
by Bryan Schappel

Analog Computing
February 1986



Debug+ is a screen-oriented machine language debugging utility. It contains a program 
tracer that can step through almost any machine language program in three different ways. 
Debug+ also has a complete scrolling disassembler and memory "dumper." It allows user 
program execution and can perform binary SAVEs and LOADs, plus many, many more 
functions. Sound too good to be true for a magazine program? Well, it's not. Read on!

Typing it in

Before you start typing anything, examine the listings accompanying this article. 
Listing 1 is the main data and data checking routine, written in Atari BASIC. This program 
will create a file called DEBUG.COM. Follow the instructions below to create the DEBUG. 
COM file.

1. Type Listing 1 into your Atari and verify it with Unicheck (see page 11).

2. Type RUN and press RETURN. The program will begin checking the data 
lines, printing the line numbers as it goes. You'll be alerted if it finds any 
problems. Fix any incorrect lines and re-RUN the program as necessary, until all 
errors are eliminated.

3. When all data lines are correct, you will be prompted to INSERT DISK WITH 
DOS, PRESS RETURN. Place a disk in drive 1with DOS and press RETURN. 
The message WRITING FILE will appear, and the computer will create the 
DEBUG.COM file, printing the line numbers as it goes. Make sure you save the 
BASIC program under a different filename before continuing.

To LOAD Debug+ from Atari DOS 2.0S, go to DOS and type: 

DEBUG.COM

Debug+ will LOAD and RUN automatically.
For those interested in assembly language, the OSS MAC/65 source code for Debug+ 

is available on the ANALOG Computing TCS and is included on the disk version of this 
issue.



Remember, you must have the BASIC cartridge removed for Debug+ to LOAD. For 
XL owners, this means you must boot up while holding down the OPTION key. The program 
resides in cartridge slot A memory locations ($A100 - $C0FF) and uses addresses $BE00 - 
$C0FF as screen memory. The program supports eighteen commands, which are listed below:

Key Function

* Address Set
D Display Toggle
Q Quit DEBUG+, go to DOS
G Go at address
T Trace Program
P Print Disassembly
E Erase Memory
C Change 1 byte of RAM
N Change Register Value
R Display Registers
B Set/Reset Break Point
S Save a binary file
L Load a binary file
F Find a string in memory
H High Speed Display
" Dec/Hex, Hex/Dec convert
- Scroll up in memory
= Scroll down in memory

Before I explain all the functions, I'd like to tell you about the prompts that Debug+ 
uses. There are three basic prompts: *, ? and (opt1, opt2, opt3)?

When the * appears in the input window, Debug+ expects a number. This number may 
be entered in either hexadecimal or decimal. To enter a decimal number, the digits in the 
number must be preceded by a decimal point (a period). If the number is not preceded by a 
period, Debug+ will interpret it as hexadecimal. If there are any "illegal" digits in the 
number, Debug+ will respond with a short tone, and the command will be aborted.



When the ? appears, Debug+ expects a string of characters, a filename, for example, 
with a maximum of twelve characters. When you reach the maximum input length, all extra 
characters (except DELETE, SHIFT-DELETE and RETURN) will overwrite the previous 
twelfth character. (I know that's hard to understand. Try it; you'll see what I mean).

The final general prompt is (opt1, opt2, opt3)? When this appears in the input window, 
Debug+ wants you to press one of the keys separated by commas inside the parentheses. An 
example of this is (D,P)? This asks you what device you want to use, the disk or printer. 
Pressing D specifies disk, and so on.

Display formats

Debug+ has two memory display modes: disassembly and memory dump. A 
disassembled line looks like this:

ADDR OP B1 B1 xMNE

where ADDR is the address, OP is the op code, B1 and B2 are the operands, and xMNE 
is the mnemonics. The x indicates the direction of a relative instruction (branch instruction). 
If the arrow points up, it's a backwards branch; and if the arrow points down, it's a forward 
branch. A memory dumped line looks like this:

ADDR B1 B2 B3 B4 B5 B6 123456

where ADDR is the address, B1-B6 are the values in the locations, and 1-6 are the 
ATASCII character representations of the values.

Commands

To use one of the commands in the table printed up above, just press the key on the 
keyboard which corresponds to the character listed under "key". For instance, to update the 
register display line, just press the R key.

Address set (*)

This is how you tell Debug+ where your disassembly or memory dump will begin. 
After entering your address, Debug+ will display the contents of the specified location.



Display toggle (D)

This command will flip the screen between disassembly and memory dump, and vice 
versa.

Quit DEBUG+ (Q)

This command returns you to DOS. To re-enter Debug+ from DOS, do a RUN AT 
ADDRESS, with the address being Al00. To do this from OSS OS/A+, type RUN A100 and 
press RETURN. From Atari DOS 2.0S, type M, hit RETURN, then type Al00 and hit 
RETURN.

Go at address (G)

When this command is entered, the 6502 registers are loaded with the contents of the 
user registers, then program execution begins at the address specified. The user program will 
continue to execute until it is stopped by a 6502 BRK instruction, one of the break points, or 
by your pressing CTRL-ESC (the CONTROL and ESCape keys at the same time).

If one of these events occurs, your program will be interrupted, the 6502 registers will 
be saved in the user registers, and Debug+ will take control. Then the location where the 
program was stopped will be disassembled or dumped on the screen, and the register line will 
be updated with the contents of the user registers.

Trace program (T)

When trace is activated, Debug+ will ask for the starting address, then begin executing 
the code at the given location, one instruction at a time. You'll be asked to specify the speed 
of the trace in the prompt (F,S,O)? If you press F, then the trace will be as fast as possible; 
the S key will pause one-quarter of a second between each instruction; and the O key will 
cause the trace to be stepped by pressing the OPTION key.

A trace will be aborted if the tracer finds:

(1) a 6502 BRK instruction
(2) a break point
(3) an illegal instruction, and
(4) by pressing the ESC key



Note: if you're using the stepped mode, you must hold down OPTION and press ESC 
to abort. The trace can be paused by pressing the SPACE BAR.

The tracer does have some limitations. First, it cannot trace itself, so never try to trace 
Debug+. Second, any attempt to trace the real-time I/0 routines (such as disk or cassette 
access) will almost certainly fail. During a trace, the user register line will be updated before 
and after the execution of each instruction, so you can examine the register contents at any 
time.

Print disassembly (P)

When this command is executed, you're asked what device the output will go to (disk 
or printer) and what the starting address is. If disk output is chosen, a filename will be asked 
for, then disassembly will begin. During the process, the address just sent out to the device is 
displayed on the STAT line. To abort this command during execution, press any key.

If you choose the disk as the output device, Debug+ will create a text file of the 
disassembly. You can then load this into a word processor or other text editor, and edit the 
disassembly.

Erase memory (E)

 When this command is executed, you'll be asked for a starting and ending address of 
the erase. After this, the memory between and including those addresses will be erased. 
Debug+ will fill all those addresses with zeroes (the 6502 BRK instruction). If the end 
address is smaller than the start address, you'll be given an ADDRESS RANGE ERROR, and 
the command will be aborted.

Change one byte of RAM (C)

When you enter this command, you'll be asked what address to change and what to 
change it to. At this point the contents of that memory location are changed. This is similar to 
the BASIC POKE statement.

Make sure that you don't change any of the memory that Debug+ uses. Also, careless 
choice of a change address may wipe out vital system data and cause a complete system lock-
up. Take care.



Change register value (N)

When this command is entered, you'll be asked what register to change. To choose the 
register, simply press one of the following keys: A for Accumulator, X for X-Register, Y for 
Y Register, S for Stack Pointer, or P for Processor Status.

Next, you'll be asked the new value. Enter this, and the register contents will be 
changed. Notice that the register line on the screen has been updated to reflect the new value. 

A note about the register line. If you examine the line on the screen, you'll see five 
small boxes and one large box, labeled NV_BDIZC. Under the label, there will be eight 
binary digits. This is the processor status, broken down into its flags. The following table tells 
you what each flag is:

N =   Negative number flag
V =   Overflow flag
_ =   Unused (always shown as set)
B =   BRK instruction flag
D =   Decimal flag
I =   Interrupt flag
Z =   Zero flag
C =   Carry flag

If a 1 appears under one of these flags, it indicates a "set" or "true" condition. So, if the 
I bit is 1, then an interrupt is occurring.

Display registers (R)

All this command does is update the register line. It will display the current values of 
the user registers.

Set/Reset a break point (B)

A break point will stop the execution (or trace) of a user program. When you enter this 
command, a B will appear in the input window, indicating that you must either set or reset a 
break point.



Setting a break point is easy. Simply type the break point number (a single digit 
between 1 and 6), followed by a comma, then the address where you wish the break point to 
be. A typical line would look like this: B1,0600[RETURN]. This tells Debug+ to set break 
point number 1 at location $0600 (or 1536 decimal). If break point number 1 is already set, 
you'll be given an error. If location $0600 contains a BRK instruction, you will also get an 
error. All 6502 BRK instructions are considered break points.

When you disassemble the address where a break point is set, the mnemonics will be 
shown in inverse video. This is how Debug+ graphically shows the user where break points 
are. If you're in memory dump mode, the value for the address where the break point is set is 
also in inverse video.

Resetting a break point is easier than setting one. At the B prompt, simply enter the 
break point number you want to reset, followed by a RETURN. An example would be B1 
[RETURN]. This will reset break point number 1. If it was not set, you'll get an error.

When a break point is reset, the old opcode is restored at the break point address, and 
the address for the break point is reset to $0000. If you look at the break point line at the 
bottom of the screen when you load Debug+, you'll notice that the addresses of all the break 
points are 0, and that there are six free break points.

Save a binary file (S)

This command allows you to save a single-stage binary file to disk. You'll be prompted 
to enter a filename, followed by the starting and ending addresses of the save. 

Once again, if the ending address is less than the starting address, you'll be given an 
error. The file created with this function can be loaded from DOS. You cannot specify a run 
address for the file from Debug+ , so you may want to append one to the file from BASIC or 
DOS.

Load a binary file (L)

This will load any binary file into memory. Debug+ will not run this file. After you 
enter the load filename, Debug+ will load the file into memory, then the initial load address 
will be displayed on the STAT line.

Find a string in memory (F)

This command will locate all matches of any string -- up to twelve characters in length 
-- in memory. You'll be asked to enter the string you want to find and press RETURN. Debug



+ will clear the screen, and every match of what you typed in will be displayed on the screen, 
in this format:

FIND # nn Hexadr Decadr

where nn is the find number, and Hexadr and Decadr are the hex and decimal address 
of the find. The search will continue until the end of memory is reached (address $FFFF or 
65535 decimal).

You may find it useful to begin the find at a specific address. To do this, terminate your 
string with a comma. Debug+ will ask you what address to start from, and the search will 
begin as described above.

Debug+ has certain "reserved" characters that cannot be entered into your input and 
consequently can't be searched for. They are: 

(1) RETURN (ATASCII 155)
(2) DELETE (ATASCII 126)
(3) SHIFT-DELETE or DELETE LINE (ATASCII 156)
(4) ESC (ATASCII 27)

All these characters are used by Debug+ as either delimiters or cursor controls. 
However, all other control characters and alpha-numerics are at your disposal. One other 
thing: if you wish to search for a character that you usually generate by pressing ESC, then 
the key (such as clear screen -- CTRL-CLEAR), enter it without pressing ESC. So, to enter 
the clear screen character, just press CTRL-CLEAR.

High speed display (H)

This command will continually scroll the display through memory. You'll be asked 
what direction to scroll in -- up or down -- then the scrolling will begin. Use this command if 
you want to get somewhere very fast, since the screen will move at blinding speed. To pause 
the scroll, press SPACE; to abort scrolling, press ESC. 

Decimal/Hex and Hex/Decimal conversions (.)

This command will convert one number base to the other and display the results on the 
STAT line. If a hexadecimal number is entered, a decimal number will be generated, and vice 
versa. After the number to be converted has been entered, the STAT line will look like this: 
nnnn = xxxx, where nnnn is what you typed, and xxxx is its converted form.



Scroll up in memory (-)

When you press the hyphen key, Debug+ will move the display window up 1 byte in 
memory. If you're in memory dump, Debug+ will move the window up 6 bytes in memory. 

You may notice that it will usually take several key-presses to scroll up one instruction 
in memory. This is because Debug+ has no idea where the previous instruction starts, or how 
many bytes long it is. When this command is executed, the addresses will get lower.

Scroll down in memory (=)

This command will move the display window down one full instruction in memory (or 
6 bytes in dump mode). When scrolling down, Debug+ knows where the next instruction 
starts. That's why it can move down one full instruction. When using this command, 
addresses in the display window will get higher.

Notes

(1) For every command discussed above, the keyboard auto-repeat is active. So, 
by holding one of the command keys down, you can re-execute the command as 
fast as a key will repeat. This is very useful while using the scroll commands.

(2) While executing any command, pressing the ESC key will abort that 
function. If you are entering a filename and decide not to load a file, just press 
ESC at any time, and the command will abort.

 (3) To pause the screen scrolling at any time, press the SPACE BAR. To abort a 
command that constantly scrolls the screen, press ESC.

Don'ts

Well, that's about everything you can do with Debug+. Now let me tell you 
what you can't do. 

(1) Do not alter any of the contents of the memory between $Al00 and $C0FF. 
This is where Debug+ resides. Changing any of this memory could be fatal.



(2) Debug+ uses the VBREAK vector located at address $0206-$0207 to detect 
the 6502 BRK instruction. Do not alter this vector. Doing so will severely 
cripple Debug+. When you exit Debug+, the program will restore the default 
VBREAK vector.

(3) Debug+ also uses the VKEYBD vector located at address $0208-$0209 to 
detect the CTRL-ESC key combination during a user run. Do not alter this 
vector. If you do, you may never be able to stop the execution of one of your 
programs. When Debug+ is exited, it restores the default vector.

(4) When you press RESET while in Debug+, the program will take control and 
reinitialize itself. Do not alter the DOSINI vector located at $0C-$0D. When 
you exit Debug+, the default DOSINI vector is restored.

Well, that's it. Debug+ will run as advertised, unless you break one of the rules I've 
outlined above. It should prove to be an invaluable aid to you in debugging machine 
language programs.

[Bryan Schappel is a Computer Science major at the University of Wisconsin. He's been 
programming the Atari for three years. Besides writing programs, his main computer 
interests are word processing and data management.]


	Debug+ (Cover)
	Description
	Typing it in
	Loading
	Command Set
	Prompt definitions

	Display formats
	Commands
	Address set (*)
	Display toggle (D)
	Quit DEBUG+ (Q)
	Go at address (G)
	Trace program (T)
	Print disassembly (P)
	Erase memory (E)
	Change one byte of RAM (C)
	Change register value (N)
	Processor status flags

	Display registers (R)
	Set/Reset a break point (B)
	Save a binary file (S)
	Load a binary file (L)
	Find a string in memory (F)
	"Reserved" characters

	High speed display (H)
	Decimal/Hex & Hex/Decimal conversions (.)
	Scroll up in memory (-)
	Scroll down in memory (=)

	Notes
	Don'ts
	Author information

