

(
I

A REFERENCE MANUAL

for

BASIC XL

This book is Copyright (c) 1983 by
Optimized Systems Software, Inc.

1221-B Kentwood Avenue.
San Jose, CA 95129

Portions of this book are
Copyright (c) 1989 Atari, Inc.

and are reprinted with the
permission of Atari, Inc.

All rights reserved. Reproduction or
translation of any part of this work beyond
that permitted by sections 197 and 198 of the
United States .Copyright Act without the
permission of the copyright owner is
unlawful.

(

ACKNOWLEDGEMENT

OSS gratefully acknowledges the cooperation of Atari,
Incorporated, for the kind permission to reprint
portions of the Atari BASIC Reference Manual. Please be
aware that these portions have been copyrighted by
Atari, Incorporated, and respect the rights implied
thereby.

CAVEAT

Every effort has been made to ensure that this manual
accurately documents the language BASIC XL. However,
due to the ongoing improvement and update of ~11 OSS,
Inc., software, we cannot guarantee the accuracy of
printed material. OSS, Inc., disclaims all liability
for changes, errors, or omissions, either in the
documentation or in the software product itself.

TRADl'tMARKS

BASIC XL, MAC/65, DOS XL, OSS, and SuperCartridge are
trademarks of Optimized Sys~ems Software, Inc.

Atari is a registered trademark of Atari, Inc.

(
The following are trademarks
Atari 488 Home Computer
Atari 888 Home Computer
Atari l288XL Home Computer
Atari 488 Atari sae
Atari 128eXL Atari 858

of Atari, Inc.:
Atari S18 Disk Drive
Atari 858 Interface Module
Atari 1~58 Disk Drive
Atari 81e
Atari 1858

Chapter 1
1.1
1.2
1.3
1.4

TABLE OF CONTENTS

Introduction
Features of BASIC XL
Special Notations
Glossary and Terminology
Operating Modes

1
1
2
3
7

Chapter 2
2.1
2.1.1
2.1. 2
2.1. 3
2.1.4
2.1. 5
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3

Variables, Operators, Expressions 9
Variables (var) 9

Arithmetic Variables (avar) 10
Arrays and Matrices (mvar) 10
String Variables (svar) 12
String Array Variables (svar) 12
DIM 13

Operators 14
Arithmetic Operators (aop) 14
Logical Operators (lop) 15
operator Precedence 16

Expressions (exp) 17
Numbers 17
Arithmetic Expressions (aexp) 18
String Expressions (sexp) 19

(

Chapter 3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.U'
3.11
3.12
3.13
3.14
3.15
3.16
3.17

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Program Development Commands
BYE
CLR
CONT
DEL
DOS / CP
FAST
LIST
LOMEM
LVAR
NEW
NUM
REM
RENUM
RUN
SET
STOP
TRACE / T~CEOFF

Program Control Statements
Assignment Statement
END .
FOR•.• TO••. STEP / NEXT
GOSUB / RETURN
GOTO
IF ••• THEN
IF ••• ELSE ••. ENDIF
LET
MOVE
ON•••
POP
RESTORE
TRAP
WHILE / ENDWHILE

21
21
21
22
22
23
23
24
24
25
25
25
26
27
27
28
31
31

33
33"
34
35
36
37
39
40
41
42
43
44
45
45
46

Chapter 5 Input/Output Commands and Devic('s 47
5.1 Comments and Notations 47
5.2 BGET 49
5.3 BPUT 5111
5.4 CLOAD 5111
5.5 CLOSE 5111
5.6 CSAVE 51
5.7 DATA 51
5.8 DIR 52
5.9 ENTER 52
5.1111 ERASE 53
5.11 GET 53
5.12 INPUT 53
5.12.1 Advanced use of INPUT 54
5.13 LOAD 55
5.14 LPRINT 55
5.15 NOTE 55
5.16 OPEN 56
5.17 POINT 57
5.18 PRINT 57
5.19 PRINT USING 58
5.2111 PROTECT 63
5.21 PUT 63
5.22 READ 63
5.23 RENAME 64
5.24 RGET 64
5.25 RPUT 65
5.26 SAVE 66
5.27 STATUS 66
5.28 TAB 66
5.29 UNPROTECT 67
5.3111 XIO 67
5.31 An Example Program 68

Chapter 6 Function Library 69
6.1 Arithmetic Functions 69
6.1.1 ABS 69
6.1. 2 CLOG 69
6.1. 3 EXP 7111
6.1.4 INT 7111
6.1. 5 LOG 7111
6.1.6 RANDOM 7111'
6.1. 7 RND 71
6.1.8 SGN 71
6.1.9 SQR 71
6.1.1B An Example Program 71
6.2 Trigonometric Functions 72
6.2.1 ATN 72 (

6.2.2 COS 72
6.2.3 DEG / RAD 72
6.2.4 SIN 72
6.2.5 An Example Program 73

(

6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.19
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.5
6.5.1
6.5.2
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9
6.6.19
6.6.11
6.6.12

String Functions
ASC
CHR$
FIND
LEFT$
LEN
MID$
RIGHT$
STR$
VAL
An Example Program

Game Controller Functions
HSTICK
PADDLE
PEN
PTRIG
STICK
STRIG
VSTICK
An Example Program

P1ayer/Miss1e Functions
BUMP
PMADR

Special Purpose Functions
ADR
DPEEK
DPOKE
ERR
FRE
HEX$
PEEK
POKE
SYS
TAB
USR
An Example Program

73
73
73
74
75
75
75
76
76
76
77
78
78
78
78
78
79
79
79
80
80
89
81
81
81
81
82
82
82
83
83
83
84
84
84
8&

Chaptt'r 7
7.1
7.1.1
7.1. 2
7.1. 3
7.1.4
7.1. 5
7.1.6
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.19

Scrt'en Grllphics IIn<1 Sound 87
GRAPHICS 87

GRAPHICS Mode 0 88
GRAPHICS Modes 1 and 2 88
GRAPHICS Modes 3, 5, and 7 89
GRAPHICS Modes 4 and 6 89
GRAPHICS Mode 8 99
GRAPHICS Modes 9, 19, and 11 90

COLOR 91
DRAWTO 92
LOCATE 92
PLOT 93
POSITION 93
PUT/GET as Applied to Graphics 93
SETCOLOR 94
XIO Special Fill Application 96
SOUND 97

Chapter 8 Player / Missile Graphics 99
8.1 Overview of P/M Graphics 99
8.2 P/M Graphics Conventions un
8.3 BGET and BPUT with P/M's 101
8.4 PMCLR 102
8.5 PMCOLOR 102
8.6 PMGRAPHICS 102
8.7 PMMOVE 104
8.8 PMWIDTH 105
8.9 POKE and PEEK with P/M's 105
8.10 MISSILE 105
8.11 MOVE with P/M's 106
8.12 USR with P/M's HI6
8.13 Example PMG Programs 107

Appendix A Error Descriptions 111

Appendix B System Memory Locations 116

Appendix C BASIC XL Memory Map 119

Appendix D ATASCII Character Set 121

Appendix E Syntax Summary and Keyword Index 127

Appendix F Compatibility with Atari BASIC 131

(

INTRODUCTION

1.1 Features of BASIC XL

Compatibility with Atari BASIC

Chapter 1

(

Because BASIC XL uses the same tokens as Atari BASIC,
programs written in Atari BASIC which have been SAVEd
can be LOADed and RUN using BASIC XL.

FAST Program Execution

BASIC XL allows you to RUN your programs faster than
ever with the new FAST command, thus making games
written in BASIC almost as fast as arcade games.

Easy Program Formatting

Unlike other BASICs, BASIC XL does not care whether you
use upper or lower case letters when you enter your
programs. This alone makes programs more readable.
However, BASIC XL does even more. It will
automatically prompt you with line numbers or renumber
an entire program at your request. Also, the LIST
command has a program formatter built in, so ybur
programs are easier to follow, no matter how complex or
involved they are.

Built-in Functions

BASIC XL contains over 48 built-in functions covering a
wide range of applications. The chapter titled
FUNCTION LIBRARY explains these functions and their
usages.

Graphics

BASIC XL offers the same bit-map graphics manipulation
available in Atari BASIC, and allows amazing
flexibility in color ch9ice and pattern variety.
Chapter 7 explains each command and gives examples of
the many ways to use each.

Player / Missile Graphics

BASIC XL allows you easy access to the player / missile
graphics available on the Atari through the use of
built-in functions and commands. With BASIC XL, p/m
graphics are as easy to control as common bit-map
graphics.

--81--

Game Controllers

Not only does BASIC XL support the game controller
functions as Atari BASIC , but it also adds some other
game controller functions which make interpreting and
using the joysticks much easier.

Sound

The Atari Personal Computer is capable of emitting a
large variety of sounds including simulated explosions,
electronic music, and "raspberries", and BASIC XL
allows you to have control over these sounds available.

Wraparound and Keyboard Repeat

If you enter a program line which is longer than the
length of the screen, the line "wraps around" to the
next line so that you can view it. Also, if you hold
down any key for over 1/2 second, it will start
repeating.

Error Messages

If a data entry error is made, the screen display shows
an error message and the line on which the error
occured (with the character at which the error occured
highlighted). Most errors will also display a short,
descriptive message along with the error number.
Appendix A contains a list of all the error messages
and their explanations.

1.2 Special Notations used in this Manual

Line Format

The format of a line in a BASIC program includes a line
number (abbreviated to lineno) at the beginning of the
line, followed by a statement keyword, followed by the
body of the statement and ending with a line terminator
command «RETURN> key). In an actual program, the four
elements might look like this:

Statement
lineno Keyword

Statement
Body Terminator

PRINT A/X*(Z+4.567) <RETURN>

Several statements can be typed on the same line
provided they are separated by a colon (:).

--92--

(
Capital Letters

In this book, all keywords and functions are printed in
uppercase to differentiate them from the other parts of
a statement.

Lower Case Letters

In this manual, lower case letter are used to denote
the various classes of items which may be used in a
program, such as variables (var), expressions (exp),
and the like.

Items in Brackets

Brackets ([]) contain optional items which may be used,
but are not required, in the format of a statement. -If
the item enclosed in brackets is followed by three dots
(e.g. [exp, •••]), more than one of that item may be
entered, but none are required.

Items Stacked Vertically in Bars

Items stacked vertically in bars indicate that anyone
of the stacked items may be used, but that only one at
a time is permissible. In the example below, type
either the GOTO or the GOSUB.

H'J0 GOTO
GOSUB

Command abbreviations in headings

If a command or statement has an abbreviation
associated with it, the abbreviation is placed in
parentheses following the full name of the command in
the heading (e.g., LIST (L.».

I • 3 GLOSSARY AND TERMINOLOGY

adata (ATASCII Data) Any ATASCII character, ex
cluding commas .and carriage returns. (See
Appendix C.)

aexp

(

(Arithmetic Expression) Generally composed
of a variable,' function, constant, or two
arithmetic expressions separated by an
arithmetic operator. See section 2.3.2.

alphanumeric
The letters A through Z (either lower or
upper case) and the digits 0 through 9.

--03--

aop (Arithmetic operator). See section 2.2.1.

Arrays and Array Variables
An array is a list of places where data can
be filed for future use. Each of these
places is called an element, and the whole
array or any element is called an array
variable. See section 2.1.2.

avar (Arithmetic Variable) A location where a
numeric value is stored. Variable names may
be from 1 to 120 alphanumeric characters,
but must start with an alphabetic character.
All characters are normalized to upper case
normal (i.e., not inverse) video.

BASIC Beginner's All-purpose Symbolic Instruction
Code.

Constant A constant is a value expressed as a number
rather than represented by variable name.
For example, in the statement X = 100, X is
a variable and 100 is a constant.

Command String
Multiple commands (or program statements)
placed on the same numbered line separated
by colons.

exp Any expression, whether sexp or aexp.
section 2.3.

See

filespec

Expression An expression is any legal combination of
variables, constants, operators, ~nd

functions used together to compute a value.
Expressions can be either arithmetic,
or string (See aexp and sexp).

File Specification: A string expression that
refers to a device such as the keyboard or
to a disk file. It contains information on
the type of I/O device, its number, a colon,
an optional fi4e name, and an optional
filename extender. See section 5.1.

NOTE: BASIC XL allows you to omit the double
quotes normally required in a literal string
when the literal string is used as a
filespec for any of the following commands:

DIR
ENTER

LOAD
SAVE

--04--

PROTECT
RENAME

LVAR
OPEN

RUN
XIO

(

CAUTION: when
must be the
command line.
always be the

filespec is used this way, it
last thing on the program or
Also, DIR, LVAR, and RUN must

last command on the line.

Function A function is a subroutine built into the
computer so that it can be called by the
user's program. A function is NOT a
statement. COS (Cosine), FRE (unused memory
space), and INT (integer) are examples of
functions. In many cases the value is
simply assigned to a variable (stored in a
variable) for later use. In other cases it
may be printed out on the screen
immediately. See chapter 6 for more on
functions.

Keyword Any reserved word "legal" in the BASIC
language. May be used in a statement, as a
command, or for any other purpose. (See
Appendix A for a list of all "reserved
words" or keywords in BASIC XL.)

lineno (Line Number) A constant that identifies a
particular program line in a deferred mode
BASIC program. Must be an integer from 0
through 32767. Line numbering determines
the order of program execution.

Logical Line
A logical line consists of one to three
physical lines, and is terminated either by
a <RETURN> or when the maximum logical line
limit is reached. Each numbered line in a
BASIC program consists of one logical line
when displayed on the screen.

lop

mvar

Operator

(Logical Operator) See section 2.2.2.

(Matrix Variable) Also called a SUbscripted
Variable. An element of an array or matrix.
The variable name for the array or ~atrix as
a whole may be apy legal variable name. See
section 2.1. 2.

Operators are used in expressions to tell
the computer how it should evaluate the
variables, constants, and functions in the
expression. There are two types of
operators arithmetic and logical. For
more information, see section 2.2.

--05--

Physical Line
One line of characters as displayed on a
TV or monitor screen.

sexp (String Expression) Can consist of a string
variable, string literal (constant), or a
function that returns a string value. See
section 2.3.3.

String A string is a group of characters enclosed
in quotation marks. "ABRACADABRA" is a
string. So are "oss IS THE BEST" and
"123456789". A string is much like a
numeric constant (e.g., 12.4), as it may be
stored in a variable. A string variable is
different in that its name must end in the
character $. See section 2.1.3.

svar (String Variable) A location where a string
of characters may be stored. See 2.1.3 and
2.1.4.

var (Variable) Any variable. May be mvar, avar,
or svar. See section 2.1.

name for a numerical or
which may (or may not)
names may be up to 120

However, a variable name
alphabetic let~er, and
letters and digits. See

A variable is the
other quantity
change. Variable
characters long.
must start with" an
may contain only
section 2.1.

Variable

(

--06--

the user to
messages on

Memo Pad mode

(

1.4 Operating Modes

Direct Mode

Uses no line numbers and executes instruction
immediately after <RETURN> key is pressed.

Deferred Mode

Uses line numbers and delays execution of
instruction(s) until the RUN command is entered.

Execute Mode

Sometimes called RUN mode. After the RUN command is
entered, each program line is processed and executed.

Memo Pad Mode

A non-programmable mode that allows
experiment with the keyboard or to leave
the screen. Nothing written while in
affects the RAM-resident program.

NOTE: this mode is only available on the Atari 400 and
a00.

--07--

--98--

(

VARIABLES, OPERATORS, EXPRESSIONS

2.1 Variables (var)

Chapter 2

There are two basic types of variables in BASIC XL
arithmetic variables and string variables. Also, there
are are three extensions to these -- arrays, matrices,
and string arrays.

Arithmetic, array,
numbers, and can
required.

and
only

matrix variables
be used where a

all store
number is

(

String and string array variables both store character
strings and can only be used where a character string
is required.

There are limits to the number of variables you may
use, and to the size and format of a variable name, as
follows:

1) BASIC XL limits the user to 128 variable
names. To bypass this problem, use
individual elements of any array instead of
having separate variable names. To clear
the variable name table (possibly after an
error 4), you can save your program using
LIST, then type NEW, and then ENTER your
program back in.

2) All variable names must start with an
alphabetic letter, followed by either
letters or digits. The name must ~e less
than 128 characters long. All string or
string array variable names must end in the
'$' (dollar sign) character.

--89--

2.1.1 Arithmetic variables (avar)

Arithmetic variables are those which store a single
number, and are the most common variables used. The
following are examples of arithmetic variables:

X
THISISANARITHMETICVARIABLE
TEMP
CHARGE

Here are some examples of arithmetic variables in use:

LET X=76
FOR 1=1 TO

PRINT X-2
NEXT I
END

:REM here's one use
100 :REM here's a second

:REM and a third

2.1.2 Array / Matrix Variables (mvar)

An array variable is a group of memory locations
(called elements or sUbscripts of the array). In each
one of these locations is a number: so, in essence, an
array is simply a group of arithmetic variables which
share a common name.

The manner in which you access a given element
array is simple you merely give the array
followed by the element number in parentheses,
the following examples:

of an
name

as in

A(3) ARRAY(l4) NUMLIST(40)

The elements are numbered starting at 0, and
through to the DIMensioned size of the array.
I dimension the size?" It's easy. You use
statement as follows:

continue
"How do

the DIM

DIM A(40) REM dimension 'A' as a 40 element
REM.array.

DIM NUMLIST(60) REM dimension 'NUMLIST' as a 60
REM element array.

For more information on the use of DIM, see section
2.1.5.

A matrix is similar to an array, except that it is two
dimensional. This means that there are two numbers
required to specify a given element: a row number, and

--10--

(

/
a column number. You can think of a matrix as a grid,
with each box being one element. The following is a
representation of a 5 by 5 matrix, where each of the
boxes contains the subscripts used to access that box
(element) :

Notice that the row
number is given
first, followed by
a comma and then
the column number.
This is the same
order you would use
to access that ele
ment.

COL U M N
+-----------------------------+
I 9,1Il I 1Il,1 I 1Il,2 I 1Il,3 I 1Il,4 I
+-----+-----+-----+-----+-----+

R I 1,1Il I 1,1 I 1,2 I 1,3 I 1,4 I
+-----+-----+-----+-----+-----+o I 2,9 I 2,1 I 2,2 I 2,3 I 2,4 I
+-----+-----+-----+-----+-----+

W I 3,1Il I 3,1 I 3,2 I 3,3 , 3,4 I
+-----+-----+-----+-----+-----+
I 4,1Il I 4,1 , 4,2 I 4,3 I 4,4 ,
+-----------------------------+

Dimensioning the size of a matrix is very similar to
dimensioning an array, but both the row dimension and
column dimension are required, e.g.:

DIM AMATRIX(4,4) REM a 5 by 5 matrix: remember
REM that (1Il,0), not (1,1) is
REM the first element.

NOTE: for more information on DIM, see section 2.1.5.

When you use an element of an array or matrix, you are
actually using a single number (which is what an
arithmetic variable is). This means that an array or
matrix element may be used wherever 'avar' can be used.

Examples:
X=47.4
ARRAY(7)=47.4
MATRIX(4,3)=47.4

IF ABS(X)<lllllll THEN..•
IF ABS(ARRAY(7»<19(IJ THEN •.•
IF ABS(MATRIX(4,3»<1(IJ(IJ THEN•••

--11--

2.1.3 String Variables (svar)

String variables are used to store literal strings of
characters. A literal string of characters is simply a
group of characters enclosed in double quotes:

"this is a literal string"
"numbers in quotes are strings: 34344.2"

String variable names are just like arithmetic variable
names, except that they must end with a '$', as in the
following examples:

STRING$
M

To dimension the size of a string variable (i.e.,
define how many characters it may hold), you use the
DIM statement (also see 2.1.5):

DIM STRING$(66)
DIM M (1IIJ)

NOTE: BASIC XL will auto-dimension a string variable if
you don't manually DIMension it. See 3.15 for more
info on this feature.

With arrays and matrices the first element is the
zeroeth, but with strings the first element is the
first, e.g.:

DIM M(HJ)
A$="A String"

A$(l)="A", and A$(0) generates an error because the
first element of a string is (1), not (0) (as in arrays
and matrices).

2.1.4 String Array Variables (svar)

A string array is very similar to a normal arithmetic
array (section 2.1.2), except that each element is a
string, not a number.

As with string variables, a'string array variable must
have its name end with a '$', and it is dimensioned
using DIM. However, there are two quantities which
need to be dimensioned -- the number of elements and
the size of each element. The following examples show

--12--

(

(
how to do this (also see section 2.1.5):

DIM Strarray$(4,40)
DIM A$(10,100)

The first example dimensions a string array called
"Strarray$" with 4 elements. Each element is a string
49 characters long. The second example dimensions the
string array "A$" to 10 elements, with each element
being 190 characters in length.

To access one of the elements of a string array you
specify the element number (the first element is number
1, not 0 as in arithmetric arrays) followed by a
semicolon (:). An example follows:

109 DIM A$(3,6)
209 A$(l:)-"TEST"
390 A$(2:)="STRING"
499 A$(3:)="ARRAY"

2.1. 5 DIM

Format: DIM svar(aexp[,aexp]) [,svar(aexp[,aexp]) .•.]
DIM mvar(aexp[,aexp]) r,mvar(aexp[,aexp]) .••]

Example: DIM A(100)
DIM M(6,3)
DIM B$(20)
DIM A$(20,40)

A DIM statement is used to reserve a certain number of
locations in memory for an array, matrix, string, or
string array.

The first example reserves l~l locations (each of which
can contain any legal numeric quantity) for an array
designated A.

The second example reserves 7 rows by 4 columns for a
two-dimensional array (matrix) designated M.

The third example reserves .20 bytes for the string
'8$' •

NOTE: BASIC XL contains an auto DIMension capability for
simple string variables only which you can control. For
more info, see SET, section 3.15.

The fourth example reserves a string array of 20
elements, with each string element being 40 characters
long.

--13--

2.2 Operators

BASIC XL has two types of operators:

1) Arithmetic Operators
2) Logical (relational) Operators

As you will see in the expressions sections, either of
these two types of operators may be used in arithmetic
expressions, while neither may be used in a string exp
ression.

2.2.1 Arithmetic Operators (aop)

BASIC XL uses 7 arithmetic operators:

+

..

&
I
%

addition (also unary plus: e.g., +5)
subtraction (also unary minus: e.g., -5)
multiplication
division
exponentiation
bitwise "AND" of two positive integers (both <= 65535)
bitwise "OR" of two positive integers (both <.. 65535)
bitwise "EOR" of two positive integers (both <= 65535)

The first four are straightforward enough, but the last
four require some explanation.

The IIA" operator
specified power.
this:

is used to raise a number to a
The following examples should clarify

Exponent Expanded

4*4
5*5*5

Result

16
125

& tests two bytes bit by bit,
returning a value based
on this table:

Bit A
1
9
9
1

Bit-wise And
Bit B Result

1 1
1 9
9 9
9 9

Example: 5 & 39 -- 999~9l9l

99199111
(equals 5 decimal)
(equals 39 decimal)

& ----------99999191 (result of & is 5)

--14--

return. a value depen
dent on this table.

Bit A
1
o
o
1

Bit_ise Or
Bit B Result

1 1
1 1
o 0
o 1

Example. 5 I 39 -- 00000101 (5)
00100111 (39)

00100111 (result of I is 39)

, returns a value depen
dent on this table.

Bit A
1
o
1
o

Bit-wise EOR
Bit B Result

1 0
1 1
o 1
o 0

Example. 5 , 39 -- 00000101 (5)
"0180111 (39), ----------00100010 (result of , is 34)

2.2.2 Logical Operators (lop)

The logical operators consist of three types. rela
tional. unary, and binary.

The re.t of the binary operators are relational.

(Th. first expre.sion is less than the second expression.
) The fir.t expression is greater than the second.

Th. expr••sions are .qual to each other~

(- The first expre.sion i. l.ss than or .qual to the .econd.
)- Th. fir.t expre.sion i. greater than or .qual to the second.
() The two .xpre••ion. are not equal to each othe~.

Examples.

X)- 7
X () INT(Y)

Th... operator. are most frequently u.ed in IF/THEN
.tatement. (i •••• in relatiQnal tests), but may also be
used in arithmetic expr••sion.. When used in thia way,
a 1 r ••ults the logical teat proved true. and a "
re.ult. if th. t.at prov.d fala••

--15--

The unary operator is NOT, and the binary operators
are:

AND Logical AND
OR Logical OR

Examples:

10 IF A-12 AND T-" THEN PRINT "GOOD" Both expressions
must be true before GOOD
is printed (th~t is, A
must equal 12 and T must
equal 0).

10 A-(C>l) AND (N<l) If both expressions true,
A - +1: otherwise A - 0.

10 A .. (C+l) OR (N-l) If either expression true,
A .. +1: otherwise A .. 0.

10 A .. NOT(C+l) If expression is false,
A .. +1: otherwise A - e.

2.2.3 Operator Precedence

Operators require some kind of
order of evaluation, or we
evaluate expressions like :

4+5*3

precedence, a
wouldn't know

defined
how to

Is this equal to (4+5)*3 or 4+(5*3)7 Without operator
precedence it's impossible to tell. BASIC XL's normal
precedence is very precise, as shown in the following
table. The operators are listed in order of highest to
lowest precedence. Operators on the same line are
evaluated left to right in an expression.

() Parentheses
< > - <=):. <> Relational Operators when

used to evaluate strings
in arithmetic expressions

NOT + NOT, Unary Plus and Minus
Exponentiation, 1 & bitwise EOR, OR, AND

* / Multiplicative Operations
+ Additive Operations
< > -<= >- <> Relational Operators
AND Logical 'and' (

~

OR Logical 'or'

Examples showing the above precedence in use can be
found in section 2.3.2.

--16--

XL are BCD floating point, but
enter them in decimal or

(
2.3 Expressions (exp)

Expressions are constructions which obtain values from
variables. constants, and functions using a specific
set of operators. In BASIC XL there are two types of
expressions -- arithmetic and string. Each of these is
dealt with separately. but before going into the
expressions themselves something needs to be said about
the constant numbers used in arithmetic expressions.

2.3.1 Numbers

All numbers in BASIC
there are two ways to
hexadecimal.

Decimal numbers may either
fractions, or scientific notation.
examples of each:

be whole integers.
The following are

Integers:

4S27
-2

Fractions:

-67.254
325.S4

Sci. Notation:

4.33E2
23.4E-14

The 'E' in the scientific notation examples stan~R for
"exponent". The number following it is the power .of
ten (e.q.. 4.33E2 means "4.33 multiplied by IS
squared") •

Hexadecimal numbers can only
digits must be preceeded by a
examples:

be
• $ • ,

integers. and the
as in the following

$4A3S
-$E

-$SA
-$Al1JSS

$6FF
$FFFF

The maximum hexadecimal value allowed is $FFFF.

Internal Format of Numbers:

Numbers are represented internally in 6 bytes. There
is a 5 byte mantissa containing IS BCD digits and a one
byte exponent. •

The most significant bit of the exponent byte gives the
sign of the mantissa (S for postive, 1 for negative).
The least significant 7 bits of the exponent byte gives
the exponent in excess 64 notation. Internally, the
exponent represents powers of ISS (not powers of IS).

--17--

Example:
0.02

exponent -1 + 40 = 3F

3F 02 "" 0" "0 "0

The implied decimal point is always to the right of the
first byte. An exponent less than hex 40 indicates a
number less than 1. An exponent greater than or equal
to hex 4" represents a number greater than or equal to
1 •

Zero is represented by a zero mantissa and a zero
exponent.

In general, numbers have a 9 digit precision. For
example, only the first 9 digits are significant when
INPUTing a number. Internally the user can usually get
1" significant digits in the special case where there
are an even number of digits to the right of the
decimal point (0,2,4 •••).

2.3.2 Arithmetic Expressions (aexp)

Arithmetic expressions are those which evaluate to a
number. Following is a list of expression elements
which are considered to be numbers:

1) a constant number

2) an avar (including subscripted mvars)

3) a function which returns a number

4) two sexps compared using a relational operator

The first three are straightforward, but the fourth
requires an example:

100 S$="ABC"
2"0 PRI~T S$< "DEF"
30" END

prints out:
1

because the logical comparison of the two strings is
true.

An arithmetic
above, or two

expression can simply
or more of the above

--18--

be one of the
separated by

(

operators (either arithmetic or logical). The
following are examples of arithmetic expressions,
including the order of the operators' evaluation (in
any) and the result:

Expression

3*(4+(21/7)*2)

"ABC"> "DEF"+7* (ASC("A"»

X-IOO : Y=2
INT(X*Y/3)

evaluation Order

/,*,+,*

>,ASC,*,+

*,/,INT

Result

30

455

66

2.3.3 String Expressions (sexp)

String expressions are much simplier than arithmetic
expressions since there are fewer things they can be.
The following list shows all the valid string
expression possibilities:

1) a string constant

2) an svar (including subscripted string arrays)

3) a function which returns a string

4) a substring of an svar or string array

This is the first time we've seen the word "substring"
used, so we need to define and to explain it.

(

String

S$

S$(n)

S$(n,m)

SA$(e:)

SA$(e:n)

Definition when
Destination String

the entire string
1 thru DIM value

from nth thru
DIMth character

from the nth thr~
the mth character

same as S$, except
string is eth
element of SA$

same as S$(n),
except string is
eth element of SA$

--19--

Definition when
Source String

from 1st thru LEN
character

from nth thru
LENgth character

from the nth thru
the mth character

same as S$, except
string is eth
element of SA$

same as ssrn},
except string is
eth element of SA$

SA$(e:n,m) same as S$(n,m)
except string is
eth element of SA$

same as S$(n,m)
except string is
eth element of SA$

A destination string is one to which something is being
assigned. Any other string is a source string. In

X$=Y$
RPUT Y$

READ X$
PRINT Y$

INPUT X$
etc.

X$ is the destination string, Y$ is the source string.

An error occurs if either the first or last specified
character (n and m, above), or the element number (in
the case of string arrays) is outside the DIMensioned
size. Also, an error occurs if the last character
position given (explicitly or implicitly) is less than
the first character position.

Source Example: (Assume A$ - "VWXYZ")

1) PRINT A$(2)

2) PRINT A$(3,4)

3) PRINT A$(5,5)

prints:

prints:

prints:

WXYZ

XY

Z

4) PRINT A$(7)
is an error because A$ has a length of 5.

Destination Example: (Assume DATA "VWXYZ")

1) READ D$
PRINT D$ prints:

--28--

VWXYZ

(PROGRAM DEVELOPMENT COMMANDS Chapter 3

Some of the commands available in BASIC XL are designed
specifically to aid in quick and effective program
development. The operations these commands execute are
too diverse to describe in detail here, so we'll simply
give their names and refer you to the section in which
the particular command is discussed:

3.1 BYE (B.)

Format:

BYE
CLR
CONT
DEL
DOS
FAST

LIST
LOMEM
LVAR
NEW
NUM
REM

BYE

RENUM
RUN
SET
STOP
TRACE
TRACEOFF

Example: BYE

("

The function of the BYE command is to exit BASIC XL and
put the computer in Memo Pad mode. This allows you to
experiment with the keyboard or to leave messages on
the screen without disturbing any BASIC XL program in
memory. To return to BASIC XL, press <SYSTEM RESET>.

3.2 CLR

Format: CLR

Example: 2"" CLR

This command clears the memory of all previously
dimensioned strings, arrays, and matrices so the memory
and variable names can be used for other purposes. It
also clears the values stored in undimensioned
variables. If a matrix, string, or array is needed
after a CLR command, it must be redimensioned with a
DIM command.

--21--

3.3 CaNT (CON.)

Format:

Example:

CaNT

CaNTU'" CaNT

(

In direct mode, this command resumes program execution
after a STOP statement, a <BREAK> key abort, or any
stop caused by an error.

CAUTION: Execution resumes on the line following the
halt, so any statements following the halt (and on the
same line as the halt) will not be executed.

In deferred mode, CaNT may be used for error trap
handling.

Example:
UJ TRAP U'"
2" OPEN '1,12,","D:X"
3"

1"" IF ERR(")=17" THEN
OPEN'l,B,","D:X":CONT

In line 2" we attempt to open a file for updating. If
the file does not exist, a trap to line 1"" occurs. If
the "FILE NOT FOUND" error occured, the file is opefted
for output (and thus created) and execution continues
at line 3" via "CaNT".

3.4 DEL

Format:

Example:

DEL line[,line]

DEL 1""",1999

DEL deletes program lines
line numbers are given (as
between the two numbers
single line number deletes

currently in memory. If two
in the example), all lines

(inclusive) are deleted. A
a single line.

Example:

1""
11"
12"

1"""1"1"
199B
1999

DEL 11:""", 1999 .
SET 9,1:TRAP 1"""
ENTER "D:OVERLAYl"
REM These lines are deleted by line 1"".
REM Presumably they will be overlaid by
REM the program ENTERed in line 12".
REM See 'ENTER' and 'SET' for more info.

--22--

(

(
3.5 DOS

Format: DOS

Example: DOS

The DOS command is used to go from BASIC XL to the Disk
Operating System (DOS). If the Disk Operating System
has not been booted into memory, the computer will go
into Memo Pad mode and the user must press <SYSTEM
RESET> to return to Direct mode. If the Disk Operating
System has been booted, control is given to DOS. To
return to BASIC XL, press 'CAR' <RETURN> for OS/A+ or
DOS XL, or press 'B' <RETURN> for Atari DOS.

NOTE: The command CP is exactly equivalent to DOS.

DOS is usually used in Direct mode: however, it may be
used in a program. For more details on this, see your
DOS manual.

3.6 FAST

Format: [lineno] FAST

Example: FAST
lee FAST

During normal program execution BASIC XL must search
(from the beginning) for a specified line number
whenever it encounters a GOTO, GOSUB, FOR, or WHILE
(this is how most of the other BASICs do it too).
However, you can change this by using the FAST command.

When BASIC XL sees 'FAST', it does a precompile of the
program currently in memory. During the precompile
BASIC XL changes every line number to the address of
that line in memory. Now, when a GOTO, GOSUB, FOR, or
WHILE is executed, no line number search is needed,
since BASIC XL can simply jump right to the specified
line's address.

NOTE: if the lineno used in the GOTO or GOSUB is not a
constant (i.e., is a variable or an expression), then
that lineno will not be affected by FAST, and so will
RUN at normal speed.

--23--

3,7 LIST (L.)

Format:

Examples:

LIST [lineno [, lineno]
LIST ["filespec"[,lineno [, lineno]]]

and no
to be

LIST
LIST 19
LIST 19,199
LIST 19,
LIST "P:"
LIST "D:DEMO.LST"
LIST "P:",29,199

LIST causes the program currently in memory to be
displayed. You can display a single line by giving the
line number after the 'LIST', or display a group of
lines by giving the starting line number and ending
line number (separated by a comma) after the 'LIST' •.

If you give the starting line number, a comma,
end address, the ending line number is assumed
the last line in the program.

If no line number(s) is given, the entire program is
displayed.

You can also redirect the display to a file by entering
the filespec enclosed in double quotes immediately
after the 'LIST'. You can then add any of the line
number specifications described above to list only what
you want to that file.

LIST can be used in Deferred mode as part of an error
trapping routine (See TRAP in Section 4).

NOTE: the quotes around the filespec are required for
LIST, unless of course a string variable is used.

3.8 LOMEM

Format:

Example:

LOM~M addr

LOMEM DPEEK(128)+1924

This command is used to reserve space below the normal
program space. You could then use this space for
screen display information or assembly language
routines. The usefulness of this may be limited,
though, since there are other more usable reserved
areas available.

--24--

(

(
CAUTION: LOMEM wipes out any u.~r program currently in
memory.

3 .9 LVAR (LV.)

Format:

Example:

LVAR [filespec]

LVAR P:

This statement will list (to any file) all variables
currently in use. Each variable is followed by a list
of the lines on which that variable is used. The
example above will list the variables to the printer.
If no filespec is used then LVAR lists to the screen.

NOTE: strings are denoted by a trailing '$', arrays by
a trailing '('.

WARNING: LVAR must be the last (or only) command on a
line.

3.UJ NEW

Format: NEW

(Example: NEW

This command erases the program stored in RAM.
Therefore, before typing NEW, either SAVE or CSAVE any
programs to be recovered and used later. NEW clears
BASIC's internal symbol table so that no arrays (See
Section 8) or strings (See Section 7) are defined. NEW
is normally used in Direct mode but is sometimes useful
in deferred mode as an alternative to END.

3.11 NUM

Format: NUM [start][,increment]

Example: NUM
NUM 5"
NUM ,1
NUf:1 5",1

The NUM command enables BASIC XL's automatic
numbering facility. This facility can increase
program entry speed because it puts in the program
numbers for you.

line
your
line

(If no start or increment is given (first example), NUM
will start numbering from the last line number
currently in the program in increments of 1". If there

--25--

is no current program, NUM will start with line number
UI.

If the starting line number
example), NUM will start
number in increments of 18.

alone is
numbering

given (second
from that line

3) If
as a
keeps
parts

If the increment alone is given (third example), NUM
wil start numbering from the last line currently in the
program, incrementing by the number you gave it as an
increment.

If both the starting line number and the increment are
given (last example), NUM will start numbering from the
given line number and increment by the given increment
value.

Three things cause the automatic line numbering to
stop:

1) If you press <RETURN> immmediately following
the line number.

2) If a syntax or similar error is encountered on
a program line you type in.

the next automatic line number is the same
line number already in the program. This
you from overwriting previously written

of your program.

NOTE: If the starting line number you give already
exists, then the automatic line numbering will not
begin.

3.12 REM (R.)

Format: REM text

Examples: 18 REM ROUTINE TO CALCULATE X
20 GOSUB 388 REM Find Totals

REM stands for "remark" and,is used to put comments
into a program. This command and the text following it
on the same line are ignored by the computer. However,
it is included in a LIST along with the other numbered
lines. Since all characters following a REM are
treated as part of the REMark, no statements following
it (on the same logical line) will be executed.

--26--

3.13 RENUM

Format:

Examples:

RENUM [start][,increment]

RENUM
RENUM 199
RENUM ,39
RENUM 1999,5

RENUM renumbers the entire program as it currently
resides in memory. The first line in memory is given
the line number specified by 'start', and each
subsequent line number is one 'increment' greater than
the last.

All line number references (e.g., in GOTO, GOSUB, etc.)
are also renumbered IF the line numbers are absolute
numbers. Line number expressions (e.g., GOTO
1999+l9*INDEX) will NOT be renumbered.

If no 'start' line number is given, RENUM assumes a
starting line number of 19. If no 'increment' is
given, RENUM will renumber lines in increments of 19.
(That is, just typing 'RENUM' is equivalent to typing
'RENUM 19,19'.)

As noted in the examples above, both start and
increment are separately optional.

WARNING: If you use LIST in deferred mode (i.e., in a
program) the lineno values you want to list will not be
RENUMbered.

WARNING: RENUM will not renumber absolute linenos after
a lineno expressed as an expression. Example:

ON X GOSUB 199,3*Y,299

In this example 199 will be RENUMbered, but 299 will
not, since it follows a lineno expressed as an
expression (3*Y).

3.14 RUN

Format: RUN [filespec]

Examples: RUN
RUN D:MENU

This command causes the computer to begin executing a
program. If no filespec is specified, the current
RAM-resident program is executed. If a filespec is
included, the computer retrieves the tokenized program

--27--

from the specified file, executes a FAST command (see
section 3.6), and then executes the program.

Before execution begins all variables (including
arrays, strings, and matrices) are set to zero, all
open files (channels) are closed, and all sounds are
turned off.

Unless the TRAP command is used, an error will cause
the execution to halt and an error message will' be
displayed.

RUN can also be used in Deferred mode.

Examples: HI PRINT "OVER AND OVER AGAIN."
29 RUN

Type RUN and press <RETURN>. To end, press <BREAK>.

To begin program execution at a point other than the
first line number, type GOTO followed by the specific
line number, then press <RETURN>. CAUTION: arithmetic
variables, arrays, and strings are neither cleared or
initialized by GOTO.

NOTE: RUN must be the last (or only) command on a line.

3.15 SET

Format:

Example:

SET aexpl,aexp2

H'J9 SET 1,5

SET is a statement which allows you to exercise rontrol
over a varity of BASIC XL system level functions. The
table below summarizes the various SET table parameters
(default values are given in parentheses).

aexpl

1

2

aexp2

(9) 9
1

128

(l9) 1
thru

128

(63) 9
thru

255

Meaning

-BREAK key functions normally
-User hitting BREAK cause an error
to occur (TRAPable)

-BREAKs'are ignored

-Tab stop setting for the comma in
PRINT statements.

-Prompt character for INPUT (default
is "?").

--28--

(

(
aexpl

3

4

5

6

7

8

(111)

(1)

(111)

(111)

(1)

aexp2

1

1

1

111

1

1

1

Meaning

-FOR••• NEXT loops always execute at
least once (ala ATARI BASIC).

-FOR loops may execute zero times
(ANSI standard)

-On a mutiple variable INPUT, if the
user enters too few items, he is
reprompted (e.g., with "??")

-Instead of reprompting, a TRAPable
error occurs.

-Lower case and inverse vi.deo
characters remain unchanged without
causing syntax errors (BASIC XL
allows mixed case program entry).

-For program entry ONLY, lower case
letters are converted to upper case
and inverse video characters are
uninverted. EXCEPTION: characters
between quotes remain unchanged.

CAUTION: this conversion applies to
REMarks and DATA statements also.
For total compatibility with Atari
BASIC, it might be best to use SET
5,111.

-Print error messages along with
error numbers (for most errors)

-Print only error numbers.

-Missiles (in Player / Missile
Graphics), which move vertically to
the edge of the screen, roll off
the edge and are lost.

-Missiles wraparound from top to
bottom and visa versa.

-Don't push (PHA) the number of
parameters to a USR calIon the
stack [advantage: some assembly
language· subroutines not expect
ing parameters may be called by a
simple USR(addr)].

-DO push. the count of parameters
(ATARI BASIC standard).

--29--

aexpl

9

11

12

aexp2

(liJ) liJ

1

(liJ) liJ

1

(4liJ) 1
thru

255

liJ

(1) liJ

1

Meaning

-ENTER statements return to the
READY prompt level on completion.

-If a TRAP is properly set, ENTER
will execute a GOTO the TRAP line
on end-of-entered-file.

-The four missiles act separately~

that is, as four missiles.
-The four missiles are grouped into

a fifth player. To move this
player, you need only do a PMMOVE
of one of the missiles since they
are all grouped together.

-BASIC XL will DIM a string to this
size if you do not use a DIM
statement to otherwise dimension
it.

-BASIC XL works like Atari BASIC

-The program LIST formatter does not
indent when you use structured
statements (FOR, WHILE, etc.).

-The LIST formatter does indent when
you use structured statements.

NOTE: The SET parameters are reset to the system
defaults on execution of a NEW statement.

Examples:
1) SET 1,4 : PRINT 1,2,3,4

The number will be printed every
four columns

2) SET 2, ASC("> ")

Changes the INPUT prompt from "7"
to ")1'

3) lliJliJ SET 9,1 : TRAP l2liJ
11liJ ENTER "D:OVERLAY.LIS"
l2liJ REM execution continues here after
l3liJ REM entry of the overlay

4) lliJliJ SET liJ,l : TRAP 2liJliJ
11liJ PRINT "HIT BREAK TO CONTINUE"
12liJ GOTO 11liJ
2liJliJ REM come here via BREAK KEY

--3liJ--

5) 100 SET 3,1
110 FOR I = 1 TO 0
120 PRINT II THIS LINE WON'T BE EXECUTED"
130 NEXT I

3.16 STOP

Format: STOP

Example: 100 STOP

When the STOP command is executed in a program, BASIC
XL displays the message STOPPED AT LINE 1ineno,
terminates program execution, and returns to Direct
mode. The STOP command does not close files or turn
off sounds (as does END), so the program can be resumed
by typing CONT <RETURN> (see section 3.3 for more info
on CONT).

3.17 TRACE and TRACEOFF

Formats:

Examples:

TRACE
TRACEOFF

100 TRACE
TRACEOFF

(

These statements are used to enable or disable the line
number trace facility of BASIC XL. When in TRACE mode,
the line number of a line about to be executed is
displayed on the screen surrounded by square brackets.

Exceptions: The first line of a program does not have
its number traced. The object line of a
GOTO or GOSUB and the looping line of FOR
or WHILE may not be traced.

NOTE: A direct statement (e.g., RUN) is TRACED as
having line number 32768.

--31--

--32--

(PROGRAM CONTROL STATEMENTS Chapter 4

This chapter explains the commands associated with
loops, conditional and unconditional branches, error
traps, and subroutines. It also explains the means of
accessing data and the optional command used for
defining variables.

The following commands are described in this chapter:

Assignment Statement
END
FOR••• TO••• STEP/NEXT
GOSUB ••• RETURN
GOTO
IF ... THEN
IF ••• ELSE••• ENDIF

4.1 Assignment Statement

LET
MOVE
ON ••• GOTO/GOSUB
POP
RESTORE
TRAP
WHILE ••. ENDWHILE

Format:

Example:

avar=aexp
mvar(aexp)=aexp
svar(aexp;)=sexp [,sexp•••]
svar=sexp [,sexp•••]

X=9
I=X+7*9
ARRAY(7)=23.75
A$(4;)="A STRING ARRAY ELEMENT"
S$="THIS IS A STRING"
M$="CONCATENATED"
C$=S$," WHICH IS ",M$

The assignment statement is used to assign a value to a
variable, and can be used with arithmetic, matrix
(array), or string variables (including string arrays).

The first and second examples given simply equate an
avar to an aexp. If you insert a 'PRINT I' statement
after the second example, 72 (the value of I) will be
printed. The third equates one element of a mvar to an
aexp. •

The fourth example is somewhat more complicated; it
equates one element of ~ string array to a sexp (in
this case a string constant).

(, The fifth and sixth examples equate svars to sexps.

--33--

String concatenation may be accomplished via the form
shown in the last example above. Note that

A$=B$,C$

is exactly equivalent to

A$=B$
A$(LEN(A$)+l)=C$

From this you can see that C$ in the last example is
equal to "THIS IS A STRING WHICH IS CONCATENATED".

Here is another example:

lee DIM A$(10e),B$(10e)
21!l0 A$ 123 ..
3e0 B$ ABC ..
400 A$"A$,B$,A$
500 REM At this point A$ = "123ABC123ABC"
600 A$(4,9)="X",STR$(3*7), "X"
700 REM At this point, A$="123X21X23ABC"
B0e A$(7)=A$(1,3)
900 REM Finally, A$="123X2ll23"

NOTE: for more information
expressions, see chapter 2.

4.2 END

on variables and

Format:

Example:

END

10e0 END

This command is used to terminate the execution of a
program. In addition to this, it also closes all files
and turns off any sounds. It does not change the
GRAPHICS mode, however. END is not required in most
programs because BASIC XL automatically closes all
files and turns off any sounds after the last program
line has executed.

If you have any subroutines following the main program
you should put an END at the end of the main program:
otherwise the subroutines will be executed as part of
the main program.

END may also be used in Direct mode to close files and
turn off sounds.

--34--

4.3 FOR(F.) ••• TO••• STEP / NEXT(N.)

Format: FOR avar z aexpl TO aexp2 [STEP aexp3]
NEXT avar

Examples: FOR X z 1 TO 19
NEXT X

FOR Y = 19 to 29 STEP 2
NEXT Y

FOR INDEX = Z TO 199 * Z
NEXT INDEX

The FOR statement is used to repeat a group of
statements a specified number of times. It does this
by initializing the loop variable (avar) to the value
of aexpl. Each time the NEXT avar statement is
encountered, the loop variable is incremented by the
amount specified by aexp3 in the 'STEP' option. aexp3
can be either positive or negative, either a fraction
or a whole number. If the 'STEP' option is not used,
the loop increments by one. When the loop completes
the limit as defined by aexp2, it stops and the program
proceeds to the statement immediately following the
NEXT statement.

FOR loops can be nested, one within another. In this
case, the innermost loop is completed before returning
to the outer loop. The following example illustrates a
nested loop program.

19 FOR X-I TO 3 REM START OF OUTER LOOP
29 PRINT "OUTER LOOP"
39 Z=9
49 Z=Z+2
59 FOR Y-l TO 5 STEP Z : REM START OF INNER LOOP
69 PRINT" INNER LOOP"
79 NEXT Y REM END OF INNER LOOP
89 NEXT X REM END OF OUTER LOOP
99 END

The outer loop will complete three passes (X = 1 to 3).
However, before this first loop reaches its NEXT X
statement, the program gives control to the inner loop.
Note that the NEXT statement for the inner loop must
precede the NEXT statement for the outer loop. Tn the
example, the inner loop's number of passes is
determined by the STEP statement (STEP Z). In this
case, Z has been defined as 9, then redefined as Z+2.
Using this data, the computer must complete three
passes through the inner loop before returning to the

--35--

outer loop. The following is the output of the program
when it is RUN:

OUTER LOOP
INNER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP
INNER LOOP

The return addresses for the loops are placed in a
special group of memory addresses referred to as a
stack. The information is "pushed" on the stack and
when used, the information is "popped" off the stack
(see POP).

4.4 GOSUB (GOS.) / RETURN (RET.)

(

Format: GOSUB linenol
linenol

lineno2 RETURN

Example: l~~ GOSUB 2~~~

2~~~ PRINT "SUBROUTINE"
2~1~ FOR X=l TO l~

2~2~ PRINT X,X·X
2~3~ NEXT X
2~4~ RETURN

A subroutine is a program or routine used to compute a
certain value,etc. It is generally used when an
operation must be executed several times within a
program sequence using the same or different values.
This command allows the user to "call" the subroutine,
if necessary. The last line of the subroutine must
contain a RETURN statement: The RETURN statement goes
back to the physical line following the GOSUB
statement.

Generally, a subroutine can do anything that can be
done in a program. It is used to save memory and
program-entering time, and to make programs easier to
read and debug.

--36--

(

(
Like the preceding FOR/NEXT command, the GOSUB/RETURN
command uses a stack for its return address. If the
subroutine is not allowed to complete normally: e.g., a
GOTO lineno before a RETURN, the GOSUB address must be
"popped" off the stack (see POP) or it could cause
future errors.

To prevent accidental triggering of a subroutine (which
normally follows the main program), place an END
statement preceding the subroutine. The following
program demonstrates the use of subroutines.

IS PRINT CHR$(125) :REM this clears the screen
2S REM EXAMPLE USE OF GOSUB/RETURN
3S X"lSlJ
4S GOSUB UISS
5S X=12lJ
6S GOSUB lSSS
7(lJ X-58
88 GOSUB l88S
98 END
1888 Y-3"'X
l(lJIS x-x+y
lS28 PRINT X,Y
lS38 RETURN

In the above program, the subroutine, beginning at line
18SS, is called three times to compute and print out
different values of X and Y. Below are the results of
executing this program.

488
488
2l!l8

4.5 GOTO (G.)

Format:

3SS
368
lSI'

[lineno) GOTO aexp

Examples: lSI' GOTO 5S
.5SS GOTO (X + y)

The GOTO command is an uncoqditional branch statement
just like the GOSUB command. They both immediately
transfer program control to a target line number or
arbitrary expression. However, You cannot RETURN from
a GOTO, as you can with a GOSUB. If the target line
number is non-existent, an error results. Any GOTO
statement that branches to a preceding line may result
in an "endless" loop. Statements following a GOTO
statement will not be executed. Note that a
conditional branching statement (see IF/THEN) can be

--37--

used to break out of a GaTO loop. The following
program illustrates uses the GOTO statement twice.

18 FINISH-78
28 PRINT :PRINT "ONE"
38 PRINT "TWO"
48 PRINT "THREE"
58 PRINT "FOUR"
68 PRINT "FIVE"
65 GOTO 188
78 PRINT "$$$$$$$$$$$$$$$$$"
88 PRINT "/././././././././././././././././."
98 PRINT rrrnrrrrrrrrrrrrr-
95 END
188 PRINT "SIX"
Ill' PRINT "SEVEN"
128 PRINT "EIGHT"
138 PRINT "NINE"
148 PRINT "TEN"
159 GOTO FINISH

Upon execution, the numbers in the above listing will
be listed first followed by the three rows of symbols.
The symbols listed on lines 79, 88, and 98 are ignored
temporarily while the program executes the GOTO 188
command. It proceeds with the printing of the numbers
"SIX" through "TEN", then executes the second GOTO
statement which transfers program control back to line
78. (This is just an example. This program could be
rewritten so that no GOTO statements were used.) The
program, when executed, looks like the following:

ONE
TWO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
NINE
TEN
$$$$$$$$$$$$$$$$$
/./././././././././././.1././././.
??11111111?11111?

NOTE: using
renumbering
difficult.
improved.

anything other than a
the lineno in the
However, readability

--38--

constant will make
GOTO (using RENUM)

may be markedly

(

(
4.6 IF/THEN

Format:

Examples:

IF aexp THEN lineno
IF aexp THEN statement [:statement •••]

IF X • l~~ THEN l5~

IF A$ - "ATARI" THEN 2~~

IF AA - 145 and BB - 1 THEN PRINT AA,BB
IF X - l~~ THEN X - S

See also IF ••• ELSE••• ENDIF discussion in the following
section.

The IF/THEN statement is a conditional branch
statement. This type of branch occurs only if certain
conditions are met. These conditions may be either
arithmetical or logical. If the aexp following the IF
statement is true and/or non-zero, the program executes
the THEN part of the statement. If, however, the aexp
is false and/or zero, the rest of the statement is
ignored and program control passes to the next numbered
line.

In the format, IF aexp THEN lineno

(

lineno must be a constant (not an expression)
specifying the line number to go to if the expression
is true. If several statements occur after the THEN,
separated by colons, then they will be executed if and
only if the expression is true. Several IF statements
may be nested on the same line. For example:

ISS IF X-S THEN IF Y-3 THEN R-9: GOT~ 2~S

The statements R-9 : GOTO 2~~ will be executed only if
X-5 and Y·3. The statement Y-3 will be executed if
X-5. The following program demonstrates the IF/THEN
statement:

l0~ GRAPHICS ~ : PRINT
lUI PRINT" "IF DEMO"
l2~ PRINT: PRINT "ENTER A", : INPUT A
l3~ IF A-l THEN lS~ : REM Multiple Statements
here will never be executed!! I
140 PRINT : PRINT "A IS NOT 1, "EXECUTION
CONTINUES HERE WHEN EXPRESSION IS FALSE."
l5S IF A-l THEN PRIN'!' : PRINT "A-l?" : PRINT
"YES, IT IS REALLY 1." : REM Multiple statements
here will be executed only if A-1111
160 PRINT : PRINT "EXECUTION CONTINUES HERE IF
A (> 1 OR AFTER 'YES, IT IS REALLY l'IS DISP
LAYED ...
6S GOTO lS

--39--

Output of the above program is:

IF DEMO

ENTER A ? (entered 2)
A IS NOT 1. EXECUTION CONTINUES HERE WHEN
THE EXPRESSION IS FALSE.
EXECUTION CONTINUES HERE IF A(>l OR AFTER
'YES', IT IS REALLY l' IS DISPLAYED.

(

ENTER A ? (entered 1)

A=l
YES, IT IS REALLY 1.
EXECUTION CONTINUES HERE IF A (> 1 OR AFTER
'YES, IT IS REALLY l' IS DISPLAYED.

4.7IF••• ELSE••• ENDIF

Format:

Examples:

IF aexp: statement [:statements •••]
[ELSE: [statements •••]]
ENDIF

2"" IF A>l"":PRINT "TOO BIG"
21" A-l""
22" ELSE:PRINT "A-OX"
23" ENDIF

1""" IF A>C : B=A : ELSE : B=C : ENDIF

BASIC XL makes available an exceptionally powerful
conditional capability via IF ••• ELSE••• ENDIF.

In the format given, if the expression is TRUE
(evaluates as non-zero) then all statements between the
following colon and the corresponding ELSE (if it
exists) or ENDIF (if no ELSE exists) are executed: if
ELSE exists, the statements between it and ENDIF are
skipped.

If the expression is FALSE (evaluates to zero), then
the statements (if any) between the colon and ELSE are
skipped and those between ELSE and ENDIF are executed.
If no ELSE exists, all statements through the ENDIF are
skipped.

CAUTION: The colon following the aexp IS REQUIRED and
MUST be followed by a statement. The word THEN is NOT
ALLOWED in this format.

There may be any number (including zero) of statements
and lines between the colon and the ELSE and between
the ELSE and the ENDIF.

--4"--

(
The second example above sets B to the larger of the
values of A and C.

This IF structure may also be nested, as follows:

189 IF A>B : REM SO FAR A IS BIGGER
119 IF A>C : PRINT "A BIGGEST"
129 ELSE: PRINT "C BIGGEST"
139 ENDIP
149 ELSE
159 IF B>C : PRINT "B BIGGEST"
169 ELSE: PRINT "c BIGGEST"
179 ENDIF
189 ENDIF

4.8 LET

Format:

Example:

[LET] <assignment statement>

LET GOTO=3.5
LET LETTER$."a"
LET AND$""*",AS,A$,A$,A$,A$

LET is an optional keyword which allows you to assign a
value to a variable name which starts with or is
identical to a reserved name. For example:

lB LET GOSUBBER • 5
2B LET PRINT .. 7
3B LET LET .. PRINT + GOSUBBER
4B PRINT PRINT,LET,GOSUBBER

will print out:
7 12 5

(

There are a few keywords which CANNOT be used as
variable names through the use of LET, including
any function name and the NOT unary operator.

Here is is an example of what will happen if you try to
use one of the above as a variable name:

lB CSHARP • 37 .
2B LET NOTE • CSHARP
3B PRINT NOTE

will print out: 1

If you LIST the program out you will see why. It lists
"39 PRINT NOTE" as

31ll PRINT NOT E

because the interpreter does not allow NOT to start a
variable name.

--41--

4.9 MOVE

Format: MOVE aexpl,aexp2,aexp3

Example: MOVE $0999, $8999, $499

CAUTION: be careful with this commandll

MOVE is a general purpose byte move utility which will
move any number of bytes from any address to any
address at assembly language speed. NO ADDRESS CHECKS
ARE MADEl I

aexpl is the starting address of the block you want to
move, aexp2 is the starting address of the place where
you want the block moved to, and aexp3 is the length of
the block.

The sign of the third aexp (the length) determines the
order in which the bytes are moved, as follows:

If the length is postive:
(from) -> (to)
(from+l) -> (to+l)

(from+len-l) -> (to +len-l)

When the length is positive, the destination block can
overwrite lower part of the source block.

If the length is negative:
(from+len-l) -> (to+len-l)
(from+len-2) -> (to+len-2)

(from+l) -> (to +1)
(from) -> (to)

When the length is negative, the destination block can
overwrite the upper part of the source block.

--42--

4.lfJ ON...

(Format: ON aexp IGOTO I lineno [,lineno•••]
IGOSUBI •

EXAMPLES: 100 ON X GOTO 200,300,400
100 ON A GOSUB 1000,2000
100 ON SQR(X) GOTO 39,19,100

NOTE: GOSUB and GOTO may not be abbreviated when used
in conjunction with ON.

These two statements are also conditional branch
statements like the IF/THEN statement. However, these
two are more powerfUl. The aexp must evaluate to a
positive number which is then rounded to the nearest
positive integer (whole number) value up to 255. If t
he resulting number is I, then program control passes
to the first lineno in the list following the GOSUB or
GOTO. If the resulting number is 2, program control
passes to the second lineno in the list, and so on.

If the resulting number is 0 or is greater than th e
number of linenos in the list, the conditions are not
met and program control passes to the next statement
which mayor may not be located on the same line. with
ON/GOSUB, the selected subroutine is executed and then
program control passes to the statement following the
ON/GOSUB.

The following
statement:

routine demonstrates the ON/GOTO

199":GOTO 10
299":GOTO 19
309":GOTO 19
490" : GOTO 19
599":GOTO 19

LINE
LINE
LINE
LINE
LINE

AT
AT
AT
AT
p..T

"NOW WORKING
"NOW WORKING
"NOW WORKING
"NOW WORKING
"NOW WORKING

10 X-X+l
20 ON X GOTO 109,200,309,490,509
30 IF X>5 THEN PRINT "COMPLETE.":END
49 GOTO 10
59 END
199 PRINT
299 PRINT
399 PRINT
499 PRINT
599 PRINT

When the program is executed, it looks like the
following:

NOW WORKING AT LINE 199
NOW WORKING AT LINE 290
NOW WORKING AT LINE 309
NOW WORKING AT LINE 490
NOW WORKING AT LINE 590
COMPLETE.

--43--

4.11 POP

Format: POP

Example: l~~~ POP

In the description of the FOR/NEXT statement, the stack
was defined as a group of memory addresses reserved for
return addresses. The top entry in the stack controls
the number of loops to be executed and the RETURN
target line for a GOSUB. If a subroutine is not
terminated by a RETURN statement, the top memory
location of the stack is still loaded with some
numbers. If another GOSUB is executed, that top
location needs to be cleared. To prepare the stack for
a new GOSUB, use a POP to clear the data from the top
location in the stack.

The POP command could be used in the following ways:

1) In a FOR or WHILE statement, when you wis~ jump
out of the loop before it has executed its
specified number of times (e.g., if you are
searching through a lot of data for a specific
item, you can leave the loop early by POPping the
stack, and then using GOTO to continue execution
after the NEXT). Example:

l~ FLAG = 1
2~ WHILE FLAG
3~ INPUT FLAG
4~ IF FLAG < ~ THEN POP : GOTO 7~

5~ PRINT "IN THE WHILE LOOP"
6~ ENDWHILE
7~ END

2) After a sUbroutine (GOSUB) which does not give
control back to the main program through the use
of a RETURN. The following example illustrates
this instance:

l~~ REM POP Demo
118 N = 1 GOSUB 89~

l2~ N = 2 GOSUB 8~~

138 END
888 PRINT "At Line e~~"

818 GOSUB 9~8

828 PRINT "At Line 82~"

838 RETURN
9~8 PRINT "At Line 9~~"

918 IF N = 2 THEN POP
928 RETURN

--44--

(

4.12 RESTORE (RES.)

Format: RESTORE [aexp]

Example: 188 RESTORE
228 RESTORE x+2

BASIC XL contains an internal "pointer" that keeps
track of the DATA statement item to be read next. When
used without the optional aexp, the RESTORE statement
resets that pointer to the first DATA item in the
program. When used with the optional aexp, the RESTORE
statement sets the pointer to the first DATA item on
the line specifed by the value of the aexp.

This statement permits repetitive use of the same data,
as shown in the following example:

18 FOR N-2 TO 1 STEP -1
28 RESTORE 88+N
38 READ A, B
48 M"A+B
58 PRINT "TOTAL EQUALS "1M
68 NEXT N
78 END
81 DATA 36,15
82 DATA 16,26

On the first pass through the loop, A will be 18 and B
will be 28 so the total in line 58 will print: TOTAL
EQUALS 36, but on the second pass, A will equal 36 and
B will equal 15, so the PRINT statement in line 58 will
display: TOTAL EQUALS 45.

4.13 TRAP (T.)

Format I TRAP aexp

Example: 186 TRAP 126

The TRAP statement is used to direct the program to a
specified line number if an error is detected. Without
a TRAP statement, the program stops executing when an
error is encountered and displays an error message on
the screen.

TRAP works for any error that may occur after it (the
TRAP statement) has been executed, but once an error
has been detected and trapped, it is necessary to reset
the error trapping with another TRAP statement. This
TRAP statement should be placed at the beginning of the
section of code that handles input from the keyboard so
that the TRAP is reset after each error.

--45--

You can find out the error number using the ERR
function with an argument of e, and find out the lineno
on which the error occurred by using the ERR function
with an argument of 1 (see section 6.6.4 for a more
detailed discussion of ERR).

Alternatively, PEEK(195) will give you the error
number, and DPEEK(186) will give you the number of the
line where the error occurred.

A TRAP may be disabled by executing a TRAP statement
with an aexp whose value is zero (e), or between 32768
and 65535 (e.g., TRAP 40000).

4.14 WHILE•.. ENDWHILE

Format:

Example:

WHILE aexp : <statements>

le0 A=3
110 WHILE A: PRINT A
l2e A=A-l: ENDWHILE

ENDWHILE

With WHILE, the BASIC XL user has yet another powerful
control structure available. So long as the ap.xp of
WHILE remains non-zero, all statements between WHILE
and ENDWHILE are executed.

Example:

Example:

WHILE 1 :
The loop executes forever

WHILE 0 : .•..
The loop will never execute

CAUTION: Do not GOTO out of a WHILE loop or a nesting
error will likely result (unless you use POP first).

NOTE: The aexp is only tested at the top of each
passage through the loop.

--46--

(INPUT/OUTPUT COMMANDS AND DEVICES Chapter 5

This chapter describes the input/output devices and how
data is moved between them. The commands explained in
this chapter are those that allow access to the
input/output devices. The input commands are those
associated with putting data into RAM and the
devices geared for accepting input. The output
commands are those associated with retrieving data from
RAM and the devices geared for generating output.

The commands described in this chapter are:

BGET
BPUT
CLOAD
CLOSE
CSAVE
DATA

DIR
ENTER
ERASE
GET
INPUT
LOAD

LPRINT
NOTE
OPEN
POINT
PRINT
PRINT USING

PROTECT
PUT
READ
RENAME
RGET
RPUT

SAVE
STATUS
TAB
UNPROTECT
XIO

5.1 Comments and Notations

The Atari Personal Computer considers everything except
the guts of the computer (i.e. the RAM. ROM. and
processing chips) to be external devices. Some of
these devices come with the computer. for example the
Keyboard and the Screen Editor. Some of the other
devices are DiSK Drive. Program Recorder (cassette).
and Printer. The following is a list of the devices.
ordered according to the name used as 'filespec' in the
BASIC XL commands:

C: The Program Recorder -- handles
and Output. You can use the
either an input or output device.
as both simultaneously.

both Input
recorder as
but never

01: - 08: Disk Drive(s) handles both Input and
Output. Unlike C:. disk drives can be used
for input and output simultaneously. Floppy
diSKS are organized into a group of files. so
you are required to specify a file name along
with the device name (see your DOS manual for
more information').

NOTE: if you use 0: without a drive number,
01: is assumed.

--47--

E: Screen Editor handles both Input and
Output. The screen editor simulates a text
editor/word processor using the keyboard as
input and the display (TV or Monitor) as
output. This is the editor you use when
typing in a BASIC XL program. When you
specify no channel while doing I/O, E: is
used because the channel defaults to e, which
is the channal BASIC XL opens for E:.

K: Keyboard -- handles Input only. This allows
you access to the keyboard without using E:.

P: Parallel Port on the 8Se Module -- handles
Output only. Usually P: is used for a
parallel printer, so it has come to mean
'Printer' as well as 'Parallel Port'.

Rl: - R4: The four RS-232 Serial Ports on the Atari 8Se
Interface -- handle both Input and Output.
These devices enable the Atari system to
interface to RS-232 compatible serial devices
like terminals, plotters, and modems.

NOTE: if you use R: without a device number,
Rl: is assumed.

S: The Screen Display (either TV or Monitor) -
handles both Input and Output. This device
allows you to do I/O of either characters or
graphics points with the screen display. The
cursor is used to address a screen position.

Each of these devices is used for I/O of some type,
although only a few of them can do both Input and
Output (you wouldn't want to input data from a
Printer). Because the way in which they work is
different, each device has to tell the computer how it
operates. This is done through the use of a device
handler. A device handler for a given device gives
information on how the computer should input and output
data for that device.

One of the sub-systems in the computer in the Central
Input Output processor (CIO). It's CIO's job to find
out if the device you specify exists, and then loo~ up
I/O information in that device's handler. This makes
it easy for you, since you don't need to know anything
about given handler.

To let CIO know that a device exists (i.e., is
available for I/O) you need to OPEN (section 5.16) the
device on one of the ClOts eight channels (numbered

--48--

(

8-7). When you then
OPENed device, you
the device name.

want to do I/O involving the
use the channel number instead of

When you see 'filespec' in the following sections, it
refers simply to the device (and file name in the case
of Dr) in a character string. The string may either be
a literal string (i.e., enclosed in quotes), a string
of characters (not in quotes), or a string variable.

IP loeB '7 is in use, it will prevent LPRINT or some of
the other BASIC I/O statements from being performed.

+---+I In the exaaples in the following sections, you will I
I often see the wildcard characters * and? in the I
, filespec. Por information on the use of these, see I
I your DOS manual. . I
+---+
5.2 BGET

Pormatr

Exampler

BGET 'channel, aexpl. aexp2

(see below)

BGET gets "aexp2" bytes from the
specified by "channel" and stores
"aexpl".

device
them at

or file
address

NOTEr The address may be a memory address. Por
example, a screen full of data could be displayed in
this manner. Or the address may be the address of a
string. In this case BGET does not change the length
of the string, this is the user's responsibility.

Exampler U!l DIM A$ (U!l25)
28 BGET .5,ADR(A$),1824
38 A$(1825) - CHR$(8)

(

Thi. program segment will get 1824 bytes from the file
or device associated with file number 5 and store it in
A$. Statement 38 sets the. length of A$ to 1825.

NOTEr No error checking is done on the address or
length so care must be taken when using this statement.

Por another example using BGET, see section 5.31.

--49--

5.3 BPUT

Format.

Example.

BPUT 'channel, aexpl, aexp2

BPUT '5, ADR(A$), LEN(A$)

BPUT outputs a block of data to the device or file
specified by "channel". The block of data starts at
address "aexpl" for a length of "aexp2".

NOTE. The address may be a memory address. For
example, the whole screen might be saved. Or the
address may be the address of a string obtained using
the ADR function.

The example above writes the block of data contained in
the string A$ to the file or device associated with
channel number 5.

NOTE. nothing is written to the file which indicates
the length of the data written. You are advised to
write fixed-length data to make the rereading process
simpler.

5.4 CLOAD

Format. CLOAD

Examples: CLOAD
100 CLOAD

This command can be used in either Direct or Deferred
mode to load a program from cassette tape into RAM for
execution. On entering CLOAD, one bell rings to
indicate that the PLAY button needs to be pressed
followed by <RETURN>. However, do not press PLAY until
the tape has been positioned. Specific instructions
for CLOADing a program are contained in the ATARI 410
Program Recorder Manual.

5.5 CLOSE (eL.)

Format: CLOSE 'chanpel

Example: CLOSE '4
100 CLOSE U

The CLOSE command is used to close a CIO channel which
has been previously OPENed to allow I/O with some (
device. After you CLOSE a channel, you can then reOPEN
it to some other device, and thus associate that
channel number with a different device.

--50--

(

NOTEr you should CLOSE all channels you have OPENed
when you are finished using them.

NOTEr END will also close all channels (i.e., files).

5.6 CSAVE (CS.)

Formatr CSAVE

Exampler CSAVE
199 CSAVE
199 CS.

This command is usually used in Direct mode to sa~e a
RAM-resident program onto cassette tape. CSAVE saves
the tokenized version of the program. On entering
CSAVE two bells ring to indicate that the PLAY and
RECORD buttons must be pressed followed by <RETURN>.
Do not, however, press these buttons until the tape has
been positioned. It is faster to save a program using
this command rather than a SAVE "c" (See SAVE) because
short inter-record gaps are used.

NOTEr Tapes saved using the two commands SAVE and
CSAVE are not compatible.

NOTEr Due to a flaw in the Atari OS ROMs, it may be
necessary on some machines to enter an LPRINT (See
LPRINT) before using CSAVE. Otherwise, CSAVE may not
work properly.

For specific instructions on how to connect and operate
the hardware, cue the tape, etc., see the ATARI 419
Program Recorder Manual.

5.7 DATA (D.)

Formatr DATA adata [,adata]

Exampler 199 DATA 12,13,14,15,16
299 DATA GEORGE, EVELYN, MIKE, BECKY
399 DATA "DATA with a comma, in quotes"

The DATA command is used in'conjunction with the READ
command (see section 5.22) to access elements in a data
list. A DATA command may be anywhere in a program, but
it must contain as many' pieces of data as there are
defined in the READ commandr otherwise an "out of data"
error is displayed on the screen.

NOTEr all characters except comma
allowed. However, if you put the data
all characters except double quote
legal.

--51--

and <RETURN> are
in quotes, then
and <RETURN> are

5.8 DIR

Format:

Example:

The DIR command
directory to the
OS/A+ and DOS
given, all files

DIR [filespec]

DIR D:*.COM
DIR FILE$
DIR "D2:TEST*.B*"

is used to list the contents of a disk
screen. It is very similar to the
XL 'DIR' command. If no filespec is
on Dl: are displayed.

The first example will display all files on Dl: which
end with .COM.

The second example shows a string variable being used
as a filespec. This is legal, but the string variable
must contain a valid filespec, otherwise an error will
occur.

The third example will display all files on disk ~rive 2
which match TEST*.B*.

NOTE: DIR must be used as the last (or only) command on
a line.

5.9 ENTER (E.)

Format: ENTER filespec

Examples: ENTER "C:"
ENTER D2:DEMOPR.INS
ENTER FILE$

The ENTER command allows you to read in a program you
have saved using the LIST command, and will not work
with programs which have been SAVEd or CSAVEd. To use
this command, you simply need to give the filespec of
the program.

NOTE: whereas both LOAD and CLOAD clear the old program
from memory before reading in the new one, ENTER does
not, and so is useful when trying to merge programs
together.

ENTER can be modified using the SET command. For an
example of this, see section 3.15, example 3.

--52--

(

(
5.U' ERASE

Format:

Example:

ERASE filespec

ERASE "D:*.BAK"
ERASE D2:TEST?SAV

ERASE will erase any unprotected files which match the
given filespec. The first example above would erase
all .BAK (back-up) files on disk drive 1. The second
example would erase all files matching TEST?SAV on
disk drive 2. This command is similar to the OS/A+ and
DOS XL ERAse, but there are no default file specifiers.

5.11 GET

Format:

Example:

GET Ichannel,avar

199 GET "", X

The GET command is used to input one byte of data from
an open channel. This byte of information is stored in
'avar' •

For a program example using GET, see section 5.31.

5.12 INPUT (r.)

Format: INPUT ['chan,] lavar [,(avar) •••]1
I svar I

Examples: 199 INPUT X
199 INPUT N$
199 INPUT X,Y,Z(4)
199 INPUT ARRSTR$(5:)
199 PRINT "ENTER THE VALUE OF X"
119 INPUT X

INPUT is used to read in various data. With it you can
input either one or more numbers, or a string. If you
are inputting a group of numbers, the first number will
go into the first avar specified, the second number
into the second avar, and ~o on.

NOTE: In BASIC XL the avar may be an array element, and
the svar may be a string a;ray element.

number is specified (followed by a comma),
prompt is given. This allows you to

own prompts, as shown in the following

If a channel
then no "?"
create your
example:

109 PRINT
119.INPUT

"command» H:
'9, COMMAND$

--53--

The statement 'INPUT ,g, COMMAND$' inputs a string from
channel g (E:), without printing out a '?' first.

NOTE: if the user's
<CTRL>C <RETURN>, a
issued by INPUT.
manipulations.

sole response to an INPUT prompt is
special error (number 27) will be
This can be useful in data entry

If an INPUT request is made for more than one numeric
variable, the user may respond with several values
separated by commas or may type in single number on
each line, followed by <RETURN>.

In the latter case, BASIC XL will prompt with a double
question mark to indicate that more input is needed.
When a string is requested, it must be typed on a line
by itself (or, if combined with numeric input, as the
last item on the line).

OSS strongly recommends that:

1) no more than one variable be used on each
INPUT line.

2) INPUT and PRINT should not be used fo~ disk
data file access (RGET and RPUT are
suggested instead).

5.12.1 Advanced use of INPUT

Format: INPUT "string", var [,var ••.]

Example: l09 INPUT "3 VALUES» ", vt i) , V(2), V(3)

BASIC XL allows you to include a prompt with the INPUT
command to produce easier to use programs, without
having to use the ":" option mentioned in the previous
section. The string given in the above format ALWAYS
replaces the default "?" prompt.

NOTE: no channel number may be used when the literal
prompt is present.

NOTE: in the example above, if the user typed in only a
single value followed by a <RETURN>, he would be
reprompted by BASIC XL with' a "??", but see chapter 3
for variations available via SET.

--54--

(

(5.13 LOAD (LO.)

Format: LOAD filespec

Example: LOAD Dl:GAMEl.BXLH'" LOAD "C:"

LOAD allows you to load the SAVEd version of a program
into memory from any device. It will not work properly
with programs saved using LIST or CSAVE, as they have
their own loading commands (see ENTER and CLOAD).

5.14 LPRINT (LP.)

Format: LPRINT [exp][171 exp •••]
1,1

Example: LPRINT "PROGRAM TO CALCULATE X"

This statement causes the computer to print data on the
line printer rather than on the screen. It can be used
in either Direct or Deferred mode, and requires no
device specifier, no OPEN, or no CLOSE statement.

NOTE I the semicolon and comma options are discussed in
section 5.18, PRINT.

CAUTION: with most printers, LPRINT cannot successfully
be used with a trailing comma or semicolon. If
advanced printing capabilities are required, we
recommend using PRINT t on a channel previously OPENed
to the printer (PI).

5.15 NOTE (NO.)

Format:

Example:

NOTE tchan,avar,avar

1"" NOTE tl,X,y

This command is used to store the current disk -ector
number in the first avar and the current byte number
within the sector in the second avar. This is the
current read or write po~ition in the specified file
where the next byte to be read or written is located.

--55--

5.16 OPEN (0.)

Format:

Example:

OPEN tchan,aexpl,aeaxp2,filespec

100 OPEN t2,B,0,"C:"
100 A$.. "Dl:TEST.DAT"
110 OPEN t2,B,0,A$

(

must be OPENed on
accessed. This

channel to the
any CIO-related
device-specific

As mentioned in section 5.1, a device
a specific channel before it can be
"opening" process links a specific
appropriate device handler, initializes
control variables, and passes any
options to the device handler.

The parameters for the OPEN command are defined as
follows:

chan This is the number of the channel which you
want to associate with the the device
'filespec'. Also, this is the number you use
when you later want to do I/O involving the
specified device (using INPUT, PRINT, etc.).

aexp1 This is the I/O mode you want to associate
with the above channel. The number codes are
described in the following table:

aexp1 Meaning

4 Input only
6 Read disk directory only
B Output only
9 Output Append. This mode allows

you to append to already exis
ting disk files.

12 Input and Output

aexp2 Device-dependent auxiliary code. See your
device manual to see if it uses this number.
If not, use a zero.

filespec The device (and file name, if
want to be associated with
channel.

required) you
the specified

(

--56--

(
5.17 POINT(P.)

Format:

Example:

POINT 'chan,avar,avar

100 POINT '2,A,B

This command is used when reading a file into RAM. The
first avar specifies the sector number and the second
avar specifies the byte within that sector where the
next byte will be read or written. Essentially, it
moves a software-controlled pointer to the specified
location in the file. This gives the user "random"
access to the data stored on a disk file. The POINT
and NOTE commands are discussed in more detail in your
DOS Manual.

5.18 PRINT (PR or ?)

Format: PRINT ['chan] [1:1 exp •••] 1:1
I , , I , 1

Examples: PRINT
PRINT X,Y,Z, A$
100 PRINT "THE VALUE OF X IS ":X
100 PRINT "COMMAS", "CAUSE", "COLUMNS"
100 PRINT '3,A$
100 PRINT ,0:"$":HEX(X>:" IS ":X

The PRINT command is used in either Direct or Deferred
mode to output data. In Direct mode, this command
prints whatever information is contained between the
quotation marks exactly as it appears. In the second
example, PRINT X,y,Z,A$, the screen will display the
current values of X,Y,Z, and A$ as they appear in the
RAM-resident program. In the fifth example, A$ is
PRINTed out to the device associated with channel 3.

The comma option causes tabbing to the next tab
location. Several commas in a row cause several tab
jumps. A semicolon causes the next aexp or sexp to be
placed immediately after the preceding expression with
no spacing. Therefore, in the third example a space is
placed before the ending quotation mark so the v~lue of
X will not be placed immediately after the word "IS".

If no comma or semicolon is used at the end of a PRINT
statement, then a <RETURN> 1S output and the next PRINT
will start on the following line.

--57--

5.19 PRINT USING

Format: PRINT ['ch:)USING sexp,exp [,exp •••)

Example: (see below)

PRINT USING allows the user to specify a format for the
output to the device or file associated with "ch" (or
to the screen). The format string "sexp" contains one
or more format fields. Each format field tells how an
expression from the expression list is to be printed.
Valid format field characters are:

'&*+-$,.%1/

Non-format characters terminate a format field and are
printed as they appear.

Example 1) 100 PRINT USING "•• "'X''',12,315,7

2) 100 DIM A$(10) : A$-"" •••X."
200 PRINT USING A$,12,315,7

Both 1) and 2) will print

12 315x7

Where a blank separates the first two numbers and an X
separates the last two.

Numeric Formats:

The format characters for numeric format fields are:

• & * + - $,

DIGITS (. & *)

Digits are represented by:

• & *
• - Indicates fill with leading blanks
& - Indicates fill with leading zeroes
* - Indicated fill with le~ding asterisks

If the number of digits in the expression is less than
the number of digits specified in the format then the
digits are right justified in the field and preceded (
with the proper fill character.

--58--

NOTE: In all the following examples b is used to
represent a blank.

Example:

Value Format Field Print Out
1 Itt bbl
12 It, b12
123 It, 123
1234 ,It 234
12 &&& l!J12
12 *** *12

DECIMAL POINT(•)

A decimal point in the format field indicates that a
decimal point be printed at that location in the
number. All digit positions that follow the decimal
point are filled with digits. If the expression
contains fewer fractional digits than are indicated in
the format, then zeroes are printed in the extra
positions. If the expression contains more fractional
digits than indicated in the format, then the
expression is rounded so that the number of fractional
digits is equal to the number of format positions
specified.

A second decimal point is treated as a non-format
character.

Example:

Value
123.456
4.7
12.35

COMMA (,)

Format Field. ,It."
tlt.tt
It.tt.

Print Out
123.46
bb4.7l!J
12.35.

(

A comma in the format field indicates that a comma be
printed at that location in the number. If the format
specifies a comma be printed at a position that is
preceeded only by fill characters (l!J b *) then the
appropriate fill character will be printed instead of
the comma.

The comma is a valid format character only to the left
of the decimal point. When a comma appears to the
right of a decimal point, it becomes a non-format
character. It terminates the format field and is
printed like a non-format character.

--59--

Example:
Value
5216

3
4175

3
42.71

SIGNS (+ -l

Format Field
.. ,UI
tI,tU
** ***,
&&,&&&
U.U,

Print Out
b5,2l6
bbbbb3
*4,175
"HI'BBB3
42.71,

A plus sign in a format field indicates that the sign
of the number is to be printed. A minus sign indicates
that a minus sign is to be printed if the number is
negative and a blank if the number is positive.

Signs may be either fixed, floating or trailing.

A fixed sign must appear as the first character of a
format field.

Example:
Value

43.7
-43.7

23.58
-23.58

Format Field
+#1#.1
+***.*
-&&&.&&
-&&&.&&

Print Out
+b43.7
-b43.7
bB23.58
-B23.58

Floating signs must start in the first format position
and occupy all positions up to the decimal point. This
causes the sign to be printed immediately before the
first digit rather than in a fixed location. Each sign
after the first also represents one digit.

Example:
Value

3.75
3.75

-3.75

Format Field
++++.tt
----.tt----.#1

Print Out
bb+3.75
bbb3.75
bb-3.75

A trailing sign can appear only after a decimal point.
It terminates the format and prints the appropriate
sign (or blank).

Example:
Value
43.17
43.17

-43.17

DOLLAR SIGN ($)

Format Field
***.**+
&&&.&&':'
U,.U+

Print Out
*43.17+
B43.l7b
b43.l7-

(

A dollar sign can be either fixed or floating, and
indicates that a $ is to be printed.

--6B--

(
A fixed dollar sign must be either the first or second
character in the format field. If it is the second
character then + or - must be the first.

Example:
Value
34.2
34.2

-34.2

Format Field
$11.11

+$11.11
+$11'.11

Print Out
$34.29

+$34.29
-$ 34.29

Floating dollar signs must start as either the first or
second cbaracter in the format field and continue to
the decimal point. If the floating dollar signs start
as the second character then + or - must be the first.
Each dollar sign after the first also represents one
digit.

Example:
Value

34.2
34.2

1572563.41

Format Field
sssss ,II

+$$$$$.11
$$,$$$,$$$.U+

Print Out
bb$34.29

+bb$34.29
$1,572,563.41+

(

NOTE: There can only be one floating character per
format field.

NOTE: +, - or $ in other than proper positions will
give strange results.

String Formats:

The format characters for string format fields are:
, - Indicates the string is to be right justified.
I - indicates the string is to be left justified.

If there are more characters in the string than in the
format field, than the string is truncated.

Example:
Value

ABC
ABC
ABC
ABC

Format Field
UU
I I I I
n
I I

Print Out
bABC
ABCb
AB
AB

ESCAPE CHARACTER (I)

The escape character (I) does not terminate the format
field but will cause the next character to be printed,
thus allowing the user to insert a character in the
middle of the printing of a number.

--61--

Example:

Example:

PRINT USING "U,/-tlU", 2551472
prints 255-1472

Ul9 AREA "" 408
299 NUM = 2551472
309 PHONE = (AREA*lE+7)+NUM
499 DIM F$(29)
599 F$ = "(••• /).t./-#,.,,,
699 PRINT USING F$,PHONE
799 END

the result: (498)255-1472

NOTE: Improperly specified format fields can give some
very strange results.

NOTE: The function of , and
overridden in the expression list
when file number "ch" is given then
or " r " have the same meaning as in
an initial tabbing, use a semicolon

":" in PRINT are
of PRINT USING, but
the following ,
PRINT. So to avoid
(d.

Example: PRINT '5: USING A$,B

will print B in the format specified by A$ to the file
or device associated with file number 5.

Example:

Example:

Example:

PRINT USING "•• /* '="''',12,5,5*12

12 * 5-69

PRINT USING "TOTAL=".'+",72.68

TOTAL-72.7+

109 DIM A$(19) : A$="TOTAL="
299 DIM F$(19) : F$="llllll#,.'+"
399 PRINT USING F$,A$,72.68

TOTAL=72.7+

NOTE: IF there are more expressions in the expression
list than there are fo~at fields, the format fields
will be reused.

Example: PRINT USING "XX.,",25,19,7

will print XX25XX19XXb7

WARNING: A format string must contain at least one
format field. If the format string contains only
non-format characters, those characters will be printed
repeatedly in the search for a format field.

--62--

(
5.2111 PROTECT

Format:

Examples:

PROTECT filespec

PROTECT D:*.COM
1111111 PROTECT "D2:JUNK.BXL"

The PROTECT allows you to protect your programs stored
on disk from being erased or overwritten. This command
is very similar to the OS/A+ and DOS XL PROtect commad,
except that there are no default file specifications.

5.21 PUT (PU.)

Format:
Examples:

PUT 'chan,aexp
1111111 PUT ,6,ASC("A")
2111111 PUT '111,4*13

PUT is the opposite of GET in that it outputs a single
byte of information whereas GET inputs a single byte of
information. The data output is aexp, and it is put to
the device specified by chan.

NOTE: for a program example using PUT, see section 5.31

5.22 READ

Format:

Examples:

READ var e,var •••]

10111 READ A,B,C,D,E
110 DATA 12,13,14,15,16

1111111 READ A$,B$,C$,D$,E$
11111 DATA EMBEE, EVELYN, CARLA

The READ command is always used in conjunction with the
DATA command. Its function is simply to read the next
piece of data out of the DATA list and put it into one
of the variables specified. If a group of variables
are used, then the first piece of available data (see
RESTORE, 4.12) i. put into the first variable given,
the second piece of data into the second variable
given, and so on.

The type of the variable in the READ statement (svar or
avar) must correspond to the type of the data which in
being read.

If the second example above was executed as a program
with no additional lines, an error would result since
there are fewer data items than variables to be READ.

--63--

The following program totals a list of numbers in a
DATA statement:

10 FOR N-l TO 5
20 READ D
30 M-M+D
40 NEXT N
50 PRINT "SUM TOTAL EQUALS " 1M
60 END
70 DATA 30,15,106,87,17

The program, When executed, will print the statement:

SUM TOTAL EQUALS 255.

NOTE: a Direct mode READ will only read data if a DATA
statement exists in the program or on the line
following the READ.

5.23 RENAME

Format:

Example:

RENAME "filespec, filename"

RENAME "D2:NEW.DAT,OLD.BAK"

RENAME allows you to rename file(s) from BASIC XL.
Note that the comma shown MUST be imbedded in the
string used as the file parameter.

CAUTION: It is strongly suggested that wild cards (*
and 1) NOT be used when RENAMEing. Also, the second
filename may NOT include the disk specifier (Dn:).

5.24 RGET

Format:

Example:

RGET Ich, I svar [,svar •••]
I avar [,avar •..]

(see below)

RGET allows the user to retreive fixed length records
from the device or file associated with file number
"ch" and assign the va).ues to string or numeric
variables.

NOTE: The type of the element in the file must match
the type of the variable' (ie. they must both be
strings or both be numeric).

Example: 1) 100 RPUT '3,C

2) 200 RGET Il,A$

--64--

(

If 1) is a statement in a program used to gener~te a
file and 2) is a statement in another program used to
read the same file, an error will result, since 'c' is
a numeric variable and 'A$' is a string variable.

NOTE: When the type of element is string, then the
DIMensioned length of the element in the file must be
equal to the DIMensioned length of the string variable.

Example: 1) 199 DIM A$(199)

899 RPUT ,3,A$

2) 199 DIM X$(299)

899 RGET '2,X$

If 1) is a section of a program used to write a file
and 2) is a section of another program used to read the
same file, then an error will occur as a result of the
difference in DIM values.

NOTE: RGET sets the correct length for a string
variable (the length of a string variable becomes the
actual length of the string that was RPUT not
necessarily the DIM length).

Example: 1)199 DIM M (19)
299 A$ = "ABCDE"

:
899 RPUT 14,M

2)199 DIM X$(19)
299 X$ = "HI"

899 RGET ,6,X$
999 PRINT LEN(X$),X$

If 1) is a section of a program used to create a file
and 2) is a section of another program used to read the
file then it will print:

5 ABCDE

5.2S RPUT

Format:

Example:

RPUT 'ch, exp [,exp •••]

(see below)

RPUT allows the user to output fixed length records to
the device or file associated with "ch". Each "exp"
creates an element in the record.

--65--

NOTE: A numeric element consists of one byte which
indicates a numeric type element and 6 bytes of numeric
data in floating point format.

A string element consists of one byte which indicates a
string type element 2 bytes of string length, 2 bytes
of DIMensioned length, and then X bytes where X is the
DIMensioned length of the string.

Example: 1111111 DIM A$ (6)
2111111 A$.. "XY"
3111111 RPUT '3,B,A$,111l

puts 3 elements to the device or file associated with
file number 3. The first element is numeric (the value
of B). The second element is a string (A$) a"~ the
third is a numeric (1111). The record will be 26 bytes
long, (7 bytes for each numeric, 5 bytes for the string
header and 6 bytes (the DIM length) of string data).

5.26 SAVE (S.)

Format: SAVE filespec

Example: SAVE Dl:YVONNE.PAT
1111111 SAVE "C:"

The SAVE conunand allows you to save the tokenized form
of a BASIC XL program to any device. A file saved
using this command may then be read back into program
memory using the LOAD command or loaded and
automatically executed using the RUN command.

5.27 STATUS (ST.)

Format:

Example:

STATUS 'chan,avar

35111 STATUS tl, z

The STATUS command calls the STATUS routine for the
specified device (chan). The status of the STATUS
command (see ERROR MESSAGES, Appendix B) is stored in
the specified variable (avar). This may be usef'l] for
devices such as the RS-232 interface.

5.28 TAB

the device or
up to column
111.
--66--

Format:

Example:

TAB outputs spaces to
ch (or the screen)
first column is column

TAB ['ch,] aexp

TAB '2,2111

file specified
number "aexp".

by
The

(

(
NOTE: The column count is kept for each device and is
reset to zero each time a carriage return is output to
that device. The count is kept in AUX2 of the IOCB.
(See OS documemtation).

NOTE: If "aexp" is less than the current column count,
a carriage return is output and then spaces are put out
up to column "aexp".

5.29 UNPROTECT (UNP.)

Format:

Examples:

UNPROTECT filespec

UI0 UNPROTECT "D2: JUNK. BAS
UNP. D:JUNK

The UNPROTECT command allows you to unprotect disk
files which have been protected using the PROTECT
command. This command is very similar to the OS/A+ and
DOS XL command UNProtect, but there are no default file
specifications in the BASIC XL version.

5.3" XIO (X.)

Format:

Example:

XIO cmdno, 'chan,aexpl,aexp2,"filespec

XIO l8,'6,0,0,"S:"

The XIO command is a general
used for special operations.
command are defined as follows:

input/output statement
The parameters for this

cmdno Number for stands for the particular command
to be performed.

cmdno

3
5
7
9

11
12
13
17
18
32
33
35
36
37
38

254

operation

OPEN
GET RECORD
GET CHARACTERS
PUT RECORD
PUT CHARACTERS
CLOSE
STATUS REQUEST
DRAW LINE
FILL
RENAME
DELETE
LOCK FILE
UNLOCK FILE
POINT
NOTE
FORMAT

--67--

example

Same as BASIC OPEN
I These 4 commands are
I similar to BASIC INPUT,
, GET, PRINT, and PUT,
I respectively.
Same as BASIC CLOSE
Same as BASIC STATUS
Same as BASIC DRAWTO
See Section 9
XIO 32,'1,0,0,"D:TEMP,CAROL"
XIO 33,'l,0,0,"D:TEMP.BAS"
XIO 35,'1,l1J,e,"D:TEMP.BAS"
XIO 36,'1,0,l1J,"D:TEMP.BAS"
Same as BASIC POINT
Same as BASIC NOTE
XIO 254,'1,0,0,"D2:"

chan

aexpl
aexp2

filespec

Device number (same as in OPEN). Most of
the time it is ignored, but must be preceded
by t.

Two auxiliary control bytes. Their usage
depends on the particular device and
command. In most cases, they are unused and
are set to ".

string expression that specifies the device.
Must be enclosed in quotation marks.
Although some commands do not look at the
filespec, it must still be included in the
statement.

NOTE: It is highly recommended that the BASIC XL user
avoid XIO cmdno's 3,5,7,9,11,12,17,37 and 3S. BASIC XL
users should find all these, as well as cmdno's 32 thru
36, totally unnecessary.

5.31 An Example Program

The following subroutine reads in a binary file using
OPEN, GET, BGET, CLOSE, and PRINT.

NOTE: lines 1"2" through 1"3" test the file to see if
it is segemented, so you can load in multi-segment
files with this subroutine.

1""" TRAP 1"9"
1"1" OPEN '1,4,", "D:FILE.OBJ"
1"2" GET 'l,L : GET 'l,H
1"3" IF L~$FF AND Hz$FF THEN GET 'l,L t GET 'l,H
1"4" START • H*256 + L
1"5" GET 'l,L t GET 'l,H
1"6" FINISH ~ H*256+L
1"7" BGET .1, START, FINISH - START + 1
l"S" GOTO 1"2"
1"9" IF ERR(")-136 THEN CLOSE '1 t RETURN
i rae PRINT "UNEXPECTED ERROR ''':ERR(''h'' AT LINE "; ERRO)
Ill" STOP

--6S--

(
FUNCTION LIBRARY Chapter 6

A function performs a computation and returns the
result (usually a number) for either a print-out or
additional computational use. Each function described
in this chapter may be used in either Direct or
Deferred mode.

This chapter describes the following functions:

Arithmetic Functions Trigonometric Functions

ABS
CLOG
EXP

INT
LOG
RANDOM

RND
SGN
SOR

ATN
COS
DEG

RAD
SIN

String Functions Game Controller Functions

ASC
CHR$
FIND

LEFT$
LEN
MID$

RIGHT$
STR$
VAL

HSTICK
PADDLE
PEN

PTRIG
STICK
STRIG

VSTICK

Player/Missile Functions Special Purpose Functions

BUMP PMADR ADR
DPEEK
DPOI{E

ERR
FRE
HEX$

PEEK
POKE
SYS

TAB
USR

6.1 Arithmetic Functions

6.1.1 ABS

Format:

Example:

ABS(aexp)

100 AB = ABS(-190)

Returns the absolute value of a number without regard
to whether it is positive or negative. The returned
value is always positive.

6.1.2 CLOG

Format: CLOG (aexp)

Example: 100 C = CLOG(S3)

Returns the logarithm to the base 10 of the variable or
expression in parentheses. CLOG (0) gives an error, and
CLOG(l) is a.

--69--

6.1.3 EXP

Format: EXP(aexp)

Example: 100 PRINT EXP(3)

Returns the value of e (approximately 2.71828283),
raised to the power specified by the expression in
parentheses. In the example given above, the number
returned is 20.9855365.

6.1.4 INT

Format: INT(aexp)

Example: 100 I
100 X

INT(3.445) : REM I now • 3
INT(-14.66778) : REM X now = -15

Returns the greatest integer less than or equal to the
value of the expression. This is true whether the
expression evaluates to a positive or negative number.
Thus, in our first example above, I is used to store
the number 3. In the second example, X is used to
store the number -15 (the first whole number that is
less than or equal to -14.66778). This INT function
should not be confused with the function used on
calculators that simply truncates all decimal places.

6.1.5 LOG

Format: LOG(aexp)

Example: 100 L - LOG(67.89/2.57)

Returns the natural logarithm of the number or
expression in parentheses. LOG(0) gives an error, and
LOG(l) is 0.

6.1.6 RANDOM

Format:

Example:

RANDOM(aexpl(,aexp2])

10 X RANDOM(99)
10 Y - RANDOM(20,30)

The RANDOM function allows you access to a random
number generater which does more than return a number
between 0 and 1, as RND does. When used with one aexp
(as in the first example), the value returned will be
between 9 and the aexp value, inclusive. When used
with two aexps (as in the second example), the value
returned will be between the value of the first aexp
and the value of the second aexp, inclusive.

--79--

6.1.7 RND

Format: RND(aexp)

Example: 10 A = RND(O)

Returns a hardware-generated random number between 0
and 1, but never returns 1. The variable or expression
in parentheses following RND is a dummy and has no
effect on the numbers returned. However, the dummy
expression must be included.

6.1.8 SGN

Format: SGN(aexp)

Example: 100 X = SGN(-199) : REM -1 is returned

Returns a -1 if aexp evaluates to a negative number: a
o if aexp evaluates to 0, or a 1 is aexp evaluates to a
positive number.

6.1. 9 SOR

Format: SOR(aexp)

Example: 100 PRINT SOR(lOO) REM 10 is printed

Returns the square root of the aexp which must be
positive.

6.1.10 An Example Program

The following program prints out some information on an
INPUTted number, using the arithmetic functions ABS,
INT, SOR, CLOG, LOG, and EXP.

100 GRAPHICS 1 : REM set up screen
110 PRINT "Number to Manipulate> It :

120 INPUT '8, X : REM get the number
130 PRINT '6: ASC$(12s) :REM clear screen
140 PRINT '6: "ABS.: ," :ABS(~) : REM absolute value
150 PRINT '6
160 PRINT '6: "INT.: ": INT(X) : REM integer value
170 PRINT '6
180 PRINT '6: "SORT: " : SOR'(ABS(X)) : REM square root
190 PRINT '6
200 PRINT '6: "CLOG: ". CLOG(ABS(X)) : REM common log,
210 PRINT '6
220 PRINT '6: "NLOG: ": LOG (ABS (X» : REM natural log (In)
23" PRINT '6
240 PRINT '6: "EXP. : ": EXP(X) : REM exponential (eAX)
258 GOTO 118

--71--

6.2 Trigonometric Functions

6.2.1 ATN

Format: ATN(aexp)

Example: 1ge X a ATN(l.e)

Returns the arctangent of the variable or expression in
parentheses. If in DEG mode (see section 6.2.3), the
returned value is given is degrees, otherwise it is
given in radians.

6.2.2 COS

Format: COS(aexp)

Example: lee C a COS(X+Y+Z)

Returns the trigonometic cosine of the expression in
parentheses. The expression is evaluated as an angle
in radian terms unless the DEG command has been used.

6.2.3 DEG and RAn

Format: DEG
AAD

Example: lee DEG
lee AAD

These two statements allow the programmer in specify
degrees or radians for trigonometric· function
computations. The computer defaults to radians unless
DEG is specified. Once the DEG statement has been
executed, AAD must be used to return to radians.

See Appendix E for the additional trigonometric
functions that can be derived.

6.2.4 SIN

Format: SIN(aexp)

Example: lee X • SI~(Y)

This function returns the trigonometric sine of aexp.
The expression is evaluated as an angle in radian terms
unless the DEG command has been used.

--72--

(

(

6.2.5 An Example Program

The following program demonstrates the use of DEG, COS,
and SIN by plotting three concentric circles on the
screen.

19 GRAPHICS 7 : REM set up screen
29 DEG : REM degree mode for trig functions
39 FOR J-l TO 3 : REM 3 circles
49 COLOR J : REM each circle a different color
59 FOR 1=1 TO 369 : REM plot each point in a full circle
69 PLOT B9+INT(J*l9*COS(I», 49+INT(J*19*SIN(I»
79 NEXT I
B9 NEXT J

6.3 String Functions

6.3.1 ASC

Format: ASC(sexp)

Examples: 199 A - ASC(A$)

This function returns the ATASCII code number for the
first character of the string expression (sexp). This
function can be used in either Direct or Deferred mode.

If A$- "ABC", then
ASC(A$) produces 65
ASC(A$(2» produces 66

6.3.2 CHR$

Format: CHR$(aexp)

Examples: 199 PRINT CHR$(65)
199 A$ - CHR$(65)

This character string function returns the character,
in string format, representated by the ATASCII code
number in parentheses. OnlX one character is returned.
In the above examples, the letter A is returned. Using
the ASC and CHR$ functions, the following program
prints the upper case and lower case letters of the
alphabet: .

19 FOR 1-9 TO 25
29 PRINT CHR$(ASC("A")+1 hCHR$ (ASC("a")+1)
39 NEXT I

NOTE: There can be only one STR$ and only one CHR$ in a

--73--

logical comparison. (This is because BASIC XL uses a
buffer in a fixed location to create the temporary
string which both of these functions produce, and there
is only one such buffer.)

6.3.3 FIND

Format: FIND(sexpl,sexp2,aexp)

Example: PRINT FIND ("ABCDXXXXABC","BC",N)

FIND is an efficient, speedy way of determining whether
any given substring is contained in any given master
string.

FIND will search sexpl, starting at position aexp, for
sexp2. If sexp2 is found, the function returns the
position where it was found, relative to the beginning
of sexpl. If sexp2 is not found, a 8 is returned.

In the example above, the following values would be
PRINTed:

2 if N=" or N=l
9 if N>2 and N<18
8 if N>=18

More Examples:
1) 18 DIM A$(l)

28 PRINT "INPUT A SINGLE LETTER:
38 PRINT "Change/Erase/List"
48 INPUT "CHOICE 1" ,A$
58 ON FIND("CEL",A$,8) GOTO 188,288,388

An easy way to have a vector from a menu choice:

2) HI8 DIM A$ (18): A$-"ABCDEFGHIJ"
118 PRINT FIND (A$,"E",3)
128 PRINT FIND (A$(3),"E",8)

Line 118 will print "5" while 128 will print "3".
Remember, the position returned is relative to the
start of the specified str~ng.

3) 188 INPUT "28 CHARACTERS, PLEASEr",A$
118 ST-8 .
128 F=FIND(A$,"A",ST)rIF F-8 THEN STOP
138 IF A$(F+l,F+l)o"B" AND A$(F+l,F+l)<>"C"

THEN ST=F+lrGOTO 128
148 PRINT "FOUND 'AB' OR 'AC'"

This illustrates the importance of the aexp's use as a
starting position.

--74--

(
6.3.4 LEFT$

Format:

Example:

LEFT$ (svar, aexp)

U!l" A$=LEFT$ ("ABCDE" , 3)
2"" PRINT LEFT$("ABCD",5)

(

The LEFT$ function returns the leftmost 'aexp'
characters of the string 'svar'. If aexp is greater
than the number of characters in svar, no error occurs
and the entire string svar is returned.

In the first example, A$ is equated to "ABC"x, and in
the second example, the entire string "ABCD" is
printed.

6.3.5 LEN

Format: LEN(sexp)

Example: 1"" PRINT LEN(A$)

This function returns the length in bytes of the
designated string. This information may then be
printed or used later in a program. The length of a
string variable is simply the index for the character
which is currently at the end of the string. Strings
have a length of " until characters have been stored in
them. It is possible to store into the middle of the
string by using subscripting. However, the beginning
of the string will contain garbage.

The following routine illustrates one use of the LEN
function:

1" A$="ATARI"
2" PRINT LEN(A$)

1" DIM AR$(3,9)
2" AR$(2:)="ATARI"
39 PRINT LEN(AR$(2:»

The result of running either of the above programs
would be 5.

6.3.6 MID$

Format: MID$(svar,aexpl,aexp2)

Example: A$-MID$("J!(BCDEFG",2,4)

MID$ allows you to get a substring from the middle of
another string. The substring starts at the 'aexpl'th
character of svar, and is 'aexp2' characters long.

--75--

If aexpl equals 9 an error occurs (since there is no
zeroeth character of a string), but if aexpl is greater
than the length of svar no error occurs (and no
characters are returned).

aexp2 is
if its
of svar,
svar.

allowed any positive number (including 9), but
value makes the substring go beyond the length
then the sUbstring returned ends at the end of

In the above example, A$ is equated to "BCDE".

6.3.7 RIGHT$

Format: RIGHT$(svar,aexp)

Example: A$=RIGHT$("123456",4)

This function is used to return the rightmost 'aexp'
characters of 'svar'. If aexp is greater than the
number of characters in svar, then the entire string
'svar' is returned.

In the above example, A$ is equated to "3456".

6.3.8 STR$

Format: STR(aexp)

Example: A$-STR$(65)

This function returns the string form of the number in
parentheses. The above example would return the actual
number 65, but it would be recognized by the computer
as a string.

NOTE: There can only be one STR$ and only one CHR$ in a
logical comparison. For example, A=STR$(1»STR$(2) is
not valid and will not work correctly.

6.3.9 VAL

Format: VAL(sexp)

Example: 199 A-VAL(A$)

This function is the opposite of the STR$ function, in
that it returns the number represented by a string,
providing that the string is indeed a string
representation of a number. Using this function, the

--76--

(

(

computer can perform arithmetic operations on strings
as shown in tbe following example program.

18 DIM B$(S)
28 B$-"18888"
38 B-SQR(VAL(B$»
48 PRINT "THE SQUARE ROOT OP ",B$," IS ",B

upon execution, the screen displays.

THE SQUARE ROOT OP 18888 IS 188.

It is not possible to use the VAL function with a
string that does not start with a number, or that
cannot be interpreted by the computer as a number. It
can, however, intrepret floating point numbers (e.g.,
VAL("lE9") would return the number 1888888888).

6.3.18 An Example Program

The following program inputs a three word string, cuts
it up into the separate words through the use of LEFT$,
MID$, and RIGHT$, and then prints out the ATASCII value
of each letter in each word using ASC. Note that this
program also uses the LEN and FIND functions.

188 PRINT "Give me a three word string with each"
118 INPUT "word separated by a space> ",S$
128 POSI-FIND(S$," ",8) • REM find end of 1st word
138 L$-LEFT$(S$,POS1-l) • REM fill 1st word string
148 POS2-FIND(S$," ", POS1) • REM find 2nd word
158 M$-MID$(S$,POS1+l,POS2-POS1-l) • REM fill 2nd word string
168 R$-RIGHT$(S$,LEN(S$)-POS2) , REM fill 3rd word string
178 PRINT "••• ",L$, REM print 1st word
198 FOR I-1 TO LEN(L$) , REM print ASC value of each letter
198 PRINT ~L$(I,I), ", ", ASC(L$(I»
288 NEXT I
218 PRINT "••• ",M$, REM print 2nd word
228 FOR I-l TO LEN(M$) , REM print ASC value of each letter
238 PRINT ,M$(I,I), ", ", ASC(M$(I»
248 NEXT I
258 PRINT "••• ",R$, REM print 3rd word
268 FOR I-l TO LEN(R$) , REM print ASC value of each letter
278 PRINT ,R$(I,I), ", ", ASC(R$(I»
298 NEXT I
298 GCTO 188

HOTE. lines 138, 158, and 168 could have been coded as
follows.

138 L$-S$(1,POS1-l)
158 M$-S$(POS1+l,POS2-1)
168 R$-S$(POS2+1)

--77--

6.4 Gam. Controll.r Functions

6.4.1 HSTICK

/

Pormats.

Exampl ••

HSTICK(aexp)

188 IP HSTICK(8»8 THEN PRINT -MOVE RIGHT-

Th. HSTICK function r.turns an easily usable cod. for
horizontal mov.ment of a given joystick. aexp is
simply the numb.r of the joystick port (8 - 3), and the
values returned (and th.ir meanings) are as followa.

+1 if the joyatick ia pushed right
-1 if the joystick ia puah.d l.ft

8 if the joystick ia horizontally centered

6.4.2 PADDLE

Pormat.

Exampl ••

PADDLE (aexp)

PRINT PADDLE(3)

This function r.turn. the curr.nt value of a particular
paddl.. a.xp ia the numb.r of the paddle port (8 - 7).
Th. value return.d will b. b.tw.en 1 and 228, with the
numb.r incr.adng a. the knob i. turn.d
counterclockwi•••

Pormat.

Exampl••

PEN(eexp)

PRINT -light pen at X--,PEN(8)

The PEN function .imply read. the ATARI light p.n
r.gi.t.r. and r.turn. th.ir content. to the u••r. Th.
numb.r .p.cified by a.xp i. interpr.ted a. follow••

PEN(8) r.ad. the horizontal po.ition r.giat.r
PEN(l) reada the v.r~ical poaition r.giat.r

6.4.4 PTRIG

Th. PrRIG function r.turn. a atatu. of 8 if the trigg.r
button of the d.aignat.d paddle i. pr••••d. Oth.rwi.e,
it r.turn. a value of 1. The aexp au.t be a numb.r
b.twe.n 8 and 7 a. it d••ignate. the paddle.

--78--

Pormat.

Exampl ••

PTRIG(a.ip)

188 IP PTRIG(1)-8 THEN PRINT -MISSILES PIRED.- (

COMMENT. this function
acce.. the joystick
mo.t purpo.e., HSTICK
and to work with.

(

6.4.5 STICK

Format, STICK(aexp)

Example. 188 PRINT STICK(3)

Thi. function work. exactly the .ame way a. the PADDLE
command, but i. u.ed with the joy.tick controller••
aexp 18 the number of the joy.tick port (8 - 3) • The
following diagram shows the value. returned by this
function.

14
18 I 6

\ I I
\ I I

11 ---- 15---- 7
I I \

I I \
9 I 5

13

was the only mean. given to
with original Ateri BASIC. For

and VSTICK are much easier to u.e

6.4.6 STRIG

Format. STRIG(aexp)

Example. 188 IF STRIG(1)-8 THEN PRINT -FIRE TORPEDO-

The STRIG function works the
function, except that it
in.tead of the paddle••

6.4.7 VSTICK

.ame way a. the' PTRIG
i. used with the joy.tick.

Format.
EXUlple.

VSTICK(aexp)
IF VSTICK(8)<8 THEN PRINT -MOVE DOWN-

(

The VSTICK function return. an easily usable code for
vertical mav_ent of a given joystick. aexp i ••imply
the number of the joy.tick port (8 - 3), and the value.
returned (and their meaning.) are a. follow••

+1 if the joy.tick 18 pu.hed up
-1 if the joystick 18 pu.hed down

8 if the joy.tick i. vertically centered

--79--

The following program creates a .imple GRAPHICS mode 5
.ketchpad using the game controller function. HSTICK,
VSTICK, and STRIG to move and draw.

188 GRAPHICS 5 , REM .et up .creen
118 COL-48 , RBM middle of screen
128 ROW-28
138 COLOR 2 I REM drawing a cur.or color
148 PLOT COL, ROW I REM plot cursor
158 FOR 1-1 TO 15 , NEXT I I REM delay loop
168 IF STRIG(8)-1 THEN COLOR 8 I PLOT COL, ROW I RBM dont draw point
178 COL-COL+HSTICK(8) , REM check for movement
188 ROW-ROW-VSTICK(8)
198 IF COLe8 THEN COL-8 , REM .cr.en bound. checking
288 IF COL>79 THEN COL-79
218 IF Rowe8 THEN ROW-8
228 IF ROW>39 THEN ROW-39
238 FOR 1-1 TO 25 , NBXT I , REM delay loop
248 GOTO 138 , REM repeat

6.5 Player/Missile Functions

For example. showing the use of the P/M functions, s ••
section 8.13.

6.5.1 BUMP

Formet, BUMP (pmnum,aexp)

IP BUMP(4,l) THEN B-BUMP(8,8)

BUMP ace..... the collision regi.t.r. of the Atari and
return. a 1 (collision occured) or 8 (no colli.ion
occure4) as appropriate for the pair of obj.cts
specified. Note that the .econd parameter (the aexp)
may be .ither a player number or playfi.ld number (.ee
.ection 8.2 for the appropriate number).

Valid BUMP., PLAYER to P~YER (8-3 to .-3)
MISSILE to PLAYER (4-7 to 8-3)
PLAYBR to PLAYFIBLD (8-3 to 8-11)
MISSILB to PLAYFIBLD (4-7 to 8-11)

NOTB, BUMP (p,p), where the p'. are 8 through 3 ,nd
identical. always r.turn. 8.

NOTB, It i. advi.abl. to re.et the colli.ion regi.ter.
if you have not ch.cked th_ in a long time or aft.r
you are through ch.cking th_ at any given point in a

--88--

(

(
program. You can do this by using the following
statement a

POKE 53278,"

6.5.2 PMADR

Format a

Example:

PMADR(aexp)

P"=PMADR(")

This function may be used in any arithmetic expression
and is used to obtain the memory address of any player
or missile. It is useful when you wish to MOVE, POKE,
BGET, etc. data to (or from) a player area. (See
section 8.13 for examples of its use, and section 8.2
for a description of the aexp values.)

NOTE a PMADR(m) where m is a missile number (4
through 7) returns the same address for all missiles.

6.6 Special Purpose Functions

6.6.1 ADR

Format: ADR(svar)

Example a ADR(A$)
ADR(B$(5,»

Returns the
specified by
the address
information
Appendix D).

6.6.2 DPEEI<

decimal memory address of the string
the expression in parentheses. Knowing

enables the programmer to pass the
to USR routines, etc. (See USR and

(

Fonnata DPEEK(aexp)

Example: PRINT "variable table is at ",:DPEEK(13")

The DPEEI< function. is very similar to the PEEK
function, except that it· allows you to look two
consecutive bytes of information. This is especially
useful when looking at two byte locations contain£ng
address information, as in the above example. If you
did this example using PEEI<s, it would look like:

PRINT "variable name table is at ",
PRINT PEEK(13")+(PEEK(131)*256)

It is easy to see that using DPEEI< is much easier.

--81--

6.6.3 DPOKE

Formatr DPOKE aexpl,aexp2 (

Exampler DPOKE 88,32768

DPOKE is similar to POKE, except that it allows you to
put two bytes of data into memory instead of one.
aexpl is the address where you want the data to go, and
aexp2 is the data itself. In the above example, the
address of the upper left-hand corner of the screen
(this address is stored at locations 88 and 89) is
changed to 32768. To do this using POKEs, you would
need to do an amazing amount of math to get the right
number into each of the two bytes.

6.6.4 ERR

Format:
ERR(aexp)

Example:
PRINT "ERROR ":ERR(I1l): " OCCURRED AT LINE ":ERR(l)

This function in conjunction with TRAP, CONT, and
GOTO allows the BASIC XL programmer to effectively
diagnose and dispatch virtually any run-time error.

ERR(I1l) returns the last run-time error number
ERR(l) returns the line number where the

error occurred

Example:
1111111 TRAP 2111111
11111 INPUT "A NUMBER, PLEASE »", NUM
12111 PRINT "A VALID NUMBER" rEND
2111111 IF ERR(I1l)=8 THEN GOTO ERR(l)
21£1 PRINT "UNEXPECTED ERROR t":ERR(I1l)

6.6.5 FRE

Format: FRE(aexp)

Example I PRINT FRE(I1l)
1111111 IF FR~(I1l)<ll1ll1ll1l THEN
PRINT "MEMORY CRITICAL"

This function returns the number of bytes of user RAM
left. Its primary use is in Direct mode with a dummy
variable (111) to inform the programmer how much memory
space remains for completion of a program. Of course
FRE can also be used within a BASIC program in Deferred
mode.

--82--

(

(

6.6.6 HEX$

Format: HEX$(aexp)

Example: lee PRINT HEX$(X+7)
2ee A$=HEX$(83)
2le PRINT "$":A$(3,4)

This function will convert aexp to a four digit
hexadecimal number.

The second example shows how you can obtain a two digit
hex number for printing or other manipulation.

NOTE: no "$M is placed in front of the number.

6.6.7 PEEK

Format: PEEK(aexp)

Example: Ieee IF PEEK (4e"e) = 255 THEN PRINT "255"
lee PRINT "LEFT MARGIN IS";PEEK(82)

Returns the contents of a specified memory address
location (aexp). The address specified must be an
integer or an arithmetic expression that evaluates to
an integer between e and 65535 and represents the
memory address in decimal notation (not hexadecimal).
The number returned will also be a decimal integer with
a range from e to 255. This function allows the user
to examine either RAM or ROM locations. In the first
example above, the PEEK is used to determine whether
location 4~el!l (decimal) contains the number 255. In
the second example, the PEEK function is used to
examine the left margin.

6.6.8 POKE

Format: POKE aexp1,aexp2

Example: POKE 82,le
lee POKE 82,2"

Although this is not a function, it is included in this
section because it is closely associated with t~e PEEK
function. This POKE command inserts data into the
memory location or modifies data already stored there.
In the above format, aexpl is the decimal address of
the location to be poked and aexp2 is the data to be
poked. Note that this number is a decimal number
between l!l and 255. POKE cannot be used to alter ROM
locations. In gaining familiarity with this command it
is advisable to look at the memory location with a PEEK

--83--

and write down the contents of the location. Then, if
the POKE doesn't work as anticipated, the original
contents can be poked back into the location.

The above Direct mode example changes the left screen
margin from its default position of 2 to a new ~osition

of leo In other words, the new margin will be 8 spaces
to the right. To restore the margin to its normal
default position, press <SYSTEM RESET>.

6.6.9 SYS

Format: SYS(aexp)

Example: lee IF Sys(e)=e THEN SET e, 128

The SYS function is used to find out the status of a
given BASIC XL system function. These system functions
can be changed using the SET command, and SYS allows
you to find out what any current value is. aexp is the
number of the system function as defined in the SET
section (3.15).

6.6.le TAB

Format: TAB(aexp)

Example: PRINT ,3r"columns:"rTAB(2e)r2erTAB(39)rJ9

The TAB function's effect is identical with that of the
TAB statement (section 5.28). The difference is that,
for PRINT USING statements, an imbedded TAB function
simplifies the programmers task greatly.

TAB will output ATASCII space characters to the current
PRINT file or device (13 in our example). sufficient
spaces will be output so that the next item will print
in the column specified (only if TAB is followed by a
semi-colon, though). If the column specified is less
than the current column, a RETURN will be output first.

CAUTION: The TAB function will output spaces on some
device whenever it is usedr therefore, it should be
used ONLY in PRINT statements.

6.6.11 USR

Format: USR(aexpl [,aexp2][aexp3 •••])

Example: lee RESULT. USR (ADDl,A*2)

This function returns the results of a machine-language
subroutine. The first expression, aexpl, must be ~n

--84--

integer or arithmetic expression that evaluates to an
integer that represents the decimal memory address of
the machine language routine to be performed. The
input arguments aexp2,aexp3,etc., are optional. These
should be arithmetic expressions within a decimal range
of S through 65535. A non-integer value may be used:
however, it will be rounded to the nearest integer.

These values will be converted from BASIC's Binary
Coded Decimal (BCD) floating point number format to a
two-byte binary number, then pushed onto the hardware
stack.

The arguments are pushed in the reverse of the order
given, so the assembly language program may then pull
them in proper forward order. Additionally, the
one-byte count of parameters is pushed onto the stack
and MUST be popped by the USeR routine (except see
section 3.15, the SET command).

Also, if all arguments are properly pUlled from the
stack, then the USeR routine may return to BASIC XL by
simply executing an RTS instruction. And, finally, the
routine may return a single 16-bit value to BASIC XL
(as the "value" of the USeR function) by placing a
result in FRS and FRS+l ($04 and $05) before returning.

Example: the following example uses a USR call to XOR
two numbers (the arguments to the USR routine) and
then return that value to BASIC XL.

BASIC XL statement:

PRINT HEX$(USR($68S,$3FFA,$2972»

USR routine at $680:

FRS = $04
*= $68S
PLA
CMP 12
BNE *
PLA
STA FRS+1
PLA
STA FRS
PLA
EOR FRO+l
STA FRO+1
PLA
EOR FRS
STA FRS
RTS

get number of arguments
see if it's 2
loop forever if wrong num. of args.

'get high byte of arg 11
store high byte
get low byte of arg '1
store low byte
get high byte of arg 12
XOR it with high byte of arg 11
store result of XOR
get low byte of arg 12
XOR it with low byte of arg '1
store result of XOR
end of USR routine

--85--

6.6.12 An Example Program

The followinq program uees the syetem timer located at
$12, $13, and $14 to create a countdown clock. Thie ie
done by pokinq 8 into the low byte of the timer and
waitinq until it ie qreater than or equal to 68.

188 GRAPHICS 2
118 PRINT '6, CHR$(125) I REM Clear Mode 2 area
128 PRINT I PRINT I PRINT
138 PRINT "COUNTDOWN TIME? ",
148 INPUT ''',X
158 POKE $14," I REM set clock - 8
168 PRINT '6, "TIME - .,
178 WHILE X)8 I REM start the countdown
188 POSITION 7,1 I REM qet ready to print the new time
198 PRINT '6, USING • •• ·,x, I REM print time left
288 WHILE PEEK($14)<-68 I REM wait until a second has paeeed
218 ENDWHILE
228 POKE $14,8 I REM reset the clock for the next eecond
238 X-X-l I REM decrement number of eeconds left
248 ENDWHILE I REM end of countdown loop
258 PRINT CHR$(253) I REM rinq the bell
268 GOTO 118 I REM do the whole thinq over aqain

--86--

(SCREEN GRAPHICS AND SOUND Chapter 7

This chapter describes the BASIC XL commands used to
manipulate the wide variety of screen graphics
available on the Atari personal computers. It also
describes the BASIC XL command used to manipulate the
sound generating mechanism of the Atari computers.

7.1 GRAPHICS (GR.)

Format: GRAPHICS aexp

Example: GRAPHICS 2

This command is used to select one of the nine graphi~s

modes. The table below summarizes the nine modes and
the characteristics of each.

The GRAPHICS command automatically opens the graphics
area of the screen (S:) on channel '6. As a result of
this, it is not necessary to specify a channel number
when you want to PRINT to the text window, since it is
still open on channel t8.

NOTE: aexp must be positive.

Graphics modes 8, 9, 18, and 11 are full-screen display
while modes 1 through 8 are split screen displays. To
override the split-screen, add 16 to the mode number
(aexp) in the GRAPHICS command. Adding 32 prevents the
graphics command from clearing the screen.

To return to graphics mode 8 in Direct mode, press
<SYSTEM RESET> or type GR.8 and press <RETURN>.

(split) (full) Num of
Co1s Rows Rows Colors

(

Gr.
Mode

o
1
2
3
4
5
6
7
8
9

10
11

Mode
Type

TEXT
TEXT
TEXT

GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS
GRAPHICS

48
28
28
48
88
88

168
168
328

88
88
88

--87--

N/A
28
18
28
48
48
88
88

168
N/A
N/A
N/A

24
24
12
24
48
48
96
96

192
192
192
192

2
5
5
4
2
4
2
4

1 1/2
16

9
16

7.1.1 GRAPHICS Mode 6

This mode is the I-color, 2-luminance(brightness)
default mode for the ATARI Personal Computer. It
contains a 24 line by 46 character screen matrix. The
default margin settings at 2 and 39 allow 38 characters
per line. Margins may be changed by poking LMARGN and
RMARGN (82 and 83).

Some systems have different margin default settings.
The color of the characters is determined by the

, background color. Only the luminance of the characters
can be different. This full-screen display has a blue
display area bordered in black (unless the border is
specified to be another color). To display characters
at a specified location, use one the following method:

POSITION aexpl,aexp2 : REM Puts cursor at location
PRINT sexp : REM specified by aexpl and aexp2.

GRAPHICS 6 is also used as a clear screen command
either in Direct mode or Deferred mode. It terminates
any previously selected graphics mode and returns the
screen to the default mode (GRAPHIC 6).

7.1.2 GRAPHICS Modes 1 and 2

These two 5-color modes are Text modes. However, they
are both split-screen modes.

Characters printed in Graphics mode 1 are twice the
width of those printed in Graphics e, but are the same
height.

Characters printed in Graphics mode 2 are twice the
width and height of those in Graphics mode e.

In the
display
graphic
window,

split-screen mode, a PRINT command is used to
characters in either the text window or the
window. To print characters in the graphic

specify channel '6 pfter the PRINT command.

Example: lee GR. 1
lIe PRINT '6:"A MODE 1 TEST"

--88--

(
The default colors depend on the type of character
input, as defined in the following table:

Character Type Color Register Default Color

Upper case alphabetic
Lower case alphabetic
Inverse upper case alphabetic
Inverse lower case alphabetic
Numbers
Inverse numbers

o
1
2
3
o
2

Orange
Light Green
Dark Blue
Red
Orange
Dark Blue

NOTE: see SETCOLOR to change character colors.

Unless otherwise specified, all characters are
displayed in upper case non-inverse form. To print
lower case letters and graphics characters, use a POKE
756,226. To return to upper case, use POKE 756,224.

In graphics
but if is
characters
section).

modes 1 and 2, there is no inverse video,
possible to get all the rest of the
in four different colors (see end of

(

7.1.3 GRAPHICS Modes 3,5, and 7

These three 4-color graphics modes are also
split-screen displays in their default state, but may
be changed to full screen by adding 16 to the mode
number. Modes 3, 5, and 7 are alike except that modes
5 and 7 use more points (pixels) in plotting, drawing,
and positioning the cursor: the points are smaller,
thereby giving a much higher resolution.

7.1.4 GRAPHICS modes 4 and 6

These two 2-color graphics modes are split-screen
displays and can display in only two colors while the
other modes can display 4 and 5 colors. The advantage
of a two-color mode is that it requires less RAM space.
Therefore, it is used when only two colors are needed
and RAM is getting crowded •• These two modes also have
a higher resolution which means smaller points than
Graphics mode 3.

--89--

7.1.5 GRAPHICS mode 8

This graphics mode gives the highest resolution of all
the other modes. As it takes a lot of RAM to obtain
this kind of resolution, it can only accomodate a
maximum of one color and two different luminances, as
mode Ill.

7.1.6 GRAPHICS modes 9, llll, and 11

GRAPHICS modes 9, llll, and 11 are the GTIA modes, and
are somewhat different from all the other modes. Note
that these modes do not allow a text window.

Mode 9 is a one color, 16 luminance mode. The main
color is set by the background color, and the luminance
values are determined by the information in the screen
memory itself. Each pixel is four bits wide, allowing
for 16 different values. These values are interpreted
as the luminance of the base color for that pixel.

Mode 11 is similar to mode 9 in that the color
information is in the screen memory itself, but the
information for each pixel is interpreted as a color
instead of a luminance. Thus there are 16 colors, all
of the same luminance. The luminance is set by the
luminance of the background color (default = 6).

Mode llll is somewhat of a crossbreed of the other two
GTIA modes and the normal modes in that it offers lots
of colors (like the GTIA modes) and uses the color
registers (like the normal modes). However. since mode
1 III allows 9 colors, it must use the player color
registers as well as the other color registers. Below
is a table showing how the pixel values relate to the
color registers and what BASIC XL command may be used.

(

VALUE REGISTER REG. ADDRESS COMMAND
-------- ------------ -------

III PCOLRIIl 7 III 4 PMCOLOR III
1 PCOLRI 7 illS PMCOLOR 1
2 PCOLR2 7III6 PMCOLOR 2
3 PCOLR3 71117 PMCOLOR 3
4 COLORIIl 7 III8 SETCOLOR III
5 COLORI 71119 SETCOLOR 1
6 COLOR2 71 III SETCOLOR 2
7 COLOR3 711 SETCOLOR 3
8 COLOR4 712 SETCOLOR 4 /

r

--911l--

/

f

,

7.2 COLOR (C.)

Format: COLOR aexp

Examples:110 COLOR ASC("A")
110 COLOR 3

The value of the expression in the COLOR statement
determines the data to be stored in the display memory
for all subsequent PLOT and DRAWTO commands until the
next COLOR statement is executed. The value must be
positive and is usually an integer from 0 through 255.
Non-integers are rounded to the nearest integer. The
graphics display hardware interprets this data in
different ways in the different graphics modes.

In text modes 0 through 2, the number can be from 0
through 255 (8 bits) and determines the character to be
displayed and its color. (The two most significant
bits determines the color. This is why only 64
different characters are available in these modes
instead of the full 256-character set.)

Graphics modes 3 through 8 are not text modes, so the
data stored in the display RAM simply determines the
color of each pixel. Two-color or two-luminance modes
require either 0 or 1 (I-bit) and four-color modes
require 0, 1, 2, or 3. (The expression in the COLOR
statement may have a value greater than 3, but only one
or two bits will be used.)

The actual color which is displayed depends on the
value in the color register which corresponds to the
data of 0, 1, 2, or 3 in the particular graphics mode
being used. This may be determined by looking in the
table at the end of the SETCOLOR section. This table
gives COLOR and SETCOLOR relationships for all the
GRAPHICS modes.

Note that when BASIC XL is first powered up, the color
data is 0. and when a GRAPHICS command (without +32) is
executed, all of the pixels are set to 0. Therefore,
nothing seems to happen to.PLOT and DRAWTO in GRAPHICS
3 through 7 when no COLOR statement has been executed.
Correct this by doing a COLOR 1 first.

--91--

7.3 DRAWTO (DR.)

Format:

Example:

·DRAWTO aexpl, aexp2

199 DRAWTO 19,8

This statement causes a line to be drawn from the last
point displayed by a PLOT (see PLOT) to the location by
aexpl and aexp2. The first expression represents the X
coordinate (column) and the second represents the
Y-coordinate (row). The color of the line is the same
color as the point displayed by the PLOT.

7.4 LOCATE (LOC.)

Format: LOCATE aexpl,aexp2,avar

Example: 159 LOCATE 11,15,X

This command positions the invisible graphics cursor at
the . specified location in the graphics window,
retrieves the data at that pixel, and stores it in the
specified arithmetic variable. This gives a number
from I' to 255 for Graphics modes I' through 2, ~ 9 or 1
for the 2-color graphics modes, and a 9,1,2, or 3 for
the 4-color modes. The two arithmetic expressions
specify the X and Y coordinates of the point. LOCATE
is equivalent to:

POSITION aexpl,aexp2:GET'6,avar

Doing a PRINT after a LOCATE or GET from the screen may
cause the data in the pixel which was examined to be
modified. This problem is avoided by repositioning the
cursor and putting the data that was read back into
the pixel before doing the PRINT. The following
program illustrates the use of the LOCATE command:

II' GRAPHICS 3+16
29 COLOR 1
39 SETCOLOR 2,19,8
49 PLOT 19,15
59 DRAWTO 15,15
69 LOCATE l2,15,X
79 PRINT X

On execution, the prOgram prints the
determined by the COLOR statement which was
pixel 12,15.

--92--

data
stored

O}
in

(

(
7.S PLOT (PL.)

Format: PLOT aexpl,aexp2

Example: lBB PLOT S,S

The PLOT command is used in graphics modes 3 through 8
to display a point in the graphics window. aexpl
specifies the X-coordinate and aexp2 specifies the
Y-coordinate. The color of the plotted point is
determined by the due and luminance in the color
register from the last COLOR statement executpd. To
change this color register, and the color of the
plotted point, use SETCOLOR. Points that can be
plotted on the screen are dependent on the graphics
mode being used. The range of points begins at (B,8),
and extends to one less than the total number of rows
(X-coordinate) or columns (Y-coordinate).

NOTE: PLOT aexpl,aexp2 is equivalent to:

POSITION aexpl,aexp2 : PUT '6, COLOR

7.6 POSITION (POS.)

Format: POSITION aexpl,aexp2

Example: lBB POSITION 8,12

The POSITION statement is used to place the invisible
graphics window cursor at the specified location on the
screen (usually precedes a PRINT or PUT statement).
This statement can be used in all modes. Note that the
cursor does not actually move until an I/O command
Which involves the screen is issued.

7.7 PUT and GET (as applied to graphics)

Formats: PUT '6,aexp
GET '6,avar

Examples: IBB PUT '6, ASC("A")
2BB GET ~6.X

In graphics work, PUT is used to output data to the
screen display. This statement works hand-in-hand with
the POSITION statement. "After a PUT (or GET), the
cursor i8 moved to the next location on the screen.

Doing a PUT to device '6 causes the one-byte aexp to be
displayed at the cursor position. The byte is either
an ATASCII code byte for a particular character (modes
B-2) or the color data (modes 3-8).

--93--

GET is used to input the code byte of the character
displayed at the cursor position, into the specified
arithmetic variab1e-. The values used in PUT and GET
correspond to the values in the COLOR statement.
(PRINT and INPUT may also be used.)

NOTE: doing a PRINT after a LOCATE or GET from the
screen may cause the data in the pixel which was
examined to be modified. To avoid this problem,
reposition the cursor and put the data that was read
back into the pixel before doing the PRINT.

7.8 SETCOLOR (SE.)

Format: SETCOLOR aexp1,aexp2, aexp3

Example: 199 SETCOLOR 9,1,4

This statement is used to choose the particular hue and
luminance to be stored in the specified color register.
The parameters of the SETCOLOR statement are defined
below:

aexp1 c Color register (9-4 depending on graphics mode)
aexp2 c Color hue number (9-15 -- see the table below)
aexp3 c Color luminance (must be an even number between

9 and 14: the higher the number, the ~righter

the display. 14 is almost pure white.)

SETCOLOR SETCOLOR
aexp2 Color aexp2 Color

-------- --------
9 Gray 8 Blue
1 Gold 9 Light Blue
2 Orange 19 Turquoise
3 Red-Orange 11 Green-Blue
4 Pink 12 Green
5 Purple 13 Yellow-Green
6 Purple-Blue 14 Orange-qreen
7 Blue 15 Light Orange

Note: Colors will vary with ~ype and adjustment of TV
or monitor used.

The ATARI display hardware contains five color
registers, numbered from 9 through 4. The Operating
System (OS) has five RAM locations (COLORO through
COLOR4, see Appendix I - Memory Locations) where it
keeps track of the current colors. The SETCOLOR
statement is used to change the values in these RAM (
locations. (The OS transfers these values to the
hardware registers every television frame.)

--94--

(
The SETCOLOR statement requires a value from 0 to 4 to
specify a color register. The COLOR statement uses
different numbers because it specifies data which only
indirectly corresponds to a color register. This can
be confusing, so careful study of the various tables in
this section is advised.

SETCOLOR Default Default
Register Color Luminance Color
-------- ---------

0 2 8 Orange
1 12 10 Green
2 9 4 Dark Blue
3 4 6 Pink or Red
4 0 0 Black

"DEFAULT" occurs if no SETCOLOR statement is used.

The following table shows the COLOR SETCOLOR
relationships for all the GRAPHICS modes, and gives
some information on the registers used in a specific
model

+--+
'GRAPHICS I SETCOLOR 'COLOR I Description I
I Mode I 'register' 1 number I and Comments 1
1---------+------------+--------+--------------------------1
I " 1 " 'COLOR I 1
I and I 1 I data I 1
I all I 2 'actuallyl Character luminance I
I text I 3 , deter- I Background I
I windows 1 4 I mines I Border I
1---------+------------+ +--------------------------1I I" I the I Character I
I I 1 'char- I Character I
1 1,2 I 2 I acter I Character I
, I 3 I to 1 Character
I I 4 1 PLOT I Background,Border

1---------+------------+--------+--------------------------I I" I 1 1 Graphics Point
I I 1 I 2 I Graphics Point
I 3,5,7 I 2 I 3 I Graphics Point
I I 3 I I --
I I 4 I " I Gr. Pt.,Border,Background

1---------+------------+--------+--------------------------1 4,6 I " I 1 I Graphics Point
I I 4 I'" I Gr. Pt., Border, Background

1---------+------------+--------+--------------------------I 1 1 I 1 'Graphics Point luminance
1 8 I 2 I " 1 Graphics Point, Background
1 I 4 I 1 Border

+--+
--95--

7.9 XIO (X.) Special Fill Application

Format: XIO 18,'aexp,aexpl,aexp2,filespec

Example: UJI1I XIO 18,'6,111,111, "S:"

This
area
with
used

special application of the XIO statement
on the screen between plotted points

a non-zero color value. Dummy variables
for aexpl and aexp2.

fills an
and lines

(111) are

The following steps illustrate the fill process:

1. PLOT bottom right corner (point 1).
2. DRAWTO upper right corner (point 2). This outlines

the right edge Of the area to be filled.
3. DRAWTO upper left corner (point 3).
4. POSITION cursor at lower left corner (point 4).
5. POKE address 765 with the fill color data (1,2,or 3).

This method is used to fill each horizontal line from
top to bottom of the specified area. The fill starts
at the left and proceeds across the line to the right
until it reaches a pixel which contains non-zero data
(will wraparound if necessary). This means that fill
cannot be used to change an area which has been filled
in with a non-zero value, as the fill will stop.

WARNING: the fill command will go into an infinite loop
if you attempt to put zero (111) data on a line which has
no non-zero pixels. <BREAK> or <SYSTEM RESET> can be
used to stop the fill if this happens.

The following program creates a shape and fills it with
a data (color) of 3. Note that the XIO command draws
in the lines of the left and bottom of the figure.

1111 GRAPHICS 5+16
2111 COLOR 3
3111 PLOT 7111,45
4111 DRAWTO 5111,1111
5111 DRAWTO 3111,1111
6111 POSITION 1111,45
7111 POKE 765,3
8111 XIO 18,16,11I,11I,·S·
9111 GOTO 9111

--96--

7.lS SOUND (SO.)

Format: SOUND aexpl,aexp2,aexp3,aexp4

Example: ISS SOUND 2,2S3,lS,12

The SOUND statement causes the specified note to begin
playing as soon as the statement is executed. The note
will continue playing until the program encounters
another SOUND statement with the same aexpl or an END
statement. The SOUND parameters are described as
follows:

the sound, and
The lower aexp2

aexpl

aexp2

aexp3

is one of the four vioces available on the
Atari (number S - 3).

is the frequency (pitch) of
ranges between Sand 255.
is, the higher the frequency.

is a measure of the sound's distortion
(fuzziness). Valid numbers are S - 14, even
numbers only. A value of 10 creates pure
tones like a flute, and a 12 produces sounds
similar to a guitar.

aexp4 is the volume of the sound. Valid values are
1 15: the lower the number, the lower the
volume.

Here is a table for various musical notes using a
distortion of 10:

aexp2 Note(s) aexp2 Note(s)
------- -------

HIGH 29 C 91 F
NOTES 31 B 96 E

33 At or Bb 102 D' or Eb
35 A 108 D
37 G' or Ab 114 C' or Db
4S G MIDDLE C 121 C
42 F' or Gb 128 B
45 F. 136 At or Bb
47 E 144 A
5S D' or Eb 153 G' or Ab
53 D 162 G
57 C' or Db 173 F' or Gb
6S C 182 F
64 B LOW 193 E

(68 At o~ Db NOTES 204 D' or Eb
72 A 217 D
76 G' or Ab 239 C, or Db
81 G 243 C
85 F' or Gb

--97--

The following program plays a C scale using the above
values:

19 READ A
29 IF A=256 THEN END
39 SOUND 9,A,19,19
49 FOR W-1 TO 499:NEXT W
59 PRINT A
69 GOTO 19
79 END
89 DATA 29,31,35,49,45,47,53,69,64,72,81,91,96,198,121
99 DATA 128,144,162,182,193,217,243,256

Note that the DATA statement in line 89 ends with a
256, Which is outside of the designated range. The 256
is used as an end-of-data marker.

--98--

(

(

r:
(

PLAYER / MISSILE GRAPHICS Chapter 8

This chapter describes the BASIC XL commands and
functions used to access the Atari's Player-Missile
Graphics. Player Missile Graphics (hereafter usually
referred to as simply "PMG") represent a portion of the
Atari hardware totally ignored by Atari BASIC ana Atari
OS. Even the screen handler (the "S:" device' knows
nothing about PMG.

BASIC XL
omissions
two PMG
graphics.
functions
discussed

goes a long way toward remedying these
by adding six PMG commands (statements) and
functions to the already comprehensive Atari
In addition, four other statements and two
have significant uses in PMG and will be

in this chapter.

(

(

For information on the PMG functions, see section 6.5.

8.1 An Overview of P/M Graphics

For a complete technical discussion of PMG, and to
learn of even more PMG "tricks" than are included in
BASIC XL, read the Atari document entitled "Atari
488/880 Hardware Manual" (Atari part number C"16555,
Rev. 1 or later).

It was stated above that the "S:" device driver knows
nothing of PMG, and in a sense this is proper: the
hardware mechanisms that implement PMG are, for
virtually all purposes, completely separate and
distinct from the "playfield" graphics supported by
·S:". For example, the size, position, and color of
players on the video screen are completely independent
of the GRAPHICS mode currently selected and any COLOR
or SETCOLOR commands currently active. In Atari (and
now BASIC XL) parlance, a "player" is simply a
contiguous group of memory cells displayed as a
vertical stripe on the screen. Sounds dull? Consider:
each player (there are four) may be "painted" in any of
the 128 colors available on the Atari (see SETCOLOR for
specific colors). Within the vertical stripe, each bit
set to 1 paints the player's color in the corresponding
pixel, while each bit set ~o 0 paints no color at alII
That is, any" bit in a player stripe has no effect on
the underlying playfield display.

Why a vertical stripe? Refer to the figure at the end
of this section for a rough idea of the player concept.
If we define a shape within the bounds of this stripe

--99--

(by changing some of the player's bits to l's). we may
then move the stripe anywhere horizontally by a simple
register POKE (or via the PMMOVE command in BASIC XL).
We may move the player vertically by simply doing a
circular shift on the contiguous memory block
representing the player (again. the PMMOVE command of
BASIC XL simplifies this process). To simplify:

A player is actually seen as a stripe on the screen 8
pixels wide by 128 (or 256. see below) pixels high.
Within this stripe. the you can POKE or MOVE bytes to
establish what is essentially a tall. skinny picture
(though much of the picture may consist of 0 bits. in
which case the background "shows through"). Using
PMMOVE. you may then move this player to any horizontal
or vertical location on the screen. To complicate:

For each of the four players there is a corresponding
"missile" available. Missiles are exactly like players
except that:

(1) they are only 2 bits wide. and all four
mis.iles share a single block of memory

(2) each 2 bit sub-stripe has an independent
horizontal position

(3) a missile always has the same color as
its parent player.

Again. by using the BASIC XL commands (MISSILE and
PMMOVE, for example). you the programmer need not be
too aware of the mechanisms of PMG.

(

Playfield
Area

TV SCREEN

A Player Shape -
y on (1) bits will
ow color selected

PMCOLOR.

indicates pixels
olor clocks) of
dth.

127 255

Vert. 0 -
Position

SL- - - - - - - - -I I
I

I

I
I

I Hor. Pos. I

I Approx. 140 , ... 1..., I !
I

I

I an,
shI

I by
I 8* -- I- - - - - - f- - - - - •

(c
wi

--lClJ0--
'-

(

8.2 P/M Graphics Conventions

1. Players are numbered from 9 through 3. Each
player has a corresponding missile whose number is
4 greater then that of its parent player, thus
missiles are numbered 4 through 7. In the BUMP
function, the "playfields" are numbered from 8
through 11, corresponding to actual playfields 9
through 3. (Note: playfields are actually COLORs
on the main GRAPHICS screen, and can be PLOTted,
PRINTed, etc).

2. There is some inconsistency in which way is "UP".
PLOT, DRAWTO, POKE, MOVE, etc are aware that 9,g
is the top left of the screen and that vertical
position numbering increases as you go down the
screen. PMMOVE and VSTICK, however, do only
relative screen positioning, and define "+" to be
UP and "-" to be DOWN. [If this really bothers
you please let us knowl].

3. "pmnum" is an abbreviation for
NUMber and must be a number from
players) or 4 to 7 (for missiles).

8.3 BGET and BPUT with P/M's

Player-Missile
9 to 3 (for

As with MOVE (see
fill a player memory
difference is that
from the diskl

section 8.11), BGET may be used to
quickly with a player shape. The

BGET may obtain a player directly

Example: BGET .3,PMADR(9),128

Would get a PMG.2 mode player from the file opened in
slot '3.
Example: BGET .4,PMADR(4),2S6*S

(

Would fill all the missiles AND players in PMG.l mode
-- wi th a single statement I .

BPUT would probably be most commonly used during
program development to SAVE a player shape (or shapes)
to a file for later retrieval by BGET.

--191--

8.4 PMCLR

Format:

Example:

PMCLR pmnum

PMCLR 4

This statement "clears" a player or missile area to all
zero bytes, thus "erasing" the player/missile. PMCLR
is aware of what PMG mode is active and clears only the
appropriate amounts of memory. CAUTION: PMCLR 4
through PMCLR 7 all produce the same action -- ALL
missiles are cleared, not just the one specified. To
clear a single missile, try the following:

SET 7,0 : PMMOVE 4:255

8.5 PMCOLOR (PMCO.)

Format:

Example:

PMCOLOR pmnum,aexp,aexp

PMCOLOR 2,13,8

PMCOLORs are identical in usage to those of the
SETCOLOR statement except that a player/missile set has
its color chosen. Note there is no correspondence in
PMG to the COLOR statement of playfield GRAPHICS: none
is necessary since each player has its own color.

The example above would set player 2 and missile 6 to a
medium (luminace 8) green (hue 13).

NOT~: PMG has NO default colors set on power-up or
SYSTEM RESET.

8.6 PMGRAPHICS (PMG.)

Format:

Example:

PMGRAPHICS aexp

PMG. 2

This statement is used to enable or 'disable the Player/
Missile Graphics system. The aexp should evaluate to
0, 1, or 2:

PMG.0
PMG.l
PMG.2

Turn off PMG
Enable PMG, single line resolution
Enable PMG,'double line resolution

Single and Double line resolution (hereafter refered to
as "PMG Modes") refer to the height which a byte in'the
player "stripe" occupies - either one or two television
scan lines. (A scan line height is the pixel height.in

--102--

(

(
GRAPHICS mode 8. GRAPHICS 7 has pixels 2 scan lines
high, similar to PMG.2)

The secondary implication of single line versus double
line resolution is that single line resolution requires
twice as much memory as double line, 256 bytes per
player versus 128 bytes. The following diagram shows
PMG memory usage in BASIC XL, but the user really need
not be aware of the mechanics if the PMADR function is
used.

RAMSZ ($6A)
+---------------------------------------+
1 I
I Current GRAPHICS Mode 1
I 1
+---------------------------------------+

Depending on GRAPHICS mode, there may
or may not be unused memory here.

NoTE I MEMTOP ($2E5) points
to the bottom of the mis
siles (PMBASE+384 in dou
line, PMBASE+768 in 'single
line.

Player 0

Player 2

+ll!l24

+856

+7l!18

+64l!1

+512

+384

PMBASE

Double Line Single Line
+---------------------------------------+
1 Player 3 I ,
1-------------------1 Player 3 I
I Player 2 1 I
1-------------------1-------------------I Player 1 I
1-------------------1I Player 0 1
1-------------------1-------------------
I-~~-~-~~-~-~~-~-~~-I Player 1
1 1
1 1-------------------I I
I 1
I I
+-------------------+-------------------

I 1 1 I
I Ml I M2 1 M3 1 M4
I 1 I I
1-------------------
~
I
I
I
I
I I
+-------------------+

+2048

+1792

+1536

+1280

+1024

+768

PMBASE

--103--

8.7 PMMOVE

Format:

Example:

PMMOVE pmnum[,aexp][7aexp]

PMMOVE 9, l2l'r l
PMMOVE 1,89
PMMOVE 47-3

(

Once a player or missile has been "defined" (via POKE,
MOVE, GET, or MISSILE), the truly unique features of
PMG under BASIC XL may be utilized. with PMMOVE, the
user may position the player/missile shape anywhere on
the screen almost instantly.

BASIC XL allows the user to position each player and
missile independently. Because of the hardware
implementation, though, there is a difference in how
horizonal and vertical positions are specified.

The parameter following the comma in PMMOVE is taken to
be the ABSOLUTE position of the left edge of the
"stripe" to be displayed. This position ranges from lIJ
to 255, though the lowest and highest positions in this
range are beyond the edges of the display screen. Note
the specification of the LEFT edge: changing a player's
width (see PMWIDTH) will not change the position of its
left edge, but will expand the player to the right.

The parameter following the semicolon in PMMOVE is a
RELATIVE vertical movement specifier. Recall that a
"stripe" of player is 128 or 256 bytes of memory.
Vertical movement must be accomplished by actual
movement of the bytes within the stripe -- either
towards higher memory (down the screen) or lower memory
(up the screen). BASIC XL allows the user to specify a
vertical movement of from -255 (down 255 pixels) to
+255 (up 255 pixels).

NOTE: The +/- convention on vertical movement conforms
to the value returned by VSTICK.

Example: PMMOVE N7VSTICK(N)

Will move player N up or down (or not move him) in
accordance with the joystick position.

NOTE: SET may be used to tell PMMOVE whether an object
should "wraparound" (from bottom of screen to top of
screen or vice versa) or should disappear as it scrolls
too far up or down. SET 7,1 specifies wraparound, and
SET 7,9 disables it. (

--194--

(
8.8 PMWIDTH (PMW.)

Format:

Example:

PMWIDTH pmnum,aexp

PMWIDTH 1,2

Just as PMGRAPHICs can select single or double pixel
heights, PMWIDTH allows the user to specify the screen
width of players and missiles. But where PMGRAPHICs
selects resolution mode for all players and missiles,
PMWIDTH allows each player AND missile to be separately
specified. The aexp used for the width should have
values of 1,2, or 4 -- representing the number of color
clocks (equivalent to a pixel width in GRAPHICS mode 7)
Which each bit in a player definition will occupy.

NOTE: PMG.2 and PMWIDTH I combine to allow each hit of
a player definition to be equivalent to a GRAPHICS mode
7 pixel -- a not altogether accidental occurence.

NOTE: Although players may be made wider with PMWIDTH,
the resolution then suffers. Wider "players" may be
made by placing two or more separate players side
by-side.

8.9 POKE and PEEK with P/M's

One of the most common ways to p'ut player data into a
player stripe may well be to use POKE. In conjunction
with PMADR, it is easy to write understandable player
loading routines.

Example: lee FOR LOC=48 TO 52
lIe READ N: POKE LOC+PMADR(e),N
12e NEXT LOC

gee DATA 255,129,255,129,255

PEEK might be used to find out what data is in a
particular player location.

8.le MISSILE (MIS.)

Format:

Example:

MISSILE pmnum,aexp,aexp

MISSILE 4,48,3

(
The MISSILE statement allows an easy way for a parent
player to "shoot" a missile. The first aexp specifies
the absolute vertical position of the beginning of the
missile (e is the top of screen), and the second aexp

--le5--

specifies the vertical height of the missile.

Examples MISSILE 4,64,3

Would place a missile 3 or 6 scan lines high (depends
on PMG. mode) at pixel 64 from the top.

NOTE: MISSILE does NOT simply turn
ponding to the position specified.
specified are exclusive-or'ed with
memory. This can allow the user
missiles While creating others.

on the bits corres
Instead, the bits
the current missile
to erase existing

Examples MISSILE 5,49,4
MISSILE 5,49,B

The first statement creates a 4 pixel missile at
vertical position 29. The second statement erases the
first missile and creates a 4 pixel missile at vertical
position 24.

B.ll MOVE with P/M's

MOVE is an efficient way to load a large player
move a player vertically by a large amount.
ability to MOVE data either upwards or downwards
for interesting possibilties.

and/or
This

allows

Also, it would be easy to have several player shapes
contained in stripes and then MOVEd into place at will.

Exampless
MOVE ADR(A$),PMADR(2),12B

could move an entire double line resolution
player from A$ to player stripe number 2.

POKE PMADR(1),255 : MOVE PMADR(I),PMADR(1)+1,127

would fill player l's stripe with all "on"
bits, creating a solid stripe on the screen.

B.12 USR with P/M's

Because, of USR' s ability to pass parameters to an
assembly language routine, PMG functions (written in
assembly language) can be easly interfaced to BASIC XL.

Examples A-USR(PMBLINK,PMADR(2),12B)

Might call an assembly language program (at address
PMBLINK) to BLINK player 2, Whose size is l2B bytes.

--196--

(

9.13 Example PMG Programs

1. A very simple program with one player and its
missile.

player

• ** ...
... **** ...
********..... ** ...
... ** ...

a one-high missile at top of
another, in middle of player
and again at top of player
the missile movement loop
moves missile 0

REM every eighth horizontal position
REM you have to see this to believe it
REM could have had an ELSE, of course

REM $99
REM $80
REM $FF
I,lEM $80
REM $99

REM player movement loop
REM moves player horizontally
REM just to make some noise

REM note we leave ourselves in GR.0
REM double line resolution
REM just initializing
REM clear player I and missile 8
REM a nice green player
REM gets address of player
• REM a 5 element player to be defined
REM see below for DATA scheme
REM actually setting up player shape

•
•
•
•••

p+y+4
••

188 SETCOLOR 2,8,8
118 PMGRAPHICS 2
128 LET width-l • y-49
138 PMCLR 8 I PMCLR 4
135 PMCOLOR 1,13,8
148 p-PMADR(I)
158 FOR i-p+y TO
168 READ val
178 POKE i,val
188 NEXT i
288 FOR x-l TO 128
218 PMMOVE 0,x
220 SOUND l,x+x,8,15
230 NEXT x
240 MISSILE I,y,l REM
258 MISSILE l,y+2,l REM
268 MISSILE l,y+4,l REM
300 FOR x-l27 TO 255 REM
318 PMMOVE 4,x • REM
328 SOUND 1,255-x,10,15
338 IF (x , 7) - 7 •
348 MISSILE 8,y,5 •
358 ENDIF •
368 NEXT x
370 PHMOVE 8,8 • REM SO width doesn't change on screen
48~width-width*2 • REM we will make the player wider
418 IF width> 4 THEN width - 1 • REM until it gets,too wide
428 PMWIDTH I,width • REM the new width
438 PMCLR 4 • REM no more missUe
440 GOTO 200 • REM and do all this again
450 REM
588 REM ********* THE DATA FOR PLAYER SHAPE *********
518 REM
520 DATA- 153
538 DATA 189
540 DATA 255
558 DATA 189
568 DATA 153

CAUTION. do NOT put the REMarks on lines SUI thru 558,
since DATA must be the last statement on a line.

(
NOTE. the REM in line 338 is required. All other REMs
are optional,

Notice how the data for the player shape is built up •••
draw a picture on an 8-wide by n-high piece of grid

--107--

paper, filling in whole cells. Call a filled in cell a
'1' bit, empty cells are '8'. Convert the l's and 8's
to hex notation and thence to decimal.

This program will run noticably faster if you use
mUltiple statements per line. I~ was written as above
for clarity, only.

2. A more complicated program, sparsely commentp-d.

(

•
•
••
•
•

•
•

•
•

here I
8421842184218421

I ****
I ** **
1**
I * *
I *
I * *** ***
1* * * * *
1* *.. *••
I·
1* • •I •• •
I * •• *•••
1 *
1 •I •• ••
I .*••

118 GRAPHICS 8 , REM not necessary, just prettier
128 PMGRAPHICS 2 , PMCLR 8 , PMCLR 1
138 SETCOLOR 2,8,8 , PMCOLOR 8,12,8 , PMCOLOR 1,12,8
148 p8 - PMADR(8) , pl - PMADR(l) , REM addr's for 2 players
158 v8 - 68 , vold - v8 ,REM starting vertical position
l61!J h8 - U8 , REM starting horizontal position
281!J FOR loc -v0-8 TO v8+7 , REM a l6-high double player
211!J READ X
221!J POKE p8+loc,INT(X/$188)
238 POKE pl+loc,X & $FF
241!J NEXT loc
380 REM ANIMATE IT
318 LET radius-40 ,DEG ,REM 'let' required, RAD is keyword
320 WHILE 1 , REM an infinite loop I I
338 c-int(16*rnd(8», pmcolor 8,C,8 , pmcolor l,C,8
340 FOR angle - 8 TO 355 STEP 5 , REM in degrees, remember
358 vnew - int(v0 + radius * SIN(angle))
361!J vchange • vnew - vold , REM change in vertical position
378 hnew - he + radius * COS(angle)
380 PMMOVE 0,hnew:vchange , PMMOVE 1,hnew+8:vchaQge
, REM move two players together
390 vold - vnew
41!J8 SOUND 0,hnew,18,12 , SOUND 1,vnew,18,12
410 NEXT angle
428 REM just did a full circle
430 ENDWHILE
448 REM we better NEVER get to
sI!J0 REM the fancy DATAl
sl8 DATA $83C8
s21!J DATA $8C38
s31!J DATA $1888
s41!J DATA $2804
558 DATA $4882
s61!J DATA $4E72
s71!J DATA $8Asl
580 DATA $8E71
s91!J DATA $8881
601!J DATA $9889
611!J DATA $4812
62" DATA $47E2
63" DATA $28"4
641!J DATA $11!J1!J8
6sI!J DATA $I!JC31!J
661!J DATA $1!J3C"

--1"8--

(

(

Notice how much easier it is to use the hex data.

The factor slowing this program the most is the SIN and
COS being calculated in the movement loop. If these
values were pre-calculated and placed in an array this
program would movel

--199--

--119--

(ERROR DESCRIPTIONS

ERROR
NUMBER DESCRIPTION

Appendix A

1 While SET 0,1 was specified, the user hit the
BREAK key. This TRAPpable error gives the
BASIC XL programmer total system control.

2 All avaiable memory has been used. No more
statements can be entered and no more variables
(arithmetic, string or array) can be defined.

3 An expression or variable evaluates to an
incorrect value. Example:

An expression that can be converted to A
two byte integer in the range 0 to 65235
(hex $FFFF) is called for and the given
expression is either too large or
negative.

A - PEEK(-l)
DIM B(70000)

Both these statments will produce a value
error.

Example:

An expression that can be converted to a
one byte integer in the range ~ to 255
hex(FF) is called for and the given
expression is too large.

POKE 5000,750

This statement produces a value error.

Example:

A-SQR(-4) Produces a value error.

4 No more variables can be defined. The maximum
number of variables is 128.

--111--

ERROR
NUMBER DESCRIPTION

5 A character beyond the DIMensioned or current
length of a string has been accessed. Example:

1""" DIM A$(3)
2""" A$(5) • "A"

This will produce a string length error at
line 28"" when the program is RUN.

6 A READ statement is executed but we are already
at the end of the last DATA statement.

7 A line number larger than 32767 was entered.

8 The INPUT or READ statement did not recieve the
type of data it expected. Example:

1""" READ A
2""" PRINT A
3""" END
4""" DATA l2AB

Running this program will produce this error.

9 A previously DIMensioned string or array is
DIMensioned again. Example:

1""" DIM A(l")
2""" DIM A(19)

This program produces a DIM error.

An expression
handle. The
calculation
statements.

1" is too complex for BASIC XL to
solution is to break the

into two or more BASIC XL

11 The floating point routines have produced a
number that is either too large or too small.

12 The line number required for a GOTO or GOSUB
does not exist. The GOTO may be implied as in:

1""" IF A-B'THEN 5""

The GOTO / GOSUB may also be part of an ON
statement.

--112--

(

(
ERROR
NUMBER DESCRIPTI~N

13 A NEXT was encountered but there is no
information about a FOR with the same variable.
Example:

1000 DIM A(lO)
2"00 REM FILL THE ARRAY
3000 FOR I 0 TO 10
4000 A(I) I
SOOO NEXT I
6000 REM PRINT THE ARRAY
7000 FOR K ... 0 TO 10
8000 PRINT A(K)
9000 NEXT I
10000 END

Running this program will cause the following
output:

o
ERROR- 13 AT LINE 9000

NOTE: Improper use of POP could cause this
error.

14 The line just entered is longer than Basic can
handle. The solution is to break the line into
mUltiple lines by putting fewer statements on a
line, or by evaluating the expression in
multiple statements.

IS The line containing a GOSUB or FOR was delete~

after it was executed but before the RETURN or
NEXT was executed.

This can happen if, while running a program, a
STOP is executed after the GOSUB or FOR, then
the line containing the GOSUB or FOR is
deleted, then the user types CONT and the
program tries to execute the RETURN or NEXT.
Example:

1000 GOSUB 2000
1100 PRINT "RETURNED FROM SUB"
1200 END .
2000 PRINT "GOT TO SUB"
2100 STOP
2200 RETURN

If this program is run the print out is:
GOT TO SUB
STOPPED AT LINE 2100

--113--

ERROR
NUMBER DESCRIPTION

Now if the user deletes line 1999 and then
types CONT we get

ERROR- 15 AT LINE 2299

(

16 A RETURN was encountered
information about a GOSUB.

but we
Example:

have no

line that contains a
useful when LIsTing and

1999 PRINT "THIS IS A TEST"
2999 RETURN

If this program is run the print out is:

THIS IS A TEST

ERROR- 16 AT LINE 2999

NOTE: improper use of POP could also cause this
error.

17 If when entering a program line a syntax error
occurs, the line is saved with an indication
that it is in error. If the program is run
without this line being corrected, execution of
the line will cause this error.

NOTE: The saving of a
syntax error can be
ENTERing programs.

18 If when executing the VAL function, the string
argument does not start with a number, this
message number is generated. Example:

A - VAL("ABC'" produces this error.

19 The program that the user is trying to LOAD is
larger than available memory.

This could happen if.the user had used LOMEM to
change the address at which Basic tables start,
or if he is LOADing on a machine with less
memory than the one 9n which the program was
SAVEd.

29 If the device / file number given in an I/O
statement is greater than 7 or less than 9,
then this error is issued.

Example: GET t8,A

--114--

ERROR
NUMBER DESCRIPTION

21 This error results if the user tries to LOAD a
file that was not created by SAVE.

22 This error occurs if the length of the entire
format string in a PRINT USING statement is
greater than 255. It also occurs if the length
of the sub-format for one specific variable is
greater than or equal to 6e.

23 The value of a variable in a PRINT USING
statement is greater than or equal to 1E+5e.

24 In a PRINT USING statement, the format
indicates that a variable is a numeric when in
fact the variable is a string. Or the format
indicates the variable is a string when it is
actually a numeric. Example:

PRINT USING ""''',A$
PRINT USING ""''',A

Will produce this error.
(25 The string being retreived by RGET from a

device (i.e., the one written by RPUT) has a
different DIMension length than the string
variable to which it is to be assigned.

26 The record being retreived by RGET (ie.
one written by RPUT) is a numeric, but
variable to which it is to be assigned
string. Or the record is a string, but
variable is a numeric.

the
the

is a
the

("

27 An INPUT statement was executed and the user
entered CTRL-C <RETURN>.

28 The end of a control structure such as ENDIF or
ENDWHILE was encountered but the run-time stack
did not haye the. corresponding beginning
structure on the Top of Stack. Example:

Ie WHILE 1 : REM loop forever
2e GOSUB lee

HI" ENDWHILE

ENDWHILE finds the GOSUB on Top of Sta~~ and
issues the error.

--115--

ERROR
NUMBER DESCRIPTION

29 An illegal player/missile number. Players must
be numbered from 9-3 and missiles from 4-7.

(

39 The user attempted to use a PMG statement other
than PMGRAPHICS before executing PMGRAPHICS 1
or PMGRAPHICS 2.

32 End of ENTER. This is the error result.ng from
a program segment such as:

SET 9,1 : TRAP line# : ENTER filename

when the ENTER terminates normally.

34 The second aexp in a RENUM or NUM command
evaluated to zero, and an increment of 9 is
invalid.

35 When RENUMbering, the maximum line
(32767) was exceeded.

number

49 You attempted to use a string variable as a
string array variable, or visa versa. Example:

DIM A$(3,29)
A$="THIS CAUSES AN ERROR"

would create this error.

--116--

(

SYSTEM MEMORY LOCATIONS Appendix B

('\

LABEL

APPMHI

RTCLOK

SOUNDR

ATRACT

LMRGIN,
RMRGIN

RAMTOP

LOMEM

MEMTOP

FR"

MEMTOP

MEMLO

CRSINH

CHACT

CHBAS

ATACHR

CH

FILDAT

DSPFLG

HEXADECIMAL
LOCA.TION

DE

12,13,14

41

4D

52,53

6A

8",81

9",91

D4,D5

2E5,2E6

2E7,2E8

2F"

2F3

2F4

2FB

2FC

2FD

2FE

COMMENTS and DESCRIPTION

Highest location used by BASIC
XL (LSB, MSB)

Screen Frame Counter (1/6" sec.)
(LSB, NSB, MSB)

Noisy I/O Flag ("=quiet)

Attract Mode Flag (128=Attract
Mode)

Left, Right Margin (Defaults 2, 39)

Actual top of memory (page number)

BASIC XL low memory pointer

BASIC XL high memory pointer
(usually same as APPMHI)

Value returned to BASIC XL from a
USR function (LSB, MSB)

OS top of available memory (LSB, MSB)

OS low memory pointer (LSB, MSB)

Cursor Inhibit ("=cursor on)

Character Mode Register (4=vertical
reflectf 2=normalf l=blank)

Character Set Base Register

Last ATASCII Character

Last keyboard key pressed (keyboard
matrix code)

Fill data for graphics Fill (XIO)

Display Flag (l=display control
character)

--117--

LABEL

CONSOL

SI<CTL

HEXADEC rMAL
LOCATION

DelF

COMMENTS and DESCRIPTION

Console Keys (bit 2=OPTION: bit 1
SELECT: bit e START)

Serial Port Control Register (bit
2=e if last key still pressed)

--118--

(

(

BASIC XL MEMORY MAP Appendix C

$00

$80

$CB

$02

$100

$200

$3C0

$3E8

$3FO

$480

$57E

$680

$700

(MEMLO)

(APPMHI)

(MEMTOP)

$A000

$C000

$0000

(
, ,

$0800

$FFFF

+---------------------------+1 as Variables I
1---------------------------11 BASIC XL System RAM 1
1---------------------------1
1 Free BASIC XL RAM

1---------------------------
1 Atari Floating Point
1 Registers

1---------------------------I Hardware Stack

1---------------------------1 as Variables
I IOCBs

1---------------------------1 Printer Buffer

1---------------------------I as RAM

1---------------------------I Cassette Buffer

1---------------------------I BASIC XL Stack and
1 Miscellaneous Variables

1---------------------------I Input and Floating
1 Point Buffers

1---------------------------I Free RAM

1---------------------------1
1 DOS RAM 1
1---------------------------1
I 1
I BASIC XL program, buffers 1
I tables, run-time stack. 1
1 I
1---------;;;;-;;;----------1
1---------------------------1I. Screen Memory 1
1 also optlona1 P/M Memory 1
1---------------------------1I BASIC XL Cartridge I
I---------~-----------------II O.S., ROMs, etc. I
+---------------------------+I Hardware Registers I
+---------------------------+
I as and Floating Pt. ROM 1

+---------------------------+
--119--

--12"--

(

(

(

ATASCII CHARACTER SET Appendix D

.,." ,.....,.
...,+

....,.
~~ ~+ ;.'i-"'"

.,~,.
~~;.. ~ ,.

~..~~... ~...'P' ~ ~.... 'P'.... ...'P'.,.. ~... .,.'.~~ +'t' ;.-;..,.,~,.+ iJ""'~'"
.1".~ to·i~~~' ~,,"".... ,,,"'to ~ ,~ ~ ,,~

+,,. \.. i.,,'

0 0 D 13 D Ii 26 IA ~

G 14 E ~ 27 18 ~

2 2 II IS r II 28 Ie 0
3 3 CI 16 10 g 29 1lJ 0
4 4 Cl 17 II EI 30 IE =5 5 CI 18 12 = 31 IF CJ
6 6 ~ 19 13 D 32 20 space

7 7 ~ 20 14 D 33 21

8 8 rJ 21 IS e 34 22

9 9 e 22 16 II 35 23 t:

10 A ~ 23 17 C 36 24 S

(11 8 ~ 24 18 g 37 25 If e

12 C iii 25 19 (J 38 26 If,:

--121--

04"" ~~ """,<I-" +
"" o~ov ~!'

R~V ~"~ " +"",0 '!'
o~ ~ d' ~v "'~

39 27 55 37 7 71 47 G

40 28 56 38 8 72 48 H

41 29 57 39 9 73 49

42 2A • 58 3A 74 4A J

43 2B + 59 3B 75 4B K

44 2C 60 3C < 76 4C L

45 20 61 30 77 40 M

46 2E 62 3E > 78 4E N

47 2F / 63 3F 79 4F 0

48 30 0 64 40 @ 80 50 P

49 31 65 41 A 81 51 Q

50 32 2 66 42 B 82 52 R

51 33 3 67 43 C 83 53 S

52 34 4 68 44 0 84 54 T

53 35 5 69 45 E 85 ·55 U

54 36 6 70 46 F 86 56 V

--122--

(

(\

87

88

89

90

91

92

93

94

95

- -96

97

98

99

100

101

102

57

58

59

SA

58

5C

50

5E

Sf

60

61

62

63

64

65

66

w

x

y

z

\

]

D
a

b

c

d

e

f

103

104

lOS

106

107

108

109

110

111

112

113

114

115

116

117

118

--123--

67

68

69

6A

68

6C

60

6E

6f

70

71

72

73

74

75

76

g

h

j

k

m

n

o

p

q

r

u

v

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

77

78

79

7A

78

7C

70

7E

7f

80

81

82

83

84

85

86

w

x

y

z

D

[;)

[J

(]

rP~~
~~V ~# ;I>"V ~~V~, ~~ ~{~,

e ,,0 +¢"C' #' ¢'''~ +#,0' #' "(p¢,,, +#' #'
135 87 151 97 167 A7

136 88 152 98 168 A8

137 89 153 99 169 A9

138 8A 154 9A 170 AA

139 8B
looLl

155 9B - 171 AB

140 Be 156 9C [t] 172 AC

141 80 157 90 [!] 173 AD

142 8E 158 9E ~ 174 AE

143 8F 159 9F ~ 175 AF

144 90 160 AO 176 DO

145 91 161 A1 177 B1

146 92 162 A.2 178 B2

147 93 163 A3 179 B3

148 94 164 A4 180 B4

149 95 165 A5 181 B5

150 96 166 A6 182 B6

--124--

(,

~~f .,.# ~~ ~~ #
~~

,,~ y ~~" .,./
tP.,"'."" ~¢"~ cJ' ~~"~"~ ,,"- ~~" ~"~ ",,(}J ~(}J ~ d' ~ ,,~

231 E7 240 FO 249 F9

232 E8 241 F1 250 FA

233 E9 242 F2 251 FB

234 EA 243 F3 252 Fe

235 EB 244 F4 253 FD ~ I•• " '

236 EC 245 F5 254 FE [lJ ""I,,,
charQl1rr-j

237 ED 246 F6 255 FF [I] II...."
charuct"rI

238 EE 247 F7

239 EF 248 F8

I. ATASCII stands for "ATARI ASCII". Letters and numbers have the same values as those in ASCII.bUI
some of the special characters are different.

2. Except as shown, characters from 12.8-255 are reverse colors of 1 to 127.

3. Add 32 to upper case rode to get lower case rode for same letter.

4. To get ATASCII rode. tell computer (direct model to PRINT ASC ("__"J Fill blank with letter.
character, or number of code. Must use the quotes!

5. On pages e·1 and e·3,the normal display keycaps are shewn as white .ym·
bois on a black background; on pages e-4 and e-6 inverse keycap symbol.
are shown as black on a white backgrou~d.

--126--

SYNTAX SUMMARY AND KEYWORD INDEX Appendix E

-----------------~-------------------------------------

All keywords, grouped by statements and then functions,
are listed below in alphabetical order. A page number
reference is given to enable the user to quickly find
more information about each keyword.

EXPLANATION OF TERMS

pm

line - line number (can
be aexp)

- Player/Missile number
(aexp)

[xxx] xxx is optional
[xxx •••] xxx is optional, and

may be repeated
addr - ADDRess aexp, must be

9 - 65535

exp - EXPression
aexp - Arithmetic exp
sexp - string exp
var - VARiable
avar - Arithmetic var
svar - String var
mvar - Matrix var

(or element)
fn - File Number
<stmts> one or more statements
filename svar or string literal (quotes arr optional
except with LIST)

(NOTEl keywords denoted by an asterisk (*) not in Atari
BASIC.

STATEMENTS

page syntax

49 *BGET 'fn, addr, len
50 *BPUT 'fn, addr, len
21 BYE
59 CLOAD
51 CLOSE 'fn
21 CLR
91 COLOR aexp
22 CONT
23 *CP
51 CSAVE
51 DATA <ATASCII data>
72 DEG
22 *DEL line [, line]
12 *DIM svar(aexp [~aexp])

19 DIM mvar(aexp[,aexp])
52 *DIR [filename]

) 23 DOS
82 *DPOKE addr,aexp
92 DRAWTO aexp,aexp
49 *ELSE {see IF}

--127--

page

34
49
46
52
53
23
35
53
36
37
87
39
39
49

54
53
41
41
41
24
24
55
92
24
55
25
195
43
25
35
55
25
43
43
56
93
192
192
192
194
195
57
83
44
93
57
57
57
58
67

syntax

END
*ENDIF {see IF}
*ENDWHILE

ENTER filename
*ERASE filename

FAST
FOR avar=aexp TO aexp [STEP aexp]
GET Ifn, avar
GOSUB line
GOTO line
GRAPHICS aexp
IF aexp THEN <stmts>
IF aexp THEN line

*IF aexp: <stmts>
ELSE : <stmts>
ENDIF

*INPUT " ••• ",var [,var •••]
INPUT [tfn,] var [,var •••]

*[LET] svar=sexp [,sexp••]
[LET] avar=aexp
[LET] mvar=aexp
LIST [filename]
LIST [filename,] line [,line]
LOAD filename
LOCATE aexp,aexp,avar

*LOMEM addr
LPRINT [exp [:exp •••] [,exp •••]]

*LVAR [filename]
*MISSILE pm,aexp,aexp
*MOVE fromaddr,toaddr,lenaexp

NEW
NEXT avar
NOTE tfn, avar,avar

*NUM [line][,aexp]
ON aexp GOTO line [,line •••]
ON aexp GOSUB line [,line •••]
OPEN Ifn, mode,avar,filename
PLOT aexp,aexp

*PMCLR pm
*PMCOLOR pm,aexp,aexp
*PMGRAPHICS aexp
*PMMOVE pm[,aexp] [:aexp]
*PMWIDTH pm,aexp

POINT Ifn, avar,avar
POKE addr,aexp
POP
POSITION aexp,aexp
PRINT [Un]
PRINT exp [[:exp •••] [,exp•••]] [:]
PRINT Ifn [[:exp •••] [,exp•••]] [:]

*PRINT [tfn,] USING sexp , [exp[,exp•••]]
*PROTECT filename

--128--

(

page syntax

(63 PUT 'fn-, aexp
72 RAD
7S RANDOM
63 READ var [,var ••.]
26 REM <any remark>
64 *RENAME filenames
27 *RENUM [start][,increment]
45 RESTORE [l ine]
36 RETURN
64 *RGET 'fn, asvar [,asvar •••]
65 *RPUT 'fn,exp(,exp•••]
27 RUN [filename]
66 SAVE filename
28 *SET aexp,aexp
94 SETCOLOR aexp,aexp,aexp
97 SOUND aexp,aexp,aexp,aexp
66 STATUS ,fn, avar
35 STEP {see FOR}
31 STOP
67 *TAB [tin] , avar
39 THEN (see IF)
35 TO (see FOR)
31 *TRACE

(31 *TRACEOFF
45 TRAP line
67 *UNPROTECT filename
46 *WHILE aexp
67 XIO aexp,'fn,aexp,aexp,fi1ename
57 ? (same as PRINT)

FUNCTIONS

page syntax

69 ABS(aexp)
81 ADR(svar)
73 ASC(sexp)
72 ATN(aexp)
8S *BUMP (pmnum, aexp)
73 CHR$(aexp)
69 CLOG(aexp)
72 COS(aexp)
81 *DPEEK(addr)
82 *ERR(aexp)
7S EXP(aexp)
74 *FIND(sexp,sexp,aexp)

(82 FRE(liJ)
78 *HSTICK(aexp)
7fJ INT(aexp)
75 LEN(sexp)

--129--

page syntax

7flJ
78
78
81
78
83
71
71
72
71
79
79
76
84
84
84
76
79

LOG (aexp}
PADDLE (aexp)

*PEN(aexp)
*PMADR(pm)
PTRIG(aexp)
PEEK (addr)
RND(flJ)
SGN(aexp)
SIN(aexp)
SQR(aexp)
STICK(aexp)
STRIG(aexp)
STR$(aexp)

*SYS(aexp)
*TAB(aexp)

USR(addr [,aexp •••])
VAL(Sexp)

*VSTICK(aexp)

--13flJ--

(

COMPATIBILITY WITH ATARI BASIC Appendix F

(

(I

Generally, BASIC XL is totally compatible with Atari
BASIC. Virtually all programs written in Atari BASIC
and SAVEd or CSAVEd thereunder will LOAD or CLOAD
properly with BASIC XL and run without changes.
However, in a few very subtle ways, there are minor
differences between Atari BASIC and BASIC XL. This
appendix presents a list of known differences, but OSS
cannot guarantee that it is an exhaustive list.

1. VARIABLE NAMES

When programs are SAVEd or CSAVEd under Atari BASIC
and then LOADed or CLOADed under BASIC XL, there
will never be a conflict in variable name usage.
However, when a program is LISTed from Atari BASIC
and then ENTERed into BASIC XL, or when a program
listing published in a magazine or book is typed
into BASIC XL, it is possible that BASIC XL will not
accept lines of code which are valid in Atari BASIC.

The reason, of course, is that BASIC XL has a much
richer range of keywords for statements and
functions than does Atari BASIC, and in neither
language can a variable name begin with a statement
name unless it is preceded with a LET keyword. To
illustrate the problem, let us examine the following
valid Atari BASIC linel

NUMBER = 7

Because NUM is a valid BASIC XL statement name, it
will now be seen by our syntax parsers as thisl

NOM BER-7
That is, it is seen as a NOM command with a starting
line number of (BER-7). Since you probably don't
have a variable named BER in your program, BER will
not equal 7, so the statement becomes the equivalent
of simply

NUM 9
which is certainly not what was intended.

In most cases, 'variable name conflicts such as this
will result in a syntax error. In this particular
case (and a few others), the result appears valid to
BASIC XL so no syntax error results. How can you
detect such problems easily? The easiest way is to
examine the LISTed form of the program. Since BASIC
XL always lists a space after every keyword, and
since all keywords and variables are listed in lower
case except for the first letter, it is often easy
to spot discrepancies of this form.

--131--

In any case, the intent of the original Atari BASIC
program can always be accomplished by simply placing
the LET keyword in front of the offending variable,
thusly: .

LET NUMBER=?

In the case of array variables, the situation is
both simpler and more complex. Only those variables
which have EXACTLY the same name as a new BASIC XL
function (such as BUMP or RANDOM) will be in
conflict, so the number of offending names is much
smaller. However, the only fix that can be made in
these cases is to change the name of the variable,
usually by simply adding a single character (e.g.,
change BUMP to BUMPS).

2. Upper and Lower Case, Inverse Video

Again, these problems will never occur with programs
SAVEd in Atari BASIC and LOADed under BASIC XL.

In order to make keyboard entry more flexible and
more consistent, BASIC XL allows you, the
programmer, to type your programs in with upper case
letters, lower case letters, or even inverse video
characters. BASIC XL accomplishes this by simply
changing all such characters to their conventional
normal video, upper case counterparts, excepting
ONLY those characters enclosed in quote marks.

The only times that this makes any difference at all
are (1) when the user types in a string and does not
terminate it with a quote mark and (2) in DATA and
REM statements where the user really ~esired the
lower case or inverse characters. In either case,
enclosing the desired characters in matching quotes
will solve the problem (recall that BASIC XL
supports quoted strings in DATA statements).

However, BASIC XL also provides a means of
completely emulating Atari BASIC in this regard,
should you wish. Simply use the command

SET 5,0
and all characters wil~ remain unconverted. This is
also handy when ENTERing programs LISTed from Atari
BASIC.

\

This same SET has a secondary effect: when
non-converting, upper case only entry is selected,
then all LISTings will be in upper case only. This
allows the BASIC XL user to LIST programs which will
be compatible with Atari BASIC's ENTER capability
(providing, of course, that no advanced statements
or functions were used in the code).

--132--

(

(

(

3. Programs Which RUN Too Fast

Of course, the fact that your programs will run
faster is probably one of the primary reasons that
you bought BASIC XL. And, generally, the speed-up
provided is only beneficial.

A few programs, though, will depend on timing loops,
etc., to run properly. There is no real "cure" for
this ·problem". Hopefully, you will be able to play
the faster games and/or read the faster messages.

A related problem has to do with the fact that BASIC
XL always automatically executes a FAST command
whenever it encounters a statement of the form

RUN filename
(that is, ONLY when a filename is given in
conjunction with RUN).

Many programs which run only somewhat faster with
normal BASIC XL will run much, much faster when the
FAST command is given. You may really find yourself
with a game which is simply too fast to play.

(

(\

4.

There are two solutions. The first is simply to
LOAD the program first and then issue a separate RUN
command. If, however, you have an auto-booting diSK
or a program which chains to another program via
RUN, this is not a practical solution. The second
solution, then, is to simply hold down the SELECT
button when the RUN is executed (which may imply
holding the button for a while when an auto-booting
diSK is started). BASIC XL allows this usage of
SELECT as a means of telling it to slow down.

Memory Locations

BASIC XL attempts to conform to all memory location
usage published in any or all of the following
books:

Atari BASIC Reference Manual, by
Atari, Inc.

Operating ~ystem Source Listing,
for Atari 400/800, Atari, Inc.

'(except that locations SIN, COS,
ATAN, and SOR are incorrect, even
for Atari BASIC)

De Re Atari, by Chris Crawford, et al

Mapping the Atari, from COMPUTEI Books

Master Memory Map, by Educational
Software, Inc.

--133--

A few programs written by extremely knowledgeable
individuals have, in the past, made use of ORe or
more of the following unpublished facts about Atari
BASIC:

(1) Atari BASIC uses certain memory locations only
at certain times. (2) Certain zero page memory
locations have special meanings to Atari BASIC. (3)
Certain subroutines, internal to Atari BASIC, are
located at certain addresses.

Obviously, it was impossible to add the features and
speed to BASIC XL which we did without adding code
and making more use of the memory reserved for
BASIC. Although we attempted to keep the changes to
an absolute minimum, we cannot possibly be
responsible for maintaining compatibility with
programs which use such undocumented and unpublished
information.

May we remind you of the memory locations and map
which we presented in Appendices Band C. We invite
comparison of these with Appendices 0 and I in the
Atari BASIC Reference Manual. All usage is
compatible.

Finally, for those who are experienced programmers,
we present here a list of all zero page locations
which ARE used in the same way by both Atari BASIC
and BASIC XL. Only addresses are given. Refer to a
memory map book or The Atari BASIC Sourcebook
(published by COMPUTE I Books) for descriptions of
the locations' uses.

(

$80 to $92
$B6 to $B8
$C2 to $C3
$02 to $FF

$94 to $B3
$BA to $BB
$C8 to $C9

CAUTION: Some of these locations may be used by
BASIC XL for additional purposes, beyond (but
compatible with) the usages of Atari BASIC. These
additional purposes may imply use of the locations
at times when they .were unused by Atari BASIC or
even use of certain bits left unmodified by Atari
BASIC. It is suggested that the user should not
modify these locations, though he might profitably
use the information they contain. Additionally, OSS
reserves the right to change usage of these
locations if necessary for future corrections or
improvements, though you may safely assume that
those locations mentioned in "Mapping the Atari"
will remain unchanged.

--134--

(

(

(

(

5. AUTOMATIC STRING DIMENSION

BASIC XL automatically dimensions strings to 49
characters. Again, this should have no effect on
currently running Atari BASIC programs. If desired,
you can use

SET 11,9
to ensure total compatibility.

6. INDENTED LISTINGS

When BASIC XL lists a program, it automatically adds
indentation for FOR••• NEXT loops (and other control
structures). This could only be a problem with long
lines LISTed to disK and then re-ENTERed into BASIC.
Again, you may use

SET 12,9
to ensure compatibility and remove the indenting.

--135--

