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PREFACE 

In recent years there has been an increasing interest in the art of computer 
programming, the conceptual tools available for the design of programs, 
and the prevention of programming oversights and error. The initial out­
standing contribution to our understanding of this subject was made by 
E.W. Dijkstra, whose Notes on Structured Programming form the first and 
major section of this book. They clearly expound the reflections of a brilliant 
programmer on the methods which he has hitherto unconsciously applied; 
there can be no programmer of the present day who could not increase his 
skills by a study and conscious application of these principles. 

In the second monograph I have tried to describe how similar principles 
can be applied in the design of data structures. I have suggested that in 
analysing a problem and groping towards a solution, a programmer should 
take advantage of abstract concepts such as sets, sequences, and mappings; 
and judiciously postpone decisions on representation until he is constructing 
the more detailed code of the program. The monograph also describes a 
range of useful ideas for data representation, and suggests the criteria 
relevant for their selection. 

The third monograph provides a synthesis of the previous two, and 
expounds the close theoretical and practical connections between the design 
of data and the design of programs. It introduces useful additional methods 
for program and data structuring which may be unfamiliar to many pro­
grammers. The examples show that structured programming principles 
can be equally applied in "bottom-up" as in "top-down" program design. 
The original inspiration, insight, and all the examples were contributed by 
0.-J. Dahl; I have only assembled the material, and added some additional 
explanations where I found it difficult to understand. 

June 1972 C.A. R. HOARE 
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I. Notes on Structured Programming 

EDSGER w. DIJKSTRA 

1. To MY READER 

These notes have the status of "Letters written to myself": I wrote them down 
because, without doing so, I found myself repeating the same arguments 
over and over again. When reading what I had written, I was not always too 
satisfied. 

For one thing, I felt that they suffered from a marked verbosity. Yet I do 
not try to condense them (now), firstly because that would introduce another 
delay and I would like to "think on", secondly because earlier experiences 
have made me afraid of being misunderstood: many a programmer tends to 
see his (sometimes rather specific) difficulties as the core of the subject and 
as a result there are widely divergent opinions as to what programming is 
really about. 

I hope that, despite its defects, you will enjoy at least parts of it. If these 
notes prove to be a source of inspiration or to give you a new appreciation 
of the programmer's trade, some of my goals will have been reached. 

Prior to their publication in book form, the "Notes on Struccured Pro­
gramming" have been distributed privately. The interest then shown in 
them, for which I would like to express my gratitude here, has been one of 
the main incentives to supplement them with some additional material and 
to make them available to a wider public. In particular I would like to thank 
Bob Floyd, Ralph London and Mike Woodger for their encouraging 
comments and Peter Naur for the criticism he expressed. Finally I would 
like to express my gratitude to Mrs. E. L. Dijkstra-Tucker for her kind 
assistance in my struggles with the English language. 

2. ON OUR INABILITY To Do MUCH 

I am faced with a basic problem of presentation. What I am really concerned 
about is the composition of large programs, the text of which may be, say, 
of the same size as the whole text of this chapter. Also I have to include 

I 



2 E. Vil. DUKSTRA 

examples to illustrate the various techniques. For practical reasons, the 
demonstration programs must be small, many times smaller than the "life­
size programs" I have in mind. My basic problem is that precisely this 
difference in scale is one of the major sources of our difficulties in pro­
gramming! 

It would be very nice if I could illustrate the various techniques with 
small demonstration programs and could conclude with " ... and when faced 
with a program a thousand times as large, you compose it in the same way." 
This common educational device, however, would be self-defeating as one of 
my central themes will be that any two things that differ in some respect by a 
factor of already a hundred or more, are utterly incomparable. 

History has shown that this truth is very hard to believe. Apparently we are 
too much trained to disregard differences in scale, to treat them as "gradual 
differences that are not essential". We tell ourselves that what we can do once, 
we can also do twice and by induction we fool ourselves into believing that we 
can do it as many times as needed, but this is just not true! A factor of a 
thousand is already far beyond our powers of imagination! 

Let me give you two examples to rub this in. A one-year old child will 
crawl on all fours with a speed of, say, one mile per hour. But a speed of a 
thousand miles per hour is that of a supersonic jet. Considered as objects 
with moving ability the child and the jet are incomparable, for whatever one 
can do the other cannot and vice versa. Also: one can close one's eyes and 
imagine how it feels to be standing in an open place, a prairie or a sea shore, 
while far away a big, reinless horse is approaching at a gallop, one can "see" 
it approaching and passing. To do the same with a phalanx of a thousand of 
these big beasts is mentally impossible: your heart would miss a number of 
beats by pure panic, if you could! 

To complicate matters still further, problems of size do not only cau~! me 
problems of presentation, but they lie at the heart of the subject: widespread 
underestimation of the specific difficulties of size seems one of the major 
underlying causes of the current software failure. To all this I can see only 
one answer, viz. to treat problems of size as explicitly as possible. Hence the 
title of this section. 

To start with, we have the "size" of the computation, i.e. the amount of 
information and the number of operations involved in it. It is e!.sential that 
this size is large, for if it were really small, it would be easier not to use the 
computer at all and to do it by hand. The automatic computer owes its right 
to exist, its usefulness, precisely to its ability to perform large computations 
where we humans cannot. We want the computer to do what we could never 
do ourselves and the power of present-day machinery is such that even small 
computations are by their very size already far beyond the powers of our 
unaided imagination. 
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Yet we must organise the computations in such a way that our limited 
powers are sufficient to guarantee that the computation will establish the 
desired effect. This organising includes the composition of the program and 
here we are faced with the next problem of size, viz. the length of the program 
text, and we should give this problem also explicit recognition. We should 
remain aware of the fact that the extent to which we can read or write a text 
is very much dependent on its size. In my country the entries in the telephone 
directory are grouped by town or village and within each such group the 
subscribers are listed by name in alphabetical order. I myself live in a small 
village and given a telephone number I have only to scan a few columns to 
find out to whom the telephone number belongs, but to do the same in a ,J~uge 
city would be a major data processing task! 

It is in the same mood that I should like to draw the reader's attention to 
the fact that "clarity" has pronounced quantitative aspects, a fact many 
mathematicians, curiously enough, seem to be unaware of. A theorem stating 
the validity of a conclusion when ten pages full of conditions are satisfied is 
hardly a convenient tool, as all conditions have to be verified whenever the 
theorem is appealed to. In Euclidean geometry, Pythagoras' Theorem holds 
for any three points A, B and C such that through A and C a straight line 
can be drawn orthogonal to a straight line through B and C. How many 
mathematicians appreciate that the theorem remains applicable when some or 
all of the points A, Band C coincide? Yet this seems largely responsiblcr for 
the convenience with which Pythagoras' Theorem can be used. 

Summarizing: as a slow-witted human being I have a very small head and I 
had better learn to live with it and to respect my limitations and give them full 
credit, rather than to try to ignore them, for the latter vain effort will be 
punished by failure. 

3. ON THE RELIABILITY OF MECHANISMS 

Being a programmer by trade, programs are what I am talking about and the 
true subject of this section really is the reliability of programs. That, never­
theless, I have mentioned "mechanisms" in its title is because I regard 
programs as specific instances of mechanisms, and that I wanted to express, 
at least once, my strong feeling that many of my considerations concCt'ning 
software are, mutatis mutandis, just as relevant for hardware design. 

Present-day computers are amazing pieces of equipment, but most amazing 
of all are the uncertain grounds on account of which we attach any validity to 
their output. It starts already with our belief that the hardware functions 
properly. 

Let us restrict, for a moment, our attention to the hardware and let us 
wonder to what extent one can convince oneself of its being properly con-
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structed. Some years ago a machine was installed on the premises of my 
University; in its documentation it was stated that it contained, among many 
other things, circuitry for the fixed-point multiplication of two 27-bit integers. 
A legitimate question seems to be: "Is this multiplier correct, is it performing 
according to the specifications?". 

The naive answer to this is: "Well, the number of different multiplications 
this multiplier is claimed to perform correctly is finite, viz. 254, so let us 
try them all." But, reasonable as this answer may seem, it is not, for although 
a single multiplication took only some tens of microseconds, the total time 
needed for this finite set of multiplications would add up to more than 10,000 
years! We must conclude that exhaustive testing, even of a single component 
such as a multiplier, is entirely out of the question. (Testing a complete 
computer on the same basis would imply the established correct processing 
of all possible programs!) 

A first consequence of the 10,000 years is that during its life-time the 
multiplier will be asked to perform only a negligible fraction of the vast 
number of all possible multiplications it could do: practically none of them! 
Funnily enough, we still require that it should do any multiplication correctly 
wQen ordered to do so. The reason underlying this fantastic quality require­
ment is that we do not know in advance, which are the negligibly few 
multiplications it will be asked to perform. In our reasoning about our 
programs we talk about "the product" and have abstracted from the specific 
values of the factors: we do not know them, we do not wish to know them, 
it is not our business to know them, it is our business not to know them! 
Our wish to think in terms of the concept "the product", abstracted from the 
specific instances occurring in a computation is granted, but the price paid 
for this is precisely the reliability requirement that any multiplication of the 
vast set will be performed correctly. So much for the justification of our 
desire for a correct multiplier. 

But how is the correctness established in a convincing manner? As long as 
the multiplier is considered as a black box, the only thing we can do is "testing 
by sampling'', i.e. offering to the multiplier a feasible amount of factor pairs 
and checking the result. But in view of the 10,000 years, it is clear that we can 
only test a negligible fraction of the possible multiplications. Whole classes 
of in some sense "critical" multiplications may remain untested and in view 
of the reliability justly desired, our quality control is still most unsatisfactory. 
Therefore it is not done that way. 

The straightforward conclusion is the following: a convincing demon­
stration of correctness being impossible as long as the mechanism is regarded 
as a black box, our only hope lies in not regarding the mechanism as a black 
box. I shall call this "taking the structure of the mechanism into account". 
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From now onwards the type of mechanisms we are going to deal with are 
programs. (In many respects, programs are mechanisms much easier to deal 
with than circuitry, which is really an analogue device and subject to wear and 
tear.) And also with programs it is fairly hopeless to establish the correctness 
beyond even the mildest doubt by testing, without taking their structure into 
account. In other words, we remark that the extent to which the program 
correctness can be established is not purely a function of the program's 
external specifications and behaviour but depends critically upon its internal 
structure. 

Recalling that our true concern is with really large programs, we observe as 
an aside that the size itself requires a high confidence level for the individual 
program components. If the chance of correctness of an individual component 
equals p, the chance of correctness of a whole program, composed of N such 
components, is something like 

As N will be very large, p should be very, very close to 1 if we desire P to 
differ significantly from zero! 

When we now take the position that it is not only the programmer's task to 
produce a correct program but also to demonstrate its correctness in a con­
vincing manner, then the above remarks have a profound influence on the 
programmer's activity: the object he has to produce must be usefully 
structured. 

The remaining part of this monograph will mainly be an exploration of 
what program structure can be used to good advantage. In what follows it 
will become apparent that program correctness is not my only concern, 
program adaptability or manageability will be another. This stress on program 
manageability is my deliberate choice, a choice that, therefore, I should like 
to justify. 

While in the past the growth in power of the generally available equipment 
has mitigated the urgency of the efficiency requirements, this very same growth 
has created its new difficulties. Once one has a powerful machine at one's 
disposal one tries to use it and the size of the problems one tackles adjusts 
itself to the scope of the equipment: no one thinks about programming an 
algorithm that would take twenty years to execute. With processing power 
increased by a factor of a thousand over the last ten to fifteen years, Man has 
become considerably more ambitious in selecting problems that now should 
be "technically feasible". Size, complexity and sophistication of programs 
one should like to make have exploded and over the past years it has become 
patently clear that on the whole our programming ability has not kept pace 
with these exploding demands made on it. 
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The power of available equipment will continue to grow: we can expect 
manufacturers to develop still faster machines and even without that develop­
ment we shall witness that the type of machine that is presently considered as 
exceptionally fast will become more and more common. The things we should 
like to do with these machines will grow in proportion and it is on this 
extrapolation that I have formed my picture of the programmer's task. 

My conclusion is that it is becoming most urgent to stop to consider 
programming primarily as the minimization of a cost/performance ratio. We 
should recognise that already now programming is much more an intellectual 
challenge: the art of programming is the art of organising complexity, of 
mastering multitude and avoiding its bastard chaos as effectively as possible. 

My refusal to regard efficiency considerations as the programmer's prime 
concern is not meant to imply that I disregard them. On the contrary, 
efficiency considerations are recognised as one of the main incentives to 
modifying a logically correct program. My point, however, is that we can 
only afford to optimise (whatever that may be) provided that the program 
remains sufficiently manageable. 

Let me end this section with a final aside on the significance of computers. 
Computers are extremely flexible and powerful tools and many feel that their 
application is changing the face of the earth. I would ventme the opinion that 
as long as we regard them primarily as tools, we might grossly underestimate 
their significance. Their influence as tools might tum out to be but a ripple 
on the surface of our culture, whereas I expect them to have a much more 
profound influence in their capacity of intellectual challenge! 

Corollary of the first part of this section: 
Program testing can be used to show the presence of bugs, but never to 

show their absence! 

4. ON OuR MENTAL Ams 

In the previous section we have stated that the programmer's duty is to rr.ake 
his product "usefully structured" and we mentioned the program structure in 
connection with a convincing demonstration of the correctness of the 
program. 

But how do we convince? And how do we convince ourselves? What are 
the typical patterns of thought enabling ourselves to understand? It is to a 
broad survey of such questions that the current section is devoted. It is written 
with my sincerest apologies to the professional psychologist, because it will 
be amateurishly superficial. Yet I hope (and trust) that it will be sufficient to 
give us a yardstick by which to measure the usefulness of a proposed 
structuring. 
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Among the mental aids available to understand a program (or a proof of its 
correctness) there are three that I should like to mention explicitly: 

(1) Enumeration 

(2) Mathematical induction 

(3) Abstraction. 

4.1. ON ENUMERATION 

I regard as an appeal to enumeration the effort to verify a property of the 
computations that can be evoked by an enumerated set of statements per­
formed in sequence, including conditional clauses distinguishing between two 
or more cases. Let me give a simple example of what I call "enumerative 
reasoning". 

It is asked to establish that the successive execution of the following two 
statements 

"dd: = dd/2; 

if dd ~ r do r: = r - dd" 

operating on the variables "r" and "dd" leaves the relations 

O~r<dd (1) 

invariant. One just "follows" the little piece of program assuming that (1) is 
satisfied to start with. After the execution of the first statement, which halves 
the value of dd, but leaves r unchanged, the relations 

0 ~ r < 2*dd (2) 

will hold. Now we distinguish two mutually exclusive cases. 

(1) dd ~ r. Togeth~r with (2) this leads to the relations 

dd ~ r < 2*dd; (3) 

In this case the statement following do will be executed, ordering a decrease 
of r by dd, so that from (3) it follows that eventually 

0 ~ r < dd, 

i.e. ( l) will be satisfied. 

(2) non dd ~ r (i.e. dd > r). In this case the statement following do will be 
skipped and therefore also r has its final value. In this case "dd > r" together 
with (2), which is valid after the execution of the first statement leads 
immediately to 

O~r<dd 

so that also in the second case (l) will be satisfied. 

Thus we have completed our proof of the invariance of relations (1), we 
have also completed our example of enumerative reasoning, conditional 
clauses included. 
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4.2. -ON MATHEMATICAL INDUCTION 

I have mentioned mathematical induction explicitly because it is the only 
pattern of reasoning that I am aware of that eventually enables us to cope 
with loops (such as can be expressed by repetition clauses) and recursive 
procedures. I should like to give an example. 

Let us consider the sequence of values 

given by 

for i = 0 

for i > 0 

d1 = D 

d, =f(d1-1) 

(1) 

(2a) 

(2b) 

where Dis a given value and/ a given (computable) function. It is asked to 
make the value of the variable "d" equal to the first value dk in the sequence 
that satisfies a given (computable) condition "prop'. It is given that such a 
value exists for finite k. A more formal definition of the requirement is to 
establish the relation 

d=~ w 
where k is _given by the (truth of the) expressions 

prop (dt) 

and non prop (d1) for all i satisfying 0 ~ i < k 

We now consider the following program part: 

"d:=D; 

while non prop (d) do d: = f(d)" 

(4) 

(5). 

(6) 

in which the first line represents the initialisation and t~ second one the loop, 
controlled by the (hopefully self-explanatory) repetition clause while ... do. 
(In terms of the conditional clause if ... do, used in our previous example, a 
more formal definition of the semantics of the repetition clause is by stating 
that 

"while B do S" 

is semantically equivalent with 

"if B do 

begin S; while B do S end" 

expressing that "non B" is the necessary and sufficient condition for the 
repetition to terminate.) 

Calling in the construction "while B do S" the statement S "the repeated 
statement" we shall prove that in program (6): 

after the nth execution of the repeated statement will hold (for n ~ 0) 

d=~ Uaj 
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and non prop (d1) for all i satisfying 0 ~ i < n. 

9 

(7b) 

The above statement holds for n = 0 (by enumerative reasoning); we have 
to prove (by enumerative reasoning) that when it holds for n = N(N ~ 0), 
it will also hold for n = N + I. 

After the Nth execution of the repeated statement relations (7a) and (7b) 
are satisfied for n = N. For the N + lst execution to take place, the necessary 
and sufficient condition is the truth of 

non prop (d) 

which, thanks to (7a) for n = N (i.e. d = dN) means 

non prop (dN) 

leading to condition (7b) being satisfied for n = N + 1. Furthermore, 
d = dN and (2b) leads to 

f(d) = dN+ 1 

so that the net effect of the N + 1st execution of the repeated statement 

"d: = f(d)" 

established the relation 

d = dN+l 
i.e. relation (7a) for N = N + I and thus the induction step (7) has been 
proved. 

Now we shall show that the repetition terminates after the kth execution 
of the repeated statement. The nth execution cannot take place for n > k 
for (on account of 7b) this would imply 

non prop (dt) 

thereby violating (4). When thl;l repetition terminates after the nth execution 
of the repeated statement, the necessary and sufficient condition for termina­
tion, viz. 

non (non prop (d)) 

becomes, thanks to (7a) 

prop (dn). (8) 

This excludes termination for n < k, as this would violate (5). As a result the 
repetition will terminate with n = k, so that (3) follows from (7a), (4) follows 
from (8) and (5) follows from (7b). Which terminates our proof. 

Before turning our attention away from this example illustrating the use of 
mathematical induction as a pattern of reasoning, I should like to add some 
remarks, because I have the uneasy feeling that by now some of my readers 
(in particular experienced and competent programmers) will be terribly 
irritated, viz. those readers for whom program (6) is so obviously correct 
that they wonder what all the fuss is about: "Why his pompous restatement 
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of the problem, as in (3), (4) and (5), because anyone knows what is meant 
by the first value in the sequence, satisfying a condition? Certainly he does 
not expect us, who have work to do, to supply such lengthy proofs, with all 
the mathematical dressing, whenever we use such a simple loop as that?" 
Etc. 

To tell the honest truth: the pomp and length of the above proof infuriate 
me as well! But at present I cannot do much better if I really try to prove the 
correctness of this program. But it sometimes fills me with the same kind of 
anger as years ago the crazy proofs of the first simple theorems in plane 
geometry did, proving things of the same degree of "obviousness" as Euclid's 
axioms themselves. 

Of course I would not dare to suggest (at least at present!) that it is the 
programmer's duty to supply such a proof whenever he writes a simple loop 
in his program. If so, he could never write a program of any size at all! It 
would be as impractical as reducing each proof in plane geometry explicitly 
and in extenso to Euclid's axioms. (Cf. Section "On our inability to do 
much.") 

My moral is threefold. Firstly, when a programmer considers a construc­
tion like (6) as obviously correct, he can do so because he is familiar with the 
construction. I prefer to regard his behaviour as an unconscious appeal to a 
theorem he knows, although perhaps he has never bothered to formulate it; 
and once in his life he has convinced himself of its truth, although he has 
probably forgotten in which way he did it and although the way was 
(probably) unfit for print. But we could call our assertions about program 
(6), say, "The Linear Search Theorem" and knowing such a name it is much 
easier (and more natural} to appeal to it consciously. 

Secondly, to the best of llly knowledge, there is no set of theorems of the 
type illustrated above, whose usefulness has been generally accepted. But we 
should not be amazed about that, for the absence of such a set of theorems is a 
direct consequence of the fact that the type of object-i.e. programs-has not 
settled down. The kind of object the programmer is dealing with, viz. 
programs, is much less well-established than the kind of object that is dealt 
with in plane geometry. In the meantime the intuitively competent programmer 
is probably the one who confines himself, whenever acceptable, to program 
structures with which he is very familiar, while becoming very alert and 
careful whenever he constructs sornething unusual (for him). For an estab­
lished style of programming, however, it might be a useful activity to look 
for a body of theorems pertinent to such programs. 

Thirdly, the length of the proof we needed in our last example is a warning 
that should not be ignored. There is of course the possibility that a better 
mathematician will do a much shorter and more elegant job than I have done. 
Personally I am inclined to conclude from this length that programming is 
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more difficult than is commonly assumed: let us be honestly humble and 
interpret the length of the proof as an urgent advice to restrict ourselves to 
simple structures whenever possible and to avoid in all intellectual modesty 
"clever constructions" like the plague. 

4.3. ON ABSTRACTION 

At this stage I find it hard to be very explicit about the role of abstraction, 
partly because it permeates the whole subject. Consider an algorithm and all 
possible computations it can evoke: starting from the computations the 
algorithm is what remains when one abstracts from the specific values 
manipulated this time. The concept of "a variable" represents an abstraction 
from its current value. It has been remarked to me (to my great regret I 
cannot remember by whom and so I am unable to give credit where it seems 
due) that once a person has understood the way in which variables are used in 
programming, he has understood the quintessence of programming. We can 
find a confirmation for this remark when we return to our use of mathematical 
induction with regard to the repetition: on the one hand it is by abstraction 
that the concepts are introduced in terms of which the induction step can be 
formulated; on the other hand it is the repetition that really calls for the 
concept of "a variable". (Without repetition one can restrict oneself to 
"quantities" the value of which has to be defined as most once but never has 
to be redefined as in the case of a variable.) 

There is also an abstraction involved in naming an operation and using it 
on account of "what it does" while completely disregarding "how it works". 
(In the same way one should state that a programming manual describes an 
abstract machine: the specific piece of hardware delivered by the manu­
facturer is nothing but a-usually imperfect !-mechanical model of this 
abstract machine.) There is a strong analogy between using a named operation 
in a program regardless of "how it works" and using a theorem regardless 
of how it has been proved. Even if its proof is highly intricate, it may be a 
very convenient theorem to use! 

Here, again, I refer to our inability to do much. Enumerative reasoning is 
all right as far as it goes, but as we are rather slow-witted it does not go very 
far. Enumerative reasoning is only an adequate mental tool under the severe 
boundary condition that we use it only very moderately. We should appreciate 
abstraction as our main mental technique to reduce the demands made upon 
enumerative reasoning. 

(Here Mike Woodger, National Physical Laboratory, Teddington, England, 
made the following remark, which I insert in gratitude: "There is a parallel 
analogy between the unanalysed terms in which an axiom or theorem is 
expressed and the unanalysed operands upon which a named operation is 
expected to act.") 
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5. AN EXAMPLE OF A CORRECTNFSS PROOF 

Let us consider the following program section, where the integer constants 
a and d satisfy the relations 

a;;:,. 0 and d > 0. 

"integer r, dd; 

r: = a; dd: = d; 
while dd ~ r do dd: = 2*dd; 

while dd =F d do 

begin dd: = dd/2; 

if dd ~ r do r: = r - dd 

end". 
To apply the Linear Search Theorem (see Section "On our mental aids", 

subsection "On mathematical induction") we consider the sequence of values 
given by 

for i = 0 

for i > 0 

from which 

dd, = d 

dd, = 2*dd, - 1 

ddn = d*in (1) 

can be derived by normal mathematical techniques, which also tell us that 
(because d > 0) for finite r 

dd.,. > r 

will hold for some finite k, thus ensuring that the first repetition terminates 
with 

dd = d*2"" 

Solving the relation 

d, = 2*d1-1 

for d1 _ 1 gives 

d1-1 = d,/2 

and the Linear Search Theorem then tells us, that the second repetition will 
also terminate. (As a matter of fact the second repeated statement will be 
executed exactly the same number of times as the first one.) 

At the termination of the first repetition, 

dd = ddk 

and therefore, 

O~r<dd (2) 

holds. As shown earlier (Section "On our mental aids.", subsection "On 
enumeration") the repeated statement of the second clause leaves this relation 
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invariant. After termination (on account of "while dd =F d do") we can 
conclude 

dd= d 

which together with (2) gives 

O~r<d 

Furthermore we prove that after the initialisation 

dd =i 0 mod (d) 

(3) 

(4) 
holds; this follows, for insbnce, from the fact that the possible values of dd 
are (see (I)) 

d*2 1 for 0 ~ i ~ k. 

Our next step is to verify, that after the initial assignment tor the relation 

a = r mod (d) (5) 
holds. 

(1) It holds after the initial assignments. 
(2) The repeated statement of the first clause ("dd: = 2*dd") maintains 

the invariance of (5) and therefore the whole first repetition maintains the 
validity of (5). 

(3) The second repeated statement consists of two statements. The first 
("dd: = dd/2") leaves (5) invariant, the second one also leaves (5) invariant for 
either it leaves r untouched or it decreases r by the current value of dd, an 
operation which on account of ( 4) also maintains the validity of ( 5). Therefore 
the whole second repeated statement leaves (5) invariant and therefore the 
whole repetition leaves (5) invariant. Combining (3) and (5), the final value 
therefore satisfies 

0 ~ r < d and a = r mod (d) 
i.e. r is the smallest non-negative remainder of the divic:ion of a by d. 

Remark l. The program 
"integer r, dd, q; 

r:= a; dd:= d; q:= O; 
while dd ~ r do dd: = 2 * dd; 

while dd =F d do 
begin dd: = dd/2; q: = 2 * q; 

if dd ~ t do begin r: = r - dd; q: = q +I end 
end 

assigns to q the value of the corresponding quotient. The proof can be 
established by observing the invariance of the relation 

a= q * dd + r. 
(I owe this example to my colleague N. G. de Bruijn.) 
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Remark 2. In the subsection "On mathematical induction." we have proved 
the Linear Search Theorem. In the previous proof we have used another 
theorem about repetitions (a theorem that, obviously, can only be proved by 
mathematical induction, but the proof is so simple that we leave it as an 
exercise to the reader), viz. that if prior to entry of a repetition a certain 
relation P holds, whose truth is not destroyed by a single execution of the 
repeated statement, then relation P will still hold after termination of the 
repetition. This is a very useful theorem, often allowing us to bypass an 
explicit appeal to mathematical induction. (We can state the theorem a little 
more sharply; in the repetition 

"while B do S" 
one has to show that S is such that the truth of 

Pand B 
prior to the execution of S implies the truth of 

p 

after its execution.) 
Remark 3. As an exercise for the reader (for which acknowledgement is 

due to James King, CMU, Pittsburgh, USA), prove that with integer A, B, 
x, y and z and 

A> 0 and B ~ 0 
after the execution of the program section 

"x: =A; y: = B; z: = 1; 
while y =F 0 do 

begin if odd (y) do begin y: = y - I; z: = z * x end; 

y: = y/2; x: = x * x 
end" 

finally z = A8 will hold. 

The proof has to show that (in spite of "y: = y/2") all variables keep 
integer values; the method shows the invariance of 

x > 0 and y ~ 0 and A 8 = z * x' 

6. ON THE VALIDITY OF PROOFS VERSUS THE VALIDITY OF 
IMPLEMENTATIONS 

In the previous section I have assumed "perfect arithmetic" and in my 
experience the validity of such proofs often gets questioned by people who 
argue that in practice one never has perfect arithmetic at ones disposal: 
admissible integer values usually have an absolute upper bound, real numbers 
are only represented to a finite accuracy etc. So what is the validity of such 
proofs? 
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The answel"' to this question seems to be the following. If one proves the 
correctness of a program assuming an idealised, perfect world, one should 
not be amazed if something goes wrong when this ideal program gets executed 
by an "imperfect" implementation. Obviously! Therefore, if we wish to prove 
program correctness in a more realistic world, the thing to do is to acknow­
ledge right at the start that all operations appealed to in the program (in 
particular all arithmetic operations) need not be perfect, provided we state­
rather axiomatically-the properties they have to satisfy for the proper 
execution of the program, i.e. the properties on which the correctness proof 
relies. (In the example of the previous section this requirement is simply 
exact integer arithmetic in the range [O, 2a].) 

When writing a program operating on real numbers with rounded opera­
tions, one must be aware of the assumptions one makes, such as 

b > 0 implies a + b ;;i:: a 

a*b=b*a 

-(a* b) = (-a)* b 

O*x = 0 

O+x=x 

1 * x = x etc. etc. 

Very often the validity of such relations is essential to the logic of the 
program. For the sake of compatibility, the programmer would be wise to be 
as undemanding as possible, whereas a good implementation should satisfy 
as many reasonable requirements as possible. 

This is the place to confess one of my blunders. In implementing ALGOL 60 
we decided that "x = y" would deliver the value true not only in the case of 
exact equality, but also when the two values differed only in the least signifi­
cant digit represented, because otherwise it was so very improbable that the 
value true would ever be computed. We were thinking of converging iterations 
that could oscillate within rounding accuracy. While we had Leen generous 
(with the best of intentions!) in regarding real numbers as equal, it quickly 
turned out that the chosen operation was so weak as to be hardly of any use 
at all. What it boiled down to was that the established truth of a = b and 
b = c did not allow the programmer to conclude the truth of a = c. The 
decision was quickly changed. It is because of that experience that I know 
that the programmer can only use his tool by virtue of (a number of) its 
properties; conversely, the programmer must be able to state which properties 
he requires. (Usually programmers don't do so because, for lack of tradition 
as to what properties can be taken for granted, this would require more 
explicitness than is otherwise desirable. The proliferation of machines with 
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lousy floating-point hardware-together with the misapprehension that the 
automatic computer is primarily the tool of the numerical analyst-has done 
much harm to the profession!) 

7. ON UNDERSTANDING PROGRAMS 

In my life I have seen many programming courses that were essentially like 
the usual kind of driving lessons, in which one is taught how to handle a car 
instead of how to use a car to reach one's destination. 

My point is that a program is never a goal in itself; the purpose of a 
program is to evoke computations and the purpose of the computations is to 
establish a desired effect. Although the program is the final product made by 
the programmer, the possible computations evoked by it-the "making" of 
which is left to the machine!-are the true subject matter of his trade. For 
instance, whenever a programmer states that his program is correct, he really 
makes an assertion about the computations it may evoke. 

The fact that the last stage of the total activity, viz. the transition from 
the (static) program text to the (dynamic) computation, is essentially left to 
the machine is an added complication. In a sense the making of a program is 
therefore more difficult than the making of a mathematical theory: both 
program and theory are structured, timeless objects. But while the mathe­
matical theory makes sense as it stands, the program only makes sense via its 
execution. 

In the remaining part of this section I shall restrict myself to programs 
written for a sequential machine, and I shall explore some of the consequences 
of our duty to use our understanding of a program to make assertions about 
the ensuing computations. It is my (unproven) claim that the ease and 
reliability with which we can do this depends critically upon the simplicity of 
the relation between the two, in particular upon the nature of sequencing 
control. In vague terms we may state the desirability that the structure of 
the program text reflects the structure of the computation. Or, in other terms, 
"What can we do to shorten the conceptual gap between the static program 
text (spread out in "text space") and the corresponding computations 
(evolving in time)?" 

It is the purpose of the computation to establish a certain desired effect. 
When it starts at a discrete moment t 0 it will be completed at a later discrete 
moment t 1 and we assume that its effect can be described by comparing "the 
state at t 0 " with "the state at t 1". If no intermediate states are taken into 
consideration the effect is regarded as being established by a primitive action. 

When we do take a number of intermediate states into consideration this 
means that we have parsed the happening in time. We regard it as a sequential 
computation, i.e. the time-succession of a number of subactions and we have 
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to convince ourselves that the cumulative effect of this time-succession of 
subactions indeed equals the desired net effect of the total computation. 

The simplest case is a parsing, a decomposition, into a fixed number of 
subactions that can be enumerated. In flowchart form this can be represented 
as follows. 
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The validity of this decomposition has to be established by enumerative 
reasoning. In this case, shortening of the conceptual gap between program 
and computation can be achieved by requiring that a linear piece of program 
text contains names or descriptions of the subactions in the order in which 
they have to take place. In our earlier example (invariance of 0 ~ r < dd) 

"dd: = dd/2; 

if dd ~ r do r: = r - dd" 

this condition is satisfied. The primary decomposition of the computation is 
into a time-succession of two actions; in the program text we recognise this 
structure 

"halve dd; 

reduce r modulo dd". 

We are considering all initial states satisfying 0 ~ r < dd and in all 
computations then considered, the given parsing into two subactions is 
applicable. So far, so good. 

The program, however, is written under the assumption that "reduce r 
modulo dd" is not a primitive action, while "decrease r by dd" is. Viewing all 
possible happenings during "reduce r modulo dd" it then becomes relevant 
to distinguish that in some cases "decrease r by dd" takes pl~, while in the 
other cases r remains unchanged. By writing 

"if dd ~ r do decrease r by dd" 
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we have represented that at the given level of detail the action "reduce r 
modulo dd" can take one of two mutually exclusive forms and we have also 
given the criterion on account of which the choice between them is made. If 
we regard "if dd ~ r do" as a conditional clause attached to "decrease r by 
dd" it is natural that the conditional clause is placed in front of the conditioned 
statement. (In this sense the alternative clause 

"if condition then statement I else statement 2" 

is "over-ordered" with respect to "statement I" and "statement 2": they are 
just two alternatives that cannot be expressed simultaneously on a linear 
medium.) 

The alternative clause has been generalised by C. A. R. Hoare whose 
"case-of" construction provides a choice between more than two possibilities. 
In flowchart form they can be represented as follows. 
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These flowcharts share the property that they have a single entry at the top 
and a single exit at the bottom: as indicated by the dotted block they can 
again be interpreted (by disregarding what is inside the dotted lines) as a 
single action in a sequential computation. To be a little bit more precise: 
we are dealing with a great number of possible computations, primarily 
decomposed into the same time-succession of subactions and it is only on 
closer inspection-Le. by looking inside the dotted block-that it is revealed 
that over the collection of possible computations such a subaction may take 
one of an enumerated set of distinguished forms. 

The above is sufficient to consider a class of computations that are primarily 
decomposed into the same set of enumerated subactions; they are insufficient 
to consider a class of computations that are primarily decomposed into a 
varying number of subactions (i.e. varying over the class of computations 
considered). It is here that the usefulness of the repetition clauses becomes 
apparent. We mention "while condition do statement" and "repeat statement 
until condition" that may be represented in flowchart form as follows. 
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These flowcharts also share the property of a single entry at the top and a 
single exit at the bottom. They enable us to express that the action r:epresented 
by the dotted block is on closer inspection a time-succession of "a sufficient 
number" of subactions of a certain type. 

We have now seen three types of decomposition; we could call them 
"concatenation", "selection" and "repetition" respectively. The first two are 
understood by enumerative reasoning, the last one by mathematical induction. 

The programs that can be written using the selection clauses and the 
repetition clauses as only the means for sequencing control, permit straight­
forwardJ.ranslation into a programming language that is identical but for the 
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fact that sequencing control has to be expressed by jumps to labelled points. 
The converse is not true. Alternatively: restricting ourselves to the three 
mentioned types of decomposition leads to flowcharts of a restricted topology 
compared with the flowcharts one can make when arrows can be drawn from 
any block leading into any other. Compared with that greater freedom, to 
restrict oneself to the clauses presents itself as a sequencing discipline. 

Why do I propose to adhere to this sequencing discipline? The justification 
for this decision can be presented in many ways and let me try a number of 
them in the hope that at least one of them will appeal to my readers. 

Eventually, one of our aims is to make such well-structured programs that 
the intellectual effort (measured in some loose sense) needed to understand 
them is proportional to program length (measured in some equally loose 
sense). In particular we have to guard against an exploding appeal to enumera­
tive reasoning, a task that forces upon us some application of the old adage 
"Divide and Rule", and that is the reason why we propose the step-wise 
decompositions of the computations. 

We can understand a decomposition by concatenation via enumerative 
reasoning. (We can do so, provided that the number of subactions into which 
the computation is primarily parsed, is sufficiently small and that the specifi­
cation of their net effect is sufficiently concise. I shall return to these require­
ments at a later stage, at present we assume the conditions met.) It is then 
feasible to make assertions about the computations on account of the program 
text, thanks to the triviality of the relation between the progress through the 
computations and the progress through the program text. In particular: if on 
closer inspection one of the subactions transpires to be controlled by a 
selective clause or a repetition clause, this fact does not impose any burden 
on the understandability of the primary decomposition, because there only 
the subaction's net effect plays a role. 

As a corollary: if on closer inspection a subaction is controlled by a 
selective clause the specific path taken is always irrelevant at the primary level 
(the only thing that matters is that the correct path has been taken). And also: 
if on closer inspection a subaction is controlled by a repetitive clause, the 
number of times the repeated statement has been executed is, as such, 
irrelevant (the only thing that matters is that it has been repeated the correct 
number of times). 

We can also understand the selective clauses as such, viz. by enumerative 
reasoning; we can also understand the repetition clause, viz. by mathematical 
induction. For all three types of decomposition-and this seems to me a great 
help-we know the appropriate pattern of reasoning. 

There is a further benefit to be derived from the proposed sequencing 
discipline. In understanding programs we establish relations. In our example 
o~ enumerative reasoning we established that the program part 
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"dd: = dd/2; 

if dd ~ r do r: = r - dd" 

leaves the relation 

O~r<dd 

invariant. Yet, even if we can ensure that these relations hold before execution 
of the quoted program part, we cannot conclude that they always hold, viz. 
not necessarily between the execution of the two quoted statements. In other 
words: the validity of such relations is dependent on the progress of the 
computation, and this seems typical for a sequential process. 

Similarly, we attach meanings to variables: a variable may count the 
number of times an event of a given type has occurred, say the number of 
lines that has been printed on the current page. Transition to the next page 
will be followed immediately by a reset to zero, printing a line will be followed 
immediately by an increase by 1. Again, just before resetting or increasing 
this count, the interpretation "number of lines printed on the current page" 
is non-valid. To assign such a meaning to a variable, again, can only be done 
relative to the progress of the computation. This observation raises the follow­
ing question: "How do we characterise the progress of a computation?" 

In short, we are looking for a co-ordinate system in terms of which the 
discrete points of computation progress can be identified, and we want this 
co-ordinate system to be independent of the variables operated upon under 
program control: if we need values of such variables to describe progress of 
the computation we are begging the question, for it is precisely in relation to 
this progress that we want to interpret the meaning of these variables. 

(A still more stringent reason not to rely upon the values of variables is 
presented by a program containing a non-ending loop, cycling through a finite 
number of different states. Eternal cycling follows from the fact that a 
different points of progress the same state prevails. But then the state is 
clearly incapable of distinguishing between these two different points of 
progress!) 

We can state our problem in another way. Given a program in action and 
suppose that before completion of the computation the latter is stopped at 
one of the discrete points of progress. How can we identify the point of 
interruption, for instance if we want to redo the computation up to the very 
same point? Or also: if stopping was due to some kind of dynamic error, how 
can we identify the point of progress short of a complete memory dump? 

For the sake of simplicity we assume our program text spread out in 
(linear) text space and assume an identifying mechanism for the program 
points corresponding to the discrete points of computation progress; let us 
call this identifying mechanism "the textual index". (If the discrete points of 
computation progress are situated in between successive statement executions, 
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the textual index identifies, say, semicolons.) The textual index is a kind of 
generalised order counter, its value points to a place in the text. 

If we restrict ourselves to decomposition by concatenation and selection, a 
single textual index is sufficient to identify the progress of the computation. 
With the inclusion of repetition clauses textual indices are no longer sufficient 
to describe the progress of the computation. With each entry into a repetition 
clause, however, the system could introduce a so-called "dynamic index", 
inexorably counting the ordinal number of the corresponding current repeti­
tion; at termination of the repetition the system should again remove the 
corresponding dynamic index. As repetition clauses may occur nested inside 
each other, the appropriate mechanism is a stack (i.e. a last-in-first-out­
memory). Initially the stack is empty; at entry of a repetition clause a new 
dynamic index( set to zero or one) is added on the top of the stack; whenever 
it is decided that the repetition is not terminated the top element of this stack 
is increased by 1 ; whenever it is decided that a repetition is terminated, the 
top element of the stack is removed. (This arrangement reflects very clearly 
that after termination of a repetition the number of times, even the fact that 
it was a repetition, is no longer relevant.) 

As soon as the programming language admits procedures, then a single 
textual index is no longer sufficient. In the case that a textual index points 
to the interior of a procedure body, the dynamic progress of the computation 
is only characterised when we also describe to which call of the procedure we 
refer, but this can be done by giving the textual index pointing to the place 
of the call. With the inclusion of the procedure the textual index must be 
generalised to a stack of textual indices, increased by one element at procedure 
call and decreased by one element at procedure return. 

The main point is that the values of these indices are outside the pro­
grammer's control; they are defined (either by the write-up of his program or 
by the dynamic evolution of the current computation) whether he likes it or 
not. They provide independent co-ordinates in which to describe the progress 
of the computation, a "variable-independent" frame of reference in which 
meanings to variables can be assigned. 

There is, of course, even with the free use of jumps, a programmer inde­
pendent co-ordinate system in terms of which the progress of a sequential 
computation can be described uniquely, viz. a kind of normalised clock that 
counts the number of "discrete points of computation progress" passed since 
program start. It is unique, but utterly unhelpful, because the textual index 
is no longer a constituent component of such a co-ordinate system. 

The moral of the story is that when we acknowledge our duty to control the 
computations (intellectually!) via the program text evoking them, that then 
we should restrict ourselves in all humility to the most systematic sequencing 
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mechanisms, ensuring that "progress through the computation" is mapped 
on "progress through the text" in the most straightforward manner. 

8. ON COMPARING PROGRAMS 

It is a programmer's everyday experience that for a given problem to be 
solved by a given algorithm, the program for a given machine is far from 
uniquely determined. In the course of the design process he has to select 
between alternatives; once he has a correct program, he will often be called to 
modify it, for instance because it is felt that an alternative program would be 
more attractive as far as the demands that the computations make upon the 
available equipment resources are concerned. 

These circumstances have raised the question of the equivalence of 
programs: given two programs, do they evoke computations establishing the 
same net effect? After suitable formalisation (of the way in which the programs 
are given, of the machine that performs the computations evoked by them 
and of the "net effect" of the computations) this can presumably be made 
into a well-posed problem appealing to certain mathematical minds. But I 
do not intend to tackle it in this general form. On the contrary: instead of 
starting with two arbitrarily given programs (say: independently conceived 
by two different authors) I am concerned with alternative programs that can 
be considered as products of the same mind and then the question becomes: 
how can we conceive (and structure) those two alternative programs so as to 
ease the job of comparing the two? 

I have done many experiments and my basic experience gained by them 
can be summed up as follows. Two programs evoking computations that 
establish the same net effect are equivalent in that sense and a priori not in 
any other. When we wish to compare programs in order to compare their 
corresponding computations, the basic experience is that it is impossible (or 
fruitless, unattractive, or terribly hard or what you wish) to do so when on 
the level of comparison the sequencing through the two programs differs. 
To be a little more explicit: it is only attractive to compare two programs 
and the computations they may possibly evoke, when paired computations 
can be parsed into a time-succession of actions that can be mapped on each 
other and the corresponding program texts can be equally parsed into 
instructions, each corresponding to such an action. 

This is a very strong condition. Let me give a first example. 

Excluding side-effects of the boolean inspections and assuming the value 
"B2" constant (i.e. unaffected by the execution of either "Sl" or "S2"), we 
can establish the equivalence of the following two programs: 



24 

and 

E.W. DUKSTRA 

"if B2 then 

begin while Bl do Sl end 

else 

begin while Bl do S2 end" 

"while Bl do 

begin if B2 then SI else S2 end" 

(1) 

(2) 

The first construction is primarily one in which sequencing is controlled 
by a selective clause, the second construction is primarily one in which 
sequencing is controlled by a repetitive clause. I can establish the equivalence 
of the output of the computations, but I cannot regard them as equivalent in 
any other useful sense. I had to force myself to the conclusiqn that (1) and 
(2) are "hard to compare". Originally this conclusion annoyed me very much. 
In the meantime I have grown to regard this incomparability as one of the 
facts of life and, therefore, as one of the major reasons why I regard the 
choice between (1) and (2) as a relevant design decision, that should not be 
taken without careful consideration. It is precisely its apparent triviality 
that has made me sensitive to the considerations that should influence such a 
choice. They fall outside the scope of the present section but I hope to return 
to them later. 

Let me give a second example of incomparability that is slightly more 
subtle. 

Given two arrays X[l :N] and Y[l :N] and a boolean variable "equal", 
make a program that assigns to the boolean variable "equal" the value: 
"the two arrays are equal element-wise". Empty arrays (i.e. N = 0) are 
regarded as being equal. 

Introducing a variable j and giving to "equal" the meaning "among the 
first j pairs no difference has been detected", we can write the following 
two programs. 

and 

''j: = O; equal:= true; 

while j =I= N do 
beginj: = j + 1; equal: = equal and (XU] = YU]) end" (3) 

''j: = O; equal:= true; 
while j =I= N and equal do 

beginj: = j + 1; equal:= (XU] = YU]) end". (4) 
Program (4) differs from program (3) in that repetition is terminated as 

soon as a pair-wise difference has been detected. For the same input the 
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number of repetitions may differ in the two programs and therefore the 
programs are only comparable in our sense as long as the last two lines of the 
programs are regarded as describing a single action, not subdivided into 
subactions. But what is their relation when we do wish to take into account 
that they both end with a repetition? To find this out, we shall prove the 
correctness of the programs. 

On the arrays X and Y we can define of 0 ~ j ~ N the N + I functions 
EQUALi as follows: 

for j = 0 EQUALi = true, 

for j > 0 EQUALi = EQUALi- t and (XU]= YU]). (5) 

In terms of these functions it is required to establish the net effect 

equal= EQUALN. 

Both programs maintain the relation 

equal= EQUALi 

for increasing values of j, starting withj = 0. 

(6) 

It is tempting to regard programs (3) and (4) as alternative refinements 
of the same (abstract) program (7): 

''j: = O; equal:= EQUAL0 ; 

while "perhaps still:equal -::F EQUALN" do 

beginj: = j +I; "equal:= EQUAL/' end" (7) 

in which "perhaps still: equal"# EQUALN" stands for some sort of still open 
primitive. When this is evaluated 

equal= EQUAL1 

will hold and the programs (3) and ( 4) differ in that they guarantee on different 
criteria that "equal" will have its final value EQUALN. 

In program (3) the criterion is very naive, viz. 

j = N. 

At the beginning of the repeated statement 

equal = EQUALi 

still holds. After the execution of ''j: = j + I" therefore 

equal = EQUAL1-1 

holds and the assignment statement 
"equal: = equal and (XU] = YU])" 

is now a straightforward transcription of the recurrence relation (5). 
To come to program (4) some analysis has to be applied to the recurrence 

relation (5), from which can be derived (by mathematical induction again) that 
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EQUAL1 = false implies EQUALN = false, and therefore EQUAL1 = false 
implies EQUAL1 = EQUALN. If this situation arises, the equality "equal = 
EQUALN" can also be guaranteed and this leads to program (4). The set of 
(sub)computations the repeated statement has to cope with in program (4) 
is restricted to those with the initial state "equal = true" and therefore in 
program (4) the assignment "equal:= EQUAL/' can be abbreviated to 

"equal:= (XLJ] = YLJ])" 

And now it is clear why the introduction of (7) as an abstraction of (3) 
and (4) was misleading. With "perhaps still: equal -::F EQUALN" we have 
stated the meaning of truth and falsity of a boolean expression without 
stating the expression itself and that was very tricky. We have tried to 
interpret (7) as a program in which part of the sequencing at its own level was 
undefined and varying over its refinements. As a result we have tried to view 
the last lines of (7) as a model for the last lines of both (3) and (4), but this 
was misleading because the computations to be evoked by them cannot be 
brought into a one-to-one correspondence. 

So much for programs that we consider as incomparable. Examples of 
comparable programs will be encountered in the following sections. A final 
remark: we have stated that "paired computations can be parsed into a 
time-succession of actions that can be mapped on each other". We have not 
required that actions so paired should have the same net effect! We may 
compare alternative programs for the same job but also different programs 
for similar jobs. 

9. A FIRST EXAMPLE OF STEP-WISE PROGRAM COMPOSITION 

In the section "On understanding programs." I have stressed the need for 
systematic sequencing so that the structure of the computations could be 
reflected in the structure of our program: in this way we can speak of the 
joint structuring of program and computations. In the current section I shall 
now try to give a little more content to the still rather vague notion of 
structuring computations. It will be a first effort to exploit our powers of 
abstraction to reduce the appeal made to enumerative reasoning; it will be a 
consequent application of the decompositions mentioned in the section "On 
understanding programs.". 

Instead of presenting (as a ready-made product) what I would call a well­
structured program I am going to describe in very great detail the composition 
process of such a program. I do this because programs are not there: on the 
contrary, they have to be made, and the kind of programs I am particularly 
interested in are those which I feel to be reasonably well suited to our powers 
of construction and conception. 
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The task is to instruct a computer to print a table of the first thousand 
prime numbers, 2 being considered as the first prime number. 
Note 1. This example has been chosen because on the one hand.it is sufficiently 
difficult to serve as a model for some of the problems encountered in pro­
gramming, and on the other hand its mathematical background is so simple 
and familiar that our attention is not usurped by the problem. 
Note 2. I do not claim that my final program will be "the best one", measured 
by whatever yardstick any of my readers might care to choose. At least two 
readers of a previous version of this presentation-in which remainders were 
computed via a divide operation-reacted quite vehemently to it: "But 
everyone knows that the most efficient way to generate prime numbers is by 
using the Sieve of Eratosthenes." thereby blocking their ability to read any 
further! 

The basic pattern of my approach will be to compose the program in minute 
steps, deciding each time as little as possible. As the problem analysis pro­
ceeds, so does the further refinement of my program. 

When an algorithm has to be made, the desired computation has to be 
composed from actions corresponding to a well-understood instruction 
repertoire. 

The simplest form of the program is 
description 0: 

begin "print first thousand prime numbers" end 
and when "print first thousand prime numbers" refers to an instruction from 
the well-understood repertoire, the description 0 solves the problem. For the 
sake of argument we assume that this instruction does not occur in the well­
understood repertoire. Therefore we have to conceive a computation com­
posed from "more primitive" actions that establishes the desired net effect. 
Our first proposal is to separate the generation of the prime numbers and 
their printing, and we propose description I : 

begin variable "table p"; 

end, 

"fill table p with first thousand prime numbers"; 
"print table p" 

describing that our computation consists of a time-succession of two actions 
and takes place in a state spac1: containing a single variable, called "table p". 
The first action assigns a value to this variable, the second action is controlled 
by the (then current) value of this variable. 

Again, when "fill table p with first thousand prime numbers" and "print 
table p" occur in the well-understood repertoire (and "table p" occurs among 
the implicitly available resources) then our problem is solved. Again, for the 
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sake of argument, we assume this not to be the case. This means that in our 
next refinement we have to express how the effect of these two actions can be 
established by two further (sub)computations. Apart from that we have to 
decide, how the information to be contained in the.intermediate value of the 
still rather undefined object "table p" is to be represented. 

Before going on, I would like to stress how little we have decided upon when 
writing down description l, and how little of our original problem statement 
has been taken into account. We have assumed that the availability of a 
resource "table p" (in some form or other) would permit us to compute the 
first thousand prime numbers before printing starts, and on this assumption 
we have exploited the fact that the computation of the primes can be con­
ceived independently of the printing. Of our original problem statement we 
have not taken into account very much more than that at least a thousand 
different prime numbers do exist (we had to assume this for the problem 
statement to make sense). At this stage it is still fairly immaterial what the 
concept "prime number" really means. Also, we have not committed our­
selves in the least as regards the specific layout requirements of the print-out 
to be produced. Apparently it is the strength of our approach that the 
consequences of these two rather independent aspects of our original problem 
statement seem to have been allocated in the respective refinements of our 
two constituent actions. It suggests that we have been more or less successful 
in our effort to apply the golden principle "divide and rule". 

Resuming our discussion, however, we have to ask ourselves, to what extent 
the two subcomputations can now be conceived independently of each other. 
To be more precise "Have we now reached the stage that the design of the 
two subalgorithms (that have to evoke the two subcomputations) can be 
conceived by two programmers, working independently of each other?". 

When the two actions can no longer be regarded as invoked by instructions 
from the well-understood repertoire, neither can the variable "table p" any 
longer be regarded as an implicitly available resource. And in a way similar 
to the one in which we have to decompose the actions into subactions, we 
have to choose how the variable "table p" will be composed, viz. what data 
structure we select to represent the information to be handed over via "table 
p" from the first action to the second. At some point this has to be decided 
and the questions are "when?" and "how?". 

In principle, there seem to be two ways out of this. The first one is to try 
to postpone the decision on how to structure "table p" into (more neutral, 
less problem-bound) components. If we postpone the decision on how to 
structure "table p", the next thing to do is to refine one of the actions or both. 
We can do so, assuming a proper set of operations on the still mysterious 
object "table p"; finally we collect these operations and in view of their 
demands we design the most attractive structure of "table p". 
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Alternatively, we can try to decide, here and now, upon the structure of 
"table p". Once it has been decided how the table of the first thousand primes 
will be represented, the refinements of both actions can be done fairly 
independently of each other. 

Both ways are equally tricky, for what will be an attractive algorithm for, 
say, the first subcomputation will greatly depend on the ease and elegance with 
which the assumed operations on "table p" can be realised, and if one or more 
turn out to be prohibitively clumsy, the whole edifice falls to pieces. Alter­
natively, if we decide prematurely upon a structure for "table p" we may well 
discover that the subcomputations then turn out to be awkward. There is 
no way around it: in an elegant program the structure of "table p" and the 
computations referring to it must be well-matched. I think that the behaviour 
of the efficient programmer can be described as trying to take the easiest 
decision first, that is the decision that requires the minimum amount of 
investigation (trial and error, iterative mutual adjustment etc.) for the 
maximum justification of the hope that he will not regret it. 

In order not to make this treatment unduly lengthy we assume that the pro­
grammer finds the courage to decide that now the structure of "table p" is the 
first thing to be decided upon. Once this position has been taken, two alter­
natives immediately present themselves. On the one hand we can try to exploit 
that "a table of the first 1000 primes" is not just a table of a thousand 
numbers-as would be a table of the monthly wages of 1000 employees in a 
factory-but that all these numbers are different from each other. Using 
this we can arrange the information with a linear boolean array (with con­
secutive elements associated with consecutive natural numbers) indicating 
whether the natural number in question is a prime number or not. Number 
theory gives us an estimation of the order of magnitude of the thousandth 
prime number and thereby a boundary of the length of the array that will 
suffice. If we arrange our material in that way we have prepared an easy 
mechanism to answer the question "is n (less than the maximum) prime or 
not?". Alternatively, we can choose an integer array in which the successive 
prime numbers will be listed. (Here the same estimate, obtained by means of 
number theory, will be used, viz. when a maximum value of the integer array 
elements needs to be given a priori.) In the latter form we create a mechanism 
suited to answer the question "what is the value of the kth prime number, 
fork ~ 1000?". 

We grant the programmer the courage to choose the latter representation. 
It seems attractive in the printing operation in which it is requested to print 
the prime numbers and not to print natural numbers with an indication 
whether they are prime or not. It also seems attractive for the computing 
stage, if we grant the programmer the clairvoyance that the analysis of 
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whether a given natural number is a prime number or not, will have some­
thing to do with the question of whether prime factors of the number to be 
investigated can be found. 

The next stage of our program refinement then becomes the careful state­
ment of a convention regarding the representation of the still mysterious 
object "table p" and a redefinition of the two operations in terms of this 
convention. 

The convention is that the information to be contained in "table p" will 
be represented by the values of the elements of the "integer array p[l : 1000]", 
such that for l ~ k ~ 1000 p[k] will be equal to the kth prime number, when 
the prime numbers are arranged in order of increasing magnitude. (If a 
maximum value of the integers is implicitly understood, we assume that 
number theory allows us to state that this is large enough.) 

When we now want to describe this new refinement we are faced with a new 
difficulty. Our description 1 had the form of a single program, thanks to the 
fact that it was a refinement of the single action named "print the first 
thousand prime numbers", referred to in description 0. (In more conventional 
terms: description l could have the form of a procedure body.) This no longer 
holds for our next level, in which we have to refine (simultant'ously, in a sense) 
three named entities, viz. "table p" and the two actions, and we should 
invent some sort of identifying terminology indicating what refines what. 

For the continuation of our discussion we make a very tentative proposal. 
We say: description 0 is a valid text expressed in terms of a single named 
action "print first thousand prime numbers"; let this be identified by the 
code Oa. 

Description 1 is called "l" because it is the next refinement of description 
O; it contains a refinement of Oa-the only term in which description 0 is 
expressed-and is itself expressed in terms of three named entities to which 
we attach the codes: 

"table p" 

"fill table p with first thousand prime numbers" 

"print table p" 

la 

lb 

le 

code numbers, starting with I, because description 1 is expressed in terms of 
them, and "a'', "b" and "c" being attached for the purpose of distinction. 

Now we have to describe our convention chosen for the representation of 
the information to be contained in "table p'', but this convention pertains to 
all three elements la, lb and le. Therefore we call this description 2; it should 
contain the descriptions of the three separate elements (I use the equality sign 
as separator) 
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description 2: 

la = "integer array p[l : 1000]" 

lb = "make fork from 1 through 1000 p[k] equal to the kth prime number" 

le= "printp[k] fork from 1through1000". 

Description 2 is expressed in terms of three named entities to which we 
give (in the obvious order) the codes 2a, 2b and 2c. (In code numbers, 
description 2 is very meagre: it just states that for la, lb and le, we have 
chosen the refinements 2a, 2b and 2c respectively.) 

Remark. In the representation of the information to be contained in "table 
p", we have chosen not to exploit the fact that each of the values to be printed 
occurs only once, nor that they occur in the order of increasing magnitude. 
Conversely, this implies that the action that has to take place under the name 
of 2c is regarded as a specific instance of printing any set of thousand integer 
values (it could be a table of monthly wages of thousand numbered 
employees!). The net effect of the printing action in this example is an uniquely 
defined as the first thousand prime numbers are: we conceive it, however, as a 
specific instance of a larger class of occurrences. In the further refinement of 
2c we deal with this whole class, the specific instance in this class being 
defined by the values of the elements of the array p. When people talk about 
"defining an interface" I often get the feeling that they overlook the pre­
supposed generalisation, the conception of the class of "possible" actions. 

When 2b and 2c occur among the well-understood repertoire of instructions 
(and therefore 2a among the resources implicitly available) our whole problem 
is solved. For the sake of argument we again assume this not to be the case, 
and so we find ourselves faced with the task of conceiving subcomputations 
for the actions 2b and 2c. But now, thanks to the introduction of level 2, 
the respective refinements of 2b and 2c can be designed independently. 

The refinement of 2b: "make fork from 1 through 1000 p[k] equal to the 
kth prime number". 

We are looking for description 2bl, i.e. the first refinement of 2b. We 
introduce a fresh numbering after 2b (rather than calling our next description 
"3 something") in order to indicate the mutual independence of the refine­
ments of 2b and 2c respectively. 

In description 2bl we have to give an algorithm describing how the elements 
of the array p will get their values. This implies that we have to describe, for 
instance, in what order this will happen. In our first refinement we shall 
describe just that and preferably nothing more. An obvious, but ridiculous 
version starts as follows (with "version number" enclosed within parentheses): 
2bl(l): 
beginp[l]: = 2; p[2]: = 3; p[3]: = S; p[4]: = 7; p[S]: = 11; ......... end 
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implying that the programmer's knowledge includes that of a table of the first 
thousand primes. We shall not pursue this version as it would imply that the 
programmer hardly needed the machine at all. 

The first prime number being given ( = 2), the thousandst being assumed 
unknown to the programmer, the most natural order in which to fill the ele­
ments of the array p seems to be in the order of increasing subscript value, 
and if we express just that we arrive (for instance) at 

'Zbl(2): 

begin integer k, j; k: = O; j: = 1; 

end 

while k < 1000 do begin "increase j until next prime number"; 

k:= k +l;p[k]:=jend 

By identifying k as the number of primes found and by verifying that our 
first prime number ( = 2) is indeed the smallest prime number larger than 1 
(=the initial value of j), the correctness of 2bl(2) is easily proved by 
mathematical induction (assuming the existence of a sufficient number of 
primes). 

Description 2bl(2) is a perfect program when the operation described by 
"increase j until next prime number"-call it 2bl(2)a-occurs among the 
repertoire, but let us suppose that it does not. In that case we have to express 
in a next refinement how j is increased (and, again, preferably nothing more). 
We arrive at a description of level 2b2(2) 

2bl(2)a = 

begin boolean jprime; 

repeatj: = j + 1; 

end 

"give to jprime the meaning: j is a prime number" 

until jprime 

Remark. Here we use the repeat-until clause in order to indicate that j 
has always to be increased at least once. 

Again its correctness can hardly be subject to doubt. If, however, we 
assume that the programmer knows that, apart from 2, all further prime 
numbers are odd, then we may expect him to be dissatisfied with the above 
version because of its inefficiency. The price to be paid for this "lack of 
clairvoyance" is a revision of version 2bl(2). The prime number 2 will be 
dealt with separately, after which the cycle can deal with odd primes only. 
Instead of 2b1(2) we come to 
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2bl(3): 

begin integer k,j; p[l]: = 2; k: = 1;j:=1; 

while k < 1000 do 

end 

begin "increase odd j until next odd prime number"; 

k: = k + 1; p[k]: = j 

end 
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where the analogous refinement of the operation between quotes-"2bl(3)a" 
say-leads to the description on level 2b2(3): 

2bl(3)a = 

begin booleanjprime; 

repeatj: = j + 2; 

end 

"give for odd j to jprime the meaning: j is a prime number"; 

until jprime 

The above oscillation between two levels of description is in fact nothing 
else but adjusting to our convenience the interface between the overall 
structure and the primitive operation that has to fit into this structure. This 
oscillation, this form of trial and error, is definitely not attractive, but with a 
sufficient lack of clairvoyance and being forced to take our decisions in 
sequence, I see no other way: we can regard our efforts as experiments to 
explore (at a rather low cost!) where the interface can probably be most 
conveniently chosen. 

Remark. Both 2bl(2) and 2bl(3) can be loosely described as 

begin "set table p and j at initial value"; 

end 

while "table p not full" do 

begin "increase j until next prime number to be added"; 

"add j to table p" 

end 

but we shall not do this as the sequencing in the two versions differs (see 
"On comparing programs") and we regard them as "incomparable". By 
choosing 2bl(3) we decide that our trial 2bl(2)-as 2bl(l)-is no longer 
applicable and therefore rejected. 

The change from 2bl(2) to 2bl(3) is justified by the efficiency gain at the 
levels of higher refinement. This efficiency gain is earned at level 2b2, because 
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now j can be increased by 2 at a time. It will also manifest itself in the still 
open primitive at level 2b2(3) where the algorithm for "give for odd j to 
jprime the meaning: j is a prime number" has only to cater for the analysis 
of odd values of j. 

Again: in 2b2(3) we have refined 2bl(3) with an algorithm which solves our 
problem when "give for oddj to jprime the meaning: j is a prime number"­
call it "2b2(3)a"-occurs among the well-understood repertoire. We now 
assume that it does not, in other words we have to evoke a computation 
deciding whether a given odd value of j has a factor. It is only at this stage 
that the algebra really enters the picture. Here we make use of our knowledge 
that we only need to try prime factors: furthermore we shall use the fact that 
the prime numbers to be tried can already be found in the filled portion of 
the array p. 

We use the facts that 
(1) j being an odd value, the smallest potential factor to be tried is p(2], 

i.e. the smallest prime number larger than 2 
(2) the largest prime number to be tried is p[ord - 1] when p[ord] is the 

smallest prime number whose square exceeds j. 
(Here I have also used the fact that the smallest prime number whose square 

exceeds j can already be found in the table p. In all humility I quote Don 
Knuth's comment on an earlier version of this program, where I took this 
fact for granted: 

"Here you are guilty of a serious omission! Your program makes use of a 
deep result of number theory, namely that if Pn denotes the nth prime 
number we always have 

Pn+i < p/." 
Peccavi.) 

If this set is not empty, we have a chance of finding a factor, and as soon 
as a factor has been found, the investigation of this particular j value can be 
stopped. We have to decide in which order the prime numbers from the set will 
be tried, and we shall do so in order of increasing magnitude, because the 
smaller a prime number the larger the probability of its being a factor of j. 

When the value of ord is known we can give for "give for odd j to jprime 
the meaning: j is a prime number" the following description on level 2b3(3): 

2b2(3)a = 

begin integer n; n: = 2; jprime: = true; 
while n < ord and jprime do 

end 

begin "give tojprime the meaning: p[n] is not a factor ofj"; n: = n + 1 
end 
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But the above version is written on the assumption that the value of ord, 
a function of j, is known. We could have started this refinement with 

begin integer n, ord; 

ord: = 1; while p[ord] f 2 ~ j do ord: = ord + 1; 

i.e. recomputing the value of "ord" afresh, whenever it is needed. Here some 
trading of storage space for computation time seems indicated: instead of 
recomputing this function whenever we need it, we introduce an additional 
variable ord for its current value: it has to be set when j is set, it has to be 
adjusted whenj is changed. 

This, alas, forces upon us some reprogramming. One approach would be to 
introduce, together withj, an integer variable ord and to scan the programs in 
order to insert the proper operations on ord, whenever j is operated upon. I do 
not like this because at the level at which j is introduced and has a meaning, 
the function "ord" is immaterial. We shall therefore try to introduce ord only 
at its appropriate level and we shall be very careful. 

For 2b: "make for k from 1 through 1000 p[k] equal to the kth prime 
number" we write (analogous to level 2bl(3)) 
level 2b1(4):· 
begin integer k, j; p[l]: = 2; k: = l; 

"set j to one"; 

end 

while k < 1000 do 
begin "increase odd j until next odd prime number"; 

k: = k + 1; p[k]: = j 
end 

expressed in terms of 
2b1(4)a "increase oddj until next odd prime number" 
2b1(4)b "setj to one". 

In our next level we only introduce the subcomputation for 2bl(4)a; the 
other is handed down. 
level 2b2( 4): 
2bl(4)a = 

begin boolean jprime; 

end: 

repeat "increase j with two"; 
"give for oddj to jprime the meaning: j is a prime numher" 

until jprime 
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2bl(4)b = 2b2(4)b 

expressed in terms of 

2b2( 4)b still meaning "set j to one" 

2b2(4)c "increase j with two" 

2b2( 4)d "give for odd j to jprime the meaning: j is a prime number". 

It is only at the next level that we need to talk about ord. Therefore we 
now write 

level 2b3(4): integer ord; 

2b2(4)b = 

beginj: =I; "set ord initial" end; 

2b2(4)c = 

beginj: = j + 2; "adjust ord" end; 

2b2(4)d = 

begin integer n; n: = 2; jprime: = true; 

while n < ord and jprime do 

end 

begin "give to jprime the meaning: p[n] is not a factor of j"; 

n: = n +I 
end 

expressed in terms of 

2b3(4)a "set ord initial" 

2b3(4)b "adjust ord" 

2b3(4)c "give tojprime the meaning: p[n] is not a factor ofj". 

In our next level we give two independent refinements. (Note. We could 
have given them in successive levels, but then we should have to introduce an 
arbitrary ordering to these two levels. We could also try to treat the refine­
ments separately-Le. as separately as 2b and 2c-but we feel that it is a little 
premature for this drastic decision.) We are going to express 

(I) that, ord being a non-decre:\sing function of j and j only increasing in 
value, adjustment of ord implies a conditional increase; 

(2) that, whether p[n] is a factor of j is given by the question whether the 
remainder equals zero. 

This leads to 

level 2b4( 4): 

2b3(4)a = 2b4(4)a 
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2b3(4)b = 

begin while "ord too small" do "increase ord by one" end; 

2b3(4)c = 

begin integer r; 

"maker equal to remainder of j over p[n]"; 

jprime: = (r =/: 0) 

end 

expressed in terms of 

2b4(4)a still meaning "set ord initial" 

2b4(4)b "ord too small" 

2b4(4)c 

2b4(4)d 

"increase ord by one" 

"maker equal to remainder of j over p[n]" 
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If we have a built-in division, the implementation of "make r equal to the 
remainder ofj over p[n]" can be assumed to be an easy matter. The case that 
the refinement of 2b4( 4)d can be treated independently is now left to the 
interested reader. To give the algorithm an unexpected turn we shall assume 
the absence of a convenient remainder computation. In that case the algorithm 

"r: = j; while r > 0 do r: = r - p[n]" 

would lead to the (non-positive) remainder but it would be most unattractive 
from the point of view of computation time. Again this asks for the intro­
duction of some additional tabulated material (similar to the way in which 
"ord" has been introduced). 

We want to know whether a gtven value ofj is a multiple of p[n] for n < ord. 
In order to assist us in this analysis we introduce a second array in the 
elements of which we can store multiples of the successive prime numbers, as 
close to j as is convenient. In order to be able to give the size of the array we 
should like to know an upper bound for the value of ord; of course, 1000 
would be safe, but number theory gives us 30 as a safe upper bound. We 
therefore introduce 

integer array mult [1 : 30] 

and introduce the convention that for n < ord, mult [n] will be a multiple of 
p[n] and will satisfy the relation 

mult [n] < j + p[n] 

a relation that remains invariantly true under increase ofj. Whenever we wish 
to investigate, whether p[n] is a factor of j, we increase mult [n] by p[n] as 
long as 

mult [n] < j. 
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After this increase mult [n] = i is the necessary and sufficient condition for 
j to be a multiple of p[n]. 

The low maximum value of ord has another consequence: the inspection 
"ord too small" can be expressed by 

"p[ord] j 2 ~ j" 

but this inspection has to be performed many times for the same value of ord. 
We may assume that we can speed up matters by introducing a variable 
(called "square") whose value equals p[ord] j 2. 

So we come to our final 

level 2b5(4): 

integer square; integer array mult [I : 30]; 

2b4(4)a = 

begin ord: =I; square:= 4 end; 

2b4(4)b = 

(square ~ j); 

2b4(4)c = 

begin mult [ord]: = square; ord: = ord + l; square:= p[ord] j 2 end; 

2b4(4)d = 

begin while mult [n] < j do mult [n]: = mult [n] + p[n]; r: = j - mult [n] end 

which has made our computation close to an implementation of the Sieve of 
Eratosthenes! 

Note. In the refinement of 2b4(4)d, when mult[n] is compared with the 
current value of j, mult[n] is increased as much as possible; this could have 
been done in steps of 2 * p[n], because we only submit odd values of j and 
therefore are only interested in odd multiples of p[n]. (The value of mult[l] 
remains, once set, equal to 4.) 

The refinement of 2c "print p[k] fork from I through 1000" is left to the 
reader. I suggest that the table should be printed on five pages, each page 
containing four columns with fifty consecutive prime numbers. 

* * 
* 

Here I have completed what I announced at the beginning of this section, 
viz. "to describe in very great detail the composition process of such a 
[well-structured] program". I would like to end this section with some 
comments. 

The most striking observation is that our treatment of a very simple 
program has become very long, too long indeed for my taste and wishes, 
even if I take into account that essentially we did two things: we made a 
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program and we discussed extensively the kind of considerations leading 
to it. It is not so much the length of the latter part that bothers me (writers 
fill whole novels with the description of human behaviour); what bothers 
me is the length of the texts at the various levels. Therefore we may expect 
that notational technique will be one of our main concerns. 

But we have also had encouraging experiences. Giving full recognition to 
the fact that the poor programmer cannot decide all at once, we succeeded 
to a large extent in building up this program one decision at a time, and in 
our example quite a lot of programming was already done in its definite 
form while major decisions were still left open: irrespective of whether the 
final decisions are taken this way or that way, the coding of the earlier levels 
remains valid. In view of the requirement of program manageability, this 
is very encouraging. 

10. ON PROGRAM FAMILIES 

In our previous section we have considered the design of a program for a 
given task, but in doing so, we have considered our final program as an 
isolated object, a structure standing all by itself and to be judged on its 
private merits. Its structure was the result of successive decompositions; 
the purpose of this structure was to make a program in such a way that its 
correctness could be proved without undue intellectual labour. 

In this section I am going to explain why I prefer to regard a program not 
so much as an isolated object, but rather as a member of a family of "related 
programs". In traditional terminology we can think about related programs 
either as alternative programs for the same task or as similar programs for 
similar tasks. 

Why cannot the programmer confine his attention to the program he has 
to make and why has he to take into account such a whole family as well? 
For one thing, it is hard to claim that you know what you are doing unless 
you can present your act as a deliberate choice out of a possible set of things 
you could have done as well. But if we want to give due recognition to the 
difficulties that are specific to the construction of large complicated programs, 
there is a very practical justification. (And we have to recognise these specific 
difficulties: experience has shown that someone's proven ability to do an 
excellent job on a given scale is by no means a guarantee that, when faced 
with a much larger job, he will not make a mess of it.) 

Certainly, one of the properties of large programs is that they have to be 
modified in the course of their life-time. A very common reason is that the 
program, although logically correct, turns out to evoke unsatisfactory 
computations (for instance unsatisfactory in one or more quantitative 
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aspects). A second reason is that, although the program is logically correct 
and even satisfactorily meeting the original demands, it turns out to be a 
perfect solution for not quite the right problem; one is faced with a re­
statement of the problem and adaptation of the program. 

The naive approach to this situation is that we must be able to modify 
an existing program (and for this the curious term "program maintenance" 
has established itself). The task is then viewed as one of text manipulation; 
as an aside we may recall that the need to do so has been used as an argument 
in favour of punched cards as against paper tape as an input medium for 
program texts. The actual modification of a program text, however, is a 
clerical matter, which can be dealt with in many different ways; my point 
is that if we have our grip on the program text primarily as on a linear 
sequence of symbols, the task to establish and to describe what has to be 
modified tends to become prohibitively difficult when the texts get longer and 
longer. 

If a program has to exist in two different versions, I would rather not 
regard (the text of) the one program as a modification of (the text of) the 
other. It would be much more attractive if the two different programs could, 
in s9me sense or another, be viewed as, say, different children from a common 
ancestor, where the ancestor represents a more or less abstract program, 
embodying what the two versions have in common. Hopefully, this common 
ancestor can be readily recognised in the (prae-)documentation. The intentions 
are 

(1) that the two versions share their respective correctness proofs as far 
as possible; 

(2) that the two versions share (mechanically) as far as possible the 
common (or "equal") coding; 

(3) that the regions affected by the modification are already well-isolated, 
a condition which is not met when the transition requires "brain-made" 
modifications scattered all over the text. 

Well, this is a lofty goal. It has been inspired by the potential similarity 
between the task of program modification and program composition: when 
a program has been built up to an intermediate stage of refinement, ·what 
has then been written down is in fact a suitable "common ancestor" for all 
possible programs produced by further refinements. It is the similarity 
between "the decision to be changed" and "the decision still left open": 
in both cases we are left with what remains when we abstract from such a 
decision. 

There is a second source of inspiration to be found in our experience. 
In the process of step-wise program composition, proceeding from outside 
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inwards, going towards progressive refinements, we have in the earlier 
stages not only postponed deciding how certain things would be done, but 
we have also postponed committing ourselves as to exactly what had to be 
done: with progressing refinement, more detail about the actual problem 
statement has been brought into the picture. (Later examples will show this 
even more clearly than the problem of the prime table.) As a result, our 
first levels of refinement are equally applicable for the members of a whole 
class of problem statements. 

In other words, in the step-wise approach it is suggested that even in the 
case of a well-defined task, certain aspects of the given problem statement 
are ignored at the beginning. That means that the programmer does not 
regard the given task as an isolated thing to be done, but is invited to view 
the task as a member of a whole family; he is invited to make the suitable 
generalisations of the given problem statement. By successively adding more 
detail he eventually pins his algorithm down to a solution for the given 
problem. 

All this is well-known, each competent programmer does so all the time. 
Yet I stress it for a variety of reasons. If the given problem statement is an 
elaborate affair, i.e. too much to be grasped in a single glance, he must 
approach (and dissect) the problem statement in this way (see the section 
"On our inability to do much"). Secondly, if the given problem is perfectly 
defined, it is a wise precaution to anticipate as many future changes in the 
problem statement as one can foresee and accommodate. This remark is 
not an invitation to make one's program so "general" that it becomes, say, 
unacceptably inefficient, as might easily happen, when the generalisations 
of the problem statement are ill-considered (which might easily happen 
when they have been dictated by the Sales Department!) But in my experience, 
even in traditional programming, it is a very worth-while exercise to look 
for feasible generalisations of conceivable utility, because such considerations 
may give clear guidance as to how the final program should be structured. 
But such considerations boil down to . . . . . tonceiving (more or less 
explicitly) a whole program family! 

In an earlier section ("On the reliability of mechanisms.") the need for 
careful program structuring has been put forward as a consequence of the 
requirement that program correctness can be proved. In this section we are 
faced with another reason: program structure should be such as to anticipate 
its adaptations and modifications. Our program should not only reflect 
(by structure) our understanding of it, but it should also be clear from its 
structure what sort of adaptations can be catered for smoothly. Thank 
goodness, the two requirements go hand in hand. 
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11. ON TRADING STORAGE SPACE FOR COMPUTATION SPEED 

In present-day sequential computers (spring 1969) we can distinguish two 
main components, an active one (the processor) and a passive one (the 
store). The active component has the specific function to be fast, the passive 
one has the specific function to be large. The following is written on the 
assumption that this functional division is here to stay for a sufficient period 
of time to make a study of its consequences relevant. 

From the point of view of the programmer, storage space and computation 
time are then two distinct resources and I regard it as one of the responsibilities 
of the programmer-rather than of the system-to allocate them, i.e. to 
divide the load between them. It is to the consequences of this responsibility 
that the present section is devoted. This section is not devoted to techniques 
of estimating the various loads, i.e. to give quantitative criteria by which to 
influence the programmer's choice: it is devoted to the logical relation 
between the alternatives between which the programmer may choose. 

Note. It is not inconceivable that some of the choices can be left to the 
system. In all but the most trivial cases, however, design and establishment 
of the equivalence seem to require mathematical invention from the side of 
the programmer. All efforts to automate this problem-solving activity fall 
outside the scope of this monograph. 

In its most simple form we are faced with a computation that regularly 
needs the value of "FUN(arg)", where "FUN" is a given, computable 
function defined on the current value of one or more stored variables, 
collectively called "arg". In version A of the program, only the value of arg 
is stored and the value of FUN(arg) is computed whenever needed. In version 
B, an additional variable, "fun" say, is introduced, whose sole purpose is to 
record the value of "FUN(arg)" corresponding to the current value of arg. 

Where version A has 

"arg: = ....... " (i.e. assignment to arg) 

version B will have 

"arg:= ..... ; fun:= FUN(arg)" 

thereby maintaining the relation 

fun = FUN ( arg) 

As a result of the validity of this relation, wherever version A calls for the 
evaluation of FUN(arg), version B will call for the current value of the 
variable fun. 

There are two possible reasons to prefer version B to version A. When 
the value of FUN(arg) is more frequently requested than assignments to 
arg take place, version B could require less computation time. If necessary 
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the techniq"ue can be refined by the introduction of a further (boolean) 
variable "fun up to date'', indicating whether the relation "fun = FUN(arg)" 
is assumed to hold. Assignment to arg is then associated with 

"fun up to date:= false"; 
whenever the value of FUN(arg) is needed, inspection of this boolean 
variable will tell, whether FUN(arg) has to be computed afresh; if so, the 
computed value will be assigned to fun and in accordance with its meaning 
"fun up to date" will be set to true. Let us call the last program version C. 
It is clear that these three programs, only differing where version A assigns 
to arg or uses the value of FUN(arg), are equivalent as far as their output 
is concerned; it is certainly not inconceivable that version B or C is derived 
from version A by mechanical means. 

But quite often the situation is not as simple as that and now we come to 
the second reason for introducing such a variable "fun". Often it is very 
unattractive to compute FUN(arg) from scratch for arbitrary values of arg, 
while it is much easier to compute how the value of FUN(arg) changes 
when the value of arg is changed. In that case, the adjustment of the value 
of "fun" is more intimately linked with the nature of the functional depen­
dence than is suggested by 

"arg:= ....... ; fun:= FUN(arg)". 

Often this possibility is not only intimately linked to the nature of the 
functional dependence, but also to the "history of the variable arg" as the 
computation proceeds! We have seen a very striking example in the program 
for the prime table (see Section "A first example of step-wise program 
composition") with the introduction of "ord", which is functionally depen­
dent on "j", viz. "ord" is the minimum value satisfying 

p[ord] j 2 > j 
where the adjustment of "ord" was a very attractive operation thanks to 
the fact that "j" was monotonically increasing in time. 

In my understanding of programs I want such additional variables that 
store redundant information, to be clearly recognised as such, even if it is a 
somewhat undefined functional relationship as in the case of the table 
"mult" from the same example. I am strongly inclined to view such programs 
as, say, optimising refinements of a more abstract program, even when the 
optimisation effected by the additional variables is essential when we want 
to make a program with a realistic performance. From the point of view of 
efficiency such an additional variable may be so vital that it may strike one 
as irresponsible daydreaming to conceive a level in which its presence has 
been abstracted from. The way in which such an additional variable is 
manipulated is often experienced as the body of the algorithm: it is often 
there that we harvest the fruits of our mathematical ingenuity. The point 
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is that, although the possibility of at least one such optimising refinement is 
essential for making something with a realistic performance, on closer 
inspection one often discovers that such an optimising refinement is far 
from unique, even on its coarsest level. 

Note. I remember one program in which the additional information was so 
redundant that not only the value of "fun" could be derived from that of 
"arg" but also the other way round. Suddenly the relation between "fun" 
and "arg" became symmetric, and I have been seriously bothered by the 
question: what entitled me to treat them so asymmetrically? The program 
in question generated all the solutions of a combinatorial puzzle. On closer 
inspection it turned out that there was a second combinatorial puzzle, where 
it could be proved that there existed a one-to-one correspondence between 
the solutions of the two problems. If I had solved the second combinatorial 
problem I would have found the role of "fun" and "arg" interchanged! 
In traditional programming, where such functional dependencies are not 
explicitly shown, the two puzzles would probably be solved by identical 
programs, whereas I made two differently structured programs. And I think 
rightly so, because the single program for the two puzzles needed a different 
proof for its correctness, depending on which puzzle it was supposed to solve, 
and this seems somewhat unfair when we also wish that our understanding 
of the computations be reflected in the structure of our programs! 

12. ON A PROGRAM MODEL 

Before we have a program we must have composed it; after we have a program 
-if there was any sense in making it-we shall have it executed. In this section 
I shall not stress the activities of program composition and of program 
execution too much, and I shall try to view the program as a static object. 
We want to view it as a highly structured object and our main question is: 
what kind of structures do we envisage and why? Our hope is that eventually 
we shall arrive at a program structure that is both nice to compose and nice 
to execute. Mentally, of course, I am unable to ignore these processes, but 
at present I do not want to discuss them; in particular: I do not want to 
discuss a design methodology (whether to work "from outside inwards" or 
the other way round), nor do I want to discuss implementation consequences 
now. Again, in order not to complicate matters too much, I shall restrict 
myself to sequential programs. 

If I judge a program by itself, my central theme, I think, is that I want 
the program written down as I can understand it, I want it written down 
as I would like to explain it to someone. However, without further qualifica­
tion these are just motherhood statements, so let me try and see whether I 
can be more specific. 
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Let us consider a very simple computation, in which three distinct actions 
can be distinguished to take place in succession, say: input of data, manipula­
tion (i.e. the computation proper) and the output of the results. One way of 
representing the program is as a long string of statements: 

begin 

end 

The next form adds some labels for explanatory purposes: 

begin 

begin of input: 

begin of manipulation: 

begin of output: 

end 
suggesting to us, when we read the text, what is going to happen next. 

Still better, we write: 

begin 
input: 

manipulation: 

output: 

end 

begin 

end; 
begin 

end; 
begin 

end 

where the labels are considered less as markers of points in the program 
text than as names of regions-as indicated by the bracket pairs "begin -
end" -that follow the label, or as names of the three actions in which the 
computation has been decomposed. However, if we take this point of view, 
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the three "labels" are still comments, i.e. explanatory noise for the benefit 
of the interested (human) reader, whereas I would like to consider them as 
an integral part of the program. I want my program text to reflect somewhere 
the fact that the computation has been decomposed into a time-succession 
of the three actions, whatever form these might take upon closer inspection. 
A way of doing this is to write somewhere the (textual) succession of the 
three (abstract) statements 

"input; manipulation; output" 

on the understanding that the time-succession of these three actions will 
indeed be controlled from the above textual succession, whereas the further 
refinements of these three actions will be given "somewhere else", perhaps 
separately, but certainly without relative ordering. 

Well, if closed subroutines had not been invented more than twenty years 
ago, this would have been the time to do it! In other words: we are returning 
to familiar grounds, to such an extent that many of my readers will even 
feel cheated! I don't, because one should never be ashamed of sticking to a 
proven method as long as it is satisfactory. But we should get a clear picture 
of the benefits we should like to derive from it, if necessary we should adjust 
it, and finally we should create a discipline for using it. Let me therefore 
review the subroutine concept, because my appreciation for it has changed 
in the course of the last year. 

I was introduced to the concept of the closed subroutine in connection 
with the EDSACt, where the subroutine concept served as the basis for a 
library of standard routines. Those were the days when the construction of 
hardware was a great adventure and many of the standard routines were 
means by which (scarce!) memory and computation time could be traded 
for circuitry: as the order code did not comprise a divide instruction, they 
had subroutines for division. Yet I do not remember having appreciated 
subroutines as a means for "rebuilding" a given machine into a more 
suitable one, curiously enough. Nor do I remember from those days sub­
routines as objects to be conceived and constructed by the user to reflect 
his analysis: they were more the standard routines to be used by the user. 
Eventually I saw them mainly as a device for the reduction of program 
length. But the whole program as such remained conceived as acting in a 
single homogeneous store, in an unstructured state space; the whole computa­
tion remained conceived as a single sequential process performed by a single 
processor. In the following years, in the many programming courses I gave, 
I preached the gospel faithfully and I have often explained how the 

t "The Preparation of Programs for an Electronic Digital Computer; with Special 
Reference to the EDSAC and the use of a Library of Subroutines .. , M. V. Wilkes, 
D. J. Wheeler and S. Gill, Addison-Wesley Press, 1951. 
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calling sequence handed over the return address and how the subroutine 
would then begin by setting "the link"-i.e. the return jump-at its own 
end. At present I would rather view the main program as _naving its own 
instruction counter that just continues "counting" upon the completion of 
the subroutine execution and would certainly not regard the "sleeping value" 
as a parameter handed over to the subroutine. (Still the old view has found 
its way into the hardware of many machines. We have seen machines in 
which a subroutine jump stored the link at "address zero" of the subroutine 
and ordered instruction fetch to be resumed at "address one", an arrangement 
which makes re-entrant code and recursive subroutines somewhat hard to 
implement. And even in this decade we find machines which store at program 
interrupt the "program status" of the interrupted program at a location 
associated with the interrupt rather than with the interrupted program!) 

Ten years later, when ALGOL 60 emerged, the scene changed and we did 
not talk any more about closed subroutines: we called them "procedures" 
instead. They remained to be appreciated by the programmer as a very 
handy means for shortening the program text, and more and more pro­
grammers started to use them for the purpose of structuring, so that program 
adaptation to foreseen changes in problem specification could be confined 
to the replaeement of one or more procedure bodies, or to a procedure call 
with some actual parameters changed. But the main novelty was the concept 
of the local variables. 

This was reflected in two important aspects. The first one was the concept 
of "scope", i.e. the idea that not all variables are homogeneously accessible 
all through the program: local variables of a procedure are inaccessible from 
outside the procedure body, because outside it they are irrelevant. What 
local variables a procedure needs to do its private task is its private concern; 
it is no concern of the calling main program and the fact that the main 
program can (and must!) be conceived independently of these local variables 
is judiciously reflected. We may have some misgivings about the specific 
scope rules, as embodied in ALGOL 60, but we should appreciate them as a 
very significant step in the right direction. 

The second aspect of the novelty was given by the fact that procedures 
could be used recursively, more precisely, that a procedure was allowed to 
call itself, either directly or indirectly. The virtue of this facility has been 
the subject of many hot debates; as far as I can see the discussion has died 
down. The argument against recursive procedures was always an efficiency 
argument: non-re-entrant code could be executed so much more efficiently. 
But with the advent of multiprogramming another need for flexible storage 
allocation has emerged. And if there are still machines in which non­
re-entrant code can be executed much more efficiently, i.e. in which the use 
of recursivl:. routines is punished by too heavy a penalty, then I would venture 
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the opinion that the structure of such a ma ;hine should now be called 
somewhat old-fashioned. The recursive procedure, however, forced upon 
us the recognition of the difference between its (static) text and its (dynamic) 
activation-its "incarnation" as it has been called. The procedure text is 
one thing; the set oflocal variables it operates upon this time is quite another 
matter. 

So far, so good, but now some of its shortcomings (and I don't care, 
whether you call them linguistic or conceptual). Local variables are "created" 
upon procedure entry, and are "annihilated" upon procedure exit. It is 
precisely this automatic control over the life-time of variables pertaining to 
a procedure incarnation that allows us to implement the (recursive) procedures 
by means of a stack (i.e. a last-in-first-out storage arrangement). The fact 
that local variables pertaining to an incarnation only exist during the incar­
nation make it impossible for the procedure to transmit information behind 
the scenes from one incarnation to the next. To overcome this the concept 
"own" has been introduced, but this is no solution to the problem: what 
own variables are really good for becomes very unclear in the case of 
recursion and, secondly, it is impossible to write a set of procedures sharing 
a number of own variables. (We can simulate this by declaring them in an 
o.uter block, embracing the procedure declarations, but then the scope 
rules make them too generally accessible: they can then no longer be regarded 
as "behind the scenes".) Our conclusion-by no means new and by no 
means only mine!-is that the concept "own" as introduced in ALGOL 60 
must be regarded as ill-considered, and that we must look for new ways to 
control and describe life-time, accessibility and identity of local variables. 

But I have still another complaint about the procedure concept, and that 
is that it is still primarily regarded as a means for shortening the program 
text (although it may be a text of unknown length as in the case of recursion). 
The semantics of the procedure call are described in terms of the famous 
"copy rule": the procedure call is to be understood as a short-hand, because, 
semantically speaking, we should replace it with a copy of the text of the 
procedure body (with suitable adjustments of identifiers and substitutions 
for parameters) whereupon the thus modified text will be executed by the 
same machine as the one executing the main program. It remains (~ repre­
sentation for) a single program text to be executed by a single sequential 
machine. And it is precisely this picture of a single machine that does not 
satisfy me any longer. 

I want to view tht> main program as executed by its own, dedicated 
machine, equipped with the adequate instruction repertoire operating on 
the adequate variables and sequenced under control of its own instruction 
counter, in order that my main program would solve my problem if I had 
such a machine. I want to view it that way, because it stresses the fact that 
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the correctness of the main program can be discussed and established 
regardless of the availability of this (probably still virtual) machine: I don't 
need to have it, I only need to have its specifications as far as relevant for 
the proper execution of the main program under consideration. 

For me, the conception of this virtual machine is an embodiment of my 
powers of abstraction, not unlike the way in which I can understand a 
program written in a so-called higher level language, without knowing how 
all kinds of operations (such as multiplication and subscription) are imple­
mented and without knowing such irrelevant details as the number system 
used in the hardware that is eventually responsible for the program execution. 

In actual practice, of course, this ideal machine will turn out not to exist, 
so our next task-structurally similar to the original one-is to program 
the simulation of the "upper" machine. In programming this simulation 
we have to decide upon data structures to provide for the state space of the 
upper machine; furthermore we have to make a bunch of algorithms, each 
of them providing an implementation of an instruction assumed for the 
order code of the upper machine. Finally, the "lower" machine may have a 
set of private variables, introduced for its own benefit and completely outside 
the realm and scope of the upper machine. But this bunch of programs is 
written for a machine that in all probability will not exist, so our next job 
will be to simulate it in terms of programs for a next-lower machine, etc. 
until finally we have a program that can be executed by our hardware. 

If we succeed in building up our program along the lines just given, we 
have arranged our program in layers. Each program layer is to be understood 
all by itself, under the assumption of a suitable machine to execute it, while 
the function of each layer is to simulate the machine that is assumed to be 
available on the level immediately above it. 

Why this model? What are the benefits we hope to derive from it? Let me 
try to list them. 

(I) Our experience as recorded in "A first example of step-wise program 
composition" strongly suggests that the arrangement of various layers, 
corresponding to different levels of abstraction, is an attractive vehicle for 
program composition. 

(2) It is not vain to hope that many a program modification can now be 
presented as replacement of one (virtual) machine by a compatible one. 

(3) We may hope that the model will give us a better grip on the problems 
that arise when a program has to be modified while it is in action. If a 
machine at a given level is stopped between two of its instructions, all lower 
machines are completely passive and can be replaced, while all higher 
machines must be regarded as engaged in the middle of an instruction: their 
state must be considered as being in transition. In a sequential machine the 
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state can only be interpreted in between instruction executions and the 
picture of this hierarchy of machines, each having its own instruction counter 
-"counting its instructions"-seems more profitable if we wish to decide 
at any given moment, what interpretations are valid. In the usual pro­
gramming language in which computational progress is measured in a 
homogeneous measure-say "the grain" of one statement-I feel somewhat 
helpless when faced with the question of which interpretations are valid 
when. 

(4) We may hope that the model will even assist us in recovery problems 
-total or partial-when some malfunctioning has been detected. (Recently 
I have been involved in the design and construction of a multiprogramming 
system, but one of the most annoying things was our total inability to 
estimate (mechanically) the scope of the disaster when a memory cell gave a 
parity alarm. The only safe reaction we could implement was instantaneous 
machine stop, hardly a solution to be proud of!) 

(5) The picture of a layered hierarchy of machines provides a counter 
poison to one of the dangers evoked by ruthless application of the principle 
"Divide and Rule", viz. that different components are programmed so 
independently of each other that duplication of work (or worse) takes place. 
The fact that a layer contains "a bunch of programs" to be executed by some 
conceptual machine stresses the fact that the programs of this bunch are 
invited to share the same primitives. Separation of tasks is a good thing, on 
the other hand we have to tie the loose ends together again! 

13. A SECOND EXAMPLE OF STEP-WISE PROGRAM COMPOSITION 

With a picture of program structure as a layered hierarchy of machines 
emerging, my fingers are itching to play with it, i.e. to make another program. 
The notational techniques employed should not be regarded as a well­
considered proposal: they have been chosen to suit my fancy and should 
be regarded as part of the experiment. 

The problem is the following one. There is given a line printer which is 
controlled by two commands "NLCR" (New Line Carriage Return) which 
defines the utmost left position of the next line as the "currently printable 
position", and the command "PRSYM(n)" which prints a character 
identified ~y the value of the integer parameter n on the currently printable 
position and defines the position immediately to the right of the printed 
position as the new currently printable position. (For our discussion we 
can regard lines of infinite length as permissible.) We shall only make use of 
two specific values of n, called "space" and "mark" respectively. "PRSYM 
(space)" causes the currently printable position to remain blank, "PRSYM 
(mark)" will print a given, visible character, some sort of asterisk say. 
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Furthermore two integer function of an integer argument are given, 
satisfying 

for 0 ~ i < 1000 : 0 ~ fx(i) < 100 and 0 ~ fy(i) < 50. 

Now we have to make a program printing 50 lines, numbered from top to 
bottom by a y-coordinate running from 49 through 0, the positions on a line 
being numbered from left to right by an x-coordinate running from 0 through 
99. On the thousand positions (or less in the case of coincidence) given by 

x = fx(i) and y = fy(i) for some i satisfying 0 ~ i < 1000 

a mark has to be printed; all other positions on the paper have to remain 
blank. In other words: a curve is given in a discrete parameter representation 
and we wish to use the line printer as a digital plotter. 

I have used this problem extensively in viva voce examinations and the 
majority of the students quickly discover that, due to the absence of OLCR 
(Old Line Carriage Return) and of a "backspace", the order in which the 
printable positions have to be served is dictated by the printing commands 
and, secondly, that this order has nothing to do with the order of the marks 
if we number them, say, in the order of increasing i. As a result they quickly 
conclude that the use of storage seems indicated: first the thousand i-values 
should be scanned, i.e. the page image should be stored in a convenient 
manner, while afterwards, under control of the stored image, the page 
should be printed. (To be more precise: we assume that the computer has 
sufficient store for this purpose and that the computation of the function 
values ''fx (i)" and ''fy(i)" may be so time-consuming that we wish to have 
them computed only once for each i-value.) 

We now document this design decision, and I propose the following piece 
of text: 

COMPFIRST 

begin 

draw: {build; print}; 

var image; 

instr build(image), print(image) 

end 
The above piece of documentation, which is considered as an integral 

part of the final program, should be interpreted as follows. 
It refers to a machine called "COMPFIRST" (we use capitals for machine 

names and try to express the type of decision reflected in the program made 
for them). 

The next line gives a named algorithm: its name is "draw" (this being 
assumed to be the name of the total program to be made, that has to "draw" 
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a curve), the algorithm expresses the desired time-succession of two actions, 
building the image in store, followed by printing paper under control of the 
stored value. 

In the last two lines we give the declarations (or declaration headings), 
naming the components of the machine for which the above algorithm is 
intended. The first line describes that the name "image" will be used for the 
data structure that has to accommodate the page image; the variable 
"image" is the only component of the state space of this machine. Its 
instruction code comprises two instructions, named "build" and "print" 
respectively. 

Before proceeding, it should be noted that we have used abbreviations, 
some of which I do not yet know whether they are very wise or very foolish. 
They have both to do with the fact that the variable "image" is a unique 
variable of this type. 

If the state space should have contained two images, I would have written 

"type image; 
image var imagel, image2" 
expressing that the state space comprises two variables (called "imagel" 
and "image2" respectively), with the same set of possible values, this set 
being characterised by their type, called "image". In a later step the type 
image would enjoy further detailing and this would apply to both variables. 
As the set of variables of this type contains only one element, I have ventured 
not to distinguish between the set (called "image") and its only element 
(also called "image"). When descriptions in COMPFIRST (such as 
"build(image )") refer to "image", they refer to the variable; when later 
structuring detail is given, it refers to the type image. 

The last line contains the code of instructions which are like the procedure 
heading. In general they contain the type of the parameters, where the call 
contains the variables as actual parameters. Again this seems foolish if the 
parameter is uniquely given by its type and for this reason we have mentioned 
the actual parameter in the declaration, and have omitted the mentioning 
of"image" in the code describing the algorithm "draw". Thus we can reserve 
the explicitly mentioned actual parameters for the case where this combina­
torial freedom is actually used. 

Before proceeding, I would like to stress that our little algorithm named 
"draw" can and should be regarded as a program written for a machine. 
We should write the manual for this machine; in it we have to state 

(I) that the operation "build" assigns a value to the variable "image" 
specifying the image to be printed on paper as given by the functionsfx andfy. 

(2) that the operation "print" prints the picture on paper as specified by 
the current value of the variable "image". 
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The fact that it can really be regarded as an algorithm for a machine is 
perhaps most easily seen when we consider alternative algorithms for "draw" 
e.g. 

draw: {print; build} 
is wrong, because now the action "print" is undefined; 

draw: {build; build; print} 
is correct but unnecessarily time-consuming, because the second action 
"build" assigns to "image" the value it already has; 

draw: {build; print; print} 
would make sense: it would print the picture twice. 

We now resume our programming task. Ifwe had machine "COMPFIRST" 
at our disposal, the little program named "draw" to be executed by it would 
do the job. For the sake of argument and in order to be realistic we now 
assume that we do not have at our disposal such a machine tailored to our 
needs, and therefore our next task (similar to the previous one!) is to make 
such a machine. 

There are three named entities assumed, viz. "build", "print" and "image'', 
where the first two refer to the latter one. As a consequence, a further 
detailing of the latter one will affect the two first ones; also, it is very hard 
to give any further detailing of the action "print" without any further 
commitments as to the structure of "image". The action "build'', however, 
admits a further detailing all by itself. And it is for that reason that we take 
"build" as our first candidate for further refinement. 

We have to describe how the variable "image" will get its value corres­
ponding to the proper positioning of the thousand marks. As a total operation, 
it assigns a value to a variable, whose earlier value was undefined: anticipating 
that the marks will be added "one at a time", we see, that addition of a next 
mark will turn out to be an action operating on an already defined value 
of the variable "image". It therefore seems attractive to view the whole 
setting of the marks as operating on an already defined value, viz. the one 
corresponding to the blank page. This decision leads to 

CLEARFIRST 
begin 
build: {clear; setmarks}; 
instr clear(image), setmarks(image) 
end 

where the action "clear" assigns to image the value corresponding to a 
picture of fifty blank lines, where the action "setmarks" adjusts the initial 
value of image to the one in which the thousand (or less) marks of the curve 
have been added. 
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Again, CLEARFIRST is a machine for which alternative programs could 
have been written, e.g. 

build: {clear} 

would make sense, but would produce fifty blank lines as output; 

build: { setmarks; clear} 

would contain an undefined operation; 

build: {clear; clear; setmarks} 

would contain a superfluous operation, just as 

build: {clear; setmarks; setmarks} 

would, because the second action "setmarks" would only add marks to the 
picture that would already be there and therefore would not change the 
value of "image". 

(Note on notation used. The algorithm explaining "build" in terms of 
"clear" and "setmarks" does so without explicitly mentioning "image", 
because we do not wish to use the actual parameter notation in algorithms 
unless its actual combinatorial freedom is in fact used in this machine. 

Furthermore, "build" being a one-parameter operation no separate 
identifier for its formal parameter has been introduced. Also this abbreviation 
on my part could turn out to be very unwise.) 

The next step in the design of the computation-because it can be made 
without any further commitments-is to describe how the thousand marks 
of the curve will be dealt with in turn. For the time being I propose the 
following write-up: 

I SCANNER 

begin integer i; 

setmarks: {i:= O; while i < 1000 do {add mark; i plus l}}; 

instr add mark(i, image) 

end 

This algorithm is to be understood in a machine whose instruction repertoire 
comprises "add mark(i, image)" which will change the value of "image" in 
accordance with the addition of the ith mark. It describes the order in which 
the marks are dealt with; it shows all marks will be dealt with exactly once. 

But this is not all: a new variable (viz. "i") has been introduced, the 
algorithm appeals to a set of actions referring to this variable ("i: = O'', 
"i < 1000" and "i plus 1 ") and if I were completely consistent, it seems 
that I should list them at the bottom, as possibly requiring further clarifica­
tion at a later stage, just as "add mark". I have not done so (I have treated 
them along the same lines as the while-do clause). From the point of view of 
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language semantics this separate treatment of an implicitly understood 
type integer does not seem attractive, and it seems hard to justify, why the 
type integer is treated differently from the type "image": both are implicitly 
understood in this machine. 

Yet I have done it. All the time I design programs for non-existing machines 
and add: "if we now had a machine comprising the primitives here assumed, 
then the job is done". This is, logically speaking, correct; in practice it is a 
joke, because we know very well that we cannot assume a general purpose 
machine to be available whose instruction code is so very well tailored to 
our needs. We should not close our eyes-nor feign to do so !-to our 
responsibility to provide such primitives in a later stage of the design. When 
I now appeal to a well-understood type "integer" and the operations defined 
on variables of such a type in this exceptional manner, I tlo so with the 
intention of expressing that-although these facilities have to be provided 
in some form or another-providing these facilities fall outside the scope 
of the programmer's responsibility and also that the programmer will 
accept any reasonable implementation of them. 

Again we are left with a primitive that admits further refinement without 
commitment~ regarding the other primitives. We have to describe how 
dealing with mark no. i can be expressed in terms of dealing with a position 
on the page: we create the machine dealing with the computation of this 
position. 

COMPPOS 

begin integer x,y; 

add mark: {x:= fx(i); y:= fy(i); mark pos}; 

instr mark pos (x, y, image) 

end 

where "mark pos" will change the current value of the variable "image" in 
accordance with the addition of a mark with the co-ordinates "x" and "y" 
on the picture to be printed. 

(Note. In the last refinement it is explicitly assumed that the functions 
fx(i) and fy(i) can be evaluated in any order of their argument values. If 
these two thousand function values were to be read from an input stream, 
pair wise in a prescribed order of i-values, then the last two machines would 
have to be merged into a single one.) 

By now I see no possibility of further refinement without committing 
myself to the structure of the still rather vague type "image". How do we 
propose that this value will be stored? We have to structure the variables 
of type "image", or, what amounts to exactl)' the same thing, we have to 
choose a- representation for its possible values. 
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While lecturing at various places I have described versions of this program 
to different audiences, and it may be worth-while to point out that at least 
twice part of my audience was deeply troubled by the time I had reached 
this stage. They felt for instance, that I could not claim that my program, 
as far as developed, was correct; they objected to my remark that 

draw: {build; print; print} 

would produce the same picture twice, for how did I know, that "print" did 
not (by means of some side-effect) change the value of "image" before I 
had made the primitive "print"? The answer to this, of course, is that 
"print" has to do what has been stated and should not do what has not 
been stated. But then more objections came: I had failed to show that the 
representation was unique, perhaps it was such, that "print" was only a 
partial function, undefined for some possible values of "image", etc. The 
answer to this seems to be the following: legitimate as such concerns are, 
they should be dealt with at the right moment, i.e. not before we commit 
ourselves to a representation. It is apparently the strength of our approach 
that so much of the program could be written down independently of the 
representation to be chosen for the values of the type "image". What we 
have done so far seems indeed a judicious exploitation of our power of 
abstraction (here abstraction of the particular representation to be chosen 
for the data structure "image"). 

But even if we now come to the conclusion that the time has come to 
decide upon the data structure for the type "image" we still do not need to 
commit ourselves completely. Faced with the question how to structure 
our variable now, we can take our decisions step-wise, just as we have done 
with the algorithmic refinements encountered so far. 

We recall that the origin of the problem was to be found in the circumstance 
that the printing primitives "PRSYM" and "NLCR" forced the computation 
to produce the picture line after line going from top to bottom. Let us try 
to give recognition to that fact by regarding the image as composed of an 
array of lines. I then come to the following next level. 

LINER 
begin integer j; 
image: {array line[O: 49]}; 
print: {j: = 49; while j ;;;i:: 0 do {lineprint(lineUJ); j minus 1}}; 
clear: {j: = 49; while j ;;;i:: 0 do {lineclear(line[j]); j minus I}}; 
mark pos: {linemark(line[y ]) } ; 
type line; 
instr lineprint(line), lineclear(line), linemark(x, line) 

end 
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In the last line but one we have introduced a type called "line"; a type, 
I recall, is regarded as a collection of distinguishable values and a variable 
of such a type can, at any moment, have one of this collection as its value. 
The first line of code expresses that the type "image" is composed of an array 
of 50 elements of type "line'', numbered from 0 through 49, and, being the 
only type composed from this type, again we abstain from introducing a 
new identifier (wisely or not). 

Then, "print", "clear'', and "mark pos", being operations that were 
understood as operating on an "image" are translated in algorithms expressed 
in terms of operations on a line. In the code of these algorithms, the (true) 
actual parameter specifies which line; at the end of the description we give 
the instruction list, indicating that the actions operate on "a line"; we have 
given the type, but not the parameter. 

This level introduces some new features. To start with (as in explaining 
"image") we treat the structural refinement of a data type on a footing very 
similar to the algorithmic refinements (as applied to "print'', "clear" and 
"mark pos"). Before this level, our approach could have been regarded as 
an effort to establish a discipline for "subroutinisation"-if the reader will 
excuse this horrible term !-now we observe that that characterisation of 
our effort covers only half of what we are trying to do, as we are trying to 
apply a similar technique to data structures as well. Secondly, our previous 
machine explained just one entity (instruction or data type) in contrast 
to "LINER", which explains a whole bunch of them. The point is that we 
try to associate with each level a separate design decision; the decision taken 
here is to understand the image from now onwards in terms of lines, and 
therefore all operations dealing with an image as such have to be translated 
in terms of operations dealing with its lines. The image has been "explained 
away", the only unusual type we still have to deal with is the type "line" 
and that is what we are going to do now. I draw your attention to the fact 
that in the level to come, we have to deal with lines: that lines are used to 
compose images from is no longer relevant! 

To represent a line we have many different possibilities, e.g. a list of the 
the x-coordinates of the positions where a mark should be printed (possibly 
sorted in order of increasing x-value), a boolean array of 100 elements, each 
element indicating whether the corresponding position on the line of the 
picture should be marked, or an integer array of 100 elements, each element 
having the value "mark" or "space" of the PRSYM-parameter for the 
corresponding printable position. The last representation caters for extension 
when different curves (with different marks) have to be printed in the same 
picture ; therefore we select the last one. 
This leads to 
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LONG REP 

begin integer k; 

E. W. DIJKSTRA 

line: {integer array sym[O : 99]}; 

lineprint: {k:= O; while k < lOOdo {PRSYM(sym[k]); k plus l }; NLCR}; 

lineclear: {k:= O;whilek < lOOdo{sym[k]:= space;kplusl}}; 

linemark: {sym[x]:= mark} 

end 
This however leads to an implementation filling out the line with spaces 

at the righthand side of the rightmost mark: it is like banging the space 
bar until the bell rings when we want to effect the transition to a new para­
graph while writing a letter! 

The next version suppresses superfluous PRSYM-commands and even 
leaves those elements of the variable of type "line" undefined that do not 
need to be defined. With each line a counter ''!" is associated, giving the 
number of PRSYM-commands to be given for that line. Clearing a line 
now shrinks into setting ''f''to zero! 

SHORTREP 
begin integer k; 

line: {integer f; integer array sym[O : 99]}; 
lineprint: {k:= O; whilek </do {PRSYM(sym[k]); kplus l}; NLCR}; 
lineclear: {/: = 0} ; 
linemark: { sym[ x] : = mark; 

end 

if/~ xdo {k:= f; while k < xdo {sym[k]:= space; k plus l}; 

f:=x+t}} 

Note added later. 
The above program is essentially the program as I have shown it to at 

least five different audiences. Now, two months later, while thinking at 
leisure about correctness proofs, I suddenly realise that the given algorithm 
for "linemark" betrays my past, for it is a piece of lousy coding, compared 
with the following alternative: 

linemark: {while/~ xdo {sym[f]:= space;fplus l}; 
sym[x]:= mark} 

a version which guarantees that whenever "sym[x]: = mark" is executed, 
the relation "x < f" will always be satisfied: it is precisely the function of 
the first line to see to this. The reader is invited to try to understand both 
versions of linemark and to compare both reasonings. He will then agree 
with my judgement that the original version is lousy. 
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The secon"d version jumped into my mind on account of the following 
observation. The conditional clause 

"if B do S" 

is used in programs in two different ways. On the one hand we have the 
applications, in which the execution of the statement S does not invalidate 
the truth of B, on the other hand we have the situations in which the execution 
of the statement S is guaranteed to invalidate the truth of B. In the latter 
case, it is the function of the conditional statement to ensure that after its 
execution B will not hold. It is then, essentially, a shortcut for 

"while B do S", 

which has the property of invalidating the truth of B (provided that it stops), 
but the justification of the shortcut requires a separate proof that the repeated 
statement will be executed at most once. (In "A first example of step-wise 
program composition" we did not bother to introduce this shortcut on 
level 2b4( 4) where he wrote 

"while "ord too small" do "increase ord by one""; 

here a conditional clause would have done the job!) 

14. ON WHAT WE HAVE ACHIEVED 

One of the metaphors in which I find myself thinking about the program 
structure envisaged regards the program as a necklace, strung from individual 
pearls. 

We have described the program in terms of levels and each level contained 
"refinements" of entities that were assumed available in higher levels. These 
refinements were either dynamic refinements (algorithms) or static refine­
ments (data structures) to be understood by an appropriate machine. I use 
the term "pearl" for such a machine, refinements included. 

or 

Our previous program consists of a necklace of six pearls, in order either 

COMPFIRST 

CLEARFIRST 

I SCANNER 

COMPPOS 

LINER 

LONG REP 
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COMP FIRST 

CLEARFIRST 

I SCANNER 

COMPPOS 

LINER 

SHORTREP. 
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LONGREP and SHORTREP are two different pearls, they explain the 
same concepts (from the "upper face") into the same concept (of the "lower 
face"); only the particular refinements differ: they are as alternative programs 
for the same job and the same machine. 

Changing a program will be treated as replacing one or more pearls of 
the original necklace by one or more other pearls. The pearl is the individual 
unit from which programs are composed. Making a program (as a member 
of a class of related programs) is now regarded as a two-stage process: 
making pearls (more than strictly necessary) and then stringing a fitting 
necklace out of (a selection of) them. 

The reasons for this two-stage approach are many. In designing a program 
we have to consider many, many alternative programs and once our program 
is finished, we will have to change it (into one of the alternative ones). As 
long as programs are regarded as linear strings of basic symbols of a pro­
gramming language and, accordingly, program modification is treated as 
text manipulation on that level, then each program modification must be 
understood in the universe of all programs (right or wrong!) that can be 
written in that programming language. No wonder that program modification 
is then a most risky operation! The basic symbol is too small and meaningless 
a unit in terms of which to describe this. The pearl, embodying the independent 
design decision or, as the case may be, an isolated aspect of the original 
problem statement, is meant to be the natural unit for such modifications. 

To rephrase the same argument: with the birth of ALGOL 60, syntax was 
discovered as a powerful means for expressing structure in a program text. 
(Syntax became so glorified that many workers in the field identified 
Computing Science with Syntactic Analysis!) It was slightly overlooked, 
however, that by expressing structure via syntax, this structure is only given 
very indirectly, i.e. to be derived by means of a parsing algorithm to be 
applied to a linear sequence of basic symbols. This hurts if we realise that 
many a program modification leaves large portions of the structure un­
affected, so that after painful re-parsing of the modified text the same 
structure re-emerges! I have a strong feeling that the adequacy of context­
free methods for the representation of structure has been grossly over-
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estimated. (In my immediate environment the following program bug in an 
ALGOL 60 program was brought to my attention. A program produced 
erroneous output with a completely checking implementation which in 
addition to the program text requires a final "progend" after the last "end"; 
this additional character is refused everywhere else so that a correct "begin -
end" bracketing can be established. It turned out that 

(l) somewhere in the program a closing string quote was omitted; 

(2) somewhere further down in the program text an opening string quote 
was omitted; 

(3) the "begin - end" structure of the resulting program was syntactically 
correct; 

( 4) the identifiers declared between the two omissions were only used 
between the two omissions, so that even context-dependent checks were 
unable to give alarm. 

Having already my doubts as to the adequacy of context-free methods for 
expressing macroscopic structure, I was delighted when this bug was shown 
to me!) 

The more I think about pearls, the more I feel that something like them 
is the only way out of it, if we recognise our responsibility to take (for a 
large program) say a thousand (possible) versions into consideration. You 
cannot expect the programmer to make all these thousand versi.Jns from 
scratch, independent of each other. The only way I see to produce such a 
potential variety is by a combinatorial technique, i.e. by making more pearls 
(say 250) than needed for a single necklace (say 200) and stringing a necklace 
from a particular selection. I see no other feasible way. The other mechanism 
to achieve great variety by combinatorial means is permutation, but this is 
denied to us because the final necklace must be a fitting necklace and, given 
the pearls, the order in which they have to be strung on the thread to produce 
a fitting necklace is pretty well defined. And also: if it is not, the permissible 
change of order is pretty irrelevant! 

Also, the pearl gives a clear status to an "incomplete" program, consisting 
of the top half of a necklace: it can be regarded as a complete program to be 
executed by a suitable machine (of which the bottom half of the necklace 
gives a feasible implementation). As such, the correctness of the upper half 
of the necklace can be established regardless the choice of the bottom half. 
Between two successive pearls we can make a "cut" which is a manual for a 
machine, provided by the part of the necklace below the cut and used by 
the program represented by the part of the necklace above the cut. This 
manual serves as an interface between the two parts of the necklace. We.feel 
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this form of interface more helpful than regarding data-representation as 
an interface between operations, in particular more helpful towards ensuring 
the combinatorial freedom required when a program has to be adapted. 

Another remark concerns the range of validity of concepts along the 
necklace. For instance, the concept "image" is introduced in our top pearl 
"COMPFIRST" and is explained away in our bottom pearl but one, viz. 
"LINER". If we now come to the conclusion that the program as envisaged 
is too demanding on storage space so that we cannot afford to introduce 
the variable "image'', we are faced with a major program revision and we 
have to replace the top five pearls by other ones, because that is the range 
of validity of the concept "image"! The bottom pearl (either "LONGREP" 
or "SHORTREP"), however, can be retained. (I mention this as an example 
of the fact that pearl exchange is by no means restricted to exchange of the 
bottom pearl.) 

With respect to the validity range of concepts along the necklace I would 
like to ask your attention for an observation which thrilled me the first time 
I made it. (In retrospect it is pretty obvious and that is exactly why it may 
be worth-while to be explicit about it.) With each pearl we associate "an 
independent design decision" and the ordering of the pearls along the 
necklace therefore implies an ordering of the design decisions. Can we change 
this order? Yes, we can, although we then have different pearls. By way of 
experiment I have followed the well-known advice: if you are faced with 
two primitives-in our case "build" and "print"--decide immediately upon 
their interface-in our example "image"-so that the two primitives can now 
be refined independently of each other. So I did, and I came to the following 
form of necklace 

COMPFIRST 

LINER' 

CLEARFIRST' 

I SCANNER' 

COMPPOS' 

SHORTREP 

(the four middle pearls being primed to indicate that they refer to different 
pearls, although they embody the same decisions as the ones in the original 
set). The resulting program is much messier. Why? 

Along the necklace we can indicate for each concept its range of validity: 
of course they overlap and we can view them as the individual threads from 
which the whole explanation is twined, as a kind of "logical rope". The 
messy version has a logical rope twined from more and sometimes longer 
individual threads: its logical rope is thicker, the whole construction is more 
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tightly interconnected. The observation thrilled me because it gave a very 
convincing demonstration (at least for me!) that elegance, clarity and the 
like have indeed marked quantitative aspects (as Mozart knew: many of 
his compositions that make one catch one's breath are misleadingly simple, 
they seem to be made just out of practically nothing!). 

We can phrase the observation in more technical terms. The primed version 
is messy because the image is explained away in terms of lines at too early a 
stage, thereby forcing us to explain "CLEARFIRST'', "ISCANNER" and 
"COMPPOS" in terms of lines, while they could still be explained in terms 
of the image, i.e. independent of the representation to be chosen for it. Or, 
in other words, in the original version we have made a more judicious 
exploitation of our power of abstraction than in the primed one. The larger 
the number of pearls independent of the particular representation, the more 
adaptable one's program and the more easily understandable-because 
that set of pearls can be understood at a higher level of abstraction. The 
experience seems to indicate that the goals of adaptability and clarity have 
been given some substance and (what is more) go by their very nature hand 
in hand. This is very encouraging (although not surprising). 

It also gives-me at least-a somewhat clearer picture of the scope of my 
present efforts. Whatever I shall develop, it will not be a General Problem 
Solver, not a mechanical one, not even one written for the benefit of the 
human problem solver. But it may give the human some appreciation for 
the various aspects of "elegance" of a solution when he succeeds in finding 
one. And as such it may give him a guide line. 

15. ON GROUPING AND SEQUENCING 

While we are considering a programming tool in which explicit recognition 
has been given to the hierarchy of levels of abstraction, the present section 
is also applicable to programming in programming languages as they are 
understood today, viz. on a constant semantic level. (And there is a fair 
chance that the current section has its morals outside the restricted field of 
programming, for it seems to be concerned with problem solving in general.) 

I shall illustrate my point with two examples, both of which, again, I have 
used in viva voce examinations. I owe the first example to Niklaus Wirth. 

The problem is to construct a program generating non-empty sequences 
of O's, l's and 2's without non-empty, element-wise equal, adjoining sub­
sequences, generating these sequences in alphabetical order until a sequence 
of length 100 (i.e. of 100 digits) has been generated. The programmer may 
make use of the knowledge that a sequence of length 100 and satisfying the 
conditions actually exists. The start of the list of sequences to be generated is: 
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0 
01 
010 
0102 
01020 
010201 
0102010 
0102012 

E.W. DUKSTRA 

Each solution (apart from the first one) is an extension (by one digit) 
of an earlier solution and the algorithm is therefore a straightforward 
backtracking one. 

We are looking for the "good" sequences, we assume a primitive available 
for the investigation of whether a trial sequence is good. If it is good, the 
trial sequence is printed and extended with a zero to give the next trial 
sequence; if the trial sequence is no good, we perform on it the operation 
"increase" to get the next trial sequence, i.e. final digits = 2 are removed 
and then the last remaining digit is increased by 1. (The operations "extend 
with zero" and "increase" guarantee that trial sequences are generated in 
alphabetical order, the solutions, being a selection from them, will then be 
printed in alphabetical order as well.) The algorithm will start investigating 
the following trial sequences, those marked by an asterisk will be rejected as 
"no good": 

0 
• 00 

01 
010 

• 0100 
• 0101 

0102 
01020 

• 010200 
010201 
0102010 

• 01020100 
• 01020101 
• 01020102 
• 0102011 

0102012 
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I found the majority of my students inclined to make a program with the 
following structure: 

"set trial sequence to single zero; 

repeat if good then 

begin print trial sequence; extend trial sequence with zero end 

else 

increase trial sequence 

until length = IO I" 

Although a program along these lines produces the correct output, 
objections can-and to my taste: should-be made against it. The first 
objections regards the stopping criterion: when a solution of length 100 
has been printed, we (knowing the algorithm) can deduce that after that for 
the first time the trial sequence will have length = 101 and this is now the 
criterion to stop, but this is a rather indirect and tortuous way to establish 
the stopping criterion. (How tortuous it is was clearly demonstrated by those 
students who did not see that an unnecessary trial sequence was generated 
and declared for the trial sequence an array of 100 elements instead of 101.) 
The second objection is that the operation "increase trial sequence" never 
increases its length: after rejection of a trial sequence a superfluous test 
on the length is performed. (When I used this example for student examina­
tion examinations I had not stressed very explicitly in my lectures any 
problem solving principles, so my disappointment was not too severe. In a 
sense I am glad to have observed these examinations, for it was for me an 
incentive to stress problem solving principles as far as I could find, formulate 
and teach them.) 

The program to which the above objections do not apply treats the empty 
sequence as a virtual solution, not to be printed. It has-to the same level of 
detail-the following structure: 

"set trial sequence empty; 

repeat extend trial sequence with zero; 

while no good do increase trial sequence; 

print trial sequence 

until length = 100" 

Here length is the length of the solution printed (if any), thus avoiding 
the tortuous reasoning for the stopping criterion. Also no superfluous last 
trial sequence (never to be investigated) will be generated, thanks to the 
fact that we have two loops inside each other, superfluous length testing 
no longer occurs. Those for whom efficiency is the main criterion will 
probably be most convinced by the last observation. I myself, who attach 
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considerable importance to understandability, am attracted to the latter 
program because I can interpret it as a further refinement of the program 
structure 

"set sequence empty; 

repeat transform sequence to next solution; 

print sequence 

until length = 100" 
This (more abstract) program is only concerned with sequences that are 

solutions: on this level of description one can ignore that the transition 
from one solution to the next takes place via a sequence of trial solutions 
that turn out to be failures. 

I owe to Joe Weizenbaum the second example. Make a program that, for 
given positive integer n, determines the smallest number s that can be 
decomposed into the sum of two nth powers in at least two non-trivially 
different ways. 

(for n = I s = 2 = 01 + 21 = 11 + 11 

n = 2 s = 25 = 02 + 52 = 32 + 42 

n=3 s=l729=1 3 +123 =93 +103 

n = 4 s = 635318657 = 594 + 1584 = 1334 + 1344
) 

When I first used this example in an oral examination, it took the student 
twenty minutes to get somewhat familiar with the problem and he then 
sketched a searching algorithm which-when patched up-could indeed 
find a number that allowed multiple decompositions into sums of two nth 
powers, but he could nol prove that when his algorithm produced a value s 
that it would be the minimum value. (As a matter of fact he had, up till then, 
ignored that part of the problem statement.) 

He then regrouped his forces and made a program of the following form: 
"integer s, k; 

s:= I; 
repeat s: = s + l ; 

k: = "the number of ways in which s can be decomposed as the sum 
of two nth powers" 

until k > I 

thus arriving at a hopelessly inefficient algorithm. The error he made was 
the decision at too early a stage to investigate the natural numbers in 
succession, the overwhelming majority of which are not decomposable at all. 
Reasoning that the value we are looking for is the smallest decomposable 
number satisfying an additional property, one comes to an algorithm whose 
first sketch could be 
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••integer k, s, t; 
t: = 1 (and further initialisation); 

repeats:= "smallest decomposable value larger than t"; 

k: = "the number of ways the above minimum is obtained" 

t:= s 
until k > I" 
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By storing a collection of triples (number pairs with their corresponding 
s-value), among which each time the pair(s) with minimums-value exceeding 
t will occur and adjusting this collection each time t is increased, a program 
emerges that is orders of magnitude more efficient, t jumping from decom­
posable value to the next decomposable value. Programming (or problem 
solving in general?) as the judicious postponement of decisions and commit­
ments! 

16. DESIGN CONSIDERATIONS IN MORE DETAIL 

Preceding sections-in particular "A first example of step-wise program 
composition." have evoked the criticism that I have oversimplified the 
design process almost to the extent of dishonesty; I don't think this criticism 
fully unjustified and to remedy the situation I shall treat two examples in 
greater detail. The first example is my own invention; I have tried it out 
in a few oral examinations and finally I have used it at the end of my course 
"An introduction into the Art of Programming" in the classroom. I posed 
the problem to an audience of fifty students and together, with me as leader 
of the discussion, they solved the problem in 90 minutes. 

We consider a character set consisting of letters, a space(sp) and a 
point(pnt). Words consist of one or more, but at most twenty letters. An 
input text consists of one or more words, separated from each other by one 
or more spaces and terminated by zero or more spaces followed by a point. 
With the character valued function RNC (Read Next Character) the input 
text should be read from and including the first letter of the first words up 
to and including the terminating point. An output text has to be produced 
using the primitive PNC(x) (i.e. Print Next Character) with a character 
valued parameter. If the function of the program were to copy the text, the 
following program would do (assuming character valued variables at our 
disposal) 

char x; 

repeat x:= RNC; PNC(x) until x = pnt 

In this example, however, the text is to be subjected to the following 
transformation: 
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(1) in the output text, successive words have to be separated by a single 
space 

(2) in the output text, the last word has to be followed by a single point 

(3) when we number the words 0, 1, 2, 3, ... in the order from left to 
right (i.e. in which they are scanned by repeated evaluation of RNC), the 
words with an even ordinal number have to be copied, while the letters of 
the words with an odd ordinal number have to be printed in the reverse 
order. 

For instance (using "-" to represent a space) the input text 

"this-is-a-silly-program-." 

has to be transformed into 

"this-si-a-yllis-program." 

My reader is cordially invited to try this program himself, before reading 
on and to record his considerations so as to enable himself to compare them 
with the sequel. (It should take an experienced programmer much less than 
90 mi~utes!) 

The unknown length of the non-empty input text suggested a program of 
the structure 

prelude; 

repeat something until ready; 

coda 

but immediately this question turned up: "With how much do we deal 
during a single execution of "something"?". Four suggestions turned up: 

(I) a single character of the input text 

(2) a single character of the output text 

(3) a word (of both texts) 

(4) two successive words (of both texts) 

The first two suggestions were rejected very quickly and without much 
explicit motivation, although-or because?-it is not too difficult to provide 
it. (The first one is unattractive because the amount of output that can be 
produced on account of the next character of the input text varies wildly; 
for the second suggestion a similar objection holds. Apart from that, a 
program with a loop in a loop is in general cleaner: this suggests to look 
for larger portions.) The audience rejected the fourth suggestion on account 
of the remark that the terminating point could come equally well after an 
even number of words as after an odd number of words. To make the 
selection of the third suggestion explicit, we wrote on the blackboard: 
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prelude; 
repeat process next word until point read; 
coda 
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Everyone was satisfied in as far as this program expresses neatly that the 
output words are dealt with in exactly the same order as the corresponding 
input words are read, but it does not express that half of the words are to be 
printed in reverse order. When this was pointed out to them, they quickly 
introduced a state variable for the purpose. A first suggestion was to count 
the number of words processed and to make the processing dependent on 
the odd/eveness of this count, but a minor hesitation from my side was 
enough for the discovery that a boolean variable would meet the situation. 
It was decided that the "prelude" should include 

"forward:= true" 

while in "process next word" the printing in the order dependent on the 
current value of "forward" should be followed by 

"forward:= non forward" 
For me it was very gratifying to see that they introduced the variable 

"forward" before bothering about the details of word separation, which 
then became their next worry. It took them more time to realise that a 
further refinement of "process next word" required exact specification of 
which characters of the input text were going to be read and which characters 
of the output text were going to be printed at each execution of the repeatable 
statement. In fact, I had to pose the question to them and, after having done 
so, I asked them in which of the two texts the grouping presented itself 
most naturally. They selected the output text and chose the following 
grouping (indicating separation with a vertical bar): 

I this-I si-1 a-I yllis-1 program. I 
i.e. in units of a word followed by a proper terminator. I then asked for the 
corresponding grouping of the input characters. When their attention had 
been brought to the terminators, they suggested (from right to left!) the 
following separation of the input characters: 

I this-i Is-a 1-s I illy-p I rogram-.1 
as soon as one of them had remarked that the program could only "know" 
that an output word should be followed by a space after having "seen" the 
first letter of the next input word. I then remained silent, leaving them 
gazing at their grouping of the symbols until one of them discovered that 
the exceptional grouping of the characters of the first input word was 
inelegant, that the grouping should be 

t I his-i Is-a 1-s I illy-p I rogram-.1 
i.e. that the first character of the first word should be read in the prelude 
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Another variable was introduced and we arrived at 

boolean forward; char x; 

forward:= true; x:= RNC; 

repeat process next word; 

forward:= non forward 

until x = pnt 

in which the second line represents the prelude; in the meantime it had been 
decided that the coda could be empty. 

The above stage had been reached after the first 45 minutes and we had 
our interval for coffee. Personally I felt that the problem had been solved, 
that from now onwards it was just a matter of routine; as it turned out, my 
audience was not practised enough and it took another 45 minutes to complete 
the program. 

Unanimously they decided to introduce a 

char array c[ I :20] 

to store the letters of the word. (No one discovered that reading the letters 
and printing them in the reverse order could be done by a recursive routine!) 
Essentially, four things have to be done: the letters of the word have to be 
read, the letters of the word have to be printed, enough has to be read to 
decide which terminator is to be printed and the terminator has to be printed. 
I did not list these four actions, I did not ask for an explicit decision on how 
to group and/or combine them. The audience decided that first all reading 
should be done and thereafter all printing. (From their side this was hardly 
a conscious decision.) 

Trying to refine the reading and the printing process they hit an unsuspected 
barrier: they were-at least for me, surprisingly-slow in discovering that 
they still had to define an interface between reading and printing through 
which to transmit the word to be processed, no matter how obvious this 
interface was. It took a long time before anyone formulated that c[i] should 
equal the ith character of the word when read from left to right. Perhaps 
half of the audience was wondering what all the fuss was about, but it took 
an equally long time to discover that the length of the word needed some 
form of representation as well. No one suggested to do this by storing a 
terminator, they introduced a separate integer "/", counting the number of 
letters of the word. They decided that the first word "this" should be 
represented by 

c[l] = "t'', c[2] = "h", c[3] = "i", c[4] = "s" and I= 4 

They still had difficulty in arriving at the reading cycle and it was only 
when I had said repeatedly "so we have decided that"/" is going to represent 
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the number of letter of the word stored in the array" that they arrived for 
the beginning of the reading process at 

/:= O; 

repeat/:= I+ l; c[/]:= x; x:= RNC until x = sp or x = pnt 

(In the first draft "or x = pnt" was missing, but this was remedied quickly.) 
Once this was on the blackboard they completed the reading process without 
much hesitation: 

while x = sp do x:= RNC 

When we turned our attention to the printing process, they were more 
productive. Clearly the reading process had shown them the purpose of the 
interface and suggestions came from various sides. I had never described 
the dilemma to them (see page 24), whether to code an alternative 
clause selecting between two repetitions or a repetitive clause repeating an 
alternative statement. I was waiting for the dilemma to turn up, it came 
and I showed it to them. Then I had a surprise, for one of the students 
suggested to map the two loops on each other with the aid of more variables. 
We introduced three integers "k. inc, term" and the printing of the letters 
became 

if forward then begin k: = 0; inc:= + 1 ; term:= I end 

else begin k : = I + l ; inc: = - 1 ; term : = 1 end; 

repeat k:= k +inc; PNC(c[k]) until k =term 

followed by 

if x = pnt then PNC(pnt) else PNC(sp). 

Thus we arrived at the following program: 

boolean forward; char x; char array c[ 1 :20]; integer /, k, inc, term; 

forward:= true;x := RNC; 

repeat /: = O; 

repeat/:= I+ 1; c[/]:= x;x:= RNC uotilx = sp or x = pnt; 

while x = sp do x:= RNC; 

if forward then begin k: = 0; inc:= + 1 ; term:= I end 

else begin k: = I + 1 ; inc:= - 1 ; term:= 1 end; 

repeat k:= k +inc; PNC(c[k]) until k =term; 

if x = pnt then PNC(pnt) else PNC(sp); 

forward:= non forward 

until x = pnt 
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This section has not been included because the problem tackled in it is 
very exciting. On the contrary, I feel tempted to remark that the problem 
is perhaps too trivial to act as a good testing ground for an orderly approach 
to the problem of program composition. This section has been included 
because it contains a true eye-witness account of what happened in the 
classroom. It should be interpreted as a partial answer to the question that 
is often posed to me, viz. to what extent I can teach programming style. 
(I never used the "Notes on Structured Programming"-mainly addressed 
to myself and perhaps to my colleagues-in teaching. The classroom 
experiment described in this section took place at the end of a course 
entitled "Introduction into the Art of Programming", for which separate 
lecture notes-with exercises and all that-were written. As at the moment 
of writing the students that followed this course have still to pass their 
examination, it is for me still an open question how successful I have been. 
They liked the course, I have heard that they described my programs as 
"logical poems", so I have the best of hopes.) 

17. THE PROBLEM OF THE EIGHT QUEENS 

This last section is adapted from my lecture notes "Introduction into the 
Art of Programming". I owe the example-as many other good ones-to 
Niklaus Wirth. This last section is added for two reasons. 

Firstly, it is a second effort to do more justice to the process of invention. 
(As a matter of fact I start where the student is not familiar with the concept 
of backtracking and aim at discovering it as I go along.) 

Secondly, and that is more important, it deals with recursion as a program­
ming technique. In preceding sections (particularly in "On a program model") 
I have reviewed the subroutine concept; there it emerged as an embodiment 
of what I have also called "operational abstraction". In the relation between 
main program and subroutine we can distinguish quite clearly two different 
semantic levels. On the level of the main program the subroutine represents 
a primitive action; on that level it is used on account of "what it does for 
us" and on that same level it is irrelevant "how it works". On the level of 
the subroutine body we are concerned with how it works but can-and 
should-abstract from how it is used. This clear separation of the two 
semantic levels "what it does" and "how it works" is denied to the designer 
of a recursive procedure. As a result of this circumstance the design of a 
recursive routine requires a different mental skill, justifying the inclusion of 
the current section in this manuscript. The recursive procedure has to be 
understood and conceived on a single semantic level: as such it is more like 
a sequencing device, comparable to the repetitive clauses. 
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It is requested to make a program generating all configurations of eight 
queens on a chessboard of 8*8 squares such that no queen can take any of 
the others. This means that in the configurations sought, no two queens 
may be on the same row, on the same column or on the same diagonal. 

We don't have an operator generating all these configurations, this 
operator is precisely what we have to make. Now there is a very general way 
(cf. "On grouping and sequencing") of tackling such a problem, which is as 
follows. 

Call the set of configurations to be generated: set A. Look for a set B of 
configurations with the following properties: 

(I) set A is a subset of set B 

(2) given an element of set B it is not too difficult to decide whether it 
belongs to set A as well 

(3) we can make an operator generating all elements of set B. 

With the aid of the generator (3) for the elements of set .TJ, all elements of 
set B can then be generated in turn; they will be subjected to the decision 
criterion (2) which decides whether they have to be skipped or handed over, 
thus generating elements of set A. Thanks to (I) this algorithm will produce 
all elements of set A. 

Three remarks are in order. 

(1) If the whole approach is to make sense, set Bis not identical to set A, 
and as it must contain set A as a (true) subset, it must be larger than set A. 
For reasons of efficiency, however, it is advisable to choose set B "as small as 
possible": the more elements it has, the more elements of it have to be 
skipped on account of the decision criterion (2). 

(2) We should look for a decision criterion that is cheap to apply, at least 
the discovery that an element of B does not belong to A should (on the 
average) be cheap. Also this is dictated by efficiency considerations, as we 
may expect set B to be an order of magnitude larger than set A, i.e. the 
majority of the elements of B will have to be rejected. 

(3) The assumption is that the generation of the elements of set B is 
easier than a direct generation of the elements of set A. If, nevertheless, the 
generation of the elements of set B still presents difficulties, we can repeat 
our pattern of thinking, re-apply the trick and look for a still larger set C 
of configurations that contains Bas a subset etc. (And, as the careful reader 
will observe, we shall do so in the course of this example.) 

Above, we have sketched a very general approach, applicable to many, 
very different problems. Faced with a particular problem, i.e. faced with a 
specific set A, the problem of course is what to select for our set B. 
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In a moment of optimism one could think that this is an easy matter, as we 
might consider the following technique. We list all the mutually independent 
conditions that our elements of set A must satisfy and omit one of them. 
Sometimes this works but as a general technique it is too naive: its short­
comings become apparent when we apply it blindly to the problem of the 
eight queens. We can characterise our solutions by the two conditions 

(1) there are 8 queens on the board 

(2) no two of the queens can take each other. 

Omitting either of them gives for set B the alternatives 

Bl: all configurations with N queens on the board such that no two queens 
can take eachother 

B2: all configurations of 8 queens on the board. 

But both sets are so ludicrously huge that they lead to utterly impractical 
algorithms. So we have to be smarter. The burning question is: "How?". 

Well, at this stage of our considerations, being slightly at a loss, we are 
not so much concerned with the efficiency of our final program as with the 
efficiency of our own thought processes! So, if we decide to make a list of 
properties of solutions, in the hope of finding a useful clue, this is a rather 
undirected search and therefore we should not invest too much mental 
energy in such a search, that is: for a start we should restrict ourselves to 
their obvious properties. 

(I gave the puzzle as a sobering exercise to one of the staff members of 
the Department of Mathematics at my University, because he expressed 
the opinion that programming was easy. He violated the above rule and, 
being, apart from a pure, perhaps also a poor mathematician, he started 
to look for interesting, non-obvious properties. He conjectured that if the 
chessboard were divided in four squares of 4*4 fields, each square should 
contain two queens, and then he started to prove this conjecture without 
having convinced himself that he could make good use of it. He still has 
not solved the problem and, as far as I know, has not yet discovered that 
his conjecture is false.) 

Well, let us go ahead and let us list the obvious properties we can think of. 

(a) No row may contain more than one queen, 8 queens are to be placed 
and the chessboard has exactly 8 rows. As a result we conclude that 
each row will contain precisely one queen. 

(b) Similarly we conclude that each column will contain precisely on queen. 

(c) There are 15 "upward" diagonals, each of them containing at most one 
queen, i.e. 8 upward diagonals contain precisely one queen and 7 upward 
diagonals are empty. 
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(d) Similarly we conclude that 8 downward diagonals contain precisely 
one queen and 7 are empty. 

(e) Given any non-empty configuration of queens such that no two of them 
can take each other, removal of any one of these queens will result in a 
configuration sharing that property. 

Now the last property is very important. (To be quite honest: here I feel 
unable to buffer the shock of invention!) In our earlier terminology it tells 
us something about any non-empty configuration from set Bl. If we start 
with a solution (which is an 8-queen configuration from set Bl) and take 
away one queen we get a 7-queen configuration from set Bl ; taking away a 
next queen will leave again a configuration from set Bl and we can repeat 
this process until the chessboard is empty. We could have taken a motion 
picture of this process: playing it back backwards it would show how, 
starting from an empty board, via configurations from set Bl that solution 
can be built up by adding one queen at a time. (Whether the trick of the 
motion picture played backwards is of any assistance for my readers is not 
for me to judge; I only mention it because I know that such devices help me.) 
When making the picture, any solution could be reduced to the empty board 
in many ways, in exactly the same number of ways-while playing it back­
wards-each solution can be built up. Can we exploit this freedom? We have 
rejected set Bl because it is too large, but maybe we can find a suitable 
subset of it, such that each non-empty configuration of the subset is a 
one-queen extension of only one other configuration of the subset. The 
"extension property" suggests that we are willing to consider configurations 
with less than 8 queens on the board and that we would like to form new 
configurations by adding a queen to an existing configuration-a relatively 
simple operation presumably. Well, this draws our attention immediately 
to the generation of the elements of the (still mysterious) set B. For instance, 
in what order? And this again raises a question to which, as yet, we have not 
paid the slightest attention: in what order are we to generate the solutions, 
i.e. the elements of set A? Can we make a reasonable suggestion in the hope 
of deriving a clue from it? (In my experience such a question about order is 
usually very illuminating. It is not only that we have to make a sequential 
program that by definition will generate the solutions in some order, so that 
the decision about the order will have to be taken at some stage of the game. 
The decision about the order usually provides the clue to the proof that the 
program will generate all solutions and each solution only once.) 

Prior to that we should ask ourselves: how do we characterise solutions 
once we have them? To characterise a solution we must give the positions 
of 8 queens. The queens themselves are unordered, but the rows and the 
columns are not: we may assume them to be numbered from 0 through 7. 
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Thanks to property (a) which tells us that each row contains precisely one 
queen, we can order the queens according to the number of the row they 
occupy. Then each configuration of8 queens can be given by the value of the 
integer array x [0:7], where 

x[i] = the number of the column occupied by the queen in the ith row. 

Each solution is then a "8-digit word" (x[O] ... x[7]) and the only sensible 
order in which to generate these words that I can think of is the alphabetical 
order. 

Note. As a consequence we open the way to algorithms in which rows and 
columns are treated differently, while the original problem was symmetrical 
in rows and columns! To consider asymmetric algorithms is precisely what 
the above considerations have taught us! 

Returning to the alphabetical order: now we are approaching familiar 
ground. If the elements of set A are to be generated in alphabetical order 
and they have to be generated by selection from a larger set B, then the 
standard technique is to generate the elements of set B in alphabetical order 
as well and to produce the elements of the subset in the order in which they 
occur "in set B. 

First we have to generate all solutions with x[O] = 0 (if any), then those 
with x[O] = I (if any) etc.; of the solutions with x[O] fixed, those with 
x[l] = 0 (if any) have to be generated first, followed by those with x[l] = I 
(if any) etc. In other words: the queen of row 0 is placed in column 0--say 
the square in the bottom left corner-and remains there until all elements 
of A (and B) with queen 0 in that position have been generated and only 
then is she moved one square to the right to the next column. For each 
position of queen 0, queen I will walk from left to right in row I-skipping 
the squares that are covered by queen 0--for each combined position of the 
first two queens, queen 2 walks along row 2 from left to right, skipping all 
squares covered by the preceding queens, etc. 

But now we have found set B! It is indeed a subset of BI, set B consists of 
all configurations with one queen in each of the first N row$, such that .no 
two queens can take each other. 

The criterion deciding whether an element of B belongs to A as well is 
that N = 8. 

Having established our choice for set B, we find ourselves faced with the 
task of generating its elements in alphabetical order. We could try to do this 
via an operator "GENERATE NEXT ELEMENT OF B" with a program 
of the form 
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INITIALISE EMPTY BOARD; 

repeat GENERATE NEXT ELEMENT OF B; 

if N = 8 then PRINT CONFIGURATION 

until B EXHAUSTED . 
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(Here we have used the fact that the empty board belongs to B, but not to A, 
and is not B's only element. We have made no assumptions about the 
existence of solutions.) 

But for two reasons a program of the above structure is less attractive. 
Firstly, we don't have a ready-made criterion to recognise the last element 
of B when we meet it and in all probability we have to generalise the operator 
"GENERATE NEXT ELEMENT OF B" in such a way that it will produce 
the indication "B EXHAUSTED" when it is applied to the last "true" 
element of B. Secondly, it is not too obvious how to make the operator 
"GENERATE NEXT ELEMENT OF B": the number of queens on the 
board may remain constant, it may decrease and it may increase. 

So that is not too attractive. What can we do about it? As long as we 
regard the sequence of configurations of set B as a single, monotonous 
sequence, not subdivided into a succession of subsequences, the corresponding 
program structure will be a single loop as in the program just sketched. 
If we are looking for an alternative program structure, we must therefore 
ask ourselves "How can we group the sequence of configurations from set B 
into a succession of subsequences?". 

Realising that the sequence ot configurations from set B have to be 
generated in alphabetical order and thinking about the main subdivision in 
a dictionary-viz. by first letter-the first grouping is obviol!s: by position 
of queen 0. 

Generating all elements of set B-for the moment we forget about the 
printing of thost: configurations that belong to set A as well-then presents 
itself as 

INITIALISE EMPTY BOARD; 

h:= O; 

repeat SET QUEEN ON SQUARE[O,h]; 

GENERATE ALL CONFIGURATIONS WITH QUEEN 0 

FIXED; 

REMOVE QUEEN FROM SQUARE[O,h]; 

h:= h + l 
until h = lS • 
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But now the question repeats itself: how do we group all configurations 
with queen 0 fixed? We have already given the answer: in order of increasing 
column number of queen I, i.e. 

hl:= O; 

repeat if SQUARE[l, hl] FREE do 

begin SET QUEEN ON SQUARE[l,hl]; 

GENERATE ALL CONFIGURATIONS WITH FIRST 

2 QUEENS FIXED; 

REMOVE QUEEN FROM SQUARE[l,hl] 

end; 

hl:=hl+l 

until hi = 8 

For "GENERATE ALL CONFIGURATIONS WITH FIRST2 QUEENS 
FIXED" we could write a similar piece of program and so on; inserting 
them inside each other would result in a correct program with eight nested 
loops, but they would all be very, very similar. To do so has two disadvan­
tages 

(I) it takes a cumbersome amount of writing 

(2) it gives a program solving the problem for a chessboard of8*8 squares, 
but to solve the same puzzle for a board of, say, 10*10 squares would require 
a new, still longer program. 

We are looking for a way in which all the loops can be executed under 
control of the same program text. Can we make the text of the loops 
identical? Can we exploit their identity? 

Well, to start with, we observe that the outermost and the innermost loops 
are exceptional. 

The outermost loop is exceptional in the sense that it does not test whether 
square[O,h] is free because we know it is free. But because we know it is 
free, there is no harm in inserting the conditional clause 

if SQUARE[O,h] FREE do 

and this gives the outermost loop the same pattern as the next six loops. 
The innermost loop is exceptional in the sense that as soon as 8 queens 

have been placed on the board, there is no point in generating all configura­
tions with those queens fixed, because we have a full board. Instead the 
configuration should be printed, because we have found an element of set B 
that is also an element of set A. We can map the innermost cycle and the 
embracing seven upon each other by replacing the line "GENERATE" by 
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if BOARD FULL then PRINT CONFIGURATION 

else GENERATE ALL CONFIGURATIONS EXTENDING THE 

CURRENT ONE 

For this purpose we introduce a global variable, "n" say, counting the 
number of queens currently on the board. The test "BOARD FULL" 
becomes "n = 8" and the operations on squares can then have "n" as first 
subscript. 

By now the only difference between the eight cycles is that each has "its 
private h". By the time that we have reached this stage, we can give an 
affirmative answer to the question whether we can exploit the identity of 
the loops. The sequencing through the eight nested loops can be evoked 
with the aid of a recursive procedure, "generate" say, which describes the 
cycle once. Using it, the program itself collapses into 

INITIALISE EMPTY BOARD; n:= O; 

generate 

while "generate" is recursively defined as follows: 

procedure generate; 

begin integer h; 

h:= O; 

repeat if SQUARE[n,h] FREE do 

begin SET QUEEN ON SQUARE[n,h]; n:= n +I; 

if n = 8 then PRINT CONFIGURATION 

else generate; 

n:= n - I; REMOVE QUEEN FROM SQUARE[n,h] 

end; 

h:= h +I 

until h = 8 

end 

Each activation of "generate" will introduce its private local variable h, 
thus catering for h, hi, ... , h8 that we would need when writing eight 
nested loops. 

Our program-although correct to this level of detail-is not yet complete, 
i.e. it has not been refined up to the standard degree of detail that is required 
by our programming language. In our next refinement we should decide 
upon the conventions according to which we represent the configurations 
on the board. We have already decided more or less that we shall use the 

integer array x[O :7] 
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giving in order the column numbers occupied by the queens, and also that 

integer n 

should be used to represent the number of queens on the board. More 
precisely 

n = the number of queens on the board 

x[i] for 0 ~ i < n = the number of the column occupied by the queen in 
the ith row. 

The array x and the scalar n are together sufficient to fix any configuration 
of the set B and those will be the only ones on the chessboard. As a result 
we have no logical need for more variables; yet we shall introduce a few 
more, because from a practical point of view we can make good use of them. 
The problem is that with only the above material the (frequent) analysis 
whether a given square in the next free row is uncovered is rather painful 
and time-consuming. It is here that we look for the standard technique as 
described in the section "On trading storage space for computation speed" 
(see page 42). The role of the stored argument is here played by the 
configuration of queens on the board, but this value does not change wildly­
oh no; the only thing we do is to add or remove a queen. And we are 
looking for additional tables (whose contents are a function of the current 
configuration) such that they will assist us in deciding whether a square is 
free, and also such that they can be updated easily when a queen is added 
to or removed from a configuration. 

How? Well, we might think of a boolean array of 8*8, indicating for each 
square whether it is free or not. If we do this for the full board, adding a 
queen might imply dealing with 28 squares. Removing a queen, however, is 
then a painful process, because it does not follow that all squares no longer 
covered by her are indeed free: they might be covered by one or more of 
the other queens that remain in the configuration. There is a remedy (again 
standard) for this, viz. associating with each square not a boolean variable, 
but an integer counter, counting the number of queens covering the square. 
Adding a queen then means increasing up to 28 counters by 1, removing a 
queen means decreasing them by 1 and a square is free when its associated 
counter equals zero. We could cio it that way, but the question is whether 
this is not overdoing it: 28 adjustments is indeed quite a heavy overhead on 
setting or removing a queen. 

Each square in the freedom of which we are interested covers a row (which 
is free by definition, so we need not bother about that), covers one of the 
8 columns (which must still be empty), covers one of the 15 upward diagonals 
(which must still be empty) and one of the 15 downward diagonals (which 
must still be empty). This suggests that we should keep track of 
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(1) the columns that are free 

(2) the upward diagonals that are free 

(3) the downward diagonals that are free. 

As each column or diagonal is covered only once we do not need a counter 
for each, a boolean variable is sufficient. The columns are readily identified 
by their column number and for the columns we introduce 

boolean array col[O :7] 

where "col[i]" means that the ith column is still free. 
How do we identify the diagonals? Well, along an upward diagonal the 

difference between row number and column number is constant; along a 
downward diagonal their sum is constant. As a result, difference and sum 
respectively are the easiest index by which to distinguish the diagonals and 
we introduce therefore 

boolean array up[-7:+7], down[O:l4] 

to keep track of which diagonals are free. 

The question whether square[n,h] is free becomes 

col[h] and up[n-h] and down[n+h] 

setting and removing a queen both imply the adjustment of three booleans, 
one in each array. 

In the final program the variable "k" is introduced for general counting 
purposes, statements and expressions are labeled (in capital letters). Note 
that we have merged two levels of description: what were statements and 
functions on the upper level, now appear as explanatory labels. 

With the final program we come to the end of the last section. We have 
attempted to show the pattern of reasoning by which one could discover 
backtracking as a technique, and also the pattern of reasoning by which 
one could discover a recursive procedure describing it. The most important 
moral of this section is perhaps that all that analysis and synthesis could be 
carried out before we had decided how (and how redundantly) a configuration 
would be represented inside the machine. It is true that such considerations 
only bear fruit when eventually a convenient representation for configura­
tions can be found. Yet the mental isolation of a level of abstraction in which 
we allow ourselves not to bother about it seems crucial. 

Finally, I would like to thank the reader that has followed me up till here 
for his patience. 



begin integer n, k; integer array x[O :7]; boolean array col[O :7], up[ - 7: + 7], down[O: 14]; 
procedure generate; 

end 

begin integer h; 

end; 

h:= O; 
repeat if SQUARE[n,h] FREE: (col[h] and up[n-h] and down[n+h]) do 

begin SET QUEEN ON SQUARE[n,h]: 

end; 

x[n]:= h; col[h]:= false; up[n-h]:= false; down[n+h]:= false; n:= n + 1; 
if BOARD FULL: (n = 8) then 
begin PRINT CONFIGURATION: 

k:= O; repeat print(x[k]); k:= k + 1 until k = 8; newline 
end 

else generate; 
n:= n - 1; REMOVE QUEEN FROM SQUARE[n,h]: 

down[n+h]:= true; up[n-h]:= true; col[h]:= true 

h:= h + 1 

until h = 8 

INITIALISE EMPTY BOARD: 
n:= O; 
k:= O; repeat col[k]:= true; k:= k + 1 until k = 8; 
k:= O; repeat up[k-7]:= true; down[k]:= true; k:= k + 1untilk=15; 

generate 
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II. Notes on Data Structuring • 

C. A. R. HOARE 

1. INTRODUCTION 

In the development of our understanding of complex phenomena, the most 
powerful tool available to the human intellect is abstraction. Abstraction 
arises from a recognition of similarities between certain objects, situations, 
or processes in the real world, and the decision to concentrate on these 
similarities, and to ignore for the time being the differences. As soon as we 
have discovered which similarities are relevant to the prediction and control 
of future events, we will tend to regard the similarities as fundamental and 
the differences as trivial. We may then be said to have developed an abstract 
concept to cover the set of objects or situations in question. At this stage, 
we will usually introduce a word or picture to symbolise the abstract concept; 
and any particular spoken or written occurrence of the word or picture may 
be used to represent a particular or general instance of the corresponding 
situation. 

The primary use for representations is to convey information about 
important aspects of the real world to others, and to record this information 
in written form, partly as an aid to memory and partly to pass it on to 
future generations. However, in primitive societies the representations were 
sometimes believed to be useful in their own right, because it was supposed 
that manipulation of representations might in itself cause corresponding 
changes in the real world; and thus we hear of such practices as sticking 
pins into wax models of enemies in order to cause pain to the corresponding 
part of the real person. This type of activity is characteristic of magic and 
witchcraft. The modern scientist on the other hand, believes that the manipu­
lation of representations could be used to predict events and the results of 
changes in the real world, although not to cause them. For example, by 
manipulation of symbolic representations of certain functions and equations, 

*This monograph is based on a series of lectures delivered at a Nato Summer School, 
Marktoberdorf, 1970. 
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he can predict the speed at which a falling object will hit the ground, although 
he knows that this will not either cause it to fall, or soften the final impact 
when it does. 

The last stage in the process of abstraction is very much more sophisticated; 
it is the attempt to summarise the most general facts about situations and 
objects covered under an abstraction by means of brief but powerful axioms, 
and to prove rigorously (on condition that these axioms correctly describe 
the real world) that the results obtained by manipulation of representations 
can also successfully be applied to the real world. Thus the axioms of 
Euclidean geometry correspond sufficiently closely to the real and measurable 
world to justify the application of geometrical constructions and theorems 
to the practical business of land measurement and surveying the surface of 
the earth. 

The process of abstraction may thus be summarised in four stages: 

(l) Abstraction: the decision to concentrate on properties which are shared 
by many objects or situations in the real world, and to ignore the differences 
between them. 

(2) Representation: the choice of a set of symbols to stand for the abstrac­
tion; this may be used as a means of communication. 

(3) Manipulation: the rules for transformation of the symbolic represen­
tations as a means of predicting the effect of similar manipulation of the real 
world. 

(4) Axiomatisation: the rigorous statement of those properties which have 
been abstracted from the real world, and which are shared by manipulations 
of the real world and of the symbols which represent it. 

J .1. NUMBERS AND NUMERALS 

Let us illustrate this rather abstract description by means of a relatively 
concrete example-the number four. In the real world, it is noticed that 
objects can be grouped together in collections, for example four apples. 
This already requires a certain act of abstraction, that is a decision to ignore 
(for the time being) the differences between the individual apples in the 
collection-for example, one of them is bad, two of them unripe, and the 
fourth already partly eaten by birds. 

Now one may consider several different collections, each of them with 
four items; for example, four oranges, four pears, four bananas, etc. If we 
choose to ignore the differences between these collections and concentrate 
on their similarity, then we can form a relatively abstract concept of the 
number four. The same process could lead to the concept of the number 3, 
15, and so on; and a yet further stage of abstraction would lead to the 
development of the concept of a natural number. 
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Now we come to the representation of this concept, for example scratched 
on parchment, or carved in stone. The representation of a number is called a 
numeral. The early Roman numeral was clearly pictorial, just four strokes 
carved in stone: 1111. An alternative more convenient representation was IV. 
The arabic (decimal) representations are less pictorial, but again there is 
some choice: both 4 and 04 (and indeed 004 and so on) are all recognised as 
valid numerals, representing the same number. 

We come next to a representation which is extremely convenient for 
processing, providing that the processor is an electronic digital computer. 
Here the number four is represented by the varying directions of magnetisa­
tion of a group of ferrite cores. These magnetisations are sometimes repre­
sented by sequences of zeros and ones on line printer paper; i.e., the binary 
representation of the number in question. 

A simple example of the manipulation of numerals is addition, which 
can be used to predict the result of adjoining of two collections of objects 
in the real world. The addition rules for Roman numerals are very simple 
and obvious, and are simple to apply. The addition rules for arabic numerals 
up to ten are quite unobvious, and must be learnt; but for numbers much 
larger than ten they are more convenient than the Roman techniques. 
Addition of binary representations is not a task fit for human beings; but 
for a computer this is the simplest and best representation. Thus we see that 
choice between many representations can be made in the light of ease of 
manipulation in each particular environment. 

Finally we reach the stage of axiomatisation; the most widely known 
axiom set for natural numbers is that of Peano, which was first formulated 
at the end of the last century, long after natural numbers had been in general 
use. In the present day, the axiomatisation of abstract mathematical ideas 
usually follows far more closely upon their development; and in fact may 
assist in the clarification of the concept by guarding against confusion and 
error, and by explaining the essential features of the concept to others. It is 
possible that a rigorous formulation of presuppositions and axioms on which 
a program is based may reduce the confusion and error so characteristic of 
present day programming practice, and assist in the documentation and 
explanation of programs and programming concepts to others. 

1.2. ABSTRACTION AND COMPUTER PROGRAMMING 

It is my belief that the process of abstraction, which underlies attempts to 
apply mathematics to the real world, is exactly the process which underlies 
the application of computers in the real world. The first requirement in 
designing a program is to concentrate on relevant features of the situation, 
and to ignore factors which are believed irrelevant. For example, in analysing 
the flutter characteristics of a proposed wing design of an aircraft, its elasticity 
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is what is considered relevant; its colour, shape, and production technique 
are considered to be irrelevant except in so far as they have contributed to its 
elasticity. To take a commercial example, the employees working for a 
Company have many characteristics, both physical and mental, which will 
be ignored when devising a payroll program for the Company. 

The next stage in program design is the decision of the manner in which 
the abstracted information is to be represented in the computer. An elasticity 
function may be represented by its values at a suitable number of discrete 
points; and these may be represented in a variety of ways as a two-dimensional 
array. Alternatively, the elasticity might be given by a computed function, 
and the data be held as a vector of polynomial or chebyshev coefficients for 
the function. A payroll file on a computer consists of a number of records, 
one relating to each employee. The choice of representation within the 
record of each relevant attribute must be made as part of the design of the 
program. 

The stage of axiomatisation is not usually regarded as a separate stage in 
programming; and is often left implicit. In the case of aircraft flutter, the 
axiomatisation is the formulation of the differential equations which are 
presumed to describe the reaction of the real wing to certain kinds of stresses, 
and which (it is hoped) also describe the process of approximate solution 
on the computer. In the case of a payroll, the axioms correspond to the des­
::riptions of various aspects of the real world which need to be embodied in 
the program-for example, the fact that net pay equals gross pay minus 
deductions. 

Finally there comes the task of programming the computer to get it to 
carry out those manipulations on the representation of the data that corre­
spond to the manipulations in the real world in which we are interested. 
The success of a program is dependent on three basic conditions: 

(1) The axiomatisation is a correct description of those aspects of the real 
world with which it is concerned. 

(2) The axiomatisation is a correct description of the behaviour of the 
program, i.e., that the program contains no errors. 

(3) The choice of representation and the method of manipulation are such 
that the cost of running the program on the computer is acceptable. 

In order to simplify the task of designing and developing a computer 
prograrfi., it is very helpful to be able to keep these three stages reasonably 
separate and to carry them out in the appropriate sequence. Thus the first 
stage (axiomatisation) would culminate in a rigorous logical statement of 
presuppositions about the real world, and a formulation of the desired 
objectives which are to be achieved by the program. The second stage would 
culminate in an algorithm, or abstract program, which is demonstrably 
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capable of carrying out the stated task on the given presuppositions. The 
third stage would be the decision on how the various items of data are to be 
represented and manipulated in the store of the computer in order to achieve 
acceptable efficiency. Only when these three stages have been satisfactorily 
concluded will there begin the final phase of coding and testing the program, 
which embodies the chosen algorithm operating upon the chosen data 
representation. 

Of course, this is a somewhat idealised picture of the intellectual task of 
programming as a steady progression from the abstract formulation of the 
problem to the more and more concrete aspects of its solution. In practice, 
even in the formulation of a problem, the programmer must have some 
intuition about the possibility of a solution; while he is designing his abstract 
program, he must have some feeling that an adequately efficient representa­
tion is available. Quite frequently these intuitions and feelings will be mistaken, 
and a deeper investigation of representation, or even the final coding, will 
require a return to an earlier stage in the process, and perhaps even a radical 
recasting of the direction of attack. But this exercise of intuitive forethought, 
together with a risk of failure, is characteristic of all inventive and con­
structive intellectual processes, and does not detract from the merits of at 
least starting out in an orderly fashion, with more or less clearly separated 
stages. 

One of the most important features of the progression is that the actual 
coding of the program has been postponed until after it is (almost) certain 
that all other aspects of the design have been successfully completed. Since 
coding and program testing is generally the most expensive stage in 
program development, it is undesirable to have to make changes after this 
stage has started. Thus it is advantageous to ensure beforehand that nothing 
further can go wrong at this final stage; for example, that the program 
tackles the right problem, that the algorithm is correct, that the various 
parts of the program cooperate harmoniously in the overall task, and that the 
data rcpr..!sentations are adequately efficient. It is the purpose of this mono­
grn ph to explore methods of achieving this confidence. 

1.3. ABSTRACTION IN HIGH-LEVEL PROGRAMMING LANGUAGES 

The role of abstraction in the design and development of computer programs 
may be reinforced by the use of a suitable high-level programming language. 
Indeed, the benefits of using a high-level language instead of machine code 
may be largely due to their incorporation of successful abstractions, particu­
larly for data. To the hardware of a computer, and to a machine code 
programmer, every item of data is regarded as a mere collection of bits. 
However, to the programmer in ALGOL 60 or FORTRAN an item of data 
is regarded as an integer, a real number, a vector, or a matrix, which are the 
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same abstractions that underlie the numerical application areas for which 
these languages were primarily designed. Of course, these abstract concepts 
have been mapped by the implementor of the language onto particular bit­
pattern representations on a particular computer. But in the design of his 
algorithm, the programmer is freed from concern about such details, which 
for his purpose are largely irrelevant; and his task is thereby considerably 
simplified. 

Another major advantage of the use of high-level programming languages, 
namely machine-independence, is also attributable to the success of their 
abstractions. Abstraction can be applied to express the important characteris­
tics not only of differing real-life situations, but also of different computer 
representations of them. As a result, each implementor can select a repre­
sentation which ensures maximum efficiency of manipulation on his particular 
computer. 

A third major advantage of the use of a high-level language is that it 
significantly reduces the scope for programming error. In machine code 
programming it is all too easy to make stupid mistakes, such as using fixed 
point addition on floating point numbers, performing arithmetic operations 
on Boolean markers, or allowing modified addresses to go out of range. 
When using a high-level language, such errors may be prevented by three 
means: 

(I) Errors involving the use of the wrong arithmetic instructions are 
logically impossible; no program expressed, for example in ALGOL, could 
ever cause such erroneous code to be generated. 

(2) Errors like performing arithmetic operations on Boolean markers will 
be immediately detected by a compiler, and can never cause trouble in an 
executable program. 

(3) Errors like the use of a subscript out of range can be detected by 
runtime checks on the ranges of array subscripts. 

Runtime checks, although often necessary, are almost unavoidably more 
expensive and less convenient than checks of the previous two kinds; and 
high-level languages should be designed to extend the range of programming 
errors which logically cannot be made, or if made can be detected by a 
compiler. In fact, skilful language design can enable most subscripts to be 
checked without loss of runtime efficiency. 

The automatic prevention and detection of programming errors may 
again be attributed to a successful appeal to abstraction. A high-level pro­
gramming language permits the programmer to declare his intentions about 
the types of the values of the variables he uses, and thereby specify the 
meanings of the operations valid for values of that type. It is now relatively 
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easy for a compiler to check the consistency of the program, and prevent 
errors from reaching the execution stage. 

1.4. NOTATIONS 

In presenting a theory of data structuring, it is necessary to introduce some 
convenient notation for expressing the abstractions involved. These notations 
are based to a large extent on those e:tiready familiar to mathematicians, 
logicians and programmers. They have also been designed for direct expres­
sion of computer algorithms, and to minimise the scope for programming 
error in running programs. Finally, the notations are designed to ensure the 
existence of efficient data representations on digital computers. 

Since the notations are intended to be used (among other things) for the 
expression of algorithms, it would be natural to conclude that they constitute 
a form of programming language, and that an automatic translator should be 
written for converting programs expressed in the language into the machine 
code of a computer, thereby eliminating the expensive and error-prone 
coding stage in the development of programs. 

But this conclusion would be a complete misunderstanding of the reason 
for introducing the notations, and could have some very undesirable conse­
quences. The worst of them is that it could lead to the rejection of the main 
benefits of the programming methodology expounded in this monograph, on 
the grounds that no compiler is available for the language, nor likely to be 
widely accepted if it were. 

But there are sound reasons why these notations must not be regarded as a 
programming language. Some of the operations (e.g., concatenation of 
sequences), although very helpful in the design of abstract programs and the 
description of their properties, are grotesquely inefficient when applied to 
large data objects in a computer; and it is an essential part of the program 
design process to eliminate such operations in the transition between an 
abstract and a concrete program. This elimination will sometimes involve 
quite radical changes to both algorithm and representation, and could not in 
general be made by an automatic translator. If such expensive operators were 
part of a language intended for automatic compilation, it is probable that 
many programmers would fail to realise their obligation to eliminate them 
before approaching the computer; and even if they wanted to, they would 
have little feeling for what alternative representations and operations would 
be more economic. In taking such vital decisions, it is actually helpful if a 
programming language is rather close to the eventual machine, in the sense 
that the efficiency of the machine code is directly predictable from the form 
and length of the corresponding source language code. 

There is a more subtle danger which would be involved in the automatic 
implementation of the notations: that the good programmer would soon 
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learn that some of them are significantly less efficient than others, and he will 
avoid their use even in his abstract programs; and this will result in a form 
of mental block which might have serious consequences on his inventive 
capacity. Equally serious, the implementation of a fixed set of notations 
might well inhibit the user from introducing his own notations and concepts 
as required by his understanding of a particular problem. 

Thus there is a most important distinction to be drawn between an 
algorithmic language intended to assist in the definition, design, development 
and documentation of a program, and the programming language in which 
the program is eventually conveyed to a computer. In this monograph we 
shall be concerned solely with the former kind of language. All example 
algorithms will be expressed in this language, and the actual coding of 
these programs is left as an exercise to the reader, who may choose for this 
purpose any language familiar to him, ALGOL, FORTRAN, COBOL, PL/I, 
assembly language, or any available combination of them. It is essential to a 
realisation of the relative merits of various representations of data to realise 
what their implications on the resulting code will be. 

In spite of this vigorous disclaimer that I am not embarking on the design 
of yet another programming language, I must admit the advantages that 
can follow if the programming language used for coding an algorithm is 
actually a subset of the language in which it has been designed. I must also 
confess that there exists a large subset of the proposed algorithmic language 
which can be implemented with extremely high efficiency, both at compile 
time and at run time, on standard computers of the present day; and the 
challenge of designing computers which can efficiently implement even larger 
subsets may be taken up in the future. But the non-availability of such a 
subset implementation in no way invalidates the benefits of using the full 
set of notations as an abstract programming tool. 

1.5. SUMMARY 

This introduction has given a general description of the motivation and 
general approach taken hereafter. As is quite usual, it may be read again 
with more profit on completion of the rest of the monograph. 

The second section explains the concept of type, which is essential to the 
theory of data structuring; and relates it to the operations and representations 
which are relevant to the practice of computer programming. 

Subsequent sections deal with particular methods of structuring data, 
progressing from the simpler to the more elaborate structures. 

Each structure is explained informally with the aid of examples. Then 
the manipulation of the structure is defined by specifying the set of basic 
operations which may be validly applied to the structure. Finally, a range of 
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possible computer representations is given, together with the criteria which 
should influence the selection of a suitable representation on each occasion. 

Section 11 is devoted to an example, a program for constructing an 
examination timetable. The last section puts the whole exposition on a 
rigorous theoretical basis by formulating the axioms which express the basic 
properties of data structures. This section may be used as a summary of the 
theory, as a reference to refine the understanding, or as a basis for the proof 
of correctness of programs. 

2. THE CONCEPT OF TYPE 

The theory of data structuring here propounded is strongly dependent on 
the concept of type. This concept is familiar to mathematicians, logicians, 
and programmers. 

(!) In mathematical reasoning, it is customary to make a rather sharp 
distinction between individuals, sets of individuals, families of sets, and so 
on; to distinguish between real functions, complex functions, functionals, 
sets off unctions, etc. In fact for each !!CW variable introduced in his reasoning, 
a mathematician usually states immediately what type of object the variable 
can stand for, e.g. 

"Let f be a real function of two real variables" 

"Let S be a family of sets of integers". 

Sometimes in mathematical texts a general rule is given which relates the 
type of a symbol with a particular printer's type font, for example: 

"We use small Roman letters to stand for individuals, capitals to 
stand for sets of individuals, and script capitals to denote families of sets". 

In general, mathematicians do not use type conventions of this sort to 
make distinctions of an arbitrary kind; for example, they would not be 
generally used to distinguish prime numbers from non-primes or Abelian 
groups from general groups. In practice, the type conventions adopted by 
mathematicians are very similar to those which would be of interest to 
logicians and programmers. 

(2) Logicians on the whole prefer to work without typed variables. 
However without types it is possible to formulate within set theory certain 
paradoxes which would lead to inescapable contradiction and collapse of 
logical and mathematical reasoning. The most famous of these is the Russell 
paradox: 

"let s be the set of all sets which are not members of themselves. 
Is s a member of itself or not?" 
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It turns out that whether you answer yes or no, you can be immediately 
proved wrong. 

Russell's solution to the paradox is to associate with each logical or 
mathematical variable a type, which defines whether it is an individual, a 
set, a set of sets, etc. Then he states that any proposition of the form "xis a 
member of y" is grammatically meaningful only if x is a variable of type 
individual and y a variable of type set, or if x is of type set and y is of type set 
of sets, and so on. Any proposition that violates this rule is regarded as 
meaningless-the question of its truth or falsity just does not arise, it is just a 
jumble of letters. Thus any proposition involving sets that are or are not 
members of themselves can simply be ruled out. 

Russell's theory of types leads to certain complexities in the foundation 
of mathematics, which are not relevant to describe here. Its interesting 
features for our purposes are that types are used to prevent certain erroneous 
expressions from being used in logical and mathematical formulae; and that a 
check against violation of type constraints can be made merely by scanning 
the text, without any knowledge of the value which a particular symbol 
might happen to stand for. 

(3) In a high-level programming language the concept of a type is of 
central· importance. Again, each variable, constant and expression has a 
unique type associated with it. In ALGOL 60 the association of a type with a 
variable is made by its declaration; in FORTRAN it is deduced from the 
initial letter of the variable. In the implementation of the language, the type 
information determines the representation of the values of the variable, and 
the amount of computer storage which must be allocated to it. Type informa­
tion also determines the manner in which arithmetic operators are to be 
interpreted; and enables a compiler to reject as meaningless those programs 
which invoke inappropriate operations. 

Thus there is a high degree of commonality in the use of the concept of 
type by mathematicians, logicians and programmers. The salient characteris­
tics of the concept of type may be summarised: 

(1) A type determines the class of values which may be assumed by a 
variable or expression. 

(2) Every value belongs to one and only one type. 

(3) The type of a value denoted by any constant, variable, or expression 
may be deduced from its form or context, without any knowledge of its 
value as computed at run time. 

( 4) Each operator expects operands of some fixed type, and delivers a 
result of some fixed type (usually the same). Where the same symbol is applied 
to several different types (e.g. + for addition of integers as well as reals), 
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this symbol may be regarded as ambiguous, denoting several different actual 
operators. The resolution of such systematic ambiguity can always be made 
at compile time. 

(5) The properties of the values of a type and of the primitive operations 
defined over them are specified by means of a set of axioms. 

(6) Type information is used in a high-level language both to prevent or 
detect meaningless constructions in a program, and to determine the method 
of representing and manipulating data on a computer. 

(7) The types in which we are interested are those already familiar to 
mathematicians; namely, Cartesian Products, Discriminated Unions, Sets, 
Functions, Sequences, and Recursive Structures. 

2.1. DATA TYPE DEFINITIONS 

Our theory of data structuring specifies a number of standard methods of 
defining types, and of using them in the declaration of variables to specify 
the range of values which that variable may take in the course of execution 
of a program. In most cases, a new type is defined in terms of previously 
defined constituent types; the values of such a new type are data structures, 
which can be built up from component values of the constituent types, and 
from which the component values can subsequently be extracted. These 
component values will belong to the constituent types in terms of which the 
structured type was defined. If there is only one constituent type, it is known 
as the base type. 

The number of different values of a data type is known as its cardinality. 
In many cases the cardinality of a type is finite; and for a structured type 
defined in terms of finite constituent types, the cardinality is also usually 
finite, and can be computed by a simple formula. In other cases, the cardinality 
of a data type is infinite, as in the case of integers; but it can never be more 
than denumerably infinite. The reason for this is that each value of the type 
must be constructible by a finite number of computer operations, and must 
be representable in a finite amount of store. Arbitrary real numbers, functions 
with infinite domains. and other classes of non-denumerable cardinality can 
never be represented as stored data within a computer, though in some cases 
they can be represented by procedures, functions, or other program structures. 

Obviously, the ultimate components of a structure must be unstructured, 
and the ultimate constituents of a structured type must be unstructured types. 
One method of defining an unstructured type is by simple enumeration of its 
values, as described in the next section. But in certain cases it is better to 
regard the properties of unstructured types as defined by axioms, and assume 
them to be provided as primitive types by the hardware of a computer or the 
implementation of a high-level programming language. For example, the 
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primitive types of ALGOL 60 are integer, real, and Boolean, and these will 
be ass:1med available. 

2.2. DATA MANIPULATION 

The most important practical aspect of data is the manner in which that 
data can be manipulated, and the range of basic operators available for this 
purpose. We therefore associate with each type a set of basic operators which 
are intended to be useful in the design of programs, and yet which have at 
least one reasonably efficient implementation on a computer. Of course the 
selection of basic operators is to some extent arbitrary, and could have been 
either larger or smaller. The guiding principle has been to choose a set large 
enough to ensure that any additional operation required by the programmer 
can be defined in terms of the basic set, and be efficiently implemented in 
this way also; so an operator is regarded as basic if its method of efficient 
implementation depends heavily on the chosen method of data represen­
tation. 

The most important and general operations defined for data of any type 
are assignment and test of equality. Assignment involves conceptually a 
complete copy of a data value from one place to another in the store of the 
computer; and test of equality involves a complete scan of two values 
(usually stored at different places) to test their identity. These rules are those 
that apply to primitive data types and there is no reason to depart from 
them in the case of structured types. If the value of a structured type is very 
large, these operations may take a considerable amount of time; this can 
sometimes be reduced by an appropriate choice of representation; alter­
natively, such operations can be avoided or removed in the process of 
transforming an abstract program to a concrete one. 

Another general class of operators consists in the transfer functions, which 
map values of one type into another. Of particular importance are the 
constructors, which permit the value of a structured type to be defined in 
terms of the values of the constituent types from which it is built. The 
converse transfer functions are known as selectors; they permit access to 
the component values of a structured type. In many cases, we use the name 
of a defined type as the name of the standard constructor or transfer function 
which ranges over the type. 

Certain data types are conveniently regarded as ordered; and comparison 
operators are available to test the values of such types. But for many types, 
such an ordering would have no meaningful interpretation; and such types 
are best regarded from an abstract point of view as unordered. This will 
sometimes be of advantage in giving greater freedom in the choice of repre­
sentation and sequencing strategies at a later state in the concrete design. 
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In the case of a large data structure, the standard method of operating 
efficiently on it is not by assigning a wholly new value to it, but rather by 
selectively updating some relatively small part of it. The usual notation for 
this is to write on the left of an assignment an expression (variable) which 
uses selectors to denote the place where the structure is to be changed. 
However, we also introduce special assignment operators, always beginning 
with colon, to denote other more general updating operations such as adding 
a member to a set, or appending an item to a sequence. For both kinds of 
selective updating, it must be remembered that, from a conceptual or abstract 
point of view, the entire value of the variable has been changed by updating 
the least part of it. 

2.3. REPRESENTATIONS 

It is fundamental to the design of a program to decide how far to store 
computed results as data for subsequent use, and how far to compute them 
as required. It is equally fundamental to decide how stored data should be 
represented in the computer. In many simple and relatively small cases there 
is an obvious standard way of representing data, which ensures that not too 
much storage is used, and not too much time expended on carrying out the 
basic operations. But if the volume of data (or the amount of processing) 
is large, it is often profitable (and sometimes necessary) to choose some 
non-standard representation, selected in accordance with the characteristics 
of the storage media used (drums, discs, or tapes), and also taking into 
account the relative frequencies of the various operations which will be 
performed upon it. Decisions on the details of representation must usually 
precede and influence the design of the code to manipulate the data, often 
at a time when the nature of the data and the processing required are relatively 
unknown. Thus it is quite common to make serious errors of judgement in 
the design of data representation, which do not come to light until shortly 
before, or even after, the program has been put into operation. By this time 
the error is extremely difficult to rectify. However, the use of abstraction 
in data structuring may help to postpone some of the decisions on data 
representation until more is known about the behaviour of the program and 
the characteristics of the data, and thus make such errors less frequent and 
easier to rectify. 

An important decision to be taken is on the degree and manner in which 
data should be compressed in storage to save space; and also to save time on 
input/output, on copying operations, and on comparisons, usually at the 
expense of increasing the time and amount of code required to perform all 
other operations. Representations requiring less storage than the standard 
are usually known as packed; there are several degrees of packing, from 
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loose to tight. Of theoretical interest is the _minimal representation, which 
uses the least possible space. In this representation the values of the type are 
represented as binary integers in the range 0 to N - l, where N is the cardi­
nality of the type. In the case of a type of infinite cardinality, a minimal 
representation is one in which every possible bit pattern represents a value of 
the type. Minimal representations are not often used, owing to the great 
expense of processing them. 

Another method of saving space is to use an indirect representation. In 
the standard direct representation of data, each variable of a type is allocated 
enough space to hold every value of the type. In the indirect representation, 
the variable is just large enough to contain a single machine address, which at 
any given time points to a group of one or more machine locations con­
taining the current value. This technique is necessary when the type has 
infinite cardinality, since the amount of storage used will vary, and is not 
known when writing the code which accesses the variable. It can also be 
profitable when the actual amount of storage is variable, and during a large 
part of a program run is significantly less than the maximum. Finally, it 
can be used when it is believed that many different variables will tend to have 
the same values; since then only one copy of the value need be held, and the 
variables may just contain pointers to it; copying the value is also very cheap, 
since only the pointer need be copied. However, such shared copies must 
never be selectively updated. 

Unfortunately, indirect representations often involve the additional expense 
and complexity of a dynamic storage allocation and garbage collection 
scheme; and they can cause some serious problems if data has to be copied 
between main and backing stores. 

This chapter describes only a small but useful range of the possible 
representations of data, and the skilful programmer could readily add to the 
selection. In many cases, the representation of an abstract data type can be 
constructed by means of a more elaborate but more efficient data type 
definition; for instance a large set may be represented as a sequence of items 
of some suitable type. Examples of this are given in later sections. 

3. UNSTRUCTURED DATA TYPES 

All structured data must in the last analysis be built up from unstructured 
components, belonging to a primitive or unstructured type. Some of these 
unstructured types (for example, reals and integers) may be taken as given 
by a programming language or the hardware of the computer. Although 
these primitive types are theoretically adequate for all purposes, there are 
strong practical reasons for encouraging a programmer to define his own 
unstructured types, both to clarify his intentions about the po~ntial range of 



NOTES ON DATA STRUCTURING 97 

values of a variable, and the interpretation of each such value; and to permit 
subsequent design of an efficient representation. 

In particular, in many computer programs an integer is used to stand not 
for a numeric quantity, but for a particular choice from a relatively small 
number of alternatives. In such cases, the annotation of the program usually 
lists all the possible alternative values, and gives the intended interpretation 
of each of them. It is possible to regard such a quantity as belonging to a 
separate type, quite distinct from the integer type, and quite distinct from 
any other similar set of markers which have a different interpretation. Such 
a type is said to be an enumeration, and we suggest a standard notation for 
declaring the name of the type and associating a name with each of its 
alternative values: 

type suit = (club, diamond, heart, spade); 

ordered type rank = (two, three, four, five, six, seven, eight, nine, ten, Jack, 

Queen, King, Ace); 

type primary colour = (red, yellow, blue); 

ordered type day of week = (Monday, Tuesday, Wednesday, Thursday, 

Friday, Saturday, Sunday); 

type day of month = l .. 31; 

ordered type month = (Jan, Feb, March, April, May, June, July, Aug, Sept, 

Oct, Nov, Dec); 

type year= 1900 .. 1969; 

type Boolean = (false, true); 

ordered type floor = (basement, ground, mezzanine, first, second); 

type coordinate = 0 .. I 023 ; 

Our first two examples are drawn from the realm of playing cards. The first 
declaration states that club, diamond, heart, and spade are suits; in other 
words, that any variable or expression of type suit can only denote one of 
these four values; and that the identifiers "club" "heart" "diamond" and 
"spade" act as constants of this type. Similarly, the definition of the type 
rank displays the thirteen constants denoting the thirteen possible values of 
the type. In this case it is natural to regard the type as ordered. The next 
examples declare the names of the primary colours and of the days of the 
week. In considering the days of the month, it is inconvenient to write out 
the thirty-one possible values in full. We therefore introduce the convention 
that a . . b stands for the finite range of values between a and b inclusive. 
This is known as a subrange of the type to which a and b belong, in this case 
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integers. This convention is used again in the declaration of year. Other 
examples of enumeration are: 

The Boolean type, with only two values, false and true. 

The Month type, with twelve values listed in the required order. 

The coordinate type, taking values between 0 and 1023, representing 
perhaps a coordinate on a CRT display. 

Having defined a type in a suitable fashion, the programmer will use the 
type name to specify the types of his variables. For this purpose it is useful 
to follow the current practice of mathematicians and to write the type name 
after the variable, separated from it by a colon: 

trumps:suit; today:day of week; 

pc: primary colour; 

If several variables of the same type are to be declared at the same time, 
it is useful to adopt the abbreviation of listing the variable names without 
repeating the type name, thus: 

arrival, departure: day of month; 

x, y, z:coordinate. 

If only a few variables of a given type are to be used, it is convenient to 
write the type definition itself in place of and instead of the type name: 

answer:(yes, no, don't know); 

The cardinality of a type defined by enumeration is obviously equal to 
the length of the defining list; and for a numeric subrange, it is one more 
than the difference between the end points of the subrange. 

3. I. MANIPULATION 

The operations required for successful manipulation of values of enumeration 
types and subranges are: 

(I) test of equality, for example: 

if arrival = departure then go to transit desk; 
if trumps = spade then ... 

(2) assignment, for example· 

pc:= yellow; 
trumps:= club; 

(3) case discrimination, for example: 

case pc of (red: .... , 
yellow: ... , 
blue: ... ) 



NOTES ON DATA STRUCTURING 99 

where pc is a variable or expression of type primary colour, and the limbs 
of the discrimination are indicated by lacunae. A case discrimination may be 
either a statement, in which case the limbs must be statements; or it may be 
an expression, in which case the limbs must be all expressions of the same 
type. 

The effect of a case discrimination is to select for execution (or evaluation) 
that single statement (or expression) which is prefixed by the constant equal 
to the current value of the case expression. In some cases, it may be convenient 
to prefix several constants to the same limb, or even to indicate a subrange of 
values which would select the corresponding limb; but of course each value 
must be mentioned exactly once: 

case digit of (0 .. 2: .... , 

3:7: .... , 

4 .. 6:8:9: ... ). 

In this last case, it would be convenient to replace the labels of the last limb 
by the basic word else, to cover all the remaining cases not mentioned 
explicitly on the preceding limbs. 

When the limbs of a discrimination are statements, we shall sometimes use 
braces instead of brackets to surround them. 

(4) In the case of a type declared as ordered, it is possible to test the 
ordering relationships among the values: 

if May ~ this month & this month ~ September then 
adopt summer timetables. 

In other cases, the ordering of the values is quite irrelevant, and has no 
meaning to the programmer. 

(5) In conjunction with ordering, it is useful to introduce a successor and a 
predece~sor function (succ and pred) to map each value of the type onto the 
next higher or lower value, if there is one. Also, if Tis any ordered type, the 
notation T.min will denote the lowest value of the type, and T.max the 
highest value, if they exist. This helps in formulating programs, theorems, 
and axioms in a manner independent of the actual names of the constants. 

(6) In a computer program we will frequently wish to cause a variable to 
range sequentially all through the values of a type. This may be denoted by a 
form of for statement or loop 

for a: alpha do ... ; 

for i:l .. 99 do ... ; 

In this construction, the counting variable (a or i) is taken to belong to the 
type indicated, and to be declared locally to the construction, in the sense 
that its value does not exist before or after the loop, and its name is not 
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accessible outside the loop. In addition, the value of the counting variable 
is not allowed to be changed inside the body of the loop, since this would 
frustrate the whole intention of declaring the variable by means of the for 
construction. 

In the case of an ordered type, it is natural to assume that the counting 
variable sequences through the values of the type in the defintd order, 
T.min, succ(T.min), ... , T.max. But if the type is an unordered one, it is 
assumed that the sequence of the scan does not matter at the current level of 
abstraction, and will be defined at some later stage in the development of a 
concrete program. 

(7) For subrange types, particularly integer subranges, it is sometimes 
required to perform operations which are defined for the original larger type. 
In principle, it is simple to accomplish this by first converting the subrange 
value to the corresponding value of the larger type, and then performing the 
operation, and finally converting back again if necessary. This requires a 
type transfer function; and for this purpose it is convenient to use the name 
of the destination type, for example: 

xdistance: = integer(x) - integer(y); 

z; = coordinate{integer(z) + xdistance); 

where xdistance is an integer variable. Of course, this is an excessively 
cumbersome notation, and one would certainly wish to adopt the convention 
of omitting the conversions, where the need for their re-insertion can be 
established from the context: 

xdistance: = x - y; 

z: = z + xdistance. 

Exercise 
Given m: month and y: year, write a case discrimination expression giving 
the number of days in month m. 

3.2. REPRESENTATION 

The standard representation of an enumeration type Tis to map the values 
in the stated order onto the computer integers in the range 0 to n - l, where 
n is the cardinality of the type. Thus in this case the standard representation 
is also minimal. The standard representation of a subrange is to give each 
value the same representation that it had in the original type; thus transfer 
between the types involves no actual operation; though of course conversion 
from the base type to the subrange type should involve a check to ensure that 
the value is within the specified range. 

The minimal representation of a subrange value is obtained by subtracting 
from the standard form the integer representation of the least value of the 
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subrange. In this case, conversion to a subrange involves subtraction as well 
as a check, and conversion in the opposite direction involves an addition. 

Apart from these conversions, enumerations and subranges in either 
representation can be treated identically. Tests of ordering can be accom­
plished by normal integer instructions of the computer, and succ and pred 
involve addition or subtraction of unity, followed by a test that the result is 
still within range. 

The case discrimination can be most efficiently carried out by a switch­
jump. For example, in ALGOL 60 the first example quoted above (3.1.(3)) 
would be coded: 

begin switch ss: = red, yellow, blue; 

go to ss[pc +I]; 

red: begin .... ; go to end end; 

yellow: begin ... ; go to end end; 

blue: begin .... ; go to end end; 

end:end. 

This can be efficiently represented in machine code, using an indexed 
jump and a switch table, indicating the starting addresses of the portions of 
code corresponding to the limbs of the discrimination. 

The implementation of the for statement corresponds in an obvious way 
to the for statement of ALGOL 60, with a step length of unity. The con­
ventions proposed above, which regard the counting variable as a local 
constant of the loop, not only contribute to clarity of documentation, but 
also assist in achieving efficiency on a computer, by taking advantage of 
registers, special count and test instructions, etc. 

3.3. EXAMPLE 

The character set of a computer peripheral is defined by enumeration: 

type character = ( .... ) ; 

The set includes the subranges 

type digit = nought. . nine; 

type alphabet= A . . Z; 

as well as individual symbols, point, equals, subten, colon, newline, space, 
as well as a number of other single-character operators and punctuation 
marks. 

There is a variable 

buffer: character 

which contains the most recently input character from the peripheral. A 
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new value can be input to buffer from the input tape by the procedure "read 
next character". 

In a certain representation of ALGOL 60, basic words are not singled out 
by underlining, and therefore look like identifiers. Consequently, if they are 
followed or preceded by an identifier or a number, they must be separated 
from it by one or more spaces or newline symbols. 

In the first pass of an ALGOL translator it is desired to read in the 
individual characters, and assemble them into meaningful symbols of the 
language; thus, an identifier, a basic symbol, a number, and the ": =" 
becomes sign, each count as a single symbol, as do all the other punctuation 
marks. Space and newline, having performed their function of separating 
symbols, must be ignored. We assume that each meaningful symbol will be 
scanned by a routine designed for the purpose, and that each such routine 
will leave in the buffer the first input character which is not part of the 
symbol. 

As an example of the analysis of the symbols of a program, input of the 
text 

/:betal: = beta x 12; 

should be analysed into the following symbols: 

I 

beta I 

·­.-
beta 

x 
12 

The general structure of the program is a case discrimination on the first 
character of the symbol, which determines to which class the symbol belongs. 

read first character; 

repeat case buffer of 

(alphabet: scan identifier, 

digit:point:subten:scan number, 

space: newline: read next character, 

colon: begin read next character; 

if buffer = equals then 

begin deal with "becomes"; read next character end 
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else deal with single colon character 

end 

else begin deal with single character; 

read next character 

end 

) 

until end of tape 

4. THE CARTESIAN PRODUCT 

103 

Defined enumerations and subranges, like primitive data types, are in principle 
unstructured. Of course, any particular representation of these types will be 
structured, for example, as a collection of consecutive binary digits; but 
from the abstract point of view, this structuring is essentially irrelevant. No 
operators are provided for accessing the individual bits, or for building up a 
value from them. In fact, it is essential to the successful use of an abstraction 
that such a possibility should be ignored; since it is only thus that detailed 
decisions can be postponed, and data representations can be decided in the 
light of the characteristics of the computer, as well as the manner in which 
the data is to be manipulated. 

We now turn to deal with data types for which the structure is meaningful 
to the programmer, at least at some stage in the development of his program. 
The basis of our approach is that, as in the case of enumerations, the pro­
grammer should be able by declaration to introduce new data types; but for 
structured data, the definition of a new type will refer to other primitive or 
previously defined types, namely the types of the components of the structure. 
Thus the declaration of a new type will be somewhat similar to the declara­
tion of a new function in a language such as ALGOL and FORTRAN. A 
function declaration defines the new function in terms of existing or pre­
viously declared functions and operations. Just as a declared function can be 
invoked on many occasions from within statements of the program or other 
function declarations, so the new type can be .. invoked" many times from 
within other declarations of the program; these may be either declarations 
of variables specified to range over the newly declared type, or they may be 
declarations of yet another new type. 

We will deal first with elementary data structures, Cartesian products and 
unions. These elementary structures are almost as simple and familiar to 
mathematicians and logicians as the natural numbers. Furthermore, from 
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the point of view of the computer programmer, the properties of elementary 
data structures are very favourable, provided that the constituent types are 
also elementary. 

(I) Firstly, each data item occupies a fixed finite, and usually modest 
amount of core store, which increases only linearly with the size of the 
definition. 

(2) The store required to hold each value can efficiently be allocated 
either permanently in main storage or on a run-time stack. There is no need 
for more sophisticated dynamic storage allocation systems. 

(3) The most useful manipulations of the data items can be performed 
with high efficiency on present-day computers by simple and compact 
sequences of machine-code instructions. 

(4) The structures do not require pointers (references, addresses) for their 
representation, and thus there is no problem with the transfer of such data 
between main and backing storage. 

(5) For any given structure, the choice of an appropriate representation 
usually presents no difficulty to the programmer. 

The first data structuring method which we shall discuss is the Cartesian 
product. A familiar example of a Cartesian product is the space of complex 
numbers, each of which is constructed as a pair of floating point numbers, 
one considered as its real part and the other as its imaginary part. The 
declaration of the complex type might take the form 

type complex = (real part: real; imagpart: real); 

or more briefly: 

type complex= (realpart, imagpart:real). 

The names realpart and imagpart are introduced by this definition to provide 
a means of selecting the components of a complex number. For example, 
if n is of type complex defined above, n. realpart will denote its real part and 
n. imagpart its imaginary part. 

A constant denoting a value from a Cartesian product type may be defined 
in terms of a list of constants denoting the values of the components. As 
mentioned before, the name of the type is used as a transfer function to 
indicate the type of the resulting structure, and it takes a list of parameters 
rather than a single one. Thus the complex number 13 + i may be written 

complex (13, + 1). 

Another example of a Cartesian product is the declaration of a type whose 
values represent playing cards. Each card can be specified by giving first its 
suit (for example, heart) and then its rank, say Jack. Both items of information 
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are required uniquely to specify a given card. Thus the type cardface can be 
defined as the Cartesian product of the types suit and rank: 

type cardface = (s:suit; r:rank). 

Typical constants of this type are: 

cardface (club, two), cardface (heart, Jack). 

Another simple example of a Cartesian product, this time with three 
components, is the date. In the normal way, this can be specified by three 
vakes, the first selected from among the possible values of the type day of 
month, say the seventh; the second from among the possible values of the 
type month, say March; and the third from among the values of the type 
year, say 1908. This date can be written: 

date (7, March, 1908). 

It belongs to the type declared thus: 

type date= (day:day of month; m:month; y:year); 

The defining feature of the Cartesian product type is that it comprises 
every possible combination of values of its component types, even if some of 
them should never be encountered in practice. So date (31, Feb, 1931) is a 
normal value of type date, even though in the real world no such date exists. 
However date (28, Feb, 1899) is not a value of type date, since 1899 is not a 
value of type year, as defined above. Thus the definition of the type date does 
not correspond exactly to the real world situation, but the correspondence 
is close enough for most purposes; and it is the responsibility of the pro­
grammer to ensure that the manipulation of the variables of this type will 
never cause them to take values which he would regard as meaningless. 

This example shows that the means provided for defining new types in 
terms of other types are simpler and less powerful than the general mathe­
matical techniques for defining new sets in terms of other sets; for it certainly 
is possible to define a set which excludes all unwanted dates. In fact, when 
declaring a type or variable, it is good documentation practice to specify 
rigorously the properties which will be possessed by every meaningful value. 

The last example shows how the set of point positions on a two-dimensional 
raster can be declared as the Cartesian product of one-dimensional co­
ordinates: 

type raster = (x, y:coordinate) 

This is the standard method by which two-dimensional spaces are con­
structed out of a single-dimension by the method of Cartesian ··oordinates; 
for every point in two-dimensional space can be named as an ordered pair 
of simple one-dimensional numbers. This explains the use of the term 
"Cartesian product" to apply to the given method of defining types. If r is a 
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variable of type raster, r. x and r. y are commonly known as the projections 
ofr onto the x andy axes respectively; however, we shall refer to the functions 
x and y as selectors rather than projections. 

The cardinality of a Cartesian product type is obtained by multiplying 
together the cardinalities of the constituent types. This is fairly obvious 
from the visualisation of a Cartesian product as a rectangle or box with 
sides equal in length to the cardinalities of the types which form the axes. 
Thus the cardina1ity of the card type is thirteen times four, i.e., fifty-two, which 
is, as you might expect, the number of cards in a standard pack. The number 
of dates is 26 040, which slightly overestimates the actual number of days in 
the interval, since as explained above, it includes a small number of invalid 
dates. 

4.1 MANIPULATION 

Apart from assignment and test of equality, which are common to all types, 
the main operations defined for a product type are just those of constructing 
a value in terms of component values, and of selecting the components. 
When constructing a value of a Cartesian product type, it is in principle 
necessacy to quote the name of the type as a transfer function. However, 
it is often more convenient to follow the traditional mathematical practice, 
and leave the transfer function implicit in cases where no confusion would 
arise. This is in any case necessary when a type is not even given an explicit 
name. For example, one may write (heart, Jack) instead of cardface (heart, 
Jack). 

For selection of a component, a dot-notation has been used, e.g., 
n. imagpart. This is more convenient than the normal functional notation 
imagpart (n), since it avoids unnecessarily deep nesting of brackets. 

Another most important operation is the selective updating of the com­
ponents of a variable. This may be denoted by placing the component name 
on the left of an assignment 

u. imagpart: = 0; 

r.x: = axr.x + bxr.y. 

If a Cartesian product is declared as ordered, it is necessary that all the 
constituent types be ordered, and it is natural to define the ordering in a 
lexicographic manner, taking the earlier components as the more significant. 
Thus if suit and rank are ordered, the cardface type could be declared as 
ordered in the traditional ranking whereby all clubs precede all diamonds, 
and these are followed by all hearts and all spades; whereas within each suit, 
the cards are ordered in accordance with their rank. 
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In inspecting or processing a structured--vatUe, it is often required to make 
many references to its components within a single small region of code. 
In such a case it is convenient to use a with construction 

with sv do S; 

where sv names the structured variable (or expression) and Sis a program 
statement defining what is to be done with it. Within the statement S, the 
components of sv will be referred to simply by their selector names, s 1, ••• , s n• 

instead of by the usual construction:sv.s 1, sv.s2 , ••• sv.sn. The reasons for 
using this construction are: 

(I) To clarify the purpose of the section of program. 
(2) To abbreviate its formulation. 
(3) To indicate the possibility of improved efficiency of implementation. 

Example:Given today:date, test whether it is a valid date or not. 
with today do case m of 

{Sept: April: June: Nov: 

Exercise 

if day > 30 then go to invalid, 
Feb:ifday > {if(y + 4)x4 = y then 29 else 28) 

then go to invalid, 
else do nothing}. 

Write functions to represent the four standard arithmetic operations on 
complex numbers. 

4.2. REPRESENTATION 

The standard method of representing a value of Cartesian product type is 
simply by juxtaposing the values of its components in a consecutive region of 
store, usually in the order indicated. However, there is considerable variation 
in the amount of packing and padding which may be involved in the juxta­
position. In the standard unpacked representation, each component value is 
made to occupy an integral number of words, where a word is the smallest 
conveniently addressable and efficiently accessible unit of storage on the 
computer. 

If the values can fit into less storage than one word, there is the option of 
packing more than one component into a word. In a tightpacked repre­
sentation, the bitpatterns of the components are directly juxtaposed. In a 
loosely packed representation, the components may be fitted within certain 
subdivisions of a word, which are "natural" in the sense that special machine 
code instructic.ns are available for selecting or updating particular parts of a 
word-for example, character boundaries, or instruction fields of a word. 
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The sequence of the components may be rearranged to fit them conveniently 
within such boundaries; but such rearrangement is usually inadvisable if the 
type is ordered. 

If a packed representation stretches over several words, there is a possi­
bility that a single component value may overlap word boundaries. The 
selection or updating of such a component on many machines would be 
much more time-consuming than normal; and it is therefore a common 
practice to leave some unused space (padding) at the end of words to prevent 
such overlaps. 

In order to construct a minimal representation of a structured value, it is 
necessary to use minimal representation of all the components. Then each 
component is multiplied by the product of the cardinalities of all the types of 
all subsequent components, and these results are summed to give a minimal 
representation in the Cartesian product type. For example, the representation 
of 7th, Mar, 1908 is 6x 12x70 + 2x70 + 8 = 5188. 

The choice between the various representations depends on the wider 
context within which the values are processed. If selection and selective updat­
ing are frequent, it pays to use an unpacked representation, so that the normal 
selection mechanism of word-addressed hardware may be used directly in 
these operations. However if copying and comparison of the value as a 
whole is comparatively frequent, then it pays to use a packed representation, 
so that these operations can be carried out with fewer instructions and fewer 
stores accesses. A particular case of copying which should be taken into 
consideration is that which takes place between the main store of the com­
puter and a backing store. If such transfers are frequent, considerable 
efficiency may be gained if the volume of material transferred is reduced by 
judicious packing. 

Standard 

day§ 
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FIG. 1 Representations of date (7, March, 1908) 
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A second occasion for using packed representations is when data storage 
is scarce, either in main store or on external backing stores. However, care 
must be taken that space saved on data storage is not outweighed 
by the expansion of the code which results from having to unpack and 
repack the data whenever it is inspected or updated. 
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The minimal representation is not often used for data storage, since the 
small amount of extra space it saves (always less than one bit per component) 
is usually more than outweighed by the extra time taken by multiplying and 
dividing on every access to the components, as compared with the more 
usual shifting and masking. However, the technique can be useful, possibly 
in conjunction with more conventional packing, if there is no other way of 
fitting the value within convenient word boundaries. Also, if the value is to 
be used solely or primarily as an index to a multi-dimensional array, the 
minimal representation is to be preferred; since this will save a significant 
amount of space in the representation of the array (see Section 6.2). 

In representing the with construction in machine code, it is sometimes 
convenient to compute the address of the structure being referenced and 
store it in a register; this may achieve shorter and faster code for accessing 
the components. If the components have been packed, it may pay to unpack 
them into separate words before starting to process them, so that they can 
be easily referenced or updated; and if they have been updated, they must be 
packed up again and stored in the structure when the processing is complete. 
On some machines, it is more economic to pack and unpack a whole structure 
at the same time, rather than to perform these operations one at a time on 
the components. 

Exercise 
Given a variable 

today: date; 

write a program to assign the value of the next following date to the variable 
tomorrow: date. Translate this program into the machine code of your 
choice using a tightly packed representation. Rewrite the program using an 
unpacked and then a minimal representation. Compare the lengths of the 
code involved, and the time taken to execute them. 

5. THE DISCRIMINATED UNION 

In defining sets of objects, it is often useful to define one set as the union 
of two previously known sets. For example, when jokers are added to a 
standard pack of cards, the extended set may be described as the union of 
the standard set plus the set consisting of the "wild" cards, joker I and 
joker 2. A type whose values range over the members of this set may be 
declared as the union of two alternatives, the card type, and an enumeration 
type with two distinct values: 

type pokercard = (normal:(s:suit; r:rank), 

wild: (joker I, joker 2) ). 
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Each value of type pokercard corresponds either to an ordered pair with 
components indicating suit and rank; or else it corresponds to one of the 
two jokers in the enumeration type. 

In specifying a constant of a discriminated union type, it is necessary to 
indicate to which of the alternative types the value denoted is intended to 
belong. This is done by writing the name of the alternative explicitly, for 
example: 

pokercard (normal (heart, Jack)) 

denotes a value from the first alternative, whereas 

pokercard (wild (joker 2)) 

denotes a value from the second alternative. In general, it is convenient to 
omit the type name, where the type can be inferred from context. 

A second example of a discriminated union might be found in the main­
tenance of a register of all cars in a country. Cars may be distinguished as 
local cars owned by residents of the country, and visitor cars brought into 
the country temporarily by non-residents. The information required is rather 
different in the two cases. In both cases the number and the make of the car 
is considered relevant. However, for a local car, the name of the owner of 
the car is required, and the date on which the car was first registered in that 
owner's name. For visitor cars, this information is not relevant: all that is 
required is the standard three-letter abbreviation of the name of the country 
of origin. Thus the definition of the two alternative types of car might be: 

type local car = (make:manufacturer; regnumber:carnumber; 

owner: person; first registration: date); 
type visitor car = (make:manufacturer; regnumber:carnumber; 

origin: country); 
Now it is possible to define a type covering both kinds of car: 
type car= (local: local car, 

foreign: visitor car). 

But here it is inconvenient to define the structure of local and foreign cars 
separately; and we would like to take advantage of the fact that several of 
their components are the same. This may be done by bringing the common 
components in front of both alternatives: 

type car= (make: manufacturer; 
regnumber: carnumber; 
(local: (owner: person; 
first registration: date), 
foreign: (origin: country)) 
). 
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Every car has a make and regnumber but only local cars have an owner or 
first registration date; and only foreign cars have an origin. 

A third example is the definition of geometric figures, which in some 
application might be categorised as either rectangles, triangles, or circles 

type figure = (position: point; rect: R, tri: T, circ: C). 

The method of specifying the figure varies in each case. For a rectangle, the 
angle of inclination of one of the sides is given, together with the two lengths 
of the sides: 

type R = (inclination: angle; side I, side 2: real). 

A triangle is specified by the angle of inclination and length of one of its 
sides together with the angles formed between it and the other two sides: 

type T = (inclination: angle; side: real; angle I, angle2: angle). 

For a circle, all that is necessary is to specify the diameter as a real number. 

type C = (diameter:real). 

When a type is defined as the union of several other types, it is important 
to recognise that its values must be considered wholly distinct from those 
of any of the types in terms of which it is defined. Otherwise there would be 
an immediate violation of the rule that each value belongs to only one type. 
Thus the union of types must be clearly distinguished from the normal 
concept of set union. Furthermore, for each element of the union type, it is 
possible to determine from which of the constituent types it originated, even 
if the same type has been repeated several times. For example, a double pack 
of cards used for playing patience may be defined as the union of two packs, 
i.e., 

type patience card = (red:cardface, blue:cardface). 

Each value of type patience card is clearly marked as having originated either 
from the red pack or from the blue pack, even if perhaps in the real world 
the colours of the backs are the same. This fact explains the use of the term 
"discriminated union" to apply to this form of type definition. It follows that 
the cardinality of a discriminated union is always the sum of the cardinalities 
of its constituent types. 

5.1. MANIPULATION 

Any value of a discriminated union carries with it a tag field indicating 
which of the particular constituent types it originated from; on assignment 
this is copied, and on a test of equality, the tag fields must be the same if the 
values are-to be equal. 
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On constructing a value of a discriminated union type, it is necessary to 
name the alternative type from which the value originated: 

patience card (red (spade, Jack)). 

This will automatically cause the value "red" to be assigned to the tag fielo 
of the result. 

A particular car may be denoted by 

car (Ford, "RUR157D", 

local (me, date (I, Sept, 1968))). 

In order to access and operate on the information encoded as a dis­
criminated union, it is necessary to convert it back to its original type. 
This may be accomplished by the convention of using the label of this type 
as if it were a selector, e.g.: 

cardl.wild 

car I . foreign 

figl. tri 

is of type (joker I, joker 2) 

is of type (origin: country) 

is of type T 

If the constituent type is a Cartesian product, its selectors may be validly 
applied to the resulting value, using the convention that the . operator 
associates to the left. 

cardl .normal.r 

earl .local. owner 

fig I . circ. diameter 

If the programmer attempts to convert a discriminated union value 
back to a type from which it did not originate, this is a serious programming 
error, which could lead to meaningless results. This error can be detected 
only by a runtime check, which tests the tag field whenever such a conversion 
is explicitly or implicitly invoked. Such a check is timeconsuming and when 
it fails, highly inconvenient. We therefore seek a notational technique which 
will guarantee that this error can never occur in a running program; and 
the guarantee is given by merely inspecting the text, without any knowledge 
of the runtime values being processed. Such a guarantee could be given by an 
automatic compiler, if available. 

The proposed notational technique is a mixture between the with con­
struction for Cartesian products and the case construction for discrimination. 
Suppose that a value sv of union type is to be processed in one of several 
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ways in accordance with which of the alternative types it came from. Then 
one may write 

with sv do {a1:S1 
a2:S2, 

an :Sn}; 

where Si is the statement to be selected for execution whenever the value of 
the tag field of sv is ai. Within S1 it is guaranteed safe to assume that the 
value came from the corresponding alternative type, provided that the value 
of sv remains unchanged. Consequently it is safe to use the component 
selectors which are defined for that alternative type by themselves to refer 
to the components of sv, just as in the case of a simple with statement 
described previously for a Cartesian product. 

If it is desired to regard a union type as ordered, the most natural ordering 
is that defined by taking all values corresponding to earlier alternatives in 
the list before any of the values of the later alternatives. 

Exercise 
Write a function that will compute the area of a figure as defined above. 

5.2. REPRESENTATION 

In representing a value from a discriminated union it is necessary first to 
represent the tag as an integer between zero and n -1, where n is the number 
of alternative types. The tag is followed directly by the representation of the 
value of the original type. As with the Cartesian product, there is a choice of 
the degree of packing used in a representation. 

In the unpacked representation the tag occupies a complete word, and the 
space occupied by each value of a union type is one word more than that 
occupied by values from the largest alternative type. In a packed representa­
tion, this overhead can be reduced to a few bits. In the minimal representa­
tion, each value is obtained by adding its minimal representation in the 
original type to the sum of the cardinalities of all preceding types in the 
union. Thus a value originating from the first type, for example (diamond, 
four), has exactly the same value as it has in the original type, namely 16. 
But joker l, with value zero in the original enumeration type, has added to it 
the cardinality of the card type. 

The choice between unpacked, packed and tight packed representations 
is based on the same considerations as for Cartesian products; however the 
runtime speed penalty for the minimal representation is a great deal less, 
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since recovery of the original value requires only subtraction rather than 
division. 

In general the values of the different alternative types occupy different 
amounts of storage, so the shorter values have to be "padded out" to 
equalise the lengths, thus observing the convenient rule that elementary 
data types occupy a fixed amount of storage. In later chapters it will be seen 
that this padding can often be omitted when the value is a component of 
some larger structure. 

A local car A foreign car 

Ford make Fiat make 
RUR 157 D regnumber 37-27-193 regnumber 

t-----1-t tag 
Italy origin 

t-----0-i tag 
CARH owner 

1 Sept 1968 first registration L ________ J padding (sometimes omitted) 

FIG. 2. Representation of cars 

In present-day programming practice, it is quite common to omit the tag 
field in tlie representation of unions. In order to operate correctly on such a 
representation, the programmer needs to "know" from other considerations 
what the interpretation of the value ought to be, since it is not possible to 
find out from the value itself. If his belief is mistaken, this is not detectable 
either by a runtime or compile-time check. Since the effect of such an error 
will depend on details of bitpattern representation, it will give rise to results 
unpredictable in terms of the abstractions with which the programmer is 
working. It would therefore in general seem advisable to use tag fields and 
compile-time checkable case discriminations as standard programming 
practice, to be bypassed only in exceptional circumstances. 

5.3. EXAMPLE 

We return to the context of the example in section 3.3, the analysis of 
language text into meaningful symbols. We wish to give a rigorous abstract 
definition of what these symbols are. 

type symbol = 

(realconst: real, 

integerconst: integer, 

identifier: ident, 

basic: delimiter); 

where we will leave the type ident undefined for the time being, and assume 
that the- delimiters are defined by enumeration. 
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6. THE ARRAY 

The array is for many programmers the most familiar data structure, and in 
some programming languages it is the only structure explicitly available. 
From the abstract point of view, an array may be regarded as a mapping 
between a domain of one type (the subscript range) and a range of some 
possibly different type (the type of the array, or more accurately, the type of 
its elements). 

The type of a mapping is normally specified by a mathematician using an 
arrow: 

M:D-+ R; 

where D is the domain type and R is the range type. An alternative notation 
which will be more familiar to programmers is: 

M :array D of R. 

This notation is more expressive of the manner in which the data is repre­
sented, whereas the mathematical notation emphasises the abstract character 
of the structure, independent of its representation. 

When a particular value M of a mapping type is applied to a value x of the 
domain type, it specifies some unique element of the range type, which is 
known as M of x, and is written using either round or square brackets 

M(x) or M[x]. 

Another name for a mapping is a function: the term "mapping" is used to 
differentiate the data structure from a piece of program which actually 
computes a value in its range from an argument in its domain. The essence of 
the difference is that a mapping M is specified not by giving a computation 
method but by explicitly listing the value of M(x) for each possible value x 
in its domain. Thus an array can be used only for functions defined at a 
finite set of points, whereas the domain of a computed function may be 
infinite. 

An example of a finite mapping is a monthtable, which specifies for each 
month of the year the number of days it has: 

type monthtable =array month of 28 .. 31. 
The domain is the month type and the range type consists of the integers 
between 28 and 31 inclusive. A typical value of this type may be simply 
specified by listing the values of M(x) as x ranges over its domain. Thus 
if M: monthtable is specified as 

monthtable (Jan:31, Feb:28, March:31, April:30, 

May:31, June:30, July:31, Aug:31, 
Sept:30, Oct:31, Nov:30, Dec:31) 

then M[Jan] = 31, M[Feb] = 28, and so on. 
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The array provides a method of representing a particular arrangement of 
cards in a pack, since each arrangement may be regarded as a mapping which 
indicates for each of the fifty-two possible positions in a pack the value of the 
card which occupies that position. Thus each possible arrangement may be 
regarded as a value of the mapping type: 

fype cardpack = array 1 .. 52 of cardface. 
Of course, not all values of this type represent actual card packs, since there is 
nothing to prevent some value of the type from mapping two different 
positions onto the same card; which in real life is impossible. 

Arrays with elements that are of Cartesian product type are sometimes 
known as tables. 

A third example of an array is that which represents all possible con­
figurations of character punching on a conventional punched card. This 
may be regarded as a mapping M which maps each column number into a 
character, namely the character punched in that column. 

type punchcard = array 1 .. 80 of character. 
Any possible text punched into a card may be regarded as a single value of 
type punchcard. 

A fourth example shows an array which represents a possible value of a 
page on a cathode ray tube display device. There are assumed to be 40 rows 
and 27 character positions in each row. The effect of two dimensions can be 
achieved by specifying the domain of the mapping as a Cartesian product of 
the possible rows and the possible character positions within each row. This 
is written as follows: 

type spot= (row:l .. 40; column:l .. 27); 
type display page = array spot of character. 

An alternative method of dealing with a multidimensional array is to 
regard it as an array of rows, where each row is an array of characters: 

type display page = array 1 .. 40 of row; 
type row = array 1 .. 27 of character. 

This is a more suitable abstract structure if the rows are to be processed 
separately and the columns are not. 

fhe cardinality of an array type is computed by raising the cardinality 
of the range type to the power of the cardinality of the domain type, i.e. 

cardinality (D -+ R) = cardinality (R) cardinality CD> 

This may be proved by considering the number of decisions which have to 
be made to specify completely a value of an array type. For each value of 
the domain we have to choose between cardinality (R) possible values of the 
range type. We have to make such a choice independently for each element 
of the array, that is cardinality (D) times. 
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6.1. MANIPULATION 

A mapping which maps all values of its domain onto the same value of its 
range is known as a constant mapping. A natural constructor for arrays is 
one which takes as argument an arbitrary range value, and yields as result 
the constant array, all of whose elements are equal to the given range value. 
It is convenient to use the type name itself to denote this constructor, e.g. 

M = monthtable (31) 

is an array such that M[m] = 31 for all months m. 

card pack ( cardface (heart, King)) 

is obviously a conjuror's pack. 
The basic constructive operation on an array is that which defines a new 

value for one particular element of an array. If x is a value of an array type T, 
d a value from its domain type, and r a value from its range type, then we 
write: 

T(x, d:r) 

to denote a value of type T which is identical to x in all respects, except 
that it maps the value d into r. The T may be omitted if its existence can be 
inferred from context. Similarly, the constant array T(x) may be denoted by 
all (x). 

The basic selection operator on arrays is that of subscripting. This is 
effectively a binary operation on an array and a value from its domain type; 
and it yields the corresponding value of its range type. 

The most common and efficient way of changing the value of an array is 
by selective updating of one of its components, which is accomplished by 
the usual notation of placing a subscripted array variable on the left of an 
assignment: 

a[d]:=r. 

This means the same as 

a:= T(a, d:r). 

Note that from an abstract point of view a new value is assigned to the whole 
array. 

Normally an array type would be regarded as unordered; but in some 
cases, particularly character arrays, it is desirable to define an ordering 
corresponding to the normal lexicographic ordering; this is possible only 
when domain and range types are ordered. In this case the ordering of two 
arrays is determined by that of the lowest subscripted elements in which the 
two arrays differ. Thus 

"BACK" < "BANK" 

because the third letter is the first one in which they differ, and 
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"C" < "N" 

A convenient method of specifying an array value is by means of a for 
expression, which is modelled on the for statement: 

for i: D take E 

where E is an expression yielding a value of the range type, and containing 
the variable i. As i scans through the domain type D, evaluation of the 
expression E yields the value of the corresponding element of the array. 

If certain operations are defined on the range type of an array, it is natural 
to extend these operations to apply to the array type as well. For example, 
if A and B are real arrays with the same domain, it is natural to write 

A+ B, A - B, 

to denote arrays (with the same domain) whose elements are the sum and 
difference of the values of the corresponding elements of A and B. But the 
programmer must retain his awareness that these can be expensive operations 
if the arrays are large, and he should seek ways of eliminating the operations 
in progressing from an abstract to a more concrete program. 

6.2. REPRESENTATION 

The representation of arrays in a computer store is familiar to most pro­
grammers. The most usual representation is the unpacked representation, 
which allocates one or more whole words to each element of the array. In 
this case, the computer address of each element is simply computed: first, 
the value of the subscript is converted to a minimal representation; then this 
is multiplied by the number of words occupied by each element; and finally 
the result is added to the address of the first element of the array. The normal 
word-selection mechanism of the computer can be used to access and update 
this value independently of the other elements of the array. 

An alternative representation involves packing of elements within word 
boundaries, so that each element occupies only a certain fixed number of 
bits within a word, although the array as a whole may stretch over several 
words. In the example of a monthtable, each element can take only four 
values, 28 to 31; therefore it can be accommodated in only two bits in the 
minimal representation; the whole array can therefore be accommodated in 
twenty-four consecutive bits. 

When an array is packed in this way, the task of selecting the value of a 
subscripted variable is far more complicated. In order to select the right 
word, the subscript (in minimal form) must be divided by the number of 
elements in each word. The quotient is added to the address of the first word 
of the array, which is then accessed. The remainder is multiplied by the 
number of bits in each element, and the result is used as a shift-counti to 
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shift the required value into a standard position within the word. The 
unwanted values of neighbouring elements of the array can then be masked 
off. The method of selectively updating an element of a packed array is 
even more laborious, since the new value must be inserted at the right position 
within the word, without disturbing the values of the neighbouring elements. 
The efficiency of both operations may be slightly increased if the number of 
elements per word is an exact power of two, since then the integer division 
of the subscript may be replaced by a shift to find the quotient, and a mask 
to find the remainder. On some machines, further efficiency may be gained 
if each element is stored in a single character position. 

The minimal representation for an array is similar to that for a Cartesian 
product, except that the multiplier of each element value is equal to the 
cardinality of range type, raised to the power of the subscript value. The 
process of selecting or updating a value of an element of an array stored in 
minimal representation is even more laborious than that described above, 
unless the cardinality of the range type is an exact power of two. It would 
be prohibitive if the array were to stretch over more than one normal com­
puter word. For this reason, the minimal representation for arrays is of 
mainly academic interest. 

Standard Loose Packed Tight Packed 

A A (0) A A (2) 
A [I) 
A (2) 
A [3) A (5) 
A [4) t 
A (5) padding 

A [6) 
A [7) 

(al (b) (cl 

FIG. 3. Representation of A: array 0 .. 7 of T 

When the domain of a finite mapping is itself a data structure, for example, 
a Cartesian product, it is usual to represent this domain in the minimal 
representation, so as to avoid allocation of unused storage space. For 
example, the display page has a domain which is the Cartesian product of 
the integer ranges l to 40 and l to 27. In the minimal representation, this 
gives a range of integers between 0 and 40 x 27 -1 = 1079. Consequently 
1080 consecutive words are allocated to hold values of elements of the array. 
In order to access any element in a given row and character position, it is 
necessary first to construct a minimal representation for the subscript, in 
the manner described in Section 4.2. 
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An alternative method of representation of multidimensional arrays is 
sometimes known as a codeword or descriptor method, but we shall give it 
the title of "tree representation". The essence of the method is to allocate a 
single-dimensional base array with one element corresponding to each row 
of the array, and to place in it the address of a block of consecutive storage 
locations which holds the values of that row. These rows do not have to be 
contiguous. Now the process of accessing or updating each element does 
not have to be done by computing a minimal representation of the subscript. 
All that is necessary is to add the row-number to the address of the first 
element of the base of the tree, and thus access the address of the first element 
of the required row, to which the value of the next subscript is added to give 
the address of the required element. 

Standard Tree 

A [o,o] A §A[O,O] A 
A [0,1] A[0,1] 

A [0,2] A[0,2] 

A [ 1,0] 

A [ 1,1] §A[l,O] 
A [ 1,2] A [I, I] 

}row2 
A[ 1,2] 

a•M§} A [3,0] A[3,1] row2 

A [3,1] A [3,2] 

A [3,2] 

(a) ( b) 

FIG. 4. Representation of two-dimensional arrays 

The choice between unpacked and packed representations of arrays is 
made on grounds similar to the choice in the case of a Cartesian product. 
The unpacked representation is used when fast access and updating is 
required; it· is also the obviously appropriate choice when the range ty.:pe 
naturally fits within computer word boundaries, for example if the elements 
are floating point numbers. The packed representation is recommended if 
the size of the elements is considerably shorter than a single word, and if 
storage is short, or if copying and comparison of the arrays is frequent 
compared with subscripting and selective updating. A particularly common 
case of packed arrays is the representation of identifiers in a programming 
language, where it is acceptable in the interests of efficiency to truncate 
identifiers which are too long to fit into the standard array, and pad out 
those that are too short with blanks. 
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The choice between representations of multidimensional arrays is made 
on quite different grounds. The standard representation is more economical 
of storage, and gives good efficiency on sequencing through elements of the 
array by rows, columns, or both. Furthermore, it is more convenient when 
the arrays must be transferred as a whole between main and backing store. 
However, on a machine with slow multiplication, it will be faster to use the 
tree representation, and accept the extra storage required to hold the array 
of addresses, which is small provided that the rows are not too short. If 
each row contains only two words, there would be a fifty per cent overhead 
on data storage. 

There are several other possible reasons for choosing the tree represen­
tation: 

(1) In some computing environments, where dynamic storage allocation 
is standard, it may be difficult to obtain large consecutive areas, in which 
case a large two-dimensional array can be split up into a number of smaller 
rows which can be accommodated without trouble. 

(2) It is possible to set up a scheme whereby some rows of the array are 
held on backing store while other rows are being processed, and then the 
backing store address of a row replaces the main store address in the base 
array when that row is absent from store. Thus it is hoped to be able to process 
arrays which are too large to be wholly accommodated in main store together 
with the program that processes them. However, the economics of this 
operation need to be carefully examined to ensure that the number of 
backing store transfers involved is acceptable. 

(3) In some applications, it is known that several matrices share the same 
rows. In the tree representation it is possible to set up a single copy of such a 
shared row, and merely take copies of its address rather than its full value. 
But in such a case, the shared row must not be selectively updated. 

(4) The tree representation is recommended even in the case of single­
dimensional arrays if the size of the individual elements is highly variable; 
and on multidimensional arrays, if the length of the rows is highly variable. 

Exercise 
The character set of an input device includes only thirty characters, defined 
by enumeration; they include the characters space, newline, newpage. 
Characters may be read in one at a time from an input device to a buffer, 
using a procedure call 

read next character. 

They should be assembled line by line into an array 

page: display page, 
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and on receipt of a newpage character, this should be output to a display 
device by the instruction 

outpage. 

The display device does not recognise the characters newline or newpage; 
consequently the ends of lines and pages have to be filled up with spaces. 

Write a program in a suitable language to perform this operation, using a 
selection of representations for the display page, e.g. 

unpacked 

loosely packed 

tightly packed 

indirect. 

Rewrite the program, using different representations. Compare the lengths 
and speeds of the code and data involved in the different representations. 

Write the corresponding programs to read a page from the display, and 
output the individual characters, taking care to eliminate redundant spaces 
at the ends of each line and blank lines at the end of each page wherever 
possi~le. 

7. THE POWERSET 

The powerset of a given set is defined as the set of all subsets of that set; 
and a powerset type is a type whose values are sets of values selected from 
some other type known as the base of the powerset. For example, the primary 
colours have been defined by enumeration as red, yellow and blue. The 
other main colours are made up as a mixture of two or three of these colours: 
orange is a mixture of red and yellow; brown is a mixture of all three primary 
colours. Thus each main colour (including the primary colours) can be 
specified as that subset of the primary colours out of which it can be mixed. 
For example, orange may be regarded as the set with just two members, 
red and yellow. Using the traditional notation for sets defined by enumeration, 
this may be written: {red, yellow}. The pure colour red may be regarded as 
the set whose only member is the primary colour red, i.e. {red}. In this way it 
is possible to represent the seven main colours, red, orange, yellow, green, 
blue, purple and brown. When no primary colour is present (i.e. the null or 
empty set) this may be regarded as denoting the absence of colour, i.e. 
perhaps white. The type whose values range over the colours may be declared 
as the power set of the type primary colour: 

type colour = powerset primary colour. 

A second example is provided by considering a data structure required to 
represent the status of the request buttons in a lift. A simple variable of type 
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floor (see Section 3) is capable of indicating one particular stop of a lift. 
But if we wish to record the status of the whole panel of buttons inside a 
lift, it would be necessary to represent this as a subset of all possible floors 
in the building, namely, the subset consisting of those floors for which a 
request button has been depressed. Thus the type liftcall may be defined 
as the powerset of the floor type: 

type liftcall = powerset floor. 

A third example is provided by a hand of cards in some card game, fo,· 
example, poker or bridge. A hand is a subset of playing cards, without 
repetitions, and is therefore conveniently represented by a value from the 
powerset type: 

type hand = powerset cardface; 

This type covers all hands of up to fifty-two cards, even though for a 
particular game there may be standard size of a hand, or a limit less than 
fifty-two. 

A final example expresses the status of a computer peripheral device, for 
example, a paper tape reader. There are a number of exception conditions 
which can arise on attempted input of a character: 

(1) Device switched to "manual" by operator. 

(2) No tape loaded. 

(3) Parity error on last character read. 

(4) Skew detected on last character read. 

These conditions can be defined as an enumeration 

type exception = (manual, unloaded, parity, skew); 

and since several of these conditions can be detected simultaneously, the 
status of the reader can be specified as a value of a powerset type: 

type statusword = powerset exception. 

The cardinality of the powerset type is two raised to the power of the 
cardinality of the base type, i.e. 

cardinality (powerset D) = 2 cardinality (D) 

This may be proved by considering the number of decisions which have 
to be made to specify completely a value of the type. For each value of the 
base type there are two alternatives, either it is in the set or it is not. This 
decision may be made independently cardinality (D) times. 

7.1. MANIPULATION 

The basic construction operation on sets is the one that takes a number of 
values from the domain type, and converts them into a set containing just 
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those values as members. As in the case of the Cartesian Product, the type 
name is used as the transfer function, but for sets, the number of arguments 
is variable from zero upwards. For example: 

primary colour (red, yellow) i.e. orange 

liftcall (ground) i.e. only a single button has been 
pressed 

statusword ( ) i.e. no exception condition. 

The last two examples illustrate the concept of a unit set (which must be 
clearly distinguished from its only member) and the null or empty set, which 
contains no member at all. If the type name is omitted in this construction, 
curly brackets should be used instead of round ones in the normal way. 

The converse of the null set is the universal set, which contains all values 
from the base type. This may be denoted 

T.all. 

However, this universal set exists as a storable data value only when the base 
type is finite. 

The basic operations on sets are very familiar to mathematicians and 
logicians. 

(1) Test of membership: If xis in the sets, the Boolean expression "x ins" 
yields the value true, otherwise the value false. 

(2) Equality: two sets are equal if and only if they have the same members. 

(3) Intersection: sl A s2 contains just those values which are in both sl 
and s2. 

(4) Unions: sl v s2 contain just those values which are either in sl or s2, 
or both. 

(5) Relative complement: s 1 - s2 contains just those members of sl which 
are not in s2. 

(6) Test of inclusion: sl c:: s2 yields the value true whenever all members 
of sl are also members of s2, and false otherwise. 

(7) The size of a set tells how many members it has. 

If the domain type of a set has certain operators defined upon it, it is often 
useful to construct corresponding operations on sets. In particular, if the 
domain type of a set is ordered, the following operators apply: 

(8) min (s) the smallest member of s; undefined ifs is empty. 

(9) s down n is a set containing just those values whose nth successors are 
ins. 

(10) s up n is a set containing just those values whose nth predecessors 
are ins. 
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(11) Range (a, b) is the set containing a, succ(a), ... , b if a ::::;; b, and which 
is empty otherwise. 

The most useful selective updating operations on sets are: 

x: v y; join the set y to x 

x: v T(a) 

x:" y; 

x:-y 

x:down n 

x:up n 

add the member a to x 

exclude from x all members which are not also members 
of y 

exclude from x all members which are also members 
of y 

subtract n from every member of x and exclude members 
for which this is not possible 

add n to every member of x, and exclude members for 
which this is not possible 

It is also sometimes useful to select some member from x and simultaneously 
remove it from x. This operation can be expressed by the notation: 

a from x. 
If the domain type of x is ordered, it is natural that the selected member 
should be the minimum member of x; otherwise the selection should be 
regarded as arbitrary. 

It is often useful to define the value of a set by giving some condition B 
which is satisfied by just those values of the domain type which are intended 
to be members of the set. This may be denoted: 

where 

and 

{i:D I B} 

i is a variable of type D regarded as local to B, 

B is a Boolean expression usually containing and depending on i. 

In order for this expression to denote a value of the powerset type it is 
essential that the cardinality of D be finite, and that B is defined over all 
values of the type. 

Finally, it is frequently required to perform some operation on each 
member of some set, that is to execute a loop with a counting variable which 
takes on successively all values in the set. A suitable notation for expressing 
this is: 

for x ins do ... 

If the base type of s is an ordered type, it seems reasonable to postulate that 
the elements will be taken in the natural order, starting with the lowest. 
For an unordered base type, the programmer does not care in which order 
the members are taken, and he leaves open the option to choose an order 
that contributes best to efficiency. 
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7.2 REPRESENTATION 

In choosing a computer representation for powersets, it is desirable to 
ensure that all the basic operations can be executed simply by single machine 
code instructions; and further, that the amount of store occupied is 
minimised. For most data structure storage methods, there is a fundamental 
conflict between these two objectives, and consequently a choice between 
representation methods must be made by the programmer; but in the case 
of powersets the two objectives can be fully reconciled, provided that the 
base type is not too large. 

The recommended method of representation is to allocate as many bits 
in the store as there are potential members in the set. Thus to each value 
of the base type there is a single bit which takes the value one if it is in fact a 
member, or zero if it is not. For example, each value of type colour can be 
represented in three bits; the most significant corresponding to the primary 
colour red, and the least significant corresponding to blue. Thus the orange 
colour is represented as 110 and red as 100. Each set of size n is represented 
as a bitpattern with exactly n ones in the appropriate positions. The null set 
is accordingly represented as an all-zero bitpattern. 

Another example is afforded by the "hand" type, which requires fifty-two 
bits for its representation, one corresponding to each value of type cardface. 
In this case, it is advisable to use the minimal representation of the base 
type, to avoid unused gaps in the bitpattern representation. 

Since the number of values of a powerset type is always an exact power of 
two, for powersets of small base there can be no more economical method 
of utilising storage on a binary computer than that of the bitpattern repre­
sentation. It remains to show that the operations defined over the powerset 
type can be executed with high efficiency. 

(1) The unitset of x may be obtained by loading a single 1 into the signbit 
position, and shifting it right x places. On computers on which shifting is 
slow, the same effect may be obtained by table lookup. The construction of a 
set out of components may be achieved by taking the logical union of all the 
corresponding unit sets. 

(2) A membership test x in s may be made by shifting s up x places and 
looking at the most significant bit: 1 stands for true and 0 for false. 

(3) Logical intersection, union, and complementation are often available 
as single instructions on binary computers. 

( 4) The size of a set can sometimes be discovered by a builtin machine 
code instruction for counting the bits in a word. Otherwise the size can be 
determined by repeated standardisation, masking off the next-to-sign bit on 
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each occasion. A third method is to split the bitpattern into small parts, and 
use table lookup on each part, adding together the results. 

(5) The up and down operations can obviously be accomplished by right 
or left shifts. 

(6) The min of a set can be efficiently discovered by a standardise instruc­
tion, which automatically counts the number of shifts required to move the 
first one-bit into the position next to the sign. 

(7) The for statement may also be efficiently constructed using standardi­
sation, masking off each one-bit as it is reached. 

(8) The range operation can be accomplished by two shifts, the first of 
which regenerates the sign bit. 

Thus when the cardinality of the domain type is not greater than the 
number of biti. in the largest computer word to which logical and shift 
operations can be applied, all these operations can be carried out with great 
efficiency. If significantly more than one such word is involved, it will usually 
pay to use selective updating operations rather than the normal result­
producing operators. Furthermore, operations such as size and min can 
become rather inefficient, and it will often pay to store these values re­
dundantly together with the set, and keep them up to date whenever the value 
of the set is updated, rather than recomputing them whenever they are 
required. 

When it is known that the cardinality of the base type is very large (perhaps 
even infinite) compared with the size of the typical set, the bitpattern repre­
sentation altogether loses its attraction, since it no longer pays to store and 
operate upon large areas of zeroes. The treatment of such sparse sets is 
postponed to Section IO. 

7.3. EXAMPLE 

Problem: Write a program to construct a set 

primes: powerset 2 .. N; 

containing all prime numbers in its base type. 
Use the method of Eratosthenes' sieve to avoid all multiplications and 
divisions. 

The method of Eratosthenes is first to put all numbers in the "sieve" and 
repeat the following until the sieve is empty: 
Select and remove the smallest number remaining in the sieve (necessarily a 
prime), and then step through the sieve, removing all multiples of that 
number. 
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The program can be written easily 

begin n, next:2 . . N; sieve:powerset 2 . . N; 

sieve : = range (2, N); 

primes:= { }; 

while sieve '::/: empty do 

end primefinder. 

begin next:= min (sieve); 

primes: v {next}; 

for n: = next step next until N do 

sieve: - {n} 

end 

But if N is significantly large, say of the order of l 0 000, this program 
cannot be directly executed with any acceptable degree of efficiency. The 
solution is to use this program as an abstract model of the algorithm, and 
rewrite it in a more efficient fashion, using only operations on sets not 
exceeding the word-length of the computer. We therefore need to declare 
an array of words to represent the two sets, assuming that "wordlength" 
is an environment enquiry giving the number of bits in a word: 

primes, sieve: array 0 .. W of powerset 0 .. wordlength - 1 

where W = (N + l) + wordlength +I. 
This means that the two sets may be slightly larger than N, but for con­
venience we shall accept that harmless extension. 

In order to access an individual bit of these sets, it is necessary to know 
both the wordnumber and the bitnumber. Since we do not wish to use 
division to find these, we will represent the counting variables n and next as 
Cartesian products ~ 

n, next:(w, b:integer); 

where w indicates the wordnumber and b indicates the bitnumber. 

It is now as well to check the efficiency of this representation by recoding 
the innermost loop first. 

for n: = next step next until N do sieve: - { n}; 

is recoded as : 

n: =next; 

whilen.w ~ Wdo 

beginsieve[n.w]:- {n.b}; 

n.b: = n.b + next.b; 
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n.w: = n.w + next.w; 

if n. b ;;i:: wordlength then begin n. w: = n. w + I ; 
n.b: = n.b - wordlength 

end 

end 
Since this appears acceptably efficient we will code the other operations of 
the outer loop, starting with the most difficult: 

next: = min (sieve) ; 

Here we do not wish to start our search for the minimum at the beginning 
of the sieve set each time, since towards the end of the process this would 
involve scanning many empty words. We therefore take advantage of the 
fact that the new value of next must be larger than the old value. 

The search consists of two parts, first finding a nonempty word, and then 
its first bit. But if the search for a word reaches the end of the array, the 
whole program is completed 

while sieve [next. w] = { } do {next. w: = next. w +I; 

if next. w > W then exit primefinder}; 

next.b: = min (sieve [next. w]); 

The remaining operations are trivial. Since the outer loop is terminated 
by an exit, there is no need to test a separate while condition; and the 
statement 

primes: v {next}; 

can be coded as 

primes [next.w]:v {next.b}. 

The whole program including initialisation is as follows: 

primes, sieve: array 0 .. W of powerset 0 .. wordlength - I ; 

begin primefinder; 

n, next:(w, b:integer); 

for t:O .. W do begin primes [t]: = { }; 

end; 

sieve [O]: - {O, I}; 

next. w: = O; 

while true do 

sieve [t]: = range (0 .. wordlength -1) 

begin while sieve [next. w] = { } do 
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end 

end primefinder 
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begin next. w: = next. w + l; 
if next. w > W then exit primefinder 

end; 

next.b: =min (sieve [next.w]); 
primes [next.w]:v {next.b}; 
n: = next; 
while n. w ~ W do 

begin sieve [n.w]:- {n.b}; 

n.b: = n.b + next.b; 
n. w: = n. w + next. w; 

end 

if n . b ;;;::: wordlength then 

begin n. w: = n. w + l; 
n.b: = n.b - wordlength 

end 

One feature of this program is that it uses an environment enquiry word­
length to achieve the full efficiency of which a machine is capable, and yet 
does so in a completely machine-independent fashion. The program will not 
only work, but work with high efficiency, on machines with widely varying 
word lengths. 

But the most interesting feature about the program is the way in which 
it is related to the previous version. From an abstract point of view it 
expresses an identical algorithm; all that has changed is the manner in which 
the data has been represented on the computer. The original design acted as 
a framework or pattern, on which the more intricate coding of the second 
version was structured. By carrying out the design in two stages, we simplify 
the task of ensuring that each part of the final program works successfully 
in conjunction with the other parts. 

Exercise 
Rewrite the program using sets representing only the odd numbers. (Hint: 
rewrite tile more abstract program first.) 

8. THE SEQUENCE 

The previous chapters have dealt with the topic of elementary data structures, 
which are of great importance in practical programming, and present very 
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little problem for representation and manipulation on modern digital com­
puters. Furthermore, they provide the essential basis on which all other more 
advanced structures are built. 

The most important distinction between elementary structured types and 
types of advanced structure is that in the former case the cardinality of the 
type is strictly finite, provided that the cardinality of the constituent types is. 
The distinction between a finite and an infinite set is one of profound mathe­
matical significance, and it has many consequences relating to methods of 
representation and manipulation. 

(I) Since the number of potential values of the type may be infinite, the 
amount of storage allocated to hold a value of an advanced structure is not 
determinable from the declaration itself. It is normally only determined 
when the program is actually running, and in many cases, varies during the 
execution of the program. In the case of an elementary structure, the number 
of different potential values is finite, and the maximum amount of storage 
required to hold any value is fixed and determinable from the form of the 
declaration. 

(2) When the size of a structured value is fairly Jarge, it is more efficient 
to update individual components of the structure separately, rather than to 
assign a fresh value to the entire structure. Even for elementary types, it 
has been found sometimes more efficient to perform selective updating, 
particularly for unpacked representations of Cartesian products and for 
arrays. The increased efficiency of selective updating is usually even more 
pronounced in the case of advanced data structures. 

(3) Advanced data structures, whose size varies dynamically, require some 
scheme of dynamic storage allocation and relinquishment. The units of 
storage which are required are usually linked together by pointers, sometimes 
known as references or addresses; and their release'is accomplished either by 
explicitly programmed operations, or by some form of general garbage 
collection. The use of dynamic storage allocation and pointers leads to a 
significant complexity of processing, and the problems can be particularly 
severe when the data has to be transferred between the main and backing 
store of a computer. No problems of this kind need arise in the case of 
elementary data structures. 

(4) The choice of a suitable representation for an advanced data structure 
is often far more difficult than for an elementary structure; the efficiency of 
the various primitive operations depends critically on the choice of repre­
sentation, and therefore a sensible choice of representation requires a 
knowledge of the relative frequency with which these operations will be 
invoked. This knowledge is especially important when a part or all of the 
structure is held on a backing store; and in this case, the choice of re pre-
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sentation should take into account the characteristics of the hardware device; 
that is, arrangement of tracks and cylinders on a rotating medium, and times 
of head movement and rotational delay. In the case of elementary structures, 
the primitive operations are of roughlv comparable efficiency for most 
representations. 

Thus the differences between advanced and elementary structures are quite 
pronounced, and the problems involved are significantly greater in the 
advanced case. This suggests that the practical programmer would be well 
advised to confine himself to the use of elementary structures wherever 
possible, and to resort to the use of advanced structures only when the 
nature of his application forces him to do so. 

The first and most familiar example of an advanced data structure is the 
sequence. This is regarded as nothing but a sequence of an arbitrary number 
of items of some given type. The use of the term "sequence" is intended to 
cover sequences on magnetic tapes, disc, or drum, or in the main store. 
Sequences in the main store have sometimes been known as streams, lists, 
strings, stacks, deques, queues, or even sets. The term file (or sequential 
file) is often used for sequences held on backing store. The concept of a 
sequence is an abstraction, and all these structures may be regarded as its 
various representations. 

Our first example of a sequence is the string, familiar to programmers in 
ALGOL and SNOBOL. Since a string is constructed as a sequence of 
characters of arbitrary length, it may be defined: 

type string = sequence character. 

The next example is drawn from a data processing application; the 
maintenance of a file of data on cars. Each item of the file (sometimes known 
as a record) represents a single car, and is therefore of type car; an example 
of a possible definition of the car type has been given previously: 

type car file = sequence car. 

The third example gives an alternative method of dealing with a pack of 
cards. This may be regarded as just a sequence of cards, of length which 
perhaps varies as the cards are dealt: 

type deck = sequence cardface; 

Of course, not all card-sequences represent actual decks of cards in real life; 
for example, sequences which contain the same card twice are invalid, and 
should be avoided by the programmer. Thus the maximum length of a valid 
deck is 52, although this fact is not expressed in the declaration. 

The next example is drawn from the processing of a particular class of 
symbolic expression, namely the polynomial. A polynomial 

OnX" + On-1Xn-i •••. 01X + Oo 
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can be represented as the sequence of its coefficients a1• If the degree n of the 
polynomial is unpredictable or variable during the course of a calculation, 
a sequence is the most appropriate method of defining it: 

type polynomial = sequence integer. 

Our final example shows how it is possible to represent the programming 
language concept of the identifier. Since in theory an identifier may be of 
arbitrary length, a sequence is required. The items of the sequence are either 
letters or digits. However, the first character is always alphabetic and may be 
separated from the rest. Thus an exact definition of a data structure corres­
ponding to the identifier is: 

type identifier= (first:letter; rest: sequence (/:letter, d:digit)). 

8.1 MANIPULATION 

The zero element of a sequence type Tis the sequence that contains no items­
this is known as the null or empty sequence, and is denoted by T( ). For 
each value v of the domain type, there is a sequence whose only item is v; 
this is known as the unit sequence of v and is denoted by T(v). Finally, if 
vi. v2 , ••• , vn are values from the base type (possibly with repetition}, 
T(v 1, v 2 , ••• , vn) denotes the sequence consisting of these values in the 
stated order. If for convenience the type name T is omitted, we will use 
square brackets to surround the sequence: 

[v], [v 1,v 2 , ••• , vJ 
However, a sequence of characters is normally denoted by enclosing them in 
quotes. 

The basic operation on sequences is concatenation, that is, adjoining two 
sequences one after the other. Thus if xis the sequence of characters "PARIS 
IN THE" and y is the sequence "THE SPRING", their concatenation F'y 
is the sequence 

z = "PARIS IN THETHE SPRING" 

Unless the operands are exceptionally small, concatenation is very inefficient 
on a computer, since it usually involves making fresh copies of both operands. 
The programmer should therefore make every effort to replace concatenation 
by selective updating. 

The basic operators for breaking down a sequence into its component parts 
are those that yield the first and last items of a non-empty sequence 

x. first, x. last 

and those that remove the last or first items of a non-empty sequence, 
yielding the initial or final segments. 

initial (x}, final (x). 
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An important relationship between sequences is that one sequence x is 
equal to some initial or final subsequence of a sequence y: 

x begins y 

or x ends y. 

In our previous example, "PARIS" begins z and "RING" ends z. These 
two tests can be rather time-consuming in a running program, and should be 
avoided wherever possible. 

A significant property of sequences is their length, i.e. the number of items 
they contain; this may be found for a sequence x by the function length (x). 

For some purposes (e.g. the construction of a dictionary) it is useful to 
regard a sequence type as ordered in accordance with traditional lexicographic 
principles: as in the case of arrays, the order of two sequences is determined 
by the ordering of the first item in which they differ; or if there is no such 
item, a shorter sequence precedes the longer sequence which it begins, for 
example: 

"ALPHA" < "ALPHABET". 

In this ordering every sequence has a successor, but only a small proportion 
have predecessors. 

A most important selective updating operation on sequences is the 
appending of a new value v to the end of an existing sequence x. This may be 
written: 

,--.. 
x: T(v); 

and corresponds to the familiar concept of writing a value v to a sequential 
file x. The operation corresponding to reading the beginning of a file x is 
one which removes the first item of x and assigns its value to some variable v. 
This may be written: 

v from x; 

In some applications, it is useful to be able to read back the most recently 
written item from a sequence; this may be expressed 

v back from x; 

and it removes the last item from x. This operation can be used to "pop up" 
the top item of a stack which has been "pushed down" by an ordinary 
writing operation: 

,--.. 
x: T(v). 

If desired, it is possible to define the fourth updating operation, that of 
attaching a new value to the beginning of a sequence. (putback (x, v)). 
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In some cases, it is more efficient to avoid the copying of an item which is 
involved in the from• operation. These cases may be dealt with by merely 
omitting the left hand variable, e.g. 

fromx 

back from x. 

In this case, access to the items of the sequence will usually be made by the 
selectors x. first and/or x. last. 

It is very common to wish to scan all the items of a sequence in succession; 
a suitable notation for this is modelled on the for statement: 

for v in x do S; 

If xis empty, the statement is omitted. Otherwise the variable v (regarded 
as local to S) takes in succession the values of all items from the sequence 
x, and Sis executed once for each value. In this construction neither x nor 11 

should be updated within S. 
A similar construction can be used for defining a sequence as an item-by­

item transformation E(v) of items v in sequences. 

for v ins take E(v). 

In deciding a representation for a sequence, it is most important to know 
which of the selective updating operations are going to be carried out upon it. 

(I) If the only operation is from, the sequence is known as an input 
sequence; obviously in order to have any value at all, an input sequence 
must be initialised to some value existing in the outer environment in which 
it is declared. The association of a sequence local to a program with some 
file existing more or less permanently on backing store is often known as 
"opening" the file for input, and we assume that this operation is invoked 
implicitly on declaration of a local input sequence. The reverse operation of 
"closing" the file is invoked implicitly on exit from the block to which 
the sequence is local. 

(2) If the only operation is writing to the file, the sequence is known as an 
output sequence. An output sequence may be initialised from the environment 
in the same way as an input sequence; or more commonly, it may take an 
empty initial value. In either case, in order to serve any useful purpose, the 
final value of the sequence on exit from the block must be assigned to some 
variable existing in the outer environment in which the sequence is declared. 
The identity of this outer variable should be declared together with the 
sequence; if this outer variable is held more or less permanently on backing 
store, it is known as an output file; and the rules for implicit invocation of 
opening and closing of the file on entry and exit to the block are similar to 
those for input files. 
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{3) If the only operations are writing and reading back (push down and 
pop up), the sequence is known as a stack; the initial value of a stack is 
always empty, and the final value is not usually preserved. 

(4) If the only operations are writing to the end and reading from the 
beginning, the sequence is known as a queue; again, the initial value is always 
empty, and the final value is not usually preserved. 

(5) If reading and writing at both ends of a sequence are permitted, the 
sequence is sometimes known as a deque (double-ended queue). However, 
to make all four operations equally efficient requires some complexity of 
representation, so it is fortunate that most programs can get by without 
using deques. 

8.2. REPRESENTATION 

8.2.1. Contiguous representation 

The simplest method of representing a sequence is to allocate to it a fixed 
contiguous area of storage, adequate to hold all items actually required. 
This method is suitable if the value (or at least the length) of the sequence is 
constant throughout the execution of the program-for example, a string of 
characters intended to be used as an output message or title. 

In some cases, the length of the sequence is unknown at the time the 
program is written, but is known on entry to the block in which the sequence 
is declared, and this length remains constant throughout the existence of the 
sequence. In such cases, it is possible to allocate a contiguous area of storage 
in the local workspace of the block, using the standard stack method of store 
allocation and deallocation. 

Even if the length of the sequence is subject to variation, it is sometimes 
possible to place an acceptably small upper bound on its length, and allocate 
permanently this maximum area. If the limit is exceeded during a run of the 
program, the programmer must be willing to accept its immediate termina­
tion. In addition to the fixed area, a pointer or count is required to indicate 
the current beginning and end of the sequence. In the case of a stack, the first 
item is always at the beginning, and only one pointer to the top of the stack 
is required. In the case of a queue, the sequence will at times overlap the 
end of the store area, and be continued again at the beginning. Such a 
representation is known as a cyclic buffer, and may be used in a parallel 
programming situation to communicate information between processes 
running in parallel. In this case, when a writing process finds the buffer full, 
it has to wait until a reading process reduces the size of the sequence again. 
Similarly, the reading process must wait when the buffer is empty. 

Another case where the contiguous representation is the best is when the 
program requires only a single sequence, which may therefore occupy the 
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whole of the remaining store available after allocation to other purposes; 
and if overflow occurs, the program could not have been run anyway. If 
two stacks are required, they can both be accommodated by arranging that 
one of them starts at one end of remaining available store and grows upwards, 
and the other starts at the other end and grows downwards. If the stacks 
meet, the program cannot continue. 

If many sequences are to be represented, it is possible to set up a scheme 
in which they are spread through the remaining available store; and if any 
of them grows to meet its neighbour, it is possible to reshuffle some or all 
of the sequences, so that they all have sufficient room to grow again for a bit. 
For each sequence there must be a base location pointing to its beginning, 
through which that sequence is always addressed. In addition, the actual 
length of the sequence must be stored. The base location and length of the 
neighbouring sequence must always be inspected when the sequence is 
extended. When reshuffling takes place, the base locations of all moved 
sequences are updated to point to the new position of the sequence. This is 
quite a useful ad hoc scheme in cases where the reshuffling is known to be 
relatively infrequent; otherwise non-contiguous representations are to be 
preferred. 
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When the individual items of a sequence are of variable length, there is 
usually no need to pad the shorter items out to the maximum length, since 
the use of the tag field, or other technique, will indicate the length of any 
given item, and this can be used to step the pointer by the right amount 
when the item is read. But this requires that the direction of reading be known 
at the time of writing, as in a stack or a queue. If reading is to be carried out 
from both ends, it will be necessary to ensure that the length of an item can 
be deduced from its bottom as well as its top, which will involve storing 
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redundant information (e.g. length of previous item) between each item in 
the sequence. 
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When a sequence is itself a part of an item of some other sequence, the 
contiguous representation of the item-sequence may be used. This will 
normally be accompanied by a count giving the length of the sequence, so 
that the actual size of each item can be computed when the item is read. 

8.2.2. Chained Representation 

In order to avoid reshuffling problems mentioned in the previous section, it 
is usual to introduce indirect or chained methods of storage allocation, using 
either fixed length or variable length units of allocation. The available store 
is split into areas, some of which will be in use for storing items of some 
sequence, and others will be free. The free areas are also linked together as a 
chained sequence. Whenever a progr.immer's sequence requires extension, 
an area (or part of an area) is acquired from the free chain; and whenever a 
sequence is shortened by reading, an area can be returned to the free chain. 
In the case of fixed-length items, the administration of dynamic storage 
allocation with explicit deallocation presents no problems. The problems of 
variable length allocation will not be treated here; they are best avoided by 
the use of blocking (see next section). 

The simplest form of chain is the single linked chain. Each item of the 
sequence has adjoined to it, in a link location, the address of the next item 
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in the chain. The empty sequence is represented by a value which could not 
possibly be an address (say zero or minus one); and the link location of the 
last item in the sequence contains this value. The first item in the chain is 
pointed to by the base location of the sequence. 

A single linked chain is useful when the direction in which the sequence 
will be read is known; for the links have to point in this direction. In the 
case of a stack they will point backwards, and in the case of input and output 
sequences and queues they will point forwards. In the case of an input or 
output sequence, the base location of the external variable which is to hold 
the initial and/or final value of the sequence points permanently at the 
beginning of the chain, while the base location of the sequence itself steps 
through the sequence. In the case of a queue, two base locations are used, 
to point to each end of the sequence. 

Stack Queue Oeque 

write pointer ,__ __ ___, 
...__ __ ___, read painter 

1..r--==:i-J m~gnce 
pointers 

(al (bl ( c) 

FIG. 7. Sequences (Chained Representation) 

One possible advantage of the single-chained representation in the case of 
stacks is that several stacks can share the same initial segments, which may 
save space and time in some applications. However, when an item is popped 
up from such a stack, the storage space which it occupies cannot be immedi­
ately returned to the free chain, since it may be in use as part of another 
stack. One solution to this problem is nP-ver to return storage explicitly, 
but to wait until the free chain is exhausted. Then all currently allocated 
sequences are scanned, and all blocks currently in use are marked. Then all 
unmarked blocks are collected onto the free chain. This is known as a scan-
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mark-collect garbage collection. Although it appears to relieve the pro­
grammer of the responsibility of explicit control of main store allocation and 
deallocation, this can be dangerous in non-trivial computer applications 
where the responsibility is one that cannot so lightly be evaded. 

In the case of a deque, when reading is required in both directions, a single­
linked chain is no longer adequate; and the usual solution is to adjoin two 
pointers to each item in the chain, one pointing to the previous item and one 
pointing to the following item. In fact these two pointers can be compressed 
into a single word containing only the difference between them. Since in 
the first and last items one of the pointers is a standard null value, the value 
of the other pointer from these items can always be obtained by subtraction. 
On reading or writing, the value of the link location for the new first or last 
item can be readily adjusted, since at this stage the address of the previous 
first or last item is still known. The detailed working out of this scheme is 
left as an exercise. 

An alternative method of linking the items of a chain is to collect all links 
together in a single contiguous table, preferably of fixed length. This gives a 
form of tree representation for the sequence, and permits ready scanning 
in both directions. But it places an upper bound on the number of items in 
the sequence; and it means that the locations used for links must be per­
manently allocated, even at times when the sequence is relatively short. 
This problem can be mitigated by the use of blocking. 

8.2.3 Blocked Representation 

One disadvantage of chaining is the amount of extra storage required to hold 
the links, and the time taken to administer the free store chain on each 
operation. These problems are particularly severe when the size of the 
individual items of the sequence are small and the sequence is long. The 
method of solving this problem is to use blocking; that is, a combination of 
the contiguous and chained techniques. 

In this technique, a fixed-length block of storage is allocated, sufficient to 
hold perhaps between ten and a hundred items. When this block is filled, a 
new block is chained to it, using any of the methods described in the previous 
section. On input, a block is not released to free store until all the items it 
contains have been scanned. Thus the amount of store used on links can be 
reduced to negligible proportions. This can be of particular benefit in the 
tree representation of the chain. 

As mentioned above, the use of blocking can also avoid the 
problems arising from variable-length dynamic storage allocation, since the 
size of the block may be held constant for all sequences, independent of the 
size of their items. Furthermore, in cases where part or all of the sequence 
is to be held on backing store, the use of blocking is almost universally 
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indicated, since backing store transfers can be very inefficient if the unit of 
transfer is too small. The only (dubious) disadvantage of blocking is that 
it inhibits effective sharing of the tails of stacks. 

The only remaining problem is to choose a size of block suitable for all 
purposes. It must obviously be large enough to accommodate the largest 
item of any sequence. In fact, it should be large enough to accommodate at 
least ten typical items; otherwise the space left over at the end of a block 
which is not large enough to accommodate the next item may reach signifi­
cant proportions. Also, if the sequence is to be held partially or wholly on 
backing store, the block should be long enough to ensure that not too much 
space is wasted on interblock gaps, and the frequency of transfers is low 
enough to ensure that not too much time is spent in start-stop, latency, or 
head movement delays. 

On the other hand, if the block size is too large, the space wasted at the 
beginning of the first block and/or the end of the last block will become 
significant; thus the block size should be small enough to ensure that the 
typical sequence occupies at least ten blocks. 

In the presence of so many conflicting considerations, it is not easy to 
select a standard block size for sequences of differing length and item size, 
and all forms of backing store, with different methods of access. However, 
an acceptable compromise can often be made, and on present-day computer 
designs, a block size of between 128 and 1024 words will often be a suitable 
choice. Probably in most cases the size chosen is not critical within a factor 
of two either way. 

8.2.4. Backing Store Representr.1tion 

In processing a sequence, a program normally requires access to one of its 
ends, and all the material in the middle and other end is unused for relatively 
long periods of time. If main storage is at all scarce, it is very profitable to 
transfer this material to backing store, so that the space it occupies in main 
store may be used for other purposes. In the case of input and output 
sequences, which have a lifetime greater than the program which reads or 
writes them, the use of backing store for long-term storage is almost 
obligatory. 

When using backing store, efficiency of processing and representation 
demands that transfers should occur in blocks of reasonable size. The block 
which contains an active end of a sequence is always held in main store; and 
to permit overlap of input/output with computing, the previous block (on 
writing) or the next block (on reading) also remains allocated during the 
transfer operation. This is known as double-buffering. It is possible to hold 
even more buffers in store to smooth out variations in the speed of processing 
and the speed of transfer; but the program designer must not fall into the 
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trap of supposing that this will help when there is a basic mismatch in the 
speeds of processing and transfer. In general, if double or triple buffering is 
inadequate, it is not worth while filling the store with any further extra 
buffers. 

In a machine which is endowed with an automatic paging scheme, the 
problems of representing sequences are very much reduced. As far as the 
programmer is concerned, he need only allocate the amount of storage 
required for the longest possible sequence, using the contiguous representa­
tion. This should not actually cause any waste of storage, since the paging 
system should delay allocation of store until it is first used. As the sequence 
expands, new blocks of store will be allocated, but the addressing of these 
blocks will appear contiguous to the programmer, so there is no problem 
of leaving unused space at the end of blocks which are not large enough to 
hold the next item. Shortly after a block has been filled, it will automatically 
migrate to backing store; and it will be brought back again automatically 
as soon as it is required. On input sequences, a block which has been scanned 
will also be removed shortly afterwards from main store; but this will not 
involve an unnecessary backing store transfer if the material has not been 
changed since the last input took place. The only operation which a paging 
system will not perform automatically is to read a block of an input sequence 
into store ahead of its actual requirement. 

9. RECURSIVE DATA STRUCTURES 

There are certain close analogies between the methods used for structuring 
data and the methods for structuring a program which processes that data. 
Thus, a Cartesian product corresponds to a compound statement, which 
assigns values to its components. Similarly, a discriminated union corresponds 
to a conditional or case construction, selecting an appropriate processing 
method for each alternative. Arrays and powersets correspond to for state­
ments sequencing through their elements, with an essentially bounded 
number of iterations. 

The sequence structure is the first that permits construction of types of 
infinite cardinality, with values of unbounded length; and it corresponds to 
the unbounded form oflooping, with a while condition to control termination. 
The reason why the sequence is unbounded is that one of its components 
(i.e. the initial segment) from which it is built up belongs to the same type as 
itself, in the same way as the statement which remains to be obeyed after 
any iteration of a while loop is the same statement as before. 

The question naturally arises whether the analogy can be extended to a 
data structure corresponding to recursive procedures. A value of such a 
type would be permitted to contain more than one component that belongs 
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to the same data type as itself; in the same way that a recursive procedure 
can call itself recursively from more than one place in its own body. As in 
the case of recursive procedures such a structure can conveniently be defined 
by writing the name of the type being defined actually inside its own definition; 
or in the case of mutually recursive definition, in the definition of some 
preceding type. 

The most obvious examples of recursive data structures are to be found 
in the description of arithmetic or logical expressions, programming lan­
guages, where the recursion reflects the possibility of nesting one expression 
inside another. For example, an arithmetic expression might be defined as 
follows: 

"An expression is a series of terms, each of which consists of a sign 
( + or - ) followed by a sequence of factors. Each factor except the first 
consists of a sign ( x or/) followed by a primary. A primary is either a 
constant, a variable, or an expression surrounded by brackets. An initial 
plus sign in an expression may be omitted." 

A structured data type whose values comprise such expressions may be 
defined usip.g only techniques already familiar, plus recursion: 

type expression = sequence term; 

type term= (addop:operator;f:sequence factor); 

type factor= (mulop:operator;p:primary); 

type primary = ( const: (val: real), 

var: (id: identifier), 

bracketed : ( e: expression)); 

type operator = (plus, minus, times, div); 

This definition expresses the abstract structure of an arithmetic expression, 
but not the details of its concrete representation as a string of characters. 
For example, it does not specify the symbols used for brackets or operators, 
nor does it state whether an infix, prefix or postfix notation is used for them. 
It does not state how the three kinds of primary are to be distinguished. 
It does not even represent the optional omission of plus on the first term of 
an expression, and the necessary omission of x on the first factor of a term. 
Apart from this degree of abstraction and representation-independence, this 
type definition would correspond to a set of BNF syntax equations: 

(expression)::= (term) I (addop)(term) I 
(expression)(addop)(term) 

(term): : = (primary) I (term) (mulop) (primary) 
(primary)::= (unsigned real number) I (variable) I 

( (expression)) 
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Note how we have used sequences to replace the recursion wherever 
possible. In fact this can be done whenever a type name occurs recursively 
only once at the beginning or at the end of its definition. For example: 

type expression = sequence term; 

might have been formulated recursively: 

type expression = 

(empty:( ), non-empty:(first:term; final:expression)). 

A similar alternative formulation permits while loops to be expressed as 
recursive procedures. 

The construction of values of a recursively defined type requires no new 
operators or transfer functions; all that is needed is recursive use of the 
methods defined for the other relevant structuring methods. For example, 
the expression 

3/(b - 2) 

could be specified by the cumbersome construction: 

[term {plus, [factor (times, primary (const (3))), 

factor (div, primary (bracketed ( 

]) 

]. 

[term (plus, [factor (times, primary (var ("b")))]), 

term (minus, [factor (times, primary (const (2)))])]))) 

An effective method of getting the computer itself to translate expressions 
into abstract structures will be given as an example in (9.2). 

Another familiar example of recursively defined data is the family tree. 
A family tree (excluding information about marriage) can be defined by 
associating with each person the family trees of all his/her offspring. We 
assume that certain additional personal details are required to be held: 

type family = (head: person; offspring :sequence family); 

A person with no children is an ultimate component of the family tree, 
and may be represented: 

family (Tom, []) 

A family with three children may be represented: 

family (Jill, [family (Tom, [ ]), 

family (Joanna, [ ]), 

family (Matthew, [ ])]). 
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The final example shows how the binary forking tree familiar to LISP 
programmers may be defined as a recursive data structure. 

type list = (atom:sequence character, cons:(car, cdr:list)). 

A list which in LISP dot-notation would be expressed 

{(A. (B. NIL)). NIL) 

can be expressed as a value of type list in almost exactly the same way as it is 
in LISP: 

cons (cons (atom ("A"), 

cons (atom ("B"), atom ("NIL"))), 

atom ("NIL") 

); 

where the type transfer to list type is left implicit. 
As an example of the processing of a list, we write a function to reverse a 

complete tree, so that every "left fork" in it becomes a "right fork" and 
vice-versa. 

function reverse (/:list): list; 

with I do 

{atom: reverse:=/, 

cons: reverse:= cons {reverse (cdr), reverse (car))} 

9. l. REPRESENTATION 

The standard representation of a recursive type is also very similar to 
that of a similarly structured non-recursive type, with the exception that each 
component specified as belonging to the recursive type itself is represented 
by a location containing a pointer to its value, rather than the value itself. 
This use of a pointer is motivated by the fact that the component value may 
be of arbitrary size; and it is not possible to allocate any fixed amount 
of storage to contain it. This is known as the "tree representation", and is 
similar to the tree representation of an array or sequence, except that the 
branches may grow to arbitrary and varying heights. 

An alternative method of representation is the linear sequence or bitstrcam. 
In this representation it is possible to avoid the use of pointers, and place 
the values of recursive substructures contiguous with the rest of the infor­
mation, just as they are in the familiar bracketed character representations 
of expressions. However instead of using brackets, we can reestablish the 
bracketing structure by context, and if necessary by scanning the tag of 
union values. This method is usually associated with packed representations 
of the other components, and a very significant reduction in storage may be 
achieved, at the expense of enforcing serial access to the components of'the 
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structure. In many circumstances, a bitstream representation is some ten 
times more compact than the tree representation. 
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The choice between tree and linear representation is usually obvious. If 
the structure is being processed by the program, usually by means of recursive 
procedures, the needs of ready access to any component of the structure 
dictate a tree representation. In addition, some of the space lost may be 
regained by sharing common branches among several trees; such commonality 
of branches is a feature of the processing of symbolic expressions. However, 
ifthe structure has to be output and subsequently re-input, the linear structure 
is vastly preferable. Not only does the reduction in volume reduce transfer 
time, but the linearisation avoids a number of tricky problems of representing 
pointers in backing store. In many cases, a structure which passes through 
several phase~ of processing and input-output will be translated between 
the two representations at each phase; and this is standard practice in a 
multipass translator for a high-level programming language. 

It is important to note that the sharing of the recursive sub-structure is 
nothing but a means of saving time and storage, and has no effect on the 
running of the program. This means that the sharing must be avoided 
whenever there is any danger that the shared sub-structure might be selectively 
updated as part of one of its owners. In principle, all values are entirely 
disjoint from all other values, and there is no way in which the programmer 
could either know or care how far his structures are shared. Furthermore, 
there is no way whatsoever in which a pointer can be made to point back 
to a structure of which it is a component; since this would mean that the 
structure was identical to one of its own components. Only an infinite struc­
ture can have this property; and infinite structures do not satisfy the axiom 
of exclusion on which the important principle of induction for recursive 
structures is based. 
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9.2. EXAMPLE 

A source text for an expression in a programming language is presented 
as a sequence of symbols defined: 

type symbol = (constant: (value: real), variable: (identifier: ident), 

op: operator, leftbracket, rightbracket); 

Write a program operating on an input variable 

source: sequence symbol, 

which reads from its beginning the longest possible legitimate expression, 
delivers the corresponding abstract expression as a result, and exits to the 
label error if this is impossible. The structure of the result and the syntax of 
the source are as specified earlier in this chapter. 

The structure of the program closely follows that of the desired result. 

There are three functions: 

compile expression 

compile term (sign) 

coml'.!ile primary 

each of which removes from the source the longest expression in its syntactic 
category, and delivers the corresponding abstract structure as a result. The 
main irregularity of the process is that the first term of an expression may be 
unsigned; this is why the sign is provided as a parameter for compile term, 
instead of being read from source by compile term itself. Each function has 
the side-effect of shortening the source sequence if successful, and jumping 
to error if not. 

function compile expression: expression; 

begin sign: operator; 

end; 

if source. first = plus v source. first = minus then sign from source 

else sign : = pl us; 

compile expression: = [compile term (sign)]; 

while source. first = plus v source. first = minus do 

begin sign from source; -compile expression: [compile term (sign)] 

end 

function compile term (s: operator): term; 

begin p: primary; sign: operator; fs: sequence factor; 
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p: = compile primary; 

fs: = [factor (times, p)]; 

while source. first = times v source. first = div do 

begin sign from source: 

p: = compile primary; -fs: [factor (sign, p)] 

end; 

compile term:= term (s,fs) 

function compile primary: primary; 

begin s: symbol; 

end; 

Exercise 

s from source; 

withs do {constant: compile primary:= const (value), 

variable: compile primary: = var (identifier), 

leftbracket: 

begin from source; 

compile primary:= bracketed (compile expression); 

s from source; 

ifs .,p rightbracket then go to error 

end, 

else go to error} 

Write programs to convert an expression from tree representation to 
bitstream and back again. 

10. SPARSE DATA STRUCTURES 

In dealing with representations of arrays and powersets, we have hitherto 
assumed that the base type of a powerset and the domain type of an array is 
reasonably small, so that it is possible to allocate a bit or larger area of store 
to hold the value of every potential element of the structure. The examples 
also were confined to such cases. In this chapter we investigate the conse­
quences and problems which arise when the base or domain types are very 
large or infinite, and when the standard representations are therefore 
impossible. 
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The representation and manipulation of powersets and mappings with 
infinite domains can be accomplished, provided that consideration is re­
stricted to sets with only a finite number of members, and mappings in which 
only a finite number of elements take significant values; where "significant" 
is defined as different from some specified null or default value. The powerset 
of an infinite set is obviously also infinite; but since each value of the powerset 
type contains only a finite number of elements, each value can be specified 
simply by listing those elements in a finite period of time, and the list will 
occupy only a finite amount of storage. Similarly, each value of a mapping 
type with infinite domain can be finitely specified by listing all elements of 
the domain which map onto significant values of the range type, together 
with the value mapped in each case. A type which is restricted in this way is 
known as sparse. 

In fact the concept of sparsity is not confined to infinite bases and domains; 
it may also be applied to very large but finite powersets, when the pro­
grammer knows that each actual set in which he is interested will contain 
only a very small proportion of the potential members. For example, the 
base type may contain hundreds of millions of values, but the programmer 
may know that he only has to deal with sets of less than a hundred in size, 
and perhaps most of them less than ten. It would be impossible to use the 
bitpattern representation, since this requires hundreds of millions of bits; 
but since each value actually used in a program contains only a few members, 
these members can readily be listed in a comparatively small amount of 
store. A powerset type of this sort is known as sparse. Similarly, arrays 
with a very large domain, nearly all of which map onto the same default 
value of the range, are said to belong to a sparse array type. 

Sparse sets and arrays are frequently encountered in advanced data 
processing applications, and their representation and manipulation present a 
number of familiar problems. Our first example is the definition of a type 
whose values are sets of car numbers. The cardinality of the carnumber type 
is perhaps something like four thousand million; but the programmer 
wishes only to deal with sets of cars owned by a single person; most of these 
will have only one member, and very few will have more than ten. The 
carset type may therefore be declared as sparse powerset: 

type carset = sparse powerset carnumber; 

As an example of a sparse array, we may take the type of mappings 
between car owners and the set of cars they own. Each owner is represented 
by name and address; since these are of arbitrary length, the owner type 
may be defined: 

type owner = sequence character; 
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and has infinite cardinality. The required type is therefore declared as 
sparse: 

type carfile = sparse array owner of carset. 

In a data processing application, a variable of carfile type would be known 
as a random access file, and the owner would be known as the key element of 
the file. 

The next two examples are drawn from numerical applications. A vector 
is a mapping from integers onto floating point numbers. A sparse vector is 
one in which most of the elements are zero; consequently its initial value will 
be the zero constant function, and all elements will remain zero unless an 
explicit assignment is made of a different value: 

type sparsevector = sparse array integer of real. 

A sparse complex matrix may be defined in a similar way: 

type irregular matrix = sparse array (row, column: integer) 

of complex. 

The n~xt example is taken from the field of the translation of programming 
languages to machine code. During the process of translation, the translator 
needs to know certain information about each identifier declared in the 
program, such as machine address allocated to the variable, its length and 
type, etc. This information is assumed to belong to a type decode. The typ.: of 
an array which associates a decode with each identifier is given the name 
dictionary and is declared: 

type dictionary = sparse array ident of decode 

Of course, the translator is interested in the decode only of those identifiers 
actually declared in the source program. For the vast majority of possible 
identifiers, the value given by any dictionary of this type will be that value of 
the decode type which indicates that the identifier was undeclared. 

The final example is of a type that causes familiar problems in a com­
mercial filing system and in real life-that of multidimensional cross­
classification. The customers of a firm are split up into a number of 
geographical areas; they are also classified in a number of classes, in accord­
ance with the kind of product they purchase. On occasions it is required to 
access all customers in an area, sequencing through all classes; on other 
occasions to access all customers in a class, sequencing through the areas; 
and finally, it is sometimes required to process all customers of a given class 
in a given area. The abstract structure required to deal with this situation 
is a two-dimensional sparse array of sparse sets: 

~parse array ( c: class; a: area) of sparse powerset customer. 
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A similar example may arise in the description of family relationship 
among persons: 

type children= sparse array (mother, father: person) of 

sparse powerset person: 

This array caters for multiple marriages better than the more tree-like 
representations of a family, which can be defined as a recursive structure. 

In the case of sparse arrays, it is sometimes useful to regard them as 
partial rather than total mappings. A partial mapping is one which does not 
necessarily give a value for each member of its domain type. In other words, 
the actual domain over which it is defined is a subset of the domain type. 
For such an array type it is necessary to introduce an additional constant 
omega, denoting a mapping which is everywhere undefined. It is also useful 
to introduce a function 

domain (x) 

which delivers as result the set of subscripts for elements of x which are 
actually defined. Thus the programmer can sequence through all the defined 
elements, or test whether a particular element is defined or not. Many of the 
examples quoted above might well have been declared as partial instead of 
sparse. In the case of a partial mapping, the default value does not have to be 
recorded. 

10.l REPRESENTATION 

Sparse sets and arrays are usually represented by simply keeping a record 
of the default value and those members or elements which are significant; 
thu5 the representation borrows techniques which are used in the case of the 
sequence type to deal with structures of changeable size. A sparse set may be 
regarded as a special case of a sparse mapping, which maps all its members 
onto the Boolean value true, and all its non-members onto the default value 
false. Thus their representations are closely similar to those of sparse arrays, 
and do not require separate treatment. 

A sparse mapping consists of a number of elements. Each element 
of the mapping is represented as the Cartesian product of its subscript and 
its value; in this case the subscript is known as the key, and the value is 
known as the information associated with the element, and the juxtaposition 
of the two will be known as an entry. In the case of a set which is sparse, 
there is no need to record any information, since the presence of the key 
itself is sufficient to indicate that this value is a member of the set. Thus an 
entry for a sparse set consists only of a key. 
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10. l. l. Sequential Representation 

The simplest representation of a sparse array type is as a sequence of entries; 
i.e. 

sparse array D of R 

is represented as if it had been declared 
(default:R; s:sequence (key:D; information:R)). 

One of the possible sequence representations must now be chosen, in 
accordance with the same criteria that are used in the case of a sequence. 
But when a sequence is used to represent a sparse array, the order of the 
entries is immaterial, and does not have to reflect the relative times at which 
the entries were made. Thus the entries are often sorted into order of their 
key-value, particularly if this is the order in which they are going to be 
scanned. 

The chief disadvantage of the sequential representation is the length of 
time taken to access the element corresponding to a random subscript. In 
the case of structures of any great size, the program designer usually goes to 
considerable trouble to ensure that entries are accessed in the same standard 
order that they are stored in the sequence; and that if new entries are to be 
inserted, these are also sorted and then merged with the original sequence. 
Thus the standard commercial practice of batch processing and updating of 
sequential files may be regarded as a practical implementation of the abstract 
concept of a sparse array on the rather unsympathetic medium of magnetic 
tape. 

l 0.1.2. Tabular Representation 

If there is an acceptably low upper limit N to the number of entries in a 
sparse mapping, a great increase in speed of lookup can be achieved by the 
tabular representation, in which the sparse mapping 

sparse array D of R 

is represented as a nonsparse array: 
(default:R; occupied: powerset 0 . . N; 

array 0 .. N of (key: D; information: R) ). 

If all the significant entries are collected before they are used, the table can 
be sorted, and then the entry with a given key can be rapidly located by 
logarithmic search. 

If access to the elements of the array is interleaved with addition of new 
entries, some form of hash-table technique is indicated. For this an arbitrary 
"hashing" function is chosen, which maps the domain type D into an 
integer in the range 0 .. N. When the entry is inserted, it is placed at this 
position in the table; so whenever that entry is accessed, use of the same 
hashing function will find it there. If that position is already occupied by an 
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entry with a different key, some other vacant position in the table must 
be found. It is quite usual to search for such a vacant position in the next 
following locations of the table; but when the table is nearly full, this may 
cause undesirable bunching around an area of the table which happens to 
be popular. A solution to this problem is to choose N + I as a prime number, 
and to use a second hashing function to compute an arbitrary step length 
from any given key. The next position to try when any given position is full 
is obtained by adding the step length (modulo N + I) to the previous 
position. 

I 0.1.3. Indexed Representation 

The tabular method of storage is suitable only when the whole table can be 
accommodated in the main store of the computer. In the common case 
when this is not possible, a mixture of the tabular and sequential methods is 
often used. In this a sparse array is represented as a table, each of whose 
entries is a sequence: 
(default:R; table:array I . . N of 

(max:D; seq: sequence (key:D; information:R))). 
Every entry is placed on that sequence i such that its key fails between 
table [i - I]. max (or D. min if i = I) and table [i]. max. The table is sorted 
so that the appropriate sequence can be quickly located. This tecTinique 
may be likened to the organisation of a multivolume encyclopaedia, in 
which the keys of the first and last entries of each volume are indicated on 
the spine, so that the right volume can he quickly id~ntified, without extracting 
the volumes from the shelf. 

When using this representation, it is desirable t0 ensure that all sequences 
are of roughly the same length. Indeed, if disc backing store is used, it is 
very advantageous to ensure that each of them is fitted onto a single cylinder, 
so that a random access will not involve more than a single head movement. 
Thus, when one sequence gets too long, it must exchange material with the 
adjacent sequence. This involves extracting the entries with the largest 
and/or smallest keys, and is best done when all the sequences are sorted into 
order of key-value. The sorting and reshuffling is often carried out as a 
separate operation at regular intervals; and the general method of file 
organisation is known as "indexed ~equential". 

Naturally in this method of representation, it is an advantage to keep 
the sequences as short as possible, say less than a single track on disk. 
Consequently, the table itself may get so large that it will no longer fit in 
main store. In this case the table itself is split up into sections, and a second­
level table may be set up to point to its sections, using the same principle 
again. Thus at least two accesses to backing store will in general be required 
for each access to an element of the array, and it is strongly recommended 
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to ensure that the sizes and location of the sequences and sections be chosen 
to correspond closely with the access characteristics of the storage medium. 

I 0.1.4. Locally Dense Representation 

A special case of a sparse array encountered in numerical computer appli­
cations is the sparse matrix. Quite frequently a sparse matrix can be split 
into submatrices, only a few of which contain significant non-zero entries. 
In this case, the matrix may be said to be locally dense, and should be 
represented and processed in a manner which takes advantage of this fact. 

One method of achieving this is to store with each significant submatrix 
its position and size, and to represent the whole matrix as a table or sequence 
of such submatrices, where each submatrix is stored contiguously in the 
usual way, using multiplicative address calculation. However, the sub­
matrices will in general be of different sizes, and if the size varies during the 
processing of the matrix, the problems will be quite severe. A possible way of 
dealing with sparse matrices is to split them into submatrices of standard 
size, say sixteen by sixteen, and set up a table of pointers to each of these 
submatrices. A submatrix that is wholly zero is represented by a null pointer 
and occupies no additional storage; otherwise, the submatrix is stored in the 
usual way, using the following method of address calculation. 

Each access to the array involves first "interleaving" the bit values of the 
two subscripts, so that the least significant part of the result contains the least 
significant part of both subscripts. The more significant part of the result is 
then used to consult the table of addresses, to locate the desired submatrix, 
and the less significant part to find the position of the required element 
within the submatrix. This technique of interleaving subscripts may on 
some machines be more efficient than general multiplication. If some of the 
submatrices have to be held on backing store, this method of address calcu­
lation is particularly recommended, since it is equally efficient at processing 
the matrix by rows as by columns; and the method can then be recommended 
for all large arrays, whether sparse or not, particularly on a paged computer. 
The inventor of this method is Professor E. W. Dijkstra. 

I 0.1.5. Grid Representation 

The phenomenon of cross-classification of files causes as many problems in a 
computer as it does in real life. It is usually solved by standardising on one 
of the classifications which is most convenient, and accepting the extra cost of 
processing in accordance with the other classification, even if this involves 
resorting the file. Thus the sparse mapping 

sparse array (i:D 1 ;j:D2 ) of R 
is represented as: 

sparse array D 1 of (sparse array D 2 of R) 
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However, it is also possible to deal with the two dimensions in a more 
symmetric fashion, using a method based on the chained representation of 
sequences. In this representation, each actually used value of Di is placed 
in one chain, and each actually used value of D 2 is placed in another. These 
are called border chains. Each element of either border chain contains a 
base location pointing to a chained sequence of all elements with key values 
which fall into the class. Now each actual entry of the array has two addresses 
attached; one points to the next item of the sequence which has the same 
classification according to Di, and the other to the next item which has the 
same classification according to D 2 • Thus each item may be pictured as 
residing on an intersection of the lines of a two-dimensional grid, with 
pointers leading across and downwards to the next item on the same row 
or the same column. 

A - - 02 border chain 

r-- -- ~---

d2 d2 

-- - Rest of this row 

-------d1 No value of 
A [d1 ,d2) A [dt ,d2) 

-1--- - - - · Rest of this row 
-
~------d' I A (dj ,d2) 

A [dt ,d2] 

02 border chain Rest of this column Rest of this column 

FIG. 9. Grid Representation of A : sparse array (d, ;D, ;d2 :D2) of T 

This grid representation is unfortunately suitable only when the entire 
structure will fit into main store. If the main part of the sequences have to be 
held on backing store, some sort of blocking of adjacent elements would be 
desirable in the interests of efficiency. 

1 I . EXAMPLE: EXAMINATION TIMETABLES 

In an educational establishment which offers students a wide choice of course 
combinations, there arises the problem of designing an examination time­
table in which each examination is conducted in a single session, and yet 
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each student can attend the examination for each course that he has taken. 
This can always be arranged by allocating a separate session for each examina­
tion; but the interests of examiner and student alike dictate that the total 
examination period be as short as possible. This means that each session 
should contain as many examinations as possible, subject to some limit k. 
An additional constraint is imposed by the size of the examination hall, 
which can only accommodate a certain maximum number of students. 

Before designing the program, it is desirable to confirm our understanding 
of the problem by making a more rigorous formalisation in terms of the 
structure of the various items of data, both given and required. The types 
"student" and "exam" are obviously unstructured and need no further 
definition at this stage. The load of exams to be taken by each student is 
given by a mapping: 

load: array student of powerset exam. 

A timetable is a set of sessions, where each session consists of a set of exams: 
type session = powerset exam; 

timetable: powerset session. 

We next attempt to formalise the properties which the input and output 
data are required to possess. 

(I) We choose not to formalise the condition that the number of sesi.ions 
be minimised, since in fact we do not want an absolute minimum if this 
turns out to be too expensive to compute. 

(2) Each exam is scheduled for one of the sessions 
U s =exam.all 
s in timetable 

(3) No exam is scheduled for more than one session: 
(sl A s2 = { } ) or (sl = s2) 

Conditions (2) and (3) effectively state that the timetable is a partitioning 
of the set of all exams into exhaustive and exclusive subsets. 

(4) No session includes more thank exams 

s in timetable ::> size (s) ~ k 

(5) No session involves more than hallsize students. To formalise this, 
we need to count the number of students taking each exam: 

examcount (e:exam) =size {st: student I e in load (st)}. 

Now the number of students involved in a session is 

session count (s: session) = L examcount (e) 
e ins 
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The condition may be formalised: 

s in timetable ::> sessioncount (s) ~ hallsize. 

(6) No student takes more than one exam in a session. To formalise this 
we introduce the concept of incompatibility of exams: two exams are in­
compatible if some student is taking both of them. For each exam el there is 
a set incompat (el) of exams which are incompatible with it: 

incompat (el)= {e2:exam I e2 '#el & 3 st:student (el in load (st) 

& e2 in load (st))} 

Now we can define that every pair of exams in a session must be compatible: 

sin timetable & el, e2 ins::> 1el in incompat (e2). 

These six conditions, defined in terms of load, hallsize, and k, must be 
possessed by any successful timetable in the real world, and by any successful 
computer representation of the timetable. They serve to define the objectives 
and criterion of correctness of our timetabling program. 

11.1 THE ABSTRACT PROGRAM 

Inspection of the conditions reveals that construction of the timetable does 
not require full knowledge of the load of each student. All that is needed is 
the examcount of each exam, and for each exam the set of other exams 
which are incompatible with it: 

examcount:array exam of integer; 

incompat: array exam of powerset exam. 

These two arrays embody an abstraction from the real life data, which 
concentrate attention on exactly those features which are for the present 
purpose relevant, and permitting us to ignore for the time being the other 
features of the situation. It is plain that these two arrays can be readily 
constructed from a single scan of the student load data: 

examcount: = all (0); 

incompat: = all ( { } ); 

for st: student do 

fore in load (st) do 

begin examcount (e): +I; 

incompat ( e): v (load (st) - { e}) 

end; 

One of the simplifying factors in the search for a solution to the given 
problem is that the conditions fall readily into two classes: (l) (2) and (3) 
relate to the timetable as a whole, whereas (4) (5) and (6) relate only to 
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individual sessions, and do not mention the timetable at all. This suggests 
that the program can be structured as an inner part which selects a suitable 
session satisfying (4) (5) and (6), and an outer loop which constructs the 
timetable out of such suitable sessions. 
The objective of the outer loop is to achieve satisfaction of conditions (2) 
and (3) on its completion. We therefore choose one of these conditions as a 
terminating condition of the loop, and design the body of the loop in such a 
way that is preserves the truth of the other condition (that is, the invariant 
of the loop); furthermore we ensure that the invariant is true before starting 
the loop. 

The obvious choice of invariant is exclusiveness (condition (3)), leaving 
exhaustiveness as the terminating condition towards which each execution 
of the body of the loop will progress. The empty timetable obviously satisfies 
the invariant. This leads to an algorithm of the following structure: 

timetable: = { } ; 

while timetable does not satisfy (2) do 

begin select a session satisfying (4), (5), (6); 

add the session to the timetable 

end; 

print timetable. 

In order for the addition of a new session to preserve the truth of the 
invariant, it is necessary that the exams of the session shall be selected from 
exams which do not yet appear in the timetable. We therefore introduce a 
new variable to hold these remaining exams: 

remaining: powerset exam; 

which is defined by the invariant relation: 

remaining = exam. all- LJ s. 
s in timetable 

The structure of the program as a whole now takes the form: 

timetable: = { } ; 

remaining: = exam. all; 

while remaining'# { } do 

begin s: = suitable; 

timetable: v {s }; 

remaining: - s 

end; 

print timetable. 
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The problem now remains of selecting a suitable session at each stage. 
In principle, there is no reason to suppose that the "best" choice at each 
stage will lead to a "best" or even a "good" timetable in the end. However, 
it would seem that in general it will pay to select a combination of remaining 
exams that most nearly fills the hall, or most nearly approaches the limit k. 
This will probably mean that the majority of students and exams will be 
catered for in a reasonably compact set of sessions, even though there may 
in the end be a fairly long "tail" of small sessions, involving a minority of 
students. Although this will not minimise the number of sessions, it may be 
reasonably satisfactory to most students and most examiners. 

The alternative to accepting an apparent best choice on each occasion is 
to attempt some more global optimisation, which will either involve astrono­
mical numbers of trials, or some sophisticated considerations which are 
unlikely to become apparent until after practical experience of a simpler 
algorithm. So there is nothing else that can be done at this stage except hope 
for the best. 

It remains to program the function: 

function suitable: session, 

which selects a suitable session from the remaining set of exams; A possible 
method of doing this is to generate a number of trial session satisfying (4) 
(5) and (6), and to select the best one found. The best one will probably be 
the one with the largest sessioncount, but since we may wish to adjust the 
criterion of selection, it is advisable to define it as a separate subroutine, 
updating a variable 

bestsofar: session; 

in accordance with the current value of a variable: 

trial: session; 

procedure record 

if sessioncount (bestsofar) < sessioncount (trial) then 

bestsofar: = trial. 

The result of suitable is going to be the final value of bestsofar: 

suitable: = bestsofar. 

It still remains to write a procedure that will generate and record a sequence 
of trial sessions which satisfy (4) (5) and (6). Inspection of these conditions 
shows that if a trial/ails to satisfy one of them, no larger trial will satisfy it. 
In other words, having found an impossible trial, there is no need to generate 
any further trials which contain it. This suggests that we organise the 
generation process to generate all supersets of each trial that has been found 
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already to be possible, but excluding any exams which have already been 
tried. We therefore introduce a variable: 

untried: powerset exam, 
and a procedure 

procedure gensupersets, 

which generates and records all possible supersets of trial by adding one or 
more exams from untried to it. This procedure will be called from within 
"suitable". 

function suitable: session; 

begin trial, bestsofar: session; e: exam; untried: powerset exam : 

e from remaining; 

end; 

trial : = bestsofar: = { e} ; 

untried:= remaining - trial - incompat (e); 

gensupersets; 

suitable: = bestsofar 

Note that the first value of the trial is the unitset of some exam chosen from 
the remainder according to some as yet undefined criterion. The justification 
for this is that the chosen exam must eventually feature in some session of 
the timetable, and it might as well be this one. If this prior choice were not 
made, gensupersets would keep on generating the same supersets on every 
cycle of the major loop of the timetabling program. 

As another significant optimisation, we have removed from untried any 
exams which are incompatible with the exams in the trial, since there is no 
need to even consider the addition of any of these exams to the trial. 

The generation of supersets of a given trial may proceed by selecting 
each exam from untried, and adding it to trial. If the result is still valid, it 
should be recorded, and the new value of trial is then a suitable session to 
act as a basis for further superset generation. This suggests a recursive 
program structure. Of course, the exam added to trials should also be sub­
tracted from untried, to avoid unnecessary repetitions; and it is very advan­
tageous to remove from untried any exams which are incompatible with the 
exam just added to the trial, so that these do not have to be considered again 
in future. Also, the values of trial and untried must be left unchanged 
by each call, so any change made to them must be recorded and restored in 
variables save I and save 2. 
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procedure gens u persets; 

begin e: exam ; save I , save 2: l>O"'erset exam ; 

record; save I : = untried; 

if size (trial) < k then 

while untried '# { } do 

begin e from untried; 

end; 

save 2: = untried /\ incompat (e); 

untried: - save 2; 

trial: v {e}; 

if sessioncount (trial) < hallsize then 

gensupersets; 

untried: v save 2; 

trial: - {e} 

untried: = save I 

end gensupersets. 

161 

The validity of this program depends on the fact that trial invariantly 
satisfies all conditions (4) (5) and (6) for sessions of the timetable, as well as 
always being a subset of remaining. 

The reasoning is as follows: 

for (4): gensupersets never generates a superset except when the size of the 
trial is strictly less than k. 

for (5): gensupersets is never entered when the sessioncount of trial is 
greater than the hall size (we assume that no examcount is greater than 
hallsize). 

for (6): removal of incompatible sets from untried ensures that at all 
times all exams remaining in untried are compatible with all exams of trial. 
Therefore, transfer of an arbitrary exam from untried to trial can never 
cause (6) to be violated. 

Finally, at the initial call of gensupersets, untried c remaining. Untried is 
an essentially non-increasing quantity: every addition of members to it has 
always been preceded by removal of those very same members. Untried is 
therefore always a subset of remaining; and trial, which is constructed only 
from members of untried, must also always be a subset of remaining. 

This completes our first version of an abstract program to construct 
examination timetables. Collecting all the material together, it looks like.this: 
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hallsize, k: integer, initially given; 

load: array student of powerset exam, initially given; 

type session = powerset exam; 

timetable: powerset session, initially { } ; 

examcount: array exam of integer, initially all (0); 

incompat: array exam of powerset exam, initially constant ( { } ) ; 

function sessioncount (s: session): integer; 

begin sum: integer, initially O; 

end; 

fore ins do sum:+ examcount (e); 

sessioncount: = sum 

remaining: powerset exam, initially exam. all; 

function suitable: session; 

begin bestsofar, trial: session; untried: powerset exam; 

e:exam; e from remaining; bestsofar: = {e}; 

trial:= {e}; untried:= remaining - trial - incompat (e); 

gensupersets; 

suitable: = bestsofar 

end; 

The following two procedures are local to suitable: 

procedure record ; 

if sessioncount (bestsofar) < sessioncount (trial) then 

procedure gensupersets; 

begin e:exam; save I, save 2:powerset exam; 

record; save I : = untried; 

if size (trial) < k then 

while untried -::/: { } do 

begin e from untried; 

save 2: = untried A incompat (e); 

untried:- save 2; 

trial : v { e} ; 

if sessioncount (trial) < hallsize then 

gensupersets; 

bestsofar: =trial; 



end; 
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untried: v save 2; 
trial: - {e} 

untried: = save I 
end gensupersets; 

The main program is as follows: 
for st: student do 

for e in load (st) do 
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begin eramcount (e): + 1; incompat (e): v (load (st) - {e}) end; 

while remaining '# { } do 
begin s: session; 

end; 
print timetable 

s: = suitable; 
timetable: v {s }; 
remaining: - s 

Before spending any more effort on developing this program, it would be 
advisable to subject it to a critical examination, to ensure that it will be 
successful. Now the most obvious reasons why the program might fail are: 

(I) The size of the timetable turns out to be unacceptably large; we have 
agreed that nothing can be done about this, until we know more about the 
data. 

(2) The amount of time taken to generate all trials at each step is excessive. 
This will be particularly serious when the remainder is still large at the 
beginning of the program, and if the untried set remains large on every 
recursion of gensupersets. The main way in which the untried set is reduced 
is by removing all exams incompatible with the trial. This suggests that we 
should always prefer to add first to the trial those exams which have the 
largest incompatible sets, so that untried is reduced as quickly as possible. 
Among sets equal according to this criterion, the exam with the largest 
examcount would be selected first. The exact weighting between these criteria 
may have to be adjusted later in the light of experience; meanwhile, the 
simplest implementation of this policy is to presort the exams in accordance 
with the criterion, and implement e from untried by selecting the first 
member. 

If it turns out that this elementary strategy is insufficient we may have to 
artificially curtail the number of iterations of the loop in gensupersets. But 
we would probably need some practical experience in order to select a suitable 
strategy; and for the time being, let us hope it will not be necessary. 
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11.2. DATA REPRESENTATION 

In order to design a successful data representation, it is necessary to know 
something of the likely size of the problem. In this example, we will make the 
following assumptions: 

(I) There are not more than 500 exams, each taken by less than 1000 
students (typically 50). 

(2) There are about 5000 students. 

(3) Each student takes less than ten exams, and typically five. 

(4) The examination hall will take about 1000 students. 

(5) An acceptable limit on the number of concurrent exams is 30, and the 
typical number is IO. 

(6) Manual timetabling methods have succeeded in constructing timetables 
with not more than 50 sessions. 

We will consider the individual items of data. 

(I) type exam 

The obvious representation is as an integer subrange: 0 .. 500. 

(2) type session 

There is obviously a choice between a bitpattern representation (500 bits), 
and an array of 30 nine-bit elements (+pointer) (270 bits + one word). The 
number of sessions to be stored is not great, so considerations of storage 
economy are not significant. The main operations on a sesSion are the 
insertion of an exam which is known not to be in it already, and the removal 
of an exam, which is the most recently inserted. Thus the array method 
would be the best, since the insertion and removal of members can be 
accomplished by stack methods. 

Since we frequently wish to know the session-count, it would pay to record 
this together with the session, and keep it up to date as members are inserted 
and removed. 

This representation is used for trial and bestsofar. 

(3) timetable 

The only operation on the timetable is the insertion of new sessions. Since 
sessions are of variable length, the timetable could be organised as a sequence 
of variable-length sequences. Since each exam occurs exactly once in the 
timetable, the maximum size of the timetable is 500 x nine bits, plus perhaps 
sixty words to indicate the separation of the sessions (if there are more than 
sixty sessions, the program will have failed anyway). 
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An alternative and much simpler representation is simply to record for 
each exam which session it occurs in. This requires only 

array exam of I .. 60 

This representation is made possible only by the fact that the sessions of the 
timetable are mutually exclusive. 

(4) examcount: array exam of integer 

A standard representation is the obvious choice. 

(5) remaining, untried, save 1, save 2 

These variables start rather full, and get emptier as the program progresses. 
Their average density is therefore about fifty percent, and there is no point 
in adopting a sparse representation. Furthermore, the frequency of standard 
set operations applied to them indicate a standard bitpattern representation. 

(6) incompat 

The most frequent use of elements of incompat is to subtract them from 
untried. They should therefore also use the bitpattern representation. This 
will require 500 x 500 bits, of the order of 10000 words. This is by far the 
largest data structure required, but its total size is probably fully justified 
by the extra speed which it imparts to the program, and since it is acceptable 
on most computers on which this program will run, it does not seem worth 
while to seek a more compact representation. 

(7) load 

The load of each student is the primary input data for the problem; it may 
also be extremely voluminous. It is therefore doubly fortunate that the 
program only needs to make a single scan of the data; for not only will this 
enable the data to be presented as an external sequence; it also means that 
the representation can be designed to be suitable for human reading, writing, 
and punching. 

We therefore allocate one card for each student, and use ten columns of 
six characters each to hold the examination numbers. To save unnecessary 
punching, the first blank column will signify the end of the examination set. 
For identification purposes, each card should also contain the student 
number; fortunately this can be wholly ignored by the program, though it 
should probably be checked to avoid duplications or omissions. 

Exercise 
Code the abstract program described above using the recommended data 
representations. 
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I 2. AXIOMA TISATION 

The preceding sections have introduced a number of methods of constructing 
data spaces (types), and have explained some useful operations defined over 
these spaces. But the description has been essentially intuitive and informal, 
and the question arises whether all the relevant information about the data 
spaces has been communicated, or whether there remains some possibility of 
misunderstanding of the details. 

In order to remove such misunderstanding, or check that it has not 
occurred, it is desirable to give a rigorous mathematical specification of 
each data space, and the operators defined over it; and we follow what is 
now a customary mathematical practice of defining rigorously the subject 
matter of our reasoning, not by traditional definitions, but by sets of axioms. 

In view of the role which axioms play in the theory of data structuring, 
it may be helpful to summarise their intended properties. 

(I) Axioms are a formal statement of those properties which are shared 
by the real world and by its representation inside a computer, in virtue of 
which ~anipulation of the representation by a computer program will yield 
results which can be successfully applied back to the real world. 

(2) They establish a conceptual framework covering those aspects of the 
real world which are believed to be relevant to the programmer's task, and 
thereby assist in his constructive and inventive thinking. 

(3) They state rigorously those assumptions about the real world on which 
the computer program will be based. 

(4) They state the necessary properties which must be possessed by any 
computer representation of the data, in a manner free from detail which is in 
initial stages irrelevant. 

(5) They offer a carefully circumscribed freedom to the programmer or 
high-level language implementor to choose a representation most suitable 
for his application and hardware available. 

(6) They form the basis of any proof of correctness of a program. 

The axioms given here are not intended to be used directly in the proof 
of non-trivial programs, since such proofs would be excessively long-winded. 
Rather they may be used to establish the familiar properties of the data 
spaces they describe, and these properties can then be used informally in 
proofs. Eventually it may be possible to get computers to check such proofs; 
but this will require the development of much more powerful formal languages 
for ~xpressing proofs than are at present provided by logicians, and the 
use of powerf u1 decision proceuures for large subelasses 01 theorems, to assist 
m verincation of the individual steps of a proof. 
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The axioms applicable to a given type depend on how that type has been 
defined. Thus it is not possible to give in each case a fixed set of axioms 
like those for integers; instead we give a pattern or schema which shows how 
a particular axiom set may be derived from the general form of the corres­
ponding type definition. 

12.J. ENUMERATIONS AND SUBRANGES 

The following axioms are common to both enumerations and subranges. 
They are modelled on the familiar axioms for natural numbers. The type 
name is assumed to be T, and all variables are assumed to be of this type. 

(1) T.min is a T 

(2) If xis a T, and xi= T.max 

then succ (x) is a T 

(3) The only elements of Tare as specified in (1) and (2) 

(4) succ (x) = succ (y) => x = y 

(5) succ (x) i= T. min 

(6) pred (succ (x)) = x 
The following three axioms apply only to ordered types 

(7) T.min ~ x 

(8) x ~ T.min => x = T.min 

(9) succ (x) ~ succ (y) = x ~ y 

Note: succ (T.max) and pred (T.min) are not defined. 

The general form of definition of a type by enumeration is 

type T = (k 1, k 2 , •• ., kn); 

where T is the type name 

and k 1 , k 2 , •• ., kn are names of all values of the type. 

The additional axiom for this type is: 

(IO) k 1 = T.min 

& k2 = succ (k1) 

& k3 = succ (k2) 

& kn = succ (kn_ 1) = T.max. 

The general form of a definition of a type as a subrange is 

typeT=k .. /; 

where k and I are of the base type T 0 • 
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The additional axioms for this type are: 

(IO) T. min = k 

& T.max =I. 

(I I) T(T0 (x)) = x. 

(12) k ~ x 0 & x 0 ~ I ::> T0(T(x0)) = x 0 • 

(13) x ~ y = T0 (x) ~ T0 (y). 

Using axioms (1) to (9) it is possible to prove the following properties of 
ordering: 

(Tl) x ~ x. 
(T2) x ~ succ (y) => x = succ (y) v x ~ y. 

(T3) z ~ y & y ~ x => z ~ x. 

(T4) x ~ y & y ~ x => x = y. 

Hint: Use induction on x. Proof of T3 requires T2. 

Abbreviations: 

If e is a monadic operator and EB is a dyadic operator, both taking operands 
from the base type T0 , then the following abbreviations permit omission of 
the transfer function, if a is of type T0 and x, y are of type T: 

(14) 8 x stands for 8 T0(x). 

(15) x EB y ,, ,, T0 (x) EB T0 (y). 

(16) x EB a 

(17) a EB x 

(18)a:=x 

" 
" 
" 

" 
" 
" 

12.2. CARTESIAN PRODUCTS 

To(x) Ea a. 

a EB T0(x). 

a:= T 0 (x). 

The general form of the definition of a type as a Cartesian product is 

type T= (s 1 :T1 ;si:Ti; ... ;sn:Tn); 

where st> Si, ... , snare the selectors of the components, and Tt> Ti, ... , Tn 
are the types of the corresponding components. 

(l) If x 1 is a T 1 and Xi is a Ti and ... and Xn is a Tn 

then T(x., Xi, ... , xn) is a T. 

(2) The only elements of Tare as specified in (I). 

(3) If x = T(x 1, Xi, ... , Xn) then 

x.s 1 = x 1 &x.si =Xi & ... &x.sn = xn. 
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Abbreviations: 

(4) x.s 1 : = x 1 stands for x: = T(x 1, x.s2, .. . , x.sn) 

,, 

,, 

(5) If x '.s a T then 

with x do S or with x take S stands for 

which means that each of the subscripts of S replaces all free occurrences 
of the corresponding superscript in S. 

(6) (x 1, x 2, .. . , xn) stands for T(x 1, x 2, .. . , xn) in those contexts where 
an expression of type T is expected. 

The following axiom applies if the Cartesian product type is to be regarded 
as ordered: 

(7) x ~ y = X.S1 < y.S1 

v x.s 1 = y.s 1 & (x.s2 < y.s2 
V X.S2 = y.S2 & (X.S3 < y.S3 

v & (x.sn- I < y.sn-I 

v x.sn-1 = y.sn-1 & x.sn ~ y.sn) .. . )). 

12.3. DISCRIMINATED UNIONS 

The general form of the definition is: 

type T = (s1: Tl; S2: T2; ... ; sn: Tn; k1: T' I• k2 :T'2· ... , km: T'm) 

(I) if x 1 is a Tl> x 2 is a T2 , ••• , xn is a Tn 

and x' 1 is a T' 1, x 2 is a T' 2 , ••• , x' m is a T' m 

then the following are distinct elements of T 

T(x 1, x 2, .. . , Xn, k 1(x' 1)) 

T(x 1,x2, ... ,Xn,k2(x' 2)) 

(2) The only elements of Tare as specified in (1). 
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(3) If x = T(xi. x 2 , •• • , Xn, k;(x';)) for each i between I and m 

x.s 1 = x 1 &x.s 2 = x 2 & ... &x.sn = Xn 

& x.k1 = x' 1 

Note: x. k 1 is undefined for I =!: i. 

Abbreviations: 

(4) Under the same condition as (3) 

with x do {k 1 :Si, k 2 :S2 , •• • , kn: Sn} means 

and similarly with take instead of do. 

(5) If n = 0, k;(x' 1) stands for T(k1(x' 1)). 

12.4. ARRAYS 

The general form of an array definition is: 

type T = uray D of R 

(l) If r is an R then T(r) is a T 

(2) If x is a T, dis a D, and r is an R 

then T(x, d:r) is a T 

(3) The only elements of T are as specified in (I) and (2). 

(4) T(T(x, d:r), d':r') = 

if d = d' then T(x, d':r') 

else T(T(x, d':r'), d:r). 

(5) T(r)[d] = r. 

(6) T(x, d:r)[d'] = if d' = d then r else x [d']. 

(7) (for i: D take E(i))l/1 = EU). 

Abbreviations: 

(8) x[d]: = r means x: = T(x, d:r). 

(9) T(x, di :ri, d2 : r 2 , ••. , dn: vn) stands for 

T(T( ... T(T(x), di :v1), di :v2) ... ), dn:rn)• 

(IO) in (9), the x may be omitted, if d 1, d 2 , ••• , dn exhaust the domain 
type. Similarly, the T may be omitted in suitable contexts. 

If the array type is ordered, the following axiom applies: 

(11) x ~ y = 'v' d: D(y[d] < x[d] ::> 3 d': D(d' < d & x[d'] < y[d'])) 

Theorem: 

x = y = 'v' d:D(x[d] ""'y[d]) 
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12.5 POWERSETS 

The axioms given below for sets apply only to finite sets of hierarchically 
ordered type. It is therefore possible to avoid the paradoxes which endanger 
axiomatisations of more powerful versions of set theory. 

The general form of a powerset definition is: 

type T = powerset T 0 , 

where T 0 is the base type. 

let a, b, be values of type T 0 • 

(I) T( ) is a T 

(2) If x is a T and a is a T 0 then 
x v T(a) is a T 

(J) The only members of Tare as specified in (1) and (2). 

(4) 1a in T( ) 

(5) a in (y v T(a)) 

(6) a "I= b => (a in (x v T(b)) = (a in x) 

(7) T( ) c x 

(8) (y v T(a)) c x = (y c x & a in x) 

(9) x = y = (x c y) & (y c x) 

(10) x v T( ) == x 

(11) xv (y v T(a)) =(xv T(a)) v y 

(12) x A T( ) = T( ) 

(13) x A T(a) = if a in x then T(a) else T( 

(14) x A (y v T(a)) = (x A y) v (x A T(a)) 

(15) T( ) - x = T( ) 

(16) T(a) - x = if a in x then T( ) else T(a) 

(17) (xv T(a)) - y = (X - y) v (T(a) - y) 

(18) size (T( )) = 0 

(19) size (x v T(a)) = if a in x then size (x) else succ (size (x)) 

The following apply if the domain type T 0 is ordered: 

(20) min (T(a)) = T(a) 

(21) x "I= T( ) =>min (x v T(a)) =if a< min (x) then a else min (x) 

Note: min (T( )) is not defined 

(22) x down 0 = x up 0 = x 
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(23) x down succ (n) = (x down n) down l 

(24) T( ) down l = T( ) 

(25) (x v T(a)) down l = (x down l v 
if a=!: T0 .min then T(pred (a)) else T( ) 

(26)-(28) up is similarly defined, with succ for pred and max for min. 

(29) b < a => range (a, b) = T( ) 

(30) a ~ b => range (a, b) = T(a) 

(31) a < b => range (a, b) = range (a, pred (b)) v T(b) 

(32) j in {i: D I B(i)} = BU) 

Abbreviations: 

(33) T(a 1 , a2 , ••• , an) stands for T(a 1) v T(a 2 ) v ... v T(an) 

(34) {a1, a2 , •• • , an} stands for T(a 1, a2 , •• • , an) 

(35) x: A y stands for x: = x A y 

(36) x: v y ,, ,, x: = x v y 

(37) a from x stands for a:= one of (x); x: - {a} 

(38) if x = {a" a2 , ••• , an} then 

for a in x do S stands for 

s:, ; s:.; ... ; s:n 
where the a1 are in natural order if the base type is ordered, and are in 
arbitrary order otherwise; and they do not contain repetitions. 

(39) x: - y stands tor x: = x - y 

Theorems: 

x = y = Va:T0(a inx = ainy) 

a in (x v y) = (a in x v a in y) 

a in (x A y) = (a in x & a in y) 

a in (x - y) = (a in x & --, a in y) 

12.6 SEQUENCES 

The general form of a sequence definition is: 

type T = sequence D; 

(1) T( ) is a T 

(2) If x is a T and d is a D - . then x T(d) is a T 

(3) The only elements of Tare as specified in (1) and (2) 

(4) (;-'T(d)).last = d 
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(5) initial (x.-T(d)) = x 
(6) x-.(/-z) = (x-.. y) z 

(7) T(d).first = d 

(8) x =!: T( ) ::> (x-..T(d)).first = x.first 

(9) final (T(d)) = T( ) 

(10) x =!: T( ) ::> final (x-.T(d)) = final (x)-.T(d) 

Note: last, initial, first, and final are not defined for T( ) 

(11) T( ) ends y 

(12) x-.T(d) ends y = y =!: T( ) &y.last = d & x ends initial (y) 

(13) x begins T( ) = x = T( ) 
(14) x begins y-.T(d) = x = y-.T(d) v x begins y 

(15) length (T( )) = 0 

(16) length (x-..T(d)) = succ(length (x)) 

For an ordered sequence type we have: 

(17)T()~y 

(18) x ~ T( ) => x = T( ) 

{19) x, y =!: T( ) => (x ~ y = x.first < y.first v (x.first = y.first 
& final (x) ~ final (y))) 

Abbreviations: 

(20) x:-..T(d) 

(21) d from x 

means x: = x -..T(d) 

means d: = x.first; x: = final (x) 
(22) d back from x means d: = x. last; x: = initial (x) 
(23) from x means x: = final (x) 
(24) back from x means x: = initial (x) 

(25) T(d1, di, .. ., dn) stands for 
(T( )-..T(d1)T(di)-. •. :-'T(dJ) 

(26) [d 1 , di, ... , dnJ stands for T(d 1 , di, ... , dn) 

(27) If x = [d1, di, ... , dJ then 

for d in x do S stands for 

S•. ""'. . s• 
di' ..l.,, .. ' ... 

for d in x take E stands for 

[EL E:2 , ••• , E:n1 
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Theorems 

x = y !!!.: (x = y = T( ) v x .first = y. first & x .final = y.final) 

2' (x = y = T( ) v x.Iast = y.last&x.initial = y.initial) 
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III. Hierarchical Program Structures 

OLE-JOHAN DAHL AND c. A. R. HOARE 

I. INTRODUCTION 

In this monograph we shall explore certain ways of program structuring and 
point out their relationship to concept modelling. 

We shall make use of the programming language SIMULA 67 with 
particular emphasis on structuring mechanisms. SIMULA 67 is based on 
ALGOL 60 and contains a slightly restricted and modified version of 
ALGOL 60 as a subset. Additional language features are motivated and 
explained informally when introduced. The student should have a good 
knowledge of ALGOL 60 and preferably be acquainted with list processing 
techniques. 

For a full exposition of the SIMULA language we refer to the "Simula 67 
Common Base Language" [2]. Some of the linguistic mechanisms introduced 
in the monograph are currently outside the "Common Base"*. 

The monograph is an extension and reworking of a series of lectures 
given by Dahl at the NA TO Summer School on Programming, Marktoberdorf 
1970. Some of the added material is based on programming examples that 
have occurred elsewhere [3, 4, 5]. 

2. PRELIMINARIES 

2.1 BASIC CONCEPTS 

Our subject matter as programmers is a special class of dynamic system, 
which we call computing processes or data processes. A programming 

•The Simula 67 language was originally designed at the Norwegian Computing Center, 
Oslo. The Common Base defines those language features which are common to all 
implementations. The Common Base is continually being maintained and revised by the 
"Simula Standards Group", each of whose members represents an organisation responsible 
for an implementation. 8 organisations are currently represented on the SSG. (Summer 
1971). 
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language provides us with basic concepts and composition rules for con­
structing and analysing computing processes. 

The following are some of the basic concepts provided by ALGOL 60. 

(l) A type is a class of values. Associated with each type there are a 
number of operations which apply to such values, e.g. arithmetic operations 
and relations for values of type integer. 

(2) A variable is a class of values ofa given type ordered in a time sequence. 
The associated operations are accessing and assigning its current value. 
Both can be understood as copying operations. 

(3) An array is a class of variables ordered in a spatial pattern. Associated 
is the operation of subscripting. 

Notice that each of the concepts includes a data structure as well as one 
or more associated operations. 

As another example consider machine level programming. The funda­
mental data structure is a bit string, which is not itself a very meaningful 
thing. However, combined with an appropriate sensing mechanism it has the 
significance of a sequence of Boolean values. In connection with a binary 
adder the bit string has the meaning of a number in some range, each bit 
being a digit in the base two number system. An output channel coupled to a 
line printer turns the bit string into a sequence of characters, and so forth. 
Thus the meaning of the data structure critically depends on the kind of 
operations associated with it. 

On the other hand, no data process is conceivable which does not involve 
some data. In short, data and operations on data seem to be so closely 
connected in our minds, that it takes elements of both kinds to make up any 
concept useful for understanding computing processes. 

2.2. HIGHER LEVEL CONCEPTS 

As the result of the large capacity of computing instruments, we have to 
deal with computing processes of such complexity that they can hardly be 
constructed and understood in terms of basic general purpose concepts. The 
limit is set by the nature of our own intellect: precise thinking is possible 
only in terms of a small number of elements at a time. 

The only efficient way to deal with complicated systems is in a hierarchical 
fashion. The dynamic system is constructed and understood in terms of 
high level concepts, which are in turn constructed and understood in terms of 
lower level concepts, and so forth. This must be reflected in the structure of 
the program which defines the dynamic system; in some way or another the 
higher level concepts will correspond to program components. 
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The construction of concepts suitable in a given situation is a creative 
process which often requires insights obtained at later stages of the system 
construction. Therefore, as programmers are painfully aware, any software 
project tends to be a complicated iterative process involving reconstruction 
and revision at each stage. 

Each concept necessarily concerns a limited aspect of the system and 
should correspond to a piece of program obtained by decomposition of the 
total program. Good decomposition means that each component may be 
programmed independently and revised with no, or reasonably few, impli­
cations for the rest of the system. Thereby the total iteration process may be 
speeded up. 

Any useful concept has some degree of generality, i.e. it is a class of 
specialised instances. In other words one tries to group phenomena occurring 
in a dynamic system into classes of phenomena and to describe each class by a 
single piece of program. 

As an obvious example consider the arithmetic operations involved in a 
matrix multiplication. They may all be classified as dynamic instances 
(executions) of the single statement 

C[i,j]: = C[i,jJ + A[i, k] x B[k,j]; 

provided that the matrix coefficients are classified as elements of two­
dimensional arrays A, B, and C, and that the variables i, j, and k arc given 
values according to a certain pattern. 

The above statement is not sufficiently well decomposed to be thought of 
as a "concept". The procedure declaration below, however, defines in a concise 
way the concept of matrix multiplication. 

It is important that a concept may be classified as a syntactic category 
(e.g. (block), (procedure)) in a general language framework. Structured 
thought in terms of given concepts implies the construction of sentences, 
where the concepts have syntactic and semantic relationships to one another. 
The procedure below is related to other program components through calling 
sequences (procedure statements). 

procedure matmult (A, B, C, m, n, p); 
array A, B, C; integer m, n, p; 

begin integer i, j, k; 

end; 

for i: = l step l until m do 
for j: = l step l until n do 
begin C[i, j]: = 0; 

fork:= I step l until p do 
C[i,j]: = C[i,j] + A[i, k] x B[k, i] 

end 
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The parameter mechanism of procedures in SIMULA deviates somewhat 
from that of ALGOL 60. The default transmission mode is by value for 
ordinary simple (type) parameters, and by "reference" for parameters of 
other kinds. This deviation is introduced for various pragmatic reasons, one 
of them being the compatibility with class declarations (cf. 3.1). Thus, in 
the above procedure the parameters i, j, and k are called by value, A, B, and 
C by reference. 

2.3. BLOCKS AND BLOCK INSTANCES 

One of the most powerful mechanisms for program structuring in ALGOL 60 
is the block and procedure concept. It has the following useful properties 
from the standpoint of concept modelling. 

(I) Duality. A block head and block tail together define an entity which 
has properties and performs actions. Furthermore the properties may include 
a data structure as well as associated operators (local procedures). 

(2) Decomposition. A block where only local quantities are referenced is a 
completely selfcontained program component, which will function as 
specified in any context. Through a procedure heading a block (procedure) 
instance inay interact with a calling sequence. Procedures which reference 
or change non-local variables represent a partial decomposition of the total 
task, which is useful for direct interaction with the program environment. 

(3) Class of instances. In ALGOL 60 a sharp distinction is made between a 
block, which is a piece of program text, and a dynamic block instance, 
which is (a component of) a computing process. An immediate and useful 
consequence is that a block may be identified with the class of its potential 
activations. (Strictly speaking a "block" in this context means either the 
outermost block or a block immediately enclosed by a dynamic block 
instance.) Through the recursion mechanism of ALGOL 60 different instances 
of the same block may co-exist in a computing process at the same time. 

(4) Language element. A block is itself a statement, which is a syntactic 
category of the language. Furthermore, through the procedure mechanism, 
reference to a block may be dissociated from its defining text. 

Referring back to our earlier discussion it appears that the ALGOL block 
mechanism has all the properties required of a concept modelling mechanism. 
On closer inspection, however, it turns out that the composition rules and 
interaction mechanisms provided place certain restrictions on the range of 
concepts to be formulated. 

In ALGOL 60, the rules of the language have been carefully designed to 
ensure that the lifetimes of block instances are nested, in the sense that those 
instances that are latest activated are the first to go out of existence. It is 
this feature that permits an ALGOL 60 implementation to take advantage of a 
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stack as a method of dynamic storage allocation and relinquishment. But it 
has the disadvantage that a program which creates a new block instance can 
never interact with it as an object which exists and has attributes, since it has 
disappeared by the time the calling program regains control. Thus the calling 
program can observe only the results of the actions of the procedures it calls. 
Consequently, the operational aspects of a block are overemphasised; and 
algorithms (for example, matrix multiplication) are the only concepts that can 
be modelled. 

In SIMULA 67, a block instance is permitted to outlive its calling statement, 
and to remain in existence for as long as the program needs to refer to it. It 
may even outlive the block instance that called it into existence. As a conse­
quence, it is no longer possible to administer storage allocation as a simple 
stack; a general garbage-collector, including a scan-mark operation, is re­
quired to detect and reclaim those areas of store (local workspace of block 
instances) which can no longer be referenced by the running program. The 
reason for accepting this extra complexity is that it permits a wider range of 
concepts to be conveniently expressed. In particular, it clarifies the relation­
ship between data and the operations which may be performed upon it, in a 
way which is awkward or impossible in ALGOL 60. 

3. OBJECT CLASSES 

A procedure which is capable of giving rise to block instances which survive 
its call will be known as a class; and the instances will be known as objects 
of that class. A class may be declared, with or without parameters, in exactly 
the same way as a procedure: 

(class declaration):: = class (class identifier) 
(formal parameter part); (specification part); 

(class body) 

(class body)::= (statement) 
Any variables or procedures declared local to the class body are called 

attributes of that class; and so are the formal parameters, whether called by 
value or called by reference. If the class body is not a block, it is regarded 
as if it were surrounded by block brackets begin . .. end. 

A call of a class generates a new object of that class. The initial values 
of those of its attributes corresponding to formal parameters are specified in 
the actual parameter part of the generator. A generator always appears as a 
function designator, returning as its value a reference to the newly generated 
object: 

(object generator)::= new (class identifier) 
(actual parameter part) 
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In order to be able to refer again to a generated object, it is necessary 
to store the reference to it in a variable. Variables used for this purpose 
should be declared as of reference type; and the declaration should also be 
qualified by stating the class of objects to which that variable will refer. 

(reference variable declaration)::= 

ref ((qualification)) (identifier list) 

(qualification)::= (class identifier) 

The notation ref ((qualification)) may also be used to declare reference 
arrays, procedures, and parameters. An analogous mechanism for "record 
handling" was first proposed by Hoare [6]. 

There is a neutral reference value none which does not refer to any object; 
and this is automatically assigned as initial value to every reference variable. 

Reference values may be assigned, and tested for equality or inequality; 
but in SIMULA these operations are given special symbols, in order to 
emphasise the fact that they operate on references to objects, and not upon 
the current values contained in those objects. 

Thus: 
denotes reference assignment 
denotes reference equality 

= / = denotes reference inequality. 

Reference values may also be passed as parameters, and they may be returned 
as the result of a function designator. A special example of such a function 
designator is of course the object generator which brings the object into 
existence, and passes back a reference to it as result. 

Example: 
class C( ... ) ; ... class body for C ... ; 

ref (C)X; 

if X ==none then X: - new C( ... ); 

The attributes of any object may be inspected or changed by the technique 
of remote identification. If X is a reference variable qualified by class C, 
and A is an attribute identifier (i.e. local quantity) of that class, then X. A 
refers to the attribute A of the object currently referenced by X. If X has 
the value none, the remote access is erroneous. If A is a variable attribute, 
X. A may appear to the left of an a1>signment, as an actual parameter, or in an 
expression. If A is a procedure attribute, X. A may appear as an actual 
parameter, or as a procedure statement or function designator, in which case 
it will be immediately followed by an actual parameter part. In short, a 
remote identifier X. A may appear in any context in which an ordinary 
identifier may appear, except for a defining occurrence in a declaration. 
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In addition to reference variables, every reference parameter, function 
or expression has a qualification associated with it. In every assignment to 
a reference variable, it is possible to check that the assignment is valid, by 
comparing the qualifications of the left hand and right hand sides. 
SIMULA 67 has been designed to ensure that this check can be carried out 
wholly at compile time, thus avoiding the inefficiency of run-time checking, 
and the inconvenience of run-time error. Furthermore all remote identifiers 
can be checked at compile time to ensure that the combination of reference 
variable and attribute identifier is valid, so that the only error that has to be 
detected at run-time is when the reference variable has the value none. 

The following sections provide examples of concepts modelled by means 
of class declarations. 

3.1. FREQUENCY HISTOGRAM 

A frequency histogram of a real random variable with respect to given 
disjoint intervals can be represented by a table of integers T 0 , Ti, .. ., Tn, 
where T1 is the number of observations falling in the ith interval. A sequence 
of increasing numbers Xi, X 2 , •• ., Xn partitions the real axis into the 
following n + I intervals: 

(-oo, Xi), (Xi, X 2 ), •• .,(Xn, oo). 

The ith relative frequency (i = 0, l, .. ., n) is equal to Tif N, where N is the 
total number of observations tabulated in the histogram. 

We wish to represent the concept of a histogram as a self-contained piece 
of program, which can be incorporated in any subsequently written program 
which requires it. In a realistic program, it will be necessary to maintain 
several histograms to tabulate different random variables; for example, it 
may be necessary to record not only random lengths, but also random weights 
and random heights, and this will require three separate histograms, existing 
simultaneously with each other and with the main program which has 
generated them and which is using them. Furthermore, the numbers of the 
intervals and the partitioning values between them may be different in each 
case. This suggests that the histogram should be declared as a class, with 
two parameters: 

class histogram (X, n); array X; integer n; 

where X is a real array of n elements specifying the boundaries of the 
partitions. The main program will use this class in the following way: 

begin ref (histogram) heights, weights, lengths; 

real array A[l:7], B[I:I2]; 

... initialise A, B . .. ; 

heights: - new histogram (A, 7); 
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weights: - new histogram (B, 12); 
lengths: - new histogram (A, 7); 

.... rest of program .... 

In the rest of the program, the three histograms may be referred to by the 
names of the three reference variables. In order to record each new obser­
vation (say h or w) in the appropriate histogram, the program will contain 
the corresponding calls on a procedure tabulate: 

weights. tabulate (w); 

heights. tabulate (h); 

The procedure "tabulate" must therefore be an attribute of the histogram 
class. Another attribute of the class must be the array T which counts the 
number of observations in each interval; and also a variable N to count the 
total number of observations recorded so far. Finally, a function frequency (i) 
is required so that the relative frequency of observations in the ith interval 
may be read out. The only action required of the class body is to initialise 
these variables. 

The declaration of the histogram class may be given: 
class histogram (X, n); array X; integer n; 

begin integer N; integer array T[O:n]; 
procedure tabulate (Y); real Y; 

begin integer i; i: = 0; 

while (if i < n then Y < X[i + l] else false) 
do i: = i + l; 

T[i]: = T[i] + l; N: = N + l 
end of tabulate; 

real procedure frequency (i); integer i; 
frequency:= T[i]/N; 

integer i; 
for i: = 0 step l until n do T[i]: = O; N: = 0 

end of histogram; 

Note. (1) In SIMULA 67, all simple parameters of a class or a procedure 
are called by value, even if the value parts are omitted. Arrays and other 
parameters are called by name. 

(2) In SIMULA 67 all variables are automatically initialised on declara­
tion to neutral values, false for Booleans, 0 for numbers, none for references. 
Thus in the examples given above the statements i: = 0, N: = 0, and the 
loop initialising T could have been omitted. 
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It seems reasonable to claim that this piece of program adequately repre­
sents the concept of a histogram, in that it expresses the close relationship 
between the data items X, n, T and N, and the operation of tabulation which 
is to be performed on them. It would be possible, of course, to write the 
operation in ALGOL 60 as a separate procedure with many parameters: 

procedure tabulate (X, n, T, N, y); 

which records observation y in the histogram Tin accordance with partitions 
defined by X, and also increments N. But this would be an artificial separation 
of the operational aspect of the histogram from the data storage aspect; and 
the failure in adequately representing the concept is evidenced by the com­
plexity of the specification of the procedure and the awkwardness of its use. 

It is worth while to explain the effect of creating a new object of class 
histogram by means of the statement 

weights: - new histogram (B, 12). 
First, a new object is created, consisting of the variables brought into 
existence by execution of the declarations for T, N, i, and the parameters X 
and n, which are initialised to Band 12 respectively. The body of the class 
declaration is now executed to initialise the other variables. On exit from the 
body, the variables are not deallocated. Rather a reference (pointer, address) 
to them is passed back and assigned to the variable "weights". It is con­
venient to think of an object as a complete textual copy of the class body 
(including the specification part), in which the parameters and local variables 
and arrays correspond to actual storage locations. Thus an object may well 
contain local procedure (and even class - ) declarations, as well as executable 
statements. 

Subsequently, on execution of the procedure call weights. tabulate (w), 
it is the tabulate procedure local to the object referenced by "weights" that 
is actually executed, and causes updating of the local attributes T and N of 
that object and no other. 

3.2. GAUSS-INTEGRATION 

A definite integral may be approximated by an "n-point Gauss formula", 
which is a weighted sum of n function values computed at certain points in 
the integration interval. 

f 
b n 

a f(x)dx ~ i~l wJ(x1) 

The weights and abscissa values are chosen such as to give an exact result for 
the integral of any polynomial of degree less than 2n. By a suitable trans­
formation we find 

w1 = (b - a)W1 and X; =a+ (b - a)X1, 



184 OLE-JOHAN DAHL AND C. A. R. HOARE 

where W1 and X 1(i = 1, 2, .. ., n) only depend on n, and not on a or b. 
The idea of Gauss-integration is expressed in the following partly informal 
class declaration. 

class Gauss (n); integer n; 

begin array W, X[l :n]; 

real procedure integral(/, a, b); 

real procedure/; real a, b; 
n 

integral:= L W[i]xf(a + (b - a)xX[iJ)x(b- a); 
i= 1 

compute W[I], ... , W[n], X[l], ... , X[n] as 

functions of n 

end of Gauss; 

ref (Gauss) GS, G7; 

GS: - new Gauss (S); G7: - new Gauss (7); 

GS.integral (F, A, B) ..... . G7.integral (F, A, B) .... . 

Comments. The variables GS and G7 refer to the concepts "S-point" and 
"7-point Gauss-integration". Each of them is a specialised instance of the 
more general concept of "n-point Gauss-integration", represented by the 
class. 

A Gauss object computes once and for all the values of its local array 
elements, after which control returns to the (object generator). The pro­
cedure "integral" is intended for repeated use from outside the object. 

The example indicates that the own-concept of ALGOL is superfluous in 
this framework. 

4. COROUTINES 

In ALGOL 60, a most powerful method of combining two pieces of program 
to accomplish some task is to declare one of them as a procedure, and to 
invoke it (possibly repeatedly) from within the other. However, in some 
cases the relationship between the two pieces of program is not fairly repre­
sented by this form of master/subordinate relationship; and it is better to 
regard them as coroutines operating in some sense at the same level. 
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A simple example of coroutine structuring is provided by a games-playing 
program, which calculates its own move and outputs it to its opponent, inputs 
the opponent's response, computes its next move, and so on until the game is 
complete. Suppose now that two different programs have been constructed to 
play the same game, and it is desired to see which of them is the stronger 
player. The complete program to play the game is very naturally structured 
from its two component players, but the structuring method is that of the 
coroutine rather than the subroutine. 

Another example of coroutine structuring is provided in a two-pass 
compiler for a programming language. The first pass normally outputs a long 
sequence of messages which are subsequently input by the second pass. 
However, if sufficient main storage is available to accommodate the program 
for both passes simultaneously, it is possible to arrange for the whole trans­
lation to be carried out apparently in a single pass, where the sequence of 
messages is transmitted piecewise from the first pass to the second pass. 
First, the second pass is executed until it reaches its first request for an input 
message. The first pass program is then executed until it produces its first 
output message. The message is then handed over to the second pass, and the 
process is repeated until the second pass is complete. In some circumstances 
it might be possible to restructure one of the passes as a subroutine to the 
other; but since the choice would be arbitrary, it is better to regard the 
two programs as coroutines. 

This case may be distinguished from the games-playing example in that 
the flow of information is in one direction only, from the first pass program 
which "produces" it to the second pass program which "consumes" it. This 
suggests that a single coroutine may profitably be regarded as a complete 
selfcontained program whose input and output instructions have been 
replaced by calls upon other coroutines to produce and consume the data. 
Each time a coroutine passes control to another coroutine for this purpose, 
it will expect to resume at the next following instruction. The instruction 
which causes transfer of control to another coroutine is known as 

resume (X) 

where X refers to the coroutine being resumed. 
In SIMULA, a coroutine is represented by an object of some class, co­

operating by means of resume instructions with objects of the same or another 
class, which are named by means of reference variables. The communication 
of information may be accomplished in variables either global to all the 
objects or local to one of them; a producing coroutine assigns values to these 
variables, and the consuming coroutine accesses them. In the case of two-way 
communication, both coroutines may update the same global variables in turn. 
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When an object is first generated, it has a subordinate, procedurelike 
relationship to the block instance which generated it. This is evidenced by the 
fact that control automatically returns to the generator upon passage through 
the end of the object. The object does not in general know the identity of its 
generating block instance; it cannot therefore use a resume instruction to 
achieve the effect of a coroutine exit. A special, parameterless "detach" 
instruction is therefore provided by which a generated object can return 
control to the generator. The generator may then resume the detached object 
at the point following its (most recently executed) detach instruction by the 
statement 

call (X) 

where X is a reference to the detached object. Now the object is again in a 
subordinate position, with respect to the caller, and has an obligation to 
return to it either by a detach instruction or by going through its own end. 

Thus a main program may establish a coroutine relationship with an object 
that it has generated, using the call/detach mechanism instead of the more 
symmetric resume/resume mechanism. In this case, the generated object 
remains subordinate to the main program, and for this reason is sometimes 
known as a semicoroutine. But a semicoroutine may also be a full coroutine 
with respect to a group of other generated objects, with which it communi­
cates by means of resume statements. In this case, if any of the group issues 
a detach, control returns to the master program which originally called a 
particular member of the group. Thus a coroutine issuing a resume statement 
imposes on the resumed coroutine its own responsibility, eventually to pass 
control back to the original caller by means of a detach. 

Let X and Y be objects, generated by a "master program" M. Assume that 
M issues a call (X), thereby invoking an "active phase" of X, terminated by a 
detach operation in X; and then issues a call (Y), and so forth. In this way 
M may act as a "supervisor" sequencing a pattern of active phases of X, Y, 
and other objects. Each object is a "slave", which responds with an active 
phase each time it is called for, whereas M has the responsibility to define the 
large scale pattern of the entire computation. 
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Alternatively the decision making may be "decentralised", allowing an object 
itself to determine its dynamic successor by a resume operation. 

The operation resume ( Y), executed by X, combines an exit out of X (by 
detach) and a subsequent call {Y), thereby bypassing M. Obligation to 
return to M is transferred to Y. 

The history of a typical coroutine object may be summarised as follows: 

(I) Upon generation, an object starts performing the operations of its 
class body, and is said to be operating and atta<'hed to (the block instance 
containing) the object generator which calls it into existence. 

(2) The object issues a detach statement which returns control to the 
point at which the object was generated. The object is then said to be detached, 
but not yet terminated. The detach statement leaves a mark in the body of 
the object specifying where its operations will be continued. This mark is 
positioned at the end of the detach statement most recently executed by that 
object. 

(3) Control returns to the object on execution of either a call statement 
or a resume statement specifying that object by means of its reference 
parameter. It is then reattached to the calling block instance if called, or 
to the original caller if resumed. The object may then temporarily relinquish 
control again, either by a detach or by a resume, in which case it becomes 
detached again. 

(4) Alternatively, it may relinquish control finally by passing through 
its end, which has the same effect as a detach. But in this case it is said 
to be terminated, and it may not be reactivated either by a call or a resume. 
However, it remains in existence as an item of data, which may be referenced 
by remote identification of its attributes, including procedure and function 
attributes, as in the case of the histogram. 

Note. The detach operation represents a coroutine exit out of an object, 
and is only available textually within objects, i.e. textually within class bodies. 
If issued in a subblock or in a procedure body, a detach instruction still 
represents an exit out of the (smallest) textually enclosing object. The same 
is true for the resume instruction (which includes a coroutine exit). The call 
instruction is, however, available at any point in a program. 
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4.1. TEXT TRANSFORMATION 

As an example of the cooperation of coroutines we take a problem posed 
by Conway [7]. A text is to be read from cards and listed on a line printer. 
The cards each contain 80 characters, but the line printer prints 125 
characters on each line. It is intended to pack as many characters as possible 
on each output line, marking the transition from one card to the next only by 
insertion of an extra space. In the text, any consecutive pair of asterisks 
is to be replaced by "j". The end of the text is marked by a special character 
known as "end". 

We assume the existence of a coroutine "incard", which on each resump­
tion will fill the array C[l : 80) with characters read from the next card in the 
card hopper, and pass the card through to the stacker. Also, we are given a 
coroutine "lineout", which on each resumption will print on the next line of 
paper the characters from the array L[l :125), and then throw the line. 

The task is carried out by three coroutines, which will be known by 
reference as : 

ref disassembler, squasher, assembler; 

The disas~embler inputs a card (through C) and outputs individual characters 
(through cl) to the squasher, after inserting a space between cards. The 
squasher performs the transformation on double asterisks, and outputs 
individual characters through c2 to the assembler. The assembler groups the 
characters into lines and outputs them; it also detects the "end" character 
and takes appropriate action. 

The required class declarations are: 

class pass I ; 

begin detach; 

while true do 

begin integer i; resume (incard); 

for i: = I step I until 80 do 

begin cl:= C[i]; resume (squasher) end; 

cl:= blank; resume (squasher) 

end infinite loop; 

end pass I; 

class pass 2; 

begin detach; 

while true do 

begin if cl = "*" then 



HIERARCHICAL PROGRAM STRUCTURES 

begin resume (disassembler); 

if cl = "*" then c2: = "j" 

else begin c2: = "*";resume (assembler); 

c2: =cl 

end; 

end 

else c2: = cl; 

resume (assembler); resume (disassembler) 

end infinite loop; 

end pass 2; 

class pass 3 ; 

begin detach ; 

while true do 

begin integer i; 

for i: = 1 step I until 125 do 

begin L[i]: = c2; 

if c2 = "end" then 

begin for i: = i + 1 step 1 until 125 do 

L[i] : = blank; 

resume (lineout); 

189 

detach; comment back to main program; 

end 

else resume (squasher) 

end of this line; 

resume (lineout) 

end infinite loop 

end pass 3; 

The main program generates one instance of each of the passes. Each pass 
immediately detaches itself from the main program. The system of coroutines 
is initiated by calling the disassembler. On detection of the end of the task, 
the assembler issues a detach instruction. Since the assembler obtained control 
(indirectly) by resume instructions from the disassembler, its detach has the 
same effect as it would have had if issued by the disassembler, and takes 
control back to the main program, which then immediately terminates. 
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The main program is: 

1>egin disassembler: - new pass I ; 

squasher: - new pass 2; 

assembler: - new pass 3; 

call (disassembler); 

end 

The relationships between the five coroutines and the main program may 
be represented pictorially: 

The horizontal arrows represent resume/resume relations. Their direction 
corresponds to the flow of information; and they are annotated by the name 
of the variable used to hold the communicated information. 

In this example, it is intended that each class should only ever have one 
object in it; and therefore the full class/generation/reference mechanism is 
unnecessarily elaborate. The elaboration is inconvenient in that separate 
names have to be invented for the class and its unique object (e.g. pass 1 and 
disassembler). Furthermore, in the implementation it should be possible to 
take advantage of this special case to save both space and time. But SIMULA 
67 provides no means of achieving this. 

4.2. PERMUTATION GENERATOR 

We wish to define a class "permuter" representing the concept of permuta­
tions. An object of this class should be capable of generating all permutations 
of the integers between I and n, where n is a parameter of the class. One of 
the attributes of the class will be an integer array p[l :n], which is to be 
initialised to the value (1, 2, ... , n) (representing the identity permutation) 
when an object of the class is generated. Every subsequent call of the object 
causes the array p to take a new permutation as value. When all permutations 
are exhausted, an attribute 

Boolean more; 

(initially true) will be assigned the value false, and the object will terminate. 
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A typical structure for a program which wishes to inspect all permutations 
of N numbers will be: 

ref (permuter)P; 

P: - new permuter (N); 

while P. more do 

begin .. . inspect P.p ... ; call (P) end; 

The structure of the permuter class will be a semicoroutine, which issues a 
detach instruction after each updating of p: 

class permuter {n); integer n; 

begin integer array p[l :n]; 

Boolean more; 

integer q; 

for q: =I step l until n do p[q]: = q; 

more:= true; 

... generate all permutations of p, 

end 

issuing a "detach" after each of them ... ; 

more: = false 

It remains to find an algorithm to carry out all the permutations of 
p[I], p[2], ... , p[n], and restore them to their original state. This algorithm 
may be recursively structured. Let us assume that we know how to generate 
all permutations of the numbers 

p[I], p[2], ... , p[k - l], 

and finally return these to their original state. This will be accomplished by 
a procedure call 

permute (k - I). 

Now all that need be done is to use this procedure to permute every com­
bination of k - l numbers from the original k numbers. Thus there must be 
k calls of permute (k - I), and on each call, exactly one of the p[i] for 
1 ~ i ~ k must be excluded from the operation. A good way of excluding it 
is to exchange its value with that of p[k], which remains untouched by permute 
(k - 1). In order to ensure that each of the k values is excluded exactly once, 
we may take advantage of the assumption that the procedure returns the 
given sequence unchanged. In that case p[k] will be assigned each value once 
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if we first swap p[I] and p[k], then p[2] and p[k], ... , and then p[k - I] and 
p[k]. Thus we are led to the following kernel: 

integer i; 

permute (k - 1); 

for i: = 1 step 1 until k - I do 

begin swap (p[i], p[k]); permute (k - l) end; 

On the assumption that permute (k - 1) leaves p unchanged, this kernel has 
the net effect of rotating the elements p[l], p[2], ... , p[k] one place cyclically 
to the right. This can be seen from the example: 

original state: 1 2 3 4 5 

after swap (p[l], p[5]): 5 2 3 4 1 

after swap (p[2], p[5]): 5 1 3 4 2 

after swap (p[3], p[5]): 5 1 2 4 3 

after swap (p[4], p[5]): 5 1 2 3 4 

Since the overall effect of the operation must be to leave the array p as it was 
before, the right rotation must be followed by a compensatory left rotation. 

q: = p[l]; 

for i: = 1 step 1 until k - 1 do p[i]: = p[i +I]; 

p[k]: = q 

Finally it is necessary to determine an appropriate action for the case where 
k = I. Recall that the purpose of the procedure is to 

"generate all permutations of k objects, issuing a detach command after 
each of them". 
Since the only permutation of one number is that number itself, all that is 
necessary is to issue a single detach instruction. 

The permute procedure must be written as an attribute of the permuter 
class, so that the detach which it issues relates to the relevant object. The 
whole class may now be declared: 

class permuter (n); integer n; 

begin integer array p[l :n]; integer q; Boolean more; 

procedure permute (k); integer k; 

if k = 1 then detach else 

begin integer i; permute (k - l); 

for i: = 1 step 1 until k - l do 

begin q: = p[i]; p[i]: = p[k]; 

p[k]: = q; permute (k -1) end; 
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q: = p[l]; 

for i: = l step l until k - l do p[i]: = p[i + l]; 
p[k]: = q 

end of permute; 

for q: = l step l until n do p[q]: = q; 

more:= true; permute (n); more:= false 

end of permuter; 
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Note. The detach issued by a permute procedure instance is not an exit 
out of the procedure instance, and does not return control to the call of the 
procedure. Rather, it is an intermediate exit out of the object as a whole 
(including the entire recursion process) and passes control back to the main 
program which generated or called the object. A subsequent call on the object 
will thus resume the recursion process exactly where it left off. 

The decision (assumption) that the procedure permute should leave the 
sequence unchanged is really quite arbitrary. The reader is invited to convince 
himself of this fact by writing a procedure based on the same swapping 
strategy, which returns with the numbers in the reverse order. 

5. LIST STRUCTURES 

The facilities introduced above for declaration of classes and reference to 
objects may be used to represent recursive data structures such as stacks and 
trees, and even cyclic structures such as two-way lists. This is accomplished 
by declaring attributes of a class to be references to objects of the very same 
class. 

5.1. BINARY SEARCH TREES 

A binary tree may be defined as 

either (i) none 

or (ii) a node, 

where a node consists of 

(a) a left component which is a tree 

(b) a right component which is a tree 

(c) a val which is an integer. 

The val component may be regarded as being associated with each node of 
the tree. A node whose left and right subtrees are both none is a terminal 
element of the tree (leaf). 
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A binary search tree is defined as a binary tree which is either none, or 
else it is a node which has a •al lying between all vals of its left subtree and 
all vals of its right subtree, which are themselves both binary search trees. 
The purpose of a binary search tree is to provide for any integer a swift access 
to the node which has val equal to that integer; and also to provide swift 
means of inserting a new node with any given val. Thus a class representing 
the concept of a binary search tree will have the form: 

class tree (val); integer val; 

begin ref (tree) left, right; 

procedure insert (x); integer x; 

ref (tree) procedure find (x); integer x; 

end of tree; 

The bodies of the two procedure components are quite simple recursive 
procedures, matching the recursive structure of the tree: 

insert: if x < val then 

begin if left = = none then left: - new tree (x) 

else left. insert (x) 
end 

else if right = -= none then right: - new tree (x) 

else right.insert (x); 

find: if x = val then this tree 

else if x < val then 

(if left = = none then none 

else left.find (x)) 

else if right = = none then none 

else right.find (x); 

In the- body of "find" there occurs the expression 

this tree 

which is intended to yield as value a reference to the current node, that is, the 
one which owns this particular instance of the find attribute. For example, if 
the find procedure of X is called by the function designator 

X.find (x) 

and X. val = x, then the result of the function is the reference value of X itself. 
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Another operation which is meaningful for a binary search tree is that of 
scanning all its values in ascending order. This operation may be implemented 
by a "producing" semicoroutine, which on each call assigns to its attribute 

integer current; 

the next higher value of a node on the tree. On exhaustion of the tree, the 
attribute current will take the maximum integer value. 

The scanning can be accomplished by a recursive procedure attribute, 
local to the relevant instance of the coroutine. 

class scanner (X); ref (tree) X; 

begin integer current; 

procedure traverse (X); ref (tree) X; 

if X =/=none then 

begin traverse (X.left); 

current: = X. val; 

detach; 

traverse (X. right) 

end traverse; 

traverse (X); 

current: = integer max 

end scanner; 

As an example of the use of these concepts, we consider the task of merging 
values from several binary search trees, held in an array: 

ref (tree) array forest [l: NJ; 

and outputting me values in ascending order. In order to do this we will 
require N scanners, one operating on each tree of the forest: 

ref (scanner) array trav [l: NJ; 

for i: = 1 step 1 until N do trav [iJ: - new scanner (forest [i]); 

Each scanner has now detached with its own minimal val assigned to its own 
current. All that is now necessary is to locate the minimum of the N currents 
and output it. The corresponding scanner should then be reinvoked to produce 
its next higher val. When the minimum takes the maximum integer value, 
the merge is complete. 
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integer min, j, i; 

min:= O; 

while min < integer max do 

begin min:= trav [1] .current; j: = I; 

for i: = 2 step I until N do 

if min > trav [i]. current then 

begin min: = trav [i). current; 

j: = i 

end search for smallest current; 

if min < integer max then 

begin output (min); 

call (trav UD 
end 

end of merge process; 

5.2. SYNTAX ANALYSER 

As a more substantial example of list processing, we take a general table­
driven context-free syntax analyser. We shall use a top-down back-tracking 
algorithm, which will detect all possible analyses (more than one if the 
grammar is ambiguous), on condition that the grammar does not contain 
left recursion. The symbol string is represented by a "tape" with the following 
operators. 

procedure move right; .... ; 

procedure move left; ..... ; 

integer procedure symbol; ..... ; 

The "move" operations move a reading head one symbol to the right or left. 
The "symbol" procedure reads the symbol under the reading head, and 
converts it to an integer according to a one-one mapping. 

A given function "meta" determines whether a given integer represents 
a meta-symbol. 

Boolean procedure meta (S); integer S; ... ; 

For simplicity the grammar is represented by a three-dimensional array G 

integer array G[ ... , ...•... ] ; 

where G[i, j, k] contains the kth symbol of the jth alternative right hand side 
for the meta-symbol represented by i. There is an 

integer array jm[ ... ] ; 



HIERARCHICAL PROGRAM STRUCTURES 197 

where jm[i] is the number of right hand sides for a given meta-symbol. 
Each right hand side is followed by a special symbol ".l" outside the 
vocabulary of the grammar. If one of alternative definitions of the syntactic 
class is (empty), it will be represented by this symbol alone. 

For example, consider a simple context-free grammar for a subclass of 
arithmetic expressions: 

(I) (exp)::= (term) I (term)(addop)(exp) 

(2) (term)::= (primary) I (primary)(mulop)(term) 

(3) (primary)::= (constant)l(variable)l((exp)) 

(4) (addop)::= +l-

(5) (mulop):: =XI/ 

(6) (constant)::= 1121314151617181910 

(7) (variable)::= IIJIKILIMIN 
There are seven meta-symbols which may be given integer values l to 7. 
The 22 terminal symbols may be given values 8 to 29 inclusive, and the 
".l" terminating symbol may be given value 0. 

The array G representing this grammar may now be declared: 

integer array G[I: 7, l: 10, l: 4] 

The first plane of this array will take the value 

Note also that: 

G[I, . , . ] = 2, 0, 0, 0 first alternative 

2, 4, I, 0 second alternative 

0, 0, 0, 0 the other 8 rows 

are irrelevant. 

o,o,o,o 

jm[l] = 2, jm[6] = IO 

meta (I) = meta (7) = true 

meta (8) = meta (29) = false 

The desired result obtained by generating an instance of the syntax analyser, 
with the first symbol of text under the reading head, will be a complete 
syntax tree representing the text; the character after the last character of the 
analysed text will be under the reading head, and a variable "good" will be 
set to true. Subsequent calls of the same instance will produce trees repre­
senting alternative analyses. When no further analyses are possible, the input 
text will be stepped back to the beginning, and the variable good will be set 
false. This will happen on first generation, if the input text contains a syntax 
error. 
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Note that the analyser will discover all successful analyses of any initial 
segment of the text. 

The syntax tree output on each call of the analyser will contain a node for 
each phrase identified in the text. Each phrase has the following attributes: 

integer i: indicating the syntactic class of the phrase 

integer j: indicating which alternative of its class it belongs to 

ref (phrase) sub:refers to the last subphrase of the given phrase 

ref (phrase) left: refers to the phrase immediately preceding this phrase 
on the same level of analysis. The left of the first 
subphrase of any phrase is none. 

Thus the expression 
MxN+ 7 

should give rise to a tree of the form shown in Fig. 1. 

The syntax analyser will be recursively structured, as a class of phrase 
objects, each of which reproduces on a single phrase the intended behaviour 
of the analyser as a whole. 

A phrase object accepts a meta-symbol i and a left neighbour as parameter, 
and is responsible for producing all possible syntax trees of the given syntax 
class which match a portion of text to the right of (and including) the current 
symbol. The input text will on each occasion be stepped on to the first 
symbol which does not match the stated analysis. When all possible analyses 
are complete, the tape is stepped back to the position it was before entry to 
the given phrase, a global variable good is set to false, and the phrase 
terminates. 

We are now in a position to outline the general structure of the phrase 
class: 

class phrase (i, left); integer i; ref (phrase) left; 

begin integer j; ref (phrase) sub; 

for j: = 1 step l until jm[i] do 

... match remainder of text in all possible 

ways to alternative j of class i, 

issuing a detach after each successful match ... ; 

good: = false 

end of phrase; 

Assume that an object has successfully matched the first k - I(k > 0) 
symbols of a chosen alternative U) for the given meta-symbol (i). We now 
formulate a piece of program for matching the kth symbol to the input in all 
possible ways. We assume that the remainder, if any, of the right hand side is 



HIERARCHICAL PROGRAM STRUCTURES 

~,~. 
e 

7 

5 

variable 
M 

!1l!!!!t 

!!2!11 

expression 

sub 
left !!!!!!!! 

' 

~ 
2 

3 
2 

~ 

7 
6 

FIGURE 1 

term 

primary 

variable 
N 

expression 

i 

~ ... 
/ 

3 

none 

' I 

/ 

primory 

constant 
7 

199 

matched to the input in all possible ways by the statement "match remainder", 
and that this statement leaves unaltered the position of the reading head and 
the part of the syntax tree so far constructed. We make the latter assumption 
also for an object which has failed to identify (another) phrase. 

1. begin integer g; g: = G[i, j, k]; 

2. if g = ".L" then begin good : = true; detach end 

3. else if g = symbol then 

4. begin move right; match remainder; move left end 

5. else if meta (g) then 

6. begin sub: - new phrase (g, sub); 
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7. 

8. 

9. 

10. 

11. 

end 

end 
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while good do 

begin match remainder; call (sub) end; 

sub: - sub.left 

Comments. 

Line l. The kth symbol of the right hand side number j is called g for brevity. 

Line 2. If g is the terminator symbol the whole right-hand side has been 
successfully matched to the input. The object reports back to its 
master. Line 2 does not alter the syntax tree or the position of the 
reading head. 

Line 4. Since we have a match the object moves the reading head to the next 
symbol. After having matched the remainder in all possible ways the 
object restores the position of the reading head. Thus, according to 
assumptions, line 4 has a null net effect. 

Line 6. Since g is a meta-symbol, a new phrase object is generated to 
identify sub-phrases of the syntax class g. It becomes the new 
rightmost sub-phrase. Its left neighbour phrase is the old rightmost 
sub-phrase. 

Line 7. We have assumed that an object when failing sets "good" to false. 

Line 8. Since "good" is true, a sub-phrase has been identified matching g. 
After having matched the remainder in all possible ways, "sub" is 
called to identify the next possible sub-phrase. Since we want to 
match g in all possible ways, line 8 is repeated until the sub-phrase 
object fails. 

Line 9. According to assumptions a phrase object which has failed, has had 
a null net effect. The total effect of lines 6-8 is thus to add an 
object •o the syntax tree. Line 9 restores the syntax tree to its 
original state. 

The comments show that the block above matches the symbol g followed by 
the remainder of the jth right-hand side of i in all possible ways and has a null 
net effect. Consequently the block itself satisfies the assumptions made for the 
"match remainder" statement. It follows that the whole matching algorithm 
may be expressed in a simple way by a recursive procedure. The whole 
computing process is described by the following class declaration. 



HIERARCHICAL PROGRAM STRUCTURFS 

class phrase (i, left); integer i; ref (phrase) left; 

begin integer j; ref (phrase) sub; 

procedure match (k); integer k; 

begin integer g; g: = G[i,j, k]; 

if g = ".l" then begin good: = true; detach end 

else if g = symbol then 

begin move right; match (k + l); move left end 

else if meta (g) then 

begin sub: - new phrase (g, sub); 

while good do 

end 

end of match; 

begjn match (k + l); call(sub)end; 

sub: - sub.left 

for j: = 1 step 1 untiljm[i] do match (l); 

good: = false 

end of phrase 

A master program could have the following structure 

ref (phrase) tree; 

tree: - new phrase (start, none); 

while good do begin found: •.••• ; call(tree)end; 
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where "start" represents the start symbol of the grammar. At the label 
"found" a sentence has been identified and the variable "tree" refers to its 
syntax tree represented as described above. For each node its associated 
meta-symbol (i), the rhs alternative number U), and the links to other nodes 
(sub, left) are available through remote identification, for example 

tree. i, tree. sub .j, tree. sub .left. left. sub. 

We must expect in general that the strings matched by different successful 
trials may be of unequal lengths, starting at the same location of the tape. 
This may be avoided by defining the language in such a way that no initial 
segment of a valid text is also valid. Alternatively, the whole text should be 
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followed by some symbol outside the alphabet, say ".L ", and the master 
program might have the following structure 

ref(phrase )parse; Boolean good ; 

parse: - new phrase (start, none); 

while good do 

begin if symbol = ".L" then inspect successful parse; 

call(parse) 

end 

It is a remarkable feature of the phrase class that the result it yields on 
each call is a tree whose nodes consist in phrase objects which have been 
activated recursively and not yet terminated. Each of these phrase objects 
plays a dual role, both as a part of the syntactic tree which is to be inspected 
by the master program, and as the set of local variabfos for the recursive 
activations of other phrase objects. It is this close association of data and 
procedure which permits the algorithm to be so simply and concisely 
formulated. 

Notice that each phrase object is the nucleus of a separate stack of recursive 
activations of its local "match" procedure. At the time when a detach is 
issued on behalf of an object, signalling a successful (sub-) parse, its stack 
has attained a terr Jorary maximum depth, one level for each symbol in the 
current right-hanil side, plus one level corresponding to the rhs terminator .L, 
which issued the detach. 

Thus the whole dynamic context of a successful parse is preserved. When an 
l)bject is called to produce an alternative parse a backtracking process takes 
place, during which the "match" stack of the object is reduced. At a level 
corresponding to a meta-symbol in the rhs the match procedure calls on the 
corresponding phrase object to produce an alternative sub-parse (line 8) and 
so on. (cf. the row of officers in Chaplin's Great Dictator). 

6. PROGRAM CoNCATENATION 

In the preceding sections we have seen how the class mechanism is capable of 
modelling certain simple concepts, by specifying data structures and defining 
operations over them. In this section, we develop a method by which more 
elaborate concepts can be constructed on the basis of simpler ones. This will 
establish potential hierarchies of concepts, with complex concepts sub­
ordinate to the more simple ones in terms of which they are defined. The 
structuring technique gives a new method of composing a program from its 
constituent parts, and is known as concatenation. 
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Concatenation is an operation defined between two classes A and B, or a 
class A and a block C, and results in formation of a new class or block. 
Concatenation consists in a merging of the attributes of both components, 
and the composition of their actions. The formal parameters of the con­
catenated object consist of the foimal parameters of the first component 
followed by formal parameters of the second component; and the same for 
specification parts, declarations and statements (if any). 

·A concatenated class B is defined by prefixing the name of a first com­
ponent A to the declaration of B: 

A class B(h 1, h 2 , ••• ); ••• specification of h's; 

begin ... attributes of B . .. ; ... actions of B . .. end 

Suppose the class A has been defined: 

class A(a 1, a2 , ••• ); ••• specification of a's ... ; 

begin ... attributes of A . .. ; ... actions of A . .. end. 

According to the concatenation rules, the effect of the prefixed declaration 
for class B is the same as if B had been declared without a prefix thus: 

class B(a 1 , a2 , ••• , h 1, h2 , ••• ); ••• specification of a's ... 

specifications of h's . .. ; 

begin ... attributes of A ... ; ... attributes of B . .. ; 

... statements of A ... ; ... statements of B . .. end; 

Note. If any local identifiers of A are the same as local identifiers of B, 
the collision of names is resolved by systematic change of B's identifiers. 
A block also may be prefixed by a class identifier: 

A begin ... declarations ... ; ... statements end, 

and the effect is similar to that described above, except that the result of the 
concatenation is a block, not a class. (If the class A has parameters, the 
prefix must include an actual parameter part I). The effect of prefixing a 
block is to make available within that block the library of procedures and 
related data (including even classes) declared within the class declaration 
for A. 

A single class may be used as prefix to several different concatenated 
classes. For example, suppose a program requires to deal with trucks, buses, 
and private cars. These are three separate classes, and each has its own 
attributes. But there are certain attributes (for example license number) 
which are common to all of them, by virtue of the fact that they are all vehicles. 
The concept of vehicle is a more general one, and could be declared as a 
separate concept; 
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class vehicle (license no); integer license no; ... ; 
This class can now be used as a prefix in the remaining class declarations. 

vehicle class truck (load); real load; ... ; 

vehicle class bus (seating); integer seating; ... ; 

vehicle class car; ... ; 

An object belonging to a prefixed class is a compound object, which has 
certain attributes and operations in addition to those defined in the prefix 
part. Thus a truck object has a license no and a load, and a bus object has a 
license no and a seating. It is reasonable to regard "truck" and "bus" and 
"car" as subclasses of the vehicle class; any object of a subclass also belongs 
to the prefix class "vehicle". 

A reference variable may be qualified as belonging to a prefix class or to a 
concatenated class. If it belongs to the prefix class it may point to objects of 
any of the subclasses, and may be used in a remote identifier to access any of 
the attributes of the prefix class but not to access any attributes of the sub­
classes. A reference qualified by a subclass may point only to objects of the 
subclass, but may be used in a remote identifier to access all its attributes. 
Thus given the reference variables: 

ref (vehicle) V; ref (bus) B; 

the following are valid remote identifiers: 

V. license no, B. license no, B. seating, 

but V. seating is not valid. 

Thus the subclass notion provides a useful flexibility of object referencing. A 
"weak" qualification permits a wide range of objects referencing, at the cost 
of inability to make remote access to attributes declared in a subclass. 

Assignment of a subclass reference to a prefix class reference variable 
(e.g. V: - B) is always valid, and can be recognised as such at compile time. 
But assignment in the other direction (e.g. B: - V) may give rise to an error 
(detected only at run time), if the object referenced does not in fact belong 
to the expected subclass (bus). 

6.1. BINARY SEARCH TREE 

Suppose it is desired to set up a binary search tree to hold information about 
stock items in an inventory. Each node of the tree should contain not only a 
val (indicating the stock number of the item) but also certain other information. 
about quantity on hand, price, reorder point, etc. The simplest way of achiev­
ing the required effect is to prefix the class "stock item" by the class tree, 
and then declare the additional attributes required, for example: 
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tree class stock item; 

begin integer qoh, price, reorder point; 

Boolean ordered; 

procedure reduce; 
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begin if qoh = reorder point & --, ordered then 

issue reorder; 

qoh: = qoh -1 

end of remove; 

end of stock item; 

6.2. TWO WAY LIST 

Taking advantage of the concatenation technique, it is possible to design 
classes which are intended solely or primarily to act as prefixes to other classes 
or to blocks. In this section we give an example of a class TWLIST, which is 
intended to be used as a prefix to a block, and to make available within that 
block the concept of two-way chained cyclic lists. Such a list consists of a 
list head, which contains two pointers, one to the first element of the chain and 
one to the last. Each link in the chain must also contain two pointers, sue 
which points to the successor in the list (or the list head if there is none), 
and pred which points to the predecessor in the list (or the list head if there is 
none). In an empty list, the two pointers from the list head point to the list 
head itself. 

Each pointer in the system must be capable of pointing either to another 
link in the list or to a list head. Therefore these pointers must be qualified by a 
class which embraces both links and heads, i.e. a class "linkage" of which 
they are both subclasses. Since both list heads and links require two reference 
attributes, sue and pred can be declared as attributes of the prefix class 
linkage. 

The single concept of a two-way list is represented by the triple of classes 
linkage, link, and list head. In order to indicate that they are to be considered 
in conjunction as a single concept, the declarations for all three classes are 
grouped together in a single class declaration TWLIST, which is to be used as a 
prefix to any block which requires to use the concept. Within such a block 
the "link" class is intended to be used as a prefix to other classes specifying 
the nature of the items; for example, if stock items were to be held in a two­
way list instead of in a binary search tree, the declaration would be: 

link class stock; ... as before ... ; 
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It is now necessary to decide on a basic set of operations on lists and links. 
A link I should be removable from its list by a procedure statement 

/.out; 

and it should be capable of being reinserted in a list just before link J by a 
procedure statement: 

I. precede (J); 

Since a link can belong to at most one list, this operation should also remove 
I from any list it happens to belong to before. Finally a link should be insert­
able as the last item of a list with head H by a procedure statement: 

/.into (H); 

For a list head H, it seems useful to define the following functions 

H.empty, 

which tests whether the list is empty, 

H.first 

which yields H's first item, if any; otherwise none, and 

H.last 

which yields H's last item, if any; otherwise none. 

The declaration of the class TWLIST can now be given: 

1. class TWLIST; 

2. begin class linkage; begin ref (linkage) sue, pred; end; 

3. linkage class link; 

4. begin procedure out; 

5. if sue = / = none then 

6. begin suc.pred: - pred; pred.suc:- sue; 

7. sue: - pred: - none 

8. end of out; 

9. procedure precede (x); ref (linkage) x; 

10. begin out; sue: - x; pred: - x.pred; 

11. sue. pred: - pred. sue: - this link 

12. end of precede; 

13. procedure into (L); ref (list) L; 

14. precede (L); 
comment sue and pred of a link object should have the 
standard initial value none indicating no list membership; 

15. end of link; 
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16. linkage class list; 

17. begin ref (link) procedure first; 

18. first: - if empty then none else sue; 

19. ref (link) procedure last; 

20. last: - if empty then none else pred; 

21. Boolean procedure empty; 

22. empty: = sue = = this list; 

23. sue: - pred: - this list 

comment sue and pred of a list head should be 
initialized to indicate an empty list; 

24. end of list; 

25. end of TWLIST; 

Let P be an arbitrary block instance prefixed by TWLIST, which, outside 
its prefix part, contains no explicit reference assignment to any variable sue 
or pred of any linkage object. Then the assertions (1) and (2) below are valid 
throughout the lifetime of P (at times when control is textually outside the 
body of TWLIST). 

(l) Any linkage object x in Pis either an object with no list membership, 
in which case x. sue = = x. pred = = none and x ¢ list, or x. sue. pred = = 
x.pred.suc = = x. 

It follows that all lists contained in P are circular. Furthermore: 

(2) Each circular list in P contains exactly one list head, which is an 
object of the class "list". 

The assertions are established by observing that each of the operations 
below preserves their validity, and that P contains no linkage object initially. 

new link (or new C, C £ linkage-list) generates a link object, which is not 
a list member (its sue and pred are automatically initialised to none). 

new list (or new C, C £ list) generates an "empty" circular list containing 
the generated list head and initially nothing else. 

In the following we assume x e link, y, z e linkage, and Le list. x +-+ y is an 
abbreviation for x. sue = = y & x = = y. pred. 

x. out If z +-+ x +-+ y the result is z +-+ y and x is not a list member. (Notice 
that (2) together with x e link implies x = / = y, z.) If x was not a list member, 
the result is to do nothing. 

x.precede (y), where x =/= y A z +-+ y. The result is x +-+ y (and z +-+ x if 
x = / = z). If x was a list member, x is first removed from that list. 
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x. into(L), where z +-+ L. The result is z +-+ x +-+ L, which implies x = = L. last. 
If x was a list member, xis first removed from that list. 

Any use of out, precede, or into not satisfying the above assumptions, is 
either textually illegal or leads immediately to a run time error and program 
termination caused by an invalid remote identifier. E.g. the operation 
x. precede (y) sets x. pred to none if x = = y or y is not a list member. 
Consequently the remote identifier pred. sue in the body of precede is invalid. 
Notice that x. into (L) is a "safer" operation, since x e link, LE list implies 
that x =/= Land L.pred =/=none. 

The assertions (l) and (2) provide a guarantee that our lists are well 
behaved, provided that no explicit assignment to any variable sue or pred 
occurs. The construction TWLIST is thus a reliable "mental platform," 
which in a certain sense cannot break down, whatever programming errors 
are made. When programming on top of TWLIST one is entitled to ignore 
the list processing details involved in manipulating the circular two-way lists. 
Each list object may be regarded as representing an ordered set of link 
objects, with the proviso that a link object may be member of at most one 
such set at a time. The last fact is reflected in the design of the procedures 
into and.precede. Explicit use of the attributes sue and pred, e.g. for scanning 
through a list, may, however, require the user to be conscious of the fact 
that the "last" member has a successor and the "first" member a predecessor, 
which are both identical to the list object itself. A design alternative is to 
suppress this fact by declaring the following procedures as attributes to link. 

ref (link) procedure successor; 

inspect sue when list do successor: - none 

otherwise successor: - sue; 

ref (link) procedure predecessor; 

inspect pred when list do predecessor: - none 

otherwise predecessor: - pred ; 

Note the construction 

inspect r when C do ..• 

enables the programmer to test whether the object referenced by r belongs 
to one of its possible subclasses C. 

7. CONCEPT HIERARCHIES 

At the outset of a programming project there is a problem, more or less 
precisely defined and understood in terms of certain problem oriented con­
cepts, and a programming language, perhaps a general purpose one, providing 
some (machine oriented) basic concepts, hopefully precisely defined and com-
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pletely understood. There is a conceptual distance between the two, which 
must be bridged by our piece of program. We may picture that distance as a 
vertical one, the given programming language being the ground level. 

Our difficulty in bridging such gaps is the fact that we have to work 
sequentially on one simple part problem at a time, not always knowing in 
advance whether they are the right problems. 

In order to better overcome such difficulties we may build pyramids. 
Unlike the Egyptian ones ours are either standing on their heads (bottom-up 
construction) or hanging in the air (top-down construction). The construction 
principle involved is best called abstraction; we concentrate on features 
common to many phenomena, and we abstract away features too far remo\ied 
from the conceptual level at which we are working. Thereby we have a 
better chance of formulating concepts which are indeed useful at a later stage. 

In the bottom-up case we start at the basic language level and construct 
abstract concepts capable of capturing a variety of phenomena in some 
problem area. In the top-down case [8, 9] we formulate the solution to a given 
problem in terms of concepts, which are capable of being implemented (and 
interpreted) in many ways, and which are perhaps not yet fully understood. 
In either case system construction may consist of adding new layers of 
pyramids (above or below) until the conceptual gap has finally been bridged. 
Each such layer will correspond to a conceptual level of understanding. 

For instance, given some problem which involves queueing phenomena, 
we could take TWLIST of the preceding section as the first step of a bottom-up 
construction. Then, for the remainder of the construction we are free to think 
and express ourselves in terms of dynamic manipulation of ordered sets of 
objects. 

Layers of conceptual levels may be represented as a prefix sequence of 
class declarations. For example, it is possible to construct a series of class 
declarations, each one using the previous class as prefix 

class C1 ; •••• ; 

C1 class C2 ; •••• ; 

Cn- l class C"; .... ; 
The list C1, C2, ••. , Cn-l is known as the prefix sequence for Cn. The 
outermost prefix C 1 is built at the ground level. Every other level rests on 
the one(s) below, in that it may take advantage of all attributes of its entire 
prefix sequence. Making use of this language mechanism, bottom-up con­
struction of a program is to plan and write the classes of a prefix sequence 
one by one in the stated order. The program itself is finally written as a 
prefixed block on top of the whole sequence. 

en begin --- end 
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The top-down strategy would correspond to constructing the members of 
the prefix sequence, including the prefixed block, in the reverse order. 
(SIMULA 67 contains additional mechanisms, not considered here, for 
facilitating top-down and mixed mode construction.) 

A well-formed conceptual level (bottom-up) is a set of well-defined inter­
related concepts, which may be combined to make more elaborate concepts. 
It may serve for further construction as a mental platform, raised above 
ground towards some application area, i.e. as an "application language". A 
preconstructed application language may serve to shorten the conceptual 
gap that has to be bridged for many problems in the area. The usefulness of 
such a platform is closely related to its ruggedness, that is with the way in 
which it tolerates or even forestalls misuse. As we saw in the last section 
TWLIST supplies an exceptionally rugged mental platform; and in this 
section we shall build on it a small but useful application language, which 
may in its turn be used as a platform for the solution of realistic problems. 

7. l. DISCRETE EVENT SIMULATION 

Simulation is a method for studying the behaviour of large systems of 
interacting objects, and evaluating the effect of making changes which would 
be too expensive to make on an experimental basis in real life. The object of a 
simulation model could be a production line, a traffic system, a computer 
system (hardware and software), a social system composed of interacting 
individuals, etc. The following notions are common to most such sy&tems. 

(1) Processes taking place in parallel, giving rise to discrete events at 
irregular intervals of time. 

(2) Queueing phenomena, arising when an object has to wait for service 
from a currently busy server. 

In order to represent processes occurring in parallel, it is not necessary 
that the corresponding program components should be multiprogrammed in 
the computer; but it is necessary that the programs should be able to suspend 
themselves temporarily, and be resumed later from where they left off. Thus 
the active objects or "processes" in a simulation will be represented by 
(semi-)coroutines, operating in pseudo-parallel under control of a scheduling 
mechanism. 

For example, in a job shop simulation, an incoming order gives rise to a 
sequence of events on the shop floor, to satisfy the order. Each order may be 
regarded as a process whose activity is to proceed from one machine to the 
next, requesting and obtaining service from it. The sequence of requests is 
determined by the nature of the order. If the requested machine is free, the 
order is served immediately, and the machine goes busy for a period equal 
to the length of the service. Otherwise, the order joins a queue of orders 
waiting for the machine to become free. 
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In the implementation of the concept of simulated time, the first require­
ment is that each process have access to a variable "time" which holds 
the current time, and which is incremented on appropriate occasions by the 
time-control mechanism. Note that the updating of this variable must be 
entirely independent of the passage of computing time during the simulation, 
since actions which take a long time on a computer might take only a short 
time in the real world, and vice versa. As far as simulated time is concerned, 
the active phases of the processes must be instantaneous; "time" does not 
move until all the participating processes are passive. 

Thus in order to simulate the passing of time, a process simulating an 
active system component must relinquish control for a stated interval T of 
simulated time; and it must be reactivated again when the time variable has 
been incremented by T. This will be accomplished by the process calling the 
procedure 

hold (T). 

For example, an order which has found its required machine ready to serve it 
needs to indicate how long this service will take, by the statement 

hold (service interval); 

The order will now become inactive until all other orders which were due to 
be reactivated before time + service interval have been reactivated, and have 
relinquis)led control again. At this point, the given order will be reactivated, 
and will find that its time has been appropriately incremented. 

While a process is held, it will be necessary to record its reactivation 
time as one of its attributes. It is convenient therefore to use the time 
attribute of the process itself for this purpose. 

The method of holding for a specified interval is possible only if the 
process knows how long it has to wait before the next "event" in its life. But 
sometimes it may require to wait until the occurrence of some event in the life 
of some other process. For example, an order, on finding its required machine 
busy, must join a queue and wait until the machine is free; and an order on 
releasing a machine must activate the first other order in the queue (if not 
empty). Thus two additional procedures are required: 

wait (Q), 

and activate (X), 

where Q refers to the queue (two-way list) on which the calling process is to 
wait while it is passive, and X refers to some passive process. which is to be 
removed from its queue and allowed to proceed. 

Finally, a means must be provided of starting and stopping the simulation. 
This may be accomplished by a procedure statement 

simulate (start, finish), 
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where start refers to the process with which the simulation starts, and finish 
gives the time limit for the simulation. Any process requesting to be held 
beyond this limit may be ignored. Presumably, the start process will activate 
other processes to participate in the simulation. 

We now proceed to implement the mechanism described above. It will be 
implemented as a class MINISIM, which is intended to be used as a prefix 
to a simulation main program. In order to take advantage of the two-way list 
mechanism, the MINISIM class must be prefixed by TWLIST. This ensures 
that TWLIST is also available in any simulation program which is prefixed 
by MINISIM. 

A class of objects which are to be capable of participating in a simulation 
should be declared as a subclass of the "process" class. This will make 
available to it the necessary time control and queueing mechanisms. Each 
process must have the capability of inserting itself into a two-way list; 
therefore the process class itself must be declared as a subclass of the class of 
links. 

Processes waiting for the elapse of their holding interval are held on a 
unique two-way list known as the sequencing set (SQS). The processes are 
ordered in accordance with decreasing reactivation times. A specially created 
finish process is always the first link in SQS, and the last link is always the 
one that is currently active. Its time represents the current time of the 
system. When it goes inactive, its predecessor in the SQS wil,. (usually) 
become the last, and its local time has already been updated to the time at 
which that process was due to be reactivated. 

We are now in a position to give the general structure of MINISIM, 
omitting for the time being the procedure bodies. 

TWLIST class MINISIM 

begin ref (list) SQS; 

ref (process) procedure current; 

current: - SQS.last; 

link class process; 

begin real time ; 

procedure hold (T); real T; 

..... ' 
procedure wait (Q); ref (list) Q; 

procedure activate (X); ref (process) X; 

detach; comment a new process doesn't actually 
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do anything until it is activated 

end of process; 

procedure simulate (start, finish); 

ref (process) start; real finish; 

..... ' 
end of MINISIM. 

We shall give the bodies of the procedures in reverse order. 

simulate: begin SQS: - new list; 

new process. into (SQS); current. time: = finish; 

if start. time < finish then start. into (SQS); 

while --, SQS. empt)' do 

begin call (current); 

current. out; 

213 

comment this ensures that a terminated 

or detached process leaves the SQS; 

end 

end of simulate 

wait: begin into (Q); resume (current) end; 

The active process inserts itself into the queue, and thereby leaves the SQS. 
It also resumes the process on the SQS which is next due to be reactivated. 
Notice that the standard sequencing mechanism of the simulate procedure 
must be bypassed, since the old active process already is out of the SQS. 

activate: begin X. into (SQS); comment as its last and current member; 

X.time: =time; comment i.e. now; 

resume (current); 

end of activate. 

The calling process places X ahead of itself in SQS, but with the same time. 
Since the calling and the activated process X have the same time, it does not 
matter to the timing mechanism in what order they are placed; our choice 
implies that an active phase of Xis invoked immediately in real time. Control 
returns to the calling one at the same moment of simulated time, but after the 
completion of the active phase of X. 
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hold: 

begin ref (process) P; 

P:- pred; 

comment the holding process is necessarily active, and 

therefore also the last member of SQS. Since the 

finish process never holds, there will always be a 

second-to-last process on SQS 

if T > 0 then time:= time+ T; 

comment set local reactivation time, 

time should never decrease; 

if time ;;:i: P. time then 

begin comment this process must be moved in SQS; 

out; comment of SQS, now Pis current; 

P:- SQS.first; comment the finish process; 

if time < P. time then 

end; 
end of hold; 

begin comment reactivation time is 

within the time limit; 

while time < P. time do P: - P. sue; 

comment terminates since 

time ;;:i: current. time; 

precede (P) 

end; comment ignore a process that would 

exceed the limit; 

resume (current) 

Notice that a process object is allowed to relinquish control simply by 
saying detach or by passage through its end. In both cases control returns to 
the standard sequencing mechanism of the simulate procedure. The basic 
activation instructions call and resume, however, should not be explicitly 
applied to process objects; that would illegally bypass the timing mechanism. 

7.2. THE LEE ALGORITHM 

As a simple but unexpected example of the use of simulated time, we take 
the Lee algorithm for finding the shortest path between a city A and a city B 
connected by a network of one-way roads. The algorithm may be envisaged 
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as the propagation of a pulse from the destination city B at equal speed along 
all roads leading into it. Each time a pulse reaches a city not reached by a 
previous pulse, it records the road it has come along, and then sends pulses 
outward along all roads leading into the city. When a pulse reaches a city 
which has already been reached by another pulse, it dies. When a pulse 
reaches the city A, the task is completed. 

Cities and roads may be represented by classes. 

class city; begin ref (road) roadsin, wayout; .... end 

class road; begin real length; ref (road) nextin; 

ref (city) source, destination; ... end 

The variable wayout holds the recommended wayout from the city towards B. 
For an unvisited city, its value is none. 

The class representing a pulse takes as parameter the road along which 
it is first to pass. 

process class pulse (rd); ref (road) rd; 

begin ref (city) c; c: - rd. source; 

hold (rd.length); 

if c. wayout = / = none then 

begin c. wayout: - rd; 

if c = = A then go to done; 

comment stops the simulation by 

going to a non-local label; 

rd: - c. roadsin; 

while rd = / = none do 

begin activate (new pulse (rd)); 

rd: - rd. nextin 

end propagation of pulses 

end 

end of pulse 

The algorithm will be invoked by calling a procedure with parameters 
indicating the starting and final cities, and an upper limit L on the length of 
the path that is to be printed. It is assumed that the wayout of every city is 
initially none. The time and process concepts are made available by the 
prefix MINISIM to the procedure body. 
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procedure Lee (A, B, L); ref (city) A, B; real L; 

MINISIM begin process class pulse (rd); ref (road) rd; 

... as before ... ; 

process class starter; 

done: end of Lee; 

begin ref (road) rd; 

rd: - B.roadsin; 

while rd = / = none do 

end 

begin activate (new pulse (rd)); 

rd: = rd. nextin 

end of starter; 

simulate (new starter, L); 

After a procedure statement such as 

Lee (Oslo, Belfast, 1000); 

where ref (city) Oslo, Belfast; the required route may be printed out, provided 
that it exists. 

if Oslo. wayout = / = none then 
begin ref (city) c; procedure print. ..... ; ..... ; 

print (Oslo. wayout); c: - Oslo. wayout. destination; 

while c = / = Belfast do 

begin print (c); print (c.wayout); 

c: - c. wayout. destination 

end 

end else outtext ('no road connection within limit); 

It is assumed for the print procedure that cities and roads are objects 
belonging to a common class, by having the same prefix to the two classes. 
The prefix part of an object might contain the necessary identifying text, 
such as 'London' or 'Ml' as data. 

7.3. A JOB SHOP MODEL 

As a second application of MINISIM we shall design a model of a simple 
job shop system. The model may be used to evaluate the capacity of the shop 
in relation to a given order load. The line numbers below refer to the 
program on page 218. 
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The system consists of machine groups (lines 3-10), numbered from 1 to 
nmg (lines 1, 11), and order objects (lines 12-22). The machines of a group are 
identical and therefore need not be represented individually; however, their 
number is specified initially by the value of the attribute nm (line 3). 
Associated with the group is also a queue of orders waiting to be processed, 
which is empty initially (lines 4, 9), and procedures to request a machine 
for processing (lines 5-6) and to release it when finished (lines 7-8). 

The variable nm is used to represent the number of available machines, 
say m, as well as the number of orders, say w, waiting in the queue, as 
described by the following assertion. 

if nm > 0 then m = nm A w = 0 

else m = 0 A w = abs(nm) 

The assertion is valid for each machine group (outside the procedure bodies 
request and release). 

When a machine is requested and m = 0, the caller must enter the queue 
and wait for its turn (line 6). When a machine is released and w =F 0, one of 
the waiting processes should proceed. The first member of the queue is 
activated and thereby leaves the queue. The queueing discipline is thus first 
come first served. 

The orders are process objects, each of which generates its successor, 
(line 18) and which goes from one machine group to the next (lines 20-21) 
according to an individually defined schedule. For a given order the schedule 
has n steps, and for each step s(s = l, 2, ... , n) a machine group number 
(mg[s]) and an associated processing time (ptfs]) are given. Thus the order 
should spend the time ptfs] in being processed at machine group number 
mg[s] (line 21, hold). Notice that the request statement of line 21 will require 
some additional amount of simulated time for its completion, if the group 
mgroup [mg[s]] currently has no available machine. 

The model is driven by input data. In particular, each order object during 
its first active phase reads in its own schedule, consisting of length of 
schedule (line 18) arrival time (inreal, line 15), and the values of mg and pt 
(lines 16-17). The main program sets up machine groups of specified sizes 
(lines 24, 25) and generates the first order at time zero. (The procedures inint, 
inreal, and lastitem are procedures associated with a standard input file, 
which is part of the program environment). 

It is assumed that the input file starts with the following data: 

nmg, timelimit, nm 1, nm 2 , •• • , nmnmg• 

defining the structure of the job shop; and this is followed by an occurrence 
of 
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for each order to be generated. Each value T defines the arrival time of the 
order. It is assumed that the T values are in a non-decreasing sequence. 

The JOB SHOP goes as follows. 

1. begin integer nmg; nmg: = inint; 

2. MINISIM begin 

3. class machine group (nm); integer nm; 

4. begin ref (list) Q; 

5. procedure request; 

6. begin nm:= nm - 1; if nm < 0 then current. wait (Q) end; 

7. procedure release ; 

8. begin nm: = nm + I ; if nm ~ 0 then current. activate (Q. first) end; 

9. Q: - new list 

10. end of machine group; 

11. ref(machine group) array mgroup [l:nmg]; 

12. process class order (n); integer n; 

13. begin integer array mg[l :n]; array pt[l :n]; integers; 

14. ref (machine group) M; 

15. hold (inreal-time); comment arrival time is now; 

16. for s: = 1 step l until n do 

17. begin mg[s]: = inint; pt[s]: = inreal end; 

18. if 1lastitem then activate (new order (inint)): 

19. comment generate next order, if any; 

20. for s: = l step 1 until n do 

21. begin M:- mgroup [mg[s]]; M.request; hold (ptfs]); 
M. release end 

22. end of order; 

23. integer k; real lim; lim: = inreal; 

24. fork:= 1step1 until nmg do mgroup [k]: - new machine group (inint); 

25. simulate (new order (inint), Jim); 

26. comment initial time is zero by default; 

27. end of program; 



HIERARCIIlCAL PROGRAM STRUCTURFS 219 

The model above should be augmented by mechanisms for observing its 
performance. We may for instance very easily include a "reporter" process, 
which will operate in "parallel" with the model components and give output 
of relevant state information at regular simulated time intervals. 

process class reporter (dt); real dt; 

while true do 

begin hold (dt); 

give output, e.g. of 

mgroup [k].nm v (k = 1, 2, ... ,nmg) 

end of reporter; 

The first order could generate a reporter object and set it going at system 
time zero. 

activate (new reporter (inreal)) 

Output will then be given at system time t, 2t, 3t, .•• , where t is the actual 
parameter value. 

As a further example we may wish to accumulate for each machine group a 
histogram of waiting times of orders at the group. Then define the following 
subclass of machine group, redefining the operation "request". 

machine group class Machine Group; 

begin ref {histogram) H; 

procedure request; 

begin real T; 

T: = time; nm: = nm - 1; 

if nm < 0 then wait (Q); 

H. tabulate (time - T) 

end of new request; 

H: - new histogram (X, N) 

end of Machine Group; 

It is assumed that "histogram" is the class defined in section 3.1, and 
that array X[l : N] and integer N are nonlocal quantities. Now replace the 
lower case initials by upper case in the class identifier of lines 11, 14, and 24. 
Then all machine groups will be objects extended as above, and since the 
qualification of the reference variable M is strengthened, the "request" of 
line 21 refers to the new procedure. Thus a histogram of waiting times will be 
accumulated for each group. 

Finally it should be mentioned that the "machine group" concept might 
have considerable utility as a general purpose synchronisation mechanism for 
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pseudo-parallel processes. It might be useful to phrase it in more abstract 
terminology and possibly include it as part of a "third floor" platform for 
"resource oriented" simulation. In fact well known special purpose languages 
[IO, I I] have elaborations ofthis concept ("facility", "store") as fundamental 
mechanisms. The analogy to the semaphore mechanism (12] for the synchroni­
sation of truly parallel processes should be noted. The procedures request 
and release correspond to the P and V operations, respectively. 

REFERENCES 

(1) Naur, P. (ed.) (1962/63). Revised Report on the Algorithmic Language. 
ALGOL 60. Comp. J., 5, pp. 349-367. 

(2) Dahl, 0.-J., Myhrhaug, B., Nygaard, K. (1968). The Simular 67 Common 
Base Language. Norwegian Computing Centre, Forskningsveien IB, Oslo 3. 

(3) Wang, A., Dahl, 0.-J. (1971). Coroutine Sequencing in a Block Structured 
Environment. BIT 11, 4, pp. 425-449. 

(4) Dahl, 0.-J., Nygaard (1966). Simula-an Algol-Based Simulation Language. 
Comm. A.C.M. 9, 9, pp. 671-678. 

(5) Dahl, 0.-J. (1968). Discrete Event Simulation Languages. "Programming 
Languages" (ed. Genuys, F.). pp. 349-395. Academic Press, London. 

(6) Hoare, C. A. R. (1968). Record Handling. "Programming Languages" (ed. 
Genuys, F.). pp. 291-347. Academic Press, London. 

(7) Conway, M. E. (1963). Design ofa Separable Transition-Diagram Compiler. 
Comm. A.C.M. 6, 7, pp. 396--408. 

(8) Naur, P. (1969). Programming by Actions Clusters. BIT 9, 3, pp. 250-258. 

(9) Dijkstra, E. W. (1972). Notes on Structured Programming. "Structured 
Programming". pp. 1-82. Academic Press, London. 

(10) Knuth, D. E., McNeley, J. L. (1964). SOL-A Symbolic Language for 
General-Purpose Systems Simulation. IEEE Trans. E.C. 

(11) IBM, General Purpose Systems Simulator. 

(12) Dijkstra, E. W. (1968). Co-operating Sequential Processes. "Programming 
Languages". pp. 43-112. Academic Press, London. 


	Structured Programming (Cover)
	Copyright 1972 Academic Press Inc.
	Preface (C. A. R. Hoare)
	Contents
	I. Notes on Structured Programming
	1. To My Reader
	2. On Our Inability To Do Much
	3. On The Reliability Of Mechanisms
	4. On Our Mental Aids
	4.1 On Enumeration
	4.2 On Mathematical Induction
	4.3 On Abstraction

	5. An Example Of A Correctness Of Proof
	6. On The Validity Of Proofs Versus The Validity Of Implementations
	7. On Understanding Programs
	8. On Comparing Programs
	9. A First Example Of Step-Wise Program Composition
	10. On Program Families
	11. On Trading Storage Space For Computation Speed
	12. On A Program Model
	13. A Second Example Of Step-Wise Program Composition
	14. On What We Have Achieved
	15. On Grouping & Sequencing
	16. Design Considertations In More Detail
	17. The Problem Of The Eight Queens

	II. Notes on Data Structuring
	1. Introduction
	1.1 Numbers & Numerals
	1.2 Abstraction & Computer Programming
	1.3 Abstraction In High-Level Programming Languages
	1.4 Notations
	1.5 Summary

	2. The Concept Of Type
	2.1 Data Type Definitions
	2.2 Data Manipulation
	2.3 Representations

	3. Unstructured Data Types
	3.1 Manipulation
	3.2 Representation
	3.3 Example

	4. The Cartesian Product
	4.1 Manipulation
	4.2 Representation

	5. The Discriminated Union
	5.1 Manipulation
	5.2 Representation
	5.3 Example

	6. The Array
	6.1 Manipulation
	6.2 Representation

	7. The Powerset
	7.1 Manipulation
	7.2 Representation
	7.3 Example

	8. The Sequence
	8.1 Manipulation
	8.2 Representation
	8.2.1 Contiguous Representation
	8.2.2 Chained Representation
	8.2.3 Blocked Representation
	8.2.4 Backing Store Representation


	9. Recursive Data Structures
	9.1 Representation
	9.2 Example

	10. Sparse Data Structures
	10.1 Representation
	10.1.1 Sequential Representation
	10.1.2 Tabular Representation
	10.1.3 Indexed Representation
	10.1.4 Locally Dense Representation
	10.1.5 Grid Representation

	11. Example: Examination Timetables
	11.1 The Abstract Program
	11.2 Data Representation

	12. Axiomatisation
	12.1 Enumerations & Subranges
	12.2 Cartesian Products
	12.3 Discriminated Unions
	12.4 Arrays
	12.5 Powersets
	12.6 Sequences

	References

	III. Hierarchical Program Structures
	1. Introduction
	2. Preliminaries
	2.1 Basic Concepts
	2.2 Higher Level Concepts
	2.3 Blocks & Block Instances

	3. Object Classes
	3.1 Frequency Histogram
	3.2 Gauss-Integration

	4. Coroutines
	4.1 Text Transformation
	4.2 Permutation Generator

	5. List Structure
	5.1 Binary Search Trees
	5.2 Syntax Analyser

	6. Program Concatenation
	6.1 Binary Search Tree
	6.2 Two Way List

	7. Concept Hierarchies
	7.1 Discrete Event Simulation
	7.2 The Lee Algorithm
	7.3 A Job Shop Model

	References


