
THE
STANDARD

< time.h > * < limits.h > * < float.h >
< stddef.h > *

< stdarct
<time.
<stdde * <errno.h> * <locale.h>

- < ctype.h > * < s ·ing.h >
< stdlib.h > * < · sert.h >

< stdarg.h > · "'t°mp.h > :·)nal.h >
<time.h> * < .: <float.h>
< stddef.h > * < errno.h > * < locale.h >

LIBRARY
P. J. PLAUCER

THE
STANDARD

c
LIBRARY

P. J. PLAUCER

THE STANDARD C LIBRARY shows you how lo use all of the library functions mandated by
the ANSI and ISO Standards for the programming language C. To help you understand how
to use the library, this book also shows you how to implement it. You see approximately
9,000 lines of tested, working code that is highly portable across diverse computer
architectures.

THE STANDARD C LIBRARY explains how the library was meant to be used and how it can
be used. It places particular emphasis on features added to C as part of the C Standard.
These features include support for multiple locales (cultural conventions) and very large
character sets (such as Kanji).

The code presented in this book has been tested with C compilers from BorlandN, Saber~.
Prqect Gnu, Sun®, UNIX®, and VAX~ ULTRIX~ It has passed the widely used Plum Hall
Validation SuiteN tests for library functions. II Iles also survived an assortment of public­
domain programs designed to stress C implementations and illuminate their darker corners.
The mathematical functions are particularly well-engineered and tested.

Finally, THE STANDARD C LIBRARY shOws you many principles of library design in
general. You learn how to design and implement libraries that are highly cohesive and
reusable.

P. J. Plauger is one of the original users of the C programming language. He chaired the
Library Subcommittee of X3Jtt- the ANSI-authorized committee that developed the C
Standard. He continues as Secretary to X3Jtt and Convenor of WGt4, the ISO-authorized
committee developing further enhancements ot the C Standard. Dr. Plauger Is co-author
(with Brian Kernighan) of several highly acclaimed books, including SOFTWARE lOOLS.
SOFTWARE TOOLS IN PASCAL, and THE ELEMENTS OF PROGRAMMING STYLE. With
J im Brodie, Chair of X3J11, he co-authored STANDARD C, a complete reference to the C
Programming Language.

PRENTICE HALL P T R
Englewood Cliffs, NJ 07632

THE STANDARD

LIBRARY

P. J. Pia uger

Prentice Hall P T R
Englewood Cliffs, New Jersey 07632

L1brary of Congress Catatog1ng- ln-Pub11cat1on Olita

P1a1Jger. P. '1.
The Standara C 1 tbrary I P.'1. Phuger ..

p . c•.
I ncludes btb \ lograp~lca\ references •nd Index.
ISBN 0-13- 838012- 0 <casebound>. -- ISBN 0-13-131509-9 lpaperbounO)
1 . C <Co•puter pr-ogri111 language> I. Tttle.

OA78. 73.C15P563 1991
005.13"3--0c20 91-31884

EdicorialJproductmn Mlpcrvision; Brendan M. Stewart
Manubcruring buyers: Kelly Bebr :;md Susan Brunke

© 1992 by P. J. Pl2ug<r :I Published by Prent" Hall P T R
=- Prentice-Hall, Inc.
= A Simon & Schuster Ccmpany

Englewood Cliff•, New Jersey 07632

CIP

The author and publisher have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the programs to determine their effective­
ness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs o r the documentation contained in this book. The author and pub­
lisher shall not be liable in any event for incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, In any form or by any means.
without permission in writing of the author. You may use and redistribute the code frag­
ments in this book without royalty or fee only as part of executable images, and only pro­
vided that the following notice is included prominently in the associated documentation
and as part of the executable image:

Portions of this work are d4irived fran Th• Standard c Library,
copyright (c) 1992 by P.J. Plaugar, published by Prentice-Hall,
and are used with permission.

For additional licensing of the code, see page >di.

Printed in the United States of America
20 19 18 17 16 15 14 13 12 11

ISBN 0-13-131509-9

Prentice-Hall International (UK) Limited, l.ondon
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexicc
Prentice-Hall of India Private Limited, New Dehli
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janerio

for Tana

PERMISSIONS

Excerpts from the ISO C Standard, JSO/IEC 9899:1990, reprinted by permission of the Inter­
national Standards Organization, Geneva. The complete Standard, and the other ISO stand­

ards referred to in this book, may be purchased from the ISO member bodieS o r directly
from:

ISO Central Secretariat
Case postale 56
1211 Geneva 20

SWITZERLAND

Excerpts from William j. Cody, Jr. and William Waite, Software Manual for the Elementary
Fu11ctio11s, © 1980, pp. 44, 69, 162, 183, 196, 206, 226, and 246 reprinted by permission of

Pl-entice-Hall, Englewood Cliffs, New jersey.

Excerpts from P.j. Pl auger and Jim Brodie, Standard C, reprinted by permission of the
authors.

Excerpts fromP.j. Plauger, Standard C, monthly column in The C Users journal, reprinted by
permission of the author.

TRADEMARKS

Compaq SLT /386-20S is a trademark of Compaq Computer Corporation.
Corel Draw is a trademark of Corel Systems.

IBM PC and System/370 are trademarks of IBM Corporation.
Macintosh is a trademark of Apple Computer.

MS-DOS, and Windows are trademarks of Microsoft Corporation.
Multics is a trademark of Honeywell Bull.

PDP-11, RSX-1 IM, ULTRIX, and VAX are trademarks of Digital Equipment Corporation.
Turbo C++ is a trademark of Borland, International.

UNIX is a trademark of AT&T Bell Laboratories.
Ventura Publisher is a tradem ark of Ventura Software Inc.

TYPOGRAPHY

This book was typeset in Palatino,Avant Garde, and Courier bold by the author using a
CompaqSLT /386-205 computer running Ventura Publisher 3.0 and Corel Draw 20 under

Microsoft Windows 3.0.

Contents

Preface
The Code
Acknowledgments

Chapter 0: Introduction
Background
What the C Standard Says
Using the Library
Implementing the Library
Testing the Library
References
Exercises

Chapter 1: <assert . h>
Background
What the C Standard Says
Using <assert. h>
Implementing <assert. h>
Testing <assert. h>
References
Exercises

Chapter 2: <ctype .h >
Background
What the C Standard Says
Using <c type. h>
Implementing <ctype. h >
Testing <ctype. h>
References
Exercises

Chapter 3: <er rno .h>
Background
What the C Standard Says
Using <errno. h>
Implement ing <errno. h>
Testing <errno . h>
References
Exercises

ix
xii
xiii

1
1
3
7
9

13
15
15

17
17
18
18
20
22
22
24

25
25
28
30
34
42
43
43

47
47
50
50
51
55
55
55

vi

Chapter4: <float.h> 57
Background 57
~at the C Stondord ScyS 59
Using <float . h> 62
Implementing <fl oat. h> 64
Testing <float . h> ff;

References 71
Exercises 72

Chapters: <limits . h> 73
Background 73
~at the C Standard Soys 74
Using <limits. h > 75
Implementing <l imits. h> 77
Testing <limits. h > 79
References 80
Exercises 80

Chapter 6: <locale . h> 81
Background 81
What the c Standard Says 84
Using <l ocal e. h > 87
Implementing <locale . h> 94
Testing <locale. h> 123
References 123
Exercises 123

Chapter 7: <math . h> 127
Background 127
~at the C Standard Soys 130
Using <math . h> 135
Implementing <math. h> 137
Testing <math . h> 171
References 177
Exercises 177

Chapter 8: <setjmp . h> 181
Background 181
~at the C Standard Soys 184
Using <set j mp. h > 185
Implementing <set jmp . h > 187
Testing <s•t jmp. h > 191
References 192
Exercises 192

vii

Chapter 9: <signal.h> 193
Background 193
What the C Standard Says 195
Using <signal. h> 197
Implementing <signal. h> 199
Testing <signal. h> 203
References 203
Exercises 203

Chapter 10: <stdarg.h> 205
Background 205
What the C Standard Says 207
Using <stdarg. h> 208
Implementing <stdarg. h> 210
Testing <stdarg. h> 212
References 212
Exercises 212

Chapter 11: <stddef .h> 215
Background 215
What the C Standard Says 217
Using <stddef. h> 217
Implementing <stddef. h> 222
Testing <stddef. h> 223
References 223
Exercises 223

Chapter 12: <stdio.h> 225
Background 225
What the C Standard Says 233
Using <stdio. h> 252
Implementing <stdio. h> 274
Testing <stdio. h> 325
References 327
Exercises 329

Chapter 13: <stdlib.h> 333
Background 333
What the C Standard Says 334
Using <stdlib.h> 344
Implementing <stdlib. h> 353
Testing <stdlib. h> 381
References 381
Exercises 384

viii

Chapter 14: <string.h> 387
Background 387
What the C Standard Says 388
Using <string. h> 394
Implementing <string. h> 398
Testing <string. h> 411
References 411
Exercises 411

Chapter 15: <time . h> 415
Background 415
What the C standard Says 416
Using <t ime. h> 420
Implementing <time. h> 425
Testing <time. h> 442
References 443
Exercises 443

Appendix A: Interfaces 445

Appendix B: Names 453

Appendix C: Terms 463

Index 475

Preface

This book shows you how to use all the library functions mandated by
the ANSI and ISO Standards for the programming language C. I have
chosen to focus on the library exclusively, since many other books describe
the language proper. The book also shows you how to implement the
libraiy. I present about 9,000 lines of tested, working code. I believe that
seeing a realistic implementation of the Standard C library can help you
better understand how to use it.

As much as possible, the code for the library is written in Standard C.
The primary design goal is to make the code as readable and as exemplary
as possible. A secondary goal is to make the code highly portable across
diverse computer architectures. Still another goal is to present code that
makes sensible tradeoffs between accuracy, performance, and size.

Teaching you how to write C is not a goal of this book. I assume you
know enough about C to read straightforward code. Where the code
presented is not so straightforward, I explain the trickery involved.

the The Standard C library is fairly ambitious. It provides considerable
standad power in many different environments. It promises well-defined name
C libray spaces for both user and implementor. It imposes fairly strict requirements

on the robustness and precision of its mathematical functions. And it
pioneers in supporting code that adapts to varied cultures, including those
with very large character sets.

To benefit from these ambitions, a user should be aware of numerous
subtleties. To satisfy these ambitions, an implementor must provide for
them. These subtleties are not always addressed in the C Standard proper.
It is not the primary purpose of a standard to educate implementors. Nor
are many of these subtleties well explained in the Rationale that accompa­
nies the ANSI C Standard. A Rationale must serve several masters, only
one of whom is the inquisitive implementor.

The pioneering features I mentioned above are not found in traditional
implementations of C. An implementation can now support multiple lo­
cales. Each locale captures numerous conventions peculiar to a country,
language, or profession. AC program can alter and query locales to adapt
dynamically to a broad range of cultures. An implementation can also now
support very large character sets, such as the Kanji characters used in Japan.

x Preface

AC program can manipulate such character sets either as multibyte charac­
ters or as wide characters. It can also translate between these two fonns. That
simplifies, and standardizes, the writing of programs for this rapidly grow­
ing marketplace.

Little or no prior art exists for these new features. Hence, even the most
experienced C programmers need guidance in using locales, multibyte
characters, and wide characters. Particular attention is given here to these
topics.

subtleties This book explains, for users and implementors alike, how the library
was meant to be used and how it can be used. By providing a working
implementation of all the functions in the Standard C library, the book
shows by example how to deal with their subtleties. Where no implemen­
tation is clearly the best, it also discusses alternatives and tradeoffs.

An example of the subtleties involved is the function getchar. The
header ntMo.h> can, in principle, mask its declaration with the macro:
#define getchar() fgetc(atdinl /* NOT WISE! */

It must not do so, however. A valid (if useless) C program is:
#include <&tdio.h>
#undef fgetc

int main(void)
int fgetc • getchar(); /* PRODUCES A MYSTERIOUS ERROR*/

return (0)1
}

The example is admittedly perverse. Nevertheless, it illustrates practices
that even a well-meaning programmer might indulge. Users have the right
to expect few, if any, surprises of this ilk. Implementors have an obligation
to avoid causing such surprises.

The form I settled on for the getchar macro is:
#define getchar() (_Filea[OJ->_ Next < _ Filea[OJ->_Rend \

? *_ Filee[Ol->....Next++ : (getchar)(})

It is a far cry from the obvious (and more readable) form first presented
above. Chapter 12: ntdio.h> helps explain why.

Still another purpose of this book is to teach programmers how to design
and implement libraries i.n general. By its very nature, the library provided
with a programming language is a mixed bag. An implementor needs a
broad spectrum of skills to deal with the varied contents of the bag. It is not
enough to be a competent numerical analyst, or to be skilled in manipulat­
ing character strings efficiently, or to be knowledgeable in the ways of
operating system interfacing. Writing a library demands all these skills and
more.

Good books have been written on how to write mathematical functions.
Other books present specialized libraries for a variety of purposes. They
show you how to use the library presented. Some may even justify many

Preface

reusoblllty

structure
of this
book

xi

Good books have been written on how to write mathematical functions.
Other books present specialized libraries for a variety of purposes. They
show you how to use the library presented. Some may even justify many
of the design choices for the particular library in question. Few, if any,
endeavor to teach the skills required for library building in general.

A number of books present general principles for designing and imple­
menting software. The disciplines they present have names such as struc­
tured analysis, structured design, object-oriented design, and structured
progranuning. Most examples in these books consider only programs
written for a custom application. Nevertheless, the principles and disci­
plines apply equally well to the writing of reusable libraries.

The goal of reusability simply raises the stakes. If a library function is
not highly cohesive, in the structured-design sense, then it is Jess likely to
find new uses. If it does not have low coupling, in the same sense, it is
harder to use. Similarly, a collection of functions must hide implementation
details and provide complete functionality. Otherwise, they fail at imple­
menting reusable data abstractions, in the object-oriented sense.

So the final purpose of this book is to address the design and implemen­
tation issues peculiar to library building. The design of the Standard C
library is fixed. Nevertheless, it is a good design in many ways and worthy
of discussion. Implementations of the Standard C library can vaiy. Any
number of choices are strongly dictated by general principles, such as
correctness and maintainability. Other choices are dictated by priorities
peculiar to a project, such as very high performance, portability, or small
size. These choices and principles are also worthy of discussion.

The book is structured much like the Standard C library itself. Fifteen
headers declare or define all the names in the library. A separate chapter
covers each header. Most of the headers have reasonably cohesive contents.
That makes for reasonably cohesive discussions. One or two, however, are
catchalls. Their corresponding chapters are perforce wider ranging.

I include in each chapter excerpts from relevant portions of the ISO C
Standard. (Aside from formatting details, the ISO and ANSI C Standards,
are identical.) The excerpts supplement the narrative description of how
each portion of the library is customarily used. They also help make this
book a more complete reference (that is nevertheless more readable than
the C Standard alone). I also show all code needed to implement that
portion and to test the implementation.

Each chapter ends with references and a set of exercises. In a university
course based on this book, the exerciSeS can serve as homework problems.
Many of them are simple exercises in code rewriting. They drive home a
point or illustrate reasonable variations in implementation. The more
ambitious exercises are labelled as such. They can serve as a basis for more
extended projects. The independent reader can simply use the exercises as
an impetus for further thought.

xii Preface

The Code
The code presented in this book has been tested with C compilers from

Borland, Project GNU, and VAX ULTRIX It has passed the widely used
Plum Hall Validation Suite tests for library functions. It has also survived
an assortment of public-domain programs designed to stress C implemen­
tations and illuminate their darker comers. While I have taken pains to
minimize errors, I cannot guaranl:Ee that none remain. Please note the
disclaimer on the copyright page.

Please note also that the code in this book is protected by copyright. It
has not been placed in the public domain. Nor is it shareware. It is not
protected by a "oopyleft" agreement, like code distributed by the Free
Software Foundation (Project GNU). I retain all rights.

fcir use You are welcome to transcribe the code to machine-readable form for
your personal use. You can purchase the code in machine-readable from
The C Users Group in Lawrence, Kansas. In either case, what you do with
the code is limited by the "fair use" provisions of copyright law. Fair use
does not permit you to distribute copies of the code, either hard copy or
machine-readable, either free or for a fee.

Having said that, I do permit one important usage that goes well beyond
fair use. You can compile portions of the library and link the resultant
binary object modules with your own code to form an executable file. I
hereby permit you to distribute unlimited copies of such an executable file.
I ask no royalty on any such copies. I do, however, require that you
document the presence of the library, whatever amount you use, either
modified or unmodified. Please include somewhere in the executable file
the following sequence of characters: Porticms of this work are derived
frcm 'lbe Standard C Library, oc:pyrlght (C) 1992 cy P.J. Pl.auger,
p.iblisbed cy Prentice-Hall, mid are used with permissicn. The same
message should appear prominently, and in an appropriate place, on any
documentation that you distribute with the executable image. If you omit
either message, you infringe the copyright.

licensing You can also obtain permission to do more. You can distribute the entire
library in the form of binary object modules. You can even distribute copies
of the source files from this book, either modified or unmodified. You can,
in short, incorporate the library into a product that lets people use it to make
executable programs. To do so, however, requires a license. You pay a fee
for the license. Contact Plum Hall Inc. in Kamuela, Hawaii for licensing
terms and for on-going support of the library.

Despite the mercenary tone of these paragraphs, my primary goal is not
to flog a commercial product. I believe strongly in the C Standard, having
worked very hard to help bring it about. Much of my effort went into
developing the specification for the Standard C library. I want to prove that
we have constructed a good language standard. I wrote this implementa­
tion, and this book, to demonstrate that simple but important fact.

Preface xiii

Acknowledgments
Compass, Inc. of Wakefield, Massachusetts believed in this project long

before it was completed. They are my first customer for the library code.
They helped test, debug, and improve the library extensively in the process
of accepting it for use with their Intel 860 compiler. Ian Wells, in particular,
bore the brunt of my delays and botches with good-natured professional­
ism. Don Anderson contributed many a midnight e-mail message toward
making this library hang together properly. For their faith and patience, I
heartily thank everyone I have worked with at Compass.

Paul Becker, my Publisher at Prentice-Hall, also believed in this project.
His gentle but persistent goading was instrumental in bringing this book
to completion. The (anonymous) reviewers he employed helped me
sharpen my focus and tone down some of the more extreme prose. Paul's
professionalism reminded me why Prentice-Hall has been such a major
force in technical publishing for so long.

Moving to Australia for a year part way through this project presented
a bouquet of impediments. My good friend and business colleague John
O'Brien of Whitesmiths, Australia, was always there to help. For turning
thorns into roses, he has been nonpareil. His assistance has surpassed the
bounds even of friendship.

Andrew Binnie, Publishing Manager at Prentice Hall Australia kindly
provided the laser printer I needed to finish this book. He was quick to help
in many ways. The University of New South Wales Computer Science
Department graciously gave me the time and space I needed, even though
they had other plans for both.

Tom Plum has forced many of us to think deeply about fundamental
aspects of C. I have enjoyed numerous fruitful discussions with him on the
topics covered here. Dave Prosser has also freely shared his deep insights
into the workings of C. As editor of both the ANSI and ISO C Standards,
Dave provided the machine-readable text excerpted extensively in this
book. Advanced Data Controls Corp. of Tokyo, Japan pioneered Kanji
support in C. Takashi Kawahara and Hiroshi Fukutomi, both principals in
that company, have been very helpful in educating me on the technical
needs of Japanese programmers.

Much of the material presented here first appeared in monthly install­
ments in The C Users Journal. Robert Ward has been a particularly easy
publisher to work with. I appreciate his flexibility in letting me recycle
material from his magazine. Jim Brodie has been equally generous in
permitting me to uSe material from our book Standard C.

Reading technical manuscripts is never an easy task. Both John O'Brien
and Tom Plum reviewed portions of this book and provided helpful feed­
back. Those who caught (some of the numerous) errors in the first printing
include Nelson H.F. Beebe, Peter Chubb, Stephen D. Clamage, Steven
Pemberton, Tom Plum, and Ian Lance Taylor.

xiv Preface

Finally, I happily acknowledge the contributions made by my family. My
son, GeoffrEy, helped with the layout and typographic design of this book.
My wife, Tana, provided much-needed moral and logistical support over
many long months. Th~, more than anybody, kept this project fun for me.

P.J. Plauger
Bondi, New South Wales

Chapter 0: Introduction

Background

a few
definitions

A library is a collection of program components that can be reused in
many programs. Most programming languages include some form of
libraiy. The programming language C is no exception. It began accreting
useful functions right from the start. These functions help you classify
characters, manipulate character strings, read input, and write output -
to name just a few categories of services.

You must declare a typical function before you use it in a program. The
easiest way to do so is to incorporate into the program a header that declares
all the library functions in a given category. A header can also define any
associated type definitions and macros. A header is as much a part of the
library as the functions themselves. Most often, a header is a text file just
like the you write to make a program.

You use the #include directive in a C source file to make a header part
of the translation unit. For example, the header<atdio. h> declares functions
that perform input and output. A program that prints a simple message
with the function printf consists of the single C source file:
/* a simple teat program */
#include <atdio.h>

int main (void)
{ /* aay hello •/
printf("Hello\n");
return (O);
}

A translator converts each translation unit to an object module, a form
suitable for use with a given computer architecture (or machine). A linker
combines all the object modules that make up a program. It incorporates
any object modules you use from the C library as well. The most popular
form of translator is a compiler. It produces an executable file. Ideally at least,
an executable file contains only those object modules from the library that
contain functions actually used by the program. That way, the program
suffers no size penalty as the C library grows more extensive. (Another
form of translator is an interpreter. It may include the entire C library as part
of the program that interprets your program.)

2 ChopterO

making a You can construct your own libraries. A typical C compiler has a .librarian,
library a program that assembles a library from the object modules you specify.

The linker knows to select from any library only the object modules used
by the program. The C library is not a special case.

You can write part or all of a library in C. The translation unit you write
to make a library object module is not that unusual:

• A library object module should contain no definition of the function main

with external linkage. A programmer is unlikely to reuse code that insists
on taking control at program startup.

• The object module should contain only functions that are easy to declare
and use. Provide a header that declares the functions and defines any
associated types and macros.

• Most important, a library object module should be usable in a variety of
contexts. Writing code that is highly reusable is a skill you develop only
with practice and by studying successful libraries.

After you have read this book, you should be comfortable designing,
writing, and constructing specialized libraries in C.

the C The C library itself is typically written in C. That is often not the case
library with other programming languages. Earlier languages had libraries writ-

in C ten in assembly language. Different computer architectures have different
assembly languages. To move the library to another computer architecture,
you had to rewrite it completely. C lets you write powerful and efficient
code that is also highly portable. You can move portable code simply by
translating it with a different C translator.

Here, for example, is the library function atr len, declared in <at ring. h>.

The function returns the length of a null-terminated string. Its pointer
argument points to the first e lement of the string:
/• strlen function • /
#include <string.h>

size t (strlen) (const char •a)
(/• find length of s[] •/
conet char *ac;

for (ac =a; *ac != '\0'; ++ac)

return (ac - a) ;
}

atrlen is a small function, one fairly easy to write. It is also fairly easy to
write incorrectly in many small ways. atrlen is widely used. You might
want to provide a special version tuned to a given computer architecture.
But you don't have to. This version is correct, portable, and reasonably
efficient.

Other contemporary languages cannot be used to write significant
portions of their own libraries. You cannot, for example, write the Pascal
library function writeln in portable Pascal. By contrast, you can write the

Introduction

nonportable
code

3

equivalent C library function printf in portable C. The comparison is a bit
unfair because C type checking is weaker. Nevertheless, the underlying
point is significant - the C library has been expressible from its earliest
beginnings almost completely in C.

Sometimes the code for a library function cannot be written in portable
C. The code you write in C may work for a large class of computer
architectures, but not all. In such a case, the important thing is to document
dearly the nonportable portions that may have to change. You should also
isolate nonportable code as much as possible. Even nonportable C code is
easier to write, debug, and maintain than assembly language. You write
assembly language only where it is unavoidable. Those places are few and
far between in the C library.

This book shows you how to use the C library in its current, standardized
form. Along the wey, it also shows you how to write theC library in C. That
can help you understand how the library works. And it illustrates many
aspects of designing and writing a nontrivial library in C.

What the C Standard Says

standards
tore

Dennis Ritchie developed the original version of the programming
language Cat AT&T Bell Laboratories in the early 1970s. At first it appeared
to be little more than a UNIX-specific system-implementation language for
the DEC PDP-11 computer architecture. Others soon discovered, however,
that it modeled a broad class of modern computers rather well. By the late
1970s, several other compiler writers had implemented C for a variety of
popular targets, from microcomputers to mainframes. By the early 1980s,
hundreds of implementatiol'l!S of C were being used by a rapidly growing
community of programmers. It was time to standardize the language.

The American National Standards Institute, or ANSI, standardizes com­
puter programming languages in the United States. X3Jl 1 is the name of
the ANSI-authorized committee that developed the standard for C, starting
in 1983. The language is now defined by ANSI Standard X3.159-1989.

The International Standards Organization, or ISO, C has a similar re­
sponsibility in the international arena. ISO formed the technical committee
}TC1/SC22/WG14 to review and augment the work of X3J11. Currently,
ISO has adopted a standard for C that is essentially identical to X3.159. It
is called ISO 9899:1990. The C Standards differ only in format and in the
numbering of sections. The wording differs in a few small places but makes
no substantive change to the language definition.

I quote extensively from the ISO C Standard throughout this book. That
way you can see exactly what the C Standard says about every aspect of
the Standard C library. It is the final authority on what constitutes the C
progranuning language. If you think my interpretation disagrees with the
C Standard, trust the C Standard. I may very well be wrong.

4

string

letter

decimal
point

slCS1dord
he<Jders

reserved
Identifiers

ChapterO

You will find the C Standard hard to read from time to time. Remember
that it is cast intentionally in a kind of legalese. A standard must be precise
and accurate first. Readability comes a distant second. The document is not
intended to be tutorial. X3J11 also produced a Rationale to accompany the
C Standard. If you are curious about why X3J11 made certain decis ions, go
read that document. It might help. I emphasize, however, that the Rationale
is also not a tutorial on the C language.

Here are two quotes from the ISO C Standard. The first quote introduces
the Library section of the C Standard. It provides a few definitions and lays
down several important ground rules that affect the library as a whole.

7. Library
7.J Introduction
7.1.1 Definitions of terms

A string is a contiguoos sequence of characters tenninated by and including the first null
character. A "pointer to" a string is a. pointer to its initial (lowest addrcs.~) character. The "length"
of a string is the number of characters preceding the null character and its "value" is the sequence
of the values of the contained characters. in order.

A feller is a printing character in the execution character set corresponding to any of the 52
required lowercase and uppercase Lene.rs in the source character set, listed in S.2.1.

The decimal·poim character is the character used by functions that conven floating··point
numbers to or from character sequences to denote the beginning of the fractional pan of such
character sequences.SS It is represented in the text and examples by a period, but may be changed
by the setlocale function.

Forward references: character handling (7.3). the aetlocale function (7.4.1.1).

7.1.2 Standard headers
Each library function is declared in a heotkr. 89 whose contents are made available by the

#include preprocessing directive. The header declares a set of related functions, plus any
necessary types and addi1ional macros needed to facilitate their u.e.

The standard headers are
<a as e r t . h>
<ctype.h>
<•z:rno.h>
<f'loat . h>
<limita . h>

<l.ocale . h>
<math. h>
<••tjllp. h>
<•ignal . h>
<•td.arq _ h>

<•tdd•f . h>
<etdio . h>
<std.lib . h>
<etring.h>
<ti.a.e.h>

!fa file with the same name as oJle of the above < and > delimited sequences. not provided as
pan of the implementation. is placod in any of the standard plaoes for a source file to be included.
the behavior is undefined.

Headers may be included in any order; each may be included more than once in a gi ven scope,
with no effect different from being included only once, except that the effect o f including
<assert • h> depends on the definition ofNOEBUG. If used, a header shall be included outside
of any external declaration or definition, and it shall first be included before the first reference to
any of the functions or objects it declares. or to any of the types or macros it defines. However,
if the identifier is declared or defined in more than one header, the second and subsequent
associated headers may be included after the ini1ial reference to the identifier. The program shall
not have any macros with names l.exically identical to keywords currently defined prior to the
inclu.sion.

Forward references: diagii0l.1ics (7.2).

7.1.3 Reserved identifiers
Each header declares or defines all identifiers listed in it~ associated subclause. and optionally

declares or defines identifiers listed in iL~ associated future library directions subclausc and
identifiers which arc always reserved either for any u.e or for use as file scope identifiers.

• A II identifiers that begin with an underscore and either an uppercase letter or another runderscore
arc always reserved for any use.

Introduction

uSlng
lbfary

functions

5

• All identifiers that begin with an. underscore arc always reserved for u>e as identifiers with file
scope in both the ordinary identifier and tag name spaces.

• Each macro name listed in any of the following subclauses (including the future library
directions) is reserved for any use if any of its associated headers is included.

• All identifiers with extennal linkage in any of the following subclau>es (includin~ the fU1urc
library directions) arc always re..erved for U>e as identifiers with extennal linkage .

• Each identifier with file scope ljsted in any or the following subclauses (including the future
library directions) is reserved for use as an identifier with file scope in the same name ~cc if
any of its associated headers is iincludcd.

No other identifiers arc reserved. lf the program declare.~ or define~ an identifier with the same
name as an identifier reserved in that context (other than as allowed by 7.1.7), the bebavior is
undefined. 91

Footnotes

88. 1be functions that make use of the decimal-point character are localeconv, fprint f ,
facanf,p r i ntf, a canf. 11pri ntf, a11canf, v fprintf, vprint f , vapr int f,
atof, and atrtod.

89. A header is not necessarily a source file, nor arc the <and >delimited sequences in header
names necessarily valid source lite names.

90. 1be list of reserved identifrers with external linkage includes errno, s e t jlllp, and
va_end.

91. Since macro names arc replaced whenever found, independent of scope and name space,
macro names matching any of the reserved identifier names must not be def med if an
associated header, if any, is included.

The second quote describes ways to make use of the functions within
the Standard C librruy.

7.1.7 Use oflibrary functio.ns
Each of the following statements applies unless explicitly stated otherwise in the detailed

descriptions that follow. If an argument toa function has an invalid value (such as a value outside
the domain of the function, or a pointer outside the address space of the program, or a null pointer),
the behavioris undefined. If a function argument is described as being an array, the pointer actually
passed to the funclion shall have a v.alue such that all addrcsscompu1a1ions and accesses to objects
(that would be valid if the pointer did point to the first element of such an array) arc in fact valid.
Any function declared in a header may be additionally implemented as a macro def med in the
header, so a library function should not be declared explicitly if its header is included. Any macro
definition of a function can be suwressed locally by enclosing the name of the function in
parentheses. because the name is then not followed by the left parenthesis that indicates expansion
of a macro function name. For the same syntaclic reason. it is pennined to take the address of a
library function even if it is also defined as a macro.9S 1be use of #undef to remove any macro
definition will also ensure that an actual function is referred to. Any invocation or a library function
that is implemented as a macro shall expand to code that evaluates each of its arguments exactly
once, fully protected by parentheses where neceSS31)1, so it is generally safe to use arbitrary
expressions as arguments. Ll.kewisc, those function-like macros described in the following
subclauses may be invoked in an e·xpression anywhere a function with a compatible return rypc
could be callcd.96 All obje<.1-like macros listed as expanding to integral constant exprc.,;ions shall
additionally be suitable for use in # if preprocessing directives.

Provided that a library function can be declared without reference to any type defined in a
header, it Is also permissible to declare the function, either explicitly or implicitly, and use it
without including its associated header. If a function that accepts a variable argwnent. liSt is not
declared (explicitly or by including i1s associated header). the behavior is undefined.

Example

1be function at oi may be used in any of several ways

e by USC or its associated header (possibly generating a macro expansion)

6

quoting
the ISO

Standard

linclud• <atdlib.h>
conat char •atr;
t• ... *I
i • atoi (atr);

• by use of i1s associaled header (assuredly generating a true function reference)

or

linclude <atdlib.h>
lu.ndet atoi
eonat char *atr; , •... •/
i • atoi (atr);

linclud• <atdlib.h>
conat char •atr; , •... •/
i • (atoi) (atr) ;

• by explicit declaration
ext•rn int atoi(conat char •);
conet char *atr;
/* ... •/
i • atoi (at.r);

• by implicit declaration
conat char •atr;
/ * .. . •/
i • atoi (atr);

FoolnoCes

ChapterO

95. This means that an implementation must provide an actual function for each library function.
even if it also provides a macro for that function.

96. Because external identifiers and some macro names beginning with an underscore arc
reserved. implementalions may provide special semantics for such names. For example. the
identifier BUILTIN abs could be us<d to indicate generation of in-line code for the abs
func1ion. Thus, the apjlropriale header could specify

ldefin• U>a(x) _BOILTitf_U>e(x)

for a compiler whose code generator will accept it.

ln this manner, a user desiring 10 guaranlce tha1 a given library function such as abs will
be a genuine function may write

fundeL aba

whether the implementation's header provides a macro implementalion or abs or a built-in
implemcnt~tion. The prototype for the funclion, which precedes and is hidden by any macro
definition, is thereby revealed also.

Note how I have marked d istinctly each quote from the ISO C Standard.
The type face differs from the running text of the book and is smaller. A
bold rule runs down the left side. (The notes to the left of the rule are mine.)
Each quote contains at least one numbered head, to make its location within
the C Standard unambiguous. I gather any footnotes and present them at
the end of the quote.

I typeset the quotes from the ISO C Standard from the same machine­
readable text used to produce the C Standard itself. Line and page breaks
differ, of course. Be warned, however, that I edited the text extensively in
altering the typesetting markup. I may have introduced errors not caught
in later proofreading. The final authority on C is, as always, the printed C
Standard you obtain from ISO or ANSI.

Introduction 7

Using the Library
The C Standard has a lot to say about how the library looks to the user.

Two important issues are:

• how to use library headers
• how to create names in a program

using The Standard C library provides fifteen standard headers. Any prede-
heoders fined name not defined in the language proper is defined in one or more

of these standard headers. The headers have several properties:
• They are idempotent. You can include the same standard header more

than once. The effect is as if you included it exactly once.
• They are mutually independent. No standard header requires that another

standard header be first included for it to work properly. Nor does any
standard header include another standard header.

• They are equivalent to file-level declarations. You must include a standard
header before you refer to anything it defines or declares. You must not
include a standard header within a declaration. And you must not mask
any keywords with macro definitions before you include the standard
header.
The universal convention among C programmers is to include a ll head­

ers near the beginning of a C source file. Only an identifying conunent
precedes the lincluda directives. You can write the headers in any order-
1 prefer to sort them alphabetically by name. Include the header for every
library function that you use. Never mind what the C Standard says about
declaring functions other ways.

Your program may require its own header files. Don't use any of the
standard header names as the names of your header files. You might get
away with it on one system and come to grief on another. A widespread
convention, if not universal, is to choose C source file names and header
file names that take the following form:
• Begin the name with a lowercase letter.
• Follow with one to seven lowercase letters and digits.
• End with . c for a C source file, . h for a header file.

Examples are i80386. h, matrix. c, and plot . h. Names of this form are
portable to a wide variety of C translators. You can achieve even wider
portability by using at most five additional lowercase letters and digits.
That's what the C Standard suggests. I find these longer names quite
portable (and cryptic) enough, however.

A header file you write may require declarations or definitions from a
standard header. If so, it is a wise practice to include the standard header
near the top of your header file. That eliminates the need for you to include
headers in a specific order within your C source files. Don't worry if you
el\d \l°P mt.\u.d\l\'f, \\\e 'i>atl\e &\oNloid \\eadeI tl\Ote \\\ol\ ON:e vil.\hil\ a
translation unit. That's what idempotence is all about.

8

name
spaces

Flgure0.1:
Nane

Spaces

Chopter O

It is a good practice to use a different form of the #include directive for
your own header files. Delimit the name with double quotes instead of
angle brackets. Use the angle brackets only with the standard headers. For
example, you might write at the top of a C source file:
#include <stdio.h>
#include "plot.h"

My practice is to list the standard headers first. If you follow the advice I
gave above, howeve-, that practice is not mandatory. I follow it simply to
minimize the arbitrary.

The Standard C library has fairly clean name spaces. The library defines
a couple hundred external names. Beyond that, it reserves certain classes
of names for use by the implementors. All other names belong to the users
of the language. Figure 0.1 shows the name spaces that exist in a C program.
It is taken from Plauger and Brodie, Standard C. The figure shows that you
can define an open-ended set of name spaces:
• Two new name spaces are created for each block (enclosed in braces

within a function). One contains all names declared as type defmitions,
functions, data objects, and enumeration constants. The other contains
all enumeration, structure, and union tags.

• A new name space is created for each structure or union you define. It
contains the names of all the members.

• A new name space is created for each function prototype you declare. It
contains the names of all the parameters.

• A new name space is created for each function you define. It contains
the names of all the labels.
You can use a name only one way within a given name space. If the

translator recognizes a name as belonging to a given name space, it may

M
A c
R
0 s

K
E
y
w
0
R
D
s

INNERMOST BLOCK

~definitions
functions
dataob~s
enumeratiOn

enumeration tag
structure tag

union tag

flLE LEVEL

~definitions
functions
dataob~
enumeration

enumeration tag
struc;ture tag

un1ontag

members of a structure or union
parameters within a function prototype

members of a structure or union
parameters within a function prototype

goto labels

Introduction 9

fail to see another use of the name in a different name space. In the figure,
a name space box masks any name space box to its right. Thus, a macro can
mask a keyword. And either of these can mask any other use of a name.
(Th;:it makes it impossible for you to define a data object whose name is
while, for example.)

In practice, you should treat all keywords and library names as reserved
in all name spaces. That minimizes confusion both for you and future
readers of your code. Rely on the separate name spaces to save you only
when you forget about a rarely used name in the library. If you must do
something rash, like defining a macro that masks a keyword, do it carefully
and document the practice clearly. You must also avoid using certain classes
of names when you write programs. They are reserved for use by the
implementors. Don't use:
• names of functions and data objects with external linkage that begin with

an underscore, such as_ al:x: or _DEF

• names of macros that begin with an underscore followed by a second
underscore or an uppercase lette-, such as __ lll:>c or _Du.

Remember that a macro name can mask a name in any other name space.
The second class of names is effectively reserved in all name spaces.

Implementing the Library
The code that follows in this book makes several assumptions. If you

want to use any of the code with a given C implementation, you must verify
that the assumptions are valid for that implementation.

assumptions • You can replace a standard header with a C source file of the same name, such as
assert.h. An implementation is permitted to treat the names of the
standard headers as reserved. Including a standard header can simply
turn on a set of definitions built into the translator. An implementation
that does so will cause problems.

• You can replace the standard headers piecemeal. You may wish to experiment
only with portions of the ·code presented here. Even if you eventually
want to try it all, you don't want to have to make it all work at once.

• You can replace a predefined function with a C source file containing a conven­
tional definition for the function. An implementation is permitted to treat
the external names of library functions as reserved. Calling a library
function can simply expand to inline code. An implementation that does
so will cause problems.

• You can replace the predefined functions piecemeal. An implementation is
permitted to combine multiple library functions into a single module.
The same arguments also apply as for replacing standard headers.

• File names for C source can have at least eight lowercase letters, follmued by a
dot and a single luwercase letter. This is the form I described on page 7.

10 ChopterO

• External names may or 1nay not inap all letters to a single case. The code

presented here works correctly either way.

It is unlikely that your implementation violates any of these assump­

tions. If it does, the implementation c.an probably be made to oooperate by

some ruse. Most C vendors write their libraries in C and use their own

translators. They need this behavior too.

c oding The code in this book obeys a number of style rules. Most of the rules

style make sense for any project. A few are peculiar.

• Each visible function in the library occupies a separate C source file. The

file name is the function name, chopped to eight characters if necessary,

followed by . c. Thus, the function strlen is in the file strle n . c . That

makes for some rather small files in a few cases. It also simplifies finding

functions. Appendix B: Names shows each visible name defined in the

library, giving the page number where you can find the file that defines

the name.
• Each secret name begins with an underscore followed by an uppercase

letter, as in _ Getint. Appendix B: Names also lists each secret name that

has external linkage or is defined in a standard header.

• Secret functions and data objects in the library typically occupy C source

files whose names begin with x, as in xgetint. c. Such a file can contain

more than one function or data object. The file name typically derives

from the name of one of the contained functions or data objects.

• Code layout is reasonably uniform. I usually declare data objects within

functions at the innermost possible nesting level. I indent religiously to

show the nesting of control structures. I also follow each left brace ({)

inside a function with a one-line comment.

• The code contains no reqiate r declarations. They are hard to place

wisely and they clutter the code. Besides, modem compilers should

allocate registers much better than a programmer can.

• In the definition of a visible library function, the function name is

surrounded by parentheses. (Look back at the definition of atrlen on

page 2.) Any such function can have its declaration masked by a macro

definition in its corresponding heade-. The parentheses prevent the

translator from recognizing the macro and expanding it.

• This book displays each C source file as a figure with a box around it.

The figure caption gives the name of the file. Larger files appear on two

facing pages- the figure caption on each page warns you that the code

on that page represents only part of a C source file.

• Each figure d isplays C source code with horizontal tab stops set every

four columns. Displayed code differs from the actual C source file in two

ways-comments to the right of code are right justified on the line, and

a box character {a) marks the end of the last line of code in each C source

file.

Introduction

Implementing
headers

11

The resulting code is quite dense at times. For a typical coding project, I
would add white-space to make it at least twenty per cent larger. I com­
pressed it to keep this book from getting even thicker.

The code also contains a number of files that should properly be merged.
Placing all visible functions in separate files sometimes results in ridicu­
lously small object modules, as I indicated above. I also introduced several
extra C source files just to keep all files under two book pages in length.
That was not my only reason for making files smaller, however. I first wrote
each C source file to its natural length, however large. Every compiler I used
failed to translate at least one of the larger files. The extra modules may
sometimes be unappealing from the standpoint of good design, but they
help both readability and portability in the real world.

Fifteen of the source files in this implementation are the standard head­
ers. I listed several properties of standard headers earlier - idempotence,
mutual independence, and declaration equivalence. Each of the properties
has an impact on how you implement the standard headers.

ldempotence is easy to manage. You use a macro guard for most of the
standard headers. For example, you can protect <•tdio. h> by conditionally
including its contents a t mos t one time:

ldempotence #itndef STDIO B
#~fin• ::::sro10::::B
. /* BODY OF <stdio.h> "/
#andif

The funny macro name _ STDIO_B is, of course, in the classofnamesreserved
to the implementor.

You can't use this mechanism for the header <uaert .h>. Its belhavior is
controlled by the macro name NDEBUG that Ille programmer can clhoose to
define. Each time the program includes this header, the header turns the
aeaert macro off or on, depending upon whether or not NDEBOG has a macro
definition at that point in the translation unit. l discuss the matter further
in Chapter 1: <assert .h>.

mutual Maintaining mutual independence among the headers takes a bit more
independence work because of a couple of issues. One is that a handful of names are

defined in more than one header. A program must be able to include two
different headers that define the same name without causing an error. The
type definition aize_ t is one example. It is the type that results from
applying the aizeof ope.rator. (See Chapter 11: <etddef . h>.) You can protect
against multiple definitions of this type with another macro guard:
#ifndef - SIZE_ T
~fine _SIZE_T
typedef unsigned int size t;
#endif -

The macro NULL is another example. You can usually write this macro
wherever you want a null pointer to a data object - a pointer value tha t
designates no data object. One way to def me this macro is:

12 ChapterO

#define NULL (void •)O

It does no harm to include multiple instances of this macro definition in a
translation unit. Standard C permits benign redefinition of a macro. Two
definitions for the same macro name must have the same sequence of
tokens. They can differ only in the white-space (in this case, spaces and
horizontal tabs) between tokens. You need not protect against including
two definitions that match in this sense.

You do have to provide the same definition in multiple places, however.
That is an annoying maintenance problem. Two solutions are:

• Write the same definition in multiple places. Be prepared to hunt down
all occurrences if the definition changes.

• Place the definition in a separate header file. Give the file a name that
should not collide with file names created by the programmer. Include
the file in each header that requires it.

I chose the second solution (most of the time) because it simplifies adapting
the library to different implementations.

A similar but different issue arises with the three printing functions
vfprintf, vprintf, and vsprintf. You call them from functions that accept
a variable argument list when you want to print some or all of those
arguments. Each of the three is declared in the header<stdio.h>. Each has
an argument of typeva_list. But that type is not defined in that particular
header. It is defined only in the header <stdarg.h>. How can this be?

synonyms The answer is simple, if a bit subtle. The header <stdio. h> must contain
a synonym for the type va _ 11.st. The synonym has a name from the class
reserved for macros. That's all that's needed within the standard header to
express the function prototype for each of the three functions. (Of course,
the implementor faces the same problems replicating either visible defini­
tions or synonyms in multiple headers.)

It's rather difficult for you as a progranuner to use any of these fumctions
without a definition for va _ Ust. (It can be done, but it's probably not good
style.) That means you probably want to include the header <atdarg. h> any
time you make use of any of these functions. Still, it's the programmer's
problem. The implementation need not (and must not) drag in <stdarg. h>

every time the program includes <stdio. h>.

headers at The final property of standard headers is purely for the benefit of
file level implementors. The programmer must include a standard header only

where a file level declaration is permitted. That means the #include direc­
tive must not occur anywhere inside another declaration. Most standard
headers must contain one or more external declarations. These are permissi­
ble only in certain contexts. Without the caveat, many standard headers
would be impossible to write as ordinary C source files.

lntrOduction 13

Testing the Library

testing
all paths

volldotlng
speciflc<Jtions

performance
testing

Testing can be a never-ending proposition. Only the most trivial func­
tions can be tested exhaustively. Even these can never be tested for all
possible interactions with nontrivial programs that use them. You would
have to test all possible input values, or at least exercise all possib le paths
through the code. If your goal is to prove conclusively that a function
contains no bugs, you will often fall far short of your goal.

A less ambitious goal is to write tests that exercise every part of the
executable code. That is a far cry from testing every possible path through
the code. It is good enough, however, to build a high level of confidence
that the code is essentially correct. To w rite such tests, you must know:
• what the code is supposed to do (the specification)
• how it does it (the code itself)
You must then contrive tests that test each detail of the specification. (I
intentionally leave vague what a "detail" might be.) In principle, those tests
should visit every cranny of the code. Every piece of code should help
implement some part of the specification. In practice, you must always add
tests you don't anticipate when you first analyze the specification.

The result is a complex piece of code closely tied to the code you intend
to test. The test program can be as complex as the program to be tested, or
more so. That can double the quantity of code you must maintain in future.
A change to either piece often necessitates a change to the other. You use
each piece of code to debug the otha-. Only when the two play in harmony
can you say that testing is complete-at least for the time being. The payoff
for all this extra investment is a significant improvement in code reliability.

Another form of testing is validation. Here, your goal is to demonstrate
how well the code meets its specification. You pointedly ignore any imple­
mentation details. A vendor may know implementation details that are not
easily visible to the customs-. It is in the vendors best interest to test the
internal structure of the code as well as its external characteristics. A
customer, however, should be concerned primarily with validating that a
product meets its specification, particularly when comparing two or more
competing products.

Still another form of testing is for perfonnance. To many people perform­
ance means speed, pure and simple. Bu t other factors can matter as much
or more - such as memory and disk requirements, both temporary and
permanent, or predictable worst-case timings. Good performance tests:
• measure parameters that are relevant to the way the code is likely to be

used
• can be carried out by independent agents
• have reproducible results
• have reasonable criteria for "good enough"
• have believable criteria for "better than average" and "excellent''

14 ChapterO

An amazing number of so-called performance tests violate most or all of

these principles. Many test what is easy to test for, not what is worth testing.

The wise code developer invests in as many of these forms of testing as

possible, given the inevitable limits on time and money. You design a test

plan alongside the code to be tested. You develop comprehensive tests as

part of the project. Ideally, you have different programmers write the code

and tests. You obtain vendor-independent validation suites from outside

sources. You institutionalize retesting after any changes. You provide for

maintenance of test machinery as well as the delivered code itself.

I heartily endorse such professionalism in developing code. Having paid

lip service to that ideal, however, I intend to stop somewhat short of it. The

code presented here has been extensively validated with several existing

programs and suites. But I have not produced test programs to exercise

every part of the executable code. This book is already overstuffed with

code. To add a full set of proper tests would make it truly unwieldy.

simple Instead, I present a number of simple test programs. Each tests part or

testing all of the facilities provided by one of the standard headers in the Standard

C library. You will find that these test programs focus primarily on external

behavior. That means, essentially, that they comprise a simple validation

suite. Occasionally, howeve-, they stray into the realm of testing internal

structure. Some implementation errors are so common, and so pernicious,

that I can't resist testing for them. Rarely do they stray into the realm of
performance testing.

Most of all, you will find these tests to be remarkably superficial and

simplistic, given what I just said about p roper testing. Nevertheless, even

simple tests serve a useful purpose. You can verify that a function satisfies

its basic design goals with just a few lines of code. That reassures you that

your implementation is sane. When you make changes (as you inevitably

will), repeating the tests renews that assurance. Simple tests are well worth

writing, and keeping around.

I found that the best simple confidence tests have a number of common

properties:

• Print a standard reassuring message and exit with successful status to

report correct execution .

• Identify any other unavoidable output to minimize confusion on the

part of the reader.

• Provide interesting implementation-dependent information that you

may find otherwise difficult to obtain.

• Say nothing else.
I have adopted the convention of preceding each header name with a t

to construct test file names. Thus, taHert.c tests the header <aaaert . h>.

It verifies that the assert macro does what you expect. It shows you what

the library prints when an assertion fails. And it ends by displaying the

reassuring message SUCCESS testing <aHert .h>.

Introduction 15
A few of the larger headers require two or more test programs, as in

tatdiol. c and tatdio2. c. Note that each of these files defines its own main.
You link each with the Standard C library to produce a separate test
program. Do not add any of these files to the Standard C library. I chose t
as the leading character even though a few predefined names begin with
that letter. It forms a simple mnemonic, and the file names do not to collide
with any in the library proper.

References

Exercises

ANSI Standard XJ.159-1989 (New York: American National Standards Insti­
tute, 1989). This is the original C Standard, developed by the ANSJ author­
ized committee X3Jl 1. The Rationale that accompanies the C Standard
explains many of the decisions that went into it.
ISO/lf.C Standard 9899:1990 (Geneva: International Standards Organiza­
tion, 1990). Aside from formatting details and section numbering, the ISO
C Standard is identical to the ANSI C Standard. The quotes in this book are
from the ISO C Standard.
B. W. Kernighan and Dennis M. Ritchie, The C Programming Lmguage, Second
Edition (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1989). The first edition
of The C Programming l.Jmguage served for years at the de facto standard for
the C language. It also provides a very good tutorial overview of C. The
second edition, upgraded to reflect the ANSI C Standard, is also a good
tutorial.

P.J. Plauger and Jim Brodie, Standard C (Redmond, Wa.: Microsoft Press,
1989). This book provides a complete but succinct reference to the entire C
Standard. It covers both the language and the library.
Thomas Plum, C Programming Guidelines (Cardiff, N.J.: Plum Ha ll, Inc.,
1989). Here is an excellent style guide for writing C programs. It also
contains a good discussion of first-order correctness testing, on pp. 194-199.

Exercise 0.1 Which of the following are good reasons for including a function in a
library?

• The function is widely used.
• Performance of the function can be improved dramatically by generat-

ing inline code.
• The function is easy to write and can be written several different ways.
• The function is hard to write correctly.
• Writing the function poses several interesting challenges.
• The function proved very useful in a past application.
• The function performs a number of services that are loosely related.

16

Exercise 0.2 Write a (rorrect) program that contains the line:

x : ((atruct x *)x)->x • x(5);

ChopterO

Describe the five distinct uses of x. Can you make a case for using any two
of these meanings at once in a sensible program?

Exercise 0.3 Consider the sequence:
double a() • {1.0, 2.0};
double *p = a;
double aqr(x) (return (x*x);
#define aqr (x) x*x

What is the result of each of the following expressions?
aqr(J.0)
aqr(J)
aqr(3+3)
!aqr(3)
aqr(*p++}
(aqr) (3+3)

Exercise 0.4 Which of the above expressions do not behave the same as the function
call?

Exercise 0.5 Which of the above expressions can be repaired by altering the macro
d efinition? Which cannot?

Exercise 0.6 If any standard header can include any other, what style must you adopt
to avoid problems?

Exercise 0.7 [Harder] If a standard header can define arbitrary names, what must a
programmer do to ensure that a large program runs correctly when moved
from another implementation?

Exercise 0.8 [Very hard) Describe an implementation that tolerates keywords being
masked by macros when you include standard headers.

Exercise 0.9 [Very hard) Describe an implementation that tolerates standard headers
being included inside function definitions, or at any arbitrary place within
a source file.

Chapter 1: <assert.h>

Background
The sole purpose of the header <aaaert. h> is to provide a definition of

the macro assert. You use the macro to enforce assertions at critical places
within your program. Should an assertion prove to be untrue, you want
the program to write a suitably revealing message to the standard error
stream and terminate execution abnonnally. (Chapter 12: <atdio. h> de­
scribes how you write to a stream.) Thus, you might write:
#include <aaeert . h>

aaeert(O <'" idx '' idx < eizeot a I aizeot a[O));
/• a[idx) ie now eat• •/

Any code you write following the assertion can be simpler. It need not
check whether the index idx is in range. The assertion sees to that. And
should this "impossible" situation arise while you are debugging the
program, you get a handy diagnostic. The program does not stumble on to
generate spurious problems at a later date.

Please note that this is not the best way to write production code. It is ill
advised for a program in the field to terminate abnormally. No matter how
revealing the accompanying message may be to you the programmer, it is
assuredly cryptic to the user. Some form of error recovery is almost always
preferred. Any diagnostics should be in terms that the user can understand.

What you want is some way to introduce assertions that are enforced
only while you're debugging. That lets you document the assertions you
need from the start, then helps you catch the worst logic errors early on.
Later, you might add code to recover from errors that truly can occur during
execution. You want to leave the assertions in as documentation, but you
want them to generate no code.

macro <a Hert. h> gives you just this behavior. You can define the macroNDEBUG
NDEBUG at some point in your program to alter the way •Hert expands. If NDEBUG

is not defined at the point where you include <aHert. h>, the header defines
the active form of the macro aHert. It expands to an expression that tests
the assertion and writes an error message if the assertion is false. The
program then terminates. If NDEBUG is defined, however, the header defines
the passive form of the macro that does nothing.

18 Chapter 1

What the C Standard Says

.... rt

7.2 Diagnostics <assert . h>

The header <aeeert. h> defines the aeeert macro and refers to afl(llher macro,

Nt>ilaUC

which IS not defined by <aeeert . h>. lfNDEBUG is defined as• macro name at the point in

the soura: m e where <assert. h> is included. the assert macro is defined simply as

ld•f'ine u .. rt (19'f\Or.) ((void)O)

The assert macro shall be implemented as a macro. not as an actual function. If the macro

definition is suppressed in order to access an actual function. the beh•vior is undefined.

7.2.1 Program diagnostics
7.2.l.I The assert macro

Synopsis

I include <••••rt . h>

void ••••rt (int .. pr•••ion) ;

IH.scription

The assert macro puts diagnosiics into programs. When it is executed, if expressJ.on is
false (that is, compares equal to 0). the assert macro writes information about the panicular

call that failed (including the text of the argument. the name of the source file, and 1he source line

number - 1he laucr arc respcc1ivcly 1he value.• of the predefined macros FILE and

LINE__) on the standard error file in an implcmcnlalion-defincd forma1.97"Ji then CiilTs the

i.'Sort fiiiX:tion.

Returns

The assert macro returns: no value.

Forwllr d references: the abort func1ion (7. 10.4. 1).

Footnotes

91. The message wri1tcn migh1 be ol the form

Asscnion failed: apussion, file xy:. line nnn

Using <assert . h>
I gave an example of using the assert macro at the beginning of this

chapter. Whether active or passive, assert behaves essentially like a func­

tion that takes a single int argument and returns a void result. The argument

to the macro is nominally an expression of type int. The macro writes a

message and terminates execution if the value of the expression is zero.

predicates In practice, the argument you write is a predicate-an expression that is

either true (nonzero) or false (zero). You write predicates in for, if, and while
statements to determine the flow of control through the program. An

assertion is simply a compact way of writing:
if (!okay)

ebort() ;

The function abort is declared in the header <stdlil>.h>. You call it to

terminate execution of the program when something goes wrong.

Assertions help you document the assumptions behind the code you

write. They also provide teeth to those assumptions while you are debug­

ging the code. I emphasized earlier, however, that a production program

<assert.h> 19

should not terminate so abruptly. As convenient as assertions can be during
debugging, they eventually prove to be a nuisance.

macro How you control the way the macro expands is a matter of taste.
NDEBOG Somehow you must control the presence or absence of a definition for the

macroNDEBUG. One sty le of programming is tochangethesourcecode. Once
you believe that assertions should be disabled, just add a line before you
include the header:
#define NDEBUG /* disable aesertione */
#include <assert.h>

That neatly documents that assertions are henceforth inoperative. The only
drawback comes when you have to tum debugging back on again. (I can
assure you that eventually you will.) You must edit the source file to remove
the macro definition.

make Many implementations support a somewhat more flexible approach.
files They let you define one or more macros outside any C source files. You

specify these definitions in a command script or make file that rebuilds the
program. That can be a better place to define NDEBUG and document that
assertions are to be disabled. It can also be an easier file to replicate and
alter when you must revert to more primitive debugging phases. Nothing
in the C Standard requires such a capability, but <aeeert . h> is nevertheless
designed with it in mind.

This header has an additional peculiarity. As I mentioned in the previous
chapter, all other headers are idempotent. Including any of them two or
more times has the same effect as including the header just once. ln the case
of <assert . h>, however, its behavior can vary each time you include it. The
header alters the definition of aHert to agree with the current definition
status of NDEBOG.

The net effect is that you can control assertions in different ways
throughout a source file. Performance may suffer dramatically, for exam­
ple, when assertions occur inside frequently executed loops. Or an earlier
assertion may terminate execution before you get to the revealing parts. In
either case, you may need to turn assertions on and off at various places
throughout a source file.

So to turn assertions on, you write:
lundaf NDEBoG
linclude <aeeert. h>

And to turn assertions off, you write:
ldefine NDEBUG
#include <assert .h>

benign Note that you can safely define the macro NDEBOG even if it is already
redefinition defined. It is a benign redefinition, as I described on page 12. Benign

redefinition was added to Standard C for just this purpose. It eliminates
the need to protect multiple definitions of the same macro with macro
guards and conditional directives.

20 Chapter l

Implementing <assert . h>

benign
undefiniHon

Figure 1.1:
aasert.h

This header requires very little code, but it must be carefully crafted. To
respond properly to NDEBUG, the header must have the general structure:
#undef aaaert /* remove exiatinq definition */
#ifdef NDEBUG
#define aasert(test) ((void)O)
#eloe
#define assert(test)
#endif

/* passive form */

/* active form */

The initial #undef directive is innocuous if no macro definition of assert

currently exists. You can always #undef a name, whether or not it has a
current definition as a macro. (Think of this as benign undefinition.) The
directive is very necessaiy, however, if the definition is to change.

A naive, way to write the active form of the macro is:
#define assert(teat) if (!(teat)) \

fprintf(atderr, "ADaertion failed : %a, file %a, line %i.\n", \
#teat, _FILE_, _LINE_) /* UNACCEPTABLE! */

This form is unacceptable for a variety of reasons:
• The macro must not directly call any of the library output functions, such

as fprintf. Nor may it refer to the macro atderr. These names are
properly declared or defined only in the header <stdio. h>. The program
might not have included that header, and the header <assert .h> must
not. A program can define macros that rename any of the names from
another header, provided it doesn't include that header. That mandates
that the macro call a function with a secret name to do the actual output.

• The macro must expand to a void expression. The program can contain
an expression such as (assert (O < x>, x < y). That rules out use of the
if statement, for example. Any testing must make use of one of the
conditional operators within an expression.

• The macro should expand to efficient and compact code. Otherwise,
programmers will avoid writing assertions. This version always makes
a function call that passes five arguments.

/* aasert.h standard header*/
#undef assert

#i.fdef NDEBUG

/* remove existing definition */

((void)O) #define assert(teat)
#else /* NDEBUG not defined */

void Aasert(char *);
t* macros */

#define _STR(x) _VAL(x)
#define VAL (x) #x
#define ;ssert(test) ((teat) ? (void)O \

_Aaaert(_FILE_ "·" _STR(_LINE_) ""#test))
#endif D

<aaaert.h>

Figure 1.2:
xaaaert.c

_STR

_VAL

function
_Assert

forward
references

/* _Assert function *I
li.nclude <aesert .h>
#include <stdio.h>
#include <stdlib.h>

void _Aasart(char *mes9)

21

{ /* print assertion message and abort */
fputs(mes9, etderr);
fputs (" -- assertion Jfailed\n", lltderr) ;
abort{);
) D

Figure 1.1 shows the file aaeert .h. This implementation of the macro
assert performs the test in line. That way an optimizing translator can often
eliminate all code for an assertion that is obviously true. The macro com­
poses the diagnostic information into a single string argument of the form
xyz: nnn expreHion (to use the notation of theCStandard). The string-crea­
tion operator Ix encodes much of the information. Then string-literal
concatenation merges the pieces. It is a bit more compact than the form that
the C standard suggests, witlh the words file and line in it.

One nuisance is that the builtin macro _LINE_ does not expand to a
string literal. It becomes a decimal constant. To convert it to proper form
requires an additional layer of processing. That is perlormed by adding to
the header the two secret macros _STR and _vAL. One macro replaces
LINE with its decimal constant expansion. The second converts the
decimal constant to a string literal. Omit either _sTR or_ VAL and you end
up with the string literal "_LINE_ " instead of what you want.

Figure 1.2 shows the filexaeeert .c. It defines the secret library function
Assert that the macro calls. A smart version of the function Aseert can

parse the diagnostic message and supply the missing bits if it chooses. The
version shown here does not, since the precise format of the message is
implementation-defined.

The function _Assert uses two other library functions. It writes strings
to the standard error stream by calling fputs, declared in <stdio.h>. It
terminates execution abnormally by calling abort, declared in <stdlib.h>.
The description of each of these headers occurs much later. If you have a
general knowledge of C, such forward references should present few
problems. But if you need to learn more about what they do at this point,
you'll have to skip down quite a number of pages.

A good tutorial presentation minimizes the use of forward references.
Unfortunately, the Standard C library is highly interconnected. Nearly
every part is written in terms of the others and can be described only in
terms of the others. When I must refer ahead, I describe the new material
in general terms, as I have done for fputs and abort. That should minimize
some page flipping for those new to Standard C, but probably not all.

22 Chapter l

Testing <assert . h>
Figure 1.3 shows the file taaaert.c. This test program exercises the

assert macro four different ways - in its passive and active forms, with
the test condition met and not met. Only the active form with the test not
met should abort. Correct execution should display something like:
Sample assertion failure message -­
TASSERT. C: 43 val ~ 0 -- assertion failed
SUCCESS testing <asaert.h>

and terminate normally. Note, however, that the program writes text to
both the standard error and standard output streams. Text lines can appear
in a different order on some implementations. (See Chapter 12: <stdio.h>

for a discussion of streams.)

The test fails if any of the earlier three invocations of aaeert cause
execution to terminate, or if the program exits normally and reports the
status EXIT _FAILURE (a nonzero va Jue defined in <etdlib. h>).

t assert. c is a fairly sophisticated test program. Two of the functions it
uses are brothers to ones you have already met. The program writes strings
to the standard output stream by calling puts, declared in <stdio.h>. It
terminates execution normally by calling abort, declared in <atdlib.h>.

The program is more ambitious than that, however. It calls the function
s ignal, declared in <signal . h>, to regain control after _Assert calls abort.

It even uses the assert macro to verify that s ignal returns successful status.
Imagine using the very machinery you are testing to implement part of the
test harness! That's hardly the way to go about debugging new code.

program In fact, it was not the way I debugged this code. My first version of
stubs tassert. c simply aborted on the fourth test of the assert macro. I confess

that it took several tries even to get that far. Both fputa and signal. sit atop
a lot of machinery, not all of which was debugged when I began testing
<aaaert .h>. I had to introduce program stubs (much simpler versions) for
most of this code at one time or another. The needs of debugging can be
quite different than the needs of simple confidence testing.

When one of these tests fails, you may have to alter it - or call on the
services of an interactive debugger - to identify the exact failure. That is
one of the design compromises I made to keep the tests succinct.

References
Two good books that preach programming by assertion are:

O.J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Strudured Programming (New
York: Academic Press, 1972).

E.W. Dijkstra, A Discipline of Programming (Englewood Cliffs, N.J.: Prentice­
Hall, Inc., 1973).

Both are still topical, despite their age.

<assert.h>

Figure 1.3;
tassert.c

/* test assert macro *I
#define NDEBUG
#in<:iude <assert.h>
#include <signal.h>
#in<:iude <atdio. h>
#include <stdlib.h>

/* static data */
static int val • O;

static void field_al:><>rt (int sig)
(

if (va1 - l)
(

puts ("SUCCESS testing <assert .h>");
exit(EXIT_SUCCESS);
}

else

23

/* handle SIGllBRT */

/ * expected resul.t */

/* unexpected result */
puts("FAILURE testing <assert . h>");
exit(EXIT_ FAILURE);
)

static void dummy()
(/* teat dummy assert macro */
int i - 0;

assert (i 0) ;
assert (i l) ;
)

#undef NDEBUG
#in<:iude <assert.h>

int main()
{ /* teat both dummy and worlting forms *I
assert (signal (SIGABRT. 5fiel.d_al:><>rt) !• SIG_ ERR) ;
dummy() ;
assert (vel. .. 0); /* should not abort */
++val;
fputs("Sample assertion fail.ure message - -\n", stderr) ;
assert (vel. •• 0) ; /* shoul.d al:><>rt *I
puts ("FAILURE testing <assert. h>");
return (EXIT__FAILURE);

0

24

Exercises

Chapter l

Exercise 1.1 Write a version of aH•rt . h, using the version of xasaert . c: in Figure 1.2,
that exactly matches the format shown in the C Standard.

Exercise 1.2 Write a version of xaaaert.c, using the version of aeaert .h in Figure 1.1,
that exactly matches the format shown in the C Standard.

Exercise 1.3 What are the relative merits of the approaches in the previous two exer­
cises?

Exercise 1.4 Write a version of ••••rt. h and xaaaert. c that prints all assertions. Why
would you want to use this version?

Exercise 1.5 [Harder) Write a handler for the signal SIGABRT that writes the prompt:
Continue (y/n)?

to the standard error stream and reads the response from the standard
input stream. If the response is yes (in either uppercase or lowercase), the
handler should reestablish itself and return control to the abort function.
Chapter 9: <aiqnal. h> describes signals. Chapter 13: <atdlib. h> describes
the abort function.

Why would you want this capability?

Exercise 1.6 [Harder) Write a handler for the signal SIGABRT that executes a lonqjmp to
a aetjmpat the top of-in. Chapter 8: <aetjmp. h> describes the lonqjmpand
aetjmp functions.

Why would you want this capability? Describe a safe discipline for initial­
izing static storage in a program that uses this capability.

Exercise 1.7 [Very hard) Some C translators provide a source-level interactive debugger.
Such debuggers often let you set conditional breakpoints at various points
within the executing program. Locate such a C translator and explore what
is necessary to get <aaa•rt .h> to work with the debugger. Your goals are,
in order of increasing difficulty:

• Have control revert to the debugger whenever an assertion fails. Execu­
tion should continue with the statement following the offending aaaert
macro invocation.

• Have assert generate no inline code. It should pass instructions to the
source-level debugger instead.

• Generate code at the same level of optimization whether or not assert
macros appear, in either passive or active form.

• Have the modified aeaert accept test expressions of arbitrary complex­
ity.

Why would you want each of these capabilities?

Chapter 2: <ctype.h>

Background
Character handling has been important since the earliest days of C.

Many of us were attracted to the DEC PDP-11 because of its rich set of
character-manipulation instructions. When Ken Thompson moved UNIX
to the PDP-11 /20, he gave us a great vehicle for manipulating streams of
characters in a uniform style. When C came along, it was only natural that
we should use it to write programs preoccupied with walloping characters.

This was truly a new style of programming. C programs tended to be
small and devoted to a single function. The tradition until then was to write
huge monoliths that offered a spectrum of services. C programs read and
wrote streams of human-readable characters. The tradition until then was
to have programs communicate with each other via highly structured
binary files. They spoke to people by producing paginated reports with
embedded caniage controls.

ldiOmS So the early toolsmiths writing in C under UNIX began developing
idioms at a rapid rate. We often found ourselves sorting characters into
different classes. To identify a letter, we wrote:

i~ ('A' <• c '' c <c 'Z' 11 'a' <• c '' c <• 'z')

which gives a correct result when the execution character set is ASCII. (The
letters stand for "American Standard Code for Information Interchange."
It is a widely used set of character codes, but hardly universal. This idiom
does not work correctly for other popular character sets, such as IBM's
EBCDIC.)

To identify a digit, we wrote:
i~ ('0' <• c '' c <• '9')

And to identify white-space, we wrote:
if (c - ' ' 11 c •• '\t' 11 c = '\n' l

Pretty soon, our programs became thick with tests like this. Worse, some
became thick with tests almost like this. You can write the same idiom
several different ways. That slows comprehension and increases the chance
for errors.

26 Chapter2

character Opinions also differed on the makeup of certain character classes. White-
classes space has always suffered notorious variability. Should you lump ve.rtical

tabs in with horizontal tabs and spaces? If you include newlines (which are
actually ASCII line feeds), should you also include carriage returns (which
UNIX reserves for writing overstruck lines)? Then what do you do about
form feeds? The easier it is to get tools to work together, the more you want
them to agree on conventions.

The natural response was to introduce functions in place of these tests.
That made them at once more readable, more uniform, and mm·e easily
adapted to changes in the execution character set. The idioms above
became:

if (iealpha (c))

if (iadigit (c))

if (i11apace(c))

It wasn't long before a dozen-odd functions like these came into being.
They soon found their way into the growing library of C support functions.
More and more programs began to use them instead of reinventing their
own idioms. The character-classification functions were so useful, they
seemed almost too good to be true.

They were. A typical text-processing program might average three calls
on these functions for every character from the input stream. The overhead
of calling so many functions often dominates the execution time of the
program. That led some progranuners to avoid using these standard char­
acter classification functions. It led others to develop a set of macros to take
their place.

surprises C programmers tend to like macros. They let you write code that is as
with macros readable as calling functions but is much more efficient. You just have to

be alert to a few surprises:

• The macro may expand into much more code than a function call, even
if it happens to execute faster than the function call. If your program
expands the macro in many places, it can grow surprisingly larger.

• The macro may expand to a subexpression that doesn't bind as tight as
a function call. This is unacceptable, and always has been. A liberal use
of parentheses in the macro definition can eliminate such nonsense.

• The macro may expand one of its arguments to code that is executed
more than once, or not at all. A macro argument with side effects will
cause surprises. While some C programmers consider such surprises
acceptable, modern practice avoids them. Only two Standard C library
functions, gate and putc, both declared in <atdio.h>, can have macro
versions with such unsafe behavior.

<Ctype.h> 27

translation So the challenge in those early days was to produce a set of macros to
tables replace the character-classification functions. Because they were used a lot,

they had to expand to compact code. They also had to be reasonably safe
to use. What evolved was a set of macros that used one or more translation
tables. Each macro took the form:
#define _ XXXMASK Ox •••
#define iexxx(c) l_Ctyptab[c] & _ XXXMASK)

The character c indexes into the translation table named _ ctyptab.

Different bits in each table entry characterize the index character. If any of
the bits corresponding to the mask _ XXXMASK are set, the character is in the
tested class. The macro expands to a compact expression that is nonzero for
all the right arguments.

One drawback to this approach is that the macro generates bad code for
some of the wrong arguments. Execute it with an argument not in the
expected range and it accesses storage outside the translation table. De­
pending on the implementation, the error can go undetected or it can
terminate execution with a cryptic message.

The functions assume they are testing values returned by one of the
functions fgetc, fputc, getc, getchar, putc, putchar, or ungetc, all declared
in <stdio. h>. All return a character code type cast to unsigned char-a small
non-negative value. Or they return the value of the macro BOP, defined in
<etdio.h> -a negative value (usually-1).

On a computer architecture that represents type char the same as signed
char, a common error occurs when you test the more exotic character codes.
The function call ieprint le> looks safe enough. But say c has type char and
holds a value with the sign bit set. The argument will be a negative value
almost certainly out of range for the function.

Few programmers know to write ieprint c I unsigned char> cl, a much
safer form. Of course, you can use the type cast safely only where you are
certain that the argument value BOP cannot occur.

locales Nevertheless, translation tables remain the basis for many modern im-
plementations of the character classification functions. They help the im­
plementor provide efficient macros, even in the presence of multiple lo­
cales. Locales are a big topic. I discuss them at length in Chapter 6:
<locale.h>.

For now, I simply observe that a C program always begins execution in
the •c• locale. A call to the function eetlocale can change the locale. When
that happens, certain properties of the functions declared in <ctype .h> can
change behavior.

The functions declared in <ctype.h> remain important to the modern C
programmer. You should use them wherever possible to sort characters into
classes. They greatly increase your chances of having code that is both
efficient and correct across varied character sets.

28 Chapter2

What the C Standard Says
<ctype.h>

iea1nua

i•cnt.rl

hd.lgl.t

ieg.raph

7.3 Character handling <ct ype . h>

The header <ctype. h> decla:rcs several functions useful for testing and mapping charac·
ters.98 In all cases the argument i.s an in~. the value of which shall be representable as an
unsigned char or shall equal the value of the macro EOF. If the argument has any other
value. the behavior is undefined.

The behavior of these function~ is affected by the current locale. Those functions that have
implementation-defined aspects only when no< in the "C" locale are noted below.

The term printing charal'lerrcfcn loa member of an implementation-defined ~cf of.character~.
each of which occupies one printing position on a display device; the ltnn control character refers
to a member of an implementation-def med set of characters that arc not printing characters.99

Forward references: EOF (7.9. I), Jocaliuuion (7.4).

7.3.1 Character testing functions
The functions in this subclause return nonzero (true) if and only if the value of the argument

c conforms to that in the descrip1ion of the function.
7.3.1.1 The isalnum function

Synopsis

linc1ud.9 <ct~.h>
int i•al.nu.a(int c);

Description

The isalnum function tests for any character for which isalpha or isdigit is true.

7.3.1.2 The is alpha function

Synopsis

lincl udti <ctype . h>
int i••lpba (int e);

Description

The isalpha function tests for any character for which isupper or is lower is true, or
any character that is ooe oC an implemenution-defined SCI of characters for which none of
iscntrl, isdigit. ispunct, or isspace is true. In the "C" locale, isalpha returns
true only for the characters for which isupper or islower is true.
7.3.1.J The iscntrl function

Synopsis

I include <ctype . b>
int ieentrl (i.nt c) ;

Description

The iscntrl function tests for any control character.
7.3.l.4 The isdiqit functio,n

Synopsis

linclude <ctype . h>
int i•digit (int c) ;

Description

The isdigit function tests for any decimal-digit character (as defined in 5.2.1).

7.3.1.5 The isqraph function
Synopsis

lit1.Clud9 <ctype. h>
int iagraph(int c);

Description

The isgraph function tests for any printing character except space (' ').

<ctype.h>

J.eprint

i.apunct

.1.euppe.r

ia.xdigit

7.3.l.6 The is lower function

Synopsis

H nc lud6 <e tYJ>6.h>
int ialower (int c) ;

Description

'29

The ielower function tests for any character that is a lowercase leuer or is one of an
implementation-defined set of characters for which norc of iscntrl, isdigit, ispunct,
or isspace is true. In the "C" locale, islower returns true only for the charaders defined
as lowercase ieuers (as defined in 5.2. i).
7.3.1.7 The isprint funclio·n

Syn op.is

l includ• <ctype . h>
int i aprint (int c) :

Description

The isprint function tests for any printing character including space (' ').
7.3.1.8 The ispunct function

Synopsis

I incl ude <ctyp1 . h>
int i apunct (int e) ;

Description

The ispunct function tests for any printing character that is neither space (' ') nor a
character for which isalnum is true.

7.3.1.9 The isspace function

Synopsis

t incl u&. <ct~.h>
i nt iaapac• (i.nt C) ;

Description

The iespace function tests for any c.haractcr •hat is a standard white~space character or is
one of an implementation-defined .set of characters for which isalnum is false. The Slandard
white-space characters are the following: space (' '), fonm feed(' \f'), newline(' \n').
carriage return (' \r•), horizontal tab (' \t '), and vcnical tab (' \v'). In the "C" locale.
iespace returns true only for the standard white-space characters.
7.3.1. IO The i s upper functil()ll

Synopsis

l includ.• <ctype . h>
int i•upper (i.nt c) ;

Descr iption

The isupper funciion tests for any character that is an uppercase letter or is one of an
implementation-defined set of char.acters for which none of iscntrl, isdigit, ispunct,
or isspace is true. In the "C" locale, isupper returns true only for the characters defined
as uppercase letters (as defined in S.2. 1).
7.3.1.11 The isxdiqit function

Synopsis

l i nclude <ctype . h>
int i •xdiqit (int c) ;

Description

The iaxdigit function tests for any hexadecimal-digit charader (as defined in 6.1.3.2).

30

t ·olower

t.oupper

7.3.2 Character case mapping functions
7.3.2.1 The tolower function

Synopsis

linclu.de -<rw.type. h>
int tolower(irtt e);

Description

Chapter 2

The tolower function converts an uppercase letter to the co1Tesponding lowercase letter.

Returns

If the argument is a character for which ieupper is true and there is a c01'Tesponding character
for which i slower is true. the to lower function returns the c01Tesponding character;
aherwise. •he argument is returned unchanged.
7.3.2.2 The toupper function

Synopsis
li.nclud• <ctype. h>
int toupper (int e) 1

Description

The toupper function convens a lowercase lener to the corresponding uppercase lener.

Retums

If the argument is acharacterforwhich ielower is true and there is acorrespondingcharacter
for which i supper is true. the toupper function returns lhe corresponding character,
aherwise. 1he argument is returned unchanged.

Footnotes

98. See "future library directions" (7.13.2).

99. In an implementation that uses the seven-bit ASCII characterset, lhe printing characters arc
lhose whose values lie from Ox20 (space) through Ox7E (tilde); lite control chancters arc
those whose values lie from O(NUL) through Ox IF (US). and lhc character0x7F(OEL).

Using <ctype. h>
Use the functions declared in <ctype.h> to test or alter characters that

you read in with fgetc, getc, getchar, all declared in <stdio.h>. If you store
such a value before you test it, declare the data object to have type int. If
you store in any character type instead, you lose information. You may
mistake an end-of-file indication for a valid character. Or you may convert
a valid character code to a negative value, which is unacceptable.

If you generate an argument any other way, be careful. The functions
work properly only for the value BOP, defined in <etdio.h>, and values that
type unsigned char can represent. The characters in the basic C character set
have positive values when represented as type char. Others may not.

Classifying characters is not as easy as it first appears. First you have to
understand the classes. Then you h;we to \lnderstimd where all the com­
mon characters lie within the class system. You have to know where the
implementation has tucked the less common characters. You need some
understanding of how everything changes when you move to an imple­
mentation with a different character set. Finally, you need to be aware of
how the classes can change when the program changes its locale.

<ctype.h> 31

chcracter To begin at the beginning, the classes defined by the character-classifi-
classes cation functions are:

Agure2.1 :
Character

Classes

• digit - one of the ten decimal digits 'o• through '9'

• hexadecimal digit - a digit or one of the first six letters of the alphabet in
either case, 'a' through 'f' and ' A' through 'F'

• lowercase letter-one of the letters' a' through' z', plus possibly others
when outside the "C" locale

• uppercase letter -one of the letters' A' through' z•, plus possibly others
when outside the "C" locale

• letter - one of the lowercase or uppercase letters, plus possibly others
when outside the "C" locale

• alphanumeric - one of the letters or digits
• graphic- a character that occupies one print position and is visible when

written to a display device
• punctuation-a graphic character that is not an alphanumeric, including

at least the 29 such characters used to represent C source text
• printable - a graphic character or the space character ' '
• space - the space character ' ' , one of the five standard motion control

characters (form feed FF, newline NL, carriage return CR, horizontal tab
HT, or vertical tab VT), plus possibly others when outside the "C" locale

• control - one of the five standard motion control characters, backspace
BS, alert BEL, plus possibly others.
Two of these classes are open-ended even in the "C" locale. An imple­

mentation can define any number of additional punctuation or control
characters. In ASCII, for example, punctuation also includes characters
such as ' @' and ' $' . Control characters include all the codes ibetween
decimal 1 and 31, plus the delete character, whose code is 127.

Figure 2.1 is taken from Plauger and Brodie, Standard C. It shows how
the character classification functions relate to each othe-. The characters in

isprint

is space
+

iscntrl
++

I A-F a-f I
isxdigit<

isdigit ~

< i salnUlll< isuppsr ~
. isalpha < +
1sqrapb + isliw•r~

ispunct -..., 1 .. # % , ,

++ () ; < ~ >
a ace ? (\) * +

, - . I : ,.,
FF NL CR

HT VT

BEL BS

32 Chapter2

the rounded rectangles are all the members of the basic C character set.
These are the characters you use to represent an arbitrary C source file. The
C Standard requires that every execution character set contain all these
characters. Every execution character set must also contain the null char­
acter, whose code is zero.

A single plus sign under a function name indicates that the function can
represent additionalcharacters in locales other than the "C" locale. A double
plus sign indicates that the function can represent additional characters
even in the "C" locale.

An execution character set can contain members that fall in none of these
classes. The same character must not, however, be added at more than one
place in the diagram. If it is a lowercase letter, it is also in several other
classes by inheritance. But a character must not be considered both punc­
tuation and control, for example.

As you can see from the diagram, nearly all the functions can change
behavior in a program that alters its locale. Only iscligit and isxdigit

remain unchanged. If your rode intends to process the local language, this
is good news. The locale will alter islower, for example, to detect any
additional lowercase letters.

when If your code endeavors to be locale independent, howeve-, you must
locales program more carefully. Supplement any tests you make with the charac­

change ter-classification functions to weed out any extra characters that sneak in.
Or get all your locale-independent testing out of the way before the
program changes out of the "C" locale.

If neither of these options is viable, you may have to revert part or all of
the locale for a region of code. See page 88.

The important message is that Standard C introduces a new era. You can
now write code more easily for cultures around the world, which is good.
But you must now write code with more forethought. If it can end up in an
international application, it may someday process characters undreamed
of by early C programmers. Trust the character-classification functions to
contain the problem, to help you with it, and to delineate what can change.

I conclude this section with a remark or two about each of the functions
declared in <ctype. h>.

isa1num isalnum - "Alnum" is short for "alphanumeric," the fancy term for
letters and digits. A common practice where a program looks for names is
to require that each name begin with a Jette-, but permit a mixture of letters
or digits to follow. You often use this function to test for the trailing
characters in a name.

isalpha isalpha - "Alpha" is short for "alphabetic," a common term for letters
of either case. You use this ftl!Ilction to test for letters in the local alphabet.
For the "C" locale, the local alphabet always consists of the familiar 26
English letters, in each of two cases.

<ctype . h> 33

iscntrl iecntrl - Some programmers consider this function to be the exact
complement of ieprint. The two recognize disjoint sets, to be sure. But the
sets do not necessarily exhaus t the set of all characters. A program that uses
iscntrl this way can fail if you present it with exotic characters.

If you use this function at all, be careful. Only seven control characters
have uniform behavior across all locales - alert, backspace, carriage
return, form feed, horizontal tab, newline, and vertical tab. A program that
makes additional assumptions should document those assumptions in a
prominent comment.

iediqit iediqi t - This is one of the stablest functions across locales. It matches
only the ten decimal digits of the basicC character set, regardless of locale.
(Some alphabets provide additional characters for various numbers.) Not
only that, you can also be certain that the codes for the ten digits always
have sequential values, as in the common idiom (without overflow check­
ing):

for (value= O; iediqit(*e); ++e)
value= value* 10 + (*e - '0');

Knowing that you can depend on this idiom simplifies and speeds code
that performs numeric conversions.

ieqraph isqrapb - You use isqraph to identify characters that display when
printed. This function shifts behavior when you change locale.

islower islower - What constitutes a lowercase letter can vary considerably
among locales. Use this function to make sure that you recognize all of
them. Don't assume that every lowercase letter has a corresponding upper­
case letter, or conversely. Don't even assume that every letter is either
lowercase or uppercase.

isprint ieprint - This function recognizes all characters that occupy one print
position when written to a printEI'.

iapunct ispunct - Remember that punctuation is an open-ended set of charac-
ters, even in the "C" locale. As the description in the C Standard implies,
you are better off thinking of punctuation as graphic characters other than
alphanumeric.

iaepace isepace - This is an important function. Several library functions use
ieepace to determine which characters to treat as white-space. In the "C"

locale, you use this function to identify any of the characters that alter the
print position, when written to a display device, without displaying a
graphic. You should assume that isepace is the best test for such white­
space in any locale.

is upper is upper- The same remarks apply as for is lower above, only in rever5e.

iexdiqit isxdiqit-Like isdiqit, this function does not change with locale. You
use it for the specific purpose of identifying the digits in a hexadecimal
number. Note, however, that you cannot assume letter codes are adjacent,
the same way digit codes are. To convert a hexadecimal number in any
locale, write:

34
#include <ctype.h>
#include <string.h>

static const char xd(]
{"0123456789abcdefABalEF"};

static const char xv[] =
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15,
10, 11, 12, 13, 14, 15};

for (value= O; isxdiqit(*s}; ++s)
value= (value<< 4) + xv[strchr(xd, *s) - xd];

Chapter2

Note that this code does not check for overflow. That requires additional
complexity.

tolower tolower - Use this function to force any uppercase letters to lowercase.
It deals with such exotica as fowercase letters that have no corresponding
uppercase letter and letters that have no case. Don't assume that you can
convert an uppercase letter to its corresponding lowercase letter simply by
adding or subtracting a constant value. That happens to be true for ASCII
and EBCDIC, two popular character sets, but it is not required by the C
Standard.

toupper toupper- Use this function to force any uppercase letters to lowercase.
The same remarks apply as for tolower above, only in reverse.

Implementing <ctype. h>
The implementation presented here follows the traditional approach. A

translation table captures the peculiarities of the execution character set.
Each of the functions uses its argument as an index into the table. The
function tests the selected table element against a unique mask to deter­
mine whether the character i:S in the class in question.

A translation table makes sense only if it is not too large. How big it gets
is a product of how many elements it contains and how big each element
must be. Standard C defines three "character" types -char, signed char, and
unsigned char. All of these types must be able to represent all the characters
in the execution character set. All are represented by at least eight bits.

range The character classification functions each accept an argument of type
otvdues int, but with a limited range of values. Any value that type unsigned char

can represent is valid, plus one additional value specified by the macro EOF,

defined in <stdio. h>. Most sensible implementations give EOF the value-1.
This implementation is no 'exception. So the number of elements in a
translation table must be one more than the number of distinct values
representable by a character type.

The vast majority of C implementations use exactly eight bits to repre­
sent a character type. Hence, a translation table must contain 257 elements.
An implementation can, however, use more bits. C has been implemented

<ctY1>9.h> 35

with nine, ten, 16, and even 32 bits used to represent character types. A
translation table that must represent all the values in a 16-bit character is
probably too unwieldy. It would contain 65,537 elements.

Figure 21 shows eight distinct classes. That suggests that a translation
table can be an army of unsigned char. But the figure also shows (with pluses)
six places where an implementor can add characters to the classes. That
suggests that the table must be an array of short. You can merge most of these
additions with existing classes. Still, two sets of additions remain, outside
the "C" locale at least:

• The function iealpha can recognize characters that are recognized by
neither blower or iaupper.

• The function h•pace can recognize characters that are recognized by
neither iec:ntrl or isprint.

You must either rule out locales with funny letters and spaces, or you must
make each element of the translation table big enough to hold ten classifi­
cation bits. If any chance exists that you may want to support locales with
such alphabetic or space characters, declare the translation table to have
type array of short. If you are willing to rule out such latitude, however, you
can save space by declaring the translation table to have type army of
unsigned d1ar. Since this implementation aims at maximum portability, it
takes the former course.

One subtle point should not get bypassed. I have consistently said that
an eight-bit translation table should have elements of type unsigned char.
Not all implementations represent integers in two's complement. In other
representations, converting a negative signed representation to an un­
signed one can alter low-order bits. Performing a bitwise and between a
signed value and an unsigned mask can thus cause surprises.

So far, I have assumed that characters are represented in eight bits (or
not much more). I have also assumed that a program can afford to include
a translation table of 514 bytes (or not much more). To show some realcode,
I must make at least three more assumptions.

tol ower Assumption #1: The case mapping functions tolowu and toupper d iffer
toupper from the other functions in this group. They don't simply classify their

argument, but return a character that may differ from the argument char­
acter. I assume that they should be implemented with mapping tables
similar to the translation table shared by all the other functions.

ASCII Assumption #2: The execution character set is ASCII, which is widely
and used among modern computers. ISO 646, the international variant, has the

ISO 646 same code values and much the same glyphs, or visible forms of the
characters. Some of the punctuation in ASCII can be replaced with alternate
glyphs in ISO 646, however. That is how Europeans can introduce accented
characters, such as A and a, without going beyond seven-bit codes.

This implementation is oompatible with any variant of ISO 646 that
redefines no punctuation characters as letters. It is easily changed to match

36

shCl'ed
libraries

writable
static

storage

header
<ctype.h>

Chapter2

other ISO 646 variants, however. You can also accommodate other character
sets just as easily. IBM's EBCDIC also requires a simple change of table
entries. Just be sure that your table entries agree with the character con­
stants (such as ' a') produced by your C translator!

Assumption #3: The library can use writable static storage for pointers to
its tables. That supports only the simple case where the translator includes
code from the Standard C library C as needed. Once included in the
program, library code behaves just like code supplied by the programmer.
An implementation that can run multiple programs, however, oft:en bene­
fits from having shared libraries. All the code for the Standard C library
occupies a single place in computer memory. AC program Jinked to run in
this environment transfers control to functions in the shared library, rather
than including its own private copy of the library code. The obvious
benefits are that each program is smaller and can link faster.

A not-so-obvious d rawback appears when one or more functions need
to maintain a writable static data object that is private to the library. You
can't share the same data object between different programs, or between
different threads of control within the same program. You need to allocate
a unique version of each writable static data object for each program or
thread and initialize it to its required starting value.

Sadly, no common method exists for performing this feat. Operating
systems and linkers use ad hoc machinery to make shared libraries work
at all. Some simply disallow writable statics. Others require you to invoke
special machinery to set up and access writable statics. You must w:rite your
code in a special way.

The character classification functions need writable static storage if they
are to adapt to changing locales. One approach is to rewrite the tables when
the locale changes. A better way is to alter pointers to point to different
(read-<>nly) tables. That speeds changing locales. It also minimizes the
amount of writable storage that might need special handling.

This presentation largely ignores the potential problems associated with
writable static storage in the library. I minimize the use of writable statics
as much as possible. I also try to call attention in the code to any writable
static data object that must be introduced. But I use no special notation for
accessing such storage.

Figure 2.2 shows the file ctype .h. The code for the functions declared in
<ctype. h> is built around three translation tables. Three writable pointers
at all times point to the tables corresponding to the current locale. N ote that
every function has a corresponding macro. I used fairly cryptic names for
the macros that define the classification bits. That helps save space for the
presentation. It also speeds the processing of standard headers in many
implementations.

<ctype.h>

i11alnum
etc.

To lower

_'J'oupper

Agure2.2:
c type.h

Rgure2.3:
iaaln um.c

37
The code for the functions looks much like the macros. Figure 2.3

(iaalnuzn.c) through Figure 2.15 (toupper.c) shows the code for these
functions.

Figure 2.16 shows the file xtolower. c. It defines the initial value of the
pointer_ 'l'olower, and the ASCII verSion of the translation table that accom­
panies tolower. Similaro/, Figure 2.17 shows the file xtoupper. c. It defines

/* ctype. h standard header */
#ifndef CTYPE
#define =CTYPE

/* ctype code bits */
#define _XA- Ox200 /* extra a lphabetic */
#define XS OxlOO /* extra apace */
#define - BB Ox80 /* BEL, BS, etc. *I
#define =OI Ox40 /* CR, FF, BT, NL, VT */
#define _DI Ox20 / * '0'-'9' */
#define LO OxlO /* 'a'-' ,. . *I
#define - PU Ox08 /* punctuation */
#define - SP Ox04 I* space */
#define - UP Ox02 / * ' A'-' Z' */
#define - XD OxOl /* '0'-'9', ' A'-'F', 'a'-'f' */

f * declarations */
int isalnuzn(int), isalpha (int) , iscntrl(int), isdigit(int);
int is9raph(int), islower(int), isprint(int), ispunct(int) ;
int isspace(int), isupper (int), isxdigit(int);
int tolower(int), toupper (int) ;
extern conat short *_Ctype, *_Tolover, *_Toupper;

/* macro overrides */
#define iaalnuzn(c) (_ctype[(int) (c)] ' (DII LOI UPl_XA))
#define iaalpha(c) (_Ctype[(int) (c)] ' (_LOl_UPl_XA))
#define iacntrl(c) (_ctype[(int) (c)] ' (_BBl_ CN))
#define isdigit(c) (_ctype[(int) (c)) ' _DI)
#define isgraph(c) (_ctype[(int) (c)] ' (_Dil_ LOl_PUl_UPl_XA))
#define ialower (c) (ctype [(int) (C)) ' _LO)
#define isprint(c) ,-

(_ctype[(int) (c)] ' (_DI l_LOl_PUl_SP l _UPl_XA))
#define ispunct (c) (Ctype[(int) (c)] ' PU)
#define isspace (c) (ctype [(int) (c)] ' (_ CNl_SP I_ XS))
#define isupper(c) (_ctype((int) (c)] '_UP)
#define isxdigit(c) (_ctype[(int) (c)] '_XD)
#define tolower(c) Tolower[(int)(c)]
#define toupper(c) =Toupper[(int) (c))
#end.if O

/ * iaalnum !unction */
#include <ctype.h>

int (isalnuzn) (int c)
(/* teat for a lphanumeric character */
return (_Ctype [c] ' (_DI l_LOl _UP l_XA));

0

38 Chapter2

Rgure 2.4: /* isalpha Eunction *I
iaalpha.c #include <ctype.h>

int (iaalpba) (int c)
{ /* teat for alphabetic character */
return (_Ctype(c] ' (_LOl_OPl_XA));

Figure 2.5: /* iacntrl function *I
iacntrl. c #include <ctype · h>

int (iacntrl) (int c)

0

{ /* teat for control char:acter */
return (_Ctype[c] ' (_BBl_CN)) ;

Figure 2.6: /* iadigit function *I
iadiqit.c #include <ctype.h>

int (iadigit) (int c)

0

{ /* teat for d19it */
return (_Ctype[c] ' _DI);

Figure 2.7: /* iaqraph function */
is graph. c #include <ctype. h>

int (iagraph) (int c)

0

{ /* teat for graphic character */
r eturn (_Ctype [c] ' (_DI l_LOl_PUl_OP l_XA));

Figure 2.8: /* ialower function *I
is lower. c #include <ctype .h>

0

int (ialower) (int c)
{ /* teat for lowercase character */
return (_Ctype [c] ' _LO);

Figure 2.9: /* iaprint function */
hprint.c #include <ctype.h>

int (iaprint) (int c)

0

{ /• test for printable character * /
return (_Ctype[c) ' (_DI l _LOl _PUl _SP l_OP l_XA));

0

<ctype.h> 39

Figure 2.10: /* iapunct function *I
iapunct . c llinelude <ctype. h>

int (iapunct) (int c)
(

return (_Ctype[c) ' _PO);

Rgure 2.11: /* iaapace function *I
iaapace. c #include <ctype. h>

int (iaapace) (int c)

/* teat for punctuation character */

D

(/* teat for spacing character */
return (_Ctype[c) ' (_CNl_SPl_XS)) ;

Figure 2.12: /* iaupper function * /
iaupper.c llinelude <ctype . h>

int (iaupper) (int c)
{

return (_Ctype[c] ' _OP);

Figure 2.13: /* iaxdigit function */
iaxdigit. c llinelude <ctype . h>

int (iaxdigit)(int c)
{

return (_Ctype[c] ' _ XD);
}

Figure 2.14: /* tolover function *I
tolower. c llinelude <ctype . h>

int (tolower)(int c)
(

return (_Tolover[c]) ;

Figure 2. I 5: /* toupper function *I
toupper.e #inelude <ctype.h>

int (toupper) (int c)
{

return (_Toupper[c]);

D

I* teat for uppercase character */

0

/* teat for hexadecimal digit */

D

/* convert to lowercase character */

D

/* convert to uppercase character */

D

40

Figure 2.16:
xtol o,wer . c

Chapter2

I* Tolower conversion tabl• -- ASCII version */
#include <ctype.h>
#include <limits.h>
#include <stdio .h>
#if EOF

'"' - 1 11 OCHAR_MAX '"' 255
#error WRONG TOI.OMER TABLE

lendif

/* static data */
static const short tol.ow_tab[257] = (EOF,

OxOO, OxOl, Ox02, Ox03, Ox04, Ox05, Ox06, Ox07,
Ox08, Ox09, OxOa, OxOb, OxOc, OxOd, OxOe, OxOf,
OxlO, Oxll, Ox12, Oxl.3 , Ox14, Ox15, Oxl6, Ox17,
Oxl8, Oxl9, Oxla, Oxlb, Oxlc, Oxld, Oxl.e, Oxl.f,
Ox20, Ox21, Ox22, Ox23, Ox24 , Ox25, Ox26, Ox27,
Ox28, Ox29, Ox2a, Ox2b, Ox2c, Ox2d, Ox2e, Ox2f,
Ox30, Ox31, Ox32, Ox33, Ox34 , Ox35, Ox36, Ox37,
Ox38, Ox39, Ox3a, Ox3b, Ox3c, Ox3d, Ox3e, Ox3f,
Ox40, 'a', 'b', 'C'' 'd', '•', 'f'. '9'.
'h', , i', , j', 'k', I 1' I 'm: ' 'n', 'O',

'p'. •q•. 'r', 's', 't', 'u', 'v', I "I I

1 X
1

I 'y', ' z ', OxSb, OxSc, OxSd, Ox 5e, OxSf,
Ox60, 'a', 'b'. 'C', 'd' I '•', 'f', 'g' I
'h', , i', I j' I 'k', , l', 'm', 'n', 1

0
1

I

'p', 'q' I 'r', 'a', 't', 'u', lyl I I 1f1
I

'x', 'y', 'z', Ox7b, Ox7c, Ox 7d, Ox7e, Ox7f,

Ox80, Ox81, Ox82, Ox83, Ox84, Ox85, Ox86, Ox87,
Ox88, Ox89, Ox8a, Ox8b, Ox8c, Ox8d, Ox8•, Ox8f,
Ox90, Ox91, Ox92, Ox93, Ox94 , Ox95, Ox96, Ox97,
Ox98, Ox99, Ox9a, Ox9b, Ox9c, Ox9d, Ox9e, Ox9f,
OxaO, Oxal, Oxa2, Oxa3, Oxa4 , OxaS, Oxa6, Oxa7,
Oxa8, Oxa9, Oxaa, Oxab, Oxac, Oxad, Oxae,. Oxaf,
OxbO, Oxbl , Oxb2, Oxb3, Oxb4, Oxb5, Oxb6, Oxb7,
Oxb8, Oxb9, Oxba, Oxbb, Oxbc, Oxbd, Oxbe, Oxbf,
OxcO, Oxcl , Oxc2, Oxc3, Oxc4 , OxcS, Oxc6, Oxc7,
Oxc8, Oxc9, Oxca, Oxcb, Oxcc, Oxcd, Oxce, Oxcf,
OxdO, Oxdl, Oxcl2, Oxd3, Oxd4, Oxd5, Oxd6, Oxd7,
Oxd8, Oxd9, Oxcla, Oxdb, Oxdc, Oxdd, Oxde, Oxdf,
Ox•O, Ox•l, ox.2, ox.3, Ox-4, Oxes, Oxe6, Oxe7,
ox.a, Ox•9, Oxea, Oxeb, <>xec, Oxed, ox-, Oxef,
OxfO, Oxfl , Oxf2, Oxf3, Oxf4 , Oxf5 , Oxf6, Oxf7,
Oxf8, Ox f9, Oxfa, Oxfb, Oxfc, Oxfd, Oxfe, Oxff} ;

const short • Tolower ::s 'tolow_ tab[l]; D

the initial value of the pointer _Toupper, and the ASCII version of the
translation table that accompanies t o\1PP9r.

Note the use of the #error directive. It ensures that the code translates
successfully only if its assumptions are correct. The macro UCHAR_ MAX,

defined in <l imits . h>, gives the highest value that can be represented by
type unsigned char.

<ctype.h>

Figure 2.17:
xtoupper.c

4 1

I* _Toupper conversion table -- ASCII version */
#include <ctype.h>
#include <lilllits.h>
#include <stdio.h>
#if EOF != -1 11 OCHAR_ MAX != 2SS
#error WRONG TOVPPER TABLE
#endif

/* static data */
static conat short toup_tab(2S7] = (EOF,

OxOO, OxOl, Ox02, Ox03, Ox04, OxOS, Ox06, Ox07,
Ox08, Ox09, OxOa, OxOb, OxOc, OxOd, OxOe, OxOf,
OxlO, Oxll, Oxl2, Oxl3, OxU, OxlS, Ox16, Ox17,
Ox18, Oxl9, Oxla, Oxlb, Oxlc, Oxld, Oxle, Oxlf,
Ox20, Ox21 , Ox22, Ox23, Ox24, Ox2S, Ox26, Ox27,
Ox28, Ox29, Ox2a, Ox2b, Ox2c, Ox2d, Ox2e, Ox2f,
Ox30, Ox31, Ox32, Ox33, Ox34, Ox3S, Ox36, Ox37,
Ox38, Ox39, Ox3a, Ox3b, Ox3c, Ox3d, Ox3e, Ox3f,
Ox40, ' A' , 'B', 'C', ' D' , 'E', 'F' I 'G',

'H', I I ', 'J', 'It.', 'L'' 'M', 'N'' 'O''
'P', 'Q', 'R', 'S' I ''l'', '0' I 'V', ' W',
' X', ' Y'' 'Z'' Ox5b, OxSc, Ox5d, Ox5e, OxSf,

Ox60, 'A', 'B', 'C'' 'D', 'E', 'F', 'G',
'H', , I ', IJI I ' I(' ' 'L', 'M', 'N', '0' I
'P' I 'Q', 'R' I 'S', , 'l", 'O', ' V' I ' W',
'X' I 'Y', ' Z'' Ox7b, Ox7c, Ox7d, Ox7e, Ox7f,

OxBO, Ox81, Ox82, Ox83, Ox84, oxes, Ox86, Ox87,
Ox88 , Ox89, OxBa, Ox8b, Ox8c, Ox8d, OxBe, Ox8f,
Ox90, Ox91, Ox92, Ox93, Ox94 , Ox9S, Ox96, Ox97,
Ox98, Ox99, Ox9a, Ox9b, Ox9c, Ox9d, Ox9e, Ox9f,
OxaO, Oxal, Oxa2, Oxa3, Oxa4, OxaS, Oxa6, Oxa7,
Oxa8, Oxa9, Oxaa, Oxab, Oxac, Oxad, Oxae, Oxaf,
OxbO, Oxbl, Oxb2, Oxb3, ()xb4 , OxbS, Oxb6, Oxb7,
Oxb8 , Oxb9, Oxba, Oxbb, Oxbc, Oxbd, Oxbe, Oxbf,
OxcO, Oxcl, Oxc2, Oxc3, Oxc4, OxcS, Oxc6, Oxc7,
OxcB , Oxc9, Oxca, Oxcb, Oxcc, Oxcd, Oxce, Oxc.f,
OxdO, Oxdl, Oxd2, Oxd3, Oxd4, Oxd5, Oxd6, Oxd7,
Oxd8, Oxd9, Oxda, Oxdb, Oxdc, Oxdd, Oxda, Oxdf,
OxeO, Oxel, 0-2, Oxe3, Oxe4, Oxes, Oxe6, Oxe7,
Oxes, Oxe9, Oxea, Oxeb, Oxec, Oxed, Oxea, Oxef,
OxfO, Oxfl, Oxf2, Oxf3, Oxf4, OxfS, Oxf6, Oxf7,
OxfB, Oxf9, Oxf'a, Oxfb, Oxfc, Oxfd, Oxfe, Oxff};

const short *_Touppar = &;toup_tab(l]; D

data object Figure 2.18 shows the file xct ype. c. All the character-classification func-
_ etype tions share a common translation table, pointed at by _etype. This file

defines both the table and the pointer.

42

Figure 2. 18:
xctype.c

/* ctype conversion table -- ASCII version */
#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#if EOF ! = - 1 I I UCHAR_MAX !~ 255
#error WRONG CTYPE TABLE
#endif

/* macros */
#define XDI (_Dil_XD)
#define XLO (_LOl_XD)
#define xtJP (_UPl_XD)

I* static data *I
static conat short ctyp_tab[257] ~

_BB, _BB, _BB, _BB, _BB, _BB, _BB,
_BB, _CN, _CN, _CN, _CN, _ CN, _BB,
_BB, _BB, _BB, _BB, _BB, _BB, _BB,
_BB, _BB, _BB, _BB, _ BB, _BB, _BB,
_SP, _PU, _PU, _PU, _PU, _PU, _PU,
_PU, _PU, _PU, _PU, _PU, _PU, _PU,
XDI, XOI, XDI, XDI, XOI, XOI, XOI,
XDI, XOI, _PU, _PU, _PU, _PU, _PU,

_PU, XUP, XUP, XUP, XUP, XUP, XUP,
_UP, _UP, _UP, _UP, _UP, _UP, _UP,
_UP, _UP, _ UP, _UP, _UP, _UP, _UP,
_UP, _UP, _UP, _PU, _PU, _PU, _PU,
_PU, XLO, XLO, XLO, XLO, XLO, XLO,
_LO, _LO, _LO, _LO, _LO, _LO, _LO,
_LO, _LO, _LO, _LO, _LO, _ LO, _LO,
_LO, _ LO, _LO, _PU, _ PU, _PU, _PU,
};

const short •_Ctype = 'ctyp_tab[l];

(0, /* EOF */
_BB,
_BB,
_BB,
_ BB,
_PU,
_PU,
XOI,
_PfJ,
_UP,
_UP,
_UP,
_PU,
_LO,
_LO,
_ LO,
_BB,
I* rest all. match

Chapter2

nothing *I

D

Testing <ctype.h>
It makes sense to test each of the functions declared in <ctype. h> for all

valid argument values. It is also wise to test both the functions themselves
and the macros that mask them. That goes beyond testing just the external
characteristics of <ctype. h>, of course. Such double testing is looking for
trouble in the inner workings. of the header and its functions. Here is a case,
however, where both macros and functions are important. We want some
confidence that both behave as expected.

We can also profit from some additional information - a display of the
characters in various printable classes, presented in order of increasing
code values. That reassures us that all the expected characters match and
no others. It shows any additional characters permitted in the "C" locale,
such as extra punctuation. And it reveals the collating order within a class.

Figure 2.19 shows the test program tctype. c. It displays several charac­
ter classes, then tests both the functions and their masking macros. Note

<ctype.h> 43

the use of parentheses around the function names in the second set of tests.
That is the same trick I use to define each of the visible functions in the
libraiy. The parentheses prevent any macro with arguments from masking
the declaration of the actual function earlier in the header. If the execution
character set is ASCil, the program produces the output:
ispunct : ! "#$"' () *+, -./; ;<c>?@ (\) A ' (I)-
iadiqit: 0123456789 -
ialower: abcdefqhijklmnopqratuvvxyz
iaupper : ABCDEFGHIJJCLMNOP<2RSTUVWXYZ
iaalph&: ABCDEFGHIJnMNOP<QRSTOVWXYZabcdefqhi jklmnopqratuvvxyz
iaalnUlll : 0123456789ABCDEFCHIJltUe!OP<QRSTOVMXYZabcdef9hijklmnopqra
tuvwxyz
SUCCESS teatinq <ctype.h>

Note that the line showing the characters matched by iaalnum is folded
here This book page is not wide enough to display the entire line. The line
will not fold on a typical computer display, which has wider lines.

References

Exercises

Considerable interest has arisen lately in character sets. International
commerce demands better support for a richer set of characters than that
traditionally used to represent English (and C) on computers. Various
vendors have given meaning to all 256 codes that can be represented in the
standard eight-bit byte. Nevertheless, the stalwarts are still the sets of 128
or fewer characters that can be encoded in seven bits. Two standards cover
a vast number of implementations:
ANSI Standard XJ.4-1968 (New York: American National Standards Insti­
tute, 1989). This defines the ASCII character set, a set of seven-bit codes
widely used to represent characters in modem computers.
ISO Standard 646:1983 (Geneva: international Standards Organ iz.ation,
1983). This is the international standard for seven-bit character codes.

Exercise 2.1 List all the character classification functions that return a nonzero value for
each of the characters in the s tring:
"Hello, world! \n"

Exercise 2.2 Modify the functions declared in <etype . h> to work properly with arbitrary
argument values. Treat an argument value that is out of range the same
way you treat the value EOF. Describe at least two ways to report an error
for an argument value out of range.

Exercise 2.3 A name in C begins with a letter. Any number of additional letters, digits,
or underscore characters follow. Write the function aiz•_t idlen(conat
char *a) that returns the number of characters that constitute the identifier
beginning at a. lf no identifier begins at a, the function returns zero.

44

Figla'e 2.19:
tctype . c

Pafl

/* teat ctype functi ons and macros */
#include <aaaert. h>
#include <ctype. h>
#include <limits . h >
#include <•tdio .h>

static void prclaaa(conat char *name, int (*fn) (int))

Chapter2

{ /* display a printable character class */
int c ;

fputa(name, atclout) ;
fputa (" : ", atclout) ;
for (c "' EOF; C <= UCBAR_MAX; ++C)

if ((*fn) (c))
fputc(c, atdout) ;

fputa ("\n", atclout) ;
)

int main()
{

char •s;
i.nt c;

/* teat both macros and functions *I

/* display printable classes *I
prclaa• (" iapunct", 'i•punct) ;
prclaaa (" iadiqit" , 'i•diqit);
prclaaa(" ialower" , 'islo ... r) ;
prclasa (" iaupper", 'is upper) ;
prcl.•••("i••lpha", 'i•alpha) ;
prclaaa(" iaalnUlll", 'iaalnum);

/* teat macros for required characters */
for (• • " 0123456789"; *a; ++a)

aa .. rt(iadiqit(*a) '' iaxd.iqit(*•)) ;
for (a - " abcdefABCDEF" ; •a; ++•)

a•••rt(iaxdi qit(*a));
for (a u "abcdefqhijkl.mnopqratuvwxyz"; *a; ++a)

aa .. rt (is lower(*•)') ;
for (a = "ABCDEFGHIJla.MNOl>~:l'UVWXYZ"; *a; ++a)

aaaert(iaupper(*a)) ;
for (a 2 " !\"I'' ' () ;<=>?[\\)*+,-./ :A_(I)- " ; *a; ++a)

aaaert(iapunct(*a)) ;
for (a 2 "\f\n\r\t\v"; *a; ++a)

aa .. rt(iaapace (*a) '' iacntrl(*a)) ;
aa .. rt(iaapace(' ') ' ' i91>rint(' ')) ;
aa .. rt(iacntrl(' \a') ' ' i acntrl(' \b')) ;

/* teat macros for all valid codes */
for (c • EOF; c <• OCHAR_MAX; ++c)

{ /* teat for proper class membership */
if (iadlqit (C))

aasert(isalnum(c)) ;
if (isupper(c))

aa .. rt(lsalpha(c));
if (ialower(c))

aaaert(iaalpti.(c)) ;

<ctype.h>

Continuing
tctype.c

Port 2

if (iaalpha (c))
aaaert(iealnum(c) '' !iadi9it(c));

if (iaalnum (c))
assert (ia9raph (c) u ! iapunct (c));

if (illpunct(C))
aasert(i99raph(c)) ;

if (iaqraph(c))
aaaert(ieprint(c)) ;

if (iaapace(c))
assert (c •• ' ' 11 ! ieprint (c)) ;

if (iacntrl (c))
aaaert(!iaalnum(c));

/* teat functions for required characters */
for (a • " 0123456789"; *a; ++a)

aasert((iadi9it) (*•) ' ' (iaxdi9it) (*a)) ;
for (a = • abcdefABCDEF"; *a; ++a)

aaeert((iaxdi9it) (*•)) ;
for (a = "abcdefgbijltlmnopqretuvvxyz•; *a; ++a)

assert ((ielo-r) (*•));
for (a = "ABCDEFGHIJICLMNOPQRSTUVWXYZ"; *a; ++a)

aasert ((ieupper) (*•));
for (a= "!\"#U' () ; <• >?[\\]*+,-./ : A_ (I)-" ; *a; ++a)

assert ((iapunct) (*a)) ;
for (e " "\f\n\r\t\v"; *a; ++•)

45

assert ((iupace) (*•) u (iacntrl) (*•));
assert ((iaapace) (' ') H (iaprint) (' ')) ;
aeaert((iacntrl)(' \a ') ' ' (iacntrl)(' \b')) :

/* teat functions for all valid codes */
for (C = EOF; c <- OCHAR MAX; ++c)

(;*teat for proper class membership */
if ((iadi9it) (c))

aaaert((iaalnum) (c)) ;
if I (isupper) <cl l

assert ((iaalpha) (c)) ;
if ((ialOW9r) (c))

aaaart((iealpha) (c)) ;
if ((isalpha) (c))

asaert((iealnum) (c) ' ' ! (iedi9i t) (c));
if (isalnum(c))

aaaert((iegraph) (c) ' ' !(iapunct) (c));
if ((iapunct) (c))

asaart((ia9raph) (c)) ;
if ((iBCJraph) (C))

asaert((i eprint) (c)) ;
if ((ieapace)(c))

asaert(c ••' ' I I ! (iaprint)(c));
if ((iacntrl) (c))

assert(! (iealnum) (c));

puts ("SUCCESS tasting <ctype. h>") ;
return (0) ;

0

46 Chapter2

Exercise 2.4 Write the function aize t dat:ab(char •.s...t, con•t char *mrc) that

copies the null-terminated string beginning at ere to .s...t, with each

horizontal tab replaced by one to four spaces. Assume tab stops every four

columns. A printing character occupies one column. The only other char­
acters that affect the print position are backspace, carriage return, and

newline. Return the length of the new string at daet.

Exel'cise 2.5 Do you have to modify the function idlen (from Exercise 2.3) to work

properly if the locale changes from •c•? If so, show the modified version.
If not, explain why not.

Exercise 2.6 Do you have to modify the function dateb (from Exercise 24) to work

properly if the locale changes from •c•? If so, show the modified version.
lf not, explain why not.

Exercise 2.7 [Harder) You want to implement a library that can be shared. Describe how

you would alter the code in this chapter for each of the following mecha­
nisms:

• The translator can be instructed to place all writable static storage in the

library in a section that is copied into each process that uses the library.

• You can add fields to a structure called Lib .tat, declared in <lib­

atat. h>. You can add initializers to the definilion of the structure in the

file llbetat . c.

• You can add fields to a structure called _ Lib_ stat, as before. You access
the structure only through a pointer to the structure called _ P, also
declared in <llbatat.h>.

• You can add fields to a structure called Lib stat, as before. You access
the structure only through a pointer to the ;tructure returned by a call

of the form _ FP o . The function_ FP is declared in <libetat. h >.

Exercise 2.8 [Harder) A midtithread environment supports one or more threads of con­

trolcontrol;thread of that share the same static storage. Dynamic storage

(with storage class auto or .:egieter) evolves separately for each thread.
You want to implement a library that appears atomic to the threads - no

function changes behavior, or misbehaves, because another thread changes
the state of library static storage. You make each access to library static

storage safe by surrounding it with synchronization code, as in:

_ lock() ;

p - _Ctypm;

- unl.oclt () ;

Show how to change the code in this chapter to make it safe for multi thread

operation. What does that do to performance? How can you improve

performance and still keep the code safe for multithread operation?

Exercise 2. 9 [Very hard] Modify the macros defined in <ctypm. h> to work properly with

arbitrary argument values. Treat an argument value that is out of :range the

same way you treat the value EOF.

Chapter 3: <errno.h>

Background
If I had to identify one part of the C Standard that is uniformly disliked,

I would not have to look far. Nobody likes errno or the machinery that it
implies. I can't recall anybody defending this approach to error reporting,
not in two dozen or more meetings of X3J11, the committee that developed
the C Standard. Several alternatives were proposed over the years. At least
one faction favored simply discarding errno. Yet it endures.

The C Standard has even added to the existing machinery. The header
<•rrno. h> is an invention of the committee. We wanted to have every
function and data object in the library declared in some standard headt!'.
We gave errno its own standard header mostly to ghettoize it. ~ even
added some words in the hope of clarifying a notoriously murky corner of
the C language.

A continuing topic among groups working to extend and improve C is
how to tame errno. Or how to get rid of it. The fact that no clear answer has
emerged to date should tell you something. There are no easy answers
when it comes to reporting and handling errors.

history C was born under UNIX. That operating system set new standards for
clarity and simplicity. The interface between user program and operating
system kernel is particularly clean. You specify a system call number and
a handful of operands. The 40-odd system calls of early UNIX have more
than doubled in number over the years. But that is still on the sparse side
compared to systems of comparable power. Operands to UNIX system calls
are almost always scalars - integers or pointers. They are equally spare.

Each implementation of UNIX adopts a simple method for indicating
erroneous system calls. Writing in assembly language, you typically test
the carry indicator in the condition code. If the carry indicator is clear, the
system call was successful. Any answers you requested are returned in
machine registers or in a structure within your program. (You specify the
address of the structure as one of the arguments to the system call.) If the
carry indicator is set, however, the system call was in error. One of the
machine registers contains a small positive number to indicate the nature
of the error.

48 Chopter3

hancklg That scheme is great for assembly language. It is less great for programs

errors In C you write in C. You can write a library of C-callable functions, one for each
distinct system call. You'd like each function return value to be the answer
you request when making that particular system call. You can do so, but

that makes it difficult to report errors in a way that is easy to test. Alterna­
tively, you can have each function return as its value a success or failure
indication. Do that and you have no easy way to get atthe answer you want
from a successful system call.

overwOfked
machinery

One trick that mostly works is to do a bit of both. For a typical system
call, you can define an error return value that is distinguishable from any
valid answer . A null pointer is an obvious case in point. The value - 1 can
also beset aside in many cases, with no serious conflict with valid answers.
Each UNIX system call usually has a such return value to indicate that some
fonn of error has occurred.

What the C-callable functions do not do is report exactly which error
occurred. That strains the trick a bit too much. All you can tell from the
return value is whether an error occurred. You have to look elsewhere to
get d etails.

The "elsewhere" that early UNIX programmers adopted was a data
object with external linkage. Any system call that fails stores the error code
from the kernel in an int variable called •rrno. It then returns - 1, or some

other appropriately silly value, to indicate the erra'. Most of the time, the
program doesn' t care about details. An error is an error is an error. But in
those few cases where the program does care, it knows how to get addi­
tional information. It looks in errno to see the last error code stored there.

Naturally, you'd better look before it's too late. Make another system call
that fails and the error code gets overwritten. You must also look at errno

only after a system call that fails. A sucressful call doesn't dear the value
stored the.re. It's not a great piece of machinery, but it does work.

The first problem with errno is that it was too handy. People started
finding additional uses for it. It grew from a dirty little trick for augmenting
UNIX system calls to a C institution. And that's when it got overworked.
System calls aren't the only rich source of errors. Another well-explored
vein is the portion of the library that computes the common math functions.
(See Chapter 7: <math .h>.)

Some functions yield values too large to represent for certain arguments
(such as exp(lOOO . Ol). Some yield values too small to represent for certain
arguments (such as exp 1-1000 . O)). Some are simply undefined for certain
argument values (such as aqrt 1-1. o J). Some are defined, but of suspect
worth for certain argument values (such as •in (le30)) .

You could introduce one or more error codes for each function that can
run into trouble. Following the naming convention for UNIX error codes,
you could report &SQRT for the square root of a negative number. But that
is both open-ended and ~·

<errno.h> 49
Fortunately, math errors fall into just a few categories:

math • An auerflaw occurs when a result is too large in magnitude to represent
enors as a floating-point value of the required type.

• An underflaw occurs when a result is too small in magnitude to represent
as a floating-point value of the required type.

• A significance loss occurs when a result has nowhere near the number of
significant digits indicated by its type.

• A domain error occurs when a result is undefmed for a given argument
value.
Several different system calls in UNIX can yield the same error codes.

Similarly, several different math functions can yield one or more of these
errors. (The errors can even occur for nearly all the arithmetic operators,
with floating-point operands.) In fact, you can do an adequate job of
covering all the math errors with just two error codes:
• ED(»(is reported on a domain emr.
• ERANGE is reported on an overflow or an underflow.

Loss of significance is a chancy error to report. One programmer's
notion of a serious loss may be a matter of utter indifference to another
programmer. Indeed, some very stable algorithms are insensitive to serious
loss of significance in portions of a calculation. Hence, it is arguable
whether significance loss should even be reported by the library.

You can see what's corning. Errors can occur in the math library much
as they can occur on system calls. You need some way to report math library
errors. So why invent yet another mechanism when you've already got one
handy? An early, and natural, evolution of theC library was to report math
errors by storing EDOM and ERANGE in errno. That practice has been blessed
by inclusion in the C Standard. The C Standard also spells out a few other
places where library functions must set err no. The complete list is:

defined • Numerous functions declared in <n>ath. h> store the values of the macros
enors EDOM and £RANGE, defined in <•rrno.h>, in errno.

• Several functions declared in <atdlil>.h> convert text strings to values
of assorted arithmetic types. Some or all of these can store the value of
ERANGE in errno.

• Several functions declared in <atdio. h> alter the position in a file where
the next read o r write occur s. These functions can store a positive value
in errno. That value is implementation-defined. In this implementation,
I have chosen EFPOS as the name of the macro defined in <•rrno. h> that
corresponds to that value. It is not a widely used name.

• The function mignal, declared in <aignal .h>, can store a positive value
in errno. That value isn't even implementation-defined - an implemen·
tation can do as it chooses and not disclose what it does. Since •ignal
varies so much among implementations, I chose not to specify a particu­
lar error code in this library.

50 Chapter3

What the C Standard Says
<•rrno.h>

IDOll

IUWIGJ.

7.1.4 Errors <errno. h>

The header <errno. h> defines several macl'OO!, all relating to the reporting of error

conditions.

The macros are

"""" IDWJC&

which expand 10 in1cgtal constant cxp<CSSions wilh distinct nonzero values. sui1able for use in

#if preprocessing diiectivcs; and

which expands to a modifiable lvalue921ha1 has type int, lhc value of which is set 10 a positive

error number by several library functions. II is unspecified whclhcr errno is a macro or an

identifier declared wilh external tinkagc. If a macro definition is suppressed in order 10 acce.s an

actual objccl, or a program defines an idcn1ificr with lhe name errno, 1he behavior is undefined.

The value of errno is zero al program startup. but is never sel lo zero by any tibrary funciion.93

Thc value of errno may be SCI lo nonzero by a library function call whether or nOl lhcrc is an

error. provided the use of errno is nOI documented in the description of the function in this

lmcrnational Standard.

Additional macro definitions. beginning wi1h E and a digit or E and an uppercase lcucr,94 may

also be specified by lhc implemcmation.

Footnotes

92. The macro errno need not be the identifier of an objccL II mighl expand to a modifiable

!value rcsuhing from a function call (for example, *•rrno ()).

93. lbis, a program that uses errno for error checking should sec i1 10 zero before a library

function call, 1hcn inspcc1 ii before a subscqucn1 library function call. Of course. a library

function can save the value of errnoon entry and then set it to zero. as long asthc original

value is restored if errno 's value is still :zero just before the return.

94. Sec "fu1ure library directions•• (7.13.1).

Using <errno. h>
The C Standard leaves much unsaid about the eITOrs that can be re­

ported. It says even less about the values of any error codes or the macro

names you use to determine those values. That's because usage varies so

widely among implementations. Even different versions of UNIX define

different sets of error codes.

If you are writing code for a specific system, you may have to learn its

peculiar set of error codes. List the header <•rrno . h> if you can. All error

codes should be defined there as macros with names beginning with E.

Read any documentation you can find that details error codes. Then be

prepared to experiment. Documentation is notoriously spotty and inaccu­

rate in this area.

If you are writing portable code, avoid any assumptions about extra error

codes. You can count on only the properties of errno specified throughout

the C Standard. I listed them on page 49. Rarely do you have to know

explicit error codes, however. Footnote93 of the C Standard (shown above)

tells you the safest coding style for using errno. Set it to zero right before a

library function call, then test it for any nonzero value before the next library
call:

<errno.h>

I include <errno. h>
linclude <math.h>

arrno • O;
y = aqrt(x);
if (•rrno I• 0)

printf("invalid x : %e\n", x) ;

51

Never assume that a library function will leave errno unaffected, no matter
how simple the function. It's rather a noisy channel.

Implementing <errno . h>
On the surface, the C Standard demands little of an implementation in

this area. You can write the file errno .h simply as:
/* errno.h standard header */
lifndef _ERRNO
ldefine _ ERRNO

ldef ine EDOM l
#define ERANGE 2

extern int errno;

#endif

In some library file, you must add a definition for the data object:
int errno • 0;

Your only other obligation is to store values such as ED<»! and ERANGE in
errno a t the appropriate places within the library functions. What could be
simpler?

Here is a case where the overt implementation is the easiest part of the
job. errno causes trouble in two subtler ways-sometimes its specification
is too vague and sometimes it is too explicit. To see why takes some
explaining.

too much The vagueness comes from the historical use of errno to register systern-
and call errors. That practice has been implicitly endorsed by the C Standard.

too little Any library function can store nonzero values in errno. The stores can occur
because the function makes one or more system calls that fail. Or they can
occur because some function in the library chooses to use this reporting
channel.

All you can count on is the behavior explicitly called out in the C
Standard.Call sqrt (-l. O) and youcanbesurethaterrnocontainsthevalue
~ Call faba (x) and all bets are off, believe it or not. No library function
will store a zero in errno. Anything else is fair game.

The overspecification mostly affects the math functions. By spelling out
when errno must be set, the C Standard interferes with important optimi­
zations. In partiular, the C Standard makes it hard for compilers to use the
newest floating-point coprocessors to advantage.

52 Chapter 3

Chips like the Intel 80X87 family and the Motorola MC68881 have some
pretty fancy instructions. Some can compute part or all of a math function
with inline code. A smart compiler can dramatically speed up calculations
by using these instructions. If nothing else, the compiler can avoid the
function-call and function-return overhead for a math function.

mathemoticol The problem comes when a mathematical exception occurs. These math
exceptions coprocessors run autonomously, and they want to keep moving. They want

to record an error by carrying along a special code, called NaN (for "Not a
Number") or Inf (for "infinity"). Later operations preserve these special
codes. You can test at the end of a computation whether anything went
wrong along the way.

At best, these coprocessors record an error in their own condition code.
The main processor has to copy the coprocessor condition code into its own
to test whether an error occurred. That stops a pipelined coprocessor in full
career. If a C program must set •rrno on every math exception, it can run
a math coprocessor at only a fraction of its potential speed.

macro Footnote 92 of the C Standard suggests one trick that can help. The C
•rrno Standard does not require that •rrno be an actual data object. It is defined

as a macro that expands to a modifiable /value-an arbitrary expression that
you can use on the left side of an assigning operator (such as=) to designate
a data object. That gives the implementor considerable latitude. In particu­
lar, the •rrno macro can expand to an expression such as •_Er fun I l . Every
time the program wants to check for errors, it calls a function to tell the
program where to look.

That has two implications .. First, the implementation can be lazy about
recording errors. It can wait until someone tries to peek at •rrno before it
stores the latest error code. That might give the implementation sufficient
latitude to leave math coprocessors alone most of the time. (The translator
may be hard pressed to exploit this opportunity, however.)

The second implication is that •rrno can move about. The function can
return a different address every time it is called. That can be a tremendous
help in implementing shared libraries. Static storage is a real nuisance in a
shared library, as I discussed on page 36. Static storage that the user
program can alter at will is even worse. •rrno is the only such creature in
the Standard C library.

Even as a macro, urno is still an annoying piece of machinery. Any
program can contain the sequence:

y = sqrt(x);
if (errno = EDOM)

The need to support such error tests severely constrains what an imple­
mentation can do with sqrt and its ilk. Since any library function can alter
•rrno, programmers are also ill served. Here we have a mechanism that
can be hard on both the implementor and the user.

<errno.h>

Rgure3.1:
errno. h

parametric
code

header
<yvala. h>

/* arrno.h atandard headoir */
lifndef _ERRNO
ldefi.ne ERRNO
lifndef - YVJU.S

finc;lude-<yvala.h>
lendi.f

/* error code• */
ldefine EDOM _ EDOM
#doifine ERANGE _ERANGE
ldoifine EFPOS EFPOS

/*ADD YOORS-llERE */
lc!oifine _NEJIR _ERJUtAX

/* declaration• */
extern int e.rrno;
lend.if

53

/* one more than l.aat codoi *I

D

Figure 3.1 shows the code for arrno. h . It is not as simple as I suggested
earlier. That's because I decided to make it parametric. The simpler form
must be tailored for each operating system that hosts the library. Other
library functions or the operating system itself may have preconceived
notions about the values of error codes. You must change this header to
match, or endure surprising irregularities.

Most of the code that uses <errno.h> cares about the values of one or
two error axles. As I mentioned on page 50, these values change acr~
operating systems. One or two library functions need to know the valid
range of error codes. This range also varies across operating systems.

I began moving this library to an assortment of environments shortly
after I first wrote it. I found it annoying that perhaps a dozen files had to
change, each in only small ways. I was quickly overwhelmed maintaining
several versions of this double handful of files.

That prompted me to introduce what you might call an "internal stand­
ard header." Several of the standard headers include the header <yval.• . h>.
(The angle brackets tell the translator to look for this header wherever the
other standard headers are stored. That may cause problems on some
systems.) I concentrate in this file many of the changes you must make to
move this library about.

The header <arrno. h> defines its macros in terms of other macros
defined in <yval.a.h>. This two-step process is necessary because other
headers include <yvala. h>. The macro ERANGE must be defined in your
program only when you include <arrno.h>.

Note also that the macro guard for <yvala .h> is in the header that
includes it, not in <yval.• . h> itself. That is a small optimization. Since
several standard headers include this header, it is likely to be requested
several times in a translation unit. The macro guard skips the #include
directive once <yval.•.h> becomes part of the translation unit. The header
is not read repeatedly.

54

Flgwe3.2:
•rrno.c

_EDOM

_ £RANGE

_'l!:FPOS

_ERmlAX

header
''yfun•.h"

Figure 3.3:
terrno.c

/* errno storage */
linclude <errno. h>
lundaf errno

int errno = 0;

Chapter3

0

The header <yvah. h> contains a hodgepodge of values. Appendix A:
Interfaces shows versions of the header for some popular operating sys­
tems. I list here only the macros defined in <yv•h .h> that affect <errno. h>.
These values are consistent with the Standard C compiler shipped with
Borland'sTurbo C++, with UNIX on Sun workstations, and with ULTRIX
on the DEC VAX:
ldefine EDOM 33
ldafine - ERANGE 34
#define = EFPOS 35
#define _ ERlQIAX 36

Please note, howeve-, that these values are by no means universal.
I emphasize that <yval•.h> doesn't do the whole job of tailoring this

library to a given operating system. Later in this book I introduce yet
another heade-, cal.led "yfun•. h ". (See page 281.) That header serves a
similar but distinct role. Even two headers is not enough. A handful of
functions in the Standard C library differ too much among operating
systems to be parametrized. They come in different versions. You will meet
them from time to time in later chapters.

Figure 3.2 shows the file error. c , which defines the errno data object.
The lundef directive is just insurance against future changes to <errno. h>.

/* test errno macro •/
#include <aeeert . h>
#include <errno.h>
#include <math . h>
#include <stdio .h>

int main()
(/* teat baeic working• of errno */
.... rt (errno -- 0) ;
perror(" No error reported as") ;
errno = ERANGE;
aaeert (•rrno = ERANGE) ;
perror ("Range error reported ••") ;
•rrno • O;
6ili16rt(arrno •• O);
•qrt(-1.0);
aaaert(errno -- EDOM) ;
perror("Domain error reported .. ");
pute ("SUCCESS teeting <errno .h>") ;
return (0) ;

0

<•r rno.h> 55

Testing <errno . h>
Figure 3.3 shows the test program terrno. c. It doesn' t do much. The C

Standard says little about the properties of <errno. h>. Primarily, terrno. c
ensures that a program can s tore values in errno and retrieve them.

As a courtesy, the test program also displays how the standard error
codes appear when output. The function perror, declared in <at dio.h>,
writes a line of text to the standard error stream. The function determines
the last part of that text line from the contents of errno. If all goes well,
running the executable version of terrno. c displays the output:
No error reported ••: no •rror
Rang e error reported .. , range error
DclmAin error reported aa: domain error
SUCCESS teatinq <errno.h>

Again, I must warn that this output comes from both the standard error
and the standard output slTeams. The possibility is remote in this case, but
some implementations may rearrange the lines.

References

Exercises

David Stevenson, "A Proposed Standard for Binary Floating-Point Arith­
metic," Computer, 14:3 (1981), pp. 51-62. This and subsequent articles in the
same issue (pp. 63-87) of Computer explain many aspects of the IEEE 754
Floating-Point Standard.
Mark J. Rochkind, Advanced UNIX Programming (Englewood Cliffs, N.J.:
Prentice Hall, Inc., 1985). Rochkind describes the UNIX system calls, where
errno and its error codes originated.

Exercise 3.1 List the error codes defined for the C translator you use. Can you describe
in one sentence what each error code indicates?

Exercise 3.2 For the error codes defined for the C translator you use, conlTive tests that
cause each of the errors to occur.

Exercise 3.3 Under what circumstances might you care exactly which error code was
last reported?

Exercise 3.4 Alter the test program terrrno. c to call perror for all valid error codes. The
value of the macro _ NERR, defined in <•rrno.h>, is one greater than the
largest valid error code.

Exercise 3.5 Assume you have the function int _ Getfcc(voidl that returns 0, EDOM, or
ERANGE to reflect the last floating-point error (if any) since the previous call
to the function. Write a version of <•rrno . h> that uses this function to collect
floating-point errors only when the program uses the value stored in errno.

56 Chapter3

Exercise 3.6 [Harder} Write a version of <•rrno. h> that queues values stored in erxno
and returns them in order when the program uses the value stored .in errno.

When is it safe to remove a value from the queue?

Exercise 3. 7 [Vey hard I Eliminate the need for errno in the Standard C library. Consider
every function that can store values in errno. Ensure that each has a way
to specify several different error return values.

Chapter 4: <float.h>

Background
Floating-point arithmetic is complicated stuff. Many small processors

don't even support it with hardware instructions. Others require a separate
coprocessor to handle such arithmetic. Only the most complex computers
include floating-point support in the standard instruction set.

There's a pragmatic reason why chip designers often omit floating-point
arithmetic. It takes about the same amount of microcode to implement
floating-point compare, add, subtract, multiply, and divide as it does all the
rest of the instructions combined. You can essentially halve the complexity
of a microprocessor by leaving out floating-point support.

Many applications don't need floating-point arithmetic at all. Others can
tolerate reasonably poor performance, and a few hllobytes of extra code,
by doing the arithmetic in software. The few that need high-performance
arithmetic often make other expensive demands on the hardware, so the
extra cost of a coprocessor is an acceptable perturbation.

history C spent its early years on a PDP-11/45 computer. That strongly colored
the treatment of floating-point arithmetic in C. For instance, the types float
(for 32-bit format) and double (for 64-bit format) have been in the language
from the earliest days. Those were the two formats supported by the
PDP-11. That is a bit unusual for a system-implementation language, and
a reasonably small one at that.

The PDP-11 /45 FPP could be placed in one of two modes. It did all
arithmetic either with 32-bit operands or with 64-bit operands. You had to
execute an instruction to switch modes. On the other hand, you could load
and convert an operand of the wrong size just as easily as you could load
one of the expected size. That strongly encouraged leaving the FPP in one
mode. It is no surprise that C for many years promised to produce a double
result for any operator involving floating-point operands, even one with
two float operands. Not even FORTRAN was so generous.

As C migrated to other computer architectures, this heritage sometimes
became a nuisance. Compiler writers who felt obliged to supply the full
language had to write floating-point software for some pretty tiny ma­
chines. It wasn't easy. Machines that support floating point as standard
hardware present a different set of problems. Chances are, the fonnats are

58

overflow
and

"'derflow

sigrificance
loss

Chopter4

slightly different. That makes writing portable code much more challeng­
ing. You need to write math functions and conversion algorithms to retain
varying ranges of values and varying amounts of precision.

Machines that provide floating point as an option combine the worst of
both worlds, at least to compiler implementors. The implementors must
provide software support for those machines that lack the option. They
must make use of the machine instructions when the option is present. And
they must deal with confused customers who inadvertently link two
flavors of code, or the wrong version of the library. Rarely can the hardware
and software versions of floating-point support agree on where to hold
intermediate results.

From a linguistic standpoint, however, most of these issues are irrele­
vant. The main problem the drafters of the C Standard had to deal with was
excess variety. It is a longstanding tradition in C to take what the machine
gives you. A right-shift operator does whatever the underlying hardware
does most rapidly. So, too, does a floating-point add operator. Neither
result may please a mathematician.

With floating-point arithmetic, you have the obvious issues of overflow
and underflow. A result may ibe too large to represent on one machine, but
not on another. The resulting overflow may cause a trap, may generate a
special code value, or may produce garbage that is easily mistaken for a
valid result. A result may be too small to represent on one machine but not
on another. The resulting underflow may cause a trap or may be quietly
replaced with an exact zero. Such a z.ero fixup is often a good idea, but not
always. Novices tend to wdte code that is susceptible to overflow and
underflow. The broad range of values supported by floating point lures the
innocent into a careless disregard. Your first lesson is to estimate magni­
tudes and avoid silly swings in value.

You also have the more subtle issue of significance loss. Floating point
arithmetic lets you represent a tremendously broad range of values, but at
a cost. A value can be represented only to a fixed precision. Multiply two
values that are exact and you can keep only half the significance you might
like. Subtract two values that .are very close together and you can lose most
or all of the significance you were carrying around.

Workaday programmers most often run afoul of unexpected signifi­
cance loss. That formula that looks so elegant ina textbook is an ill-behaved
pig when reduced to code. It is hard to see the danger in those alternating
signs in adjacent terms of a series-until you get burned, that is, and learn
to do the subtractions on paper instead of at run time.

Overflow, underflow, and significance loss are intrinsic to floating-point
arithmetic. They are hard enough to deal with on a given computer archi­
tecture. Writing code that can move across computer architectures is harder.
Writing a standard that tells you how to write portable code is harder still.
But another problem makes the matter even worse.

<float.h> 59

variations Two machines can use the same representation for floating-point values.
Yet you can add the same two values on each machine and get different
answers! The result can depend, reasonably enough, on the way the two
machines round results that cannot be represented exactly. You can make
a case for truncating toward zero, rounding to the nearest representable
value, or doing a few other similar but subtly different operations.

Or you can just plain get the wrong answer. In some circles, getting a
quick answer is considered much more virtuous than getting one that is as
accurate as it could be. Seymour Cray has built several successful computer
companies catering to this constituency. These machines saw off precision
somehwere in the neighborhood of the least-significant bit that is retained.
Sometimes that curdles a bit or two having even more significance. There
have even been some computers (not designed by Cray) that scrub the four
least significant bits when you multiply by one!

If the C Standard had tried to outlaw this behavior, it would never have
been approved. Too many machines still use quick-and-dirty floating-point
arithmetic. Too many people still use these machines. To deny them the
cachet of supporting conforming C compilers would be conunercially
unacceptable.

describing As a result, the C Standard is mostly descriptive in the area of floating·
fiootlng point arithmetic. It endeavors to define enough terms to talk about the

point parameters of floating point. But it says little that is prescriptive about
getting the right answer.

Committee X3Jl 1 added the header <float. h> as a companion to the
existing header <U.mi.ta.h>. We put into <float.h> essentially every pa­
rameter that we thought might be of use to a serious numerical program­
mer. From these macros, you can learn enough about the properties of the
execution environment, presumably, to code your numerical algorithms
wisely. (Notwithstanding my earlier slurs, the major push to help this class
of programmers came from Cray Research.)

What the C Standard Says

I
The Library section says very little about <float .h>.

7.1.5 Limits <float. h> and <li.mi.ts . h>
'The headers <float. h> and <li.DU.ta. h> define several macros that expand to various

limits and parameters.

'The macros, their meanings, and the consirainlS (or restrictions) on their values are l.iSled in
5.2.4.2.

The detailed specification of <float . h> is in the Environment section

5.2.4.2.2 Characteristics of floating types <float. h>
'The characteriSlics of floating types arc defined in terms of a model that describes a repre­

sentaJion of floating-point numbers and values that provide informalion about an implementa­
tion's floating-point arithmetic. to The following parameters arc used to define the model for each
floating-point type

60

FLT_ ROO!IDS

l'LT_ RADIX

l'LT _MA.NT_ DIG
DBL KANT DIG

LDBL =MUfT:: DIG

l'LT_DIG
DBL_DIG

LDBL_DIG

l'LT_MI N_DIG
DBL_MIN _DIG

LDBL_~N_DIG

S'LT_MIN_lO_UP
DBL _NlN _ 10 _ &XP

LDBL_NIN_lO_&XP

FLT_ MAX_ ltXP
DBL_ MAX_E.XP

LDBL _MAX_ E.XP

sign(±I)

b base or radix of exponent rep.resenlation (an integer> I)

e exponent (an integer between a minimum ernm
and a maximum emu)

p precision (the number of base-b digits in the significand)

ft nonnegative integers le.. than b (the significand digits)

Chapter4

A normalized floating-point nwnber x (/1 > 0 if x,. 0) is defined by the following model

p

x =sxb' x "i, f.xb°"', emins es e,,,.,
h<I

Of the values in the <float. h> header, FLT RADIX shall be a constant expression suitable
for use in #if preprocessing directives; all other values need not be constant expressions. All
except FLT RADIX and FLT ROUNDS have separate names for all three floating-point types.
The floatinS:-point model representation is provided for all values except FLT_ ROUNDS.

The rounding mode for floating-point addition is characterized by the value of FLT_ ROUNDS

-1 indeterminable

O toward zero

1 to nearest

2 toward positive infinity

3 toward negative infinity

All other values for FLT_ ROUNDS characterize implementation-defined rounding behavior.

The values given in the following list shall be replaced by implementation-defined expressions
that shall be equal or greater in magnitude (absolute value) to those shown, with the same sign

• radix of exponent representation, b
FLT_RADIX 2

• number of base-FLT RADIX digits in the floating-point significand, p
FLT MANT DIG -
DBL-MANT-DIG
LDBL_HANT_DIG

• number of decimal digits, q. such that any floating-point number with q decimal digits can be
rounded into a floating-point number with p radix b digits and back again without change to
the q decimal digits,
l<P - l) x log,ol>J + lol iftheb is~ power of tO

o rw1se
FLT DIG 6
DBL- DIG 10
I.DBL DIG 1 0

• minimum negative integer such t hat FLT RADIX raised to that power minus l is a normalized
floating-point numbet, emin -

FLT MIN EXP
DBL- MIN-EXP
LOBL _MIN _EXP

• minimum negative integer suclh that 10 raised to that power is in the range of normalized
floating-point numbers, I log1ob'~-• l
FLT MIN 10 EXP -37
DBL""°MIN- 10-EXP - 37
LOBL_MIN_l°!f_EXP -37

• maximum integer such that FLT RADIX raised to that power minus 1 is a representable finite
floating-point number, emu -
FLT MAX EXP
OBL_MAX_EXP
I.DBL_ MAX _EXP

<float.h>

l'LT _ ICAX _ 10_ IXP

DBL_NAX_lO_EXP

LDBL_NAX_l O_Z.Xi'

l'LT_DSILON
DBL_DSILON

LDBL _ DSILOtl

FLT_Mnl
DBL_MIN

LDBL_NIN

61

• maximum integer such that 10 raised to that power is in the range of representable finite
floating-point numbers, Llog1o((1 - b· P) x v..,.J
FLT MAX 10 EXP +37
DBL-MAX-10-EXP +37
LDBL_MAX_lll'_EXP +37

The values given in the following list shall be replaced by implementation-defined expressions
with values that shall be equal to or greater than those shown

• maximum representable finite floating-point number, (I - /rP) x /J'..,,
FLT MAX 1E+37
OBL""'MAx 1E+37
LOa?; MAX 1E+37

The values given in the following list shall be replaced by implementation-defined e,xprcssions
with values that shall be equal to or less than those shown

• the difference between 1 and the least value greater than 1 that is representable in the given
floating-point type, b'-f'
FLT EPS:ILON
DBLEPSJ:LON
I.DBL EPSILON

lE-5
lE- 9
lE-9

• minimum normalized positive noating·point number. b"mJn- 1
FLT MJ:N lE-37
DBL-MJ:N lE-37
LDBL_Ml:N lE-37

Examples

The following describes an anificial floating-point representation that meets the minimum
requirements of this International Standard, and the appropriate values in a <float. h> header
for type float

6

x = sx l6'x1:.ftx16· ', -)I :iie:ii+32
,,,.,

•t.T_ RADIX
l'LT_ MANT_ DlG
rt.T_USILON
•x.T_ DIG
FLT_HIH_l:XP
FLT_NJN
rLT_ NIN_ lO_EXP
FLT_ MAX_J:XP

rLT_MAX
rLT_ MAX_ lO_ E.XP

16
6

St . 5367&3161:-07r
6

-Jl
2 . 93873.588&:-JSIF

- 38
+32

3. &02823&7K+38F
+38

The following describes floating-point representations that also meet the requiremenu for
single-precision and double-prcci~ion normalized numbers in ANSI/IEEE 754-1985. 11 and the
appropriate values in a <float. h> header for types float and double

24

x1= sX2'xLf.x2· •, -125 S e:S:+l28
,,,.,
S3

xd= s x 2• x LI• x 2...1c, - 1021 :s; e :s; +1024

""' FLT_ RADIX
l'L'l"_MANT_DIG

rL'l_&PSILON
.FLT_DIG
FLT_MIN_EX'P
rLT NIN

rLT=NIN_lO_EX.P
rLT_MAX_&:XP

FLT_MAX
rLT_ MA.X_lO_&XP
DBL_MAHT_DIG

2
2•

L 19209UOlE• 07r
6

-125
1. . 175&9435&-38F

-31
+128

3 . t02823471:+38F
+38

53

62

DBL_USILOM 2. 220•46.0•925031311:-16
DBL_DIG 15
DBL MIN EXP - 1021

DBL_MIN 2 .225013858507201U- 308
DBL_MIN_lO_EXP -307

DBL_MAX_&XP +102•
DBL_MAX 1. 79769313'86231571:+308
CBL_MA.X_lO_UP +308

Forward references: conditional inclusion (6.8.1).

Footnotes

Chapter4

10. The floating-point model is intended to clarify the descriplion of each noa1ing-point
characteris1ic and does no! require lhe noating-poinl arithmelic ofthe implcmen1a1ion lo be
identical.

11. The noating-poim model in lhat standard sums powers of b from zero. so the values of the
exponent limits are one less than shown here.

Using <float . h>
Only the most sophisticated of numerical programs care about most of

the macros defined in <float. h> or can adapt to changes among floating­
point representations. I have found good use for these parameters on just
a few occasions. You will find only a few places in this library that make
good use of them. That's a bit misleading, however. In some places, I use
the underlying macros from which the <float. h> macros derive. (See the
discussion of how to implement <float .h> starting on page 64.) In other
places, the code contains implicit assumptions about the range or maxi­
mum size of certain floating-_point parameters. That limits its portability.

You can use these macros to detect problems before they bite. Remember
that the three pitfalls of floating-point arithmetic are overflow, underflow,
and significance loss. Here are ways you can use the macros defined in
<float.h> to perform double arithmetic more safely. The same discussion
applies, naturally, to float and long double as well.

overflow To avoid overflow, make sure that no value ever exceeds DBL MAX in
magnitude. Of course, it does you no good to test the final result, as in:

if (DBL_MAX < faba (y)) /* SILLY TEST */

(The functions in this and the following examples are the common math
functions declared in <math.h>.)

By the time you make the test, it's too late. If the value you intended to
store in y is too large to represent, y may contain a special code, the value
ofoBL _MAX, or garbage- depending on the kind of floating-point arithme­
tic the implementation provi:des. Or execution may terminate during the
calculation of the value. In no case will the above test likely yield a useful
result. A more sensible test might be:

if (x < log(DBL_MAX))
y = exp(x);

alae
/* HANDLE OVERFLOW */

<float.h> 63

You can avoid computing loq(DBL_MAX> by using one of the related
macros, as in:

if (x <= FLT_MAX_lO_EXP)
y = pow(lO, x) ;

elae
/* HANDLE OVERFLOW */

This test is more stringent than necessary if FLT_ RADIX is not equal to 10.
(Modern computers usually have FLT_ RADIX equal to 2 or, in rare cases, 16.)
U you are in the business of writing functions that accept all possible inputs,
that can make a difference. Otherwise, this test is close enough.

The function ldexp makes it easy to scale a floating-point number by a
power of 2. In the common case where FLT_RADIX equals 2, that can be an
efficient operation. For an integer exponentn, you can make the simple test:

if (n < FLT_MAX_EXP)
y = ldexp(l.O, n);

•l••
/* RANDLE OVERFLOW */

You are most likely to use this last test when writing additional functions
for a math library.

l.l'ldoerftow To avoid underflow, make sure that no value ever goes below DBL_MIN

in magnitude. The result is us ually not quite so disastrous as overflow, but
it can still cause trouble. IEEE 754 floating-point arithmetic providesgradUJl/
underflow. That mitigates some of the worst effects of underflow. Nearly all
floating-point implementations substitute the value zero for a value too
small to represent. You get in trouble only if you divide by a value that has
suffered underflow. Unexpectedly, your program encounters a zero divide,
with all the attendant confusion. You can make the test:

if (faba (y) < DBL MIN)
I* UNDERFLOW HAS OCCURRED •/

That is not nearly as silly as the corresponding comparison against DBL_ MAX.

Still, you test only after any damage has been done. You can also make the
corresponding tests:
if (loq(DBL_MIN) <= x)

y = exp(x) ;
elae

/* RANDLE UNDERFLOli * /

if (FLT_MINlO_EXP <= x)
y = pow(lO, x) ;

else
/* RANDLE UNDERFLOW */

if (FLT_MIN_EXP < n)

y * ldexp(l. 0, n);

•l••
/ * RANDLE UNDERFLOW * /

64 Chapter 4

signiftCOnce Significance loss occurs when you subtract two values that are nearly
lo$$ equal. Nothing can save you from such a fate except careful analysis of the

problem before you write code. You can, however, protect against a subtler
form of significance loss - adding a small magnitude to a large one. A
floating-point representation can maintain only a finite precision. Impor­
tant contributions from the smaller number can get Jost in the addition.

You can get in trouble, for example, when performing a quadrature - a
sum of discrete values that approximates a continuous integration. One
form of quadrature is computing the area under a curve by summing a
sequence of rectangles that just fit under the curve. Clearly, the Jlarrower
the rectangles, the closer the sequence approximates the area of the curve.
Unfortunately, that is true only in theory. Add a sufficiently small rectan­
gular area to a running sum and· part or all of the contribution gets lost. You
can test, for example, whether adding x toy captures at least three decimal
digits of significance from y (assuming both are positive) by writing:

if (x < y * DBL_ EPSILON * 1.0E+03)
/* HANDLE SIGNIFICANCE LOSS */

other The two macros you are least likely to use are FLT_RADrx and FLT_ ROUNDS.

macros Don't be surprised, in fact, if you never have occasion to use any of the
macros defined in <float .h>, despite what I just outlined here.

You should have some awareness of the peculiarities and pitfalls of
floating-point arithmetic. You should know the safe ranges and precisions
for floating-point values in portable C code and in code you write for your
workaday machines. You might use some of the macros defined in
<float .h> to build safety checks into your code. But don't think that this
header contains some key ingredient for writing highly portable code. It
doesn't.

Implementing < f !oat. h>
In principle, this header consists of nothing but a bunch of macro

definitions. For a given implementation, you merely determine the values
of the parameters and plug them in. You can even use a freeware program
called enquire to generate <float .h> automatically.

A common implementation these days is based on the IEEE 754 Standard
for floating-point arithmetic. You will find IEEE 754 floating point arithme­
tic in the Intel 80X87 and the Motorola MC680XO coprocessors, to name just
two very popular lines. It is a complex standard, but only its grosser
properties affect <float.h>. Type long double can have an 80-bit repre­
sentation in the IEEE 754 Standard, but it often has the same representation
as double. For this common case, you might consider copying the values out
of the example in the C Standard. (See page 61.)

You may find a few problems, however. Not all translators are equally
good at converting floating-point constants. Some may curdle the least
significant bit or two. That could cause overflow or underflow in the case

<float.h> 65
of some extreme values such as DBL_MAX and DBL_MIN. Or it could ruin the
critical behavior of other values such as DBL_EPSILON.

using At the very least, you should check the bit patterns produced by the
unions floating-point values. You can do that by stuffing the value into a union one

way, then extracting it another way, as in:
union {

double _ D;
unsigned short _us[4J;
) dmax = DBL_MAX;

Here, I assume that unsigned short occupies 16 bits and double is the IEEE
754 64-bit representation. Some computers store the most-significant word
atdmax._usCOJ, othersatdmax._us[3J. You have to check what your imple­
mentation does. Whatever the case, the most significant word should have
the value Ox7FEF, and all the other words should equal OxFFFF.

A safer approach is to do it the other way around. Initialize the union as
a sequence of bit patterns, then define the macro to access the union through
its floating-point member. Since you can initialize only the first member of
a union, you must reverse the member declarations from the example
above. With this approach, you place the following in <float .h>:

typedef union {
unsigned short _Us[4J;
double _ D;
} _Dtype;

extern _ otype _ Dmax, _ Dmin , _Deps;
#define DBL...MAX _Dmax._D;

In a library source file you provide a definition for _Dmax and friends. For
the 80X86 family, which stores the least-significant word first, you write:
#include <float . h>
_Otype _ Dmax = {{Oxffff, Oxffff, Oxffff, Ox7fef));

The code is now less readable, but it is more robust. Figure 4.1 shows the
resulting version of float. h. Each macro refers to a field from one of three
data objects of type _ovals - _ obl, _Flt, and _Ldbl. A separate file called
xfloat. c defines the data objects.

In writing the corresponding data objects, I encountered another annoy­
ing problem. You need different versions of these initializers for different
floating-point formats. Even if you stay within the IEEE 754 Standard you
must specify the order of bytes stored in a data object and whether long
double occupies 64 or 80 bits. Other formats with FLT_RADIX equal to 2 differ
only in niggling ways.

parameters It was time to parametrize the code once again. On page 53, I introduced
the internal header <yvals .h>. That's where I put any parameters that vary
among translators. Error codes are one set of such parameters. The proper­
ties of floating-point representations constitute anotha-. You can i.nclude
<yvals. h> in any library source file that must change in small ways across
implementations of C.

66 Chopter4

Figure 4. 1: t • float. h etandard header - - IEEE 7 54 vereicn • t
float.h lifndef _ FLOAT

fdef ine _ FLOAT
lifndef _YVALS
#include cyvale.h>
lendif

I* type defin itione * /
typedef etruct {

int _ Ddig, _p!lldig, _ Dmax10e, _Dmaxe, _ CminlOe, _ Dnine;
union {

uneigned ehort _Ua[SJ;
float _ P1
double _o,
long double _ Ld1
) _ Depe, _ Dmax, J)min;

_ Dvale;
I* declaratione */

extern _ Dva le _ Dbl, _Plt, _ Ldbl;
t • double properties */

#define DBL_ DIG _ Dbl._Ddig
#define DBL_BPSILON _ Dbl . _ Depe._ D
#define DBL_.MANT_ DIG _ Dbl . _Dmdig
#define DBL__l(AX _ Dbl._Dmax._ D
#define DBL...)IAJC._lO_BXP _ Dbl._ Dmax10e
#define DBL_MAX_EXP _ Dbl . _ Dmaxe

#define DBid!DI _ Dbl.J)m.in. _ D
#define DBLJ4IN_ 10JXP _Dbl ._Dminl Oe
#define IlBi:.J4IN_ BXP _Dbl._ Cmine

t • float properties • t
#define PLT_ DIG _Plt._ Ddig
#define PLT_ EPSILON _Flt._Deps._ P
#define PLT_MANT_DI G _Plt._ Dmdig
#define PLT_MAX _Plt . _Dlll&X._F
#define PLT...)IAJC._lO_ EXP _Plt._ Dmax10e
#define PLT~EXP _Flt._ Dmaxe
#define PLTJ4IN _Flt._ Cmin._ P
#define PLTJ4IN_ 10_EXP _ Flt._Jlmin lOe
#define PLT.J(IN_BXP _ Flt._Cmine

t • common propertiee • t
#define PLT_ RADIX 2
#define PL'l'_Jl()UNDS _ PRND

I* long double properties • t
#define LDBL_ DIG _x.dbl. _ Ddig
#define LDBL_ EPSILON _ Ldbl._Depe._Ld
#define LDBL_MANT_ DIG _ Ldbl . _tlmc1ig
#define LDBL__l(AX _ Ldbl._ Dmax._Ld

#define LDBL_~lO_EXP_Ldlll ._DlllllxlOe

#define LDB~EXP _ Ldbl._Dmaxe
#define LDBL_MIN _ Ldbl . _Cmin ._Ld
#define LDBL_MIN_ l O_ EXP_Ldbl . _ CminlOe
#define LDBLJ(IN_BXP _x.dbl._ Dmine
tend if 0

<float. h> 67

<yvale.h> defines the following parameters:

_DO • _DO is the subscript of the most significant element of the array of four
unsigned shorts that represent the double value. Its value is either 0 or 3.
(Macros for the other three subscripts, _Dl, _D2, and _D3, are defined in
termS of _DO as needed elsewhere in the library.)

_DOPP • _oopp is the number of fraction bits PPP ... in the most-significant frac-
_POPP tion element. The most-significant bit of that element is the signs of the
_LOPP floating-point value, with value 0 or 1. The remaining bits represent the

characteristic ccc .. . , as an unsigned bit field. See Figure 4.2 for the
format of the do11ble representation. _POPP is the corresponding value for
type float. _LOPP is the corresponding value for type long double.

_DBIAS • _DBIAS is the value subtracted from the characteristic of a double to
_PBIAS determine its exponent. _PBIAS is the corresponding value for type float.
_LBIAS _LBIAS is the corresponding value for type long double. The fraction value

Fis 1. PPP ... (for float and double) or o. PPP .. . (for IEEE 754 80-bit format
long double), where PPP . . . are the fraction bits. The value of a double
number is then:

-ls * (1.PPP ...) * 2 cccc ...)-_ l)BI AS

_DLONG • _D::.ONG is nonzero if long double has the IEEE 754 80-bit format.
_PIUID • _PRND is the value of the macro PLT_RoUNDs

xfloat .c Figure 4.3 shows the code for xfloat.c. It is written in terms of these
parameters. The code also contains a number of implicit assumptions:

• PLT_RADIX has the value 2.

• Type float has a 32-bit representation and exactly overlaps an array of 2
unsigned shorts, while type double has a 64-bit representa tion and exactly
overlaps an array of 4 unsigned shorts.

• Type long double has the IEEE 754 80-bit representation only if _DLONG is
nonzero. Otherwise, it has the same representation as double.

• The characteristic is never larger than 14 bits.
• The fraction value in a float or double includes a hidden bit. This is the 1.

prepended to the PPP . . . a hove.
As an example, here are the pertinent values for the Intel 80X87 coproc­

essors, assuming that double a nd long double have different representations:
#define _DO 3
#define _DBI.AS Ox3fe
#define _DLONG 1

#define _DOPP 4
#define J'BIAS Ox7e
#define _POPP 7
#deHne _PRND 1
#define _LBIAS OxJffe
#define _LOPP 1 5

Figure 4.2: I scccccccccccPPPP j I PPPP pppp I I pppp ••• • pppp I I PPPP pppp I
Fonnot

x._Ue (_DO) x ._Ue(_Dl) x._U•(_D2) x._U•(_D3) Double

68

Figure4.3:
xfloat .c

Part 1

Chapter4

t• values used by <flC<lt.h> macros -- IEEE 754 version • /
#include <flC<lt . h>

/* macroe */
#define DPRAC ('9+J>OPP)
#define IlKAXE ((1U«(15-_ 00PP)) - 1)
#define PPRAC
#define PKAXE
#define LPRAC
#define LKAXE
#define LOG2
#if _DO I • 0

ldef1ne

(17+_ POPP)
((lU<<(lS- _ POPP))-1)
(49+_LOPP)

Ide fine
Ide fine
lelae
Ida fine
Ida fine
#dafina
#endif

Ox7f ff
0.30103

DINIT(wO, wx) wx.
PINIT(wO, wx) wx.
LINIT(wO, wl. wx)

DlNIT(wO, wxl wO,
PINIT(wO, wxl wO,
LINIT(wO, wl, wx)

t • static data •/
J)vale _Dbl • C

(int)((DPRAC- l)*LOG2),

wx. wx.
wO
wx. wx .•

wx. wx.
wx
wO, wl,

(int)DPRAC,
(int)((DKAXE-_ DBIAS- l)*LOG2),
(int) (DKAXE-_ DBIAS-1),

wO

wx,

wx

wx.

(int) (- _ DBIAS*LOG2),
(int)(l-_DBIAS),
(DINIT(_ DBIAS- DPRAC+2<<_ DOPP, 0)),
(DINIT((DKAXE<<J>()PP)-1, -0)),
(DINIT(l<<_ DOPP, 0)),
);

_ Dvala _ Plt • (
(int)((PPRAC- l)*LOG2),
(int)PPRAC,
(int)((PXAXE-_ PBIAS- l)*LOG2),
(int) (FKAXE-_ PBIAS-1) ,
(int) (-_ PBIAS•LOG2).
(int) (1- _ PBIAS),
(PINIT(_ PBIAS-PPRAC+2<<_POPP, 0)},
(PINIT((FMAXE<<_ POPP)-1, -0)),
(PlNIT(l<<_ POPP, 0)},
} 1

lif _I>LONG
J)vale _ Ldbl • (

(int) ((LPRAC-l)*LOG2),
(int)LPRAC,
(int) ((LMAXE-_ LBIAS-1) •LOG2),
(int) (LKAXE-_LBIAS-i),
(int) (-_ LBIAS*LOG2),
(int) (l- _LBIAS),
(LINIT(_ LBIAS- LPllAC+2, Ox8000, 0)},
(LINIT(LMAXE-1, -0, -0)),
(LINIT(l, Ox8000, 0)},
)1

1• low to high words

wl, wO
1• high to low words

wx. wx

I* DBL_ DIG
I* DBL_MANT_ DIG

1• DBLJIAX._lO_ EXP
I* DBLJCAJC_EXP

1• DBL_ MIN_lO_ EXP
1• DBLJIIN_ EXP
1• DBL_EPS ILON

I* DBL_MAX
I* DBL_J(IN

t• Pl/I'_ DIG
I * PllI'...)IANT_ DIG

1• PLTJCAX._10_.EXP
I* PLT_JlAX_.EXP

1• PLT..)ClN_lO_.EXP
1• PLT_)(IN_ EXP
1• Pl/I'_EPSll'ON

1• PLT...,.MAX
t• PLT_MIN

t• LDBL_DIG
t• LDBL_MANT_ DIG

1• LDBLJIAX._lO_ EXP

t • LDBL...)IAXJ!XP
1• LDBLJUN_ lO_EXP

/ • LDBL..)flN_ EXP
1• LDBL_EPSJ:WN

1• LDBL...,.MAX
1• LDBL_ MIN

• 1

•1

•1
•1
•1
•1
• 1
•1
• 1
•1
• /

•1
• 1
•1
•1
• 1
•1
• 1
•1
• 1

•1
•1
•/
•1
•1
•1
•1
• 1
• 1

<float.h>

ConHnulng
xtloat.c

Pcuf 2

#else
_ ovals _ Ldbl • (

(int)(DPRAC•LOG2),
(int)DPRAC,
(int)((DMAXE-_ DBIAS-l)•LOG2),
(int)(DMAXB-_ DBIAS- 1),
(int)(-_ DBIAS•LOG2),
(int) (1 - _ DBJ:AS),
(DINIT(_DBIAS- DPRAC+2<<_I>OPP, 0)),
(DINIT((DMAXB<<_I>OPP)-1, -0)},
(DINIT(l<<_DOPP, 0)),
);

#end if

1•

1•

69

t• LDBL_ DIG •1
1• LDBLJIAN'l'_ DIG *I

LDBL_MA.X_ lO_ EXP .,
/• LDBL_MAX_ EXP .,
LDBL_MIN_ lO_ EXP ., ,. LDBL_MIN_ EXP .,
1• LDBL_ EPSJ:LON •1

1• LDBL_MAX .,
1• LDBL_MIN • /

0

Testing <float .h>
Figure 4.4 shows the test program tfloat. c . It begins by printing the

values of the macros defined in <float. h> in a form that people can better
understand. It then checks that the macros meet the minimum requirements
spelled out in the C Standard.

Here is the output for the In tel 80X87 coprocessor, on an implementation
that supports a!J three sizes of IEEE 754 operands:
PLT_ RADIX = 2

DBL_DIG = 15 DBL_MANT_ DIG •
DBL_MAX_ lO_EXP • 308 DBL_MAX_EXP
DBL_MIN_ lO_EXP • -307 DBI,_MIN_ EXP c

DBL_ EPSILON = 2.220446e- 16
DBL_MA.X = l.797693e+308
DBL_MIN 2.225074e-308

PLT_DIG =
PLT_MAX_lO_EXP "
PLT_MIN_lO_EXP •

6 PLT~_DIG c

38 PLT_MAX_ EXP
- 37 PLT_MIN_EXP •

PLT__EPSILON • 1 . 192093e-07
PLT_MA.X • 3 . 402823e+38
PLT_MIN l.175494e-38

53
1024

-1021

24
128

- 125

LDBL_ DIG • 19 LDBL_KANT_DIG • 64
LDBL_MAX_lO_EXP • 4932 LDBL_MAX_ EXP • 16384
LDBL_MIN_ lO_ EXP • - 4931 LDBL_MIN_ EXP -16381

LDBL_ EPSILON 1.084202e -19
LDBL_MA.X = 1 . 189731e+4932
LDBL_MIN • 3,36il03e-4932

SUCCESS testing <float.h>

I caught any number of errors in the process of developing <float.h>

and xfloat.c. Most of those errors were unearthed by running tfloat.c.

The tests are deceptively simple.

70

Figure4.4:
tfloat.c

Port 1

Chapter.a

/• test float macros .,
#include <assert.h>
#include <float.h>
#include <math.h>
#include <Stdio.h>

int mai n()
{ t• teat basic properties of float.h macros •/
double radl og;
int digs;
static int radix = PLT_ RADIX;

printf("PLT_ RADIX = %1\n\n", PLT_ RADIX);
printf("DBL_DIG = %Si DBL_MANT_DIG %6i\n•,

DBL_ DIG, DBL_MANT_ DIG) ;
printf{"DBL_MAX_lO_EXP = %Si DBL__MAX_EXP %6i\n•,

DBL_MAX_ lO_ EXP, DBL_MAX_ EXP);
printf("DBL_MIN_ lO_ EXP = %Si DBL_MIN_EXP c %6i\n",

DBL_MIN_lO_ EXP, DBL_MIN_EXP);
printf(" DBL_ EPSILON . %le\n•, DBL_ EPSILON);
printf(" DBL_MAX %l e \n•, DBL_ MAX) ;
printf(" DBL_ MIN %le\n\n•. DBL_MIN);
printf("PLT_ DIG = %Si PLT_MANT_ DIG = %6i\n" ,

PLT_ DIG, PLT_MANT_ DIG);
printf("PLT_MAX_ lO_EXP c %Si PLT_MAX_ EXP •

PLT_MAX_ lO_ EXP, PLT__MAX_EXP);
pri~tf("PLT_MIN_10_EXP = %5! PLT_MIN_ EXP

PLT_ MIN_lO_ EXP, PLT_MIN_ EXP);

%6i \n•,

%6i \n",

printf(" PLT_ EPSILON = %e\n•, PLT_EPSILON);
printf(" PLT_MAX %e\n•, PLT_MAX);
printf(" PLT_MIN = %e\n\n", PLT_MIN);
printf("LDBL_ DIG = %Si LDBL_MANT_ DIG = %6i\n•,

LDBL_ DIG, LDBL_MJ.NT_DIG);
printf("LDBL_MAX_ lO_EXP =%Si LDBL_MAX_,EXP %6i\n•.

LDBL_MAX_lO_ EXP, LDBL__MAX_EXP);
printf("LDBL_MIN_ lO_EXP = %Si LDBL_MIN_ EXP • %6i\n",

LDBL_MIN_lO_ EXP, LDBL_MIN_EXP);
printf(" LDBL_ EPSILON = %Le\n•, LDBL_ EPSILON);
printf(• LDBL_MAX %Le\n•, LDBL_MAX);
printf(" LDBL_MIN = %Le \n", LDBL_ MIN);
radlog = loglO(radix);-

/* test double properties */
assert(10 <= DBL_ DIG && PLT_ DIG <= DBL_DIG);
assert(DBL_ EPSILON <= le-9);
digs = (DBL_MANT_ DIG - 1) • radlog;
a ssert(digs <• DBL_ DIG && DBL_pIG <= digs+ 1);
assert(le37 <= DBL_MAX);
aesert(37 ~= DBL_MAX_lO_EXP);

#if PLT_RADIX == 2
assert(ldexp{l.O, DBL__MAX_ EXP - 1) < DBL_MAX);
assert(ldexp(l . O, DBL_MIN_BXP - 1) •• DBL_MIN);

#endif
assert(DBL_KIN <= le-37);
assert(DBL_MIN_ lO_EXP <= -37);

<float .h>

Contiinulng
tfloat.c

Port2

t• test f l oat properties */
assert(6 <= FLT_DIG)1
assert(FLT_EPSILON <= le-5);
digs = (FLT_MANT_ DIG - 1) • radlog1
a ssert(digs <= FLT_DIO && FLT_DIG <=digs + 1)1
assert(le37 <= FLT_MAX);
assert(37 <• FLT_MAX_lO_EXP);

#if FLT_RADIX == 2
assert(ldexp(l.O. PLT_ MAX_EXP - 1) < FLT_MAX);
assert(ldexp(l.O. PLT_ MIN_ EXP - 1) •• PLT__MIN);

#endif
assert(FLT_MIN <= le-37);
assert(FLT__MIN_ lO_ EXP <= -37);

t• t est universal properties •/
#if PLT_RADI X < 2
#error bad PLT_ RADIX
#endif

assert(-1 <= PLT_ROONDS && PLT_ROUNDS <= 3);
t• test long double properties • /

assert(l O <= LDBL_DIG && DBL_ DIG <= LDBL_DIG)1
assert(LDBL_EPSILON <= le- 9)1
d i gs = (LDBL_MANT_ DIG - 1) • radl og1
aeeert(dige <• LDBL_ DIG && LDBL_DIG <= digs+ l) ;
assert(le37 <• LDBL_MAX);
assert(37 <= LDBLJ!AX_lO_EXP);

#if PLT_ RADIX =• 2
aeeert(DBL_MAX_EXP < LDBL_JUX_EXP

I I ldexp(l.O, LDBL_MAX_EXP - 1) < LDBL_MAX);
aeeert(LDBL__MIN_EXP < DBL_MIN_ EXP

I I ldexp(l.O, LDBL_MIN_ EXP - 1) •• LDBL__MIN);
#end if

assert(LDBL__MIN <= le-37);
assert(LDBL_MIN_ lO_ EXP <= -37) 1
puts("SUCCESS tes ting <float.h>");
return (0)1

71

0

References
ANSI/IEEE Standard 754-1985 (Piscataway, N.J.: Institute of Electrical and

Electronics Engineers. Inc .• 1985). This is the floating-point standard widely
used in modern microprocessors.

Jack}. Dongarra and Eric Grosse, "Distribution of Mathematical Soft­
ware via Electronic Mail," Communications of the ACM, 30 (1987), pp. 403-
407. This article describes how you can obtain various test programs via
electronic mail. Two programs you can obtain via electronic mail beat
particularly hard on floating-point arithmetic:
• The program enquir e tests the properties of the floating-point arithmetic

that accompanies a C implementation. It prints its findings in the form
of a usable float . h file. Written by Steven Pemberton of CWI. Amster­
dam, enquire is available through the Internet address steven!k:wi. nl.

72

Exercises

Chapter4

• The program paranoia heavily stresses floating-point arithmetic. It was
originally written by W.M. Kahan of the University of California at
Berkeley. AC version is now available. Mail to the Internet address
net lib@ research. att. com the request:

send paranoia.c from paranoia

Pat Sterbenz, Floating-Point Computation (Englewood Cliffs, N.J.: Pren­
tice-Hall, Inc., 1973). This book is old and currently out of print. Neverthe­
less, it is hard to find a better discussion of the basic issues.

Exercise 4.1 Determine the parameters that characterize floating-point arithmetic for
the C translator you use. Do they conform to the IEEE 754 Standard?

Exercise 4.2 Can you alter <yvala .h> to adapt <float .h> and xfloat .c for the C trans­
lator you use? If so, do so. If n ot, what else must you alter?

Exercise 4.3 Consider the following code sequence:
double d = l.0;
float a[N];

for (i = O; i < n; ++i)
d *= a[i];

In IEEE 754 floating-point arithmetic, how large can N be before you have
to worry about overflow in the computation of d?

Exercise 4.4 Consider the following code sequence:
long double ld c 1 .0;
double a [NJ ;

for (i = O; i < n; ++i}
ld *= a[i];

In IEEE 754 floating-point arithmetic, how large can N be before you have
to worry about overflow in the computation of ld?

Exercise 4.5 Why is the header <yvala. h> included directly in <float .h> (as opposed to
including it only in xfloat. c)? Alter the code in this chapter to eliminate
the need.

Exercise 4.6 You are given the function int _Getrnd(void) that returns the current
floating-point rounding status. Alter the macro FLT_RADix to return the
current status.

Exercise 4.7 [Harder] Write a C program that detennines the values of the macros
defined in <float .h> solely by performing arithmetic. Assume that you
don't know the underlying floating-point representation.

Exercise 4.8 [Very hard) Alter the program from the previous exercise to work safely
even on an implementation that aborts execution on floating-point over­
flow. Assume that the program cannot regain control once overflow occurs.

Chapter 5: <limits.h>

Background
One of the first attempts at standardizing any part of the C programming

languages began in 1980. It was begun by an organization then called
/usr/group, now called UniForum. As the first commercial organization
founded to promote UNIX commercially, /usr/group had a stake in ven­
dor-independent standards. The organization felt that technical develop­
ments couldn't simply go off in all directions, nor could they be dictated
solely by AT&T. Either way, it was hard to maintain an open marketplace.

history So /usr/group began the process of defining what it means to call a

naming
what

changes

system UNIX or UNIX-like. They formed a standards committee that
focused, at least initially, on the C programming environment. That's where
nearly all applications were written, anyway. The goal was to describe a set
of C functions that you could expect to find in any UNIX-compatible
system. The descriptions, of course, had to be independent of any particular
architecture.

A chunk of what I usr I group described was the set of C-caUable func­
tions that let you access UNIX system services. An even larger chunk,
however, was the set of functions common to all C environments. That
larger chunk served as the basis for the library portion of the C Standard.
Since Kernighan and Ritchie chose not to discuss the library except in
passing, the /usr/group standard was of immense help to committee
X3J11. It saved us many months, possibly even years, of additional labor.

As an aside, the I usr I group effort served another very useful purpose.
IEEE committee 1003 was formed to turn this industry product into an
official standard. The IEEE group turned over responsibility for the system­
independent functions to X3J11 and focused on the UNIX-specific portion.
You know the resultant Standard today as IEEE 1003.1, a.k.a. POSIX.

Part of building an architecture-independent description is to recognize
what changes across computer architectures. You want to avoid any unnec­
essary differences, to be sure. The rest you want to identify and to circum­
scribe. Some critical value might change when you move an application
program to another flavor of UNIX. So you give it a name. You lay down
rules for testing the named value in a program. And you define the limits
that the value can range between.

74 Chapters

A long-standing tradition in C is that scalar data types are represented
in ways natural to each computer architecture. The fundamental type int is
particularly elastic. It wants to be a size that supports efficient computation,
at least within broad limits. That may be great for efficiency, but it's a real
nuisance for portability.

/usr/group invented the s tandard header <limita.h> to capture many
important properties that can change across architectures. It so happens
that this header deals exclusively with the ranges of values of integer types.
When X3Jl1 decided to add similar data on the floating-point types, we
elected not to overwhelm the existing contents of <limits . h >. Instead, we
added the standard header <float.h>. Perhaps we should have also re­
named the existing standard header <integer.h>, but we didn't. Tidiness
yielded to historical continuity.

What the c Standard Says

<limita . b>

CHAILBIT

CHAJU<IN

MB_LEN_KAX

SHRT_)IIN

USRll.T..)IAX

lNT..)IAX

5.2.4.2 Numerical limits
A confonning implementation shall document all the limits specified in this subelause, which

shall be specified in the headers <l.imita .h> and <float. h>.

5.2.4.2.1 Sizes of integral types <limits. h>
1be values given below shall be replaced by constant expressions suitable for use in #if

preprocessing directives. Moreovu, except for CHAR__BI T and MB_ LEN_MAX. the following
shall be replaced by expressions that have the same type as would an expression that is an object
of the corresponding type converted according to the integral promotions. Their implementation·
defined values shall be equal or greater in magnitude (absolute value) to those shown, with the
same sign.

• number of bits for smallest object that is not a bit-fie ld (byte)
CHAP,_BIT 8

• minimum value for an object of type signed char
SCHAR_ MIN -127

• maximum value for an object of type signed char
SCHAR_ MAX +127

• maximum value for an object of type unsigned char
UCHAR_MAX 255

• minimum value for an object of type char
CHAR_ MIN " see below"

• maximum value for an object of type char
CHAR_MAX " see below"

• maximum number of bytes in a multi byte character. for any supported locale
MB_ LEN_MAX 1

• minimum value for an object of type short int
SHRT_MIN -32767

• maximum value for an object of type abort int
SHRT_MAX +32767

• maximum value for an object of type unsigned short int
USHRT_MAX 65535

• minimum value for an object of type int
INT_)IIN -32767

• maximum value for an object of type int
INT_MAX +32767

<lillli ts. h>

ULONOJIAX

75

• maximum value for an object of type unsigned int
UIN'I'_MAX 65535

• minimum value for an object of type l ong int
LONG__MIN -21474 83647

• maximum value for an objec1 of 1ype long int
LONG_MAX +2147483647

• maximum value for an object of type unsigned long int
ULONG_MAX 4294 967295

If the value of an object of type char is treated as a signed integer when used in an expression,
the value of CHAR_MIN shall be the same as that of SCHAR_MIN and the value ofCHAR_MAX
shall be the same as that of SCHAll_MAX. Otherwise, the value of CHAR_MIN shall be 0 and t.he
value ofCHAR_MAX shall be the same as that ofUCHAA.JIAX.9
Footnoles

9. Sec 6.1.2.5.

Using <limits . h >
You can use <limits. h> one of two ways. The simpler way assures that

you do not produce a silly program. Let's say, for example, that you want
to represent some signed data that ranges in value between VAL_ MI N and
VAL_MAX. You can keep the program from translating incorrectly by writing:
#include <assert.h>
#include <limits.h>
fif VAL_MIN < IN'I'JIIN 11 J:N'I'_MAX < VAL_MAX
terror values out of range
fend if

You can then safely store the d ata in data objects declared with type int.
adapting A more elaborate way to use <limits. h> is to control the choice of types

types in a program. You can alter the example above to read:
#include <assert.h>
#incl ude <limits.h>
#if VALJ!lN < INTJII N I I INT_ MAX < VAL_MAX

typedef long Val_ t1
l e lse

typedef int Val_ t1
lendif

You then declare aJI data objects that must hold this range of values as
having type val_ t. The program chooses the more efficient type.

The presence of <limit• .h> is a lso designed to discourage an old pro­
gramming trick that is extremely nonportable. Some programs attempted
to test the properties of the execution environment by writing fi.f direc­
tives:
f i f (-1 + OxO) >> 1 > Ox7fff
t• must have int• greater than 16 bits •/

#endif

This code assumes that whatever arithmetic the preprocessor performs
is the same as what occurs in the execution environment. Those who deal

76 Chapters

Figure 5.1: /* limite . h etand.ard header -- 8-bit vereion */
limits.h lifndef _LIMITS

ldefiDe _LIKITS

l ·ifndef YVALS
linclude-<yvale .h>

#endif
/* char properties •/

#define CHAR BIT 8
#if _CSIGN -

#define CllAR_MAX
#define CllAR_MIN •ei-
ldefine CHAR MAX

#define CllAR::::MIN

lendif

127
(- 127-_C2)

255
0

/ * int propertiee */
I.if _ILONG
#define INT_ MAX

#define INT_ MIN
#define OINT_MAX
le lee
#define INT_MAX
#define INT_MIN

#define UINT MAX
#endif -

2147483647
(-2147483647-_C2)
4294967295

32767
(-32767-_C2)
65535

/* long properties */
#define LONG_MAX 21,7483647
#define LONG KIN (-2147483647- C2)

/* m~ltibyte properties *I
#define MB LEN MAX M8MAX

/*-ei.p;"ed ch-ar propertiee */

#define SCllAR_MAX 127
#define SCHAP. HIN (-127- C2)

/* ehort propertie-;. •/
#define SllRT MAX 32767
#define SllRT-MIN (-32767- C2)

/* u;eigned propertl;e */
ldef ine UCHAR MAX 255
#define ULONG::::MAX 4294967295
#define US!IRT_MAX 65535
1-.lif 0

heavily with cross compilers know well that the translation environment
can differ markedly from the execution environment. For tricks like this
one to work, theCStandard would have to require that the translator mimic
the execution environment very closely. And translator families with a
oommon front end would have to adapt translation-time arithmetic to suit
each environment.

X3J11 discussed such requirements at length. In the end, we decided that
the preprocessor was not the creature to burden with such stringent re­
quirements. The translator must closely model the execution environment
in many ways, to be sure. It must compute constant expressions - to

<limits.h> 77

static storage, for example - to at least as wide a range and precision as
the execution environment. But it can largely define its own environment
for the arithmetic within •if directives.

So to test the execution environment you can't do experiments on the
preprocessor. You must indude <limita.h> and test the values of the
macros it provides.

One addition made by X3J11 to <limite .h> is the macro MB_LEN_MAX. You
use it to allocate space for multibyte characters. I discuss MB_LEN_HAX in
conjunction with the multibyte functions in Chapter 13: <atdlib.h>-

Implementing < 1 imi ts . h >
The only code you have to provide for this header is the header itself.

All the macros defined in <limits. h> are testable within •H directives and
are unlikely to change during execution. (The same is not true of most of
the macros defined in <float .h>.)

common Most modem computers have 8-bit chars, 2-byte shorts, and 4-byte longs.
choices There are several common variations on this principal theme:

• An int is either 2 or 4 bytes.
• A char has the same range of values as either signed char or unsigned char.
• Signed values are encoded most frequently in two's complement, which

has only one form of zero but one negative value that has no correspond­
ing positive value. Less common are onts complement and signed magni­
tude. Both have two forms of zero but no extra negative value.

• The number of bytes for a single multibyte character can be any value
greater than zero.
I found it convenient, therefore, to write a version of <limite . h> that

expands to any of these common choices. Figure 5.1 shows the file limit a. h.
It includes the configuration file <yvale .h>, which I introduced on page 53.
That file also provides parameters for the header <Uoat.h>, described on
page65. Among other things, <yvale.h> defines the macros:

_ ILONO • _ I LONO - nonzero if an inl has 4 bytes
_ csION • _CSIGN - nonzero if a char is signed

_c2 • _c2 - 1 if the encoding is two's complement, else 0
JIBMAX • _MBMAX - the worst-case length of a single multibyte character.

The use of the macro _c2 obscures an important subtlety. On a two's­
complement machine, you cannot simply write the obvious value for
INTJIIN. On a 16-bit machine, for example, the sequence of characters
-32768 parses as two tokens, a minus sign and the integer constant with
value 32,768. The latter has type long because it is too large to represent as
type int. Negating this value doesn't change its type. The C Standard
requires, however, that INTJIIN have type int. Otherwise, you can be
astonished by the behavior of a statement as innocent looking as:

78

Rgure5.2:
tlimi.ta.c

Part 1

/* teet limit• macroe * /
#include <limite.h>
linclude <etdio .h>

int main()

Chapters

{ /* teet baeic properti•• of limite.h macro• */

pri.ntf("CHAR_BIT = \2.l MB_LEH_MAX = \2i\n\n".

CHAR_BIT, MB_LEN_NAX) ;
printf(" CHAR_MAX • \lOi CHAR_MIN m \101\n",

CHAR MAX, CHAR MIN) ;
printf ("SCllAR_MAX -:; UOi SCHAR MIN m UOi \n",

SCllAR MAX, SCBAR MIN) ;

printf ("UCHAR MAX - \10u\n\n", OCHAR MAX) ;

pri.ntf(" SHRT::::MAX = \10i SHRT_ MIN ~ \10.l\n",

SHRT MAX, SHRT MIN) ;

pri.ntf("USHRT_MAX "; UOu\n\n", USHRT_MAX);

printf(" INT_ MAX • \101 INT_ MIN • UOi\n",

INT MAX, INT MIN) ;
printf (-;; UINT_MJii • \ 10u\n\n", UINT_MAX) ;

printf(" LONG_MAX = \ 1011 LONG_MIN s \ 101.l\n",

LONG_MAX, LONG_MIN);

pri.ntf ("tJLONG MAX = \lOlu\n", tJLONG MAX) ;

fit CHAR_BIT < e 11 CHAR_MAX < 127 11 o- < CHAR_ MIN \

I I CHAR_ MAX != SCBAR _ MAX '' CHAR _ MAX ! = OCHAR _MAX

terror bad char properti••

fend.if
fif INT MAX < 32767 II -3.2767 < INT_MIN II INT_MU < Sl!RT_ MAX

terror bad int propertiee

fendif
fif LONG_MAX < 21•7•&36•7 11 - 21•7•836•7 < LONG_MIN \

11 LONG_MAX < INT_MAX

terror bad long propertiee

l•ndif
fif MB LEN MAX < l
terror_ bad_ MB_ LEN_MAX

fendif
fif SCHAR_MAX < 127 II - 127 < SCHAR_ MIN

terror bad eiqned char properties

fend.if

printf(" ranqe ie from \ d to \ d\n", INT_ MIN, nrr_ MAX) ;

The only safe thjng is to sneak up on the value by writing an expression

such as {-32767- 1) . Given the way I chose to parametrize <lilnite .h>, you

get this trickery for free.

One other subtlety should not be overlooked. I made the point earlier

that preprocessor arithmetic need not model that of the execution environ­

ment. You can, in principle, compile on a host with a 32-bit long for a

execution environment with a 36-bit long. Nevertheless, the host is obliged

to get the values in <limite . h> right. That means that it must do preproc­

essor arithmetic to at least 36 bits. The latitude spelled out for implementors

by X3Jl 1 isn't so broad after all.

<limit a. h>

Corllnl.*lg
tlimJ.ta.c

Part2

lif SHRT_JIAX < 32767 I I -32767 < SHRTJilN \
I I SHRT_MAX < SCKAR_MAX

terror bad ehort propertiee
hndif
lit UCHAR_ HAX < 255 I I UCIWl_J(AX I 2 < SCHAR_J(AX
terror bad uneigned char proper tiee
lendif
lif UI NTJIAX < 65535 I I UXNT_MAX I 2 < I NT_MAX \

11 UI NT_ MAX < USHRT_MAX
terror bad uneigned int propertiee
lecdif
lif ULONG_ MAX < •294967295 I I ULONG_MAX I 2 < LONG_ MAX \

I I OLONG_MAX < UINT_MAX
terror bad uneigned long propertiee
lendif
lif USHRTJ(AX < 65535 II USHRT_ MAX I 2 < SHRT_ MAX \

11 USHRT_JIAX < UCJiAJLMAX
terror bad uneigned ehort propertiee
lend if

pute("SUCCESS teeting climite.h>")I
r eturn (0)1

79

0

Testing <limits . h>
Figure 5.2 shows the test program tlimite.c. It provides a brief sanity

check you can run on <limits .h>. It is by no means exhaustive, but it does
tell you whether the header is basically sane. It also provides a readable
summary of the values of the macros defined in <limite.h>.

Note that all the action occurs at translation time. That's because all the
macros must be usable within lif directives. If this test compiles, it will
surely run, print its summary and success message, then exit with success­
ful status.

Here is the output for a PC-compatible implementation that represents
char the same as signed char:
CKAR_ BIT • 8 MB_t.Ell.)IAX = 8

CHA!LMAX • 127 CHAR_KIN a -128
SCKAR_ MAX • 127 SCKAR...)aN • - 128
UCHAJLMAX • 255

SHRT_KAX • 32767 SHRTJIXN • - 32768
USHRT_MAX • 65535

INT_MAX • 32767 INT_MIN c -32768
UI NT__JIAX • 65535

LONG_ MAX • 21'7483647 LONG.JUN= -21'7483648
ULONG_ MAX • • 29'967295
SOCCl!Ss teeting <limite.h>

80

References

Chapters

Exercises

The program enquire, described on page 71, also produces the file
limits .h.

IEEE Standard 1003-1987 (Piscataway, N.J.: Institute of Electrical and
Electronics Engineers, Inc., 1985). This is the POSIX Standard for writing
applications in C that run Ul'lder UNIX and UNIX-compatible operating
systems. The header <limits. h> arose out of this standardization effort.

Exercise 5.1 Determine the parameters that characterize integer arithmetic for the C
translator you use.

Exercise 5.2 Adapt <limits. h> for the C translator you use.

Exercise 5.3 Consider the following code sequence:
int in= 1.0;
short a[N) ;

for (i • O; i < n; ++i)
in•• a[i) ;

For the C translator you use, how large can N be before you have to worry
about overflow in the computation of in? How large can N be in a program
intended to run with an arbitrary C translator?

Exercise 5.4 Consider the following code sequence:
long lo • 1.0;
int a[N);

for (1 • O; 1 < n ; ++1)
lo •• a[i];

For the C translator you use, how large can N be before you have to worry
about overflow in the computation of lo? How large can N be in a program
intended to run with an arbitrary C translator?

Exercise 5.5 Can an implementation of Standard C have sbeof (long) equal to one
byte? What are some of the peculiar properties of such an implementation?

Exercise 5.6 (Harder] Write a program tha t determines the values of the macros defined
in <limite.h> solely by performing arithmetic. Assume that you don't
know the underlying integer representations.

Exercise 5.7 [Very hard] Alter the program from the previous exercise to work safely
even on an implementation that aborts execution on integer overflow.
Assume that the program cannot regain control once overflow occurs.

Chapter 6: <locale.h>

Background
The header <locale. h> is an invention of X3J11, the committee that

developed the C Standard. You will find little that resembles locales in
earlier implementations of C. That stands at odds with the committee's
stated purpose, to "codify existing practice." Nevertheless, those of us
active within X3Jl 1 at that time felt we were acting out of the best of motives
- self defense.

history This particular header popped up about five years after work began on
the C Standard. At that time, many of us felt that the Standard was
essentially complete. We were simply putting a few finishing touches on a
product in which we had invested five years of our lives. Resistance was
mounting to change of any sort.

About then, we learned that a number of Europeans were unhappy with
certain parts of theC Standard being developed by X3Jl 1. It was simply too
American in several critical ways. They despaired of trying to educate
insular Yankees about the needs of the world marketplace. Rathe-, they
were content to wait and fight their battles on a more congenial field. The
Europeans took it for granted that an ISO standard for C must differ from
the ANSI C Standard.

Many of us disagreed with that position. We felt it imperative that
whatever standard ANSI developed had to be acceptable to the interna­
tional community. We had seen the effects in the past of computer language
standards that differed around the world. Our five years of effort would
be in vain, we felt, if the final word on C came from a separate committee
second guessing all our decisions.

So we asked the Europeans to show us their shopping list of changes.
Most of the items on the list dealt with ways to adapt C programs to
different cultures. That is a much more obvious problem in a land of many
languages and nations such as Europe. Americans enjoy the luxury of a
single (widely used if not official) language and a fairly simple alphabet.

AT&T Bell Laboratories went so far as to host a special meeting to deal
with various issues of internationalization. (Tltis is a big word that people
are uttering more and more often. It seems to have no acceptable synonym
that is any shorter. Theinfonnal solution is to introduce the barbarismll8N,

82 Chapter 6

pronounced "EYE eighteen EN." The 18 stands for the number of letters
omitted.) Out of that meeting came the proposal for adding locale support
to Standard C. The machinery eventually adopted is remarkably close to
the original proposal.

Adding locales to C had the desired effect. Many of the objections to
ANSI C as an international standard were derailed. It cost X3J11 an extra
year, by my estimation, to hammer out locales. And we probably spent yet
another year dealing with residual issues from the international commu­
nity. (WG14, the ISO C standard committee, is still working on additions to
the existing C Standard.) Nevertheless, we succeeded in producing a stand­
ard for C that is currently identical at both ANSI and ISO levels.

environments Writing adaptive code is not entirely new. An early form sprung up about
fifteen years ago in the UNIX operating system. Folks got the idea of adding
environment variables to the system call that launches new processes. (That
service is called exec, or some variant thereof, in UNIX land.) Environment
variables are an open-ended set of names, each of which identifies a
null-terminated string that represents its value. You can add, alter, or delete
environment variables in a process. Should that process launch another
process, the environment variables are automatically copied into the image
of the new process.

The new process can simply ignore environment variables. It loses a few
dozen, or a few hundred, bytes of storage that it might otherwise enjoy. Or
it can look for certain environment variables and study their current values.
A common variable is "TZ •,which provides information to the library date
functions about the current time zone. If the value of "Tz• is, say, ESTOSEDT,

the time functions know to label local standard time as EST and local
Daylight Savings Time as EDT. The local (standard) time zone is 5 hours
earlier than UTC, known in the past as Greenwich Mean Time.

Environment variables have many uses. They are a great way to smuggle
file names into an application program. [t is almost always a bad idea to
wire file names directly into a program. Prompting the user for file names
is mostly a good idea, except for "secret" files about which the user should
not have to be informed. Asking for such a file name on the command line
that starts the program is somewhat better, but it can be a nuisance. It is a
particular nuisance if several programs in a suite need access to the same
file name. That's why it is often much nicer to set an environment variable
to the file name once and for an in a script that starts a session. The file name
is captured in one place, but is made available to a whole suite of programs.

Microsoft's MS-DOS supports environment variables too-one of many
good ideas borrowed from UNIX. Several commercial software packages
use environment variables to advantage. A common use is to locate special
directories that contain support files or that are well suited for hosting
temporary files. But they have many other uses as well.

function The Standard C library includes the function getenv, declared in
getenv <atdlib.h>. Call getenv with the name of an environment variable and it

<locale.h>

function
putenv

why
locales

categories

83

return a pointer to its value string, if there is one. It is not considered an
error to reference a variable that is not defined.

Note, however, that the C Standard does not include putenv, the usual
companion to getenv. That is the common name for the function that lets
you alter the values associated with environment variables. Simply put,
committee X3Jl 1 couldn't decide how to describe the semantics of putenv.

They differ too much among various single-user and multiprocessing
systems. So you can write portable code that reads environment variables,
but you can't alter them in a standard way.

What do locales provide that environment variables do not? In a word,
structure. This is the era of ·Object-oriented hoopla. So you can look on
locales, if you wish, as object-oriented environment variables. A single
locale provides information on many related parameters. The values are
consistent for a given culture. You would have to pump dozens of reserved
names into the name space for environment variables to transmit the same
amount of information. And you run a greater risk that subsets of the
information get altered inconsistently.

When I talk about a culture, by the way, I don't mean just a group that
speaks a common language. People in the USA write dates as 7 /4/1776
(Independence Day). The same day in the UK is written as 4/7 /1776
(Thanksgiving Day). Even within the USA, practices can vary. Where we
civilians might write a debit as $-123.45, an accountant may well prefer
($123.45).

For this reason, and others, locales have substructure. You can set an
entire locale, or you can alter one or more categories. The header <1ocale. h>

defines several macros with names such as LC COLLATE and LC TIME. Each
expands to an integer value that you can use ;s the category a-;:gument to
eetl.ocal e, the function that alters locales. Separate categories exist for:

• controlling collation sequences LC_COLLATE)

• classification of characters (LC_ CTYPE)

• monetary formatting (LC_M:lNETARY)

• other numeric formatting (LC_NUMERic)

• times (LC_TIME)

An implementation can choose to provide additional categories as well. A
program that uses such added categories will, of course, be less portable
than one that does not.

The idea behind categories is that an application may wish to tailor its
locale. It may want to print da tes in the local language and by the format­
ting rules of that language. But it may still opt to use the dot for a decimal
point even though speakers of that language customarily write a comma.
Or the application may adapt completely to a given locale, then change the
category LC_MONETARY to match a worldwide corporate standard for ex­
pressing accounting information.

84 Chapter6

What the C Standard Says
<locale . h.>

at.ruct. lconv

NULL

LC ALL
i.c_cown

LC_CTYP&

LC_ NONrrMY
LC_ llUMSIUC

7.4 Localization <locale. h>

The header <locale. h> declares two functions. one iype. and defines several macros.

The type is
etruct lconv

which contains members related to the fonnatting of numeric values. The structure shall contain
at least the following members. in any order. The semantics of the members and their normal
ranges is explained in 7.4.2.l . Jn the "C" locale, the members shall have the values specified in
1he comments.

char ·~ciaal_poi.nt.;

char *thouaanda_ .. p;
char •9J:oupi ng;
char •int. cu.rr aymbol;
char •cu~ency=•ymbol;
char • .on_deci ... l_poi.nt;
char •aon _ thouaanda _ ••p;
char •aon_9rouping;
char 9}>oaitiv•_•l9n;·
char *l\efl&t.i v• ai9n;
char int._f'rac_dt91t.e;
char f'r•c_di9ita;
cbar p_ ca_pr.c:.clea;
char p_•ep_by_ apace;
char n_ca_pr~adi9•:
char n ••p by apace;
char p:ai9;__.P;sn;
char n_ ai9n_poen;

I * *I
I* *I
I* *I
I * *I
/* */ ,. • /
,. */
I* * / ,. ., ,. • /
/* CH.U._MAX */
/* CJlAJl MAX *I
I * CJl.U.-MAX *I
I * CHAR:NAX •/
I * CHAR MAX * /
I* CBAR.-MAX •/

/ * CHAR=MAX */
/ • CHAR_IO.X */

The macros defined are NULL (described in 7.1.6); and

LC_ ALJ.
LC_ COLLA.TS
LC_CTYPS

LC_MOHKTARY
LC_KtnmllIC

i.c_~ncs

which expand to integral constant expressions with distinct values, suitable for use as the first
argument to the setlocale function. Additional macro definitions, beginning with the charac­
ters LC_ and an uppercase Jencr, 100 may also be specified by the implementation.

7.4.1 Locale control
7.4.1.1 The setlocale function
Synopsis

lincluct. <locale . b>
char *"tlocale(i.nt cate9ory, con• t. char • locale) ;

Description

The eetlocale function selects the appropriate ponion oflhe program's locale .as specified
by the category and locale arguments. The set locale function may be used to change
or query the program's entire current locale or ponions thereof. The value LC ALL forcate­
qory names the program's entire locale; the other values for category name only a ponion
of the program's locale. Category LC COLLATE affects the behavior of the strcoll and
strxfrm functions. Category LC CTYPE affects the behavior of the character handling
functions'°' and the multi byte functions. Category LC MONETARY affects the monetary format­
ting infonnation relunied by 1he localaconv funCiion. Category LC NUMERIC affects the
decimal·point character for the formatted input/Outpul functions ana the string conversion
functions, as well as the nonmonetary formatting information returned by the localeconv
function. Category LC_ TIME affe<:ts the behavior of the etrftime function.

A value of '"C'" for l ocale specifics the minimal environment for C translation; a value of
'"'" for locale specifies the implementation-defined native environmenL Other implemenla·
tion-defined strings may be passed as the second rugumcnt to setlocale.

At program stanup, the equivalent of

<locale • h>

local.econ.v

.. tloc•l•(LC_ ALI., "C ..) ;

is executed.

The implemen1a1ion shall behave as if no library func1ion calls lhe set locale func1ion.

Returns

85

If a poin1cr10 a siring is given for locale and 1he sclee1ion can be honored. lhe aetlocal e
funclion rclums a poin1cr101he siring associa1ed wi1h 1he specified category for 1hc new locale.
U 1he scleclion cannot be honored, 1he setlocale func1ion returns a null poin1er and 1he
program's locale is not changed.

A null poin1cr for locale causes 1he setlocale function 10 rclum a poinlcr 10 lhe string
associa1ed wilh lhe category for 1he program's currem locale; the program's locale is no<
changed.10'2

The poinler 10 siring rclumed by lhe set locale function is such 1ha1 a subsequenl call wilh
1ha1 Siring value and its associa1ed ca1egory will rcslore Iha! part of lhe program's locale. The
Siring poin1ed 10 shall not be modified by the program, but may be overwrinen by a &ubsequem
call 10 lhe eetlocale funclion.

Forward refermces: forma11ed inpul/oulput functions (7 .9.6), the multi byre charac1er functions
(7. IO. 7), the multibytc siring func1ions (7.10.8). String conversion functions (7.10.1), the str­
coll funclion (7. 11.4.3), •he etrftime func1ion (7.12.3.5), lhe strxfrm func1ion (7.11.4.5).

7.4.2 Numeric formatting convention inquiry
7.4.2.1 The localeconv function

Synopsis

linclude <local• .h>
e truct. lconv • localeconv (void) ;

Description

The l ocalec onv func1ion SCIS lhe componen1s of an objecl wilh 1ype atruct lconv wilh
values awropria1e for 1he fonnaning of numeric quan1i1ies (monetary and 01herwise) according
10 1hc rules of 1he currenl locale.

The members of 1he S1ruc1urc wi1h type char * arc poin1crs 10 SI rings, any of which {excep1
decimal _J>Oint) can poinl 10 "",lo indicate 1ha11he value is not available in 1he currcnl locale
or is of zero length. Tbe members wilh lype char arc nonnegative numbers, any of which can
be CHAR MAX to indica1c 1ha11he value is not available in1hecurrem locale. The members include
the folloWing:

char *decimal_J>Oint
The decimal-point characler used 10 format nonmonelary quanlilies.

char *thousands sep
Thc characler usCd 10 scparale groups of digils before lhe decimal-point characler in
fonnaued nonrnonetary quantilies.

char *qroupinq
A Siring whose elemenls indica1e lhe size of each group of digits in fonnaucd nonmonetary
quanlities.

char *int curr symbol
The in1eiiiationaTcurrency symbol applicable to the currem locale. The first three charac1ers
con1ain 1he alphabclic in1ema1ional currency symbol in accordance wilh 1hose specified in
ISO 4217 :1987. The fot1t1h charac1er (immediately preceding 1he null charaCllcr) is 1he
dtaraclcr used 10 scparale lhe in1ema1ional currency symbol from lhe moneiary q uami1y.

char •currency symbol
The local currency symbol applicable 10 the current locale .

char *mon decimal_J>Oint
The declmal-poinl used 10 formal rnonelary quan1i1ies.

char "mon thousands aep
The separator for groups of digi1s before 1he dccimal· poin1 in fonnaucd monetary quan1i1ies.

char *mon qroupinq
A Siring -whose elemenls indicalc lhe size of each group of digits in fonnaued mone1ary
quantities.

char *positive siqn
The Siring used lo indicale a nonnegative-valued formaued mone1ary quanlity.

86 Chapter6

char •neqative siqn
The string used lo indicate a ne&ative-valued formatted monetary quantity.

char int frac diqits
The number or fractional digits (those after the decimal-point) to be displayed in a
internationally fonnaued monetary quantity.

char frac digits
The numlier of fractional digits (those after the decimal-point) to be displayed in a fonnatted
monetary quantity.

char p _cs _J>recedes
Set 10 I or 0 if the currency symbol respectively precedes or succeeds the value for
a nonnegative fonnaued monetary quantity.

char p sep by space
Set iO I orll if ilie currency symbol respectively is or is not separated by a space from
the value for a nonnegative formaued monetary quantity.

char n_cs_precedes
Set to I or 0 if the currency symbol respectively p<ecedes or succeeds the value for
a negative fonnaued monetary quantity.

char n eep by space
SetiO I orllif ilie currency symbol respectively is or is not separated by a space from
the value for a negative formaii"ed monetary quantity.

char p siqn_Fosn
Sctto a vJue indicating the positioning of the positive siqn for a nonnegative
fonnau ed monetary quantity. -

char n_siqn_posn
Set to a value indicating the positioning of the negative siqn for a negative. fonnaued
monetary quantity. -

The elements of grouping and men _ grouping are interpreted according 10 the following:

CHAR_ HllXNo further grouping is to bc performed.

0 The previous element is 10 be repeatedly used for the remainder of the digits.

other The integer value is the number of digits that comprise the current group. The next element
is examined to detennine the sire of the next group of digits before the current group.

The value of p _ siqn _posn and n _ s iqn _posn is interp<eted according 10 the following:

0 Parentheses surround the quamity and currency_ symbol.

1 The sign Siring precedes the quantity and currency_ symbol.

2 The sign Siring succeeds the quantity and currency_ symbol.

3 The sign string immediately precedes the currency_ symbol.

4 The sign string immediately succeeds the currency_ symbol.

The implememation shall behave as if no library function calls the localeconv function.

Retur ns

The localeconv function returns a pointer to the filled-in object. The structure pointed to
by the return value shall not be modified by the program. but may be overwrillen by a subsequent
call to the localeconv function. Jn addition, calls to the set locale function with categories
LC_ ALL, LC_ MONETARY, or LC_ NUMERIC may overwrite the contents of the structure.

Example

The following table illustrates the rules which may well be used by four countries to format
mone1a.ry quantities.

Country Positive fonnai Negative fonna1 International format

Italy L . l.23' - L. l . 23' ITL. 1 . 234
Netherlands F 1.234, 56 F -1. 23•, 56 NLG 1 . 23•, 5~
Norway k.rl .234 , 56 krl.234, 56- NOi< 1 . 23,, 5~
Switzerland SFr• .1, 234 . 56 SFr• .1, 234 . 56C CBI' l, 23• . 5~

For these four countries, the respective values for the monetary members of the structure
returned by localeconv are:

<locale.h>

int curr •y-.bol
cu~•acy-e)'Wlbol
mon _ "-<:.;.,1..J>Oint
aon _ thou•a.nd• _ •eip
aon 9roupinq
poaltiv• •io--n
n.gativ•-•191\
int_frac: dl9it•
frac dig.it•
p_ca'jrecedea
p_ aep_ by_apace
n_ca_precedea
n_••P_by_apace
p_ aip_poan
n_aip_poan

Foot.notes

Italy

•t:TL-•
'"L.•

" \3"

0
0
1
0
1
0

100. Sec ~future library directions .. (7. 13.3).

Netherlands

"Nl.G .
· r ·
"\3"

Norway ·-. "kc"
" \3"

2
2
1
0
1
0
1
2

Swiu.crland

" CKF •
·srra. •

" \3"

·c·
2
2
1
0
1
0
1
2

87

101. The only functions in 7.3 whooic behavior is not affected by the current locale are i.sdigit
and i.axdigit.

102. The implcmcntaflOn must amngc to encode in a string the various categories due to a
heterogeneous locale when c•tegory has the value LC_ALL.

Using <locale . h>
Much of the information provided in a locale is purely informative. C

has never treated monetary values as a special data type, so the rest of the
Standard C library is unaffected by a change in the category LC_ MONETARY.

On the other hand, some changes in locale very definitely affect how certain
library functions behave. If a culture uses a comma for a decimal point, then
the scan functions should accept commas and the print functions should
produce commas in the proper places. That is indeed what happens. Here
are all the places where library behavior changes with locale:

library • The functions strcoll and atrdr111, declared in <string. h>, can change
changes how they collate when category LC_ COLLATE changes.

• The functions d eclared in <ctype.h>, the print and scan functions,
declared in <stdio.h>, and the numeric conversion functions, declared
in <stdUb. h>, can change how they test and alter certain characters
when category LC_CTYPE changes.

• The multibyte functions, declared in <stdHb. h>, and the print and scan
functions, declared in <stdio. h>, can change how they parse and trans­
late multibyte strings when category LC_ CTYPJ: changes.

• The print and scan functions, declared in <atdio.h>, and ato~ and
atrtod, declared in <•tdlib. h>, can change what they use for the decimal
point character when category LC_ NUMERI:c changes.

• The stdti- function, declared in <timoo . h>, can change how it converts
times to character strings w hen category LC_ TIME changes.

• The localeconv function, declared in <loc:Ue .h>, can change what it
returns when categories LC_N:>NETARY or LC_NOMEJUc change.

88

ncu
locale

native
locale

reverting
the locale

Chapter6

If you are half as nervous as I am, this litany of changes should scare
you. How do you write portable code if large chunks of the Standard C
librarycanchangebehaviorunderfoot? Can you shipcodetoGermany and
know what isalpha will do when it runs there? If you mix your code with
functions from another source, how much trouble can they cause? Each
time your functions get control, you may be running in a different locale.
How do you code under those conditions?

X3J11 anguished about such issues when we spelled out the behavior of
locales. We recognized that many people don't want to be bothered with
this machinery at all. Those folks should suffer little from the addition of
locales. Still others have only modest goals. They want to trade in the
Americanisms wired into older C for conventions more in tune with their
culture. Still others are ambitious. They want to write code that can be sold
unchanged, in object-module or executable form, in numerous markets.
That code must be very sophisticated about changing locales.

The simplest way to use locales is to ignore them. Every Standard C
program starts up in the "C" locale. In this locale, the traditional library
functions behave pretty much as they always have. islover retums a
nonzero value only for the 26 lowercase letters of the English alphabet, for
example. The decimal point is a dot. If your program never calls aetlocale,

none of this behavior can change.
The next simplest way to use locales is to change once, just after program

startup, and leave it at that. The C Standard requires no other locale names
besides "C". But it does define a native locale designated by the empty string
"". If your program executes:

eetlocale(LC_ALL, '"')

it shifts to this native locale. Presumably, each implementation will devise
a way to detennine a native locale that pleases the locals. (An implemen­
tation that doesn't care a hoot about locales can make the native locale the
same as the "C" locale, of course.)

You must be more careful in using the library once the locale can change
on you. Some things get easier, such as displaying pretty dates or skipping
the appropriate characters for white-space. Other things get chancier, such
as parsing strings with the functions declared in <ctype. h>. In a pinch, you
om always revert part or all of the locale to the "C" locale. Begin by writing:
#incl.ude <locala.h>
#include <stdlib.h>
#include <atring.h>

char *la= aetlocale(LC_CTYPE, "C");
char*••= la ? malloc(atrlen(ls) + l) NOLL;

H (as)

strcpy(es, le);

<locala.h>

formatting
values

89
Now you can use the functions declared in <ctype.h> with assurance that
you are working in the •c• locale. When you're done, revert the locale by
writing:

.. tlocale(LC_CTYPB, ••)1
free(H)I

Note that the code stumbles bravely onward if the heap is exhausted and
malloc fails. It simply avoids using any null pointers unwisely. You can omit
the business about allocating space and copying the locale string returned
by ••tlocale only if you are sure that no other calls to that function can
intervene between the two shown above.

Two locale categories tell you how to format values to match local
conventions:
• Category LC.JCONBTARY suggests how to format monetary amounts, both

by local custom and in accordance with international standards aso
4217).

• Category LCJMBRIC dictates the decimal point character used by the
Standard C library and suggests how to format non-monetary amounts.
Here, for example, are various ways you can format the monetary

amount $-3.00 by local custom, depending upon the values stored in three
members of nruct l conv:

n.....••P..J:>Y _•pace: 0

n_aign~..,, 0 1 l 3 '
n-.ca_pr·ece(lea: 0 (3.00$) -3.00$ 3.00$- 3.00- $ 3.00$-

1 ($3.00) -$3. 00 $3.00- - $3 . 00 $-3.00

n_ aep_by_space: 1

n_•ign~an: 0 1 l 3 '
n_c•_precedea: 0 (3.00 $) -3.00 $ 3.00 $- 3.00- $ 3.00 $ -

1 ($ 3.00) -$ 3.00 $ 3.00- - $ 3. 00 $ -3.00

The example assumes that the member currency_aymbol points at"$",
mon_decimal~int points at •. •, negative_aign points at •-•, and
frac_digit • has the value 2. The example does not show the effect of the
members mol'l_grouping and mon_ thou•anda_ aep, which describe how to
group and separate digits to the left of the decimal point.

Three additional members describe how to format positive monetary
amounts. These are p _aep_ by _ apace, p_ Bign_poan, and p_ ca_precedea. For
international monetary amounts, the member int_curr_ aymbol determines
the currency symbol (instead of currency_ aymbol) and int_frac_digiu
determines how many decimal places to display (instead of frac_o1g1u).
And if you want to format 11on-monetary amounts, you care about the
members decimal~int, grouping, and thouaand•- ••P·

90 Chapter6

That's a lot of complexity to keep track of. Conceivably, you can make
use of this information throughout an application, but probably not. The
individual pieces are at a low level of detail. What you really want is some
way to format numeric data that applies all of the relevant information in
one place. Unfortunately, the C Standard does not define such a function.

function I decided to define the missing function. After several false starts, I
Fmtval ended up with the declaration:

char *_Fmtvai(char *buf, double vai, int frac_diga);

You provide the character buffer but to hold the formatted value. (The
modern trend is to specify a maximum length for any such buffer. I found
the function quite complicated enough without such checking, desirable
as it may be.) As a convenience, the function returns the value of buf, which
then holds the formatted value as a null-terminated string.

You also specify vai, the value to be formatted, as a double. That provides
for a fraction part and at least 16 decimal digits of precision. For a non­
monetary value, frac_digita specifies the numer of fraction digits to
include in the formatted value. The members of atruct lconv offer no
guidance on this parameter.

Here's where the design gets clever (perhaps too clever). The locale
information suggests four distinct formats for a value:

• an international monetary amount
• a local monetary amount
• a non-monetary amount with no decimal point or fraction
• a non-monetary amount with decimal point and fraction
Only in the fourth case do you need to provide a (non-negative) value for
the number of fraction digits. That means you can set aside distinct nega­
tive values for the argument frac _ digi ta to signal these other cases.

Figure 6.1 shows the file xfmtval . c, which defines the function _ Fmtvai.

It distinguishes the four formats by examining the value of frac_digita:

• A value of -2 (the macro FN_INT_CUR) tells the function to format an
international monetary amount.

• A value of-1 (the macro FN_LCL_CUR) tells the function to format a local
monetary amount.

• Any other value tells the function to format a non-monetary amount.
The number of fraction digits, however determined, must be a non­
negative value other than CHAR_MAX, defined in <limita.h>, for the
function to include a decimal point and fraction. So if you calI _Fmtval

with the value CHAR_ MAX, or with any negative value other than -1 or -2,
you tell it to format a non-monetary amount with no decimal point or
fraction.

• By elimination, any non-negative value other than CHAR_MAX tells the
function to format a non-monetary amount with a decimal point and
fraction. The value specifies the number of fraction digits.

<locale.h> 91

The function is straightforward, but contains a lot of tedious detail. The
first half simply gathers the appropriate set of parameters for the requested
formatting case. It selects a format string fmt to drive the generation of
characters into the buffer buf. Note that the code doesn't trust that members
of struct lconv have sensible values, since locales can change. I use the
function eprintf, declared in <atdio.h>, to convert the double valued into
the buffer. (That is just one of may things this function can do.) The funny
format string in aprintf ensures that a decimal point appears in the buffer,
followed by the appropriate nwnber of fraction digits (if any).

The remaining logic then determines how many separators to insert
between characters to the left of the decimal point and proceeds to do so.
It is careful to use the function ~ve, declared in <string. h>, to move
characters further along in the buffer. That guarantees a correct copy even
if the source and destination areas overlap. Note that the function replaces
the decimal point generated by eprintf (which itself can vary with locale)
with a decimal point that depends on the format selected.

using To use_ Fmtval, you must first declare it and define its associated macros
Fllltval in your program. I chose not to include this information in any of the

headers, even though I could have easily contrived a way to do so. (See the
discussion on page 95.) So you must write something like:
#define FV INTEGER -3
#define FV-INT CUR -2
#define FV -LCL -CUR -1
char *_Fmt;al(d>ar *, double, int);

Put these lines at the top of your program, or in a separate header file that
you include in your program. Now you are in a position to call the function
in various ways. For example, the code:
#include <atdio.h>

char buf[lOOJ;

printf("You ordered ''" ah-ta,",
Fmtval(buf, (double) nit_,., FV_rNTEGER);

printf(" each 'a aquare cm. \n",
Fmtval(buf, s ize, 3);

printf("Pleaae rem.it t.a to our New York office, \n",
Fmtval(buf, coat, FV INT CUR));

printf("(that'a h).\n", - -
_Fmtval(buf, coat, FV_LCL_CUR)) ;

might produce the output:
You ordered 1 ,340,000 sheets, each 1,204.787 square cm.
Please rem.it USD 18,279 to our New York office,
(that' s $18,278.85).

Imagine trying to produce this result by inspecting the contents of atruct
lconv directly. Function_ Fmtval obviously has its uses.

macro The header <locale.h> also defines the null-pointer macro NOLL. I dis-
NULL cuss this macro in detail in Chapter 11: <stddef .h>.

92

Figure 6.1:
xfmtval.c

Pat 1

t• _l'llltval function •/
#include <limits.h>
#include <locale.h>
#include <Stdio.h>
#include <atring.b>

J• macro• •1
#define FN_ INT_CUR -2
#define FN_LCL_CUR -1

char *_ l'llltval(char *buf, doubled, int fdarg)

Chapter6

(/• format number by locale-specific rules •/
char *cur_ aym, dec_pt , •grpa, grp_ sep, •aign;
con•t char •fmt1
int fd, neg;
atruct lconv •p • localeconv();

if (0 <= d)
neg = O;

e l s e
d • -d, neg = 11

if (fdarg == FN_ INT_ CUR)
{ /• g e t international currency parameters •/
cur_ sym • p->int_ curr_ symbol;
dec_pt • p->mon_decimal_point (OJ;
fmt = "$-V" 1

fd a p->int_ frac_ digits1
grps = P->mon_grouping;
grp_ sep • p->mon_thousands_ sep(OJ;
sign = neg ? p->negative_sign : p->poeitive_ eign;
}

else if (fdarg == FN_LCL_CUR)
{ /* get local currency parameters •/
static const char •ftab(2)(2](5] = {

<< •<V$)•, •-v$•, •v$-", •v-$", •v$-•},
{ "($V) " , "-$V•, "$V-", " - $V", "$- V"}},

((•(V $)•, "-V $", "V $-", "V- $ ", "V $-" },
{"1$ Vl", • - $ v•, "$ v-•. •-$ v•, "$ -V"}}};

cur_ sym = P->CUrrency_ eymbol;
dec_pt = P->mon_decimal_point (OJ;
if (neg)

fmt • ftab (p->n_ sep_by_ space == l]
(p->n_ cs_precedes == 1] (p->n_ sign_poan < O
II 4 < p->n_ sign_poan? 0 : p->n_sign_poan);

else
fmt • ftab(p->p_ sep_by_ space == 11

[P->P_ Ca-1>recedea • = 11 Cp->p_ s ign_posn < O
II 4 < p->p_ sign_posn? 0: p->p_ sign_posn];

fd = p ->frac_digits;
grps = p->mon_grouping;
grp_s ep = p->mon..thous ands_ eep[OJ;
sign = neg ? P- >negative_sign : p->positive_ eign;
}

<locale.h>

Continuing
xfllltval . C

Part2

93

el-
(/* get numeric par-tera (cur_aym not uaed) */
dec_pt • p - >decimal._yoint[O];
&t - "-v~;

fd • fdarg ;
qrpa • p ->qrouping;
grp aep • p->thouaanda aep[O] ;
aicjn •neg? "-" :. n";-

)

/* build string in buf under control. of fmt */
char *•nd, *•;
con•t char *9;
aize_ t i, na;

for (• • buf; *fmt; ++fmt, a +• atrlen(a))
avitch (*fmt)

(/* proceaa a format char */
case '$': /* insert currency aymbol atring */

atrcpy{a, cur_aym);
break;

ca- ' -': /* in-rt aign atring •/
atrc:py(a, aign);
break;

default: /* in-rt Literal. format char */

*•++ - *fmt, *• = '\0';
break;

~ff ' V' : /* inaert formatted val.ue *I
aprintf{a, "•# . *f",

0 < fd " fd != CHAR MAX ? fd : 0, d) ;
end • atrchr(a, p->deci-.J._yoint[O]) ;
for (na • 0 , i • end - a, g • grpa; 0 < i; ++na)

(/* count aeparatora to add •/

if (g[OJ <= 0 I I i <• g[O) II g[O) -- CHAR MAX)
break; -

i -• g[O);
if (g[l) ! = 0)

++g;

-ove(end + na, end, atrlen(end) + l);

i • and - a, end += ns;
*end - 0 <• fd •• fd != CHAR_MAX ? dec_pt : '\O';
for (g • grpa; O < i ; --na)

(/* copy up and inaert -paratora */
if (q[OJ <• 0 11 i <• g[O) 11 g[O] -- CHAR MAX)

break; -
i -• g[O], end ~ g[O];
~ve(end, end - na, g[OJ) ;
*--•nd • grp_aap;
if {g[l] ,_ 0)

++g;

return (buf) ;
D

94 Chapter6

Implementing <locale . h>

Flgure6.2:
Call Tree for
<loca1e.h>

This chapter contains a considerable amount of rode. Unlike earlier
chapters, the rode d raws heavily on all parts of the Standard C libraiy. You
got a taste of that variety with the function _ l'llltval in the previous section.
It made use of string manipulation functions declared in <string .h> and
an output formatting function declared in <atdio.h>. You will see rode
from those headers and others in what follows. I won't try to describe each
new function, just the more exotic usages (such as the aprintf format
"\I . •t"). If you see a function that you don't recognize, just look it up in a
later chapter.

One assist I can provide is a road map. Figure 6.2 shows the call tree for
functions and data objects defined in this chapter with external linkage. I
enclose entries for data objects in brackets. Following each external name
is the name of the C sourre file that defines it and the page number where
you can find the file. Beneath each function name and indented one tab
stop further to the right are any names that the function refers to. (I omit
this subtree on any later references to the same function name.)

For example, the function -uocale is defined in the C source file
• •tlocal . c. That function calls itself and refers to the data object_ clocale
defined in thesameC source file. It also calls the functions_o.floc,_Getloc,
and_ Setloc.

If you find yourself getting lost in the explanations that follow, refer back
to this call tree from time to time. You will find it helpful to understanding
the overall structure of the functions in <locale. h>.

localeconv localeco.c, p . !17
aetlocale aetlocal . c, p. 102

aetlocale .. tlocal . c, p . 102
(_Clocale] aetlocal .c, p. 102
Defloc xdafloc.c, p. 105

_Getloc x9etloc.c, p . 10•
_Frealoc xfreeloc. c, p . 118

(_Loctab] xloctab.c, p . 117
_Malteloc xmalteloc.c, p . 1.20

_Locvar xloctarm. c, p . 122
_Locterm Xlocterm. c, p . 122

_Skip xgetloc.c, p . lo•
_Readloc xreadloc . c, p . 115

(_Loctab) xloctab.c, p . 117
_Skip x9atloc.c, p. 10•

Raadloc x readloc.c, p. 115
_Setloc xaetloc.c, p . 106

(_Coatate] xatate.c, p . 107
(_Mbcurmax) xatate.c, p . 107
(_Mbatate] xatate.c, p . 107
(_ttc:atate] x.atate.c, p . 107

<locale.h>

knocking
out

functions

95

Note that I did not include the function _Fmtval in this call tree. That's
because it is not required by the C Standard. The C Standard pennits
additional functions, by the way. They can certainly have funny names like
_Flntval. They can even have nicer names such as fmtval. I chose a name
reserved to implementors only as a matter of style for this presentation.

What an implementation cannot do with such a function is:

• include a declaration for fmtval in a standard header, such as <locale. h>

• include a definition for a macro name such as FV INT CUR in a standard
header - -

• have any of the Standard C library functions call fmtval

Any of these practices pollutes the name space reserved for users.
Consider what happens to an added library function that honors these

restrictions. A program that declares and calls our hypothetical fmtval wi!I
cause the linker to include the function when it scans the Standard C library
for unsatisfied references to external names. A program that defines its own
version of fmtval wi!I not cause the linker to include the function when it
scans the Standard C libraiy. Since no other library functions depend on
the presence of this version of fmtval, no harm can occur. The user-supplied
version effectively "knocks out" the added library function. Any function
that can be knocked out this way can be safely added to the Standard C
libraxy.

header That's enough about _Fmtval, by any name. The remainder of this
<locale. h> chapter deals with implementing the services required by the C Standard

for the header <l ocal•. h>.
function

local.econv

macro
_NULL

implementing
set locale

The easiest part of implementing <locale. h> is the function localeconv.

AII it must do is return a pointer to a structure describing (parts of) the
current locale. That structure has type struct lconv. It is defined in
<locale . h>. Figure 6.3 shows the file local•. hand Figure 6.4 shows the file
localeco.c. (The latter name is chopped to eight letters because of file
naming restrictions on various systems, as J explained on page 7.) Packed
in with localeconv is the static data object of type struct lccinv whose
address the function returns. Note that the function localeconv has a
masking macro defined in <l·ocale. h>.

l chose once again to parametrize the header <local•. h> by including
the internal header <yvala. h>. (See the original discussion of this header
on page 53.) That permits an implementation to provide a definition of the
macro_ NULL, and hence of NtJLL, tailored to each implementation. (See the
discussion of NULL in Chapter 11: <stddef.h>.) For now, I simply observe
that a suitable definition of_ NOLL, in many cases, is:
#define _NULL (void *) O

The function metlocale has a number of tasks to perform. It must
determine what locales to switch to, based on the category and name you
specify when you call the function. It must find locales already in memory,
or read in newly specified locales from a file. (I describe the general case,

96 Chopter6

Figure 6.3: /* locale. h atandard header */
locale .h #ifndef _ LOCALE

#~fine _ LOCALE
#it:ndet: _'tVALS
#include <yval• . h>
#endif

/* macroa */
#~fine NOLL NULL

I* local-; code• */
#~fine LC_ ALL o
#~fine LC_COLLATE 1
#~fine LC CTYPE 2
#define LC_K>NE'l'MY 3
#define LC_NUMEJUC 4
#define LC TIME 5

/* ADD -YOURS HERE */
#define NCA'l' 6 /* one more than laat */

l* type ~finitiona */
•truct lconv {

/* controlled by LC K>NETARY */
char • currency_aymbol; -
char *int_ curr_ aymbol;
char *mon_decimal_point;
char *mon_qroupinq;
char *mon_thouaanda_ aep;
char *neqative_ •iqn;
char *poaitive aiqn;
char frac_diqits;
char int_frac_diqita;
char n_ ca_preced .. ;
char n aep by apace;
char n:ai.j;;_p;an;
char p _ ca _preced••;
char p_ aep_by_apace;
char p_•iqn_poan;

/* controlled by LC_NOMRRIC */
char *~cimal_point;

char *qroupin9;
char *thousands_ •ep;
};

/* declaration• */
atruct lconv *localeconv(v oid);
char *aetlocale(int, conat char *) ;
extern atruct lconv Loca1e;

/* 111acro ove;;idea */
#define localeconv() (,_Locale)
#end.if 0

of oourse. A minimal implementation can recognize only the "C" and ""
locales, which can be the same.) And it must return a name that it can later
use to restore the current locale.

<locale . h>

Figure 6.A:
localeco . c

mixed
locales

/* localeconv function */
li.nclude <limit• . h>
linclude <locale .h>

/* •tatic data */
st•tic char null [J • "";
struct lconv Locale • {

/* LC..::-MONETARY */
null,
null,
null ,
null,
null ,
null,
null,
CBAR_MAX,
CBAR_ MAX,
CBAR_MAX,
CllJIR _MAX,
CllJIR_MAX,
CllJIR _ MAX,
CllJ\R _MAX,
CllJ\R _MAX,

/* LC_ NUMERIC */

null,
null};

struct lconv *(localeconv) (void)

97

/* currency symbol * /
/* int curr-symbol */

/* mon_d~i.mai_J>Oint */
/* mon_groupi.ng */

/* mon thousands sep *I
/*-negative ;iqn */
/* positive::::aiqn */

/* frac digits */
/* int frac-digita */

/* n::::ca_J>;..,edea */
I* n sep by space */

1* n_eigi_poan */
/* p_cs_J>recedes */

/* p sep by space */
1* p_ai9-;;_po•n */

/* deci.mal_J>Oi.nt */
/* grwp~ */

/* thou.and.s_•ep */

(/* qet pointer to current local• *I
return ("_ Locale} ;

0

The last task is one of the hardest. That's because you can construct a
mixed locale, one containing categories from various locales. For example,
you can write:
li.nclude <locale. h>

char *al, a2;

.. tlocale (LC ALL, " ") ;
•1 - ••tlocai e(LC CTYPE, "C") ;
if ((a2 • malloc (etrlen(al) + 1)}}

strcpy(s2, 81) ;

The first call switches to the native locale-some locale preferred by the
local operating environment. The second call reverts one category to the
"C" locale. You must make a copy of the string pointed to by al because
intervening calls to aetlocal• might alter it. If you later make the call:

..tlocale(LC_ALL, s2} ;

the locale reverts to its earlier mixed state.

98 Chapter6

~ocale ••tl.ocal.• must contrive a name that it can later use to reconstruct an
lilOl'n8S arbitrary mix of categories. The C Standard doesn't say how to do this, or

what the name looks like. It only says that an implementation must do it.

The scheme I settled on was to paste qualifiers on a locale name if it
contains mixed categories. Say, for example, that the base locale is "USA",

which gives you American date formats and so on. An application adapts
the category LC_MONETARY to the locale "acct", which has the special con­
ventions of aa:ounting. The name of this mixed locale is "USA;mon• ­

tary:acct".

I chose semicolons to separate components of the mixed locale name.
Within a component, a colon separates a category name from its locale
name. The base locale has no category-name qualifier. When aetlocale

constructs a name, it adds components only for categories that differ from
the base locale.

To implement aetlocal• and its descendants requires more than just the
subtree of functions shown mn Figure 62. It requires macros, type defini­
tions, and declarations for all the functions and data objects. That's what
header files are for. You want a central repository for all the information
shared by a collection of functions that cooperate.

That repository should not be <local.•. h>, however. You need to include
in <local.•. h> a declaration of setl.ocale, period. All the rest is under the
hood and should stay there. My practice is to include in a standard header
only those names that must be made visible. The header <locale. h> does
declare the data object _Locale. That's because the masking macro for
local•conv refers to _Local.•. Nothing else need appear in that header, so
it does not.

header I created the internal header file "xlocal.•. h" to hold everything else.
"xlocal.e. h" The remaining C source files in this chapter include this internal header,

plus standard headers for any other functions they use from the Standard
C library. "xlocal• . h" in tum includes <local.• .h>. It also includes a couple
of other internal header files. Most of the information in "xlocal.•. h"

doesn't make sense at this point. I therefore defer showing the entire file
until later in this chapter. Along the way, I show as needed the bits and
pieces that contribute to "xlocal.e. h".

type The first bit is the data structure that holds an entire locale. It includes,
_Linfo natu.rally enough, an instanoe of struct lconv. It includes pointers to the

tables used by functions declared in <ctype.h> - _ctype, _Tolow•r, and
_Toupper. It also includes information from still other parts of the Standard
C library. It is, in short, a hodgepodge. "xlocale.h" defines a type called
_Linfo that looks like:
typedef atruct _Linfo {

conat char *_Na!M; /* must b9 first */
atruct Linfo * N-t;

/* controll;d by LC_COLLATE */
_Statab _Coatate;

<locale . h>

/* controll.cl by LC CTYPE */
coost abort * _ctype; -
conat: short * Tolowe r ;
conat abort •::::Toupper;
IUUI igned ch•i; _ Ht>Cllxm&lC;

St•tab Mbat•te;
-Statab - Wcatate;
- /* ~trolled by LC M:lNETARY .nd LC NUMERIC */
ati:;uct lconv Le; - -

/* controll.cl by LC_TIME •/
Tinfo Timea;

I _ I.info;

99

Only one instance of this structure exists initially - the data object

_c1oca1edefined in aetloc•l. c. _Cloc.ie has a nonzero initializer only for

the member _Name, which points a t the string "C", the name of the locale.

(That's where the name is presumed to come first in the structure.) The first

call to - tlocale copies all locale-specific information into this data object
before the locale changes. A later call that reverts to the •c• locale can then

simply copy out the pertinent information.

If Getloc decides to read in a new locale (as described later in this

chapt;r), the function allocates storage for a new instance of _Linfo and

copies _c1oca1e into it. _Getl.oc then reads in any changes to the locale. If

all changes are valid, the function adds the new locale to the linked list of

alternate locales beginning w ith _Cl ocal• ._Next. A list member whose

member _Next holds a null pointer terminates the list. (Note that _Linfo

appears in this declaration both as a type name and a structure tag. Only a

structure with a tag name can contain a member that points at another

instance of the same structure.)

type The structure _Linfo contains several members of type _Statab. Several

_st.tab functions in this implementation of the Standard C library use state tables

to define their behavior. That provides the maximum in flexibility with

moderate performance. It also lets you specify the behavior of these func­

tions in a locale using notation very similar to that for the <ctype.h>

translation tables. Here are the affected functions:

• strcoll and strJdnn, declared in <string. h>, map a character string to

another character string, to define a collating sequence.

• mbtowc and mbatowca, declared in <stdlib.h>, map a multibyte string to

a wide-character string.

• wctomb and wcatomba, declared in <•td.11.b. h>, map a wide-character

string to a multi byte string.

header I describe the behavior of each of these functions in later chapters. For

"xatate . b" now, I observe simply that the internal header "xatate . h" defines the type

_statab along with several useful macros. It also declares the various data

objects of type _Statab. The internal header "xlocal e .b" includes

"x.tate .b" to obtain the information needed to manipulate state tables

when locales change. Figure 6.5 shows the header file xstate. h .

100

Figure 6.5:
xstate .h

/* xstate.h internal header */
/* macro• for finite state machines */

ldafine ST_CH OxOOff
ldafine ST_STATE OxOfOO
ldafine ST_ STOFF 8
ldef in• ST FOLD oxeooo
Ida fine ST- INPUT Ox4 000
ldafine ST=OUTPUT Ox2000
ldefine ST_~ OxlOOO
ldafine NSTATE 16

/• type definition.a */
typedef atruct (

conat unsigned short *_ TU>[_NSTATE] ;
} _ stat-1:>;

/* declarations */
extern _stat-1:> _Coatate, _Mbatate, _Mcatate;

Chopter6

0

type Similarly, the functions declared in <time. h> have locale-specific behav-
_Tinfo ior. The structure type _Tido contains several members that point to

null-terminated strings. These strings control how the time functions for­
mat and translate dates and times.

header The internal header "xtinto. h " defines the type _Tinfo. It also declares
"xtido.h" the data object _TU.a, of type _Tinfo, that holds the current information

on times. The internal header "xlocale. h " also includes "xtinfo. h" to
obtain the information needed to manipulate time information when lo­
cales change. Figure 6.6 shows the header file xtinfo. h .

Flgure6.6:
xtinfo.h

Now you can appreciate what goes on in aetlocale. Figure 6.7 shows
the file aatlocal. c . Much of its logic is concerned with parsing a name to
determine which locale to use for each category. Another big chunk of logic
builds a name that aetiocale can later digest. Everything else is small
potatoes by comparison.

-tlocale contains the code that copies information into the "C" locale
on the first attempt to change a locale. I adopted that ruse to avoid a nasty
snowball effect. It's easy enough to pile all the various locale-specific tables
into one structure. Do so, however, and you get the whole snowball

/* xtinfo. h internal header */

/* type definition• */
typedef atruct (

conat char * _ Alttpm;
coast char *_ Daya;
eonat char *_Formats;
conat char *_I•dat;
conat char *_Month•;
coa•-t char *_ Tz.one;
} _Tinfo;

/* declaration• */
extern _ Tinfo _Till\8&; D

<locale .h> 101

regardless of how little of it you use. I felt it was better to have ..tloeale

do a bit more work to avoid this problem. You don't want to drag in ten
kilobytes of code when you u se only the function iHpac:e.

f\.ncHon The function _c.uoc determines whether a locale corresponding to a
_Get1oc given category exists in memory. If it does not, _Getloc looks for it by

reading a locale file. I describe reading this file in detail below. Figure 6.8
shows the file xgetloc . c, which defines this function.

function The C source file x9etloc. c also defines the function Skip. Several
_sup functions that read the locale file call _skip to skip past a character (other

than the null character) and any white-space that follows. Here, white­
space consists of spaces and horizontal tabs. Using _skip religiously en­

forces a uniform definition for white-space in locale files. It also simplifies
much of the code that follows.

function Figure 6.9 shows the source file xdefloc. c. It defines the function_ o.­
_ Defloc floe that determines the name of the native locale. To determine that name,

I chose to use the environment variable "LOCALE". That's akin to using the
environment variable "TZ" to determine what time zone you're in. _Defloc

inspects the environment variable LOCALE at most once during program
execution.

function Figure 6.10 shows the file xt1etloc. c . It defines the function _Setloc,

_ s.uoc which actually copies new information out to the various bits of static data
affected by changes in the locale. (Note that it also performs a modicum of
checking for the more critical values.) A call to aetloeal• thus drags in all
this stuff. I don't know how to avoid this particular snowball. At least you
can avoid it if you leave locales alone.

state To complete the record, I show here the initial sta te tables, since both
tables .. uocal• and _S•tloc manipulate them. (The time information _T.tme.

lives in the file aacti.111•. c, shown on page 437.) Figure 6.11 shows the file
xatat•. c. Don't try to understand it in any detail. For now, I tell you only
that the single state table shown is common to all functions that use state
tables. It is cleverly contrived to produce useful, if simple, results for all
these functions. It also makes a good starting point for state tables that you
may choose to define in a locale file.

locale
files

What I have presented so far is all the basic machinery you need to
support locales. It is enough to let you build additional locales directly into
the library. Just add static declarations of type at.ruct lconv and initialize
them as you see fit. Be sure to change _clocale._Next to point at the list
you add.

The real fun of locales, however, is the prospect of defining an open­
ended set. To do that, you need to be able to specify a locale without altering
C code. That takes all the remaining machinery incidated in Figure 6.2 that
I have yet to describe. Before I describe that machinery, I must describe
locale files.

102

Rgure6.7:
aetlocal.c

Port l

I* .. tlocal.e function */
#include <ctype .h>
#include <atring. h>
#include "xlocale .h"

#if _NCAT != 6
#error WRONG NUMBER OF CATEGORIES
#endif

/* static data *I
Li.nfo Clocale = ("C") ;
~atic Char *curname • "C";

Chopter6

atatic char namalloc • 0 ; /* curname allocated */
atatic con•t char * conat nmcata[_NCATJ = (

NULL, ''collate:" , "c type : " , "monetary: .. ,
"numeri.c: " , "time : ") ;

atatic _Linfo *pcat•[_NCATJ = (
, _Clocal.e, ,_Cloca.\e, ,_Clocale, , _Clocale,
,_Clocale, , _ Cloca.\e) ;

char * (.. tlocale) (int c at, conat char *lname)
(/* .. t new locale */
siEe_ t i;

if (cat < 0 t t _NCAT <=- cat)
return (NULL) ; /* bad cateqory */

if (lname =NULL)
r.turn (eurname) ;

if (lname[O) - '\0')
lname = Defloc () ;

if (Clocale-:- Coatate. Tab[OJ :.. NULL)
{ - - I* fill in "C" locale * /
Clocale . Coatate = Coatate;

::::c1ocai. .::::etype • _ctype;
_Clocale._Tolower = _Tolower;
_Clocale ._Toupper - _Toupper;
Clocale . MbcuOll&X • MbcuOll&X;

::::clocale .::::Mbatate •_Ht.at.ate;
_Clocale ._Wcatate = _Wcatate;
_Clocale ._Lc •_Locale;
_Clocale._Tim•• _Times;

Linfo *p;
int changed • O;

/* ••t cateqorie• */

if (cat ! = LC_ ALL)

I
if ((p = GetlOC(fllllC4ta(C:.t),

return" (NULL) ;

/* •et a single cateqory */
lname)) - NULL)

if (p ! = pcat•[cat])
pcata[cat) • _Setloc(cat,

el••

p) , changed = l ;

I* .. t al.l cateqorie• */

<locale.h>

Continuing
setlocal.c

Port 2

103

for (i = 0; ++i < _NCAT;)
(/~ aet a category •t
if ((p s _Getloc(nmcats[i), l name)) ••NULL)

(/* revert all on any failure •/
aatlocal e(LC_ALL, curname);
return (NULL);
}

if (p I= pcats [i])
pcats[i) = _Setloc(i, p), changed l;

if ((p. _GetlOC(" "• lname)) I= NULL)

pcats[OJ • p; t• set only if LC_ALL COJl\POnent •/

if (changed)
(

char •a;
ai&e_ t n;

t• rebuild curname • /

eize_ t len • atrlen(pcats[OJ->_Name);

for (i • O, n • O; ++i < _ NCAT;)
if (pcatsCil I= pcata{O])

(t• count a changed subcategory •/
l en += atrlen(nmcata[iJ)

+ atrlen(pcata[iJ->_ Nama) + l ;
++n1

if (n == 0)
(t• uniform locale •/
if (namalloc)

free(curname);
curname • (char •)pcats[lJ->_Nama, namalloc • O;

else if ((a• (char •)malloc(l en + 1)) NULL)
(/ * may be raah to t ry to roll back •/
setlocale (LC_ALL, curname);
return (NULL);

}

else
(t• build complex name • /
if (namalloc)

free (curname) 1

curname • a, namalloc • 1;
a+= atrlan(strcpy(s, pcats[OJ->_Name));
for (i - O; ++i < _NCAT;)

if (pcatsCiJ I • pcats (OJ)
(t• add a coJl\POnent • /
•a++ : 1 1'1

a+• atrlen(etr cpy(e, nmcata[i]));
a a t r l en(itrepy(s, pcate[iJ - >_Naflla)};
}

return (curname) 1

} D

104

Rgure6.8:
xgetl.oc . c

Port 1

/* Getl.oc and Skip functions */
lincl.ude <atdio-:-h>
lincl.ude <atdl.il> .h>
lincl.ude <atring .h>
lincl.ude "xl.ocal.e . h "

conat char *_Skip(conat char *a)

Chopter6

/* akip next char pl.ua white-apace */
return (*• • • '\0' ? a : a + l. + atrapn(a + 1, " \t"))' ;

_Linfo * Getl.oc(conat char *nmcat, conat char *l.name)
- /* get l.ocal.e pointer, giv.n category and name */

con.st char •n• , *•;
aiz•_t nl;
_Linfo *p;

/* find category component of name */
aiz•_t n;

for (na • NULL, a • I.name; ; a - n + 1)
{ /* l.ook for exact match or LC ALL */
if (a[n • atrcapn(.a, ":;")) = '\0' II a[n] - ';•)

{ /* m-orize first LC_ALL */
if (na -= NULL)

na • a , nl = n;
if (a[n) ... ' \0')

break;

el.ae if <-c:mp(nmcat, a, ++n) = 0)
{ /* found exact category m.atch *I
na • • + n , nl = atrcapn(na, ";");
break;
)

el.ae if (a[n +• atrcapn(a + n, ";")) .., '\0')
break;

if (na - NULL)
return (NULL) ;

for (p • , _Cl.ocal.e ; p; p = p->_Next)
if (......,,.,(p-> Name, na, nl.) .., 0

" p -> _N..,.;[nl.] '\0')
return (p);

/* inval.id name */

{ /* l.ook for l.ocal.e in fil.e */
char buf[MAXLIN] , *al;
FILE *l.f;
_Locitem *q;
static char *l.ocfil.e;

if (l.ocfil.e)

/ * l.ocal.e fil.e name */

el.ae if ((a • getenv{"LOCFILE")) - NULL
11 ((l.ocfil.e • mal.l.oc(atrl.en (a) + l.))) •• NULL)
return (NULL) ;

<locale .h>

Continuing
xgetloc . c

Parf 2

Figure6.9:
xdefloc.c

•l••
strcpy(locfile, s);

if ((lf = fopen(locfile, " r")) = NOLL)
r e turn (NULL) ;

while ((q = _ Readloc(l!.f, buf, U)) != NULL)
if (q- >_ Code ..., L_ NAM!t

&& memc:mp(s, ns, nl) = 0
&& *_ SIU.p(s + nl - l) == '\0')
break;

if (q = NULL)
p = NULL;

else if ((p = malloc (aizeof LI.info))) = NULL)

else if ((al = malloc(nl + l)) = NULL)
fr- (p), p = NULL;

else

105

{ /* build locale */
*p _ Cloca1e;
p - > Name= mmncpy(sl, ns, nl) ;
al [~ll = '\0' ;
i.f (_ Malteloc(lf, buf, p))

p - >_ Next _ Cl.oca1e._Next , _ Clocale ._Next = p;
else

/* parsing error reading locale file */
fputs (buf, stderr) ;
fputs ("\n-- invalid locale file l.ine \n" , stderr) ;
Freeloc(p) ;

fr-(p), p = NULL;

I

fclose(lf) ;
return (p) ;

I
}

I* Defloc function */
#include <stdlib. h>
#include <stri.ng. h>
#include "xlocale . h "

0

const char *_ Defloc(void)

I I* find name of default locale */
char *s;
static char *de fname = NULL;

if (defname)

else if ((s = ge tenv e ;LOCALE")) != NULL
&& (defname = mall!.oc(strlen(•) + l)) !=NULL)
strcpy(defname, •) ;

else
defname = "C";

return (defname) ;
0

106

Rgure6.JO:
xsetloc.c

Chopter6

/* Setloc function •/
#include <ctype .h>
#include <limita.h>
#include "xlocale. h"

Linfo *_Setloc(int cat, _I.info *p)
/* aet category for locale */

switch (cat)
I /* set a category •/

case LC_COLLATE:
Coatate = p->_Costate;

break;
case LC_CTYPE:

_Ctype m p->_Ctype;
Tolower = p-> Tolower;
_Toupper = p- >_Toupper;

Mbcurmax = p- > Mbeurmax <=MB LEN_MAX
- ? p->_Mbcu,.;..,, : MB_LEN_MAX;
_Mbatate p- >_Mbstate;
_wcatate = p->_Wcstate;
break;

caae LC MONETARY:
LoCale.eurrency s ymbol = p-> Le.currency symbol;

::::i:.ocale.int_eurr::::symbol = p->::::Lc.int_curr::::aymbol;
_Locale.mon_decimal__point = p- >_Lc.mon_decimal_point;
_ Locale.mon_qrouping = p - >_Lc.mon_qrouping; •

Locale. mon thousands aep = p-> Le.men thousands aep;
::::1.oca1e.ne9ative_sign-= p->_Lc .~egative_sign; -

Locale.positive sign - p-> Le .positive sign;
::::i:.ocale.frac_di9ita = p->_~.frac_di9it;;
_Locale.1nt_frac_di9ita = p->_Lc.int_frac_di9ita;
_Locale. n_ca_precedea • p->_Lc .n_ca_precedea;

Locale.n aep by apace = p-> Lc.n aep by apace;
::::Locale.n::::ai~~sn = p->_Lc-:n_aiqn~an7
_Locale.p_ca_precedea a p->_Lc. p_ca_precedea;

Locale.p sep by apace = p - > Lc.p aep by apace;
::::i:.ocale.p::::si~~n • p->_Lc-:p_aiqn~sn7
break;

case LC_NOMEIUC:
_Locale.decimal__point = p->_Lc.decimal_J>oint[OJ ! - '\0'

? p->_ Lc.decimal__point : ".";
_Locale.9roupin9 a p->_Lc.9roupin9;
_Locale.thouaanda_aep a p->_Lc.thouaanda_aep;
break;

case LC TIME :
_Ttmea = p->_Ti.mes ;
break;
}

return (p);
0

<locale.h> 107

Figure 6. 11: /* Coatate, Mbatate, and _Wcstate generic tables */

xstate.c #in-;;J.ude <limlta. h>
#include "xlocale.h"
#if OCHAR_ MAX ! = 255
#error WRONG STATE TABLE
#endif

/* macros */
#define X (ST _FOLD I ST_ OUTPUT I ST_ :INPUT)

/* static data */
static const unsigned s hort tab0[257] = {O, /* alloc flaq */
XIOxOO, XIOxOl, X10x02, X10x03, X10x04, Xl0x05, Xl0x06, Xf0x07,
Xf0x08, Xl0x09, XIOxOa, XIOxOb, Xf OxOc, XfOxOd, x1oxoe, Xf OxOf,
XfOxlO, XIOxll, Xl0x12, Xl0xl3, Xl 0x14, XfOxlS, x1ox16, Xf0xl7,
Xf0xl8, X10xl9, XIOxla, XIOxlb, XfOxlc, XfOxld, XIOxle, XfOxlf,
Xf0x20, X10x21, Xl0x22, Xl0x23, Xi0x24, Xf0x25, X10x26, Xf0x27,
Xf0x28, X10x29, Xl0x2a, XIOx2b, Xf0x2c, Xf0x2d, XIOx2e, Xf0x2f,
Xf0x30, Xf0x31, XIOx32, Xl0x33, Xf0x34, Xf0x35, X10x36, Xf0x37,
Xf0x38, XIOx39, Xl0x3a, X10x3b, X10x3c, X10x3d, X10x3e, Xf0x3f,
X10x40, X10x41, Xl0x42, X10x43, X10x44, X10x45, X10x46, Xf0x47,
X l0x48, Xl0x49, Xl0x4a, X10x4b, Xl 0x4c, XIOx4d, X10x4e, Xf0x4f,
XIOx50, Xl0x51, Xl0x52, Xl0x53, X10x54, Xl0x55, X10x56, Xf0x57,
Xl0x58, X10x59, X10x5a, Xf0x5b, X10x5c, X10x5d, X10x5e, Xf0x5f,
XIOx60, X10x61, Xl0x62, Xf0x63, Xl0x64, XIOx65, X10x66, Xf0x67,
X10x68, X10x69, Xl0x6a, X10x6b, Xl0x6c, X10x6d, X l0x6e, Xl0x6f,
X10x70, X10x71, XIOx72, Xf0x73, Xl 0x74, Xl0x75, Xl0x76, Xf0x77,
XIOx78, Xl0x79, X10x7a, Xf0x7b, Xf0x7c, X10x7d, XIOx7e, Xf0x7f,

X10x80, X10x81, Xf0x82, Xf0x83, X10x84, X10x85, X10x86, Xf0x87,
Xl0x88, Xl0x89, Xf0x8a, XIOxBb, XIOxBc, Xl0x8d, XIOxBe, Xf0x8f,
Xl0x90, Xl0x91, Xl 0x92, Xf0x93, XIOx94, XIOx95, X l 0x96, XI Ox97,
XIOx98, XIOx99, XIOx9a, Xf0x9b, Xl0x9c, X10x9d, X l 0x9a, XI Ox9f,
XIOxaO, XIOxal , Xl0xa2, Xf0xa3, Xl0xa4 , Xl0xa5, Xl0xa6, XI Oxa7,
Xl0xa8, Xf0xa9, XfOxaa, XfOxab, XfOxac, XIOxad, XfOxae, XI Oxaf,
XIOxbO, XfOxbl, Xf0xb2, Xf0xb3, X10xb4, XIOxbS, Xf 0xb6, XI Oxb7,
Xl0xb8, Xf0xb9, XfOxba, XfOxbb, XIOxbc, XIOxbd, XIOxbe, XIOxbf,
XIOxcO, XfOxcl, Xf0xc2, Xf0xc3, Xf0xc4, XIOxc5, Xf0xc6, XI Oxc7,
Xl0xc8, XIOxc9, XIOxca, XI Oxcb, XIOxcc, XIOxcd, XfOxce, XIOxcf,
XfOxdO, XI Oxdl, Xf0xd2, Xf0xd3, Xf0xd4 , Xl0x d5, Xf0xd6, Xl0xd7,
Xf0xd8, Xl0xd9, XfOxda, Xf Oxdb, XfOxdc, XIOxdd, XIOxde, XIOxdf,
XIOxeO, XIOxel, Xf0xe2, Xf 0xe3, Xf0xe4 , XIOxe5, Xf0xe6, x10-1,
Xl0xe8, XIOxe9, XIOxea, XI Oxeb, XIOxec, x1oxed, x1oxee, x1oxef,
XIOxfO, XIOxfl, Xf0xf2, Xf 0xf3, X10xf4, XIOxfS, X10xf6, X10xf7,
X10xf8, X10xf9, XIOxfa, Xf Oxfb, XIOxfc, XIOxfd, XIOxfe, XI Oxff,

};

char _Mbcurmax = l;

_Statab _Costata = {'tabO [l)};
_Statab _Mbstate = {'tabO (l)};
_Statab _ Wcstate = {'tabO (1) } ; 0

108 Chapter6

A locale should be easy to d!efine. All sorts of people might have occasion
to define part or all of a locale. Different groups may want to:
• print dates and times in the local language, using the local conventions
• change the decimal point character used for reading, converting, and

writing floating-point values
• specify the local currency format and symbols
• specify peculiar collating sequences
• add letters, punctuation, or control characters to the character classes

defined by the functions declared in <ctype.h>

• alter the encodings of multibyte characters and wide characters
I list these changes roughly in order of increasing sophistication. Almost

anybody might want to change month and weekday names to a different
language. A few might undertake to define a special collating sequence.
Only the bravest would consider changing to a new multibyte-character
encoding. (It might not agree with the string literals and character constants
produced by the translator, for one thing.) Nevertheless, none ·Of these
operations should require a change in the Standard C library to pull off.

The goal, therefore, is to contrive a way that ordinary citizens can define
a new locale and introduce it to a C program at runtime. The program must,
of course, be one that calls set.l ocale under some circumstances. And the
program must make use of the information altered by such a call. Given
those obvious prerequisites, the Standard C library should assist program
and user in agreeing on locale specifications.

The approach I take is to introduce two environment variables and a file
format. The environment variables are:

"LOCALE" • •I.£X:AIE• (described on page 101), which specifies the name of the native
locale that is selected on a call such as setlocale(ICJ.1.L, ••)

"LOCFILE" • •UJCFILE•, which specifies the name of the locale file to use if setlocale
encounters a locale name that is not already represented in memory

The file format specifies how you prepare the text file so that it defines all
the additional locales you want to add.

A program called xxx might, for example, begin by executing the call
eetlocale(IC_ALL, ""l as above. Under MS-005, you can invoke it from
a batch file that looks like:
set ~: \localee\lJ!Ylocs. loc
set ~
xxx

That causes the program xxx to read the file c:\localee\ll!Ylocs.loc in
search of a locale named "USA.". Assuming the program can find th.at locale
and successfully read it in, the program xxxthen executes with its behavior
adapted to the "USA." locale. Change "t&" to "FJ:aD::e" in the batch script
and the program searches out a different locale in the same file. Or you can
change the file name specified by "I.IXFIIE" and always ask for the generic
"native• locale. Both are sensible ways to tailor the native locale.

<locale,. h>

locale
file

formats

numeric
vdues

109

A more sophisticated program might use more than justthe native locale.
It could determine categories and the names of locales in various ways, then
oblige setlocale to chase them down in the locale file. Conceivably, it could
even rewrite the contents of the locale file while it is running, to build new
locales on the fly. In any of th.ese case, you certainly want to defer binding
locales to programs as late as possible.

A locale consists of an assortment of data types. Some are numeric
values, some are strings, and some are tables of varying formats. Each entity
in a locale needs a distinct name. You use these names when you write the
locale file to specify which entities you wish to redefine. For the members
of struct lconv, I use the member name as the entity name within the locale
file. In other cases, I had to invent entity names.

A locale file is organized into a sequence of text lines. You begin the
definition of the •usA" locale, for example, with the line:
LOCALE USA

Each line that follows begins with a keyword from a predefined list. Use
NOTB to begin a comment and SBT to assign a value to an uppercase Jetter,
as in:
NOTB The following sets. D(elta) to 'a'-'A'
SBT D 'a' - 'A'

You can then use o as a term in an expression.

If the keyword is an entity name, you specify its value on the remainder of
the line. Some examples are:
currency_symbol $
int_curr_ symbol "USD "
frac_digits 2

The quotes around a string value are optional. You need them only if you
want to include a space as part of the string. You can write a fairly ornate
expression wherever a numeric value is required. I describe expressions in
detail on page 113.

The initial values in each new locale match those in the •c• locale. That
typically saves a lot of typing. All you really have to specify is what you
want changed from the •c0 locale. Write more only if you want more
thorough documentation of a locale.

You need to specify numeric values for some members of struct lconv.

These include the category LC_ MONETARY information:
frac_digits
int_frac_digita
n_ca_precedes
n_sep_ by_ spaces
n_sign_posn
p_ cs_precedes
p_sep_ by_ spaces
p_sign_poan

110

string
values

numeric
strings

Chapter6

Each of these occupies a char member. A value of CHAlUWC, defined in
<limits.h>, indicates that no meaningful value is provided.

The value of the macro MB_CURJIAX, defined in <locale.h>, can change
with the category LC_CTYPE. I adopted the entity name:

mb_cur_max

for the char data object that holds the value of this macro.
You need to specify strings for some members of struct

include the category LC_ MONETARY information:
currency_symbol
int_curr_symbol
mon_deci mal_point
mon_thouaands_ sep
negative_sign
Poeitive_ eign

and the category LC_ NUMERIC information:
decimal_point
thouaanda_aep

lconv. These

Note, by the way, that the C Standard assumes that mon_decimal_point,

mon_thouaanda_aep, decimal__point, and thouaanda_ aep all are strings of
length one. Functions in this implementation use the first character of each
of these strings, whatever it may be.

You need to specify numeric strings for some members of atruct lconv.
These include:

grouping (LC_ NOMERIC)
mon_grouping (LC_MONETARY)

The value of each character specifies how many characters to group as you
move to the left away from the decimal point. A value of z.ero terminates
the string and causes the last grouping value to be repeated indefinitely. A
value of CHAR_MAX terminates the string and specifies no additional group­
ing. To group digits by two and then by five, for example, you want to create
the array (2, s. CHA!\...MAX). In the locale file, however, you write:
mon_grouping 25'

For numeric strings, each hexadecimal digit is replaced by its numeric
value. The caret (•) is replaced by CHAR_MAX.

I introduced a handful of additional strings to specify information for
the category LC_ TIME. (See the type _ Tin fo defined in Figure 6.6.) Each of
these strings is divided into fields. I couldn't imagine any character that
would serve universally as a field delimiter. So I adopted the convention
that the first character of the string delimits the start of the first field. That
character also delimits the start of each subsequent field. That lets you
choose a character that doesn't collide with any characters in the fields.

As an example, the am_pm entity specifies what the function atrftime,

declared in <ti me .h> prints for the AM/PM indicator. A common definition
for this string is :AM: PM. A colon delimits the start of each field.

<locale.h> 111

Here are the category LC_Tna: entity names with some reasonable string
values for an English-speaking country. They mostly speak for themselves:

am_pm :.l\M:PM
day• :Sun:Sunday:Mon:Monday:TUe:Tueaday\

Wed:wedneaday:Thu :Thuraday:Pri:Friday:S&t:Saturday
det_ rulea 1032402:102702
t i me_ formata " l tr.b %D %11:%M:%S %Yltr.b %D %Yl%11:%M:%S"
montha :Jan:January:Peb:Pebruary:Mar:March\

Apr:April:May:May:JUn:June\
Jul:July:Aug:Auguat:Sep:September\
Oct:October:Nov:NOvember:Dec:December

time_Eone :BST:EDT:+0300

Note that you can continue a line by ending it with a backslash. Including
all continuations, a line can have up to 255 characters.

The string time_formata specifies the formats used by atrftime to gen­
erate locale-specific date and time (%c), date (fw<l and time (u). [discuss
these formats further in Chapter 15: <time.h>.

ilMEZONE" The third field of time_ 2one counts minrltes from UTC (Greenwich Mean
"TZ" lime), not hours. That allows for the various time zones around the world

that are not an integral number of hours away from UTC. If this s tring is
empty, the time functions look for a replacement string in the environment
variable "TDUIZONB". (You can append a similar replacement for dat_ rulea.)
If that variable is also absent, the functions then look for the widely-used
environment variable "TZ". That string takes the form BSTOSBDT, where the
number in the middle counts hours West of lJfC.

The string dat_ r u lea is even more ornate. It takes one of two general
forms:

(YYYY)MMDDKH+W
(YYYY)MMDDKK-W

Daylight Here, YYYY in parentheses is the year, MM is the month number, DD is the day
Sovlngs of the month, w is the number of days past Sunday, and KH is the hour

Time number in a 24-hour day. +w advances to the next such day of the week on
or after thedateMMDD in the year in question. -w backs up to the next previous
such day of the week before the specified date. You can omit the fields that
specify year, hour, and day of the week.

The fairly simple example above calls for Daylight Savings lime to begin
on 24 March (MMDD = 0324) at 02:00 (HK= 02) and to end on 27 October at the
same time. To switch on the last Sundays in March and October each year
since 1990, write: C1990lO• o102-0:100102 -o. (Years before 1990 don't cor­
rect for Daylight Savings Time, by this set of rules.)

If you live below the Equator, the year begins in Daylight Savings lime.
You can capt ure that nicety by adding a third reversal field, as in
: 0101 : 030202: 100202. You can also write an arbitrary number of year rules
going back in time. Qualify the first rule of each set with a starting year
(yyyy) for the rule to take effect. You can capture the entire history of law
governing Daylight Savings Tune in a given state or country, if you choose.

112 Chapter6

The functions declared in <ctype. h> all are organized around translation
tables. (See Chapter 2: <ctype. h>.) Each is an array of 257 shorts that accepts
subscripts in the interval [-1, 255). In the locale file, you cannot alter the
contents of element-I, which translates the value of the macroEOF, defined
in <•tdio.h>. The entity names for these tables are:

ctype
tolower
toupper

You initialize these tables an element at a time or a subrange at a time.
Here, for example, is a complete specification for the tolower table, using
ASCII characters plus the Swedish 'It.•:

tolower[O : 255) $@
tolower('A' : 'Z'] $$+'a' - ' A '
tolower[•lt.•) 'i.'

The special term $@ is the value of the index for each element in the
subrange. (Read the term as "where it's at.") The special term$$ is the value
of the previous contents of the table element. (Read the term as "what its
value is.") Note that you can write a simple (single-character) character
constant to specify its code value, and that you can add and subtract a
sequence of terms. The first two lines are, of course, optional. You inherit
them from the '"C" locale.

state Several pairs of functions in this implementation use state tables to
tables deflne their behavior, as I discussed on page 99. You can specify up to 16

state tables for each of the three entity names:
collate
mbtowc
wctomb

I describe these tables in greater detail in conjunction with the functions
that use them. For now, I show only a simple example. Here is how you can
write the specification for the simple state table in the file xatate. c. (See
Figure 6.11.) It makes the functions mbtowc and mbatowca, declared in
<atd.lib.h>, perform a one-to-one mapping between multibyte and wide
characters:

mb cur max l
lllbtowc[o, 0:$#) $@ $F $I $0 $0

The first line gives the macro MB_COR_MAX, defined in <atdlib.h>, the value
1. No multibyte sequence requires more than one character. The second line
defines all elements of state table zero for mbtowc and mbatowca. It tells the
functions to:

• fold the translation value into the accumulated value ($F)
• with the input code mapped to itself($@)
• consume the input ($I)
• write the accumulated value as the output ($0)
The successor state is state zero ($0). Translation ends, in this case, when a
zero input code produces a zero wide character.

<locale . h> 113

expressions That's the list of entities you can spe-.;fy in a locale. Now you can
understand why certain funny tenns can appear in expressions. An expres­
sion itself is simply a sequence of terms that get added together. The last
example above shows that you can add terms simply by writing them one
after the other. The plus signs are accepted in front of terms purely as a
courtesy so that expressions read better.

terms You can write lots of different terms:
• Decimal, octal, and hexadecimal numbers follow the usual rules of C

constants. The sequences 10, 012, and OxA all represent the decimal value
ten.

• A plus sign before a term leaves its value unchanged. A minus sign
negates the term.

• Single quotes around a character yield the value of the character, just as
for a character constant in a C source file. (No escape sequences, such as
• \01.2 ', are permitted, however.)

• An uppercase letter has the value last assigned by a SET. All such
variables a re set to zero at program startup.

$x In addition to these terms, a dollar sign is the first character of a
terms two-character name that has a special meaning, as outlined below. Here are

the special terms signalled by a leading dollar sign:
• $$ - the current contents of a table element.
• $@ - the index of a table element. $$ and $@, if present, must precede

any other terms in an expression.
• $A - the value of the macro CHAR_w.x.
• $1 - the value of the macro uCHAR_MAX

· ~•ff~k~~-~~~~~ch~~esc~~en~
in order, ['\a' '\b' '\f '\n' '\r' '\t' '\v').

• [$A $C $D $H $L $M $P $S $u $W)- thecharacter-classification bits used
in the table ctype. These specify, in order: extra alphabetics, extra control
characters, digits, hexadecimal digits, lowercase letters, motion-control
characters, punctuation, space characters, uppercase letters, atld extra
white-space characters. (See the file ctype .h on page 37 for definitions
of the corresponding macros.)

• [$0 $1 $2 $3 $4 $5 $6 $ 7) - the successor states 0 through 7 in a
state-table element. (No symbols are provided for successor states 8
through 15. Write $7+$1 for state 8, and so forth.)

• [$F $I $0 $R) - the command bits used in a state-table element. These
specify, in order: fold translated value into the accumulated value, con·
sume input, produce output, and reverse bytes in the accumulated value.
(See the file xatat• . h in Figure 6.5 for definitions of the corresponding
macros.)

With these special terms, you can write expressions in locale files that don' t
depend on implementation-specific code values.

114

"USA"
locale

function
Getloc

revisited

Chapter6

I conclude with an example of a complete locale. Here is the "USA" locale
with sensible values for all the fields in atruct lconv. It makes no changes
to the coIJating sequence or multibyte encoding specified in the "C" locale:

LOCALE USA

currancy_aymbol "$"
decimal _point
qroupin9 "3"
int_curr_aymbol "USO "
mon_dec:imal_point " ..
mon_9roupin9 "3"
mon_thouaanda_aep ..

'
..

neqative_aign "-"
poaitive_•ign "+"
thouaanda_aep ..

' " frac_diqita 2
int_frac_diqita 2

n_c•_J>recedea 1
n_eep_by_apace 0
n_aign_poan 4
p_ca_J>recedea 1
p_aep_by_apace 0
p_aiqn_poan 4
LOCALE end

The last line delimits the end of the locale. You need such a line only at the
end of the last locale in the locale file (but it is always permissible). To
improve checking, the functions that read the locale fi.Ie report an error H
end-of-file occurs part way through a locale specification.

Now you are in a position to unde.rstand the remaining functions that
implement <locale . h>. RecaU that _Getloc (Figure 6.8) first attempts to Md
a locale in memory. If that fails, it then attempts to open the locale file and
scan it for the start of the desired locale. It looks only at lines in the locale
file that begin with the keyword LOCALE._ Getloc calls _Readloc to read each
line and identify its keyword.

Should _Getl oc find such a line with the desired name following the
keyword, the function allocates storage for the new locale. It copies the
contentsof _c1oc:a1e, then changes to the new name. The function _Malteloc
reads the remainder of the information for the locale and alters its storage
accordingly. If _Maltelocreportssuccess, _Getloc adds the new locale to the
list beginning at _c1oc:a1e. _Next. If_ Malteloc reports failure, _Getl.oc writes
an error message to the standard error stream, discards any allocated
storage, and reports that it could not find the locale. Part of the error
message is the locale-file line tha t caused the offense.

As a rule, it is bad practice for library functions to write such error
messages. They preempt the programmer's right to decide how best to
recover from an erra. I found in this case, however, that the messages are
invaluable. A malformed locale specification is hard to debug if aetlocal•
reads only part ofitorquietly refuses to accept it at all. The library is already
indulging in a complex operation that involves opening and reading a file,

<locale' . h> 115

perhaps repeatedly-all in response to what looks to the programmer like
a simple function call. Writing to the standard error stream is not such a
major addition, in that light. (Still, you may choose to omit the write in
certain environments.)

function Figure 6.12 shows the file xreadloe. c. It defines the function _ Readloe
_Readloe that reads the locale file a line at a time. The caller provides a buffer buf of

length MAXI.IN to hold the line. (The header "xl.ocale .h" defines the macro
MAXI.IN as 256.) Here is where a line that ends with a backslash gets pasted
onto the line that follows. Here is also where keywords are parsed, identi­
fied, and peeled off the beginning of each line.

Rgure6.12:
x.readl.oc. c

_Readloc uses the expression (n = strspn(s, kc)) to determine the
extent of the keyword on an input line. The expression stores inn the length

/* Readloc function */
#in-;;lude <stdio.h>
#include <strinq.h>
#include "xlocale.h"

/* static data */
static const char kc[] • /* keyword chars */

"_abcdefqhijklmnopqrstuvwxyzABCDEFGHIJ!a.MNOPQ.RSTUVWXYZ";

_Locitem *_Raadloc(FILE *lf, char *buf, const char **ps)
(/* qet a line from locale file */
for (; ;)

I /* loop until EOF or full line */
aize_t n ;

for (buf[O] •' ', n al; ; n -- 2)
if (fqets (buf + n, MAXI.IN - n, lf) = NULL

II buf[(n += strlen(buf + n)) - l] !a '\n')
return (NULL) ; /* EOF or line too l onq */

else if (n <• 1 11 buf[n - 2] , .. '\\')
break; /* continue only if ends in \ */

buf[n - 1] = '\0'; /*overwrite newline*/
I /* look for keyword on line */

const char *s = _Skip(buf);
_Locitem *q;

if (0 < (n ~ strspn(s, kc)))
for (q = _Loctab; q->_Nama; ++q)

if (strncmp(q-> Name, s, n) == O
" strlen(q'.:">_Name) = n)
(/* found a match * /
*pa~ Skip(•+ n - 1);
return -{q);
I

return (NULL) ;
I

)

/* unknown or missing keyword */

CJ

116 Chapter 6

of the longest sequence of characters beginning at a all of which are in the
stri.ng kc. I chose not to use the character-classification functions from
<ctype.h>, such as iaalpha, because they can vary among locales.

type _Readloc stores at •pa a pointer to the first character on the line following
_ Locitem the keyword and any white-space. The function also returns a pointer to a

table entry containing information on the keyword that it recognizes. The
header "xlocale.h• defines the types _ Lcode and _ Locitem as:
enum _Lcode (

L_GSTRING, L_ NJ\ME, L_ NOTE, L_SET,
L_STATE, L_ STRXNG, L_ TABLE, L_VALUI!
);

typedef etruct C
conat char •_Name;
aize_t _Offsets
e num _Lcode _Code;
) _ Locitem;

(The scalar type aize _ t is the integer type of the result of operator aizeof.

Several standard headers define this type. I discuss it at length in Chapter
11: <atddef.h>.) The member· _Name points at the name of the keyword.
_offset holds the offset into the structure _ Linfo of the member corre­
sponding to the keyword (if any). And _Code holds one of the enumerated
values that characterize each instance of _Locitem.

data object _Readloc scans the data object _Loctab, an array of _Loe item, to find the
_ Loctab entry that matches the keyword on each line from the locale file. Figure 6.13

shows the file xloctab. c, which defines _Loctab. It uses the macro of f aetof,

defined in <atddef . h >, to determine the offsets into the structure _ Linfo. I
use the macro OPP here to shorten the lines in this C source file.

function One other function uses _Loe tab. Figure 6.14 shows the file xfraeloc. c.

_ Preeloc It defines the function _ Preeloc. If _Kakeloc encounters an invalid line
while reading the locale file, it reports failure back to _ Gatloc. That function
calls _ Preeloc to free any storage allocated for the new locale (including its
name), then frees the _ Linfo data object allocated for the new locale. (It
would probably be acceptable to abandon such storage - requesting a
flawed locale should be a rare·event - but it is tidier to reclaim heap space
that is no longer needed.) _ Preeloc scans _ Loctab for any elements that
correspond to members you can alter in _Linfo by writing lines in the locale
file. For each such element of _ Loctab, _ Preeloc determines whether any
storage was allocated for the new locale. To do so takes a bit of work.

Remember that each new locale begins life as a carbon copy of the ·c·
locale. Jfakeloc allocates a new table or string only when a locale-file line
calls for a change. Request such a change and _Makeloc compares the
relevant pointer member of the new _x.info data object against _ Clocale. If
the pointers are the same, Jlakeloc knows to allocate a fresh version.
Changes apply to the new version, leaving data for the •c• locale a lone. If
the pointers differ, _Kakeloc assumes that it has already allocated a fresh
version for this new locale. Changes accumulate in the new version.

<locale.h>

Figure 6. 13:
xloctab.c

117

_Freeloc performs similar tests. If it encounters a pointer to a string or
a table that matches its brother in _ c1oca1e, it leaves it unchanged. If it
encounters a pointer that differs between the new locale and cl.ocale, it
frees the new storage. -

/* _Loctab data object */
#include <atddef . h>
#include "xlocale.h"

/* macros */
#define OFF(mmnber)

/* static data
offsetof(Linfo, member)
*/ -

_Locitem _Loctab[] = (/* locale file info */
"LOCALE"' OFF (Name)' L_NAME,
"NOTE", 0, L_NOTE,
"SET", 0, L SET,

/* cont:;olled by LC_COLI.ATE */
"collate", OFF(Coatate. Tab) , L STATE,

I* contro11;;d by LC_CTYPE */­
"ctype•, OFF(_Ctype), L_TABLE,
"t.olower", OFF(_ Tolower) , L _TABLE,
"toupper", OFF(_ TOupper) , L _TABLE,
"mb _cur_ max••, OFF(_ Mbcurmax) , L _ ~,

"mbtowc•, OFF(_Mbatate ._Tab), L_STME,
"wctomb". OFF (Wcatate. Tab) , L STME,

/* controlled by LC=ll«>NETARY */
"currency_•ymbol", OFF(_Lc.currency_ aymbol), L_STRING,
"int_curr_aymbol", OFF(_Lc.int_curr_aymbol), L_STRING,
"mon_decimal_J>Oint", OFF(_Lc.mon_decimal_J>Oint), L_STRING,
"mon grouping", OFF(Lc. mon grouping), L GSTRING,
"mon:::: thousands_ sep", - OFF(_~. mon _thousands_ aep) , L _STRING,
"negative sign", CS!F (Le .negative sign), L STRING,
"positive::::aign", OFF(Lc.poaitive::::aign), L::::STRING,
"frac digits", OFF(Lc.frac digits), L VALUE,
"int frac digits", OFF(Le .int frac digits), L VALUE,
"n_c;_J>r~edea", OFF(_~.n_ca_;recedea), L_VALUE,
"n •ep by apace", OFF<(Lc.n aep by apace), L VALUE,
"n::::aign__p;sn", OFF(_Lc-:-n_81'9n__p;sn), L_VALUE-;
"p_cayrecedes", OFF (_Lc.p_cayrecedea), L_VALUE,
"p •ep by apace", OFF<(Lc.p eep by apace), L VALUE,
"p::::dgri__p;sn", OFF(_Lc-:-p_81'9n__p;sn), L_VALUE-;

/* controlled by LC_NUMERIC */
"decimal_J>Oint", OFF(_Lc.deci.mal_J>Oint), L_STRING,
"grouping", OFF(_Lc.grouping), L_GSTRING,
"thousands ••p", OFF(Le. thousands aep), L STRING,

/* controlled by Lc_TIHE */ - -
"am...J""", OFF(_ Timea ._J\mpm), L_STilING,
"days", OFF(Times. Days), L STRING,
"dat_rulea", -OFF(_Timea._Ia~t), L_STRING,
"time_format•"' OFF(_'l'imaa ._Formate)' L_STRING,
"months", OFF(Ti-8. Months) , L STRING,
"time_zone", OFF(_Tu,;a._Tzone). -L_STRING,
NULL} ; D

118 Chapter6

FigU'e 6. 14:

xfree1oc.c
/* Freeloc function */
#include "xlocale.h"

void _Freeloc(_Linfo *p)
{ /* free all stora9e */
_ Locitem *q;

for (q = _Loctab; q-> _Name; ++q)
switch (q-> _Code)

{ /* free all pointers */
case L_STATE:

{ /* free all state entries */
inti;
unsigned short. **pt

= 'ADDR(p, q, unsigned short*);

for (i = _NSTATE; 0 <2 --i; ++pt)
if (*pt u (*pt) [-1] != 0)

free(*pt);

break;

case L TllBLE:
if-(NEIQDDR(p, q, short *))

free(ADDR(p, q, short *) - 1);
break;

case L_GSTRING:
case L_NAME:
case L_STRING:

if (NEWADDR(p, q, char *))
free(ADDR(p, q, char *));

Cl

Both MaJceloc and FreeLoc use two rather ornate macros to do this
work The header "xl~ale.h" contains the definitions:
#define ADDR(p, q, ty) (*(ty *)((char *)p + q-> Offset))
#define NEWADOR(p, q, ty) \ -

(ADDR{p, q, ty) != ADDR(,_Clocale, q, ty))

macro You write ADDR (p, q, char *l, for example, to make an !value - an
ADDR expression you can use to access part or all of a data object. Here, the data

object is a member of the structure of type _unto pointed to byp. q points
to an element of_ Loctab (of type _ Locitem) that contains the offset of the
member. The member, in this case, has type pointer to char.

macro You write NEWADDR(p, q, char *), for example, to test whether a
NEWADDR member has changed since it was copied from _ Cloeale. The arguments

are the same as for the macro ADDR.

freeing This machinery breaks down for state tables, however. Each of these
state tables contains _NSTATE pointers to tables that you can specify in a locale file. (The

header "xatate.h" defines the macro _NSTATE as 16.) The macros, as they
stand, require a separate element in _ Loctab for each table that you want

<locale.h> 119

to conditionally free. I didn't want to pump dozens of dummy entries into
_ Loct&b to put _Freeloc through its paces. Equally, I didn't want to make
the macros ADDR and NEWADDR any more ornate.

l decided, instead, to use a different mechanism for freeing state tables.
To share code, I had already chosen to make state tables look much like the
character translation tables used by the functions declared in <ctype.h>.

That meant that each has an element with subscript -1 (corresponding to
the value of the macro EOF, defined in <atdio.h>). None of the functions
that use state tables know or care about this extra element. So I comman­
deered it as a flag to indicate whether the state table is allocated.

The primeval state table shared by all functions i.n the "C" locale is
defined in the file xatate. c. (See Figure 6.11.) Its element -1 has the value
zero. If _ Malteloc allocates a new state table, it stores a nonzero value in
element-1. That is how _ Freeloc knows whether or not to free a state table.

functton Figure 6.15 shows the file xmakeloc. c. It defines the function _MaJte loc,

Makeloc which I have already discussed at some length. Large as it is, _ Makeloc is
simply a while loop that processes lines from the locale file. The body of the
loop is a switch statement that processes the different kinds of lines. The
code is straightforward, but tedious and very compact.

The one macro you haven't met is TABSIZ. The header "xlocale.h"

contains the definition:
#define TABSIZ ((UCBAR_MAX + 2) * aizeof (short))

This is simply a portable way of writing the size in bytes of the various
tables that you can alter in a locale file.

As much as possible, _Malteloc calls the internal function getval to parse
and evaluate expressions. That helps keep uniform the rules for writing
expressions on a locale-file line. (Expressions for table elements are an
exception - only they accept the special terms $(! and $$.) qetval, in tum,
calls_ Locterm repeated! y to sum a sequence of terms.

function Figure 6.16 shows the file x1octerm. c, which defines the function_ Loc-

_ Locterm term. Here is where the various terms get parsed and evaluated. To evaluate
octal, decimal, and hexadecimal numbers,_ Locterm calls atrtol, declared
in <atcllil>.h>. Note how that function updates the character pointer• to
point past the number it parses and converts. The code for _Locterm is
extremely condensed.

function The file xlocterm. c also defines the function _ Locvar. Only _ Makeloc

_ Locvar calls this function, when it processes a locale-file line with the SET keyword.
_Locvar is also small. It could easily be replaced with inline code.

I placed_ Locvar in xlocterm. c for a good reason, however. It shares with
_Locterm the need to access the two arrays upper• and vars. These give,
respectively, the names and values of the terms you can alter on a locale-file
line with the SET keyword. By placing both functions in the same file, the
arrays can be kept private to that file, as can details of their implementation.

120

Figure 6.15:
xmakeloc.c

Part I

I* _Makeloc function */
#include <atring.h>
#include "xlocale.h"

Chapter6

static const char •getval(conat char *s, unsigned short •anal

unsigned short val;

if (l_Locterm(&a, ans))
return (NULL);

while (_ Locterm(&a, &val))
•ans += val;

return (a)1

t• aeCUll\Ulate tel:IUI •/

int _Makeloc(FILE *lf, char *buf, _ Linfo *p)
{ /* construct locale from text file */
conat char •a;
char *al1
_Locitem *q;
unsigned short val;
static conat char gmap[J z "0123456789abcdef••;

while ((q m _ Readloc(lf, buf, &s)) lz NULL)
switch (q- >_Code)

{ /* process a line */
case L_GSTRING: /* alter a grouping string */
case L_ STRING: /* alter a normal string */

if (NEWADDR(p, q, char *))
free(ADDR(p, q, char *));

if (a[O) == • • •

&& (al = atrrchr(s + l, '"')) I= NULL
&& *_ Skip(al) == '\0')
*al= '\0', ++•1

if ((al = (char *)malloc(strlen(a) + l)) ==NULL)

return (0)1
ADDR(p, q, char •) = atrcpy(al, a);
if (q->_ Code == L_GSTRING)

for (; *al1 ++al)
if ((s • atrchr(gmap, *al)) Im NULL)

*al • *• •• •A• ? CHAR_KAX : a - gmap;
break;

case L_ TABLE:
case L_ STATE:

int inc = 01

I* alter a translation table */
/* alter a state table */

I* process tab[#,lo: hi) $x expr */

unsigned short hi, lo, atno, •uap, ••uapp1

if (*a I= •(•
11 (a = ge·tval(_Skip(a), &atno)) • =NULL)
return (0);

if (*a I = '.')
lo = atno, atno = 0;

else if (q- >_ Code I= L_ STATE I I _NSTATE <• atno
II (a • ge·tval(_Skip(a), &lo)) == NULL)

<locale.h>

Continuing
xmakel.oc.c

Part2

return (0)1
lo • (unsigned char)lo;
if (*• J = • :')

hi • 101

else if ((a• getval(_Skip(s), &hi)) =•NULL)
return (0)1

else
hi = (unsigned char)hi;

if (*• · - ')')
r eturn (0)1

for (a = _Skip(s)1 s[OJ •= •$'1 a = _ Skip(s + 1))
if (s[l} == •@• && (inc & 1) 0)

inc I= 11
else if (a.[11 =• '$' && (inc & 2) == 0)

inc I= 21
else

break1
if ((a= getval(s, &val)) ==NULL I I •a l= '\0')

retum (0) 1

uapp a &ADDR(p, q, unsigned short *} + atno;
if (q->_Code == L_TABLE)

usp = NEWADDR(p, q, short *) ? •uspp : NULL;
else

usp = (*us.pp) [-11 ? •uspp : NULL;
if (usp == NULL)

121

{ /* setup a n ew table */
if ((usp = (unsigned short *)malloc(TABSIZ))

== NULL)
return (0)1

usp[OJ = E:OF1 /* allocation flag or EOF */
memcpy(++u.sp, ADDR(p, q, short *),

TABSIZ - sizeof (short));
*uapp = uap;
)

for !1 lo<= hi1 ++lo)
usp[lo} a val + (inc & 1 ? lo : 0)

+ (inc & 2 ? usp[loJ 0)1

break;
case L_VALUl!:

if ((a= getval(s, &val))
return (0);

I* alter a numeric value */
NULL 11 *a l • •\O·•)

ADOR(p, q, char) = val1
break1

case L_ SET: /* assign to uppercase variable */
if (*(al= (char *)_Skip(s)) == •\o•

11 (al = (char •)getval(sl, &val))
I I *al I = '\0' II _ Locvar(*s. val)
return (0)1

break1

NULL
0)

case L_NAME:
return (1);

/* end happily with next LOCALE */

return (0); / * fail on EOF or unknown keyword */
0

122

Figure 6.16:
xlocterm.c

/* Locterm and Locvar functions *I
#include <ctype .h>
#include <limita.h>
#include <atring.h>
#include "xlocale.h"

/* static data */

Chapter6

static conat char dollars[) z (

""'abfnrtv"
"01234567"
"ACDHLMPSUW"
"#FIOR"};

/* PLUS $(! and $$ */
/* character cod.ea */

I* state values */
/* ctype cod.ea */

/* state conmanda */
static conat unsigned short dolvala [) = (

CBAR_MAX, '\a', '\b', '\f', '\n', '\r', '\t', '\v',
OxOOO, OxlOO, Ox200, Dx300, Ox400, OxSOO, Ox600, Ox700,

~·~·~·~·~·~.y~~. w.~.
OCBAR_MAX, ST_FOLD, ST_INPOT, ST_OtJTPUT, ST_ROTATE};

static con at char uppers [] = "ABCDEFGHIJJtLMNOpQRSTOVWXYZ";
static short vara[aizeof (uppers) - 1) • (0};

int _Locvar (char ch, short val)

I /* set a $ variable */
conat char *a= atrchr(uppera, ch);

if (a =NULL)
return (O);

vara[a - uppers) val;
return (1);

int _Locterm(conat char **pa, unsigned short *ans)
/* •valuate a term on a locale file line */

conat char *a = *P•;
conat char *al;
int mi;

for (mi= O; *a='+' I I *a~'-'; a= _Skip(a))
mi=*•= ,_, ? ~mi : mi;

if (iadigit(a[O]))
*ans z atrtol(a, (char**)'•· 0);

else if (a [OJ = '\'' '' a[l) !z '\0' "a[2) = ' \'')
*ans = ((unsigned char *)a)[l] , a+= 3;

else if (a[OJ ' ' (al z atrchr(uppera, a[O))) !=NOLL)
•an.a a: vara[al - uppers] , ++a;

else if (a[O] = '$' '' a[l)
' ' (al= atrchr(dollara, a[l)l) !• NULL)
*ans - dolval a[al - dollars], a+= 2;

else
return (0);

if (mi)
*ana = -*ana;

*pa = _Skip(a - 1);
return (1);

0

<locale.h> 123

header I conclude this guided tour by disclosing the complete contents of the
"xlocale.h" internal header "xlocale. h". Figure 6.17 shows the file xloeale.h. By this

point, the disclosure should be an anticlimax. You have seen all the impor­
tant pieces along the way.

You have, in fact, seen approximately 800 lines of code in this chapter.
That's a lot of code to implement what appears as just two functions and a
standard header in the description of the Standard C library. I believe,
however, that the ability to define new locales offers considerable promise.
Jf this investment in code can deliver on that promise, it's worth it.

Testing <locale . h>
Figure 6.18 shows the test program tlocale.c. It focuses primarily on

the portable behavior you can expect from the functions in <locall.e .h>. As
a consequence, it doesn't test much of the code presented in this chapter.
To do that, you need to switch to a new locale, such as "IJSA" presented
earlier. Then you can print the results of the extra function_ Fmtval. to verify
that the behavior changes as expected.

You can use tlocale . c to test any implementation of Standard C. It
ensures that the "C" locale meets the requirements of the C Standard, both
before and after various changes of locale. It also verifies that you can
establish mixed locales, at least involving the "C" and native locales. It
endeavors to determine whether these two locales differ. You get one of
two messages. For this implementation, the expected output is:
Native locale same aa "C" locale
SUCCESS teatinq <loeale.h>

References

Exercises

ISO Standard 4217:1987 (Geneva: International Standards Organization,
1987). This Standard specifies the three-letter codes for the currencies of
various nations.

Exercise 6. 1 Write locales that expresses the monetary conventions for Italy, the Neth­
erlands, Norway, and Switzerland. Use the information from the example
in Section 7.4.2.1 of the C Standard (See page 86).

Exercise 6.2 Write a locale that expresses the character-classification conventions for the
French language. Add the lowercase letters [• a a ~ • • a o il] and their
corresponding uppercase letters [.i A A c t t ! O OJ to the translation
tables ctype, tolower, and toupper. How do you determine the code values
for these letters under your implementation?

124

Figure 6. 17:
xlocale.h

I* xlocal.e. h internal header */
linclud• <1.iait• . h>
#includ• <local.•. h>
#includ• <•tdio. h>
#include <•tdlib. h>
#include "x.tate. h"
#include "xtinfo. h"

Chapter6

/* macro• for G9tloc an~ friend• */
#define ADOR(p, q , ty)- (*{ty *) ((char *)p + q- > OffHt))
#define NEWJIDDR(p, q , ty) \ -

(ADDR(p, q, ty) I• ADOR(5 Clocal.e, q , ty))
#define MAXLXN 256 -
#define TABSIZ ((OCRAR MAX + 2) * aizeof (abort))

/* type definitlona */
typedef const •truct {

conat char *_Name;
aize_t _Off•et ;
enum I

L_ GSTRING, L_ NJIME, L_ NO'l'E, L_SET,
L_STATE, L_ STRING, L_TABU:, L_ VALUE
) Cod•;

_Locit-;
typed•f •truct _ Linfo

conat char * N.,..;
•truct Litlf";; • Next;

I* must be first */

I* ~ontrou.;d by LC_ COLI.An: • /
_Statab _Coatate;

/* controlled by LC_CTYPE */
conat short * Ctype;
conat short •:Tolower;
conat short *_ ToupP9r;
unsigned char _Mbcurma.x;
_Statab _Mbstate;
_Statab _wcstate;

/* controlled by LC_K:>NETARY and LC:_ NUMERIC */
struct lconv Le;

/* controlled by IJC_TIME */
Tinfo _Timas;

} _Linfo;
/* declarations */

conat char* Oefloc(void) ;
void Freeloe (Linfo *) :
_Linf-;;- *_Getloe(con•t char * , con.t char *) ;
int Loct•rm(con•t char **, unsigned short *) ;
int :Locvar(char, •hort);
int 11!!l<doo(nLB *, chu *, _Linfo *);
_Locitem *_Raadloc(FILB •, char *, conat char **);
_Linfo *_Setloc(int, _ Linfo *);
conat char *_ Skip(con•t char*);
extern _Linfo _ Clocale;
extern _Locit- _Loctab[J ; 0

<locale.h>

A~e6.18:

Uocale.c

/* test locales */
#include <assert.h>
#include <li.ftlits. h>
#include <locale.h>
#include <stdio.h>
#include <strinq.h>

static void testclocala(struct lconv *p)

125

{ /* test properties of "C" locale */
assert (strcmp (p- >currency symbol. , '"') = 0);
assart(atrcmp(p->dacimal_;;oint, ".") = 0);
assert (atrcmp(p->groupinq, "") = 0);
assert (strcmp(p->int curr symbol, "") = 0);
assert (strcmp(p->mon=dec~l_yoint, "") = 0);
assert (strcmp(p->mon3roupinq, "") = 0);
assart(strcmp(p->mon thousands sep, '"') = 0);
assert (strcmp(p->naq;tiva_siqn-;- "") = 0);
assert (atrcmp(p->positive_siqn, "") 0);
assert (strcmp(p->thousands aep, "") = O) ;
asaart(p->frac_diqits = ciiAR_MAX);
asaert(p->int frac diqits =CHAR MAX) ;
&Hart (p->n_.;;_pre-;;-ades = CBAR_KAx);
assert (p->n_sep_by_apace = CBAR_MAX);
assert(p->n_siqn_J>Osn == CBAR_MAX);
assert (p->p_cs_precedes == Cl!AR_MAX);
assert(p->p_ sep_by_space = CHAR_MAX);
aaaert(p->p_aiqn_poan == CHAR_MAX);
}

int main()
{ /* teat basic pro~rtiea of locales *I
static int cats[) = {LC_ALL, LC_COLLA'l'E, LC_CTYPE,

LC K:>NETARY, LC NUMEIUC, LC_ TIME};
struct - lconv *p = NOLL;
char buf[32), *a;

assert ((p = localeconv ()) ! = NOLL) ;
testclocale(p);

!=NULL); assert ((s = aetlocale(LC ALL, NULL))
assert(strlen(a) < sizeof (buf)) ;
strcpy(buf, a); /*but not safe

/* o~ if longer */
for this proqram *I

assert(setlocale(LC_ALL, "") !=NULL);
assert(localaconv() !z NULL);
aasert((s"' setlocale(LC_MONETARY, "C")) ! = NULL);

puts(strcmp(s, "C") ? "Native locale differs from \"C\""
: "Native locale same as \"C\"");

assert(aetlocale(LC_NtJMERIC, "C") ! =NULL);

assert ((p = localeconv ()) != NOLL);
teatclocale(p);
aaaert(setlocale(LC_ALL, buf) '"'NOLL);
assert((p"' localeconv()) !2 NOLL);
testclocal.e(p);
puts("SUCCESS testing <locale.h>");
return (0);

0

126 Chopter6
Exel'cise 6.3 Alter the test program tctype. c (shown on page 44) so that it first switches

to the locale in the previous exercise. Does it d isplay what you expect when
you run it?

Exercise 6.4 Write a locale that expresses the monetary and numeric conventions for the
French language. At the very least, you need to alter:

mon _ decimal. _J>Oint decimal. _J>Oint
mon groupi.nq grou;>ing
mon - thoueanda aep thouaanda _aep
neg;tive_aign- poaitive_ aign

Test your new locale. (Hint: You may want to commandeer test programs
in this and later chapters as a starting point.)

Exercise 6.5 (Harder] Tables of values with many fraction digits often group digits by
fives going to the right from the decimal point. An example is:

+1 . 00000 00000 00
- 0 . 16666 66666 67
+0 .00833 33 333 33
-0.0001 9 8'126 98

Add the members fra c grouping and f rac group aep to atruct l conv.
Define them in such a ;ay that you can s~ify the format used in this
example (and others, of course). Alter the code in this chapter, including
_Fllltval, to initialize, co~, alter, and use these members properly. Is such
an addition permitted by the C Standard?

Exercise 6.6 [Harder) You want a program to be able to construct its own locale.
Rewriting the locale file is unacceptable. What function(s) would you acid
to <locale . h> to permit a program to name, construct, and add new locales
on the fly? Write the user documentation that a programmer would need
to add locales.

Exel'Cise 6.7 (Very hard] Implement the capabilities you described in the previous
exercise.

Chapter 7: <math.h>

Background
Writing good math function is hard. It is still commonplace to find

professional implementations of programming languages that provide
math functions with serious flaws. They may generate intermediate over­
flows for arguments with well-defined function values, or lose consider­
able significance, or generate results that are simply wrong in certain cases.

history What's mildly surprising about this state of affairs is that implementors
have had plenty of time to learn how to do things right. The earliest use for
computers was to solve problems with a distinctive engineering or mathe­
matical slant. The first libraries, in fact, consisted almost entirely of func­
tions that computed the common math functions. FORTRAN, a child of the
1950s, was named for its ability to simplify FOR.mula TRANslation. Those
formulas were larded with math functions.

Over the years, implementors have become more sophisticated. The
IEEE 754 Standard for floating-point is a significant milestone on the road
to safer and more consistent floating-point arithmetic. (See Chapter 4:
<noat .b> for additional discussion of floating-point representations and
the IEEE 754 Standard.) Yet in another sense, IEEE 754 adds to th.e imple­
mentor's woes. It introduces the complexity of gradual underflow, codes
for infinities and not-a-numbers, and exponents of different sizes for dif­
ferent precisions. Small wonder that many implementors often support
only parts of the IEEE 754 Standard.

I spent about as much time writing and debugging the functions de­
clared in <math.b> as I did all the rest of this library combined. That
surprised me, I confess. I have written math libraries at least three times
beforehand over the past twenty-odd years. You'd think that I have had
plenty of time to leam how to do things right, as well. I thought so too.

goals I took so long this time because I adopted severa 1 rather ambitous goals:

• The math library should be portable over a range of popular computer
architectures. All functions are designed to yield 56 bits of precision.
That makes them suitable for a number of machines with 64-bit double
representation - those with IEEE 754-compatible math roprocessors (53
bits of precision), the IBM System/370 family (53 to 56 bits), and the DEC
VAX family (56 bits).

128 Chapter?

• Each function should accept all argument values in its domain (the
argument values for which it is mathematically defined). It should
report a domain error for all other arguments. In this case, the function
returns a special code that represents NaN for not-a-number.

• Each function should produce a finite result if its value has a finite
representation. It should report a range error for all values too large or
too small to represent. If the value is too large in magnitude, the function
returns a special code +Inf that represents plus infinity, or the negative
of that code - Inf that represents minus infinity, as appropriate. If the
value is too small in magnitude, the function returns zero.

• Each function should produce the most sensible result for the argument
values NaN, +Inf, and - Inf. On an implementation that supports multi­
ple NaN codes, such as IEEE 754, the functions preserve particular NaN
codes wherever possible. If a function has a single argument and the
value of that argument is a NaN, for example, the function returns the
value of the argument.

• Each function should endeavor to produce a result whose precision is
within two bits of the best-available approximation to any representable
result.

• No function should ever generate an overflow, underflow, or zero
divide, regardless of its argument values and regardless of the result.

• No function requires a floating-point representation other than double to
perform intermediate calculations.

I believe I have achieved these goals, as best as I can tell from the testing
these functions have undergone to date.

non-goc:U I should also point out a number of goals I chose not to achieve:
• The library doesn't try to d istinguish +0 from --0. IEEE 754 worries quite

a bit about this distinction. All the architectures I mentioned above can
represent both flavors of zero. But I have trouble accepting (or even
understanding) the rationale for this extra complexity. I can sympathize
with recent critiques of the IEEE 754 Standard that challenge that ration­
ale. Most of all, I found the functions quite hard enough to write without
fretting about the sign of nothing.

• The libra.ry does nothing with various flavors of NaNs. IEEE 754 arith­
metic, for example, distinguishes quiet NaNs from signalling NaNs. The
latter should generate a signal or raise an exception. This implementa­
tion essentially treats all NaNs as quiet NaNs.

• I provide low-level primitives only for the IEEE 754 representation. They
happen to work rather well with the DEC VAX floating-point repre­
sentation as well, but the fit isn't perfect. The VAX hardware doesn't
recognize as special the code values for things like +Inf and -Inf. Such
codes can disappear in expressions that perform arithmetic with them.
The primitives must be altered to support System/370 floating-point.

<math . h> 129

• I have not checked the functions on System/370. The "wobbling preci­
sion" on that architecture requires special handling. Mostly, I have tried
to provide such special handling, but it may not be thorough enough.

• Many functions are probably suboptimal for mach ines that retain much
fewer than 53 bits of precision in type double. The C Standard permits a
double to retain as few as ten decimal digits of precision - about 31 bits.
For such machines, you should reconsider the approximations chosen
in various math functions.

• Functions that use approximations will almost certainly fail for ma­
chines that retain more than 56 bits of precision. For such machines, you
must reconsider the approximations chosen.

• Aoating-point representations with bases other than 2or16 are poorly
supported by this implementation of the math library. An implementa­
tion with base-10 floating-point arithmetic, for example, would call for
significant redesign.

Even with these constraints, you should find that this implementation of
the math library is useful in a broad variety of environments.

Computing math functions safely and accurately requires a peculiar
style of programming:

finite • The finite precision of floating-point representation is both a blessing
precision and a curse. It lets you choose approximations of limited accuracy. But

it offers only 1.imited accuracy for intermediate calculations that may
need more.

finite • The finite range of floating-point representation is also both a blessing
rc:rige and a curse. It lets you choose safe data types to represent arbitrary

exponents. But it can surprise you with overflow or underflow in
intermediate calculations.

You learn to dismantle floating-point values by performing various semi­
numerical operations on them. The separate pieces are fractions with a
narrow range of values, integer exponents, and sign bits. You can work on
these pieces with greater speed, accuracy, and safety. Then you paste the
final result together using other seminumerical operations.

Cody An excel.lent book on writing math libraries is William J. Cody, Jr. and
and William Waite, Software Manual for the Elementary Functions. Many of the

Waite functions in this chapter make use of algorithms and techniques described
by Cody and Waite. Quite a few use the actual approximations derived by
Cody and Waite especially for their book. I confess that on a few occasions
I thought I could eliminate some of the fussier steps they recommend. All
too often I was proved wrong. I happily build on the work of these careful
pioneers.

elefunt As a final note, the acid test for many of the functions declared in
tests <math. h> was the public-domain elefunt (for "elementary function") tests.

These derive from the carefully wrought tests in Cody and Waite.

130 Chapter?

What the c Standard Says

llUCl:_VAI.

domdn
error

range
en or

7.5 Mathematics <math . h >

'The header <aath . b> declares several mathematical functions and defines one macro. 1lic
functions take double arguments and return doubl e values.103 Integer arithmetic functioos
and conversion functions arc discussed later.

The macro defined is

llUGS_V.U.

which expands to a positive daub.le expression, llOI necessarily reprcsen1able as a t:l o a t .1°'

Forward rer~~= integer arithmetic functions (7. I0.6). 1he atof function (7. L0.1.1), lh<
strtod func1ion (7. 10.1.4).

7.5.1 Treatment of error conditions
'The behavior of each of these functions is defined for all representable values o f its input

arguments. Each function shall execute as if it were a single operation, wilhout generating any
cxtttnally visible exccplions.

For all functions, a domain error occws if an input argument is outside lhe domain over which
the mathematical function is defined. 'The description of each function lists any required domain
errors; an irnplementaiion may define additional domain errors, provided 1hal s uch erron arc
consistent wi1h the mathematical defini1ion of 1he function.105 On a domain error. the function
returns an implerncntalion-defined value; the value of the macro EDOM is stored in e rrno.

Similarly, a range error occurs if the result of the function cannot be represented as a doubl e
value. U the result overflows (lhe magni1udc of the resuh is so large tha1 ii cannot be rrcpresented
in an object of the specified type), t he function returns the value of the macro HUGE VAL, wilh
the same sign (except for the tan function) as the correct value of the funclion; the value of the
macro ERANGE is stored in errno. If the result underflows (the magnirudc of 1he result is so
small that it cannot be represented in an object of the specified type), the function returns 1.ero;
whether the integer expression errno acquires the value or the macro ERANGE is implementa­
tion-defined.

7.5.l Trigonometric functions
7.5.2.J 1be aco• function
Syn-0p5is

t include <aat.h . h>
double aco• (double x.) :

Description

The a coa function computes 1he principal value of lhc arc cosine of :t<. A domain error occurs
for arguments not in lhe range l- 1. +I).

Retu rns

The a coa function returns 1he arc cosine in the range (0. It) radians.
uin 7.5.2.2 The aain runction

Synopsi.<

l include <aatb . I\>
doubl.e eeln(do\abl9 X) ;

Description

The aain function cornpulcs lhe principal value of the arc sine of JC. A domain error occurs
for arguments not in lhc range (- 1, +l].

Returns

The aain function returns the arc sine in lhe range (- Tt/2, +Tt/21 radians.
aun 7.5.2.3 lbe a t an function

Syn<JpSis

lincl~ <aath .h>
double at.an (doul:>le aJ ;

<math .h> 131

Oescripllon

The atan function compuies lh.e principal value of 1he arc tangent of x .

Returns

a tan2

The aUn function returns 1he an: 1angent in the range (- n/2, +lt/21 radians.
7.S.2.4 The atan2 function

Synopsis

t include <a.t.tl\ .h>
doul>l• at.an2 (doubl• y , double x) ;

DH<ription

The atan2 function compu1es the principal value of the arc tangent of y /x, using !he signs
of both argumcois to <klerminc the quadrant of !he return value. A domain error may occ:ur if bolh
arguments arc zero.

Returns

Tbc: a tan2 function rc1ums !he an: tangent of y /x, in !he nnge (- rt, +11) ndians.

7.S.2.5 The cos function

Synopsis

t i.nclude <aat.h . h>
doubl• co• (double •>;

Desc.rlption

The cos function computes lhc cosine of x (measured in radians).

Returns

The: coa function returns the cosine value.

a.l.n 7.S.2.6 'The sin fundion

Synopsis

t i.nclud.9 <aath , h>
doubl• e i.n (double x) ;

Description

The s in function computes 1hc sine of x (measured in radians).

Returns

Tbc: ain function returns lhe sine value.

tan 7.S.2.7The tan function

Synopsis

l i.nclude <math , b>
double tan (do\lbl• a);

Description

Tbc: tan functioo rciums the tangent of x (measure<! in radians).

Rttums

The tan function returns the tangent value.

7.S.3 Hyperbolic functions
coah 7.S.3.1 The cosh fund ion

Synopsis

li.nclude <aat.h . b>
double coah(doubla a) ;

Description

The cosh functioo compuies the hypcrl>olicoosinc ofx . A range error occurs if the magnitude
of x is too laige.

132

Returns

Thc coah function returns the hyperbolic cosine value.
a l.nb 7.5.3.2 The sinh function

Synopsis

I incl ude <aath . h>
double e i.nh(doubl• a) ;

Description

Chapter?

The ainh function computes the hyperbolic sine ol x. A range error occun if the magnitude
ol x is too large.

Returns

The ainh function re1ums the hyperbolic sine value.
tan!\ 7.5.3.3 The tanh function

Synopsis

l l.ncluM <aath . h>
double tanb (double x);

Description

The tanh function complltcs the hyperbolic tangent of x.
Returns

The tanh function returns the hyperbolic tangent value.

7.5.4 Exponential and logarithmic functions
_. 7.5.4.l The exp function

Syn ops;,
t includie <aath . h>
doubl.e expCdoubl.e •> :-

Description

Thc exp function complltes the e><poncntial function of x. Arangccrroroccurs if the magnitude
of x is too large.

Returns

The exp function returns the exponential value.
7.5.4.2 The frexp fundioo
Synopsis

I include <aath . h>
double fr•JCP(doubl• v•lu• . i.nt. •esp) ;

DescriptJon

The frexp function b'cak.s a noa1ing-poin1 number into a normalized fraction and an intcgtal
power of 2. It stores the integer in the int objc:a poinlcd to by exp.
Returns

Thc frexp function returns the value x, such that x is a double with magnitude in the
interval (1/2, I) or 1_oro, and value equals x times 2 raised lo the po"''Cr *exp. lfvalu• is
zero, both pans of the result arc zero.
7.5.4.3 The l.dexp function
Synopsis

l i nc1ud9 <a&t.h .h>
doul>la ld ... p(doul>l• ... int HJ>) ;

DescrlptJon

The ldexp function multiplies a noating-poilll number by an integral power of 2. A range error may occur.

<math .h>

Retum_,

The ldexp function rctun1s the value of x times 2 raised to the power exp.

i 09 7.5.4.4 The log function

Synopsis

l i.nclu.S. <aat:h . h>
doul>Lo 109(doubl• •) :

DtsaipCion

133

The log function <.0mpu1u 1he natural logariihm of x. A domain error occurs if lhe argument
is negative. A range error may occur if Ilic argumen1 is zero.

Rt tU"'-'

10910

The log function returns 1hc natural logarithm.

7.5.4.S The 10910 function

Synopsis

t incl...S. ~tb.h>

doubl.e 10910 (doubl.• •);

Description

The luql 0 function computes lhe base-ten klgari1hm of x. A dcrnain error occurs if the
argument is negative. A range error may occur if the argument is zero.

Returns

The loglO function re1ums the base-len logarilhrn.

-u 7.5.4.6 The modf function

Synopsis

t incl114- <Nt h . h>
double 90dt(doW:>1• value , doubl.4a • ipt .r) ;

Dtscripeion

The lllOdf function breaks Ille a:rgumcnt value into integer and fraction parts, each of which
has the same sign as the argument. h stores 1he inieger pan as a double in the object pointed to
by iptr.

Returns

The lllOdf function returns lhe signed fractional pan o f value.

1.5.5 Power functions
- 7.5.5.1 Thepowfunction

Synopsis

l includl9 <aat.h. h>
double pow (double JC,. double y) ;

Description

The pow function cornpulCS x raised to the power r· A domain error occurs if x is negative
and y is not an integral value. A domain error oocw-s i 1he result cannot be represented when x
is zero and y is less than or equal to zero. A range error may occur.

Retum_,

The pow function returns lhe value of x niised 10 the power y . -t 7.5.5.2 The sqrt function

Synopsis

I include <aath . h>
doubl• eqrt (double a) ;

Description

The aqrt function compu1es 1hc nonnegative square root o f x. A dcrnain error occurs if the
argument is negative.

134 Chapter?

Returm

11le aqrt function rclums 1hc value of the square root.

7.5.6 Nearest integer, absolute value, and remainder functions
c.u 7.5.6.1 The ceil function

Synopsis

I include <aath . h>
double ceil(doubl• •) ;

Description

11le ceil function compu1es lhe smallest iniegral value not less 1han x.
Returns

11le ceil function returns 1he smallest imegral value not less 1han x. expressed as a double.
raba 7.5.6.2 The faba function

floor

S)11opsis

1 1.ncluct.. ~th.h>

double fab• (double x) ;

Descriplion

11le faba function compu1cs 1hc absolute value of a floe1ing-poin1 number :1<.
Returns

The faba function returns lhc absolule value of :1< .
7.5.6.3 lbe floor function

Synopsis

IJ.nclUCS. <9&t.b . h>
double floor (doubl.• •) ;

Desaiplion

The floor function compu1cs 1he largest imegral value not greater 1han x.
Returns

11le floor function returns the larges1 integral value not grea1er 1han :1<. expressed as a double.
r- 7.5.6.4 The fmod function

Synopsis

1 1.nclUCS. <9&t h .h>
doul>l• L-tdoul>1- ,., doul>l• y) ;

Descriplion

The t:mod function computes 1he floating-poin1 remainder of :1</y.
Returns

The t:mod function rciums 1he value :1< - i • y , for some int~er i such that, if y is nonzero,
the result has the same sign as :1< and magni1udc less lhan the magnnudc ol y. If y is zero, whether
a domain error occurs or 1hc t:mod function returns zero is implcmcni.uion-<lefincd.

Fool notes

103. Sec " future library directions .. (7 .13.4).

104. HUGE_ VAL can be positive infini1y in an implcmcn1aaion lhat supports infinities.

105. In an implementation lhat supports infmitics, 1his allows infinity as an argumcm to be a
domain error if the ma1hcmatical domain of 1hc func1ion does nol include infinity.

<111ath.h> 135

Using <math.h>
I have to assume that you have a good notion of what you intend to do

with most functions declared in <math.h>. Few people are struck with a
sudden urge to compute a cosine. I confine my remarks, therefore, to the
usual comments on individual functions:

HUGB_VAL HUGE_ VAL - This macro traditionally expands to a double constant that is
supposed to be ridiculously large. Often, it equals the expansion of vBi:._ JWC,

defined in <float. h>. On machines that lack a specialcode for infinity (Inf),
returning such a large value is considered the best way to warn that a range
error has occurred. Be warned, however, that HUGB_ VAL may very well equal
Inf. It is probably safe to compare the return value of a math function against
HUGE_ VAL or -HUGB_ VAL. (It is probably better to test whether errno has been
set to ERANGB. Both of these macros are defined in <errno.h>.) Don't use
HUGB_VAL any other way.

acos acos - The functions acos and asin are often computed by a common
function. Each effectively computes one of the acute angles in a right
triangle, given the length of one of the sides and the hypotenuse. Be wary,
therefore, of arguments to acos that are ratios, particularly if one of the
terms looks like sqrt< i. o - x • x>. You may very well want to call aain,

•tan, or even better, atan2.

asin aain - See acos above.
atan atan - The functions atan and atan2 are often computed by a common

function. The latter is much more general, however. Use it in preference to
atan, particularly if the argument is a ratio. Also see acos above.

atan2 atan2 - This function effectively computes the angle that a radius vector
makes with the X-axis, given the coordinates of a point in the X-Y plane. It
is by far the most general of the four functions acos, aain, at an, and atan2.

Use it in preference to the others.
ceil ceil - The functions ceil, floor, and modf let you manipulate the

fraction part of a floating-point value in various ways. Using them is much
safer than converting to an integer type because they can manipulate
arbitrary floating-point values without causing overflow. Note that ceil

rounds to the right along the X- axis, while floor rounds to the left. To round
an arbitrary floating-point value x to the nearest integer, write:

x < 0.0 ? ceil(x - 0.5) ' floor(x + 0.5)

cos cos - The functions cos and sin are often computed by a common
function. Each effectively reduces its argument to a range of n radians,
centered about either the X- or Y-axis. Be wary, therefore, of arguments to
cos that include the addition of some multiple of n/2. You may very well
want to call sin instead. Omit adding to the argument any multiple of 2•n.
The function will probably do a better job than you of eliminating multiples
of 2•n. Note, however, that each multiple of 2•n in the argument reduces
the useful precision of the result of cos by almost three bits. For large

136 Chapter 7

enough arguments, the result of the function can be meaningless even
though the function reports no error.

coah coah - Use this function instead of the apparent identity:

coah(x) = 0 . 5 * (exp(x) + exp(-x))

or any of its optimized forms. Unlike this expression, coah should generate
a more accurate result, and cover the full range of x for which the function
value is representable.

exp exp - If the argument to exp has the form y * loq(x), replace the
expression with pow (x, y). The latter should be more precise.

faba faba - This function should be reasonably fast. It should also work
properly for the arguments Inf and -Inf, if the implementation supports
those special codes.

floor floor - See ceil above.

&.od mod- This function determines the floating-point analog to a remain·
der in integer division. You can sometimes use it to advantage in reducmg
an argument to a subrange within a repeated interval. As such, fmod is
better and safer than subtracting a multiple of the interval directly. Other
techniques described later in this chapter often do a better job of argument
reduction, however.

frexp frexp - Use this function to partition a floating· point value when you
can usefully work on its fraction and exponent parts separately. The com·
panion function is often ldexp below.

ldexp ldexp - Use this function to recombine the fraction and exponent parts
of a floating-point value after you have worked on them separately. The
companion function is often frexp above.

log loq- loq(x) is the natural logarithm, often written /oge(x) or /n(x). You
can, of course, obtain the logarithm of x to any base b by multiplying the
value of this function by the conversion factor logb(e) (or 1 /loge(b)).

loglo loqlO - loglo (x) is often computed from loq (x). If you find yourself
multiplying the result of loqto by a conversion factor, consider calling log
instead.

lllOdf lllOdf - Use this function to partition a floating-point value when you
can usefully work on its integer and fraction parts separately.

pow pow - This is often the most elaborate of all the functions declared in
<math.h>.Agood implementation will generate betterresultsforpow(x, y)

than the apparent equivalent exp (y * loq (x)) . It may take longer, however.
Replace pow(•, y) with exp (y) where e is the base of natural logarithms.
Replacepow(x, 0 . 5) withaqrt(x).Andreplacepow(x, 2.0) withx * x.

ain ain - See coa above.

ainh ainh - Use this function instead of the apparent identity:

ainh(x) = 0.5 * (exp(x) - exp(-x))

<math.h> 137

or any of its optimized forms. Unlike this expression, ai.nh should generate
a more accurate result, particularly for small arguments. The function also
covers the full range of x for which the function value is representable.

sqrt sqrt - This function is generally much faster than the apparent equiva­
lent pow (x, 0.5).

tan tan - This function effectively reduces its argument to a range of 1t
radians, centered about the X- axis. Omit adding to the argument any
multiple of 2*1t. The function will probably do a better job than you of
eliminating multiples of 2*n. Note, however, that each multiple of 2*n in
the argument reduces the useful precision of the result of tan by almost
three bits. For large enough arguments, the result of the function can be
meaningless even though the function reports no error.

tanh tanh - Use this function instead of the apparent identity:

tanh(x) = (exp(2.0 * x) - 1.0) I (exp(2.0 * x) + 1.0)

or any of its optimized forms. Unlike this expression, tanh should generate
a more accurate result, particularly for small arguments. The function also
covers the full range of x for which the function value is representable.

Implementing <math. h>
The functions in <math . h> vary widely. I discuss them in three groups:

• the seminumerical functions that manipulate the components of float­
ing-point values, such as the exponent, integer, and fraction parts

• the trignometric and inverse trignometric functions
• the exponential. logarithmic, and special power functions

primitives Along the way, I also present several low-level primitives. These are used
by all the functions declared in <math.h> to isolate dependencies on the
specific representation of floating-point values. I discussed the general
properties of machines covered by this particular set of primitives starting
on page 127. I emphasize once again that the parametrization doesn't cover
all floating-point representations used in modern computers. You may
have to alter one or more of the primitives for certain computer architec­
tures. In rarer cases, you may have to alter the higher-level functions as
well.

header Figure 7.1 shows the file math. h . It contains only a few surprises. One is
<math. h> the masking macros. You can see that several of the math functions call

other functions in turn. The masking macros eliminate one function call.
macro Another surprise the definition of the macro HUGE_ VAL. I define it as the

HUGE_VAL IEEE 754 code for +Inf. To do so, I introduce the type _Dconat. It isa union
that lets you initialize a data object as an array of four unsigned shorts, then
access the data object as a double. (See page 65 for a similar trick.) The data
object _Hugeval is one of a handful of floating-point values that are best
constructed this way.

138 Chapter 7

Rgura7.1: /* 1nAth .h standard header*/
math. h #ifndef _MATH

#define MATH
l* macro• */

#define HUGE VAL Bugeval. O
/* tfl>e defi~itiona *f

typedef const union (
unaiqnec:I abort _ W[4);
double _o;
} Oconat;

- /* declaration• */
doubl e acoa(double) ;
double aain (double) ;
double atan (double) ;
double a tan2 (double, doub1e) ;
doub1e ceil(double);
double coa(double);
doubl e coah(doubl e) ;
double exp (double) ;
double fal:>a (doub1e) ;
doubl e floor(double);
double fmod(doub1e , doub1e) ;
doubl e fraxp(double , int *) ;
double ldaxp(doubla, int) ;
double loq(double) ;
double loqlO (double) ;
double modf(double, double *);
doubl e pow(double, double);
double ain(double) ;
doubl e ainh (double) ;
doubl e aqrt (doub1e) ;
double tan(double) ;
double t&nh(double) ;
double _Aain(double, int);
doubl e Loq (double, int) ;
double :=sin(double, unaiqnad int);
extern Dconst Buqaval;

-/* mac r; override• *I
#define acoa(x) Aain(x, 1)
#define aain(x) =Aain(x, 0)
#define coa (x) _ sin(x, 1)
#define loq(x) Loq(x, 0)
#define loqlO (xr Loq(x, 1)

#define •in(x) _Sin(x, 0)
#andif D

<inath.h>

Figll'e 7 .2:
xvalues.c

/* values used by math functions -- IEEE 754 version */
#include "xmath.h "

/* macros */
#define NBITS (481-_DOliT)
#if _DO
#define INIT(...0)
#else
#define INIT(wO)
#endif

0, 0, 0, wO

wO, O, 0, 0

/* static data */
Oconst Buqeval ~ {{INIT(DMAX<< DOFF)));

- Oconst - Inf ,. ({INIT (DMAX« DOFF))) ;
- Oconst - Nan "' ({ INIT (-DNAN))} ;
-Oconst -Rteps = { {INIT ((DBIAS-NBITS/2)<< DOFF))} ;
::::0const :::: :xt>iq = { { INIT ((_OBIAStNBITS/2) «_OoFF))};

139

a

_ Buqeval Figure 7.2 shows the file xvaluas. c that defines this handful of values.
_Inf It includes a definition for _Inf that matches _Huqeval. I provide both in

case you choose to alter the definition of HUGE_ VAL. The file also defines:

_Nan • _Nan, the code for a generated NaN that functions return when no
operand is also a NaN

_:Rteps • _Rteps, the square root of DBL_EPSILON (approximately), used by some
functions to choose between different approximations

_:xt>iq • _:xt>iq, the inverse of _Rteps._o, used by some functions to choose
between different approximations

The need for the last two values will become clearer when you see how
functions use them.

header The file xvalues. c is essentially unreadable. It is parametrized much like
<yvals. h> the file xfloat. c, shown on page 68. Both files make use of system-depend­

ent parameters defined in the internal header <yvals . h>.

header xvaluas . c does not directly include <yvals. h>. Instead, it includes the
"X111Ath. h" internal header "xmath. h" that includes <yvals. h> in tum. AU the files that

implement <math.h> include "xmath.h". Since that file contains an assort­
ment of distractions, I show it in pieces as the need arises. You will find a
complete listing of "xmath.h" in Figure 7.38. Here are the macros defined
in "xmath. h" that are relevant to xvalues. c

#define DFRAC ((l<<_ DOFF)-1)
#define ::::DMASK (Ox7ffn~ DFRAC)
#define _DMAX ((1<<(15--DOFF))-ll
#define _DNAN (Ox8000l_DMAX«_DOFF1l«(_DOFF- l))

If you can sort through this nonsense, you will observe that:

• the code for Inf has the la rgest-possible characteristic (_DMAX) with all
fraction bits zero

• the code for generated NaN has the largest-possible characteristic with
the most-significant fraction bit set

140

Rgure 7.3:
fabs.c

/* fabs function */
#include "xmath.h•1

double (fabs) (double x)
{

switch (otest(•x))
(-

case NAN :
•rrno = EDCM;
return (x);

case INF:
errno = ERANGE;
return {_Inf._D);

case 0:
return (0.0);

default:
return {x < 0.0? -x x);

Chapter?

/* conpute fabs *I

/* test for specia1 codes */

/* finite *I

0

In general, a NaN has at least one nonzero fraction bit. I chose this particular
code for generated NaN to match the behavior of the Intel 80X87 math
coprocessor.

function The presence of all these codes makes even the simplest functions
flll>s nontrivial. For example, Figure 7.3 shows the file fabs . c. In a simpler

world, you could reduce it to the last return statement:

function
_otest

Rgure 7.4:
xdtest.c

return (x < 0.0? - x : x);

Here, however, we want to handle NaN,-lnf, and +Inf properly along with
zero and finite values of the argument x. That takes a lot more testing.

Figure 7.4 shows the file xdtest. c. It defines the function _ Dteat that
categorizes a double value. The internal header "xmath. h" defines the vari-

/* oteat function -- IEEE 754 version */
#in-;;lude "xmath.h"

short Dt-t (doubl.e •px)
(- /* categorize *px */
unsigned short *ps = (unsigned short *)px;
short xchar 2 {ps[_DOJ • _DMASK) >> _DOFF;

if (xchar = _DMAX) /* NaN or INF */
return (pa [_DO] • _DFRAC 11 pa [_Dl]

11 pa[_D2) 11 ps [_DJ] ? NAN : INF) ;
else if (0 < xchar I I ps [DO] • DFRAC

11 ps[_Dl] II pe[_D2J-ll ps(°D3])
return {FINITE); /* finite */

e1a•
r eturn {0); I* zero */

0

<math . h> 141

ous offsets and category values that_ Dtest uses. The macro definitions of
interest here are:

/* word offsets within double */
lif _00=3
ldefine _Dl
ldef ine D2
#define :DJ
#else
#define Dl
#define -02
#define :DJ
lendif

2 /* little-endian order */
l

0

l /* big-endian order */
2
3

/* return values for D functions */
#define FDfITE - 1
#define INF 1
ldef ine NllN 2

Note that a floating-point value with characteristic zero is not necessarily
zero. IEEE 754 supports gradual underflow. The value is zero only if all bits
(other than the sign) are zero.

ceil Figure 7.5 shows the file ceil . c and Figure 7.6 shows the file floor . c .
floor Each function defined in these files requires that any fraction part of its

argument x be set to zero. Moreover, each needs to know whether the
fraction part was initially nonzero. Each function then adjusts the remain­
ing integer part in slightly different ways.

function Figure 7.7 shows the file xdint . c that defines the function _Dint. If •px
_Dint has a finite value, the function tests and d ears a ll fraction bits less than a

threshold value. That threshold is effectively 2 raised to the power xexp.
(Other functions have occasion to call _Dint with values of xexp other than
zero.) The code for clearing fraction bits is a bit tricky.

Figure 7.5:
ceil..c

Note the use of an index within an index in the term pe [sub[xcharJ J.
The index sub[xcha.rl corrects for differences in layout of floating-point
values on different computer architectures. The switch statement contains

/* ceil. function */
#include "xmath.h "

doubl.e (ceil) (double x)
(/ * compute ceil. (x) *I
ntturn (_Dint(,x, 0) < 0 '' 0.0 < x? x + 1 . 0 : x) ;

D

Rgure 7.6: /* floor function */
floor . c #include "xmath. h"

double (floor) (double x)
(/* compute floor(x) */
ntturn (_Dint(,x, 0) < 0 ' ' x < 0 . 0? x - 1 .0 : x) ;

D

142

Figure 7.7:
xclint.c

/* Dint function -- IEEE 754 version * /
#inctude "xmath.h"

short _Dint (doub1e *px, abort xaxp)

Chapter?

(/* teat and drop (aca1ed) fraction bits */
unsigned short *pa = (unsigned short *)px;
unsigned short frac = pa[DO) Ii DFRAC

I I pa[_D1) 11 pe[_D2J-l l paC.::::D3] ;
short xchar "' (pa[_DO] Ii _DMASK) >> _DOFF;

if (xchar ~ 0 lili !frac)
return (O);

e l se if (xchar != _DMAX)

e111e if (! frac)
return (INF) ;

else

errno = EIX»I.;
return (NAN) ;
}

xchar K (DBIAS+48+ DOFF+l) - xchar - xexp;
if (xchar-<= 0} -

I* zero • /

/* finite */

/* NaN •/

return (0); /*no frac bits to drop•/
e l se if ((48+_00FF) < xchar)

{ /* a11 frac bits */
pa [DO] = 0 1 pa[01] O;
paC.:::D2] = 0, P•CD3) O;
return (FINITE) ;

else
I* s trip out frac bits */

static conat unaiqned short inaalt[) = {
OxOOOO, OxOOOl , Ox0003, Ox0007,
OxOOOf, OxOOlf, Ox003f, Ox007f,
OxOOff, OxOlff, Ox03ff, Ox07ff,
OxOfff, Oxl fff, Ox3fff, Ox7fffl;

static const si%•_t sub[] ~ (_03, _D2, _Dl, _DO};

frac = maalt[xchar Ii Oxf);
xchar >>= 4;
frac Ii= pe [aub[xchar)];
pe [aub[xchar]] A,. frac;
switch (xchar)

{

case 3 :
fra c

case 2 :
fra c

case 1 :
frac

I= pa[_Dl], pa [_Dl]

I= ps[_D2L pa[02]

I= pe[_D3L pa[_D3]

return (frac? FINITE : 0);

/* cascade throuqh! */

0;

0;

0;

D

<math.h>

Rgure7.8:
modf .c

function
trexp

Figure 7.9:
frexp.c

/* modf function */
linclude "-th. h "

doub1a (modt) (doub1e x,
{

*Pint = x ;
switch (Dint(pint,

{ -
case NAN :

return (x) ;
case INF:
case 0:

return (0.0);
def'au1t :

143

d ouble *Pint)
/* compute modt(x, Hntpart) */

O)')

/* teat for apecial cod .. •/

/ * finite •/
return (x - *pint) ;

a

a cascade of case labels, a practice that is generally misleading and unwise.
I indulge in both practices here in the interest of performance.

Figure 7.8 shows the file modf. c. It defines the function modt, which is
only slightly more ornate than cei1 and f1oor. Like those functions, modf

relies on the function _ Dint to do the hard part.
Figure 7.9 shows the file frexp.c. It defines the function frexp that

unpacks the exponent from a finite argument x . Once again, a reasonable
simple function is complicated by the presence of the variousspecialcodes.
And once again, a more flexible low-level function does most of the hard
work.

I

/• frexp function •/
linc1uda "-th.h "

doub1e (f'rexp) (double x , i.nt *pexp)
(

short binexp;

switch (_Dunacale (5binexp, 5x))

/* compute f'rexp(x, •i) •/

{ /* teat for speci al codas •/
case NM :

case I .NF :
errno • EDCIM;
*pexp • O;
return (x) ;

case 0 :
*pexp = O;
return (0. 0) ;

defau1t:
*paxp • binexp;
return (x) ;

!• finite •/

a

144

Rgure 7.10:
ldexp.c

Ag ure 7, 11:
xdunscal.c

t• ldexp function •/
#include "xmath.h"

Chapter?

double (ldexp)(double x, int xexp)
{ 1• compute ldexp(x, xexp) •/
switch (_Dtest(•xl)

{ /• test for spacial codes •/
case NAN:

errno • EDOM;
break;

case INP:
errno • ER.ANGE;
break;

case 0:
break;

default•
if (0 <s _ Decale(l<x, xaxp))

errno • ER.ANGE;

return (x) 1

1• _ Dunscale function -- ~EBE 754 version •/
#include •xmath.h"

short _Dunscale(short •pex, double •px)

1• finite •/

0

{ /• separate •px to 1/2 <s lfracl < 1 and 2A·•pax •/
unsigned short •pa • (unsigned s hort •)px;
short xchar "' (pa[_ DOJ ' _llMAB~) >> _l)OPP1

if (xchar .,. _J)MAX)

(,. NaN or INF .,
•pex • 01
return (ps[J)OJ '_Pl'l\AC I I pa[_Dll

II ps[J)2] II ps[_D3] ? NAN: INF);

else if (0 < xchar I I (xchar = _Dnorm(ps)) I• 0)
(/* finite, reduce to [1/2:, 1) •/
pa(J)O] • pa(_DO] ' -_llMAB~ I J)BIAS « _ DOPP;
•pax • xchar - _DBIAS1
return (PINXTE) I

else

*pex • 01
return (0)1

/* Eero • /

0

<math . h> 145

function Figure 7.10 shows the file ldexp.c. The function ldexp faces problems
l.dexp similar to trexp, only in reverse. Once it dispatches any special codes, it

still has a nontrivial task to perform. It too calls on a low-level function.
Let's look at the two low-level fun~ons.

function Figure 7.11 shows the file xdunacal.. c. It defines the function_ Dunacaie,
_Dunacale which combines the actions of _Dteat and frexp in a form that is handier

for several other math functions. By calling _ Dunacale, the function fr•xp
is left with little to do.

_Dun•cal• itself has a fairly easy job except when presented with a
gradual underflow. A normalized value has a nonzero characteristic and
an implicit fraction bit to the left of the most-significant fraction bit that is
represented. Gradual underflow is signaled by a zero characteristic and a
nonzero fraction with no implicit leading bit. Both these forms must be
converted to a normalized fraction in the range (05, 1.0), accompanied by
the appropriate binary exponent. The function _Dnorm, described below,
handles this messy job.

function Figure 7.12 shows the file xd.scal.e. c that defines the function _D•c•l•.
_oacal• It too frets about special codles, because of the other ways that it can be

called. Adding the short value xexp to the exponent of a finite •px can cause
overflow, gradual underflow, or underflow. You even have to worry about
integer overflow in forming the new exponent. That's why the function
first computes the sum in a long.

Most of the complexity of the function _oacale lies in forming a gradual
underflow. The operation is essentially the reverse of_ Onorm.

funcHon Figure 7.13 shows the file xdnorm.c that defines the function _Dnorm. It
_Dnorm normalizes the fraction part of a gradual underflow and adjusts the char­

acteristic accordingly. To improve performance, the function shifts the
fraction left 16 bits at a time whenever possible. That's why it must be
prepared to shift right as well as left one bit at a time. It may overshoot and
be obliged to back up.

function Figure 7.14 shows the file tmoct.c. The function fmocl is the last of the
fmocl seminumerical functions declared in <:math. h>. It is also the most complex.

In principle, it subtracts the magnitude of y from the magnitude of x
repeatedly until the remainder is smaller than the magnitude of y . In
practice, that could take an astronomical amount of time, even if it could
be done with any reasonable precision.

What fmocl does instead is scale y by the largest possible power of two
before each subtraction. That can still require dozens of iterations, but the
result is reasonably precise. Note the way tmoct uses _ Dacale and_ Dunacale
to manipulate exponents. It uses _Dunscal• to extract the exponents of x
and y to perform a quick but coarse comparison of their magnitudes. If tmoct
determines that a subtraction might be possible, it uses _oacale to scale x
to approximately the right size.

146

Figure 7. 12:
xdcaale.c

Partl

/* Dacale function -- IEEE 754 version */
#include .. xmath. h n

short _Oacale(double *px, short xexp)

Chapter?

I /* scale *px by 2"'xexp with checking •/
long lexp;
unsigned short *pa = (unsigned short *)px;
short xchar = (pa[_OO] & _OMASK) >>_DOFF;

if (xchar = OMAX) /* NaN or INF */
return (ps[_DOJ ' _DFMC. 11 pa[_Dl]

11 pa C_D2] I I pe C 03] ? NAN : INF) ;
else if (0 < xchar)

else if ((xchar = _Dnorm(pa)) == 0)
/* finite •/

return (0); /* zero */
lexp = (long)xexp ... xchar;
if (_llHAX <= lexp)

I /* overflow, return ... /-INF */
*px = pa [_DO] & DSIGN ? - _Inf ._D _Inf ._D;
return (INF) ;

else if (0 < lexp)
I /* finite result, repack */

(ahort)lexp << _DOFF; pa[_OO] = pa[_DO] & -_OMASllt
return (FINITE);

else
/* denormalized, scale */

unsigned short sign = pa[_DO] & _DSIGN;

pa[_DO] 2 1 << _DOFF I pa[_DOJ & _DFRAC;
if (lexp < -(48 ... _DOFF ... 1))

xexp = -1; /* certain underflow •/
el.ae

/* might not underfl.ow * /
for (xexp = lexp; xexp <= -16; xexp += 16)

I /* scale by words */
pa[03) 2 pa[02), pa[02] =pa [Dl);
paC::::o11 = paC::::ooJ, pa[-DOJ ,. O; -
)

if ((xexp = -xexp) !s 0)

(

pa[_D3) • pa[_D3] >> xexp
I pa[02) << 16 - xexp;

pa[_D2) =-pa[_02) >> xexp
I P•[01] << 16 - xexp;

pa[_Dl] - -pa[_Dl] >> xexp
I pa[_DO) << 16 - xexp;

pa[_DO] >>- xexp;
I

/* scale by bits */

<math.h>

Continuing
xdscale .c

Port2

Figll"e 7.13:
xdnorm.c

if (0 <= xexp '' (ps[_DO] II ps[_Dl]
11 ps[_D2] 11 ps(_D3]))

147

(/* denormalized */
ps[_DO] I• sign;
return (FINITE.) ;

else
(

ps[_DO] = sign, ps(_Dl)
pa(D2] 0, ps(_D3] = 0;
ret~rn (0);

/* underflow, return +/-0 */
0;

/* Dnorm function -- IEEE 754 version */
linClude "xmath. h"

D

short Dnorm(unsigned short *ps)
(- /* normalize double fraction •/
short xchar;
unsigned short sign = ps (_DO] & _DSIGN;

xchar = 0;
if ((ps [DO) '= DFRAC) != 0 11 pa [D1)

11 p;[_D2) IT ps [_D3]) -
(/* nonzero, scale */
for (; ps(DO) == 0; xchar -= 16)

(-
ps(_DO]
ps[D2)
) -

/* shift left by 16 */
= ps[_DlJ, ps[_Dl) = pa[_D2];
= ps[_D3), ps(_D3] = 0;

--xchar) for (; ps[_DO] < l <<_DOFF;
(
ps(_DO] = ps(_DO] << 1
ps[_Dl] = ps(_Dl] << 1
ps(D2] = ps(D2] << 1
psC::::D3] «= i;

/* shift left by 1 */
pa(Dl] >> 15;
ps(_D2] >> 15;
ps(_D3) >> 15;

)
for (; l<<_DOFF+l <= ps [_DO];

(
++xchar)

/* shift
ps(D2] << 15
ps(Dl] « 15
ps [_DO] << 15

ps[D3] = ps (D3] >> 1
paC:D2J = psCD2] » 1
pa[_Dl] = ps[_Dl] >> 1
pa[DO] >>c 1 ;
)

pa(_DO] &= _DFRAC;
)

P8 [_DO] I= sign;
return (xchar) ;

right by 1 */

D

148

Figvre 7.14:
fmod.c

Chapter?

/* fmod function */
#include "'xmath.h'"

double (fmod) (double x, double y)
(/* compute fmod(x, y) */
const short errx _Dtast(,x);
const short arry = _ Dtast ('Y) ;

if (errx = NAN 11 erry = NAN I I arrx = INF 11 erry = 0)
(/* fmod undefined */
errno = EDCM;

return (arrx = NAN ? x : erry = NAN ? y : _Nan._D);
}

else if (errx = 0 I I erry == INF)
return (x); /* fmod(O,nonzero) or fmod(finite,INF) */

els e
/* fmod(finite, finite) */

double t;
short n, neq, ychar;

if (y < 0.0)
y = -y;

if (x < 0.0)
x = -x, nag = l;

else
nag = 0;

for (t = y, Dunacale('ychar, &t), n = O; ;)
(- /* subtract IYI until lxl<lyl */
short xchar;

t = x;

if (n < 0 II Dunscala(&xchar, &t) = 0
II (n = xchar - ychar) < 0)
return (neq? -x x);

for (; 0 <= n;· --n)
{ /* try to subtract IYI *2"n */
t = y, _Dacale(&t, n);
if (t <= X)

{
x -= t ;
break;
}

0

<math. h> 149

function Now let's look at the trignometric functions. Figure 7.15 shows the file
Sin xsin. c that defines the function _sin. It computes sin (x) if qoff is zero and

cos (x) if q off is one. Using such a "quadrant offset'' for cosine avoids the
loss of precision that occurs in adding rt/2 to the argument instead. I
developed the polynomial approximations from truncated Taylor series by
"economizing" them using Chebychev polynomials. (If you don't know
what that means, don't worry.)

Reducing the argument to the range [- rt/ 4, rt/ 4) must be done carefully.
It is easy enough to determine how many times rt/2 should be subtracted
from the argument. That determines quad, the quadrant (centered on one
of the four axes) in which the angle lies. You need the low-order two bits
of quad + qoff to determine whether to compute the cosine or sine and
whether to negate the result. Note the way the signed quadrant is converted
to an unsigned value so that negative arguments get treated consistenly on
all computer architectures.

What you'd like to do at this point is compute quad*rt/2 to arbitrary
precision. You want to subtract this value from the argument and still have
full double precision after the most-significant bits cancel. Given the wide
range that floating-point values can assume, that's a tall order. It's also a
bit silly. As I discussed on page 135, the circular functions become progres­
sively grainier the larger the magnitude of the argument. Beyond some
magnitude, all values are indistinguishable from exact multiples of n/2.
Some people argue that this is an error condition, but the C Standard
doesn't say so. The circular functions must return some sensible va Jue, and
report no error, for all finite argument values.

macro I chose to split the difference. Adapting the approach used by Cody and
BOGE RAD Waite in several places, I represent rt/2 to "one-and-a-half' times double

precision. The header ··xmath . h " defines the macro HUGE_RAD as:
#define BUGE_RAD 3 . 14e30

You can divide an argument up to this magnitude by n/2 and still get an
value that you can convert to a long with no fear of overflow. The constant
cl represents the most-significant bits of rt/2 as a double whose least-sig­
nificant 32 fraction bits are assuredly zero. (The constant c2 supplies a full
double's worth of additional precision.)

That means you can multiply c l by an arbitrary long (converted to double)
and get an exact result. Thus, so long as the magnitude of the argument is
less than HUGE_RAD, you can develop the reduced argument to full double
precision. That's what happens in the expression:

q = (x - g * cl) - g * c2;

For arguments larger in magnitude than HOGE_RAD, the function simply
slashes off a multiple of 2*rt. Note the use of _Dint to isolate the integer part
of a double. Put another way, once the argument goes around about a billion
times, •in and cos suddenly stop trying so hard. I felt it was not worth the
extra effort needed to extend smooth behavior to larger arguments.

150

Figure 7.15:
xain.c

Portl

/* Sin function */
#include "xmath.h"

/* coefficients */
static const double c[8) =

-0.000000000011470879,
0.000000002087712071,

-0 .000000275573192202,
0.000024801587292937,

-0.001388888888888893.
0.041666666666667325,

-0.500000000000000000,
1.0);

static const double s [8) =
-0.000000000000764723,
0 . 000000000160592578,

-0.000000025052108383,
0.000002755731921890,

-0.000198412698412699.
0.008333333333333372,

-0.166666666666666667,
1.0) ;

static const double c l = i3294198.0 I 2097152.0);
static const double c 2 = i3.139164786504813217e-7);
static const double tvobypi = (0 . 63661977236758134308);
static const double tvopi = (6. 28318530717958647693);

double _Sin (double x, unsigned int qoff)

Chopter7

(/* compute sin(x) or co,s(x) */
switch (_Dtest (&x))

(

case NAN:
errno :1:11: EDCl4.;
return (x);

case 0:
return (qoff ? 1.0

case INF:
arrno = ED<»t;
return (_Nan._D);

default:
(

double 9;
long quad;

0.0);

/* finite */
/* compute sin./cos */

if (x < -HUGE_ RAD I I HUGE RAD < x)
(- /* x huge, aauve qui peut */
9 = x I tvopi;
_Di nt(&g, 0);
x - = g " tvopi;
I

9 = x * twobypi;
quad= (long) (0 < g? g + 0.5: g - 0 .5);
qoff += (unsigned long)quad ' Ox3;
9 = (double)quad;
9 = (x - 9 * cl) - 9 * c2;

<math.h> 151

Continuing
xain.c

Pat2

if ((q < 0 . 0? -q : q) < Rtepa. D)
{ /* ;in(tiny)..stiny, coa(tiny)~l */
if (qoff ' Oxl)

q = 1.0; /* cos (tiny> */

Figure 7.16:
xpoly.c

alaa if (qoff ' Oxl)
q = _Poly(q * q, c, 7);

alsa
q *= _ Po ly(q * q, s, 7);

return (qoff' Ox2? -q : q);
I

I

/* _Poly function */
#include "xmath.h"

double _Poly (double x, const double *tab, int n)

D

{ /* COl!puta polynomial */
double y:

for (y = *tab; O <= --n;
y = y * x + *++tab;

return (y) ;
D

The rest of the function _Sin is straightforward. If the reduced angle q is
sufficiently small, evaluating a polynomial approximation is a waste of
time. It also runs the risk of g:enerating an underflow when computing the
squared argument q • q if the reduced angle is really small. Here, "suffi­
ciently small" occurs when q • q is less than DBL_EPSILON, defined in
<float . h>. Note the use of the double constant_ Rtepa. _o to speed this test.

_Poly Figure 7.16 shows the file xpoly .c that defines the function _Poly. The
function _sin uses _ Poly to evaluate a polynomial by Homer's Rule.

cos Figure 7.17 shows the file coa.c and Figure 7.18 shows the file s in.c.

sin These define the trivial functions cos and sin. The header <math . h> defines
masking macros for both.

function Figure 7.19 shows the file tan. c. The function tan strongly resembles the
tan other circular functions sin and cos. It too reduces its argument to the

interval [-rt/ 4, rt/ 4]. The major difference is the way the function is approxi­
mated over this reduced interval. Because it has poles at multiples of rt/2,
the tangent is better approximated by a ratio of polynomials. Cody and
Waite supplied the coefficients.

function Now consider the inverse trignometric functions. Figure 7.20 shows the
_Aain file xaain. c that defines the function _Aain. It computes uin(x) if qoff is

zero and acos (x) if qoff is one. That avoids the need to tinker twice with
the result for acos.

152

Rgure 7. 17:
cos.c

Rgure 7.18:
sin.c

/* cos function */
#include <math.h>

double (cos) (double x)
I
return (_Sin(x, l)) ;

/* sin function */
#include <inath.h>

double (sin) (double x)
(
return (_Sin(x, 0)) ;

Chapter?

I* CQ!l!Pl!t• C03 *I

D

/* canpute sin */

D

_ Aain first detennines y, the magnitude of the argument. It computes the
intermediate result (also in y} five different ways:

• If y < _Rtepa. _o, use the argument itself.
• Otherwise, if y < o. s, use a ratio of polynomials approximation from

Cody and Waite.
• Otherwise, if y < 1. o, use the same approximation to compute 2 *

uin (sqrt (1 - x) / 2) > (effectively). The actual arithmetic takes pains
to minimize loss of intermediate significance.

• Otherwise, if y = 1. o, use zero.
• Otherwise, y > 1. o and the function reports a domain error.
The concern with any such piecemeal approach is introducing discontinui­
ties at the boundaries. The most worrisome boundary in this case occurs
when y equals 0.5.

_ Aain determines the final result from notes taken in idx along the way:

• If idx ' 1, the arccosine was requested, not the arcsine.
• If idx ' 2, the argument was negated.
• If idx ' 4, the magnitude of the argument was greater than 0.5.

The final fixups involve adding various multiples of 7t/ 4 and negating the
works. The sums are fonned in stages to prevent loss of significance.

acoa Figure 7.21 shows the file acos. c and Figure 7.22 shows the file asin. c.

aain These define the trivial functions acos and asin. The header <math.h>
defines masking macros for both.

atan The last of the inverse trignometric functions is the arctangent. It comes
atan2 intwoforms,atan(x) andatan2(y, x). Bothcallacommonfunction_Atan

to do the actual computation. Unlike the earlier trignometric functions,
however, the common function is not the best one to show first. Figure 7.23
shows the file atan. c. Figure 7.24 shows the file atan2. c. It defines the
function atan2 that reveals how the three functions work together.

<math.h>

Figure 7.19:
tan.c

/* tan function */
#include ·•xmath .h"

/* coefficient•, after Cody ' Waite, Chapter 9 */
atatic conet double p[3) ,. (

-0.1?861?0?342254426?1le-4,
0.34248878235890589960e-2,

-0.13338350006421960681e+O};
atatic conet double q(4] = {

0.49819433993786512270e-6,
-0.31181531907010027307e-3,

0 . 25663832289440112864e-l,
-0.46671683339755294240e+O};

atatic conet double cl = (3294198.0 / 2097152.0};
atatic conet double c2 = (3.139164786504813217e-7};
atatic conet double twobypi = {0.63661977236758134308} ;
atatic conet double twopi = (6.28318530717958647693};

153

double tan(double x)

(/* conpute tan(x) */
double g, gd;
long quad;

ewitch (_Dteat ('x)}
{

caae NAN:
ei:rno • EDCM;
return (x};

case INF:
errno = EIX»t;
return (_Nan._D);

caae 0:
return (0.0};

default: /* finite */
if (x < -HUGE_RAD 11 HUGE_RAD < x}

{ /* x huge, a auve qui peut */
g = x I twopi;
_Dint(,g, 0};
x -= g * twopi;
}

g '" x * twobypi;
quad= (long) (0 < g? g + 0.5
g = (double)quad;
g = (x - g * cl) - g * c2;
gd = 1.0;
if (_Rtepa._D < (9 < 0.0 ? -g

(

double y = g * g;

g - 0 .5) ;

g}}
/* g*g worth computing */

gd += (((q[O) * y + q[l)) * y + q[2]) * y + q(3]) * y
g += ((p[O] * y + p[l]} * y + p[2]) * y * g;
}

return ((unaigned int} quad ' Oxl ? -gd I g : g I gd} ;

0

154

Fig11e7.20:
xasin.c

Partl

I* Asin function */
#include "xmath. h"

/* coefficients, after Cody • Waite, Chapter 10 */
static const double p(5] = {

-0 . 69674573447350646411e+O,
0.10152522233806463645e+2,

-0.3968886299750487733!Ho+2,
0 . 57208227877891731407e+2,

-0.27368494524164255994e+2};
static const double q[6) =- {

O.lOOOOOOOOOOOOOOOOOOOe+l,
-0.23823859153670238830e+2,

0 . 1509527084103060471!Ho+3,
-0.38186303361750149284e+3,
0 . 41714430248260412556e+3,

-0 . 16421096714498560795e+3};
static const double pil>y2 =- {l.57079632679489661923};
static const double pil>y4 =- {0.78539816339744830962};

double _Asin (double x, int idx)

Chapter?

{ /* CODpUte asin(x) or acos(x) */
double 9, y;
const short errx = _Dte st(•x);

if (0 < errx)
{
errno = EDOM;

/* INF, NaN */

return (errx = NAN ? x _ Nan._D);
)

if (x < 0.0)
y = -x, idx I= 2;

else
y = x;

if (y < _Rtaps._D)

else if (y < 0.5)
{

9 = y * y;
/* Y*Y worth computing */

y += y * 9 * _Poly(9, p, 4) I _Poly(g, q , 5);
)

e lse if (y < 1 . 0)
{ /* find 2*asin (sqrt ((1-x) /2)) */
idx , _ 4;
9 =- (1 . 0 - y) I 2 . 0; /* NOT * 0 . 5! */
y = aqrt(g);
y += y;
y += y * 9 * _Poly(g, p, 4) I _Poly(9, q , 5);
}

else if (y == 1 . 0)
idx I= 4, y = O. O;·

else

errno = EDC»C;
r eturn (_ Nan._D);

/* 1 . 0 < 1x1, undefined*/

<math.h>

ConHnulng
xaain.c

Part2

Figure 7.21:
acos.c

Figure 7.22:
aain.c

-itch (idx)
(

default:
case 0 :
caaa S :

return (y);
case 1 :
case 4:

return ((piby4 - y) + piby4) ;
case 2:

return (- y) ;
case 3:

return ((piby4 + y) + piby4) ;
case 6 :

return ((-piby4 + y) - piby4);
case 7:

r eturn ((piby2 - y) + piby2);

/* acos f unction */
#include <math.h>

double (acos) (double x)
(
return (_Asin(x, l)) ;

/* aain function */
#include <math.h>

double (aain) (double x)
(
return (_Asin(x, 0));
)

155

/* flip and fold */
/* shouldn't happen */

/* asin, (0, 1/2) */
/* acos, (1/2, 11 */

/* aC08 1 [O, 1/2) */
/* aain, (1/2, 1) */

/* aain, (-1/2, 0) */

/* acoa, (-1/2, 0) */

/* asin, (- 1, - 1/2) */

/* acoa, (-1, -1/2) */

a

/* compute acoa(x) */

a

/ * compute asin(x) */

a

macro As you can see, the function atan offers only a subset of the possibilities
DSIGN inherent in atan2. That's because atan (y) is equivalent to atan2 (y, 1. OJ.

By the way, the header "xmath.h" defines the macro DSIGN as:
define DSIGN(x) (((uns igned s hort *)'(x)) [DO) ' _ DSIGN)

It lets you inspect the sign bit of a special code, such as Inf, that may not
test well in a normal expression. I use oSIGN to test the sign bit whenever
such a special code can occur.

atan2 first checks its arguments for a variety of special codes. It a«:epts
any pair that define a direction for a radius vector drawn from the origin.
(The treatment of atan2 (O, o) is controversial. I chose to return zero, based
on the advice of experts.) The function then determines the two arguments

156 Chapter ?

Figure 7.23:
atan.c

/* atan function */
#include "xmath.h"

double (atan) (double x)
{ /* compute atan(x) */
unaignad abort hex;
atatic Const double p.iby2 (1.57079632679489661923);

avitch (_Dteat (&x))
{ /* test for spacial codes */

case NAN:
errno = EDCM;
~turn (x);

case INF:
return (DSIGN(x) ? -piby2 piby2);

case 0 :
return (0 . 0);

default:
if (x < 0 . 0)

x = -x, hex = Ox8;
else

hex - OxO;
if (1.0 < x)

x = 1.0 I x, hex A= Ox2;
return (_Atan(x, hex));

/* finite */

D

to_ Atan. z is the tangent argument reduced to the interval [0, 1]. hex divides
the circle into sixteen equal slices:

• If hex & oxe, negate the final result.
• If hex & Ox4, add the arctangent of z to rt/4.

• If hex & Ox2, subtract the arctangent of z from rt/ 4.

• If hex & Oxl, add rt/ 6 to the arctangent of z

Only _ Atan sets the least-significant bit, to indicate that z was initially
greater than 2- 31 /2 (about 0.268). It replaces z with:

(z*aqrt(3)-l)/sqrt(3)+z)

All of these machinations derive from various trignometric identities ex­
ploited to reduce the range required for approximation.

function Figure 7.25 shows the file xatan. c that defines the function _Atan. It
Atan assumes that it is called only by atan or atan2. Hence, it checks only

wheth@r its argument x needs to be reduced below 2-31 / 2. If the magnitude
of the reduced argument is less than_ Rteps. _o, that serves as the approxi­
mation to the arctangent. Otherwise, the function computes a ratio of
polynomials taken from Cody and Waite. The function adds an element
from the table a to take care of all the adding and subtracting of constants
described above.

<math.h>

Figure 7.24:
atan2.c

/* atan2 function */
#include nxmath.h"

double (atan2) (double y, double x)
(
double z;
conat short errx = _Dtest(•x);
const short erry = _Dtest(•y);
unsigned short hex;

if (errx <= 0 '' erry <= 0)
(
if (y < 0.0)

y = -y, hex = Ox8;
else

hex = OxO;
if (x < 0 . 0)

x = - x , hex ""= Ox6;
if (x < y)

z = x I y, hex A= Ox2;
else if (0.0 < x)

z = y I x:
else

return (0.0);

157

/* canpute atan(y/x) */

/* x ' y both finite or 0 */

/* atan(O, 0) */

else if (errx = NAN I I erry = NAN)

{ /• return one of the NaNs */
errno = F.JX»l;
return (errx =NAN? x y) ;

else

z • errx :c er%Y ? 1.0 : 0.0;
hex • DSIGN(y) ? Ox8 : OxO;
if (DSIGN(x))

he x ""'= Ox6;
if (erry = INF)

hex ""= Ox2;

return {_Atan(z, hex));

/* at least one DIF */

0

function The final group of functions are those that compute exponentials, loga-
sqrt rithms, and special powers. Figure 7.26 shows the file sqrt. c. The function

sqrt computes the square root of its argument x, or x112. It partitions a
positive, finite x, using_ nunscale, into an exponent e and a fraction f. The
argument value is f*2.e, where f is in the interval [0.5, 1.0). The square root
is then f 112>oze12.

The function first computes a quadratic keast-squares fit to f 112. It then
applies Newton's Method - divide and average - three times to obtain
the needed precision. Note how the function combines the last two itera­
tions of the algorithm to improve performance slightly.

158

Figure 7.25: /* Atan function */
xatan.c #include "xmath. h"

/* coefficients, after Cody ' Waite, Chapter ll •/
static conat double a(8] • (

0 . 0 ,
0 .52359877559829887308,
1 . 57079632679489661923,
l.04719755119659774615,
1 . 57079632679489661923,
2 . 09439510239319549231,
3 . 14159265358979323846,
2.61799387799149436538};

static const double p(4] • (
- 0 . 83758299368150059274e+o.
- 0 . 84946240351320683534e+l,
- 0.2050585519586165198le+2,
- 0.13688768894191926929&+2};

static conat double q[S] • (
O. lOOOOOOOOOOOOOOOOOOOe+l,
0.1502400ll6002857612la+2,
0 .59578436142597344465.+2,
0 . 86157349597130242515.+2,
0 . 41066306682575781263•+2} ;

static const double fold • (0 . 26794919243112270647};
static conat double sqrt3 • (l.73205080756887729353} ;
static conat double sqrt3ml • (0.73205080756887729353};

doubl• _Atan(double x, unsiqned short idx)

Chopter7

(/* computa atan(x) , 0 <= x <• 1 . 0 */
if (fold< x)

{ /* 2-sqrt(3} < x */
x = (((sqrt311ll * x - 0 . 5) - 0.5) + x) I (sqrt3 + x)<;
idx I• Oxl;
}

if (x < - _Rteps . _D 11 _Rteps._D < x)
(/ * x*x worth canputing *I
conat double g z x * x ;

x += x * g I _Poly(q, q, 4)
* (({p(O] * q + p[l]) * q + p(2]) * q + p(3]) ;

if (idx ' Ox2)
x = -x;

x +• a(idx' 07];
raturn (idx ' Ox8 ? - x x);

D

<math.h>

Figlse 7.26: /* sqrt function */
aqrt .c #include <lilllits. h>

#include "xmath. h"

double (sqrt) (double x)
{

ehort xexp;

ewitch (_Dunscale(,xexp, 'x))
{

case NAN:
errno - E.Da4;
return (x) ;

case INF:
if (DSIGN(x))

(
errno • EDOM;
return (_Nan._D);

else
{

case O:

errno • ER.ANGE ;
return (_Inf._D) ;

return (0.0);
default:

if (x < 0.0)
(

errno • EDOM;
return (_Nan ._D);

double y ;

159

/* compute sqrt(x) */

/* test for special codes * /

/* -INF */

I* +INF •/

/* finite • /

/* sqrt undefined for r-ls • /

/* 0 < x , compute aqrt(x) */

static const double sqrt2 = {1 . 41421356237309505) ;

y = (-0.1984742 • x + 0.8804894) • x + 0 . 3176687;
y • o.5 • (y + x I y) ;
y += x I y ;
x = 0.25 • y + x I y ;
if ((unsigned int) xexp ' 1)

x *= aqrt2, --xaxp;
_Dscale(,x, xexp I 2) ;
return (x) ;

}

I
0

160

Figure 7.27:
xexp. c

Chopter7

/* Exp function */
linclude "xmath. h "

/* coefficients, &Lter Cody ' Waite, Chapter 6 */
static conat double p[3] • {

0. 315551927656846'635'6•- 4 '
0. 7575318015942277666,6e- 2.
0 . 25000000000000000000e+O};

static conat double q[4] = {
0.75104028399870046114•-6,
0.63121894374398503557e-3,
0 . 56817302698551221787e- l ,
0 . 50000000000000000000.+0} ;

static c onat double cl • {22713 . 0 I 32768 . 0} ;
static conat double c2 • {1 . 428606820309417232•- 6} ;
static conat double hugexp = {{double) HUGE EXP} ;
static const double invln2 = {l . 4426950408S89634074} ;

abort _Exp(double *px, abort eoff)
{ /* compute eA{*px)*2Aeoff, x finite*/
int neq,·

if (*px < 0)
*px ~ - *px, neg • l ;

el••
neq = 0;

if (hu~xp < *px)
(
*px • ne q ? 0 . 0
return (neq ? 0

/* certain underflow or overflow */
_ Inf ._D;
INF) ;

elae
{ /* xexp won' t overflow*/
double g • *px * invln2;
abort xexp • (abort) (q + 0 .5) ;

q = (double)xexp;
q • (*px - q * cl) - q * c2;
if (-_Rtepa ._D < q H q < _Rtepa ._D}

*px • 1 . 0 ;
elae

/ * q*q worth computing * /
conat double y = q * q ;

q *• (p[O] * y + p(l]) * y + p[2] ;
*px • 0 . 5 + q I (((q[O) * y + q[l)) * y + q [2)) * y

+ q[3) - q) ;
++xexp;
}

if (nsq)
*px • 1 . 0 I *px, -xp = --xp;

return (_Dscale(px, eoff + xexp)) ;

a

<math . h> 161

functton Figure 7.LJ shows the file xexp. c that defines the function_ Exp. Several
_Exp functions need to compute the exponential of a finite argument, ore". A

number of these actually need to compute e" /2. In this case, the argument
eott is -1. Overflow occurs only if ex /2 overflows.

macro The header "xmat h .h" defines the macro HOGE_EXP as the carefully con-
RUGE_EXP trived value:

#define HUGE_EXP (int) (_DMAX * 900L / 1000)

This value is large enough to cause certain overflow on all known floating­
point representations. It is also small enough not to cause integer overflow
in the computations that follow. Thus, HOGE_EXP offers a coarse filter for
truly silly arguments to _Exp.

The trick here is to divide x by /n(2) and raise 2 to that power. You can
pick off the integer part and compute 2$, for g in the interval [--05, 0.5). You
add in the integer part (plus eoff) at the end with _oacale. That function
also handles any overflow or underflow safely.

Reducing the argument this way has many of the same problems as
reducing the arguments to _sin and tan, described earlier. The one advan­
tage here is that you can choose extended-precision constants cl and c2 to
represent 1 I ln(2) adequately for all reasonable argument values.

As usual, the reduced argument is compared against _Rtepa. _o to avoid
underflow and unnecessary computation. The ratio of polynomials is taken
from Cody and Waite. The approximation actually computes 2$ /2, thus the
correction to xexp.

function Figure 7.28 shows the file •xp . c. The function exp tests its argument for
exp special codes before calling_ Exp with a finite argument. It then tests the

return value for a zero or Inf result, to report a range error.

function Figure 7.'29 shows the file coah. c. The function coah also has little else to
coab do besides test its arguments for special codes and call_ Exp. That's because

the value of the function depends on exp(xJ /2 whichever way it's com­
puted:

• lfx < _Xbi9._othenthevalueis (exp(xJ + exp(- x))/2.Theactualform
eliminates the second function call and some arithmetic.

• Otherwise, the value is •xp (xJ / 2, obtained d irectly from_ Exp.

coab must also report a range error if _Exp(x, - 11 overflows.

function Figure 7.30 shows the file ainh.c . The function ainb is also best com-
ainh puted in terms of _Exp over much of its range. But it is an odd function,

u nlike co11h. When the m11gnitude of its argument x is less than 1.0, the
conventional d efinition (exp (xJ - exp(-x) J / 2 loses precision. Over this
interval, it is better to approximate the function with a ratio of poly nomials,
again courtesy of Cody and Waite. As usual, if the magnitude of x is less
than _Rtepa ._o, the argument itself is an adequate approximation to the
value of the function.

162

Figure 7.28:
•xp.c

Figure 7.29:
coah . c

/* exp function */
linclude •:icmath. h "

double (exp) (double x)
{

switch (_Dteat ('x))
(

case NJ\N:
errno • EDON;
return (x) ;

case INF :
errno • £RANGE;

Chopter7

/* compute exp(x) */

/* teat for special codes */

return (DSIGN(x) ? 0.0 _Inf._D) ;
case O:

return (1.0) ;
default:

if (0 <- _Exp(,x, 0))
errno • ERANGE;

return (x) ;

!• eoah function •/
linclude "xmath .h"

double (coeh) (double x)
(

switch (_Dteet ('x))
(

case NAN :
errno • EDC»I.;
return (x) ;

case INF:
errno • ERANG&;
return (_Inf._D);

case 0:
return (1.0);

O.fault:
if (x < 0.0)

x .. -x;

if (0 <» _Exp(,x, -1))
errno • BRANG£;

elee if (x < Xbiq. D)
x +• 0.25- / x ; -

return (x);

/* finite */

D

/* c ompute coeh(x) */

/• teat for epecial codH */

/* finite */

/ * x 1Ar99 */

D

<math.h>

Flgu& 7.30:
si.nh.c

/* sinh function */
#include "xmath.h"

/* coefficients, after Cody ' Waite, Chapter 12 */
static const double p[4] • {

- 0 . 78966127417357099479e+O,
- 0 . 16375798202630751372e+3,
- 0 . 11563521196851768270.+5,
- 0 . 3518128343017711788le+6};

static const double q[4) • (
l.O,

- 0 .27773523119650701667e+3,
0 .36162723109421836460e+5,

- 0 . 21108770058106271242e+7);

163

double (sinh) (double x)
(/* compute sinh(x) */

switch (_Dtest(6x))

(
C&Se NAN:

errno = EDOM;
return (x) ;

ca .. INF :
er.mo ._ ER.ANG&;

/ * test for special codu */

return (DSIGN(x) ? -_Inf._D _ Inf._D) ;
cue 0:

return (0 .0);
default:

{
short neg;

if (x < 0 . 0)
x = -x, neq • 1 ;

else
neg • O;

if (x < _Rt.spa ._D)

else if (x < 1 .0)
{

const double y " x * x;

x += x * y

/ * finite * /
/ * COlllpUte si.nh(finite) */

/* x tiny * /

/* lxl < 1 */

* (((p(O) * y + p(l)) * y + p[2)) * y + p[3))
I (((q(OJ * y + q(l)) * y + q[2J) • y + q[3)} ;

else if (0 <s _ Exp(6x, -1))
er.mo s: !!RANGE;

else if (x < Xbig. D)
x -= 0 . 25- / x; -

return (neg ? -x : x);
)

}

/* x large */

0

164 Chapter 7

function Figure 7.31 shows the file tanh. c. The function tanb is similar in many
tanh ways to sinb. One difference is that it cannot overflow. The function

approaches ±1.0 as the magnitude of the argument x increases. (The func­
tion could compare x to_ Xbiq. _o as do cosh and sinb. The overflow code
returned_ Exp serves as adequate notice, however.) The other difference is
where the function chooses to change to a ratio-of-polynomials approxi­
mation. The one use here, again from Cody and Waite, is accurate for
magnitudes of x less than /n(3)/2 (about 0.549).

function Figure 7.32 shows the file loq. c. It computes loq (x) by calling_ Loq (x,
loq 0) . Naturally, the header <math.h> provides a masking macro for this

function. This may seem silly, but it is the safe way to provide a masking
macro for loqlO (described below) as well.

function Figure 7.33 shows the file xloq. c that defines the function _Log. It
_Loq computes the natural logarithm using tricks reminiscent of those used in

_Exp, only in reverse. The idea is to pick off the binary exponent e using
_ounscale, leaving the fraction f. The argument value is f "2.t, where f is in
the interval [0.5, 1.0). You can compute the base-2 logarithm of these
components as log2(f> + e. You get the final result by multiplying this sum
by /n(2).

That approach requires a few refinements. The approximation from
Cody and Waitewantsf in the interval [0.5112, 2.0112]. lf f (actually x) is too
small, you have to double it and correct e (xexp). You also have to introduce
the new variable z = <f-1)/(f+l). It is better to combine both operations and
eliminate some steps that can cost precision. The approximation is yet
another ratio of polynomials. Note that it actually computes the natural
logarithm, so it is only necessary to scale xexp before forming the sum.

You have to form the sum carefully, at least for logarithms near zero. This
is the other face of the argument reduction problem in_ Exp. Both functions
use the same extended-precision representation of /n(2). Here, the smaller
part is combined before the larger, to involve as many low-order bits of the
conversion constant as posssible in the final result.

loqlO Figure 7.34 shows the file l.oqlO. c . It computes the base-10 logarithm by
calling_ Loq and multiplying the result by /og10(e). The multiplication takes
place within _Loq only for a finite result.

function Figure 7.35 shows the file pow. c. The function pow, which raises x to the
pow y power, is easily the most complex of all the math functions. It must deal

with a broad assortment of special cases. It must also endeavor to develop
a precise result for a broad range of argument values.

By now you should be aware of the dangers in computing exp(y •

loq(x) l . Put simply, the logarithm displaces fraction bits to represent the
exponent of x as an integer part. Multiplying by y can make matters even
worse. The exponential turns integer bits back into exponent bits, but the
damage is already done. Unless you can perform the intermediate calcula­
tions to extended precision, you have to lose bits along the way. This

<math.h>

f;gu'e 7.31:
tanh . c

/• tanh function •/
linclude "xm.ath. h "

!• coefficients, after Cody ' Waite, Chapter 13 */
static const double p[3) • {

- 0.96437492777225469787e+O,
-0.99225929672236083313e+2,
-0.16134119023996228053e+4);

static conat double q(4) • {
O. lOOOOOOOOOOOOOOOOOOOe+l,
0.11274474380534949335.+3,
0 . 22337720718962312926.+4,
0 . 48402357071988688686.+4) ;

static const double ln3by2 • (0 . 54930614433405484570) ;

165

double {tanh) (double x)
(/• cocapute tanh(x) •/
switch {_Dteat(5x))

(

case NAN:
errno • EI>a4;
return (x) ;

case INF:
return (DSIGN(x) ? - 1 . 0

e&ae 0:
return (0.0) ;

default :
(

short ne9;

if (x < 0.0)

x • -x, neq z: l;
elae

neg ., 0 ;

if (x < _Rteps._D)

else if (x < ln3by2)

/• teat for special codes •/

1.0) ;

,. finite •/
/• coll!pUte tanh(finite) •/

,. x tiny .,

(/ • IXI < ln(3)/2 •/
const double 9 ., x • x ;

x +• x • 9 • ((p[O) • 9 + p[l)) • 9 + p[2))
I (((q[OJ • 9 + q(l)J • 9 + q(2)) • 9 + q(3J) ;

elae if (_Exp(5x, 0) < 0)
x • 1 . 0 - 2.0 I (x • x + 1 .0) ;

else
x • 1 . 0; I* x large */

return (ne9 ? -x x) ;

I
I

D

166 Chopter7

Flgu'e 7.32: /• loq function •/

109. c linclude <math. h>

Figure 7.33:
xl.og . c

Partl

double (log) (double x)
(/ * ccapute ln(x) */
return (_Loq(x, 0));
}

I* Log function */
linclude 11 xmath. h '1

/* coefficients, after Cody 5 Waite, Chllpter 5 *I
static conat double p(3] - (

- 0 . 78956112887t91257267e+O,
0 . 16383943563021534222e+2,

-0 . 6412t9434237t5581147e+2};
static conat double q(3] • {

-0 . 3566797773903464617le+2,
0 . 31203222091924532844e+3,

-0.76949932108494879777.+3} ;
static conat double cl = (22713.0 I 32768 .0};
static conat double c2 • (l . 428606820309417232e-6} ;
static conat double loge = 0.43429448190325182765;
static conat double rthalf • (0 . 70710678118654752440} ;

D

double _L<><i(double x , i nt dec:flaq)
(/* ccapute ln (x) • /
short xexp;

-itch LDunacale(5xexp, 5x))
(

case NAN:
errno • ED<»I;
return (x) ;

case INF:
if (DSIGN (x})

(
errno • EDC»tl;
return (_ Nan._D) ;

else

case O:

errno • ERANGE ;
return (_Inf ._D) ;

errno • ERM'G&;

return (-_Inf ._D);
default:

if (x < 0 . 0)
(

errno • EDC»C;
return (_Nan._D) ;

/* teat for special codea •/

/* -INF */

/* INF */

I* finite •/

/* ln (negative) undefined * /

<math.h>

Continuing
x1oq.c

Part2

Figl.l'e 7.34:
loqlO.c

167

else
I* 1/2 <= x < 1 */

double z = x - 0.5;
double w;

if (rthalf < x)

z = (z - 0.5) I (x * 0.5 + 0 .5);
else

/* x <= aqrt{l/2) */
--xexp;
Z /= (Z * 0.5 + 0.5);
)

" z:: z * z ;
z +• z * w * ({p[O] * w + p[l]) * w + p[2])

I (((w + q[OJl * w + q[lJ) * w + q[2)) ;
if (xexp != 0)

{ /* form z += ln2 * xexp safely */
conat double xn = (double)xexp;

z = (xn * c2 + z) + xn * cl;
)

return {decflag? loge* z : z) ;

/* loglO function */
#include <math.h>

0

double (loglO) (double x)
{ /* compute log10 (x) */
return (_Log(x, l)) ;

0

implementation of pow effectively retains that exended precision, without
benefit of a data type with more bits than double.

The first half of the function simply sorts out various combinations of
argument values. Either x is zero or at least one of the arguments is Inf or
NaN. I have yet to devise an illuminating way to tabulate all these cases.
You'll have to trace through the code to see how it handles the various
combinations. Once again, I followed the advice of people more expert than
I on the treatment of the combinations with arguable results. The C Stand­
ard offers little guidance here.

You might note, by the way, how the function calls _Dint (5y, -1) to
determine whether the integral value stored in the double y is even or odd.
_Dint clears the least-significant bit of the integer part of y, in this case. It
returns the negative code FINITE if the bit it clears was initially nonzero.
You can find a similar test later in the function pow.

168

Figure 7.35:
pow . c
Patl

I* pow ~ction */
linelude "-.th. h "

double (pow) (double x , double y)
(
double yi • y ;
double yx, z ;
short n, xexp, zexp;
short neq = 0 ;
short errx = Dunacale(,xexp, 'x) ;
conat short erry • _ Dint ('yi, 0) ;
static const short shu9e z {BUGE_EXP) ;

Chapter ?

/* comp11te x"y • /

static conat double dhuqe = {(double) HOGE EXP) ;
static const double 11\2 = {0.693147180559°9,530942) ;
stati c const double rthalt = {0. 70710678118654752,40);

it (0 <- errx 11 0 < erry)
(/* x z= 0 , I'NF, NAN; y ..., I'NF, NAN */
& • Nan . D;
it (urx ;;:. NAN 1 1 erry = NANI

z • •rrx =• NAN ? x : y, errx • NAN;
else it (erry - INF)

it (errx INF) /* INFAINF •/
ezrx • INF;

else /* OAINF, finiteAINF */
errx • xexp <= 0 ? (DSIGN(y) ? INF : 0)

: xaxp = 1 '' (x = 0. 5 II x - 0 .5) ? NAN
: (DSIGN (y) ? 0 : I'NF) ;

else it (y - 0 . 0)
return (1. 0) ; /* xAO, x not a NaN */

else it (errx .. INF)

{ /* JNFAfinite (NB: erry t .. ts y traction) • /
errx • y < 0 . 0 ? 0 : INF;
ne9 • DSIGN(x) ' ' erry = 0 '' _Dint(,y, - 1) < 0 ;
I

else
errx • y < 0.0 ? I'NF

it (errx - 0)
return (0 . 0) ;

else it (errx - INF)
{

errno c ERANGE;

/* OAfinit• */
0;

I* return - INF or INF */

return (ne9 ? -_Int._o _Inf ._D) ;

else
{ /* return NaN •/
errno • EDC»I;
return (o:) ;

I
it (y - 0 . 0)

return (1. 0) ;
it (0. 0 < x)

ne9 = O;

<math . h>

Contlooing
pow. c
Pat2

169

else if (erry < 0)
{
errno • EDC»l;
return (_Nan ._D) ;

else
x • - x , neq • Dint(•yi, - 1) < O;

if (x < rthalf) -
x *• 2 . 0, - - xexp;

n • 0 , yx • 0 . 0 ;
/* -aqrt(. 5) <= x <• sqrt (.5) •/

if (y <• -dhuge)
xexp • xexp < 0 ? ahuge : xexp - 0 ? 0 : - ahuge;

else if (dhuqe <• y)
zexp = xexp < 0 ? - ahuqe : xexp -- 0 ? 0 : ahuge;

else
/* y*loq2(x) may be reuonable * /

double dexp • (double)xexp;
long zl • (long) (yx = y * dexp) ;

if (zl I • 0)
{ /* form yx • y•xexp- zl carefully */
yx • y , Dint(•yx, 16);
yx • (yx- * dexp - (double)xl) + (y - yx) * dexp;

I
yx *= ln2;
&exp • xl <• -•huge ? -ahuqe : zl < ahuqe ? xl : ahu9e ;
if ((n • (ahort)y) < - SAFB_EXP 11 SAFB_EXP < n)

n • 0 ;

z - 1 . 0;
if (x !• 1.0)

(

if

if ((yi • y - (double)n) !~ 0 . 0)
yx +- log(x) * yi;

if (n < 0)
n • - n;

for (yi • x ; yi *= yi)
{
if (n • 1)

& *• yi;
if ((n >>- 1) - 0)

breal<;
)

if (y < 0.0)
"' - 1 . 0 I x;

)

(}')' , _ 0 . 0)
z • _Exp(•yx, 0) < 0 ? x * yx : yx;

if (0 <= _Dacal•(•z, zexp))
errno • !!RANGE;

return (neg ? - z : z) ;

/* Z · - 2Azexp */
/* underflow or overflow *I

I
} 0

170 Chapter 7

macro The second half of the function computes :xY for finite values of x and y.
SAFE_EXP It begins by rewriting x as f*2e, where f is in the interval ro.s112, 2.01121. If

N is the magnitude of the largest representable double exponent, you know
that you can raise f to this power with no fear of overflow. The magnitude
of the resulting exponent cannot exceed N /2. The header "xmath. h" defines
the macro SAFE_ EXP as:

other
functions

function
_Dtento

#define SAFE_EXP (_DMAX»l)

pow uses this value for just such a check.

You can rewrite xY as f Y*2e •y. Then partition the product e •y into an
integer plus a fraction, or n+g where g is in the interval (- 1, 1). Now you
can rewrite the function as:

xY = fn • (fy-n • 28) • 2"

1 grouped the middle two terms with malice aforethought. That reduces
the problem to forming the product of three terms:

• f n is a loop that multiplies /by itself In I times. If n is negative, the result
is divided into one.So long as In I is lessthanSAFE_EXP, the result cannot
overflow or underflow, for the reasons given above.

• (f y- n • 28) can be evaluated as the exponential of (y- n)•ln(f) + g•ln(2).
Both terms in the sum are typically small, so no serious loss of precision
should result in the addition or the exponentiation. An exception is
when In I would exceed SAFE_EXP. In this case, the function sets n (also
known as n in the code) to zero and throws precision to the winds. The
sum cannot overflow, no matter how big y (yi) happens to be. If the
exponential doesn't overflow, then the final result is probably domi­
nated by this term anyway.

• 2" is a simple call to _Daca1e.

Much of the complexity of this computation lies in avoiding overflows
and underflows. The remainder lies in safely partitioning e •y into the sum
of n and g. Note the use of _Dint yet another way here. It lets you preserve
an extra 16 bits of precision in y , using yx to extend its precision. That offsets
the loss of up to that much precision during the partitioning. The largest
floating-point exponents supported by this implementation are assumed
to have no more than 14 magnitude bits. The partitioning should thus be
safe over the entire range of representable values.

For completeness, I show two functions that are not used by the other
functions declared in <m.ath. h>. Functions declared in the other standard
headers need them, but these two functions need "xmath.h". It seemed
wisest to park the two functions here.

Figure 7.37 shows the file xdtento. c that defines the function _ Dtento.

It multiplies the double value x by ten raised to the power n. It is careful to
avoid floating-point overflow or underflow in the process. Note the use of
_Dunacal.• and _Dacale in the internal function dmul. Any potential over­
flow or underflow occurs in _Dacale, which handles it safely. Function
_Dtento assumes that the argument xis zero or finite.

<math.h> 171

function Figure 7.36 shows the file xldunsca. c. It defines the function_ Ldunscale
_Ldunscale that does the same job for long double arguments that _ounscale does for

double arguments. In fact, if those two floating-point types have the same
representation, it does exactly the same job. Only if _oLONG is noru:ero does
_Ldunacale handle the 10-byte IEEE 754 extended-precision format.

header Figure 7.38 shows the file xmath.h. By now, you should have been
"xmath.h" introduced to all its mysteries. I show it in its entirety here also for

completeness.

Testing <math. h>
Testing math functions is serious business. Even the seminumerical

functions offer numerous opportunities to go astray. The rest require a
major investment in technology to validate properly. That's why I relied on
theelefunt tests to prove in the trignometric, exponential, logaritlunic, and
special power functions.

On theSun3workstation, which uses IEEE 754 floating-point arithmetic,
the worst-case errors these tests reported were a loss of less than two bits
of accuracy. The root-mean-square errors were generally much better than
two bits.

The par!llloia tests report an ~asional error of less that two bits as well.
(The offenders here are sqrt .and some of the formatted input and output
functions for extreme values.) I described how you can obtain paranoia on
page72.

I also provide a set of tests that exercise all the functions declared in
<math. h>. Each function has just a few test cases, enough to verify that it is
basically sane. Given all the functions declared in <math. h>, however, that
still amounts to a large number of tests. So I split the tests into three files,
one for each of the three general groups of functions.

program Figure 7.'39 shows the file tmathl . c. It tests the macro HUGE_ VAL and all
tmathl . c theseminumerical functions. Certain tests can be expected to produce exact

results. Others may introduce small errors. For the latter, the function
approx checks that the result loses no more than two bits of precision. The
program also shows what the print functions display for HUGE_ VAL.

For this library running on a computer architecture that tolerates the
special codes for Inf and NaN, the program displays the output:
HUGE ~ prints as Inf
succ:Ess testing <math . h>, part 1

program Figure 7.40 shows the file tmath2 . c. It tests all the trignometric functions
tmath2 . c at angles that are various multiples of 7t/ 4. These are often critical angles

for detecting loss of precision or errors in determining the sign of the result.
If all tests pass, the program displays the message:
SUCCESS testing <math .h>, part 2

172

Figure 7 .36:
xldunaca . c

Part I

/" _Ldunacale function -- IEEE 754 version */
#include "xmath.h"

Chapter?

#if DLONG
#deflne

I* 10-byte I EEE format •/
_I.MASK Ox7fff

#define IMAX Ox7fff
#define _I.SIGN OxBOOO
#if _D0- 3
#define LO 4
#define -Ll 3

/* little- endian order •/

#define L2 2
#define _ L3 1
#define L4 0
#el-
#define _LO 0 /* big- endian order •/
#define Ll 1
#define _L2 2
#define _L3 3
#define L4 4
#endif

static abort dnorm(unaigned abort *pa)
/* normalize long double fraction •/

short xchar;

for (xchar = 0; pa[Ll] = 0; xchar -= 16)
(- /* shift left by 16 •I
pal_Ll) = pa[_ L2J , pa[_L2) = pa[_ L3] ;
pa[_L3] = pa[_ L4], pa[_L4) = O;
)

for (; pa[_Ll) < lU<<_LOFF; - -xchar)
(/" shift left iby l •/
pa[_Ll) ~ pe[_Ll] << 1 pa[L2) >> 15;
pal_L2) • pa[_ L21 << 1 pa[_L3J >> 15;
pa[_ L3] = pa[_ L3J << 1 pal_L4) >> 15;
pa[_L4] <<.= l ;
}

return (xchar);

abort Ldunacale(ahort *pex, long double *px)
(- I* separate *px to lfracl < 1/2 and 2A"pex "/
unsigned short *pa = (unsigned short *)px;
short xchar .. pa[_LO] • _LIGSK;

if (xchar = _ IMAX)
{ /* NaN or· INF */
*pex = O;
return (pa[Ll) • Ox7fff II pa[L2)

II p s [_L3] 1 1 pa[_ L4J? NAN-: DIF);

<math.h>

Contim.ing
xl.dunaca.c

Part2

else if (pa[Ll) = O && pa[L2) ~ O
&& pa[_LJ] := 0 &Ii pa[_L4] == 0)

I
*pex = 0;
return (0);

else

173

/* :zero */

I /* finite, reduce to [1/2, 1) */

)

xcluar += dnorm (pa)- ;
pa[_LO) = pa[_LO] & _LSIGN I _LBIAS;
•pax = xc:har - _ LBIAS;
return (FINITE);

#else /* long double same aa double */
abort Ldunacale(ahort *pex, long doubl e *px)

- I* separate *px to l fracl < 1/2 and 2~•pax */
unsigned short *pa = (unsigned s hort *)px;
short xchar = (pa[_DO) ' _DMASK) >>_DOFF;

if (xchar = _ DMAX)

I /* NaN or INF */
*pex = 0;
return (pa[DO) & OFRAC 11 pa[Dl)

I I pa [_D2) I I pa C_ D3] ? NAN-, XNF) ;

e l se if (0 < xchar I I (xchar = Dnorm(ps)) != 0)
I /*-finite, reduce to [1/2, 1) */
pa[00) = pa[00) ' - DMASIC I DBIAS << DOFF;
*pa;; = xchar :: DBIAS7 - -
return (FINITE)7

else
I /* zero */
*pex = O;
return (0);

#endif 0

program Figure 7.41 shows the file tmath3. c. It tests all the exponential, logarith­
tmath3 .c mic, and special power functions for a few obvious properties. Note that

one or two of the tests are obliged to produce an exact result. If all tests
pass, the program displays the message:
SUCCESS testing <math.h>, part 3

I can report, rather sheepishly, that these simple tests caught numerous
errors. Some arose, naturally enough, while I was first writing and debug­
ging the math functions. The more embarassing errors appeared while I
was introducing various "improvements." I learned to rerun them relig­
iously after any changes.

174

Figll'e 7.37:
xdtento.c

Par11

/* Dtento function -- IEEE 754 vet:aion •/
#in~lud• <et:rno.h>
#include <float.h>
#include "xmath.h"

I* macros */
#define NPOWS (aizeof powa I aizeof powa[OJ - 1)

I* static data */
static conat double powa [] • (

lel, le2, le4, leB, 1•16, 1•32,

Chapter7

#if OxlOO < _ DBIAS /* uaw. IEEE 754 8-byte */
le64, 1e128, 1•256,

#endif
);

static conat aize_t npowa = (NPOlfS);

static short dmul (double *px, double y)
/ * 111Ultiply y by •px with checki.ng •/

short xmcp;

_Dunacale(,xaxp, px) ;
*px *• y;
return (_Dacala(px, xexp));

double _Dtento(double x, short n)
(

double factor;
short errx;
ai&•_t i;

if (n .. o 11 x - 0.0)
return (x);

factor= 1 . 0 ;
if (n < 0)

(

/* compute x • lO**n */

I• scale down •/
unsigned int nu • -(unsigned int)n;

for (i = O; 0 < nu '' i < npowa; nu >>- 1 , ++i)
if (nu ' 1)

factor *- powa [i] ;
errx = dmul ('x, 1. 0 I factor);
if (errx < 0 " 0 < nu)

for (factor• 1 . 0 I powa[npowa]; 0 <nu; --nu)
if (0 <• (errx = dmul(,x, factor)))

•la• if (0 < n)
(

break;

I* scale up */
for (i = O; 0 < n ' ' i < npowa; n >>- 1, ++i)

if (n ' 1)
factor*• powa[i];

<m&th . h>

Continuing
xdtento. c

Part2

Figure 7 .38:
xmath. h

errx • dlllul (5x, factor) ;
it (errx < 0 55 0 < n)

I

for (!actor • pova [npovs] ; 0 < n ; --n)
if (0 <= ferrx = dmu.l (5x, factor)))

brealt;

if (0 <• errx)
errno • ERANGE;

return (x);

/* xmath.h internal h-der - - IEEE 754 veraion */
linclude <errno. h>
linclude <math . h>
linclude <atddef. h>
lifndef YVlU.S
linclude-<yvala. h>
tendit

/* IEEE 754 properties */
#define _on>.C ((l« DOFF) - 1)
#de:fine _DMASK (0x7:ff:f5~ DFRAC)
#de:fine _DMAX ((1«(15-=DOFF))-l)
#de:fine _ONAN (Ox8000 l_DMAX«_DOFFI l<<(_DOFF- 1))
ldefine DSIGN Ox8000
lde:fine DSIGN(x) (((unaiqned short *)5(x)) (_DO] 5 _DSIGN)
fde:fine HUGE_EXP (int) (_ DMAX * 900L I 1000)
ldetine HUGE RAD 3 . 14e30
ldefine SAFE - EXP (DMAX>>l)

/* •;;rd o :f:faeta "1.thin double *I
li:f 00=3

175

0

fde:ti"ne Dl 2 /* little-endian order */
#de:fine =:02 l
#define _o3 o
•• 1 ..
#define Dl

-02
l /* bi9- endian order *I

#de:fin• 2
lde:fin• =:o3 3
lendi:f

/* return values :for D functions */
#de:fine FINITE -1
lde:fine INF l
lde:fine NAN 2

/* declarations */
double Atan (double, unsiqned short) ;
short _Dint (double *, sho rt) ;
short _ Dnorm (unaiqned abort *) ;
short Dscale (double *, short);
double-_Dtento(double, short);
short _Dteat(double *) ;
short _Dunacale(ahort * , double*);
short _Exp(doubl• *• short);
short _Ldunscale(ahort *• lon9 double*) ;
double _Poly(double, conat double*• int) ;
extern _ Dconat _ Inf, _ Nan, _Rteps, _Xbi9; 0

176

Rgure 7.39:
tmathl . c

Paf 1

/* test math function• -- part 1 */
#include <&8•ert.h>
#include <float . h>
#include <math. h>
#include <stdio. h>

static double ep•;

static int approx(double ell, double d2)

Chapter?

{ /* teat for approximate equality */
if (d2 , _ 0)

return (fabe ((d2 - dl) I d2) < ep•) ;
.i-

return (f8l>• (dl) < epa);

int main()

(/* teat basic worki.nqa of math function8 * /
double huqe val, x ;
int xexp; -

huge val • HUGE VAL;
epa ; DBL EPSILON* 4 .0;
&8-rt(ceil(- 5 . 1) -5. 0);
&8-rt(ceil(- 5 . 0) .. - 5 . 0);
&8-rt (ceil (- 4 . !ii) .. - 4 . 0);

UHrt(ceil(0 .0) 0.0);
.. _rt(ceil(4. !il) 5 . 0) ;
---rt(ceil(5.0) 5 .0) ;
&8-rt(ceil(5. l) 6.0);
&8aert(faba(- 5 .0) .. 5 .0);
.. _rt(faba(O.O) - 0.0);
&8-rt(faba(5. 0) .. 5 . 0) ;
&8Hrt(floor(- 5 .l) -6 . 0) ;
aaaert(floor(- 5.0) ,.. -5.0) ;
&8aert(floor(- 4 . !il) ~ - 5 . 0) ;
&8aert(floor(O . O) 0 . 0);
&8aert(floor(4 . !il) 4 . 0);
&8Hrt(floor(5.0) 5 . 0);
&8aert(floor(5 . l) 5 . 0) ;
.... rt(fmod(-7 . 0 , 3 . 0) -1.0) ;
&8aert(fmod(-3.0, 3 . 0) = O.O) ;
aa .. rt(fmod(- 2 . 0 , 3 . 0) = -2 . 0) ;
.... rt(fmod(O. O, 3 . 0) = 0.0) ;
.... rt(fmod(2 . 0 , 3.0) 2.0) ;
..... rt(fmod(3. 0 , 3 . 0) = 0 . 0) ;
&8aert(fmod(7 .0, 3 . 0) .. 1.0);

&8aert(approx(frexp(- 3 . 0 , 'xexp) , -0 .75) ' ' xexp - 2);

&8aert(approx(frexp(- 0.S, 'xexp) , -0.S) '' xexp -- 0);
aaaert(frexp(O . O, ,_xp) = 0 . 0 " xexp - 0) ;
&8aert(approx(frexp(0 . 33, 'xexp), 0 . 66) ' ' -xp .. - 1);

&8aert(approx(frexp(0.66, 'x•xp), 0 . 66) ' ' xexp -- O);
a aaert(approx(frexp(!il6.0, 'xexp) , 0 . 75) ' ' xexp -- 7);
.... rt(ldexp(-3. 0, 4) - 48 . 0);
aaaert(ldexp(- 0 . 5 , 0) = -0. 5) ;

<math . h>

Continuing
tmathl .c

Part2

aaaert(ldexp(O . O, 36) =- 0.0);
aaaert(approx(ldexp(0 . 66, -1), 0.33));
aaaert(ldexp(96, -3) .,. 12.0);
aaaert(approx(lllOdf(-11 .7, 'x) , -11 . 7 + 11.0)

'' x -= -11.0) ;
a• .. rt(nood£(- 0.S, 'x) .. - 0.S '' x •• 0.0);
aaaert(modf(O . O, 'x) ~ 0.0 '' x ~ 0 . 0);
aaaert(modf(0. 6, 'x) =- 0.6,, x == 0.0) ;
aaaert(modf(l2 .0, 'x) -- 0.0,, x == 12.0);
printf("ROGE_VAL print••• %.16e\n", huge_val);
puta("SUCCESS testing <math.h>, part l ") ;
return (0);

177

0

References

Exercises

William]. Cody, Jr. and William Waite, Software Manual For the Elementary
Functions <Englewood Oiffs, N.J.: Prentice-Hall, Inc., 1980). This is an
excellent reference on writing reliable and accurate math functions. It is the
source of approximations for many of the functions in this chapter.

John F. Hart, E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles
K Mesztenyi, John R Rice, Henry G. Thacher, Jr., and Christoph Witzgall,
Computer Approximations (Malabar, Florida: Robert E. Krieger Publishing
Company, 1978). This book contains several chapters on the art and science
of numerical approximation, but its great strength lies in its extensive tables
of coefficients. You can probably find an approximation with just the
precision you need for any of the common math functions.

elefunt is a collection of transportable FORTRAN programs for testing
the elementary function programs provided with FORTRAN oompilers.
They are fanatically thorough. The programs are written in FORTRAN by
William J. Cody and are described in detail in Cody and Waite. Mail to the
Internet address netlibl!reHarch . att . com the request:

aend index from elefunt

Exercise 7 .1 Determine the floating-point representation for your C translator. Can you
alter the parameters in <yvai. .h> to accommodate it? If so, do so. Other­
wise, alter the primitives to suit.

Exercise 7.2 Write the function double hypot(double, double) that oomputes the
square root of the sum of the squares of its arguments. (This yields the
hypotenuse of a right triangle whose sides are the two arguments.) Test it
with the expressions:

hypot(0.7 • OBL_MAX, 0.7 * DBL_MAX) ;
hypot(DBL_MAX, 1.0) ;
hypot (l . 0, DBL MAX) ;
hypot(3 . 0, 4 .0);

178

Figure 7 .40:
tmath2 . c

Patl

/* test math f\lnction• -- part 2 *I
linclude <a••ert . h>
linc.lude <fioat .h>
linclude <math.h>
linclude <stdio. h>

/* •tatic data */
static double ep•;

static int &pprox(double dl, double d2)

Chapter7

/* te•t for approximate equality •/
return ((d2? faba((d2 - dl) I d2) : fab•(dl)) < ep•);

int main()

{

double x ;
int xexp;

/* te•t ba•ic working• of math function. •/

static double piby4 a (0 . 78539816339744830962);
static double rthalf = (0.70710678118654752440) ;

ep•; DBL EPSILON* 4 . 0;
assert(approx(aco•(-1.0), 4 .0 * piby4));
.... rt(approx(aco•(-rthalf), 3.0 * piby4));
a8aert(approx(aco•(0 .0), 2 . 0 * piby4)) ;
a88ert(approx(aco•(rthalf), piby4));
assert(approx(acoa(l . 0), 0 . 0));
.... rt(approx(asin(- 1.0) , -2.0 * piby4));
.... rt (approx (asin (-rthalf), -piby4)) ;
a8sert(approx(a.in(0 . 0), 0.0));
a8•ert (approx (a.in (rtbalf) , piby4)) ;
.... rt(approx(a.in(l . O) , 2 . 0 * piby4));
a8•ert(approx(atan(-DBL llo.X), -2.0 * piby4));
.... rt (approx Catan (- 1. OJ, -piby4) I;
as .. rt(approx(atan(0.0), 0.0));
aaeert(approx(atan(l.O), piby4));
aa•ert(approx(atan(DBL_llo.X), 2.0 * piby4)) ;
assert(approx(atan2(-1.0, -1.0), -3.0 * piby4));
assert(approx(atan2(-l . O, 0.0), -2 . 0 * piby4)) ;
aa .. rt(approx(atan2(- l . 0 , 1 . 0), -piby4));
a8sert(approx(atan2(0 . 0, 1 .0), 0 .0)) ;
a8eert(approx(atan2(1 . 0 , 1 . 0), piby4)) ;
aseert(approx(atan2(1.0, 0 . 0), 2.0 * piby4)) ;
aa .. rt(approx(atan2(1.0, -1.0), 3 . 0 * piby4)) ;
aa .. rt(approx(atan2(0.0, -1.0), 4 .0 * piby4)

II approx(atan2(0 . 0, -1 . 0) , - 4 .0 * piby4));
a8aert(approx(co•(- 3.0 * piby4) , - rthalf));
a8Bert(approx(co•(- 2 . 0 * piby4) , 0 . 0));
assert{aPJ>rox(co•(-Pil>Y4), i'tha.lf));
assert(approx(co•(O.O), 1.0));
assert(approx(co•(piby4), rthalf));
assert(approx(co•(2 . 0 * piby4), 0.0));
aa .. rt(approx(co•(3.0 * piby4), -rthalf)) ;
aaaert(approx(co•(4.0 * piby4), -1.0)) ;
a88ert(approx(•in(- 3 . 0 * piby4). - rthalf)) ;

<math.h>

Continuing
tmath2.c

Part2

aa .. rt(approx(ain(-2.0 • piby4), -1.0))1
aaaert(approx(ain(- piby4) , -rthalf))1
aaaert(approx(ain(O.O), 0.0))1
aaaert(approx(ain(piby4), rthalf))1
aaaert(approx(ain(2.0 • piby4) , 1.0))1
assert(approx(ain(3.0 • piby4), rthalf))1
aaaert(approx(ain(4.0 • piby4) , 0.0))1
aa8ert(approx(tan(-3.0 • piby4), 1.0))1
aaaert(approx(tan(-pi.by4), -1.0));
aaaert(approx(tan(O.Ol, 0.0));
aeMrt(approx (tan(piby4), 1.0) l;
aaMrt(approx(tan(J.O • piby4), -1.0))1
puta("SUCCBSS teating <math.h>, part 2")1
return (0);

179

0

Exercise 7 .4 Write functions that perform complex arithmetic. Each complex value x +
i •y is represented by the pair (x, y). Provide at least the operations compare,
subtract, add, divide, multiply, magnitude, and phase. Also provide func­
tions that convert between existing floating-point types and complex. Can
you use any existing functions to advantage? What other functions are
desirable?

Exercise 7 .5 Alter the primitives in <math. h> to eliminate the special codes for NaN, Inf,
and-Inf. Replace primitives with macros in •xmath.h" wherever possible.
What does this do to the sizes of functions in the Standard C library? What
does it do to execution times?

Exercise 7 .6 [Harder] Write versions of all the math functions that accept float arguments
and produce float results. Append an f to each existing function name to
obtain the new function name. How can you test these functions?

Exercise 7.7 [Harder] Write versions of all the math functions that accept long do11ble
arguments and produce long do11ble results. Append an l to each existing
function name to obtain the new function name. How can you test these
functions?

Exercise 7.8 [Harder} Write versions of all the math functions that accept complex
arguments and produce complex results. Prepend a c to each existing
function name to obtain the new function name. How can you test these
functions?

Exercise 7. 9 (Very hard] Measure a large corpus of code to determine if any of the math
functions are worth coding inline. Modify a C compiler to do so. Measure
the result.

180

Figure 7 .41:
tmath3.c

Chapter?

/* test math functions -- part 3 *I
#include <asaert.h>
#include <float . h>
#include <math. h>
#include <stdio.h>

static double epe;

static int approx(double dl, double d.2)

/* test for approximate equality */
return ((d.2 ? faba ((d.2 - dl) I d.2) : fabe (dl)) < eps);

int main()
{ /* test basic workings of math functions •/
double x;
int xaxp;
static double e = {2.71828182845904523536};
static double ln2 = {0.69314718055994530942};
static double rthalf = (0.70710678118654752440} ;

eps = DBL EPSILON * 4 . 0;
aaaert(apProx(cosh(-1.0), (e + 1.0 I e} I 2 . 0));
aaaert(approx(cosh(O.O), 1.0));
asaert(approx(cosh(l.0}, (e + 1.0 I e) I 2.0});
assert(approx(exp(-1 . 0), 1.0 I e));
assert(approx(exp(O .O), 1.0));
aasert(approx(exp(ln2), 2.0));
aasert(approx(exp(l . 0), e));
aaaert(approx(exp(3.0), e * e * e));
assert(log(l.0) == 0.0};
asaert(approx(log(e), 1 . 0));
assert(approx(log(e * e * e), 3 . 0));
assert(approx(loglO(l.0), 0.0));
assert(approx(log10(5.0), 1.0 - log10(2.0)));
assert(approx(logl0(le5), 5 . 0));
assert(approx(pow(-2.5, 2 . 0), 6. 25));
assert(approx(pow(-2.0, -3.0), -0.125));
aasert(pow(O.O, 6.0) == 0 . 0);
assert(approx(pow(2.0, - 0 . 5), rthalf));
assert(approx(pow(3.0, 4 . 0), 81.0));
asaert(approx(sinh(-1.0), -(e - 1.0 I e) I 2.0));
asaert(approx(s inh(0 . 0), 0.0));
aHert(approx(sinh(l.0), (e - 1.0 I e) I 2.0));
assert(approx(sqrt(0.0), 0 .0));
assert (approx (sqrt (0. 5), rthalf));
a s sert(approx(sqrt(l .O), 1.0));
asaert(approx(sqrt(2 . 0), 1.0 I rthalf));
assert(approx(sqrt(i44 .0), i2.0)) ;
assert(approx(tanh(-1 .0), - (e * e - 1.0) I (• • e + 1.0)));
as sert(approx(tanh(O.O), 0.0));
assert(approx(tanh(l.O), (e * e - 1.0) I (e * e + 1.0)));
puts ("SUCCESS testing <math.h>, part 3");
return (0);

D

Chapter 8: <setjmp.h>

Background
The C programming language does not let you nest functions. You

cannot write a function definition inside another function definition, as in:
int f(void)

(/* outer function •/
int q(void)

{ /* NOT PERMITTED */

The major effect of this restriction is that you cannot hide function names
inside a hierarchy. All the functions that you declare within a given trans­
lation unit are visible to each other. That is not a major drawback - you
can limit visibility by grouping functions within separate C source files that
belong to different translation units.

C does, however, suffer in another way because of this design decision.
It provides no easy way to transfer control out of a function except by
returning to the expression that called the function. For the vast majority
of function calls, that is a desirable limitation. You want the discipline of
nested function calls and returns to help you understand flow of control
through a program. Nevertheless, on some occasions that discipline is too
restrictive. The program is sometimes easier to write, and to understand,
if you can jump out of one or more function invocations at a single stroke.
You want to bypass the normal function returns and transfer control to
somewhere in an earlier function invocation. That's often the best way to
handle a serious error.

nonlocal You can do this sort of thing in Pascal. A nested function can contain a
goto goto statement that transfers control to a label outside that function. (A void

function in C is called a procedure in Pascal. I use "function" here to refer
to Pascal procedures as well.) The label can be in any of the functions
rontaining the nested function definition, as in:
function x : inteqer; {a Pascal qoto example}

label 99;
function y(val: inteqer): inteqer;

beqin
if val < 0 then

qoto 99;

182 Chapter 8

You must declare the labels in a Pascal function before you declare any
nested functions so the translator can recognize a nonlocal goto.

A goto within the same function can often simply transfer control to the
statement with the proper label. A nonlocal goto has more work to do. It
must terminate execution of the active function invocation. That involves
freeing any dynamically allocated storage and restoring the previous call­
ing environment Pascal even closes any files associated with any file

variables freed this way. The function that called the function containing
the goto statement is once again the active function. If the label named in
the goto statement is not in the now-active function, the process repeats.
Eventually, the proper function is once again active and control transfers
to the statement with the proper label. The expression that invoked the
function containing the goto never completes execution.

Pascal uses the nesting of functions to impose some discipline on the
nonlocal goto statements you can write. The language won't let you transfer
control into a function that is not active. You have no way of writing a
transfer of control to an unknown function. Here is one of the ways that
Pascal is arguably better than C.

label The older language PL/I has a different solution to the problem. That
variiables language lets you declare label variables. You can assign a label to such a

variable in one context, then use that variable as the target of a goto
statement in another context. What gets stored in the label variable is
whatever information the program needs to perform a nonlocal goto. (The
goto need not be nonlocal - it can transfer control to a label within the
current invocation of the current function.)

The PL/I approach is rather less st11.lctured than the one used by Pascal.
You can write a goto statement that names an uninitialized label variable.
Or the label assigned to the variable may be out of date - it may designate
the invocation of a function that has terminated. In either case, the effect
can be disastrous. Unless the implementation can validate the contents of
a label variable before it transfers control, it will make a wild jump. Such
errors are hard to debug.

C implements nonlocal transfers of control by using library functions.
The header <••tjmp.h> provides the necessary machinery:

jnp_buf • the type jmp_buf, which you can think of as a label data-object type
lonqjnp • the function lonqjnp, which performs the nonlocal transfer of control
setjmp • the macro setjmp which stores information on the current calling context

in a data object of type jnp _ buf and which marks where you want control
to pass on a corresponding lonqjmp call

In this regard, the C mechanism is even more primitive than the unstruc­
tured goto of PL/I. All you can do is memorize a place that flow of control
has reached earlier in the execution of the program. You can return to that
place by executing a call to lonqjmp using the proper jmp_buf data object.
If the data object is uninitialized or out of date, you invite disaster.

<setjmp.h> 183

longjmp and Ht jmp are de! icate functions. They do violence to the flow
of control and to the management of dynamic storage. Both of those arenas
are the province of a portion of the translator that is extreme! y complex and
hard to write. That part must generate code that is both correct and
optimized for space and speed. Optimizations often involve subtle changes
in flow of control or the use of dynamic storage. Yet the code generator
often works in ignorance of the properties and actions of longjmp and
••tjmp.

subtteties The C Standard addresses two areas where subtleties often lurk:

executing
eetjmp

reverting
storage

• the expression that contains the .. tjmp macro
• the dynamic storage declared in the function that executes ••tj:irp
In both cases, you will find language in the C Standard that is p1!1zzling.
That's because the C Standard attempts to circumscribe dangerous behav­
ior without spelling out the dangers.

One of the dangers lies in expression evaluation. A typical computer has
some number of registers that it uses to hold intermediate results while
evaluating an expression. Write a sufficiently complex expression, how­
ever, and you may exhaust the available registers. You then force the code
generator to store intermediate results in various bits of dynamic storage.

Here is where the problem comes in. ••tjmp must guess how much
"calling context" to store in the jlrp_buf data object. It is a safe bet that
certain registers must be saved. A register that can hold intermediate results
across a function call is a prime candidate, since the lonqjmp call can be in
a called function. Once the program evaluates eetjlrp, it needs these
intermediate results to complete evaluation of the expression. If Ht jmp fails
to save all intermediate results, a subsequent return stimulated by a long­
jlrp call will misbehave.

The C Standard legislates the kind of expressions that can contain ••t jmp
as a subexpression. The idea is to preclude any expressions that might store
intermediate results in dynamic storage that is unknown (and unknow­
able) to aetjmp. Thus you can write forms such as: -itch l••tjmp (buf) >
.... ., if (2 < .. t jmp (buf)) , if (! ••t jDp (buf)) , and the
expression statement eetjmp (buf).

You can write no forms more complex than these. Note that yol!l cannot
reliably assign the value of eetjmp, as inn = ••tjmp(buf). The expression
may well evaluate properly, but the C Standard doesn't require it.

The second danger concerns the treatment of dynamic storage in a
function that executes ••tjmp. Such storage comes in three flavors:

• the parameters you declare for the function
• any data objects you declare with the auto storage-class specifier, either

explicitly or implicitly
• any data objects you declare with the regieter storage-class Sp€cifier

184 Chapter 8

The problem arises because the code generator can elect to store some of
these data objects in registers. This set of registers is often indistinguishable
from the set that can hold temporary intermediate values in an expression
evaluation. Hence, aetjmp is obliged to save all such registers and restore
them to an earlier state on a longjmp call. That means that certain dynamic
data objects revert to an earlier state on a subsequent return from aetjmp.

Any changes in their stored values between returns from setjnp get lo&.
Such behavior would be an annoying anomaly if it were predictable. The

problem is that it is not predictable. You have no way of knowing which
parameters and auto data objects end up in registers. Even data objects you
declare as register are uncertain. A translator has no obligation to store
any such data objects in registers. Hence, any number of data objects
declared in a function have uncertain values if the function executes -t jBp

and a longjmp call transfers control back to the function. This is hardly a
tidy state of affairs.

volattle X3J11 addressed the problem by adding a minor kludge to the language.
dynamic Declare a dynamic data object to have a volatile type and the translator

storage knows to be more cautious. Such a data object will never be stored in a place
that is altered by longnp. This usage admittedly stretches the semantics of
volatile, but it does provide a useful service.

What the C Standard Says
7.6 Nonlocal jumps <set jmp. h>

The header <set jnp. h> defines the macro -t jnp. and declares one fuJlC1i,on and one
type, for bypassing the normal fun.ction call and return disciplinc. t06

The type declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling cnvironmcfll

It is unspecified whether set jlllp is a macro or an identifier declared with external linkage.
Jf a macro definition is suppressed in order to access an actual function~ or a program defines an
external identifier with the name set jnp. the behavior is undefined.

7.6.1 Save calling environment
7.6.1.1 The set jmp macro

Synopsis

I include < .. tjap . h>

int -tjllp (jarp_buf anv);

Description

The -t jmp macro saves its calling environment in its jmp buf argument for later use by
the longjmp function. -

Returi\S
If the return is from a direct invocation, lhc ••t jmp macro returns the value zero. If the return

is from a call to the longjmp function, the set jmp macro returns a nonzero value.

Environmental mostraint

An invocation of the set jnp macro shall appear only in one of the following contexts:

• the entire controlling expression of a selection or itcralion slatcmcm;

<set jmp. h >

longjmp

185

• one operand of a relational ~ equality operator with the other operand an integral constant
expression. with the resulting expression being the entire controlling expression of a selection
or itet'8.lion statement;

• the operand of a unary ! operator with the rcsuhing expression being the entire controlling
expression of a selection or iteration statement: or

• the entire expression of an expression statement (possibly cast to void).

7.6.2 Restore calling envirooment
7.6.2.1 The lonqjmp function

Synopsis

linclud9 < .. tjmp. h>
void lcngjmp(jmp_ buf e nv, int val) ;

Description

The longjap function restores the environment saved by the most recent invocation of the
eet jDp macro in the same invocation of the program. with the corresponding jmp buf
argument. If there has been no such invocation. or if the function containing the invocation Of lhc
aet jmp macro has terminated execution 107 in the interim. the behavior is undefined.

All accessible objects have values as of the time longjap was called, except that the values
of objects of aulOmatic storage duration that arc local to the function containing the invocation of
the corresponding set jDp macro that do not have volatile-qualified type and have been changed
bclwcen the set jap invocation amd longjmp call are indeterminate.

As it bypasses the usual function call and rctum mechanisms, the longjap function shall
execute correctly in contexts of intenllpts. signals and any of their associated functions~ However.
if the longjap function is invoked from a nested signal handler (that is. from a function invoked
as a result of a signal raised during the handling of anocher signal), the behavior is undefined.

Returns

After l onqjll'p is completed. program execulion conti.nues as if the corresponding invocation
of the set jDp macro had just returned the value specified by val. The longjmp function
cannot cause the set jmp macro to return the value 0; if val is 0. the set jmp macro returns
the value I.

106. These functions arc useful for dealing with unusual conditions encountered in a low-level
function of a program.

1(17. For example, by executing a return statement or because another l ongjmp call has
caused a transfer to a set jmp invocation in a func(\on earlier in the set of nested calls.

Using <set jmp . h>
You use <setjmp.h> whenever you need to bypass the normal function

call and return discipline. The nonlocal goto that <-t jap.h> provides is a
delicate mechanism. Use it only where you must and only in a few stylized
ways. I recommend that you build on a standard pattern:

• Isolate each call to eetjmp in a separate (small) function. That minimizes
any issues about which dynamically declared data objects get rolled
back on a l ongjmp call.

• Call set jDp from the controlling expression of a switch statement.
• Perform all the actual processing in a function (call itproce ..) that you

call from case zero of the switch statement.
• Report an error and restart proceH at any point by executing the call

longjmp (l) .

• Report an error and terminate proceH at any point by execu ting the call
longjap (2).

186 Chapter8

You can also add additional case labels to handle other argument values

that longjap can expect.

Here is what the top-level function might look like:

linclude <aetjmp.h>

•tatic jmp_buf jmpbuf;

void top_level (void)
(/* the top-level function */
for (; ;)

•witch (••tjirp(japbuf))
(/* 8Witch on altern.t• return• */

ca .. O: /* fir•t t1- */
proc•••O;
return;

ca•• 1: /* re•tart */
<report error>
br-lt;

c ... 2: /* t•xmin•t• */
<report error>
return;

default:/* unknown longjmp ar~nt */
<report error>
r eturn;

I assume here that all references to jmpbuf are within this translation unit.

If not, you must declare jmpbuf with external linkage. (Drop the storage

class keyword st.atic.) Alternatively, you must pass a pointer to jll!pbuf to

those functions that must access it.

jmp_buf Note in this regard that jmp_buf is an array type. If you write the

arguments argument jmpbuf, the translator alters it to a pointer to the first element of

the array. That's what .. tjmp and longjap expect. So even though j1lpbu!

appears to be passed by value, it is actually passed by reference. That's how

Htjap can store the calling environment in jmpbuf.

For consistency, you should declare each parameter as jmp_bu£ but and

write the corresponding argument as jmpbuf. Don't declare the parameter

as jmp_buf *pbuf or write the argument as 'jlllpbuf. The latter form is

clearer but at odds with the long-standing conventions for calling .. tjalp

and longjap.

If you choose an alternate form for using ••tjap, execute the macro in

the smallest possible function you can write. If the translator does not treat

Htjap specially, it has less opportunity to surprise you. If it is aware that

Htjap is troublesome, it has less code to deoptirnize for safety.

Additional caveats apply if you call longjmp from within a signal han­

dler. Chapter 9: <dgnal.h> diacu.•H th• i••u•• in greater detail.

<eetjJllP. h> 187

Implementing <setjmp. h>
The only reliable way to implement aet:llllP and lon11:l111P requires func­

tions written in assembly language. You need an intimate knowledge of
how the translator generates code. You also need to perform several opera­
tions that you cannot express safely in C, if at all.

macro Figure 8.1 shows the file eet:IJ11P.b. It has proved adequate for a variety
JiHTJXP of Standard C implementations. It assumes that the calling context can be

stored as an array of int. That is usually the case even when the stored context
includes data objects of diverse types. The internal header <yvala .h> de­
fines the macro JiSETJXP that determines the number of elements in
:IJllPJ>uf.

macros Note that <•et:l111i>-h> defines the macro aet:llllP in terms of yet another
_ eet:llllP macro (or function) named _ setjJllP. The internal header <yvala . h> once

aet:llllP again provides the required information. You can define _ set:llllP as a macro
that calls an existing function with a different name. Or you can declare
_set:llllP as a function that you write in assembly language. What you cannot
do is provide a function that calls another function. (Think about it.) That's
why I provided an extraordinary degree of flexibility in how you define the
macro eet:IJllP. As an example, consider the Borland Turbo C++ compiler
for PC-compatibles. The internal header <yvah.h> might contain:
!ldef ine _N&BTJXP 10
int _SetjJllP(int *)1

Despite my initial caveat, I present here versions of the functions eet:llllP

and longjJllP written in C. I do so only to illustrate the principles involved.
Do riot use this code in a serious implementation. It barely works, and then
only for implementations that have special properties:

• The calling environment for the calling function and other dynamically
allocated storage are stored in a contiguous area at the top of the stack.

• The calling environment includes all information that must be preserved
by aet:llllP and restored by longjJllP. You can reliably capture this infor­
mation by copying a fixed number of characters.

Flgure8.I: /* eetjJllP.h •tandard h.adar * /

aetjmp.h lifndef _srrJXP
#define _ 8B'l'JXP
lifndef _YVAL8
#include <yvale.h>
lendif

/ * macro• */
#define eetjJllP(env) _Setjmp(env)

/ * type definition• */
typedef int :llllPJ>uf (JiSB'l'.:JXP] 1

t• declaration. •/
void lon11:l111Pl:1111P.J>uf, intl1
lendif 0

l 88 Chapter 8

• Part of the calling environment is the saved frame pointer from the calling
function. You can locate the saved frame pointer at a fixed offset from a
single declared dynamic data object.

• If the calling environment is in the right place and the frame pointer is
set properly, the function can return to the caller that provided that
calling environment.

Some of these assumptions are true of many implementations of C. Some,
howeve-, are only rarely true. These functions happen to (barely) work for
the VAX computer architecture. To give some hint as to what is going on, I
wrote them in terms of several parameters. For the VAX, the header
<yvale .h> would contain the macro definitions:
#define _JBFP 1 / * int offeet of frame pointer */
#define _JBMOV 60 /* nun.bar of byte• in callinq context • /
#define _JBOFF 4 /* byte offeet of callinq context */
#define _NSBT.JMP 17 /* number of int• in jmp_buf */

function Figure 8.2 shows the file eat jl!lp. c . It defines a grubby version of eet ~-
-t jmp The function assumes that it can copy a contiguous region of the stack to

the jmp_buf data object and save an adequate amount of the calling envi­
ronment. It declares a number of reqieter data objects in the hope that it
will force the saving of all important registers with the calling context. It
makes a sham of calling dummy to outsmart some optimizers who may
conclude that the registers are never used.

figure 8.2: /* setjiap function */
eetjmp.c #include <eetjmp. h>

#include <•trinq . h>

etatic void dummy(int a , int b, int c, int d, i nt e,
int f , int q, int h , int i, int j)

/* threaten to uee arqum.ent• •/

•tatic int qetfp(void)
/* return frame pointer of caller */

int arq;

return ((int) ('arq + JBFP)) ;
} -

int setjmp(jmp_buf env)
{ / * aave enviro.-nt for re-return •/
r e gi.ter i nt a = 0, b = 0, c - O, d = 0, • • O;
reqieter int f • 0, q c 0, h = O, i • 0 , j • O;

if (a) /* try to o utNl&rt optimizer */
dwmny(a, b , c, d, e, f, q , b, i, j) ;

env[l] = qetfp() ;
memcpy((char *) 'env[2) , (char *)env[l] + _ JBOFF, _ JBMOV);
r eturn (0);

D

<.etjmp.h>

Rgure8.3:
lon9jmp.c

I* lon9jmp function */
#include <-t jmp. h>
#include <11tr1n9.h>

static void d11111111Y(int a, 1Dt b, int c, int d, int • •
int f, int 9, int h, int i, int j)

189

{ /* threaten to u- argument• */
)

static void aetLp(int fp)
{ /* aet frame pointer of caller */
int arg;

('ar9) [_JBFP] • Lp;
}

atatic int dojmp(jmp_buf env)
/* do the actual dirty buaineaa */

mamcpy((char *)env[l] + _JBOFF, (char *)'•nv[2). _JBl«>V);

aetLp(env[l)) ;
return (env[O]);

void lon9jmp{jmp_buf env, int val)
{ /* re-return from -tjmp */
regiat•r int a • 0, b • 0, c = 0 , d = 0, • • 0;
register int f • O, 9 • 0, h = 0, i = 0, j • 0;

if (a)

dummy(a, b , c, d, e,
env[O] • val ? val : 1 ;
dojmp(env) ;
}

/* try to outsmart optimizer */
f , 9, h, i, j);

0

lulllCtion Figure 8.3 shows the file lon9jmp. c. It defines an even grubbier version
lonqjmp of lon9jmp. The function copies the saved calling context back onto the

stack. It allocates registers the same as -tjmpand calls yet another function
in the hope that this wild copy won't overlap anything in active use on the
stack. It then jiggers the frame pointer in the hope that it will thus return
control to the function that called aetjmp instead of its true caller.

If all goes well (and there are many reasons why it shouldn't), execution
resumes where aetjmp was first called. The value returned by aetjmp on
this occasion is the one provided as an argument to lon9jmp. WCIN.

A complete implementation of these two functions must be much tidier.
It may, for example, also have to worry about (among other things):

• the status of a floating-point coprocessor
• whether any signal handlers are active (See Chapter 9: <•iqnal.h>.)

You will find that proper versions of these functions are typically just as
tricky, only much more reliable.

190

f"igure 8.4:
tsetjmp.c

Part 1

/* teet eetjll;:> function• */
#include <aaaert.h>
#include <aetjmp.h>
#include <stdio.h>

/* static data */
static int ctr;
static jmp_buf bO:

static void jmpto(int n)
{

longjll;:>(bO, n);
I

static char *atackptr (void)

char ch;

return ('ch) ;

static int tryit(void)
{

jmp_buf bl;
char *ap • stackptr{) ;

ctr= O;
switch (aetjmp(bO))

{
case O:

asaert(sp = stackptr());
assert (ctr = 0) ;
++ctr;
jmpto(O);
break.;

case 1:
assert (ap = stacJtptr());
assert (ctr == 1) ;
++ctr;
jmpto(2);
break;

case 2:
assert (ap == stacltptr ()) ;
aasert(ctr ~ 2);
++ctr;
switch (aetjmp(bl))

{

case 0:
a ssert (ap = stackptr());
assert (ctr = 3) ;
++ctr;
longjmp(bl, -7);
break;

Chapters

/* jump on static buffer •/

/* test for stack creep •/

/* exercise jumpe */

/* jump among cases */

/* should r eturn 1 */

/* teet nesting */

<aetjmp.h>

Continuing
taetjmp.c

Part2

caae -7:
aaaert (ap = atackptr ()) ;
aasert(ctr ~ 4) ;
++ctr;
jrapto(3);

case 5:
return (13);

d&fault:
return (0);

case 3:
longjmp(bl, S);

break;

return (-1);

int main()

191

(/* teat baaic workings of setjmp function• */
assert (tryit () = 13);
printf ("aizeof (jmp_buf) • \u\n", aizeof (jmp_buf));
puta("SUCCESS testing <aetjmp.h>");
r eturn (0) ;

0

Testing <set jmp . h>
Figure 8.4 shows the file taetjmp.c. It is much more of a stress test for

aetjmp and longjmp than a mere test for functionality. I assume that you
might want to try your hand at writing these functions in assembly lan­
guage. My experience is that it takes careful testing to shake out the bugs
in code such as this. The nastier tests you can devise the better.

stack Note, for example, that the code tests repeatedly for "stack creep." This
creep condition arises when you fail to restore the call stack exactly to an earlier

state.You can often leave trash on the stack and not notice for quite some
time. Only when your program starts exhausting the stack unexpectedly,
or misbehaving in other strange ways, do you begin to suspect such
problems. Better to catch such failings early on.

As a courtesy, the program also displays the size of a data object of type
jmp_buf. When tsetjmp.c executes properly, it displays something like:
aizeof (jmp buf) ~ 20
SUCCESS testing <setjmp.h>

If anything goes wrong, the program may hang or die an unnatural
death. It might even display a useful error message.

192

References
Chopter8

Exercises

ISO/IEC Standard 7185:1990 (Geneva: International Standards Organiza­
tion, 1990). This defines the programming language Pascal, which permits
a nonlocal goto to a containing function.

ISO/I EC Standard 6160:1979 (Geneva: International Standards Organiza­
tion, 1979). This defines the programming language PL/I, whid1 permits a
nonlocal goto using a label variable.

Exercise 8. 1 How is the type jmp _but defined for the C translator that you use? Can you
represent it safely as an array of int? If so, how many elements must the
array have?

Exercise 8.2 Write versions of long:)mp and aetjmp that work with the C translator that
you use.

Exercise 8.3 Modify the functions you wrote in the previous exercise to check for
obvious usage errors:
• Store a checksum or other signature in each jmp_buf data object and

check it before you trust the remaining contents.
• Verify that the call stack is at least as deep as when the contents were

stored in the jmp_but data object.
What other checks can you envision?

Exercise 8.4 (Harder) An exception handler is a code sequence that gets control when an
exception is reported, or raised. You register the handler along with the code
value for an exception in a given context. Any handler already registered
for the same exception code value is masked. On other words, registrations
stack.) You unregister the handler when the context terminates. That ex­
poses any earlier handlers. A handler can register a willingness to handle
any condition. It can also remise an exception - pass it up the line to
handlers registered earlier. If no handler is registered fora given code value,
the program terminates abnormally, preferably with a nasty message.
Design functions when and raiH to implement exception handling. when
lets you register and unregister handlers. raiH lets you report exceptions.
Why would you want such a capability?

Exercise 8.5 [Harder) Implement the functions you designed for the previous exercise.
Exercise 8.6 [Very hard) Define semantics for aet:lmp and l o nqjmp that eliminate the

problems described earlier in this chapter. You want to be able to call .. tjq>
from an arbitrary expression. You want all (surviving) data objects to
remain unaffect by a lonqjmp call. Modify a Standard C translator accord­
ingly.

Chapter 9: <signal.h>

Background
A signal is an extraordinary event that occurs during the execution of a

program. Synd1rono11s signals occur because of actions that your program
takes. Division by rero is one example. Accessing storage improperly is
another. Asynchronous signals occur because of actions outside your pro­
gram. Someone striking an attention key is one example. A separate pro­
gram (executing asynchronously) signaling yours is another.

A signal that is not ignored by your program demands inunediate
handling. If you do not specify handling for a signal that occurs, it is treated
as a fatal error. Your program terminates execution with unsu ccessful
status. In some implementations, the status indicates which signal oc­
curred. In others, the Standard C library writes an error message to the
standard error stream before it terminates execution.

header The header <• iqnal. h> defines the code values for an open-ended set of
<aiCJ11al . h> signals. It also declares two functions:

rai•• • raiae, which reports a synchronous signal
aiqnal • aignal, which lets you specify the handling of a signal

You can handle a signal one of three ways:

• default handling is to terminate execution, as described above

• ignoring the signal effectively discards it
• handling the signal causes control to pass to a function that you designate

signal In the last case, the function that you designate is called a signal handler.
handlers The Standard C library ca Us a signal handler when its corresponding signal

is reported. Normal execution of the program is su spended. If the signal
handler returns to its caller, execution of the program resumes at the point
where it was suspended. Aside from the delay, and any changes made by
the signal handler, the behavior of the program is unaffected.

This sounds like elegant machinery, but it is not. The occurrence of a
signal introduces a second thread of control within a program. That raises
all sorts of issues about synchronization and reliable operation. The C
Standard promises little in either regard. C programs have been handling
signals since the earliest days of the language. Nevertheless, a portable
program can safely take very few actions within a signal handler.

194 Chopter9

One problem is the Standard C !Jbrary itself. If called with valid argu­
ments, no library function should ever generate a synchronous signal. But
a n asynchronous signal can occur while the library is executing. The signal
may suspend program execution part way through a print operation, for
example. Should the signal handler print a message, an output stream can
end up in a confused state. There is no way to determine from within a
signal handler whether a library function is in an unsafe state.

vo.lat.1.l• Another problem concerns data objects that you declare to have volatile
data objects types. That warns the translator that surprising agents can access the data

object, so it is careful how itgenerates accesses to such a data object. In
particular, it knows not to perform optimizations that move the accesses to
volatile data objects beyond certain sequence points. A signal handler is, c:J
course, a surprising agent. Thus, you should declare any data object you
access within a signal handler to have a volatile type. That helps, provided
the signal is synchronous and occurs between two sequence points where
the data object is not accessed. For an asynchronous signal however, no
amount of protection suffices. Signals are not confined to suspending
program execution only at sequence points.

type TheC Standard offers a partial solution to the problem of writing reliable
aig_atomic_t signal handlers. The header <aignal .h> defines the type aig_atomic_t. It

is an integer type that the program accesses atomically. A signal should
never suspend program execution part way through the access of a data
object declared with this type. A signal handler can share with the rest of
the program only data objects declared to have type volatile aig_atomic_t.

problems As a means of communicating information, signals leave much to be
desired. The semantics spelled out for signals in the C Standard is based
heavily on their behavior under the early UNIX operating system. That
system had serious lapses in the way it managed signals:
• Multiple signals could get lost. The system did not queue signals, but

remembered only the last one reported. If a second signal occurred
before a handler processed the first, a signal could go unnoticed.

• A program could terminate even when it endeavors to process all
signals. When control first passes to a signal handler, handling for that
signal reverts to default behavior. The signal handler must call aignal
to reestablish itself as the handler for the signal. Should that signal occur
between entry to the handler and the call to aignal, the default handler
gets control and terminates the program.

• No mechanism exists for specifically terminating the handling of a
signal. In other operating systems, the program enters a special state.
Processing of subsequent s ignals blocks until the signal handler reports
completion. On such systems, other functions may have to assist in
processing signals properly. These can include abort and exit, declared
in <•tdli.b.h>, and longjmp, declared in <••t:lmp.h>.

Moreove-, signals arise from an odd assortment of causes on any com­
puter. The ones named in the C Standard are a subset of those supported

<aiqnal . h > 195

by UNIX. These in tum derive from the interrupts and traps defined for

the PDP-11. Mapping the sources of signals for a given computer onto those

defined for C is often arbitrary. Mapping the semantics of signal h andling

for a given operating systems can be even more creative.

The C Standard had to weaken the already weak semantics of UNIX

signals to accommodate an assortment of operating systems:

• A given signal may never occur unless you report it with rai-.

• A given signal may be ignored unless you call a iqnal to tum it on.

There's not much left.

pc>rtd>ility Thus, no portable use for the functions declared in <aignal .b> can be

defined with complete safety. You could, in principle, specify a handler for

a signal that only ra1H reports. It's hard to imagine a situation where that

works better than instead using .. tjmp and lon9jll;>, declared in < .. t ­

jmp. h>. Besides, you cannot ensure that a given signal is never reported on

an arbitrary implementation of C. Any time your program handles signals,

accept the fact that you limit its portability.

What the C Standard Says

SIG Dll'L

uc:mut
SIC_ICN

SICABR'r

SICrP&

SICIU.

SICXlft'

SICSll:GV

SIGTUUC

7.7 Signal hand.ling <signal. h >

Thc header <• ignal . h> decl ares a type and two functions and defines several macros, for

handling various SiRnals (conditlOfLt that may b• r.porttd ®ring program eucution).

The type defined is

•19._•toalc_t

which is the integral type of an object that can be acce$Sed as an atomic entity. even in the presence

or asynchronous interrupts.

"The macros defined are
S I C_Dlrl.
SIG_<.R
SIC_IC'N

which expand to constant expression& with distinct values thal have type compatible with the

second argument to and the return value of the algnal function, and whose value compares

unequal to the address of any declarable function; and the following, each of which expands to a

positive integntl constant expression that is the signa.l number corresponding to the specified

condition:

SIGABR!' abnormal termination, such as is initiated by the abort function

SIGFPB an e"oneous arithmetic operation, such as zero divide or an operation resulting in

overflow
SIGILL detection of an invalid function image, such a.s an illegal instruction

SIGINT receipt of an interactive attention signal

S IGSEGV an invalid access to SIOr.lgc

SIG'l'ZRM a temtination request sent to the program

An implementation need not generate any of these signals, except as a result of e'xplicil calls

to the raiae function. Additional signals and pointers to undcclantble fundions. with macro

definitions beginning, respcctivdy. with the letters S I G a.nd an uppercase letter or with SIG

and an uppercase lettcr.108 may a lso be specified by the implementation. The complete set or
signals, their semantics, and their default handling is irnplcmentation-Ocfincd; all signal numbers

shall be positive.

196

• lona.l

7.7.l Specify signal handling
7.7.l.l The lliqnal function
Synopsis

l inclucM <•i9"al . h>
void (fllai qnal(int ai.q, void (*func) (int))) (int) :

Oesaiplion

Chapter9

1bc aignal function chooses one of three ways in which receipt of the signal number aiq
is to be subsequently handled. If the value of func is S lG OFL. default handling for that signal
will occur. If the value of func is SIG_ IGN. the signal will be ignored Otherwise, t"unc shall
point to a funccion to be called whcfl thut s ignal occurs. Such a funclion is called a sig"al handler.

When a signal occurs. if tune points to a function. first the equivalent of aignal (aiq,
SIG DFL) ; is cxccuted or an implcmentation·defined blocking of the signal is performed. (If
the Vilueof a iq Is SI GILL, whcthcrthc reset to SIG DFLoccurs is implcmenlation-dcfincd.)
Next the equivalent o f (*func) (aiq) ; is cxccotea'. Tiie function func may tcnninate by
executing a return statement or by calling the abort. exit, or lonqjmp function. ff tune
executes a return statement and 'the value of aiq was SIGFPE or any other implcmcntation­
dcfined value corresponding to a computational exccpcion, the behavior is undefined. Otherwise.
the program will n:sumc execution at the point it was interrupced.

If the signal occurs other than llS the n:sult of calling the abort or raiae f11.nc1ion. the
behavior is undefined if the signal h.andlcrcalls any function in the standanl library other than the
a i qnal funclion itself (with a firs t argument of the signal number corresponding to the signal
that caused the invocation of the handler) or refers to any object with static storage duration other
than by assigning a value to a static storage duration variable of type v o latile
aiq atomic t . Furthermore. if such a call to the aiqnal function results in a SIG ERR
re1urTI. the valuC or errno is indccenninatc.109 -

At program startup. the cquivalalt of
siqnal (•lo. S I G_ IGN) .;

may be executed for some signals selected in an implementation-defined manner: the cquivalcnl
of

d9fta.l(ei9, SIC_ DWL) ;

is executed for all other signals defined by the implemcnlation_

The Implementation shall behave u.< if no library function calls the aiqnal function.
Returns

If the request can be honon:d, the ai.qna l funclion mums the value o f func for the rrosl
n:ccn1 call to ai.qnal for the specified signal •iq. Ocherwise. a value of SIG ERR is n:twncd
and a positive value is ston:d in errn o . -
Forward r eferences: the abort function (7. l0.4.1), the exit func1ion (7.l0.4.3).

7.7.2 Send signal
7.7.2.1 The raiae function
Synopm

l i .nclucH: <•iqnal . h>
int rai ••(i nt eig) ;

Description

The rai .. function sends the si gnal a .iq to the executing program.
Returns

The raiae function returns zero if successful, nonzero if unsuccessful.
F'OOlnotes

108. See "futun: library directions .. (7. 13.5). Thc names of the signal numbers reflect the
following terms (respectively): abort. floating-point exccpcion. illegal instruetion, interrupt.
segmentation violation. and termination.

109. If any slgnal 1s generated by an asynchronous signal handler, the behavior is undefined.

<aiqnal. . h> 197

Using <signal . h>

handling
signals

Signal handling is essentially nonportable. Use the functions declared
in <aignal.h> only when you must specify the handling of signals for a
known set of operating systems. Don't try too hard to generalize the code.

If default handling for a signal is acceptable, then by all means choose
that option. Adding your own signal handler decreases portability and
raises the odds that the program will mishandle the signal. If you must
provide a handler for a signal, categorize it as follows:

• a handler for a signal that must not return, such as SIGFPE reporting an
arithmetic exception or sIGABRT reporting a fatal error

• a handler for a signal that must return, such as sIGINT reporting an
attention interrupt that may have interrupted a library operation

As a rule, the second category contains asynchronous signals not intended
to cause immediate program termination. Rarely will you find a signal that
does not fit clearly in one of these categories.

A signal handler that must not return ends in a call to abort, exit, or
l ongjmp. Do not, of course, end a handler for SIGABRT with a call to abort.

The handler should not reestablish itself by calling aignal. Leave that to
some other agency, if the program does not terminate. If the signal is
asynchronous, be wary of performing any input or output. You may have
interrupted the library part way through such an operation.

A signal handler that must return ends in a return statement. If it is to
reestablish itself, it should do so immediately on entry. If the signal is
asynchronous, store a nonzero value in a volatile data object of type
aig_atomic_t. Do nothing else that has side effects visible to the executing
program, such as input or output and accessing other data objects.

A sample asynchronous signal handler might look like:
linclude <aignal.h>

atatic aig_atomic_t intflag = 0;

atatic void field int(int aig)
(/* handle SIGINT • /
•ignal(SIGINT, 'field_int);
intflag = l ;
return;
}

The program calls aignal (SIGINT, U i eld int) to establish the handler.
From time to time, it can then check for the occurrence of asynchronous
interactive attention interrupts by executing code such as:

if (i.ntflag)
(/* act on interrupt */
i.ntflag • O;

198 Chapter9

Note that two small windows exist where these signals can go astray:
• Within fi•ld_int before t.he call to signal, an occurrence o f s:i:GINT can

terminate the program.

• Between the testing and clearing of int flag, an occurrence of s1GINT can
be lost.

Those are inherent limitations of signals.
Here is a brief characterization of the signals defined for all implemen­

tations of Standard C. Note that a given implementation may well define
more. Display the contents of <aignal . h> for other defined macro names
that begin with S IG. These should expand to (small) positive integers that
represent additional signals.

SIGABRT SIGABRT - This signal occurs when the program is terminating unsuc-
cessfully, as by an explicit call to abort, declared in <rtdlib.h>. Do not
ignore this signal. If you provide a handler, do as little as possible. End the
handler with a return statement or a call to exit, declared in utdlib.h>.

SIGFPE SIGFPE - The name originally meant "floating-point excep tion." The C
Standard generalizes this signal to cover any arithmetic exception such as
overflow, underflow, or zero divide. Implementations vary considerably
on what exceptions they report, if any. Rarely does an implementation
report integer overflow. Ignoring this signal may be rash. A handler must
not return.

SIGINT sIGINT - This is the conventional way of reporting an asynchronous
interactive attention signal. Most systems provide some keystroke combi­
nation that you can type to generate such a signal. Examples are ctl-C, DEL,
and ATIN. It offers a convenient way to terminate a tiresome loop early.
But be aware that an asynchronous signal can catch the program part way
through an operation that should be atomic. If the handler does not return
control, the program may subsequently misbehave. You can safely ignore
this signal.

s:i:GsEGV SIGSEGV - The name originally meant "segmentation violation," be-
cause the PDP-11 managed memory as a set of segments. The C Standard
generalizes this signal to cover any exception raised by an invalid storage
access. The program has attempted to access storage outside any of the
functions or data objects defined by C, as with an ill-formed function
designator or lvalue. Or the program has attempted to store a value in a
data object with a amst type In any event, the program cannot safely
continue execution. Do not ignore this signal or return frc m its handler.

sIGTEP.M s1GTERM- This signal is traditionally sent from the operating system or
from another program executing asynchronously with yours. Treat it as a
polite but firm request to terminate execution. It is an asynchronous signal,
so it may occur at an inopportune point in your program. You may want
to defer it, using the techniques described above. You can ignore this signal
safely, although it may be bad manners to do so.

<aiqnal..h> 199

Implementing <signal. h>
Figure 9 .1 shows the file •ignal. h. The header <aignal. h> I present here

is minimal. A UNIX system, for example, defines dozens of signals. Many
systems endeavor to look as much as possible like UNIX in this regard.
They too define all these signals even if they do not generate many of them.
Notwithstanding this concerted group behavior, the choice of signals and
their codes both vary considerably. I have endeavored here to choose codes
that are most widely used.

header As usual, I make use of the internal header <yval•. h> to provide parame-
<yval•. h> ters that can vary among syst,ems. The code for SIGABRT is one. The highest

valid signal code is another. Some functions in this implementation use the
macro _NSIG to determine the lowest positive number that is not a valid
signal code. Thus, the header <yvala. h> defines two macros of interest here.
For a typical UNIX system, the definitions are:
#define SIGABRT 6
#define ::::sIGMAX 32

The header <•ignal . h> makes an additional concession to widespread
UNIX practice. It defines the macros SIG_ERRand sIG_IGN in a moderately
ugly way. The values - 1 and 1 could conceivably be valid function ad­
dresses in some implementation. Admittedly, that is only rarely possible.
Where it is possible, the linker can be jiggered to avoid the possibility. Still,
other values would be more gracious. (The addresses of •ignal and raiaa,
for example, are not like! y to specify useful signal handlers.) But the values
chosen here are the ones used widely in UNIX implementations. They are
also widely imitated under other operating systems. I chose these for
compatibility with existing machinery.

UNIX That compatibility is often necessary. Almost invariably, the functions
versions •ignal and raiaa must be tailored for each operating system. UNIX is the

extreme case. In that environment, the system service •ignal does the
whole job. If you have access to a C-callable function of that name, just
discard the code presented here. Let other functions call it directly. If the
system service has a private name, such as _signal, you can write •ignal
as:
/* •ignal function -- UNIX ver•ion */
#include <•ignal.h>

_Siqfun * _Si.gnal(int, _Si<Jfun *)

_Siqfun * (•ignal) (int •ig·, _Sigfun *fun)
{ /* call the ayst- service
return (_Signal(•ig, fun));

}

This is an obvious candidate for a masking macro in <aignal .h>.

The function raise is only slightly more difficult. It uses the system
service kill to send a signal to itself. ("Kill" is a misnomer stemming from

200

Figwe9.1:
•ignal.h

/* •iqnal .h •tand8rd header */
fifndef _SIGNAL
ldefine SIGNAL
lifndef -YVALS
linclude-<yval• .h>
lend.if

/* type definition• */
typedef int •i9_ atolllic_t;
typedef void Si9fun(int);

/* 8i~al code• */
ldefine SIGABRT SIGABRT
ldefine SIGINT 2
fdefine SIGILL <II
fdefine SIGFPE e
fdefine SIGSEGV 11
ldefine SIGTEllM 15

Chapter9

ldefine HSIG SIGNAX /* one more than 1&8t cede */
l* •iqna1 return value• *I

fdefine SIG DFl. (Si9fun *) 0
#define SIG=ERR <:siqfun *)-1
#define SIG IGN (Si9fun *) 1

/* d;.c,1ar~tion• */
int ra.i-(int) ;
Siqfun *•iqnal (int, Si9f'un *);

fend.if - O

its earliest use for sending only the signal sIGlaLL.) To identify itseU, rai­

also needs the system service qetpid. Assuming suitable secret names for
these two system services, such as. !till and _Getpid, you can write ra.ue
as:
I* ra.i- function -- UNIX ver•ion */
linclude <8i9ft&l.h>

int _Getpid(void) ;
int _Rai•e(int, int);

int (rai•e) (int •i9)
{ /* rai- a •i9ft&l •/
return (_!till LGetpid(), •i9));
}

Here is another obvious candidate for a masking macro.
generic The formal versions of •iqnal and rai- that I choose to present are more
versions widely usable. They provide no mapping between signals in Standard C

and those provided by the operating system. That is impossible to gener­
alize. But they do provide a useful harness for adding such system-specific
code. An operating system that doesn't handle signals just like UNIX
usually needs just this code to split the difference.

function Figure 9.2 shows the file rai-. c. It defines a version of rai- that needs
rai- no assist from the operating system. It contains an array of signal handler

addresses _siqfun that is indexed by signal code. Initially, each element d

<siqna1.h> 201

the array is initialized to a null pointer. That happens to match SIG_DFL, the
value that eignal uses to indicate default handling.

raise first determines that the signal rode is valid. If so, the function
takes the action specified by the corresponding element of _sigtabl e.

Default handling is to write a one-line message to the standard error stream
and terminate with unsuccessful status. It names the signals that it knows
about and prints the code value for all others. You can add names for
additional signals if you want more revealing error messages.

funcHon Figure 9.3 shows the file s.ignal.c. It defines the function signal that
e.ignal serves as a companion to ra.iee above. All it does is validate its arguments

and replace the appropriate entry in _sigtable with a valid function
pointer. (The pointer is assumed valid if it doesn't match sIG_ERR. That's a
fairly weak check.)

declarlng Note the declaration for _sigtable in this file. My usual practice is to
_siqtable place such a declaration in a header file that is included by all C source files

that need it. In this case that would be the header <•iqnal.h>, but only if
some masking macro referred to it. More likely, it would be some internal
header with a name such as "xsiqnal. h"' . I couldn't bring myself to create
yet another header for a single declaration, however. Any style must have
its practical exceptions.

hardware You can add to signal any system-specific rode needed to get control
signals when "hardware signals" occur. These are signals reported by the operat­

ing system or the computer itself. Be careful here. Many systems will
transfer control to an address you specify, but not following the C function
call and return discipline. You may have to provide a bit of assembly
language for each signal you handle this way.

Tell the operating system (or the computer) to transfer control to the
assembly-language signal handler. Have that handler save any necessary
context and call the C function you specify with the proper protocol. It can
determine the address from a static data object that you know how to access
both from C and from assembly language. If the C function returns, the
assembly-language signal handler reverses the process to return control to
the interrupted program.

Some operating systems require that you report when a signal handler
completes. For a signal handler that returns, this is relatively easy. The
assembly-language signal handler can do what is necessary on the way out
the door. But remember that a signal ha.ndler can also terminate by calling
abort or exit, declared in <•tdlil>.h>, or by calling longjmp, declared in
<•et jmp. h>. You may have to work over all of these functions to do a proper
job.

202

Flgure9.2:
raise.c

/* rai•e function -- sinple version */
#include <•iqnal.h>
#include <atdio.h>
#includ9 <atdlib. h>

/* static data */
_Siqfun *_Sigtable(_NSIG] • (0);

int (rai•e) (int •ig)
(

_sigfun *•;

Chapter9

/* handler table *I

/* rai•e a signal */

if (sig <= 0 11 _NSIG <= •ig)
return (-1);

if (is= _Sigtable[•ig])
(

!* bad signal *I
!• SIG_IGN '' a !• SIG DFL)

/* revert and c;ll handler */
_Sigtable[•iq] = SIG_DFL;
(*s) (aiq);
)

else if (s = SIG_DFL)
{ /* default handling */
char ac[lOJ, *p;

switch (8ig)
{ /* print known •ignal• by name •/

case SIGABRT:
p = "aboi:t" i
break;

case SIGFPE:
p = "arithmetic error";
break;

case SIGILL:
p = "invalid executabl e code";
break;

case SIGINT:
p = "interruption";
break;

caae SIGSEGV:
p • "invalid storage access";
break;

caae SIGTERM:
p • "termination request";
break;

default:
*(p • 'ac[(•izeof ac) - 1]) = '\0';
do ·--p = •iq ' 10 + '0';

while ((•1g /• 10) !• 0);
fputa("aignal #", atderr);
}

fputs(p, atderr);
fputs(" -- terminatinq\n", atderr);
exit(EXIT_FAILURE);
)

return (0);
D

<aignal..h>

Flgure9.3:
aiqnal..c

/* aignal function -- simple version */
#include <aignal.h>

/* external declarationa *I
extern _Sigfun * _Sigtable [_NSIG] ;

203

Sigfun *(aiqnal) (int aig, Sigfun *fun)
- { - /* specify handl.ing for a s i qnal *I

_Sigfun *a;

if (aig <"' 0 11 _NSIG <= aig 1 1 fun = SIG_ERR)
return (SIG ERR); /* bad aiqnal. */

/* add machine-dependent handl.ing here */
s "' _Sigtable[sig), _Sigtable(sig) "'fun;
return (s);

0

Testing <signal . h>
Figure 9.4 shows the file taignal. c. It doesn't do much, because signals

have so few portable properties. About all it does is test the basic workings
of aignal and raise using SIGFPE. The code assumes that no other agency
will report this signal while the program executes. That's a fairly safe
assumption, but not one guaranteed by the C Standard. The test program
also ensures that the various macros are defined, as is the type
aig_atomic_t. It makes no attempt to verify any associated semantics,
howeva-.

As a courtesy, the program displays the size in bytes of sig_atomic_t. If
all goes well, the program displays something like:
aizeof (aig atomic t) "' 2
SUCCESS teating <signa1 . h>

References

Exercises

PDP-11/70 Processor Handbook (Maynard, Mass.: Digital Equipment Cor­
poration, 1976). The PDP-11 traps and interrupts inspired the signals
originally defined for UNIX. You can better understand the naming and
semantics of UNIX signals by going back to this source.

Exercise 9 .1 List the signal codes defined for the C translator you use. Can you describe
in one sentence what each signal indicates?

Exercise 9 .2 For the signal codes defined for the C translator you use, contrive tests that
cause each of the signals to occur?

Exercise 9.3 Under what circumstances might you care whether any signals went
unreported?

204

Figure 9.4:
taignal.c

/* teat •iqnal function• * /
linclude <uaert _ h>
linclude <aiqnal.h>
linclude <atdio .h>
linclude <etdlib.h>

/* a tatic data */
atatic int a i9• (J = (

Chopter9

SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM};
etatic void (*reta(]) (int) = (SIG_DFL, SIG_ERR, SIG_IGN} ;
atatic aig_ atom.ic_ t atomic;

etatic void field_fpe(int eig}
(/• handle SIGFPE */
uaert (aig = SIGFPE) ;
put•("SUCCEsS teating <•iqnal.h>") ;
exit(EXJ:T_ SUCCESS);
}

int main()
(/* teat baaic working• of aiqnal functione •/
printf (" aizeof (a ig_ atomic_ t) = %u \n",

aizeof (aig_atolllic_t));
uaert(aiqnal(SIGFPE, 'field_ fpe) = SIG_DFL) ;
aaae:rt.(aignal(SIGFPE, •field_fpe) •field_fpe) ;
raiae (SIGFPE) ;
put•("FAIL'URE teating · <•iqnal.h>");
return (EXIT_FAILORE) ;

D

Exercl.se 9.4 Alter aiqnal and raiae to work properly with the C translator you use.
Handle as many hardware signals as possible.

Exercise 9.5 Write a handler for SIGABRT that displays a trace back-a list of the functions
that are active, in the reverse order that they were called. Why would you
want this capability?

Exercise 9 .6 (Harder) Identify the critical regions in the Standard C library that should
not be interrupted by a signal. Arrange to have signal handling deferred
until the end of any such critical region if the signal is reported while the
region is active. Why would you want this capability?

Exercl·se 9.7 [Very hard) Implement new semantics for signals that ensures that:

• no signals get duplicated or lost
• signals are handled in order of reporting
• a program can be sure to handle all signals reported after some point
• critical regions can be protected against interuption
• a signal handler can communicate safely with other parts of the program

Chapter 10: <stdarg.h>

Background
One of the great powers of the C programming language is that it lets

you define functions that accept a variable argument list. Other languages
have such creatures, to be sure, but the number of such functions is fixed.
All are special functions built into the language. You cannot define addi­
tional ones.

To access the additional arguments in a variable argument list, you need
the macros defined in <atdar g. h >. They let you walk along the list of extra
arguments from beginning to end as often as you like. You must know the
type of each argument before you encounter it. But you need not know the
particulars of any given call before it occurs. You can d etermine the number
and types of arguments from one of the fixed arguments, for example, such
as a format string.

The header <•tda ro.h> is an invention of committee X3J11. It is based
heavily on the header <vararo• . h > that was developed by Andy Koenig to
enhance the portability of the UNIX operating system <vararoa. h> was one
of several contemporaneous a ttempts at isolating implementation d epend­
encies in walking var iable argument lists. It was also one of the most widely
known. The idea was to make a common operation more portable by hiding
differences inside macros.

history In the early days, no such h iding was necessary. C was a language for
the PDP-11, period. Everyone knew how Dennis Ritchie's compilerlaid out
an argument list in memory. Walking from argument to argument was a
simple exercise in pointer arithmetic. It helped that pointers were the same
size as ints and that s tructures were not yet permitted as arguments. That
meant that an argument could be treated as either an int, a long, or a double.
Since double has the same storage alignment as int on the PDP-11, there was
no worry about holes left in the argument list to ensure proper storage
alignment.

The advent of structure arguments and pointers of varied sizes made life
messier. Even if you had no interest in writing portable code, you still
wanted it to be read able. That increased the demand for notation that could
hide the messy details of walking a variable argument list.

206 Chapter 10

Then along came implementations of C designed to work with older
programming languages such as FORTRAN. It was sometimes necessary
for such implementations to use a calling sequence that differed dramati­
cally from that used on the PDP-11. Argument lists sometimes grew down­
ward in memory instead of upward. Some involved intermediate pointers
to the actual argument values. Hiding the details of accessing an argwnent
moved from being a convenience to a necessity.

heoder Committee X3Jl 1 felt obliged to change the existing macros in several
<atdarg.h> small ways. That is why the CStandard specifies a standard header witha

new name. <atdarg.h> differs just enough from <varargs.h> to cause
confusion to programs (and programmers) that use the older header. The
committee debated ways to make the capabilities of <atdarg. h> more a part
of the language. In the end, however, the committee elected to leave as
macros the mechanisms for walking a variable argument list.

What X3J11 did instead was endeavor to generalize the macros as much
as possible. The idea was to define the macros in such a way that all known
implementations of C could ·conform without major change. Some imple­
mentations had to alter their translators to provide critical information or
operations. Most, however, can support otdarg. h> with no help from the
translator proper.

restricttons Some of the restrictions imposed on the macros defined in <atdarg.h>

seem unnecessarily severe. For some implementations, they are. Each was
introduced, however, to meet the needs of at least one serious C implemen­
tation. For example:

mocro • A function must declare at least one fixed argument. The macro va_atart

va_atart refers to the last of the fixed arguments so that it can locate the variable
a.rgument list.

macro • You cannot specify argument types in va_ arg that "widen" in the absence
va_arg of a function prototype. You must write double, for example, instead of

float. The macros cannot replicate the rules for altering argument types
that apply to a variable argument list.

• You can write only certain argument types in va_ arg. That's because
many macro implementations need to generate a related pointer type by
textually appending a •.The rules for writing types in Care notoriously
introverted-and much too twisty for such a simple recipe to work right
all the time.

macro • A function must execute va_ end before it returns to its caller. That's
va_end because some implementations n~d to tidy up control information

before a return can occur.
All in all, however, the macros defined in <atdarg.h> work well enough.
And they offer a service which is uniquely powerful among modern
programming languages.

<stdarg.h> 207

What the C Standard Says
<•t41lrg.h>

va_liat

va_ atart

·va_arg

7.8 Variable arguments < s tdarg. h>

Thc header < atdarg. h> declares a type and defines three macros, for advancing through a
list of arguments whose number and types are not known to the called function when it is
translated.

A function may be called with a variable number of argumcnL< of varying types. As described
in 6.7.1, its parameter list contains one or more parameters. l1lc rightmost parameter plays a
special role in the access mechanism. and will be designated parmN in this description.

The type declared is

va_ liet

which is a type suitable for holding information needed by the macros va_ atart. va_ arg.
and va_end. If access to the varying arguments is desired, the called function shall ,declare an
object (referred to as ap in this subclause) having typeva_liat. The object ap may be pa.sed
as an argument to ano1her function; if that funclion invokes the va_arg macro with parameter
ap, the value of ap in the calling function is indetcrminacc and shall be passed to the va_end
macro prior to any further reference to ap.

7.8.l Variable argument list access macros
The v a _ atart and va_ arg macros described in this subclause shall be imple,mcnted as

macros, not as actual functions. It is unspecified whether va_end is a macro or an identifier
declared with external linkage. If a macro definition is suppressed in order to access an aaual
function. or a program defines an external identifier with the name va_end, the behavior is
undefined. The va_ atart and va_end macros shall be invoked in the function accepting a
varying number of arguments. if access to the varying arguments is desired.
7.8.J.I The va_ a tart macro

Synopsis

l include <•tdarg.h>
void va_ atart (va_ liet ap .. parmN) 1

Description

Thc va_ a tart macro shall be invoked before any access to the unnamed arguments.

Thc va_ a tart macro initializ.es ap for subsequent use by va_ arg and va_ end.

Thc parameter pormN is the identifier of the rightmost parameter in the variable parameter list
in the function definition (the one just before the , •• .). If the parameter pormN is declared with
the register storage class, with a function or array type, or with a type that is no1 compatible
with the type thao results after application of the default argument promotions, the behavior is
undefined.

Returns

The va_ s t art macro returns no value.
7.8.l.2 The va_ arg macro

Synopsis

#include <etdarg.b>
type va_ arg(va_liet ap, type) 1

Description

The va_ arg macro expands to an expression that has the type and value of the oc~• argument
in the call. The parameter ap shall be the same as the va_ liat ap initialized bY va_atart.
Each invocation of va_ arg modifies ap so that the vallles of successive arguments are returned
in tum . The parameter type is a type name specified such that the type of a pointer to an object
that has the specified type can be obcained simply by postfixing a • to t)'pe. I(there is no actual
next argument, or if type is OOl compatible with the type of the actual next argument (as promoted
according to the default argument promotions), the behavior is undefined.

Rdurns

The first invocation of the va_ arg macro after that of the va_ atart macro returns the
value of the argument after that specified by pormN. Successive invocations return the values of
the remaining arguments in succession.

208

va_end 7.8.1.3Theva_end macro
Synopsis

l include <e t.d&rgi .h>
void v a_ end(va_liat. ap);

Description

Chapter 10

11lc va end macro facilitates a normal return from the function whose variable argument list
was referred to by the expansion of va start that initiali.zed the va list ap. l11c va end
macro may modify ap so that it is no longer usable (without an Tntervening invocation of
va _ s tart). If there is no corresponding invocation of the va _start macro, or if the va _ end
macro is not invoked before the return. the behavior is undefined.

Rel urns

The va end macro returns no value.

Example

11lc function fl gathers into an array a list of arguments that are pointers to strings (bul not
more than MAXARGS arguments), then passes the array as a single argument to function f2. The
number of pointers is specified by me first argument to fl.

lincluc:t. <atda.rq. h>
ld4fi.ne MAXARGS 31

void fl (int n_J>tra , ...)

I
v a_liet. ap;
Ch•r • array(KJUCARGS) ;

i.nt ptr_ no • O;

i f (n _ptre > NAXARGS)

n_ptr• • IG.XARGS;
va_ourt (ap, n_ptro);
while (ptr_no < n_ptra)

array(ptr_ no++] • va_arq(ap, char •);
va end(ap) :
t2 (nyt.ra, array) ;

Each can to fl shall have visible the definition of the function or a declaration such as
void fl (int, ...) ;

Using <stdarg. h>
You use the macros defined in <stdarq. h> to walk a variable argument

list. The macros must accommodate the needs of diverse implementations.
Hence they come with a number of caveats:

• You must declare a function explicitly as having a variable argument list.
(Call it t.) That means its argument list must end in ellipsis(. .. .), both
in its definition and any declarations. Moreover, all calls to the function
must be in scope of a function prototype that declares the function this
way.

• You must declare the function with at least one fixed argument. The last
of these fixed arguments is conventionally referred to as parmN.

• You must declare a data object of type va _list, conventionally called ap.

The data object must, of course, be visible within the function.
• You must execute va_•tart (ap, parmN) within t . You must not execute

va _ list or va _end until you do so.

<stda.rg. h> 209

• You can then execute va_arg(ap, T) in the function or in any of the
functions that it calls. You must specify the proper types for each of the
arguments, of course, and in the orde.r that they appear in the function
call Note that va_arg is an rvalue macro. You cannot use the macro
invocation as an lvalue to alter the value stored in the argument data
object.

• You must not write a type T that widens when passed as an argument.
Replace float with double. Replace char, signed char, unsigned char, short, and
unsigned short with either int or unsigned int. Use rmsigned int for an
unsigned short that is the same size as int. Rarer still, use unsigned int for
a character type that represents no negative values and is the same size
as int.

• You must write only a type T that can be converted to a pointer type by
appending a •. For example, the type designators int and char • are
valid. The type designator char <•>[SJ is not. As a general rule, be wary
of type designators that contain parentheses or brackets.

• You must execute va_end within f if you earlier executed va_atart. Once
you execute va_end you must not again execute va_arg unless you first
execute va_atart to initiate a rescan. In that case, you must execute
va_end again before the function returns.
If all that sounds too negative, consider a positive example instead. Here

is a function that generalizes the function fpute, declared in <•tdio.h>. That
function writes a single null-terminated string to an output stream that you
designate, as in:

fputa("thi• i• a teat•, atdout);
This function, called va_tputa, writes an arbitrary number of strings to a
given stream, as in:

va_fput•(atdout, "thi • ia•, • a taat•, NULL);
In this example, both functions should produce the same output to the
stream •tdout.

You can write va_fputa as:
#include <atdarg.h>
#include <atdout.h>

int va_fputa(PIL& *•tr, .•.)
{ /* write zero or more strings */
char *•1
int atatua • 01
va_liat ap;

va_atart(ap, atr)1
while ((a • va_arg(ap, char*)) I• NULL)

if (fput•(•, atr) < 0)
•tatua • l!OP;

va_end(ap);
return (atatua);

210 Chapter 10

You can follow this pattern to process a wide range of variable argument
lists. You can even process the variable argument list in a separate furction.
Be sure to execute va_start before you call the function. Then execute
va_end when the function returns.

rescanning If you want to rescan a variable argument list you have to be a bit more
careful. Execute va start to initiate each rescan, of course. Executeva end

before the function-returns, and only if you execute va _start at least o"'iice.
I recommend an even safer discipline - execute va_start and va_•nd
within the same loop. That way, you are more certain to execute va _end only
when you should .

va_list
arguments

Many implementations have no need for va_end. The macro expands to
code that does nothing. That means that any errors in using this macro
become time bombs that may not go off for years. They get more expensive
to find and fix with each passing year. Take pains to eliminate the bugs up
front.

Another danger lurks in calling a function with the argument ap (the
data object of type va_list). In some implementations, it may be an array
type. That means that the function parameter actually becomes a pointer
to the first element of the va_ list array. When the called function executes
va_arq, the data object changes in the calling function (called f above).

In other implementations, va_ list is not an array type. That means that
the argument ap passes by value as it appears to do. When the called
function executes va _ arg, the data object in the calling function f does not
change.

If you process all arguments in the called function, the difference doesn't
matter. If you execute va_arg in different function invocations with the
"same" ap, howevff, it can matter. In fact, you get in trouble if your code
requires that theva_list data object be shared or ifit requires that the data
object not be shared.

You can ensure the behavior that you need:

• If the va_list data object must be shared, write the argument as '8P·
Declare the corresponding parameter as va _list *pap. Within the func­
tion, execute va_arq(*pap, Tl to access each argument in the variable
argument list.

• If the va_list data object must not be shared, write the argument asap.
Declare the corresponding parameter as va_list xap. Within the func­
tion, declare a data object as va_list ap and execute memcpy(ap, xap,

sizeof (va_list)) . (memcpy is declared in <strinq.h>.) Execute
va_arq(ap, 2') to access each argument in the variable argument list.

These two recipes will work regardless of the type defined for va _ liBt.

<stdarg.h> 211

Implementing <stdarg. h>
Figure 10.1 shows the file atdarq.h. It is the only code needed to

implement <atdarq. h>. That's assuming that it can be made to work with
a given implementation of Standard C.

assumptions The approach assumes that:

• A variable argument list occupies a contiguous array of characters in
memory.

• Successive arguments occupy successively higher elements of the char­
acter array.

• The space occupied by an argument begins on a storage boundary that
is some multiple of 2N bytes.

• The size of the space is the smallest multiple of 2N bytes that can
represent the argument.

• Any "hole" left in the space is always at the beginning or always at the
end of the argument data object.

These assumptions hold for many implementations of Standard C.
header As usual, the internal header <yvala.h> defines macros that describe

<yvala.h> variations among different systems. For the header <atdarq.h>, two pa-
rameters are relevant:

macro • _ AUPBND is a mask that determines the storage boundary enforced within
AUPBND the variable argument list. Its value is 2N-t.
macro • _ ADNBNO is a mask that determines whether the hole is at the beginning
ADNBND or at the end of an argument data object. Its value is 2N-1 if the hole is

Figure 10. 1 :
atdarq.h

at the end, otherwise it is zero.
A simple example is the Borland Turbo C++ compiler. For that implemen­
tation, the header <yval a. h> contains the definitions:
#define _ AUPBND l
#define _ ADNBND l

/* atdarq.h standard header •/
#ifndef _STDARG
#define STDARG
lli.fndef =YVALS
#include <yvala.h>
#endif

/* type c:lefi.nitiona •/
typedef char •va list;

/*macro;*/
#d9fina va_arq(ap, T) \

(*(T *) (((ap) += Bnd(T, AUPBND)) - Bnd(T, _ADNBND)))
#define va end(ap) - (void) 0
#define va- start (ap, A) \

(void)l(ap) = (char *)'(A) + Bnd(A, AUPBND))
#define _Bnd(X, bnd) (aJ.zeof (Xl + (bnd) ' -(bnd))

#endif o

212 Chapter 10

I discovered the need for specifying a hole before an argument with the
GNU C compiler for the Sun UNIX workstation. For that system, _AOPBND

has the value 3, but _ADNBND is zero.
type Perhaps now you can understand the trickery involved in stdarg. h. The

va_liat typeva_liat is just a pointer to char. Such a data object holds a pointer to
the start of the next argument space.

va_atart The macro va_atart skips past the named argument, which should be
_Bnd the last of the fixed arguments. It uses the internal macro _Bnd to round up

the size of its argument to a multiple of zN bytes.
macro The macro va_arg is the trickiest of the lot. It begins by incrementing the
va _ arg contents of the va _list data object to point to the start of the next argument

space. Then it backs up to point to the beginning of the current argument.
Then it type casts that pointer value to be a pointer to the specified type.
Its last act is to dereference the pointer to access the value stored in the data
object. (In this implementation, va_arg is an !value. Don't count on that
being true of others.)

macro The macro va_end has nothing to do in this implementation. It expands
va_end to the place-holder expression (void) o.

Testing <stdarq . h>
Figure 10.2 shows the file tstdarg. c. It stresses the macros defined in

<atdarg. h> moderately hard. The function tryit accepts a variable argu­
ment list that can have a variety of argument types. A format string
argument tells the function what to expect, much like the print and scan
functions declared in <stdio. h>.

I have found more than one implementation that fails to handle a data
object of type catruct correctly. It is a structure that contains a single
character. Not everyone remembers that an argument can be that small

As a courtesy, the program d isplays the size in bytes of a data object of
type va _ liat. If all goes well, the test p rogram d isplays output something
like:
aizeof (va_liat) = 4
SUCCESS testing <atdarg.h>

References
UNIX Programmer's Reference Manual, 43 Berkeley Software Distribution

VirtualVAX-11 Version (Berkeley, Ca.: University of California, 1986). Here
is the source of the header <vararga.h> that served as the model for
<atdarg. h>.

<atdarg.h>

Figure 10.2:
tstdarq.c

I* test stdarq inacros •/
#include <aasert.h>
#include <stdarq.h>
#inc lude <stdio.h>

/* type definitions */
typedef struct I

char c;
) Cstruct;

static int tryit(const char *fmt, . ..)

213

(/* test variable argument list •/
int ctr= 0 ;
va list ap;

va_start (ap, fmt) ;
for (; *fmt; ++fmt)

switch (*fmt)
{ /* switch on arqument type • /

case '.i':
assert (va_ arq(ap, int) = ++ctr) ;
break;

ca- ' d ' :
a s sert (va_arq(ap, double) ++ctr) ;
break;

case 'p' :
assert (va arg(ap, char •) [O] ++ctr);
break; -

case 's' :
assert (va_ arq(ap, Cstruct) . c
)

va_end(ap);
return (ctr) ;

++ctr);

int inain()
{ I* test basic workings of stdarq inacros */
Cstruct x = 13);

assert(tryit("iisdi", '\l', 2, x, 4 . 0, 5) = 5) ;
assert (tryit ("") = 0) ;
assert (tryit ("pdp", " \1" , 2 . 0 , "\3") ~ 3);
printf("sizeo f (va_list) = %u\n", sizeof (va_list)) ;
puts ("SUCCESS testing <stdarq. h>");
return (0);
) 0

214

Exercises
Chapter 10

Exercise 10. 1 Determine how your C translator stores arguments in a variable argument
list by reading its documentation. Does that tell you enough?

Exercise 10.2 Determine how your C translator stores arguments in a variable argument
list by displaying the header <stdarq. h> that it provides. Does that tell you
enough?

Exercise 10.3 Determine how your C translator stores arguments in a variable argument
list by examining the code produced for the test program tstdarq. c (Figure
10.2). Does that tell you enough? If not, augment the program to provide
the missing information.

Exercise 10.4 Alter the code presented in this chapter to adapt the header <stdarq .h> to
work with the C translator you use.

Exercise 10.5 Write the function char *scat (char •c:i.st, const char *arc, ...) that
concatenates one or more strings and writes them to c:i.st. The first string
starts at arc. A null pointer terminates the list. The function returns a

pointer to the terminating null character for the string starting at deat.

Exercise 10.6 [Harder) You want to test w hether an argument is present in a variable
argument list. If it is present, you want to determine its type. Describe a
notation that lets you do this.

Exercise 10.7 [Very hard) Implement the notation you developed for the previous exer­
cise.

Chapter 11: <stddef .h>

Background
The header <stddef. h> is :yet another invention of committee X3J11 in

forming the C Standard. The name follows the usual cryptic pattern for
naming headers in the Standard C library. It is meant to suggest that here
is where you find certain "standard definitions."

The only other suitable parking spot for the definitions in this header
might be <st dlib.h>. That too is a committee invention. It earned its
(equally) vague name as a place to declare various functions, old and new,
that had no traditional associated standard headers. It may seem silly to
create two such catchall repositories. Nevertheless, the committee had its
reasons.

lreestandng Some members of X3Jl 1 were determined that C should be a useful
versus language even in a freestanding environment. That is an environment that
hosted cannot support the full Standard C library, for whatever reason. The C

Standard requires of a freestanding implementation that it support all the
features of the language proper. Of the Standard C library, however, such
an implementation need supply the capabilities defined in only four stand­
ard headers - <float .h>, <li.mits .h>, <stdarg.h>, and <std def .h>. It can
supply more, but the C Standard spells out no intermediate levels.

An implementation must provide the entire Standard C library to qual­
ify as a hosted environment. That is the formal term for an environment that
fully implements the C Standard. This book is, of course, primarily con­
cerned with describing a hosted environment. It assumes that any free­
standing environment will want to follow the C Standard closely in any
additions it supplies beyond the required four standard headers.

That requirement clarifies what should go into <s tddef. h>. The other
three standard headers apply to fairly specific areas;

• <float. h> describes the properties of the floating-point representations.
• <limits. h> describes the properties of the integer representations.
• <stdarg.h> provides the macros you need to walk variable argument

lists.
Any other type or macro definitions of use to a freestanding program has
only one place to go. That's the header <stddef .h>.

216 Chapter 11

A later committee decision muddied the waters somewhat. Several
types and macros now have definitions in more than one standard header.
The header <locale .h>, for example, defines the macro NOLL So too does
<stddef. h> and four other standard headers. Similarly, the types size_ t

and wchar_t have definitions in other standard headers as well as in
<stddef. h>. That weakens the case for having a standard header just for
definitions if it mostly replicates information available elsewhere. Remem·
ber, however, that the other standard headers may not be available in a
freestanding environment.

The types and macros defined in <stddef. h> have one additional thing
in common. Every one has been, at one time or another, a candidate for
inclusion in the language proper. That's because every one is, in the end,
defined by the translator in a private way. It is not easy to write portable
code that can take the place of any of these definitions. Sometimes it is
essentially impossible.

On the other hand, all the types and macros defined in <stddef. h> can,
as a rule, be written as conventional type and macro definitions. The
implementor simply need to be privy to how a given translator defines
certain types and operations ..

types Consider the three type definitions in this header - ptrdiff _ t, size_ t,

as and wchar_t. Each is a synonym for one of the standard integer types. An
synonyms implementation cannot, for ~xample, make short 16-bits, wchar_ t 24-bits,

and int 32-bits. It must make wchar_t the same as some type that you can
specify for a type definition. The same constraints apply to the other two
type definitions.

macro Implementing the macro NULL simply requires that you choose the most
NOLL suitable of several possible options - o, OL, or (void *lo. You pick a fonn

that works properly as an argument of type pointer to void (or pointer to char,
signed char, or unsigned char) in the absence of a function prototype. (I discuss
the macro NULL in greater detail on page 220.)

It might be more elegant, p erhaps, to include a null-pointer constant in
the C language proper. The suggestion has been raised any number of
times. Nevertheless, one of these forms usually suffices for the ways in
which NULL tends to be used.

macro That leaves the macro of:fsetof. You use it to determine the offset in
offsetof bytes of a structure member from the start of the structure. Standard C

defines no portable way to write this macro. Each implementation, how·
ever, must have some nonstandard way to implement it. An implementation
may, for example, reliably evaluate some expression whose behavior is
undefined in the C Standard.

You can look on offsetof as a portable way to perform a nonportable
operation. That is true of many macros and type definitions in the Standard
C library. In each instance, the need to actually extend the C language
proper is not quite there. That's why the header <stddef. h> exists.

<stddef.h> 217

What the C Standard Says

<atddef.h>

wchar_t

NULL

oft'aetof

7.1.6 Common Definitions <stddef. h>
The following types and macros are defined in the standard header<stddef. h>. Some are

a1so defined in other headers. as noted in their respective subclauses.

The types are
ptrdiff_t

which is the signed integral type of the result of subtracting two pointers;

which is the unsigned integral type or the result or the aizeof operator: and

wchar_ t

which is an integral type whose range or values can represent distinct codes for all members of
the largest extended character set specified among the supported locales; the null character shall
have the code value zero and each 'member or the basic character set defined in 5.2. l shall have
a code value equal lo its value when used as the lone character in an integer character constant.

The macros are

NULL

which expands to an implementalion-dcfincd null pointer con!>'tant; and
offaetof(type, member-designator)

which expands to an integral constant expression that has type size t . the value of which is
the offset in bytes, to the structure member (designated by memlitr..tfesignator). from the
beginning or its structure (designated by type). The member-desi11na1or shall be such that given

atatic type t ;

then the expression ' (t. member-designator) evaluates to an address constant. (lfthe specified
member is a bit-field, the behavior is undefined.)

Forward references: locaJiuuion (7.4).

Using <stddef. h>
The uses for type and macro definitions in the header <atddef. h> are

essentially unrelated. You include this header if you need one or more of
the definitions it provides. Note, however, that only the type definition
ptrdiff_t and the macro offsetof are unique to this header. You will often
find that including another standard header will supply the definition you
need. I discuss each of the type and macro definitions separately.

type When you subtract two pointers in a C expression, the result has type
ptrdiff _ t ptrdiff _ t. It is an integer type that can represent negative values. Almost

certainly it is either int or long. It is always the signed type that has the same
number of\ bits as the unsigned type chosen for size_ t, described below.
(I said above that the use of these definitions is essentially unrelated. These
two definitions are themselves highly related.)

You can subtract two pointers only if they have compatible data-object
types. One may have a const type qualifier and the other not, for example,
but both must point to the same data-object type. The translator can check
types and complain if they are inappropriate. It generally cannot verify the
additional constraint - both pointers must point to elements within the
same array data object. Write an expression that violates this constraint and
you often get a nonsense result from the subtraction.

218 Chapter 11

The arithmetic essentially proceeds as follows. The program represents
both pointers as offsets in bytes from a common origin in a common
address space. It subtracts the two offsets algebraically, producing a signed
intermediate result. It then divides this intermediate result by the size in
bytes of the data object pointed to by both pointers. If both pointers point
to elements of a common array, the division will yield no remainder. The
final result is the difference in subscripts of the two array elements, regard­
less of the type of the elements.

That means, for example, that the expression 'a[SJ - 'a(2J always has
thevalue3,oftypeptrdiff_t . Similarly ,aC2J - 'a[SJ alwayshasthevalue
-3. I assume in both cases that a is an array data object with at least 5
elements. (Pointer arithmetic is still defined for the element "just off the
end" of an array, in this case u[SJ if a has exactly 5 elements.)

overflow ptrdiu_t can be an inadequate type, in some instances. Consider an
implementation where •iz•_t is the type unsigned int. Then ptrcliff_t is
the type int. Let's say further that you can declare a data object x as an array
of char whose sizeN is greater than INT_MAX bytes. (The header <l.i.lllita.h>
defines the macro INT_MAX as the largest positive value representable by
type int.) Then you might write something like:
#inl.cude <l.imi.ta .h>
#include <atddef .h>

#defi.ne N INT MAX+lO

char x[N);
ptrdiff_t n • 'x[N) - 'x[O) ;

What is the result of the expression that initializes n? An overflow occurs
because the result is too large to represent as an integer of type pt:rdiff _ t .
The result is undefined. You can't get around this problem. It is an intrinsic
weakness of the Standard C language.

Having painted this bleak picture, I must now tell you that such a
situation rarely arises. It can only happen with arrays whose elements
occupy only one byte. Typical!ly, these are elements of type char, signed c/iar,
or unsigned c/iar. Rarely are they anything else. It can happen on small
computer architectures where type int has, say, a 16-bit representation. It
can also happen on architectures that let you create enormous data objects.

Even then, you get an overflow only if you subtract pointers to two
character array elements more than half an adddress-space apart. And even
tlien the overflow may cause no problems because two's-complement
arithmetic (the commonest form today) forgives many sins. Your program
may well pass through all these perils and do what you intend anyway.

I recite all this esoterica to justify a simple conclusion. You will seldom,
if ever, have a need to use the type definition ptrdiff _ t . It's only practical
use that I can imagine is to store the result of a pointer subtraction or the
difference between two subscripts. Usually, your program consumes such

<atddef .h> 219

results on the fly. This type has the intrinsic limitation that it cannot reliably
capture all results of pointer subtractions. That limits its usefulness in a
portable program. It's nice to know that you can determine the type of the
result of a pointer subtraction. But I don't know why you would care most
of the time.

type When you apply the sizeof operator in a C expression, the result has
size_t type size_t. It is an unsigned integer type that can represent the size of the

largest data object you can declare. Almost certainly it is either unsigned int
or unsigned long. It is always the unsigned type that has the same number
of bits as the signed type chosen for ptrdiff _ t, described above.

Unlike ptrdiff_t, however, size_t is very useful. It is the safest type to
represent any integer data object you use as an array subscript. You don't
have to worry if a small array evolves to a very large one as the program
changes. Subscript arithmetic will never overflow when performed in type
size_t. You don't have to worry if the program moves to a machine with
peculiarproperties,suchas32-bitbytesand 1-bytelongs. Typesize_t offers
the greatest chance that your code won't be unduly surprised. The only
sensible type to use for computing the sizes of data objects is size_ t.

The Standard C library makes extensive use of the type size_ t. You will
find that many function arguments and return values are declared to have
this type. That is a deliberate change over older practice in C that often led
to program bugs. It is part of a general trend away from declaring almost
all integers as type int.

You should make a point of using type size_t anywhere your program
performs array subscripting or address arithmetic. Be warned, however,
that unsigned-integer arithmetic has more pitfalls than signed. You cannot
nm an unsigned counter down until it goes negative- it never will. If the
translator doesn't warn you o f a silly test expression, the program may loop
forever. You may find, in fact, that counting down to zero sometimes leads
to clumsy tests. You will occasionally miss the convenience of using nega­
tive values (such as ZOF, defined in <stdio.h> to signal end-of-file) and
testing for them easily. Nevertheless, the improvement in robustness is well
worth the learning investment.

The code in this book uses type eize_t wherever it is appropriate. You
may see an occasional place where int data objects hold subscripts. In all
such cases, however, the size of related array data objects should be
naturally limited to a safe range of sizes. I indulge in such practices only
when I have an overriding need to mix negative values with proper
subscript values.

type You write a wide characte:r constant as, for example, L' x'. It has type
wchar_t wc:har_t. You write a wide character string literal as, for example, L"hello". It

has type array of wchar_t. wchar_t is an integer type that can represent all
the code values for all wide-character encodings supported by the imple­
mentation.

220

macro
NULL

Chapter 11

For an implementation with only minimal support for wide characters,
wchar _ t may be as small as char. For a very ambitious implementation, it
may be as large as unsigned long. More likely, wchar_t is a synonym for an
integer type that has at least a 16-bit representation, such as short or unsigned
short.

You use wchar_t to represent all data objects that must hold wide
characters. Several functions declared in <stdlib.h> manipulate wide
characters, either one at a time or as part of null-terminated strings. You
will find that many function arguments and return values in this group are
declared to have this type. For this reason, the header <atdlib. h> also
defines type wchar _ t.

The macro NULL serves as an almost-universal null pointer constant. You
use it as the value of a data-object pointer that should point to no data object
declared (or allocated) in the program. As I mentioned on page 216, the
macro can have any of the definitions o, OL, or (void *lo.

The last definition is compatible with any data object pointer. It is not,
however, compatible with a function pointer. That means you cannot write:
int (*pfun) (void) =NULL; /* WRONG */

The translator may complain that the expression type is incompatible with
the data object you wish to initialize.

An important traditional use for NULL has largely gone away. Early
versions of the C language had no function prototypes. The translator could
not check whether a function-call argument expression was compatible
with the corresponding function parameter declaration. Hence, it could not
adjust the representation of an expression that was compatible but had a
different type (such as changing tan (1) to tan (1 . 01. The programmer had
to ensure that each argument value had the proper representation.

Modern programming style is to declare function prototypes for all
functions that you call. Nevertheless, an important context still exists where
a function argument has no corresponding parameter declaration. That is
when you call a function that accepts a variable argument list (such as
printf, declared in <stdio. h>). For the extra arguments, the older C rules
apply. A few standard type conversionsype;converting occur, but mostly it
is up to you, the programmer, to get each such argument right.

In the earliest implementations of C, all pointers had the same repre­
sentation. Usually, this representation was the same size as one of the
integer types int or long. Thus, one of the decimal constants o or OL

masqueraded nicely as a null pointer of any type. Define NULL as one of
these two constants and you could assign it to an arbitrary pointer. The
macro was particularly useful as an argument expression. It advertized that
the expression had some pointer type and was a null-pointer constant.

Then along ca me implementations where pointers looked quite different
than any of the integer types. The only safe way to write a null pointer was
with a type cast, as in (char *lo. If all pointers looked the same, you could

<Stddef .h> 221

still define NULL as, say, <char • l o. The macro still served as a useful way
to write argument expressions.

Standard C permits different pointer types to have different repre­
sentations. You are guaranteed that you can convert any data object pointer
to type pointer to char (or pointer to signed char or pointer to unsigned char) and
back again with no loss of information. The newly introduced type pointer
to void has the same representation as pointer to char, but is assignment-com­
patible with all data-object pointers. You use pointer to void as a convenient
generic data-object pointer type, particularly for declaring function argu­
ments and return values.

The safest definition for NULL on such an implementation is <void *lo.
There is no guarantee, however, that pointer to void has the same repre­
sentation as any other (non-character) pointer. It isn't even assignment-com­
patible with function pointers. That means that you can't write NULL as a
universal null-pointer constant. Nor can you safely use it as an argument
expression in place of an arbitrary data-object pointer. It is guaranteed to
masquerade properly only as a character pointer or as a generic pointer to
void.

One modern style of writingC is to avoid the use of NULL altogether. Write
every null pointer constant religiously with an appropriate type cast, as in
Unt •lo. That can lead to wordy programs, but has the virtue of being most
unambiguous. A modification of this style is to write a simple o as a
null-pointer constant wherever possible. That can lead to programs clear
enough to the translator but not to human readers.

The style I follow in this book is to use NULL as much as possible. I find
it a useful signal that a null-pointer constant is present. I use type casts to
generate null-pointer constants for function pointers. I also use them for
arguments to functions that accept variable argument lists, particularly if
the required type is other than pointer to void.

You will find the macro NULL defined in half a dozen different. headers.
It is easy for you to use the macro if you so choose. My only advice is that
you choose a uniform style, as always, and stick with it.

macro You use the macro offsetof to determine the offset in bytes of a member
offaetof from the start of the structure that contains it. That can be important if you

wish to manipulate the individual members of a structure using a table­
driven function. See, for example, the function _Makeloc on page 120 and
the table _Loctab on page 117.

The result of this macro is an integer constant expression of type size_t.

That means you can use it to initialize a static data object such as a constant
table with integer elements. It is the only portable way to do so. If you write
code such as:
atruct xx {

int a, b1
} x;

static size_ t off • (char *)&x- >b - (char •)&x;

222 Chapter 11

the behavior of the last declaration is undefined. Some implementations
can choose to evaluate the initializer and obtain the obvious result. Others
can choose to diagnose the expression instead.

Nor can you reliably step from member to member by performing
pointer arithmetic. The macros defined in <atdarg.h> let you step from
argument to argument in a function that accepts a variable argument list.
Those macros, or others like them, are not guaranteed to work within a
structure. That's because the holes between structure members can differ
from the holes between function arguments. They need not follow any
documented rules, in fact.

You need the macro offa .. tof to write code that is portable:
#include <atddef.h>

atruct xx {
int. a, b;
} x;

static aize_t off = offaetof(atruct xx, b);

Implementing <stddef. h>
Figure 11.1 shows the file atddef. h . It is fairly simple. Once again, I use

the internal header <yvala . h> to supply information that can vary among
implementations. In this case, that information determines all three type
definitions and the form of the macro NULL. The header <yvala. h> typically
contains the following definitions:

header typedef int _Ptrdifft;
<yvala.h> typedef unsigned int _Sizet;

typedef unsigned abort _Wchart;
#define _NULL (void •)O

These definitions work for a wide variety of implementations. Neverthe­
less, certain implementations may require that one or more of them change.
That's why I chose to parametrize them.

macro For the macro offaetof I chose to use a common trick. Many implemen-
offaetof tations let you type cast an integer zero to a data-object pointer type, then

perform pointer arithmetic on the result. That is certainly undefined be­
havior, so you may well find an implementation that balks at this approach.

The translator must indulge you a bit further for this definition of the
macro to work properly. It must let you type cast the zero-based address
back to an integer type, in this case aize_t in disguise. Moreover, it must
tolerate such antics in an integer constant expression. That's what you need
to initialize static data objects.

Luckily, quite a few translators grant such a triple indulgence. If you
encounter one that doesn't, you will have to research how its implementors
expect you to define offaetof. To comply with the C Standard, each
implementation must provide some method.

<stddef.h> 223

Figure 11.1: /• stddef. h standard header •I
stddef. h #ifndef _STDDEF

#define _STDDEF
#ifndef _YV"ALS

#include <yvals.h>
#endif

!• 111&cros •/
#define NOLL _NULL
#define offeetof(T, member) ((_Sizet)5((T *)0)->member)

/• type definitions •/
#ifndef SIZET
#define :sIZET
typedef _Sizet size_t;
#endif
#ifndef WCHART
#define -WCHART
typedef ::::wchart wchar_t;
#endif
typedef Ptrdifft ptrdiff t;
#endif - - D

Testing <stddef . h>
Figure 11.2 shows the file tatddef. c. It verifies the basic properties of

the types and macros defined in <stddef .h>. It is a brief program because
this header offers little to test. As a courtesy, the program also displays the
sizes of data objects of type a:ize _ t and wchar _ t . (ptrdiff_ tis the same size
as size_t.) If all goes well, the program displays output something like:
sizeof (size_t) = 4
sizeof (wchar_t) = 2
SUCCESS testing <atddef. h>

References

Exercises

P.J. Plauger, "Data-Object Types," The C Users Journal,, 6, no. 3
(March/ April 1988). This article discusses a few issues related to the topics
in this chapter.

Exercise 11. 1 Determine the integer types that your implementation has chosen for
ptrcliff_t, aize_t, and wchar_t.

Exercise 11.2 Write a program that determines experimentally an integer type you can
use for wchar _ t.

Exercise 11.3 Write a program that determines experimentally the integer types you can
use for ptrdiff_t and wchar_t.

224

Figure 11.2:
tstddef.c

Chapter 11

/* teat atddef definitions */
#incl ude <aaaert.h>
#include <limita.h>
#include <atddef.h>
#include <atdio.h>

I* type definitions */
typedef atruct (

char fl;
struct {

float flt;
} f2;

int f3;
Str;

/* static data */
static char *pc = NULL;
static double *pd = NULL;
static size t offs[) = {

offaetof(Str, fl),
offaetof(Str, f2),
offaetof(Str, f3)};

int znain()
{ /* teat b&aic workings of stddef definitions */
ptrdiff_t pd = &pc[INT_MAX) - &pc[O);
wchar_t wc = t•t';
Str x .. {1, 2, 3);
char *pa = (char *)&x;

assert (aizeof (ptrdif:f_t) = aizeof (aize_t));
aaaert(aizeof (aize_t) ~ aizeof (aizeof (char)));
aaaert(pd = &pc[INT_MAX) - &pc[O));
aaaert(wc = L'Z');
aaaert(offa [O) < offa[l));
aaaert(offa [l) < offa[2));
aaaert(*(char *)(pa+ offa[O)) = l);
aaaert(*(fl oat *)(pa+ offa[l)) = 2);
aaaert(*(int *>(pa+ of:fa [2)) = 3);
printf("aizeof (aize_t) "'%u\n", aizeof (aize_t));
printf ("aizeof (wchar_t) "' %u\n", aizeof (wchar_t));
puta("SUCCESS testing <stddef.h>");
return (0);

0

Exercise 11.4 [harder] Some implementations permit you to subtract two pointers in an
integer constant expression jf both are based on some static data-object
declaration. Write a definition for offaetof that uses this capability.

Exercise 11.5 [very hard] Add a null-pointer constant to the C language. The keyword
nul is a null pointer compatible with all pointer types. How do you handle
nul as an argument expression in the absence of a corresponding parameter
declaration?

Chapter 12: <stdio.h>

Background

q,ut/output
model

The header <stdio. h> declares a broad assortment of functions that
perform input and output. It is a rare program that performs no output, so
this header is widely used. It was, in fact, one of the earliest headers to
appear in the C library. This header declares more functions than any other
standard header. It also requires more explaining because of the complex
machinery that underlies the functions.

I discuss several major topics in this chapter.

• the abstract input/ output model implemented by the Standard C library

• the low-level functions thatread and write uninterpreted data

• the h igher-level functions that print and scan data under control of a
format specification

I begin with some historical perspective.

One area of computer progranuning has seen dramatic improvements
over the years, but has received little recognition for its successes. I refer to
the device-independent model of input and output that has evolved along
with h igh-level languages over the past twenty years or so. Standard C
incorporates most of the benefits that derive from this improved model.

In the early 1960s, FORTRAN II was touted as a machine-independent
language. Still, it was essentially impossible to move a FORTRAN program
between computer architectures without some change. The major stum­
bling block to portability was in the area of input/ output (or 1/0 for short).
In FORTRAN II, you named the device you were talking to right in the 1/0
statement in the middle of your FORTRAN code. To read an input card
image, you said READ INPUT TAPE son a tape-oriented IBM 7090. But you
said RE.AD CARD on other machines. To print your results, you said either
WRITE OOTPUT TAPE 6, PRINT, or TYPE.

logical FORTRAN IV came along and provided an escape hatch. You could now
unit write more generic RE.AD and WRITE statements, each specifying a logical 11nit

numbers n11mber (or LUN) in place of t he specific device name. You stacked control
cards in front of your executable binary card deck to specify which devices
corresponded to which LUNs during this particular run. The era of device­
independent 1/0 had dawned.

226 Chapter 12

Well, almost. Peripheral devices still had fairly strong notions about
what they should be asked to do. When you wrote to a printer, for example,
the first character of each line was diverted to control carriage spacing.
Send the same line to a typewriter and the carriage control characters
printed. And carriage control was a lightweight issue compared to blocking
factors for magnetic tape and diskfiles, or binary card formats, or how to
specify end-of-fi.leon various inputs. After a while, you learned which pairs
of devices you could switch between tor certain flavors of input and output.

PIP A further step toward device independence came with the evolution of
utiltles standard peripheral interchange (or PIP) utilities. These were programs that

would let you specify any combination of source and destination devices,
then endeavored to perform a sensible copy operation between the two.
Usually, you had to specify a bizarre set of options to give PIP a reasonable
chance at guessing right. And invariably, some desirable combinations just
flatly failed no matter how many hints you provided.

Then along came the CRT terminal and everybody took one step back­
ward. Do you terminate a line with a carriage return, with a carriage return
followed by a line feed, with a newline character, or with some other
magical incantation? Does the terminal accept horizonta l tab settings and
expand tabs, or are tabs anathema to it? How do you signal end-of-file from
the keyboard? As you can imagine, there were about as many answers to
these questions as there were vendors of CRT terminals.

enter It was into this atmosphere that UNIX came in the early 1970s. Ken
UNIX Thompson and Dennis Ritchie, the developers of that now-famous system,

deservedly get credit for packing any number of bright ideas into UNIX.
Their approach to device independence was one of the brightest.

UNIX adopted a standard internal form for all text streams. Each line of
text is terminated by a newline character. That's what any program expects
when it reads text, and that's what any program produces when it writes
it. If such a convention doesn't meet the needs of a text-oriented peripheral
attached to a UNIX machine, then the fixup occurs out at the edges of the
system. None of the code in the middle has to change.

sysfemcoll UNIX provides two mechanisms for fixing up text streams "out at the
edges." The preferred mechanism is a generic mapper that works with any
text-oriented device. You can set or test the various parameters for a given
device with the i.octl system call. Using i.octl , you can (among other
things) choose among various conversions between the internal newline
convention and the needs of numerous terminals. Over the years, i.octl has

i.octl

device
handlers

evolved to a fairly sophisticated little PIP for text-oriented devices.
The second mechanism for fixing up text streams is to tailor the special

software that directly controls the device. For each device that a UNIX
system may need to control, someone has to add a device handler to tihe UNIX
resident. (MS-DOS has adopted similar machinery.) Early on, Thompson
and Ritchie established the precedent that each device should handle
standard text streams wherever possible.

<11tdio.h>

file
descriptors

'l27

When Dennis Ritchie got the first C compiler going on PDP-11 UNIX,
the language naturally inherited the simple I I 0 model of its host operating
system. Along with the uniform representation for text streams came
several other contributions to elegance. Those LUNs of yore had evolved
over the years into small positive integers called file descriptors or /randies.
The operating system assumes responsibility for handing out file descrip­
tors. And it keeps all file control information in its own private memory,
rather than burden the user with allocating and maintaining file- and
record-control blocks.

To simplify matters for most programs, the UNIX shell hands out three
standard file descriptors to every program that it nms. These are for the
now-conunonplace standard input, standard output, and standard error
streams. (They are not exactly a UNIX invention, having incubated in PL/I
and MULTICS, among other places.) Progranuners quickly learned the
wisdom of reading text from the standard input and writing text to the
standard output, whenever possible. Thus was born the software tool.

binary Another small but important refinement was 8-bit transparency. Noth-
meoms ing in UNIX prevents you from writing arbitrary binary codes to any open

file, or reading them back unchanged from an adequate repository. True,
sending binary to a text-oriented device might have bizarre consequences,
but a file or pipeline is usually ready and willing to field arbitrary stuff.
Progranuners eventually learned the wisdom of making their programs
tolerant of arbitrary binary codes, whenever that made sense, even if the
programs originated as text processing tools. Thus did UNIX obliterate the
long-standing distinction between text streams (for interacting with peo­
ple) and binary streams (for interacting with other programs).

file Yet another refinement was exact-length files. Most operating systems
length make only a half-hearted attempt to disguise any underlying block struc­

ture in files kept on disk, tape, or other record-oriented devices. When you
write data to a file and then read it back, you may be treated to anywhere
between one and a thousand extra characters tacked onto the end. UNIX
records the size of a file to the nearest byte, so you get back only what was
put into the file. Progranuners of device handlers mostly learned to provide
machinery for keeping data streams to and from devices just as tidy. Thus
fell one of the last needs for the once ubiquitous PIP utility. (Note, however,
that UNIX still has the dd command, a modem-day PIP.)

Similarly, making temporary files requires no advanced preparation,
and hardly any thought. Stitching together C programs from different
authors via pipelines works far more often than not. Those early UNIX
systems delivered to universities produced a generation of C programmers
blissfully ignorant of the ugly realities involved in performing 1/0 on most
other operating systems.

C The honeymoon ended when C moved from UNIX to other operating
moves systems. Those of us involved in those first implementations faced some

out tough decisions. Should we fight to preserve the simple 1/0 model to

228 Chapter 12
which C programmers had grown accustomed, or should we alter the 1/0
library to match local custom? That was an easy one, philosophically at
least. Few C programmers want to manipulate file-control blocks or specify
a gazillion parameters when opening a file - not after years of relatively
painless 1/0. Most of us opted to preserve the simple 1/0 model as much
as possible. r-Ne also learned to provide hooks to the rest of the stuff,
however, for the people who actually liked the local operating system.)

hiding That being the case, where do we hide the uglies? UNIX packed most of
the them into ioctl or the device handlers. Generally, we lacked that q:ition.

uglies Instead, we had to make more complex libraries to deal with varied devices
and differing conventions for representing text. It is important to ensure
that C can read and write text files that are compatible with the local text
editcr. C must also, at a minimum, read text from keyboards and write it
to displays and printers. The library maps as needed between newline-ter­
minated text lines internally and local usage externally.

We could not do a perfect job of hiding the uglies on non-UNIX systems.
So another tough decision we implementors had to make was how to let
the uglies shine through when we couldn't make them go away. Those
vendors content to implement C very well for one environment usually just
added complexity to the existing 1/0 functions, and added great bouquets
of new functions. Those of us who were striving for a uniform but powerful
environment across multiple systems had to be more sparing. That meant
adding minimal additional complexity to the existing 1/0 functions, as
well as adding as few new functions as possible. It also meant weakening
some of the promises of the UNIX 1/0 model to satisfy the least-common
denominator across varied systems.

X3J11 Committee X3J11 began meeting in 1983 to draft an ANSI standard for
moves in C. Vendors of C for non-UNIX systems fought many a patient battle with

the UNIX folk who could not understand why 1/0 had to be so messy. It
was a highly educational process. An important byproduct of all this
discussion was a clearer statement of the 1/0 model supported by C.

text To begin with, Standard C had to reintroduce the distinction between
versus text and binary files. Almost every operating system besides UNIX forc:es
binary an implementation to treat these two flavors differently. MS-DOS, for

example, lets you use the same system calls for both text and binary files,
but it terminates each line in a text file with both a carriage return and a
line feed. The C runtime must discard those terminating carriage returns
when it reads a text file, but not when it reads a binary file. Hence, the
distinction is there even when you think it might not have to be.

You specify whether a file is to be treated as text or binary when you
open it. You write fopen (fnam•, " r ") to open a file forreading, for example.
In Standard C, this recipe specifies a text file by default. If you want to open
a binary file, you write fopen (fnam9, "d:>") . You can tack thebontoanyof
the other modes as well. (The b can either precede or follow any+ you write
as part of the mode.)

<atdio.b>

tennlnaHng
llnes

l ne
length

ftle
length

229

A UNIX system is free to ignore the b mode qualifier, as is any operating
system for which the distinction has no meaning. On many systems,
however, the distinction is extremely important. If you want your program
to be portable, think about how each file is used and code its fopen mode
properly. Otherwise, your program can fail in all sorts of subtle ways.

A text file is designed to support closely the UNIX model of a stream of
text. This is not always easy. As I indicated on page 226, conventions for
terminating text lines vary considerably. The implementation requires lati­
tude in converting what's out there to what your C program reads, and in
converting what your program writes to what makes sense to other pro­
grams once it's out there. Tha t latitude must extend to the set of characters
you write to text files, to how you construct text lines, and even to the
difference between zero and nothing. Let me elaborate.

Some systems are far from 8-bit transparent when it comes to writing
things in text files. Actl-Z looks like an end-of-file in more than one popular
operating system. Even characters from the basic C character set can be
chancy. Form feeds and vertical tabs may not survive intact in some
environments. For maximum portability, in fact, you should write to a text
file only the printing characters, plus space, newline, and horizontal tab.

Many systems balk at pa.rtial (last) lines, since they have no way to
represent the concept of a line without a terminator. If the last character you
write to a text file is not a newline, that partial last line may go away. Or it
may be completed for you, so that you read a newline back that you did
not write out. Or the program may gripe when you run it. Avoid partial last
lines in text files.

Some systems cannot even represent an empty line. When you write one,
the library may actually write a line containing a space. On input, the
system then discards the space from a line containing only a single space.
Some systems discard all trailing spaces on a text line. That gives you nicer
behavior if your program reads a file consisting of fixed-length text records.
All those trailing spaces conveniently disappear. But what this means is that
you cannot rely on writing a text line with trailing spaces and reading those
spaces back later. Don't even try, in a portable program.

At the other extreme, systems have a right to impose an upper limit on
the longest text line that they can read or write. Longer lines may be
truncated, so the trailing characters are lost. Or they may be folded, so you
suddenly encounter newline characters that were not there originally. Or
you may get a complaint when you run your program. The upper limit
guaranteed by the C Standard for the length of a text line is 254 characters.
(The longest logical C source line, after processing backslash continuations,
is 509 characters.)

Some systems cannot represent an empty file. If you create a new file,
write nothing to it, then close it, the system has no way to distinguish that
empty file from one that is nonexistent. Hence, Standard C permits an
implementation to remove empty files when you close them. Be warned.

230

binary
files

evolution
of streams

Chapter 12

A file that is very long, on the other hand, may also cause problems.
Under UNIX, you can characterize the position of any byte in a file with a
32-bit integer. The traditional file-positioning functions of C thus assume
that a long can represent an arbitrary file-position. That is often not true on
other systems, even for files well short of z32 bytes in length. The committee
added an alternate set of file-positioning functions to the Standard C library
to partially ameliorate this problem.

To end the discussion of text files on a more positive note, I offer one bit
of encouragement. If you follow all these rules, then the sequence of
characters that you write to a text fil~ will exactly match the sequence that
you later read. Just don't push your luck by bending the rules, if such
symmetry is of importance to you.

As for binary files, the major compromise was to reintroduce length
uncertainty. An implementation must preserve exactly all the bytes you
write at the start of a file, but it is at liberty to pad a binary file. Any number
of padding characters can be added, so long as all of them have value zero
(•\o•). Thus, you may have to be more careful in designing your binary
files. Don't assume you will see end-of-file after you read the last character
you earlier wrote to the file. Either have a way of knowing when the data
ends or be tolerant of trailing zero bytes in the data you read.

As I indicated on page 226, UNIX 1/0 represents a considerable simpli­
fication over earlier systems. Most systems designed before UNIX took it
for granted that I I 0 was a complex operation whose complexity could not
be hidden from the executing program. Files had all sorts of structure,
reflected in various attributes such as block or record size, search keys,
printe.r format controls, and so on seemingly ad infinitum. Different combi­
nations of these attributes had to be specified on each system call that
performed 1/0. Still other bits of information had to be retained between
system calls to keep track of the state of each stream.

So the easiest thing, it seemed, was for the system to require each user
program to allocate storage space for passing and/ or remembering all
these attributes and other bits of state information. The storage area was
called a "data control block," "file control block," "record access block," or
some equally vague name. You were obliged to set aside space for a control
block before you opened the file, pass a pointer to the control block on the
system call that opened the file, and pass the same pointer on all subsequent
system calls that performed I /0 on the file. Any other arguments needed
for an 1/0 system call get tucked into various fields of the control block.

If you were lucky, the operating system vendor provided a package of
assembly-language macros for allocating these control blocks and address­
ing the various fields. If you were smart, you used these macros religiously,
since most vendors felt quite free to change the size and layout of control
blocks with each release. The macro interface tended to be reasonably
stable, since the vendor's systems programmers would have been incon­
venienced had that changed.

<atdio.h>

UNIX
1/0

model

231

But even with the best macro package in the world, you still had to
contend with a pretty unstructured interface. Assemblers, as a rule, can
hardly enforce that you read and write data of the appropriate type from
the fields of a control block. Even worse, the fields tended to be numerous
and ill-documented. It was often not dear whether you could set certain
fields to advantage before a system call, or whether you could rely on the
fields to contain meaningful information after a system call. The one thing
you could count on was that injudicious scribbling within a control block
could curdle 1/0, damage files, or even crash the system.

So it was a real step forward when UNIX eliminated the need for control
blocks in user memory. When you open a file under UNIX, you get back
just a file descriptor, a small positive integer. Any control information is
retained within the system, presumably out of reach of stupid or malicious
user programs. Files are sufficiently unstructured that you need specify
only a few parameters on each 1/0 system call. It is easy to map from a few
scalar arguments on a function called from C to the minimal (and transient)
structure required by each UNIX system call on any given implementation.

The functions that perform UNIX-style 1/0 from C have names such as
open, close, r-d, write, and J.aeek. They traffic in file descriptors .and 1/0
buffers. They support a simple I/ 0 model that has been imposed on dozens
of more complex operating systems. They appear to be ideal candid.ates for
the 1/0 primities in Standard C.

There is one small problem, however. While the earliest programs
written for UNIX were content to call these primitives directly, later pro­
grams became more sophisticated. They imposed a layer of buffering, in
user memory, to minimize the number of system calls per byte of data
transferred in and out of the program. A program almost always runs
substantially faster if it reads and writes hundreds of bytes per system call
instead of just a few.

A standard library of functions evolved that automatically took care of
allocating and freeing buffers, filling them and draining them, and tracking
error conditions in a uniform style. These functions worked with data
structures of type FIL& to control streams. Each stream data object kept
track of the state of I /0 to the associated file. It also contained a pointer to
a buffer area and additional state information to keep track of the number
of useful bytes in the buffer.

choosing There was broad consensus among the members of X3Jl 1 that streams
1/0 were a necessary addition to the Standard C library. Many people had

primitives teamed to work exclusively with streams to ensure decent 1/0 perform­
ance. There were even a few implementations of C that had chosen to
implement stream 1/0 exclusively, disdaining the simpler UNIX-style
primitives as too inefficient.

Some implementations based on the UNIX primitives often had to buffer
data in user memory for the read and writ• calls, if only to pack and unpack
records in structured files. Customers using the stream functions suffered

232 Chapter 12

from a double layer of buffering which seldom improved performance and
often confused interactive programs.

So here was the dilemma: Performing 1/0 at the stream level is often
necessary to improve program performance, even under UNIX. You can
define all 1/0 in terms of just a few of the stream-oriented functions, such
as f open, fcloaa, fgatc, fputc, fgetpoa, and faatpoa . If you do so, however,
you ignore the widespread historical presumption that you can also dol/0
with the simpler UNIX-style primitives. That eliminates the need for FII.8

data objects and allocated buffers in user space. People writing in Cforvery
small systems would like to be able to avoid the extra space overhead, even
at a potential cost in performance.

From the standpoint of a standard, however, there is something repug­
nant about having two separate mechanisms for achieving much the same
goal. The committee debated the relative importance of cleanliness versus
backward compatibility for some time before deciding to drop the UNIX­
style primitives.

In the end, I think the argument that convinced most people was that an
implementation could always add open, cio .. , etc. as extensions. Of course,
these functions must not collide with user-defined functions or data objects
having the same name. That means it must be possible to knock out any
such additions to the library. And that in t\ul\ means that fopen must not
call open, for example. Still, it is quite possible to provide the traditional
UNIX 1/0 primitives and conform to the C Standard.

Some implementors on the committee even argued that you amid
implement r-d in terms of fgatc just as efficiently as the other way around,
or even more so. Like elementary particles in high-energy physics, you
know that only a few of the functions are primitive, but you don't know
for sure which ones are primitive and which ones are built on the others.

type In a very real sense, of course, requiring streams to do 1/0 in Standard
FILE C represents a step backward. Each program must now contain in user

memory a complex control block to remember the state of each stream. You
must be careful when you allocate and deallocate the control block (FILE
data object). You must not directly read or write the control block or the
bufferit controls. You must perform I /0 operations on the stream by calling
functions only in certain orders.

It's not as bad as the bad old days, however. A FILE data object is
allocated for you when you open a stream by calling fopan (or before
program startup for the three standard streams). You don't need to know
the internal structure of a FILE data object, because you never have to tuck
parameters directly into one or fish them out. The Standard C library
provides functions for reading and writing the parameters you can control
on a stream. And the semantics of the 1/0 functions require that streams
behave fairly robustly even when you try to do silly things with them.

<atdio. h> 233

What the C Standard Says
<•tdio.h>

•ize_t

FILE

NULL

_ IOFBF
_XOLllF
_ IONBP

sursi:z

sor

rILENAMl_MAX

THP_MAX

•tderr
•tdi n

etdout

7.9 Input/output <stdio . h>

7.9.l Introduction
1llc header <stdio . h> declares three types. several macros. and many functions for

performing input and outpul.
The types declared arc s iza_t (described in 7.1.6);

rxx.z

which is an object type capable of recording all the information needed to control a stream.
including its file position indicator, a pointer to its associated buffer (if any). an e"o.r indicator
that records whether a read/write error has occurred. and an end-ofjile indit'ator tllat records
whether the end of the file has been reached: and

f'po•_t

which is an object type capable of recording all the information needed to specify uniquely every
position within a file.

The macros are NULL (described in 7.1.6);

_IOf'BI'
_IOLBI'
_IONBF

which expand to integral constant expressions with distioct values. suilablc for use as the third
argument to the setvbuf function;

BUPSIZ

which expands to an integral constant expression. which is the size of the buffer used by the
satbuf function;

aor

which expands to a negative integral constant expression that is returned by several functions to
indicate end-of-file. that is. no more input from a stream;

rOPICM_ WAX

which expan~ 10 an integral con~tant expression that is the minimum number of files that the
implementation guarantees can be open simultaneously;

PIUNAMS_MAX

which expands to an integral constant expression that is the size needed for an array of char
large enough to hold the longest file name string that the implementation guaranlees can be
opened;llO

L_~nam.

which expan~ to an integral constant expression that is the size needed for an aJTay of char
large enough to hold a temporary file name string generated by the tmpnam function;

SUK_CUR
Slllt _ J:llO

Slllt_Srr

whic.h expand to integral constant expressions with distinct values. suitable for use as the third
argument to the fs-k function;

TMP_ MAX

which ex pan~ to an integral constant expression that is the minimum number of unique file names
that shall be generated by the tq>nam function;

ot<l•tt
•tdin
atdout

which arc expressions of type "pointer to FILE" that point to the FILE objects associated.
respectively. with the standard error. input, and output streams.

Forwa.-d rererences; files (7.9.3). the fa-k function (7.9.9.2), streams (7.9.2), the tq>nam
function (7.9.4.4).

234

streams

text
streams

binary
streams

opening
files

buffefing
files

closing
files

reopening
files

Chapter 12

7.9.2 Streams
Input and output, whether to or from physical devices such as terminals and tape drives, or

whether to or from files supported on structured storage devices, arc mapped into logical data
streams, whose properties are more uniform than their various inputs and outputs. Two fonns of
mapping are supported, for text streams and for binary streams. I I I

A te•t stream is an ordered sequence of characters composed into lines, each line consisting
of zero or more characters plus a terminating new-line character. Whether the last line requires a
terminating new-line character is implementation-defined. Characters may have to be added,
altered, or deleted on input and ou1pu110 conform 10 d iffering conventions for representing 1.-1
in the host environment. Thus. there need not be a one-to-one correspondence between the
characters in a stream and those in the ••temal representation. Data read in from a tc•I stream
will necessarily compare equal 10 the data that were earlier wrillen out 10 that stream only if: the
data consist only of printable characters and the control characters horizontal tab and new-line;
no new-line character is immediately preceded by space characters; and the last character is a
new-line character. Whether space characters that arc wriu en out immediately before a new-line
characler appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparcnlly record internal data.
Data read in from a binary stream shall compare equal lo the data that were earlier wriuen out lO
that stream, under the same impleimentation. Such a stream may, however, have an implerneTita·
l ion-defined number of null characters appended 10 the end of the stream.

Environmental limits

An implementation shall support text files with lines containing at least 254 characters,
including the terminaling new-line character. The value of the macro BUFSIZ shall be at least
256.

7.9.3Files
A slream is associated with an e"temal file (which may be a physical device) by opt!ning a file,

which may involve creating a new file. Crcaling an e•isting file causes its former contents to be
discarded, if necessary. If a file can support posi1ioning reques1s (such as a disk file, as opposed
to a 1erminal), then a file position indicatorll'l associa1ed with the s1ream is posi1ioncd at the stan
(character number zero) of the file, unless lhe file is opened with append mode in which case~
is implementation-defined whether the file position indicator is initially posilioned a t the begin­
ning or the end of the file. The file position indicator is maintained by subsequenl reads. writes,
and positioning requests, to facilila.te an orderly progression through the file. All input takes place
as if characters were read by successive calls 10 the fgetc funclion; all output takes place as if
characters were written by successive calls to the fputc function .

Binary files""' not truncated, e•cept as defined in 7.9.S.3. Whether a write on a te.i stream
causes the associated file to be truncated beyo nd that poinl is implementalion-<lefined.

When a slream is unbuffered. characters are inlended 10 appear from the source or al the
destination as soon as possible. Otherwise characters may be accumulated and transmincd to or
from the host e nvironment as a block. When a stream is fully buffered. characters are intended to
be transmined to or from lhe host e nvironment as a block when a buffer is filled. When a slream
is line buffered, characters are intended to be transmined 10 or from the host environment as a
block when a new-line character is encounlered Furthermore, characters are intended to be
transmitted as a block 10 the hosl environment when a buffer is filled, when input is requested on
an unbuffered siream, or when input is requested on a line buffered s1ream that requires the
lransmission of characters from the host environment. Support for these characteristics is
implementation-<lefined. and may be affecled via the setbuf and setvbuf functions.

A file may be disassociated frOlill a conlrolling stream by closing the file. Output streams an:
flushed (any unwrinen buffer contents are transmilled to the host environment) before the stream
is disassociated from the file. The value of a pointer to a FILE object is indelerminale after the
associated file is closed (including the standard text streams). Whether a file of zero length (oo
which no characters have been written by an oulpul s1ream) actually e•is1s is implcmentation-de­
fincd.

The file may be subsequenlly reopened, by the same o r another program e•ccul ion, and its
contcnls reclaimed or modified (if it can be repositioned at i1s slart). If the main funotion returns
to its original caller, or if the exit function is called, all open files are closed (hence all ou1pu1
streams arc flushed) before program terminalion. Other palhs to program termination, such as
calling the abort function, need not c lose all files properly.

The address of the FILE objccl used 10 control a stream may be significant; a copy of a FILE
object may not necessarily serve in place of the original.

<atdio.h>

remove

r•~

tmpfil•

235

Al program startup, three text streams arc predefined and need not be opened explicitly -
standard input (for reading conventional input) , standard outpul (for writing conventional
output), and standard error (for writing diagnostic ou1put). When opened, the siandard error
Slream is not fully buffered; the standard inpul and standard outpul streams are fully buffered if
and only if the stream can be detennined nOl to refer to an interactive device.

Functions that open additional (nontemporary) files require a file name , which is a string. 111e
rules for composing valid file names are implementation-defined. Whether the same file can be
simultaneously open multiple times is also implementation-defined.

F.llvironmental limits

The value of FOPEN _MAX shall be at least eight, including the three standard text streams.

Forward rderen«s: the axit func1ion (7.10.4.3), the fgetc function (7.9.7. l). the fopen
function (7.9.5.3). the fputc function (7.9.7.3). the setbuf function (7.9.5.5). the aetvbuf
function (7.9.5.6).

7.9.4 Operations on files
7.9.4.1 The remove function

Synopsis

finclude <•tdio. h>
int remove Cconat char • rile naae);

Description

The remove function causes the file whose name is the string pointed to by filename to
be no longer accessible by that name. A subsequent allempt lo open that file using that name will
fail , unless ii is created anew. If the file is open, the behavior of the remove function is
implemcntation·defined.

Returns

The remove function r~urns zero if the operation suc=<ls, nonzero if ii fails.

7.9.4.2 The rename function

Synopsis

l 1 ncl 11da <•t:dio.h>
i nt rename (con•t char *old, conat char •new) ;

Dtscrlplion

111e renlll!le function causes the file whose name is the string pointed to by old to be
henceforth known by the name given by the string pointed 10 by new. 111e file named old is no
longer accessible by that name. If a file named by the string pointed to by new exists prior to lhe
call to the renlll!le function, the behavior is implementation-defined.

Returns

The r•name function returns zero if the operation succeeds, nonzero if ii fails,113 in which
case if the file existed previously it is still known by its original name.

7.9.4.3 The tmpfile function

Synopsis

li.nclud• <atdio. h>
FIL& •tmpfile (void) ;

Description

• The tmpfile function creates a temporary binary file that will automatically be removed
when it is closed or at program termination. If the program terminates abnormally, whether an
open temporary file is removed is implementation-defined. 1lle file is opened for update with
"wb+" mode.

Returns

The tmpfile function returns a pointer to the stream of the file that ii created. If the file
cannot be created, the tmpfile fonc.tion returns a null pointer.

Forward references: the f open function (7.9.5 .3).

236

fflu•h

f open

7.9.4.4 The tmpnam function

Synopsis

l include <•tdio. h>
char •tmipnea(Char *•);

Description

Chapter 12

The tirpnam function generates a string that is a valid file name and that is not the same as
the name of an existing filc.114

The tmpnam function generates a different string each time it is called, up to TMP MAX times.
If it is called more than TMP _ MAX times, the behavior is implementation-defined. -

The implementation shall behave as if no library function calls the tmpnam function.

Returns

If the argument is a null pointer, the tmpnam function leaves its result in an internal stalic
object and returns a pointer to that object. Subsequent calls to rhe tmpnam function may modify
the same object. If the argument is not a null pointer. it is assumed to point to an array of at least
L t.Jrpnamchars; the t.Jrpnam function writes its result in that array and returns tlhe aigumcnt
aSils value.

Environmental limits

The value of the macro TMP _MAX shall be at least 25.

7.9.5 File access f'Unctions
7.9.5.l The fcl.011a function

Synopsis

l incl ud• <•tdio . h>
int fcJ.oee (Fn.E •stream) :

Description

The fcl.ose function causes the stream pointed to by at.ream to be flushed and the
associated file to be c losed. Any unwritten buffered data for the stream are delivered to the host
environment to be written to the file; any unread buffered data are discarded. The stream is
disassociated from the file. If the associated buffer was automatically allocated. it is deallocated.

Returns

The fcl.ose function returns zero if the stream was successfully closed, or EOF if any erroo
were detected.

7.9.S.2 The ffl.u11h function

Synopsis

linclud• <•td.10 . h>
i nt fflueh (PILE *et .re.am) ;

Description

If stream points to an output stream or an update stream in which the most recent oper.Uion
was not input, the £flush function causes any unwritten data for that stream m be delivered to
the host environment to be wriuen to the file; otherwise, the behavior is undefined.

If at.ream is a null pointer, the ff lush function performs this flushing action on all streams
for which the behavior is defined above.

Returns

The fflush function returns E OF if a write error occurs, otherwise zero.
Forward references: the fopen function (7.9.5.3). the unqetc function (7.9 .7. 11).

7.9.5.3 The fopan function

Synopsis

l incluct. <etdlo . h>
l'ILE *~open(conat char •fil•na.m•~ conet char *mod•J ;

<stdio.h> 237

Descrlplion

The fopen function opens the file whose name is the string pointed to by filename. and
associates a stream with it.

The argument mode points to a string beginning with one of the following sequences: I IS

open text file for reading

rb

wb

r+ ...
a+
r+b or rb+
w+b or wb+

truncate to zero length or create text file for writing
append: open or create text file for writing at end-of-file
open binary file for reading
truncate to zero length or create binary file for wriling
append: open or create binary file for writing at end-of-file
open text file for update (reading and writing)
truncate to zero length or create text file for update
append: o.pen or create text file for update, writing at end-of-file
open binary file for update (reading and writing)
truncate to zero length or create binary file for update
append: open or create binary file for update, writing at end-of-file

Opening a file with read mode(.' r' as the first character in the mode argument) fails if the
file does not exist or cannot be read.

Opening a file with append mode ('a' as the first character in the mode argument) causes all
subsequent writes to the file to be forced to the then current end-of-file, regardless of intervening
calls to the fe-k function. In some implementations. opening a binary file with append mode
('b' as the second or third character in the above list of mode argument values) may initially
position the file position indicator for the stream beyond the last data wriucn, because of null
character padding.

When a file is opened with update mode('+' as the sccondorthirdcharactcrin the above list
of mode argument values). both input and output may be perfonned on the associated stream.
However, output may not be directly followed by input without an intervening call to the fflueh
fWletion or to a file positioning function (fe-k, feetpoe, or r-ind), and input may not
be directly followed by output witlhout an intervening call to a file positioning function, unless
the input operation encounters end-of-file. Opening (or creating) a text file with updale mode may
instead open (or create) a binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer 10 an
interactive device. The error and end-of-file indicators for the stream arc cleared.

Returns

The fopen funcrion returns a pointer to the object controlling the stream. If the open operation
fails, fopen returns a null pointer.

Forward r eferences: file positioning functions (7.9.9).

7.9.5.4 The freopen function
Synopsis

li.nclude <•tdio . h>
PILE •Er.op-9n(conet char •f'il~. con•t char •moc:l4i,

ri:u * • tr• ..) ;

Descrlpllon

The freopen function opens the file whose name is the string pointed to by filename and
associates the stream pointed to by stream wilh it. The mode argument is used just as in the
fopen function. 116

The freopen function fi rst an empts 10 close any file that is associated with the specified
stream. Failure to close the file successfully is ignored The error and end-of-file indkarors for
the stream are cleared.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise, £reopen
returns lhe value of stream.

238

••t.bu!'

••t.Ybu.!

fpri.nt.f'

7.9.S.S The eetbuf function

Synopsis

11.nc.lude <at.dio . b>
vold a.t.buf (•It.a • atr.-. char *buf);

Description

Chapter 12

Exccpl 1ha1 it re1ums no value, the .. tbuf fonction is cquivalcnl to I.he eetvbuf fonc:tion
invoked wilh lhe values IOFBF for mode and BUFSIZ for eize, or (ifbuf is a null pointer),
with I.he value_ IONBt'Tor mode.

Returns

The eetbuf function retums no value.

Forward refertnces: I.he eetvbuf function (7.9.5.6).
7.9.5.6 'Ibe eetvbuf function

Synop;is

11-ncl.u.c.t. <• td.io. h>

Desctiption

The aetvbuf function may be used only after lhe stream poin1cd to by et ream has been
associated wi1h an open file and before any other operation is performed on lhc s1rcam. The
argument mode dclcrmincs how etremn will be buffered, as follows: IOFBF causes in·
put/output to be fully buffered; IOLBF causes inpul/output to be line buffcfCd; IONBF causes
inpul/output to be unbuffcred. ll'buf is not a null pointer, the array it poinis 10 maY"bc used instead
of a buffer alloca1ed by the .. tvbuf function. n7 Thc argument eize specifics the size oflhc
array. The contents o f the array at any lime arc indeterminate.

Returns

The eetvbuf' function rctums zero on suc:ccss, or nonzero if an invalid value is given for
mode or if the request cannot be honored.

7.9.6 Formatted input/output functions
7.9.6.1 'Ibe fpri.ntf function
Synopsis

l i.nclude <atdio. h>
i nt fprlntf trn.s • at r--.. conat char •fora.at. . ..) :

Description

The fprintf funcUon writes output to the stream poin1cd to by atream. under control of
the string pointed to by folCDIAt that specifics how subsequent arguments arc converted for
oulpul. H there arc insufficient arguments for the formal, the behavior is undefined. If the format
is exhausted while arguments remain, the excess arguments arc evaluated (as always) but arc
otherwise ignored. 'The fprintf function rct.ums when the end of lhe format string is cncour>­
tcrcd.

The fonnal shaU be a multibytc character sequence. beginning and ending in its initial shift
Slate. Thc format is cofrCK)Sed of zero or more directives: ordinary mullibyte characters (not 'l.
which arc copied unchanged to the oulJlUI stream; and conversion spccificaiions, each of "'tiidl
results in fe1ching zero or more su bscqucn1 arguments. Each conversion specification is intro­
duced by the character ' · After the \, the following appear in sequence:

• Zero or more flags (in any order) that modify the meaning of the conversion specif icatioo.

• An optional rnnimum/it/d •widrh. lf the convened value has fewer characters than the field
width, ii will be padded with spaces (by defaull) on lhe left (or right, if the lefl adjustment flag,
described later, has been given) to the field width. The fie ld widlh takes the form of an asterisk
* (described lalcr) or a decimal integcr. • •8

• An optional fXUis/on that gives the minimum number of digits to appear for the d, i , o. u. x.
and X conversions. the number of digits to appear after the decimal-point character for e. E,
and f conversions, the maximum number of significa11t digits for the 9 and G conversions, or
the rna><imum number of characters to be written from a string in a conversion. 'The pecision
takes the form of• period(.) followed either by an asterisk* (described later) or by an optional

<stdio _h> 239

decimal integer: if only the period is specified. the precision is taken as zero. If a precision
appears with any other conversion specifier. the behavior is undefined.

• An optional h specifying that a following d, i , o , u, x, or X conversion specifier applies to a
short int or unsiqned short int azgument (the argument will have been promoted
according to the integnil promotions. and its value shall be converted to short int or
unsiqned short int before printing); an optional h specifying that a following n
conversion specifier applies to a pointer to a short int argument; an optional l (ell)
specifying that a following d , i , o . u. x , or X conversion specifier applies to a long int or
unsigned long int argument; an optional l specifying that a following n conversion
specifier applies to a pointer to• a long int argument; or an optional L specifying that a
following e . E, f , g . or G conversion specifier applies to a long double argwnent. If an h,
1 , or L appears with any other conversion specifier, the behavior is undefined.

• A character that specifies the type of conversion to be applied

As noted above, a field width, or precision, or both, may be indicllled by an asterisk. In this
case, an int argument supplies the field width or precision. The arguments specifying field width,
or precision, or both, shall appear (in lllat order) before the argument (if any) to be converted. A
negative field width argument is taken as a - flag followed by a positive field width. A negative
precision argument is taken as if the precision were omitted.

The flag characters and their meanings arc

The result of the cooversion will be lcft-ju•1ified within the fie ld. (It will be right-justified
if this flag is nOI specified.)

+ The result of a signed conversion will always begin with a plus or minus sign. (It will begin
with a sign only when a negative value is converted if this flag is not specified.}

spacelf the first character of a signed conversion is not a sign, or if a signed conversion results in
no characters, a space will be prefixed to the result. If the space and + flags both appear,
the space flag will be ignored.

The result is to be converted to an "alternate form." For o cooversion, it increases the
precision to force the first digit of the result to be a zero. For x (orX) conversion, a nQOZero
result will have Ox (or OX) prefixed to it. Fore. E. f. g , and G conversions, the result will
always contain a decimal-point character, even if no digits follow it. (Normally, a decimal­
point character appears in the result of these conversions only if a d igit follows it.) For g
and Gconversions. trailing zeros wi_ll not be removed from lhe result. For other conversions,
the behavior is undefined.

0 Ford , i, o , u , x, X, e, E , t:, 9 , and G conversions, leading zeros (following any indication
of sign or base) arc used to pad to the field width; no space padding is performed. If the O
and - flags both appear. the 0 flag will be ignored. Ford. i . o . u. x , and X con'llCrsions, if
a precision is •l>CCified. the 0 flag will be ignored. For other conversions, the behavior is
undefined.

The conversion specifiers and their meanings arc

d, 1 The int argument is converted to signed decimal in the style f - Jdddd. The precision
specifies the minimum number of digits to appear; if the value being convened can be
represented in fewer digits, it will be expanded with leading zeros. The default precision is
I. The result of converting a zero value with a precision o f zero is no characters.

o, u , x, X The un11iqned int argumcm is converted to unsigned octal (o), unsigncddccimal
(u), or unsigned hexadecimal notation (x or X) in the style dddd; the letters abcdaf are
used for x conversion and the letters ABCDEF for X conversion. The precision specifies the
minimum number of digits to appear: if the value being converted can be represented in
fewer digits, it will be expanded with leading zeros. The default precision is I. The result
of converting a zero value with a precision of zero is no characlers.

f The double argument is converted to decimal notation in the style f- /ddd.ddd .. where the
number of digits after the decimal-point character is equal to the precision specification. If
the precision is missing, it is taken as 6; if the precision is zero and the # flag is n<,>t ~cifie(I,
no decimal·point character appears. If a decimal-point character appears. at least one digit
appears before it. The value is rounded to the appropriate number of digits.

e,E The double argument is converted in the style /- Jd.ddde±M. where there is one digit
before the decimal·point character (which is nonzero if the argument is nonzero) and the
number of digits after it is equal to the precision: if the precision is missing, it is t aken as 6;
if the precision is zero and the # nag is not specified, no decimal-point character appears.
The value is rounded to the appropriate number of digits. The E conversion specifier will

240

fecanf

Chapter 12

produce a number with E instead of • introducing the exponent. l1le exponent alwa)S
contains at least two digits. If the value is zero, the exponent is zero.

9, G The double argument is convened in style f ore(or in styleE in thecaseofa Gconversion
specifier), with the precision specifying the number of significant digits. If the precision is
zero, it is taken as I. The style used depends on the value convened; style • (« E) will be
used only if the e~!IOnent resulting from such a conversion is less than -4 or gre111erthan or
equal to the precision. Trailiag zeros arc removed from lhe fractional ponion of lhe resul~
a decimal-point character appears only if it is followed by a digi~

c The int argument is convened 10 an unaiqned char, and the resulting character is
written.

11 l1le argument shall be a pointer to an array of character typc.1 19 Characters from the array
arc written up to (but not including) a terminating null characier; if the precision is specified,
no more than that many characters arc written. If the precision is not specified or is greater
than the size of lhe array, the array shall contain a null c haracter.

p l1le argument shall be a pointer to v oid. The value of the pointer is convened to a sequence
of printable characters, in an implementation-defined manner.

n The argument shall be a poin.tcr to an integer into which is wri11en the number ofi charaacrs
written to the output stream so far by this call to fprintf. No argument is convened

% A % is wrinen. No argument is convened. l1le complete conversion specification shall be
%%.

If a conversion specification is invalid. the behavior is undefincd.120

If any argument is, or points to, a union or an aggregate (except for an array of character type
using %11 conversion, or a pointer using %p conversion), the behavior is undefined.

In no case docs a nonexistent or small field width cause truncation of a field; if the re.-uh of a
conversion is wider than 1he field width. lhe field is expanded to contain the cooversioo result.

Returns

l1le fyr intf function returns the number of characters transmiued, or a negative value if an
output error occurred.

Environmental Hmlt

The minimum value forthe maximum number ofcharacters produced by any single conversioo
shall be509.

Example

To pint a date and time in the form "Sunday, July 3, I0:02" followed by 11 to fwe decimal
places:

li.nclude <,..t.h . h>
linclude <atdio.h>

char • ... 1rc1ey, •month; /• pointers t o strl.ngs • /
int day, hour, ain;
fprintf(atdout, .. ,., '• \d, \.2d:t.2d\n•,

weekdey, month, day, hour, a.in) ;
fprintf(a tdout, .. pi • • . 5f\n" , • • ata n(l . 0));

7.9.6.2 The fscanf function

Synopsis

l i nclude <atdio . h>
int t • c.nf(PILZ • atreaa, conat char • for.at, . ..) ;

Deseripllon

The f11canf function reads input from the stream pointed to by stream. under control of
!he string pointed to by form.at ·that specifies the admissible input sequences and how !hey are
to be converted for assignment, using subsequent arguments as pointers to the objects to receive
the convened inpuL If there are insufficient arguments for lhe format, the behavior is undefuied.
If the format is exhausted ..tlile arguments remain, the excess arguments arc evaluated'(as alwa)S)
but are Olherwise ignored.

The format shall be a multibytc character sequence, beginning and ending in its initial shift
Stale. The format is composed of zero or more directives: one or more white-space characters~ an
ordinary miltibytc character (neitlner % nor a ..tlite-spacecharacter); or a conversion specification.

<stdio.h> 241

Each conversion specification is introduced by the character %. After the %, the following appear
in sequence:

• An optional assignment-suppressing character *·

• An o~ional nonzero decimal integer that specifies the maximum field width.

• An optional h , 1 (ell) or L indicating the size of the receiving object. The conversion specifiers
d, i , and n shall be preceded by h if the corresponding argument is a pointer to abort int
rather than a pointer to i n t , or by 1 if it is a pointer to long int. Similarly, the conversion
specifiers o , u , and x shall be preceded by h if the corresponding argument is a pointer to
unsigned short int rather than a pointer to unsigned int, or by 1 if it is a pointer
to unsigned long int. Finally, thcconver<ion specifiers•. f , and gshall be poreccded by
1 if the corresponding argumenl is a pointer to double rather than a pointer to f"loat, or
by L if it is a pointer to l ong double. If an h, 1, or L appears with any Olher conversion
specifier. the behavior is undefined.

• A character that specifies the type of conversion to be applied. The valid conversion specifiers
arc described below.

The facanf function executes each directive of the format m tum. If a directive fails, as
detailed below, the f acanf function returns. Failures arc described as input failures (due to the
unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white-space charactcr(s) is executed by reading input up to the fi"1
non- white-space characlcr (which remains unread), or until no more characters can be read.

A directive that is an ordinary multibyte character is executed by reading the next characters
of the stream. lfone of the characters differs from one comprising the difCClive, the directive fails,
and the differing and subsequent characters remain unread.

A directive thar is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the following steps:

Input white-space characters (as specified by the iaepace function) arc skipped, unless the
specification includes a [, c, or n specif.,r.121

An input item is read from the stream, unless the specification includes an n specifier. An input
item is defined as the longest ma1ching sequence of input characters, unless that exceeds a
specified field width, in which case it is the initial subsequence of that length in the sequence. The
first character, if any, after the input item remains unread. If the length of the input item is zero,
the execution of the directive falls: this condition is a matching failure. unless an error prevented
input from the stream~ in which case it is an input failure.

Except in the case of a % specifier, the input item (or, in the case of a %n directive. the count
of input characters) is convened to a type appropriate to the conversion specif.,r. If the inpl.11 item
is nOI a matching sequence, the execution of the directive fails: this condition is a matching failure.
Unless assignment suppression was indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the format argument that has nOI already
received a conversion result. If this object does not have an appropriate type, or if the result of
the conversion cannot be represented in the space provided, the behavior is undefined.

The following conversion specifiers arc valid:

d Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of the atrtol function with the value IO for the baa• argumcnl The
COITCSponding argument shall be a pointC1' to intcgt1'.

i Malches an optionally s igned integer, whose fonnat is the same as expected for the subject
sequence of the atrtol fuoction with the value 0 for the base argument. The c01Tespond·
ing argument shall be a pointer to integer.

o Matches an optionally signed Octal integer, whose format is the same as expected for the
subject sequence of the strtoul function with the value 8 for the base argument. The
corresponding argument shall be a pointer to unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as expected for the
subject sequence of the atrtoul function with the value 10 for the base argumem. The
corresponding argument shall be a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected
for the subject sequence of the atrtoul function with the value 16 for !he base argument.
The corresponding argument shall be a pointer to unsigned integer.

242 Chapter 12

e, f, q Matches an optionally s igned floating-point number, whose format is the same as
expected for the subject string of the strtod function. The corresponding argument shall
be a pointer to floating.

s Matches a sequence of non-·white-space characters. Ill The corresponding argument shall
be a pointer to the initial character of an array large enough to accept the sequence and a
terminating null character, which will be added automatically.

Matches a nonempty sequence of charactcrst22 from a set of expected characters (lhe
scans et). The corresponding argument shall be a pointer to the initial character of an array
l8J&e enough to accept the sequence and a terminating null character, which will be added
automatically. The conversion specifier includes all subsequent characters in the format
string. up 10 and including the matching right bracket ()) . The characters between the
brackets (the scanlist) comprise the scanset, unless the character after the left bracket is a
circumflex (A), in which case the scanset contains all characters that do not appear in the
scanlist between the cireumflex and the right bracket. If the conversion specifier be gins with
[) or [A] , the right bracket character is in the scanlist and the next right bracket character
is the matching right bracket that ends the specification; otherwise the first right bracket
character is the one tha1 ends I.he specification. If a - character is in the scanlis.t and is not
the first, nor the second where the first character is a A, nor the last character. the behavior
is implementation.-defined.

c Matches a sequence of characterst22 of the number specified by the field width (1 if no field
width is present in the directive). The corresponding argument shall be a pointer lo the initial
character of an array large enough to accept the sequence. No null character is added.

p Matches an implerncn1ation-defined set of sequences, which should be the same as the set
of sequences that may be produced by the %p conversion of the fprintf function. The
corresponding argument shall be a pointer to a pointer to void The interpretation of the
input item is implementation-defined. If the input item is a value converted earlier during
the same program execution, the pointer that results shall compare equal 10 that value;
otherwise the behavior of the %p conversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to integer into which
is to be written lhe number of characrers read from the input stream so far by this call to lhc
facanf function. Execution of a ln directive docs not increment the assignmcnl count
returned at the completion of execution of the fscanf function.

% Matches a single %; no conversion or assignment occurs. The complete conversion specifi·
cation shall be %%.

If a conversion specification is invillid, the behavior is undcfined.123

The conversion specifiers E. G, and X are also valid and behave the same as, respectively, e.
q, andx.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before
any characters ma1ching the current directive have been read (other than leading white space,
where permitted), execution of the current directive tcnninates with an input failure;. otherwise.
unless execution of the current directive is terminated with a matching failure. execution of the
following directive (if any) is terminated with an input failure.

If conversion terminates on a conmcting input character. the offending input character is left
unread in the input stream. Trailing white space (including new-line characters) is left unread
unless matched by a directive. The success of lileral matches and suppressed assignmentsassign­
menl suppression is not direc1ly determinable other than via the %n directive.

Returns

The fscsnf function relum.rhc value o f the macro EOF if an input failure occurs before any
conversion. Otherwise, the fecanf function returns the number of input items assigned, which
can be fewer than provided for, or even zero, in the event of an early ma1ching failure.

Examples

The call:

li.nclude <•tdio . h>
/" ... */
int n, i; f.loat x; char nam.(50) ;
n • f • canf (etdin, "'d'f'••, • i, •.x, nam.) ;

with the input line:

25 54. 322- 1 thomp91on

<atdio.h>

print:f

ecan~write

243

will assign 10 11 1hc va.luc 3. 10 i lhc value 25, 10 x the value 5. 4 32, and - will contain
thoapaon\O.

ThecaU:

tilleluda <otdlo. II> , ,
i nt i; flo•t x:1 ch•r na..(SOJ ;
f•canf(at.dln, •\2d•f'••d • (0123f.51719 J", U., , .. , n ...) ;

wilh inpul:
567H 0123 ~6-72

will assign 10 i lhe value 56 and 10 x the value 789. o. will skip 0123, and name will conrain
56\0. The ncxl charoclcr read from lhc input stream will be a.

To acccpl rcpcaiedly from std.in a qumiry. a unit of mca.wrc and an ilcm name:
l i.ncl ud.e <std.io.h> , ,
i nt cOW11t; float qua.at:; char u.n.i.t:a (21] , it.99 (21] ;
whLl• (!f~f(atdi.n) '' ff•rror(atd.1.n)) t

COW11t • f ac anC (atdJ.n. •\f\20a of \20a•,
'quant, Wlit.•. i tea) ;

face.nf (at.din,.,. c•\n] .. , ;

If lhc atdin scream coo1ains Ill<! following lines:
2 quart.a of oil
- 12. lde9~• C.la:l\1-11
l ot.a of luck
10 . 0J.aS of
dirt

l OOuge of •n•r<n<

the execution of 1hc above example will be analogous to lhc following assignments:
qv&nt • 2; at ,rcpy(Wl..ita , • qua.rte•); atrcpy(i~, "'oil •):
count • l ;
quant. • - 12 . 1; atrcpy(waita, •c1e9r .. a '");
coUAt • 2; / * ·c .. fa,ils to match •o .. •/
cov.nt • O: J• •1• fa1Jls t o match .. ,, .. * I
quant • 10 . 0 : • t.rcpy (u.n.it•, •t.aa"'); • trcpy(it- . •dirt•) :
Co\11\t • 3 ;
couat • O; I * • 100 . .. fails to match .. ,, .. •I
count ~ KOr ;

Forward references: the a t rtod function (7. I0.1.4), lhc a trtol function (7.10.1.5), lhc
atrtoul func1ion (7.10.1.6).
7.9.6.3 lbe print f function

Synopsis

t inc.lude <• tdio. h>
1.nt pr.lntf (con•t c har • foraat:. . ..) ;

Desttif>llon
The pri.ntf function is equivalent 10 fprintf wilh the argumcnr atdout inlcrposed

before the argumcnts lo printf.

Returns

The printf function rctums Ille number of characters transmiucd, or a negati>'(: value if 1111
outpul error occumd
7.9.6.4 The acanf function

Synopsis

l incl ucM <.-tdio . h>
1.nt •canf(cone t char *foraat, ...);

244

•printf

v:fprintf

Chopterl2

Description

The ecanf function is equivalent to fecanf with the argument etdin interposed bef,_e
the arguments to ecanf.

Returns

1bc ecan£ function returns the value of the macro l!OF if an input failure occurs before any
conversion. Otherwise. the ecanf function returns the number of input items assigned. v.tiich
can be fewer than provided for, or even uro, in the event of an early matching failure.
7.9.6.5 The eprintf function

Synopsis

linelude <•tdi.o.h>
i nt .print.r (chsr conet char *t'o~t, - - -) ;

Description

1bc eprintf !unction is equivalent to fprintf, except that the argument e specifies an
array imo which the generated ougmt is to be written, rather than to a stream. A null charac1cr is
written al theendofthecharacters written; it is not counted as pan of the returned sum. If copying
talces place between objects that overlap, the behavior is undefined.

Returns

The eprintf function returns the number of characters wrinen in the array. not counti..:the
terminating null character.
7.9.6.6 The secanf function

SynOtJSls
linel.ude <•tdio. h>
int ••cant (c:onat char *•, conat char *for..t, ...) ;

Description

The aacanf function is equivalent io facanf. exeept lhar the argument • specifies a string
from which the input is to be obtained, rather than from a stream. Reaching the end of the string
is equivalent to encountering end-of-file fort he fecanf function. If copying takes place betweer
objects that overlap, the behavior is undefined.

Returns

The eecanf function returns the value orthe macro EOF if an input failure occurs before any
conversion. Otherwise, the eecanf function returns the number of input items assigned, which
can be fewer than provided for. or even 1.ero. in the event of an early matching failure.
7.9.6.7The vfprintf function

Synopsis

I include <•tdar9. h>
linclude <•tdio . h>
int vfprint.f C:l'Il.K * etreaa, con•t char *fora.at , v•_liat AXQ');

~rlptlon

The vfprintf function is equivalent to fprintf, with the variable argument I ist replaced
by arq, which shall have been initiali1.ed by the va etart macro (and possibly subsequent
va _ ar9 calls). The vfprintf function docs not invoke lite va _end macro. •24

Returns

The vfprintf function returns the number of characters transmilled, or a negative value if
an output error occuncd.

Example

The following shows the use of the vfprintf function in a general error-reporting routine.
linclude <•td.ar9 . h»
linCl\lc:t. <•tdio.h>

void error (ch•r •function_~. ch~ *f'orsNt, . . .)
I

va_ liet ar911;

<stclio.h>

vpri.ntf

V9;printr

f9etc

v a ata%'t <arv•, fora.at);
/ •-print out name o f f uncti on c aus i ng error • /

f'printf(atderr., • ERROR in ••: •, function_ name) ;

/ * print out remai nder of message •t
vfprintf (etd4r.r, f'oraat , arga) ;
va_end(arqo) ;

I

7.9.6.8 The vprintf functio.n

Synopsis

1 1-nclude <atd.rg. h>
I include <atdlo . h>
i nt vpri ntf (conet char •form.at, va_ l i at arq) ;

Desa-lption

245

11ie vprintf function is equivalent to printf. with the variable argument list replaced by
arq. which shall have been initialized by the va start macro (and possibly subsequent
va _ arq calls) . Tile vprintf function does not invoke the va _end macro.'24

Returns

Tile vprintf function returns the number of characters transmitted, or a negative value if an
output error occurred.

7.9.6.9 The vsprintf function

Synopsis

linclude <atderq. h>
I include <atdio . h >
int veprintf (cha r *•, conet char • fora.at, va_liat a.rg);

Desai pt ion

The vspdntf function is equivalent to aprintf. wilh !he variable argument list replaced
by arg, which shall have been initialized by the va start macro (and possibly subsequent
va arg calls). 11ie vsprintf function does not Invoke the va end macro. t2A If copying
takes place between objects that oYcrlap, the behavior is undefined. -

Returns

The vaprintf function returns the number of characters written in the array, not counting
the terminaling null character.

7.9.7 Character input/output functions
7.9.7.J The fqetc function

Synopsis

li.nclul'H <•tdi o . h>
int f9et:.c(l'IL& •atr•am) ;

Description

The fgetc function obtains the next charactcr(if present) as an unsiqned char convened
to an int, from the input stream pointed to by stream. and advances the associa1ed file position
indicator for the stream (if defined).

Returns

The fgetc function returns the next character from the input stream pointed to by stream.
If the stream is at end·of· file, the end.cf-file indicato r for the stream is set and fgetc returns
EOF. If a read error occur.;, the error indicator for the stream is set and fqetc returns EOF.12S
7.9.7.2 The fqeta function

Synopsis

l include <at.d,io . h>
char •f9•t• (ch&%' •a, int n , PILE •at~•aa) ;

l.lescriptlon

11ie fqets function reads at most one less than the number of characters specified by n from
the stream pointed to by atream into the array pointed to by a . No additional characters are read

246

fputc

Chapter 12

after a new-line character (which is retained) or after end-of-file. A null character is written
immediaicly after the last character read into the arr•y-
Returns

The fqeta function returns a if successful. If end-of-file is encountered and no characters
have been read into the array, the contents of the array remain unchanged and a null pointer is
returned. If a read error occurs during the operation, the array contents are indeterminate and•
null pointer is returned.

7.9.7.JThe fputcfunction

Synopsis

line1uda <•tdio . h>
i.nt !"pute(i.nt c 1 l'IU • atre &lll);

Desai pc ion

The fputc function writes the character specified by c (converted to an unaiqned char)
to the output stream pointed to by a:tream, at the position indicated by the associated file posititrl
indicator for the stream (if defined), and advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the character is
appended to the output stream.

Returns

The fputc function returns the character written. If a write error occurs, the error indielllor
for the stream is set and fputc returns EOF_

7.9.7.4 The fputa function

Synopsis

I include <atd.io . h>
int fputa (con8t e~r *•· rJL& •atr ...):

Description

The fputa function writes the string pointed to by a to the stream pointed to by atre.m.
The tenninating null character is not wrillen.

Returns

The fputa function returns EOF if a write error occurs; otherwise it returns a nonnegative
value.

ir•tc 7.9.7.51lle qetc functioo

Synopsis

get char

linclude <atd.io. h>
int qatc (l'ILI: •at.re->;

Clescripclon

The qatc function is equivalent to fq.toc, except that if it is implemented as a macro, it may
evaluate stream more than once, so the argument should never be an expression with side
effects.

Returns

The qatc function returns the next character from the input stream pointed to by atr-.
If the stream is at end-of-file, the end-of-file indicator fort he stream is set and qetc returns EOP.
If a read error occurs, the error indicator for the stream is set and qetc returns EOF.
7.9.7.61lle qetchar function

Synopsis

lincluct. <stdio . h>
int ~etchar (void) ;

Description

The qatchar function is equivalent to qetc with the argument atdin.

<Btdio.h> 247

Description

1be ge tchar function is equivalent to gate with the argument stdln.

Returns

1be get cha r function returns 1he next character from the input stream pointed to by stdin.
If the stream is at end-Of-file. the ernd-of-filc indicator for the stream is set and get char returns
BOP. If a read error occurs, the error indicator for the stream is set and getchar returns BOP .

u•ta 7.9.7.7 The gets function

Synopsis

line l ud.e <etdio.h>
char •get.a(char • a) 1

Description

1be gets function reads characlers from 1he input stream pointed to by st din. in10 the array
poinled IO by s . until end-Of-file is encounlered or a new-line character is read. Any new-line
character is discarded, and a null ch aracter is written immediately af1erthe last character read into
1he array.

Returns

1be gets function returns s if successful. If end-0f· file is encountered and no characters have
been read in10 the array, the contents of the array remain unchanged and a null pointer is returned.
If a read error occurs during the operalion. lhe array contents arc inde1errnina1e and a null poinler
is returned.

putc 7.9.7.8 The putc function

Synopsis

p'Utebar

#include <•tdio . h>
int putc (int c. PILE • atream) 1

Oescriptlon

1be putc function is equivalent to fputc, excepl I hat if ii is implemented as a macro, it may
evaluate stream more than once. so the argument should never be an expression wilh side
effects.

Returns

1be putc function re1ums the character written. Jf a write error occurs, the error indicalor for
the stream is set and putc returns EOP.
7.9.7.9 The putchar function

Synopsis

#include <etdio.b>
int put.char Unt c) 1

~ription

1be put char function is equivalenl to putc wi1h the second argument stdout.

Returns

1be putchar function relums the character written. If a write error occurs. the error indicator
for the stream is set and putchar returns BOP.

puta 7.9.7.10 The put a function

Synopsis

linclude <•td.io.h>
int pute{conat char • a) 1

Oescriptlon

1be put11 function wri1es 1he •1ringpointed to by s to the stream pointed to by stdout, and
appends a new-line characler to the output. The terrninating null character is not wri1ten.

Returns

1be puts function returns BOP if a write cn or occurs; otherwise it returns a normegative
value.

248

Lwrite

7.9.7.11 The unqetc function

Synopsis

l includ• <•tdio. h>
int uno•tc (int e, l'ILI *•treu) :

Descriplioo

Chapter 12

1be ungetc function pushes the character specified by c (convened to an unsigned
char) back onto the input stream pointed to by stream. 1be pushed·back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A successful
intervening call (with the stream pointed to by stream) to a file positioning function (feeek,
fsetpos, or rewind) discards any pushed· back characters for the strcam.1beextemal storage
corresponding to the stream is uncllanged.

One character of pushback is guaranteed. If the ungetc function is called too many times on
the same stream without an intervening read or file positioning operation on that stream. the
operation may fail.

If the value of c equals that of the macro EOF , the operation fails and the inpw stream is
unchanged.

A successful call to the ungetc function clears the end-of-file indicator for the stream. The
value of the file position indicator for the stream after reading or discarding all pushed-back
characters shall be the same as it was before the characters were pushed back. For a text stream.
the value of its file position indicator after a successful call to the ungetc function is unspecified
until all pushed-back characters arc read or discarded. For a binary stream, its Ii le position
indicator is decremented by each successful call to the ungetc function; if its value was uro
before a call, it is indeterminate after the call.

Returns

1be ungetc function returns the character pushed back after conversion, or EOF if the
operation fails.

Forward references: file positioning functions (7.9.9).

7.9.8 Direct input/output functions
7.9.8.1 The fread function

Synopsis

lincludti <atdio. b>
•i&e_t f r:e.ad(void • ptr, ai&e_t •ise, ai&e_t na&ab, l"I LB *at.r6&m);

Descripllon

'The fread function reads, into the array poirted to by ptr, up to lllDelllb elements whose
size is specified by size, from the stream pointed to by stream. The file position indicator for
the stream (if defined) is advanced by the number of characters successfully read. If an error
occurs. the resulting value of the file position indicator for the stream is indeterminate. If a partial
clement is read. its vaJue is indeterminate.

Returns

'The f rea d function retums the number of elements successfully read, which may be less than
lllDelllb if a read e rror or end-of-file is encountered. If size or lllDelllb is zero, fread returns
zero and the contents of the array and the state of the stream remain unchanged.
7.9.8.2 The fwrite function

Synopsis

I include <•tdi o . h>
aiza_ t fwrite(conat void • ptr, ai&e_ t aiz.e, ais.e_t ~.

rn..m •atream) ;

Descriplion

The fwrite function writes. from the array pointed to byptr, up to lllDelllbe lcrnents whose
size is specified by size. lo the stream pointed to by stream. The file position indicator for
the stream (if defined) is advanced by the number of characters successfully written. If an error
occurs. lhe resulting value of 1he file position indicator for the stream is indetenninate.

<stdio.h>

f ·qetpo•

249

Returns

l1le fwrite function returns the number of clements s<Jccessfully written. which will be less
than nmemb only if a write error is encountered.

1.9.9 File positi<>ning fundi<>ns
7.9.9.I The fqetpos function
Synopsis

I include <atdio. h>
int ~qetpo• (FILE • atreaa, fpoa_t • poa) ;

Description

The f9etpoa function stores the current value of the file position indicator for the stream
pointed to by stream in the object pointed to by pos. 1lle value stored contains unspecified
information usable by the f11etpo11 function for repositioning the stream to its position at the
time of the call to the fgstpos function.

Returns

If successful. the fgetpoa furnction returns zero: on failure. the fgetpoa function returns
nonzero and stores an implementation-defined positive value in errno.

Forward references: the faetpoa function (7 .9.9.3).

7.9.9.2 The fseek function

Synopsis
I include <atdio. h>
int faee k (l'IIZ • atream, lonq int offaet, int •hence);

Desc.ription

The faeek function sets the me position indicator for the stream pointed to by 11tream.

For a binary stream, lhe new position. measured in characters from lhe beginning of the file.
is obtained by adding of feet to the position specified by whence. The specified position is
the beginn.ing of the file if whence is SEEK SET. the current value of the file position indicator
if SEE!< CUR. or end-of· file if SEEJt ENO. A binary stream need not meaningfutty suppot1
fseek calls with a whence value of SEEK_ END.

For a text stream, either o ffset •hall be zero, or offset shall be a value returned by an
earlier call to the ftell function on the same stream and whe nce shall be SEEK_SET.

A successful call to the fseek function clears the end-of-file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fseek call, the next
operation on an update stream may be either input or output.

Returns

The fseek function returns nonzero only for a request that cannot be <atisfied.

Forward references: the ftell function (7.9.9.4).

7.9.9.3 The fsetpos function
Synopsis

I include <•~dio. h>
int faetpo•(FILB •at.IC" , conat fPoa_t. •poa):

Description

The fsetpos function sets the file position indicator for the slrcam pointed to by stream
according to the value of the object pointed to bypo11. which shall be a value obtained from an
earlier call to the fgetpos function on the same stream.

A successful call to the faetpoa function clears the end--0f. file indicator for the stream and
undoes any effects of the ungetc function on the same stream. After an fsetpos ca n. the next
operation on an update stream may be either input or output.

Returns

If successful, the fsetpos function returns zero: on failure, the fsetpoa function re1urns
nonzero and stores an implementation-defined positive value in errno.

250

f'tell

rewind

cla-.rerr

7.9.9.4 The ft ell function
Synopsis

linclude <•t.dio.h>
long int ft.ell (r:U.& •rtream);

Description

Chapter 12

The ftel.l function obtains the current value of the file position indicator for the stream
pointed to by stream. For a binary stream, the value is the number of characters from the
beginning of the file. For a text stream, its file position indicator contains unspecified information,
usable by the fs-k function for returning the file position indicator for the stream to its posilirn
at the time of the ftell call; the difference between two such retum values is not necessarily a
meaningful measure of the number of characters written or read.

Returns

If successful, the ftel.l function returns the current value of the file position indicator for the
stream. On failure, the ftell function retums- ILand stores an implementation-defined positive
value in errno.
7.9.9.S The rewind function

Synopsis

linclude <atdio.b.>
void r..,ind (rILI: * .Cream);

DescripUon

The rewind function sets the file position indicator for the sl!Carn pointed to by stream. to
the beginning of the file. It is equivalent to

(void)faeek(etream, OL, SKD_srt)

except that the error indicator for the stream is also cleared.

Returns

The rewind function returns mo value.

7.9.10 Error-handling functions
7.9.10.1 The c1earerr function

Synopsis

linclude <• t.dio. h>
void cl.earerr(rJLS •etreaa);

Description

The clearerr function clears the end-of-file and error indicalors for the stream pointed to
by stream.

Retums

The clearerr function returns no value.

teot 7.9.10.2 The feof function

Synopsis

ferror

lincluc:!• <etdio . b>
int feof (Fll.B *•t.ream) ;

Oescrlptlon

The feof function tests the end-of-file indicator for the stream pointed to by stream.

Returns

1be feof function returns nonzero if and only if the end-of-file indicator is set for stream.
7.9.10.3 The ferror function
Synopsis

linclude <atdio.h>
int. ferror (:r:n.11 *•tr.am) ;

<atdio.h>

.,_.rror

251

Description

The ferror fuoction tests the error indicator for the stream pointed to by stream.

Returns

The ferror function returns monzcro if and only if the error indica1or is set for stream.

7.9.10.4 The perror function

Synopsis

l incluc:t. <at.d.io . h>
void pe;.rror(con•t. cb•r ••);

Description

Tbc 1>9rror function maps the error number in the imeger expression errno to an error
message. It writes a sequence of c haracters to the standard error stream thus: first (if a is not a
null pointer and the character pointed to by a is not the roll character). the string pointed to by a
followed by a colon (:) and a space; then an appropriate error message string folio~ by a
new-line character. The contents of the error message strings are the same as there returned by
the atrerror function with argument errno. which are implementation-defined.

Retums

The perror funct\on returns no value.

Forward references: the atrerror function (7.11.6.2).

Footnoles

110. lflhe implementation imposes no practical limit on the length of file name strings, the value
of FILENAME MAX should instead be the recommended size of an array illlended to hold
a file name string. Of course, file name string contents are subject to other system-specific
constraints; therefore all possible strings of length FILENAME MAX cannot be expected
to be opened successfully. -

111. An implcmentatiQn need not distinguish between text streams and binary streams. In such
an implementation, there nee d be no new-line charac1crs in a text stream oor any limit to
the length of a line.

112. This is described in the Base Document as a file poinler. That term is not used in this
International Standard to avoid confusion with a pointer to an object that has type FILE.

113. Among the reasons the irnplememation may cause the rename function to fail are that !he
file is open or that it is necessary to copy its contents to effectuate its renaming.

114. Files created using strings generated by the tmpnam function are temporary o nly in the
sense that their names should not collide with those generated by conventional naming rules
for 1he implementation. It is still necessary Io use the remove funciion to remove such files
when their use is el'Mlcd. and before program termination.

115. Additional charac1crs may follow these sequences.

116. The primary use of the freopen function is to change the file asrociated with a standard
text stream (atdarr, atclin, or etdout), as those identifiers need not be modifiable
lvalues to which the value returned by the fopan furx:tion may be assigned.

117. The buffer must have a lifetime at least as great as !he open stream, so the stream should be
closed before a buffer that has automatic storage duration is deallocated upon block exit.

118. Note that 0 is taken as a flag, not as the beginning of a field width.

119. No special provisions are made for multibyte characters.

120. Sec"'future library directions" (7.13.6).

121. These white-space characters arc nol counted against a specified field width.

122. No special provisions are made for multibyte characters.

123. Sec ""future library directions" (7.13.6).

124. As the functions vtpr intf, vaprint f, and vprintf invoke the va _ arq macro, the
value of arg after the return is indetcrminare.

125. An end-of-file and a read error can be distinguished by use of the feof and £error
functions.

252 Chapter 12

Using <stdio . h>
Most of the functions declared in <stdio. h> operate on a stream that is

associated with an open file. At program startup, you can make inunediate
use of three such streams:

stdin • stdin - the standard source for text that you read
etdout • stdout - the standard destination for text that you write
etderr • stderr - the standard destination for error messages that you write

A number of the functions declared in <stdio. h> use one of these streams
without your naming it. For those functions that require a stream argu­
ment, you can write one of these three names as the stream argument.

opening You can also open a file by name and connect a stream to it. You associate
a file a stream with an open file by calling fopen or £reopen, as in:

fptr = fopen(f...-, fmode);
f'ptr • freopen (blame, fmoda, fptr);

Either function returns a non-null value of type pointer to FILE only if it can
open a file whose name is fname with mode fmode and can associate it with
the stream controlled by the data object pointed to by fptr.

Use fptr only as an argument to the other stream 1/0 service functions
in the Standard C library. Don't try to peek inside the data object it points
to, not even if a particular implementation provides a declaration of FILE
within <etdio.h> that reveals some of the fields. Don't try to alter any d
the fields. Don't even try to copy the contents to another data object of type
FILE and use the copy instead, since implementations are pennitted to
assume they know all valid addresses for the data objects that control
streams. (ln other words, the address returned by topen may be magic, not
just the values stored at that address.)

And once you close a stream, with a successful call to tcl os• (or with a
partially successful call to treopen), do not use the corresponding fptr value
again. The storage it points to may well be deallocated or recycled. (Don't
even copy the pointer value. Strictly speaking, an implementation can
bomb out just sniffing at a pointer that points to deallocated storage.)

type You don't have to know what is inside a FILS data object. All you know
FILE is that it has some way to represent, among other things:

• an end-of-file indicator that notes whether you attempt to read past the
end of the file

• an error indicator that notes whether a read or write resulted in an
irrecoverable data transfer error

• a file-position indicator that notes the next byte to read or write from the
file (and that may not be defined for certain kinds of files)

• buffer information that notes the presence and size of any buffer area for
reads and writes

• state information that determines whether a read or write may follow

<atdio.h> 253

As for naming files, your best bet is to avoid wiring any file names into
your code. (fhis is a good idea for a lot of reasons.) If you have to input or
construct a file name, use a buffer that can hold FILENAME_MAX characters.
(The macro is defined in <stdio.h>.) Assume only that a file name is a
ronventional null-terminated string. Don't peek inside, and don't rule out
any characters as components of a file name.

If you must make up file names, such as for the names of your header
files, keep them simple. Any implementation will probably accept file
names that consist of one to six alphabetic characters, followed by a dot,
followed by a single alphabetic character. Some examples are "myhdr.h "

and "X. Y". Don't assume that the case of these characters is significant.
Don't assume that it is not. Don't expect these names to survive unscathed
as names within the operating system. The Standard C library may have to
map them to some other form to comply with local usage.

mode The file mode is a string that begins with one of three letters:

reading
and

writing

function
fgatc

• r specifies that you want to open an existing file for reading.
• w specifies that you want to open an existing file for writing and discard

its contents, or you want to create a new file that initially has no con tents.
• a is the same as w with the added proviso that before each write to the

stream the file-rosition indicator is rositioned at the end of the file.
You can follow the mode with two optional characters, in either order:

• + specifies that you want also to write a file you open for reading (with
r), or you want also to read a file you open for writing (with w or a).

• b specifies that you want to open a binary file rather than a text file.
You can write additional characters after these. Each implementation

defines what additional parameters, if any, you can write as part of fmode.

A system may, for example, let you write:
fopen (fruune, "• , lrecl=l32, recfm=fixed")

On System/370, at least one C implementation takes this as a request to
create a file with fixed-length records each 132 bytes long. Be warned,
however, that no standards exist for what follows the defined modes. If you
move your program between implementations, an fopen call with extra
mode information may fail or quietly misbehave.

The Standard C library offers a number of functions for reading and
writing streams. You can, for example, read a single character, read up to a
given count of characters, or ·read characters and convert them to encoded
forms under control of a format string.

The process of reading a single character is defined in detaiI for the
function fgetc. All other functions are defined as if they make multiple calls
on fgetc to obtain input characters, whether they really do so or not. fgetc

first verifies that the stream supports reading in general and that a read
request can be honored at this point in time. (See page 256.) Then it
determines whether a buffer needs to be allocated for the stream and, if so,
endeavors to do so. Then it determines whether a physical read must be

254 Chapter 12

performed (to fill an empty buffer or to input the character directly) and, if
so, endeavors to do so. It sets the error indicator on a physical read error,
or the end-of-file indicator on a physical read at the end of the file. If, after
a ll this, there is a character to deliver, the function delivers it and advances
the file-position indicator by one character.

An implementation that performs all these operations in detail for each
character would be slow indeed. Little wonder that implementors have
worked hard over the years to cut comers wherever possible. The major
trick is to perform physical reads of as many characters as possible as
seldom as possible, then to summarize the state of the stream succintly
enough for a quick test per character. The function qetc in fact, traditionally
is a macro that makes it a faster version of fqetc.

unsafe Standard C requires that qetc also be represented as a true function. The
macros header <atdio.h> can, and usually does, mask the function declaration

with a macro. That macro ·can, and usually must, indulge the unsafe
practice of evaluating its pointer to FILE argument more than once. The
header can also mask the function fqetc (or any other function) with a
macro definition. The only d!ifference is that macros other than gate (and
putc) must evaluate each of its arguments exactly once, so that side effects
evaluate properly just as if a true function were called.

function Writing is very similar to reading. The primitive function is fputc, which
fyutc writes one character to the stream. fyutc first verifies that the stream

supports writing in general and that a write request can be honored at this
point in time. (See page 256.) Then it determines whether a buffer needs to
be allocated for the stream and, if so, endeavors to do so. Then it determines
whether a physical write must be performed (to drain a full buffer or to
output the character directly) and, if so endeavors to do so. It sets the error
indicator on a physical write error. If, after all this, the character got
delivered, the function advances the file-position indicator by one charac­
ter. Again, a typical implementation will implement the related function
putc with a masking macro definition that may be unsafe.

file It is quite common to read or write a stream in one sequential pass from
positioning beginning to end. Indeed, many of the pseudo-files such as streams from

terminals and pipelines can be processed only this way. Nevertheless,
occasions exist when you need to reprocess data or process data in random
order. Those occasions require you to alter in various ways the normal
progression of the file-position indicator. They may also require you to
intermix reads and writes. The Standard C library provides three (yes,
three) different mechanisms for so altering the file-position indicator:

• unqetc lets you push back a character you have just read from a stream.
• fs-k, ftell, and rewind let you memorize the file-position indicator and

restore it to an earlier position, provided the file-position indicator can
be encoded as a long.

• fqetpoa, faetpoa, and r ewind let you memorize an arbitrary file-position
indicator and restore it to an earlier position.

<atdio. h> 255

f\M'iction The function unqetc will work even with a stream that does not support
unqetc file-positioning requests, such as a stream from a terminal or pipeline. It

lets you put back a different character than you just read. It even lets you
put back a character before the beginning of a file, if you call the function
before the first read on a stream.

Implementations can vary in the number of characters you can push
back between reads, however. You can be sure of one character of push­
back even if you intersperse calls to the formatted-input functions (such as
ecanf), which also require one character of push back. For a portable
program, don't assume that you can push back more than one character.

The ungetc function interacts poorly with the other two mechanisms for
positioning files. Committee X3Jl 1 spent quite a bit of time sorting out the
semantics of various sequences of calls to unqetc and Ee..it, for instance.
The general rule is that a character you push back with unqetc evaporates
after any other file-positioning request. But you should read the fine print
in the function descriptions to be sure that you get just the result you expect.
My advice is to avoid mixing unqetc calls with anything but read requests.

fe-lr. The functions fe..it and ftell (and rewind) are the traditional file-posi­
ftell tioning functions from the earliest days of C. They assume that you can

rewind encode a file-position indicator as a long, as I indicated on page 230. This
happens to be true under UNIX, where files never exceed 232 bytes in length
and where you can position a file to an arbitTary byte. It is not necessarily
true on a system that supports larger files or that requires more elaborate
file-positioning information.

A text file, for example, may be structured into blocks and records within
blocks-packing a block number, record number, and offset within record
into a long may require impossible tradeoffs for an arbitrary byte. For these
reasons, the function ftell may fail (returning - 1), rather than return a
corrupted encoding of the file-position indicator.

You use feeek and ftell to advantage in randomly accessing the bytes
of a binary file (provided, of course, that the file is not too big). In this case,
the encoded file-position indicator is the offset in bytes from the start of the
file, which is byte zero. You can perform arithmetic on such file-position
indicators, or compute them out of whole cloth, and be sure to get just the
bytes you'd expect.

The encoded file-position indicator for a text file, however, has a format
that varies among implementations. You use ftell to give you a magic
cookie that marks where the file is currently positioned. (It will return a
failure c:Ode if it cannot encode the current file-positon indicator.) Later in
the execution of the same program, and before you close the file, you can
pass the same value to t•-k to restore the file-position indicator to its
earlier value. Don't assume that you can save such values from one execu­
tion of a program to the next, or even from one file opening to the next. An
implementation may play really tricky games with the encoding.

256 Chapter 12

fqetpoe If you are content merely to reposition files at places you have visited
f-tpo• earlier, you should use the third mechanism. The committee added the

functions fgetpo• and feetpo• to support positioning within files of arbi­
trary size and structure. These functions work with values of type fpo•_t,
defined in <atdio.h>, which can be as ornate a structure as an implemen­
tation needs to encode an arbitrary file-position indicator. Assume that
fpoe_t is a structure type that you can only copy, pass as a function
argument, or receive as a function value. Even for a binary file, there is no
defined way to compare such values or perform arithmetic on them.

buffer You can, in principle, exercise a certain amount of control over how the
control 1/0 functions buffer data for a stream. You must realize, however, that

buffering is an optimization based on various conjectures about patterns
of 1/ 0 . These conjectures are usually correct, and many implementations
follow your advice. But they don't have to. An implementation is free to
ignore most of your buffering requests.

••tvbuf Nevertheless, if you think a bigger buffer wi!J improve performance or
-tbuf a smaller buffer will save space, you can supply your own candidate buffer.

Call the function ••tvbuf after you open the file and before you perform
any other operations on the stream. (A void the older function Htbuf, which
is less flexible.) You can specify whether 1/0 should be fully ibuffered,
buffered by text lines, or unbuffered. It just might make a difference in how
well your program performs.

function Sometimes you want buffering most of the time, but need to exercise
ffiueh limited control over when output gets flushed to the outside world. The

function fflu•h ensures that one or more streams have their output flushed
when you call it. That can be useful for pushing out messages in an
interactive environment. It can also make a database more robust in the
teeth of occasional program crashes. Be warned, however, that fflueh has
no defined effect on input streams in Standard C. You can't use this function
to reliably discard input before a prompt, as you can under UNIX.

The Standard C library disallows certain patterns of reads and writes.
The basic rule is that you cannot follow a read with a write, or a write with
a read, without an intervening file-positioning request. More specifically,
the intervening call must be to one of the functions fflueh, teee>t, fHtpoe,
or rewind. A read that sets the end-of-file indicator can be followed imme­
diately by a write. Curiously enough, howeve-, a write preceded by an
implicit seek (to a file opened with an fmod• that begins with a) cannot
immediately follow a read. Figure 12.1 is a state-transition diagram that
summarizes these rules.

My final piece of advice is to give the stream I/0 functions all the
latitude you can. Don't try to control the buffering too closely. You may well
end up optimizing for one implementation and deoptimizing for a ll others.
And don't push your luck by agressively mixing reads, writes, and various
file-positioning operations. It is easy to break an implementation if you
push it in this area. It is even easier to break your own program.

<stdio_h>

Figure 12. 1:
states of a

stream

257

formatted An important aspect of input/output is performing formatted output.
output That is almost invariably your first contact w ith l/O under C, as in the

popular first program:
#include <atdio .h>

int main (void)
I /* say hello */
printf{'"hello world\n");
)

Unless you write only embedded programs, formatted output is likely to
be the most important flavor of l/0 that you must master.

A program can produce output that only another computer program can
Jove, or understand. If both programs run on the same architecture, they
share the same notion of how to encode data. One program can write out
integer and floating-point scalars, even structures and unions, and another
program can read them in and manipulate them without further ado. You
can share just about any kind of data, except pointers, between programs
just by copying the bytes to and from a binary file.

If you want to share data between programs on different computer
architectures, however, you must be far more careful. Computers fre­
quently differ on how they encode both integer and floating-point values.
Even when two computers agree on the size of scalars and how they are
encoded, they often differ on the order in which they store in memory the
bytes of a multibyte data object.

Computers also differ widely in their requirements for storage align­
ment, so the holes within structures (and on the end of structures and
unions) can vary more than you might expect. Unless you are very careful,
you shouldn't even think of using binary files as a medium for data
interchange.

258

print
functions

Chapter 12

Text files have three significant advantages over binary files:
• They can be generated or altered by mere mortals such as you and me.
• They can be written to a printer or terminal with a large likelihood that

human beings can understand the display.
• They can be shared between programs that share few assumptions about

how data is encoded.
The process of contriving a text representation of encoded data is called

output fonnatting. The print functions (all with print as part of their names
and all declared in <•tdio. h>) produce formatted output. To use the print
functions, you must know how to call them, how they interpret a format,
and what conversions they will perform for you. The Standard C library
provides six different print functions, declared as follows:
int fprintf (FILE •atream, ccnst char •format, ...) ;
int printf(conat char •format, ...) ;
int aprintf(char *deat , const char *format, ...);
int vfprintf(FILE •stream, con.st char •format, va_liat ap);
int vprintf (const char •format, va list ap) ;
int vaprintf(char *dest, conat ~ •format, va_liat ap);

All the functions accept a format argument, which is a pointer to a
read-only null-terminated string. The format tells the function what addi­
tional arguments to expect, if any, and how to convert them. It also specifies
any literal text you want to intersperse with any converted arguments. I
discuss print formats in considerable detail below.

All the functions return a count of the number of text characters gener­
ated on a particular call. Two of the functions, aprintf and vaprintf, store
the generated characters in a null-terminated string deat. You must know
enough about your format and converted data to ensure that the string can
fit in the storage you provide, since you cannot convey a maximum string
length for these print functions to check. The remaining four functions
write to a stream. (Those without a stream argument write to the stream
atdout.) They return a negative value, instead of the cumulative character
count, if any of the writes set the error indicator for the stream.

The functions fprintf, pri.ntf, and aprintf accept a variable argument
list. Those extra arguments are, of course, primarily used to convey data
values you want to convert to text. For maximum portability, you must
declare these functions by including <atdio. h>.

vfprintf As flexible as these three functions are, they sometimes fall short of the
vprintf mark. C programmers find occasional need for print functions that behave

vaprintf slightly differently. That's where the last three functions - vfprintf,
vprint, and vaprinU - come in. Each behaves just like the corresponding
print function without the leading v in its name, except for the way it
receives additional a rguments. You use the macros defined in <atdarq. h>
to write a wrapper function that accepts a variable argument list. These
additional arguments are passed on to the print functions to do the actual
conversion and text generation.

<stdio.h> 259

Let's say, for example, that you want to write formatted messages to

stderr, each preceded by a standard prefix. You also want to log each error

on a disk file. You can do all this by writing a function eprint that uses

vfprintf to perform the actual output:

#include <atdio . h>
#include <atdarq. h>

int eprint (conat char *format, ...)
(/* log error messages */
extern FILI: *logfile;
int n ;
"•-list ap;

va start(ap, format) ;
fp;intf(atderr, "\&ERROR: ");
vfprintf(atderr, foicmat , ap);
va_start(ap, format) ;
n = vtprintf(logfile, format, ap) ;
va_.nd(ap) ;
return (n);
)

print The mainspring of every print function call is the format string you

formats specify for it. You can (and should) think of a format string as a program in

a mini programming language. The print function interpretively executes

this program by scanning the format string once from beginning to end. As

it recognizes each component of the format string, it performs various

operations. Most of these operations generate characters that the function

writes to a stream or stores in memory.

Many of these operations call for argument values to be converted to

character sequences. Any such arguments must appear in the variable

argument list, in the order in which the format string calls for them. For

example,
printf(.. '•'c'otsi", "th,., 'x', 9, 38);

produces the string thx1138 from four conversions (th Ix 111138). It is up to

you to ensure that the type of the actual argument expression matches the

type expected by the print function. Standard C has no way to check the

types of additional arguments in a variable argument list.

Keep in mind that additional arguments follow the same type conver­

sion rules as for arguments to functions called outside the scope of a

prototype declaration. A float argument, for example, is converted to type

double. A char or short argument is converted to int. The print functions type

cast arguments, as needed, to restrict their range to whatever is expected

for the particular conversion. The only time you are likely to see this

machinery is when you specify an argument value that is out of range for

the final type. For example, the conversion specifier \c expects an argument

of type int, which it converts to unsigned char. So the expression

printf (" %c", Ox203) typically writes only 3 to the standard output stream.

260

printing
literal text

Chapter 12
Not every part of a format string calls for the conversion of an additional

argument. In fact, only certain conversion spedfications gobble arguments.
Every conversion specification begins w ith the %per cent escape character
and matches one of the patterns shown below. The print functions treat
everything else in a format string as literal text. One character of output is
generated for each character of literal text.

Strictly speaking, a format string is a string of multibyte characters. That
lets you intersperse Kanji (or Arabic, or whatever) with your output con­
versions. Each sequence of literal text must begin and end in the initial shift
state, if your execution environment uses a state-dependent encoding for
multibyte characters. (See Chapter 13: <•tdlib.h>.)

conversion To construct a valid conversion specifications, you write four compo-
specificatlon nents following the '· All but the last component is optional:

• Zero or more flags specify variations on the standard conversions.
• An optional field width specifies the minimum number of characters to

generate for the conversion.
• An optional precision controls the number of characters generated for

certain conversions.
• A conversion specifier determines the type of any argument, the type of its

converted value, and how it is converted.
flags You write these components in the order shown above. Let's look at each

in more detail. You can specify five different flags:
• A minus(-) left-justifies a conversion. Any padding on the right is with

spaces. An example is \-30•.

• A zero (o) pads with leading zeros (after any sign or prefix), if no other
padding is specified. An example is 11iotx.

• A plus(+) generates an explicit plus sign when a positive signed-value
is converted. An example is \+5d.

• A space generates a space in place of a sign when a positive signed-value
is converted. An example is ' 5d.

• A pound sign (I) alters the behavior of certain conversions. The o
conversion adds a leading o, the x conversion adds a leading ox, the x
conversion adds a leading ox, and the floating-point conversions gener­
ate a decimal point even if no fraction digits follow. An example is \Ix.

field You write a field width as an unsigned decimal integer. Write an asterisk
width and the print function gobbles the next int argument as the field width, a

negative value contributing a minus flag. A conversion that produces fewer
than field width characters is padded. In the absence of minus or zero flags,
padding is on the left with spaces. Examples are \lOc and *i.

l)fecision You write a precision as a period (.) followed by an unsigned decimal
integer. A period alone specifies a precision of zero. Write a period followed
by an asterisk and the print function takes the next int argument as the
precision, a negative value being taken as zero. The precision specifies:

<stdio.h> 261

• the minimum number of digits to generate when converting an integer
• the number of fraction digits to generate for a, E, or f
• the maximum number of significant digits to generate for g or G

• the maximum number of characters to generate for a
Examples are '. ioe and % • •a ..

print You write a conversion specifier as a one- or two-character sequence
conversion from a predefined list of about three dozen valid sequences. The two-char­

specifiers acter sequences begin with an h, l, or L to indicate alternate conversion
types. I list all valid sequences below. Don't write any others if you want
your code to be portable.

The goal of each formatted-output conversion is to generate a text
sequence that adequately represents the encoded value before conversion.
Unfortunately, views differ on how you "adequately" represent even a
simple integer value. That's why there are so many different ways to write
conversion specifications. For many of the conversions, "adequately"
means" exactly." But for floating-point conversions, any text representation
is likely to be only an approximation of the original value. You can specify
how many decimal digits of precision you want to retain. You can be sure
that the sign and magnitude of the value will be correctly represented. You
cannot, however, expect to get exactly the same value if you convert the
text string back to its original encoded type.

Here are the various conversion specifiers. Remember that every con­
version is subject to padding, as described above for flags and field width. If
no precision pis specified, it assumes the stated default value:

character • c - converts the int argument to unsigned char to generate a character.
decimal • d - converts the int argument to a signed sequence of at least p decimal

digits. Default precision is 1.
• hd - converts the int argument to short, then the same as d.

• ld - converts the long argument the same as d.

floating-point • a - converts the double argument to a signed sequence of the form
d.ddde±dd. Here, d stands for a decimal digit,± is either a plus(+) or
minus(-) sign, and the dot is the decimal point for the current locale. It
omits the decimal point if pis 0 and you specify no I flag. It generates p
fraction digits and at least two exponent digits. Default precision is 6.

• Le - converts the long double argument the same as a.

• E - converts the double argument the same as a, except that it replaces
the a before the exponent with E.

• LE - converts the long double argument the same as E.

• f - converts the double argument to a signed sequence of the form d. ddd.

Here, d stands for a decimal digit and the dot is the decimal point for the
current locale. It generates at least one integer digit. It omits the decimal
point if p is 0 and you specify no I flag. It generates p fraction digits.
Default precision is 6.

262 Chapter 12
• Lf - converts the long double argument the same as f.
• 11 - converts the double argument the same as either • or f . If p is

unspecified or 0, it sets p to 6. It chooses the f form if the • form would
yield an exponent in the inclusive range (-4, p - 1). It omits trailing:zeros
from any fraction. It omits the decimal point if no fraction digits remain
and you specify no # flag.

• Lg - converts the long double argument the same as 11•

• G - converts the double argument the same as g, except that it replaces
the • before any exponent with B.

• LG - converts the long double argument the same as o.
decimal • i, hi, u - are the same as d, M, ld, respectively.

character • n - stores the cumulative number of generated characters in the data
count object pointed to by the pointer to int argument.

• hn - is the same as n for a pointer lo sliort argument.
• l n - is the same as n for a pointer to long argument.

IM'lSlgned • o - converts the int argument to unsigned int and then to an unsigned
Integer sequence of at least p octal digits. Default precision is 1.

• ho - converts the int argument to unsigned sliort, then the same as o.
• lo - converts the long argument the same as o.

pointer • p - converts the pointer to void argument to an implementation-defined
to void sequence of characters (such as the hexadecimal representation of a

storage address).
sttlng • • - generates one character for each of the (non-null) cha racters stored

in the string pointed to by the pointer to char argument. If you specify a
precision, it generates no more than p characters.

unsigned • u - converts the int argument to unsigned int and then to an unsigned
decimal sequence of at least p decimal digits. Default precision is 1.

• hu - converts the int argument to unsigned sliort, then the same as u .
• lu - converts the long argument to unsigned long, then the same as u.

hexadecimal • x - converts the int argument to unsigned int, then to an unsigned
sequence of at least p hexadecimal digits. It represents digit values 10
through 15 by the letters a through f . Default precision is 1.

• bx - converts the int argument to unsigned sliort, then the same as x.

• lx - converts the long argument to unsigned long, then the same as x
• x - converts the int argument the same as x, except that it represents

digit values 10 through 15 by the letters A through P.

• h.X - converts the int argument to unsigned sliort, then the same as x.
• lX - converts the long argument to unsigned long, then the same as x.

per cent • % - converts no argument. It generates a per cent character.
Conversion specifiers handle most of your formatting needs. Where they

fall short, you can get what you want in two steps. First, generate text into
a buffer using aprintf and modify it there. Then write the text using, say,
printf. See the function _ Pmtval on page 92 for a practical example.

<stdio.h>

formatted
input

ICCll

functions

263

Not all programs read input. Those that do can read data directly, using
an assortment of standard library functions, and interpret the data as they
see fit. Converting small integers and text strings for internal consumption
are both exercises that most C programmers perform easily. It is only when
you must convert floating-point values, or recognize a complex mix of data
fields, that standard scanning functions begin to look attractive.

Even then the choice is not always dear. The usability of a program
depends heavily on how tolerant it is to variations in user input. You as a
programmer may not agree with the conventions enforced by the standard
formatted-input functions. You may not like the way they handle errors. In
short, you are much more likely to want to roll your own input scanner.

Obtaining formatted input in not simply the inverse of producing for­
matted output. With output, you know what you want the program to
generate next and it does it. With input, however, you are more at the mercy
of the person producing the input text. Your program must scan the input
text for recognizable patterns, then parse it into separate fields. Only then
can it determine what to do next.

Not only that, the input text may contain no recognizable pattern. You
must then decide how to respond to such an "error." Do you print a nasty
message and prompt for fresh input? Do you make an educated guess and
bull ahead? Or do you abort the program? Various canned input scanners
have tried all these strategies. No one of them is appropriate for all cases.

It is no surprise, therefore, that the history of the formatted input
functions in C is far more checkered than for the formatted output func­
tions. Most implementations of C have long agreed on the basic properties
of printf and its buddies. By contrast, acanf and its ilk have changed
steadily over the yea rs and have proliferated dialects. Committee X3J11 had
to spend considerable time sorting out the proper behavior of formatted
input.

The scan functions are so called because they all have •can as part of their
names. These are the functions that scan input text and convert text fields
to encoded data. All are declared in <at<lio. h>. To use the scan functions,
you must know how to call them, how to specify conversion formats, and
what conversions they will perform for you. The Standard C library pro­
vides three different scan functions, declared as follows:
int facanf (FILB *atream, conat char *format, ...) ;
int acanf(conat char *format, ...);
int aacanf(char *arc, conat char *format, ...);

The function f•c•nf obtains characters from the stream atr•am. The
function acanf obtains characters from the stream •tdin. Both stop scan­
ning input early if an attempt to obtain a character sets the end-of-file or
error indicator for the stream. The function .. cant obtains characters from
the null-terminated string beginning at arc. It stops scanning input early if
it encounters the terminating null character for the string.

264

pushing
back

characters

Chapter 12
All the scan functions accept a variable argument list, just like the print

functions. And just like the print functions, you had better declare any scan
functions before you use them by including <•tdio.h>.

All the functions accept a t"ormat argument, which is a pointer to a
read·only null-terminated string. The format tells the fttnction what addi­
tional arguments to expect, if any, and how to convert input fields to values
to be stored. <A typical argument is a pointer to a data object that receives
the converted value.) It also specifies any literal text or white-space you
want to match between converted fields. If scan formats sound remarkably
like print formats, the resemblance is quite intentional. But there are also
important differences. I discuss scan formats in considerable detail below.

All the scan functions return a count of the number of text fields
converted to values that are stored. If any of the functions stops scanning
early for one of the reasons cited above, however, it returns the value of the
macro EOF, also defined in <stdio. h>. Since EOF must have a negative value,
you can easily distinguish it from any valid count, including zero. Note,
however, that you can't teJJ how many values were stored before an early
stop. If you need to locate a stopping point more precisely, break your scan
call into multiple calls.

A scan function can also stop scanning early because it obtains a charac·
ter that it is unprepared to deal with. In this case, the function returns the
cumulative count of values converted and stored. You can determine the
largest possible return value for any given call by counting all the conver­
sions you specify in the format. The actual return value will be between
zero and this maximum value, inclusive.

When either Lacant" or aca.nt" obtains such an unexpected character, it
pushes it back to the input stream. (It also pushes back the first character
beyond a valid field when it has to peek ahead to determine the end of the
field.) How it does so is similar to calling the function unqetc. There is a
very important difference, however. You cannot portably push back two
characters to a stream with successive calls to unqetc (and no other inter­
vening operations on the stream). You can portably follow an arbitrary call
to a scan function with a call to unqetc for the same stream.

What this means effectively is that the one-character pushback limit
imposed on unoetc is not compromised by calls to the scan functions. Either
the implementation guarantees two or more characters of pushback to a
stream or it provides separate machinery for the scan functions.

The scan functions push back at most one character. Say, for example,
that you try to convert the invalid field 123EASY as a floating point value.
Even the subfield 123E is invalid, since the conversion requires at least one
exponent digit. The subfield 1231: is consumed and the conversion fails. No
value is stored and the scan function returns. The next character to read
from the stream is A. This behavior matters most for floating point fields,
which have the most ornate syntax. Other conversions can usually digest
all the characters in the longest subfield that looks valid.

<11tdio . h>

scan
formats

scan
vs. print
formats

scanning
white-space

265

Earlier, I described the print formats as a mini programming language.
The same is, of course, true of the scan formats. I also conunented ea.rlier
that print and scan formats look remarkably alike. This should serve as both
a comfort and a warning to you. The comfort is that the print and scan
functions are designed to work together. What you write to a text file with
one program should be readable as a text file by another. Any values you
represent in text by calling a print function should be reclaimable by calling
a scan function. (At least they should be to good accuracy, over a reasonable
range of values.) You would even like the print and scan formats to
resemble each other strongly. It is possible for you to write symmetric
formats, ones that read back what you wrote out. Be warned, however, that
that can take a bit of extra thought.

And here lies the danger. The fact remai.ns that the print and scan format
languages are different. Sometimes the apparent s imilarity is only superfi­
cial. You can write text with a print function call that does not scan as you
might expect with a scan function call using the same format. Be particu­
larly wary when you print text using conversions with no intervening
white-space. Be somewhat wary when you print adjacent white-space in
two successive print calls. The scan functions tend to run together fields
that you think of as separate.

The basic operation of the scan functions is, indeed the same as for the
print functions. Call a scan function and it scans the format string once from
beginning to end. As it recognizes each component of the format string, it
performs various operations. Most of these operations consume characters
sequentially from a stream (facanf or scant) or a string stored in memory
(.. canf).

Many of these operations generate values that the scan function stores
in various data objects that you specify with pointer arguments. Any such
arguments must appear in the variable argument list, in the order in which
the format string calls for them. For example:

aacanf("thx 1138", "\a%2o%d" , '•• '1>, 'c);

stores a pointer to the string " thx" in the diar array a , the value 11 in the int
data object b, and the value 38 in the int data object c. It is up to you to
ensure that the type of each actual argument pointer matches the type
expected by the scan function. Standard C has no way to check the types
of additional arguments in a variable argument list.

Not every part of a format string calls for the conversion of a field and
the consumption of an additional argument. In fact, only certain oonversion
specifications gobble arguments. Each conversion specification begins with
the escape character ' and matches one of the patterns shown below. The
scan functions treat everything else either as white-space or as literal text.

White-space in a scan format is whatever the function 1 .. pace, declared
in <ctype. h>, says it is. That can change if you call the function aatlocal•,

declared in <locai.. h>. In the "C" locale, white-space is what you have
learned to know and love. (See Chapter 2: <ctype .h>.)

266 Chapter 12

The scan functions treat as a single entity a sequence of one or more
white-space characters in a scan format. Such a sequence causes the scan
functions to consume an arbitrarily long sequence of white-space charac­
ters from the input (whatever the current locale says is white-space). The
white-space in the format need not resemble that in the input. The input
can contain no white-space. White-space in the format simply guarantees
that the next input character (if any) is not a white-space character.

scanning Any character in the format that is not white-space and not part ci a
literal text conversion specification calls for a literal match. The next input character

must match the format character. Otherwise, the scan function returns with
the current count of converted values stored. A format that ends with a
literal match can produce ambiguous results. You cannot determine from
the return value whether the trailing match failed. Similarly, you cannot
dtlennine whether a literal match failed or a conversion that follows it. Fer
these reasons, literal matches have only limited use in scan formats.

A Literal match can be any string of multibyte characters. F.ach sequence
of literal text must begin and end in the initial shift state, if your execution
environment uses a state-dependent encoding for multibyte characters.
(See Chapter 13: <•tdli.b.h>.)

scan A scan conversion specification differs from a print conversion specifi-
conv~ cation in fundamental ways. You cannot write any of the print conversion

specificatiQn$ flags and you caMot write a precision (following a decimal point). Instead,
scan conversions have an assignment-suppression flag and a conversion
specification called a scan set. Following the ' you write three components
in the following order. All but the last component is optional:

assignment • You write an optional asterisk (•) to specify assignment suppression - the
suppression converted value is not to be stored. An example is , •• (which skips an

arbitrary sequence of non- white-space characters.
field width • You write an optional field width to specify the maximum number ci

input characters to match when determining the conversion field. The
field width is an unsigned decimal integer. The amount of any leading

$COn •

conversion
specifiers

white-space is not limited by the field width. An example is \Si.

You write a conversion specifier to determine the type of any argument,
how to determine its conversion field, and how to convert the value to
store. You write a scan set conversion specifier between brackets ((J).
AU others consist of one-or two-character sequences from a predefined
list of about three dozen valid sequences. The two-character sequences
begin with an h, l, or L, to indicate alternate argument types. l describe
scan sets and list all valid sequences below. Don't write anything else in
a scan format if you want your code to be portable.
The goal of each formatted-input conversion is to determine the se­

quence of input characters that constitutes the field to convert. The scan
function then converts the field, if possible, and stores the converted value
in the data object designated by the next pointer argument. (lf assignment
is suppressed, no function argument is consumed.)

<atdio.h> 267

Unless otherwise specified below, each conversion first skips arbitrary
white-space in the input. Skipping is just the same as for white-space in the
scan format. The conversion then matches a pattern against succeeding
characters in the input to determine the conversion field. You can specify
a field width to limit the size of the field. Otherwise, the field extends to
the last character in the input that matches the pattern.

scanning The scan functions convert numeric fields by cal.ling one of the Standard
numeric C library functions atrtod, atrtol, or atrtoul, all declared in FlBS<St­

fields dlib.h>. A numeric conversion field matches the longest acceptable pattern.
In the descriptions that follow, I summarize the match pattern and

conversion rules for each valid conversion specifier. ,, stands for the field
width you specify, or the indicated default value if you specify no field
width. ptr stands for the next argument to consume in the variable argu­
ment list:

chc:l'octer • c - stores " characters (default is 1) in the array of char pointed at by
ptr. It does not skip leading white-space.

decimal • d - converts the integer input field by calling atrtol with a base of 10,
then stores the result in the int pointed at by ptr.

• hd - is the same as d, storing in a short.
• ld - is the same as <1, storing in a long.

tlooting-point • e - converts the floating point input field by calling atrtod, then stores .
the result in the float pointed at by ptr.

• i. - is the same as •, storing in a double.
• Le - is the same as ., storing in a long double.
• E, u:, LE -are the same as •• le, Le, respectively.
• £, 1£, L£ - are the same as•, l•, Le, respectively.
• 9, 19, Lg - are the same as e, l•, Le, respectively.
• G, lG, LG - are the same as ., le, Le, respectively.

general • i - converts the integer input field by calling atrtol with a base of 0,
integer then stores the result in the int pointed at by ptr. (That lets you write

input that begins with o, ox, or ox to specify the actual numeric base.)
• hi - is the same as i, storing in a short.
• 11 - is the same as i, storing in a long.

chc:l'octer • n - converts no input, but stores the cumulative number of matched
count input characters in the int pointed at by ptr.

• hn - is the same as n, storing in a short ..
• ln - is the same as n, storing in a long ..

octal • o - converts the integer input field by calling atrtoul with a base of 8,
then stores the result in the unsigned int pointed at by ptr.

• ho - is the same as o, storing in an unsigned short..
• lo - is the same as o, storing in an unsigned long ..

268 Chapter 12

pointer • p - converts the pointer input field, then stores the result in the pointer
to void to void pointed at by ptr. Each implementation defines its pointer input

field to be consistent with pointers written by the print functions.
string • • - stores up to .,, non- white-space characters (default is the rest of the

input) in the array of char pointed at by ptr. It first skips leading
white-space, and it always stores a null character after any input.

unsigned • u - converts the integer input field by calling strtoul with a base of 10,
declmol then stores the result in the unsigned int pointed at by ptr.

• bu - is the same as u, storing in an unsigned short.
• lu - is the same as u, storing in an unsigned long.

hexadecimal • x - converts the integer input field by calling strtoul with a base of 16,
then stores the result in the unsigned int pointed at by ptr.

• hx - is the same as x, storing in an unsigned short.
• lx - is the same as x, storing in an unsigned long.
• x, h.X, ix - are the same as x, hx, ix, respectively.

per ce nt • %- converts no input, but matches a per cent character (%).
scan sets A scan set behaves much like the• conversion specifier. It stores up tow

characters (default is the rest of the input) in the char array pointed at by
ptr. It always stores a null character after any input. It does not skip leading
white-space. It also lets you specify what characters to consider as part of
the field. You can specify all the characters that match, as in
% I 0123456789abc-'efABCDEFI, which matches an arbitrary sequence of hexa­
decimal digits. Or you can specify all the characters that do not match, as
in %(A0123456789J which matches any characters other than digits.

If you want to include the right bracket (J) in the set of characters you
specify, write it immediately after the opening I (or (A), as in %1 J 11 which
scans for square brackets. You cannot include the null character in the set
of characters you specify. Some implementations may let you specify a
range of characters by using a minus sign(-). The list of hexadecimal digits,
for example, can be written as % 1o-9abcdefABCDEFI or even, in some cases,
as %I0-9a-fA-FJ. Please note, however, that such usage is not universal.
Avoid it in a program that you wish to keep maximally portable.

limitations You will find that the scan conversion specifications are not as complete
ot scan as the print conversion specifications. Too often, you want to exercise more

functions control over an input scan. Or you may find it impossible to determine
where a scan failed well enough to recover properly from the failure. You
can make up for these inadequacies much the same way you augment the
print functions. First, read the data you wish to scan into a buffer. (You can
sometimes even scan with a tolerant format, such as "%•".)Then use BBcanf

to scan the buffer repeatedly until you find a successful match or determine
the nature of the input error. Be prepared, however, to give up on the scan
functions beyond a point. Their usefulness, over the years, has proved to
be limited.

<stdio. h> 269

I conclude with a brief remark about each of the names in utdio. h>.

BUFSiz BUFsiz - This macro yields the preferred size of stream buffers. It
typically ranges from a few hundred to a thousand-odd bytes. Favor it as
the size of any buffers you declare for use with aetvbuf.

EOF EOP - This macro is used to signal end-of.file. It has a negative value,
but even the functions declared in <ctype. h> accept it as an argument value.
Some functions declared in <•tdio.h> also use it as an error return value.
Many implementations choose the value - 1 for EOF, but don't count on it.

PILENAKE...MAX FILENAME...MAX- This macro defines the length of a character buffer large
enough to hold an a rbitrary file name. Use it to declare or allocate any such
buffers. On some systems, it can be hundreds of bytes long.

FOPEN_ MAX FOPEN_HAX - This macro tells you how many files your program can
have open simultaneously, at a minimum. The three standard 1/0 streams
are included in the count. You use this value in a program that creates a
number of temporary intermediate files, for example, so that you can plan
file usage before you create any files. Every implementation must guarantee
at least eight simultaneously open files. That means you can write a
portable program that opens up to five additional files at once.

_ IOFBF _ IOFBF - Use this macro as the mode (third) argument to aetvbut to
indicate full buffering.

_ IOLBP _ IOLBF - Use this macro as the mode (third) argument to aetvbuf to
indicate line buffering.

_ IONBF _ IONBF - Use this macro as the mode (third) argument to aetvt>uf to
indicate no buffering.

L_ t.111Pna111 L_tmpnam - This macro defines the length of a character buffer large
enough to hold a temporary file name. Use it to declare or allocate any such
buffers. On some systems, it can be hundreds of bytes long.

NULL NULL - See page 220.

SBEJLCUR SEEJt..CUR - Use this macro as the mode (third) argument to taeelt to
indicate a seek relative to the current file-position indicator. For a text file,
this mode is valid only for a zero offset, which does nothing.

SEl!JUl!:ND SEEILEND - Use this macro as the mode (third) argument to faeelt to
indicate a seek relative to end-of-file. Remember that a binary file may have
extra null characters appended, so this mode has uncertain results. For a
text file, you can specify no offset with this mode.

SE£1LSET SEEJ:_ sET - Use this macro as the mode (third) argument to taeelt to
indicate a seek relative to beginning-of-file. For a text file, the offset must
be zero or a value returned by an earlier call to £tell for the same stream.

TMP_MAX 'l'HP_HAX - This macro tells you how many distinct file names, at a
minimum, the function t111Pnam will create before it starts repeating. You use
this value in a program that creates a number of temporary intermediate
files, for example, so that you can plan file usage before you create any files.
Every implementation must guarantee at least 25 distinct file names.

270 Chapter 12

.atderr atderr - Use this macro to designate the standard error stream.

atdin std.in - Use thls macro to designate the standard input stream.

atdout atdout - Use this macro to designate the standard output stream.

FILE FILE - You declare a pointer to FILE to store the value returned on a
successful £open or freopen call. You then use this value as an argument to
various functions that manipulate the stream. You never have occasion to
declare a data object of typeF:rLE, however. The Standard C library provides
all such creatures. Treat the contents of a FILE data object as a black box.
Use the functions declared in <stdio. h> to manipulate its contents.

:fpoa_t tpoa_t - This is the type of the value returned by £9etpoa. It can
represent an arbitrary file-position indicator for any file. That means you
can copy the value and pass it as an argument on a function call, but you
can't perform arithmetic on it. Pass the value to feetpoa to reposition the
file at the point you memorized. Note that the older functions ftell and
faeek can perform much the same service, but they can also fail for certain
files (particularly large ones). Use fqetpoa and faetpoa wherever possible.

aize t aize_t-Seepage219.

cl-rerr ci-rerr - Use this function to clear the end-of-file and error indicators
on a stream. You need it only if you also use the functions feof or ferror.

£close fcloae - If you open a file by calling £open, you should probably dose
it by a later call to fcloae. A program that manipulates an arbitrary number
of files may otherwise exceed the maximum number of files that may be
simultaneously open. (See FOPEN_MAX above.) At program termination, the
Standard C library closes any files that are still open. That is the customary
way to close the three standard streams.

feof feof - Most functions that read a stream return a special value, such as
EOF, to indicate that the read encountered end-of-file. Should you miss this
opportunity to check, use the function eof. It reports the state of the
end-of-file indicator for a stream. A file-positioning request clears this
indicator if it apparently moves the file-position indicator away from
end-of-file. So too does a call to ci-r•rr.

ferror £error - A read or write to a stream can fail for any number of reasons.
The error indicator in a stream records all such failures. To check whether
an error has occurred, call £error. A call to clearerr or rewU>d clears this
indicator.

ffluah ffluah - You can ensure that a stream retains no buffered output by
calling ffluah for a stream. That may be important if you are writing
prompting messages to an output stream and reading responses from an
input stream. You want to ensure that the person interacting with the
program knows what sort of reply the program expects next. Call
££lush (NULL) to flush all output streams. That prepares a program for a
subsequent loss of control. (The program may be about to execute unde­
bugged code. Or it may have just invited the user to tum off the computer.)
The Standard C library flushes all output streams at program termination.

<Stdio. h> 271

tg• tc tgetc - You call this function to obtain the next character from an input
stream. (See page 253.) All functions that read a stream behave as if they
call fgetc to obtain each character. getc has the same specification as fgetc
but is far more likely to have a masking macro that dramatically improves
performance. As a rule, therefore, you should use g•tc instead of tgetc.

fgetpoa fgetpoa - Use this function to memorize a position in a file to which
you want to later return. It returns a value of type fpo•_t, described above.

tg•t• fget• - Use this function to read lines of text from a stream. It stops
reading after it reads and stores a newline or when the buffer you specify
is full. After any successful read, the contents of the buffer are null-termi­
nated. Do not use the function geta in place of this function.

fopen £open - This is the function you use to open a file. 1 discuss it a t length
starting on page 252. Use freop.n to redirect a standard stream.

fprintf fprintt-This is the formatted output function that writes to the output
stream you specify. See the description starting on page 257.

fputc fputc - You call this function to write a character to an output stream.
(See page 254.) All other functions that write to a stream behave as if they
call fputc to deliver each character. putc has the same specification as fputc
but is far more likely to have a masking macro that dramatically improves
performance. As a rule, therefore, you should use putc instead of fputc.

fputa fput• - Use this function to write characters from a null-terminated
string to a stream. Unlike puta, fputa does not append a newline to what­
ever it writes. That makes it more useful for assembling lines of text or for
writing binary data.

tread tread - Use this function to read binary data into an array data object
or to read up to a fixed number of characters from any stream. If the aize
(second) argument is greater than one, you cannot determine whether the
function also read up to dze - 1 additional characters beyond what it
reports. As a rule, you are better off calling the function as tread(buf, 1.
aize • n, •tream) instead of fread(buf, •ize, n, •tream).

£reopen £reopen- You use fr.open only to recycle a stream that is already open.
It may be convenient, for example, to redirect atdin or •tdout to a different
file under some circumstances. Most of the time, however, you will find
that £open is the function to use.

t •cant f acanf - This is the formatted input function that reads from the input
stream you specify. See the description starting on page 263.

taeek faeek - Use this function to modify the file-position indicator for a
stream. You can memorize a position in a file by executing offset •
ftell(atream) . Return to that position later by executing taeek(atr•am,
offset, SEU.... CUR). h••k is more useful with a binary stream. In that case,
the offaet (second) argument is a long byte displacement within. the file.
The mode (third) argument must have one of the values SEl!Jt_CUR, s:EEJt_mm,
or SEBJt_ SBT, described above.

272 Chapter 12

fmetpoa fa•tpoa - Use this function to modify the file-position indicator for a

stream. Its position (second) argument must point to a data object of type
fpoa_ t set on an earlier call to fgetpoa for the same open stream. See the
discussion of fpoa_ t above.

ftell ftell - Use this function to memorize a position in a file to which you
may want to later return. It returns a value of type long, suitable for use on
a later call to £seek.

fwri te twri te - Use this function to write binary data from an array data object
or to write a fixed number of characters to any stream. If the aize (second)
argument is greater than one, you cannot determine whether the function
writes up to size - i additional characters before a write error. Write errors
are generally rare, so this is not a major shortcoming.

getc getc - Use this function instead of fgetc. See fgetc, above.

getcher getchar - This is a convenient shorthand for getc (stdinl. Both calls
typically generate equivalent code.

gets gets - Avoid using this function. You have no way to limit the number
of characters it reads. Use £gets instead.

pe:i-ror perror - Use this function lo write a one-line error message to the
standard error stream. The message describes the current error code stored
in errno. (See Chapter 3: <err.no.h>.) If you want more control over how the
error message appears, call strerror, declared in <atring .h>, instead.

print£ print£ - This is the formatted output function that writes to the stand·
ard output stream. It is the most widely used of the print functions. See
tprintt, above.

putc putc - Use this function instead of fputc. (See fputc.)

putchar putchar-putcher (ch) is a convenient shorthand for putc (ch, atdoutl.

Both calls typically generate 'equivalent code.

puts puts - Use this function to write characters from a null-terminated
string to a stream. The function appends a newline to whatever it writes.
Use £puts if you don't want the newline appended.

remove remove - This function removes a file from the file system. A subsequent
topen call with the same file name should fail to find an existing file. It is
good manners to remove any files you create with names generated by
tmpnam.

rename rename - This function renames a file. A subsequent fopen caJI should
fail to find an existing file with the old file name and succeed with the new
one. You can sometimes make a temporary file permanent simply by
renaming it. Note, however, that renue is not obliged to copy the contents
of a file to effect a renaming. Always check the function return value to see
if the operation succeeds.

rewind rewind - Unlike the other file-positioning functions, rewind dears the
error indicator for a stream. It also reports no failures. You should use
faeek(atream, 0, SBEll:_S2T) and cl-rerr(atream) as needed instead.

<Stdio.h> 273

acanf acanf - This is the formatted input function that reads from the stand-
ard input stream. It is the most widely used of the scan functions.

setbut aetbuf - Use setvbuf instead of this function to get more control.

eetvbuf Htvbuf - As a rule, it is best to let the Standard C library decide how
to buffer input/ output for you. If you are certain that you want no buffering
or line-at-a-time buffering, then use this function to initialize the stream
properly. Call setvbut immediately after you open the stream. Almost any
operation on the stream will preempt your right to choose a buffering
strategy. Should you specify your own buffer with this call, don't assume
that the stream will actually use it. And never alter the contents of the buffer
while the stream is open. The mode (third) argument must have one of the
values _ IOPBP, _IOLBP, or _ IONBF, described above. Also see the macro
BUPSIZ, described above.

eprintf sprint£ - This is the formatted output function that writes a null-ter-
minated string to the buffer you specify. It is the only way you can convert
encoded values to text without writing to a stream. Note that you cannot
directly specify the maximum number of characters that aprintf stores. Be
wary of conversions that can generate enough characters to store beyond
the end of the buffer. See fprintf, above.

sscanf secant - This is the formatted input function that reads a null-termi-
nated string from the buffer you specify. You can use it to scan the same
sequence of characters with several different formats, until you find a scan
that succeeds.

tmpfile tm,pfile- Use tJnpfile instead of tm,pnam wherever possible. Th'e former
opens the file for you and arranges to have it closed and removed on
program termination. The latter requires you to assume more of these
responsibilities.

tmpnam t111Pnam - Use this function to obtain one or more temporary file names
only if t111pfile doesn't meet your needs. You may want to open the file in
a mode other than •wb+ ", for example. You may have to open and close the
same file repeatedly. Or you may want to rename the file before program
termination. See the macro TMP _MAX, described above.

ungetc ungetc - Use this function in conjunction with the read functions only.
The interaction of ungetc with the file-positioning functions is delicate. You
can push back a different character than the last one read. You can even
push back a character at beginning-of-file. But you cannot portably push
back more than one character between calls to read functions.

vfprintf vfprintf - Use this function to build special versions of fprintf, as
described on page 258.

VPrintf VPrintf - Use this function to build special versions of printf, as
described on page 258.

veprintf vsprintf - Use this function to build special versions of sprintf, as
described on page 258.

274 Chapter 12

Implementing <stdio. h>
Two design decisions are critical to the implementation of <atdio.h>:

• the contents of the PILE data structure
• the low-level primitives that interact with the operating system to per-

form the actual input/output
I begin by discussing these two topics in detail. You can then appreciate
how the low-level 1/0 functions work. I save the formatted input and
output functions for last.

header Figure 12.2 shows the file atdio.h. By now you should be familiar with
utdio . h> the use of the internal header <yvala .h> to supply implementation-depend­

ent parameters. Here are the parameters defined in <yvala.h> that affect
utdio.h>, with some reasonable values for them:
#define _NULL (void •Jo t • value for NULL • /
l define _ PNJ\MAX 64 /• value for FILBNl\MJ!_MAX •/
ldefine _ FOPMAX 32 ,. value for FOPEN_MAX • ,

#define _ TNAMAX 16 /• value for L_tmpnam • /
type The file stdio. h contains a few other mysteries which shall become dear
PILB in time. For now, I concentrate on the type definition PILE. Its members are:

•Mode - a set of status bits for the stream, defined below
• _Handle - the handle, or file descriptor, returned by the operating

system for the opened file
• _Buf - a pointer to the start of the stream buffer, or a null pointer if no

buffer has been allocated
• _Bend - a pointer to the first character beyond the end of the buffer,

undefined if _Buf is a null pointer
• _Next - a pointer to the next character to read or write, never a null pointer
• _Rend- a pointer to the first character beyond the end of data to be read,

never a null pointer
• _Raave - holds _Rend if characters have been pushed back
• _wend - a pointer to the first character beyond the end of where data can

be written, never a null pointer
• _Back - a stack of pushed-back characters
• _Cbuf - a one-character buffer to use when no other buffer is available
• _Nback - a count of the number of pushed-back characters
• _'l'!l\pnam- a pointer to the name of a temporary file to be removed when

the file is closed, or a null pointer
getc The design of the PILE data structure is driven by the needs of the macros
putc getc and putc (and their companions getcbar and putcbar). Each of these

expands to a conditional expression that either accesses the stream buffer
directly or calls the underlying function. The predicate (test expression)
part of the conditional expression must be simple and always safe to execute.
Thus, atr->_Next < atr->_Rend is always true if characters that can be read
are in the buffer for the stream pointed at by atr. And atr->_Next <

<11tdio.h> 275

•tr-> _Wend is always true if space is available in the buffer to write charac­
ters to the stream. An expression such as atr-> _wend = atr-> _Bu£, for
example, disallows writes to the buffer from these macros.

The functions that you call to read and write streams make more exten­
sive tests. A read function, for example, distinguishes a variety of condi­
tions such as: characters are available, buffer currently exhausted, end-of­
file encountered, buffer not yet allocated, reading currently disallowed,
and reading never allowed. The functions rely heavily on the various
indicators in the member_ Mode to make those distinctions.

headet" Only functions within the Standard C library need be privy to the
"xatclio.b" meaning of these indicators. For that reason, and others, I created the

internal header "xatdio.h". All the functions described in this chapter
include "xatdio.h". It defines macros for the stream-mode indicators. It
includes <•tclio. h> and declares all the internal functions used to imple­
ment the capabilities of <•tdi.o. h>. It also defines a number of macros and
types of interest only to the formatted input and output functions.

mode Unlike <•tdio. h>, the header "xatclio. h" contains too many dis tractions
indicators to present at this point. I show you what goes into it as the need arises, then

show you the whole file on page 322. Here, for example, are the macros
names for the various inddators in the member_ Mode. Each is defined as a
value with a different bit set, as in Oxl, Ox2, Ox4, Oxe, and so on. The actual
values are unimportant, so I omit them here:

• _ MOPENR - set if file is open for reading
• _ MOPENW - set if file is open for writing
• _MOPENA - set if all writes append to end of file
• _ MTRUNC - set if existing file was truncated on open (not used after open)
• _ MCREAT - set if a new file can be created on open (not used after open)
• _ MBIN - set if stream is binary, not set if stream is interpreted as text
• _ MALBUF - set if the buffer must be freed on close
• _MAI.FIL-set if the FILE data object must be freed on close
• _ME.OF - the end-of-file indicator
• _ MERR - the error indicator
• _ MLBF - set if line buffering in effect
• _ MNBF - set if no buffering should occur
• _MREAD - set if a read has occurred since last file-positioning operation
• _ MWRITE-set if a write has occurred since last file-positioning operation
These macros have private names - beginning with an underscore and an
uppercase letter - even though they don't have to. As I developed. the
library, I found myself moving them in and out of <atdi.o. h>. Some version
of the macros visible to user programs used these macro names, later
versions did not. In the end, I left the names in this form as insurance. You
may find occasion to introduce macros that manipulate the indicators in
the member _Mode.

276

Figure 12.2:
atdio.h

Part 1

/* stdio.h standard header */
#ifndef _STDIO
#define _STDIO
#ifndef _YVALS
#include <yval•.h>
#endif

/* macro• */
#define NULL _NULL
#define _IOFBF 0
#define _IOI.BF 1
#define _IONBF 2
#define BUFSIZ 512
#define EOF -1
#define FILENAME IQX _ FNAMAX
#define FOP£N MAX FOPMAX
#define L _ tmpnam TNAMAX
#define TMP _MAX 32
#define SEE!C SET 0
#define SEE!C _CUR 1
#define SEE!C_ENO 2
#define •tdin
#define stdout
#define stderr

/* type
#ifndef _SIZET
#define SIZET

_Filea(O]
Filea(l]

=Filea(2J
definitiOIUI */

t)'p8def Bizet •ize_t;
#endif -
typedef •truct

Chapter 12

un•iqned long _Off; /* •y•tmn dependant •/
} rpo._t;

typedef •truct (
un•iqned •hort _Mode;
•hort _Handle;
un•iqned char * _Buf, *_Bend, * Next;
unsigned char *_bnd, •_Raave, *_Wend;
unsiqned char _Back(2J, _Cbuf, _Nback;
char * _ Tmpnam;
} FILE;

/* declarations */
void clearerr(FILE *);
int fclose (FILE *);
int feof(FILE *);
int ferror(FILE *);
int ffluah(FILE *);
int fgetc(FILE *) ;
int fqetpo• (FILE *, fpo• _ t *) ;
char *fqet•(char *, int, FILE*);
FILE *fopen(conat char*, con•t char*);
int fprintf(FILE *, const char*, ...);
int fputc (int, FILE *);
int fputa (const char *, FILE *) ;
•ize_t fread(void *, aize_t, •ize_t, FILE *) ;
FILE *freopen(const char*, conat char*• FILE*) ;
int f•canf (FILE *, conat char *, ...) ;

<stdio.h>

Continuing
stdio.h

Part2

int fseek(FILE *, long, int);
int fsetpos (FILE *, const fpos t *) ;
long ~ell(FILE *); -
aize_t fwrite(const void•, aize_t, aize_t, FILE*);
int getc(FILE *);
int getchar (void) ;
char *gets(char *);
void perror(const char*);
int printf(const char*, ...);
int putc(int, FILE*);
int putchar (int) ;
int puts(const char *);
int remove(const char *);
int rename (const char *, const char *);
void rewind(FILE *);
int scanf(const char*, ...);
void setbuf(FILE *, char*);
int setvbuf(FILE *, char*, int, size_t);
int sprintf(char •, const char•, ...);
int ascanf (const char *, conat char *, ...) ;
FILE *tmpfile (void) ;
char •tmpnam(char *);
int ungetc(int, FILE*);
int vfprintf (FILE *, const char *, char *) ;
int vprintf(const char *, char *);
int vsprintf(char *, const char*, char*);
long _Fgpos(FILE •, fpos_t *);
int _Fspos(FILE *, const fpos_t *• long, int);
extern FILE * Fil es[FOPEN MAX);

/* ma;;-ro override;- *I
#define fgetpos(str, ptr) (int)_Fgpos(str, ptr)
#define fseek(str, off, way) _Fspos(str, _NULL, off, way)
#define fsetpos(str, ptr) Fspos(str, ptr, OL, 0)
#define ftell (str) Fgpos (str, NULL)
#define gate (str) ((str) ->_ Next < (atr) ->_Rend \

? *(str)-> Next++ : (gate) (str))
#define getch&r() (_Files[OJ->_ Next < Files[OJ - > Rend \

? *_Files[OJ->_Next++ : (qetchar) ())
#define putc(c, atr) ((str)-> Next< (str)-> Wend\

? (* (str) -> Next++ = c) : (putc) (c, str)) -
#define putchar(c) (Files[l)-> Next < Files[l)-> Wend\

? (*_Files[l)->_N;.xt++ = c)-; (putc:h;.r) (c)) -

277

#endif o

The indicators are actually the union of two sets. One is the set of
indicators that determines how to open a file. The other is the set of
indicators that helps record the state of the stream. Since the two sets
partially overlap, I chose to keep them all in one "space" of bit encodings.
A tidier implementation might well choose to separate the two uses. You
might also want to define two sets of values if you are starved for bits in
_Mode. In either case, you must add code to translate between the two
representations.

278 Chapter 12
function The best way to see how the library uses a FILE data object is to track

fopen one through its lifetime. Figure 12.3 shows the file fop9n .c. lt defines the
function fopen that you call to open a file by name. That function first looks
for an idle entry in the static array of FILE pointers called _FilH. lt contains
FOPEN_MAX elements. If all of these point to FILE data objects for open files,
all subsequent open requests fail.

data object Fi.gure 12.4 shows the file xfilea.c that defines the _Files data object.
_files It defines static instances of FJ:LE data objects for the three standard streams.

Each is initialized to be open with appropriate parameters. I have wired in
the handles 0 for standard input, 1 for standard output, and 2 for standard
error. This is a widely used convention, inherited from UNIX. You may
have to alter or map these values or map.

Elements beyond the first three in _Files are initialized to null pointers.
Should fopen discover one of these, the function allocates a FILE data object
and marks it to be freed on close. fopen discovers a dosed standard stream
by observing a non-null element of _Files that points at a FILE data object
whose member _Mode is zero.

function fopen calls on the internal function _Foprep to complete the process of
freopen opening a file. Figure 12.5 shows the file freopen. c. The function fraopen

also calls this internal function. Note how it records the state of the indicator
_MALFIL until after fcloae has closed the file currently associated with the
stream. The one operation that freopen does not want fcloae to perform is
to free the FILE data object.

function You may as well see fclo•• too, at this point. Figure 12.xx shows the file
fclo- fclo-.c. It undoes the work of the file-opening functions in a fairly

obvious fashion. The one bit of magic is where it calls the function _Fcloae
to close the file associated with the stream.

function Figure 12.7 shows the file >Cfoprep.c that defin es the function _Fopr.p.
_Foprep It parses the moda (second) argument to fopen or freopen, at least as much

as it can understand, and initializes members of the FILE data object
accordingly. In the end, however, it must call on some outside agency to
finish the job of opening the file. _Foprep passes on the file name, the
encoded indicators, and whatever is left of moda to a function called _Fopen.
I describe _Fopen very shortly.

primitives _Fcloaeand _Fopen are the first of several low-level primitives that stand
between <atdio.h> and the outside world. Each must perform a stand­
ardized function for the Standard C library. Each must also be reasonably
easy to tailor for the divergent needs of different operating systems. This
implementation has nine functions in <atdio.h> that must be tailored to
each operating system. Three are standard functions:
• remove - Remove a named file.
• rename - Change the name of a file.
• tmpnam - Construct a reasonable name for a temporary file.

<11tdio.h>

Figure 12.3:
fopen.c

Figure 12.4:
xfi1ea . c

/* fopen function */
#include <stdlib.h>
#include "xatdio.h"

279

FILE *(fopen) (const char •name, conet char *mods)

(/* open a file */
FILE *etr;
aize_t i;

for (i = O; i < FOPEN MAX; ++i)
if (_Filea [i) = iiuu.)

(/* setup eapty _Files [i) */
str = malloc(s izeof (FILE)) ;
if (str = NULL)

return (NULL) ;
Files[i] = str;

;tr->_Mode _MALFIL;
break;
)

else if (Files[i} -> Mode ~ 0)
{ - - /* setup preallocated _Files(i] */
str = _Files [i] ;
break;
)

if (FOPEN MAX <= i)
retu,;;- (NULL) ;

return (_Foprep(name, mod.a, str));

/* _Files data object */
#include "xatdio.h"

/* standard error buffer *I
static unsigned char ebuf[BO];

/* the standard streams *I
static FILE sin s {

_MOPENR, 0,
NULL, NULL, 5sin. Cbut:,
5sin._Cbuf, NULL,-5sin._Cbuf,);

static FILE sout = {
_MOPENW, 1,
NULL, NULL, 5sout._Cbuf,
5sout ._Cbuf, NULL, 5sout._Cbuf,);

static FILE serr = (
_MOPENWl_MNBF, 2,
abut:, ebuf + sizeof (ebuf), ebuf,
ebuf, NULL, abu£, } ;

I* the array of s tream pointers */

0

/* standard input */

/* standard output *I

/* standard error */

FILE *_Files(FOPEN_MAX] = {5sin, 5sout, 5serr); 0

280

Figure 12.5:
freopen.c

I* freopen function •/
#include <std.lib.h>
#include "xstdio. h"

Chapter 12

FILE * (freopen) (conat char •name, conat char *lllOda, FILE •atr)
{ /* reopen a file */
unaigned abort mode • atr- >_Mode • _ MAI.FIL;

atr->_Mode 5• -_MIU.FIL;
fclo- (atr);
atr->_Mc><W •mode ;
return (_Foprep(ruuM, lllOda, str));

Figure 12.6: /• fcloae function */
fcloae. 0 #include <std.lib. h>

#include "xatdio. h"
#inc l ude "yfuna .h"

int (fcloae)(FILE *•tr)
(
int stat • ffluah(atr);

if (atr->_Mode 5 _MALBOF)
free(atr->_Buf);

atr->_Buf • NULL;

if (0 <= atr- >_Handle U _FcloM(atr))
atat • EOF;

if (atr->_Tmpnam)
{

if (remove (atr-> Tiapnam))
atat • EOF; -

fr .. (atr->_Tmpnam);
atr - >_Tmpnam = NULL;
)

•tr->_Mode • O;
atr- >_Next • 5atr->_Cbuf;
atr- >_Rend • 5str->_Cbuf;
atr->_Wend • 5atr->_Cbuf;
atr- > Nbaclt = O;

0

/* cloae a atream */

/* remove temp f ile • /

if (etr-> Mode 5 _MAI.FIL)
{ - /* find _Files [i] entry and free */
size_t i;

for (i - 0 ; i < FOPEN MAX; ++i)
if (Filea[i] =- ;tr)

T
_Files[i) • NULL;
break;
)

free(atr);
)

return (•tat);

I* found entry */

0

<stdio.h>

Figure 12.7:
xfoprep.c

/* _Foprap function */
#include 11xatdio. h "

/* open a stream */
FILE *_Foprep(const char *n.._, const char *mods,

FILB *str)

281

(/* make str safe for fclose, ma.cros */
str -> _Handle = -1;
str ->_Tmpnam =NULL;
str->_Buf =NULL;
str->_Next = •str->_Cbuf;
str->_Rend = •str->_Cbuf;
str ->_W.nd 2 'str->_Cbuf;
str->_Nback = O;
str->_Mode = (str->_Mode • MAI.FIL)

I (*mods== 'r' ? _MOPICNR
*mods 'w' ? _MCREATl_MOPENWl_MTRUNC
*mods = 'a' ? _MCREAT)_MOPENWl_MOPENA
0);

if ((str->_ Mode • (_MOPICNR)_MOPENW)) = 0)

(
fclose (str) ;
return (NULL) ;
}

while (*++mods= 'b' 11 I *mods = '+' l
if (*mods = 'b')

if (str->_Mode • _MBIN)
break;

else
str->_Mode 1= _MBIN;

else
if ((str ->_ Mode • (_MOPICNRJ_MOPENW))

= (_MOPENRJ_MOPENW))
break;

else
str->_Mode J= _MOPENRJ_MOPENW;

str->_Handle = _Fopen (n.._, str->_Mode, mods);
if (str->_Handle < 0)

/* bad mods */

(/* open failed *I
fclose(str);

return (NULL) ;
}

return (str) ;
D

Each of these functions is small and very dependent on the peculiarities of
the underlying operating system. It is not worth writing any of them in
terms of lower-level primitives. You can often find versions in an existing
C library that do the job nicely.

header Three of the primitives are macros defined in the internal header
"yfuns.h" "yfuns.h". I mentioned this header on page 54. It defines macros and

declares functions needed only within the Standard C library to interface

282 Chapter 12

to the outside world. Only certain functions written for this implementa­
tion need include "yfuns.h". (The internal header <yvals.h>, by contrast,
must be included in several standard headers.) The three macros look like
internal functions with the declarations:
int Fclose(FILE •str);
int -Fread(FILE •atr, char *buf, int size);
int ::::Fvrite(FILE •str, const char *buf, int size);

Their semantics are:

_Fcloae s _Fcl.ose - Close the file associated with str. Return zero if successful.
Fread • _Fraad - Read up to size characters into the buffer starting at buf from

the file associated with str. Return the number successfully read, or zero

if at end-of-file, or a negative error code if a read error occurs.
_Fvrite • _Fwrita - Write size characters from the buffer starting a t buf to the

file associated with str. Return the number of characters actually writ­
ten or a negative error code if a write error occurs.

Many operating systems support functions that have declarations very
similar to these. You can often find existing functions that the macro
expansions can call directly.

The last three primitives are internal functions. One function is declared
in "xatdio. h". Two are used in masking macros, and hence are declared in
<stdio.h>. Their declarations are:
short Fopen(conat char *name, unsi gned short mode,

c::o~t char •mods) ;
lonq Fqpoa(FILE •atr, fpoa t *fpoa);
int _Fspos(FILE •atr, const-fpoa_t *fpoa, l.onq offset, int way);

Their semantics are:

_Fopen • _Fopan - Open the file with name name and mode mode (possibly using
the string mods as well). Return a non-negative handle if successful.

_Fqpos • _Fqpos - If fpos is not a null pointer, store the file-position indicator at
fpos and return zero. Otherwise, encode the file-position indicator as a

long and return its value. Return the value EOF if not successful.
_Fspos • _Fspos - If way has the value SEEK_SET, set the file-position indicator

from either fpos or offset. Of fpoa is not a null pointer, use the value
stored in fpoa. Otherwise, decode offset to determine the file-position
indicator.) If way has the value SEEK_CUR, add offset to the file-position
indicator. Otherwise, way must have the value SEEK_END. Set the file-po­
sition indicator to just beyond the last character in the file, plus offset.

If successful, return zero and clear _ME.OF, _MREAD, and _MWRITE. Other­
wise, return the value EOF.

You are less likely to find existing functions that you can commandeer to
implement part or all of these three functions. Each involves data repre­
sentations that are probably peculiar to this implementation.

Appendix A: Interfaces discusses these and other interface primitives.
It describes how you can use this library in conjunction with several

<atdio.h>

Figure 12.8:
ramove.c

Figure 12.9:
rename.c

/* %9D>C>Ve function -- UNIX version */
#include "xstdio.h"

/* UNIX syst- calll */
int _onlink (const char*);

283

int (remove) (const char *fname)
(/* remove a file */
return (_Unlinlt(fname)) ;

/* rename function -- UNIX version */
#include "xstdio.h"

/* UNIX system calla */
int _Link(const char*, const char*);
int _Unlink(const char *);

int (rename) (const char *old, const char *new)

D

(/* rename a file */
return (_Link(old, nev) ? -1 : _Unlink(old));

D

popular operating systems. !For completeness, I show primitives for one
environment in this chapter. Please remember, however, that these repre­
sent but one of many possibilities.

UNIX For simplicity, I sketch here primitives that interface to many versions of
primitives the UNIX operating system. That is often the easiest system to use as a host

for the Standard C libraiy. Even though the C language has moved to many
other environments, much of the library design was shaped by the needs
and capabilities of UNIX. The files I show are only sketches because they
often can be augmented to advantage.

In all cases, I assume the existence of C-callable functions that perform
UNIX system calls without violating the name-space restrictions of Stand­
ard C. I take the conventional UNIX name, make the first letter uppercase
and prepend an underscore. Thus, unlink becomes _unlink. You may have
to write these functions in assembly language if your UNIX system sup­
plies no adequate substitutes.

function For example, Figure 12.8 shows the file remove. c that defines the func-
remove tion remove. This version simply invokes the UNIX system call _Onlinlt. A

more careful version would verify that a program with super-user permis­
sions is not doing something rash.

function Figure 12.9 shows the file rename. c. It defines a simple version of rename
rename that simply manipulates links to the file. That typically works only if both

the new and old file names are within the same filesystem (on the same
logical clisk partition). Amore agressive version might choose to copy a file
when the link system service fails.

284

function
tmpnam

Figure 12. 10:
tmpnam.c

Figure 12. 11:
xfopen.c

Chapter 12

Figure 12.10 shows the file tnpnam. c. It defines a simple version of tmpnaa
that concocts a temporary file name in the directory /tmp, the customary
place for parking temporary files. It encodes the current process-id to make
a family of names that should be unique to each thread of control.

I* tmpnam function -- UNIX version */
#include <strin9.h>
#include ''xatdio.h 0

/* UNIX ayst- cal.l */
int _ Getpid (void) ;

char * (tmpnam) (char *•)
I
inti;
char *p;
unsigned short t;
static char buf [L tmpnam) ;
static unaiqned abort seed "' 0;

if (s ==NULL)
• = buf;

seed = seed - 0 ? Getpid ()
strcpy (a, "/tmp/t");
i = 5 ;
p = a + atrlen(a) + i ;
*p :z , \0';

seed+ 1 ;

for (t • seed; 0 <• --i ; t >>= 3)
*- -p - '0' + (t ' 07);

return (•) ;

/* Fopen functi on - - UNIX version */
#in~lude "xatdio.h0

/* UNIX ayat- cal.l */
int _Open(conat char*, int, int) ;

int Fopen(const char *path, unsigned int smode,
;;-onst cha.r *mod.a)

D

{ /* open fr0111 a file */
unsigned int a ce;

ace = (smode ' (_ MOPENRl_MOPENW))
: amode ' _ MOPENW ? 1 : O;

if (amode ' _MOPENA)
ace I• Ol.0;

if (amode ' MTRONC)
ace I• o2000;

if (amode ' _ MCllEAT)
ace I= 01000;

return (_Open(path, a ce, 0666)) ;

(_ MOPICNRl_ MOPENW) ? 2

/* O_APPEND */

/* O_TRUNC */

/* O_CREAT */

0

<stdio.h>

Figure 12. 12:
xfgpoa . c

/* _Fqpoa fwlc:tion - - UNIX version */
linclude <e=no.h>
linclude "xstdio. h~

/* UNIX ayatem c&l.l */
long _Laeelt(int 1 long, int) ;

long _Fqpoa(FILE *•tr, fpoa_t *ptr)

285

{ /* get file position */
long loft: = _L•-k(atr->_Handl.e, OL, l) ;

if (loft: """ - 1)
{
•rrno • EFPOS;
return (EOF) ;
}

if (atr->_Mode 5 _ lo911UTE)

loff +- atr->_Next - atr- >_Buf;
elae if (atr-> Mode 5 MJU:AD)

loff - • atr->_Nback

/ * query failed */

? at r - >_Raave - atr->_Next + atr->_Nback
: atr- >_Rend - str- >_Next;

if (ptr = NULL)
return (loft:) ;

e lse
{

pt r->_Off • loft:;
return (0);

/* ftell •/

/* fgetpoa •/

a

function Figure 12.11 shows the file xfopen. c that defines the function _Fopen. It

_Fopen maps the codes I chose for the mode indicators to the codes used by the
UNIX system service that opens a file. A proper version of this program
should not include all these magic numbers. Rather, it should include the
appropriate header that UNIX provides to define the relevant parameters.

UNIX makes no distinction between binary and text files. Other operat­
ing systems may have to worry about such distinctions at the time the
program opens a file. Similarly, UNIX has no use for any additional mode
information. (_Fopen could insist that the mode argument be an empty
string here. This version is not so particular.)

function Figure 1212 shows the file xfqpoa . c that defines the function _Fqpoa. It
_ Fqpo• asks the system to deliver the file-position indicator for the file, then

corrects for any data buffered on behalf of the stream. A file-position
indicator under UNIX can be represented in a long. Hence, type fpoa_t,

defined in <atdio. h>, is a structure that contains only one long member. (I
could have defined fpos_t as type long directly, but I wanted to keep the
type as restrictive as possible.) In this case, the functions fgetpoa and
fsetpo• offer no advantage over the older file-positioning functions. The
difference can be important for other systems, however.

286

Figure 12. 13:
xf•poa.c

/* Fapoa function -- ONI:X veraion */
lin~ude <errno . h>
linclude "xatdio.h"

I* UNIX ey.t.a1 cal.l */
long _L-lt(int, long, in.t);

Chapter 12

int _Fspoa(FILIE •atr, conat fpos_t *ptr, long loff, int way)
(/* poaition a t"ile */
it" (ffluah(atr))

(/* write error */
errno • EFPOS;
return (EOF) ;

if (ptr)
lot"f - ((fpo•_t *)ptr)->_Ot"t";

it" (way = SEEJ< CtJR 55 atr-> Mode 5 MREAD)
lot"f -• atr:»_Nbaclt - -

? atr-> ~ave - atr-> Next + atr ->_Nbaclt
: atr->-Rend - str - > Next;

it" (way - sEEJ<:CtJR 55 lot"f !2 0
11 way !• SEEIC SET 11 lot"f != - 1)
loff • La .. Jt(Str-> Bandle, lot"f, way) ;

if (loff - - -1) -

/* faetpo• * /

(/* raqu .. t failed * /
errno • DPOS;
return (EOF) ;

else
(

if (atr->_Mode 5 (_MREADl_MNRITE))
(

atr->_Next • str->_Buf;
atr->_Rend • str->_Buf;
atr->_Wend • str-> Buf;
atr->_Nback • 0;
)

atr->_Mode 5 • -(_MEOFl_HREADl_MNIUTE);
return (0) ;

/* aucceaa • /

/* eq>ty buffer •/

0

_Fgpos is simpler under UNIX in another way. No mapping occurs
between the internal and external forms of text streams. Hence, the rorrec­
tion for characters in internal buffers is simple. Consider, by comparison,
a system that maps text streams. Say it tenninates each text line with a
carriage return plus line feed instead of just a line feed. That means that
Fread must discard certain carriage returns and Fwrit• must insert them.
It also means that _Fgpoa must correct for any alterations when it corrects
the file-position indicator. The problem is manageable, but it leads to messy
logic that I choose not to show at this point.

<Btdio . b>

Figure 12.14:
tq>file. c

fO,lre 12.15:
clea rerr.c

/* tmpfile function • /
#incl ude <etdlib.h>
#include <etring.h>
#include ">Ultdio. h "

FILE * (t~file)(void)

287

(/ * open a temporary fil e • /

FI LE •etr1
cha r fn[L..tmpnam], •e;

if ((etr • fopenC(conat char •)t~am(fn}, •wb+"}I • • NULL)

alee if ((e • (char •)mall oc(eizeof (fn} + 1)) •• NULL)
fclo ee(etr), etr • NULL;

alee
etr->_Tn\pnam • etrcpy(e. fn);

return (etr) 1
)

1• clea rerr function • /
#include • xetdio.h"

void (cl earerr)(FILE • etr)

0

(/* c lear BOF and error indicator• for a e tream •/

if (etr->J!ode " (_MOPBNRl_MOPBNW))
etr- >J(ode ... -(_MEOFIJIERR)1

0

fwlc:tlon Figure 12.13 shows the file xfepoe.c that defines the function J epoe. It
_ Fepoe too benefits from the simple UNIX 1/0 m<Xiel in the same ways as _Pgpoe.

Output causes no problems, since the function flushes any unwritten
characters before it alters the file-position indicator.

The remaining three primitives are macros. All expand to calls on func­
tions that perform UNIX system services directly. The UNIX version of
•yfuns.h• contains the lines:
#define _ Fcloee (etr) _Cl oee((str)->_ Handle)
#define _ Pread(etr, buf, cnt) _Read((etr) ->_ Handle, buf, cnt)
#define _PWrite(etr, buf, cnt) _Writel(etr)->_ Handle, buf, cnt)

int _ Cloee(int)1
int _ Read(int, uneigned char • , int);
int _ write(int, conat unsigned char •, int)1

tinpfile Now that you have seen the 1/0 primitives, most of the low-level
clearerr functions declared in <etd i o . h> should make sense. Let's begin by looking

faof at the remaining functions that set up or administer streams without
terror performing input or output. Figure 12.14 shows the file tmpfile .c. Function

tmpfile is a simple application of the functions you have already met.
Figure 12.15 (clearerr.c), Figure 12.16 (feot.c), and Figure 12.17 (ter­

ror. c) are even simpler. The only reason the functions defined in these files
lack masking macros in <etdio.h> is because they are used so seldom.

288

Figure 12. 16:
feof.c

Figure 12.17:
ferror.c

Figure 12.18:
aetbuf.c

file
positioning

functions

function

/ * feof function */
#include "x.tdio. b"

int (feof) (FILE *.tr)

Chapter 12

(/* teat end-of-file indicator for a stream */
return (str->_Mode '_MEOF);

/* ferror function */
#incl ude "xatdio.b"

int (ferror) (FILE *atr)

0

(/* teat error indicator for a stream */
return (.tr->_Mode' _MEAA);

/* setl:ruf function */
#incl ude "x.tdio.b"

void (aetbuf) (FILE *etr, char *buf)

a

(/* set up buffer for a str eam */
setvbuf(.tr, buf, buf? _ IOFBF _ IONBF, BUFSIZ);
) 0

Figure 12.18 shows the file setl:ruf. c. It consists simply of a call to
setvbuf. Figure 12.19 shows the file setvbuf. c. Most of its work consists of
laundering its arguments. Note that setvbuf will honor requests any time
the stream is has nothing buffered. It is not obliged to succeed, however,
after any reads or writes have occurred.

The file-positioning functions are also trivial, given the primitive fuoc­
tions _ Fqpo• and _Fepoe. Figure 12.20 through Figure 12.24 show the files
f gatpos. c, fs-lt. c, featpoe. c, f t e ll . c, and rewind. c. I chose to provide
masking macros for a ll but rewind in <stdio. h>.

Now consider the functions that read characters. Figure 12.25 shows the
file fgetc .c, which defines the prototypical input function fgetc . It first
looks for characters that have been pushed back by a call to ungatc. If none
exist, fgetc tests whether any characters are in the buffer. It attempts to
refill an empty buffer by calling_ Frprep. Should that function fail to deliver
any characters, fgatc returns EOF. Two functions are simple variations of
f getc. Figure 12.26 (gate. c) and Figure 12.27 (9atchar. c) both call fgetc.

One other function belongs in this group. Figure 12.28 shows the file
ungetc.c. You have seen the effect of the function ungetc on several other
functions. Here is the culprit in person. Considering all the work i t causes
for other functions, ungatc is itself remarkably simple. Notice how it alters
the FILE data object for the stream to encourage the macros qetc and
gatcbar to call the functions they normally mask. That gives the underlying
functions the opportunity to pop any characters pushed back.

<atdio . h >

FiglH 12.19:
aetvbuf . c

FlglA'e 12.20:
fqetpoa . c

Figure 12.21 :
f9eek.c

/* eetvbuf function */
linclude <limit•.h>
#include <stdlib. h>
linclude "xatdio.h "

int (eetvbuf) (FILE *11tr, char *lll>uf, int amode, lli&e_t 11i1:e)

289

{ /* ••t up buffer for a stream */
int mode;
un•iqned char *buf • (un•iqned char *)abut;

if (•tr->_Mode ' (_MREAOl_MWRITE))
return (- 1) ;

mode = lllDOde =• _XOFBF ? 0
: amode - _XOLBF ? _MLBF

: amode - _XONBF ? MNBF - 1 ;
if (mod• -- - 1)

return (- 1) ;

if C•ize =- 0)
but • '•tr - >_Cbuf, •ize = l ;

el•• if (INT_MAX < aize)
size XNT_MAX;

if (buf)

elee if ((but • malloc (size)) = NULL)

return (- 1) ;
el.-

mode I• MALBUF;

if (atr-> Mode ' io.LBOF)
f .r-c;tr->_Buf), etr->_Mode , . - _IO.LBOF;

str->_Hod• I• mode;
etr-> _Buf • but;
etr->_ Bend • but + • i ze;
etr- > Next • buf;
etr->::::Rend • but;
etr->_W.nd • but;
return (0);

/* fgetpo• function * /
linclude "xatdio .h"

int (fgetpo•) (FXLE *•tr , fpo•_t *p)

a

/ * qet file position indicator for stream */
return (_Fqpoa (atr, p));

/* feeak function *I
#include "xetdio.h"

int (fseek) (FILE *atr, long off, int amode)

a

{ /* .. t ••ek off••t for stream */
return (_Fapoa (atr, NULL, off, llDIOcS.)) ;

a

290

Figure 12.22:
faetpos.c

Figure 12.23:
ftell.c

Figure 12.2A:
rewind.c

Figure 12.25:
fqetc.c

Figure 12.26:
qetc.c

I* faetpoa function */
#include "xetclio.h"

Chapter 12

int (faetpos) (FILE •atr, conat fpoa t *p)
/* .. t t'il.e po;ition indicator for atream */

return (_Fspoa(atr, p, OL, SEEJC_SET)) ;

/* ftell function */
linclude "xetdio.h"

D

long (ftell) (FILE •etr)
(/* get •••k offset for stream */
return (_Fgpos(str, NULL)) ;

/* rewind function */
#include "xetdio. h"

void (rewind) (FILE •atr)
(
_Fspoa(str, NULL, OL, SEE!t_SET);
atr->_Mode ~- - _MEJIR;
}

/* fgatc function */
#include "xetdio. h "

D

/* rewind atream */

D

int (fgetc) (FILE *•tr}
{ /* get a character from atream *I
if (0 < etr->_Nbaclt)

{ /* del.iver puehed back char */
if (--etr->_Nbaclt - 0)

str->_Rend - str->_Raave;
return (atr-> Baclr.[atr-> Nbaclt]) ;
} - -

if (str->_Next < atr- >_Rend)

el•• if (_Frprep(atr) <• 0)
retuni (EOF);

return (*str->_Next++);

/* gate f'Ullction */
linclude "xstdio.h"

D

int (qetc)(FILE •atr)
(/• get a character from atream */
return (fgetc(atr)};

0

<stdio.h>

Figure 12.27:
qetchar.c

Figure 12.28:
unqetc .c

fread

fgete

gets

function
_Frprep

function
fputc

function
_Fwprep

/* getchar function •/
linc:lude "XAltdio.b"

291

int (getcbar) (v~d)
(/* get a character from std.in */

return (fgetc(etdin));

/* ungetc function */
#include "xetdio.b"

int (ungetc) (int c, FILE *etr)

0

(/* push character baclt on stre.,,. * /
if (c =- EOF

11 eizeof (etr-> _Back) <• etr-> _ Nbaclt

11 (etr-> _Mode ~ (_MOPENRl_MWRITE)) !• _MOPENR)

return (EOF);
etr-> Mode • etr-> Node ~ -_HSWF I _Hlll:AD;

if (str->_Nbaclt .,.-0)

(/• dis.i:>le buffering */
etr->_Raave E etr->_Rend;
etr-> Roind = etr-> Buf;
} - -

str->_Baclt[etr->_Nbaclttt] = c;
return ((uneigned cha.r) c);

0

Other functions have logic that parallels fgetc but avoids calling it in

the interest of speed. One is :tread, defined in Figure 12.29 (:fr-d. c). Two

others are in Figure 12.30 (fqete.c) and Figure 12.31 (gete.c). Compare

these two functions carefully. They are just different enough that 11either is

worth writing in terms of the other.

Fmally, Figure 12.32 shows the file xfrprep.c. It defines the function

_Frprep which does all the serious work of reading. The function returns a

negative value on a read error, zero at end-of-file, and a positive value if

the stream buffer now contains characters. Here is where the stream buffer

gets allocated and where_ Fr.ad actually gets called. All functions that read

a stream rely on _Frpr•p in the end.

Next consider the functions that write characters. Figure 12.33 shows the

file tputc.c, which defines the prototypical output function tputc. It first

looks to see if the stream buffer has room to write characters. If no space is

available, tputc attempts to set up an output buffer by calling _Pwprep.

Should that function fail to provide space, fputc returns thevalue1:0F. Once

it has added a character to the buffer, tputc tests whether to drain the buffer

before it returns. Two functions are simple variations of tputc. Figure 12.34

(putc.c) and Figure 12.35 (putcha.r.c) both caJI fputc.

Figure 12.36 shows the file xhprep.c. lt defines the function _Fwprep

which does all preparation for writing. The function returns a negative

292 Chcpter 12

Figure 12.29: /* fr-d function *I
f~ad.c linclude <etring. h>

linclude ">C8tdio.b"

aize_t (fread) (void *ptr, aize_t aize, aize_t nei-, FILE •etr)
{ /* read into array from stream */
size t ne • eize * neiem;
unai9'ned char •a • ptr;

if (na •• 0)
return (0);

if (0 < etr-> Nbac:k)
{ - /* deliver puahed back chara */
for (; O < na '' 0 < etr->_Nbaclt; --n•)

*•++ • atr->_Baclt(--etr->_Nbaclt];
if (etr- >_Nbaclt-== 0)

etr->_Rend • etr->_Raave;

whil• (0 < na)
{ /* ensure chars in buffer */
if (atr->_Next < atr->_Rend)

elae if (_Frprep(etr) <= 0)
br-k;

/* deliver •• lll&flY aa possible */
aize_t m • atr->_Rend - atr->_Next;

if (na < m)

• • n•;
--.:py(a, etr->_Next, m);
e +- m, ne -• a;
etr->_Next +- m;

}
}

return ((aiz• * nel- - na) I aize);
D

value on a write error or zero if the stieam buffer now contains space to
write characters. Here is where the stieam buffer gets allocated. All func­
tions that write a stream rely on _Fwprep in the end.

function Figure 12.37 shows the file ffluab. c. Here is where _Fwrit• actually gets
ffluah called to write the contents of a stieam buffer. U the argument is a null

pointer, the function calls itself for each element of the array _Files that is
not null I chose to use recursion instead of looping here to keep the contiol
flow cleaner. Performance is not likely to be an issue on such a call.

function One other function belongs in this group. Figure 12.38 shows the file
perror perror .c. It composes an error message and writes it to the standard error

stream. The function St.rerror does the work of the function etrerror
(both declared in <atrlng. h>) but with a buffer supplied by the caller. It is
not permissible for perror to alter the contents of the static storage in
etrerror. Thus, each function must call_ Strerror with its own static buffer.

<atdio.h>

Figure 12.30:
f:qeta.c

/* fgeta function */
#include <atring.h>
#include "xatdio.h"

ct>er *(fgeta) (ch&r *buf, int n, FILE *atr)

293

(/* get a line from •tr.am *I
unsigned ch&r *•;

if (n <• l)
return (NULL) ;

for (a • (unsigned char *)buf; 0 < --n ' ' atr-> Nbaclt;)
{ /* deliver pushed -back chars *I
*• = atr-> Baclt[--atr-> Nback);
if (atr->_Nback - 0) -

atr-> ~nd • atr-> llaave;
if (*a++ -;_ ' \n') -

{

*• - , \0';
return (buf) ;

while (0 < n)

/* te%11Li.nate full line */

{ /* ensure buffer haa chars */
if (atr- >_Next < atr- >_Rend)

elM if (_Frprep(etr) < 0)

return (NOLL) ;
elM if (atr->_Mode '_MEOF)

b:noak;
/* copy •• many aa poaaible */

un•igned char *al • 1DU1Chr(atr- > Next,
• \n', atr-> _~nd - atr-> _Next) ;

eize_t m • (el ? al+ 1 : atr->_~nd) - atr->_Next;

if (n <ml
el = NULL, • • n;
~ (e, atr- > _Next, • I ;
a +- m, n -• m;
etr-> Next +• m;
if (al)

)
}

(

*Sa '\0' ;
r eturn (buf);

if (• - (unsigned char *lbufl
retum (NULL};

elM
{

*• = '\0';
return (buf) ;

/*' t erminate full line*/

/* terminate partial line */

D

294

Figure 12.31:
qets.c

/* 9ets function */
#include <string.h>
linclude "xstdio. h"

Chapter 12

char *(gets) (char *buf)
{ /* get a line from stdio */
unsigned char •s;

for (s s (unsigned char *)buf; atdin->_Nback;)

{ /* deliver pushed beck chart1 • /
•a= etdin- >_Back[--etdin->_Nbaclt):
if (stdin->_Nback ~ 0)

etdin-> _Rand = stdin-> _ Rsave;
if (*s++ = '\n')

{ /* terminate full line */

)

s(-1) = '\0';
return (buf) ;

for (; ;)

{ /* ensure chars in buffer •/
if (stdin->_Next < stdin->_Rend)

else if (_Frprep(stdin) < 0)
return (NULL);

else if (stdin->_Mode ' _MEOF)
break;

/* deliver as many as possible •/
unsigned char *sl = maschr(stdin-> Next,

'\n', atdin-> Rend - stdin-> Next);
size_t m = (sl ? 'it + 1 : stdin->_Rend)

- stdin->_Next;

memcpy(s, stdin-> Next, m) ;
a += m; atclin->_~xt +• m;
if (al)

)
}

{
a[-1) = '\0';
return (buf) ;

if (s = (unsigned char *)buf)
return (NULL) ;

else

•• = • \0';
return (buf);

/ * terminate full line •/

/* tecninata partial line •/

0

<atdio.h>

Figure 12.32:
xfrprep.c

I* Frprep ~ion */
#in~lude <etdlib.h>
lincJ.ude "xstdio. h"

#include "yfune .b"

int _Frprep (FILE *etr)
(
if (etr->_Next < etr->_Rend)

return (l);
elee if (etr-> Mode ' _M&OF)

return (0) i

295

I* prepare etream for reading */

el.ee if ((atr-> _Mode ~ (_MOPENRl_MllRITE)) !• _M:>PENR)

(/*can't read aft er write */

etr->_Mode I • _MERR;
return (-1) ;

)

if (str->_Buf)

el.ea if ((etr-> _Buf • malloc (BOFSIZ)) - NOLL)

etr->_Buf • '•tr- >_Cbuf;
etr->_Bend • etr->_Buf + 1 ;

etr-> _Hod. I• _ MALBUF;

I* uee 1 - char _Cbuf *I

/* eet up allocated buffer */

etr-> Bend • etr-> Buf + BOFSIZ;
) - -

etr->_Next • etr- >_Bu.f;
etr->_Rend • etr->_Buf;
str->_Wend • etr->_Buf;

/* try to read into bu.ffer */

int n • _Fread(etr, atr->_Buf, etr->_Bend - str->_Buf);

if (n < 0)
(

atr-> Mode I• _MERR;
return (- 1) ;

•l.ee if (n - 0)

I* report error and fail */

(/* report end of fil.e •/

•tr-> Mode • (str->_Mode ' -_MllEAD) I _'ta.OF;
ret~ (0) ;

el.••

}

}

etr->_Hode I• _HIU:AD;

etr->_Rend +• n ;
return (1) ;

I* eet up data read *I

0

2.96 Chapter 12

Figure 12.33:
fputc.c

/* fputc function */
#include "xstdio.b"

!!!write
fput•

puts

formatted
output

int (fputc) (int Ci, FILE *etr)
(/* put a character to etream */
wiaiQned char c • ci;

if (etr->_Next < etr->_Wend)

elee if (_Fwprep(etr) < 0)
return (&OF) ;

*atr->_Next++ • c;
if (etr-> Mode ' (MLBFI MNBF))

(- - - /* dieal:>le macro• and drain */
etr->_Wend • etr->_Buf;
if ((etr- > _Node ' _MNBF 11 c - '\n') H fUueb (&tr))

return (&OF);

return (c);
D

Other functions have logic that parallels fputc but avoids calling it in
the interest of speed. One variant of fqetc is bri ta, defined in Figure 12.39
(fwrite. c). Two others are in Figure 12.40 (tpute.c) and Figure 12.41
(puts. c). The latter is a simple variant of the former.

That's the complete set of !ow-level input and output functions. As you
can see, none is particularly hard. Nevertheless, the whole collection adds
up to a lot of code. And that's only the beginning. The hard part of
implementing <etdio. h> is performing formatted input and output.

Six functions perform formatted output (the print functions). All call a
common function _Print£ that has the declaration:
int Printf(void *(*pfn) (void*, const char*, eize_t),

wid •arg, conet char •fmt, va_liet ap) ;
The parameters are:

• pfn - a pointer to a function to call to deliver characters
• arq - a generic data-object pointer to pass as one of the arguments to

the delivery function
• tmt - a pointer to the format string
• ap - a pointer to the context information that describes a variable

argument list
The delivery function returns a new value for arq if successful. Otherwise,
it returns a null pointer to signal a write error.

fprintf Figure 12.42 shows the file fprintf. c. It defines both fprintf and the
printf delivery functionprout that it uses. In this case, the generic pointer conveys

the FILE pointer from fprintf through _Printf to prout . prout uses this
pointer to write the stream you specify w hen you call tprintf. Figure 12.43
shows the file printf. c, which is a simple variant of fprintf.

<stdio.h>

Figure 12.34:
putc.c

figure ·12.35:
putchar.c

Figure 12.36:
xfwprep.c

/* putc function */
#incl.uda "xstdio . h "

'297

.int (putc) (int c, FILE *atr)
(/* put character to stream */
return (fputc(c, atr));

/* putchar function */
linc1ude "xstdio.h"

0

int (putchar) (int c)
(/* put character to at·dout */
return (fputc(c, atdout));
}

/* Fwprap function */
#in-;;luda <atdlib.h>
#incl.uda "xatdio.h"
#include "yfuna .h"

int _ Fwprap (FILE *atr)

a

(/* prapa.re stream for writing * /
if (at.r-> _Next < atr-> _ W6tld)

return (0);
alee if (atr-> Mode 6 MWRITE)

return (ffluah (atr)) ;
alee if ((atr->_llode 6 (_MOPENWI MREAO)) !a MOPENW)

(-/* can't write after read */
atr->_llode I= _MEEIR;
return (- 1);
}

if (atr- >_Buf)

alee if ((atr-> _Buf = malloc (BUFSIZ)) -= NOLL)
(/* uaa 1-char _Cbuf */
atr->_Buf = 6atr->_Cbuf;
atr - >_Bend = atr- > Buf + l ;
}

•1-
(/* uaa allocated buffer */
atr->_llode I= _MALBUF;
atr- >_Bend = atr->_Buf + BUFSIZ;

atr- > Next = atr- > _llUf;
atr- > Rend a atr- >_Buf;
atr- >=Wand a atr->_Bend;
atr- >_llode la _MWRITE;
return (0) ;
} a

298

figure 12.37:
fflush.c

Figure 12.38:
perror.c

/* fflush function •/
#include "xatdio.h"
#include "yfuns.h"

Chapter 12

int (fflush) (FILE •str)

I /* flush an output stream •/
int n;
unsigned char •s;

if (str = NULL)

I /• recurse on all streams •/
int nf, stat;

for (stat = O, nf = O; nf < FOPEN_ MAX; ++nf)
if (_Files[nf) ~~ fflush(_Files[nf]) < 0)

stat = l!lOF;
return (stat) ;

if (! (str-> ~ ~ _MNIUTE))
return (0);

for (s c str-> Buf; s < str-> Next; s += n)
(- - /* try to write buffer */
n = _Fwrite(str, s, str->_Naxt - s) ;
if (n <:= 0)

I !• report error and fall */
str->_Naxt = s tr->_Buf;
str->_Wend = str->_l!!uf;
str->_~ I= _MERR;
return (BOF);

str->_Next str->_Bulf;
str->_Wend z str->_Bend;
return (0);

/* parror function • /
#include <errno.h>
#includa <strinq.h>
#includa "xstdio.h"

void (parr or) (const char *s)

D

(/* put error strinq to stdarr •/
static char buf[] z ("'error #xxx"};

if (s)
(/* put user-supplied prefix • /
fputs(s, stdarr);
fputs (": ", stdarr);
}

fputs(Strerror(errno, buf), stdarr);
fputc (-;\n•, stdarr);
) D

<stdio.h>

Figure 12.39:
fvrite.c

/* fwrite function */
#include <atring.h>
#include "xatdio.h"

size_t (fwrite) (conat void *ptr, size_t size,
size_t nel.,., FILE •atr)
I /* write to stream frOlll array */
char *s z (char *)ptr;
•ize_ t ns z size * nelem;

if (na 0)

return (0);
while (0 < ns)

I /* ensure room in buffer */
if (atr->_Next < atr->_Wend)

else if (_Fwprep(atr) < 0)
break;

/* copy in as many as possible */
char *sl z str-> Mode 5 MI.BF

? meinchr (a, T\n', na) ; NQLL;
size_t m al ? a1 - a + 1 : na;
size_t n = str->_Nend - str- >_Next;

if (n < m)

al = NULL, m = n;
memcpy(str->_Next, a, m) ;
a += m, na -= m;
atr->_Next += m;

if (al '' fflush(atr))
{ /* disable macro• on failure */

I
I

atr- >_Wend
break;
}

atr-> _Buf;

if (atr-> _Mode 5 _MNBF)
I
atr-> Wend - at r - >_Buf;
ffluah (str);
I

return ((size* nelem - na) I size);

/* disable and drain */

0

300

Figure 12.40:
fputa.c

Figure 12.41:
puta.c

/* fputa function */
#incl~ <atrinq.h>
#include "xndio.h"

int (fputa) (conat char •a, FILE *atr)

Chapter 12

(/* put a atrinq to stream */
while (*a)

{ /* ensure roam in buffer */
if (atr->_Next < atr->_Wend)

else if (_Fvprep(atr) < 0)

return (EOF) ;

/* copy in aa many aa poaai.ble */
conat char *al • atr-> Noda Ii MI.BF - -

? atrchr(a, '\n') : NULL;
size t m =al ? al - a+ 1 : atrlen(a);
aize:t n;

n = atr-> Wend - atr-> Next;
if (n < m) -

al = NOLL, m ;; n;
memcpy(atr->_Next, a, m);
a+= m;
atr-> _Next +c m;
if (al lili ffluah(atr))

(/* fail on error */

}
}

atr-> Wend = atr-> Buf;
ret~ (EOF) ; -

if (atr->_Mode Ii _MNBF)
(

atr->_Wend = atr->_Buf;
if (ffluah(atr))

return (EOF) ;

return (0);

/* puts function •/
#include "xatdio.h"

int (puts) (conat char *a)

/* disable macros and drain */

0

(/• put string + newline to atdout */
return (fputa (a, atdout) < 0

II fputc('\n', atdout) < 0? EOF: 0);
0

<etdio.h>

figue 12.42:
fprintf . c

Figure 12.43:
printf.c

other
print

functions

function
Printf

/* fprintf fUnction */
linclude "xatdio. h "

301

atatic void *prout(void *atr, const char *buf, eize t n)
(/* vr:ite to file */
return (fvrite(buf, 1, n, str) = n? etr : NULL) ;

int (fprintf) (FILE *•tr, const char *fmt, ...)
(/* print formatted to stream */
i.nt ana;
va_liet ap;

va_start (ap, fmt);
ana "'_Printf(,prout, str, fmt, ap) ;
va_end(ap) ;
return (ane) ;

/* printf function */
#include "xstdio. h "

0

static void *prout(void *etr, cons t char *buf, •iz• t n)
(/* vr:ite to file *I
return (fvrite(buf, 1, n, etr) = n ? str : NULL) ;

int (printf) (conet cha.r *fmt, ...)
{ /* print formatted to stdout */
int ans;

va_li•t ap;

va start (ap, fmt) ;
ans - _Printf(,prout, stdout, fmt, ap) ;
va_end(ap);
return (an•) ;

0

Figure 12.44 shows the file ~rintf. c. Here, the generic pointer indicates
the next place to store characters in the buffer you specify when you call
11prinf. Note also that 11printf writes a terminating null character if _Printf
succeeds. Figure 12.45 through Figure 12.47 show the files vfprintf.c,
vprintf.c, and veprintf .c. They are obvious variants of the three more
common print functions.

Figure 12.48 shows the file xprintf . c. It defines the function _Pr.i.ntf that
does all the work. The internal function _Mbtowc, declared in <stdlil>.h>,
parses the format as a multibyte string using state memory of type_ Mbatate
that you provide on each call. (See Chapter 13: <etdlib. h>.) By calling the
underlying function instead o f mbtowc, _Printf avoids changing the inter­
nal state of mbtowc. The C Standard forbids any such change.

302

Figwe 12.44:
spri:ntf .c

Figure 12.45:
vfpri.ntf.c

Figwe 12.46:
vprintf.c

Chapter 12

/* aprintf function */
#include <string.h>
#include "xatdio.h"

static void *prout(void *a, const char *buf, size t n)
(/* write to string */
return ((char *)memcpy(s, buf, n) + n);

int (sprintf) (char *s, con•t char *fmt, .•.)
(/* print formatted to atring */
int ana;
va_liat ap;

va start (ap, fmt);
an;= Printf(6prout, a, fmt, ap);
if (0 <= ans)

s[ans) "' '\0';
va end(ap);
return (ans);

/* vfprintf function */
#include "xstdio.h"

D

static void •prout(void *str, const char *buf, size t n)
{ /* write to file */
return (fwrite (buf, 1 , n, str) - n ? str : NULL);

int (vfprintf) (FILE *str, const char *fmt, char *ap)
/* print formatted to stream from arg list */

return (_Pri.nt.f(6prcut, str, fmt, ap));

/* vprintf function */
#includa "xstdio.h"

0

static void *prout(void *str, const char *buf, aize t n)
{ /* write to file */
return (.fwrite(buf, 1, n, str) == n ? atr : NULL);

int (vprintf) (const char *fmt, char •ap)
{ /* pr.int formatted to stdout from arg list */
return (_Printf(6prout, stdout, fmt, ap));

0

<stdio.h>

figll'e 12.47:
vsprintf.c

t• vsprintf function •t
#include <string.h>
#include •xstdio.h"

static void •prout(void •a, const char •buf, size_t n)

303

(t• write to string •/
return ((char •)IMlllCPY(S, buf, n) + n);

int (vsprintf)(char •s, const char •fmt, char •ap)
(t• print formatted to string from arg list •/
int ans • _Printf(&prout, s, fmt, ap);

if (0 <z ans)
s[ansJ z '\0• 1

return (ans) 1

0

Testing for the per cent(%) escape character is a delicate matter. The only
safe way is to convert the format string to a sequence of wide characters
and look for one corresponding to a per cent. You must compare the data
object wc against the wide-character code for per cent. Unfortunately, some
uncertainty surrounds what that value might be. The C Standard requires
that each of the characters in the basic C character set have a wide-character
code that equals the single-character code. You write the single-character
code for per cent as '%'.You write the wide-character equivalent as L'%'.
Some question remains, however, whether the C Standard should require
such equivalence. It may thus be imprudent to write code that depends on
a delicate point of law.

Still another uncertainty exists. An implementation can support multiple
encodings for wide characters, at least in principle. A program can conceiv­
ably change to a locale where wide-character constants don't match the
current character set. (Yes!) That may be unwise, but it is not specifically
disallowed by the C Standard. Hence, a prudent program might avoid
using either '%' or L'%' as the wide-character code for per cent.

The implementor has three choices for the value to compare against we:

• Use '%' for maximum compatibility with olderC translators. Rely on the
codes being equivalent and not changing with locale.

• Use L'%' for maximum clarity. Rely on the codes not changing with
locale.

• Execute the call mbstowes ewes, "%", 1 > on each entry to _Printf, with
the declaration wehar_t we• [21. That stores the current wide-character
code for per cent in we• [OJ. (mbstowce is declared in <•tdlib.h>.)

I chose the first course as the wisest given the current state of C translators,
the C Standard, and multibyt·e-character support. Be warned that this area
is rapidly evolving, however. A different choice may be more prudent in
the near future.

304

Figure 12.48:
xprintf.c

Portl

Chapter 12

/* _Printf fW'lction */
#include <ctype.h>
#include <Stdlib.h>
#include <•tring.h>
#include •xatdio.h"

#define MAX_PAD (eizeof (spaces) - ll
#define PAD(s, n) if (0 < (n)) {int i, j = (n)1 \

for (; 0 < j; j -= i l \
(i = MAX_PAD < j ? MAX_PAD ! j1 PUT(s, i)1

#define PUT(&, n) \
if (0 < (n) l (if ((arg = (*pfnl (arg, s, nl l I= NULL) \

x.nchar += (n)1 else return (EOP)1 }

static char spaces[) " ;
static char zeroes[) = •00000000000000000000000000000000•;

int _ Printf(void *(*pfn)(void •, conet char•, eize_ t),
void •arg, const char •fmt, va_ list ap)
(/* print formatted •/
_ Pft x;

for (x.nchar
(

0;

conat char •a fmt;

int n;
wchar_ t WCI

_Mbeave state {0};

/* scan format atring •/

/* copy any literal text •/

while (0 < (n ~ _ Mbtowc(&wc, s , MB_CUR_ MAX, &state)))
{ ;• s can for '%' or '\0' */

• • · n;
i f (we == '%')

{

--•;
break1
}

PUT(fmt, s - fmt) J

if (n <= OJ
return (x.nchar);

flnt = •••;
}

(

const char *t1

I* got a conversion specifier •/

/* parse a conversion specifier •/

static const char fchar (J = (• +- #0"}1
static const unsigned int fbit[J s (

_ PSP, _ PPL, _ PMJ:, _ PNO, _ PZE, O);

<atdio. h>

Conltnuing
xpriritf .c

Port2

305

for ex . fla119 = O; et = strchrefch&r, *•)) !•NULL; ++•)
x . flage I• fbit[t - fchar) ;

if (*• - ' *')
/* get width argwD9nt */

x .width • va_argeap, int);
if ex.width < 0)

(/* eama ae '-' flag*/
x .width = - x .width;
x . flag• I• _FMI;
I

/ * aCC\mUlate width
(x.width = O; iadigite*•) ; ++•)

digi.ta * /

if e··
if ex.width < _MIGX)

x.width ax.width* 10 + *• - ' 0 ';
I='.')

x .prec • - 1 ;
else if e•++• -- ' *')

(/* get precieion arqwD9nt */
x .prec • va_argeap, int) ;
++•;
I

else /* accumulate precleion digit• */
for ex .prec • O; i .adigit(*•) ; ++•)

if ex.prec < _MIGX)

x .prec = x . prec * 10 + *• - '0';
x .qual • strchre"hlL", •a) ? •a++ : ' \0';

I
(/* do the conversion */

char ac(32);

Putflde•x, 5ap, wa, ac);
; .width -- x . nO + x . nzO + x.nl + x.nzl + x.n2 + x.nz2;
if (!ex. flag• 5 _FMI))

PAD(apace•, x .vidth) ;
PUTeac, x . nO) ;
PADezeroee, x . nzO) ;
POTex. e , x .nl) ;
PADezeroee, x.nzl) ;
PUTex. • + x . nl, x . n2);
PADezeroee, x .nz2) ;
if ex. flag• 5 _FMI)

PADeapacee, x .vidth) ;

:fmt s a + 1;

I
0

306 Chapter 12

None of the rest of the code in _Printf or its subordinates need worry
about multibyte characters. Conversion specifiers consist of characters
from the basic C character set. Each of these has a one-character encoding.
(In principle, a format string may contain redundant shift codes within a
conversion specifier. I chose not to support such practices.)

PUT _Printf thus frets about multibyte characters only in literal text between
PAD conversion specifiers. Once it discovers a chunk of literal text, it delivers

all such characters up to but not including any per cent character it
encounters. Note the use of the macro PUT, defined at the top of this C source
file, to deliver characters. You cannot package this operation as a function
It needs to return from _Printf should the delivery function report an errcr.
No good is served, on the other hand, by writing out such a messy patch
of logic repeatedly. For much the same reasons, I also created the macro PAD
to deliver padding zeros or spaces.

Once _Printf trips across a per cent in a format, it sets about parsing the
conversion specifier that follows. It translates flags into a set of indicators
used throughout _Printf and its subordinates. The header "xatdio.h"
contains the macro definitions:
#define _FSP OxOl
#define _FPL Ox02
#define _FMI Ox04
#define _FNO Ox08
#define _FZE OxlO

These correspond to the presence of the flags space,+,-,#, and o, in that
orda-.

macro The header "xetdio. h" defines the macro_ MMAX as 999. _Printf uses this
MMAX value to limit the size of field width and precision values. It must be big

enough to describe the largest conversions that must be supported (at least
509 generated characters) and small enough to prevent a short from over­
flowing (no larger than 32767). I chose 999 to simplify testing in the
accumulator loop.

type _Printf packs information about a conversion specifier into a structure
_Pft called x of type _Pft. Subordinate functions fill in additional information.

By the time they have done their work, _Pri.ntf knows what characters to
deliver simply by examining the contents of x. The header "xetdio.h"
contains the type definition:
typedef atruct {

union (
long li;
l ong double ld;
} v;

char •a;
int no, nzO, nl, nz.1, n2, nz2, prec, width;
aize_t nchar;
unsigned int flaga;
char qual;
} _Pft;

<atdio.h> 307

Its members are:
• v - communicates an integer value (v.li) or a floating-point value

(v.l.d) from the function that picks up the argument (_Putfld) to the
function that converts it to text (_Litob or _Ldtob)

• •-communicates the address of the text buffer to use for the conversion
of v

• no - counts the number of characters at the start of the text buffer ac for
_Printf to deliver first

• nzo - counts the number of zeros to deliver next
• n1 - counts the number of subsequent characters from ac to deliver next
• nzl - counts the number of zeros to deliver next
• n2 -counts the number of subsequent characters from ac to deliver next
• nz2 - counts the number of zeros to deliver next
• prec-holds the precision (-1 if none) from the conversion specification
• width - holds the field width (0 if none) from the conversion specifica-

tion
• nchar - counts the number of characters delivered so far
• flag• - holds the encoded flags from the conversion specification
• qual. - holds the size qualifier (h, i, L) from the conversion specification

All those counters are necessary to minimize demands on the size of the
text buffer ac. It makes sense that the buffer should be large enough to
represent all the meaningful precision in a numeric conversion. You do not
want to have to write long sequences of zeros in the buffer, however. Better
to count them and generate them with a macro such as PAD.

Two examples illustrate the problem. The first is the expression
printf("%015.5f", - 1•4) . It produces the text -00010000.00000. Note the
sequences of three, four, and five zeros intermixed with other text. Thafs
not such a bad thing to assemble in a buffer. But what happens when you
change the expression to printf ("%Osoo.2oof", -1•37)? It is a portable
expression that any implementation must support. It also produces hun­
dreds of zeros, the smallest sequence having37 zeros. It needs a much bigger
buffer.

Rather than wire in any additional limitations on field width or preci­
sion, I added complexity to get flexibility. You will find logic that is hard to
read in the functions that convert values. The payoff is that the code handles
rather perverse demands.

!unction Figure 12.49 shows the file xputfld. c. lt defines the function_ Putfl.d that
_Putfl.d _Printf calls to process a conversion specification. The function consists of

a large switch statement that processes conversion specifiers in groups.
_ Putfld gathers arguments as needed from the variable argument list. It
deals directly with the signs of numeric conversions and with any conver­
sions that involve only text. It delegates the actual numeric conversions to
one of two subordinate functions.

308

Figure 12.49:
:xput:fld.c

Partl

/* _Putfld function •/
#include <String.h>
#include •xstdio.h"

/* macros •/
#if _ DLONG
#define LOSIGN(x) \

(((unsigned short *}&(x}}[_ DO? 4 : OJ & Ox8000}
#else

Chapter 12

#define LDSIGN(x}
#endif

(((unsigned short *)&(x)) [_ DO] & OxBOOO)

void _Putfld(_Pft •px, va_list •pap, char code, char •ac}
{ /* convert a field for _Printf */
px- >nO = px->nzo px->nl = px->nzl = px->n2 = px->nz2 = 01
switch (code)

{

case 'c':
ac[px->nO++J
brealq

I* switch on conversion specifier */
/* convert a single character */

va_ arg(*pap, int};

case 'd': case •i•: /*convert a signed decimal integer*/
px->v.li = px->qual •= 'l' ?

va_arg(•pap, long) : va_arg(•pap, int);
if (px- >qu&l == 'b')

px->v.li = (short)px->v.li1
if (px->v.li < 0) / * negate safely i n _ Litob • t

ac[px->nO++] s ' - ';

else if (px->flage & _PPL)
ac[px->nO++] = •+•:

e l se if (px->flage & _ PSP)
ac[px->nO++J • ' '1

px->S = &ac[px->nOJ:
_ Litob(px, code):
break:

case 'o': case 'u':
case 'x': case 'X':

px->v.li = px->qual 'l' ?
I* convert unsigned */

va_arg(*pap, long) va_arg(*pap, int);
if (px->qual == ' h ')

px->v.li = (unsigned short)px->v.li1
else if (px->qu&l == '\0')

px - >v. li = (unsigned int)px- >v.li1
if (px->flags & _ FNO && px->v.li Is O}

(/* indicate base with prefix */
ac[px->nO++J = •0•1
if (code = m •x• I I code == 'X')

ac[px->nO++J = code;

px->S = &ac[px->nOJ 1
_ Litob(px, code);
b r eak;

case 'e': case 'B': case 'f':
case 'g': case 'G':

/* convert floating */

px->v.ld • px- >qual •• 'L' ?
va_arg(•pap, long double) va_arg(*pap, double}:

<stdio.h>

Continuing
xputfld.c

Part2

if (LDSIGN(px->v. ld))
ac[px->no++J = '-';

else if (px->flaqa ' _FPL)
ac(px->no++] = '+';

else if (px->flaqa ' _FSP)
ac[px- >nO++] = / 1 •

px->s = 'ac[px->nO];
_Ldtob(px, code);
break;

309

case 'n': /* return output count *I
if (px->qual == 'b')

*va_arq(*pap, short *) = px->nchar;
else if (px->qual != ' 1 ')

*va_arq(*pap, int *) = px->nchar;
e l se

•va_arq(*pap, long *) = px->nchar;
break;

case 'p' : /* convert a pointer, hex long veraion • /
px->v. l i = (long)va_arq(*pap, void•);
px->s = 'ac(px->nOJ;
_Litob(px, 'x');
break;

case '•': /* convert a string*/
px- >s = va_arg(*pap, char*);
px->nl = strlen(px->s);
if (0 <= px- >prec '' px->prec < px->nl)

px->nl = px->prec;
break;

case '%': /*put a '%' */
ac [px->nO++] '%';
break;

default : /* undefined specifier, print it out */
ac[px->nO++] = code;
}

D

,Putfld performs all integer conversions by calling Litob. Figure 12.50
shows the file xlitob. c that defines the function Litob. The value it
converts, px->v. li, has type long. This is a bit risky. A computer architecture
is at liberty to report arithmetic overflow if you store in a long a value of
type unsigned long that is larger than LONG_MAX. Thus the expression
printf ("%x". oxaoooooooL) will probably print correctly, but you can't
depend on it. The C Standard says that all integer conversions have
arguments of signed types. Thus, the risk stems from a genetic weakness
in print functions, not from any implementation decisions.

On the positive side,_ Putf ld and_ Litob are moderately cautious. They
avoid negating a long because that operation can overflow on a two's-com­
plementmachine. lnstead, _ Putfld lets_ Litob convert the value to unsigned
long and negate the new form. That cannot overflow. So long as an arbitrary
unsigned long can be safely converted to long and back again, this imple­
mentation works find. That is the case on many machines.

310 Chapter 12

Figure 12.50:
xlitob.c

/* Litob function */
#include <atdlib.h>
#include <atri.nq.b>
#include ">aUth .h"
#include "xatdio.h"

static char ldiqa [J • "Ol 23456789abcdef";
static char udiqa () • "0123456789ABCDEF";

void _Litob(_Pft *px, char code)
{ /* convert unaiqned lonq to text */
char ac[24] ; /* aafe for 64-bit inteqer s */
char *diqa • coda - ' X' ? udiqs : ld19a;
int ba•• • code ~ 'o' ? 8

code ! = 'x' 55 code !• 'X' ? 10 : 16;
inti• aizeof (ac) ;
unaiqned long ulval • px->v.li;

if ((coda -- 'd' I I code== 'i') 55 px- >v. li <OJ
ulval • -ulval; /* aafe aqainat overfl ow */

if (ul val I I px->prec)
ac(- -1] • d19a[ulval \base];

px->v . li • ulval I baee;
while (0 < px->v.li 55 0 < i)

{ /* convert diqita */
ldiv_t qr • ldiv(px->v.li, baa•) ;

px->v.li • qr.quot;
ac(--i] • di9a[qr.rem];
)

px->nl • aizeof (ac) - i;
mamcpy(px->a, 5ac[i], px->nl);
if (px->nl < px->prec)

px->nzO • px- >prec - px- >nl;
if (px- >prec < 0 H (px->flags 5 (_FMI l _FZE)) -- _FZE

55 0 < (i • px->width - px->nO - px->nzO - px->nl))
px->nzO +• i;

D

macro _Putfld is equaJJy cautious in testing floating-point values. A special
LOSIGN code such as NaN or Inf requires delicate handling, lest it generate an

exception within_ Putfld. Thus, the macro LDSIGN tests the sign bit of a long
double using seminumerical methods. It is modeled after the macro ostGN
onpage155.

pointer Amore questionable implementation decision concerns thep con version
to void specifier. The way it prints a void pointer is left implementation-defined in

the C Standard. In this implementation, I chose to type cast the pointer to
a long, then print it as a hexadecimal integer. Pointers and integers are
incommensurate, however. There is no guarantee that this decision is either
appropriate or safe for a given architecture. You may have to alter the code
here to work usefully on some machines.

<stdio.h>

function
_:Ldtob

3 11

_Litob itself is reasonably straightforward. It oonverts one digit using
unsigned long arithmetic for safety. It then oonverts any remaining digits
using long arithmetic for greater speed on many architectures. The function
develops digits from right to left in an internal buffer, then oopies them into
the buffer it inherits from _Printf. Note the careful way that the function
oomputes the number of leading zeros. It ensures that there are at least as
many as called for by the precision, but more if needed to left fill with zeros.

_ Put1'ld performs all floating-point conversions by calling _ Ldtob. Fig­
ure 12.51 shows the file xldtob. c that defines the function Ldtob. The value
it converts, px->v. ld, has type long double which is large enough to repre­
sent any floating-point value.

_Ldtob stands midway between <etdio. h> and <math.h>. It includes
both "xetdio.h" and "xmath.h" to obtain all the parameters it needs. It also
shares many of the assumptions that permeate this implementation of
<math.h>. The data object pews, for example, oontains all representable
floating-point values of the form 102N. I chose to distinguish three ranges:
• the minimum range, up to 1 ()32

• the IEEE 754 8-byte representation, up to 1()256
• the IEEE 754 10-byte representation, up to 1()4096
You may have to alter this table to suit other implementations.

_I.dtob uses the function _Ldunscale, declared in "xmath.h" to test and
partition the floating-point value. For a finite value x stored in px->v. ld,

_Ldunecale replaces x with the fraction f, where lfl is in the half-open
interval (0.5, 1.0). It stores in xexp the exponent e, where x = f-ie. In this
case, _Ldtob has no use for f. It uses e only to scale x (now in ldval) to a
reasonable range.

If _Ldunecale reports that.xis not-a-number, _Ldtob generates NaN. If x
is infinity, the function generates Inf. The C Standard doesn't define what
happens with non-a-number or infinity, so generating these sequences is a
legitimate extension.

_ Ldtob picks off eight (NDIG) digits at a time by assigning the long double
ldval to the long lo. A long can represent values at least up to 109. It is
generally much faster to convert a long to eight decimal digits than to
convert any of the floating-point types. The function also endeavors to
convert only the digits required by the conversion specification.

To achieve these economies of oonversion takes some careful setup. Note
the bizarre assignment:

xexp = xexp * 30103L I lOOOOOL - NDIG/2;

That provides an adequate estimate of the prescaling required for ldval (x).
You want to multiply by the minimum number of elements of powe. You
must end up with ldval strictly less than 10S. You prefer that the first group
of eight digits have at least four nonzero digits. You need to capture the
actual scaling factor (in xexp) to generate a proper exponent later. This

312

Figure 12.51:
xldtob.c

Partl

Chapter 12

/* Lcltob function */
#include <float . h>
#include <stdlib.h>
#include <strinq.h>
#include "xmath.h"
#include "xetdio.h"

I* macros */
#define NDIG 8

I* static data */
static const lonq double pows [I • {

lelL, le2L, le4L, le8L, le16L, le32L,
#if OxlOO < _LBIAS /* assume IEEE 754 8- or 10-byte */

le64L, le128L, le256L,
#if _DLONG /* assume IEEE 754 10-byte •/

le1024L, le2048L, le4096L, le512L,
#endif
#endif

} ;

void _Ldtob{_Pft •px, char code}
/* convert lonq double to text */

char ac(32);
char *p = ac;
lonq double ldval = px->v.ld;
short errx, nei9, xexp;

if (px->prec < 01
px->prec = 6;

else if (px->prec = 0 55 (code = 'q' I I code ~ ' G' 11
px->prec = l ;

if (0 < (errx = _Ldunecale (5xexp, 5px->v. ldl} I
(/* x = NaN, x = INF */
memcpy(px->s, e rrx =NAN? "NaN" : " Inf", px->nl = 3);
return;

I
else if (0 errx}

nai9 = 0, xexp = ·O;
else

{
{

int i, n;

0 . 0)
- ldva1 ;

/* x 0 •/

I* 0 < lxl, convert it•/
/* scale ldval to --lOA(NDIG/21 •/

if (ldval <
ldval =

if ((xaxp =
{

xexp * 30103L I lOOOOOL - NDIG/21 < 0)

n =
for

/* sca1e up •/
(- xexp + (NDIG/2-1)) 5 -(NDIG/2-1), xexp = -n;
(i = O; 0 < n; n >>e< 1 , ++i)
if (n 5 1)

ldval •= pows(i];

else if (0 < xexp)
I* scale down */

<11tdio.h>

Continuing
xldtob.c

Part2

long double factor = 1 .0;

xexp •= - (NDIG/2-1) ;
for (n = xexp, i = 0; 0 < n; n >>co 1, ++i)

if (n ' 1)

fact.or*= powa[i);
ldval / = factor;
)

313

/* convert significant di·gite •/
int gen = px->prec

+ (code == 'f' ? xexp + 2+NDIG: 2+NDIG/2);

if (LDBL_DIG+NDIG/2 < gen)
gen = LDBL_DIG+NDIG/2;

0.0 < ldval; p += NDIG) for (*p++ = '0'; 0 < gen ''
(/* convert NDIG at a time • /
int j;
long lo= (long)ldval;

if (0 < (gen-= NDIG))
ldval = (ldval - (long double)lo) * l e8L;

for (p += NDIG, j = NDIG; 0 < lo '' 0 <= --j;
(/* convert NDIG diqita •/
ldiv_t qr = ldiv(lo, 10);

•--p qr.rem+ '0', lo= qr.quot;
)

while (0 <= --j)
*--p='O';

gen p - 'ac[l];
for (p = 'ac [l], xexp += NDIG-1; *p == '0'; ++p)

--gen, --xexp; /* correct xexp */
nsig = px->prec + (code== 'f' ? xexp + 1

: code=='•' II code""' 'E' ? 1 : 0);
if (qen < nsig)

nsig = qen;
if (0 < neig)

(/* round and strip trailing zeros •/
conat char drop

= nsiq <gen'' '5' <= p[neig] ? '9' : '0' ;
int n;

)
)

for (n = neig; p[--n]
--nsiq;

if (drop = '9')
++p[n];

if (n < 0)
--p, ++nei.q, ++xexp;

_Genld(px, code, p, nsig, xexp);
)

drop;)

D

314

function
_ Genld

formatted
Input

Chapter 12

expression begins that process by effectively multiplying e by log10(2). It
also allows for about four digits to the left of the decimal point. The function
then scales ldval accordingly.

The next bizarre approximation is the initializer:
int gen • px-prec

+ (code== •£• ? xexp + 2+NDIG : 2+NDIG/2)1

That gives an adequate estimate of the number of digits to convert. It allows
for at least one extra digit to round the result. By contrast, the actual
conversion that follows is fairly straightforward. The conversion ends by
stripping any trailing zeros and adjusting gen and xexp accordingly.

The next step is to compute the number of significant digits nsig required
by the conversion specification. (You can't do this until you have an
accurate value for the exponent xexp.) The remaining logic then reduces
naig to the actual number of significant digits present. If naig is less than
gen, the function also rounds the result. _Ldtob ends by calling the function
_Genld. That offloads the tedium of altering the converted value to meet the
specific needs of various conversion specifiers.

Figure 12.52 shows the file xgenld.c that defines the function _ Genld It
generates the final representation of the various floating-point conversions
in the buffer provided by _Printf. It does so in one left-to-right pass,
copying characters as needed from the buffer in _Ldtob. The logic here is
tedious and exacting but not tricky. One surprise to note is that xexpchanges
meaning for the £ conversion specifier. It becomes the count of leading
digits, not the exponent to display. Similarly, px->prec changes meaning for
the g conversion specifier. It becomes the count of fraction digits, not the
total precision.

That's the end of the code for the print functions. As you can see,
converting floating-point values takes considerable effort. It also involves
a lot of code. An implementation of Standard C for a very small computer
may have little need to print floating-point values. In that case, you can
reduce program size considerably by supplying an alternate version of
_Putfld. Omit the code for the floating-point conversions. That eliminates
the need to link in _Ldtob and its subordinates. It also often eliminates the
need to link many other functions that provide floating-point support.

Be warned, however. Having multiple versions of the same function
invariably leads to confusion sooner or later.

Three functions perform formatted input (the scan functions). All call a
common function _scan£ that has the declaration:
int _Scanf(void •(•pfn)(void •, int), void •arg,

conat char *fmt, va_list ap)1

The parameters are:

• pfn - a pointer to a function to call to obtain characters
• arg - a generic data-object pointer to pass as one of the arguments to

the obtaining function

<atdio.h> 315

• fmt - a pointer to the format string
• ap - a pointer to the context information that describes a variable

argument list
The obtaining function obtains the next character to scan if its second
argument has the value _wANT, defined in •xetdio.h" as a value distinct
from any character code or BOF. Otherwise, it treats the second argument as
a character to push back The function returns EOF on failure.

hcanf Figure 12.53 shows the file tecant. c. It defines both f&canf and the
•canf obtaining function ecin that it uses. In this case, the generic pointer conveys

Hcanf the PILE pointer from fecanf through _scanf to acin. ecin uses this pointer
to read the stream you specify when you call tecanf. Figure 12.54 shows
the file scanf.c. That function is a simple variant of f&canf. Figure 1244
shows the file aprintf. c. Here, the generic pointer indicates the next place
to obtain characters in the buffer you specify when you call eecanf. Unlike
the other scan functions, aacanf rewrites the generic pointer. That's why
the obtaining function needs a pointer to pointer argument.

function Figure 12.56 shows the file xecanf. c. It defines the function _scan£ that
scanf does all the work.
type _scanf packs various bits of information into a structure called x of type
_Sft _sft. Subordinate functions fill in additional information. By the time they

have done their work for a given conversion specification, _scan£ knows
how many characters have been scanned and whether the last conversion
specifier stored a converted value by examining the contents of x. The
header "xstdio.h" contains the type definition:
typedef atruct {

int (*pfn)Cvoid • , intl1
void •arg1
va_li•t ap1
int nchar, nget, width1
char noconv, qual, atored;
) _Sft1

Its members are:

• pfn - points to the obtaining function
• arg - holds the generic argument for the obtaining function
• ap - holds the context infurmation for the variable argument list
• nchar - counts the total number of characters scanned so far
• noet -counts the number of characters scanned so far by the macro GETN

(described below)
• width - holds the width (0 if none) from the conversion specification
• noconv - holds a nonzero value (• • •) to suppress storing a converted

value
• qual-holds the sizequalifier(h, 1, L) from the conversion specification
• stored - set to nonzero by a function subordinate to _scanf that stores

a converted value

316

Figure 12.52:
xgenld.c

Part 1

/* Genld function */
#inClude <loca1e.h>
#include <• tring.h>
#includa "xatclio. h"

void _Genl.d(_Pft "PX, cha:r code, char "P, ahort. naiq,

Chapter 12

abort xexp)
(

conat char point
/* generate long double text */

localeccn~()->decimal_point[OJ ;

if (naig <= 0)
na iq a 1 , p • "0 ";

i f (code~ 'f' II (code~ 'g' II code
'' - 4 <• xexp '' xexp < px->prec)

'G')

(
++xexp;

/* 'f' format */
/* change t o leading digit c ount */

i f (code ! = ' f ')
(
if (! (px->flaga ' _ FNO) " n•ig

px- >prec • naig;
if ((px- >prec - = xexp) < 0)

px- >prec • O;

if (xexp ~ 0)

/ * fixup for ' 9 • */
< px- >prec)

(/* digit• on1y to right of point */
px->a[px- >nl++J • o•;
if (0 < px- >prec 11 px- >flag• ' _ FNO)

px- >a [px- >nl++) = point;
if (px->prec < -xexp)

xexp • -px- >prac;
px- >nzl • -xaxp;
px->prec +• xexp;
if (px- >prec < naig)

naig • px- >prec;
-.:py ('px- >• [px- >nl] , p , px- >n2 • naig) ;
px->n>:2 • px->prec - naig;
)

el• • if (nai9 < xexp)
(/* >:eroa before point */
memcpy(,px- >a[px->nl) , p , n aig) ;
px->nl +• nai9;
px->n>:l • xexp - naig;
if (0 < px- >prec 11 px- >flaga ' _ FNO)

px->•[px- >n1) ~point, ++px->n2;
px- >02:2 • px- >prec;
)

•1•e
/* enough digit• before p oint */

memcpy ('px- >a [:px- >nl] , p, xexp) ;
px->nl +• xexp;
naig - • xexp;
if (0 < px- >prec II px- >flag• ' _ FNO)

px->a [px- >nl++] =poi nt;
if (px- >prec < n•ig)

nai9 • px- >prec;

<atdio.h>

Continuing
xgen.ld . c

Port2

memcpy(,px->s[px->nl], p + xexp, nsig) ;
px- >nl +- naig;
px- >nzl m px->prec - nsig;
I

317

else
(/* 'e' format */
if (code== 'q' II code== 'G')

(/* fixup for 'g' *I
if (nsig < px- >prec)

px- >prec • naig;
if (--px->prec < 0)

px->prec • 0 ;
code = code 'q' ? ' e' ' E';

px->s[px- >nl++) • *p++;
if (0 < px->prec I I px->flaqs ' _FNO)

px->s[px->nl++] • point;
i f (0 < px->prec)

(/* put fraction digits */
if (px->prec < --nsig)

nsig • px->prec;
memcpy(,px->a[px- >nl) , p , naig);
px->nl +• nsig ;
px->nzl • px- >prec - nsig;

I
p • 'Px- >s[px->nl) ; /* put exponent */
*p++ • code;
if (0 <• xexp}

*p++ = ' +';
else

/* negative exponent */
*p++ '-';
xe.xp = - xexp;

I
if (100 <= xexp)

(/* put oversize exponent */
if (1000 <• xexp)

*p++ • xexp I 1000 + '0', xexp '= 1000;
*p++ = xexp I 100 + •o•, xexp '8 100;
)

*p++ • xexp I 10 + '0', xexp ,. 10;
*p++ • xexp + '0';
px->n2 • p - 'px->s[px->nl) ;
)

if ((px->flags ' (_11«1_FZE)} FZE)
(/• pad with leading z•roa */

int n • px->nO + px- >nl + px- >nzl + px->n2 + px->nz2;

if (n < px->width)
px- >nzO = px->width - n;

0

318 Chapter 12

The internal function JQ>towc, declared in <atd.lib.h>, parses the format
as a multibyte string using state memory of type _Mbatat• that you provide
on each call The issues are the same as for _printf, described on page 303.
Note, however, that _scanf must distinguish white-space as well as percent
characters. It assumes that any wide<haracter code that can be stored in an
unsigned char can be tested properly by hapace. That is rertainly true in the
current C Standard. It would be messy to change for an environment where
• \ t • is not necessarily equal to L • \ t • •

_ scanf, like _Printf, also frets about multibyte characters only in literal
text between conversion specifiers. Onre it discovers a chunk of literal text,
it attempts to match all such characters up to but not including any percent
character it encounters. It has a funny way of matching white-space. And
it matches multibyte characters only if the scanned text has exactly the same
shift sequences as the literal text in the format. Both of those peculiarities
can limit the utility of the scan functions, but both are also genetic. That's
the way the C Standard specifies the scan functions.

GET Note the use of the macro GET to obtain a character and ONGET to put back
UNOET the first unwanted character. Both are defined in •xatdio.h", because

functions subordinate to _ scanf must obtain characters the same way. The
macros are defined as:
#define GET(px) (++(px)->nchar, (*(px)->pfn) ((px)->arg, _WAN'l'))
#define UNGET(px, ch) \

(--(px)->nchar, (*(px) - >pfn)((px)->arg, ch))

You can package these operations as functions. I defined them as macros
primarily to improve performance.

Figu"e 12.53:
fscanf.c

1• fscanf function •/
#include "xatdio.h•

static int acin(void •atr, int ch)
{ /* get or put a character •/
if (ch •• _WANT)

return (fgetc((PILE •)str))1
els• if (0 <• ch)

return (ungetc(ch, (PILE •)str))1
else

return (ch) 1

int (facanf)(PILE •atr, conat char •tmt, ••.)
{ /• read forinatted froll\ stream •/
int ana1
va_ liat ap1

va_start(ap, fmt)1
ana • _scanf(•acin, str, fmt, ap);
va_ end(ap) 1
return (ans) 1

0

<•tdio.h>

Figl.l'e 12.54:
ecanf.c

f91'• 12.55:
••canf.c

/ * scant function */
#include •xstd.io.h•

static int scin(v oid •str, int ch)

319

{ / * get or put a character * /

if (eh •• _WANT)
r•turn (fgetc((PILE *)str)) t

else if 10 <• ch)
return (ung•tc(ch, (PILE •)str))t

else
return (ch) 1

int (scant) (const char *fmt, .••)
{ / * read fonnatt9d from etdin • /

int ans;
va_list ap1

va_ start(ap, fmt)1
ans• _ scant(•scin, etdin, !mt, ap) 1
va_end(ap)1
return (ans) 1

/ * sacanf function * /
#include •xatdio.h•

0

etati c int s cin(void •str, int ch)
(I * get or put a character * /

char *• • * (char ••)atr1

if (ch _WANT)
if (*• •• '\0')

r•turn (BOP) 1

el••
/* deliver a character */

*(char **)atr • s + 1;

r•turn (*•ll

els• if (0 <• ch)
* (char ••) a tr • • - 11

r eturn (ch)1

int (ascanf)(conat char *ibuf, const char *fmt, •. .)
(I • read fonnatt9d from s t ring •I

int ans1
va_ list ap1

va_ atart(ap, fmt)1
ans = _scant(•scin, (void **)&buf, fmt, ap)1
va_end(ap) 1
return (ans) 1

0

320

F9Jre 12.56:
xacanf.c

Part 1

t• _SCanf function */
#include <ctype.h>
#include <limita.h>
#include <atdlib.h>
#include <atring.h>
#include "xatdio.h"

int _ Scanf(int (*pfn)(void •, int), void •arg,
conat char •fmt, va_ liat ap)

Chapter 12

t• read formatted */
con.at char ••1
1-nt nconv • 01
_Sft x;

x.pfn • pfn1
x.arg • arg1
x .. ap • ap1
x.nchar • 01
for (a • fmt1 1 ++•)

{ I* parse format string */
int chi

t • match any literal or white-space •/
int n;
wchar_t wc1
__Mbeave state • (O);

while (0 < (n • _Mbtowc (&we, a, KB_CUJ\JUJ(, &state)))
{ /* check type of multibyt• char •/
a +• n;
if (WC •• '%')

break1
else if (we <• UCHAR_ KAX && iaapace(wc))

{ /* match any white-space */
while (iaspace(*all ,
while (iaspace(ch • GET(&x)))

I

tlNGET(&x, ch) 1

)

else t • match literal text • /
for (• - • n; 0 <= --n;

if ((ch• GET(&x)) I• *a++)
{

UNGET(&x, ch);
return (nconv) 1

if(*• •• '\0')
r•turn (nconv);

t• bad match */

t• process a conversion apeci f i er */

<•tdio.h>

Continuing
xacanf.c

Port2

GETN
tl'NGETN

x.noconv • •a •• ' *' ? •s++ : '\0';
for (x.width • O; i sdigit(*s); ++a)

if (x.width < _ WMAX)
x.widt h • x.width • 10 +•a - •o•;

x . qual • atrchr("hlM" • *al ? • a++ 1 '\0'1

if (I strchr ("en (", •a))

321

(/ * match leading white-apace */
while (iaapace(ch • GET(t.x)))

UNGET(t.x, ch);
}

if ((a a _Getfld(~x. all =• NULL)
return (O < nconv ? nconv : BOP);

if (x. stored)

}

}

++nconv1

0

The header "xstdio. h" defines two additional macros closely related to
these. You can store a character count in x.nget to define the maximum
width of a field you wish to scan. Use the macro GETN instead of GET, and
UNGBTN instead of UNGB'l'. Once the field is exhausted, GETN yields the special
rode _WANT. That simplifies logic in several places. The macros are defined

as:
#define GETN(px) (0 <• --(px) ->nget ? GET(px) : _WANT)

#define tJNGETN(px, ch) (if (ch) I• _WANT) UNGET(px, ch);

header That's the last major contribution to the header •xatdio. h •. Figure 12.57
•xatdio. h" shows the file xatdio. h. It should be reasonably devoid of surprises by this

point. I present it here simply for completeness.

Once _scanf trips across a per cent in a format, it sets about parsing the
conversion specifier that follows. That is a fairly easy task, since scan
conversion specifiers have few options. For all but a few conversion speci­
fiers, _scanf also skips leading white-space.

function Figure 12.58 shows the file xgetfld.c. It defines the function _oetfld that
_Getfld _scanf calls to process a conversion specification. The function consists of

a large switch statement that processes conversion specifiers in g roups.
_oetfld gathers arguments as needed from the variable argument list.
(Subordinate functions also gather arguments as needed.) It deals directly
w ith any conversions that involve only text.

function _oetfld performs all integer conversions by calling_oetint. Figure 12.59
_Getint shows the file xgetint.o that defines the function _oetint. It gathers the

characters that match the appropriate pattern for an integer, then calls either
atrtol or atrtoul, both declared in <atdlib.h>, to convert the field. The
header •xstd.io.h• defines the macro l"KAX as 512. That exceeds slightly the
requirements of the C Standard for the longest field that the scan functions
must convert.

322

Figure 12.57:
xstdio.h

Partl

t• xstdio.b internal header •/
#include <stdarg.b>
#include <stdio.b>

,. bit• for _Mod• in PILE .,

#define _,MOPBNR Oxl
#define _,MOPENW Ox2
#define _MOPENA Ox4
#define JITRUNC Ox8
#define _MCRBAT OxlO
#define J[BI.N Ox20
#defi.ne _JlALBUl' Ox40
#define _MALl'IL Ox80
#define _MBOP OxlOO
#define _Ml!RR Ox200
#define _MLBP 0><400
#define JINBP Ox800
#define JIRBAD OxlOOO
#define J(WRITB Ox2000

1• cod•• tor _Printf and _scanf •/
#define _PSP Ox01
#define _ PPL Ox02
#define _PMI Ox04
#define _ PN:> Ox08
#define _,PZB OxlO
#define _WM>.X 999
lldefiiie _WAN'!' (IOP- 1)

t • macros for _scanf •/

Chapter 12

#define PMAX 512 t • widest su,pported fi.eld */
#define GBT(px) (++(px)->ncbar, (*(px)->pfn)((px) - >arg, _ WlUIT))
#defi.ne GB'I'N(px) (0 <• -- (px) - >nget ? GBT(px) : _WANT)
#defi.ne UNGBT(px, cb) \

(--(px) - >ncbar, (• (px) - >pfn)((px)->arg, cb))
#define UNGBTN(px, cb) (if ((cb) I • _ WANT) UNOBT(px, cb) 1)

1• type definitions */
typedef struct (

union (
long lit
long double ldt
) v1

cbar •• ,

int no, nzO, nl, n&l, n2, nt~, prec, width1
size_t ncbar1
unsigned int flaga1
char qual1
} _Pft;

typedef struct (
int c•ptn)(void •, int)1
void •arg;
va_list ap1
int ncbar, nget, width1
char noconv, qual, at.ored;
} _Sft;

<•tdio.h>

Continuing
xatdio.h

Port2

/ * decla r ation• */
PILB *_ Poprep(conat char *• const char •, PILB *) ;

int Jopen(conat char •, uiaigned int, conat char *);
int _ Prprep(PILE . ,,
int _ Ptmpnam(char •, int)r
int _ Pwprep(PILE *);
void _Genld(_ Pft • , char, char • , ahort, abort);

conat char *_Getfld(_Sft *• const char*);
int _ Getfloat(_Sft *);
int _ Getint(_Bf t • , char)r
void _Ldtob(J ft • , char)r
void _Litob(_Pft • ,char) ,
int _ Printf(void * (*) (void•, co.at char•, aiEe_ t),

void •, conat char •, va_ list);
void _ Putfld(Jft • , va_ liat •, char, char •);
int _ scanf(int (*) (void•, int),

void •, conat char •, va_liat);

323

D

pointer The p conversion specifier is the mirror image of the same conversion
to void specifier in the print functions. The way to scan a void pointer is, of course,

also left implementation-defined in the C Standard. In this implementation,
I chose to convert the field as an unsigned long, then store it as a pointer to
void. I repeat for emphasis- there is no guarantee that this decision is either
appropriate or safe for a given arc.hitecture. You may have to alter the code
here to work usefully on som e machines.

~tlon _ Getfld performs all floating-point conversions by calling _Getfloat.

_oetnoat Figure 12.60 shows the file xgetfloa .c that defines the function _oetnoat.

It gathers the characters that match the appropriate pattern for a floating­
point value, then calls etrtod, declared in <stdlib.h>, to convert the field.
Note that even a stored value of type long double gets converted by strto<'I.

That can limit the range of values you can convert properly if long double
has greater precision or range than double. That's all the C Standard requires,
however. It is arguably an acceptable extension to write a "string to Jong
double" function (with a secret name, of course) and use it instead . I chose
not to undertake the additional work here.

That's the end of the code for the scan functions. As with the prin t
functions, converting floating-point values takes considerable effort. The
scan functions also involve a lot of code. An implementation of Standard C
for a very small computer probably has less need to scan floating-point
values than to print them. If you need the scan functions but don't need
floating-point support, you can reduce program size considerably by sup­
plying an alternate version of _ Getfld. The same considerations apply as
for the print functions, discussed on page 314.

324

Figure 12.58:
xget:fld.c

Par'1

/• Getfld function */
#include <ctype.h>
#include <lilllits.h>
#include <etrinq . h>
#include "xat dio.h"

const char *_Getfld{_ Sft •px, const char •s)

Chapter 12

(/* convert a field */
int ch;
char *p;

px- >etored s 0 ;
switch (*a)

(
case ' c ':

/* switch on convers ion specifier */
/* convert an array of chars */

if (px- >width =- 0)
px- >width • 1 ;

p • va_arq{px- >ap, char*) ;
f o r (; 0 < px- >width; --px- >w:l.dth)

if ({ch • GZT(px)) < 0)
return (NtJLL) ;

elM if { !px- >noconv)
*p++ • ch, px- >stored • 1 ;

br-lt;
case ' p':
ca- ' d': ca.se ' i ': case 'o':
ca- ' u' : ca- ' x': case ' X';

if {_Getint{px, •a))
return {NOLL) ;

break;
case ' • ': case ' B': ca•• ' f' :
ca•• ' 9 ': cas e ' G':

if (_Getfloat(px))
return {NOLL) ;

break;
case ' n ':

if (px- >qual =- 'h')

/* conve rt a pointer */

/* convert an integer *I

/ * convert a floatinq • /

/* return output count * /

*va_arq(px- >ep, abort *) • px->nchar;
else if {px- >qual !• ' 1 ')

•va_arq(px- >ap, int *) • px- >nchar;
else

•va_ arq(px->ap, lonq *) • px->nchar;
break;

case ' s ' : /* conve rt a string • /
px- >nqet c px- >wi dth <= 0 ? INT_MAX px->width;
p • va arq(px->ap, char *) ;
while (o <= {ch • GZTN (px)))

if {isspace (ch))
break;

els• if {!px- >noconv)
*p++ - ch;

UNGZTN (px, ch) ;
i f { !px- >noconv)

*p++ • ' \0', px- >atored • 1 ;
br-k;

<atdio. h >

Continuing
x9et£l d.c

Part2

case '\':
if ((ch• GET(px))

br•alc;
UNGET(px, ch);
r•turn (NOLL);

case '[':

'\')

325

/*match a '\' *I

/ * conv•rt a s can set */
char comp • *++s =•'A' ? *• ++: '\0';
const char •t • strchr (* s ~ '] ' ? • + 1 : a, ']');
aiEe_t n • t - a;

if (t - NtJLL)
return (NOLL) ;

px->ng9t • px->width <= 0 ? INT NJUC
p = va arq(px->ap, char *) ;
11hil• (o <• (ch= GETN(pxl)l

it (!ccmp u !1118111Chr (s , ch, n)

11 comp ' ' memchr(s, ch, n))
br•alc;

• l s• if (!px->noconv)
*p++ - ch;

UNGETN(px, ch);
if (!px- >noconv)

*p++ • '\0', px->•tor ed = l;
•• t;

br-k;

I* undefined •/
px- >width;

default: /* und•fin9d sp9cifier, quit */
r9turn (NOLL);

return (s) ;
0

Testing <stdio . h>
The header <stdio .h> declares too many functions to test all at once

(given the limitation on C source file size in this book, at least). I chose to
exercise the print and scan functions in one test program. The second
program tests only the all the low-level functions.

program Figure 12.61 shows the file tstdiol.c. It checks that print and scan
tstdiol. c conversions are exact where that is appropriate and reasonably precise

where exactness cannot be guaranteed. As a courtesy, it displays the values
of several macros. And it exercises the functions vrprintf, vpr1ntf, and
vspr intf in the process of piecing together the final output line. For this
implementation, the program displays output something like:
Btll'SIZ = 512
L_bmpnam • 16
FILENAME NJUC • 64
FOPEN_MU = 16
'DCP _ !QJ(.. 32
SUCCESS testing <9tdio.h>, poirt 1

326

Figure 12.59:
xqet.i.nt.c

Part1

/* Getint function */
tinclude <stdlib. h>
#include <strinq.h>
linclude "xatdio. h "

int _Getint LSft *px, char code)

Chapter 12

(/ * get an integer value for _scanf • /
char ac(FMAX+l} , *p;
char aaandig • 0;
int ch;
static conat char digits (]

= "0123,56789abcdafABCOEF";
static conat char fl.it[} • "diouxXp";
static conat char baa••[] z (10, 0 , 8 , 10, 16, 16, 16) ;
int baaa • baae.a[(conat char •)atrchr(flit, code) - flit];
int dlen;

px- >nget • px- >width <• 0
11 FMAX < px->width ? FMAX px- >width;

p • ac, ch• GETN(px);
if (ch=••+• 11 ch -- '-')

•p++ • ch, ch = GltTN (px) ;
if (ch - '0')

(/• match possible prefix •/
seendi9 • 1 ;
*p++ •ch, ch• GltTN(px);
if ((ch - 'x' 11 ch= 'X')

'' (base ~ 0 II baa• 16))
16, •p++ • ch, ch • GBTN(px) ;

base 8;

dlan = base .. 0 II base~ 10? 10 : base 8? 8 16+6;
for (; -chr(digita, ch, dlen); aaandig • 1)

*p++ •ch, ch= GETN(px) ;
UNGETN(px, ch);
if (!aaendig)

r eturn (- 1);
*p • '\O•;
if (px->noconv)

else if (cod• == ' d ' I I code= 'i')
(/* del iver a aiqnad integer */
long lval • atrtol(ac, NULL, base) ;

px- >atored. = 1 ;
if (px->qual = ' h')

*va arg(px- >ap, abort *) • lval;
elaa if- (px- >qual !• 'l')

*va_arq(px->ap, int *) • lval;
else

•va_arg(px->ap, long *) • lval;

<atdio.h>

Continuk\g
xgeti.nt . c

Part2

327

•1-
{ /* deliver an unsigned integer */
unsigned long ulval ~ etrtoul(ac, NULL, ba-);

px->stored • 1 ;
if (coda •• • p')

*va_arg(px->ap, void **) • (void *)ulval;
•1- if (px- >qual -= ' h')

•va_ arg(px- >l!p, unsigned short *) • ulval;
elH if (px- >qual ! = ' l ')

*va_arg(px->ap, \1tl8igned int *) • ulval;

•1-
*va_ arg(px->ap, unsigned long *) • ulval;

return (O);

and terminates successfully.

0

progrcm Figure 12.62 shows the file tstdio2 . h. It checks the properties of the
tstdio2. c macros defined in this header, then exercises the various functions in

simple ways. The one informative display is from a call to perror. (You can't
avoid some output in testing this function - may as well make the most
of it.) If the program executes successfully, it pieces together the output:
Domain •=or reported as: dcma.in error
SUCCESS testing <etdio.h>, part 2

References
Brian W. Kernighan and P.J. Plauger, Software Tools (Reading, Mass.:

Addison-Wesley, 1975). Also by the same authors, Software Tools in Pascal
(Reading, Mass.: Addison-Wesley, 1978). Both of these books illustrate how
to impose the UNIX 1/0 model upon a variety of operating systems by
implementing a small number of primitive interface functions.

William 0 . Clinger, "How to Read Floating-Point Numbers Accurately,''
Proceedings of the ACM SIGPLAN '90 Omference on Programming Language
Design and Implementation (New York: Association for Computing Machin­
ery, 1990, pp. 92-101). This article discusses the difficulties of converting a
text string to floating-point representation if your goal is to maintain full
precision.

Guy L. Steele, Jr. and Jon L. White, "How to Print Floating-Point Num­
bers Accurately,'' Proceedings of the ACM SIGPLAN '90 Conference on Pro­
gramming Language Design and Implementation (New York: Association for
Computing Machinery, 1990, pp. 112-126). This article is an interesting
companion to the one above, from the same conference proceedings.

328

Figure 12.60:
xqetf1oa.e

/* Getfloat function •/
#in~lude <ctype.h>
#include <loeale . h>
#include <lltdlib.h>
#include <atring.h>
#include "xatdio.h"

int _Getfloat(_Sft *px)

Chapter 12

{ /* get a floating point value for aeanf */
char •p;
int eh;
char ac[FMAX+l);
char aeendig = 0;

px->nget = px- >width <c 0
11 FMAX < px->width ? FMAX px->width;

p - ae, eh • GETN(px);
if (eh='+' II eh='-')

*p++ = eh, eh = GETN (px) ;
for (; iadigit(eh); seendig = l)

*p++ = eh, ch = GETN (px) ;
if (eh== localeconv()->deeimal_,point[O))

*p++ =eh, eh c GETN(px);
for (; iadigit(eh); -endig = l)

*p++ = eh, eh = GETN (px);
if ((cb = '•' 11 eh== ' E') ' ' aeendig)

{ /* parse exponent •/
*p++ = eh, eh "' GETN (px) ;
if (eh=='+' 11 eh == '-')

*p++ = eh, eh = GETN (px) ;
for (aeendig = O; iadigit(eh); aeendig = l)

*p++ - eh, eh = GETN (px) ;
}

UNGETN (px, eh) ;
if (! aeendig)

return (-1);

*p = '\0' i
if (!px->noeonv)

{ /* convert and store */
double dval • atrtod (ae, NULL) ;

px->atored = l;
if (px->qual = 'J.')

•va_arg(px- >11p, double *) • dval;
else if (px->qual !z 'L')

•va_arg(px- >ap, float *) = dval;

•l••
•va_ar9(px->11p, long double *) = dval;

return (0);

a

<stdio.h> 329

Exercises
Exercise 12.1 How does the operating system you use represent text files? Do you have

to make any changes to match the internal represent of a text stream in
Standard C?

Exercise 12.2 Write the functions fprintf", printf, and epr1.ntf in terms of calls to
vfprintf and vsprintf.

Exercise 12.3 Write a version of rename that copies a file if it cannot simply rename it.
Delete the original file only after a successful copy.

Exercise 12.4 Write a version of remove that simply renames the file to be removed. Place
the file in an out-of-the-way directory, or give it a name not likely to conflict
with common naming conventions for files. Why would you want this
version?

Exercise 12.5 Write a version of tmpn..., that checks for conflicts with existing names. (fry
to open an existing file with that file name for reading.) The function keeps
generating new file names until it cannot open the corresponding file. Why
would you want this version? What happens if two programs executing in
parallel call this function at the same time?

The C Standard says, "The implementation shall behave as if no library
function calls the tmpnam function. (See page 236.) What do you have to
do to satisfy this requirement?

Exercise 12.6 Implement the primitives _FcloM, _Fopen, _Fread, and _Fwrit• for the
operating system you use. Do you have to write any assembly language?

Exercise 12.7 [Harder] Implement the functions _Fgetpoa and _F••tpoa for an operating
system that terminates each text line with a carriage return plus line feed.

Exercise 12.8 [Harder) Write a function that converts a text string to long double by the
same rules that atrtod uses for double. (See page 362.)

Exercise 12. 9 [Very hard] Redesign the scan functions so they are more widely usable.
Devise a way to communicate scan failures to the calling program so that
it can:

• spot the failure more precisely

• try an alternate conversion
• recover gracefully from a read error

330

Figure 12.61:
tetdiol.c

Pat I

/* test stdio functions, :part l •/
#include <aeeert. h>
#include <errno.h>
#include <float.h>
#include <math.h>
#include <stdarq. h>
#include <stdio.h>
#include <etring. h>

static void vfp(const char *fmt, ...)
(

va_liet ap;

va_etart(ap, fmt);
vfprintf (stdout, fmt, ap) ;
ve_end(ap) ;
}

static void vp(const char *fmt, ...)
(

ve_list ap;

va_start(ap, fmt);
vprintf(fmt, ap);
va_end(ap);
}

static void vep(char *•, const char *fmt,
(

va_list ap;

va start(ap, fmt);
v..Printf(s, fmt, ap);
va_end(ap);
}

Chapter 12

/• test vfprintf •/

/* test vprintf •/

...)
!• teat veprintf */

int main()
(

char buf[32),
double db;
float fl;

/• test ba8ic workings of s tdio functions •/
ch;

int in;
long lo;
long double ld;
short ah;
void •pv;

ueert (eprintf (buf, "'%2cl %-4dl%.4ol %#1X",
' a ', -4, 8, 12L) = 16);

aaeert(atra11p(buf, " al-4 IOOlOIOXC") 0);
aaeert(eecanf(buf, " %cl%hd 1%i1Ux",

,ch, ,eh, 'in, 'lo) ~ 4);
aeeert(ch = 'a' '' eh= -4 '' in
aeeert (eprintf (buf, "%EI % . 2f I %Lg",

l . le20, -3.346, .02L) = 23);

8 ''lo= 12) ;

<stdio.h>

Continuing
tatdiol.c

Part2

aa-rt(atrcmp(buf, "l . 100000E+201-3. 3510.02") = 0);
aa-rt(aacanf(buf, "'•l'191Uf", ,fl, ,db, Ud) = 3);
aa-rt(faba(fl - l.le20) / l.le20 < 4 *FLT EPSILON);
aa-rt(faba(db + 3.35) I 3.35 < 4 * D8t. EPSILON);
aaaert(faba(ld - 0 . 02) I 0.02 < 4 * LDBL_EPSII.ON);
aaaert (4 <= sprintf (buf, " I %%%n %p",

'in, (void *)'ch) " in - 2);
aaaert (aacanf(buf, "I %%%n %p", 'in, lipv) = 1 lili in = 2);

331

{ /* teat formatted I/O *I
char buf[lO);
conat char *tn tmpnam(N'OLL);
Fit.E *pf;
fpoa t fpl, fp2;
int lnl, in2;
long off;

aaaert (tn != NUt.t. '' (pf = fopen (tn, "w+")) != NUl.t.) ;
-tbuf(pf, NUt.t.);

aaaert(fprintf(pf, "123\n") = 4);
aaaert((off = ftell(pf)) != -1);
aaaert(fprintf(pf, "456\n") = 4);
aaaert(fgetpoa(pf, 'fpl) = O);
aaaert(fprintf(pf, "7B9\n") = 4);
rewind(pf);
aaaert(facanf(pf, "%i", 'inl) = 1 '" inl 123);
aaaert(f-tpoa(pf, 'fpl) = 0);
aaaert(facanf(pf, "%i", 'inl) = 1 ' ' inl 789);
aaaert (f-elt(pf, off, SEEK_SET) = 0);
aaaert(facanf(pf, "%1", 'inl) = 1 '' inl 456) ;
aaaert(fcloae(pf) ..,. 0

' ' freopen(tn, "r", atdin) = atdin);
aaaert (aetvbuf (atdin, buf, IOt.BF, aizeof (but)) = 0);
aaaert(acanf("%i", 'inl) = 1 ' ' inl = 123);
aaaert(fcloae(atdin) == O);
aaaert ((pf = fopen (tn, "w+b'")) != NULL);

}

printf("Bt.IFSIZ = %u\n", 8UFSIZ);
printf("t. tmpnam = %u\n", t. tmpnam);
printf ("FI:LENAME MAX a %u\n-;;-, FI:LENAME MAX) ;
printf("FOPEN MAX= %u\n", FOPEN MAX);­

printf ("'l'MP_MAx • %u\n", TMP_MAX);
vap(buf, "SUC%c%a", 'C', "ESS");
vfp("%a testing %a", buf, "<atdio.h>");
vp(", part l\n") :
return (0);

0

332

Figure 12.62:
tatdio2 . c

Chapter 12

/* teat atdio functions, part 2 */
#include <aaaert . h>
#include <•rrno . h>
#include <atdio.h>
#include <string. h>

int main()
(/* teat basic workings of atdio functions */
char buf(32], tnama(L_ tmpnam], *tn;
FILE *pf;
static int maca (J • (

_ IOFBF, _ IOLBF, J:ONBF, BUFSIZ, EOF , FILENAME_ MAX,
F OPEN_ MAX, 'nlP_ MAX, SEEK_ CUR, SEEX_ END, SEEK_ SET};

aa-rt(256 <• BUFSIZ 4' EOF < O) ;
aa-rt(8 <= FC&>EN_MAX '' 25 <= 'nlP_ MAX) ;
aa-rt (bllpnam(tnama) .,. tnama " atrlen (tnama) < L_tmpnam) ;
aa-rt ((tn .. bllpnam(NULL)) != NULL

'' atrc:mp(tn, tname) !• 0) ;
pf = fopen(tn-. "w");
aa-rt(pf I= NULL

''pf !• atdin ''pf != atdout ''pf ! = atderr) ;
.,._rt(feof(pf) - 0 ' ' ferror(pf) - 0) ;
aa-rt(fgetc (pf) == EOF

'' feof(pf) """0 '' ferror(pf) ! • 0) ;
clea.rerr (pf) ;
aa-rt; (ferror (pf) -- 0) ;
aa-rt(fputc(' a' , pf) s: ' • ' ' ' putc('b', pf) z= ' b ') ;
aa-rt(O <= fputa("cde\n", pf)) ;
aa-rt (0 <• tputa (" fghij\n" , pf)) ;
aaaert (ffluah (pf) -- 0) ;
aa-rt(fwrite("klmnopq\n", 2, 4, pf) .,. 4) ;
.,._rt(fcloae(pf) ,... O) ;
as-rt (freopen (tn-, " r " , atdin) -- atdin) ;
8Jl-rt(fgetc(atdin) ~ 'a' '' getc(atdin) ~ 'b');
aa-rt (getchar () •= 'c') ;
aaaert(fgeta(buf, aizeof (buf), atdin) -- buf

'' atrc:mp(buf, "de\n") = 0) ;
aa-rt(ungetc(' x ', atclin) - ' x ') ;
aa-rt (geta (buf) - buf " atrc:mp(buf, "xfghij") 0) ;
.,._rt(fread(buf, 2 , 4 , atdin) = 4

' ' atrnc:mp(buf, "k.lJllnopq\n", 8) """ 0) ;
--rt(getchar() -- EOF " feof(atdin) , .. 0) ;
remove (tn) ;
aaaert(rename(tnama, tn) = 0

'' fopen(tname, " r ") =NULL) ;
••-rt ((pf • fopen (tn, " r ")) ! = NULL '' fclo- (pf) = OJ ;
••-rt(remove(tn) = O '' fopen(tn, "r") •=NULL);
aa-rt ((pf • tq>file ()) ! = NULL '' fputc (' x ' , pf) = 'x') ;
errno c ED<:»t;
perror ("Domain error reported aa") ;
putchar (' S') , put• ("UCCESS testing <stdio. h>, part 2 ") ;
return (0) ;

D

Chapter 13: <stdlib.h>

Background
The header <.stdlib. h> is a hodgepodge. Committee X3J11 invented this

header as a place to define macros and declare functions that had no other
sensible home:
• Many existing functions, such as aba and malloc, had no traditional

headers to declare them. X3J11 felt strongly that every functions should
be declared in a standard header. If such a function seemed out of place
in all other headers, it ended up declared in <atdlib. h>.

• New groups of macros and functions ended up in new standard headers
wherever possible. <float. h> and <locale. h> are clear examples. Addi­
tions to existing groups ended up in existing headers. atrcoll, declared
in <atring.h> and atrftime, declared in <time.h> are also fairly clear.
Other macros and functions are harder to categorize. These ended up
defined or declared in <atdlib. h>.

This header is not the only hodgepodge. I discuss the evolution of the
header <atddef. h> on page 215.

function To provide some structure for this chapter, I organize the functions into
groups six groups:

• integer math (aba, div, labs, and ldiv) - performing simple integer
arithmetic

• algorithms (b-arch, qaort, rand, and arand) - capturing operations
complex and widespread enough to warrant packaging as library func­
tions

• text conversions (atof, atoi, atol, atrtod, atrtol, and atrtoul) -

determining encoded arithmetic values from text representations
• multibyte conversions (mblen, mbatowca, mbtowc, wcatanba, and wctanb)

- mapping between multibyte and wide-character encodings
• storage allocation (calloe, free, malloc, and r-lloc) - managing a

heap of data objects
• environmental interactions (abort, atexit, exit, getenv, and ayatem) -

interfacing between the program and the execution environment
I discuss separately how to implement the functions in each of these
groups.

334 Chapter 13

What the C Standard Says
<• tdlib . h>

•i••_t
wch.ar_t

cliv_ t.

l div_ t

&XI'l'_F.Al:LtJU

&XIT_SUCc&sS

JIB_COJl_ICAX

7.10 General utilities <stdlib . h >

The header <atdlil:>.h > declares four types and several functions of general utility, and
defines several macros. •26

The types declared arc a i ze_t and wchar_t (both described in 7.1.6),

cliv_t

which is a structure type that is the· type of the value returned by the div function, and
ldi.v_ t

which is a structure type that is the type of the value rccumed by the l d1 v function.
The macros defined arc NULL (described in 7.1.6);

&XIT_l'AILORE

and
u1r_socass

which expand to integral expressions that may be used as the argument to the exit function to
return W1Succcssful or successful termination status, rcspcctivdy, to the host environment;

IWID_NAX

which expands to an integral constant expression, the value of which is the maximum value
returned by the rand function; and

MB_ CUR._ MAX

which expands to a positive integer expression whose value is the maximum number of bytes in
a multibyte character for the extended character set specified by the current locale (category
LC_ CTYPE), and whose value is never greater than MB_ I.EN_ MAX.

7.10.l String conversion functions
The functions a tof , a toi, and atol need not affect the value of the integer expression

e rrno on an error. If the value of the result cannot be represented, the behavior is undefined.
a<of 7.10.1.1 The a tof function

Synopsis

linclude <• tdlib. h>
double atof(con.t char *npt.r);

Description

The a tof function convcns the initial portion of the string pointed to by nptr to double
representation. Except for the behavior on error, it is equivalent to

atrt.od(nptr, (char • •)NOLL)

Returns

The atof function returns the convened value.

Forward r eferences: the atrtod function (7.10.1.4).

ato~ 7.10.1.2 The atoi function

Synopsis

linclude < • tdlih. h>
i n t a toi (con• t char •nptr) ;

Description

The atoi function convcns the initial ponion of the string pointed to by nptr to int
representation. Except for the behavior on error, it is equivalent to

(int)atrtol(nptr, (char ••)NtJLL1 10)

Returns

The a toi funaion returns the convened value.

Forward r eferences: the a trtol function (7.10.1.5).

<stdlib.h>

atol

atrt.ol

7.10.1.3 The atol function

Synopsis

l include <•tdli.b. h>
lon9 int atol(conat char • nptr) :

~~iplion

335

The a tol function conven s !he inirial ponion of the string pointed 10 by nptr 10 l.ong int
repn:senrarion. Except for rhe behavior on error. ir is equivalem 10

a trtol (npt.r, (char ••)NOLL, 10)

Returns

The atol function returns rhe convened value.

Forward r eferences: rhe atrtol function (7 .10.1.5).

7.10.J.4 The strtod function

Syno1'5is

l incl\lcS. <at.dlib. b>
dOUbl• atrtod(conat char •nptr, char ••.ndpt r);

Description

The strtod function convens the initial ponion of rhe string pointed 10bynptr 10 double
represenrarion. First, ii decomposes rhe inpur siring inro rhrce pans: an initial. possibly empty,
sequence of white-space characters (as specified by the isspaca function), a subject sequence
resembling a floating-point constant; and a final string of one or more Wlfecognized charactCf'S,
including the terminating null character of the input string. Then, it auempts to conven the subject
sequence to a floating-point number, and ~urns the resul!.

The expected form of the subject sequence is an optional plus or minus sign, then a nonempty
sequence of digits optionally containing a decimal-point character. then an optional exponent pan
as defined in 6. 1.3.1, but no floating suffix. The subject sequence is defined as the longest initial
subsequence of the input string, starting with the first non- while-space character, that is of the
expected form. The subject sequence contains no characters if the inpur siring is empty or consists
entirely of white space. or if the fi1$ non- white-space c haracter is other rhan a sign, a digit, or a
decimal-point character.

Ifrhe subject sequence ha< the expected form, the sequence of characters staning with !he first
digit or rhe decimal-point character (whichever occurs firSI) is interpreted as a floating constant
according to rhe rules of 6.1.3. I, except thar rhe decimal-point character is used in place of a
period, and that if neither an exponent pan nor a decimal-point character appears, a decimal point
is assumed to follow the last digit in !he siring. If rhe subject sequence begins with a minus sign.
lhe value resulting from the conversion is negated. A pointer to rhe final string is stored in the
object pointed to by andptr. prov ided that endptr is not a null pointer.

In other rhan the "C" locale , additional implementarion-defined subject sequence forms may
be accepted.

If !he subject sequence is empty or does not have !he expected form, no conversion is
performed; the value of nptr is stored in the object pointed to by andptr, provided that
andptr is not a null pointer.

Returns

The ~~rtod function returns rhe corwencd value, if any. If no conversion could be performed.
zero is returned If !he correct value is outside the range of rcprescnrablc values, plu s or minus
HUGE VAL is returned (according to the sign of the value), and the value of the macro ERANGE
is sro..00 in arrno . If the correct value would cause underflow, zero is ~urned and lhe value of
lhc macro ERANGE is srorcd in errno.
7.10.1.5 The atrtol functiOll

Synopsis

linclude <•tdlib . b>
l ong i n t a trto l(con•t Char *nptr, char ••endptr, int b•• •);

Description

The strtol function con.ens the initial ponion ofrhe string pointed to by nptr IO long
int representation. First, it decomposes rhe inpurstring inro three pans: an initial, possibly empty,
sequence of white-space characters (as specified by the is space funcrion), a subject sequence

336

a t rt.oul

Chapter 13

resembling an integer represented in some radix determined by the value of base, and a final
string of ooe or more unrecognized characters, including the terminating null character of t'1c
input string. Then, it attempts to convert the subject sequence to an integer, and returns the result

If the value of base is zero, the expected form of the subject sequence is that of an integer
constant as described in 6. 1.3.2, optionally preceded by a plus or minus sign, but not including
an integer suffix. If the value of .b&ee is between 2 and 36, the cxpccud form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign, but not including an integer suffix. The lcucrs
from a (or Al through z (or Z) are ascribed the values 10 to 35; only letters whose ascribed values
are less than that of base are permitted. If the value of base is 16, the characters Ox or OX may
optionally precede the sequence of letters and digits, following the sign if presenL

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white-space character, that is of the expected form. The subject sequence
contains no characters if the input string is empty or consists entirely of white space, or if the first
non-white-space c haracter is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the uquenoe of
characters starting with the first digit is interpreted as an integer constant according 10 the rules
of 6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and
36, it is used as the base for conversion, ascribing to each letter its value as given above. If the
subject sequence begins with a minus sign, the value resulting from the conversion is negated. A
po;nter to the final string is stored in the object pointed to by endptr, provided that endptr
is not a null pointer.

In other than the "C" locale, additional implementation-defined subject sequence forms may
be accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value of nptr is stored in the object po;nted to by endptr, provided thal
endptr is not a null pointer.

Returns

The strtol function tctums the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of tcpresentable values, LONG MAX or
LONG MIN is returned (according to the sign of the value), and the value of the macro ERANGE
is stored in errno.

7.10.1.6 The strtoul function

Synopsis

I i nclude <atdli.b. h>
unaiqned long int atrtovl (con at char •nptr, char •••ndptr, int ~);

Description

The etrtoul function converts the initial portion of the string pointed to by nptr to
unsigned long i nt representation. First, it decomposes the input string into three partS: an
initial, possibly empty. sequence of white-space characters (as specified by the issp.ce
function), a subject sequence resembling an unsigned integer represented in some radix deter­
mined by the value of base, and a final string of ooe or more unrecognized characters, including
the terminating null character of the input string. Then, it attempts to convert the subject sequence
to an unsigned integer, and returns the resulL

If the value of base is zero, the expected fonn of the subject sequence is that of an i111eger
constant as described in 6.1.3.2. optionally preceded by a plus or minus sign, but not inclu~
an integer suffix. If the value of .base is between 2 and 36, the expected form of lhe subject
sequence is a sequence of letters and digits representing an integer with the radix specified by
base, optionally preceded by a plus or minus sign. but n()(including an integer suffix. The letters
from a (or A) through z (or Z) are ascribed the values 10 to 35; only letters whose ascribed values
are less than that of base are pennitted. If the value ofbase is 16, the characters Ox or OX may
optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string, starting
with the first non-white•space character, that is of the expected form. The subject sequence
contains no characters if the input Mring is empty or consists entirely of white space, or if the first
non-white· space character is other than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the value of base is zero, the sequence of
characters starting with the first digit is interptcted as an integer constant according 10 the rules
of 6.1.3.2. If the subject sequence has the expected form and the value of base is between 2 and
36, it is used as the base for conversion, ascribing to each letter its value as given above.

<etdlib . h> 337

I f the subject sequence begins with a minus sign. the value resulting from the conversion is
negated. A pointer to the final Siring is Slored in the object pointed to by endptr. provided that
endptr is noc a null pointer.

In other than the " C" locale. additional implementation-defined subject sequence forms may
bea=Jllcd.

If the subject sequence is empty or does not have the expected fonn, no conversion is
perfonncd; the value of nptr is Slorcd in the object pointed to by a ndptr, provided that
endptr is not a null pointer.

Returns

The .trtoul function returns the convened va.luc, if any. If no conversion could be
performed. zero is returned. If the con-ect value is outside the range of representable values.
ULOfiG _MAX is returned. and the value of the macro EllANGI! is stored in a rrno.

7.10.2 Pseudo-random sequence generation functions
rand 7.10.2.1 The rand function

Synopsis

11.nc.lude <e tdli.b. h>
l.nt .rand(void) :

Description

The rand function computes a sequence of pseudo-random integers in the range 0 to
RAND_MAX.

The implementation shall behave as if no library function calls the rand function.

Returns

Thc rand function returns a pseudo-random integer.

Envlronmmtal llmlt

The value of the RAND MAX macro shall be at lcU 31:767.
7.10.2.2 The arand f~ion
Synopsis

l l.nc.lude <etdli.b. h>
•old er and (un.19f'li94 i.nt ..ed);

Description

'The a rand function uses the argument as a seed for a new sequence of pseudo·random
numbers to be returned by subsequent calls to rand If a rand is then called with the same seed
value, the sequence of pseudo-random numbers shall be repeated. If rand is called before any
calls to •rand have been made, the same sequence shall be generated as when •rand is first
called with a seed value of I .

The implemcntacion shall behave as if no library function calls the arand function.

Returns
The arand function returns no value.

Exam pk

The following functions define a portable implementation of r and and •rand.
e t e tlc une19 ned long 1.nt naxt. • 1 ;

int rand (void) /• RAMD_ MAX ass1,.1med to be 327' 7 • /
I

next • nut • 11035152'5 + 123&5:
r•turn (u.n•ig-n.-4 int) (nea:t/ 65536) ' 3~'768J

void • r •nd(un.ei9Nid .int -ed.)
I

338

ul.loc

Chapter 13

7.10.3 Memory management functions
The order and contiguity of storage allocated by successive calls to the c alloc, mal.l.oc,

and reall.oc functions is unspecified The pointer returned if the allocation succeeds is suitably
aligned so that it may be assigned to a pointer to any type of object and then used to aocess such
an object or an array of such objects in the space allocated (until the space is explicitly freed or
reallocated). Each such allocation shall yield a pointer to an object disjoint from any other object.
The pointer returned points to the stan (lowest byte address) of the allocated space. If the space
caMOI be allocated, a rull pointer is returned. If the size of the space re<juested is zero, the behavior
is implementation-def med; the value returned shall be either a null pointer or a unique poinlcr.
The value of a pointerthat refers to freed space is indeterminate.

7.10.3.1 The ca11oc functioo
Synopsis

linclude <etdl.ib .h>
void •cal.loc(•i••_t. naeab, •i&e_t a is•);

Descriplion

The call.oc function allocatcs space for an array of nmemb objects, each of whose siie is
s ize. The space is initialized to all bits iero. IZ1

Returns

The cal.lo c function returns either a null pointe< or a pointe< to the allocated space.

rr- 7.10.3.2 The f ree function
Synopsis

aal.loc

re&lloc

linclude <at.dlib . h>
v oid tr .. (void •ptr) ;

Descript ion

The f r e e function causes the space pointed tobyptrto be deallocated, that is, made available
for funher allocation. lfp t r is a null pointer, no action occurs. Otherwise, if ihe argument docs
noc match a pointer earlier returned by the cal.l.oc. mal.l oc. or real.l oc function, or if the
space has been deallocated by a call to free or r-lloc, the behavior is undefined.

Returns

The f ree function returns oo value.
7.10.3.3 The ma11oc function
Synopsis

I include <atdlib. h>
void •aalloc (•i••_t •ise) ;

Description

The malloc function allocates space for an object whose size is specified by s ize and whose
value is indeterminate.

Retur~

The malloc function returns either a null pointer or a pointer to the allocated space.

7.10.3.4 The r e a11oc function
Synopsis

linclude <•tdlib. h>
void •.realloc(void •ptr~ •i••_t •i••) ;

Descrip tion

The r-1.l oc function changes the size of the object pointed to by p t r to the size specified
by siz e . The contents of the object shall be unchanged up to the lesser of the new and old siies.
U the new size is larger, the value of the newly allocated ponion of the object is indeterminate. If
p t r is a null pointe<, the r-lloc function behaves like the 111al1oc function fortl:te specified
size. Otherwise, if p tr does not match a pointer earlier returned by the calloc, ma1 loc, or
r-lloc func1ion, or if the space has been deallocated by a call to the f r ee or r - lloc
function, the behavior is undefined. If the space caMOI be allocated, the object pointed to by ptr
is unchanged. 1f s i ze is zero and ptr is not a null pointer, the object it points lo is freed.

<11td1ib.h>

a t eait

339

Returns

The realloc function re1ums either a null pointeror a pointerto the possibly moved allocated
space.

7.10.4 Communication with the environment
7.10.4.1 The abort function
Synopsis

linclude <•tdlib .h>
void abort (void, ;

Desai pt ion

The abort function causes abnormal program termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. Whether open output streams
arc flushed or open streams c losed or temporary files removed is implemen1ation-defined. An
implementation-defined form of the status unsuccessful termination is returned to the host
environment by means of the function call raise (SIGABRT) .

Returns

The abort function cannot return to its caller.

7.10.4.2 The atexit function
Synopsis

linc:lud. <•tdlib. h>
i nt at-.lt (void (*~\Inc) (void)) ;

Description

The atexit function registers the function pointed to by func, to be called without
arguments at normal program tennjnation.

Implementation limits

The implementation shall support the registration of at least 32 functions.

Returns

The a texit function returns z,ero if the registration succeeds, nonzero if it fails.

Forward references: the exit function (7 .10.4.3).

•xit 7.10.4.3 The exit function
Synopsis

9ete.nv

I include <•t:.d.lib _ h>
void aait (int etat\181);

Description

The exit function causes normal program termination to occur. If more than one call to the
exit function is executed by a program, the behavior is undefined.

First. all functions registered by the at exit function are called, in the reverse order of their
rcgistration.128

Next, all open streams with unwritten buffered data are flushed, all open streams Are closed.
and all files created by the tmp:fi1e function are removed.

Finally, control is returned to 1the host environment. If the value of statue is zero or
EXIT SOCCBSS, an implementation-defined form of the status successful termination is
retumCil. If the value of statue i s EXIT FAILURE, an implementation-defined fonn of the
status unsuccessful termination is rctumed:\>therwise the status returned is implemcntation~dc·
fined.

Returns

The exit function cannot return to its caller.

7.10.4.4 The qetenv function
Synopsis

I incl ude <atd.lib. h>
char *q•tenv(conat char *name);

340

b .. a .rch

qaort

Chapter 13

Description

1lte qetenv function searches an envir-onment list, provided by the host environment~ for a
string that matches the string pointed to by name. The set or environment names and the method
for altering the environment list arc implementation-defined.

The implcmentaJion shall behave as if no library fuoction calls the getenv funct;on.

Returns

The qetenv function returns a pointer to a string associated with the matched Ii.st member.
The string pointed to shall not be modified by the program, but may be overwritten by a :subsequent
call to the getenv function. If the spe.:ified n.- cannot be found, a null pointer is returned.
7.10.4.S The 11y11tem function

Synopsis

11.ncluc:t. <atd.U..b . h>
i nt ayat .. (con• t: cha r *•tring) ;

Oescrlpllon

The 11y11tem function passes the string pointed to by 11trin9 to the host environmenl to be
executed by a command proctssor in an implementation-defined manner. A null pointer may be
used for string to inquire whether a command processor exists.

Returns

If the argument is a null pointcT, the 11yatem fuoction returns nonzero only if a command
processor is available. If the argument is not a null pointer, the 11y11tem fuoction returns an
implementation-defined value.

7 .10.5 Searching and sorting utilities
7.10.S.I The baearch function

Synopsis

linclude <ot d lib. h>
void *ba .. rch(conat. void *k•y, conat void *ba••, •it.e t. nm.ab,

a i s:e_t •ise, l.nt (*coapar) (con•t void • , conet ;oid •));

Oescrlpllon

The bll-rch ruoction searches an array of nmemb objects, the initial element of which is
pointed to by b ase, for an elemerat that matches the object pointed to by key. The s.ize of each
element of the array is spe<:ified by 11ize.

The comparison function pointed lo by ccmpar is called with two arguments that point to the
key object and to an array elcmernt. in that order. The fuoction shall return an integer less than.
equal to, or greater than zero if the k e y object is considered, respectively, to be less than, to rnaJch,
or to be greater than the array element. The array shall consist of: all the elements that compare
less than, all the elements that compare equal to. and all the elements that compare greater than
the key object, in that order.'29

Returns

The baearch function returns a pointer to a matching element of the array. or a null pointer
if no match is found. If two elements compare as equal, which element is matched is unspecified
7.10.S.2 The qaort function

Synopsis

li.ncluc.t. <•tdlib . h>
void qaort (void *ba••· •is• t naemb, •is• t •is.,

int (*compa.r) (con• t v~id • , c.on•t v~id •)I;

Oescriplion

The qsort function sons an alifay of nmemb objects, the initial element o f which is poinlcd
to by baae. The size of each object is specified by 11ize.

1bc contents of the array arc sorted inlo ascending order according to a comparison function
pointed to by compar, which is called with two arguments that poinl to the objects being
compared. The function shall return an integer less than, equal to, or greater than zero if the first
argument is considered to be respectively less than. equal to, or greater than the second.

If two clements compare as equal. their order in the sorted array is unspecified.

<stdlib. h>

Return.<

The qaort function rtlums no value.

7.10.6 Integer a rithmetic functions

341

ah• 7.10.6.l The abs function

Synopsis

l inclu.de <• tdlib . h>
i n t ab• (.int j);

Description

The abs function computes the absolute value of an integer j . If the resull cannot be
represented, the behavior is unde!ined. •30

Returns

The abs function rerums the al>solute value.

di.v 7.10.6.2 The div function

Syn opsis

l include <•tdlib . h>
cliv_ t d.iv(i.n.t nu:tAtir, i.nt d.•1'.LOa) ;

Description

The div function computes the quotient and remainder of the division of the numcrarorn umer
by the dcnominatordenom. if the division is inexact. the resulting quotient is the integer of lesser
magnicude Chat is the nearest to the algebraic quolient. If the result cannot be represented, the
behavior is undefined; otherwise, quot * ci.nom + rem shall equal numer.

Rau m s

The div function returns a structure of type div t , comprising both the quotient and the
remainder. The structure shall contain the following members, in eieher order:

i n t qu.ot; /* quotient •/
int rem; /* remainder * /

lab• 7.10.6.3 The labs function

Synopsis

l lnclude <etdU.b .h>
l onoq int l aba(long int j) ;

Description

The labs function is similar to· the abs function, except that the argument and ct.: rerumcd
value each have type l ong i nt.

l d.lv 7.10.6.4 The ldi v function

Synopsis

l include <atdllb .h>
ldi v _ t ldi v (long int. n~r, 1ong i nt. de.no•) ;

Description

The ldi v function is similar to the div function. except that the arguments and the members
of the returned structure lwhich has type ldiv_t) all have type long int.

7.10.7 Mullibyte charader functions
The behavior of the multibyte ctlaraetet functions is iiffccttd by the LC CTYPE category of

the current locale. For a statc·dependem encoding, each function is placed iiito its initfal state by
a call for which its character point-er argument, s , is a null pointer. Subsequent calls with s as
othe.r than a null pointer cause the internal state of the function to be ahered as necessary. A call
withs as a null pointer causes these functions to rt1um a oonzero value if encodings have state
dependency, and zero otherwisc.ll• Changing the LC CTYPE category causes the shift state of
these functions to be indeterminate. -

342

&bl•n

mbt.ovc

vetomb

7.10.7.1 Themb1en function

Synopsis

lincl u c:M <atdlJb . h>

int mblen(con•t char *•. a ise_t n) ;

Description

Chapter 13

If • is not a null pointer, the mblen fuoction determines the numberof bytes contained in the
multibytc character pointed to by a . Except that the shift state of the mbtowc function is not
affected, it is equivalent to

mbtowe((wchar_ t *) 0 ,. a , n) ;

The implementalion shall behave as if no library fuoction calls the mblen function.

Returns

If a is a null pointer, themblen fuoction returns a nonzero onero value, if multibyte character
eocodings, respectively, do or do not have state-dependent encodings. If• is not a null poirter,
the mblen function eilher returns 0 (if a points to the null character), or returns the number of
bytes that arc contained in the mtiltibyte character (if the ncx1 n or fewer bytes form a valid
multibytc character). or returns - 1 (if they do not form a valid muhibyte character).

Forward refe rences: the mbtowc function (7.10.7.2).
7.10.7.2 Thembtowc function

Synopsis

linclude <atdlib.h>
int mbtov c (wcha r _t •pvc, conat char •a, ai&•_t n) ;

Description

If a is no< a null pointer. the :mbtowc fuooion determines the number of by1cs that are
conlained in the multibyte character pointed lo by a . It then determines the code for t he value of
type wchar t that corresponds to that mullibytc character. (The value of the code corresponding
In the null cliiracter is um.) If the mullibyte character is valid and pwc is nOI a null pointer. the
mbtowc function s tores the code in the object pointed to by pwc. At most n bytes of the array
pointed lo by • will be examined.

The implemental ion shall behaYc as if no library function calls the mbtowc function.

Returns

If • is a nun pointer, the mbtowc function returns a nonzero or zero value, if m.iltibyte
character encodings, respectively. do or do not have stat~cpendent encodings. If a is not a null
pointer. the mbtowc function either returns 0 (if • points to the null character), or returns the
number of bytes that arc conlained in the converted multibyte character (if the next n or fewer
bytes form a valid multibytc character), or returns - I (if they do not form a valid multibytc
character).

In no case will the value returned be greater than nor the value of the MB CUR MAX macro.
7.10.7.3 The wctomb function - -

Synopsis

linclude <•tdlib. h>
int vct.omb (char • •. wchar _ t. wchar) ;

Description

Titc wctomb function determines the number of bytes needed to represent the multibytc
character corresponding to the code whose value is wchar (including any change in shift stare).
It stores the multibyte character representation in the array object pointed to by • (if• is not a
rull pointer). At most MB CUR MAX characters arc stored. lf the value of wchar js zero. the
wctomb function is left lnthc initial shift state.

The implementation shall behave as if no library function calls the wctomb fuoction.

Returns

If a is a null pointer. the wctomb function returns a nonzero or zero value. if muh ibyte
character encodings. respectively. door do not have state-dependent eocodings. If a is not a null
pointer, the wc tomb function returns - I if the value of wchar does not correspond to a valid
multibyle character, o r returns the number of bytes that arc contained in the multibyte character
corresponding to the value of webar.

<stdl.ib . h>

mbetowca

wcstoab•

In no= will the value returned be greater than the value of the MB_ CUR_ MAX macro.

7.10.8 MuJtibyle string functions

343

The behavior of the multibytc st ring functions is affected by lhc LC CTYPE category of the
current locale. -

7.10.8.1 The mbatowca function
Synopsis

finclude < •tdlib. h>
•ize_t mb•towc•(wcha:r_t •p•C•, con•t char • a, ai &a_t n):

Description

1be mbatowca function converts a sequence of multibyte characters that begins in the initial
shift state from the array pointed to by a into a sequence of corresponding codes and seorcs oot
more than n codes into the array pointed to by pwca. No multibytc characters that follow a null
character (which is converted into a code with value zero) will be examined or L"Onverted. Each
mdtibyte character is converted as if by a call to lhc mbtowc function, excep1 that the shift state
of the mbtowc function is nOI affected.

No more lhan n clements will be modified in the array pointed to by pwca. If copying takes
place between objects that overlap, the behavior is undefined.

Returns

If an invalid multibytccharactcris encountered, thembatowca function returns (aize t) -
1 . Otherwise, the mbatowca function returns the number of array clements moclifieo. oot
including a terrninating zero code, if any.132

7.10.8.2 The wca tomba function

Synopsis

l include <atd.lib.h>
•ize_t v catoaba (ch-.r ••1 conat wchu_t •pwca , ai s.•_ t n) ;

Description

The wcatomba function converts a sequence of codes that correspond to multibyte.characters
from the array pointed to by pwca into a sequence of multibytc characters that begins in the initial
shift state and stores these multibytc characters into the array pointed to by a, stopping if a
multibyte character would exceed tlhe limit of n tOlal bytes or if a null character is stored. Each
code is convened as if by a call to lhc wctomb function, e xcept that the shift state oflhe wctomb
function is not affected.

No more than n bytes will be modified in lhc array pointed to by a . If copying takes place
between objects that overlap, the behavior is undefined.

Returns

If a code is encountered lhat does n()(correspond toa valid multibytc character, the wcatomba
function returns (ai ze t) - 1 . Otberwise, the wcatomba function returns lhe number of bytes
modified, nOI including a terminating null character, if any.132

Footnotes

126. See .. future library directions•• (7.13.7).

127. Note that this need not be the same as the representation of floating-point zero or a null
pointer constant.

128. Each function is called as many times as it was registered.

129. In practice, the entire array is :sorted according to the comparison function.

l 30. 1be absolute value of the most negative number cannot be represented in two's complement.

131. If the implementation employs special bytes to change the shift state, these bytes do not
produce separate widecharactercodcs, but arc grouped with an adjacent muhibyte character.

132. The array will nOI be null- or zero-tcrrninated if the value returned is n.

344 Chapter 13

Using <stdlib.h>
Many of the functions declared in <•tdlib.h> stand alone. You use

atexit in conjunction with exit, perhaps, and arand in conjunction with
rand. Still, you can use and understand most of these functions in isolation.
In this crowd of individuals, two groups stand out:

• The storage allocation functions work together to manage a heap.
• The multibyte functions work together to convert among different rep­

resentations for large character sets.
Each of these groups warrants some discussion.

The data objects in a Standard C program occupy three kinds of storage:
storage • The program allocates static storage and stores initial values in it prior to

allocation program startup. If you specify no initial value for (part or all oO a data
functions object, the program initializes each of its scalar components to zero. Such

a data object continues in existence until program termination.
• The program allocates dynamic storage upon each entry to a block. If you

specify no initial value for a data object, its initial content is indetermi·
nate. Such a data object continues in existence until execution of the
block terminates.

• The program allocates al/'ocated storage only when you call one of the
functions callee, maUoc, or realloc. It initializes such a data object to
an array of zero characters only if you call callee. Otherwise, its initial
content is indeterminate. Such a data object continues in existence until
you call free with its address as the argument or else until program
termination.

The functions that manipulate allocated storage are the storage allocation
functions declared in <stdlib.h>.

the Static storage remains stable during program execution. Dynamic stor-
heap age follows a last-in/first-out discipline. It can be implemented on a stack.

Often, dynamic storage shares the call stack with function call and return
information. (See the discussion beginning on page 182.) Allocated storage
follows no such tidy discipline. The program can intermix the allocation
and freeing of such data objects in arbitrary order. Hence, the Standard C
library must maintain a separate pool of storage called a heap to satisfy
requests for controlled storage.

In some implementations, the call stack and the heap contend for a
limited amount of storage. Allocate enough storage with malloc and you
may limit the depth to which you can call functions later in the program.
Or you may simply run out of space on the heap. In any event, it is simply
good hygiene to allocate only what storage you need and to free it as soon
as you're done with it.

heap Be aware that allocated storage involves certain overheads. Accompa-
overhead nying each allocated data object is enough information for fr- to deter­

mine the size of the region being freed. Allocate 1,000 one-character data

<stdlib.h> 345

you can easily consume four to eight times as much storage on the heap.
The heap is also subject to fragmentation. Allocating and freeing data
objects on the heap in arbitrary order inevitably leaves unusable holes
between some of the allocated data objects. That too lowers the usable size
of the heap.

Don't overreact to this knowledge. Gather related data into a structure
and allocate it all at once. That minimizes heap overhead, to be sure, but it
is also good programming style. Do not gather unrelated data just to save
heap overhead. Similarly, allocate data objects with similar lifetimes all at
once, then free them at about the same time. That minimizes heap fragmen­
tation, but it too is good style. Do not advance or defer unrelated heap
operations just to minimize fragmentation. The storage allocation functions
are an important aid to programming flexibility. Use them as they are
intended to be used.

multibyte The other group of related functions helps you manipulate large char­
character acter sets. Standard C added this group in response to the rapidly growing

sets use of Kanji and other large character sets in computer-based products. The
functions support two representations for such character sets:

• Multibyte characters are sequences of one or more codes, where each
code can be represented in a C character data type. (The character data
types are char, signed char, and unsigned char. All are the same size in a
given implementation. That size is at least eight bits.) A subset of arty
multibyte encoding is the basic C character set, each character of which
is a sequence of length one.

• Wide characters are integers of type wchar _ t, defined in both <atddef. h>

and <std.lib. h>. (Assume that vchar _ t can be any integer type from char
to unsigned long.) Such an integer can represent distinct codes for each
of the characters in the large character set. The codes for the basic C
character set have the same values as their single-character forms.

Multibyte characters are convenient for communicating between the pro­
gram and the outside world. Magnetic storage and communications links
have evolved to support sequences of eight-bit characters. Wide characters
are convenient for manipulating text within a program. Their fixed size
simplifies handling both individual characters and arrays of characters.

TheC Standard defines only the bare minimum needed to support these
two encodings. mblen, mbatowc•, and mbtovc help you translate from mul­
tibyte characters to wide-characters. wcatomba and wctomb help you do the
reverse. You can be sure that more elaborate sets of functions will soon be
standardized. For now, however, this is what you have.

You may have no immediate intention to write programs that are fluent
with large character sets. That should not deter you from writing programs
that are tolerant oflarge character sets as much as possible. See, for example,
how such characters can appear in the formats used by the print and scan
functions, declared in <stdio. h>, and by strftime, declared in <t.i.me. h>.

346 Chapter 13

I conclude with the usual description of the individual macros defined
and functions declared in <atdlib.h>:

EXIT_FAZWRE EXIT_FAIWRE - Use this macro as the argument to exit or the return
value from main to report unsuccessful program termination. Any other
nonzero value you use instead may have different meanings for different
operating systems.

EXIT_SVCCESS EXIT_SUCCESS - Use this macro as the argument to exit or the return
value from main to report successful program termination. You can also use
zero. Any other value you use may have different meanings for different
operating systems.

MB _ CUR _MAX MB_ CUR_ MAX - No multibyte sequence that defines a single wide charac-
ter will be longer than MB_COR_MAX in the current locale. You can declare a
character buffer of size MB_ LEN_ MAX, defined in <l imits . h>, then safely store
MB_cUR_MAX characters in the initial elements of the buffer. Calling mbtowc

with a third argument of at least MB_CUR_MAX is always sufficient for the
function to determine the next wide character in a valid multibyte se­
quence. See the example for wctomb on page 352

RAND_MAX RAND_MAX - Use this value to scale values returned from rand. For
example, if you want random numbers of type float distributed over the
interval [0.0, 1.0), write the expression (float) rand () /RAND_ MAX. The value
ofRAND_MAX is at least 32,767.

aize_t size_t-Seepage219.
wchar _ t wchar _ t - See page 219.

div t div_t - Declare a data object of this type to store the value returned by
div, described below.

ldiv_t ldiv_t - Declare a data object of this type to store the value returned
by ldiv, described below.

abort abort - Call this function only when things go terribly wrong. It
effectively calls raise (SIGABRT), as described in Chapter 13: <signal .h>.

That gives a signal handler for SIGABRT the opportunity to perform any
last-minute operations. On the other hand, you can't be assured that
input/output streams are flushed, files closed properly, or temporary files
removed. Whenever possible, call exit (EXIT_FAIWRE) instead.

abs abs-Callabe(x) insteadofwritingtheidiomx < o ? -x : x.Agrowing
number of Standard C translators generate inline code for abs that is
smaller and faster than the idiom. In addition, you avoid the occasional
surprise when you inadvertently evaluate twice an expression with side
effects. Note that on a two's-complement machine, ab• can generate an
overflow. (See page 77.)

atexit atexit - Use this function to register another function to be called when
the program is about to terminate. You may, for example, create a set of
temporary files that you wish to remove before the program terminates.
Write the function void tidy (void) to remove the files. Call atexi t (' tidy)
once you store the name of the first file to remove. When main returns or a

<atd1i.b. h.> 347

function calls exit, the library calls all functions registered with atexit in
reverse order of registry. The library flushes streams, closes files, and
removes temporary files only after it calls all registered functions. You can
register up to 32 functions with atexit.

atof atof - The call atof(•l is equivalent to atrtod(•, NULL), except that
atof is not obliged to store ERANGE in errno to report a range error. (See
Chapter 13: <errno . h>.) You also get no indication with atof of how many
characters from the string pointed to by• participate in the conversion. Use
atrtod instead.

atoi atoi -Replaceatoi(•) with (int)atrtol(a, NULL, 10).Thenconsider
altering the second argument so that you can determine how many char­
acters participated in the conversion. See the discussion of atof above for

the reasons why.

atol atol - Replace atol (•) with atrtol (•, NULL, 10) . See the discussions
of atof and atoi above for the reasons why.

ha.arch baearch - Use this function to search any array whose elements are
ordered by pairwise comparisons. You define the ordering with a compari­
son function that you provide. For example, you can build a keyword
lookup function from the basic form:
#include <atdlib.h>
#include <•trinq.h>

typedef enua (FLOM' , INTEGER) Code;
typedef atruct (

char *•;
Code code;
) Entry;

Entry aymtab(J • I
("float", FLOAT) ,
("integer", INTEGER))

static int cmp(conat void *cit, conat void *ce)
I /* caapare key to table element */
return (atrcmp((char *)cit, ((Entry *) ce)-•));

Entry *lookup(c:har *key)
(/* lookup key in table */
return (baearch(key, aymtab,

aiEeof aymtab I •iEeof symtab(O],
aiEeof aymtab(O] , 5cmp));

A few caveats:

• If a key compares equal to two or more elements, baearch can return a
pointer to any of these elements.

• Beware of changes in how elements sort when the execution character
set changes - call qaort, described below, with a compatible compari­
son function to ensure tha t an array is properly ordered.

348 Chapter 13

• Be careful using the functions strcmp or strcol.l, declared in <.string . h>,

directly. Both require that strings be stored in the array to be searched.
You cannot use them to search an array of pointers to strings. To use
strcmp, for example, you must write a function pointer argument that
looks like (int (*) (conat void *, conat void *)) utranp.

calloc calloc - Use this function to allocate an array data object and store
zeros in all of the characters that constitute the data object. You can assume
that the size of any character type is 1, but otherwise you should use the
operator ai&eof to determine the second argument. Do not specify a second
argument whose value is zero.

For maximum portability, don't assume that any floating-point values
thus become zero or that any pointers become null pointers. Probably they
are, but you can't count on it. Nor should you assume that the product of
the two arguments is all that matters. An implementation can select a
storage alignment for the allocated data object based on the size specified
by the second argument. Thus, you should allocate:
• an array of N i n t as cal.loc (N, si:r.eof (int))

• a data object of type struct x as calloc(l , si&eof (atruct x))

div div - You call div for one of two reasons:
• div always computes a quotient that truncates toward zero, along with

the corresponding remainder, regardless of how the operators I and •
behave in a given implementation. This can be important when one of
the operands is negative. The expression (- 3) /2 can yield either -2 or
- 1, while div(-3, 2) . quot always yields-I. Similarly, (-3) %2 can yield
either 1 or-1, while div(-3, 2) .r.n always yie.lds-1.

• div computes both the quotient and remainder at the same time. That
can be handy when you need both results. It might even be more efficient
if the function expands to inline code that contains only a single divide.

Note that the members of the resulting structure type div_t can occur in
either orde:. Don't make any assumptions about the representation of this
structure.

-it -it - Call -it to terminate execution from anywhere within a pro­
gram. Within function main you can either call -it or write a return
statement. The argument to -1t (or the return value for main) should be
zero or EXIT_sucass, described above, to report successful termination.
Otherwise it should be EXIT_FAILVRE, also described above.

free free - Use this function to deallocate storage you allocated earlier in
the execution of the program by calling calloc, 111&.lloc, or realloc. You can
safely call fr- with a null pointer. (The function does nothing in this case.)
Otherwise, the argument to fr- must be the valuep returned by one of the
three functions listed above. Don't call fr- ((char *) p + N) to free all but
the first N allocated characters - call realloc (p, Nl instead. Once you call
fr-(p) don't access the value currently stored in p in any expression -
some computer architectures may treat such an access as a fatal error.

<atdlib. h> 349

You are not obliged to free storage that you allocate. A good discipline,
howeve-, is to free all allocated storage as soon as possible. Freed storage
can be reallocated, making better use of a limited resource. Moreove-, some
implementations can report storage allocated at program tennination. That
helps you locate places where you unintentionally fail to free storage.

qetenv qetenv - Use this function to obtain a pointer to the value string
associated with an environment variable. (See page 82.) If you name an
environment variable that has no definition, you get a null pointer as the
value of the function. Don't alter the value string. A subsequent call to
qetenv can alter the string, however. To allocate a private copy, write
something like:
fincl.ude <atdl.ib. h>

char *copyenv (conat char • name)
{ /* qet and copy environment variable */
char *sl • qetenv(name);
char *•2 • al ? malloc(atrlen(sl) + 1) : NULL;

return (a2 ? atrcpy(a2, sl) : NULL) ;
}

laba l&ba - See the discussion of abs, above.

ld.iv ldiv-See the discussion of div, above.

malloc malloc - See the discussion of call oc, above. Use malloc to allocate a
data object that you intend to initialize yourself. lf the data object contains
only integers and you want them all set to zero, call c:alloc instead. The
same considerations apply for the argument to malloc: as for the second
argument to calloc.

mblen mblen - Use this function to determine the length of the multibyte
sequence that defines a single wide character. That length cannot be greater
than MB_ CUR_ MAX, defined in < stdlib. h>. M ultibyte sequences can contain
locking shifts that alter the interpretation of any number of characters that
follow. Hence, mblen stores in a private static data object the shift state for
the multibyte string it is currently scanning. lf the call mblen (NULL, O} is
nonzero, you can safely scan only one multibyte string at a time by repeated
calls to mblen. Here, for example, is a function that checks whether a
multibyte string has a valid encoding:
fincl.ude <atdlib. h>

int mbcheck(conat c har *a)
(/ * ret urn zero if a is valid */
int n;

for (mblen(NULL, 0) ; ; a+= n)
if ((n • mblen(a, MB_CUR_MAX}) <= 0)

return (n) ;

350 Chapter 13
mb.towc• mb9towc• - Use this function to conver t an entire multibyte string to a

wide-character string. You needn't worry about whether locking shifts
occur, since the function processes the entire multibyte string. You also
needn't worry that the resultant wide-character string is too long, since the
third argument n limits the number of elements stored. If the function
returns a value greater than o r equal ton, the conversion was incomplete.
If the function returns a negative value, the multibyte string has an invalid
encoding.

mbtowc mbtowc - Use this function much the same as you would mblen, de-
scribed above. Two differences exist between the functions:
• If the first argument to mbtowc is not a null pointer, the function returns

the wide character it converts. Thus, you can translate a single wide
character at a time, unlike mb9towc• which translates the entire string at
once.

• The functions mblen and mbtowc maintain separate static data objects to
store shift states. Thus, you can scan different strings at the same time
with the two functions even when multibyte strings have locking shifts.

qaort qsort - Use this function to sort any array whose elements are ordered
by pairwise comparisons. You define the ordering with a comparison
function that you provide. The comparison function has a specification
similar to that for the function bsearch, described above. Note, however,
that the b9earch comparison function compares a key to an array element
The sort comparison function compares two array elements.
A few caveats:

• Don't assume that the function uses the "Quicksort'' algorithm, despite
the name. It may not. If two or more elements compare equal, qsort can
leave these elements in any relative order. Hence, qaort is not a stable
sort.

• Beware of changes in how elements sort when the execution character
set changes.

• Be careful using the functions .traap or .trcoll, declared in <Jot.ring. h>,
directly. Both require that strings be stored in the array to be sorted. You
cannot use them to sort an array of pointers to strings. To use .traap, for
example, you must write a function pointer argument that looks like
(int (*) (con.t void*, conat void *ll'•traap.

rand rand - Call rand to obtain the next value in a pseudo-random sequence.
You get exactly the same sequence following each call to arand, described
below, with a given argument value. That is often desirable behavior,
particularly when you are debugging a program. If you want less predict­
able behavior, call clock or time, declared in <time. h> to obtain an argu­
ment for arand. The behavior of r and can vary among implementations. II
you want exactly the same pseudo-random sequence at all times, copy the
example on page 337.

<stdlib.h>

Figure 13.1:
st:rtod

Patt em

351

realloc real.l.oc - The common use for this function is to make a previously
allocated data object larger or smaller. If you make it larger, the values
stored in the added portion are undefmed. If you make it smaller, the values
stored in the retained portion remain unchanged. In either case, however,
the function may alter where the data object is stored. As with free,
described above, you shouldn't access the argument value in any expres­
sion once realloc returns. Replace the call realloc(NULL, size) with
malloc (size). The same considerations apply for the second argument to
real.l.oc as for the second argument to cal.l.oc, described above.

srand srand - See the discussion of rand above. The program effectively calls
srand(l) at program startup.

atrtod strtod - This is the function called by the scan functions, declared in
Chapter 13: <stdio.h>, to convert a sequence of characters to an encoded
value of type double. You can call strtod directly to avoid the overhead of
the scan functions. That also lets you determine more precisely what part
of the string argument participates in the conversion.

Note that the behavior of strtod can change among locales. The function
effectively calls iHpace to skip leading white-space. Figure 13.1, from
Plauger and Brodie, shows the text pattern that can follow. Here, point:

matches the decimal point defined for the current locale. The figure tells
you, for example, that the following are all valid ways to represent the value
12: 12, +12., and . 12e2. An implementation can also recognize additional
patterns in other than the "C'" locale.

strtol strtol - This is the function called by the scan functions, declared in
Chapter 13: <stdio. h>, to convert a sequence of characters to an encoded
value of type long. You can call strtol directly to avoid the overhead of the
scan functions. That also lets you specify unusual bases and to determine
more precisely what part of the string argument participates in the conver­
sion.

Note that the behavior of strtol can change among locales. The function
effectively calls iHpace to skip leading white-space. Figure 13.2, from
Plauger and Brodie, shows the text pattern that can follow. The figure tells
you, for example, that the following are all valid ways to represent the value
12 (assuming the third argument to strtol specifies a base of zero): 12, +014,

and oxc. An implementation can also recognize additional patterns in other
than the "C" locale.

352

Figure 13.2:
strtol
Pattern

atrtoul

Chapter 13

atrtoul - Use this function instead of atrtol, described above, when
you need a result of type unsigned long. The function •trtoul reports a range
error only if the converted magnitude is greater than ULONG_ IWC, d efined in
<limit•. h>. (Negating the value cannot cause overflow.) atrtol, on the
other hand, reports a range error if the converted value is less than LONG_ KIN

or greater than LOllG_MAX, both defined in <limit• . h>. Figure 13.2 also
describes text patterns valid for atrtoul.

ayat- syat--An implementation is not obliged to have •Y•t-do anything

wetomb

useful. If the call ayat- (NULL) returns a nonzero value, you know that the
function invokes some sort of command processor. But the C Standard
imposes no requirements on what such a creature does. The only portable
use for sy•t- is to provide uncritical access to a command processor. An
editor, for example, may accept a line that begins with an exclamation point.
It passes the remainder of the line as the string argument to •Y•t-. How
the local command processor interprets the line is of no concern.

we.tombs - Use this function to convert an entire wide-character string
to a multibyte string. You needn't worry about whether locking shifts occur,
since the function processes the entire wide-character string. You also
needn't worry that the resultant multibyte string is too long, since the third
argument n limits the number of elements stored. If the function returns a
value greater than or equal to n, the conversion was incomplete. If the
function returns a negative value, the wide-character string is invalid.

wctomb - Use this function to convert a wide-character string to a
multibyte string one wide character at a time. Here, for example, is a
function that checks whether a wide-character string has a valid enccxiing:

#include <limita . h>
#include <atdli.b. h>

int wccheclt (wcluu: t *wea)
(/* ret urn --ro if wea i.a valid * /
cluu: buf(NB_ LEN_MAX] ;
int n ;

for (wctomb(NUI.L, 0) ; ; ++wcs)
i.f ((n • wctomb(buf, •wcs)) <• 0)

return (- 1) ;
elae if (buf[n - 1] = '\0')

return (0) ;

Note that wctomb includes the terminating null character in the count it
returns. mbtowe does not.

<etdl i b . h > 353

Implementing < stdl ib. h>
header As I indicated on page 333, the functions declared in otdlib.h> fall into

<•tdl.ib. h> six loosely related groups. I present those groups in the indicated order. But
first, let's look at the header itself, even though it contains a few mysteries.
Some of the mysteries are easily explained here. I explain the rest through­
out the remainder of this chapter.

header Figure 13.3 shows the file stdlib . h . As usual, it obtains several defini-
<yvab.h > tions from the internal header <yvale.h >. Three of these provide repeated

definitions - for the macro NULL and the types size_ t and wchar _ t. (See
Chapter 11: utddef. h >.) One is unique to <•tdlib. h> - the macro _EXFAIL
that determines the value of the macro BnT_PAILURl!.

moao The C Standard permits each system to specify two preferred argument
_BXPAIL values for -it (or return values from main). The macro BXl:T_PAILIJlU!

reports unsuccessful termination. The macro BXIT_SUCcBss reports success­
ful tennination. For historical reasons, the value zero also reports success­
ful termination. Thus, I chose to tailor only the code for unsuccessful
termination. The macro _EXPAIL typically has the value 1.

data object The macro MB_ CURJW< can change value when locale category LC_CTYPB
J(bc::urmax changes. It yields the value stored in the data object J(bcurmax, defined in

the file xstate. c. (See page 107.)

type I introduced the type _Cmptun just to simplify the declaration of argu-
_ei.ptun ments for the functions bsearch and qsort. Don't use this declaration in

code that you write if you want it to be portable to other implementations.
(The remaining secret names I explain later.)

function Figure 13.4 shows the file aba. c . The absolute value function abs is the
abs simplest of the integer math functions. You cannot provide a masking

macro, however, because you have to access the value of the argument
twice. Some computer architectures have special instructions for comput­
ing the absolute value. That makes a.be a prime candidate for special
treatment as a builtin function generating inline code.

functiOn Figure 13.5 shows the file div. c. It provides a portable implementation
div of the d.iv function. You can eliminate the test if you know that negative

quotients truncate toward zero. Most computer architectures have a divide
instruction that develops both quotient and remainder at the same time.
Those that develop proper negative quotients are also candidates for
builtin functions. An implementation is at liberty to reorder the members
of the st ructure type div_ t to match what the hardware generates.

labs Figure 13.6 shows the file labe . c and Figure 13.7 shows the file ldiv.c.

ldi v Both define functions that are simply long versions of abs and d i v.

func tion Figure 13.8 shows the file q sor t . c. It defines the related function q eort

qaort that sorts an array beginning at base. This logic is much less simple and
more debatable. It is based on the Quicksort algorithm first developed by
C.A.R. Hoare. That requires you to pick a partition element, then partially
sort the array about this partition. You can then sort each of the two

354

Figure 13.3:
•tdlib.b

Port I

t• atdl.ib. h •t&nda.rd header •/
lifndef _STDLIB
ldefine _STDLIB
fifndef _ YVALS
linciude <yval• .h>
lendif

/• macro• •/
#define NUI.I. NOLL
#define EXIT FAIWRE EXFAIL
#define EXIT - SUCCESS 'ii
#define HB_cOR_MAX _ta>cuDll&X
#define RAND_MAX 32767

t• type definition• • /
#ifndef _ SIZET
#define SIZET
typedef Si&et •i&e_ t ;
lendif -
#ifndef WCllARl'
#define - WCBART

typedef - Wc:hart wchar _ t :
lendif -
typedef •truct

int quot;
int r-;
) div t;

typedef •truct
long quot;
long r811;
) ldiv_t;

typedef int Oapfun(conat void •, conat void •);
typedef •truCt {

un•igned chsr _State;
un•igned ahort _ Wchar;
I M:>•ave;

- /• declaration• •f
void al:>ort(void) ;
int abs (int) ;
int atexi.t(void (*)(void)) ;
double atof(con•t char•);
int atoi(con•t char•) ;
lonq atol{conat char•) ;
void "b .. arch(conat void •, conat void •,

•i&•_t, ai&e_t, _Oapfu.n •);
void •calloc(•i&e_t, •i&e_t);
div t div(int, int);
void exit (int) ;
void free(void •) ;
char •qetenv(const char •) ;
lon9 i.ba(lonq);
ldiv_ t ldiv(long, long) ;
void •ma.lloc(ai&e_t) ;
int mblen(conat char•, • l &e_t);
•i&e_t mbatowca(wchar_t • , const char • , •i&e_t);
int Dlbtowc(wchar_t •, const char•, •i&e_t) ;
void qaort(void • , aiae_t, ai&e_t, _Oapfun *);

Chapter 13

<stdli.b - h>

Continuing
atdlib . h

Port 2

Agure 13.4:
abs .c

Agure 13.5:
div.c

int rand(void);
void •r .. lloc(void •, ait• t);

void arand(unaigned int); -

double atrtod(conat char * , char **) ;

lori9 atrtol (conat char * , char ** , int) ;

unaigned l onq atrtoul (conat char •, char **, int) ;

int ayat-(conat char*);

aize_t wcatomba(char *, conat vchar_ t * • size_t) ;

int wctOlllb (char * , wchar _ t) ;

int N:>tovc(wchar t *• conat cha.r * , aize t, _.Mbaave *) ;

double _Stod(conat char * , char **); -

unsigned long _ Stoul (conat char *, char **, int) ;

int WctOlllb(char *, • chart , char*);

extem char _N:>c:urmax, _wextomb;

extern Mbaave Nbx.len, ltl:>xtowc;

extern ;:;:,,aigned- l onq ~daeed;
/* macro over;idaa */

#define a tof(a) _Stod (a, 0)

fdefine atoi (a) (int) Stoul (a, 0, 1 0)

fdefine atol(•) (long)_stoul(s, 0 , 10)

fdefina mblen(a, n) _ Mbtowc (0, a, n, , _ Mbxlen)

fdefine mbtovc(pvc, a, n) Mbtovc(pvc, a , n , ,_Mbxtowc)

fdefina arand(aead) (void) (Randaeed • (seed))

fdefine atrtod(a, endptr) -_Stod(a, endptr)

fdefine atrtoul(s, endptr, ba-) Stoul(a, endptr, ba-)

#define wctOlllb(s , wchar) _ WctOlllb(-; , wchar, , _ WcxtOlllb)

355

fendif 0

/* ab• function */
#include <atdl ib. h>

int (ab•) (int i)
(/* coapute absol ute value of int argument */

return ((1 < 0) ? - 1 : 1) ;

/* div function * /
#include <atdlib. h>

div_t (div) (int n\Der, int denom)

0

(/* coapute int quotient and r-...1.nder */

div_t val;

v a l . quot • n\Der I denom;

vaJ. . r- = nun.r - dencm * val. quot;

if (val . quot < O '' 0 < val.rem)
(/ * fix r.maindar with wrong sign */

val. quot += l ;
val . rem - • denom;

return (val) ;
0

356

Flgufe 13.6:
labs.c

Figure 13.7:
ldiv.c

Flgu-e 13.8:
qsort.c

Portl

/* lab• function */
#include <Stdlib.h>

long (labs)(long ii

Chapter 13

(/* compute absolute value of long arvuinant */
retu.rn ((i < 0) ? - i : iii

/* ldiv function */
#include <•tdlib.h>

ldiv_t (ldiv)(long numer, long denom)

0

(/ * compute long quotient and remainder */
ldiv_t val;

val.quot • numer I denom;
val.rem • numer - denom • val.quot;
if (val.quot < 0 && 0 < val.rem)

(/ * fix remainder with wrong •ign */
val.quot +• 11
val.rem -• denom1

return (val);

t• q•ort function */
#include <stdlib.h>
#include <etring.h>

0

t • macro• */
#define MAX_ Bt1P 256 t• chunk to copy on •wap */

void (qsort)(void *base, ei&e_t n, si&e_t size, _Clllpfun *CJllP)
(/*sort (char baee(sise))(n) using quick•ort */
while (1 < n)

(

size_t i • O;
size_ t j • n - 1;
char •qi • (char *)base;
char •qj • qi + ei&e • j;
char •qp • qj;

while (i < j)

t• worth sorting */

{ /* partition about pivot */
while (i < j &• (*cmp)(qi, qp) <• 0)

++1, qi +• eize;
while (i < j &• (*cmp)(qp, qj) <• 0)

-- j, qj - • sise;

<Btdlib.h>

Continuing
qaort.c

Part2

if (i < j)
(

char buf [MAX_BUPJ 1
char •ql • qi;
char •q2 • qj;
aise_ t :m, ma1

for (DI• • •ize1 0 < Dl•I

11\11 -• m, ql += m, q2 -• m)

357

t• ewap a• lllAnY ae PD••ible •t
DI• D\9 < eizeot (but) ? D\9 : aizaof (buf)1
memcpy(but, ql, m)1

)

memc:py(ql, q2, m)1
memcpy(q2, buf, m)1
)

++i, qi +• eise;
)

if (qi I • qp)
(

char buf[KAlL_BUP);
char •ql • qi1·
char •q2 • qp1·

11i;ir;e_ t m, D\9/

for (me • eiae; 0 < ma; aa -• m, q1 += m, Q2 -• m)

(/* ewap ae many aa peeeibla •t
m • ma < eizaof (but) ? Dl9 : eizaof (but)1
memc:py(buf, ql, D1)1
memcpy(ql, q2, m);
memcpy(q:Z, buf, DI) 1

)

j • n - i - 1, qi +• eiza1
if (j < i)

(t• racurea on amallar partition •t
if(l< j)

qaort(qi, j, eiza, CJl\P)I
n • i ;

•l••
(t • lower partition ie •mallar • t
if (1 < i)

qeort(baee, i , eiza, Cll\P)I
ba•• • qi1

0

358

Figure 13.9:
baearch. c

t• baearch function •t
lincluda <atdlib.h>

void •(baearch)(co1U1t void •key, conat void •ba••,
•ize_ t nelem, aiza_t •ize, -~fun •cmp)

Chapter 13

(/* 866rch aorted table by binary chop •f
conat char •p;
•ize_t DI

for (p • (conat char •)baae, n • nelem; 0 < n;)
(1• check midpoint of whatevar i• left •/
conat aize_ t pivot • n >> 11
conat char •conat q • p + aiz• • pivot;
co1U1t int val= (•cmp)(kay, q)1

if (va! < 0)
n • pivot;

elae if (val =• 0)
return ((void •)q);

.1 ..
(

p • q + aize1
n - • pivot + 11

return (NULL);

t• aearch below pivot •f

t• found •/

1• ••arch abova pivot •t

/• no match • t
0

partitions by recursive application of the same technique. The algorithm
can sort quite rapidly. It can also sort very slowly.

How best to choose the pivot element is the debatable issue. Pick the first
element and an array already in sort eats a lot of time. Pick the last element
and an array in reverse sort eats a lot of time. Work too hard at picking an
element and all arrays eat a lot of time. I chose simply to pick the last
element. That favors arrays that need little rearranging. You may have
reason to choose another approach.

qsort calls itself to sort the smaller of the two partitions. It loops inter­
nally to sort the larger of the two. That minimize demands on dynamic
storage. At worst, each recursive call must sort an array half as big as the
earlier call. To sort N elements requires recursion no deeper than logi(N)
calls. (You can sort 1,000,000 elements with at most 20 recursive calls.)

function Figure 13.9 shows the file l>March. c . The function baaarch performs a
baaarch binary search on the sorted array beginning at baa•. The logic is simple but

easy to get wrong.
function Figure 13.10 shows the file rand. c . The function rand generates a pseudo-

rand random sequence using the a lgorithm suggested in the C Standard. (See
page 337.) That has reasonable properties, plus the advantage of being
widely used. One virtue of a random number generator is randomness.
Another virtue, ironically, is reproducibility. You often need to check that a

<etdlib . b>

Figure 13. 10:
rand.c

Rgure 13.11:
erand.c

/* rand function */
#include <etdlib. h>

/* the aeed */
unsigned lonq _Randlleed • 1 ;

int (rand) (void)

359

{ /* compute peeudo- randan value */
_Randlleed • _ Randlleed * 1103515245 + 12345;
return ((unaigned int) (_Randaeed >> 16) Ii RAND_MAX);

) 0

/* arand function */
#include <etdli.b. h>

void (arand) (unaigned int aeed)
(

_Randlleed - aeed;
)

/* alter the aeed */

0

calculation based on pseudo-random numbers does what you expect. The
arithmetic is perfonned using unsigned long integers to avoid overflows.

function Figure 13.11 shows the file erand . c . The function arand simply sets
arand _ Randaeed, the seed for the pseudo-random sequence generated by rand. I

provide a masking macro for er and. Hence, the heade r <atdli.b. h> declares
_Randa-d, defined in rand. c .

functton Figure 13.12 s hows the file xetou1. c. It defines the function _Stoul that
_ stoul perfonns all conversions from text string to encoded integer. The function

has the same specifications as etrtoul. I made it a separate function so that
several masking macros defined in <atdlib. h> can call it directly. (The
name atrtoul can be redefined in some contexts.)

The first half of _stoul detennines the base and locates the most-signifi­
cant digit. That involves stripping leading white-space, identifying any
sign, and picking off any prefix such as ox. The function then skips any
leading zeros so that it can count the number of significant digits it converts.
It converts all significant digits regardless of possible overflow. For un­
signed long arithmetic, an overflow does not cause an exception.

_stoul makes a coarse check for overflow by first inspecting the number
of significant digits. This version assumes that an unsigned long occupies 32
bits. (Change the array ndi9e if such integers are larger.) For each valid base,
ndiga[baa•J is the number of digits at which overflow can ocrur. Thus, a
shorter sequence cannot overflow and a longer sequence must. A sequence
of the critical length requires further checking. Take away the last digit and
see whether you get back the previously accumulated value (y). Hnot, an
overflow occurred.

360

f"igure 13.12:
xatoul.c

Part 1

/* Stoul function */
lin-;;lude <stdlib. h>
linclude <ctype .h>
lincluda <arrno. h>
linclude <limita . h>
lincluda <atddef. h>
#include <•trin9. h>

Chopter 13

/* macros */
#define BASE_W.X 36 /* large•t valid baae •/

/* atatic data */
static conat char di9it• (J = l /* valid d.i.g'ita •/

"012345678 9abcdef9hi jklmnopqrstuvwxyz") ;
•tatic con•t char ndi9B[BASE_W.X+l] • l

0, 0, 33, 21, 17, 14, 13, 12, 11, 11,
10, 10, 9 , 9, 9 , 9 , 9, 8, 8 , 8 ,
8, 8 , 8 , 8 , 7 , 7 , 7, 7 , 7, 7 ,
7, 7, 7 , 7 , 7, 7 , 7 ,) ,;

/* 32- bit•! */

unaiqned long Stoul(con•t char *•, char **endptr, int baae)
l /;:convert atrinq to un•iqned lon9, with checking */
const char *•c, *ed;
conet char *•1, •a2;
char ai9n;
ptrdiff t n ;

un•iqne(i lon9 x, y ;

for (•c • s ; i .•space (*ac) ; ++•c)

aign = ••c -- '-' II •ac == '+' ? *ec++ : ' +' ;
if (ba•e < 0 11 baH ... 1 11 BASE_W.X < baH)

l /* •illy baae */
if (endptr)

*endptr • (char *) s;
return (0) ;
)

elae if (baH)
l /* strip Ox or OX */
if (baae -- 16 •• *•c ~ ' 0 '

U (ac[l] - ' x ' 11 •c[l]
ac +• 2 ;

elee if (*ac !• ' 0')
ba•• - 10;

' X '))

elae if (ac[l) - ' x' 11 •c(l] - 'X')
ba.e 16, •c +• 2 ;

else
ba•• 8;

for (al a • c ; *•c -- 1 0'; ++sc)
/* akip leading zero• */

x = 0;

<etdlib.h>

Continuing
xetoul.c

Part2

Figure 13. 13:
atoi.c

Figure 13. 14:
atol.c

Figure 13.15:
etrtoul.c

for (e2 = ec; (ad= memchr(digits,
tolover(*ec), base)) !=NULL; ++ec)

361

(/* accumulate di.git& */
y = x; /* for overflow checking */
x = x *base+ (ad - digits);

SC) if (el
(/* check string validity */
if (endptr)

*endptr
return (O);
}

(char *)a;

n = sc - e2 - ndigs[baee];
if (n < 0)

else if (0 < n I I x < x - ec[-1)
11 (x - ec[-1)) I base != y)
(

errno = ER.ANGE;
x = ULONG_MAX;
}

if (sign='-')
x = -x;

if (endptr)
*endptr

return (x);

(char *) ec;

/* atoi function */
#include <atdlib.h>

int (atoi) (conet char *s)

/* overf"low */

/* get final value */

0

(/* convert string to int */
return ((int)_stoul(s, NULL, 10));

I* atol function */
#include <atdlib.h>

long (atol) (conet char *a)

D

{ /* convert string to long */
return ((long)_Stoul (e, NULL, 10));

/* Btrtoul function */
#include <atdlib.h>

unsigned long (etrtoul) (conat char •s, char **endptr, int base)

D

{ /* convert string to unsigned long, with checking */
return (_Stoul (a, endptr, base));
} D

362 Chapter 13

Figure 13.16: / * etrtol function •/
atrto1.c linclude <ctype .h>

IU\clude <errno .h>
linclude <limite .h>
linclude <etdlib.h>

Figure 13.17:
atof . c

Figuf'e 13.18:
etrtod.c

long (etrtol) (conat char *•, char ••endptr, int baee)
{ /* convert etring to l ong, with checking */
con11t char *ec;
unsigned long x;

for (•c • a; i.eepace(~•c); ++ec)

x = _Stoul.(e , endptr, baee); /* not ac! */
if (*ec as ' - • 66 x <= LONG MAX)

{ - /* negative nUlllber overflowed */
errno • £RANGE;
return (LONG_Mm);
)

elee if (*•c !• '-' 66 LONG_MAX < x)
{ /* poeitive number overf1oved */
errno • ERANGE;
return (LONG_MAX);

el••
return ((long)x);

/ * atof function •/
linclude <•tdlib. h>

double (atof) (const char *•)
{

return (_Stod(e, NULL));

/* etrtod function */
#include <atdlib.h>

D

/* convert etring to double •/

D

double (strtod) (conet char *•, char **•ndptr)
{ /* convert •tring to double, with checki.ng •/
return (_Stod(e, andptr));

D

Note the rare \lse of the type ptrdiff _ t, defined in <atddaf . h>. It ensures
that n can hold the signed diffe rence between two pointers. As I warned on
page 218, ptrdiff_t is not a completely safe type. An argument string with
over 32,767 significant digits can fail to report overflow on a computer with
16-bit pointers. That is an unlikely occurrence, but it can happen. Still, it is
tedious to write the test completely safely. I chose speed in this case over
absolute safety.

<Stdlib.h> 363

atoi Figure 13.13 through Figure 13.15 show the files atoi.c, atol.c, and
atol strtoul. c, respectively. These all define functions that caU _stoul directly.

strtoul Note that atoi and atol can overflow. The C Standard does not require that
such an overflow be reported or handled at all graciously.

function Figure 13.16 shows the file strtol.c. It defines the function strtol that
atrtol must report an overflow properly. Thus, it chases down any leading minus

sign itself so that it can check the converted value as a long. Note that the
function must call _stoul with the original pointer. Should _stoul find an
invalid string, it must store that pointer at endptr. To point past any leading
white-space would be misleading.

atof Floating-point conversions follow a similar pattern. Figure 13.17 shows
atrtod the file atof.c and Figure 13.18 shows the file strtod.c. Both functions

simply call the common function _stod to do all the work. In this case, atof

enjoys the same thorough checking required of strtod.

function Figure 13.19 shows the file xstod.c. It defines the function _stod that
_stod performs all conversions from text string to encoded floating-point. It does

so carefully, avoiding intermediate overflow and loss of precision.
The macro s:ro_MAX, for example, represents a careful compromise. It

limits the number of significant digits to 32. That is more than enough for
the most precise representation supported by this implementation (about
20 decimal digits for 10-byte IEEE 754 long double). It is also well short of
the largest integer that would cause an overflow on a conforming imple­
mentation (a bout 37 digits). The function pays similar care in accumulating
any exponent. As a result, any floating-point overflow or underflow is
handled safely in the function _otento, declared in "xmatb.h•. (See the file
xdtento.c on page 37.)

The first half of the function checks syntax and accumulates significant
fraction digits. It then converts eight digits at a time to an array of long. It
converts these elements to double, from least-significant to most-significant,
and scales each appropriately before adding it to the running sum. This
sequence of operations is reasonably efficient and maintains precision.

mbtowc Now let's look at the multibyte functions. Figure 13.21 shows the file
mblen mbtowc.c and Figure 13.20 shows the file mblen.c. Both mbtowc and mblen

call the internal function ..)Qltowc to do the actual work. Each provides
separate storage of type _Mbaave, defined in <stdlib.h>, to memorize the
shift state while walking a multibyte string. The data objects _Mbxlen and
_Mbxtowc both have names with external linkage. That permits the header
<•tdlib.h> to define masking macros for both functions. mblen can, in
principle, be simpler than mbtowc. In this implementation, however, little
difference exists between what the two functions must do.

function Figure 13.22 shows the file mbstowcs.c. The function mbstowcs calls
mbatowcs ..J!btowc repeatedly to translate an entire multibyte string to a wide charac­

ter string. It too provides storage of type _ Mbeave, but it need not retain the
shift state between calls.

364

Figure 13. 19:
xstod.c

Part 1

/* Stod function */
#in-;;-lude <ctype.h>
#include <float.b>
#include <li.Jnita.h>
#include <locale.h>
#include <atdlib.h>
#include "xmath. b"

#defJ.ne SIG_ MAX 32

double _Stod(conat char *•, char **endptr)

Chapter 13

(/* convert string to double, with checking */
const char point= localeconv()->decimal_point[O];
conat char *ac;
char buf[SIG_MAXJ, aiqn;
double x;
int ndiqit, naiq, nzero, olead, opoint;

for (sc =a; isspace(~Bc); ++sc)

siqn = •sc == '-' II ~sc == '+' ? *sc++ : '+';
olead = -1, opoint = -1;
for (ndigit = 0, naig = 0, nzero = 0; ; ++sc)

if (*sc == po.int)
if (0 <= opoint)

break; /* already seen point */
else

opoint = ndigit;
else if (*sc == '0')

++nzero, ++ndiqit;
else .if (!iadiqit(*•c))

break;
else

if (olead < 0)
olead = nzero;

I* got a nonzero digit */

else /* deliver zeros */
for (; 0 < nzero 55 naig < SIG_MAX; --nzero)

buf[nsiq++) "' O;
++ndiqit;
if (naig < SIG_MAX) /* deliver digit */

buf(naiq++) =*Be - '0';

if (ndig.it == 0)
{

if (endptr)
*endptr (char *)•;

r eturn (0.0) ;
)

/* sat endptr */

for (; 0 < nsiq 55 bu~[ns.iq - 1) == O; --naig)
/* skip trailing digits */

<std1ib.h>

COntinuing
xstod.c

Parf 2

365

/* compute aignificand •/
conat char *pc = buf;
int n;
long lo[SIG_MAX/8+1];
long *pl= 'lo[naiq >> 3);
atatic double fac[] = {0, le8, lel6, le24, le32);

for (*pl = 0, n = nsig; 0 < n; --n)
if ((n' 07) == 0) /* start new sum*/

*--pl = *pc++;
elae

*pl = *pl • 10 + *pc++;
for (x = (double)lo[O], n = O; ++n <= (nsiq >> 3);)

if (lo [n) != 0)

x += fac[n) * (double)lo[n);

I* fold in any explicit exponent */
long lexp = O;
short sexp;

if (*sc = 'e' 11 *sc = 'E')
/* parse exponent */

const char *scs av = ac;
const char eaic;in = *++sc

? *ec++ : '+';
'+' II *sc = ,_,

if (!isdiqit(*sc))
sc = scsav;

else
/* ill-formed exponent */

/* exponent looks valid */
for (; iadigit(*sc); ++sc)

if (lexp < 100000) /* else overflow */
lexp = lexp * 10 + *sc - '0';

if (esiqn ~ '-')
lexp = -lexp;

if (endptr)
•endptr = (char *)sc;

if (opoint < 0)
lexp += ndiqit - nsiq;

else
lexp += opoint - olead - nsiq;

sexp = lexp < SBRT_MIN ? SHRT_MIN lexp < SHRT MAX
? (short)lexp : SHRT_MAX;

x = _Dtento(x, sexp);
return (sign== '-' ? - x : x) ;

I
I 0

366

Figure 13.20:
mb1en.c

Figure 13.21:
mbtowc.c

Figure 13.22:
mbstowcs.c

/* mblen fW\ction */
#include <stdlib.h>

/* static data */
_Mbsave _Mbxlen,. {O};

int (mblen) (const char *s, size_t n)

Chapter 13

{ /* determine l ength of next multi.byte code */
return (_Mbtowc(NULL, s, n, 5_Mbxlen)) ;
} 0

/* mbtowc fW\ction *I
#include <stdlib.h>

I* static data */
_Mbsave _Mbxtowc = {0};

int (mbtowc) (wchar_t *pwc, const char *s, size t n)
{ /* determine next multibyte coda */
return (_Mbtowc(pwc, s, n, 5_Mbxtowc));

/* mbstowcs fW\ction */
#include <atdlib.h>

0

size t (mbstowcs) (wchar t . *wca, const char *s, size t n)
T I* translate multi.byte string to wide cl.ar strinq */
int i;
wchar_t *pwc;
_Mbaave state • {O};

for (pwc ~ wcs; 0 < n; ++pwc, --n)
{ /* make another wide character */
i = _Mbtowc (pwc, a, n, 5state);
if (i = -1)

return (-1);
else if (i ~ 0 I I *pwc ..,. 0)

return (pwc - wee);
8 += i;

return (pwc - wee);
D

function Figure 13.23 shows the file xmbtowc.c. The function _Mbtowc parses a
_Mbtowc multibyte sequence far enough to develop the next wide character that it

represents. It does so as a finite-state machine executing the state table
stored at_ Mbstate, defined in the file xetate. c. (See page 107.)

_Mbtowc must be particula rly cautious because _Mbetate can be flawed.
It can change with locale category LC_CTYPE in ways that the Standard C
library cannot control.

<stdlib.h>

Figure 13.23:
xmbtowc.c

/* Mbtowc function */
#in~lude <limits.h>
#include <stdlib.h>
#include ••xatate. h '1

367

int _Mbtowc(wchar_t *pwc, const char *s, size_t nin,
Mbsave *ps)

{ /* translate multi.byte to widechar */
static conat _Mbaave initial = (0};

if (s =NULL)

(/* set initial state */
*p11 =- initial;
return (_Mbstate._ Tab[O) [OJ ' ST_STATE);

/* run fini.te state machine *I
char state 2 ps-> State;
int limit = O; -
unsigned char •su m (unsigned char *)s;
unsigned short we = pa-> _Wchar;

if (MB_CUR_MAX < nin)
nin = MB_CUR_MAX;

for (; ;)
I /* perform a state transformation */
unsigned short code;
conat unsigned short •stab;

if (_NSTATE <= state
11 (stab = Mbstate. Tab[state]) = NOLL
11 nin == o- -
II (_NSTATE*UCHAR_MAX) <=++limit
11 (code = stab[*au]) 0)
break;

state = (code 5 ST_STATE) >> ST_STOFF;
if (code 5 ST_FOLO)

we = we ' ~ucHAR_MAX I code ' sT_CH;
if (code 5 ST_MTATE)

WC = WC >> CHAR BIT ' UCHAR MAX I WC << CHAR_BIT;
if (code ' ST_INPUT-" •su != •\o•)

++su, --nin, limit = O;
if (code 5 ST_OUTPUT)

(/* produce an output wchar */
if (pwc)

*pwc a we;
pa-> State 2 state;
pa- > Wchar = we;
return I (conat cha:r; ")au - a);
}

ps->_State _NSTATE;
return (-1);

/* error return */

)
) 0

368 Chapter 13

Note the various ways that the function can elect to take an error return:
• if a transfer occurs to an undefined state
• if no state table exists for a given state
• if the multibyte string ends part way through a multibyte character
• if the function makes so many state transitions since generating a wide

character that it must be looping
• if the state table entry specifically signals an error
The rest of _Mbtowc is simple by comparison. The function retains the
wide-character accumulator (pa->_ Wchar) as part of the state memory. That
simplifies generating a sequence of wide characters with a common com­
ponent while in a given shift state. _Mbtowc returns after delivering each
wide character.

function Figure 13.24 shows the file wctcmb. c. The function wctomb calls the
wctomb internal function _Wctomb somely to provide separate state memory. In this

case, the shift state can be stored in a data object of type char. The data object
_wcxtomb has a name with external linkage so that the header <atdlib.h>

can define a masking macro for wctomb.

function Figure 13.25 shows the file wcatcmba • c. The function wcatomba calls
wcstcmba _Wctcmb repeatedly to translate a wide-character string to a multibyte

string. It too provides its own state memory, but it need not retain the shift
state between calls.

What makes this function complex is the finite length of the char array
it writes. If at least MB_COR_HAX elements remain, _wctcmb can deliver char­
acters directly. Otherwise, wcatomba must store the generated characters in
an array of length MB_LEN_MAX and deliver as many as it can.

function Figure 13.26 shows the file xwctomb. c. The function _wctomb converts a
_Wctomb wide character to the one or more characters that comprise its multibyte

representation. It does so as a finite-state machine executing the state table
stored at _wcatate, defined in the file xatate .c. (See page 107.)

_Wctomb must also be cautious because _wcstate can also be flawed. It
can change with locale category LC_CTYPE in ways that the Standard C
library cannot control. Note the various ways that the function can elect to
take an error return:

• if a transfer occurs to an undefined state
• if no state table exists for a given state
• if the generated multibyte string threatens to become longer than

MB_ COR _MAX characters

• if the function makes so many state transitions since generating a char-
acter that it must be looping

• if the state table entry specifically signals an error
The rest of _Wctcmb is likewise simple by comparison. It returns after
consuming each input wide character.

<atdlib.h>

Figure 13.24:
wctomb.c

Agure 13.25:
wcstombs . c

/* wctomb function */
#include <stdlib.h>

/* static da.ta */
char _ Wcxtomb = { 0} ;

int (wctomb) (char *s, wchar t wchar)

369

{ /* translate -wide character to multibyte string */
return (_Wctomb(s, wchar, 5_Wcxtomb));

/* wcstombe function */
#include <limits.h>
#include <string.h>
#include <stdlib.h>

size t (wcstombs) (char •s. const wchar_t •wca, size_t n)

0

/* translate wide char string to multibyte string •/
char *sc;
char state z {0) ;
aize_t i;

for (ac = a; 0 < n; n
{

i, ++wcs)
/* tral\lllate

if (MB_CUR_HAX <= n)

anoth•r wide character *I

{

if ((i = _Wctomb(sc,
return (-1);

'*wca,
/* copy directly •/

5state)) <= 0)

else
{ /* copy into local buffer */
char buf[MB_LEN_HAXJ;

if ((i = _Wctomb(buf, •wca, 5state)) <= 0)
retw:n (-1);

else if (i <= n)
mamcpy(sc, buf, i);

else

mamcpy(sc, buf, n) ;
return (sc. - s + n} ;

SC +:::z i;
if (sc[-1] == '\0')

return (sc - s - 1};

return (sc - s);

/* won't all fit •/

0

370

Figure 13.26:
xwctomb. c

Chapter 13

/* _Wctomb function */
#include <limits.h>
#include <stdlib.h>
#include .. xatate.hn

int _Wctomb(char *s, wch&r t wcin, char *pa)
{ - /* translate widechar to multibyte */
static const char initial m {0) ;

if (s =NULL)
(/* set initial state */
*pa m initial;
return (_Mbstate._ Tab[O] (0) 6 ST_ STATE);

/* run finite state machine */
char state m *pa;
int leave m 0;
int limit m 0;
int nout m O;
unsigned short we = wcin;

for (; ;
(/* perform a state transformation */
unsigned short code;
conat unsigned short *stab;

if (_NSTATE <m state
II (atab = _wcatate. _Tab[state]) =
II MB_COR_HAX <m nout
II (_NSTATE*UCHAR _MAX) <= ++limit
II (code= atab(wc 6 UCHAR_HAX]) ==
break;

state m (code 6 ST STATE) >> ST STOFF;
if (oode 6 ST_ FOLDl -

we = we 6 -ocHAR_ HAX I code 6 ST_CB;
if (code 6 ST_ROTATE)

NULL

0)

we m we >> CHAR BIT 6 UCHAR_HAX I we << CHAR_BIT;
if (code 6 ST_OOTPUT)

(/* produce an output char */
if ((a[nout++) =code 6 ST_CH? oode : we) == '\0')

leave = l;
limit m 0;
)

if (oode 6 ST_INPUT 11 leave)
(/* consume input */
*pa =-- state;
return (nout);

*pa _ NSTATE;
return (-1);

}
) D

<stdlib.h> 371

Agure 13.27: /* xalloc .h internal h-d•r */
xal.l.oc.h li.nclude <•tddef. h>

li.nclude <stdlib. h>
li.fndef _YVALS
li.nclude <yvals . h>
lendi.f

storage
ollocotton

header
"xalloc. h"

macro

/* macro• */
#define CELL_ OFF (sizeof (size t) + MDIBND ' - MDIBND)
ldefine SIZE BLOC!t 512 - - /* Illini~ block ai.ze */

#define SIZE:Cl!LL \
((si.zeof (_Cell) + _MEMBND ' -_MEMBND) - CELL_OFF)

/* type definitions */
typedef struct _C•ll (

aize_t _Size;
atruct _Cell *_Next;
) _Cell;

typedef struct (
_Cell ** _Plaat;

Cell * Bead;
} _Altab;

/* declarations */
void* Getmem(siz• t);
extarn-_Altab _AldAta; 0

Several functions cooperate to allocate and free storage during program
execution. You can implement these functions many ways. I chose to
maintain a pool of available storage (the "heap") as a singly linked list. The
list elements remain in sort by their add~ in storage. A static pointer
points to the start of the list - the element with the lowest address.

Figure 13.27 shows the file xalloc.h. It is an internal header that is
included by all of the storage .allocation functions. It defines several macros
and types. A list element, for example, has type _cell. At least it begins
with such a data object. The member _SiH gives the useful size in bytes of
the entire element, which is typically much larger than a_ c.11 data object.
The member _Next points to the next element of the available storage list.

An allocated element still begins with the member _size. That informa­
tion may be needed later if the program elects to free the allocated element.
The program does not see this size information, however. The allocation
functions return a pointer to the usable area beyond the member_ si.za. The
macro CELI._ on gives the offset in bytes of the usable area from the start of
the allocated element.

storage Many computer architectures care about storage boundaries. Some
boundaries require that certain types of data objects begin at a storage address that is

some multiple of bytes. Typical multiples are two, four, or eight bytes. Other
computer architectures do not require such alignment, but execute faster
when manipulating data objects that are properly aligned. The macros
defined in <stdarg. h> typically must correct for holes left by the alignment
of argument data objects. (See Chapter 10: <stdarg. h>.)

372 Chapter 13

macro The storage allocation functions also fret about storage boundaries. They
_ MEMBND assume that a worst-case storage boundary exists. Any data object aligned

on such a boundary is thus suitably aligned. The internal header <yvala. h>

defines the macro _MEMBND to specify this worst-case storage boundary. For
a boundary of2N, the macro has the value 2N-1. On an Intel 80X86computer,
for example, the macro can be zero (no constraints). You should probably
make it at least 1 (two-byte boundaries). For such a computer with 32-bit
memoi:y, you might want to make it 3 (four-byte boundaries).

CELL_OFF Much of the ugly logic in the storage allocation functions results from
SIZE CELL this attempt to parametrize the worst-case storage boundary. The macro

CELL_ OFF assumes that a list element begins on a worst-case storage bound­
ary. It determines the start of the usable area as the next such boundary
beyond the space set aside for the member _Size. Similarly, the macro
SIZE_ CELL yields the smallest permissible value of_ Size for a list element.
The list element must be large enough to hold a _c.11 data object. It must
also end of a worst-case storage boundary.

function The remainder of "xalloc.h" is best explained along with the function
malloc ma1loc. Figure 13.28 shows the file malloc. c. The function malloc endeav­

ors to allocate a data object of size bytes. To do so, it looks for an element
on the list of available storage that has a usable area at least this large.Hit
finds one, it splits off any excess large enough to make an additional list
element. It returns a pointer to the usable area.

data object The internal function Undmem, defined in malloc. c scans the list of
_ Aldata available storage. It retains two static pointers in the data object _Aldata of

type_Altab, defined in "xatdio.h":

• _Head points to the start of the list. H the list is empty, it contains a null
pointer.

• _Plaat is the address of the pointer to the next list element to consider. It
can point to _Aldata._Head or to the _Next of an available list element.
Or it can be a null pointer.

Whenever possible, findmem begins its scan where it left off on a previous
call. That strategy reduces fragmentation at the start of a list by distributing
usage over the entire list. mal.loc itself and the function free cooperate in
maintaining these two pointers.

If findmem cannot find a suitable element on the available list, it endeav­
ors to obtain more storage. (Initially the heap is empty, so the first request
takes this path.) It calls the function _Getmem, declared in "xalloc. h" to do
so. That primitive function must return a pointer to a storage area of at least
the requested size, aligned on the worst-case storage boundary. If it cannot,
it returns a null pointer.

macro The macro SIZE_BLOCK, defined in "xalloc.h", specifies the smallest
SIZE _BLOCK preferred list-element size. I have set it to 512, but you may want to change

it. findmem first requests the larger of the required size and SIZE_BLOCK. If
that fails, it halves the requested size repeatedly until the request is granted

<atdlib.h> 373

or a request of exactly the required size cannot be honored. This strategy
favors larger element sizes but takes what it can get. If the request is
granted, findmam makes the new storage look like a previously allocated
element. It calls fr- to add the storage to the available list. The next
iteration of the scan loop should discover this storage and use it.

function The function _Getman depends strongly on the execution environment.
Getman You must tailor this primitive extensively for each operating system. For

completeness, I show here a version of_ Getme111 that runs under UNIX. I did
the same thing for several of the primitives needed to implement the header
<atdio. h>. (See page 283.)

Figure 13.29 shows the file x9etme111.c. As with the earlier UNIX primi­
tives, it assumes the existence of a C-callable system service with its name
altered to a reserved form. _sbrk performs the UNIX abrk system service,
which allocates a block of storage. Note that_ Sbrk expects an int argument.
Hence_ Getman must ensure that a very large request is not misinterpreted.

function Figure 13.30 shows the file calloc. c. It calls malloc to allocate storage,
calloc then sets its individual characters to zero. A more cautious version would

check that the product of the two arguments is of a reasonable size.
function Figure 13.31 shows the file free.c. It frees storage earlier allocated by

free malloc or realloc. Two common programming errors cause trouble for
free:

• Invalid stores alter the value of the _size member.
• A program calls free with an invalid pointer. Either the data object was

never allocated or it has already been freed.
Probably no amount of checking is enough to keep ill-formed programs
from sabotaging free. This version makes just one or two cursory checks.
If the _size member is not a multiple of the worst-case storage boundary,
it has been altered or was never allocated. If the element to be freed overlaps
an existing element on the available list, it has been freed twice. Both errors
cause free to return without freeing the designated storage. A more helpful
version might report a signal or generate a diagnostic. At the very least, is
might store a nonzero value in errno, defined in <errno. h>.

Most of the work of free involves finding the appropriate place to insert
the freed element in the list of available storage. If the freed element is
adjacent to one or two existing list elements, the adjacent elements are
combined. That minimizes fragmentation of the list.

Note that free alters the scan pointer _ Aldata. _Plaat. That is necessary
because the stored p<>inter may be to a list element now merged with
another. I chose to have the scan resume just after the freed element. That's
an easy address to determine here. This approach also spreads the use of
storage more uniformly across the list. And it postpones as long as possible
recycling freed storage (a questionable kindness to buggy programs). On
the other hand, it lowers performance whenever the heap grows by calling
_Getmam. Here is an area that can occupy a designer for a long time.

374

Flgur& 13.28:
mal.l.oc.c

Par11

Chapter 13

/* malloc function •/
#include "xalloc.h"
#include "yfuns.h"

I* static data */
_Altab _Aldata m (0); /* heap initially eiapty •/

static _Cell **findmem(size_t size)
(/* find storage */
_Call *q, **<#:>;

for (; ;)

(
if ((<#:>

(
for

/* check freed space fil:at */
= _Aldata ._Plaat) -= NULL)

/* take it fra11 the top •/
(qb = 6 Aldata. Head; *<¥>;
qb = 6 (~) - > _N~)
if (size <m (*qb)->_Size)

return (qb) ;

else
/* resume where we left off */

for (; *qb; qb = 6 (*qb) ->_Next)
if (size<= (*qb)->_Size)

return (qb) ;
q m *_Aldata._Plaat;
for (qb = 6 Al.data. Head; *qb != q;

qb = 6 (*°qbJ - > _N;xt)
i f (size<= (*qb)->_Size)

return (qb);

!• try to buy more space •/
eize_t b a ;
conat aize_t az m size + CELL_OFF;

for (bs = SIZE_BLOCK; ; bs >>= l)
(/* try larger blocks first •/
if (bs < sz)

bs = sz;
if ((q = _GeU.-(bs)) ! = NULL)

break;
else if (bs == s z)

return (NULL) ;

/* qot s torage : add to heap and retry */
q->_Siza = (bs 6 -_MEMBND) - CELL_OFF;
free((char *)q + CELL_ OFF) ;

)

l

I* no storage •/

<stdlib.h>

Continuing
ma11oc.c

Part2

Figure 13.29:
xgetmem.c

Figure 13.30:
ca11oc.c

375

void *(malloc) (size t size)
{ - I* allocate a data object on the heap */
_Cell *q, **qb;

if (size < SIZE_CELL)
size z SIZE_CELL;

I* round up size */

size z (size + MEMBND) ' - MEMBND;
if ((qb m fin~(aize)) = NULL)

return (NULL) ;
q 2 *qb;
if (q->_Size < size + CELL_OFF + SIZE CELL)

qb = q-> _Next; - I use entire cell *I
else

/* peel off a residual cell */
*qb = (_Cell *)((char *)q

+ CELL_OFF +size);
(*qb)->_Next m q->_Next;
(*qb)-> _Size = q-> _Size CELL OFF - size;
q->_Size = aiza;

I
_Aldata._Plaat "' qb ? qb : NULL;
return ((char *)q + CELL_OFF);

I* resume here */

I* _Getmem ~ction -- UNIX version */
#include "xalloc.h"

/* UNIX ayatmn cal.l */
void *_Sbrk(int);

void * Getm.n(aize t size)

0

{ - - I* a1locate r- storage */
void *p;
int iaize size;

return (iaize <= 0 I I (p _Sbrk(iaize))
? NULL : p) ;

/* calloc function */
#include <atdlib.h>
#include <string. h>

void *(calloc) (aize_t nel41111, aize_t size)

(void *)-1

0

{ /* allocate a data object on the heap and clear it */
QQMt. 3iz•_t n = nel.-n * size;
char *pm malloc(n);

if (p)
memaet(p, '\0', n);

r eturn (p);
0

376

Figure 13.31:
fr ... c

/* fr- function • /
linc1ude "xalloc:. h "

Chapter 13

void (fr ..) (void •ptr)
{ /* free an allocated data object •/
_Cell *q;

if (ptr = NULL)

return;
q "' (_Cell *) ((char •)ptr - CELL_OFF) ;
if (q->_Size 5 _MZMBND)

return;
if (Aldata. Head - NULL

/* bad poi.nter */

Ti q < _iidata._Bead>
{ !• inaert at head of list • /
q ->_Next "'_Aldata._Head;
Aldata. Head • q ;

else
/* scan for insertion point */

_Cell •qp;
char *qpp;

for (qp • _Aldata._Read;
qp->_ Next u q < qp->_Next;
qp .. qp->_Ne.xt ;

qpp • (char *)qp + CELL_ OFF + qp-> Size;
if ((char *)q < qpp)

return;
elae if ((char •)q == qpp)

{

/• erroneous call */

/* merqe qp and q */
qp->_Size += CELL_Oli'F + q - >_ Size;
q = qp;
)

else

q - >_ Next "' qp->_Next;
qp- >_Next .. q ;
)

if (q->_ Next ••

I* aplice q idter qp */

(char *)q + CELL_OFF + q - > Size """' (char *)q- > Next)
{ - /* merge q and q->;Next */
q - >_Sire +- CELL_ OFF + q->_ Next- >_Sire;
q - >_ Next = q->_Ne~->-~;
)

_Aldata._Plast = •q- >_ Next;
)

/* resume scan after f 'reed */
D

<stdl.ib. h>

Figure 13.32:
reall.oc.c

I* rea1loc function */
linclude <atring.h>
linclude 1•xal.1oc .b"

377

void *(rea1loc) (void *ptr, size t size)
{ /* reall;cate a data object on th• heap *I
_Cell *q;

if (ptr = NULL)

return (malloc(size));
q = (_Cell*) ((char *)ptr - CELL_OFF);
if (q-> _Size < size)

(/* try to buy a larger cell */
char *const n••...J> = malloc(aize) ;

if (new_J> - NULL)
return (NULL) ;

memcpy(new_J>, ptr, q->_Size);
fr-(ptr) ;
r eturn (new _J>) ;
)

ei .. if (q- >_Size
< size + CELL_OFF + SIZE_CELL)
return (ptr) ; /* leave cell alone */

else
(/* fr .. excess space */
const size_t new_n - (ain + HEMBNP) ' ~ HEMBNtl;
_Cell *const new_q = (_Cell *l ((char *)pU + new_n);

new q-> Size = q-> Size - CELL c:.T - n __ n ;
q->::::Siz; • new_n; - -
fr-((char *)new_q + CELL_OFF);
return (ptr) ;

0

function Figure 13.32 shows the file realloc . c. The function realloc tries to
r-lloc allocate a larger storage area if that is necessary. It also tries to trim the

existing storage area if that proves to be worthwhile.

This version doesn't try quite as hard as it could. U a larger storage area
is required, the function insists on allocating a new area before freeing the
existing area. That eliminates any worries about preserving data stored in
the usable area during the shuffle. But it precludes one possibility - the
larger area may be available only after the existing area is freed. Here is yet
another place where an ambitious implementor can make improvements.

The storage allocation functions are very important. Many programs
rely on them to work rapidly and robustly. They can also provide invalu­
able aids to debugging. Because they are largely self-contained, they are
easy to tinker with as a separate unit. For all these reasons, you can find
numerous implementations of these functions. I emphasized performance
and robustness here. You may well want to explore other goals.

378 Chapter 13

abort The final group of functions interfaces to the environment in various
ate.xit ways. Three functions deal with program term.ination- abort,atex1t,and
-it -it. Figure 13.33 through Figure 13.35 show the files abort .c, atexit.c,

and e.xit. c. abort simply reports the signal SIGABRT. Should the handler
for that signal return, the function exits with unsuccessful status. atexit is
almost as simple. It just pushes a fu.nction pointer on the stack defined by
the data objects _Atcount and _Atfuna. A call to -it pops this stack and
calls the corresponding functions.

fi.llctlon exit also d oses any open files before it terminates program execution.
_Exit How a program terminates is system dependent. You can usually call some

fu.nction to do so, however. As with several other i.nterface primitives, 1
stuff that problem into the internal header ·y~a.h". It either declares a
function or defines a macro called _Exit that accepts the exit status and
terminates execution. In a UNIX system, for example, _Exit can be just an
alternate name for the exit system service.

function Figure 13.36 shows the file getanv. c. It must know how to access the
getanv environment list that defines all the environment variables. It must also

know how to walk that list to scan for an environment variable with the
requested name. The version I show here works under UNIX. It also works
under a variety of other operating systems.

getanv assumes that_ Envp points to the first of a sequence of null-termi­
nated strings. An empty string terminates the sequence. Each string in the
sequence has the form .._-value. U the argument string matches all
characters before the equal sign, the function returns a pointer to the first
character past the equal sign. Once again, I leave it to the internal header
"yrun&. h • to define or declare_ ltnvp.

Some operating systems support an environment list, but not of this
form Others support an environment list that is not directly addressable
as a C data object. Either case may require that you copy the value string
to a static buffer that is private to getenv. U you do so, you must change several
functions in this implementation. Several functions assume they can call
getenv directly. That is true only if the cal ls have no effect on user programs.
You must introduce a function such as _Gatanv that lets you supply your
own static buffer to hold the value string. I chose to omit that layer of
protection against future changes.

fi.llctlon Figure 13.37 shows the file ayet-.c. It shows how a UNIX version of
•Y•t- the function •Y•t-might invoke a command processor from a C program

As usual, the function assumes the existence of several UN1X system
services with suitable reserved names. And as usual, the version I show
here can be improved. Wiring in the pathname" /bin/ah" as the name of
the command processor is at best naive, at worst bad manners. Several
more sophisticated schemes are in common use for specifying an assort­
ment of command processors . The function can also return more useful
status information to programs that care.

<atdlib.h>

Figure 13.33:
abort.c

FiglH 13.34:
atexit.c

Figure 13.35:
exit.c

/* abort function *I
#include <std1ib. h>
#include <signal .h>

void (abort) (void)
(

raiae(SIGABRT);
exit(EXIT_FAJ:LCRE);
}

/* atexit function */
#include <stdlib.h>

/* external declarations */
extern void (* _Atfuns [))(void);
extern size_t _Atcount;

379

/* te=inate abruptly *I

0

int (atexit) (void (*func) (void))
(/* function to call at exit */
if (_Atcount - 0)

return (-1);
_Atfuns [--_Atcount]
return (0) ;

func;

/* exit function */
#include <stdio.h>
#include <stdlib.h>
#include "yfuns .h"

/* macros */
#define NATS 32

/* static data */
void (* Atfuns [NATS)) (void)
size_t =Atcount • (HATS} ;

(0};

/* list i s full */

0

void (exit) (int status)
I /* tidy up and exit to system *I
while (Atcount < HATS)

(*_Atfuns[_Atcount++)) ();

size t i;

for (i = O; i < FOPEN_MAX; ++i)
if (Files[i))

fclose(_Files[i));

_Exit(statua) ;
}

/* close all fil es */

0

380

FlgUJe 13.36:
getenv .c

FigUJe 13.37:
ayatem. c

/* getenv function -- in-memory vereion */
#include <•tdlib.h>
#include <•tring . h>
#include •yfune.h"

char *(getenv)(conet char *name)

Chapter 13

{ / * search environment list for named entry */
conet char •e1
eize_t n • etrlen{namel1

for <• • _ Bnvp1 *•1 • +• etrlen(e) + 1)
(/ * look for name match */
it (!etrnc;n,p(e, name, n) aa s[n) •• '•')

r eturn ((char *)~e[n + 1]);

return (NULL) /

/* eyetem function -- UNIX version */
#include <etdlib.h>

/ * UNIX ayetem call• * I
int _Execl (conet char *• conat cbar • , •••)1
int _Pork(void) ;
int _Wait (int *)1

int (eystem)(const char •a)

0

(/ * eend text to system co111111&nd line processor */
if (a)

(J* not just a test */
int pid •_Pork();

if (pid < 0)

; /* fork failed * /
else if (pid •• 0)

(/ * continue here as child * /
_ Bxecl(•/bin/ab•, •sh", •-C", a, NULL)1
exit (BXIT_PAILURE);
)

elae / * continue here ae parent •t
while (_Wait(NULL) I • pid)

t• wait for child •/

<atdlib.h> 381

Testing <stdlib . h>
Figure 13.38 shows the file t•tdlib.c. The test program exercises the

various functions declared in <atdlib. h>, if sometimes only superficially.
The functions getenv and •Y•tem, for example, can return any value and
satisfy this test. The remaining functions are obliged to do something
nontrivial. at least.

As a courtesy, the program displays the values of the macros IWID_MAX

and MB_ CUJl_MAX. It also determines whether the "C" locale supports mul­
tibyte strings that have shift states. For this implementation, the program
displays:
RAND MAX • 32767

MB_ CUR_MAX • 1
Hultibyte •tring• don' t have shift nat­
SUCCESS t-ting <•tdlib. h>

To display the final line and exit successfully, the program must do
several things right. It must supply a handler for SIGABllT that fields the call
to abort. That handler must call exit with successful status EXIT sucCESs.
Anr. exit must call the handler done registered with atexit. That handler
r:aust be able to write a line of text to the standard output stream. All that
stuff exercises much of the logic for handling program termination.

References
Donald Knuth, TI1e Art of Computer Programming, Vols. 1-3 <Reading,

Mass.: Addison-Wesley, 1 %7 and later). Here is a rich source of algorithms,
complete with analysis and tutorial introductions. Volume 1 is Fundamental
Algorithms, volume 2 is Seminumerical Algorithms, and volume 3 is Sorting
and Searching. Some are in second edition.

You will find oodles of information on:

• maintaining a heap
• computing random numbers
• searching ordered sequences
• sorting
• converting between different numeric bases
Before you tinker with the code presented in this chapter, see what Knuth
has to say.

Ronald F. Brender, Character Set Issues for Ada 9X, SEJ-89-SR-17 (Pit~

burgh, Pa.: Software Engineering Institute, Carnegie Mellon University,
October 1989). Here is an excellent summary of many of the issues sur­
rounding large character sets and multiple character sets in programming
languages. While the document focuses on the programming language
Ada, it is largely relevant to C as well.

382

Figure 13.38:
tatdlib. c

Port 1

/* teat atdlib function• * /
lincl.ude <&11•ert . b>
linc1ude <limita . b>
linclude <aignal . h>
linclucle <atdio. h>
linelud• <atdlib. h>
linclude <string. b>

Chapter 13

static void al>rt(int aig)
(/* handle SIGABl\T */
exit (EXIT_ SUCCESS) ;
}

static int cmp(conat void *pl, conat void •p2)
/* coapare function for bMarch and qaort •/

unsigned char cl *(unsigned char *)pl;
unsigned char c2 •*(unsigned char *)p2;

return (*(unsigned char *)pl - *(undgned char *)p2);

static void done(void)
(/* get control from atexit */
puta("SUCCESS testing <atdlib.b>");
I

int ma.in()

(/* teat basic workings of atdlib functions */
char buf[lO] , *al, *a2;
div_ t iqr;
ldiv_t lqr;
int U EXIT_FAILORE;
int i2 • EXIT SUCCESS;
int i3 • MB_ cUR_MAX;
vcbar_ t vca[lO];
static char abc[) • "abcdefgbijkl.mnopqratuvvxyz";
static int rmax • RAND_MAX;

aaaert(32767 <• rmax) ;
aaMrt (1 <• MB_CUR_ MAX '"' MB_CUR_MAX <• MB_ LEN_MAX);
aaMrt ((al • malloc (aizeof (abc))) ! • NOLL) ;
atrc:py (al, abc) ;
aaMrt ((•2 • calloc(aizeof (al>c), l)) I • NOLL

'' • 2[0) - '\0 ');
&11aert <-c:mp(a 2 , •2 + 1 , aizeof (abc) - 1) 0) ;
aaaert (atrcmp(al, abc) - 0) ;
aaaert ((al • r-lloc (al, 2 * aizeof (abc) - l)) !• NULL);
atrcat (al, abc);
asaert(atrrchr(a1, 'z') - a1 + 2 • atrlen(abc) - l) ;
fr-(a2);
aaaert ((al • r .. uoc (al, sizeof (abc) - 3)) !• NULL);
.... rt c-c:mp(al, al>c, sizeof (abc) - 3) - 0) ;
aaaert (getenv("ANY") 11 ayat-(NULL) 11 al>c(OJ) ;
aaaert(al>a(-4) - 4 ''al>•(•) =- 4) ;
aa..rt(lal>a (- 4) -- 4 ' ' lal>s (4) == 4) ;

<etdlib.h>

Continuing
tstdl.ib.c

Part2

asHrt(div(7, 2) . quot 3 lili div(7, 2) . - - 1) ;

iqr • div(- 7 , 2);
assert(iqr. quot .. •3 "iqr.rem .. -1) ;
asHrt(ldiv(7, 2) . quot=- 3 lili ldiv(7, 2) .rem - 1);
lqr a ldiv(- 7, 2) ;
aaHrt(lqr .quot
aaaert(O <• (11
asHrt(O <• (12
arand(l);

- - 3 lili lqr. rem -- - 1) ;
rand()) lili il <•RAND MAX);

• rand()) lili i2 <• RAND: MAX) ;

asaert(rand() - 11 lili rand() = 12) ;
asHrt (bHarch ("0", abc, s iEeof (abc) - 1.

=NULL) ;
asa•rt (ba• arch("d", abc, aueof (abc) - 1,

= liabc[3]);
qsort (atrcpy(buf, "miehma.sh"), 9, 1 , lianp) ;

assert (-anp(buf, "\Oahhinmss", 9) - 0) ;
••• •rt(atof("3.0") - 3 . 0) ;
aeHrt(atof("-le-17-") - - le-17) ;

1,

1 ,

lic:mp)

lic:mp)

&Hert (ato1 ("37") -= 37 lili ato1 (" -7192X") - - 7192) ;

assert (atol("+29") - 29 lili atol ("-077") - - 77) ;

aeaert(atrtod("28G", lia l) - 28 . 0
lili al !• NULL lili * a l = •G');

asaert (strtol("-aO", lia l , 11) - - 110

'' •l , _ NQLL '' *•1 == '\0 ');
a aHrt(.trtoul("54 ", lial, 4) = 0

lili al !• NULL"' *al== 'S');
asHrt(strtoul(" OxFfg", lial, 16) - 255

££ al t• NULL££ • s l == ' q ') ;
asa•rt(mb11towc11(vc11, "abc", 4) - 3 lili wcs[l] =- ' b') ;

aae ert(vcetombe (buf, wca, 10) -= 3
lili etrcmp(buf, " abc") = 0) ;

mblen(NOLL, 0) ;
wctomb (NULL, 0) ;
aa11ert(mblen("abc", O - l) ;
aaa ert(mbtowc(livca[O), "abc", 4) - 1 lili wca[O] - 'a');

asHrt(wctomb(buf, wce[O]) 1 lili buf[O] - ' a ');
asaert(mblen("", 1) =- O) ;
asHrt(mbtowc(liwca[O], "", 1) - 0 lili wca[O) =- 0);

asHrt(wctOlllb(buf, vca[O]) - l lili buf[O] - '\0');
printf("RAND MAX• \ld \n", (long)RAND MAX) ;
printf("MB_CUR_MAX,. \u\n•, MB CUR MAX) ;

printf ("Multibyt• .tringa\a ha~• shift atatea\n" ,
mbtov c(NULL, NULL,, 0) ? ",,. : " don't");

atexit (lidone) ;
a1gnal(SI~RT, liabrt) ;
abort();
puta(" FAILtlRE t esting <atdlib. h>") ;
return (EXIT_FAILURE);

383

0

384

Exercises
Chapter 13

Exercise 13.1 The following locale file defines the "Shift JIS" multibyte encoding for
Kanji. A character code in the intervals [Ox81, Ox9FJ or [OxEO, OxFCJ signals
the first of a two-character se.quence. (Any other code is a single character.)
The second character must be in the interval [0x40, OxFC]:
LOClU.E saFT_JIS
wm JIS oodes with Ox81--0x9F en: CbcEO-<bcfC foll.owed by Ox40-0x1'C
Sl!:r A Ox81
Sl!:r B Ox9f
Sl!:r c OxeO
Sl!:r D Qxfc
Sl!:r M Ox40
Sl!:r N Ox:fc
Sl!:r x 0
nb_curJMX 2
nt:itowc[O, 0:$#) $@ $F $0 $l $0
Dt:ltowc[O, A:B) $@ $F $R $I $1
Dt:ltowc[O, C:D) $@ $F $R $I $1
Dt:ltowc[l, 0:$#) x
Dt:ltowc (1, M:N I $@ $F $0 $I $2
Dt:ltowc[2, 0:$#) 0 $F $R $0
w::talt>[O, 0:$#) $R $1
w::talt>[l, 0: $#) x
w::talt> (1, 0)
lCtalt>[l, A:B) $@
w::talt>[l, C:D) $@
w::talt>[2, 0:$#) x
w::talt>[2, M:N I
LOClU.E end

$R $0 $I $0
$R $0 $2
$R $0 $2

$0 $l $0

Describe the mapping between multibyte characters and wide characters
defined by this locale file. Draw state-transition diagrams for both nttcMc
and wctaxh

Exercise 13.2 One definition cf EUC ("Extended UNIX Code") is similar to Shift)IS. A
character code in the interval [OxAl, OxFEJ is the first of a two-c:haracter
sequence. The second character must be in the interval [Ox80, OxFF]. Alter
the locale file presented in the previous exercise to define this multibyte
encoding. Describe your choice of mapping to wide chatdcters.

Exercise 13.3 The following locale file defines the "JIS" multibyte encoding, which has
locking shift states. The three-character sequence "\33$B" shifts to two­
character mode. The three-character sequence "\33(B" shifts back to one­
character mode. In two-character mode, both character codes must be in
the interval [Ox21, Ox7E]:
LOClU.E JIS
H:7lE JIS oodes with BOC+ (+B mid ESC+$+B
Sl!:r A Ox21
Sl!:r B Ox7e
Sl!:r x 0
Sf:l' z 033
nt>_cur..JllBX 5

<stdlih.h> 385

ubtcM::[O, 0:$#) $@ $F $0 $I $0
ubtcM::[O, 0) $@ $F $0 $I $1
ubtcM::[O, Z) $I $1
ubtcM::[l, 0:$#) x
ubtcM::[l, '(') $I $2
ubtcM::[l, '$') $I $3
ubtcM::[2, 0:$#) x
ubtcM::[2, 'B') 0 $F $R $1 $0
ubtcM::(3, 0:$#) x
ubtcM::[3, 'B') $1 $4
ubtcM::[4, 0:$#) x
ubtcM:: [4, z) $1 $1
ubtcM::[4, A:B) $@$F$R $I $5
ubtcM::[S, 0:$#) x
ubtcM::[S, A:B) $@$F $0 $I $4
wctarb[O, 0:$#) $R $1
wctarb[l, 0: $#) x
wctarb [1' 0) $R $0 $I $0
wc:tali>[l, A:B) z $0 $2
wc:tali>[2, 0: $#) '$' $0 $3
wc:tali>[3, 0:$#) 'B' $0 $4
wctarb[4, 0:$#) x
wctarb[4, 0) z $0 S7
wc:tali>[4, A:B) $@ R0 $5
wc:tali>[S, 0: $#) x
wc:tali>[S, A:B) $0 $I $6
w::talb[6, 0:$#) $R $4
wctarb[7' 0:$#) ' (' $0 $7+$1
wc:tali>[8, 0:$#) 'B' $0 $1
ux:AIE end

Describe the mapping between multibyte characters and wide characters

defined by this locale file. Draw state-transition diagrams for both ubtcM::

and wc:taJb.

Exercise 13.4 Alter the storage allocation functions to maintain up to eight lists of
fixed-size elements. Add a freed item to an existing list of elements that

have the same size. (Don't bother to sort these lists by storage address.)
Otherwise, create a new list if not all eight have been established. Allocate

from these lists if the request is exactly the right size. Why would you want
to introduce this extra complexity?

Exercise 13.5 Alter the storage allocation functions to store a signature as well as a size

in each allocated element. You might try a recipe something like:

~>_Signature =~>__size A (int)p A 0x01234567;

(This example assumes that both p and ~>....,Size occupy 32 bits. It is not

portable code.) Check the signature of each element to be freed. Why would

you want to introduce this extra complexity?

Exercise 13.6 Alter the storage allocation functions to require that all allocated storage

be freed prior to program termination. Do you have to change exit as well?

What discipline does that impose on the use of the storage allocation
functions? Why would you want this extra constraint?

386 Chapter 13
Exercise 13.7 Implement exit, getenv, and aystem for the C translator that you use. Do

you have to write any assembly language?
Exercise 13.8 [Harder) Alter strtod to translate the input string Inf to the special code

Inf. Translate the input string NaN to the special code NaN. Is this extension
permitted by the C Standard? How can you modify the code in <locale. h>
to turn the translation on and off? Can you devise a notation for specifying
arbitrary not-a-number codes?

Exercise 13.9 [Very hard) Modify a C compiler to gene.rate inlinecode for M>s, di.v, labe,
and ldiv.

Chapter 14: <string.h>

Background
The functions declared in <•tring. h> form an important addition to

Standard C. They support a long tradition of using C to manipulate text as

arrays of characters. Several other languages better integrate the manipu­

lation of text strings, SNOBOL being a prime example. All that C incorpo­

rates in the Language proper is the notation for null-terminated string

liter11ls such as "abc". The Standard C library provides all the important

functionality. These functions manipulate three forms of strings:

• Functions whose names begin with - manipulate sequences of arbi­

trary characters. One argument(.) points to the start of the string- the

lowest subscripted element. Another (n) counts the number of elements.

• Functions whose names begin with rtrn manipulate sequences of non­

null characters. The arguments • and n are the same as above. The string

ends just before the element• [nJ or with the lowest value of i for which

•li J is zero(• \0'), whichever defines a shorter sequence.

• All other functions whose names begin with rtr manipulate null-termi­

nated sequences of characters. These functions use only the argument •

to determine the start of the string.

Each group has its distinct uses, as you might expect.

drawbacks What you might not expect are several design lapses in these functions.

The functions declared in <rtrinq.h> are not the result of a concerted

design effort. Rather, they represent the accretion of contributions made by

various authors over a span of years. By the time the C standardization

effort began, it was too Late to "fix" them. Too many programs had definite

notions of how the functions should behave. Some of the problems are:

• Many of the functions that search return a null pointer when the search

fails. You have to capture the return value and test it before you can

safely use it further. A pointer to the end of the string is just as good a

failure code and much more usable in expressions.

• The functions that copy return a pointer to the start of the destination

area. That is sometimes useful in a larger expression, but the address of

the end of the copy is more informative. You can perform multiple copies

more effectively with the latter return value than with the former.

388 Chapter 14
a The names of some functions are mysterious. atrcapn and at:icpbrk, for

example, do not loudly proclaim what they do.
• The set of functions is incomplete and inconsistent. atrnl•n andmemrchr

are two sensible additions, for example, whereas atrncat is surprising.
Despite these aesthetic gripes, I find the functions declared in <atrinq. h>
to be both important and useful. Several of them are, in fact, leading
contenders for generating inline code. Many C programs use these func­
tions, and use them a lot. They are worth the effort to leam and to optimize.

What the C Standard Says
<.-trS.n9 . h>

_..

7.11 String handling <string. h>

7.11.1 String function conventions
The header <atrinq. h> declares one type and several functions. and defines one macro

useful for manipulating arrays of c haracter type and other objects treated as arrays of character
typc.133The lypc is •ize t and !he macro is NULL (both described in 7.1.6). Various methodS
arc used for determining tliC lengths of !he arrays, but in all cases a char * or void * argument
points 10 the initial (loweS1 addressed) character of the array. lJ an array is accessed beyond 1he
end of an object. 1he behavior is undefined.

7.11.2 Copying functions
7.11.2.l llle-cpy function
Synopsis

l include <etrin9.h>
void •~py(void ••1, conat void •e2, eis• _t n);

Description

The -cpy function copies n characters from 1he object pointed 10 by •2 into the object poimed 10 by al. If copying takes place be1ween objcclS that overlap, the behavior•~ oodcfincd.
Returns

The -cpy func1ion returns the value of al.
7.ll.2.2 llle llleDllllOVe function
Synopsis

l ine.bade <•trinq. b>
void • -.oV4i(void • et , cotltt v oid • *2, eia.•_t .n);

Description

The memnove func1ion copies n characters from !he object pointed ro by a2 into rhe objea poin1ed 10 by al. Copying takes place as if lhe n characters from the objccl pointed ro by a2 arc
fma copied into a 1crnporary array o f n characters 1hat does llOI overlap the objects poimcd 10 by a l and •2. and then 1he n c:haradcrs from rhe temporary anay arc copied into the objec1 pointed
roby • l .

Returns

The-=ove function returns the value of a l .
7.ll.2.3 llle •trcpy function

Sy~

lincl~ <etring.h>
char •etS"q>y(~ *el., cone t char *• 2);

Desmpcion

The atrcpy func1ion copies the String poin1ed 10 by a2 (including 1hc 1ermina1ing null
charaaer) into 1he array poin1ed to by al. If copying lakes place between objects !hat overlap, 1he behavior is undefined.

<atring . h>

e t.rncpy

a treat

et m eat

Returns

The atrcpy function returns the value of al.
7.11.2.4 The atrncpy fundion

Synopsis

l i nclud.e <• tring. h>
Cha r ••trncpy (Char •el , con.et char ••2, aiae_t n) ;

Description

389

The atrncpy function copies nol more than n charactc:o (characters that follow a null

charactcr arc noc copied) from the array pointed 10 by a2 to the array pointed to by a 1.1:w If
copying takes place between objeclS that overlap, the behavior is undefined.

If the array pointed to by a2 is a string that is shorter than n characters, null characttts are

appended to the copy in the array pointed to by •l. umil n characters in au have been writlen.

Rd urns

The atrncpy function returns the value of a l .

7.11.3 Concatenation functions
7.11.3.1 The • t r e at fundion

Synopsis

I include <at r ing .h>
c har ••t reat (char "'• 1. conat c har .,•2>;

l>es<ription

The atrcat function appends a copy of the string poimcd to by a2 (including the terminating

null characttt) to the end ofthe string pointed to by al. The initial character of a2 overwrites the

null character at lhe end of a l . If copying lakes place between objects that overlap. the behavior
is undefined.

Returns

The atrcat function returns t'he value of al.

7.U.3.2 The atrncat function

Synopsis

I include <atri.ng" . h>
c har •atrncat (cha:r •al, con.st char • a2. ah:e_ t n) ;

Otsa-lption

The atrncat function appends noc more than n characters (a null character and charact..-s

thal follow it are noc appended) from the array pointed 10 by a2 to lhe end of the siring pointed

to by al. The initial character of • 2 ov..-writes the null character at theend of al. A lerminating
null character is always appended to lhc result. llS If copying takes place between objects that

overlap, the behavior is undefined.

Relums

The atrnc.at function returns the value of a l .

Forward references: the atrlen function (7.11.6.3).

7.11.4 Comparison functions
The sign of a nonzero value returned by lhe comparison functions memcmp, • trcmp. and

atrncq> is determined by lhe sign of the diffe.-cncc between lhe values of the first pair of

characters (bolh interpreted as ~igned char) that differ in the objects being oomparcd.

7.11.4. l lbe-cmp function

Synopsi5

linclu~ <•t.rin9. h>
i.nt ...aip(conat vo.id *•l. conat. void • a2 .. •i••_t n) ;

0-riplion

The~ function compares the fi rst n characters of the object pointed to by a l lo the

first n characters of t'he object pointed 10 by a2 . 136

390

etreoll

Chapter 14

Returns

The mancmp function rdurns an integer greater than, equal to, or less than zero, acccrdingly
as the object pointed to by sl is grcllter than. equal 10, or less than the object pointed to by a2.
7.11.4.2 The strcmp function
Synopsis

I.include <•tri..nq . h>
1.nt atrClllP(COn• t char •al . COl\at char ••2) ;

°'5cription

The strCllf> function compares the string pointed to by sl to the string pointed to by s2.
Returns

The stranp function rdurns an 1111eger greater than. equal to, or less than zero, accordingly
as the siring pointed to by sl is greater than, equal to, or less than the string pointed to by a2.
7.ll.4.3The atrcoll function
Synopsis

linc lude < •t.ri.ng . b>
i nt atrcoll (conat char •al, con.at char ••2> ;

Description

The strcoll function compares the string pointed to by al 10 the string pointed 10 by s2,
bolh interpreted as appropria1e to the LC_ COLI.ATE category of the c.ment locale.
Returns

The strcoll function rd urns an integer greater than. equal to, or less than zero, accordingly
as the string pointed to by al is greater than, equal to, or less than the string poinled to by s2
when bolh are interpreted as appropriate to the current locale.
7.11.4.4 The atrncmp fundioo
Synopsis

11.tt.c luCS. <atrln9 . h>
int atrnc11P(const char •a1 . conat cba.r • a2, a1a•_t n) ;

Description

The strnanp function compares not more than n characters (characters that follow a null
character are no1 compared) from the array pointed to by al to the array pointed to by s2.
Returns

The 8trnC11f> function ""urns an integer greater than, equal 10, or less than zero, accordingly
as the possibly null-terminated array pointed to by al is greater than. equal to. or less than the
possibly null-terminated array poinced to by a2.
7.11.4.5 The strxfrm function
Synopsis

I i_nclude <• tri.ft9 . h>
ais.e_t etndra(cha.r •al, conat char *•2. aite_t n) ;

Description

The strxErm function transforms the string poinied 10 by s2 and places the resulting string
in101he array pointed 10 by sl. The 1ransforrna1ion is such 1ha.1 if the strCllf> function is awlied
101wo transformed strings. i1 returns a value greater than, equal to, or less than zero, corresponding
IO the rcoull of the strcoll function applied to the same two original strings. No more than n
characters arc placed into the resulting array pointed to by 111, including the tem;inating null
dlaracter. If n is 1.ero, al is pcrmiued 10 be a null pointer. If copying takes place between objects
that overlap, the behavior is undefined.
Returns

The strxfrm function ""urns the length of the transformed '1ring (not including the
terminating null character). If the value returned is n or more, the contents of the array pointed 10
by al are indeterminate.

<string . b >

a trcepn

391

Example

11ie value o(1he following expression is the size of the array needed to hold the transformation
of the string pointed 10 by • ·

l + etraf ra (NULL, • · 0)

7.11.S Search functions
7.U.5.1 The-chr function

Synopsis

l incl uCS. <etring . h>
void • .. .cbr (cone t void • • . i .nt c, e i&e_t n) :

Description

The muichr funcuon locales the first occurrence of c (convened to an una iqned char)
in the initial n characters (each interpreted as unaiqned char) of lhc object poinled 10 by • ·

Rnurns

The~ function returns a poinlcrtothe located cha.racier. or a null pointerif lhccharacler
docs nol occur in lhc objecl ..

7.ll.5.2 The strchr function

Synopsis

I include <atrin9 . h>
char • atrchr(conat char • a, int c):

Description

The atrchr function locates the first occurrence of c (convened to a char) in the string
pointed to by a. The terminating null character is considered 10 be past oflhc string.

Returns

1bc atrchr fu11C1ion returns a pointer to the locared characlcr. or a null pointer if thccharader
docs noc occur in the 5tring.

7.ll.5.3 The atrcspn function

Synopsis

l include <atrino .h>
eiae_t a trcapn (con.at char • al, conat char ••2) ;

Description

1bc atrc apn function computes the length of the maximum initial scgmcnl or lhe string
poinled 10 by a l which consists cmircly or characters not from lhc string polmed 10 by s 2 .

Returns

The atrcapn function mums 1he length of the segment

7.U .5.4 The strpbrk function

Synopsis

linc1~ <atr1-ng. h>
char • atr;pbrk(con.t char • al, con.et char • e,2) ;

Description

The atxpbrk function locales the first occurrence in 1hc string pointed IO by sl of any
characler from lhc string poinlcd to by a2.

Returns

The stz:pbrk func1ion returns a poinler to lhe character, or a null pointer if no character from
s2 occurs in al .
7.ll.5.5 The s trrch r runction

Synopsis

finclu~ <etring. b>
char •atrrchr (con•t. char *•~ int C);

392

e tr•tr

•trtok

Chapter 14

Description

The strrchr funaion locales 1he last occurrcru of c (convened IO a cha.r) in the string
poin1ed to by a . The 1cnninating null character is considered 10 be pan o f the string.
Returns

The •trrchr function rc1ums a pointer to the character, or a null pointer if c does noc occur
in the string.
7.11.5.6 lbe •trapn function
Synopsis

linclude <• tring .h>
• i &e_ t. atrspn(oon9t char • e l , conet char •a2) ;

Description

The strspn function oornputcs the length of lhe maximum initial segment of lhe .img
pointed to by al which consists cn1ircly of characters from the string pointed 10 by • 2 .
Returns

Thc strspn funaion returns 1he length of 1he segment.
7.ll.5.71be •tr•tr function
Syncpsls

l i ncl,ude <string . h>
cba.r •at.retr (conat char •al, conat. char • a2) ;

Des<:r iption

The strstr function locates the fim occurrence in the string pointed lo by s1 of the sequence
of characters (excluding the 1crmina1ing null character) in the string pointed to by a2
Returns

The stratr funclion returns a pointer 10 the located string, or a null pointer if 1he string is
noc found. If a2 points to a string whh zero length, 1he funaion returns al.
7.11.5.8 lbe • trtok function
Synopsis

linclude <at.ring .h>
char •ats:tok(cb&r • al, conat char •a2);

l>es<:ription

A sequeru of calls to the atrtok funaion breaks the string pointed to by al into a sequence
of tokens. each of which is delimited by a character from lhe string pointed to by •2. The fITTf
call in the sequcru has •1 as its fir!l argumcni. and is followed by calls with a null pointer as
their first argument. The separator s tring pointed 10 by a2 may be different from call co call.

The first call in the sequence searches the string poinicd lo by al for lhe first character that is
not contained in the currcnl separator string pointed 10 by a2. If no such charac1er is found, then
!here arc no tokens in the string pointed 10 by •1 and the strtok funaion returns a null poilller.
If such a character is found, i• is the start of the fi.rst •oken.

The atrtok function then searches from there for a character that is contained in the current
separator string. If no such characte r is found, the cuncnl token extend• IO lhe end of the .iring
pointed to by •1. and •ubscqucnt searches fora token will return a null poinler. If such a character
is found, it is overwriucn by a null character, which terminates lhe currcnl token. The strtolt
functioo saves a poinltt to the following character. from which the next search for a •oken will
start.

Each subsequent call. with a null pointer as the value of the fim argument, stans searching
from lhe saved pointer and behaves as described above.

The implementation shall behave as if no library function calls the strtok funaion.
Returns

The strtolt funaion returns a pointer to the first character of a to!..en, or a null poilller if
there is no token.

<atring . h>

..... t

etrlen

Example

I .include <•trin9. h>
•tatic c.bar atr() • •?a ???b ,, , l c '";

cba.r • t;

t • atrto1t(•tr, .. ? ") ; / • t point• to t he totian " • " •/
t • etrtok(NULl., ", .. , : J • t poJnt• t:o t:b• toke n "??b" •/

t • etrtok(NULL, "I ,") ; /• t point• to th• token "c" */
t • •trtok (NULL, " ?") ; /• t i• a nul.l po.inter •/

7.11.6 Miscellaneous functions
7.U.6.1 The memaet function

Synopgs

I include <e tr1-n9 . b>
v oid •-.at (vo1-d *•• int c , eiz.e_t n) ;

0-.-iplion

393

The-t function copies the value of c (converted to an unaiqned char) into each of
the fi rst n charactcl'$ of the object pointed to by a.

Returns

The -.et function rccums the value of a.
7.11.6.2 The atrerror function

Synopsis

linclud.9 <etring . h>
char •at rerror (int •rrnwa) ;

Description

The atrerror function maps the error number in errnum to an emir message string.

The irnplemeru1ion shall behave as if no library function calls the atrerror function.

Returns

The atrerror function returns a poinu::r to the string. the contents of which arc implemen·
tation-dcfined. The array pointed to shall not be modified by the program. but may be overwritten
by a sub..equent call to the atrerror function.

7.11.6.3 The atrlen function

Synopsis

lincluct. <•trin9 . h>
aiir:e_ t e trle n(conet cbar *•> ;

Description

The at.rlen function computes the length of the string pointed to by a.
Returns

Th< atrlen function returns the number of chat:lclc.s that precede the terminating null
charoc!Cf.

Footnoles

133. See .. future library directions" (7.13.8).

134. Thus. if there is no null c haracter in the first n characlcn of the array pointed to by s2. the
result will not be null-lenninatro.

135. Thus. the maximum number of characters that can end up in the array pointed to by sl is
atrlen(al)+n+l.

136. The contents of'.holes .. used as padding for purposes of alignment within structure objecls
arc indeterminate . Strings shorter than their allocated space and un.ions may also cause
problems in comparison.

394 Chapter 14

Using <string. h>
You use the functions declared in .:.trin9. h> to manipulate strings of

characters. You characterize each string by an argument (call is a) which is
a pointer to the start of the string.
• If a string can contain null characters, you must also specify its length

(call it n) as an additional argument.. n can be zero. Use the functions
whose names begin with-.

• If a string may or may not have a terminating null character, you must
similarly specify its maximum length n, which can be zero. Use the
functions whose names begin with atrn.

• If a string assuredly has a terminating null character, you specify only•·
Use the remaining functions whose names begin with atr.
Beyond this simple categorization, the string functions are only loosely

related. I describe each separately, along with the macro and the type
defined in <at ring . h>:

NULL NULL - See page 220.
aiH_t aiH_t -See page219.
DllllChr mamchr- Use this function to locate the first occurrence (the one having

the lowest subscript) of a character in a character sequence of known
length. The function type casts the first (string pointer) argument to pointer
to unsigned char. It also type casts the second (search character) argument to
unsigned char. That ensures that an argument expression of any character
type behaves sensibly and p redictably. A search failure returns a null
pointer, however. Be sure to test the return value before you try to use it to
access storage. Also note that the return value has type pointer to void. You
can assign the value to a character pointer but you can't use it to access
storage unless you first type cast it to some character pointer type.

memcmp mamcmp - This function offers the quickest way to determine whether
two character sequences of the same known length match character for
character. You can also use it to establish a lexical ordering between two
character sequences, but that ordering can change among implementa­
tions. If a portable result is important, you must write your own compari­
son function .

...,.cpy IMl!ICPY - If you can be certain that the destination al and source . 2 do
not overlap, memcpy (al, a2, n) will perform the copy safely and rapidly.
If the two might overlap, use - ove(al , a2, n) instead. Do not assume
that either function accesses storage in any particular order. In particular,
if you want to store the same value throughout a contiguous sequence of
elements in a character array, use memHt .

........,ve m8lllllov• - See-cpy above.
n-•Ht memHt - This is the safe way to store the same value throughout a

contiguous sequence of elements in a character array.

<string . h> 395

atrcat atrcat - If you have only two strings al and 82 to concatenate, or just
a few short strings, use atrcat (al, a2). Otherwise, favor a form such as
atrcpy C•l += atr1en (al), 112). That saves repeated, and ever-lengthen­
ing, rescans of the initial part of the string. Be sure that the destination array
is large enough to hold the concatenated string. Note that etrcat returns
111, not a pointer to the new end of the string.

atrchr atrchr - Use this function to locate the first occurrence (the one having
the lowest subscript) of a character in a null-terminated string. The function
type casts the second (search character) argument to char. That ensures that
an argument expression of any character type behaves sensibly and pre­
dictably. A search failure returns a null pointer, however. Be sure to test the
return value before you try to use it to access storage. Note that the call
atrchr C•, ' \O ' > returns a pointer to the terminating null. See also atrcapn,
atxpbrk, and at rrchr, described below.

atrcnp atrcnp - This function offers the quickest way to determine whether
two null-terminated strings match character for character. You can also use
it to establish a lexical ordering between two strings, but that ordering can
change among implementations. If a portable result is important, you must
write your own comparison function. See also atrcoll and atrxfrm, below.

atrcoll atrcoll - Use this function to determine the locale-specific lexical
ordering of two null-terminated strings. You must know the current status
of locale category LC_ COLI.ATE to use this function wisely. (You must at least
assume that someone else has set this category wisely.) Under some cir­
cumstances, you may want to use atrxfrm, described below, instead.

atrcpy atrcpy - If you can be certain that the destination 111 and source a2 do
not overlap, atrcpy C•l, a2) will perform the copy safely and rapidly. If the
twomight overlap,usemmmnove(lll, a2, atrlen(a2) + 1) instead.Donot
assume that either function accesses storage in any particular order.

atrcapn atrcapn - You can think of atrcapn as a companion to atrchr that
matches any of a set of characters instead of just one. That makes it similar
to atxpbrk as well. Note, however, that atrcapn returns an index into the
string instead of a pointer to an element. If it finds no match, it returns the
index of the terminating null instead of a null pointer. Thus, you may find
that the call atrcapn(a, "a"), for example, is more convenient than either
atrchr(a, 'a') or atxpbrk(a, "a").

atrerror atrerror - Use atrerror (errcode) to determine the null-terminated
message string that corresponds to the error code errcode. (Chapter 3:
<errno .h>describes the macro errnoand the standard error rodes.)•=<:~
should be errno or one of the macros defined in <•rrno.h> whose name
begins with E. Be sure to copy or write out the message before you call
atrerror again. A later call can alter the message. If you simply want to
write to the standard error stream a message containing atrerror (errno) ,
see perror, declared in <•tdi.o. h>.

396 Chapter 14

atrlen atrle n - Use this function wherever possible to determine the length
of a null-terminated string. It may well be implemented with inline code.

atrncat atrncat -The atrn in atrncat(al. a2, n2) refers to the string a2 the
the function concatenates onto the end of the null-terminated string al. The
function copies at most n2 characters plus a terminating null if it doesn't
copy a terminating null. Thus, strlen <al> increases by at most n2 as a result
of the call to strncat. That makes strncat a safer function than a.treat, at
the risk of truncating s2 to length n2.

strncinp strncinp - This function offers the quickest way to determine whether
two character sequences of the same known length match character for
character up to and including any null character in both. You can also use
it to establish a lexical ordering between two such character seque.nces, but
that ordering can change among implementations. If a portable result is
important, you must write your own comparison function.

strncpy strncpy - If you can be certain that the destination al and source a2 do
not overlap, atrncpy(al. a2, n2J w ill perform the copy safely. Note,
however, that the function stores exactly n2 characters starting at al. It may
drop trailing characters, including the terminating null. It stores additional
null characters as needed to make up a short count. If the two areas might
overlap, use memmove (al, a2. n2 > instead. (You must then store the appro­
priate number of null characters at the end, if that is important to you.) Do
not assume that either function accesses storage in any particular order.

atrpbrk atrpbrk - You can think of strpbrk as a companion to strchr that
matches any of a set of characters instead of just one. That makes it similar
to atrcapn as well. Note, however, that atrcapn returns an index into the
string instead of a pointer to an element. If it finds no match, it returns the
index of the terminating nurn instead of a null pointer. Thus, you may find
that the call atrcspn(s, "abc">, for example, is more convenient than
atrpbrk(s, "abc").

atrrchr strrchr- Use this function to locate the last occurrence (the one having
the highest subscript) of a character in a null-terminated string. The func­
tion type casts the second (search character) argument to char. That ensures
that an argument expression of any character type behaves sensibly and
predictably. A search failure returns a null pointer, however. Be sure to test
the return value before you try to use it to access storage. Note that the call
atrrchr<•. • \O' >returns a pointer to the terminating null. See also atrchr,

atrcapn, and atrpbrk, described above.

atrapn atrapn - You can think of atrapn as the complement to atrcapn. It
searches for a character that matches none of the elements in a set of
characters instead of any one of them. atrapn also returns an index into the
string or, if it finds no match, the index of the terminating null. Thus, the
call atrapn(a , "abc"), for example, finds the longest possible span of
characters from the set "abc~.

<string. h> 397

strstr strstr - You write strstr (sl, s2) to locate the first occurrence of the
substring s2 in the string sl. A successful search returns a pointer to the
start of the substring within sl. Note that a search failure returns a null
pointer.

strtok strtok - This is an intrkate function designed to help you parse a
null-terminated string into tokens. You specify the set of separator charac­
ters. Sequences of one or more separators occur between tokens. Such
sequences can also occur before the first token and after the last. strtok

maintains an internal memory of where it left off parsing a string. Hence,
you can process only one string at a time using strtok. Here, for example,
is a code sequence that calls the function word for each "word" in the string
line. The code sequence defines a word as the longest possible sequence
of characters not containing "white-space" - define here as a space,
horizontal tab, or newline:

char •s;

for (s = line; (s = strtok(s, " \t\n")) != NULL; s = NULL)
word(s);

The first call to strtok has a first argument that is not a null pointff. That
starts the scan at the beginning of line. Subsequent calls replace this
argument with NULL to continue the scan. If the return value on any call is
not a null pointff, it points to a null-terminated string containing no
separators. Note that strtok stores null characters in the string starting at
line. Be sure that this storage is writable and need not be preserved for
future processing.

You can specify a different set of separators on each call to strtok that
processes a given string, by the way.

strxfnn strxf=- Use strxfnn(sl, s2, n) to map the null-terminated string
s2 to a (non-overlapping) version at sl. Strings you map this way can later
be compared by calling strcmp. The comparison determines the locale-spe­
cific lexical ordering of the two strings that you mapped from. You must
know the current status of locale category LC_COLI.ATE to use this function
wisely. (You must at least assume that someone else has set this category
wisely.) Under most circumstances, you may want to use strcoll, de­
scribed above, instead. Use strxf= if you plan to make repeated compari­
sons or if the locale may change before you can make the comparison. Use
malloc, declared in <stdlib. h>, to allocate storage for sl, as in:

s ize_t n = strxfrm(NULL, s2, 0);

char *sl - malloc(n + l);

if (sl)
strxfrm(sl, s2, n);

The first call to strxfrm determines the amount of storage required. The
second performs the conversion (again) and stores the translated string in
the allocated array.

398 Chapter 14

Implementing <string. h>
The functions declared in <string. h> work largely independent of each

other. The only exception is the pair strcoll and strxfz:m. They perform
the same essential operation two different ways. I discuss them last. The
remaining functions each perform a fairly simple operation. Here, the
challenge is to write them to be clear, robust, and efficient.

header Figure 14.1 shows the file string. h. As usual, it inherits from the internal
<string. h> header <yva1s . h> definitions that are repeated in several standard headers.

I discuss the implemention of both the macro NULL and the type definition
size_t in Chapter 11: <stddef . h >.

Figure 14.1: /* atring. h standard header*/
string.h #ifnde f _STRING

#define _STRING
#ifndef _ YVALS
#include <yva1s . h>
#endif

/ * macros */
#define NULL NULL

/ * type defini tions */
#ifndef _ SIZET
#define SIZET
typedef _Sizet size_ t ;
#endif

/* declarations */
void *mmnchr(const void* , int , s ize_t) ;
int ~(const void*, •Const voi d* , size_t);
void •memcpy(void * • const void * • s ize_t) ;
void •mammove (void * , con.st void *, size_ t) ;
void *memset(void * , int, size_t);
char *strcat (char * , const char *) ;
char *strchr (const char * , int);
int strcmp(const char * , const char *) ;
int strcol1 (const char * , const char *) ;
char *strcpy(char * , const char*);
size t s trcspn(const char * , const char *);
char-*strerror(int) ;
s ize_t s tr1en(const char•) ;
char *strncat(char * , const char * , size_t);
int str ncmp (const char* , const char*, size t) ;
char *strncpy(char *, const char*, size_t) ;­
char *strpbrk(const char • , const char *);
char •strrchr(const char • , i nt) ;
s ize_t strspn(const char • , const char *);
char * strstr (const char • , const char *) ;
char * strtok (char *, const char *) ;
size_t strxfrm(char * • const char*, s ize_t) ;
char •_strerror(int, char*);

I* macro overrides */
#define strerror(errcode) _strerro r (errcode, _NULL)
#endif a

<string.h>

function
memchr

function
l1MllllCllp

function
~

Figure 14.2:
memchr.c

Figure 14.3:
memcmp.c

399

Only the function strerror has a masking macro. It shares the internal
function _strerror with the function perror, declared in <std.io.h>. I
discuss why on page 292.

Several other functions declared in <string. h> are serious candidates
for implementing as builtin functions that generate inlinecode. A common
practice is to give these builtin versions secret names. You then provide
masking macros to gain access to the builtin functions. (See footnote 96 of
the C Standard on page 6.) Thus, a production version of <string. h> could
well include several additional masking macros.

Let's begin with the mam functions. Figure 14.2 shows the file .._.chr. c.

The major concern of function mamchr is to get various types right. You must
assign both the pointer and the character arguments to dynamic data
objects with different types. That lets you compare the array elements as
type unsigned char correctly and efficiently. I wrote the (vo1d *) type cast
in the return expression for clarity, not out of necessity.

Figure 14.3 shows the file mamanp.c. -=zip, too, is careful to perform
unsigned char comparisons to meet the requirements of the C Standard.

Figure 14.4 shows the file memcpy.c. I chose d1ar as the working type
withinmmncpy in the off chance that some computer architectures may favor
it over unsigned char. (That's one of the justifications for having a "plain"

I* memchr function */
#include <string.h>

void *(memchr) (conat void *a, int c, size t n)
{ /* find first o~rence of c in a[n) */
const unsigned char uc = c ;
const unsigned char •au;

for (au = a; 0 < n; ++au, --n)
if (*au= uc)

return ((void *)au);
return (NULL) ;

/* -=zip function */
#include <atring.h>

int (memcmp) (conat void *sl, conat void *a2,

0

size_t n)
{ I* compare unsigned char sl[n], s2[n) */
const unsigned char *sul, *su2;

for (aul = al, su2 = s2; 0 < n; ++aul, ++au2, --n)
if (*aul != *su2)

return ((*aul < *su2) ? -1 : +1);
return (O);

0

400 Chapter 14

figu• 14.4: /* memcpy functJ.on */
-cpy. c lincludai <atdn9. h>

f"igu"• 14.5:
~ve. c

Flgur• 14.6:
miamaet . c

void * (a.mcpy) (void *•l, conat void •s2, •ize t n)
(/* copy char s2[n] to •l[n] in any order */
char •sul;
conat char *su2;

for (sul = sl, su2 • a2; 0 < n; ++sul, ++su2, --n)
*aul • *au2;

return (sl) ;

I* ~ functi on */
linclude <strin9. h>

0

void * (~•) (void *•l, const void *a 2 , •iz• t n)
(/* copy char •2[n] to sl[n] safely */
char *scl;
conat char *ac2;

acl • al;
sc2 = s2;
if (ac2 < acl '' •cl < ac2 + n)

for (•cl +~ n , ac2 += n; O < n ; --n)
• --•cl • • --ac2; /*copy b&clcward8 */

else
f o r (; 0 < n ; --n)

*•cl++ • •ac2++;
return (al) ;

/* _,,..et function */
linclude <atrin9.h>

/ * copy forward8 */

0

void *(_,,..et) (void *•, int c, size t n)
(/* store c t~oughout unsigned char s[n] */
conat un•igned char uc = c ;
un.igned char *au;

for (au • s ; 0 < n ; ++su, --n)
*su • uc;

return (•) ;

0

character type.) -cpy can assume that its source and destination areas do
not overlap. Hence, it performs the simplest copy that it can.

fUl'lctlon Figure 14.5 shows the file -ova. c . The function,..,v. must work
IDmlDDV• properly even when its operands overlap. Hence, it first checks for an

overlap that would prevent the correct operation of an ascending CCl')'. In
that case, it copies elements in descending order.

<string·. h>

Figure 14.7:
strncat.c

Figure 14.8:
strncmp.c

t• strncat function •t
#include <Str ing.h>

char *(strncat)(char *sl, const char •s2, size_t n)

401

(/*copy char a2 [max n) to end of s l[) •/
char • s1

for (a K sl1 •s ls '\0'; ++a)
I t* find end of sl[J •t

for (1 0 < n "" •s2 I= '\0'1 --n)
•s++ • •s2++;

•s-= '\0';
t• copy at most n chars from s2[) */

r eturn (el);

I* strncmp function * /
#include <&tring.h>

int (etrnCD1P)(const char *al, const char •s2, size_t n)

0

t• COJ!IP&re unsigned char sl(max n), s2(max n) • t
for (; O < n1 ++sl, ++s2, --n)

if (*al Is • s2)
return ((•(unsigned char •)sl

< *(unsigned char *)&2) ? -1 +1);
else if (*al ss '\0')

return (0)1
return (0)1

0

Junction Figure 14.6 shows the file memset. c. I chose unsigned char as the working
m.emset type within memeet in the off chance that some implementation might

generate an overflow storing certain int values in the other character types.

function Now consider the three strn functions. Figure 14.7 shows the file
strncat strncat.c. The function strncat first locates the end of the destination

string. Then it concatenates at most n additional characters from the source
string. Note that the function always supplies a terminating null character.

function Figure 14.8 shows the file strnCDIP. c. The function strnC111P is similar to
strnCDIP memcmp, except that it also stops on a terminating null character. And unlike

memcmp, strncmp can use its pointer arguments directly. It type casts them
to pointer to unsigned char only to compute a nonzero return value .

fUnction Figure 14.9 shows the file atrncpy.c. The function strncpy is likewise
strncpy similar to memc:py, except that it stops on a terminating null. strncpy also

has the unfortunate requirement that it must supply null padding charac­
ters for a string whose length is less than n.

strcat Three of the str functions are direct analogs of the strn functions. Figure
strcmp 14.lOthroughFigure 14.12show thefilesstrcat.c, strcmp.c,and atrcpy.c.
strcpy The functions strcat, strcmp, and strcpy differ only in not worrying about

a limiting string length n. Of course, atrcpy has no padding to contend with.

402

Figure 14.9:
•trncpy.c

Figure 14. 10:
•trcat.c

Flgue 14. 11:
•trcmp.c

Agure 14.12:
•trcpy.c

/* strncpy fUnction */
linclude <atrin9. h>

Chapter 14

char *(strncpy) (char *al, conat char *a2, size t n)
(/* copy char a2 (max n) to sl [n) */
char •a;

for (s • s l; 0 < n '' *s2 !a '\0'; --n)
*s++ • *a2++; /*copy at most n chars from s2[) */

for (; 0 < n; --n)
•a++• '\0' ;

return (al);

I* strcat function */
linclude <strin9.h>

char * (strcat) (char *al, const char *s2)

0

(/* copy char a2[) to end of al[) */
char *•;

for (s • al; *• !• '\D'; ++s)

for (; (*• - *•2) !• • \0'; ++a,

return (al);

/* strODp function */
linclude <strin9.h>

int (strop) (const char *•l,
const char *•2)

/* find end of al[) *I
++•2)

I* copy a2[) to end */

0

(/*compare unsigned char al[], a2[] */
for (; *al •• *a2; ++al, ++s2)

if (*sl ... '\0')
return (0);

return ((*(unsigned char *)al
< *(unsigned char *) 82) ? - 1

/* strcpy function */
finclude <atring.h>

+l) ;

char *(atrcpy)(char *al, const char *a2)

0

(/*copy char a2[) to al[) */
char *a • al;

for (a • al; (*a++ • *a2++) !• '\0';)

return (al);
0

<string. h> 403

Figure 14.13: /* strlen function */
strien.c #include <string.h>

size_t (strlen) (const char *s)
(

const char •sc;

~or (sc = s; •sc != '\0'; ++sc)

return (sc - s);

/* find l ength of s (] */

D

Figure 14.14: /* strchr function */
strchr. c #include <string. h>

Rgure 14.15:
s trcapn.c

function
strl en

function
strchr

str cspn

strpbrk

strspn

char *(strchr) (const char *s, int c)
/* find first occurrence of c in char s (] */

const char ch s c;

for (; •s ! = ch; ++s)
if (*s = '\0')

return (NULL) ;
return ((char *)s) ;
}

/* atrcspn function */
#include <string.h>

si%e_t (strcspn) (const char *al, const char •s2)

0

/* find i ndex of first s l(i] that matches any s2(] */
const char •scl , *sc2;

for (scl = sl; *scl != '\0'; ++scl)
for (sc2 = s2; •sc2 != '\0'; ++sc2)

if (*scl = *sc2)
ret urn (scl - sl);

return (scl - al) ; /*terminating nulls match*/
D

Figure 14.13 shows the file strlen. c . The function strlen is probably the
most heavily used of the functions declared in <string. h>. It is the leading
contender for implementation as a builtin function. If that form exists, look
for places where strlen masquerades as inline code. The functions strca t

and strncat are two obvious examples.

Seven functions scan strings in various ways. Figure 14.14 shows the file
str chr. c. The function strchr is the simplest of these functions. It is the
obvious analog of manchr.

Figure 14.15 through Figure 14.17 show the files strcspn.c, stq>brk.c,

and strspn. c. Both str cspn and s trpbrk perform the same function. Only
the return values differ. The function strspn is the complement of strcspn.

404 Chapter 14

Figure 14.16: /* st%pbrlt function *I
atrpbrlt.c linclude <string. h>

char * (•t%pbrlt) (conat char *al, const char *•2)
I* find in<Mx of first al [i] that -tc:hes any s2 [] */

conat char *•cl, *ac2;

for (scl =al; *scl ! - '\0'; ++scl)
tor (sc2 = s2; *sc2 != '\0'; ++sc2)

*)scl);
if (*acl •• *sc2)

return ((char
,._turn (NULL) ; I* termi.nating nuJ.ls match */

0

Figure 14.17: /* strspn function */
atrspn .c linclu<M <string. h>

size t (strspn) (const char *sl, const char *s2)
I* find index of first sl[i) that -tches no s2[) */

const char •ac1, •ac2,;

tor (scl m al; *•cl ,_ '\0'; ++scl)
for (sc2 = s2; ; ++sc2)

if (*sc2 •• ' \0')
return (scl - al);

el.•• if (*•cl = *sc2)
break;

return (scl - al) ;

Figure 14.18: /* strrchr function */
strrchr .c linclude <string. h>

char *(strrchr) (const char *•, int c)

/* nu.11 doesn't match */
0

/* ~ind last occurrence of c in char •Cl */
conat char ch = c;
conat char •ac;

tor (sc • NULL;
(
i.f (*•=ch)

ac • a;

++•)

i.f (*• -- '\0')
return ((char *) sc) ;

/* check another char */

0

func tion Figure 14.18 shows the file strrchr. c . The function strrchr is a useful
strrchr complement to strchr. It memorizes the pointer to the rightmost occur­

rence (if any) in sc. The type cast in the return statement is necessary, in this
case, because sc points to a constant type.

<string.h>

Rgure 14.19:
strstr.c

Figure 14.20:
strt.ok.c

/* strstr function */
#include <string.h>

char *(strstr)(const char *sl, const char *s2)

405

(/* find first occurrence of s2() in sl() */

if (*•2 == '\0')
return ((char *)al);

for (1 (al = strchr(al, •s2)) I= NULL; ++al)
{ t• match rest of prefix */
conat char •acl, *sc2;

for (scl • al, sc2 = a2; ;)
if (*++sc2 == •\O')

return ((c·har *)al);
else if (*++scl I= •sc2)

breslr.;

return (NULL);

f* strtok function *f
#include <string.h>

c har *(strtok)(char *al, const char *s2)

0

{ f* find next token in al[) delimited by s2[] */
char •sbegin, •send;
static char •esave = t•,.; /* for aa£ety * /

abegin = al ? al : ssave1
sbegin += strspn(sbegin, s2)1
if (*sbegin == '\0')

{

ssave = "•1
r eturn (NULL);

)

send • sbegin + atrcspn(sbegin, s2);
if (*send I= •\0')

•send++= 1 \0 1
;

aaave = send;
return (&begin);

f* end of scan •/
f* for safety *f

0

function Figure 14.19 shows the file atrstr .c. The function strstr calls strchr to
stratr find the first character of the s tring a2 within the string al. Only then does

it tool up to check whether the rest of a2 matches a substring in al. The
function treats an empty string a2 as a special case. It matches the- implicit
empty string at the start of al.

fumctton Figure 14.20 shows the file strtok.c. The function strtok is the last and
strtok the messiest of the seven string scanning functions. It doesn't look bad

because it is written here in terms of atrspn and strpbrk. It must contend,
however, with writable static storage and multiple calls to process the same

406

strerror
_Strerror

Figure 14.21:
strerror.c

Chapter 14

string. It is probably at least as hard to use correctly as to write correctly.
When strtok is not actively scanning an argument string, it points at an
empty string. That prevents at least some improper calls from causing the
function to make invalid storage accesses. (The function is still at risk if
storage is freed for a string that it is scanning.)

Figure 14.21 shows the file strerror . c . It defines both strerror and the
internal function _strerror. (See page 292 for why perror, declared in
<stdio.h> calls _strerror.) _ strerror constructs a text representation of
certain error codes in a buffer. It uses its own static buffer only when called
by strerror. I supply here specific messages only for the minimum set of
error codes defined in this implementation of <errno. h>. You may want to
add more. Any unknown error codes print as three-digit decimal numbers.

I* strerror function */
#include <errno.h>
#include <strinq. h>

char * _ Strerror (int errcode, char *buf)
/* copy error messaqa into buffer as needed •/

static char sbuf [] = ("error #xxx" I;

if (buf = NOLL)
buf = abuf;

s witch (errcoda)
(I* switch on known error codes •/

case 0:
return (••no error") ;

case EDOM:
return ("dcma.i.n error");

case ERANGE:
r eturn ("range error");

case EFPOS:
return ("file positioninq e rror");

default:
if (errcode < 0 I I _NERR <= errcode)

return (''unknown error");
else

I* generate numeric error code •/
strcpy (buf, "error #xxx");
buf[9) = errcode % 10 + '0';
buf[8] = (errcode /= 10) % 10 + '0';
buf[7) = (errcode I 10) % 10 + '0';
return (buf) ;

char •(strerror) (int errC<>de)
(/* find error message correspondinq to errcode •/
return (_Strerror(errcoda, NOLL));

D

<string.h> 407

cotlation The last two functions declared in <string. h> help you perform locale­
functions specific string collation. Bot!h strco1l and strxfrm determine collation

sequence by mapping strings to a form that collates properly when com­
pared using etrC111p. The locale category LC_ COLLATE determines this map­
ping. (See Chapter 6: <local•.h>.) It does so by specifing the state table
used by the internal function _strxfrm. Thus, strco1l and strxfrm call
_strxfrm to map strings appropriately.

header Figure 14.22 shows the me xstrxfrm.h. All the collation functions in-
"xstrxfrm.h" dude the internal header "xstrxfrm.h". It includes in tum the standard

header <string.h> and the internal header "xstate.h". (See the file
xatate .hon page 100.) Beyond that, "xstrxfrm. h" defines the type_ Cosave
and declares the function _strxfrm. A data object of type _cosave stores
state information between calls to _strxfrm.

function Figure 14.23 shows the file strxfrm.c. The function strxfrm best illus­
atrxfrm trates how the collation functions work together. It stores the mapped

string in the buffer pointed to by el, of length n. Once the buffer is full, the
function translates the remainder of the source string to determine the full
length of the mapped string. strxfrm stores any such excess characters in
its own dynamic temporary buffer buf.

function Figure 14.24 shows the filexstrxfrm. c. It defines the function_ strxfrm
_strxfrm that performs the actual mapping. It does so as a finite-state machine

executing the state table stored at _wcatate, defined in the file xstate.c.
(See page 107.)

_ Strxfrm must be particularly cautious because_ wcstate can be flawed.
It can change with locale category LC_ COLLATE in ways that the Standard C
library cannot control.

Note the various ways that the function can elect to take an error return:

• if a transfer occurs to an undefined state
• if no state table exists for a given state
• if the function makes so many state transitions since generating an

output character that it must be looping
• if the state table entry specifically signals an error

Figure 14.22: /* xstrxfrm.h internal header */
xstrxfrm.h #include <string.h>

linclude ''xstate.h"
/* type definitions */

typedef struct (
unsigned char _State;
unsigned short _ Wchsr;
} _Cosave;

I* declarations */
size t Strxfrm(char *, const unsigned char **, size_t,

:co;ave *); D

408

Figure 14.23:
strxfrm.c

/* strxfrm function */
#include •xstrxfrm.h"

size_t {etrxfrm){char •sl, conet char •s2, size_t nl

Chapter 14

t• transform s2[) to sl(J by locale-dependent rule */
size_ t nx = 0;
const unsigned char •s • (const unsigned char *)s2;
_Cosava state = {0);

while (rue < n)
{ /* translate and deliver */
eize_ t i _ Strxfrm(sl, &e, n - nx, &state)1

el += i, nx += it
if (0 < i && s l (-1)

return {rue - 1);
else if (*e == '\0')

'\0')

s = (conat unsigned char •)s2;

for (; 1)

1• rescan • /

{ 1• translate and count */
char buf[32);
size_t i = _Strxfnn(buf, &s. sizeof (buf), &state);

nx + -= i;
if (0 < i && buf[i - ll

return (rue - 1);

else if (*e == '\D')

'\0')

s = (const unsigned char *)s2; /* rescan •/

D

The rest of _strxfrm is simple by comparison. The function retains the
wide-character accumulator (ps- > _Wchar) as part of the state memmy. That
simplifies generating a sequence of mapped characters with a common
component while in a given shift state. _strxfrm returns after it fills the
output buffer (with size characters) or whenever it encounters the termi­
nating null character in the source string.

That can happen more than once. Note the careful way that strxfrm
distinguishes the three reasons why _strxfrm returns:

• If the last character delivered is a null character, the trans lation is
complete. _strxfrm delivers a null character if an error occurs. It also
jiggers the stored state information to fail immediately should it be
inadvertently called again for the same string.

• Otherwise, if the next source character isa null character, _strxf'rm wants
to rescan the source string. _strxfrm will not point past a null character
in the source string.

• Otherwise, _strxfrm wants to continue where it left off.

<strinq.h>

Rgure 14.24:
xstrxLrm.c

I* _strdrm function */
linclude <limit•.h>
lincl.ude "x.trxfrm.h"

•ite_t _str:i<Lrm(char *•out, const unsiqned char **p•in,
•it•_t •it•, _Coaave *pa)

409

(/* tranalat• string to collatabl• for111 */
char atat• • pa->_state;
int leave • O;
int limit • O;
int nout ., O;
con•t uruiiqned char *sin = *pain;
uruiiqned •hort we., ps->_Wchar;

for (; ;
(/* perform a state tran•formation */
un•iqned short code;
con.t unaiqned ahort *stab;

if (_NSTATE <- atate
11 (.tab • _Coatate. Tab[atate]) • • NULL
11 (NSTATE*UCllAR MAX) <~ ++limit
11 (~ode • atab[.-;inl) -- O)
break;

.tat• - (cod• ' ST_STATE) >> ST_STOFF;
if (code '° ST_FOLD)

we • we ' ~ucRAR_MAX 1 cod• ' sT_ce;
if (code '° ST_ROTATE)

WC ., WC >> CBAR_BIT ' UCBAR_MAX I WC << CRAR_BIT;
if (code ' ST OUTPUT U ((aout [nout++]

•code' ST_CB ? code : we) = '\O'
I I •it• <• nout))
l.eave • 1 ;

if (code '° ST INPUT)
if l*•in l= '\0')

++sin, limit O;
el••

l.eave ~ 1 ;
if (leave)

{ /* return for now */
•pein = sin;
pa- > State • state;
ps->_Wchar =we;
return (nout) ;

•out[nout++] • '\0';
*pain .: sin;
ps->_State • _NSTATE;
return (nout);

/* error return •/

a

410

Figure 14.25:
strcoll . c

/* •trcoll function */
lincl.ude "xatrxfrm. h "

/* type definition• */
typedef •truct {

char buf[32) ;
conet uneigned char *al, *s2, *•out;
_Coeave state;
} Sctl;

•tatic ei:&e_t 9etxfr111(Sctl *Pl

Chapter 14

/* get transformed char• • /
•i:&e_t i ;

do /* loop until char• delivered */
p->•out • (conet unsigned char *}p- >buf;
i .. _Strdrm(p->buf, 'P->•l, si:&eof (p- >buf) , 'p- >etate) ;
if (0 < i ' ' p->buf[i - 1) .. ' \0')

return (i - 1);
el .. if (*p->sl -= • \0')

p->•l • p - >s2; /* reecan */
} while (i - 0) ;

return (i);

int (etrcoll) (const char '*sl, const char *•2)
(/* coapare s1 [), •2 [] 'l!•ing locale- .,.p.nd•nt ~e */
ei:&e_t nl, n2;
Sctl •tl, et2;
etatic conet _Co•ave initial • (0} ;

etl. el • (const unsigned char *}sl ;
etl . e2 • (conet un•igned char *)•l ;
etl . state • initial;
et2. el = (conet unsigned char *)•2;
st2 . e2 = (conet unsigned char *)s2 ;
.t.2 . atat• • initial.;
for (nl • n2 • O; ;)

{ /* campare transformed char• */
int ane;
si&e_t n ;

if (nl 0)

nl • qetxfrm(,etl} ;
if (n2 -- 0)

n2 • qetdrm(,et2} ;
n = nl < n2 ? nl : n2;
if (n - 0)

return (nl == n2? 0 : 0 < n2? - 1 : +l) ;
el•• if ((an•= memcmp(atl . aout, at2.aout, n)) !• 0)

return (ans) ;
atl . eout +~ n, nl -• n;
at2 . aout +z n, n2 -• n ;
}

0

<atrinq. h> 411

function Figure 14.25 shows the file atrcoll . c. The function strcoll is somewhat
strcoll more complex than strxrrm. It must translate two source strings a piece at

a time so that it can compare their mapped forms. The type scu desaibes
a data object that holds the information needed to process each source
string. The internal function q9txfrmcalls _strxrrm to update an Sctl data
object.

The comparison loop within atrcoll thus calls 9etxrrm for each sour<:e
string that has no mapped characters in its sct1 buffer. That ensures that
each source string is represented by at least one mapped character, if any
such characters remain to be generated. strcoll compares all the mapped
characters that it can. It returns zero only if both mapped strings compare
equal character by character and have the same length.

Testing <string . h>
Figure 14.26 shows the file tatring. c. The test program performs several

cursory tests of each of the functions declared in <string.h>. The header
defines no unique macros or types, so there are no interesting sizes to
display. If all goes well, the program simply displays:
StTCCESS testing <string.h>

References

Exercises

RE. Griswold, J.F. Poage, and LP. Polonsky, The SNOBOIA Programming
umguage, (Englewood Oiffs, N.J.: Prentice-Hall, Inc. 1971). The program­
ming language SNOBOL pushes to the extreme both pattern matching and
substitution within text strings. You may be surprised at what powerful
programs you can base largely on string manipulations.

Exercise 14.1 The following locale file defines a simple "dictionary" collation sequence
that ignores punctuation and distinctions between uppercase and lower­
case letters:
LOCALE DICT
NOTE dictionary collation sequence
collate[O, 0) ' ' $0 $1 $1
collate[O, 1 :$#] $I $0
collate!O, ' a':'z') $@ $0 $I $0
collate[O, 'A':'Z') $@+'a'-'A' $0 $I $0
collate[l, 0:$# J $@ $0 $I $1
LOCALE end

Describe the mapping that it performs. Why does it rescan? Draw a
state-transition diagram for this mapping.

412

Figure 14.26:
tstrin9. c

Part 1

/* test string functions */
#include <assert.h>
#include <•rrno.h>
#include <atdio.h>
#include <at ring. h>

Chapter 14

int main()
(/* teat basic wo rkings of string functions */
char •120] ;
s ize_t n ;
static const char abed• [I
static conat char abcdx 11

.. abcd9";

"abcdx";

assert(-chr(abede, 'c', 5) ,,.,. 'al:>cde[2)) ;
assert(-chr(abede, ' • ', 4) = NULL) ;
.... rt ("*"cmp(abed•, lll:>cdx, 5) ! • 0) ;
assert (-cmp(abede, lll:>cdx. 4) •= 0) ;

/ * t h• following test• are interrelated * /
as-rt(-epy(s, ahc:d9 , 6) =- • '' • 12 1 = 'c');
assert(~ve(s, • + 1, 3) - s) ;
assert(-cmp(........ww•(•. s + 1 , 3), .. aabcs", 6)) ;
••-rt(memcmp((char *)mennove(s + 2, s, 3) - 2,

"bc•c•", 6)) ;

assert(aiemset(s, '*', 10) == • '' •19] = ' * ') ;
as-rt(mem.set(s + 2, '\', 0) = • + 2 ' ' •121 -- ' * ');
assert(strcat(-.cpy(s, abede, 6), " fg") = s) ;
assert(s [6] = ' 9 ') ;
••-rt (strchr (abed•, ' x ') =- NOLL) ;
assert (strchr(abcde, 'c') = Hl:>c d• l21) ;
asHrt(strchr(abed•, '\0') = 'lll>cd8[5));
••-rt (atrcmp(abcd•, al:>cdx) !• 0) ;
••-rt (strcmp(abcde, " abed•") - 0);
assert (strcoll (lll>cd8, " lll>cd8") - 0) ;
••-rt(strcpy(s, al:>cde) = •" strcmp(•, abed•) - 0);
assert(strcspn(abcde, "xdy") 3);
assert (strc spn (alx:de, .. x:zy") 5);
assert (atrerror(EDOM) ! = 0);
••-rt(strlen(abcd•) -- 5);
assert (strlen ("") = 0) ;
assert(strncat(strcpy(a, al:>cde), " fg", 1) - •

' ' atrcmp(s, " al:>cd•f") = 0) ;
••-rt(strncmp(abcde, "abede", 30) ..a 0) ;
assert (strncmp(abede, abcdx, 30) !• 0);
as-rt (strncmp(abede, al:>cdx, 4) .. 0);
••-rt (strncpy <•, abed•, 7) =- •

'' IDSlllCIDp(B, " al:>cde\0", 7) .. 0);
as•ert (strncpy(s, " X)'E", 2) =- a

" •trcmp(s, "xycd•") = 0) ;
UHrt(lltrpbrk(abcde, "xdy") = 'abcde[3]) ;
assert(strpbrk(al:>cde, "x:zy") ,,.. NULL);
assert (strrchr (al:>cde, 'x') = NULL) ;
••-rt(atrrchr(abcde, 'c') = ' al:>cdel2]);
as-rt(atrcmp(strrchr("ababa", 'b'), "ba") .. 0);
assert (strspn(al:>cde, " abcs") =- 3);
••-rt(strspn(al:>cde, alx:de) = 5) ;

<string.h>

Conlflnulng
tatring.c

Part 2

-••rt(strstr(abcde, " xyz ") =NOLL);
--rt(strstr(abcde, "cd") = 'abcde[2)) ;

a aaert (strtok(strcpy(a, abcde). "ac") - ' •[l));
a••• rt (strtok (NULL, "a ce") = '•[3));

UHrt(.trtok(NOLL, "ace") =NOLL

'' mamc:mp(a, "ab\Od\0\0", 6) = 0);
n • strxfrm(NOLL, abcde, 0) ;

if (n < sizeof (•) - 1)
-•• rt (strxfrm(•, abed•, n + 1) - n

' ' strle n(a) =-= n);
put•("SUCCESS te•ting <str ing.h>") ;
return (0);

413

0

Exercise 14.2 Modify the locale file in the previous exercise to order names that begin
with Mac interchangeably with names that begin with Mc. Order Mac before
Mc only if the names otherwise compare equal.

Exercise 14.3 Describe a precise specification for:

• how names sort in your telephone book

• how words sort in the dictionary you use
• how text Jines sort in the computer sort utility you use

Can you define a locale that matches the behavior of each of these collation
rules? How many states does it take to specify each?

Exercise 14.4 A simple calculator program recognizes the following tokens:

• numbers palatable to the function strtod, declared in <stdlib. h> (See

the syntax diagram on page 351
• operators in the set [+ - • / ~ c]
• comments inside double quotes(")
These tokens are separated by spaces, horizontal tabs, and newlines. Such
characters can, however, occur inside comments.

Write a function that reads characters from the standard input stream and
parses them into tokens. Use the function strtolt, declared in <string.h>.

Rewrite the function to avoid using strtok. Which of the two versions do
you prefer? Why?

Exercise 14.5 Identify the "missing" functions not declared in <string . h> (such as strn­

l • n and -=chr). Write them. Can you add them to the Standard C library
and still conform to the C Standard? Can you add their declarations to
<•tring. h> and still conform?

Exercise 14.6 Measure a large corpus of code to dete.rmine the five functions declared in
<string. h> that consume the most time. How much could you speed up a
typical program if these functions were instantaneous? How much could
you speed up a typical program if each of these functions ran five times
faster? What arethecomparablefigures for the program you measured that
would benefit most?

414 Chapter 14
Exercise 14.7 [Harder) Write assembly language versions of the functions you identified

in the previous exercise. Can you achieve a significant speedup just by
altering the C code? How much faster is each function compared to the C
version presented here?

Exercise 14.8 [Very hard) Modify a C compiler to generate inline code for the functions
you identified in the previous two exercises. How much faster is each
function compared to the versions cli5eussed in the previous exe.rcise?

Chapter 15: <time.h>

Background
Ttme and date calculations achieved a new level of sophistication under

the UNIX operating system. Several of the developers of that system were

amateur astronomers. They were sensitive to the need for representing

times over a span of decades, not just years. They automatically r·eckoned

time as Greenwich Mean Time (once GMT, now UTC), not just by the clock

on the wall. They were, in short, more finicky than most about measuring

and representing time on a computer.

That same attention to detail has spilled over into the Standard C library.

Its scope is basically whatever was available in C under UNIX that didn' t

depend on the peculiarities of UNIX. As a consequence, you can do a lot

with times and dates in Standard C. The functions declared in <t!m.. h>

provide the relevant services.

It stretches the truth a bit to say that these functions don't depend on the

peculiarities of UNIX. Not all operating systems distinguish between local

time and UTC. Even fewer a llow different users to display times relative

to different time zones. Some of the smallest systems can't even give you

the time of day. Yet aJI implementations of C must take a stab at telling time

wisely if they want to claim conformance to the C Standard.

weasel The C Standard contains enough weasel words to let nearly everybody

words off the hook. A system need only provide its "best approximation" to the

current time and date, or to processor time consumed, to conform to the C

Standard. A vendor could argue that 1 January 1980 is always the best

available approximation to any time and date. A customer can rightly
quarrel about the low quality of such an approximation, but not whether

it satisfies the C Standard.

What this means in practice is that a program should never take times

too seriously. It can enquire about the current time (by calling time) and

display what it gets in a variety of attractive formats. But it can't know for

sure that the time and date are meaningful. If you have an application that

depends critically upon accurate time stamps, check each implementation

of Standard C closely.

416 Chapter IS

What the C Standard Says
<t.1.a.- . h>

•i ••_t
cloek_ t

t.1-_ t

atruct ca

c lock

di~ftiJM

7.12 Date and time <time . h>

7.12.1 Components of time
1'hc header <time . h> de lines 1wo macro., and declares four types and several functioos fflf

manipulaling time. Many fwictions deal with a caltndar timt 1ha1 represents the current date
(according io the G regorian calendar) and time. Some functions deal with /OC'al ti-. w hich is tbc
calendar time expressed for some specific time zone. and with DaylighJ Saving TirM, which isa
temporary change in the algorithm for deterrruning local time. The local time zone and Daylight
Saving Tune arc implementation-defined.

Thc macros defined arc NOLL (described in 7.1.6); and

CLOCXS_Pll_SEC

which L< lhe number per second of lhe value returned by the cloclt function.
The types declared are •ize_ t (described in 7. 1.6);

clock_ t.

and

t. _t.

which arc arithmc1ic types capable of rcprcsenling times; and
•truct t.a

which holds the components of a calendar time, called the broken·down timt. The slructurc shall
conanin at least 1he following mem bers. in any order. The semanaics of the members and their
norm81 ranges are expressed in the cornmcnts.137

int t.a_e• c ;
i nt ta lll.n;
int u:=bow:-;
~t. Q mday;
1-nt. ta-mon;
i nt t.aJ .. r ;
int ta wday;
int t.aJd.ay;
i nt ta_le dat :

, . • .c.olKU ·~ter tbe at.nut • - co~ 61} . ,
, . a Jnut•• .~t..r u. bou~ - co~ 591 . ,
J• bou.c• • i.nce aidnigbt - I O, 231 • /
t • day ot the 80ntll - (1 , 31] • /
, . 90nth.e • .ince January - ro. 11] . ,

/ * Y•~• •Jnce 1900 *I
J• day• •inee Sunday - {0, 6] • /
/ • d•Y• • i nc-9 J".nuary 1 - {0, 365] • /
,. D• yJ..tght s.v.tng ,.UN Ll 11t9 " I

The value of tm illd8t is posi1ive if Daylight Saving lime is in effect. zero if Daylight
Saving Time is not iii effect. and negative iflhc informa1ion is nOI available.

7.12.2 Time manipulation functions
7.12.2.l 1be clock function
S)nopsis

I i ncludre <tt.e . h>
c lock_ t. c .lockCvoid) ;

Oesc.rlpCion

The clock funciion dctennincs the processor time used.

Returns

The cloclt fWlCtion m ums the implementation's best approximalion to the pr0CC$$0t tiln<
used by the progn1m since the begi nning of an implementation-defined en related ooly to the
program invoca1ion. To dclenninc the time in seconds, the value mumcd by the clock funaicn
should be divided by the value of the macro CLOCJ{S PER SEC. If the processor time used is
not available or its value cannot be represen1ed. the function rCi"ums the value (clock t)-1.111
7.12.2.2 The diffti.me funct.ion -
Synopsis

l include <t.,._ . h>
double dittt1-CtU.._t t.iael , tiae_ t t 1Ae0);

OescripCion

Thc diffti.me function computes the difference bet"'Cen two calendar times: timel -
timeO.

<time.h>

Returns

The dit:"fti.Jlle function returns the difference expressed in seconds as a double.

7.U.2.3 The mktime function

Synopsis
l i ,nclud• <ti ... h>
ti .. _t .ittiae(etruet t• • tJ.m.eptr) ;

Description

417

The mktiJne function convens t he broke n-down time. e xpressed as local time, in the •1ructure
pointed to by tiJneptr into a calendar time value with the same encoding as that of the values
returned by the ti.Ille function. The: original values of the tm wd&y and tm _yday oomponents
of the structure are ignored, and the: original values of the otliCr oomponentS are not restricted to
the ranges indicated above.139 On successful oomplction, the values of the tm vday and
tm_yd&yoomponents of the structure are set appropriately, and the otheroomponeiiis are SCI to
represent 1hc specified calendar time, but with their values forocd to the ranges indicrued above;
the final value of tm_mday is nol set until tm_mon and tm_year are dctcnnined.

Rdums

Thcmkti.Jlle funcuon returns the specified calendar time encoded as a value oftypc tiJne _t.
If the calendar time cannot be represented, the function rc1ums the value (timot _ t) -1.

Example

Wha1 day of 1he week is July 4. 200 I"!
I i nclude <etd.10. h>
l incl ud• <ti ... h.>
•t•tic conet ch•r • con.et vda.y lJ • C

"'Sunday", "'Mondey", "'TUe9d.ay .. . • tfedn .. day*.
"'Thu.reday•, "'F riday* , "S aturday "', • -unknown-•

J ;
• truct ta t la._ etr ; , ,
tl.aie_et.r . t-9_.Y••r
t:l.aie_at r . w_mon
tt.._atr . ta_ -Say
t lae a tr . ta hour
ti.ae:atr . ta:ain

- 2001 - 1900;
- 1 - 1 ;
- 4 ;
- 0 ;
- 0 :

tl .. _ atr .t. _ _ c - l ;

ti .. •tr .i. iedat - - 1 ;
i f (~t1 .. (&t1 .. _ etr) - -1)

tl .. • tr . ta wday • 1 :
pr.l.ntf(.. • a\n .. , •d;yltl&e_etr . t•_•d•y]) :

u- 7.U.2.4 The time function

Synopsis

• include <t1-. h>
t laill_t t.iae (t:l..e_t •t1r) ;

Description

The time function dctcnnines the curn:nt calendar time. The encoding of the value is
unspecified.

Rd urns

The ti.me funcuon returns the implementation's best approximation to the cunenr calendar
time. The value (tillle t) - 1 is rc1umed if the calendar time is not .-ailable. lftimer is no1
a null pointer. 1he return value Is also assigned to the object it points to.

7.12.3 Time conversion runctions
Except for the atrt:"tiJne function, 1hcsc functions return values in one of two stalic objecl.:

a brokcn-<lown 1ime structure and an array of char. Exccuiion of any of the functions may
overwrite the information rc1umcd in either of these objects by any of the Olhcr functions. The
implemcn1aiion shall behave as if no other library functions call these funclions.

418

ct ...

7.12.3.1 The aactime functiQll
Synopsis

l include <ti ... h>
c har ••ectiae (co net e truct ta •ti .. pt r) :

Description

Chapter 15

The aactime function converts the broken-down time in the structure poinied to by timept r into a Siring in the form
sun Se p 16 0 1 ;0 3 :52 1973\n\O

using the equivalent of the following algorithm.
cb.a.r •••ctt.. (conet e tir:vct ta • tt...ptr)

etatic conat cha% wclay_naa.(1) (3)
'"Sun"', "Mon"', "TU.• •, •w.cs•,

);

• t • tic con•t char mon n ... (12) (3)
'"Jan•, •re•, .. ~ ... "Apr"',
"'.J\al.'", · au9'", p·, •oet•,

I:
• t • tic char r• eult(2'l:

. I
'"Tl U,l'", '"Fri• , • s at ..

. I
'"May'", •J u.n. .. ,
'"lfov•, '"Dec'"

•prlntt(r• ault, •• . l• \ . 3all3d , , 2d : ,,2d: , . 2d 'd\n•,
wday n...(tilMJ)tr- >ta wde y) ,
mon ; ... [tia9p·tr- >ta ~n),

Returns

ti.;pt.r- >ta _ aiclay, t.l;.pt1'->t• _hour,
t 1-9pt.r->ta al.n, ti.aep t.r->ta aac,
1100 • t.i.-Ptr - >ta_year): -

r e turn reeult;

The a sct1- function returns a pointer to the siring.
7 .12.3.2 The ct i.me f uncti()ll

Synopsis

l include <ti .. . b>
cha,e • ct.1. .. (coRet ti .. _t. •t i .-r) ;

Dtscrlption

The ct1-function convens the calendar time pointed to by time% to local time in the fonn
of a string. It is equivalent to

••cti .. (1oca1ti .. (tllMr))

Returns

The ct1- function returns the pointer returned by the aectime function with th3'
broken-down time as argument.

Forward refettnttS: the localtt.m. function (7.12.3.4).
7.12.3.3 The gmtim• function
Synopsis

l i.nclude <ti- . h>
atruet ta • 99ti..-(conet tt..._t • tl .. r) ;

Description

The gmt1- function converts lhc calendar time pointed to by ti- r into a brolcen-down
1ime. expressed as Coordinalcd Universal Time (UTC).

Rdums

The gmt1- function returns a pointer to that object. or a null pointer ifUTC is not available.

<time . h>

localt1- 7.U .3.4 The l.ocal.time function

Synopsis

I include <tiae . h>

etruct tm • localt1-Cconet ti. .. _t • t!Aer) ;

Descrlplion

419

The local t1- function con.vcns lhe calendar time poinlcd to by ti.mer inlo a brol<cn­

down time. expressed as loc:al time.

Rehrns

The l.oc::alti- func1ion re1ums a pointer to that o bject.

7.12.3.S The etrftime function

Synopsis

l i.nclud• <tl.ae . h>
•i•• t etr.ftU..(c~ •e, •i•• t. 1ae,

- c on.t ch&r • fora.at. con';t e truet. ta •tiaeptr> :

Description

The stdtS.- function places characters into the array pointed to by a as controlled by the

Siring pointed to by i:ormat. Thc fonnat shall be a multi byte character sequence. beginning and

ending in its initial shift stale. The ;Loniat Siring consists of zero or more conversion specifiers

and ordinary multi byte characters. A conversion specifier consists of • \ character followed by a
character that de1crmines the behavior o f lhe conversion specifier. All ordinary multi byte charac­

ters (lnchiding the terminating null character) arc copied unchanged into the array. If copying

takes place between objects that o verlap. the behavior is undefirocd. No more than -xaize
ch&ntctcrs are placed into the array. Each conversion specifier is replaced by appropriate

characters as described in the following list. The appropria1e ch&ntctetS are detcrmfoed by the

LC_ nMB category of the cuJTcnl locale and by the values oonlaincd in the structure pointed to

by tilneptr.

"\a" is replaced by the loc:alc"s abbreviated weekday name.

" \ A" is replaced by the loc:alc's full weclcday name.

"\b" is replaced by the locale's abbreviated mon1h name.

"\B" is replaced by 1he locale's full month name.

"\c" is replaced by the locale's appropriate date and time representation.

"'d" is replaced by the day of the month as a decimal number (01-31).

"•a· is n:placcd by the hour (24-bour clock) as a decimal number (00-23).

"U " is replaced by lhe hour (12·hour clock) as a decimal number (01-12).

" \j" is replaced by 1he day o f the year as a decimal number (001 -366).

"b " is replaced by the month as a decimal number (01-12).

"UC" is replaced by the minute as a decimal number (00-59).

"•p" is replaced by the localc'sequivalcnt of the AM/PM designations associaled wilh a 12-hour

clock.

"\S" is replaced by the second as a decimal number (00-61).

·•u· is replaced by the week number of the year (the first Sunday as the fi rst day or week I) as
a decimal number (00-53) .

. ,.,. is replaced by the weekday as a decimal number (0-6), where Sunday is 0 .

"\W" is replaced by the week number of the year (the first Monday as the first day of W10dc I) as

a decimal number (00-53).

"\x" is replaced by the locale"s appropriate date representation.

" \X" is replaced by the locale's appropriate lime reprcsenta<ion.

"•y• is replaced by the year withwl century as a decimal number (00-99).

"\Y" is replaced by the year with century as a decima l number.

420 Chapter 15

·u · is replaced by the 1ime zone name or abbreviation, or by no characters if no time zooe is
determinable.

·u · is replaced by'·

If a conversion specifier is not one of lhc above, lhe behavior is undefined.
Rel urns

If 1hc 1oul number of resulting c haracters inclu<ling lhc 1ermina11ng null character is nol rmre
1han iu.xaize, lhc •trft1- func1ion returns lhe number of characters placed into the array pointed 10 by a n01 inclu<ling the terminating null character. 01hcrwise, zero is returned and lhc
contents of the array ure indeterminate.

Footnotes

137. 1lic range [0, 611 fortm_s..:allows for as many as two leap seconds.
138. In order 10 measure lhe time spent in a progr•m. the clock function should be called at

the stan oft he program and its return value sulllractcd from the value returned by subsequent
calls.

139. Thus, a positive or zero value for tm i•d.et causes lhc mlttime function to presume
initially lhat Daylight Saving lime, resPec:tively, is or is not in effect for the specified lime.
A negative value causes i1 to attemp1 to determine whether Daylight Saving Time is in cffea
for lhc specified time.

Using <time. h>
The functions declared in <time.h> determine elapsed processor time

and c.alendar time. They also convert among different data representations.
You can represent a time as:
• type eloelt_t for elapsed processor time, as returned by the primitive

function clock

• type t1-_ t for calendar time, as returned by the primitive function time
or the function mktime

• type double for calendar time in seconds, as returned by the function
difft1-

• type struet tm for calendar time broken down into separate compo­
nents, as returned by the functions g111time and localtime

• a text string for calendar time, as returned by the functions aactime,
ctime, and •trftime

You have a rich assortment of choices. The hard part is often identifying
just which data represention, and which functions, you want to use for a
particular application.

function The one complicated function declared in <ti.me . h> (from the outside, at
•tr:ft1- least) is nr£t1-. You use it to generate a text representation of a time and

date from a nruct tm under control of a format string. In this sense, it is
modeled after the print functions declared in <•tdio. h>. It differs in two
important ways:
• atrftime does not accept a variable argument list. It obtains all time and

date information from one argument.
• The behavior of •trftime can vary considerably among locales. The

locale category LC _ TIMI! can, for example, specify that the text form of all
dates follow the conventions of the French culture.

<time.h>

corw•rsion
specifiers

For example, the code fragment:
char buf (100) I

•trftime(buf, aizeof buf, "%A, %Jt•, localti,,..C•tOll;

might store in buf any of:
Bu.nday, 02 oac 1979

dimancbe, le 2 4'cembre 1979

w .. kday o. 02/12/79

421

If your goal is to display times and dates in accordance with local custom,

then atrftime gives you just the flexibility you need. You can even write

multibyte-character sequences between the conversion specifiers. lliat lets
you convert dates to Kanji and other large character sets.

Here are the conversion specifiers defined for atrftime. I follow each

with an example of the text it produces. The examples, from Plauger and

Brodie, all assume the •c• locale and the date and time Sunday, 2 December

1979 at 06:55:15 AM EST:

• -.a - the abbreviated weekday name (sun)

• %A- the full weekday name (su.nday)

• 1't> - the abbreviated month name (oac)

• u - the full month name (oacember)

• %c - the date and time (n.c 2 06155, 15 1979)

• '4 - the day of the month (02)

• %H - the hour of the 24-hour day (06)

• %1 - the hour of the 12-hour day (06)

• %j - the day of the year, from 001 (335)

• tun - the month of the year, from 01 (12)

• %M - the minutes after the hour (55)

• "" - the AM/PM indicato r (AX)

• "8 - the seconds after the minute (15)

• "° - the Sunday week of the year, from 00 (48)

• %w- the day of the week, from 0 for Sunday (o)

• w- the Monday week of the year, from 00 (47)

• %x - the date (oac 2 197 9)

• u - the time (06, 55, 15)

• %y - the year of the centwy, from 00 (79)

• %Y - the year (1979)

• %Z - the time zone name, if any (BST)

• "" - the per cent character (%)

I conclude with the usual description of the individual types and macros

defined in <time.h>. It is followed by brief notes on how to use the functions

declared in <time.h>.

422 Chapter 15
shared Note that the functions share two static data objects. All functions that

data return a value of type pointer to char return a pointer to one of these data
objects objects. All pointers that return a value of type pointer to nruct tm return

a pointer to the other. Thus, a call to one of the functions declared in
<time.h> can alter the value stored on behalf of an earlier call to another
(or the same) function. Be careful to copy the value stored in one of these
shared data objects if you need the value beyond a conflicting function call.

NULL NULL - See page 220.
CLOCKS_ PIDl_SEC CLOCKS_ PBR_ SllC - The expression clock (l I CLOCKS_ PBR_SBC measures

elapsed processor time in seconds. The macro can have any arithmetic type,
either integer or floating point. Type cast it to double to ensure that you can
represent fractions of a second as well as a wide range of values.

clock_t clock_ t - This is the arithmetic type returned by clock, described
below. It represents elapsed processor time. It can have any integer or
floating-point type, which need not be the same type as the macro
CLOCltS_ PBR_SBCOND, above.

eize_ t size_ t - See page 219.
time_ t tilne_ t - This is the arithmetic type returned by time, described below.

Several other functions declared in <time. h> also manipulate values of this
type. It represents calendar times that span years, presumably to the nearest
second (although not necessarily). Don't attempt to perform arithmetic on
a value of this type.

tm tm - A structure of type etruct tm represents a "broken-down time."
Several functions declared in <ti.me .h> manipulate values of this type. You
can access certain members of •truct tm. Its definition looks something
like:
struct tm (

int tm_sec;
int tm_min1
int tm_ bour;
int tm_mday;
int tJl\.JDOn;
int tm_year1
int tm_wday;
int tm_yday;
int tm_isdat;

second• after the .m1nute (from OJ
.m1nute• after the hour (from OJ
hour of the day (from OJ
day of the .month (from lJ
month of the yaar (from OJ
yaar• •1nce 1900 (from OJ
day• •1nc• Sunday (from OJ
day o~ th• year (from OJ
DST flag

The members may occur in a different order, and other members may also
be present. The DST flag is greater than zero if Daylight Savings Tune CDSn
is in effect, zero if it is not in effect, and less than zero if its state is unknown
The unknown state encourages the functions that read this structure to
determine for themselves whether DST is in effect.

aactime aactime - (The aac comes from ASCII, which is now a misnomer.) Use
this function to generate the text form of the date represented by the
argument (which points to a broken-down time). The function returns a
pointer to a nulHenninated s tring that looks like •Sun Dae 2 06, 55: 15
1979\n•. This is equivalent to calling atrftime with the format string •%&

<time.h> 423

%c\n• in the •c• locnle. Call .. ctime if you want the English-language form
regardless of the current locale. Call strftime if you want a form that
changes with locale. See the warning about shared data objects, above.

clock clock - This function measures elapsed processor time instead of
calendar time. It returns - 1 if that is not possible. Otherwise, each call
should return a value equal to or greater than an earlier call during the
same program execution. It is the best measure you can get of the time your
program actually consumes. See the macro ci:.oc1ts_ P1ULSBC, above.

ctime ctime - ctime(ptl is equivalent to the expression aactime(local-

time (p t>>. You use it to convert a calendar time directly to a text form that
is independent of the current locale. See the warning about shared data
objects, above.

cliffti- difftime - The only safe way compute the difference between two
times tl and to is by calling di ff time <tl . tOl . The result, measured in
seconds, is positive if tl is a later time than to.

gmtime gmtim• - (The gm comes from GMT, which is now a slight misnomer.) Use
this function to convert a calendar time to a broken-down UTC time. The
member t111_1adat should be zero. If you want local time instead, use
local time, below. See the warning about shared data objects, above.

l ocal time localtime - Use this function to convert a calendar time to a broken-
down local time. The member tm_iadst should reflect whatever the system
knows about Daylight Savings Tune for that particular time and date. If
you want UTC time i.nstead, use gmtime, above. See the warning about
shared data objects, above.

Jllktime mlttime - This function fiJrSt puts its argument, a broken-down time, in
canonical form. That lets you add seconds, for example, to the member
t111_aec: of a broken-down time. The function increases t111_min for every 60
seconds it subtracts from t111_aec until t111_aec: is in the interval [O, 59). The
function then corrects tDLmin in a similar way, then each coarser division
of time through tllll_year. It determines tDLwday and tllll.....YdaY from the other
fields. Clearly, you can also alter a broken-down time by minutes, hours.
days, months, or years just as easily.

mlttime then converts the broken-down time to an equivalent calendar
time. It assumes the broke.n-down time represents a local time. lf the
member tDLhd.at is less than zero, the function endeavors to determine
whether Daylight Saving.s Time was in effect for that particular time and
date. Otherwise, it honors the original state of the flag. Thus, the only
reliable way to modify a calendar time is to convert it to a bro~en-down
time by calling l ocal time, modify the appropriate members, then convert
the result back to a calendar time by calling mlttim•.

atrftime atrftime - This function generates a null-terminated text string con-
taining the time and date information that you specify. You write a format
string argument to specify a mixture of literal text and converted time and
date information. You specify a broken-down time to supply the encoded

424 Chcpter 15

time and date information. The category LC_ TIME in the current locale
determines the behavior of each conversion. I describe how you write
format strings starting on page 421. See the warning about shared data
objects, above.

ti.Jne time - This function determines the current calendar time. It retums- 1
if that is not possible. Otherwise, each call should return a value at the same
time or later than an earlier call during the same program execution. It is
the best estimate you can get of the current time and date.

Figure 15.1: /* time.h standard header */
ti.me . h #ifndef _TI.ME

ldef ine TDIE
lifndef =YVALS
#include <yvale.b>
lend.if

/* macro• */
#define NULL _NULL
#define CLOCJ(S PBR SEC CPS

/* typ; detinit~n• */
#ifndef _SIZET
#define _sIZET
typedef _Sizet eize_t;
#end.if
typedef unaigned int cloc.lt_t;
typedef unsigned long time_ t ;
etruct tm (

int tm_sec;
int tm_min;
int tm _hour;
int tm_mday;
int tm_mon;
int tm _year;
int tm_ wday;
int tm_yday;
int tm_iedet;
) ;

I* declaratio ns */
char *a•ctime (conet •truct tm *) ;
cloclt t clock (void) ;
char *ctime(conet ti.me t *) ;
double difftime (t ime t-; time t) ;
struct tm *gmtime(co';;•t t1-=t *) ;
11truct tm *locdtime(conat ti.me_t *) ;
time t mltti-(•t.ruct tm *);
eize=:t etrft1-(char * , eize_t, const char * ,

COl'Ult atruct tm *) ;
time t time(time t *) ;
tenctif - D

<time.h> 425

Implementing <time. h>
The functions declared in <time. h> are quite diverse. Many wrestle with

the bizarre irregularities involved in measuring and expressing times and
dates. Be prepared for an assortment of coding techniques.

header Figure 15.1 shows the file time.h. As usual, it inherits from the internal
<ti.me. h> header <yvals. h> definitions that are repeated in several standard headers.

I discuss the implementation of both the macro NULL and the type definition
aize_t in Chapter 15: <atdde f .h>.

<yvala .h> also defines two macros that describe properties of the primi­
tive functions clock and time:

cps • The macro _cPs specifies the value of the macro CLOCJCS_PER_SECOND.

_ TBIAS • The macro _ TBIAS gives the difference, in seconds, between values
returned by time and the time measured from 1 January 1900. (This
macro name does not appear in <tU.. h>.)

The values of these macros depend strongly on how you implement
clock and time. This implementation represents elapsed processor time as
an unsigned int (type c l ock_t). It represents calendar time as an unsigned
long (type time_ t) that counts UTC seconds since the start of 1 January 1900.
That represents dates from 1900 until at least 2036. You have to adjust
whatever the system supplies to match these conventions.

The macro_ TBIAS is a kludge. Normally, you want to set it to zero. The
version of tu. you supply should deliver calendar times with the appro­
priate starting point. UNIX, however, measures time in seconds since 1
January 1970. Many implementations of C offer a function time that
matches this convention. If you find it convenient to use such a time
function directly, then <yvala. h> should contain the definition:
#define _TBIAS ((70 * 365LU + 17) * 86400

That counts the 70 years, including 17 leap days, that elapsed between the
two starting points. In several places, the functions declared in <time.h>

adjust a value of type time_ t by adding or subtracting_ TB:u.s.

function Figure 15.2 shows the file time . c. It defines the function time for a UNIX
time system. As usual, I assume the existence of a C-callable function with a

reserved name that peforms the UNIX system service. For this version of
time, the header <yvala. h> can define the macro_ TBIAS to be zero.

fu1nction UNIX also p rovides an exact replacement for the function cloclc. So do
clock many implementations of C m odeled after UNIX. Thus, you may not have

to do any additional work. Just define the macro _as appropriately. For a
PC-compatible computer, for example, the value is approximately 18.2.

Figure 15.3 shows the file clock. c. It defines a version of clock you can
use if the operating system doesn't provide a separate measure of elapsed
processor time. The function simply returns a truncated version of the
calendar time. In this case, the header <yvala .h> defines the macro _cps to
be 1.

426 Chapter 15

Figure 15.2:
ti.me . c

/• time function -- UNXX version • /
linclude <time.b>

Figu'e 15.3:
clock.c

Figure 15.4:
difftime.c

1• UNXX •Y•tem call •/
time_t _Time(time_t *);

time_t (time)(time_t *todl
(/• return calendar time •/
time_t t • _Time(NULL) + (70*365LO+l7)*86,00;

if (todl
•tod • t;

return (t);

/• clock function -- ai.nlple veraion •/
#include <time.b>

D

clock_t (clock) (void)
(1• return CPU time • /
return ((clock_t)time(NULL)) 1

I* ~fftU!e function •/
linclude <time.b>

double (difftime)(time_t tl, time_t tO)

D

(/• compute difference in times */
tO -· _TBIAB, tl - • _TBIAS;
return ltO <• tl? (double)(tl - tO) 1 -(double)(tO - tl));

D

function Figure 15.4 shows the file difftime.c. It is careful to correct the biases of
difftime both times before comparing them. It is also careful to develop a signed

difference between two unsigned integer quantities. Note how the function
negates the difference t1 - to only after converting it to double.

header The remaining functions all include the internal header •xtime.b•.
•xtine. b" Figure 15.5 shows the file xtime. b. It includes the standard header <time.h>

and the internal header •xtinfo.b•. (See the file •xtinfo.b• on page 100.)
That internal header defines the type _Tinto. It also declares the data object
_Times, defined in the file aactime. c. (See page 437.) _Times specifies
locale-specific information on the category LC_TIME.

The header •xtime .b• defines the macro WDAY that specifies the weekday
for 1 January 1900 (Monday). It defines the type D•trule that specifies the
components of an encoded rule for determining Daylight Savings Tune.
(See the file xgetdat. c beginning on page 432.) And it declares the various
internal functions that implement this version of <time.b >.

<time.h>

Figure 15.5:
xtime.h

Figure 15.6:
gmtime.c

function
gmtime

function
Ttotm

function
_Daysto

/* xtime.h internal h-der •/
#include <time.h>
#include "xtinfo.h"

/* macros •/

427

#define WDA1' 1 /* to qet day of ~ J:"ight •/
/* type definitions •/

typedef struct {
unsigned char wday, hour, day, mon, year;
} Dstrule;

/* internal decl arations •/
int _oaysto(int, int);
const char •_Gentime(conat atruct tm •, Tinfo •,

conat char*, int•, char*) ;
Dstrule •_Getdst (conat char •);
const char •_Gettime(const char•, int, int*);
int Isdst(conat struct tm *);
const char •_Getzone(void);
size_t _Strftime(char •, size_t, conat char •,

conat struct tm •, _Ti.nfo *) ;
struct tm •_Ttotm(struct tm •, time_t, int);
time_t _Tzoff(void);

/* gmtime function */
#incl ude 11xti.me .h"

a

struct tm • (gmtime) (const time t *tod)
{ /* conv~ to Greenwich Mean Time (OTC) •/
return (_Ttotm(NULL, *tod, 0));

a

Figure 15.6 shows the file gmtima . c. The function gmtime is the simpler
of the two functions that convert a calendar time in seconds (type time_t)
to a broken-down time (type struct tm). It simply calls the internal function
_Ttotm. The first argument is a null pointer to tell _Ttotm to store the
broken-down time in the communal static data object. The third argument
is zero to insist that Daylight Savings Time is not in effect.

Figure 15.7 shows the file xttotm.c. It defines the function _Ttotm that
tackles the nasty business of converting seconds to years, months, days,
and so forth. The file also defines the function _oaysto that_ Ttotm and other
functions use for calendar calculations.

_Daysto counts the extra days beyond 365 per year. To do so, it must
determine how may leap days have occurred between the year you specify
and 1900. The function also counts the extra days from the start of the year
to the month you specify. To do so, it must sometimes determine whether
the current year is a leap year. The function recognizes that 1900 was not a
leap year. It doesn't bother to correct for the non-leap years 1800 and earlier,
or for 2100 and later. (Other problems arise within just a few decades of
those extremes anyway.)

428

Figure 15.7:
xttotm.c

Partl

/* Ttotm and Oayato functions */
#in~lude "xtim;.h"

/" 1114Cros *I
#define MONTAB(year) \

((year) ' 03 I I (year) ~ O ? mos

/* static data */

lmoa)

static conat short lmoa[] = (0, 31, 60, 91, 121, 152,
182, 213, 244, 274, 305, 335};

static conat short mos[] = (0, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334} ;

int _oayato(int year, int mon)

Chapter 15

(/* coq>ute extra days to start of month •/
int days;

if (O < year) /* correct for leap year: 1801-2099 */
days = (year - 1) I 4;

else if (year <= - 4)
days 1 + (4 - year) I 4;

else
days 0;

return (days + MONTAS (year) [mon]);

atruct tm * Ttotm(atruct tm *t, time t aecaarq, int iadat)
- /* convert scalar time to time structure */

int year;
long days;
time_t secs;
static atruct tm ta;

aecaarq += _TBIAS;
if (t = NULL)

t = 'ta;
t->tm_iadat = iadat;
for (secs = aecsarq; ; secs

(
days = secs / 86400;

aecaarq + 3600)
/* loop to corre ct for DST */

t->tm_wday = (days + WOAY) 'ii 7;
(I* determine year */

long i;

for (year = days I 365;
days< (i = _Dayato(year, 0) + 365L *year);)
--year; /* correct guess and recheck */

days -= i;
t - >tm_year
t->tm_yday

}

year;
days;

<time.h>

ConHnuing
xttotm.c

Part2

int mon;
const short "J>lll = ll«)NTAB (year) ;

for (mon = 12; days< pn[--mon];

t - >tm mon - mon;
t->tm::::mday = days - pn[mon] + 1;

}

secs %= 86400;
t->tm_hour = secs I 3600;
secs %= 3600;
t->tm_min = secs I 60;
t - >tm_sec = secs % 60;

429

/* determine month */

if (0 <= t->tm_isdst I I (t->tm_isdst = _Isdst(t)) <= 0)
return (t); /*loop only if <0 => 1 */

D

_oaysto handles years before 1900 only because the function mktime can
develop intermediate dates in that range and still yield a representable
time_ t value. (You can start with the year 2000, back up 2,000 months, and
advance 2 billion seconds, for example.) The logic is carefully crafted to
avoid integer overflow regardless of argument values. Also, the function
counts excess days rather than total days so that it can cover a broader range
of years without fear of having its result overflow.

_ Ttotm uses _oaysto to determine the year corresponding to its time
argument secsarg. Since the inverse of _Daysto is a nuisance to write,
_ Ttotm guesses and iterates. At worst, it should have to back up one year
to correct its guess. Both functions use the macro MONTAB, defined at the top
of the file, to determine how many days precede the start of a given month.
The macro also assumes that every fourth year is a leap year, except 1900.

The isdst (third) argument to _ Ttotm follows the convention for the
isdst member of struct tm:

• If isdst is greater than zero, Daylight Savings lime is definitely in effect.
_ Ttotm assumes that its caller has made any necessary adjustment to the
time argument secsarg.

• If isdst is zero, Daylight Savings Time is definitely not in effect._ Ttotm
assumes that no adjustment is necessary to the time argument secsarg.

• If isdst is less than zero, the caller doesn't know whether Daylight
Savings Time is in effect. _Ttotm should endeavor to find out. If the
function determines that Daylight Savings Tune is in effect, it advances
the time by one hour (3,600 seconds) and recomputes the broken-down
time.

Thus, _Ttotm will loop at most once. It calls the function_Isdst only if it
needs to determine whether to loop. Even then, it loops only if _Isdst
concludes that Daylight Savings Tune is in effect.

430 Chapter 15

tunctton Figure 15.8 shows the file xisdst. c. The function_ I•dJlt determines the
Iadst status of Daylight Savings Tune (DSf). _Time• . _ IadJlt points at a string that

spells out the rules. (See the file aactime. c in Figure 15.16 for the definition
of _Ti-•. See page 111 for a description of the rule string.)

I•dst works with the rules in encoded form. Those rules are not current
the first time you call the function or if a change of locale alters the last
encoded version of the string_ Times._ IadJlt. lf that string is empty, _ Iad•t
looks for rules appended to the time-zone information _Tim ... _Tzone. It
calls _ Getzon• as necessary to obtain the time-zone information. It calls
_Gettime to locate the start of any rules for DSf. The function _eetmt then
encodes the current array of rules, if that is possible.

Given an encoded array of rules, _Iadat scans the array for rules that
cover the relevant year. It adjusts the day specified by the rule for any
weekday constraint, then compares the rule time against the time that it is
testing. Note that the first rule for a given starting year begins not in DSf.
Successive rules for the same year go in and out of DST.

function Figure 15.9 shows the file xgetmt. c. It defines the function_ GetdJlt that
_ Getdat parses the string pointed to by_ Tim ... _I•dJlt to construct the array of rules.

The first character of a (non-empty) string serves as a field delimiter, just
as with other strings that provide locale-specific time information. The
function first counts these delimiters so that it can allocate the array. It then
passes over the string once more to parse and check the individual fields.

_ GetdJlt calls the internal functiongetint to convert the integer subfields
in a rule. No overflow checks occur because none of the fields can be large
enough to cause overflow. The logic here and in_ <>-tdat proper is tedious
but straightforward.

function Figure 15.10 shows the file localtim.c. The function localtime calls
local time Ttotm much like gmtime. Here, however, l ocaltim• assumes that it must

convert a UTC time to a locaI time. To do so, the function must determine
the time difference, in seconds, between UTC and the local time zone.

function The file localtim.c also defines the function _Tzoft that endeavors to
_Tzott determine this time difference (tzott, in minutes). The time difference is

not current the first time you call the function or if a change of locale alters
the last encoded version of the string_ Time•._ Tzone. Ii that string is empty,
_Tzoff calls the function _Getzon• to determine the time difference from
environment variables, if that is possible.

However obtained, the string _ Timea . _ Tzon• takes the form
:EST:EDT:+o3oo. (Seepage 111.) _Tzot f calls the function_Gettima to deter­
mine the starting position (p) and length (n) of the third field (#2, counting
from zero). The function atrtol , declared in <atdlib.h> must parse this
field completely in converting it to an encoded integer. Moreover, the
magnitude must not be completely insane. (The maximum magnitude is
greater than 12•60 because funny time zones exist on either side of the
International Date Line.)

<time.h>

Rgure 15.8:
xiadat.c

/* _Iadat function */
#include <atdlib.h>
#include "ktime .h"

int Iadst(conat struct tm *t)

431

{ /* tHt vtlether Dayliqht Savings Time in ef:fect */
Ostrule *pr;
static const char *oldd.st = NULL;
static Oatrule *rules = NULL;

if (olddat != _Times._Isdst)
{

if (_Ti.mes._Iadst(O]
{

I* find current dst_rules */
'\0')
/* look beyond time_zone info */

int n;

if (_Ti.mea._Tzone[O] == '\0')
Times. Tzone = Getzone();

Ti.m;a . Iad;t "' Gettime(Timea._Tzone, 3, 'n) ;
if (T~ea. Iadst[O] !• •\o')

=--_Time;._Isdst; /* point to deli.miter */
}

if ((pr = _Getdst (_ Ti.mes ._Isdat}) = NULL)
return (- 1);

fr-(rulea};
rules =pr;
olddat _Timea._Isdat;
}

/* check ti.me against rules *I
int ans = O;
const int dO = _Dayato(t->tm_year, 0);
const int hour = t->tm_hour + 24 * t->tm_yday;
const int wdO = (365L * t - >tm_year + dO + WDAY) % 7 + 14;

for (pr = rules; pr->wday != (unsigned char) - 1; ++pr)
if (pr- >year <= t->tm_year)

{ /* found early enough year */
int rday = _Oayato (t->tm_year, pr->mon) - dO

+ pr->day;

if (0 < pr->wday)
{ /* shift to specific •-,kday */
int wd = (rday + wdO - pr->wday) % 7;

rday += wd == 0 ? 0 : 7 - wd;
if (pr->wday <= 7)

rday -= 7 ; /* strictly before */

if (hour < rday * 24 + pr->hour)
return (an.a);

ans = pr->year
)

lC9turn (ans) ;
}

}

(pr + 1) ->year ? !ans O;

0

432

Figufe 15.9:
xqetdat . c

Part 1

/* Getdat function */
linclude <ctype .h>
linclucW <atdlib. h>
linclude <atring.h>
linclude "xtime .h "

Chapter15

static int 9etint(conat char •a, int n)
(/* accumulate digih */
int value;

for (value • O; 0 <- --n •• iadiqit(*a) ; ++•)
valu• • value• 10 + *• - ' 0';

return (0 <- n ? - 1 : value);

Datrule *_Getdat(conat char *•)
(

conat char delim • *a++;
Datrule *pr, *rule•;

if (delim -- ' \0 ')
return (NULL);

/* buy apace for rules */
conat char *al, *•2;
inti;

for (al • a , i • 2 ; (•2 = atrchr (al, <Mlim)) !• NUU.; ++i)
•1 - •2 + 1 ;

if ((rul- • malloc(aizeof (Datrul•) * .i)) - NULL)
return (NULL) ;

int year • 0 ;

for (pr • rulea;
(

Hpr, ++a)
/* par- next rule •/

if (*• - ' (')
(

year • 9etint<(a
if (year < 0 I I

/* qot a year qualifier */
+ 1 , ,, - 1900;

break;
... 6 ;

pr- >year • y-r;

•[5) !• ') ')

pr- :>tllOn • qetint(a, 2) - l , • +- 2 ;
pr- >day • qeti nt(a, 2) - 1, • +- 2 ;
if (iadiqi t(*•))

pr- >hour • qatint(a, 2), a +m 2;
elaa

pr- >hour 0 ;

/* invalid year *I

if (12 <• pr- >mon II 99 < pr- >day II 99 < pr- >hour)
break; /* invalid month, day, or hour */

if (*• , _ ' + ' ' ' *• i = '-')
pr- >wday • O;

<tima.h>

Continuing
xqetdst.c

Parf 2

Figure 15. 10:
local.tim.c

433

else if (s[lJ < •o• 11 '6' < s(lJl
break; /* invalid~ day */

else

pr->wday = s [l.]
if (*• = '+')

pr->wday += 7;
s += 2 ;

/* compute week day field */
, 0' ? 7 : • [1] - , 0' i

/* '-' : strictly befor. */
/* '+': on or after */

}

if (*s = '\0')
(

(pr + 1) ->wday
(pr + 1)->year
return (rules);
}

I* done, terminate list */
(unsigned char)-1;

elae if (*s != deli.In)
br-k;

free(rules);
return (NOLL) ;

)

}

/* l.ocaltime function *I
#include Cstdl.ib.h>
#include "xti.me.h"

time_t _Tzoff(void)

y-r;

D

/* determine local time offset */
static const char *oldzon• = NULL;
static lonq tzoff = O;
static const long maxtz = 60*13;

if (oldzone != Times . Tzone)
(- - I* determine time zone offset */
conat char *p, *pe;
int n;

if (_Times._Tzone[O] :a '\0')
Times. Tzone = Getzone();

p =-Gatti,.;(Ti.mas .-Tzone, 2, 'n) ;
tzoff = strtol(p, (char **)'pe, 10);
if (pe - p != n

11 tzoff <= -maxtz I I maxtz <= tzoff)
tzoff = 0;

old.zone= _Timea._Tzone;

return (tzoff * 60);
}

atruct tm *(local.time) (conat time_t *tod)
(/* convert to local time structure */
return (_ Ttotm (NOLL, *tod + _ Tzoff () , -1)) ;

0

434

Agure 15.11:
xqetti.me. c

/* Gettime function */
#include <atrinq.h>
#include "xtime.h"

Chapter 15

conat char *_Gettime(conat char *a, int n, int *len)
/* get time info from environment */

c::onat char delim; •s? *•++ : '\0';
c::onat char *•1;

for (; ; --n, a ~ al + 1)
I /* find end of current field */
if ((al "' atrchr (a, deli.ml) = NOLL)

al= a+ atrlen(a);
if (n <= 01

I
•len = sl - s;
return (a);
}

else if (*al == '\0')
I
*l•n = l;
return (al);

/* found proper field */

/* not enough fields */

D

function Figure 15.11 shows the file xqetti.me. c. It defines the function _Get time

_ Getti.me that locates a field in a string that specifies locale-specific time information.
See the description of _ Getdat, above, for how _ Gettime interprets field
delimiters. If _Gettiae cannot find the requested field, it returns a pointer
to an empty string.

function Figure 15.12 shows the file xgetzone .c. The function _Getzone calls
_ Getzone qetenv, declared in <atdlil>. h>, to determine the value of the environment

variable "TIMEZONE". That value should have the same format as the locale­
specific time string_ Times . _ Tzone, described above (possibly with rules for
determining Daylight Savings lime bolted on).

"TIMEZONE" If no value exists for "TIMEZONE", the function _Getzone then looks for
"TZ" the environment variable "TZ". That value should match the UNIX format

EST05EDT. The internal function reformat uses the value of "TZ" to develop
the preferred form in its static buffer.

If Get zone finds neither of these environment variables, it assumes that
the I~al time zone is UTC. In any event, it stores its decision in the static
internal buffer tzone. Subsequent calls to the function return this remem­
bered value. Thus, the environment variables are queried at most once, the
first time that _Getzone is called.

function Figure 15.13 shows the filemktime.c. The functionmktime computes an
mlttime integer time_t from a broken-down time atruct tm. It takes extreme pains

to avoid overflow in doing so. (The function is obliged to return the value
- 1 if the time cannot be properly represented.)

<tima.h>

Agure 15.12:
xgetzone.c

/* Getzone function */
#include <ctype .h>
#include <atdlib.h>
#include <string.h>
#include "xtime.h"

/* atatic data */
atatic conat char *defzone
static char *tzone = NULL;

435

":tJTC:tJTC:O";

static char *refoxmat(conat char *•)
{ /* refoxmat '1'Z */
int i, val;
static char tzbuf[] = ":EST:EDT:+0300";

for (i = 4 ; l <= --i;
if (iaalpha(*a))

tltbuf[i) = *a++;
else

return (NULL) ;
tzbuf[9J = *• = '-' II*•='+'? *a++ '+';
if (!iadiqit(*•))

return (NULL) ;
val=*•++ - '0';
if (iadiqit(*a))

val z 10 *val+ •a++ - '0';
for (val *= 60, i = 14; 10 <= --i; val /= 10)

tzbuf[i] = val % 10;
for (i s 8 ; 5 <= --i;)

if (iaal.pha(*a))
tzbuf[i) = *•++:

e lse
return (NULL) ;

return (*• == • \0' ? tzbuf NULL) ;

conat char * _Getzone (void.)
/* qet time zone information */

conat char •a;

if (tzone)

else if ((a = qetenv("TIMEZONE")) != NULL)
{ /* copy desired foxmat */
if ((tzone = malloc(atrlen(a) + 1)) !"' NULL)

atrcpy(tzone, a);

else if ((a = getenv("''l'Z")) != NOLL)
tzone = refoxmat(e);

if (tzone = NULL)
tzone = (char *)defzone;

return (tzone);
a

436

Figure 15. 13:
mlttime.c

Figure 15.14:
ctime.c

Figure 15.15:
•trttime.c

I* mktime !unction */
#include <limih. h>
#include "xt1- .h"

Chapter 15

time t (mktime) (•truct tm *ti
{ /* convert local time structure to •calar time */
double daecs;
int mon, y .. r , ymon;
time_t •ec•;

ymon - t->tm mon I 12;
mon = t->tJD_mon - ymon * 12;
if (mon < 0)

mon +- 12, --ymon ;
if (ymon < 0 " t ->tm_year < INT_MIN - ymon

11 0 < ymon " INT_MAX - ymon < t - >tm_year)
return ((time_ ti (- 1) I;

year • t - >tm_year + YJDOtl;
dsec• • 86400.0 * (Day•to(year, mon) - 1)

+ 31536000 . 0 * year+ 86400 . 0 * t ->tJD_mday;
dseca +• 3600.0 * t - >tm_hour + 60. 0 * t - >tm_min

+ (double)t- >tm .. c;
if (dsec• < 0 . 0 11 (double) (time_t) (-1) <- dHcs)

return ((time_t) (- 1)) ;
-cs = (time t)d8ecs - _TBIAS;
_Ttotm(t, -cs, t - >tJD_i•dst) ;
il (0 < t - >tJD iadst)

••cs -- 36°00;
return (••cs - _Tzotf()) ;

/* ctime fuuction *I
#include <time . h>

0

char * (ctime) (con•t time t *tod)
{ 7* convert calendar time to local text */
return (aactime (localtillle(tod)));

/ * ttrft.U. !unction */
#include "xtime . h "

aize_t (atrftime) (char *• • aize_t n, const char *fmt,
const atruct tm *ti

0

I /* format ti- to string */
return (_Strttime(a, n, fmt, t , , _T1-•)) ;

0

<time.h>

Figure 15.16:
asctime.c

time
formatting
functions

1• asctime function •/
#include •xtime.h"

1• static data •/
static const char ampm[J = {":AM:PM"}1
atatic conat char days[) = {

•:sun:SUnday:Mon:Monday:Tue:Tuesday:Wed:Wednesday"
":Thu:Thursday:Fri:Frlday:Sat:Saturday"};

static const char fmts[J = {
"1%b %0 %!1:%M:%S %Yl%b %0 %Yl%!1:%M:%S"};

static conat char iadat(J = {""};
static const char mons[) • {

•:Jan:January:Feb:Pebruary:Mar:March•
":Apr:April:May:May:Jun:JUne•
•:Jul:July:Aug:August:Sep:September"
•:oct:OCtober:Nov:November:Dec:December"}1

437

static const char zone[) = {""}; 1• adapt by default •/
atatic _Tinfo ctinfo = {llD\Pm, days, fmts, isdst, mons, zone };
_ Tinfo _ Times = {ampm, days, fmta, iedat, inona, zone};

char •(aactime)(conat atruct tm •t)
{ /• format time as "Day Mon dd hh:mm:sa yyyy\n" •/
static char tbuf[J = "Day Mon dd hh:mm:ss yyyy\n•;

_strftime(tbuf, sizeof (tbuf), "%a %c\n• , t, &ctinfo);
return (tbuf);

The first part of mlttime determines a year and month. If they can be
represented as type int, the function calls _oaysto to correct for leap days
since 1900. mlttime then accumulates the time in seconds as type double, to
minimize further fretting about integer overflow. If the final value is
representable as type time_ t, the function converts it to that type. mktime

calls _Ttotm to put the broken-down time in canonical form. Finally, the
function corrects the time in seconds for Daylight Savings lime and con­
verts it from local time to UTC. (The resultant code reads much easier than
it wrote.)

The remaining functions declared in <time. h> convert encoded times to
text strings in various ways. All depend, in the end, on the internal function
_ strftime to do the actual conversion. What varies is the choice of locale.
The function aactime (and, by extension, the function ctime) convert times
by a fixed format, following the conventions of the •c• locale regardless of
the current state of the locale category LC_TrME. The function strftime, on
the other hand, lets you specify a format that directs the conversion of a
broken-down time. It follows the conventions of the current locale. Thus,
one of the arguments to _strftime specifies the locale-specific time infor­
mation (of type _Tinto) to use.

runc:Hon Figure 15.16 shows the file aactime. c. It defines the function aactime that
aactime formats a broken-down time the same way irrespective of the current

438 Chapter 15

locale. The file also defines the data object _TimH that specifies tile locale­
specific time information. And it defines the internal data object ctinfo,
which replicates the time information for the •c• locale.

runction Figure 15.14 shows the file ctime.c. The function ctime simply calls
ctime localtime, then aactime, to convert its time_t argument. Thus, i i always

follows the conventions of the •c• locale.
h.lnction Figure 15.15 shows the file atrftime.c. The function atrftime calls

•trftime _strftime, using the locale-specific time information stored in _Time•.
Thus, its behavior changes with locale.

runction Figure 15.17 shows the file xatrftim.c. It defines the internal function
_Strftime _strftime that does all the work of formatting time information. _Strftim8

uses the macro PUT, defined at the top of the file JU1trftim.c, to deliver
characters. The macro encapsulates the logic needed to copy generated
characters, count them, and limit the number delivered.

The internal functionJQ>towc, declared in <atdlib.h>, parses the format
as a multibyte string using sta te memory of type JCb•tate that you provide
on each call. The issues are the same as for _Printf, described on page 303.

function Figure 15.18 shows the file xgentime. c. It defines the function _aenti.me
_Gentime that performs the actual conversions for _strftime. The function _aentime

consists primarily of a large switch statement that processes each conver­
sion separately.

Each conversion determines a pointer p to a sequence of characters that
gives the result of the conversion. It also stores a signed integer count at
•pn. A positive count instructs _Strfti me to generate the designated se­
quence of characters.

One source of generated characters is the function _aettime, which
selects a field from one of the strings in the locale-specific time information.
Another is the internal function get val, also defined in the file xgentime.c,
which generates decimal integers. getval stores characters in the accumu­
lator provided by _strftime.

Note that _aentime includes a nonstandard addition. The conversion
specifier %D converts the day of the month with a leading space in place of
a leading o. That's what aactime insists on.

_Gentime returns a negative count to instruct _strftime to "push down"
a format string for a locale-specific conversion. Three conversions change
with locale -%c, %><,and %X. (The conversion%><, for example, becomes the
format string •%b w %Y• in the •c• locale.) You express these con versions
as format strings that invoke the other conversions. (Page 111 describes
how to write a locale file tha t alters these format strings.) Note that the
function _s trftime supports only one level of format stacking.

The other internal function in the file xgentime. c is wkyr. It counts weeks
from the start of the year for a given day of the year. The week can begin
on Sunday (w.tart is 0) or Monday (w.tart is 1). The peculiar logic avoids
negative arguments for the modulus and divide operators.

<time.h>

Figure 15.17:
xstrftim.c

/* Strftime function */
#in~lude <atdlib.h>
#include <string.h>
#include "xtime.h"

/* macros */
#dafine PUT(s, na) (void) (nput • (na), \

0 < nput •• (nchar +a nput) <• bufsize ? \
(.....,cpy(buf, s , nput), buf += nput) : 0)

size t strftime (char *buf, size t bufsize, conat char *fmt,
oon;t atruct tm *t, Ti.nfo *tin)

439

- /* format time information */
conat char *fmtaav, •a;
aize_t len, lenaav, nput;
size_t nchar = 0;

for (s • fmt, len atrlen(fmt), fmtsav = NULL; ; fmt • s)
(/* parse format string */
int n;

wchar _ t we;
Mbeave 111tate (0);

_Mbtowc(•wc, s, len, •state))) while (0 < (n
(/*scan for'%' or '\0' */
a +- n, len - = n;
if (we='%')

break;

I
if (fmt < a)

PUT(fmt,
if (0 < n)

/* copy any literal ·text */
s - fmt - (0 < n ? 1 : 0)) ;

(/* do the conversion */
char ac[20);
int m;

conat char *p • _Gen.time (t, tin, •++, ii.m., ac);

--len;
if (0 <= m)

PUT (p, m) ;
elae if (fmtsav = NULL)

:fmtaav = a, a • p, l enaav ;:; len, len - -m:
I

fmtsav = NULL I I n < 0) if (0 = len ••
(
PUT("" , 1);

/* format end or bad multibyte char */
/* null termination */

return (nchar <= bufaize? nchar - 1 : 0) ;
I

else if (0 :s len)
a ::: fmtaav, fm.taav • NOLL, len = lenaav;

0

440

Figure 15.18:
xgent.ime.c

Part1

/ • _ Gentime function •/
#include •xtime . b "

Chapter 15

1• macro• •/
#define SUNDAY O
#define MONDAY 1

1• code• for tm_wday •/

•tatic char •g•tval(char ••, int val, int n)
{ /* convert a decimal value •/
if (val < 0)

val • 01
for(•+• n, •a • '\0'; O <: --n1 val/• 10)

• --• •val % 10 + '0';
return (•)1

•tatic int wkyr(int w•tart, int wda.y, i nt yday)
{ /* find wee k of yea.r • /
wday • (wday + 7 - w•tart) % 11
return (yday - wday + 12) I 7 - 1 ;

conat char • _ aentime(con•t atruct tm *t, _Tinfo •tin,
conet ch~r ••, int •pn, char •ac)

1 • format a time field •/
con.t char •p;

llWitch (••++}
{ /• llWitch on conver•ion 9l)ecifier • /

ca" •a• 1 1• put •hort weekday name • /
p • _Gettime(tin- >_Daya, t->tm_wday << 1, pn);
break;

ca•• 'A': t • put full weekday name•/
p • _Gettime(tin- >_ Daye, (t->tll_wday << 1) + 1, pn)1
break1

caae 'b't /*put abort month name•/
p • _Gettime(tin- >_Montha, t ->tll\Jl\on << 1, pn);
break;

ca•e • B • : I• put full lllOiltb name • t
p = _Gettime(tin->_Montba, (t- >tm_znon << 1) + 1, pn)1
br-k;

caae 'c't 1• put date and time • /
p • _Gettime(tin->_ Formata , 0, pn) , •pn • - •pn1
break;

ca•• ' d' • /*put day of month, frmn 01 • /
p • getval(ac, t - >tm_lllday, •pn • 2) ;
break;

ca•a 'P' t t• put day of lllOiltb, from 1 • 1
p • getval(ac, t - >tll\,Jllday, •pn • 2);
if (ac [OJ • • • o •)

ac[OJ • ' '1

break;
ca•• 'H': 1• put hour of 2'-bour day•/

p • getval(ac , t->tm_bour, • pn • 2)1
break;

<time. h >

Continuing
xgenti.me. c

Part 2

441

CIUI• •:r•: / • put hour of 12- bour day •/

p • getval(ac, t ->tm_hour % 12, • pn • 2)1

break1
ca - •j• 1 1• put day of year, from 001 • 1

p • getval(ac, t->tJll..l'day + 1 , •pn • 3)1
break1

caae 'm's 1• put znonth of year, from 01 • /
p • getval(ac, t ->tm_znon + 1, •pn • 2) 1
break;

ca•• ' M' : 1• put minute• after the hour•/
p • getval(ac, t->tlll.Jllin, •pn • 2)1
break1

ca- 'p': / * put All/PM • /

p • _Gettiale(tin->~, 12 <• t->~our, pn)1
break1

ca•e 'S': I * put aeconda a fter the minute•/

p • getval(ac, t->tlll,_•ec, •pn • 2);
break;

ca•• •u•: 1• pu t Bunday week of the year •/
p • getval(ac,

wkyr(SUNDAY, t->tlll,_wday, t - >tll\..Yday), •pn • 2)1

break;
caae 'w': /*put day of w .. k , from Sunday*/

p • getval(ac, t->tJILwday, •pn • 1) 1
break;

caae 'W': 1• put Monday week of the year • /

p • getval(ac,
wkyr (MONDAY, t->tJILwday, t->tm_yday), •pn • 2)1

break1
caae 'X': / *put date•/

p • _Gettime(tin->_Formate, 1, pn), • pn • - •pn;
break;

caae 'X' i 1• put time • /

p . _oettime(tin->_Formats, 2, pn), •pn • - •pn;
break1

case 'Y' • 1• put year of the century•/
p • getval(ac, t->t =_year % 100, •pn • 2):

break1
caae 'Y': / *put year•/

p • getval(ac , t ->tm_year + 1900, •pn • • >:
break1

caae 'Z': 1• put time zone name • I
if (tin->_Tzone[O] •• '\0')

tin->_Tzone • _Getzon•()1 / * adapt zone • /
p • _Getti.Jlle(tin->_Tzone, O < t ->tJll...i•d8t, pn) ;
break1

caee ' %':
p • •%•, •pn • 11
break1

defaults
p • a - l, • pn • 2;
}

return (p)1

1• put • %• •/

/ • unknown field, print it • /

0

442

F~e 15.19:
ttime.c

Chapter 15

/* te•t time function• * /
linclude <a••ert.b>
lincl ude <•tdio.b>
lincl ude <•tring.h>
linclude <time.h>

int main()
(I * te•t ba•ic working• of time functions •/
char buf (32J1
clock_t tc • clock()1
•truct tm tel1
time_t ttl, tt21
•tatic char *detr • •SUn Dec 2 06:55:15 1979\n•i

ttl • time(•tt2)1
•••ert(ttl •• tt2)1
t•l.tm_ •ec • 151
t•l.tmJDin • 551
t•l.t11Lbour • 61
t s l.tm....mday • 21
t•l. tDLmon • 111
tsl.t11LY9ar • 191
tBl. tJILi8d8t • - 11
ttl • mktima<•t•ll1
a eeert(tel.tm..._vd.ay 011
•••ert(t•l.tm,_yday •• 335)1
++tBl.tJll_ffCI
tt2 • mktime(•t•l)I
a ••ert(difftime(ttl, tt2) < 0.011
asaert(•trcmp(a•ctime(localtime(•ttl)), d•tr) •• 0)1
•••ert(•trftime(buf, aizeof (buf), "%8",

gmtime(•tt2ll • • 2)1
aa•ert(atrcmp(buf, "16") •= 0)1
assert(tc <• c l ock()) J
fputa("Current date -- •, stdout);
time l•ttl) I
fput•(ctime(•ttl), •tdout)1
put•("SUCCBSS teBting <time.h>")1
return (0)1

0

Testing <time . h>
Figure 15.19 shows the file ttime.c. The test program performs basic

tests on all the functions declared in <tim•.h>- As a quality check, it also
displays what the function time returns as the date and time when you run
the program. If all goes well, the program displays something like:
Current date -- Bun Dec 2 06:55:15 1979
SUCCBSS t••ting <time.h>

<time.h> 443

References

Exercises

W.M. O'Neil, Time and the Oilendars, (Sydney, N.S. W.: Sydney University
Press, 1975). Calendars are notoriously idiosyncratic. This book tells you
more than you probably want to know about the history of measuring
calendar time. It also explains why days and dates are named and deter­
mined the way they are today.

Exercise 15.1 Write a locale file that expresses the time conventions for the French
language. You need to alter:

llJll...l>D1 day•
dat_rul•• month•
time_Eona time_ f ormat•

Test your new locale. (Hint: You may want to commandeer test programs
in this and earlier chapters as a starting point.)

Exercise 15.2 Determine the rule where you live for beginning and ending Daylight
Savings lime. (If Daylight Savings Time is not observed where you live,
then pick a place that does so where you might like to live.) Write a locale
file that observes this rule. How has the rule changed over the last twenty
years? Can you express all these changes succinctly in a locale-file specifi­
cation for d•t_rulaa?

Exefclse 15.3 Many astronomers believe that the universe "began" approximately 15
billion years ago with a big bang. How many seconds have elapsed since
the big bang? How many bits does it take to represent the seconds that have
elapsed since the big bang?

EX81'Clse 15.4 Leap years generally occur every multiple of four years. They generally do
not occur every multiple of one hundred years. They do occur every
multiple of four hundred years. Alter the function _Day•t o, defined in the
file xttotm.c, to determine leap years properly before 1801 and after 2099.
Over what period does it make sense to have this function work properly?

Exercise 15.5 Write the function long dalta_daya(int year, int mon, int delta_monl
that counts the days in a span of months. The initial day is the first day of
the month mon in the year year. The span of months is the signed value
delta_mon. Why do you need to specify the initial year?

Exercise 15.6 Implement the primitive functions clock and tiJU for your system. What
can you say about the accuracy (and meaning) of the values returned by
these functions?

EX81'Clse 15. 7 In recent years, astronomers h ave taken to adding "leap seconds" to certain
years, just before midnight on New Year's Eve. (This corrects for the
slowing rotation of the Earth.) Find a list of years that have added leap
seconds. Correct for leap seconds at the appropriate place within the time
functions.

444 Chapter 15
Exercise 15.8 [Harder] Assemble a table of all the time zones in the world. Devise a

mnemonic naming scheme for all the zones. Add a function that Jets you
specify your working time zone by this mnemonic name. What do you do
about Daylight Savings lime?

Exercise 15.9 [Very hard] Devise a notation for expressing calendar times succinctly as
text strings. You want people to be able to type these strings easily. Write
the function time_ t etrtotime<conat char *l that parses such a null-ter­
minated calendar time string and produces the corresponding encoded
calendar time. How do you adapt the notation to changes in the current
locale?

Appendix A: Interfaces

This appendix summarizes what you have to do to interface this imple­
mentation of the Standard C library to a given execution environment. It is
aimed primarily at those who intend to do something with the implemen­
tation that I have presented so far. Others may find parts that are of interest,
if only to understand the issues involved. If your concern ends with the C
Standard or with the advice to users, however, you can safely skip what
follows.

Even among potential implementors, goals can vary widely. Some may
wish only to mine the code presented here for a few useful gems. If so, your
challenge is to find a consistent subset that meets your needs, then integrate
it into an existing C implementation. Others may wish to displace com­
pletely an existing C library. If so, you have more work to do. I can only
sketch those extra steps here.

assumptions I introduced the header <yvala .b> to summarize as many parameters as
possible. Where that failed, I introduced the header "yfuna. h" to tailor the
names of low-level primitives. I don't pretend that changing these headers
alone will adapt this library to all sensible environments. The code is
riddled with assumptions. Where those assumptions fail to hold, you have
to alter the code to adapt it. Here are the assumptions you must verify:

• all files - Review the assumptions starting on page 9. Many parts of the
library also assume that you can define writable static data objects
within the library. See the discussion on page 36.

<ctype.b> • <ctype.b> - The files xctype.c, xtolo-r.c, and xtoupper.c assume
that the execution character set is ASCU. Change the tables they contain
for a different character set. These files also assume that a char occupies
eight bits. If a clzar is larger, you may have to reconsider the approach
based on tables.

<errno. b> • <errno. b> - The files errno. c and errno. b assume that you can main­
tain errno as a writable static data object. You may have lo call a function
on each access lo errno lo capture a deferred error report.

<float. b> • <float . b> - The files float.band xfloat . c assume that the format for
floating-point values is IEEE 754 or a closely related form. If the forrnat(s)
differ sufficiently, you may have to reconsider the approach based on
the parameters in <yvala . h>.

446 Appendix A
<lilllita.h> • <limita.h> -The file limita.h assumes that a char occupies eight bits

and a.n int occupies either two or four bytes, (See page 77.)
<locale. h> • <locale. h> - This code assumes knowledge of the inner workings of

several parts of the library. Look for problems here if you change any
code in: <ctype.b> (translation tables), <li!nita.h> (MB_ LBNJ(U), <•td­
lib. h> (multibyte functions), <•tring .h> (collation functions), or
<time.h> (locale-specific time information).

<math.h> • <math.h> -This code is at least as dependent on floating-point fonnat
as <float.h>, above. (See the discussion beginning on page 127.) Be
prepared to make major changes if do11ble retains more than 56 bits of
precision or has a decimal base.

otdarg.h> • <•tdarg.h> - The file atdarg.h assumes that arguments passed to a
function are stored in ascending storage locations following a predict­
able pattern. (See page 211.) You have to reconsider this approach if any
of the assumptions fail to hold.

otdcS•f. h> • <atddef.h> - The macro off-tof in file atddef. h assumes that you can
perform several tricks involving pointers and integers. (See page 222.)
If any of those tricks fail, yo·u must find an alternate set of tricks that does
work. (Such a set must exist.)

primitives Nineteen functions depend heavily on the execution envirorunent. You
can think of them as the basic primitives that interface this implementation
to the execution environment. I made little or no attempt to provide
parametric versions of these functions. Expect to make significant changes
here. In many cases, you will find that existing functions in a C implemen­
tation can serve. Unless your goal is to displace completely an existing
library, you can commandeer such functions rather than write your own.
Here is a summary of the primitives:

oatjD\P.h> • < .. tjmp.h> - The functions aetjm,p and longjmp must be written in
assembly language specially for each implementation. You can probably
adapt the file ••tjm,p.h merely by altering the macro _NSB'I'JXP, defined
in the file yvala.h. Don't even think about using the example files
longjmp.c and ••tjm,p.c, howeve-.

oignal.h> • oignal.h> - The files raiae.c and aignal.c must be modified to
control hardware signals. Some systems provide a direct replacement
for the function aignal.

<•td1o.h> • <•tdio.h> - Nine functions and macros isolate most of the system
dependencies from the rest of the code. The functions are in the files
rsmove.c, r•name.c, tmpn&ll\.c, xfgpoa.c, xfopen.c, and xfapoa .c. The
macros are _Fclo••, _ Fread, and _Fwrite, defined in the file yfuna.h.
Some systems provide direct replacements for a few of these functions.
Check carefully, however, that these candidates have the required be­
havior as well as the expected names.

otdllb.h> • otdlib.h> - Four functions and macros isolate most of the system
dependencies from the rest of the code. The functions are in the files
o•t•nv.c, ayatam.c, and xoetmem.c. The macro is _ Bxit, defined in the

Interfaces 447

RgureA.I: /• yfuns.h functions header - - UNIX version •/

yfuna.h lifndef _YPUNS
ldefine _Yl'UNS

1• macros •1
ldefine _Envp (*_Environ)
ldefine _Pclose(str) _ciose((etr)->Jiandle)

ldefine _Fread(etr, buf, cnt) _Read((•tr)->_Handle, buf, cnt)

ldefine _P'writ•(•tr, buf, cnt) _write((atrl->_liandle, buf, cnt)

1• interface declaratioo• • /
extern conat char **_Environ;

int _Cloee(int)1
void _Exit(int)1
int _Read(int, unaigned char •. int) 1

int _Write(int, conat unaigned char•, int);

lend if D

file yfuna. h. You can often use the file 11etenv. c presented here, given a

suitable definition or declaration for the data object _ Envp in the file

yfuna.b.

<time. h> • <time. h> - Two functions isolate most of the system dependencies from

the rest of the code. The functions are in the files clock.c and time.c.

You can write clock. c in te rms of time.c, as I did here. Thatcan be handy

if the execution environment doesn' t provide a separate measure of

elapsed processor time.
header Figure A.1 shows the file yfune. h. It is a version of the header •yfune. h •

•yfuna.h" that can work with many UNIX systems. It follows the same naming

convention I have used for earlier UNIX examples. Here is the complete

list of the names with external linkage that this implementation needs to

have defined under UNIX. I follow each with its conventional UNIX library

name:
_llnviroo env,iron _x..eek l•eek
_Clock clock _Open open
_Cloae cloee _Read read
_Execl execl _Sbrk abrk
_Exit exit _ Signal eignal
_Pork fork _Time time
_O.tpid getpid _Unlink unlink
_!till kill _write write
_Link link

I list _Environ first because it names a data object. (Like the macro errno,

defined in <errno.h>, it can be a function call that returns a pointer, if

necessary.) All the rest name functions that provide UNIX system services.

You may well have to write, or alter, assembly language files to supply these
services.

You can cheat and replace the reserved names with the conventional

names. That can be a quick way to get started using this implementation.

But that shortcut also causes a few name collisions. And it violates the rules

in the C Standard about the use of name spaces, of course.

448 Appendix A
Given the necessary primitives, you adapt the remainder of the code by

altering the internal header <yvale.h>. It defines the following macros:
_ADNBND • JJlNBND - used by etdarg.h to back up an argument pointer (value

typically 0, 1, 3, or 7)
J'UPBND • j.UPBND - used by etdarg.h to advance an argument pointer (value

typically 0, 1, 3, or 7)
_c2 • _c2 - used by Umiu.h to distinguish two's-complement represen­

tation (value 1) from one's-complement or signed-magnitude (value 0)
_cps • _cps - used by t11ne. :11 to determine the value of the macro

CLOCIG_PER_SEC
_cs1GN • _CSIGN - used by lillliu .h to distinguish whether char can represent

negative quantities (value nonzero) or only positive quantities (zero)
_oo • J>O - used by numerous files to determine the byte order of tloating­

point values in storage (value 0 or 3)
_oe1AS • J>BIAS - used by several files to determine the difference between a

double characteristic and its signed exponent
J>LONG • J>LONG- used by several files to determine whether long double is IEEE

754 10-byte format (value nonzero) or the same as double (zero)
..POPP • _ ooPP - used by several files to determine the bit offset of a double

cha.racteristic in the most-significant word
_BOOK •l!DOM - used by errno. h to determine the value of the rnacro BPOK

J!PPOS • _EFPos - used by errno.h to determine the value of the macro BFPOS
_ERANGE •J!RANGE - used by errno.lh to determine the value of the macro ERANGB
....J!RRIWC •J!RJUWC-used by errno.h to determine the range of error codes
_FBIAS • _FeIAs - used by xfloat. c to determine the difference between a float

characteristic and its signed exponent
_ PNAMAX • _FNAMAX - used by etdio. h to determine the value of the macro FILE­

NAKB_ XAX

_ POPP • _POFF - used by xfloat. c to determine the bit offset of a float charac­
teristic in the more-significant word

J'OPMAX • _FOPMAX - used by etdio.h to determine the value of the macro
FOPENJIAJ(

_ FRND • _ FRND- used by float. h to determine the value of the macro FLTJ\OUNDS
_ILONG • _ILONG- used by Umite.h to distinguish whether int occupies 32 bits

(value nonzero) or 16 bits (zero)
J.BIAS • _LBIAS - used by several files to determine the difference between a

long double characteristic and its signed exponent
_ LOFF • _x..on - used by several files to determine the bit offset of a long double

characteristic in the most-significant word
_MBMAX • J<BMAX - used by lilllit·e.h to determine the value of the macro

MBJ.BN_KAX

J0001ND • ..)IBMBND- used by several files to enforce the worst-case storage bound­
ary (value typically 0, 1, 3, or 7)

Interfaces 449

NSETJMP • _NSETJMP - used by .. tjmp.h to determine the size of the array of int
jap_buf

NULL • _NULL - used by several ftles to determine the value of the macro NULL

(value o, OL, or (void *) o)

_srGABRT • _SIGABRT - used by .tqnal.h to determine the value of the macro
SIGABRT

srGMAX • _srGMAX- used by aiqnal . h to determine the range of signal codes

TBIAS • _TBIAS - used by several functions to correct the starting point for
calendar times represented as type time_t

_TNAMAX • _TNAMAX- used byetdio.h todeterminethevalueofthe macroL_tmpnam

I give several examples of consistent sets of these parameters.

DEC
VAX

U.TRIX

Figure A.2 shows the file yval• . h. It is a version of the header <yvale . h>

that work with the VAX ULTRIX system. Most of the parameters are
common to many versions of UNIX. The floating-point parameters de­
scribe the proprietary format supported by the VAX and the older POP-11
computer architectures. That format does not truly support codes for Inf
and NaN, but this library defines them anyway. So long as you perform no
arithmetic operations on these special codes, they can survive to convey
useful information.

GNU C You can easily modify this version of yvala .h to work with the GNU C
under compiler under Sun UNIX (using Motorola MC680XO microprocessors).

SUn UNIX First, change the floating-point parameters to describe IEEE 754 formats:

c omplete
Mbraries

Ide fine _oo 0
Ide fin• DBIAS Ox3fe

Ida fine _DLONG 0
Ide fine _DOFF 4
I define _FBIAS 0x7•
Ide fine FOFF 7
Ide fine FRND 1
Ide fine _LBIAS Ox3fe

Ide fine _LOFF 4

Then change the storage-alignment parameters:
ldefine AUPBND 3U
ldefine - ADNBND OU

ldefine ::::MEMBND 3U

You must also provide a set of renamed UNIX system services, of course.

If your goal is to displace completely an existing library for a given
compiler, you have two additional concerns:

• You must supply a C startup header that gets control initially from the
operating system. That requires an intimate knowledge of how the
operating system runs programs. The C startup header ensures that the
call stack is properly set up, that static storage is properly initialized, and
that the three standard streams are open. It calls main, then exit with the
status returned from main. Operating systems vary considerably in how
much of this work they do for you.

450

Rgure A.2: /* yvale . h value• header - - VU ULTRIX vereioo */
yvale.h ldefine _YV11LS

/* errno properti•• */
ldefine Jma(33
ldefine):RANGE 34
ldefine DPOS 35
ldefine - DRKAX 36

f* float properti•• *I
ldefine DO 0
ldefine =DBIAS Ox80
ldefine DLONG 0
ldefine - DOFF 7
ldefine - FBIAS Ox80
ldefine -FOFF 7
ldet"U.. =FRND l
ldefine I.BIAS Ox80
ldefine F FF 7

/* integer properti•• */
ldet"ine C2 1
ldefine - CSIGN l
ldefine - ILONG l
ldeUne - HBMIUC 8
typeci.t" ~neic;in.d ehort _1fchart;

· /* pointer properti•• *I
ldet"ine NULL (void *) 0
typedef" int _ptrdif"t"t;
typedat" uneic;in.d int Sizet;

I * eetjmp proPerti•• */
ldefine NSET.JMP 80

f* eiqnal properti•• */
ldet"ine SIGABRT 6
ldefine -SIGMAX 32

f* etdio properti• • *I
ldefine l'NAMAX 64
ldet"ine =FOPMAX 16
ldefine TN»IAX 16

f* etdlil> properti•• *I
ldet"ine 11\XFAIL 1

f* etorage aligruMnt properti•• *I
ldet"ine _ AOPBND 3U
ldef ine ADtlBND 3U
ldet"ine - MEMBND 7U

f* time properti•• *I
ldet"ine CPS 1
ldet"ine =TBIAS O

Appendix A

0

• You must supply any C runtime functions that the generated code may
call. That requires an intimate know ledge of how the compiler generates
code. A switch statement, for example, often calls a runtime function
rather than perform all the compares and branches with inline code.
Compilers vary considerably in how much they depend on C runtime
functions.

Interfaces 451

You will find little advantage to displacing completely the ULTRIX or GNU

C libraries unless you have to contend with licensing issues.

Borland I also exercised the code in this book with the Borland Turbo C++

TUrbo compiler. (I used the ANSI C compiler that comes with the package.) You

C++ have a broad range of choices in how much of the Borland library you

choose to displace. You can even license the Borland library source code on

reasonable terms to further broaden your choices. Here is a reasonable
version of yvale .h for use with this compiler:
/* yvals.h values header -- Turbo C++ version */

ldarine _YVALS
/* errno properties */

ldarine EDCM 33

ldarine =ERANGE 34
ldafine EFPOS 35
Ida fine - ER1UCAX 36

/* float properties */

ldafine DO 3
ldafine :=oeu.s Ox3fe
ldaf ine DLONG l
ldafine -DOFF 4

ldafine - FBI.AS Ox7e
ldatine -FOFF 7

ldafine =FRND l
ldafine I.BIAS Ox3ffe

ldafina =LOFF l!i
I* integer properties */

ldafine C2 1
Ida fine - CSIGN l
ldafine - II.ONG 0

ldafine =HBMAX 8
typedef unsigned short Wchart;

/* pointer prop;-rties */
ldafine NOLL (void *)O
typeder int _ptrdiftt ;

typedef unsigned int Sixet ;
/* setjmp pr~ies */

ldafine _NSl:TJMP 10
/* signal properties */

ldafine _SIGABRT 22
ldafine _ SIGMAX 32

I* stdio properties */
ldafine _FNAMAX 64
ldafine _FOPMAX 16
ldafine TNAHAX 16

/* stdlib properties */

ldefine _EXFAIL l
/* storage alignment properti es */

ldefine _ AOPBND lU

ldefine ADNBND lU
ldefine - MEMBND lU

/* ti.me properties *I
ldafine CPS l

ldafine =TBIAS ((70 * 365LU + 17) * 86400)

452 Appendix A
The C startup header that Borland supplies defines abort and errno. If

you want to displace these, you must obtain the source code and modify
it. Otherwise, your biggest worry is the way MS-DOS represents text files.
You must discard (certain) car riage returns in _Fread and insert carriage
returns before (certain) newlines in_ Fvrite. You must also correct for these
alterations in _Fqpoa and _Fapoe. For the remaining primitives, you will
typically find more than adequate versions in the Borland library.

other Other operating systems are much less inspired by UNIX. That makes
systems them harder to pave over the way the C Standard requires. Usually, the

worst offender is the input/ output model. Files structured into records and
blocks require delicate handling if streams are to behave robustly. It is
particularly difficult to handle file-positioning requests properly in a file
that has record or block structure.

IBM System/370 is an extreme example. It offers several operating systems,
System/370 all steeped in conventions that long predate UNIX. Even the simplest of

these operating systems requires a nontrivial interface to support Standard
C properly. The biggest of them can easily call for system-specific code
comparable in size and complexity to all the code in this book combined.
Here is a case where you definitely want to build on the work of others.

freestanding If your goal is to use this Hbrary to generate freestanding programs, you
programs have a slightly different set of concerns. You have no operating system to

lean on, or a vestigial one at best. An existing C cross compiler for the same
computer architecture may supply you with C startup code and a C
runtime tailored for a freestanding environment. A compiler designed to
produce only hosted programs will leave you with work to do in both areas.

Many of the primitives you must supply can often be stubs in a free­
standing environment. Consid er an execution environment, for example,
that supports only serial input and output of characters through a single
port. The functions _Fread and _Fwrit• need only deal with this port. The
functions _Fqpoe, _Fopen, etc. can all fail for any arguments. If your needs
are modest, you can cut many comers here.

improvements You may also wish to make an assortment of improvements. You can
add error codes (to errno.h and etrerror .c), for example. You can add
s ignalcodes (to •iqnal. .hand raia• . c). You can implement a broad assort­
ment of locales, and even build the more popular ones directly into the
library. You can write enhanced versions of functions such as div and
etrl.en, to name just two candidates. The list is endless, so I'll stop it here.
But you don't have to. Good luck.

Appendix B: Names

This appendix lists the names of entities defined in this implementation

of the library that have external linkage or are defined in one of the standard

headers. They are the names that your program sees, for good or for ill A

function name that appears twice has a macro definition that masks its

declaration in the standard header that declares it.

Nome Header File Page

llOFSIZ <atd.io .h> atdio.h 276
CHAR_BIT <limita.h> limi.ta.h 76
CHAR_MAX <limita .h> li.adta .h 76
CHAR_MIN <limita.h> l i.adta.h 76
CLOClCS _PER_ SEC <time.h> titne.h 424

D OBL_DIG <f'loat . h> float.h 66
DBL_ EPSILON <f'loat.h> f'loat.h 66

DBL_HNIT_DIG ~loat .h> f'loat .h 66

OBL_MAX <f'loat.h> float. h 66

DBL_MJ.X_lO_EXP <f'loat.h> f'loa t.h 66

DBL_ MJ.X _EXP <f'loat.h> float . h 66
DBL MIN <f'loat.h> f'loat.h 66
DBL_MIN_lO_EXP <f'loat .h> float.h 66
DBL_ MIN_ EXP <f'l oat .h> f'loat.h 66

EDCM <errno. h> errno. h 53
EFPOS <errno.h> errno.h 53
EOF <atdio . h> atdio. h 276
ERANGE <errno.h> errno.h 53
EXIT_FAIUJRB <atdlib. h> •tdlib.h 354
EXIT_SUCCESS <atdlib.h> atdlib.h 354

F FILE <atdio.h> atdio.h 276
FILENAME_ MAX <atdio. h> atdio.h 276
FLT_DIG <flo at .h> float.h 66
FLT_EPSILON <float.h> f'loat.h 66
FLT_JGNT_DIG <float.h> f'loat.h 66

FLT_MJ.X <float . h> float.h 66

FLT_MJ.X_lO_EXP <f'loat . h> f'loat . h 66

FLT_ M1.X _EXP <f'loat.h> float.h 66

FLT_MIN <float.h> float . h 66
FLT_MIN_lO_EXP <f'loat . h> float.h 66

454 Appendix B
Name Header File Page
FLT_MlN_EXP <f'loat . h> f'loat.b 66
FLT_RADIX <float.h> f'loat.h 66
FLT ROUNDS <flQ•t . h> fl09t . h tiJ
l'OPEN_MAX <atdio. h> •tdio.h 276
HOGE_VAL <matb. h> matb.h 138
INT MAX <limit•. h> limit•.h 76
INT_MlN <li.mita . h> lilllit•.h 76
LC_ALL <loc:ale. h> lOCAle.b 96
LC_COLLATE <locale. h> lOCAle . b 96
LC_CTn>E <locale. h> locale.b 96
LC_ MONETARY <locale. h> l ocale.b 96
LC_m.Gl!UC <locale. h> locale.b 96
LC_TIME <locale. h> lOCAle.b 96
I.DBL DIG <float . b> f'loat.b 66
I.DBL EPSILON <f'loat . h> f'loat . h 66
LDBL_MMIT_DIG <f'loat . h> float . h 66
LDBL_MAX <f'loat . h> float . h 66
tDBL_MAX_lO_EXP <flo.at.h> f'loat.h 66
LDBL _MAX_ BXP <f'loat . h> f'loat . b 66
LDBL_MIN <f'loat. h> f'loat . h 66
LDBL_MIN_ lO_EXP <f'loat . h> f'loat . h 66
LDBL_M:IN_EXP <float . b> f'loat .h 66
LONG_IW< <limit•. h> lilll.ita.b 76
LONG MIN <limit • . h> limita .b 76
L_tmpnalll <9tdio.h> atdio. b 276 M MB_ CUR_ MAX <atdlib.h> •tdli.b.b 354
MB_LEN_MAX <limit a . h> limit• . b 76
NULL <locale. h> locale.b 96

<9tddef'. h> atddef'.b 223
<atcilo .b> •tdio. b 276
<atdlib. h> atdli.b.b 354
<atruu1. h> atrin9.h 398
<time. h> time.b 424

llAND_MJ.X <atdl.ib.h> atdli.b.h 354
9CHAR MAX <limita. h> U.mita . b 76
SCllAR_MIN <limita. h> limita.b 76
SEU CUR <9tdio. h> atdio.b 276
SEE!t END <atdio.h> atdio. b 276
SEll_SET <•td:io.h> atdio.b 276
SHRT_JWt <limi.ta .h> lilllita.h 76
SHRT_MIN <limita. h> limita.h 76
SIGABRT <aiqnal.h> •iqn•l.b 200
SIGFPE <•1qnal . h> aignal.b 200
SI GILL <9iqnal.h> a19nal.h 200
SIGINT <•iqnal .h> •iqnal.b 200
SIGSl!GV <aiqnal.h> aiqnal.b 200
SIGTERM <aiqnal.h> aignal.b 200
SIG_DFL <aiqnal.h> aignal.h 200

Names 455

Name Header Rle Page

SIG_ERR <•ignal.h> •ignal.h 200
SIG_IGN <•ignal.h> eignal.h 200
TIU'_HAX ••tdio.h> atdio.h 276
UCHAA__)IAX <liaita.h> limite.h 76
UINTJCAX <limit•. h> lim.iU.b 76
Ut.ONGJIAX <lim.ita.h> Umit•.h 76
USHRT_MAX <lim.ita.h> limita.h 76

a abort <•tdlib.h> abort.c 379
ab• <atdUb.h> aba.c 355
acoa <math.h> acoa.c 155

<math.h> math. h 138
aactime <t:lme.h> aectillle. c 437
aain <math.h> aein.c 155

anath.h> math.h 138
•••art <aa•ert.h> a•aert .h 20
a tan <math.b> atan.c 156
atan2 <math.h> atan2.c 157
atexit <atdlib.h> atexit.c 379
atof <etdlib.h> atof.c 362

<atdlib.h> atdlib.h 354
atoi <•tdlib.h> atoi.c 361

<etdlib.h> atdlib.h 354
atol <atdlib.h> atol.c 361

<etdlib.h> atdlib.h 354
baearch <atdlib.h> beearch.c 358

c c alloc <•tdlib.h > calloc.c 375
ceil <math.h> ceil.c 141
clearerr <•tdio.h> clearerr .. c 287
clock <time.h> clock.c 426
clock_t <time.h> tiine.h 424
coe <math.h> coe.c 152

<math.h> math.h 138
co•h <math.h> coah.c 162
ct1me <time.h> ctillle.c 436
difftiine <time.h> difft:lme.c 426
div <•tdlib.h> div.c 355
div_t <•tdlib.h> atdlib.h 354
errno <errno.h> errno.c 54
exit <•tdlib.h> exit.c 379
exp <math.h> exp.c 162
faba <math.h> fab•.c 140
folo•e <atdio.h> fcloH.c 280
feof <atdi o.h> feof.c 288
ferror <•tdio.h> ferror.c 288
ffluah <•tdio.h> ffluah.c 298
fgetc <•tdio.h> fgetc.c 290
fgetpoa <•tdio.h> fgetpo•.c 289

<•tdio.h> atdio.h 276

456
Appendix B

Name Header FUe Page
fg9t• <atdio.h> f9et• . c 293 floor <math.h> floor . c 141 fmod <mat.h.h> fmod.c 148 fopen <•tdio.h> fopen . c 279 fpo•_t <•tdio.h> .tdio. h 276 fprintf <atdio.h> fprintf.c 301 fputc <atdio .h> fputc . c 296 fput• <atdio.h> fput• . c 300 fread <•tdio .h> fread.c 292 fr- <•tdlib.h> fr- .c 376 freopen <•tclio .h> f reopen.c 280 fr exp <math.h> frexp .c 143 facanf <atclio.h> f•canf . c 318 f•eek <atdi.o.h> f•-k .c 289

<atdio.h> •tdio.h 276 betpoe <atdio.h> f•etpo• . c 290
<atdio.h> •tdio. h 276 ftell <atdio .h> f t ell.c 290
<•tdio .h> •tdio.h 276 fwri te <etdi.o . h> fwrite . c 299 g 99tc <atdio .h> 119tc.c 290
<atdio.b> •tdio . h 276 99tchar <•tdio .h> 99tchar. c 291
<atdio.h> etdio.h 276 99tenv <atdlib.h> 99tenv .c 380

99t• <atdio .h> 99te .c 294 <pti.Jne <t:Une.h> 9"1time .c 427 i•alnum <ctype .h> ctype.h 37
<ctype.h> iaalnum. c 37 halpha <ctype .h> ctype .h 37
<ctype .h> iaalpha.c 38 iacntrl <ctype.h> ctype.h 37
<ctype .h> i •cntrl .c 38 iadi9it <ctype .h> ctype.h 37
<ctype .h> iadi9it. c 38 ia9reph <ctype.h> ctype . h 37
<ct ype .h> i•9nph. c 38 ialo-r <ctype.h> ctype.h 37
<ctype .h> i•l~r. c 38 bprint <ctype .h> ctype . h 37
<ctype .h> i aprint . c 38 iepunct. <ctype.h> ctype.h 37
<ctype·.h> iapunct. c 39 ia91>ace <ctype .h> ctype . h 37
<ctype .h> ieapace.c 39 iaupper <ctype .h> ctype . h 37
<ctype .h> hupper. c 39

Names 457

Nome Header FUe Page

iexdigit <ctype.b> ctype.b 37
<Ctype.b> hxdigit.c 39

:llllP_buf <••tjll\P. b> .. t:l111P.h 187
lab• <etdlib.h> labe.c 356
ldexp <1114th. h> ldexp.c 144
ldiv <etdlib.b> ldiv.c 356
ldiv_t <•tdlib.b> etdlib. b 354
localeconv <locale.b> localeco.c 97

<locale.b> locale.b 96
localtima <tima. b> localtim.c 433
log <matb.h> log.c 166

<1114tb.b> matb.b 138
logl O <matb.b> loglO .c 167

<1114 t 'b. h> matb.b 138
long:llllP < .. tj111P.h> longjll\P.C 189

m malloc <•tdl.ib.b> malloc.c 374
mblen <etdlib.b> mblen.c 366

<•tCllib.h> stdlib.b 354
mbetowce <etdlib.b> mbetowce.c 366
mbtowc <etdlib.b> mbtowc.c 366

<etdlib.b> etdlib.b 354
memchr <etring.b> mt1111cbr.c 399
11\elllClllP <•tring.b> lll8lllClllP • c 399
lllelllcpy <•tring.b> lllelllcpy.c 400
m.emmove <•tring.b> memmove.c 400
memeet <•tring.b> mem.aet.c 400
mktime <time.b> mktime.c 436
modf <matb.b> modf.c 143
off eetof <•tddef.h> etdcSef.b 223
perror <etdio .b> perror.c 298
pow <matb.b> pow.c 168
printf <etdio.b> printf.c 301
ptrdiff_t <etdcSef.b> atddef.b 223
putc <etdio.b> putc.c 297

<Btdio.b> etdio.b 276
put char <etdio.b> putcbar.c 297

<•tdio.b> etdio.b 276
put• <•tdio.b> pute.c 300

q qeort <•tdlib.h> qeort.c 356
raiee <aignal.b> raiee.c 202
rand <•tdlib.h> rand.c 359
realloc <Btdlib.b> realloc.c 377
reinove <BtdiO.h> r•move .. c 283
rename <etdio.b> rename.c 283
rewind <etdio.b> rewind.c 290
ecanf <•tdio.b> ecanf.c 319
.. tbuf <Btdio.b> .. tbuf.c 288

458 AppendixB
Nome Header File Page
.. t jnp <-tjap. h> ••tjap. c 188

<aetjmp.h> .. tjap. b 187
set local• <locale.h> Htlocal.c 102
aetvbur <•tdio.b> .. tvbur.c 289
aiq_atomic_t <•iqnal. h> aiqnal. . b 200
signal. <aiqnal.h> signal. . c 203
sin <mat b .h> matb .b 138

<matb. h> ain. c 152
•inh <matb.h> ainh .c 163
aize_t <•tdci.r. h> atdder. h 223

<atdio.b> atdio.b 276
<•tdlib.h> atdli.b .b 354
<etrinq.h> etring. h 398
<tilll.e . h> tilne. b 424

eprintr <atdio.h> eprintr. c 302
sqrt <math.h> aqrt . c 159
er and <•tdlib.h> arand. c 359

<etdlib.h> atdli.b. b 354
aaunr <atdio.b> aacanJ:. c 319
atderr <atdio.h> etdio.b 276
stdio <atdio.b> atdio.b 276
•tdout <etdio.h> atdio. b 276 s atrcat <atrinq.h> atrcat . c 402
atrchr <atr.inq.h> etrchr .c 403
at reap <atr.inq.h> atrcap.c 402
atrcoll <atr.inq. h> atrcoll.c 410
atrcpy <•tr.inq. h> atrcpy . c 402
atrcepn <atr.1n9. h> etrcepn. c 403
atrerror <atr.1n9.h> etrerror.c 406

<etrJ.nq. h> atring .b 398
atrrtime <time .h> atrrtime .c 436
atrlen <etri.nq.h> atrlen .c 403
at meat <etri.nq . h> etrncat . c 401
etrncmp <etri.nq. h> etrncmp. c 401
atrncpy <•tri.nq.h> atrncpy. c 402
atrpbrlt <etri.nq. h> atrpbrlt. c 404
atrrchr <atri.nq. h> atrrchr. c 404
atrepn <etri.ng.h> etrapn . c 404
atretr <atri.nq.h> etratr . c 405
atrtod <etdlib.h> atdlib. b 354

<atd1ib. h> atrtod.c 362
atrtolt <;etrin9. h> etrtolt. c 405
etrtol <•tdli.b. h> etrtol . c 362
atrtoul <;atdli.b.h> atdlib . b 354

<etdlib. h> atrtoul. . c 361
atrxrrm <etri.ng. h> atrxrrm. c 408
eyat- <•tdlib. h> eyat-.c 380
tan <matb.h> tan.c 153

Names 459
Name Header File Page

tanh <lllath.b> tanh.c 165
time <ti.me.b> time.c 426
time_t <time.b> ti.me .h 424
tmpfile <stc:lio.h> tmpfile.c 287
tmpnam <stc:lio. h> tmpnU>.C 284
to lower <ctype.b> ctype.h 37

<ctype.h> tolower.c 39
toupper <ctype.h> ctype . h 37

<ctype.h> toupper. c 39
unqetc <stc:lio. h> unqetc.c 291
va_arq <stdarg. b> stdarg.h 211
va_end <stdarg.b> stdarq.h 211
va list <stdarg.b> stdarg.h 211
va_start <stdarg.b> stdarg. h 211
vfprintf <stdio.h> vfprintf.c 302
vprintf <stdio.h> vprintf.c 302
vsprintf <stdio.h> vsprintf.c 303
wchar_t <stddef. h> stddef.h 223

<stdlib.b> stdlib.h 354
wcstombs <stdlib.b> wcstombs.c 369
wctomb <stdlib. b> stdlib. h 354

<stdlib.b> wctomb.c 369
_A _AONBND <yvals . h> yvals .b 450

_AUPBND <yvals.h> yvals .h 450
_Aldata "xal.loc.h" malloc.c 374

Aain <math.b> xasin.c 154
_Assert <as8ert.b> xaasert.c 21
_Aten "xmath.h" xatan. c 158

BB <ctype.h> ctype. h 37
_Bnd <stdarg.b> stdarg. h 211

C2 <yvals.h> yvals.h 450
_CK <ctype.h> ctype.h 37

CPS <yva.ls.h> yvals.h 450
_CSIGN <yva.ls.h> yvals.b 450
_CTYPE <ctype.h> ctype.h 37

Cmpfun <stdlib.b> stdlib.h 354
_costate "xstate.h" xstate.c 107
_Ctype <ctype.h> xctype.c 42

- D DO <yvals.h> yvals.h 450
_DBI AS <yvals.b> yvals.h 450
_DI <ctype.h> ctype.h 37

DLONG <yvals.h> yvals.h 450
_DOFF <yvals.h> yvals. h 450
_Daysto <time. h> xttotm.c 428
_Dbl <float.h> xfloat.c 68
Dconst <math. h> math.h 138

_Def loc 0 xlocale.b 11 xdefloc. c 105
_Dint "xmath.h" xdint.c 142

460 AppendixB
Name Header File Page

_Door& "xmath.h,. xdnODD.C 147
_Decale 0 xmath .h " xdacale .c 146
_Dtento "xmath .h " xdtento.c 174
_ Dtest ••xmath.h" xdteat.c 140
_Dunscale "xmath. b " xdunscal.c 144
_Dvals <tloat.h> noat. h 66
_EDOM <yvals.h> yvals. h 450
_EFPOS <yvals.h> yvals. h 450
_BRANG& <yvale .h> yvale . h 450

BIUUQX <yvale.h> yvab . h 450
_ ER.RHO <errno.h> errno.h 53
_Exp "xmath.h" xexp .c 160
_FBIAS <yvale .h> yvals . h 450
_FU>AT <tloat.h> float . h 66

FNAMAX <yvale .h> yvale.h 450
_POFF <yvale .h> yvale.h 450
_FOPMAX <yvale .h> yvale.h 450
_FRNO <yvale.h> yvale . h 450
_Fqpos <etdlio.h> xrqpoe.c 285
_Files <atdio.h> xtilee .c 279
_Flt <tloat .h> xrloat .c 68
_Fmtval xtmtval .c 92
_P~ •xstdio.h " Kropen .c 2B4
_Foprep "xstdio. h" xtoprep.c 281
_Freeloc "xloe&le .h " xrreeloc .c 118
_Frprep "xstdio.h" Kr:<prep.c 295
_Fapos <stclio.h> xrapoa .c 286

_G
_Fvprep "xstdio.h " xtwprep.c 297
_Genld ''xetdio.h" xgenld. c 316
_Centime "xtime .b" xgenti.ma.c 440
_Getdst "xtime . b" xgetdat. c 432
_Gettld "xstdio.h" xgettld.c 324
_Gettloat "xstdio .h" •gettloa.c 328
_Getint "xetdio.h" xgetint .c 326
_Getloc .. :xl.oca1e. h " xqatloc. c 104
-~ "xalloc.h" xqe~.c 375
_Getti.ma "xtime.h" xgettiJM.c 434
_Get zone "xtime.h " xgetEOne.c 435
_Buqeval <lllatb.h> xva.l.uee. c 139
_II.ONG <yvaJ.e .h> yvals . h 450

IOFBI' - <etd.io .h> etdio. h 276
IOLBF <•td.io ,!!> stdio.h 276

_IONBF <stclio.h> stdio.h 276
_Int "xmath.h" xvaluee.c 139
_Iedst •

1xti.me .h " x.isdat .c 431
_I.BIAS <yval.s.h> yvals . h 450
_LIMITS <J. im:it • . h> limits . b 76
_LO <etype .h> etype.h 37

Names 461
Name Header File Page

_LOCALE <locale . h> locale .h 96
_LOFF <yvale.h> yvale.h 450
_Ldbl <f'l oat.h> xfloat . c 68

Ldtob "xst.dio.b .. xlcltob.c 312
_Ldunecal e "xmatb.h" xlduneca.c 172
_ Litob "xetdio.h" xlitob . c 310

Loctab "xlocale .b'• xloctab. c 117
_Locterm "xlocale.h" xlocterm.c 122

Locvar "xlocale.h" xloct erm. c 122
_Loq <math.h> xloq.c 166

-M _MATH <math. h> math.h 138
_MBMAX <yvale.h> yvale.h 450
_MEMBND <yval e.h> yvala.h 450
_Makeloc "xloca.l.e.h .. xmalteloc.c 120
_Mbcurmax <etcllib.h> xetate.c 107

Mb8&V8 <etclli b . h> etdlib.h 354
_Mbatat e '

1xstate.h0 xatate.c 107
Mbtowc <Btdlib.h> Xlabtowc.c 367

_Mbxl en <etdlib. h> mble n.c 366
_Mbxtowc <Btcllib.h> mbtowc.c 366
_NATS <Btdlib.h> Btdlib.h 354
_NCAT <locale.h> locale .h 96

NERR <errno.b> errno. h 53
_NSETJMP <yvale.h> yvale.h 450
_NSIG <eiqnal.h> eignal.h 200
_NULL <yvale.h> yvale.h 450

Nan "xmath.h" xvaluee . c 139
_PU <ctype.h> ctype.h 37
_Poly "xmath.b" xpoly.c 151
Printr "xetdio.h" xprintr. c 304

_ptr dirrt <yvale . h> yvala . h 450
_Putrld •txetdio.b" xputrld.c 308
_Randaeed <•tcllib. h> rand. c 359
_Readloc "xlocale.h" xreadloc . c 115
_Rtepe "xmath.h" xvaluee.c 139 _s SETJMP <eetjmp.h> eetjmp.h 187
_SIGABRT <yvale.h> yvala . h 450
_SIGMAX <yvale.h> yvale.h 450

SIGNAL <eiqnal.h> Bignal.h 200
_SIZET <etddef'.h> etddef .h 223
_SIZET <Btdio.h> Btdio.h 276
_SIZET <•tcllib.h> etdlib.h 354
_SI ZET <etring. h> etring. h 398
_SIZET <time. h> tima.h 424

SP <ctype.h> ctype.h 37
STDAAG <etdarg.h> etdarg.h 211

_STDDEli' <etddef'.h> etdder .h 223
STDIO <etdio.h> etdio. h 276

462 AppendlxB
Nome Header FUe Page

STDLIB <•tdlib.h> etdlib.h 354
_STR <aeeert.h> ·•-rt.h 20
_STRDIG <atrinq. h> etring. h 398
_sea~ "xetdio.h" xeca~.c 320
_setl oc "xlocale.h" xeetl oc.c 106
_Sig:fun <aignal. . h> eignal..h 200
Sin <math.h> xein.c 150

_Sizet <yval.e .h> yval.e.h 450
_Skip "x.locale.h .. xgetl.oc.c 104
_Stod <atdlib.h> xatod.c 364
_Stoul. <atdlib .h> xetoul.c 360
_Strerror <etr.ing.h> strerror.c 406
_str ftime "xtilne. h" xetrfti m. c 439
_Strxfrm "xatrxfx:m. b" x•trxfrm. c 409 _T _ TBIAS <yvale .h> yval.e.h 450
_TIME <ti.me. h> time. h 424
_TIWW< <yvale.h> yvala.h 450
_Times "xtinfo.h" aectime.c 437
_Tinto "xtinfo.h " xtinfo.h 100
_Tolower <ctype .h> xtol.ower .c 40
_ Toupper <ctype .h> xtoupper .c 41
_Ttotm <ti.me. h> xttotm.c 428
_Tzoff <ti.me. h> l.ocal.tim. c 433
_UP <ctype.h> ctype.h 37
_VAL <••••rt .h> ••••rt.h 20
_lfCBART <•tdd•f.h> etddef.h 223
_lfCBARr <etdlib.h> etdl.ib.h 354
_ If chart <yvale .h> yval.a . h 450
_lfcetat• "xatate. h" xetate . c 107
_lfctomb <•tdl.ib.h> xvctomb.c 370
_Wcxtomb <atdlib.h> wctomb.c 369
_XA <ctype.h> ctype. h 37
_XD <ctype .h> ctype.h 37
_XS <ctype.h> ctype.h 37
_Xbig "xmath.h" xvaluee .c 139
_YVN.S <yval.11.b> yvale.b 450

Appendix C: Terms

This appendix lists tenns that have special meaning within this book.
Check here if you suspect that a term means more (or less) than you might
ordinarily think.

A access - to obtain the value stored in a data object or to store a new value
in the data object

address constant expression - an expression that you can use to initializ.e
a static data object of some pointer type
allocated storage- data objects whose storage is obtained during program
execution

alphabetic character- a lowercase or uppercase letter

alphanumeric character - an alphabetic character or a digit

ANSI - American National Standards Institute, the organization author­
ized to formulate computer-related standards in the U.S.
argument - an expression that provides the initial value for one of the
parameters in a function call

argument-level declaration - a declaration for one of the arguments in a
function definition or a function prototype
arithmetic type - an integer or floating-point type

array type - a data-object type consisting of a prespecified repetition of a
data-object element

ASCII - American Standard Code for Information Interchange, the U.S.
version of the standard character set ISO 646
assembly language - a programming language tailored to a specific
computer architecture
assertion - a predicate that must be true for a program to be correct

assign - to store a value in a data object

assigning operator- an operator that stores a value in a data object, such
as =, +=, or ++

assignment-compatible types - two data-object types that are valid on
either side of an assigning operator

464

B

c

AppendixC

asynchronous signal-an important event not correlated with the execu­
tion of the program, such as someone striking an attention key
atomic-an indivisible operation that synchronizes two threads of control
base - the value used to weigh the digits in a positional number repre­
sentation, such as base 8 (octal) or base 10 (decimal)
basic C character set - the minimum set of character codes needed to
represent a C source file
beginning-of-file - the file position just before the first byte in a file
benign redefinition - a macro definition that defines an existing macro
to have the same sequence of tokens spelled the same way and with
white-space between the same pairs of tokens
bias - the value added to an exponent to produce the characteristic in a
floating-point representation
binary - as opposed to text, containing arbitrary patterns of bits
binary stream - a stream that can contain arbitrary binary data
block - a group of statements in a C function enclosed in braces
block-level declaration - a declaration within a block
buffer - an array data object used as a convenient work area or for
temporary storage, often between a program and a file
C Standard - a description of the C programming language adopted by
ANSI and ISO to minimize variations in C implementations and programs
call tree - a hierarchical diagram showing how a group of functions call
each other within a program
calling environment - the information in a stack frame that must be
preserved on behalf of the calling function
category - part of a locale that deals with a specific group of services, such
as character classification or time and date formatting
character - a data-object type in C that occupies one byte of storage and
that can represent all the codes in the basic C character set
character class - a set of related character codes, such as digits, uppercase
letters, or punctuation
character constant - a token in a C program, such as ·a•, whose integer
value is the code for a character in the execution character set
characteristic - the part of a floating-point representation that holds a
biased exponent

close - to terminate a connection between a stream and a file
code - colloquial term for programming language text or the executable
binary produced from that te:xt
collate - to determine the ordering of two strings by some rule
compiler-a translator that produces an executable file

Terms

D

465

computer architecture - a class of computers that can all execute a
common executable-file format

constant type - the type of a data object that you cannot store into (it is
read-only) once it is initialized because it has the const type qualifier

control character - a character that performs a spacing or other control
function instead of displaying as a graphic on a display device
conversion specification - a sequence of characters within a print or scan
format that begins with a per cent and specifies the next conversion or
transmission to perform

conversion specifier - the last character in a conversion specification,
which determines the type of: conversion or transmission to perform

converting type - altering the representation of a value of one type (as
necessary) to make it a valid representation of a value of another type
cross compiler - a translator executing on one computer architecture that
produces an executable file for use on a different computer architecture

currency symbol - the sequence of characters used to display to identify
a monetary amount, such as $

data object- a group of contiguous bytes in memory that can store a value
of a given type
data object type - a type that describes a data object, as opposed to a
function type
Daylight Savings Time - a period in the calendar year during which the
local time zone is moved East one hour relative to UTC

decimal - the positional representation for numbers with base ten

decimal point - the character that separates the integer part from the
fraction part in a decimal number

declaration - a sequence of tokens in a C program that gives meaning to
a name, allocates storage for a data object, defines the initial content of a
data object or the behavior of a function, and/ or specifies a type
default- the choice made when a choice is required and none is specified

definition - a declaration that allocates storage for a data object, a decla­
ration that specifies the behavior of a function, a declaration that gives a
name to a type, or the define directive for a macro
device handler - that portion of an operating system that controls the
operation of a specific 1/0 device

diagnostic - a message emitted by a C translator reporting an invalid
program
digit - one of ten characters used to represent numbers, such as 3

domain error-calling a math function with an argument value (or values)
for which the function is not defined
dot - the character . , often used as a decimal point

466

E

F

AppendixC
dynamic storage - data objects whose storage is allocated on entry to a
block (or function) and freed when the activation of that block terminates,
such as function parameters, auto declarations, and r9<Jiater declarations
EBCDIC - Extended Binary-Coded Decimal Interchange Code, .a charac­
ter encoding used extensively by IBM, particularly on the System/370
element-one of the repeated components of an array data object
end-of-file - the file position just after the last byte in a file
end-of-file indicator - a member of a FILE data object that records
whether end-of-file was encountered during an earlier read
environment- those services provided by an operating system outside a
C program but visible to it, such as files and environment variables
environment variable - a name that can be associated with a strmg by the
environment
error indicator - a member of a FILE data object that records whether an
error occured during an earlier operation
exception - a condition that arises during program execution that requires
special handling, such as floating-point underflow
executable file - a file that the operating system can execute without
further translation or interpretation
execution character set - the set of characters that a program uses when
it executes
exponent-the component of a floating-point value that specifies to what
power the base is raised before it is multiplied by the fraction
expression -a contiguous sequence of tokens in a C program that specifies
how to compute a value and generate side effects
field - a contiguous group of characters that matches a pattern specified
by a scan format conversion specification
file - a contiguous sequence of bytes that has a namename;file, main­
tained by the environment
file descriptor - a non-negative integer that designates a file while it is
opened by a C program
file-level - that portion of a C source file outside any declaration
file-position indicator - an encoded value associated with an open file
that specifies the next byte within the file to be read or written
file-positioning error - a request to alter the file-position indicator that
cannot be honored
file-positioning functionsfunction;file-positioning - those functions that
read or alter the file-position indicator
file name - the name used to designate a fi.le by several functions in the
Standard C library

Terms

G

H

467

finite-state machine - a computation whose actions are determined by a
state value and a set of predicates, such as whether an input value matches
certain specified values

floating-point type - any of the types float, double, or long double

format - a null-terminated string that determines the actions of a print,
scan, or time function

formatted input - reading text and converting it to encoded values under
control of a format, as with a scan function

formatted output - converting encoded values and writing them as text
under rontrol of a format, as with a print function

fraction - the component of a floating-point value that specifies a value
in the range 11 /base, 1) to a fixed precision

free - to release storage allocated for a data object during earlier program
execution

function - a rontiguous group of executable statements that accepts
argument values corresponding to its parameters when called from within
an expression and (possibly) returns a value for use in that expression

function prototype - a function declaration that includes enforcable
declarations for the parameters to the function
GMf - Greenwich Mean Tune, the older name for UTC

GNU C - a portable C compiler developed by an organization based in
Massachusetts that makes its software widely avaialble

graphic - the visible representation of a printing character
handle - an a lternate term for a file descriptor

header file - a text file that is made part of a translation unit 'by being
named in an #include directive in a C source file

heap - that portion of memory that an executable program uses to store
allocated data objects

hexadecimal - the positional representation for numbers with base 16

hole - a contiguous group of bits or bytes within a data object or argument
list that does not participate in determining its value
identifier - a name

IEEE - Institute of Electrical and Electronic Engineers, one of the ANSI­
authorized bodies that develops romputer-related standards
implementation - a working version of a specification, such as a program­
ming language

include file - a text file made part of a translation unit by being named in
an #include directive in a C source file or another include file

infinity- a floating-point code that represents a value too large for finite
representation

integer-a whole number, possibly negative or zero

468

K

L

M

AppendixC

integer constant expression - an expression that the translator can reduce
to a known integer value at translation time

integer type - a data object type that can represent some contiguous range
of integers including zero

Intel 80X86- a popular family of microprocessors used in the IBM PC and
compatibles

Intel 80X87 - a math coprocessor family that supports IEEE 754 floating­
point arithmetic for the Intel 80X86 family

interface - a collection of functions and conventions that makes a service,
such as input/ output, available to a C program

international currency symbol - a three-letter code followed by either a
space or a dot that specifies one of the world's currencies, as defined by
1504217:1987

interpreter-a translator that maintains control during program execution

invalid - not conforming to the C Standard

110- input and output

ISO - International Standards Organization, the organization charged
with developing international conputer-related standards
knock out - to prevent the linker from incorporating a library object
module by providing a definition for a name with external linkage
letter - one of the 52 characters, a-z and A-z, in the English alphabet, plus
possibly additional characters in other than the "C" locale

librarian - a program that maintains libraries of object modules

library - a collection of object modules that a linker can selectively
incorporate into an executable program to provide definitions for names
with external linkage

linker - a program that combines object modules to form an executable
file

locale - a collection of infomation that modifies the behavior of the
Standard C library to suit the conventions of a given culture or profession

locale-specific - subject to variation among locales

lowercase letter - one of the 26 characters, a-z, in the English alphabet,
plus possibly additional characters in other than the "C" locale

lvalue - an expression that designates a data object
machine - colloquial term for a distinct computer architecture

macro - a name defined by the ldefina directive that specifies replace­
ment text for subsequent invocations of the macro in the translation unit

macro definition - the replacement text associated with a macro name

macro guard - a macro name used to ensure that a text sequence is
incorporated in a translation unit at most once

Terms 469

macro, masking-a macro defintion that masks a declaration of the same
name earlier in the translation unit

member - a data-object declaration that specifies one of the components
of a structure or union declaration

mode - a qualifier that specifies two or more alternate behaviors, such as
text versus binary mode for an open file

modifiable lvalue - an expression that designates a data object that you
can store a new value into (having neither a constant nor an array type)

monetary - concerning currency, such as a monetary value

Motorola MC680XO - a popular family of microprocessors used in the
Apple Macintosh and some Sun workstations

Motorola MC68881 - a math coprocessor family that supports IEEE 754
floating-point arithmetic for the Motorola MC680XO family

MS-DOS - a popular operating system by Microsoft Corporation for
PC-compatible computers

multibyte character- a character from a large character set that is encoded
as sequences of one or more ·Conventional (one-byte) characters

multithread - supporting more than one program execution in a given
time interval, possibly allowing interactions between the separate program
executions

N name - a token from a large set used to designate a distinct entity - such
as a function, macro, or member - in a translation unit

0

name space - a set of names distinguishable by context within a C
program

native - the locale named by the empty string ""

not-a-number - a floating-point code that designates no numeric value,
such as an undefined result
null character - the character with code value zero

null pointer- the value of a pointer type that compares equal to zero, and
hence designates no function or data object

null-pointer constant - an integer constant expression, such as o, that can
serve in some context as a null pointer
object module - the translated form of a translation unit, suitable for
linking as part of an executable program
octal - the positional representation for numbers with base eight

offset - the relative address of a member or element within a containing
data object, often expressed in bytes

one's-complement arithmetic - a positional binary encoding where the
negative of a nwnber is its bitwise complement

open - to form an association between a file and a stream
operand - a subexpression in a C expression acted on by an operator

470

p

AppendixC
operating system-a program that runs other programs, usually masking
many variations among romputers that share a rommon architecture
operator - a token in a C expression that yields a value of a given type,
and possibly produces side effects, given one to three subexpressions as
operands
overflow - computation of a value too small to be represented as the
required integer or floating-point type
parameter-a data-object dekared in a function that stores the value of its
rorresponding argument on a function call
parse - to determine the syntactic structure of a sequence of tokens
PC- an IBM romputer architecture developed in the early 1980s that has
become the most widely used for personal computers
PDP-11 - a DEC romputer architecture very popular throughout the
1970s, on which C and UNIX were first developed
period - alternate name for the dot character
PIP - Peripheral Interchange Program, used in older operating systems
to ronvert among file and device formats
pointer type - a data-object type that represents addresses of a function
or data-object type
portability - cheaper to move to another environment than to rewrite for
that environment
POSIX - the IEEE 1003 Standard operating-system interface based on the
system services provided by UNIX to application programs
precision - the number of distinct values that can be represented, often
expressed in bits or decimal digits (which indicates the logarithm of the
number of distinct values)
predicate - an expression that yields a binary result, usually nonzero for
true and zero for false
preprocessor - that portion of a C translator that processes text-oriented
directives and macro invocations
primitive - an interface function that performs an essential service, often
one that cannot be performed another way
print function - one of the functions that ronvert encoded values to text
under control of a format string
printable - giving a meaningful result, such as displaying a graphic or
controlling the print position, when written to a display device
program - a collection of functions and data objects that a computer can
execute to carry out the semantic intent of a rorresponding set of C source
files

program startup - the period in the execution of a program just before
main is called

Terms

R

s

471

program termination - the period in the execution of a program just after
mai.n returns or exit is called

push back - to return a character to an input stream so that it is the next
character read
punctuation - printable characters other than letters and digits, used to
separate and delimit character sequences
range error - calling a math function with an argument value (or values)
for which the result is too large or too small to represent as a finite value

read function - one of the functions that obtain input from a stream

read-only - containing a stored value that cannot be altered

recursion- calling a function while an invocation of that function is active

representation - the number of bits used to represent a data-object type,
along with the meanings ascribed to various bit patterns

reserved name - a name available for use only for a restricted purpose

round - to obtain a representation with reduced precision by some rule,
such as round to nearest

rvalue - an expression that designates a value of some type (without
necessarily designating a data object)
scan function - one of the functions that convert text to encoded values
under control of a format string

scan set- a conversion specifier for a scan function that specifies a set of
matching characters

seek - to alter the file-position indicator for a stream to designate a given
character position within a file

semantics - the meaning ascribed to valid sequences of tokens in a
language

sequence point - a place in a program where the values stored in data
objects are in a known state

side effect - a change in the value stored in a data object or in the state of
a file when an expression executes

signal - an event that occurs during program execution that demands
immediate attention

signal handler - a function that executes when a signal occurs

signed integer - an integer type that can represent negative as well as
positive values

signed-magnitude arithmetic - a positional binary encoding where the
negative of a number has its sign bit complemented

significance loss - a reduction in meaningful precision of a floating-point
addition or subtraction caused by cancellation of high-order bits

source file - a text file that a C translator can translate to an object module

472

T

AppendixC

space - a character that occupies one print position but displays no
graphic
stack - a list with a last in/first out protocol
stack frame - the data allocated on the call stack when a function is called
Standard C - that dialect of the C programming language defined by the
ANSI/ISO C Standard
Standard C library- the set of functions, data objects, and headers defined
by the C Standard, usable by any hosted C program
standard header - one of fifteen headers defined by the C Standard
state table - an array that defines the actions of a finite-state machine
statement- an executable component of a function that specifies an action,
such as evaluating an expression or altering flow of control
static storage -data objects whose lifetime extends from program startup
to program termination, initialized prior to program startup
store - to replace the value stored in a data object with a new value
stream - a data object that maintains the state of a sequence of reads,
writes, and file-positioning requests for an open file
string - a sequence of characters stored in an array whose last (highest
subscripted) stored value is a null character

string literal - a token in a C source file delimited by double quotes, such
as "abc", that designates a read-only array of cluir initialized to the specified
character sequence with a null character added at the end
structure type - a data-object type consisting of a sequence of data-object
members of different types
stub - a degenerate form of a function used as a place-holder for testing
or before the function is implemented properly
Sun UNIX- a version of the UNIX operating system provided for the Sun
workstation

synchronous signal - an important event arising out of the execution of
the program, such as a zero divide

synonym - an altemate way of designating a type that is otherwise
equivalent to the original type

syntax - the grammatical constraints imposed on valid sequences of
tokens in a language
System/370 - an IBM computer architecture developed in the early 1960s
that remains widely used, particularly for large to very large applications
system call - alternate term for a system service
system service -a request to an operating system to perform a service,
such as writing to a device or obtaining the current time
text - a sequence of characters nominally suitable for writing to a display
device (to be read by people)

Terms

u

473

text stream - a stream that contains text

thousands separator - the character used to separate groups of digits to
the left of the decimal point (not necessarily groups of three)

thread of control - the execution of a program by a single agent

time zone - a region on Earth where local time is offset from UTC by a
specified interval
token - a sequence of characters treated as a single element in a higher­
level grammar
translation table - an array that specifies a mapping from one encoding
to another
translation unit - a C source file plus all the files included by #i.ncluda

directives, excluding any source lines skipped by conditional directives

translator - a program that converts a translation unit to executable form

truncate - to round toward zero
Turbo C ++ - an implementation by Borland International of ANSI C (and
the newer languageC++) for PC-compatible computers

two's-complement arithmetic - a positional binary encoding where the
negative of a number is its bitwise complement plus one
type - the attribute of a value that determines its representation and what
operations can be performed on it, or the attribute of a function that
determines what arguments it expects and what it returns

type definition - a declaration that gives a name to a type
underflow - computation of a value too small to be represented as the
required floating-point type
union type - a data-object type consisting of an alternation of data-object
members, only one of which can be represented at a time

UNIX - a machine-independent operating system developed in the early
1970s at AT&T Bell Laboratories, the first host for the C language

unsafe macromacro;unsafe - a macro that evaluates one or more of its
arguments other than exactly once, hence a macro that does surprising
things with arguments that have side effects

unsigned integer-an integer type that can represent values between zero
and some positive upper limit

UL TRIX - the version of UNIX packaged and supported by DEC for the
VAX computer architecture

uppercase letter - one of the 26 characters, A-z, in the English a lphabet,
plus possibly additional characters in other than the "C" locale
UTC - Universal lime Coordinated, the modem term form GMT

V variable - older term for a data object
variable argument list - a list of arguments to a function that accepts
additional arguments beyond its last declared parameter

474 Appendix C

VAX - a DEC computer architecture developed as a successor to the DEC
PDP-11, on which C and UNIX are still widely used
void type - a type that has no representation and no values
volatile type - a qualified type for data objects that may be accessed by
more than one thread of control

W WG14- the ISO-authorized committee responsible for C standardization
white-space - a sequence of one or more space characters, possibly mixed
with other characters such as horizontal tab

x
z

wide character - a code value of type wchar_t used to represent a very
large character set

width - part of a conversion specification in a format that partially
controls the number of characters to be transmitted
writable - can have its value altered, opposite of read-only
write function - one of the functions that deliver output to a stream
X3Jll - the ANSI-authorized committee that developed the original C
Standard
zero fixup - replacing a floating-point underflow with an exact zero

Index

A
abort.c 378-379,455
abort 18,21,24, 194-198,201,234,333,339,

346,354,378-379,381,383,452,455
aba. c 353, 355, 455
ab• 6, 333, 341, 346, 349, 353-355, 382, 386,

455
access 463
acoa.c 152, 155,455
acoa 130, 135, 138, 151-152, 155, 178,455
Ada 381
address constant expression 217, 463
_JIDNBND 211-212,448-451,459
_Aldata 371-372,374-376,459
alert 31, 33
allocated

See storage
alphabetic

See character
alphanumeric

See character
AM/PM 110-111,419,421
ANSI 3, 463

See C Standard
append

See file
arbitrary

See base
argument 463

array 5, 186
function 220, 467, 473
jmp.J>uf 186
null pointer 216
reduction 149, 151, 161, 164
va_liat 210
variable list 5, 12, 205-212, 214-215, 220,

222,258-259,264-265,267,296,307,
315,321,420,473

argument-level
See declaration

arithmetic
complex 179
See floating-point
one's-complement 77, 448, 469
pointer 217-219, 222, 224, 362
signed-magnitude 77, 448, 471
subscript 219
translation-time 76-78
two's-complement 35, 77, 218, 309, 343,

346, 448, 473
See type
unsigned-integer 219

array
See argument
See type

ASCII
See character set

character aat 422
aectime.c 101,426,430,437,455,462
aactime 418,420,422-424,436-437, 442,455
aain.c 152,155,455
aain 130, 135, 138, 152, 154-155, 178,455
_Aain 138, 151,154-155,459
assembly language 2-3, 47-48, 187, 191, 201,

230,283,329,386,414,446-447,463
<aeaert.h> 4,9, 11, 14, 17-24,455,459,462
aaaert 11, 17-18, 20-24, 44-45, 54, 70-71,

125, 176-180, 190-191,204,213,224,
330-332,382-383,412-413,442,455

..,Aa•ert 20-22,459
assertion 17-19, 22, 463
assign 463

See operator
assignment suppression 241-242, 266, 315
assignment-compatible

See type
asterisk 238-239, 241, 260, 266
asynchronous

See signal
AT&T Bell Laboratories iii-iv, 73, 81, 473
atan.c 152, 156,455
atan2.c 152, 157,455
atan2 131, 135, 138, 152, 155-157, 178, 455

476

atan 130, 135, 138, 152, 155-156, 178,455
_Atan 152, 156-158, 175,459
...,Atcount 378
atexit.c 378-379,455
atexit 333, 339,344,346-347,354,378-379,

381-383, 455
...,Atfuns 378
atot. c 362-363, 455
atof 5, 'i51, 333-334, 347, 354-355, 362-363,

383, 455
atoi.c 361,363,455
atoi 5, 333-334, 347, 354-355, 361, 363, 383,

455
atol.c 361, 455
atol 333, 335, 347, 354-355, 361, 363, 383,

455
atomic 46, 194-195, 198, 464
attention key 193, 195, 197-198, 464
...,AUPBND 211-212, 448-451, 459
auto 46, 183-184,466

B
backslash 111, 115
backspace 31,33,46
base 381,464

arbitrary 136,267,336,359
binary 129, 164
decimal 113, 119, 129, 136, 164, 238-239,

241, 260-262, 267-268, 311, 419, 438,
446, 464-465

e 136, 164
hexadecimal 113, 119, 129, 239, 241, 262,

268, 310, 467
octal 113, 119, 239, 241, 262, 267, 464, 469

basicC
See character set

_BB 37-38, 42, 122, 459
beginning-of-file

See file
benign

redefinition 12, 19, 464
undefinition 20

Berkeley
See UNIX

bias
See floating-point

binary
See base
See file
See stream

binary search 358
block 255, 464

See control
block-level

See declaration
_Bnd 211-212,459
Borland

See Turbo C++
boundary

See storage
bracket 'lf.'fi, 242, 268
Brender, Ronald F. 381
Brodie, Jim xiii, 15
broken-down

See time
b•earcb.c 358, 455

Index

baearcb 333, 340, 347-348, 350, 358, 382-383,
455

buffer
file 231,474

BUPSIZ 233-234,238,269,273,276,288,295,
297, 325, 331-332, 453

c
CStandard

ANSI ix, xi, xiii, 3, 15, 81-82, 228, 451,
473-474

ISO iii-iv, ix, xi, xiii, 6, 15, 81-82, 474
C Users Group xii
C Users Journal iv, xiii, 223
_c2 76,448,450-451,459
locale•c• 337, 421, 423, 438
calendar

See time
call tree 94, 464
calling

environment 201
calloc . c 373,375,455
calloc 333, 338, 344, 348-349, 351, 354, 373,

375,382,455
carriage

See control

Index

carriage return 26, 29, 31, 33, 46, 226, 228,
286,329,452

category
See locale

ceil.c 141,455
Ceil 134-135, 138, 141, 143, 176,455
CBLL_OPP 371-372
_Cell 371
CHAl\...BXT 74,76,78,367,370,409,453
CHAR_MAX 74-76,78,85-86,90,93,97, 110,

113, 122, 125, 453
~IN 74-76,78,453
character 464

alphabetic 32, 113, 253, 463
alphanumeric 28, 31-33, 463
class 25-27, 30-32, 34-36, 43, 108, 112-113,

116, 123, 464
constant 36, 108, 112-113, 217, 219, 464
control 28, 30-32, 108, 113, 465
conver5ion 306
See graphic
motion-control 113
multibyte 74, 77, 112, 238, 240-241, 251,

260, 266, 303, 318, 333-334, 341-343,
345-346,349,366,368,384,419,421,
469

padding 230, 234, 237-239, 260-261, 269,
306,401

printing 28-29, 31, 33, 42, 46, 229, 234,
240, 467,470

punctuation 31-33, 35, 113, 411, 464, 471
push-back 248, 254-255, 264, 273-274,

288,315,471
See type
wide 112, 219-220, 303, 318, 333, 342-343,

345-346,349-350,366,368,384,408,474
character set

ASCII 25-26, 30-31, 34-35, 43, 112, 445,
463

basic C 30, 32-33, 217, 229, 303, 306, 345,

464
EBCDIC 25, 34, 36, 466
execution 26, 32, 34, 43, 464, 466
ISO 646 35, 43, 463
Kanji ix, 260, 345, 384, 421
large ix, 344-345, 381, 421, 469

character set (continued)

multibyte x, 114, 334, 345, 384
wide x, 217, 219

characteristic
See floating-point

Cheney, E.W. 177
circumflex 242
class

See character
clearerr.c 287,455

477

clearerr 250,270,272,276,287,332,455
Clinger, William D. 327
_Clocale 94,99, 101, 114, 116-118
clock.c 425-426,447,455
clock_t 416,420,422,424-425,455
c lock 350,416,420,422-426,442-443,455
CLOCXS_ PBll._SBC 416,422-424,448,453
CLOCXS_ PBll._SBCOND 425
close

See file
c l ose 231,447
_CJllpfun 353-354,356-357,459

_CN 37-39,42, 122,459
code 464

inline 6, 9, 15, 24, 52, 119, 179, 346, 348,
353,386,388,396,399,403,414,450

parametric 53-54, 65, 77-78, 137, 139,
187-188, 199,211,222,445-446

size ix, 20, 35-36, 101, 179, 183, 232, 256,
344-345

Cody and Waite iv, 129, 149, 151-152, 156,
161, 164, 177

Cody, William J. 177
collation 42, 99, 108, 112, 114, 390, 394-397,

407,411,413,446,464
colon 98, 110, 251
comma 83, 87
comment 10
compatible

See type
compiler 1-2, 11, 464

cross 76,452,465
complex

See arithmetic

478

computer architecture 1-3, 57-58, 73-74,
137, 141, 149,257,309-311,323,348,
353,371,399,452,463,465,468,470

concatenation
See string

constant
character 303
See floating-point
See integer
See null pointer
See type
wide-character 303

control
block 230-232
carriage 226
See character
flow of 18, 181-184, 472
See multithread
thread of 36, 46, 193, 284, 464, 469,

473-474
conversion

specification 238, 240-242, 260, 265-266,
268,307,311,314,321,465-466,474

specifier 239-242, 260-262, 266-267, 306,
310,314,318,321-323,419-421,465,471

converting
See type

copyleft xii
copyright ii, xii
coe.c 151-152, 455
C08 131, 135-136, 138, 149, 151-152, 178,455
_Coeove 407
coeb.c 161-162,455
coeb 131, 136, 138, 161-162, 164, 180,455
_coetate 100, 102, 106-107, 117, 124,409,

459
_CPS 424-425,448,450-451,459
Cray, Seymour 59
create

See file
creation

See string
cross compiler

See compiler
_CSIGN 76,448,450-451,459
ctime.c 436,438,455

Index

ctime 418,420,423-424,436-438,442,455
<Ctype.b> 4, 25-46, 87-89, 98-99, 102, 106,

108, 112-113, 116, 119, 122, 265, 269,
304,320,324,328,360,362,364,432,
435,445-446,456-457,459-462

ctype 123
_CTYPB 37-39, 41-42,98, 102, 106, 117, 124,

459
currency 468-469
currency symbol 84-87, 89, 108-110, 465

international 84-85, 87, 89-90, 109-110,
114

ISO 4217 85, 89, 123, 468

D
_PO 67-68, 139-142, 144, 146-147, 172-173,

175,308,448-451,459
Dahl, O.J. 22
data-object

See type
Daylight Savings

See time
_o.yeto 427-429,431,436-437,443,459
_l)BIAS 67-69, 139, 142, 144, 173-174,

448-451, 459
DBL_DIG 60,62,66,70-71,453
DBL_ BPSILON 61-62,64-66, 70, 139, 151, 176,

178, 180, 331, 453
DBL_MANT_DIG 6Q-61,66,70,453
DBL_llAX_lO_ BXP 61-62,66,70,453
DBL_KAX_BXP 60,62,66,70-71,453
DBL_J(AX 61-62,65-66,70, 135, 178,453
DBL_MIN_lO_BXP 60,62,66,70,453
081.J(IN_l)IG 60
DBL_MIN_BXP 62, 66, 70-71, 453
DBL_)UN 61-63,65-66,70,453
_l)bl 65-66,68,459
_oconet 137-139, 175,459
M227
debugging 17, 19,22,24, 182, 191,210,377
DEC

See PDP-11
See ULTRIX
See VAX

Index

decimal
See base
point 4-5,83-91, 108, 110, 114, 126,

238-240,261-262,266,314,335,351,
465, 473

declaration 465
argument-level 463
block-level 464
file-level 4-5, 7, 12, 466
See function

default 465
#define 468
definition 465

See macro
See type

_.PeflOC 94, 101-102, 105, 124,459
device

See handler
JlI 37-38, 42, 122, 459
diagnostic 1i-18, 21, 27, 465
difftime.c 426,455
difftl.me 416-417,420,423-424,426, 442,455
digit 7, 25, 28, 31-33, 43, 85-87, 89-90, 113,

239-240,261,268,311,314,335-336,
359, 363, 463-465

hexadecimal 29, 31, 33, 113, 268
Dijkstra, E.W. 22
_Dint 141-143, 149-150, 153, 167-170, 175,

459
div. c 353,355,455
div_t 334,341, 346,348,353-354,455
div 333-334, 341, 346, 348-349, 353-355, 383,

386,452,455
divide

See zero
_DLONO 68, 172,308,312,448-451,459
_pnorm 144-147, 173, 175,460
~DOPP 67-69, 139-140, 142, 144, 146-147, 173,

175, 448-451, 459
dollar sign 112-114, 119
domain

DSIGN 155, 310
DST

See time
Dtento 170, 174-175,363,365,460

- Dteet 140, 144-145, 148, 150, 153-154,
- 156-157, 162-163. 165, 175,460

479

_Dunecale 143-145, 148, 157, 159, 164, 166,
168,170-171, 174-175,460

_Dvale 65-66, 68-69, 460
dynamic

See storage

E
EBCDIC

See character set
BOOM 49-55, 130, 140, 142-144, 148, 150,

153-154, 156-157, 159, 162-163,
165-166, 168-169,332,406,412,448,453

EDOM 53-54, 448, 450-451, 460
clficiency 2, 20, 26, 74-75
BPPOS 49,53,285-286,406,448,453
_BPPOS 53-54,448,45Q-451,460
electronic mail 71, 177
elefunt 129, 171, 177
element 466
empty

See file
See line

end-<Jf-file
See file
See indicator

enquire 64,71,80
environment 466

calling 182, 184-188, 464
freestanding 215-216, 452
hosted 215, 452
list 340
variable 82, 101, 108, 340, 349, 378, 434,

466
_Envp 378,447

See error
Dongarra, Jack J. 71
dot 9, 83, 88, 238, 253, 260-261, 335, 465, 470
_Decale 145-146, 148, 159-161, 169-170,

BOP 27-28,30, 34,4Q-45,112, 119,219,233,
244-248,264,269, 276,280,282,
285-286,288,290-291,296,298,300,
315,319,321-322,332,453

equal sign 378
174-175,460

480

ERANGE 49-51,53-55, 130, 135, 140, 144, 159,
162-163, 166, 168-169, 175,335-337,
347,361-362,406,448,453

ERANGB 53-54,448,450-451,460
~ 53-54, 448, 450-451, 460
arrno.c 54,445,455
<arrno.b> 4, 47-56, 135, 175,272,330,347,

373,395,406,412,445,447-448,
452-453,455,460-461

arrno 5, 47-55, 130, 135, 140, 142-144, 148,
150, 153-154, 156-157, 159, 162-163,
16.5-166, 168-169, 174-175, 196.
249-251,272,285-286,298,332,
334-337,347.360-362,373,395,445,
447,452,455

_ BRRNO 53,460
error

domain 49, 55, 128, 130-131, 133-134,
152,327,46.5

file-positioning 466
See indicator
range 49,55, 128, 130-133, 161,347,471
read 233, 245-248, 251-252, 254, 263, 282,

291,329
See stream
vvrite 233,240,243-249,252,254,272,

282,292,296
lerror 40
escape 113, 260, 26.5, 303
EUC 384
exception 192,466
executable

file 468, 474
execution

See character set
_ BXPAIL 353, 451
axit.c 378-379, 455
EllT_ PJULURB 22-23, 202, 204, 334, 339, 346,

348,353-354,379,382-383,453
EX1T_SUCCBSS 23,204,334,339,346,348,

3,53..354,381-382,453
exit 23, 194, 196-197, 201-202, 204, 234, 333,

339, 344, 346-348, 353-354, 378-379,
381-382,385-386,447,449,455

_Bxit 378,446
axp.c 161-162,455

Index
exp 48,62, 132, 136-138, 161-162, 164, 180,

455
_Bxp 160-165, 169, 175,460
exponent

See floating-point
expression 466
extended precision

See floating-point
external linkage 2, 5, 9-10, 12, 48, 50, 184,

186-187,207,363,368,447,453,468

F
fabe.c 140,455
fab• 51, 134, 136, 138, 140, 176, 178, 180,

331,455
failure

input 241-242, 244, 263, 329
matching 241-242,244,264,266,268,329

fair use xii
_PBJ:AS 67-68, 448-451, 460
fcloaa.c 278,280,455
fcloaa 105,232,236,252,270,276,278,

280-281,331-332,379,455
_Pcloea 278,282,287,329,446
faof.c 287-288,455
feof 243,250-251,270,276,287-288,332,

455
farror.c 287-288,455
farror 243,250-251,270,276, 287-288,332,

455
fflueh.c 292,298,455
fflueh 236-237,256,270,276,280,286,292,

296-300,332,455
fgatc.c 288,290,455
fgatc 27,30,232,234,245-246,253-254,

271-272, 276, 288, 290-291, 318-319,
332,455

fgetpoa.c 288-289,455
fgatpo• 232, 249, 254, 256, 270-272, 276-277,

285, 289, 331, 455
_Pgatpoa 329
fgata.c 291,293,456
fgate 115, 245, 271-272, 276, 291, 293, 332,

456
_ Pgpoa 452
_ Pgpoa 277,282,285-290,452,460

Index

field 110, 466
truncation 240
width 238-242, 251, 260-261, 266-267,

306-307,321
file 466

append 234
batch 108
beginning 255
beginning-of 234, 249-250, 269, 273, 464
binary 25,228,230,235,237,253,255,

258,269,285,464
buffer 464
dose 182, 229, 234-237, 270, 273-275, 278,

282,339,346-347,464
create 229, 234-235, 237, 251, 253, 272, 275
descriptor 227, 231, 274, 466
empty 229, 234
end-of 114, 226, 229-230, 233-234, 237,

242, 244-247, 249, 251-253, 269-270,
275,282,291,466

executable xii, 1, 88, 464-466
handle 227,274,467
header 7,91,98,201,253,467
include 467
interactive 232, 235, 237, 255-256, 270
length 227, 229-230
locale 95, 101, 108-110, 112-116, 118-119,

126,384,411,413,438,443
long 230
See name
open 114, 228, 230-231, 233-238, 251-253,

256,269-275,277-278,282,285,329,
339,449,466,469,472

See record
remove 235, 272-274, 278, 329, 339,

346-347
renaine 235,272,278,329
reopen 237
source xii, 1,7,9-12, 16, 19,32,94,98,

101, 113, 181, 201, 325, 464, 467,
470-471, 473

temporary 227, 233, 235-236, 269,
272-274,278,284,339,346-347

text 1, 108, 228-230, 237, 253, 255, 258,
265,269,285-286,329,452,472

file (continued)
truncate 234,237,275
update 237

file-level
See declaration

file-position
See indicator

file-positioning
See error
See function

_ FILB_ 18

481

PILB 124, 231-234, 251-252, 254, 270,
274-278,288,296,315,322-323,453,466

PILBNAHE__KAX 233,251,253,269,276,325,
331-332, 448, 453

_ Pilea 276-280, 292, 298, 379, 460
finite-state machine 366, 368, 467, 472

See table
fixed-length

See record
<float .h> 4, 57-72, 74, 77, 127, 135, 151,

174, 176, 178, 180,215,312,330,333,
364, 445-446, 448, 453-454, 459-461

_ PLOAT 66,460
floating-point

arithmetic 57
base 60, 129
bias 464
characteristic 67, 139, 141, 145, 448, 464
constant 64, 335
conversion 108
exception 198
exponent 60, 67, 129, 136-137, 143, 145,

157, 164, 170, 240, 261-262, 311, 314,
335,363,448,464,466

extended precision 149, 161, 164, 170-171
fraction 67, 129, 132-133, 363, 466-467
gradual underflow 63, 127, 141, 145
hidden bit 67
IEEE 754 55, 61, 63-65, 67, 69, 71-72,

127-128, 137, 141, 171, 311, 363, 445,
448-449,468-469

Inf 52, 128, 135-137, 139-140, 167, 179,
310-311, 386, 449

infinity 52, 127-128, 134-135,311,467

482

floating-point (co11ti11ued)
f'-/al\/ 52, 128, 139-140, 167, 179,310-311,

386,449
not-a-number 52, 127-128, 311, 386, 469
overfilow 49, 58, 62, 72, 127-128, 130, 145,

161, 164, 170, 195, 198,363,470
precision ix, 58, 60, 64, 77, 127-129, 135,

145, 149, 164, 171,323,363,446
representation 464
rounding 59-60, 72,239,314,471,473
significance loss 49, 58, 62, 64, 127,

136-137, 152, 161,363,471
truncation 59-60, 473
See type
underflow 49, 58, 62-63, 128, 130, 145,

151, 161, 170, 198,335,363,466,
473-474

wobbling precision 129
zero fixup 58, 63, 128, 130, 335, 474

floor.c 141,456
floor 134-136, 138, 141, 143, 176,456
flow

See control
PLT_DIO 60-61,66,70-71,453
PI/l'_BPSILON 61,66,70-71,331,453
l'LTJC,\NT_DIG 60-61, 66, 70-71, 453
PLT_J!Al(_lO_ BXP 61,63,66,70-71,453
PLT_~BXP 60-61,66, 70-71,453
PLT_KAX 61,66,70-71,453
PLT_ IUN_ lO__BXP 60-61, 63, 66, 70-71, 453
PLT_ICIN_ J>IO 60
PLTJU'.N_ BXP 61, 63, 66, 70-71, 454
PLT_ICIN ,61,66,70-71,453
PLT__RAI>I.X 60-61,63-66,70-72,454
_ PLT__RAI>IX 67
PLT~llOUNDS 60,64,66,71,448,454
_PLT_JtOCNDS 67
_Plt 65-66,68,460
flush

See stream
fmod.c 145, 148, 456
flllOd 134, 136, 138, 145, 148, 176, 456
_Pmtval 90-92,94-95, 123, 126,262,460
JlWCAX 276, 448, 450-451, 460
_ POPP 67-68,448-451,460
fopen.c 278-279,456

Index

POPBN_ KAX 233,235,269-270,276-280,298,
325,331-332,379,448, 454

fopen 105, 228-229, 232, 236-237, 251-253,
270-272,276,278-279,287,331-332,456

_Popen 278, 281-282, 284-285, 323, 329, 452,
460

_ POPHAX 276,448,450-451,460
_Foprep 278-281,323,460
form feed 26, 29, 31, 33, 229
format 91, 94, 259-260, 264-267, 296, 303,

306,315,419-420,422-423,437-438,
465-467, 474

FORTRAN 127, 177, 206, 225
fpoa_t 233,256,270-272,276-277,285,456
fprintf.c 296,301,456
fprintf 5, 20, 238, 240, 242-244, 258-259,

271-273,276,296,301,329,331,456
fputc.c 291,296,456
fputc 27,44,232,234,246,254,271-272,

276,291,296-298,300,332,456
fputa.c 296, 300,456
f puta 21, 23, 44, 105, 202, 209, 246, 271-272,

276,296,298,300, 332,442,456
fraction

See floating-point
fragmentation

storage 345
frame

See stack
fread.c 291-292,456
fread 248,271,276,291-292,332,456
_Pread 282,286-287,291,329,446,452
free 467
Free Software Foundation

SeeGNU
free.c 373,376,456
free 89, 103, 105, 118, 120,280,289,333,

338, 344, 348-349, 351, 354, 373-374,
376-377,382,431,433,456

_Preeloc 105, 116-119, 124,460
freestanding

See environment
freopen.c 278,280,456
freopen 237, 251-252, 270-271, 276, 278, 280,

331-332, 456
frexp.c 143,456

Index 483

frexp 132, 136, 138, 143, 145, 176,456 _Gentime 427,438-440,460
_ PllND 66-67, 448-451, 460 QBT 318
_ Frprep 288,290-295,323,460 getc.c 288,290,456
fecanf .c 315, 318, 456 getc 26-27, 30, 246, 254, 271-272, 274, 277,

fecanf 5,240-244,263-265,271,276,315, 288,290,332,456
318,331,456 getchar.c 288,291,456

f eeek.c 288-289,456 getchar x,27,30,246-247,272,274,277,
feeek 233,237,248-250,254-256,269-272, 288,291,332,456

277,289,331,456 _Getdet 427,430-432,434,460
feetpoe •. c 288,290,456 getenv.c 378,380,446,456
feetpoe 232,237,248-249,254,256,270, getenv 82, 104-105,333,339-340,349,354,

272,277,285,290,331,456 378,380-382,386,434-435,456
_Peetpoe 329 _Getfld 321,323-324,460
_Pepoe 277,282,286-290,452,460 _Getfl oat 323-324,328,460
ftell.c 288,290,456 _Getint 321,323-324,326,460
ftell 249-250,254-255,269-272,277,290, _Getloc 94,99, 101-104, 114, 116, 124,460

331,456 _Getmem 371,373-375,460
function 467 osm 321

argument 224 gets. c 291, 294, 456
date 82 gets 247, 271-272, 277, 291, 294, 332, 456
declaration 1-2, 4-5, 10 _aettim• 427, 430-431, 433-434, 438,
file-positioning 230, 237, 248-249, 440-441, 460

254-255,270,273,275,285,288,452 _Getzofie 427,430-431,433-435,441,460
multibyte 77, 87, 341, 344, 363, 446 GMT 415, 423, 467, 473
nesting 181 gmtime.c 427, 456
numeric conversion 87 omtim• 418, 420, 423-424, 427, 430, 442, 456

parameter 220, 224 GNU
print 84, 87, 94, 171, 212, 225, 238, C xii, 212, 449, 451, 467

257-261, 263-265, 271-275, 2%, 301, Project xii

309, 314, 323, 325, 345, 420, 467, 470 goto 181-182
prototype 206,208,216,220,259,463,467 nonlocal 181, 184-185, 192
read 253, 273, 275, 471 gradual underflow

scan 87, 171, 212, 225, 255, 263-266, 268, See floating-point
271,273-275,2%,314,318,323,325, graphic 31,33,467
329, 345, 351, 467, 471 Griswold, R.E. 411

storage allocation 344 Grosse, Eric 71
time 100, 420, 437, 467 grouping 84-87, 89, 110, 114, 126
write 253, 474 guard

_rwprep 291-292, 296-297, 299-300, 323, 460 See macro
fwrite.c 296,299,456
fwrite 248-249,272,277,2%,299,301-302,

332,446,456
_Pwrit• 282,286-287,329,452

G
_Genld 313-314,316,323,460

H
handle

See file
handler

device 226, 228, 465
signal 193-197, 199-201, 471

484

Hart, John F. 177
header 1-2, 5, 12

See file
idempotence 4, 7, 11, 19
independence 4, 7, 11
internal 53, 98, 275, 281, 445, 448
See name
standard xi, 4-5, 7, 9-12, 16, 53, 95, 98,

116, 123,216,333,425,453,472
heap 89, 116, 344,467

See storage
hexadecimal

See base
See digit

hidden bit
See floating-point

hiding
See name

Hoare, C.A.R 22, 358
hole

See storage
Homer's Rule 151
hosted

See environment
HUGB_ BXP 161
HUGB_IW) 149
HUGB_VAL 130, 134-135, 137-139, 171,

176-177, 335, 454
..)lugeval 138-139,460

I/0 468
IBM

See PC
See System/370

idempote nce
See header

identifier 467
IEEE 467
IEEE 1003

SeePOSIX
IEEE 754

See floating-point
lif 5, 19,50,60,74-75,77,79
ignoring

See signal

_ ILONG 76,448,450-451, 460
implementation 467
include

See file
linc lude 1, 4,7-8, 12,467,473
independence

See header
indicator

Index

end-of-file 233, 237, 245, 247-250, 252,
254,256,263,270,275,466

error 233, 237, 245-247, 250-252, 254, 263,
270, 272, 275, 466

file-position 49, 230, 233-234, 237,
245-246, 248-256, 269-272, 282,
285-287, 466, 471

Inf
See floating-point

_Inf 139-140, 146, 159-160, 162-163, 166,
168, 175,460

infinity
See floating-point

inline
See code

input
See failure
See stream

input/output model 225, 227-228, 231, 452
INT_)(AX 74,76,78-79,218,224,289,324-325,

436,454
INT_MIN 74, 76-78, 436, 454
integer 467

constant 336
constant expression 221-222, 224, 468
overflow 33-34, 195, 198, 306, 346, 352,

359,362-363,401,429-430,434,437,470
See type

Intel
80X86 372, 468
80X8752,64,67,69,140,468

interactive
See file

interface 47, 468, 470
internal

See header
international

See currency symbol

Index

International Date Line 430
interpreter 1, 468
invalid 465, 468
i octl 226, 228
_ IOPBP 233,238,269,273,276,288-289,332,

460
_ I OLBP 233,238,269,273,276,289,331-332,

460
_ IONBP 233,238,269,273,276,288-289,332,

460
isalnum.c 37,456
isalnum 28-29,32,37,43-45,456
i salpha.c 38,456
iaalpha 26, 28, 32, 35, 37-38, 44-45, 88, 116,

435,456
i scntrl.c 38,456
iscntrl 28-29, 33, 35, 37-38, 44-45, 456
_ Isdat 429
isdigit.e S8,456
isdigit 26, 28-29, 32-33, 37-38, 44-45, 122,

305,321,328,364-365,432,435,456
_Isdst 100, 117,427,429-431,460
isgraph.c 38,456
isgraph 28,33,37-38,45,456
islower.c 38,456
islower 28-30, 32-33, 35, 37-38, 44-45, 88,

456
ISO 3,468
IS04217

See currency symbol
IS0646

See character set
ISO C Standard

See C Standard
isprint.c 38,456
isprint 27,29,33,35,37-38,44-45,456
iapunct.e 39,456
ispunct 28-29, 33, 37, 39, 44-45, 456

isspace.c 39, 456
iaapace 26,28-29,33,35, 37, 39,44-45, 101,

241,265,318,320-321,324,335,351,
360, 362, 364, 456

ieupper.c 39,456
ieuppar 28·30,33,35,37,39,44-45,456
iaxdigit.e 39,457
iaxdigit 29,32-33,37,39,44-45,457

J
JIS 384
jlll'p_huf 182-188, 191-192,449,457

See argument
justify 238-239,260

K
Kahan, W.M. 72
Kanji

See character set
Kernighan and Ritchie 15, 73
Kernighan, Brian W. 15, 327

485

keyword 4, 7, 9, 16, 109, 114-116, 119, 224,
347

knock out 95, 232, 468
Knuth, Donald 381
Koenig, Andy 205

L
L_ tm,pnam 233,236,269,276,284,287,325,

331-332, 449, 454
label

See variable
lal>s.c 353,356,457
lab• 333, 341, 349, 353-354, 356, 382, 386,

457
large

See character set
Lawson, Charles L. 177
__LBIAS 67-68, 173, 312, 448-451, 460
LC_,IU.L 84,86-87,96, 102-103, 108, 125,454
LC_COLLATB 83·84,87,96, 106, 125,390,395,

397,407,454
LC_ CTYPB 83-84, 87, 96, 106, 110, 125, 334,

341,343,353,366,368,454
LC_MONBTARY 83-84, 86-87, 89, 96, 98, 106,

109-110, 125, 454
LCJM(BRIC 83-84, 86-87, 89, 96, 1()6, 110,

125, 454
LC_TIMll 83-84, 87, 96, 106, 110-111, 125,

419-420,424,426,437,454
lconv 84-85,89-91, 95,98, 101, 109-110, 114,

126
LDBL_DIO 60,66,70-71,313,454

486

LOBL_J!PSILON 61,66,70-71,331,454
LDBL_N.UIT_DIG 60, 66, 70-71, 454
LPBL.JCAX....lO_ BXP 61,66,70-71,454
LDBL_JIAX_BXP 60, 66, 70-71, 454
LOBL_ NAJC 61,66,70-71,454
LDBL_M.IN_ lO_ BXP 60,66,70-71,454
LDBL_ MIN_DJ:G 60
LDBL_KIN_BXP 66, 70-71, 454
LDBLJ UN 61, 66, 70-71, 454
_Ldbl 65-66, 68-69, 461
ldexp.c 144-145,457
ldexp 63,70-71, 132, 136, 138, 144-145,

176-177, 457
ldiv.c 353,356,457
ldiv_t 334,341,346,354, 457
ldiv 310,313,333-334,341,346,349,

353-354,356,383,386,457
LDSJ:ON 310
_Ldtob 307,309,311-312,314,323,461
_Ldun.cala 171-173, 175,311-312,461
leap

day 425,427
second 420, 443
year 427, 429, 443

length
See file
See line

letter 4, 25, 31-35, 43, 108, 239, 336, 468
lowercase 7, 9, 29-34, 113, 123, 411, 463,

468
uppercase 4, 9-10, 29-31, 33-34, 50, 109,

113, 123,275,283,411,463-464,473
librarian 2, 468
library 468

definition 1
design x-xi, 2-3, 114, 373, 377, 387
function 1, 5, 26, 48, 127
object-module xii, 2
shared 36, 46, 52
Standard C ix, 215, 472

licensing ii, xii
<liJnita.b> 4, 40-42, 44, 59, 73-80, 90, 92, 97,

106-107, 110, 122, 124-125, 159, 215,
218, 224,289,320,324,346,352,360,
362,364,367,369-370,382,409,436,
446, 448, 453-455, 460

_ LJ:MITS 76, 460
line

empty 229
feed 26,226,228,286,329
length 229, 234, 251
long 229
partial 229, 234
text 229, 234, 271, 286, 329

_ LJ:NE_ 18, 21
_Linfo 98-99, 116, 118
linker 1-2, 15, 36, 95, 199, 314, 468
list

See environment
literal

See string
_Litob 307-311, 323, 461
_LO 37-38,42, 122,460
local

See time

Index

locale ix, 27-28, 30, 32-33, 35-36, 46, 74,
81-84, 87-89, 91, 95, 98-101, 108,
113-114, 117, 123, 126, 217, 261, 266,
303,334,341,343,351,395,413,422,
452,468

•c• 27-29, 31-33, 35, 42, 46, 84-85, 88-89,
96-97, 99-100, 109, 112, 116, 119, 123,
265,335-336,351,381,437,468,473

category 83-85, 87, 95, 98, 100-101,
109-111,334,341,343,353,368,390,
395,397,407,419-420,424,426,437,
464

expression 109, 113
See file
mixed 97-98, 123
native 84, 88, 96-97, 101, 108-109, 123, 469
reverting 32, 88-89, 97, 99
specific 99-100, 111, 116, 423, 426, 430,

434,437-438,446,468
•osA• 108-109, 114, 123

<locale.h> 4,81-126,216,265,316,328,
333,364,386,446,454,457-458,461

"LOCALB" 101, 108
_ LOCALB 96, 98, 461
localeco.c 95,97,457
localeconv 5,84-87,92,95-98, 125,316,328,

364,457

Index

localtim.c 430, 433, 457, 462
localtt.m. 418-421,423-424,430,433,436,

442, 457
"LOCPILll" 108
_Loc i tmn 116, 118
_ Loctab 119
_Loctab 115-118, 124,221,461
_ Locterm. 119-120, 122, 124, 461
_x.ocvar 119, 121-122, 124,461
_ LOPP 67-68, 172,448-451,461
log.c 164, 166, 457
loglO.c 164, 167,457
loglO 70, 133, 136, 138, 164, 167, 180,457
log 62, 133, 136, 138, 164, 166, 169, 180,457
_ Log 138, 164, 166-167, 461
long

See file

487

111alloc 88-89,97, 103-105, 120-121,279,287,
289,295,297,333,338,344,348-349,
351, 354, 372-373, 375, 377, 382, 397,
432,435,457

masking
See macro

matching
See failure

<l!lath.h> 4, 48-49, 51, 54, 70, 127-180, 311,
330,446,454-462

..)IATH 138, 461
MB_ CUR_ KAX 110, 112, 304, 320, 334, 342-343,

346,349,353-354,367-370,381-383,454
MB....LBNJIAX 74, 76-78, 106, 334, 346, 352,

368-369,382,446,448,454
J(bcurmax 102, 106-107, 117, 124, 353-355,

461
See line ml>len.c 363, 366, 457, 461

LONGJWC 75-76, 78-79, 309, 336, 352, 362, 454 mblen 333, 342, 345, 349-350, 354-355, 363,
LONG_KIN 75-76,78,336,352,362,454 366,383,457
longj~. c 189, 446, 457 _l(BKAl(76, 448, 45Q-451, 461
longj~ 24, 182-187, 189-192, 194-197,201, .Jlb••ve 304,320,354-355,363,366-367,439,

446,457 461
l•••I< 231,447
!value 50, 118, 198, 468

modifiable 52, 209, 251, 469

M
machine 468
macro 468

definition 1-2, 4-5, 19, 468
guard 11, 19,53,468
masking 5-7, 9-10, 16, 36, 42-43, 137,

151-152, 164, 199-201,254,271,
287-288, 353, 359, 363, 368, 399, 453,
469

unsafe 5, 26, 246-247, 254, 473
Maehly, HansJ. 177
mail

See electronic
main 2, 15,24,234,346,348,353,449
maintenance 13-14
malt• 19
.JCalt•loc 105,114, 116, 118-120, 124,221,461
111alloc. c 372,374-375, 457, 459

_Kbatate 100, 102, 106-107,117, 124,301,
318,366-367,370,438,461

mbatovc9.c 363,366,457
ml>atowc• 99,112,303,333,343,345,350,

354, 363, 366, 383, 457
ml>tovc.c 363,366,457,461
Jllbtovc 99, 112, 301, 333, 342-343, 345-346,

350,352,354-355,363,366,383-385,457
_Kbtowc 301,304,318,320,355,363,

366-368,438-439,461
_Kbxlen 355, 363, 366, 461
_Kbxtowc 355,363,366,461
member 469
..)ODlBND 371-372, 374-377, 448-451, 461
1M1111Chr.c 399,457
memchr 293-294, 299, 325-326, 361, 391, 394,

398-399,403,412,457
memc:m,p.c 399, 457
llleDlc:m,p 104-105, 382-383, 389, 394, 398-399,

401, 410,412-413,457
lllUICPY. c 399-400, 457

488

memcpy 105, 121, 188-189, 210, 292-294,
299-300, 302-303, 310, 312, 316-317,
357-358,369,377,388,394,398-401,
412,439,457

inemmove.c 400,457
inemmove 91,93,388,394-398,400,412,457
m81118et.c 400-401,457
me1N1et 375,393-394,398,400-401,412,457
Mesztenyi, Charles K. 177
mktime.c 434,436,457
mktime 417,420,423-424,429,434,436-437,

442, 457
mode 469
modf.c 143,457
modf 133, 135-136, 138, 143, 177, 457
module

See object module
monetary 84-87,89-90, 126,469
month

See name
Motorola

MC680XO 64, 449, 469
MC68881 52, 469

MS-[)()5iv,82,108,226,228,452,469
multibyte

See character
See character set
See function

Multics iv, 227
multithread 46,82-83, 193, 198,329,469

N
name 469

category 98
external 94
file 5, 7, 9-10, 12, 82, 95, 233, 235-237,

251-253,269,272-274, 278, 284,329,466
header 7, 9, 14
hiding 181
length 251
locale 98-100, 109, 116, 126
month 111, 419, 421, 443
reserved 4-7, 9, 11-12, 20, 50, 83, 275, 323,

353, 399, 447, 471
space viii-ix, 5, 16, 447, 469
weekday 111, 419, 421, 443

NaN
See floating-point

_Nan 139, 148, 150, 153-154, 159, 166,
168-169, 175, 461

native
See locale

_NATS 461
_NCAT 96, 102-103,461
NDDOG 4, 11, 17-20
_NBRR 53,55,406,461
nesting

See function

Index

newline 26, 29, 31, 33, 46, 226, 228-229, 234,
242,246-247,251,271-272,413,452

Newton's Method 157
nonlocal

See goto
not-a-number

See floating-point
NOTB 109
_ NSBTJMP 187, 446, 449-451, 461
...NSIG 199-200, 202-203, 461
null

See character
null pointer 469

See argument
constant 216-217, 220-221, 343, 469

NOLL 11, 84, 91, 96, 216-217, 220-223, 233,
269,276,334,353-354,388,394,398,
416,422,424-425,449,454

_NULL 95-96, 222-223, 276-277, 354, 398, 424,
449-451, 461

numeric conversion
See function

0
O'Neil, W.M. 443
object

See data
object module xi-xii, 1-2, 88, 468-469
octal

See base
offset 469
offeetof 116-117,216-217,221-224,446,457
o ne's-complement

See arithmetic

Index

open
See file

open 231, 447
operand 469
operating system 470
operator 469-470

assigning 52, 463
right-shift 58

optimization 21, 24, 53, 183, 186, 188, 256,
388

order
See storage

output
See stream

489

perror 54-55,251,272,277,292,298,327,
332,395,399,406,457

_Pft 306-307
PIP 226-227, 470
PL/I 182, 192,227
Plauger and Brodie iv, xiii, 8, 15, 351-352,

421
Plauger, P.J. 15, 223, 327
Plum Hall Inc. xii
Plum Hall Validation Suite xii
Plum, Thomas xiii, 15
Poage, J.F. 411
pointer

See arithmetic
overflow See null pointer

~ floating-point See type
mteger 80, 135, 145, 161, 218-219, 300, 474 Polonsky, J.P. 411

overlap _Poly 151, 154, 158, 175, 461

storage 91, 474 portability ix, 2-3, 7, 11, 35, SO, 53, 58, 62,

p 64, 73-75, 80, 83, 88, 119, 127, 187, 193,
195, 197, 203, 205, 216, 219, 221-222,

PAP 306-307
padding

See character
parameter 463, 466-467, 470
parametric

See code
paranoia 72, 171
parenthesis 10, 209
parse 263, 321, 470
partial

See line
Pascal 2, 181, 192
PC iv, 187, 468-470, 473
PDP-11 iii-iv, 25, 57, 195, 198, 203, 205-206,

227,449,470,474
Pemberton, Steven 71
per cent 238, 240-242, 262, 265, 268, 303,

306,318,321, 419-421,465
performance ix, 13, 15, 19, 26, 46, 52, 99,

129, 143, 145, 157, 161, 179, 183,
231-232,254,256,271,292,318,363,
398-399, 413-414

period 470
perror.c 292,298,457

229,255,258,261,264,268-269,273,
307,348,353,385,395-396,470

POSIX 470
IEEE 1003 73, 80, 470, 474

pound sign 260, 306
POW. C 164, 168-169,457
pow 63, 133, 136-138, 164, 167-168, 170, 180,

457
precision 238-240, 260-262, 266, 306-307,

311, 314, 470
floating-point 129

predicate 18, 274, 463, 467, 470
preprocessor 75-76, 78, 470
primitive 137, 177, 179, 231-232, 274, 278,

281-283, 287, 327, 329, 378, 420, 425,
443,445-446,448,452,470

print
See function

printf.c 296,301,457
printf 1, 3, 5, 70, 78, 91, 177, 191, 204, 213,

220,224,243,245, 258-259,263,
272-273, 277, 296, 301, 307, 300, 329,
331, 383, 457

_Printf 296,301-304,306-307, 311,314,318,
322-323, 438, 461

490

printing
See character

program 470
startup 2, 50, 113, 196, 232, 235, 252, 344,

351, 449,452, 470, 472
stub 22, 452, 472
suspension 193-194, 196
termination 17-18,21-22,27, 79, 193-195,

197-198,201,235,251,270,273,327,
334,339, 344,346,348-349,353,378,
381, 471-472

prototype
See function

ptrdiff_ t 216-219,223, 362, 457
_Ptrdifft 222-223, 450-451, 461
_PU 37-39, 42, 122, 461
punctuation 108

See character
push-back

See character
PUT 306
putc.c 291,297, 457
putc 26-27,247,254,271-272,274, 277, 297,

332, 457
putchar. c 291,297,457
putchar 27, 247,272,274,277,297,332,457
putenv 83
_,l'Utfld 305,307-310,314,323,461
puta.c 296,300,457
puta 22-23, 45, 54, 71, 79, 125, 177, 179-180,

191,204,213,224, 247,271-272,277,
296,300,332,382-383, 413, 442,457

Q

qaort.c 353,356-357, 457
qaort 333, 340-341, 347, 350, 353-354,

357-358, 382-383, 457
Quicksort 350, 353
quotes 413

R
radix

See base
r a iaa . c 200,202,446,452,457
raiaa 193, 195-204, 339, 346, 379, 457

Index

r and. c 358-359, 457,461
IRAND_)CAX 334,337,346,354,359, 381-383,

454
rand 333-334,337,344,346,350-351,355,

358-359,383,457
~a.ndaead 355,359,461
range

See error
Rationale ix, 4, 15
read

See error
See function
See stream

read-only 36, 258, 264, 465, 471-472
read 231, 447
readability 4, 11, 65
~•adloc 105, 114-116, 120, 124, 461
r ealloc .c 377, 457
raa lloc 333,338-339,344, 348,351,355,

373,377,382,457
record 452

fixed-length 229, 253
recursion 292, 358, 471
reduction

See argument
r a giatar 10,46, 183-184, 188-189,466
remove

See file
remova.c 283, 457
remove 235,251,272, 277-278,280,283,329,

332,457
rename

See file
r aname.c 283, 446,457
r a:nam• 235,251,272,277-278,283,329,332,

457
representation

See type
reserved

See name
reusability xi, 1
reverting

See locale
See signal
See storage

r awind. c 288,290, 457

Index

r e wi nd 237,248,250,254-256, 270,272,277,

288, 290, 331, 457
Rice, John R. 177

Ritchie, Dennis 3, 15, 205, 226-227

Rochkind, Mark]. SS
rounding

See floating-point
RSX-11M iv
_ Rtep a 139, 151-154, 156, 158, 160-161, 163,

165, 175, 461
rvalue 471

s
SAPBJXP 170
scan

See function
set 242-243,266,268,471

•canf.c 315,319,457

e c anf 5,243-244,255,263-265,273,277,315,

319, 331, 457

_ Scanf 314-315, 318-323, 462

SCHAll)CAX 74-76,78-79,454

SCHARJ[IN 74-76, 78, 454
seek

See stream
SBBlt_ CUR 233, 249, 269, 271, 276, 282, 286,

332,454

Slll!lt_BND 233,249,269,271,276,282,332,
454

SBl!lt__Sll'l' 233, 249, 269, 271, 276, 282, 286,

290, 331-332, 454
semantics 471
semicolon 98
separator 397

See thousands separator
sequence point 194, 471

Sll'l' 109, 113, 119
eetbuf.c 288,457

• • tbuf 233-234,238,256,273,277,288,331,

457
ee t j JllP . c 188,446, 458

<eetjJllP.h> 4, 24, 181-192, 194-195, 201, 446,

449, 457-458, 461

• • t j JllP 5,24, 182-192, 195,446,458

_ SBTJXP 187, 461
_setj JllP 187, 461

491

_Setl oc 94, 101-103, 106, 124,462

eetl oca l.c 94,99-100, 102-103,458

.. t l oca l a 4, 27, 83-86, 88-89, 94-95, 97-101,

108-109, 114,265,458

• • tvbuf.c 288-289,458

••tvbuf 233-234,238,256,269,273,277,

288-289, 331, 458
_ Sft 315
shareware xii
shift

See state
SHRT.JCAX 74,76,78-79,365,454

SHRT...)(IN 74, 76, 78-79, 365, 454

side effect 26, 197, 246-247, 254, 346, 466,
470-471, 473

•ig_ a tomic _t 194-197,200,203,458

SIG_ DFL 195-1%, 200-202, 204, 454

SIG_BRR 23, 195-1%, 199-201,203-204, 455

SIG_ I GN 195-196, 199-200,202,204,455

SIG_ ILL 196

SIGABRT 23-24, 195, 197-200,202,204,339,

346,378-379,381-383,449,454

_ SIOABR'l' 19'J-2()(), 449-451, 461

SIGFPB 195-198,200,202-204,454

_ S i gfun 199-200, 202-203, 462

SIGI LL 195, 200, 202, 204, 454

SIOINT 195, 197-198,200,202,204,454

_ SIOMAX 199-200, 449-451, 461

sign 84-87, 89, 109-110, 113-114, 126, 129,

155, 239, 260-261, 268, 306-307,

335-337, 359, 363

signal 185, 193, 195-198,201,203,339,449,
452,471

asynchronous 193-195, 197-198, 464
handler 185-186, 339, 346, 378, 381

hardware 201, 204, 446

ignoring 193, 195-1%, 198

reverting 194, 196

synchronous 193-194, 472

•ignal .c 201,203,446,458

<Bignal.h> 4, 22, 24, 49, 189, 193-204, 346,

379, 446, 449, 452, 454-455, 457-458,

461-462

Big na l 22-23, 49, 186, 193, 195-201, 203-204,

382-383, 446, 458
_SIGNAL 200, 461

492

signed integer
See type

signed-magnitude
See arithmetic

significance loss
See floating-point

SIGSBGV 195, 198,20(),202,204, 454
SIG'l'lllRM 195, 198, 2()(), 202, 204, 454
•in.e 151-152,458
sin 48, 131, 135-136, 138, 149, 151-152,

178-179,279,409,458
_sin 138, 149-152, 161,462
•inh.e 161, 163, 458
dnh 132, 136, 138, 161, 163-164, 180, 458
size

See code
SIZB_ BLOCJt 372
SIZB....CBLL 372
•ize_t 11, 116, 124,216-219,223,233, 270,

276-277,322-323,334,346,353-355,
371,388,394,398,407,416, 422,
424-425, 427, 458

•izeof 11, 116, 119,219
_Sizet 222-223,276,354,398,424,450-451,

461-462
_Skip 101, 104-105, 115, 120-122, 124,462
SNOBOL 387, 411
source

See file
_ SP 37-39,42, 122, 461
space 12,26,28-31,35,46, 101, 109, 113,

229,234,238-239,251,260,306,413,
472

trailing 229, 234
See white-space

specification
See conversion

specifier
See conversion

epr i ntf . c 301-302,315, 458
epr i ntf 5,91,93-94,244-245,258,273,277,

301-302, 329-331, 458
eqrt.e 157, 159,458
sqrt 48, 51-52, 54, 133, 135-138, 152, 154,

157, 159, 171, 180, 458
erand.e 359,458

Index

•rand 333,337,344,350-351,355,359,383,
458

BBCan f . e 319,458
• • e anf 5,244,263,265, 268,273, 277,315,

319,330-331, 458
stack 187-189, 191-192, 344, 438, 449, 472

creep 191
frame 188, 472

standard
See C Standard
See character set
See currency symbol
See floating-point
See header
SeePOSlX
See stream
See time

Standard C 472
See library

startup
See program

_sta t ab 99
state

shift 238,240,260,266,301,306,318,
341-343, 349-350, 352, 363, 368, 381,
384,408, 419, 438

See table
statement 472
static

See storage
status

successful 14, 79, 327, 334, 348, 381
unsuccessful 22, 193, 201, 334, 339, 348

<BtdartJ.h> 4, 12,205-215, 258-259,322,330,
371,446,448,459,461

JjTllARG 211, 461
<•tddef .h> 4, 11,91, 116-117, 175,215-224,

333, 345, 353, 360, 362, 371, 398, 425,
446,454,457-459,461-462

_ STDDBP 223,461
• t der r 20-21,23, 105,202, 233,251-252,259,

270, 276,298,332,458
• tdi n 233,242-244,246-247,251-252,

270-271,276,291,294,319,331-332,458

Index

<stdio.h> x-xii, 1, 4, 20·21, 23, 27, 30, 34,
40-42, 44, 49, 54-55, 70, 78, 87, 91-92,
94, 104, 112, 115, 119, 124-125, 176, 178,
180, 190, 202, 204, 209, 212-213,
219-220,224-332,345,351,373,379,
382., 395, 399, 406, 412, 420, 442, 446,
448-449, 453-461

_ STDIO 276,462
<Btdlib.h> 4,6, 18,21,23-24,49,77,82,

87-88, 99, 104-105, 112, 119-120, 124,
194, 198, 201-202, 204, 215, 220, 260,
266-267,279-280,287,289,295,297,
301, 303-304, 310, 312, 318, 320-321,
323,326,328,333-386,397,413,
430'-435,438-439,446,453-459,461-462

_ STDLIB 354,462
stdout 44, 233, 243, 247, 251-252, 258,

270-271,276,297,300-302,330,332,
442,458

Steele, Guy L. 327
Sterbenz, Pat 72
Stevenson, David 55
_ Stod 355, 362-364, 462
storage

alignment 348
allocated 89, 99, 114, 116-117, 119, 220,

231,236,252,274,333,338-339,
344-345, 348-349, 351, 371-373, 377,
385,430,463,466-467

allocation 269
boundary 205, 211, 371-373, 393, 448-449
dynamic 182-185, 187-188, 251, 344, 358,

407,466
fragmentation 345, 372-373
heap 333, 345, 371-372, 381
hole 205, 211-212, 222, 257, 345, 393, 467
order 65, 257
overlap 67, 189, 244-245, 343, 388-390,

394-397, 400, 419
reverting 183
static 24, 36, 46, 52, 77, 1%, 292, 344,

349-350,378,397,405'-406,417,422,
427,434,445,449,463,472

storage allocation
See function

store 472

_ Stoul 355,359-363,462
_ STR 20-21, 462
strcat.c 401'-402,458

493

&treat 382, 389, 395-3%, 398, 401'-403, 412,
458

strchr.c 403,458
Btrchr 93, 120, 122,300,305,321,325-326,

391,395-3%,398,403-405,412,432,
434,458

strcmp.c 401-402,458
Btrc:mp 125, 330-332, 347-348, 350, 382-383,

389-390, 395, 397-398, 401-402, 407,
412,442,458

strcoll.c 410'-411,458
strcoll 84,87,99,333,348,350,390,395,

397-398, 407, 410-412, 458
strcpy.c 401'-402,458
strcpy 88, 93, 97, 103, 105, 120, 125, 243,

284,287,349,382-383,388,395,398,
402,406,412-413,435,458

Btrcspn.c 403,458
Btrcspn 104,388,391,395-3%,398,403,

412,458
stream 231-232, 234, 452, 469, 471-472

append 237,246,275
binary 227,234,248-251,271,275,464
buffer 232, 234-238, 251-252, 254, 256,

269-270, 273-275, 285-286, 288,
291-292, 339

flush 234,236,256,339,346-347
input 240, 256, 271
output 236, 238, 240, 270-271, 339
read 237,241,253,264,275,282,315
seek 471
standard error 17-18, 21-22, 24, 55,

114-115, 193, 201, 227, 233, 235,
251-252,269-270,272,278,292,395,449

standard input 227, 233, 235, 252,
269-270,273,278,413,449

standard output 22, 55, 194, 209, 227,
233, 235, 252, 259, 269-270, 272, 278,
381,449

text 226-227, 234, 248-251, 275, 329, 473
update 235-236, 249
write 237, 253, 258, 275

strerror.c 406,452,458,462

494

strerror 251,272,292,393,395,398-399,
406, 412, 458

_Strerror 292,298,398-399,406,462
strftiu..c 436,438,458
atrftime, 84, 87, 110-111, 333, 345, 417,

419-424,436-438,442,458
_Strftime 427,436-439,462
string

concatenation 21
creation 21
literal 219, 387, 472
multibyte 87, 99, 238, 240, 266, 301, 318,

343,349-350,352,363,368,381,438
wide-character 99, 219, 343, 350, 352,

363,368
<9tring.h> 2,4,87-88,91-92,94,99, 102,

104--105,115, 120, 122, 125, 188-189,
210,272,284,287,292-294,298-300,
302-304,308,310,312,316,320,324,
326,328,330,332-333,347-348,350,
357,360,369,375,377,380,382,
387-414,432,434--435,439,446,454,
457-458, 461-462

_ STRING 398,462
strlen.c 403,458
strlen 2, 10, 93, 97, 103-105, 115, 120, 125,

284,300,309,332,380,382,393,
395-396,398,403,412-413,434--435,
439,452,458

etrncat.·c 401, 458
strncat 388-389,396,398,401,403,412,458
strncmp •. c 401, 458
strncmp 115, 332, 380, 389-390, 396, 398,

401, 412, 458
etrnc:py.c 401-402,458
etrnc:py 389,396,398,401-402,412,458
etrpbrk.c 403-404,458
strpbrk 388,391,395-396,398,403-405,412,

458
etrrchr.c 404,458
strrchr 120,382,391,396,398,404,412,458
strepn.c 403-404,458
strepn 104, 115,392,396,398,404-405,412,

458
etretr.c 405,458
strstr 392,397-398,405,413,458

Index

strtod. c 362-363,458
strtod 5,87,242,267,323,328-329,333-335,

347, 351, 355, 362-363, 383, 386,, 413,
458

atrtok.c 405,458
Strtok 392-393,397-398,405-406,413,458
etrtol.c 362-363,458
strtol 119, 122, 241, 267, 321, 326, 333-336,

347, 351-352, 355, 362-363, 383, 430,
433,458

strtoul.c 361,363,458
Btrtoul 241, 267-268, 321, 327, 333, 336,

352,355,359,361,363,383,458
structure

See type
strxfrm.c 407-408, 458
strxfrm 84,87,99,390-391,395,397-398,

407-408,411,413,458
_ Strxfrm 407-411,462
stub

See program
style 10, 15, 50, 114, 129, 143, 201, 221, 345,

349
subscript

See arithmetic
Sun UNIX 54, 212, 449, 472
suppression

See assignment suppression
suspension

See program
synchronization 46, 193
synchronous

See signal
synonym

See type
syntax 472
system

call 283
service 47-48, 51, 55, 73, 82, 199, 285, 373,

378,425,447,449,470,472
eystem.c 378,380,446,458
System/370 iv, 127-129, 253, 452, 466, 472
system 333,340,352,355,378,380-382,386,

458

Index

T
tab

horizontal 10, 12, 26, 29, 31, 33, 46, 101,
226, 229, 234, 413

vertical 26, 29, 31. 33, 229
table

state 99, 101, 112-113, 118-119, 366, 368,
407, 472

translation 27, 34-35, 99, 112, 119, 123,
445-446, 473

tan.c 151, 153,458
tan 130-131, 137-138, 151, 153, 161, 179,458
tanh.c 164-165,459
tanh 132, 137-138, 164-165, 180, 459
ta•••rt. c 22-23
_TBIAS 425-426,428,436,449-451,462
tctype.c 42,44-45, 126
temporary

See file
termination

See program
tarrno. c 54-55
testing 13-15, 22, 42, 55, 69, 79, 123, 171,

179, 191,203,212,223,325,381,442
text

See file
See line
See stream

tfloat. c 69-71
Thacher, Henry G. 177
Thompson, Ken 25, 226
thousands separator 84-85, 87, 89, 110, 114,

126,473
thread

See control
See multithread

time
broken-down 416-420, 422-423, 427, 429,

434,437
calendar 416-420, 422-425, 427, 449, 465
Daylight Savings 82, 111, 416, 420,

422-423, 426-427, 429-430, 434, 437,
443,465

See function
local 82,415-419,423,430,465

time (continued)
processor 416, 420, 422-423, 425, 447
standard 82

495

zone 82, 101,111,415-416,420,430,444,
465,473

time.c 425-426,447,459
<time .h> 4, 87, 100, 110-111, 333, 345, 350,

415-444,446-448,453-459,461-462
time_ t 416-420,422,424-425, 427,429,434,

449,459
time 350,417,424-426,442-443,459
_TIMB 424,462
_TimH 1()()-102, 106, 117, 124, 426, 430-431,

433,436-438,462
"TIHBZONB" 111, 434
_Tinfo 100,110,426,437,462
tlimits.c 78-79
tlocale.c 123, 125
tm 416-420,422,424,427,434
tmathl.c 171, 176-177
tmath2.c 171, 178-179
tmath3.c 173, 180
TllP_MAX 233, 236, 269, 273, 276, 325,

331-332, 455
tmpfile.c 287,459
tJllpfile 235,273,277,287,332,339,459
tmpnam.c 284,446,459
tmpnam 233, 236, 251, 269, 272-273, 277-278,

284,287,329,331-332,459
_TmMAJC 276, 449-451, 462
token 12,77,392,397,413,472-473
tolower.c 39,459
tolower 30,34-35,37,39, 112, 123,361,459
_TOlower 37,39-40,98, 102, 106, 117, 124,

462
toupper.c 37,39,459
tOUPpar 30,34-35,37,39, 112, 123, 459
_Toupper 37, 39, 41, 98, 102, 106, 117, 124,

462
trailing

See space
translation

See table
unit 1-2, 53, 181, 186, 468-469, 473

translation-time
See arithmetic

496

translator 1-2, 52-53, 473
truncation

See field
See file
See floating-point

taetj,..p.c 190-191
taignal . c 203-204
tatdarg.c 212-214
tatOdef.c 223-224
tatdiol.c 325,330-331
tatdio2.c 327,332
tatdlib.c 381-383
tatring.c 411-413
ttime.c 442
Ttotm 427-430,433, 436-437,462

Turbo C++ iv, xii, 54, 187, 211, 451, 473
two's--complement

See arithmetic
type 473

arithmetic 422, 463
array 186, 192,210,217,219,344,

347-348, 463, 472
assignment-compatible 221, 46.3
character 34, 240, 242, 261, 267, 345, 389,

399-401, 445, 448
compatible 217, 220, 224
constant 198,217,404,465
conversion 221
converting 206,220,259,309,465
data-object 217, 465
definition 1-2, 4, 8, 11, 473
double 129
floating-point 57, 128, 179, 239-242, 257,

261,264,267,307,311,323,329,
334-335, 348, 351, 363, 422, 445-446,
448, 463, 467

integer 74, 135, 194,219-220,223,257,
307,334-335,345,359,422,448,463,
468, 471, 473

pointer 220, 224, 240, 242, 257, 262, 268,
310,323,348, 470

representation 34-35, 40, 57, 59, 61-62,
64-65,67,72,74,77, 79-80, 129, 137,
141, 170-171, 177, 205, 215-220, 257,
345, 348, 359, 362, 445-446, 448-449,
464, 471

Index

type (continued)
signed integer 74-75, 217, 219, 239, 241,

262,267,309,351,471
structure 99,217,256-257,348,393,416,

472
synonym 12, 216, 220, 472
union 65, 137,240,257,393,473
u nsigned integer 74-75, 217, 219, 239,

241,262,267-268,336,352,425-426,473
void 474
volatile 184, 194, 196-197, 474

"TZ" 82, 101,111,434
_T%Off 427,430,433,436,462

u
OCHAIUWt 40-42, 44-45, 74-76, 78-79, 107,

113, 122, 124,320,367,370,409,455
OINT_MAX 75-76,78-79,455
ULONG_NAX 76,78-79,337,352,361,455
UL lRIX iv, xii, 54, 449, 451, 473
llundef 5-6, 20, 54
underflow

See floating-point
underscore 4, 6, 9-10, 43, 275, 283
ONGBT 318
ungetc.c 288,291,459
ungetc 27,248-249, 254-255, 264, 273, 277,

288,291,318-319,332,459
ONGllTN 321
union

See type
UNIX iii-iv, 25-26, 47-50, 55, 73, 80, 82,

194-195, 199-200, 203, 226-232,
255-256,278,283,285-287,327,373,
378,415,425,434,447,449,452,470,
472-474

Berkeley 212
See Sun

unsafe
See macro

unsigned integer
See arithmetic
See type

_ OP 37-39, 42, 122, 462
update

See stream

Index

UniForurn
See /usr/group

OSHRT_KAX 74,76,78-79,455
/usr/group 73-74
UTC 82, 111,415,418,423,425,430,434,

437, 465, 467, 473

v
va._arg 206-213,244-245,251,305,308-309,

324-328, 459
va_end 5,206-213,244-245,259,301-302,

318-319, 330, 459
va_list 12,207-212,259,296,314-315,

322-323,459
See argument

va....start 206-213,244-245,259,301-302,
318-319,330,459

_VAL 20-21, 462
validation 13-14
<varargs.h> 205-206,212
variable 473

See argument
label 182, 192

VA.X iv,54, 127-128, 188,449,473-474
See ULTRIX

vfprintf.c 301-302,459
vfprintf 5, 12, 244, 251, 258-259, 273, 277,

302,325,329-330,459
void

See type
volatile

See type
vprintf.c 301-302,459
vprintf 5, 12,245,251,258,273,277,302,

325, 330, 459
vspfrintf 12
vsprintf.c 301,303,459
vsprintf 5,245,251,258,273,277,303,325,

329-330, 459

w
Waite, William 177
wchar_ t 216-217, 219, 223, 334, 345-346,

353-355,459,474
_Wchart 222-223,354,450-451,462

497

_wcs tate 100, 102, 106-107, 117, 124, 368,
370, 407, 462

wcstombs.c 368-369,459
wcstombs 99,333,343,345,352,355,

368-369,383,459
wctomb.c 368-369,459,462
wctomb 99, 112, 333, 342-343, 345-346, 352,

355,368-369,383-385,459
_wctomb 355,368-370,462
_wcxtomb 355,368-369,462
weekday

See name
WG14 3, 82, 474
White, Jon L. 327
white-space 11-12, 25-26, 29, 33, 88, 101,

113, 116, 240-242, 251, 264-268, 318,
321,335-336,351,359,363,474

wide
See character
See character set

width 474
See field

Witzgall, Christoph 177
_WMAX 306
writable 474
write

See error
See function
See stream

write 231,447

x
X3Jll 3,474
_XA 37-38, 122, 462
"xalloc .h" 371-372, 374-377, 459-460
xasin.c 151, 154-155, 459
xassert.c 21,459
xatan.c 156, 158,459
_Xbig 139, 161-164, 175,462
xctype. c 41-42, 445, 459
_.XI> 37,39,42,122,462
xdefloc .c 10(105, 459
xdint.c 141-142,459
xdnorm.c 145, 147, 460
xdscale.c 145-147,460
xdtento.c 170, 174-175,363,460

498

xdteet.c 140,460
xdWl8cal.c 144-145,460
xexp.c 160-161,460
xfgpoe.c, 285,446,460
xfilee.c 278-279,460
xfloat.c 65,67-69,72, 139,445,448,459-461
xfmtval.c 90,92-93,460
xfopen.c 284-285,446,460
xfoprep.c 278,281,460
xfreeloc.c 116,118,460
xfrprep.•c 291, 295, 460
xfepoe.c 286-287,446,460
xfwprep.c 291,297,460
xgenld.c 314, 316-317, 460
xgentime.c 438, 440-441, 460
xgetdet.c 426,430,432-433,460
xgetfld.c 321,324-325,460
xgetfloa.c 323,328,460
xgetint.c 321,326-327,460
xgetloc .c 101, 104-105,460,462
xgetmem.c 373,375,446,460
~g•ttime.c 434,460
xgetzone.c 434-435,460
xiadet.c 430-431,460
xldtob.c 311-313, 461
xl&lneca.c 171-173, 461
xlitob.c 309-310, 461
•xlocale.h" 98-100, 102, 104-107, 115-120,

122-124, 459-462
xloctab.c 116-117, 461
xlocterm.c 119, 122,461
xlog.c 164, 166-167,461
xmalteloc.c 119-121,461
•xmath.h" 139-144, 146-151, 153-163,

165-166, 168, 170-172, 174-175, 179,
310-312,363-364,459-462

xmbtowc.c 366-367,461
xpoly.c 151, 461
xprintf.c 301,304-305,461
xputfld.c 307-309, 461
xreadloc. c 115, 461
_xs 37,39, 122,462
xacanf.c 315,320-321,462
xaetloc.c 101, 106,462
xein.c 149-151, 462

Index
xatate.c 101, 107,112, 119,353,366,368,

407, 459, 461-462
•xatate.h" 99-100,113, 118, 124,367,370,

407, 459, 461-462
•xetdio.h• 275, 279-281, 283-304, 306, 308,

310-312, 315-316, 318-324, 326, 328,
460-462

xatod.c 363-365, 462
xetoul.c 359-361,462
xatrftim.c 438-439,462
xatrxfrm.c 407,409,462
•xetrxfrm.h" 407-410, 462
•xtime.h• 426-428, 431-437, 439-440, 460,

462
•xtinfo.h" 462
•xtinfo.h" 100, 124,426-427
xtolower.c 37, 40,445,462
xtoupper.c 37,41,445,462
xttotm.c 427-429,443,459,462
xvaluea.c 139,460-462
xwctomb.c 368,370,462

y
•yfuna .h• 54, 280-282, 287, 295, 297-298,

374,378-380, 445-447
<yvale .h> 53-54, 65-66, 72, 76-77, 95-96,

139, 175, 177, 187-188, 199-200, 211,
222-223, 274, 276, 282, 353-354,
371-372, 398, 424-425, 445-446,
448-451, 459-462

_YVALS 53,66,76,96, 175, 187,200,211,223,
276,354,371,398,424,450-451,462

z
z.e.ro divide 128, 193, 195, 198, 472
zero fixup

See floating-point
zone

See time

	Standard C Library (Cover)
	Copyright 1992 P. J. Plauger
	Contents
	Preface
	Standard C Library
	Subtleties
	Disigning Libraries
	Reusability
	Structure of this Book
	Code
	Fair Use
	Licensing

	Acknowledgements

	Chapter 0: Introduction
	Background
	What the C Standard Says
	Using the Library
	Implementing the Library
	Testing the Library
	References
	Exercises

	Chapter 1: <assert.h>
	Background
	What the C Standard Says
	Using <assert.h>
	Implementing <assert.h>
	Testing <assert.h>
	References
	Exercises

	Chapter 2: <ctype.h>
	Background
	What the C Standard Says
	Using <ctype.h>
	Implementing <ctype.h>
	Testing <ctype.h>
	References
	Exercises

	Chapter 3: <errno.h>
	Background
	What the C Standard Says
	Using <errno.h>
	Implementing <errno.h>
	Testing <errno.h>
	References
	Exercises

	Chapter 4: <float.h>
	Background
	What the C Standard Says
	Using <float.h>
	Implementing <float.h>
	Testing <float.h>
	References
	Exercises

	Chapter 5: <limits.h>
	Background
	What the C Standard Says
	Using <limits.h>
	Implementing <limits.h>
	Testing <limits.h>
	References
	Exercises

	Chapter 6: <locale.h>
	Background
	What the C Standard Says
	Using <locale.h>
	Implementing <locale.h>
	Testing <locale.h>
	References
	Exercises

	Chapter 7: <math.h>
	Background
	What the C Standard Says
	Using <math.h>
	Implementing <math.h>
	Testing <math.h>
	References
	Exercises

	Chapter 8: <setjmp.h>
	Background
	What the C Standard Says
	Using <setjmp.h>
	Implementing <setjmp.h>
	Testing <setjmp.h>
	References
	Exercises

	Chapter 9: <signal.h>
	Background
	What the C Standard Says
	Using <signal.h>
	Implementing <signal.h>
	Testing <signal.h>
	References
	Exercises

	Chapter 10: <stdarg.h>
	Background
	What the C Standard Says
	Using <stdarg.h>
	Implementing <stdarg.h>
	Testing <stdarg.h>
	References
	Exercises

	Chapter 11: <stddef.h>
	Background
	What the C Standard Says
	Using <stddef.h>
	Implementing <stddef.h>
	Testing <stddef.h>
	References
	Excercises

	Chapter 12: <stdio.h>
	Background
	What the C Standard Says
	Using <stdio.h>
	Implementing <stdio.h>
	Testing <stdio.h>
	References
	Exercises

	Chapter 13: <stdlib.h>
	Background
	What the C Standard Says
	Using <stdlib.h>
	Implementing <stdlib.h>
	Testing <stdlib.h>
	References
	Exercises

	Chapter 14: <string.h>
	Background
	What the C Standard Says
	Using <string.h>
	Implementing <string.h>
	Testing <string.h>
	References
	Exercises

	Chapter 15: <time.h>
	Background
	What the C Standard Says
	Using <time.h>
	Implementing <time.h>
	Testing <time.h>
	References
	Exercises

	Appendix A: Interfaces
	Appendix B: Names
	Appendix C: Terms
	Index

