

* * * * * * * * * * * * * * * * * *
* *
* *
* EXTENDED DDT *
* *
* *
* E X D D T *
* *
* *
* A Program Debugging Tool *
* *
* by Jim Dunion *
* *
* (c) 1985 ANTIC PUBLISHING *
* THE ATARI RESOURCE *
* *
* *
* * * * * * * * * * * * * * * * * *

EXDDT USERS GUIDE

 - 1 -

EXTENDED DDT
by Jim Dunion

This documentation may not be copied, photocopied, reproduced, translated, or
telecommunicated in any form, in whole or in part, without the prior written

consent of Antic Publishing, Inc.

The accompanying program material may not be duplicated, in whole or in part,
for any purpose. No copies of the floppy disk(s) may be sold or given to any

person or other entity.

Notwithstanding the above, the documentation and accompanying disk(s) may be
duplicated for the sole use of the original purchaser.

Antic is a trademark of Antic Publishing, Inc.

 - 2 -

Contents:

INTRODUCTION TO
EXTENDED DUNION'S DEBUGGING TOOL....3

SECTION 1:
EXDDT DESIGN PHILOSOPHY.............4

SECTION 2:
THE EXDDT SCREEN DISPLAY............5
2-1 REGISTER Display.............5
2-2 DISPLAY Window...............6
2-3 STACK Display................7
2-4 MINI SYMBOL Table............7
2-5 BREAKPOINT Table.............8
2-6 COMMAND Window...............8
2-7 TRAP.........................9

SECTION 3:
BREAKPOINTS........................10

SECTION 4:
PUSH BUTTON CONTROLS...............11

SECTION 5:
THE COMMAND INTERPRETER............12
5-1 Entering a Value............13
5-2 Breakpoint..................14
5-3 Deposit.....................14
5-4 Examine.....................15
5-5 Go..........................15
5-6 Hex/Decimal Converter.......15
5-7 Interpretive Mode...........16
5-8 Monitor.....................16
5-9 Next........................16
5-10 Register....................17
5-11 Search......................17
5-12 Trap........................17
5-13 Variable....................17
5-14 Window......................18
5-15 Pull Window.................18
5-16 Push Window.................18
5-17 Reset Program Counter.......18

SECTION 6:
EXDDT ENTRY POINTS.................19
6-1 Flash Entry.................19
6-2 Warm Entry..................19
6-3 Breakpoint Entry............20

APPENDIX:
Technical Details..................21
A-1 Interactions with DOS.......21
A-2 Keyboard Scanner............21
A-3 Use of System Resources.....21
A-4 Display window movement.....22
A-5 Things to watch out for.....22
A-6 Relocating EXDDT.OBJ........23

 - 3 -

INTRODUCTION:

THE EXTENDED VERSION OF
DUNION'S DEBUGGING TOOL

The Extended version of Dunion's Debugging Tool (EXDDT) is designed to assist
Atari 400, 800, XL, and XE programmers who are working at the assembly language
level. This program is an outgrowth of the DDT program once marketed by APEX.
As such, the power of DDT is intact, but with numerous additions and
enhancements that have been added over the last year. The most significant of
these are the mini-assembler and the built in system symbol table with symbolic
reference.

EXDDT will work with any of the Atari 6502 based computers equipped with a disk
drive and enough memory to support DOS. This includes the new 130 XE model.

EXDDT will operate invisibly after the system is turned on and EXDDT is loaded.
File EXDDT.OBJ should be loaded. It will automically initialize itself and
return to the loading program. To actually enter EXDDT, press the CNTL, SHIFT
and the ESC keys at the same time. This is known as a "flash" entry to EXDDT.

You may use EXDDT in any operating mode that first allows for a disk access
before running. The executable code file, EXDDT.OBJ can be copied to other
diskettes and renamed. Additional code segments can be written and EXDDT.OBJ
can be appended to the end of the object code file. For instance, EXDDT.OBJ can
be renamed AUTORUN.SYS to load automatically when the system is rebooted. You
can even relocate where the EXDDT code should reside and execute. I've spent a
lot of time getting this program to where it is today. I feel sure that EXDDT
can help make programming and debugging on the Atari computers easier and even
fun. Enjoy.

LOADING EXDDT

EXDDT is loaded from DOS or other operating systems by loading the program
EXDDT.OBJ. For example, if you have Atari DOS, use the "L" command and give
the name EXDDT.OBJ. After loading and setting up EXDDT, control returns to the
DOS calling program. At this point EXDDT is active, and can be called by
pressing CTRL, SHIFT and ESC all at once. I suggest you load EXDDT and play
with it as you read this documentation.

There is a test program called TEST.MAC (the assembled version is called
TEST.OBJ) provided on this diskette to give you an example of how to transfer a
symbol table to EXDDT, as well as how to call EXDDT from your own code. There
is also an example of how to relocate the EXDDT display screen from a calling
program. It will run automatically when loaded. It doesn't do much except
change some color registers, put a few 'I's on the screen and then turn on
player-missles.

Finally, there is a Basic program called RELOCATE. To run this program from
Basic, type RUN "D:RELOCATE". This program will relocate the EXDDT.OBJ code to
load and execute at a different location in memory. It creates an output object
code file (which is relocated) called EXDDT.REL.

 - 4 -

Section 1:

EXDDT DESIGN PHILOSOPHY

The heart of EXDDT is its ability to show what is happening inside the computer
on a special display screen. This is coupled with the ability to easily change
and monitor the internal state of the machine so that you can get a much
clearer picture of exactly what's going on inside the system at any instant.

The rest of this document is an EXDDT USER's guide. Each of the features in
EXDDT is described in a separate section. There is also a technical appendix
section with more information on how some of EXDDT's features are implemented.

 - 5 -

Section 2:

THE EXDDT SCREEN DISPLAY

The EXDDT Screen Display shows a user the internal state of the machine. The
display screen is divided into several display areas which show different
aspects of what is going on inside the computer.

The display areas are called :

 - REGISTER DISPLAY - Shows the current contents of 6502 registers
 - DISPLAY WINDOW - A window into memory
 - STACK DISPLAY - Shows the top 15 items on the system stack
 - MINI SYMBOL TABLE - Shows names and values of current symbols
 - BREAKPOINT TABLE - Shows the settings of breakpoint registers
 - COMMAND WINDOW - The keyboard command entry window

The following sections detail each of these display areas.

2-1: REGISTER DISPLAY

The lowest part of the display screen is used for displaying the current
contents of the 6502 processor registers. Whenever EXDDT is entered, the
contents of the processor registers are copied into register shadows which are
then displayed. These shadows are used to restore the 6502 registers before
control is released back to the program being tested.

The copywright notice will be replaced by the register names when the first
command is issued. If this is your first time just type "E <RETURN>".

These registers have their contents shown in hexadecimal notation :

PC = Program counter, a 2 byte value
A = Accumulator
X = X index register
Y = Y index register
S = Stack pointer

The Processor status register (NV BDIZC) is shown in binary form, where

N = Negative flag
V = Overflow flag
B = BRK instruction flag
D = Decimal mode flag
I = Interrupt disable flag
Z = Zero flag
C = Carry bit

 - 6 -

2-2: DISPLAY WINDOW

The display window forms a window into the system memory address space. This
window is located in the upper left hand portion of the display screen, and
occupies more than a quarter of the full screen. The window is set upon entry
to EXDDT, and may be moved by several commands.

The window may be thought of as having one of two possible filters in front of
it. The first filter, which is set upon entry to EXDDT is a disassembly filter.
A GREATER THAN sign (>) points to what is called the current position. When
EXDDT is entered, this will correspond to the value in the PC. The current
position is modified by several commands.

The SECOND filter is a hexadecimal filter. The window shows the hexadecimal
value and ATASCII representation of up to 48 memory locations. Again, the >
sign indicates the current position.

The command "W" toggles between these two Window filters.

There are always three bytes shown above the current position. These are shown
in hexadecimal form.

In the disassembly display, each line from the current position down is shown
in a similar format. First the hexadecimal address of a location, its contents
and then a disassembly readout. Standard 6502 mnemonics are used, with
conventional address mode indications.

Several features have been added to aid debugging. If a mnemonic is shown in
inverse video, it indicates that a breakpoint has been set at that location. In
fact, if you look at the actual contents of that location, it will be a 0. If
the mnemonic in inverse video is a BRK instruction, this means that particular
BRK instruction was not placed there by EXDDT. This would occur for instance in
looking at memory that is all zeros.

Secondly, if the instruction is one of the branch instructions, an additional
portion is added to the disassembly display. An up or down arrow is used to
indicate the direction of the conditional branch. The computed address of the
conditional branch location is also shown.

Finally, if the address portion of an instruction contains an address that is
defined as a symbol, the symbol name will be shown rather than the hexadecimal
value. Such symbols can either be defined by users in the mini-symbol table, or
may be standard system symbols. EXDDT has around 150 standard internal symbols
that are defined in the operating system. These symbols make understanding the

disassembly display much easier. This is particularly the case if care is taken
to program the system in accordance with original design considerations. Care
has been taken to ensure that the standard system symbols defined are ones that
are valid for all models of the Atari. There's no real rhyme or reason as to
which system variables are defined, these are merely the ones I felt to be most
important. The mini-symbol feature may be used to monitor a variable, locate
references to a symbol in the code, or simply as labels to make the disassembly
listing more readable. One more little feature is added as a convenience. If
you define a symbol as a two-byte symbol, then any reference to the variable's
high byte will show up in the disassembly as SYMBOL+1.

If the hexadecimal filter is in place, each line after the current position
line will start on an even 4 byte boundary. This means the current position
line can have 1-4 values on it. The current position line values will always be
left justified.

 - 7 -

2-3: STACK DISPLAY

The middle portion of the upper display screen is used for showing the top
locations in the system stack. If the stack pointer is set at $E0 or higher
(i.e. there are less than 15 entries in the stack), then only those values that
are currently in the stack will be shown. The display is a top down
representaion. If more than 15 entries are in the stack, then only the top 15
are shown.

2-4: MINI SYMBOL TABLE

The upper right hand portion of the screen is dedicated to a mini symbol table.
There is room for 15 variables in this table. This feature is designed to let a
user monitor the contents of selected variables without having to pay undue
attention to where they physically reside. The display layout shows the
variable name, a V column and a value column. The V column is used to mark
variables (see the V function description). The value column will show either
the current value of a variable, or its location in memory. Internally, each
symbol in the table is in the following form:

 NAME LOCATION BYTES to SHOW

 symbol symbol 0, 1 or 2
 name address
 6 bytes 2 bytes 1 byte

Using the Atari Macro Assembler (AMAC), an example of setting up a mini symbol
table entry would be :

DB 'VAR1 ' ; Exactly 6
 ; characters please!

DW VAR1 ; let the assembler
 ; figure out what
 ; value to put here

DB 1 ; either a 0,1 or 2
 ; to indicate that
 ; the variable should
 ; be shown as no
 ; bytes, a single
 ; byte or a double
 ; byte value.

(Users of other assemblers may need to substitute .BYTE for DB and .WORD for DW)

The mini symbol table can be used to keep an eye on standard system variables.

DB 'COLPF2'
DW 710
DB 1

A small area of memory can be monitored by setting up several dummy variables
each pointing to one or two successive bytes of memory.

The mini symbol table has other uses also, e.g. you can define a program label
as a symbol. By selecting a display size of 0, no value will be displayed, but
the disassembly listing in the display window will be more readable.

 - 8 -

DB 'LOOP1 '
DW LOOP1
DB 0

Indeed you can even define a symbol as "------" or some such to separate
different usage areas of the symbol table. Finally, the mini symbol table can
be used to help locate a portion of your code after a reassembly. See the 'M'
function and symbolic references for more information on this usage.

You need not define any more symbols than you want to use. If you set up less
than 15 symbols in a symbol table, a value of $FF should terminate the table.

EXDDT comes with a built in mini-symbol table that contains some of the
variables the operating system uses in controlling the system. You may make
individual changes to the standard table with the M command, or you may load in
your own table. A symbol table is loaded in a straightforward manner. Create a
symbol table in your object code as described earlier. Near the beginning of
your code, use a series of instructions like :

LDA # high SYMTAB
PHA
LDA # low SYMTAB
PHA
JSR $6000 ; address of the
 ; symbol table
 ; transfer routine
 ; for this assembled
 ; version. This is
 ; always the first
 ; byte of EXDDT, even
 ; if it has been
 ; relocated.

2-5: BREAKPOINT TABLE

The Breakpoint table is located just above the register display. There are six
user definable breakpoints and two trap breakpoints, each of which will be
shown with its current setting. If a register is not set the value shown will
be 0000. If a breakpoint register is set, the value in that register will be
the location of where in memory a BRK instruction has been placed. However, in
the case of the TRAP breakpoints, no BRK instruction is used. These values are
used in interpretive mode to create the equivalent of a break instruction.

2-6: COMMAND WINDOW

The extreme right hand part of the bottom of the screen is devoted to the
command window. This is the area that shows the command that a user is typing
in.

 - 9 -

2-7: TRAP

The Trap breakpoints are reserved for interpretive mode. In this mode,
breakpoints in memory are ignored, since EXDDT already has control of the
system. Instead EXDDT checks the values in the TRAP registers. If either equals
the address of the next instruction to be executed, EXDDT wil halt the
interpretive mode. This allows pseudo breakpoints to be placed in ROM
locations. Thus it becomes much easier to reach a certain spot in the ROM code
by setting a trap, and running in interpretive mode than by single stepping up
to the desired location.

 - 10 -

Section 3:

BREAKPOINTS

One of the most common debugging techniques is to make use of a breakpoint.

The breakpoint mechanism is the most common way for you to transfer control to
EXDDT. When a program is running, executing a BRK instruction will call EXDDT.
This will cause the EXDDT screen display to activate, and also will turn on the
keyboard and the push button command interpreter. The breakpoint will remain
set even after it has been encountered in code execution.

After a breakpoint has been encountered, and control has been transferred to
EXDDT, there are several ways to leave EXDDT. The 'N' command will set a
breakpoint at the next location and then continue code execution. START simply
continues code execution. 'G' can be used to transfer control to another
location.

Up to six breakpoints can be in place at any one time. The location of the
breakpoints is shown in the breakpoint register display. If a breakpoint is
clear (i.e. not set), it will show up as 0000. Setting a breakpoint register to
a new location will automatically restore an existing breakpoint, if one is
already set for that register. Note also that there is an internal system
breakpoint 0 which is used by the 'N' command. If any breakpoint is encountered
and control is transferred to EXDDT, then the internal 'N' breakpoint is
cleared.

 - 11 -

Section 4:

PUSH BUTTONS CONTROLS

The three ATARI console push buttons are used by EXDDT for special effects.

START - is used to continue code
 execution at the location
 indicated by the PC
 register. All 6502
 registers are updated with
 the current displayed
 contents before control
 is transferred.

SELECT - is used to toggle back and
 forth between the EXDDT
 screen and whatever screen
 dynamics were active
 before EXDDT was called.
 An attempt has been made
 to allow most alternative
 features such as mixed
 Display lists, VBLANK
 routines, alternative
 character sets, display
 list interrupts, playfield
 size changes, and
 player-missiles.

OPTION - is used to single step
 the processor. This
 causes the disassembly
 filter to be turned on,
 but will not automatically
 toggle the display screen.
 Continuting to press the
 Option button will
 continue to single step
 the processor. See Single
 Step section for more
 information.

 - 12 -

Section 5:

THE COMMAND INTERPRETER

The command interpreter is a code module that allows a user to issue keyboard
commands to EXDDT. The command window is shown in the lower right hand portion
of the display screen. The left-hand part of this display is used for showing
the register state of the machine.

Each command is a single keystroke command. However, depending upon the
command, additional arguments might be required. If the first key typed is not
a valid EXDDT command, it will be ignored.

The EXDDT Keyboard Commands are :

B <1-6>,<addr>..- Breakpoint 1-6 at
 location addr
D <hstring,@>..- Deposit hex string
 or enter mini-assem
E <addr>.....- Examine address addr
G <addr>...... - Go to address addr
H <hnum,dnum>.. - Hex/Decimal con-
 verter
I - Interpretive mode
M <0-2>,<addr>..- Monitor 0, 1 or 2
 bytes at addr
N - Next instruction
R <A,X,Y,S,P>,<byte>..- Register
 selected is
 loaded with byte
S <hstring>.- Search for hex string
T <1-2>,<addr>....- Trap at address
 addr
V - Variable trap function
W - Window filter toggle
down arrow . - Pull display window
 down
up arrow ..- Push display window up
* <addr> .- Set the Program counter

These commands are described in the following pages.

 - 13 -

5-1: ENTERING A VALUE

Several of the keyboard commands require that you enter one or two values. All
entries are terminated by pressing the RETURN key. When two values are needed,
as with the Breakpoint command, a COMMA should be used to separate them.
Pressing RETURN without having entered a value will result in the entire
command being ignored.

(Exceptions - see the Breakpoint, the Trap and the Monitor Commands)

In the explanations that follow, these abbreviations are used :

<addr> = an address value, up
 to 4 hexadecimal
 digits
<1-6> = either a 1,2,3,4,5
 or 6
<A,X,Y,S,P> = either A,X,Y,S or P
<byte> = a single byte value,
 up to 2 hexadecimal
 digits
<hstring> = a hex string up to
 12 characters (i.e.
 6 hex digits)
<@> = special character
 used to enter mini-
 assembler
<>> = special character
 used to indicate the
 current position
<*> = special character
 used to indicate the
 contents of the PC
<'> = special character
 used to signify a
 symbolic reference
<hnum> = a hex number, with an
 'H' followed by up to
 4 hex digits
<dnum> = a decimal number,
 0<= dnum <= 65535

The command interpreter (CI) ignores certain characters, such as spaces, '$'s
and even ')'s. When values such as address values are expected, typing
characters that are not hex characters will result in an input error. The CI
signifies an input error by flashing the screen. To erase a character, use the
DELETE key.

For input convenience, there are several special characters, "*",">", and "'".
These are used as shorthand ways of entering commands. * means the current
value of the PC and > means the current position. The ' is used to indicate a
symbolic reference. For instance 'BRKKEY means the address of the symbol
BRKKEY. Any symbol in the mini symbol table or any of the predefined system
symbols can be symbolically referenced. This is a very powerful and useful
feature, and is equivalent to having a built in partial memory map. Anytime an
address is expected in a command (<addr>), these special characters can be
typed. The * by itself is used to change the contents of the PC.

 - 14 -

5-2: BREAKPOINT B <1-6>,<addr>

The Breakpoint command is used to set one of the six breakpoint registers to a
location. If a value other than a 1-6 is entered for the breakpoint register,
the command will be terminated. Note that two values (the breakpoint register
number, and the breakpoint location) are required for this command. Thus a
comma must be typed after the breakpoint number and before the address for the
breakpoint.

When a breakpoint is set, that location should show up in the breakpoint
register display. Physically, a '0' for the BRK instruction is stored in memory
at the requested location. If an Examine command is issued to look at that part
of memory, a '0' will be seen, even though the proper mnemonic is shown in the
disassembly. If a breakpoint is set at an examined location, the mnemonic will
be shown in inverse video. If a breakpoint register is already in use when a
new breakpoint is requested, the old breakpoint is first restored.

To clear a breakpoint register and restore the source code, type RETURN after
selecting the desired breakpoint register (e.g. typing 'B' then '1' then RETURN
will clear breakpoint 1 and restore the source code). Trying to clear a
breakpoint that is not set will not harm anything. EXDDT checks to see if a
desired breakpoint is actually set, and if not flashes the screen and clears
the breakpoint register. This could happen, for instance, if you try to set a
breakpoint in ROM.
You can use the special shorthand characters in this command. For instance, to
set a breakpoint at the current location being examined in the display window,
you could type : B 1,> (and press RETURN).

5-3: DEPOSIT D <hstring,@>

The Deposit command is used to place a string of bytes in memory. A string of
hexadecimal values (up to 12 characters, 6 hex bytes) may be entered. The
values entered will be placed in successive locations starting at the current
position indicated in the display window, replacing whatever was there. The
input string is decoded two characters per hex byte at a time. If there is an
odd character left at the end, it will be interpreted as the low order nibble
of a hex value. For example, entering a string of 01AAB0 will result in three
bytes (01, AA, and B0) being placed in memory. However, entering 01AAB will
result in 01, AA, and 0B being deposited. Note that depositing a byte or a
series of bytes will not move the display window. This must be done with the
examine or the push and pull window commands.

EXDDT is able to switch screens by saving 13 locations the operating system
uses in managing the system graphics. Thus, before each value is deposited, it
is examined to see if it should be deposited to these graphics locations. If
so, the value is placed instead in an internal save table. Similarly, if one of
these saved locations are defined as a mini-symbol, then the value shown will
be taken from the saved location. Thus, for example, you can deposit values
directly to the color shadow registers and affect the color of the user screen
and not the EXDDT screen. You might note that this works only if you deposit
directly to these locations using the D command. If you're single stepping
through a program that deposits to these locations, then the new value will be
deposited to the current locations, i.e. to the EXDDT's settings. Toggling the
screen twice will restore EXDDT's normal screen.

 - 15 -

If the character '@' is typed after a D, EXDDT enters a special mini-assembler
mode, as will be indicated in the command window. In this mode, assembly
language commands can be deposited directly, e.g. LDX A000. Or, STA ($12,X).
Once this mode is entered one instruction at a time is deposited. To exit,
merely press RETURN with no value entered. Note also that in this mode the >
sign for the current position is removed. Instead a < sign is shown to indicate
the current deposit position. This position moves after each assembly language
instruction is deposited, even though the window itself remains fixed. If this
indicator moves off the bottom of the screen, the mini-assembler deposit mode
is automatically exited.

You may use the $ or not, EXDDT ignores it. All values must be in hex, and
symbolic references aren't allowed within the mini-assembler. EXDDT also
ignores spaces and even right parentheses. Therefore you can type in some funny
looking instructions that EXDDT interprets as being hunky dory.

EXDDT checks to see if the instruction you entered is actually deposited in
memory. If the result after depositing isn't equal to the desired deposit
values, the screen is flashed and the mini-assembler is exited.

5-4: EXAMINE E <addr>

The Examine command is used to set the display window to view an area of
memory. The extreme left hand edge of the display window has a GREATER THAN
sign (>) in the 4 th row. This points to the current position that was entered
as the address in the 'E' command. Note that the 'E' command does not change
the state of the display window filter, nor will it affect which instruction
will next be executed by a single step command.

Remember, you can use symbolic references in this command to examine standard
system symbols or mini-symbol table symbols (e.g. E 'CIOV).

5-5: GO G <addr>

The Go command is used to begin execution at a specific location in memory.
Before control is transferred to this location, all registers are updated based
upon the current contents of the displayed registers. This is true for all
commands involving code execution.

5-6: HEX/DECIMAL CONVERTER H <hnum,dnum>

The H command is used for a hex to decimal / decimal to hex converter. To enter
a hex number to be converted, type an 'H' followed by up to 4 hex digits and
then press return. This means you will type 2 Hs, one for the command, and one
to signify a hex number. A colon will be displayed, followed by the decimal
value for the hex number you entered. The result will remain in the command
window until you type any character.

To enter a decimal number, just type the number itself after the H command and
then press return. EXDDT will display a colon, an H to signify the hex value
for the decimal number you entered, and then the hex value. If you enter a
number bigger than 65535, EXDDT will flash indicating an error.

 - 16 -

5-7: INTERPRETIVE MODE I

The Interpretive Mode command is used to place the system in an automatic
single step mode. After each instruction is interpreted, the screen display is
updated if the EXDDT screen is turned on. The display window is automatically
placed in the disassembly mode. Pressing the BREAK key halts the interpretive
mode. It is possible to run ROM programs such as portions of the O.S.
interpretively, but problems with the display and timing can arise. The Trap
register is used for setting up the equivalent of a breakpoint in this mode.
Interpretive mode will run with either the user screen or the EXDDT screen
being shown, but you pay a severe time penalty for selecting the EXDDT screen.
Interpretive mode runs much faster if the user screen is selected because EXDDT
does not have to update it's screen if it is not active.

If you have V marked symbols in the mini-symbol table, EXDDT checks to see if
their values change after an instruction. If so, I mode is halted. This feature
is active only if EXDDT is displaying its screen.

5-8: MONITOR M <0-2>,<addr>

The Monitor command is used to modify the mini symbol table. After typing M, a
'0', '1' or '2' should be typed to indicate how many bytes should be displayed.
The <addr> is the location you want to monitor.

After entering this command, the cursor will be positioned in the symbol table.
Typing RETURN will move the cursor successively to each variable in the table.
This allows you to select where in the table to put the new variable. When the
cursor is positioned where you want to start the new entry, typing any
character other than RETURN will begin the definition of the new label. Press
RETURN after entering the label and the new variable will be entered into the
symbol table.

There is one special case with the M function. Entered by itself (i.e. pressing
RETURN right after typing M), it is a signal to switch the value display from
variable values to variable locations or vice versa. This display will toggle

back and forth.

5-9: NEXT

The Next command is used to place an internal breakpoint after the next
instruction to be executed. Control is then transferred to the code. In most
situations, this will act like a single step instruction, with EXDDT being
immediately recalled. However, if the instruction is a JSR, a branch
instruction, or any other instruction that can alter program flow, then control
might not immediately return. This allows (in most instances) a way to single
step over a JSR instruction.

If you try to do an N command when examing code in ROM, the screen will be
flashed and control will not be transferred to the next instruction.

 - 17 -

5-10: REGISTER R <A,X,Y,S,P>,<byte>

The Register command is used to modify the contents of some of the 6502's
registers. Typing a character other than A,X,Y,S or P after the R will result
in the command being terminated. Note that this command requires two separate
values, so a comma must be typed after the register designation.

5-11: SEARCH S <hstring>

The Search command is used to locate a specific sequence of hex characters in
memory. You may enter a hex string of up to 12 characters (6 bytes). Memory
will be searched from the current position indicated in the display window up
through memory. If the search is successful, the display window will be
repositioned. If it is unsuccessful, the command window will simply be cleared
for the next command.

If no value is entered after the 'S' (i.e. just a delimiter is typed), the
previous search string will be used. This will allow for easily finding
multiple occurences of the search string.

If, however, a Deposit command is issued, the area where the Search string was
stored is overwritten. In this case, the old search string is wiped out.

5-12: TRAP T <1-2>,<addr>

The Trap command is used for setting one of the Trap breakpoints to a specific
location. The address entered should show up in the proper Trap register. Note
the trap will only work when in interpretive mode. To clear the trap, type 'T',
a '1' or '2' for the trap register you want to clear and then press RETURN. A

0000 should show up in the register.

5-13: VARIABLE TRAP V

The Variable trap function is used to activate an interpretive trap on the
alteration of any byte or word variable. Typing V moves the cursor to the V
column on the mini symbol table area. Typing subsequent RETURNs moves the
cursor circularly thru the list. Typing a minus sign (-) causes a dash to
appear on the screen at the selected variable. Typing the SPACE BAR removes a
previously placed dash. Typing any other character causes a return to the
command intrepter.

Any time a displayed variable changes, a vertical bar (|) is placed in the V
column next to the variable entry. If the variable was previously selected with
a dash, a plus sign (dash and vertical together) is displayed. If EXDDT is
running in the interpretive mode (I command), modification of a dash selected
variable will immediately halt interpretive execution. This can be used to
trace where in a program a particular location is modified for instance.

 - 18 -

5-14: WINDOW W

The Window command is used to change the 'filter' over the display window. 'W'
toggles between the filters. Two filters are available, a disassembly filter
and a hexadecimal filter.

5-15: PULL WINDOW DOWN <down arrow>

The Pull Window command is used to pull the display window down. Depending upon
the display filter in place, this will pull the window down one byte (hex
filter) or by one full instruction (disassembly filter). Note that Auto Repeat
on the keyboard is active, so that continuing to press the down arrow key (i.e.
the '=' key) will continue to pull the window down.

If the shift key is held down while typing the down arrow character, the screen
will be pulled down a full screen each time.

5-16: PUSH WINDOW UP <up arrow>

The Push Window command is used to push the display window up. Depending upon
the display filter in place, this will push the window up one byte (hex filter)
or by one full instruction (disassembly filter). Again the Auto Repeat on the
keyboard is active, so that continuing to press the up arrow key (i.e. the '-'
key) will continue to push the window up.

If the shift key is held down while typing the up arrow character, the screen
will be pushed up a full screen. A problem occurs however when you arbitrarily
examine an area of memory with the disassembly filter in. If you try to push
the window up, there is not enough information to be able to tell if the
preceding instruction was one, two or three bytes long. EXDDT keeps track of
how many bytes the window is moved each time you pull the window down. Thus you
can push the window back up if you have previously pulled it down past an
instruction or group of instructions. Refer to the technical appendix for
information on this feature.

5-17: RESET PROGRAM COUNTER * <addr>

The * followed by an address is used to reset the program counter. You can use
the special short hand characters in this command. So, for instance, to set the
PC to where you're examining in memory, type * >. To set the PC to one of your
mini-symbols, type * 'LOOP1.

 - 19 -

Section 6:

EXDDT ENTRY POINTS

There are three ways of entering EXDDT:

 FLASH ENTRY
 WARM ENTRY
 BREAKPOINT ENTRY

6-1: FLASH ENTRY

This entry point is provided to allow immediate entry to EXDDT regardless of
other circumstances. This is a single keyboard special character, and is set up
as [CTRL] [SHIFT] ESC (i.e. pressing the Control, the Shift and the Escape keys
at the same time). When EXDDT is initialized, the operating system code that
looks at the keyboard is modified so that it looks for the special character
first before handling normal keyboard input. If this character is found, EXDDT
is entered immediately through the FLASH ENTRY point.

Pressing START will return control to wherever the processor was when the EXDDT
special character was typed. For more information on the Flash entry mechanism,
see the Keyboard Scanner section in the Technical Details appendix.

6-2: WARM ENTRY

This entry point is the starting point for the EXDDT code. The first three
bytes of EXDDT are a JMP to the set symbol table routine. The EXDDT code itself
immediately follows this. If this location is called via a JSR instruction,
then the START button exit will return control to the calling point. This
allows EXDDT to be called at various program locations for setting up
breakpoints, changing values, etc.

 Example

 .
 .
--your code--
 .
 PHA ;this doesn't mean
 ;anything, only an
 ;example
 JSR $6003 ;the address of the
 ;unrelocated version
 ;
--Pressing START will return here--
 .
--your code--
 .
 .

 - 20 -

6-3: BREAKPOINT ENTRY

Breakpoint entries are the most common way of entering EXDDT. The breakpoints
first have to be set up via a FLASH or WARM entry to EXDDT. After they are set,
EXDDT will be called if those specific instructions are executed. Exits from
EXDDT breakpoints return to the code sequence where the breakpoint was located.
Notice that the breakpoints will remain in place unless they are explicitly
cleared, or RESET is pressed. This is true even if a breakpoint has been
tripped.

Recall also that if the trap register is set in interpretive mode, then
attempting to execute the instruction at that address will halt the
interpretive mode. Thus to move past a trap breakpoint in interpretive mode,
you have to either clear the trap or single step past the instruction that was
trapped and then enter interpretive mode.

 - 21 -

APPENDIX (TECHNICAL DETAILS):

A-1: INTERACTIONS WITH DOS

EXDDT is designed to be compatible with most programs that adhere to Atari O.S.
design considerations. EXDDT can either be loaded first separately or placed as
a header file for the program of interest. EXDDT is set up to return to the
program that loaded it after loading and initializing. Normallly, the
preparation sequence would be to load whichever editor you use and then create
the assembly language source file. Next, load your assembler and create an
object code file. At this point you would load EXDDT.OBJ, which would load,
initialize, and then return to the DOS you're using. Finally, From there you
would load the actual object code itself.

A-2: KEYBOARD SCANNER

During EXDDT initialization the system keyboard vector is redirected to a
preprocessor which checks for the EXDDT FLASH ENTRY special character
([CNTL][SHIFT] ESC). If this character is seen, control transfers to the FLASH
ENTRY point, otherwise control passes to the normal keyboard processing
routine.

Note that keyboard interrupts MUST be enabled. Pressing RESET will usually
reset the system vectors, even if they have been changed.

A-3: EXDDTS USE OF SYSTEM RESOURCES

EXDDT itself occupies 8K of memory space. The preassembled version is ORGed at
$6000, with 600 additional bytes at $5C00. Every attempt was made to minimize
EXDDT's use of system resources. Unfortunately, it is not possible to
completely avoid using resources in 3 areas: Page Zero Ram, a storage area for
EXDDT variables and some screen storage, and the major portion of the screen
display.

Page Zero - After much deliberation, I convinced myself that EXDDT would simply
have to use a large portion of the upper half of Page Zero. One main
implication of this is that if a cartridge is installed that uses the upper
half of page zero, then you won't be able to run that cartridge interpretively
using EXDDT. In many instances you will be able to call EXDDT from the
cartridge, and then reset to get back to the cartridge.
All of the Page Zero locations that are not normally touched by BASIC or the
Assembler/Editor cartridge are kept open for your usage ($B9 - $DB are unused.
Thus you can write and debug programs that use these locations in Page Zero.
The untouched locations include the ones Basic uses for error information and
the floating point register that interfaces with USR calls. You can easily
create assembly language routines that will run when called from Basic.

EXDDT Variable storage - The area from $400 - $584 is used by EXDDT for local
variable storage, the symbol table and parts of the screen display. One thing
this means is that you won't be able to debug programs which use the cassette
buffer, or the floating point scratch area.

 - 22 -

EXDDT Screen Display - Finally, EXDDT needs another 600 bytes for the main
portion of its screen display. In the preassembled version this is set at
$5C00. However, this is easily relocated, as location $FE contains a pointer to
the intended screen loacation area. Each time EXDDT sets up its display screen,
it looks at loacation $FE to get the location where the screen should be built.
To put the display window screen in another place, for example $5800, simply
create a small assembly language program like:

 ORG $FE
 DW $5800

(Users of some assemblers may need to use *= instead of ORG).

Assemble this code fragment and copy the object code to the EXDDT.OBJ code
using the append option. Thus when EXDDT is activated, it will see your pointer
to the desired screen area.

You can also set this location from within your program under test. Look at the
program TEST.MAC to see an example of this.

A-4: DISPLAY WINDOW MOVEMENT

EXDDT maintains a "pull stack" while the disassembly filter is in place. This
means that each time you pull the display window down, EXDDT places the number
of bytes that the window was pulled in a stack. Thus when you want to push the
window up, EXDDT checks to see if there are any values left in the pull stack.
If so, you can push the window up. If not, nothing happens. The pull stack is
cleared whenever EXDDT is entered, or when an Examine command is typed. To
conserve memory, 4 pull values (which will be a 1, 2 or 3) are packed into each
byte in the stack. A total of 64 bytes are reserved for the stack. Thus you can
pull the window down 256 times before the stack runs out. After this occurs the
first values in the stack are lost and you can't back up as far. In computer
terms, the stack is implemented as a circular buffer.

A-5: THINGS TO WATCH OUT FOR

There are a few areas where you have to be careful in using EXDDT. In general,
these occur when you are single stepping or running interpretively. If the
interpreted code messes around with the display list, or with ANTIC, or
CTIA/GTIA, then you might end up with a scrambled screen. Usually this is non
fatal, just distracting. To restore the normal EXDDT screen, press the BREAK
key to halt the interpretive mode, then press SELECT twice.

Trying to do I/O from disk or any other real time activity in either
interpretive mode or single step mode will probably not work. You should set up
breakpoints so that this type of I/O is done in real time, and then call EXDDT.

 - 23 -

A-6: RELOCATING EXDDT.OBJ

The version of EXDDT.OBJ that comes with this diskette is ORGed to load and run
at $6000 hex. The display screen is set to default to $5C00. This loacation was
picked to put EXDDT.OBJ up pretty high above areas where you might want to ORG
your code, yet not run into the normal areas for standard O.S. display screens.
If for some reason you want to relocate EXDDT, there is a Basic program
provided called RELOCATE which you can run. Listen, if you're looking for
elegant relocaters, don't look at RELOCATE. It is implemented in the most
simple fashion I could think of. Namely RELOCATE has a list of the locations
that need to be changed to have EXDDT run at some new location in memory. EXDDT
must be set up so that it starts on a Page boundary, so when it asks for a
relocation address, only a two character hex value need be entered. RELOCATE
assumes that EXDDT.OBJ is located on in drive 1. It also assumes the new file
will be called EXDDT.REL. Naurally, you can rename the new file after it has
been created. RELOCATE then asks where you would like the new version of EXDDT
to load and execute. Finally, RELOCATE asks for a new default location for
creating the display screen. Again, this should begin on a page boundary, so
only a single hex byte value should be entered. RELOCATE will work
automatically from then on. Might as well go get something to drink now, 'cause
it's gonna take a few minutes (about eleven) for this pore li'l Basic program
to work. Adios Amigos. Now get out there and get those bugs before they get
you.

	Extended DDT - EXDDT
	Jim Dunion/Antic Publishing, Inc.
	Contents
	Introduction: The Extended Version of Dunion's Debugging Tool
	Section 1: EXDDT Design Philosophy
	Section 2: The EXDDT Screen Display
	2-1: Register Display
	2-2: Display Window
	2-3: Stack Display
	2-4: Mini Symbol Table
	2-5: Breakpoint Table
	2-6: Comman d Window
	2-7: Trap

	Section 3: Breakpoints
	Section 4: Push Button Controls
	Section 5: The Command Interpreter
	5-1: Entering a Value
	5-2: Breakpoint
	5-3: Deposit
	5-4: Examine
	5-5: Go
	5-6: Hex/Decimal Converter
	5-7: Interpretive Mode
	5-8: Monitor
	5-9: Next
	5-10: Register
	5-11: Search
	5-12: Trap
	5-13: Variable Trap
	5-14: Window
	5-15: Pull Window Down
	5-16: Push Window Up
	5-17: Reset Program Counter

	Section 6: EXDDT Entry Points
	6-1: Flash Entry
	6-2: Warm Entry
	6-3: Breakpoint Entry

	Appendix: Technical Details
	A-1: Interaction With DOS
	A-2: Keyword Scanner
	A-3: EXDDTs Use Of System Resources
	A-4: Display Window Movement
	A-5: Things To Watch Out For
	A-6: Relocating EXDDT.OBJ

