
a reference manual for

B u G I 6 5

an Assebly Language Debugging program for
use with 6502-based computers built by

Apple Computer, Inc., and Atari, Inc.

The programs, disks, and manuals comprising
DUG/65 are Copyright (c) 19R2 by

McStuff Company
and

Optimizen Systems Software, Inc.

This manual is Copyright le) 1902 by
Optimized Systems Software, Inc., of
10379 Lansdale Avenue, Cupertino, CA

Rev 1.1

All rights reserved. Reproduction or translation of
any part of this work beyond that permitted by sections
107 and 108 of the United States Copyright Act without

the permission of the copyright owner is unlawful.

ERRORS IN YOUR BUG/65 MANUAL

Unfortunately, due to a mistake by the company which prints our manuals, the BUG/65
portion of your DOS XL manual does not completely match your software. It describes
an older version ·.-1hich had fewer features. Luckily, the only changes are enhancements
to the system, and only involve a few pages. This sheet will describe those new
f eat•Jres.

l. The revision number printed on the title page of your BUG/65 manual should be 2.0,
not 1.1.

2. BUG/65 normally protects itself from modification (by the Sor A commands, for
example). P:l<Je 37 of your 11anual describes how to turn off this protection by
modifying the PROTFG flag. We have added t·.;o new commands, however, to make it
easier to turn on and off BUG's memory protection. The N command will turn
off the protection (i.e., No protection). The 0 command turns back On the
protection.

3. Page 24 of your manual describes how to read sectors of a disk using the Ri
command. This command has been changed, however, to allow reading of either
single- or double-density sectors. If you want to read from a single-density
diskette, use R', instead of R%. Use R•, correspondingly, for double-density
c;ectors.

4. Similarly, page 28 of your manual describes using the W% command to write sectors
to a disk. Again, use W' for single-density diskettes, and w• for double-density
diskettes.

5. Completely ignore page 45 of your manual. The current version of BUG/65 will work
properly with OS/A+ version 4 without applying any patch program.

PREFACE

BUG/65 is an interactive debugging tool for use in the
development of assembly language programs for the ATARI
800 or ATARI 400 personal computers. It's designed to
take as much of the <lrudgery out of assembly language
debugging as possible. The design philosophy behind
BUG/65 is that the computer should serve as a tool in
the debugging process as opposed to a hindrance. One
result of this philosophy is that BUG/65 requires a
relatively large amount of memory when compared to
simpler <lebug monitors. This is the result of a
tradeoff between memory and functionality, with
function winning out.

BUG/65 is a RAM loade<l machine language program
occupying 8K of memory; it is self relocatable as
shipped and requires a full 48K bytes of memory .
BUG/65 is also designed to be floppy disk base<l it
isn't intended to be used in cassette-only systems.
BUG/65 was designed for use by an experienced assembly
language programmer.

BUG/65 is an original product of the McStuff Company,
which ileveloped the product under the name "McBUG",
which name is their trademark.

For use on the ATARI A00 or 400 computer with a
minimum of 48K of RAM and one floppy disk drive.

TRADEMARKS

The following trademarke<l names are useil in various
places within this manual, and credit is hereby given:

OS/A+, BUG/65, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Apple, Apple II, and Apple Computer(s) are trademarks
of Apple Computer, Inc., Cupertino, CA

Atari, Atar 400, Atari 800, Atari Home Computers, and
Atar 850 Interface Module are trademarks of
Atar , Inc., Sunnyvale, CA.

TABLE OF CONTENTS

Summary of Major Features

Section 1 Command Summary

Section 2 Notation used, syntax

Section 3 Address Parameters
3.1 Spaces as Delimiters

1

2

4

5
6

Section 4 -- Loading and Running BUG/65 7

Section

Section

Section

4.1 Specifying BUG/65's Loadpoint Address 7
4.2 Creating a Non-Relocatable Version 8

5 --
5.1
5.2
5.3
5.4

6 --
6.1
6.2
6.3
6.4
6.5
6 . 6

7 --
7. l
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7. ll
7 .12
7.13
7.14
7 .15

Command Entry
Conunand Line Editing
Normal and Immediate Commands
Command Execution
Multiple Commands on a Line

Command Termination
Normal Termination
Error Termination
Command Suspension
Command Abort
The RESET Key
Manual Restart

Detailed Command Descriptions
A l\SCII memory change
B set relocation Ras e
C Compare memory blocks
D Display Memory
E Execute command file
F Fill a memory block
G Go to user program
H Hexadecimal arithmetic
I disk Inventory (d irecto ry)
J create command file
K convert hex to d e cimal
L Locate hex string in memory
M Move memory block
P select output (Printing) device(s)
Q Quit (to OS/A+)

(continued)

9
9

11'1
10
11

12
12
12
12
12
13
13

14
15
16
17
18
1A
18
19
20
21
21
21
22
22
23
23

TABLE OF CON'rENTS (continued)

Section 7 -- Detail en Command Description (continu•'!n)
7.16 The read comman<ls 24

7.16.1 R -- Read binary file 24
7.16.2 R% -- Read se~tor 24

7.17 S Substitute (change) memory 25
7.18 T Trace user routine 26
7.19 U call User subroutine 26
7.20 V Verify user registers 27
7.21 The write commands 28

7.21.1 W -- Write binary file 28
7,21.2 W% -- Write sector 28

7.22 X change user register values 29
7.23 Y -- disassemble memory block 30
7.24 Z -- instant assembler 31

Section 8
8. 1
8.2
8.3

Section 9

Section 10
10. 1

Section 11

Section 12
12.1

Section 13

Appendix A

Special Command ModifiP.rs
Return key
/ repeat command line forever

display last command line

Memory Protection

Memory Usage
Page Zero Sharing

Customization, Configuration

User Command Interface
User Command Handler Example

Error Messages

Use of BUG/65 with OS/A+ Version 4.l

33
33
33
33

34

35
35

36

38
41

43

45

SUMMARY OF MAJOR FEATURES OF BUG/65

* A full set of debugging commands change
memory, display memory, goto user program with
break points, etc.

* Binary file read and write, including appended
write.

* A disassembler.

* An instant
capability.

assembler providing labeling

* Expanded command addressing capability: hex or
decimal addresses, + and - operators supported,
relocated addresses supported.

* Read or write disk sector(s).

* Multiple commands permitted in a command line.
Command lines can be repeated with a single
keystroke or repeated forever with the special
slash opera tor.

* Support for relocatable assemblers - the base of
a module can be specified and then used to
reference addresses in that module.

* BUG/65 commands can be executed from a command
file, and there is a command to create command
files.

* Hex to decimal and decimal to hex conversions
provided.

* Memory protection of BUG/65's code and data.

*

BUG/65 won't allow you to use a BUG/65 command
that will destroy any part of BUG/65 itself.
For example, you can't use the Fill command to
overwrite BUG/65's code.

Page zero sharing.
a user program by
shared page zero
and one for BUG/65

BUG/65 shares page zero with
keeping two copies of the

locations - one for the user
itself.

--1--

SECTION 1 : COMMAND SUMMARY

This section is i.ntenc'led to be a hanc'ly reference gui<ie
anc'l will probably prove inc'lispensable after the user
has thoroughly read through the rest of this manual.
For the experiencec'l debug user, might we suggest at
least a quick perusal of Sections 2 through 6 and
Sections 8 and 9.

The following table is simply a syntax summary of the
available commands. Excepting for the first three
commands (which are c'lescribed in Sertion 8), all the
commands are described in alphabetical or<ler in Section
7.

COMMAND
CODE

{RETURN)

I

A

B

c

D

E

F

G

H

I

J

K

SYNTAX

A <ac'ldr>)S

B <addr>

PURPOSE

Repeat last command line

When appenc'led to a commanc'l
line: repeat line forever.

Display last command line

Ascii moc'le memory change

Base ac'ldress for relocation

C <startaddrl> <endaddrl> <startaddr2>
Compare memory blocks

D <startaddr> f<endac'lc'lr>] Display memory

E #filespec Execute a command file

F <startaddr> <endaddr> [<value>]
Fill memory block with value

G ~<startadc'lr>] [@<breakpoint> [Rn=<value>] [!=<count>]

H <number!> <number2>

I

J #filespec,string

K <number>
--2--

Go at adnress, set optional
breakpoint, with optional Register
value breakpoint and pass Counter.

Hexadecimal arithmetic result

disk Inventory (directory listing)

create command file

convert hex to decimal

L L <startaddr> <endaddr> <bytel> [<byteN> •..]
Locate byte string in memory
block

M M <startaddr> <endaddr> <toaddr>
Move memory block

P P rs] fp~ Print output on Screen and/or
Printer

Q Q Quit • .. go to OS/~+

R R f<offset>] #filespec Read a binary file to memory
with optional offset

R% R% (<sectornumber> [<bufferaddr> [<numsectors>J J J

s S <addr>)S

Read sector(s) from disk to
memory buffer.

Substitute memory,
mode

numeric

T T [SJ (<count>] Trace, with optional Skip
over subroutine calls, for
(optional) count instructions

U U <addr> [<param>] call User routine at given
address and pass optional
parameter in X,Y registers

V V View user registers

W W [:A] <startaddr> <endaddr> #filespec
Write a block of memory to a
binary image file, optionally
appending instead of creating
new file.

W% W% [<sectornumber> [<bufferaddr> [<numsectors>] 1]
Write sectors from memory
buffer to disk

X X~ or XX or XY or XS or XP or XF
change user register value

Y Y <startaddr> [<endaddr>]
disassemble memory block

z Z <addr>~ instant assembler lat address)

--3--

< ••• >

SECTION 2: Notations Used In This Manual

The following notations are used in this manual:

Is used to indicate a numerical address
parameter. The address expression between the
two characters"<" and ">" may be any valid
address as described in Section 3. For example,
<START> means that you can enter any valid
address expression to specify the START
parameter.

~ Is used to indicate one and only one blank. In
most cases, blanks are insignificant and any
number of them may be entered between commands
and parameters. However, in certain cases, one
and only one blank must be entered - this blank
is indicated by the "~" character.

~ ...] Is used to specify an optional parameter. For
example, (<VALUE>] would indicate that VALUE is
an optional address parameter. You'll find that
many parameters are optional, and in such cases
logical default values will be supplied by
BUG/65.

or Is used to delimit a list of choices. In such a
list, one and only one choice may be used. For
example, "+ or -" indicates that you may enter a
plus sign or a minus sign, but not both.

filespec Is used to indicate a standard OS/A+ filespec.
This consists of the device name followed by a
colon and the filename. For example,
"D: DATAFILE" is a valid filespec for a file
named DATAFILE on disk drive one.

--4--

SECTION 3: Address Parameters

BUG/65 allows numerical addresses to be specified in a
variety of ways. You can use hexadecimal or decimal

notation, add and subtract terms, or add a relocation
factor to any address. The following Backus-Naur
definitions describe the various address types:

<ADDR> :• + or - <TERM> [+ or - <ADDR> J

<TERM> : = <NUMBER> or X<NUMBER>

<NUMBER> := <DECNUM> or <HEXNUM>

<DECNUM> := .<DECIMAL DIGITS>

<HEXNUM> := <HEXADECIMAL DIGITS>

In the above, the only item not literally defined is
the "X" item in the definition of a TERM. This is used
to indicate that the following NUMBER is to be
relocated by adding the value of the current relocation
base to the value of NUMBER. The current relocation
base is set by the "B" command.

All address parameters are interpreted as 16-bit
positive numbers in the range of 0 to 65535. Overflow
isn·• t detected or reported as an error.

Some examples will help (all of these are valid address
expressions) :

lFAl

. 100

1000+.20

1+2-3+4

Xl234

a hexadecimal number.

a decimal number (one hundred) •

a hexadecimal number plus a decimal
number. This evaluates to 1014 hex
(4116 decimal).

a long expression. Evaluates to 4.

a relocated address. If the current
relocation base has the value $100A,
then this expression will evaluate
to $2234.

--5--

3.1 Spaces as Parameter Delimiters

BUG/65 uses spaces as parameter delimiters.
for easier and quicker entry of commands.
does introduce some conventions regarding
spaces that you must be aware of:

This makes
However, it

the use of

..

*

..

Spaces may not be embec'lded in a number. For
example, "12 34" is interpretec'I as two
parameters ($12 and $34) and not as the single
parameter $1234.

Spaces aren't allowed between the "X" relocation
specifier and it's associated relocated address.
For example, "X 12 34" is interpreted as two
parameters. The first will have the value of
the current relocation base and the second is
$1234 .

Any number of spaces may be
parameters. For example,
perfectly valid way of
parameters $1234 and $5678.

--6--

used to separate two
"1234 5678" is a

entering the two

SECTION 4: Loading and Running BUG/65

BUG/65 is shipped on your master diskette as a
relocatable COMmand file, named "BUGGS.COM".
Therefore, BUG/65 functions just as does any OS/A+
extrinsic command: simply type "BUG65" when OS/A+
prompts with 01: (or On: if you have changed default
drives .•. see the OS/A+ manual for more details) and
BUG/65 will load into memory and relocate itself to
just above the current value of LOMEM (contents of
$2E7-$2E8).

4.1 Specifying BUG/65's Load Address

If you need BUG/65 to load at some location other than
LOMEM (which is typically around $2000 with OS/A+
version 2 and around $2C00 with version 4), you may
also enter a load address on the OS/A+ command line.
The address must be in hex, must be at or below $9A00,
and should be above LOMEM. Remember, BUG/65 occupies
BK bytes, which means it will occupy memory starting at
the address you give and ending $2000 bytes higher.

EXAMPLE:
[Dl:)BUG65 8000

This usage will load BUG/65 at $8000, set its
restart point at $8200, and occupy memory
from $8000 through $9FFF.

--7--

4.2 Creating a Non-Relocatable Version

In order to allow itself to be relocated virtually
anywhere in memory, BUG/65 as shipped includes a
relocation bit map and a relocation program. In
addition, relocatable BUG/65 always loads in at
locations $9800 through $BC00. If these addresses are
"poison" to you (e.g., if you want to use BUG/65 with a
cartridge plugged in), you may wish to produce a
non-relocatable version designed to run within an
address range you pick.

If so, USING A 48K SYSTEM, simply specify the
loadpoint, as shown in the preceding section (e.g, via
"BUG65 7000") and allow BUG/65 to load and relocate.
Then exit to OS/A+ (via Quit) and use the OS/A+
intrinsic command SAVE to save a non-relocatable
version. The address range to be SAVEd may be
calculated as follows:

SAVE filename.COM loadpoint+$200 loadpoint+$2000

Thus, if you had specfied "BUG65 7000", you could save
the non-relocatable version via

SAVE BUG7000.COM 7200 9000

thus also giving it a name
where it will load at. To
version, simply type in
example shown).

which will later remind you
execute this non-relocatable
its name (BUG7000 in the

--s--

SECTION 5: Command Entry

When you see BUG/65's input prompt (the ">" character)
in the left-hand column of the screen, then you're in
command entry mode . Any data typed at that point will
be entered into the command line buffer - the command
line isn't executed until you type RETURN. You can
enter as many commands in one command line as will fit
in the command line buffer (100 characters). As soon
as you type the RETURN, you'll leave command entry mode
and BUG/65 will begin executing the command(s) in the
command line.

You can tell the difference between command entry mode
and command execution mode. In command entry mode, the
cursor is displayed. When a command is executing, the
cursor is blanked . If you try to enter more than 100
characters in the command line, BUG/65 will beep the
bell and not allow any more ch~racters to be input. At
that point, you may either hit RETURN to execute what's
in the command line so far, or edit some characters out
of the command line with the BACKSPACE key.

5 . 1 Command Line Editing

When entering commands, you may edit mistakes with the
BACKSPACE key. The BACKSPACE will move the cursor one
column to the left and delete whatever character was in
that column. Unfortunately, the normal system editing
facilities aren't supported. This is because of the
manner in which BUG/65 does keyboard input.

--9--

5.2 Normal and Immediate Type Commands

BUG/65 has two types of commands normal and
immediate. Normal commands are those that don't
require interaction with the operator for their
execution. Immediate commands do require operator
interaction. Normally, you'll never be aware of the
distinction between the two types command entry
"flows" without any consideration of the comman<i type
required. The only difference is that an immedi~te
command must be the first command entered in a command
line. Once an immediate command is entered, BUG/65
will begin interacting with the operator for further
input. Since this interaction is required for
completion of the command, it doesn't make sense to
allow immediate commands to be "stacked" in the middle
of a command line for execution between other commands.
If you try to enter an immediate command in the middle
of a command line, you'll get an "IMMEDIATE ERROR"
error message and find yourself back in the command
entry mode.

The immediate commands are the "A" command (ASCII
memory change), the "S" command (hex memory change),
the "X" command (change user registers), and the "Z"
command (instant assembler).

5.3 Command Execution

For a normal type command, BUG/65 will begin command
execution as soon as you type RETURN. For immediate
type commands, BUG/65 will begin command execution as
soon as you type the command character (provided that
character is the first character in the command line).

--10--

5 . 4 Multiple Commands on a Line

Multiple commands may be entered on the same command
line. Normally, successive commands in the command
line don't require command separators between them
other than at least one space character. The
exceptions to this are commands for which an optional
parameter is being defaulted. For example, the display
memory command ("D") may have an optional parameter
specified as the end of the area of memory to be
displayed. If that ending parameter isn ' t specified,
BUG/65 will default the end to the start plus eight
bytes. If you wanted to enter two successiv e display
commands in the command line without defaulting the end
parameters, you could type

D 1000 1010 D 2000 2010

and no command separators would be required because
BUG/65 knows that the "D " command only has two
parameters and will interpret further characters in the
command line as the beginning of a new command.
However, if you wanted to default the ending address of
the first display command, then you'd have to insert a
command separator so that BUG/65 knows that the first
display command is finished. If you didn't do this,
then the second display command "D" would be
interpreted as the second parameter of the first
display command (the end address would be interpreted
as $00. The command separator is a comma, so in this
case you would enter the commands as follows:

D 1000, D 2000 2010

--11--

SECTION 6: Command Termination

This section describes the many ways that a command
will stop.

6.1 Normal Termination

Once a command line is given to BUG/65 for execution,
BUG / 65 will execute all of the commands in the line to
conclusion before returning to command entry mode.
It's possible to instruct BUG/65 to execute a commanrl
line "forever" (see Section 8.2), in which case BUG/65
will never come back to command entry mode until you
manually intervene (with ESC or BREAK - see Section
6.4)

6.2 Error Termination

If an error occurs in command execution, BUG/65 will
beep the bell and display a short error message in
English indicating the cause of the error. Commanrl
execution will stop and you'll enter the command entry
mode. Any commands in the command line after the
command which caused the error won't be executed. (You
should also be aware that BUG/65 will close any file
that has been opened using IOCB number one when any
error occurs.) {A complete list of error messages is
in Section 14.)

6.3 Command Suspension

Once BUG/65 begins executing a command line, you may
temporarily suspend command execution by hitting the
space bar. This will put BUG/65 in a "hold" condition,
at which point you have two alternatives: you can
restart the command by hitting the space bar again, or
you can abort the command with ESC or BREAK.

6.4 Command Abort

You can abort any command that is executing (except for
the read and write disk commands) by hitting the ESC or
BREAK keys. BUG/65 will stop executing the command and
you'll enter command entry mode.

--12--

6.5 The RESET Key

BUG/6S traps the RESET key so that hitting RESET will
bring you back to BUG/6S. RESET will stop any command
that is executing. You'll see the BUG/6S version and
copyright prompt, and you'll be in command entry mode.
RESET will reset all of BUG/6S's internal stuff except
for any user defined or modified parameters. For
example, the user's registers, the current relocation
base, etc., aren't cleared on a RESE·r - they'll retain
whatever values they had before the RESET. (All of
this depends, however, on the fact that the reset
vectors haven't been modified by the user - either by
using a BUG/6S command or by a user program. If you've
modified the reset vectors, then the action of the
RESET key is your responsibility.)

G.G Manual Restart

Since BUG/GS is relocatable, the manual restart point
(coldstart) depends upon where it has been relocated
to. If you specified an address to load BUG/6S when
you gave the OS/A+ command line (e.g., BUGGS 4000),
then the coldstart point is $200 greater than the
address specified, and you may use 'RUN address' from
OS/A+ if desired (e.g, RUN 4200 if the original command
was BUGGS 4000). In any case, you may inspect location
$000C (via the BUG/GS command 'DC') to determine the
coldstart point. The GS02 word address in locations
$0C and $00 (LSB, MSB order) points to BUG/GS's restart
point. The result of a manual restart is the same as
if the default RESET key processing occurred (see
section G.S).

--13--

SECTION 7 : Command Descriptions

Throughout the descriptions of the commands, comments
are sometimes presented in the command line examples.
These are denoted by the characters "* /". Anything
appearing on a line after these characters is a comment
and is NOT part of the command line being exemplified.

The commands are presented in alphabetical order.

--14--

7.1 A - Change Memory, ASCII mode

A <ADDR>]6

The A command allows you to replace the contents of
memory bytes beginning at location <ADDR> with ASCII
characters. As soon as you type the required space
character after the address, BUG/65 will prompt you
with the current contents of the memory location at
<ADDR>. Those contents will be displayed as an ASCII
character. At that point, you have the following
options:

1. Typing a SPACE will cause the current memory
location to be skipped and the contents of the next
memory location to be displayed.

2. Typing an UNDERLINE will cause the current address
to be decremented by one. The new address is then
displayed on the next line of the screen followed by
the contents of the new memory location.

3. Typing a RETURN will cause
current memory location to be
line of the screen followed by
current location.

the address of the
displayed on the next
the contents of the

4. Typing ESC will get you out of the command and back
into command entry mode.

5. Typing any o::haracter other than "@" will cause the
ATASCII value of that character to be entered into
memory at the current address. The address is then
incremented by one and the contents of the new
memory location are displayed.

6. Typing the character " @" causes the next character
typed to be entered into the current memory location
as its pure ~TASCII value without any of its control
character significance. For example, typing "@ ESC"
will insert the ATASCII value for ESC into memory.
The address is then incremented by one and operation
continues as in 5. above.

After you exercise any option except option 4., BUG/65
will again prompt you with the contents of the current
location and you may then choose from any option again.

--15--

7.2 B - Set Relocation Base

B <ADDR>

The B commann will set the value of the relocation base
to ADDR. The relocation base is intended for use with
relocating assemblers. In a relocatable environment,
listings typically are addressed from location zero.
When a module to be debugged is subsequently loaded
into memory, it will have a relocation offset added to
the addresses in the listing. The B command allows you
to set the relocation base to the load address of the
module you're working on and then to reference
addresses within the module by simply prefixing each
address expression with the relocator symbol "X". For
example, suppose that a relocatable module is loaded at
location $5380 in memory. Suppose further that we want
to display the contents of a memory location which is
$230 from the beginning of the module. The following
commands would do the job:

B 5380, D X230

The world isn't overrun with relocating assemblers for
the ATARI. However, until it is, the B command has
other useful. applications. These take advantage of the
fact that the relocation base value is a variable which
can be modified during command execution. For example,
suppose you know that the string of characters "ABCD"
is stored somewhere on a diskette and you want to find
the sector that contains it. The following commands
will do the trick:

B l

D X, R% X 4000 1, L 4000 407F 41 42 43 44, B X+l/

--16--

This uses some commands not introduced yet, but this is
what happens: First, X is set to 1 with one command
line. Then a second command line will display memory
at the location X (so you'll know where you're at as
you step through), read sector number X into memory
locations $4000-$407F, locate the string "ABCD" in that
sector buffer, then bump X by one for the next sector.
The slash at the end of the command line means that the
ccmmand line will execute forever. What will happen is
that BUG/65 will continuously read diskette sectors.
For every sector read, you'll see at least a memory
display of eight bytes beginning at address X (which is
the sector number). If the Locate instruction finds
the string "ABCD" in the sector buffer, it wi 11 display
the location of the string. At that point, just hit
ESC to stop the command, and display the value of X ("O
X RETURN"). The sector containing the string will
either be the value of X or one before it, depending on
how fast your ESC was.

7.3 C - Compare Memory Blocks

C <STARTBLOCKl> <ENDBLOCKl> <STARTBLOCK2>

Compare is used to compare the contents of two blocks
of memory. The block of memory beginning at
STARTBLOCKl and ending with ENDBLOCKl is compared to
the same size block beginning at STARTBLOCK2. If both
blocks are the same, then there will be no output. If
any bytes in the blocks differ, then BUG/65 will
display a line of data in the following format for
every byte that is different:

BB CCCC DD

where A.AAA = the hex address of
in the first block, BB = the hex
AAAA, CCCC = the hex address of
in the second block, and DD
location CCCC.

--17--

the differing location
contents of location
the differing location
the hex contents of

7.4 D - Display Memory

D <START> [<END>]

The D command displays the contents of t~e memory block
beginning at START and ending at END. If END isn't
specified, then the <lefault value of START+? is use<l.
The memory block is displayed in the following format:

AAAA BB BB BB BB BB BB BB BB cccccccc

where AAAA the hex address of the first byte in this
line, BB the hex contents of successive memory
locations beginning at location AMA, and c = the ASCII
character interpretation of the positionally
corresponding BB value of the byte.

7.5 E - Execute a Command File

E #filespec

The E command is used to execute a command line from a
command file. The file specified by filespec must
consist of a line of BUG/65 commands an<l parameters and
must be ended with an ATASCII EOL character ($9B).
9UG/65 will only execute one command line from a
command file and then it will stop reading the file.
Command files can be chained however, so that the last
command in one file can execute another command file.
An E command should be the last command in a command
line because any commands after the E in the line won't
be executed.

7.6 F - Fill a Memory Block with a Value

F <START> <END> (<VALUE>]

The F command will fill the block of memory beginning
with START and ending with END with VALUE. If VALUE
isn't specified, then zero will be used. Note that
VALUE is a byte value - the least significant byte of
the 16-bit VALUE will be used for the fill.

--18--

7.7 G - Goto a User Program

G (<START>] (@<BRKPOINT> [RN=<VALUE>] (I=<COUNT>J J

The G command will execute a user program beginning at
START. If START isn't specified, then execution begins
at the current value of the user's PC register.
BRKPOINT is an optional breakpoint. If the user's
program trys to execute the instruction at BRKPOINT,
the program will break back to BUG/65 and BUG/65 will
display the contents of the user's registers at that
point. Examples:

G 1000 /* go at location $1000, no breakpoint

G @4300 /* go from wherever our PC was and
break at location $4300 */

A breakpoint may be conditionally qualified by a
required value in a specified register. "RN=<VALUE>"
will tell BUG/65 to break at that point only if the
value of user register "N" equals V.!\.LUE. If that
condition isn't met, then the user's program is allowed
to continue executing at the location of the
breakpoint. (The instruction that was at the
breakpoint location WILL be executed.) The mnemonic
names of the registers that may be specified for "N"
are: A, X, Y, S, and F, which stand for the user's A,
X, Y, Stack, and Status (flags) registers respectively.
(Note that only the least significant byte of VALUE is
used for this qualification.)

Example:

G 1000 @1422 RX=33

/* go from location $1000 and break at
location $1422 only if register X
equals $33 */

A breakpoint may also be qualified with an iteration
counter. "I=<COUNT>" tells BUG/65 to allow the
execution of the instruction at the breakpoint COUNT
times before breaking.

Example:

G 1000 @2300 I=2

/* go from location $1000 and break
the second time we hit the instruction
at $2300 */

--19--

The register and iteration qualifications may be uscr1
together. In this case, the register condition must be
met before the iteration counter is decremented. As in
the following example:

G 10~0 @1234 RA=50 1=3

/* go from location $1000 and break
the third time the instruction at loc
ation $1234 is executed with register
A equal to $50 */

All of this flexibility isn't without its price,
however. Because BUG/65 has to do quite a bit of
evaluation at every breakpoint before deciding if the
break condition has been met, don't expect to be able
to conditionally pass through breakpoint instructions
at real-time speed. As long as you never execute the
instruction at the breakpoint, you're OK, but as soon
as BUG/65 gets the break, expect several hundred
instructions to be executed before your program is
given back control after the break isn't met.

Also, BUG/65 was NOT designed to allow breakpoints in
PROM resident code. If you attempt to set such a
break point, or if you try to set a breakpoint at a
non-existent memory location, you'll get a "BREAKPOINT
ERROR".

One other thing. BUG/65 will automatically remove
breakpoints from your program after a break occurs .
Breakpoints aren't left set after the break is
performed.

7.8 H - Hexadecimal Arithmetic

H <NUMBERl> <NUMBER2>

The H command will calculate the sum NUMBERl + NUMBER2
and the difference NUMBERl - NUMBER2 and display the
results on the next line of the screen as two hex
words. The sum is the first word displayed, the
difference is the second.

--20--

7.9 I - Display Disk Directory

I

The I command will display the directory of the
diskette in drive one. The display can be suspended or
halted with the SPACE or ESCAPE keys respectively.

7.10 J - Create a Command File

J #filespec, string

The J command allows you to create command files for
execution by the E command. The string in the command
is any string of valid BUG/65 commands. The string
will be written to the file specified by filespec in
the format expected by the E command. Please note the
comma after the filespec - it's required, else BUG/65
won't know where your filespec stops and your command
string starts. Also note that the J command doesn't
allow multiple commands in the command line to be
executed after the J command - everything in the line
after the filespec and up to the RETURN is written to
the file instead of being executed.

7.11 K - Convert Hex to Decimal

K <NUMBER>

The K command will convert NUMBER to a decimal number
and display the result on the next line of the screen.
NUMBER can be any valid address expression .

To convert decimal to hex, just display memory at the
decimal location of the number you want to convert.
The hex equivalent of the decimal location appears in
the display output as the hex word on the beginning of
the line. For example, to convert 1000 decimal to hex,
just execute the command "D .1000". You'll see the hex
conversion of 1000 as the first hex word on the next
line.

--21--

7.12 L - Locate a Hex String

L <START> <END> <BYTEl> <BYTE2> • , , <BYTEn>

The L command will search the block of memory beginning
at START and ending at END for a hex string. The hex
string is defined by BYTEl ... BYTEn, which are
interpreted as the hex bytes of the pattern string.
(Only the least significant bytes of the address values
are used for each byte in the string.) Wildcard bytes
which will match any byte in memory may be specified by
the character "*" in the string. BUG/65 will output
the addresses of every occurrence of the string found
in the block. For examples:

7.13

L 1000 10FF 41 42 43

/* will locate any occur- rences of
the string "ABC" in the memory block
$1000 to $10FF */

L 1000 2000 10 * 20

/* will locate any occur- rences of a
three-character string which begins
with $10 and ends with $20 in the
memory block $1000 to $2000 */

M - Move a Memory Block

M <START> <END> <TO>

The M command will move the block of memory beginning
at START and ending at END to TO. BUG/65 will take
care to handle overlapping moves correctly, either for
moves up or down.

--22--

7.14 P - Select Output Devices

P [SJ [P]

The P command is used to select output to either the
screen ("S") or the printer ("P") or to both ("SP"),

For example:

p s

p p

p s p

p

/* turns screen output on,
printer output off */

/* turns printer output on,
screen output off */

/* turns both screen and
printer output on

/* turns both outputs off
commands will still be
accepted and executed, you
just won't see their entry or
output anywhere. */

In addition to allowing you to list BUG/65 results to
the printer, this command was designed to allow you to
debug the generation of intricate screen displays
without having the outputs of BUG/65 commands scroll
your display off the screen. It is a little crude, and
might have a few problems depending on what your
program has done to OS, but is handy to have in
emergencies. (The LFFLAG and NULFLG bytes in the
Configuration Table can help you here - see section
11.)

7.15 Quit to OS/A+ command

Q

The Q command will coldstart DOS. The results are
essentially the same as when you power-up the machine.

--23--

7 .16 Read Commands

7.16.l R - Read a File

R (<OFFSET>] #filespec

The R command is used to load binary files. If OFFSET
is specified, then OFFSET is added to the load
address(es) specified in the file, and the data will be
loaded at the loading point(s) plus OFFSET. This
allows you to load a file into a different memory
location than where it is origined at. After the file
is loaded, the load starting point specified in the
file is placed into the user's PC register.

BUG/65 supports concatenated binary file sections as
described in the DOS 2.0s manual. If such a file is
loaded using the OFFSET option, however, ALL file
sections will be loaded starting at the load addresses
specified in the file plus OFFSE'r. In addition, the
user's PC register will contain the value of the load
point of the last file section loaded (not plus
OFFSET).

R% - Read Sector(s)

R% [<SECNO> [<BUFFER> [<NOSECS>]]

The R% command allows you to read a sector or a group
of sectors from a diskette in disk drive number one.
SECNO specifies the sector number to be read and
defaults to one. BUFFER specifies the buffer the
sector is to be read into and defaults to BUG/65's
loadpoint plus $2000. NOSECS specifies the number of
sectors to read and defaults to one. If more than one
sector is specified, then consecutive sectors are read
sequentially into memory beginning at BUFFER.

--24--

7 .17 S - Change Memory, Numeric mode

S <ADDR>~

The S command allows you to replace the contents of
memory bytes beginning at location ADDR with numerical
values. As soon as you type the required space
character after the address, BUG/65 will prompt you
with the current contents of the memory location at
ADDR. Those contents will be displayed as a
hexadecimal byte value. At that point, you have the
following options:

1. Typing SPACE will cause the current memory
location to be skipped and the contents of
the next memory location to be displayed.

2. Typing an UNDERLINE will cause the current
address to be decremented by one. The new
address is then displayed on the next line
of the screen followed by the contents of
the new memory location.

3. Typing a RETURN will cause the address of
the current memory location to be displayed
on the next line of the screen followed by
the contents of the current location.

4. Typing ESC will get you out of the command
and put you back into command entry mode.

S. Typing an address value (any valid address
expression) will cause that value to be
entered into memory at the current address.
The address is then incremented by one and
the contents of the new memory location are
displayed. (Only the least significant
byte of the address value will be entered
into memory.)

After you exercise any option except option 4., BUG/65
will again prompt you with the contents of the current
memory address and you may select any of these options
again.

--25--

7.18 T - Trace a User Program

T [SJ [<COUNT>]

The T command will single-step through user program
instructions beginning with the instruction at the
current user PC register. The number of instructions
to be executed are specified by COUNT, which defaults
to one·. If "S" is specified, then all of the
instructions in a subroutine are counted as one
instruction for tracing purposes - the trace is turned
off until return from the subroutine ("S" stands for
"skip the subroutine" J. .l'\fter every instruction
traced, BUG/65 will display the contents of the user's
registers.

Some examples:

T

T 5

TS

/* will execute one instruction and then
display the register contents */

/* will execute five
displaying registers

instructions,
after each

instruction * /

/* will execute 16 instructions. If
of the instructions are JSR's, then
trace will be turned off after the
until the subroutine executes an RTS

any
the
JSR
*/

The trace command can't be use to trace instruction
execution through PROM resident code. Any i'lttempt to
do so, or to trace through non-existent memory, will
result in a "BREAKPOINT ERROR".

7.19 U - Call a User Subroutine

U <ADDR> [<PARAM>]

The U command is used to call a user subroutine at
ADDR. The user routine is passed the optional
parameter PARAM in the X register (low byte) and Y
register (high byte). The user routine should return
to BUG/65 via an RTS instruction. If PARAM isn't
specified, then zero is used.

--26--

7.20 V - Display User's Registers

v

The V command will display the contents of the user's
registers in the following format:

A X Y SP NV BDIZC PC
HH HH HH HH BBBBBBBB HHHll

INSTR
LOA 1000,X

This is interpreted as follows:

A the hex value of the A reg
x the hex value of the x reg
y the hex value of the y reg
SP the hex value of the stackpointer
N the binary value of the negative
v the binary value of the overflow

the binary value of an unused bit

flag
flag
in

8 the binary value of the break flag
D the binary value of the decimal flag

the

I the binary value of the interrupt enable
z the binary value of the zero flag
c the binary value of the carry flag
PC the hex value of the PC reg (This is a

pseudo register maintained by BUG/65.
It contains the location of the next
user program instruction to be executed .)

INSTR = the instruction at the current PC

--27--

bit

7.21 Write Commands

7. 21. l W - Write a File

w [:A] <START> <END> #filespec

The W command is used to write a binary file. Memory
from START to END is written to the file specified by
filespec in the standard OS/A+ binary file format. If
the ":A" option isn't specified, then the data written
will replace the current contents of the file if the
file already exists. If the ":A" option is specified,
then the data is appended to any data already in the
file. A load header consisting of a start and end
address as described in the OS/A+ manual will precede
the appended data.

7. 21. 2 W% - Write Sector(s)

W% [<SECNO> [<BUFFER> [<NOSECS>])]

The W% command is used to write a sector or a group of
sectors to a diskette. SECNO specifies the sector
number to be written and defaults to one. BUFFER
specifies the memory location of the sector data to be
written and defaults to the BUG/65 loadpoint plus
$2000. NOSECS specifies the number of sectors to be
written and defaults to one. If more than one sector
is specified, then consecutive sectors are written
sequentially from memory beginning at BUFFER.

--28--

7.22 X - Change User's Registers

X REGNAME

The X command allows you to change the contents of user
registers. REGNAME is a one-character register name
mnemonic. The allowed register names and their
meanings are:

A A register
X X register
Y Y register
S stackpointer register
P program counter pseudo-register
F status register (flags)

After you type in the name of the
changed, BUG/65 will prompt you
character followed by an equals sign.
you have the following options:

register to be
with that name

At that point

l. Enter the new value for the register. The
new value may be any valid address
expression. After the new value, typing
RETURN will end the command. Or you can type
SPACE which will prompt you with another
register name for possible change. The next
register name is determined by the order of
the above list. For example, if you change
register Y then hit a space after the new
value, BUG/65 will prompt you for possible
change of register s. This prompt list
continues through register F and then wraps
back to register A again.

2. Enter RETURN or ESC to end the command.
BUG/65 will display the new contents of the
registers and then put you back into command
mode.

--29--

7.23 Y - Disassemble Memory Block

Y <START> <END>

The Y command will disassemble instructions in memory
beginning at START and ending at END. The following
conventions are used in the disassembly:

1. Standard MOS Technology mnemonics are used
for opcodes.

2. Illegal opcodes are displayed as "***"·
3. All numeric operands

hexadecimal numbers.
are displayed as

4. Zero page operands will display as two hex
digits, all other non-immediate operands will
display as four hex digits.

5. No operand is displayed for accumulator mode
operands.

--30--

7.24 Z - Instant Assembler

Z <ADDR>~

The Z command allows you to assemble instructions to be
stored in memory at ADDR. Immediately after typing the
SPACE character (or RETURN, which is allowed as well),
BUG/65 will prompt you with the current program counter
value of the instant assembler (which initially will be
ADDR). At that point you may type in a valid assembly
language instruction. The format for an instruction
line is:

[<LABEL>] <OPCODE> (<OPERAND>]

LABEL may be any label in the form "Ln", where "n" may
be any digit from zero to nine. OPCODE may be any
valid MOS Technology instruction mnemonic or one of two
pseudo-ops (described below). OPERAND, if allowed by
the addressing mode of the instruction, may be any
valid address expression. At least one space must
separate a label from an opcode or an opcode from an
operand.

After typing your instruction, type RETURN and the
instruction will be entered into memory at the current
PC if it doesn't contain any errors. If there are any
errors, then BUG/65 will display an error message and
will reprompt you with the current (unchanged) PC. If
there are no errors, then BUG/65 will display the
object code created by the instruction to the right of
the instruction on the screen and will prompt you with
the PC of the next instruction on the next screen line.
You may exit the instant assembler by typing ESC at any
time, or by typing RETURN by itself in response to the
PC address prompt.

The instant assembler provides you with two pseudo-ops.
"/" followed by an address wi 11 change the PC to that
address. It acts like an ORG ("*=") pseudo-op. For
example, "/4000" will set the PC of the next
instruction location to $4000. "+" followed by an
address will insert the value of that address (least
significant byte) at the current PC and bump the PC by
one. It acts like a DB (.BYTE) pseudo-op. For
example, "+34" will insert the hex byte 34 at the
current PC.

--31--

The instant assembler provides a simple labeling
capability. You may prefix an instruction with a two
character label of the form "Ln", where "n" may be any
digit from 0-9. You may then use that label as an
operand in an instruction, with the following three
restrictions:

l. Immediate
labels.

type operands (tHH) can't be

2. Indirect type operands can't be labels.

3. A label can't be combined with any of the
standard address operators(+, -, X, etc.)

Label references may be forward or backward. BUG/65
will store unresolved references and resolve them when
the label is later defined. You may reference
undefined labels twenty times before BUG/65 runs out of
room to store the unresolved locations you'll then
get an error message and the assembly will be aborted.
The same label may be reused more than once. In such
cases, BUG/65 will use the last defined address of the
label when it is referenced.

If any labels have been referenced but not defined when
you exit the instant assembler, BUG/65 will prompt you
with a message and the label name followed by an equals
sign. At that point you may either define the label by
entering any valid address expression followed by a
RETURN, or you may chose not to define it and simply
hit RETURN. If you don't define the label, then the
value of the label is defaulted according to the
following two rules.

1. If an instruction using the undefined label
is a relative branch, then the value of the
label for that instruction defaults to the
location of the instruction plus two.

2. For all other instructions, the value of the
label defaults to the location of the
instruction plus three.

These rules guarantee that all branching instructions
using undefined labels are effectively turned into
NOP'S. This offers some measure of protection against
a program going into never-never land. (If you
reference a label that isn't yet defined, the object
code displayed to the right of the instruction on the
screen will show addresses generated according to these
rules. Don't worry, when the label is subsequently
defined, BUG/65 goes back and fixes up all these
references.)

--32--

SECTION 8: Special Command Modifiers

8.1 Repeat Last Command Line

{RETURN]

The last command line entered
repeated without typing the whole
hit RETURN. BUG/65 remembers the
just this purpose.

8.2 Repeat Command Line Forever

I

and executed may be
thing in again - just
last line entered for

Appending a slash to the end of a command line will
cause BUG/65 to repeat the execution of that command
line forever. The only way to stop such a repeat is to
suspend or abort the command.

8.3 Display Last Command Line

If you want to see what your last command line was,
possibly because you might want to repeat it, just type
the "=" character as the .first character of the new
command line. BUG/65 will display the last line
entered for you.

--33--

SECTION 9: BUG/65 Memory Protection

BUG/65 won't allow you to modify any portion of it's
code or variable storage areas with a BUG/65 command.
Any attempt to do so will result in a "PROTECTION
ERROR". For example, if we assume that the BUG/65 was
loaded via the command "BUG65 2000", the following
command will cause an error because it attempts to move
a memory block into BUG/65's area:

M 4000 40FF 2000

BUG/65 protects all memory from loadpoint to
loadpoint+$1FFF in this manner, where loadpoint is that
specified in .the invoking OS/A+ command line (or LOMEM,
if no loadpoint is specified). {The memory protection
feature can be turned off by changing a byte in the
Configuration Table.)

--34--

SECTION 10: BUG/65 Memory Usage

BUG/65 uses memory from $80 to $XX and loadpoint to
loadpoint+$01FF for variable storage. You can
determine the value of XX by looking at the LSTPG0 byte
in the Configuration Table. It uses memory . from
loadpoint+$200 to loadpoint+$1FFF for code storage.

10.1 Page Zero Sharing

BUG/65 will share the page zero memory that it needs
with a user program. It does this by keeping two
copies of these page zero locations. When BUG/65 is
running, the BUG/65 page zero locations contain
BUG/65's stuff. When a Go is done to a user program,
BUG/65 will save it's own page zero data and replace it
with the user's data. If a user program breaks back to
BUG/65, the reverse operation is performed.

In addition, BUG/65 will translate any command
reference to these shared page zero locations so that
the user may modify or inspect his own page zero data.
It does this by translating any command reference to
the user's page zero data to the location where the
user's copy of the data is actually being stored. This
is all transparent to the user. For example, you can
fill memory from $80 to $FF with zeros without crashing
BUG/65. If you then display $80 to $FF, you will see
zeros. They aren't really in locations $80 to $FF of
course, but they will be when you run your program.
(This is the reason it may seem to take an
extraordinarily long time to perform certain commands
(Fills, for example). The reason is that every memory
reference has to go through this translation process -
both to translate zero page references if necessary and
to check to make sure that BUG/65 isn't being
overwritten . }

--35--

SECTION 11: Customization with the Configuration Table

There is a Configuration Table located near the
beginning of the code segment of BUG/65. By changing
this data, you can customize some BUG/65 stuff. In the
table which follows, "+$xxx" means that the
configuration value is located $xxx bytes above the
loadpoint address, where loadpoint is the address
specified in the invoking OS/A+ command line (or LOMEM,
if loadpoint is not specified}. Example: if the
invoking command was "RUGGS 6000", then DISPIJ will be
located at $6209.

NAME

DISPIJ

PRINTV

GETKYV

TSTKYV

BEEPV

CHRCLR

CHRLUM
BRDCLR
EOLBYT

LOCATION FUNCTION/COMMENTS

+$209 A JMP instruction to BUG/GS's
display a character routine. All
chars displayed on the screen go
through here. The char to be
displayed is passed in reg A.

+$20C A JMP instruction to BUG/65's print
a character routine. All chars
sent to the printer go through
here. The char to be printed is
passed in reg A.

+$20F A JMP instruction to BUG/65's get a
keyboard character routine. All
keyboard reads go through here.
The key read is returned in reg A.

+$212 A JMP instruction to BUG/65's test
for a key waiting routine. All
tests for key waiting go through
here. If no key is waiting, the
equal flag is returned set. (The
key is NOT returned by this routine
- GETKYV will be called to read the
key if there's one waiting.}

+$215 A JMP instruction to BUG/65's bell
routine. All beeps are generated
through here. To eliminate the
beeps, just patch this out with an
RTS.

+$218

+$219
+$21A
+$218

Character background color
value.
Character luminance byte value.
Border color byte value.

byte

This is the byte sent to the
printer at the end of a line.
Normally set to BDH or 9BH.

--36--

LFFLAG +$21C

NULFLG +$210

PROTFG +$21E

MCBEND +$21F

If nonzero, then
character is sent to
after every EOLBYT.

a linefeed
the printer

If nonzero, then 40 nulls will be
sent to the printer after every
line. Used to flush the printer
buffer maintained by the ATARI OS
so that all lines will print
immediately.

If nonzero, then BUG/65 will not
allow itself to be overwritten wi th
a BUG/65 command. If zero, then
BUG/65 will allow itself to be
modified .

High byte of end address of
BUG/65's code. Normally set to
high byte address of
loadpoint+$2000 (e . g, $50 if the
invoking OS/A+ command were BUG65
3000). You would change this if
you added any user command handlers
after BUG/65. The handlers would
then be included in BUG / 65's memory
protection features.

To change anything in the Configuration Table, you must
f i rst disable memory protection by writing a small
program to stuff a zero into PROTFG . For example,
assuming that the loadpoint is $2000 (command line was
BUG65 2000), then using the instant assembler, you
could enter "LDA #0, STA 221E, RTS" at loca t ion $5000,
and then run the program with the "U" command by
entering "U5000 <RETURN>". This will disable memory
protection. Then make your changes, reenable memory
protection if you want by storing $FF into PROTFG, then
dump the modified BUG/65 to diskette.

Be careful when changing any of the JMP instruction
vectors. Since BUG/65 is constantly calling these
locations, the instant you change them control will be
passed to the new routine. Your replacement routines
had better be in place and ready to run or it's ga-ga
time. Actually, you will probably have to change all
three bytes of a vector at once with a small user
program.

Also, be careful about calling the vectors DISPV,
PRINTV, GETKYV, TSTKYV, and BEEPV. Since they use
BUG/65's page zero data to operate, they can't be
called from a running user program without first
calling the MCBGP0 routine defined in the User Program
Interface section.

--37--

SECTION 12: User Command Interface

It's possible to add commands to BUG/65. The hooks to
do so have been provided in a group of vectors located
at loadpoint+$0220 called the User Command Interface
Vectors. These vectors provide most of the interfaces
to BUG/65 that you'll need to add commands.

The commands you add may be activated by any non
BUG/65 command char. For example, you could add the
numeric commands "l" through "9". When IlllG/65
recognizes a non- alphabetic command character, it will
call the vector USERCMD. In it's initial state, USRCMD
is just a 3-byte subroutine that returns the equal flag
reset. BUG/65 assumes that the equal flag being reset
means that a user command handler considers the command
illegal. In this case, BUG/65 wil 1 report a "CMD
ERROR". If USRCMD returns the equal flag set, then
BUG/65 assumes that a user command handler processed
the command. In this case, BUG/65 won't generate a
command error, and will proceed to process the rest of
the command line.

So, to add your own command handler, just patch a JMP
to your handler at USRCMD. BUG/65 will pass you the
command character that it considered illegal in reg A.
On return, you must indicate the status of the command
- equal set means you handled it, equal reset means you
didn't like it either.

--38--

There are a number of other vectors in the User
Interface group which you may use to process the
command. Here's the complete list (and, as in the
previous section, the string "+$xxx" indicates a
displacement from the loadpoint):

NAME

US RC MD

GETCHR

PUTCHR

GETlHX

GET2HX

GET3HX

LOCATION FUNCTION/COMMENTS

+$2~ sub"routfne----caTrea--by --nucf6S-on
every non alpha comand char.
Returns equal set if command
handled by user, else equal reset.

+$223 User handler can tell this to get
the next char from the command line
in reg A.

+$226

+$229

+$22C

+$22F

User handler can call this to
return the last char taken from the
command line. The char itself
doesn't have to be passed. This is
used to put chars back that you've
taken but don't want - like an EOL.

User handler can call this to
collect a hex address from the
command line. The address is
returned in a word at $FE,$FF. If
next command line chars are not a
valid address, zero is returned.

User handler can call this to
collect two hex addresses from the
conunand line. The first address is
returned in a word at $FC,$FD, the
second at $FE,$FF. Zero is
returned for any invalid address.

User handler
collect three
the command

can call this to
hex addresses from

line. The first
address is returned in a word at
$FA,$FB, the second at $FC,$FD, and
the third at $FE,$FF. Zero is
returned for any invalid address.

--39--

ADRCHK +$232

ERR PAR +$235

DHXBYT +$238

DHXWRD +$23B

CTBPTR +$23E

LSTPG0 +$240

User handler can call this to
perform the usual BllG/65 address
checking and translation. The
checking refers to not allowing
IHJG/65 to be overwritten. The
translation refers to correcting
user page zero addresses. The user
handler passes the address to check
in reg X (LO) and reg Y (HI). If
the address points into BUG/65, a
"PROT ERROR" will occur, and the
user handler will not be returned
to. If the address references a
user page zero value that is being
stored somewhere else by BUG/65,
then the address of where the
actual user page zero byte is
located will be returned in reg X
(LO) and reg Y (HI).

The user haniiler can JMP to here to
reRQrt a parameter error. There is
no return back to the user handler.
BUG/65 will abort command line
processing.

The user haniiler can call this to
display a hex byte. The byte is
passed in reg A.

The user
1Hsplay a
is passel"\
(HI).

handler can call this to
hex word. 'Phe hex word

in reg X (LO) and reg Y

This is a pointer to ntJG/65 's jump
table for the alphabetic comands.
Every letter has a word entry in
this table. The entry is the
address of the handler for that
commanii minus one. The first word
in the table is the acidress minus
one for the "A" command, the 1 as t
is the same for the "Z" command.
If you want, you can change this
table to point to your own comand
routines, thereby changing the
BUG/65 command set.

This is the address (byte value) of
the last page zero location used by
BIJG/6 5. You can use th is to locate
free page zero memory for your own
use. (See the example user command
listing.).

--40--

**** SPECIAL NOTE ****

All of the above routines assume that BUG/65 data is in
page zero. THEY WILL NOT WORK if called from a running
user program for that reason, unless the user program
manages page zero with the following two routines:

MCBGP0 +$241

USERP0 +$244

Assumes BUG/65 data is in page
zero. Saves BUG/65 page zero and
replaces with user page zero. Use
this routine from a running user
program before calling any of the
above routines.

Assumes user data is in page zero.
Saves user page zero and restores
BUG/65 page zero. Use this routine
from a running user program after
calling any of the above routines
to restore the running program's
page zero data.

12.l User Command Handler Example

Here is an assembly listing of an example user comand .
This command wi 11 be command "l". It wi 11 calculate
and display an exclusive-or checksum byte on a range of
memory. The syntax of the command is:

1 <START> <END>

NCYrE: It is highly
be patched into
See Section 4.2
non-relocatable
loa<'lpoint.

recommended that user commands only
a non-relocatable version of BUG/65.
for instructions on making a

version with a user specified

:**
EQUATES INTO BUG/65:

loadpoint = ????
lp = loadpoint
MCBEND lp+$21F
DISPV lp+$209
USRCMD lp+$220
GET2HX lp+$22C
HEXl $FC
HEX2 $FE
ERRPAR lp+$235
DHXBYT lp+$238.
LSTPG0 lp+$240
EOL $9B

to be <'letermined by user I I
just an abbreviation

BUG/65 END CODE MSB
DISPLAY CHAR
USER COMMAND VECTOR
GET 2 HEX PARAMS
HEX PARAM 1 RESULT
HEX PARAM 2 RESULT
REPORT PARAM ERROR
DISPLAY HEX BYTE
LAST BUG/65 P0 BYTE USED
END OF LINE CHAR

--41--

;**

USER Cl

CMDOK

PARMER .
PARM OK

LOOP

.
NXTEOR

DONE

*=
JMP

*=
CMP
BEQ
RTS

JSR
LDA
ORA
DEQ
LOA

USRCMD
USERCl

lp+$2000
#'l
CMDOK

GET2HX
HEXl
HEXl+l
PARMER
HEX2

ORA HEX2+1
BNE Pl\RMOK

JMP

LDX

LDA
STA
TAY

LDA
CMP
BCC
BNE
J,DA
CMP
BCC

LOA
EOR
STA
INC

ERRPAR

LSTPG0

#0
1, x

HEX2+1
HEXl+l
DONE
NXTEOR
HEX2
HEXl
DONE

(HEX!) I y
l,X
l,X
HEXl

BNE LOOP
INC HEXl+l
JMP LOOP

LOA
JSR
LDX
LDA
JSR
LOA
RTS

fEOL
DISPV
LSTPG0
l,X
DHXBYT
10

*= MC BEND
• BYTE > [*+$FF)
.END

--42--

PATCH US INTO BUG/65

RIGHT AFTER BUG/65 CODE
COMMAND "l" ?
YES
ELSE RTN EQUAL RESET - ERR

GET S'rART, END
MAKE SURE BOTH SPECIPIED

OR ELSE ERROR

REPORT PARAM ERROR

LAST BUG/65 P~ BYTE
(WE' LL USE THE NEX'r
FOR OUR ACCUMULATOR)

CLEAR ACCUMULATOR

INIT Y PTR INDEX

PAST END ADDRESS ?

YES
NO

YES

CALC EOR CHKSUM
EOR WI'rH ACCUM
AND SAVE IN ACCUM
BUMP P'rR

TO NEXT SCREEN LINE

RESTORE ACCUM ADDRESS
DISPLAY HEX RESULT

RTN OK (EQUAL S E'r)

CHANGE BUG/65 CODE
END BYTE TO INCLUDE

THAT'S ALL FOLKS

SECTION 13: Error Messages

The following is a list of all of the error messages
and a short explanation of each one:

COMMAND ERROR
An attempt to execute an illegal command. A
letter or number that isn't a valid command
mnemonic was interpreted as a command character.
For example, trying to execute the command "N"
will cause a command error.

IMMEDIATE CMD ERROR
An attempt to execute an immediate type command
in the middle of a command line. An immediate
command (A, S, X, or Z) must be the first
command on a command line. See se~tion 5.2.

PROTECTION ERROR
An attempt was made to modify BUG/65's code or
variable memory areas with a BUG/65 command.

PARAM ERROR
Caused by the usage of any .invalid comman<'l
parameter.

REGISTER ERROR
An invalid register name was specified in either
the G or X command.

BREAKPOINT ERROR
An attempt was made to set a breakpoint in
either PROM memory space or non-existent memory.

PRINTER ERROR
Any printer error returned to BUG/65 by the
operating system. (BUG/65 uses the ATARI OS to
print characters. Any error returned by the OS
on a print character call will cause this
error.)

SYNTAX ERROR

I/O

Caused by an error in the syntax of a command.

ERROR - NNN
Any disk I/O error returned to
operating system. (BUG/65 uses
disk I/O. Any error returned by
will cause this error.) NNN
error nwnber returned by the OS.
OS/A+ manual for the meanings of

--43--

BUG/65 by the
the OS/A+ to do
the OS/A+ call
is the decimal
Refer to your

these numbers.

*** ERROR - MNEMONIC
In the instant assembler, an invalid opcode
mnemonic was entered.

*** ERROR - OPERAND
In the instant assembler, an invalid instruction
operand was entered.

*** ERROR - RANGE
In the instant assembler, a br~nch out of range
was attempted.

*** ERROR - TOO MANY LABEL REFS
In the instant assembler, too many references
have been made to an undefined label. BUG/65
2.0 allows twenty references to undefined labels
before it's label buffer overflows.

*** ERROR - UNDEFINED - Ln
In the instant assembler, a
referenced but not defined. "n"
number that needs definition.

--44--

label has been
is the label

1\PPENDIX

This section applies only to those users who own
version 4 of OS/A+.

The version of BUG/65
directly compatible with
on your disk, however, is
BUGGS.COM file into a
version 4. This program,
program that modifies the

which you received is not
version 4 of OS/A+. Included
a program which converts the
form which will work under

BUGV4FIX.COM, is a binary
relocatable version of BUG65.

The resultant version of BUG65.COM will work ONLY with
version 4. Further, under version 4, the R (read
binary file) command will not work properly under all
conditions. We suggest instead using the OS/A+ LOAD
command for loading binary files into memory, although
the ERROR 136 produced by the R command may simply be
ignored, if desired. Only location $00 is improperly
affected by this error.

HOW TO USE 'rHE PROGRAM:

1) Copy the files BUG65.COM and
BUGV4FIX.COM to a version 4 disk using
the COPY24 command (sec the OS/A+
manual for details on this command).

2) At the version 4 "Dl:" prompt, type the
command:

BUGV4FIX [RETURN]

3) The file BUG65.COM on that disk is now
compatible with version 4 of OS/A+.

WARNING: Do NO'r perform the BUGV4FIX command on your
version 2 master disk!

--45--

	OSS Bug/65 (Cover)
	Errors In Your Bug/65 Manual
	Preface
	Table of Contents
	Summary of Major Features of Bug/65
	Section 1: Command Summary
	Section 2: Notations Used in this Manual
	Section 3: Address Parameters
	3.1 Spaces as Parameter Delimeters

	Section 4: Loading & Running Bug/65
	4.1 Specifying Bug/65's Load Address
	4.2 Creating a Non-Relocatable Version

	Section 5: Command Entry
	5.1 Command Line Editing
	5.2 Normal & Immediate Type Commands
	5.3 Command Execution
	5.4 Multiple Commands on a Line

	Section 6: Command Termination
	6.1 Normal Termination
	6.2 Error Termination
	6.3 Command Suspension
	6.4 Command Abort
	6.5 The RESET Key
	6.6 Manual Restart

	Section 7: Command Descriptions
	7.1 A - Change Memory, ASCII Mode
	7.2 B - Set Relocation Base
	7.3 C - Compare Memory Block
	7.4 D - Display Memory
	7.5 E - Execute a Command File
	7.6 F - Fill a Memory Block with a Value
	7.7 G - Goto a User Program
	7.8 H - Hexadecimal Arithmetic
	7.9 I - Display Disk Directory
	7.10 J - Create a Command File
	7.11 K - Convert Hex to Decimal
	7.12 L - Locate a Hex String
	7.13 M - Move a Memory Block
	7.14 P - Select Output Devices
	7.15 Q - Quit to OS/A+ Command
	7.16 Read Commands
	7.16.1 R - Read a File
	7.16.2 R% - Read Sector(s)

	7.17 S - Change Memory, Numeric Mode
	7.18 T - Trace a User Program
	7.19 U - Call a User Subroutine
	7.20 V - Display User's Registers
	7.21 Write Commands
	7.21.1 W - Write a File
	7.21.2 W% - Write Sector(s)

	7.22 X - Change User's Registers
	7.23 Y - Disassemble Memory Block
	7.24 Z - Instant Assembler

	Section 8: Special Command Modifiers
	8.1 Repeat Last Command Line
	8.2 Repeat Command Line Forever
	8.3 Display Last Command Line

	Section 9: Bug/65 Memory Protection
	Section 10: Bug/65 Memory Usage
	10.1 Page Zero Sharing

	Section 11: Customization with the Configuration Table
	Section 12: User Command Interface
	12.1 User Command Handler Example

	Section 13: Error Messages
	Appendix

