
APIC Studies in Data Processing No. 8

0.-J. Dahl. E. W . Dijkstra and C. A. R. Hoare

Academic Press
London New York San Francisco
A Subsidiary of Harcourt Brace Jovanovich, Publishers

A.P.I.C. Studies in Data Processing
No. 8

STRUCTURED
PROGRAMMING

0.-J. DAHL
Universitet i Oslo,

Matematisk Institut,
Blindern, Oslo, Norway

E. W. DIJKSTRA
Department of Mathematics,

Technological University,
Eindhoven, The Netherlands

C. A. R. HOARE
Department of Computer Science,
The Queen's University of Belfast,

Belfast, Northern Ireland

1972
ACADEMIC PRESS

LONDON AND NEW YORK

ACADEMIC PRESS INC (LONDON) LTD.
24/28 Oval Road,

London NWl

United States Edition published by
ACADEMIC PRESS INC.

111 Fifth Avenue
New York, New York 10003

Copyright © I 972 by
ACADEMIC PRESS INC. (LONDON) LTD.

Second printing 1973
Third printing I 973

Fourth printing 1973
Fifth printing 1974
Sixth printing 1974

Seventh printing 1975
Eighth printing 1 978
Ninth printing 1981
Tenth printing 1982

All Rights Reserved

No part of this book may be reproduced in any form by photostat, microfilm, or any other
means, without written permission from the publishers

Library of Congress Catalog Card Number 72-84452
ISBN Casebound edition 0-12-200550-3
ISBN Paperback edition 0-12-200556-2

Printed in Great Britain by
Whitstable Litho Ltd,. Whitstable, Kent

PREFACE

In recent years there has been an increasing interest in the art of computer
programming, the conceptual tools available for the design of programs,
and the prevention of programming oversights and error. The initial out­
standing contribution to our understanding of this subject was made by
E.W. Dijkstra, whose Notes on Structured Programming form the first and
major section of this book. They clearly expound the reflections of a brilliant
programmer on the methods which he has hitherto unconsciously applied;
there can be no programmer of the present day who could not increase his
skills by a study and conscious application of these principles.

In the second monograph I have tried to describe how similar principles
can be applied in the design of data structures. I have suggested that in
analysing a problem and groping towards a solution, a programmer should
take advantage of abstract concepts such as sets, sequences, and mappings;
and judiciously postpone decisions on representation until he is constructing
the more detailed code of the program. The monograph also describes a
range of useful ideas for data representation, and suggests the criteria
relevant for their selection.

The third monograph provides a synthesis of the previous two, and
expounds the close theoretical and practical connections between the design
of data and the design of programs. It introduces useful additional methods
for program and data structuring which may be unfamiliar to many pro­
grammers. The examples show that structured programming principles
can be equally applied in "bottom-up" as in "top-down" program design.
The original inspiration, insight, and all the examples were contributed by
0.-J. Dahl; I have only assembled the material, and added some additional
explanations where I found it difficult to understand.

June 1972 C.A. R. HOARE

v

CONTENTS

Page

Preface v

I. Notes on Structured Programming. EDSGER w. DUKSTRA 1

1. To My Reader . 1
2. On Our Inability To Do Much 1
3. On The Reliability of Mechanisms 3
4. On Our Mental Aids 6
5. An Example of a Correctness Proof 12
6. On the Validity of Proofs Versus the Validity of Implement-

ations . 14
7. On Understanding Programs . 16
8. On Comparing Programs . 23
9. A First Example of Step-wise Program Composition 26

10. On Program Families . 39
11. On Trading Storage Space for Computation Speed . 42
12. On a Program Model . 44
13. A Second Example of Step-wise Program Composition 50
14. On What We Have Achieved . 59
15. On Grouping and Sequencing . 63
16. Design Considerations in More Detail 67
17. The Problem of the Eight Queens . 72

II. Notes on Data Structuring. c. A. R. HOARE 83

1. Introduction . 83
2. The Concept of Type 91
3. Unstructured Data Types 96
4. The Cartesian Product . 103
5. The Discriminated Union 109
6. The Array 115
7. The Powerset 122
8. The Sequence 130
9. Recursive Data Structures 142

10. Sparse Data Structures . 148
11. Example: Examination Timetables 155

VII

VDI

12. Axiomatisation
References

CONTENTS

Page
166
174

III. Hierarchical Program Structures. OLE-JOHAN DAHL AND c. A. R. HOARE 175

1. Introduction .
2. Preliminaries .
3. Object Classes
4. Coroutines
S. List Structures
6. Program Concatenation.
7. Concept Hierarchies

References

175
175
179
184
193
202
208
220

I. Notes on Structured Programming

EDSGER w. DIJKSTRA

1. To MY READER

These notes have the status of "Letters written to myself": I wrote them down
because, without doing so, I found myself repeating the same arguments
over and over again. When reading what I had written, I was not always too
satisfied.

For one thing, I felt that they suffered from a marked verbosity. Yet I do
not try to condense them (now), firstly because that would introduce another
delay and I would like to "think on", secondly because earlier experiences
have made me afraid of being misunderstood: many a programmer tends to
see his (sometimes rather specific) difficulties as the core of the subject and
as a result there are widely divergent opinions as to what programming is
really about.

I hope that, despite its defects, you will enjoy at least parts of it. If these
notes prove to be a source of inspiration or to give you a new appreciation
of the programmer's trade, some of my goals will have been reached.

Prior to their publication in book form, the "Notes on Struccured Pro­
gramming" have been distributed privately. The interest then shown in
them, for which I would like to express my gratitude here, has been one of
the main incentives to supplement them with some additional material and
to make them available to a wider public. In particular I would like to thank
Bob Floyd, Ralph London and Mike Woodger for their encouraging
comments and Peter Naur for the criticism he expressed. Finally I would
like to express my gratitude to Mrs. E. L. Dijkstra-Tucker for her kind
assistance in my struggles with the English language.

2. ON OUR INABILITY To Do MUCH

I am faced with a basic problem of presentation. What I am really concerned
about is the composition of large programs, the text of which may be, say,
of the same size as the whole text of this chapter. Also I have to include

I

2 E. Vil. DUKSTRA

examples to illustrate the various techniques. For practical reasons, the
demonstration programs must be small, many times smaller than the "life­
size programs" I have in mind. My basic problem is that precisely this
difference in scale is one of the major sources of our difficulties in pro­
gramming!

It would be very nice if I could illustrate the various techniques with
small demonstration programs and could conclude with " ... and when faced
with a program a thousand times as large, you compose it in the same way."
This common educational device, however, would be self-defeating as one of
my central themes will be that any two things that differ in some respect by a
factor of already a hundred or more, are utterly incomparable.

History has shown that this truth is very hard to believe. Apparently we are
too much trained to disregard differences in scale, to treat them as "gradual
differences that are not essential". We tell ourselves that what we can do once,
we can also do twice and by induction we fool ourselves into believing that we
can do it as many times as needed, but this is just not true! A factor of a
thousand is already far beyond our powers of imagination!

Let me give you two examples to rub this in. A one-year old child will
crawl on all fours with a speed of, say, one mile per hour. But a speed of a
thousand miles per hour is that of a supersonic jet. Considered as objects
with moving ability the child and the jet are incomparable, for whatever one
can do the other cannot and vice versa. Also: one can close one's eyes and
imagine how it feels to be standing in an open place, a prairie or a sea shore,
while far away a big, reinless horse is approaching at a gallop, one can "see"
it approaching and passing. To do the same with a phalanx of a thousand of
these big beasts is mentally impossible: your heart would miss a number of
beats by pure panic, if you could!

To complicate matters still further, problems of size do not only cau~! me
problems of presentation, but they lie at the heart of the subject: widespread
underestimation of the specific difficulties of size seems one of the major
underlying causes of the current software failure. To all this I can see only
one answer, viz. to treat problems of size as explicitly as possible. Hence the
title of this section.

To start with, we have the "size" of the computation, i.e. the amount of
information and the number of operations involved in it. It is e!.sential that
this size is large, for if it were really small, it would be easier not to use the
computer at all and to do it by hand. The automatic computer owes its right
to exist, its usefulness, precisely to its ability to perform large computations
where we humans cannot. We want the computer to do what we could never
do ourselves and the power of present-day machinery is such that even small
computations are by their very size already far beyond the powers of our
unaided imagination.

NOTES ON STRUCTURED PROGRAMMING 3

Yet we must organise the computations in such a way that our limited
powers are sufficient to guarantee that the computation will establish the
desired effect. This organising includes the composition of the program and
here we are faced with the next problem of size, viz. the length of the program
text, and we should give this problem also explicit recognition. We should
remain aware of the fact that the extent to which we can read or write a text
is very much dependent on its size. In my country the entries in the telephone
directory are grouped by town or village and within each such group the
subscribers are listed by name in alphabetical order. I myself live in a small
village and given a telephone number I have only to scan a few columns to
find out to whom the telephone number belongs, but to do the same in a ,J~uge
city would be a major data processing task!

It is in the same mood that I should like to draw the reader's attention to
the fact that "clarity" has pronounced quantitative aspects, a fact many
mathematicians, curiously enough, seem to be unaware of. A theorem stating
the validity of a conclusion when ten pages full of conditions are satisfied is
hardly a convenient tool, as all conditions have to be verified whenever the
theorem is appealed to. In Euclidean geometry, Pythagoras' Theorem holds
for any three points A, B and C such that through A and C a straight line
can be drawn orthogonal to a straight line through B and C. How many
mathematicians appreciate that the theorem remains applicable when some or
all of the points A, Band C coincide? Yet this seems largely responsiblcr for
the convenience with which Pythagoras' Theorem can be used.

Summarizing: as a slow-witted human being I have a very small head and I
had better learn to live with it and to respect my limitations and give them full
credit, rather than to try to ignore them, for the latter vain effort will be
punished by failure.

3. ON THE RELIABILITY OF MECHANISMS

Being a programmer by trade, programs are what I am talking about and the
true subject of this section really is the reliability of programs. That, never­
theless, I have mentioned "mechanisms" in its title is because I regard
programs as specific instances of mechanisms, and that I wanted to express,
at least once, my strong feeling that many of my considerations concCt'ning
software are, mutatis mutandis, just as relevant for hardware design.

Present-day computers are amazing pieces of equipment, but most amazing
of all are the uncertain grounds on account of which we attach any validity to
their output. It starts already with our belief that the hardware functions
properly.

Let us restrict, for a moment, our attention to the hardware and let us
wonder to what extent one can convince oneself of its being properly con-

4 E. W. DUKSTRA

structed. Some years ago a machine was installed on the premises of my
University; in its documentation it was stated that it contained, among many
other things, circuitry for the fixed-point multiplication of two 27-bit integers.
A legitimate question seems to be: "Is this multiplier correct, is it performing
according to the specifications?".

The naive answer to this is: "Well, the number of different multiplications
this multiplier is claimed to perform correctly is finite, viz. 254, so let us
try them all." But, reasonable as this answer may seem, it is not, for although
a single multiplication took only some tens of microseconds, the total time
needed for this finite set of multiplications would add up to more than 10,000
years! We must conclude that exhaustive testing, even of a single component
such as a multiplier, is entirely out of the question. (Testing a complete
computer on the same basis would imply the established correct processing
of all possible programs!)

A first consequence of the 10,000 years is that during its life-time the
multiplier will be asked to perform only a negligible fraction of the vast
number of all possible multiplications it could do: practically none of them!
Funnily enough, we still require that it should do any multiplication correctly
wQen ordered to do so. The reason underlying this fantastic quality require­
ment is that we do not know in advance, which are the negligibly few
multiplications it will be asked to perform. In our reasoning about our
programs we talk about "the product" and have abstracted from the specific
values of the factors: we do not know them, we do not wish to know them,
it is not our business to know them, it is our business not to know them!
Our wish to think in terms of the concept "the product", abstracted from the
specific instances occurring in a computation is granted, but the price paid
for this is precisely the reliability requirement that any multiplication of the
vast set will be performed correctly. So much for the justification of our
desire for a correct multiplier.

But how is the correctness established in a convincing manner? As long as
the multiplier is considered as a black box, the only thing we can do is "testing
by sampling'', i.e. offering to the multiplier a feasible amount of factor pairs
and checking the result. But in view of the 10,000 years, it is clear that we can
only test a negligible fraction of the possible multiplications. Whole classes
of in some sense "critical" multiplications may remain untested and in view
of the reliability justly desired, our quality control is still most unsatisfactory.
Therefore it is not done that way.

The straightforward conclusion is the following: a convincing demon­
stration of correctness being impossible as long as the mechanism is regarded
as a black box, our only hope lies in not regarding the mechanism as a black
box. I shall call this "taking the structure of the mechanism into account".

NOTES ON STRUCTURED PROGRAMMING 5

From now onwards the type of mechanisms we are going to deal with are
programs. (In many respects, programs are mechanisms much easier to deal
with than circuitry, which is really an analogue device and subject to wear and
tear.) And also with programs it is fairly hopeless to establish the correctness
beyond even the mildest doubt by testing, without taking their structure into
account. In other words, we remark that the extent to which the program
correctness can be established is not purely a function of the program's
external specifications and behaviour but depends critically upon its internal
structure.

Recalling that our true concern is with really large programs, we observe as
an aside that the size itself requires a high confidence level for the individual
program components. If the chance of correctness of an individual component
equals p, the chance of correctness of a whole program, composed of N such
components, is something like

As N will be very large, p should be very, very close to 1 if we desire P to
differ significantly from zero!

When we now take the position that it is not only the programmer's task to
produce a correct program but also to demonstrate its correctness in a con­
vincing manner, then the above remarks have a profound influence on the
programmer's activity: the object he has to produce must be usefully
structured.

The remaining part of this monograph will mainly be an exploration of
what program structure can be used to good advantage. In what follows it
will become apparent that program correctness is not my only concern,
program adaptability or manageability will be another. This stress on program
manageability is my deliberate choice, a choice that, therefore, I should like
to justify.

While in the past the growth in power of the generally available equipment
has mitigated the urgency of the efficiency requirements, this very same growth
has created its new difficulties. Once one has a powerful machine at one's
disposal one tries to use it and the size of the problems one tackles adjusts
itself to the scope of the equipment: no one thinks about programming an
algorithm that would take twenty years to execute. With processing power
increased by a factor of a thousand over the last ten to fifteen years, Man has
become considerably more ambitious in selecting problems that now should
be "technically feasible". Size, complexity and sophistication of programs
one should like to make have exploded and over the past years it has become
patently clear that on the whole our programming ability has not kept pace
with these exploding demands made on it.

6 E.W. DIJKSTRA

The power of available equipment will continue to grow: we can expect
manufacturers to develop still faster machines and even without that develop­
ment we shall witness that the type of machine that is presently considered as
exceptionally fast will become more and more common. The things we should
like to do with these machines will grow in proportion and it is on this
extrapolation that I have formed my picture of the programmer's task.

My conclusion is that it is becoming most urgent to stop to consider
programming primarily as the minimization of a cost/performance ratio. We
should recognise that already now programming is much more an intellectual
challenge: the art of programming is the art of organising complexity, of
mastering multitude and avoiding its bastard chaos as effectively as possible.

My refusal to regard efficiency considerations as the programmer's prime
concern is not meant to imply that I disregard them. On the contrary,
efficiency considerations are recognised as one of the main incentives to
modifying a logically correct program. My point, however, is that we can
only afford to optimise (whatever that may be) provided that the program
remains sufficiently manageable.

Let me end this section with a final aside on the significance of computers.
Computers are extremely flexible and powerful tools and many feel that their
application is changing the face of the earth. I would ventme the opinion that
as long as we regard them primarily as tools, we might grossly underestimate
their significance. Their influence as tools might tum out to be but a ripple
on the surface of our culture, whereas I expect them to have a much more
profound influence in their capacity of intellectual challenge!

Corollary of the first part of this section:
Program testing can be used to show the presence of bugs, but never to

show their absence!

4. ON OuR MENTAL Ams

In the previous section we have stated that the programmer's duty is to rr.ake
his product "usefully structured" and we mentioned the program structure in
connection with a convincing demonstration of the correctness of the
program.

But how do we convince? And how do we convince ourselves? What are
the typical patterns of thought enabling ourselves to understand? It is to a
broad survey of such questions that the current section is devoted. It is written
with my sincerest apologies to the professional psychologist, because it will
be amateurishly superficial. Yet I hope (and trust) that it will be sufficient to
give us a yardstick by which to measure the usefulness of a proposed
structuring.

NOTES ON STRUCTURED PROGRAMMING 7

Among the mental aids available to understand a program (or a proof of its
correctness) there are three that I should like to mention explicitly:

(1) Enumeration

(2) Mathematical induction

(3) Abstraction.

4.1. ON ENUMERATION

I regard as an appeal to enumeration the effort to verify a property of the
computations that can be evoked by an enumerated set of statements per­
formed in sequence, including conditional clauses distinguishing between two
or more cases. Let me give a simple example of what I call "enumerative
reasoning".

It is asked to establish that the successive execution of the following two
statements

"dd: = dd/2;

if dd ~ r do r: = r - dd"

operating on the variables "r" and "dd" leaves the relations

O~r<dd (1)

invariant. One just "follows" the little piece of program assuming that (1) is
satisfied to start with. After the execution of the first statement, which halves
the value of dd, but leaves r unchanged, the relations

0 ~ r < 2*dd (2)

will hold. Now we distinguish two mutually exclusive cases.

(1) dd ~ r. Togeth~r with (2) this leads to the relations

dd ~ r < 2*dd; (3)

In this case the statement following do will be executed, ordering a decrease
of r by dd, so that from (3) it follows that eventually

0 ~ r < dd,

i.e. (l) will be satisfied.

(2) non dd ~ r (i.e. dd > r). In this case the statement following do will be
skipped and therefore also r has its final value. In this case "dd > r" together
with (2), which is valid after the execution of the first statement leads
immediately to

O~r<dd

so that also in the second case (l) will be satisfied.

Thus we have completed our proof of the invariance of relations (1), we
have also completed our example of enumerative reasoning, conditional
clauses included.

8 E. W. DIJKSTRA

4.2. -ON MATHEMATICAL INDUCTION

I have mentioned mathematical induction explicitly because it is the only
pattern of reasoning that I am aware of that eventually enables us to cope
with loops (such as can be expressed by repetition clauses) and recursive
procedures. I should like to give an example.

Let us consider the sequence of values

given by

for i = 0

for i > 0

d1 = D

d, =f(d1-1)

(1)

(2a)

(2b)

where Dis a given value and/ a given (computable) function. It is asked to
make the value of the variable "d" equal to the first value dk in the sequence
that satisfies a given (computable) condition "prop'. It is given that such a
value exists for finite k. A more formal definition of the requirement is to
establish the relation

d=~ w
where k is _given by the (truth of the) expressions

prop (dt)

and non prop (d1) for all i satisfying 0 ~ i < k

We now consider the following program part:

"d:=D;

while non prop (d) do d: = f(d)"

(4)

(5).

(6)

in which the first line represents the initialisation and t~ second one the loop,
controlled by the (hopefully self-explanatory) repetition clause while ... do.
(In terms of the conditional clause if ... do, used in our previous example, a
more formal definition of the semantics of the repetition clause is by stating
that

"while B do S"

is semantically equivalent with

"if B do

begin S; while B do S end"

expressing that "non B" is the necessary and sufficient condition for the
repetition to terminate.)

Calling in the construction "while B do S" the statement S "the repeated
statement" we shall prove that in program (6):

after the nth execution of the repeated statement will hold (for n ~ 0)

d=~ Uaj

NOTES ON STRUCTURED PROGRAMMING

and non prop (d1) for all i satisfying 0 ~ i < n.

9

(7b)

The above statement holds for n = 0 (by enumerative reasoning); we have
to prove (by enumerative reasoning) that when it holds for n = N(N ~ 0),
it will also hold for n = N + I.

After the Nth execution of the repeated statement relations (7a) and (7b)
are satisfied for n = N. For the N + lst execution to take place, the necessary
and sufficient condition is the truth of

non prop (d)

which, thanks to (7a) for n = N (i.e. d = dN) means

non prop (dN)

leading to condition (7b) being satisfied for n = N + 1. Furthermore,
d = dN and (2b) leads to

f(d) = dN+ 1

so that the net effect of the N + 1st execution of the repeated statement

"d: = f(d)"

established the relation

d = dN+l
i.e. relation (7a) for N = N + I and thus the induction step (7) has been
proved.

Now we shall show that the repetition terminates after the kth execution
of the repeated statement. The nth execution cannot take place for n > k
for (on account of 7b) this would imply

non prop (dt)

thereby violating (4). When thl;l repetition terminates after the nth execution
of the repeated statement, the necessary and sufficient condition for termina­
tion, viz.

non (non prop (d))

becomes, thanks to (7a)

prop (dn). (8)

This excludes termination for n < k, as this would violate (5). As a result the
repetition will terminate with n = k, so that (3) follows from (7a), (4) follows
from (8) and (5) follows from (7b). Which terminates our proof.

Before turning our attention away from this example illustrating the use of
mathematical induction as a pattern of reasoning, I should like to add some
remarks, because I have the uneasy feeling that by now some of my readers
(in particular experienced and competent programmers) will be terribly
irritated, viz. those readers for whom program (6) is so obviously correct
that they wonder what all the fuss is about: "Why his pompous restatement

10 E. W. DUKSTRA

of the problem, as in (3), (4) and (5), because anyone knows what is meant
by the first value in the sequence, satisfying a condition? Certainly he does
not expect us, who have work to do, to supply such lengthy proofs, with all
the mathematical dressing, whenever we use such a simple loop as that?"
Etc.

To tell the honest truth: the pomp and length of the above proof infuriate
me as well! But at present I cannot do much better if I really try to prove the
correctness of this program. But it sometimes fills me with the same kind of
anger as years ago the crazy proofs of the first simple theorems in plane
geometry did, proving things of the same degree of "obviousness" as Euclid's
axioms themselves.

Of course I would not dare to suggest (at least at present!) that it is the
programmer's duty to supply such a proof whenever he writes a simple loop
in his program. If so, he could never write a program of any size at all! It
would be as impractical as reducing each proof in plane geometry explicitly
and in extenso to Euclid's axioms. (Cf. Section "On our inability to do
much.")

My moral is threefold. Firstly, when a programmer considers a construc­
tion like (6) as obviously correct, he can do so because he is familiar with the
construction. I prefer to regard his behaviour as an unconscious appeal to a
theorem he knows, although perhaps he has never bothered to formulate it;
and once in his life he has convinced himself of its truth, although he has
probably forgotten in which way he did it and although the way was
(probably) unfit for print. But we could call our assertions about program
(6), say, "The Linear Search Theorem" and knowing such a name it is much
easier (and more natural} to appeal to it consciously.

Secondly, to the best of llly knowledge, there is no set of theorems of the
type illustrated above, whose usefulness has been generally accepted. But we
should not be amazed about that, for the absence of such a set of theorems is a
direct consequence of the fact that the type of object-i.e. programs-has not
settled down. The kind of object the programmer is dealing with, viz.
programs, is much less well-established than the kind of object that is dealt
with in plane geometry. In the meantime the intuitively competent programmer
is probably the one who confines himself, whenever acceptable, to program
structures with which he is very familiar, while becoming very alert and
careful whenever he constructs sornething unusual (for him). For an estab­
lished style of programming, however, it might be a useful activity to look
for a body of theorems pertinent to such programs.

Thirdly, the length of the proof we needed in our last example is a warning
that should not be ignored. There is of course the possibility that a better
mathematician will do a much shorter and more elegant job than I have done.
Personally I am inclined to conclude from this length that programming is

NOTES ON STRUCTURED PROGRAMMING 11

more difficult than is commonly assumed: let us be honestly humble and
interpret the length of the proof as an urgent advice to restrict ourselves to
simple structures whenever possible and to avoid in all intellectual modesty
"clever constructions" like the plague.

4.3. ON ABSTRACTION

At this stage I find it hard to be very explicit about the role of abstraction,
partly because it permeates the whole subject. Consider an algorithm and all
possible computations it can evoke: starting from the computations the
algorithm is what remains when one abstracts from the specific values
manipulated this time. The concept of "a variable" represents an abstraction
from its current value. It has been remarked to me (to my great regret I
cannot remember by whom and so I am unable to give credit where it seems
due) that once a person has understood the way in which variables are used in
programming, he has understood the quintessence of programming. We can
find a confirmation for this remark when we return to our use of mathematical
induction with regard to the repetition: on the one hand it is by abstraction
that the concepts are introduced in terms of which the induction step can be
formulated; on the other hand it is the repetition that really calls for the
concept of "a variable". (Without repetition one can restrict oneself to
"quantities" the value of which has to be defined as most once but never has
to be redefined as in the case of a variable.)

There is also an abstraction involved in naming an operation and using it
on account of "what it does" while completely disregarding "how it works".
(In the same way one should state that a programming manual describes an
abstract machine: the specific piece of hardware delivered by the manu­
facturer is nothing but a-usually imperfect !-mechanical model of this
abstract machine.) There is a strong analogy between using a named operation
in a program regardless of "how it works" and using a theorem regardless
of how it has been proved. Even if its proof is highly intricate, it may be a
very convenient theorem to use!

Here, again, I refer to our inability to do much. Enumerative reasoning is
all right as far as it goes, but as we are rather slow-witted it does not go very
far. Enumerative reasoning is only an adequate mental tool under the severe
boundary condition that we use it only very moderately. We should appreciate
abstraction as our main mental technique to reduce the demands made upon
enumerative reasoning.

(Here Mike Woodger, National Physical Laboratory, Teddington, England,
made the following remark, which I insert in gratitude: "There is a parallel
analogy between the unanalysed terms in which an axiom or theorem is
expressed and the unanalysed operands upon which a named operation is
expected to act.")

12 E.W. DUKSTRA

5. AN EXAMPLE OF A CORRECTNFSS PROOF

Let us consider the following program section, where the integer constants
a and d satisfy the relations

a;;:,. 0 and d > 0.

"integer r, dd;

r: = a; dd: = d;
while dd ~ r do dd: = 2*dd;

while dd =F d do

begin dd: = dd/2;

if dd ~ r do r: = r - dd

end".
To apply the Linear Search Theorem (see Section "On our mental aids",

subsection "On mathematical induction") we consider the sequence of values
given by

for i = 0

for i > 0

from which

dd, = d

dd, = 2*dd, - 1

ddn = d*in (1)

can be derived by normal mathematical techniques, which also tell us that
(because d > 0) for finite r

dd.,. > r

will hold for some finite k, thus ensuring that the first repetition terminates
with

dd = d*2""

Solving the relation

d, = 2*d1-1

for d1 _ 1 gives

d1-1 = d,/2

and the Linear Search Theorem then tells us, that the second repetition will
also terminate. (As a matter of fact the second repeated statement will be
executed exactly the same number of times as the first one.)

At the termination of the first repetition,

dd = ddk

and therefore,

O~r<dd (2)

holds. As shown earlier (Section "On our mental aids.", subsection "On
enumeration") the repeated statement of the second clause leaves this relation

NOTES ON STRUCTURED PROGRAMMING 13

invariant. After termination (on account of "while dd =F d do") we can
conclude

dd= d

which together with (2) gives

O~r<d

Furthermore we prove that after the initialisation

dd =i 0 mod (d)

(3)

(4)
holds; this follows, for insbnce, from the fact that the possible values of dd
are (see (I))

d*2 1 for 0 ~ i ~ k.

Our next step is to verify, that after the initial assignment tor the relation

a = r mod (d) (5)
holds.

(1) It holds after the initial assignments.
(2) The repeated statement of the first clause ("dd: = 2*dd") maintains

the invariance of (5) and therefore the whole first repetition maintains the
validity of (5).

(3) The second repeated statement consists of two statements. The first
("dd: = dd/2") leaves (5) invariant, the second one also leaves (5) invariant for
either it leaves r untouched or it decreases r by the current value of dd, an
operation which on account of (4) also maintains the validity of (5). Therefore
the whole second repeated statement leaves (5) invariant and therefore the
whole repetition leaves (5) invariant. Combining (3) and (5), the final value
therefore satisfies

0 ~ r < d and a = r mod (d)
i.e. r is the smallest non-negative remainder of the divic:ion of a by d.

Remark l. The program
"integer r, dd, q;

r:= a; dd:= d; q:= O;
while dd ~ r do dd: = 2 * dd;

while dd =F d do
begin dd: = dd/2; q: = 2 * q;

if dd ~ t do begin r: = r - dd; q: = q +I end
end

assigns to q the value of the corresponding quotient. The proof can be
established by observing the invariance of the relation

a= q * dd + r.
(I owe this example to my colleague N. G. de Bruijn.)

14 E. W. DIJKSTRA

Remark 2. In the subsection "On mathematical induction." we have proved
the Linear Search Theorem. In the previous proof we have used another
theorem about repetitions (a theorem that, obviously, can only be proved by
mathematical induction, but the proof is so simple that we leave it as an
exercise to the reader), viz. that if prior to entry of a repetition a certain
relation P holds, whose truth is not destroyed by a single execution of the
repeated statement, then relation P will still hold after termination of the
repetition. This is a very useful theorem, often allowing us to bypass an
explicit appeal to mathematical induction. (We can state the theorem a little
more sharply; in the repetition

"while B do S"
one has to show that S is such that the truth of

Pand B
prior to the execution of S implies the truth of

p

after its execution.)
Remark 3. As an exercise for the reader (for which acknowledgement is

due to James King, CMU, Pittsburgh, USA), prove that with integer A, B,
x, y and z and

A> 0 and B ~ 0
after the execution of the program section

"x: =A; y: = B; z: = 1;
while y =F 0 do

begin if odd (y) do begin y: = y - I; z: = z * x end;

y: = y/2; x: = x * x
end"

finally z = A8 will hold.

The proof has to show that (in spite of "y: = y/2") all variables keep
integer values; the method shows the invariance of

x > 0 and y ~ 0 and A 8 = z * x'

6. ON THE VALIDITY OF PROOFS VERSUS THE VALIDITY OF
IMPLEMENTATIONS

In the previous section I have assumed "perfect arithmetic" and in my
experience the validity of such proofs often gets questioned by people who
argue that in practice one never has perfect arithmetic at ones disposal:
admissible integer values usually have an absolute upper bound, real numbers
are only represented to a finite accuracy etc. So what is the validity of such
proofs?

NOTES ON STRUCTURED PROGRAMMING 15

The answel"' to this question seems to be the following. If one proves the
correctness of a program assuming an idealised, perfect world, one should
not be amazed if something goes wrong when this ideal program gets executed
by an "imperfect" implementation. Obviously! Therefore, if we wish to prove
program correctness in a more realistic world, the thing to do is to acknow­
ledge right at the start that all operations appealed to in the program (in
particular all arithmetic operations) need not be perfect, provided we state­
rather axiomatically-the properties they have to satisfy for the proper
execution of the program, i.e. the properties on which the correctness proof
relies. (In the example of the previous section this requirement is simply
exact integer arithmetic in the range [O, 2a].)

When writing a program operating on real numbers with rounded opera­
tions, one must be aware of the assumptions one makes, such as

b > 0 implies a + b ;;i:: a

a*b=b*a

-(a* b) = (-a)* b

O*x = 0

O+x=x

1 * x = x etc. etc.

Very often the validity of such relations is essential to the logic of the
program. For the sake of compatibility, the programmer would be wise to be
as undemanding as possible, whereas a good implementation should satisfy
as many reasonable requirements as possible.

This is the place to confess one of my blunders. In implementing ALGOL 60
we decided that "x = y" would deliver the value true not only in the case of
exact equality, but also when the two values differed only in the least signifi­
cant digit represented, because otherwise it was so very improbable that the
value true would ever be computed. We were thinking of converging iterations
that could oscillate within rounding accuracy. While we had Leen generous
(with the best of intentions!) in regarding real numbers as equal, it quickly
turned out that the chosen operation was so weak as to be hardly of any use
at all. What it boiled down to was that the established truth of a = b and
b = c did not allow the programmer to conclude the truth of a = c. The
decision was quickly changed. It is because of that experience that I know
that the programmer can only use his tool by virtue of (a number of) its
properties; conversely, the programmer must be able to state which properties
he requires. (Usually programmers don't do so because, for lack of tradition
as to what properties can be taken for granted, this would require more
explicitness than is otherwise desirable. The proliferation of machines with

16 E.W. DUKSTRA

lousy floating-point hardware-together with the misapprehension that the
automatic computer is primarily the tool of the numerical analyst-has done
much harm to the profession!)

7. ON UNDERSTANDING PROGRAMS

In my life I have seen many programming courses that were essentially like
the usual kind of driving lessons, in which one is taught how to handle a car
instead of how to use a car to reach one's destination.

My point is that a program is never a goal in itself; the purpose of a
program is to evoke computations and the purpose of the computations is to
establish a desired effect. Although the program is the final product made by
the programmer, the possible computations evoked by it-the "making" of
which is left to the machine!-are the true subject matter of his trade. For
instance, whenever a programmer states that his program is correct, he really
makes an assertion about the computations it may evoke.

The fact that the last stage of the total activity, viz. the transition from
the (static) program text to the (dynamic) computation, is essentially left to
the machine is an added complication. In a sense the making of a program is
therefore more difficult than the making of a mathematical theory: both
program and theory are structured, timeless objects. But while the mathe­
matical theory makes sense as it stands, the program only makes sense via its
execution.

In the remaining part of this section I shall restrict myself to programs
written for a sequential machine, and I shall explore some of the consequences
of our duty to use our understanding of a program to make assertions about
the ensuing computations. It is my (unproven) claim that the ease and
reliability with which we can do this depends critically upon the simplicity of
the relation between the two, in particular upon the nature of sequencing
control. In vague terms we may state the desirability that the structure of
the program text reflects the structure of the computation. Or, in other terms,
"What can we do to shorten the conceptual gap between the static program
text (spread out in "text space") and the corresponding computations
(evolving in time)?"

It is the purpose of the computation to establish a certain desired effect.
When it starts at a discrete moment t 0 it will be completed at a later discrete
moment t 1 and we assume that its effect can be described by comparing "the
state at t 0 " with "the state at t 1". If no intermediate states are taken into
consideration the effect is regarded as being established by a primitive action.

When we do take a number of intermediate states into consideration this
means that we have parsed the happening in time. We regard it as a sequential
computation, i.e. the time-succession of a number of subactions and we have

NOTES ON STRUCTURED PROGRAMMING 17

to convince ourselves that the cumulative effect of this time-succession of
subactions indeed equals the desired net effect of the total computation.

The simplest case is a parsing, a decomposition, into a fixed number of
subactions that can be enumerated. In flowchart form this can be represented
as follows.

r---
1
I
I
I
I
I
I

---,
I
I
I
I
I

lJ __ iJJ
51; 52; ;Sn

The validity of this decomposition has to be established by enumerative
reasoning. In this case, shortening of the conceptual gap between program
and computation can be achieved by requiring that a linear piece of program
text contains names or descriptions of the subactions in the order in which
they have to take place. In our earlier example (invariance of 0 ~ r < dd)

"dd: = dd/2;

if dd ~ r do r: = r - dd"

this condition is satisfied. The primary decomposition of the computation is
into a time-succession of two actions; in the program text we recognise this
structure

"halve dd;

reduce r modulo dd".

We are considering all initial states satisfying 0 ~ r < dd and in all
computations then considered, the given parsing into two subactions is
applicable. So far, so good.

The program, however, is written under the assumption that "reduce r
modulo dd" is not a primitive action, while "decrease r by dd" is. Viewing all
possible happenings during "reduce r modulo dd" it then becomes relevant
to distinguish that in some cases "decrease r by dd" takes pl~, while in the
other cases r remains unchanged. By writing

"if dd ~ r do decrease r by dd"

18 E.W. DIJKSTRA

we have represented that at the given level of detail the action "reduce r
modulo dd" can take one of two mutually exclusive forms and we have also
given the criterion on account of which the choice between them is made. If
we regard "if dd ~ r do" as a conditional clause attached to "decrease r by
dd" it is natural that the conditional clause is placed in front of the conditioned
statement. (In this sense the alternative clause

"if condition then statement I else statement 2"

is "over-ordered" with respect to "statement I" and "statement 2": they are
just two alternatives that cannot be expressed simultaneously on a linear
medium.)

The alternative clause has been generalised by C. A. R. Hoare whose
"case-of" construction provides a choice between more than two possibilities.
In flowchart form they can be represented as follows.

I
I

r-----
1
I
I
I
I
I
I
I

51

L.------

i!? ~ 51

51

----,
I
I
I
I
I
I
I

I

I
I
I
I
I

51

L------

52
I
I
I ______ ...J

if?~ 51~52

- - - - - - - - - - - - - -.,
I
I

I I
I I
I " ,,,,
I I
'- _.J

~ i £!(51; 52; ; Sn)

NOTES ON STRUCTURED PROGRAMMING 19

These flowcharts share the property that they have a single entry at the top
and a single exit at the bottom: as indicated by the dotted block they can
again be interpreted (by disregarding what is inside the dotted lines) as a
single action in a sequential computation. To be a little bit more precise:
we are dealing with a great number of possible computations, primarily
decomposed into the same time-succession of subactions and it is only on
closer inspection-Le. by looking inside the dotted block-that it is revealed
that over the collection of possible computations such a subaction may take
one of an enumerated set of distinguished forms.

The above is sufficient to consider a class of computations that are primarily
decomposed into the same set of enumerated subactions; they are insufficient
to consider a class of computations that are primarily decomposed into a
varying number of subactions (i.e. varying over the class of computations
considered). It is here that the usefulness of the repetition clauses becomes
apparent. We mention "while condition do statement" and "repeat statement
until condition" that may be represented in flowchart form as follows.

r------------,
I

I
I
I
I 5
I
I
I

L--------

?

r----
1
I

s

- - - - -,
I
I

I
- - ____ .J

These flowcharts also share the property of a single entry at the top and a
single exit at the bottom. They enable us to express that the action r:epresented
by the dotted block is on closer inspection a time-succession of "a sufficient
number" of subactions of a certain type.

We have now seen three types of decomposition; we could call them
"concatenation", "selection" and "repetition" respectively. The first two are
understood by enumerative reasoning, the last one by mathematical induction.

The programs that can be written using the selection clauses and the
repetition clauses as only the means for sequencing control, permit straight­
forwardJ.ranslation into a programming language that is identical but for the

20 E.W. DUKSTRA

fact that sequencing control has to be expressed by jumps to labelled points.
The converse is not true. Alternatively: restricting ourselves to the three
mentioned types of decomposition leads to flowcharts of a restricted topology
compared with the flowcharts one can make when arrows can be drawn from
any block leading into any other. Compared with that greater freedom, to
restrict oneself to the clauses presents itself as a sequencing discipline.

Why do I propose to adhere to this sequencing discipline? The justification
for this decision can be presented in many ways and let me try a number of
them in the hope that at least one of them will appeal to my readers.

Eventually, one of our aims is to make such well-structured programs that
the intellectual effort (measured in some loose sense) needed to understand
them is proportional to program length (measured in some equally loose
sense). In particular we have to guard against an exploding appeal to enumera­
tive reasoning, a task that forces upon us some application of the old adage
"Divide and Rule", and that is the reason why we propose the step-wise
decompositions of the computations.

We can understand a decomposition by concatenation via enumerative
reasoning. (We can do so, provided that the number of subactions into which
the computation is primarily parsed, is sufficiently small and that the specifi­
cation of their net effect is sufficiently concise. I shall return to these require­
ments at a later stage, at present we assume the conditions met.) It is then
feasible to make assertions about the computations on account of the program
text, thanks to the triviality of the relation between the progress through the
computations and the progress through the program text. In particular: if on
closer inspection one of the subactions transpires to be controlled by a
selective clause or a repetition clause, this fact does not impose any burden
on the understandability of the primary decomposition, because there only
the subaction's net effect plays a role.

As a corollary: if on closer inspection a subaction is controlled by a
selective clause the specific path taken is always irrelevant at the primary level
(the only thing that matters is that the correct path has been taken). And also:
if on closer inspection a subaction is controlled by a repetitive clause, the
number of times the repeated statement has been executed is, as such,
irrelevant (the only thing that matters is that it has been repeated the correct
number of times).

We can also understand the selective clauses as such, viz. by enumerative
reasoning; we can also understand the repetition clause, viz. by mathematical
induction. For all three types of decomposition-and this seems to me a great
help-we know the appropriate pattern of reasoning.

There is a further benefit to be derived from the proposed sequencing
discipline. In understanding programs we establish relations. In our example
o~ enumerative reasoning we established that the program part

NOTES ON STRUCTURED PROGRAMMING 21

"dd: = dd/2;

if dd ~ r do r: = r - dd"

leaves the relation

O~r<dd

invariant. Yet, even if we can ensure that these relations hold before execution
of the quoted program part, we cannot conclude that they always hold, viz.
not necessarily between the execution of the two quoted statements. In other
words: the validity of such relations is dependent on the progress of the
computation, and this seems typical for a sequential process.

Similarly, we attach meanings to variables: a variable may count the
number of times an event of a given type has occurred, say the number of
lines that has been printed on the current page. Transition to the next page
will be followed immediately by a reset to zero, printing a line will be followed
immediately by an increase by 1. Again, just before resetting or increasing
this count, the interpretation "number of lines printed on the current page"
is non-valid. To assign such a meaning to a variable, again, can only be done
relative to the progress of the computation. This observation raises the follow­
ing question: "How do we characterise the progress of a computation?"

In short, we are looking for a co-ordinate system in terms of which the
discrete points of computation progress can be identified, and we want this
co-ordinate system to be independent of the variables operated upon under
program control: if we need values of such variables to describe progress of
the computation we are begging the question, for it is precisely in relation to
this progress that we want to interpret the meaning of these variables.

(A still more stringent reason not to rely upon the values of variables is
presented by a program containing a non-ending loop, cycling through a finite
number of different states. Eternal cycling follows from the fact that a
different points of progress the same state prevails. But then the state is
clearly incapable of distinguishing between these two different points of
progress!)

We can state our problem in another way. Given a program in action and
suppose that before completion of the computation the latter is stopped at
one of the discrete points of progress. How can we identify the point of
interruption, for instance if we want to redo the computation up to the very
same point? Or also: if stopping was due to some kind of dynamic error, how
can we identify the point of progress short of a complete memory dump?

For the sake of simplicity we assume our program text spread out in
(linear) text space and assume an identifying mechanism for the program
points corresponding to the discrete points of computation progress; let us
call this identifying mechanism "the textual index". (If the discrete points of
computation progress are situated in between successive statement executions,

22 E.W. DUKSTRA

the textual index identifies, say, semicolons.) The textual index is a kind of
generalised order counter, its value points to a place in the text.

If we restrict ourselves to decomposition by concatenation and selection, a
single textual index is sufficient to identify the progress of the computation.
With the inclusion of repetition clauses textual indices are no longer sufficient
to describe the progress of the computation. With each entry into a repetition
clause, however, the system could introduce a so-called "dynamic index",
inexorably counting the ordinal number of the corresponding current repeti­
tion; at termination of the repetition the system should again remove the
corresponding dynamic index. As repetition clauses may occur nested inside
each other, the appropriate mechanism is a stack (i.e. a last-in-first-out­
memory). Initially the stack is empty; at entry of a repetition clause a new
dynamic index(set to zero or one) is added on the top of the stack; whenever
it is decided that the repetition is not terminated the top element of this stack
is increased by 1 ; whenever it is decided that a repetition is terminated, the
top element of the stack is removed. (This arrangement reflects very clearly
that after termination of a repetition the number of times, even the fact that
it was a repetition, is no longer relevant.)

As soon as the programming language admits procedures, then a single
textual index is no longer sufficient. In the case that a textual index points
to the interior of a procedure body, the dynamic progress of the computation
is only characterised when we also describe to which call of the procedure we
refer, but this can be done by giving the textual index pointing to the place
of the call. With the inclusion of the procedure the textual index must be
generalised to a stack of textual indices, increased by one element at procedure
call and decreased by one element at procedure return.

The main point is that the values of these indices are outside the pro­
grammer's control; they are defined (either by the write-up of his program or
by the dynamic evolution of the current computation) whether he likes it or
not. They provide independent co-ordinates in which to describe the progress
of the computation, a "variable-independent" frame of reference in which
meanings to variables can be assigned.

There is, of course, even with the free use of jumps, a programmer inde­
pendent co-ordinate system in terms of which the progress of a sequential
computation can be described uniquely, viz. a kind of normalised clock that
counts the number of "discrete points of computation progress" passed since
program start. It is unique, but utterly unhelpful, because the textual index
is no longer a constituent component of such a co-ordinate system.

The moral of the story is that when we acknowledge our duty to control the
computations (intellectually!) via the program text evoking them, that then
we should restrict ourselves in all humility to the most systematic sequencing

NOTES ON STRUCTURED PROGRAMMING 23

mechanisms, ensuring that "progress through the computation" is mapped
on "progress through the text" in the most straightforward manner.

8. ON COMPARING PROGRAMS

It is a programmer's everyday experience that for a given problem to be
solved by a given algorithm, the program for a given machine is far from
uniquely determined. In the course of the design process he has to select
between alternatives; once he has a correct program, he will often be called to
modify it, for instance because it is felt that an alternative program would be
more attractive as far as the demands that the computations make upon the
available equipment resources are concerned.

These circumstances have raised the question of the equivalence of
programs: given two programs, do they evoke computations establishing the
same net effect? After suitable formalisation (of the way in which the programs
are given, of the machine that performs the computations evoked by them
and of the "net effect" of the computations) this can presumably be made
into a well-posed problem appealing to certain mathematical minds. But I
do not intend to tackle it in this general form. On the contrary: instead of
starting with two arbitrarily given programs (say: independently conceived
by two different authors) I am concerned with alternative programs that can
be considered as products of the same mind and then the question becomes:
how can we conceive (and structure) those two alternative programs so as to
ease the job of comparing the two?

I have done many experiments and my basic experience gained by them
can be summed up as follows. Two programs evoking computations that
establish the same net effect are equivalent in that sense and a priori not in
any other. When we wish to compare programs in order to compare their
corresponding computations, the basic experience is that it is impossible (or
fruitless, unattractive, or terribly hard or what you wish) to do so when on
the level of comparison the sequencing through the two programs differs.
To be a little more explicit: it is only attractive to compare two programs
and the computations they may possibly evoke, when paired computations
can be parsed into a time-succession of actions that can be mapped on each
other and the corresponding program texts can be equally parsed into
instructions, each corresponding to such an action.

This is a very strong condition. Let me give a first example.

Excluding side-effects of the boolean inspections and assuming the value
"B2" constant (i.e. unaffected by the execution of either "Sl" or "S2"), we
can establish the equivalence of the following two programs:

24

and

E.W. DUKSTRA

"if B2 then

begin while Bl do Sl end

else

begin while Bl do S2 end"

"while Bl do

begin if B2 then SI else S2 end"

(1)

(2)

The first construction is primarily one in which sequencing is controlled
by a selective clause, the second construction is primarily one in which
sequencing is controlled by a repetitive clause. I can establish the equivalence
of the output of the computations, but I cannot regard them as equivalent in
any other useful sense. I had to force myself to the conclusiqn that (1) and
(2) are "hard to compare". Originally this conclusion annoyed me very much.
In the meantime I have grown to regard this incomparability as one of the
facts of life and, therefore, as one of the major reasons why I regard the
choice between (1) and (2) as a relevant design decision, that should not be
taken without careful consideration. It is precisely its apparent triviality
that has made me sensitive to the considerations that should influence such a
choice. They fall outside the scope of the present section but I hope to return
to them later.

Let me give a second example of incomparability that is slightly more
subtle.

Given two arrays X[l :N] and Y[l :N] and a boolean variable "equal",
make a program that assigns to the boolean variable "equal" the value:
"the two arrays are equal element-wise". Empty arrays (i.e. N = 0) are
regarded as being equal.

Introducing a variable j and giving to "equal" the meaning "among the
first j pairs no difference has been detected", we can write the following
two programs.

and

''j: = O; equal:= true;

while j =I= N do
beginj: = j + 1; equal: = equal and (XU] = YU]) end" (3)

''j: = O; equal:= true;
while j =I= N and equal do

beginj: = j + 1; equal:= (XU] = YU]) end". (4)
Program (4) differs from program (3) in that repetition is terminated as

soon as a pair-wise difference has been detected. For the same input the

NOTES ON STRUCTURED PROGRAMMING 25

number of repetitions may differ in the two programs and therefore the
programs are only comparable in our sense as long as the last two lines of the
programs are regarded as describing a single action, not subdivided into
subactions. But what is their relation when we do wish to take into account
that they both end with a repetition? To find this out, we shall prove the
correctness of the programs.

On the arrays X and Y we can define of 0 ~ j ~ N the N + I functions
EQUALi as follows:

for j = 0 EQUALi = true,

for j > 0 EQUALi = EQUALi- t and (XU]= YU]). (5)

In terms of these functions it is required to establish the net effect

equal= EQUALN.

Both programs maintain the relation

equal= EQUALi

for increasing values of j, starting withj = 0.

(6)

It is tempting to regard programs (3) and (4) as alternative refinements
of the same (abstract) program (7):

''j: = O; equal:= EQUAL0 ;

while "perhaps still:equal -::F EQUALN" do

beginj: = j +I; "equal:= EQUAL/' end" (7)

in which "perhaps still: equal"# EQUALN" stands for some sort of still open
primitive. When this is evaluated

equal= EQUAL1

will hold and the programs (3) and (4) differ in that they guarantee on different
criteria that "equal" will have its final value EQUALN.

In program (3) the criterion is very naive, viz.

j = N.

At the beginning of the repeated statement

equal = EQUALi

still holds. After the execution of ''j: = j + I" therefore

equal = EQUAL1-1

holds and the assignment statement
"equal: = equal and (XU] = YU])"

is now a straightforward transcription of the recurrence relation (5).
To come to program (4) some analysis has to be applied to the recurrence

relation (5), from which can be derived (by mathematical induction again) that

26 E. W. DIJKSTRA

EQUAL1 = false implies EQUALN = false, and therefore EQUAL1 = false
implies EQUAL1 = EQUALN. If this situation arises, the equality "equal =
EQUALN" can also be guaranteed and this leads to program (4). The set of
(sub)computations the repeated statement has to cope with in program (4)
is restricted to those with the initial state "equal = true" and therefore in
program (4) the assignment "equal:= EQUAL/' can be abbreviated to

"equal:= (XLJ] = YLJ])"

And now it is clear why the introduction of (7) as an abstraction of (3)
and (4) was misleading. With "perhaps still: equal -::F EQUALN" we have
stated the meaning of truth and falsity of a boolean expression without
stating the expression itself and that was very tricky. We have tried to
interpret (7) as a program in which part of the sequencing at its own level was
undefined and varying over its refinements. As a result we have tried to view
the last lines of (7) as a model for the last lines of both (3) and (4), but this
was misleading because the computations to be evoked by them cannot be
brought into a one-to-one correspondence.

So much for programs that we consider as incomparable. Examples of
comparable programs will be encountered in the following sections. A final
remark: we have stated that "paired computations can be parsed into a
time-succession of actions that can be mapped on each other". We have not
required that actions so paired should have the same net effect! We may
compare alternative programs for the same job but also different programs
for similar jobs.

9. A FIRST EXAMPLE OF STEP-WISE PROGRAM COMPOSITION

In the section "On understanding programs." I have stressed the need for
systematic sequencing so that the structure of the computations could be
reflected in the structure of our program: in this way we can speak of the
joint structuring of program and computations. In the current section I shall
now try to give a little more content to the still rather vague notion of
structuring computations. It will be a first effort to exploit our powers of
abstraction to reduce the appeal made to enumerative reasoning; it will be a
consequent application of the decompositions mentioned in the section "On
understanding programs.".

Instead of presenting (as a ready-made product) what I would call a well­
structured program I am going to describe in very great detail the composition
process of such a program. I do this because programs are not there: on the
contrary, they have to be made, and the kind of programs I am particularly
interested in are those which I feel to be reasonably well suited to our powers
of construction and conception.

NOTES ON STRUCTURED PROGRAMMING 27

The task is to instruct a computer to print a table of the first thousand
prime numbers, 2 being considered as the first prime number.
Note 1. This example has been chosen because on the one hand.it is sufficiently
difficult to serve as a model for some of the problems encountered in pro­
gramming, and on the other hand its mathematical background is so simple
and familiar that our attention is not usurped by the problem.
Note 2. I do not claim that my final program will be "the best one", measured
by whatever yardstick any of my readers might care to choose. At least two
readers of a previous version of this presentation-in which remainders were
computed via a divide operation-reacted quite vehemently to it: "But
everyone knows that the most efficient way to generate prime numbers is by
using the Sieve of Eratosthenes." thereby blocking their ability to read any
further!

The basic pattern of my approach will be to compose the program in minute
steps, deciding each time as little as possible. As the problem analysis pro­
ceeds, so does the further refinement of my program.

When an algorithm has to be made, the desired computation has to be
composed from actions corresponding to a well-understood instruction
repertoire.

The simplest form of the program is
description 0:

begin "print first thousand prime numbers" end
and when "print first thousand prime numbers" refers to an instruction from
the well-understood repertoire, the description 0 solves the problem. For the
sake of argument we assume that this instruction does not occur in the well­
understood repertoire. Therefore we have to conceive a computation com­
posed from "more primitive" actions that establishes the desired net effect.
Our first proposal is to separate the generation of the prime numbers and
their printing, and we propose description I :

begin variable "table p";

end,

"fill table p with first thousand prime numbers";
"print table p"

describing that our computation consists of a time-succession of two actions
and takes place in a state spac1: containing a single variable, called "table p".
The first action assigns a value to this variable, the second action is controlled
by the (then current) value of this variable.

Again, when "fill table p with first thousand prime numbers" and "print
table p" occur in the well-understood repertoire (and "table p" occurs among
the implicitly available resources) then our problem is solved. Again, for the

28 E. W. DUKSTRA

sake of argument, we assume this not to be the case. This means that in our
next refinement we have to express how the effect of these two actions can be
established by two further (sub)computations. Apart from that we have to
decide, how the information to be contained in the.intermediate value of the
still rather undefined object "table p" is to be represented.

Before going on, I would like to stress how little we have decided upon when
writing down description l, and how little of our original problem statement
has been taken into account. We have assumed that the availability of a
resource "table p" (in some form or other) would permit us to compute the
first thousand prime numbers before printing starts, and on this assumption
we have exploited the fact that the computation of the primes can be con­
ceived independently of the printing. Of our original problem statement we
have not taken into account very much more than that at least a thousand
different prime numbers do exist (we had to assume this for the problem
statement to make sense). At this stage it is still fairly immaterial what the
concept "prime number" really means. Also, we have not committed our­
selves in the least as regards the specific layout requirements of the print-out
to be produced. Apparently it is the strength of our approach that the
consequences of these two rather independent aspects of our original problem
statement seem to have been allocated in the respective refinements of our
two constituent actions. It suggests that we have been more or less successful
in our effort to apply the golden principle "divide and rule".

Resuming our discussion, however, we have to ask ourselves, to what extent
the two subcomputations can now be conceived independently of each other.
To be more precise "Have we now reached the stage that the design of the
two subalgorithms (that have to evoke the two subcomputations) can be
conceived by two programmers, working independently of each other?".

When the two actions can no longer be regarded as invoked by instructions
from the well-understood repertoire, neither can the variable "table p" any
longer be regarded as an implicitly available resource. And in a way similar
to the one in which we have to decompose the actions into subactions, we
have to choose how the variable "table p" will be composed, viz. what data
structure we select to represent the information to be handed over via "table
p" from the first action to the second. At some point this has to be decided
and the questions are "when?" and "how?".

In principle, there seem to be two ways out of this. The first one is to try
to postpone the decision on how to structure "table p" into (more neutral,
less problem-bound) components. If we postpone the decision on how to
structure "table p", the next thing to do is to refine one of the actions or both.
We can do so, assuming a proper set of operations on the still mysterious
object "table p"; finally we collect these operations and in view of their
demands we design the most attractive structure of "table p".

NOTES ON STRUCTURED PROGRAMMING 29

Alternatively, we can try to decide, here and now, upon the structure of
"table p". Once it has been decided how the table of the first thousand primes
will be represented, the refinements of both actions can be done fairly
independently of each other.

Both ways are equally tricky, for what will be an attractive algorithm for,
say, the first subcomputation will greatly depend on the ease and elegance with
which the assumed operations on "table p" can be realised, and if one or more
turn out to be prohibitively clumsy, the whole edifice falls to pieces. Alter­
natively, if we decide prematurely upon a structure for "table p" we may well
discover that the subcomputations then turn out to be awkward. There is
no way around it: in an elegant program the structure of "table p" and the
computations referring to it must be well-matched. I think that the behaviour
of the efficient programmer can be described as trying to take the easiest
decision first, that is the decision that requires the minimum amount of
investigation (trial and error, iterative mutual adjustment etc.) for the
maximum justification of the hope that he will not regret it.

In order not to make this treatment unduly lengthy we assume that the pro­
grammer finds the courage to decide that now the structure of "table p" is the
first thing to be decided upon. Once this position has been taken, two alter­
natives immediately present themselves. On the one hand we can try to exploit
that "a table of the first 1000 primes" is not just a table of a thousand
numbers-as would be a table of the monthly wages of 1000 employees in a
factory-but that all these numbers are different from each other. Using
this we can arrange the information with a linear boolean array (with con­
secutive elements associated with consecutive natural numbers) indicating
whether the natural number in question is a prime number or not. Number
theory gives us an estimation of the order of magnitude of the thousandth
prime number and thereby a boundary of the length of the array that will
suffice. If we arrange our material in that way we have prepared an easy
mechanism to answer the question "is n (less than the maximum) prime or
not?". Alternatively, we can choose an integer array in which the successive
prime numbers will be listed. (Here the same estimate, obtained by means of
number theory, will be used, viz. when a maximum value of the integer array
elements needs to be given a priori.) In the latter form we create a mechanism
suited to answer the question "what is the value of the kth prime number,
fork ~ 1000?".

We grant the programmer the courage to choose the latter representation.
It seems attractive in the printing operation in which it is requested to print
the prime numbers and not to print natural numbers with an indication
whether they are prime or not. It also seems attractive for the computing
stage, if we grant the programmer the clairvoyance that the analysis of

30 E.W. DIJKSTRA

whether a given natural number is a prime number or not, will have some­
thing to do with the question of whether prime factors of the number to be
investigated can be found.

The next stage of our program refinement then becomes the careful state­
ment of a convention regarding the representation of the still mysterious
object "table p" and a redefinition of the two operations in terms of this
convention.

The convention is that the information to be contained in "table p" will
be represented by the values of the elements of the "integer array p[l : 1000]",
such that for l ~ k ~ 1000 p[k] will be equal to the kth prime number, when
the prime numbers are arranged in order of increasing magnitude. (If a
maximum value of the integers is implicitly understood, we assume that
number theory allows us to state that this is large enough.)

When we now want to describe this new refinement we are faced with a new
difficulty. Our description 1 had the form of a single program, thanks to the
fact that it was a refinement of the single action named "print the first
thousand prime numbers", referred to in description 0. (In more conventional
terms: description l could have the form of a procedure body.) This no longer
holds for our next level, in which we have to refine (simultant'ously, in a sense)
three named entities, viz. "table p" and the two actions, and we should
invent some sort of identifying terminology indicating what refines what.

For the continuation of our discussion we make a very tentative proposal.
We say: description 0 is a valid text expressed in terms of a single named
action "print first thousand prime numbers"; let this be identified by the
code Oa.

Description 1 is called "l" because it is the next refinement of description
O; it contains a refinement of Oa-the only term in which description 0 is
expressed-and is itself expressed in terms of three named entities to which
we attach the codes:

"table p"

"fill table p with first thousand prime numbers"

"print table p"

la

lb

le

code numbers, starting with I, because description 1 is expressed in terms of
them, and "a'', "b" and "c" being attached for the purpose of distinction.

Now we have to describe our convention chosen for the representation of
the information to be contained in "table p'', but this convention pertains to
all three elements la, lb and le. Therefore we call this description 2; it should
contain the descriptions of the three separate elements (I use the equality sign
as separator)

NOTES ON STRUCTURED PROGRAMMING 31

description 2:

la = "integer array p[l : 1000]"

lb = "make fork from 1 through 1000 p[k] equal to the kth prime number"

le= "printp[k] fork from 1through1000".

Description 2 is expressed in terms of three named entities to which we
give (in the obvious order) the codes 2a, 2b and 2c. (In code numbers,
description 2 is very meagre: it just states that for la, lb and le, we have
chosen the refinements 2a, 2b and 2c respectively.)

Remark. In the representation of the information to be contained in "table
p", we have chosen not to exploit the fact that each of the values to be printed
occurs only once, nor that they occur in the order of increasing magnitude.
Conversely, this implies that the action that has to take place under the name
of 2c is regarded as a specific instance of printing any set of thousand integer
values (it could be a table of monthly wages of thousand numbered
employees!). The net effect of the printing action in this example is an uniquely
defined as the first thousand prime numbers are: we conceive it, however, as a
specific instance of a larger class of occurrences. In the further refinement of
2c we deal with this whole class, the specific instance in this class being
defined by the values of the elements of the array p. When people talk about
"defining an interface" I often get the feeling that they overlook the pre­
supposed generalisation, the conception of the class of "possible" actions.

When 2b and 2c occur among the well-understood repertoire of instructions
(and therefore 2a among the resources implicitly available) our whole problem
is solved. For the sake of argument we again assume this not to be the case,
and so we find ourselves faced with the task of conceiving subcomputations
for the actions 2b and 2c. But now, thanks to the introduction of level 2,
the respective refinements of 2b and 2c can be designed independently.

The refinement of 2b: "make fork from 1 through 1000 p[k] equal to the
kth prime number".

We are looking for description 2bl, i.e. the first refinement of 2b. We
introduce a fresh numbering after 2b (rather than calling our next description
"3 something") in order to indicate the mutual independence of the refine­
ments of 2b and 2c respectively.

In description 2bl we have to give an algorithm describing how the elements
of the array p will get their values. This implies that we have to describe, for
instance, in what order this will happen. In our first refinement we shall
describe just that and preferably nothing more. An obvious, but ridiculous
version starts as follows (with "version number" enclosed within parentheses):
2bl(l):
beginp[l]: = 2; p[2]: = 3; p[3]: = S; p[4]: = 7; p[S]: = 11; end

32 E. W. DIJKSTRA

implying that the programmer's knowledge includes that of a table of the first
thousand primes. We shall not pursue this version as it would imply that the
programmer hardly needed the machine at all.

The first prime number being given (= 2), the thousandst being assumed
unknown to the programmer, the most natural order in which to fill the ele­
ments of the array p seems to be in the order of increasing subscript value,
and if we express just that we arrive (for instance) at

'Zbl(2):

begin integer k, j; k: = O; j: = 1;

end

while k < 1000 do begin "increase j until next prime number";

k:= k +l;p[k]:=jend

By identifying k as the number of primes found and by verifying that our
first prime number (= 2) is indeed the smallest prime number larger than 1
(=the initial value of j), the correctness of 2bl(2) is easily proved by
mathematical induction (assuming the existence of a sufficient number of
primes).

Description 2bl(2) is a perfect program when the operation described by
"increase j until next prime number"-call it 2bl(2)a-occurs among the
repertoire, but let us suppose that it does not. In that case we have to express
in a next refinement how j is increased (and, again, preferably nothing more).
We arrive at a description of level 2b2(2)

2bl(2)a =

begin boolean jprime;

repeatj: = j + 1;

end

"give to jprime the meaning: j is a prime number"

until jprime

Remark. Here we use the repeat-until clause in order to indicate that j
has always to be increased at least once.

Again its correctness can hardly be subject to doubt. If, however, we
assume that the programmer knows that, apart from 2, all further prime
numbers are odd, then we may expect him to be dissatisfied with the above
version because of its inefficiency. The price to be paid for this "lack of
clairvoyance" is a revision of version 2bl(2). The prime number 2 will be
dealt with separately, after which the cycle can deal with odd primes only.
Instead of 2b1(2) we come to

NOTES ON STRUCTURED PROGRAMMING

2bl(3):

begin integer k,j; p[l]: = 2; k: = 1;j:=1;

while k < 1000 do

end

begin "increase odd j until next odd prime number";

k: = k + 1; p[k]: = j

end

33

where the analogous refinement of the operation between quotes-"2bl(3)a"
say-leads to the description on level 2b2(3):

2bl(3)a =

begin booleanjprime;

repeatj: = j + 2;

end

"give for odd j to jprime the meaning: j is a prime number";

until jprime

The above oscillation between two levels of description is in fact nothing
else but adjusting to our convenience the interface between the overall
structure and the primitive operation that has to fit into this structure. This
oscillation, this form of trial and error, is definitely not attractive, but with a
sufficient lack of clairvoyance and being forced to take our decisions in
sequence, I see no other way: we can regard our efforts as experiments to
explore (at a rather low cost!) where the interface can probably be most
conveniently chosen.

Remark. Both 2bl(2) and 2bl(3) can be loosely described as

begin "set table p and j at initial value";

end

while "table p not full" do

begin "increase j until next prime number to be added";

"add j to table p"

end

but we shall not do this as the sequencing in the two versions differs (see
"On comparing programs") and we regard them as "incomparable". By
choosing 2bl(3) we decide that our trial 2bl(2)-as 2bl(l)-is no longer
applicable and therefore rejected.

The change from 2bl(2) to 2bl(3) is justified by the efficiency gain at the
levels of higher refinement. This efficiency gain is earned at level 2b2, because

34 E. W. DIJKSTRA

now j can be increased by 2 at a time. It will also manifest itself in the still
open primitive at level 2b2(3) where the algorithm for "give for odd j to
jprime the meaning: j is a prime number" has only to cater for the analysis
of odd values of j.

Again: in 2b2(3) we have refined 2bl(3) with an algorithm which solves our
problem when "give for oddj to jprime the meaning: j is a prime number"­
call it "2b2(3)a"-occurs among the well-understood repertoire. We now
assume that it does not, in other words we have to evoke a computation
deciding whether a given odd value of j has a factor. It is only at this stage
that the algebra really enters the picture. Here we make use of our knowledge
that we only need to try prime factors: furthermore we shall use the fact that
the prime numbers to be tried can already be found in the filled portion of
the array p.

We use the facts that
(1) j being an odd value, the smallest potential factor to be tried is p(2],

i.e. the smallest prime number larger than 2
(2) the largest prime number to be tried is p[ord - 1] when p[ord] is the

smallest prime number whose square exceeds j.
(Here I have also used the fact that the smallest prime number whose square

exceeds j can already be found in the table p. In all humility I quote Don
Knuth's comment on an earlier version of this program, where I took this
fact for granted:

"Here you are guilty of a serious omission! Your program makes use of a
deep result of number theory, namely that if Pn denotes the nth prime
number we always have

Pn+i < p/."
Peccavi.)

If this set is not empty, we have a chance of finding a factor, and as soon
as a factor has been found, the investigation of this particular j value can be
stopped. We have to decide in which order the prime numbers from the set will
be tried, and we shall do so in order of increasing magnitude, because the
smaller a prime number the larger the probability of its being a factor of j.

When the value of ord is known we can give for "give for odd j to jprime
the meaning: j is a prime number" the following description on level 2b3(3):

2b2(3)a =

begin integer n; n: = 2; jprime: = true;
while n < ord and jprime do

end

begin "give tojprime the meaning: p[n] is not a factor ofj"; n: = n + 1
end

NOTES ON STRUCTURED PROGRAMMING 35

But the above version is written on the assumption that the value of ord,
a function of j, is known. We could have started this refinement with

begin integer n, ord;

ord: = 1; while p[ord] f 2 ~ j do ord: = ord + 1;

i.e. recomputing the value of "ord" afresh, whenever it is needed. Here some
trading of storage space for computation time seems indicated: instead of
recomputing this function whenever we need it, we introduce an additional
variable ord for its current value: it has to be set when j is set, it has to be
adjusted whenj is changed.

This, alas, forces upon us some reprogramming. One approach would be to
introduce, together withj, an integer variable ord and to scan the programs in
order to insert the proper operations on ord, whenever j is operated upon. I do
not like this because at the level at which j is introduced and has a meaning,
the function "ord" is immaterial. We shall therefore try to introduce ord only
at its appropriate level and we shall be very careful.

For 2b: "make for k from 1 through 1000 p[k] equal to the kth prime
number" we write (analogous to level 2bl(3))
level 2b1(4):·
begin integer k, j; p[l]: = 2; k: = l;

"set j to one";

end

while k < 1000 do
begin "increase odd j until next odd prime number";

k: = k + 1; p[k]: = j
end

expressed in terms of
2b1(4)a "increase oddj until next odd prime number"
2b1(4)b "setj to one".

In our next level we only introduce the subcomputation for 2bl(4)a; the
other is handed down.
level 2b2(4):
2bl(4)a =

begin boolean jprime;

end:

repeat "increase j with two";
"give for oddj to jprime the meaning: j is a prime numher"

until jprime

36 E.W. DIJKSTRA

2bl(4)b = 2b2(4)b

expressed in terms of

2b2(4)b still meaning "set j to one"

2b2(4)c "increase j with two"

2b2(4)d "give for odd j to jprime the meaning: j is a prime number".

It is only at the next level that we need to talk about ord. Therefore we
now write

level 2b3(4): integer ord;

2b2(4)b =

beginj: =I; "set ord initial" end;

2b2(4)c =

beginj: = j + 2; "adjust ord" end;

2b2(4)d =

begin integer n; n: = 2; jprime: = true;

while n < ord and jprime do

end

begin "give to jprime the meaning: p[n] is not a factor of j";

n: = n +I
end

expressed in terms of

2b3(4)a "set ord initial"

2b3(4)b "adjust ord"

2b3(4)c "give tojprime the meaning: p[n] is not a factor ofj".

In our next level we give two independent refinements. (Note. We could
have given them in successive levels, but then we should have to introduce an
arbitrary ordering to these two levels. We could also try to treat the refine­
ments separately-Le. as separately as 2b and 2c-but we feel that it is a little
premature for this drastic decision.) We are going to express

(I) that, ord being a non-decre:\sing function of j and j only increasing in
value, adjustment of ord implies a conditional increase;

(2) that, whether p[n] is a factor of j is given by the question whether the
remainder equals zero.

This leads to

level 2b4(4):

2b3(4)a = 2b4(4)a

NOTES ON STRUCTURED PROGRAMMING

2b3(4)b =

begin while "ord too small" do "increase ord by one" end;

2b3(4)c =

begin integer r;

"maker equal to remainder of j over p[n]";

jprime: = (r =/: 0)

end

expressed in terms of

2b4(4)a still meaning "set ord initial"

2b4(4)b "ord too small"

2b4(4)c

2b4(4)d

"increase ord by one"

"maker equal to remainder of j over p[n]"

37

If we have a built-in division, the implementation of "make r equal to the
remainder ofj over p[n]" can be assumed to be an easy matter. The case that
the refinement of 2b4(4)d can be treated independently is now left to the
interested reader. To give the algorithm an unexpected turn we shall assume
the absence of a convenient remainder computation. In that case the algorithm

"r: = j; while r > 0 do r: = r - p[n]"

would lead to the (non-positive) remainder but it would be most unattractive
from the point of view of computation time. Again this asks for the intro­
duction of some additional tabulated material (similar to the way in which
"ord" has been introduced).

We want to know whether a gtven value ofj is a multiple of p[n] for n < ord.
In order to assist us in this analysis we introduce a second array in the
elements of which we can store multiples of the successive prime numbers, as
close to j as is convenient. In order to be able to give the size of the array we
should like to know an upper bound for the value of ord; of course, 1000
would be safe, but number theory gives us 30 as a safe upper bound. We
therefore introduce

integer array mult [1 : 30]

and introduce the convention that for n < ord, mult [n] will be a multiple of
p[n] and will satisfy the relation

mult [n] < j + p[n]

a relation that remains invariantly true under increase ofj. Whenever we wish
to investigate, whether p[n] is a factor of j, we increase mult [n] by p[n] as
long as

mult [n] < j.

38 E.W. DIJKSTRA

After this increase mult [n] = i is the necessary and sufficient condition for
j to be a multiple of p[n].

The low maximum value of ord has another consequence: the inspection
"ord too small" can be expressed by

"p[ord] j 2 ~ j"

but this inspection has to be performed many times for the same value of ord.
We may assume that we can speed up matters by introducing a variable
(called "square") whose value equals p[ord] j 2.

So we come to our final

level 2b5(4):

integer square; integer array mult [I : 30];

2b4(4)a =

begin ord: =I; square:= 4 end;

2b4(4)b =

(square ~ j);

2b4(4)c =

begin mult [ord]: = square; ord: = ord + l; square:= p[ord] j 2 end;

2b4(4)d =

begin while mult [n] < j do mult [n]: = mult [n] + p[n]; r: = j - mult [n] end

which has made our computation close to an implementation of the Sieve of
Eratosthenes!

Note. In the refinement of 2b4(4)d, when mult[n] is compared with the
current value of j, mult[n] is increased as much as possible; this could have
been done in steps of 2 * p[n], because we only submit odd values of j and
therefore are only interested in odd multiples of p[n]. (The value of mult[l]
remains, once set, equal to 4.)

The refinement of 2c "print p[k] fork from I through 1000" is left to the
reader. I suggest that the table should be printed on five pages, each page
containing four columns with fifty consecutive prime numbers.

* *
*

Here I have completed what I announced at the beginning of this section,
viz. "to describe in very great detail the composition process of such a
[well-structured] program". I would like to end this section with some
comments.

The most striking observation is that our treatment of a very simple
program has become very long, too long indeed for my taste and wishes,
even if I take into account that essentially we did two things: we made a

NOTES ON STRUCTURED PROGRAMMING 39

program and we discussed extensively the kind of considerations leading
to it. It is not so much the length of the latter part that bothers me (writers
fill whole novels with the description of human behaviour); what bothers
me is the length of the texts at the various levels. Therefore we may expect
that notational technique will be one of our main concerns.

But we have also had encouraging experiences. Giving full recognition to
the fact that the poor programmer cannot decide all at once, we succeeded
to a large extent in building up this program one decision at a time, and in
our example quite a lot of programming was already done in its definite
form while major decisions were still left open: irrespective of whether the
final decisions are taken this way or that way, the coding of the earlier levels
remains valid. In view of the requirement of program manageability, this
is very encouraging.

10. ON PROGRAM FAMILIES

In our previous section we have considered the design of a program for a
given task, but in doing so, we have considered our final program as an
isolated object, a structure standing all by itself and to be judged on its
private merits. Its structure was the result of successive decompositions;
the purpose of this structure was to make a program in such a way that its
correctness could be proved without undue intellectual labour.

In this section I am going to explain why I prefer to regard a program not
so much as an isolated object, but rather as a member of a family of "related
programs". In traditional terminology we can think about related programs
either as alternative programs for the same task or as similar programs for
similar tasks.

Why cannot the programmer confine his attention to the program he has
to make and why has he to take into account such a whole family as well?
For one thing, it is hard to claim that you know what you are doing unless
you can present your act as a deliberate choice out of a possible set of things
you could have done as well. But if we want to give due recognition to the
difficulties that are specific to the construction of large complicated programs,
there is a very practical justification. (And we have to recognise these specific
difficulties: experience has shown that someone's proven ability to do an
excellent job on a given scale is by no means a guarantee that, when faced
with a much larger job, he will not make a mess of it.)

Certainly, one of the properties of large programs is that they have to be
modified in the course of their life-time. A very common reason is that the
program, although logically correct, turns out to evoke unsatisfactory
computations (for instance unsatisfactory in one or more quantitative

40 E.W. DIJKSTRA

aspects). A second reason is that, although the program is logically correct
and even satisfactorily meeting the original demands, it turns out to be a
perfect solution for not quite the right problem; one is faced with a re­
statement of the problem and adaptation of the program.

The naive approach to this situation is that we must be able to modify
an existing program (and for this the curious term "program maintenance"
has established itself). The task is then viewed as one of text manipulation;
as an aside we may recall that the need to do so has been used as an argument
in favour of punched cards as against paper tape as an input medium for
program texts. The actual modification of a program text, however, is a
clerical matter, which can be dealt with in many different ways; my point
is that if we have our grip on the program text primarily as on a linear
sequence of symbols, the task to establish and to describe what has to be
modified tends to become prohibitively difficult when the texts get longer and
longer.

If a program has to exist in two different versions, I would rather not
regard (the text of) the one program as a modification of (the text of) the
other. It would be much more attractive if the two different programs could,
in s9me sense or another, be viewed as, say, different children from a common
ancestor, where the ancestor represents a more or less abstract program,
embodying what the two versions have in common. Hopefully, this common
ancestor can be readily recognised in the (prae-)documentation. The intentions
are

(1) that the two versions share their respective correctness proofs as far
as possible;

(2) that the two versions share (mechanically) as far as possible the
common (or "equal") coding;

(3) that the regions affected by the modification are already well-isolated,
a condition which is not met when the transition requires "brain-made"
modifications scattered all over the text.

Well, this is a lofty goal. It has been inspired by the potential similarity
between the task of program modification and program composition: when
a program has been built up to an intermediate stage of refinement, ·what
has then been written down is in fact a suitable "common ancestor" for all
possible programs produced by further refinements. It is the similarity
between "the decision to be changed" and "the decision still left open":
in both cases we are left with what remains when we abstract from such a
decision.

There is a second source of inspiration to be found in our experience.
In the process of step-wise program composition, proceeding from outside

NOTES ON STRUCTURED PROGRAMMING 41

inwards, going towards progressive refinements, we have in the earlier
stages not only postponed deciding how certain things would be done, but
we have also postponed committing ourselves as to exactly what had to be
done: with progressing refinement, more detail about the actual problem
statement has been brought into the picture. (Later examples will show this
even more clearly than the problem of the prime table.) As a result, our
first levels of refinement are equally applicable for the members of a whole
class of problem statements.

In other words, in the step-wise approach it is suggested that even in the
case of a well-defined task, certain aspects of the given problem statement
are ignored at the beginning. That means that the programmer does not
regard the given task as an isolated thing to be done, but is invited to view
the task as a member of a whole family; he is invited to make the suitable
generalisations of the given problem statement. By successively adding more
detail he eventually pins his algorithm down to a solution for the given
problem.

All this is well-known, each competent programmer does so all the time.
Yet I stress it for a variety of reasons. If the given problem statement is an
elaborate affair, i.e. too much to be grasped in a single glance, he must
approach (and dissect) the problem statement in this way (see the section
"On our inability to do much"). Secondly, if the given problem is perfectly
defined, it is a wise precaution to anticipate as many future changes in the
problem statement as one can foresee and accommodate. This remark is
not an invitation to make one's program so "general" that it becomes, say,
unacceptably inefficient, as might easily happen, when the generalisations
of the problem statement are ill-considered (which might easily happen
when they have been dictated by the Sales Department!) But in my experience,
even in traditional programming, it is a very worth-while exercise to look
for feasible generalisations of conceivable utility, because such considerations
may give clear guidance as to how the final program should be structured.
But such considerations boil down to tonceiving (more or less
explicitly) a whole program family!

In an earlier section ("On the reliability of mechanisms.") the need for
careful program structuring has been put forward as a consequence of the
requirement that program correctness can be proved. In this section we are
faced with another reason: program structure should be such as to anticipate
its adaptations and modifications. Our program should not only reflect
(by structure) our understanding of it, but it should also be clear from its
structure what sort of adaptations can be catered for smoothly. Thank
goodness, the two requirements go hand in hand.

42 E. W. DUKSTRA

11. ON TRADING STORAGE SPACE FOR COMPUTATION SPEED

In present-day sequential computers (spring 1969) we can distinguish two
main components, an active one (the processor) and a passive one (the
store). The active component has the specific function to be fast, the passive
one has the specific function to be large. The following is written on the
assumption that this functional division is here to stay for a sufficient period
of time to make a study of its consequences relevant.

From the point of view of the programmer, storage space and computation
time are then two distinct resources and I regard it as one of the responsibilities
of the programmer-rather than of the system-to allocate them, i.e. to
divide the load between them. It is to the consequences of this responsibility
that the present section is devoted. This section is not devoted to techniques
of estimating the various loads, i.e. to give quantitative criteria by which to
influence the programmer's choice: it is devoted to the logical relation
between the alternatives between which the programmer may choose.

Note. It is not inconceivable that some of the choices can be left to the
system. In all but the most trivial cases, however, design and establishment
of the equivalence seem to require mathematical invention from the side of
the programmer. All efforts to automate this problem-solving activity fall
outside the scope of this monograph.

In its most simple form we are faced with a computation that regularly
needs the value of "FUN(arg)", where "FUN" is a given, computable
function defined on the current value of one or more stored variables,
collectively called "arg". In version A of the program, only the value of arg
is stored and the value of FUN(arg) is computed whenever needed. In version
B, an additional variable, "fun" say, is introduced, whose sole purpose is to
record the value of "FUN(arg)" corresponding to the current value of arg.

Where version A has

"arg: = " (i.e. assignment to arg)

version B will have

"arg:= ; fun:= FUN(arg)"

thereby maintaining the relation

fun = FUN (arg)

As a result of the validity of this relation, wherever version A calls for the
evaluation of FUN(arg), version B will call for the current value of the
variable fun.

There are two possible reasons to prefer version B to version A. When
the value of FUN(arg) is more frequently requested than assignments to
arg take place, version B could require less computation time. If necessary

NOTES ON STRUCTURED PROGRAMMING 43

the techniq"ue can be refined by the introduction of a further (boolean)
variable "fun up to date'', indicating whether the relation "fun = FUN(arg)"
is assumed to hold. Assignment to arg is then associated with

"fun up to date:= false";
whenever the value of FUN(arg) is needed, inspection of this boolean
variable will tell, whether FUN(arg) has to be computed afresh; if so, the
computed value will be assigned to fun and in accordance with its meaning
"fun up to date" will be set to true. Let us call the last program version C.
It is clear that these three programs, only differing where version A assigns
to arg or uses the value of FUN(arg), are equivalent as far as their output
is concerned; it is certainly not inconceivable that version B or C is derived
from version A by mechanical means.

But quite often the situation is not as simple as that and now we come to
the second reason for introducing such a variable "fun". Often it is very
unattractive to compute FUN(arg) from scratch for arbitrary values of arg,
while it is much easier to compute how the value of FUN(arg) changes
when the value of arg is changed. In that case, the adjustment of the value
of "fun" is more intimately linked with the nature of the functional depen­
dence than is suggested by

"arg:= ; fun:= FUN(arg)".

Often this possibility is not only intimately linked to the nature of the
functional dependence, but also to the "history of the variable arg" as the
computation proceeds! We have seen a very striking example in the program
for the prime table (see Section "A first example of step-wise program
composition") with the introduction of "ord", which is functionally depen­
dent on "j", viz. "ord" is the minimum value satisfying

p[ord] j 2 > j
where the adjustment of "ord" was a very attractive operation thanks to
the fact that "j" was monotonically increasing in time.

In my understanding of programs I want such additional variables that
store redundant information, to be clearly recognised as such, even if it is a
somewhat undefined functional relationship as in the case of the table
"mult" from the same example. I am strongly inclined to view such programs
as, say, optimising refinements of a more abstract program, even when the
optimisation effected by the additional variables is essential when we want
to make a program with a realistic performance. From the point of view of
efficiency such an additional variable may be so vital that it may strike one
as irresponsible daydreaming to conceive a level in which its presence has
been abstracted from. The way in which such an additional variable is
manipulated is often experienced as the body of the algorithm: it is often
there that we harvest the fruits of our mathematical ingenuity. The point

44 E.W. DIJKSTRA

is that, although the possibility of at least one such optimising refinement is
essential for making something with a realistic performance, on closer
inspection one often discovers that such an optimising refinement is far
from unique, even on its coarsest level.

Note. I remember one program in which the additional information was so
redundant that not only the value of "fun" could be derived from that of
"arg" but also the other way round. Suddenly the relation between "fun"
and "arg" became symmetric, and I have been seriously bothered by the
question: what entitled me to treat them so asymmetrically? The program
in question generated all the solutions of a combinatorial puzzle. On closer
inspection it turned out that there was a second combinatorial puzzle, where
it could be proved that there existed a one-to-one correspondence between
the solutions of the two problems. If I had solved the second combinatorial
problem I would have found the role of "fun" and "arg" interchanged!
In traditional programming, where such functional dependencies are not
explicitly shown, the two puzzles would probably be solved by identical
programs, whereas I made two differently structured programs. And I think
rightly so, because the single program for the two puzzles needed a different
proof for its correctness, depending on which puzzle it was supposed to solve,
and this seems somewhat unfair when we also wish that our understanding
of the computations be reflected in the structure of our programs!

12. ON A PROGRAM MODEL

Before we have a program we must have composed it; after we have a program
-if there was any sense in making it-we shall have it executed. In this section
I shall not stress the activities of program composition and of program
execution too much, and I shall try to view the program as a static object.
We want to view it as a highly structured object and our main question is:
what kind of structures do we envisage and why? Our hope is that eventually
we shall arrive at a program structure that is both nice to compose and nice
to execute. Mentally, of course, I am unable to ignore these processes, but
at present I do not want to discuss them; in particular: I do not want to
discuss a design methodology (whether to work "from outside inwards" or
the other way round), nor do I want to discuss implementation consequences
now. Again, in order not to complicate matters too much, I shall restrict
myself to sequential programs.

If I judge a program by itself, my central theme, I think, is that I want
the program written down as I can understand it, I want it written down
as I would like to explain it to someone. However, without further qualifica­
tion these are just motherhood statements, so let me try and see whether I
can be more specific.

NOTES ON STRUCTURED PROGRAMMING 45

Let us consider a very simple computation, in which three distinct actions
can be distinguished to take place in succession, say: input of data, manipula­
tion (i.e. the computation proper) and the output of the results. One way of
representing the program is as a long string of statements:

begin

end

The next form adds some labels for explanatory purposes:

begin

begin of input:

begin of manipulation:

begin of output:

end
suggesting to us, when we read the text, what is going to happen next.

Still better, we write:

begin
input:

manipulation:

output:

end

begin

end;
begin

end;
begin

end

where the labels are considered less as markers of points in the program
text than as names of regions-as indicated by the bracket pairs "begin -
end" -that follow the label, or as names of the three actions in which the
computation has been decomposed. However, if we take this point of view,

46 E. W. DIJKSTRA

the three "labels" are still comments, i.e. explanatory noise for the benefit
of the interested (human) reader, whereas I would like to consider them as
an integral part of the program. I want my program text to reflect somewhere
the fact that the computation has been decomposed into a time-succession
of the three actions, whatever form these might take upon closer inspection.
A way of doing this is to write somewhere the (textual) succession of the
three (abstract) statements

"input; manipulation; output"

on the understanding that the time-succession of these three actions will
indeed be controlled from the above textual succession, whereas the further
refinements of these three actions will be given "somewhere else", perhaps
separately, but certainly without relative ordering.

Well, if closed subroutines had not been invented more than twenty years
ago, this would have been the time to do it! In other words: we are returning
to familiar grounds, to such an extent that many of my readers will even
feel cheated! I don't, because one should never be ashamed of sticking to a
proven method as long as it is satisfactory. But we should get a clear picture
of the benefits we should like to derive from it, if necessary we should adjust
it, and finally we should create a discipline for using it. Let me therefore
review the subroutine concept, because my appreciation for it has changed
in the course of the last year.

I was introduced to the concept of the closed subroutine in connection
with the EDSACt, where the subroutine concept served as the basis for a
library of standard routines. Those were the days when the construction of
hardware was a great adventure and many of the standard routines were
means by which (scarce!) memory and computation time could be traded
for circuitry: as the order code did not comprise a divide instruction, they
had subroutines for division. Yet I do not remember having appreciated
subroutines as a means for "rebuilding" a given machine into a more
suitable one, curiously enough. Nor do I remember from those days sub­
routines as objects to be conceived and constructed by the user to reflect
his analysis: they were more the standard routines to be used by the user.
Eventually I saw them mainly as a device for the reduction of program
length. But the whole program as such remained conceived as acting in a
single homogeneous store, in an unstructured state space; the whole computa­
tion remained conceived as a single sequential process performed by a single
processor. In the following years, in the many programming courses I gave,
I preached the gospel faithfully and I have often explained how the

t "The Preparation of Programs for an Electronic Digital Computer; with Special
Reference to the EDSAC and the use of a Library of Subroutines .. , M. V. Wilkes,
D. J. Wheeler and S. Gill, Addison-Wesley Press, 1951.

NOTES ON STRUCTURED PROGRAMMING 47

calling sequence handed over the return address and how the subroutine
would then begin by setting "the link"-i.e. the return jump-at its own
end. At present I would rather view the main program as _naving its own
instruction counter that just continues "counting" upon the completion of
the subroutine execution and would certainly not regard the "sleeping value"
as a parameter handed over to the subroutine. (Still the old view has found
its way into the hardware of many machines. We have seen machines in
which a subroutine jump stored the link at "address zero" of the subroutine
and ordered instruction fetch to be resumed at "address one", an arrangement
which makes re-entrant code and recursive subroutines somewhat hard to
implement. And even in this decade we find machines which store at program
interrupt the "program status" of the interrupted program at a location
associated with the interrupt rather than with the interrupted program!)

Ten years later, when ALGOL 60 emerged, the scene changed and we did
not talk any more about closed subroutines: we called them "procedures"
instead. They remained to be appreciated by the programmer as a very
handy means for shortening the program text, and more and more pro­
grammers started to use them for the purpose of structuring, so that program
adaptation to foreseen changes in problem specification could be confined
to the replaeement of one or more procedure bodies, or to a procedure call
with some actual parameters changed. But the main novelty was the concept
of the local variables.

This was reflected in two important aspects. The first one was the concept
of "scope", i.e. the idea that not all variables are homogeneously accessible
all through the program: local variables of a procedure are inaccessible from
outside the procedure body, because outside it they are irrelevant. What
local variables a procedure needs to do its private task is its private concern;
it is no concern of the calling main program and the fact that the main
program can (and must!) be conceived independently of these local variables
is judiciously reflected. We may have some misgivings about the specific
scope rules, as embodied in ALGOL 60, but we should appreciate them as a
very significant step in the right direction.

The second aspect of the novelty was given by the fact that procedures
could be used recursively, more precisely, that a procedure was allowed to
call itself, either directly or indirectly. The virtue of this facility has been
the subject of many hot debates; as far as I can see the discussion has died
down. The argument against recursive procedures was always an efficiency
argument: non-re-entrant code could be executed so much more efficiently.
But with the advent of multiprogramming another need for flexible storage
allocation has emerged. And if there are still machines in which non­
re-entrant code can be executed much more efficiently, i.e. in which the use
of recursivl:. routines is punished by too heavy a penalty, then I would venture

48 E. W. DIJKSTRA

the opinion that the structure of such a ma ;hine should now be called
somewhat old-fashioned. The recursive procedure, however, forced upon
us the recognition of the difference between its (static) text and its (dynamic)
activation-its "incarnation" as it has been called. The procedure text is
one thing; the set oflocal variables it operates upon this time is quite another
matter.

So far, so good, but now some of its shortcomings (and I don't care,
whether you call them linguistic or conceptual). Local variables are "created"
upon procedure entry, and are "annihilated" upon procedure exit. It is
precisely this automatic control over the life-time of variables pertaining to
a procedure incarnation that allows us to implement the (recursive) procedures
by means of a stack (i.e. a last-in-first-out storage arrangement). The fact
that local variables pertaining to an incarnation only exist during the incar­
nation make it impossible for the procedure to transmit information behind
the scenes from one incarnation to the next. To overcome this the concept
"own" has been introduced, but this is no solution to the problem: what
own variables are really good for becomes very unclear in the case of
recursion and, secondly, it is impossible to write a set of procedures sharing
a number of own variables. (We can simulate this by declaring them in an
o.uter block, embracing the procedure declarations, but then the scope
rules make them too generally accessible: they can then no longer be regarded
as "behind the scenes".) Our conclusion-by no means new and by no
means only mine!-is that the concept "own" as introduced in ALGOL 60
must be regarded as ill-considered, and that we must look for new ways to
control and describe life-time, accessibility and identity of local variables.

But I have still another complaint about the procedure concept, and that
is that it is still primarily regarded as a means for shortening the program
text (although it may be a text of unknown length as in the case of recursion).
The semantics of the procedure call are described in terms of the famous
"copy rule": the procedure call is to be understood as a short-hand, because,
semantically speaking, we should replace it with a copy of the text of the
procedure body (with suitable adjustments of identifiers and substitutions
for parameters) whereupon the thus modified text will be executed by the
same machine as the one executing the main program. It remains (~ repre­
sentation for) a single program text to be executed by a single sequential
machine. And it is precisely this picture of a single machine that does not
satisfy me any longer.

I want to view tht> main program as executed by its own, dedicated
machine, equipped with the adequate instruction repertoire operating on
the adequate variables and sequenced under control of its own instruction
counter, in order that my main program would solve my problem if I had
such a machine. I want to view it that way, because it stresses the fact that

NOTES ON STRUCTURED PROGRAMMING 49

the correctness of the main program can be discussed and established
regardless of the availability of this (probably still virtual) machine: I don't
need to have it, I only need to have its specifications as far as relevant for
the proper execution of the main program under consideration.

For me, the conception of this virtual machine is an embodiment of my
powers of abstraction, not unlike the way in which I can understand a
program written in a so-called higher level language, without knowing how
all kinds of operations (such as multiplication and subscription) are imple­
mented and without knowing such irrelevant details as the number system
used in the hardware that is eventually responsible for the program execution.

In actual practice, of course, this ideal machine will turn out not to exist,
so our next task-structurally similar to the original one-is to program
the simulation of the "upper" machine. In programming this simulation
we have to decide upon data structures to provide for the state space of the
upper machine; furthermore we have to make a bunch of algorithms, each
of them providing an implementation of an instruction assumed for the
order code of the upper machine. Finally, the "lower" machine may have a
set of private variables, introduced for its own benefit and completely outside
the realm and scope of the upper machine. But this bunch of programs is
written for a machine that in all probability will not exist, so our next job
will be to simulate it in terms of programs for a next-lower machine, etc.
until finally we have a program that can be executed by our hardware.

If we succeed in building up our program along the lines just given, we
have arranged our program in layers. Each program layer is to be understood
all by itself, under the assumption of a suitable machine to execute it, while
the function of each layer is to simulate the machine that is assumed to be
available on the level immediately above it.

Why this model? What are the benefits we hope to derive from it? Let me
try to list them.

(I) Our experience as recorded in "A first example of step-wise program
composition" strongly suggests that the arrangement of various layers,
corresponding to different levels of abstraction, is an attractive vehicle for
program composition.

(2) It is not vain to hope that many a program modification can now be
presented as replacement of one (virtual) machine by a compatible one.

(3) We may hope that the model will give us a better grip on the problems
that arise when a program has to be modified while it is in action. If a
machine at a given level is stopped between two of its instructions, all lower
machines are completely passive and can be replaced, while all higher
machines must be regarded as engaged in the middle of an instruction: their
state must be considered as being in transition. In a sequential machine the

so E. W. DIJKSTRA

state can only be interpreted in between instruction executions and the
picture of this hierarchy of machines, each having its own instruction counter
-"counting its instructions"-seems more profitable if we wish to decide
at any given moment, what interpretations are valid. In the usual pro­
gramming language in which computational progress is measured in a
homogeneous measure-say "the grain" of one statement-I feel somewhat
helpless when faced with the question of which interpretations are valid
when.

(4) We may hope that the model will even assist us in recovery problems
-total or partial-when some malfunctioning has been detected. (Recently
I have been involved in the design and construction of a multiprogramming
system, but one of the most annoying things was our total inability to
estimate (mechanically) the scope of the disaster when a memory cell gave a
parity alarm. The only safe reaction we could implement was instantaneous
machine stop, hardly a solution to be proud of!)

(5) The picture of a layered hierarchy of machines provides a counter
poison to one of the dangers evoked by ruthless application of the principle
"Divide and Rule", viz. that different components are programmed so
independently of each other that duplication of work (or worse) takes place.
The fact that a layer contains "a bunch of programs" to be executed by some
conceptual machine stresses the fact that the programs of this bunch are
invited to share the same primitives. Separation of tasks is a good thing, on
the other hand we have to tie the loose ends together again!

13. A SECOND EXAMPLE OF STEP-WISE PROGRAM COMPOSITION

With a picture of program structure as a layered hierarchy of machines
emerging, my fingers are itching to play with it, i.e. to make another program.
The notational techniques employed should not be regarded as a well­
considered proposal: they have been chosen to suit my fancy and should
be regarded as part of the experiment.

The problem is the following one. There is given a line printer which is
controlled by two commands "NLCR" (New Line Carriage Return) which
defines the utmost left position of the next line as the "currently printable
position", and the command "PRSYM(n)" which prints a character
identified ~y the value of the integer parameter n on the currently printable
position and defines the position immediately to the right of the printed
position as the new currently printable position. (For our discussion we
can regard lines of infinite length as permissible.) We shall only make use of
two specific values of n, called "space" and "mark" respectively. "PRSYM
(space)" causes the currently printable position to remain blank, "PRSYM
(mark)" will print a given, visible character, some sort of asterisk say.

NOTES ON STRUCTURED PROGRAMMING 51

Furthermore two integer function of an integer argument are given,
satisfying

for 0 ~ i < 1000 : 0 ~ fx(i) < 100 and 0 ~ fy(i) < 50.

Now we have to make a program printing 50 lines, numbered from top to
bottom by a y-coordinate running from 49 through 0, the positions on a line
being numbered from left to right by an x-coordinate running from 0 through
99. On the thousand positions (or less in the case of coincidence) given by

x = fx(i) and y = fy(i) for some i satisfying 0 ~ i < 1000

a mark has to be printed; all other positions on the paper have to remain
blank. In other words: a curve is given in a discrete parameter representation
and we wish to use the line printer as a digital plotter.

I have used this problem extensively in viva voce examinations and the
majority of the students quickly discover that, due to the absence of OLCR
(Old Line Carriage Return) and of a "backspace", the order in which the
printable positions have to be served is dictated by the printing commands
and, secondly, that this order has nothing to do with the order of the marks
if we number them, say, in the order of increasing i. As a result they quickly
conclude that the use of storage seems indicated: first the thousand i-values
should be scanned, i.e. the page image should be stored in a convenient
manner, while afterwards, under control of the stored image, the page
should be printed. (To be more precise: we assume that the computer has
sufficient store for this purpose and that the computation of the function
values ''fx (i)" and ''fy(i)" may be so time-consuming that we wish to have
them computed only once for each i-value.)

We now document this design decision, and I propose the following piece
of text:

COMPFIRST

begin

draw: {build; print};

var image;

instr build(image), print(image)

end
The above piece of documentation, which is considered as an integral

part of the final program, should be interpreted as follows.
It refers to a machine called "COMPFIRST" (we use capitals for machine

names and try to express the type of decision reflected in the program made
for them).

The next line gives a named algorithm: its name is "draw" (this being
assumed to be the name of the total program to be made, that has to "draw"

52 E. W. DIJKSTRA

a curve), the algorithm expresses the desired time-succession of two actions,
building the image in store, followed by printing paper under control of the
stored value.

In the last two lines we give the declarations (or declaration headings),
naming the components of the machine for which the above algorithm is
intended. The first line describes that the name "image" will be used for the
data structure that has to accommodate the page image; the variable
"image" is the only component of the state space of this machine. Its
instruction code comprises two instructions, named "build" and "print"
respectively.

Before proceeding, it should be noted that we have used abbreviations,
some of which I do not yet know whether they are very wise or very foolish.
They have both to do with the fact that the variable "image" is a unique
variable of this type.

If the state space should have contained two images, I would have written

"type image;
image var imagel, image2"
expressing that the state space comprises two variables (called "imagel"
and "image2" respectively), with the same set of possible values, this set
being characterised by their type, called "image". In a later step the type
image would enjoy further detailing and this would apply to both variables.
As the set of variables of this type contains only one element, I have ventured
not to distinguish between the set (called "image") and its only element
(also called "image"). When descriptions in COMPFIRST (such as
"build(image)") refer to "image", they refer to the variable; when later
structuring detail is given, it refers to the type image.

The last line contains the code of instructions which are like the procedure
heading. In general they contain the type of the parameters, where the call
contains the variables as actual parameters. Again this seems foolish if the
parameter is uniquely given by its type and for this reason we have mentioned
the actual parameter in the declaration, and have omitted the mentioning
of"image" in the code describing the algorithm "draw". Thus we can reserve
the explicitly mentioned actual parameters for the case where this combina­
torial freedom is actually used.

Before proceeding, I would like to stress that our little algorithm named
"draw" can and should be regarded as a program written for a machine.
We should write the manual for this machine; in it we have to state

(I) that the operation "build" assigns a value to the variable "image"
specifying the image to be printed on paper as given by the functionsfx andfy.

(2) that the operation "print" prints the picture on paper as specified by
the current value of the variable "image".

NOTES ON STRUCTURED PROGRAMMING 53

The fact that it can really be regarded as an algorithm for a machine is
perhaps most easily seen when we consider alternative algorithms for "draw"
e.g.

draw: {print; build}
is wrong, because now the action "print" is undefined;

draw: {build; build; print}
is correct but unnecessarily time-consuming, because the second action
"build" assigns to "image" the value it already has;

draw: {build; print; print}
would make sense: it would print the picture twice.

We now resume our programming task. Ifwe had machine "COMPFIRST"
at our disposal, the little program named "draw" to be executed by it would
do the job. For the sake of argument and in order to be realistic we now
assume that we do not have at our disposal such a machine tailored to our
needs, and therefore our next task (similar to the previous one!) is to make
such a machine.

There are three named entities assumed, viz. "build", "print" and "image'',
where the first two refer to the latter one. As a consequence, a further
detailing of the latter one will affect the two first ones; also, it is very hard
to give any further detailing of the action "print" without any further
commitments as to the structure of "image". The action "build'', however,
admits a further detailing all by itself. And it is for that reason that we take
"build" as our first candidate for further refinement.

We have to describe how the variable "image" will get its value corres­
ponding to the proper positioning of the thousand marks. As a total operation,
it assigns a value to a variable, whose earlier value was undefined: anticipating
that the marks will be added "one at a time", we see, that addition of a next
mark will turn out to be an action operating on an already defined value
of the variable "image". It therefore seems attractive to view the whole
setting of the marks as operating on an already defined value, viz. the one
corresponding to the blank page. This decision leads to

CLEARFIRST
begin
build: {clear; setmarks};
instr clear(image), setmarks(image)
end

where the action "clear" assigns to image the value corresponding to a
picture of fifty blank lines, where the action "setmarks" adjusts the initial
value of image to the one in which the thousand (or less) marks of the curve
have been added.

54 E. W. DIJKSTRA

Again, CLEARFIRST is a machine for which alternative programs could
have been written, e.g.

build: {clear}

would make sense, but would produce fifty blank lines as output;

build: { setmarks; clear}

would contain an undefined operation;

build: {clear; clear; setmarks}

would contain a superfluous operation, just as

build: {clear; setmarks; setmarks}

would, because the second action "setmarks" would only add marks to the
picture that would already be there and therefore would not change the
value of "image".

(Note on notation used. The algorithm explaining "build" in terms of
"clear" and "setmarks" does so without explicitly mentioning "image",
because we do not wish to use the actual parameter notation in algorithms
unless its actual combinatorial freedom is in fact used in this machine.

Furthermore, "build" being a one-parameter operation no separate
identifier for its formal parameter has been introduced. Also this abbreviation
on my part could turn out to be very unwise.)

The next step in the design of the computation-because it can be made
without any further commitments-is to describe how the thousand marks
of the curve will be dealt with in turn. For the time being I propose the
following write-up:

I SCANNER

begin integer i;

setmarks: {i:= O; while i < 1000 do {add mark; i plus l}};

instr add mark(i, image)

end

This algorithm is to be understood in a machine whose instruction repertoire
comprises "add mark(i, image)" which will change the value of "image" in
accordance with the addition of the ith mark. It describes the order in which
the marks are dealt with; it shows all marks will be dealt with exactly once.

But this is not all: a new variable (viz. "i") has been introduced, the
algorithm appeals to a set of actions referring to this variable ("i: = O'',
"i < 1000" and "i plus 1 ") and if I were completely consistent, it seems
that I should list them at the bottom, as possibly requiring further clarifica­
tion at a later stage, just as "add mark". I have not done so (I have treated
them along the same lines as the while-do clause). From the point of view of

NOTES ON STRUCTURED PROGRAMMING 55

language semantics this separate treatment of an implicitly understood
type integer does not seem attractive, and it seems hard to justify, why the
type integer is treated differently from the type "image": both are implicitly
understood in this machine.

Yet I have done it. All the time I design programs for non-existing machines
and add: "if we now had a machine comprising the primitives here assumed,
then the job is done". This is, logically speaking, correct; in practice it is a
joke, because we know very well that we cannot assume a general purpose
machine to be available whose instruction code is so very well tailored to
our needs. We should not close our eyes-nor feign to do so !-to our
responsibility to provide such primitives in a later stage of the design. When
I now appeal to a well-understood type "integer" and the operations defined
on variables of such a type in this exceptional manner, I tlo so with the
intention of expressing that-although these facilities have to be provided
in some form or another-providing these facilities fall outside the scope
of the programmer's responsibility and also that the programmer will
accept any reasonable implementation of them.

Again we are left with a primitive that admits further refinement without
commitment~ regarding the other primitives. We have to describe how
dealing with mark no. i can be expressed in terms of dealing with a position
on the page: we create the machine dealing with the computation of this
position.

COMPPOS

begin integer x,y;

add mark: {x:= fx(i); y:= fy(i); mark pos};

instr mark pos (x, y, image)

end

where "mark pos" will change the current value of the variable "image" in
accordance with the addition of a mark with the co-ordinates "x" and "y"
on the picture to be printed.

(Note. In the last refinement it is explicitly assumed that the functions
fx(i) and fy(i) can be evaluated in any order of their argument values. If
these two thousand function values were to be read from an input stream,
pair wise in a prescribed order of i-values, then the last two machines would
have to be merged into a single one.)

By now I see no possibility of further refinement without committing
myself to the structure of the still rather vague type "image". How do we
propose that this value will be stored? We have to structure the variables
of type "image", or, what amounts to exactl)' the same thing, we have to
choose a- representation for its possible values.

56 E. W. DIJKSTRA

While lecturing at various places I have described versions of this program
to different audiences, and it may be worth-while to point out that at least
twice part of my audience was deeply troubled by the time I had reached
this stage. They felt for instance, that I could not claim that my program,
as far as developed, was correct; they objected to my remark that

draw: {build; print; print}

would produce the same picture twice, for how did I know, that "print" did
not (by means of some side-effect) change the value of "image" before I
had made the primitive "print"? The answer to this, of course, is that
"print" has to do what has been stated and should not do what has not
been stated. But then more objections came: I had failed to show that the
representation was unique, perhaps it was such, that "print" was only a
partial function, undefined for some possible values of "image", etc. The
answer to this seems to be the following: legitimate as such concerns are,
they should be dealt with at the right moment, i.e. not before we commit
ourselves to a representation. It is apparently the strength of our approach
that so much of the program could be written down independently of the
representation to be chosen for the values of the type "image". What we
have done so far seems indeed a judicious exploitation of our power of
abstraction (here abstraction of the particular representation to be chosen
for the data structure "image").

But even if we now come to the conclusion that the time has come to
decide upon the data structure for the type "image" we still do not need to
commit ourselves completely. Faced with the question how to structure
our variable now, we can take our decisions step-wise, just as we have done
with the algorithmic refinements encountered so far.

We recall that the origin of the problem was to be found in the circumstance
that the printing primitives "PRSYM" and "NLCR" forced the computation
to produce the picture line after line going from top to bottom. Let us try
to give recognition to that fact by regarding the image as composed of an
array of lines. I then come to the following next level.

LINER
begin integer j;
image: {array line[O: 49]};
print: {j: = 49; while j ;;;i:: 0 do {lineprint(lineUJ); j minus 1}};
clear: {j: = 49; while j ;;;i:: 0 do {lineclear(line[j]); j minus I}};
mark pos: {linemark(line[y]) } ;
type line;
instr lineprint(line), lineclear(line), linemark(x, line)

end

NOTES ON STRUCTURED PROGRAMMING 57

In the last line but one we have introduced a type called "line"; a type,
I recall, is regarded as a collection of distinguishable values and a variable
of such a type can, at any moment, have one of this collection as its value.
The first line of code expresses that the type "image" is composed of an array
of 50 elements of type "line'', numbered from 0 through 49, and, being the
only type composed from this type, again we abstain from introducing a
new identifier (wisely or not).

Then, "print", "clear'', and "mark pos", being operations that were
understood as operating on an "image" are translated in algorithms expressed
in terms of operations on a line. In the code of these algorithms, the (true)
actual parameter specifies which line; at the end of the description we give
the instruction list, indicating that the actions operate on "a line"; we have
given the type, but not the parameter.

This level introduces some new features. To start with (as in explaining
"image") we treat the structural refinement of a data type on a footing very
similar to the algorithmic refinements (as applied to "print'', "clear" and
"mark pos"). Before this level, our approach could have been regarded as
an effort to establish a discipline for "subroutinisation"-if the reader will
excuse this horrible term !-now we observe that that characterisation of
our effort covers only half of what we are trying to do, as we are trying to
apply a similar technique to data structures as well. Secondly, our previous
machine explained just one entity (instruction or data type) in contrast
to "LINER", which explains a whole bunch of them. The point is that we
try to associate with each level a separate design decision; the decision taken
here is to understand the image from now onwards in terms of lines, and
therefore all operations dealing with an image as such have to be translated
in terms of operations dealing with its lines. The image has been "explained
away", the only unusual type we still have to deal with is the type "line"
and that is what we are going to do now. I draw your attention to the fact
that in the level to come, we have to deal with lines: that lines are used to
compose images from is no longer relevant!

To represent a line we have many different possibilities, e.g. a list of the
the x-coordinates of the positions where a mark should be printed (possibly
sorted in order of increasing x-value), a boolean array of 100 elements, each
element indicating whether the corresponding position on the line of the
picture should be marked, or an integer array of 100 elements, each element
having the value "mark" or "space" of the PRSYM-parameter for the
corresponding printable position. The last representation caters for extension
when different curves (with different marks) have to be printed in the same
picture ; therefore we select the last one.
This leads to

58

LONG REP

begin integer k;

E. W. DIJKSTRA

line: {integer array sym[O : 99]};

lineprint: {k:= O; while k < lOOdo {PRSYM(sym[k]); k plus l }; NLCR};

lineclear: {k:= O;whilek < lOOdo{sym[k]:= space;kplusl}};

linemark: {sym[x]:= mark}

end
This however leads to an implementation filling out the line with spaces

at the righthand side of the rightmost mark: it is like banging the space
bar until the bell rings when we want to effect the transition to a new para­
graph while writing a letter!

The next version suppresses superfluous PRSYM-commands and even
leaves those elements of the variable of type "line" undefined that do not
need to be defined. With each line a counter ''!" is associated, giving the
number of PRSYM-commands to be given for that line. Clearing a line
now shrinks into setting ''f''to zero!

SHORTREP
begin integer k;

line: {integer f; integer array sym[O : 99]};
lineprint: {k:= O; whilek </do {PRSYM(sym[k]); kplus l}; NLCR};
lineclear: {/: = 0} ;
linemark: { sym[x] : = mark;

end

if/~ xdo {k:= f; while k < xdo {sym[k]:= space; k plus l};

f:=x+t}}

Note added later.
The above program is essentially the program as I have shown it to at

least five different audiences. Now, two months later, while thinking at
leisure about correctness proofs, I suddenly realise that the given algorithm
for "linemark" betrays my past, for it is a piece of lousy coding, compared
with the following alternative:

linemark: {while/~ xdo {sym[f]:= space;fplus l};
sym[x]:= mark}

a version which guarantees that whenever "sym[x]: = mark" is executed,
the relation "x < f" will always be satisfied: it is precisely the function of
the first line to see to this. The reader is invited to try to understand both
versions of linemark and to compare both reasonings. He will then agree
with my judgement that the original version is lousy.

NOTES ON STRUCTURED PROGRAMMING 59

The secon"d version jumped into my mind on account of the following
observation. The conditional clause

"if B do S"

is used in programs in two different ways. On the one hand we have the
applications, in which the execution of the statement S does not invalidate
the truth of B, on the other hand we have the situations in which the execution
of the statement S is guaranteed to invalidate the truth of B. In the latter
case, it is the function of the conditional statement to ensure that after its
execution B will not hold. It is then, essentially, a shortcut for

"while B do S",

which has the property of invalidating the truth of B (provided that it stops),
but the justification of the shortcut requires a separate proof that the repeated
statement will be executed at most once. (In "A first example of step-wise
program composition" we did not bother to introduce this shortcut on
level 2b4(4) where he wrote

"while "ord too small" do "increase ord by one"";

here a conditional clause would have done the job!)

14. ON WHAT WE HAVE ACHIEVED

One of the metaphors in which I find myself thinking about the program
structure envisaged regards the program as a necklace, strung from individual
pearls.

We have described the program in terms of levels and each level contained
"refinements" of entities that were assumed available in higher levels. These
refinements were either dynamic refinements (algorithms) or static refine­
ments (data structures) to be understood by an appropriate machine. I use
the term "pearl" for such a machine, refinements included.

or

Our previous program consists of a necklace of six pearls, in order either

COMPFIRST

CLEARFIRST

I SCANNER

COMPPOS

LINER

LONG REP

60

COMP FIRST

CLEARFIRST

I SCANNER

COMPPOS

LINER

SHORTREP.

E. W. DIJKSTRA

LONGREP and SHORTREP are two different pearls, they explain the
same concepts (from the "upper face") into the same concept (of the "lower
face"); only the particular refinements differ: they are as alternative programs
for the same job and the same machine.

Changing a program will be treated as replacing one or more pearls of
the original necklace by one or more other pearls. The pearl is the individual
unit from which programs are composed. Making a program (as a member
of a class of related programs) is now regarded as a two-stage process:
making pearls (more than strictly necessary) and then stringing a fitting
necklace out of (a selection of) them.

The reasons for this two-stage approach are many. In designing a program
we have to consider many, many alternative programs and once our program
is finished, we will have to change it (into one of the alternative ones). As
long as programs are regarded as linear strings of basic symbols of a pro­
gramming language and, accordingly, program modification is treated as
text manipulation on that level, then each program modification must be
understood in the universe of all programs (right or wrong!) that can be
written in that programming language. No wonder that program modification
is then a most risky operation! The basic symbol is too small and meaningless
a unit in terms of which to describe this. The pearl, embodying the independent
design decision or, as the case may be, an isolated aspect of the original
problem statement, is meant to be the natural unit for such modifications.

To rephrase the same argument: with the birth of ALGOL 60, syntax was
discovered as a powerful means for expressing structure in a program text.
(Syntax became so glorified that many workers in the field identified
Computing Science with Syntactic Analysis!) It was slightly overlooked,
however, that by expressing structure via syntax, this structure is only given
very indirectly, i.e. to be derived by means of a parsing algorithm to be
applied to a linear sequence of basic symbols. This hurts if we realise that
many a program modification leaves large portions of the structure un­
affected, so that after painful re-parsing of the modified text the same
structure re-emerges! I have a strong feeling that the adequacy of context­
free methods for the representation of structure has been grossly over-

NOTES ON STRUCTURED PROGRAMMING 61

estimated. (In my immediate environment the following program bug in an
ALGOL 60 program was brought to my attention. A program produced
erroneous output with a completely checking implementation which in
addition to the program text requires a final "progend" after the last "end";
this additional character is refused everywhere else so that a correct "begin -
end" bracketing can be established. It turned out that

(l) somewhere in the program a closing string quote was omitted;

(2) somewhere further down in the program text an opening string quote
was omitted;

(3) the "begin - end" structure of the resulting program was syntactically
correct;

(4) the identifiers declared between the two omissions were only used
between the two omissions, so that even context-dependent checks were
unable to give alarm.

Having already my doubts as to the adequacy of context-free methods for
expressing macroscopic structure, I was delighted when this bug was shown
to me!)

The more I think about pearls, the more I feel that something like them
is the only way out of it, if we recognise our responsibility to take (for a
large program) say a thousand (possible) versions into consideration. You
cannot expect the programmer to make all these thousand versi.Jns from
scratch, independent of each other. The only way I see to produce such a
potential variety is by a combinatorial technique, i.e. by making more pearls
(say 250) than needed for a single necklace (say 200) and stringing a necklace
from a particular selection. I see no other feasible way. The other mechanism
to achieve great variety by combinatorial means is permutation, but this is
denied to us because the final necklace must be a fitting necklace and, given
the pearls, the order in which they have to be strung on the thread to produce
a fitting necklace is pretty well defined. And also: if it is not, the permissible
change of order is pretty irrelevant!

Also, the pearl gives a clear status to an "incomplete" program, consisting
of the top half of a necklace: it can be regarded as a complete program to be
executed by a suitable machine (of which the bottom half of the necklace
gives a feasible implementation). As such, the correctness of the upper half
of the necklace can be established regardless the choice of the bottom half.
Between two successive pearls we can make a "cut" which is a manual for a
machine, provided by the part of the necklace below the cut and used by
the program represented by the part of the necklace above the cut. This
manual serves as an interface between the two parts of the necklace. We.feel

62 E.W. DIJKSTRA

this form of interface more helpful than regarding data-representation as
an interface between operations, in particular more helpful towards ensuring
the combinatorial freedom required when a program has to be adapted.

Another remark concerns the range of validity of concepts along the
necklace. For instance, the concept "image" is introduced in our top pearl
"COMPFIRST" and is explained away in our bottom pearl but one, viz.
"LINER". If we now come to the conclusion that the program as envisaged
is too demanding on storage space so that we cannot afford to introduce
the variable "image'', we are faced with a major program revision and we
have to replace the top five pearls by other ones, because that is the range
of validity of the concept "image"! The bottom pearl (either "LONGREP"
or "SHORTREP"), however, can be retained. (I mention this as an example
of the fact that pearl exchange is by no means restricted to exchange of the
bottom pearl.)

With respect to the validity range of concepts along the necklace I would
like to ask your attention for an observation which thrilled me the first time
I made it. (In retrospect it is pretty obvious and that is exactly why it may
be worth-while to be explicit about it.) With each pearl we associate "an
independent design decision" and the ordering of the pearls along the
necklace therefore implies an ordering of the design decisions. Can we change
this order? Yes, we can, although we then have different pearls. By way of
experiment I have followed the well-known advice: if you are faced with
two primitives-in our case "build" and "print"--decide immediately upon
their interface-in our example "image"-so that the two primitives can now
be refined independently of each other. So I did, and I came to the following
form of necklace

COMPFIRST

LINER'

CLEARFIRST'

I SCANNER'

COMPPOS'

SHORTREP

(the four middle pearls being primed to indicate that they refer to different
pearls, although they embody the same decisions as the ones in the original
set). The resulting program is much messier. Why?

Along the necklace we can indicate for each concept its range of validity:
of course they overlap and we can view them as the individual threads from
which the whole explanation is twined, as a kind of "logical rope". The
messy version has a logical rope twined from more and sometimes longer
individual threads: its logical rope is thicker, the whole construction is more

NOTES ON STRUCTURED PROGRAMMING 63

tightly interconnected. The observation thrilled me because it gave a very
convincing demonstration (at least for me!) that elegance, clarity and the
like have indeed marked quantitative aspects (as Mozart knew: many of
his compositions that make one catch one's breath are misleadingly simple,
they seem to be made just out of practically nothing!).

We can phrase the observation in more technical terms. The primed version
is messy because the image is explained away in terms of lines at too early a
stage, thereby forcing us to explain "CLEARFIRST'', "ISCANNER" and
"COMPPOS" in terms of lines, while they could still be explained in terms
of the image, i.e. independent of the representation to be chosen for it. Or,
in other words, in the original version we have made a more judicious
exploitation of our power of abstraction than in the primed one. The larger
the number of pearls independent of the particular representation, the more
adaptable one's program and the more easily understandable-because
that set of pearls can be understood at a higher level of abstraction. The
experience seems to indicate that the goals of adaptability and clarity have
been given some substance and (what is more) go by their very nature hand
in hand. This is very encouraging (although not surprising).

It also gives-me at least-a somewhat clearer picture of the scope of my
present efforts. Whatever I shall develop, it will not be a General Problem
Solver, not a mechanical one, not even one written for the benefit of the
human problem solver. But it may give the human some appreciation for
the various aspects of "elegance" of a solution when he succeeds in finding
one. And as such it may give him a guide line.

15. ON GROUPING AND SEQUENCING

While we are considering a programming tool in which explicit recognition
has been given to the hierarchy of levels of abstraction, the present section
is also applicable to programming in programming languages as they are
understood today, viz. on a constant semantic level. (And there is a fair
chance that the current section has its morals outside the restricted field of
programming, for it seems to be concerned with problem solving in general.)

I shall illustrate my point with two examples, both of which, again, I have
used in viva voce examinations. I owe the first example to Niklaus Wirth.

The problem is to construct a program generating non-empty sequences
of O's, l's and 2's without non-empty, element-wise equal, adjoining sub­
sequences, generating these sequences in alphabetical order until a sequence
of length 100 (i.e. of 100 digits) has been generated. The programmer may
make use of the knowledge that a sequence of length 100 and satisfying the
conditions actually exists. The start of the list of sequences to be generated is:

64

0
01
010
0102
01020
010201
0102010
0102012

E.W. DUKSTRA

Each solution (apart from the first one) is an extension (by one digit)
of an earlier solution and the algorithm is therefore a straightforward
backtracking one.

We are looking for the "good" sequences, we assume a primitive available
for the investigation of whether a trial sequence is good. If it is good, the
trial sequence is printed and extended with a zero to give the next trial
sequence; if the trial sequence is no good, we perform on it the operation
"increase" to get the next trial sequence, i.e. final digits = 2 are removed
and then the last remaining digit is increased by 1. (The operations "extend
with zero" and "increase" guarantee that trial sequences are generated in
alphabetical order, the solutions, being a selection from them, will then be
printed in alphabetical order as well.) The algorithm will start investigating
the following trial sequences, those marked by an asterisk will be rejected as
"no good":

0
• 00

01
010

• 0100
• 0101

0102
01020

• 010200
010201
0102010

• 01020100
• 01020101
• 01020102
• 0102011

0102012

NOTES ON STRUCTURED PROGRAMMING 65

I found the majority of my students inclined to make a program with the
following structure:

"set trial sequence to single zero;

repeat if good then

begin print trial sequence; extend trial sequence with zero end

else

increase trial sequence

until length = IO I"

Although a program along these lines produces the correct output,
objections can-and to my taste: should-be made against it. The first
objections regards the stopping criterion: when a solution of length 100
has been printed, we (knowing the algorithm) can deduce that after that for
the first time the trial sequence will have length = 101 and this is now the
criterion to stop, but this is a rather indirect and tortuous way to establish
the stopping criterion. (How tortuous it is was clearly demonstrated by those
students who did not see that an unnecessary trial sequence was generated
and declared for the trial sequence an array of 100 elements instead of 101.)
The second objection is that the operation "increase trial sequence" never
increases its length: after rejection of a trial sequence a superfluous test
on the length is performed. (When I used this example for student examina­
tion examinations I had not stressed very explicitly in my lectures any
problem solving principles, so my disappointment was not too severe. In a
sense I am glad to have observed these examinations, for it was for me an
incentive to stress problem solving principles as far as I could find, formulate
and teach them.)

The program to which the above objections do not apply treats the empty
sequence as a virtual solution, not to be printed. It has-to the same level of
detail-the following structure:

"set trial sequence empty;

repeat extend trial sequence with zero;

while no good do increase trial sequence;

print trial sequence

until length = 100"

Here length is the length of the solution printed (if any), thus avoiding
the tortuous reasoning for the stopping criterion. Also no superfluous last
trial sequence (never to be investigated) will be generated, thanks to the
fact that we have two loops inside each other, superfluous length testing
no longer occurs. Those for whom efficiency is the main criterion will
probably be most convinced by the last observation. I myself, who attach

66 E. W. DIJKSTRA

considerable importance to understandability, am attracted to the latter
program because I can interpret it as a further refinement of the program
structure

"set sequence empty;

repeat transform sequence to next solution;

print sequence

until length = 100"
This (more abstract) program is only concerned with sequences that are

solutions: on this level of description one can ignore that the transition
from one solution to the next takes place via a sequence of trial solutions
that turn out to be failures.

I owe to Joe Weizenbaum the second example. Make a program that, for
given positive integer n, determines the smallest number s that can be
decomposed into the sum of two nth powers in at least two non-trivially
different ways.

(for n = I s = 2 = 01 + 21 = 11 + 11

n = 2 s = 25 = 02 + 52 = 32 + 42

n=3 s=l729=1 3 +123 =93 +103

n = 4 s = 635318657 = 594 + 1584 = 1334 + 1344
)

When I first used this example in an oral examination, it took the student
twenty minutes to get somewhat familiar with the problem and he then
sketched a searching algorithm which-when patched up-could indeed
find a number that allowed multiple decompositions into sums of two nth
powers, but he could nol prove that when his algorithm produced a value s
that it would be the minimum value. (As a matter of fact he had, up till then,
ignored that part of the problem statement.)

He then regrouped his forces and made a program of the following form:
"integer s, k;

s:= I;
repeat s: = s + l ;

k: = "the number of ways in which s can be decomposed as the sum
of two nth powers"

until k > I

thus arriving at a hopelessly inefficient algorithm. The error he made was
the decision at too early a stage to investigate the natural numbers in
succession, the overwhelming majority of which are not decomposable at all.
Reasoning that the value we are looking for is the smallest decomposable
number satisfying an additional property, one comes to an algorithm whose
first sketch could be

NOTES ON STRUCTURED PROGRAMMING

••integer k, s, t;
t: = 1 (and further initialisation);

repeats:= "smallest decomposable value larger than t";

k: = "the number of ways the above minimum is obtained"

t:= s
until k > I"

67

By storing a collection of triples (number pairs with their corresponding
s-value), among which each time the pair(s) with minimums-value exceeding
t will occur and adjusting this collection each time t is increased, a program
emerges that is orders of magnitude more efficient, t jumping from decom­
posable value to the next decomposable value. Programming (or problem
solving in general?) as the judicious postponement of decisions and commit­
ments!

16. DESIGN CONSIDERATIONS IN MORE DETAIL

Preceding sections-in particular "A first example of step-wise program
composition." have evoked the criticism that I have oversimplified the
design process almost to the extent of dishonesty; I don't think this criticism
fully unjustified and to remedy the situation I shall treat two examples in
greater detail. The first example is my own invention; I have tried it out
in a few oral examinations and finally I have used it at the end of my course
"An introduction into the Art of Programming" in the classroom. I posed
the problem to an audience of fifty students and together, with me as leader
of the discussion, they solved the problem in 90 minutes.

We consider a character set consisting of letters, a space(sp) and a
point(pnt). Words consist of one or more, but at most twenty letters. An
input text consists of one or more words, separated from each other by one
or more spaces and terminated by zero or more spaces followed by a point.
With the character valued function RNC (Read Next Character) the input
text should be read from and including the first letter of the first words up
to and including the terminating point. An output text has to be produced
using the primitive PNC(x) (i.e. Print Next Character) with a character
valued parameter. If the function of the program were to copy the text, the
following program would do (assuming character valued variables at our
disposal)

char x;

repeat x:= RNC; PNC(x) until x = pnt

In this example, however, the text is to be subjected to the following
transformation:

68 E.W. DIJKSTRA

(1) in the output text, successive words have to be separated by a single
space

(2) in the output text, the last word has to be followed by a single point

(3) when we number the words 0, 1, 2, 3, ... in the order from left to
right (i.e. in which they are scanned by repeated evaluation of RNC), the
words with an even ordinal number have to be copied, while the letters of
the words with an odd ordinal number have to be printed in the reverse
order.

For instance (using "-" to represent a space) the input text

"this-is-a-silly-program-."

has to be transformed into

"this-si-a-yllis-program."

My reader is cordially invited to try this program himself, before reading
on and to record his considerations so as to enable himself to compare them
with the sequel. (It should take an experienced programmer much less than
90 mi~utes!)

The unknown length of the non-empty input text suggested a program of
the structure

prelude;

repeat something until ready;

coda

but immediately this question turned up: "With how much do we deal
during a single execution of "something"?". Four suggestions turned up:

(I) a single character of the input text

(2) a single character of the output text

(3) a word (of both texts)

(4) two successive words (of both texts)

The first two suggestions were rejected very quickly and without much
explicit motivation, although-or because?-it is not too difficult to provide
it. (The first one is unattractive because the amount of output that can be
produced on account of the next character of the input text varies wildly;
for the second suggestion a similar objection holds. Apart from that, a
program with a loop in a loop is in general cleaner: this suggests to look
for larger portions.) The audience rejected the fourth suggestion on account
of the remark that the terminating point could come equally well after an
even number of words as after an odd number of words. To make the
selection of the third suggestion explicit, we wrote on the blackboard:

NOTES ON STRUCTURED PROGRAMMING

prelude;
repeat process next word until point read;
coda

69

Everyone was satisfied in as far as this program expresses neatly that the
output words are dealt with in exactly the same order as the corresponding
input words are read, but it does not express that half of the words are to be
printed in reverse order. When this was pointed out to them, they quickly
introduced a state variable for the purpose. A first suggestion was to count
the number of words processed and to make the processing dependent on
the odd/eveness of this count, but a minor hesitation from my side was
enough for the discovery that a boolean variable would meet the situation.
It was decided that the "prelude" should include

"forward:= true"

while in "process next word" the printing in the order dependent on the
current value of "forward" should be followed by

"forward:= non forward"
For me it was very gratifying to see that they introduced the variable

"forward" before bothering about the details of word separation, which
then became their next worry. It took them more time to realise that a
further refinement of "process next word" required exact specification of
which characters of the input text were going to be read and which characters
of the output text were going to be printed at each execution of the repeatable
statement. In fact, I had to pose the question to them and, after having done
so, I asked them in which of the two texts the grouping presented itself
most naturally. They selected the output text and chose the following
grouping (indicating separation with a vertical bar):

I this-I si-1 a-I yllis-1 program. I
i.e. in units of a word followed by a proper terminator. I then asked for the
corresponding grouping of the input characters. When their attention had
been brought to the terminators, they suggested (from right to left!) the
following separation of the input characters:

I this-i Is-a 1-s I illy-p I rogram-.1
as soon as one of them had remarked that the program could only "know"
that an output word should be followed by a space after having "seen" the
first letter of the next input word. I then remained silent, leaving them
gazing at their grouping of the symbols until one of them discovered that
the exceptional grouping of the characters of the first input word was
inelegant, that the grouping should be

t I his-i Is-a 1-s I illy-p I rogram-.1
i.e. that the first character of the first word should be read in the prelude

70 E.W. DIJKSTRA

Another variable was introduced and we arrived at

boolean forward; char x;

forward:= true; x:= RNC;

repeat process next word;

forward:= non forward

until x = pnt

in which the second line represents the prelude; in the meantime it had been
decided that the coda could be empty.

The above stage had been reached after the first 45 minutes and we had
our interval for coffee. Personally I felt that the problem had been solved,
that from now onwards it was just a matter of routine; as it turned out, my
audience was not practised enough and it took another 45 minutes to complete
the program.

Unanimously they decided to introduce a

char array c[I :20]

to store the letters of the word. (No one discovered that reading the letters
and printing them in the reverse order could be done by a recursive routine!)
Essentially, four things have to be done: the letters of the word have to be
read, the letters of the word have to be printed, enough has to be read to
decide which terminator is to be printed and the terminator has to be printed.
I did not list these four actions, I did not ask for an explicit decision on how
to group and/or combine them. The audience decided that first all reading
should be done and thereafter all printing. (From their side this was hardly
a conscious decision.)

Trying to refine the reading and the printing process they hit an unsuspected
barrier: they were-at least for me, surprisingly-slow in discovering that
they still had to define an interface between reading and printing through
which to transmit the word to be processed, no matter how obvious this
interface was. It took a long time before anyone formulated that c[i] should
equal the ith character of the word when read from left to right. Perhaps
half of the audience was wondering what all the fuss was about, but it took
an equally long time to discover that the length of the word needed some
form of representation as well. No one suggested to do this by storing a
terminator, they introduced a separate integer "/", counting the number of
letters of the word. They decided that the first word "this" should be
represented by

c[l] = "t'', c[2] = "h", c[3] = "i", c[4] = "s" and I= 4

They still had difficulty in arriving at the reading cycle and it was only
when I had said repeatedly "so we have decided that"/" is going to represent

NOTES ON STRUCTURED PROGRAMMING 71

the number of letter of the word stored in the array" that they arrived for
the beginning of the reading process at

/:= O;

repeat/:= I+ l; c[/]:= x; x:= RNC until x = sp or x = pnt

(In the first draft "or x = pnt" was missing, but this was remedied quickly.)
Once this was on the blackboard they completed the reading process without
much hesitation:

while x = sp do x:= RNC

When we turned our attention to the printing process, they were more
productive. Clearly the reading process had shown them the purpose of the
interface and suggestions came from various sides. I had never described
the dilemma to them (see page 24), whether to code an alternative
clause selecting between two repetitions or a repetitive clause repeating an
alternative statement. I was waiting for the dilemma to turn up, it came
and I showed it to them. Then I had a surprise, for one of the students
suggested to map the two loops on each other with the aid of more variables.
We introduced three integers "k. inc, term" and the printing of the letters
became

if forward then begin k: = 0; inc:= + 1 ; term:= I end

else begin k : = I + l ; inc: = - 1 ; term : = 1 end;

repeat k:= k +inc; PNC(c[k]) until k =term

followed by

if x = pnt then PNC(pnt) else PNC(sp).

Thus we arrived at the following program:

boolean forward; char x; char array c[1 :20]; integer /, k, inc, term;

forward:= true;x := RNC;

repeat /: = O;

repeat/:= I+ 1; c[/]:= x;x:= RNC uotilx = sp or x = pnt;

while x = sp do x:= RNC;

if forward then begin k: = 0; inc:= + 1 ; term:= I end

else begin k: = I + 1 ; inc:= - 1 ; term:= 1 end;

repeat k:= k +inc; PNC(c[k]) until k =term;

if x = pnt then PNC(pnt) else PNC(sp);

forward:= non forward

until x = pnt

72 E. W. DIJKSTRA

This section has not been included because the problem tackled in it is
very exciting. On the contrary, I feel tempted to remark that the problem
is perhaps too trivial to act as a good testing ground for an orderly approach
to the problem of program composition. This section has been included
because it contains a true eye-witness account of what happened in the
classroom. It should be interpreted as a partial answer to the question that
is often posed to me, viz. to what extent I can teach programming style.
(I never used the "Notes on Structured Programming"-mainly addressed
to myself and perhaps to my colleagues-in teaching. The classroom
experiment described in this section took place at the end of a course
entitled "Introduction into the Art of Programming", for which separate
lecture notes-with exercises and all that-were written. As at the moment
of writing the students that followed this course have still to pass their
examination, it is for me still an open question how successful I have been.
They liked the course, I have heard that they described my programs as
"logical poems", so I have the best of hopes.)

17. THE PROBLEM OF THE EIGHT QUEENS

This last section is adapted from my lecture notes "Introduction into the
Art of Programming". I owe the example-as many other good ones-to
Niklaus Wirth. This last section is added for two reasons.

Firstly, it is a second effort to do more justice to the process of invention.
(As a matter of fact I start where the student is not familiar with the concept
of backtracking and aim at discovering it as I go along.)

Secondly, and that is more important, it deals with recursion as a program­
ming technique. In preceding sections (particularly in "On a program model")
I have reviewed the subroutine concept; there it emerged as an embodiment
of what I have also called "operational abstraction". In the relation between
main program and subroutine we can distinguish quite clearly two different
semantic levels. On the level of the main program the subroutine represents
a primitive action; on that level it is used on account of "what it does for
us" and on that same level it is irrelevant "how it works". On the level of
the subroutine body we are concerned with how it works but can-and
should-abstract from how it is used. This clear separation of the two
semantic levels "what it does" and "how it works" is denied to the designer
of a recursive procedure. As a result of this circumstance the design of a
recursive routine requires a different mental skill, justifying the inclusion of
the current section in this manuscript. The recursive procedure has to be
understood and conceived on a single semantic level: as such it is more like
a sequencing device, comparable to the repetitive clauses.

NOTES ON STRUCTURED PROGRAMMING 73

It is requested to make a program generating all configurations of eight
queens on a chessboard of 8*8 squares such that no queen can take any of
the others. This means that in the configurations sought, no two queens
may be on the same row, on the same column or on the same diagonal.

We don't have an operator generating all these configurations, this
operator is precisely what we have to make. Now there is a very general way
(cf. "On grouping and sequencing") of tackling such a problem, which is as
follows.

Call the set of configurations to be generated: set A. Look for a set B of
configurations with the following properties:

(I) set A is a subset of set B

(2) given an element of set B it is not too difficult to decide whether it
belongs to set A as well

(3) we can make an operator generating all elements of set B.

With the aid of the generator (3) for the elements of set .TJ, all elements of
set B can then be generated in turn; they will be subjected to the decision
criterion (2) which decides whether they have to be skipped or handed over,
thus generating elements of set A. Thanks to (I) this algorithm will produce
all elements of set A.

Three remarks are in order.

(1) If the whole approach is to make sense, set Bis not identical to set A,
and as it must contain set A as a (true) subset, it must be larger than set A.
For reasons of efficiency, however, it is advisable to choose set B "as small as
possible": the more elements it has, the more elements of it have to be
skipped on account of the decision criterion (2).

(2) We should look for a decision criterion that is cheap to apply, at least
the discovery that an element of B does not belong to A should (on the
average) be cheap. Also this is dictated by efficiency considerations, as we
may expect set B to be an order of magnitude larger than set A, i.e. the
majority of the elements of B will have to be rejected.

(3) The assumption is that the generation of the elements of set B is
easier than a direct generation of the elements of set A. If, nevertheless, the
generation of the elements of set B still presents difficulties, we can repeat
our pattern of thinking, re-apply the trick and look for a still larger set C
of configurations that contains Bas a subset etc. (And, as the careful reader
will observe, we shall do so in the course of this example.)

Above, we have sketched a very general approach, applicable to many,
very different problems. Faced with a particular problem, i.e. faced with a
specific set A, the problem of course is what to select for our set B.

74 E. W, DIJKSTRA

In a moment of optimism one could think that this is an easy matter, as we
might consider the following technique. We list all the mutually independent
conditions that our elements of set A must satisfy and omit one of them.
Sometimes this works but as a general technique it is too naive: its short­
comings become apparent when we apply it blindly to the problem of the
eight queens. We can characterise our solutions by the two conditions

(1) there are 8 queens on the board

(2) no two of the queens can take each other.

Omitting either of them gives for set B the alternatives

Bl: all configurations with N queens on the board such that no two queens
can take eachother

B2: all configurations of 8 queens on the board.

But both sets are so ludicrously huge that they lead to utterly impractical
algorithms. So we have to be smarter. The burning question is: "How?".

Well, at this stage of our considerations, being slightly at a loss, we are
not so much concerned with the efficiency of our final program as with the
efficiency of our own thought processes! So, if we decide to make a list of
properties of solutions, in the hope of finding a useful clue, this is a rather
undirected search and therefore we should not invest too much mental
energy in such a search, that is: for a start we should restrict ourselves to
their obvious properties.

(I gave the puzzle as a sobering exercise to one of the staff members of
the Department of Mathematics at my University, because he expressed
the opinion that programming was easy. He violated the above rule and,
being, apart from a pure, perhaps also a poor mathematician, he started
to look for interesting, non-obvious properties. He conjectured that if the
chessboard were divided in four squares of 4*4 fields, each square should
contain two queens, and then he started to prove this conjecture without
having convinced himself that he could make good use of it. He still has
not solved the problem and, as far as I know, has not yet discovered that
his conjecture is false.)

Well, let us go ahead and let us list the obvious properties we can think of.

(a) No row may contain more than one queen, 8 queens are to be placed
and the chessboard has exactly 8 rows. As a result we conclude that
each row will contain precisely one queen.

(b) Similarly we conclude that each column will contain precisely on queen.

(c) There are 15 "upward" diagonals, each of them containing at most one
queen, i.e. 8 upward diagonals contain precisely one queen and 7 upward
diagonals are empty.

"'!OTES ON STRUCTURED PROGRAMMING 75

(d) Similarly we conclude that 8 downward diagonals contain precisely
one queen and 7 are empty.

(e) Given any non-empty configuration of queens such that no two of them
can take each other, removal of any one of these queens will result in a
configuration sharing that property.

Now the last property is very important. (To be quite honest: here I feel
unable to buffer the shock of invention!) In our earlier terminology it tells
us something about any non-empty configuration from set Bl. If we start
with a solution (which is an 8-queen configuration from set Bl) and take
away one queen we get a 7-queen configuration from set Bl ; taking away a
next queen will leave again a configuration from set Bl and we can repeat
this process until the chessboard is empty. We could have taken a motion
picture of this process: playing it back backwards it would show how,
starting from an empty board, via configurations from set Bl that solution
can be built up by adding one queen at a time. (Whether the trick of the
motion picture played backwards is of any assistance for my readers is not
for me to judge; I only mention it because I know that such devices help me.)
When making the picture, any solution could be reduced to the empty board
in many ways, in exactly the same number of ways-while playing it back­
wards-each solution can be built up. Can we exploit this freedom? We have
rejected set Bl because it is too large, but maybe we can find a suitable
subset of it, such that each non-empty configuration of the subset is a
one-queen extension of only one other configuration of the subset. The
"extension property" suggests that we are willing to consider configurations
with less than 8 queens on the board and that we would like to form new
configurations by adding a queen to an existing configuration-a relatively
simple operation presumably. Well, this draws our attention immediately
to the generation of the elements of the (still mysterious) set B. For instance,
in what order? And this again raises a question to which, as yet, we have not
paid the slightest attention: in what order are we to generate the solutions,
i.e. the elements of set A? Can we make a reasonable suggestion in the hope
of deriving a clue from it? (In my experience such a question about order is
usually very illuminating. It is not only that we have to make a sequential
program that by definition will generate the solutions in some order, so that
the decision about the order will have to be taken at some stage of the game.
The decision about the order usually provides the clue to the proof that the
program will generate all solutions and each solution only once.)

Prior to that we should ask ourselves: how do we characterise solutions
once we have them? To characterise a solution we must give the positions
of 8 queens. The queens themselves are unordered, but the rows and the
columns are not: we may assume them to be numbered from 0 through 7.

76 E. W. DIJKSTRA

Thanks to property (a) which tells us that each row contains precisely one
queen, we can order the queens according to the number of the row they
occupy. Then each configuration of8 queens can be given by the value of the
integer array x [0:7], where

x[i] = the number of the column occupied by the queen in the ith row.

Each solution is then a "8-digit word" (x[O] ... x[7]) and the only sensible
order in which to generate these words that I can think of is the alphabetical
order.

Note. As a consequence we open the way to algorithms in which rows and
columns are treated differently, while the original problem was symmetrical
in rows and columns! To consider asymmetric algorithms is precisely what
the above considerations have taught us!

Returning to the alphabetical order: now we are approaching familiar
ground. If the elements of set A are to be generated in alphabetical order
and they have to be generated by selection from a larger set B, then the
standard technique is to generate the elements of set B in alphabetical order
as well and to produce the elements of the subset in the order in which they
occur "in set B.

First we have to generate all solutions with x[O] = 0 (if any), then those
with x[O] = I (if any) etc.; of the solutions with x[O] fixed, those with
x[l] = 0 (if any) have to be generated first, followed by those with x[l] = I
(if any) etc. In other words: the queen of row 0 is placed in column 0--say
the square in the bottom left corner-and remains there until all elements
of A (and B) with queen 0 in that position have been generated and only
then is she moved one square to the right to the next column. For each
position of queen 0, queen I will walk from left to right in row I-skipping
the squares that are covered by queen 0--for each combined position of the
first two queens, queen 2 walks along row 2 from left to right, skipping all
squares covered by the preceding queens, etc.

But now we have found set B! It is indeed a subset of BI, set B consists of
all configurations with one queen in each of the first N row$, such that .no
two queens can take each other.

The criterion deciding whether an element of B belongs to A as well is
that N = 8.

Having established our choice for set B, we find ourselves faced with the
task of generating its elements in alphabetical order. We could try to do this
via an operator "GENERATE NEXT ELEMENT OF B" with a program
of the form

NOTES ON STRUCTURED PROGRAMMING

INITIALISE EMPTY BOARD;

repeat GENERATE NEXT ELEMENT OF B;

if N = 8 then PRINT CONFIGURATION

until B EXHAUSTED .

77

(Here we have used the fact that the empty board belongs to B, but not to A,
and is not B's only element. We have made no assumptions about the
existence of solutions.)

But for two reasons a program of the above structure is less attractive.
Firstly, we don't have a ready-made criterion to recognise the last element
of B when we meet it and in all probability we have to generalise the operator
"GENERATE NEXT ELEMENT OF B" in such a way that it will produce
the indication "B EXHAUSTED" when it is applied to the last "true"
element of B. Secondly, it is not too obvious how to make the operator
"GENERATE NEXT ELEMENT OF B": the number of queens on the
board may remain constant, it may decrease and it may increase.

So that is not too attractive. What can we do about it? As long as we
regard the sequence of configurations of set B as a single, monotonous
sequence, not subdivided into a succession of subsequences, the corresponding
program structure will be a single loop as in the program just sketched.
If we are looking for an alternative program structure, we must therefore
ask ourselves "How can we group the sequence of configurations from set B
into a succession of subsequences?".

Realising that the sequence ot configurations from set B have to be
generated in alphabetical order and thinking about the main subdivision in
a dictionary-viz. by first letter-the first grouping is obviol!s: by position
of queen 0.

Generating all elements of set B-for the moment we forget about the
printing of thost: configurations that belong to set A as well-then presents
itself as

INITIALISE EMPTY BOARD;

h:= O;

repeat SET QUEEN ON SQUARE[O,h];

GENERATE ALL CONFIGURATIONS WITH QUEEN 0

FIXED;

REMOVE QUEEN FROM SQUARE[O,h];

h:= h + l
until h = lS •

78 E. W. DIJKSTRA

But now the question repeats itself: how do we group all configurations
with queen 0 fixed? We have already given the answer: in order of increasing
column number of queen I, i.e.

hl:= O;

repeat if SQUARE[l, hl] FREE do

begin SET QUEEN ON SQUARE[l,hl];

GENERATE ALL CONFIGURATIONS WITH FIRST

2 QUEENS FIXED;

REMOVE QUEEN FROM SQUARE[l,hl]

end;

hl:=hl+l

until hi = 8

For "GENERATE ALL CONFIGURATIONS WITH FIRST2 QUEENS
FIXED" we could write a similar piece of program and so on; inserting
them inside each other would result in a correct program with eight nested
loops, but they would all be very, very similar. To do so has two disadvan­
tages

(I) it takes a cumbersome amount of writing

(2) it gives a program solving the problem for a chessboard of8*8 squares,
but to solve the same puzzle for a board of, say, 10*10 squares would require
a new, still longer program.

We are looking for a way in which all the loops can be executed under
control of the same program text. Can we make the text of the loops
identical? Can we exploit their identity?

Well, to start with, we observe that the outermost and the innermost loops
are exceptional.

The outermost loop is exceptional in the sense that it does not test whether
square[O,h] is free because we know it is free. But because we know it is
free, there is no harm in inserting the conditional clause

if SQUARE[O,h] FREE do

and this gives the outermost loop the same pattern as the next six loops.
The innermost loop is exceptional in the sense that as soon as 8 queens

have been placed on the board, there is no point in generating all configura­
tions with those queens fixed, because we have a full board. Instead the
configuration should be printed, because we have found an element of set B
that is also an element of set A. We can map the innermost cycle and the
embracing seven upon each other by replacing the line "GENERATE" by

NOTES ON STRUCTURED PROGRAMMING 79

if BOARD FULL then PRINT CONFIGURATION

else GENERATE ALL CONFIGURATIONS EXTENDING THE

CURRENT ONE

For this purpose we introduce a global variable, "n" say, counting the
number of queens currently on the board. The test "BOARD FULL"
becomes "n = 8" and the operations on squares can then have "n" as first
subscript.

By now the only difference between the eight cycles is that each has "its
private h". By the time that we have reached this stage, we can give an
affirmative answer to the question whether we can exploit the identity of
the loops. The sequencing through the eight nested loops can be evoked
with the aid of a recursive procedure, "generate" say, which describes the
cycle once. Using it, the program itself collapses into

INITIALISE EMPTY BOARD; n:= O;

generate

while "generate" is recursively defined as follows:

procedure generate;

begin integer h;

h:= O;

repeat if SQUARE[n,h] FREE do

begin SET QUEEN ON SQUARE[n,h]; n:= n +I;

if n = 8 then PRINT CONFIGURATION

else generate;

n:= n - I; REMOVE QUEEN FROM SQUARE[n,h]

end;

h:= h +I

until h = 8

end

Each activation of "generate" will introduce its private local variable h,
thus catering for h, hi, ... , h8 that we would need when writing eight
nested loops.

Our program-although correct to this level of detail-is not yet complete,
i.e. it has not been refined up to the standard degree of detail that is required
by our programming language. In our next refinement we should decide
upon the conventions according to which we represent the configurations
on the board. We have already decided more or less that we shall use the

integer array x[O :7]

80 E.W. DIJKSTRA

giving in order the column numbers occupied by the queens, and also that

integer n

should be used to represent the number of queens on the board. More
precisely

n = the number of queens on the board

x[i] for 0 ~ i < n = the number of the column occupied by the queen in
the ith row.

The array x and the scalar n are together sufficient to fix any configuration
of the set B and those will be the only ones on the chessboard. As a result
we have no logical need for more variables; yet we shall introduce a few
more, because from a practical point of view we can make good use of them.
The problem is that with only the above material the (frequent) analysis
whether a given square in the next free row is uncovered is rather painful
and time-consuming. It is here that we look for the standard technique as
described in the section "On trading storage space for computation speed"
(see page 42). The role of the stored argument is here played by the
configuration of queens on the board, but this value does not change wildly­
oh no; the only thing we do is to add or remove a queen. And we are
looking for additional tables (whose contents are a function of the current
configuration) such that they will assist us in deciding whether a square is
free, and also such that they can be updated easily when a queen is added
to or removed from a configuration.

How? Well, we might think of a boolean array of 8*8, indicating for each
square whether it is free or not. If we do this for the full board, adding a
queen might imply dealing with 28 squares. Removing a queen, however, is
then a painful process, because it does not follow that all squares no longer
covered by her are indeed free: they might be covered by one or more of
the other queens that remain in the configuration. There is a remedy (again
standard) for this, viz. associating with each square not a boolean variable,
but an integer counter, counting the number of queens covering the square.
Adding a queen then means increasing up to 28 counters by 1, removing a
queen means decreasing them by 1 and a square is free when its associated
counter equals zero. We could cio it that way, but the question is whether
this is not overdoing it: 28 adjustments is indeed quite a heavy overhead on
setting or removing a queen.

Each square in the freedom of which we are interested covers a row (which
is free by definition, so we need not bother about that), covers one of the
8 columns (which must still be empty), covers one of the 15 upward diagonals
(which must still be empty) and one of the 15 downward diagonals (which
must still be empty). This suggests that we should keep track of

NOTES ON STRUCTURED PROGRAMMING 81

(1) the columns that are free

(2) the upward diagonals that are free

(3) the downward diagonals that are free.

As each column or diagonal is covered only once we do not need a counter
for each, a boolean variable is sufficient. The columns are readily identified
by their column number and for the columns we introduce

boolean array col[O :7]

where "col[i]" means that the ith column is still free.
How do we identify the diagonals? Well, along an upward diagonal the

difference between row number and column number is constant; along a
downward diagonal their sum is constant. As a result, difference and sum
respectively are the easiest index by which to distinguish the diagonals and
we introduce therefore

boolean array up[-7:+7], down[O:l4]

to keep track of which diagonals are free.

The question whether square[n,h] is free becomes

col[h] and up[n-h] and down[n+h]

setting and removing a queen both imply the adjustment of three booleans,
one in each array.

In the final program the variable "k" is introduced for general counting
purposes, statements and expressions are labeled (in capital letters). Note
that we have merged two levels of description: what were statements and
functions on the upper level, now appear as explanatory labels.

With the final program we come to the end of the last section. We have
attempted to show the pattern of reasoning by which one could discover
backtracking as a technique, and also the pattern of reasoning by which
one could discover a recursive procedure describing it. The most important
moral of this section is perhaps that all that analysis and synthesis could be
carried out before we had decided how (and how redundantly) a configuration
would be represented inside the machine. It is true that such considerations
only bear fruit when eventually a convenient representation for configura­
tions can be found. Yet the mental isolation of a level of abstraction in which
we allow ourselves not to bother about it seems crucial.

Finally, I would like to thank the reader that has followed me up till here
for his patience.

begin integer n, k; integer array x[O :7]; boolean array col[O :7], up[- 7: + 7], down[O: 14];
procedure generate;

end

begin integer h;

end;

h:= O;
repeat if SQUARE[n,h] FREE: (col[h] and up[n-h] and down[n+h]) do

begin SET QUEEN ON SQUARE[n,h]:

end;

x[n]:= h; col[h]:= false; up[n-h]:= false; down[n+h]:= false; n:= n + 1;
if BOARD FULL: (n = 8) then
begin PRINT CONFIGURATION:

k:= O; repeat print(x[k]); k:= k + 1 until k = 8; newline
end

else generate;
n:= n - 1; REMOVE QUEEN FROM SQUARE[n,h]:

down[n+h]:= true; up[n-h]:= true; col[h]:= true

h:= h + 1

until h = 8

INITIALISE EMPTY BOARD:
n:= O;
k:= O; repeat col[k]:= true; k:= k + 1 until k = 8;
k:= O; repeat up[k-7]:= true; down[k]:= true; k:= k + 1untilk=15;

generate

00
N

tTI

~
t:I

~

II. Notes on Data Structuring •

C. A. R. HOARE

1. INTRODUCTION

In the development of our understanding of complex phenomena, the most
powerful tool available to the human intellect is abstraction. Abstraction
arises from a recognition of similarities between certain objects, situations,
or processes in the real world, and the decision to concentrate on these
similarities, and to ignore for the time being the differences. As soon as we
have discovered which similarities are relevant to the prediction and control
of future events, we will tend to regard the similarities as fundamental and
the differences as trivial. We may then be said to have developed an abstract
concept to cover the set of objects or situations in question. At this stage,
we will usually introduce a word or picture to symbolise the abstract concept;
and any particular spoken or written occurrence of the word or picture may
be used to represent a particular or general instance of the corresponding
situation.

The primary use for representations is to convey information about
important aspects of the real world to others, and to record this information
in written form, partly as an aid to memory and partly to pass it on to
future generations. However, in primitive societies the representations were
sometimes believed to be useful in their own right, because it was supposed
that manipulation of representations might in itself cause corresponding
changes in the real world; and thus we hear of such practices as sticking
pins into wax models of enemies in order to cause pain to the corresponding
part of the real person. This type of activity is characteristic of magic and
witchcraft. The modern scientist on the other hand, believes that the manipu­
lation of representations could be used to predict events and the results of
changes in the real world, although not to cause them. For example, by
manipulation of symbolic representations of certain functions and equations,

*This monograph is based on a series of lectures delivered at a Nato Summer School,
Marktoberdorf, 1970.

83

84 C. A. R. HOARE

he can predict the speed at which a falling object will hit the ground, although
he knows that this will not either cause it to fall, or soften the final impact
when it does.

The last stage in the process of abstraction is very much more sophisticated;
it is the attempt to summarise the most general facts about situations and
objects covered under an abstraction by means of brief but powerful axioms,
and to prove rigorously (on condition that these axioms correctly describe
the real world) that the results obtained by manipulation of representations
can also successfully be applied to the real world. Thus the axioms of
Euclidean geometry correspond sufficiently closely to the real and measurable
world to justify the application of geometrical constructions and theorems
to the practical business of land measurement and surveying the surface of
the earth.

The process of abstraction may thus be summarised in four stages:

(l) Abstraction: the decision to concentrate on properties which are shared
by many objects or situations in the real world, and to ignore the differences
between them.

(2) Representation: the choice of a set of symbols to stand for the abstrac­
tion; this may be used as a means of communication.

(3) Manipulation: the rules for transformation of the symbolic represen­
tations as a means of predicting the effect of similar manipulation of the real
world.

(4) Axiomatisation: the rigorous statement of those properties which have
been abstracted from the real world, and which are shared by manipulations
of the real world and of the symbols which represent it.

J .1. NUMBERS AND NUMERALS

Let us illustrate this rather abstract description by means of a relatively
concrete example-the number four. In the real world, it is noticed that
objects can be grouped together in collections, for example four apples.
This already requires a certain act of abstraction, that is a decision to ignore
(for the time being) the differences between the individual apples in the
collection-for example, one of them is bad, two of them unripe, and the
fourth already partly eaten by birds.

Now one may consider several different collections, each of them with
four items; for example, four oranges, four pears, four bananas, etc. If we
choose to ignore the differences between these collections and concentrate
on their similarity, then we can form a relatively abstract concept of the
number four. The same process could lead to the concept of the number 3,
15, and so on; and a yet further stage of abstraction would lead to the
development of the concept of a natural number.

NOTES ON DATA STRUCTURING 85

Now we come to the representation of this concept, for example scratched
on parchment, or carved in stone. The representation of a number is called a
numeral. The early Roman numeral was clearly pictorial, just four strokes
carved in stone: 1111. An alternative more convenient representation was IV.
The arabic (decimal) representations are less pictorial, but again there is
some choice: both 4 and 04 (and indeed 004 and so on) are all recognised as
valid numerals, representing the same number.

We come next to a representation which is extremely convenient for
processing, providing that the processor is an electronic digital computer.
Here the number four is represented by the varying directions of magnetisa­
tion of a group of ferrite cores. These magnetisations are sometimes repre­
sented by sequences of zeros and ones on line printer paper; i.e., the binary
representation of the number in question.

A simple example of the manipulation of numerals is addition, which
can be used to predict the result of adjoining of two collections of objects
in the real world. The addition rules for Roman numerals are very simple
and obvious, and are simple to apply. The addition rules for arabic numerals
up to ten are quite unobvious, and must be learnt; but for numbers much
larger than ten they are more convenient than the Roman techniques.
Addition of binary representations is not a task fit for human beings; but
for a computer this is the simplest and best representation. Thus we see that
choice between many representations can be made in the light of ease of
manipulation in each particular environment.

Finally we reach the stage of axiomatisation; the most widely known
axiom set for natural numbers is that of Peano, which was first formulated
at the end of the last century, long after natural numbers had been in general
use. In the present day, the axiomatisation of abstract mathematical ideas
usually follows far more closely upon their development; and in fact may
assist in the clarification of the concept by guarding against confusion and
error, and by explaining the essential features of the concept to others. It is
possible that a rigorous formulation of presuppositions and axioms on which
a program is based may reduce the confusion and error so characteristic of
present day programming practice, and assist in the documentation and
explanation of programs and programming concepts to others.

1.2. ABSTRACTION AND COMPUTER PROGRAMMING

It is my belief that the process of abstraction, which underlies attempts to
apply mathematics to the real world, is exactly the process which underlies
the application of computers in the real world. The first requirement in
designing a program is to concentrate on relevant features of the situation,
and to ignore factors which are believed irrelevant. For example, in analysing
the flutter characteristics of a proposed wing design of an aircraft, its elasticity

86 C. A. R. HOARE

is what is considered relevant; its colour, shape, and production technique
are considered to be irrelevant except in so far as they have contributed to its
elasticity. To take a commercial example, the employees working for a
Company have many characteristics, both physical and mental, which will
be ignored when devising a payroll program for the Company.

The next stage in program design is the decision of the manner in which
the abstracted information is to be represented in the computer. An elasticity
function may be represented by its values at a suitable number of discrete
points; and these may be represented in a variety of ways as a two-dimensional
array. Alternatively, the elasticity might be given by a computed function,
and the data be held as a vector of polynomial or chebyshev coefficients for
the function. A payroll file on a computer consists of a number of records,
one relating to each employee. The choice of representation within the
record of each relevant attribute must be made as part of the design of the
program.

The stage of axiomatisation is not usually regarded as a separate stage in
programming; and is often left implicit. In the case of aircraft flutter, the
axiomatisation is the formulation of the differential equations which are
presumed to describe the reaction of the real wing to certain kinds of stresses,
and which (it is hoped) also describe the process of approximate solution
on the computer. In the case of a payroll, the axioms correspond to the des­
::riptions of various aspects of the real world which need to be embodied in
the program-for example, the fact that net pay equals gross pay minus
deductions.

Finally there comes the task of programming the computer to get it to
carry out those manipulations on the representation of the data that corre­
spond to the manipulations in the real world in which we are interested.
The success of a program is dependent on three basic conditions:

(1) The axiomatisation is a correct description of those aspects of the real
world with which it is concerned.

(2) The axiomatisation is a correct description of the behaviour of the
program, i.e., that the program contains no errors.

(3) The choice of representation and the method of manipulation are such
that the cost of running the program on the computer is acceptable.

In order to simplify the task of designing and developing a computer
prograrfi., it is very helpful to be able to keep these three stages reasonably
separate and to carry them out in the appropriate sequence. Thus the first
stage (axiomatisation) would culminate in a rigorous logical statement of
presuppositions about the real world, and a formulation of the desired
objectives which are to be achieved by the program. The second stage would
culminate in an algorithm, or abstract program, which is demonstrably

NOTES ON DATA STRUCTURING 87

capable of carrying out the stated task on the given presuppositions. The
third stage would be the decision on how the various items of data are to be
represented and manipulated in the store of the computer in order to achieve
acceptable efficiency. Only when these three stages have been satisfactorily
concluded will there begin the final phase of coding and testing the program,
which embodies the chosen algorithm operating upon the chosen data
representation.

Of course, this is a somewhat idealised picture of the intellectual task of
programming as a steady progression from the abstract formulation of the
problem to the more and more concrete aspects of its solution. In practice,
even in the formulation of a problem, the programmer must have some
intuition about the possibility of a solution; while he is designing his abstract
program, he must have some feeling that an adequately efficient representa­
tion is available. Quite frequently these intuitions and feelings will be mistaken,
and a deeper investigation of representation, or even the final coding, will
require a return to an earlier stage in the process, and perhaps even a radical
recasting of the direction of attack. But this exercise of intuitive forethought,
together with a risk of failure, is characteristic of all inventive and con­
structive intellectual processes, and does not detract from the merits of at
least starting out in an orderly fashion, with more or less clearly separated
stages.

One of the most important features of the progression is that the actual
coding of the program has been postponed until after it is (almost) certain
that all other aspects of the design have been successfully completed. Since
coding and program testing is generally the most expensive stage in
program development, it is undesirable to have to make changes after this
stage has started. Thus it is advantageous to ensure beforehand that nothing
further can go wrong at this final stage; for example, that the program
tackles the right problem, that the algorithm is correct, that the various
parts of the program cooperate harmoniously in the overall task, and that the
data rcpr..!sentations are adequately efficient. It is the purpose of this mono­
grn ph to explore methods of achieving this confidence.

1.3. ABSTRACTION IN HIGH-LEVEL PROGRAMMING LANGUAGES

The role of abstraction in the design and development of computer programs
may be reinforced by the use of a suitable high-level programming language.
Indeed, the benefits of using a high-level language instead of machine code
may be largely due to their incorporation of successful abstractions, particu­
larly for data. To the hardware of a computer, and to a machine code
programmer, every item of data is regarded as a mere collection of bits.
However, to the programmer in ALGOL 60 or FORTRAN an item of data
is regarded as an integer, a real number, a vector, or a matrix, which are the

88 C. A. R. HOARE

same abstractions that underlie the numerical application areas for which
these languages were primarily designed. Of course, these abstract concepts
have been mapped by the implementor of the language onto particular bit­
pattern representations on a particular computer. But in the design of his
algorithm, the programmer is freed from concern about such details, which
for his purpose are largely irrelevant; and his task is thereby considerably
simplified.

Another major advantage of the use of high-level programming languages,
namely machine-independence, is also attributable to the success of their
abstractions. Abstraction can be applied to express the important characteris­
tics not only of differing real-life situations, but also of different computer
representations of them. As a result, each implementor can select a repre­
sentation which ensures maximum efficiency of manipulation on his particular
computer.

A third major advantage of the use of a high-level language is that it
significantly reduces the scope for programming error. In machine code
programming it is all too easy to make stupid mistakes, such as using fixed
point addition on floating point numbers, performing arithmetic operations
on Boolean markers, or allowing modified addresses to go out of range.
When using a high-level language, such errors may be prevented by three
means:

(I) Errors involving the use of the wrong arithmetic instructions are
logically impossible; no program expressed, for example in ALGOL, could
ever cause such erroneous code to be generated.

(2) Errors like performing arithmetic operations on Boolean markers will
be immediately detected by a compiler, and can never cause trouble in an
executable program.

(3) Errors like the use of a subscript out of range can be detected by
runtime checks on the ranges of array subscripts.

Runtime checks, although often necessary, are almost unavoidably more
expensive and less convenient than checks of the previous two kinds; and
high-level languages should be designed to extend the range of programming
errors which logically cannot be made, or if made can be detected by a
compiler. In fact, skilful language design can enable most subscripts to be
checked without loss of runtime efficiency.

The automatic prevention and detection of programming errors may
again be attributed to a successful appeal to abstraction. A high-level pro­
gramming language permits the programmer to declare his intentions about
the types of the values of the variables he uses, and thereby specify the
meanings of the operations valid for values of that type. It is now relatively

NOTES ON DATA STRUCTURING 89

easy for a compiler to check the consistency of the program, and prevent
errors from reaching the execution stage.

1.4. NOTATIONS

In presenting a theory of data structuring, it is necessary to introduce some
convenient notation for expressing the abstractions involved. These notations
are based to a large extent on those e:tiready familiar to mathematicians,
logicians and programmers. They have also been designed for direct expres­
sion of computer algorithms, and to minimise the scope for programming
error in running programs. Finally, the notations are designed to ensure the
existence of efficient data representations on digital computers.

Since the notations are intended to be used (among other things) for the
expression of algorithms, it would be natural to conclude that they constitute
a form of programming language, and that an automatic translator should be
written for converting programs expressed in the language into the machine
code of a computer, thereby eliminating the expensive and error-prone
coding stage in the development of programs.

But this conclusion would be a complete misunderstanding of the reason
for introducing the notations, and could have some very undesirable conse­
quences. The worst of them is that it could lead to the rejection of the main
benefits of the programming methodology expounded in this monograph, on
the grounds that no compiler is available for the language, nor likely to be
widely accepted if it were.

But there are sound reasons why these notations must not be regarded as a
programming language. Some of the operations (e.g., concatenation of
sequences), although very helpful in the design of abstract programs and the
description of their properties, are grotesquely inefficient when applied to
large data objects in a computer; and it is an essential part of the program
design process to eliminate such operations in the transition between an
abstract and a concrete program. This elimination will sometimes involve
quite radical changes to both algorithm and representation, and could not in
general be made by an automatic translator. If such expensive operators were
part of a language intended for automatic compilation, it is probable that
many programmers would fail to realise their obligation to eliminate them
before approaching the computer; and even if they wanted to, they would
have little feeling for what alternative representations and operations would
be more economic. In taking such vital decisions, it is actually helpful if a
programming language is rather close to the eventual machine, in the sense
that the efficiency of the machine code is directly predictable from the form
and length of the corresponding source language code.

There is a more subtle danger which would be involved in the automatic
implementation of the notations: that the good programmer would soon

90 C. A. R. HOARE

learn that some of them are significantly less efficient than others, and he will
avoid their use even in his abstract programs; and this will result in a form
of mental block which might have serious consequences on his inventive
capacity. Equally serious, the implementation of a fixed set of notations
might well inhibit the user from introducing his own notations and concepts
as required by his understanding of a particular problem.

Thus there is a most important distinction to be drawn between an
algorithmic language intended to assist in the definition, design, development
and documentation of a program, and the programming language in which
the program is eventually conveyed to a computer. In this monograph we
shall be concerned solely with the former kind of language. All example
algorithms will be expressed in this language, and the actual coding of
these programs is left as an exercise to the reader, who may choose for this
purpose any language familiar to him, ALGOL, FORTRAN, COBOL, PL/I,
assembly language, or any available combination of them. It is essential to a
realisation of the relative merits of various representations of data to realise
what their implications on the resulting code will be.

In spite of this vigorous disclaimer that I am not embarking on the design
of yet another programming language, I must admit the advantages that
can follow if the programming language used for coding an algorithm is
actually a subset of the language in which it has been designed. I must also
confess that there exists a large subset of the proposed algorithmic language
which can be implemented with extremely high efficiency, both at compile
time and at run time, on standard computers of the present day; and the
challenge of designing computers which can efficiently implement even larger
subsets may be taken up in the future. But the non-availability of such a
subset implementation in no way invalidates the benefits of using the full
set of notations as an abstract programming tool.

1.5. SUMMARY

This introduction has given a general description of the motivation and
general approach taken hereafter. As is quite usual, it may be read again
with more profit on completion of the rest of the monograph.

The second section explains the concept of type, which is essential to the
theory of data structuring; and relates it to the operations and representations
which are relevant to the practice of computer programming.

Subsequent sections deal with particular methods of structuring data,
progressing from the simpler to the more elaborate structures.

Each structure is explained informally with the aid of examples. Then
the manipulation of the structure is defined by specifying the set of basic
operations which may be validly applied to the structure. Finally, a range of

NOTES ON DATA STRUCTURING 91

possible computer representations is given, together with the criteria which
should influence the selection of a suitable representation on each occasion.

Section 11 is devoted to an example, a program for constructing an
examination timetable. The last section puts the whole exposition on a
rigorous theoretical basis by formulating the axioms which express the basic
properties of data structures. This section may be used as a summary of the
theory, as a reference to refine the understanding, or as a basis for the proof
of correctness of programs.

2. THE CONCEPT OF TYPE

The theory of data structuring here propounded is strongly dependent on
the concept of type. This concept is familiar to mathematicians, logicians,
and programmers.

(!) In mathematical reasoning, it is customary to make a rather sharp
distinction between individuals, sets of individuals, families of sets, and so
on; to distinguish between real functions, complex functions, functionals,
sets off unctions, etc. In fact for each !!CW variable introduced in his reasoning,
a mathematician usually states immediately what type of object the variable
can stand for, e.g.

"Let f be a real function of two real variables"

"Let S be a family of sets of integers".

Sometimes in mathematical texts a general rule is given which relates the
type of a symbol with a particular printer's type font, for example:

"We use small Roman letters to stand for individuals, capitals to
stand for sets of individuals, and script capitals to denote families of sets".

In general, mathematicians do not use type conventions of this sort to
make distinctions of an arbitrary kind; for example, they would not be
generally used to distinguish prime numbers from non-primes or Abelian
groups from general groups. In practice, the type conventions adopted by
mathematicians are very similar to those which would be of interest to
logicians and programmers.

(2) Logicians on the whole prefer to work without typed variables.
However without types it is possible to formulate within set theory certain
paradoxes which would lead to inescapable contradiction and collapse of
logical and mathematical reasoning. The most famous of these is the Russell
paradox:

"let s be the set of all sets which are not members of themselves.
Is s a member of itself or not?"

92 C. A. R. HOARE

It turns out that whether you answer yes or no, you can be immediately
proved wrong.

Russell's solution to the paradox is to associate with each logical or
mathematical variable a type, which defines whether it is an individual, a
set, a set of sets, etc. Then he states that any proposition of the form "xis a
member of y" is grammatically meaningful only if x is a variable of type
individual and y a variable of type set, or if x is of type set and y is of type set
of sets, and so on. Any proposition that violates this rule is regarded as
meaningless-the question of its truth or falsity just does not arise, it is just a
jumble of letters. Thus any proposition involving sets that are or are not
members of themselves can simply be ruled out.

Russell's theory of types leads to certain complexities in the foundation
of mathematics, which are not relevant to describe here. Its interesting
features for our purposes are that types are used to prevent certain erroneous
expressions from being used in logical and mathematical formulae; and that a
check against violation of type constraints can be made merely by scanning
the text, without any knowledge of the value which a particular symbol
might happen to stand for.

(3) In a high-level programming language the concept of a type is of
central· importance. Again, each variable, constant and expression has a
unique type associated with it. In ALGOL 60 the association of a type with a
variable is made by its declaration; in FORTRAN it is deduced from the
initial letter of the variable. In the implementation of the language, the type
information determines the representation of the values of the variable, and
the amount of computer storage which must be allocated to it. Type informa­
tion also determines the manner in which arithmetic operators are to be
interpreted; and enables a compiler to reject as meaningless those programs
which invoke inappropriate operations.

Thus there is a high degree of commonality in the use of the concept of
type by mathematicians, logicians and programmers. The salient characteris­
tics of the concept of type may be summarised:

(1) A type determines the class of values which may be assumed by a
variable or expression.

(2) Every value belongs to one and only one type.

(3) The type of a value denoted by any constant, variable, or expression
may be deduced from its form or context, without any knowledge of its
value as computed at run time.

(4) Each operator expects operands of some fixed type, and delivers a
result of some fixed type (usually the same). Where the same symbol is applied
to several different types (e.g. + for addition of integers as well as reals),

NOTES ON DATA STRUCTURING 93

this symbol may be regarded as ambiguous, denoting several different actual
operators. The resolution of such systematic ambiguity can always be made
at compile time.

(5) The properties of the values of a type and of the primitive operations
defined over them are specified by means of a set of axioms.

(6) Type information is used in a high-level language both to prevent or
detect meaningless constructions in a program, and to determine the method
of representing and manipulating data on a computer.

(7) The types in which we are interested are those already familiar to
mathematicians; namely, Cartesian Products, Discriminated Unions, Sets,
Functions, Sequences, and Recursive Structures.

2.1. DATA TYPE DEFINITIONS

Our theory of data structuring specifies a number of standard methods of
defining types, and of using them in the declaration of variables to specify
the range of values which that variable may take in the course of execution
of a program. In most cases, a new type is defined in terms of previously
defined constituent types; the values of such a new type are data structures,
which can be built up from component values of the constituent types, and
from which the component values can subsequently be extracted. These
component values will belong to the constituent types in terms of which the
structured type was defined. If there is only one constituent type, it is known
as the base type.

The number of different values of a data type is known as its cardinality.
In many cases the cardinality of a type is finite; and for a structured type
defined in terms of finite constituent types, the cardinality is also usually
finite, and can be computed by a simple formula. In other cases, the cardinality
of a data type is infinite, as in the case of integers; but it can never be more
than denumerably infinite. The reason for this is that each value of the type
must be constructible by a finite number of computer operations, and must
be representable in a finite amount of store. Arbitrary real numbers, functions
with infinite domains. and other classes of non-denumerable cardinality can
never be represented as stored data within a computer, though in some cases
they can be represented by procedures, functions, or other program structures.

Obviously, the ultimate components of a structure must be unstructured,
and the ultimate constituents of a structured type must be unstructured types.
One method of defining an unstructured type is by simple enumeration of its
values, as described in the next section. But in certain cases it is better to
regard the properties of unstructured types as defined by axioms, and assume
them to be provided as primitive types by the hardware of a computer or the
implementation of a high-level programming language. For example, the

94 C. A. R. HOARE

primitive types of ALGOL 60 are integer, real, and Boolean, and these will
be ass:1med available.

2.2. DATA MANIPULATION

The most important practical aspect of data is the manner in which that
data can be manipulated, and the range of basic operators available for this
purpose. We therefore associate with each type a set of basic operators which
are intended to be useful in the design of programs, and yet which have at
least one reasonably efficient implementation on a computer. Of course the
selection of basic operators is to some extent arbitrary, and could have been
either larger or smaller. The guiding principle has been to choose a set large
enough to ensure that any additional operation required by the programmer
can be defined in terms of the basic set, and be efficiently implemented in
this way also; so an operator is regarded as basic if its method of efficient
implementation depends heavily on the chosen method of data represen­
tation.

The most important and general operations defined for data of any type
are assignment and test of equality. Assignment involves conceptually a
complete copy of a data value from one place to another in the store of the
computer; and test of equality involves a complete scan of two values
(usually stored at different places) to test their identity. These rules are those
that apply to primitive data types and there is no reason to depart from
them in the case of structured types. If the value of a structured type is very
large, these operations may take a considerable amount of time; this can
sometimes be reduced by an appropriate choice of representation; alter­
natively, such operations can be avoided or removed in the process of
transforming an abstract program to a concrete one.

Another general class of operators consists in the transfer functions, which
map values of one type into another. Of particular importance are the
constructors, which permit the value of a structured type to be defined in
terms of the values of the constituent types from which it is built. The
converse transfer functions are known as selectors; they permit access to
the component values of a structured type. In many cases, we use the name
of a defined type as the name of the standard constructor or transfer function
which ranges over the type.

Certain data types are conveniently regarded as ordered; and comparison
operators are available to test the values of such types. But for many types,
such an ordering would have no meaningful interpretation; and such types
are best regarded from an abstract point of view as unordered. This will
sometimes be of advantage in giving greater freedom in the choice of repre­
sentation and sequencing strategies at a later state in the concrete design.

NOTES ON DATA STRUCTURING 95

In the case of a large data structure, the standard method of operating
efficiently on it is not by assigning a wholly new value to it, but rather by
selectively updating some relatively small part of it. The usual notation for
this is to write on the left of an assignment an expression (variable) which
uses selectors to denote the place where the structure is to be changed.
However, we also introduce special assignment operators, always beginning
with colon, to denote other more general updating operations such as adding
a member to a set, or appending an item to a sequence. For both kinds of
selective updating, it must be remembered that, from a conceptual or abstract
point of view, the entire value of the variable has been changed by updating
the least part of it.

2.3. REPRESENTATIONS

It is fundamental to the design of a program to decide how far to store
computed results as data for subsequent use, and how far to compute them
as required. It is equally fundamental to decide how stored data should be
represented in the computer. In many simple and relatively small cases there
is an obvious standard way of representing data, which ensures that not too
much storage is used, and not too much time expended on carrying out the
basic operations. But if the volume of data (or the amount of processing)
is large, it is often profitable (and sometimes necessary) to choose some
non-standard representation, selected in accordance with the characteristics
of the storage media used (drums, discs, or tapes), and also taking into
account the relative frequencies of the various operations which will be
performed upon it. Decisions on the details of representation must usually
precede and influence the design of the code to manipulate the data, often
at a time when the nature of the data and the processing required are relatively
unknown. Thus it is quite common to make serious errors of judgement in
the design of data representation, which do not come to light until shortly
before, or even after, the program has been put into operation. By this time
the error is extremely difficult to rectify. However, the use of abstraction
in data structuring may help to postpone some of the decisions on data
representation until more is known about the behaviour of the program and
the characteristics of the data, and thus make such errors less frequent and
easier to rectify.

An important decision to be taken is on the degree and manner in which
data should be compressed in storage to save space; and also to save time on
input/output, on copying operations, and on comparisons, usually at the
expense of increasing the time and amount of code required to perform all
other operations. Representations requiring less storage than the standard
are usually known as packed; there are several degrees of packing, from

96 C. A. R. HOARE

loose to tight. Of theoretical interest is the _minimal representation, which
uses the least possible space. In this representation the values of the type are
represented as binary integers in the range 0 to N - l, where N is the cardi­
nality of the type. In the case of a type of infinite cardinality, a minimal
representation is one in which every possible bit pattern represents a value of
the type. Minimal representations are not often used, owing to the great
expense of processing them.

Another method of saving space is to use an indirect representation. In
the standard direct representation of data, each variable of a type is allocated
enough space to hold every value of the type. In the indirect representation,
the variable is just large enough to contain a single machine address, which at
any given time points to a group of one or more machine locations con­
taining the current value. This technique is necessary when the type has
infinite cardinality, since the amount of storage used will vary, and is not
known when writing the code which accesses the variable. It can also be
profitable when the actual amount of storage is variable, and during a large
part of a program run is significantly less than the maximum. Finally, it
can be used when it is believed that many different variables will tend to have
the same values; since then only one copy of the value need be held, and the
variables may just contain pointers to it; copying the value is also very cheap,
since only the pointer need be copied. However, such shared copies must
never be selectively updated.

Unfortunately, indirect representations often involve the additional expense
and complexity of a dynamic storage allocation and garbage collection
scheme; and they can cause some serious problems if data has to be copied
between main and backing stores.

This chapter describes only a small but useful range of the possible
representations of data, and the skilful programmer could readily add to the
selection. In many cases, the representation of an abstract data type can be
constructed by means of a more elaborate but more efficient data type
definition; for instance a large set may be represented as a sequence of items
of some suitable type. Examples of this are given in later sections.

3. UNSTRUCTURED DATA TYPES

All structured data must in the last analysis be built up from unstructured
components, belonging to a primitive or unstructured type. Some of these
unstructured types (for example, reals and integers) may be taken as given
by a programming language or the hardware of the computer. Although
these primitive types are theoretically adequate for all purposes, there are
strong practical reasons for encouraging a programmer to define his own
unstructured types, both to clarify his intentions about the po~ntial range of

NOTES ON DATA STRUCTURING 97

values of a variable, and the interpretation of each such value; and to permit
subsequent design of an efficient representation.

In particular, in many computer programs an integer is used to stand not
for a numeric quantity, but for a particular choice from a relatively small
number of alternatives. In such cases, the annotation of the program usually
lists all the possible alternative values, and gives the intended interpretation
of each of them. It is possible to regard such a quantity as belonging to a
separate type, quite distinct from the integer type, and quite distinct from
any other similar set of markers which have a different interpretation. Such
a type is said to be an enumeration, and we suggest a standard notation for
declaring the name of the type and associating a name with each of its
alternative values:

type suit = (club, diamond, heart, spade);

ordered type rank = (two, three, four, five, six, seven, eight, nine, ten, Jack,

Queen, King, Ace);

type primary colour = (red, yellow, blue);

ordered type day of week = (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);

type day of month = l .. 31;

ordered type month = (Jan, Feb, March, April, May, June, July, Aug, Sept,

Oct, Nov, Dec);

type year= 1900 .. 1969;

type Boolean = (false, true);

ordered type floor = (basement, ground, mezzanine, first, second);

type coordinate = 0 .. I 023 ;

Our first two examples are drawn from the realm of playing cards. The first
declaration states that club, diamond, heart, and spade are suits; in other
words, that any variable or expression of type suit can only denote one of
these four values; and that the identifiers "club" "heart" "diamond" and
"spade" act as constants of this type. Similarly, the definition of the type
rank displays the thirteen constants denoting the thirteen possible values of
the type. In this case it is natural to regard the type as ordered. The next
examples declare the names of the primary colours and of the days of the
week. In considering the days of the month, it is inconvenient to write out
the thirty-one possible values in full. We therefore introduce the convention
that a . . b stands for the finite range of values between a and b inclusive.
This is known as a subrange of the type to which a and b belong, in this case

98 C. A. R. HOARE

integers. This convention is used again in the declaration of year. Other
examples of enumeration are:

The Boolean type, with only two values, false and true.

The Month type, with twelve values listed in the required order.

The coordinate type, taking values between 0 and 1023, representing
perhaps a coordinate on a CRT display.

Having defined a type in a suitable fashion, the programmer will use the
type name to specify the types of his variables. For this purpose it is useful
to follow the current practice of mathematicians and to write the type name
after the variable, separated from it by a colon:

trumps:suit; today:day of week;

pc: primary colour;

If several variables of the same type are to be declared at the same time,
it is useful to adopt the abbreviation of listing the variable names without
repeating the type name, thus:

arrival, departure: day of month;

x, y, z:coordinate.

If only a few variables of a given type are to be used, it is convenient to
write the type definition itself in place of and instead of the type name:

answer:(yes, no, don't know);

The cardinality of a type defined by enumeration is obviously equal to
the length of the defining list; and for a numeric subrange, it is one more
than the difference between the end points of the subrange.

3. I. MANIPULATION

The operations required for successful manipulation of values of enumeration
types and subranges are:

(I) test of equality, for example:

if arrival = departure then go to transit desk;
if trumps = spade then ...

(2) assignment, for example·

pc:= yellow;
trumps:= club;

(3) case discrimination, for example:

case pc of (red: ,
yellow: ... ,
blue: ...)

NOTES ON DATA STRUCTURING 99

where pc is a variable or expression of type primary colour, and the limbs
of the discrimination are indicated by lacunae. A case discrimination may be
either a statement, in which case the limbs must be statements; or it may be
an expression, in which case the limbs must be all expressions of the same
type.

The effect of a case discrimination is to select for execution (or evaluation)
that single statement (or expression) which is prefixed by the constant equal
to the current value of the case expression. In some cases, it may be convenient
to prefix several constants to the same limb, or even to indicate a subrange of
values which would select the corresponding limb; but of course each value
must be mentioned exactly once:

case digit of (0 .. 2: ,

3:7: ,

4 .. 6:8:9: ...).

In this last case, it would be convenient to replace the labels of the last limb
by the basic word else, to cover all the remaining cases not mentioned
explicitly on the preceding limbs.

When the limbs of a discrimination are statements, we shall sometimes use
braces instead of brackets to surround them.

(4) In the case of a type declared as ordered, it is possible to test the
ordering relationships among the values:

if May ~ this month & this month ~ September then
adopt summer timetables.

In other cases, the ordering of the values is quite irrelevant, and has no
meaning to the programmer.

(5) In conjunction with ordering, it is useful to introduce a successor and a
predece~sor function (succ and pred) to map each value of the type onto the
next higher or lower value, if there is one. Also, if Tis any ordered type, the
notation T.min will denote the lowest value of the type, and T.max the
highest value, if they exist. This helps in formulating programs, theorems,
and axioms in a manner independent of the actual names of the constants.

(6) In a computer program we will frequently wish to cause a variable to
range sequentially all through the values of a type. This may be denoted by a
form of for statement or loop

for a: alpha do ... ;

for i:l .. 99 do ... ;

In this construction, the counting variable (a or i) is taken to belong to the
type indicated, and to be declared locally to the construction, in the sense
that its value does not exist before or after the loop, and its name is not

100 C. A. R. HOARE

accessible outside the loop. In addition, the value of the counting variable
is not allowed to be changed inside the body of the loop, since this would
frustrate the whole intention of declaring the variable by means of the for
construction.

In the case of an ordered type, it is natural to assume that the counting
variable sequences through the values of the type in the defintd order,
T.min, succ(T.min), ... , T.max. But if the type is an unordered one, it is
assumed that the sequence of the scan does not matter at the current level of
abstraction, and will be defined at some later stage in the development of a
concrete program.

(7) For subrange types, particularly integer subranges, it is sometimes
required to perform operations which are defined for the original larger type.
In principle, it is simple to accomplish this by first converting the subrange
value to the corresponding value of the larger type, and then performing the
operation, and finally converting back again if necessary. This requires a
type transfer function; and for this purpose it is convenient to use the name
of the destination type, for example:

xdistance: = integer(x) - integer(y);

z; = coordinate{integer(z) + xdistance);

where xdistance is an integer variable. Of course, this is an excessively
cumbersome notation, and one would certainly wish to adopt the convention
of omitting the conversions, where the need for their re-insertion can be
established from the context:

xdistance: = x - y;

z: = z + xdistance.

Exercise
Given m: month and y: year, write a case discrimination expression giving
the number of days in month m.

3.2. REPRESENTATION

The standard representation of an enumeration type Tis to map the values
in the stated order onto the computer integers in the range 0 to n - l, where
n is the cardinality of the type. Thus in this case the standard representation
is also minimal. The standard representation of a subrange is to give each
value the same representation that it had in the original type; thus transfer
between the types involves no actual operation; though of course conversion
from the base type to the subrange type should involve a check to ensure that
the value is within the specified range.

The minimal representation of a subrange value is obtained by subtracting
from the standard form the integer representation of the least value of the

NOTES ON DATA STRUCTURING 101

subrange. In this case, conversion to a subrange involves subtraction as well
as a check, and conversion in the opposite direction involves an addition.

Apart from these conversions, enumerations and subranges in either
representation can be treated identically. Tests of ordering can be accom­
plished by normal integer instructions of the computer, and succ and pred
involve addition or subtraction of unity, followed by a test that the result is
still within range.

The case discrimination can be most efficiently carried out by a switch­
jump. For example, in ALGOL 60 the first example quoted above (3.1.(3))
would be coded:

begin switch ss: = red, yellow, blue;

go to ss[pc +I];

red: begin ; go to end end;

yellow: begin ... ; go to end end;

blue: begin ; go to end end;

end:end.

This can be efficiently represented in machine code, using an indexed
jump and a switch table, indicating the starting addresses of the portions of
code corresponding to the limbs of the discrimination.

The implementation of the for statement corresponds in an obvious way
to the for statement of ALGOL 60, with a step length of unity. The con­
ventions proposed above, which regard the counting variable as a local
constant of the loop, not only contribute to clarity of documentation, but
also assist in achieving efficiency on a computer, by taking advantage of
registers, special count and test instructions, etc.

3.3. EXAMPLE

The character set of a computer peripheral is defined by enumeration:

type character = (....) ;

The set includes the subranges

type digit = nought. . nine;

type alphabet= A . . Z;

as well as individual symbols, point, equals, subten, colon, newline, space,
as well as a number of other single-character operators and punctuation
marks.

There is a variable

buffer: character

which contains the most recently input character from the peripheral. A

102 C. A. R. HOARE

new value can be input to buffer from the input tape by the procedure "read
next character".

In a certain representation of ALGOL 60, basic words are not singled out
by underlining, and therefore look like identifiers. Consequently, if they are
followed or preceded by an identifier or a number, they must be separated
from it by one or more spaces or newline symbols.

In the first pass of an ALGOL translator it is desired to read in the
individual characters, and assemble them into meaningful symbols of the
language; thus, an identifier, a basic symbol, a number, and the ": ="
becomes sign, each count as a single symbol, as do all the other punctuation
marks. Space and newline, having performed their function of separating
symbols, must be ignored. We assume that each meaningful symbol will be
scanned by a routine designed for the purpose, and that each such routine
will leave in the buffer the first input character which is not part of the
symbol.

As an example of the analysis of the symbols of a program, input of the
text

/:betal: = beta x 12;

should be analysed into the following symbols:

I

beta I

·­.-
beta

x
12

The general structure of the program is a case discrimination on the first
character of the symbol, which determines to which class the symbol belongs.

read first character;

repeat case buffer of

(alphabet: scan identifier,

digit:point:subten:scan number,

space: newline: read next character,

colon: begin read next character;

if buffer = equals then

begin deal with "becomes"; read next character end

NOTES ON DATA STRUCTURING

else deal with single colon character

end

else begin deal with single character;

read next character

end

)

until end of tape

4. THE CARTESIAN PRODUCT

103

Defined enumerations and subranges, like primitive data types, are in principle
unstructured. Of course, any particular representation of these types will be
structured, for example, as a collection of consecutive binary digits; but
from the abstract point of view, this structuring is essentially irrelevant. No
operators are provided for accessing the individual bits, or for building up a
value from them. In fact, it is essential to the successful use of an abstraction
that such a possibility should be ignored; since it is only thus that detailed
decisions can be postponed, and data representations can be decided in the
light of the characteristics of the computer, as well as the manner in which
the data is to be manipulated.

We now turn to deal with data types for which the structure is meaningful
to the programmer, at least at some stage in the development of his program.
The basis of our approach is that, as in the case of enumerations, the pro­
grammer should be able by declaration to introduce new data types; but for
structured data, the definition of a new type will refer to other primitive or
previously defined types, namely the types of the components of the structure.
Thus the declaration of a new type will be somewhat similar to the declara­
tion of a new function in a language such as ALGOL and FORTRAN. A
function declaration defines the new function in terms of existing or pre­
viously declared functions and operations. Just as a declared function can be
invoked on many occasions from within statements of the program or other
function declarations, so the new type can be .. invoked" many times from
within other declarations of the program; these may be either declarations
of variables specified to range over the newly declared type, or they may be
declarations of yet another new type.

We will deal first with elementary data structures, Cartesian products and
unions. These elementary structures are almost as simple and familiar to
mathematicians and logicians as the natural numbers. Furthermore, from

104 C. A. R. HOARE

the point of view of the computer programmer, the properties of elementary
data structures are very favourable, provided that the constituent types are
also elementary.

(I) Firstly, each data item occupies a fixed finite, and usually modest
amount of core store, which increases only linearly with the size of the
definition.

(2) The store required to hold each value can efficiently be allocated
either permanently in main storage or on a run-time stack. There is no need
for more sophisticated dynamic storage allocation systems.

(3) The most useful manipulations of the data items can be performed
with high efficiency on present-day computers by simple and compact
sequences of machine-code instructions.

(4) The structures do not require pointers (references, addresses) for their
representation, and thus there is no problem with the transfer of such data
between main and backing storage.

(5) For any given structure, the choice of an appropriate representation
usually presents no difficulty to the programmer.

The first data structuring method which we shall discuss is the Cartesian
product. A familiar example of a Cartesian product is the space of complex
numbers, each of which is constructed as a pair of floating point numbers,
one considered as its real part and the other as its imaginary part. The
declaration of the complex type might take the form

type complex = (real part: real; imagpart: real);

or more briefly:

type complex= (realpart, imagpart:real).

The names realpart and imagpart are introduced by this definition to provide
a means of selecting the components of a complex number. For example,
if n is of type complex defined above, n. realpart will denote its real part and
n. imagpart its imaginary part.

A constant denoting a value from a Cartesian product type may be defined
in terms of a list of constants denoting the values of the components. As
mentioned before, the name of the type is used as a transfer function to
indicate the type of the resulting structure, and it takes a list of parameters
rather than a single one. Thus the complex number 13 + i may be written

complex (13, + 1).

Another example of a Cartesian product is the declaration of a type whose
values represent playing cards. Each card can be specified by giving first its
suit (for example, heart) and then its rank, say Jack. Both items of information

NOTES ON DATA STRUCTURING 105

are required uniquely to specify a given card. Thus the type cardface can be
defined as the Cartesian product of the types suit and rank:

type cardface = (s:suit; r:rank).

Typical constants of this type are:

cardface (club, two), cardface (heart, Jack).

Another simple example of a Cartesian product, this time with three
components, is the date. In the normal way, this can be specified by three
vakes, the first selected from among the possible values of the type day of
month, say the seventh; the second from among the possible values of the
type month, say March; and the third from among the values of the type
year, say 1908. This date can be written:

date (7, March, 1908).

It belongs to the type declared thus:

type date= (day:day of month; m:month; y:year);

The defining feature of the Cartesian product type is that it comprises
every possible combination of values of its component types, even if some of
them should never be encountered in practice. So date (31, Feb, 1931) is a
normal value of type date, even though in the real world no such date exists.
However date (28, Feb, 1899) is not a value of type date, since 1899 is not a
value of type year, as defined above. Thus the definition of the type date does
not correspond exactly to the real world situation, but the correspondence
is close enough for most purposes; and it is the responsibility of the pro­
grammer to ensure that the manipulation of the variables of this type will
never cause them to take values which he would regard as meaningless.

This example shows that the means provided for defining new types in
terms of other types are simpler and less powerful than the general mathe­
matical techniques for defining new sets in terms of other sets; for it certainly
is possible to define a set which excludes all unwanted dates. In fact, when
declaring a type or variable, it is good documentation practice to specify
rigorously the properties which will be possessed by every meaningful value.

The last example shows how the set of point positions on a two-dimensional
raster can be declared as the Cartesian product of one-dimensional co­
ordinates:

type raster = (x, y:coordinate)

This is the standard method by which two-dimensional spaces are con­
structed out of a single-dimension by the method of Cartesian ··oordinates;
for every point in two-dimensional space can be named as an ordered pair
of simple one-dimensional numbers. This explains the use of the term
"Cartesian product" to apply to the given method of defining types. If r is a

106 C. A. R. HOARE

variable of type raster, r. x and r. y are commonly known as the projections
ofr onto the x andy axes respectively; however, we shall refer to the functions
x and y as selectors rather than projections.

The cardinality of a Cartesian product type is obtained by multiplying
together the cardinalities of the constituent types. This is fairly obvious
from the visualisation of a Cartesian product as a rectangle or box with
sides equal in length to the cardinalities of the types which form the axes.
Thus the cardina1ity of the card type is thirteen times four, i.e., fifty-two, which
is, as you might expect, the number of cards in a standard pack. The number
of dates is 26 040, which slightly overestimates the actual number of days in
the interval, since as explained above, it includes a small number of invalid
dates.

4.1 MANIPULATION

Apart from assignment and test of equality, which are common to all types,
the main operations defined for a product type are just those of constructing
a value in terms of component values, and of selecting the components.
When constructing a value of a Cartesian product type, it is in principle
necessacy to quote the name of the type as a transfer function. However,
it is often more convenient to follow the traditional mathematical practice,
and leave the transfer function implicit in cases where no confusion would
arise. This is in any case necessary when a type is not even given an explicit
name. For example, one may write (heart, Jack) instead of cardface (heart,
Jack).

For selection of a component, a dot-notation has been used, e.g.,
n. imagpart. This is more convenient than the normal functional notation
imagpart (n), since it avoids unnecessarily deep nesting of brackets.

Another most important operation is the selective updating of the com­
ponents of a variable. This may be denoted by placing the component name
on the left of an assignment

u. imagpart: = 0;

r.x: = axr.x + bxr.y.

If a Cartesian product is declared as ordered, it is necessary that all the
constituent types be ordered, and it is natural to define the ordering in a
lexicographic manner, taking the earlier components as the more significant.
Thus if suit and rank are ordered, the cardface type could be declared as
ordered in the traditional ranking whereby all clubs precede all diamonds,
and these are followed by all hearts and all spades; whereas within each suit,
the cards are ordered in accordance with their rank.

NOTES ON DATA STRUCTURING 107

In inspecting or processing a structured--vatUe, it is often required to make
many references to its components within a single small region of code.
In such a case it is convenient to use a with construction

with sv do S;

where sv names the structured variable (or expression) and Sis a program
statement defining what is to be done with it. Within the statement S, the
components of sv will be referred to simply by their selector names, s 1, ••• , s n•

instead of by the usual construction:sv.s 1, sv.s2 , ••• sv.sn. The reasons for
using this construction are:

(I) To clarify the purpose of the section of program.
(2) To abbreviate its formulation.
(3) To indicate the possibility of improved efficiency of implementation.

Example:Given today:date, test whether it is a valid date or not.
with today do case m of

{Sept: April: June: Nov:

Exercise

if day > 30 then go to invalid,
Feb:ifday > {if(y + 4)x4 = y then 29 else 28)

then go to invalid,
else do nothing}.

Write functions to represent the four standard arithmetic operations on
complex numbers.

4.2. REPRESENTATION

The standard method of representing a value of Cartesian product type is
simply by juxtaposing the values of its components in a consecutive region of
store, usually in the order indicated. However, there is considerable variation
in the amount of packing and padding which may be involved in the juxta­
position. In the standard unpacked representation, each component value is
made to occupy an integral number of words, where a word is the smallest
conveniently addressable and efficiently accessible unit of storage on the
computer.

If the values can fit into less storage than one word, there is the option of
packing more than one component into a word. In a tightpacked repre­
sentation, the bitpatterns of the components are directly juxtaposed. In a
loosely packed representation, the components may be fitted within certain
subdivisions of a word, which are "natural" in the sense that special machine
code instructic.ns are available for selecting or updating particular parts of a
word-for example, character boundaries, or instruction fields of a word.

108 C. A. R. HOARE

The sequence of the components may be rearranged to fit them conveniently
within such boundaries; but such rearrangement is usually inadvisable if the
type is ordered.

If a packed representation stretches over several words, there is a possi­
bility that a single component value may overlap word boundaries. The
selection or updating of such a component on many machines would be
much more time-consuming than normal; and it is therefore a common
practice to leave some unused space (padding) at the end of words to prevent
such overlaps.

In order to construct a minimal representation of a structured value, it is
necessary to use minimal representation of all the components. Then each
component is multiplied by the product of the cardinalities of all the types of
all subsequent components, and these results are summed to give a minimal
representation in the Cartesian product type. For example, the representation
of 7th, Mar, 1908 is 6x 12x70 + 2x70 + 8 = 5188.

The choice between the various representations depends on the wider
context within which the values are processed. If selection and selective updat­
ing are frequent, it pays to use an unpacked representation, so that the normal
selection mechanism of word-addressed hardware may be used directly in
these operations. However if copying and comparison of the value as a
whole is comparatively frequent, then it pays to use a packed representation,
so that these operations can be carried out with fewer instructions and fewer
stores accesses. A particular case of copying which should be taken into
consideration is that which takes place between the main store of the com­
puter and a backing store. If such transfers are frequent, considerable
efficiency may be gained if the volume of material transferred is reduced by
judicious packing.

Standard

day§
m 2
y 8

(al

Loose Pocked
(Character Boundaries)

day m y

I 6 I 2 I
0

1
6 6 12 bits

(bl

FIG. 1 Representations of date (7, March, 1908)

Tight Packed

day m y

1
6

1
2

1°1
5 4 7 bits

(c)

A second occasion for using packed representations is when data storage
is scarce, either in main store or on external backing stores. However, care
must be taken that space saved on data storage is not outweighed
by the expansion of the code which results from having to unpack and
repack the data whenever it is inspected or updated.

NOTES ON DATA STRUCTURING 109

The minimal representation is not often used for data storage, since the
small amount of extra space it saves (always less than one bit per component)
is usually more than outweighed by the extra time taken by multiplying and
dividing on every access to the components, as compared with the more
usual shifting and masking. However, the technique can be useful, possibly
in conjunction with more conventional packing, if there is no other way of
fitting the value within convenient word boundaries. Also, if the value is to
be used solely or primarily as an index to a multi-dimensional array, the
minimal representation is to be preferred; since this will save a significant
amount of space in the representation of the array (see Section 6.2).

In representing the with construction in machine code, it is sometimes
convenient to compute the address of the structure being referenced and
store it in a register; this may achieve shorter and faster code for accessing
the components. If the components have been packed, it may pay to unpack
them into separate words before starting to process them, so that they can
be easily referenced or updated; and if they have been updated, they must be
packed up again and stored in the structure when the processing is complete.
On some machines, it is more economic to pack and unpack a whole structure
at the same time, rather than to perform these operations one at a time on
the components.

Exercise
Given a variable

today: date;

write a program to assign the value of the next following date to the variable
tomorrow: date. Translate this program into the machine code of your
choice using a tightly packed representation. Rewrite the program using an
unpacked and then a minimal representation. Compare the lengths of the
code involved, and the time taken to execute them.

5. THE DISCRIMINATED UNION

In defining sets of objects, it is often useful to define one set as the union
of two previously known sets. For example, when jokers are added to a
standard pack of cards, the extended set may be described as the union of
the standard set plus the set consisting of the "wild" cards, joker I and
joker 2. A type whose values range over the members of this set may be
declared as the union of two alternatives, the card type, and an enumeration
type with two distinct values:

type pokercard = (normal:(s:suit; r:rank),

wild: (joker I, joker 2)).

110 C. A. R. HOARE

Each value of type pokercard corresponds either to an ordered pair with
components indicating suit and rank; or else it corresponds to one of the
two jokers in the enumeration type.

In specifying a constant of a discriminated union type, it is necessary to
indicate to which of the alternative types the value denoted is intended to
belong. This is done by writing the name of the alternative explicitly, for
example:

pokercard (normal (heart, Jack))

denotes a value from the first alternative, whereas

pokercard (wild (joker 2))

denotes a value from the second alternative. In general, it is convenient to
omit the type name, where the type can be inferred from context.

A second example of a discriminated union might be found in the main­
tenance of a register of all cars in a country. Cars may be distinguished as
local cars owned by residents of the country, and visitor cars brought into
the country temporarily by non-residents. The information required is rather
different in the two cases. In both cases the number and the make of the car
is considered relevant. However, for a local car, the name of the owner of
the car is required, and the date on which the car was first registered in that
owner's name. For visitor cars, this information is not relevant: all that is
required is the standard three-letter abbreviation of the name of the country
of origin. Thus the definition of the two alternative types of car might be:

type local car = (make:manufacturer; regnumber:carnumber;

owner: person; first registration: date);
type visitor car = (make:manufacturer; regnumber:carnumber;

origin: country);
Now it is possible to define a type covering both kinds of car:
type car= (local: local car,

foreign: visitor car).

But here it is inconvenient to define the structure of local and foreign cars
separately; and we would like to take advantage of the fact that several of
their components are the same. This may be done by bringing the common
components in front of both alternatives:

type car= (make: manufacturer;
regnumber: carnumber;
(local: (owner: person;
first registration: date),
foreign: (origin: country))
).

NOTES ON DATA STRUCTURING 111

Every car has a make and regnumber but only local cars have an owner or
first registration date; and only foreign cars have an origin.

A third example is the definition of geometric figures, which in some
application might be categorised as either rectangles, triangles, or circles

type figure = (position: point; rect: R, tri: T, circ: C).

The method of specifying the figure varies in each case. For a rectangle, the
angle of inclination of one of the sides is given, together with the two lengths
of the sides:

type R = (inclination: angle; side I, side 2: real).

A triangle is specified by the angle of inclination and length of one of its
sides together with the angles formed between it and the other two sides:

type T = (inclination: angle; side: real; angle I, angle2: angle).

For a circle, all that is necessary is to specify the diameter as a real number.

type C = (diameter:real).

When a type is defined as the union of several other types, it is important
to recognise that its values must be considered wholly distinct from those
of any of the types in terms of which it is defined. Otherwise there would be
an immediate violation of the rule that each value belongs to only one type.
Thus the union of types must be clearly distinguished from the normal
concept of set union. Furthermore, for each element of the union type, it is
possible to determine from which of the constituent types it originated, even
if the same type has been repeated several times. For example, a double pack
of cards used for playing patience may be defined as the union of two packs,
i.e.,

type patience card = (red:cardface, blue:cardface).

Each value of type patience card is clearly marked as having originated either
from the red pack or from the blue pack, even if perhaps in the real world
the colours of the backs are the same. This fact explains the use of the term
"discriminated union" to apply to this form of type definition. It follows that
the cardinality of a discriminated union is always the sum of the cardinalities
of its constituent types.

5.1. MANIPULATION

Any value of a discriminated union carries with it a tag field indicating
which of the particular constituent types it originated from; on assignment
this is copied, and on a test of equality, the tag fields must be the same if the
values are-to be equal.

112 C. A.R. HOARE

On constructing a value of a discriminated union type, it is necessary to
name the alternative type from which the value originated:

patience card (red (spade, Jack)).

This will automatically cause the value "red" to be assigned to the tag fielo
of the result.

A particular car may be denoted by

car (Ford, "RUR157D",

local (me, date (I, Sept, 1968))).

In order to access and operate on the information encoded as a dis­
criminated union, it is necessary to convert it back to its original type.
This may be accomplished by the convention of using the label of this type
as if it were a selector, e.g.:

cardl.wild

car I . foreign

figl. tri

is of type (joker I, joker 2)

is of type (origin: country)

is of type T

If the constituent type is a Cartesian product, its selectors may be validly
applied to the resulting value, using the convention that the . operator
associates to the left.

cardl .normal.r

earl .local. owner

fig I . circ. diameter

If the programmer attempts to convert a discriminated union value
back to a type from which it did not originate, this is a serious programming
error, which could lead to meaningless results. This error can be detected
only by a runtime check, which tests the tag field whenever such a conversion
is explicitly or implicitly invoked. Such a check is timeconsuming and when
it fails, highly inconvenient. We therefore seek a notational technique which
will guarantee that this error can never occur in a running program; and
the guarantee is given by merely inspecting the text, without any knowledge
of the runtime values being processed. Such a guarantee could be given by an
automatic compiler, if available.

The proposed notational technique is a mixture between the with con­
struction for Cartesian products and the case construction for discrimination.
Suppose that a value sv of union type is to be processed in one of several

NOTES ON DATA STRUCTURING 113

ways in accordance with which of the alternative types it came from. Then
one may write

with sv do {a1:S1
a2:S2,

an :Sn};

where Si is the statement to be selected for execution whenever the value of
the tag field of sv is ai. Within S1 it is guaranteed safe to assume that the
value came from the corresponding alternative type, provided that the value
of sv remains unchanged. Consequently it is safe to use the component
selectors which are defined for that alternative type by themselves to refer
to the components of sv, just as in the case of a simple with statement
described previously for a Cartesian product.

If it is desired to regard a union type as ordered, the most natural ordering
is that defined by taking all values corresponding to earlier alternatives in
the list before any of the values of the later alternatives.

Exercise
Write a function that will compute the area of a figure as defined above.

5.2. REPRESENTATION

In representing a value from a discriminated union it is necessary first to
represent the tag as an integer between zero and n -1, where n is the number
of alternative types. The tag is followed directly by the representation of the
value of the original type. As with the Cartesian product, there is a choice of
the degree of packing used in a representation.

In the unpacked representation the tag occupies a complete word, and the
space occupied by each value of a union type is one word more than that
occupied by values from the largest alternative type. In a packed representa­
tion, this overhead can be reduced to a few bits. In the minimal representa­
tion, each value is obtained by adding its minimal representation in the
original type to the sum of the cardinalities of all preceding types in the
union. Thus a value originating from the first type, for example (diamond,
four), has exactly the same value as it has in the original type, namely 16.
But joker l, with value zero in the original enumeration type, has added to it
the cardinality of the card type.

The choice between unpacked, packed and tight packed representations
is based on the same considerations as for Cartesian products; however the
runtime speed penalty for the minimal representation is a great deal less,

114 C. A. R. HOARE

since recovery of the original value requires only subtraction rather than
division.

In general the values of the different alternative types occupy different
amounts of storage, so the shorter values have to be "padded out" to
equalise the lengths, thus observing the convenient rule that elementary
data types occupy a fixed amount of storage. In later chapters it will be seen
that this padding can often be omitted when the value is a component of
some larger structure.

A local car A foreign car

Ford make Fiat make
RUR 157 D regnumber 37-27-193 regnumber

t-----1-t tag
Italy origin

t-----0-i tag
CARH owner

1 Sept 1968 first registration L ________ J padding (sometimes omitted)

FIG. 2. Representation of cars

In present-day programming practice, it is quite common to omit the tag
field in tlie representation of unions. In order to operate correctly on such a
representation, the programmer needs to "know" from other considerations
what the interpretation of the value ought to be, since it is not possible to
find out from the value itself. If his belief is mistaken, this is not detectable
either by a runtime or compile-time check. Since the effect of such an error
will depend on details of bitpattern representation, it will give rise to results
unpredictable in terms of the abstractions with which the programmer is
working. It would therefore in general seem advisable to use tag fields and
compile-time checkable case discriminations as standard programming
practice, to be bypassed only in exceptional circumstances.

5.3. EXAMPLE

We return to the context of the example in section 3.3, the analysis of
language text into meaningful symbols. We wish to give a rigorous abstract
definition of what these symbols are.

type symbol =

(realconst: real,

integerconst: integer,

identifier: ident,

basic: delimiter);

where we will leave the type ident undefined for the time being, and assume
that the- delimiters are defined by enumeration.

NOTES ON DATA STRUCTURING 115

6. THE ARRAY

The array is for many programmers the most familiar data structure, and in
some programming languages it is the only structure explicitly available.
From the abstract point of view, an array may be regarded as a mapping
between a domain of one type (the subscript range) and a range of some
possibly different type (the type of the array, or more accurately, the type of
its elements).

The type of a mapping is normally specified by a mathematician using an
arrow:

M:D-+ R;

where D is the domain type and R is the range type. An alternative notation
which will be more familiar to programmers is:

M :array D of R.

This notation is more expressive of the manner in which the data is repre­
sented, whereas the mathematical notation emphasises the abstract character
of the structure, independent of its representation.

When a particular value M of a mapping type is applied to a value x of the
domain type, it specifies some unique element of the range type, which is
known as M of x, and is written using either round or square brackets

M(x) or M[x].

Another name for a mapping is a function: the term "mapping" is used to
differentiate the data structure from a piece of program which actually
computes a value in its range from an argument in its domain. The essence of
the difference is that a mapping M is specified not by giving a computation
method but by explicitly listing the value of M(x) for each possible value x
in its domain. Thus an array can be used only for functions defined at a
finite set of points, whereas the domain of a computed function may be
infinite.

An example of a finite mapping is a monthtable, which specifies for each
month of the year the number of days it has:

type monthtable =array month of 28 .. 31.
The domain is the month type and the range type consists of the integers
between 28 and 31 inclusive. A typical value of this type may be simply
specified by listing the values of M(x) as x ranges over its domain. Thus
if M: monthtable is specified as

monthtable (Jan:31, Feb:28, March:31, April:30,

May:31, June:30, July:31, Aug:31,
Sept:30, Oct:31, Nov:30, Dec:31)

then M[Jan] = 31, M[Feb] = 28, and so on.

116 C. A. R. HOARE

The array provides a method of representing a particular arrangement of
cards in a pack, since each arrangement may be regarded as a mapping which
indicates for each of the fifty-two possible positions in a pack the value of the
card which occupies that position. Thus each possible arrangement may be
regarded as a value of the mapping type:

fype cardpack = array 1 .. 52 of cardface.
Of course, not all values of this type represent actual card packs, since there is
nothing to prevent some value of the type from mapping two different
positions onto the same card; which in real life is impossible.

Arrays with elements that are of Cartesian product type are sometimes
known as tables.

A third example of an array is that which represents all possible con­
figurations of character punching on a conventional punched card. This
may be regarded as a mapping M which maps each column number into a
character, namely the character punched in that column.

type punchcard = array 1 .. 80 of character.
Any possible text punched into a card may be regarded as a single value of
type punchcard.

A fourth example shows an array which represents a possible value of a
page on a cathode ray tube display device. There are assumed to be 40 rows
and 27 character positions in each row. The effect of two dimensions can be
achieved by specifying the domain of the mapping as a Cartesian product of
the possible rows and the possible character positions within each row. This
is written as follows:

type spot= (row:l .. 40; column:l .. 27);
type display page = array spot of character.

An alternative method of dealing with a multidimensional array is to
regard it as an array of rows, where each row is an array of characters:

type display page = array 1 .. 40 of row;
type row = array 1 .. 27 of character.

This is a more suitable abstract structure if the rows are to be processed
separately and the columns are not.

fhe cardinality of an array type is computed by raising the cardinality
of the range type to the power of the cardinality of the domain type, i.e.

cardinality (D -+ R) = cardinality (R) cardinality CD>

This may be proved by considering the number of decisions which have to
be made to specify completely a value of an array type. For each value of
the domain we have to choose between cardinality (R) possible values of the
range type. We have to make such a choice independently for each element
of the array, that is cardinality (D) times.

NOTES ON DATA STRUCTURING 117

6.1. MANIPULATION

A mapping which maps all values of its domain onto the same value of its
range is known as a constant mapping. A natural constructor for arrays is
one which takes as argument an arbitrary range value, and yields as result
the constant array, all of whose elements are equal to the given range value.
It is convenient to use the type name itself to denote this constructor, e.g.

M = monthtable (31)

is an array such that M[m] = 31 for all months m.

card pack (cardface (heart, King))

is obviously a conjuror's pack.
The basic constructive operation on an array is that which defines a new

value for one particular element of an array. If x is a value of an array type T,
d a value from its domain type, and r a value from its range type, then we
write:

T(x, d:r)

to denote a value of type T which is identical to x in all respects, except
that it maps the value d into r. The T may be omitted if its existence can be
inferred from context. Similarly, the constant array T(x) may be denoted by
all (x).

The basic selection operator on arrays is that of subscripting. This is
effectively a binary operation on an array and a value from its domain type;
and it yields the corresponding value of its range type.

The most common and efficient way of changing the value of an array is
by selective updating of one of its components, which is accomplished by
the usual notation of placing a subscripted array variable on the left of an
assignment:

a[d]:=r.

This means the same as

a:= T(a, d:r).

Note that from an abstract point of view a new value is assigned to the whole
array.

Normally an array type would be regarded as unordered; but in some
cases, particularly character arrays, it is desirable to define an ordering
corresponding to the normal lexicographic ordering; this is possible only
when domain and range types are ordered. In this case the ordering of two
arrays is determined by that of the lowest subscripted elements in which the
two arrays differ. Thus

"BACK" < "BANK"

because the third letter is the first one in which they differ, and

118 C. A. R. HOARE

"C" < "N"

A convenient method of specifying an array value is by means of a for
expression, which is modelled on the for statement:

for i: D take E

where E is an expression yielding a value of the range type, and containing
the variable i. As i scans through the domain type D, evaluation of the
expression E yields the value of the corresponding element of the array.

If certain operations are defined on the range type of an array, it is natural
to extend these operations to apply to the array type as well. For example,
if A and B are real arrays with the same domain, it is natural to write

A+ B, A - B,

to denote arrays (with the same domain) whose elements are the sum and
difference of the values of the corresponding elements of A and B. But the
programmer must retain his awareness that these can be expensive operations
if the arrays are large, and he should seek ways of eliminating the operations
in progressing from an abstract to a more concrete program.

6.2. REPRESENTATION

The representation of arrays in a computer store is familiar to most pro­
grammers. The most usual representation is the unpacked representation,
which allocates one or more whole words to each element of the array. In
this case, the computer address of each element is simply computed: first,
the value of the subscript is converted to a minimal representation; then this
is multiplied by the number of words occupied by each element; and finally
the result is added to the address of the first element of the array. The normal
word-selection mechanism of the computer can be used to access and update
this value independently of the other elements of the array.

An alternative representation involves packing of elements within word
boundaries, so that each element occupies only a certain fixed number of
bits within a word, although the array as a whole may stretch over several
words. In the example of a monthtable, each element can take only four
values, 28 to 31; therefore it can be accommodated in only two bits in the
minimal representation; the whole array can therefore be accommodated in
twenty-four consecutive bits.

When an array is packed in this way, the task of selecting the value of a
subscripted variable is far more complicated. In order to select the right
word, the subscript (in minimal form) must be divided by the number of
elements in each word. The quotient is added to the address of the first word
of the array, which is then accessed. The remainder is multiplied by the
number of bits in each element, and the result is used as a shift-counti to

NOTES ON DATA STRUCTURING 119

shift the required value into a standard position within the word. The
unwanted values of neighbouring elements of the array can then be masked
off. The method of selectively updating an element of a packed array is
even more laborious, since the new value must be inserted at the right position
within the word, without disturbing the values of the neighbouring elements.
The efficiency of both operations may be slightly increased if the number of
elements per word is an exact power of two, since then the integer division
of the subscript may be replaced by a shift to find the quotient, and a mask
to find the remainder. On some machines, further efficiency may be gained
if each element is stored in a single character position.

The minimal representation for an array is similar to that for a Cartesian
product, except that the multiplier of each element value is equal to the
cardinality of range type, raised to the power of the subscript value. The
process of selecting or updating a value of an element of an array stored in
minimal representation is even more laborious than that described above,
unless the cardinality of the range type is an exact power of two. It would
be prohibitive if the array were to stretch over more than one normal com­
puter word. For this reason, the minimal representation for arrays is of
mainly academic interest.

Standard Loose Packed Tight Packed

A A (0) A A (2)
A [I)
A (2)
A [3) A (5)
A [4) t
A (5) padding

A [6)
A [7)

(al (b) (cl

FIG. 3. Representation of A: array 0 .. 7 of T

When the domain of a finite mapping is itself a data structure, for example,
a Cartesian product, it is usual to represent this domain in the minimal
representation, so as to avoid allocation of unused storage space. For
example, the display page has a domain which is the Cartesian product of
the integer ranges l to 40 and l to 27. In the minimal representation, this
gives a range of integers between 0 and 40 x 27 -1 = 1079. Consequently
1080 consecutive words are allocated to hold values of elements of the array.
In order to access any element in a given row and character position, it is
necessary first to construct a minimal representation for the subscript, in
the manner described in Section 4.2.

120 C. A. R. HOARE

An alternative method of representation of multidimensional arrays is
sometimes known as a codeword or descriptor method, but we shall give it
the title of "tree representation". The essence of the method is to allocate a
single-dimensional base array with one element corresponding to each row
of the array, and to place in it the address of a block of consecutive storage
locations which holds the values of that row. These rows do not have to be
contiguous. Now the process of accessing or updating each element does
not have to be done by computing a minimal representation of the subscript.
All that is necessary is to add the row-number to the address of the first
element of the base of the tree, and thus access the address of the first element
of the required row, to which the value of the next subscript is added to give
the address of the required element.

Standard Tree

A [o,o] A §A[O,O] A
A [0,1] A[0,1]

A [0,2] A[0,2]

A [1,0]

A [1,1] §A[l,O]
A [1,2] A [I, I]

}row2
A[1,2]

a•M§} A [3,0] A[3,1] row2

A [3,1] A [3,2]

A [3,2]

(a) (b)

FIG. 4. Representation of two-dimensional arrays

The choice between unpacked and packed representations of arrays is
made on grounds similar to the choice in the case of a Cartesian product.
The unpacked representation is used when fast access and updating is
required; it· is also the obviously appropriate choice when the range ty.:pe
naturally fits within computer word boundaries, for example if the elements
are floating point numbers. The packed representation is recommended if
the size of the elements is considerably shorter than a single word, and if
storage is short, or if copying and comparison of the arrays is frequent
compared with subscripting and selective updating. A particularly common
case of packed arrays is the representation of identifiers in a programming
language, where it is acceptable in the interests of efficiency to truncate
identifiers which are too long to fit into the standard array, and pad out
those that are too short with blanks.

NOTF.s ON DATA STRUCTURING 121

The choice between representations of multidimensional arrays is made
on quite different grounds. The standard representation is more economical
of storage, and gives good efficiency on sequencing through elements of the
array by rows, columns, or both. Furthermore, it is more convenient when
the arrays must be transferred as a whole between main and backing store.
However, on a machine with slow multiplication, it will be faster to use the
tree representation, and accept the extra storage required to hold the array
of addresses, which is small provided that the rows are not too short. If
each row contains only two words, there would be a fifty per cent overhead
on data storage.

There are several other possible reasons for choosing the tree represen­
tation:

(1) In some computing environments, where dynamic storage allocation
is standard, it may be difficult to obtain large consecutive areas, in which
case a large two-dimensional array can be split up into a number of smaller
rows which can be accommodated without trouble.

(2) It is possible to set up a scheme whereby some rows of the array are
held on backing store while other rows are being processed, and then the
backing store address of a row replaces the main store address in the base
array when that row is absent from store. Thus it is hoped to be able to process
arrays which are too large to be wholly accommodated in main store together
with the program that processes them. However, the economics of this
operation need to be carefully examined to ensure that the number of
backing store transfers involved is acceptable.

(3) In some applications, it is known that several matrices share the same
rows. In the tree representation it is possible to set up a single copy of such a
shared row, and merely take copies of its address rather than its full value.
But in such a case, the shared row must not be selectively updated.

(4) The tree representation is recommended even in the case of single­
dimensional arrays if the size of the individual elements is highly variable;
and on multidimensional arrays, if the length of the rows is highly variable.

Exercise
The character set of an input device includes only thirty characters, defined
by enumeration; they include the characters space, newline, newpage.
Characters may be read in one at a time from an input device to a buffer,
using a procedure call

read next character.

They should be assembled line by line into an array

page: display page,

122 C. A. R. HOARE

and on receipt of a newpage character, this should be output to a display
device by the instruction

outpage.

The display device does not recognise the characters newline or newpage;
consequently the ends of lines and pages have to be filled up with spaces.

Write a program in a suitable language to perform this operation, using a
selection of representations for the display page, e.g.

unpacked

loosely packed

tightly packed

indirect.

Rewrite the program, using different representations. Compare the lengths
and speeds of the code and data involved in the different representations.

Write the corresponding programs to read a page from the display, and
output the individual characters, taking care to eliminate redundant spaces
at the ends of each line and blank lines at the end of each page wherever
possi~le.

7. THE POWERSET

The powerset of a given set is defined as the set of all subsets of that set;
and a powerset type is a type whose values are sets of values selected from
some other type known as the base of the powerset. For example, the primary
colours have been defined by enumeration as red, yellow and blue. The
other main colours are made up as a mixture of two or three of these colours:
orange is a mixture of red and yellow; brown is a mixture of all three primary
colours. Thus each main colour (including the primary colours) can be
specified as that subset of the primary colours out of which it can be mixed.
For example, orange may be regarded as the set with just two members,
red and yellow. Using the traditional notation for sets defined by enumeration,
this may be written: {red, yellow}. The pure colour red may be regarded as
the set whose only member is the primary colour red, i.e. {red}. In this way it
is possible to represent the seven main colours, red, orange, yellow, green,
blue, purple and brown. When no primary colour is present (i.e. the null or
empty set) this may be regarded as denoting the absence of colour, i.e.
perhaps white. The type whose values range over the colours may be declared
as the power set of the type primary colour:

type colour = powerset primary colour.

A second example is provided by considering a data structure required to
represent the status of the request buttons in a lift. A simple variable of type

NOTES ON DATA STRUCTURING 123

floor (see Section 3) is capable of indicating one particular stop of a lift.
But if we wish to record the status of the whole panel of buttons inside a
lift, it would be necessary to represent this as a subset of all possible floors
in the building, namely, the subset consisting of those floors for which a
request button has been depressed. Thus the type liftcall may be defined
as the powerset of the floor type:

type liftcall = powerset floor.

A third example is provided by a hand of cards in some card game, fo,·
example, poker or bridge. A hand is a subset of playing cards, without
repetitions, and is therefore conveniently represented by a value from the
powerset type:

type hand = powerset cardface;

This type covers all hands of up to fifty-two cards, even though for a
particular game there may be standard size of a hand, or a limit less than
fifty-two.

A final example expresses the status of a computer peripheral device, for
example, a paper tape reader. There are a number of exception conditions
which can arise on attempted input of a character:

(1) Device switched to "manual" by operator.

(2) No tape loaded.

(3) Parity error on last character read.

(4) Skew detected on last character read.

These conditions can be defined as an enumeration

type exception = (manual, unloaded, parity, skew);

and since several of these conditions can be detected simultaneously, the
status of the reader can be specified as a value of a powerset type:

type statusword = powerset exception.

The cardinality of the powerset type is two raised to the power of the
cardinality of the base type, i.e.

cardinality (powerset D) = 2 cardinality (D)

This may be proved by considering the number of decisions which have
to be made to specify completely a value of the type. For each value of the
base type there are two alternatives, either it is in the set or it is not. This
decision may be made independently cardinality (D) times.

7.1. MANIPULATION

The basic construction operation on sets is the one that takes a number of
values from the domain type, and converts them into a set containing just

124 C. A. R. HOARE

those values as members. As in the case of the Cartesian Product, the type
name is used as the transfer function, but for sets, the number of arguments
is variable from zero upwards. For example:

primary colour (red, yellow) i.e. orange

liftcall (ground) i.e. only a single button has been
pressed

statusword () i.e. no exception condition.

The last two examples illustrate the concept of a unit set (which must be
clearly distinguished from its only member) and the null or empty set, which
contains no member at all. If the type name is omitted in this construction,
curly brackets should be used instead of round ones in the normal way.

The converse of the null set is the universal set, which contains all values
from the base type. This may be denoted

T.all.

However, this universal set exists as a storable data value only when the base
type is finite.

The basic operations on sets are very familiar to mathematicians and
logicians.

(1) Test of membership: If xis in the sets, the Boolean expression "x ins"
yields the value true, otherwise the value false.

(2) Equality: two sets are equal if and only if they have the same members.

(3) Intersection: sl A s2 contains just those values which are in both sl
and s2.

(4) Unions: sl v s2 contain just those values which are either in sl or s2,
or both.

(5) Relative complement: s 1 - s2 contains just those members of sl which
are not in s2.

(6) Test of inclusion: sl c:: s2 yields the value true whenever all members
of sl are also members of s2, and false otherwise.

(7) The size of a set tells how many members it has.

If the domain type of a set has certain operators defined upon it, it is often
useful to construct corresponding operations on sets. In particular, if the
domain type of a set is ordered, the following operators apply:

(8) min (s) the smallest member of s; undefined ifs is empty.

(9) s down n is a set containing just those values whose nth successors are
ins.

(10) s up n is a set containing just those values whose nth predecessors
are ins.

NOTES ON DATA STRUCTURING 125

(11) Range (a, b) is the set containing a, succ(a), ... , b if a ::::;; b, and which
is empty otherwise.

The most useful selective updating operations on sets are:

x: v y; join the set y to x

x: v T(a)

x:" y;

x:-y

x:down n

x:up n

add the member a to x

exclude from x all members which are not also members
of y

exclude from x all members which are also members
of y

subtract n from every member of x and exclude members
for which this is not possible

add n to every member of x, and exclude members for
which this is not possible

It is also sometimes useful to select some member from x and simultaneously
remove it from x. This operation can be expressed by the notation:

a from x.
If the domain type of x is ordered, it is natural that the selected member
should be the minimum member of x; otherwise the selection should be
regarded as arbitrary.

It is often useful to define the value of a set by giving some condition B
which is satisfied by just those values of the domain type which are intended
to be members of the set. This may be denoted:

where

and

{i:D I B}

i is a variable of type D regarded as local to B,

B is a Boolean expression usually containing and depending on i.

In order for this expression to denote a value of the powerset type it is
essential that the cardinality of D be finite, and that B is defined over all
values of the type.

Finally, it is frequently required to perform some operation on each
member of some set, that is to execute a loop with a counting variable which
takes on successively all values in the set. A suitable notation for expressing
this is:

for x ins do ...

If the base type of s is an ordered type, it seems reasonable to postulate that
the elements will be taken in the natural order, starting with the lowest.
For an unordered base type, the programmer does not care in which order
the members are taken, and he leaves open the option to choose an order
that contributes best to efficiency.

126 C. A. R. HOARE

7.2 REPRESENTATION

In choosing a computer representation for powersets, it is desirable to
ensure that all the basic operations can be executed simply by single machine
code instructions; and further, that the amount of store occupied is
minimised. For most data structure storage methods, there is a fundamental
conflict between these two objectives, and consequently a choice between
representation methods must be made by the programmer; but in the case
of powersets the two objectives can be fully reconciled, provided that the
base type is not too large.

The recommended method of representation is to allocate as many bits
in the store as there are potential members in the set. Thus to each value
of the base type there is a single bit which takes the value one if it is in fact a
member, or zero if it is not. For example, each value of type colour can be
represented in three bits; the most significant corresponding to the primary
colour red, and the least significant corresponding to blue. Thus the orange
colour is represented as 110 and red as 100. Each set of size n is represented
as a bitpattern with exactly n ones in the appropriate positions. The null set
is accordingly represented as an all-zero bitpattern.

Another example is afforded by the "hand" type, which requires fifty-two
bits for its representation, one corresponding to each value of type cardface.
In this case, it is advisable to use the minimal representation of the base
type, to avoid unused gaps in the bitpattern representation.

Since the number of values of a powerset type is always an exact power of
two, for powersets of small base there can be no more economical method
of utilising storage on a binary computer than that of the bitpattern repre­
sentation. It remains to show that the operations defined over the powerset
type can be executed with high efficiency.

(1) The unitset of x may be obtained by loading a single 1 into the signbit
position, and shifting it right x places. On computers on which shifting is
slow, the same effect may be obtained by table lookup. The construction of a
set out of components may be achieved by taking the logical union of all the
corresponding unit sets.

(2) A membership test x in s may be made by shifting s up x places and
looking at the most significant bit: 1 stands for true and 0 for false.

(3) Logical intersection, union, and complementation are often available
as single instructions on binary computers.

(4) The size of a set can sometimes be discovered by a builtin machine
code instruction for counting the bits in a word. Otherwise the size can be
determined by repeated standardisation, masking off the next-to-sign bit on

NOTES ON DATA STRUCTURING 127

each occasion. A third method is to split the bitpattern into small parts, and
use table lookup on each part, adding together the results.

(5) The up and down operations can obviously be accomplished by right
or left shifts.

(6) The min of a set can be efficiently discovered by a standardise instruc­
tion, which automatically counts the number of shifts required to move the
first one-bit into the position next to the sign.

(7) The for statement may also be efficiently constructed using standardi­
sation, masking off each one-bit as it is reached.

(8) The range operation can be accomplished by two shifts, the first of
which regenerates the sign bit.

Thus when the cardinality of the domain type is not greater than the
number of biti. in the largest computer word to which logical and shift
operations can be applied, all these operations can be carried out with great
efficiency. If significantly more than one such word is involved, it will usually
pay to use selective updating operations rather than the normal result­
producing operators. Furthermore, operations such as size and min can
become rather inefficient, and it will often pay to store these values re­
dundantly together with the set, and keep them up to date whenever the value
of the set is updated, rather than recomputing them whenever they are
required.

When it is known that the cardinality of the base type is very large (perhaps
even infinite) compared with the size of the typical set, the bitpattern repre­
sentation altogether loses its attraction, since it no longer pays to store and
operate upon large areas of zeroes. The treatment of such sparse sets is
postponed to Section IO.

7.3. EXAMPLE

Problem: Write a program to construct a set

primes: powerset 2 .. N;

containing all prime numbers in its base type.
Use the method of Eratosthenes' sieve to avoid all multiplications and
divisions.

The method of Eratosthenes is first to put all numbers in the "sieve" and
repeat the following until the sieve is empty:
Select and remove the smallest number remaining in the sieve (necessarily a
prime), and then step through the sieve, removing all multiples of that
number.

128 C. A. R. HOARE

The program can be written easily

begin n, next:2 . . N; sieve:powerset 2 . . N;

sieve : = range (2, N);

primes:= { };

while sieve '::/: empty do

end primefinder.

begin next:= min (sieve);

primes: v {next};

for n: = next step next until N do

sieve: - {n}

end

But if N is significantly large, say of the order of l 0 000, this program
cannot be directly executed with any acceptable degree of efficiency. The
solution is to use this program as an abstract model of the algorithm, and
rewrite it in a more efficient fashion, using only operations on sets not
exceeding the word-length of the computer. We therefore need to declare
an array of words to represent the two sets, assuming that "wordlength"
is an environment enquiry giving the number of bits in a word:

primes, sieve: array 0 .. W of powerset 0 .. wordlength - 1

where W = (N + l) + wordlength +I.
This means that the two sets may be slightly larger than N, but for con­
venience we shall accept that harmless extension.

In order to access an individual bit of these sets, it is necessary to know
both the wordnumber and the bitnumber. Since we do not wish to use
division to find these, we will represent the counting variables n and next as
Cartesian products ~

n, next:(w, b:integer);

where w indicates the wordnumber and b indicates the bitnumber.

It is now as well to check the efficiency of this representation by recoding
the innermost loop first.

for n: = next step next until N do sieve: - { n};

is recoded as :

n: =next;

whilen.w ~ Wdo

beginsieve[n.w]:- {n.b};

n.b: = n.b + next.b;

NOTES ON DATA STRUCTURING 129

n.w: = n.w + next.w;

if n. b ;;i:: wordlength then begin n. w: = n. w + I ;
n.b: = n.b - wordlength

end

end
Since this appears acceptably efficient we will code the other operations of
the outer loop, starting with the most difficult:

next: = min (sieve) ;

Here we do not wish to start our search for the minimum at the beginning
of the sieve set each time, since towards the end of the process this would
involve scanning many empty words. We therefore take advantage of the
fact that the new value of next must be larger than the old value.

The search consists of two parts, first finding a nonempty word, and then
its first bit. But if the search for a word reaches the end of the array, the
whole program is completed

while sieve [next. w] = { } do {next. w: = next. w +I;

if next. w > W then exit primefinder};

next.b: = min (sieve [next. w]);

The remaining operations are trivial. Since the outer loop is terminated
by an exit, there is no need to test a separate while condition; and the
statement

primes: v {next};

can be coded as

primes [next.w]:v {next.b}.

The whole program including initialisation is as follows:

primes, sieve: array 0 .. W of powerset 0 .. wordlength - I ;

begin primefinder;

n, next:(w, b:integer);

for t:O .. W do begin primes [t]: = { };

end;

sieve [O]: - {O, I};

next. w: = O;

while true do

sieve [t]: = range (0 .. wordlength -1)

begin while sieve [next. w] = { } do

130

end

end primefinder

C. A. R. HOARE

begin next. w: = next. w + l;
if next. w > W then exit primefinder

end;

next.b: =min (sieve [next.w]);
primes [next.w]:v {next.b};
n: = next;
while n. w ~ W do

begin sieve [n.w]:- {n.b};

n.b: = n.b + next.b;
n. w: = n. w + next. w;

end

if n . b ;;;::: wordlength then

begin n. w: = n. w + l;
n.b: = n.b - wordlength

end

One feature of this program is that it uses an environment enquiry word­
length to achieve the full efficiency of which a machine is capable, and yet
does so in a completely machine-independent fashion. The program will not
only work, but work with high efficiency, on machines with widely varying
word lengths.

But the most interesting feature about the program is the way in which
it is related to the previous version. From an abstract point of view it
expresses an identical algorithm; all that has changed is the manner in which
the data has been represented on the computer. The original design acted as
a framework or pattern, on which the more intricate coding of the second
version was structured. By carrying out the design in two stages, we simplify
the task of ensuring that each part of the final program works successfully
in conjunction with the other parts.

Exercise
Rewrite the program using sets representing only the odd numbers. (Hint:
rewrite tile more abstract program first.)

8. THE SEQUENCE

The previous chapters have dealt with the topic of elementary data structures,
which are of great importance in practical programming, and present very

NOTES ON DATA STRUCTURING 131

little problem for representation and manipulation on modern digital com­
puters. Furthermore, they provide the essential basis on which all other more
advanced structures are built.

The most important distinction between elementary structured types and
types of advanced structure is that in the former case the cardinality of the
type is strictly finite, provided that the cardinality of the constituent types is.
The distinction between a finite and an infinite set is one of profound mathe­
matical significance, and it has many consequences relating to methods of
representation and manipulation.

(I) Since the number of potential values of the type may be infinite, the
amount of storage allocated to hold a value of an advanced structure is not
determinable from the declaration itself. It is normally only determined
when the program is actually running, and in many cases, varies during the
execution of the program. In the case of an elementary structure, the number
of different potential values is finite, and the maximum amount of storage
required to hold any value is fixed and determinable from the form of the
declaration.

(2) When the size of a structured value is fairly Jarge, it is more efficient
to update individual components of the structure separately, rather than to
assign a fresh value to the entire structure. Even for elementary types, it
has been found sometimes more efficient to perform selective updating,
particularly for unpacked representations of Cartesian products and for
arrays. The increased efficiency of selective updating is usually even more
pronounced in the case of advanced data structures.

(3) Advanced data structures, whose size varies dynamically, require some
scheme of dynamic storage allocation and relinquishment. The units of
storage which are required are usually linked together by pointers, sometimes
known as references or addresses; and their release'is accomplished either by
explicitly programmed operations, or by some form of general garbage
collection. The use of dynamic storage allocation and pointers leads to a
significant complexity of processing, and the problems can be particularly
severe when the data has to be transferred between the main and backing
store of a computer. No problems of this kind need arise in the case of
elementary data structures.

(4) The choice of a suitable representation for an advanced data structure
is often far more difficult than for an elementary structure; the efficiency of
the various primitive operations depends critically on the choice of repre­
sentation, and therefore a sensible choice of representation requires a
knowledge of the relative frequency with which these operations will be
invoked. This knowledge is especially important when a part or all of the
structure is held on a backing store; and in this case, the choice of re pre-

132 C. A. R. HOARE

sentation should take into account the characteristics of the hardware device;
that is, arrangement of tracks and cylinders on a rotating medium, and times
of head movement and rotational delay. In the case of elementary structures,
the primitive operations are of roughlv comparable efficiency for most
representations.

Thus the differences between advanced and elementary structures are quite
pronounced, and the problems involved are significantly greater in the
advanced case. This suggests that the practical programmer would be well
advised to confine himself to the use of elementary structures wherever
possible, and to resort to the use of advanced structures only when the
nature of his application forces him to do so.

The first and most familiar example of an advanced data structure is the
sequence. This is regarded as nothing but a sequence of an arbitrary number
of items of some given type. The use of the term "sequence" is intended to
cover sequences on magnetic tapes, disc, or drum, or in the main store.
Sequences in the main store have sometimes been known as streams, lists,
strings, stacks, deques, queues, or even sets. The term file (or sequential
file) is often used for sequences held on backing store. The concept of a
sequence is an abstraction, and all these structures may be regarded as its
various representations.

Our first example of a sequence is the string, familiar to programmers in
ALGOL and SNOBOL. Since a string is constructed as a sequence of
characters of arbitrary length, it may be defined:

type string = sequence character.

The next example is drawn from a data processing application; the
maintenance of a file of data on cars. Each item of the file (sometimes known
as a record) represents a single car, and is therefore of type car; an example
of a possible definition of the car type has been given previously:

type car file = sequence car.

The third example gives an alternative method of dealing with a pack of
cards. This may be regarded as just a sequence of cards, of length which
perhaps varies as the cards are dealt:

type deck = sequence cardface;

Of course, not all card-sequences represent actual decks of cards in real life;
for example, sequences which contain the same card twice are invalid, and
should be avoided by the programmer. Thus the maximum length of a valid
deck is 52, although this fact is not expressed in the declaration.

The next example is drawn from the processing of a particular class of
symbolic expression, namely the polynomial. A polynomial

OnX" + On-1Xn-i •••. 01X + Oo

NOTf.S ON DAT A STRUCTURING 133

can be represented as the sequence of its coefficients a1• If the degree n of the
polynomial is unpredictable or variable during the course of a calculation,
a sequence is the most appropriate method of defining it:

type polynomial = sequence integer.

Our final example shows how it is possible to represent the programming
language concept of the identifier. Since in theory an identifier may be of
arbitrary length, a sequence is required. The items of the sequence are either
letters or digits. However, the first character is always alphabetic and may be
separated from the rest. Thus an exact definition of a data structure corres­
ponding to the identifier is:

type identifier= (first:letter; rest: sequence (/:letter, d:digit)).

8.1 MANIPULATION

The zero element of a sequence type Tis the sequence that contains no items­
this is known as the null or empty sequence, and is denoted by T(). For
each value v of the domain type, there is a sequence whose only item is v;
this is known as the unit sequence of v and is denoted by T(v). Finally, if
vi. v2 , ••• , vn are values from the base type (possibly with repetition},
T(v 1, v 2 , ••• , vn) denotes the sequence consisting of these values in the
stated order. If for convenience the type name T is omitted, we will use
square brackets to surround the sequence:

[v], [v 1,v 2 , ••• , vJ
However, a sequence of characters is normally denoted by enclosing them in
quotes.

The basic operation on sequences is concatenation, that is, adjoining two
sequences one after the other. Thus if xis the sequence of characters "PARIS
IN THE" and y is the sequence "THE SPRING", their concatenation F'y
is the sequence

z = "PARIS IN THETHE SPRING"

Unless the operands are exceptionally small, concatenation is very inefficient
on a computer, since it usually involves making fresh copies of both operands.
The programmer should therefore make every effort to replace concatenation
by selective updating.

The basic operators for breaking down a sequence into its component parts
are those that yield the first and last items of a non-empty sequence

x. first, x. last

and those that remove the last or first items of a non-empty sequence,
yielding the initial or final segments.

initial (x}, final (x).

134 C. A. R. HOARE

An important relationship between sequences is that one sequence x is
equal to some initial or final subsequence of a sequence y:

x begins y

or x ends y.

In our previous example, "PARIS" begins z and "RING" ends z. These
two tests can be rather time-consuming in a running program, and should be
avoided wherever possible.

A significant property of sequences is their length, i.e. the number of items
they contain; this may be found for a sequence x by the function length (x).

For some purposes (e.g. the construction of a dictionary) it is useful to
regard a sequence type as ordered in accordance with traditional lexicographic
principles: as in the case of arrays, the order of two sequences is determined
by the ordering of the first item in which they differ; or if there is no such
item, a shorter sequence precedes the longer sequence which it begins, for
example:

"ALPHA" < "ALPHABET".

In this ordering every sequence has a successor, but only a small proportion
have predecessors.

A most important selective updating operation on sequences is the
appending of a new value v to the end of an existing sequence x. This may be
written:

,--..
x: T(v);

and corresponds to the familiar concept of writing a value v to a sequential
file x. The operation corresponding to reading the beginning of a file x is
one which removes the first item of x and assigns its value to some variable v.
This may be written:

v from x;

In some applications, it is useful to be able to read back the most recently
written item from a sequence; this may be expressed

v back from x;

and it removes the last item from x. This operation can be used to "pop up"
the top item of a stack which has been "pushed down" by an ordinary
writing operation:

,--..
x: T(v).

If desired, it is possible to define the fourth updating operation, that of
attaching a new value to the beginning of a sequence. (putback (x, v)).

NOTES ON DATA STRUCTURING 135

In some cases, it is more efficient to avoid the copying of an item which is
involved in the from• operation. These cases may be dealt with by merely
omitting the left hand variable, e.g.

fromx

back from x.

In this case, access to the items of the sequence will usually be made by the
selectors x. first and/or x. last.

It is very common to wish to scan all the items of a sequence in succession;
a suitable notation for this is modelled on the for statement:

for v in x do S;

If xis empty, the statement is omitted. Otherwise the variable v (regarded
as local to S) takes in succession the values of all items from the sequence
x, and Sis executed once for each value. In this construction neither x nor 11

should be updated within S.
A similar construction can be used for defining a sequence as an item-by­

item transformation E(v) of items v in sequences.

for v ins take E(v).

In deciding a representation for a sequence, it is most important to know
which of the selective updating operations are going to be carried out upon it.

(I) If the only operation is from, the sequence is known as an input
sequence; obviously in order to have any value at all, an input sequence
must be initialised to some value existing in the outer environment in which
it is declared. The association of a sequence local to a program with some
file existing more or less permanently on backing store is often known as
"opening" the file for input, and we assume that this operation is invoked
implicitly on declaration of a local input sequence. The reverse operation of
"closing" the file is invoked implicitly on exit from the block to which
the sequence is local.

(2) If the only operation is writing to the file, the sequence is known as an
output sequence. An output sequence may be initialised from the environment
in the same way as an input sequence; or more commonly, it may take an
empty initial value. In either case, in order to serve any useful purpose, the
final value of the sequence on exit from the block must be assigned to some
variable existing in the outer environment in which the sequence is declared.
The identity of this outer variable should be declared together with the
sequence; if this outer variable is held more or less permanently on backing
store, it is known as an output file; and the rules for implicit invocation of
opening and closing of the file on entry and exit to the block are similar to
those for input files.

136 C. A. R. HOARE

{3) If the only operations are writing and reading back (push down and
pop up), the sequence is known as a stack; the initial value of a stack is
always empty, and the final value is not usually preserved.

(4) If the only operations are writing to the end and reading from the
beginning, the sequence is known as a queue; again, the initial value is always
empty, and the final value is not usually preserved.

(5) If reading and writing at both ends of a sequence are permitted, the
sequence is sometimes known as a deque (double-ended queue). However,
to make all four operations equally efficient requires some complexity of
representation, so it is fortunate that most programs can get by without
using deques.

8.2. REPRESENTATION

8.2.1. Contiguous representation

The simplest method of representing a sequence is to allocate to it a fixed
contiguous area of storage, adequate to hold all items actually required.
This method is suitable if the value (or at least the length) of the sequence is
constant throughout the execution of the program-for example, a string of
characters intended to be used as an output message or title.

In some cases, the length of the sequence is unknown at the time the
program is written, but is known on entry to the block in which the sequence
is declared, and this length remains constant throughout the existence of the
sequence. In such cases, it is possible to allocate a contiguous area of storage
in the local workspace of the block, using the standard stack method of store
allocation and deallocation.

Even if the length of the sequence is subject to variation, it is sometimes
possible to place an acceptably small upper bound on its length, and allocate
permanently this maximum area. If the limit is exceeded during a run of the
program, the programmer must be willing to accept its immediate termina­
tion. In addition to the fixed area, a pointer or count is required to indicate
the current beginning and end of the sequence. In the case of a stack, the first
item is always at the beginning, and only one pointer to the top of the stack
is required. In the case of a queue, the sequence will at times overlap the
end of the store area, and be continued again at the beginning. Such a
representation is known as a cyclic buffer, and may be used in a parallel
programming situation to communicate information between processes
running in parallel. In this case, when a writing process finds the buffer full,
it has to wait until a reading process reduces the size of the sequence again.
Similarly, the reading process must wait when the buffer is empty.

Another case where the contiguous representation is the best is when the
program requires only a single sequence, which may therefore occupy the

NOTES ON DATA STRUCTURING 137

whole of the remaining store available after allocation to other purposes;
and if overflow occurs, the program could not have been run anyway. If
two stacks are required, they can both be accommodated by arranging that
one of them starts at one end of remaining available store and grows upwards,
and the other starts at the other end and grows downwards. If the stacks
meet, the program cannot continue.

If many sequences are to be represented, it is possible to set up a scheme
in which they are spread through the remaining available store; and if any
of them grows to meet its neighbour, it is possible to reshuffle some or all
of the sequences, so that they all have sufficient room to grow again for a bit.
For each sequence there must be a base location pointing to its beginning,
through which that sequence is always addressed. In addition, the actual
length of the sequence must be stored. The base location and length of the
neighbouring sequence must always be inspected when the sequence is
extended. When reshuffling takes place, the base locations of all moved
sequences are updated to point to the new position of the sequence. This is
quite a useful ad hoc scheme in cases where the reshuffling is known to be
relatively infrequent; otherwise non-contiguous representations are to be
preferred.

Fixed length

~
~

(a)

-

Stack

first free

used

.
free

--
(b)

Queue

~

3

first free
read pointer

count

tfree

I used

free

(c)

Fro. 5. Sequences (Contiguous representation)

Queue
(cyclic buffer)

--
4

...

--

used

free

used

When the individual items of a sequence are of variable length, there is
usually no need to pad the shorter items out to the maximum length, since
the use of the tag field, or other technique, will indicate the length of any
given item, and this can be used to step the pointer by the right amount
when the item is read. But this requires that the direction of reading be known
at the time of writing, as in a stack or a queue. If reading is to be carried out
from both ends, it will be necessary to ensure that the length of an item can
be deduced from its bottom as well as its top, which will involve storing

138 C. A. R. HOARE

redundant information (e.g. length of previous item) between each item in
the sequence.

Stack

to

~

=

=

(a)

p of stack

Queue

1------1 first free
read pointer

(bl

~ tao or length indication

FIG. 6. Sequences (variable length items)

Deque

2 length

I length

3 length

(c)

When a sequence is itself a part of an item of some other sequence, the
contiguous representation of the item-sequence may be used. This will
normally be accompanied by a count giving the length of the sequence, so
that the actual size of each item can be computed when the item is read.

8.2.2. Chained Representation

In order to avoid reshuffling problems mentioned in the previous section, it
is usual to introduce indirect or chained methods of storage allocation, using
either fixed length or variable length units of allocation. The available store
is split into areas, some of which will be in use for storing items of some
sequence, and others will be free. The free areas are also linked together as a
chained sequence. Whenever a progr.immer's sequence requires extension,
an area (or part of an area) is acquired from the free chain; and whenever a
sequence is shortened by reading, an area can be returned to the free chain.
In the case of fixed-length items, the administration of dynamic storage
allocation with explicit deallocation presents no problems. The problems of
variable length allocation will not be treated here; they are best avoided by
the use of blocking (see next section).

The simplest form of chain is the single linked chain. Each item of the
sequence has adjoined to it, in a link location, the address of the next item

NOTES ON DATA STRUCTURING 139

in the chain. The empty sequence is represented by a value which could not
possibly be an address (say zero or minus one); and the link location of the
last item in the sequence contains this value. The first item in the chain is
pointed to by the base location of the sequence.

A single linked chain is useful when the direction in which the sequence
will be read is known; for the links have to point in this direction. In the
case of a stack they will point backwards, and in the case of input and output
sequences and queues they will point forwards. In the case of an input or
output sequence, the base location of the external variable which is to hold
the initial and/or final value of the sequence points permanently at the
beginning of the chain, while the base location of the sequence itself steps
through the sequence. In the case of a queue, two base locations are used,
to point to each end of the sequence.

Stack Queue Oeque

write pointer ,__ __ ___,
...__ __ ___, read painter

1..r--==:i-J m~gnce
pointers

(al (bl (c)

FIG. 7. Sequences (Chained Representation)

One possible advantage of the single-chained representation in the case of
stacks is that several stacks can share the same initial segments, which may
save space and time in some applications. However, when an item is popped
up from such a stack, the storage space which it occupies cannot be immedi­
ately returned to the free chain, since it may be in use as part of another
stack. One solution to this problem is nP-ver to return storage explicitly,
but to wait until the free chain is exhausted. Then all currently allocated
sequences are scanned, and all blocks currently in use are marked. Then all
unmarked blocks are collected onto the free chain. This is known as a scan-

140 C. A. R. HOARE

mark-collect garbage collection. Although it appears to relieve the pro­
grammer of the responsibility of explicit control of main store allocation and
deallocation, this can be dangerous in non-trivial computer applications
where the responsibility is one that cannot so lightly be evaded.

In the case of a deque, when reading is required in both directions, a single­
linked chain is no longer adequate; and the usual solution is to adjoin two
pointers to each item in the chain, one pointing to the previous item and one
pointing to the following item. In fact these two pointers can be compressed
into a single word containing only the difference between them. Since in
the first and last items one of the pointers is a standard null value, the value
of the other pointer from these items can always be obtained by subtraction.
On reading or writing, the value of the link location for the new first or last
item can be readily adjusted, since at this stage the address of the previous
first or last item is still known. The detailed working out of this scheme is
left as an exercise.

An alternative method of linking the items of a chain is to collect all links
together in a single contiguous table, preferably of fixed length. This gives a
form of tree representation for the sequence, and permits ready scanning
in both directions. But it places an upper bound on the number of items in
the sequence; and it means that the locations used for links must be per­
manently allocated, even at times when the sequence is relatively short.
This problem can be mitigated by the use of blocking.

8.2.3 Blocked Representation

One disadvantage of chaining is the amount of extra storage required to hold
the links, and the time taken to administer the free store chain on each
operation. These problems are particularly severe when the size of the
individual items of the sequence are small and the sequence is long. The
method of solving this problem is to use blocking; that is, a combination of
the contiguous and chained techniques.

In this technique, a fixed-length block of storage is allocated, sufficient to
hold perhaps between ten and a hundred items. When this block is filled, a
new block is chained to it, using any of the methods described in the previous
section. On input, a block is not released to free store until all the items it
contains have been scanned. Thus the amount of store used on links can be
reduced to negligible proportions. This can be of particular benefit in the
tree representation of the chain.

As mentioned above, the use of blocking can also avoid the
problems arising from variable-length dynamic storage allocation, since the
size of the block may be held constant for all sequences, independent of the
size of their items. Furthermore, in cases where part or all of the sequence
is to be held on backing store, the use of blocking is almost universally

NOTES ON DATA STRUCTURING 141

indicated, since backing store transfers can be very inefficient if the unit of
transfer is too small. The only (dubious) disadvantage of blocking is that
it inhibits effective sharing of the tails of stacks.

The only remaining problem is to choose a size of block suitable for all
purposes. It must obviously be large enough to accommodate the largest
item of any sequence. In fact, it should be large enough to accommodate at
least ten typical items; otherwise the space left over at the end of a block
which is not large enough to accommodate the next item may reach signifi­
cant proportions. Also, if the sequence is to be held partially or wholly on
backing store, the block should be long enough to ensure that not too much
space is wasted on interblock gaps, and the frequency of transfers is low
enough to ensure that not too much time is spent in start-stop, latency, or
head movement delays.

On the other hand, if the block size is too large, the space wasted at the
beginning of the first block and/or the end of the last block will become
significant; thus the block size should be small enough to ensure that the
typical sequence occupies at least ten blocks.

In the presence of so many conflicting considerations, it is not easy to
select a standard block size for sequences of differing length and item size,
and all forms of backing store, with different methods of access. However,
an acceptable compromise can often be made, and on present-day computer
designs, a block size of between 128 and 1024 words will often be a suitable
choice. Probably in most cases the size chosen is not critical within a factor
of two either way.

8.2.4. Backing Store Representr.1tion

In processing a sequence, a program normally requires access to one of its
ends, and all the material in the middle and other end is unused for relatively
long periods of time. If main storage is at all scarce, it is very profitable to
transfer this material to backing store, so that the space it occupies in main
store may be used for other purposes. In the case of input and output
sequences, which have a lifetime greater than the program which reads or
writes them, the use of backing store for long-term storage is almost
obligatory.

When using backing store, efficiency of processing and representation
demands that transfers should occur in blocks of reasonable size. The block
which contains an active end of a sequence is always held in main store; and
to permit overlap of input/output with computing, the previous block (on
writing) or the next block (on reading) also remains allocated during the
transfer operation. This is known as double-buffering. It is possible to hold
even more buffers in store to smooth out variations in the speed of processing
and the speed of transfer; but the program designer must not fall into the

142 C. A. R. HOARE

trap of supposing that this will help when there is a basic mismatch in the
speeds of processing and transfer. In general, if double or triple buffering is
inadequate, it is not worth while filling the store with any further extra
buffers.

In a machine which is endowed with an automatic paging scheme, the
problems of representing sequences are very much reduced. As far as the
programmer is concerned, he need only allocate the amount of storage
required for the longest possible sequence, using the contiguous representa­
tion. This should not actually cause any waste of storage, since the paging
system should delay allocation of store until it is first used. As the sequence
expands, new blocks of store will be allocated, but the addressing of these
blocks will appear contiguous to the programmer, so there is no problem
of leaving unused space at the end of blocks which are not large enough to
hold the next item. Shortly after a block has been filled, it will automatically
migrate to backing store; and it will be brought back again automatically
as soon as it is required. On input sequences, a block which has been scanned
will also be removed shortly afterwards from main store; but this will not
involve an unnecessary backing store transfer if the material has not been
changed since the last input took place. The only operation which a paging
system will not perform automatically is to read a block of an input sequence
into store ahead of its actual requirement.

9. RECURSIVE DATA STRUCTURES

There are certain close analogies between the methods used for structuring
data and the methods for structuring a program which processes that data.
Thus, a Cartesian product corresponds to a compound statement, which
assigns values to its components. Similarly, a discriminated union corresponds
to a conditional or case construction, selecting an appropriate processing
method for each alternative. Arrays and powersets correspond to for state­
ments sequencing through their elements, with an essentially bounded
number of iterations.

The sequence structure is the first that permits construction of types of
infinite cardinality, with values of unbounded length; and it corresponds to
the unbounded form oflooping, with a while condition to control termination.
The reason why the sequence is unbounded is that one of its components
(i.e. the initial segment) from which it is built up belongs to the same type as
itself, in the same way as the statement which remains to be obeyed after
any iteration of a while loop is the same statement as before.

The question naturally arises whether the analogy can be extended to a
data structure corresponding to recursive procedures. A value of such a
type would be permitted to contain more than one component that belongs

NOTES ON DATA STRUCTURING 143

to the same data type as itself; in the same way that a recursive procedure
can call itself recursively from more than one place in its own body. As in
the case of recursive procedures such a structure can conveniently be defined
by writing the name of the type being defined actually inside its own definition;
or in the case of mutually recursive definition, in the definition of some
preceding type.

The most obvious examples of recursive data structures are to be found
in the description of arithmetic or logical expressions, programming lan­
guages, where the recursion reflects the possibility of nesting one expression
inside another. For example, an arithmetic expression might be defined as
follows:

"An expression is a series of terms, each of which consists of a sign
(+ or -) followed by a sequence of factors. Each factor except the first
consists of a sign (x or/) followed by a primary. A primary is either a
constant, a variable, or an expression surrounded by brackets. An initial
plus sign in an expression may be omitted."

A structured data type whose values comprise such expressions may be
defined usip.g only techniques already familiar, plus recursion:

type expression = sequence term;

type term= (addop:operator;f:sequence factor);

type factor= (mulop:operator;p:primary);

type primary = (const: (val: real),

var: (id: identifier),

bracketed : (e: expression));

type operator = (plus, minus, times, div);

This definition expresses the abstract structure of an arithmetic expression,
but not the details of its concrete representation as a string of characters.
For example, it does not specify the symbols used for brackets or operators,
nor does it state whether an infix, prefix or postfix notation is used for them.
It does not state how the three kinds of primary are to be distinguished.
It does not even represent the optional omission of plus on the first term of
an expression, and the necessary omission of x on the first factor of a term.
Apart from this degree of abstraction and representation-independence, this
type definition would correspond to a set of BNF syntax equations:

(expression)::= (term) I (addop)(term) I
(expression)(addop)(term)

(term): : = (primary) I (term) (mulop) (primary)
(primary)::= (unsigned real number) I (variable) I

((expression))

144 C. A. R. HOARE

Note how we have used sequences to replace the recursion wherever
possible. In fact this can be done whenever a type name occurs recursively
only once at the beginning or at the end of its definition. For example:

type expression = sequence term;

might have been formulated recursively:

type expression =

(empty:(), non-empty:(first:term; final:expression)).

A similar alternative formulation permits while loops to be expressed as
recursive procedures.

The construction of values of a recursively defined type requires no new
operators or transfer functions; all that is needed is recursive use of the
methods defined for the other relevant structuring methods. For example,
the expression

3/(b - 2)

could be specified by the cumbersome construction:

[term {plus, [factor (times, primary (const (3))),

factor (div, primary (bracketed (

])

].

[term (plus, [factor (times, primary (var ("b")))]),

term (minus, [factor (times, primary (const (2)))])])))

An effective method of getting the computer itself to translate expressions
into abstract structures will be given as an example in (9.2).

Another familiar example of recursively defined data is the family tree.
A family tree (excluding information about marriage) can be defined by
associating with each person the family trees of all his/her offspring. We
assume that certain additional personal details are required to be held:

type family = (head: person; offspring :sequence family);

A person with no children is an ultimate component of the family tree,
and may be represented:

family (Tom, [])

A family with three children may be represented:

family (Jill, [family (Tom, []),

family (Joanna, []),

family (Matthew, [])]).

NOTES ON DAT A STRUCTURING 145

The final example shows how the binary forking tree familiar to LISP
programmers may be defined as a recursive data structure.

type list = (atom:sequence character, cons:(car, cdr:list)).

A list which in LISP dot-notation would be expressed

{(A. (B. NIL)). NIL)

can be expressed as a value of type list in almost exactly the same way as it is
in LISP:

cons (cons (atom ("A"),

cons (atom ("B"), atom ("NIL"))),

atom ("NIL")

);

where the type transfer to list type is left implicit.
As an example of the processing of a list, we write a function to reverse a

complete tree, so that every "left fork" in it becomes a "right fork" and
vice-versa.

function reverse (/:list): list;

with I do

{atom: reverse:=/,

cons: reverse:= cons {reverse (cdr), reverse (car))}

9. l. REPRESENTATION

The standard representation of a recursive type is also very similar to
that of a similarly structured non-recursive type, with the exception that each
component specified as belonging to the recursive type itself is represented
by a location containing a pointer to its value, rather than the value itself.
This use of a pointer is motivated by the fact that the component value may
be of arbitrary size; and it is not possible to allocate any fixed amount
of storage to contain it. This is known as the "tree representation", and is
similar to the tree representation of an array or sequence, except that the
branches may grow to arbitrary and varying heights.

An alternative method of representation is the linear sequence or bitstrcam.
In this representation it is possible to avoid the use of pointers, and place
the values of recursive substructures contiguous with the rest of the infor­
mation, just as they are in the familiar bracketed character representations
of expressions. However instead of using brackets, we can reestablish the
bracketing structure by context, and if necessary by scanning the tag of
union values. This method is usually associated with packed representations
of the other components, and a very significant reduction in storage may be
achieved, at the expense of enforcing serial access to the components of'the

146 C. A. R. HOARE

structure. In many circumstances, a bitstream representation is some ten
times more compact than the tree representation.

Tree

tag

Bitslream

--+-----<-iO A

B
A

(al

l1l1IOI A 11§ B §NIL lilOI B § A I
(b)

Fm. 8. Representation of ((A . (B.NIL)) . (B . A))

B

NIL

The choice between tree and linear representation is usually obvious. If
the structure is being processed by the program, usually by means of recursive
procedures, the needs of ready access to any component of the structure
dictate a tree representation. In addition, some of the space lost may be
regained by sharing common branches among several trees; such commonality
of branches is a feature of the processing of symbolic expressions. However,
ifthe structure has to be output and subsequently re-input, the linear structure
is vastly preferable. Not only does the reduction in volume reduce transfer
time, but the linearisation avoids a number of tricky problems of representing
pointers in backing store. In many cases, a structure which passes through
several phase~ of processing and input-output will be translated between
the two representations at each phase; and this is standard practice in a
multipass translator for a high-level programming language.

It is important to note that the sharing of the recursive sub-structure is
nothing but a means of saving time and storage, and has no effect on the
running of the program. This means that the sharing must be avoided
whenever there is any danger that the shared sub-structure might be selectively
updated as part of one of its owners. In principle, all values are entirely
disjoint from all other values, and there is no way in which the programmer
could either know or care how far his structures are shared. Furthermore,
there is no way whatsoever in which a pointer can be made to point back
to a structure of which it is a component; since this would mean that the
structure was identical to one of its own components. Only an infinite struc­
ture can have this property; and infinite structures do not satisfy the axiom
of exclusion on which the important principle of induction for recursive
structures is based.

NOTES ON DAT A STRUCTURING 147

9.2. EXAMPLE

A source text for an expression in a programming language is presented
as a sequence of symbols defined:

type symbol = (constant: (value: real), variable: (identifier: ident),

op: operator, leftbracket, rightbracket);

Write a program operating on an input variable

source: sequence symbol,

which reads from its beginning the longest possible legitimate expression,
delivers the corresponding abstract expression as a result, and exits to the
label error if this is impossible. The structure of the result and the syntax of
the source are as specified earlier in this chapter.

The structure of the program closely follows that of the desired result.

There are three functions:

compile expression

compile term (sign)

coml'.!ile primary

each of which removes from the source the longest expression in its syntactic
category, and delivers the corresponding abstract structure as a result. The
main irregularity of the process is that the first term of an expression may be
unsigned; this is why the sign is provided as a parameter for compile term,
instead of being read from source by compile term itself. Each function has
the side-effect of shortening the source sequence if successful, and jumping
to error if not.

function compile expression: expression;

begin sign: operator;

end;

if source. first = plus v source. first = minus then sign from source

else sign : = pl us;

compile expression: = [compile term (sign)];

while source. first = plus v source. first = minus do

begin sign from source; -compile expression: [compile term (sign)]

end

function compile term (s: operator): term;

begin p: primary; sign: operator; fs: sequence factor;

148

end;

C. A. R. HOARE

p: = compile primary;

fs: = [factor (times, p)];

while source. first = times v source. first = div do

begin sign from source:

p: = compile primary; -fs: [factor (sign, p)]

end;

compile term:= term (s,fs)

function compile primary: primary;

begin s: symbol;

end;

Exercise

s from source;

withs do {constant: compile primary:= const (value),

variable: compile primary: = var (identifier),

leftbracket:

begin from source;

compile primary:= bracketed (compile expression);

s from source;

ifs .,p rightbracket then go to error

end,

else go to error}

Write programs to convert an expression from tree representation to
bitstream and back again.

10. SPARSE DATA STRUCTURES

In dealing with representations of arrays and powersets, we have hitherto
assumed that the base type of a powerset and the domain type of an array is
reasonably small, so that it is possible to allocate a bit or larger area of store
to hold the value of every potential element of the structure. The examples
also were confined to such cases. In this chapter we investigate the conse­
quences and problems which arise when the base or domain types are very
large or infinite, and when the standard representations are therefore
impossible.

NOTES ON DATA STRUCTURING 149

The representation and manipulation of powersets and mappings with
infinite domains can be accomplished, provided that consideration is re­
stricted to sets with only a finite number of members, and mappings in which
only a finite number of elements take significant values; where "significant"
is defined as different from some specified null or default value. The powerset
of an infinite set is obviously also infinite; but since each value of the powerset
type contains only a finite number of elements, each value can be specified
simply by listing those elements in a finite period of time, and the list will
occupy only a finite amount of storage. Similarly, each value of a mapping
type with infinite domain can be finitely specified by listing all elements of
the domain which map onto significant values of the range type, together
with the value mapped in each case. A type which is restricted in this way is
known as sparse.

In fact the concept of sparsity is not confined to infinite bases and domains;
it may also be applied to very large but finite powersets, when the pro­
grammer knows that each actual set in which he is interested will contain
only a very small proportion of the potential members. For example, the
base type may contain hundreds of millions of values, but the programmer
may know that he only has to deal with sets of less than a hundred in size,
and perhaps most of them less than ten. It would be impossible to use the
bitpattern representation, since this requires hundreds of millions of bits;
but since each value actually used in a program contains only a few members,
these members can readily be listed in a comparatively small amount of
store. A powerset type of this sort is known as sparse. Similarly, arrays
with a very large domain, nearly all of which map onto the same default
value of the range, are said to belong to a sparse array type.

Sparse sets and arrays are frequently encountered in advanced data
processing applications, and their representation and manipulation present a
number of familiar problems. Our first example is the definition of a type
whose values are sets of car numbers. The cardinality of the carnumber type
is perhaps something like four thousand million; but the programmer
wishes only to deal with sets of cars owned by a single person; most of these
will have only one member, and very few will have more than ten. The
carset type may therefore be declared as sparse powerset:

type carset = sparse powerset carnumber;

As an example of a sparse array, we may take the type of mappings
between car owners and the set of cars they own. Each owner is represented
by name and address; since these are of arbitrary length, the owner type
may be defined:

type owner = sequence character;

150 C. A. R. HOARE

and has infinite cardinality. The required type is therefore declared as
sparse:

type carfile = sparse array owner of carset.

In a data processing application, a variable of carfile type would be known
as a random access file, and the owner would be known as the key element of
the file.

The next two examples are drawn from numerical applications. A vector
is a mapping from integers onto floating point numbers. A sparse vector is
one in which most of the elements are zero; consequently its initial value will
be the zero constant function, and all elements will remain zero unless an
explicit assignment is made of a different value:

type sparsevector = sparse array integer of real.

A sparse complex matrix may be defined in a similar way:

type irregular matrix = sparse array (row, column: integer)

of complex.

The n~xt example is taken from the field of the translation of programming
languages to machine code. During the process of translation, the translator
needs to know certain information about each identifier declared in the
program, such as machine address allocated to the variable, its length and
type, etc. This information is assumed to belong to a type decode. The typ.: of
an array which associates a decode with each identifier is given the name
dictionary and is declared:

type dictionary = sparse array ident of decode

Of course, the translator is interested in the decode only of those identifiers
actually declared in the source program. For the vast majority of possible
identifiers, the value given by any dictionary of this type will be that value of
the decode type which indicates that the identifier was undeclared.

The final example is of a type that causes familiar problems in a com­
mercial filing system and in real life-that of multidimensional cross­
classification. The customers of a firm are split up into a number of
geographical areas; they are also classified in a number of classes, in accord­
ance with the kind of product they purchase. On occasions it is required to
access all customers in an area, sequencing through all classes; on other
occasions to access all customers in a class, sequencing through the areas;
and finally, it is sometimes required to process all customers of a given class
in a given area. The abstract structure required to deal with this situation
is a two-dimensional sparse array of sparse sets:

~parse array (c: class; a: area) of sparse powerset customer.

NOTES ON DATA STRUCTURING 151

A similar example may arise in the description of family relationship
among persons:

type children= sparse array (mother, father: person) of

sparse powerset person:

This array caters for multiple marriages better than the more tree-like
representations of a family, which can be defined as a recursive structure.

In the case of sparse arrays, it is sometimes useful to regard them as
partial rather than total mappings. A partial mapping is one which does not
necessarily give a value for each member of its domain type. In other words,
the actual domain over which it is defined is a subset of the domain type.
For such an array type it is necessary to introduce an additional constant
omega, denoting a mapping which is everywhere undefined. It is also useful
to introduce a function

domain (x)

which delivers as result the set of subscripts for elements of x which are
actually defined. Thus the programmer can sequence through all the defined
elements, or test whether a particular element is defined or not. Many of the
examples quoted above might well have been declared as partial instead of
sparse. In the case of a partial mapping, the default value does not have to be
recorded.

10.l REPRESENTATION

Sparse sets and arrays are usually represented by simply keeping a record
of the default value and those members or elements which are significant;
thu5 the representation borrows techniques which are used in the case of the
sequence type to deal with structures of changeable size. A sparse set may be
regarded as a special case of a sparse mapping, which maps all its members
onto the Boolean value true, and all its non-members onto the default value
false. Thus their representations are closely similar to those of sparse arrays,
and do not require separate treatment.

A sparse mapping consists of a number of elements. Each element
of the mapping is represented as the Cartesian product of its subscript and
its value; in this case the subscript is known as the key, and the value is
known as the information associated with the element, and the juxtaposition
of the two will be known as an entry. In the case of a set which is sparse,
there is no need to record any information, since the presence of the key
itself is sufficient to indicate that this value is a member of the set. Thus an
entry for a sparse set consists only of a key.

152 C. A. R. HOARE

10. l. l. Sequential Representation

The simplest representation of a sparse array type is as a sequence of entries;
i.e.

sparse array D of R

is represented as if it had been declared
(default:R; s:sequence (key:D; information:R)).

One of the possible sequence representations must now be chosen, in
accordance with the same criteria that are used in the case of a sequence.
But when a sequence is used to represent a sparse array, the order of the
entries is immaterial, and does not have to reflect the relative times at which
the entries were made. Thus the entries are often sorted into order of their
key-value, particularly if this is the order in which they are going to be
scanned.

The chief disadvantage of the sequential representation is the length of
time taken to access the element corresponding to a random subscript. In
the case of structures of any great size, the program designer usually goes to
considerable trouble to ensure that entries are accessed in the same standard
order that they are stored in the sequence; and that if new entries are to be
inserted, these are also sorted and then merged with the original sequence.
Thus the standard commercial practice of batch processing and updating of
sequential files may be regarded as a practical implementation of the abstract
concept of a sparse array on the rather unsympathetic medium of magnetic
tape.

l 0.1.2. Tabular Representation

If there is an acceptably low upper limit N to the number of entries in a
sparse mapping, a great increase in speed of lookup can be achieved by the
tabular representation, in which the sparse mapping

sparse array D of R

is represented as a nonsparse array:
(default:R; occupied: powerset 0 . . N;

array 0 .. N of (key: D; information: R)).

If all the significant entries are collected before they are used, the table can
be sorted, and then the entry with a given key can be rapidly located by
logarithmic search.

If access to the elements of the array is interleaved with addition of new
entries, some form of hash-table technique is indicated. For this an arbitrary
"hashing" function is chosen, which maps the domain type D into an
integer in the range 0 .. N. When the entry is inserted, it is placed at this
position in the table; so whenever that entry is accessed, use of the same
hashing function will find it there. If that position is already occupied by an

NOTES ON DATA STRUCTURING 153

entry with a different key, some other vacant position in the table must
be found. It is quite usual to search for such a vacant position in the next
following locations of the table; but when the table is nearly full, this may
cause undesirable bunching around an area of the table which happens to
be popular. A solution to this problem is to choose N + I as a prime number,
and to use a second hashing function to compute an arbitrary step length
from any given key. The next position to try when any given position is full
is obtained by adding the step length (modulo N + I) to the previous
position.

I 0.1.3. Indexed Representation

The tabular method of storage is suitable only when the whole table can be
accommodated in the main store of the computer. In the common case
when this is not possible, a mixture of the tabular and sequential methods is
often used. In this a sparse array is represented as a table, each of whose
entries is a sequence:
(default:R; table:array I . . N of

(max:D; seq: sequence (key:D; information:R))).
Every entry is placed on that sequence i such that its key fails between
table [i - I]. max (or D. min if i = I) and table [i]. max. The table is sorted
so that the appropriate sequence can be quickly located. This tecTinique
may be likened to the organisation of a multivolume encyclopaedia, in
which the keys of the first and last entries of each volume are indicated on
the spine, so that the right volume can he quickly id~ntified, without extracting
the volumes from the shelf.

When using this representation, it is desirable t0 ensure that all sequences
are of roughly the same length. Indeed, if disc backing store is used, it is
very advantageous to ensure that each of them is fitted onto a single cylinder,
so that a random access will not involve more than a single head movement.
Thus, when one sequence gets too long, it must exchange material with the
adjacent sequence. This involves extracting the entries with the largest
and/or smallest keys, and is best done when all the sequences are sorted into
order of key-value. The sorting and reshuffling is often carried out as a
separate operation at regular intervals; and the general method of file
organisation is known as "indexed ~equential".

Naturally in this method of representation, it is an advantage to keep
the sequences as short as possible, say less than a single track on disk.
Consequently, the table itself may get so large that it will no longer fit in
main store. In this case the table itself is split up into sections, and a second­
level table may be set up to point to its sections, using the same principle
again. Thus at least two accesses to backing store will in general be required
for each access to an element of the array, and it is strongly recommended

154 C. A. R. HOARE

to ensure that the sizes and location of the sequences and sections be chosen
to correspond closely with the access characteristics of the storage medium.

I 0.1.4. Locally Dense Representation

A special case of a sparse array encountered in numerical computer appli­
cations is the sparse matrix. Quite frequently a sparse matrix can be split
into submatrices, only a few of which contain significant non-zero entries.
In this case, the matrix may be said to be locally dense, and should be
represented and processed in a manner which takes advantage of this fact.

One method of achieving this is to store with each significant submatrix
its position and size, and to represent the whole matrix as a table or sequence
of such submatrices, where each submatrix is stored contiguously in the
usual way, using multiplicative address calculation. However, the sub­
matrices will in general be of different sizes, and if the size varies during the
processing of the matrix, the problems will be quite severe. A possible way of
dealing with sparse matrices is to split them into submatrices of standard
size, say sixteen by sixteen, and set up a table of pointers to each of these
submatrices. A submatrix that is wholly zero is represented by a null pointer
and occupies no additional storage; otherwise, the submatrix is stored in the
usual way, using the following method of address calculation.

Each access to the array involves first "interleaving" the bit values of the
two subscripts, so that the least significant part of the result contains the least
significant part of both subscripts. The more significant part of the result is
then used to consult the table of addresses, to locate the desired submatrix,
and the less significant part to find the position of the required element
within the submatrix. This technique of interleaving subscripts may on
some machines be more efficient than general multiplication. If some of the
submatrices have to be held on backing store, this method of address calcu­
lation is particularly recommended, since it is equally efficient at processing
the matrix by rows as by columns; and the method can then be recommended
for all large arrays, whether sparse or not, particularly on a paged computer.
The inventor of this method is Professor E. W. Dijkstra.

I 0.1.5. Grid Representation

The phenomenon of cross-classification of files causes as many problems in a
computer as it does in real life. It is usually solved by standardising on one
of the classifications which is most convenient, and accepting the extra cost of
processing in accordance with the other classification, even if this involves
resorting the file. Thus the sparse mapping

sparse array (i:D 1 ;j:D2) of R
is represented as:

sparse array D 1 of (sparse array D 2 of R)

NOTES ON DATA STRUCTURING 155

However, it is also possible to deal with the two dimensions in a more
symmetric fashion, using a method based on the chained representation of
sequences. In this representation, each actually used value of Di is placed
in one chain, and each actually used value of D 2 is placed in another. These
are called border chains. Each element of either border chain contains a
base location pointing to a chained sequence of all elements with key values
which fall into the class. Now each actual entry of the array has two addresses
attached; one points to the next item of the sequence which has the same
classification according to Di, and the other to the next item which has the
same classification according to D 2 • Thus each item may be pictured as
residing on an intersection of the lines of a two-dimensional grid, with
pointers leading across and downwards to the next item on the same row
or the same column.

A - - 02 border chain

r-- -- ~---

d2 d2

-- - Rest of this row

-------d1 No value of
A [d1 ,d2) A [dt ,d2)

-1--- - - - · Rest of this row
-
~------d' I A (dj ,d2)

A [dt ,d2]

02 border chain Rest of this column Rest of this column

FIG. 9. Grid Representation of A : sparse array (d, ;D, ;d2 :D2) of T

This grid representation is unfortunately suitable only when the entire
structure will fit into main store. If the main part of the sequences have to be
held on backing store, some sort of blocking of adjacent elements would be
desirable in the interests of efficiency.

1 I . EXAMPLE: EXAMINATION TIMETABLES

In an educational establishment which offers students a wide choice of course
combinations, there arises the problem of designing an examination time­
table in which each examination is conducted in a single session, and yet

156 C. A. R. HOARE

each student can attend the examination for each course that he has taken.
This can always be arranged by allocating a separate session for each examina­
tion; but the interests of examiner and student alike dictate that the total
examination period be as short as possible. This means that each session
should contain as many examinations as possible, subject to some limit k.
An additional constraint is imposed by the size of the examination hall,
which can only accommodate a certain maximum number of students.

Before designing the program, it is desirable to confirm our understanding
of the problem by making a more rigorous formalisation in terms of the
structure of the various items of data, both given and required. The types
"student" and "exam" are obviously unstructured and need no further
definition at this stage. The load of exams to be taken by each student is
given by a mapping:

load: array student of powerset exam.

A timetable is a set of sessions, where each session consists of a set of exams:
type session = powerset exam;

timetable: powerset session.

We next attempt to formalise the properties which the input and output
data are required to possess.

(I) We choose not to formalise the condition that the number of sesi.ions
be minimised, since in fact we do not want an absolute minimum if this
turns out to be too expensive to compute.

(2) Each exam is scheduled for one of the sessions
U s =exam.all
s in timetable

(3) No exam is scheduled for more than one session:
(sl A s2 = { }) or (sl = s2)

Conditions (2) and (3) effectively state that the timetable is a partitioning
of the set of all exams into exhaustive and exclusive subsets.

(4) No session includes more thank exams

s in timetable ::> size (s) ~ k

(5) No session involves more than hallsize students. To formalise this,
we need to count the number of students taking each exam:

examcount (e:exam) =size {st: student I e in load (st)}.

Now the number of students involved in a session is

session count (s: session) = L examcount (e)
e ins

NOTES ON DATA STRUCTURING 157

The condition may be formalised:

s in timetable ::> sessioncount (s) ~ hallsize.

(6) No student takes more than one exam in a session. To formalise this
we introduce the concept of incompatibility of exams: two exams are in­
compatible if some student is taking both of them. For each exam el there is
a set incompat (el) of exams which are incompatible with it:

incompat (el)= {e2:exam I e2 '#el & 3 st:student (el in load (st)

& e2 in load (st))}

Now we can define that every pair of exams in a session must be compatible:

sin timetable & el, e2 ins::> 1el in incompat (e2).

These six conditions, defined in terms of load, hallsize, and k, must be
possessed by any successful timetable in the real world, and by any successful
computer representation of the timetable. They serve to define the objectives
and criterion of correctness of our timetabling program.

11.1 THE ABSTRACT PROGRAM

Inspection of the conditions reveals that construction of the timetable does
not require full knowledge of the load of each student. All that is needed is
the examcount of each exam, and for each exam the set of other exams
which are incompatible with it:

examcount:array exam of integer;

incompat: array exam of powerset exam.

These two arrays embody an abstraction from the real life data, which
concentrate attention on exactly those features which are for the present
purpose relevant, and permitting us to ignore for the time being the other
features of the situation. It is plain that these two arrays can be readily
constructed from a single scan of the student load data:

examcount: = all (0);

incompat: = all ({ });

for st: student do

fore in load (st) do

begin examcount (e): +I;

incompat (e): v (load (st) - { e})

end;

One of the simplifying factors in the search for a solution to the given
problem is that the conditions fall readily into two classes: (l) (2) and (3)
relate to the timetable as a whole, whereas (4) (5) and (6) relate only to

158 C. A. R. HOARE

individual sessions, and do not mention the timetable at all. This suggests
that the program can be structured as an inner part which selects a suitable
session satisfying (4) (5) and (6), and an outer loop which constructs the
timetable out of such suitable sessions.
The objective of the outer loop is to achieve satisfaction of conditions (2)
and (3) on its completion. We therefore choose one of these conditions as a
terminating condition of the loop, and design the body of the loop in such a
way that is preserves the truth of the other condition (that is, the invariant
of the loop); furthermore we ensure that the invariant is true before starting
the loop.

The obvious choice of invariant is exclusiveness (condition (3)), leaving
exhaustiveness as the terminating condition towards which each execution
of the body of the loop will progress. The empty timetable obviously satisfies
the invariant. This leads to an algorithm of the following structure:

timetable: = { } ;

while timetable does not satisfy (2) do

begin select a session satisfying (4), (5), (6);

add the session to the timetable

end;

print timetable.

In order for the addition of a new session to preserve the truth of the
invariant, it is necessary that the exams of the session shall be selected from
exams which do not yet appear in the timetable. We therefore introduce a
new variable to hold these remaining exams:

remaining: powerset exam;

which is defined by the invariant relation:

remaining = exam. all- LJ s.
s in timetable

The structure of the program as a whole now takes the form:

timetable: = { } ;

remaining: = exam. all;

while remaining'# { } do

begin s: = suitable;

timetable: v {s };

remaining: - s

end;

print timetable.

NOTES ON DATA STRUCTURING 159

The problem now remains of selecting a suitable session at each stage.
In principle, there is no reason to suppose that the "best" choice at each
stage will lead to a "best" or even a "good" timetable in the end. However,
it would seem that in general it will pay to select a combination of remaining
exams that most nearly fills the hall, or most nearly approaches the limit k.
This will probably mean that the majority of students and exams will be
catered for in a reasonably compact set of sessions, even though there may
in the end be a fairly long "tail" of small sessions, involving a minority of
students. Although this will not minimise the number of sessions, it may be
reasonably satisfactory to most students and most examiners.

The alternative to accepting an apparent best choice on each occasion is
to attempt some more global optimisation, which will either involve astrono­
mical numbers of trials, or some sophisticated considerations which are
unlikely to become apparent until after practical experience of a simpler
algorithm. So there is nothing else that can be done at this stage except hope
for the best.

It remains to program the function:

function suitable: session,

which selects a suitable session from the remaining set of exams; A possible
method of doing this is to generate a number of trial session satisfying (4)
(5) and (6), and to select the best one found. The best one will probably be
the one with the largest sessioncount, but since we may wish to adjust the
criterion of selection, it is advisable to define it as a separate subroutine,
updating a variable

bestsofar: session;

in accordance with the current value of a variable:

trial: session;

procedure record

if sessioncount (bestsofar) < sessioncount (trial) then

bestsofar: = trial.

The result of suitable is going to be the final value of bestsofar:

suitable: = bestsofar.

It still remains to write a procedure that will generate and record a sequence
of trial sessions which satisfy (4) (5) and (6). Inspection of these conditions
shows that if a trial/ails to satisfy one of them, no larger trial will satisfy it.
In other words, having found an impossible trial, there is no need to generate
any further trials which contain it. This suggests that we organise the
generation process to generate all supersets of each trial that has been found

160 C. A. R. HOARE

already to be possible, but excluding any exams which have already been
tried. We therefore introduce a variable:

untried: powerset exam,
and a procedure

procedure gensupersets,

which generates and records all possible supersets of trial by adding one or
more exams from untried to it. This procedure will be called from within
"suitable".

function suitable: session;

begin trial, bestsofar: session; e: exam; untried: powerset exam :

e from remaining;

end;

trial : = bestsofar: = { e} ;

untried:= remaining - trial - incompat (e);

gensupersets;

suitable: = bestsofar

Note that the first value of the trial is the unitset of some exam chosen from
the remainder according to some as yet undefined criterion. The justification
for this is that the chosen exam must eventually feature in some session of
the timetable, and it might as well be this one. If this prior choice were not
made, gensupersets would keep on generating the same supersets on every
cycle of the major loop of the timetabling program.

As another significant optimisation, we have removed from untried any
exams which are incompatible with the exams in the trial, since there is no
need to even consider the addition of any of these exams to the trial.

The generation of supersets of a given trial may proceed by selecting
each exam from untried, and adding it to trial. If the result is still valid, it
should be recorded, and the new value of trial is then a suitable session to
act as a basis for further superset generation. This suggests a recursive
program structure. Of course, the exam added to trials should also be sub­
tracted from untried, to avoid unnecessary repetitions; and it is very advan­
tageous to remove from untried any exams which are incompatible with the
exam just added to the trial, so that these do not have to be considered again
in future. Also, the values of trial and untried must be left unchanged
by each call, so any change made to them must be recorded and restored in
variables save I and save 2.

NOTES ON DATA STRUCTURING

procedure gens u persets;

begin e: exam ; save I , save 2: l>O"'erset exam ;

record; save I : = untried;

if size (trial) < k then

while untried '# { } do

begin e from untried;

end;

save 2: = untried /\ incompat (e);

untried: - save 2;

trial: v {e};

if sessioncount (trial) < hallsize then

gensupersets;

untried: v save 2;

trial: - {e}

untried: = save I

end gensupersets.

161

The validity of this program depends on the fact that trial invariantly
satisfies all conditions (4) (5) and (6) for sessions of the timetable, as well as
always being a subset of remaining.

The reasoning is as follows:

for (4): gensupersets never generates a superset except when the size of the
trial is strictly less than k.

for (5): gensupersets is never entered when the sessioncount of trial is
greater than the hall size (we assume that no examcount is greater than
hallsize).

for (6): removal of incompatible sets from untried ensures that at all
times all exams remaining in untried are compatible with all exams of trial.
Therefore, transfer of an arbitrary exam from untried to trial can never
cause (6) to be violated.

Finally, at the initial call of gensupersets, untried c remaining. Untried is
an essentially non-increasing quantity: every addition of members to it has
always been preceded by removal of those very same members. Untried is
therefore always a subset of remaining; and trial, which is constructed only
from members of untried, must also always be a subset of remaining.

This completes our first version of an abstract program to construct
examination timetables. Collecting all the material together, it looks like.this:

162 C. A. R. HOARE

hallsize, k: integer, initially given;

load: array student of powerset exam, initially given;

type session = powerset exam;

timetable: powerset session, initially { } ;

examcount: array exam of integer, initially all (0);

incompat: array exam of powerset exam, initially constant ({ }) ;

function sessioncount (s: session): integer;

begin sum: integer, initially O;

end;

fore ins do sum:+ examcount (e);

sessioncount: = sum

remaining: powerset exam, initially exam. all;

function suitable: session;

begin bestsofar, trial: session; untried: powerset exam;

e:exam; e from remaining; bestsofar: = {e};

trial:= {e}; untried:= remaining - trial - incompat (e);

gensupersets;

suitable: = bestsofar

end;

The following two procedures are local to suitable:

procedure record ;

if sessioncount (bestsofar) < sessioncount (trial) then

procedure gensupersets;

begin e:exam; save I, save 2:powerset exam;

record; save I : = untried;

if size (trial) < k then

while untried -::/: { } do

begin e from untried;

save 2: = untried A incompat (e);

untried:- save 2;

trial : v { e} ;

if sessioncount (trial) < hallsize then

gensupersets;

bestsofar: =trial;

end;

NOTES ON DATA STRUCTURING

untried: v save 2;
trial: - {e}

untried: = save I
end gensupersets;

The main program is as follows:
for st: student do

for e in load (st) do

163

begin eramcount (e): + 1; incompat (e): v (load (st) - {e}) end;

while remaining '# { } do
begin s: session;

end;
print timetable

s: = suitable;
timetable: v {s };
remaining: - s

Before spending any more effort on developing this program, it would be
advisable to subject it to a critical examination, to ensure that it will be
successful. Now the most obvious reasons why the program might fail are:

(I) The size of the timetable turns out to be unacceptably large; we have
agreed that nothing can be done about this, until we know more about the
data.

(2) The amount of time taken to generate all trials at each step is excessive.
This will be particularly serious when the remainder is still large at the
beginning of the program, and if the untried set remains large on every
recursion of gensupersets. The main way in which the untried set is reduced
is by removing all exams incompatible with the trial. This suggests that we
should always prefer to add first to the trial those exams which have the
largest incompatible sets, so that untried is reduced as quickly as possible.
Among sets equal according to this criterion, the exam with the largest
examcount would be selected first. The exact weighting between these criteria
may have to be adjusted later in the light of experience; meanwhile, the
simplest implementation of this policy is to presort the exams in accordance
with the criterion, and implement e from untried by selecting the first
member.

If it turns out that this elementary strategy is insufficient we may have to
artificially curtail the number of iterations of the loop in gensupersets. But
we would probably need some practical experience in order to select a suitable
strategy; and for the time being, let us hope it will not be necessary.

164 C. A. R. HOARE

11.2. DATA REPRESENTATION

In order to design a successful data representation, it is necessary to know
something of the likely size of the problem. In this example, we will make the
following assumptions:

(I) There are not more than 500 exams, each taken by less than 1000
students (typically 50).

(2) There are about 5000 students.

(3) Each student takes less than ten exams, and typically five.

(4) The examination hall will take about 1000 students.

(5) An acceptable limit on the number of concurrent exams is 30, and the
typical number is IO.

(6) Manual timetabling methods have succeeded in constructing timetables
with not more than 50 sessions.

We will consider the individual items of data.

(I) type exam

The obvious representation is as an integer subrange: 0 .. 500.

(2) type session

There is obviously a choice between a bitpattern representation (500 bits),
and an array of 30 nine-bit elements (+pointer) (270 bits + one word). The
number of sessions to be stored is not great, so considerations of storage
economy are not significant. The main operations on a sesSion are the
insertion of an exam which is known not to be in it already, and the removal
of an exam, which is the most recently inserted. Thus the array method
would be the best, since the insertion and removal of members can be
accomplished by stack methods.

Since we frequently wish to know the session-count, it would pay to record
this together with the session, and keep it up to date as members are inserted
and removed.

This representation is used for trial and bestsofar.

(3) timetable

The only operation on the timetable is the insertion of new sessions. Since
sessions are of variable length, the timetable could be organised as a sequence
of variable-length sequences. Since each exam occurs exactly once in the
timetable, the maximum size of the timetable is 500 x nine bits, plus perhaps
sixty words to indicate the separation of the sessions (if there are more than
sixty sessions, the program will have failed anyway).

NOTF.S ON DATA STRUCTURING 165

An alternative and much simpler representation is simply to record for
each exam which session it occurs in. This requires only

array exam of I .. 60

This representation is made possible only by the fact that the sessions of the
timetable are mutually exclusive.

(4) examcount: array exam of integer

A standard representation is the obvious choice.

(5) remaining, untried, save 1, save 2

These variables start rather full, and get emptier as the program progresses.
Their average density is therefore about fifty percent, and there is no point
in adopting a sparse representation. Furthermore, the frequency of standard
set operations applied to them indicate a standard bitpattern representation.

(6) incompat

The most frequent use of elements of incompat is to subtract them from
untried. They should therefore also use the bitpattern representation. This
will require 500 x 500 bits, of the order of 10000 words. This is by far the
largest data structure required, but its total size is probably fully justified
by the extra speed which it imparts to the program, and since it is acceptable
on most computers on which this program will run, it does not seem worth
while to seek a more compact representation.

(7) load

The load of each student is the primary input data for the problem; it may
also be extremely voluminous. It is therefore doubly fortunate that the
program only needs to make a single scan of the data; for not only will this
enable the data to be presented as an external sequence; it also means that
the representation can be designed to be suitable for human reading, writing,
and punching.

We therefore allocate one card for each student, and use ten columns of
six characters each to hold the examination numbers. To save unnecessary
punching, the first blank column will signify the end of the examination set.
For identification purposes, each card should also contain the student
number; fortunately this can be wholly ignored by the program, though it
should probably be checked to avoid duplications or omissions.

Exercise
Code the abstract program described above using the recommended data
representations.

166 C. A. R. HOARE

I 2. AXIOMA TISATION

The preceding sections have introduced a number of methods of constructing
data spaces (types), and have explained some useful operations defined over
these spaces. But the description has been essentially intuitive and informal,
and the question arises whether all the relevant information about the data
spaces has been communicated, or whether there remains some possibility of
misunderstanding of the details.

In order to remove such misunderstanding, or check that it has not
occurred, it is desirable to give a rigorous mathematical specification of
each data space, and the operators defined over it; and we follow what is
now a customary mathematical practice of defining rigorously the subject
matter of our reasoning, not by traditional definitions, but by sets of axioms.

In view of the role which axioms play in the theory of data structuring,
it may be helpful to summarise their intended properties.

(I) Axioms are a formal statement of those properties which are shared
by the real world and by its representation inside a computer, in virtue of
which ~anipulation of the representation by a computer program will yield
results which can be successfully applied back to the real world.

(2) They establish a conceptual framework covering those aspects of the
real world which are believed to be relevant to the programmer's task, and
thereby assist in his constructive and inventive thinking.

(3) They state rigorously those assumptions about the real world on which
the computer program will be based.

(4) They state the necessary properties which must be possessed by any
computer representation of the data, in a manner free from detail which is in
initial stages irrelevant.

(5) They offer a carefully circumscribed freedom to the programmer or
high-level language implementor to choose a representation most suitable
for his application and hardware available.

(6) They form the basis of any proof of correctness of a program.

The axioms given here are not intended to be used directly in the proof
of non-trivial programs, since such proofs would be excessively long-winded.
Rather they may be used to establish the familiar properties of the data
spaces they describe, and these properties can then be used informally in
proofs. Eventually it may be possible to get computers to check such proofs;
but this will require the development of much more powerful formal languages
for ~xpressing proofs than are at present provided by logicians, and the
use of powerf u1 decision proceuures for large subelasses 01 theorems, to assist
m verincation of the individual steps of a proof.

NOTES ON DATA STRUCTURING 167

The axioms applicable to a given type depend on how that type has been
defined. Thus it is not possible to give in each case a fixed set of axioms
like those for integers; instead we give a pattern or schema which shows how
a particular axiom set may be derived from the general form of the corres­
ponding type definition.

12.J. ENUMERATIONS AND SUBRANGES

The following axioms are common to both enumerations and subranges.
They are modelled on the familiar axioms for natural numbers. The type
name is assumed to be T, and all variables are assumed to be of this type.

(1) T.min is a T

(2) If xis a T, and xi= T.max

then succ (x) is a T

(3) The only elements of Tare as specified in (1) and (2)

(4) succ (x) = succ (y) => x = y

(5) succ (x) i= T. min

(6) pred (succ (x)) = x
The following three axioms apply only to ordered types

(7) T.min ~ x

(8) x ~ T.min => x = T.min

(9) succ (x) ~ succ (y) = x ~ y

Note: succ (T.max) and pred (T.min) are not defined.

The general form of definition of a type by enumeration is

type T = (k 1, k 2 , •• ., kn);

where T is the type name

and k 1 , k 2 , •• ., kn are names of all values of the type.

The additional axiom for this type is:

(IO) k 1 = T.min

& k2 = succ (k1)

& k3 = succ (k2)

& kn = succ (kn_ 1) = T.max.

The general form of a definition of a type as a subrange is

typeT=k .. /;

where k and I are of the base type T 0 •

168 C. A. R. HOARE

The additional axioms for this type are:

(IO) T. min = k

& T.max =I.

(I I) T(T0 (x)) = x.

(12) k ~ x 0 & x 0 ~ I ::> T0(T(x0)) = x 0 •

(13) x ~ y = T0 (x) ~ T0 (y).

Using axioms (1) to (9) it is possible to prove the following properties of
ordering:

(Tl) x ~ x.
(T2) x ~ succ (y) => x = succ (y) v x ~ y.

(T3) z ~ y & y ~ x => z ~ x.

(T4) x ~ y & y ~ x => x = y.

Hint: Use induction on x. Proof of T3 requires T2.

Abbreviations:

If e is a monadic operator and EB is a dyadic operator, both taking operands
from the base type T0 , then the following abbreviations permit omission of
the transfer function, if a is of type T0 and x, y are of type T:

(14) 8 x stands for 8 T0(x).

(15) x EB y ,, ,, T0 (x) EB T0 (y).

(16) x EB a

(17) a EB x

(18)a:=x

"
"
"

"
"
"

12.2. CARTESIAN PRODUCTS

To(x) Ea a.

a EB T0(x).

a:= T 0 (x).

The general form of the definition of a type as a Cartesian product is

type T= (s 1 :T1 ;si:Ti; ... ;sn:Tn);

where st> Si, ... , snare the selectors of the components, and Tt> Ti, ... , Tn
are the types of the corresponding components.

(l) If x 1 is a T 1 and Xi is a Ti and ... and Xn is a Tn

then T(x., Xi, ... , xn) is a T.

(2) The only elements of Tare as specified in (I).

(3) If x = T(x 1, Xi, ... , Xn) then

x.s 1 = x 1 &x.si =Xi & ... &x.sn = xn.

NOTES ON DATA STRUCTURING 169

Abbreviations:

(4) x.s 1 : = x 1 stands for x: = T(x 1, x.s2, .. . , x.sn)

,,

,,

(5) If x '.s a T then

with x do S or with x take S stands for

which means that each of the subscripts of S replaces all free occurrences
of the corresponding superscript in S.

(6) (x 1, x 2, .. . , xn) stands for T(x 1, x 2, .. . , xn) in those contexts where
an expression of type T is expected.

The following axiom applies if the Cartesian product type is to be regarded
as ordered:

(7) x ~ y = X.S1 < y.S1

v x.s 1 = y.s 1 & (x.s2 < y.s2
V X.S2 = y.S2 & (X.S3 < y.S3

v & (x.sn- I < y.sn-I

v x.sn-1 = y.sn-1 & x.sn ~ y.sn) .. .)).

12.3. DISCRIMINATED UNIONS

The general form of the definition is:

type T = (s1: Tl; S2: T2; ... ; sn: Tn; k1: T' I• k2 :T'2· ... , km: T'm)

(I) if x 1 is a Tl> x 2 is a T2 , ••• , xn is a Tn

and x' 1 is a T' 1, x 2 is a T' 2 , ••• , x' m is a T' m

then the following are distinct elements of T

T(x 1, x 2, .. . , Xn, k 1(x' 1))

T(x 1,x2, ... ,Xn,k2(x' 2))

(2) The only elements of Tare as specified in (1).

170 C. A. R. HOARE

(3) If x = T(xi. x 2 , •• • , Xn, k;(x';)) for each i between I and m

x.s 1 = x 1 &x.s 2 = x 2 & ... &x.sn = Xn

& x.k1 = x' 1

Note: x. k 1 is undefined for I =!: i.

Abbreviations:

(4) Under the same condition as (3)

with x do {k 1 :Si, k 2 :S2 , •• • , kn: Sn} means

and similarly with take instead of do.

(5) If n = 0, k;(x' 1) stands for T(k1(x' 1)).

12.4. ARRAYS

The general form of an array definition is:

type T = uray D of R

(l) If r is an R then T(r) is a T

(2) If x is a T, dis a D, and r is an R

then T(x, d:r) is a T

(3) The only elements of T are as specified in (I) and (2).

(4) T(T(x, d:r), d':r') =

if d = d' then T(x, d':r')

else T(T(x, d':r'), d:r).

(5) T(r)[d] = r.

(6) T(x, d:r)[d'] = if d' = d then r else x [d'].

(7) (for i: D take E(i))l/1 = EU).

Abbreviations:

(8) x[d]: = r means x: = T(x, d:r).

(9) T(x, di :ri, d2 : r 2 , ••. , dn: vn) stands for

T(T(... T(T(x), di :v1), di :v2) ...), dn:rn)•

(IO) in (9), the x may be omitted, if d 1, d 2 , ••• , dn exhaust the domain
type. Similarly, the T may be omitted in suitable contexts.

If the array type is ordered, the following axiom applies:

(11) x ~ y = 'v' d: D(y[d] < x[d] ::> 3 d': D(d' < d & x[d'] < y[d']))

Theorem:

x = y = 'v' d:D(x[d] ""'y[d])

NOTES ON DATA STRUCTURING 171

12.5 POWERSETS

The axioms given below for sets apply only to finite sets of hierarchically
ordered type. It is therefore possible to avoid the paradoxes which endanger
axiomatisations of more powerful versions of set theory.

The general form of a powerset definition is:

type T = powerset T 0 ,

where T 0 is the base type.

let a, b, be values of type T 0 •

(I) T() is a T

(2) If x is a T and a is a T 0 then
x v T(a) is a T

(J) The only members of Tare as specified in (1) and (2).

(4) 1a in T()

(5) a in (y v T(a))

(6) a "I= b => (a in (x v T(b)) = (a in x)

(7) T() c x

(8) (y v T(a)) c x = (y c x & a in x)

(9) x = y = (x c y) & (y c x)

(10) x v T() == x

(11) xv (y v T(a)) =(xv T(a)) v y

(12) x A T() = T()

(13) x A T(a) = if a in x then T(a) else T(

(14) x A (y v T(a)) = (x A y) v (x A T(a))

(15) T() - x = T()

(16) T(a) - x = if a in x then T() else T(a)

(17) (xv T(a)) - y = (X - y) v (T(a) - y)

(18) size (T()) = 0

(19) size (x v T(a)) = if a in x then size (x) else succ (size (x))

The following apply if the domain type T 0 is ordered:

(20) min (T(a)) = T(a)

(21) x "I= T() =>min (x v T(a)) =if a< min (x) then a else min (x)

Note: min (T()) is not defined

(22) x down 0 = x up 0 = x

172 C. A. R. HOARE

(23) x down succ (n) = (x down n) down l

(24) T() down l = T()

(25) (x v T(a)) down l = (x down l v
if a=!: T0 .min then T(pred (a)) else T()

(26)-(28) up is similarly defined, with succ for pred and max for min.

(29) b < a => range (a, b) = T()

(30) a ~ b => range (a, b) = T(a)

(31) a < b => range (a, b) = range (a, pred (b)) v T(b)

(32) j in {i: D I B(i)} = BU)

Abbreviations:

(33) T(a 1 , a2 , ••• , an) stands for T(a 1) v T(a 2) v ... v T(an)

(34) {a1, a2 , •• • , an} stands for T(a 1, a2 , •• • , an)

(35) x: A y stands for x: = x A y

(36) x: v y ,, ,, x: = x v y

(37) a from x stands for a:= one of (x); x: - {a}

(38) if x = {a" a2 , ••• , an} then

for a in x do S stands for

s:, ; s:.; ... ; s:n
where the a1 are in natural order if the base type is ordered, and are in
arbitrary order otherwise; and they do not contain repetitions.

(39) x: - y stands tor x: = x - y

Theorems:

x = y = Va:T0(a inx = ainy)

a in (x v y) = (a in x v a in y)

a in (x A y) = (a in x & a in y)

a in (x - y) = (a in x & --, a in y)

12.6 SEQUENCES

The general form of a sequence definition is:

type T = sequence D;

(1) T() is a T

(2) If x is a T and d is a D - . then x T(d) is a T

(3) The only elements of Tare as specified in (1) and (2)

(4) (;-'T(d)).last = d

NOTES ON DATA STRUCTURING

(5) initial (x.-T(d)) = x
(6) x-.(/-z) = (x-.. y) z

(7) T(d).first = d

(8) x =!: T() ::> (x-..T(d)).first = x.first

(9) final (T(d)) = T()

(10) x =!: T() ::> final (x-.T(d)) = final (x)-.T(d)

Note: last, initial, first, and final are not defined for T()

(11) T() ends y

(12) x-.T(d) ends y = y =!: T() &y.last = d & x ends initial (y)

(13) x begins T() = x = T()
(14) x begins y-.T(d) = x = y-.T(d) v x begins y

(15) length (T()) = 0

(16) length (x-..T(d)) = succ(length (x))

For an ordered sequence type we have:

(17)T()~y

(18) x ~ T() => x = T()

{19) x, y =!: T() => (x ~ y = x.first < y.first v (x.first = y.first
& final (x) ~ final (y)))

Abbreviations:

(20) x:-..T(d)

(21) d from x

means x: = x -..T(d)

means d: = x.first; x: = final (x)
(22) d back from x means d: = x. last; x: = initial (x)
(23) from x means x: = final (x)
(24) back from x means x: = initial (x)

(25) T(d1, di, .. ., dn) stands for
(T()-..T(d1)T(di)-. •. :-'T(dJ)

(26) [d 1 , di, ... , dnJ stands for T(d 1 , di, ... , dn)

(27) If x = [d1, di, ... , dJ then

for d in x do S stands for

S•. ""'. . s•
di' ..l.,, .. ' ...

for d in x take E stands for

[EL E:2 , ••• , E:n1

173

174 C. A. R. HOARE

Theorems

x = y !!!.: (x = y = T() v x .first = y. first & x .final = y.final)

2' (x = y = T() v x.Iast = y.last&x.initial = y.initial)

REFERENCES

The following works have acted as an inspiration and guide for this chapter, and
they are recommended for further reading.

I am also deeply indebted to Professor N. Wirth for many fruitful discussions
and suggestions, and for his willingness to test several of the ideas of the paper
in his design and implementation of PASCAL; and to Professor E.W. Dijkstra for
his perpetual inspiration.

Dijkstra, E. W. (1972). Notes on Structured Programming. "Structured
Programming". pp. 1-82. Academic Press, London.

Kr:uth, D. E. (1968). "The Art of Computer Programming" Vol. 1, Chapter 2.
Addison-Wesley, Reading, Mass.

McCarthy, J. (1963). "A Basis for a Mathemetical Theory of Computation in
Computer Programming and Formal Systems" (eds. Braffort, P. & Hirschberg D.).
North-Holland Publishing Company, Amsterdam.

Mealy, G. H. (1967). Another Look at Data. A.F.l.P.S. Fall Joint Computer
Conference Proceedings. 31, pp. 525-534.

Wirth, N. (1970). Programming and Programming Languages. Contribution to
Conference of European Chapter of A.C.M, Bonn.

Wirth, N. (1971). Program Development by Stepwise Refinement. Comm. A.C.M.
14, 4, pp. 221-227.

Wirth, N. (1971). The Programming Language PASCAL. Acta Informatica, 1, I,
pp. 35-63.

III. Hierarchical Program Structures

OLE-JOHAN DAHL AND c. A. R. HOARE

I. INTRODUCTION

In this monograph we shall explore certain ways of program structuring and
point out their relationship to concept modelling.

We shall make use of the programming language SIMULA 67 with
particular emphasis on structuring mechanisms. SIMULA 67 is based on
ALGOL 60 and contains a slightly restricted and modified version of
ALGOL 60 as a subset. Additional language features are motivated and
explained informally when introduced. The student should have a good
knowledge of ALGOL 60 and preferably be acquainted with list processing
techniques.

For a full exposition of the SIMULA language we refer to the "Simula 67
Common Base Language" [2]. Some of the linguistic mechanisms introduced
in the monograph are currently outside the "Common Base"*.

The monograph is an extension and reworking of a series of lectures
given by Dahl at the NA TO Summer School on Programming, Marktoberdorf
1970. Some of the added material is based on programming examples that
have occurred elsewhere [3, 4, 5].

2. PRELIMINARIES

2.1 BASIC CONCEPTS

Our subject matter as programmers is a special class of dynamic system,
which we call computing processes or data processes. A programming

•The Simula 67 language was originally designed at the Norwegian Computing Center,
Oslo. The Common Base defines those language features which are common to all
implementations. The Common Base is continually being maintained and revised by the
"Simula Standards Group", each of whose members represents an organisation responsible
for an implementation. 8 organisations are currently represented on the SSG. (Summer
1971).

175

176 OLE-JOHAN DAHL AND C. A. R. HOARE

language provides us with basic concepts and composition rules for con­
structing and analysing computing processes.

The following are some of the basic concepts provided by ALGOL 60.

(l) A type is a class of values. Associated with each type there are a
number of operations which apply to such values, e.g. arithmetic operations
and relations for values of type integer.

(2) A variable is a class of values ofa given type ordered in a time sequence.
The associated operations are accessing and assigning its current value.
Both can be understood as copying operations.

(3) An array is a class of variables ordered in a spatial pattern. Associated
is the operation of subscripting.

Notice that each of the concepts includes a data structure as well as one
or more associated operations.

As another example consider machine level programming. The funda­
mental data structure is a bit string, which is not itself a very meaningful
thing. However, combined with an appropriate sensing mechanism it has the
significance of a sequence of Boolean values. In connection with a binary
adder the bit string has the meaning of a number in some range, each bit
being a digit in the base two number system. An output channel coupled to a
line printer turns the bit string into a sequence of characters, and so forth.
Thus the meaning of the data structure critically depends on the kind of
operations associated with it.

On the other hand, no data process is conceivable which does not involve
some data. In short, data and operations on data seem to be so closely
connected in our minds, that it takes elements of both kinds to make up any
concept useful for understanding computing processes.

2.2. HIGHER LEVEL CONCEPTS

As the result of the large capacity of computing instruments, we have to
deal with computing processes of such complexity that they can hardly be
constructed and understood in terms of basic general purpose concepts. The
limit is set by the nature of our own intellect: precise thinking is possible
only in terms of a small number of elements at a time.

The only efficient way to deal with complicated systems is in a hierarchical
fashion. The dynamic system is constructed and understood in terms of
high level concepts, which are in turn constructed and understood in terms of
lower level concepts, and so forth. This must be reflected in the structure of
the program which defines the dynamic system; in some way or another the
higher level concepts will correspond to program components.

HIERARCHICAL PROGRAM STRUCTURES 177

The construction of concepts suitable in a given situation is a creative
process which often requires insights obtained at later stages of the system
construction. Therefore, as programmers are painfully aware, any software
project tends to be a complicated iterative process involving reconstruction
and revision at each stage.

Each concept necessarily concerns a limited aspect of the system and
should correspond to a piece of program obtained by decomposition of the
total program. Good decomposition means that each component may be
programmed independently and revised with no, or reasonably few, impli­
cations for the rest of the system. Thereby the total iteration process may be
speeded up.

Any useful concept has some degree of generality, i.e. it is a class of
specialised instances. In other words one tries to group phenomena occurring
in a dynamic system into classes of phenomena and to describe each class by a
single piece of program.

As an obvious example consider the arithmetic operations involved in a
matrix multiplication. They may all be classified as dynamic instances
(executions) of the single statement

C[i,j]: = C[i,jJ + A[i, k] x B[k,j];

provided that the matrix coefficients are classified as elements of two­
dimensional arrays A, B, and C, and that the variables i, j, and k arc given
values according to a certain pattern.

The above statement is not sufficiently well decomposed to be thought of
as a "concept". The procedure declaration below, however, defines in a concise
way the concept of matrix multiplication.

It is important that a concept may be classified as a syntactic category
(e.g. (block), (procedure)) in a general language framework. Structured
thought in terms of given concepts implies the construction of sentences,
where the concepts have syntactic and semantic relationships to one another.
The procedure below is related to other program components through calling
sequences (procedure statements).

procedure matmult (A, B, C, m, n, p);
array A, B, C; integer m, n, p;

begin integer i, j, k;

end;

for i: = l step l until m do
for j: = l step l until n do
begin C[i, j]: = 0;

fork:= I step l until p do
C[i,j]: = C[i,j] + A[i, k] x B[k, i]

end

178 OLE-JOHAN DAHL AND C. A. R. HOARE

The parameter mechanism of procedures in SIMULA deviates somewhat
from that of ALGOL 60. The default transmission mode is by value for
ordinary simple (type) parameters, and by "reference" for parameters of
other kinds. This deviation is introduced for various pragmatic reasons, one
of them being the compatibility with class declarations (cf. 3.1). Thus, in
the above procedure the parameters i, j, and k are called by value, A, B, and
C by reference.

2.3. BLOCKS AND BLOCK INSTANCES

One of the most powerful mechanisms for program structuring in ALGOL 60
is the block and procedure concept. It has the following useful properties
from the standpoint of concept modelling.

(I) Duality. A block head and block tail together define an entity which
has properties and performs actions. Furthermore the properties may include
a data structure as well as associated operators (local procedures).

(2) Decomposition. A block where only local quantities are referenced is a
completely selfcontained program component, which will function as
specified in any context. Through a procedure heading a block (procedure)
instance inay interact with a calling sequence. Procedures which reference
or change non-local variables represent a partial decomposition of the total
task, which is useful for direct interaction with the program environment.

(3) Class of instances. In ALGOL 60 a sharp distinction is made between a
block, which is a piece of program text, and a dynamic block instance,
which is (a component of) a computing process. An immediate and useful
consequence is that a block may be identified with the class of its potential
activations. (Strictly speaking a "block" in this context means either the
outermost block or a block immediately enclosed by a dynamic block
instance.) Through the recursion mechanism of ALGOL 60 different instances
of the same block may co-exist in a computing process at the same time.

(4) Language element. A block is itself a statement, which is a syntactic
category of the language. Furthermore, through the procedure mechanism,
reference to a block may be dissociated from its defining text.

Referring back to our earlier discussion it appears that the ALGOL block
mechanism has all the properties required of a concept modelling mechanism.
On closer inspection, however, it turns out that the composition rules and
interaction mechanisms provided place certain restrictions on the range of
concepts to be formulated.

In ALGOL 60, the rules of the language have been carefully designed to
ensure that the lifetimes of block instances are nested, in the sense that those
instances that are latest activated are the first to go out of existence. It is
this feature that permits an ALGOL 60 implementation to take advantage of a

HIERARCHICAL PROGRAM STRUCTURES 179

stack as a method of dynamic storage allocation and relinquishment. But it
has the disadvantage that a program which creates a new block instance can
never interact with it as an object which exists and has attributes, since it has
disappeared by the time the calling program regains control. Thus the calling
program can observe only the results of the actions of the procedures it calls.
Consequently, the operational aspects of a block are overemphasised; and
algorithms (for example, matrix multiplication) are the only concepts that can
be modelled.

In SIMULA 67, a block instance is permitted to outlive its calling statement,
and to remain in existence for as long as the program needs to refer to it. It
may even outlive the block instance that called it into existence. As a conse­
quence, it is no longer possible to administer storage allocation as a simple
stack; a general garbage-collector, including a scan-mark operation, is re­
quired to detect and reclaim those areas of store (local workspace of block
instances) which can no longer be referenced by the running program. The
reason for accepting this extra complexity is that it permits a wider range of
concepts to be conveniently expressed. In particular, it clarifies the relation­
ship between data and the operations which may be performed upon it, in a
way which is awkward or impossible in ALGOL 60.

3. OBJECT CLASSES

A procedure which is capable of giving rise to block instances which survive
its call will be known as a class; and the instances will be known as objects
of that class. A class may be declared, with or without parameters, in exactly
the same way as a procedure:

(class declaration):: = class (class identifier)
(formal parameter part); (specification part);

(class body)

(class body)::= (statement)
Any variables or procedures declared local to the class body are called

attributes of that class; and so are the formal parameters, whether called by
value or called by reference. If the class body is not a block, it is regarded
as if it were surrounded by block brackets begin . .. end.

A call of a class generates a new object of that class. The initial values
of those of its attributes corresponding to formal parameters are specified in
the actual parameter part of the generator. A generator always appears as a
function designator, returning as its value a reference to the newly generated
object:

(object generator)::= new (class identifier)
(actual parameter part)

180 OLE-JOHAN DAHL AND C. A. R. HOARE

In order to be able to refer again to a generated object, it is necessary
to store the reference to it in a variable. Variables used for this purpose
should be declared as of reference type; and the declaration should also be
qualified by stating the class of objects to which that variable will refer.

(reference variable declaration)::=

ref ((qualification)) (identifier list)

(qualification)::= (class identifier)

The notation ref ((qualification)) may also be used to declare reference
arrays, procedures, and parameters. An analogous mechanism for "record
handling" was first proposed by Hoare [6].

There is a neutral reference value none which does not refer to any object;
and this is automatically assigned as initial value to every reference variable.

Reference values may be assigned, and tested for equality or inequality;
but in SIMULA these operations are given special symbols, in order to
emphasise the fact that they operate on references to objects, and not upon
the current values contained in those objects.

Thus:
denotes reference assignment
denotes reference equality

= / = denotes reference inequality.

Reference values may also be passed as parameters, and they may be returned
as the result of a function designator. A special example of such a function
designator is of course the object generator which brings the object into
existence, and passes back a reference to it as result.

Example:
class C(...) ; ... class body for C ... ;

ref (C)X;

if X ==none then X: - new C(...);

The attributes of any object may be inspected or changed by the technique
of remote identification. If X is a reference variable qualified by class C,
and A is an attribute identifier (i.e. local quantity) of that class, then X. A
refers to the attribute A of the object currently referenced by X. If X has
the value none, the remote access is erroneous. If A is a variable attribute,
X. A may appear to the left of an a1>signment, as an actual parameter, or in an
expression. If A is a procedure attribute, X. A may appear as an actual
parameter, or as a procedure statement or function designator, in which case
it will be immediately followed by an actual parameter part. In short, a
remote identifier X. A may appear in any context in which an ordinary
identifier may appear, except for a defining occurrence in a declaration.

HIERARCHICAL PROGRAM STRUCTURES 181

In addition to reference variables, every reference parameter, function
or expression has a qualification associated with it. In every assignment to
a reference variable, it is possible to check that the assignment is valid, by
comparing the qualifications of the left hand and right hand sides.
SIMULA 67 has been designed to ensure that this check can be carried out
wholly at compile time, thus avoiding the inefficiency of run-time checking,
and the inconvenience of run-time error. Furthermore all remote identifiers
can be checked at compile time to ensure that the combination of reference
variable and attribute identifier is valid, so that the only error that has to be
detected at run-time is when the reference variable has the value none.

The following sections provide examples of concepts modelled by means
of class declarations.

3.1. FREQUENCY HISTOGRAM

A frequency histogram of a real random variable with respect to given
disjoint intervals can be represented by a table of integers T 0 , Ti, .. ., Tn,
where T1 is the number of observations falling in the ith interval. A sequence
of increasing numbers Xi, X 2 , •• ., Xn partitions the real axis into the
following n + I intervals:

(-oo, Xi), (Xi, X 2), •• .,(Xn, oo).

The ith relative frequency (i = 0, l, .. ., n) is equal to Tif N, where N is the
total number of observations tabulated in the histogram.

We wish to represent the concept of a histogram as a self-contained piece
of program, which can be incorporated in any subsequently written program
which requires it. In a realistic program, it will be necessary to maintain
several histograms to tabulate different random variables; for example, it
may be necessary to record not only random lengths, but also random weights
and random heights, and this will require three separate histograms, existing
simultaneously with each other and with the main program which has
generated them and which is using them. Furthermore, the numbers of the
intervals and the partitioning values between them may be different in each
case. This suggests that the histogram should be declared as a class, with
two parameters:

class histogram (X, n); array X; integer n;

where X is a real array of n elements specifying the boundaries of the
partitions. The main program will use this class in the following way:

begin ref (histogram) heights, weights, lengths;

real array A[l:7], B[I:I2];

... initialise A, B . .. ;

heights: - new histogram (A, 7);

182

end

OLE-JOHAN DAHL AND C. A. R. HOARE

weights: - new histogram (B, 12);
lengths: - new histogram (A, 7);

.... rest of program

In the rest of the program, the three histograms may be referred to by the
names of the three reference variables. In order to record each new obser­
vation (say h or w) in the appropriate histogram, the program will contain
the corresponding calls on a procedure tabulate:

weights. tabulate (w);

heights. tabulate (h);

The procedure "tabulate" must therefore be an attribute of the histogram
class. Another attribute of the class must be the array T which counts the
number of observations in each interval; and also a variable N to count the
total number of observations recorded so far. Finally, a function frequency (i)
is required so that the relative frequency of observations in the ith interval
may be read out. The only action required of the class body is to initialise
these variables.

The declaration of the histogram class may be given:
class histogram (X, n); array X; integer n;

begin integer N; integer array T[O:n];
procedure tabulate (Y); real Y;

begin integer i; i: = 0;

while (if i < n then Y < X[i + l] else false)
do i: = i + l;

T[i]: = T[i] + l; N: = N + l
end of tabulate;

real procedure frequency (i); integer i;
frequency:= T[i]/N;

integer i;
for i: = 0 step l until n do T[i]: = O; N: = 0

end of histogram;

Note. (1) In SIMULA 67, all simple parameters of a class or a procedure
are called by value, even if the value parts are omitted. Arrays and other
parameters are called by name.

(2) In SIMULA 67 all variables are automatically initialised on declara­
tion to neutral values, false for Booleans, 0 for numbers, none for references.
Thus in the examples given above the statements i: = 0, N: = 0, and the
loop initialising T could have been omitted.

HIERARCHICAL PROGRAM STRUCTURES 183

It seems reasonable to claim that this piece of program adequately repre­
sents the concept of a histogram, in that it expresses the close relationship
between the data items X, n, T and N, and the operation of tabulation which
is to be performed on them. It would be possible, of course, to write the
operation in ALGOL 60 as a separate procedure with many parameters:

procedure tabulate (X, n, T, N, y);

which records observation y in the histogram Tin accordance with partitions
defined by X, and also increments N. But this would be an artificial separation
of the operational aspect of the histogram from the data storage aspect; and
the failure in adequately representing the concept is evidenced by the com­
plexity of the specification of the procedure and the awkwardness of its use.

It is worth while to explain the effect of creating a new object of class
histogram by means of the statement

weights: - new histogram (B, 12).
First, a new object is created, consisting of the variables brought into
existence by execution of the declarations for T, N, i, and the parameters X
and n, which are initialised to Band 12 respectively. The body of the class
declaration is now executed to initialise the other variables. On exit from the
body, the variables are not deallocated. Rather a reference (pointer, address)
to them is passed back and assigned to the variable "weights". It is con­
venient to think of an object as a complete textual copy of the class body
(including the specification part), in which the parameters and local variables
and arrays correspond to actual storage locations. Thus an object may well
contain local procedure (and even class -) declarations, as well as executable
statements.

Subsequently, on execution of the procedure call weights. tabulate (w),
it is the tabulate procedure local to the object referenced by "weights" that
is actually executed, and causes updating of the local attributes T and N of
that object and no other.

3.2. GAUSS-INTEGRATION

A definite integral may be approximated by an "n-point Gauss formula",
which is a weighted sum of n function values computed at certain points in
the integration interval.

f
b n

a f(x)dx ~ i~l wJ(x1)

The weights and abscissa values are chosen such as to give an exact result for
the integral of any polynomial of degree less than 2n. By a suitable trans­
formation we find

w1 = (b - a)W1 and X; =a+ (b - a)X1,

184 OLE-JOHAN DAHL AND C. A. R. HOARE

where W1 and X 1(i = 1, 2, .. ., n) only depend on n, and not on a or b.
The idea of Gauss-integration is expressed in the following partly informal
class declaration.

class Gauss (n); integer n;

begin array W, X[l :n];

real procedure integral(/, a, b);

real procedure/; real a, b;
n

integral:= L W[i]xf(a + (b - a)xX[iJ)x(b- a);
i= 1

compute W[I], ... , W[n], X[l], ... , X[n] as

functions of n

end of Gauss;

ref (Gauss) GS, G7;

GS: - new Gauss (S); G7: - new Gauss (7);

GS.integral (F, A, B) G7.integral (F, A, B)

Comments. The variables GS and G7 refer to the concepts "S-point" and
"7-point Gauss-integration". Each of them is a specialised instance of the
more general concept of "n-point Gauss-integration", represented by the
class.

A Gauss object computes once and for all the values of its local array
elements, after which control returns to the (object generator). The pro­
cedure "integral" is intended for repeated use from outside the object.

The example indicates that the own-concept of ALGOL is superfluous in
this framework.

4. COROUTINES

In ALGOL 60, a most powerful method of combining two pieces of program
to accomplish some task is to declare one of them as a procedure, and to
invoke it (possibly repeatedly) from within the other. However, in some
cases the relationship between the two pieces of program is not fairly repre­
sented by this form of master/subordinate relationship; and it is better to
regard them as coroutines operating in some sense at the same level.

HIERARCHICAL PROGRAM STRUCTURES 185

A simple example of coroutine structuring is provided by a games-playing
program, which calculates its own move and outputs it to its opponent, inputs
the opponent's response, computes its next move, and so on until the game is
complete. Suppose now that two different programs have been constructed to
play the same game, and it is desired to see which of them is the stronger
player. The complete program to play the game is very naturally structured
from its two component players, but the structuring method is that of the
coroutine rather than the subroutine.

Another example of coroutine structuring is provided in a two-pass
compiler for a programming language. The first pass normally outputs a long
sequence of messages which are subsequently input by the second pass.
However, if sufficient main storage is available to accommodate the program
for both passes simultaneously, it is possible to arrange for the whole trans­
lation to be carried out apparently in a single pass, where the sequence of
messages is transmitted piecewise from the first pass to the second pass.
First, the second pass is executed until it reaches its first request for an input
message. The first pass program is then executed until it produces its first
output message. The message is then handed over to the second pass, and the
process is repeated until the second pass is complete. In some circumstances
it might be possible to restructure one of the passes as a subroutine to the
other; but since the choice would be arbitrary, it is better to regard the
two programs as coroutines.

This case may be distinguished from the games-playing example in that
the flow of information is in one direction only, from the first pass program
which "produces" it to the second pass program which "consumes" it. This
suggests that a single coroutine may profitably be regarded as a complete
selfcontained program whose input and output instructions have been
replaced by calls upon other coroutines to produce and consume the data.
Each time a coroutine passes control to another coroutine for this purpose,
it will expect to resume at the next following instruction. The instruction
which causes transfer of control to another coroutine is known as

resume (X)

where X refers to the coroutine being resumed.
In SIMULA, a coroutine is represented by an object of some class, co­

operating by means of resume instructions with objects of the same or another
class, which are named by means of reference variables. The communication
of information may be accomplished in variables either global to all the
objects or local to one of them; a producing coroutine assigns values to these
variables, and the consuming coroutine accesses them. In the case of two-way
communication, both coroutines may update the same global variables in turn.

186 OLE-JOHAN DAHL AND C. A. R. HOARE

When an object is first generated, it has a subordinate, procedurelike
relationship to the block instance which generated it. This is evidenced by the
fact that control automatically returns to the generator upon passage through
the end of the object. The object does not in general know the identity of its
generating block instance; it cannot therefore use a resume instruction to
achieve the effect of a coroutine exit. A special, parameterless "detach"
instruction is therefore provided by which a generated object can return
control to the generator. The generator may then resume the detached object
at the point following its (most recently executed) detach instruction by the
statement

call (X)

where X is a reference to the detached object. Now the object is again in a
subordinate position, with respect to the caller, and has an obligation to
return to it either by a detach instruction or by going through its own end.

Thus a main program may establish a coroutine relationship with an object
that it has generated, using the call/detach mechanism instead of the more
symmetric resume/resume mechanism. In this case, the generated object
remains subordinate to the main program, and for this reason is sometimes
known as a semicoroutine. But a semicoroutine may also be a full coroutine
with respect to a group of other generated objects, with which it communi­
cates by means of resume statements. In this case, if any of the group issues
a detach, control returns to the master program which originally called a
particular member of the group. Thus a coroutine issuing a resume statement
imposes on the resumed coroutine its own responsibility, eventually to pass
control back to the original caller by means of a detach.

Let X and Y be objects, generated by a "master program" M. Assume that
M issues a call (X), thereby invoking an "active phase" of X, terminated by a
detach operation in X; and then issues a call (Y), and so forth. In this way
M may act as a "supervisor" sequencing a pattern of active phases of X, Y,
and other objects. Each object is a "slave", which responds with an active
phase each time it is called for, whereas M has the responsibility to define the
large scale pattern of the entire computation.

HIERARCHICAL PROGRAM STRUCTURES 187

Alternatively the decision making may be "decentralised", allowing an object
itself to determine its dynamic successor by a resume operation.

The operation resume (Y), executed by X, combines an exit out of X (by
detach) and a subsequent call {Y), thereby bypassing M. Obligation to
return to M is transferred to Y.

The history of a typical coroutine object may be summarised as follows:

(I) Upon generation, an object starts performing the operations of its
class body, and is said to be operating and atta<'hed to (the block instance
containing) the object generator which calls it into existence.

(2) The object issues a detach statement which returns control to the
point at which the object was generated. The object is then said to be detached,
but not yet terminated. The detach statement leaves a mark in the body of
the object specifying where its operations will be continued. This mark is
positioned at the end of the detach statement most recently executed by that
object.

(3) Control returns to the object on execution of either a call statement
or a resume statement specifying that object by means of its reference
parameter. It is then reattached to the calling block instance if called, or
to the original caller if resumed. The object may then temporarily relinquish
control again, either by a detach or by a resume, in which case it becomes
detached again.

(4) Alternatively, it may relinquish control finally by passing through
its end, which has the same effect as a detach. But in this case it is said
to be terminated, and it may not be reactivated either by a call or a resume.
However, it remains in existence as an item of data, which may be referenced
by remote identification of its attributes, including procedure and function
attributes, as in the case of the histogram.

Note. The detach operation represents a coroutine exit out of an object,
and is only available textually within objects, i.e. textually within class bodies.
If issued in a subblock or in a procedure body, a detach instruction still
represents an exit out of the (smallest) textually enclosing object. The same
is true for the resume instruction (which includes a coroutine exit). The call
instruction is, however, available at any point in a program.

188 OLE-JOHAN DAHL AND C. A. R. HOARE

4.1. TEXT TRANSFORMATION

As an example of the cooperation of coroutines we take a problem posed
by Conway [7]. A text is to be read from cards and listed on a line printer.
The cards each contain 80 characters, but the line printer prints 125
characters on each line. It is intended to pack as many characters as possible
on each output line, marking the transition from one card to the next only by
insertion of an extra space. In the text, any consecutive pair of asterisks
is to be replaced by "j". The end of the text is marked by a special character
known as "end".

We assume the existence of a coroutine "incard", which on each resump­
tion will fill the array C[l : 80) with characters read from the next card in the
card hopper, and pass the card through to the stacker. Also, we are given a
coroutine "lineout", which on each resumption will print on the next line of
paper the characters from the array L[l :125), and then throw the line.

The task is carried out by three coroutines, which will be known by
reference as :

ref disassembler, squasher, assembler;

The disas~embler inputs a card (through C) and outputs individual characters
(through cl) to the squasher, after inserting a space between cards. The
squasher performs the transformation on double asterisks, and outputs
individual characters through c2 to the assembler. The assembler groups the
characters into lines and outputs them; it also detects the "end" character
and takes appropriate action.

The required class declarations are:

class pass I ;

begin detach;

while true do

begin integer i; resume (incard);

for i: = I step I until 80 do

begin cl:= C[i]; resume (squasher) end;

cl:= blank; resume (squasher)

end infinite loop;

end pass I;

class pass 2;

begin detach;

while true do

begin if cl = "*" then

HIERARCHICAL PROGRAM STRUCTURES

begin resume (disassembler);

if cl = "*" then c2: = "j"

else begin c2: = "*";resume (assembler);

c2: =cl

end;

end

else c2: = cl;

resume (assembler); resume (disassembler)

end infinite loop;

end pass 2;

class pass 3 ;

begin detach ;

while true do

begin integer i;

for i: = 1 step I until 125 do

begin L[i]: = c2;

if c2 = "end" then

begin for i: = i + 1 step 1 until 125 do

L[i] : = blank;

resume (lineout);

189

detach; comment back to main program;

end

else resume (squasher)

end of this line;

resume (lineout)

end infinite loop

end pass 3;

The main program generates one instance of each of the passes. Each pass
immediately detaches itself from the main program. The system of coroutines
is initiated by calling the disassembler. On detection of the end of the task,
the assembler issues a detach instruction. Since the assembler obtained control
(indirectly) by resume instructions from the disassembler, its detach has the
same effect as it would have had if issued by the disassembler, and takes
control back to the main program, which then immediately terminates.

190 OLE-JOHAN DAHL AND C. A. R. HOARE

The main program is:

1>egin disassembler: - new pass I ;

squasher: - new pass 2;

assembler: - new pass 3;

call (disassembler);

end

The relationships between the five coroutines and the main program may
be represented pictorially:

The horizontal arrows represent resume/resume relations. Their direction
corresponds to the flow of information; and they are annotated by the name
of the variable used to hold the communicated information.

In this example, it is intended that each class should only ever have one
object in it; and therefore the full class/generation/reference mechanism is
unnecessarily elaborate. The elaboration is inconvenient in that separate
names have to be invented for the class and its unique object (e.g. pass 1 and
disassembler). Furthermore, in the implementation it should be possible to
take advantage of this special case to save both space and time. But SIMULA
67 provides no means of achieving this.

4.2. PERMUTATION GENERATOR

We wish to define a class "permuter" representing the concept of permuta­
tions. An object of this class should be capable of generating all permutations
of the integers between I and n, where n is a parameter of the class. One of
the attributes of the class will be an integer array p[l :n], which is to be
initialised to the value (1, 2, ... , n) (representing the identity permutation)
when an object of the class is generated. Every subsequent call of the object
causes the array p to take a new permutation as value. When all permutations
are exhausted, an attribute

Boolean more;

(initially true) will be assigned the value false, and the object will terminate.

HIERARCHICAL PROGRAM STRUCTURES 191

A typical structure for a program which wishes to inspect all permutations
of N numbers will be:

ref (permuter)P;

P: - new permuter (N);

while P. more do

begin .. . inspect P.p ... ; call (P) end;

The structure of the permuter class will be a semicoroutine, which issues a
detach instruction after each updating of p:

class permuter {n); integer n;

begin integer array p[l :n];

Boolean more;

integer q;

for q: =I step l until n do p[q]: = q;

more:= true;

... generate all permutations of p,

end

issuing a "detach" after each of them ... ;

more: = false

It remains to find an algorithm to carry out all the permutations of
p[I], p[2], ... , p[n], and restore them to their original state. This algorithm
may be recursively structured. Let us assume that we know how to generate
all permutations of the numbers

p[I], p[2], ... , p[k - l],

and finally return these to their original state. This will be accomplished by
a procedure call

permute (k - I).

Now all that need be done is to use this procedure to permute every com­
bination of k - l numbers from the original k numbers. Thus there must be
k calls of permute (k - I), and on each call, exactly one of the p[i] for
1 ~ i ~ k must be excluded from the operation. A good way of excluding it
is to exchange its value with that of p[k], which remains untouched by permute
(k - 1). In order to ensure that each of the k values is excluded exactly once,
we may take advantage of the assumption that the procedure returns the
given sequence unchanged. In that case p[k] will be assigned each value once

192 OLE-JOHAN DAHL AND C. A. R. HOARE

if we first swap p[I] and p[k], then p[2] and p[k], ... , and then p[k - I] and
p[k]. Thus we are led to the following kernel:

integer i;

permute (k - 1);

for i: = 1 step 1 until k - I do

begin swap (p[i], p[k]); permute (k - l) end;

On the assumption that permute (k - 1) leaves p unchanged, this kernel has
the net effect of rotating the elements p[l], p[2], ... , p[k] one place cyclically
to the right. This can be seen from the example:

original state: 1 2 3 4 5

after swap (p[l], p[5]): 5 2 3 4 1

after swap (p[2], p[5]): 5 1 3 4 2

after swap (p[3], p[5]): 5 1 2 4 3

after swap (p[4], p[5]): 5 1 2 3 4

Since the overall effect of the operation must be to leave the array p as it was
before, the right rotation must be followed by a compensatory left rotation.

q: = p[l];

for i: = 1 step 1 until k - 1 do p[i]: = p[i +I];

p[k]: = q

Finally it is necessary to determine an appropriate action for the case where
k = I. Recall that the purpose of the procedure is to

"generate all permutations of k objects, issuing a detach command after
each of them".
Since the only permutation of one number is that number itself, all that is
necessary is to issue a single detach instruction.

The permute procedure must be written as an attribute of the permuter
class, so that the detach which it issues relates to the relevant object. The
whole class may now be declared:

class permuter (n); integer n;

begin integer array p[l :n]; integer q; Boolean more;

procedure permute (k); integer k;

if k = 1 then detach else

begin integer i; permute (k - l);

for i: = 1 step 1 until k - l do

begin q: = p[i]; p[i]: = p[k];

p[k]: = q; permute (k -1) end;

HIERARCHICAL PROGRAM STRUCTURES

q: = p[l];

for i: = l step l until k - l do p[i]: = p[i + l];
p[k]: = q

end of permute;

for q: = l step l until n do p[q]: = q;

more:= true; permute (n); more:= false

end of permuter;

193

Note. The detach issued by a permute procedure instance is not an exit
out of the procedure instance, and does not return control to the call of the
procedure. Rather, it is an intermediate exit out of the object as a whole
(including the entire recursion process) and passes control back to the main
program which generated or called the object. A subsequent call on the object
will thus resume the recursion process exactly where it left off.

The decision (assumption) that the procedure permute should leave the
sequence unchanged is really quite arbitrary. The reader is invited to convince
himself of this fact by writing a procedure based on the same swapping
strategy, which returns with the numbers in the reverse order.

5. LIST STRUCTURES

The facilities introduced above for declaration of classes and reference to
objects may be used to represent recursive data structures such as stacks and
trees, and even cyclic structures such as two-way lists. This is accomplished
by declaring attributes of a class to be references to objects of the very same
class.

5.1. BINARY SEARCH TREES

A binary tree may be defined as

either (i) none

or (ii) a node,

where a node consists of

(a) a left component which is a tree

(b) a right component which is a tree

(c) a val which is an integer.

The val component may be regarded as being associated with each node of
the tree. A node whose left and right subtrees are both none is a terminal
element of the tree (leaf).

194 OLE-JOHAN DAHL AND C. A. R. HOARE

A binary search tree is defined as a binary tree which is either none, or
else it is a node which has a •al lying between all vals of its left subtree and
all vals of its right subtree, which are themselves both binary search trees.
The purpose of a binary search tree is to provide for any integer a swift access
to the node which has val equal to that integer; and also to provide swift
means of inserting a new node with any given val. Thus a class representing
the concept of a binary search tree will have the form:

class tree (val); integer val;

begin ref (tree) left, right;

procedure insert (x); integer x;

ref (tree) procedure find (x); integer x;

end of tree;

The bodies of the two procedure components are quite simple recursive
procedures, matching the recursive structure of the tree:

insert: if x < val then

begin if left = = none then left: - new tree (x)

else left. insert (x)
end

else if right = -= none then right: - new tree (x)

else right.insert (x);

find: if x = val then this tree

else if x < val then

(if left = = none then none

else left.find (x))

else if right = = none then none

else right.find (x);

In the- body of "find" there occurs the expression

this tree

which is intended to yield as value a reference to the current node, that is, the
one which owns this particular instance of the find attribute. For example, if
the find procedure of X is called by the function designator

X.find (x)

and X. val = x, then the result of the function is the reference value of X itself.

HIERARCHICAL PROGRAM STRUCTURES 195

Another operation which is meaningful for a binary search tree is that of
scanning all its values in ascending order. This operation may be implemented
by a "producing" semicoroutine, which on each call assigns to its attribute

integer current;

the next higher value of a node on the tree. On exhaustion of the tree, the
attribute current will take the maximum integer value.

The scanning can be accomplished by a recursive procedure attribute,
local to the relevant instance of the coroutine.

class scanner (X); ref (tree) X;

begin integer current;

procedure traverse (X); ref (tree) X;

if X =/=none then

begin traverse (X.left);

current: = X. val;

detach;

traverse (X. right)

end traverse;

traverse (X);

current: = integer max

end scanner;

As an example of the use of these concepts, we consider the task of merging
values from several binary search trees, held in an array:

ref (tree) array forest [l: NJ;

and outputting me values in ascending order. In order to do this we will
require N scanners, one operating on each tree of the forest:

ref (scanner) array trav [l: NJ;

for i: = 1 step 1 until N do trav [iJ: - new scanner (forest [i]);

Each scanner has now detached with its own minimal val assigned to its own
current. All that is now necessary is to locate the minimum of the N currents
and output it. The corresponding scanner should then be reinvoked to produce
its next higher val. When the minimum takes the maximum integer value,
the merge is complete.

196 OLE-JOHAN DAHL AND C. A. R. HOARE

integer min, j, i;

min:= O;

while min < integer max do

begin min:= trav [1] .current; j: = I;

for i: = 2 step I until N do

if min > trav [i]. current then

begin min: = trav [i). current;

j: = i

end search for smallest current;

if min < integer max then

begin output (min);

call (trav UD
end

end of merge process;

5.2. SYNTAX ANALYSER

As a more substantial example of list processing, we take a general table­
driven context-free syntax analyser. We shall use a top-down back-tracking
algorithm, which will detect all possible analyses (more than one if the
grammar is ambiguous), on condition that the grammar does not contain
left recursion. The symbol string is represented by a "tape" with the following
operators.

procedure move right; ;

procedure move left; ;

integer procedure symbol; ;

The "move" operations move a reading head one symbol to the right or left.
The "symbol" procedure reads the symbol under the reading head, and
converts it to an integer according to a one-one mapping.

A given function "meta" determines whether a given integer represents
a meta-symbol.

Boolean procedure meta (S); integer S; ... ;

For simplicity the grammar is represented by a three-dimensional array G

integer array G[... , ...•...] ;

where G[i, j, k] contains the kth symbol of the jth alternative right hand side
for the meta-symbol represented by i. There is an

integer array jm[...] ;

HIERARCHICAL PROGRAM STRUCTURES 197

where jm[i] is the number of right hand sides for a given meta-symbol.
Each right hand side is followed by a special symbol ".l" outside the
vocabulary of the grammar. If one of alternative definitions of the syntactic
class is (empty), it will be represented by this symbol alone.

For example, consider a simple context-free grammar for a subclass of
arithmetic expressions:

(I) (exp)::= (term) I (term)(addop)(exp)

(2) (term)::= (primary) I (primary)(mulop)(term)

(3) (primary)::= (constant)l(variable)l((exp))

(4) (addop)::= +l-

(5) (mulop):: =XI/

(6) (constant)::= 1121314151617181910

(7) (variable)::= IIJIKILIMIN
There are seven meta-symbols which may be given integer values l to 7.
The 22 terminal symbols may be given values 8 to 29 inclusive, and the
".l" terminating symbol may be given value 0.

The array G representing this grammar may now be declared:

integer array G[I: 7, l: 10, l: 4]

The first plane of this array will take the value

Note also that:

G[I, . , .] = 2, 0, 0, 0 first alternative

2, 4, I, 0 second alternative

0, 0, 0, 0 the other 8 rows

are irrelevant.

o,o,o,o

jm[l] = 2, jm[6] = IO

meta (I) = meta (7) = true

meta (8) = meta (29) = false

The desired result obtained by generating an instance of the syntax analyser,
with the first symbol of text under the reading head, will be a complete
syntax tree representing the text; the character after the last character of the
analysed text will be under the reading head, and a variable "good" will be
set to true. Subsequent calls of the same instance will produce trees repre­
senting alternative analyses. When no further analyses are possible, the input
text will be stepped back to the beginning, and the variable good will be set
false. This will happen on first generation, if the input text contains a syntax
error.

198 OLE-JOHAN DAHL AND C. A. R. HOARE

Note that the analyser will discover all successful analyses of any initial
segment of the text.

The syntax tree output on each call of the analyser will contain a node for
each phrase identified in the text. Each phrase has the following attributes:

integer i: indicating the syntactic class of the phrase

integer j: indicating which alternative of its class it belongs to

ref (phrase) sub:refers to the last subphrase of the given phrase

ref (phrase) left: refers to the phrase immediately preceding this phrase
on the same level of analysis. The left of the first
subphrase of any phrase is none.

Thus the expression
MxN+ 7

should give rise to a tree of the form shown in Fig. 1.

The syntax analyser will be recursively structured, as a class of phrase
objects, each of which reproduces on a single phrase the intended behaviour
of the analyser as a whole.

A phrase object accepts a meta-symbol i and a left neighbour as parameter,
and is responsible for producing all possible syntax trees of the given syntax
class which match a portion of text to the right of (and including) the current
symbol. The input text will on each occasion be stepped on to the first
symbol which does not match the stated analysis. When all possible analyses
are complete, the tape is stepped back to the position it was before entry to
the given phrase, a global variable good is set to false, and the phrase
terminates.

We are now in a position to outline the general structure of the phrase
class:

class phrase (i, left); integer i; ref (phrase) left;

begin integer j; ref (phrase) sub;

for j: = 1 step l until jm[i] do

... match remainder of text in all possible

ways to alternative j of class i,

issuing a detach after each successful match ... ;

good: = false

end of phrase;

Assume that an object has successfully matched the first k - I(k > 0)
symbols of a chosen alternative U) for the given meta-symbol (i). We now
formulate a piece of program for matching the kth symbol to the input in all
possible ways. We assume that the remainder, if any, of the right hand side is

HIERARCHICAL PROGRAM STRUCTURES

~,~.
e

7

5

variable
M

!1l!!!!t

!!2!11

expression

sub
left !!!!!!!!

'

~
2

3
2

~

7
6

FIGURE 1

term

primary

variable
N

expression

i

~ ...
/

3

none

' I

/

primory

constant
7

199

matched to the input in all possible ways by the statement "match remainder",
and that this statement leaves unaltered the position of the reading head and
the part of the syntax tree so far constructed. We make the latter assumption
also for an object which has failed to identify (another) phrase.

1. begin integer g; g: = G[i, j, k];

2. if g = ".L" then begin good : = true; detach end

3. else if g = symbol then

4. begin move right; match remainder; move left end

5. else if meta (g) then

6. begin sub: - new phrase (g, sub);

200

7.

8.

9.

10.

11.

end

end

OLE-JOHAN DAHL AND C. A. R. HOARE

while good do

begin match remainder; call (sub) end;

sub: - sub.left

Comments.

Line l. The kth symbol of the right hand side number j is called g for brevity.

Line 2. If g is the terminator symbol the whole right-hand side has been
successfully matched to the input. The object reports back to its
master. Line 2 does not alter the syntax tree or the position of the
reading head.

Line 4. Since we have a match the object moves the reading head to the next
symbol. After having matched the remainder in all possible ways the
object restores the position of the reading head. Thus, according to
assumptions, line 4 has a null net effect.

Line 6. Since g is a meta-symbol, a new phrase object is generated to
identify sub-phrases of the syntax class g. It becomes the new
rightmost sub-phrase. Its left neighbour phrase is the old rightmost
sub-phrase.

Line 7. We have assumed that an object when failing sets "good" to false.

Line 8. Since "good" is true, a sub-phrase has been identified matching g.
After having matched the remainder in all possible ways, "sub" is
called to identify the next possible sub-phrase. Since we want to
match g in all possible ways, line 8 is repeated until the sub-phrase
object fails.

Line 9. According to assumptions a phrase object which has failed, has had
a null net effect. The total effect of lines 6-8 is thus to add an
object •o the syntax tree. Line 9 restores the syntax tree to its
original state.

The comments show that the block above matches the symbol g followed by
the remainder of the jth right-hand side of i in all possible ways and has a null
net effect. Consequently the block itself satisfies the assumptions made for the
"match remainder" statement. It follows that the whole matching algorithm
may be expressed in a simple way by a recursive procedure. The whole
computing process is described by the following class declaration.

HIERARCHICAL PROGRAM STRUCTURFS

class phrase (i, left); integer i; ref (phrase) left;

begin integer j; ref (phrase) sub;

procedure match (k); integer k;

begin integer g; g: = G[i,j, k];

if g = ".l" then begin good: = true; detach end

else if g = symbol then

begin move right; match (k + l); move left end

else if meta (g) then

begin sub: - new phrase (g, sub);

while good do

end

end of match;

begjn match (k + l); call(sub)end;

sub: - sub.left

for j: = 1 step 1 untiljm[i] do match (l);

good: = false

end of phrase

A master program could have the following structure

ref (phrase) tree;

tree: - new phrase (start, none);

while good do begin found: •.••• ; call(tree)end;

201

where "start" represents the start symbol of the grammar. At the label
"found" a sentence has been identified and the variable "tree" refers to its
syntax tree represented as described above. For each node its associated
meta-symbol (i), the rhs alternative number U), and the links to other nodes
(sub, left) are available through remote identification, for example

tree. i, tree. sub .j, tree. sub .left. left. sub.

We must expect in general that the strings matched by different successful
trials may be of unequal lengths, starting at the same location of the tape.
This may be avoided by defining the language in such a way that no initial
segment of a valid text is also valid. Alternatively, the whole text should be

202 OLE-JOHAN DAHL AND C. A. R. HOARE

followed by some symbol outside the alphabet, say ".L ", and the master
program might have the following structure

ref(phrase)parse; Boolean good ;

parse: - new phrase (start, none);

while good do

begin if symbol = ".L" then inspect successful parse;

call(parse)

end

It is a remarkable feature of the phrase class that the result it yields on
each call is a tree whose nodes consist in phrase objects which have been
activated recursively and not yet terminated. Each of these phrase objects
plays a dual role, both as a part of the syntactic tree which is to be inspected
by the master program, and as the set of local variabfos for the recursive
activations of other phrase objects. It is this close association of data and
procedure which permits the algorithm to be so simply and concisely
formulated.

Notice that each phrase object is the nucleus of a separate stack of recursive
activations of its local "match" procedure. At the time when a detach is
issued on behalf of an object, signalling a successful (sub-) parse, its stack
has attained a terr Jorary maximum depth, one level for each symbol in the
current right-hanil side, plus one level corresponding to the rhs terminator .L,
which issued the detach.

Thus the whole dynamic context of a successful parse is preserved. When an
l)bject is called to produce an alternative parse a backtracking process takes
place, during which the "match" stack of the object is reduced. At a level
corresponding to a meta-symbol in the rhs the match procedure calls on the
corresponding phrase object to produce an alternative sub-parse (line 8) and
so on. (cf. the row of officers in Chaplin's Great Dictator).

6. PROGRAM CoNCATENATION

In the preceding sections we have seen how the class mechanism is capable of
modelling certain simple concepts, by specifying data structures and defining
operations over them. In this section, we develop a method by which more
elaborate concepts can be constructed on the basis of simpler ones. This will
establish potential hierarchies of concepts, with complex concepts sub­
ordinate to the more simple ones in terms of which they are defined. The
structuring technique gives a new method of composing a program from its
constituent parts, and is known as concatenation.

ffiERARCffiCAL PROGRAM STRUCTURES 203

Concatenation is an operation defined between two classes A and B, or a
class A and a block C, and results in formation of a new class or block.
Concatenation consists in a merging of the attributes of both components,
and the composition of their actions. The formal parameters of the con­
catenated object consist of the foimal parameters of the first component
followed by formal parameters of the second component; and the same for
specification parts, declarations and statements (if any).

·A concatenated class B is defined by prefixing the name of a first com­
ponent A to the declaration of B:

A class B(h 1, h 2 , •••); ••• specification of h's;

begin ... attributes of B . .. ; ... actions of B . .. end

Suppose the class A has been defined:

class A(a 1, a2 , •••); ••• specification of a's ... ;

begin ... attributes of A . .. ; ... actions of A . .. end.

According to the concatenation rules, the effect of the prefixed declaration
for class B is the same as if B had been declared without a prefix thus:

class B(a 1 , a2 , ••• , h 1, h2 , •••); ••• specification of a's ...

specifications of h's . .. ;

begin ... attributes of A ... ; ... attributes of B . .. ;

... statements of A ... ; ... statements of B . .. end;

Note. If any local identifiers of A are the same as local identifiers of B,
the collision of names is resolved by systematic change of B's identifiers.
A block also may be prefixed by a class identifier:

A begin ... declarations ... ; ... statements end,

and the effect is similar to that described above, except that the result of the
concatenation is a block, not a class. (If the class A has parameters, the
prefix must include an actual parameter part I). The effect of prefixing a
block is to make available within that block the library of procedures and
related data (including even classes) declared within the class declaration
for A.

A single class may be used as prefix to several different concatenated
classes. For example, suppose a program requires to deal with trucks, buses,
and private cars. These are three separate classes, and each has its own
attributes. But there are certain attributes (for example license number)
which are common to all of them, by virtue of the fact that they are all vehicles.
The concept of vehicle is a more general one, and could be declared as a
separate concept;

204 OLE-JOHAN DAHL AND C. A. R. HOARE

class vehicle (license no); integer license no; ... ;
This class can now be used as a prefix in the remaining class declarations.

vehicle class truck (load); real load; ... ;

vehicle class bus (seating); integer seating; ... ;

vehicle class car; ... ;

An object belonging to a prefixed class is a compound object, which has
certain attributes and operations in addition to those defined in the prefix
part. Thus a truck object has a license no and a load, and a bus object has a
license no and a seating. It is reasonable to regard "truck" and "bus" and
"car" as subclasses of the vehicle class; any object of a subclass also belongs
to the prefix class "vehicle".

A reference variable may be qualified as belonging to a prefix class or to a
concatenated class. If it belongs to the prefix class it may point to objects of
any of the subclasses, and may be used in a remote identifier to access any of
the attributes of the prefix class but not to access any attributes of the sub­
classes. A reference qualified by a subclass may point only to objects of the
subclass, but may be used in a remote identifier to access all its attributes.
Thus given the reference variables:

ref (vehicle) V; ref (bus) B;

the following are valid remote identifiers:

V. license no, B. license no, B. seating,

but V. seating is not valid.

Thus the subclass notion provides a useful flexibility of object referencing. A
"weak" qualification permits a wide range of objects referencing, at the cost
of inability to make remote access to attributes declared in a subclass.

Assignment of a subclass reference to a prefix class reference variable
(e.g. V: - B) is always valid, and can be recognised as such at compile time.
But assignment in the other direction (e.g. B: - V) may give rise to an error
(detected only at run time), if the object referenced does not in fact belong
to the expected subclass (bus).

6.1. BINARY SEARCH TREE

Suppose it is desired to set up a binary search tree to hold information about
stock items in an inventory. Each node of the tree should contain not only a
val (indicating the stock number of the item) but also certain other information.
about quantity on hand, price, reorder point, etc. The simplest way of achiev­
ing the required effect is to prefix the class "stock item" by the class tree,
and then declare the additional attributes required, for example:

HIERARCHICAL PROGRAM STRUCTURES

tree class stock item;

begin integer qoh, price, reorder point;

Boolean ordered;

procedure reduce;

205

begin if qoh = reorder point & --, ordered then

issue reorder;

qoh: = qoh -1

end of remove;

end of stock item;

6.2. TWO WAY LIST

Taking advantage of the concatenation technique, it is possible to design
classes which are intended solely or primarily to act as prefixes to other classes
or to blocks. In this section we give an example of a class TWLIST, which is
intended to be used as a prefix to a block, and to make available within that
block the concept of two-way chained cyclic lists. Such a list consists of a
list head, which contains two pointers, one to the first element of the chain and
one to the last. Each link in the chain must also contain two pointers, sue
which points to the successor in the list (or the list head if there is none),
and pred which points to the predecessor in the list (or the list head if there is
none). In an empty list, the two pointers from the list head point to the list
head itself.

Each pointer in the system must be capable of pointing either to another
link in the list or to a list head. Therefore these pointers must be qualified by a
class which embraces both links and heads, i.e. a class "linkage" of which
they are both subclasses. Since both list heads and links require two reference
attributes, sue and pred can be declared as attributes of the prefix class
linkage.

The single concept of a two-way list is represented by the triple of classes
linkage, link, and list head. In order to indicate that they are to be considered
in conjunction as a single concept, the declarations for all three classes are
grouped together in a single class declaration TWLIST, which is to be used as a
prefix to any block which requires to use the concept. Within such a block
the "link" class is intended to be used as a prefix to other classes specifying
the nature of the items; for example, if stock items were to be held in a two­
way list instead of in a binary search tree, the declaration would be:

link class stock; ... as before ... ;

206 OLE-JOHAN DAHL AND C. A. R. HOARE

It is now necessary to decide on a basic set of operations on lists and links.
A link I should be removable from its list by a procedure statement

/.out;

and it should be capable of being reinserted in a list just before link J by a
procedure statement:

I. precede (J);

Since a link can belong to at most one list, this operation should also remove
I from any list it happens to belong to before. Finally a link should be insert­
able as the last item of a list with head H by a procedure statement:

/.into (H);

For a list head H, it seems useful to define the following functions

H.empty,

which tests whether the list is empty,

H.first

which yields H's first item, if any; otherwise none, and

H.last

which yields H's last item, if any; otherwise none.

The declaration of the class TWLIST can now be given:

1. class TWLIST;

2. begin class linkage; begin ref (linkage) sue, pred; end;

3. linkage class link;

4. begin procedure out;

5. if sue = / = none then

6. begin suc.pred: - pred; pred.suc:- sue;

7. sue: - pred: - none

8. end of out;

9. procedure precede (x); ref (linkage) x;

10. begin out; sue: - x; pred: - x.pred;

11. sue. pred: - pred. sue: - this link

12. end of precede;

13. procedure into (L); ref (list) L;

14. precede (L);
comment sue and pred of a link object should have the
standard initial value none indicating no list membership;

15. end of link;

HIERARCHICAL PROGRAM STRUCTURES 207

16. linkage class list;

17. begin ref (link) procedure first;

18. first: - if empty then none else sue;

19. ref (link) procedure last;

20. last: - if empty then none else pred;

21. Boolean procedure empty;

22. empty: = sue = = this list;

23. sue: - pred: - this list

comment sue and pred of a list head should be
initialized to indicate an empty list;

24. end of list;

25. end of TWLIST;

Let P be an arbitrary block instance prefixed by TWLIST, which, outside
its prefix part, contains no explicit reference assignment to any variable sue
or pred of any linkage object. Then the assertions (1) and (2) below are valid
throughout the lifetime of P (at times when control is textually outside the
body of TWLIST).

(l) Any linkage object x in Pis either an object with no list membership,
in which case x. sue = = x. pred = = none and x ¢ list, or x. sue. pred = =
x.pred.suc = = x.

It follows that all lists contained in P are circular. Furthermore:

(2) Each circular list in P contains exactly one list head, which is an
object of the class "list".

The assertions are established by observing that each of the operations
below preserves their validity, and that P contains no linkage object initially.

new link (or new C, C £ linkage-list) generates a link object, which is not
a list member (its sue and pred are automatically initialised to none).

new list (or new C, C £ list) generates an "empty" circular list containing
the generated list head and initially nothing else.

In the following we assume x e link, y, z e linkage, and Le list. x +-+ y is an
abbreviation for x. sue = = y & x = = y. pred.

x. out If z +-+ x +-+ y the result is z +-+ y and x is not a list member. (Notice
that (2) together with x e link implies x = / = y, z.) If x was not a list member,
the result is to do nothing.

x.precede (y), where x =/= y A z +-+ y. The result is x +-+ y (and z +-+ x if
x = / = z). If x was a list member, x is first removed from that list.

208 OLE-JOHAN DAHL AND C. A. R. HOARE

x. into(L), where z +-+ L. The result is z +-+ x +-+ L, which implies x = = L. last.
If x was a list member, xis first removed from that list.

Any use of out, precede, or into not satisfying the above assumptions, is
either textually illegal or leads immediately to a run time error and program
termination caused by an invalid remote identifier. E.g. the operation
x. precede (y) sets x. pred to none if x = = y or y is not a list member.
Consequently the remote identifier pred. sue in the body of precede is invalid.
Notice that x. into (L) is a "safer" operation, since x e link, LE list implies
that x =/= Land L.pred =/=none.

The assertions (l) and (2) provide a guarantee that our lists are well
behaved, provided that no explicit assignment to any variable sue or pred
occurs. The construction TWLIST is thus a reliable "mental platform,"
which in a certain sense cannot break down, whatever programming errors
are made. When programming on top of TWLIST one is entitled to ignore
the list processing details involved in manipulating the circular two-way lists.
Each list object may be regarded as representing an ordered set of link
objects, with the proviso that a link object may be member of at most one
such set at a time. The last fact is reflected in the design of the procedures
into and.precede. Explicit use of the attributes sue and pred, e.g. for scanning
through a list, may, however, require the user to be conscious of the fact
that the "last" member has a successor and the "first" member a predecessor,
which are both identical to the list object itself. A design alternative is to
suppress this fact by declaring the following procedures as attributes to link.

ref (link) procedure successor;

inspect sue when list do successor: - none

otherwise successor: - sue;

ref (link) procedure predecessor;

inspect pred when list do predecessor: - none

otherwise predecessor: - pred ;

Note the construction

inspect r when C do ..•

enables the programmer to test whether the object referenced by r belongs
to one of its possible subclasses C.

7. CONCEPT HIERARCHIES

At the outset of a programming project there is a problem, more or less
precisely defined and understood in terms of certain problem oriented con­
cepts, and a programming language, perhaps a general purpose one, providing
some (machine oriented) basic concepts, hopefully precisely defined and com-

HIERARCHICAL PROGRAM STRUCTURES 209

pletely understood. There is a conceptual distance between the two, which
must be bridged by our piece of program. We may picture that distance as a
vertical one, the given programming language being the ground level.

Our difficulty in bridging such gaps is the fact that we have to work
sequentially on one simple part problem at a time, not always knowing in
advance whether they are the right problems.

In order to better overcome such difficulties we may build pyramids.
Unlike the Egyptian ones ours are either standing on their heads (bottom-up
construction) or hanging in the air (top-down construction). The construction
principle involved is best called abstraction; we concentrate on features
common to many phenomena, and we abstract away features too far remo\ied
from the conceptual level at which we are working. Thereby we have a
better chance of formulating concepts which are indeed useful at a later stage.

In the bottom-up case we start at the basic language level and construct
abstract concepts capable of capturing a variety of phenomena in some
problem area. In the top-down case [8, 9] we formulate the solution to a given
problem in terms of concepts, which are capable of being implemented (and
interpreted) in many ways, and which are perhaps not yet fully understood.
In either case system construction may consist of adding new layers of
pyramids (above or below) until the conceptual gap has finally been bridged.
Each such layer will correspond to a conceptual level of understanding.

For instance, given some problem which involves queueing phenomena,
we could take TWLIST of the preceding section as the first step of a bottom-up
construction. Then, for the remainder of the construction we are free to think
and express ourselves in terms of dynamic manipulation of ordered sets of
objects.

Layers of conceptual levels may be represented as a prefix sequence of
class declarations. For example, it is possible to construct a series of class
declarations, each one using the previous class as prefix

class C1 ; •••• ;

C1 class C2 ; •••• ;

Cn- l class C"; ;
The list C1, C2, ••. , Cn-l is known as the prefix sequence for Cn. The
outermost prefix C 1 is built at the ground level. Every other level rests on
the one(s) below, in that it may take advantage of all attributes of its entire
prefix sequence. Making use of this language mechanism, bottom-up con­
struction of a program is to plan and write the classes of a prefix sequence
one by one in the stated order. The program itself is finally written as a
prefixed block on top of the whole sequence.

en begin --- end

210 OLE-JOHAN DAHL AND C. A. R. HOARE

The top-down strategy would correspond to constructing the members of
the prefix sequence, including the prefixed block, in the reverse order.
(SIMULA 67 contains additional mechanisms, not considered here, for
facilitating top-down and mixed mode construction.)

A well-formed conceptual level (bottom-up) is a set of well-defined inter­
related concepts, which may be combined to make more elaborate concepts.
It may serve for further construction as a mental platform, raised above
ground towards some application area, i.e. as an "application language". A
preconstructed application language may serve to shorten the conceptual
gap that has to be bridged for many problems in the area. The usefulness of
such a platform is closely related to its ruggedness, that is with the way in
which it tolerates or even forestalls misuse. As we saw in the last section
TWLIST supplies an exceptionally rugged mental platform; and in this
section we shall build on it a small but useful application language, which
may in its turn be used as a platform for the solution of realistic problems.

7. l. DISCRETE EVENT SIMULATION

Simulation is a method for studying the behaviour of large systems of
interacting objects, and evaluating the effect of making changes which would
be too expensive to make on an experimental basis in real life. The object of a
simulation model could be a production line, a traffic system, a computer
system (hardware and software), a social system composed of interacting
individuals, etc. The following notions are common to most such sy&tems.

(1) Processes taking place in parallel, giving rise to discrete events at
irregular intervals of time.

(2) Queueing phenomena, arising when an object has to wait for service
from a currently busy server.

In order to represent processes occurring in parallel, it is not necessary
that the corresponding program components should be multiprogrammed in
the computer; but it is necessary that the programs should be able to suspend
themselves temporarily, and be resumed later from where they left off. Thus
the active objects or "processes" in a simulation will be represented by
(semi-)coroutines, operating in pseudo-parallel under control of a scheduling
mechanism.

For example, in a job shop simulation, an incoming order gives rise to a
sequence of events on the shop floor, to satisfy the order. Each order may be
regarded as a process whose activity is to proceed from one machine to the
next, requesting and obtaining service from it. The sequence of requests is
determined by the nature of the order. If the requested machine is free, the
order is served immediately, and the machine goes busy for a period equal
to the length of the service. Otherwise, the order joins a queue of orders
waiting for the machine to become free.

HIERARCHICAL PROGRAM STRUCTURES 211

In the implementation of the concept of simulated time, the first require­
ment is that each process have access to a variable "time" which holds
the current time, and which is incremented on appropriate occasions by the
time-control mechanism. Note that the updating of this variable must be
entirely independent of the passage of computing time during the simulation,
since actions which take a long time on a computer might take only a short
time in the real world, and vice versa. As far as simulated time is concerned,
the active phases of the processes must be instantaneous; "time" does not
move until all the participating processes are passive.

Thus in order to simulate the passing of time, a process simulating an
active system component must relinquish control for a stated interval T of
simulated time; and it must be reactivated again when the time variable has
been incremented by T. This will be accomplished by the process calling the
procedure

hold (T).

For example, an order which has found its required machine ready to serve it
needs to indicate how long this service will take, by the statement

hold (service interval);

The order will now become inactive until all other orders which were due to
be reactivated before time + service interval have been reactivated, and have
relinquis)led control again. At this point, the given order will be reactivated,
and will find that its time has been appropriately incremented.

While a process is held, it will be necessary to record its reactivation
time as one of its attributes. It is convenient therefore to use the time
attribute of the process itself for this purpose.

The method of holding for a specified interval is possible only if the
process knows how long it has to wait before the next "event" in its life. But
sometimes it may require to wait until the occurrence of some event in the life
of some other process. For example, an order, on finding its required machine
busy, must join a queue and wait until the machine is free; and an order on
releasing a machine must activate the first other order in the queue (if not
empty). Thus two additional procedures are required:

wait (Q),

and activate (X),

where Q refers to the queue (two-way list) on which the calling process is to
wait while it is passive, and X refers to some passive process. which is to be
removed from its queue and allowed to proceed.

Finally, a means must be provided of starting and stopping the simulation.
This may be accomplished by a procedure statement

simulate (start, finish),

212 OLE-JOHAN DAHL AND C. A. R. HOARE

where start refers to the process with which the simulation starts, and finish
gives the time limit for the simulation. Any process requesting to be held
beyond this limit may be ignored. Presumably, the start process will activate
other processes to participate in the simulation.

We now proceed to implement the mechanism described above. It will be
implemented as a class MINISIM, which is intended to be used as a prefix
to a simulation main program. In order to take advantage of the two-way list
mechanism, the MINISIM class must be prefixed by TWLIST. This ensures
that TWLIST is also available in any simulation program which is prefixed
by MINISIM.

A class of objects which are to be capable of participating in a simulation
should be declared as a subclass of the "process" class. This will make
available to it the necessary time control and queueing mechanisms. Each
process must have the capability of inserting itself into a two-way list;
therefore the process class itself must be declared as a subclass of the class of
links.

Processes waiting for the elapse of their holding interval are held on a
unique two-way list known as the sequencing set (SQS). The processes are
ordered in accordance with decreasing reactivation times. A specially created
finish process is always the first link in SQS, and the last link is always the
one that is currently active. Its time represents the current time of the
system. When it goes inactive, its predecessor in the SQS wil,. (usually)
become the last, and its local time has already been updated to the time at
which that process was due to be reactivated.

We are now in a position to give the general structure of MINISIM,
omitting for the time being the procedure bodies.

TWLIST class MINISIM

begin ref (list) SQS;

ref (process) procedure current;

current: - SQS.last;

link class process;

begin real time ;

procedure hold (T); real T;

..... '
procedure wait (Q); ref (list) Q;

procedure activate (X); ref (process) X;

detach; comment a new process doesn't actually

HIERARCHICAL PROGRAM STRUCTURES

do anything until it is activated

end of process;

procedure simulate (start, finish);

ref (process) start; real finish;

..... '
end of MINISIM.

We shall give the bodies of the procedures in reverse order.

simulate: begin SQS: - new list;

new process. into (SQS); current. time: = finish;

if start. time < finish then start. into (SQS);

while --, SQS. empt)' do

begin call (current);

current. out;

213

comment this ensures that a terminated

or detached process leaves the SQS;

end

end of simulate

wait: begin into (Q); resume (current) end;

The active process inserts itself into the queue, and thereby leaves the SQS.
It also resumes the process on the SQS which is next due to be reactivated.
Notice that the standard sequencing mechanism of the simulate procedure
must be bypassed, since the old active process already is out of the SQS.

activate: begin X. into (SQS); comment as its last and current member;

X.time: =time; comment i.e. now;

resume (current);

end of activate.

The calling process places X ahead of itself in SQS, but with the same time.
Since the calling and the activated process X have the same time, it does not
matter to the timing mechanism in what order they are placed; our choice
implies that an active phase of Xis invoked immediately in real time. Control
returns to the calling one at the same moment of simulated time, but after the
completion of the active phase of X.

214 OLE-JOHAN DAHL AND C. A. R. HOARE

hold:

begin ref (process) P;

P:- pred;

comment the holding process is necessarily active, and

therefore also the last member of SQS. Since the

finish process never holds, there will always be a

second-to-last process on SQS

if T > 0 then time:= time+ T;

comment set local reactivation time,

time should never decrease;

if time ;;:i: P. time then

begin comment this process must be moved in SQS;

out; comment of SQS, now Pis current;

P:- SQS.first; comment the finish process;

if time < P. time then

end;
end of hold;

begin comment reactivation time is

within the time limit;

while time < P. time do P: - P. sue;

comment terminates since

time ;;:i: current. time;

precede (P)

end; comment ignore a process that would

exceed the limit;

resume (current)

Notice that a process object is allowed to relinquish control simply by
saying detach or by passage through its end. In both cases control returns to
the standard sequencing mechanism of the simulate procedure. The basic
activation instructions call and resume, however, should not be explicitly
applied to process objects; that would illegally bypass the timing mechanism.

7.2. THE LEE ALGORITHM

As a simple but unexpected example of the use of simulated time, we take
the Lee algorithm for finding the shortest path between a city A and a city B
connected by a network of one-way roads. The algorithm may be envisaged

HIERARCHICAL PROGRAM STRUCTURES 215

as the propagation of a pulse from the destination city B at equal speed along
all roads leading into it. Each time a pulse reaches a city not reached by a
previous pulse, it records the road it has come along, and then sends pulses
outward along all roads leading into the city. When a pulse reaches a city
which has already been reached by another pulse, it dies. When a pulse
reaches the city A, the task is completed.

Cities and roads may be represented by classes.

class city; begin ref (road) roadsin, wayout; end

class road; begin real length; ref (road) nextin;

ref (city) source, destination; ... end

The variable wayout holds the recommended wayout from the city towards B.
For an unvisited city, its value is none.

The class representing a pulse takes as parameter the road along which
it is first to pass.

process class pulse (rd); ref (road) rd;

begin ref (city) c; c: - rd. source;

hold (rd.length);

if c. wayout = / = none then

begin c. wayout: - rd;

if c = = A then go to done;

comment stops the simulation by

going to a non-local label;

rd: - c. roadsin;

while rd = / = none do

begin activate (new pulse (rd));

rd: - rd. nextin

end propagation of pulses

end

end of pulse

The algorithm will be invoked by calling a procedure with parameters
indicating the starting and final cities, and an upper limit L on the length of
the path that is to be printed. It is assumed that the wayout of every city is
initially none. The time and process concepts are made available by the
prefix MINISIM to the procedure body.

216 OLE-JOHAN DAHL AND C. A. R. HOARE

procedure Lee (A, B, L); ref (city) A, B; real L;

MINISIM begin process class pulse (rd); ref (road) rd;

... as before ... ;

process class starter;

done: end of Lee;

begin ref (road) rd;

rd: - B.roadsin;

while rd = / = none do

end

begin activate (new pulse (rd));

rd: = rd. nextin

end of starter;

simulate (new starter, L);

After a procedure statement such as

Lee (Oslo, Belfast, 1000);

where ref (city) Oslo, Belfast; the required route may be printed out, provided
that it exists.

if Oslo. wayout = / = none then
begin ref (city) c; procedure print. ; ;

print (Oslo. wayout); c: - Oslo. wayout. destination;

while c = / = Belfast do

begin print (c); print (c.wayout);

c: - c. wayout. destination

end

end else outtext ('no road connection within limit);

It is assumed for the print procedure that cities and roads are objects
belonging to a common class, by having the same prefix to the two classes.
The prefix part of an object might contain the necessary identifying text,
such as 'London' or 'Ml' as data.

7.3. A JOB SHOP MODEL

As a second application of MINISIM we shall design a model of a simple
job shop system. The model may be used to evaluate the capacity of the shop
in relation to a given order load. The line numbers below refer to the
program on page 218.

HIERARCHICAL PROGRAM STRUCTURES 217

The system consists of machine groups (lines 3-10), numbered from 1 to
nmg (lines 1, 11), and order objects (lines 12-22). The machines of a group are
identical and therefore need not be represented individually; however, their
number is specified initially by the value of the attribute nm (line 3).
Associated with the group is also a queue of orders waiting to be processed,
which is empty initially (lines 4, 9), and procedures to request a machine
for processing (lines 5-6) and to release it when finished (lines 7-8).

The variable nm is used to represent the number of available machines,
say m, as well as the number of orders, say w, waiting in the queue, as
described by the following assertion.

if nm > 0 then m = nm A w = 0

else m = 0 A w = abs(nm)

The assertion is valid for each machine group (outside the procedure bodies
request and release).

When a machine is requested and m = 0, the caller must enter the queue
and wait for its turn (line 6). When a machine is released and w =F 0, one of
the waiting processes should proceed. The first member of the queue is
activated and thereby leaves the queue. The queueing discipline is thus first
come first served.

The orders are process objects, each of which generates its successor,
(line 18) and which goes from one machine group to the next (lines 20-21)
according to an individually defined schedule. For a given order the schedule
has n steps, and for each step s(s = l, 2, ... , n) a machine group number
(mg[s]) and an associated processing time (ptfs]) are given. Thus the order
should spend the time ptfs] in being processed at machine group number
mg[s] (line 21, hold). Notice that the request statement of line 21 will require
some additional amount of simulated time for its completion, if the group
mgroup [mg[s]] currently has no available machine.

The model is driven by input data. In particular, each order object during
its first active phase reads in its own schedule, consisting of length of
schedule (line 18) arrival time (inreal, line 15), and the values of mg and pt
(lines 16-17). The main program sets up machine groups of specified sizes
(lines 24, 25) and generates the first order at time zero. (The procedures inint,
inreal, and lastitem are procedures associated with a standard input file,
which is part of the program environment).

It is assumed that the input file starts with the following data:

nmg, timelimit, nm 1, nm 2 , •• • , nmnmg•

defining the structure of the job shop; and this is followed by an occurrence
of

218 01,E-JOHAN DAHL AND C. A. R. HOARE

for each order to be generated. Each value T defines the arrival time of the
order. It is assumed that the T values are in a non-decreasing sequence.

The JOB SHOP goes as follows.

1. begin integer nmg; nmg: = inint;

2. MINISIM begin

3. class machine group (nm); integer nm;

4. begin ref (list) Q;

5. procedure request;

6. begin nm:= nm - 1; if nm < 0 then current. wait (Q) end;

7. procedure release ;

8. begin nm: = nm + I ; if nm ~ 0 then current. activate (Q. first) end;

9. Q: - new list

10. end of machine group;

11. ref(machine group) array mgroup [l:nmg];

12. process class order (n); integer n;

13. begin integer array mg[l :n]; array pt[l :n]; integers;

14. ref (machine group) M;

15. hold (inreal-time); comment arrival time is now;

16. for s: = 1 step l until n do

17. begin mg[s]: = inint; pt[s]: = inreal end;

18. if 1lastitem then activate (new order (inint)):

19. comment generate next order, if any;

20. for s: = l step 1 until n do

21. begin M:- mgroup [mg[s]]; M.request; hold (ptfs]);
M. release end

22. end of order;

23. integer k; real lim; lim: = inreal;

24. fork:= 1step1 until nmg do mgroup [k]: - new machine group (inint);

25. simulate (new order (inint), Jim);

26. comment initial time is zero by default;

27. end of program;

HIERARCIIlCAL PROGRAM STRUCTURFS 219

The model above should be augmented by mechanisms for observing its
performance. We may for instance very easily include a "reporter" process,
which will operate in "parallel" with the model components and give output
of relevant state information at regular simulated time intervals.

process class reporter (dt); real dt;

while true do

begin hold (dt);

give output, e.g. of

mgroup [k].nm v (k = 1, 2, ... ,nmg)

end of reporter;

The first order could generate a reporter object and set it going at system
time zero.

activate (new reporter (inreal))

Output will then be given at system time t, 2t, 3t, .•• , where t is the actual
parameter value.

As a further example we may wish to accumulate for each machine group a
histogram of waiting times of orders at the group. Then define the following
subclass of machine group, redefining the operation "request".

machine group class Machine Group;

begin ref {histogram) H;

procedure request;

begin real T;

T: = time; nm: = nm - 1;

if nm < 0 then wait (Q);

H. tabulate (time - T)

end of new request;

H: - new histogram (X, N)

end of Machine Group;

It is assumed that "histogram" is the class defined in section 3.1, and
that array X[l : N] and integer N are nonlocal quantities. Now replace the
lower case initials by upper case in the class identifier of lines 11, 14, and 24.
Then all machine groups will be objects extended as above, and since the
qualification of the reference variable M is strengthened, the "request" of
line 21 refers to the new procedure. Thus a histogram of waiting times will be
accumulated for each group.

Finally it should be mentioned that the "machine group" concept might
have considerable utility as a general purpose synchronisation mechanism for

220 OLE-JOHAN DAHL AND C. A. R. HOARE

pseudo-parallel processes. It might be useful to phrase it in more abstract
terminology and possibly include it as part of a "third floor" platform for
"resource oriented" simulation. In fact well known special purpose languages
[IO, I I] have elaborations ofthis concept ("facility", "store") as fundamental
mechanisms. The analogy to the semaphore mechanism (12] for the synchroni­
sation of truly parallel processes should be noted. The procedures request
and release correspond to the P and V operations, respectively.

REFERENCES

(1) Naur, P. (ed.) (1962/63). Revised Report on the Algorithmic Language.
ALGOL 60. Comp. J., 5, pp. 349-367.

(2) Dahl, 0.-J., Myhrhaug, B., Nygaard, K. (1968). The Simular 67 Common
Base Language. Norwegian Computing Centre, Forskningsveien IB, Oslo 3.

(3) Wang, A., Dahl, 0.-J. (1971). Coroutine Sequencing in a Block Structured
Environment. BIT 11, 4, pp. 425-449.

(4) Dahl, 0.-J., Nygaard (1966). Simula-an Algol-Based Simulation Language.
Comm. A.C.M. 9, 9, pp. 671-678.

(5) Dahl, 0.-J. (1968). Discrete Event Simulation Languages. "Programming
Languages" (ed. Genuys, F.). pp. 349-395. Academic Press, London.

(6) Hoare, C. A. R. (1968). Record Handling. "Programming Languages" (ed.
Genuys, F.). pp. 291-347. Academic Press, London.

(7) Conway, M. E. (1963). Design ofa Separable Transition-Diagram Compiler.
Comm. A.C.M. 6, 7, pp. 396--408.

(8) Naur, P. (1969). Programming by Actions Clusters. BIT 9, 3, pp. 250-258.

(9) Dijkstra, E. W. (1972). Notes on Structured Programming. "Structured
Programming". pp. 1-82. Academic Press, London.

(10) Knuth, D. E., McNeley, J. L. (1964). SOL-A Symbolic Language for
General-Purpose Systems Simulation. IEEE Trans. E.C.

(11) IBM, General Purpose Systems Simulator.

(12) Dijkstra, E. W. (1968). Co-operating Sequential Processes. "Programming
Languages". pp. 43-112. Academic Press, London.

	Structured Programming (Cover)
	Copyright 1972 Academic Press Inc.
	Preface (C. A. R. Hoare)
	Contents
	I. Notes on Structured Programming
	1. To My Reader
	2. On Our Inability To Do Much
	3. On The Reliability Of Mechanisms
	4. On Our Mental Aids
	4.1 On Enumeration
	4.2 On Mathematical Induction
	4.3 On Abstraction

	5. An Example Of A Correctness Of Proof
	6. On The Validity Of Proofs Versus The Validity Of Implementations
	7. On Understanding Programs
	8. On Comparing Programs
	9. A First Example Of Step-Wise Program Composition
	10. On Program Families
	11. On Trading Storage Space For Computation Speed
	12. On A Program Model
	13. A Second Example Of Step-Wise Program Composition
	14. On What We Have Achieved
	15. On Grouping & Sequencing
	16. Design Considertations In More Detail
	17. The Problem Of The Eight Queens

	II. Notes on Data Structuring
	1. Introduction
	1.1 Numbers & Numerals
	1.2 Abstraction & Computer Programming
	1.3 Abstraction In High-Level Programming Languages
	1.4 Notations
	1.5 Summary

	2. The Concept Of Type
	2.1 Data Type Definitions
	2.2 Data Manipulation
	2.3 Representations

	3. Unstructured Data Types
	3.1 Manipulation
	3.2 Representation
	3.3 Example

	4. The Cartesian Product
	4.1 Manipulation
	4.2 Representation

	5. The Discriminated Union
	5.1 Manipulation
	5.2 Representation
	5.3 Example

	6. The Array
	6.1 Manipulation
	6.2 Representation

	7. The Powerset
	7.1 Manipulation
	7.2 Representation
	7.3 Example

	8. The Sequence
	8.1 Manipulation
	8.2 Representation
	8.2.1 Contiguous Representation
	8.2.2 Chained Representation
	8.2.3 Blocked Representation
	8.2.4 Backing Store Representation

	9. Recursive Data Structures
	9.1 Representation
	9.2 Example

	10. Sparse Data Structures
	10.1 Representation
	10.1.1 Sequential Representation
	10.1.2 Tabular Representation
	10.1.3 Indexed Representation
	10.1.4 Locally Dense Representation
	10.1.5 Grid Representation

	11. Example: Examination Timetables
	11.1 The Abstract Program
	11.2 Data Representation

	12. Axiomatisation
	12.1 Enumerations & Subranges
	12.2 Cartesian Products
	12.3 Discriminated Unions
	12.4 Arrays
	12.5 Powersets
	12.6 Sequences

	References

	III. Hierarchical Program Structures
	1. Introduction
	2. Preliminaries
	2.1 Basic Concepts
	2.2 Higher Level Concepts
	2.3 Blocks & Block Instances

	3. Object Classes
	3.1 Frequency Histogram
	3.2 Gauss-Integration

	4. Coroutines
	4.1 Text Transformation
	4.2 Permutation Generator

	5. List Structure
	5.1 Binary Search Trees
	5.2 Syntax Analyser

	6. Program Concatenation
	6.1 Binary Search Tree
	6.2 Two Way List

	7. Concept Hierarchies
	7.1 Discrete Event Simulation
	7.2 The Lee Algorithm
	7.3 A Job Shop Model

	References

