
Wordmark Systems

MyDOS 4.50
Technical User Guide

For Atari Home Computers

By
Charles Marslett &

Robert Puff

© Wordmark Systems 1988

MYDOS Version 4 Technical User Guide
Revision 4.50

for Atari Home Computers

Copyright (C) 1988 by WORDMARK Systems and the authors:

Charles Marslett
2705 Pinewood Dr.
Garland, TX 75042

CIS: 73317,3662
UseNet: CHASM@KILLER.DALLAS.TX.US

and

Robert Puff
Suite 222
2117 Buffalo Rd.
Rochester, NY 14624

GEnie: BOB.PUFF

This software may be freely used and distributed provided that
this copyright notice is left intact, and provided that:

(1) The source code in machine readable form is provided with
any binary distribution, or made available at no additional cost
to the recipients of the binary distribution.

(2) A binary version of a derivative work may be sold for a
reasonable distribution charge (less than $50), and the
source code in machine readable format must be available.

(3) A derivative work may not impose and restriction on the free
distribution of the source code.

MYDOS Technical Manual page 1 Version 4.50

IV. THE MENU COMMANDS: The MEM.SAV feature

Whenever the DOS menu is entered, MYDOS will load DUP.SYS from
drive 1. If DUP.SYS cannot be found on drive 1, it will look for it
on drive 2, 3, etc... until it finds it.

Loading DUP.SYS will overwrite a good chunk of lower memory, and
will wipe out the data in most languages. Here's where MEM.SAV comes
into play. When this feature is enabled (by going to the menu and
pressing "N" and [RETURN], then "B" to exit back), the memory that
DUP.SYS would overwrite is saved to the file "MEM.SAV" on drive 1
(may be drive 8 if you use one of the RAMBOOT programs on the disk).
It then loads the DUP.SYS. When you press "B" to return, or if you
use the "N" command of the menu, MYDOS will load back in the MEM.SAV,
thus restoring the overwritten memory. The result is your program
remains intact.

V. FILE MANAGER FUNCTIONS PROVIDED THROUGH CIO

MYDOS supports all CIO calls supported by ATARI DOS 2, with the
following modifications to the OPEN (Function code 3) and the FORMAT
(Function code 254) functions. Three additional CIO functions have
been added: MAKE DIRECTORY (Function code 34 & 42), SET DIRECTORY
(Function code 41) and LOAD MEMORY (Function code 39 & 40).

The OPEN function in ATARI DOS 2 does not use the data provided
in the AUX2 byte, but in MYDOS when the AUX1 byte is 8 (the file is
opened for creation or replacement), the AUX2 byte contains two flags
that control the file format, and whether it will be created locked
or not.

If AUX2 bit 2 is set, the file will be written in MYDOS 4
format, and may contain sectors beyond absolute sector 1023. Such a
file may not (easily) be read by DOSes other than MYDOS. This is the
only format used with high capacity disks. If AUX2 bit 5 is set, the
file will be written with the "LOCKED" bit in the directory set
initially. This is provided for use by multi-tasking functions (such
as a print spooler, sequential file pre-reading function or other
enhancements one might want to make to the standard OS or DOS
provided functions).

The FORMAT function in ATARI DOS 2 does not provide for any
variations to the standard disk usage: in MYDOS the contents of the
AUX1 and AUX2 bytes are used to specify the number of sectors on the
disk being formatted, and whether the disk needs to be formatted by
the controller as well as needing directory initialization. Bit 7 of
AUX1 is set to skip the physical formatting of the entire disk
surface when it is not required, and bits 6-0 of AUX1 and all of AUX2
are used to specify the number of sectors on the disk being created
(if all 15 bits are zero, the disk is assumed to be the size defined
by the drive configuration). This permits formatting a single sided
diskette on double sided drives, for example. Be careful when using

MYDOS Technical Manual page 2 Version 4.50

this feature.

To load (and possibly execute) a program file, MYDOS provides
the CIO function 39 call. CIO function 40 will do the same; it was
included for compatibility with programs written for SpartaDOS. From
BASIC you can load and execute a program by executing the line: XIO
39, #3, 4, 0, "D:MYPROG.OBJ". Any inactive IOCB can be used, and if
AUX1=4 both the INIT and the RUN entries will be executed. If AUX1=5,
the RUN entry will be executed; if AUX1=6, the INIT entry will be
executed; and if AUX1=7, the file will be loaded without executing
either entry point. Any other values of AUX1 will return an error
code and do nothing.

Another XIO call, XIO 34, has been added to create a directory.
CIO function 42 performs exactly the same thing, and has been
provided for compatibility with programs written for SpartaDOS. When
a directory is created, the name used must not match any existing
file or directory in its parent (for example if the directory to be
created is named "D1:TEST>BUGS", there can be no other directory in
the main directory named "TEST" nor a file named "TEST" there.

From BASIC, the XIO 34 call is "XIO 34, #iocb, 8, 0, dirname",
where "iocb" is any available unit number, and "dirname" is the name
of the new directory (it does not end with a trailing ":" or ">").

The final function added to those provided by ATARI DOS 2 is XIO
41, to define the default directory. The default directory is that
which will be searched for a file if the file name begins with "D:".
In ATARI DOS 2 this default directory is always "D1:" but in MYDOS,
the default directory can be any root or subdirectory on any disk in
the system. The buffer address passed to CIO in the XIO 41 call is
the address of a string that contains the default directory name,
terminated with either an end of line ($9B) or a null byte ($00). The
directory will be accessed before returning to the calling program so
that an error in specifying the directory will be reported as early
as possible.

VI. CIO FUNCTION CODES PROVIDED BY MYDOS 4.50

Function code 3, OPEN

The open function uses the buffer address to point to an ATASCII
string terminated with a non-alphanumeric character or wildcard. This
string is the name of the file to be accessed or created. A good
terminator for this string is either a null ($00) or an end of line
($9B).

The AUX1 byte defines the usage of the file: 4 for input, 6 for
directory data reading, 8 for creating/replacing output, 9 for
creating/appending output and 12 for input/update (without
extension). The AUX2 byte is used when a file is replaced or created,
and contains two significant bits: bit 2 set causes the MYDOS format
to be used even if the diskette is a 40 track single sided diskette;

MYDOS Technical Manual page 3 Version 4.50

and bit 6 set results in the file being LOCKed initially without and
additional CIO call. For input, update or directory access AUX2 is
ignored, and the length is always ignored. In normal use, AUX2 is set
to zero emulating ATARI DOS 2 usage.

MYDOS does not leave partially full sectors when appending to a
file. This has two positive effects on programs which open files in
append mode: the open will fail if the file cannot be appended to
rather than the close (in ATARI DOS), and the file size will not
change if a file appended to is copied to another disk (in ATARI DOS
it may grow smaller).

Function code 5, GET RECORD

The get record function reads a line of data into a buffer, the
buffer being defined by its starting address and length. The line is
defined as the data bytes in the file up to an end of line character
($9B) or until the buffer is full, whichever occurs first. The line
is also terminated if the end of the file is read. All record I/O is
buffered in MYDOS, so record transfers are necessarily slower than
unbuffered I/O.

No other fields of the IOCB are referenced or needed. Note that
the ATARI ROM OS supports single byte I/O through the accumulator if
the buffer length is set to 0. In this case, GET RECORD and GET
CHARACTERS function exactly the same way.

Function code 7, GET CHARACTERS

The get characters function reads a fixed number of bytes from a
file into a buffer, the buffer being defined by its address and
length (two 16-bit numbers in the IOCB). The only cases where the
buffer is not always filled is if the end of the file is read, or the
file cannot be read withut error. As is the case with get record
calls, a single byte may be read into the accumulator by setting the
length field to zero. A get character CIO call will perform
unbuffered I/O if the buffer is longer than 256 bytes (ATARI DOS 2
sets a similar threshold at 128 bytes). For this reason a single long
input is considerably faster than several short ones.

Only the buffer address and length in the IOCB are used by the
get characters function.

Function code 9, PUT RECORD

The put record command will write a single line to an output
file: the line defined by the starting address of the buffer and
either the length of the buffer if no end of line ($9B) bytes are
encountered, or the first end-of-line byte. Only the buffer address
and length in the IOCB are used in this command.

MYDOS Technical Manual page 4 Version 4.50

Function code 11, PUT CHARACTERS

The put characters command will write the contents of a buffer
defined by its address and length (in the IOCB) to a file opened for
output. Unless an error occurs, the entire buffer is always written
to the file unless the write is to an output/update file and the end
of the file is reached or the write is to an output/append or create
file and the disk has filled. Only the buffer address and length
fields in the IOCB are used when the put character function is used.
The single byte put character (using the A register as data) is
supported by setting the length bytes to 0.

Function code 12, CLOSE A FILE

To terminate use of a file (and for an output file, to write the
incomplete buffer to the disk) the IOCB used to access the file
should be closed. This is done by setting the function code in the
IOCB to 12 and calling CIO. The close function does not use any of
the data in the IOCB for any purpose whatsoever.

Function code 13, READ STATUS

The read status command is issued to an unopened IOCB, with the
buffer address that of a file name string. If the file is not
present, that error condition is returned, if it is locked, that
error condition is returned; otherwise, a normal completion code is
returned. Only the function code and the buffer address in the IOCB
are needed.

Function code 32, RENAME A FILE

The rename function is passed a character string (pointed to by
the buffer address in the IOCB), the first part of the string being a
file name identifying the file or files to be renamed. Following a
single invalid character (one invalid in the file name, that is) a
simple file name must also be present: this second file name cannot
include any drive or directory names. An example, using a comma as
the invalid character, is "D2:TEST>PGMS>A.OUT,ZCPY" which will change
the string needed to access the file "D2:TEST>PGMS>A.OUT" to
"D2:TEST>PGMS>ZCPY" -- Note that only the last file name (if
subdirectories are used) can be changed; to change "PGMS" to
"MLPROGS", the buffer must contain "D2:TEST>PGMS,MLPROGS".

Wild card characters should appear only in the part of the file
name following the last ":" or ">", and their effect is best
described by an example. The string "D2:TEST:*.*,*.XYZ" will rename
all the files in the TEST directory, making each extension ".XYZ". If
the directory had the files "ATEST.BAS", "LOG", and "REPORT.XYZ" in
it, the result would be a directory with "ATEST.XYZ", "LOG.XYZ" and
"REPORT.XYZ" in it.

MYDOS Technical Manual page 5 Version 4.50

Function code 33, DELETE A FILE

The delete function removes any files that match the file name
string pointed to by the buffer address in the IOCB. Files locked
will not be deleted, so must be unlocked before being removed, and
subdirectories that are not empty (that have a file in them) cannot
be deleted. If either case is attempted, the corresponding error code
is returned. Otherwise, the files are removed and their data areas
are returned to the free space on the disk. Files that have been
deleted may be "undeleted" by various utility programs ONLY if the
data has not been overwritten. If you write to the disk after you
have just deleted a file on that disk, chances are that you will not
be able to recover the file.

Function code 34, MAKE DIRECTORY

The make directory function will create a new subdirectory on a
disk (it is not used to create the first directory, that is the "root
directory" identified by the drive specification "D1:", for example).
It is called through CIO by storing the address of the new
directory's name in the IOCB buffer address and setting up AUX1 and
AUX2 as for an open call (see Function code 3), normally AUX1=8 and
AUX2=0. This function has no effect on the current default directory;
and if it is desired to make the newly created directory the default
one, the program must make a set directory call (Function code 41)
following the make directory call (the order is very important,
because the default directory cannot be set to a nonexistent
directory). CIO function code 42 may also be used to access this
function; the parameters are the same.

Function code 35, LOCK FILE

A file can be "locked" so that it may not be modified or deleted
inadvertently, by calling CIO with the lock function. The buffer
address is used to point to a file name string that identifies the
files on the disk to be locked. The only file modification that can
be performed on a locked file is to unlock it. The lock function can
be requested for a file already locked, and it will return no error
(unlike other file modification calls to CIO), but the status of the
file will not have been changed.

Function code 36, UNLOCK FILE

The unlock function is identical to the lock function except
that is re-enables the modification or deletion of an unlocked file.
A file that is not locked can be unlocked with no error returned and
no change in the file's status.

MYDOS Technical Manual page 6 Version 4.50

Function code 37, POINT TO POSITION IN FILE

The point function is passed the 3-byte disk address to be
positioned to in the twelfth through fourteenth bytes of the IOCB. On
return, the next byte read from that IOCB will be the one that was
read or written next after the corresponding note function was
executed. A point call to CIO can only be made if the file can be
used for input: that is, if it is opened for input or update
processing. The first two bytes of the disk address are a sector
number (in low byte / high byte format) and the third is the byte
(offset) within the sector.

If a file is being appended to (opened with AUX1=9), a point
function call made before closing the file may return an unexpected
error (this cannot happen with the note function, however).

A problem can occur if the file being pointed to is in the last
half of a 16 Megabyte disk: Atari BASICs do not allow sector number
to be greater than 32767. A solution is to use the following BASIC
substitute for the POINT statement (with attention paid to the fact
the the two AUX bytes must match the two used to open the file):
OPEN #K,AUX1,AUX2,"D5:BIGFILE"
. . .
NOTE #K,SECTOR,BYTE
. . .
POKE 844+16*K,ASC(CHR$(SECTOR)):POKE 845+16*K,INT(SECTOR/256)
POKE 846+16*K,BYTE: XIO 37,#K,AUX1,AUX2,"D:"

Function code 38, NOTE POSITION IN FILE

The note function returns in the twelfth through fourteenth
bytes of the IOCB a 3-byte disk address that may be used at a later
time to reposition the file using the point function. The note
function can be used on files open for input, output, update or
appending. The three bytes returned are the low byte of the sector
address, the high byte of the sector address, and the byte (offset)
within the sector, in that order.

Function code 39, LOAD MEMORY

The load memory function takes a file formatted in the ATARI DOS
2 executable program format (generated by the "K" command, by the
assembler/editor cartridge, by AMAC or MAC65, or by any of several
compilers for the ATARI computers), and loads its contents into
memory as specified in the file. No offset control is provided and no
part of memory is protected from the loading process. The
initialization and execution addresses (if any) can be individually
enabled and disabled, to permit loading and patching a program then
writing it back to the disk for normal use.

To load a program into memory, the address of the file name
string is stored into the buffer address, and a value of 4, 5, 6 or 7

MYDOS Technical Manual page 7 Version 4.50

is stored into the AUX1 field. If AUX1 is 4, both the initialization
routines and the run address are executed after closing the IOCB, but
before returning to the calling program. If AUX1 is 5, the
initialization routines are disabled, but the program will be run. If
AUX1 is 6, the initialization routines will be run, but the program
execute address will be loaded and ignored. If AUX1 is 7, the text of
the program will be loaded into memory, but no other activity will be
performed. CIO function code 40 performs the exact same function as
this (39).

Function code 41, SET DEFAULT DIRECTORY

The set directory command will use the contents of the buffer as
a file name and open the specified file, determining if that file is
a valid directory. If so, it will become the new default directory.
File names of the form "D:..." will be assumed to be in the default
directory (which may be on any disk in the system and may be either
the root directory of that disk or a subdirectory).

Only the buffer address and the function code are significant
when setting the default directory.

Function code 254, FORMAT A DISKETTE

The format function uses the contents of the buffer pointed to
by the buffer address to identify the drive containing the diskette
to be formatted. If both AUX1 and AUX2 are zero, the disk is
formatted according to the capacity data in the system control table
defined using the "O" command. If AUX2 bit 7 is set to 1, the format
operation is skipped and an empty file system is written to the
diskette. (This assumes the disk is preformatted.) The remaining 15
bits of AUX1 and AUX2 are used as a 15 bit number to specify the
number of sectors available on the disk (permitting the use of the
last few sectors of a disk outside the file system if desired). You
may format a disk in enhanced density (MYDOS compatible - not DOS 2.5
type format) by setting AUX1 to 1, and AUX2 to 0.

VII. DISK STRUCTURES SUPPORTING MYDOS 4.50

MYDOS uses the first three sectors of a disk to hold some disk
information and the initial boot program if the drive contains
DOS.SYS and DUP.SYS. Sector $168 (and sectors $167, $166, $165, etc.,
if the disk is formatted as a higher capacity disk not compatible
with ATARI DOS 2) is used to hold a bit map of available sectors and
several flag byte identifying the default format of files on the
disk. Sectors $169 through $170 contain main disk directory data,
identifying the files on the disk, their sizes and their starting
sector number.

Note that this usage, when the diskette is a 719 sector volume
declared to be DOS 2 compatible, is in fact exactly the same as ATARI

MYDOS Technical Manual page 8 Version 4.50

DOS 2 would make of the disk. The default single sided format differs
only in that sector 720 is not left out of the file system in MYDOS
but is used to provide 708 free sectors on an empty diskette rather
than 707. The only significant change made when the high capacity
format is chosen are that enough sectors before sector $168 are
allocated to assign a bit for each sector that may be allocated for a
file or for use by the system (VTOC sectors). The high capacity disk
directory may be read by ATARI DOS 2, but the data in the files can
only be accessed if it falls in the first 1023 sectors of the disk
and then only if the file number checking code in DOS 2 is disabled.
This format allows MYDOS to support accessing disks of up to 65,535
sectors of 256 bytes each (approximately 16 Mbytes).

Compatibility with DOS 2.0 is further reduced if subdirectories
are used: to ATARI DOS, the subdirectories will appear to be simple
files with unreadable contents. The subdirectory's files will not be
accessible and the subdirectory can be damaged if it is written to
(even by appending). For this reason disks sold to the general
public, exchanged with friends, and so forth, should not contain
subdirectories unless there is reason to require that the disk be
used with MYDOS. A further problem with exchanging diskettes is that
there are many different formats are used by vendors of double sided
disk systems for the ATARI. For this reason, double sided disks not
only require both computers use MYDOS, but also require that they use
the same disk system (PERCOM, SWP, Astra, Supra or whatever).

VIII. MYDOS 4 MEMORY MAP

The MYDOS 4.50 disk operating system occupies the area from
$0700 to $1EE9 at all times, and when the menu is active, it also
occupies the area from $294A to $4331. In addition, the first 16
bytes of the floating point workspace ($D4 - $E3) are used by MYDOS
at that time. Unlike ATARI DOS 2, MYDOS utility program (DUP.SYS)
also calls the floating point ROM entry points. The nonresident part
of MYDOS 4.50 starts loading at $294A, reserving the area from $1EE9
to $2949 for disk buffers and drivers. Allocating three disk buffers
leaves approximately 2500 bytes for resident drivers that will not be
overwritten by the nonresident portion of DOS (contained in DUP.SYS).

IX. CUSTOMIZING A SYSTEM DISK

RAMdisk Configurations

The RAMdisk driver included in MYDOS 4.50 is already configured
for the Atari 130XE computer and uses its banked 64K bank of memory
for the RAMdisk providing 499 free (single density, 128 byte)
sectors. The "O" command provides an easy way to alter the operation
of the RAMdisk driver for other common banked memory systems. Most
memory upgrades for the 800XL and 130XE use the same mapping address
(the PORTB pins of the PIA chip in the computer). A 128K RAMdisk can
be used in an Atari 130XE using the last unused pin of that port with
no tradeoff (selecting the 64K bank is done with bit 6 of PORTB). If

MYDOS Technical Manual page 9 Version 4.50

you have such a system, enter a "2" for the page sequence, or just
use the default sequence (answer "Y" to the question "Use default
page sequence...").

If, instead of adding one or two rows of 64K memory chips, the
enhancement replaces the entire memory of the computer with a single
bank of 256K memory chips, then the banked memory is a total of 192K
and 4 bits of the port must be used to select the memory bank. Often
the bits used are bits 0 and 1 (as in the 130XE) along with bit 6 (as
in the expansion above) and bit 5 (used in the 130XE to control
banking screen memory). Programs that bank screen memory (a very odd
proposition because of the difficulty of obtaining a useful sharing
of the banked memory page bits between the screen memory and the
program) will not work with this enhancement. This is the approach
used in the Newell Industries 256K upgrade for the Atari 800XL.

If the enhancement is done externally or to an Atari 800 (with
its internal expansion slots), a new dedicated register may be used
to map the 16K pages. The Axlon RAMPOWER 128 card for the Atari 800
works this way. In such a system, the pages are selected by writing a
page number to the mapping address and no sharing of the 8 bit byte
is necessary. The address of the mapping register is entered
explicitly and page sequence "5" is the proper sequence.

The page sequence table coded into MYDOS is actually one 32 byte
sequence table of numbers to be stored in the mapping register. MYDOS
4.50 has a feature that allows you to skip all this configuration
stuff, if the upgrade is XE compatible. In the configuration, MYDOS
will create a custom page sequence for your memory upgrade, and
update its pointers. If you choose to enter our own page sequence,
the number of 16K pages determines the number of bytes to be used.
You may use one of the four built-in page sequences by entering a
single sequence number:

Seq. No. Page Values OR Value
0 E3, E7, EB, EF, C3, C7, CB, CF,

83, 87, 8B, 8F, A3, A7, AB, AF 00
1 C3, C7, CB, CF, 83, 87, 8B, 8F,

E3, E7, EB, EF, A3, A7, AB, AF 00
2 A3, A7, AB, AF, C3, C7, CB, CF,

E3, E7, EB, EF, 83, 87, 8B, 8F 00
5 00, 01, 02, 03, 04, 05, 06, 07,

08, 09, 0A, 0B, 0C, 0D, 0E, 0F FF

As an example, if you want to use BASIC/XE in extended mode (or use a
program that uses the standard XE banks: pages E3, E7, EB, and EF),
and you have a RAMBO XL upgrade, set your memory size to 128K, and
use the page sequence of:

1
or
C3,C7,CB,CF,83,87,8B,8F,00

This will configure the RAMdisk to use only that part of the banked
memory not used by BASIC/XE.

MYDOS Technical Manual page 10 Version 4.50

The file RAMBOOT.M65, the MAC/65 assembler source code for which
is in the file RAMBOOT.AUT, is an AUTORUN.SYS file that simulates the
operation of Atari DOS 2.5 and its RAMdisk. It "formats" the RAMdisk
and copies DUP.SYS to it, as well as setting the RAMdisk unit number
and the unit used to access the DUP.SYS and MEM.SAV files to 8.

By modifying the code in the source file and creating a modified
AUTORUN.SYS file, the drive used to save MEM.SAV and fetch DUP.SYS
can be modified, other files than just DUP.SYS can be copied to the
RAMdisk when the system is booted, or any other operation could be
performed that you find useful.

Number of Files Open at Once

The number of files that may be simultaneously open is set with
the same byte as in ATARI DOS 2: location $0709 (decimal 1801). This
byte contains a number from 1 to 16 setting the number of disk files
that may be open at the same time. Normally it is set to 3, the
smallest number that supports all the functions in the MYDOS menu.
Specifically, a copy from one disk file to another requires three
open disk files. The value in the distributed version of MYDOS 4.50
is three. To permit more or fewer files open, use the "O" command
followed by a RETURN. To permanently change the maximum number of
files, use the "H" command to write a modified MYDOS system to a
disk. Each file that may be open at one time requires the allocation
of a 256 byte buffer so setting this value to 7 (instead of 3) will
cause MYDOS to be 1024 bytes longer than before and the programs
loaded must begin no lower than $22E9 (instead of $1EE9). In
corresponding fashion, by setting the value to 1, a BBS program can
be loaded in with 512 bytes of additional memory if only one disk
file is ever open at one time (commonly true of bulletin board
programs).

Controlling the Disk Drives Accessed by MYDOS

Like ATARI DOS 2, MYDOS automatically identifies the disk drives
that are present when booted up initially and any time it is
reinitialized (some programs do this on exiting to the DOS, and it is
always done if the RESET key is pressed). MYDOS 4.50 is distributed
with drives 1 and 2 configured, all others are omitted in order to
speed up the booting process. To modify the maximum configuration
MYDOS will use, invoke the "O" command for each drive to be added to
(or removed from) the system. Pressing the RESET key will then use
this value to redefine the system to configure the drive(s). To
permanently change the maximum drive configuration, use the "H"
command, writing a new copy of MYDOS back to the system disk.

Selecting or Disabling Write-with-Verify

MYDOS 4.50 is distributed with the write-with-verify disabled.
Most drives are very reliable, and will never give you a problem. If

MYDOS Technical Manual page 11 Version 4.50

however, something happens (such as dust, a scratch in the oxide
coating, or some other problem that may have arisen since the
diskette was formatted), the error might not be detected. In short,
if you are working with something that you want to be absolutely
positive that is perfectly saved, enable the verify. This will cause
the drive to read back each sector after it has been written, taking
about three times the time normally taken on a write without verify.

The byte at location $0779 (1913 decimal) controls all write
operations to the disk. If the value "poked" into it is $57 (87
decimal), then all writes will be read back to verify the action was
successful. If the value "poked" into $0779 is $50 (80 decimal) then
writes will be assumed successful, and will be performed in about one
third the usual time. Note that this address is not the same as in
MYDOS 4.0 and 4.1 (where it was $0770 or 1904 decimal). This byte is
defined, along with the count of the number of buffers to be
allocated when the file manager is initialized, whenever the "O"
command is invoked with no drive specified (only a RETURN is entered
in response to the drive number query). To permanently alter it,
rewrite MYDOS back to the disk using the "H" command after changing
it.

X. DISK DRIVE INTERFACE (via SIO)

The physical disk drives and diskettes are external to the ATARI
home computers and the ones supported by MYDOS 4 are normally
attached to the "serial interface connector" on the right side or
back of the computer. High capacity or "hard" disks may also be
connected to the parallel port of 800XL and 130XE computers. The
software in the operating system (OS ROMs) to access the devices
attached to either connector is call the "serial I/O driver" or SIO
for short. The MYDOS disk operating system uses this lower level
driver to pass all commands and information to and from the physical
disk drive. Several commands were defined by ATARI to communicate
with the 810 disk drive and most vendors of high performance disk
systems for the Atari have adopted a slightly extended version of
this set of commands. MYDOS will operate with any disk system that
supports the original 810 set, but the full set of commands is
required to support all the functions. An additional function
necessary to perform automatic density selection is that the drive
should automatically identify the density of a diskette inserted in
it if the first operation is a read of sector 1 (this is necessary if
the drive is to boot either a double or single density diskette).

The minimum set of disk drive functions to support MYDOS (or
ATARI DOS 2 for that matter) are:

Device Unit Command Direction Byte Ct. Aux Bytes Function
$31 Drive# $21 From Drive 128/256 0 FORMAT DISK
$31 Drive# $50 To Drive 128/256 1 to 720 WRITE(no vfy)
$31 Drive# $52 From Drive 128/256 1 to 720 READ
$31 Drive# $53 From Drive 4 0 READ STATUS
$31 Drive# $57 To Drive 128/256 1 to 720 WRITE(verify)

MYDOS Technical Manual page 12 Version 4.50

An additional command to format a disk in enhanced density is:

$31 Drive# $22 From Drive 128 0 FORMAT DISK

The byte count is always 128 for a single density drive, and is
128 for the first three sectors (1, 2, and 3) of a double density
drive. All other sectors on a double density drive are 256 bytes
long.

The FORMAT function is always called with a sector number in the
range of 4 to 720. It expects 128 bytes from a single density drive
and 256 bytes from a double density drive.

The first byte returned by the READ STATUS command is expected
to indicate the sector size -- if bit 5 is a 1 (bit 7 is the sign
bit) then the sectors are large (256 bytes), otherwise, they are
small (128 bytes).

The auxiliary bytes are treated as an address to a sector on the
diskette, and range from 1 to 720 (when in DOS 2 compatible mode) or
from 1 to 65,535 (when accessing large capacity disk drives).

The additional functions used to configure disk drives
dynamically are:

Device Unit Command Direction Byte Ct. Aux Bytes Function

$31 Drive# $4E From Drive 12 1 to 720 READ CFG.
$31 Drive# $4F To Drive 12 1 to 720 WRITE CFG.

These commands are used to configure the drives identified as
configurable when the computer is booted: if there is a possibility
that a drive does not support these functions, it should be defined
as not configurable (such as the Atari 810). These commands are used
by the "P" command, permitting reconfiguration of a disk drive on
demand - to format a diskette, for example. (To format a disk on an
Indus drive, issue the "P" command to manually change the density on
the drive, then issue the "I" command).

The individual bytes transferred by these commands are defined
as follows:

byte 0: Tracks per side (40 for a standard disk drive)
byte 1: Disk Drive Step Rate (as defined by Western Digital)
byte 2: Sectors/Track -- high byte (usually 0)
byte 3: Sectors/Track -- low byte(18 for standard diskettes)
byte 4: Side Code (0=single sided, 1=double sided)
byte 5: Disk Type Code --

bit 2: 0=single density, 1=double density
bit 1: 0=5 1/4 inch diskette, 1=8 inch diskette drive

byte 6: High byte of Bytes/Sector (0 for single density)
byte 7: Low byte of Bytes/Sector (128 for single density)
byte 8: Translation control

bit 7: 1=40 trk. disk I/O on an 80 trk. drive

MYDOS Technical Manual page 13 Version 4.50

bit 6: Always 1 (to indicate drive present)
bit 1: 1=Handle sectors 1, 2, and 3 as full size sectors
bit 0: 1=Sectors number 0-17 (for example), not 1-18

bytes 9-11 are not used by MYDOS (see the drive documentation as
to how they are to be set -- usually zeroes)

MYDOS 4.50 (unlike version 3 of MYDOS) always issues a read
configuration command before writing the configuration to the drive
and the contents of bytes 9-11 are written exactly as they were
previously read (so they will be unchanged).

An additional change in the usage of this command occurs when a
high capacity drive (hard disk) is configured. The configuration data
for such a drive is very complex and is usually built into the drive
controller or written to a "magic" location on the disk. To support
partitioning of very large drives (larger than 16 Megabytes), MYDOS
issues a write configuration command with the number of sectors per
track set to number of sectors on the disk (as defined in the "O"
command) and the number of tracks set to 1. All high capacity disks
are large sector drives (using 256 byte sectors).

XI. RAMDISK INTERFACE

The driver built into MYDOS is intended to eliminate the need
for a "driver" to use common RAMdisks. The required characteristics
of the hardware can be most easily described by explaining what is
done to access a "sector" of information in the extended RAM.

(1) The sector number is divided by 128, and the
remainder is then multiplied by 128 and added
to 16384 to get the starting address of the
sector in memory (it will be between $4000 and $7F00).

(2) The quotient is used to index into a page table
with one entry for each 16K that can be mapped
into the memory area from $4000 to $7FFF.

(3) The value from the page table is "AND"ed with the
contents of the mapping register, and rewritten
to the mapping register.

(4) The data is moved to(from) the area addressed above
from(to) the sector buffers at the high end of MYDOS.

(5) The mapping register is restored to its
non-mapping state by "OR"ing the restore value with
the mapping register and rewriting the result
to the mapping register.

Note that this design forces the RAMdisk to be single density
and no larger than 4 megabytes (256 pages of 16384 bytes each). Out
of that, MYDOS can only accommodate 1 megabyte, because its table is
only 64 bytes long.

As you can see, the parameters are the mapping register address
($CFFF for Axlon boards and $D301 for the Atari 130XE), the value
"OR"ed into the register to reset the system back to normal ($FF for

MYDOS Technical Manual page 14 Version 4.50

the Axlon and $00 for the Atari 130XE types), and the actual map
values. These values are determined by first identifying the bits in
the mapping register to be left unchanged and setting them to "1" in
each of the register values. Second, the remaining bits are filled in
with all the legal combinations of mapping bits. The values for the
Newell Industries 256K upgrade (which uses the 130XE mapping, more or
less) are given here as an example -- future versions of this board
and other memory expansion products are not necessarily going to use
the same design.

Bits: 7 6 5 4 3 2 1 0
1 x x x x x 1 1 First, set bits 7, 1 & 0

in all the mapping values
1 0 0 0 0 0 1 1 These are the 12 (of 32)
1 0 0 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 0 1 1
1 1 0 0 0 1 1 1
1 1 0 0 1 0 1 1
1 1 0 0 1 1 1 1
1 1 1 0 0 0 1 1
1 1 1 0 0 1 1 1
1 1 1 0 1 0 1 1
1 1 1 0 1 1 1 1

Lastly, since the mapping register at $D301 can be read as well
as written, it can be left exactly as it was before we used it by
"OR"ing the initial value with zero (leaving it unchanged). The
sequence is then: 83, 87, 8B, 8F, C3, C7, CB, CF, E3, E7, EB, EF, 0.

MYDOS Technical Manual page 15 Version 4.50

XIII. ERROR CODES AND THEIR SOURCES

3 Last byte of file read, next read will return EOF (MYDOS)
128 Break Abort (OS ROMs)
129 IOCB already open (OS ROMs)
130 No such device defined in the system (OS ROMs)
131 Write-only IOCB, cannot read (OS ROMs)
132 Invalid command (OS ROMs)
133 Device or File not open (OS ROMs)
134 Invalid IOCB reference (OS ROMs)
135 Read-only IOCB, cannot write (OS ROMs)
136 Attempt to read past end of file (MYDOS)
137 Truncated record (OS ROMs)
138 Device Timeout (OS ROMs)
139 Device NAK (serial bus failure, OS ROMs)
141 Cursor out of range for graphics mode (OS ROMs)
142 Data frame overrun (serial bus failure, OS ROMs)
143 Data frame checksum error (serial bus failure, OS ROMs)
144 Device I/O error (in peripheral hardware, OS ROMs)
146 Function not provided by handler (OS ROMs)
147 Insufficient RAM for graphics mode selected (OS ROMs)
160 Invalid Unit/Drive Number, zero or greater than 7 (both

MYDOS and OS ROMs)
161 No sector buffer available, too many open files (MYDOS)
162 Disk full, cannot allocate space for output file (MYDOS)
163* Write protected or system error - disk is not readable (MYDOS)
164 File number in link does not match the file's directory

location (MYDOS)
165 Invalid file name (MYDOS)
166 Byte not within file, invalid POINT request (MYDOS)
167 File locked, cannot be altered (MYDOS)
168 Invalid IOCB (MYDOS and OS ROMs)
169 Directory full, cannot create a 65-th entry in a directory

-- entries may be used for "lost" as well as real
files (MYDOS)

170 File not in directory, cannot be opened for input (MYDOS)
171 IOCB not open (MYDOS and OS ROMs)
172* File or directory of same name already exists in parent

directory, cannot create (MYDOS)
173 Bad diskette or drive, cannot format diskette (MYDOS)
174* Directory not in parent directory (MYDOS)
175* Directory not empty, cannot delete (MYDOS)
180* Not a binary file
181* Invalid address range for loading a binary file, END<BEGIN
(MYDOS)

* -- New error codes, not present or different in Atari DOS 2.

Most error codes are identical to those returned from ATARI DOS
2; the differences result from the expanded capabilities of MYDOS.
Specifically, Error 164, indicating a file number mis-match, only
occurs if the file is written in DOS 2 or DOS 2.5 format. Errors 180
and 181 can only occur when XIO 39 (or 40) is invoked to load a file.

MYDOS Technical Manual page 16 Version 4.50

Errors 172 and 175 apply to creating and deleting directories and
have no ATARI DOS 2 equivalent; error 174 applies to accessing files
in subdirectories, so it also has no ATARI DOS 2 equivalent. Error
code 173 serves the same function as it did in ATARI DOS 2, but is
returned more often (to identify bad diskettes more reliably).

MYDOS Technical Manual page 17 Version 4.50

	MyDOS 4.50 - Technical User Guide (Cover)
	© 1988 Wordmark Systems
	IV. Menu Commands: MEM.SAV Feature
	V. File Manager Functions Through CIO
	VI. CIO Function Codes Provided by MyDOS 4.50
	3 - OPEN
	5 - GET RECORD
	7 - GET CHARACTERS
	9 - PUT RECORD
	11 - PUT CHARACTERS
	12 - CLOSE A FILE
	13 - READ STATUS
	32 - RENAME A FILE
	33 - DELETE A FILE
	34 - MAKE DIRECTORY
	35 - LOCK FILE
	36 - UNLOCK FILE
	37 - POINT TO POSITION IN FILE
	38 - NOTE POSITION IN FILE
	39 - LOAD MEMORY
	41 - SET DEFAULT DIRECTORY
	254 - FORMAT A DISKETTE

	VII. Disk Structures Supporting MyDOS 4.50
	VIII. MyDOS 4 Memory Map
	IX. Customizing a System Disk
	RAMDisk Configurations
	Number of Files Open at Once
	Controlling the Disk Drives Accessed by MyDOS
	Selecting of Disabling Write-with-Verify

	X. Disk Drive Interface (via SIO)
	XI. RAMDisk Interface
	XIII. Error codes & Their Sources

