
- Reference Manual

: ATARI MICROSOFT BASIC II*

ATARI® MICROSOFT BASIC
INSTRUCTIONS

- ABS 47 INKEY$ 49 RAMDOMIZE 42
AFTER 26 INPUT 31 READ 43 - ASC 48 INPUT . .. AT 31 REM 43 ATN 47 INSTR 49 REN UM 23 - AUTO 18 INT 47 RESTORE 44
CHA$ 48 KILL 20 RESUME 44 - CLEAR 26 LEFT$ 49 RETURN 45
CLEAR STACK 26 LEN 49 RIGHT$ 49 - CLOAD 18 LET 31 AND 47
CLOSE 27 LINE INPUT 32 RUN 24 - CLS 60 LINE INPUT ... AT 32 SAVE 24
COLOR 57 LIST 20 SAVE ... LOCK 24 - COMMON 27 LOAD 21 SCAN$ 50 CONT 19 LOCK 22 SETCOLOR 59 - cos 47 LOG 47 SGN 48 CSAVE 19 MERGE 22 SIN 48 - DATA 43 MID$ 49 SOUND 64 DEF 27 MOVE 32 SOR 48 - DEFSNG 12 NAME . .. TO 22 STACK 45 DEF DBL 13 NEW 23 STATUS 52 - DEF INT 12 NEXT 32 STOP 45 DEFSTR 14 NOTE 33 STA$ 50 - DEL 19 ON ERROR 33 STRING$(n,A$) 50 DIM 28 ON ... GOSUB 34 STRING$(n,M) 50 - DOS 20 ON ... GOTO 34 TAN 48 END 29 OPEN 35 TIME 53 - EOF 51 OPTION BASE 36 TIME$ 51 ERL 51 OPTION CHA 36 TROFF 25 - ERR 51 OPTION PLM 37 TRON 25 ERROR 29 OPTION RESERVE 37 UNLOCK 25

- EXP 47 PEEK 52 USA 54 FILL 60 PLOT 59 VAL 51
- FOR ... TO .. . STEP 29 PLOT .. .TO 59 VARPTR 45 FRE(O) 52 POKE 52 VERIFY 25
- GET 29 PRINT 37 WAIT ... AND 46 GOSUB 30 PRINT ... AT 38 +(Concatenation) 48 _ GOTO 30 PRINT ... SPC 38 ! (Remark) 43 GRAPHICS 56 PRINT .. .TAB 38 '(Remark) 43 - IF ... THEN 30 PRINT USING 39

IF .. .THEN. .. ELSE 31 PUT 42

..,

---------------------------- . •1

CONTENTS

PREFACE iii

1 A WHOLE NEW WORLD OF CREATIVE PROGRAMMING 1
WHAT SIZE SYSTEM? 2
LOADING MICROSOFT BASIC II 2
CHECKING THINGS OUT 3
COPYING THE MICROSOFT BASIC II EXTENSION DISKETIE 3
STARTING POINTS 5

DIRECT AND DEFERRED MODES 5
RESERVED WORDS (KEYWORDS) 5
THE MICROSOFT BASIC II PROGRAM LINE 5
THE RULES OF PUNCTUATION 5
EDITING 7
SPECIAL FUNCTION KEYS 9

2 PROGRAM ELEMENTS 11
CONSTANTS AND VARIABLES 11

FORMING A VARIABLE NAME 11
SPECIFYING PRECISION OF NUMERIC VARIABLES 11
INTEGER CONSTANTS 11
INTEGER VARIABLES 11
DEFINT 12
SINGLE-PRECISION REAL CONSTANTS 12
SINGLE-PRECISION REAL VARIABLES 12
DEFSNG 12
DOUBLE-PRECISION REAL CONSTANTS 13
DOUBLE-PRECISION REAL VARIABLES 13
DEFDBL 13
HEXADECIMAL CONSTANTS 13

STRINGS AND ARRAYS 14
STRING CONSTANTS 14
STRING VARIABLES 14
DEFSTR 14
ARRAYS 15

ARITHMETIC, RELATIONAL, AND LOGICAL OPERATORS 16
ARITHMETIC OPERATORS 16
RELATIONAL OPERATORS 16
LOGICAL OPERATORS 17

- 3 PROGRAM COMMANDS 18
AUTO 18
CLOAD 18

• •
CONT 19 • CSA VE 19 • DEL 19

DOS 20 • KILL 20 • LIST 20
LOAD 21 .,
LOCK 22
NAME ... TO 22 el
NEW 23 • REN UM 23
RUN 24 • SAVE 24
SAVE ... LOCK 24 • TROFF 25 • TRON 25

UNLOCK 25 • VERIFY 25 • 4 PROGRAM STATEMENTS 26 • AFTER 26
CLEAR 26 • CLEAR STACK 26 • CLOSE 27
COMMON 27 • DEF 27
DIM 28 • END 29 • ERROR 29
FOR ... TO ... STEP/NEXT 29 • GET 29
GOSUB/RETURN 30 • GOTO 30 • IF ... THEN 30
IF ... THEN ... ELSE 31 • INPUT 31 • INPUT...AT 31
LET 31 • LINE INPUT 32
LINE INPUT ... AT 32 • MOVE 32 • NEXT 32
NOTE 33 • ON ERROR 33
ON ... GOSUB/RETURN 34 • ON ... GOTO 34 • OPEN 35
OPTION BASE 36 • OPTION CHR1, OPTION CHR2, OPTION CHRO 36 • •

5

OPTION PLM1, OPTION PLM2, OPTION PLMO
OPTION RESERVE
PRINT
PRINT ... AT
PRINT ... SPC
PRINT...TAB
PRINT USING
PUT
RANDOMIZE
READ/DATA
REM or l or'
RESTORE
RESUME
RETURN
STACK
STOP
VARPTR
WAIT...AND

PROGRAM FUNCTIONS
NUMERIC FUNCTIONS

ABS
ATN
cos
cos
EXP
INT
LOG
RND
SGN
SIN
SOR
TAN

STRING FUNCTIONS
+ (CONCATENATION OPERATOR)
ASC
CHR$
INKEY$
INSTR
LEFT$
LEN
MID$
RIGHT$
SCRN$
STR$
STRING$
TIME$
VAL

37
37
37
38
38
38
39
42
42
43
43
44
44
45
45
45
45
46

47
47
47
47
47
47
47
47
47
47
48
48
48
48
48
48
48
48
49
49
49
49
49
49
50
50
50
51
51

• • SPECIAL-PURPOSE FUNCTIONS 51 • EOF 51 • ERL 51
ERR 51 • FRE 52
PEEK 52 • POKE 52 • STATUS 52
TIME 53 • USR 54 •

6 FUN FEATURES 55 • GRAPHICS OVERVIEW 55 • GRAPHICS 56
COLOR 57 • SETCOLOR 59
PLOT/PLOT. .. TO 59 • FILL 60 • CLS 60
THE SOUND COMMAND 64 • GAME CONTROLLERS 66
PADDLE CONTROLLERS 67 • JOYSTICK CONTROLLERS 67 • SPECIAL FUNCTION KEYS 68 • 7 PLAYER-MISSILE GRAPHICS TUTORIAL 69 • HOW ATARI MICROSOFT BASIC II INSTRUCTIONS ASSIST
PLAYER-MISSILE GRAPHICS 69 • MAKI NG A PLAYER OUT OF PAPER 71 • COLOR CONTROL 71

SIZE CONTROL 72 • POSITION AND MOVEMENT 72
PRIORITY CONTROL 73 • COLLISION CONTROL 74 • PLAYER-MISSILE GRAPHICS DEMONSTRATION PROGRAM 74

• APPENDICES 78 • A SAMPLE PROGRAMS 78
B PROGRAMS FOR GRAPHICS MODES 85 • c ALTERNATE CHARACTER SETS 87 • D INPUT/OUTPUT DEVICE 91
E MEMORY LOCATIONS 92 • F PROGRAM CONVERSIONS 104
G CONVERSIONS FROM COMMODORE (PET) • BASIC VERSION 4.0 105 • H CONVERTING TRS-80 RADIO SHACK PROGRAMS TO

ATARI MICROSOFT BASIC II 107 • :1

CONVERTING APPLESOFT PROGRAMS TO ATARI
MICROSOFT BASIC 11 109

J CONVERTING ATARI 8K BASIC TO ATARI MICROSOFT
BASIC II 110

K ATASCll CHARACTER SET 112
L USING THE CIOUSR CALLING ROUTINES 122
M ACTIONS TAKEN WHEN PROGRAM ENDS 126
N ALPHABETICAL DIRECTORY OF RESERVED WORDS 127
0 ERROR CODES 136

INDEX 139

•

PREFACE

In this manual you will find all the commands and statements used by ATARI®
Microsoft BASIC II. The KEYWORDS list on the inside front cover is in
alphabetical order with page numbers for your convenience.

BASIC was developed at Dartmouth College by John Kemeny and Thomas Kurtz.
It was designed to be an easy computer language to learn and use. Many additions
in recent years have made BASIC a complete and useful language for skilled pro
grammers.

This manual is intended as reference material for use with ATARI Home Com
puter Systems. It is written for those with a working knowledge of BASIC program
ming. It is not a tutorial, nor is it intended as an introduction to ATARI Microsoft
BASIC 11.

Important: Programs developed under the diskette-based version of ATARI
Microsoft BASIC can be run using ATARI Microsoft BASIC II.

iii

•

A WHOLE NEW WORLD
OF CREATIVE PROGRAMMING 1

Welcome to the world of ATARI Microsoft BASIC II, the most advanced BASIC pro
gramming language available on a 16K Read-Only Memory (ROM) cartridge for use
with ATARI Home Computers. Insert the cartridge into your ATARI Home Computer
and discover the amazing versatility and speed of Microsoft BASIC JI!

One of the first things you notice about Microsoft BASIC II is its relaxed handling
of strings. Now you can use one-dimensional strings without telling the computer in
advance. Microsoft BASIC II also goes one step further, allowing multidimensional
arrays of variables and strings. You can enter your program line numbers
automatically with AUTO and delete one or any number of lines with DELETE.
Hyphens(-) stake out the range of line numbers when you're using LIST or
DELETE. If you're not satisfied with the jumble of line numbers in your program
after a long session, you can renumber them with RENUM. And Microsoft BASIC II
uses several commands dealing with DOS files: KILL, LOCK, UNLOCK, and
NAME-these are only a few of the new commands that work from inside your
Microsoft BASIC II program.

No syntax checking is done as you enter a program line from the keyboard.
Microsoft BASIC 11 checks for errors when you RUN your program, allowing you to
trace errors right to their source with TRON and TROFF. While it's probably im
possible to be pleasantly surprised by an error, at least now you have the benefit
of seeing your error described in plain English! Other bonuses for you include
Microsoft BASIC !l's floating-point accuracy (to 16 digits) and its ability to preset
variable types: integer, single-precision real, or double-precision real (DEFINT,
DEFSNG, or DEFDBL), and hexadecimal. The default for constants and variables is
single-precision real, and you can change a variable's precision simply by append
ing "%" for integers or "#" for double-precision real. Also, Microsoft BASIC II im
plements math functions more rapidly by utilizing the interpreter rather than the
operating system ROM routines.

If you've ever wondered about the difference between tokenized and untoken
ized programs, you can relax. Microsoft BASIC II includes a MERGE command that
works with either one. Simply MERGE your program into an existing program in
memory.

It's this kind of versatility that has earned Microsoft its excellent reputation
among professional programmers. Microsoft BASIC JI places the most advanced
strategies of BASIC programming at your fingertips. You can shift entire sections
of memory from place to place with the command MOVE. Graphics programmers
add FILL to their palette of programming shortcuts. There's even an added dimen
sion for SOUND; now you can include the length of time a sound is to be played.
Interested in longer pauses for your programs? The AFTER command lets you
change your program's course-even as long as 24 hours laterl There are several
different OPTION commands. With OPTION BASE, you can set your own default
level for arrays to 1, even though the start-up default is the usual 0. The OPTION
PLM command reserves space in RAM for your player-missile graphics, while
OPTION RESERVE lets you automatically protect memory for those special
machine language routines, and OPTION CHR can be used to set aside memory
for switching character sets.

A WHOLE NEW WORLD OF CREATIVE PROGRAMMING 1

The list goes on and on. Define your own special functions with DEF, and do
more versatile plotting, pointing, and printing with such commands as PLOT ... TO,
SCRN$, and PRINT AT. PRINT USING gives you 12 different screen or printer for
mats for handling figures, decimal points, and numerous other report or form re
quirements. ATARI Microsoft BASIC II opens the door to a whole new world of
creative programming!

WHAT SIZE SYSTEM?

To use the ATARI Microsoft BASIC II cartridge you must have a minimum system
that consists of an ATARI Home Computer with 16K of RAM (Random Access
Memory) and a standard TV set or monitor. If you want to load and save Microsoft
BASIC II programs on cassette or diskette, you also need an ATARI 410™ Program
Recorder or an ATARI 810™ Disk Drive. The Microsoft BASIC II Extension Diskette
requires an ATARI 81 O Disk Drive and can only be used with ATARI Disk Operating
System version 2.0S.

LOADING MICROSOFT BASIC II
If you do not have a disk drive, follow these steps to load your ATARI Microsoft
BASIC II cartridge:
1. Turn on your ATARI Home Computer by pressing the power switch on the right
side of the console to ON.
2. Pull the release lever toward you to open the cartridge door. (Whenever you do
this, the computer automatically turns itself off.)
3. Insert the ATARI Microsoft BASIC II cartridge in the cartridge slot (the left car
tridge slot in your ATARI 800™ Home Computer) with the label facing you. Press
the cartridge down carefully and firmly. Close the cartridge door and the computer
turns on again.
4. Microsoft BASIC II then takes command and loads itself into your computer's
memory.

If you have a disk drive, follow these steps to load Microsoft BASIC II with the
Extension Diskette:
1. Make sure the power switch on the right side of your ATARI Home Computer
console is turned off.
2. Pull the release lever toward you to open the cartridge door.
3. Insert the Microsoft BASIC 11 cartridge in the cartridge slot (the left cartridge
slot in your ATARI 800 Home Computer) with the label facing you. Press down
carefully and firmly. Close the cartridge door.
4. Turn on disk drive 1. Wait until the red BUSY light goes off.
5. Insert the Microsoft BASIC II Extension Diskette in the disk drive. Make sure the
label faces up and to the right.
6. Close the door of the disk drive.
7. Turn the power switch on the right side of the console to ON.
8. Microsoft BASIC 11 then takes command and loads itself into your computer's
memory automatically.

2 A WHOLE NEW WORLD OF CREATIVE PROGRAMMING

-•

CHECKING THINGS OUT

You'll know Microsoft BASIC II has loaded properly when you see the following in
formation on your TV screen:

> •

WITHOUT DISK DRIVES

28644 BVTE5 FREE

OTAAJ: MICROSOFT Blll5IC II U2. 0
<C> 1'3'62 MICROSOFT

>

•

WITH DISK DRIVES

(If you do not see one of the above screens, turn off your computer and start over
at the "LOADING MICROSOFT BASIC II" section.)

COPYING THE MICROSOFT BASIC II
EXTENSION DISKETTE

Your Microsoft BASIC II Extension Diskette contains several files that add conve
nient commands and features to the cartridge program of Microsoft BASIC II.
These files are: DOS.SYS, DUP.SYS, AUTORUN.SYS, RS232.SYS, CIOUSR, and
MEM.SAV. To prevent the overlaying and destroying of these important files, the
extension diskette comes in a "write-protected" jacket (one without a notch),
which means that you cannot save programs on the original diskette. For this
reason, you need to make a copy of the extension diskette before you begin to
write your own programs.

Follow these steps to prepare your working copies of the Microsoft BASIC II Ex
tension Diskette:
1. With the extension diskette in your disk drive, Microsoft BASIC II loaded, and
the ready prompt (>)showing, type DOS and press [RETURN]. Your TV screen
displays the DOS menu when DOS is finished loading, which takes about 30
seconds.
2. Remove the extension diskette from the disk drive.
3. Insert a diskette to be formatted in your disk drive.
4. Here's what the computer asks and how you respond:

COMPUTER: SELECT ITEM OR RETURN FOR MENU
YOU TYPE: I RETURN
COMPUTER: WHICH DRIVE TO FORMAT?
YOU TYPE: 1 RETURN
COMPUTER: TYPE "Y" TO FORMAT DISK 1
YOU TYPE: Y RETURN

A WHOLE NEW WORLD OF CREATIVE PROGRAMMING 3

5. The disk drive whirs and clicks for less than a minute. You'll know the format·
ting process is finished when the screen displays "SELECT ITEM OR RETURN FOR
MENU" a9ain.

After your diskette has been formatted, you're ready to duplicate the extension
diskette. Press RETURN for the DOS menu. Next insert the extension diskette into
your disk drive. Follow these steps to make a working copy:
YOU TYPE: J RETURN
COMPUTER: DUP DISK·SOURCE,DEST DRIVES?
YOU TYPE: 1, 1 RETURN
COMPUTER: INSERT SOURCE DISK, TYPE RETURN
YOU TYPE: RETURN
COMPUTER: TYPE "Y" IF OK TO USE PROGRAM AREA

CAUTION: A "Y" INVALIDATES MEM.SAV
(MEM.SAV is a file that saves your BASIC II program whenever you go to the DOS
menu. Invalidating it frees memory for duplication of diskettes.)
YOU TYPE: Y RETURN
COMPUTER: INSERT DESTINATION DISK, TYPE RETURN
(At this point, remove the extension diskette and insert your formatted diskette.)
YOU TYPE: RETURN
COMPUTER: INSERT SOURCE DISK, TYPE RETURN
(Remove the formatted diskette and insert the extension diskette.)
YOU TYPE: RETURN
COMPUTER: INSERT DESTINATION DISK, TYPE RETURN
(Remove the extension diskette and insert the formatted diskette again.)
YOU TYPE: RETURN
COMPUTER: SELECT ITEM OR RETURN FOR MENU

The process of duplicating the extension diskette requires you to switch the
diskettes in the disk drive twice. When the computer displays "SELECT ITEM OR
RETURN FOR MENU," copying is completed. You can check both directories to
see if all is well: Type A and press RETURN and then press RETURN again. A list
of files appears on your TV screen. Then do the same thing with the other diskette
in the disk drive. (For further information, see An Introduction to the Disk Operating
System or the ATARI Disk Operating System II Reference Manual.)
6. When you invalidate the MEM.SAV file, you lose the disk extension features. In
order to restore the use of these features, you must reload Microsoft BASIC II.
Turn the power switch on the right side of your computer console to OFF and then
turn it to ON again.
7. Whenever "SELECT ITEM OR RETURN FOR MENU" appears on your TV
screen, you may leave the DOS menu and return to Microsoft BASIC II by typing B
(the "RUN CARTRIDGE" selection on the DOS menu). After Microsoft BASIC II is
re-entered, the prompt (>)will appear. Microsoft BASIC II is now ready to receive
your commands.

Note: When returning to the cartridge, it is important that the diskette from
which you loaded DOS is in the disk drive. The system may lock up if another
diskette is used.

4 A WHOLE NEW WORLD OF CREATIVE PROGRAMMING

..,
•

STARTING POINTS

This reference manual describes all the programming advantages of ATARI
Microsoft BASIC 11. It contains the information you'll need to start developing sim
ple or complex computer programs in Microsoft BASIC II.

DIRECT AND DEFERRED MODES
Microsoft BASIC 11 accepts commands in both the deferred and direct
modes-that is, you can type commands and execute them directly, or you can
begin with line numbers to create programs that execute after you command the
computer to RUN. Microsoft BASIC II accepts line numbers from 0 to 63999.

The "ready" (>)prompt on your TV screen means that the computer is ready to
take commands. As you type a command, it begins appearing where the cursor
block is located-just beneath the prompt sign. You can type a direct command
and press the RETURN key for immediate results:
>
YOU TYPE: 0 RINT "HI, l'M YOUR NEW BASIC II." RETURN
COMPUTER: HI, l'M YOUR NEW BASIC II.

Or you can type a line number and begin programming in the deferred mode:
YOU TYPE: 10 PRINT "YOU'LL LIKE ME." RETURN

In the deferred mode, nothing happens when you press RETURN; the computer
stores the information in its memory. The actual execution is deferred until you
type the command RUN and press RETURN:
YOU TYPE: RUN RETURN
COMPUTER: YOU'LL LIKE ME.

Since the command RUN is typed without a line number, it's executed directly,
beginning the program at the first line number.

RESERVED WORDS (KEYWORDS)
A computer carries out any command that it understands. The Microsoft BASIC II
programming language uses English-like words as commands. These words are
called keywords or reserved words. A keyword like "PRINT" orders the computer
to write on the TV screen. The computer recognizes these keywords as special
words; it knows how to deal with them. There are more than 100 reserved words in
the vocabulary of Microsoft BASIC II. If you spell a keyword wrong or use one that
the computer doesn't recognize, Microsoft BASIC II prints an error message.
Keywords cannot be used alone as variable names in a program, but they can be
used as part of a variable name. For example, IF and GOSUB are keywords and
cannot be used as variables, but LIFE and RGOSUB are allowed. You can find a
complete list of keywords on the inside cover of this book and in Appendix N.
THE MICROSOFT BASIC II PROGRAM LINE
Every Microsoft BASIC II program line consists of a line number followed by a
BASIC statement. The line numbers help Microsoft BASIC II keep track of these
quence of commands, executing them in the proper order.
Line # Statement
100 IF A= B THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"
THE RULES OF PUNCTUATION
Just as there are punctuation marks in English, so there are punctuation marks in
Microsoft BASIC 11. The rules of punctuation depend on the particular requirements
of Microsoft BASIC II commands. One general rule requires that all commands
must be in UPPERCASE. Other rules pertain to the spaces between commands and
their parameters, and to the use of quotation marks, commas, colons, semicolons,
and other punctuation marks.

A WHOLE NEW WORLD OF CREATIVE PROGRAMMING 5

Spaces
Microsoft BASIC II has one rule regarding the use of spaces in your programs:
Each keyword must have a space before and after it. However, there are times
when a space is not mandatory-for example, when a delimiter (such as a quota
tion mark) follows the command and is an integral part of it, the space is optional.
As a general rule, however, write your programs as you write normal
sentences-with a space before and after each keyword.
Quotation Marks
Quotation marks are used to indicate where typed characters begin and end. Just
as we use quotation marks in written English to mark the beginning and end of a
speaker's words, so it is with BASIC statements. Quotation marks tell the computer
where to begin and end printing. Double quotation marks allow the use of quotation
marks in the printed result.
Example Program:
YOU TYPE: 100 PRINT "START PRINTING ON SCREEN-----NOW STOP"
YOU TYPE: 110 PRINT" ""START AGAIN ... STOP""
YOU TYPE: RUN RETURN
COMPUTER: START PRINTING ON SCREEN-----NOW STOP

"START AGAIN ... STOP"
Note: You are now on your own. We won't bother to direct you with "YOU TYPE"
and "COMPUTER."
Commas
The comma has three uses.
• Use the comma to separate required items after a keyword. The keyword

SOUND has five different functions in ATARI Microsoft BASIC II. Each
parameter is separated by commas. For example, SOUND 2,& 79, 10,8,60
means voice 2, pitch hexadecimal 79 (middle C), noise 10, volume 8, and dura
tion in jiffies (1/60 of a second) 60 or one second. Another example of the
comma is the statement SETCOLOR 4,4, 10, which means register 4, pink,
bright luminance. The comma tells where one piece of information ends and
the next begins. BASIC expects to find the parameters for a command in an
exact order separated by commas.

• Use the comma to separate optional values and variable names. You can
enter any number of variable names on a single line with an IN PUT statement.
Use as many of them as you like as long as you separate them with commas .
For example, INPUT A,B,C,D,E tells the computer to expect five values from
the keyboard.

• Use the comma to advance to the next column in a PRINT statement. When
used at the end of a quotation or between expressions, the comma will ad
vance printing to the next column that is a multiple of 14 spaces. For example,
if Xis assigned the value of 25, then the statement 1 O PRINT "YOU ARE", X,
"YEARS OLD" has the following spacing when you run it (your TV screen is
wide enough for only 2 columns; hence, the second line):

I I I
I< 14 spaces >I < 14 spaces >I
I I I
YOU ARE 25
YEARS OLD

6 A WHOLE NEW WORLD OF CREATIVE PROGRAMMING

•

Semicolons
The semicolon is used for PRINT statement output. The semicolon leaves one
space after variables and constants, a leading blank space before positive
numbers, and a minus sign but no preceding blank space before negative
numbers. For example, if X is assigned the value of 25, then the statement 1 O
PRINT "YOU ARE";X;"YEARS OLD" has the following spacing when the program
is run:

YOU ARE 25 YEARS OLD

If Xis assigned the value of -25, then the statement 10 PRINT "YOU
ARE";X;"YEARS OLD" has the following spacing when the program is run:
YOU ARE-25 YEARS OLD

If you want more than one space left before and after the 25, you must leave the
space in the string within the quotation marks. Thus,--
10 PRINT "YOU ARE ";25;" YEARS OLD"
--gives the following spacing when the program is run:

YOU ARE 25 YEARS OLD

The semicolon can also be used to bring two PRINT statements, string constants,
or variables together on the same line of the television screen. For example:
100 PRINT "THE AMOUNT IS$";
120 AMOUNT=20
130 PRINT AMOUNT
YOU TYPE: RUN RETURN
COMPUTER: THE AMOUNT IS$ 20

Colons
The colon is used to join more than one statement on a line with a single line
number. Thus, many statements can execute under the same line number. By join
ing more than one statement on a single line, the program requires less memory.
You can use up to three screen lines or slightly less than 120 characters for each
numbered line.
For example: 10 X=5:Y=3:Z=X+Y:PRINT Z:END
Many times this also helps the programmer organize the program steps. The same
program with line numbers instead of colons uses more bytes of memory:
10 X= 5
20 Y=3
30 Z= X+ Y
40 PRINTZ
50 END

Editing
The ATARI 400™ and 800 Computer keyboards have features that differ from those
of an ordinary typewriter; to begin with, the standard characters are uppercase let
ters. To print lowercase letters, press the CAPS LOWA key. The keyboard now
operates like a typewriter, with the SHIFT key giving uppercase letters. Since most
BASIC programs are written in uppercase, you will normally want to return to the
uppercase mode. Press the SHIFT key and hold it down while you press the
CAPS LOWA key to return to uppercase letters.

A WHOLE NEW WORLD OF CREATIVE PROGRAMMING 7

Control and Shift Keys
The cursor control keys allow immediate editing capabilities. These keys are used in conjunction with the SHIFT or CTRL keys. The keys that offer special editing features are described in the following paragraphs.

Hold the CTRL control key down while pressing the arrow keys to move the cursor anywhere on the screen without changing any characters already on the screen. On those keys that have three functions, striking a key while pressing the CTRL key produces the upper left symbol.
CTRL Moves cursor up one line without changing the program or

display.

CTRL -
CTRL

CTRL ._

Moves cursor one space to the right without disturbing the
program or display.

Moves cursor down one line without changing the program
or display.

Moves cursor one space to the left without disturbing the
program or display.

For the previous four functions, if the cursor is on the edge of the screen, moving it off the edge causes it to reappear on the opposite side of the screen
(wraparound).
CTRL INSERT Inserts one character space.
CTRL DELETE

BACKS

CTRL 1

Deletes one character or space.

Temporarily stops or restarts screen display. You can use
CTRL 1 while listing a program or while running a program .

CTRL 2 Rings the buzzer in the computer console.
Hold the SHIFT key dowri while pressing the numeric keys to display the symbols shown on the upper half of those keys.

SHIFT INSERT Inserts one line.

SHIFT DELETE
BACKS Deletes one line.

SHIFT CAPS
LOWR Returns screen display to uppercase alphabetic characters.

Control Graphics
The control key CTRL functions as a second type of shift. When it is depressed in conjunction with another key, a character from a completely new set of characters
appears on the screen. These "graphic" characters can be used to produce interesting pictures, designs, and graphs either without a cartridge or with the ATARI BASIC cartridge. The diagram on the next page shows the graphic characters produced by each CTRL plus key combination.

8 A WHOLE NEW WORLD OF CREATIVE PROGRAMMING

-•

El.
STOPS DISPLAY - PRESS AGAIN
TO REST ART DISPLAY

El.
RING BUUER

SPECIAL FUNCTION KEYS
D Inverse Video Key or ATARI logo key. Press this key to

reverse the brightness of the character with its
background on the screen. Press the key a second time to
return to normal text (light text on dark background).

CAPS LOWR

ESC

BREAK

SYSTEM RESET

Lowercase Key. Press this key to shift the screen
characters from uppercase (capitals) to lowercase. To
restore the characters to uppercase , press the SHIFT key
and the CAPS LOWR key simultaneously.

Escape Key. Press this key to enter a screen editing com
mand for later execution (deferred mode). In the direct
mode, clear the screen by pressing CTRL and CLEAR
simultaneously. In the deferred mode, for example, enter
the following:
10 PRINT "ESC CTRL CLEAR"
and press RETURN. Then, whenever line 10 is executed,
the screen is cleared. (Microsoft BASIC II also allows you to
type CLS in direct or deferred modes to clear the screen.)

ESC is used in conjunction with other keys to print special
graphics control characters.

Break Key. This key stops your program execution or pro
gram list, prints a > on the screen, and displays the
cursor underneath. You may resume execution by typing
CONT and pressing RETURN.

System Reset Key. This key stops program execution,
returns the screen display to graphics mode 0, clears the
screen, and resets all the default values.

A WHOLE NEW WORLD OF CREATIVE PROGRAMMING 9

CLR SET TAB

RETURN

Tab Key. Press SHIFT and the CLR SET TAB keys
simultaneously to set a tab. To clear a tab, press the CTRL
and CLR SET TAB keys simultaneously. Used alone,
CLR SET TAB advances the cursor to the next tab posi
tion. In deferred mode, set and clear tabs by adding a line
number, the command PRINT, and a quotation mark, and
pressing the ESC key.
Examples:
100 PRINT "ESC SHIFT CLR SET TAB
200 PRINT "ESC CTRL CLR SET TAB

If tabs are not set, they default to columns 7, 15, 23, 31,
and 39.

Return Key. This key is used to terminate a BASIC com
mand or a statement. Press this key after each command
in direct mode or after entering a program line.

10 A WHOLE NEW WORLD OF CREATIVE PROGRAMMING

..
•

PROGRAM
ELEMENTS

CONSTANTS AND VARIABLES

Constants are numbers or letters that you use in a program. They remain the
same throughout the program. These are examples of constants: 5, "JACK".

2

Variables are names assigned to numbers or letters. The contents of a variable
may change during a program. These are examples of variables: A, J$.

There are five types of constants and variables in ATARI Microsoft BASIC II:
integer, single-precision real, double-precision real, hexadecimal, and string.
FORMING A VARIABLE NAME
The allowable characters in a variable name include the alphabet letters A to Z,
numbers O to 9, and an underscore(_). The underscore character(_) is a legal
character in ATARI Microsoft BASIC II. Numbers are allowed as long as the
variable name starts with an alphabetic character. The variable name X9 is
allowed, while 9X is not allowed.

SPECIFYING PRECISION OF NUMERIC VARIABLES
You can specify the variable type in two ways:
• Predefine the starting letter of a variable using DEFINT, DEFSNG, DEFDBL, or

DEFSTR.
• Tag the variable with a type identifier(%, #, $).
The advantage of predefining the variable type is that you can change all the
variables from one type to another without having to go through your program
changing all variable names. Changing DEFINT A to DEFDBL A, for example,
changes all variables beginning with the letter A from integer type to double
precision type. Your other option is to use a type tag identifier: #(double precision),
% (integer), and $ (string). Tag identifiers are attached to the end of the variable
name itself. If variables should have both DEF identification of type and a tag iden
tifier (#, % , $), the tag identifier has precedence.

Although DEFSNG, DEFDBL, DEFINT, and DEFSTR can be placed anywhere in
a program, they are usually placed near the beginning.
INTEGER CONSTANTS
Examples: 23, -9999, 709, 32000
All whole numbers in ATARI Microsoft BASIC II within the range -32768 to + 32767
are stored as two bytes of binary. If an integer constant is multiplied with a single
precision real number, the product of the multiplication is a single-precision real
number. The results of mathematical operations are always stored in the higher
level precision type.

Negative integers are stored as twos complement binary.
INTEGER VARIABLES
Examples: SMALLNO%, J%, COUNT%
An integer can be identified by having a percent sign(%) as the last character in
the variable name. An example of an integer identified by name is NO%. (The
16-bit integer is stored as twos complement binary.)

PROGRAM ELEMENTS 11

DEFINT
Format: DEFINT letter,lbeginning_letter-ending_letterl
Examples: 10 DEF INT N, J, K-M

20 DEFINT I
Note: The vertical lines in the format indicate an optional portion of the statement.
You will see these options identified in formats throughout the reference manual.

The starting letters of variable names identified by the DEFINT statement are
integers. Integer variables increase the speed of processing but can only accurate
ly hold values between -32768 and + 32767. Remember that tag identifiers have
precedence. Even though N is defined by DEFINT as being an integer type, the
pound sign appearing after the N identifies it as double precision. N#, N1#, NUMB#
are all double-precision numbers because the pound sign (#) means double preci
sion.

Figure 2-1 illustrates how integers are represented in memory.

I I
I BYTE 0

sign bit
0 is positive
1 is negative

BYTE 1

Figure 2-1 Machine Representation
of Integer Variable

SINGLE-PRECISION REAL CONSTANTS
Examples: 65E12, 333335, .45E8, .33E-6
All constants typed into a program outside the range -32768 to 32767 are single
precision real numbers.

SINGLE-PRECISION REAL VARIABLES
Examples: AMT, LENGTH, BUFFER
If you do not declare the precision of a variable, it becomes single-precision real
by default. Numbers stored as single precision have an accuracy of six significant
figures. The exponential range is -38 to + 38.
DEFSNG
Format: DEFSNG letter, lbeginning_letter-ending_letterl
Examples: 100 DEFSNG K, S, A-F

120 DEFSNG Y
Variable names beginning with the first letters identified in DEFSNG are single
precision real variables. In DEFSNG K, S, A-F, the letter range A-F means A, B, C,
D, E, F are all single precision. Variable names starting with K and S are also
single precision in this example. Single letters and ranges of letters must be
separated by commas.
Example Program:
10 DEFSNG A-F
20 COUNTER= COUNTER+ 1
30 PRINT COUNTER
40 GOTO 20
In the DEFSNG example program, all variable names beginning with the letter C
?re single precision. Thus, COUNTER is single precision in this example because it
starts with C. If counter were named COUNTER#(# means double precision), it
would have double precision even though it is defined as single precision. Keep in
mind that the tag identifier in a variable name takes precedence.

12 PROGRAM ELEMENTS

•

Figure 2-2 illustrates how single-precision real numbers are represented in memory. I- EX --1 I MANTISSA _I ___ _

I BYTE 0

exponent
sign bit

BYTE 1 BYTE 2 BYTE 3

I
mantissa sign bit

implicit radix point

Figure 2-2 Machine Representation of Single-Precision Real
DOUBLE-PRECISION REAL CONSTANTS
Examples: 4505, 230-6, 88888880-11
You can specify double-precision real in the constant by putting the letter D before
the exponential part. Double-precision real numbers are stored in 8 bytes.
Numbers are accurate to 16 decimal digits.
DOUBLE-PRECISION REAL VARIABLES
Examples: DBL#, X#, LGNO#
The pound sign (#) is the identifier for double-precision real variables. A double
precision real variable has 8 bytes. The exponent and sign are stored in the first
byte. The exponential range is the same as single precision: -38 to + 38. The ac
curacy is 16 significant figures in double-precision real. The pound sign(#) iden
tifier is placed after the variable name.
DEFDBL
Format: DEFDBL letter,lbeginning_letter-ending_letterl
Examples: 10 DEFDBL Z, C-E

20 DEFDBL R
Variable names starting with letters identified by the DEFDBL statement are
double-precision real. In the example above, COE, Z, and R are all declared as
double-precision. The variable name E1 would be a double-precision variable
because the variable name begins with E.
Figure 2-3 illustrates how double-precision real numbers are represented in
memory.

I- Ex-.1--------:MANTISSAI -------•

Is I Is\ I

I BYTE 0 I en~~.:. s;g~y:~ 2

exponent

BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

sign bit implicit radix point

Figure 2-3 Machine Representation of Double-Precision Variable

HEXADECIMAL CONSTANTS
Examples: &76, &F3, &7B, &F3EB
It is often easier to specify locations and machine language code in hexadecimal
(base 16) rather than decimal notation. By preceding a number with &, you declare
it to be hexadecimal.

To jump to the machine language routine starting at hexadecimal location C305,
you specify A= USR(&C305,0). A= PEEK (&5A61) will assign the contents of
memory location 5A61 hex to the variable named A. Hexadecimal is useful in
representing screen graphics-especially player-missile graphics.

PROGRAM ELEMENTS 13

Following is an equivalency table for decimal, hexadecimal, and binary numbers.
TABLE 2·1 DECIMAL, HEXADECIMAL, AND BINARY EQUIVALENTS
Decimal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Hexadecimal
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

Binary
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

STRINGS AND ARRAYS

STRING CONSTANTS
Examples: "AMOUNTS", "FILL IN NAME ____ _
String constants are always enclosed in quotation marks. The string constant can
be any length up to the maximum line length (120). Strings are composed of ANY
keyboard characters: "!-$%&&"())00KJHGGFDS." A double-quotation mark('"') is
also allowed. The double quotation mark("") will give you a single quotation mark
when the string is printed. The vertical bar (I) and the null character (<v) are used
internally to denote the end of a string. Using one of these characters in a string
will truncate the string at its position.

The following is an example of a string constant used in a print statement:
10 PRINT "Strings and%&'$ ""things""";
20 A$= "STRING CONSTANTS ASSIGNED TO VARIABLE NAME"
30 PRINT A$
RUN RETURN

The example program will print: Strings and % &'$ "things"
STRING CONSTANTS ASSIGNED TO VARIABLE NAME
STRING VARIABLES
Examples: A$, NINT$, ADDRESS$
String variable names end with a dollar sign $. A string variable can be assigned a
string up to the maximum line length. The double quotation mark("") is a way of
getting a single quotation mark(") within a string.
Examples of strings assigned to A$ include:
10 A$= "a string"
20 A$= "another ""string'"'"

DEFSTR
Format: DEFSTR letter, jbeginning_letter-ending_letterl
Examples: 10 DEFSTR A, K-M, Z

20 DEFSTR F, J, I, 0

14 PROGRAM ELEMENTS

•

A variable name can be defined as a string by declaring its starting letter in the
DEFSTR statement. Strings can be up to the maximum line length. As in all
variable name declarations, the tag identifier has precedence. A# and A% are their
tag types (double precision and integer, respectively) even if their first letter is
defined by DEFSTR.

Example Program:
10 DEFSTR A, M, Z
20 A= "Employee Name AMOUNT"
30 PRINT A

The example program will print the heading Employee Name AMOUNT.
ARRAYS
An array is a list of subscripted variables with the same variable name, such as
A(O), A(1), A(2). Subscripts range from 0 to the dimensioned value. Figure 2·4
illustrates a ?-element array.

A(O)

A(1)

A(2)

A(3)

A(4)

A(5)

A(6)

Figure 2·4 Example of an Array

You are allowed to use a maximum subscript of 10 in a list or array without having
to use the dimension (DIM) statement. With the OPTION BASE default of zero (0),
this provides 11 elements in an array without dimensioning.
For example, for an array called AN_ARRAY:
100 AN_ARRAY(1) = 55
120 AN_ARRA Y(2) = 77
130 AN_ARRA Y(3) = 93
140 AN_ARRAY(4)=61
150 FOR X = 1 TO 4
160 PRINT AN_ARRAY(X)
170 NEXT
180 END

PROGFlAM ELEMENTS 15

A multi-dimensional array is a collection of arrays. For example, a two
dimensional array contains two columns. Rows run horizontally and columns run
vertically. Multi-dimensional arrays are stored by BASIC in row-major order. This
means that all the elements of the first row are stored first, followed by all the
elements of the second row, and so on. Figure 2-5 illustrates a 7 x 4 matrix.

COLUMNS

M(O,O) M(0,1) M(0,2) M(0,3)

M(1,0) M(1,1) M(1,2) M(1,3)

V) M(2,0) M(2,1) M(2,2) M(2,3)
== 0 M(3,0) M(3,1) M(3,2) M(3,3) a:

M(4,0) M(4,1) M(4,2) M(4,3)

M(5,0) M(5,1) M(5,2) M(5,3)

M(6,0) M(6,1) M(6,2) M(6,3)

Figure 2-5 Example of a Multidimensional Array

ARITHMETIC, RELATIONAL, AND LOGICAL OPERATORS
ARITHMETIC OPERATORS
The arithmetic operators are: (), = , - , /\ , *, I, + , - (the first dash means
negation, the last dash means subtraction). The arithmetic symbols can be mixed
with the logical operators in creating expressions. The expression A/C > D *A is
legal. The arithmetic expressions represent mathematical symbols. The * symbol
represents multiplication. The /\ is used in ATARI Microsoft BASIC II to mean
exponent. The order of precedence is:
SYMBOL MEANING
() Arithmetic within parentheses is evaluated first.

Equals sign.
Negative number. This is not subtraction but a negative sign in front of a
number. Examples: -3, -A, -6.

/\ Exponent.
Multiplication.
Division.

+ Addition.
Subtraction.

RELATIONAL OPERATORS
The relational operators are evaluated from left to right.
OPERATOR MEANING

<>or > <
<
>
>=or= >

Equals. This is a true use of the equal sign. It asks if A= B. The B is not
assigned to A.
Not equal. Evaluates whether two expressions are not equal.
Less than. A is less than B is represented by A < B.
Greater than. A is greater than B is represented by A > B.
Greater than or equal to. A is greater than or equal to B is represented by
A > =B.

<=or= < Less than or equal to. A is less than or equal to B is represented by
A < =B.

16 PROGRAM ELEMENTS

•

Relational operators in strings (= , < > , < , > , < > =) can ac-
complish useful tasks. Alphabetical order can quickly be achieved by an algorithm
using the expression A$ < B$. A match between names can be found by asking
if A$= B$. The string variables are evaluated as numbers in AT ASCII code (for ex
ample, letter A is 65 while B is 66, so A < B is always true).
SYMBOL MEANING
A$ < 8$ True (nonzero) if A$ has a lower ATASCll code number than B$.
Sort Example:
100 INPUT A$,B$
120 IF A$ < B$ THEN 160
130 C$=A$
140 A$= B$
150 B$ = C$
160 PRINT A$, B$
170 END

To experiment, type any two word combinations and separate them by commas.
The words will be sorted into alphabetical order using the example above. Thus,
you will see that BILL comes before BILLY, and CAT comes before DOG.
LOGICAL OPERATORS
The logical operators have the following order of precedence:
OPERATOR MEANING

NOT The 8 bits of the number are complemented. If it is a binary 1, it becomes a
O after this logical operation.

AND The bits of the number are logically ANDed. Example: A AND B. If A is 1 and
B is 1, the result is 1. If A is 1 and B is 0, the result is 0. If A is O and B is 1,
the result is 0. If A is O and B is 0, the result is 0.

OR The bits of the number are logically ORed. Example: A OR B. If A is 1 and B
is 1, the result is 1. If A is 1 and B is 0, the result is 1. If A is O and B is 1,
the result is 1. If A is 0 and B is 0, the result is 0.

XOR The bits of the number are logically eXclusive ORed. Example: A XOR B. If A
is 1 and B is 1, the result is 0. If A is 1 and B is 0, the result is 1. If A is 0
and B is 1, then the result is 1. If A is O and B is 0, then the result is 0.

The logical operators can be used with string (A$) variables. Read "String Func
tions" in Section 5.

Note: The relational operators and logical operators can be combined to form
expressions. The relational operators have precedence over logical operators. For
example: A > BAND C < D is an expression. The greater than (>) and less
than (<) symbols are considered first, then the AND is evaluated. If the relation·
ship is true, a nonzero number results. If the relationship is not true, then zero is
the result. Nonzero is true and zero is false. In an IF statement, this evaluation
determines what happens next. The ELSE or the next line number is taken when
the expression formed with operators is false.

PROGRAM ELEMENTS 17

3

AUTO
(Available only with the extension diskette)

PROGRAM
COMMANDS

This section describes the commands usually entered in the direct mode.
Format: AUTO In.ii
Examples: AUTO 200,20

AUTO

AUTO numbers your lines automatically. If you do not specify n,i (starting number,
increment) you get line numbers starting at 100 with an increment of 10. Use
AUTO when you start writing a program. Type AUTO, then type a starting line
number, a comma, and the amount you want the line numbers to increase. Next,
press RETURN to start the AUTO numbering. You will see a new line number
printed automatically after you type a statement and press RETURN. To stop
AUTO, press RETURN by itself without typing a statement. AUTO can also be
stopped by pressing the BREAK key.
Example Program:
AUTO 300,20 RETURN Starts numbering at 300 and increments by 20
300 PRINT "THIS SHOWS HOW"
320 PRINT "AUTO NUMBERING"
340 PRINT "WORKS"
360 RETURN

•
Note: If there is an existing line at the new line number being generated, the ex
isting line will be displayed on your television screen.

CLOAD
Format: CLOAD
Examples: CLOAD

440 CLOAD
Use CLOAD to load a program from cassette tape into RAM for execution. When
you enter CLOAD and press RETURN, the in-cabinet buzzer sounds. Position the
tape to the beginning of the program, using the tape counter as a guide, and press
PLAY on the ATARI 410™ Program Recorder. Then press the RETURN key again .
Specific instructions to CLOAD a program are contained in the ATARI 410 Program
Recorder Operator's Manual.

18 PROGRAM COMMANDS

•

CONT

Format: CONT
Example: CONT

CONT continues program execution from the point at which it was interrupted by
either STOP, the BREAK key, or a program error. This instruction is often useful in
debugging a program. A breakpoint can be set using the STOP statement. You can
check variables at the point where execution stops by using PRINT variable_name
in the direct mode (without a line number). Then resume the program by using the
CONT statement.

CSAVE

Format: CSAVE
Examples: CSAVE

330 CSAVE

CSAVE saves a RAM-resident program onto cassette tape. CSAVE saves the
tokenized (compacted) version of the program. As you enter CSAVE and press
RETURN, the in-cabinet buzzer sounds twice signaling you to press PLAY and
RECORD on the program recorder. Then press RETURN again. Do not, however,
press these buttons until the tape has been positioned. Saving a program with this
command is speedier than with SAVE"C:" because short interrecord gaps are
used. Use SAVE"C:" with LOAD"C:" or CSAVE with CLOAD but do not mix these
paired statements - SAVE"C:" with CLOAD will give you an error message.

DEL
(Available only with the extension diskette)

Format: DEL n-m
Examples: DEL 450 -

DEL 250 - 350
DEL - 250

DEL deletes program statements currently in memory. With the DEL command you
can delete just one statement or as many as you wish. A hyphen is used to specify
the range of statements:
DEL n Deletes only the statement n (where n is a statement number).
DEL -m Deletion starts with the first statement in the program and stops with

statement m. Statement m is deleted.
DEL n- Deletion starts with statement number n and continues to the last

statement number in the program.
DEL n-m Deletion starts with n and ends with m. Both statements n and m are

deleted.

Example Program:
100 PRINT "AN EXAMPLE OF"
120 PRINT "HOW THE DELETE"
130 PRINT "COMMAND WORKS"

PROGRAM COMMANDS 19

DEL 120- RETURN
Only statement 100 is left in memory.
LIST RETURN
100 PRINT "AN EXAMPLE OF"
If you want to delete a single statement from a program, simply type the statement
number and press RETURN.
Example Program:
110 FOR X= 1TO5000:NEXT
110 RETURN
Note: If you try to use DEL in deferred mode, your program stops after the dele
tion of line numbers.

DOS

Format: DOS
Example: DOS
The DOS command lets you leave BASIC and enter the Disk Operating System
menu. This makes available all of the DOS menu items on programs and data
stored on diskette. To return to ATARI Microsoft BASIC II select the B option in the
DOS menu. This method of entering DOS erases the BASIC program currently in
memory unless you have a MEM.SAV file on your diskette. (Refer to the Atari Disk
Operating System II Manual.)

Note: If you do not have a disk drive, typing DOS will take you to the memo pad .

KILL

Format: KILL "device:program_name"
Example: KILL "D:PROG1 .BAS"
KILL deletes the named program from a device.

LIST

Format: LISTl"device:program_name"I lm-nl
Examples: 100 LIST

150 LIST "C:
120 LIST "P:" 10-40
100 LIST "D:GRAFX.BAS
110 LIST 100-200
100 LIST -300

LIST writes program statements currently in memory onto the television screen or
another device. If "device:program_name" is present, the program statement cur
rently in memory is written onto the specified device.

Legal device names include: D: (for disk), C: {for cassette), P: (for printer). If you
do not use LIST with a device name, the screen (E:) is assumed. The program
name can be any name less than or equal to eight characters with a three
character extension.

l 20 PROGRAM COMMANDS

•

When you list programs on the screen, it is often convenient to freeze the list
while it is scrolling. To freeze a listing, press both CTRL and 1 at the same time.
To continue the listing, again press CTRL and 1 at the same time.

With the LIST command you can list one program line or as many as you wish.
A hyphen (-) is used to specify the range of statements:
LIST Lists the whole program from lowest line number to the highest.
LIST n Lists only the statement n (where n is a statement number).
LIST · m Listing starts with the first statement in the program and stops listing

with statement m. Statement m is listed.
LIST n · Listing starts with statement number n and continues to the last state

ment number in the program.
LIST n·m Listing starts with n and ends with m. Both statements n and mare in-

cluded in the listing.
Example Program (note that REM indicates a remark that is not executed-see
REM in Section 4):
100 REM Example of the list
110 REM Command
120 PRINT "SHOWS WHICH STATEMENTS"
130 PRINT "OR GROUP OF STATEMENTS"
140 PRINT "GET LISTED"

LIST 110-130 RETURN
Microsoft BASIC 11 displays the following:
11 O REM Command
120 PR.INT "SHOWS WHICH STATEMENTS"
130 PRINT "OR GROUP OF STATEMENTS"
Example of LIST used in deferred mode:
10 COUNT= 1
20 COUNT= COUNT+ 1
30 PRINT COUNT
40 IF COUNT<> 30 THEN 20
50 LIST

Use LIST to list a program on a printer. This is done in direct mode.
LIST"P:"

Use LIST to list a program in untokenized ASCII form onto a diskette. To list to
diskette use:
LIST'' D:name.ext' ·

Use LOAD when you are entering untokenized (listed) programs into your com
puter's memory. LOAD can be used to enter programs that have been listed or
saved to cassette or diskette.

LOAD

Format: LOAD "device:program_name"
Examples: LOAD "D:EXAMPLE"

110 LOAD "C:"

LOAD "device:program_name" replaces the program in memory with the one
located on the specified device. A disk drive or cassette can be specified for
"device:". Use LOAD "C:" to load data or listed cassette files. For cassette pro
grams that have been previously saved with CSAVE, use CLOAD. For diskette files,
use "D:program_name" for listed or saved programs. (See also MERGE.)

PROGRAM COMMANDS 21

LOCK

Format: LOCK ''device:file_name''
Example: LOCK "D:CHECKBK"
LOCK offers a measure of protection against accidental erasure of files. Once a file is locked, it cannot be rewritten, deleted, or renamed.

MERGE

Format: MERGE "device:program_name"
Example: MERGE "D:STOCK.BAS"
Use MERGE to merge the program stored at "device:program_name" with the
program in memory. Only listed programs can be merged. If duplicate line numbers are encountered, the line on "device:program_name" replaces the one in
memory. An error 136 (end of file) is given at the end of the merge operation.
Example Program (see explanation of REM in Section 4):
100 REM TH IS PROGRAM
120 REM MERGING
130 REM PROGRAM

LIST "D:STOCK.BAS"
110 REM IS AN EXAMPLE
115 REM TO SHOW A PROGRAM
125 REM ANOTHER

MERGE "D:STOCK.BAS"
LIST

100 REM THIS PROGRAM
110 REM IS AN EXAMPLE
115 REM TO SHOW A PROGRAM
120 REM MERGING
125 REM ANOTHER
130 REM PROGRAM

NAME ... TO
(Available only with the extension diskette)
Format: NAME "device:program_name_ 1" TO "program_name_2"
Example: NAME "D:BALANCE" TO "CHECKBK"
NAME gives a new name to a file. The device must be given for the old program, but only the new program name enclosed in quotes is required following the
word TO.

22 PROGRAM COMMANDS

•

NEW

Format: NEW
Examples: NEW

100 IF CODE< >642 THEN NEW
NEW clears the program currently in memory and allows you to enter a new pro
gram. The NEW command does not destroy the time stored under the keyword
TIME$. All variables are cleared to zero and all strings are nulled when NEW is
executed.

REN UM
(Available only with the extension diskette)

Format: RENUM Im, n, ii
Example: RENUM 10,100,10
m = The new line number to be applied to the first renumbered statement.
n = The first old line number to be renumbered.

= The increment between new generated line numbers.
RENUM gives new line numbers to specified lines of a program. The default of

RENUM is 10, 0, 10.
RENUM changes all references following GOTO, GOSUB, THEN, ON ... GOTO,

ON ... GOSUB, and ERROR statements to reflect the new line numbers.
Note: RENUM cannot be used to change the order of program lines. For exam

ple, RENUM 15, 30 would not be allowed when the program has three lines
numbered 10, 20, and 30. Numbers cannot be created higher than 63999.
Examples:
REN UM

RENUM 10,100

Renumbers the entire program. The first new line number
will be 10. Lines will increment by 10.
The old program line number 100 will be renumbered 10.
Lines increment by 10 (the default is 10).

RENUM 800,900,20 Renumbers lines from 900 to the end of the program. Line
900 now is 800. The increment is 20.

RENUM 300, 140, 20 gives number 300 to line 140 when it is encountered. The
increment is 20.

BEFORE AFTER
100 100
110 110
120 120
130 130
140 300
150 320
160 340
170 360

PROGRAM COMMANDS 23

RUN
Format: RUN I' 'device:program_name'' I loptional_starting_line_numberl
Examples: RUN

RUN 120
200 RUN "D:TEST.BAS"
110 RUN 200

RUN without a line number starts executing your program with the lowest
numbered statement. RUN initializes all numeric variables to zero and nulls string
variables before executing the first statement in the program.

RUN can be used in the deferred mode (with a line number). It can also be used
to enter a program from diskette or cassette. However, when RUN is used to run a
program on diskette or cassette (for example, RUN "D:SHAPES"), it cannot be
used with "optional_starting_line_number," which can only be used to run
programs that are already in memory. RUN can be used to run tokenized (saved
with the SAVE instruction) programs only.
Example: RUN 250
Example Program: 200 RUN "D:TEST

When statement line number 200 is executed, it will run the program called
TEST.

SAVE

Format: SAVE "device:program_name"
Example: SAVE "D:GAME.BAS"
SAVE copies the program in memory onto the file named by program_name.
Legal devices are D: (for disk), C: (for cassette). For example, the command SAVE
"D:TEMP.BAS" will save the program currently in memory onto diskette. The pro
gram is recorded in "tokenized" form onto tape or diskette.
Example:
SAVE "D:PROGRAM" Saves the program in memory on the diskette file named
PROGRAM.

SAVE "C:" Saves the program on cassette. (No filename is required.)
Note: A program saved with the filename of AUTORUN.AMB is considered an

autoboot program, i.e., it will be executed immediately when the system is
powered on.

SAVE ... LOCK

Format: SAVE "device:program_name" LOCK
Example: SAVE "D:PROGRAM.EXA" LOCK

SAVE "device:program_name" LOCK saves a program onto tape or diskette
and encodes it so that it cannot be edited, listed, merged, examined, or modified .
LOCK is used to prevent program tampering and theft.

24 PROGRAM COMMANDS

•

TROFF
(Available only with the extension diskette)

Format: TROFF
Example: 770 TROFF

This command turns off the trace mechanism (see TRON). You may use TROFF in
direct or deferred mode.

TRON
(Available only with the extension diskette)

Format: TRON
Examples: TRON

550 TRON
This command turns on the trace mechanism. When TRON is issued, the number
of each line encountered is displayed on your television screen before it is ex
ecuted. You may use TRON in direct or deferred mode.

UNLOCK
Format: UNLOCK "device:program_name"
Example: UNLOCK "D:GAME1 .BAS"
The UNLOCK statement restores a file so that you can rewrite, delete, or rename
it. It will not unlock a file that has been SAVED with the LOCK option.

VERIFY
(Available only with the extension diskette)

Format: VERIFY "device:program_name"
Examples: VERIFY "0:810.BAS"

VERIFY "C:
VERIFY compares the program in memory with the one named by "device:pro
gram_name." If the two programs are not identical, you get a FILE MISMATCH
ERROR.

PROGRAM COMMANDS 25

4

AFTER

PROGRAM
STATEMENTS

Format: AFTER (time_in_ 1/60_of_a_sec) IGOTOl line_number
Example: 100 AFTER (266) GOTO 220
When AFTER (...)is executed, a time count starts from O up to the indicated
number of 1/60 of a second (called jiffies). When the time is up, program execution
transfers to "line_number." AFTER can be placed anywhere in a program but it
must be executed in order to start its count. A time period up to 24 hours is
allowed.

When RUN, STOP, or END is executed the AFTER statement jiffie count is reset.
Example Program:
10 CLS:AFTER (300) GOTO 70
20 PRINT "YOU HAVE 5 SECONDS TO PRESS A KEY, ":PRINT "ANY KEY."
30 IF INKEY$ =""THEN 30
40 PRINT "THANK YOU"
50 CLEAR ST ACK
60 END
70 PRINT "TIME'S UP!";
80 RESUME 50

CLEAR

Format: CLEAR
Examples: CLEAR

550 CLEAR
CLEAR zeros all variables and arrays, and nulls all strings. If an array is needed
after a CLEAR command, it must be redimensioned.

CLEAR STACK

Format: CLEAR ST ACK
Example: 100 CLEAR STACK
CLEAR STACK clears all current time entries. CLEAR STACK is a way to abort the
AFTER statement. If certain conditions are met in a program, you may wish to
cancel the AFTER statement.
Example Program:
10 AFTER (120) GOTO 30
20 CLEAR ST ACK
25 STOP
30 PRINT "YOUR TURN IS OVER"
40 STOP

26 PROGRAM STATEMENTS

•

CLOSE

Format: CLOSE #iocb
Example: CLOSE #2
Use CLOSE after file operations are completed. The #sign is mandatory and the
number itself identifies the IOCB.
Mandatory symbol.
iocb The number of a previously opened IOCB.

COMMON

Formats: COMMON variable_namelvariable_namel
COMMON ALL

Examples: 110 COMMON I, J, A$, H % , DEC
100 COMMON ALL

Use COMMON to keep variable values across programs. COMMON makes
variables in two programs share the same name and values. If you name a
variable COUNT in one short program and join that program with another program
that has COUNT as a variable, the program considers the COUNTs to be different
variables. The COMMON statement says that you want both COUNTs to be con
sidered the same variable. COMMON ALL keeps all previous variable values the
same across the new program run.
Example Program:
100 COMMON X
110 X=4
120 RUN "D:PROG2"
BREAK
PRINT X RETURN

The value of X when line 120 executes PROG2 is 4. If there is already a variable
named X in PROG2, X gets its value from the COMMON statement in the new pro
gram.

DEF
(Available only with the extension diskette)
Format: DEF function_name (variable I ,variable I) = function_definition
Example: 150 DEF MULT(J,K) = J*K
User-defined functions in the form DEF A(X) = X A 2, where A(X) represents the
value of X squared, can be used throughout a program as if they were part of the
BASIC language itself. Normally a user-defined function is placed at the beginning
of a program. The user-defined function can occupy no more than a single pro
gram line. String-defined functions are allowed. If the defined function is a string
variable name, then the defined expression must evaluate to a string result. One or
more parameters can be defined. Thus, DEF S$(A$,B$) = A$+ 8$ is legal.

PROGRAM STATEMENTS 27

Example Programs:
5 !DEFINES AVERAGING FUNCTION

10 DEF AVG(X,Y) = (X+ Y)/2
20 PRINT AVG(25,35)
30 END

RUN RETURN
30
Example Programs:
100 !DETECT PADDLE POSITION
110 DEF PADDLE(X) = PEEK(624 + X)
120 PRINT PADDLE(O)
130 GOTO 120
100 ! DETECT JOYSTICK BUTTON
110 DEF STRIG(X) = PEEK(644 + X)
120 IF STRIG(O) THEN 420 ELSE PRINT"BANG!"
130 GOTO 420
Note: DEF is not allowed in the direct mode.

DIM

Formats: DIM arithmetic_variable_name (number_of_elements), llistl
DIM string_variable_name$ (number_of_elements), llistl

Examples: 10 DIM A$ (35), TOTAMT (50)
The DIM statement tells the computer the number of elements you plan to have
in an array. If you enter more data elements into an array than you have allowed
for in a dimension statement, you get an error message.

The simplest array is the one-dimensional array. Let's say you have 26 students
in a class. You can record a numeric test score for each student by dimensioning:
10 OPTION BASE 1
20 DIM SCORE(26)
30 SCORE (1) = 55
40 SCORE (2) = 86
50 PRINT SCORE (1), SCORE (2)
RUN

Notice that the OPTION BASE statement begins the array subscripting with 1,
thus SCORE (1) stores the numeric score of the first student. OPTION BASE O
allows you to begin subscripting with the number 0.

ATARI Microsoft BASIC II allows you to have up to 255 array dimensions. Three
dimensional arrays allow you to make complex calculations easily.
Example Programs:
110X=10:Y= 10:Z= 10
120 DIM BOXES(X,Y,Z)
10 REM Eleven items in array
20 DIM GROUP1 (10)
30 For I= 0 to 10: GROUP1(1) = l:PRINT GROUP1(1):NEXT
40 END
5 REM Ten items in an array

10 OPTION BASE1
20 DIM GROUP2 (10)
30 FOR I= 1 TO 10:GROUP2(1):PRINT GROUP2(1):NEXT
40 END

28 PROGRAM STATEMENTS

• •1

END

Format: END
Example: 990 END
END halts the execution of a program and is usually the last statement in a pro
gram. When END terminates a program, the prompt character appears on the
screen. In ATARI Microsoft BASIC II, it is not necessary to end a program with the
END statement.

ERROR

Format: ERROR error_code
Example: 640 ERROR 162
ERROR followed by an error code forces BASIC to evaluate an error of the
specified error code type. Forcing an error to occur is a technique used to test
how the program behaves when you make a mistake. A complete listing of error
codes is given in Appendix 0. You can force both system errors and BASIC errors.

FOR. .. TO ... STEP/NEXT
Format: FOR starting_variable = starting_value TO ending-value STEP
lincrementl value
Examples: 10 FOR X = 1 TO 500 STEP 3

150 FOR Y = 20 TO 12 STEP -2
30 FOR COUNTER= 1 TO 250

FOR and NEXT go together to repeatedly execute a set of instructions until a
variable reaches a certain value. The variable begins with the starting value and in
creases by the amount of the increment value each time until the ending value is
exceeded.

FOR/NEXT determines how many times statements between the line numbers of
the FOR .. .TO ... STEP and the NEXT are executed repeatedly. If STEP is omitted, it is
assumed to be 1. STEP can be a negative number or decimal fraction. The exam
ple program prints 30 numbers with their square roots.
Example Program:
1 00 FOR X = 1 TO 30
110 PRINT X, SQR(X)
120 NEXT

GET

Format: GET#iocb, IAT(sector,byte); I variable_name
Examples: 200 GET #1, X

330 GET #3, AT(8,2);J,K,L
GET reads a byte (value from 0-255) from a file designated by the #iocb and then
stores the byte in the "variable_name."

The example program requires a file called "MYFILE" to exist on the disk drive.
Use the PUT example program before using the program.

PROGRAM STATEMENTS 29

Example Program:
110 OPEN #1, "D:MYFILE" INPUT
120 GET #1, A,B,C
130 CLOSE #1
140 PRINT A,B,C

Note: GET is not allowed in immediate mode.

GOSUB/RETURN

Format: GOSUB line_number
Example: 330 GOSUB 150
GOSUB causes the line indicated by "line_number" to be executed. A RETURN
statement marks the end of the subroutine and returns execution to the statement
after the GOSUB statement.

GOTO

Format: GOTO line_number
Example: 10 GOTO 110

GOTO tells the system which line number is to be executed next. Normally,
statements are executed in order from the lowest to highest number, but GOTO
changes this order. GOTO causes a branch in the program to the line number
following GOTO.
Example: GOTO 55

Since this statement does not have a line number, it starts immediate execution
of the program in memory starting at line number 55.
100 PRINT "THIS IS ENDLESS"
120 GOTO 100
RUN RETURN

This program causes endless branching to line number 100. Thus, the television
screen quickly fills up with THIS IS ENDLESS. Press BREAK to stop the program .

IF ... THEN

Format: IF test_condition THEN goto_line_number or statement
Examples: 10 IF A= B THEN 290

20 IF J >Y AND J< V THEN PRINT "OUT OF STATE TAX"
If the result of the test condition is true, the next statement executed is the one in
dicated by "goto_line_number." A test is made with the relational or
mathematical operators. The test can be made on numbers or strings. The words
GOTO after THEN are optional. If the test condition is false, the execution goes to
the next numbered line in the program.
Example Program:
160 IF A_NUMBER > ANOTHER_NUMBER THEN 300
200 PRINT "ANOTHER NUMBER IS LARGER"
250 STOP
300 PRINT "A NUMBER IS LARGER"
450 END

30 PROGRAM STATEMENTS

•

IF ... THEN ... ELSE

Format: IF test_condition THEN goto_line_number or statement ELSE
goto_line_number or statement

Example: 250 IF R < Y THEN 450 ELSE 200
This is the same as IF ... THEN except that execution passes to the ELSE clause
when the test condition is untrue.

INPUT

Format: INPUTl#iocbl l"prompt_string'';lvariable_namel,var_namel
Examples: 120 INPUT "TYPE YOUR NAME";A$

350 INPUT "ACCOUNT NO., NAME";NUM,B$
INPUT lets you communicate with a program by typing on the computer keyboard.
You are also allowed to print character strings with the INPUT statement. This lets
you write prompts for the user such as TYPE YOUR NAME. The typed characters
are as signed to the variable names when you press the RETURN key or type a
comma. The INPUT statement temporarily stops the program until your keyboard
input is complete. The INPUT statement automatically puts a question mark on the
television screen.

Note: Commas are not allowed when input is entered on the keyboard. INPUT is
not allowed in the direct mode.

INPUT ... AT

Format: INPUTl#iocb,I AT (s,b) variable_name
Example: 300 INPUT #5, AT (9, 7)X
If a disk drive has been opened as INPUT and assigned an IOCB#, then it can be
used to input data. The input from the device is read AT(sector,byte) and assigned
a variable name. INPUT#6, AT(x,y)X can be used to read a specific screen location.

LET

Formats: ILETI variable_name = larithmetic_expressionl or lstring_expressionl
variable_name = larithmetic_expression I or lstring_expression I

Examples: 100 LET COUNTER = 55
120 D = 598

LET assigns a number to a variable name. The equal sign in the LET statement
means "assign," not "equal to" in the mathematical sense. For example,
LET V = 9, assigns a value of 9 to a variable named V. The number on the right
side of the equal sign can be an expression composed of many mathematical sym
bols and variable names. Thus, LET V = (X + Y-9)/(W*Z) is a legal statement.

The word LET is optional. All that is necessary for assignment is the equal
sign. Thus,
100 LET THIS = NUMBER * 5
is the same as:
100 THIS = NUMBER* 5

PROGRAM STATEMENTS 31

LINE INPUT

Format: LINE INPUTl#iocbl l"prompt_string";I string_variable_name$
Example: 190 LINE INPUT ANS$
An entire line is input from the keyboard. Commas, colons, semicolons, and other
delimiters are allowed. Mark the end of the line by pressing RETURN.
Example Program:
100 LINE INPUT "WHAT IS YOUR NAME?"; N$
120 PRINT N$
130 END

LINE INPUT ... AT

Formats: LINE INPUT #iocb,AT(s,b)l"prompt_string"lvariable_name
Example: 300 LINE INPUT #5, AT(9,7)X
If a disk drive has been opened as LINE INPUT and assigned an IOCB#, then it can
be used to input data. The input from the device is read AT (sector, byte) and
assigned a variable name. LINE INPUT#6, AT(x,y);X can be used to read a specific
screen location.

MOVE

Format: MOVE from_address, to_address, no._of_bytes
Example: 20 MOVE MADDR1, MADDR2, 9
The MOVE statement moves bytes of memory from one area of memory to
another.The first location of the original memory block is given by the first numeric
expression (from_address) and the first location of the destination block is given
by the second numeric expression (to_address). The third numeric expression
specifies how many bytes are to be moved. The order of movement is such that
the contents of the block of data are not changed by the move. MOVE's primary
use is in player-missile graphics.
Example: MOVE 55,222,5
Five bytes with a starting low address at 55 (i.e., 55-60) will be moved to location
222-226.

NEXT

Format: NEXT lvariable_namel
Examples: 30 NEXT J,I

40 NEXT VB
120 NEXT

NEXT transfers execution back to the FOR .. .TO line number until the TO count is
exceeded. NEXT does not need to be followed by a variable name in ATARI
Microsoft BASIC II. When NEXT is not followed by a variable name, the execution
is transferred back to the unterminated FOR .. .TO statement.

32 PROGRAM STATEMENTS

•

Example Program:
100 FOR X= 10 TO 100 STEP 10
110PRINTX
120 NEXT
130END

RUN RETURN

Then you see displayed:
10
20
30
40
50
60
70
80
90
100

Two or more "starting-variables" can be combined on the same NEXT line with
commas.
Example Program:
100 FOR X= 1 TO 20
110 FOR Y = 1 TO 20
120 FOR Z = 1 TO 20
130 NEXT Z,Y,X

NOTE
(Available only with the extension diskette)
Format: NOTE #iocb,variable_name,variable_name
Example: 120 NOTE 4,1,J
Use NOTE to store the current diskette sector number in the first
"variable_name" and the current byte number within byte. This is the current
read or write position in the specified file where the next byte to be read or written
is located.

ON ERROR

Format: ON ERROR [GOTO[line_number
Example: ON ERROR 550
Program execution normally halts when an error is found and an error message
prints on the television screen. ON ERROR traps the error and forces execution of
the program to go to a specific line number.

The ON ERROR statement must be placed before the error actually occurs in
order to transfer execution to the specified line.

To recover normal execution of the program, you must use the RESUME state
ment. The RESUME statement transfers execution back into the program.

When RUN, STOP, or END is executed, the ON ERROR statement is nullified un
til the next ON ERROR statement.

PROGRAM STATEMENTS 33

Example Program:
10 ON ERROR 1000
20 PRINT #3, "LINE"
30 STOP
1000 PRINT "DEVICE NOT OPENED YET"
1010 STOP
1020 RESUME
The ON ERROR line_number statement can be disabled by the statement:
ON ERROR GOTO 0. If you disable the effect of ON ERROR within the error
handling routine itself, the current error is processed in the normal way.

ON ... GOSUB/RETURN

Format: ON arithmetic_expression GOSUB line_number_ 1, line_number_2,
line_number_3

Example: 220 ON X GOSUB 440, 500, 700
ON ... GOSUB determines which subroutine is to be executed next. It does this by
finding the number represented by the "arithmetic_expression." If the number is
a 1 then execution passes to "line_number_ 1." If the number is a 2, execution
passes to "line_number_2," or if the number is a 3, execution passes to
line_number_3, etc.
Example Program:
100 INPUT "TYPE A NUMBER (1-4)"; X
110 ON X GOSUB 130, 140, 150, 170
120 GOTO 100
130 PRINT "FIRST CALL - X = 1 ":RETURN
140 PRINT "SECOND CALL - X = 2":RETURN
150 PRINT "THIRD CALL - X = 3":RETURN
160 PRINT "CAN'T GET HERE": REM THIS IS NOT IN THE ON ... GOSUB LINE
170 PRINT "END THE PROGRAM": END

ON ... GOTO

Format: ON arithmetic_expression GOTO line_number _ 1, line_number _2,
line_number_3

Example: 400 ON X GOTO 550, 750, 990
ON ... GOTO determines which line is executed next. It does this by finding the
number represented by the "arithmetic_expression" and if the number is a 1,
control passes to "line_number_ 1." If the number is a 2, control passes to
"line_number_2." If the number is a 3, control passes to "line_number_3,"
and so on.

34 PROGRAM STATEMENTS

•

OPEN

Format: OPEN #iocb, "device:program_name" file_access
Examples: 130 OPEN #4, "K:" INPUT

100 OPEN #3, "P:" OUTPUT
150 OPEN #4, "D:PROG.SAV" INPUT
120 OPEN #2, "D:GRAPH1 .BAS" UPDATE
110 OPEN #5, "D:PROG.BAS" APPEND

Mandatory character entered by user.
iocb, Input/output control block (IOCB). Choose a number

from 1 to 7 to identify a file and its file access. You
must have a pound sign (#) followed by an IOCB
number (1-7) and a comma. (Refer to the ATARI
Home Computer System Technical Reference Notes
for a detailed explanation of IOCB.)

"device:program_name" Specifies the device and the name of the program.
Devices are D: (disk), P: (printer), E: (screen editor),
K: (keyboard), C: (cassette), S: (television monitor),
and R: (RS 232-C). When you use D: your program
name follows the colon. The name of your program
can be up to eight characters long and have a three
character extension. Program names must begin with
an alphabetic character. At the beginning of this sec
tion you will find a complete description of the device
codes (K:, P:, C:, D:, E:, S:, R:).

file_access Tells the type of operation:

INPUT = input operation
OUTPUT = output operation
UPDATE = input and output operation
APPEND = allows you to add onto the end of a file

The idea behind the OPEN statement is to associate a number (the IOCB#) with the
name of a file and its access characteristics. After the OPEN#n statement is en
countered in a program, you can use PRINT#2, INPUT#3, NOTE#5, STATUS#2,
GET#4, and PUT#4. That is, you can use the IOCB# as an identifier.

The OPEN#n and PRINT#n statements now substitute for LPRINT (LINE
PRINTING):
100 OPEN#3, "P:" OUTPUT
110 PRINT#3, "TH IS IS A PRINTER TEST"
120 CLOSE#3
The following IOCB identifiers have preassigned uses:
• #0 is used for INPUT and OUTPUT to E:, the screen editor.

• #6 is used for INPUT and OUTPUT to S:, in all graphics modes.
An example of the use of IOCB #6 is:
100 GRAPHICS 2
110 PRINT #6, AT(5,5); "SCREEN PRINT TEST"
IOCBs #1 through #5 (and IOCB #7) can be used freely, but the preassigned IOCBs
should be avoided.

PROGRAM STATEMENTS 35

OPTION BASE

Formats: OPTION BASE 0 (Default)
OPTION BASE 1

Examples: 150 OPTION BASE 1
200 DIM Z (25,25,25)!array element subscripts nos. 1-25

OPTION BASE declares that array subscript numbering starts with 0 or 1. The
OPTION BASE (0/1) statement should be the first executable statement in a pro
gram. If the OPTION BASE statement is omitted, lists' and arrays' subscript
numbering starts at 0.
Example Program:
100 REM DEMONSTRATES OPTION BASE 1 STATEMENT
110 OPTION BASE 1
120 DIM ARRAY (15,15)
150 READ ARRAY (1,1), ARRAY (2,2), ARRAY (15,15)
165 DATA 32,33,34
180 PRINT ARRAY (1,1), ARRAY (2,2), ARRAY (15,15)
190 END

OPTION CHR1, OPTION CHR2, OPTION CHRO

Formats: OPTION CHR1
OPTION CHR2
OPTION CHRO

Examples: 110 OPTION CHR1
120 OPTION CHR2
130 OPTION CHRO

OPTION CHR1 reserves 1024 bytes in memory for character data. OPTION CHR2
reserves 512 bytes in memory for character data. OPTION CHRO releases all
OPTION CHR reservations.

Use OPTION CHR1 or OPTION CHR2 to reserve memory for a RAM character
set. You can MOVE the ROM character set into the new RAM area you have
reserved or you can define a totally new character set. VARPTR(CHR1) or
VARPTR(CHR2) points to the starting address. It is necessary to POKE a new start
ing address into CHBAS (see Table E-2 in Appendix K). This can be done by deter
mining the page to which VARPTR(CHR1) or VARPTR(CHR2) is pointing. One way to
determine and POKE a new CHBAS is:
300 CH BAS= &2F4
310 ADDR% = VARPTR(CHR1)
320 POKE CHBAS,((ADDR%/256)AND &FF)

The GRAPHICS instruction (see Section 6) must always precede the OPTION
CHRn statement. This is because the computer must first know the graphics mode
before you reserve space.

This procedure masks for the most significant byte (MSB) of the VARPTR
memory address and POK Es that MSB into CH BAS so you switch to the new
character set. See Appendix C for an example of redefining the character set.

36 PROGRAM STATEMENTS

•

OPTION PLM1, OPTION PLM2, OPTION PLMO

Formats: OPTION PLM1
OPTION PLM2
OPTION PLMO

Examples: 100 OPTION PLM 1
100 OPTION PLM2
700 OPTION PLMO

OPTION PLM 1 reserves 1280 bytes in memory for player-missiles (single-line
resolution). OPTION PLM2 reserves 640 bytes in memory for player-missiles
(double-line resolution). OPTION PLMO releases all OPTION PLM reservations.

The GRAPHICS instruction (see Section 6) must always precede the OPTION
PLMn statement. This is because the computer must first know the graphics mode
before you reserve space.

Use OPTION PLM 1 or OPTION PLM2 to reserve player-missile memory, clear
the memory, and set PMBASE (see Table E-2 in Appendix L). You do not need to
worry about the proper memory area to place player-missiles when you use the
OPTION PLM statements. To find the exact memory location of the starting byte of
your missiles, use VARPTR(PLM1) or VARPTR(PLM2).

You must POKE decimal location 53277 with decimal 3 in order to enable player
missile graphics. You must also POKE decimal location 559 with decimal 62 for
single-line resolution or decimal 46 for double-line resolution. See Section 7 for an
example of player-missile graphics.

OPTION RESERVE

Format: OPTION RESERVE n
Example: 300 OPTION RESERVE 24
In the OPTION RESERVE n statement, n is a number representing the number of
bytes reserved. For example, OPTION RESERVE 24 reserves 24 bytes.
VARPTR(RESERVE) can be used to tell you the starting address of the 24 bytes in
OPTION RESERVE 24. This statement allows you to reserve bytes for machine
code or for another purpose.

PRINT

Formats: PRINT "string_constant"
? "string_constant", variable_name
PRINT variable_name_ 1, variable_name_2, ... variable_name_n

Examples: 100 PRINT "SORTING PROGRAM";A$,X
500 ?#6, "ENTERING DUNGEON" ! Print for GRAPHICS 1 and 2

PRINT puts string constants, string variables, or numeric variables on the television
screen when executed. The PRINT statement leaves a blank line when executed
alone. The question mark symbol (?) means the same thing as the word PRINT.

PROGRAM STATEMENTS 37

Example Program:
100 PRINT "SKIP A LINE"
120 PRINT
125 REM NOTE USE OF"" TO PRINT A QUOTATION
130 ANOTHER_LINE$ ="PRINT '"'ANOTHER"" LINE"
140? ANOTHER_LINE$
150 END
Line 120 leaves a blank line when this program is run:
RUN RETURN
SKIP A LINE
PRINT "ANOTHER" LINE
String constants, string variables, and numeric variables all print on the same line
when the line construction includes a comma or semicolon.

It is not necessary to use a closing quotation if you wish to print a string con
stant on your television screen:
100 PRINT "NO CLOSING QUOTE HERE

RUN RETURN
NO CLOSING QUOTE HERE

PRINT ... AT

Formats: PRINT #iocb, AT(A,B)x,y
PRINT #6, AT(x,y) "string_constant";variable_name

PRINT ... AT will print at a particular sector and byte if the disk drive has been
opened as OUTPUT (see OPEN statement). The AT clause is quite versatile. If the
device being addressed is a disk drive, AT(s,b) refers to the sector, byte. However,
if the device being addressed is the screen, as in PRINT or PRINT#6, then the
AT(x,y) refers to the x,y screen position.
An example of printing to a disk drive:
100 OPEN#3, "D:TEST.DAT" OUTPUT
110X=5
120 PRINT#3, AT(7,1)"TEST";X
130 CLOSE#3
Note: The sector and byte location has to be previously assigned to the file opened
before you can successfully write to it.
An example of printing to a screen location:
100 GRAPHICS 1
110 PRINT#6, AT(3,3)"PRINTS ON SCREEN"

PRINT ... SPC
Format: SPC(n)
Example: 10 PRINT TAB (5);"XYZ";SPC (?);"SEVEN SPACES RIGHT OF XYZ"
SPC puts spaces between variables and constants in a line to be printed. SPC
counts spaces from where the last character was printed.

PRINT ... TAB
Format: TAB(n)
Example: 120 PRINT TAB(5);"PRINT STARTS 5 SPACES OVER"

38 PROGRAM STATEMENTS

•

TAB moves the cursor over the number of positions specified within the paren
theses. This statement is used with PRINT to move characters over a number of
tabbed spaces. TAB always counts spaces from the first position on the left-hand
margin.
Example Program:
100 PRINT "THIS LINE STARTS AT TAB (O)"
110 PRINT TAB (5);"THIS LINE STARTS AT TAB (5)"
120 END

PRINT USING
(Available only with diskette extension)
PRINT USING lets you format your output in many ways:
• Numeric variable digits can be placed exactly where you want them.
• You can insert a decimal point in dollar amounts.
• You can place a dollar sign ($) immediately in front of the first digit of a dollar

amount.
• You can print a dollar sign ahead of an amount.
• Amounts can be padded to the left with asterisks (***$45.00) for check protec

tion purposes.
• Numbers can be forced into exponential (E) or double-precision (D) format.
• A plus sign (+) causes output to print as a + for positive and a - for

negative numbers.

PRINT USING #
The pound sign # holds a position for each digit in a number. Digits can be
specified to the right or left of the decimal point with the pound sign. Zeros are in
serted to the right of the decimal, if needed, in the case where the amount is in
whole dollars. Decimal points are automatically lined up when # is used. The# is
convenient in financial programming.
Example Program:
10 X= 246
20 PRINT USING "###";X
RUN RETURN

246
Note: If a number has more digits than the number of pound signs, then a percent
sign will print in front of the number.
Example Program:
100 X= 99999
110 PRINT USING "###";X
120END
RUN RETURN
%99999

PRINT USING.
Place the period anywhere within the #decimal place holders. The decimal in the
amount will align with the decimal in the USING specification.
10 x = 2.468
20 PRINT USING "##.##";X

RUN RETURN
2.47

Note: Since only two digits were specified after the decimal point, the cents posi
tion was automatically rounded up.

PROGRAM STATEMENTS 39

PRINT USING,
Place a comma in any PRINT USING digit position. The comma symbol causes a
comma to print to the left of every third digit in the result.

Note: Extra decimal position holders (#) must be used if more than one comma
is expected in a result.
Example Program:

5 DEFDBL X
10 x = 2933604.53
20 PRINT USING "########,##";X
30 END
RUN RETURN
2,933,604.53

PRINT USING**
Two asterisks in the first two positions fill unused spaces in the result with
asterisks. The two asterisks count as two additional digit positions.
Example Program:
100 X= 259
120 PRINT USING "**#######.##";X
RUN RETURN
******259.00

PRINT USING $
A dollar sign at the starting digit position causes a dollar sign to print at the left
digit position in the result.
Example Program:
100 x = 3.59631
110 PRINT USING "$###.##";X
120 END

RUN RETURN
$ 3.60

PRINT USING $$
Two dollar signs($$) in the first two positions give a floating dollar sign in the
result. That is, the dollar sign will be located immediately next to the first decimal
digit that is displayed.
Example Program:
100 x = 3.5961
110 PRINT USING "$$###.##";X
120 END

RUN RETURN
$3.60

PRINT USING **$
If * *$ is used in the first three positions, the result will have asterisks filling unused
positions and a dollar sign will float to the position immediately in front of the first
displayed digit.
Example Program:
100X=53.29
110 PRINT USING "**$########.##";X
120 END

RUN RETURN

********$53.29

40 PROGRAM STATEMENTS

•

PRINT USING /\ /\ /\/\
Four exponentiation symbols after the pound sign (#)decimal place holder will
cause the result to be in exponential (E or D) form.
Example Program:
100 X= 500
110 PRINT USING"##/\/\/\/\ ";X
120 END

RUN RETURN

5E+ 02

PRINT USING +
The plus sign (+) prints a + for positive and a minus (-) for negative in front of a
number. The plus sign (+) can be used at the beginning or end of the PRINT
USING string.
Example Program:
100 A= 999.55
110 PRINT USING"+ ####";A
120 END

RUN RETURN
+ 1000

PRINT USING ·
The minus (-) sign following the PRINT USING string makes a - appear following a
negative number. And a trailing space will appear if the number is positive.
Example Program:
100 A=-998
110 PRINT USING "----";A
120 END

RUN RETURN
998-

PRINT USING !
The exclamation sign (!) pulls the first character out of a string.
Example Program:
100 A$= "B MATHEMATICS 1A"
110 PRINT USING "!";A$
120 END

RUN RETURN
B

PRINT USING %bbbb%
The percent signs (%)and blank spaces (b) will pull part of a string out of a longer
string. The length of the string you pull out is 2 plus the number of spaces (b's) be
tween the percent signs.
Example Program:
100 A$= "Smith Fred"
120 PRINT USING "%bbb%";A$
130 END

RUN RETURN
Smith

PROGRAM STATEMENTS 41

PUT

Formats: PUT#iocb, IAT(sector, byte);! arithmetic_expression
Examples: 100 PUT#6, AT(8,2)J,K,L
GET and PUT are opposites. PUT outputs a single byte value from 0-255 to the file
specified by #iocb (# is a mandatory character in both of these commands).

The example program below creates a file called "MYFILE" and outputs three
numbers to it on your diskette. Use the example program for the GET statement to
get the three numbers.
Example Program:
10 OPEN #1, "D:MYFILE" OUTPUT
20 PUT #1, 65, 66, 67
30 CLOSE #1

RANDOMIZE

Format: RANDOMIZE !seed!
Examples: 10 RANDOMIZE

10 RANDOMIZE 55 !Sets a certain repeatable sequence
RANDOMIZE assures that a different random sequence of numbers occurs each
time a program with the RND arithmetic function (see Section 5) is run.
RANDOMIZE gives a random seed to the starting point of the RND sequence.
Example Program:
100 RAN DOM IZE
110 PRINT RND
120 END

Each time you run the above program, a unique number prints on the television
screen.

Without the RANDOMIZE command the RND arithmetic function repeats the
same pseudo-random number each time a program is run. In testing a program it
is sometimes ideal to have an AND sequence that you know is the same each
time. In this case, use the AND function by itself without RANDOMIZE. Another
way to produce a long sequence that is the same each time, is to use
RANDOMIZE lseedl (where lseedl is an arbitrary number). But if you wish to see a
different set of cards each time you play the game, just use RANDOMIZE by itself
somewhere near the start of your program.
Example of AND without RANDOMIZE:
100 PRINT AND
110END
Each time you run this program, it prints the same number on the television
screen.

42 PROGRAM STATEMENTS

•

READ/DATA

Format: READ variable_name_ 1,lvariable_name_2,l lvariable_name_nl
Example: 150 READ A,B
READ assigns numbers or strings in the DATA statement to variable names in the
READ statement. Commas separate variable names in the READ statement and
items in the data statement. Hence, it is all right to leave extra spaces between
items because the comma determines the end of items. READ A, B, C looks at the
first three DATA items. If READ A, B, C is executed again, the next three numbers
of the data statement are assigned to A, B, C, respectively. The pairing of variables
and data continues until all the data are read.
Formats: DAT A arithmetic_constant. larithmetic_constantl

DATA string_constant. lstring_constantl
Examples: 140 DATA 55,793,666,94.7,55

150 DATA ACCOUNT,AGE,"""NAME""",SOCIAL SECURITY
The arithmetic constants and string constants in the DAT A statement are assigned
to variable names by the READ statement. Use a comma to separate the entries
that you wish to input with READ/DATA. More than one DATA statement can be
used. The first DATA item is assigned the first variable name encountered in
READ; the second DATA item is assigned the second variable name, and so on.
When all the items are read and the program tries to read data when none exists,
an "out-of-data" error occurs. The ERR statement can be used to test for the out
of-data condition.

If a comma is included in a string item in a DATA statement, then the whole
string item must be enclosed in quotation marks. Otherwise, it could be mistaken
as a comma used to separate items. Quotation marks are not required if a string
uses numeric values as string data.
Example of READ/DATA:
100 FOR J = 1 TO 3
120 READ A$,A
130 PRINT A$,A
140 NEXT J
150 DATA FRED,50,JACK,20,JANE,200
900 PRINT "END OF DATA"
910 END

REM or! or'

Format: REM
Examples: 10 REM THIS PROGRAM COMPUTES THE AREA OF A SPHERE

20 LET R = 25 !Sets an initial value
30 GOSUB 225 'GO TO COMPUTATION SUBROUTINE
65 PRINT R: REM PRINTS RADIUS

PROGRAM STATEMENTS 43

Format: ! and '
Examples: 10 PRINT "EXAMPLE" !TAIL COMMENTS

20 GOTO 10 ! USE ! and '
The exclamation point(!) and the accent(') are used after a statement for com
ments. REM must start right after the line number or colon, while ! and 'do not re
quire a preceding colon.

REM, ! , and ' are used to make remarks and comments about a program. REM
does not actually execute. Although REM statements use more memory, it is a
valuable aid to reading and documenting a program.

RESTORE

Format: RESTORE lline_numberl
Examples: 440 RESTORE 770

550 RESTORE
The RESTORE statement is used if data items are to be used again in a program.
That is, RESTORE allows use of the same DATA statement a number of times.
Without the RESTORE statement, an out-of-data error results from the attempt to
READ data a second time. The data can be restored starting with a particular line
number using the optional "line_number." The example program will direct pro
gram execution to line 50 when it encounters RESTORE 50.
10 REM READ - DATA - RESTORE DEMO
20 DIM A(15)
30 FOR I= 1 TO 10:READ A(l):PRINT A(l)NEXT I
40 DATA 1,2,3,4,5
50 DATA 6,7,8,9,10
60 DATA 11,12,13,14,15
70 RESTORE 50
80 FOR N = 1 TO 10: READ A(N): PRINT A(N);:NEXT N

RESUME

Formats: RESUME lline_numberl
RESUME INEXTI
RESUME

Examples: 300 RESUME 55
440 RESUME NEXT
450 RESUME

RESUME is the last statement of the ON ERROR line_number error-handling
routine. RESUME transfers control to the specified line number.

RESUME NEXT transfers execution to the statement following the occurrence of
the error.

RESUME transfers execution back to the originating (error-causing) line number
if you do not follow RESUME with NEXT or line_number.

44 PROGRAM STATEMENTS

•

RETURN
Format: RETURN
Example: 550 RETURN
RETURN returns the program to the line number after the GOSUB statement that
transferred execution to this group of statements.
Example Program:
10 x = 1
20 GOSUB 80
30 PRINT X
40 x = 3
50 GOSUB 80
60 PRINT X
70 STOP
80 x = x * 2
90 RETURN

STACK
Format: STACK
Examples: 120 PRINT STACK !Prints no. of stack entries available

310 IF STACK = 0 THEN PRINT "STACK FULL"
The STACK function gives the number of entries available on the time stack. The time stack can hold 20 jiffie entries. The STACK is used to hold the SOUND and AFTER jiffie times.

STOP
Format: STOP
Example: 190 STOP
STOP is used to halt execution of a program at a place that is not the highest line number in the program. The STOP command prints the line number where execution of the program is broken. STOP is a useful debugging aid because you can use PRINT in the direct mode to show the value of variables at the point where execution halts.

VARPTR
Formats: VARPTR(variable_name)

VARPTR(PLM1)
VARPTR(PLM2)
VARPTR(CHR1)
VARPTR(CHR2)
VARPTR(RESERVE)

- Examples: 110 A= VARPTR(A$)
100 PRINT VARPTR(A$)+ 1
120 J = VARPTR(TOTAL)
120 T=VARPTR(CHR2)
155 POKE VARPTR(RESERVE),&FE

PROGRAM STATEMENTS 45

If the argument to this function is a variable name, the function returns the address
of the variable's symbol table entry. When the variable is arithmetic, VARPTR
returns the variable's 2-byte starting address (most significant byte, least signifi
cant byte) in memory. When the variable is a string, VARPTR returns the number of
bytes in the string. Then the starting location of the string is given in
VARPTR(A$) + 1 (least significant byte) and VARPTR(A$) + 2 (most significant byte) .
Notice that only in the case of strings is the address given in the 6502 notation of
low-memory byte before the high-memory byte. Except in the case of strings the
whole address in high-byte/low-byte format is returned with VARPTR. The following
keywords can be used with VARPTR:
VARPTR(PLMn) Returns the address (MSB, LSB) of the first byte allocated

for PLMn.
VARPTR(CHRn) Returns the address (MSB, LSB) of the first byte allocated

for CHRn.
VARPTR(RESERVE) Returns the address (MSB, LSB) of the first byte allocated

for assembly language programs.
Use OPTION PLM1, OPTION PLM2, OPTION CHR1, OPTION CHR2, and OPTION
RESERVE n to allocate space. Once OPTION has been used to set aside space,
VARPTR can be used to point to the starting byte of that space.

WAIT ... AND
Format: WAIT address, AND_mask_byte, compare_to_byte
Example: 330IIWAIT11 &D40B,&FF,110 !WAIT FOR VBLANK

WAIT stops the program until certain conditions are met. Execution waits until the
compare_to_byte, when ANDed with the AND_mask_byte, equals the location
address of the byte contained in memory.

WAIT is ideal if you need to halt execution until VBLANK occurs (refer to De Re
Atari for detailed explanation of VBLANK). VBLANK occurs every 1/60 of a second .
It consists of a number of lines below the visible scan area.You can make sure
that your screen is interrupted halfway through its scan lines (causing the screen
to blip) if you WAIT until a VBLANK occurs. This technique is used to animate
characters as shown in Appendix C, "Alternate Character Sets." See Appendix A
for an example of the WAIT statement used to control the timing of vertical fine
scrolling.

46 PROGRAM STATEMENTS

•

PROGRAM
FUNCTIONS

NUMERIC FUNCTIONS

ABS
Format: ABS (expression)
Example: ABS (-7)

5

ABS returns the absolute value of a number. The sign of a number is always
positive after this function is executed. If the number -7 (negative 7) is evaluated
with ABS, the result is 7 (positive 7).

ATN
Format: ATN (arithmetic_expression)
Example:? ATN (.66) Prints arctangent of .66 as .583373 radian.
ATN returns the arctangent of the arithmetic expression.
cos
Format: COS (arithmetic_expression)
Example: ? COS (.95) Prints cosine of .95 as .581683 radian.
COS returns the trigonometric cosine of the arithmetic expression.
EXP
Format: EXP (arithmetic_expression)
Example: ? EXP (3) Prints 20.0855.
EXP returns the Euler's number (e) raised to the power of the arithmetic expression
within the parentheses.

INT
Format: INT (arithmetic_expression)
Examples:? INT (5.3) Prints 5 on your television screen.

? INT (-7.6) Prints -8 on your television screen.
INT returns an integer for the arithmetic expression. INT always rounds to the next
lower integer.

LOG
Format: LOG (arithmetic_expression)
Example: ? LOG (5) Prints the natural logarithm 1.60944.
LOG returns the natural logarithm (LOGe) of a nonnegative arithmetic expression in
the parentheses. LOG (0) will give a FUNCTION CALL ERROR. LOG (1) is
2.32396E-8.

RND
Formats: RND

RND (0) Same as RND above.
RND (integer)

Examples: ? RND Prints 6 random digits after decimal point.
RND (37) Prints a number between and including 1 through 37.

RND returns random numbers. RND and RND (0) return random numbers between
but not including 0 and 1. RND (integer) returns a positive integer between and in
cluding 1 and the (integer).

PROGRAM FUNCTIONS 47

SGN
Format: SGN (arithmetic_expression)
Example:? SGN (-34) Prints -1 on your television screen.
SGN returns the sign of the arithmetic expression enclosed in parentheses. The
sign is + 1 if the number within the parentheses is positive, 0 if the number is 0, or
-1 if the number is negative.
SIN
Format: SIN (arithmetic_expression)
Example:? SIN (1) Prints the sine of 1 as .841471 radian.
SIN returns the trigonometric sine of the arithmetic expression.
SOR
Format: SOR (arithmetic_expression)
Example: ? SOR (25) Prints 5 on your television screen.
SOR returns the square root of a positive arithmetic expression enclosed in paren
theses. If the arithmetic expression evaluated by SOR has a negative (-) sign, you
will get a FUNCTION CALL ERROR.
TAN
Format: TAN (arithmetic_expression)
Example:? TAN (.22) Prints the tangent of .22 as .223619 radian.
TAN returns the trigonometric tangent of the arithmetic expression.

STRING FUNCTIONS

+ (CONCATENATION OPERATOR)
Format: string + string
Example: 11 O C$ =A$+ 8$
Use the + symbol to join two strings.
Example Program:
110 A$= "never"
120 8$= "more"
130 Z$ =A$ + 8$
140 PRINTZ$
RUN RETURN
nevermore

ASC
Format: ASC (string_expression_$)
Example:? ASC("Smith")!prints 83 (ATASCll decimal code for letter S)
ASC gives the ATASCll code in decimal for the first character of the string expres
sion. See Appendix K for ATASCll character set.
CHR$
Format: CHR$ (ATASCll_code_number)
Examples: 110 PRINT CHR$ (123) !prints ATASCll club symbol

100 PRINT CHR$(65) !PRINTS ATASCll CHARACTER A
CHR$ converts an ATASCll value into a one-character string. CHR$ is the opposite
of the ASC function. The "ATASCll_code_number" can be any number from 0 to
255. Appendix K gives a table of both the character set and the ATASCll code
numbers.

48 PROGRAM FUNCTIONS

•

INKEY$
Format: INKEY$
Example: 110 A$= INKEY$
INKEY$ returns the last key pressed. If no keys are currently being pressed on the
keyboard, a null string is returned. In the example program, statement 110 tests for
a null string by representing it as two double quotation marks with no space be
tween them. ATARI Microsoft BASIC II does not recognize the space bar since
leading and trailing blanks are trimmed for INKEY$.
Example Program:
100 A$= INKEY$
110 IF A$<>"" THEN PRINT "You typed a"; A$
120 GOTO 100

INSTR
Format: INSTR (m,A$,B$)
Example: 110 HOLD = INSTR(5,C$,B$)
INSTR searches for a small string B$ within a larger string A$. The search begins
at the m-th character. If m is missing, the starting position is assumed to be the
first character. The function returns a number representing the character position
of the first B$ found within A$, or a 0 if B$ is not found.
LEFT$
Format: LEFT$(string_expression_$,n)
Example: 100 A$ = "TOT ALAMOU NT"

110 PRINT LEFT$(A$,5)
LEFT$ returns the leftmost n characters of the string expression.
LEN
Format: LEN (string_expression_$)
Example: 100 A$= "COUNT THE"

120 ? LEN (A$+" CHARACTERS")! prints total number of
130 ! characters as 20

LEN returns the total number of characters in the specified string expression. LEN
stands for length. Spaces, numbers, and special symbols are counted.
MID$
Format: MI D$(string_expression_$,m,n)
Example: 100 A$= "GETTHEMIDDLE"

110 PRINT MID(A$,4,3)
MID$ extracts a portion of the string. The string is identified by the first parameter
of the function. The second parameter tells the starting character. The third
parameter tells how many characters you want.
Example Program:
110 A$= "AMOUNT OF INTEREST PAID"
120 8$= MID$(A$,11,8)!THIS CAUSES "INTEREST" TO BE PRINTED
130 PRINT 8$

RIGHT$
Format: RIGHT$(string_expression_$,n)
Example: 100 A$= "THERIGHT"

110 PRINT RIGHT$(A$,5)
RIGHT$ returns the rightmost n characters of the string expression.

PROGRAM FUNCTIONS 49

SCRN$
Format: SCRN$(X,Y)
Example: 10 ? SCRN$(5,5)
The character at the X-coordinate and Y-coordinate is returned as the value of the
function in character-graphics modes. In other graphics modes, SCRN$ returns the
color register number being used by the pixel at location X,Y.
Example of SCRN$(X,Y) in a character-graphics mode:
10 GRAPHICS 1
20 COLOR 1
30 PRINT#6, AT(5,5);"A"
40 A$= SCRN$(5,5)
50 PRINT "Character is:";A$
60 END

Example of SCRN$(X,Y) in graphics mode:
100 GRAPHICS 7
110 COLOR3
120 PLOT 5,5
130 A$= SCRN$ (5,5)
140 PRINT "COLOR REGISTER IS:";ASC(A$)
150 END
Note: Use the LEN function to be sure that the returned string is not null (color
register zero).

STR$
Format: STR$ (arithmetic_expression)
Example: 100 A= 999 .02

110 PRINT STR$(A)
STR$ turns an arithmetic expression into a string. String operations can then be
carried out with the resultant strings. Note that when the following two strings are
brought together with the concatenation symbol, there is a space between them
that represents the sign of the positive number.
Example Program:
100 NUM1 = -22.344
120 NUM2=43.2
130 PRINT STR$ (NUM1) + STR$ (NUM2)
140 END
RUN RETURN
- 22.344 43.2

STRINGS (n,A$) (Available only with the extension diskette)
Format: STRING$ (n,A$)
Example: 100 A$= STRING$(20,"*")
STRING$(n,A$) returns a string composed of n repetitions of A$.
STRINGS (n,m) (Available only with the extension diskette)
Format: STRING$ (n,m)
Example: 110 PRINT STRING$(20, 123)! prints 20 clubs
STRING$(n,m) returns a string composed of n repetitions of CHR$(m).

50 PROGRAM FUNCTIONS

• :1

TIME$
Format: TIME$= "hours:minutes:seconds" elapsed clock time
Example: 100 PRINT TIME$
TIME$ sets the time to the "hours:minutes:seconds" format and keeps it current
(± 90sec per 24 hours).
Examples: 110 TIME$= "22:55:05"

120 TIME$= "05:30:09"
Note: Use leading zeros to make hours, minutes, and seconds into 2·digit
numbers.

After TIME$ is set, you can use it in a program. TIME$ is continually updated to
the current time. For example:
100 GRAPHICS 2
110 TIME$= "11 :59:05"
120 PRINT#6, AT(3,3)"DIGITAL CLOCK"
130 PRINT#6, AT(4,4)TIME$
140 GOTO 120
VAL
Format: VAL (numeric_string_expression_$)
Example: 100 8$ = "309"

120 ? VAL (8$) ! prints the number 309
130 END

VAL converts strings to numeric values. VAL returns the numeric value of the
numeric constant associated with the "numeric_string_expression." Leading and
trailing spaces are ignored. Digits up to the first nonnumeric character are con·
verted. For example, PRINT VAL("123A8C") prints 123.lf the first character of the
string expression is nonnumeric, then the value returned is 0 (zero).

SPECIAL-PURPOSE FUNCTIONS

EOF
Format: EOF(n)
Example: 120 IF EOF(4)=0 THEN GOTO 60
A value of true (1) or false (0) is returned indicating the detection of an end-of-file
condition on the last read of IOC8 n.

ERL
Format: ERL
Example: 100 PRINT ERL
ERL returns the line number of the last encountered error.
ERR
Format: ERR
Example: 120 PRINT ERR

150 IF ERR = 135 THEN GOTO 350
ERR returns the error number of the last encountered error.

PROGRAM FUNCTIONS 51

FRE (0)
Format: FRE (0)
Example: PRINT FRE(O)
This function gives you the number of memory bytes that are free and available for
your use. Its primary use is in direct mode with a dummy variable (0) to tell you
how much memory space remains. Of course FRE can also be used within a
BASIC program in deferred mode.

Using FRE (0) releases string memory locations that are not in use. This use of
FRE (0) to pick up the string clutter is referred to as "garbage collection."
PEEK
Format: PEEK (address)
Examples: 110 PRINT PEEK(1034)

135 PRINT PEEK(ADDR)
PEEK (&FFF) looks at the address enclosed in the parentheses, in this case FFF
hexadecimal. PEEK is used to examine the content of a particular memory loca
tion. You can examine ROM as well as RAM. All memory can be looked at with the
PEEK instruction. PEEK always returns a decimal value.
Examples:
PRINT PEEK(888) Prints the contents of memory location 888 (decimal).

PRINT PEEK (&FFFF) Prints the contents of memory location FFFF hex
(hexadecimal).

POKE
Format: POKE address.byte
Examples: POKE 2598,255

110 POKE ADDR3,&FF
120 POKE PLACE,J

POKE writes data into a memory location. The address and byte can be expressed
as decimal or hexadecimal numbers. The address and byte can also be expres
sions. Thus, if X*Y-2 evaluates to a valid memory location or byte, it can be used.
Examples:
POKE &FFF,43
X=22
Y=&8F
POKE X,Y

Writes the number 43 into memory location FFF (hexadecimal).

Writes the hexadecimal number 8F into memory location
22 (decimal).

Note that decimal and hexadecimal are just two ways of assigning a number to the
8-bit byte. The highest number you are allowed to POKE, a byte, is FF in hex
adecimal and 255 in decimal.

STATUS
Formats: STATUS (iocb_number)

STATUS (''device:program_name'')
Examples: 100 A= STATUS (6)

120 A= STATUS ("D:MICROBE.BAS")

52 PROGRAM FUNCTIONS

•

STATUS returns the value of the fourth byte of the iocb block (status byte). The
most significant bit is a 1 for error conditions; a zero indicates nonerror conditions.
The remaining bits represent an error number.

TABLE 5·1 LIST OF STATUS CODES

Hex Dec
01 001
03 003
80 128
81 129
82 130
83 131
84 132
85 133
86 134
87 135
88 136
89 137
8A 138
8B 139
8C 140
8D 141
8E 142
8F 143
90 144
91 145
92 146
93 147
AO 160
A1 161
A2 162
A3 163
A4 164
AS 165
A6 166
A7 167
A8 168
A9 169
AA 170
AB 171

Meaning
Operation complete (no errors)
End of file (EOF)
BREAK key abort
IOCB already in use (OPEN)
Nonexistent device
Opened for write only
Invalid command
Device or file not open
Invalid IOCB number (Y register only)
Opened for read only
End of file (EOF) encountered
Truncated record
Device timeout (doesn't respond)
Device NAK
Serial bus input framing error
Cursor out of range
Serial bus data frame overrun error
Serial bus data frame checksum error
Device-done error
Bad screen mode
Function not supported by handler
Insufficient memory for screen mode
Disk drive number error
Too many open disk files
Disk full
Fatal disk 1/0 error
Internal file number mismatch
Filename error
Point data length error
File locked
Command invalid for disk
Directory full (64 files)
File not found
Point invalid

TIME
Format: TIME
Example: 200 PRINT TIME

TIME gives the content of the system's real-time clock (RTCLOK) locations. The
decimal locations 18, 19, and 20 (RTCLOK) keep the system time in jiffies (1 /60 of
a second). Six decimal digits are returned by TIME. The difference between TIME$
and TIME is that TIME$ gives the time in standard hours, minutes, and seconds,
while TIME gives the time as a jiffie count.

PROGRAM FUNCTIONS 53

USR
Format: USR (address,n1)
Example: 550 A= USR(898,0)
The USR function allows you to transfer your program execution to a machine
language routine. This is an advanced programming function that enables you to
take full advantage of all the computer's special features. The USR function ex
pects two parameters: the first is a memory address; the second is an optional
value, n1. The value of n1 is usually the address of a data table, but may also be a
value passed to the routine for specific action.

After the USR function is executed, the parameters are stored in &E3 and &E4
(data). The example program is a color switch performed at machine language
speed.
Example Program:
10 !ROUTINE TO TEST USR FUNCTION CALL TO AN
20 !ASSEMBLY ROUTINE STORED IN MEMORY
30 !ASSEMBLY ROUTINE IS:
40 !LDA #35
50 !STA 710
60 !RTS
70 !
80 !
90 !
100 A= 0:1 = O:COL= O:C= 0
110 OPTION RESERVE 10
120 ADDA = VARPTR(RESERVE) !STARTING ADDRESS
130 FOR I = 0 TO 5
140 READ A
150 POKE ADDA+ l,A
160 NEXT I
170 DATA &A9,&23,&8D,&C6,&02,&60
180 A= USR(ADDR,VARPTR(I))
190 STOP

54 PROGRAM FUNCTIONS

•

FUN
FEATURES

GRAPHICS OVERVIEW

The GRAPHICS command selects one of up to 12 graphics modes. Graphics

6

modes are numbered O through 11 with GTIA (0-8 with CTIA). (Refer to De Re Atari
for a detailed description of GTIA and CTIA.) The arithmetic expression following
GRAPHICS must evaluate to a positive integer. Graphics mode 0 is a full-screen
text mode. ATARI Microsoft BASIC II defaults to GRAPHICS 0.

GRAPHICS 1 through 8 are split-screen modes. In the split-screen modes a
4-line text window is at the bottom of the television screen.

GRAPHICS 0, GRAPHICS 1, and GRAPHICS 2 display characters in different
sizes. GRAPHICS 0 displays regular-size characters. GRAPHICS 1 displays double
width characters. GRAPHICS 2 displays double-width and double-height characters.
Graphics characters (CONTROL key characters) cannot be displayed in GRAPHICS
1 or 2 unless you change the character base (POKE 756, 226).

GRAPHICS 3 through GRAPHICS 11 are modes for plotting points directly on
your television screen. The graphics mode dictates the size of the plot points and
the number of playfield colors you can use. The maximum number of playfield co
lors in the point-plotting modes is four. But it is possible to get four more colors on
your television screen by using players and missiles. For information on player
missile graphics, see Section 7.

GRAPHICS 9 through 11 are only available if your system has a GTIA chip.
GRAPHICS 9 allows you to have one playfield color with 16 luminances. GRAPHICS
10 can have nine playfield colors with eight luminances. GRAPHICS 11 can have
16 colors with one luminance.

FUN FEATURES 55

GRAPHICS

Format: GRAPHICS arithmetic_expression
Examples: GRAPHICS 2

100 GRAPHICS 5 + 16
170 GRAPHICS 1 + 32 + 16
120 GRAPHICS 8
150 GRAPHICS 0
140 GRAPHICS 18

Use GRAPHICS to select one of the graphics modes (O through 11). Table 6-1 summarizes the 12 modes and characteristics of each. GRAPHICS 0 is a full-screen
text display. Characters can be printed in GRAPHICS 0 by using the PRINT state
ment. GRAPHICS 1 through GRAPHICS 8 are split-screen modes. These split
screen modes actually include four lines of GRAPHICS 0 at the bottom of the
television screen. This text window uses the PRINT statement. To print in the large graphics window in GRAPHICS 1 and GRAPHICS 2, use PRINT#6. The following program prints in the graphics window in GRAPHICS 1 or GRAPHICS 2:
100 GRAPHICS 1
110 PRINT#6, AT(3,3);"GRAPHICS WINDOW"
120 PRINT "TEXT WINDOW"
Adding + 16 to GRAPHICS 1 through GRAPHICS 11 will override the text window and make a full screen graphics mode. If you run the following program without
line 140, the screen returns to graphics mode 0. Press the BREAK key to escape
from the loop at line 140.
110 GRAPHICS 2 + 16
120 PRINT#6, AT(3,3);"WHOLE SCREEN IS"
130 PRINT#6, AT(4,4);"GRAPHICS 2"
140 GOTO 140
BREAK

Normally the screen is cleared of all previous graphics characters when a
GRAPHICS n statement is encountered. Adding + 32 prevents the graphics com
mand from clearing the screen.

Graphics modes 3 through 11 are point-plotting modes. To draw point graphics you need to use the COLOR n and PLOT statements. Use of the SETCOLOR statement allows you to change the default colors to any one of 128 different
color/luminance combinations. Point-plotting modes are explored in the example at the end of this section.

To return to GRAPHICS 0 in direct mode, type GRAPHICS 0 and press the
RETURN key.

56 FUN FEATURES

•

TABLE 6·1 GRAPHICS MODES AND SCREEN FORMATS

ROWS·· ROWS·· Number RAM
Graphics Mode Split Full of Required
Mode Type Columns Screen Screen Colors (Bytes)
0 TEXT 40 24 1-1/2 992
1 TEXT 20 20 24 5 674
2 TEXT 20 10 12 5 424
3 GRAPHICS 40 20 24 4 434

CTIA 4 GRAPHICS 80 40 48 2 694
5 GRAPHICS 80 40 48 4 1174
6 GRAPHICS 160 80 96 2 2174
7 GRAPHICS 160 80 96 4 4198
8 GRAPHICS 320 160 192 1-1/2 8112

GTIA {
9 GRAPHICS 80 192 1 8112
10 GRAPHICS 80 192 9 8112
11 GRAPHICS 80 192 16 8112

GRAPHICS 3 through 11 plot individual points on your television screen. The
number following GRAPHICS determines the size of the points you plot. GRAPHICS
3 has the largest plot points. The example program can be used to demonstrate
the size of the plot points in modes 3·8.

Example Program:
10 INPUT "WHAT GR. MODE (3·8)?";G
20 GRAPHICS G+ 16
30 COLOR 1
40 PLOT 5,5
45 FOR H = 1 TO 1900:NEXT
50 GOTO 10

If you insert a new statement (statement 15), 15 SETCOLOR 4,4,8, you will get
large pink dots instead of the default orange. This change to the original plotting
program gives you pink plot points because SETCOLOR 4,x,x aligns with COLOR 1
in GRAPHICS 3.

COLOR

Format: COLOR n
Example: 100 COLOR 4

COLOR is used with PLOT to draw up to four colors on the television screen. You
must have a COLOR statement in GRAPHICS 3 through 11 in order to plot a color.
When you use the COLOR statement without a prior SETCOLOR command you get
the default colors (what is currently in the color registers).

The color registers are initialized according to Table 6-2. For example, the
default colors for GRAPHICS 3 are: orange for color register 4, light green for color
register 5, dark blue for color register 6, and black for color register 8.

Note: You must always have a COLOR statement to plot a playfield point, but
SETCOLOR is only necessary to make a color other than a default color.

FUN FEATURES 57

• • TABLE 6·2 DEFAULT COLORS, MODE, SETCOLOR, AND COLOR • Default Color Color Description • Colors Mode Register n and Comments
GRAPHICS 0 4 Register • Light blue 5 holds Character luminance

Dark blue 6 character (same as background) • 7 Character
Black Text Mode 8 Border • Orange 4 Character
Light green GRAPHICS 1,2 5 Character • Dark blue 6 Character
Red 7 Character • Black Text Modes 8 Background, border
Orange 4 1 Graphics point • Light green GRAPHICS 3,5,7 5 2 Graphics point • Dark blue 6 3 Graphics point

7 • Black 4· color modes 8 0 Background, border
Orange GRAPHICS 4 Graphics point • 4 and 6 5

6 • 7
Black 2·color modes 8 0 Background, border • GRAPHICS 8 4
Light blue 5 1 • Dark blue 6 0

7 • Black 1 color/2 lums. 8 Border
Black GRAPHICS 9 8 0-15 Graphics point. Color • value determines • luminance.
Black GRAPHICS 10 0 0 Graphics point • Black 1 1 Graphics point
Black 2 2 Graphics point • Black 3 3 Graphics point
Orange 4 4 Graphics point • Light Green 5 5 Graphics point
Dark Blue 6 6 Graphics point • Red 7 7 Graphics point
Black 8 8 Background • Gray GRAPHICS 11 8 0-15 Graphics point-color

value determines hue • Note: Player-missile graphics color is SETCOLOR register, color, luminance, where • register= 0, 1, 2, 3 and determines color of player-missile 0, 1, 2, 3, respectively.
Player-missile graphics will work in all graphics modes. • • • • • • • 58 FUN FEATURES •

SETCOLOR

Format: SETCOLOR register,hue,luminance
Example: 330 SETCOLOR 5,4, 10
The SETCOLOR statement associates a color and luminance with a color register.

The color registers 0, 1, 2, 3 are for player-missiles 0, 1, 2, 3 respectively. Color
registers 4, 5, 6, 7 are for playfield colors assignments. Register 8 is always the
background register.

The color hue number must be any number from 0 to 15. (See Table 6-3.)
The color luminance must be an even number between 0 and 14; the higher the

number, the brighter the display; 14 is almost pure white.

TABLE 6-3 THE ATARI HUE (SETCOLOR COMMAND) NUMBERS AND COLORS
Colors

Gray
Light orange (gold)
Orange
Red-orange
Pink
Purple
Purple-blue
Azure blue
Sky blue
Light blue
Turquoise
Green-blue
Green
Yellow-green
Orange-green
Light orange

SETCOLOR Hue
Number (Decimal)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

PLOT/PLOT . .. TO

Formats: PLOT X,Y
PLOT X,Y TO X,Y

Examples: 100 PLOT 12,9
112 PLOT 6,9 TO 3,3

SETCOLOR Hue
Number (Hexadecimal)
0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

Use PLOT to draw single-point plots, lines, and outline objects on the television
screen. PLOT uses an X-Y coordinate system for specifying individual plot points.
The X coordinate stands for the horizontal column. The Y coordinate stands for the
vertical row. (See Table 6-1.) Give a number from 0 to whatever the maximum is
for the current mode, X first, then Y. o,orx

y

You can "chain" the PLOT instruction. That is, one plot point can be made to draw
to the next plot point. The result of chaining two PLOT points is a straight line. It is
also easy to outline an object using chained plots. To chain plots, use the word TO
between the PLOT X,Y statements.
Example Program: 90 COLOR 1 ! Use a COLOR instruction before PLOT

100 PLOT 5,5 TO 5, 15 ! Draws a straight line

FUN FEATURES 59

Here is an example program that shows PLOT, COLOR, and SETCOLOR at work:
100 GRAPHICS 3 + 16 !THE 16 GETS RID OF TEXT WINDOW
110 SETCOLOR 5,4,8 ! PINK
120 SETCOLOR 6,0,4 !GRAY
130 SETCOLOR 8,8,6 !BLUE
140 COLOR 1 !COLOR 1 GOES WITH DEFAULT ORANGE
150 PLOT 5,5 TO 10,5 TO 10,10 TO 5,10 TO 5,5 !IN ORANGE
160 COLOR 2 !PINK
170 PLOT 7,7 TO 12,12 TO 2,12 TO 7,7
180 COLOR 3 !GRAY
190 PLOT 2,7 TO 12,7
200 GOTO 200

Fill
Format: FILL X,Y TO X,Y
Example: 550 FILL 10, 10 TO 5,5
FILL fills an area with the color specified by the COLOR and any SETCOLOR
statements. The FILL process sweeps across the television screen from left to
right. FILL stops painting and starts its next sweep when it bumps into a PLOT line
or point. The line on the left-hand side of a filled object is specified by the Fl LL
statement itself.

An example shows how FILL operates. First the outline of three sides of a box
are specified. PLOT 5,5 TO 20,5 TO 20,20 TO 5,20 makes the top, right side, and
bottom of the box. Make the left side and FILL with the statement FILL 5,5 TO 5,20.
Example:

5,5 r--------120,5

5,20 ----------' 20,20

10 GRAPHICS 5
20 SETCOLOR 4, 12,8 ! Register 4, green, medium brightness
30 COLOR 1 !COLOR 1 is paired with SETCOLOR 4 in GRAPHICS 5
40 PLOT 5,5 TO 20,5 TO 20,20 TO 5,20
50 FILL 5,5 TO 5,20
60 END

Line 40 in the above example makes three sides of a box. Then the FILL state
ment, line 50, draws the left side and fills the box. The Fl LL process scans from
the FILL line to the right until it reaches the PLOT lines.

ClS
Format: CLS lbackground_register_optionl
Examples: CLS

110 CLS
1 00 GRAPHICS 3: CLS &C5
330 CLS 25

CLS clears screen text areas and sets the background color register to the in
dicated value, if present. In GRAPHICS 0 and GRAPHICS 8 the optional number
after CLS determines the border color and luminance. In GRAPHICS 1, 2, 3, 4, 5, 6,
7 the optional number following CLS determines the background color and luminance .

60 FUN FEATURES

•

TABLE 6·4 CHARACTERS IN GRAPHICS MODES 1 AND 2
POKE POKE SETCOLOR SETCOLOR SETCOLOR SET COLOR
756,224 756,226 4 5 6 7

~ 32 0 160 128

• ~ 33 161 129

• 11 34 2 162 130

a !] 35 3 163 131

II Cl 36 4 164 132
- • Ii] 37 5 165 133

II ~ 38 6 166 134

• ~ 39 7 167 135

II r:I 40 8 168 136
- II II 41 9 169 137

a ~ 42 10 170 138
- • Iii 43 11 171 139

• " 44 12 172 140

• ~ 45 13 173 141
- • !!!! 46 14 174 142

• fl 47 15 175 143

- Iii (:l 48 16 176 144

a [ii 49 17 177 145

- II = 50 18 178 146

- II ~ 51 19 179 147

a [J 52 20 180 148

- II ~ 53 21 181 149

- a [I 54 22 182 150

I.I UI 55 23 183 151

- II ~ 56 24 184 152

a Lm 57 25 185 153

- • [! 58 26 186 154

- • II 59 27 187 155 (continued)

FUN FEATURES 61

• • TABLE 6·4 CHARACTERS IN GRAPHICS MODES 1 AND 2 (continued) • POKE POKE SETCOLOR SETCOLOR SETCOLOR SETCOLOR • 756,224 756,226 4 5 6 7

II a 60 28 188 • 156

• II 61 29 189 167 • • II 62 30 190 168 •
II a 63 31 191 169 • • a 64 96 192 224 •
II II 65 97 193 225 • a a 66 98 194 226 • a II 67 99 195 227 •
II II 68 100 196 228 • a II 69 101 197 229 • a II 70 102 198 • 230

II II 71 103 199 231 •
II II 72 104 200 232 •
II a 73 105 201 233 •
II • 74 106 202 234 •
II II 75 107 203 235 •
II a 76 108 204 236 • m 1:1 77 109 205 237 • a II 78 110 206 238 •
Ill a 79 111 207 239 •
II II 80 112 208 240 •
Iii II 81 113 209 241 •
II II 82 114 210 242 •
II II 83 115 211 243 • a a 84 116 212 244 • l!I II 85 117 213 245 •
II II 86 118 214 246 • m a 87 119 215 247 (continued) • • 62 FUN FEATURES •

TABLE 6-4. CHARACTERS IN GRAPHICS MODES 1 and 2 (continued)
POKE POKE SETCOLOR SETCOLOR SETCOLOR SETCOLOR
756,224 756,226 4 5 6 7

II a 88 120 216 248

a l'I 89 121 217 249

• II 90 122 218 250

II ~ 91 123 219 251

• D 92 124 220 252

• a 93 125 221 253

11 a 94 126 222 254

• a 95 127 223 255

Example Programs:
The following programs work in GRAPHICS 1 or GRAPHICS 2. The programs show
the alternate basic character set and special character set (POKE 756,226). To
restart these two programs, press the BREAK key and type RUN followed by
RETURN.
2 REM KEYBOARD TYPEWRITER
10 GRAPHICS 2
20 SETCOLOR 4,0,0!to avoid screen full of hearts in lowercase
30 PRINT "TYPE Green/Blue/Red (G/B/R)"
40 INPUT "AND PRESS RETURN? "; C$
50 IF C$= "G" THEN K= 32
60 IF C$= "B" THEN K= 128
70 IF C$ = "R" THEN K = 160
80 PRINT "TYPE UPPER/LOWER (U/L)"
90 INPUT "AND PRESS RETURN ? "; B$
100 IF B$= "U" THEN 120
110 POKE 756,226
120 PRINT "NOW TYPE - ALPHA + CTRL KEYS"
130 A$= INKEY$
140 IF A$="" THEN 130
150 A=ASC(A$)+ K!32 is green, 128 is blue, 160 is red
160 PRINT A
170 PRINT #6, CHR$(A);
180 GOTO 130

100 REM TWINKLE
110 GRAPHICS 16 + 2
120 X= RND(36)
130 ON ERROR GOTO 150
140 PRINT #6, TAB(X);"*"
146 GOTO 120
150 GRAPHICS 32 + 16 + 2
160 RESUME

FUN FEATURES 63

The following short program demonstrates and confirms Table 6-4. This program
prints the ATASCll code for a character in the text window and the character itself
in the graphics window. Every time you press the RETURN key, a new character
appears. The reason SETCOLOR 4,0,0 is the same as SETCOLOR 8,0,0 is to avoid
a screen filled with hearts. Another way to accomplish this is to lower the
character set into RAM (using MOVE) and redefine the heart character as 8 by 8
zeros. See Appendix C, "Alternate Character Sets," for an example of lowering
and redefining the character set. The special character set is shown in the pro
gram as it is now written. To see the standard character set, just delete line 20 .
The GRAPHICS 2 instruction automatically pokes 756,224.
10 GRAPHICS 2
20 POKE 756,226
30 SETCOLOR 8,0,0
40 SETCOLOR 4,0,0!AVOID SCREEN HEARTS
50 SETCOLOR 5,4,6! PINK
60 SETCOLOR 6,12,2!GREEN +TEXT WINDOW
70 SETCOLOR 7,9,6! LIGHT BLUE
80 A$= INKEY$
90 IF A$="" THEN 80
100 ON ERROR GOTO 150
110 PRINT #6, AT(6,6);CHR$(X)
120 PRINT X
130 X= X+ 1
140 GOTO 80
150 RUN !REPEATS WHEN 256 REACHED

THE SOUND COMMAND
Format: SOUND voice, frequency, distortion, volume, duration
Examples: 120 SOUND 2,204,10,12,244

100 SOUND 0,122,8,10
The voice can be a number 0 through 3, that is, you may use up to four voices
with four SOUND commands.

The frequency is any number between 0 and 255 (see Table 6-5).
The distortion is any number between 0 and 14. The default is a pure tone. A 1 O

is used to create a "pure" tone. A 12 gives a buzzer sound.
The volume is a number between O and 15. Use a 1 to create a sound that is

barely audible. Use a 15 to make a loud sound. A value of 8 is considered normal.
If more than one SOUND statement is being used, the total volume should not ex
ceed 32. This will create an unpleasant "clipped" tone.

The duration is given in 1 /60 of a second. The duration indicates how long a tone
or noise lasts. If you do not specify a number for the duration parameter, the tone
continues until the program reaches an END statement, another RUN statement,
or until you type a second SOUND statement using the same voice number
followed by 0,0,0. If an INPUT statement follows a SOUND statement, the sound
continues until the INPUT statement is executed. You can also stop the tone by
pressing the BREAK key.
Example: SOUND 2,204,10,12

SOUND 2,0,0,0

64 FUN FEATURES

•

TABLE 6-5 FREQUENCY CHART OF PITCH VALUES
Notes Hex Decimal
HIGH NOTES c 10 29

8 1F 31
A# or 8 b 21 33
A 23 35
G# or Ab 25 37
G 28 40
F# or G b 2A 42
F 2D 45
E 2F 47
D# or E 32 50
D 35 53
C# or Db 39 57
c 3C 60
8 40 64
A# or 8 44 68
A 48 72
G# or Ab 4C 76
G 51 81
F# or G b 55 85
F 58 91
E 60 96
D# or Eb 66 102
D 6C 108
C# or Db 72 114

MIDDLE C c 79 121
8 80 128
A# or 8 b 88 136
A 90 144
G# or Ab 99 153
G A2 162
F# or G b AD 173
F 86 182

LOW NOTES E C1 193
D# or Eb cc 204
D D9 217
C# or Db E6 230
c F3 243

FUN FEATURES 65

Example Program:

NIGHT LAUNCH

10 GRAPHICS 2 + 16
20 SETCOLOR 4,8,4
30 PRINT#6, AT(3,3);
40 FOR DELAY = 1 TO 1000:NEXT
50 GRAPHICS 2 + 16
60 PRINT#6, AT(3,3);"AT THE CAPE"
70 FOR DELAY= 1TO1000:NEXT
80 GRAPHICS 0
90 POKE 752, 1
100 SETCOLOR 6,0,0
110 FORT= 1 TO 24:PRINT "":NEXT
120 PRINT TAB(11);CHR$(8);CHR$(10)
130 PRINT TA8(11);CHR$(22);CHR$(2)
140 PRINT TAB(11);CHR$(22);CHR$(2)
150 PRINT TAB(11);CHR$(13);CHR$(13)
160 PRINT TAB(11);CHR$(6);CHR$(7)
170 FOR VOL= 15 TO 0 STEP -1
180 SOUND 2,77,8,VOL
190 PRINT CHR$(155)!MOVES ROCKET UP
200 FOR R = 1 TO 200:NEXT R
210 NEXT VOL
220 END

The above program is a demonstration of the SOUND statement. It decreases (by
a loop) the volume of a distorted sound. The sound effect resembles a rocket tak
ing off into outer space.

GAME CONTROLLERS

In ATARI Microsoft BASIC II, the PEEK instruction reads the game controllers. The
controllers are attached directly to the controller jacks of the ATARI Home Com
puter. The PEEK locations can be given the same names listed below or you can
give them short variable names. A complete list of PEEK locations is given in Ap
pendix E.

You may also use the DEF command to define your own paddle and joystick
controller commands (see the user-defined function, DEF, in Section 4).

JOYSTICK CONTROLLERS PADDLE CONTROLLERS

Figure 6-1 Game Controllers

66 FUN FEATURES

•

PADDLE CONTROLLERS
The following example program reads and prints the status of paddle controller 0
(first paddle in leftmost port). This PEEK can be used with other functions or com
mands to "cause" further actions like sound, graphics controls, and so on. An ex
ample is the statement IF PADDLE(O) >14 THEN GOTO 440. Peeking the paddle
address returns a number between 1 and 228, with the number increasing in size
as the knob on the controller is rotated counterclockwise (turned to the left).
Example of initializing and using PEEK for PADDLE(O):
10 PADDLE(O) = 624
20 PRINT PEEK (PADDLE(O))
30 GOTO 20

PADDLE number and PEEK locations (decimal addresses):
PADDLE(O) = 624
PADDLE(1)=625
PADDLE(2) = 626
PADDLE(3) = 627
PADDLE(4) = 628
PADDLE(5) = 629
PADDLE(6) = 630
PADDLE(?)= 631

Peeking the following addresses returns a status of 0 if you press the trigger button
of the designated controller. Otherwise, it returns a value of 1.
Example of using paddle trigger (0):
10 PTRIG(0)=&27C
20 PRINT PEEK(PTRIG(O))
30 GOTO 20

PTRIG (paddle trigger) number and PEEK locations (decimal addresses):

PTRIG(O) = 636
PTRIG(1) = 637
PTRIG(2) = 638
PTRIG(3) = 649
PTRIG(4) = 640
PTRIG(5) = 641
PTRIG(6) = 642
PTRIG(7) = 643

JOYSTICK CONTROLLERS
Peeking the joystick locations (addresses) works in the same way as for the paddle
controllers. The joystick controllers are numbered 0-3 from left to right.
Example of using joystick (0):
10 STICK(O) = 632
20 PRINT PEEK(STICK(O))
30 GOTO 20

STICK (joystick) number and PEEK (decimal) locations:
STICK(O) = 632
STICK(1) = 633
STICK(2) = 634
STICK(3) = 635

FUN FEATURES 67

Figure 6-2 shows the PEEK number that is returned for the various joystick positions:

14

11

13

Figure 6·2 Joystick Triggers

The joystick triggers work the same way as the paddle trigger buttons. Using joystick trigger (0):
10 STRIG(O) = 644
20 PRINT PEEK(STRIG(O))
30 GOTO 20
STRIG (joystick trigger) number and PEEK (decimal) locations: STRIG(O) = 644
STRIG(1)=645
STRIG(2) = 646
STRIG(3) = 647
10 REM THIS PROGRAM WILL SAY "BANG!"
15 REM WHEN JOYSTICK RED BUTTON IS PRESSED
20 IF PEEK(644)=0 THEN? "Bang!"
30 IF PEEK(644) = 1 THEN CLS
40 GOTO 20

SPECIAL FUNCTION KEYS
The following program reads the large yellow console keys on the right-hand side of the ATARI Computer:
10 POKE 53279,0
20 PRINT PEEK(53279)
30 GOTO 20
Peeking location 53279 (decimal) returns a number that indicates which key was pressed.
7 = No key pressed
6 = START key pressed
5 = SELECT key pressed
3 = OPTION key pressed

68 FUN FEATURES

• :1

PLAYER-MISSILE
GRAPHICS TUTORIAL 7

The ATARI Home Computer has special powers built in to deal with graphics and
animation. These are usually referred to as player-missile graphics.

The terms player and missile are derived from the animated graphics used in
ATARI video games. Player-missile binary tables reside in player-missile graphics
RAM. This RAM accommodates four 8-bit players and four 2-bit missiles (see
Figure 7-1). Each missile is associated with a player, unless you elect to combine
all missiles to form a fifth, independent player (see "Priority Control").

A player, like the spaceship shown in Figure 7-2, is displayed by mapping its
binary table directly onto the television screen, on top of the playfield. The first
byte in the table is mapped onto the top line of the screen, the second byte onto
the second line, and so forth. Wherever 1 's appear in the table, the screen pixels
turn on; wherever O's appear, the pixels remain off. The pattern of light and dark
pixels creates the image.

You can display player-missile graphics with single-line resolution (use
OPTION(PLM 1)) or double-line resolution (OPTION(PLM2)). If you select single-line
resolution, each byte of the player is displayed on a single scan line. If you choose
double-line resolution, each byte occupies two scan lines and the player appears
larger than in single-line resolution. Each player is 256 bytes long with single-line
resolution, or 128 bytes long with double-line resolution. Line resolution only needs
to be programmed once. The resolution you choose applies to all player-missile
graphics in your program. The Player-Missile Graphics Demonstration Program in
cluded in this section is an example of double-line resolution programming.

Player-missile graphics give you considerable flexibility in programming animated
video graphics. Registers are provided for player-missile color, size, horizontal posi
tioning, player-playfield priority, and collision control.

The following BASIC II commands are tools to help you construct and move
players and missiles:
MOVE instruction
OPTION (PLM1 or PLM2)
VARPTR (PLM1 or PLM2)
SETCOLOR 0 or 1 or 2 or 3

HOW ATARI MICROSOFT BASIC II INSTRUCTIONS
ASSIST PLAYER-MISSILE GRAPHICS

The MOVE instruction is used to move the player-missile object up and down the
player-missile strip. Your paper strip can serve to demonstrate how the MOVE in
struction works. Let's say that you have put the upside down Von your paper strip
with a pencil that has an eraser. To move the object, you must erase the whole ob
ject and rewrite it elsewhere on the strip.

As you can imagine, vertical movement is slightly slower than horizontal move
ment. It is slower because it takes only a single poke to the horizontal position
register for horizontal movement, but many erasures and redrawings are
necessary to move an object vertically.

PLAYER·MISSILE GRAPHICS TUTORIAL 69

In the actual MOVE instruction you state the lowest address of the object you want to move; then state the lowest address of the new area to which you want to move the object; and lastly, state how many bytes you want moved. Hence the format: MOVE from_address, to_address, no._of_bytes.
The OPTION (PLM 1) zeros out and dedicates a single-line resolution playermissile area in RAM. OPTION (PLM2) is for double-line player-missile resolution .
VARPTR(PLM1 or PLM2) points to the beginning memory location of the playermissile area in RAM. This is the point from which you must figure your offset or displacement to poke your image into the correct area. For example, the starting address (top of television screen) for player 0 in double-line resolution is

VARPTR(PLM2) + 128. In double-line resolution each player is 128 bytes long. So if you wanted to poke a straight line in the middle of player 0, the poke would be POKE VARPTR(PLM2)+ 192,&FF.
The SETCOLOR instruction gives the register, color, and luminance assignments. In ATARI Microsoft BASIC II the registers 0, 1, 2, and 3 are used for player-missiles 0, 1, 2, and 3. It is only necessary to specify SETCOLOR 0,5, 10 to set playermissile O; the COLOR instruction is not used.
Remember that you must poke decimal location 559 with decimal 62 for singleline resolution or with decimal 46 for double-line resolution. You must also poke decimal location 53277 with decimal 3 to enable player-missile display.
You can use player-missile graphics in all modes. Missiles consist of 2-bit-wide "strips." Missiles 0, 1, 2, 3 are assigned the same colors as their associated player. Thus, when SETCOLOR sets the color of player 1 to red, it also sets missile 1 to red.

PM BASE

Register

VARPTR (PLM2)

Missiles
+128

+256

+384

+512

+640

Double-Line
Resolution

Unavailable

M3 I M2 I M1 I MO

Player 0

Player 1

Player 2

Player 3

Single-Line
Resolution

Unavailable

M3 I M2 I M1 I MO

Player 0

Player 1

Player 2

Player 3

PM BASE

VARPTR (PLM1)

Missiles

+256

+512

+ 768

+1024

+ 1280

Figure 7-1 Player-Missile Graphics RAM Configuration

70 PLAYER·MISSILE GRAPHICS TUTORIAL

•

MAKING A PLAYER OUT OF PAPER
Cut a strip of paper about 2 inches wide from an 8-inch by 10-inch sheet of paper.
Now draw an 8-bit-wide "byte" down the strip of paper.

Graphic
Representation

Binary Hexadecimal Decimal
Representation Representation Representation

Figure 7-2

00011000
00011000
00100100
00100100
01000010
01000010
10000001
10000001

Mapping the Player

18
18
24
24
42
42
81
81

24
24
36
36
66
66
129
129

An upside down V is shown on the strip in binary and hex. This strip of paper is like
a player. If you take the player strip and lay it vertically down the middle of the
television screen, you have "positioned it with the horizontal position register."
When you move the strip right and left, you are "poking new locations into the
horizontal position register" to get that movement.

COLOR CONTROL

The ATARI Computers have nine registers for user control of player-missile,
playfield, and background color (see Table 7-1).

TABLE 7-1 SETCOLOR REGISTER ASSIGNMENTS
SETCOLOR Register,Color,Luminance
SETCOLOR O,color,luminance
SETCOLOR 1,color,luminance
SETCOLOR 2,color.luminance
SETCOLOR 3,color,luminance
SETCOLOR 4,color,luminance
SETCOLOR 5,color.luminance
SETCOLOR 6,color,luminance
SETCOLOR 7,color,luminance
SETCOLOR 8,color,luminance

Function

Color-luminance of player-missile O
Color-luminance of player-missile 1
Color-luminance of player-missile 2
Color-luminance of player-missile 3
Color-luminance of playfield O
Color-luminance of playfield 1
Color-luminance of playfield 2
Color-luminance of playfield 3
Color-luminance of background

Players are completely independent of the playfield and of each other. Missiles
share color registers with their players and hence are the same color as their
players. If you combine missiles to form a fifth player, they assume the color of
playfield color-luminance register 3 (COLPF3).

To program color, specify the register, the hue, and the luminance. Use the
SETCOLOR command. See lines 20 and 110 of the Player-Missile Graphics
Demonstration Program for examples. See also "GRAPHICS," Section 6.

Each color-luminance register is independent. Therefore, you could use as many
as nine different colors in a program, depending upon the graphics mode selected.
All registers cannot be used in all graphics modes (see "GRAPHICS," Section 6).

PLAYER·MISSILE GRAPHICS TUTORIAL 71

SIZE CONTROL

Five size-control registers are provided-four for the players and one for all four
missiles (see Table 7-2).

TABLE 7·2 REGISTERS CONTROLLING WIDTH OF PLAYER-MISSILES
Size Address
Register Hex Dec Function
SIZE PO 0008 53256 Controls size of player O
SIZEP1 0009 53257 Controls size of player 1
SIZEP2 OOOA 53258 Controls size of player 2
SIZEP3 0008 53259 Controls size of player 3
SIZEM OOOC 53260 Controls size of missiles

Size-control registers allow you to double or quadruple the width of a player or
missile without altering its bit resolution. To double the width, poke a 1 into the size
register; to quadruple the width, poke a 3; and to return a player or missile to nor
mal size, poke a 0 or 2. An example is given in line 80 of the Player-Missile
Graphics Demonstration Program.

POSITION AND MOVEMENT
VERTICAL
Vertical position is set when you specify the location of the player-missile in player
missile graphics RAM. The lower you place the player-missile in RAM, the higher
the image will be on the television screen. A positioning technique is illustrated by
lines 120 and 200 of the Player-Missile Graphics Demonstration Program at the
end of this section.

To program vertical motion, use the MOVE command (see lines 350 and 390 of
the Player-Missile Graphics Demonstration Program). Since the MOVE command
does not zero the old location after the move, an extra zero at each end of the
player is used to "clean up" as the player is being moved. Give the current posi
tion of the player in RAM, the direction of the f'Tlove through RAM (forward = +,
backward = -), and the number of player bytes to be moved. Each byte of the
player must be moved. Following the MOVE command, increment or decrement
the vertical position counter (see lines 360 and 400 of the Player-Missile Graphics
Demonstration Program).

HORIZONTAL
Each player and missile has its own horizontal position register (Table 7-3), so
players can move independently of each other, and missiles can move in
dependently of their players.

72 PLAYER-MISSILE GRAPHICS TUTORIAL

•

TABLE 7.3 PLAYER-MISSILE HORIZONTAL POSITION REGISTERS
Position
Register

HPOSPO
HPOSP1
HPOSP2
HPOSP3
HPOSMO
HPOSM1
HPOSM2
HPOSM3

Address
Hex

0000
0001
0002
0003
0004
0005
0006
0007

Dec

53248
53249
53250
53251
53252
53253
53254
53255

Function

Horizontal position of player O
Horizontal position of player 1
Horizontal position of player 2
Horizontal position of player 3
Horizontal position of missile 0
Horizontal position of missile 1
Horizontal position of missile 2
Horizontal position of missile 3

To set the position of a player or missile, poke its horizontal position register with
the number of the position. To program horizontal movement, simply change the
number stored in the register. See lines 100 and 180 of the Player·M issile Graphics
Demonstration Program for examples.

A horizontal position register can hold 256 positions, but some of these are off
the left or right margin of the television screen. A conservative estimate of the
range of player visibility is horizontal positions 60 through 200. The actual range
depends upon the television set.

DIAGONAL
Horizontal and vertical moves can be combined to move the player diagonally. Set
the horizontal position first, then the vertical position. See lines 270 through 390 of
the Player-Missile Graphics Demonstration Program.

PRIORITY CONTROL

The priority control register (PRIOR,&D01 B; OS shadow GPRIOR,&26F) enables you
to select player or playfield color register priority and to combine missiles to form a
fifth player.

PRIORITY SELECT
You have the option to specify which image has priority in the event player and
playfield images overlap. This feature enables you to make players disappear
behind the playfield and vice versa. To set the priority, poke one of the following
numbers into the priority control register:
1 All players have priority over all playfields.
2 Players O and 1 have priority over all playfields, and all playfields have

priority over players 2 and 3.
4 All playfields have priority over all players.
8 Playfields 0 and 1 have priority over all players, and all players have priority

over playfields 2 and 3.

ENABLE FIFTH PLAYER
Setting bit D4 of the priority control register causes all missiles to assume the col
or of playfield register 3 (&2C7, decimal 711). You can then combine the missiles
to form a fifth player. If enabled, the fifth player must still be moved horizontally by
changing all missile registers (&D004 through &D007) together.

PLAYER-MISSILE GRAPHICS TUTORIAL 73

COLLISION CONTROL

Collision control enables you to tell when a player or missile has collided with
another graphics object. There are 16 collision-control registers (Table 7-4)_

TABLE 7.4 COLLISION-CONTROL REGISTERS FOR PLAYER-MISSILES
Collision Address
Register Hex Dec Function
MOPF 0000 53248 Missile 0 to playfield
M1 PF 0001 53249 Missile 1 to playfield
M2PF 0002 53250 Missile 2 to playfield
M3PF 0003 53251 Missile 3 to playfield
POPF 0004 53252 Player 0 to playfield
P1 PF 0005 53253 Player 1 to playfield
P2PF 0006 53254 Player 2 to playfield
P3PF 0007 53255 Player 3 to playfield
MOPL 0008 53256 Missile 0 to player
M1 PL 0009 53257 Missile 1 to player
M2PL OOOA 53258 Missile 2 to player
M3PL 0008 53259 Missile 3 to player
POPL OOOC 53260 Player 0 to player
P1 PL 0000 53261 Player 1 to player
P2PL OOOE 53262 Player 2 to player
P3PL OOOF 53263 Player 3 to player

In each case, only the rightmost 4 bits of each register are used. They are
numbered 0, 1, 2, and 3 from the right and designate, by position, which playfield
or player the relevant player or missile has collided with. A 1 in any bit position in
dicates collision since the last HITCLR.

All collision registers are cleared at once by writing a zero to the H ITCLR
register (&D01 E, decimal 53278).

PLAYER-MISSILE GRAPHICS DEMONSTRATION PROGRAM
The following ATARI Microsoft BASIC II program creates a player (spaceship) that
shoots missiles and can be moved in all directions with the joystick. Connect a
joystick controller to CONNECTOR JACK 1 on the front of your ATARI Home Com
puter.

LISTING
05 !DOUBLE-LINE RESOLUTION PLAYER AND MISSILE
10 GRAPHICS 8
20 SETCOLOR 6,0,0
30 x = 130
40 y = 70
50 STICKO = &278
60 OPTION PLM2
70 POKE 559,46
80 POKE &DOOC, 1
90 POKE &D01D,3
100 POKE &DOOO,X
110 SETCOLOR 0,3,10
120 FOR J = VARPTR(PLM2)+ 128+ Y TO VARPTR(PLM2)+ 135+ Y:READ
A:POKE J,A

74 PLAYER-MISSILE GRAPHICS TUTORIAL

•

125 NEXT J
130 DATA 0,129,153,189,255,189,153,0
140 IF PEEK(&D010) = 1 THEN 220
150 SOUND 0,220,12,15,INT(X/30)
160 ZAP = X
170 POKE VARPTR(PLM2) + 4 + Y,3
180 POKE &D004,ZAP
190 ZAP = ZAP-12
200 IF ZAP< 12 THEN POKE VARPTR(PLM2)+4+Y,O:GOTO 220 ELSE 180
210 !JOYSTICK MOVES
220 A = PEEK(STICKO): IF A = 15 THEN GOTO 140
230 IF A = 11 THEN X = X-1
2401FA = 7THENX = X+1
250 POKE &DOOO,X
260 IF A = 14 THEN GOTO 350 !MOVE UP
270 IF A= 13 THEN GOTO 390 !MOVE DOWN
280 ! MOVE DIAGONALLY
290IFA=10 THEN X = X-1:POKE &DOOO,X:GOTO 350
300 IF A = 6 THEN X = X + 1 :POKE &DOOO,X:GOTO 350
310 IF A = 9 THEN X = X-1 :POKE &DOOO,X:GOTO 390
320 IF A = 5 THEN X = X + 1 :POKE &DOOO,X:GOTO 390
330 GOTO 140
340 ! MOVE UP
350 MOVE VARPTR(PLM2) + 128 + Y,VARPTR(PLM2) + 128 + (Y-1),8
360 Y = Y-1
370 GOTO 140
380 ! MOVE DOWN
390 MOVE VARPTR(PLM2) + 128 + (Y-1),VARPTR(PLM2) + 128 + Y,8
400 y = y + 1
410 GOTO 140
420 STOP
430 END

ANNOTATION
Line Number Comment
10 Sets a high-resolution graphics mode with no text window. You

can program player-missile graphics in any graphics mode. See
"GRAPHICS" and Table 6-4 in Section 6.

20 Sets the background color to black, as follows:
6 Background color-luminance register (COLBK, &D01 A).
0 Black (see Table 6-3).
0 = Zero luminance. The luminance value is an even number

between O and 14. The higher the number, the greater the
luminance and the brighter the color.

30,40 Initializes player-position variables X (horizontal) and Y (vertical).
50 Assigns the label STICKO to joystick register 278.
60 Specifies double-line resolution RAM for the player-missile

graphics (see Figure 7-1). PLM1 would specify single-line
resolution.

PLAYER-MISSILE GRAPHICS TUTORIAL 75

70

80

90

100

110

120-125

140

150

160

170

180

190

Sets the direct memory access control register (DMACTL, 559) for
double-line resolution (46). A 62 would specify single-line
resolution.

Note: When DMACTL is enabled, t~e player-missile graphics
registers (GRAFPO-GRAFP3 and GRAFM) are automatically loaded
with data from the player-missile RAM.
Doubles the width of the missile by poking the size-control register
(SIZEM, &DOOC) with 1. Poking the register with a 3 would quadru
ple the width.
Enables the graphics control register (GRACTL, &D01 D) to display
player-missile graphics (3 enables, 0 disables).
Pokes the horizontal position of the player (X = 130 from line 30)
into the player 0 horizontal position register (HPOSPO, &DOOO).
Colors the player and missile bright red-orange as follows:

O Player-missile 0 color-luminance register (COLPMO, &D012) .
3 = Red-orange (see Table 6-3).

1 O = Luminance or brightness (see annotation of line 20).
Sets variable pointer VARPTR(PLM2) to the player-missile starting
address in player-missile graphics RAM (see Figure 7-2). Pokes
data from line 130 into the player area, VARPTR(PLM2) + 128 + Y to
VARPTR(PLM2) + 135 + Y. The computer uses the data in line 130
to map the spaceship onto the screen (see Figure 7-2).
Tells the computer to read the joystick O trigger register (TRIGO,
&D010). If the trigger button is not activated (&D010 = 1). the
computer goes to line 220 and reads the joystick position; if the
button is activated (&D010 = 0), the computer executes lines 150
through 200.

Generates sound each time the joystick button is pressed. Sound is
programmed as follows:
(1) Select voice. As many as four voices (0 to 3) can be used, but

each voice requires a separate SOUND statement.
(2) Choose pitch from Table 7-2. The larger the number, the lower

the pitch.
(3) Set distortion or noise level, using an even number between 0

and 14. A 10 gives a pure tone; 12 gives a buzzer effect.
(4) Set volume, an odd number between 1 and 15. The larger the

number, the louder the sound.
(5) Set duration of sound per second (20 = 20/60 or 1 /3

second).
Sets the horizontal position of the missile (ZAP) equal to the
horizontal position of the player (X).
Turns on the screen pixels corresponding to the missile 0 RAM
area (VARPTR(PLM2) + 4 + Y) to display the missile (3 = ON; O
OFF).

Pokes the horizontal position of the missile (ZAP = X from line
160) into the missile O horizontal position register (HPOSMO,
&D004).

Decrements the missile O horizontal position counter by 12 to
create a horizontal "line of fire" from the player.

76 PLAYER-MISSILE GRAPHICS TUTORIAL

•

200

220

230/250

240/250

260

270

290-320

If the missile's horizontal position is less than 12 (off the left side of
the screen), the computer pokes O's into the missile RAM area to
clear it and goes to line 220. If the missile's horizontal position is
12 or greater, the computer pokes the new horizontal position into
HPOSMO (register &D004 in line 180) and decrements the horizon
tal position counter by 12 (line 190).
Tells the computer to read the STICKO register and find the posi
tion of the joystick (see Figure 6-1). If the position is 15 (neutral),
the computer goes to line 140 and reads the joystick trigger
register (&D010).
If the joystick is moved left (11). the computer decrements the
horizontal position counter and pokes the spaceship's new horizon
tal position into the HPOSPO register (&DOOO).
If the joystick is moved right (7), the computer increments the
horizontal position counter and pokes the spaceship's new horizon
tal position into HPOSPO.
If the joystick is moved up (14), the computer moves the spaceship
back one byte in player-missile RAM (line 350). Each of the 8 bytes
that comprise the spaceship must be moved back. When the move
is completed, the computer decrements the vertical position
counter (line 360).
If the joystick is moved down (13), the computer advances the
spaceship one byte in player-missile RAM (line 390) and increments
the vertical position counter (line 400).
If the joystick is moved diagonally (10, 6, 9, or 5), the computer ex
ecutes a horizontal move (after resetting the horizontal position
register), makes a vertical move (line 350 or 390), and resets the
vertical position counter (line 360 or 400).

PLAYER·MISSILE GRAPHICS TUTORIAL 77

A APPENDIX

DISK DIRECTORY PROGRAM

Features used:

SAMPLE
PROGRAMS

• User-callable CIO routines (CIOUSR) (See Appendix L.)
• Integers
• VARPTR function
• ON ERROR
• On-line comments

10 !
20 !
30 !
40 ON ERROR 350
50 OPTION RESERVE(200)
60 OPEN#1,"D:CIOUSR" INPUT
80 ADDR = VARPTR(RESERVE)

90 FOR I = 0 TO 159
100 GET#1,D:POKE ADDR + l,D
110 NEXT I
120 CLOSE #1
130 PUTIOCB = ADDR

140 CALLCIO = ADDR + 61
150 GETIOCB = ADDR + 81
160 DIM IOC8%(10)

170 IOC8%(0)= 1
180 IOCB%(1)= 3
190 IOCB%(5) = 6
200 FSPEC$ = "D:*. *"
210 !

220 Z= VARPTR(FSPEC$)

230 Y = VARPTR(IOCB % (3))

240 POKE Y ,PEEK(Z + 2)
250 POKE Y + 1,PEEK(Z + 1)
260 !
270 Z= USR(PUTIOCB,VARPTR(IOCB%(0)))
280 !
290 Z = USR(CALLCIO,VARPTR(IOCB%(0)))
300 !
310 !

78 SAMPLE PROGRAMS

ROUTINE TO READ
DISK DIRECTORY

!GET SPACE FOR CIOUSR ROUTINES
!OPEN FILE
!GET STARTING ADDRESS OF
RESERVED AREA
!POKE IN CIOUSR ROUTINES

!THESE ARE THE PROPER STARTING
POINTS
! FOR EACH OF THE
!ROUTINES
! DATA FOR ROUTINES TAKES 10
BYTES
!USE IOCB #1
! DO A CIO "OPEN" CALL
! FOR DIRECTORY INPUT
! DIR FILE SPEC
! PUT ADDRESS OF FSPEC INTO
BUFFER
!ADDRESS OF THE STRING
FILESPEC
!ADDRESS OF THE PROPER ARRAY
POSITION
!HIGH ADDRESS BYTE
! LOW ADDRESS BYTE
PUTDATAINTOIOCB

THEN CALL CIO

IOCB IS SETUP AND DISK
IS OPEN ... READ DIRECTORY

•

320 IN PUT #1 ,S$
330 PRINTS$
340 GOTO 320
350 CLOSE #1
360 END

EXPLOSION SUBROUTINE
Feature used: Sound

10 !TWO-LINE MAIN PROGRAM
20 !AND SUBROUTINE TO PRODUCE
30 !AN EXPLOSION
40 !
50 GOSU B 8000
60 STOP
8000 !
8010 !EXPLOSION SUBROUTINE
8020 !
8030 SOUND 2,75,8,14
8040 ICR = 0.79
8050 V1=15:V2 = 15:V3 = 15
8060 SOUND O,NTE,8,V1
8070 SOUND 1,NTE + 20,8,V2
8080 SOUND 2,NTE + 50,8,V3
8090 V1 = V1 * ICR
8100 V2 = V2 * (ICR+ .05)
8110 V3 = V3 * (ICR + .08)
8120 IF V3 >1 THEN 8060
8130 SOUND 0,0,0,0,0
8140 SOUND 1,0,0,0,0
8150 SOUND 2,0,0,0,0
8160 RETURN

FANFARE MUSIC EXAMPLE
Feature used: Sound with duration
10 !ROUTINE TO GENERATE FANFARE MUSIC
20 !TWO-LINE MAIN PROGRAM
30 !
40 GOSUB 8000
50 STOP
8000 !
8010 ! FANFARE MUSIC
8020 !
8030 DUR= 20:VO = 181 :V1 = 144:V2 = 121 :GOSUB 8200
8040 DUR= 7:GOSUB 8200
8050 GOSUB 8200
8060 DUR= 9:VO = 162:V1=128:V2 = 108:GOSUB 8200
8070 DUR= 15:VO = 181 :V1 = 144:V2 = 121 :GOSUB 8200
8080VO=162:V1=128:V2= 108:GOSUB 8200
8090 VO= 153:V1 = 128:V2 = 96:V3 = 193
8100For1=2TO 14
8110 SOUND 3,V0,10,1

SAMPLE PROGRAMS 79

8120 SOUND 1,V1,10,I
8130 SOUND 2,V2,10,I
8140 SOUND O,V3,10,I
8150 FOR J = 1 TO 100:NEXT J
8160 NEXT I
8170 FOR J = 1 TO 200:NEXT J
8180 SOUND 0,0,0,0,0
8185 SOUND 1,0,0,0,0
8190 SOUND 2,0,0,0,0
8195 SOUND 3,0,0,0,0
8197 RETURN
8200 !SOUND GENERATOR
8210 SOUND O,V0,10,8,DUR
8220 SOUND 1,V1 ,10,8,DUR
8230 SOUND 2,V2,10,8,DUR
8240 !
8250 !NOW STOP THE SOUND
8260 !
8270 SOUND 0,0,0,0,0
8280 SOUND 1,0,0,0,0
8290 SOUND 2,0,0,0,0
8295 FOR J = 1 TO 250:NEXT J
8300 RETURN

EXAMPLE OF ATARI PIANO
Features used:
• OPEN statement
• String array
• INKEY$
• SOUND
• On-line comments

10 !EXAMPLE PROGRAM TO
20 !CONVERT YOUR ATARI
30 !COMPUTER INTO A PIANO!
40 !
50 !
60 !FIRST, SET UP A 2-0CTAVE
70 !SCALE OF KEYS TO PRESS
80 !AND NOTES TO PLAY
90 DIM NOTES$(15)
100 DIM PITCH(15)
110 ! NOW READ THESE INTO
120 !THEIR RESPECTIVE TABLES
130 OPEN #1, "D:NOTES.DAT" INPUT
140 FOR I = 1 TO 1 5
150 INPUT #1,S$,P
160 NOTES$(1) = S$:PITCH(I) = P
170 NEXT I
180 CLOSE #1
190 PRINT "PLAY,BURT,PLAY!"
200 !
210 !BEGIN TESTING FOR KEYS

80 SAMPLE PROGRAMS

•

220 ! BEING PRESSED
230 !
240 N$ = INKEY$
250 IF N$ = "" THEN GOTO 240 ELSE GOTO 320
260 !
270 !WHEN A KEY IS PRESSED,
280 !SEE IF ITS ONE ON OUR
290 ! PIANO KEYBOARD!
300 !
310 !
320 FOR I = 1 TO 15
330 IF N$ = NOTES$(I) GOTO 380
340 NEXT I
350 GOTO 240 ! NOT A GOOD KEY, TRY AGAIN
360 ! FOUND A GOOD KEY, PROCESS IT
370 !
380 VOLUME = 8
390 SOUND 1,PITCH(l),10,VOLUME,15
400 GOTO 240
410 END

Sample NOTES.DAT FILE:
• First item is the key to be pressed
• Second item is the frequency to play
10 !PROGRAM TO CREATE NOTES.DAT FILE
20 !
30 DIM NOTES$(15),PITCH(15)
40 FOR I = 1 TO 15
50 INPUT "ENTER KEY, FREQ. FOR KEY:";NOTES$(1),PITCH(I)
60 NEXT I
70 OPEN #1,"D:NOTES.DAT" OUTPUT
80 FOR I = 1 TO 15
90 PRINT #1,NOTES$(1);" ,";PITCH(I)
100 NEXT I
110 CLOSE #1
120 END

Enter the following values to get a 2-octave scale:
Z, 243
X, 217
C, 193
V, 182
B, 162
N, 144
M, 128
A, 121
S, 108
D, 96
F, 91
G, 81
H, 72
J, 64
K, 60

SAMPLE PROGRAMS 81

DECIMAL-TO-HEX CONVERSION ROUTINE
Features used:
• String array
• Integers
• On-line comments
20
30 DECHEX
40
50
60
70 PROGRAM TO CONVERT AN INPUT
80 DECIMAL NUMBER TO ITS
90 HEXADECIMAL EQUIVALENT
100 !
110 !
130 DIM HEX$(15):DIM HEXBASE(4)
140 FOR l=OTO 15
150 READ HEX$(1)
160 NEXT I
170 FOR I = 0 TO 4
180 READ HEXBASE(I)
190 NEXT I
200 DATA 0, 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
210 DATA 0,4096,256,16,1
220 !
230 !GET THE DECIMAL NO.
240 !
250 INPUT "ENTER THE DECIMAL NO.:";DEC
260 IF DEC = 0 THEN 500 !STOP
270 !
280 ! PROCESS EACH HEX DIGIT
290 !
300 FOR J = 1 TO 4
305 IF J = 4 THEN ANS%= DEC:GOTO 350
310 ANS% = (DEC/HEXBASE(J))-.5
320 IF ANS% < 1 THEN ANS% = 0
330 DEC = DEC-(ANS% * HEXBASE(J))
340 !
350 !FIND THE HEX DIGIT FOR FIRST POSITION
360 FOR I% = 0 TO 15
370 IF ANS% = 1% THEN GOTO 420
380 NEXT 1%
390 !IF WE GOT HERE ITS AN ERROR!
400 PRINT" DECIMAL INPUT CAN'T BE COMPUTED"
410 PRINT "PLEASE TRY AGAIN": GOTO 250
420 HEXNO$ = HEXNO$ + HEX$(1%)
430 NEXT J
440 !
450 !PRINT THE HEX NO. AND GO FOR ANOTHER
460 !

82 SAMPLE PROGRAMS

•

...
470 PRINT "HEX NO. = ";HEXNO$
480 HEXNO$ =
490 GOTO 250
500 END

VERTICAL FINE SCROLLING
Features used:
• Fine scrolling
• VARPTR
• OPTION RESERVE and CHR
• User-defined display list

10 DEFINT A-Z
20 OPTION RESERVE(3000)
30 OPTION CHR1
40 ADDR = VARPTR(CHR1)
50 CADDR = VARPTR(RESERVE)
60 VSCROL = &D405
70 LCADDR = 0

!AREA FOR SCREEN R/\M
!AREA FOR DISPLAY LIST

!VERTICAL SCROLL REGISTER

80 HCADDR = ((CADDR AND &FF00)/256) and &FF
90 FOR I= OTO 99 !ZEROTHE DISPLAY LIST AREA(1ST 100 BYTES)
100 POKE ADDR + l,O:NEXT I
110 LADDR = ADDR AND &FF
120 HADDR = ((ADDR AND &FF00)/256) AND &FF
130 LMSLO = ADDR + 4 I ADDRESS OF LOAD

! MEMORY SCAN BYTES (LMS)
!POKE IN NEW DISPLAY LIST
! FROM DATA STMTS. 190-210

140 LMSHI = ADDR + 5
150 FOR I = 0 TO 18
160READD
170 POKE ADDR+ l,D
180 NEXT I
190 DATA &70,&70,&70,&67,&00,&00,&27,&27
200 DAT A &27 ,&27 ,&27 ,&27 ,&27 ,&27 ,&27 ,&27
210 DATA &27,&07,&41
220 POKE ADDR + 19,LADDR
230 POKE ADDR + 20,HADDR

! LAST 2 BYTES POINT BACK

240 POKE LMSLO,LCADDR:POKE LMSHl,HCADDR
!TO TOP OF DISPLAY LIST

!TELLS SCREEN RAM START
!250- 320 LOAD DATA INTO

!SCREEN RAM AREA, A PAGE FULL
!OF A's AND THEN THE ALPHABET

250 K = -1
260 FOR I = 1 TO 300
270 K = K + 1 :POKE CAD DR+ K,33
280 NEXT I
290 FOR I = 34 TO 58
300 FOR J = 1 TO 20
310 K = K + 1 :POKE CAD DR+ K,I
320 NEXT J,I
330 POKE &22F,O
340 POKE &230,LADDR
350 POKE &231,HADDR
360 POKE &22F,&22
370
380 FOR I = 1 TO 15
390 POKE VSCROL, I
400 FOR W = 1 TO 30:NEXT W
410 NEXT I

!TURN OFF ANTIC
!TELL IT WHERE MY DISPLAY

! LIST IS, AND ...
!TURN ANTIC BACK ON

! HERE IS THE REAL PROGRJ1M
! 380 - 410 DO THE VERTICA.L

! FINE SCROLL

SAMPLE PROGRAMS 83

420 CADDR = CADDR + 20 !CALCULATE WHERE NEXT LINE OF 430 LCADDR =CADDR AND &FF !SCREEN RAM STARTS 440 HCADDR = ((CAD DR AND &FF00)/256) AND &FF ! FOR THE COARSE SCROLL 450 WAIT &D40B,&FF,96 !WAIT UNTIL TV VERTICAL LINE COUNTER HITS 96 460 POKE VSCROL,O !THEN SET CHARACTERS BACK TO ORIGINAL POSITION 470 POKE LMSLO,LCADDR !AND COARSE 480 POKE LMSHl,HCADDR !SCROLL BY CHANGING LMS BYTE IN DISPLAY LIST 490 GOTO 380

84 SAMPLE PROGRAMS

•

... ! ..

PROGRAMS FOR
GRAPHICS MODES

MICROBE INVASION EXAMPLE
10 REM MICROBE INVASION
15 REM SPIRAL CREATURES TAKE OVER SCREEN
16 REM 10 PERCENT CHANCE SCREEN CHANGES MODE
17 REM WHEN CREATURE GOES OUT OF BOUNDS
30 RANDOMIZE
40 MODE= RND(8)
50 GRAPHICS MODE+ 16
60 PIX= RND(15)
70 SETCOLOR O,PIX,6
80 COLOR 1
90 BAK= RND(255)
100 POKE 712,BAK
110 X= RND(150):Y= RND(100)
120 IF X >140 THEN 40
130 z = 2
140 NU M = NU M + 1
150 FOR DOTS= 1 TO Z
160 IF NUM = 5 THEN NUM = 1
170 ON ERROR GOTO 230
180 PLOT X,Y
190 ON NUM GOSUB 250,270,290,310
200 NEXT
210Z=Z+1
220 GOTO 140

APPENDIX

230 GRAPHICS MODE+ 32 + 16! NO TEXT WINDOW.NO SCREEN CLEAR
240 RESUME 60
250 X = X + 1:Y=Y+1
260 RETURN
270X=X+1:Y=Y-1
280 RETURN
290 X=X-1:Y=Y-1
300 RETURN
310X=X-1:Y=Y+1
320 RETURN

E3

PROGRAMS FOR GRAPHICS MODES 85

TOP SECRET PROGRAM
The following short program makes use of RANDOMIZE and RND to print three
letter words and three-letter abbreviations of government agencies.

10 RANDOMIZE ! Seeds the RND function
20 GRAPHICS 2 + 16
30 X = RND(26) + 96
40 Y= RND(5)
50 IF Y = 1THENY=97
60 IFY=2THEN Y= 101
701FY=3THENY=105
80 IF Y = 4 THEN Y = 111
90 IF Y = 5 THEN Y = 117
100 Z = RND(26) + 96
110 PRINT #6, AT(9,3)CHR$(X);CHR$(Y);CHR$(Z)
120 FOR DELAY= 1 TO 2000:NEXT
180 GOTO 30

86 PROGRAMS FOR GRAPHICS MODES

! Make first letter
! Make a vowel for middle letter

!Make an A
! Make an E
!Make an I

!Make an 0
!Makeau

! Make last letter

•

ALTERNATE
CHARACTER SETS

APPENDIX c

ATARI Home Computers support several standard character sets that are stored
as part of the Operating System (OS) ROM. These include all the upper- and lower
case alphabet, numbers, special characters, and a special graphics character set.
At times, however, it is very useful to be able to define your own character set. Ap
plications for this capability that immediately come to mind include character
driven animation, foreign language word processing, and background graphics for
games (for instance, a map or special playfield).

ATARI Computers and ATARI Microsoft BASIC II readily support this need. This
is easy for the ATARI Home Computer because the OS data base contains a
pointer (CHBAS) at hex location 2F4 (decimal location 756) that points to the
character set to be used. Normally this points at the standard character set in the
OS ROM. But in BASIC, you can POKE your own character set into a free area of
RAM (set aside with the OPTION CHR1 or OPTION CHR2 statement) and then
reset the OS pointer, CHBAS, to point to your new character set. The computer in
stantly begins using the new characters.

There are several important things to keep in mind when redefining the
character set:
• Graphics mode 0 needs 128 characters defined (OPTION CHR1). Graphics

modes 1 and 2 allow only 64 characters (OPTION CHR2).
• All 64 or 128 characters need to be defined even though you may only wish to

change and use one character; this is easily accomplished by transferring the
ROM characters into your RAM area and then changing the desired character
to its new configuration.

• The 64-character set requires 512 bytes of memory (8 bytes per character)
and must start on a V2 K boundary. The 128-character set requires 1024 bytes
of memory and must start on a 1 K boundary. You need not worry about these
restrictions when using the CHR1 and CHR2 options; the area is allocated to
begin on the proper boundary.

• The value that is poked into CHBAS after the character set is defined is the
page number in memory where the character set begins. This value can be
computed with the following statement-

CH BAS% = (VARPTR(CHRn)/256) AND &FF
-where "n" is either 1 or 2. This value is then poked into location &2F4
(decimal 756).

ALTERNATE CHARACTER SETS 87

The most time-consuming process in using an alternate character set is creating
the characters. Each character consists of 8 bytes of memory, stacked one on top
of the other (see Figure C-1). Visualize each character as an 8x8 square of graph
paper. Darken the necessary square on the graph paper to create a character (see
Figure C-2). Then, each row of the 8x8 square is converted from this binary
representation (where each darkened square is a 1 and each blank square is a
zero) to a hex or decimal number (see Figure C-2). These numbers are then poked
into the appropriate bytes of the RAM area, from top to bottom in these figures, to
define the character in RAM. The first 8 bytes of the reserved (OPTION CHR1 or
CHR2) area define the zeroth character, the next 8 bytes define the first character,
and so on. After transferring the standard character set from its ROM location to
the reserved CHR1 or CHR2 area, any character you can redefine by finding its
starting position in the area, then poking the new bytes into the starting byte and
the next 7 bytes. After all necessary characters are redefined, poke the new page
number into CHBAS and the new character immediately becomes active. Use
BASIC PRINT statements to display the new characters; for instance, if you have
redefined the "A" to be a solid block and use the statement, PRINT "A", the new
character will be printed.
A little experimentation with this process quickly shows how powerful this capabili
ty can be. The program that follows is an example of character set redefinition .

Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7
Byte 8

Figure C-1 Amount of Memory per Character

88 ALTERNATE CHARACTER SETS

•

Byte
No. Binary Hex Decimal

1
2
3
4
5
6
7
8

00110000 =
00110000 =
11111000 =
00011100 =
00001110 =
00000111 =
00000011 =
00000011

Figure C·2 Redefining a Character

Example Program:
10 !
20 ! PROGRAM TO DEMONSTRATE
30 !ALTERNATE CHARACTER SET
40 ! DEFINITION
50 !
60 !THE PROGRAM REDEFINES THE
70 !CHARACTERS A,B,C,D,E,F,G,H
80 !

30 = 48
30 = 48
F8 = 248
1C = 28
OE = 14
07 = 07
03 = 03
03 = 03

90 CHBAS = &2F4 !CHARACTER SET POINTER
100 OPTION CHR1 !ALLOCATE CHARACTER SET AREA
110 ADDR% = VARPTR(CHR1) ! FIND STARTING ADDRESS
120 PAGEN0% = (ADDR%/256) AND &FF !CALCULATE PAGE
130 !
140 MOVE 57344,ADDR%,1024 !MOVE CHR. SET DOWN INTO RAM
150 !
150 OFFSET= 33*8 !OFFSET TO "A"
170 FOR I= 0 TO 63 !GET NEW CHARACTERS
180 READ C
190 POKE ADDR% +OFFSET+ l,C !AND INSERT
200 NEXT I
210 !
220 ! DATA STATEMENTS ARE BY CHARACTER
230 !
240 DATA &07,&0F,&1 F,&3F,&7F,&FF,&FF,&FF
250 DATA &EO,&FO,&F8,&FC,&FE,&FF,&FF,&FF
260 DATA &FF,&FF,&FF,&7F,&3F,&1 F,&OF,&07
270 DATA &FF,&FF,&FF,&FE,&FC,&F8,&FO,&EO
280 DATA &OO,&OO,&OO,&EF,&7F,&FF,&FF,&FF
290 DATA &00,&00,&00,&FC,&FE,&FF,&FF,&FF
300 DATA &FF,&FF,&FF,&7F,&3F,&OO,&OO,&OO
310 DATA &FF,&FF,&FF,&FE,&FC,&00,&00,&00
320 !
330 POKE CHBAS,PAGENO% !SWITCH TO NEW CHARACTER SET!
340 !

ALTERNATE CHARACTER SETS 89

350 POKE &2F0,1 !TURN OFF CURSOR
360 SETCOLOR 6,2,6
370 x = 20
380 FOR Y = 10 TO 20
390 WAIT &0408,&FF, 110
400 CLS
410 PRINT AT(X,Y + 1);"CD"
420 FOR W = 1 TO 30:NEXT W
430 NEXT Y
440 CLS
450 PRINT AT(X,22);"GH"
460 SOUND 0,79,10,8,4
470 FOR W = 1 TO 80:NEXT W
480 FOR Y=20 TO 10 STEP -1
490 WAIT &0408,&FF,110
500 CLS
510 PRINT AT(X,Y + 1);"CD"
520 FOR W = 1 TO 30:NEXT W
530 NEXT Y
540 GOTO 380

90 ALTERNATE CHARACTER SETS

•

INPUT/OUTPUT
DEVICES

APPENDIX D

The keyboard, disk drive, program recorder, and modem are ways your computer
gets information. These are called input devices. The ATARI Home Computer also
gives information by writing it on the television screen, cassette tape, printer, or
diskette, which are output devices.
ATARI input and output devices have identifying codes:
K: Keyboard. Input-only device. The keyboard allows the computer to get informa
tion directly from the console keys.
P: Line Printer. Output-only device. The line printer prints ATASCll characters, a
line at a time.
C: Program Recorder. Input and output device. The recorder is a read/write
device that can be used as either, but never as both simultaneously. The cassette
has two tracks for sound and program recording purposes. The audio track cannot
be recorded from the ATARI Computer system, but may be played back through
the television speaker.
D1 :,D2:,D3:,D4: Disk Drives. Input and output devices. If 32K of RAM is installed,
the ATARI Computer can use four ATARI 810 Disk Drives. The default is D1: if no
drive number is designated (D:).
E: Screen Editor. Input and output device. This device uses the keyboard and
television screen (see S: TV Monitor) to simulate a video terminal. Writing to this
device causes data to appear on the screen starting at the current cursor position.
Reading from this device activates the screen-editing process and allows the user
to enter and edit data. Whenever the RETURN key is pressed, the entire line is
selected as the current record to be transferred by central input/output (CIO) to the
user program. (Refer to the ATARI Home Computer System Technical Reference
Notes for a detailed explanation of CIO.)
S: TV Monitor. Input and output device. This device allows you to read characters
from and write characters to the screen, using the cursor as the screen-addressing
mechanism. Both text and graphics operations are supported.
R: Interface, RS-232. The ATARI 850™ Interface Module enables the ATARI Com
puter system to interface with RS-232 compatible devices such as printers, ter
minals, and plotters.

INPUT/OUTPUT DEVICES 91

E APPENDIX MEMORY
LOCATIONS

Memory locations are expressed in hexadecimal, with decimal equivalents in
parentheses. For additional information, see the A TARI Home Computer System
Technical Reference Notes.

MEMORY MAP

The 6502 Microprocessor is divided into four basic memory regions: RAM, car
tridge area, 1/0 chip region, and resident OS ROM. Memory regions and their ad
dress boundaries are listed below:
RAM (minimum required for operation):
RAM expansion area:
Cartridge B (left cartridge) or SK RAM:
Cartridge A (right cartridge) or SK RAM:
Unused:
1/0 chips:
OS floating point package:
Resident operating system ROM:

RAM REGION

0000-1 FFF (0-S 191)
2000-7FFF (S192-32767}
S000-9FFF (3276S-40959)
AOOO-BFFF (40960-49151)
COOO-CFFF (49152-5324 7)
DOOO-D7FF (5324S-55295)
DSOO-DFFF (55296-57343)
EOOO-FFFF (57344-65535)

The RAM region, shared by the OS and the program in control, is divided into the
following subregions (see Table E-1 for some useful OS data base addresses).
• Page 0, 6502 Microprocessor Address Mode Region: 0000 through DOFF

(0-255) allocated as follows:

0000 through 007F (0-127): OS
OOSO through DOFF (12S-255): User applications
OOD4 through DOFF (212-255): Floating point package, if used.

• Page 1, 6502 Hardware Stack Region: 0100 through 01FF (256-511}.
Note: At power up or SYSTEM RESET, the stack location points to address 01 FF
(511} and the stack then pushes downward toward 0100 (256). The stack wraps
around from 0100 to 01FF if a stack overflow occurs.
• Pages 2-4, OS Data Base (working variables, tables, data buffers): 0200

through 047F (512-1151).

• Pages 7-XX, User Boot Area: 0700 (1792) to start of free RAM area, where XX
is a function of the screen graphics mode and the amount of RAM installed.

Note: When initial diskette startup is completed, the data base variable points to
the next available location above the software loaded. When no software is entered
by the initial diskette startup, the data base variable points to location 0700.
• Page XX to top of RAM, Screen Display List and Data: Data base pointer con

tains address of last available location below the screen area.

92 MEMORY LOCATIONS

CARTRIDGE AREA
Cartridge Bis the right cartridge on the ATARI SOO Home Computer. Cartridge A is
the left cartridge on the ATARI SOO Home Computer and the only cartridge on the
ATARI 400 Home Computer.
• Cartridge 8: 8000 through 9FFF (3276S-40959)
• Cartridge A: AOOO through BFFF (40960-49151) for SK cartridges; SOOO

through BFFF (3276S-49151) for 16K cartridges (optional)
Note: On the ATARI SOO Home Computer, if a RAM module plugged into the last
slot overlaps any of these cartridge addresses, the installed cartridge disables the
conflicting RAM module in SK increments.
1/0 CHIPS
The 6502 Microprocessor performs input/output operations by addressing the
following external support chips as memory:
• GTIA/CTIA: 0000 through 001 F (53248-53279)
• POKEY: 0200 through 021 F (53760-53791)
• PIA: 0300 through 031 F (54016-54047)
• ANTIC: 0400 through 041 F (54272-54303)
Some of the chip registers are read/write; others are read only or write only. Table
E-2 lists the registers and their addresses by chip. For additional information, see
the ATARI Home Computer System Technical Reference Notes.
RESIDENT OS ROM
The region from 0800 through FFFF (55296-65535) permanently contains the OS
and the floating point package:
• Floating point package: OSOO through OFFF (55296-57343)
• Operating System ROM: EOOO through FFFF (57344-65535)
The OS contains many vectored entry points, all fixed, at the end of the ROM and
in RAM. The floating point package is not vectored, but all documented entry points
are fixed. (See the Appendix of the ATARI Home Computer System Technical
Reference Notes for listings of the fixed ROM vectors and entry points.)

TABLE E·1 USEFUL OS DATA BASE ADDRESSES
Address
Hex Dec Name
MEMORY CONFIGURATION
OOOE 14 APPMHI
006A 106 RAMTOP

02E4
02E5
02E7

740
741
743

RAMSIZ
MEMTOP
MEMLO

Byte
Size Function

2
1

1
2
2

User-free memory screen lower limit
Display handler top of RAM address
(MSB)
Top of RAM address (MSB)
User-free memory high address
User-free memory low address

MEMORY LOCATIONS 93

• • TEXT/GRAPHICS SCREEN • Screen Margins (text modes; text window) • 0052 82 LMARGN Left screen margin (0-39; default 2) • 0053 83 RMARGN Right screen margin (0-39; default 39)

• Cursor Control • 0054 84 ROWSCRS 1 Current cursor row • 0055 85 COLCRS 2 Current cursor column
005A 90 OLD ROW 1 Prior cursor row
0058 91 OLDCOL 2 Prior cursor column • 0290 656 TXTROW 1 Current cursor row in text window
0291 657 TXTCOL 2 Current cursor column in text window • 02FO 752 CRSINH 1 Cursor display inhibit flag

(0 = cursor on, 1 = cursor off) • • Color Control • 02CO 704 PCOLRO 4 Color-luminance player-missile 0
02C1 705 PCOLR1 4 Color-luminance of player-missile 1 • 02C2 706 PCOLR2 4 Color-luminance of player-missile 2
02C3 707 PCOLR3 4 Color-luminance of player-missile 3 • 02C4 708 COL ORO 5 Color-luminance of playfield O
02C5 709 COLOR1 5 Color-luminance of playfield 1 • 02C6 710 COLOR2 5 Color-luminance of playfield 2
02C7 711 COLOR3 5 Color-luminance of playfield 3 • 02C8 712 COLOR4 5 Color-luminance of background • Attract Mode • 0040 77 ATRACT Attract mode timer and flag • (Value 128 = on; turns on every • 9 minutes)

Tabbing • 02A3 675 TABMAP 15 Tab stop bit map (default: 7, 15, 23, • and so on to 119)

Screen Memory • • 0058 88 SAVMSC 2 Upper left corner of screen • Split-Screen Memory • 0294 660 TXTMSC 2 Upper left corner of text window • • • • • • 94 MEMORY LOCATIONS •

DRAW/FILL Function

02FD 765 FILDAT

Internal Character Code Conversion

02FA 762 ATACHR

Display Control Characters

02FE 766 DSPFLG

KEYBOARD

Key Reading

02FC 764 CH

Special Functions

0011 17 BRKKEY

02B6 694 INVFLG

02BE 702 SHFLOK

02FF 767 SS FLAG

Fill data for graphics FILL command

Contains last ATASCll character or
plot point

Display control character flag
(1 = display control characters)

Contains value of last keyboard
character in FIFO or $FF if FIFO is
empty

BREAK key flag (normally nonzero;
set to 0 by BREAK)
Inverse video flag (norm = O; set by
II key)
Shift/control lock control flag ($00 =
no lock(norm); $40 =caps lock; $80
= control lock)
Set to $40 on power up and
SYSTEM RESET; reset by
CAPS LOWA, CAPS LOWA
SHIFT, or CAPS LOWA
CTRL.
Start/stop flag (norm = O; set by
CTRL 1).

MEMORY LOCATIONS 95

• • CENTRAL 1/0 (CIO) ROUTINE • 1/0 Control Block • 0340-034F (832-847) IOCB 16 1/0 control block 0 • 0350-035F (848-863) IOCB 16 1/0 control block 1 • 0360-036F (864-879) IOCB 16 1/0 control block 2
0370-037F (880-895) IOCB 16 1/0 control block 3 • 0380-038F (896-911) IOCB 16 1/0 control block 4
0390-039F (912-927) IOCB 16 1/0 control block 5 • 03A0-03AF (928-943) IOCB 16 1/0 control block 6
03B0-03BF (944-959) IOCB 16 1/0 control block 7 • 0340 832 ICHID Handler l.D. (see Section 5; initialized • to $FF at power up and

SYSTEM RESET) • 0341 833 ICDNO 1 Device number
0342 834 ICCMD 1 Command byte • 0343 835 ICSTA 1 Status
0344 836 ICBAL/ICBAH 2 Buffer address I
0346 838 ICPTL/ICPTH 2 PUT BYTE vector (points to CIO's •I "IOCB not OPEN" at power up and • SYSTEM RESET)
0348 840 ICBLL/ICBLH 2 Buffer length/by1e count
034A 842 ICAX1/ICAX2 2 Auxiliary information • 034C 844 ICAX3/ICAX6 4 Spare bytes for handler use • Zero Page IOCB • 0020 32 ZIOCB 16 Zero page IOCB (Only the first 12 .I

bytes (IOCBs) are moved by the CIO • utility.)
0020 32 ICHIDZ Handler index number (set to $FF on • CLOSE)
0021 33 ICDNOZ 1 Device drive number • 0022 34 ICCOMZ 1 Command byte
0023 35 ICSTAZ 1 Status byte • 0024 36 ICBALZ, ICBALH 2 Buffer address
0026 38 ICPTLZ,ICPTHZ 2 PUT BYTE vector (points to CIO's • "IOCB not OPEN" on CLOSE)
0028 40 ICBLLZ, ICBLHZ 2 Buffer length/byte count • 002A 42 ICAX1Z,ICAX2Z 2 Auxiliary information
0002C 44 ICSPRZ 4 CIO working variables • (ICIDNO,ICOCHR) CIDNO = ICSPRZ + 2; ICOCHR =

ICSPRZ+ 3 • DEVICE STATUS • 02EA 746 DVSTAT 4 Device status •
DEVICE TABLE •
031A 749 HAT ABS 38 Device handler table • • • • 96 MEMORY LOCATIONS •

SERIAL 1/0 (SIO) ROUTINE

Device Control Block

0300-030B (768-779) DCB 12 Device control block
0300 768 DDEVIC 1 Device bus l.D.
0301 769 DUNIT 1 Device unit number
0302 770 DCOMND 1 Device command
0303 771 DST ATS 1 Device status
0304 772 DBUFLO,DBUFHI 2 Handler buffer address
0306 774 DTIMLO 1 Device timeout
0308 776 DBYTLO,DBYTHI 2 Buffer length/byte count
030A 778 DAUX1 ,DAUX2 2 Auxiliary information

BUS SOUND CONTROL

0041 65 SOUN DR Quiet/noisy 1/0 flag (O = quiet)

ATARI CONTROLLERS

Joysticks

0278 632 STICKO-STICK3 4 Joystick position port
0284 644 STRIGO-STRIG3 4 Joystick trigger port

Paddles

0270 624 PADDLO-PADDL7 8 Paddle position port
027C 636 PTRIGO-PTRIG7 8 Paddle trigger port

Light Pen

0234 564 LPENH Light pen horizontal position code
0235 565 LPENV 1 Light pen vertical position code
0278 632 STICKO-STICK3 4 Light pen button port

FLOATING POINT PACKAGE

OOD4 212 FRO 6 Floating point register O
OOEO 224 FR1 6 Floating point register 1
OOF2 242 CIX 1 Character index
OOF3 243 IN BUFF 1 Input text buffer pointer
OOFB 251 DEGFLG/RADFLG 1 Degrees/radians flag (0 = DEGFLG;

6 = degrees; DEGFLG = 0)
OOFC 252 FLPTR 2 Pointer to floating point number
0580 1408 LBUFF 96 Text buffer

MEMORY LOCATIONS 97

• •
POWER UP AND SYSTEM RESET •
Diskette/Cassette Boot • 0002 2 CASINI 2 Cassette boot initialization vector • oooc 12 DOSINI 2 Diskette boot initialization vector • Environment Control • 0008 8 WAR MST Warmstart flag (= O on power up; • $FF on SYSTEM RESET) • OOOA 10 DOSVEC 2 Noncartridge control vector

• INTERRUPTS

• 0010 16 POKMSK POKEY interrupt mask
0042 66 CRITIC Critical code section flag • (nonzero = executing code is critical) •
Real Time Clock •
0012 18 RTCLOK 3 Real time frame counter (1/60 sec) • (+ 0 = MSB; + 1 = NSB; + 2 = • LSB)

• System VBLANK Timers • 0218 536 CDTMV1 2 System timer 1 value • 021A 538 CDTMV2 2 System timer 2 value
021C 540 CDTMV3 2 System timer 3 value • 021E 542 CDTMV4 2 System timer 4 value
0020 544 CDTMV5 2 System timer 5 value • 0226 550 CDTMA1 2 System timer 1 jump address
0228 552 CDTMA2 2 System timer 2 jump address • 022A 554 CDTMF3 2 System timer 3 flag
022C 556 CDTMF4 1 System timer 4 flag • 022E 558 CDTMF5 2 System timer 5 flag

• NMI Interrupt Vectors • 0200 512 VDSLST 2 Display list interrupt vector • (not used by the OS)
0222 546 VVBLKI 2 Immediate VBLANK vector • 0224 548 VVBLKD 2 Deferred VBLANK vector

• IRQ Interrupt Vectors • 0202 514 VP RC ED 2 Serial 1/0 bus proceed signal • 0204 516 VINTER 2 Serial 1/0 bus interrupt signal
0206 518 VBREAK 2 BREAK instruction vector
0208 520 VKEYBD 2 Keyboard interrupt vector • 020A 522 VUSERIN 2 Serial 1/0 bus receive data ready
020C 524 VSEROR 2 Serial 1/0 bus transmit ready • 020E 526 VSEROC 2 Serial 1/0 bus transmit complete • 98 MEMORY LOCATIONS •

0210
0212
0214
0216

528
530
532
534

VTIMR1
VTIMR2
VTIMR4
VIMIRQ

2
2
2
2

POKEY timer vector (not used by OS)
POKEY timer vector (not used by OS)
POKEY timer vector (not used by OS)
General IRQ vector

Hardware Register Updates

Screen display list address
Screen display list address
Color register
Color register
Character control

0230
0231
02CO
02C4
02F3
02F4

560
561
704
708
755
756

SDLSTL
SDLSTH
PCOLRx
PCOLORx
CHACT
CH BAS

1
1
4
5
1
1 Character address base register

($EO =uppercase, number set;
$E2 =lowercase, special graphics set;
default= $EO)

USER AREAS

Note: The following areas are available to you in a nonnested environment:

0080
0480

TABLE E-2
Address

128
1152

HARDWARE ADDRESSES
Register

128
640

Hex Dec Name Function

ANTIC CHIP

0400

0401
0402

0403

0404
0405
0407

0409

D40A

0408
D40E

54272 DMACTL Direct memory access
(OMA) control (WRITE)

54273 CHACTL Character control (WRITE)
54274 DLISTL Display list pointer

low byte (WRITE)
54275 DLISTH Display list pointer

high byte (WRITE)
54276 HSCROL Horizontal scroll (WRITE)
54277 VSCROL Vertical scroll (WRITE)
54279 PMBASE Player-missile base address

(WRITE}
54281 CHBASE Character base address

(WRITE)
54282 WSYNC Wait for horizontal sync

(WRITE)
54283 VCOUNT Vertical line counter (READ)
54286 NMIEN Nonmaskable interrupt

(NMI) enable (WRITE)
D40F 54287 NMIRES Reset NMIST (WRITE)
D40F 54287 NMIST NMI status (READ)

OS Shadow
Hex Dec Name

22F

2F3
230

231

2F4

559

755
560

561

756

SDMCTL

CHART
SDLSTL

SDLSTH

CH BAS

D410-D4FF (54288-54527) Repeat ANTIC addresses 0400 through D40F.

MEMORY LOCATIONS 99

• • CTIA/GTIA CHIP • PLAYER-MISSILE GRAPHICS CONTROL • Horizontal Position Control (WRITE) • DOOO 53248 HPOSPO Horizontal position player O • 0001 53249 HPOSP1 Horizontal position player 1
0002 53250 HPOSP2 Horizontal position player 2 • 0003 53251 HPOSP3 Horizontal position player 3
0004 53252 HPOSMO Horizontal position missile O • 0005 53253 HPOSM1 Horizontal position missile 1
0006 53254 HPOSM2 Horizontal position missile 2 • 0007 53255 HPOSM3 Horizontal position missile 3

• Collision Control (READ) • DOOO 53248 MOPF Missile 0 to playfield • 0001 53249 M1PF Missile 1 to playfield
0002 53250 M2PF Missile 2 to playfield • 0003 53251 M3PF Missile 3 to playfield
0004 53252 POPF Player 0 to playfield • 0005 53253 P1PF Player 1 to playfield
0006 53254 P2PF Player 2 to playfield • 0007 53255 P3PF Player 3 to playfield
0008 53256 MOPL Missile 0 to player • 0009 53257 M1PL Missile 1 to player
DOOA 53258 M2PL Missile 2 to player • DOOB 53259 M3PL Missile 3 to player
DOOC 53260 POPL Player O to player • DOOD 53261 P1PL Player 1 to player
DOOE 53262 P2PL · Player 2 to player • DOOF 53263 P3PL Player 3 to player

• Collision Clear (WRITE) • D01E 53278 HITCLR Collision clear • Size Control (WRITE) • Note: 0 = normal, 1 = double, 3 = quadruple size. • 0008 53256 SIZE PO Size of player 0 • 0009 53257 SIZEP1 Size of player 1 • DOOA 53258 SIZEP2 Size of player 2
DOOB 53259 SIZEP3 Size of player 3 • DOOC 53260 SIZEM Sizes of all missiles

• Graphics Registers (WRITE) • DOOD 53261 GRAF PO Graphics for player 0 • DOOE 53262 GRAFP1 Graphics for player 1
DOOF 53263 GRAFP2 Graphics for player 2 • 0010 53264 GRAFP3 Graphics for player 3
0011 53265 GRAFM Graphics for all missiles •
100 MEMORY LOCATIONS :1

Joystick Controller Triggers (READ)

0010 53264 TRIGO Read joystick 0 trigger 284 644 STRIGO
0011 53265 TRIG1 Read joystick 1 trigger 285 645 STRIG1
0012 53266 TRIG2 Read joystick 2 trigger 286 646 STRIG2
0013 53267 TRIG3 Read joystick 3 trigger 287 647 STRIG3

Color-Luminance Control (WRITE)

0012 53266 COLP MO Color-luminance player-missile 0 2CO 704 COL RO
0013 53267 COLPM1 Color-luminance player-missile 1 2C1 705 PCOLR1
0014 53268 COLPM2 Color-luminance player-missile 2 2C2 706 PCOLR2
0015 53269 COLPM3 Color-luminance player-missile 3 2C3 707 PCOLR3
0016 53270 COLPFO Color-luminance playfield 0 2C4 708 COL ORO
0017 53271 COLPF1 Color-luminance playfield 1 2C5 709 COLOR1
0018 53272 COLPF2 Color-luminance playfield 2 2C6 710 COLOR2
0019 53273 COLPF3 Color-luminance playfield 3 2C7 711 COLOR3
D01A 53274 COL BK Color-luminance background 2C8 712 COLOR4

Priority Control (WRITE)

0018 53275 PRIOR Priority selection 26F 623 GPRIOR

Graphics Control (WRITE)

D01D 53277 GRACTL Graphics control

MISCELLANEOUS 1/0 FUNCTIONS

PAL/NTSC Systems

0014 53268 PAL Read PAL/NTSC bits

Console Switches (set to 8 during VBLANK)

D01F 53279 CONSOL Write console switch port
D01F 53279 CONSOL Read console switch port

POKEY CHIP

Audio (WRITE)

0200 53760 AUDF1 Audio channel 1 frequency
0201 53761 AUDC1 Audio channel 1 control
0202 53762 AUDF2 Audio channel 2 frequency
0203 53763 AUDC2 Audio channel 2 control
0204 53764 AUDF3 Audio channel 3 frequency
0205 53765 AUDC3 Audio channel 3 control
0206 53765 AUDF4 Audio channel 4 frequency
0207 53767 AUDC4 Audio channel 4 control

0208 53768 AUDCTL Audio control

MEMORY LOCATIONS 101

• • Start Timer (WRITE) • 0209 53769 STIMER Resets audio-frequency • dividers to AUDF values

• Pot Scan (Paddle Controllers) • 0200 53760 POTO Read pot O 270 624 PADDLO • 0201 53761 POT 1 Read pot 1 271 625 PADDL1
0202 53762 POT 2 Read pot 2 272 626 PADDL2 • 0203 53763 POT 3 Read pot 3 273 627 PADDL3
0204 53764 POT 4 Read pot 4 274 628 PADDL4 • 0205 53765 POT 5 Read pot 5 275 629 PADDL5
0206 53766 POT 6 Read pot 6 276 630 PADDL6 • 0207 53767 POT 7 Read pot 7 277 631 PADOL?
0208 53768 ALL POT Read 8-line pot-port state • 0208 53771 POT GO Start pot scan sequence

(written during VBLANK) •
Keyboard Scan and Control (READ) •
0209 53769 KBCODE Keyboard code 2FC 764 CH • • Random Number Generator (READ) • D20A 53770 RANDOM Random number generator •
Serial Port •
D20A 53770 SKRES SKSTAT reset (WRITE) • 0200 53773 SERIN Serial port input (READ) • 0200 53773 SERO UT Serial port output (WRITE)
D20F 53775 SKCTLS Serial port 4-keyboard 232 562 SSKCTL • control (WRITE)
D20F 53775 SKSTAT Serial port 4-keyboard • status register (READ)

• IRQ Interrupt • D20E 532774 IRQEN IRQ interrupt enable (WRITE) 10 16 POKMSK • D20E 532775 IRQST IRQ interrupt status (READ)

D210-D2FF (53776-54015) Repeat D200-D20F (53760-53775) • • • • • • • • 102 MEMORY LOCATIONS •

PIA CHIP

Joystick Read/Write Registers

0300 54016 PORTA Writes or reads data from 278 632 ST IC KO
Controller jacks 1 and 2 279 633 STICK1
if bit 2 of PACTL = 1.
Writes to direction-control register
if bit 2 of PACTL = 0.

0301 54017 PORTB Writes or reads data from 27A 634 STICK2
Controller jacks 3 and 4 278 635 STICK3
if bit 2 of PBCTL = 1 .
Writes to direction-
control register if
bit 2 of PBCTL = 0.

0302 54018 PACTL Port A control (set to $3C
by IRQ code).

0303 54019 PBCTL Port B control (set to $3C
by IRQ code).

0304-03FF (54020-54271) Repeat 0300-0303 (54016-54019)

MEMORY LOCATIONS 103

F APPENDIX

COPYRIGHT WARNING

PROGRAM
CONVERSIONS

Computer programs are protected by the Copyright Laws. The owner of a particular copy of a copyrighted program generally may adapt that program to run on his particular machine. However, there are limits on this right, and in particular, such adaptations may not be transferred to a third party without authorization from the copyright owner.

CONVERTING PROGRAMS TO
ATARI MICROSOFT BASIC II
The COMMODORE PET* BASIC, APPLE** APPLESOFT** BASIC, and RADIO SHACK*** LEVEL 11 BASIC were all written by Microsoft. The overall approach and syntax of these BASIC languages has been kept compatible whenever possible to allow both programs and programmers to move easily from machine to machine . This appendix reviews the difference and indicates how to work around them when converting to ATARI Microsoft BASIC II.

Microsoft divided its original BASIC into several different levels: 4K, 8K, extended, and full. Each successive level was a superset of the previous level and required more memory. When a manufacturer requested BASIC, the specific level to start from was determined by the memory constraints of the target machine. One source of incompatibility is due to starting at different levels. PET BASIC and APPLE APPLESOFT BASIC are based on the 8K level. RADIO SHACK LEVEL II and ATARI Microsoft BASIC II are based on the full language level. Fortunately, this makes conversion into ATARI Microsoft BASIC II easy. The key language differences between 8K and full BASIC are the following:
• DATA TYPES: In 8K BASIC, double precision is not supported. Only 9 digits of accuracy are available. Integers can be used but they are converted to single precision before any arithmetic is done, so their only advantage is small storage requirements-not speed.
• PRINT USING is not available, so you have to format your own numbers in BK BASIC.
• The advanced statements: IF ... THEN ... ELSE, DEFINT, DEFSNG, DEFDBL, DEFSTR, TRON, TROFF, RESUME, and LINE INPUT are not supported in 8K BASIC.
• The functions, INSTR and STRING$, are not supported in 8K BASIC. • Arrays can only be single dimensioned in 8K BASIC.
• User-defined functions can only have one argument in 8K BASIC. By far the most difficult areas for conversion are machine-dependent features such as graphics and machine language use. In all programming it is important to isolate the uses of the features and document the assumption made about the machine.
*PET is a registered trademark of Commodore Business Machines, Inc. **APPLE and APPLESOFT are registered trademarks of APPLE COMPUTER. ***RADIO SHACK is a registered trademark of TANDY CORPORATION.

104 PROGRAM CONVERSIONS

•

CONVERSIONS FROM
COMMODORE {PEn
BASIC VERSION 4.0

APPENDIX G

Most of the difficulty in converting from Commodore (PET) BASIC (used on Com
modore PET computers) comes from specific hardware features rather than the
BASIC language since it is a strict implementation of the SK level. Some of the
conversion considerations are:
• The Commodore PET character set has been extended to 256 characters.

These characters are block graphics characters. In order to emulate this
feature of the Commodore PET, you should set up a RAM-based character set
on your ATARI Home Computer.

• Commodore PET BASIC has built-in constants as follows: Tl$ (TIME$ for ATARI
Computers) and Tl (TIME for ATARI Computers), ST for the STATUS of the last
1/0 operation and a pi symbol for the constant pi.

• Commodore PET 1/0 is done with special statements that control its IEEE bus.
The arguments to OPEN are completely different from other machines and
must be completely changed. The exact format of sending the characters is
done by specifying a channel number with PRINT and INPUT statements,
which is the same as ATARI Microsoft BASIC II, so only the OPEN and control
statements need to be reprogrammed.

• The display size of the Commodore PET is 40 by 25. If menus are designed for
this layout, they need to be reprogrammed.

• PEEKs and POKEs are always very machine dependent. Commodore PET pro
grams often use PEEK and POKE to control cursor positioning because there
is no direct way to change the cursor position. Each PEEK and POKE must be
examined and reprogrammed.

• Commodore PET programs often embed cursor control characters in literal
text strings. The ATARI Microsoft BASIC II also supports this feature but the
character codes are different and must be changed.

• The Commodore PET calls CLEAR, CLR.
• Any use of machine language through the Commodore PET EXEC statement

has to be carefully examined because, although the microprocessor is the
same, the layout of memory and the way of passing arguments to BASIC and
receiving them from BASIC are quite different.

• Since the Commodore PET does not support sound or true graphics there is
no conversion problem in these areas.

• RND is different. RND with a positive argument (generally 1) returns a number
between 0 and 1 .

Overall, if a special character set is set up identical to the Commodore PET's, it
should be quite easy to convert programs that do not make heavy use of machine
language or PEEK and POKE.

CONVERSIONS FROM COMMODORE (PET) BASIC VERSION 4.0 105

CONVERSION TO ATARI MICROSOFT BASIC II
Use the following table to convert a software program developed under Commodore (PET) BASIC 4.0.

Note: For simplicity, those universal BASIC commands such as RUN, CONT, and POKE have been omitted. In those cases, no conversion is necessary. The following table can also be used to perform diskette-based functions. Commodore (PET) BASIC 4.0 is a diskette-based language that must be supported by the ATARI Computer DOS options.

COMMODORE (PET) Equivalent ATARI Computer ATARI COMMAND DOS OPTION Microsoft
BASIC

DIRECTORY A RETURN
DIRECTORY-SEARCH SPEC, LIST FILE?
RETURN

COPY C RETURN
COPY-FROM.TO?
D1:filename,D2:filename RETURN

RENAME E RETURN NAME
RENAME.GIVE OLD NAME.NEW
D2:o/d filename, new filename RETURN

SCRATCH D RETURN KILL
DELETE FILESPEC
D2:filename RETURN
TYPE "Y" TO DELETE filename
Y RETURN

HEADER I RETURN
WHICH DRIVE TO FORMAT?

Check the logical flow of the software that you wish to convert to determine the direction of these commands. You have to program around their use, depending upon the results you wish to accomplish with your software application.

106 CONVERSIONS FROM COMMODORE (PET) BASIC VERSION 4.0

• :1

CONVERTING TRS-80 APPENDIX H
RADIO SHACK PROGRAMS TO
ATARI MICROSOFT BASIC II

Radio Shack BASIC is based on full Microsoft BASIC, so converted programs will
make much better use of the features of ATARI Microsoft BASIC II than APPLE or
Commodore PET programs. ATARI Microsoft BASIC II does have some additional
features, such as COMMON, because it was written later and because the memory
limitation for storing BASIC itself is not as restrictive on the ATARI Computer as it
is on the Radio Shack computer. The term Radio Shack BASIC refers to the BASIC
built into the Model I and Model Ill computers, and called "Level II" BASIC. The
BASIC on the Model II is very similar, but it is not specifically covered here.
• The Radio Shack display size poses the greatest problem in converting TRS-80

BASIC programs because it is 16 by 64. Programs that use the full 64
characters for tables or menus need to be changed.

• Radio Shack supports a form of graphics that allow black and white displays
of 128 by 48 pixels intermixed with characters. The only statements for
manipulation of the graphics are: CLS (clear screen), SET (turn a point on),
RESET (turn a point off), and POINT (test the value of a point on the screen).

• Radio Shack does not store the up-arrow character in the standard ASCII posi
tion, so it has to be translated when moving programs onto the ATARI Com
puter.

• Radio Shack PRINTER 1/0 is done with LPRINT and LUST without opening a
device. Radio Shack cassette 110 is done with PRINT or INPUT to channels 1
and 2 (two drives can be supported). The format of files on cassette is com
pletely different.

• Calls to machine language are done with USR. Because Radio Shack com
puters use the Z-80 processor instead of the 6502, machine language routines
have to be completely rewritten.

• PEEKs and POKEs cannot be directly converted. PEEK and POKE are not
heavily used on the Radio Shack computers.

• The cursor-positioning syntax is an @ after PRINT in Radio Shack BASIC and
"AT" in ATARI Microsoft BASIC II.

• The error codes returned by ERR are completely different.

CONVERTING TRS-80 RADIO SHACK PROGRAMS TO ATARI MICROSOFT BASIC II 107

TRS-80

CDBL(exp)

Cl NT(exp)

CLOAD

CLOAD?

CSNG(X)

EDIT In

FIX(x)

INPUT#-1

LLIST

LPRINT

PRINT MEM

POINT (X,Y)

PRINT @ n, list

PRINT#-1

RANDOM

ATARI

CLOAD
LOAD "C:"

VERIFY "C:filespec"

Automatically
truncates

AUTO line number

SGN(X) *I NT(ABS(X))

OPEN#5, "C:" INPUT
INPUT#5

LIST "P:" mm-nn

OPEN#4, "P:" OUTPUT
PRINT#4, "TEST"

PRINT FRE (0)

DEFINITION

Returns double-precision representation
of expression.

Returns largest integer not greater than
the expression.

Loads a BASIC program from
tape.

Verifies BASIC program on tape to one
in memory.

Returns single-precision represen
tation of the expression.

Lets you edit specified line number.
Use cursor control keys.

Truncates all digits to the right of the
decimal point.

INPUT reads data from cassette
tape.

Lists program to printer.

Prints a line on printer.

Prints free memory size.

OPEN#5, "D:" INPUT or GET#iocb, AT(s,b)
INPUT#5, AT(sector,byte) or PUT#iocb, AT(s,b)

PRINT#6, AT(X,Y);list

CSAVE Writes data to cassette.

RANDOMIZE Seeds the RND function.

108 CONVERTING TRS-80 RADIO SHACK PROGRAMS TO ATARI MICROSOFT BASIC II

•

CONVERTING
APPLESOFT PROGRAMS TO
ATARI MICROSOFT BASIC II

APPENDIX I

Applesoft started from exactly the same BASIC source as PET BASIC, so once
again there are very few pure language issues in converting programs to ATARI
Microsoft BASIC II.

• Apple added two language features to Applesoft to enhance compatibility with
their integer BASIC. They are: ONERR for error trapping and POP for
eliminating GOSUB entries. ONERR can be easily converted to ON ERROR in
ATARI Microsoft BASIC II. POP has no equivalent since it allows a very
unstructured form of programming where subroutines aren't really
subroutines. To convert, add a flag, change the POP to set the flag, RETURN,
and then have a statement at the RETURN point check the flag, clear it, and
branch if it is set.

• The Apple default display size is different from the ATARI display (actual
screen size is the same). Menus and tables laid out to use the full display have
to be edited.

• The Apple disk and peripheral 1/0 scheme is unique. Prints to specific chan
nels are used to activate plug-in peripheral cards. The prints for the cards all
have to be reprogrammed.

• The most difficult conversion task is changing the graphics and sound
statements. The overall Apple high-resolution display size is 280 by 192. The
color control is fairly unusual because each pixel cannot independently take
on all color values. The sound port is a single bit.

CONVERTING APPLESOFT PROGRAMS TO ATARI MICROSOFT BASIC II 109

J APPENDIX CONVERTING
AT ARI SK BASIC TO

ATARI MICROSOFT BASIC II

ATARI Microsoft BASIC II has improved graphics capabilities. You should consider
rewriting graphics sections to take advantage of player-missile graphics. The
SETCOLOR registers have been changed so that registers 0, 1, 2, and 3 now refer
to player-missiles. What was SETCOLOR O,cc, and 11 is now SETCOLOR 4,cc, and
11. SETCOLOR numbers have changed so that what was 0, 1, 2, 3, and 4 for the
register assignment is now 4, 5, 6, 7, and B. Other graphics changes include a
FILL instruction and a "chained" PLOT that replaces DRAWTO.

Microsoft has improved string-handling capabilities. If your initial program oc
cupies too much RAM, you might consider compacting it by rewriting it in
Microsoft.

There are minor differences in the RN D() and other instructions when converting
to ATARI Microsoft BASIC II. The RND() can be made to work identically to the BK
BASIC's if you include a RANDOMIZE statement as part of your program. Pro
grams that you have listed in BK BASIC onto diskette can be loaded with ATARI
Microsoft BASIC II and, with a few changes, should run.

ATARI BK
BASIC
ADR(VAR$)

CLR

DEG

PLOT X,Y
DRAWTO A,B

LIST mm,nn

LOCATE X,Y,VAR

LPRINT "Hello"

OPEN #iocb,
aexp1 ,aexp2,
filespec

POINT #iocb,
sector, byte

ATARI MICROSOFT
BASIC
VARPTR(VAR$) + 1

CLEAR

PLOT X,Y TO X,Y

LIST mm-nn

COMMENTS
Identical.

No equivalent.

Draws a line on the TV
screen in graphics modes. Use hyphen for
number range.

VAR= ASC(SCRN$(X,Y)) Locates value on register.

OPEN#?, "P:" OUTPUT Prints "Hello" on the printer.
PRINT#?, "Hello"

OPEN #iocb,
filespec INPUT

INPUT #iocb,
AT (sector, byte)
or PRINT #iocb
at (S,E)

110 CONVERTING ATARI 8K BASIC TO ATARI MICROSOFT BASIC II

ATARI SK
BASIC

POP

POSITION X,Y
PRINT #6,

SOUND voice,
pitch,noise,volume

TRAP exp

USR(addr ,list)

XIO 18

ATARI MICROSOFT
BASIC

PRINT#6, AT(X,Y)

SOUND voice,
pitch,noise,volume,
duration

ON ERROR exp

USR(addr ,pointer)

FILL X1,Y1 TO X2,Y2

COMMENTS
Use the USA function to call a machine
language routine. POP stack in 6502 code.

The duration is a new option. Duration is
given in 1/60 of a second called jiffies. Thus,
SOUND works the same when converting
programs to Microsoft BASIC II.

Identical.

You pass only one argument to the ATARI
Microsoft BASIC II rather than an argument
list.

Microsoft's FILL plots points from X1 ,Y1 TO
X2,Y2. It scans to the right as it fills the
area from X1 ,Y1 TO X2,Y2. The sweep
rightward stops and a new filling scan
begins when a solid plotted line is met.

PADDLE, PTRIG, STICK, STRIG are done with PEEKs and POKEs in ATARI
Microsoft BASIC II. See Section 6, "Game Controllers," for detailed description.

CONVERTING ATARI 8K BASIC TO ATARI MICROSOFT BASIC II 111

K APPENDIX ATASCll
CHARACTER SET

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

0 0 rJ
r=

2 2 11
3 3 !I
4 4 C1
5 5 ;]
6 6 ~
7 7 ~
8 8 ~
9 9 !I
10 A ~
11 B ..
12 c g
13 D iii
14 E ~
15 F ~
16 10 []
17 11 [ii
18 12 = 19 13 =::=
20 14 [)
21 15 c::J
22 16 II
23 17 u
24 18 ~
25 19 a
26 1A I!
112 ATASCll CHARACTER SET

- DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

27 18 0
28 1C a
29 10 a
30 1E II
31 1F a
32 20

33 21 • 34 22 • 35 23 II
36 24 a
37 25 II
38 26 II
39 27 • - 40 28 II
41 29 II
42 2A a
43 28 • - 44 2C • 45 20 • 46 3E • 47 2F • - 48 30 II
49 31 • 50 32 II

- 51 33 II
52 34 • - 53 35 11
54 36 II

ATASCI I CHARACTER SET 113

• • DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER • 55 37 II • 56 38 II • 57 39 II • 58 3A • • 59 38 • • 60 3C • • 61 30 • • 62 3E • • 63 3F • • 64 40 • • 65 41 II • 66 42 a • 67 43 II • 68 44 II • 69 45 II • 70 46 a • 71 72 II • 72 48 II • 73 49 a • 74 4A II • 75 48 a • 76 77 a • 77 40 m • 78 4E a • 79 4F II • 80 50 II • 81 51 II • 82 52 II • 83 53 • • • 114 ATASCll CHARACTER SET •

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

84 S4 • 85 55 II
86 S6 II
87 S7 m
88 S8 • 89 S9 a
90 SA II
91 S8 a
92 SC • 93 SD • 94 SE 11
9S SF l!!!I
96 60 a
97 61 II
98 62 II
99 63 II
100 64 a
101 6S II
102 66 II
103 67 II
104 68 II
10S 69 II
106 6A • 107 68 a
108 6C a
109 6D a
110 6E II
111 6F II
112 70 II

ATASCll CHARACTER SET 115

• • DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER • 113 71 II • 114 72 II • 115 73 II • 116 74 II • 117 75 II • 11B 76 II • 119 77 a • 120 7B a • 121 79 II • 122 7A a • 123 78 a • 124 7C n • 125 7D II • 126 7E a • 127 7F a • 12B BO ~ • 129 B1 [E] • 130 B2 DJ • 131 B3 ~ • 132 B4 8] • 133 B5 BJ • 134 B6 !Zl • 135 B7 IS] • 136 BB ~ • 137 B9 GJ • 13B BA ~ • 139 B8 ~ • 140 BC ~ • 141 BD El • • 116 ATASCll CHARACTER SET •

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

142 8E [;]
143 8F [!]
144 90 [!]
145 91 ~
146 92 El
147 93 [±]
148 94 ~
149 95 ~
150 96 [i]
151 97 E!I
152 98 ~
153 99 [[]
154 9A ~
155 98 []
156 9C [!]
157 90 [±]
158 9E EJ
159 9F G
160 AO D
161 A1 QJ
162 A2 D
163 A3 0
164 A4 0
165 AS 0
166 A6 0
167 A7 []
168 A8 ~
169 A9 [!:]
170 AA G

ATASCll CHARACTfoR SET 117

• • DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER • 171 AB G • 172 AC D • 173 AD El • 174 AE D • 175 AF 0 • 176 BO 0 • 177 B1 0 • 178 B2 0 • 179 B3 0 • 180 B4 0 • 181 BS 0 • 182 B6 0 • 183 B7 0 • 184 B8 0 • 185 B9 0 • 186 BA D • 187 BB [] • 188 BC D • 189 BD c:J • 190 BE [2] • 191 BF [] • 192 co CZ] • 193 C1 0 • 194 C2 0 • 195 C3 0 • 196 C4 0 • 197 cs @ • 198 C6 0 • 199 C7 0 • • 118 ATASCll CHARACTER SET •

DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER

200 CB 0
201 C9 0
202 CA 0
203 CB 0
204 cc cg
205 CD G
206 CE G
207 CF G
208 DO 0
209 D1 0
210 D2 0
211 D3 ~
212 D4 0
213 D5 @]
214 D6 0
215 D7 El
216 D8 0
217 D9 0
218 DA 0
219 DB 0
220 DC D
221 DD [2]
222 DE G
223 DE [;]
224 EO 0
225 E1 0
226 E2 G
227 E3 ~
228 E4 0

ATASCll CHARACTER SET 119

• • DECIMAL CODE HEXADECIMAL CODE CODE CHARACTER • 229 ES 0 • 230 E6 0 • 231 E7 0 • 232 E8 G • 233 E9 QJ • 234 EA 0 • 235 EB G • 236 EC 0 • 237 ED B • 238 EE 0 • 239 EF 0 • 240 FO 0 • 241 F1 GJ • 242 F2 G • 243 F3 0 • 244 F4 ~ • 245 F5 0 • 246 F6 0 • 247 F7 EJ • 248 F8 0 • 249 F9 0 • 250 FA 0 • 251 FB 0 • 252 FC [I] • 253 FD BJ • 254 FE [!] • 255 FF 0 • • • • 120 ATASCll CHARACTER SET •

121

L APPENDIX USING THE CIOUSR
CALLING ROUTINES

There are three prewritten USR routines provided on the ATARI Microsoft BASIC II
Extension Diskette. These routines provide a flexible way to interact with the cen
tral input/output (CIO) facilities of your ATARI Home Computer. These routines (or
similar routines if you prefer to write your own) allow the BASIC program to send
or retrieve data directly to or from an input/output control block (IOCB). The IOCB's
are discussed in detail in the ATARI Home Computer System Technical Reference
Notes. Refer to that document for a complete description of CIO capabilities.

These routines allow the BASIC programmer to perform such tasks as retrieving
a disk directory, formatting a diskette, or conditioning a specific IOCB and its
associated logical unit number to interface with RS-232 devices. Following is a
brief description of how to use these routines in your own programs.

STEP 1. Inserting the Routines Into a BASIC Program

All three routines are contained in the file CIOUSR on the ATARI Microsoft BASIC
II Extension Diskette. They are in a machine-readable format, ready to be poked
directly into RAM. To allocate RAM for this purpose, use the OPTION RESERVE n
statement where n should be at least 160. Get the starting address of the reserved
area with the statement ADDR = VARPTR(RESERVE). Then, the following instruc
tions can be used to put the routines into the BASIC program:
10 OPEN #1, "D:CIOUSR" INPUT
20 FOR T = 0 TO 159
30 GET #1,A
40 POKE ADDR + T,A:NEXT I
50 CLOSE #1

STEP 2. Setting Up the Data Array

The routines are now in the reserved area of the BASIC program. There are three
routines called PUTIOCB, CALLCIO, and GETIOCB. PUTIOCB starts at RAM loca
tion ADDR. CALLCIO starts at ADDR + 61. GETIOCB starts at ADDR + 81.

The GETIOCB routine retrieves the user-alterable bytes from a specified IOCB
and puts them into an integer array of length 10. You may alter any of these
parameters and then put the new values back into the IOCB with the PUTIOCB
routine. When the proper parameters have been set, the use of CALLCIO causes
the IOCB values to be executed by the CIO facility. The next step is to dimension
an integer array to use for retrieval and storage of the IOCB parameters. This array
should be dimensioned to 10 using a BASE option of zero. Following is a list of the
elements of the array and what each is used for:

122 USING THE CIOUSR CALLING ROUTINES

•

Element Number IOCB Parameter
0

2

3

4

This element is the number of the IOCB to be
used (1 to 8).

COMMAND CODE

STATUS - returned

BUFFER ADDRESS

BUFFER LENGTH

5-10 AUX byte 1-6

Each element of an integer array has two bytes of data storage, so the buffer ad
dress in element 3 will fit into a single integer element.

STEP 3. Calling the USR Routines

A USR call is used to execute the CIOUSR routines. The GETIOCB routine returns
to the program the current values of the specified IOCB's parameters. After chang
ing these parameters in the array, you can effect some CIO function (such as, set
ting the baud rate on an AS-232 port), by calling the PUTIOCB routine to put the
desired values into the specified IOCB. Then the CALLCIO routine is called to ex
ecute the CIO facility. Following is the syntax necessary to call each of the
routines:

nvar = USA(addr,VAAPTR(array(O)))

where:

nvar - a numeric variable that receives the status of the CIO function in the
case of a CALLCIO call; otherwise it is not specifically affected by these
routines.

addr - the starting address of the proper CIOUSA routine (in our current exam
ple these would be ADDA for PUTIOCB, ADDA+ 61 for CALLCIO, and
ADDA+ 81 for GETIOCB).

array(O) - the array is the integer array the program uses for data retrieval and
storage for the routines. Passing the VAAPTA of element zero of this array to
the routines tells them where to begin retrieving the data, starting with the IOCB
number.

USING THE CIOUSR CALLING ROUTINES 123

The following is an example program to set up and use an RS-232 port for telecom
munications. Also see the "Disk Directory Program" in Appendix A for another ex
ample of the use of these routines. For the program to work properly, the RS-232
driver (file name RS232.SYS on your program diskette) has to be loaded during
power up of your ATARI Home Computer system. To load the driver, copy the file
RS232.SYS with an append option to the BASIC extension file AUTORUN.SYS.
COMPUTER: SELECT ITEM OR RETURN FOR MENU
YOU TYPE: C RETURN
COMPUTER: COPY -- FROM, TO?
YOU TYPE: RS232.SYS, AUTORUN.SYS/A RETURN
COMPUTER: TYPE "Y" IF OK TO USE PROGRAM AREA

CAUTION: A "Y"
INVALIDATES MEM.SAV

YOU TYPE: Y RETURN

100 !
110 !ROUTINE TO SET UP RS-232 PORT
120 !
130:

140 DIM CI0%(10),S%(10)
145 S%(0)= 5:S%(1)= &OD
150 OPTION RESERVE 200
160 ADDR = VARPTR(RESERVE)
170 PUTIOCB =ADDR

180 CALLCIO = ADDR + 61
190 GETIOCB=ADDR+81
200 OPEN #1,"D:CIOUSR" INPUT

210 FOR I =0 TO 159
220 GET #1,D:POKE ADDR + l,D
230 NEXT I
240 CLOSE #1
250 !

260 OPEN #1, "K:" INPUT
270 CI0%(0) = 2
280 CI0%(1)=3
290 Y = VARPTR(CI0%(3))
300 FSPEC$ = "R:"
310 Z = VARPTR(FSPEC$)
315 Y = VARPTR(CI0%(3))
320 POKE Y,PEEK(Z + 2)

330 POKE Y + 1,PEEK(Z + 1)
335 Y= VARPTR(S%(3))
340 Cl0%(5)= 13
350 !
360 A= USR(PUTIOCB,VARPTR(Cl0%(0)))
370 A= USR(CALLCIO,VARPTR(CI0%(0)))
380 A= USR(GETIOCB,VARPTR(CI0%(0)))
390 !

124 USING THE CIOUSR CALLING ROUTINES

!SET UP CIOUSR ROUTINE
ADDRESSES

!SAVE BUFFER ADDRESS
!SAVE ADDRESS OF CIOUSR
ROUTINES

!TRANSFER CIOUSR ROUTINES
INTO RAM

!SET UP CONFIGURATION
PARAMETERS

! IOCB NUMBER
!COMMAND CODE FOR OPEN
! BUFFER ADDRESS
! PORT NUMBER

!STARTING LOCATION OF DEVICE
BUFFER

!AUX1 PARAMETER

!SET UP IOCB
! EXECUTE CIO FACILITY

•

400 CI0%(1)=40
410 CI0%(5)= 13
470 A= USR(PUTIOCB,VARPTR(CI0%(0)))
480 A= USR(CALLCIO,VARPTR(CIO% (0)))
490 A= USR(PUTIOCB,VARPTR(S%(0)))
500 !
520 PRINT "STARTING LOOP"
530 GET #1,A
540 PUT #2,A
550 POKE 764,255
560 X = USR(CALLCIO,VARPTR(S% (0)))
570 IF PEEK(747) = 0 THEN 600
580 GET #2,D
590 IF D < >10 THEN PRINT CHR$(D);
600 IF PEEK(764) < >255 THEN 530

610 GOTO 560

!START CONCURRENT 1/0
! SET AUX BYTES TO ZERO
!CHANGE IOCB
! EXECUTE CIO FACILITY

!START COMMUNICATION

!CLEAR KEYBOARD BUFFER
!CHECK STATUS OF RS-232
! NO CHARACTER SENT
! SEND CHARACTER

!CHARACTER SENT FROM
KEYBOARD

To make subsequent CIO calls, you can repeat lines 400-490 with different IOCB
parameters in the array CIO%.

USING THE CIOUSR CALLING ROUTINES 125

M APPENDIX

WHEN

• • ACTIONS TAKEN e
PROGRAM ENDS e

ACTIONS TAKEN
Key Pressed
or Statement Run Out
Executed Close All Files the Stack Clear Sound

STOP
ERRORS
BREAK NO NO YES

Running off the last
statement or "END" YES YES YES

After a direct mode
statement NO YES NO

RUN YES NO YES

Notes:
1. ATASCll stands for "ATARI ASCII." Letters and numbers have the same

values as those in ASCII, but some of the special characters are different.

2.

3.

4.

Add 32 to the uppercase code to get the lowercase code for that same let
ter.

To get ATASCll code, tell the computer (in direct mode) to PRINT ASC (" ").
Fill the blank with the letter, character, or number of code. You must use
the quotation marks!

The normal display is shown as keycaps with white symbols on a black
background; the inverse display is shown as a keycap with black symbols
on a white background.

126 ACTIONS TAKEN WHEN PROGRAM ENDS

•

ALPHABETICAL DIRECTORY
OF RESERVED WORDS

APPENDIX N

RESERVED
WORD

ABS

AFTER

AND

ASC

AT

ATN

AUTO

BASE

CHR

CHR$

BRIEF SUMMARY
OF BASIC II STATEMENT
Function returns absolute value (unsigned) of the variable or
expression.
Example: Y = ABS(A + B)

Causes the placement of an entry on a time-interrupt list.
The elapsed time to be associated with time interrupt is
specified by the numeric expression in units of jiffies (1 /60
of a second).
Example: AFTER (180) GOTO 1000

Logical operator: Expression is true only if both subexpres
sions joined by AND are true.
Example: IF A= 10 AND B= 30 THEN END

String function returns the numeric ATASCI I value of a
single string character.
Example: PRINT ASC(A$)

Positions disk or screen output via PRINT statement.
Example: PRINT AT(S,B)"START HERE"

Function returns the arctangent of a number or expression
in radians.
Example: PRINT ATN(A)

Generates line numbers automatically.
Example: AUTO 100,50

Used with OPTION statement, sets minimum value for array
subscripts.
Example: OPTION BASE 1

Used with OPTION statement, allocates RAM for alternate
character sets, where: CHR1 = 1024 bytes are allocated
(128 characters), CHR2 = 512 bytes are allocated (64
characters), CHRO = frees the allocated RAM.
Example: OPTION CHR1

String function returns a single string character equivalent
to a numeric value between 0 and 255 in ATASCll code.
Example: PRINT CHR$(48)

ALPHABETICAL DIRECTORY OF RESERVED WORDS 127

RESERVED
WORD
CLEAR

CLEAR STACK

CLOAD

CLOSE

CLS

COLOR

COMMON

CONT

cos

CSAVE

DATA

DEF

DEL

BRIEF SUMMARY
OF BASIC II STATEMENT
Sets all strings to null and sets all variables to zeros.
Example: CLEAR

Resets all entries on the time stack to zero.
Example: CLEAR ST ACK

Put programs on cassette tape into computer memory.
Example: CLOAD

1/0 statement closes a file at the conclusion of 1/0 opera
tions.
Example: CLOSE #6

Erases the text portion of the screen and sets the
background color register to the indicated value, if present.
Example: CLS 35

Establishes the color register or character to be produced
by subsequent PLOT and FILL statements.
Example: COLOR 2

A program statement that passes variables to a chained pro
gram.
Example: COMMON A,B,C$

Continues program execution after a BREAK or STOP.
Example: CONT

Function returns the cosine of the variable or expression
(degrees or radians).
Example: A= COS(2.3)

Puts programs that are in computer memory onto cassette
tape.
Example: CSAVE

1/0 statement lists data to be used in a READ statement.
Example: DATA 2.3,"PLUS" ,4

Statement has two applications:
(1) Defines an arithmetic or string function.

Example: DEF SQUARE (X,Y) = SQR(X*X + Y*Y)

(2) Defines default variable of type INT, SNG, DBL, or
STR.

Example: DEFINT 1-N

Deletes program lines.
Example: DEL 20-25

128 ALPHABETICAL DIRECTORY OF RESERVED WORDS

•

RESERVED
WORD
DIM

END

EOF

ERL

ERR

ERROR

EXP

FILL

FOR ... TO ... STEP

FRE(O)

GET

GOSUB

GOTO

GRAPHICS

BRIEF SUMMARY
OF BASIC II STATEMENT
Reserves the specified amount of memory for matrix, array,
or string array.
Example: DIM A(3), B$(10,2,3)

Stops program, closes all files, and returns to BASIC com
mand level.
Example: END

Returns true (-1) if file is positioned at its end.
Example: IF EOF(1) GOTO 300

Returns error line number.
Example: PRINT ERL

Returns error code number.
Example: IF ERR= 62 THEN END

Generates error of code (see Appendix 0). May call user ON
ERROR routine or force BASIC to handle error.
Example: ERROR 17

Function raises the constant e to the power of expression.
Example: B = EXP(3)

Fills in area between two plotted points with a color.
Example: FILL 10,10 TO 20,20

Used with NEXT statement, repeats a sequence of program
lines. The variable is incremented by the value of STEP.
Example: FOR DAY= 1 TO 5 STEP 2

Gives free space in memory available to programmer.
Example: PRINT FRE(O)

Reads a byte from an input device.
Example: GET#1,D

Branches to a subroutine beginning at the specified line
number.
Example: GOSUB 210

Branches to a specified line number.
Example: GOTO 90

Establishes which of the display lists and graphics modes
contained in the operating system are to be used to produce
the screen display.
Example: GRAPHICS 5

ALPHABETICAL DIRECTORY OF RESERVED WORDS 129

RESERVED
WORD
IF ___ THEN

IF ... THEN ... ELSE

INKEY$

INPUT#

INPUT

INSTR

INT

KILL

LEFT$

LEN

LET

LINE INPUT

LIST

BRIEF SUMMARY
OF BASIC II STATEMENT
If expression is true, the THEN clause is executed. Other
wise, the next statement is executed.
Example: IF ENDVAL >O THEN GOTO 200

If exp is true, the THEN clause is executed. Otherwise, the
ELSE clause or next statement is executed.
Example: IF X<Y THEN Y=X ELSE Y=A

Returns either a one-character string read from terminal or
null string if no character pending at terminal.
Example: A$= INKEY$

Reads data from a device.
Example: INPUT #1,A,B

Reads data from the keyboard. Semicolon after INPUT sup
presses echo of carriage return/line feed. If a prompt is
given, it appears as written; if not, a question mark appears
in its place.
Example: INPUT "VALUES";A,B

Returns the numeric position of the first occurrence of Y$ in
X$ scanning from the third character in X$.
Example: INSTR(3,X$,Y$)

Evaluates the expression for the largest integer less than
expression.
Example: C = INT(X + 3)

Deletes a disk file.
Example: KILL "D:INVEN.BAS"

Returns leftmost specified number of characters of the
string expression.
Example: 8$ = LEFT$(X$,8)

String function returns the length of the specified string in
bytes or characters (1 byte contains 1 character).
Example: PRINT LEN(B$)

Assigns a value to a specific variable name.
Example: LET X = I + 5

Reads an entire line from the keyboard. Semicolon after
LINE INPUT suppresses echo of carriage return/line feed .
See INPUT.
Example: LINE INPUT "NAME";N$

Displays or otherwise outputs the program list.
Example: LIST 100-1000

130 ALPHABETICAL DIRECTORY OF RESERVED WORDS

• • • ,.
•

•

RESERVED
WORD
LOAD

LOCK

LOG

MERGE

MID$

MOVE

NAME

NEW

NEXT

NOT

NOTE

ON ERROR

ON ... GOSUB

BRIEF SUMMARY
OF BASIC II STATEMENT
Loads a program file .
Example: LOAD "D:INVEN"

Sets the file locked condition for the file named in the
string expression .
Example: LOCK "D1 :TEST.BAS"

Function returns the natural logarithm of a number .
Example: D = LOG(Y-2)

Merges program on disk with program in memory by line
number .
Example: MERGE "D:SUB1"

Returns characters from the middle of the string starting at
the position specified to the end of the string or for the
specified number of characters.
Example: A$= MID$(X$,5,10)

Moves bytes of memory from one area to another so that
the block is not changed .
Example: MOVE 45000,50000,6

Changes the name of a disk file.
Example: NAME "D:OLDFILE" TO "NEWFILE"

Deletes current program and variables.
Example: NEW

Causes a FOR/NEXT loop to terminate or continue depend
ing on the particular variables or expressions.
Example: NEXT I

Unary operator used in logical comparisons evaluates to O if
expression is nonzero; evaluates to 1 if expression is 0.
Example: IF A= NOT B

Causes the current disk sector number to be stored into the
first variable and the byte number into the second variable
for the file associated with the IOCB#.
Example: NOTE #1,S,B

Enables error-trap subroutine beginning at specified line. If
line= 0, disables error trapping. If line= 0 inside error-trap
routine, forces BASIC to handle error .
Example: ON ERROR GOTO 1000

GOSUBs to statement specified by expression. (If exp= 1, to
20; if exp= 2, to 20; if exp= 3, to 40; otherwise, error.)
Example: ON DATE%+ 1 GOSUB 20,20,40

ALPHABETICAL DIRECTORY OF RESERVED WORDS 131

RESERVED BRIEF SUMMARY
WORD OF BASIC II STATEMENT
ON ... GOTO Branches to statement specified by expression (If INDEX

= 1, to 20; if INDEX= 2, to 30; if INDEX= 2, to 40; other
wise, error.)
Example: ON INDEX GOTO 20,30,40

OPEN Opens a device. Mode must be one of: INPUT, OUTPUT,
UPDATE, and APPEND.
Example: OPEN #1, "D:INVEN.DAT" OUTPUT

OPTION BASE Declares the minimum value for array subscripts; n is 0
or 1.
Example: OPTION BASE 1

OPTION CHR Allocates space for alternate character sets.
Example: OPTION CHR1

OPTION PLM Allocates space for player-missile graphics.
Example: OPTION PLM 1

OPTION RESERVE Allocates free space for your use in assembly language pro
gram.

OR

PEEK

PLM

PLOT

POKE

PRINT

Example: OPTION RESERVE(50)

Logical operator used between two expressions. If either
one is true, a "1" results. A "O" results only if both are
false.
Example: IF A= 10 OR B=30 THEN END

Function returns decimal form of contents of specified
memory location.
Example: PRINT PEEK (&2000)

Used with OPTION statement, allocates RAM for player
missile graphics, where:
PLM 1 = single-line resolution
PLM2 = double-line resolution
PLMO = free the allocated RAM
Example: OPTION PLM2

Plots a single point on the screen or draws from one point
to another.
Example: PLOT 10, 10 TO 20,20

Inserts the specified byte into the specified memory loca
tion.
Example: POKE &2310,255

1/0 command causes output from the computer to the
specified output device.
Example: PRINT USING "!";A$,B$

132 ALPHABETICAL DIRECTORY OF RESERVED WORDS

•

RESERVED
WORD

PUT

RANDOMIZE

READ

REM

REN UM

RESERVE

RESTORE

RESUME

RETURN

RIGHT$

RND

RUN

BRIEF SUMMARY
OF BASIC II STATEMENT

Writes byte-oriented data to a data file.
Example: PUT #3,4

Reseeds the random number generator.
Example: RANDOMIZE

Reads the next items in the DATA list and assigns them to
specified variables.
Example: READ l,X,A$

Remarks. Allows comments to be inserted in the program
without being executed by the computer on that program
line. Alternate forms are exclamation point(!) and
apostrophe (').
Example: REM DAILY FINANCES

Renumbers program lines.
Example: RENUM 100,,100

Used with OPTION statement, reserves a specified number
of b0esfuryour use.
Example: OPTION RESERVE (512)

Resets DATA pointer to allow DATA to be read more than
once.
Example: RESTORE

Returns from ON ERROR or time-interrupt routine to state
ment that caused error. RESUME NEXT returns to the state·
ment after error-causing statement and RESUME line
number returns to statement at line number.
Example: RESUME

Returns from subroutine to the statement immediately
following the one in which GOSUB appeared.
Example: RETURN

Returns rightmost specified number of characters of the
string expression.
Example: C$ = RIGHT$(X$,8)

Generates a random number. If parameter = 0, returns ran
dom between O and 1. If parameter > 0, returns random
number between 0 and parameter.
Example: E = RND(10)

Executes a program starting with the lowest line number.
Example: RUN

ALPHABETICAL DIRECTORY OF RESERVED WORDS 133

RESERVED
WORD
SAVE

SCRN$

SETCOLOR

SGN

SIN

SOUND

SPC

SOR

STACK

STATUS

STOP

STR$

STRING$

BRIEF SUMMARY
OF BASIC II STATEMENT
Saves the program in memory with name "filename." SAVE
"filename" LOCK encrypts the program as it writes to disk.
Example: SAVE"D:PROG"

The character or color number of the pixel at an
X-coordinate and a Y-coordinate is returned as the value of
the function, using the ASC function.
Example: A$= ASC(SCRN$ (23,5))

Associates a color and luminance with a color register.
Example: SETCOLOR 0,5,5

1 if expression > O
0 if expression = 0
-1 if expression < 0
Example: B = SGN(X + Y)

Function returns trigonometric sine of given value in
degrees.
Example: B = SIN(A)

Statement initiates one of the sound generators.
Example: SOUND 1,121,8,10,60

Used in PRINT statements, prints spaces.
Example: PRINT SPC(5),A$

Function returns the square root of the specified value.
Example: C = SQR(D)

Returns the number of entries available on time stack.
Example: A= STACK

Function accepts a single argument as either numeric or
string then returns status of logical unit number or file.
Example: ST= STATUS(2)

Causes execution to stop but does not close files.
Example: STOP

Function returns a character string equal to numeric value
given.
Example: PRINT STR$(35)

Returns a string composed of a specified number of replica
tions of A$.
Example: X$ = STRING$(100,"A")

Returns a string 100 units long containing CHR$(65).
Example: Y$ = STRING$(100,65)

134 ALPHABETICAL DIRECTORY OF RESERVED WORDS

•

RESERVED
WORD

TAB

TAN

TIME

TIME$

TROFF

TRON

UNLOCK

USING

USR

VAL

VARPTR

VERIFY

WAIT

XOR

BRIEF SUMMARY
OF BASIC II STATEMENT
Used in PRINT statements, tabs carriage to specified posi
tion.
Example: PRINT TAB(20),A$

Returns tangent of the expression (in radians).
Example: D=TAN(3.14)

Returns numeric representation of time from the real time
clock.
Example: ATM= TIME

Returns the time of day in a 24-hour notation in the string.
The format is HH:MM:SS.
Example: TIME$= "08:55:05"

PRINT TIME$

Turns trace off.
Example: TROFF

Turns trace on.
Example: TRON

Statement terminates the LOCK condition.
Example: UNLOCK "D1 :DATA.OUT"

Provides string format for printed output.
Examples: PRINT USING "###.##";PDOLLARS

Function returns results of a machine-language subroutine.
Example: x = USR(SVBV, VARPTR(ARR(O)))

Function returns the equivalent numeric value of a string.
Example: PRINT VAL("3.1 ")

Returns address of variable or graphics area in memory, or
zero if variable has not been assigned a value.
Example: I= VARPTR(X)

Compares the program in memory with the one on filename.
If the two programs are not found to be identical, it returns
an error.
Example: VERIFY "D1 :DATA.OUT"

Equality comparison, pauses execution until result equals
third parameter.
Example: WAIT &E456,&FF,30

Performs bitwise exclusive OR (integer).
Example: IF A XOR B = 0 THEN END

ALPHABETICAL DIRECTORY OF RESERVED WORDS 135

• • 0 APPENDIX ERROR • CODES • • • SCREEN • CODE COMMENTS ERROR

NEXT WITHOUT NEXT was used without a matching FOR state- • FOR ERROR IN ment. This error may also happen if NEXT • Line #. variable statements are reversed in a nested • loop.
2 SYNTAX ERROR Incorrect punctuation, open parenthesis, illegal • IN Line #. characters, and misspelled keywords causes

syntax errors. • 3 RETURN A RETURN statement was placed before the • WITHOUT matching GOSUB.
GOSUB ERROR. • 4 OUT OF DATA A READ or INPUT# statement was not given
ERROR IN enough data. DATA statement may have been • Line #. left out or all data read from a device (diskette, • cassette).

5 FUNCTION CALL Program attempted to execute an operation • ERROR IN Line#. using an illegal parameter. Examples: square
root of a negative number, or negative LOG. • 6 OVERFLOW. A number that is too large or small has resulted • from a mathematical operation or keyboard
input. • 7 OUT OF All available memory has been used or re • MEMORY ERROR. served. This may occur with very large matrix
dimensions, nested branches such as GOTO, • GOSUB, and FOR/NEXT loops.

8 UNDEF'D An attempt was made to refer or branch to a • LINE ERROR IN nonexistent ("undefined") line.
Line #. • 9 SUBSCRIPT A matrix element was assigned beyond the di- • ERROR IN mensioned range.
Line #. • 10 REDEF'N Attempt to dimension a matrix that had already
ERROR IN been dimensioned using the DIM statement or • Line #. defaults. • 11 DIVISION BY Using zero in the denominator is illegal.
ZERO. • 12 ILLEGAL DIRECT The use of INPUT, GET, or DEF in the direct • ERROR. mode is illegal.

• • • 136 ERROR CODES •

SCREEN
CODE COMMENTS ERROR

13 TYPE MISMATCH It is illegal to assign a string variable to a
ERROR IN numeric variable and vice versa.
Line #.

14 FILE 1/0 ERROR General 1/0 error.

15 QUANTITY TOO String variable exceeds 255 characters in length.
BIG ERROR IN
Line#.

16 FORMULA TOO A mathematical or string operation was too com-
COMPLEX ERROR. plex. Break into shorter steps.

17 CAN'T CONTINUE A CONT command in the direct mode cannot be
ERROR. done because program encountered an END

statement.
18 UNDEF'D The USR function cannot be carried out. User code

FUNCTION has an error in logic or USR start points to wrong
ERROR. memory address.

19 NO RESUME End of program was reached in error-trapping
ERROR IN mode.
Line #.

20 RESUME RESUME was encountered before ON ERROR
WITHOUT ERROR GOTO statement.
IN Line#.

21 FOR WITHOUT NEXT statement was encountered before a FOR
NEXT ERROR. statement.

22 LOCK ERROR Attempt to modify or list a program saved with the
LOCK option.

23 TIME ERROR Time interrupts conflict with each other. AFTER
statements not followed by RESUME.

For an explanation of the following error codes, see ATARI Disk Operating System
II Reference Manual.
128 BREAK abort
129 IOCB
130 Nonexistent device
131 IOCB write only
132 Invalid command
133 Device or file not open
134 Bad IOCB number
135 IOCB read-only error
136 EOF
137 Truncated record
138 Device timeout
139 Device NAK
140 Serial bus
141 Cursor out of range

ERROR CODES 137

142 Serial bus data frame overrun error
143 Serial bus data frame checksum error
144 Device-done error
145 Read after write-compare error
146 Function not implemented
147 Insufficient RAM
160 Drive number error
161 Too many OPEN files
162 Disk full
163 Unrecoverable system data 1/0 error
164 File number mismatch
165 File name error
166 POINT data length error
167 File locked
168 Command invalid
169 Directory full
170 File not found
171 POINT invalid

138 ERROR CODES

•

A
ABS 47, 127
AFTER 26, 127
Alternate character

set 87-90
AND 17, 127
Apple 104, 109
Arithmetic symbols 16
Array 15
ASC 48, 127
Asterisk 40
ATASCll 112-120
AT 31, 32,38, 125
ATN 47, 127
Audio track of

cassette 91
AUTO 18, 127

B
BASE 36, 127
BASIC 1
Blanks (see Spaces)
Brightness (see

Luminance)

c
Central Input/Out

put 122-125
Character

assigning color to 57
ATASCll 112-120
set, internal 60-69,

112-120
Sizes in text modes 65

CHR 125
CHR$ 48, 127
CIO (See Central

Input/Output)
CLEAR 26, 126
CLEAR STACK 26, 128
CLOAD 18, 128
CLOSE 27, 128
CLS 60, 128
Colon 7
COLOR 57, 126

assigning 57-59, 71
changing 57-59, 71
default 57-59
registers 71

Comma 6, 40

Commands
AUTO 18, 127
CLOAD 18, 128
CSAVE 19, 128
DEL 27, 128
DOS 20
KILL 20, 130
LIST 120, 130
LOAD 21,131
LOCK 22, 131
MERGE 22, 131
NAME ... TO 22, 131
NEW 23, 131
RENUM 23, 133
RUN 24, 133
SAVE 24, 134
SAVE .. LOCK 24, 131,

134
TROFF 25, 135
TRON 25, 135
UNLOCK 25, 135
VERIFY 25, 135

Commodore PET 92, 104
COMMON 27, 128
Concatenation

operator 48
Constants 11-14
CONT 19, 128
Controllers

game 66-68
joystick 67-68
paddle 67

cos 47, 126
CSAVE 19, 128
Cursor control keys 8

D
DATA 43, 128
Decimal-to-hex
example 82-83

DEF 27, 128
Default

colors 57-59
disk drive 91
tab settings 42-43

Deferred mode 5
DEFDBL 13
DEFSNG 12
DEFSTR 14
DEL 19, 128
Devices 91

INDEX

Delete line 8
DIM 28, 129
Direct mode 5
Disk directory

program 78-79
Disk drive

default number 91
Disk drives (D) 91
Display, split-screen

override 55
Distortion 64
Dollar sign 40, 49-51
Double-line resolution 70
Double Precision

double-precision real
constants 13

double-precision real
variables 13

DEFDBL 13
DOS 20

E
Editing 7-9
Editing, screen 7-9
END 29, 129
End of program

actions taken 126
EOF 51, 129
ERL 51,129
ERR 51, 129
ERROR 29, 129
Error messages 136-138
EXP 47, 129
Explosion example 79
Exponential symbol 16, 41
Expressions

logical 17
numeric 16
string 16-17

Extension diskette 3

F
Fanfare music

example 79-80
FILL 60, 127
FOR ... TO ... STEP 29,

127
FRE (0) 52, 129

INDEX 139

Function
arithmetic

ABS 47, 127
EXP 47, 129
INT 47, 130
LOG 47, 131
RND 47, 133
SGN 48, 134
SOR 48, 134

special purpose
FRE(O) 52,129
PEEK 52, 132
POKE 52, 132
TIME 53, 135
USR 54, 135

string
ASC 48, 127
CHR$ 48, 127
INKEY$ 49, 130
INSTR 49, 130
LEFT$ 49, 130
LEN 49, 130
RIGHT$ 49, 133
SCRN$ 50, 134
STR$ 50, 134
STRING$(A$) 50
STRING$(M) 50
TIME$ 51, 135
VAL 51, 135

trigonometric
ATN 47, 127
cos 47, 128
SIN 48, 134
TAN 48, 135

G
Game controllers

joystick 67, 7 4-77
paddle 67

GET 29, 127
GOSUB 30, 129
GOTO 30, 129
GRAPHICS 56, 129
Graphics

H

modes 55-57
statements

CLS 60, 128
COLOR 57, 128
FILL 60, 129
GRAPHICS 56, 129
PLOT 59, 132
SETCOLOR 59, 134

Hexadecimal
constants 13

I
IF ... THEN 30

140 INDEX

IF ... THEN ... ELSE 31
INKEY$ 49
INPUT 31
Input/Output Control

Block 96, 122
Input/Output devices

disk drives (D:) 91
keyboard (K:) 91
printer (P:) 91
program recorder

(C:) 91
RS-232 interface (R:) 91
screen editor (E:) 91
TV monitor (S:) 91

Input/Output statements
CLOAD 18, 128
CLOSE 27, 128
CSAVE 19,128
DATA 43, 128
DOS 20
EOF 51,129
GET 29, 129
INPUT 31, 130
LINE INPUT 32, 130
LOAD 21, 131
NOTE 33, 131
OPEN 35, 132
PRINT 37, 132
PRINT USING 39
PUT 42, 133
READ 43, 133
RESTORE 44, 133
SAVE 24, 134
STATUS 52, 134

INSTR 47, 130
INT 49, 130
Integers

integer constants 11
integer variables 11
DEFINT 12

Inverse key 9
IOCB (see Input/Output

Control Block)

J
Joystick controller 67-68

K
Keyboard (K:) 91
Keyboard operation 7
Keys

cursor control
down arrow 8
left arrow 8
right arrow 8
up arrow 8

editing
CONTROL 8
SHIFT 5, 8

special function
ATARI 9
BACKSPACE 6
BREAK 10
CAPS/LOWER 9
CLEAR 10
DELETE 8
ESCAPE 10
INSERT 8
RETURN 91
SYSTEM RESET 10
TAB 10

Keywords 5
KILL 20, 130

L
LEFT$ 49, 130
LEN 49, 130
LET 31, 130
Letters

capital (uppercase) 5, 7
lowercase 7

LINE INPUT 32, 130
LIST 20, 130
LOAD 21, 131
LOCK 22, 131
LOG 47, 131
Logical operators 17
Luminance 59

M
Mandatory # symbol 39
MERGE 22, 131
Memory locations 92-103
Microbe Invasion

example 85
Microsoft

conversion from Apple
Applesoft 104, 109

conversion from ATARI
8K BASIC 110-111

conversion from
Commodore PET
BASIC 104, 105-106

conversion from Radio
Shack Level II
BASIC 104, 107-108

MID$ 49, 131
Minus sign 41
Missiles 69-77
Modes, graphics 55-57
Modes, operating

deferred 5
direct 5

Modes, text
Override split-

screen 56
MOVE 32, 69-70, 131
Music example 79-80

•

N
NAME ... TO 22
NEW 23, 131
NEXT 32, 131
NOT 17, 131
NOTE 33, 131
NOTE. DAT creation

program 81

0
ON ERROR 33, 131
ON . GOSUB 34, 131
ON .. GOTO 34, 132
OPEN 35, 132
Operators

arithmetic 16
binary 17
logical 16
relational 16

OPTION BASE 36, 132
OPTION CHR 36, 132
OPTION PLM 37, 69-70

132
OPTION RESERVE 37,

132
Output devices 91
OR 17, 132

p
Paddle controllers 67
Parentheses 16
PEEK 52, 66-68,
132

Percent sign 41
Period 39
Peripheral devices (see

Input/output devices)
Piano example 80-81
Pitch values 65
Player-missile

example 7 4-77
Player-missile graphics

collision control 74
color control 71
diagonal movement 73
horizontal

movement 72-73
mapping 70
priority control 73
RAM configuration 70
size control 72
vertical movement 72

PLOT 59-60, 132
Plus sign 41
Point-plotting modes 57,

59
POKE 52, 132
Pound sign 39
Precision

of numeric variables 11

Precedence of
operators 16-17

PRINT 37, 132
Printer (P:) 91
Printer listing 20, 37
PRINT USING 39-41, 43
Program Recorder (C:) 18,

19, 91
PUT 42, 133

Q
Question mark as

prompt 37
Quotation marks 6

R
Radio Shack 104,

107-108
RANDOMIZE 42, 86, 133
READ 43, 131
Relational and logical

symbols 16-17
Relational operators

15-16, 16-17
REM 43, 133
RENUM 23, 133
RESERVE 37, 133
Reserved Words 127-135
RESTORE 44, 133
RESUME 44, 133
RETURN 45, 133
RIGHT$ 49, 133
RND 47, 86, 133
RS-232 124
RUN 24, 133

s
SAVE 24, 134
SAVE ... LOCK 24

131, 134
Screen editor(E:) 91
SCRN$ 50, 134
Semicolon 7
SETCOLOR 57-59, 63,
69-71, 134

SGN 48, 134
Single-line resolution 70
Single precision

single-precision real
constants 12

single-precision real
variables 12

DEFSNG 13
SIN 48, 134
SOUND

rocket example 66
terminating 65

Spaces 41
SPC 38, 134

Special function
keys 9-10

SOR 48, 132
STACK 45, 134
Statements

AFTER 26, 127
CLEAR 26, 128
CLEAR STACK 2S, 128
COMMON 27, 128
CONT 19, 128
END 29, 129
ERL 51,129
ERR 51, 129
ERROR 29
FOR. .. TO ... STEP 29,
129

GOSUB 30, 129
GOTO 30, 129
IF .. .THEN 30, 130
I F .. .THEN ... ELSE 31,
130

LET 31, 130
MOVE 32, 131
NEXT 32, 131
ON ERROR 33, 131
ON ... GOSUB 34, 131
ON ... GOTO 34, 132
OPTION BASE 36, 132
OPTION CHR 36, 132
OPTION PLM 37, 132
OPTION RESERVE 37,

132
RANDOMIZE 42, 133
REM 43, 133
RESUME 44, 133
RETURN 45, 133
STACK 45, 134
STOP 45, 134
SUBROUTINES 30
VARPTR 45, 135
WAIT 46, 135

STATUS 52, 134
STOP 45, 134
STR$ 50, 134
Strings

concatenation
operator 48

DEFSTR 14
string constants 14
string expressions 17
string functions
ASC 48, 127
CHR$ 48, 127
INKEY$ 49, 130
INSTR 49, 130
LEFT$ 49, 130
LEN 49, 130
MID$ 49, 131
RIGHT$ 49, 133

INDEX 141

SCAN$ 50, 135
STA$ 50, 134
string$(A$) 50, 134
string$(M) 50, 134
TIME$ 51, 135
VAL 51, 135
string variables 14

STRING$(N,A$) 50,
134

STRING$(N,M) 50, 134
Subroutine 30, 129

T
TAB 38, 135
TAN 48, 135
Text modes 55
TIME$ 51, 135
TIME 53, 135
TROFF 25, 135
TRON 25, 135
TV monitor (S:) 91
Typewriter graphics

example 64

u
UNLOCK 25, 135
User-defined function

DEF 27, 128
USING 39, 135
USA 54, 122-125

v
VAL 51,135
Variables

naming 11
VARPTR 45, 69-70, 135
VERIFY 25, 135
Vertical fine scrolling

example 83-84
Voice 64

w
WAIT 46, 135
Window

x

graphics 55-56
text 55-56

X-coordinate 59
XOR 17, 135

y
Y-coordinate 59

z
Zero

as dummy variable 52

142 INDEX

Every effort has been made to ensure the ac
curacy of the product documentation in this
manual. However, because we are constantly im
proving and updating our computer software and
hardware, Atari , Inc. is unable to guarantee the
accuracy of printed material after the date of
publication and disclaims liability for changes,
errors or omissions.

No reproduction of this document or any por
tion of its contents is allowed without specific
written permission of Atari, Inc. , Sunnyvale, CA
94086.
© 1983 Atari, Inc.
All rights reserved.

Printed in U.S.A.
C061257 REV. A

JI\.
ATARI®

A Wame1 Commun1cat10t1s Company Q

•

	Atari Microsoft BASIC II (Cover)
	Atari Microsoft BASIC Instructions
	Contents
	Preface
	1: Whole New World of Creative Programming
	2: Program Elements
	3: Program Commands
	4: Program Statements
	5: Program Functions
	6: Fun Features
	7: Player-Missile Graphics Tutorial
	Appendix A: Sample Programs
	Appendix B: Programs for Graphics Modes
	Appendix C: Alternate Characters Sets
	Appendix D: Input/Output Devices
	Appendix E: Memory Locations
	Appendix F: Program Conversions
	Appendix G: Conversions From Commodore (PET) BASIC Version 4.0
	Appendix H: Converting TRS-80 Radio Shack Programs to Atari Microsoft BASIC II
	Appendix I: Converting Applesoft Programs to Atari Microsoft BASIC II
	Appendix J: Converting Atari 8K BASIC to Atari Microsoft BASIC II
	Appendix K: ATASCII Character Set
	Appendix L: Using the CIOUSR Calling Routines
	Appendix M: Actions Taken When Program Ends
	Appendix N: Alphabetical Directory of Reserved Words
	Appendix O: Error Codes
	Index
	Atari Microsoft BASIC II (Back Cover)

