

defined; everything else repeats. This repetition suggests the use of a defining
word.

The following approach, which is more readable, combines all the repeated
code into the “does” part of a defining word:

: PORT (offset --) CREATE ,
\ does> (-- ’port) @ BASE.PORT.ADDRESS + ;
0 PORT SPEAKER
2 PORT FLIPPER-A
4 PORT FLIPPER-B
6 PORT WIN-LIGHT

In this solution we're performing the offset calculation at run-time, every time
we invoke one of these names. It would be more efficient to perform the calcu-
lation at compile time, like this:

: PORT (offset --) BASE.PORT.ADDRESS + CONSTANT ;
\ does> (-- ’port)

0 PORT SPEAKER

2 PORT FLIPPER-A

4 PORT FLIPPER-B

6 PORT WIN-LIGHT

Here we've created a defining word, PORT, that has a unique compile-time be-
havior, namely adding the offset to BASE.PORT . ADDRESS and defining a CONSTANT.

We might even go one step further. Suppose that all port addresses are
two bytes apart. In this case there’s no reason we should have to specify these
offsets. The numeric sequence

0246

is itself redundant.

In the following version, we begin with the BASE.PORT.ADDRESS on the
stack. The defining word PORT duplicates this address, makes a constant out
of it, then adds 2 to the address still on the stack, for the next invocation of
PORT.

: PORT (’port -- ’next-port) DUP CREATE , 2+ ;
\ does> (-- ’port)
BASE.PORT.ADDRESS
PORT SPEAKER
PORT FLIPPER-A
PORT FLIPPER-B
PORT WIN-LIGHT
DROP (port.address)

Compile-Time Factoring through Defining Words

191

Notice we must supply the initial port address on the stack before defining the
first port, then invoke DROP when we’ve finished defining all the ports to get
rid of the port address that’s still on the stack.

One final comment. The base-port address is very likely to change, and
therefore should be defined in only one place. This does not mean it has to
be defined as a constant. Provided that the base-port address won’t be used
outside of this lexicon of port names, it’s just as well to refer to it by number
here.

HEX 01A0 (base port adr)
PORT SPEAKER
PORT FLIPPER-A
PORT FLIPPER-B
PORT WIN-LIGHT
DROP

The Iterative Approach in Implementation

Earlier in the book we discussed the iterative approach, paying particular at-
tention to its impact on the design phase. Now that we’re talking about im-
plementation, let’s see how the approach is actually used in writing code.

W T1p

6.19 Work on only one aspect of a problem at a time.

Suppose we're entrusted with the job of coding a word to draw or erase a box
at a given x—y coordinate. (This is the same problem we introduced in the
section called “Compile-Time Factoring.”)

At first we focus our attention on the problem of drawing a box—never
mind erasing it. We might come up with this:

: LAYER WIDE O DO ASCII * EMIT LOOP ;
: BOX (upper-left-x upper-left-y --)
HIGH 0 DO 2DUP I + XY LAYER LOOP 2DROP ;

Having tested this to make sure it works correctly, we turn now to the problem
of using the same code to undraw a box. The solution is simple: instead of
hard-coding the ASCII * we’d like to change the emitted character from an
asterisk to a blank. This requires the addition of a variable, and some readable
words for setting the contents of the variable. So:

VARIABLE INK

: DRAW ASCII * 1INK ! ;

: UNDRAW BL 1INK ! ;

: LAYER WIDTH O DO INK @ EMIT LOOP ;

192 Factoring

The definition of BOX, along with the remainder of the application, remains the
same.
This approach allows the syntax

(x y) DRAW BOX
or
(x y) UNDRAW BOX

By switching from an explicit value to a variable that contains a value, we’ve
added a level of indirection. In this case, we’ve added indirection “backwards,”
adding a new level of complexity to the definition of LAYER without substan-
tially lengthening the definition.

By concentrating on one dimension of the problem at a time, you can
solve each dimension more efficiently. If there’s an error in your thinking, the
problem will be easier to see if it’s not obscured by yet another untried, untested
aspect of your code.

TrIp

Don’t change too much at once.

While you're editing your application—adding a new feature or fixing some-
thing—it’s often tempting to go and fix several other things at the same time.
Our advice: Don'’t.

Make as few changes as you can each time you edit-compile. Be sure to
test the results of each revision before going on. You'd be amazed how often
you can make three innocent modifications, only to recompile and have nothing
work!

Making changes one at a time ensures that when it stops working, you
know why.

T1p

Don’t try to anticipate ways to factor too early.

Some people wonder why most Forth systems don’t include the definition word
ARRAY. This rule is the reason.

MOORE:

I often have a class of things called arrays. The simplest array merely adds a
subscript to an address and gives you back an address. You can define an array
by saying

CREATE X 100 ALLOT

The Iterative Approach in Implementation

6.20

6.21

193

then saying

X +

Or you can say
: X X +

One of the problems that’s most frustrating for me is knowing whether it’s
worth creating a defining word for a particular data structure. Will I have
enough instances to justify it?

I rarely know in advance if I'm going to have more than one array. So I don’t
define the word ARRAY.

After I discover I need two arrays, the question is marginal.

If T need three then it’s clear. Unless they’re different. And odds are they will
be different. You may want it to fetch it for you. You may want a byte array,
or a bit array. You may want to do bounds checking, or store its current length
so you can add things to the end.

I grit my teeth and say, “Should I make the byte array into a cell array, just to
fit the data structure into the word I already have available?”

The more complex the problem, the less likely it will be that you’ll find a
universally applicable data structure. The number of instances in which a truly
complex data structure has found universal use is very small. One example of a
successful complex data structure is the Forth dictionary. Very firm structure,
great versatility. It’s used everywhere in Forth. But that’s rare.

If you choose to define the word ARRAY, you’ve done a decomposition step.
You've factored out the concept of an array from all the words you’ll later back
in. And you’ve gone to another level of abstraction.

Building levels of abstraction is a dynamic process, not one you can predict.

W T1p

6.22 Today, make it work. Tomorrow, optimize it.

Again MOORE. On the day of this interview, MOORE had been completing work
on the design of a board-level Forth computer, using commercially available ICs.
As part of his toolkit for designing the board, he created a simulator in Forth,
to test the board’s logic:

194 Factoring

This morning I realized I'’ve been mixing the descriptions of the chips with the
placement of the chips on the board. This perfectly convenient for my purposes
at the moment, but when I come up with another board that I want to use the
same chips for, I have arranged things very badly.

I should have factored it with the descriptions here and the uses there. I would
then have had a chip description language. Okay. At the time I was doing this
I was not interested in that level of optimization.

Even if the thought had occurred to me then, I probably would have said,
“All right, I'll do that later,” then gone right ahead with what I was doing.
Optimization wasn’t the most important thing to me at the time.

Of course I try to factor things well. But if there doesn’t seem to be a good
way to do something, I say, “Let’s just make it work.”

My motivation isn’t laziness, it’s knowing that there are other things coming
down the pike that are going to affect this decision in ways I can’t predict.
Trying to optimize this now is foolish. Until I get the whole picture in front of
me, I can’t know what the optimum is.

The observations in this section shouldn’t contradict what’s been said before
about information hiding and about anticipating elements that may change.
A good programmer continually tries to balance the expense of building-in
changeability against the expense of changing things later if necessary.

These decisions take experience. But as a general rule:

T1p

Anticipate things-that-may-change by organizing information, not by adding
complexity. Add complexity only as necessary to make the current iteration
work.

Summary

In this chapter we’ve discussed various techniques and criteria for factoring.
We also examined how the iterative approach applies to the implementation
phase.

6.23

References

[1] W.P. STEVENS, G.J. MYERS, and L.L. CONSTANTINE, IBM Systems
Journal, vol. 13, no. 2, 1974, Copyright 1974 by International Business
Machines Corporation.

[2] G.A. MILLER, “The Magical Number Seven, Plus or Minus Two: Some
Limits on our Capacity for Processing Information,” Psychol. Rev., vol. 63,
pp. 81-97, Mar. 1956.

[3] Kim R. HaRRIs, “Definition Field Address Conversion Operators,” Forth—
83 Standard, Forth Standards Team.

Summary

195

SEVEN

Handling Data:
Stacks and States

Forth handles data in one of two ways: either on the stack or in data structures.
When to use which approach and how to manage both the stack and data
structures are the topics of this chapter.

The Stylish Stack

The simplest way for Forth words to pass arguments to each other is via the
stack. The process is “simple” because all the work of pushing and popping
values to and from the stack is implicit.

MOORE:

The data stack uses this idea of “hidden information.” The arguments being
passed between subroutines are not explicit in the calling sequence. The same
argument might ripple through a whole lot of words quite invisibly, even below
the level of awareness of the programmer, simply because it doesn’t have to be
referred to explicitly.

One important result of this approach: Arguments are unnamed. They reside
on the stack, not in named variables. This effect is one of the reasons for Forth’s
elegance. At the same time it’s one of the reasons badly written Forth code
can be unreadable. Let’s explore this paradox.

The invention of the stack is analogous to that of pronouns in English.
Consider the passage:

Take this gift, wrap it in tissue paper and put it in a box.

Notice the word “gift” is mentioned only once. The gift is referred to henceforth
as “it.”

The informality of the “it” construct makes English more readable (pro-
vided the reference is unambiguous). So with the stack, the implicit passing
of arguments makes code more readable. We emphasize the processes, not the
passing of arguments to the processes.

198 Handling Data: Stacks and States

Our analogy to pronouns suggests why bad Forth can be so unreadable.
The spoken language gets confusing when too many things are referred to with
pronouns.

Take off the wrapping and open the box. Remove the gift and throw it away.

The problem with this passage is that we’re using “it” to refer to too many
things at once. There are two solutions to this error. The easiest solution is to
supply a real name instead of “it”:

Remove the wrapping and open the box. Take out the gift and throw the box
away.

Or we can introduce the words “former” and “latter.” But the best solution is
to redesign the passage:

Remove the wrapping and open the present. Throw away the box.

So in Forth we have analogous observations:

Trp ﬂ

Simplify code by using the stack. But don’t stack too deeply within any single 7.1
definition. Redesign, or, as a last resort, use a named variable.

Some newcomers to Forth view the stack the way a gymnast views a trampoline:
as a fun place to bounce around on. But the stack is meant for data-passing,
not acrobatics.

So how deep is “too deep?”’ Generally, three elements on the stack is the
most you can manage within a single definition. (In double-length arithmetic,
each “element” occupies two stack positions but is logically treated as a single
element by operators such as 2DUP, 20VER, etc.)

In your ordinary lexicon of stack operators, ROT is the only one that gives
you access to the third stack item. Aside from PICK and ROLL (which we’ll
comment on soon), there’s no easy way to get at anything below that.

To stretch our analogy to the limit, perhaps three elements on the stack
corresponds to the three English pronouns “this,” “that,” and “t’other.”

Redesign

Let’s witness a case where a wrong-headed approach leads to a messy stack
problem. Suppose we're trying to write the definition of +THRU (see Chapter
Five, “Listing Organization” section, “Relative Loading” subsection). We've
decided that our loop body will be

DO I LOAD LOOP ;

Redesign 199

that is, we’ll put LOAD in a loop, then arrange for the index and limit to corre-
spond to the absolute screens being loaded.
On the stack initially we have:

lo hi

where “lo” and “hi” are the offsets from BLK.
We need to permute them for DO, like this:

hi+1+blk lo+blk

Our biggest problem is adding the value of BLK to both offsets.
We've already taken a wrong turn but we don’t know it yet. So let’s
proceed. We try:

lo hi

BLK @
lo hi blk

SWAP
lo blk hi

OVER
lo blk hi blk

+
lo blk hi+blk

1+
lo blk hi+blk+1

ROT ROT
hi+blk+1 lo blk

+

hi+blk+1 lo+blk

We made it, but what a mess!
If we’re gluttons for punishment, we might make two more stabs at it
arriving at:

BLK @ DUP ROT + 1+ ROT ROT +
and
BLK @ ROT OVER + ROT ROT + 1+ SWAP

All three sequences do the same thing, but the code seems to be getting blurrier,
not better.

With experience we learn to recognize the combination ROT ROT as a dan-
ger sign: the stack is too crowded. Without having to work out the alternates,
we recognize the problem: once we make two copies of “blk,” we have four
elements on the stack.

200 Handling Data: Stacks and States

At this point, the first resort is usually the return stack:
BLK @ DUP >R + 1+ SWAP R> +

(See “The Stylish Return Stack,” coming up next.) Here we’ve DUPed “blk,”
saving one copy on the return stack and adding the other copy to “hi.”
Admittedly an improvement. But readable?
Next we think, “Maybe we need a named variable.” Of course, we have
one already: BLK. So we try:

BLK @ + 1+ SWAP BLK @ +

Now it’s more readable, but it’s still rather long, and redundant too. BLK @ +
appears twice.

“BLK @ +”’7 That sounds familiar. Finally our neurons connect.

We look back at the source for +LOAD just defined:

: +LOAD (offset --) BLK @ + LOAD ;
This word, +LOAD, should be doing the work. All we have to write is:
: +THRU (1o hi) 1+ SWAP DO I +LOAD LOOP ;

We haven’t created a more efficient version here, because the work of BLK @ +
will be done on every pass of the loop. But we have created a cleaner, concep-
tually simpler, and more readable piece of code. In this case, the inefficiency
is unnoticeable because it only occurs as each block is loaded.

Redesigning, or rethinking the problem, was the path we should have
taken as soon as things got ugly.

Local Variables

Most of the time problems can be arranged so that only a few arguments are
needed on the stack at any one time. Occasionally, however, there’s nothing
you can do.

Here’s an example of a worst case. Assume you have a word called LINE
which draws a line between any two points, specified as coordinates in this
order:

(x1 y1 x2 y2)

where x1,y; represent the x,y coordinates for the one end-point, and zs,ys
represent the opposite end-point.

Now you have to write a box-drawing word called [BOX] which takes four
arguments in this order:

(x1 y1 x2 y2)

Local Variables

201

g

where x1 y1 represent the x, y coordinates for the upper left-hand corner of the
box, and x2 y2 represent the lower right-hand corner coordinates. Not only
do you have four elements on the stack, they each have to be referred to more
than once as you draw lines from point to point.

Although we’re using the stack to get the four arguments, the algorithm
for drawing a box doesn’t lend itself to the nature of the stack. If you're in a
hurry, it would probably be best to take the easy way out:

VARIABLE TOP (y coordinates top of box)
VARIABLE LEFT (x " left side)
VARIABLE BOTTOM (y " bottom)

VARIABLE RIGHT (x " right side)

[BOX] (x1 y1 x2 y2) BOTTOM ! RIGHT ! TOP ! LEFT !
LEFT @ TOP @ RIGHT @ TOP @ LINE

RIGHT @ TOP @ RIGHT @ BOTTOM @ LINE

RIGHT @ BOTTOM @ LEFT @ BOTTOM @ LINE

LEFT @ BOTTOM @ LEFT @ TOP @ LINE ;

What we’ve done is create four named variables, one for each coordinate. The
first thing [BOX] does is fill these variables with the arguments from the stack.
Then the four lines are drawn, referencing the variables. Variables such as these
that are used only within a definition (or in some cases, within a lexicon) are
called “local variables.”

I've been guilty many times of playing hotshot, trying to do as much
as possible on the stack rather than define a local variable. There are three
reasons to avoid this cockiness.

First, it’s a pain to code that way. Second, the result is unreadable.
Third, all your work becomes useless when a design change becomes necessary,
and the order of two arguments changes on the stack. The DUPs, OVERs and
ROTs weren’t really solving the problem, just jockeying things into position.

With this third reason in mind, I recommend the following:

TIp

Especially in the design phase, keep on the stack only the arguments you’re us-
ing immediately. Create local variables for any others. (If necessary, eliminate
the variables during the optimization phase.)

Fourth, if the definition is extremely time-critical, those tricky stack manipu-
lators, (e.g., ROT ROT) can really eat up clock cycles. Direct access to variables
is faster.

If it’s really time-critical, you may need to convert to assembler anyway.
In this case, all your stack problems fly out the door, because all your data
will be referenced either in registers or indirectly through registers. Luckily,
the definitions with the messiest stack arguments are often the ones written in
code. Our [BOX] primitive is a case in point. CMOVE> is another.

202 Handling Data: Stacks and States

The approach we took with [BOX] certainly beats spending half an hour
juggling items on the stack, but it is by no means the best solution. What’s
nasty about it is the expense of creating four named variables, headers and all,
solely for use within this one routine.

(If you're target compiling an application that will not require headers
in the dictionary, the only loss will be the 8 bytes in RAM for the variables.
In Forth systems of the future, headers may be separated into other pages of
memory anyway; again the loss will be only 8 bytes.) Let me repeat: This
example represents a worst-case situation, and occurs rarely in most Forth
applications. If words are well-factored, then each word is designed to do very
little. Words that do little generally require few arguments.

In this case, though, we are dealing with two points each represented by
two coordinates.

Can we change the design? First, LINE may be too primitive a primitive.
It requires four arguments because it can draw lines between any two points,
diagonally, if necessary.

In drawing our box, we may only need perfectly vertical and horizontal
lines. In this case we can write the more powerful, but less specific, words
VERTICAL and HORIZONTAL to draw these lines. Each requires only three ar-
guments: the starting position’s x and y, and the length. This factoring of
function simplifies the definition of [BOX] .

Or we might discover that this syntax feels more natural to the user:

10 10 ORIGIN! 30 30 BOX

where ORIGIN! sets a two-element pointer to the “origin,” the place where the
box will start (the upper left-hand corner). Then “30 30 BOX” draws a box 30
units high and 30 units wide, relative to the origin.

This approach reduces the number of stack arguments to BOX as part of
the design.

Tip cm

When determining which arguments to handle via data structures rather than 7.3
via the stack, choose the arguments that are the more permanent or that rep-
resent a current state.

On PICK and ROLL

Some folks like the words PICK and ROLL. They use these words to access
elements from any level on the stack. We don’t recommend them. For one
thing, PICK and ROLL encourage the programmer to think of the stack as an
array, which it is not. If you have so many elements on the stack that you need
PICK and ROLL, those elements should be in an array instead.

On PICK and ROLL 203

Second, they encourage the programmer to refer to arguments that have
been left on the stack by higher-level, calling definitions without being explicitly
passed as arguments. This makes the definition dependent on other definitions.
That’s unstructured—and dangerous.

Finally, the position of an element on the stack depends on what’s above
it, and the number of things above it can change constantly. For instance, if
you have an address at the fourth stack position down, you can write

4 PICK @
to fetch its contents. But you must write
(n) 5 PICK !

because with “n” on the stack, the address is now in the fifth position. Code
like this is hard to read and harder to modify.

Make Stack Drawings

When you do have a cumbersome stack situation to solve, it’s best to work it
out with paper and pencil. Some people even make up forms, such as the one
in Figure 7.1. Done formally like this (instead of on the back of your phone
bill), stack commentaries serve as nice auxiliary documentation.

Stack Tips

W T1p

7.4

=

Make sure that stack effects balance out under all possible control flows.

In the stack commentary for CMOVE> in Figure 7.1, the inner brace represents
the contents of the DO LOOP. The stack depth upon exiting the loop is the same
as upon entering it: one element. Within the outer braces, the stack result
of the IF clause is the same as that of the ELSE clause: one element left over.
(What that leftover element represents doesn’t matter, as symbolized by the
“x” next to THEN.)

TIp

When doing two things with the same number, perform the function that will
go underneath first.

For example:

: COUNT (a -- atl #) DUP C@ SWAP 1+ SWAP ;
(where you first get the count) is more efficiently written:

: COUNT (a -- a+1 #) DUP 1+ SWAP C@ ;

(where you first compute the address).

204 Handling Data: Stacks and States

Figure 7.1: Example of a stack commentary.

Word name: CMOVE> Programmer: LPB Date=qﬁ3/ggg
! __Operations: {_Stack_effects: i_Return_stack: H
: // // // // // // : s d ﬂ' :l :
i 700P IF boa K § §
(' 1- DUP PR s g 4 1 §
b 'S endeofd 44 :
| SWAP | end-ofd s g2 ‘
: Due :0&-04-& sSs :5'1 :
PR fend-of-d s s #1
{ P+ tend-of-d S end-of-s §
;Do end-of-d § !
: (I c@ :eml-o('-& lest -chav : f
;.f_ OVER fend-of-d last-char endof-d} §
. C! Lend-of -4 ;
10 extfo el -of -4
P 40P 1 ¢ : :
. ELSE ‘s d
: DROP 5 ; §
i THEN P x
DRep 5 : :

Trp ﬂ

Where possible, keep the number of return arguments the same in all possible 7.6
cases.

You'll often find a definition which does some job and, if something goes wrong,
returns an error-code identifying the problem. Here’s one way the stack inter-
face might be designed:

(-- error-code £ | -- t)

If the flag is true, the operation was successful. If the flag is false, it was
unsuccessful and there’s another value on the stack to indicate the nature of
the error.

Stack Tips 205

You’ll find stack manipulation easier, though, if you redesign the interface
to look like this:

(-- error-code | O=no-error)

One value serves both as a flag and (in case of an error) the error code. Note
that reverse-logic is used; non-zero indicates an error. You can use any values
for the error codes except zero.

The Stylish Return Stack

What about this use of the return stack to hold temporary arguments? Is it
good style or what?

Some people take great offense to its use. But the return stack offers
the simplest solution to certain gnarly stack jams. Witness the definition of
CMOVE> in the previous section.

If you decide to use the return stack for this purpose, remember that you
are using a component of Forth for a purpose other than that intended. (See
the section called “Sharing Components,” later in this chapter.)

Here’s some suggestions to keep you from shooting yourself in the foot:

W= T1pP
7.7

2. Keep return stack operators symmetrical under all control flow condi-
tions.

—_

Keep return stack operators symmetrical.

3. In factoring definitions, watch out that one part doesn’t contain one
return stack operator, and the other its counterpart.

4. If used inside a DO LOOP, return stack operators must be symmetrical
within the loop, and I is no longer valid in code bounded by >R and R>.

For every >R there must be a R> in the same definition. Sometimes the operators
will appear to be symmetrical, but due to the control structure they aren’t. For
instance:

. BEGIN ... >R ... WHILE ... R> ... REPEAT

If this construction is used in the outer loop of your application, everything
will run fine until you exit (perhaps hours later) when you’ll suddenly blow
up. The problem? The last time through the loop, the resolving R> has been
skipped.

206 Handling Data: Stacks and States

The Problem With Variables

Although we handle data of immediate interest on the stack, we depend on
much information tucked away in variables, ready for recurring access. A piece
of code can change the contents of a variable without necessarily having to
know anything about how that data will be used, who will use it, or when and
if it will be used. Another piece of code can fetch the contents of a variable
and use it without knowing where that value came from.

For every word that pushes a value onto the stack, another word must
consume that value. The stack gives us point-to-point communication, like the
post office.

Variables, on the other hand, can be set by any command and accessed
any number of times—or not at all—by any command. Variables are available
for anyone who cares to look—like graffiti.

Thus variables can be used to reflect the current state of affairs.

Using currentness can simplify problems. In the Roman numeral example
of Chapter Four, we used the variable COLUMN# to represent the current decimal-
place; the words ONER, FIVER, and TENER depended on this information to
determine which type of symbol to display. We didn’t have to specify both
descriptions every time, as in TENS ONER, TENS FIVER, etc.

On the other hand, currentness adds a new level of complexity. To make
something current we must first define a variable or some type of data structure.
We also must remember to initialize it, if there’s any chance that part of our
code will refer to it before another part has had a chance to set it.

A more serious problem with variables is that they are not “reentrant.”
On a multi-tasked Forth system, each task which requires local variables must
have its own copies. Forth’s USER variables serve this purpose. (See Starting
Forth, Chapter Nine, “Forth Geography.”)

Even within a single task, a definition that refers to a variable is harder
to test, verify, and reuse in a different situation than one in which arguments
are passed via the stack.

Suppose we are implementing a word-processor editor. We need a routine
that calculates the number of characters between the current cursor position
and the previous carriage-return/line-feed sequence. So we write a word that
employs a DO LOOP starting at the current position (CURSOR @) and ending at
the zeroth position, searching for the line feed character.

Once the loop has found the character sequence, we subtract its relative
address from our current cursor position

its-position CURSOR @ SWAP -

to determine the distance between them.
Our word’s stack effect is:

(-- distance-to-previous-cr/1f)

The Problem With Variables 207

But in later coding we find we need a similar word to compute the distance from
an arbitrary character—not the current cursor position—to the first previous
line-feed character. We end up factoring out the “CURSOR @’ and allowing the
starting address to be passed as an argument on the stack, resulting in:

(starting-position -- distance-to-previous-cr/1f)

By factoring-out the reference to the variable, we made the definition more

useful.
m:}: Trip
7.8 Unless it involves cluttering up the stack to the point of unreadability, try to

pass arguments via the stack rather than pulling them out of variables.

KoOGGE:

Most of the modularity of Forth comes from designing and treating Forth words
as “functions” in the mathematical sense. In my experience a Forth programmer
usually tries quite hard to avoid defining any but the most essential global
variables (I have a friend who has the sign “Help stamp out variables” above
his desk), and tries to write words with what is called “referential transparency,”
i.e., given the same stack inputs a word will always give the same stack outputs
regardless of the more global context in which it is executed.

In fact this property is exactly what we use when we test words in isolation.
Words that do not have this property are significantly harder to test. In a sense
a “named variable” whose value changes frequently is the next worst thing to
the now “forbidden” GOTO.

Earlier we suggested the use of local variables especially during the design
phase, to eliminate stack traffic. It’s important to note that in doing so, the
variables were referred to only within the one definition. In our example, [BOX]
receives four arguments from the stack and immediately loads them into local
variables for its own use. The four variables are not referred to outside of this
definition, and the word behaves safely as a function.

Programmers unaccustomed to a language in which data can be passed
implicitly don’t always utilize the stack as fully as they should. MICHAEL
HaM suggests the reason may be that beginning Forth users don’t trust the
stack [1]. He admits to initially feeling safer about storing values into variables
than leaving them on the stack. “No telling what might happen with all that
thrashing about on the stack,” he felt.

It took some time for him to appreciate that “if words keep properly
to themselves, using the stack only for their expected input and output and
cleaning up after themselves, they can be looked upon as sealed systems ... I
could put the count on the stack at the beginning of the loop, go through the
complete routine for each group, and at the end the count would emerge, back
on top of the stack, not a hair out of place.”

208 Handling Data: Stacks and States

“Shot from a cannon on a fast-moving train, hurtling between the blades of a
windmill, and expecting to grab a trapeze dangling from a hot-air balloon. .. I
told you Ace, there were too many variables!”

Local and Global Variables/Initialization

As we saw earlier, a variable that is used exclusively within a single definition
(or single lexicon), hidden from other code, is called a local variable. A variable
used by more than one lexicon is called a global variable. As we’ve seen in an
earlier chapter, a set of global variables that collectively describe a common
interface between several lexicons is called an “interface lexicon.”

Forth makes no distinction between local and global variables. But Forth
programmers do.

MOORE:

We should be writing for the reader. If something is referred to only locally, a
temporary variable just for accumulating a sum in, we should define it locally.
It’s handier to define it in the block where it’s used, where you can see its
comment.

If it’s used globally, we should collect things according to their logical function,
and define them together on a separate screen. One per line with a comment.

The question is, where do you initialize them? Some say on the same line,
immediately following its definition. But that messes up the comments, and
there isn’t room for any decent comment. And it scatters the initialization all
over the application.

I tend to do all my initialization in the load screen. After I've loaded all my
blocks, I initialize the things that have to be initialized. It might also set up
color lookup tables or execute some initialization code.

If your program is destined to be target compiled, then it’s easy to write a word
at the point that encompasses all the initialization.

It can get much more elaborate. I've defined variables in ROM where the
variables were all off in an array in high memory, and the initial values are in
ROM, and I copy up the initial values at initialization time. But usually you’re
only initializing a few variables to anything other than zero.

Saving and Restoring a State

Variables have the characteristic that when you change their contents, you
clobber the value that was there before. Let’s look at some of the problems
this can create, and some of the things we can do about them.

BASE is a variable that indicates the current number radix for all numeric
input and output. The following words are commonly found in Forth systems:

: DECIMAL 10 BASE ! ;
: HEX 16 BASE ! ;

Suppose we've written a word that displays a “dump” of memory. Ordinarily,
we work in decimal mode, but we want the dump in hexadecimal. So we write:

210 Handling Data: Stacks and States

: DUMP (a #)
HEX (code for the dump) ... DECIMAL ;

This works—most of the time. But there’s a presumption that we want to
come back to decimal mode. What if it had been working in hexadecimal, and
wants to come back to hexadecimal? Before we change the base to HEX, we
have to save its current value. When we’re done dumping, we restore it.

This means we have to tuck away the saved value temporarily, while we
format the dump. The return stack is one place to do this:

: DUMP (a #)
BASE @ >R HEX (code for dump) R> BASE ! ;

If things get too messy, we may have to define a temporary variable:

VARIABLE OLD-BASE

: DUMP (a #)
BASE @ OLD-BASE ! HEX (code for dump)
OLD-BASE @ BASE ! ;

How quickly things get complicated.

In this situation, if both the current and the old version of a variable
belong only to your application (and not part of your system), and if this same
situation comes up more than once, apply a technique of factoring:

: BURY (a) DUP 2+ 2 CMOVE ;
: EXHUME (a) DUP 2+ SWAP 2 CMOVE ;

Then instead of defining two variables, such as CONDITION and OLD-CONDITION,
define one double-length variable:

2VARIABLE CONDITION
Use BURY and EXHUME to save and restore the original value:

: DIDDLE CONDITION BURY 17 CONDITION ! (diddle)
CONDITION EXHUME ;

BURY saves the “old” version of condition at CONDITION 2+.

You still have to be careful. Going back to our DUMP example, suppose
you decided to add the friendly feature of letting the user exit the dump at any
time by pressing the “escape” key. So inside the loop you build the test for a
key being pressed, and if so execute QUIT. But what happens?

The user starts in decimal, then types DUMP. He exits DUMP midway
through and finds himself, strangely, in hexadecimal.

In the simple case at hand, the best solution is to not use QUIT, but rather
a controlled exit from the loop (via LEAVE, etc.) to the end of the definition
where BASE is reset.

In very complex applications a controlled exit is often impractical, yet
many variables must somehow be restored to a natural condition.

Saving and Restoring a State

211

MOORE responds to this example:

You really get tied up in a knot. You’re creating problems for yourself. If I
want a hex dump I say HEX DUMP. If I want a decimal dump I say DECIMAL
DUMP. I don’t give DUMP the privilege of messing around with my environment.

There’s a philosophical choice between restoring a situation when you finish
and establishing the situation when you start. For a long time I felt you should
restore the situation when you’re finished. And I would try to do that con-
sistently everywhere. But it’s hard to define “everywhere.” So now I tend to
establish the state before I start.

If T have a word which cares where things are, it had better set them. If
somebody else changes them, they don’t have to worry about resetting them.

There are more exits than there are entrances.

In cases in which I need to do the resetting before I'm done, I've found it
useful to have a single word (which I call PRISTINE) to perform this resetting.
I invoke PRISTINE:

e at the normal exit point of the application
e at the point where the user may deliberately exit (just before QUIT)
e at any point where a fatal error may occur, causing an abort.
Finally, when you encounter this situation of having to save/restore a

value, make sure it’s not just a case of bad factoring. For example, suppose we
have written:

: LONG 18 #HOLES ! ;
: SHORT 9 #HOLES ! ;
: GAME #HOLES @ O DO I HOLE PLAY LOOP ;

The current GAME is either LONG or SHORT.
Later we decide we need a word to play any number of holes. So we
invoke GAME making sure not to clobber the current value of #H0LES:

: HOLES (n) #HOLES @ SWAP #HOLES ! GAME #HOLES ! ;
Because we needed HOLES after we’d defined GAME, it seemed to be of greater
complexity; we built HOLES around GAME. But in fact—perhaps you see it

already—rethinking is in order:

: HOLES (n) 0 DO I HOLE PLAY LOOP ;
: GAME #HOLES @ HOLES ;

We can build GAME around HOLES and avoid all this saving/restoring nonsense.

212 Handling Data: Stacks and States

Application Stacks

In the last section we examined some ways to save and restore a single previous
value. Some applications require several values to be saved and restored. You
may often find the best solution to this problem in defining your own stack.

Here is the code for a user stack including very simple error checking (an
error clears the stack):

CREATE STACK 12 ALLOT \ { 2tos-pointer | 10stack [5 cells] }
HERE CONSTANT STACK>
INIT-STACK STACK STACK ! ; INIT-STACK
: 7BAD (7) IF ." STACK ERROR " INIT-STACK ABORT THEN ;
: PUSH (n) 2 STACK +! STACK @ DUP STACK> = 7?BAD ! ;
: POP (-- n) STACK @ @ -2 STACK +! STACK @ STACK < 7BAD ;

The word PUSH takes a value from off of your data stack and “pushes” it onto
this new stack. POP is the opposite, “popping” a value from off the new stack,
and onto Forth’s data stack.

In a real application you might want to change the names PUSH and POP
to better match their conceptual purposes.

Sharing Components

Tip cm

It’s legal to use a component for an additional purpose besides its intended one, 7.9
provided:

1. All uses of the component are mutually exclusive
2. Each interrupting use of the component restores the component to its

previous state when finished.

Otherwise you need an additional component or level of complexity.

We’ve seen a simple example of this principle with the return stack. The return
stack is a component of the Forth system designed to hold return addresses, and
thereby serve as an indication of where you’ve been and where you’re going. To
use the return stack as a holder for temporary values is possible, and in many
cases desirable. Problems occur when one of the above restrictions is ignored.

In my text formatter the output can go invisible. This feature has two
purposes:

1. for looking ahead to see whether something will fit, and

2. for formatting the table of contents (the entire document is formatted and
page numbers are calculated without anything actually being displayed).

Application Stacks 213

It was tempting to think that once having added the ability to make the
output invisible, I could use this feature to serve both purposes. Unfortunately,
the two purposes are not mutually exclusive.

Let’s see what would happen if I tried to violate this rule. Imagine that
the word DISPLAY does the output, and it’s smart enough to know whether
to be visible or invisible. The words VISIBLE and INVISIBLE set the state
respectively.

My code for looking ahead will first execute INVISIBLE, then test-format
the upcoming text to determine its length, and finally execute VISIBLE to
restore things to the normal state.

This works fine.

Later I add the table-of-contents feature. First the code executes INVI-
SIBLE, then runs through the document determining page numbers etc.; then
finally executes VISIBLE to restore things to normal.

The catch? Suppose I'm running a table of contents and I hit one of those
places where I look ahead. When I finish looking ahead, I execute VISIBLE.
Suddenly I start printing the document when I was supposed to be running the
table of contents.

The solution? There are several.

One solution views the problem as being that the lookahead code is
clobbering the visible/invisible flag, which may have been preset by table-of-
contents. Therefore, the lookahead code should be responsible for saving, and
later restoring, the flag.

Another solution involves keeping two separate variables—one to indicate
we’re looking ahead, the other to indicate we’re printing the table of contents.
The word DISPLAY requires that both flags be false in order to actually display
anything.

There are two ways to accomplish the latter approach, depending on how
you want to decompose the problem. First, we could nest one condition within
the other:

[DISPLAY]
(the original definition, always does the output)
VARIABLE °LOOKAHEAD? (t=looking-ahead)
: <DISPLAY> ’LOOKAHEAD? @ NOT IF [DISPLAY] THEN ;
VARIABLE °’TOC? (t=setting-table-of-contents)
: DISPLAY ’TOC? @ NOT IF <DISPLAY> THEN ;

DISPLAY checks that we’re not setting the table of contents and invokes
<DISPLAY>, which in turn checks that we’re not looking ahead and invokes
[DISPLAY].

In the development cycle, the word [DISPLAY] that always does the out-
put was originally called DISPLAY. Then a new DISPLAY was defined to include
the lookahead check, and the original definition was renamed [DISPLAY], thus

214 Handling Data: Stacks and States

B

adding a level of complexity backward without changing any of the code that
used DISPLAY.

Finally, when the table-of-contents feature was added, a new DISPLAY
was defined to include the table-of-contents check, and the previous DISPLAY
was renamed <DISPLAY>.

That’s one approach to the use of two variables. Another is to include
both tests within a single word:

: DISPLAY ’LOOKAHEAD? @ °>TOC @ OR NOT IF [DISPLAY] THEN ;

But in this particular case, yet another approach can simplify the whole mess.
We can use a single variable not as a flag, but as a counter.
We define:

VARIABLE ’INVISIBLE? (t=invisible)

: DISPLAY >INVISIBLE? @ 0= IF [DISPLAY] THEN ;
INVISIBLE 1 ?INVISIBLE? +! ;

: VISIBLE -1 ?INVISIBLE? +! ;

The lookahead code begins by invoking INVISIBLE which bumps the counter
up one. Non-zero is “true,” so DISPLAY will not do the output. After the
lookahead, the code invokes VISIBLE which decrements the counter back to
zero (“false”).

The table-of-contents code also begins with VISIBLE and ends with INVI-
SIBLE. If we’re running the table of contents while we come upon a lookahead,
the second invocation of VISIBLE raises the counter to two.

The subsequent invocation of INVISIBLE decrements the counter to one,
so we're still invisible, and will remain invisible until the table of contents has
been run.

(Note that we must substitute 0= for NOT. The 83 Standard has changed
NOT to mean one’s complement, so that 1 NOT yields true. By the way, I think
this was a mistake.)

This use of a counter may be dangerous, however. It requires parity of
command usage: two VISIBLEs yields invisible. That is, unless VISIBLE clips
the counter:

: VISIBLE >INVISIBLE? @ 1- 0 MAX °’INVISIBLE? ! ;

The State Table

A single variable can express a single condition, either a flag, a value, or the
address of a function.

A collection of conditions together represent the state of the application
or of a particular component [2]. Some applications require the ability to save a
current state, then later restore it, or perhaps to have a number of alternating
states.

The State Table 215

W= T1pP

7.10 When the application requires handling a group of conditions simultaneously,
use a state table, not separate variables.

The simple case requires saving and restoring a state. Suppose we initially
have six variables representing the state of a particular component, as shown
in Figure 7.2.

Figure 7.2: A collection of related variables.

VARIABLE TOP
VARIABLE BOTTOM
VARIABLE LEFT
VARIABLE RIGHT
VARIABLE INSIDE
VARIABLE 0OUT

Now suppose that we need to save all of them, so that further processing can
take place, and later restore all of them. We could define:

: OSTATE (-- top bottom left right inside out)
TOP @ BOTTOM @ LEFT @ RIGHT @ INSIDE @ OUT @ ;
!STATE (top bottom left right inside out --)
OUT ' INSIDE ! RIGHT ! LEFT ! BOTTOM ! TOP ! ;

thereby saving all the values on the stack until it’s time to restore them. Or,
we might define alternate variables for each of the variables above, in which to
save each value separately.

But a preferred technique involves creating a table, with each element of
the table referred to by name. Then creating a second table of the same length.
As you can see in Figure 7.3, we can save the state by copying the table, called
POINTERS, into the second table, called SAVED.

Figure 7.3: Conceptual model for saving a state table.
POINTERS SAVED
TOP Q
BOTTOM
LEFT
RIGHT

INSIDE
ouT

We’ve implemented this approach with the code in Figure 7.4.

216 Handling Data: Stacks and States

Figure 7.4: Implementation of save/restorable state table.

O CONSTANT POINTERS \ address of state table PATCHED LATER

: POSITION (o -- o+2) CREATE DUP , 2+
DOES> (-- a) @ POINTERS + ;

0 \ initial offset

POSITION TOP

POSITION BOTTOM

POSITION LEFT

POSITION RIGHT

POSITION INSIDE

POSITION OUT

CONSTANT /POINTERS \ final computed offset

HERE °> POINTERS >BODY ! /POINTERS ALLOT \ real table
CREATE SAVED /POINTERS ALLOT \ saving place
: SAVE POINTERS SAVED /POINTERS CMOVE ;
: RESTORE SAVED POINTERS /POINTERS CMOVE ;

Notice in this implementation that the names of the pointers, TOP, BOTTOM,
etc., always return the same address. There is only one location used to repre-
sent the current value of any state at any time.

Also notice that we define POINTERS (the name of the table) with CON-
STANT, not with CREATE, using a dummy value of zero. This is because we
refer to POINTERS in the defining word POSITION, but it’s not until after we’'ve
defined all the field names that we know how big the table must be and can
actually ALLOT it.

As soon as we create the field names, we define the size of the table as
a constant /POINTERS. At last we reserve room for the table itself, patching
its beginning address (HERE) into the constant POINTERS. (The word >BODY
converts the address returned by tick into the address of the constant’s value.)
Thus POINTERS returns the address of the table allotted later, just as a name
defined by CREATE returns the address of a table allotted directly below the
name’s header.

Although it’s valid to patch the value of a CONSTANT at compile time, as
we do here, there is a restriction of style:

Tip cm

A CONSTANT’s value should never be changed once the application is compiled. 7.11

The case of alternating states is slightly more involved. In this situation we
need to alternate back and forth between two (or more) states, never clobbering

The State Table 217

the conditions in each state when we jump to the other state. Figure 7.5 shows
the conceptual model for this kind of state table.

Figure 7.5: Conceptual model for alternating-states tables.

REAL _ PSEUDO
TOP [ToP
BOTTOM BOTTOM
LEFT LEFT
RIGHT) OR pigHT
INSIDE INSIDE
ouT g L ouT

In this model, the names TOP, BOTTOM, etc., can be made to point into either
of two tables, REAL or PSEUDO. By making the REAL table the current one, all
the pointer names reference addresses in the REAL table; by making the PSEUDO
table current, they address the PSEUDO table.

The code in Figure 7.6 implements this alternating states mechanism.
The words WORKING and PRETENDING change the pointer appropriately. For
instance:

WORKING
10 TOP !
TOP 7 10

Figure 7.6: Implementation of alternating-states mechanism.

VARIABLE ’POINTERS \ pointer to state table
: POINTERS (-- adr of current table) POINTERS @ ;
: POSITION (o -- o+2) CREATE DUP , 2+
DOES> (-- a) @ POINTERS + ;
0 \ initial offset
POSITION TOP
POSITION BOTTOM
POSITION LEFT
POSITION RIGHT
POSITION INSIDE
POSITION QOUT
CONSTANT /POINTERS \ final computed offset
CREATE REAL /POINTERS ALLOT \ real state table
CREATE PSEUDO /POINTERS ALLOT \ temporary state table
: WORKING REAL ’POINTERS ! ; WORKING
: PRETENDING PSEUDO ’POINTERS ! ;

218 Handling Data: Stacks and States

PRETENDING
20 TOP !
TOP 7 20
WORKING
TOP 7 10
PRETENDING
TOP 7 20

The major difference with this latter approach is that names go through an
extra level of indirection (POINTERS has been changed from a constant to a
colon definition). The field names can be made to point to either of two state
tables. Thus each name has slightly more work to do. Also, in the former
approach the names refer to fixed locations; a CMOVE is required each time we
save or restore the values. In this approach, we have only to change a single
pointer to change the current table.

Vectored Execution

Vectored execution extends the ideas of currentness and indirection beyond
data, to functions. Just as we can save values and flags in variables, we can
also save functions, because functions can be referred to by address.

The traditional techniques for implementing vectored execution are de-
scribed in Starting Forth, Chapter Nine. In this section we’ll discuss a new
syntax which I invented and which I think can be used in many circumstances
more elegantly than the traditional methods.

The syntax is called DOER/MAKE. (If your system doesn’t include these
words, refer to Appendix B for code and implementation details.) It works like
this: You define the word whose behavior will be vectorable with the defining
word DOER, as in

DOER PLATFORM

Initially, the new word PLATFORM does nothing. Then you can write words that
change what PLATFORM does by using the word MAKE:

: LEFTWING MAKE PLATFORM ." proponent " ;
: RIGHTWING MAKE PLATFORM ." opponent " ;

When you invoke LEFTWING, the phrase MAKE PLATFORM changes what PLATFORM
will do. Now if you type PLATFORM, you’ll see:

LEFTWING ok
PLATFORM proponent ok

RIGHTWING will make PLATFORM display “opponent.” You can use PLATFORM
within another definition:

Vectored Execution 219

: SLOGAN ." Our candidate is a longstanding " PLATFORM
." of heavy taxation for business. " ;

The statement
LEFTWING SLOGAN

will display one campaign statement, while
RIGHTWING SLOGAN

will display another.

The “MAKE” code can be any Forth code, as much or as long as you want;
just remember to conclude it with semicolon. The semicolon at the end of
LEFTWING serves for both LEFTWING and for the bit of code after MAKE. When
MAKE redirects execution of the DOER word, it also stops execution of the word
in which it appears.

When you invoke LEFTWING, for example, MAKE redirects PLATFORM and
exits. Invoking LEFTWING does not cause “proponent” to be printed. Figure 7.7
demonstrates this point, using a conceptualized illustration of the dictionary.

If you want to continue execution, you can use the word ;AND in place of
semicolon. ;AND terminates the code that the DOER word points to, and resumes
execution of the definition in which it appears, as you can see in Figure 7.8.

Finally, you can chain the “making” of DOER words in series by not using
sAND. Figure 7.9 explains this better than I could write about it.

Using DOER/MAKE

There are many occasions when the DOER/MAKE construct proves beneficial.
They are:

1. To change the state of a function (when external testing of the state is
not necessary). The words LEFTWING and RIGHTWING change the state of
the word PLATFORM.

2. To factor out internal phrases from similar definitions, but within control
structures such as loops.

Consider the definition of a word called DUMP, designed to reveal the
contents of a specified region of memory.

: DUMP (a #)
0D0O I 16 MOD 0= IF CR DUP I + 5 U.R 2 SPACES THEN
DUP I + @ 6 U.R 2 +LO0OP DROP ;

The problem arises when you write a definition called CDUMP, designed to
format the output according to bytes, not cells:

220 Handling Data: Stacks and States

Figure 7.7: DOER and MAKE.

DOER JOE ok
JOE
Creates a DOER word called JOE, that does nothing.

: TEST MAKE JOE 1. ;o0k
JOE

TEST | MAKE | JOE | 1 |) :
Defines a new word called TEST

TEST ok
JOE
v
[TEST [MAKE] JOE [1 [. [, |

MAKE redirects JOE so that it points to the code after MAKE JOE, and
stops execution of the rest of TEST.

JOE_1 ok
Executes the code that JOE pointsto (1.).

: CDUMP (a #)
0DO I 16 MOD 0= IF CR DUP I + 5 U.R 2 SPACES THEN
DUP I + Ce 4 U.R LOOP DROP ;

The code within these two definitions is identical except for the fragments
in boldface. But factoring is difficult because the fragments occur inside
the DO LOOP.

Here’s a solution to this problem, using DOER/MAKE. The code that changes
has been replaced with the word .UNIT, whose behavior is vectored by
the code in DUMP and CDUMP. (Recognize that “1 +LO0OP” has the same
effect as “LOOP”.)

DOER .UNIT (a -- increment) \ display byte or cell

: <DUMP> (a #)
0D0O I 16 MOD 0= IF CR DUP I + 5 U.R 2 SPACES THEN
DUP I + .UNIT +LOOP DROP ;

Using DOER/MAKE 221

Figure 7.8: Multiple MAKEs in parallel using ; AND.

DOER SAM ok
DOER BIFF_ok
SAM BIFF

Creates two DOER words that do nothing.

: TESTB MAKE SAM 2 . ;AND MAKE BIFF 3. ; ok
|TESTB|I\/IAKE|SAM|2|.|;AND|MAKE|BIFF|3|.|;|
Defines a new word called TESTB.

TESTB ok
SAM }
| TESTB | MAKE | SAM [2 [. [;AND | MAKE [BIFF [3] . [;|
The first MAKE redirects SAM so that it points to the code after it. ..
SAM BIFF CONTINUE
| TESTB | MAKE | SAM | 2 [. | ;AND | MAKE | BIFF [3| . [;]

The ;AND continues execution of TESTB. The second MAKE redirects BIFF.

SAM _2 ok
BIFF_3 ok

Two DOER words have been redirected at the same time by the single word
TESTB. SAM's code stops at ;AND. BIFF's code stops at semicolon.

: DUMP (a #) MAKE .UNIT @ 6 U.R 2 ;AND <DUMP> ;
: CDUMP (a #) MAKE .UNIT C@ 4 U.R 1 ;AND <DUMP> ;

Notice how DUMP and CDUMP set-up the vector, then go on to ezecute the
shell (the word <DUMP>).

3. To change the state of related functions by invoking a single command.
For instance:

DOER TYPE’
DOER EMIT’
DOER SPACES’

222 Handling Data: Stacks and States

Figure 7.9: Multiple MAKEs in series.

: TESTC MAKE JOE 4. MAKE JOE 5 . ; ok

|TESTC|MAKE|JOE|4|.|MAKE|JOE|5|.|;|
Defines a new word called TESTC.

TESTC ok
JOE

|TESTC|l\/IAKE|JOE|4|.|l\/IAKE|JOE|5|.|;|
MAKE redirects JOE to the code after MAKE JOE.

JOE 4 ok
| TESTC [MAKE [JOE [4] . [MAKE [JOE [5].];]
Executes the code that JOE points to (4 . MAKE etc.).

JOE

[TESTC [MAKE [JOE [4 [. [MAKE [JOE [5] . [|

After execution of 4 . the second MAKE redirects JOE to point to the five.
(There was no ;AND to stop it.).

JOE 5 ok
[TESTC | MAKE [JOE [4 [. [MAKE [JOE [5] .|

Typing JOE a second time executes the new code pointed to by JOE (5.).
Here the pointer will stay.

DOER CR’

: VISIBLE MAKE TYPE’ TYPE ;AND
MAKE EMIT’> EMIT ;AND
MAKE SPACES’ SPACES ;AND
MAKE CR’ CR ;

: INVISIBLE MAKE TYPE’ 2DROP ;AND
MAKE EMIT’ DROP ;AND
MAKE SPACES’ DROP ;AND
MAKE CR’> ;

Using DOER/MAKE 223

Here we’ve defined a vectorable set of output words, each name having a
“prime” mark at the end. VISIBLE sets them to their expected functions.
INVISIBLE makes them no-ops, eating up the arguments that would nor-
mally be passed to them. Say INVISIBLE and any words defined in terms
of these four output operators will not produce any output.

4. To change the state for the next occurrence only, then change the state
(or reset it) again.
Suppose we're writing an adventure game. When the player first arrives
at a particular room, the game will display a detailed description. If
the player returns to the same room later, the game will show a shorter
message.

We write:
DOER ANNOUNCE

: LONG MAKE ANNOUNCE
CR ." You’re in a large hall with a huge throne"

CR ." covered with a red velvet canopy."
MAKE ANNOUNCE
CR ." You’re in the throne room." ;

The word ANNOUNCE will display either message. First we say LONG, to
initialize ANNOUNCE to the long message. Now we can test ANNOUNCE,
and find that it prints the long message. Having done that, however, it
continues to “make” ANNOUNCE display the short message.

If we test ANNOUNCE a second time, it prints the short message. And it
will for ever more, until we say LONG again.

In effect we're queuing behaviors. We can queue any number of behaviors,
letting each one set the next. The following example (though not terribly
practical) illustrates the point.

DOER WHERE
VARIABLE SHIRT
VARIABLE PANTS
VARIABLE DRESSER
VARIABLE CAR

: ORDER \ specify search order
MAKE WHERE SHIRT MAKE WHERE PANTS
MAKE WHERE DRESSER MAKE WHERE CAR
MAKE WHERE O ;

: HUNT (-- al0) \ find location containing 17

ORDER 5 0 DO WHERE DUP 0= OVER @ 17 = O0OR IF
LEAVE ELSE DROP THEN LQOOP ;

224 Handling Data: Stacks and States

In this code we’ve created a list of variables, then defined an ORDER in
which they are to be searched. The word HUNT looks through each of
them, looking for the first one that contains a 17. HUNT returns either the
address of the correct variable, or a zero if none have the value.

It does this by simply executing WHERE five times. Each time, WHERE
returns a different address, as defined in ORDER, then finally zero.

We can even define a DOER word that toggles its own behavior endlessly:

DOER SPEECH

: ALTERNATE
BEGIN MAKE SPEECH ." HELLQ "
MAKE SPEECH ." GOODBYE "
0 UNTIL ;

5. To implement a forward reference. A forward reference is usually needed
as a “hook,” that is, a word invoked in a low-level definition but reserved
for use by a component defined later in the listing.

To implement a forward reference, build the header of the word with
DOER, before invoking its name.

DOER STILL-UNDEFINED
Later in the listing, use MAKE;
MAKE STILL-UNDEFINED ALL THAT JAZZ ;

(Remember, MAKE can be used outside a colon definition.)

6. Recursion, direct or indirect.

Direct recursion occurs when a word invokes itself. A good example is
the recursive definition of greatest-common-denominator:

GCD of a, b= a if b=20
GCD of b, a mod b if b>0
This translates nicely into:

DOER GCD (a b -- gcd)
MAKE GCD ?7DUP IF DUP ROT ROT MOD GCD THEN ;

Indirect recursion occurs when one word invokes a second word, while the
second word invokes the first. This can be done using the form:

DOER B
A ... B ...
MAKEB ... A ... ;

7. Debugging. I often define:

Using DOER/MAKE 225

DOER SNAP

(short for SNAPSHOT), then edit SNAP into my application at a point where
I want to see what’s going on. For instance, with SNAP invoked inside the
main loop of a keystroke interpreter, I can set it up to let me watch what’s
happening to a data structure as I enter keys. And I can change what
SNAP does without having to recompile the loop.

The situations in which it’s preferable to use the tick-and-execute ap-
proach are those in which you need control over the address of the vector, such
as when vectoring through an element in a decision table, or attempting to
save/restore the contents of the vector.

Summary

In this chapter we’ve examined the tradeoffs between using the stack and using
variables and other data structures. Using the stack is preferable for testing
and reusability, but too many values manipulated on the stack by a single
definition hurts readability and writeability.

We also explored techniques for saving and restoring data structures, and
concluded with a study of vectored execution using DOER/MAKE.

References

[1] MicHAEL HaM, “Why Novices Use So Many Variables,” Forth Dimensions,
vol. 5, no. 4, November /December 1983.

[2] DANIEL SLATER, “A State Space Approach to Robotics,” The Journal of
Forth Application and Research, 1, 1 (September 1983), 17.

226 Handling Data: Stacks and States

EIGHT

Minimizing
Control Structures

Control structures aren’t as important in Forth as they are in other languages.
Forth programmers tend to write very complex applications in terms of short
words, without much emphasis on IF THEN constructs.
There are several techniques for minimizing control structures. They

include:

e computing or calculating

e hiding conditionals through re-factoring

e using structured exits

e vectoring

e redesigning.

In this chapter we’ll examine these techniques for simplifying and eliminating
control structures from your code.

What’s So Bad about Control Structures?

228

Before we begin reeling off our list of tips, let’s pause to examine why condi-
tionals should be avoided in the first place.

The use of conditional structures adds complexity to your code. The more
complex your code is, the harder it will be for you to read and to maintain.
The more parts a machine has, the greater are its chances of breaking down.
And the harder it is for someone to fix.

MOORE tells this story:

I recently went back to a company we had done some work for several years ago.
They called me in because their program is now five years old, and it’s gotten
very complicated. They’ve had programmers going in and patching things,
adding state variables and conditionals. Every statement that I recall being a
simple thing five years ago, now has gotten very complicated. “If this, else if
this, else if this” ... and then the simple thing.

Minimizing Control Structures

Reading that statement now, it’s impossible for me to figure out what it’s
doing and why. I’d have to remember what each variable indicated, why it was
relevant in this case, and then what was happening as a consequence of it—or
not happening.

It started innocently. They had a special case they needed to worry about.
To handle that special case, they put a conditional in one place. Then they
discovered that they also needed one here, and here. And then a few more.
Each incremental step only added a little confusion to the program. Since they
were the programmers, they were right on top of it.

The net result was disastrous. In the end they had half a dozen flags. Test this
one, reset it, set that one, and so on. As a result of this condition, you knew
you had other conditions coming up you had to look out for. They created the
logical equivalent of spaghetti code in spite of the opportunity for a structured
program.

The complexity went far beyond what they had ever intended. But they’d
committed themselves to going down this path, and they missed the simple
solution that would have made it all unnecessary—having two words instead of
one. You either say GO or you say PRETEND.

In most applications there are remarkably few times when you need to test the
condition. For instance in a video game, you don’t really say “If he presses
Button A, then do this; if he presses Button B, then do something else.” You
don’t go through that kind of logic.

If he presses the button, you do something. What you do is associated with
the button, not with the logic.

Conditionals aren’t bad in themselves—they are an essential construct. But a
program with a lot of conditionals is clumsy and unreadable. All you can do
is question each one. Every conditional should cause you to ask, “What am I
doing wrong?”

What you’re trying to do with the conditional can be done in a different way.
The long-term consequences of the different way are preferable to the long-term
consequences of the conditional.

Before we introduce some detailed techniques, let’s look at three approaches
to the use of conditionals in a particular example. Figure 8.1, Figure 8.2, and
Figure 8.3 illustrate three versions of a design for an automatic teller machine.

The first example comes straight out of the School for Structured Pro-
grammers. The logic of the application depends on the correct nesting of IF
statements.

Easy to read? Tell me under what condition the user’s card gets eaten.
To answer, you have to either count ELSEs from the bottom and match them
with the same number of IFs from the top, or use a straightedge.

The second version, Figure 8.2, shows the improvement that using many
small, named procedures can have on readability. The user’s card is eaten if
the owner is not valid.

What's So Bad about Control Structures? 229

Figure 8.1: The structured approach.
AUTOMATIC-TELLER

IF card is valid DO

IF card owner is valid DO

IF request withdrawal DO

IF authorization code is wvalid DO
query for amount
IF request < current balance DO
IF withdrawal < available cash DO
vend currency
debit account

ELSE
message
terminate session
ELSE
message
terminate session
ELSE
message

terminate session
ELSE
IF authorization code is valid DO
query for amount
accept envelope through hatch
credit account
ELSE
message
terminate session
ELSE
eat card
ELSE
message
END

But even with this improvement, the design of each word depends com-
pletely on the sequence in which the tests must be performed. The supposedly
“highest” level procedure is burdened with eliminating the worst-case, most
trivial kind of event. And each test becomes responsible for invoking the next
test.

The third version comes closest to the promise of Forth. The highest level
word expresses exactly what’s happening conceptually, showing only the main
path. Each of the subordinate words has its own error exit, not cluttering the
reading of the main word. One test does not have to invoke the next test.

Also TRANSACT is designed around the fact that the user will make re-
quests by pressing buttons on a keypad. No conditions are necessary. One
button will initiate a withdrawal, another a deposit. This approach readily ac-
commodates design changes later, such as the addition of a feature to transfer
funds. (And this approach does not thereby become dependent on hardware.

230 Minimizing Control Structures

Figure 8.2: Nesting conditionals within named procedures.
AUTOMATIC-TELLER

PROCEDURE READ-CARD
IF card is readable THEN CHECK-0OWNER
ELSE eject card END

PROCEDURE CHECK-OWNER
IF owner is valid THEN CHECK-CODE
ELSE eat card END

PROCEDURE CHECK-CODE
IF code entered matches owner THEN TRANSACT
ELSE message, terminate session END

PROCEDURE TRANSACT
IF requests withdrawal THEN WITHDRAW
ELSE DEPOSIT END

PROCEDURE WITHDRAW

Query
If request < current balance THEN DISBURSE END

PROCEDURE DISBURSE
IF disbursement < available cash THEN
vend currency
debit account
ELSE message END

PROCEDURE DEPOSIT
accept envelope
credit account

Details of the interface to the keypad may be hidden within the keypad lexicon,
READ-BUTTON and BUTTON.)

Of course, Forth will allow you to take any of the three approaches. Which
do you prefer?

How to Eliminate Control Structures

In this section we’ll study numerous techniques for simplifying or avoiding
conditionals. Most of them will produce code that is more readable, more
maintainable, and more efficient. Some of the techniques produce code that is
more efficient, but not always as readable. Remember, therefore: Not all of the
tips will be applicable in all situations.

How to Eliminate Control Structures 231

Figure 8.3: Refactoring and/or eliminating conditionals.

AUTOMATIC-TELLER

: RUN
READ-CARD CHECK-OWNER CHECK-CODE TRANSACT ;
: READ-CARD
valid code sequence NOT readable IF eject card QUIT
THEN ;

: CHECK-OWNER
owner is NOT valid IF eat card QUIT THEN ;

: CHECK-CODE
code entered MISmatches owner’s code IF message QUIT
THEN ;

: READ-BUTTON (-- adr-of-button’s-function)
(device-dependent primitive) ;

: TRANSACT
READ-BUTTON EXECUTE ;

1 BUTTON WITHDRAW
2 BUTTON DEPOSIT

: WITHDRAW

Query
request < current balance IF DISBURSE THEN ;

: DISBURSE
disbursement < available cash IF
vend currency
debit account
ELSE message THEN ;

: DEPOSIT

accept envelope
credit account ;

Using the Dictionary

W= T1pP

8.1 Give each function its own definition.

By using the Forth dictionary properly, we're not actually eliminating condi-
tionals; we're merely factoring them out from our application code. The Forth
dictionary is a giant string case statement. The match and execute functions
are hidden within the Forth system.

232 Minimizing Control Structures

MOORE:

In my accounting package, if you receive a check from somebody, you type the
amount, the check number, the word FROM, and the person’s name:

200.00 127 FROM ALLIED

The word FROM takes care of that situation. If you want to bill someone, you
type the amount, the invoice number, the word BILL and the person’s name:

1000.00 280 BILL TECHNITECH

. One word for each situation. The dictionary is making the decision.

This notion pervades Forth itself. To add a pair of single-length numbers we use
the command +. To add a pair of double-length numbers we use the command
D+. A less efficient, more complex approach would be a single command that
somehow “knows” which type of numbers are being added.

Forth is efficient because all these words—FROM and BILL and + and D+—
can be implemented without any need for testing and branching.

TrIp

Use dumb words.

This isn’t advice for TV writers. It’s another instance of using the dictionary.
A “dumb” word is one that is not state-dependent, but instead, has the same
behavior all the time (“referentially transparent”).

A dumb word is unambiguous, and therefore, more trustworthy.

A few common Forth words have been the source of controversy recently
over this issue. One such word is ." which prints a string. In its simplest form,
it’s allowed only inside a colon definition:

: TEST ." THIS IS A STRING " ;

Actually, this version of the word does not print a string. It compiles a string,
along with the address of another definition that does the printing at run time.

This is the dumb version of the word. If you use it outside a colon
definition, it will uselessly compile the string, not at all what a beginner might
expect.

To solve this problem, the FIG model added a test inside ." that de-
termined whether the system was currently compiling or interpreting. In the
first case, ." would compile the string and the address of the primitives; in the
second case it would TYPE it.

." became two completely different words housed together in one defini-
tion with an IF ELSE THEN structure. The flag that indicates whether Forth

8.2

Using the Dictionary 233

=

is compiling or interpreting is called STATE. Since the ." depends on STATE, it
is said to be “STATE-dependent,” literally.

The command appeared to behave the same inside and outside a colon
definition. This duplicity proved useful in afternoon introductions to Forth,
but the serious student soon learned there’s more to it than that.

Suppose a student wants to write a new word called B." (for “bright-dot-
quote”) to display a string in bright characters on her display, to be used like
this:

." INSERT DISK IN " B." LEFT " ." DRIVE "
She might expect to define B." as
: B." BRIGHT ." NORMAL ;

that is, change the video mode to bright, print the string, then reset the mode
to normal.

She tries it. Immediately the illusion is destroyed; the deception is re-
vealed; the definition won’t work.

To solve her problem, the programmer will have to study the definition of
(.") in her own system. I'm not going to get sidetracked here with explaining
how (.") works—my point is that smartness isn’t all it appears to be.

Incidentally, there’s a different syntactical approach to our student’s prob-
lem, one that does not require having two separate words, ." and B." to print
strings. Change the system’s (.") so that it always sets the mode to normal
after typing, even though it will already be normal most of the time. With this
syntax, the programmer need merely precede the emphasized string with the
simple word BRIGHT.

." INSERT DISK IN " BRIGHT ." LEFT " ." DRIVE "

The 83 Standard now specifies a dumb ." and, for those cases where an in-
terpretive version is wanted, the new word . (has been added. Happily, in
this new standard we’re using the dictionary to make a decision by having two
separate words.

The word > (tick) has a similar history. It was STATE-dependent in fig-
Forth, and is now dumb in the ’83 Standard. Tick shares with dot-quote the
characteristic that a programmer might want to reuse either of these words in a
higher-level definition and have them behave in the same way they do normally.

TP

Words should not depend on STATE if a programmer might ever want to invoke
them from within a higher-level definition and expect them to behave as they
do interpretively.

ASCII works well as a STATE-dependent word, and so does MAKE. (See Appendix
C.)

234 Minimizing Control Structures

Nesting and Combining Conditionals

T1p

Don’t test for something that has already been excluded.

Take this example, please:

: PROCESS-KEY
KEY DUP LEFT-ARROW IF CURSOR-LEFT THEN
DUP RIGHT-ARROW = IF CURSOR-RIGHT THEN
DUP UP-ARROW IF CURSOR-UP THEN
DOWN-ARROW IF CURSOR-DOWN THEN ;

This version is inefficient because all four tests must be made regardless of the
outcome of any of them. If the key pressed was the left-arrow key, there’s no
need to check if it was some other key.

Instead, you can nest the conditionals, like this:

: PROCESS-KEY
KEY DUP LEFT-ARROW IF CURSOR-LEFT ELSE
DUP RIGHT-ARROW = IF CURSOR-RIGHT ELSE
DUP UP-ARROW IF CURSOR-UP ELSE
CURSOR-DOWN
THEN THEN THEN DROP ;

T1p

Combine booleans of similar weight.

Many instances of doubly-nested IF THEN structures can be simplified by com-
bining the flags with logical operators before making the decision. Here’s a
doubly-nested test:

: 7PLAY SATURDAY? IF WORK FINISHED? IF
GO PARTY THEN THEN ;

The above code uses nested IFs to make sure that it’s both Saturday and the
chores are done before it boogies on down. Instead, let’s combine the conditions
logically and make a single decision:

: 7PLAY SATURDAY? WORK FINISHED? AND IF
GO PARTY THEN ;

It’s simpler and more readable.

The logical “or” situation, when implemented with IF THENs, is even
clumsier:

Nesting and Combining Conditionals

<=

8.4

8.5

235

=

: 7RISE PHONE RINGS? IF UP GET THEN
ALARM-CLOCK RINGS? IF UP GET THEN ;

This is much more elegantly written as
: 7RISE PHONE RINGS? ALARM RINGS? OR IF UP GET THEN ;

One exception to this rule arises when the speed penalty for checking some of
the conditions is too great.
We might write

: 7CHOW-MEIN BEAN-SPROUTS? CHOW-MEIN RECIPE? AND IF
CHOW-MEIN PREPARE THEN ;

But suppose it’s going to take us a long time to hunt through our recipe file to
see if there’s anything on chow mein. Obviously there’s no point in undertaking
the search if we have no bean sprouts in the fridge. It would be more efficient
to write

: 7CHOW-MEIN BEAN-SPROUTS? IF CHOW-MEIN RECIPE? IF
CHOW-MEIN PREPARE THEN THEN ;

We don’t bother looking for the recipe if there are no sprouts.
Another exception arises if any term is probably not true. By eliminating
such a condition first, you avoid having to try the other conditions.

TP

When multiple conditions have dissimilar weights (in likelihood or calculation
time) nest conditionals with the term that is least likely to be true or easiest
to calculate on the outside.

Trying to improve performance in this way is more difficult with the OR con-
struct. For instance, in the definition

: 7RISE PHONE RINGS? ALARM RINGS? OR IF UP GET THEN ;

we're testing for the phone and the alarm, even though only one of them needs
to ring for us to get up. Now suppose it were much more difficult to determine
that the alarm clock was ringing. We could write

: 7RISE PHONE RINGS? IF UP GET ELSE
ALARM-CLOCK RINGS? IF UP GET THEN THEN ;

If the first condition is true, we don’t waste time evaluating the second. We
have to get up to answer the phone anyway.

The repetition of UP GET is ugly—not nearly as readable as the solution
using OR—but in some cases desirable.

236 Minimizing Control Structures

Choosing Control Structures

Trp ﬂ

The most elegant code is that which most closely matches the problem. Choose 8.7
the control structure that most closely matches the control-flow problem.

Case Statements

A particular class of problem involves selecting one of several possible paths of
execution according to a numeric argument. For instance, we want the word
.SUIT to take a number representing a suit of playing cards, 0 through 3, and
display the name of the suit. We might define this word using nested IF ELSE
THENS, like this:

.SUIT (suit --)

DUP 0= IF ." HEARTS " ELSE

DUP 1 = IF ." SPADES " ELSE

DUP 2 = IF ." DIAMONDS " ELSE
" CLUBS "

THEN THEN THEN DROP ;

We can solve this problem more elegantly by using a “case statement.”
Here’s the same definition, rewritten using the “EAKER case statement”
format, named after Dr. CHARLES E. EAKER, the gentleman who proposed it

[1].

.SUIT (suit --)

CASE

0 OF ." HEARTS " ENDOF

1 OF ." SPADES " ENDOF

2 OF ." DIAMONDS " ENDOF

3 OF ." CLUBS " ENDOF ENDCASE ;

The case statement’s value lies exclusively in its readability and writeability.
There’s no efficiency improvement either in object memory or in execution
speed. In fact, the case statement compiles much the same code as the nested
IF THEN statements. A case statement is a good example of compile-time
factoring.

Should all Forth systems include such a case statement? That’s a matter
of controversy. The problem is twofold. First, the instances in which a case
statement is actually needed are rare—rare enough to question its value. If
there are only a few cases, a nested IF ELSE THEN construct will work as well,
though perhaps not as readably. If there are many cases, a decision table is
more flexible.

Choosing Control Structures 237

Second, many case-like problems are not quite appropriate for the case
structure. The EAKER case statement assumes that you're testing for equality
against a number on the stack. In the instance of .SUIT, we have contiguous
integers from zero to three. It’s more efficient to use the integer to calculate
an offset and directly jump to the right code.

In the case of our Tiny Editor, later in this chapter, we have not one,
but two, dimensions of possibilities. The case statement doesn’t match that
problem either.

Personally, 1 consider the case statement an elegant solution to a mis-
guided problem: attempting an algorithmic expression of what is more aptly
described in a decision table.

A case statement ought to be part of the application when useful, but
not part of the system.

Looping Structures

The right looping structure can eliminate extra conditionals.

MOORE:

Many times conditionals are used to get out of loops. That particular use can
be avoided by having loops with multiple exit points.

This is a live topic, because of the multiple WHILE construct which is in poly-
Forth but hasn’t percolated up to Forth ’83. It’s a simple way of defining
multiple WHILEs in the same REPEAT.

Also DEAN SANDERSON [of Forth, Inc.] has invented a new construct that
introduces two exit points to a DO LOOP. Given that construction you’ll have
fewer tests. Very often I leave a truth value on the stack, and if I'm leaving a
loop early, I change the truth value to remind myself that I left the loop early.
Then later I'll have an IF to see whether I left the loop early, and it’s just
clumsy.

Once you’ve made a decision, you shouldn’t have to make it again. With the
proper looping constructs you won’t need to remember where you came from,
so more conditionals will go away.

This is not completely popular because it’s rather unstructured. Or perhaps it
is elaborately structured. The value is that you get simpler programs. And it
costs nothing.

Indeed, this is a live topic. As of this writing it’s too early to make any specific
proposals for new loop constructs. Check your system’s documentation to see
what it offers in the way of exotic looping structures. Or, depending on the
needs of your application, consider adding your own conditional constructs.
It’s not that hard in Forth.

I’'m not even sure whether this use of multiple exits doesn’t violate the
doctrine of structured programming. In a BEGIN WHILE REPEAT loop with mul-
tiple WHILESs, all the exits bring you to a common “continue” point: the REPEAT.

238 Minimizing Control Structures

But with SANDERSON’s construct, you can exit the loop by jumping past the
end of the loop, continuing at an ELSE. There are two possible “continue” points.

This is “less structured,” if we can be permitted to say that. And yet the
definition will always conclude at its semicolon and return to the word that
invoked it. In that sense it is well-structured; the module has one entry point
and one exit point.

When you want to execute special code only if you did not leave the loop
prematurely, this approach seems the most natural structure to use. (We'll see
an example of this in a later section, “Using Structured Exits.”)

T1p

Favor counts over terminators.

Forth handles strings by saving the length of the string in the first byte. This
makes it easier to type, move, or do practically anything with the string. With
the address and count on the stack, the definition of TYPE can be coded:

: TYPE (a #) OVER + SWAP DO I C@ EMIT LOOP ;

(Although TYPE really ought to be written in machine code.)

This definition uses no overt conditional. LOOP actually hides the con-
ditional since each loop checks the index and returns to DO if it has not yet
reached the limit.

If a delimiter were used, let’s say ASCII null (zero), the definition would
have to be written:

: TYPE (a) BEGIN DUP Ce 7DUP WHILE EMIT 1+
REPEAT DROP ;

An extra test is needed on each pass of the loop. (WHILE is a conditional
operator.)

Optimization note: The use of ?DUP in this solution is expensive in terms
of time because it contains an extra decision itself. A faster definition would
be:

: TYPE (a) BEGIN DUP C@ DUP WHILE EMIT 1+
REPEAT 2DROP ;

The ’83 Standard applied this principle to INTERPRET which now accepts a
count rather than looking for a terminator.

The flip side of this coin is certain data structures in which it’s easiest
to link the structures together. Each record points to the next (or previous)
record. The last (or first) record in the chain can be indicated with a zero in
its link field.

If you have a link field, you have to fetch it anyway. You might as well
test for zero. You don’t need to keep a counter of how many records there are.

8.8

Choosing Control Structures 239

8.9

8.10

If you decrement a counter to decide whether to terminate, you’re making more
work for yourself. (This is the technique used to implement Forth’s dictionary
as a linked list.)

Calculating Results

TIp

Don’t decide, calculate.

Many times conditional control structures are applied mistakenly to situations
in which the difference in outcome results from a difference in numbers. If
numbers are involved, we can calculate them. (In Chapter Four see the section
called “Calculations vs. Data Structures vs. Logic.”)

TP

Use booleans as hybrid values.

This is a fascinating corollary to the previous tip, “Don’t decide, calculate.”
The idea is that booleans, which the computer represents as numbers, can
efficiently be used to effect numeric decisions. Here’s one example, found in
many Forth systems:

:S>D (n --d) \ sign extend s to d
DUP 0O< IF -1 ELSE 0 THEN ;

(The purpose of this definition is to convert a single-length number to double-
length. A double-length number is represented as two 16-bit values on the
stack, the high-order part on top. Converting a positive integer to double-length
merely means adding a zero onto the stack, to represent its high-order part.
But converting a negative integer to double-length requires “sign extension;”
that is, the high-order part should be all ones.)

The above definition tests whether the single-length number is negative.
If so, it pushes a negative one onto the stack; otherwise a zero. But notice that
the outcome is merely arithmetic; there’s no change in process. We can take
advantage of this fact by using the boolean itself:

: S>D (n --d) \ sign extend s to d
DUP O0O< ;

This version pushes a zero or negative one onto the stack without a moment’s
(in)decision.

(In pre-1983 systems, the definition would be:

: S>D (n --d) \ sign extend s to d
DUP 0< NEGATE ;

See Appendix C.)

240 Minimizing Control Structures

We can do even more with “hybrid values”

Trp ﬂ

To effect a decision with a numeric outcome, use AND. 8.11

In the case of a decision that produces either zero or a non-zero “n,” the tradi-
tional phrase

(?)IF n ELSE 0 THEN
is equivalent to the simpler statement
(7)) n AND

Again, the secret is that “true” is represented by —1 (all ones) in ’83 Forth
systems. ANDing “n” with the flag will either produce “n” (all bits intact) or
“0” (all bits cleared).

To restate with an example:

(7)) IF 200 ELSE 0 THEN
is the same as

(7) 200 AND
Take a look at this example:

n ab< IF 45 + THEN

This phrase either adds 45 to “n” or doesn’t, depending on the relative sizes
of “a” and “b.” Since “adding 45 or not” is the same as “adding 45 or adding
0,” the difference between the two outcomes is purely numeric. We can rid
ourselves of a decision, and simply compute:

n ab< 45 AND +

MOORE:

The “45 AND” is faster than the IF, and certainly more graceful. It’s simpler.
If you form a habit of looking for instances where you’re calculating this value
from that value, then usually by doing arithmetic on the logic you get the same
result more cleanly.

I don’t know what you call this. It has no terminology; it’s merely doing
arithmetic with truth values. But it’s perfectly valid, and someday boolean
algebra and arithmetic expressions will accommodate it.

In books you often see a lot of piece-wise linear approximations that fail to
express things clearly. For instance the expression

Choosing Control Structures 241

0 for t <0
1 fort > 0

X
X

This would be equivalent to
t 0< 1 AND

as a single expression, not a piece-wise expression.

I call these flags “hybrid values” because they are booleans (truth values)
being applied as data (numeric values). Also, I don’t know what else to call
them.

We can eliminate numeric ELSE clauses as well (where both results are
non-zero), by factoring out the difference between the two results. For instance,

: STEPPERS ’TESTING? @ IF 150 ELSE 151 THEN LOAD ;
can be simplified to
: STEPPERS 150 °’TESTING? @ 1 AND + LOAD ;

This approach works here because conceptually we want to either load Screen
150, or if testing, the next screen past it.

A Note on Tricks

This sort of approach is often labeled a “trick.” In the computing industry at
large, tricks have a bad reputation.

A trick is simply taking advantage of certain properties of operation.
Tricks are used widely in engineering applications. Chimneys eliminate smoke
by taking advantage of the fact that heat rises. Automobile tires provide trac-
tion by taking advantage of gravity.

Arithmetic Logic Units (ALUs) take advantage of the fact that subtract-
ing a number is the same as adding its two’s complement.

These tricks allow simpler, more efficient designs. What justifies their
use is that the assumptions are certain to remain true.

The use of tricks becomes dangerous when a trick depends on something
likely to change, or when the thing it depends on is not protected by information
hiding.

Also, tricks become difficult to read when the assumptions on which
they’re based aren’t understood or explained. In the case of replacing con-
ditionals with AND, once this technique becomes part of every programmer’s
vocabulary, code can become more readable. In the case of a trick that is spe-
cific to a specific application, such as the order in which data are arranged in
a table, the listing must clearly document the assumption used by the trick.

W= T1pP

8.12

Use MIN and MAX for clipping.

242 Minimizing Control Structures

Suppose we want to decrement the contents of the variable VALUE, but we don’t
want the value to go below zero:

-1 VALUE +! VALUE @ -1 = IF 0 VALUE ! THEN
This is more simply written:

VALUE @ 1- (0 MAX VALUE !
In this case the conditional is factored within the word MAX.

Using Decision Tables

Tip cm

Use decision tables. 8.13

We introduced these in Chapter Two. A decision table is a structure that con-
tains either data (a “data table”) or addresses of functions (a “function table”)
arranged according to any number of dimensions. Each dimension represents
all the possible, mutually exclusive states of a particular aspect of the prob-
lem. At the intersection of the “true” states of each dimension lies the desired
element: the piece of data or the function to be performed.

A decision table is clearly a better choice than a conditional structure
when the problem has multiple dimensions.

One-Dimensional Data Table

Here’s an example of a simple, one-dimensional data table. Our application has
a flag called *FREEWAY? which is true when we're referring to freeways, false
when we’re referring to city streets.

Let’s construct the word SPEED-LIMIT, which returns the speed limit
depending on the current state. Using IF THEN we would write:

: SPEED-LIMIT (-- speed-limit)
'FREEWAY? @ IF 55 ELSE 25 THEN ;

We might eliminate the IF THEN by using a hybrid value with AND:
: SPEED-LIMIT 25 FREEWAY? @ 30 AND + ;

But this approach doesn’t match our conceptual model of the problem and
therefore isn’t very readable.

Let’s try a data table. This is a one-dimensional table, with only two
elements, so there’s not much to it:

CREATE LIMITS 25, 65 ,

Using Decision Tables 243

The word SPEED-LIMIT? now must apply the boolean to offset into the data
table:

: SPEED-LIMIT (-- speed-limit)
LIMITS °’FREEWAY? @ 2 AND + @ ;

Have we gained anything over the IF THEN approach? Probably not, with so
simple a problem.

What we have done, though, is to factor out the decision-making process
from the data itself. This becomes more cost-effective when we have more than
one set of data related to the same decision. Suppose we also had

CREATE #LANES 4 , 10 ,

representing the number of lanes on a city street and on a freeway. We can use
identical code to compute the current number of lanes:

: #LANES? (-- #lanes)
#LANES °’FREEWAY? @ 2 AND + @ ;

Applying techniques of factoring, we simplify this to:

: ROAD (for-freeway for-city) CREATE , ,

DOES> (-- data) ’FREEWAY? @ 2 AND + @ ;
55 25 ROAD SPEED-LIMIT?
10 4 ROAD #LANES?

Another example of the one-dimensional data table is the “superstring” (Start-
ing Forth, Chapter Ten).

Two-Dimensional Data Table

In Chapter Two we presented a phone-rate problem. Figure 8.4 gives one
solution to the problem, using a two-dimensional data structure.

In this problem, each dimension of the data table consists of three mu-
tually exclusive states. Therefore a simple boolean (true/false) is inadequate.
Each dimension of this problem is implemented in a different way.

The current rate, which depends on the time of day, is stored as an
address, representing one of the three rate-structure sub-tables. We can say

FULL RATE !
or
LOWER RATE !

etc.

244 Minimizing Control Structures

© 0 N O U A W N = O

11

© X N e s W N = O

Figure 8.4: A solution to the phone rate problem.

Screen # 103
\ Telephone rates 03/30/84
CREATE FULL 30 , 20, 12 ,
CREATE LOWER 22 , 15 , 10 ,
CREATE LOWEST 2, 9, 6,
VARIABLE RATE \ points to FULL, LOWER or LOWEST
\ depending on time of day
FULL RATE ! \ for instance
: CHARGE (o --) CREATE ,
DOES> (-- rate) @ RATE @ + @ ;
0 CHARGE IMINUTE \ rate for first minute
2 CHARGE +MINUTES \ rate for each additional minute
4 CHARGE /MILES \ rate per each 100 miles

Screen # 104
\ Telephone rates 03/30/84
VARIABLE OPERATOR? \ 90 if operator assisted; else 0
VARIABLE #MILES \ hundreds of miles
: 7ASSISTANCE (direct-dial charge -- total charge)
OPERATOR? @ + ;
: MILEAGE (-- charge) #MILES @ /MILES * ;
: FIRST (-- charge) 1IMINUTE 7ASSISTANCE MILEAGE + ;
: ADDITIONAL (-- charge) +MINUTES MILEAGE + ;
: TOTAL (#minutes -- total charge)
1- ADDITIONAL * FIRST + ;

The current charge, either first minute, additional minute, or per mile, is
expressed as an offset into the table (0, 2, or 4).

An optimization note: we’ve implemented the two-dimensional table as
a set of three one-dimensional tables, each pointed to by RATE. This approach
eliminates the need for a multiplication that would otherwise be needed to im-
plement a two-dimensional structure. The multiplication can be prohibitively
slow in certain cases.

Two-Dimensional Decision Table

We’ll hark back to our Tiny Editor example in Chapter Three to illustrate a
two-dimensional decision table.

In Figure 8.5 we’re constructing a table of functions to be performed when
various keys are pressed. The effect is similar to that of a case statement, but
there are two modes, Normal Mode and Insert Mode. Each key has a different
behavior depending on the current mode.

The first screen implements the change of the modes. If we invoke

NORMAL MODE# !

we’ll go into Normal Mode.

Using Decision Tables 245

INSERTING MODE# !

enters Inserting Mode.

The next screen constructs the function table, called FUNCTIONS. The
table consists of the ASCII value of a key followed by the address of the routine
to be performed when in Normal Mode, followed by the address of the routine
to be performed when in Insert Mode, when that key is pressed. Then comes
the second key, followed by the next pair of addresses, and so on.

In the third screen, the word ’*FUNCTION takes a key value, searches
through the FUNCTIONS table for a match, then returns the address of the
cell containing the match. (We preset the variable MATCHED to point to the last
row of the table—the functions we want when any character is pressed.)

The word ACTION invokes *FUNCTION, then adds the contents of the vari-
able MODE#. Since MODE# will contain either a 2 or a 4, by adding this offset
we’re now pointing into the table at the address of the routine we want to
perform. A simple

@ EXECUTE

will perform the routine (or @EXECUTE if you have it).
In fig-Forth, change the definition of IS to:

IS [COMPILE] > CFA , ;

In 79-Standard Forths, use:
: IS [COMPILE] * , ;

We've also used non-redundancy at compile time in the definition just below
the function table:

HERE /KEY - CONSTANT °NOMATCH \ adr of no-match key

We're making a constant out of the last row in the function table. (At the
moment we invoke HERE, it’s pointing to the next free cell after the last table
entry has been filled in. Six bytes back is the last row.) We now have two
words:

FUNCTIONS (adr of beginning of function table)
’NOMATCH (adr of "no-match" row; these are the
routines for any key not in the table)

We use these names to supply the addresses passed to DO:
’NOMATCH FUNCTION DO

to set up a loop that runs from the first row of the table to the last. We don’t
have to know how many rows lie in the table. We could even delete a row or

246 Minimizing Control Structures

© 0 N O oA W N = O

e e e
oA W N = O

© ® N e U s W N = O

[T T S S
ook W N H O

© W N e U A W N R O

o T o
ok W N O~ O

Figure 8.5: Implementation of the Tiny Editor

Screen # 30
\ Tiny Editor
2 CONSTANT NORMAL \ offset in FUNCTIONS
4 CONSTANT INSERTING \ "
6 CONSTANT /KEY \ bytes in table for each key
VARIABLE MODE# \ current offset into table

NORMAL MODE# !
: INSERT-OFF NORMAL MODE# !
INSERT-ON INSERTING MODE# ! ;

VARIABLE ESCAPE? \ t=time-to-leave-loop
: ESCAPE TRUE ESCAPE? ! ;

Screen # 31
\ Tiny Editor function table 07/29/83
: IS >, 3 \ function (--) (for ’83 standard)
CREATE FUNCTIONS
\ keys normal mode insert mode
4 , (ctrl-D) IS DELETE IS INSERT-OFF
9, (ctrl-I) IS INSERT-ON IS INSERT-OFF
8 , (backspace) IS BACKWARD IS INSERT<
60 , (left arrow) IS BACKWARD IS INSERT-OFF
62 , (right arrow) IS FORWARD IS INSERT-OFF
27 , (return) IS ESCAPE IS INSERT-OFF
0 , (no match) IS OVERWRITE IS INSERT
HERE /KEY - CONSTANT °NOMATCH \ adr of no-match key

Screen # 32
\ Tiny Editor cont’d 07/29/83
VARIABLE MATCHED

’FUNCTION (key -- adr-of-match) ’NOMATCH MATCHED !

’NOMATCH FUNCTIONS DO DUP I @ = 1IF

I MATCHED ! LEAVE THEN /KEY +L0OOP DROP
MATCHED @ ;

: ACTION (key --) FUNCTION MODE# @ + @ EXECUTE ;
: GO FALSE ESCAPE? ! BEGIN KEY ACTION ESCAPE? @ UNTIL ;

add a row to the table, without having to change any other piece of code, even
the code that searches through the table.

Similarly the constant /KEY hides information about the number of columns
in the table.

Incidentally, the approach to >FUNCTION taken in the listing is a quick-
and-dirty one; it uses a local variable to simplify stack manipulation. A simpler
solution that uses no local variable is:

FUNCTION (key -- adr of match)

’NOMATCH SWAP ’NOMATCH FUNCTIONS DO DUP
I © = IF SWAP DROP I SWAP LEAVE THEN

/KEY +LOOP DROP ;

(We'll offer still another solution later in this chapter, under “Using Structured
Exits.”)

Decision Tables for Speed

We've stated that if you can calculate a value instead of looking it up in a table,
you should do so. The exception is where the requirements for speed justify
the extra complexity of a table.

Here is an example that computes powers of two to 8-bit precision:

CREATE TWOS

i¢c, 2¢, 4C, 8C, 16 C, 320¢C,
: 2% (n -- 2-to-the-n)

TWOS + C@ ;

Instead of computing the answer by multiplying two times itself “n” times, the
answers are all pre-computed and placed in a table. We can use simple addition
to offset into the table and get the answer.

In general, addition is much faster than multiplication.

MOORE provides another example:

If you want to compute trig functions, say for a graphics display, you don’t
need much resolution. A seven-bit trig function is probably plenty. A table
look-up of 128 numbers is faster than anything else you're going to be able to
do. For low-frequency function calculations, decision tables are great.

But if you have to interpolate, you have to calculate a function anyway. You're
probably better off calculating a slightly more complicated function and avoid-
ing the table lookup.

248 Minimizing Control Structures

Redesigning

TrIp

One change at the bottom can save ten decisions at the top.

In our interview with MOORE at the beginning of the chapter, he mentioned
that much conditional testing could have been eliminated from an application
if it had been redesigned so that there were two words instead of one: “You
either say GO or you say PRETEND.”

It’s easier to perform a simple, consistent algorithm while changing the
context of your environment than to choose from several algorithms while keep-
ing a fixed environment.

Recall from Chapter One our example of the word APPLES. This was
originally defined as a variable; it was referred to many times throughout the
application by words that incremented the number of apples (when shipments
arrive), decremented the number (when apples are sold), and checked the cur-
rent number (for inventory control).

When it became necessary to handle a second type of apples, the wrong
approach would have been to add that complexity to all the shipment/sales/
inventory words. The right approach was the one we took: to add the com-
plexity “at the bottom”; that is, to APPLES itself.

This principle can be realized in many ways. In Chapter Seven (under
“The State Table”) we used state tables to implement the words WORKING and
PRETENDING, which changed the meaning of a group of variables. Later in
that chapter, we used vectored execution to define VISIBLE and INVISIBLE,
to change the meanings of TYPE’, EMIT’, SPACES’ and CR’ and thereby easily
change all the formatting code that uses them.

TrIp

Don’t test for something that can’t possibly happen.

Many contemporary programmers are error-checking-happy.

There’s no need for a function to check an argument passed by another
component in the system. The calling program should bear the responsibility
for not exceeding the limits of the called component.

TrIp

Reexamine the algorithm.

MOORE:

8.14

8.15

8.16

Redesigning 249

A lot of conditionals arise from fuzzy thinking about the problem. In servo-
control theory, a lot of people think that the algorithm for the servo ought to
be different when the distance is great than when it is close. Far away, you're
in slew mode; closer to the target you’re in decelerate mode; very close you’re
in hunt mode. You have to test how far you are to know which algorithm to
apply.

I’ve worked out a non-linear servo-control algorithm that will handle full range.
This approach eliminates the glitches at the transitioning points between one
mode and the other. It eliminates the logic necessary to decide which algorithm
to use. It eliminates your having to empirically determine the transition points.
And of course, you have a much simpler program with one algorithm instead
of three.

Instead of trying to get rid of conditionals, you're best to question the under-
lying theory that led to the conditionals.

W= T1pP

8.17 Avoid the need for special handling.

One example we mentioned earlier in the book: if you keep the user out of
trouble you won’t have to continually test whether the user has gotten into
trouble.

MOORE:

Another good example is writing assemblers. Very often, even though an opcode
may not have a register associated with it, pretending that it has a register—
say, Register 0—might simplify the code. Doing arithmetic by introducing bit
patterns that needn’t exist simplifies the solution. Just substitute zeros and
keep on doing arithmetic that you might have avoided by testing for zero and
not doing it.

It’s another instance of the “don’t care.” If you don’t care, then give it a dummy
value and use it anyway.

Anytime you run into a special case, try to find an algorithm for which the
special case becomes a normal case.

W T1p

8.18 Use properties of the component.

A well-designed component—hardware or software—will let you implement a
corresponding lexicon in a clean, efficient manner. The character graphics set
from the old Epson MX-80 printer (although now obsolete) illustrates the point
well. Figure 8.6 shows the graphics characters produced by the ASCII codes
160 to 223.

250 Minimizing Control Structures

Figure 8.6: The Epson MX-80 graphics character set.
160 161° 162 °* 163™ 164, 1651 1664 167

168s 169% 1700 1719 172a 173k 1744 1750

176 177: 178" 179: 180' 181' 182f 183r

184 4 185) 186) 1873 188r 189 190‘ 191'
192 1931 1942 195% 196~ 1970, 1984 199K
200, 2019y 202) 2039 2044 205N 206‘ 207.
208_ 209y 2102 2113 212, 213 214¢g 215:

2164 2173 218‘ 2193 220. 221. 222‘ 223

Each graphics character is a different combination of six tiny boxes, either
filled in or left blank. Suppose in our application we want to use these characters
to create a design. For each character, we know what we want in each of the six
positions—we must produce the appropriate ASCII character for the printer.

A little bit of looking will tell you there’s a very sensible pattern involved.
Assuming we have a six-byte table in which each byte represents a pixel in the
pattern:

PIXELS [0 | 1
2
55

w

and assuming that each byte contains hex FF if the pixel is “on;” zero if it is
“off,” then here’s how little code it takes to compute the character:

CREATE PIXELS 6 ALLOT
: PIXEL (i -- a) PIXELS + ;
: CHARACTER (-- graphics character)
160 6 0 DO I PIXEL C@ I 2% AND + LOOP ;

(We introduced 2#* a few tips back.)

No decisions are necessary in the definition of CHARACTER. The graphics
character is simply computed.

Note: to use the same algorithm to translate a set of six adjoining pixels
in a large grid, we can merely redefine PIXEL. That’s an example of adding
indirection backwards, and of good decomposition.

Unfortunately, external components are not always designed well. For
instance, The IBM Personal Computer uses a similar scheme for graphics char-
acters on its video display, but without any discernible correspondence between

Redesigning 251

the ASCII values and the pattern of pixels. The only way to produce the ASCII
value is by matching patterns in a lookup table.

MOORE:

The 68000 assembler is another example you can break your heart over, looking
for a good way to express those op-codes with the minimal number of operators.
All the evidence suggests there is no good solution. The people who designed
the 68000 didn’t have assemblers in mind. And they could have made things a
lot easier, at no cost to themselves.

By using properties of a component in this way, your code becomes dependent
on those properties and thus on the component itself. This is excusable, though,
because all the dependent code is confined to a single lexicon, which can easily
be changed if necessary.

Using Structured Exits

W= T1pP

8.19 Use the structured exit.

In the chapter on factoring we demonstrated the possibility of factoring out a
control structure using this technique:

: CONDITIONALLY A B OR C AND IF NOT R> DROP THEN ;
: ACTIVE CONDITIONALLY TUMBLE JUGGLE JUMP ;
: LAZY CONDITIONALLY SIT EAT SLEEP ;

Forth allows us to alter the control flow by directly manipulating the return
stack. (If in doubt, see Starting Forth, Chapter Nine.) Indiscreet application
of this trick can lead to unstructured code with nasty side effects. But the
disciplined use of the structured exit can actually simplify code, and thereby
improve readability and maintainability.

MOORE:

More and more I've come to favor R> DROP to alter the flow of control. It’s
similar to the effect of an ABORT", which has an IF THEN built in it. But that’s
only one IF THEN in the system, not at every error.

I either abort or I don’t abort. If I don’t abort, I continue. If I do abort, I
don’t have to thread my way through the path. I short-circuit the whole thing.

The alternative is burdening the rest of the application with checking whether
an error occurred. That’s an inconvenience.

252 Minimizing Control Structures

The “abort route” circumvents the normal paths of control flow under special
conditions. Forth provides this capability with the words ABORT" and QUIT.

The “structured exit” extends the concept by allowing the immediate
termination of a single word, without quitting the entire application.

This technique should not be confused with the use of GOTO, which is
unstructured to the extreme. With GOTO you can go anywhere, inside or
outside the current module. With this technique, you effectively jump directly
to the final exit point of the module (the semicolon) and resume execution
of the calling word. The word EXIT terminates the definition in which the
word appears. The phrase R> DROP terminates the definition that called the
definition in which the phrase appears; thus it has the same effect but can be
used one level down. Here are some examples of both approaches.

If you have an IF ELSE THEN phrase in which no code follows THEN, like
this:

. HUNGRY? IF EAT-IT ELSE FREEZE-IT THEN ;
you can eliminate ELSE by using EXIT:

. HUNGRY? TIF EAT-IT EXIT THEN FREEZE-IT ;
(If the condition is true, we eat and run; EXIT acts like a semicolon. If the
condition is false, we skip to THEN and FREEZE-IT.)

The use of EXIT here is more efficient, saving two bytes and extra code
to perform, but it is not as readable.

MOORE comments on the value, and danger, of this technique:

Especially if your conditionals are getting elaborate, it’s handy to jump out
in the middle without having to match all your THENs at the end. In one
application I had a word that went like this:

: TESTING
SIMPLE 1CONDITION IF ... EXIT THEN
2CONDITION IF ... EXIT THEN
3CONDITION IF ... EXIT THEN ;

SIMPLE handled the simple cases. SIMPLE ended up with R> DROP. These
other conditions were the more complex ones.

Everyone exited at the same point without having to painfully match all the
IFs, ELSEs, and THENs. The final result, if none of the conditions matched, was
an error condition.

It was bad code, difficult to debug. But it reflected the nature of the problem.
There wasn’t any better scheme to handle it. The EXIT and R> DROP at least
kept things manageable.

Using Structured Exits

253

8.20

=

8.21

Programmers sometimes also use EXIT to get out of a complicated BEGIN loop
in a graceful way. Or we might use a related technique in the DO LOOP that we
wrote for *FUNCTION in our Tiny Editor, earlier in this chapter. In this word,
we are searching through a series of locations looking for a match. If we find
a match, we want to return the address where we found it; if we don’t find a
match, we want the address of the last row of the functions table.

We can introduce the word LEAP (see Appendix C), which will work like
EXIT (it will simulate a semicolon). Now we can write:

FUNCTION (key -- adr-of-match)
’NOMATCH FUNCTIONS DO DUP I @ = IF DROP I LEAP
THEN /KEY +LOOP DROP °’NOMATCH ;

If we find a match we LEAP, not to +L0O0P, but right out of the definition, leaving
I (the address at which we found it) on the stack. If we don’t find a match, we
fall through the loop and execute

DROP ’NOMATCH

which drops the key# being searched for, then leaves the address of the last
row!

As we’ve seen, there may be times when a premature exit is appropriate,
even multiple exit points and multiple “continue” points.

Remember though, this use of EXIT and R> DROP is not consistent with
structured programming in the strictest sense, and requires great care.

For instance, you may have a value on the stack at the beginning of a
definition which is consumed at the end. A premature EXIT will leave the
unwanted value on the stack.

Fooling with the return stack is like playing with fire. You can get burned.
But how convenient it is to have fire.

Employing Good Timing

TIp

Take the action when you know you need to, not later.

Any time you set a flag, ask yourself why you’re setting it. If the answer
is, “So I'll know to do such-and-such later,” then ask yourself if you can do
such-and-such now. A little restructuring can greatly simplify your design.

TP

Don’t put off till run time what you can compile today.

254 Minimizing Control Structures

Any time you can make a decision prior to compiling an application, do.

Suppose you had two versions of an array: one that did bounds check-
ing for your protection during development and one that ran faster, though
unprotected for the actual application.

Keep the two versions in different screens. When you compile your ap-
plication, load only the version you need.

By the way, if you follow this suggestion, you may go crazy editing paren-
theses in and out of your load blocks to change which version gets loaded each
time. Instead, write throw-away definitions that make the decisions for you.
For instance (as already previewed in another context):

: STEPPERS 150 °’TESTING? @ 1 AND + LOAD ;

Trp ﬂ

DUP a flag, don’t recreate it. 8.22

Sometimes you need a flag to indicate whether or not a previous piece of code
was invoked. The following definition leaves a flag which indicates that DO-IT
was done:

: DID-I?7 (-- t=I-did)
SHOULD-I? IF DO-IT TRUE ELSE FALSE THEN ;

This can be simplified to:

: DID-I?7 (-- t=I-did)
SHOULD-I? DUP IF DO-IT THEN ;

Trp ﬂ

Don’t set a flag, set the data. 8.23

If the only purpose to setting a flag is so that later some code can decide
between one number and another, you're better off saving the number itself.
The “colors” example in Chapter Six’s section called “Factoring Criteria”
illustrates this point.
The purpose of the word LIGHT is to set a flag which indicates whether
we want the intensity bit to be set or not. While we could have written

: LIGHT TRUE °LIGHT? ! ;
to set the flag, and

’LIGHT? @ IF 8 OR THEN ...

Employing Good Timing 255

to use the flag, this approach is not quite as simple as putting the intensity
bit-mask itself in the variable:

: LIGHT 8 ’LIGHT? !
and then simply writing
’LIGHT? @ OR ...

to use it.

W= T1p

8.24 Don’t set a flag, set the function. (Vector.)

This tip is similar to the previous one, and lives under the same restriction. If
the only purpose to setting a flag is so that later some code can decide between
one function and another, you're better off saving the address of the function
itself.

For instance, the code for transmitting a character to a printer is different
than for slapping a character onto a video display. A poor implementation
would define:

VARIABLE DEVICE (O=video | 1=printer)
: VIDEO FALSE DEVICE ! ;
: PRINTER TRUE DEVICE ! ;
: TYPE (a # --) DEVICE @ IF
(...code for printer...) ELSE
(...code for video...) THEN ;

This is bad because you're deciding which function to perform every time you
type a string.
A preferable implementation would use vectored execution. For instance:

DOER TYPE (a # --)
: VIDEO MAKE TYPE (...code for video...) ;
: PRINTER MAKE TYPE (...code for printer...) ;

This is better because TYPE doesn’t have to decide which code to use, it already
knows.

(On a multi-tasked system, the printer and monitor tasks would each
have their own copies of an execution vector for TYPE stored in a user variable.)

The above example also illustrates the limitation of this tip. In our
second version, we have no simple way of knowing whether our current device
is the printer or the video screen. We might need to know, for instance, to
decide whether to clear the screen or issue a formfeed. Then we’re making an
additional use of the state, and our rule no longer applies.

256 Minimizing Control Structures

A flag would, in fact, allow the simplest implementation of additional
state-dependent operations. In the case of TYPE, however, we’re concerned
about speed. We type strings so often, we can’t afford to waste time doing it.
The best solution here might be to set the function of TYPE and also set a flag:

DOER TYPE

: VIDEO 0 DEVICE ! MAKE TYPE
(...code for video...) ;

: PRINTER 1 DEVICE ! MAKE TYPE
(...code for printer...) ;

Thus TYPE already knows which code to execute, but other definitions will refer
to the flag.

Another possibility is to write a word that fetches the parameter of the
DOER word TYPE (the pointer to the current code) and compares it against the
address of PRINTER. If it’s less than the address of PRINTER, we're using the
VIDEO routine; otherwise we’re using the PRINTER routine.

If changing the state involves changing a small number of functions, you
can still use DOER/MAKE. Here are definitions of three memory-move operators
that can be shut off together.

DOER !’ (vectorable !)

DOER CMOVE’ (vectorable CMOVE)

DOER FILL’ (vectorable FILL)

: STORING MAKE !'?> ! ;AND
MAKE CMOVE’ CMOVE ;AND
MAKE FILL’ FILL ;

-STORING MAKE !> 2DROP ;AND

MAKE CMOVE’ 2DROP DROP ;AND
MAKE FILL’> 2DROP DROP ;

But if a large number of functions need to be vectored, a state table would be

preferable.
A corollary to this rule introduces the “structured exit hook,” a DOER word

vectored to perform a structured exit.

DOER HESITATE (the exit hook)
: DISSOLVE HESITATE FILE-DIVORCE ;

(... Much later in the listing:)
: RELENT MAKE HESITATE SEND-FLOWERS R> DROP ;

By default, HESITATE does nothing. If we invoke DISSOLVE, we’ll end up in
court. But if we RELENT before we DISSOLVE, we’ll send flowers, then jump
clear to the semicolon, canceling that court order before our partner ever finds
out.

Employing Good Timing

257

This approach is especially appropriate when the cancellation must be
performed by a function defined much later in the listing (decomposition by
sequential complexity). Increased complexity of the earlier code is limited solely
to defining the hook and invoking it at the right spot.

Simplifying

I've saved this tip for last because it exemplifies the rewards of opting for sim-
plicity. While other tips concern maintainability, performance, compactness,
etc., this tip relates to the sort of satisfaction that Thoreau sought at Walden
Pond.

W T1p

8.25 Try to avoid altogether saving flags in memory.

A flag on the stack is quite different from a flag in memory. Flags on the stack
can simply be determined (by reading the hardware, calculating, or whatever),
pushed onto the stack, then consumed by the control structure. A short life
with no complications.

But save a flag in memory and watch what happens. In addition to
having the flag itself, you now have the complexity of a location for the flag.
The location must be:

e created
e initialized (even before anything actually changes)
e reset (otherwise, passing a flag to a command leaves the flag in that

current state).

Because flags in memory are variables, they are not reentrant.

An example of a case in which we might reconsider the need for a flag
is one we’ve seen several times already. In our “colors” example we made the
assumption that the best syntax would be:

LIGHT BLUE

that is, the adjective LIGHT preceding the color. Fine. But remember the code
to implement that version? Compare it with the simplicity of this approach:

0 CONSTANT BLACK 1 CONSTANT BLUE 2 CONSTANT GREEN

3 CONSTANT CYAN 4 CONSTANT RED 5 CONSTANT MAGENTA
6 CONSTANT BROWN 7 CONSTANT GRAY

: LIGHT (color -- color) 8 OR ;

In this version we’ve reversed the syntax, so that we now say

BLUE LIGHT

258 Minimizing Control Structures

We establish the color, then we modify the color.

We’ve eliminated the need for a variable, for code to fetch from the vari-
able and more code to reset the variable when we’re done. And the code is so
simple it’s impossible not to understand.

When 1 first wrote these commands, I took the English-like approach.
“BLUE LIGHT” sounded backwards, not at all acceptable. That was before my
conversations with CHUCK MOORE.

MOORE’s philosophy is persuasive:

I would distinguish between reading nicely in English and reading nicely. In
other languages such as Spanish, adjectives follow nouns. We should be inde-
pendent of details like which language we’re thinking in.

It depends on your intention: simplicity, or emulation of English. English is
not such a superb language that we should follow it slavishly.

If T were selling my “colors” words in a package for graphic artists, I would take
the trouble to create the flag. But writing these words for my own use, if I had
to do it over again, I'd favor the MOORE-ish influence, and use “BLUE LIGHT.”

Summary

The use of logic and conditionals as a significant structural element in program-
ming leads to overly-complicated, difficult-to-maintain, and inefficient code. In
this chapter we’ve discussed several ways to minimize, optimize or eliminate
unnecessary conditional structures.

As a final note, Forth’s downplaying of conditionals is not shared by
most contemporary languages. In fact, the Japanese are basing their fifth-
generation computer project on a language called PROLOG—for PROgram-
ming in LOGic—in which one programs entirely in logic. It will be interesting
to see the battle-lines forming as we ponder the question:

To IF or not to IF

In this book we’ve covered the first six steps of the software development cycle,
exploring both the philosophical questions of designing software and practical
considerations of implementing robust, efficient, readable software.

We have not discussed optimization, validation, debugging, document-
ing, project management, Forth development tools, assembler definitions, uses
and abuses of recursion, developing multiprogrammed applications, or target
compilation.

But that’s another story.

References

[1] CHARLES EAKER, “Just in Case,” Forth Dimensions I1/3, p. 37.

Summary 259

For Further Thinking

Define the word DIRECTION, which returns either 1, —1, or 0, depending on
whether the input argument is non-zero positive, negative, or zero, respec-
tively.

260 Minimizing Control Structures

EPILOGUE

Forth’s Effect on
Thinking

Forth is like the Tao: it is a Way, and is realized when followed. Its fragility
is its strength; its simplicity is its direction (MICHAEL HAM, winning entry in
Mountain View Press’s contest to describe Forth in twenty-five words or less).

To help extract something of the Forth philosophy, I conducted a poll
among several Forth users in which I asked, “How has Forth affected your
thinking? Have you found yourself applying ‘Forth-like’ principles in other
areas?”

Here are some of the replies:

MARK BERNSTEIN is president of Fastgate Systems Inc. in Cambridge, Mas-
sachusetts, and holds a doctorate from the department of chemistry at Harvard
University.

I first met Forth while working in laser chemistry. I was trying to build a rather
complicated controller for a new laser spectrometer. The original plans called
for a big green box full of electronics, The Interface. Nobody had built this
particular kind of instrument before—that’s why we were doing it—and the list
of things we wanted the computer to handle changed every couple of weeks.

After a few months, I had hundreds of pages of assembly-language routines,
three big circuit boards filled with ICs, and a 70-odd pin System Bus. Day by
day, everything got more fragile and harder to fix. The wiring on the circuit
boards frayed, the connectors got loose, the assembler code grew ever more
tangled.

Forth was an obvious solution to the software problem, since it provided a
decent environment in which to build and maintain a complex and rapidly-
changing program. But the essence of good Forth programming is the art of
factoring procedures into useful, free-standing words. The idea of the Forth
word had unexpected implications for laboratory hardware design.

Instead of building a big, monolithic, all-purpose Interface, I found myself build-
ing piles of simple little boxes which worked a lot like Forth words: they had
a fixed set of standard inputs and standard outputs, they performed just one
function, they were designed to connect up to each other without much effort,

262 Forth's Effect on Thinking

and they were simple enough that you could tell what a box did just by looking
at its label.

. The idea of “human scale” is, I think, today’s seminal concept in software
design. This isn’t specifically a Forth development; the great joy of UNIX,
in its youth at least, was that you could read it (since it was written in C),
understand it (since it was small), and modify it (since it was simple). Forth
shares these virtues, although it’s designed to tackle a different sort of problem.

Because Forth is small, and because Forth gives its users control over their
machines, Forth lets humans control their applications. It’s just silly to expect
scientists to sit in front of a lab computer playing “twenty-questions” with
packaged software. Forth, used properly, lets a scientist instruct the computer
instead of letting the computer instruct the scientist.

In the same sense that in baseball, a batter is supposed to feel the bat as an
extension of himself, Forth is human-scaled, and helps convince you that the
computer’s achievements, and its failures, are also your own.

RAYMOND E. DESSY is Professor of Chemistry at Virginia Polytechnic Institute
and State University, Blacksburg, Virginia.

As T attempted to understand the nature and structure of the language C,
I found myself drawing upon the knowledge I had of the organization and
approach of Forth. This permitted me to understand convoluted, or high-fog-
coefficient sections describing C.

I have found the Forth approach is an ideal platform upon which to build an
understanding and an educational framework for other languages and operating
system concepts.

JERRY BOUTELLE is owner of Nautilus Systems in Santa Cruz, California,
which markets the Nautilus Cross-compiler.

Forth has changed my thinking in many ways. Since learning Forth I've coded
in other languages, including assembler, BASIC and FORTRAN. I've found
that I used the same kind of decomposition we do in Forth, in the sense of
creating words and grouping them together. For example, in handling strings
I would define subroutines analogous to CMOVE, -TRAILING, FILL, etc.

More fundamentally, Forth has reaffirmed my faith in simplicity. Most people
go out and attack problems with complicated tools. But simpler tools are
available and more useful.

I try to simplify all the aspects of my life. There’s a quote I like from Tao Te
Ching by the Chinese philosopher Lao Tzu: “To attain knowledge, add things
every day; to obtain wisdom, remove things every day.”

Forth’s Effect on Thinking 263

APPENDIX A

Overview of Forth
(For Newcomers)

The Dictionary

Forth is expressed in words (and numbers) and is separated by spaces:
HAND OPEN ARM LOWER HAND CLOSE ARM RAISE

Such commands may be typed directly from the keyboard, or edited onto mass
storage then “LOAD”ed.

All words, whether included with the system or user-defined, exist in the
“dictionary,” a linked list. A “defining word” is used to add new names to the
dictionary. One defining word is : (pronounced “colon”), which is used to define
a new word in terms of previously defined words. Here is how one might define
a new word called LIFT:

: LIFT HAND OPEN ARM LOWER HAND CLOSE ARM RAISE ;

The ; terminates the definition. The new word LIFT may now be used instead
of the long sequence of words that comprise its definition.

Forth words can be nested like this indefinitely. Writing a Forth applica-
tion consists of building increasingly powerful definitions, such as this one, in
terms of previously defined ones.

Another defining word is CODE, which is used in place of colon to define
a command in terms of machine instructions for the native processor. Words
defined with CODE are indistinguishable to the user from words defined with
colon. CODE definitions are needed only for the most time-critical portions of
an applications, if at all.

Data Structures

Still another defining word is CONSTANT, which is used like this:
17 CONSTANT SEVENTEEN

The new word SEVENTEEN can now be used in place of the actual number 17.
The defining word VARIABLE creates a location for temporary data.
VARIABLE is used like this:

266 Overview of Forth (For Newcomers)

VARTIABLE BANANAS

This reserves a location which is identified by the name BANANAS.
Fetching the contents of this location is the job of the word @ (pronounced
“fetch”). For instance,

BANANAS @

fetches the contents of the variable BANANAS. Its counterpart is ! (pronounced
“store”), which stores a value into the location, as in:

100 BANANAS !

Forth also provides a word to increment the current value by the given value;
for instance, the phrase

2 BANANAS +!

increments the count by two, making it 102.

Forth provides many other data structure operators, but more impor-
tantly, it provides the tools necessary for the programmer to create any type
of data structure needed for the application.

The Stack

In Forth, variables and arrays are used for saving values that may be required
by many other routines and/or at unpredictable times. They are not used for
the local passing of data between the definitions. For this, Forth employs a
much simpler mechanism: the data stack.

When you type a number, it goes on the stack. When you invoke a word
which has numeric input, it will take it from the stack. Thus the phrase

17 SPACES

will display seventeen blanks on the current output device. “17” pushes the
binary value 17 onto the stack; the word SPACES consumes it.
A constant also pushes its value onto the stack; thus the phrase:

SEVENTEEN SPACES

has the same effect.

The stack operates on a “last-in, first-out” (LIFO) basis. This means that
data can be passed between words in an orderly, modular way, consistent with
the nesting of colon definitions.

For instance, a definition called GRID might invoke the phrase 17 SPACES.
This temporary activity on the stack will be transparent to any other definition
that invokes GRID because the value placed on the stack is removed before the
definition of GRID ends. The calling definition might have placed some numbers
of its own on the stack prior to calling GRID. These will remain on the stack,
unharmed, until GRID has been executed and the calling definition continues.

The Stack 267

Control Structures

Forth provides all the control structures needed for structured, GOTO-less
programming.
The syntax of the IF THEN construct is as follows:

(flag) IF KNOCK THEN OPEN ...

The “flag” is a value on the stack, consumed by IF. A non-zero value indicates
true, zero indicates false. A true flag causes the code after IF (in this case, the
word KNOCK) to be executed. The word THEN marks the end of the conditional
phrase; execution resumes with the word OPEN. A false flag causes the code
between IF and THEN to not be executed. In either case, OPEN will be performed.

The word ELSE allows an alternate phrase to be executed in the false case.
In the phrase:

(flag) IF KNOCK ELSE RING THEN OPEN ...

the word KNOCK will be performed if the flag is true, otherwise the word RING
will be performed. Either way, execution will continue starting with OPEN.
Forth also provides for indexed loops in the form

(limit) (index) DO ... LOOP
and indefinite loops in the forms:
. BEGIN ... (flag) UNTIL
and

. BEGIN ... (flag) WHILE ... REPEAT ;

For the Whole Story

For a complete introduction to the Forth command set, read Starting Forth,
published by Prentice-Hall.

268 Overview of Forth (For Newcomers)

APPENDIX B

Defining
DOER/MAKE

If your system doesn’t have DOER and MAKE already defined, this appendix is
meant to help you install them and, if necessary, understand how they work.
Because by its nature this construct is system dependent, I’ve included several
different implementations at the end of this appendix in the hope that one
of them will work for you. If no, and if this section doesn’t give you enough
information to get them running, you probably have an unusual system. Please
don’t ask me for help; ask your Forth vendor.

Here’s how it works. DOER is a defining word that creates an entry with
one cell in its parameter field. That cell contains the vector address, and is
initialized to point to a no-op word called NOTHING.

Children of DOER will execute that DOES> code of DOER, which does only
two things: fetch the vector address and place it on the return stack. That’s all.
Forth execution then continues with this address on the return stack, which will
cause the vectored function to be performed. It’s like saying (in ’83-Standard)

> NOTHING >BODY >R <return>

which executes NOTHING. (This trick only works with colon definitions.)
Here’s an illustration of the dictionary entry created when we enter

DOER JOE
| JOE | pfa of NOTHING |
header parameter field

Now suppose we define:
. TEST MAKE JOE CR ;

that is, we define a word that can vector JOE to do a carriage return.
Here’s a picture of the compiled definition of TEST:

adr of adr of | adr of | adr of
TEST | (MAKE) | 0 JOE CR EXIT

header MARKER

270 Defining DOER/MAKE

Let’s look at the code for MAKE. Since we’re using MAKE inside a colon definition,
STATE will be true, and we’ll execute the phrase:

COMPILE (MAKE) HERE MARKER ! O ,

We can see how MAKE has compiled the address of the run-time routine, (MAKE),
followed by a zero. (We'll explain what the zero is for, and why we save its
address in the variable MARKER, later).

Now let’s look at what (MAKE) does when we execute our new definition
TEST:

R> Gets an address from the return stack.
This address points to the cell just past
(MAKE), where the zero is.

DUP 2+ Gets the address of the second cell after
(MAKE), where the address of JOE is.
DUP 2+ Gets the address of the third cell after

(MAKE), where the code we want to ex-
ecute begins. The stack now has:
('marker, ’joe, ’code —)

SWAP @ >BODY Fetches the contents of the address point-
ing to JOE (i.e., gets the address of JOE)
and computes JOE’s pfa, where the vec-
tor address goes.

! Stores the address where the new code
begins (CR, etc.) into the vector address
of JOE.

Now JOE points inside the definition of
TEST. When we type JOE, we’ll do a car-
riage return.

@ 7DUP IF >R THEN Fetches the contents of the cell contain-
ing zero. Since the cell does contain
zero, the IF THEN statement is not per-
formed.

That’s the basic idea. But what about that cell containing zero? That’s
for the use of ;AND. Suppose we changed TEST to read:

: TEST MAKE JOE CR ;AND SPACE ;

That is, when we invoke TEST we’ll vector JOE to do a CR, and we’ll do a SPACE
right now. Here’s what this new version of TEST will look like:

| Y
adr of adr of | adr of | adr of | adr of | adr of
TEST | (MAKE) | adr | JOE CR EXIT | SPACE | EXIT

header MARKER

Defining DOER/MAKE 271

Here’s the definition of ;AND:
;AND COMPILE EXIT HERE MARKER @ ! ; IMMEDIATE

We can see that ;AND has compiled an EXIT, just as semicolon would.

Next, recall that MAKE saved the address of that cell in a variable called
MARKER. Now ;AND stores HERE (the location of the second string of code be-
ginning with SPACE) into the cell previously containing zero. Now (MAKE) has
a pointer to the place to resume execution. The phrase

IF >R THEN

will leave on the return stack the address of the code beginning with SPACE.
Thus execution will skip over the code between MAKE and ;AND and continue
with the remainder of the definition up to semicolon.

The word UNDO ticks the name of a DOER word, and stores the address of
NOTHING into it.

One final note: on some systems you may encounter a problem. If you
use MAKE outside of a colon definition to create a forward reference, you may
not be able to find the most recently defined word. For instance, if you have:

: REFRAIN DO-DAH DO-DAH ;
MAKE SONG CHORUS REFRAIN ;

your system might think that refrain has not been defined. The problem is
due to the placement of SMUDGE. As a solution, try rearranging the order of
definitions or, if necessary, put MAKE code inside a definition which you then
execute:

: SETUP MAKE SONG CHORUS REFRAIN ; SETUP

In Laboratory Microsystems PC/FORTH 2.0, the UNSMUDGE on line 9 handles
the problem. This problem does not arise with the Laxen/Perry/Harris model.

The final screen is an example of using DOER/MAKE. After loading the
block, enter

RECITAL
then enter
WHY?

followed by return, as many times as you like (you’ll get a different reason each
time).

272 Defining DOER/MAKE

© W N e U A W N = O

o S S
ook W N H O

© W N Uk W N RO

o S S S
ook W N R O

© W N Uk W N RO

o S S S
[S A)

Screen # 21

(DOER/MAKE Shadow screen LPB 12/05/83)
NOTHING A no-opp
DOER Defines a word whose behavior is vectorable.
MARKER Saves adr for optional continuation pointer.
(MAKE) Stuffs the address of further code into the
parameter field of a doer word.
MAKE Used interpretively: MAKE doer-name forth-code ;
or inside a definition:
: def MAKE doer-name forth-code ;
Vectors the doer-name word to the forth-code.
; AND Allows continuation of the "making" definition
UNDO Usage: UNDO doer-name ; makes it safe to execute

Screen # 22
\ DOER/MAKE FORTH-83 Laxen/Perry/Harris model LPB 12/05/83
: NOTHING ;
: DOER CREATE [’] NOTHING >BODY , DOES> @ >R ;
VARIABLE MARKER
: (MAKE) R> DUP 2+ DUP 2+ SWAP @ >BODY !
@ 7DUP IF >R THEN ;
: MAKE STATE @ IF (compiling)
COMPILE (MAKE) HERE MARKER ! O ,
ELSE HERE [COMPILE] ’> >BODY !
[COMPILE] 1 THEN ; IMMEDIATE
: ;AND COMPILE EXIT HERE MARKER @ ! ; IMMEDIATE
: UNDO [’] NOTHING »>BODY [COMPILE] °> >BODY ! ;

\ The code in this screen is in the public domain.

Screen # 23
(DOER/MAKE FORTH-83 Lab. Micro PC/FORTH 2.0 LPB 12/05/83)
: NOTHING ;
: DOER CREATE [’] NOTHING >BODY , DOES> @ >R ;
VARIABLE MARKER
: (MAKE) R> DUP 2+ DUP 2+ SWAP @ >BODY !
@ 7DUP IF >R THEN ;
: MAKE STATE @ IF (compiling)
COMPILE (MAKE) HERE MARKER ! O ,
ELSE HERE [COMPILE] ’> >BODY !
[COMPILE]] UNSMUDGE THEN ; IMMEDIATE
: ;AND COMPILE EXIT HERE MARKER @ ! ; IMMEDIATE
: UNDO [’] NOTHING »>BODY [COMPILE] °> >BODY ! ;

(The code in this screen is in the public domain.)

Defining DOER/MAKE 273

Screen # 24

0 (DOER/MAKE FIG model LPB 12/05/83)
1| : NOTHING

2| : DOES-PFA (pfa -- pfa of child of <BUILD-DOES>) 2+ ;
s|: DOER <BUILDS > NOTHING , DOES> @ >R ;

4|0 VARIABLE MARKER

s|: (MAKE) R> DUP 2+ DUP 2+ SWAP @ 2+ DOES-PFA !

6 @ -DUP IF >R THEN ;

7| : MAKE STATE @ IF (compiling)

8 COMPILE (MAKE) HERE MARKER ! O ,

9 ELSE HERE [COMPILE] °® DOES-PFA !

10 SMUDGE [COMPILE]] THEN ; IMMEDIATE

11| : ;AND COMPILE ;S HERE MARKER @ ! ; IMMEDIATE
12| : UNDO > NOTHING [COMPILE] > DOES-PFA ! ;
13 ;S

14| The code in this screen is in the public domain.

Screen # 25
o| (DOER/MAKE 79-Standard MVP FORTH LPB 12/05/83)
1|+ NOTHING ;
2| : DOER CREATE °’ NOTHING , DOES> @ >R ;
3| VARIABLE MARKER
4|: (MAKE) R> DUP 2+ DUP 2+ SWAP @ 2+ (pfa) !

5 @ 7DUP IF >R THEN ;

6| : MAKE STATE @ IF (compiling)

7 COMPILE (MAKE) HERE MARKER ! O ,

8 ELSE HERE [COMPILE] ’ !

9 [COMPILE]] THEN ; IMMEDIATE

w|: ;AND COMPILE EXIT HERE MARKER Q@ ! ; IMMEDIATE
11| : UNDO [’] NOTHING [COMPILE] ’° ! ;

14| (The code in this screen is in the public domain.)

Screen # 26

o| (TODDLER: Example of DOER/MAKE 12/01/83)
1 DOER ANSWER

2| : RECITAL

3 CR ." Your daddy is standing on the table. Ask him ’WHY?’ "
4

MAKE ANSWER ." To change the light bulb."
5| BEGIN
6 MAKE ANSWER ." Because it’s burned out."
7 MAKE ANSWER ." Because it was old."
8 MAKE ANSWER ." Because we put it in there a long time ago."
9 MAKE ANSWER ." Because it was dark!"
10 MAKE ANSWER ." Because it was night time!!"
11 MAKE ANSWER ." Stop saying WHY?"
12 MAKE ANSWER ." Because it’s driving me crazy."
13 MAKE ANSWER ." Just let me change this light bulb!"

14 FALSE UNTIL ;
15| 0 WHY? CR ANSWER QUIT ;

274 Defining DOER/MAKE

APPENDIX C

Other Utilities
Described
in This Book

This appendix is here to help you define some of the words referred to in this
book that may not exist in your system. Definitions are given in Forth-83
Standard.

From Chapter Four
A definition of ASCII that will work in ’83 Standard is:

: ASCIT (-- ¢) \ Compile: ¢ (--)
\ Interpret: <c¢ (--¢)
BL WORD 1+ C@ STATE @
IF [COMPILE] LITERAL THEN ; IMMEDIATE
From Chapter Five
The word \ can be defined as:

: \ (skip rest of line)
>IN @ 64 / 1+ 64 * >IN ! ; IMMEDIATE

If you decide not to use EXIT to terminate a screen, you can define \S as:
: \S 1024 >IN ! ;
The word FH can be defined simply as:

: FH \ (offset -- offset-block) "from here"
BLK @ + ;

This factoring allows you to use FH in many ways, e.g.:
: TEST [1 FH] LITERAL LOAD ;
or

: SEE [2 FH] LITERAL LIST ;

276 Other Utilities Described in This Book

A slightly more complicated version of FH also lets you edit or load a screen
with a phrase such as “14 FH LIST,” relative to the screen that you just listed
(SCR):

: FH \ (offset -- offset-block) "from here"
BLK @ <7DUP 0= IF SCR @ THEN + ;

BL is a simple constant:
32 CONSTANT BL
TRUE and FALSE can be defined as:

O CONSTANT FALSE
-1 CONSTANT TRUE

(Forth’s control words such as IF and UNTIL interpret zero as “false” and any
non-zero value as “true.” Before Forth '83, the convention was to indicate “true”
with the value 1. Starting with Forth ’83, however, “true” is indicated with hex
FFFF, which is the signed number —1 (all bits set).

WITHIN can be defined in high level like this:

: WITHIN (n lo hi+l -- 7)
>R 1- OVER < SWAP R> < AND ;

or
: WITHIN (n lo hi+l -- ?)
OVER - >R - R> U< ;

From Chapter Eight

The implementation of LEAP will depend on how your system implements DO
LOOPs. If DO keeps two items on the return stack (the index and the limit),
LEAP must drop both of them plus one more return-stack item to exit:

: LEAP R> R> 2DROP R> DROP ;
If DO keeps three items on the return stack, it must be defined:

: LEAP R> R> 2DROP R> R> 2DROP ;

From Chapter Eight 277

APPENDIX D

Answers to
“Further Thinking”
Problems

Chapter Three

1. The answer depends on whether you believe that other components will

need to “know the numeric code associated with each key. Usually this
would not be the case. The simpler, more compact form is therefore
preferable. Also in the first version, to add a new key would require a
change in two places.

. The problem with the words RAM-ALLOT and THERE are that they are time-

dependent: we must execute them in a particular order. Our solution then
will be to devise an interface to the RAM allocation pointer that is not
dependent on order; the way to do this is to have a single word which
does both functions transparently.

Our word’s syntax will be

: RAM-ALLOT (#bytes-to-allot -- starting-adr)

>

This syntax will remain the same whether we define it to allocate growing
upward:

: RAM-ALLOT (#bytes-to-allot -- starting-adr)
>RAM @ DUP ROT + >RAM ! ;

or to allocate growing downward:

: RAM-ALLOT (#bytes-to-allot -- starting-adr)
>RAM @ SWAP - DUP >RAM ! ;

Chapter Four

280

Our solution is as follows:

\ CARDS Shuffle 6-20-83
52 CONSTANT #CARDS
CREATE DECK #CARDS ALLOT \ one card per byte

Answers to “Further Thinking” Problems

: CARD (i -- adr) DECK + ;
INIT-DECK #CARDS 0 DO I I CARD C! LOOP ;
INIT-DECK
’CSWAP (al a2 --) \ swap bytes at al and a2
2DUP C@ SWAP C@ ROT C! SWAP C! ;
: SHUFFLE \ shuffle deck of cards
#CARDS 0 DO I CARD #CARDS CHOOSE CARD °’CSWAP
LOQOP ;

Chapter Eight

: DIRECTION (nl|-nl0 -- 1|-1/0) DUP IF 0< 1 OR THEN ;

Chapter Eight 281

APPENDIX E

Summary of
Style Conventions

The contents of this Appendix are in the public domain. We encourage publi-
cation without restriction, provided that you credit the source.

Spacing and Indentation Guidelines

1 space between the colon and the name

2 spaces between the name and the comment™

2 spaces, or a carriage return, after the comment and before the definition™
3 spaces between the name and definition if no comment is used

3 spaces indentation on each subsequent line (or multiples of 3 for nested in-
dentation)

1 space between words/numbers within a phrase
2 or 3 spaces between phrases
1 space between the last word and the semicolon

1 space between semicolon and IMMEDIATE (if invoked)

No blank lines between definitions, except to separate distinct groups of defi-
nitions

Stack-Comment Abbreviations

n single-length signed number

d double-length signed number

u single-length unsigned number
ud double-length unsigned number
t triple-length

q quadruple-length

* An often-seen alternative calls for 1 space between the name and comment and 3 between
the comment and the definition. A more liberal technique uses 3 spaces before and after the
comment. Whatever you choose, be consistent.

284 Summary of Style Conventions

© ® N O Uos W N R O

P S S S
SR I U

C 7-bit character value

8-bit byte
? boolean flag; or:
t= true
f= false

a or adr address

acf address of code field

apf address of parameter field

¢ (as prefix) address of

sd (as a pair) source destination

lo hi lower-limit upper-limit (inclusive)
+# count

o offset

i index

m mask

X don’t care (data structure notation)

An “offset” is a difference expressed in absolute units, such as bytes.
An “index” is a difference expressed in logical units, such as elements or
records.

Input-Stream Comment Designations

c single character, blank-delimited
name sequence of characters, blank delimited
text sequence of characters, delimited by non-blank

Follow “text” with the actual delimiter required; e.g., text” or text).

Samples of Good Commenting Style

Here are two sample screens to illustrate good commenting style.

Screen # 126
\ Formatter Data Structures -- p.2 06/06/83
6 CONSTANT TMARGIN \ line# where body of text begins

55 CONSTANT BMARGIN \ line# where body of text ends

CREATE HEADER 82 ALLOT
\ { 1left-ent | lright-cnt | 80header }
CREATE FOOTER 82 ALLOT
\ { 1left-cnt | 1right-ent | 80footer }

VARIABLE ACROSS \ formatter’s current horizontal position
VARIABLE DOWNWARD \ formatter’s current vertical position
VARIABLE LEFT \ current primary left margin

VARIABLE WALL \ current primary right margin

VARIABLE WALL-WAS \ WALL when curr. line started being formt’d

Input-Stream Comment Designations 285

Screen # 127

06/06/83

B

B

o|\ Formatter positioning -- p.1

1|: SKIP (n) ACROSS +! ;

2| : NEWLEFT \ reset left margin

3 LEFT @ PERMANENT @ + TEMPORARY @ + ACROSS !

4|: \LINE \ begin new line

5 DOOR CR’ 1 DOWNWARD +! NEWLEFT WALL @ WALL-WAS ! ;
6|: AT-TOP? (-- t=at-top) TMARGIN DOWNWARD @ = ;

7| : >TMARGIN \ move from crease to TMARGIN

8 0 DOWNWARD ! BEGIN \LINE AT-TOP? UNTIL ;

9

Naming Conventions

Meaning Form
Arithmetic

integer 1 1name
integer 2 2name
takes relative input parameters +name
takes scaled input parameters +name
Compilation

start of “high-level” code name:
end of “high-level” code ;name
put something into dictionary name,
executes at compile time [name]
slightly different name’ (prime)
internal form or primitive (name)

or <name>
compiling word run-time part:

systems with no folding lower-case
systems with folding (NAME)
defining word ‘name
block-number where overlay begins namING
Data Structures
table or array names
total number of elements #name
current item number (variable) name+
sets current item (n) name
advance to next element +name
size of offset to item from name-+
beginning of structure
size of (bytes per) /name
(short for BYTES /name)
index pointer >name

286 Summary of Style Conventions

FEzxzample

1+
2%
+DRAW
*DRAW

CASE:

; CODE

C,
[COMPILE]
CR’
(TYPE)
<TYPE>

if

(IF)
:COLOR
DISKING

EMPLOYEES
#EMPLOYEES
EMPLOYEE#
13 EMPLOYEE
+EMPLOYEE
DATE +

/EMPLOYEE

>IN

Meaning

convert address of structure to
address of item

file index

file pointer

initialize structure

Direction, Conversion
backwards

forwards

from

to

convert to

downward

upward

open

close

Logic, Control

return boolean value
returns reversed boolean
address of boolean
operates conditionally

enable
or, absence of symbol
disable

Memory

save value of

restore value of

store into

fetch from

name of buffer

address of name

address of pointer to name

exchange, especially bytes

Numeric Types

byte length

2 cell size, 2’s complement
integer encoding

mixed 16 and 32-bit operator

3 cell size

4 cell size

unsigned encoding

Form

>name

(name)
—name
Oname

name<
name>
<name
>name
name>name
\name
/name
{name
}name

name?
-name?
‘name?
Tname

+name
name
-name

@name
lname
name!
name@
:name
‘name
‘name
>name<<

Cname
Dname

Mname
Thame

Qname
Uname

Ezxample
>BODY

(PEOPLE)
-JOB
ORECORD

SLIDE<
CMOVE>
<TAPE.

>TAPE.
FEET>METERS
\LINE

/LINE

{FILE

}FILE

SHORT?
-SHORT?
>SHORT?
?DUP
(maybe DUP)
+CLOCK
BLINKING
-CLOCK
-BLINKING

@CURSOR
!'CURSOR
SECONDS!
INDEXG@

: INSERT
’S

’TYPE
>MOVE<

ce
D+

Mx*
T*
Q*
U.

Naming Conventions

287

Meaning Form Example
Output, Printing

print item .name .S

print numeric (name denotes type) name. D. , U.

print right justified name.R U.R

Quantity

“per” /name /SIDE

Sequencing

start <name <#

end name> #>

Text

string follows delimited by ” name” ABORT”’ text’’

text or string operator “name ‘‘COMPARE
(similar to $ prefix in BASIC)

superstring array “name” “‘COLORS”’

How to Pronounce the Symbols

store

fetch

sharp (or “number,” as in #RECORDS)
dollar

percent

caret

ampersand

star

PN F IO -

left paren; paren
right paren; paren
dash; not
plus
equals
braces (traditionally called “curly brackets”)
square brackets
quote
as prefix: tick; as suffix: prime
tilde
bar
backslash. (also “under,” “down,” and “skip”)
slash. (also “up”)
less-than
left dart
> greater-than
right dart
? question (some prefer “query”)
, comma
dot

|~ —~ *ge

=" +
-

i

A S~

288 Summary of Style Conventions

INDEX

A
Abbreviations, 165-166
Abstraction, 3-5
Address-precedes-counts syntax rule,
115
Algorithms, 12, 20, 21, 119-120,
122, 125-127, 133, 249-250
Analogous problems, 102
Analysis, 38, 4549
budgeting, 66—68
conceptual model, 46-53, 59—
60, 68
constraints, 46
data structure definition, 59—
60
decision table, 55-59
decision tree, 55
defined, 45
interface definition, 49-52
requirements, 46
rule definition, 52-59
scheduling, 66—68
simplicity, 60—65
Structured English, 5354
AND, 241-242
Arrays, 193-194
ASCII, 234, 276
Assemblers, 3, 34, 118
Assembly language, 3, 5
Auxiliary problems, 104, 106

B

BASE, 148-149, 210-211

BASIC, 3,5, 7

Batch-compile development sequence

elimination of, 31
Bernstein, Mark, 29, 262-263
Blank space (BL), 169, 277
Booleans, as hybrid values, 240
Boutelle, Jerry, 263
Branching, 5
Brooks,Fredrick P., Jr., 68
Budgeting, 6668
Bundling of names and numbers,

167

Burgess, Donald A., 108-110

Calculations, 120-122, 240242
Calls, implicit, 19
Capability, 32
Case statements, 175, 237-238
Chapter-load screens, 140-143
Chapters, 138
Clichés, 188
CODE, 266
Code:
factoring out from within con-
trol structures, 174-175
repetition of, 180-181
Coincidental binding, 14
Commands, reducing number of,
184-187
Comment conventions, 150-159
Comment line, 146-147
Commenting style, 285-286

Communicational binding, 14
Compile-time factoring, 188-192
Compilers, 34, 116-119
Compiling words, comments for,
158-159
Component programming, 20-23
Components:
decomposition by, 72-88
sharing, 213-215
Composition, 138
Conceptual model, 46-59, 68, 131
data structure definition, 59—
60
defined, 46
interface definition, 49-52
rule definition, 52-59
Conditionals, nesting and combin
ing, 235-236
CONSTANT, 266
Constraints, 46
Control flags, 174
Control flow, 5
Control structure minimization,
228-259
calculating results, 240-242
case statements, 237-238
decision tables, 243-249
dictionary, 232-234
looping structures, 238-240
nesting and combining condi-
tionals, 235-236
reasons for, 228-229
redesigning, 249-252
simplification, 258-259
structured exits, 252-254
timing, 2564-258
tricks, 242
Control structures:
choosing, 237
defined, 268
factoring out, 174-175
factoring out code from within,
174-175

INDEX

minimization of, see Control struc-

ture minimization
Counted strings, 176-177
Counts vs. terminators, 239-240
Coupling, 15
Cross-compilers, 34
Customer constraints, 46

D

Data abstraction, 18
Data coupling, 15
Data handling, see Data stacks,
Data structures
Data passing, implicit, 19, 25
Data stacks, 19, 32
concept of, 198-199
vs. data structures, 201-203
defined, 267
depth of, 199-201
drawings, 204-206
local variables and,, 201-203
PICK and ROLL, 203-204
return, 206, 213
saving and restoring states, 210—

212
Data structures:, see also Vari-
ables
vs. calculation vs. logic, 120-
122

vs. data stacks, 201-203

defined, 120

defining, 59-60

hiding construction of, 25-27

operators, 266, 267
Data, factoring out, 172-173
Data-flow diagrams, 49-51
Data-structure comment, 150, 155
Dates, representation of, 146
DECIMAL, 148-149
Decision table, 55-59, 243-249
Decision tree, 55
Decomposition, 138

by component, 72—88

by sequential complexity, 88—
90
Defining words:
comments for, 158
compile-time factoring through,
190
length, 178-180
procedure, 266
Definitions-consume-arguments syn-
tax rule, 114
Design, see Detailed design, Pre-
liminary design
Dessy, Raymond E., 263
Detailed design, 100-133
algorithms, 119-120
calculations, 120-122
data structures, 120-122
demonstration of, 122-133
Forth syntax, 110-119
logic, 120-122
problem solving techniques, 100
108
steps in, 110
Development cycle, see Program-
ming Cycle
Dicing, 21
Dictionary:
control structure minimization
with, 232-234
defined, 266-267
Disk partitioning, 144
DO LOOP, 188, 190, 238
DOER/MAKE, 219-226, 270-274
Dumb words, 233-234

Electives, 145-146

ELSE, 268

EMIT, 174-175

Encryption, 164

Engineering, see Detailed design;
Preliminary design

Error handling, 50

Error-code, 205-206

EXIT, 140, 253, 272

Expectations-in-input-stream syn-
tax rule, 115-116

Expecting, 156

Expressive words, 163

Factoring, 172-195
compile-time, 188-192
criteria, 178-188
defined, 172
iterative approach, 192-195
techniques, 172-177
FALSE, 169, 277
FH, 276277
File-based system, 144
Flags, 155, 174, 268
Flow charts, 5
Forth, 19-35
advantages of, 29, 32
capability of, 32
component programming, 20—
23

data handling, see Data stacks,
Data structures

as design language, 31

effect on thinking, 262-263

high-level language issue, 27—
31

implicit calls, 19

implicit data passing, 19-20

information-hiding, 16-18, 24,
182-184

lexicon, 22-23

overview of, 266268

performance of, 32-34

programming cycle, see Program-
ming cycle

size of, 34

speed of, 32

style, see Implementation

syntax, 110-119

FORTRAN, 3, 5
Functional strength, 14—-15

INDEX

291

Functions:
factoring out, 174, 177
vectored execution, 219-220
“Fun-down” approach, 91

G
Global variables, 210
GO TO commands, 5, 6

H

Ham, Michael, 208, 262

Hardware constraints, 46

Harris, Kim, 39, 136

Hart, Leslie, 107

Hierarchical input-process-output

designing, 15-16

High-level languages:
development of, 3, 5
Forth as, 27-31

How to Solve It (Polya), 100

Hybrid values, 241-242

Hyphenated names, 166-167

Implementation, 136-170
choosing names, 163-168
comment conventions, 150-159
factoring, see Factoring
listing organization, 136-146
screen layout, 146-150
vertical format vs. horizontal

format, 159-163

Implicit calls, 19

Implicit data passing, 19-20

Indentation, 150, 284

INDEX, 145

Information-hiding, 16-18, 24, 85,

182-184

Input-process-output designing, hi-

erarchical, 15-16
Input-stream comment, 150, 156,
285
Interface component, 85-88
Interface definition, 49-52, 101

INDEX

Interface lexicon, 210

INTERPRET, 239

Interpreters, 118-119

Iterative approach, 39-40, 192—
195

J

Johnson, Dave, 40—41, 52, 160
Jump instructions, 5, 6

K
Kogge, Peter, 44-45, 208

L

LaManna, Michael, 65

Laxen, Henry, 164

LEAP, 277

“Level” thinking, limits of, 90-95

Lexicons, 22-23, 110-119, 138

Line-by-line commenting, 161

Listing organization, 136—143

LIT, 177

Load screens, 138-143
application, 138-140
chapter, 140-143

Local variables, 201-203, 210

Logic, 120-122

Logical binding, 14

Loops, 5, 238-240, 268

M

Macro assembler, 3

MAKE, 234

Manageability, 5

MAX, 242

MIN, 242

Mnemonics, 3

Modularity, see Structured pro-
gramming

Moore Products Company, 142

Moore, Charles, 27, 52, 60-63,
90-91, 119, 133, 142-143,
149, 164-166, 170, 178-181,

188, 193-195, 198, 210, 212,
228-229, 233, 238, 241242,
248-250, 252-253, 259
Multiple exit loops, 175
Multiprocedure module, 18
Mythical Man-Month, The Brooks,
68

N
Nameability, 181-182
Named files, storing source code
in, 144
Names:
choosing, 163-167
factoring out, 176-177
Naming conventions, 167-168, 286—
288
Narrative comments, 151, 160-161
Nesting conditionals, 235-236
Next block, 143
Numbers-precede-names syntax rule,
111

(@)

Object, 92

OFF, 169

ON, 169

One-dimensional data table, 243—
244

Parnas, David, 16, 18, 20
Pascal, 8
Pattern repetition, 181
Performance, 32-34
Phrases, 164-165
PICK, 203-204
Planning:
limitations of, 42-45
value of, 40-42
Polya, G., 100
Postfix notation, 111-113
Prefixes, 168
Preliminary Design, 72-95

decomposition by component,
72-88
decomposition by sequential com-
plexity, 88-90
Presuming, 156
Problem-solving techniques, see also
Detailed design, 100-108
Programmable Array Logic (PAL),
119
Programming cycle:
analysis, see Analysis
detailed design, see Detailed de-
sign
implementation, see Implemen-
tation
iterative approach, 39-40
limitations of planning, 42—45
phases, 38-39
preliminary design/decomposition,
see Preliminary design
value of planning, 40-42
Prototyping, 31
Pseudocode, 51-52
Purpose comment, 151, 156-157

Q

Quantization, 63

R

Redesigning to minimize control
structures, 249-252

Relative loading, 140-143

Requirements, 46

Return stack, 206, 211

Rockwell R65F11 Forth-based mi-
croprocessor, 34

ROLL, 203-204

Roman numeral computation prob-
lem, 122-133

Rule definition, 52-59, 101

Sanderson, Dean, 238, 239
Scanning-for, 156

INDEX 293

Scheduling, 66—68
Screens, 23
layout, 146-150
load, see Load screens
numbering, 145
Sequential binding, 15
Sequential complexity, decompo-
sition by, 88-90
Sharing components, 213-215
Simplicity, 60-65, 258259
Skip commands, 140, 276
Software development cycle, see
Programming cycle
Software elegance, history of, 2—
18
abstraction, 35
manageability, 5
mnemonics, 2—3
power, 3
structured programming, see Struc-
tured programming
Source-precede-destination syntax
rule, 115
Spacing, 149-150, 284
“Spaghetti” programs, 5
Speed, 32
Spelled-out names, 165-166
Stack abbreviation standards, 153,
284-285
Stack effect, 152
Stack notation, 151
Stack picture, 151-152
Stack-effect comment, 150, 152—
154
Stacks, see Data stacks
Stamp, 146
Starling, Michael, 43-44
STATE, 234
State table, 215219
Stolowitz, Michael, 119
String input, receiving, 156
Structure
superficiality of, 18
Structure chart, 15-16

INDEX

Structured analysis, 50-51
Structured English, 53-54
Structured exits, 252-254
Structured programming
(modularity), 522
characteristics of, 5-9
vs. component programming,
21-22
coupling, 15
functional strength, 14-15
hierarchical input-process-output
designing, 15-16
information-hiding, 16-18
new view of, 18
premises of, 6
subroutines, 9-12
successive refinement, 12
top-down design, 9
writeability, 8-9
Stuart, LaFarr, 63
Subroutines, 9-12
Successive refinement, 12
Suffixes, 168
Symbols, pronunciation of, 288
Syntax Forth, 110-119

T

Target compilers, 34

Teleska, John, 41-43, 49-50

Terminators vs. counts, 239-240

Text-follows-names syntax rule, 113

Thesaurus, 164

THRU, 143

Top-down design, 9

Tricks, 242

TRUE, 169, 277

Two-dimensional data table, 244—
245

Two-dimensional decision table, 245—
248

\/

VARIABLE, 266

Variable possibilities, notation of,
153-154
Variables:
global, 210
local, 201-203, 210
problem with, 207-208
saving and restoring states, 210—
212
state table, 215-219
Vectored Execution, 219-220
Vectored execution, 90
Vertical format vs. horizontal for-
mat, 159-163

w

Whole-brain thinking, 107

Wirth, Niklaus, 8

WITHIN, 169, 277

Words:
choosing names, 163168
defining, see Defining words
ordering, 113

Working backwards, 103-104

Working forwards, 103

Writeability, 89

y4

Zero-relative numbering, 114-115

INDEX 295

