

a ~efe~ence manual to~

The ACTIONI System

A complete p~og~amming envio~nment ~e.iqne~
fo~ you~ Ata~i home compute~ system.

The p~og~am., ca~t~idges, ROMs, an~ manuals
comp~iaing the ACTION I system

a~. Copy~ight fc) 1983 by
Optimi~ed Systems Softwa~e, Inc • . ~

Aetion Compute~ Se~vices

This book is Copy~ight fe) 1983 by
OptimiZed Systems Softwar~, Inc .

1221-8 Kentwood Avenue .
San Jose, CA 95129

This manual w~itten August, 1983

All ~ights ~ese~ved. Rep~oduction o~ t~anslatlon of any pa~t
of this ~~k beyond that permitted by section. le7 and lea of
the United States Copy~i9ht Act without t he permission of the
copy~i9ht owner ie unlawful.

1
7

1
7
3 ,

1
7
3

1
2
3 ,
5
6
7 ,
9

1
7
3 ,

THE ACTION! SYSTEM

PART I: Introduction to ACTION!

The ACTIONl System
How to Write and Run a Proqram

PART II: The ACTION! Editor

Tahle of Contents
Introiluc;tion
The Editor Commands
Atari vs ACTION! Editor
Tec~nical Considerations

PART III: The ACTION! Monitor

Table of Conte nts
Introduction
ACTION! Monitor Commands
Program Debugging Facilities

PART IV, The ACTION! Language

Table of Contents
Introduction
ACTION! Vocabula r y
Fundamental Data Types
Expressions
Statements
Procedures and Functions
Compiler Di rectives
Extended Data Types
Advanced Concepts

PART V: The ACTION! Compi l er

Table of Contents
Introduction
Compiler ope r ation
Usinq the Options Menu
Technical Information

2 ,

7 ,
17
75
3.

31

" 34
47

45
47

" 51
57
66
B7

lBB
111
134

1<1
1<2

'" 147
109

1
2
J ,
5 ,
7

• •
C
o ,
P
G
H
I

PART Vl: The ACTION! Libra ry

Table of Content'
Introduction
Output Rout.ine ..
Input Routine.
File ~anipul"tion Routine.
Graphics and Game Contro ller.
String Handlinq I Conver.ion
~i.cellaneoua Routine.

APPENDICES

ACTION! Language Synta,
ACTION! Memory Hap
Error Code Explanat ion
Further Reading & References
Editor Command. Summary
Monitor Commend a Summary
Options Menu Summary
"PRIMES" eenchmerk
BASIC to ACTION! Conve r .iona

151
lSJ
156
164
167

'" 179
18J

19l
197

'" 2 •• 2.,
2.' 2.'
2~5

2.'

P~rt I: Introduction to ACTION I

Welcome to ACTION I We're here to int roduce you to a
c~plete .oltware ~evelopment .y.te~ - one in which you
cnn perfoC$ allot your programming tasks.

It you have programmed your Atari
you will discover th~t ACTION!

using At~ri BASIC,
runs a lot f~ster, has

easy to learn. ~ better e~itor, ~nd i~ just as

If you have ever done assembly language progr~~ing,
you will find that ACTION! i. almost as fast as
a.sembly language, a. (ar as progra~ e~ecution is
concerned. You will also find that programming ACTION I
i. much quicker and easier due to the nature of the
language, ita editor. and its library of routinel.

For those of you with very little or no previous
programming experience, we suggest that you read this
manual very carefully. and be sure you underatand one
concept before moving on to the next . We say thil
because thil il not a tutorial to teach you the ACTION I
IYlte~. but rather a reference manual of all the
capabilitiel of the .Yltem .

That is not to say that you won't underltlnd what
you're rea~ing (quite the contrary): it simply meanl
that we don't di.cuss every po.aible programming u.e of
the concepts inVOlved. We respect your ingenuity and
curiosity and belieVe that you yourlelf will find some
usel we haven't even d reamt ot .

Notes On This Manual

The manual itself is separated into ai. p~rtl and ~

group of appendices. Each of the parts exclusively
discusses one facet of the ACTION I aystem, thus
enabling you to learn about the different components of
ACTION I without having to keep flipping pagea. Each
part ia prefaced by a table of contents, en
introduction, and a vocabUlary .

The one drawback to leperating the ACTIONI system into
itl component parts is that you will learn everything
about one pert before starting the next pert. To help
alleviate this problem we suggest that you read the
introduction .ection of each of the pertl before
reading one part in depth. AIIO, the last chapter of
this introduction shows you how the ACTION I components
work together to allow you to run programs.

--01--

ChApter 1: The ~CTIONl System

The ~CTIONl system is ",,,,de up of five ~iffe~e"t parts:

,.", ~C'!'IONl Monito~
,.", ACTIONl Editor
Th. ACTIONl LAnquaqe
Th, ACTIONl Compiler
,.", ACTIONl Library

The Monitor is the bo's of the ~CTIONI system .
Through it you can call t ,he £dito~, the Compile~, or
get access to some system options. This i. the
monito~'s only job, but it is a impo~t.nt o"e. allowinq
you to rlecide whiCh part of the ACTIONl system you want
to use At any given time.

The Edito~ is where you creste new progrAms And m~lfy
o l rl ones, It doesn't know Anything about the ACTION!
language or compilf!'r (thAt iIJ, it's IJimplya text
~itor and ~Of!'Sn't chf!'ck languAgf!' syntax), 80 you can
USf!' it for othf!'r wor~ processing or progrAm e"t~y
applications. The E~ito~ also allows you to save the
text in the editor buffer or read text from a
peripher&l device (disk drive, cassette, etc. J into
the editor buffer.

The ACTION! L&ngu&ge is what you use to communicate
with the ATARI machine And tell it to do things, You
write a program in the ACTION! Language, and then tell
the ACTION I Compiler to translate it into a form the
computer c&n understand (mAchine lanquage), and then
you run the program .

"Why such an involved process? BASIC isn't like that.*
First of all, the process isn't that inVOlved once you
understand what's going on and why. Secondly , BASIC
isn't l ike that because it i8 an Interpreter, not a
Compiler. BASIC translat~s each line a. the program i.
r unning. and it takes some time to do that, thereby
slOWing down the speed of your program. ACTIONl, on
the other hand, breaks the running and syntax cheCking
of your program into two parts . The Compiler checks
your program for proper syntax. and does the
translating. When it is through, your program can be
run directly, i.e,. without any syntax Checking, This
makes your program run with incredible speed .

As mentioned in the previous psragraphs,
Compiler tranSlfttel an ACTION I program

--02--

tho
into

ACTIONI
machine

cOde. The only thing it require. i. that the pr og ram
be in proper ACTI ONl form. The c~piler vill qive you
an ~r ror if you u.e .yntax vhich is illegal in the
ACTION! LanQuage, j uat l l~e a n Engliah teacher would
give you an error (or r ed mar~) if you used i mproper
English in class.

The ACTIONl aystem also contains a group of prewritten
routines which you can use in your programs. This
group of r outi ne a .ia called the ACTIONl Li brsry , and
it enables you to ~o all the things you can do in BASIC
(i.e., PLOT, ORAWTO, PRINT, etc.) a nd much more
without writ i ng a ny special subr outines of your own.

TECHNICAL NOTE: although the ACTION I compiler does
translate an ACTIONl to 6502 mac~ ine language, that
compiled code will not run without the ACTION!
cartridge because it (the code) does aome calla to
routines in the cartridge. If you are writing product.
for resale, a runtime version of ACTION I which will
make your program work without the cartridge can be
lieensed from OSS Inc.

--1113--

Chapter 2: Hov To Writp and Run an ACTION I Proq r am

Thi, chapter is d~sioned to let you ~OPt youc feet wet~
lind become more flimillir with the ACTION I flyatem.
We're ooing to vrite II little program in the Editor.
C~pile that program. lind Run it .

When you qo to the cartri~ge from DOS you viII be in
the ACTION! Editor, ao thp progrllm can be entered
immediately . We're going to asaume that you won't make
lIny typos, but if you do, you can use the curllor
cont r o l keys (CTR~)(up arrow>, etc.) to move around
and fi~ them. When you read the Editor ~ rt you will
find out about many more editor featues and commands,
hut theae are all you need for this program.

"~ here
fo<
Ino

the p r ogram. Enter it exactly lI' you se~ it
'pecial commands are required to enter text):

PROC hello()

RETURN

Before we compile thia program, let's discusa what's
going on. The 'PROC ' and 'RETURN' statements are
requi r ed by the ACTION I language, and make up the
bone. of a procedure. The language ia structured into
a group of subroutines called procedure. and functions ,
with each routine d01no a apecific taak which you
define. This might seem str ange at first . but it
allows you to write programs in components so that you
can concentrate on one part of the program at a time.
It alao make. programs written by othera much eaaier to
reaC!.

The above procedure i. called "hello", namely becauae
it will print out the line "Hello World" to the acreen
When the p r ogram ia run.

The atatement fltarting with 'PrintE' ia a library
routine call. Here we afe making use of one of the
pr evr itten routines in the ACTION I library. Thi. one
will p r int out the specified string, and put out a
(RETURN. at the end . This foutine call is the only
statement in the p r ocedure 'hello' (because it i. the
on l y statement between the 'PROC' and 'RETURN') .

Now that we have the program in the Editor b uffer , how
are we going to compile and run it? The r~itor
certainly can' t do it fo r us, so we need to get to the

- - 04--

Monitor lind call the ",CTIONl C()r.Ipiler f r om there. The
Editor commlln~ ~CTRL~<SHIFT)M take. us to the Monito r .
ao we'll use that.

Now that we're in the Monitor. we need to call the
Compiler to check the syntax of our prograM lIn~
trllnsillte it into machine Illnguage. This i. done by
typing the eo~and 'COMPILE ~RETURN)' to the Monitor.

The compiler takes over and does its job. If it. finda
an error, it will print out an e r ro r messlIqe and retur n
you to the monitor. If it finds no error.. t h e
Compiler will return us to the Monitor. From there we
can run the eOl!'lpile~ prog.ram by enterino the eommllnd
'RUN <RETURN>'. The screen ahould look like this after
you've run the progrllm:

+--+ I > I
+--+
1 Hello World I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
+--+

You have written your first ACTION. program'

If you got an error message from the compiler. it mellns
that you didn't type the program in properly. You ca n
go back to the Editor from the Monitor by typing
'EDITOR', and can fix your typo. You migh t note that
the cur sor is piliced lit the position where the compiler
found the error, so you don ' t have to l ook lI ll over for
it. Repeat the steps discu •• ed above to r e - compile li nd
r e-run your prograM lifter you ' ve fixed the error.

NOTE: there i. a li.t of the error code. with their
meanings in appendix C.

--"5--

- -06--

Ch~pter 1
1.1
1.2

Chl!lpter 2
2.1
2.2
2.3
2.3.1
2.3.2
2 ••
2.4.1
2.4.2
2.5
2.5.1
2.5.2
2.5.3
2 . 5.4
2.5.5
2.5.6
2.5.7
2. ,
2.6.1
2.6.2
?. 6. 3
2.6.4
2.6.5
2.7
2.8

Chl!lpter 3
3.1
3.2
3.3

Ch~pter 4
•. 1

' .2
' .3

Part II. The ACTION! Editor

Introduction
Special Notations
editor Coneepts and Features

8
8

"
The Editor Comml!lnds 12

Getting to the Editor 12
Lf!l!Iving the Editor 13
Text Entry 13

Text File I/O 14
Setting the Line Length 15

Cursor Movement 15
Tabs 16
Finding Text 16

Cor recting Text 17
Deleting II Charllcter 17
Inserting/Chl!lnging a Character 17
Deleting Lines 18
In!lerting Lines 18
Sreaking and Recombining Li ne . 18
Substituting Text 18
Restoring a ChangeI'! Line 20

Windows 20
Window Movement 20
Creating a Secon'" Window 21
!>'oving Between Windows 22
Clearing a Window 22
Deleting II Window 23

Hoving/Copying Blocks of Text 23
T~g8 24

Comparing ACTION ! ~nd Atari Editors 25
Identical Comm~nda 25
Differing Commands 26
Comm~nds Unique to ACTION! 27

Technicl!Il Considerations
Files from Other Text Editors
Key Recognition
"Out of Memory· Error

--07- -

3.

" '" "

Pl'lrt II, '!'he ACTIONJ Editor

ClH'pter 1: lntroouction

'!'he Editor is where you create new ACTIONJ proorl'lms
and edit old ones. If you have 115e(l a progrllm p.ditor
before. you loIi11 notice that the ACTION! Editor is far
more sophisticated thl'ln most others, in fact. it coul(1
1I1most be cl'Illed a word processor because it does so
much.

Although it is rapable of many thinqs. you loIil1 find
that the ACTIONJ Editor is easy to IoIOrk with. If you
have never been exposed to anything but the Atllri
screen editor, then you are in for 1'1 pleasant surprise.
You can use the ACTION! Editor for any editing you
loIant to (10. not just editing ACTIONl programs . You
could do all your editing (rorrespondence. programs in
other languages, etc.).

1.1 Special Notations and Vocabull'lry

USAGE OF SINGLE QUOTE MARKS (.)

Unless format and context make the use
unnecessary, commands and special characters
enclosed in single quotes.

USAGE OF '(' AND ')'

of quotes
IoIUl be

When talking about a key on the Atari keyboard, loIe loIill
enclose it with the characters '(' and ')', thus ,

(BACK S> (the backspace key)

Some of the keys have more than one
them. In theae cases, the Il'1bel best
Editor command will be used.

label IoIritten on
describing the

There is one exception to the above: the character (A -
Z) and digit (0 - 9) keya are not e nclo sed by the angle
brackets.

--09--

MULTI-KEYSTROKE COMMANDS

Some of the Erlitor commands require that you press more
than one key at a time, For these commands, the ~eys
required are g i ven back to back in the order in which
you should press them, For example,

means that. you should hold the key marke~ 'SHtFT' down,
and then press the key marke~ 'DELETE',

THE MESSAGE AREA

Throughout this part of t 'he manual the term ~me •• a.,..",
area~ will be used, This area is simply the inverse
video line you will notiee "t the bottom of your aereen
when you enter the Editor , This line normally has

ACTIONI {c)1983 ACS

written on it, but is used by
commands to ask you questions, give
report an error.

aome of the e~itor
you infOl'1llation, or

When you are using two windows (see section 3,4), the
message area line separates thp. two windOWS.

DEFAULT USER RESPONSE

Some of t.he corm!lt',nds wh ieh use the message area to
exchange information with you remember the information
you gave the last time you used the command. This
information is called the ~default u.er respon.e-, If
the default user response you see in the me. sage area
is What you want, you simply press <RETURN>. This
saves you time beeause you don't have . to retype the
same response many times. If you don't want to use the
default user relponse, you have the ability to ehange
either part or all of it.

--09--

1.2 E~itor Con~ept5 5n~ Fe~ture5

TEXT WINDOWS

When you look at your TV or monitor e~reen. imagin~
th~t you are lookinq through a window. At any on~ time
you ~an only see 23 lines of 38 ~hara~ters ea~h. This
leems v~ry limiting. and woul~ be if you ~oul~n't mov~

the window aroun~. The ACTION I Editor makes it
possible for you to move thil win~ow eroun~, both
horizontally an~ vertically. so that you can look at
you whole prograM.

But the Editor i. ev~n mare sophilticated than that I
If you are looking through the window. and you want to
look at one line which extend. beyond the bound. of the
window, you can move to that line and look at the whoI~
thing. Th~ line will mov~ to fit into the window. but
t.he window .taYI right where it wei. Wh~n you move off
that line. it pops back into itl proper place (with
relpect to the window) .

The Editor evene allOWl you to Iplit your screen into
two window •• each of which you can control leparately .
Thil enable. you to look at two different programl. or
different part. of the seme program. at the lame time.

TEXT LINES

The ACTION] Editor is deligned .0 that your program
can be read ea.ily. It allows lines up to 24e
characters long (even though the window only Ihowl 38
characters at a time). so you can use indentation to
clarify your program without worrying about making
lines too long. The Editor also allows blank lines, so
you can separate th~ componentl ot your program with
white space.

NOTE: you allo have control over the maximum line
length. so you pick a line length you think best (or
will fit on your printer). The Editor even buzzes when
you reach the limit. to let you know it's time to go to
the next line.

NOTE, if a text line is longer than the windOW (if it
extends beyond the left or right bounds of the window).
the Character at the edge of the window i. .hown in
inverae video to make you aware of thi •.

--10--

PINO and SUBSTITUTE

Thp P.ditor
will move
program .

allow. you to seftrch for 8 given Itring,
the curlor to the fir.t mateh found in

en'
<he

The Editor alao allow~ an extenaton of thil. You can
tell it to .earch for a given string, and then replace
the first match with another .tring you 'pecify, all
with one command.

MOVING TEXT BLOCKS

Have you ever entara~
of lines which you
conveniently moved to
this is a snapl

a program and wished that a group
en'tared at. one location could b ..
another location? In ACTION,

Saving thoae line. (called a text block) in the eopy
buff~r (that's where a text block ia temporftrily saved)
allows you to mov~ the cursor to where you want the
text block placed. You may then ·paate" the contenta
of the copy buffer (the linea you want~ to move) ~ck
into the program. You can paate the text block "t it.
original location, and then move I~~here el.e and
palte it there too, thus enabling you to eopy text
block ••

CURSOR MOVEMENT

The eurlor i, eontrolled not only by the movement keys
on the keyboard (e . g .• <CTRL)<up arrow». but can also
be made to move to a Ipecified place I places in your
text through the use of tags and the 'FlNO' eommand .

TAGS

You ean mark any location in your text with an
invisible marker ealled a "tag". The Editor allow. you
to move the eur.or to this t'g (no matter where the
eursor was before) through the use of a simple eommand .

The number ot tags you allowed is l~ited only to the
number of keys on the keyboard, since you muat give a
one eharacter label to eaeh tag you define.

--11--

Ch~p~er 2, The Editor Comm~nds

This chanter
the~lelvea.
form,

ia devoterl to the Edi~or commanda
lns~pad of preaen~ing the commands in this

2 . 2 <CTRL'<SHIFT>M

where you can't tell what th~ section discusees (unless
you already know the Editor). the commands are
preaented by their function, •. g .•

2.2 Leaving the Editor

We hope thia form makes things clea rer and easier to
follow,

aefore goIng into the commands themselves, w~ should
tell you how to stop execution of a command if you made
a ~iatake. You can do thia by pressing the <ESC> ~ey,

Doing this will get you out of any e~and safely.

NOTE, appendix E
commands, listed by
it doea.

provides a
the command

summary of the Editor
itaelf instead of what

2 . 1 Getting to the Editor

When you first ente r the ACTION! aystem. you will
automatically he put into the Editor. so there is
nothing involved in ~getting to" it. You're already
Ue~.

If you leave the ACTION! aystem and go to DOS (OS/A+,
DOS XL. or Atari DOS), you will be in the Monitor when
you re-enter ACTION! (there is one execption to this:
aee NOTE below). To get to the Editor from the
MOnitor, you need only type

E<RETURN>

This will put you directly into the editor.

NOTE. if you are using OS/A+ or DOS XL. and
a OOS extrinsic command before r eturni ng to
aystem , you will not be put into Monitor
above, but straight into the Editor. Thie
case with Atari 005. ainee it haa no
commanda .

--12--

you execute
the ACTION !
aa atated
is not the
extrinsic

2 . 2 Le~ving the Editor

There is only one w~y to le~ve the Editor (~si~e from
turning off the computer),

(CTRL><SHIFT>M

This command
the Monitor,
the ACTION I
go to DOS.

wi l l cause you to go from the Editor to
where you may call the other eomponents of
aystem or leave the system altogethe r and

2.3 Telft Entry

There i. no speci~l Editor command t~ allow you to
enter text . You simply ty~ it in, a. on a typewrite r .
When you h~ve reached the maximum l ine length , the
Editor will buzz every time you put in anoth er character
(see 2.3.2 for more information) .

If you want to type a control character, you must press
the (ESC> before doing so . Thia lets the Editor know
that the control ehar~cte r should be i nter preted as
text , and not aa an Editor command.

~What happens when I try to
al r eady written?~ The ACTI ONI
option. in this ease. Text
- Replace " or ~Insert · mode.

type over somethi ng I've
Editor a l low. you two

can be e ntered in either

When in Replace mode, the text you ent.r will
whatever was there before, replaci ng the o l~
new character by character .

overwrite
with the

When in Insert mode, the text you enter
inserted wherever the c ursor ia, and move
previou8 text over without overwriting it .

wil l bl'!
/II} the

The Editor command (CRTL>(SHIFT>1 allows you to change
from one mode to anothe r. When you use this command,
the mode you have chang~ to will be print~ in the
message area (lee section 2.5 . 2 for mor e information).

NOTE, the Editor is in Replsce mode when you firat
enter it.

If you want to eraae all the text in a file, just put
the cursor into the windOW you want to clear, and p r eas
<SHIFT>cCLEAR>. This will clear not only wh at you see
in the window, but the entire file (see .flction 2.6.4
for more information).

--13--

2 . 3.1 Text File I/O

If t he r e we r e no way to save the program in the Erlitor
buffe r , you would have to retype it every time you
wanted to use it. The Editor allows you both to rearl
a nd to write files to any peripheral storaqe device
(Disl: Dr i ve, Cassette. etc.) to save you all t.his
troub l e.

To save a program I n t he Erlitor buffer, you must first
put t he cursor into the window which contains the file
you want saved (if you are using only one window, you
needn ' t worry about this) . Then you enter the command

<CTRL> <SHIFT>W

I n t he messsge srea you will see,

Write?

Simply type in the file name you want t.he program ssved
to , and p r ess <RETURN>. The file name must. be
compatib l e with the DOS you are using. If you sre not
using a DOS, the file will consist only of a character
repr esenting the device (c fo r cassette, P for printer.
etc.) followe d by a colon,

Reading a file into the Editor buffer is just as aaay.
Move the cursor to the line preceeding the line where
you want the file you're reading in to start. a nd enter
the command

<CTRL><SHIFT>R

In the message area you will see,

Read?

Type in the
following the

name of t.he f i le
conventions outlined

you want
above .

read in.

If you are using floppy disks. you can read the
director y On a given disk by replying with the
following to the "Read?M prompt in t.he mellsage area,

Read? ?1,-,-

This ill read the directo r y of the disk in drive
number 1. If you want to read t.he director y of a disk
in some other drive, simply change the ' I' in t.he above
example to the number of the drive. This ability is
very useful, because you needn't go to DOS to find out
what's on a disk .

--14--

2.3.2 Setting the Line Length

As mentioned in the first p~ragraph of section 2.3. you
c~n set the m~ximum lina length. You can rind out how
to do this in part Ill. section 2.5, so we nee~ not
show you here.

To move the curaor left one ch~racter, press:

<CTRL><left arrow>

To move the cursor right one char~cter. presa,

<CTRL)<right ~rrow>

To move the cursor up one line, presa:

<CTRL)<up arrow>

TO move the cursor down one line. press,

<CTRL><down arrow>

The commands .bove are simply the normal cursor
movement keys the Atari screen editor understands. The
ACTIONL Editor, however, allows you some more curlor
movement commands desiqne~ to i ncrease your program
writing speed.

You can make the curaor go to the beginning of the line
its on by pressing'

<CTRL><SHIFT)<

and go to the end of the line by pressing,

<CTRL) <SHIFT»

These two comm~nds will take you to the true beginning
or end of the line eVen if it (the beginning or en~l ts
not visible in the window. The lina will simply ba
shifted over so that it (ag~in. the beginning or end)
ia visible in the window. When you move the cursor off
the shifted line, the line will be moved back to its
proper position.

You can go to the beginning of the file by pressing'

<CTRL) <SHIFT>H

--15--

2.4.1 Tab.

You ("an lIIove the cursor to th~ next 't_ab stop by
pres.ing <TAB).

To .et
tab. and

a tab stop. IIIOve the curso r where you want the
then pres. <SHI FT)(SET TAn>.

TO clear
cleared.

a tab stop . move to
and press (CTRL>(CLR

2.4.2 Finding Text

the tab
TAB> .

stop yOO want

The Editor allows you to ~tin~~ ~ specifie~ string of
characters 11 - 32l. and can be very useful when
skipping from place to place in your file. To ~o this
enter the com.and:

<CTRL) (SHIFT)F

The mellage area will prompt you with

Find?

If you have previously used the Fin~ command. you will
see the string you last trie~ to find following the
prompt. If you want to fin~ the next occurance of this
string. simply press (RETURN>. If you want to find a
different string, type in the new string ~n~ press
(RETURN). You will notice that the old strine
di,appears as soon as you start typing.

If this is the first time you are using th~ Find. you
will see nothing following the prompt, and you should
type in the string you want found and press <RETURN>.

This command will start at the current cursor position
and look for the first occurance of the string you
specified . It the string is found, the Mitor will
move the cursor to the firlt character in the found
string and make the window move to ~isplay the
surrounding section of text. If the string isn't
found. the message area will display the line:

not found

- - 16--

2.5 Correcting Text

The following six sections will give you information on
how to correct and delete text from the E~itor buffer.
The seventh sections shows you· how to undo cprtain
deletions if you have made a mistake.

2.5.1 Deleting a Character

TO delete the character under the cursor (the one the
cursor i. flashing on top of), press:

<CTRL) <DELETE)

The characters to the
deleted will move left to
the deleted character.

right of the character just
fill the empty space lett by

To delete the character to the lett of the cur,or,
press:

If you are in Replace m~e. this will replace the
character to the left of the cursor with a space. If
you are in Insert mode, this will detete the character
to the left of the cursor, and then move all the
following characters over to fill the empty space.

2 . 5 . 2 Inserting/Changing a Character

Aa mentioned in section 2.3, there are two difterent
modes for text entry: Replaca mode and Insert mode .
When you first enter the ACTION! Editor, it is in
Replace mode. To change from one mode to the other,
press.

Some of the Editor
ia. they operate
entry mode.

commands are
differently.

mode dependent:
depending on the

that
text

You can insert a blank character at the cursor position
by entering <CTRL) <INSERT). The text from the cursor
to the right end of the line moves right one space and
a blank space is inserted at the cursor position .

NOTE: if you are in Insert mode, you can simply press
the ap ... ::e bar.

- - 17--

2.5.3 Line Deletiona

TO dalete a whole line, place the curlor on the line
you want deleted, and prell'

<SHIFT> <OELETE}

The lucceeding 11nell ",ove up to fill t.he empty IIpllce.

3.3.4 Line Inlertionl

TO inlert a blank line above the Itne the cursor il on,
prelll

<SHIFT> < IN!';ER'I'>

The lucceeding linel "'ave down to allow space for the
new blank line.

3.3.5 Breaking & Recombining Linell

To break a lIingle line
polition the curlor
firlt character in the

into two adjacent lines. firlt
on the character you want al the
lecond line, and then prelll:

NOTE, if you are in Inlert mode, 11"'ply polition the
curlor and prelll <RETURN>.

Succeeding lines of text are moved down to allow room
for the new line.

TO COII'Ibine two adjacent linel into a lIingle I ina. firlt
polition the cursor on the first character in the
second line. and then pre."

<CTRL)<SHIFT)(BACK S)

Succeeding lines are ~ved up to till the ~pty Ipace.

2.5.6 Subltituting Text

The ACTION I Editor allow, you to lub'titute a ·new·
string tor an ·old· one. You tire prornpte'" tor the
·new· Itring. and then for the ·old· one. ThP Editor
learchel for the firlt occurance of the Mold~ string
(Itarting at the curlor politionl. and replacel it with

--18--

the Mnew" string. To begin this eomman~, press.

<CTRL> <SHIFT>S

The message area will display the prompt:

Substitute?

If you have previously used this command, you will see
the last "new" string you used follOWing the prompt .
It you want to keep this "new" string, simpl y press
(RETURN>. If you want a different "new" string, type
it in and pres. <R!TURN~.

If this is the first time you sre using Substitute, you
will see nothing following the prompt, and you ehould
type in the "new" string you want and press (RETURN~ .

After
prompt

you preas
you with.

the <RETURN~, the message area will

for?

You will aee the last "old" string you used following
this prompt it you have used the Substitute before. If
you want to keep this "old" string. siMply pre ••
(RETURN~ . It you want a different "old" string, type
it in and then press <RETURN>.

If this is the first time you are using Substitute, you
will see nothing following the prompt, and you _hou l d
type in the "old" string you want changed and pres.
(RETURN).

After you preas this second cR!TURN~, the Editor
try and do the substitution. If it can't lind
"old" string you've given, the ~es.age area will
the fallowing.

not found

will
<h.
oh~

If you press (CTRL>(SHIFT}S sgsin before you do any
other editing, the Editor will execute the sarne
substitution aqaln. This enables you to substitute
more than one occurence ot the "old" .tring with the
"new" one without having to keep reponding to t~e

"Substitute?" and "for?" prompte.

HINT; you can delete the next occurance of ft string by
using this command with the "newM string beIng nothi ng.
Thie with substitute the "old" string with nothing. end
so (in effect) delete it. .

--19--

2.5 . 7 Rel toring a Chang~ Line

The ACTIONI Editor aiiowl you to re.tore
prlvioul for- if you havi ~adl an error
it . To do thil. you must re.ain on the
Ind p r e.sl

a line to it.
while editing
changed line

WAR NING, if you leave the line an~ then come back to
it. thi s command will not work. becaule the E~itor only
remember. what the line wal before you .t~rte~ e~iting
it while you remain on the linl.

If you have acci~entally deleted a whole line. you can
retrieve it by prelling '

<CTRL)CSHIFT)P

More information about thil command may he tound in
lection 2.7.

NOTE I the tag I on the changed or deleted line are not
reltored.

2 . 6 windOWl

The dilpl ayed COntentl of the cent.ral portion ot the
Icreen ia called a window. Tha following five lectiona
delcribe the Editor command I uaed to manipulate.
create, and delete windows. In these lections we uSe
the term ·currlnt window· to maan the window whiCh the
curlor i. in.

2.6.1 Window Movement

You can make the wi ndow acroll up or down one li ne
limpl y by moving the curaor . If you try and move the
curlor oft the top ot the Icreen, the window movel up
one line to keep the curlor on the Icreen. The lame
WOrkS with the bottom of the screen. Thi, type of
vertical Icrolling could take a long time it your
proqram were big. 10 the Editor allO aiiowl you to make
the window Icroll by the lize ot the window itlelf.

To move up one window. preal:

CCTRL)CSHIFT)cup arrow>

For the lake of continuity, what wal the top line in

--29--

the old window ia now the bottom line of the new
window.

To move down one window, press.

<CTRL)<SHlfT)cdown arrow)

~or the sake of continuity , what was the bottom line in
the old window is now the top line of the new window.

The Editor a l ao allows you to acroll t h e window
horir.:ontally. That is, you can make t.he window'. left
margin .tart at a ny column (inatead ot t h e fi r at
column). If a line i. l onger than the window (if it
e~tenda beyond the left or right bounds of the window),
the character at the edge of the window i. shown in
inverse vid eo to make you aware of thi •.

To move the windOW one character to the right. pre.a.

cCTRL> <SHIfT)]

TO move the window one character to the left, pr ••• ,

<CTRL> <SHIPT) (

2.6.2 Creating a Second. Window

Whe"
on.

you fir.t enter the ACTION I
window . You can create a

Editor there i.
.econd window

pre •• ing,

<CTRL)<SHIPT)2

The acree n will now look like thia,

+--+ I I
I I
I I
I I
I I
I I
+--+ 1 ACTION I (c)1983 ACS r
+--+ I I
I I
+--+

only
by

The window above the me.aage
window be l ow it i. wi ndow 2 .

area i. window 1,
You can use each

and the
window

--21- -

independently, eo you coul~ be working on two entire l y
different fi l es without heving to ke~p clearing window
1 and reading in a file.

NOTE: the site of the window I can be set using the
Options Menu available from the monitor. For more
information on how to do this, see part III. section
2 . 5.

2.6.3 Moving Between Windows

To move f r om window 1 to window 2. press:

<CTRL> <SHIFT>2

If window 2 does not yet exist, then the Editor creates
wi ndow 2, then moves the cursor into it.

To mov e from window 2 to window 1. press:

<CTRL)(SHIFT)l

2.6.4 Clearing a Window

To clear the text file in a window. move the cursor
into that window (see previous section). and press :

<SHIFT)(CLEAR>

Since this is such a powerful command, the message area
will prompt you with,

Clear?

Respond with a MyM or MN M. If you have made changes to
the file viewed through that windOW, and have not saved
the changed version, the message area will prompt you
with,

NOt saved, Delete?

to make sure that you know that you haVe not saved the
new version.

WARNING: this command does
portion of the file visible
deletes the entire file.

--22--

not simply delete the
in the window, but ra'ther

3.4.5 Deleting a window

To delete a window
away l . firat poaition
and then preaa,

(i.e .• make the window itaelt go
the curaor in the deaired window.

In the meaaage area you will aee the prompt,

Delete Window?

Reapond with a ·Y· or ·N-. It you have made chanqe. to
the file viewed through that window. end have not a aved
the changed ver.io n . the me.sage area will prompt you
with,

Not saved. Delete?

to make aure that you know that you have not aaved the
new veraion.

When you delete a window. the acreen space it occupied
ia given bac k to the other window. It you delete
window 1. then window 2 becomea window I (ainc e there
ia only one window. it muat be window Il.

3.5 Moving/Copyin9 Blocks ot Ts.t

The ACTION I Editor allowa you to move o r copy te.t
block! through the use ot a copy butfe r. Whenever you
use the commend (SHIFT'<DELET!' to delete a t •• t line.
that line is temporarily atore~ in a region called the
copy buffer. You may then *pa a te - that deleted line
uaing <CTRL'CSHIPT'P.

The copy butter ia Cleared every time you uae the
CSHIFT)(DELETE>. with one exception. If you use the
CSHIFT'(D£LETE) consecutively (i .•• • without doing any
other command a or text entry between the deletesl, the
copy buffer is not cleared. Instead, the aecond (and
following) deleted lines are also stored in the copy
buffer. thus loading it with a te.t block.

Now, when you use
entire text block
into the text.

the <CTRL.cSHIFT>P
1n the copy buffer

COCIIIlIInd, the
i. pasted back

Enough of the overviewl on to the method itaelf.

To move a block of te.t, position the curaor on the

-- 23--

first line of the block, and press <SHTFT)<DELETE)
until you have delete~ the entire block. Hove the
cursor to the line above which you want the block to be
pasted. Now, simply press <CTRL><SHIFT>P, and the
block will be pasted.

To copy a block of te.t, use the same methorl as for
moving a block, but first paste the block back into its
original position before moving to placp where you w~nt
it copied. Since pa8ting does not clear the copy
buffer, you can paste the 8ame block (or line) in many
different places, thus allowing mul t iple ~COpyH8.

2.8 Tags

Tags allow you to mark any location in your text. To
set a tag at a given cursor position, press:

The message ares will display the prompt:

tag id :

Enter the one character inentification you want for
that tag and press <RETURN>. If the id you give
already has a tag aS80ciated with it, the old tag will
be lost, and the id will refer to the new tag.

To move to a specified t ag, press:

<CTRL><SHIFT>G

The message area will display the prompt:

tag i~:

Enter the id char"cter of the tag you want to go to.
If the tag e.ilts, the curlor will be moved to it, and
the window will be moved to display the surrounding
text. If the tag ~oesn't exist, the Editor will print

tag not set

in the
given id

message area. This means that no t a g with the
eharaeter exi8ts.

WARNING: Any operation whiCh alters the eontents of the
line (character inser~ions, deletions. or changes. line
breaking or recombining) clear. the tegs in the line.

HINT: if you use the digits (0 - 9) as tag ids, you are
more likely to remember the id character.

--24--

Chapter 3, Comparing ACTION I and ATARI Editors

3 . 1 Identical Commands

<SHIFT)
Used in conjunction with letter keys to change the
caae of the lette rs or used to enter either an
alternate Character or command. !Iold the <SIUFT>
key down while pressing the followinq k~y in the
sequence (e.g.. <SHIFT), symbolizing the
underline character ~eans that you ahould
hold the <SHIFT> key dOWn while pressing the
key) .

<CTRL>
Used in conjunction with one or more other keys to
communicate a command or special chara~ter to the
editor. Hold the key down while prassing the
following key in the sequence (e.g., <CTRL><up
arrow>, symbolizing the command to move the cursor
up one line . means that you should hol d the <CTRL>
key down while pressing the <up arrow) key).

<Atari>

<ESC>

Display succeeding ' characters in
Press key a second time to return
display of entered characters.

inverse vidpo.
to normal video

Allow. the following control charaCter to be
entered as t.ext.

<LOWR>
Shift letter
the shift lock

entry to lower case (like
on a regular typewriter).

unlocking

<SHIFT><CAPS>
Shift letter entry to upper case letter,
(like pressing Shift and shift lock
simultaneously on a regular typewriter).

<SHIFT><INSERT)

only
keys

Inserta a blank line on the line where the cursor
is. The line where the cursor wa' and aucceedin9
text l inea are moved down to make r oom for this
line.

- - 25--

<CTRL) <INSERT>
Inserts a blank space where the cursor is.
Succeeding characters on the same line are moved
right one character to make room for the inserted
space.

<CTRL><up arrow>
Moves cursor up one te~t line.

<CTRL><down arrow)

<TAB>

Moves cursor down one text line.

Move to the next set TAB location, if any. Do not
move if no additional TAB exists. Inserts spaces
if no te~t (or spaces) exist here already.

<SHIFT><SET TAB>
Establi sh a TAB location at the current position
of the cursor.

<CTRL><CLR TAB>
Clear the TAB,
location.

if any. at the current curso r

3 . 2 Differing Commands

<BREAK>
This key is not used by the ACTION! editor.

<SHIFT> <CLEAR>
Cleara file in the current
warns you when the file has
the last te~t modification
cancel the command.

<RETURN>

window. The editor
not been saved since
and allows you to

In Replace mode, this moves the cursor to the
beginning of the next line . In Insert merle. it
ineerts a <RETURN> into the te~t.

<SHIFT><DELETE>
Removes the line the cursor ie on (like Atari
screen editor). Succeeding linea are moved up to
repl~ce the deleted line. Can be used repeatedly.
Removed line(s) is(are) stored in a temporary
holding area (called the copy buffer) for te~t
copy/move processing. See <CTRL>(SHIFT>P
description and section 2.7.

--26--

<BACK S.
If in Replace mode (see <CTRL.<SHIFT.I), then this
replaces the character to the left of the cursor
with a space. In Insert mode, this removes the
character to the left of the cursor and scrolls
the rest of the line left to fill the empty apace.

<CTRL.<right arrow>
Hoves cursor right one character, stopping at the
end of the line. Upon encountering the right
margin of the window, the editor keepa the cursor
within the display by scrolling the line content.
to the left one character.

<CTRL><left arrow.
Moves cursor left one charftcter at a time,
atopping et the beginning of the line . When at
the left margin of the window but not yet at the
left end of the line, the e~itor keeps the cursor
within the display by scrolling the line content.
right one character.

3 . 3 Command a Unique to ACTION I Editor

<CTRL.<SHIFT.O
Deletes the current window from the screen . The
window contenta are cleared from memory and the
window itself disappears from the screen.

(CTRL~CSHIFT>F

Finds a specified group of alphanumeric characters
in text. If the character string ia found, the
curaor and windOW are moved to diaplay it.

<CTRL>CSHIFT.G
Finda a user-specified tag anywhere in file (from
any atsrting location). If found, the surrounding
text ia displayed and the cursor is positioned at
the tag.

<CTRL><SHIFT>H
Moves cursor to the beginning of the file (home).

<CTRL>CSHIFT>I
Alternates between the character Replace and the
character Insert modes (the editor starts out in
replace mode). The mode being switched to i.
shown in the message ares. Thi. command Rffects
-<BACK S>" and " <RETURN>" handling.

<CTRL.<SHIFT>H
Goes to the ACTIONI Monitor (Part III).

--27--

<CTRL><SHIFT>P
After one or more lines sre loaded into the copy
buffer using <SHIFT> <DELETE> , the cursor can be
moved anyplace in the text. Pressing
<CTRL> <SHIFT>P causes the lines in the copy buffer
to be pasted at the current cursor location.
Succeeding text (with taga) is moved down.

<CTRL><SHIFT>R
Reads a
The file
DOS you
the file

file from a peripheral ator age device.
name given must be compatible with the
are using. If no device is spe cified in

nllme. 01: is lIssumed .

<CTRL> <SHIFT>S
St r ing SUbstitution. This commllnds allows you to
substitute a new st r ing of up to 32 characters for
an old one. Can also be used successively to
substitute mUltiple occurances of the old string.

CCTRL><SHIFT>T
Sets a tag. The position of the cursor
text is marked invisibly by a one-character
numeric tag assigned to that loclltion.

in the
alpha-

<CTRL> <SHIFT>U
Undo text changes . This command restores a
changed line to its unmodified state. Tags for
that line are not restored. This command works
only on a line not deleted by <SHIFT><DELETE> and
while the cursor has not left that line.

<CTRL> (SHIFT>W
Writes a file to a periphera l storage device. The
file name must be compatible with the DOS you are
using.

<CTRL><SHIFT>J
Moves the window
editing files with

right
lots of

I column (useful
indentation) .

foc

<CTRL><SHIFT>[
Moves window to the left I column.

<CTRL>(SHIFT>(uP arrow>
Moves the current window up
For continuity between the
the top I ine from the last
window's bottom line.

<CTRL><SHIFT><down arrow>

a complete
old and new
window is

Moves the current windOW down 1 window.
window's top line is pulled from the
windOW'S bottom line.

--28--

win<'lOW.
windows,
the new

The new
previous

<CTRL)(SHIFT>l
Movea from the aecond window to
The cursor goea to the previous
if any .

<CTRL><SHIFT)2

the first windov.
cursor position,

Hoves from the first window to the second window.
If the second window haa not been created
previously in the current editing lellion, then
the lecond window ia created on the Icreen . The
editor goes to the previous cursor polition, if
any.

<CTRL><SHIFT»
Moves the cureor to the end of the 1 ine and
displays that end of the line. If the line is
longer than 38 characte r I , then the cursor moves
to the end of the line and the line is displayed
10 that only the rightmost 38 characters show.

<CTRL)<SHIFT>(
Hoves curlor to beginning of line and displaya the
beginning of the line. If the line is longer than
38 characters, then the cursor moves to the
beginning of the line and the line ia dilpl~yed eo
that only the leftmost 38 characters show.

<CTRL)(SHIFT)(BACK S)
At the beginning of a line. thie command delete.
the otherwise invisible and inaccessible (RETURN>
feOL). The lower line il appended to the end of
the preceding line. The succeeding lines are
moved up one line. aa needed. At all other times'.
this command acts the aame aa <BACK S> .

<CTRL) (SHIFT) (RETURN>
Inlert a <RETURN> into the text. The line
containing the curlor is broken at the cursor.
The portion of the line to the left of the cursor
remains on the current line. The remainder of he
line il inserted in I new, left-justified line
immediately below the left-hInd portion or the old
line . The window is redrawn. as needed.

--29--

Chapter 4: Teehnieal Consideration.

4.1 File. from Other Text Editors

The editor ean't handle file. whieh ~on't eontain
<RETURN> eharaeters (EOL·.) or have lines l onger than
240 eharacter.. Line lengths should be l e.s than or
equal to the line width of your printer fo r the sake of
convenience .

4.2 Key Recognition

During COMmand line entry (in the measage ~rea). only
the (ESC>, <8ACK S>, and <CLEAR> command keya are
recogni~ed. All text character. are allowed.

Dur ing regular text entry, all text charactera and
command. a r e allowed.

4 . 3 ~Out of Me.ary~ Error

Thi. condition can result from an editing .e •• ion in
Which you ma~e quite a few in.ertion. an~/or
.ub.titutions , or from typing in a file which i. too
big (this will occur very rarely).

When you get this error. immediately write the text
file out to a storage ~eviee, and then restart ACTION)
(u.ing the 'BOOT ' command in the Monitor). You can
then go back to the Editor and read your text file back
in , and continue working on it.

--30--

Chapter- 1
1.1
1.2

Chapter- 2
2.1
2.2
2.3
2.4
2 . '
2.'
2.7
2.8
2.9
2.1S
2.11
2.12

Chapter- 3

Par-t 1111 The ACTION I Monitor-

Intr-oouction
Vocabuler-y
Concepte and Feetur-es

32
32
33

ACTION I Monitor- Commands 34
BOOT - Reetar-ting ACTION I 34
COMPILE - Compiling Pr-ogr-ams 34
DOS - Tr-ansfer- to DOS . 35
EDIT - Tr-ansfer to the E~itor 35
OPTIONS - The Options Menu 35
PROCEED - Restarting Programs 38
RUN - Pr-C9r-am !!!l<acution 38
SET - Setting a Memor-y Value 39
WRITE - Ssving Compil ed Program. 39
XECUTE - Immediate Commands 4S
, - Oisplay a Memory Location 40
• - Memory Dump 41

Pr09'ram Debugging Facilities 42

--31--

Part III : The ACTIONI Monitor

Chapter 1. Introo1uction

Pe r t III delcribel the ACTION! monitor control center
of the ACTION! .y.te~. It connects to all of the
functiona In ACTION! .

+--------------+ +----------+ I I +------------+ I I I ACTIOi'll , I I
I compiled 1------- -1 Monitor I- I oos I
I pr09ram I I Part III I
I I I I

I Append Ix 0 I
I I

+----------+ +--------------+ +------------+

/
+----------+
I I
I ACTION) ,
I £ditor ,
I Part II I
I I
+----------+

I
I

I
I
I
I

+----------+ I I
, ACTtONI I
I Compiler I
I Part V I
I I
+----------+

\
\
\

\
+----------+
I I
, ACTION I ,

I Options I
1 Menu I
I Part III I

+----------+
The monitor il charactertEe~ by an inverse vi~eo line
acrOSI the top o f the acreen, containing the prompt '~'
and the cursor at the left margin.

1.1 Vocabulary

<a(l(lresl'
<com~iler constants>
cUlespec>
<identifier>
Cstatement>
<value>

where definec'l

Part IV
Part IV
bel~

Part IV
Pttrt IV
Part IV

When the term ·'filespec>· ia uaei! in thia part. it
refers to a standard Atari file specifier eonailting of
a device (PI. Co . 01 :. 02:, etc.l lind a file name in
the caae of disk drives.

- -32- -

1 . 2 ~CTIONI Monitor Concepts and Feature s

The ACTION I
comman(l line
below.

monitor contains two
and the message area.

chief
Both

features - the
are dellcribed

These areas are unique to the ~CTIONI monitor.
However, the ACTION I compiler uses a similar screen
format (see part IV on the ~CTIONi compiler) .

You communicate with the ACTIONi monitor through the
command line. The command line is the inverted video
line at the top of the screen. It contains both the
prompt ')' an(l the cursor at the beginning of the line.

Commands are recogni~ed by the first character entered
after the prompt .) .. Thus, 'E', 'Edit', and 'Ejunk'
all tell the ACTION I monitor to call the ACTION I
editor. The various ACTIONi monitor commands are
summarized in Chapter 2 .

Below the command line is the message area. The
message area ia the large, outlined block in the mi~dle
of the screen . It ia a multi-purpose area. When a
program is running. it is used to display program
results. It can also be used to trace program
execution (see the options menu Choice 'trace?' in
chapter 2). When e ither the operating system or the
~CTIONi compiler finde an error. the message area
contains the error number and the program text around
the line where the error was found.

In its role ae the comman(l center of ACTION, you can
move from the ACTIONi monitor to any of several
different ACTIONi functions. To get an idea of the
relationship between the various ACTIONi parts, lee
the (liagram on the preceding page. You can execute a
compiled ACTIONi program (see the ACTIONi monitor's
RUN command in Chapte r 2) . You can also call the
ACTIONi Editor (described in Part III or call the
ACTIONi Compiler (described in Pe rt v). If you are
uaing disk drives, you can even call the DOS (l ee the
ACTION! monitor OOS command , mentioned in Chapter 21 .

--33--

Ch~pte~ 2, ACTION! Monito~ Comm~nds

2. 1 BOOT - Rest&~ting ACTION!

Sometimes you need to ~ests~t ACTION! f~om the ACTION!
monito~. This might occu~ afte~ a fatal e~~o~ o~ upon
~etu~n f~om DOS. You can ~esta~t ACTION! by ente~ing
' BOOT ' , then p~essing (RETURN>.

E~&mple., BOOT (RETURN>
B <RETURN>

WARNING , te~t in the ACTION I Edito~ will be l ost.
Compiled p~ogramB and their prog r am va~iables will ~lso
be lost .

2.2 COMPILE - Compiling P~ograms

In ACTION I , a prog r am must be procesBed by the ACTION I
compile~ before it can be ~un f~om the monitor. You
c~n call the ACTION I compiler from the monito~, uaing,

The -<filespec)- is an option which allows you to
compile prog r ams which a~e Btored on a periphe r al
device (disk , cassette, etc.). If no -(filespec>- is
specified, t h en the contents of the Editor buffer is
compil.d. If you are using two windows, the file in
the window Which contsined the cursor when you left the
Editor is compiled.

It t h e Compiler finds a syntax error while compiling
the program, t h e error number and the line on which the
error occur red are display in the Monitor', message
area . The Compiler then returns control back to the
Monitor .

Examples,
COMPILE <RETURN)
C <RETURN>

(compile the proqram in the
current Editor window.)

<RETURN. (compile from cassette)

C -Ol,PRIME.ACT R (RETURN>
COMPILE -PRIME. ACT- (RETURN>

(compile PRIME.ACT
from dis~ d~ive 'I)

Notice that the file name specified in the l~et
doee not have a device given. If no device is
the device Dl, is aseumed.

--34--

example
given,

2.3 DOS - Transfer to DOS

You can
entering

transfer to OS/A+, DOS XL, or Atari DOS by
'DOS', then pressing <RETURN>.

Examples. DOS <RETURN>
o <RETURN>

NOTE: since Atari DOS and some of its utilities use the
ssme memory that ACTION! uses, you should alway. ta~a
the precaution to .ave all files before going to Atari
DOS.

2.4 EDIT - Transfer to the ACTION! Editor

You can transfer to
'EDITOR',then pra.sing

the ACTION!
<RETURN) .

editor by entering

Examples : EDITOR <RETURN)
E <RETURN>

NOTE: if you were just compiling a program from the
editor and the compile failed due to a syntax error,
you will find that the ACTION! editor cursor is on the
line following the error.

2.5 OPTIONS - The Options Menu

The options menu allows you to alter
operational parameters of the ACTION!
Compiler, and Editor. Enter the options
entering OPTIONS , then pre.sing <RETURN) .

Example.: OPTIONS <RETURN)
o <RETURN)

certein
Monitor,
menu by

Each option is displayed in the command line. If you
want to change that option, type in the the value you
want, and press <RETURN). If you don't want to change
that option, simply press <RETURN) . If you want to
exit the options menu all together, press <ESC),

NOTE: a summary of the options availablp may be found
in appendix G.

Following
available.
prompt for

is a description of each of the options
Each description contains the command li ne
that option, the initial state of that

- - 35--

option, and the components of the ~CTION I
option affects (M • Monitor, C - Compiler,

system that
E - e"'ltor).

Ohplay? y M,C,e

The screen display can be turned off for greater
speed dur i ng disk I /O and during ACTION! ~pl1er
processing . You can turn the acreen display off
(enter 'N') or you can leava it on (enter 'y').

Bell? y M,C,E

---The bell ringa whenever errors are encountered in
the ACTION! Monitor, Compiler, or Editor. It
alao rings whenever the ACTIONI monitor is
called. You can turn that bell off (enter 'N') or
you can leave the bell on (enter 'y').

N c

When this option is 'y', distinction is made in
variable names between upper and lower case
lettera (i.e. , 'count' differs from 'Count' and
'COUNT') and the language statements (e.g., FOR.
WHILE, 00 etc.) muat be in upper caae . However.
for the eaae ot beginning ACTION I programmers,
case sensitivity is turned off wh~n you enter the
~CTION! system.

Trace? N c

Lht?

With this option you can control the compiler's
ability to trace program compilat ion. When this
option i. enabled ('y'). the compiler will note in
the Monitor'a measage area every routine call.
together with the parameters passed to that
routine. See chapter 4 for more info~ation on
the usage ot this option .

N

The ACTION I compiler
the current line being
area at the screen .
listing or enter 'N' to

c

can be c~nde<'l to diaplay
compiled in the message

Enter 'Y' to enable this
di.able this listing.

Window 1 ai~e1 18 E

The si~e ot the ACTION! Editor's window 1 is set
explicitly. Window 2 si~e is set imp licitly by
the relationship with windOW 1 -- the two windows
have a eombined eiEe ot 23 line.. When there are
two windows, each can contain no less than 5 lines

--36--

and no mo~~ than 18 lines . Ent~~ the numbe~ of
lines fo~ window I, then p~ess <RETURN). An entry
gr~ater than 18 is converted to L8 and an ent ry
Lae. than 5 ia converted to 5.

Line size? 120 •
The line length is the number of charactera in the
lin~, counting from the left margin (aee next
option). The line length is uaed to h~lp you
eontrol the size o f lines listed to the printer .
The bell sounds whenever the actua l number of
eha racters in the line exceeds the entered line
length. You enter the number of characters oE t he
line length.

WARNING: you can set the Line l ength to a va lue
whieh is out of the eorrect range. The options
menu does not check for this e rror. Lines longer
than 240 eharacters are arbitrarily short~ned

by the ACTION I Editor.

Left margin? , H.'
The left margin ia the starting point for the 11ne
eount mentioned earlier. This option is offered
so that you can get the full use of a screen whieh
displays the leftmost 2 cha racters (not all TV
acreena can do thisll. It is suggeated that you
keep the left marg in aa close to the left edge of
the aereen as you feel comfortabl e with. Normally
aet at 2, you ean set the left margin a. low as 0
and as high aa 39. Enter the appropriate left
margin location and then press <RETURN>.

WAANING, Do not
when using an
display .

EOL character?

enter a
Atari

(blllnk)

number greater
system with the

than 39
atan<lard

E

The EOL (End Of Line) cha raeter is the character
displayed by the ACTION I editor at the end of a
line. Enter the character which you want to see
diaplayed as the viaible EeL charac te~, then pr •••
<aETURN>. Changing from a space to a visible
charaeter would generally only be useful for
~emoving trailing spacea from lines. However, you
may prefer a visible EOL for rea sons of your own.
If you desire such, we euggeat any of the Atari
graphics characte~. (e.g., <CTRL)T is a .olid
cirele) .

--37--

2 . 6 PROCEED - Restarting a Halted Program

Resta r t a halted program (continue from a stop cause~
by preasing the (BREAK> key usIng the ·Break' Library
routine) by entering 'PROCEED', then pressing <RETURN>.
The program continues as if the interrupt.ion had not
occurred.

Examplee,
PROCEED <RETURN>
P <RETURN>

2 . 7 RUN - Program Execution

You can run any program which has just been
and is still in the program area. The command
following formats,

RUN
RUN M<filespe~)M

RUN <address>
RUN <routine>

compi Ie<'!
has the

where (routine> is a vslid PROC or FUNC identifier
(e.g., for 'PROC Prime{)· you would use 'Prime' as the
routine identifier).

The first format is used to run a program you have
compiled from the Editor buffer.

The second allows you to r un programs stored on
peripheral devices. If t.he program Is still in the
ACTIONI language, it is first compiled by the
Compiler, and then it is run. If it is in machine code
(i.e . , you saved thp compiled version of your program
using the ·WRITE' Monitor command), the program runs
immediately.

The third format allows you to run a program (or
routine) which begins at a given address. This is
useful when you are trying to debug a program which
calle a machine language routine you have written.

The fourth is used to
program which you have

run only
compiled.

on. routine •

After program execution, control returns to the ACTION I
monitor. When some kind of significant error occurs
(e . g., an infinite loop), control does not return to
the ACTION I monitor. Such an error requires pressing
the <SYSTEM RESET> key in order to return to the

--36--

ACTIONI monitor . Additional
behavior of runnin9 pr09rams is in

informstion on the
the next chapter .

Example.:
RUN <RETURN)
R <RETURN.

(run a program compiled
from the Editor buffer.)

RUN ~C.M <RETURN. (pull a pr09ram from cassette,
compile it, then run it)

RUN · PRIME.ACT~ <RETURN.
R ~Dl:PRIME . ACT~ <RETURN.

(pull PRIME . ACT from
dis~ '1, compile it,
then run it)

R $400 <RETURN'
RUN 1024 <RETURN.

R Prillle <RETURN.

(run a prog r am at address 5400)
(run a pr09ram at a~dress 1024)

(run the just-compiled
procedur~ 'Prime()')

RUN PrintEr} <RETURN. (run the library function
to print a string to the
screen)

2 . 8 SET - Setting a memory value

The SET command in the Monitor works exactly as in the
Lan9uag"e itself , so we ill r e fer you there for a
delcription of itl ulag"e. See part IV. section 7.3.

2 . 9 WRITE - Saving" Compiled Programs

You can write a compiled program (called a
to dilk for later ellecutlon directly
enterin9 'WRITE', then, in quote., a
specification . The format i. :

binary file)
from DOS by
valid file

WRITE "<filespec.~ <RETURN.

The binary tile in memory i. laved to the specified
file on the dilk. The file is created, if necel.ary .
If there isn't s u fficient room on the disk, or the dis~
is write- protected, you Ire warned with an error
mellage and can try again.

Examplel:
WRITE MPRIME . BIN"
W " OI:PRIME.BINM

<RETURN)
<RETURN'

(save a compiled
ver sion of the
PRIME program to
dia~ J)

(lave the compiled program to cessette)

--39--

The OS or DOS command to e~ecute a machine language
program can be uaed to e~ecute a program eaved to by
the 'w' cOll\llland . See the reterencee mentiOl'led il'l
AppemHx D.

2. HI XECUTE - Immediate Commal'l("

You cal'l
ACTION I
ACTION I
con\IOIand

execute any ACTION I langua'le commancl or any
compi 1 er di recti ve (except foIODULE lind SET) trom

monitor. Prefa ce any euch command with the
XECUTE , the" the atatement(e). Preae "RETURN>.

Examplea ,
XECUTE PrintE(MHello World") <RETURN>
x trace .. :255 <RETURN>

NOTE. uain'l thill command is very aimilar to the BAStC
.Hrect mode.

:2.11 7 - Diaplay a Memory Location

You can dtaplay the value either ot a variable or ot a
epecified ",emory location. Enter '7'. Then enter a
compiler conatant. Pr eaa <RETURN>. The f ormat ia,

7 <compiler conatant>

Tha ACTION I monitor ahow. you the actual memory
location (exprea'ed in both decimlll and helu,"ecimal
fOnllaU) , followed by the printable ATASCII value ot
that IOClltion, ita tour-digit hexadecimal value, the
decimal value of the BYTe, and the decimal value of the
CARD Itarting at the apecified locat ion . If the
identifier ill not in the ACTIONi compiler' a aymbol
table , then a ·variable not declarecl error" occure.

example.

+--+
I >7 $FrYE I

+----- - - ~ --------------------------------+ I 65535, $FFFE .. a U6F3 243 59123 I
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 I
1 1
+--+ --4e--

NOTE I the results might not be what you expect memory
hal been altere~ since the compile - see SYMBOL TABLE
in Part v.

2.12 • - Memory Dump

Starting from a specified memory addresl , you can
display the memory contents of sequential locations i n
a format identieal to that describ~ just above .
Simply enter' · ' and the <address>. The fonnat i ••

<RETURN>

The monitor returns B list of the memory contents in
the variety of format s (mentioned above) at the rate of
one l i ne per memory location. You ean stop the li lting
by presling 'Ipaee bar>. You ean temporari l y halt th~
listing by entering <CTRL) 1. PreIS <CTRL > 1 a second
time to continue the listing.

ElI:llmple .
+--+
I •• 561'1" I
+--+

1536,51'1600 -• 501'11'10 • • 1537 , $1'1601 -• $1'10'1'11'1 • • 1538,$1'160'2 -• 51'10'1'10' • • 1539,5061'13 • $1'11'100 • • 1540',$1'160'4 -• $1'11'11'10' • • 1541,$1'161'15 -• $1'11'1"0' • • 1542,51'161'16 -• $61'106 • • 1543,51'161'11 -• $I'IA0'0 • • 1544, $0608 -• $0000 • • 1545, $06 e9 -• $1'11'11'11'1 • • 1546, $e6eA -• $eee0 , • 1547,5060B -• $0'000 • • +--+

--41 --

Chapter), Program Debugging Facilities

You have probably written programs which rlo not work
the way that you expected, not because of synt~ x

errors, but simply because aomethinQ you're doing (or
t h ink you're doing) ian't executing properly. With the
ACTION I Monitor and its options menu you can debug
your program step by atep to determine where the error
is oc::c uring.

The TRACe Option

One of the options available in the options menu
is ' Trace?'. If this option is enabled ('Y'l, you
can follow your program's execution. Wh e n t.he
t r ace is on, every time II. routine is called its
name and parameters are displayed on the acreen .
You might be able to discover what is going wrong
simply by looking at the order of the routine
calla and/or the parameters being passed . If this
is so, fantastic I If not, you probably need to do
aome major debugging.

The first thing you need to do before doing any major
debugging is to stop your program sometime during its
execution, There are two ways to do this in ACTION I ,
the <BREAK> key and the Library routine 'Break'.

The <BREAK KEY>

Although the <BREAK) key is disabled during use of
the ACTIONi Editor, it is usable during program
execution with certa i n restrictions. The <BREAK>
key will stop program execution only if you are,

1) doing some sort of I/O
2) cal l ing a routine with more than J parameters

These might seem strange c ircumsta nces, but there
is a good reason for them. The ACTION I system
itself doea not check to aee i f the <RREAK> key
has been pressed during program execut ion, but the
system does make calls to CIO in the above two
circumstances, and CIa c hecks to see if the
<BREAK> key haa been preased.

Libr ary PROC Break()

If you want program execution to s top at any given
place, simply make a call to this Library routine
at that point. This routine acts exactly l i ke the
<BREAK> key, except that it works under all

--42--

circumstance8. Using thi8 method to atop a
program is more reliable than pressing <BREAK>
because you know exactly where you are in the
program when the program stop occurs .

NOTE , you may use this routine more th~n once in
one program if you want to break execution at more
than one place.

Now that you have 'topped the program, you can use the
Monitor commands ' . ' and '1' to look at the value of
the variables you're u8ing . If this method of
debugging is used with the 'Trace ' option on . you can
even find out where you are in your program (if you ar~
using the Library 'Break', you already know wher e you
are) and so look at the variablee locsl to the
procedure you're in as well as the global ones.

If this method doesn't work, we csn only suggest that
you insert disgnostic 'Print' statements into your
program (e.g. , PrintE(MIn loop FOR x-I to 100 ~)
PrintBE(x) might be used to debug a FOR loop which has
run amuck).

- -43--

--44--

Fa r t. IV . The ACTI ONI Language

Chapt.er 1

Chapt.er 2
2.1

Chapt.er

Chapt.er

Chapt.e r

3
3.1
3.2
3.3
3.3.1
3 . 3.2
3.3.3
3.4
3.4.1
3.4.2

4
4.1
4.1.1
4 . 1. 2
4 . 1. 3
4.1. 4
4.2
4.3
4.4

5
5.1
5.1.1
5.2
5.2 . 1
5.2 . 1.1
5.2. 1. 2
5.2.2
5.2.3
5 . 2 . 3 . 1
5 . 2 . 3 . 2
5.2.4
5 . 2 . 4.1
5 . 2 . 4.2
5.2.4.3
5 . 2.5

Int.roduction

ACTIONl Vocabulary
Special Notations

Fundamental Dat.a Types
Variables
Constants
Fundamental Data Types

.IT'
CARDinal
INTeger

Declarat.ions
Variable Declarat.ion
Numeric Constants

Expressions
Operators

Arithmetic Operators
Bit-wise Ope r ators
Relational Operatora
Operator Precedence

Arithmetic Expressions
Simple Relational F.xpressions
Complex Relational Expressions

Statement.s
Simpl e Statements

Assignment Statement
St.ructu r ed Statement.s

Conditional Execution
Condit.ional Expressions
IF Statement

Null Statement
Loop.

DO and 00
EXIT Statement

Loop Cont.rols
FOR Statement.
WHILE Stat.ement
UNTIL Stat.ement

Nesting St.ructured Statements

--45--

4'

4. 4.
51
51
51
53
53
53
54
54
54
56

57
57
58
58
68
61
62
6J
64

66

" 67

6' 6.
78
7.
72
7J
74
75
77
77
8'
83
8 4

Chapter • Procedure. and Functions 87
'.1 PROCedure. .,
6 . 1.1 PAOC Deelarfttion •• 6.1. 2 RETURN 91
6 . 1. 3 Calling Procedures " '.2 FUNCtion. ..
6 . 2 . 1 FUNC De~laration ..
6 . 2 . 2 RETURN •• 6 . 2 . 3 Calling Functions " .. , Scope of Variables •• ••• Parameters '.2 '.5 MODULE ,.7

Chapter 7 Compiler Directives , ..
7 . 1 DEFINE 10.
7.2 INCLUDE 10.
7 . , S<T 110

Chapter • Extended Data Types 111
•. 1 POINTERs 111
B. 1. I Pointer Declaration III
B.1.2 Pointer Manipulation 112
•. 2 ARRAYs "' B. 2.1 Array Declaration 114
B . 2 . 2 Internal Representation "' B. 2 . 3 Array Manipulation "' .. , Record. 12 •
B. 3. 1 Declaring Records 121
B.3 . Ll The TYPE Declaration 121
B.3.1.2 Declaring Re~ord Variables 122
B.3.2 Record Manipul a tion 123

••• Advanced Use at Extended Typel 12 •

Chapte r • Advanced ConceptI 134
'.1 Code BlOckS 13.
'.2 Addressing Variables 134 .. , Addressing Routines 136

••• Assembly Language and ACTION I !36
'.5 Advanced Use at Parameters 137

--46--

PART IV: The ACTION I Language

Chapter 1: Introduction

The ACTION I language is the heart of the ACTI ON!
aystem. It incorporates the good points of both C and
PASCAL and, at the same time, is the faatest high
level language available for ATARI home computerB. If
you have a background in BASIC or some other
unstructured language, you will find ACTION ! a welcome
change becauae itB structure iB Bimilar to the way we
Btructure ideaB in our own mindB. You can actually
look at an ACTION! program someone el s e has written
and understand what is going on, without having to wade
through a thouBand GOTOB and undeclared variables.

Program structure is simple in ACTION!. because
programs are built component by component. The
componenta are groups of related statements which
accompliBh some task. When you have written components
for all the talks required in your program. it 11 a
s imple matter to e _acute them. It ' s very s imilar to a
list of choreB, Buch as

I.} Make your bed
2.} Clean your room
3.} DUlt the living room furniture
4.) Waah the Dog

e_cept that the
in whiCh you
likes beat .

computer
pre Bent

will do the taskB in the order
them, not in whatever order it

Raving leperate component I a1ao makes it very ealY for
you to do a aingle task over snd over. or do the Bame
task in ten different situationB and placeB .

The only requirement thiB struetured approaeh imposes
iB that a program must consist of proper component. (in
ACTION I they are called procedurel and functionl) for
it to be valid. A program uBually eontainB many
componentB . but at least one is required. This iB not
a restrictive requirement at all. aB you will eoon find
out. In fact, it makes your program more
comprehensible to youreelf and otherB.

NOTE : when compiling and running a program with many
routinea, the laat routine ia conBidered to be the main
one, so you ahould use it to control you program.

--41--

Ch~pter 2: ACTION I Voc~bul"ry

In our diseu~sion of ACTION I we will use some
te rminology th~t we should explain. We'll use ~s

l i ttle j~rgon ~s possible, but some i s require" to
differentiate between p~r~llel but ('fifferent concepts
l~ter on. WhIt terms we ('fon't present here will he
expllined when t h ey're first used. Before going into
the special not~tions used in this part, we'll give you
a list of the keYWOrds in ACTION I . A ~keyword~ is ~ny
word or symbol the ACTION I compiler recogni%es 8S
someth ing special, whether it be an operator, a d~ta
type n~me , a statement, or a compiler directive:

""0 FI OR UNTIL
ARRAY FOR POINTER WHILE <>
BYTE FUNC PROC XOR I
CARD IF RETURN + , r
CHAR INCLUDE RSH ,. l
DEFINE "" SET • <

00 LSH STEP I <-

ELSE MOD THEN • ,
ELS£IF MODULE TO • EXIT 00 T'lPE I •

WARNING: 'lou may not
context other thIn the
l anguager specific~11y,
identifiers,

u ..
00.

you

the ~bove keywords in any
definet! in the ACTION I

may not use these words as

2.1 Special Notations

When discussi ng the l~ngu~ge, we use some terms which
might be unf~mili~r to you, so their me~nings ~re
p r esented here. The list is in alphabetical o rder,
with the symbols at the end.

Address An ~ddress is a location in memory . When
you tell the computer to put something into
memory, you must give it sn addres s, just
tike you give the post office the address
of the destination of a letter on the
letter's front. In the computer there Ire
only house numbers, no streets , no cities,
no states, and no %ip codes. So an ~ddress
to the computer is simply a number.

Al phabetic Any letter of the a1phsbet, in either upper
(ABC) or lower (abc) csse . RAlph~numeric~

includes the digits w ,,~ through "9" a8 well.

--48--

Identifier Throughout the m~nu~l we will refer to the
names you give to vari~blea, procedures,
etc. ~ s identifiers. We do this because
nameS in ACTION I mu s t follow some
guidelines:

MSB, LSB

,

1. They must start with an alphabetic
character

2. The rest of the char~cters must be
alphanumeric, or the underline 1_)
characte r .

3. They may not be keywords.

These rules must be obeyed when you wish to
create an identifier, othe~iRe you will
get a ayntax error.

MSB stands for "MORt Significant Byte", and
LSB stands for "Least Significant Byte".
In the decimal system we have significant
digitR, not bytes. For example, the mORt
sig nificant digit of '54' is '5', and the
leas t signific~nt is '4', If you a r e un
familiar with the byte Rtorage system,
don't worry. You can program very well in
ACTION I without Knowing anything about the
internal workings of the computer.

Note that two-byte numbers stored and used
by ACTIONI ere generally in LSR, MSR order.
as is conventional on 6502-based machines.

The dollar sign. when used in front of a
number. tella the computer that the number
is hexadecimal (the base 16 number system
uleful when working ~irectly with the
computer), not the customary decimal,

Examples :
$24FC , ..

--49--

'.0
$F000

(end)

ond

I: end I I

The semicolon is the comment
everything on a line after it
the compiler.

Examples,
;This is 8 comment

symbol. I!Ind
is ignorerl by

This is not and will cause a
compiler error
; This comment hss a ; semi
;colon in it
var_) ;comments can come

;sfter executable
;statements

,this is a J line comment

,with a bl8nk line in it

Whatever is between these two symbols is
used to define some part of a format. It
is never a keyword, and usually is a term
descr ibing what goes in its place in the
construction (e.g., <identifier> means a
valid identifier should be used).

Whatever 1s
the format
means that
here. but is

betwee n these is optional in
construction («identifier»
a valid identifier may be used
not required).

As in music , these symhols denote
repetition. Anything between them ia
repeatable from zero times on up (e.g .•
I :<identifier>:1 means that you could have
a list of zero or more identifiers here).

This symbol shows an 'or' situation (e.g.,
<identifier> I <address> means you could
use either an identifier or an address, but
not both.

--5"--

Chapter 3: Fundamental Data Typea

Before
muat be
are the

diaeuaaing
aaid about
basic data

3. I Variables

the Fudamental Data Types, something
variables and constants, aince they
objects the computer manipulates.

Legal variable names must be vali~ identifiere . Other
than this there is no restriction on variable namee.
Becauee a working knowledge of functions and proceduree
ie required before discueaing the scope of a variable,
the topic il presented late r in section 6.3.

3.2 Constants

There are three types of constants in ACTION I I numeric
constants, string conetents, and compiler constants .

Numeric constanta may be entered in three different
formata,

I) Hexadecimal
2) Decimal
3) Character

Hexadecimtll
(S) In front

constants tire repreeented by a dolltlr sign
of the number.

Examples.
S4A1'I6
$OD
$3613

Decimal conatanta require no apecial chtlracter to
define them al decimal.

Examples,
65566
2
324
46

NOTE: 80th hexadecimal and decimal numeric constants
mtly htlve a negtltive 8ign in front of them, thus:

-SSC
- 4360

- - 51- -

Character constants a r e r epresented by a 8ingle quote
(') preceeding the c ha r acte r. Chsracters are numeric
constants beca uae they are internally represented as
one byte numbers, as per the ATASCII character eode
set.

Examplea:
"
"

'v

String constants consist of a stri ng of ~ero or more
characters e nclosed by double quotes (M) . When stored
in memory, they are preceeded by thei r length. The
double quotes a r e not considered as ~ rt of the atring r
if you want a M in your string , place two doubl e quotes
together (s e e examples) .

Exampl es:
MThis is a string constant M

Ma MM double quote in ~ string H

M583 95 M

"q" (a single character string constsnt)

Compiler constants are different from the above types
of constants, in that they are used at compile time to
set ce r tain attributes of variables, p r ocedures,
functions , and code blocks, and are not evalu~ted at
run-time . The following format a a r e valid:

1) A Numeric Constant
2) A Predefined Identifier
3) A Pointer Reference (see section a . l . 2)
4) The Sum of Any Two of the Above

We have al ready talked about the first format, but the
other three require some explanation, When you use a
predefined indentifier (i . e., a variable, procedure or
function name) in a compiler constant, the value uaed
i. the addre •• of that identifier. The third format
al lows pointer refere ncea as compiler conatanta . The
laat o ne permits you do simple addition of a
combination of any two of the other three types. Here
sre some examples which show the valid fo rmats in use :

cot
~8D00
.",,"
S+ptr
~a0+p

luses the address of the variable 'cat'
,a he x con.ta n t
;a pointer reference as a constant
;5 plus the cont ents of the point.er 'ptr'
re valuates to ~80 plus the addre ss of 'p'

--52--

3.3 Fun~amental Data Type.

Data type. allow human. to make .en.e out of the atream
of bit. the computer understan~s an~ manipulate.. They
allow u. to u.e concept. we undere tand, .0 we need not
know how the computer does what it does . ACTION I
eupporta three fundamental types and eome advanee~
e~tenaiona of theae (.ee ehapter B for the extended
typea). The be.ie ones are BYTE . CARD, and INT. an~
eaeh i. detailed below. All of the fundamental type.
are numerie, and .0 allow you to use numeric formst
when entering data.

3 . 3.1 BYTE

The type BYTE ia uaed for poaitive integer ' lea. than
256. It ia internally represented as a o ne-byte,
unaigned number -- it. values range between e and 255.
At firat glanee this might aeem a uaeleas type, but it
haa two worthwhile applieation.. When uaed a. a
eounter in loopa (WHILE, UNTIL, FOR) program speed will
inereaae beeau.e it'. ea.ier for the eomputer to
manipulate one byte than many.

Alac, ainee eharaetera are repre.ented ina ide the
eomputer aa one-byte numbera, BYTE i. alao uaeful aa a
charaeter type. In faet, the ACTION I compiler allowa
you to uae the keyword. BYTE an~ CHAR interehangably,
ao thoae of you with PASCAL or C experienee ean u.e
CHAR when dealing with eharacter. and feel more at
home .

3.3.2 CARDinal

The CARD type is very similar to the BYTE type, e~eept

that it handle. mueh larger number.. Thi. i. beeau.e
it i. internal l y represented aa a two- byte unsigned
number. Henee its value. range from 9 to 65,535 .

TECHNICAL NOTE I
whieh i. standard

a CARD is atored in the
on 6592 - baaed machinea.

--53--

LSB, MSB form

J,J.J INTeger

This type is like BYTE and CARD in t h at it is integer
only, and can be entered in numerie format, but th~t is
where the si~ilarity ends. INT allows both positive
a nd negative numbers ranging from - J2768 to 32767. It
is internally represented .s a two byte signed number.

T~CHNICAL NOTE: INTs are Itored LSB, MSB like CARDs .

3,4 Deellrations

Deelarations are used to let the eomputer know that you
wilh to define lomething. For example, if you want the
va r iable ' eo.t' to be of the type CARD , somehow you
havs to tel l thil to the eomputer. Otherwise the
eomputer won't know what to do when it sees 'COlt ' .

Every identifier you use must be deelared before it i.
uaed, whether it'l a variable , procedure, or function
name. Variable declarations will be explained here,
fol l owed by a note about numeric constant declarations:
procedure and function declarations are explained in
chapter 6.

3,4,1 Variable Declaration

The procedure for declaring a variable is the .ame
matter what fundamenta l type you want it to be.

00

""e ,
basic format ial

<type> cident> I-cinit info» 1:, <ident> (-cinit infol: I

whe r e
<type>

cinit info>

i s the fundamental type of the
variable(s) being declared
is an identifier naming the varia
ble
al lows you to initialize the value
of the variable, or define the
memory location of that variable

--54--

'<init info)' haa the form,

where

<addr> 1 [<value>]

<addr>

<value>

ia the addreaa of the variable,
and muat be a compiler conatant
ia the initial value of that
variable, and muat be a numeric
conatant

NOT!'!, an explanation of <,), {, }, I., .1, ano:'l 1 can
be found in the vocabulary (chapter 2) .

Notice that you can optionally have more than one
variable declared by one <type). You can alao
optionally tell the compiler where you want each
variable to reside in memory or initia li~e the variable
to a value. The following examples should help clarify
thia format:

BYT!'! top, hat

BYT!'! x-$Seee , ·

y- (e]

rdeclare 'top ' and 'hat' al BYTE
rvariablea

:declare 'nurn ' as an INT varia
:ble and initiali~e it to 0

rdeclare 'x' aa BYTE, placing it
rat memory location $Seee
;declare and initiali%e . y'

CARD ctr-(S83D4],
bignum-[eJ.
cat-[3eM0]

,declare. and initiali%e.
;three variables aa CARD
;type

In the laat two examp l ea you may note that the
variablea need not b e on the aame line. The ACTION)
compiler will keep reading in variables of the type
given aa long aa the r e are comma a separating them, ao
remember not to put a comma after the laat variable in
a liat (strange things will happen if you ~ol.

Variable dec larations muat come immediately after a
MODULE atatement (see aection 7 .4) o r at the beginning
of a procedure or function (aee sections 6.1.1 and
6.2.1) . If you use them anywhere else, you will get an
error.

--55--

3 . 4.2 Nume ric Conltantl

Numeric conltantl a r e not explicitly declared. Their
usage declares their type. ~ numeric constant i.
consider ed to be of type BYTE if it ia less than 256,
otherwise it is consider ed to be of type CARD. For all
p r act ical pu r poses , negative constants (e.g. -7) are
t r e a ted aa type INT,

Constant Type

543 CARD
'00 BYTE
$F42 CARD
'w BYT'

--56--

Chapter 4: Expressions

Expressions are constructions which obtain values from
variables, constanta, and conditions using ft specific
set of Operators, For example, '4+3 ' is an expression
that equals '7' as long aa we take the '+' operator to
mean addition, If the operator were ,~, instea~,

multiplication would result, and the expreasion would
equal '12' (4~3·12). ACTION I haa two types of
expressions. arithmetic and relational. The example
given above is an arithmet ic expression. Relational
expresaions are those which involve a 'true' or 'false '
a nawer . ' 5 >. 7' ia falae if we take '>.' to mean Mis
greater than or equal toM. Thia type of expression is
used to evaluate conditional atatements (see section
5.2.1). A conditional statement in every day life
might be, MIf i t is five o ' clock or later. then it's
time to go home,M An ACTION I relational expression
for this might be:

hour >. 5

You yourself
automatically
computer needs

make this cheCk (and many
when you look at a clock,
to be told exactly what to check

others)
but the

fur .

Before going into the expressions themselves. we need
to detine the operators that apply to each type of
express ion. After that we'll discuss each expresaion,
and then go into some apecial e xtensions of relational
expressions .

4 . 1 Operators

ACTION I supports three kinds of operators.

1) Arithmetic operators
2) Bit-wiae operators
3) Relationsl operators

As suggested by the names of the tirst and
specifically pertain to an expression type.
class of operators performs arithmetic and
operation. at bit level,

--57--

last, they
The second
addre.sing

4.1.1 Arithmetic Operators

The arithmetic operators are those we commonly use in
math, but some are modified so that they can be typed
in from a computer keyboard. Here is a list of those
ACTION I supports, each followed by its meaning:

•
/

"00

+

unary minus (the negative sign) Ex: - 5
multiplication Ex: 4-J
integer division Ex: IJ/5 (this equals 2.

since the remainder is dropped)
remainder of integer division Ex: IJ MOO 5

(this equal .. 3, since IJ/5 -2
with a remainder of J)

addition Ex: 4+3
.. ubtraction Ex: 4-J

Notice that
used only
declarations,

'-' is not an arithmetic operator. It is
in relational expressions, certain
and assignment statements.

4.1.2 Bit-wise Operators

Bit-wise operators manipulate numbers in their binary
form. This means that you can do operations similar to
those the computer does (since it always works with
binary numbers). The following list summarizes the
operators :

• bit- wise 'and'

• bi t - wise ' or '
bit-wise 'exclusive 0"

XOR same •• ., .
LSH le f t "hift
RSH right shift • address of

The first three compare
r esult dependent on the

numbers bit by bit and return a
operator. as seen below.

~ compares the two bits,
returning a value
based on this tabl e :

Example: 5 & 39 -- 00000101
00100111

Bit A
I , ,
I

Bit-wise And
Bit B Result

1 1 ,
• ,

,
• ,

(equals 5 dec imal)
(equals J9 decimal)

" ----------
00000101 (result of & is 5)

--5B--

Bit-wise Or
, returns a value depen

dent on this table,
Bit A

1
Bit B Result

1 1 • 1 1

• • • 1
• 1

Exa~ple: S t 39 - - 00000101 (S)
00100111 (39) , ----------
00100111 (result ot , is 39)

Bit- wise XOR
returns • velue depen- .t< R .t< B Result

dent on this table: 1 1 • 1 • 1

• • • • 1 1

Example : S I 39 -- 00000101 (S)
00100111 (39)

00100010 (ruult of I is 34)

Both LSH end RSH shift bits. If they operate on
two-byte types (CARD and INT) the shift occurs t h rough
both bytes. In the case of INT. the sign of the number
is not preserved when using RSH or LSH. and may cha nge.
Their form is :

<operand> <operator> <number of shifts>

Where
i, a numeric CO~atant or
variable

<operator> is either LSH or RSH
<number of shifts) ia a numeric constant or

variable uled to deter
mine the number of single
bit shifts to do

Some examples to illustrate both LSH •• d RSH foilowl

(5) 00000101 (39) 00100 11 1
(s LSH 1 • ,.) 00001019 (39 L$H 1 - 78) 0HlIH1l0
(S RSH 1 _ 2) 00000011;' (J9 RSH 1 - 19) 00010011

operation H58 L58
01010110 11001010 ($S6CA)

LSH 1 10101101 10010100 ($S6CA LSH 1 -$AD94)
RSH 1 0''1101011 01100101 {$S6CA RSH 1 -$2B65}
LSH 2 01011011 00101000 ($56CA LSH 2 -$S828)
RSH 2 00010HH 10110010 ($56CA RSH 2 -$15B2)

--59--

Notice that a LSH by one il the .ame a. multiplying by
two, and a RSH by one i. like ~iviaion by two (for
poaitlve numbera). In fact, this meth~ of
~ultiplicatlon and division ia taster than using ' · 2'
and ' / 2' becauae it is cloaer to what the computer
underatands, ao the computer doesn't nee~ to tranllate
the expreasion into its own binary operation for~at .

The ' f' operator givea the a~dreaa ot the variable to
it. right, It cannot be use~ with numerical conatanta,
'fctr' will return the a~dreal in memory of the
variable 'ctr' , The 'f ' operator 11 very uaeful when
dea ling with pointers.

4,1.3 Relational Operators

Relat ional operator a are allowed only in relational
expreseiona, and relational expreslions are allowed
only in IF, WH ILE, and UNTIL statements. Relational
operator a may not appear anywhere except in the.e
.tatementl , AI out l ined in the overview ot this
aection, relational operator. test condition. of
equality , A table ot the ACTION I relational operator.
follow.:

, .. ,
,-
<
<-

AND
OR

te.ta for equality Ex. 4-7 (this la obvl-
OUlly fal ••)

te.tl for inequality Ex: 417 (true)
same a. ~I"
telta tor greater thIn Ex, 9>2 (true)
teata tor greater than or equal t o Ex, 5)-5

(this i. true)
telt. for Ie •• than Ex: 2<9 (true)
telta for les a than or equal to Ex, Sc_S (thia

ia true)
logical 'and'; .ee .action 4.4
logical 'or ' ; .ee aection 4,4

Both " ' and '<)' mean the same thing to ACTION I , ao
you may uae tha one you prater . 'AND' and ' OR' are
apecial relational operator a , and are diacuaaed in
·C~ple. Relational Expreaaiona', aection 4.4.

TECHNICAL NOTEI the ACTION I Compiler doel comparilonl
by lubtracting the two valuel In que.tion and complring
the difference to 0 , Thil meth~ works correctly with
one exception -- if you are comparing a large politive
INT value with a large negative tNT value , the outcome
could be wrong i.i nce INTa use the highest bit aa "
.i9n bit).

--66--

4.1 . 4 Operator Precedence

Operator. require some kind of precedence, a define~
or4er of evaluation. or we wouldn't know how to evalu
ate expressions like :

4+5 · 3

Ia this equal to (4+S)·3 or 4+{S·3)? Without operator
precedence it's impeasible to tell. ",eTION I 's
precedence i. very preciae but c~n be circumvented by
using parentheses, since they hsve t h e h ighest
p r ecedence . In the following table the operators are
listed in order of highest to lowest prece~ence.
Operators on the same line have equal precedence an4
are evaluated from left to right in an expr eesion (eee
examplel!ll) .

l parentheses

• unary minua. 1I4drf!es
• I MOO LS' RS' mult,div , rem, etc ..•
+ a~dition , aubtraction

• I <> , ,. , ,. relational operatora
,,"0 • logical/bit- wise and
OR t logical/bitwise o r
XOR I bitwise exclusive 0<

",ccor 4ing to thie table, our ear l ier example, 4+S *3,
would be evaluate4 as 4+(S · 3) because t he '. ' ie of
higher prece~ence than the '+'. What if (4+5)·3 were
intended? You'd have to include the parenth .aes, as
shown, to override the normal operator prece4ence .
Here are .Ome example. to look over:

expression result evaluation order
---------- ----------------
4/2 * 3 6 I.·
s,' true ,
4J MOO 7 · 2+19 21 MOO , • .+
-«4+2) /3) -2 +,1. -

--61 --

4.2 ~r ithmetic Expressions

An arithmetic expression consists of a group of
numerical constants, variables, and operators ordere~
in such a way that there is a numerical result. The
order is as fol l ows:

<operand) <operator) <operand)

wher e '(operand)' is a numeric constant, numer ic
va riable, FUNCtion call Isee section 6.2.3), or another
a rithmetic exprellion . The firlt three poslibi l ities
are st r aightforwa r d enough , but the last one is a
p r obl em. Here's an examp l e to show you what we meen:

Ita r ting expreasion, 3* (4+(22/7) *2)

order expression evaluation simplified .. p
---------- ---------- --------------

start 3* (4+(22/7)*2)
1 (22/7) 3 3* 14+3*2) , (22/7) * 2 • 3* 14+61
3 14+122/7) * 2) ,. 3*11'1

• 3* 14+{22/7) *2) 3. 3.

' o r der' is the order of the exprel,ion eValustion,
'ex pression' shows which expression is being evaluated.
'evaluation' shows the evaluation of that expression.
a nd 'simplified exp' shows the expression after the
evaluation has tsken p l ace.

No t ice that expreasions 2 through 4
ex pression as o n8 of their operands.
~expr.ssion a& an operand M has alresdy
l eaving a number in its place, a& seen
ex p ' .

contain another
but that this
been evaluated,
in '8implifieCl

Some exampl el fo l low
or constant.):

exprelsion

'A* (doq+7)/3
5 ••
var " 7 HOD 3
ptr+@xyr.

(all lowercase wor ds are variablea

--62--

evaluation order

+, * ,I
(none)
MOO , & '.+

Arithmetic expressions in ACTION I may involve operand,
of ~iffering data types. The result of such mi,ing i,
outlined in the table below. The type at the
intersection of any row and column is the type
resulting when the row's and column's types are mixe~.

I BYTE INT CARD
- -----+- -----+------+------

BYTE I BYTE INT CARD
+

INT tINT INT CARD
+

CARD 1 CARD CARD CARD

NOTE I uaing the unary minus (negative .ign '- ') results
in an implied INT type, and using the addresa operator ,
'@', reau l ts in an implied CARD type.

TECHNICAL NOTE: using the ,-, operand r esulta in an INT
type, so multiplication of very large CARD valuea (>
32161) will not work proper ly.

4.3 Simple Relational Expreasiona

Relational expressions are uaed in conditional state
menta to perfor. tests to aee whether a atatement
ahould be executed · (more o n conditional statements in
aection 5.2.1). Note that they may be uaed ONLY in
conditional statements (IF, WHILE, UNTIL) .

There may be on l y o ne relational operator in a aimple
r elational expression, sO teats fo r multiple conditions
muat be handled differently (They are covered i n t h e
following aection on complex relational expressions).
The form of a simple relational expression ia:

where

<arith exp)<rel operator><arith exp>

<arith exp>
<reI ope r ator>

i. an arithmetic expression
is a relational operator

Here are aome samples of valid relationa l expr essional

@cat<-$22A1
Var () ' y
5932 . counter
(5'1)-8)- (3 - (cat+dog)J
add r /$FF+ (@ptr+offaet) () $F0)D-ptr' offaet
(5 +4) - 9) ctr-I

--63- -

4,4 Complex Relational Expres.ione

COMplex relational expressione allow you to cover a
wider range of telts by including multiple testa , If
you want to ~o aomething only on Sundays in July, how
do you get the computer to teat whether it'. Sun~ay and
then test Whether it'a Ju ly? ACTION I allows you to do
this ~ind of multiple testing with the AND an~ OR
operatora (remember how they were glossed over in
lection 4 . 1 . 3?). The compiler treats these as speci"l
relational operatorl to test a con~ition using limple
relational expres.ions. The form ia'

<reI exp~<ap op><rel exp>I.<sp op><rel exp>"

where
<reI exp>
csp op>

is a simple relational exprellion
il one of the apecial operators AND
or OR

NOTE. there ar. no exception I to thil form. It you try
.omethinq el.e, you will usually qet the compiler error
'Sad Expression'.

The truth table balow ahowa what each of thes.
operators will do in a given situat. ton. 'exp I' an~
'exp 2' are the simple relationsl expressions on either
side of the apecial operator: 'true' and 'false' are
the poesible r esults of a r elational test.

RELATIONALS I RESULTS

--------------~--------------up 1 I up 2 I AND I OR
------+-------+-------+------
true I true I true I true

+ + +
true I falae I false I t r ue

+ + +
falae I true I falee I true

+ + +
fa lse I falee I false false

NOTE. you may u.e parentheses around one segment
complex relational expreseion to inaure the order
evaluation. If you don't do this, the expreslione
evaluated in left to right order. (see Examples)

of •
of

n.

WARN ING: at the writing of thil manual, the ACTION I
compiler ae.. the pairs AND -- &, and OR --, as
.ynonyma, and they are evaluat~ in the same way
(bit-wiae). If you follow the rules out lined above
When using them. you should have no problems. Also. if

--64--

you atlck to ualng '~ND' and 'OR'
re l ational aenae, and '&' and '" only in
senae, your programs will be compatible
upgrades of ACTIONi.

o nl y
<h.
with

in t h e
bit-wise
pou i ble

Here are aome aamplea of valid compl ex relations l
expr essions :

cat<-5 AND dog<)13
(@ptr+7} · 3 , $60FF AND @ptr <- $lFFF
xl$F0<)0 OR dog>-100
(B&cat}<10 OR @ptr()S0D
cat<)0 AND (dog>400 OR dogc-400)
ptr-$D456 O'tr-S~000 OR ptr -S600

Here's a confusing aituation :

$f'0 AND SOY

ia f alae
operator
wheresa

because
being

<h.
uaed

'AND'

"
SY0C>0 AND S0f'c>0

ia Been aa
an arithmetic

a bit-wiae
expreaaion,

ia true because t he ' ~ND' joina two aimple relational
e xpresaiona, and ao ia a special operator a. uaed in
complex relational expre •• iona.

--65--

Chapter 5: Statements

A computer program would be useless if it could not
actively operate on data. You would be allowed to
declare variables, constants, etc., but there would be
no way to manipulate them. Statements are the active
part of any computer language, snd ACTION! is no
exception. Statements translate an action you want to
do into a torm which the computer can understand and
execute properly. This is why statements are sometimes
r eferr ed to as executable commands.

There are two classes of statements in ACTION!: simple
statements and structured statements. Simple state
ments contain no other statements within themselves,
whereas structured statements are COllections of other
statements (either simple or structured) put together
following a certain order. Structured statements may
be broken down into two categories:

1) Conditional Statements
2) Looping Statements

Each category is discussed separately in the section on
structured statements.

5.1 Simple Statements

Simple statements are those Which do one thing only.
They are the basic building blocks of a program, since
any aet i on the eomputer performs i8 a simple statement
of one kind or other. There are two simple statements
in ACTION!:

1) Assignment Statement {including FUNCtion Calls}
2) PROCedure Calls

PROCedure and FUNCtion calls are discussed in chapter
6, and the assignment statement follows. There are two
keywords that are also simple statements,

EXIT
RETURN

section 5.2.3.2
sections 6.1.2 and 6 . 2.2

but the last two are used in specific constructs, and
so are discussed where appropriate to their usage.

--66--

5.1.1 Assignment Statement

The assignment statement is used to give a value to a
variable. Its most common form i s ,

evariable)-earithmetic express i on>

NOTE, eva riable' may
data type , or it can be
reference.

be a variabl e of a
an array, pointer,

fundamenta 1
o r recor d

NOTE. the expression MUST be arithmetic I
use a relational expression. you will
because the ACTION I compiler does
numerical value to the evaluation of
expression.

I f you try to
get a n eccoc .
not a •• ign a

a rela tionAl

The assignment operator is ' -'. It tells the computer
that you want to asaign a new value to t h e given
variable . Do not confuae it with the relational '-' .
Although they are the aame character, the compi l er
reads them differently. each according to its context.

The following examples illustrate the assignmen t
statement. You'll notice a variable decla r a t ion
aection preceding the examples themaelve.. It ' s th ere
because some of the examples show what happen s when you
mix types (i . e. the variable and value being assig ned
to it a r e not of the same ~ata type).

BYTE bl,b2,bJ,b4
INT il
CARD cl

cl-23439-$I1l70B

puts the ATASCII code number
'0' into the byte r eser ved
'b3' .

to<
fo<

puts the hex number $ 4 4 into the
byte r eserved for the BYTE vari
able 'b4' ($44 is - OM in TASCII
and so 'b3' a nd 'b4 ' now contai n
the same thing).

adds 16
of 'b4',
into the

to the numerica l value
and puts the r eault

byte reserved fo r 'bl'.

puts the value 21 4 31 ($53B7) in
the two bytes r e served fo r ' cl'.

- -67--

puts tlle value -2 14 31 ($AC49) in
the two bytes tes~tved fot 'il'.

put, the v~lue $49 (73) into the
byte reserved fOr 'b2'. Notice
that the computer t~kes the LSB
of 'iI' to put into 'b2' (the
MSB of it is $AC; LSB is $49).

add, 1 to the current value of
'b2' and stores the sum b~ck

into 'b2'. 'b2' now contains
$4-' (74).

Notice t hat the last e xample's form is:

<var)_<var> (Operator>'operand>

Since prog r ammers often
al low. the following
thing:

use the above format, ACTIONi
shorthan<'l form to do the same

The operator must be either arithmetic or bit-wise.
The operand must be an arithmeti c expression. The
following are some examples of this shorthand form:

b2--+1 ,. Ch. same •• b2-b2+1
b 2--- bl 1. Ch. same .. b2 .. b2-bl
b2 '.F i. Ch. same .. b2-b2 • , ..
b2 - -LSH (5+3) ,. ,he s ame ,. b2 b2 L," (51"3)

Th1 . Sho rthand form "a save yO" , la, of typing over
'h. l ong method ,ad even generates better maChine coo.
'a • =. in.tances .

--68--

5.2 Structured Statements

If only simple
aeverely limited
on e computer :

statements were available, you'd be
in the number of things you could do

The only way you coul~ repeat a group of state
ments a number of times would be to type them out
in the aame order the right number of times. If
you wanted to repeat a group of ten atatements ten
times, you would end up typing in lee statements I

You would not be able to
statements conditionally,
them if some apecified test

e~ecute a group of
that is, only e~ecute
ia satisfied.

The purpose of structured statements is to solve theae
and other problema. Structurad statements as a whole
ara divided into two leperate categories I Conditional
Statements and Looping Statements . We will discuss
each of these categories separately.

5.2.1 Conditional e~ecution

Conditionsl execution allowa you to test an expression
and execute various statements depending on the outeome
of the test. Since the expression controls conditional
execution, it is called a conditional expre.sion.

Three ACTION I statement I allow conditional execution:

IF WHILE UNTIL

WHILE and UNTIL are looping atstements and wi l l be
dealt with later, but we'll discuss IF immediately
after the rules governing conditional expresaions.

--69--

5.2 . 1.1 Conditional E~pression8

Since a conditional expression is involved in a test,
there are only t~o values it may have -- true or false.
This does not mean a conditional expression is a new
type of e~pression. however. In fact, a conditional
expression is simply either a relational or arithmetic
expression. Only the interpretation is different. The
following table showa what the conditional interpreta
tion is, depending on which type of expression it is,

Expression Type I Normal Result I Conditionel Result

----------------+---------------+-------------------
I arithmetic I zero (0) I false
I I non - zero I true 1
1---------------+---------------+------------------1
r relational I hlse I false r
I I true I true r

5.2.1.2 IF Statement

The IF statement in ~CTIONI is much li~e the 'if'
conditional statement in english. For example,

~If I have $9 or more, I'll buy the 8teak . ~

In ACTION I the same statement might be :

BYTE money,
steak-[9].
fish-cal.
chicken-[6].
hotdog-[2]

IF money>-9 THEN
buy(ateak,money)

FI

NOTE: bUY(8tea~,money) ia a procedure call a nd will be
dealt with in section 6.1.3.

From the above e~ample you can see that the basic form
of the IF statement is:

IF <cond o e~p .) THEN
<statement(s»

--70--

'PI' is not pa~t of ~Fe fi fa fum ... •• but 'IP' spelled
backwa~ds. and a keywo~d to the compile~ showing the
end of an IP statement. Since IF can wo~k on a list of
stat ements. we need 'PI' to terminate that list,
Without this keywo~d the compile~ would not know how
many of the statements following the THEN went with the
IP s tatement.

The above is only the bas ic format . The IF statement
has two options. ELSE and ELSEIF. English also has
these options, so we'll use comparative examples,

~If I have $g or
otherwise 1'11 buy

more I'll buy the
the fish platter.~

The ACTION I equivalent of this is,

IP .oney>-9 THEN
buy(steak,moneyl

ELSE
buy(fish,money)

FI

ELSEIF is somewhat different,

steak .

~If I have $9 or more I'll buy the steak . If I
have between $8 and $9 I'll buy the fried fiSh.
If I have between $6 and $8 I'll buy the
chicken, Otherwise I'll buy the hotdog,~

would be.

IP money>-9 THEN
buy(steak,moneyl

ELSEIP money>-8 THEN
buy(fish,money)

ELSEIP ~oney>.6 THEN
buy(chicken,money)

ELSE
buy(hotdog,moneyl

FI

in ACTIONI. Notice that we don't have to cheek for
~money>-8 AND money<9~, as in English, We can ~o this
because the compute~ goes through the list sequentially
from top to bottom. If any conditional case is true.
the statements it cont~ols are executed, and then the
Whole reat of the IF statement (including all following
ELSEIFs end ELSEa) is skipped. So , if the computer
doea get to ~ money>-8 ~ , we .l~eady know that we have
leas than $9, because the preceeding conditionel tested
for ~money> -9~ and found that condition falae.

--71--

The ELSEIF option 11 very useful when you w~nt to test
~ v~ri~ble for ~ number of different conditions. e~ch

requiring a different action.

5.2 . 2 Null Statement

The null It~tement is uled to do nothing. After
ahowing you s~e at~tementa thlt do something, and
after atrelaing the necelsity of statements that do
aomething. why a atatement that does nothing? There
are actually a couple of good uael for a st~tement that
does noth ing: Timing Loops and ELSEIF cases.

Since we haven ' t yet dilcussed loops at all, we'll
limply lay that timing loop' are uaed as e time delay
(e.g., if you want to p~use between printing lines to
tha the Icreen, you juat use ~ timing loop to waste a
few momenta). You can find an example of a timing loop
in aection 5.2.4.1.

To illuatrate the uae of the null atatement 1n ELSEIF
easel. here', an example:

Scenario: You are writing a program that al lows
Itack brokerl to find out information about
certain stocks. using the commandl you have made
available. The command, you 're implementing ~re :
BUY. DOWN? , FIND, QUIT, SELL, and UP?, but you
haven't implemented FINO yet. All you do il tpst
the firlt letter of the entered command, 10 you
have to telt for B,D,F,O,S, ~nd U. But FINO isn't
done. so wha t do you dO when they type 'P ' ? Easy.
you do nothing, hoping that someday (when FIND is
ready) you'll do lomething. Here'a hOw the
program fragment might look:

IF chr- 'B THEN
dobuy ()

ELSEIF chr-'O THEN
dodown()

ELSEIF chr-'F THEN
: •••• here'l the null statement

ELSEIF Chr-'O THEN
doquit()

ELSE IF chr-'S THEN
dOlell()

ELSEIF chr -'U THEN
doup()

ELSE
doerror() ; •••• no command match

Fl

--72--

All the 'do---'s are procedures to do the given
command. It you look at the caae ot Rchr_ 'FR. you see
that nothing is done . That's the null Itatement. When
PIND is ready. all you need to do is put the 'dofind{)'
procedure in where the null statement now ia, and
you'll have it in the look-up table and ready for use .

5.2.3 Loops

Loops are used to repeat things, specifically
statements. If, for some strange reason. you wanted to
fill the screen with stars (.) you could either send
out each star with a l eparate statement, or you could
use a loop to do this for you. All you need to do is
tell the loop how many tima. you want it to put out a
.ingle atar. and it will do it (if you use the proper
statement format. of cours e) .

There are two ways to tell a loop hOW many times you
want it to do something . You can give it an explicit
number. or you can give it a conditional expression and
execute the loop depending on the outcome of that
expression. The FOR statement usel the firat msthod,
and both WHILE and UNTIL use the s eeond.

What happens when you don't t e ll the loop how many
times it should execute? What happens when tha
conditional expre.sion never evaluates to a value that
will atop the loop? You get what i. known as an
'Infinite Loop'. There i. only one way to get out of
an infinite loop: you have t o push the <SYSTEM RES!T)
key .

ACTION I approaches loops in the following manner.
There is a baaic loop, which. when used alone, is
infinite. Then there are some loop controlling
statements (FOR, WHILE. UNTIL) Which limit the number
of timel this infinite loop exeeutes. We'll follow the
same pattern: first a diseussion about the basic loop
strueture. followed by an in depth lOOk at the lOOp
controlling .tatements.

--73--

5 . 2.3.1 DO ~nd 00

'00' ~nd '00' are used to m~rk the beginning and end,
repectively. of the basic loop. Everything between
them is considered to be part of that loop. As
mentioned above. ~ loop alone (i. e . without ~ny loop
control li ng st~tement) is ~n infinite loop. ~n~ you
must force a bre~k out of it. Following i. ~ progr~m
ex~mple to illustr~te the 00 - 00 loop. Don ' t worry
~bout the ' PROC' and ' RETURN' statements; they're jUlt
there so that the program will compile ~nd run
properly. and will be discussed in full in the
procedures and functions chapter (6).

example ,1>
PROC timestwo()

CARD i-(0].j

DO
i--+l
j-i·2

Istart ot DO - 00 loop
f~dd 1 to '1'
;set 'j' equal to 1·2

PrintC(i)
Print(- times 2
PrintCE(j)

; •••• See the following
equ~ls -)fPROGRAMMING NOTE tor

Ian expl~n~tion
00 lend of DO - 00 loop

RETURN

PROGRAMMING NOTE: the mixed c~se words (PrintC, Print.
PrintCe) you see in the example ~bove are ACTION I
library functions and procedures. You may learn more
about them (although their jobs here are fairly
obvious) in Part VI , 'The ACTION I Library ' , You will
see l ibra ry routinea used throughout the rest of this
chapter, so don't be alarmed; they're only there
because they do things that make the examples more
visually instructive .

Output 11,

The
this

1 times
2 times
3 times
4 times
5 times
6 times
7 times
e times

dot
will

dot
go

, equa ls , , equals 4 , equals ,
2 equ~ls , , equals ,. , equals l> , equals 14 , equals 16

dot
00

at the end of the output
torever, or until you

--74--

shows that
press the

<SYSTEM RESET> key. On ita own. a 00 - 00 loop ia more
or les. use l eiS, but when uaed in conjunction with the
loop controlling atatementa FOR. WHILE. and UNTIL, it
becomes one of the moat uaeful atatementa a vailable.

NOTE: hitting tha (BREAK > key would alao get you out of
the loop in example tl, because the loop ia doing a lot
of I/O. {(BREAK > only works when doing a lot of rIo.
See Part IV, 'The ACTION I Compiler'. for more informa
tion.)

Whenever you lee '<00 - 00 loop>' in the format a of the
loop controll ing statements, remember that i t meana a
loop, and that in turn means a 00 - 00 pair surrounding
the loop.

5.2.3.2 EXIT Statement

The EXIT statement is used to hop gracefully out of any
loop. This statement will ca uae program execution to
Ikip to the statement following the next '00 ' , Here's
lin eXllmple:

Example '1 :
PROC timestwo()

CARD i-[0J , j

DO
i--+l
j-i*2
Pdntc(i)
Print(" time. 2
EXIT
PdntCE(j}
00

Iitart of 00 -
:add I to 'i '
I set 'j' equlli

00 loop

equals ")
rHere's the EXIT statement

rend of 00 - 00 loop
; **** execution continues here after ' EXIT '
PrintE("End of TlIble")

RETURN

Output fl :
I times 2 equals End of Table

As you can aee in the output, the Itatement
'PrintCE(j)' is never executed. The EXIT statement
forces execution to hop to the statement 'PrintE("End
of Table"}'. EXIT i l n' t very Uleful when utilized
lilIane, but if you use it in conjunction wi th an IF
statement (i.e., make the EXIT into a eonditional jump
out of the loop). it ean be very uaeful, as the program
on the following page IIhOWI .

--75--

Example .21
PROC t.illllllt.wo()

CARD 1-(0),1

'" IP i_15 TH~
EXIT

i-"+l '
j-i*2
Print.C(i)

;.t.~rt. ot DO - 00 loop

;EXIT in an IF conditional

Print.(~ t.ime. 2 equal. M)
Pril'lt.CE(j)
OD : end of DO - OD loop
; **** execution cont.inue. here when i-15
Print.E(MEnd of Table~)

RETURN

Output. 12,
1 t.ime. , equal. , , t.ime. , equal. 4
J t.illles , equal. ,
4 t.ime. , equal. a
5 t.ime. , equal. ,. , time. , equal a 12
7 time. , equal. 14
a time. , equala I'
9 t.ime. 2 .quah ,a ,. time. 2 equala ,.
II t.ime. 2 equal. " 12 t. imes 2 equala 24

" times 2 equals 26
14 t.im •• 2 equal. ,a
IS t.imes 2 equals ,.
End at Table

This usage t.urns an infinit.e loop bloc~ into a finit.e
on.. EXIT cal'l cont. r ol t.he execution of a loop, but. ia
not considered a at ructured loop cont.rolling statement
becauae it doe.n't. at.and on it.s own I that. ia, it. ia
only useful when uled il'l conju nctiol'l wit.h the
atruct.ured 'IP' st.at.ement..

--76--

5 . 2.4 Loop Cont~ols

ACTIOi'lL hea
the basic DO

th~ee at ~uctu~ed atatements thst cont~ol
00 loop:

I) FOR
2) WHILE
3) UNTIL

8y saying that they -cont~ol the baaic DO _ 00 loopM,
we mean thet they limit the numbe~ of times the
infinite loop executes, thus maKing it a finite loop .
ContrOllable loops a~e one of the ~evicea that make
computers ve~y useful. If someone told you to write
MI'll neve~ throw apitwada againM one thousand times,
you would cell that punishment, but if you told the
compute~ to do the ssme thing (with a controlled loop,
of course), it would think that the task was easy and
mundsne.

Now we ' ll take a look at each loop cont~olling
statement in depth, and then go into a prope~ty of all
ACTIOi'll st~uctured statements: neating .

5.2 . 4 . 1 FOR Statement

The FOR statement is used to repeat a loop a given
numbe~ of times. It ~equires its own special ve~ieble,
commonly celled e counter. In the examples the counte~
will be celled 'ctr' to remind you of this, but you
could cell it anything you like. The formet of the FOR
stetement is:

FOR <counter>.<initial value> TO <final velue' {STEP <inc>}

Where

<DO - 00 loop>

<counter>

<initiel value)

< Unal value)

is the variable used
trsck of the number of
loop haa executed
is the starting velue
counter

to keep
times the

of the

is the ending value of the
counter

<inc> ia the amount by which the
compute~ incrementa the counter
atter every iteration

<DO - 00 loop) ia a 00 - 00 infinite loop

NOTE, the 'STEP <inc>' is optional

--17--

Instead ot tryi ng to explain thia
metaphors, we ' ll th r ow a few examples at
they more or Ie ••• peak for them.elvea.
is it. output .

Example 11,
PROC hithere(J

BYTE ctr Icounter used in FOR loop

FOR ctr-l TO 5
DO
PrintE(MHi
00

RETURN

Output 11,
Hi there
Hi there
Hi there
Hi there
Hi there

ElI.ample 121
PROC evens ()

;this FOR loop has
;ftn inc rement of I

thereMJ

BYTE ctr :counter used in FOR loop

to you uaing
you, becauae

Following each

n o

'"
'STEP', ao
as .umed .

FOR ctr-B TO 16 STEP 2 ,thi s FOR loop has a ' STEP '
DO
PrintB(ctr)
Print{M M}
00

RETURN

OUtput 12,
o 2 4 6 8 10 12 14 16

Look back at the format of the FOR statement. Notice
t hat we aaid nothing about using numeric variables as
<i nit ia l value), <final value) , or <inc). Doing this
is lega l , and allows you to make FOR loops execute a
variable number of times.

If you change the value at the variables used as
<initial value), <tinal value', or <inc) in the l oop
it •• lf , you won't cha nge the n~ber of times the loop
is executed. Thi. is true because <initial v.lue~,
<ti nal value', and <inc) are aet with a constant value
When you enter the loop, If you do use variables, the
value used when setti ng these is the value the variable
had when the loop was first entered.

--78--

If you change the value of "counter> in the loop , you
" ill change the nwnber of time. the loop ellecute.,
becau.e "counter> ia a variab l e in the loop. It ia
va r iable in the loop becau._ th_ FOR atatemen t i taelf
muat chang_ the value of "counte r > every t h"e it goea
thr ough the loop (FOR incrementa "counter> by the STEP
value). Following ia an eKampl a to illuatrata changing
<initial value>, <final value>, and <counter> i n the
FOR loop iteelf,

EKe.mple '3,
PROC chang_loop!)

BYTE ctr,
atart .. [ll,
end .. [511]

FOR ctr_atart TO end
00
atart"lllll ;doean't affect number of repetitiona

;doeen't affect numbe r of repetit i ona end-III
Pri ntBE(ctr)
ctr *2
00

RETURN

Output ,3,
1
3
7

" 31

:DOES affect number of repetitiona

Below ia table to ahow what i a going on each time
thrOugh the loop . 'rep' tella which repetition the
loop ia on, 'inc ctr' ahowe the r eault of the FOR loop
inc r ementing the value of the counter, 'Print ' ehowa
what ia printed out to the acreen, and ' ctr--*2' ahow.
how thia aaaignment atatement chengea the value of the
counter,

rep I inc ctr I Print I ctr""*2

-----+---------+-------+---------
I I 1 I' 2
2' 3 , 3' 6
3 1 7 1 7 I 14
4 I 15 , 15 I 311
5 I 31 1 31 1 62

~fter the fifth loop i. through, the counter equale 62.
Thia ie greater than <tinal value> (50), ao the l oop ia
elilted after o n ly 5 r epetition., not 50, Mani pulating
the counter within ita own loop can lead to very

--79--

interelting relultl, some of which might even he
u •• ful.

AI proni,ed in .ection 5.2.2, here'. an exftmple of I
thdng loop I

BYTE ctr

POR ctr-l TO 250
DO
: •••• here'. the null Itltement
00

Thi, il jUlt uled al I ti~e-walter:
ule a lot it you're wr iting game,
Which involve clreful timing.

lomething you'll
or other progrl~1

PROGRAMMING NOTEI If you write I FOR loop which
continuel to the limit of the data type of the counter
(e,g., ' POR ctr-e TO 255' it ctr ia a BYTE, or ' POR
ctr-0 TO 65535' it ctr ie a CARD), t he loop witl be
infinite heclule the counter can 't be incremented to I
value greater the the given <ti nll value> .

5 . 2,.,2 WHILE Stltement

The WHILE .tatement (and the UNTIL Itatement, tor that
matter) i. u,ed when you don't want to execute a loop I
predetermined number ot timea . WHILE aliowl you to
keep looping aa long aa I given conditional expreasion
ia 'true', It hili the form:

where

WHILE <cond exp>
<00 - 00 loop>

<cond exp> ia the controlling conditional
Ixpreaaion

<00 - 00 loop> ia a 00 - OD infinite loop

Since the evaluation of the conditional
dona at t he atart ot the loop, '<00-
not he eXecuted at all , Thi, i. not
UNTIL, aa you will aee later. Program
WHILE atart on the following page.

--80--

exprea,lon il
OD loop>' mJght
the caa. with
example. uI1ng

Example tl:
PROC factorials()
I···· This proce~ure will print out the tactorials
IUP to some specified number (the variable ' amt')

CARD fact_(l),
num-(l J,
amt_(6000]

Ithe factorial of 'num'
I the counter
Ithe upper bound ot testing

Print(MPactoriala less than M)
PrintC(amtl :prints the upper bound
PrintE(M:M) Iprint a ':' and carriage return
PutE() ;prints a carriage return
WHILE faet·num (amt ;test next tectorial

DO ;start of WHILE loop
fact--·num
pdntC(num)
Print(M faetorial
pdntCE (feet) num __ +l

00

;print the number
ill -)

Iprint number ' s faetorial
:increment number
lend ot WHILE loop

RETURN ; end of PROC feetoria 11

Output tl:
Faetorials les. than 611100 I

1 factorial ,. 1 , faetorial , . . ,
3 faetorial " 6

• factorial ,. ,.
5 faetorial ,. 129
6 faetorial ,. m
7 faetorial ,. 504111

PROGRAMMING NOTE: If you go over - Faetorials leiS than
4011100-, you will diecover that the compiler does no
overflow error cheeking, because you'll see the output
'wrap around'i that ia, yOU'll get a number larger than
the maximum a CARD allowa (65535), a~ start at zero
again. If you got up to. say. 6601110, the output would
.how 6601110-65536-464 beeauae it went as high a. it
could go, and then wrapped around. The teehnical term
for this kin~ of thing is 'overflow', and yOIl ean find
out more about it in Part IV: 'The ACTION I Compiler'.

--81--

Example .2 ,
PROC guesswhile(J
; •••• This procedure plays a quessing game with
: the uaer, using a WHILE loop to keep the 9ame
;going

BYTE num ,
gueu-(288)

;the number to guese
:gues8 is initialized to an
:impossible value .

PrintE(ftWelcome to the guelsing game . l'mM)
PrintE(Mthinking of a number fr~ 8 to 188M)
num-Rand(181) :gets the number to guess
WHILE guess<~num

RETURN

00 ;start of WHILE loop
Print(~What's your guess? ~)
guess-InputB() :get user's guess
IF guess<num THEN :guess too low

PrintE(RToo low, tryagain M)
ELSEIF guels~num THEN :guese too high

FrintE(MToo high. try ag~in~)
ELSE ;guess just right

FI
OD

FrintE(RCongratulations IIII R
)

Print£(ft you got itM)
le nd of guess teating
lend of WHILE loop

lend of FROC guesswhile

Output '2,
Welcome to the guesainq game. I'm
thinking of a number from 1'1 to lee
What's your gueee? 51'1
TOO low, try again
What's your guess? 68
Too high, try again
What's your guess? 55
Too low, try again
What's your gueee? 57
Congratulations ! I!!

Notice
within
care of
through

You got it

how powerful manipUlating conditionals like IF
a loop can be . It allows the compute r to take
multiple possible outcomes every time it goee
the loop.

--82--

5 . 2.4.3 UNTIL Statement

In the laat section we said that a WHILE loop could
execute zero times because its conditiona~ expression
was evaluated before loop execution began. The form of
the UNTIL statement is such that this loop always
executes at leaat once. After you see the form yOU'll
probably understand why this is so.

DO
(statement)

(statement)
UNTIL (cond exp>
00

This looKa liKe a common 00 - 00 loop until you get to
the statement just before the '00' . This UNTIL
controls the infinite loop using the outcome of the
conditional expression. If <cond exp> is 'true' then
execution will continue at the statement sfter the
'00 ' , otherwise it will loop back up to the ·00 · .
Notice that the UNTIL must be the statement directly
b.fore the '00 · . A program example should clarify this
somewhat,

ttl
PROC guessuntil()
; •••• This procedure plays a guessing geme with
;the user, using an UNTIL loop

aYTE nUll!,
guess

;the number to gue ••
lthe ueer'. guess

PrintE("We lcome to the gues.ing game. I'm")
PrintE("thinking of a number from 0 to 100")
num-Rand(10l) ;get the number to gue ••
DO ;start of UNTIL loop
Print{"What's your guess? ")
gue •• _InputS() Iget the user'. gues.
IF gue •• <num THEN ;gue,. too low

PrintE("Too low, try again")
ELSEIF gues,>num THEN ;gue •• too high

PrintE("Too high, try again")
ELSE ;gUe88 just right

Print!!{ "Congratulation.t lit")
PrintE("You got it")

FI
UNTIL
00

RETURN

guess-num

lend of PROC

lend of 9ueSS testing
;loop control
lend ot UNTIL

guessuntil

--83--

Output .1:
Welcome to the guessing game. I'm
thinking of a number from e to lee
What'. your guess? 50
Too low, try again
What'll your gues.? 6e
Too high, try again
What'. your guells? 55
Too low, try sgain
What'll your guess? 5?
Congratulationll!!!!
You got it

Thil il the lIame example as in the WHILE aection, but
thil time implemented using an UNTIL loop. Notice that
'gue •• ' i. not initiali~ed in t he variable declaration,
a. it was in the WHILE equivalent . We can rlo this
becaulle the conditional expreasion 'guess-num' is not
evaluated until we have gotten a guess from the user.
This ill one of the advantage II of the UNTIL l oop, and
stemll from the fact that the controlling condit ional
exprellilion is at the end of the l oop. WHILE requirell
evaluation of the conditional exprel.ion at the
beginning of the l oop, and 10 requirell that 'guess'
have a value.

5.2.5 Nesting Structured Statements

AS ~entioned in the overview of Itatements, structured
statement II are made up of other statementl, together
with some execution controlling i nformati on perticul ar
to a given structured Itatement . The statements within
the structured statement may be either s imple
statements or other IItructured statements . Putting one
Itructured statement inside of another is called
nesting (because one of them ill 'nested' inllide the
other) .

In lectionll 5.2 . 4 . 2 (WHILE) and 5.2 . 4.3 (UNTIL). you
can lee examples of nellting an IF Itatement into WHILE
and UNTIL loops. This type of nesting ill very
IItraightforwa cd , and needn't be discuI.ed further.
This section will deal with mUltiple nesting of the
same type of structured statement (IFIl inside IFs, FORa
inside FORa, etc ...).

When the IF IItatement is nelted inside itself.
confulion might seem to ariae when trying to figure out
What ELSE goel with which IF al you go deeper into the
nelted Itatementa. The compiler avoids any confulion
by IF-Fl p~iring. A FI is paired to the first
peaceeding IF that doesn 't already have a FI paired to

--84--

i~. For example,

+ IF <expA' THEN
I + IF <expB~ THEN
I I (.~a~emen~.'

I I ELSEIF <expC' THEN I···· ELSEIP of IF <expB'
I I + IF <expO' THEN
I I I (.~atemente)

I I I ELSE I···· ELSE of IF (expO>
I I I <'~II~emen~.'

I I + FI I···· .n' of IF <expo'
I + FI I···· en' of " <expB'
I ELSEIF <expE' THEN I···· ELSEIF of IF <expA'
I <'~lI~ement ••
I ELSE I···· ELSE of IF <expA>
I <'~lI~emen~s'

+ FI , end of IF (expA~

The da.hed line •• how ~h. IF-FI plliringf ~~e commen~.

show which IF .ta~emen~ a par~icular FI or ELSEIF per
tain. ~o: and ~he indentll~ion shows e c~ange of level ••

The following program example con~ain. ne.~ed FOR • .
Thi. one even does .omet~ing wor~hwhilel i~ prin~. ou~
~he mul~ipliell~ion table up ~o ~en ~ime. ~en .

PROC t ime'~lIble()
: ••• Thi. procedure prints ou~ the mul~lplica~ion
:~able up ~o 10 ~ime. 10

BYTE c1,
c2

I·coun~er for ou~er FOR loop
:·coun~er for inner FOR loop

FOR cl-1 TO 10
DO
IF cl<10 THEN

Prin~(- -)
FI
Prin~B(el)
FOR c2-2 TO

DO
10

;ou~er loop con~rol
:·.~ar~ of ou~er loop
:·.ingle digi~a need 1I
:before ~hem in ~he
, column
,·prin~ lit number in column
,·inner loop con~rol

:·I~lIrt of inner loop
:·.ingle digi~. need 3
:.pace.

100 THEN

IF cl·e2 < 10 THEN
Print(- -)

ELSE IF el·c2 (
Print(- -)

ELSE

,·double digits
:need 2 .pace.
;·triple digits need I
:.~ce only Print(- -)

FI
PrintS(et·c2)
00

PutE(1

:*end of digit .pacing
:·print the result
,"end inner loop

00
RlTURN : "end of

I"put out a carriage re~urn
,"end of outer loop

PROC time.table.

--85--

Output~
1 , 3 4 5 6 7 • , ,. , 4 6 • 1 • 12 14 16 ,. ,.
3 6 , 12 15 1. 21 24 27 3.
4 • 12 16 ,. 24 ,. 32 36 ..
5 " 15 ,. 25 3. 35 4. 45 5.
6 12 ,. 24 3. 36 42 4. 54 6.
7 14 21 ,. 35 42 49 56 63 7.

• 16 24 32 4. 4. 56 64 72 •• , 1. 27 36 45 54 63 72 ., •• 1. ,.). 4. 5. 6. 7. •• ,. ...
;a.s you can aee from the above examplea. neating can b.
used to accompli s h quite a bit. if you know what you're
doing, Fortunately. "knowing what you're doing"
doesn't take too much time. because tho concept o f
nesting is universal to all strucured stat.ements. Once
you understand it as applied to one statement. you can
apply it to 15 11 of them.

--8 6--

Chapter 6, Proce~ures an~ Functions

Procedures and tunctions are used to make your ACTlONI
program more readable and usable . Almost everything we
do is a procedure or function in some way or other.
Por example , look at this table,

Procedures

Washing the car
Doing dishes
Driving to work
Going to Kchool

Punctions

Balancing your checkbook
Looking up a phone number

What makes theae procedures and functions? Well, for
each there's

1) a group of related actions done to accom
plish the task

2) an accepted order in which these actions are
done

Drying the dishes before you wash them breaks the
accepted order, and taking ott your left sock is not an
action related to ~Doing the diahes-. We know theae
thing. from experience, and have lumped the proper
group of actions done in the proper order into a
procedure I one which we call -Doing the dishea N

•

In computer language a it's the same way. You make a
group of actions that accomplish a sin91e, large task
into a procedure or function, which you then give a
name. When you want to execute this task, all you do
is use the procedure or function name (with some extras
we'll discu.s later). This is r e ferred to as a
procedure or function call. The procedure or function
must have alrea~y been defined, just like in English.
(e.g . , you wouldn't know what to do if someone told you
to -readjust the widget- unle ss you already knew the
actions required to do this.)

Now, what is the difference between procedures and
tunctions? They both go through a leries of ordered
steps to accomplish a task, so why two names for the
same construct? Because they're not exactly the lame
construct . Functions have an addsd property; they do
their task, and then return a value.

In the table at this section'. beginning we .ee
-Balancing your checkbook- given as a function example.
Why? Well, when you balance your checkbook you go

--87--

through ~ ssries of steps to bring your r ecords up to
d~te, ~nd come up with ~ (hopefully poaitive) number at
the end. This number ia returned and can he used to do
other things (like determine the .i~e of your ne.t
cheek).

It we wanted to make ~Ooing the dishes- a function, we
could change the stetement to the queation -00 the
dishes need doing?-, hoping that t he person would
answer the question, ~nd then do the dishes if
required. This would get the dishes done (like the
procedure), but also return a v~lue (whether the dlahes
needed doing in the (irst pl~ce), ~nd thus make it ~
(unction .

NOTE. Throughout the re.t of this m~nual we will use
the word -routine-, inste~d of .aying ~procedure or
funetion-, OOing this m~kes the concepts e~sier to
follov. When you .ee ~procedure- o r · funetion~, it
means the concept or idea being discussed i •• pecific
to that cia •• of routines and not applicable to both
cl~.ses.

--88--

6 . 1 PROCeduree

Proceduree are ueed to
accompliah a taa~ into a
on to do this tal~ . To
you mUlt learn how to do

group lome atatementa which
named bloc~ that can be called
utilize proeedurel in ACTIONI.
two thingll

1) declare proeedurel
2) call procedurea

The following three leetionl
the above and give lome
proeedurea in ACTION I (I~all

will Ihow you how to
examples to let you
pun intended).

do

•••
6.1.1 PROC Declaration

The ACTION I ~eyword 'PROC' ie uaed to denote the Itart
of a PROCedure declaration. PROCedure conatruction
loo~1 quite li~e a group of statementa with a name and
aome other information at the beginning. and a tunny
RETURN atatement at the end. Below ia a diagram of the
construetion.

PROC <identifier>'-<addr>}({<parameter lilt»}
{<variable decl>}
{<statement list>}

RETURN

where

PROC

<identifier>
<addr>

<variable declo

<statement liat>

RETURN

is the keyword denoting a procedure
deelaration
ia the name of the procedure
optionally specifiel the atarting ad
dreea of the proeedure (See 9.3)
il the lilt of parameterl required by
the procedure (lee eection 6.4 for an
explanation of parameterl)
ia the list of variables declared
local to thil procedure (lee 3.4.1
for variable deelaretion and 6.3 tor
acope of variables)
is the liat of statements in the
procedure
denotel the end of the procedure (aee
next section)

--B9--

NOTE, <pllrllmeter liet>, <vllrillble decl >, lind <etlltemf!nt
liet> are all optional . You will probably use at le~st
80me of them, but the follow i ng woulrl be a valid
procedure declaration,

PROC noth ing I)
RETURN

Ithe parenthele8 ARE required

It doel nothing, but thil type of "emptyM procedure il
uleful when you are writing a program made up of many
procedures . If, for example, you have written ~

program that calls a procedure named ~dote8tM, but you
haven't yet written "dotest", you could make it an
empty procedure 10 you could telt the rest of the
program without getting an "Undeclared Variable" error .

Don't worry about
the format , because
relt should look
example,

. <parameter list>' and 'RETURN' in
they'll be d i "cus8ed later. The
lomewhat familiar, 10 we'll give lin

PROC guesluntill)
I ···· Thil procedure plays II gue,,"1ng g8me with
Ithe user, u81ng sn UNTIL loop

BYTE num,
guess

;the number to guesl
Ithe uler'l gue" "

Pr1ntE{"Welcome to the guesling gllrne. I'm")
PrintE("thinking of a number from 0 to 100")
num_Rend (101) Iget the number to 9uees
DO letart of UNTIL loop
PrintC-Whet's your guess? M)
guels-InputS() Iget the uler ' l guels
IF gue,,"<num THEN :gue,," too low

PrintE("Too low, try again")
ELSEIF gues8>num THEN ;guell too high

PrintE("Too high , try ag8in")
ELSE . Iguell jUlt right

PrintE("Congratulations I I I I")
PrintE("You got itM) .,

UNTIL
00

...,URN

guels-num
; end of gue81
I loop control
lend of UNTlL

lend of PROC gue88until

telting

This is jUlt the program example from lection 5.2.4.3,
but now you underltand why the PaOC Itatement and the
vlriable declarltion section are there. As mentioned
in the introduction, an ACTION I program r equirel II
procedure decillration or II function declaration to be
compilllble. The above eXllmple hal II procedure
declaration, 10 it is a vlliid ACTION I program and, as

--9A--

such, may be compiled and run . Ita output ia th~ same
a, that given in the UNTIL lection, namely.

Welcome to the guessing game. I'm
thinking of a number from 0 to 100
What', your gues s ? S0
Too low, try again
What', your guess? 60
Too high, try 8gain
What's your guess? SS
Too low, try again
What' , your guea ,? S7
Congratulationslill
You got it

If you look back
'RETURN' a, the
it's there.

at the above example, you'l l
last statement . We'll now cover

•••
why

6 . 1. 2 RETURN

RETURN is used <0 tell ". compiler <0 leave the
procedure ,,' return control to whatever called ".
procedure . If your program calle e procedure,
execution will continue with the atatement after the
p r ocedure call. If yO" ". compiling • single
procedure (or a one procedure program). control ... ill be
r etu r ned to the ACTION I monitor.

WARNING: the compiler cannot detect a mi.sing RETURN.
Strange and diaaatroua thinga can happen if you leave
out a RETURN. Thia alao goes for RETURNs at t h e end of
function, aa well .

There can be more than one RETURN in a procedure. For
example. if your procedure has an IF at.tement ... ith
lots of ELSEIF., you ~ight nt to RETURN after one or
more of the ELS!IF cases. The example on the following
page illustrate. this pos,ibility.

--91 - -

PROC te8tcomman~()
; • • • • This p~ocedure teata a command to aee if it ia
:vali~. Valid commands a~e 0, I, 2, and 3. If the
command ia none of theae, an er~o~ meaaage is
p~inted, and cont~ol is returned to whateve~ called
this p~oc"du~e

BYTE cmd

P~int("Command» ")
cmd-InputB()
IF cmd>3 THEN

P~intE("Command Input ERROR")
RETURN ; get out befo~e command tests

ELSEIF cmd_0 THEN
(statement0>

ELSEIF cmd" l THEN
(statementl>

ELSEIF cm~-2 THEN
(statement2>

ELSEIF cmd-3 THEN
<statementJ>

FI
RBTURN

Note the 'RETURN ' afte~ the firat con~ition , which
te.t. fo~ illegal input: You don't want to go th~ough

a l l the command teata if the command isn ' t a valid one,
ao you juat print you~ erro~ mesaage and hop out of the
proce~u~e with a RETURN. Voilal

6 . 1 . 3 Calling Procedurea

You ' ve alrea~y aeen aome p~ocedu~e calla, although you
p r obably don't know it. Almost eve~y time we used a
lib~a~y ~outine in an example, we we~e making a
proce~u re call. The format i. simple enough:

whe~e

<identifie~>(I(parameter list>})

<identifie~>

(paramete~ list>

i8 the name of the procedu r e
you want to call
contains the va l ues you want
to send to the p~ocedu~e as
pa ~ametera

--92- -

Here are a couple of
parameterl now, a
la ter) :

examples (don' t
who le section

worry about
is devoted to

Prin tE(MWelcome to Joe'. Deli , the o nlyM)
PrintE(Mcomputerized deli i n the world . M)

factori &1I ()

guenuntil()

BYTE z
CARD add
signoff(add,z)

<h.
them

Of courae you must already have decl ared the procedures
'factorials' , 'gues.until ', and 'signof f ' before using
them here . 'P rintE' is a library procedure, 10 it's
not deClared by you but is declared in the ACTION I
library. Notice that the pare ntheses are required even
when the procedures have no parameters. When a
procedure you call ha. parameters, the call must have
no more parameters than the procedure declaration (but
it may have fewer). See section 6. 4 for a discullion
of parameters.

--93--

6.2 FUNCtions

Aa mentioned in the ove~view of p~ocerlu~e. anrl
functions. the fundamental difference between the two
is that functions ~etu~n a value. This makes the way
in which they are declared and c alled somewhat
diffe~ent from procedure declarations a nrl calls. Since
functions return a numeric value. the y muat be used
.... here a numbe~ i s valid (e .g., in a rithmetic
ellpreaaions) .

6.2.1 FUNC Oecla~ation

Declaring a function ia s imilar to declaring a
procedure, ellcept that you muat be able to show both
what type of number the function returns (BYTE, CARD,
or INT) and what that number is. The form a t ia:

<type) PONe <identifier)I-<addr)}({<pa~ameter list)})
{<variable decl>}
{<statement list»)

RETURN «arith exp»

where

<type>

FUNe

<identifier)
<addr>

<parameter liat)

<va~iable deeP

<statement list)

RETURN
<arith exp>

ia the fund amental data type of the
value the function returns
is the keyword denoting a function
declaration
is the na me of the function
optionally specifiea the starting
addreas of the function (aee 9.3)
is the list of paramete~. ~equirerl
by the function (see section 6.4 for
an ellplanation of parametera)
i. the list of variables declared
local to thi s function (see sec tion
3.4.1 for variable rleclaration. and
and 6.3 for sco pe of va ri abl e s)
i. the list o f atatement. in the
function
denotes the end of the function
i s the value you i s h returned from
the function

As in procedure declarations. <parameter list>.
<variable decl>, and <statement list> are all optional.
In the caRe of procedures, leaving them out was useful

--94--

only in one inatance . In functiona, doing thia aort of
thing haa another (more worthwhile) uae, aa the
following example ahowa,

Example tIl
CARD FUNe aquare(CARD xl
RETURN (x*x)

Thia lunction taKea a CARD number and ~eturn. ita
aquare. Don't worry about the parameter list, aa we
v iII discua. it a little later. It vaa ~entioned above
that the value returned i. in the form of an arithmetic
expression . In example 1, you can aee thia being dona
in ~(x*x)~ .

In the following example, the arithmetic expre,.lon
used to return a value i s aimply a variable name.

Example ,2,
BYTE FUNC getcommand()
:**** Thi. function reada in a command nu~ber, and
:then pft.aes it out if it's I through ? inclu.ive.
:Otherwi.e, the lunction will repr~pt the uaer.

BYTE command,
error

Ithi, variable hold, the c~and
laet to 1 if an erro~ is found

DO
Print(~ COMMAND) M)
command-inputS()
IF command<l OR command)? THEN

error-l
:invalid command

PrintE(~Command Error, Only 1-7 valid.~)
ELSE ,valid eomm.and

error-0
Fl
UNTIL error-0
00

RETURN (command)

; e xit loop if command is valid

NOTE I the parentheaes around <arith exp) are ftlvays
required in the RETURN stateme nt.

The ebove 1s a simple example: Functions can be used to
do quite complicated operations, but even the most
convoluted functiona muat follow the format outlined in
this aection.

--95--

6.2.2 RETURN

AB you probably noticed in the format of the FUNCtion
decla r ation, the RETURN i sn 't used in the seme wey e8
in PROCedure declarations. In functions it is followed
by (<erith exp». This feeture allows a function to
return a velue. If you tried to put «~rith exp»
after the RETURN in a procedure rlecleration, you would
get an error, becauBe procerlu res can't return a value.

Although there ere dissimilarities between RETURNs in
functions and procedures, there is one convenient
similarity. you may have more then one RETURN in both
procedure8 end functions. The following example shows
usage of muliple RETURNs in a function:

Scenerio: Exemple '1 in the function declaration
Bection (6 . 2.1) returned the square of a CARD, but
it rlid no checkin9 for overflOW. If you squared
256 you would get 65536, I gre~ter than the
maximum CARD value allowed. There are two ways to
fix thie problem:

1) Require that the number being squared be of
BYTE type, thus making it impossible to
enter a number greater then 255.

2) Check for overflow in the function itself

The following example illustrates the
method:

CARD FUNC square(CARD x)

second

1·*** Thie function tests 'x' for overflow, end
:returns its square if valid. IF invalid, the
;function prints 8n error message and returns 0.

IF x>255 THEN :number would cause overflow
PrintE("Number too bi9"J
RETURN (0) ;return a zero

FI
RETURN (x·x) ;return 'x' squared

See how easy it is? The use of multiple
come in very hendy when you are testing
different conditions, each requiring that
value be returned.

RETURNs can
a lot of

a different

NOTE.
tell

As mentioned in section 6.1.2, the compiler cen't
if you leeve out a RETURN, so you must make sure

you have one.

--96--

6.2.3 Calling Functions

YO"
Thoy

". look

have already seen two examples of function calls.
can be found in section 5.2.4.2 (WHILE), example
and section 5.2.4.3 (UNTIL). eXlimple ,I. If you
at thoae progrllmS, you'll aee the lines:

nurn-Rand (101)
gueas-Input8()

The first is an example of calling a funetion that
requires parametera, and the second an example of
calling one without PlIrametera, Both 'Rand' and
InputS' are library functiona. 'Rand ' returns a random
number between 0 and the number you give it (in the
above case, Un) minus o ne. 'InputS' read. a byte
value from the de f ault device (the screen). Notice
that both of them return a value . Because this value
must go somewhere or be used somehow, function calls
must be used in arithmetic expreaaions. In the above
two cases. the arithmetic expressions coneist of the
function call only and are uaed in 88signment
statements (a valid us e of arithmetic expressions) .

Function calls can be used in .ny arithmetic
expression , with one exception.

Functions calls may NOT be used in
arithmetic expression when that expreaaion
uaed 8S a parameter in a routine cal l
declarlltion.

Example:
x-square(~:~~~~!~e» JINVALID

Here are aome examples of valid function calls.

x-S *Rand(201)
c-aqu8re(x)-lee/x
IF ptrc)Peek($Seee)
chr-uppercaae(chr)

.n
i.
0<

'Peek ' and 'Rand' are library
needn't be declared by you.
'uppercaae ' are uaer written
muat be dec III red before they are

functions, ao
but 'squlIre'

functions, and so
called here.

they .n'
they

PROGRAMMING NOTE . although it is not recommended. you
ca n cal l functions as though they were procedures. If
you do this. the value returned ia ignored .

--97--

6,3 Scope of V~riables

The term ~scope
range of a
under. tam!! what
·Scope" to a
language ,

of a Variable" i. u.ed to expre.. the
variable', legitimacy. To help you
this mean., let'. apply the concept of
IIIC)rll familiar situation: the English

Below il a table of Britilh Enqlilh words, followed by
their American English equivalent,

British

BONNET
LORRY
LIFT
FAG

American

HOOD
TRUCK
ELEVATOR
CIGARETTE

Each pair of worda means the same, but the wor~s '
scopes are different. "Bonnet" (when used to mean the
~veable cover over an auto'l engine) is legitimate
only when used in count riel that speak the King's
Engli.h. "Hood", on the other han~, is vali~ only in
countries that speAk American English. HenclI they hAve
ranges of lllgiti~acy, or Scope. Thll wordll in thll left
column could be considered "global" to British English
in the sense that any average Brit would understand
what was meant by lIach word, And the words in ths right
column could be considered "global" to American English
because everyone who speaks American English would
associate each word with its intended meaninq.

Enough of globd .cope; n~ w. need to talk about
"local" 'COpfil. Scope i. local If " to • specific
lubset of . ~. global scope . For eJ:ample. ", word
"neat" has many different local scopes within 'h.
"global" American English language:

1) "Wow, that movie was NEAT I "
2) "Gfllrtrudfll keep. the NEATest house I've ever

seen . "
3) "Bartender, I'll have my .cotch NEAT . "

In difffllrent lituation. "neat" can
things (Le . , the meaning is local to
and these meanings don't overlap.

IIIean different
the situation),

Variables in ACTION I also have an associated scope . A
variable'. scope determines where it may and may not be
us.d jUlt aI, in the above analogy, a wor~'1 Icope
d.ter~ine. Where it ~ay and may not be used.

--98--

The following program i8 8 concrete example of variable
scope.

Example '1:
MODULE :we're going to declare some variables

las global

CARD numgames-[mJ,
goal-Om).
beatgoal-{m)

Inumber of games playe~
Inumber of guesses to beat
;number of times you ' ve beaten goal

PROC intro!)
:**** This procedure puts the lead in to the game on
:the screen.

CARD ctr

PrintE(-Welcome to the guessing game, I'm~)

PrintE(~thinking of a number from m to 10m,-)
PrintE(~AIl you have to do is type in yourM)
PrintE{Mguesa when I ask you to . ~)
PutE{)
PrintE(~I'11 keep track of how many games M)
PrintE{ Myou've played, and tell you howM)
PrintE(Mmany times you've guessed the number~)
PrintE("in fewer tries than your goal, but·}
PrintE(~first you have to give me your goal.~)
PutE{)
Print(" Type your goal here --~ ~)
goal_InputC()

:a delay FOR ctr-0 to 250m
DO ; sense of

:player.
:clear the screen

lend of PROC intro

loop, to give
real - time to

00
Put($7D)

RETURN

PROC tally()
:**** Thi. procedure prints out the cur r ent tally

Print("You have played ~)

PrintC(numgames)
PrintE(M games,")
Print(Mand in M)
PrintC(beatgoal)
PrintE(M of thos. you ·)
PrintE(Mhave beaten your goal of")
PrintC(goal}
PrintE(~ guesses.·)
PutE()

RETURN lend of PROC tally

--99--

PROC plllygame ()

CARD numgueslel,
ct<

;the number o f gueaael
;counter used in ~elay loop

BYTE num,
guesa

;the number to guess
;the user'l guels

PrintE("!'m picking my number ..• ~}
FOR ctr-0 TO 4500 ;delay u.e~ to make the user

00 ;think the computer ill picking
00 ;a number

PutE()
PrintZ(" O.K., here we gol")
PutE()
num-Rand(101 } ;get the number to gueslI
numquellllell-0 ;lIet number of guellllell to 0
00 ;lItart of UNTIL loop
Print("What'lI your guelll? "}
gue.I-InputS(} ;get the uller ' s guells
n~uellllell--+1 :add 1 to number of guelllles
IF guelll<num THEN :guess too low

PrintE("Too low. try again"}
ELSEtF guess>num THEN Iguelle too high

Print£("Too high, try again"}
ELSE Iguellll just right

FI

PrintE("Congratulations J J II")
Print{ "You got it in ")
PrintC£(numquelllleIlJ
IP numguellses <goal THEN

beatgoal--+l
PI

UNTIL guesll- nu",
00

: end of guess
; loop control
I end of UNTIL

RETURN lend of PROC playgame

BYTE FUNC stope)

testing

l~p

: •••• Thill function findll out it the player wants
ItO play another game,

BYTE again

Prl ntE("Do you want to play")
Print("another qame? (y or N) "}
again-GetD(1) :get player'. rellponlle

PutE()

: from K, to avoid getting a RETURN ae
:the firet gues. ot the next game .

IF again-'N OR egain-'n THEN Idoeen't
!ttTURN (1) IWII.nt to pl .. y

PI
RETURN (0) lend of FUNC IItOp

--100--

PROC • .tn{)

ClonO)
Open(l,"K,",4,0}
intE'o()
00
nua\9am •• --+l
playqa ... { }
hlly{}
UNTIL .top!)
00
Put£()

1 juat for aaf.ty'a u.k.
:open K: to E'.a~ only
:print out the intE'oouetton

: incE'em.nt tot.l nu..ber of g
:pl.y the gam. one.
:ahow tally of '1111" •• t.hua fa E'
:do •• n't want to pl.y .nynor .

PrintE(WCom. play aqain aoonwl
Cloae!l} :elo •• K.

RETURN r.nd of PROC main

Th. followinq table .how. hO\o' thie
variable, . It 'live. the variable nllm.,
availability and u •• in .ach routin ••

p r og E' am u •••
it •• cope, it.

KEY,

•
U

variable Availabl. for u •• in routine
variable Ua.d in routine

+-------------------+----------+-------+-------+------+------+
I VARIABLE I PROC I PROC I PROC I rUNC I PROC I
I NAME I SCOPE I plaY'Jam. I intro 1 tally I atop I main I

+----------+--------+----------+-------+-------+------+------+
I numgamea I globel I A I A I A U I A I A U I
1 qoal I global I A U I A U I A U I A I A I
I beatgoa.i 1 global I A U r A I A U I A I A I

+----------+--------+----------+-------+-------+------+------+
Inumgu , local I A U I I I I 1
I num 1 local tAU 1 I I I I
1 qu... 'local , A U I I til
I ctr 1 local I AUt 1 tit
1 ag.tn I local , 1 1 I A U 1 1
I etr 1 local I 1 A U I til
+----------+--------+----------+-------+-------+------+------+

You ean ••• that that the globel var iabl.. aE'.
available foE' u •• in .very one of the routin •• , wheE'ea.
the loeal variable. eE'e available only in t.h. E'outin.
in which they an d.elared. Notic. that th.r. are two
local vaE'iable. called 'etr', on. in PROC playgam., and
the oth.E' in PRce intro. Althouqh they have the .a",.
name, the •• two variable. are not the .a",e, ju.t ••
'neat' meaninq wc:lean " and 'neat' mea n inq ·undil uted"
w.r. not the eame earlier. The two 'ctc'. have
diffecent loeal .eope. (becau •• they a r e d.clared in
two different procedur ••).

--101--

6.4 Parameters

Parameters allow you '0 pass vo!llues into • routine.
You m.y wonder why this ,. necessary, since you could
u .. global variables fo< passing valuea into .nd
between routines. Well, there u. two re'!lsons thllt
parllmeters exist:

1) They make your routines capable of multi
purpose use.

2) They allow you to menipulate vllriable values
within a routine without changing the value
of any global vllriable.

We'll discuss each of these advantages separately,
following the above order: but first we should give the
format of a parameter list, for those of you whO
already know all about parameters .

• • Psrameters in PROC o r FUNC declarations:

({ <variable decl> 11: , <variable dec!>: 1)

where
<variable decl> is a variable declaration, except

thllt it may not contain the
'-<addr> or [<canst.]· option

Examples:

PROC test{BYTE chr.num,i , CARD x.y)
INT FUNC docOmmand(INT cmd, CARD ptr. BYTE offset)
CARD FUNC square(BYT E x)
PROC jump{ 1

•• Parameters in PROC or FUNC calls :

(I<arith exp>ll: , <arith exp>:ll

where
<arith exp> is lin arithmetic expreesion

Examples:

test(cat,dog,ctr,2500.S8D001
sq r _squa re (num)
jump{)
x-docommand(temp,var, ' A)

NOTE. A routine may have up to 8 parameters .
more, and you will get a compiler error .

--102--

Use any

We need to do aome
example will ahoy
clarify the first
parameters.

explaining
you how to

of the two

now. The following
use parameters, and

advantages to using

The following function checks to see if the BYTE
variable 'chr ' ia a lowercaaa letter. If it ia. the
function will return the uppercaae of it. Otherwiae
the function will simply return 'chr'. Notice that we
don't declare ' chr' anywhere, We'll discuea where it
ehould be declared after the example .

BYTE PUNC lowertoupper()

IF chr)-'a AND chrc·'z
RETURN (chr-$20)

THEN 1$20 ia the off.et
Ibetween lower and upper
Icase in the ATASCII set .,

RETURN (chr)

Now we must decide Where to declare 'chr'. We already
know that we could declare it global, or juat local to
'lowertoupper'. If ve declare it locally. how will we
give it a value? There seems to be no use to having it
local . becauae then the function itsel f woul d have to
give the variable a value. and that's not what we want
the fu~ction to do, We want it to be able to call
' lowertoupper ' a form similar to

chr_IowertoupperC)

and have the function tea t 'chr' and make it uppercase
if necessary. So we won't declare it local . How about
declaring it global? That would do what we wanted.
because now the 'chr' in the function call and the
'chr' in the function itaelf would be the same global
variable. There'a only one drawback to declaring 'chr'
as a global variable. every time we wanted to uae
' lowertoupper', we would get the uppercale of 'chr' .
If we want to uppercale the variable 'cat', we would
have to do the following I

chr-cat
chr-lowertoupper()
cat-chr

This could get very tirea~e if you wanted to uppercaae
II lot of different variables. AIIO, if you wanted to
ule 'lowertoupper' in another program, you would have
to declare II global variable 'chr' there too.

--U!I3-

What if we declared 'chr'
fUnction? MHOW ... ?M you aak.

os 0 parameter to the
Here's how:

BYTE ruNe 10wertoupper (BYTE chrl ; (- the parameter
;declaration

IF chr>.'a AND chr<·'z THEN
RETURN (chr-$20)

PI
RETURN Cc:hr)

MBut now how do we call it now?M Easy. All you
to do is give it the variable you want testad
parameter . E~amples:

chr-Iowertoupper{chr)
cat-lowertoupper(cat)
var-lowertoupper('a)

have .. .
Making 'chr' a parameter to the function allowa you to
use it for testing any variable in any program. because
'lowertoupper' now stands on its own. It use. no
variables declared elsewhere Ii .•.• global variablea).
and y.t you can give it a variable to teat. We have
overcome the pitfalls of declaring ' chr ' either locally
or globally . Tah dahl Thia ia what we meant by
M",ultipurpoae M.

The aecond advantage to uaing parameter. i. more
difficult to illustrate. but we're going to make it .a
clear as po.sible. again by using an example . The
following procedure takes two CARD type numbers.
divides the firat by the second, and prints out the
result,

PROC diviaion(CARD num.div)

n~-/(Hv
PrintC(num)

RETURN

:changBs num to num/div
:print out num

--104--

An~ now to use the 'division' proce~ure in a progrsm.

Example '1.
PROC main()

CARD ctr,
number-[713)

!'OR ctr-l TO 10
DO
PrintC(number)
Print(Mr)
PrintC(ctr)
Print(M .. M)
division{number,ctr)
PutE()
00

RETURN

Output tl ,
713/1 • 713
713/2 • 35 •
713/3 .. 237
713/4 .. 178
713 /5 .. 142
713/6 .. 11' 713 /7 .. 101
713/S .. " 713/9 " 713/1" .. 71

Notice that 'number' remains constant, although 'num'
changes. The value of 'number' is passed into ' num'
when the procedure i. called, but the value of ' num' i.
not pasaed back into ' number' when the proce~ure i.
exited. If the value of 'num' were pa •• ed back into
'number ' . the output woul~ be.

713/1 .. 713
713/2 .. 356
356/3 .. lIS
l1S/4 .. 29
29/5 .. 5

5/6 "
0/7 .. "
0/8 .. 0
0 /9 .. e
e/ 10 .. e

The flow of infor.ation through parametera i. one- way .
Information can be sent to a routine throu<;lh
parameters. but information <;Ienerally may not be sent
out using parameters . If you want to send a single

--105- -

value back from
function, and then
RETURN atatement.
you can use global
as parameters (see

a routine, make that routine a
you can send it back in ~he function
If you want to send ou~ more things,
vsriables or you can pass pointers
9.5) .

A Note On Parameter Pairing'
When you cal l a routine that has parameters, the
first parameter you giv~ in the ca l l will go into
the first variable in the list of parameters in
the routine declaration, the second will go into
the second, and so on. ... You can paas fewer
parameters than the routine requires, but no more.
For example, if there are 5 parameters in the
declaration, you could psss the routine ~ to 5
parameters. This allows you to write routines
that require a variable number of paramet~r.,

depending on the job it must do. HINT: if you do
thia, the first parameter should probably be the
number of parameters being paaaed.

A Note On Type Compatibility:
If the value you paRS as a parameter and the value
expected by the r outine are of different data
types, you won'~ get a compi l e r e rror because the
ACTION I compiler insurea parameter type
compatibility . For example, if you pass a CARD
when the procedure wants a BYTE, the LSB of the
CARD will be put into the BYTE variabl e , and the
procedure will carryon as though you had passed
it a BYTE (see Part IV for more info).

A Note On Paramete r Variable Types:
All of the following are valid as parameters,

1) Fundamental Data Type variables
2) Array, Pointer. and Record References
3) Array, Pointer, and Record Names

In the third case, the names are uaed
to the first element, the value. or
field in the named variable.

--106--

as pointers
t he fi rst

6.5 MODULE

MODULE i. a very simple direc~ive. I~s form is,

MODULE

I~ simply ~ells ~he compiler ~ha~ you wi.h ~o declare
aome more global variables. I~ ia useful when you have
wri~~en a large program in aec~ione. each wi~h i~. own
global variable.. If you say MODULE at the beginning
of each .ec~ion, then ~he compiler will add all ~he
global variable. to ~he global variable ~able.

A program need no~ have a MODULE direc~ive. because ~he
compiler asaumes one MODULE directive a~ ~he beginning
of ~he program. whe~her you pu~ it ~here or no~.

The declara~ion of global variable. mua~
immedia~ely af~er e 'MODULE', or a~ ~he very
of ~he program (which is really righ~
'HODULE' assumed by ~he compiler).

--187--

COllIe ei ~her
beginning
af~er ~he

ChapteT 7: CompileT DiTectives

CompileT directivea are different fTom the standa rd
language command a in that they aTe executed at
compile-time rather than run-time. A language command,
auch aa an aasignment atatement (aee aection 5 . 1.2) ia
evaluated after you tell the ACTION I Monitor to RUN
your program, when your progTam hae control oveT what
is being done. A compiler directive is evaluated when
you tell the .ani tor to COMPtLE your program, so the
compiler, not your program, has control. The ramifica
tions ot this will soon become apparent.

7.1 DEFINE

The DEFINE diTective ia very aimiliar to the editor's
substitution «CS> S) command, except that it does the
subetitution at compile time. To clarify thil, we
first need to show the fo~at.

where
(ident>
(str const>

is a valid identifier
is a valid ACTIONI string constant
(That is, with sUTrounding double
quotea)

DEFINEs are not really used in geneTating any object
code when the progTam is compiled, but are uaed to
c la rify ACTION! aource progT~ms. The compi l er
sUbltitutes catr const> for (ident> every time <ident>
ia uled in a program. For example, when you compile a
program with the line

in it, the compiler will replace every occurence of
'size' with '256', Thia aiiowl for some inteTelting
optiona (and problema if miluaed!). Since DEFINE will
replace any Itring, you c"n change the keywords
themselvea! tf you don't like the keyword CARD, you
could change it to, aay, FROG with thia command:

DEFINE FROG • ~CARO~

Now whenever you compile the program, every time the
compiler leea 'PROG', it will think to itaelt, ~ Oh, he
really means CARD, ao I'll juat put that in in.tead.~

--108--

Here ". some ~ro elUlmples to let
thoroughly hmlliar with the

DEFINE liston • ·SET
DEFINE begin . ~DO~ •
DEFINE 00' . "1"

NOTE I Don't forget that the
<!ouble quotes aroun<! it (see

To better show you whst
here'. stable ahowing the
different program parts,

form'

$49A·l~

eo • . MOD~
string constant
section 3.2) .

DEFINE does and
effect. at a

statement cOlMlent.

the directive

yO" become

must have

doesn ' t do,
DEFINE on

DEFINE four M 4
PrintBE(four)

four .core and
print. '4' with EOL
converts 'four' to '4'

1 four-score and
PrintE(~four score~)

7.2 INClAJDE

does not alter 'tour-score'
does not replace in.ide quotes

The INCLUDE directive allows you to include other
programs into the program being compiled. Suppose you
have a p r ogram named 'IOSTUFF,ACT' that does
input/output functions and you want to use the I/O
routines it offers in some other program you're writing
now , All you need to do is put the following command
in the program you're writing:

INCLUDE MDl,IOSTUFF.ACT M

NOTE, The file specifier .ust have double quotes around
it.

The above statement must come before you use any of the
I/O routines in the file 'IOSTUFF,ACT'. Note that this
example sssumes that the diskette with 'IOSTUFF.ACT' on
it i. in disk driVe '1 , If you don't specify a device
with your file name, the compiler assumes the device is
-01,· , You can INClAJDE files from any readable device
(i.e., .p,. isn't valid) , Here are some more examples.

INClAJDE -D2.IOLIB,ACT
INClAJDE ·PROGl , DAT~

INCLUDE ·C:·

NOTE. Host operating systems require that the file
specifiers b. in uppercase,

--1"9--

A usefu l feature of the INCLUDE command il that you can
have an INCLUDE in a program which you are already
INCLUDEing (i.p.., it can be neated). ACTION I allowl
you to neat it to a maximum of 6 levels, but peripheral
devices and the operating Iystem have other limits.
When the OS limita are ignored. error t 161 (too many
filea open) occurs. The callette limit is 1 INCLUDE,
and the disk ~rive limit is 3 INCLUDEs. If no prog r am
is currently in the ACTION I editor buffer, then the
maximum number of levels of INCLUDE commands is reduced
by one.

7.3 SET

The SET directive is used to modify the computer'a RAM
(Random Access Memory). SET pokes a new value into a
specified memory location at ~pile time. In most
caaes. this command is used for changing Editor and
Compiler options from a user program, but it can be
used to modify user, operati ng system , snd hardware
variable I al well. The format of the SET command is:

SET (address> • (value>

NOTE : (addresa> and (value> muat be compiler constants.

The result of the SET statement is to set memory
location (address> to <value>. If <value> is greater
than 255, then memory locations <a~dress> and
(addre.s>+l are assigned (value>. This occurs because
255 ($FF) is the biggest decimal number that cftn fit
into one byte, so any number greater than this requires
two bytes for storage .

Examples.
SET $600-64
SET max_16
SET 10000-$ FFFF
SET $CF00_cat

I sets address $600 equsl to 64
;sets max-16
;sets 10000 and 10001 to $ FFFF
:sets $CF00 an~ $CF01 __ cat

DEFINE add_~$7000~
SET add-$42

The last exemple shows a DEFINEd numeric constant used
i n a SET statement. Since DEFINEs are eonstants at
compile time. they are valid in the SET directive.
Just make sure you DEFINE the constant before you use
it in a SET statement.

NOTE. do not confuse the compile-time effect of SET
with the similar run-time effect of Poke and FokeC .

--110--

Chapter 8. Extended Data Typel

The .~tended data typel make the ACTIONI language more
fle~ible than many othera available on the ATARI. Juat
aa the structured atatementa manipulate groups of
aimple statementl thereby exte nding the capabilitiea of
the ACTION I language, the extended typea manipulate
group. of fundamental t~ vari able. and extend the
language capabiltie. even ~re .

The three e~tend&d data typel in ACTION I are.

1) Pointer.
2) Arraya
J 1 Recorda

We will dilcu.a each leparately, following the order of
the above lilt .

8.1 POINTERI

Pointer. Sound. like
Ihow ua a place on hia
context of ACTIONL,
limilar,

the thing the weatherman uaea to
map. Well, it il . In the

Mpointer M meanl lome thing very

Pointere contain a memory addre.l, and.o point to a
memory location. You can change the value of • pointer
and make it point to a new place, ju.t like moving the
weatherman ' . pointer to another place on the map. The
big difference il that he pointl to citiea or Itatel,
wharlas ACTI ON I pointer I can point to BYTE. CARD, or
INT valuel.

Somehow we have to let
value we want a given
declaration lection will

the compiler
pointer t o

ahow you how

know what type of
point to , The

to do thi •.

After we 've gone over the method u.ed to declare a
pointer. we'll .how you how it c an be uaed. Thia i.
done in the manipulation lection through the u.e of
program examplea,

8.1.1 Pointer Declaration

The fonn.at uled to declare a pointer l ookl quite
similar to the fOrMat of fundamental data type variable
declarationl, except that we tell the compiler that the

--111--

variable is a pointer, and not just a fun~amental data
type:

whera

etype> POINTER (ident>I-(addr>lr:,~ident)l_ea~dr>l : r

(type>

POINTER

cident>
Caddr)

is the fundamental type of the
information the pointer points to.
is the keyword uaed to show that
the variables declared are
pointers.
is the name ot the pointer variable
tella whare in memory you want the
pointer to point to initially. It
must be a compiler constant.

eecaus. a pointer variable actually containe an
address, it must be able to take on values ranging from
e to 65535 ($8 to $FFFF), aince an ATARI with 64k of
memory has that many separate memory locationa.
Pointer. are atored aa a two-byte unsigned number. (in
LSB, MSB order) to allow thia range. Thftt means that
they are atored aa CARDs, except that they can be
interpreted as addresaea.

S ince the uae ot pointera
aection, we'll juat give
decla ration., in.tead of whole

BYTE POINTER ptr

CARD POINTER cpl

INT POINTER ip-$8000

8.1.2 Pointer Manipulation

ia dealt with in the next
.ome sample pointer

progra~ examples :

,declares ptr as a pointe r
Ito a BYTE value

:declares cpl as a pointer
Ito a CARD

:declares ip a. a pointer
: to an tNT, and points it
ItO memory location $8000

Pointers can be uaed to manipulate a variety ot things
in ACTIONI for t he simple reaaon that they can eaaily
be made to point to different memory location.. This
makes cataloguing and tabulating informat i on very easy.

The program on the following page ia juat a .imple
example to give you an idea of what a pointer actually
do... It will introduce the ,-, addreas operator used
with pointeral after the example we'll discuss the ,",
in depth .

--112--

Example '11
PROC pointeruaage()

BYTI!: num-$E0,
chr-$El

BYTE POINTER bptr

;declare and place two
;BYTE variables.

;declare a pointer to BYTE
;type .

bptr-'num JrnaKe bptr point to nurn.
Print(wbptr now pointa to address M)
Printp(M'HM,bptr);prints out num'. a~~ress .
PutE()
bptr~-255

Print(Mnwa now
PrintBE(nwa)

;puts 255 into the location bptr
;points to (i.e., into num).

equala M)
;ahowa that 255 really went into
Inurn.

bptr-"" ,puta " into num
Print(M num now equal a M)
PrintBE(nwa) rshowa that nurn equala " now.
bptr-@chr ;makea bptr point to chr now.
Print(Mbptr now points to addres s M)
PrintPC - 'H · ,bptr);printa out chr's addreaa, ao we
PutE() rknow that bptr really change~.
bptr-_'q ;puta 'q into the location bptr

Print(·chr
Put{chr)
PuU: ()

;pointa to (i.e., into chr) .
now equals M)

bptrA·'E
Print(Mchr now
Put(chr)
PutE()

RETURN

Output '11

;ahows that chr really equals 'q

,changea chr to 'z
equals M)

lahowa that chr is equal to 'z

bptr now points to addres s $E"
num now equals 255
num now equals "
bptr now points to addresa $El
chr now equals q
chr now equala E

Notice thst we use the ,A, operator when we want to put
a value into the place the pointer points to. So the
line Mbptr-."· in the above example ia the same as
saying -num-"-, becauae ' bptr' is pointing to 'num' at
that time. Although we don't use it in the above
example, pointer reference a can be used in arithmetic
expre.sione, as tollows,

x-ptr-

- - 113--

AlIa notice that "PrintF(-'H", bptr)- ia valid . What
this meana i. that 'bptr' can be acce •• ed ~s a CARDinal
number as well a. an addre... This i. useful when
debugging your program, because you can find out where
the pointer is pointing easily.

8.2 ARRAY.

Array. allow you to manipulate listl of variables by
~a~ing each variable in the list accessible u.ing only
the array name and a subscript. The variablea in the
lilt muat be Of the same data type , and only the
fundamental data types are allowed. The array name
tIl l . which array you want and the aubscript telll
which element of that array you want. The subscript is
just a number, 10 what you're really saying when you
reference an array element ii, "I want the nth element
of array J:,- where 'n' ia the aubscript and ' J:' 1. the
a rray name.

In the following .ection we will discuss the internal
rapr eaentation of an array. After that we'll .how you
how to declare arraya and manipulate them, and then
we ' ll tal~ about the limitations of arrays in ACTIONI.

8 . 2 . 1 Array Decleration

Dec l aring a r ray. i. easy in ACTION I , but that doeln't
mean that you don ' t have much control over what'. going
on. There are many options you can use to define
dif f erent characteristics of the array. including its
eddr. sa , ita a l &e, and even it. initial content • .
Because of all thele options, the format looks somewhat
cluttered. but the examplea Ihould clear up any
confUlion.

w'he r e

<type> ARRAY <var init> I : , <var Init>: I

<type>

ARRAY
<va r init)

is the fundamenta l type of the
elements of the array.
i. the ~eyword denoting an array.
i, the information required to
declare one variable as an array of
<type> data type elementa.

--1 1<1--

<var init> has the form :

<ident>l(si~e))I-<addr> 1 [<values» I (str conat»

where
(ident)
<aize>

«values»

<str conat>

i, the name of the variable
is the size of the array. and must
be a numeric constant,
ia the add res. of the firat element
ot the array. and mu.t be a compi
ler constant,
aets the initial value. of the
element. of the array , Each value
must be a numeric constant ,
sets the initial values of the
elements of the array to the ~tring
conatant. with the firat element
being the length of the string,

We warned you that it
organi~e aome of this
(hopetully) examples :

wa s cluttered! But now to
clutter with aome instructive

BYTE ARRAY a,b Ideclarea two arrays with BYTE
:element. without sizes declared

INT ARRAY .(10) :declarea 'x' as an INT array.
land dimenaiona its size

BYTE ARRAY str.-This is a string constant- ;this
;declares 'str' aa a BYTE array. and
;fills it with a string conatant

CARD ARRAY junk-$8000 ;declares 'junk' as a
;CARD array . which .tarts at $8000 in
:memory, without any size implied

BYTE ARRAY tests-(4 1 Ie)
la BYTE array. and

:deelares 'tests' as
fill. in its values.

PROGRAMMING NOTES, You should dimension the aize of an
array whenever possible. but there are .om. instanee.
where you can't o r needn't,

1) When you don't know how big it', going to be
(i,e" as in a routine parameter, When you
don't know how big an array i. going to be
pas.ed).

2) When you are filling the array in the
deelaration (using either the '[<value.»)'
or "str conlt" construction), and you
aren't planning t o add to the array.

--115--

Also. remember that the first byte of a string constant
contains the length of that string. So. to make an
string longer. first you must change the length byte
(which is the zeroeth element of the array containing
the string).

B. 2.2 Internal Representation

The internal representation of an array i. very much
like that of a pointer. This is because the array name
is actually a pointer to the first element of the
array. The array itself is simply a contiguous group
of cells, each containing an array element. The size
of a cell is determined by the data type of the
elements, one-byte cells for BYTE type. two-byte cella
for both CARD and lNT typea. However. having the array
name be a pointer leada to some very interesting
ramifications. as ahown in examples 2 through 4 of the
the following section.

B.2.3 Array Manipulation

Using and manipulating arrays is not very difficult
once you know how to declare the array and reference
its element.. You already know how to declare arrays.
so now we'll show you how to reference elements:

Example ,1,
PROC ref test!)

BYTE x
BYTE ARAAY numa{ 10)

POR x_0 TO 9 ;although nums is ten elements
;10n9. the subscripts run from
:0 to 9. not 1 to 10

00
nums{x)-x+'A ;xth element of nums is aasigned

;the value x+'A
Put{nums{x» ;put out xth element of nums as

;a character
Print(~ ") ; put a space between the chara.
00

PutE{)
RETURN

Output tl,
ABC 0 E F G H I J

- -116--

There are two array r efe renee. in the above program -
'nurns (x)' in the assignment statement, a nd 'nurna(x)' aa
a parameter to the 'Put' library procedure. They, and
all other array references, have the form:

where

<ident)«aubacript))

(identifier)

(aubscripe>

is the name of
to re fere nce.
is the nurnber
t hat array, and
expreasion.

the array you want

of the
ia an

e l ement in
arithllletic

As mentioned in t h e comment e xpl ain ing the FOR loop,
array aubacr i p ts do not start at 1, as you might
expect, The fir.t element in array ' cat' ia ' cat (")',
not 'cat(l)' , Thi. might aeem atrange, but you get
u.ed to it very quickly.

Example '2:
PRO(: changearray()

BYTE ARRAY barray

atring 1." barray·"This i.
PrintC(barray)
Print(" ")
PrintE(barray)
barray·"This ia
Pri ntC(barray)
Print(" "J
PrintE(barray)

:prints the CARD ' barray' contain.

RETURN

Output '2 :
Ul3S2
Ul414

,print. the
Itring 2."

This is It ring 1 .
Thil il a t ring 2.

atring 'barray pointa
Ito (with an EOL)

EXAMPLE 2 COMMENTS , Notice from the output that the
addr eal to which 'ba rray' il pointing change • .
Rea •• igni ng t he whol e array (When doi ng it using
Itring constant l) does not put the new atring into
the memory apace occupied by the old on., but
rather allocates new apa ce for the new string, and
then changea the value of 'barray' to point to the
.tarting add ress of the new Itring. The old
atring i, ,till in memory. but nothing i. pointing
to it any more, ao it ia inacc ••• ible.

--117--

Notice that ~ PrintE{barray) ~ ie valid , because ' barray'
pointe to a valid etrin9 conatant, which i, the type or
parameter the PrintE library procedure require,.
Pretty anea~yJ I

E~ample '3:
PROC equatearrayeC)

BYTE ARRAY a.~This ia a etrinq constant~,
barray

barray-a
PrintE(a)
PrintE(barray)

RaU~

Output '3:
Thie ie a etrinq conetftnt
This ia a etring conetant

~PLE 3 NOTES: All this program does is show you that
you can equate two arraya simply by ma~ing them
point to the same memory locat ion r in thie cale
it's a strinq constant they're both pointinq to.

You miqht have noticed that we have not done anything
like

BYTE ARRAY a-('A ' 's 't 'r 'J 'n 'g)

PrintE{a)

That's becauee the above won't work. Remember that
etring constanta are different from simple etrings
because their firat byte contains their lenqth, 10
procedurea that expect a atrinq constant will bsl~ when
you attempt to aend them anything else.

--118--

And now for a program that uaes all the applicstions of
arrsya which we hsve discusaed.

Exemple '4:
SCENARIO, You have e program thet only givea e rror
numbers when the uaer makea an error, and you want
it to print out error meaaaqes a. well. You could
do this using arr ay., aa in the following program.
We will di.cua. how the program works after t he
program itaelf.

PROC doerror(BYTE errnum)
:.... This procedure read. in the error number and
print. out the related mea.aqe. Sae the discussion
following the program for an explanation of how it
works.

BYTE ARRAY errm.g :the mea.age printed out

CARD ARRAY addr(6) :hold. the addreaaes of the
lerror mes.age.

addr(0)-MI11egal eommand M ; 1
addr{l)_MIllegal character M ; 1
addr(2)_MBad File Name M : 1

S ••
EXAMPLE 4

addr(J)_MNumber Too Large M ; I NOTES for en
addr(4j_ MWrong Type Of Number M : I explaination
addr(Sj_ MUnknawn Error M :1
errmsg_addr(errnumj ;put. the error mes.age as.o-
Print(MERROR 1M) ;ciated with 'errnum ' in
PrintB{errnumj :·er~.g· and prints it
Print{M: M) lout afte r the e rror num-
PrintE(errmag) :ber itaelf
PutE()

RETURN ; •••• End of p r ocedure doerror

PROC maine) I···· This procedure ia ,uat a dummy used to call
:the above procedure, using all valid e rror numbers,
Ito .how t hat the table works.

BYTE error

FOR error_B TO 5
DO
doerror{error)
00

RETURN ; •••• End of procedure main

--119--

Output '4:
ERROR 10: Illeg~l command
ERROR fl: Illegal character
ERROR '2: ,.d File N~me
ERROR '3: Number T~ Large
ERROR 14: Wrong Type Of Number
ERROR '5: Unknown Error

EXAMPLE 4 NOTES: The way in which we fill the CARD
arr~y in this e~amp le is strange (how can you fill
a CARD array element with a string?) but is
perfectly valid because the string constant itsel f
is not being assigned to the array element) rather
its address is. Thi, makes each element of the
ar ra y an impl icit · pointer to a str ing_ All we
have to do is assign the value of the proper array
element (i.e., the one pointing to the needed
error message) to the BYTE array 'errmsg' thus
making 'errmsg' point to the proper message. Then
we just print out the message .

We understand that the above program is very confusing
until you completely understand the concept of arrays
and their internal representation, but it is here so
that you can see some of the advanced capabilities of
~r rays.

8.3 Records

Records are constr uctions whiCh allow you to group
together some pieces of information,which, ~lthough

related in some way, are not of the same type . Your
driver's license is an example of a record. It has
your name, photo. address, and license number all
together. Thele pieces of infOrmation belong together
in that they all describe you to some degree . but they
are o f different types_ Your name is a character
string. your photo is a picture. and your address is
made up of both numbers and characters, as is your
license number. Of course the ACTION I language doesn't
support all these types. Instead, it groups together
only the types of information the complIer understands:
the fundamental data types_

--120--

B. 3 . 1 Dec1arin9 Records

ACTION I records manipulate the fundamental data type.
by creating a new data type composed of one or more of
the fundamental types. Then you declare variables of
that type just as you declare variables of type BYTE,
INT. or CARD. This allows you to declare as many
variables of one record type as you want, without
having to redeclare the format of the record type every
tillle.

The next section (8.3.1.1) shows how to create a record
data type. and section 8 . 3 . 1.2 demonstrates how to
deClare variables of a predefined record type .

B.3.l . l The TYPE Declaration

Without further ado we'll present the form used to
deClare a record data type :

where
TYPE is the 'keyword denoting the defini

tion of a record type,
<ident> is the name of that record type.
<var decla> are valid variable declarations, sa

in section 3.4 . 1, except that the
'.<{nit info)' option shown there
is forbidden.

At this point, an example would probably helpl

TYPE rec_(BYTE bl,b2
INT 11

Itwo BYTE fields first,
;then one tNT field,
;then three CARD field.
lending with a BYTE

CARD el,c2,c3
BYTE b3]

This need a some explanation .0 we'll go through it
piece by piece:

TYPE rec
We are defining a new data type called 'rec'

BYTE bl.b2

INT 11

The firet two fields ot this type are of BYTE
type, and are called 'bl ' and ' b2'.

The third field is of type INT, and its name is
'il' .

--121--

CARD cl, c2, c3

BYTE b3

The fourth through sixth fielrlR are CARD type,
and are named cl, c2, and c3, respectively.

The seventh and final field of the record type
'rec' ill of BYTE type and ill call ed 'b3'.

Notice that there are no commas between
variable declarations (between t he
declarations, for example). If you do
the compiler will try to read the
words (CARD, BYTE, INT) as variable8,
caU8e a compiler error,

'" CARD
diffe rent
and BYTE

put conunas
fundamental
and thAt

'0.
type
will

8.3.1.2 Declaring Variables

The last section showed you how to declar e a record
type, and this section will show you how to rleclare
variables of a given record type. The format is very
similar to that used when declaring variables of
fundamental types, but it does have its pecul i a rites,

Where

<ident> <vae> [- <addr>} I" <val'> [- <a"dr> I, I

<ident> is the name of the record type.
<val'> is a varib1e whose datIl type is

decillred to be the record type.
<init info> is information used to aet some

attributes of the variable .
<addr> 18 the address in memory where you

want the variable to be located.
It mU8t be a numeric con8tant.

Here's an
previous
of what's

example using the record type declared in the
section . After the example is an explanation
going on.

TYPE rec_[BYTE b1.b2
INT il
CARD c1,c2 , c3
BYTE b3~d

,same TYPE declarAtion
,used in the p r evjous
;section
lending with a BYTE

rac aree,
brec_$8000

:dec1ares Brec as data type 'rec'
:declarell brec all type 'ree'.
land places it at address S8ee0

--122--

EXPLANATION:

arec

Shows that the following variables are o~ data
type 'ree', just aa BYTE, INT, an~ CARO (when
used in variable declarations) show that the
following variables are of those types.

Oeclares 'arec' to be a variable of data type
'ree' .

bree-S8"""
Declare. 'bree' to be a variable of data type
'ree', and places it at me$Ory location $8999,

So now that you know how to declare a record data type,
and then declare variables of that type, it's time to
tind out how to reference and manipulate record • .

8.3.2 Record Manipulation

To learn how to manipulate records, wp first must muat
learn how to reference a field within a record . The
following program does just that, using the perl~
{' . ' } operator. We'll discuss it. usaga atter the
program itself.

Example tl:
PROC reocrdreference()
; •••• Thia procedure reads in aome information about
Ian employee, snd then print a it out to let the em
Iployee know it's correct.

TYPE idinfo-(BYTE level, ,employee's level
CARD idnum, ,hia I.D. number

entry year] ;year he atarted
idinfo ree Ideclaring 'rec' as reocr~ type

;' idinfo'
Print(-What i, your 1.0. number? -)
rec.idnum-InputC() 1get hi. 1.0. number
PrintC-What is your employment level CA-Z)? -)
rec.level-GetO(7} Iget hia emplo~ent level
PrintC-In what year did you start working here? -)
rec.entry-year-InputC() Iget hi. entry year
PrintE(-O.K . Here's what I have,·}
PutE(} +
Print{-I.O.' -} I
PrintCE(rec.idnum) t
Prlnt("Leval: M) I
Put(r.c.lev.U I
PutE() t
Print(-Entry year: ") I
PrintCE(rec . entry year) I +

out th ...
intormation
<h.
employee
put in

RETURN lend of PROC recordreferance
--123--

Output '1:
Wh~t i8 your 1.0 . number? 4365
What 18 your employment level? L
In what year did you stsrt working here? 1978

O.K . Here's wh~t I have :

I.D .• 4365
Level, L
Entry ye~r: 1918

The '.' is used to notify the compiler that you are
making ~ record reference (and is only valid in record
references). From the above program example you can
see that the format of a record reference is:

<record name>. <field name~

Note th~t <field n~me) ~nd <record name) are defined in
different declaration statements, as shown in the
previous section. <field nllme> is defined in the TYPE
declaration, when you define the fields of a record
type, whereas <record n~me) is defined in a variahle
deClaration, when you dec lare the variable to be of a
record t.ype.

8.4 Advanced Use of the Extended Types

The extended data types seem to be limited by the fact
that they may only operate on the fundament.al types:
that ii, you cannot h~ve arrays of r ecords, an ~rray
field in a record, etc. However, there a re ways to get
around these limitstions, as seen in example 4, section
8.2.3. In that example we crested an arra y of pointers
by using the element.s of a CARD array a s pointers, not
cardinal numbers. In this section we'll demonstrate
some other ways to get more out of the extended t_ypes,
including a program using re cord s with array fields,
and another program which uses an arra y of records.

-aut you just. said t.hat was illega l.- It is illegal if
you try it directly. but, as we mentioned above, there
are ways around, over, under, and between the literal
definition of the extended types.

The following example will fill an undimensioned array
with a lilt of records. The way it does this il simple
once we define a "virtual record", because the array is
actually a BYTE array with blocks of bytes being
grouped into virtual records.

A virtual record is not a record in the senae that we

--124--

declare it as a record type. It is a record only
becaule we access a section of memory as though it were
a record, although it il really just a string of bytes.
All we do is fill a BYTE array 80 that it look. like
contiguoua record., not byte.. This ie done by
declaring a record data type, and then declaring a
pointer to that data type . Then we manipulate the
array in blocks the size of one record by making the
pointer jump through the array in leaps the size (in
byte.) of one record. We will expand on thil in the
teChnical discussion following the example itlelf.

Example ,1,
MODULE :declaring some global variable.

TYPE idinfo-(CARD idnum,
codenum

BYTE level]

;employee'. 1.0. number
:hi. access code
;hi. employment level

BYTE ARRAY idarray(1000) ,enough space to hold
,200 record • .

CARD reccount-(S}

PROC fillinfo(1
,**** This procedure will take .ome information
Jon a given employee, put it into an arrey of
;records using a pointer to the record type and
:indexing that pointer in th e a rray . This pro
ICS" will continue a. long a. the Uler de.ir • •
Ito input more information.

idinfo POINTER newrecord

BYTE continue

DO
newrecord-idarray+(reccount*recordlize)
Print(- Y.D . number? -)
newrecord.idn~-InputC() Iget 1.0. number
Print(-Employment level (A-Z)? -)
newrecord.level- GetD(1) lemployment level
Print(- Acc e •• code? -)
newrecord.codenum-InputC() ,get .ecret code
reccount--+l
PutE() .
Print(- Input another record (y or N)? -)
continue-GetD(7)
PutE()
UNTIL continue-'N OR continue-'n
00

RETURN

--125--

PROGRAMMING NOTE:
you're within the
itself, eo you
routine.

This procedure does not make sure
bounds of the array, nor does ACTION I
might want to add a boun~ary cheeking

EXAMPLE 1 NOTES: There sre s eouple things this proee
dure does that require a detailed explanation,
ine l uding theae proeedure linea:

DEFINE reeor dsize--S-

idinfo POINTER newreeord

newr ecord-idarrey+(reecount·recordsi~e)

newrecord.XXX-xxx

receount--+l

We'll go through these one by one. Thill IIhould
not only explsin the statements themselves, but
should also elarify the eoneept we're using to
aeeomplillh the array of records.

DEFINE reeordsi~e- -5·
This DEFINE 1s used as the -jump- lIi~e when
we are going through the array. The record
type 'idinfo' is 5 bytes long (2 CARDS and
BYTE) , so thill will allOW UII to qo through
the array in 5-byte leaps. Every time we
leap like this we will skip over one record,
thuB el iminating the posBibl ity of writing
one record partially o n top of another.

idinfo POINTER newreeord
Here we are defining a pointer to the type
'idinfo ' . We ean fill fields o f II virtual
reeord in the array simply by pointing the
pointer to the first field in one of the
virtual records, and then using the pointer
in a record reference to acceBB a single
fie l d.

newrecord_idarray+(reccount*reco rdsize)
Thill assignment makea the pointer point to
the end of the a rray. It ~oes this by adding
the space occupied by all the other records
to the starting address of the array. The
space occupied by all the other records is
simply the number of reeo r ds ('reccount')
timea the size of each record (' r ecordslze').

--126--

newrecord,XXX_xxx
' xxx' is one of the field names of the record
type, and 'xxx' is the corresponding input
function uaed to fill the array, Since we
made 'newrecord' point to the end of the
array, we can atart filling in the new
record . We can use the pointer in the record
reference becauee we declared it as a pointer
to that record type.

reccount __ +l
Here we are limply incrementing
that keepi track of the number
currently in the a rray. We do
we just put another one in.

the variable
of record s

this because

In example '4 we will use this array we've filled to
verify the information typed in by someone trying to
gain entrance into a reatricte~ area (by making sure
they key in the proper secret coda), but we'll have to
remember to access the array aa an array of records,
using the same format in which the array was filled,
otherwile some strange problema will ariae.

Before we go on
filled array,
bit. We'll add
employee'a name

to ahow the program that looka into the
let's first modify the recorda a little
one more field which will contain the
in the" form.

LastName, FirstName

To do thia we must aomehow ~ake the field an array, Or
must we? Instead, l et'l limply add a BYTE ~ield to the
end of the record type, and then change the OEFINE
directive to make the li%e given each record i ncreaae.
If we increaae it by 2e, suddenly we have 25 byte
reserved for 6 bytes of field (2 Cl'oROs and 2 BYTEs).
Then we juet put the string in the extra apace, by
acceesing the laa t field (our new BYTE field) and
putting in a atring inatead of a byte. The string
can't be longer than 19 characterl (recall the firlt
byte of a string ia ita length), so we'll have to make
aure the string ia ahort enough. Without further ado.
we'll move onto the extended vera ion of the ' ldinfo'
procedure, complete with strings .

--127--

Example '2 ,
MODULE ~declaring some global variables

TYPE idinfoa(CARO idnum,
codenum

BYTE level,
name)

:employee 'a 1.0 . number
;his access code
;his employment level
I llrst letter of name

BYTE ARRAY idarray(l~~~) ;enough space to holrl
:4~ recor ds.

DEFINE recordsize-"2S" ,
nameoffset-"S·

CARD reccount_ [0)

PROC fillinfo()
: •••• This is eimply the morl if ierl version of the
;pr evious example.

idinfo POINTER newrecorrl

BYTE POINTER n ameptr ~pointer to ' n ame ' fielrl

BYTE continue

00
newrecor d-idarray+(reccount · recordsize)
Print("I.D. number? ")
newrecord.idnum- InputCC) :get 1.0. number
Print("Employment level (A-Z)? W)
newrecord,level-GetD(7) ;employment level
Pr int("Access code? W)
newrecord,codenum-InputC() :get secret code
nameptr-newrecord+nameof f set ;point 'nameptr' to
PrintE("Employee's name?") ;start of name field
Prlnt("(form: LlIBt, First) ")
InputS(nameptr) :read name into name field
reccount--+l
PutE()
PrintC"Input another reco r d (y o r N)? ")
c ontinue_GetD(1)
Put!!:()
UNTIL continue- 'N OR continue- ' n
00

RETURN

--12B--

EXAMPLE 2 NOTES. ~s in the
aome program lines
including'

previous example, there are
which need explanation,

nameoffset_~5~

BYTE POINTER nameptr

nameptr-newrecord+nameoftset

I nputS(nameptr}

Before discusaing the lines individually, let'. go
over the method used to put the name into the
array of records. Fir.t of all, we need to find
where to put the name once we've rea~ it in, then
we need to figure out a way to rea~ the name in .
The explanations of the above statements show you
haw we do it.

nameoffset·~5"
This DEFINE. the distance you have to go into
a single record to gat to the firet hyte of
the string. and i. ueed when getting the
pointer to the etring to point to the right
position .

BYTE POINTER nameptr
This pointer is
byte of the 'neme'

used to point to the firat
fi eld in a record.

nameptr-newrecord+nameoffset
lIere we are setting the value (i,e., where we
the pointer to point) o f the pointer
' nameptr' , It's Bet by taKing the addreBS of
the start of the record (. newrecord ') and
adding the offset distance to the first byte
of the Btring atorage location.

InputS(nameptr)
This ia uaed to read in the name. and usa.
'nameptr' as a pointer to the storage
location, just as .hown in Bection 8 , 2.3
(example 2), except that we are u.ing a
pointer instead of an array name {which ia
just a pointe r to the firBt element anyway}.

Now that we have a way to put the recorda into the
array. we need a way to search through the array record
by record when lOOKing for a match, The following i. a
function deeigned to do just that , It will access the
array ae u.ing the r ecord fOOl'lat of example 2. and
return the addresB of the atar t of the firat record

--129--

with ~n 'idnum' m~tchi n9 the one passed in as a
parameter. If no match is found, then" ia returned as
the address. Note that this function usea variables
deClared in the global statement section (i.e., after
the MODULE) of the p r evious example.

Exampl e '3,
CARD FUNC findmatch(CARO testidnum)

idinfo POINTER seeker :points to each record
lin turn to do teat

BYTE ctr ;used as a counter in the FOR loop

FOR ctr -0 TO (reccount-l) :minua one because we
DO letart at 0 , not I
seeker-idarray+(ctr·recordeize) : in~ex record
IF seeker . idnum-teatidnum THEN Itest for an

" 00

RETURN (seeker) :1.0. match and return
I if found

RETURN (0) ; no match found. Enrl of FUNC findmatch

This function needa very little exp l anation, since it's
st r ai9htforward compared to the previous examples. All
we do ie 90 to ever y record and test its 'idnum' field
for a match with 'testidnum'. Now let ' s turn the past
two examples into a true pr09ram by putting a shell
a r ound it.

Example ,4,
MODULE Ideclaring some 910bal variables

TYPE idinfo- [CARD idnum,
coclenum

BYTE leve l ,
name]

; employee's J . D. number
;his access c~e
;his employment level
; first let.ter of name

BYTE ARRAY ida r ray(1000) lenough space to hol~
:40 recorCls .

DEFINE reco rdsi z e_ R 25 R
,

nameoffset--S·

CARD r eccount-[0)

I································ ················ ···
continued on followi ng page ,

I·············· ············· · ·······················

--131'1--

PROC fiUinfo()
/ •••• Here'. the array filling procedure again

idinfo POINTER newrecord

BYTE POINTER namept r rpointe r to 'name' fiel~

BYTE continue

DO
newrecord-idarray+(reccount ·record.i~e)
Print(~I.O. number? ~)
newrecord.idnum-InputC() :get 1.0. number
Print(~Employment level (A-Z)? ~)

ne wrecord .level-GetO(7) :employment level
Print(~Accee. code7 .)
neWTecord . codenum_InputC(1 :get .ecr et c~e
nameptr-newrecord+nameoffeet lpoint 'nameptr' to
PrintE(~Employee'e name?~) I.tart of name field
Print(~(fonr" Laat, Firat) ~)

InputS{nameptrl Iread name into name field
reccount--+l
Put!{)
Print{~Input another record (Y or H)? -)
continue-OetO(7)
PutE()
UNTIL conti nue-'N OR continue-'n
00

RETURN

CARD FUNC findmatch(CARD teetidnum}

idinfo POINTER eeeker :pointe to each record
l in turn to do teet

BYTE ctr lueed a . a counter in the FOR l oop

FOR ctr-0 TO (reccount- l) ;minue one becau.e we
00 letart at 0, not 1
eeeker_idarr ay+{ctr·record aize} lindex r ecord
IF eeek e r.idnum-teatidnum THEN ;teat for an

RETURN (aeeker) rI.O. ma tch and return
Ii f found FI

00
RETURN (0) Ino match found . End of PUNC findmatch

•• * ••• •
continued o n follow ing page ,

: •••••••••••••••••••••••••••••••• * •••• * •••••••••••••

--131--

PROC mdn{)
; •••• This procedure eontrols the vhole sheb8ng

idinfo POINTER recptr

BYTE POINTER nameptr

;pointer to a record

;pointer to 'name' field

CARD id_num, ;1,0, number input by user
code num, ;code number input by user
keyid_[65535] ;1.0 . number alloving loop exit

BYTE mode ; controla the operation mode

PrintE{MStartup . . •. ~)
PrintE(MWhat operation mode?~)
PrintE{"X _ expand list of employees")
PrintE(MA _ alert/test input mode")
Print{"» ")
mode-InputB(} :read mode
IF mode-'A OR mode- 'a THEN ;anything but A or a

fillinfo{) ;will go to X mode
ELSE ;interrogation routine

DO : loop start
Print{~ Employee 1.0. number » "J
id num-InputC(1 ;oet 1.0 . number
IF-id num-keyid THEN ;enables exit f rom

EXIT ;the infinite loop
ELSE ;a normal 1 . 0. number (i . e ., not keyid)

recptr-findmatch(id num) :look for I.D. match
IF recptr-B THEN Tno match

PrintE("DO NOT PASS")
ELSE Ian 1 . 0 . match

Print(" Code Number » M)
code_num-InputC{) ;get access code
IF reeptr,eodenum-code num THEN ;a match

nameptr-recptr+nameoffset
Print(~I.D . '"1 +
PrintCE(recptr.idnum);
Print("Level: ")
Put(recptr , level)
Print("Name: ~)

PrintE(nameptr) +
PutE()
PrintE{~O.K . TO PASS")

ELSE ;code does not match
PrintE("DQ NOT PASS")

print
oot

known
info.

FI lend of access code testing
FI lend of 1.0 . number verification

FI lend of 'keyid' c heck
00 lend of infinite l oop

FI lend of 'IF mode
PrintE("System Shutdovn . , . ")

RETURN lend of PROC main

- - 132--

All the main proce~ure does is go through a serie. of
check. to determine what needs to be done at any given
point . The nested IFs are eomewhat confusing, but they
are lined up (that is, indented the same amount) sO you
can do IF- FI paring by placing a ruler vertically on
the page and eliding it back and forth to change levels
of neeting.

--133--

Chapter 9: Advanced Concepts

This chapter deals with 80me techniques the experienced
proqrammer might find useful. Thus far, we have
limited our discussion of the ACTIONi l anguage to a
study of the language with respect to itsel f: that ls,
without reference to the rest of the computer. Most of
this chapter is devoted to interfacing ACTIONl to
information external to ACTION! itself, including
operating system routines and s ystem va riables.

9. I Code Blocks

Code blocks allow you to include machine code in your
proqram. When the cOlllpiler sees a code block, it will
put the values in the block into the code genera ted,
just ss though it were code generated by the compiler.
No checks are made, so we don't recommend that you use
code block unless you know quite a bit about s ss embly
and machine language.

The format for a code block is:

where

[<value) I: <va Lue): I)

<value) 11 one of the values in the code block.
It mUlt be a compi l er constant (lee
section 3.2). If it i, greater than
255, then it 1s stored in LSB, MSa
order .

Examples,
(~4e ~eD ~51 ~pe ~6ee]

BYTE bl,b2,b3
[' 11 bl 342 b3 4+$117)

DEFINE on-l
[5 4 on on+ 't $FFF8)

Code blocks sre useful for including small machine code
routines, but it's too much trouble to insert a large
one. If you want to use a lot of machine code
routines, lee section 9.4 for seme hints.

9.2 Addrelling variables

In sections
POINTER, and

3.4 . 1, 8.1.1,
ARRAY variable

--134--

and 8.2.1 (Fundamentsl,
dec l arationl) we showed

that a variable's address could be apecified when that
variable was declared, but we didn't really make use at
that option. We didn't even explain the usefulness of
doing this.

This option allows you to declare an ACTION) variable
which haa the same address aa any hardware regiater.
Then you can manipulate graphica and sound directly,
change operating aystem characteristics, etc.... To
illuatrate the advantage a of this, we're going to
preaent a graphica program which makea the background
color change and acroll. To do this we can't use the
normal (shadow) color regiatera, becauae they're only
looked at every T.V. frame. Instead, we'll directly
manipulate the hardware color regiaters. In thia way
we can change the background color during one frame.
In tact, we can do it 12 times (and ao get 12 colora in
graphic. 0) . We have to make aure that we don't change
colors in the middle of a scan line, ao we'll make u.e
of the hardware variable WSYNC. which tells when a scan
line is done, and the next one has not yet begun. The
variable VCOUNT tells how many scan linea have been put
out, and we use it to time the acrolling.

Example fl'
PROC scrollcolora()

BYTE waync-54282 , ;the Mwait for sync M flag
vcount-S4283, ;the MaCan line count~ flag
clr-S3272, ;hardware regiater for background
ctr,ehgclr-(el, ;a counter and a color changer
incclr ;incrementa color luminance

Graphics/e) ;set graphica 0
PutE()
FOR ctr-l TO 23 ;print out demo measage

DO
PrintE(-A DEMO OP SHIFTING BACKGROUND COLORS-)
00

Print(MA DEMO OF SHIFTING BACKGROUND COLORS M)
00 :atart of infinite acrolling loop
FOR etr-l TO 4

DO
ineelr-ehgelr laet base color to increment

00 ,start of UNTIL loop
wsyne-e ;waita for end of acan line
elr-incclr :ehange diaplsyed color
incclr" -+l Ichange luminance
UNTIL vcount~128 rend of acreen teat
00 lend of UNTIL loop

DO
chgclr-"+l
00 leno!! of

RETURN lend of

lend of FOR loop
;change the base color

infinite aerolling loop
PROC acral leo lora

--13S--

9,] Addressing Rout ines

The eoncept behi nd speeifying the ad~res' of a routine
is similar to that of speeifying the ad~ r~ ss of a
variable . Only the realon behind th~ coneept changel .
In the lalt leetion we talked ftbout uling Atari system
registerl direetly by addressing an ACTION I variab le
to the proper location. Beeaule you can detine a
routine', addrelS, you can make direct calla to OS and
hardware routines directly. and do your own
manipUlation ot I /O . The meth~ uled will be ~iscusled
in the fol l owing section, because this method applies
to all machine language routinea , whether written by
you, resi~ent on the OS, or resident in the ROMs.

9 . 4 Assembly Language and ACTION I

ACTION I a l lows you
routinea very easily,

to make calla to ~achine language
There are only two requirements I

You need to know the starting ad~ resa ot the
routi ne

The routine must end with an 'RTS' (if you want to
get back to ACTIONI)

Por aale~bly language programmers these are not diffi
cult requirements to fill.

~What about parameters?~ ~Yes~ i, the anawer. You c an
aven aend parameter, to machine language routines. The
compil~r stores parameter, in this way.

Addreaa .~ byte of parameters
------- --------------------• register ,,'

X register 2.d
y register J~ ,.J 4,h

,.4 S~

, , .. 16th

--1]6--

And now for an example,

PROC CIO-$E456{BYTE areg,xreq)
: •••• Declaring the OS p~ocedu~e CIO. 'x~eg' will
:contain the iocb number ti~es 16, and 'areg' is a
:fille~. ao the number won't go into regiater A
;(CIO expects it In X ~eg.)

PROC ~eadchanne 12()
, •••• Thi a procedure will open channel 2 to the
:given file name, and call CIO to read ' buflen' bytes

DEFINE buflen-~$2BBB· :length of the buffer array

BYTE ARRA~ tilename(30).
bufler(buflen)

BYTE iocb2cmd- $362

CARD iocb2buf-$364,
iocb21en-$368

Put!()
Print(-File name)) .)

;the tile na~e array
;the buffer a~~ay

:iocb 2', command byte

,tocb 2', bulfer start add~a,a
,loeb 2'a bufter length

InputS{filename) :get the filename
Open(2,filename,4.B) ,open channel 2 to~ ~ead only
iocb2c.d_1 ,'get binary ~ecord' c~and
iocb2buf_buffe~ , eet iocb butle~ to our bulte~
iocb21en_buflen : a e t loeb bufter length
CIO(0,$2B) :..... the call to CIO •••••
Cloae(2) :cloalng channel 2

RETURN

See h~
aet of
ACTIONl

eaay it la7 For thOle of you with an extenaive
aaaembly language ~outinea, this ability of
allowa you to uae them in a high level

language, where building the framewo~k · of a program ia
easy.

9.5 Advanced Va e of Parameters

In aection 6.4 we diacuased parametera and their uaage,
mentioning that you couldn't pae. a value out ot a
routine using a parameter. Well, that was a little
White lie. ~ou can paaa values out through parametera
if you uae pointer.. All you do ia create a pointer
which point. to the va~iable you really want to pa ••
into a routine, and paa. the pointer in.tead. Than,
When you acce.s what the pointer ia pointing to, you
are really acceaaing the variable you wanted to paa ••
You can then change the value of that va~lable using a
pointer reference.

--131--

Thi. III.U.gd involve •• ome indir.etlon (1 •••• u.lng a
point.r to • variable inatead of the variable it.elfl.
but i. vety .fficient and u.oful in .a.. ease ••• s the
following eK&mpl •• how ••

ZUllllpl. U.

BYTE rUNe .ub.tr(BYTE ARRAY .tr.eub BYTE POINTER errptr. notfound)

, •••• Thi. fu nction will s.areh 'str' looking for tha
,subatring '.ub'. If it'a found. ths function returna
,the index onto the st ring. If the aub.tring is long
,. r than the .. ain atring an .rror ia r.turned via
,pointer. If the eubatring iln't found, that il rl
Iturnld via anothlt pointer.

BYTE ARRAY templtr Iholdl temporary .ub.tring for telt

BYTE etrl, ,outer loop counter
etr2 linnu· loop countar

IP .ub(al ~atr(a) THEN ,aubatring bigger than .tring
errorptt-_l

EL"

"

FOR ctrl.l TO Itr(a) ,loop to check .tring
DO
IF aubCl)-ltr(etr} THEN Itllting lit character.

tlmpatrlal-Iubla) ,di"'enalon te"pltr
POR ctr2.1 to .ub{a) ,fill temp.tr

DO
t p.tr{ctr21-.trlctr2.ctrl-l) Ifill t pltr
00 .

IP SComp.re(telllpatr,lub)-a THEN :compare 2 etringa
RETURN Cetrl) ,return indoK it equa l

" rI ,end of te.ting lat character.
00 ,end of FOR loop

notfound-.l ldidn't RETURN in loop, ao no ",atch found
It!TUM la } ,and of FUNC subltr

c.tring~
<aub.tr~

c.rrptr~

cnoflndptr'

ia the index into <Itring) where
'aubltring' Itart •.
11 the llain atring
is the eubetr w. want to find in
the ",aln et r ing
11 a point.r to a byte e rror ff.g
11 • pointer to • byte '.ubltting
not found' fl.g

--13a--

Thi. kind of perameter manipulation takes some prftctice
if you're not uaed to the concept of pointers, but is a
quick and easy way get more information passed out of a
routine without having to resort to uling global
variable.. Thia means that the routine remain.
- multipurpose-, as discus.ed in laction 6.4

--139--

--l40--

Part n . Th. ACTIONI Compiler

Chapter 1 Intr~uction 142
1.1 Voclibulliry 142
1.2 Compiler Directive. 143

Chllpter 2 Compi ler Operation '" 2.1 Comments, SET, DEFINE 144
2 . 2 Variable Allocation 144
2.3 Routinell 145
2 . 4 INCLUDEd Progrllma 145
2.5 MODULE 146
2 . 6 Symbol Tablell 146

Chapter 3 Ulling 'he Optionll Menu 147

Chapter • Technical Information 149
4.1 Overflow and Underflow 149
•• 2 Type .nd Boun~ary Checking 109
•. 3 Channel 7 Restriction 15.
4 •• Available Splice 150

--141--

Part V: The ACTION I Compiler

Chapter 1: Introduction

Atari BASIC o f fera you great convenience in that you
clln write II program in II somewhllt English-like
language, then immediately tellt that program without
going through any other atepa. This twofolrl a rlvantage
is gained at the e~pense of requiring that each command
on each line be figured out by a apecial program
(called the BASIC interprete r) at the time of
e~ecution.

ACTIONI is aomewh a t more aoph illticaterl. It requirea
that your program be fiqured out by a s pecial progra m -
called a compiler - before the actual ekecution of you r
program. This requires an intermediate step between
your entry of the program and its e~ecution by the
computer. The atep ill technically known lI a - the
compi le ". During the compile. the ACTION I compiler
analyzea your program on a line-by-line basis. Your
prog r llm is conve r ted into a different langulIQe [called
machine language) with storage for both qloblll li nd
l oca l varillhlell. The converted progrllm clln then be
ekecuted by your Atar!. running lit a speed much greater
than that of the interpreted Atar! BASIC.

1.1 VOCABULARY

This chapter refers to several terms which you first
learned about in Part IV. Those terma lire li s ted here.
with each term briefly rlefined:

term

< Ident)
<value)

<compiler constant)
<address)

comments

IIny valid identifier
IIny valid hek or decimal value
evalulltes <ident)'s adrlre ss
memory location

--142--

1.2 Compiler Directivee

The compiler directivee ere diecu •• ed in depth in pert
IV, chapter 7. and little more need be added here. We
simply remind you thet the compiler directive. ere
e,ecuted et compile time, not run time), ao do not uae
them when you went to change an operetionel perametpr
while your program i. running.

--143--

Ch3pter 2, Compile r Oper8tion - Alloc8ting Sp8ce

In this
Compiler
progr8m,
t8bles.

ch3pter we'll discuss how the the ACTION!
311oc8tes memory space for your compiled
its variables, its routines. and its symbol

When called, the first thing the ACTION I Compiler ~oes
is to decide where to put the code it wil l generate as
it compiles your ACTION! source program. It noes this
by looking at memory location 14. The CARD value this
and the following location contain gives the addreas of
the start of free memory. This address will vary.
~epending on t he size of the Editor buffer (aee
appendix Bl. Unless you specify otherwise, the
compiler will put your compiled cone in memory stft r ting
with address. To tell the compiler where you w8nt your
progr8m compiled, give the following two comm~nds to
the Monitor right before you compile,

where

SET 14_(sddress>
SET S491-<address>

<address> is the starti ng add re ss ~or the rom
piled code.

2.1 Comments, SET. DEFINE

Neither comments , the SET directive, nor the DEFINE
di rective generate any machine cone. This is because
they do not do a nything at run time. and so are not
required.

2.2 V3riable Allocation

Information on variables is stored in two different
locations by the ACTION! Compiler - in the code itself
8nd in the symbol table. The aymbol table is discussed
L8ter .

Variables 8 re stored in front of the machine cone where
t hey are used. Some variables are declared before the
first routine is enteren. These variables (called
global variables) can be used by any succeeding
routine. They need no addition81 declaration within
t he routine.

The allocated variables are assigned space accor~ing to
the definition of the basic dat8 types. The following

--144--

tflble Ihouid
allocation.

datft type

,y.,.
CH ..
CARD
'NT

ARRAY

TYPE

Itring

2.3 Routine.

help your under. tanding of

allocated

I byta
1 byte
2 byte.
2 byte.

fundament .. l typa
fundamental typa
fun~amentlll type
fundamental typ41

fundamental type extended type
_ize time s
number of
element_

sum of lize. of extended type
fundamental typel,
.. I given in dec-
laration

all character_
in the Itring
plu. a
preceding byte
to note length

e .. ch _tring il
allocate~ leparately
ev.n if let equal
to the lame identifier

The compiler allocatel apace for routinel (procedurel
and functionl) following that _pace allocated to the
declared global variabl ea . The variftblel declared
local to a given routine precede the ex ecut .. ble
language Itatementa in that routine. Program text
{atatementl within procedurea and/or functional ia
evaluated and converted directly into machine code.

2 . 4 INCLUDEd Programll

Programa can be "INCLUDEd at any place in the program.
Of courae, the INCLUDEd text muat not conflict with the
text currently being procellaed. The thinga to watch
out for are conflicting identifiera and out-of- contaxt
in •• rtiona. When error a are datected in tha INCLUDEd
text. they are ullually di apl .. yed in the "' ge .. re ••
The error , il alwflya Ihown in the Monitor'. commflnd
line and the bell loundl .

--145--

2.5 Additional global variables - MO DULE

Additional global variables, a rrllYs, and rer.ords can be
added, as needed, through the use of the MOOULE key
word. The vll riohles lire IIssigned space following the
last previous routine. The identifiers li re also
included in the compiler's global symbol table.

2 . 6 Symbol Tabl es

The ACTIONl Compiler maintllins two symbol tllbles
one for the globlll variables lind one for the local
variables from the last-compiled routine. The symbol
tablea are accesaible from the ACTION I Monitor through
the '1 ' , '. ' and SET commands (see Part III). They
are alao used by the ACTIONl Compiler whenever a
variable's address is required.

The Compiler allocates 8 memory pages (2K) for these
tables , located right at the top of avail6ble memory.
Because they are placed there, you can wipe them out if
you r un a program which changes into a graphics mode
which requires more memory than graphic s 0. Thi s means
tha t you won't he able to go back to the Monitor during
program execution and look at the values in your
variables. The Compiler will ha ve no record of their
e xistence since you just overwrote them.

--146--

Ch~pte~ 3, Using The Options Menu

The options menu offe~. you seve ~al ways to enhanc~
alter t he performance of the ACTION I compi l er.
various options are discussed ~ere ~nd in part
The options are also summari2~d in Appendix G.

Incr easi ng compiler speed,

O.
Th.

lI t.

You ca n gain at. least a 3'" improvement in
compilation speed by using the options m~nu to
turn off the screen display d uring both disk I/O
and progr~m compilation. Simply pr~BS ' N _ RETU RN~'
to the ' Screen?' prompt in the options menu.

NOTE, this a l .o tu r ns off the screen for other
ACTIOSI .ystem functions, .0 you should turn the
display back on after you have finilhe~ compi li ng .

Tur ning the bell otf,

When you are debugging ~ new program and have lots
of errors. such as typogrsphica l errors, you mi ght
want to turn the bell off. Simply pr ess
'S_ RETURN>' to th~ 'nell?' prompt in the options
menu.

Making the Compiler case .ensitiv~,

Som~tim~s, particularly as you get more
sophisticated in your programming style , you might
desire that the compiler help you In your
prog~amming by reminding you whenever you forqet
to enter an ACTIONJ key word in upper case. You
also might wish to benefit from the increaaed
flexibility of using different or mixed cases in
your identifiers. You can do both by pr~ssi n9
'Y<RETURN~ ' to the options menu p rompt ' Case
sensitive?' .

U.e of this option is not necessary to succ~slfu l

ACTION I programming_ However, it is useful ~s an
aid to documentation and in prov i ding a much
9reater diversity in identifiers.

--141--

Listing the compiled cone:

You can command the Compiler to list each program
line as it is evaluated. This may seem
unnecessary b~cause most errors which o~cur are
noted and displayed on the screen nu r ing the
compiling process. However, you might have ~ lon9
program which includes routines from other sources
(remember the INCLUDE command?) . It this is &0,
then you might never be able to get the source
code together for a complete listing otherwise.
You ean get such a listing, and even redirect it
to the printer (see part VI, se~tion 7.9). To
e nab le the listin9, press ' Y<RETURN>' to the
'List?' options menu prompt.

--148--

Chapter 4: Teehnical Consirlerations

4 . 1 Overflow an~ Underflow

The ACTIONl Compiler rloes no checks for mathematical
overfl ow or underflow. "What is overflow anrl underflow
anyway?" They are opposite sides of the same coin.

rf you have a BYTE varaible which current l y equals 255.
and you add 1 to it. you won't get 256 (ber.ause a
single byte can only contain values up to 255). you 'l l
get~. Similarly. if you are using the deeimal system,
and only have two digits of display, you can run into
the aame problem if you adrl I to 99. You know t.hat it
equals lee. but you only have two digits of display. so
you see M~e~.

Underflow is the exact opposite of this.
subtract I from £I, you get 255.

If you

AS mentioned in part IV. section 4 . 2, some of the
mathematic ope r ators resu l t in a specifierl type of
output, so you can sometimel avoid the above problems
by making use of these automatic type changes.

Likewise, shift operations csn cause overflow and
underflow . A shift of the contents of a variahle
produces similar (but not lrlentical) results to thOle
achieved by multiplying or dividing by 2.

4.2 Type Compatibility and Boundary Checking

You must also be carefu l because the ACTION I compile r
supports no boundary checking of simple variables or
ARRAYs. This ia rleliberately done in order to a llow
you more flexibility in your data manipulation. The
price for this freedom is increased vigilance . You
must set up and maintain your own procedures for
checking boundary limi ts anrl the error-handl ing
responses. This is another good place for a standard
let of subroutines which can be INCLUDEd.

--149--

4.3 Channel 7 Reatriction

When you enter the ACTION I syatem, it opens channel 7
for reading frOltl the keyboard (K:). You may use this
channel for this purpose, but do not alter ite
attributee by reOpening or Closinq it.

NOTE:: if you
its al r eady
the ACTION I

do Make use of channel 7 (and assume that
openl. your pr~rams will not run without

cartridge.

4 . 4 Available space

You might be work i ng on a big program and luddenly find
that you are out of space. When this happens, you can
do one of three thingl, depending on whet you ere rloing
st the moment when the error appeers.

If you are Editing'

Immediately save your file «CTRL><SHIFT>W).
the Monitor. and reboot the system {BOOTl.
you lIIay go back to the Editor and read your
back in.

If you ere Compilin~:

go to
ThO"
file

Go to the Editor and seve your pr09ram. Th~n go
back to the Monitor. reboot the system, and
Compile your program from the storeQ8 device
(disk, cassette, etc.).

--150--

Plirt VIl The ACTIONI Librllry

Chapter 1 Introduction 153
1.1 Vocabulary 153
1.2 Library Formllt

1 "

Chllpter 2 Output Routines 156
2.1 The Pri nt Proce~ures 156
2. 1. 1 Printing Strings 158

PROC Print.
PROC PrintE
PROC PrintD
PROC PrintDE

2.1. 2 Printing BYTE Numbers 159
PROC PrintB
"OC PrintBE
PROC PrintBD
PROC Print8DE

2.1. 3 Printing CARD Number s '" PROC PrintC
PROC PrintCI':
PROC PrintCD
PROC PrintCDI':

2.1. 4 Printinq tNT Numbers 161
PROC Print!
PROC PrintIE
PROC Pri nt I 0
PROC PrintIDI!:

2.1.5 PROC Pr intF - Formlltting Output 162
2.2 The Fut Procedures 163

PROC Puc
PROC Put!
PROC PutD
PROC PutDE

Chapter 3 Input Routines 16 .
3.1 Nume r ic I nput 16'

BYTE PUNe InputB
CARD FUNC InputC
INT FUNC InputI
BYTE FUNC InputBD
CARD FUNC InputCD
INT FUNC I nputID

3.2 Strinq I nput 166
PROC InputS
PROC InputSD
PROC InputMD

3.3 CHAR FUNC (JetD 166

--151--

Chapter • Pile Manipulation Routines "7
'.1 PROC Open 1.7
'.2 PROC Close I ••
•. J PROC XI. "B ••• PROC Note 169
'.5 PROC Point 169

Chapter 5 GraphiCI and Game Controllera 17.
5.1 PROC Graphics 17.
5.2 PROC SltColor 171
5.J 'YT' color 172
5.' PROC Plot 173
5.5 PROC Draw1'o 173
5.' PROC Pill 17'
5.7 PROC Position 174
5. B BYT' PUNC Locate 175
5. , PROC Sound ".
5.10 PROC SndRst 177
5.11 BYT' FUNC Paddle 177
5.12 BYTE FUNC PTrig 177
5.13 BYTE FUNC Stick 178
5.14 .YTE FUNC Strig 178

Chftpter • String Handling I Conversion 179
6.1 String lIandling Routines 179
6.1 . 1 INT FUNC SCompare 179
6.1.2 PROC SCopy ".
6.1.3 PROC SCopyS IR.
6.1.4 PROC SA,.ig" lAl
'.2 Number to Rtrinq Converaions 'B2

PROC StrB
PROC StrC
PROC StrI

'.J String to Numb,r Conversinns IR2
BYTE FUNC ValB
CARD FUNC ValC
INT FUNC Vall

Chapter 7 Miscellan.oua Routinea 10J
7.1 BYTE FUNC Rand IBJ
7.2 PROC Bre ... k I"
7.J PROC Error lB.
7 . ' BYT' FUNC Peek IRS

CARD FUNC PeekC
7 . 5 .YT. FUNC Poke 186

CARD FUNC PokeC 7., PROC Zero 186
7.7 PROC SetBIOc:k 187
7.B PROC Mov.Block 107
7. , 'YT' r1evic:e ".
7. HI BYTE TRACE lAB
7.11 BYT' LIST teB
7.12 BYT' ARRAY l:OF(8) 189

--152--

Part VI: The ~CTIONI Library

Chapter 1: Introduction

The ~CTIONI library makes it possible for you to do a
lot of common I/O and graphic. routines wit~out having
to write them first. The ACTION I cartridge contsins
almost 70 prewritten routines which you can call as
though they were routines written by you. This
convenience can sa ve you quite a hit of time and effort
wheth e r you are a beginning or advanced programmer.

1.1 Vocabulary

Most of the vocabulary used in this part has been
defined previously, but there ar~ tWO terms we'll use
often which require aome ~iScu5sion - IOCS and channel.

IOCB stands for "Input Output Control Bloc~M. The CIO
(Centra l I/O) uses IOCBs to perform I/O functions. The
ACTION I library I/O routines set up an IOCB to tell
the CIO what it (the routine) wants done, and then
makes a direct call to CIO .

The IOCBs are numbered (A - 7). When you use routines
which require channe l numbers, the number is actually
the number of the IOCB whiCh contains the information
about a given peripheral devi ce. That doe. not mean
that certai n IOCSs handle certain perip~erals. You
must aet up one of the IOCBs so that it will han~Je the
peripheral you want it to . This is done using the
Library routine MOpen M, and so is not a difficult ta sk
to accomplish.

When you see the term "default channel" it refers to
the IOCB ACTION I sets up and uses for screen display
purposes. This means that r outines whiCh do I /O using
"default channel" will get and p ut information from and
to the screen (device "E:"'.

NOTEs the default channel is channel 0.

NOTEl for more information on IOCBs, see your Operating
System reference manual.

--153--

1.2 Lib~a~y Fo~mat

The library routines are presented in a manne~ which
makes it very easy to understand how to use an~ call
them. To show you what we mean, let's take one of the
routines and explain what i nformation each part of the
p~esentation format can tell you. The routine we'll
look at is "Locate".

Exampl e:

5.8 BYTE FUNC Locate

purpose: dete~mine the colo~ or cha~acter at a qiven
screen location.

format: BYTE FUNC Locate(CARD co l, BYTE row)

paramete~s, col is a column number valid in the

description:

rurre nt graphics mode.
row - is a row number valid in t.he cu rrent

9'~aphics mode.

Thi. ~outine retrieves the ATASCII code of the
character or the numbe r of the color at the specified
location . The registe~a this ~outine usea are
incremented so as to point to the adjaeent horiT.ontal
polition (the firlt position in the next line if you
Located the last position on a line). All of the Get,
Put, Print, and Input routines also use these reqiste~s
as ~eferences for t.he cur rent cursor location, so you
can use this to move to any position and then use
anothe~ ~outlne to manipulate what'a there .

The fi~st thing you see is the section numbe~ a nd name
of the routine, inclul'ling what type of routine it. 11
(in this case a BYTE FUNCtion). This is followed by a
.ho~t deacription of the purpose of the routine. The
format of the routine itself is then given in the form
of a ~outine declaration. The declaration form is u~ed
instead of the form used to call that routine because
it tells you more information about the routine in
queltion, including:

1) the routine's type (PROC or FUNC)
2) all the pa~ameters
J) the data type of each paramete~

- - 154--

After the format of the routine i . given the paramet..rs
required by that routine are explaine~ one by one. The
last piece of information is a description which
discusses the use of the routine in gen~ral and its
performance in ce r tain special conrlitions.

--155--

Chapter 2: Output Routines

The ~CTIONI Library provides an ~xtremely extensive
group of r outines to put both numerie and st r ing data
out to any channel.

The two basie output routines -- Print anrl Put -- have
options whieh allow you to direet the output to a
speeific channel and/or output an EOL (End of Li ne,
a . 1< . a. <RETURN») following the d;!!ta. We'll go jnto
t h eae opt i ons in more det;!!il in the following sections.

2.1 The Print Proeedures

The procedures we are about to diseuna all have one
thing in eommon: they b egin with the word "Print".
From this alone you ean te l l that thpy print something
out somewhere. but who known wh;!!t and where? The
answer. t o theae questions ean be found by looking at
the option(s) uigged onto the en(l of the wor(l "Print".

These options all eonsist of a sing le letter. but you
can employ up to three options at one t ime because
different o ption s control different aspects of the
output, "Ia this ever confusingl" It might seem that
way, but let's look at the format of Print to see how
the s e options a re grouped:

whe r e

Print<data type)!OI!EI«parameters»)

Print

<data type)

D

E

is the basic function name.

tells what
to output.

B
C
r
<nothing)

type of da ta you
The options here
(BYTE type (I~ta)
(CARD type data)
(tNT type d ... ta)
(a strinq)

stands for "device",
when you w ... nt to
dev i ce (channel)
output to go to.

and is
<le£ine
you want

w<lnt
a re:

used
which

n,

stands for EOL (End Of Line) , and
is use(l to ouput a <RETURN) afte r
the data.

<par ameters) are the pa ramete r s r equired by the
procedure, and range in number.

--156--

NOTE: Roth the '0' and 'E' are optional,
type is always specified (because 'a string'
to be the type of data output if no type is
given),

From <h, above format yO" c." ... that <h.

'" .11 <h. poI'Il'lible Print routines,

strings BYTEs CARDs

No Optiona Print PrintB PrintC
With EOL PrintE PrintBE PrintCE
To Device PrintD PrintBD PrintCD
Both Options PrintDE PrintBOE PrintCDB

hut a data
il'l al'lsumed
explicitly

following

'NT.
PrintI
PrintIE
PrintID
PrintJDE

Notice that we have grouped the procedures accor~ing to
the type of data which they output , This is the way in
which we group them in the following s ections, with
each section giving the purpose, format, Pflrflmeters,
and discussion for each option of the Print proce~ure
basic to that type of data.

There is one Print procedure not in the above li.t
because it i. a very special case as far as output i.
concerned. Its name is PrintF, and it allows you to
form8t output which contains numbers and strings. A
separate section i. devoted to this routine alone.

--157--

2.1.1 Printing Strings

There are four 8tring printing
all the options discussed in
available.

procedures, thus making
the previous section

purpose, to print out a s tring, usjng some format
options

formats, PROC Print«string»
PROC PrintE«string»
PROC PrintD{BYTE channel, <string»
PROC PrintDE(BYTE ch"nnel. <string»

parameter s: <string> - is either II string constant wit-h
double quotes or the id~ntifier of
a BYTE ARRAY (whicl1 you want
printed out as a string)

channel - is s valid channel number (0 - 7)

description:
These four procedures print out strings, thus:

Print outputs Che 8trtng '0 <he d~faul t channel
wi thout , <RETURN> .. th, end.

PrintE output I <he stt'in~ '0 Ch, default chann~l
.... i th • <RETURN> " <h, end.

PrintO output I <h. string '0 • specified channel
.... i thout • <RETURN> " <h, end.

PrintDE outputl th, string to • speci ned channel
.... i th • <RETURN> et Ch, end.

Their usage is very straightfor ard and simple, but you
must rememher that, ith the procedures which require"
channel, the channel must first be opened.

--158--

2.1.2 Printing BYTE Numbera

The following four proce('lurell are uaed to print
type data in decimal format. They lItart with
'PrintB' baae, and then add the posaible optione.

BYTE
<he

formllta:

to output one byte of data as a decimal
number.

PROC PrintB(BYTE number)
PROC PrintBE(BYT£ number)
PROC PrintBD(BYT£ channel. number)
PROC PrintBDE(BYTE channel, number)

parametera: number is a n arithmet ic expression (re-
member that arithmetic expre.sions
can limply be a constant or variable
name) .

channel - is a valid channe l number (0 - 7)

Clescription:
The above proce('lures output BYTEa as follows,

PrintB outputs the byte to the ('Iefault channel
without a <RETURN> at the end.

PrintBE outputs the byte to the default channel
with a <RETURN> at the end .

PrintBD outputa the byte to a specified channel
without a <RETURN> at the enCl.

PrintBDE outputs the byte to a apecified channel
with a <RETURN> at the end.

--159--

2.1.3 Printing CARD Numbers

purpo.e,

fonnets:

to output numbers aa CARDs in ~ecimftl
format.

PROC PrintC(CARD number)
PROC PrintCE(CARO number)
PROC PrintCD/CARD ch~nnel. number)
PROC PrintCOE(CARO c hannel. numher)

parameters: number is an srithmeti~ expression (re-

description:

member that arithmetic expressions
can simply be II constant or vlIriable
name) .

channel - ia a valirl channel number (A - 7)

The shove procedure a output CARDs as follows:

PrintC output a the CARD to the rlefault ~hanne l
without a <RETURN> st t.he end.

PrintCE outputs the CARD to the ~efault channe l
with a <RETURN> lit the end.

PrintCD outputs the C~RD to a specified chsnne l
without 8 <RETURN> at the end.

PrintCDE outputs the CARD to a apec ified Channel
with · a <RETURN> at t.he end.

__ 161'1 __

2.1.4 Pri"ti"9 INT Numbers

purpose :

formats:

to output "umbers as INTs i" de~imal
formftt .

PROC Pr int I(JNT number)
PROC Pri"tIE(lNT number)
PROC PrintlD(INT channel, number)
PROC PrintIDE(INT channel, numher)

parameterl: number is an arithmetic e.prelsion (re-
member t.hat arithmetic e.prealionl
can simply be a constant or variable
name).

channel - i. ft valid channel number fA - 7)

description :
The above procedures output INT. as follows:

PrintI outputs the INT to the default channel
without a <RETURN> at the end.

PrintIE outputl the INT to the default channel
with a <RETURN> at the end.

PrintID output I the tNT to a specified chan"el
without a <RETURN> at the end.

PrintIDE outputs the INT to a spec ified channel
with a <RETURN> at the end.

--161--

2.1.5 PROC PrintF - Formatted Output

The PrintF procedure allows you to output numbe r s and
Itringl on the same line through the use of a ~format
control string~. Thil string tells the procedurel
exactly how you want the out.put to look.

p Ul"po ae: formatted output of data

f Ol"mat: Pl"intF("<control string)", <data>I:, <t'I!'Ita>:I)

arguments, <contro l string>- the contro l stl"ing is maoe
up of format controls and string
text. The text il output directly,
lind the contr ols (maximum of 5) give
info rmation fo r outputting the <data>
parameters given.

<data) - is In arithmetic expression , which
will be formatted aceort'ling to its
format control. The first control
tells how to output the first <data>,
the accond control tells how to
output the aacono <data>, ano so on.

description,
Thi a ia a aophiaticated procedure enahling
output formatted data to the default channel.
five di f ferent data elements can be interspel"sed
atring, each with ita own output format. The
control a are as follows:

<control> formatted data type

(output data as a string)
(ou tput dat3 as an INT)

you to
Up to
into a
fo r mat

\5

" .U .e
\H ..
'E

(output datI'! as an Unsigned CARD)
(outpu t dat" "s a CHARacter)
(output data in unsigned hexadecimal)
(output the ' t ' c harac ter)
(output an EOL « RETURN»)

Notice that two of the control a (tE and t tl do not
manipulate or require data elements .
change t h e page formatting. not
f o nna tt i ng.

They are
the data

uset1 to
element

A maximum fo fi ve controls a re a ll owed, and each data
element requi r es ita own control.

Charactera
themselves
elCllctly liS

in the
cont rols

the Ice in

control IItring which
are o utput directly;
t he string.

--1 62--

.,.
t h llt

00'

is,

2.2 The Put Procedures

The Mput M group of librftry routines are uaed to output
single characters (i.e., output BYTE type dat~ a. an
ATASCII character). These routine. use options very
aimilftr to thOle in -Print-, an~ 10 the option. nee~
not be re-introduced here.

purpOse.

formata,

to output a single ATASCII char~cter, usIng
specified format options .

PROC Put (CHAR characte r)
PROC PutE()
PROC PutD{BYTE channel, CHAR character)
PROC PutDE(BYTE channel, CHAR character)

parameters I character is an arithmetic eKpresaion

description :

(remember that arithmetic eKprea
lions can limply be a conatant or
variable name).

channel - is a valid channel number(0 - 7)

These procedures output characters as follows,

Pu, outputs <h. Character '0 <h. defaul t
chllnnel ithout a <RETURN> lilt the end.

PutE outputs "" EOL (RETURN~) character to
the default channel.

PutD outputs <h. charaC'ter '0 " specified
channel 1 thout a <RETURN> "' the end .

PutDE outputa <he ch~racter '0 " Ipecified
Channel 1 th a <RETURN> at the end.

- -163--

Chapter 3: Input Routines

In thi9 chapter ve di9cuss the
complement the Print an~ Put routines;
input data from somewhere. Similar
routine9, the type of ~ata that is input
comes from is definerl through the use of

routines which
theot is , they
to the Output
anil where it
options.

' Input' and 'Get' are the input routines. and each has
it9 own set of options very similar to those available
in the output routines.

The Input routines are grouped into two categorie s :
those which input numeric d a ta, and those which input
string data. Each viII be dealt with separately.

There is
discussed

only one Get routine (GetDl, and it viI) be
in the last gection of this chaptpr.

--164--

3.1 Numeric Input

The following six functions allow you to input any type
of numeric data from any channel. We have grouped them
all together because they are very easy to understan~
Bnd so do not require leparate lection., BI did the
routines used to output numbers d1d .

purpose.

formats.

to input numeric d~ta

BYTE PONC InputB!)
BYTE FUNC InputBD!BYTE chsnnel)
CARD PUNC InputC()
CARD FUNC InputCD(BYTE channel)
INT PUNC InputI{)
INT FUNC InputID(BYTE chsnnel)

pa r smeters, channel - h , va I id channel number ,e - 7l

description,
Th. functions input data ,. follows,

InputB input. " BYTE number f,~ ,,- defsul t
channel.

InputBD inputs , BYTE number f,~ , specified
channe).

InputC input. , CARD number f,~ ", default
chsnnel.

InputCD inputl , CARD number f,~ , .pecified
Channel.

InputI input. '0 'NT number f ,~ "e defsul t
channel.

InputID input. '0 ,NT number f,~ , .pecitie~
channel.

--165--

3 . 2 St~ing Input

St~i ng inputting is ~eeomplished by auffixinq the
~lnput· base with the cha~acte~ ·S". The are th~ee
such procedu~es in the ACTION ! Library, and they allow
you to input a string from any channel ~nrl/or rlefine
the maximum length of the input st~ing.

purpose : to input st~ing data

formats: PROC InputS«string~)
PROC I nputSO(BYTE channel, 'string~)
PROC InputMD(BYTE ch~ nnel, (8t~in9~. BYTr. max»

paramete~8: (atring~ - ia the identifier of a BYTE
ARRAY.

channel - ia a vali~ channel number (A - 7)
max - is the maximum length allowahle

for the input st r ing. The string
is truncated to ·max' length if it
is too long.

description:
He~e is an outline of whst each procedure does,

InputS

InputSD

Inpu tMD

3 . 3 CHAR FUNC GetO

i nputs
acters
inputs
acters
inputs
acters

a string of up to 255 char
f~om the default eh~nnel.

B string of up to 255 char
f~om a specified Channel.
a st~ing of up to · max· char
from a specified channe l .

pu r pose: to input a single Character from a givpn
channel.

format : CHAR FUNC GetD(BYTE channel)

pa ~ameters: Channel is a valid channel numbe~ (A - 7)

~esc~ ipt ion:
Th is function is
device specifi ed
r .tu~ned through
s et number.

used to get one Character from the
by ·channel'. The character is

the f unction 9S its ATASCI I c haracter

- - 166--

Thi. eh.pter ie devoted to thoee routinee whieh deel
with .,.t.rn.l d.vie •• (print.r . di.k drive. .. •••• tt ••
• te .). With th ... routin •• yo ... eAn open a ch.nnel (en
JOCB), eloe • • eh.nn.l, and do .,.t.n"iv. dl,," f11 •
... nipuhtion .

•• 1 PROC ap.n

p ... rpo" •• •• t ... p an I OCB ehenn.l to .llow I /O u.inq
a peripher.l devie •.

tor..t. PROC Open(8VTE eh.nn.l, <fil.ltrlng'. BYTE -ade, .u.2)

p.r ••• tere. ch.nn.l _ I" • v.lid eh.nn.l n ber (8 _ 7)

d.acr iptlon,

<fl1.etrlng' - il the Itring eonet.nt (or
.rray id.ntifi.r of th.t 'trlng
conlUnt) u • ..., a" the device (D ••
PI, S ••• te.) b.ing opened on the
given eh.nnel (IOCB) nUMber. -0, ·
fU ••• 1.0 r.quire • Ulen ••• .

1BOd. h the n_ber d .. elgneting the
type of J/O, thu ••

.. r •• d only
6 r •• d dir.ctory
B writ. only
9 writ •• pp.nd

12 read/writ. (upd.t.)
.u .. 2 a d.vie. d .pendent v.lu. (u.u.lly

... ro)

Thi' proc.d ... ra open" a given ch.nn.l the
.p.eifi.d in <fil •• tring" Th. t/O mod. c.n
(Ie •• MOd,,' .bov. for the nUMber eod~'). Any
depend.nt codee ar. peee"d through 'eu,.2'.

device
b. e.t
d.vie.

WARNtNG. do no,. Op.n ch.nnel 7 . b.e it h u •• d 'by
the ACTION! ~yet ... t.o do it. own .cr •• n input. Yo ...
e.n u.. eh.nn.l 7 in your prograM for g.tting
ch.ract.re frOM XI, but, .inc. th.t th.t
ehann"l 7 h open , you n •• d the ACTIONJ c a rtridge- to
run the CCMpUed v.relon of the prograM I bee
ACTION J optlne ehanne} 7 to k.}.

- -167- -

4 . 2 PROC Close

purpose : to close an IOCB channel to a ~evice

format: PROC Close{BYTE channel)

parameters: channel - is a vali~ chan nel number (0 - 7)

description:
Thia procedure
e nd of a program
you've opened in

closes the specified channel.
you should always close a ny
the course of that program.

At t.he
devirell

NOTE: DO NOT Clolle channel 7, all ACTION I usell it.

4 . 3 PROC XIO

pUJ:"pose:

fontl"t:

parameters:

description:

PROC XIO(BYTE chan,0,cmd,auxl,aux2,<filestring))

chan
~d

auxl

- is a valid
t 15 the

COMMAND byte
XL)

channel number (0 - 7)
equivalent of the l OCR
(ICCOM in OS/A+ and DOS

i s the first
loeB (ICAUXI in

aux illiary byte in
OS/A+ and DOS XL)

<he

aux2 - ts the second auxilliary byte tn the
IOCB (ICAUX2 in OS/A+ and 005 XL)

«ilestring) - is a character string s pec
ifying a standaJ:"d device (.... ith a fi Ie
name in the calle of "01").

Thi. proced u re
access to DOS.
BASIC 11.+, OJ:"
t r a nslation of

is a aystem call designed to provide
Those of you familiar with Atari BASIC,
BASIC XL will recognize XIO as a direct

BASIC's XIO statement.

Rather than give a complete list of all the possible
uses ot XIO here. we will r efe r you to Chapter 8 of
either the OS/A+ or 005 XL manual . The ACTION I XIO
procedure can perform all the system commands listed
therein other than NOTE, POINT , and the varioull data
t r ansfe r ope r ations -- all of which arp. available via
other ACTION ! Library r outines.

NOTE: the "0" given as the second parameter is
required.

--168--

4 . 4 PROC Note

purpose,

format.

to return the current file sector and byte
offset within that sector on a ape~ifi~d
disk drive.

PROC Note(BYTE chan, CARD POINTER seetor,
BYTE POINTER offset)

parameter •• ehan is a valid ehannel number (0 - 7)
sector i. a pointer to the sector number

variable.
off.et ia a pointer to the byte offset

variable.

description.
This procedure returns the disk
within that sector of the next
written (i.e., it returns the
pointer).

s e ctor and byte offset
byte to be rf!a('l or
value of the disk file

4 . 5 PJlOC Point

purpo.e: to set the disk file
byte offsetl to allow

pointer (sector and
random file access.

format. PROC Point(BYTE ehan,CARD sector,BYTE offsetl

parameters: chan
sector
offset

is a valid channel number (0 - 7)
is a va lid sector number (1 - 720)
i. t.he byte offset within that

description:
Thi. proeedure
to any locatlon
rsndom acce.s of

NOTE: the diek
(update) for the

sector.

allow. you to eet
within s disk
informat.ion.

t.he disk file pointer
file, thus enabling

file
Point

must have been Opened mode 12
routine to work.

--169--

Chapter 5: Graphic~ and Game Controllers

The ACTION I Library contains quite a few routines
designed specifically to make game wrlting (using
visual and sound e ffects) easy ano quick. At your
finger tips you have the ability to manipulate bit- map
graphics (i.e., the BASIC graphics modes), the myria~
of sounds available on the ATARI. ano get information
about the game controllers (both paddle and joystick).

Since the description of each routine
its usage, we'll jump right into
themselves without further discussion.

5.1 PROC Graphics

best illustrates
the routines

purpose, to enable bit-map ATARI graphics.

format : PROC Graphics(BYTE model

parameters I mode is the number of
as in the BASIC
(see table below).

description'

the graphics mode,
'Graphics' routine

Thi. procedure is exactly equivalent to the BASIC
command of the same name, and al lows you access to the
many varied graphics modes available on the ATARI.

The following table gives some information about the 9
base 9raphics mode. . These modes are all split screen;
to get full screen, add 16 to the hase mode number; to
preserve the current screen as you cha nge modes, ado 32
to the base mode number: to get both of t hese options,
add 48 to the base mode number.

G,. Mode (split) (full) Num of
Mod. Typo R~. Cols cole: Colors

• TEXT 4. N/. "
,

1 TEXT ,. ,. " 5 , TEXT ,. ,. 12 5
3 GRAPIItCS 4. ,. " 4
4 GRAPHICS •• 4. 4. ,
5 GRAPHICS •• 4 • 4. 4

• GRAPHICS '" •• "
,

7 GRAPHICS ". •• " 4

• GRAPHICS ". ". 192 1/'

- -170--

5.2 PROC SetColor

purpose:

format,

sets the epeeified
eolor given by 'hue'

color register to the
and 'luminance'.

PROC SetColor(BYTE register,hue,luminanee)

parameters: register is one of the flve color
registers (0 - 4)

is the hue of the color. ho'
luminance - is the luminance of the color.

deecription,
This routine allow. you to set the color of a sp'cifie
color regieter, and eo manipulate the colors displayed
in a given mode. The following tables give eome
information pertinent to the U8age of thi8 procedure.

SetColor SetColor
ho, num . Color hoe num. Color
-------- --------, Gray 8 Blue

1 Gold 9 Light Blue
2 Orange ,. Turquoiee
3 Red-Orange 11 Green-JHue
4 Pink 12 Green
5 Purple 13 Yellow-Green , Purple-Blue 14 Orange-Green
7 Blue 15 Light Orange

Th. above table 8hows <h' 16 hues aV8ilable 0" ,h,
ATARl, ""d their numeric cod, foc 0" .. <h, 'hue'
parameter of <h, SetColor procedure.

Dehul t Default
Regi s ter Color Luminance Color
-------- ---------, 2 8 Orange

1 12 18 Green
2 9 4 Dark Blue
3 4 , Pink oc Red
4 8 , Black

This table ehows which colors
when you don't 'pecify your own
SetColor 'register'.

are the defaults used
color for a given

NOTE. Colors msy vary depending upon the television or
monitor type, condition, and adjustment.

The luminance value (a
color) ranges between
15 is brightest.

measure of the ~brightness· of •
6 end IS, where 6 ie darkest and

--171--

5 . 3 BYTE color

'color' isn 't ~ l ibr~ry routine, but ~ variab l e defined
in the library for use with the 'Plot', . Draw'J'o' . and
'Fill' library procedure,. I\fter you piC:k your
graphic:s mode {using 'Graphic:s'} and set up the c:o lor
r &9isters (uaing 'SetCoior '), you c:an plot and draw in
that .ode using any of the colors you've apec:ified by
firat uaing the asaignment'

c:olor- (number~

where <number) is related to the r.olor r egiste r
containi ng t he color you want to uae. The following
table shows this relationship for the different
graphic:s mode. . For every group of relaterl modes, eec:h
SetOOlor 'regiater' is followed by itR asaociated
' color' <number), and aome desc:riptive commenta .

+--+ 'G raphic:s' SetColor 'Color 'Deac:ription 1
1 Mooe l' r eg later ' , number , and Commentll 1
1---------+------------+--------+-------------____ ____ -----1
1 " 1 " I NII\ I I
I a nd 1 I 1 N/" 1 I
, all I 2 1 N/" I Cha rac:ter l undnanre 1
, text I 3 'N/A' Bac:kground I
I wi ndowa I 4 1 N/A 1 Border ,

---------+------------+--------+-------------------------- I
I " 1 N/A 'Charac:t.er 1
1 I 1 N/A 1 Charac:t.er 1

1,2 I 2 1 N/A 1 Charac:ter 1
1 3 I NIA 1 Chllrac:ter
I 4 I NIA 1 Bac:kground,Bort'ler

---------+------------+--------+--------------------------
I " , I 1 Graphic:s Point
I 1 I 2 t Graphic:s Point.

3 , S, 7 1 2 t J I Graphic:s Point
1 J I 1
I 4 I " 1 Gr . Pt.,Borrler,Background

---------+------------+--------+--------------------------
, " 1 1 I Graphics Point
, 1 I ,

4,6 1 2 1 I --
I 3 1 , --

1 t 4 t " 1 Gr. Pt.,Border.Background
1---------+------------+--------+--------------------------
I 1" I I
I '1 I 1 I Graphics Point lUJllinance
I 8 1 2 , " I Graphica Point, Background
1 'J I I -- I
1 14 'IBorder 1
+--+

- - 172--

5.4 PROC Plot

purpose:

format.

to position the cursor at
location, and then dJsplay
the library variable 'Color',

PROC Plot (CARD col ,BYTE row)

a specified
a color using

parameters: col is the horizontal rolumn number of
the point being plotted.

row is the vertical row number of the
point being plotted.

description :
This procedure is used in graphics modes J - 8 to plot
a point on the screen. The size of the point displayed
depends on the graphics mode, sn~ the color of the
point depends on the current value of the librsry
vsriable 'Color' (see previous section).

5.5 PROC DrawTo

purpose: (must be preceeded by a ' Plot ') to draw a
line between the point just Plotted a nd the
specified position.

PROC DrawTo(CARD col,BYTE row)

parameters, col is the horizontal column number of
the end point of the 11ne.

row is the vertical row number of the
e nd point of the line.

description :
This procedure is used in grsphics modes J - 8 to draw
a line from the point just plotted (using 'Plot') ~nd
the position g1ven by the parameters, The color of th~
line depends on the current vslue of the lihrary
variable 'Color ' (see sect ion 5.3).

--173--

5.6 PROC Fill

pu r pose,

forlllat.1

(must. be preeeede ... by a 'Plot ') fill s II box
with a color.

PROC Fill(C~RD col ,BYTE row)

paramet.ers l col is the horizontal ~olumn number of

description,

the lower r ight. corner of t he box being
filled.
- i . t.he vertical row
lower right corne r of
filled.

numh e r o f t.he
t.he box being

This allows you to make box ell. of color in graphica
modea 3 9 . The upper left corner of t.he box is
defined by the poait.ion of t h e ' Plot' imme~iat.ely
before t.he 'Fil l' , a nd the lower righ t. corner ill. given
by t.he paramet.ers. The color used is de~ ide~ by t.he
cont.ente of the libra ry variable 'Color'.

5 . 7 PROC Posi tio n

purpose: to position the cursor anywhere on t.he
screen

forma t.. PROC Posit.lon(C~RD col,9YTE row)

parametera, col - ill. t.he horizont.al col.umn number of
t he position desired.

row Is t.he vertieal row number of t.he
posit.ion desired.

description :
Thia precedure sets the
specified posit.ion in any
rout. ines Print, Put, Input,
reg ist.ers this command sets
functions.

cursor l ocation to t.he
g r aphics mode . The librllry

and Get. use the cu r aor
when doing their respective

--174--

S.B BYTE FUNC Locate

format,

determine the color or character at a given
screen location.

BYTE FUNC Locate(CARD col, BYTE row }

parameters: col ill a column
current grllphics
- is II r ow number
graphics mode.

number valid in the
mode.
vali~ in the current

dellcription :
Thi, routine retrieves the ATASCII code of the
character or the number ot the color at the specitie~
l ocation. The registers thill routine uses are
incremented so as to point to the adjacent horizontal
position (the fi rst position in the next line if you
Located the lallt position on a line). All of the Get,
Put, Print, and Input routines also u.e thelle registers
as references tor the current cursor location, so you
can use this to move to any position and then use
another routine to manipulate what's there.

--175--

5.9 PROC Sound

purpose:

format,

to enable the sound capabilities of the
ATAIU .

PROC Sound(BYTE voice.pitch,distortion,volull'le)

pllr"meters, voice is one of the four voices
eVllilllble on the ATARI (0 - 3).

pitch is the frequency of the sound.
The lower the number, the higher the
pitch.

distortion - is II measure of the sound's
~fuzziness~ (0 - 14, ev en values).

volume - is the volume of the sound(0 - 16)

description:
Th is procedure lI l lows you to control the
sound- generllti ng epperetus on the ATARI, much like the
BASIC commllnd of the seme name . Disto r tion values 10
is the on l y one useful for making music. The others
a r e useful for airplene, racecar , etc. sound effects.

Here is a table for various musical notes using
cUatartion 10.

' pitch ' Note(s) 'pitch' Note(s)
- - - - - - - ------- ------- -------

HIGH " e 91 F
NOTES 31 , 96 E

33 AI 0' 'b 102 01 0' Eb
3S A 108 0
37 01 0' Ab II. el 0' Db
.0 G MIDDLE C 121 e
42 FI 0' Gb 128 8
45 F 136 AI 0' 8b
47 E 144 A

" 01 0' Eb 153 01 0' Ah
53 0 162 G
57 el 0' Db 173 FI 0' Ob
60 e 182 F
64 8 LOW 193 E
68 AI 0' 'b NOTES 20. 01 0' Eb
72 A 217 0
76 G' 0' Ab ". e, 0' Db
'1 G 243 e
85 FI 0' Gb

--176--

S .18 SndRst

pur pose: to reset al l the aound voice • .

forllltltl

de.crlptlon ,
Thi. pr ocedure re.et. all the eoun~ voice. to produce
no lound .

5 . 11 BYTE FUNC P.~~le

purpo.e: to return the
(po.ltlon) ot one

current numeric
of the patMle •.

value

torlllat , BYTE PUNC Paddle(BYTE port)

parameterS! port - is the port number (8
desir.d paddl •.

description!
Thi. function
'pecified paddle

returns
port.

5.12 BYTE PUNC PTrig

<h. curr.nt.

7) of t he

value 0' tho

purpose: to "etermlne whether a paddle t r igger has
been pre ••• d.

torlllftt : BYTE FUNC PTrig(BYTE port)

parallleter., port - i. the port nUillber (e
desired paddle.

d.scrlptlon!

7) of the

Thi. tunctlon r.turn. the current vtllue of the giv.n
paddle'. trigg.r. A value ot 0 I. retu rn.~ If the
t r lgg.r is pr •••• d. otherwl.e the val ue retu r ned I.
non-zero.

- - 177- -

5.13 BYTE FUNC Stick

purpose:

fonnat ,

to return the current numeric va l ue of ~
specified joystick .

BYTE FUNC Stick(BYTE port)

p~rametersl port - is the port numbe r (0 - 3) of the
des ired joyst i ck .

l1escription,
Thill function
joystick, using

5.14 BYTE FUNC

returns the current position of the
codes 8S in the following diagram.

14 ,. I • \ I I
\ I I

11 15------ ,
I I \

I I \ • I 5
13

STrig

format I

to dete rmine whether a joystick trigger has
been pressed.

BYTE FUNC STrig{BYTE port)

parameters, port - i s the port number (0 - 3) of the
desired joystick.

description:
This function returns the current value of t h e given
j o ys t ick's trigger . A value of 0 is r eturned iE the
trigger is pressed, otherwise the value returned i s
non-zero.

--178--

Chapter 6: String Handling I Converlion

The routines discussed in this chapter 8110w you to
manipulate strings, change n number to a string, Rnd
change a string into a n~ber . No further diacullion
is necesaary, aince the routine delcriptions speak for
thellileives .

6 . 1 String Handling Routines

The following tour routinea make possible some advanced
string manipulation, including string compariaon,
s tring copying, and substring insertion. There is one
caution, however, and that is. remember that the
~axi~~ length of a str ing is 255 c haracters, so don't
try to use these routines to c r eate or to manipulate
big CIiARacter arrays.

6.1.1 INT FUNC SCompare

purpose: to compare alphabetically two strings.

(onnat. INT PUNC SCompare{<stringl>,'ltring2»

parameters. <stringl> - ' is a string with double quote.,
or the identifier of a CHAR ARRAY
which is a string .

<string2> - i. a string with double quotes,
or the identifier ot a CHAR ARRAY
which il a Itring.

description I
This function returns a value dependent
following table I

comparison

·.tringl>
<stringl>
<string1>

<st ring2>
'Itring2>

> 'It ring2>

value returned

value (0
value 0
value) 0

00

The compa ri son is alphabetic, 10 thia Is a good way to
4lph4betl~e a list ot etring •.

--179--

6.1.2 PROC SCopy

purpose I to copy one string into another.

forlllatl PROC SCopy{<deat>, <source »

para~eters: <dest> is the identifier of the

description,

destination Itring (CHAR ARRAY)
for the Itring copy.

<Iource) - is the string with ~ouble quotes
or identifier of the CHAR ARRAY
used as the lource string for t.he
copy .

This procedUre copi.1 t~e content. of <source> into
<dest>, If <deat> is dimenaioned to be ahorter than
the length at <sourr.e>, then only the part of <source>
Which fits into <deat> will be copied. If <dest> ill
longer than <source>, then SCopy will copy all of
<Iource> into <deat>, but not alter the reat of <delt>.

HINT, don't dimension (~est> to avoid all the above
problems.

6.1.3 PROC SCopyS

purpoae.

format .

to copy part at a string into another
string .

PROC SCopyS«deat>,<source>, BYTE atart,atop)

parametera: <deat> is the i<'lentifier of the

delcription.

destination string (CHAR ARRAY)
for the string copy.

<Iource > - il the Itring with double quotel
or identifier of the CHAR ARRAY
uled al the lource Itring for the
copy.

Itart il the startinq point in
<source> for the copy.

stop is the stopping point in
<Iource> for the copy. If 'atop'
ia qreater than the length of
(source>, it i8 changed to equal
the length of <source> .

Thil procedure will copy the elements of <source> from
element 'start' to element 'stop ' into <deat>. In
esaenee, thie works just like SCopy, but copies only a
part of <source> instead of the whole thing .

--180--

6 . 1.4 PROC SAssign

purpose:

format,

to copy one string into part of another
string.

PROC SAasign«dest>,<source>, BYTE start, stop)

parameters, <dest> is the identifier of the

description:

desti na tion stri ng (CHAR ARRAY)
for the string copy.

<source> - i s the string with dOUble quote.
o r identifier of the CHAR ARRAY
used as the source string for the

start

stop

copy.
- is the starting point in <dest>
for the copy .

is the stopping point 1n <dest>
for the copy. If 'stop ' is
greater than the l ength of <dest>,
then the length of <dest> is
changed to 'stop'.

Thil procedure is used to copy one string «source»
into ~rt of another «dest», <sou rce> will be copied
starting at element 'start' of <delt>, and the copying
will stop at element 'stop' of <dest>. If the spftce
allowed (stop-start+l) in <delt> ia greater than the
leng th of <source>, then 'atop' will be changed to make
the apace available and the length equal.

The copying this procedure does will overwrite the old
e lements of <dest> .s it put. in <source>,

- -181--

6.2 Number to String Conversions

The following three proce~ures convert the number given
as a parameter into a character string. There is o ne
proce~ure for each of the numeric data types.

purpose. to change a number into a cha r~ cter string.

fonnat . PROC StrB(BYTE number,<Btring»
PROC StrC(CARD number, <string> I
PROC StrI(INT nurnber.<string»

psrameters. number _ is an arithmetic expression (re
member t hat arithmetic expressions
can simply b.. a constant or
variable name).

<string> - is the identifier of a CHAR
ARRAY.

description,
These procedures
character string'
number .

turn BYTE. CARD, o r INT values into
composed of the digits of the given

6.3 String to Number Conversions

purpose . to convert a string composed of digits into
a number.

fonnat:

parameters:

description:

BYTE FUNC VaIB«string»
CARD PUNC ValC«string»
tNT FUNC ValJ«string»

<source> is a string wi th
or identifier of a
composed of digits
on ly .

double
CHAR
("0"

These functions
CARD,
given

or INT.
string .

will return the numeri c value
depending on the function used)

--182--

quotea
ARRAY,
- "9")

(BYTE.
of the

Chapter 7, Mi.cellaneoua Routinea

Thi a chapter containa thos. routines which ~on't really
fit into any category, but are uaeful nonethelesa. The
routine. themselve. are,

Rand
Break
Er o
Pee);
Pee);C
Po);e
Po);eC
Zero
SetBloc);
MoveBlock
Device
Trace
Liat
EOF

a random number generator
a routine uaeful when debugging
a ayatem r outi ne you can replace
view a byte of memory
view two by tea of memory (a. a CARD)
put a BYTE value into memory
put a CARD value into memory
zero out a section of memory
fill a block of memory with a value
move a block of memory
the Mdefault device M variable
controls the 'TRACE' compile option
controls the 'LIST' compi le option
contains EOP statua for a ll channels

As you can see, t he tas);s the.e routines perform are
quite diver.e; hence their own chapter.

7.1 BYTE PUNC Rand

purpose: to generate a random number.

format, BYTE PONC Ran~ (BYTE range)

parameters: range is the upper limit for the random
number.

d/1'scription,
Thi s function
('range'-l).
bet een " and

will return a random number between" and
If 'range ' t. e, then a random number
255 is returned.

--183--

7.2 PROC Break

purpose; to stop program execution.

format I PROC Break()

parameters' none

description:
This procedure allow. you to stop your progra m's
execution to examine variable. and do other debugging.
You can continue program exec ution 8tart.ing with the
8tateme nt following the 'Break' routine call by using
the • PROCEED , monitor comma nd.

7.3 PRce Error

Thia ia the procedure the ACTION I system itself calls
when it (or CIO) encounters an error . If you wa nt to
trap your own errors, you could write a routine to do
this, and then make ACTION I use your error routine
instead of it. own simply by h~ving the f o llowing
atatementa in your program:

PROC MyError(BYTE errcode)
: •••• this is your error routine. and the error
:code number is passe d to it by the ACTION I system .

: your error handling routines go here

RETURN lend of PRce MyError

PROC mainl) ;your main procedure

CARD temperr ;holds the address of the syatem ' s
;error routine (PROC Erro r).

temperr-Error ;aave the address of the sy. tem error
: routine

Error-MyError :make the address of the system error
;routine point to the atart of your
;error routine.

Jthe body of your program g oes here.

Error_temperr : reset the address of the system error
:routine back to the real system e rror
:routine. not youra .

RETURN lend of program .

All yOu are really doing is changing the pointer to the

--184- -

system
routine
because

error routine 80 that it points to your error
instead. You don't have to call this routine
it will be cslled by the ACTION! system when an

error is encountered.

Notice that we save~ the original error routine
pointer, and then, at the end of the program, we reset
that pointer (which was changed to point to your error
routine) back to the system error routine. This was
~one so that the system could ag~in use its error
routine after your program finished running.

WARNING: the capability of substituting your error
routine for the system'B should be uBed very carefully,
because you might to forget to check for something in
you routine, and thereby cause the entire system to
crash .

7.4 BYTE FUNC Peek and CARD PUNC PeekC

purpose : to return the velue (BYTE or CARD) at B
given memory location.

format: BYTE FUNC Peek(CARD sddrees)
CARD FUNC PeekC(CARD address)

parameters, address is the address of the memory lo-

description:
TheBe two functions
program execution,
HSB order.

cation you desire to look at.

allow you to
either as a

--185--

look at memory
BYTE or a CARD

during
in LSD,

7. S PROC Poke and PROC PokeC

fOrllllltl

to in.ert new value. (BYTE or CARD) into a
.pecified memory location.

PROC Poke(CARD addre ••• BYTE Value)
PROC PokeC(CARD a~drea •• value}

para~etera, addre.s is the address of the ~emory lo-

d •• cription,

cat ion you de.ire to change.
value i. the value you want put into

the memory location specified by
'addre •• ' . When using PokeC. the
CARD value i •• tored in ' ad~ re •• '
and 'addr ••• ·.l in LSB. HSB order .

These procedure. allow you to change the contents of
Memory during program execution by changing the given
addrels to the lpecified value,

7 . 6 PROC Zero

purpole, to ziro out a block of memory.

fonaat, PROC Zero/BYTE POINTER sddre ••• CARD .ize)

parameter', addr ••• - i. a pointer
of the

to the
block

.tarting
you wl'lnt

aiEe

description.

addre ••
zeroed.
- ia the
zeroed.

.iEe of the block you want

With this procedure you can let all the valuel of the
.e.ory location. in a block to 0. This block starts at
'address' and end. at I OCl'lt i o n 'address '.'siEe '-l .

--186--

7 . 7 PROC SetBlock

purpo •• ,

fo t.

p.r.ftet.re,

d •• cription,

to •• t the ft.mo r y loc.tion. of ~ m • .ory
block to •• p.eifi.d value.

addre •• - .. • pointer ,. <" eU.rtlng
edduee .f ,,. block ,nt , . •• t.

ah,. - .. '" .i:r. • .f <" block y •• want , . •• t .
va l u. .. ,,. va1u. ",. ... nt ,h, byt ••

" the block '" '0 .

Mith thi. proc.dur. you can •• t all the v.lu.. of the
to ·v.lu.'. Ttlt. block
.nd. .t 10Cll tion

• ..ary loc.tion. in • block
.t.rt. .t '.ddr ••• • and
·.ddr ••• ·+'.l:r..·-l.

7.8 PROC Hov.Block

to .av. the content. of a block of .emory.

fonaat, PROC MOveBl'oc'o«B'tTE POINTER deat,.ourc., CARD .i:r..)

par.met. r •• d.at

eoure!!,

.11..

d •• criptlon .

- II • point.r to t he .tlrt ot the
d •• tin.tion m.mroy block.

I. • point.r to th •• t.rt of the
.oure. ~'~ry blo~k.

11 the .i:r.e ot the block you ... nt
to mov •.

Ttli. procedure mov •• the v.lu •• in • block .tarting .t
.ddre.. '.oure.· .nd .nding .t .<'Idr •••
'aourc.'+'.i:r.e·-l to • block . t.rting .t .ddr ••• 'd • • t'
.nd .nding .t .dd r ••• ·d •• t· .· .i:r.. '-L. It ·da.t' I.
gr •• t.r th.n · . ourc.', .nd th.r. il not '. 11..' .p.ca
between them, then the .ov. ..ill not vark properly
b.c.u.e part of the ·.our e.· you .r. trying to .ov. I.
In the · d •• t· .p.c •.

--187--

7. 9 BYTE device

'device' ia a varieble defined in the ACTION! Library,
and allow. you to control the 'default channel '
(device) tor I / O. The number conteined by 'devic e' ia
the chennel number of the default devl~e. ao. for
example. you s e nd detault output to the printer using
the following statementa,

Cloae(5) ;avoid a 'Pile already Openel1' error
Open(5.~PIM.8)

device-S

and then reaet it to the screen (when you want to)
using the following statements,

Clo .. (S)
device-"

7 . 1 9 BYTE TRACE

;eloae ~ P, ~

This library variable allows you to control the 'TRACE'
compiler option from within your program . You musi use
it with the 'SET' compiler directive. and it must come
at the beginning of your program. Setting ' TRACE' to "
turns off the option, and .etting it to I turns it on.

Example:
SET TRACE-"

7.11 BYTE LIST

This library varieble controls the 'LIST' compiler. Aa
with 'TRACE' above, thi s variable must be used in a
'SET' directive, and it must come at the beginning of
your program . A" turn. the liating oft, end a I turns
it on.

--188--

7.12 BYTE ARRAY £OFfa)

With this library variable you can found out if you've
reached the End Of File on any channel. Simply give
the number of the channel al the .ub,cript to the EOF
array . For example. if you wanted to find out if you
have reached the End of File on channel 1 (the channel
must be open). then you would use:

IF £OF(I) THEN

EOF equals
otherwiae it

1 when
is 8.

the End Of File has been reached.

--189- -

--19"--

Appendix A: ACTION I Language Synt~x

The following 11 the
8~cku8-Naur form.
character8.

syntax of the ACTtON I langu8ge in
Thi8 form hal a couple of special

S}'lIIbol Me~ning

-------,,- " i. defined .0"
I "or"
I) "optional"

The appendix i. set up to allow
particular information you want,
follow ••

A. , ACTION I Con.t~nt.
Numeric Constant
String Con.tant
Compiler Constant

you e~ly access to
with subsections

192

A.2 Operators ~nd Pundamental Data Type. 192
Operator.
Fundamental Data Typel

A. 3 ACTION I Program Structure 193
ACTtON! Program

A.' Declarations '93
System Declarations

DEFINE Directive
TYPE Declaration (for record.)
Variable Declarations

<he ..

variable Declaration fo< Fundamental Dat,. Types
Variable Declaration fo< Pointer.
Variable Declaration fo< Arrays
Variable Deciliration fo< Records

A. S Variable References 194
Memory Reference.

Fundamentlll Type Variable References
Pointer Type Vari~ble References
Array Type Variable Referenees
Record Type Variable References

A.6 ACTION I Routines 194
Routines
Procedure Structure
Function Structure
Routine calle
Parameter.

--191--

A.7 Statementa
Assignment Statement
EXIT Statement
IF Statement
DO - 00 Loop
UNTIL Statement
WHILE Loop
FOR Loop
Code Blocks

A.S E:.;pressions
Relational E:.;pressions
Arithmetic Expressions

A.l ACTION I Constanta

Numeric Constant

<nurn const> ,, - <dee num, I <hex nurn' I cellsr>
<dee nurn> , ,_ <dec num,<digit) I <digit>

195

196

<hex nurn> "_ <he:.;nurn><he:.; digit> I $<hex digit>
<char> •• _ ' <any printable character>
<hex digit> " .. <digit> 1 A I B I C r 0 r E r F
<digit> ,,- 0 r I 1 2 I) 1 4 1 5 I 6 I 7 I 8 I 9

String Constant

<8tr const> :,_ M<string>K
<string> , : _ cstring> <str char> r <atr cha r >
<str char> ::_ <all printable characters, except M >

Compiler Con8tant

<comp canst> , ,_ <camp const,+<base comp const> I
<base comp r.onst'

<ba8e comp const> : , - <i~entifier' I <nurn const> I
.ptr ref' I •

A. 2 Operators and Fundamental Data Types

Operator.

<apecialop ' , :- AND
<r e I op' ::_ XOR I I
<add op' , ,- + ,
<mu l t ap' .,_ . I I I
<unary op' " •• I -

OR I '" 1 , -1.,.,,<
MOD 1 LSH 1 RSH

--192--

A.3 ACTION' Progra~ St ructure

ACTION I Progr.~

<prograM. 1,- <program. MODULE <prO<) mod ula> r
(MODULE! <prog lIIOdule>

<prO<) lIIIOdu l e. ". I <ayatela dach> I <routi ne U,v

A.4 Declarationa

<ayate,. decla> ". <DEPIHE declo I <TYPE d ac l > r
<var decl>

DEPIHE Directive

<DEPINE declo ". <DEPINE> '''at Uat.
<det U at > I,· <det liat.,cdet. I <"et.
<det. ,:. <ldantitiar'.<atr r.onat.

TYPE Declaration (tor racorda)

<TYPl!: declO ". TYPE <ret! ldant liat.
<rec ldant llat. ". ' r ac idant liat. <rae id e ot . I

<rae IdanV
<rec idenv I •• <r ec na~a> .. {<tield intV)
<rae nallle. , ,. <i dentitier>
<ttald lnlt> ". <tund var dacl>

Variable Declarationa

<var declo •• _ <var declo <baae var declo I <hea, var dael'
<b4Iae var decl) ,,_ <tund deel . I <PO INTER dael' I

<A RRAY deel. I <record dec l o

Va r iabl a Oacl aration for Fundalllantal Oata Type.

<fund deel' ". <fund dael' <ba aa fund dacl'

<baa,
<fund
< fu nd

<baae furn! deel'
f und d,el' ". <fund type. <fund id,nt
type' , ,_ CARD I CHAR r BYTE lINT
{dent liat > " . <fund ident liat.,_fund

<fund id,nV
'fund idant> ". <idanti f ie r.r· 'i n i t opta. J

--193--

Uat.

<init opts> ::- <~ddr> r «value>]
<addr> .,_ <eomp const>
<value> : ,- <num eonst>

Variable Declaration for Pointers

<POINTER decl> :: - <ptr type> POINTER <ptr ident lilt>
<ptr type> . , - <fund type> I cree name>
<ptr ic'Jent liet> .:- Cptr ident liet>,<ptr i~ent> r

<pt r ident>
' ptr ident> : : _ <identifier>{.<velue>)

Variable Decla r ation for Arraye

<ARRAY ~ecl> f l . <fun~ type> ARRAY carr ident liet>
Carr i~ent list> :: _ carr ident list', (arr ident> I

carr id~nt'
carr ident> : : - <identifier'[{<dim,})f_<arr init opts»
<<'lim> . : _ <num const>
(a rr init opt.e' :1- <a~dr> I «value» I <Itr const>
caddr> • 1_ <comp conet>
<value list> :.- <value liet><value' <yalue>
<yalup.' ::_ <camp const>

Variable Declaration fo r Records

<r ecord decl > :: - (identifier> <rec ident Itat>
<rec iden t liet> ::- <rec ident l iet' , c r ec iden t'

<rec ident>
<r ec ident> : :- <identifier>i-<address>)
(addrese> ::- <comp const>

A. S Variable References

Memory References

<lIIelll reference' : 1- <lIIem contents> (lcidenti fier>
<mem eontente' ,,- <fund ref' I carr ref> I <ptr ref>

<rec ret>
<tund ret> ,,- <identifier'
carr ref> :,- <identifier' «arith exp»
<p tr ref> : , _ cidentifier' ~
<rec ref> . , _ cidentifie r >.<identifier >

A.6 ACTIONI Routines

<r out i ne li lt> " - (r outine list> <routine> <r outine>
<r o ut ine> ". <proc r outine> I <fu nc routine>

--194--

'rocedure Structure

'proc routine~ •• - c PROC d.cl ' , •• y . t .. ~ecla~)
(.at.t li . t)l(RETURM\

"ROC ".el' II · PROC .id.ntiti.r)f ddr.)ff.p.n. dee l)))
caddr. II . cc:o.p eonat.

Funetion St ruetur.

<lune routina> 1 1 - 'PUMe ".cl' (eayat aM ".cla')
(cat.t llat'I(RETURM (carith •• p.))

'rvNC dee!> , t o. <lund tyt>e' P'UtfC CidantiU.r'(. ca""r')
{"r.ra. d.d' J I

<.ddr' •• • ' c:o.p eon.t.

Routin. e.11.

(routin. e.11' . ,- <ruMe eall' I <PROC ea11'
e'UMe eall •• , •• id.ntUl.r.(I.p.r)1
"ROC e.11' . ," <id.ntifhr'II'parallla'll

' aut liat> • , • • at .. t liav e.t.-t. I • • t.Mt •
•• ut> • t" ',i.p .ut. I •• true ,ut> I <c:oc!e b loc:k •

•• i.p .u.t> •• • •••• ign .t.t. I e!Xl'r .t.Mt. I c r outin. eall'
e.true . t.-u t._ <I' . t.at) I <DO loop> I <WH ILI!: loop' I

_FOR loop'

<!XIT .t.at •• •• EXIT

ct, . t.-t.. I • • l' cc:ond "P' THEN I.t.t llatl
(I,ELSU' nUnllll ElSE •• t.nl '1

eELS!IP •• t.n> , • • ILSEI' cc:ond "p' TH!M (atat liat!
eELaE •• t.n > ". ELSE (.ut l iat)

DO - OD Loop

CDO loop' II. DO ,<.ut U.U) (eUNTIL .uu! 00

<UNTIL atll'lt' " . UNTIL <cond exp,

WHJLE Loop

<WHILE loop' "_ WHILE <t"(lnd IIXP' <00 loop'

FOR Loop

". FOR eidllntitler'·'atart' TO etintah>
{STEP <inc,I<DO loop'

<ata r t> ". <arith e xp'
<tiniah> " . <arith exp>
cinc> " . earith axp'

Code Slocka

ccode block> ". «cOlap canat liat ']
CCOlllP conat li.t> " . <COlllp con.t li.t> CCOlllP conat' t

<comp conat.

cc::olllplex rei' ; , •• <complex rel'(apltcial 0p"ai .. p rei exp' I
<.imp rei exp'<apecial 0p' •• imp ral exp'

(simple rei exp' " . <arith exp"rel op"arith exp'

Arithmetic Expreaaiona

<arith exp~ ,,_ <arith axpl'adt'l opl<mult exp' 1
<lI'Iult exp'

< .. ult exp' .,. ' .. ult IIxp'(~ult op"value> (vftlue>
(value' " .. en ... conat' I <m..,. r atarence> , (.arlth exp' J

- -196- -

Appendix B, ACTIONI Memory Map

so.

'c.
'CE

'04

$1913

$4913

$5913

$6138

MEMLO

LO+$209

LO+$30e

1.0+$750

Top-sse0

MEMTOP

SAS00

$Ceea

+---------------------------+
I 0.5. and ACTION I I
1 Variables t
1---------------------------1 t Free Space I

1---------------------------1 I ... CTIONI Variablea r
1---------------------------1
I Atari Floating Point. 1
I Register, I

1---------------------------1 I Operating Syetem I
1---------------------------1 I ACTION I Variables r
1---------------------------1
1 Atar! Floating Point r
1 ~ffer I
1---------------------------1
I Operating System I

1---------------------------1
r ACTION I Compiler Stacks I
1---------------------------1
I ACTION I Editor Line 1
1 ~fhr 1

1---------------------------1 I ACTION I Hash Tables 1
1---------------------------
I
I
I

ACTION I Editor TeKt
Boffer

I ACTION I Compiler Code
1 Space

1---------------------------I ACTION I Compiler Symbol
I Tllble
1---------------------------
I Screen Memory
1---------------------------
I ACTIONI Cllrtri~ge

1---------------------------I 0.5 . , ROMII, etc .
$FFFF +---------------------------+

NOTE, the Compiler Code Space starts wherever the
Editor TeKt Buffer ends. This makes both the E~itor
Buffer and the Compiler Boffer dynllmic in memory. For
more information on this, see Pllrt V, chapte r 2 .

--197--

Appendix C, Errar Code Explsnation

In this appendix we'll describe the mesning of esch of
the error numbers you could encounter while progrsmming
in ACTIONl. Inclu~ed sre those errors which the
ACTION! system itself discovers , but not those which
the operating system discovers (errors 128 - 255).

Er ror Code

,

1

2

3

4

5

6

7

•
9

11

Explanl'ltion

Out of system memory. See Part II,
section 4.3, and Part V, section 4.4, to
find out how to remedy this error.

Missing H (double quote) in a string.

Nested DEFINEs . You can not nest the
DEFINE directive.

Global variable symbol table full.

Local variable symbol table full.

SET directive syntax error.

Declaration
declaration
something.

error. You uaed the wrong
format when declaring

Invalid argument list.
statement or routine too

You gave a
many arguments.

Variable not
must declare
use them.

declared. Remember,
your variables before

you
you

Not a constant . You userl a
where a constant of some
required .

vsriable
'kinlt wss

111egsl assignment. You are trying to
do some sort of assignment thst is not
sllawed (e.g., var-5>7 is illegal).

UnKnawn error. You have somehow impared
the ACTION I system error routines, so
it can't tell you which error you h/'lve
msde.

--198--

Error Code

12

13

Explaflation

Miasing THEN

Miasiflg PI

14 Out of code space . See Part V, section
4.4, for more information.

15 Missing DO

16 Mislling TO

17 Bad Expression. You have
illegal expression format.

16 Unmatched parenthellell .

19 Miss i ng OD

ulled ""

2e Can·t allocate memory. You ~ave impare~
the ACTION I SYll tem, and it ia unable to
alloc~te any more memory.

21 Illegal array reference

22 The input file ia too large. You need
to break it into IImaller pieces.

23 Illegal Conditional Expresllion

24 Illegal FOR statement llyn tax

25 Illegal EXIT. There is no DO - 00 loop
for the EXIT to exit out ot.

26 Neating too c1eep (16 levels maximum).

27 Illegal TYPE syntax.

26 Illegal RETURN .

61 OUt of Symbol Table epace. See Part IV
for more info~ation.

126 <BREAK) key was used to atop program ex
ecution.

--199--

Appendix D: Bibiography and Referencea

0,1 Atari 400/800 Hardware Systems

Atari Publications:

ATARI Personal Computer
User's Manusl and Hardws re

System Operating System
Manusl

ATARI 810 Disk Drice Operator's Manual

ATARI 400/800 Disk Utility

ATARI 400/800 Operating Systems

ATARI 400/800 Disk Opersting Systems II Reference
Manual

Other Atsr i References:

Poole, McNiff, COok . Your Atari Computer

0.2 Optimized Systems Software References

OSS OS/A. reference manual

OSS DOS XL reference manual

--200--

~ppendlx E, Editor C~andl Su~ary

E.l 1/0 eo..and a

Read a rile polition curlor, <C~RL><SHIP~> 11.,
enter tilelpec

Dilk Directory <CTRL><SHIPT> II. 7n, -.- In - device nUM)
Write I File <CTRL><SHIFT> W, enter tilelpec
Lilt to Printer <CTRL><SHIFT' W, entlr p,

E.2 Cu reor Movement within Window

o.
"""" Ught
Lett
Start ot Line
End ot Line
Next Line
T ••

E. 3 Tab Handling

Set Tab
Clear Tab

E.4 Window MOvement

Start ot File
Up one screen
Down ona Screen
Lett 1 Char.
Right 1 Char.

E.S Text I!ntry

Enter Progra.
Next Line
Control Chara.

E.6 Oehte Text

Back 1 Char.
Curlor
Delete Line

<CTRL><up arrow>
<CTRL><down arrow>
<CTRL><rlqht arrow>
<CTRL><left errow>
<CTRL> <SHIFT>
<CTRL'<SHIFT>
<RETURN>
<TAB>

<SHIFT><SET TAB>
<CTRL><CLR TAB>

<CTRL><SHIPT> H
<CTRL><SHIFT>
<CTRL><SHIFT>
<CTRL><SHIFT>
<CTRL><SHIPT>

enter text
<RETURN>

<up arrow>
<down arrl;l'ol'>
)
[

precede each character with <ESC>

<BACK 5>
<CTRL> <D~ETE>
poaition curaor on lin.,
<SHtrT> <DELftE>
__ 211 __

1.:,7 Inurt I Replace Ten

T09g1e Mod"e
lneert Line

Reetore Line
Recilll Linil

Load Block

<CTRL>'SHIFT> I
<SHIFT><INSERT>

don't move cureor, <CTR~>'SH[FT> U
~cn't move curecr, <CTRL>'SHIFT> P

polition curlor, <SHtPT><DELr.TE>
until done
polition CUrlOr, <CTRL'<SHIPT> P

1.:.18 Seilrchile I Subetitut!one

Find String
Subl titute

<CTRL>'SHIFT> F, enter Itring
<CTRL>'SHIFT> S, enter niIY etring,
<RETURN>, enter old etrin"

E.l1 Breilking , Combining Li ne.

Brelk Line
Combine Lin.

t,12 Leilving the Editor

Lelve Editor

position cureor, <CTRL> <SHtFT> 'RETURN'
put cur sOr ilt front of I"c:on~ line.
<CTRL"SHIFT> <BACK $'

<CTRL'<SHIFT> H

--282--

Appendix FI Summary of ACTIONI MOnitor Commands

• reatart ACTION I system

compile an ACTION I program

D call DOS

E go to the ACTION I Editor

o go to the ACTION I Options Menu

, proceed from program halt

run an ACTION I program

SET <address> - <value>
8ets a value in a .pecified
memory location

.ave a compiled program to disk

x <8tatement>11, <statement>,1
execute ACTION I language 8tate
ment(.}

display value of sn addreS8 (or
compiler con.tant)

diaplay value. of all addre •• es.
starting at an addres8 (or
compiler constant)

--2Bl--

Appe~ix 0: Option. Menu Summary

prompt debult. r ... nge

Oilplay on? Y Y o r N
Control. the .creen during oompile ~ device I/O

Bell off? N Y or N
Control. bell respon.e.

Ca •• in.ensitive? N Y or N
Control. the compiler chec~ for upper e e key
words in the language and the case di.tinetlon In
variable namea.

Trace on? N Y 0<
Controle compiler letup
pr09ram, during execution,
PROCedure or FUNCtion.

N
of programs so that
notel entry into

List on? N Y or N
Control. compiler lilting of program lInes to
screen during compile proce.a.

Window ah:e? '8
ContraIl
combined,

'8
window u., 23

5 <0
I .i~e.

line •.
window I and window 2,

Line sit.e? "0
Cantrall line length.

Left margin? 2
Controle left margin
find comfortable.

I to 246

I) to 39
In windOW: let aa low as

!OL character? $9B Any ATASCII character
Change the
vilualit.atlon

End-Of-Line characte r to
of pr09ram.

--294--

yO"

.id

This is the
Mligazine, pp.
ia a table of
magazine:

bench~ark teat from September, 1981
18~ -198, aa implemented in ~CTIONI

our time a to compare with those in

Compi lation
Diaplay off
Dhplay on

DE~INE 8ize • M819~M,
ON _ "1M ,
OFF _ M~"

BYTE ARRAY flag8(8ize+l)

CARD count, 1, k, prime

BYTE DISPLAY-$22F,
iter,
tick-2~,
tock-19

PROC PrimesI)

Time

= . 25 aec.
12.2 aec.
17.9 aec.

BYTE
Here

tho

DISPLAY _ ~ ;comment this line to leave diaplay on
tick - 0
tock-O
FOR iter-l TO l~

00
count _ ~

; turn flag. on (non-zero)
SetBlockC flllga, ahe, ON)
FOR i • ~ TO aize

00
IF flagaei) THEN

prime - i+i+3

PI
00

:PrintCE(prime) :Uncomment to print primea
k _ prime + i
WHILE k (- aize

00
flags!k) - OFF
k __ + prime

00
count --+ 1

00
i-tick+256-tock
DISPLAY. $22 :turn diaplay back on
PrintFC"'U Primes done in \U ticka 'E", count, i)

RETURN
--205--

Appendix II Converting BASIC Concepts to ACTIONl Programs

This appendix presents several BASIC functions,
routines , statements, etc. For each BASIC example
given, a corresponding ACTIONl example is a l s o given.

In the BASIC examples given, no line numbers are shown
unless necessary for illustration purposes. You should
assume the existsnce of appropriate line numbers in
most cases.

In the ACTION I examples shown , assume the following
variable declarations,

INT 1. j, k
CARD c.d,e
BYTE .,b
DYTE ARRAY
CARD ARRAY
INT ARRAY

BASIC statements

C - D+I *A

IF AC)0 THEN B-1

10 IF A-0 THEN 30
20 a-I: C-A*2
30 REM

s,t,aa,ba
ca,ds,e'"
ia,ja,k ...

10 IF A-0 THEN a-I GOTO 30
20 B-7
30 REM

POR 1-1 TO 100
NEXT I

PRINT 'SI~HBLLO·l

PRINT I

- - 206--

ACTIONJ equivalents

IF ao0 THEN
b _ I

PI

IF a_e THEN b - l
ELSE b _ 7
PI

FORi-lTOHI0DO ...
00

PrintE(~HELLO~)

PrintD(S,"HELLO")

pdntIE(i)

PRINT - 1,,-,1 PrintFC "I.'IU:" , 11 .,
Pr1ntC "I.") Pr 1ntiEIli

Pr1ntBDIJ, b * 3)

I NPUT I PutC ' 7) , i - lnputI()
Not. the u •• ot the optional colon (,I 1n the
ACTION I .~.~pl.. Colon. ar. iqnor ed by ACTIONI
and eo ~.y u •• ~ • • • t.t~.nt •• par.tor •.

INPUT B$ Put(' 7 1 , InputS(bal

PUT ' 8,6S

an ' C, B

OPEN 'l ,4,B, - X, -

CLOSE tl

NME fl,C,S

POINT fl , C,s

XIO 18,'6 , 8,8,-S, "

a-PUK! C ,

POXE C,8

GRAPHICS 8

COLOR 3

DRAWTO C,D

LOCATE C,D,S

PLOT C, D

--2111 7--

Put! ' AI .,
Put(6S) .,
Put(S 41 1

b .. a.t Dle)

Clo .. (J)

Note (1, @e, @bl

poi nt(l , c, bl

XIO(6,A, l B,e,e, " s :"1
or ••• al eo the Fill
libra r y r ou t ine

b - p .. k!e)
or , in better ACTION I t or.,

be _ e b _ b.·

Pokele,bl
o r , in bett.r ACTIONI tor.,

ba _ e , ba · .. b

color ..]
Note, eolor 1. e . y.t ..
l ibre ry ve r i.bl . end i.
pred.t in.~ by ACTION I

DrllwTo(e , d)

b .. Loeet.(e,~l

Plot(e,d)

POSITION C,O

SETCOLOR 0,1,C

GRAPHICS 24 : COLOR C
PLOT 200,1S0 ,
DRAWTO 120,20 :
POSITION 40,1S0 :
POKE 765,C :
XIO la,'6,0,0,MS'~

SOUND 0,121,10,6

C - PADDLE(B)
C _ PTRIG(B)
C - STICK(B)
C ., STRIG (B)

a$ - sS

BS - S$(3,5)

B$(3,5) - S$

B-INT(6*RNO{0)) + 1

FOR C - 4000 TO 5000
POKE C,0 : NEXT C

STOP

B$-STR${I)

I - VAL(S$)

--208--

Position(c,c'I)

SetColorf0,l, c)

Graphics(24) : color - c
Plot.(200,150)
DrawTo(120,20
Fill(40,150}

Sound (0,121 ,10,6)

c - Pa"'lle(h)
c - Ptrig(b)
c - Stick(b)
c _ St.rig{b)

SCopy(ba, s)

SCopyS(ba , s, 3, 5)

SAlllign{ba, II, 3, 5)

b - Rand(6) + 1

Zero(4000 , 1001)

Break{)

StrI(!, ba)

':L - ValI(s)

