRL get byte in Port B Control Reg

0027 0904 ORA #*00000100 set bit 2: select Data Reg

0029 8D0080 STA PORTBCTRL and store it back

002C

002C A901 LDA #1 write 1 to printer's Data Strobe

002E 800080 STA PORTB to initialize Data Strobe to 1 (high)

0031

0031 60 RTS

Fragment B.4.

PORTACTRL, PORTA, PORTBCTRL, and PORTB must be elsewhere
equated to the addresses at which each is located. The value in the con
trol register is loaded and bit two is ANDed out with the mask, then
stored back to choose the data direction register as the chosen register in
each port. All ones are stored to Port A's data direction register, select
ing all eight lines as outputs. One is stored to Port B's data direction reg
ister, selecting bit zero as an output and the rest of the port as inputs.
Then the control registers are loaded again, this time ORing bit two
back on before re-storing them, to choose the data register as the chosen

B 65x Series Support Chips 559

register in each port. Finally, one is written out Port B to the printer's
Data Strobe to initialize the line.

Now bytes can be written to the printer by waiting for a zero on the
Printer Busy Line (bit seven of Port B was chosen so that a positive/
negative test could be made to test the bit), then storing the byte to be
written to Port A, and finally toggling the Data Strobe to zero and then
back to one to inform the printer that a new character is ready to be
printed.

0000 ; write character in eight-bit accumulator to the printer

0000
0000 2C0080 POUT BIT PORTB move Port B bit 7 (Busy Line) to n flag
0003 30FB BMI POUT wait until printer is not busy
0005
0005 8D0080 STA PORTA write char in accum to printer
0008

0008 A90000 LDA #0 tell the printer to get and print it:
000B 8D0080 STA PORTB strobe the printer: write a 0 to bit 0
000E EA NOP allow a wait cycle
000F A90100 LDA #1

0012 8D0080 STA PORTB then toggle Strobe back to high (normal)
0015

0015 60 RTS

Fragment B.5.

You must be sure, in toggling the Strobe by writing to it, that the zero
written to bit seven (zeroes are written to bits one through seven during
both writes to Port B) not be read back as though it is a value being sent
by the printer's Busy Line indicating the printer is not busy.

Remember that it is always important to have a data sheet for each
peripheral support chip you attempt to write code for.

The Rockwell 65C02
Rockwell International Corporation has a family of CPUs which it

calls the R65C00 family. It includes their R65C02; while the designation
would lead you to believe it is the 65C02 to which a part of this book is
devoted, in fact its instruction set is a superset of the 65C02 instruction
set discussed earlier. It is the 65C02 described earlier, not the Rockwell
part, which Apple employed in its //c computer and the 1985 upgrade
to its //e computer.

Furthermore, the R65C02's superset adds 32 instructions with opcodes
that are the same as 32 very different instructions on the 65816, making
the Rockwell R65C02 incompatible with the 65802 and 65816. For this
reason, the R65C02 has been relegated to this appendix. If these addi
tional instructions are disregarded and left unused, the remaining avail
able instructions correspond to the standard 65C02 instruction set.

This is not to say the additional instructions are without merit. Rock
well's R65C02 has two additional operations for manipulating a single
zero page bit at a time, Reset Memory Bit (RMB) and Set Memory Bit
(SMB), and two additional operations for testing a single zero page bit
and branching if it is clear or set, Branch on Bit Reset (BBR) and Branch
on Bit Set (BBS). All four have eight versions—one for each bit—which
are specified by adding a bit number (0 through 7) to the mnemonic. So
there are 32 total additional instructions.

The operand to the bit-manipulating instructions is a zero page
address (specified as dp, for "direct page", in the following pages to be
consistent with the instructions chapter, although the direct page is
actually limited to the zero page). The operand to the bit-testing instruc
tions is a compound operand: a zero page address to test, a comma, and
a nearby label to which to branch (which an assembler turns into a pro
gram counter relative offset).

While incompatible with the 65802/65816 family expansion, the
Rockwell 65C02's bit manipulation and testing instructions can be valu
able for control applications, in which single bits are used to store bool
ean true/false values and to send signals to external devices.

561

562 Programming the 65816

BBR Branch on Bit Reset

The specified bit in the zero page location specified in the operand is tested. If it
is clear (reset), a branch is taken; if it is set, the instruction immediately following
the two-byte BBRx instruction is executed. The bit is specified by a number (0
through 7) concatenated to the end of the mnemonic.

If the branch is performed, the third byte of the instruction is used as a signed
displacement from the program counter; that is, it is added to the program counter:
a positive value (numbers less than or equal to $80; that is, numbers with the high-
order bit clear) results in a branch to a higher location; a negative value (greater
than $80, with the high-order bit set) results in a branch to a lower location. Once
the branch address is calculated, the result is loaded into the program counter,
transferring control to that location.

Most assemblers calculate the displacement for you: you must specify as the
operand, not the displacement but rather the label to which you wish to branch.
The assembler then calculates the correct offset.

Flags Affected: -------------------

Codes:

O p c o d e A v a ilab le to : # 0 / # o /

A ddressing M od e Syntax (hex) 6502 65C02 R65C02 65802 Bytes C ycles

D irect Page/Program C o u n ter R elative BBRO d p ,n ea rlab el OF X 3 5

D irect Page/Program C o u n ter R elative BBR1 dp, n earlabel IF X 3 5

D irect Page/Program C o u n ter R elative BBR2 d p ,n ea rlab el 2F X 3 5

D irect Page/Program C o u n ter R elative BBR3 dp, n earlabel 3F X 3 5

D irect Page/Program C o u n ter R elative BBR4 d p ,n ea rlab el 4F X 3 5

D irect Page/Program C o u n ter R elative BBR5 d p ,n ea rlab el 5F X 3 5

D irect Page/Program C o u n ter R elative BBR6 dp, n earlabel 6F X 3 5

D irect Page/Program C o u n ter R elative BBR7 d p ,n ea rlab el 7F X 3 5

C The Rockwell 65C02 563

BBS Branch on Bit Set

The specified bit in the zero page location specified in the operand is tested. If it
is set, a branch is taken; if it is clear (reset), the instruction immediately following
the two-byte BBSx instruction is executed. The bit is specified by a number (0
through 7) concatenated to the end of the mnemonic.

If the branch is performed, the third byte of the instruction is used as a signed
displacement from the program counter; that is, it is added to the program counter:
a positive value (numbers less than or equal to $80; that is, numbers with the high-
order bit clear) results in a branch to a higher location; a negative value (greater
than $80, with the high-order bit set) results in a branch to a lower location. Once
the branch address is calculated, the result is loaded into the program counter,
transferring control to that location.

Most assemblers calculate the displacement for you: you must specify as the
operand, not the displacement but rather the label to which you wish to branch.
The assembler then calculates the correct offset.

Flags Affected: d ------------------

Codes:

O p c o d e A v a ilab le to : # o f # o f

A ddressin g M od e Syntax (hex) 6502 65C02 R65C02 65802 Bytes Cycles

D irect Pag e/ Program C o u n ter R elative BBSO dp, n earlabel 8F X 3 5

D irect Pag e/ Program C o u n ter R elative BBS1 dp, n earlabel 9F X 3 5

D irect Pag e/ Program C o u n ter R elative BBS2 d p ,n ea rlab el A F X 3 5

D irect Pag e/ Program C o u n ter R elative BBS3 dp, n earlabel BF X 3 5

D irect Pag e/ Program C o u n ter R elativ e BBS4 d p ,n ea rlab el C F X 3 5

D irect Pag e/ Program C o u n ter R elative B BS5 d p ,n ea rlab el D F X 3 5

D irect Pag e/ Program C o u n ter R elative BBS 6 d p ,n ea rlab el EF X 3 5

D irect Pag e/ Program C o u n ter R elative BBS7 dp ,n earlab el FF X 3 5

564 Programming the 65816

RMB Reset Memory Bit

Clear the specified bit in the zero page memory location specified in the oper
and. The bit to clear is specified by a number (0 through 7) concatenated to the end
of the mnemonic.

Flags Affected: -------------------

Codes:

O p c o d e A v a ilab le to : # o f # o f

A ddressin g M od e Syntax (hex) 6502 65C 02 R65C02 65802 Bytes C ycles

D irect Page RMBO dp 07 X 2 5

D irect Page RMB1 dp 17 X 2 5

D irect Page RMB2 dp 2 7 X 2 5

D irect Page RMB3 dp 3 7 X 2 5

D irect Page RMB4 dp 47 X 2 5

D irect Page RMB5 dp 57 X 2 5

D irect Page RMB6 dp 6 7 X 2 5

D irect Page RMB7 dp 77 X 2 5

C The Rockwell 65C02 565

SMB Set Memory Bit

Set the specified bit in the zero page memory location specified in the operand.
The bit to set is specified by a number (0 through 7) concatenated to the end of the
mnemonic.

Flags Affected: -------------------

Codes:

A ddressin g M ode Syntax

O p cod e

(hex)

A v a ilab le to : # 0/ It o f

6502 65C02 R65C02 65802 Bytes C ycles

D irect Page SMBO dp 87 X 2 5

D irect Page SMB1 dp 97 X 2 5

D irect Page SMB2 dp A 7 X 2 5

D irect Page SMB3 dp B7 X 2 5

D irect Page SMB4 dp C 7 X 2 5

D irect Page SMB5 dp D 7 X 2 5

D irect Page SMB6 dp E7 X 2 5

D irect Page SMB7 dp F7 X 2 5

Instruction Groups
The 65x instructions can be divided into three groups, on the basis of

both the types of actions of each instruction and the addressing modes
each can use. The opcodes in the first group and some in the second
have similar bit patterns, the same addressing modes available, and reg
ularity which can make remembering the capabilities of a particular
instruction—or creating a compiler code generator—much easier.

Group I instructions are the most commonly used load, store, logic,
and arithmetic instructions, and have by far the most addressing modes
available to them. Group II instructions are mostly read-modify-write
instructions, such as increment, decrement, shift, and rotate, which
both access and change one and only one register or memory location.

Group III is a catch-all for the remaining instructions, such as index
register comparisons and stack operations.

567

568 Programming the 65816

Group I Instructions____________________
The 65x Group I instructions, with their opcode's bit patterns, are

shown in Table D .l . The 'aaaaa's are filled with addressing mode bit
patterns—there is one pattern for each addressing mode available to
Group I instructions.

Table D .l . Group I Instructions Opcode Patterns.

Add with Carry to the Accumulator (ADC) 011a aaaa
And the Accumulator (AND) 001a aaaa
Compare the Accumulator (CMP) 110a aaaa
Exclusive Or the Accumulator (EOR) 010a aaaa
Load the Accumulator (LDA) 101a aaaa
Or the Accumulator (ORA) 000a aaaa
Subtract with Borrow from the Accumulator (SBC) 111a aaaa
Store the Accumulator (STA) 100a aaaa

The 6502 addressing modes available to the Group I instructions have
bit patterns that all end in '01'. These bit patterns are found in Table
D.2. The exception to this scheme is STA immediate; since it is not pos
sible to use immediate addressing with a store instruction, its logical
opcode 1000 1001 is used by a non-Group-I instruction.

Table D .2 . Address Mode Patterns for Group I Instructions.

Immediate 0 1001
Direct (Zero) Page 0 0101
Absolute 0 1101
Direct (Zero) Page Indexed by X 1 0101
Absolute Indexed by X 1 1101
Absolute Indexed by Y 1 1001
Direct (Zero) Page Indexed Indirect with X (pre-indexed) 0 0001
Direct (Zero) Page Indirect Indexed with Y (post-indexed) 1 0001

The 65C02 adds one more addressing mode for Group I instructions;
it has the only Group I addressing mode bit pattern to end in a zero:

Direct (Zero) Page Indirect 10010

The 65802 and 65816 add the six addressing modes for Group I
instructions found in Table D.3.

D Instruction Groups 569

Table D .3 . 65 8 0 2 /6 5 8 1 6 Group I Addressing Mode Patterns.

Direct Page Indirect Long Indexed with Y (post-indexed long) 1 0111
Direct Page Indirect Long 0 0111
Absolute Long 0 1111
Absolute Long Indexed with X 1 1111
Stack Relative 0 0011
Stack Relative Indirect Indexed with Y 1 0011

Group II Instructions___________________

Group II instructions are an amalgam of mostly read-modify-write
instructions with very similar addressing modes (differing only whether
they have accumulator addressing available to them on the 6502). The
instructions, with their opcode bit patterns, are listing in Table D.4.

There are either four or five addressing modes available to these
instructions on the 6502—five if the missing bits are 'bbc' rather than
just 'bb', the fifth addressing mode being accumulator addressing.

Table D.5 shows the five addressing modes with their bit patterns. All
three bits in this table are filled into the 'bbc' missing bits in Table D.4;
only the first two bits of each Table D.5 set are filled into 'bb' missing
bits in Table D.4.

Table D .4 . Group II Opcode Patterns.

Arithmetic Shift Left (ASL) 000b bclO
Decrement (DEC) 110b bllO
Increment (INC) 111b bllO
Logical Shift Right (LSR) 010b bclO
Rotate Left through Carry (ROL) 001b bclO
Rotate Right through Carry (ROR) 011b bclO
Store Index Register X (STX) 100b bllO
Store Index Register Y (STY) 100b blOO

Table D .5 . Address M ode Patterns for Group II Instructions.

Accumulator 0 10
Direct (Zero) Page 0 01
Absolute 011
Direct (Zero) Page Indexed by X 1 01
Absolute Indexed by X 111

570 Programming the 65816

Notice how the four 'bb l' addressing modes have the same bit pat
terns as the first three bits of their corresponding bit patterns for the
Group I instruction addressing modes.

There are a few exceptions.
Absolute indexing is not available for storing either index register.

Furthermore, since the register cannot use itself to store itself, the STX
instruction can't use direct page,X; instead, direct page,Y substitutes for
this instruction's direct page, indexed store.

The two 65C02 instructions to increment and decrement the accumu
lator do not follow this scheme at all; giving these instructions that
addressing mode clearly was not planned when the 6502 was designed,
since their opcodes were assigned to other instructions. Nor does the
65C02's STZ (store zero to memory) instruction, which uses the main
four addressing modes, follow the scheme, even though it seems clearly
to be a Group II instruction of this type. But four of the five addressing
modes of the BIT instruction on the 65C02, 65802, and 65816 (the 6502
has only two addressing modes for this instruction)—the four 'bbl'
addressing modes above—follow this scheme (its bit pattern is 001b
blOO). It also has an immediate addressing mode, however, which is in
no way regular.

Loading the Index Registers

The two index registers can be loaded with regular opcodes:

Load Index Register X (LDX) lOld ddlO
Load Index Register Y (LDY) lOld ddOO

Available to them are the five addressing modes in table D.6.

Table D .6 . Address Mode Patterns for Load Index
Register Instructions.

Immediate 0 00
Direct Page 0 01
Absolute 0 1 1
Direct Page Indexed 1 01
Absolute Indexed 1 11

The two indexed modes use the Y index register for indexing when
loading the X register and vice versa.

Index Register Compares

The two instructions to compare an index register to memory have
three addressing modes available to them.

D Instruction Groups 571

The instructions are:

Compare Index Register X with Memory (CPX) 1110 eeOO
Compare Index Register Y with Memory (CPY) 1100 eeOO

Table D.7 lists the three addressing modes available.

Table D .7 . Address Mode Patterns for Com pare Index

The two test-and-change-bits instructions each have two addressing
modes that they use in a regular manner.

The two instructions are:

Register Instructions.

Immediate
Direct Page
Absolute

00
01
11

Test-and-Change-Bits Instructions

Test and Reset Memory Bits (TRB)
Test and Set Memory Bits (TSB)

The two addressing modes are:

0001 xlOO
0000 xlOO

Direct Page
Absolute

x = 0
x = l

E W65C816 Data Sheet

C M O S W65C816 and W65C802
16-Bit Microprocessor Family
F e a t u r e s
• Advanced CMOS design fo r low power consum ption and increased

noise im m unity
• Single 3-6V power supply, 5V specified
• Emulation mode allows com plete hardware and software

com patib ility w ith 6502 designs
• 24-bit address bus allows access to 16 MBytes of memory space
• Full 16-bit ALU. Accum ulator, Stack Pointer, and Index Registers
• Valid Data Address (VDA) and Valid Program Address (VPA) output

allows dual cache and cycle steal DMA im plementation
• Vector Pull (VP) output indicates when in terrupt vectors are being

addressed May be used to im plement vectored in terrupt design
• A bort (ABORT) input and associated vector supports virtual memory

system design
• Separate program and data bank registers a llow program

segmentation or fu ll 16-MByte linear addressing
• New Direct Register and stack relative addressing provides capability

for re-entrant, re-cursive and re-locatable program m ing
• 24 addressing m odes— 13 orig inal 6502 modes, plus 11 new

addressing modes w ith 91 instructions using 255 opcodes
• New Wait fo r Inte rrup t (WAI) and S top the C lock (STP) instructions

further reduce power consum ption, decrease in terrupt latency and
allows synchronization w ith external events

• New Co-Processor instruction (COP) w ith associated vector sup
ports co-processor configurations, i.e . floating poin t processors

• New block move ability

G e n e r a l D e s c r ip t io n

WDC's W65C802 and W65C816 are CMOS 16-bit m icroprocessors fea
turing total software compatibility w ith their 8-bit NMOS and CMOS 6500-
series predecessors The W65C802 is pm -to-pm com patib le with 8-bit
devices cu rren tly available, while the W65C816 extends addressing to a
fu ll 16 m egabytes These devices o ffer the many advantages o f CMOS
technology, inc lud ing increased noise im m unity, h igher reliability, and
greatly reduced power requirem ents A software sw itch determ ines
whether the processor is in the 8 -bit "em u la tion" mode, or in the native
mode, thus a llow ing existing systems to use the expanded features.

As shown in the processor program m ing model, the Accum ulator. ALU.
X and Y Index registers, and Stack Pointer register have all been ex
tended to 16 bits. A new 16-bit D irect Page register augm ents the D irect
Page addressing mode (fo rm erly Zero Page addressing) Separate
Program Bank and Data Bank registers a llow 24-bit m emory addressing
w ith segmented or linear addressing

Four new signals provide the system designer w ith many options The
ABO RT input can in terrupt the currently executing instruction w ithout
m odifying internal register, thus a llow ing virtual memory system design.
Valid Data Address (VDA) and Valid Program Address (VPA) outputs
fac ilita te dual cache memory by ind icating whether a data segment or
program segment is accessed M od ify ing a vector is made easy by
m on itoring the Vector Pull (VP) output

Note: To assist the design engineer, a Caveat and App lica tion In fo r
mation section has been included w ith in this data sheet

W 6 5 C 8 1 6 P r o c e s s o r P r o g r a m m in g M o d e l

| BITS a BITS

[~ Data Bank Reg

L

Data Bank Reg

X Register Hi
(XH)

' X Register Low
'?> (XL)

(DBR)
Y Register Hi

(YH) T jVU
Y Register Low

I___
□

Stack Register H i- i . Stack Reg.(sh) (y (3j
6502
Registers

Accum ulator
(B)

~r~
(C)
I

Accumulator
(A)

Program Bank Reg
(PBR)

Prograi
(PCH)

—I—
(PC)

 I__
Counter
(PCL)

Direct Reg Hi ' D irect Reg Low
(V) (DL)(OH)

S t a t u s R e g i s t e r C o d in g

STATUS REG (P)

..P T b] \z
N V M X D I Z C

►EMULATION 1 - 6502
0 r NATIVE

L »-CARRY
ZERO

L—IRQ DISABLE
DECIMAL MODE

INDEX REG SELECT
L-M E M O R Y SELECT

I—OVER FLOW
t—NEGATIVE

1 - TRUE
1 = RESULT ZERO
1 = DISABLE
1 = TRUE
1 = 8 BIT 0 - 16 BIT
1 = 8 BIT 0 : 16 BIT
1 = TRUE
1 = NEGATIVE

P in C o n f ig u r a t io n

VP d 1 40 ZD RES V u C Z 1 40
RDY CZ 2 39 ZD VDA R D V C Z 2 39

ABORT CZ 3 38 ZD m / x 61 (OUT) C Z 3 38

IR Q C Z 4 37 ZD 62 (IN) I R O C 4 37
M iC Z 5 36 ZD BE NC C Z 5 36

NMI d 6 35 z d e NMI Z Z 6 35

VPA C l 7 34 ZD r / w SYNC C Z 7 34

Vd o C Z 8 33 ZD DO/BAO Vd o C Z 8 33

AO C l 9 32 ZD D1/BA1 AO C Z 9 32

A i d 10 31 ZD D2/BA2 A i d 10 31

A 2C Z n W 65C 816 30 ZD D3/BA3 A 2 d 11 W 65C802JQ

A3 CZ 12 29 ZD D4/BA4 A3 C Z 12 29

A 4 d 13 28 ZD D5/BA5 A 4 d 13 28

A S d 14 27 ZD D6/BA6 A S d 14 27

A 6 d 15 26 ZD D7/BA7 A S d 15 26

A 7 t = 16 25 ZD A15 A7 C Z 16 25

as d 17 24 ZD A14 A S d 17 24

A 9C Z 18 23 d A13 A S d 18 23

A 1 0 d 19 22 ZD A12 A 1 0 d 19 22

A11 CZ 20 21 ZD Vss A11 d 20 21

RES
62 (OUT)
id
02 (IN)
HC
HC
R/W
00

=101
ZD 02

03
pD4

OS
DO
07
A15

ZD A14
A13
A12
VU

Design Engineer W illiam 0 M enscn j>

I T H E W E S T E R N D E S I G N C E N T E R . IN C .
I 2 1 B B E a s t E3- U W M n o d a • A > -.zo -> ra 0 5 S O . ' 1 • 6 0 ^ 9 6 ^ 1 ^ . 3 5

Advance Information Data Sheet:
This is advanced information and
specifications are subject to change
w ithout notice.

573

574 Programming the 65816

A b s o lu t e M a x im u m R a t in g s : (Now 1)
Rating Sym bol Value

Supply Voltage Voo -0 3V to *7 0V

Inpu t Voltage VlN -0.3V to Voo *0 3V

O perating Temperature Ta 0°C to ♦70°C

Storage Temperature Ts -55° C to ♦150°C

This device conta ins inpu t p ro tection against dam age due to h igh static
voltages or e lectric fie lds, however, precautions should be taken to avoid
app lica tion o f voltages h igher than the m axim um rating.

Notes

1 Exceeding these ratings may cause perm anent damage Functional
operation under these cond itions is not implied.

D C C h a r a c t e r i s t i c s (A ll D e v i c e s) : vdd s o v ts%. V s s = ov Ta o ° c to *70°c
P aram eter Sym bol Min Max Unit

Input H igh Voltage
RES. RDY. IRQ. Data, SO. BE,
0 2 (IN). NMI. ABORT

VlH
2 0

0 7 Voo
Vdd ♦ 0 3
Vdd ♦ 0 3

V
V

Input Low Voltage
RES. RDY. IRQ. Data. SO. BE.
0 2 (IN). NMI. ABORT

VlL
-0 3
-0 3

0 8
0 2

V
V

Input Leakaae Current (Vin 0 to Vdd)
RES. NMI. RDY. IRQ. SO. BE. ABORT (Internal Pullup)
0 2 (IN) _
Address, Data, R/W (O ff State. BE - 0)

IlN

-100
-1
-10

1
1

10

f jA
tjA
»A

O utput H igh Voltage (Ioh = -100/;A)_
SYNC. Data. Address, R/W. ML, VP, M/X, E, VDA. VPA,
01 (OUT). 0 2 (OUT)

Voh

0 7 Vdd V

O utput Low Voltage (lo i = 1 6 m A)__
SYNC. Data. Address. R/W. ML. VP. M/X. E. VDA. VPA.
01 (OUT). 02 (OUT)

VOL

0 4 V

Supply Current (No Load) loo 4 mA/MHz

Standby Current (No Load, Data Bus =Vss or Voo
RES, NMI. IRQ. SO. BE. ABO RT. 0 2 = Voo)

IS B
- 10 f jA

Capacitance (Vin - 0V. Ta = 2 5°C. f = 2 MHz)
Logic, 02 (IN) _
Address. Data. R/W (O ff State)

C lN

C ts
- 10

15
pF
pF

P in F u n c t i o n T a b le

Pin D eecrtptlon
A0-A15 Address Bus

ABORT A bort Input

BE Bus Enable

0 2 (IN) Phase 2 In C lock

01 (OUT) Phase 1 O ut C lock

0 2 (OUT) Phase 2 Out C lock

D0-D7 Data Bus (G65SC802)

DO/BAO-D7/BA7 Data Bus. M ultip lexed (G65SC816)

E E m ulation Select

Tr q In terrupt Request

ML M emory Lock

M/X Mode Select (Pm o r Px)

Pin D escription
NC No Connection

NMI Non-M askable Interrupt

RDY Ready

RES Reset

R/W Read/W rite

SO Set Overflow

SYNC S ynchronize

VDA Valid Data Address

VP Vector Pull

VPA Valid Program Address

Vdd Positive Power Supply (+5 Volts)

Vss Internal Logic Ground

E W65C816 Data Sheet 575

A C C h a r a c t e r i s t i c s (W 6 5 C 8 1 6) : v d o 5 o v ♦ 5% . V s s ; o v . T a - j r c t o • 7 0 ° C

2 WHz 4 MHz 6 WHz 8 Hz

Parameter Symbol Min Max Min Max Min Max Min Max Unit

Cycle Time tcvc 500 DC 250 DC 167 DC 125 DC nS

Clock Pulse W idth Low tPWL 0 240 10 0 120 10 0 080 10 0 060 10 pS

Clock Pulse W idth High tPWH 240 * 120 .. 80 * 60 * nS

Fall Time. Rise Time tF. tR - 10 - 10 - 5 - 5 nS

A0-A15 Hold Time tAH 10 - 10 - 10 - 10 nS

A0-A15 Setup Time tADS — 100 - 75 - 60 - 40 nS

BA0-BA7 Hold Tim e tBH 10 - 10 _
.J 10 - 10 nS

BA0-BA7 Setup Time tBAS - 100 90 65 _ 45 nS

Access Time tACC 365 - 130 87 70 nS

Read Data Hold Tim e tOHR ,0 - 10 - 10 - 10 - nS

Read Data Setup Tim e tDSR 40 - 30 - 20 15 - nS

W rite Data Delay Tim e tMDS - 100 - 70 60 - 40 nS

W rite Data Hold Time tDHW 10 - 10 u ~
10 - 10 - nS

Processor C ontro l Setup Time tPCS 40 - 30 20 15 - nS

Processor C ontro l Hold Time tPCH 10 - 10 _ 10 10 - nS

E.MX O utput Hold Time tEH 10 - 10 - 5 5 - nS

E,MX O utput Setup Tim e tES 50 50 — 25 15 - nS

Capacitive Load (Address. Data, and R/W) C e x t ^ - 100 - 100 - 35 35 PF

BE to H igh Impedance State tB H Z - 30 - 30 - 30 - 30 nS

BE to Valid Data tB V D — 30 - 30 - 30 - 30 nS

T im in g D ia g r a m (W 6 5 C 8 1 6)

T im in g N o te s :
t Voltage levels are Vl 0 4V. Vm 2 4v
2 Tim ing measurement pom ts are 0 8V and 2 OV

576 Programming the 65816

A C C h a r a c t e r i s t i c s (W 6 5 C 8 0 2) : vdo = 5 0V - 5 V vss • ov. Ta = o°C to *7 0 °c

2 MHz 4 MHz 6 MHz 8 MHz

Parameter Symbol M in Max Min Max Min Max Min Max Unit

Cycle Time tcvc 500 DC 250 DC 167 DC 125 DC nS

C lock Pulse W idth Low tPWL 0 240 10 0 120 10 0 080 10 0 060 10 fjS
Clock Pulse W idth High tPWH 240 * 120 3C 80 60 * nS

Fall Time, Rise Time tF. tR 10 10 - 5 - 5 nS

Delay Time, 02 (IN) to 01 (OUT) ID01 - 20 20 20 20 nS

Delay Time, 02 (IN) to 0 2 (OUT) tD02 - 40 - 40 40 40 nS

Address Hold Time tAH 10 - 10 10 10 - nS

Address Setup Time tADS - 100 - 75 - 60 - 40 nS

Access Time tACC 365 - 130 _ 87 - 70 - nS

Read Data Hold Time tDHR 10 - 10 10 - 10 - nS

Read Data Setup Time tDSR 40 - 30 - 20 - 15 - nS

Write Data Delay Time tMDS 100 - 70 - 60 - 40 nS

Write Data Hold Time tDHW 10 - 10 - 10 - 10 - nS

Processor C ontro l Setup Time tPCS 40 - 30 - 20 - 15 - nS

Processor C ontro l Ho ld Time tPCH 10 - 10 - 10 - 10 - nS

Capacitive Load (Address. Data, and R/W) C e x t 100 - 100 - 35 - 35 pF

T im in g D ia g r a m (W 6 5 C 8 0 2)

T im in g N o te s :
1. Voltage levels are V l < 0.4V, V h > 2.4V
2. T im ing measurement poin ts are 0 8V and 2 0V

E W65C816 Data Sheet 577

F u n c t i o n a l D e s c r i p t i o n

The W65C802 o ffers the design engineer the opp o rtun ity to utilize both
existing software program s and hardware configurations, w hile also
achieving the added advantages of increased reg ister lengths and faster
execution times. The W65C802’s “ ease o f use” design and im plem enta
tion features p rovide the designer w ith increased f le x ib ility and reduced
im plem entation costs. In the Em ulation mode, the W65C802 not only
o ffers software com patib ility , but is also hardware (p in -to -p in) co m
patib le w ith 6502 designs , p lus it provides the advantages of 16-bit
in terna l operation in 6502-com patib le app lica tions. The W65C802 is an
excellent direct replacement m icroprocessor fo r 6502 designs.

The W65C816 provides the design eng ineer w ith upward m ob ility and
software c o m patib ility in app lica tions w here a 16-bit system con figura
tion is desired. The W65C816's 16-bit hardware configuration , coupled
w ith current software allows a w ide se lection o f system applications. In
the Em ulation mode, the W65C816 offers many advantages, inc luding
fu ll software c o m patib ility w ith 6502 coding In add ition, the W65C816's
pow erfu l instruction set and addressing modes make it an excellent
cho ice fo r new 16-bit designs.

Internal organ ization o f the W65C802 and W65C816 can be d ivided into
two parts: 1) The Register Section, and 2) The C ontro l Section. Instruc
tions (or opcodes) obta ined from program m em ory are executed by
im plem enting a series o f data transfers w ith in the Register Section.
S ignals tha t cause data transfers to be executed are generated w ith in the
C ontro l Section. Both the W65C802 and the W65C816 have a 16-bit
in ternal arch itecture w ith an 8-b it external data bus.

Instruction Register and Decode
An opcode enters the p rocessor on the Data Bus, and is la tched into the
Instruction Register d uring the ins truc tion fetch cycle. Th is instruction
is then decoded, a long w ith tim ing and in te rrup t signals, to generate the
various Instruction Register con tro l signals.

Timing Control Unit (TCU)
The T im ing C ontro l U n it keeps track o f each ins truc tion cycle as it is ex
ecuted The TCU is set to zero each tim e an instruction fetch is executed,
and is advanced at the beg inn ing o f each cycle fo r as many cycles as is
required to com plete the instruction . Each data transfer between regis
ters depends upon decoding the contents o f both the Instruction Regis
ter and the T im ing C ontro l Unit

Arithmetic and Logic Unit (ALU)
All arithm etic and log ic operations take place w ith in the 16-bit ALU. In
add ition to data operations, the ALU also calculates the e ffective address
fo r relative and indexed addressing modes. The result of a data operation
is stored in either m em ory or an internal register. Carry, Negative. Over
flo w and Zero flags may be updated fo llow ing the ALU data operation.

Internal Registers (Refer to P rogram m ing Model)

Accumulators (A, B, C)
The A ccum ula to r is a general purpose reg ister w hich stores one o f the
operands, or the result o f most a rithm etic and logical operations. In the
Native mode (E=0). when the A ccum ula to r Select B it (M) equals zero,
the A ccum ula tor is established as 16 bits w ide (A + B = C). When the
A ccum ula tor Select B it (M) equals one. the A ccum ula tor is 8 bits wide
(A). In this case, the upper 8 bits (B) may be used fo r tem porary storage
in con junction w ith the Exchange A ccum ula tor (XBA) instruction.

Data Bank Register (DBR)
D uring modes o f operation, the 8-b it Data Bank Register holds the de
fault bank address fo r m em ory transfers. The 24-bit address is composed
o f the 16-bit in s tru c tion e ffective address and the 8 -b it Data Bank ad

dress. The register value is m u ltip lexed w ith the data value and is present
on the D ata/Address lines d u ring the firs t half o f a data transfe r m em ory
cyc le fo r the W65C816. The Data Bank Register is in itia lized to zero d u r
ing Reset.

Direct (D)
The 16-bit D irect Register provides an address o ffset fo r a ll instructions
using d irec t addressing. The e ffective bank zero address is form ed by
add ing the 8 -b it ins truc tion operand address to the D irect Register The
D irect Register is in itia lized to zero during Reset.

Index (X and Y)
There are tw o Index Registers (X and Y) w h ich may be used as general
purpose reg isters or to p rov ide an index value fo r c a lcu la tion o f the e f
fective address When executing an instruction w ith indexed addressing,
the m icroprocessor fetches the opcode and the base address, and then
m odifies the address by add ing the Index Register contents to the ad
dress p rio r to perfo rm ing the desired operation. P re-indexing o r post
indexing o f indirect addresses may be selected. In the Native mode (E=0),
both Index Registers are 16 bits w ide (p rovid ing the Index Select Bit (X)
equals zero). If the Index Select B it (X) equals one. both reg isters w ill be
8 bits w ide, and the h igh byte is forced to zero.

Processor Status (P)
The 8-bit Processor Status Register contains status flags and mode select
bits. The C arry (C). Negative (N). O verflow (V), and Zero (Z) status flags
serve to report the status o f m ost ALU operations. These status flags are
tested by use o f C ond itiona l Branch instructions. The Decimal (D). IRQ
Disable (I), M e m ory/A ccum ula tor (M), and Index (X) bits are used as
m ode select flags. These flags are set by the program to change m ic ro
processor operations.

The Em ulation (E) select and the Break (B) flags are accessib le only
through the Processor S tatus Register. The Em ulation m ode select flag
is selected by the Exchange Carry and E m ulation B its (XCE) instruction.
Table 1, W65C802 and W65C816 Mode Com parison, illustra tes the
features of the Native (E=0) and Em ulation (E=1) modes The M and X
flags are always equal to one in the Emulation mode. When an in terrupt
occurs during the E m ulation mode, the Break flag is w ritten to stack
memory as bit 4 o f the Processor Status Register.

Program Bank Register (PBR)
The 8 -b it Program Bank Register holds the bank address fo r a ll instruc
tion fetches. The 24-bit address consists o f the 16-bit instruction effective
address and the 8 -b it P rogram Bank address The reg ister value is m u lti
plexed w ith the data value and presented on the Data/Address lines during
the firs t half o f a program m em ory read cycle. The Program Bank Regis
ter is in itia lized to zero d uring Reset The PHK ins truc tion pushes the
PBR register onto the Stack

Program Counter (PC)
The 16-bit Program C ounter Register provides the addresses which are
used to step the m icroprocessor through sequentia l program instruc
tions. The register is increm ented each tim e an ins truc tion o r operand is
fetched from program m emory

Stack Pointer (S)
The Stack Poin te r is a 16-bit reg is ter w h ich is used to ind icate the next
available location in the stack m em ory area It serves as the e ffective ad
dress in stack addressing modes as well as subroutine and in terrupt p ro
cessing The Stack Pointer a llow s sim ple im plem entation o f nested sub
routines and m u ltip le-level in terrup ts During the Emulation mode, the
S tack P ointer h igh -o rde r byte (SH) is always equal to one. The bank ad
dress fo r all stack operations is Bank zero

578 Programming the 65816

F igu re 1. B lo c k D iag ram — Internal A rch ite c tu re

S igna l D escr ip tion

The fo llow ing Signal Descrip tion applies to both the G65SC802 and the
G65SC816 except as otherw ise noted

Abort (ABORT)—G65SC816
The A bort input is used to abort instructions (usually due to an Address
Bus cond ition) A negative trans ition w ill inh ib it m od ifica tion o f any in
ternal register during the current ins truc tion Upon com pletion o f this
instruction, an in terrupt sequence is in itia ted The location of the aborted
opcode is stored as the return address in stack memory The Abort vector
addressisO O FFF8.9(E m ula tionm ode)or00FFE8.9(N ativem ode) Note
that ABORT is a pulse-sensitive signal, i e . an abort w ill o ccur whenever
there is a negative pulse (or level) on the ABORT pm during a <t>2 clock

Address Bus (A0-A15)
These sixteen o u tp u t lines form the Address Bus for m em ory and I O
exchange on the Data Bus When using the G65SC816. the address lines
may be set to the h igh im pedance state by the Bus Enable (BE) signal

Bus Enable (BE)— W65C816
The Bus Enable inpu t signal a llows external con tro l o f the Address and
Data Buffers, as well as the R/W signal W ith Bus Enable high, the R/W
and Address Buffers are active The Data/Address Buffers are active
during the firs t half of every cycle and the second half o f a w rite cycle
When BE is low. these buffers are d isabled Bus Enable is an asynchro
nous signal

Data Bus (D0-D7)—W65C802
The e ight Data Bus lines provide an 8-b it b id irectiona l Data Bus fo r use
during data exchanges between the m icroprocessor and external mem
o ry o r peripherals Two m em ory cycles are required fo r the transfer of
16-bit values

Data/Address Bus (D0/BA0-D7/BA7)—W65C816
These eight lines m ultip lex address bits BA0-BA7 with the data value The

E W65C816 Data Sheet 579

address is present during the firs t half o f a m em ory cycle, and the data
value is read or w ritten d uring the second half o f the m em ory cycle Two
memory cycles are required to transfer 16-bit values. These lines may be
set to the high im pedance state by the Bus Enable (BE) signal.

Emulation Status (E)—W65C816
The Emulation Status ou tput reflects the state of the Emulation (E) mode
flag in the Processor Status (P) Register Th is signal may be thought of
as an opcode extension and used fo r m em ory and system management

Interrupt Request (IRQ)
The In te rrup t Request inpu t s igna l is used to request that an in terrupt
sequence be in itia ted . When the IRQ D isable (I) flag is cleared, a low in
put logic level in itia tes an in te rrup t sequence after the current instruc
tion is com pleted. The Wait fo r Inte rrup t (WAI) ins truc tion may be ex
ecuted to ensure the in terrup t w ill be recognized immediately. The Inter
rupt Request vector address is OOFFFE.F (Em ulation mode) or OOFFEE.F
(Native mode). S ince IRQ is a level-sensitive input, an in te rrup t w ill
o ccur if the in te rrup t source was not cleared since the last in terrup t
Also, no in te rrup t w ill occur if the in te rrup t source is cleared p rio r to
in terrup t recognition.

Memory Lock (ML)-W 65C816
The M em ory Lock o u tp u t may be used to ensure the in teg rity of Read-
M odify-W rite instructions in a m u ltip rocessor system. M emory Lock
indicates the need to defer a rb itra tion o f the next bus cycle M emory
Lock is low during the last three or five cycles o f ASL. DEC. INC. LSR.
ROL, ROR. TRB, and TSB m em ory re ferencing instructions, depending
on the state of the M flag.

Memory/Index Select Status (M/X)—W65C816
This m u ltip lexed o u tp u t re flects the state of the A ccum ula to r (M) and
Index (X) select flags (b its 5 and 4 o f the Processor S tatus (P) Register.
Flag M is valid d uring the Phase 2 c lock negative trans ition and Flag X is
valid during the Phase 2 c lock positive trans ition . These bits may be
thought o f as opcode extensions and m ay be used fo r m em ory and
system management.

Non-Maskable Interrupt (NMI)
A negative trans ition on the NMI inpu t in itia tes an in te rrup t sequence A
h igh-to -low transition in itia tes an in terrup t sequence after the current
instruction is com pleted. The Wait fo r Inte rrup t (WAI) instruction may be
executed to ensure that the in terrupt w ill be recognized immediately. The
Non-M askable In te rrup t vecto r address is OOFFFA.B (Em ulation mode)
or OOFFEA.B (Native mode). S ince NMI is an edge-sensitive input, an
in terrupt w ill occur if there is a negative tra ns ition w hile servicing a pre
vious in terrupt. Also, no in terrup t w ill occur if NMI remains low.

Phase 1 Out (01 (OUT))— W65C802
This inverted c lock ou tput signal provides tim ing fo r external read and
w rite operations. Executing the S top (STP) ins truc tion holds this c lock
in the low state.

Phase 2 In (02 (IN))
This is the system c lock inpu t to the m ic roprocessor in terna l c lock gen
erator (equivalent to 00 (IN) on the 6502). During the low power S tandby
Mode. 02 (IN) should be held in the h igh state to preserve the contents
of in ternal registers.

Phase 2 Out (02 (OUT))—W65C802
This c lock o utput signal provides tim ing fo r externa l read and write op
erations. Addresses are valid (after the Address Setup T im e (Tao s)) fo l
low ing the negative trans ition of Phase 2 O ut Executing the S top (STP)
instruction holds Phase 2 O ut in the H igh state

Read/Write 1R/W)
When the R/W output signal is in the h igh state, the m icroprocessor is
reading data from m em ory or I/O When in the low state, the Data Bus
conta ins valid data from the m icroprocessor w hich is to be stored at the
addressed m em ory location When using the W65C816. the R/W signal
may be set to the high im pedance state by Bus Enable (BE)

Ready (RDY)
This b id irectiona l signal indicates that a Wait fo r Inte rrup t (WAI) ins truc
tion has been executed a llow ing the user to halt operation of the m icro

processor A low inpu t log ic level w ill halt the m icroprocessor in its cu r
rent state (note that when in the E m ulation mode, the W65C802 stops
on ly d uring a read cycle) R eturning RDY to the active high state a llows
the m icroprocessor to con tinue fo llow ing the next Phase 2 In Clock
negative trans ition The RDY signal is in terna lly pulled low fo llow ing the
execu tion o f a Wait fo r In te rr upt (WAI) ins tru c tion, and then returned to
the h igh state when a RES. ABORT, NMI, or IRQ external in terrupt is
provided This feature may be used to e lim ina te in te rrup t latency by
p la c ing the WAI instruction at the beg inning of the IRQ servicing routine.
If the IRQ Disable flag has been set. the next ins truc tion w ill be executed
when the IRQ occurs The processor w ill not stop a fter a WAI instruction
if RDY has been forced to a h igh state The S top (STP) instruction has
no e ffect on RDY

Reset (RES)
The Reset inpu t is used to in itia lize the m icrop rocessor and start p ro
gram execution. The Reset input buffer has hysteresis such that a sim ple
R-C t im ing c irc u it m ay be used w ith the in terna l p u llup device. The RES
signal must be held low fo r at least two c lock cycles a fter Vd d reaches
operating voltage. Ready (RDY) has no effect while RES is being held low.
During th is Reset co nd itio n ing period, the fo llow ing processor in itia liza
tion takes place

Registers
D
DBR
PBR

= 0000
- 00
= 00

N

SH = 01
XH = 00
YH = 00

l| * = Not In itia lized

VDA = 0
VP = 1
VPA = 0

STP and WAI instructions are cleared

Signals
E - 1
M/J<_ - 1
R/W = 1
SYNC : 0

When Reset is b rought high, an in terrup t sequence is in itia ted
• R/W remains in the high state during the stack address cycles
• The Reset vector address is 00FFFC.D.

Set Overflow (SO)—W65C802
A negative trans ition on th is inpu t sets the O verflow (V) flag, bit 6 of the
Processor S tatus (P) Register

Synchronize (SYNC)— W65C802
The SYNC o utput is provided to iden tify those cycles during w hich the
m icroprocessor is fe tch ing an opcode. The SYNC signal is h igh during
an opcode fetch cycle, and when com bined w ith Ready (RDY). can be
used fo r single instruction execution

Valid Data Address (VDA) and
Valid Program Address (VPA)-G 65SC816
These two o utput s igna ls indicate valid m em ory addresses when high
(log ic 1), and must be used for m em ory or I/O address qua lifica tion

VDA VPA
0 0 Internal O pera tion—Address and Data Bus

available The Address Bus may be invalid
0 1 Valid program address—may be used for program

cache contro l
1 0 Valid data address—may be used fo r data cache

contro l
1 1 Opcode fe tch —may be used for program cache

contro l and single step contro l

Vdd and Vss
V dd is th e p o s it iv e s u p p ly v o lta g e a nd Vss is s ys te m lo g ic g ro u n d Pm 21
o f th e tw o Vss p in s o n th e W65C802 s h o u ld be used fo r sy s te m g ro u n d

Vector Pull (VP)—W65C816
The Vector Pull output indicates that a vector location is being addressed
d u ring an in te rrup t sequence VP is low during the last two in terrup t
sequence cycles, during w hich time the processor reads the in terrupt
vector The VP signal may be used to select and p rio ritize in terrupts from
several sources by m od ify ing the vector addresses

580 Programming the 65816

Table 1. W 65C816 C om pa tib ility Issues

W 65C816/802 W 65C02 NMOS 6502
1 S (Stack) A lways page 1 (E - 1). 8 bits

16 bits when (E = 0)
Always page 1. 8 bits A lways page 1. 8 bits

2 X (X Index Register) Indexed page zero always in
page 0 (E = 1).
Cross page (E = 0)

Always page 0 A lways page 0

3. Y (Y Index Register) Indexed page zero always in
page 0 (E = 1).
Cross page (E = 0).

A lways page 0 Always page 0

4 A (Accum ulator) 8 bits (M = 1). 16 bits (M = 0) 8 bits 8 bits

5. P (Flag Registor) N. V. and Z flags valid in
decim al mode
D - 0 after reset or in terrupt

N, V. and Z flags valid in
decim al mode.
D - 0 after reset and
interrupt.

N, V. and Z flags invalid
in decim al mode.
D = unknown after reset.
D not m odified a fter interrupt.

6 T im ing
A ABS. X ASL. LSR. ROL.

ROR W ith No Page Crossing
7 cycles 6 cycles 7 cycles

B Jum p Indirect
O perand = XXFF 5 cycles 6 cycles 5 cycles and invalid page

crossing

C Branch Across Page 4 cycles (E = 1)
3 cycles (E = 0)

4 cycles 4 cycles

D Decimal Mode No additiona l cycle A dd 1 cycle No additiona l cycle

7 BRK Vector 00FFFE.F (E = 1) BRK bit = 0
on stack if IRQ. NMI. ABORT
00FFE6, 7 (E - 0) X - X on
Stack always.

FFFE.F BRK b it = 0 on stack
if IRQ. NMI

FFFE.F BRK bit = 0 on stack
if IRQ. NMI

8 Interrupt or Break
Bank Address

PBR not pushed (E = 1)
RTI PBR not pulled (E = 1)
PBR pushed (E = 0)
RTI PBR pulled (E - 0)

Not available Not available

9. Memory Lock (ML) ML - 0 during Read. M od ify and
Write cycles.

ML = 0 during M od ify and Write. Not available

10 Indexed Across Page
Boundary (d).y, a.x; a.y

Extra read o f invalid address
(Note 1)

Extra read o f last instruction
fetch.

Extra read o f invalid address

11. RDY Pulled During Write
Cycle

Ignored (E - 1) for W65C802 only
Processor stops (E = 0)

Processor stops Ignored

12. WAI and STP Instructions Available Available Not available

13. Unused OP Codes One reserved OP Code specified
as WDM w ill be used in future
systems. The W65C816 perform s
a no-operation.

No operation U nknown and some "hang
up" processor

14. Bank Address Handling PBR = 00 after reset o r interrupts. Not available Not available

15. R/W During Read-M odify-
W rite Instructions

E = 1. R/W = 0 during M odify and
W rite cycles
E - 0, R/W = 0 only during
W rite cycle

R/W = 0 only during W rite cycle R/W = 0 during M odify and
W rite cycles

16 Pm 7 W65C802 SYNC
W65C816 : VPA

SYNC SYNC

17. COP Instruction
S ignatures 00-7F user defined
S ignatures 80-FF reserved

Available Not available Not available

Note 1 See Caveat section for add itiona l in form ation.

E W65C816 Data Sheet 581

W 6 5 C 8 0 2 and W 6 5 C 8 1 6
M ic ro p ro ce sso r A dd re ss ing M odes

The W65C816 is capable o f d irectly addressing 16 M Bytes of m emory
This address space has specia l s ign ificance w ith in certain addressing
modes, as follows:

Reset and Interrupt Vectors
The Reset and In te rrup t vectors use the m a jo rity o f the fixed addresses
between OOFFEO and OOFFFF.

Stack
The Stack may use m em ory from 000000 to OOFFFF The e ffective ad
dress of Stack and Stack Relative addressing modes w ill always be w ith in
this range

Diract
The D irect addressing modes are usually used to store m emory registers
and pointers The effective address generated by Direct. D irect.X and
Direct.Y addressing modes is always in Bank 0 (OOOOOO-OOFFFF).

Program Address Space
The Program Bank reg ister is not affected by the Relative. Relative Long.
Absolute. Abso lu te Ind irect, and A bso lu te Indexed Ind irect addressing
m odes o r by inc rem enting the Program C oun te r from FFFF. The only
instructions tha t a ffect the Program Bank register are: RTI. RTL. JML,
JSL, and JMP Abso lu te Long Program code may exceed 64K bytes a l
though code segm ents m ay not span bank boundaries

Data Address Space
The data address space is co n tiguous th rou g ho u t the 16 M Byte address
space Words, arrays, records, o r any data structu res may span 64 KByte
bank boundaries w ith no com prom ise in code e fficiency. The fo llow ing
addressing modes generate 24-bit e ffective addresses
• Direct Indexed Ind irect (d.x)
• Direct Ind irect Indexed (d),y
• D irect Ind irect (d)
• D irect Ind irect Long [d]
• D irect Ind irect Long Indexed |d].y
• Absolute a
• Absolute a.x
• Absolute a.y
• Absolute Long al
• Absolute Long Indexed al.x
• Stack Relative Ind irect Indexed (d.s).y

The fo llow ing addressing mode desc ip tions provide add itiona l detail as
to how effective addresses are calculated

Twenty-four addressing m odes are available fo r use w ith the W65C802
and W65C816 m icroprocessors The " lon g " addressing modes may be
used w ith the W65C802. however, the h igh byte o f the address is not
available to the hardware Detailed descrip tions of the 24 addressing
modes are as follows:

1. Im m ediate A d d re s s in g — #
The operand is the second byte (second and th ird bytes when in the
16-bit mode) of the instruction

2. A b so lu te — a
W ith Absolu te addressing the second and th ird bytes o f the instruc
tion form the low -o rder 16 bits o f the e ffective address The Data
Bank Register conta ins the h igh-order 8 b its o f the operand address

In struc tio n : o pco d e j a dd rl addrh

O peran d
A ddress: DBR addrh addrl

3. A b so lu te L o n g — al
The second, th ird , and fourth byte of the ins truc tion form the 24-bit
effective address

In struc tio n : opcode ̂ addrl addrh ̂ baddr

O p eran d ■ i
A ddress: baddr addrh addrl

4. D ire c t— d
The second byte of the in s tru c tion is added to the D irect Register
(D) to form the e ffective address An add itiona l cycle is required

when the D irect Register is not page aligned (DL not equal 0) The
Bank register is always 0

In struc tio n : o pco de ' o ffse t

D irect Register j

♦ ! offset '

O perand ■
A ddress: 00 effective address

5 . A c c u m u l a t o r — A
This form of addressing always uses a s ingle byte instruction The
operand is the A ccum ula tor

6 . I m p l ie d — I
Im plied addressing uses a single byte in s tru c tion The operand is
im p lic itly defined by the instruction

7 . D i r e c t I n d i r e c t I n d e x e d — (d) ,y
This address mode is o ften referred to as Indirect.Y The second
byte o f the instruction is added to the D irect Register (D) The 16-bit
contents o f th is m em ory location is then com bined w ith the Data
Bank reg ister to form a 24-bit base address The Y Index Register is
added to the base address to form the e ffective address

In s truc tio n : opcode \ o ffse t j

| D irect Register

♦ I o ffse t |

00 i d irec t address

then
| 00 | (d irect address)

♦ I DBR |

base address

! Y Reg |

O p eran d i i
A ddress: I e ffective address I

8 . D i r e c t I n d ir e c t L o n g I n d e x e d — [d] ,y
W ith th is addressing mode, the 24-bit base address is poin ted to by
the sum of the second byte o f the ins truc tion and the D irect
Register The e ffective address is th is 24-bit base address p lus the Y
Index Register

In s tru c tio n : j o pco de j o ffse t j

D irect Register |

♦ ! offset |

00 | d irect address

then
(d irect address)

I ! V Reg I

O perand j
A ddress: effective address

9 . D i r e c t I n d e x e d I n d i r e c t — (d .x)
This address m ode is o ften re ferred to as Ind irect.X The second
byte o f the ins tru c tion is added to the sum of the D irect Register
and the X Index Register The result po in ts to the low -order 16 bits
o f the e ffective address The Data Bank Register conta ins the h igh-
o rder 8 bits of the e ffective address

582 Programming the 65816

In struction : 1 opcode offset

Direct Register

♦ ! offset

d irect address

♦ ! X Reg

i 00 address

then
00 ! (address)

♦ I DBR I

O p erand i i
A ddress: i effective address

1 0 . D ir e c t I n d e x e d W ith X — d ,x
The second byte o f the instruction is added to the sum o f the D irect
Register and the X Index Register to form the 16-bit e ffective
address The operand is always in Bank 0

In structio n : [opcode j o ffset

D irect Register

♦ | o ffse t |

d irect address

* I i X Reg

O p eran d i
A ddress: I 00 | e ffective address

1 1 . D i r e c t I n d e x e d W ith Y — d ,y
The second byte o f the ins truc tion is added to the sum o f the D irect
Register and the Y Index Register to form the 16-bit e ffective
address The operand is always in Bank 0

In structio n : | opcode | o ffset]

I D irect Register |

♦ I offset |

| d irect address I

. | | y Reg I

O p eran d i i i
A ddress: I 00 I effective address I

1 2 . A b s o l u t e I n d e x e d W ith X — a ,x
The second and th ird bytes of the ins truc tion are added to the
X Index Register to form the low -order 16 bits o f the effective ad
dress The Data Bank Register conta ins the h igh-o rder 8 bits o f the
effective address

[opcode] addrl [addrh j

| DBR | addrh addrl !

♦ I ! X Reg |

O perand i i
A ddress: I effective address i

1 3 . A b s o l u t e L o n g I n d e x e d W ith X — a l ,x
The second, th ird and fou rth bytes of the ins truc tion form a 24-bit
base address. The effective address is the sum of th is 24-bit address
and the X Index Register

In s tru c tio n : j opcode | add rl j addrh j baddr |

! baddr | addrh | addrl

♦ | j X Reg I

O p eran d i i
A ddress: I e ffective address

1 4 . A b s o l u t e I n d e x e d W ith Y — a ,y
The second and th ird bytes o f the ins truc tion are added to the
Y Index Register to form the low -o rder 16 bits o f the e ffective ad
dress The Data Bank Register conta ins the h igh -o rde r 8 b its o f the
e ffective address

[opcode] addrl | addrh |

DBR addrh addrl

♦ I i y Reg I

O p eran d i i
A ddress: I e ffective address I

1 5 . P r o g r a m C o u n t e r R e l a t i v e — r
This address mode, referred to as Relative Addressing, is used only
w ith the Branch instructions. If the co nd itio n being tested is met.
the second byte o f the ins truc tion is added to the Program Counter,
w h ich has been updated to p o in t to the opcode of the next in s tru c
tion. The o ffset is a signed 8-b it q ua n tity in the range from -128 to
127. The Program Bank Register is not affected

1 6 . P r o g r a m C o u n t e r R e l a t i v e L o n g — rt
This address mode, referred to as Relative Long Addressing, is used
o n ly w ith the U ncond itiona l Branch Long ins truc tion (BRL) and the
Push Effective Relative in s tru c tion (PER) The second and th ird
bytes o f the in s tru c tion are added to the Program Counter, w h ich
has been updated to poin t to the opcode of the next instruction. W ith
the branch instruction , the P rogram C ounter is loaded w ith the
result W ith the Push E ffective Relative instruction , the result is
stored on the stack. The offset is a signed 16-bit quantity in the range
from -32768 to 32767. The P rogram Bank Register is not affected

1 7 . A b s o l u t e I n d i r e c t — (a)
The second and th ird bytes o f the ins truc tion form an address to a
p o in ter in Bank 0 The Program C oun te r is loaded w ith the firs t and
second bytes at th is pointer. W ith the Jum p Long (JM L) instruction,
the P rogram Bank Register is loaded w ith the th ird byte o f the
pointer.

In s truc tio n : | opcode | add rl | addrh ~|

Ind irect Address | 00 | addrh | addrl |

New PC = (ind irect address)
w ith JML

New PC = (ind irect address)
New PBR = (ind irect address *2)

1 8 . D i r e c t I n d i r e c t — (d)
The second byte o f the ins truc tion is added to the D irect Register to
form a p o in te r to the low -o rder 16 b its o f the e ffective address. The
Data Bank Register conta ins the h igh -o rde r 8 bits of the effective
address

In s tru c tio n : | opcode | o ffse t]

D irect Register

♦ | offset |

00 | d irect address

00 | (d irect address)

* | DBR

O perand i
A ddress: I effective address

E W65C816 Data Sheet 583

1 9 . D i r e c t I n d i r e c t L o n g — [d]
The second byte of the ins truc tion is added to the D irect Register to
form a poin ter to the 24-bit e ffective address

In structio n : | opcode | o ffse t |

D irect Register |

♦ I offset I

I 00 | direct address
then
O p eran d , .
A ddress: | (d irect address)

2 0 . A b s o l u t e I n d e x e d I n d i r e c t — (a ,x)
The second and th ird bytes o f the ins truc tion are added to the
X Index Register to form a 16-bit po in te r in Bank 0. The contents of
th is p o in ter are loaded in the Program Counter. The Program Bank
Register is not changed

In struc tion : | opcode | addrl j addrh |

| addrh | addrl |

! X Reg |

i PBR | address

then:
PC = (address)

2 1 . S t a c k — s
Stack addressing refers to all ins tructions that push o r pull data
from the stack, such as Push. Pull, Jum p to Subroutine, Return from
S ubroutine, Inte rrup ts, and Return from Interrupt. The bank ad
dress is always 0. In te rrup t Vectors are always fetched from Bank 0

2 2 . S t a c k R e l a t i v e — d ,s
The low -order 16 b its of the e ffective address is form ed from the
sum of the second byte o f the instruction and the Stack Pointer. The
h igh-o rder 8 bits o f the e ffective address is always zero. The relative
offset is an unsigned 8-b it quantity in the range of 0 to 255.

In structio n : j opcode | o ffse t |

Stack Pointer

♦ I offset |

2 3 . S t a c k R e la t i v e I n d i r e c t I n d e x e d — (d ,s) ,y
The second byte o f the ins truc tion is added to the Stack Pointer to
form a p o in te r to the low -o rder 16-bit base address in Bank 0 The
Data Bank Register conta ins the h igh-o rder 8 bits o f the base ad
dress The e ffective address is the sum of the 24-b it base address
and the Y Index Register.

In s truc tio n : | o pco de | o ffse t |

S tack Pointer

♦ | o ffse t |

oo I s * o tise i

i S ♦ offset

♦ | DBR

base address I

I i V Reg I
O p eran d ,
A ddress: | e ffective address

2 4 . B l o c k S o u r c e B a n k , D e s t i n a t i o n B a n k — x y c
This addressing m ode is used by the B lock Move ins tructions. The
second byte o f the in s tru c tion con ta ins the h igh -o rd e r 8 b its o f the
destination address. The Y index Register conta ins the low -order 16
bits o f the destination address. The th ird byte o f the instruction
conta ins the h igh-o rder 8 b its o f the source address. The X Index
Register conta ins the low -o rder 16 bits o f the source address. The
C A ccum ula tor conta ins one less than the num ber o f bytes to move.
The second byte o f the b lock move ins truc tions is also loaded into
the Data Bank Register.

In struc tio n : | opcode | dstbnk | s rcbnk |

dstbnk - DBR
S o urce . , ,
A ddress: | scrbnk | X Reg
D estination , , ,
A ddress: | DBR | Y Reg

Increm ent (MVN) o r decrem ent (MVP) X and Y.
Decrement C (if greater than zero), then PC+3 - PC.

O perand ,
A ddress: | 00 e ffective address !

584________________________Programming the 65816

T a b l e 2 . W 6 5 C 8 0 2 a n d W 6 5 C 8 1 6 I n s t r u c t i o n S e t — A l p h a b e t i c a l S e q u e n c e

ADC Add Memory to A ccum ula tor w ith Carry PHA Push A ccum ula tor on Stack
AND AND Memory w ith A ccum ulator PHB Push Data Bank Register on Stack
ASL Shift One Bit Left, Memory or Accum ula tor PHD Push D irect Register on Stack
BCC Branch on Carry Clear (Pc : 0) PHK Push Program Bank Register on Stack
BCS Branch on Carry Set (Pc 1) PHP Push Processor Status on Stack
BEQ Branch if Equal (Pz - 1) PHX Push Index X on Stack
BIT Bit Test PHY Push Index Y on Stack
BMI Branch if Result M inus (Pn - 1) PLA Pull A ccum ula tor from Stack
BNE Branch if Not Equal (Pz -- 0) PLB Pull Data Bank Register from Stack
BPL Branch if Result Plus (Pn 0) PLD Pull D irect Register from Stack
BRA Branch Always PLP Pull P rocessor Status from Stack
BRK Force Break PLX Pull Index X from Stack
BRL Branch Always Long PLY Pull Index Y form Stack
BVC Branch on O verflow Clear (Pv = 0) REP Reset Status Bits
BVS Branch on O verflow Set (Pv - 1) ROL Rotate One Bit Left (M em ory o r A ccum ula tor)
CLC Clear Carry Flag ROR Rotate One Bit Right (M em ory or Accum ulator)
CLD Clear Decimal Mode RTI Return from Interrupt
CLI Clear Inte rrup t D isable Bit RTL Return from S ubroutine Long
CLV Clear O verflow Flag RTS Return from Subroutine
CMP Compare Memory and A ccum ulator SBC Subtract M em ory from A ccum ula tor w ith Borrow
COP Coprocessor SEC Set C arry Flag
CPX Compare Memory and Index X SED Set Decimal Mode
CPY Compare Memory and Index Y SEI Set In te rrup t D isable Status
DEC Decrement Memory or Accum ula tor by One SEP Set Processor Status Bite
DEX Decrement Index X by One STA Store A ccum ula tor in Memory
DEY Decrement Index Y by One STP Stop the C lock
EOR "Exclusive OR" Memory w ith A ccum ulator STX Store Index X in Memory
INC Increm ent M em ory o r Accum ula tor by One STY Store Index Y in Memory
INX Increm ent Index X by One STZ Store Zero in M emory
INY Increm ent Index Y by One TAX Transfer A ccum ula tor to Index X
JML Jum p Long TAY Transfer A ccum ula tor to Index Y
JMP Jum p to New Location TCD Transfer C A ccum ula tor to D irect Register
JSL Jum p Subroutine Long TCS Transfer C A ccum ula tor to Stack Pointer Register
JSR Jum p to New Location Saving Return Address TDC Transfer D irect Register to C Accum ula tor
LDA Load Accum ula tor w ith M emory TRB Test and Reset Bit
LDX Load Index X w ith Memory TSB Test and Set Bit
LDY Load Index Y w ith Memory TSC Transfer Stack Pointer Register to C Accum ula tor
LSR Shift One Bit R ight (M em ory or Accum ulator) TSX Transfer Stack Pointer Register to Index X
MVN Block Move Negative TXA Transfer Index X to Accum ula tor
MVP Block Move Positive TXS Transfer Index X to Stack P ointer Register
NOP No O peration TXY Transfer Index X to Index Y
ORA "O R" M emory w ith A ccum ulator TYA Transfer Index Y to Accum ula tor
PEA Push Effective Abso lu te Address on Stack (or Push Immediate TYX Transfer Index Y to Index X

Data on Stack) WAI Wait fo r In terrupt
PEI Push Effective Indirect Address on Stack (or Push D irect WDM Reserved fo r Future Use

Data on Stack) XBA Exchange B and A Accum ula tor
PER Push Effective Program C ounter Relative Address on Stack XCE Exchange Carry and Em ulation B its

For a lternate m nem onic*, te e Table 7.

T a b l e 3 . V e c t o r L o c a t i o n s

e 1 ___
OOFFFE.F —IRQ /BRK
OOFFFC.D —RESET
OOFFFA.B - NMI
OOFFF8.9 -A B O R T
OOFFF6.7 —(Reserved)
OOFFF4.5 -C O P

Hardware/Software
Hardware
Hardware
Hardware

Software

E - 0 ___
OOFFEE.F - IR Q
OOFFEC.D—(Reserved)
OOFFEA.B —NMI
OOFFE8.9 -A B O R T
OOFFE6.7 -B R K
OOFFE4.5 -C O P

Hardware

Hardware
Hardware
Software
Software

The VP output is low during the two cycles used fo r vector location access
When an in terrupt is executed, D 0 and I - 1 in Status Register P

E W65C816 Data Sheet 585

O p c o d e M a tr ix

M

S

0 L S D

M

S
D

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
B R K s
2 8

O R A (d.x)
2 6

C O P s
2 * 8

O R A d.s
2 * 4

T S B d
2 * 5

O R A d
2 3

A S L d
2 5

O R A |d]
2 * 6

P H P s
1 3

O R A ft
2 2

A S L A
1 2

P H D s
1 * 4

T S B a
3 * 6

O R A a
3 4

A S L a
3 6

O R A a!
4 * 5

0

1
B P L r
2 2

O R A (d),y
2 5

O R A (d)
2 * 5

O R A (d.s).y
2 * 7

T R B d
2 * 5

O R A d.x
2 4

A S L d.x
2 6

O R A Id |.y
2 * 6

C L C i
1 2

O R A a.y
3 4

IN C A
1 * 2

T C S .
1 * 2

T R B a
3 * 6

O R A a.x
3 4

A S L a.x
3 7

O R A al.x
4 * 5

1

2
J S R a
3 6

A N D (d.x)
2 6

J S L al
4 * 8

A N D d .s
2 * 4

B IT d

2 3
A N D d

2 3
R O L d
2 5

A N D [d]
2 * 6

P L P S
1 4

A N D »
2 2

R O L A
1 2

P L D s
1 * 5

B IT a
3 4

A N D a
3 4

R O L a
3 6

A N D al
4 * 5

2

3
B M I r
2 2

A N D (d).y
2 5

A N D (d)
2 * 5

A N D (d.s).y
2 * 7

B IT d.x
2 * 4

A N D d.x
2 4

R O L d.x
2 6

A N D [d].y
2 * 6

S E C i
1 2

A N D a.y
3 4

D E C A
1 * 2

T S C i
1 * 2

B IT a.x
3 * 4

A N D a.x
3 4

R O L a.x
3 7

A N D a l.x
4 * 5

3

4
R TI s
1 7

E O R (d.x)
2 6

W D M
2 * 2

E O R d .s
2 * 4

M V P xyc
3 * 7

E O R d
2 3

L S R d
2 5

E O R |d]
2 * 6

P H A S

1 3
E O R #
2 2

L S R A
1 2

P H K s
1 * 3

J M P a
3 3

E O R a
3 4

L S R a
3 6

E O R al
4 * 5

4

5
B V C r
2 2

E O R (d).y
2 5

E O R (d)
2 * 5

E O R (d.s).y
2 * 7

M V N xyc
3 * 7

E O R d.x
2 4

L S R d.x
2 6

E O R [d].y
2 * 6

C L I i
1 2

E O R a.y
3 4

P H Y s
1 * 3

T C D t
1 * 2

J M P al
4 * 4

E O R a.x
3 4

L S R a .x
3 7

E O R a l.x
4 * 5

5

6
R T S s
1 6

A D C (d,x)
2 6

P E R s
3 * 6

A D C d.s
2 * 4

S T Z d
2 * 3

A D C d
2 3

R O R d
2 5

A D C [d|
2 * 6

P L A s
1 4

A D C #
2 2

R O R A
1 2

R T L s
1 * 6

J M P (a)
3 5

A D C a
3 4

R O R a
3 6

A D C al
4 * 5

6

7
B V S r
2 2

A D C (d).y
2 5

A D C (d)
2 * 5

A D C (d.s).y
2 * 7

S T Z d.x
2 * 4

A D C d.x
2 4

R O R d.x
2 6

A D C Id].y
2 * 6

S E I i
1 2

A D C a.y
3 4

P L Y s
1 * 4

T D C i
1 * 2

J M P (a.x)
3 * 6

A D C a.x
3 4

R O R a.x
3 7

A D C al.x
4 * 5

7

8
B R A r
2 * 2

S T A (d.x)
2 6

B R L rl
3 * 3

S T A d .s
2 * 4

S T Y d

2 3

S T A d
2 3

S T X d
2 3

S T A (d)
2 * 6

D E Y i
1 2

B IT ft
2 • 2 T X A i

1 2
P H B s
1 * 3

S T Y a
3 4

S T A a
3 4

S T X a
3 4

S T A a l
4 * 5

8

9
B C C r
2 2

S T A (d).y
2 6

S T A (d)
2 * 5

S T A (d.s).y
2 * 7

S T Y d.x
2 4

S T A d .x
2 4

S T X d.y
2 4

S T A J d J .y T Y A i
1 2

S T A a .y

3 5
T X S t
1 2

T X Y i
1 * 2

S T Z a
3 * 4

S T A a.x
3 5

S T Z a.x
3 * 5

S T A a l.x

4 * 5
9

A
L D Y ft
2 2

L D A (d.x)
2 6

L D X ft
2 2

L D A d.s
2 * 4

L D Y d
2 3

L D A d
2 3

L D X d
2 3

L D A [d]
2 * 6

TAY i
1 2

L D A ft
2 2

T A X i
1 2

P L B S
1 * 4

L D Y a
3 4

L D A a
3 4

L D X a
3 4

L D A al
4 * 5

A

B
B C S r
2 2

L D A (d),y
2 5

L D A (d)
2 * 5

L D A (d.s).y
2 * 7

L D Y d.x
2 4

L D A d .x
2 4

L D X d.y
2 4

L D A [d] .y
2 * 6

C L V i
1 2

L D A a.y
3 4

T S X i
1 2

T Y X i

1 * 2

L D Y a.x

3 4
L D A a.x

3 4
L D X a .y

3 4
L D A al.x

4 * 5
B

C
C P Y ft
2 2

C M P (d.x)
2 6

R E P ft
2 * 3

C M P d .s
2 * 4

C P Y d
2 3

C M P d
2 3

D E C d
2 5

C M P [d]
2 * 6

INY i
1 2

C M P ft
2 2

D E X t
1 2

W AI t
1 * 3

C P Y a
3 4

C M P a
3 4

D E C a
3 6

C M P al
4 * 5

C

D
B N E r
2 2

C M P (d).y
2 5

C M P (d)
2 * 5

C M P (d.s).y
2 * 7

P E I S
2 * 6

C M P d.x
2 4

D E C d.x

2 6
C M P [d).y

2 * 6
C L D t
1 2

C M P a.y
3 4

P H X s
1 * 3

S T P i
1 * 3

J M L (a)
3 * 6

C M P a.x
3 4

D E C a.x

3 7
C M P al.x

4 * 5
D

E
C P X *
2 2

S B C (d.x)
2 6

S E P ft
2 * 3

S B C d.s
2 * 4

C P X d
2 3

S B C d
2 3

IN C d
2 5

S B C (d|
2 * 6

INX i
1 2

S B C »
2 2

N O P .
1 2

X B A i
1 * 3

C P X a
3 4

S B C a
3 4

IN C a
3 6

S B C al
4 * 5

E

F
B E Q r
2 2

S B C (d),y
2 5

S B C (d)
2 * 5

S B C (d.s).y
2 * 7

P E A s
3 * 5

S B C d.x
2 4

IN C d.x
2 6

S B C J d J .y S E D i
1 2

S B C a.y
3 4

P L X s
1 * 4

X C E i
1 * 2

J S R (a.x)

3 * 6
S B C a.x

3 4
IN C a.x

3 7
S B C a l.x

4 * 5
F

0 1 2 3 4 5 6 7 8 9 A B C D E F

sym bol ad d ress in g m ode sym bol ad d re ss in g m ode
» im m ed ia te Id] d ire c t in d ire c t lo ng

A a c cu m u la to r [d|.y d ire c t in d ire c t lo n g in d ex ed

r p rog ram co u n te r re la tive a a b so lu te

rl p ro g ra m co u n te r re la tive lo ng a.x a b so lu te in d e x e d (w ith x)

i im p lie d a.y a b s o lu te in d e x e d (w ith y)

s s tack al a b s o lu te lo ng

d d ire c t al.x a b s o lu te lo ng in d ex ed

d.x d ire c t in d e x e d (w ith x) d .s s ta ck re la tive

d.y d ire c t in d e x e d (w ith y) (d.s).y s ta ck re la tiv e in d ire c t in d ex ed

(d) d ire c t in d ire c t (a) a b s o lu te in d ire c t

(d.x) d ire c t in d ex ed in d ire c t (a.x) a b s o lu te in d e x e d in d ire c t

(d).y d ire c t in d ire c t in d ex ed x yc b lo c k m o ve

O p C o d e M a tr ix L e g e n d

INSTRUCTIO N ADDRESSING
M NEM ONIC * = New W 65C816/802 Opcodes MODE

• = New W65C02 O pcodes
BASE Blank NMOS 6502 Opcodes BASE

NO BYTES NO CYCLES

586 Programming the 65816

T a b l e 5 . O p e r a t i o n , O p e r a t i o n C o d e s , a n d S t a t u s R e g i s t e r

MNE
M O N IC

O P E R A T IO N

, <e •5 YJ < Y^ YJ YJ YJ *- ■5 • r y 3 YJ 2 Yj' >.

P R O C E S S O R
S T A T U S C O D E

7 6 5 4 3 2 1 0
M N E

M O N IC

N V M X D I Z C E 0
i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 N V 1 B D I Z C E ; 1

A D C
A N D
A SL
B C C
B C S

A • M • C - A
AAM - A
C - [15/7 0 j • 0
B R A N C H IF C 0
B R A N C H IF C 1

69
29

6U
2D
0E

bF
2F

65
25
06 0A

/1
31

77
37

61
21

75
35
16

7D
3D
1E

7F
3F

79
39

90
B0

72
32

67
27

63
23

73
33

N V Z C
N Z
N Z C

A D C
A N D
A S L
B C C
B C S

B EQ
B IT
BMI
B N E
B PL

B R A N C H IF Z - 1
AAM (N O TE 1)
B R A N C H IF N = 1
B R A N C H IF Z - 0
B R A N C H IF N 0

89 2 C 24 34 3C
F0

30
DO
10

M M . Z
B E O
BIT
BMI
BN E
BPL

BRA
BRK
BRL
B VC
B V S

B R A N C H ALW A YS
B R E A K (N O TE 2)
B R A N C H L O N G ALW A YS
B R A N C H IF V 0
B R A N C H IF V 1

80

50
70

82
00 • 0 1

• BRA
BRK

* BRL
B V C
B V S

C L C
C L D
C L I
C L V
CM P

0 - C
0 • D
0 - 1
0 - V
A M C 9 C D C F C 5

18
D8
58
B8

D , D7 C l D5 DD DF D9 D2 C 7 C 3 D3

0
0

0
0

N Z C

C L C
C L D
C L I
C L V
C M P

C O P
C P X
C P Y
D E C
DEX

C O -P R O C E S S O R
X -M

D E C R E M E N T
X - 1 - X

E0
CO

E C
C C
C E

E4
C4
C6 3A

C A
D6 DE

02 0 1
N Z C
N Z C
N Z
N Z

* C O P
C P X
C P Y
D E C
D EX

DEY
EO R
IN C
INX
INY

Y - 1 - Y
AVM - A
IN C R E M E N T S
X • 1 - X
Y • 1 - Y

49 4D
EE

4F 45
E6 1 A

88

E8
C 8

51 57 41 55
F6

5D
FE

5F 59 52 47 43 53
N Z
N Z
N Z
N Z
N Z

D EY
EO R
IN C
INX
IN Y

JM L
JM P
JS L
JS R
LD A

JU M P L O N G TO N EW L O C
JU M P TO N EW L O C
JU M P L O N G TO SU B
JU M P TO SU B
M - A A9

4C

20
A D

5C
22

AF A5 B1 B7 A 1 B5 BD BF B9

D C
6C

B2 A7

7C

F C
A3 B3 N Z

* JML
JM P
J S L
J S R
LD A

LD X
LD Y
LSR
MVN
M VP

M - X

o • (j s / 7 o] • C
M - M B A C K W A R D
M - M FO RW A R D

A2
A0

AE
A C
4E

A6

46 4A
B4
56

B6
B C
5E

BE

54
44

N Z
N Z
0 Z C

LD X
LD Y
L S R

* MVN
* M VP

N O P
O RA
PEA

PEI

PER

NO O P ER A T IO N
AVM - A
Mpc • 1. Mpc - 2 - Ms 1 Ms
S 2 ■ S
M(d) M(d * 1) - Ms 1 Ms
S 2 • S
Mpc • rl. Mpc • rl * 1 - Ms t. Ms
S 2 - S

09 0D OF 05
EA

11 17 01 15 ID IF 19 12 07
F4

D4

62

03 13 N Z
N O P
O R A

* P E A

* P EI

* P E R

PHA
P H B
P H D
PH K
P H P

A Ms S I S
DB R - Ms. S - 1 - S
D - Ms, Ms - 1. S - 2 • S
P B R - Ms. S 1 - S
P - Ms. S - 1 - S

48
8B
0B
48
08

PH A
PH B

* P H D
* PH K

P H P

PHX
PH Y
PLA
PLB
P LD

X - Ms. S - 1 - S
Y - Ms. S - 1 - S
S * 1 - S. M s - A
S ♦ 1 - S. M s - DB R
S • 2 - S. M s 1. Ms - D

L)A
5A
68
AB
2B

N Z
N . Z
N Z

• PHX
• P H Y

PLA
* P LB
* P LD

P LP
PLX
PLY
R E P

RO L

S • 1 - S. Ms - P
S • 1 - S. Ms - X
s .* 1 - S. Ms • Y
MAP - P

M l 5 / 7 ___ 0.1 - C

C 2

2E 26 2A 36 3E

28
FA
7A

N V M X D I Z C
N
N Z
N V M X D 1 Z C

N Z C

P LP
P LX
PLY

* R E P

RO L

RO R
RTI
RTL
R T S
S B C

L c - (1577 c l - 1
R TR N FR O M INT
R T R N FR O M S U B L O N G
R TR N S U B R O U T IN E
A - M - C - A E9

6E

ED EF

66

E 5

6A

F 1 F 7 E l

76

F5

7E

FD FF F9 F2 E7

40
6B
60

E3 F3

N Z C
N V M X D 1 Z C

N V Z C

R O R
RTI

* R TL
R T S
S B C

S E C
S E D
SEI
S E P
STA

1 - C
1 - D

MVP - P
A - M

E2
8D 8F 85

38
F8
78

91 97 81 95 9D 9F 99 92 87 83 93

1

N V M X D I Z C

S E C
S E D
S E I

* S E P
S T A

S T P
S TX
S T Y
S T Z
TAX

S T O P (1 - 02)
X - M
Y - M
00 - M
A - X

8E
8 C
9C

86
84
64

D B

AA

94
74

96

9E
N Z

• S T P
S T X
S T Y

e S T Z
TAX

TAY
T C D
T C S
T D C
TR B

A - Y
C - D
C - S
D - C

1C

A8
SB
IB
7B

N Z
N Z

N Z
Z

TAY
* T C D
* T C S
* T D C
* T R B

T S B
T S C
T SX
TXA
T X S

AVM - M
S - C
S - X
X - A
X - s

OC 04
3B
BA
8A
9A

z
N Z
N Z
N Z

• T S B
* T S C

TS X
TXA
T X S

TXY
TYA
TYX
WAI
WDM

X - Y
Y - A
Y - X
0 - RD Y
N O O P ER A T IO N (R E S E R V E D)

9B
98
BB
C B
42

N Z
N Z
N Z

* TXY
TYA

* TYX
* WAI
* WDM

XBA
X C E

B - - A
C — E

EB
FB

N Z
E

* XBA
* X C E

Notes
1 Bit im mediate N and V (lags not atlected When M - 0. M 1 ^ ■ N ana M ta -V
2 Break Bit (B) m Status register in dicates hardware or software break

3 * = New W 65C816/802 Instructions
• - New W 65C02 Instructions
Blank = N M O S 6502

• Add V OH
- Subtract •V- Exclusive OR
A AND

E W65C816 Data Sheet 587

Table 6. D e ta iled Instruction O pera tion
AOORESS MODE

t immediate •
i l O ¥ CPY C P * l Ox ORA
AND EOR ADC B it LDA i
CMP SBC RE P S E P i
114 Op Cooesi
i? and .1 bytesi
I? and 3 cycles'

2a Absolute •
iBiT STY STZ lDY
CPy CP* STx lOx
ORA AND EOR ADC
STA lDA CMP SBCi
118 Op Codesi
13 bytesi
14 and S cydesi

2b Absolute (R M W) a

(ASL ROL LSR ROR
DEC INC TSB TR01
(6 Op Codesi
|3 bytesi

2c Absolute (JUMP) a
I JMPp(4Ci
I I Op Codei
(3 bytesi
13 cycles)

2d Absolute (Jump to

(JSRi
(i Op Code)
(3 bytes)
(6 cycles)
(difterent order from N6502)

*3a Absolute Long al
lORA AND EOR ADC
STA LDA CMP SBC I
18 Op Codes)
(4 bytesi

*3b Absolute Long (JUMP) el
i JMPi
11 Op Code)
14 bytes)
(4 cyclesi

*3c Absolute Long (Jump tc
Subroutine Long) al
(JSL)
(1 Op Code)
(4 bytes)
7 cycles)

(BIT STZ STYLOY
CPY CPX.STX LDX
ORA AND EOR ADC
STA LDA CMP SBC)
(18 Op Codesi
(2 bytes)
(3 4 and 5 cycles)

i Direct iR-M-Wi d
(ASL ROL LSR ROR
DEC INC TSB TRBl
(6 Op Codes)
|2 bylesi
iS 6 7 and 8 cyclesi

I Accumulator A
(ASL INC ROl DEC LSH ROR)
(6 Op Codes)
11 bytei

(DEY INY INX DEX NOP
XCE TYA TAY TXA TXS
TAX TSX TCS TSC TCD
TDC TXYTYX CLC SEC
CLI SEi CLV CLD SED)
125 Op Codesi
(i byte)
(2 cycles)

11 Op Code i
11 byte)
(3 cyclesi

a 6d Siop-The-Ciocx
(STP)
11 Op Code)
11 byte)

>. ML. VDA. VPA AOORESS BUS DATA BUS R/W
i i l PBR PC Op Code I
t o t PBR PC-1 IDL i
i 0 i PBR PC-2 iOm i

PBR PC
PBR PC-l
PBR PC-2
DBR AA
DBR AA • 1

PBR PC
PBR PC - 1
PBR PC-2
DBR AA
DBR AA-1
DBR AA-1
DBHAA-1
DBR AA
PBR PC
PBR PC-l
PBR PC-2

Dala High
10
Data High
Data Low
Op Code
NEW PCL
NEW PCh

PBR NEW PC OpCode

PBR PC
PBR PC -1
PBR PC-2
PBR PC-2

PBR NEW PC
PBR PC
PBR PC-l
PBR PC-2
PBR PC-3
AAB AA
AAB.AA-1
PBR PC
PBR PC-1
PBR PC-2
PBR PC-3
NEW PBR PC

PBR PC
PBR PC-l
PBR PC-2

See 2ia Stack

RES i
RES 0
RES 0
RES i

PBR PC
PBR PC-l
PBR PC-l

PBR PC
PBR PC-1
PBR PC-1
PBR PC-1

PBR PC-1
PBR PC-l
PBR PC-1

Op Code
NEW PCL
NEW PCH

NentOpCode '
Op Code
AAL
AAH
AAB
Data Low l
Data High t
Op Code
NEW PCL
NEW PCH
NEW BR I
Op Code

Op Code
NEW PCL
NEW PCH

PBR PC-3
OS 1 OS 2
NEW PBR.PC
PBR PC
PBR PC-1
PBR PC-1
OD-DO
O.D-DO-1

PBR PC
PBR PC-l
PBR PC-1
O.D-DO
OD-DO-1
O.D-DO-1
0.0-00-1
O.D-DO
PBR PC
PBR PC - 1

Next OpCode
Op Code

Data High
Data Low
Op Code

AOORESS MODE
Direct indirect indexed i
lORA AND EOR ADC
STA LDA CMP SBCl
(8 Op Codes)
(2 bytes)
(5 6.7 and 8 cycles)

8 Direct Indirect
indexed Long {dj.y
lORA.AND EOR ADC (
STA LDA.CMP.SBC)
(8 Op Codes)
(2 bytes)
(6 7 and 8 cyclesi

9 Direct Indexed Indirect (d.i)
(ORA AND.EOR.ADC
STA LDA CMP SBC) l
(8 Op Codes)
(2 bytes)
(67 and 8 cycles)

■ Oa Direct X d.x
(BIT STZ STY LOY
ORA AND EOR ADC
STA.LDA.CMP SBC)
(i i Op Codesi
(2 byles)
(4 5 and 6 cyclesi

tOb Direci X(R M W| d.x
(ASL.ROL LSR ROR
DEC.INC)
16 Op Codes)
(2 bytes)
(6.7.8 and 9 cycles)

(STX.LDX)
(2 Op Codes)
(2 bytes)
(4 5 and 6 cycles)

12a Absolute X a.x
(BIT LDY.STZ.
ORA AND EOR AOC
STA.LDA.CMP SBC)
(11 Op Codes)
(3 bytes)
(4 5 and 6 cycles)

12b Absolute X(R-M-W) a.x
(ASL.ROL LSR ROR
DEC INC)
(6 Op Codes)
(3 bytes)
(7 and 9 cycles)

*13 Absolute Long.X al.x
lORA.AND.EOR.ADC.
STA. LDA. CMP. SBC)
18 Op Codes)
(4 bytes)
(5 and 6 cycles)

14 Absolute.Y a.y
(LDX.ORA AND,EOR ADC
STA LDA CMP SBC)
(9 Op Codes)
(3 byles)
(4.5 and 6 cycles)

'5 Relative r
(BPL.BMI.8VC.BVS.BCC.
BCS BNE.BEQ BRA)
(9 Op Codesi
(2 bytes)
(2.3 and 4 cycles)

*16 Relative Long el
(BRL)
(1 Op Code)
(3 bytes)
(4 cycles)

(JMP)
11 Op Code)
(3 bytes)
(5 cycles)

*17b Absolute Indirect (a)

RESlBRKi
RES(BRK)
RES(BRK)
BEGIN

(I Op Code)
(3 bytes)
(6 cycles)

(ORA AND EOR ADC
STALDA.CMPSBC)
(8 Op Codes)
12 bytes)

CYCLE VP. MU VDA. VPA ADORESS BUS
i 1 PBR PC
) 1 PBR.PC-1
) 0 PBR PC-1

0 0 0 -0 0
0 OD-OO-t

I 0 DBR AAH AAL-
0 DBRAA-Y
0 OBRAA-Y-t
1 PBR PC

i i PBR PC-i
l 0 PBR PC-l

0 0 0 -0 0
0 OD-DO-i
0 OD-DO-2
0 AAB AA-Y
0 AABAA-Y-1
1 PBR PC

i 1 PBR PC -1
i 0 PBR PC -1

0 PBR PC-i
0 OO-DO-X
0 O.D-DO-X-1
0 OBR.AA
0 DBR AA-1
1 PBR PC

i I PBR PC-i
I 0 PBR PC-l

0 PBR.PC-1
0 OO-DO-X
0 O.D-DO-X-1

1 PBR PC
1 PBR PC-1
0 PBR PC-1
0 PBR PC -1
0 OD-DO-X
0 O.D-DO-X-1
0 O.D-DO-X-i
0 0 D-OO-X-i
0 O.D-DO-X
1 PBR PC
l PBR PC-1
0 PBR PC-1
0 PBR PC-1
0 O.D-DO-Y
0 O.D-DO-Y-1
1 PBR.PC
l PBR PC-1
i PBR PC -2
0 DBR AAH AAL'
0 DBR.AA-X
0 DBRAA-X-1

1 PBR PC
I PBR PC -1
l PBR PC-2
0 DBR AAH AAL-
0 DBR.AA-X
0 D BRAA-x-i
0 DBRAA-x-1
0 DBR.AA-X-1
0 DBRAA-X

DATA BUS N/W
Op Code

Dala Low
Dala High
Op Code

AAL
AAH
AAB
Oala Low
Data High
Op Code
DO
IO
IO
AAL
AAH
Data Low
Data High
Op Code

PBR PC
PBR.PC-1
PBR PC-2
PBR PC-3
AAB AA-X
AAB.AA-X-1
PBR PC
PBR.PC-l
PBR PC-2
DBR AAH AAL-l
DBR AA-Y
DBR AA-Y-1
PBR PC
PBR PC-1
PBR PC-l
PBR PC-i
PBR PC-Otisel

PBR PC
PBR PC-1
PBR PC-2
PBR PC-2
PBR PC-Offset
PBR PC
PBR PC-1
PBR PC-2
0 AA
0 A A -1
PBR NEW PC
PBR PC
PBR PC-l
PBR PC-2
0 AA
O.AA-1
O.AA-2
NEW PBR PC
PBR PC
PBR PC-i
PBR PC-1
O.D-DO
0 D-DO-l
DBR AA
OBR AA* I

Data High
Data Low
Op Code
DO
IO
IO
Data Low
Data High
Op Code
AAL
AAH

' XL 10
Oata Low
Data High

Op Code
AAL
AAH

' XL 10
Data Low
Data High
IO
Oata High
Oata Low
Op Code
AAL
AAH
AAB
Data Low
Data High
Op Code
AAL

Op Code
Offset Low
Offset High
IO
Op Code
Op Code
AAL
AAH
NEW PCL
NEW PCH
Op Code
Op Code
AAL
AAH
NEW PCL
NEW PCH
NEW PBR
Op Code
Op Code
DO
IO
AAL
AAH
Data Low
Data Low

588 Programming the 65816

Table 6. De ta iled Instruction O pera tion (con tinued)

AOORE88MOOE
*19 Direct Indirect Long (d)

(ORA AND EOR AOC
STAlOA CMP SBC)
(S Op Codesi
I? bylee)
(6 > and 6 Cycles)

?Oe Absolute mdai
IJMP)
i t Op Codei
(3 byiasi
16 cyciaai

•20b Absolute indexed lr
I Jump to Subroutuv
indirect) (a.1)
(JSR)
| l Op Code)
(3 bytes)
(6 cycles)

:VCLE VP. ML. VOA. VPA ADDRESS BUS OATA BUS R.W
' PBR PC

I l PBR PC-1
I 0 PBR PC-1

0 0 0-00
0 OD-OO-t
0 0 0 -00-2
0 AA8 AA
0 AABAA-1
1 PBR PC

i ' PBR PC-1
i ’ PBR PC-2
I 0 PBR PC-2
I 1 PBR A A -l

i Slack (Hardware

2 ib Stack 'Software
interrupts) e
(BRK COP)
(2 Op Codes)
(2 bytes)
(7 and 8 cycles)

Slack (Return tro
Interrupt) S
(RTI)
(i Op Code)
i t byte)
(6 and 7 cycles)

2ld Stack (Return Irom
Subroutine) a
(RTS)
11 Op Code)
(1 byte)
(6 cycles)

•21e Sleek (Return Irorn
Subroutine Long) e
(RTL)
(i Op Code)
11 bytei
(6 cycles)

211 Stack (Pusti) a
|PHP PHA PHY PHX
Ph D Ph k PHB i
(7 Op Codes)
|1 bytei
(3 and « cycles)

2ig Stack (Puli) a
(PLP PLA PLV PLX PLO PLB
(Different than N6502)
16 Op Codes)
(i bytei
(4 and 5 cycles)

• 2 tn Slack (Push Effective
:t AddreIndue

i PE i)
i t Op Cod
i2 byiesi
16 and 7 c

921- Slack (Pusn Effective
Absolute Addressi e
|P£A|
i t Op Code)
<3 byiesi
(S cycles)

*2 t| Stack (Pusn Effective
Program Counter Relativl
Address) a
|PER)
i t Op Codei
i3 bytesi
1 6 . yciesi

•22 Stack Reiativa d.s
iORA AND EOR AOL
STA lOA CMPSOC)
18 Op Codesi
■ 2 bytesi
■ a and 5 cyclesi

AAB
Oata low
Oata High
Op Code
AAL
aah
iO
NEW PCL

PBR AA-X-l NEW PCH
PBR NEW PC OpCode
PBR PC
PBR PC-I
OS
OS t
PBR PC-2
PBR PC-2
PBR AA-x
PBR AA-X-t
PBR NEW PC
PBR PC
PBR PC

OS 2
OS 3
0 VA

Op Code
AAL
PCH

NEW PCL
NEW PCH
Ne«tOpCode

PCL
p
AAVL
AAVH
N eit OpCode
Op Code
Signature
PBR
PCH

O S 2 PCL
0 S 3 (COP Latches)

AAVL0 VA
0 VA-t
0 AAV
PBR PC
PBR PC-1
PBR PC-1

0 S-2
0.S-2
PBR PC
PBR PC
PBR PC-t
PBR PC-1
OS-1
OS-2
OS-3
NEW PBR PC

AAVH
Ne*l Op Code
Op Code

PCL
PCH
PBR
New Op Code
Op Code

Op Code
Op Code
tO tO
NEW PCL
NEW PCH
NEW PBR
Neat Op Code
Op CodetO
Reg.st Ĥh

PBR PC
PBR PC-1
PBR PC-1

PBR PC
PBR PC-l
PBR PC-l 00-00 00-00-1

PBR PC
PBR PC-t
PBR PC-2

PBR PC
PBR PC -1
PBR PC-2
PBR PC-2

OS-SO
OS-SO-i

Op Code
Onset Low
Offset High10
PC H -Off-
CARRY
PCL-Off SET
Op Code
SO
iO

ADDRESS MODE
•23 Stack Relative indirect

indeied (d.a).y
(ORA AND EOR ADC
STA LDA CMP SOC)
(8 Op Codesi
(2 bytesi
(7 and 8 Cycles)

•24a Block Move Positive
(forward) aye

(1 Op Code)
(3 byiesi
(7 cycles)
« Source Address
y Destination
c Num

ITiTL-Oa
I----So

*24b Block Move Negati.
(backward) xyc
(MVN)
(1 Op Code)
(3 bytesi
<7 cycles)

y Destination

ir of Bytes to Move

stari address ®Yt*
ore positive) C 1
urce start address

CYCLE VP. MU VDA. VPA ADDRESS BUS OATA BUS
PBR PC Op Code
PBR PC-t SO

I PBR-PC-t IO
I OS-SO AAL
I OS-SO-1
I OS-SO-i
I DBR AA-Y
I OBR AA-Y-

PBR PC
PBR PC • t
PBR PC-2

< SBA x
i OBA Y
i OBA Y
i OBA Y

PBR PC
PBR PC-1
PBR PC-2

i SBA x t
i OBA V - 1
| DBA Y - 1

DBA V 1
PBR PC
PBR PC-1
PBR PC-2
SBA X 2
DBA V -2

' OBA V 2
i OBA Y 2

PBR PC-3

Oest End
Source Start
Oest Starl

destination start address
■s lower (more negative)
than the source start

10
Data Low
Data High
Op Code
OBA
SBA
Source Oata
Oest Oata
iO
IO
Op Code
OBA
SBA
Source Oata
Oest Oata
IO

Op Code
DBA
SBA
Source Oata
Oest Oata
IO
IO

PBR PC
PBR PC-t
PBR PC-2
SBA x
DBA Y
DBA Y
OBA Y

PBR PC
PBR PC-l
PBR PC-2
SBA.x-1
DBA Y -l
OBA Y• 1
DBA Y-1

PBR PC
PBR PC-l
PBR PC-2
SBA x -2
DBA y-2
DBA y-2
OBA y-2
PBR PC-3

Op Code
OBA
SBA
Source Oata
Oest Oata(O
IO

Op Code
DBA
SBA
Source Oata
Oest Oata
IO
IO
Op Code
OBA
SBA
Source Oata
Oest Oata
iO
IO

) Add 1 byte (lor immediate only! for M 0 or X 0
I Add 1 cycle lor direct register low (DL) not equal 0
) Special case lor aborting instruction This IS the last Cycle which

PBR or DBR registers will be updated
) Add i cycle for mde«mg across page boundaries or write or X

emulation mode this cycle contains invalid addresses
I Add 1 cycle il branch is taken
I Add i cycle J branch is taken across page boundaries m 6502 er
I Subtract 1 cycle lor 6502 emulation mode (E I)
I Add 1 cycle for REP SEP
i) Wait at cycle 2 lor 2 cycles alter N tfl or IRQ active input

3 Absolute Address Bank
h Absolute Address High
L Absolute Address LOW
-i Absolute Address vector ►
l Absolute Address vector l

data) add i cycle for M 0 or X 0

orted or the Status

3 Direct Register
A Destination Bank
R Data Bank Reg-str
3 Direct Offset
h immediate Data h
L immediate Oata L

at O perate
P Status Regisi

m Bant Reg-s
m Counter

:e Bank Addre
3 Stack onset
A vector Address
y inde« Registers

New W65C816 802 Addressing M
New W65C02 Addressing Modes
NMOS 6502 Addressing Modes

E W65C816 Data Sheet 589

R e c o m m e n d e d W 6 5 C 8 1 6 a n d W 6 5 C 8 0 2 A s s e m b l e r
S y n t a x S t a n d a r d s

Directives
Assembler d irectives are those parts o f the assem bly language source
program w hich give d irections to the assembler, th is includes the d e fin i
tion of data area and constants w ith in a program This standard excludes
any defin itions of assembler d irectives

Comments
An assembler should provide a way to use any line of the source program
as a com m ent The recom m ended way of do ing th is is to treat any b lank
line, or any line that starts w ith a sem i-co lon or an asterisk as a com m ent
O ther special characters may be used as well

The Source Line
Any line which causes the generation o f a s ingle W65C816 o r W65C802
m achine language ins truc tion should be d iv ided in to fou r fields: a label
field, the operation code, the operand, and the com m ent fie ld

The Label F ield—The label f ie ld begins in co lum n one of the line A label
must start w ith an a lphabetic character, and may be fo llow ed by zero or
more a lphanum eric characters An assem bler may define an upper lim it
on the num ber o f characters that can be In a label, so long as that upper
lim it is greater than or equal to six characters An assem bler may lim it
the a lphabetic characters to upper-case characters if desired If low e r
case characters are allowed, they should be treated as identica l to the ir
upper-case equivalents O ther characters may be allowed in the label, so
long as the ir use does not con flic t w ith the coding o f operand fields.

The O p eration C od e F ield—The opera tion code shall consist of a three
character sequence (m nem onic) from Table 3 It shall start no sooner
than co lum n 2 o f the line, or one space a fter the label if a label is coded

Many of the operation codes in Table 3 have dup lica te mnemonics, when
two or more m achine language instructions have the same m nemonic,
the assembler resolves the d iffe rence based on the operand

If an assem bler a llows lower-case letters in labels, it must also a llow
lower-case letters in the m nem onic When lower-case letters are used in
the mnem onic, they shall be treated as equivalent to the upper-case
coun terpart Thus, the m nem onics LDA. Ida. and LdA must all be recog
nized. and are equivalent

In add ition to the m nem onics shown in Table 3. an assem bler may p ro
vide the a lternate m nem onics shown in Table 6

T a b l e 7 . A l t e r n a t e M n e m o n i c s

S tand ard Alias
BCC BLT
BCS BGE
CMP A CMA
DEC A DEA
INC A INA
JSL JSR
JML JMP
TCD TAD
TCS TAS
TDC TDA
TSC TSA
XBA SWA

JSL should be recognized as equivalent to JSR when it is specified w ith a
long absolute address JML is equ iva lent to JMP w ith long addressing
forced

T he O p eran d F ie ld —The operand fie ld may start no sooner than one
space after the opera tion code fie ld The assem bler must be capable of
at least tw enty-four b it address ca lcu la tions The assembler should be
capable o f specify ing addresses as labels, in teger constants, and hexa
decim al constants The assembler must a llow add ition and subtraction
in the operand fie ld Labels shall be recognized by the fact that they start
a lphabetic characters Decimal num bers shall be recognized as con ta in
ing on ly the decim al d ig its 0 9 Hexadecim al constants shall be recog
nized by pre fix ing the constant w ith a $ character, fo llow ed by zero or
m ore o f e ithe r the decim al d ig its o r the hexadecim al d ig its A ' F" If
lower-case letters are a llowed m the label field, then they shall also be
allowed as hexadecim al d ig its

All constants, no matter what the ir form at, shall p rovide at least enough
precis ion to specify all values that can be represented by a tw enty-four
bit signed or unsigned integer represented in two's com plem ent notation.

Table 8 shows the operand form ats w h ich shall be recognized by the
assem bler The sym bol d is a label or value w h ich the assembler can
recognize as being less than $100 The sym bol a is a label o r value which
the assem bler can recognize as greater the $FF but less than $10000, the
sym bol al is a label oi value tha t the assem bler can recogn ize as being
greater than $FFFF The sym bo l EXT is a label w h ich cannot be located
by the assem bler at the tim e the ins tru c tion is assem bled Unless in
structed otherwise, an assembler shall assume that EXT labels are two
bytes long The sym bols r and rl are 8 and 16 b it s igned displacem ents
ca lculated by the assembler

Note that the operand does not dete rm ine w hether o r not im mediate
addressing loads one or two bytes; th is is determ ined by the setting of
the status register This forces the requirem ent fo r a d irective or d irectives
that te ll the assem bler to generate one or two bytes o f space fo r im m e
d iate loads The d irectives provided shall a llow separate settings fo r the
accum ula tor and index registers

The assembler shall use the < . >. and A characters after the # character
in im m ediate address to specify w hich byte or bytes w ill be selected from
the value o f the operand Any ca lcu la tions in the operand must be per
form ed before the byte se lection takes place Table 7 defines the action
taken by each operand by show ing the e ffect o f the opera tor on an ad
dress. The co lum n that shows a two byte im m ediate value show the bytes
in the o rder in w h ich they appear in m em ory The cod ing o f the operand
is fo r an assem bler w h ich uses 32 bit address ca lculations, show ing the
way that the address should be reduced to a 24 b it value

T a b l e 8 . B y t e S e l e c t i o n O p e r a t o r

O perand
#$01020304
#<$01020304
#>$01020304
'$01020304

O ne Byte Result
04
04
03
02

Two Byte Result
04 03
04 03
03 02
02 01

In any location in an operand where an address, or expression resulting in
an address, can be coded, the assem bler shall recognize the pre fix char
acters < . | . and > . w h ich force one byte (d irect page), two byte (absolute)
o r three byte (long abso lu te) addressing In cases where the addressing
m ode is not forced , the assem bler shall assum e tha t the address is two
bytes unless the assembler is able to determ ine the type of addressing re
qu ired by context, in w h ich case that addressing m ode w ill be used A d
dresses shall be trunca ted w ithou t e rro r if an addressing m ode is forced
w h ich does not require the entire value o f the address For example.

LDA $0203 LDA |$010203

are com p lete ly equ iva lent If the addressing m ode is not forced, and the
type o f addressing cannot be determ ined from context, the assembler
shall assum e tha t a tw o byte address is to be used If an in s tru c tion does
not have a short addressing m ode (as in LDA, w hich has no d irect page
indexed by Y) and a short address is used in the operand, the assembler
shall autom a tica lly extend the address by padding the most significan t
bytes w ith zeroes in o rder to extend the address to the length needed As
w ith im mediate addressing, any expression evaluation shall take place
before the address is selected, thus, the address selection character is
on ly used once, before the address of expression

T h e ' (exclamation poin t) character should be supported as an a lternative
to the | (vertical bar)

A long ind irec t address is ind icated in the operand fie ld of an instruction
by su rround ing the d irect page address where the indirect address is
found by square brackets, d irect page addresses w hich conta in sixteen-
b it addresses are indicated by being surrounded by parentheses

The operands o f a b lock move instruction are specified as source bank,
destination bank—the opposite order o f the object bytes generated

C om m ent F ie ld —The com m ent fie ld may start no sooner than one space
after the operation code fie ld or operand fie ld depending on instruction
type

590 Programming the 65816

A ddressing Mode
Immediate

Absolute

Absolute Long

Direct Page

Accum ulator
Implied Addressing
Direct Indirect

Indexed

Direct Indirect
Indexed Long

Direct Indexed
Indirect

D irect Indexed by X

D irect Indexed by Y

Absolute Indexed by X

Table 9. A dd re ss M ode Form ats

F orm at A ddressing M ode Form at
#d Absolute Indexed by Y 'd.y
a d.y
#al a.y
#EXT !a.y
#<d 'al.y
#<a 'EXT.y
#<al EXT.y
#<EXT Absolute Long Indexed ^d.x
n -'d by X >a.x

>al,x
.'a l al.x
s^E X T 'EXT.x
»Ad Program C ounter d (the assembler calculates
#Aa Relative and a r and rl)
#Aal Program C ounter al
#AEXT Relative Long EXT
'd Abso lu te Ind irect (d)
•a m
a (a)
•al 0a)
•EXT ('al)
EXT (EXT)
> d Direct Ind irect (d)
^ a (<a)
>a l (< a l)
al (<EXT)
>EXT Direct Ind irect Long [d]
d l< a |
< d l< a l|
< a l< E X T]
< a l Absolute Indexed (d.x)
<E X T Od.x)
A (a.x)
(no operand) ('a.x)
(d).y ('a l.x)
(< d),y (EXT.x)
« a) .y ('EXT.x)
(< a l).y Stack Addressing (no operand)
(<EX T).y Stack Relative (d,s).y
[d j.y Ind irect Indexed (<d.s).y
|< d j.y (<a.s).y
(< a j.y (<al.s).y
(< a l).y (<EXT.s).y
(<EXT).y B lock Move d.d
(d.x) d,a
(<d ,x) d.al
(<a,x) d.EXT
(<al.x) a.d
(<EXT.x) a.a
d.x a.al
< d .x a,EXT
<a .x al.d
c a l.x al.a
<E X T.x al.al
d y al.EXT
< d ,y EXT.d
< a ,y EXT,a
< a l.y EXT.al
<EXT.y EXT.EXT
d.x
'd.x
a.x
'a.x
•al.x
'EXT.x
EXT.x

Note The alternate 1 (exclam ation poin t) is used in place o f the | (vertical bar).

E W65C816 Data Sheet 591

Table 10. Addressing Mode Summary

Instruction Times
M em ory Utilization

In N um ber o t P ro g ram
In M em ory C ycles S e q u e n c e B ytes

A d dress M ode
Original

8 Bit NMOS
6502

New
W65C816

Original
8 Bit NMOS

6502
New

W 65C816
1 Immediate 2 2(3) 2 2(3)

2 Absolute 4(5) 4(3.5) 3 3
3 Absolu te Long - 5(3) — 4
4 Direct 3(5) 3(3.45) 2 2
5 Accum ula tor 2 2 1 1
6 Implied 2 2 1 1
7 D irect Ind irect Indexed (d).y 5‘ ’ > 5(1-3.4) 2 2
8 D irect Ind irect Indexed Long [d], y - 6(3.«> 2
9 D irect Indexed Ind irect (d.x) 6 6'3«> 2 2

10 Direct. X 4(5) 4(34.5) 2
11 Direct. Y 4 4(34) 2
12 Absolute. X 4(1.5) 4H3.S) 3
13 Absolu te Long, X - 5(3)
14 Absolute. Y 4(D 4(1-3)
15 Relative 2d 2) 2(2)
16 Relative Long - 3(2)

3
17 Absolute Ind irect (Jump) 5 5
18 D irect Ind irect - 5(34,
19 D irect Ind irect Long — 6(34)
20 Absolute Indexed Ind irect (Jump) - 6

3
21 Stack

22 Stack Relative
3-7 3-(T

4(3)
1-3 1-4

23 Stack Relative Ind irect Indexed — 7(3) 2

24 Block Move X, Y. C (Source, Destination, B lock Length) - 7
2

NOTES — --------------- 1_________t_________
1 Page boundary, add 1 cyc le if page boundary is crossed when form ing address
2 Branch taken, add 1 cycle if branch is taken
3 M = 0 or X = 0. 16 b it operation, add 1 cycle, add 1 byte fo r im mediate
4 D irect register low (DL) not equal zero, add 1 cycle
5 Read-M odify-W rite, add 2 cycles fo r M = 1, add 3 cycles fo r M = 0

592 Programming the 65816

C a v e a t s a n d A p p l ic a t io n I n f o r m a t io n

Stack Addressing
When in the Native mode, the Stack may use m em ory locations 000000
to OOFFFFF. The effective address of Stack. Stack Relative, and Stack
Relative Indirect Indexed addressing modes w ill always be w ith in th is
range In the Em ulation mode, the Stack address range is 000100 to
0001FF The fo llow ing opcodes and addressing modes w ill increm ent or
decrement beyond this range when accessing two or three bytes

JSL. JSR(a.x), PEA. PEI. PER. PHD. PLD. RTL d.s. (d.s).y

Direct Addressing
The D irect Addressing modes are o ften used to access m em ory registers
and poin ters The effective address generated by Direct. D irect.X and
Direct.Y addressing modes w ill always be in the Native mode range
000000 to OOFFFF When in the Emulation mode, the d irect addressing
range is 000000 to 0000FF, except fo r [D irec t] and [D irectj.Y addressing
modes and the PEI instruction which w ill increm ent from 0000FE or
OOOOFF into the Stack area

When in the Em ulation mode and DH is not equal to zero, the d irect
addressing range is00DH00toOODHFF. except for [D irect] and [D irectj.Y
addressing modes and the PEI instruction which w ill increm ent from
OODHFE or OODHFF in to the next h igher page

When m the E m ulation m ode and DL in not equal to zero, the d irect
addressing range is 000000 to OOFFFF

Absolute Indexed Addressing (W65C816 Only)
The Absolute Indexed addressing modes are used to address data o u t
side the d irect addressing range The W65C02 and W65C802 addressing
range is 0000 to FFFF. Indexing from page FFXX may result in a OOYY
data fetch when using the W65C02 or W65C802 In contrast, indexing
from page ZZFFXX may result in ZZ*1 .OOYY when using the W65C816.

Future Microprocessors (i.e., W65C832)
Future WDC m icroprocessors w ill support all cu rrent W65C816 opera t
ing modes fo r both index and offset address generation.

ABORT Input (W65C816 Only)
ABORT should be held low fo r a period not to exceed one cycle. A lso, if
ABORT is held low during the A bort Inte rrup t sequence, the A bort In te r
rupt wiM_be_aborted. It is not recom m ended to abort the A bort Interrupt.
The ABORT internal la tch is cleared during the second cycle o f the A bort
In terrupt Asserting the ABORT input after the fo llow ing instruction
cycles w ill cause registers to be m odified_________________
• Read-M odify-W rite: Processor status m odified if ABO RT is asserted

after a m odify cycle_____________________________
• RTI: Processor status w ill be m od ified if ABO RT is asserted after

cyc le 3. ______ _______
• IRQ, NMI, ABORT BRK, CO P: When ABORT is asserted after cyc le 2,

PBR and DBR w ill become 00 (Em ulation mode) o r PBR w ill become
00 (Native mode).

The A bort Inte rrup t has been designed fo r v irtual m emory systems. For
th is reason, asynchronous ABORT'S may cause undesirable results due
to the above conditions

VDA and VPA Valid Memory Address Output Signals (W65C816
Only)
When VDA or VPA are high and during all write cycles, the Address Bus
is always valid. VDA and VPA should be used to qua lify all m emory cycles.
Note that when VDA and VPA are both low. invalid addresses may be
generated The Page and Bank addresses could a lso be invalid This w ill
be due to low byte add ition only. The cycle when only low byte add ition
occurs is an optiona l cycle for instructions which read m emory when the
Index Register consists of 8 bits This optiona l cycle becomes a standard
cycle fo r the S tore instruction , all ins tructions using the 16-bit Index
Register mode, and the Read-M odify-W rite instruction when using 8- or
16-bit Index Register modes

Apple II, lie, lie and 11+ Disk Systems (W65C816 Only)
VDA and VPA should not be used to qua lify addresses during disk opera
tion on Apple systems. Consult your A pple representative for hardware/
software configurations

DB/BA Operation when RDY is Pulled Low (W65C816 Only)
W hen RDY is low. the Data Bus is held in the data transfer state (i.e., 02
high) The Bank address external transparent latch should be latched
when the 02 c lock o r RDY is low

M/X Output (W65C816 Only)
The M/X o utput reflects the value o f the M and X b its of the processor
S tatus Register The REP. SEP and PLP instructions may change the
state of the M and X bits. Note that the M /X o u tp u t is invalid during the
ins truc tion cycle fo llow ing REP, SEP and PLP instruction execution.
This cycle is used as the opcode fetch cycle of the next instruction.

All Opcodes Function in A ll Modes of Operation
It shou ld be noted tha t all opcodes func tion in all modes o f operation.
However, some ins truc tions and addressing modes are in tended fo r
W65C816 24-bit addressing and are therefore less useful for the W65C802.
The fo llow ing is a list o f ins truc tions and addressing modes w hich are
p rim arily intended for W65C816 use:

JSL. RTL; [d]; [d].y. JM P al; JM L. al; al.x

The fo llow ing instructions may be used w ith the W65C802 even though
a Bank Address is not m ultip lexed on the Data Bus:

PHK; PHB; PLB

The fo llow ing instructions have "lim ited" use in the Emulation mode:

• The REP and SEP instructions cannot m od ify the M and X b its when in
the E m ulation mode. In th is m ode the M and X b its w ill always be h igh
(log ic 1).

• When in the E m ulation mode, the MVP and MVN ins truc tions use the
X and Y Index Registers fo r the m em ory address. A lso, the MVP and
MVN instructions can on ly move data w ith in the m em ory range 0000
(Source Bank) to 00FF (D estination Bank) fo r the W65C816. and 0000
to 00FF for the W65C802

indirect Jumps
The JM P (a) and JM L (a) in s tru c tion s use the d irect Bank fo r ind irect
addressing, w hile JM P (a.x) and JSR (a.x) use the Program Bank fo r in
d irect address tables

Switching Modes
W hen sw itch ing from the Native m ode to the E m ulation mode, the X and
M b its o f the Status Register are set h igh (log ic 1), the h igh byte o f the
S tack is set to 01. and the h igh bytes o f the X and Y Index Registers are
set to 00. To save previous values, these bytes must always be stored
before changing modes. Note that the low byte o f the S. X and Y Registers
and the low and h igh byte o f the A ccum ula to r (A and B) are not a ffected
by a mode change.

How Hardware Interrupts, BRK, and CO P Instructions Affect
the Program Bank and the Data Bank Registers
W hen in the Native mode, the Program Bank reg ister (PBR) is cleared to
00 when a hardware in te rrup t. BRK or COP is executed In the Native
mode, previous PBR contents is autom atically saved on Stack.

In the Emulation mode, the PBR and DBR registers are cleared to 00 when
a hardware interrupt. BRK or COP is executed. In th is case, previous con
tents of the PBR are not autom atically saved.

Note tha t a Return from In te rrup t (RTI) should always be executed from
the same "m ode" which o rig ina lly generated the in terrupt.

Binary Mode
The B inary m ode is set whenever a hardware or software in terrup t is
executed The D flag w ith in the Status Register is cleared to zero

WAI Instruction
The WAI in s tru c tio n p u lls RDY low and places the processor in the WAI
"low pow er" mode NMI. IR Q orR E S E T w ill term inate the WAI condition
and transfer contro l to the in terrup t handler routine. Note that an ABORT
input w ill abort the WAI instruction , b ut w ill not restart the processor
W hen the Status Register I flag is set (IRQ disabled), the IRQ in terrupt
w ill cause the next ins truc tion (fo llow ing the WAI instruction) to be
executed w ithou t go ing to the IRQ in te rrupt handler This method re
su lts in the h ighest speed response to an IRQ input. When an in terrup t

E W65C816 Data Sheet 593

is received after an ABORT w hich occurs during the WAI instruction, the
processor w ill re turn to the WAI instruction O ther than RES (h ig hest
prio rity). ABORT is the next highest prio rity , fo llow ed by NMI or IRQ
in terrupts

STP Instruction
The STP instruction d isables the 02 c lock to all c ircu itry When disabled,
the 02 c lock is held in the h igh state In th is case, the Data Bus w ill remain
in the data transfer state and the Bank address w ill not be multip lexed
onto the Data Bus Upon executing the STP instruction , the RES signal is
the only input w hich can restart the processor The processor is restarted
by enabling the 02 c lock, w hich occurs on the fa lling edge of the RES
input Note that the external oscilla tor must be stable and operating p rop
erly before RES goes high

COP Signatures
Signatures 00-7F may be user defined, w hile signatures 80-FF are re
served fo r instructions on fu tu re m icroprocessors (i.e.. W65C832). C on
tact WDC for software em ulation o f future m icroprocessor hardware
functions

WDM Opcode Use
The WDM opcode w ill be used on fu tu re m icroprocessors For example,
the new W65C832 uses th is opcode to p rovide 32-bit floa ting -po in t and
other 32-bit math and data operations Note that the W65C832 w ill be a
p lug-to -p lug replacement for the W65C816. and can be used where h igh
speed. 32-bit math processing is required The W65C832 w ill be available
in the near future

RDY Pulled During Write
The NMOS 6502 does not stop during a write operation In contrast, both
the W65C02 and the W65C816 do stop during w rite operations The
W65C802 stops d u ring a w rite when in the Native mode, but does not
stop when in the Emulation mode

MVN and MVP Affects on the Data Bank Register
The MVN and MVP in s tru c tion s change the Data Bank Register to the
value of the second byte o f the instruction (destination bank address)

Interrupt Priorities
The fo llow ing in te rrup t p rio rities w ill be in e ffect should more than one
in terrup t occur at the same time

RES Highest P riority
ABORT
N M I
IRQ Lowest P riority

Transfers from 8-Bit to 16-Bit, or 16-Bit to 8-Bit Registers
All transfers from one reg ister to another w ill resu lt in a fu ll 16-bit output
from the source reg ister The destination register size w ill determ ine the
num ber of bits actua lly stored in the destination register and the values
stored in the processor S tatus Register The fo llow ing are always 16-bit
transfers, regardless of the accum ula tor size

TCS. TSC. TCD. TDC

Stack Transfers
When in the Em ulation mode, a 01 is forced in to SH In th is case, the B
A ccum ula to r w ill not be loaded m to S H d u ring a TCS ins truc tion When
in the Native mode, the B A ccum ula tor is transferred to SH Note that in
both the E m ulation and Native modes, the fu ll 16 b its o f the Stack Regis
ter are transferred to the A. B and C A ccum ulators, regardless o f the
state of the M bit in the Status Register

594 Programming the 65816

P a c k a g i n g I n f o r m a t io n

Plastic & Cerdip Package

t *

> /

C l 1 40 ^ “ T

2 » I > 51
<L 3 M

4 37 T>

< E 17 24

< E II 23 I >

19 22 D > s

< r 20 21 r j a — L

f

t
if I— -----E -------- J

1

\\

/ . . .

W 6 5 C 8 1 6 P I - 2

D escription 1
W C —Custom
W —Standard
P ro d uc t Identification N um ber
P ackage
P — Plastic E — Leadless Ch ip Carrier
C —Ceram ic X —Dice
D—Cerdip
T em pera tu re /P rocess in g
B lank—0 °C to 70°C
I— 40° C to ♦85° C
M — 55°C to *125°C
P erfo rm ance D esignato r__________________
Designators selected for speed and power
specifications
-2 2 MHz -6 6 MHz
-4 4 MHz -8 8 MHz

Sales Offices:
Technical or sales assistance may be requested from
The Western Design Center. *nc
2166 East Brown Road
Mesa. Arizona 85203
602/962-4545
TLX 6835057

W A R N I N G :
M O S C IRCU ITS ARE S U B JE C T TO D A M A G E FR O M STATIC D IS C H A R G E
In te rn a l s ta bc d isch a rg e C ircu its are p ro v id e d lo m in im iz e p a rt dam ag i* due to e n v iro n m e n ta l
s ta tic e le c tr ic a l < M arge b u ild ups In d u s try esiabMsMed re c o m m e n d a tio n s lo r H an d lin g M O S

C ircu its in c lu d e
1 S h ip and Store p ro du c t m c o n d u c tiv e s h ip p in g tu be s or in c o n d u c tive fo a m p la s tic Never

Ship or Store p ro d u c t in no n c o n d u c tiv e p lastic co n ta in e rs or no n i o n d u cb ve p la s tic lo a m

m a te ria l
2 H an d le M O S pa rts on ly a t c o n d u c tiv e w o rk s ta tio n s
3 G ro u n d a ll asse m b ly and re p a ir to o ls

Represented in your area by:

W D C reserve s the righ t to m ake ch a n g e s at a n y t im e an d w ith ou t n o t ic e

in fo rm a t io n c o n ta in e d he re in is p ro v id e d g ra tu ito u s ly an d w ith ou t liab ility , to an y u se r R e a so n ab le e ffo rts have been m ade to ve rify the a c c u ra c y o f the in fo rm a t io n bu t no
gua ran tee w ha tso eve r is g iven as to the a c c u ra c y o r a s to its a p p lic a b il ity to p a r t icu la r u se s In eve ry in s ta n ce it m u st be the re s p o n s ib il ity o f the u se r to d e te rm in e the s u ita b il
ity o f the p ro d u c ts fo r e a ch a p p l ic a t io n W D C p ro d u c ts a re no t a u th o r ize d fo r u se a s c r it ic a l c o m p o n e n ts in life sup p o rt d e v ic e s or s y s te m s N o th in g co n ta in e d h e re in sh a ll be
co n s tru e d as a re c o m m e n d a t io n to u se an y p ro d u c t in v io la t io n o f e x is t in g pa ten ts o r o th e r r ig h ts o f th ird p a r t ie s T he sa le of a n y W D C p ro d u c t is s u b ie c t to a ll W D C Term s
an d C o n d it io n s o f S a le and S a le s P o lic ie s c o p ie s o f w h ic h a re a v a ila b le u p o n request

Ceramic Package

• The Western Design Center Inc 1985

The Western Design Center, Inc

Revised November 1985

2166 E. Brown Rd./Mesa, AZ 85203 602/962-4545/TLX 6835057
P u b lis h e d m U S A N o vem b e r 1983

The ASCII
Character Set

Low Bit Set: High Bit Set:

D ecim al Hex Decimal Hex Character N am es

0 00 128 80 Control-@ NUL, null
1 01 129 81 Control-A
2 02 130 82 Control-B
3 03 131 83 Control-C Break
4 04 132 84 Control-D
5 05 133 85 Control-E
6 06 134 86 Control-F
7 07 135 87 Control-G BEL, bell
8 08 136 88 Control-H BS, backspace
9 09 137 89 Control-I HT, horizontal tab

10 OA 138 8A Control-J LF, line feed
11 OB 139 8B Control-K VT, vertical tab
12 OC 140 8C Control-L FF, form feed, Page
13 OD 141 8D Control-M CR, carriage return
14 OE 142 8E Control-N
15 OF 143 8F Control-O
16 10 144 90 Control-P
17 11 145 91 Control-Q XON, resume
18 12 146 92 Control-R
19 13 147 93 Control-S XOFF, screen pause
20 14 148 94 Control-T
21 15 149 95 Control-U
22 16 150 96 Control-V
23 17 151 97 Control-W
24 18 152 98 Control-X CAN, cancel line
25 19 153 99 Control-Y
26 1A 154 9A Control-Z End of file
27 IB 155 9B Control-! ESC, escape
28 1C 156 9C Control- \
29 ID 157 9D Control-]
30 IE 158 9E Control-A

595

Continued.

596 Programming the 65816

Low Bit Set: High Bit Set:

Decimal Hex D ecim al Hex Character N am es
31 IF 159 9F Control-__
32 20 160 AO Space
33 21 161 A l ! Exclamation point
34 22 162 A2 " Quote
35 23 163 A3 # Pound sign
36 24 164 A4 $ Dollar sign
37 25 165 A5 % Percent sign
38 26 166 A6 & Ampersand
39 27 167 A7 ' Apostrophe
40 28 168 A8 (Left parenthesis
41 29 169 A9) Right parenthesis
42 2A 170 AA ★ Asterisk
43 2B 171 AB + Plus sign
44 2C 172 AC . Comma
45 2D 173 AD - Minus sign, dash
46 2E 174 AE Period
47 2F 175 AF \ Backslash
48 30 176 BO 0
49 31 177 B l 1
50 32 178 B2 2
51 33 179 B3 3
52 34 180 B4 4
53 35 181 B5 5
54 36 182 B6 6
55 37 183 B7 7
56 38 184 B8 8
57 39 185 B9 9
58 3A 186 BA Colon
59 3B 187 BB • Semicolon
60 3C 188 BC < Less than
61 3D 189 BD = Equal
62 3E 190 BE > Greater than
63 3F 191 BF ? Question mark
64 40 192 CO @ At sign
65 41 193 C l A
66 42 194 C2 B
67 43 195 C3 C
68 44 196 C4 D
69 45 197 C5 E
70 46 198 C6 F
71 47 199 C7 G

F The ASCII Character Set 597

Low Bit Set: High Bit Set:

Decim al Hex D ecim al Hex Character Names

72 48 200 C8 H
73 49 201 C9 I
74 4A 202 CA J
75 4B 203 CB K
76 4C 204 CC L
77 4D 205 CD M
78 4E 206 CE N
79 4F 207 CF O
80 50 208 DO P
81 51 209 D l Q
82 52 210 D2 R
83 53 211 D3 S
84 54 212 D4 T
85 55 213 D5 U
86 56 214 D6 V
87 57 215 D7 w
88 58 216 D8 X
89 59 217 D9 Y
90 5A 218 DA z
91 5B 219 DB [Left bracket
92 5C 220 DC \ Backslash
93 5D 221 DD] Right bracket
94 5E 222 DE A Caret
95 5F 223 DF Underscore
96 60 224 EO Accent grave
97 61 225 El a
98 62 226 E2 b
99 63 227 E3 c

100 64 228 E4 d
101 65 229 E5 e
102 66 230 E6 f
103 67 231 E7 g
104 68 232 E8 h
105 69 233 E9 i
106 6A 234 EA i
107 6B 235 EB k
108 6C 236 EC 1
109 6D 237 ED m
110 6E 238 EE n
111 6F 239 EF o

Continued.

598 Programming the 65816

Low Bit Set: High Bit Set:

Decimal Hex Decimal Hex Character Names

112 70 240 FO P
113 71 241 FI q
114 72 242 F2 r
115 73 243 F3 s
116 74 244 F4 t
117 75 245 F5 u
118 76 246 F6 V

119 77 247 F7 w
120 78 248 F8 X

121 79 249 F9 y
122 7A 250 FA z
123 7B 251 FB { Left brace
124 7C 252 FC 1 Vertical line
125 7D 253 FD } Right brace
126 7E 254 FE ~ Tilde
127 7F 255 FF DEL delete, rubout

Index 599

Index

see |
,1 0 9 , 367
$, 8, 78
% , 78, 181
< , 109, 201-203
> , 109, 132, 134, 143, 201-203
| , 117, 122, 201-202

A register, see Accumulator
Abort signal, 64, 65, 261, 522, 548
Accumulator, 15, 2 6 -2 7 , 56, 91

16-bit, 51
A, 58, 96, 102

in emulation mode, 69
B, 58, 9 5 -9 7 , 100, 102

in emulation mode, 69
C, 58, 100, 102, 103-104

in emulation mode, 69
Accumulator/Memory select flag, 56, 67,

71, 109, 112
Addition, 30, 151-165, 423
Address 5

lines, 545
notation, 81
space, 6502, 27

Addresses, direct page, 81, 116
Addressing Modes, 26

6502, 34
6502 addressing modes on the 65816,

59
65C02, 46
65C02 on the 65816, 59
65816/65802, 61
absolute, 34, 35, 61, 108, 111-114
absolute indexed, 29, 46
absolute indexed indirect, 197,

210-212
with JSR, 230-231

absolute indexed with X, 34, 120-123,
187

absolute indexed with Y, 34, 197,
120-123

absolute indirect, 34, 141, 142
absolute indirect long, 61, 62
absolute long, 61, 62, 108, 130-135
absolute long indexed with X, 61, 62,

134-135, 197
accumulator, 34, 35, 108, 126-127

block move, 61, 62, 108, 137
complex, 197-223
direct page, 34, 108, 114-117, 197
direct page indexed indirect with X,

34, 197, 206-210
direct page indexed with X, 34, 197,

123-126
direct page indexed with Y, 34, 197,

123-126
direct page indexed, 29
direct page indirect indexed with Y,

34, 197, 203-206
direct page indirect long indexed

with Y, 61, 62, 197, 212-214
direct page indirect long, 61, 62, 108,

135-137
direct page indirect, 46, 108, 128-130
for accumulator operations, 28
immediate, 34, 35, 61, 108-111

implications of, 109-111
implied, 34, 35, 108, 127
indexed, 61, 122
indexed indirect, 29
indirect indexed, 29
postindexed, see Addressing Modes,

direct page indirect indexed with
Y

postindexed long, see Addressing
Modes, direct page indirect long
indexed with Y

preindexed, see Addressing Modes,
direct page indexed indirect with
X

program counter relative long, 61, 62
program counter relative, 34, 35
simple, 107-138
stack, 34, 35, 108, 127
stack relative indirect indexed with Y,

61, 62, 197, 216-217
stack relative, 61, 62, 197, 213-215
syntax summary, 108, 197
zero page, see Addressing Modes,

direct page
Addressing

direct page, 55, 198
long, 130-138

used with the 65802, 132
And, 9 -10 , 181-183, 187, 189, 193

600 Programming the 65816

Apple II, 45, 48,71, 75, 78, 278, 301, 302,
319, 333, 552

40-column screen, 205
keyboard, 149
screen memory, 183-184

Architecture,
6502, 2 5 -4 4
65C02, 45 -4 8
65816/65802, 49 -72

Arithmetic instructions, 156
Arithmetic, 155-178

multiple precision, 15, 30, 163-166
signed, 170-174
unsigned, 161-166

Array, 117
ASCII, 3, 8

chart, 595-598
Assembler

addressing mode assumptions,
overriding, 200-203

macro, 17
special syntax, immediate addressing,

109
Assembler, ORCA/M, 78, 366
Assembler directives, 18

ANOP, 81
DS, 80
GEQU, 79
LONGA, 110-111, 112
LONGI, 110-111, 112
ORG, 79

Assembler syntax, 117, 132, 134, 366
Assemblers, 16
Assembly language, 16
Asserted, 179

b, see Break flag
B register, sec Data bank register
Back space, 8
Bank, memory, 6, 53, 114
Bank address lines, 547
Bank byte, 53, 132
Bank change, as result of indexing,

119-120
Bank-independent, 132
Bank registers, 65

see also Data bank register or Program
bank register

Bank zero, 55, 141, 143
interrupt vectors, 251

use for direct page, 199
BASIC, 15

BBR, R65C02 instruction, 561, 562
BBS, R65C02 instruction, 561, 563
Benchmarks, 293-298
Binary Coded Decimal (BCD) numbers,

3, 14, 31, 176, 284, 442
Binary

arithmetic, 15
digit, 4
division, 273
number systems, 3

Bit, 4
inversion, 185
manipulation, 187-189, 193
numbering, 6, 179
testing, 431, 513-514

Bit-field, 179
Bit-manipulation instructions, 180
Bit-reset, 513
Bit-set, 514
Bitwise, 9, 181
Block move, 69, 103, 466 -467 , 468-469

see also Addressing Modes, block
move

see also Instructions, MVN
see also Instructions, MVP

Boolean logic, see Logical operations
Borrow, 3 0 -31 , 165
Branch

conditional, 20, 29, 1143-1151
branch always, synthesis, 148
branch to subroutine, synthesis, 232,

234-235
instructions, 20, 139, 140, 143-153
limitations, 150-151
timing of, 144
unconditional, 47, 151-153

Break flag, 29, 30, 42, 58, 67, 71,
253-254 , 436

BRK, used in debugging, 300, 332
BRK vector, 253
Bugs

6502, 43
65C02, 48
65816/65802, 72

Bus enable signal, 549
Byte, 5, 56
Byteworks, 78

Index 601

c, see Carry flag
C accumulator, 374
C programming language, 285, 287
Carriage return, 8
Carry, 30
Carry bit, 15
Carry flag, 29, 144, 147-148, 174, 189,

428, 429, 441, 497, 499
as source of error, 362
effect of comparison on, 167
in decimal mode, 176
use in arithmetic, 162-166

Chip packaging, 543
Clearing memory, 507
Clock signal, 40
CMOS, 43, 45, 47
Comments, in source code, 17, 370
Compare instructions, 156
Comparison, 166-170, 445, 449, 450

signed, 174-175
Compatibility, 65816 with 6502, 67
Compilers, 16, 285
Complement, 11
Constant data, 108
Context-saving, 277
Control codes, 8
COP vector, 253
Co-processor, 447
Cycle count,

branch instructions, 144
reduced on some 65816 instructions, 165

d, see Decimal flag
D register, see Direct page register
Data bank register, 53, 55, 114, 130, 477,

484
Data Bus Enable signal, 545
Data lines, 545
DBR, see Data bank register
DEBUG16, 299-359
Debuggers, 299
Debugging, 369

checklist, 362-370
Decimal adjustment, 176-177
Decimal flag, 31, 176, 262, 442, 500

as source of error, 362
effect of interrupt, 251

Decimal mode, 31, 176-177, 284
Decimal numbers, 13

Decrement, 28, 156-161, 451, 452, 453
Differences between processors and

modes, 68
Direct page, 49, 124, 374

addresses, 81, 116
addressing, 55, 198
addressing modes, see Addressing

modes, direct page
as pointer to stack, 281
direct page offset, 116
errors in using, 365
relocating, 198-200
set to page boundary, 199-200
vs. zero page, 60

Direct page register, 53, 55, 116, 124,
478, 485

Disassembly, 299
Division, 183, 272-277

binary, 273
by powers of two, 191, 193
not built in, 155
on 6502, 273
on 65C02, 275
on 65802 and 65816, 275-277

Documentation, 369
of subroutines, 236

Double byte, 5, 56

e, see Emulation flag
Effective address, 26
Eight-bit registers, 364
Emulation flag, 58, 69, 148, 480, 486
Emulation mode, 50, 61, 64, 67, 148,

364, 374
switching to native mode from, 525

Emulation signal, 549
Eratosthenes sieve program, 293-298
Error messages, 18
Exchanges, 102-103
Exclusive or, 9 -1 1 , 185-187, 454
Execution

selection between paths, 19
straight-line, 18

External events, synchronization, 522

False, 179
Flags, status, 2 9 -31 , 5 3 -5 4 , 5 6 -5 7 ,

5 8 -5 9
Flow of control, 139-153

602 Programming the 65816

Group I instructions, 122, 567, 568-569
Group II instructions, 567, 569-570

Hardware signals, see Signals
Hexadecimal, 7

notation, 321
number systems, 3

High-order
bit, 171
byte, 53, 131
value, 4

i, see Interrupt Flag
Increment, 28, 156-161, 456, 457, 458

instructions, 156
sixteen-bits, 158

Index register mode select flag, 56, 71,
77, 109, 112

Index registers, 27-28, 51
Index signal, 549
Indexed addressing, 61, 122
Indexing, 35, 36, 117-119, 156

across banks, 119-120, 126
past end of direct page 124-126,

209-210
step value, 156

Indirect address, 118, 128, 130
Indirection, 35, 37
Input/Output, 42, 250
Instruction groups, 567-571
Instruction sets, 421-525
Instructions

ADC, 156, 161, 163-165, 172, 176,
423-424

AND, 180, 426
ASL, 180, 189, 427
BCC, 147-148, 167-168, 428
BCS, 147-148, 167-168, 429
BEQ, 140, 146-147, 166, 430
BGE, 168, 429
BIT, 180, 187-188, 431, 439, 440
BLT, 168, 428
BM!, 149, 171, 432
BNE, 146-147, 433
BPL, 149, 171, 434
BRA, 140, 151-153, 435
BRK, 64, 139, 249, 255, 436-437
BRL, 140, 153, 438
BVC, 150, 439
BVS, 150, 440

CLC, 249, 262, 423, 441
use in addition, 163

CLO, 249, 262, 442
CL!, 249, 262-263, 443
CLV, 249, 263, 439, 440, 444
CMP, 156, 167-170, 174, 176, 445-446
COP, 64, 65, 139, 249, 255, 261, 447-448
CPX, 156, 170, 449
CPY, 156, 170, 450
DEC, 156-161, 451
DEX, 156-161, 452
DEY, 156-161, 453
EOR, 180, 454-455
INC, 156-161, 456
INX, 156-161, 457
!NY, 156-161, 458
JML, 139, 143, 459
JMP, 139, 140-143, 459
JSL, 140, 226, 231-232, 460
JSR, 140, 225-248, 461
LOA, 84, 462
LOX, 84, 463
LOY, 84, 464
LSR, 180, 189, 465
MVN, 104-105, 466-467, 85
MVP, 105-106, 468-469, 85
NOP, 249, 263-264, 470
ORA, 180, 471
PEA, 84, 94, 218-219, 473
PEI, 84, 94, 218, 220, 474
PER, 64, 84, 94, 218, 221-223, 232,

234-235, 475
PHA, 84, 91, 476
PHB, 84, 91, 93, 477
PHO, 84, 94, 478
PHK, 84, 93, 479
PHP, 84, 480
PHX, 84, 91, 481
PHY, 84, 91, 482
PLA, 84, 91
PLB, 84, 91, 94, 484
PLO, 84, 94, 198, 485
PLP, 84, 91, 486
PLX, 84, 91, 487
PLY, 84, 91, 488
REP, 58, 75, 77, 86, 112, 249, 262, 489
ROL, 180, 189, 490
ROR, 180, 189, 491
RTI, 139, 249, 251, 254-255, 259, 262,

492-493

Index 603

RTL, 139, 140, 226, 231-233, 254-255,
494-495

RTS, 77, 140, 225-248 , 254-255 , 496
SBC, 156, 161, 166-167, 172, 174, 176,

497-498
SEC, 166-167, 249, 262, 497, 499
SED, 176, 249, 262, 500
SEI, 249, 262-263, 501
SEP, 58, 75, 77, 86, 112, 249, 262, 502
STA, 84, 108, 503
STP, 249, 260-261, 504
STX, 84, 108, 505
STY, 84, 108, 506
STZ, 85, 103, 507
SWA, 524
TAD, 510
TAS, 511
TAX, 84, 95, 508
TAY, 84, 95, 509
TCD, 84, 99, 198, 510
TCS, 84, 100, 511
TDA, 512
TDC, 84, 99, 512
TRB, 180, 188-189, 513
TSA, 515
TSB, 180, 188-189, 514
TSC, 85, 100, 515, 516
TSX, 84, 95, 516
TXA, 84, 95, 517
TXS, 84, 95, 518
TXY, 85, 101, 519
TYA, 84, 95, 520
TYX, 85, 101, 521
WAI, 249, 260, 522
WDM, 249, 264, 523
XBA, 85, 95, 102, 524
XCE, 58, 85, 102, 441, 525

Instructions
6502, 3 8 -3 9 , 65C02, 47
65816/65802, 63
arithmetic, 156
bit manipulation, 180
data movement, 84
flow of control, 140
interrupts, 249
logic, 180
R65C02, 561-565
subroutines, 226
system control, 249
unimplemented, 44, 48, 72, 264

Intel, 41, 42, 88, 91
Interpreters, 16
Interrupt, 30, 32, 42, 58, 64, 65,

249-253 , 300, 363
hardware, 250, 253, 443
instructions, 139
latency, 43, 260, 522
maskable, 42
nonmaskable, 43, 251
processing, 251, 256-259
response time, 259-260
service routine, 42
software, 42, 251, 253, 436 -437 , 447
vector locations, 42, 64, 69, 251, 253

Interrupt flag, 31, 262-263, 436, 443, 501
effect of interrupt, 251
flag, effect upon IRQ, 251

I/O, mem ory-mapped, 42
IRQ signal, 31, 64, 250, 253, 436, 443,

501, 522, 546
IRQ vector, 253
Iteration, 20

Jump, 20, 139
indexed indirect, 210-212
indirect, using RTS, 228, 230
indirect long, 54
indirect vs. indexed indirect, bank

assumptions, 212
long, 54
subroutine, 21, 93

Jump instructions, 140-143
Jump long instructions, 139

K register, see Program bank register
Kilobyte, 6

Labels, 17, 79, 112
Line feed, 8
Linked list, 147
Logic, 9
Logic instructions, 180-181
Logical false, 9
Logical operations, 179-189
Logical true, 9
Loop control, 160
Looping, 20, 139, 146
Low-order, 4

m, see Accumulator/memory select flag
Machine language, 15

604 Programming the 65816

Macro instructions, 17
Mask, 77, 181
Maskable interrupt, 42
Masking bit fields, 180
Megahertz, 40, 545
Memory, 26

addressable, 65802, 49
addressable, 65816, 49
bank, 6, 53, 114
high-low order, 41
low-high order, 41
order of multi-byte values, 41
page, 35, 53, 114
stack, 90

Memory Lock signal, 544-545
Memory-mapped I/O, 42
Memory models, 286
Memory signal, 549
Mensch, William D., Jr., 64
Mixing

eight- and sixteen-bit registers, 364
emulation and native code, 364
6502 and 65816 code, 277

Mnemonic, 16
Mode

8-bit, 112
16-bit, 112
differences, 68
flags, 98
select, 31

Modular programming, 368-369
Modulus, 183, 193
Motorola, 41, 42, 88, 91
Move block, see Block move
Multiple precision arithmetic, 15, 30,

163-166
Multiplication, 183, 268-272

by powers of two, 191-193
by ten, 192
not built in, 155
on 6502, 269
on 65C02, 269, 270
on 65802 and 65816, 269, 271
signed, 185-187

MVN/MVP, errors in using, 365-366

n, see Negative flag
Native mode, 50, 51, 61, 64, 67, 148, 364

differences on 65802 and 65816, 374
register size combinations, 57
switching to emulation, 525

Negated, 179
Negation, subroutine, 235-237
Negative flag, 29, 144, 157-161,

171, 187, 188, 431, 432, 434
effect of comparison on, 167

Nibble, 321
NMI signal, 64, 251, 522, 546
NMI vector, 253
NMOS, 43
Nonmaskable interrupt, 43, 251
Number systems, 3

Object code, 17
Off, 179
On, 179
Opcode, 16
Opcode, reserved, 523
Opcodes, unimplemented, 51
Operand, 16
Operand symbols, 375
Operation code, see Opcode
Operations,

6502, 36
65C02, 46

Or, 9 -10 , 183-185, 188
ORCA/M assembler, 78, 366
Overflow,

arithmetic, 30
two's complement, 30

Overflow flag, 29, 144, 150, 172-175,
187, 188, 263, 431, 439, 440, 444

decimal mode, 176
Overflow signal, 150

P register, see Status register
Packaging, chip, 543
Page, memory, 35, 53, 114
Page wraparound, 60
Page zero, see Zero page
Parameter passing, 237-248, 283
Pascal, 15, 287
PBR, see Program bank register
PC, see Program counter
Phase one signal, 545
Phase two signal, 545
Phase zero signal, 545
Pinout, 544

6502, 49, 544
65802, 49, 544

Pipelining, 40, 41

Index 605

Pointers, in C, 285
Polling, 256
Position independence, 151-153
Positional notation, 4, 7
Power consumption, 64, 260-261, 504,

522
Processor status register, see Status

register
Processor type, 284-285
Processors,

16-bit, 49
differences, 68

Program bank register, 5 3 -5 4 , 114, 139,
479

Program counter, 19, 27, 33
Program counter relative, 144
Program loop, 159-161
Programming, structured, 225
Programming model,

6502, 27, 375
65C02, 375
65802 native mode, 66, 376
65816 emulation mode, 70, 378
65816 native mode, 52, 377

Pull, 31, 91
Push, 31, 89, 92
Push effective address instructions, 94,

216, 218-222

R65C02, 561-565
RDY signal, 260, 522, 545
Read-modify-write instructions, 126,

157
Read/Write signal, 545
Recursion, 228, 247, 287
Reentrancy, 228, 230, 247, 259
Register-oriented machines, 26
Register size, switching, 58
Register transfers, 94
Registers, 15, 26
Relocatable code, 151-153, 222-223, 232,

234-235 , 435, 475
Relocatable module, 17
Remainder, 193
Reset signal, 4, 42, 64, 161, 179, 253,

262, 504, 522, 546
Reset vector, 253
Return, 21, 32

long, 54
Return address, 460, 461

RMB, R65C02 instruction, 561, 564
Rockwell, see R65C02
Rotates and shifts, 30, 61, 180, 189-195,

427, 465
in multiplication, 269

S register, see Stack pointer
Selection between paths, 139, 144
Sequential execution, 139
Set, 4, 179
Set Overflow signal, 263, 439, 440, 444,

546
Shifts and rotates, see Rotates and shifts
Sieve of Eratosthenes, 293-298
Sign extension, 174, 187-188
Sign flag, 171, 179, 284
Signals,

abort, 64, 65, 261, 522, 548
bus enable, 549
clock, 40
data Bus Enable, 545
emulation, 549
index, 549
IRQ, 31, 64, 250, 253, 436, 443, 501,

522, 546
memory, 549
memory lock, 544-545
NMI, 64, 251, 522, 546
overflow, 150
phase one, 545
phase two, 545
phase zero, 545
RDY, 260, 522, 545
read/write, 545
reset, 4, 42, 64, 161, 179, 253, 262, 504,

522, 546
set overflow, 263, 439, 440, 444, 546
valid data address, 548
valid program address, 548
vector pull, 256-257 , 548

Signed arithmetic, 170-174
Signed comparisons, 174-175

as source of error, 363
Signed numbers, 12, 171
Significance, 4
Single-stepping, 300
Sixteen-bit registers, 364
Small C programming language, 285
SMB, R65C02 instruction, 561, 565
Sorting routine, 168-170

606 Programming the 65816

Source program, 17, 18
Stack, 6502, 31, 277
Stack memory, 90
Stack pointer, 27, 31, 49, 55, 89, 100,

511, 518
6502, 31, 277
errors in initialization, 367
relocating, 281
overflow, 365

Status flags, routine to display, 193-195
Status register, 27, 29, 58, 480, 486, 489,

502
control instructions, 249, 262-264
emulation mode, 69
flags, 144
native mode, 5 3 -5 4 , 5 8 -5 9

Step-and-trace, 299
Structured programming, 368-369
Subroutine, 140, 225-248, 460, 461, 494,

496
branch-to, synthesis, 232, 234-235

Subroutines, 20, 32
documentation, 236
libraries, 21, 235
parameter-passing, 237-248
when to use, 235-237

Subtraction, 30, 161, 165-167, 497
Support chips, 551-559
Switching between native and

emulation modes, 71, 76, 283
Switching register size, 58
Switching to emulation mode, 283
Symbolic labels, see Labels
Synchronization with external events,

522

Test and set instruction, 188-189
Timing, 51

65816 instruction execution
improvements, 165

branch instructions, 144
Top-down programming, 368-369
Transfers, 94
True, 179
Truth table, 10

and, 10, 425
complement, 12
exclusive or, 11, 454
or, 11, 471

Two's complement, 12
notation, 171
number, 148-149
overflow, 30

Unary operations, 126
Unsigned arithmetic, 161-166

v, see Overflow flag
Valid data address signal, 548
Valid program address signal, 548
Vector pull signal, 256-257 , 548

Western Design Center, 78, 366
Word size, 5, 49, 56

x, see Index register mode select flag
X register, 27 -28 , 56, 91, 103-104

Y register, 27 -28 , 56, 91, 103-104

z, sec Zero flag
Z80 processor, 40, 41
Zero bank, see Bank zero
Zero flag, 29, 144, 146-147, 157-161, 166,

187, 188, 430, 433
effect of comparison on, 167

Zero page, 15, 35, 277
no longer special on 65816/65802,

200-202
vs. direct page, 60

Zeroing memory, 507
Zilog, 41, 42

65x support chips, 551-559
6502

address space, 27
architecture, 2 5 -4 4
bugs, 43
difference from emulation mode, 374
division routine, 273-275
existing 6502 applications running on

65816, 277-284, 308, 319
instructions, 38 -39
Jump bug, 363
multiplication routine, 269, 270
operations, 36
pinout, 49, 544
programming model, 27 -28 , 375
signals, 545
stack, 31, 277

Index 607

6502 emulation mode on 65816/65802,
see Emulation mode

65C02
architecture, 4 5 -4 8
bugs, 48
difference from emulation mode, 374
division routine, 275
instructions, 47
multiplication routine, 269
operations, 46
pinout, 544, 546
programming model, 375
Rockwell version, 561-565
signals, 546

6521 PIA IC, 551, 556-558
6522 Versatile Interface Adapter,

257-259
6551 ACIA IC, 551, 552-556
65802/65816,

16-bit accumulator, 51
16-bit index registers, 51
architecture, 49 -72
bugs, 72
compatibility with 6502, 67
division routine, 275-277
instructions, 63

multiplication routine, 269, 271
native mode, see Native mode

65802
addressable memory, 49
pinout, 49
programming model, native mode,

66, 376
signals, 547

65816
addressable memory, 49
compiler-generated code, 285-291
programming model

emulation mode, 70, 378
native mode, 52, 377

signals, 547

68xx processors, 88, 91, 363
6800 processor, 35, 41, 53
6809 processor, 41, 53
68000 processor, 40, 41

80xx processors, 88, 91, 363
MOV instruction, 88

8080 processor, 40, 41
8086 processor, 41

	Programming the 65816 (Cover)
	Programming the 65816
	Contents
	Limits of Liability andDisclaimer of Warranty
	Registered Trademarks
	Preface
	Acknowledgments
	Foreword
	Introduction
	Part I Basics
	Basic Assembly Language Programming Concepts

	Part II Architecture
	Architecture of the 6502
	Architecture of the 65C02
	Sixteen-BitArchitecture: The 65816 and the 65802

	Part III Tutorial
	SEP, REP, and OtherDetails
	First Examples:Moving Data
	The Simple Addressing Modes
	The Flow of Control
	Built-In Arithmetic Functions
	Logic and Bit Manipulation Operations
	The Complex Addressing Modes
	The Basic Building Block: The Subroutine
	Interrupts and System Control Instructions

	Part IV Applications
	Selected Code Samples
	DEBUG16—A 65816 Programming Tool
	Design and Debugging

	PartV Reference
	The Addressing Modes
	The Instruction Sets
	Instruction Lists

	Appendices
	65x Signal Description
	65x Series Support Chips
	The Rockwell 65C02
	Instruction Groups
	W65C816 Data Sheet
	The ASCII Character Set

	Index

