
Monarch Data Systems
P.O. Box 207, Cochituate, Massachusetts 01778

i

Monarch Data Systems 11'.

A BASIC Compiler for Atari'Computers

H(~h~u~Il(:eManual

r

ABC
A BASIC Compiler

for Atari Computer Systems

Version 1.0

Monarch Data Systems
p.O. Box 207, Cochituate, Massachusetts 01778

Program, documentation and packaging
Copyright (C) 1982, 1983 Monarch Data Systems

All rights reserved
Unauthorized duplication prohibited

"Atari" is a registered trademark of Atari, Inc.

Section 1

Sec tion 2

Section 3

Sec tion 4

Sec tion 5

Section 6

Section 7

Contents

Introduction
1.1 How Does It Work?
1.2 System Requirements
1.3 Distributing Your Compiled Software
1.4 Contents Of This Package
1.5 Purpose Of This Manual
1.6 References

Disk Backup and Replacements

Compiling A BASIC Program

BASIC Programming Considerations
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Integer Arithmetic
Unsupported Functions
Simulating Floating-Point Numbers
Simulating The RND() Function
Simulating Trigonometric Functions
Limited Size Of Constants
Order Of Operations
Unsupported Arithmetic Operators
Unsupported BASIC Statements
Break Key Handling
Subroutines And FOR/NEXT Loops
Arrays And Strings
Timing Loops

Advanced Usage5.1 Changing The Load Address
5.2 Generating Relocatable Code

Technical Notes
6.1 Error Checking
6.2 Low Memory Usage
6.3 Memory Allocation

Error HandlinE.
7.1
7.2
7.3
7.4

Compilation Errors
Illegal Statement Messages
Illegal Function Messages
Run-Time Errors And Program Termination

3
3
4
4
4
5
5

Sec tion 1
Introduc tion

ABC is a software development tool designed to improve the
performance of your Atari BASIC programs. It lets you enjoy
the high speed and memory efficiency of compiled languages like
FORTH and C, without leaving the familiar environment of your
BASIC cartridge.

5
1.1 How Does It Work?

6
ABC stands for "A Basic Compiler." A compiler is a program
that accepts source code (your BASIC program) and translates it
i.nto another form, in this case a compact pseudo-code or
P-code. Once compiled, this P-code can be executed by another
program called a run-time interpreter. Both a compiler and an
interpreter are included on your ABC disk.

8
8
8
9
9

10
11
12
12
13
13
13
14
14

To compile a BASIC program with ABC, you must first SAVE the
BASIC program on a disk. The ABC compiler reads your BASIC
program off the disk and translates it into P-code, one line at
a time. Then it permanently links a copy of the ABC
interpreter to the P-code, and saves the compiled program as a
binary disk file which can be loaded and executed like a
machine-language program. The BASIC source file is unaffected.

The benefits of using ABC include:

15
1.5
16

Faster execution speed. ABC-compiled programs run from four to
twelve times faster than the original BASIC version, depending
on the source code. This makes it possible to use Atari BASIC
for professional game development and other speed-critical
applications.

17
J 7
1"1
I I

Greater memo~ficiency. The P-code produced by ABC is
considerably more compact than tokenized BASIC. Numbers are
stored in three bytes instead of the six required by the Atari
floating-point routines. Additionally, the ABC interpreter
requires only 4K of memory, about half that used by the BASIC
cartridge. The result is a compiled program that requires much
less memory overhead than the original BASIC version.

III
11\

I')
I')
I') ~~~~cartridge environment. Compiled programs can be run

without the BASIC cartridge! This allows access to the upper
HK--(~f"-,~emoryin a 48K system, which is normally de-selected by
I I\(' car tridge.

-3-

..._----_ ..._,,---_ ...__ ...---.--------------------------~-~-.

Source code protection. ABC P-code is a compressed and encoded
version of the original source program which is very difficult
to understand without detailed knowledge of the ABC run-time
interpreter. For this reason, a BASIC program processed by ABC
cannot be listed or disassembled and is extremely hard to
"break. "

~~~.!:..eose Of This Manual

The ABC Reference Manual is intended to show you how to operate
your ABC software. You should already be familiar with Atari
BASIC programming and with Atari DOS 2.0S.

1.2 System Requirements 1.6 References

To use the ABC software, your Atari computer system must
include a minimum of 40K memory and at least one disk drive.
You must also have the Atari Disk Operating System, DOS 2.0S,
to create your working copy of the ABC disk.

The following reference documents are published by Atari.

Atari BASIC Reference Manual (C014722)
Atari Disk Operating System II Reference Manual (C016347)
Atari Technical_~eference Notes (C016555)

The memory required to run a compiled program depends on the
size of the original BASIC source code, and may be little as
16K bytes. Section 2

Disk Bac!5ill2-'!o!lQ_!':~I!l§H!!!§'!H.§1.3 Distributing Your Compiled Software

No royalties or licensing fees are required to distribute
software processed by ABC. However, we do require that your
software bears the following notice: The ABC BASIC compiler disk is shipped on a copy protected

disk to prevent unauthorized duplication. Although we dislike
copy protected products ourselves, we are aware that there are
some illegal copies of an early (buggy) version of our
compiler.

"Produced using copyrighted software products of Monarch Data
Systems, Cochituate, MA 01778."

Display the notice prominently on either the program title
screen or in the documentation provided with the product.
Failure to reproduce this notice may constitute a copyright
infringement.

To help lessen the blow to our legitimate users, we allow the
purchase of a single backup disk for a reduced rate when
ordered along with a completed user registration form. The
price for that backup copy is printed on the form.

1.4 Contents Of This Package
We also provide replacement diskettes for worn out copies when
you ship back your original diskette along with a check or
money order for $6.95.

Your ABC package should contain:

A disk containing the ABC compiler, run-time interpreter
and a relocation utility;
A label for your working copy of the ABC disk;
This reference manual, and;
A user registration form.

We will notify our registered users of bugs that have been
found and improvements in future releases.

Under no circumstances will we offer support to users that
have not returned a completed registration form.

Please take the time to fill out and return the registratioll
form. This will enable us to supply you with revisions and
enhancements to the ABC system, and to keep you informed <) r II.·W

products as they become available.

-4-
-5-



Section 3
Compilin~BASIC ~rogram

A compiled ~:£.ogramcan only be a~oo~~he oJO.igin~~~-I.~
source. If your BASIC code has bugs in it, ABCwi l I faithfully
translate the bugs into P-code, resulting in incorrect
operation at best and a total system crash at worst. Then
you '11 have to return to your BASIC source, track down the bugs
and re-compile. .Alw~.l~maI<:~.sur~.l~~!:._BASIC _P-~~~:£.~~i~ working
properly befOl:~~oU _~~~_'::.o_l!£ile _i.t:..

Once you're satisfied with your source code, SAVEit onto a
disk using a BASIC command in the form:

SAVE"Dl :PROGRAM.BAS"

Naturally, you can specify a different drive
want, with any legal file name or extender.
extender is useful because it helps you tell
compiled versions of your programs apart.

number if you
The ".BAS"
the BASIe and

The ABCcompiler is supplied as an AUTORUN.SYSfile that will
execute whenever your working copy is booted on Drive #1. Use
the following procedure to compile a SAVEdAtari BASIC program:

a. Remove all cartridges from your computer. Turn on Drive 111
and wait for the "BUSY" light to go out.

b. Insert your ABCworking disk into Drive 111 and turn on the
computer.

c. The ABC title screen and copyright notice will appear on
your TV set or monitor. Approximately one second later,
the system will begin reading the ABCrun-time interpreter
into memory.

d. When the interpreter is loaded, the program will ask you to
remove the ABCdisk and insert the disk that contains your
SAVEDAtar i BASIC program.

-6-

e. ABCwill next request the name of your BASIC source program
(the one you are compiling). Respond with a drive-
specifier (D1:, D2:, etc.) and the full file name,
including any extensions. A default drive specifier of
"Dl:" and a ".BAS" extension will be provided if they are
not supplied by you. If your filename has no extender,
include a trailing period ("PROGRAM.")to prevent ABCfrom
trying to add the" .BAS" extender.
You will now be asked to specify the name of the
destination file. This file will eventually become the
campil,'!d vers Lon of your BASIC program. Again respond with
a drive specifer and a full file name. The defaults are
"Dl:" with a ".CMP" extender.
ABCw i l l. immediately open a new disk file with the name you
selected. It will then write a copy of the run-time
interpreter into the new file. A temporary "scratch pad"
file is also created on Drive #1 for ABC's own use.
(NOTE: In single-drive systems, the destination file is
always written on the same disk as the source file. Make
sure the disk is not write-protected or you will get an
error message.)
The compiler now begins to scan your original BASIC
program. First, it displays the number of variables
(symbols) used in your program, followed by the total
number of program lines. Using this information, the
compiler proceeds to convert each BASIC line into P-code.
The progress of the compiler is indicated by displaying
every 25th line number of the BASIC program, with
intermediate lines represented by a single dot.
After a successful compilation, ABCwill display a
"Compilation Completed" message. You will then be offered
a choice via the console switches of whether to re-run the
compiler (START), reboot the system (OPTION) or return to
DOS (SELECT). To run the pr~~ra~ just compiled, return
to DOSby pressing the SELECTkey and use DOSoption "L" to
load the destination file, which will begin executing
automatically.

f.

g.

h.

~.

-7-



Section 4
BASIC Programming Considerations

To achieve the high speed and efficiency of the ABC system, it
was necessary to place a few limitations on the Atari BASIC
code that can be compiled. Most programmers will find that
these "limitations" aren't very restricting at all -- in fact,
they may actually help to improve your programs by making you
explore alternative methods of problem-solving.

4.1 Integer Arithmetic

Each constant and variable in an Atari BASIC program is stored
in floating-point format, using six bytes of binary-coded
decimal. Whenever you RUN a BASIC program, these numbers must
be translated back and forth from floating-point to "straight"
binary so that they can be used by the Atari operating system
ROM. This constant translating and the general "laziness" of
floating-point operations are the main reasons for the
notoriously slow speed of Atari BASIC.

ABC avoids the speed limitations of floating-point by using
only integer (whole number) arithmetic. Values are stored as
three bytes of "straight" binary, with a usable range of
approximately -8 million to +8 million.

Most Atari programs do not need floating point arithmetic.
Games, graphics and systems software rarely employ fractions or
complex mathematical functions. As a result, you may find that
many of your favorite BASIC programs can be compiled with
little or no alteration. And because of ABC's wide usable
number range, it's possible to simulate almost any
floating-point function using simple integer operators.

4.2 Unsupported Functions

Because ABC does not employ floating-point math, it will not
accept a BASIC program that contains any of the following
functions:

ATN
RND

CLOG
SIN

COS
SQR

EXP LOG

-8-

4.3 Simulating Floa~~-P~int _1iumbel::.~

You can partially compensate for ABC's lack of floating-point
by scaling all of your intermediate results. For example, if
you multiply a number by 100 before performing a division, you
will obtain two significant digits after the "imaginary"
decimal point in your answer.

Suppose you need to divide 7 by 2, with an accuracy of two
significant digits. In regular Atari BASIC, this would be
coded as:

ANSWER = 7/2 (evaluates to 3.50)

In a BASIC program intended for compilation, you could use:

ANSWER = INT«7*100)/2)

which evaluates to 350 in both Atari and ABC-compiled BASIC.

This method is not intended as a substitute for the convenience
of automatic floating-point. But it should satisfy the limited
need for fractions in the majority of games and systems
programs.

4.4 Simulating The RND() Function

At first i.tmay not seem obvious why RND() is included on the
list of unsupported functions. In Atari BASIC, RND() returns a
value that is less than one and greater than or equal to zero.
This value cannot be represented by a whole number, and
therefore requires floating-point. So if you need a random
number in your ABC program, you'll have to find a way to obtain
it without using RND().

Fortunately, the hardware provides a simple way to simulate the
RND() function. The Atari operating system is constantly
storing a new random integer between 0 and 255 into memory
location 53770. Almost any random value can be obtained by
PEEKing this location and scaling the result appropriately.

To illustrate the technique, let's assign the memory address
53770 to the variable RANDOM:

RANDOM = 53770

-9-

-.~
~!~I\I
.,1

ii I
I' 1I.. I

if

I~, I

:!:I

:~,



Suppose your latest computer game needs a random vallie from
to 9, inc lusive. You could obtain it with the fo 11 owing
expression:

0 Now, suppose you have prepared tables of scaled SIN and COS
values in arrays sO and C(), respectively, and you want to
draw a circle of radills R at center point X and Y. The
following instructions will accomplish this:

VALUE = INT(PEEK(RANDOM)*10/256)

To obtain a value from 0 to 99 you could use:
100 FOR I = 0 TO 359
110 PLOT X+R*S(I)/1000,Y+R*C(I)/1000
120 NEXT I

VALUE = INT(PEEK(RANDOM)*100/256)

In the event that you want a random value greater than 255, you
will have to break up the number into groups of one or two
decimal digits. If, for instance, you need a value between 0
and 999, you could get the "hundreds" digit with:

To generate a trig table at run-time you can make use of the
trigonometric identities:

si nf a+b )
c os Ca+b )

sin(a)cos(b)+sin(b)cos(a)
cos(a)cos(b)-sin(a)sin(b)

HUNDS = INT(PEEK(RANDOM)*10/256) By selecting the angle b as a constant and looking up its sine
and cosine, you can iterate through all the angles by the
increment of b and fill in an array with appropriately scaled
values.

Now get the tens and ones digits together:

OTHERS = INT(PEEK(RANDOH)*100/256)

Combine the results:
4.6 Limited Size Of Constants

VALUE = HUNDS*lOO+OTHERS
Although the range of variables that can be handled ABC exceeds
16 million, it cannot compile a BASIC program that contains a
constant larger than 65,535.

and the variable VALUE will contain a random number between 0
and 999. The blame again lies in the operating system. The Atari ROM

routines that convert binary-coded decimal to "straight" binary
only support numbers in the range from 0 to 65,535.4.5 Simulating Trigonometric Func dons

The simplest way to simulate an Atari BASIC trig function is to
prepare a look-up table. You can either enter the table values
in a DATA statement, use integer approximations to calculat~
the values at run-time, or use Atari BASIC to compute the
values once and fill an array with the resul ts.

It's very easy to get around this limitation. As an example,
suppose your program uses a variable BIGNUM with a value of
250,000. In regular BASIC, you would assign this value with
the expression:

BIGNUM = 250000
The essential trick is to convert each table element to a whole
number by scaling it by an appropriate factor. If you need
accuracy to two significant digits, you would mUltiply by 100;
for three-digit accuracy, 1000, etc. Using the SIN() function
as an example:

ABC would disapprove of all those zeroes. But the expression:

SIGNUM = 250*1000

VALUE = INT(lOOO*SIN(X»
yields exactly the same result without making ABC unhappy.

Then SIN(O) becomes 0, SIN(45) becomes 707 (normally 0.707) and
SIN(90) becomes 1000 (normally 1).

-10- -11-



Don't forget that the numbers in a DATA statement are not
regarded as constants. So you can also use the expressions:
100 READ BIGNUM
110 DATA 250000

and still satisfy both BASIC and ABC.

4.7 Order Of Operations

ABC handles division operations differently than Atari BASIC.
Consider the following example (constants are used as aconvenience):

x = INT(S/3*2)

The BASIC cartridge would first divide 5 by 3 (yielding a
result of 1.66), multiply by 2 (with a result of 3.32) and
apply the INT function to obtain a final value of 3. But
because the ABC interpreter deals only with whole numbers, it
treats all division operations as an implicit INT(x/y)
function:- This means that ABC would interpret the aboveexpression as:

then

x = INT(INT(5/3)*2)

which evaluates to 2 instead of 3!

To make the above example work in both standard and compiled
BASIC, all that is needed is a simple inversion of terms:
X = INT(5''<2/3)

This technique yields the desired result (3) in either case.

Division is the only ABC operation that does not conform to
Atari BASIC. Multiplication, addition and subtraction are
performed in the normal manner.
4.8 Unsupported_Arithmetic Operators

Only one arithmetic operator is not supported by the ABC
compiler: the exponentiation operator "A." This operation is
easily simulated (with greater speed) by using sequentialmultiplications.

-12-

4.9 Unsupported BASIC Statements

Once an Atari BASIC program has been translated into P-Code, it
cannot be accessed by the BASIC cartridge. For this reason,
compiled programs must not try to use the loading, saving and
editing functions supported by the cartridge. In addition,
because ABC does not employ floating-point math, the DEG and
RAD statements have no meaning to the interpreter.

ABC will not compile a BASIC program that contains any of the
following statements:

BYE
DOS
NEW

CLOAD
ENTER
RAD

CONT
LIST
RUN

CSAVE
LOAD
SAVE

DEG
LPRINT

4.10 Break Key Handling

When you hit the BREAK key during the execution of a normal
Atari BASIC program, the program STOPs at the current line
number and returns to the cartridge for the READY prompt.

A compiled program has no cartridge to return to, so hitting
the BREAK key does not stop the program unless the key was
struck during an I/O operation. This forces an Error #128
(Break Key Abort) which, unless TRAPped, causes the program to
terminate.

You can avoid problems with the BREAK key by disabling it with
appropriate POKEs. Refer to the Atari Technical Reference
Notes for more information on controlling the BREAK key.

4.11 Subroutines And FOR/NEXT Loops

When using ABC, it I s important to keep track of how you exit
subroutines and FOR/NEXT loops. In the following example:

100 FOR I = 1 TO 100
110 IF I = 50 THEN GOTO 130
120 NEXT I
130 PRINT "Loop aborted."

the lack of a POP statement would probably confuse ABC when the
loop index reached 50. The correct method is:

-13-

~
!~ I
.I I
~ I

:f I
III! i

I II

1
J~
~

III

11II

Ii,

l~
I~il

Illi

II

I



110 IF I = 30 THEN POP : GOTO 130

This is good programming practice even in a non-ABC environment.

The ABC interpreter is designed to handle no more than 64
outstanding GOSUBs and/or FOR/NEXT loops simultaneously.
you manage to write a BASIC program that requires greater
depth than this, congratulations!

If
stack

4.12 Arrays And Strings

ABC does not use the same memory allocation method for arrays
and strings as Atari BASIC. Consequently, programs that take
advantage of BASIC's array and string allocation structure will
not operate correctly when compiled. The ADR() function will,
however, always return correct values.

Consult Section 6.3 of this manual for more information on
ABC's memory allocation scheme for arrays and strings.

4.13 Timing Loops

BASIC programmers often use "do-nothing" FOR/NEXT loops to
obtain time delays. These usually appear in the form:

100 FOR DELAY = 1 TO 100
110 NEXT DELAY

You will be in for a shock if you compile and run the above
instructions. ABC will execute the loop so rapidly that the
delay will seem to disappear!

The best way to write a controllable time delay for ABC is to
use one of the Atari's built-in hardware timers. The operating
system changes the value of memory location 20 every 1/60th of
a second. By PEEKing this location in a FOR/NEXT loop, you can
obtain precise time delays that will work correctly in both the
BASIC and compiled versions of your software.

-14-

The following time-delay subroutine can be appended to any
BASIC program:

1000 REM * ABC TIME DELAY SUBROUTINE
1010 REM * Set the value of variable JIFFIES equal to
1020 REM * the desired time delay in 60ths of a second.
1030 REM * Then perform a eOSUB 1000 to obtain delay.
1040 FOR DELAY = 1 TO JIFFIES
1050 TICK = PEEK(20)
1060 IF TICK = PEEK(20) THEN 1060
1070 NEXT DELAY
1080 RETURN

To get a 5-second time delay with this method, you could write:

100 REM * This is the body of your program.
110 JIFFIES = 60*5 : eOSUB 1000
120 REM ,',You just waited 5 seconds.

See tion 5
Advance~age

The following information is included for advanced programmers
who may want to alter the default properties of the ABC
compiler. Software authors who wish to distribute their
compiled programs should also read this section.

~ ChanginLI~e Loa<!~ddress

The ABC com.piler normally produces code that is loaded at
memory address $2600 (hex notation). This default address is
derived from the run-time interpreter that is automatically
loaded by the compiler (see Section 3). You can obtain an
alternative load address by choosing a different run-time
interpreter when the ABC compiler is run.

Immediately after the ABC copyright message is displayed, the
compiler scans the console switches for one second. If you
press the OPTION key during this period, ABC will not proceed
to load the $2600 interpreter. Instead, it will ask you for
the name of one of the other interpreters included on your ABC
disk. Respond with "INTERP.Xnn" where nn is the high byte of
the load address in hex. For example, if you wanted a load
address of $lFOO, answer the prompt with "INTERP.XlF."•

I
t,

-15-



To find out which run-time interpreters are available on your
ABC disk, enter DOS and use menu option "A" (directory) to
examine the list of "INTERP" files. Contact Monarch Data
Systems if you need an interpreter with a specific load address.

5.2 Gen~rating Relocatable Code

When producing software for commercial distribution, it's a
good idea to make the code relocatable to assure compatibility
with different memory configurations. Your ABC disk includes a
special utility called "MKRELO" that can be used to produce a
compiled, fully relocatable version of your Atari BASIC
programs.

The code-generating technique used by MKRELO is unusual. It
requires that you compile your BASIC source program twice,
using different load addresses. MKRELO then compares the two
disk files and produces a third version of the program which
can be loaded at any address.

The following procedure illustrates the proper use of MKRELO.
It assumes that you have SAVEd a BASIC program called
"GAME.BAS" on a source disk which also contains DOS 2.0S. Make
sure there is plenty of free space on the source disk.

a. Boot your ABC working disk along with the default ($2600)
interpreter as described in Section 3.

b. Respond to the prompt for the BASIC source filename
("GAME .BAS" or just "GAME" in this example).

c. Respond to the prompt for a destination filename, say
"GAME.X26."

d. When the first compilation is completed, replace the ABC
working disk into Drive #1. Press the START key and
imm~~iately press and hold the OPTION key until you receive
the prompt for an interpreter filename. Respond with
"INTE RP. XlF."

e. After the compiler reads the $lFOO interpreter into RAM,
replace the BASIC source disk and provide the source
filename again ("GAME.BAS"). Then give ABC a destination
filename that is different from the one used for the first
compilation ("GAME.XlF," for instance).

f. Wnen the second compilation ends, return to DOS by pressing
the SELECT key. Re-insert the ABC disk and use DOS option
"L" to load and automatically run the MKRELO program.
Replace the program disk when the MKRELO title appears.

-16-

g. MKRELO will ask for the names of the two files created by
the previous compilations. Respond with "GAME.X26" for the
first prompt and "GAME.XIF" for the second prompt.
You will now be asked for the filename of the final,
relocatable program. Respond with a suitable title (e.g.;
"GAME.REL") and press RETURN.
MKRELO takes a while to finish because it compares the
files one byte at a time. Once the process is completed,
re-enter DOS by pressing the SELECT key. To load and run
~r relocatable program, use DOS option "L" and respond
with the name of the file created by MKRELO.

h.

~.

Section 6
Technical Notes

This section provides various technical details about the ABC
compiler and the P-code it produces.

6.1 Error Checking

Most program conditions that require monitoring are checked
during run-time. However, one specific condition that is not
checked is subscript values. Any negative or out-of-bounds
subscript will cause the ABC interpreter to behave in an
unpredictable manner. We decided not to check subscripts
because it saves execution time, and it was assumed that your
source programs would be debugged before compilation.

6.2 Low Memory Usage

The ABC run-time interpreter uses all page zero locations from
$80 and $C2 hex, inclusive. The standard BASIC line number and
error number locations are supported. However, other BASIC
zero-page variables (such as the high address pointer and
symbol table pointer) are not supported. Page six ($600-$6FF)
is fully available for USR~utines and other purposes.

6.3 Memory Allocation

Compiled programs initially so?t the OS variable APPMHI ($OE-OF)
to the end of the loaded program module. During the course of
program execution, the value of APPMHI is automatically
adjusted upward for the following reasons:

-17-

.._~_~~_~ __ .. ~ ~ e;....a.



Input Statement Buffer.
The first INPUT statement causes allocation of a 255-byte
buffer.

GOSUB and FOR Stack.
The first GOSUB or FOR statement causes allocation of a
128-byte stack.

DIM Statements.
Each DIMensioned numeric array requires nine bytes of control
information plus three additional bytes per array element.
DIMensioned string variables require nine bytes of control
information plus one byte for each string character.

Applications may allocate memory by adjusting APPMHI upward,
but to be compatible with the BASIC cartridge you should work
from MEMTOP ($2E5-2E6) downwards. It's also a good idea to
execute all DIM statements, a loop or GOSUB and an INPUT
statement before allocating memory to make sure there's enough
room for ABC to work comfortably.

Section 7
Error Handling

.7.1 Compilation Errors

Most of the error messages that can result from a compilation
error are self-explanatory. However, there are two types of
messages that require some explanation.

If your BASIC source program includes an illegal statement or
function, the compiler will display a coded message number that
indicates which type of statement or function caused the
error. A list of error message numbers and their corresponding
statement/function follows.

-18-

•...

7.2 Illegal Statement Messages

Code 11 Statement Name

4 LIST
14 BYE
19 DEG
24 LOAD
33 RAD
46 OOS
52 CSAVE

7.3 Illegal Function Messages

Code if Function Name

68
71
74
76

ATN
SIN
EXP
CLOG

Code if Statement Name

5 ENTER
15 CaNT
22 NEW
25 SAVE
37 RUN
51 LPRINT
53 CLOAD

Code if Function Name

69 COS
72 RND
75 LOG
77 SQR

7.4 Run-Time Errors And Program Termination

Only one type of message can result from a run-time error.
This message displays a standard Atari BASIC error number along
with the original BASIC line number that produced the P-code
where the error occurred. You will also see a menu which
allows you proceed in various ways by pressing a console key:

OPTION
SELECT
START

Reboot entire system
Return to OOS
Re-run the stopped program

The above menu will also appear if a BASIC END command is
encountered, or if the interpreter runs out of instructions to
execute.

-19-



SOFT\~ARE REPORT #2, November 1, 1983

Warranty Information ABC BASIC COMPILER REV 1.03

Monarch Data Systems warrants to the original purchaser that
this Monarch Data Systems program diskette (not including the
computer programs) shall be free from any defects in materials
or workmanship for a period of 90 days from the original date
of purchase. If a defect is discovered during this 90-day
warranty period, and you have timely validated this warranty,
Monarch Data Systems will repair or replace the diskette at
Monarch Data System's option, providing that the diskette and
proof of purchase are delivered or mailed, postage prepaid, to
Monarch Data Systems.

This note is intended to help you get the most out of the ABC BASIC Compiler
by letting you know about existing problems and offering some helpful hints.

Items numbered 9 through 19 appeared in software report #1. Only the relevant
items are repeated from that report, hence the strange numbering here. All
known bugs in release 1.02 have been corrected in release 1.03. In addit Lon ,
several improvements have been made and begin with item number 21 in list.

This warranty shall not apply if the diskette:

9. If you use an XIO 18,#6,0,0,"S:" whi ch is a Fill function, you will find
that, Hith ABC, you can no longer PLOT any more points. This is because the
number after the filespec, in this case a zero, represents the read/Hrite
modes that are set on the file. The zero that most people use prevents
further reading or writing to the screen. Atari BASIC doesn't complain
because it does not use the standard OS output routine; but try to do a LOCATE
after this kind of Fill a\'d you'll see the problem. The solution is simple.
Just use ·XIO 18,#6,12,0,"S:" and all will be fine.

Has been misused, or shows signs of excessive wear;
Has been damaged by the playback equipment, or;
If the purchaser causes or permits the diskette to be
serviced or modified by anyone other than Monarch Data
Systems.

14. The locations 186 and 187 used to hold the line number on errors can only
be printed with the following code sequence. Changing the order of the
expression will cause it to not work because locations 186 and 187 are right
in the middle of the run-time value stack for ABC.Any applicable implied warranties, including warranties of

merchantability or fitness, are hereby limited to 90 days from
the original date of purchase. Consequential or incidental
damages resulting from a breach of any applicable express or
implied warranties are hereby excluded.

PRINT PEEK(186)+PEEK(187)*256

15. To make a compiled BASIC program run automatically when a disk 'i s bootorl
simple name the program "AUTORUN.SYS". Yes, it's that simple. If you want to
sell your software, you'll have to get a license from ATARI to distribute DOS.

Notice
16. To have one compiled program run another the folLowi.ngcode can be used:

All Monarch Data Systems computer programs are distributed on
an "as is" basis, without warranty of any kind. The entire
risk as to the quality and performance of such programs lies
with the purchaser. Should the programs prove defective
following their purchase, the purchaser and not the
manufacturer, distributor or retailer assumes the entire cost
of all necessary servicing or repair.

OPEN #1,4,0,"D:FILENAME.EXT"
X = USR(5576)

This ONLY works with DOS 2.0. Thanks to Jerry \"hite for this helpful hint.

17. Unfortunately, Atari software has a bug which prevents the RS-232 handler
from operating if OOS is ever entered after the RS-232 handler is initialized.
That is, once the AUTORUN.SYS file is executed, DOS, or more correctly
DUP.SYS, when loaded, "ill destroy the handler.Monarch Data Systems shall have no liability or responsibility

to a purchaser, customer or any other person or entity with
respect to any liability, loss or damage caused or alleged to
have been caused directly or indirectly by computer programs
sold through Monarch Data Systems. This includes but is not
limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from
the use or operation of such computer programs.

The solution to this problem is to not allow DUP.SYS to load once the handler
is initialized. The only "ay to do this and run a cOJllpiletiprogram is to
concatenate the compiled BASIC program to the AUTORUN.SYS file and load them
together as one file. By keeping the name AUTORUN.SYS your program.will run
automatically when the disk is booted.

The provisions of the forgoing warranty are subject to the laws
of the state in which the diskette is purchased. Such laws may
broaden the warranty protection available to the purchaser of
the diskette. - 1 -

I



This is accomplished by first compiling the BASIC program in the normal
manner. Then, type "DOS" to the BASIC cartridge. Now use the copy wi th
append option to append the compiled file to the AUTORUN.SYS file as follows:

(COMPUTER TYPES)
(YOU TYPE)
(COMPUTER TYPES)
(YOU TYPE)

SELECT ITEM OR RETURN FOR HENU
C
COpy - FROM,TO?
NEWPGM.CNP,AUTORUN.SYS/A

Each time you recompile the program you will have to get a "fresh" copy of the
AUTORUN.SYS file from you master diskette.

18. Sections 4.12 and 6.3 of the manual seem to cause confusion instead of
clarifying the issue. What the manual was trying to say was that you cannot
depend on ABC to allocate one string immediately after another in memory
because of the string control bytes. So if you have "DIM A$'(lOO),B$(100)" you
cannot expect that the address of B$ to be exactly 100 more than the address
of A$. Some programmers use this fact to allocate a player/missile graphics
area. This will not work with ABC.

19. Use locations 14 and 15 instead of 144 and 145 to find the end of your
BASIC program in memory. Locations 14 and 15 will work with both the
cartridge and with ABC. Be sure to first DIMension all arrays and strings
then add some slop (1000 bytes ought to be enough) to the address you find at
14 and 15.

- 2 -

Differences between release 1.02 and 1.03
(aside from all bugs in report #1 fixed).

21. The compiler now generates smaller code for variable references, saving
three bytes per reference over release 1.02. Now ; "crunching" your program by
using variables instead of constants works great.

22. The GOSUB stack now allovs up to 127 entries before overflowing. This
number is up from 64 specified in section 4.11 of the manual. This change
also means that now 254 bytes are allocated for the stack instead of 128
mentioned in section 6.3. Another byproduct of this change is that it should
eliminate any error #10 you may have seen during compilations with release
1.02.

23. The disk is copy protected, but you can now load the compiler from any
drive. Use the DOS 'L' command to load AUTORUN.SYS from the compiler disk and
use the OPTION button to specify the drive number and name of the runtime
package you want to use (see section 5.1 of the manual). This technique will
allow you to have a double densi t y drive as your default drive #1 as well as
have the compiler run under other operating systems.

24. The temporary file needed for compilation is now placed on the same drive
as the 'destination' file. This allows you to leave the compiler disk in
drive #1 during a compilation.

25. The screen is now made 'attract proof' during compilation.

H,. Spacing of most error messages has been corrected.

"1/. 'I'lu- cor rec t, number of 'dots' is displayed on the screen duri.ng comp ilnt i on
for Lhose who noticed that there was one too many.

LH. The 'UNSUPPORTED FUNCTION' message nm; displays the correct number shown
i IIthe manual. Release 1.02 showed a number that "as 60 less in value.

/'1. The compiler still does not compile a program that has no variables.

"1). I~dease 1.03 works on the new Atari 1050 drive; release 1.02 did not.

HORE HINTS

II. WIII'IIlooking through
""1110 IIIi lied with ABC, check
"I I/~\I() 255. These are
""1'1'''' I"d hy ABC (see note

a BASIC program to determine whether it will work
for all PEEKs and POKEs to addresses in the range

the BASIC cartridge specific locations and are not
#19, for example).

r.' 1":;1",,,1 of using the code shown in section4.1J for timing loops, you can
""". II,.. Io lIowing simpler code:

II/I)POKE 540,NJIFFIES
III)IF l'EI':K(540)<>0THEN 110

up to 255 in 1/60 sec~nds
wait for time to elapse

- 3 -

-..::.-:-::.~===-~=--=---==~.:::----:~':r~ ...


